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Foreword to Series 

In the course of their lifetime simple items in everyday use such as mobile 
telephones, wristwatches, electronic components in cars or more specific items such 
as satellite equipment or flight systems in aircraft, can be subjected to various 
conditions of temperature and humidity, and more particularly to mechanical shock 
and vibrations, which form the subject of this work. They must therefore be 
designed in such a way that they can withstand the effects of the environmental 
conditions to which they are exposed without being damaged. Their design must be 
verified using a prototype or by calculations and/or significant laboratory testing. 

Sizing, and later, testing are performed on the basis of specifications taken from 
national or international standards. The initial standards, drawn up in the 1940s, 
were blanket specifications, often extremely stringent, consisting of a sinusoidal 
vibration, the frequency of which was set to the resonance of the equipment. They 
were essentially designed to demonstrate a certain standard resistance of the 
equipment, with the implicit hypothesis that if the equipment survived the particular 
environment it would withstand, undamaged, the vibrations to which it would be 
subjected in service. Sometimes with a delay due to a certain conservatism, the 
evolution of these standards followed that of the testing facilities: the possibility of 
producing swept sine tests, the production of narrowband random vibrations swept 
over a wide range and finally the generation of wideband random vibrations. At the 
end of the 1970s, it was felt that there was a basic need to reduce the weight and cost 
of on-board equipment and to produce specifications closer to the real conditions of 
use. This evolution was taken into account between 1980 and 1985 concerning 
American standards (MIL-STD 810), French standards (GAM EG 13) or 
international standards (NATO), which all recommended the tailoring of tests. 
Current preference is to talk of the tailoring of the product to its environment in 
order to assert more clearly that the environment must be taken into account from 
the very start of the project, rather than to check the behavior of the material a 
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posteriori. These concepts, originating with the military, are currently being 
increasingly echoed in the civil field. 

Tailoring is based on an analysis of the life profile of the equipment, on the 
measurement of the environmental conditions associated with each condition of use 
and on the synthesis of all the data into a simple specification, which should be of 
the same severity as the actual environment. 

This approach presupposes a proper understanding of the mechanical systems 
subjected to dynamic loads and knowledge of the most frequent failure modes. 

Generally speaking, a good assessment of the stresses in a system subjected to 
vibration is possible only on the basis of a finite element model and relatively 
complex calculations. Such calculations can only be undertaken at a relatively 
advanced stage of the project once the structure has been sufficiently defined for 
such a model to be established. 

Considerable work on the environment must be performed independently of the 
equipment concerned either at the very beginning of the project, at a time where 
there are no drawings available, or at the qualification stage, in order to define the 
test conditions. 

In the absence of a precise and validated model of the structure, the simplest 
possible mechanical system is frequently used consisting of mass, stiffness and 
damping (a linear system with one degree of freedom), especially for: 

– the comparison of the severity of several shocks (shock response spectrum) or 
of several vibrations (extreme response and fatigue damage spectra); 

– the drafting of specifications: determining a vibration which produces the same 
effects on the model as the real environment, with the underlying hypothesis that the 
equivalent value will remain valid on the real, more complex structure; 

– the calculations for pre-sizing at the start of the project; 

– the establishment of rules for analysis of the vibrations (choice of the number 
of calculation points of a power spectral density) or for the definition of the tests 
(choice of the sweep rate of a swept sine test). 

This explains the importance given to this simple model in this work of five 
volumes on “Mechanical Vibration and Shock Analysis”. 

Volume 1 of this series is devoted to sinusoidal vibration. After several 
reminders about the main vibratory environments which can affect materials during 
their working life and also about the methods used to take them into account, 
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following several fundamental mechanical concepts, the responses (relative and 
absolute) of a mechanical one-degree-of-freedom system to an arbitrary excitation 
are considered, and its transfer function in various forms are defined. By placing the 
properties of sinusoidal vibrations in the contexts of the real environment and of 
laboratory tests, the transitory and steady state response of a single-degree-of-
freedom system with viscous and then with non-linear damping is evolved. The 
various sinusoidal modes of sweeping with their properties are described, and then, 
starting from the response of a one-degree-of-freedom system, the consequences of 
an unsuitable choice of sweep rate are shown and a rule for choice of this rate is 
deduced from it. 

Volume 2 deals with mechanical shock. This volume presents the shock response 
spectrum (SRS) with its different definitions, its properties and the precautions to be 
taken in calculating it. The shock shapes most widely used with the usual test 
facilities are presented with their characteristics, with indications how to establish 
test specifications of the same severity as the real, measured environment. A 
demonstration is then given on how these specifications can be made with classic 
laboratory equipment: shock machines, electrodynamic exciters driven by a time 
signal or by a response spectrum, indicating the limits, advantages and 
disadvantages of each solution. 

Volume 3 examines the analysis of random vibration which encompasses the 
vast majority of the vibrations encountered in the real environment. This volume 
describes the properties of the process, enabling simplification of the analysis, 
before presenting the analysis of the signal in the frequency domain. The definition 
of the power spectral density is reviewed, as well as the precautions to be taken in 
calculating it, together with the processes used to improve results (windowing, 
overlapping). A complementary third approach consists of analyzing the statistical 
properties of the time signal. In particular, this study makes it possible to determine 
the distribution law of the maxima of a random Gaussian signal and to simplify the 
calculations of fatigue damage by avoiding direct counting of the peaks (Volumes 4 
and 5). The relationships that provide the response of a one-degree-of-freedom 
linear system to a random vibration are established. 

Volume 4 is devoted to the calculation of damage fatigue. It presents the 
hypotheses adopted to describe the behavior of a material subjected to fatigue, the 
laws of damage accumulation and the methods for counting the peaks of the 
response (used to establish a histogram when it is impossible to use the probability 
density of the peaks obtained with a Gaussian signal). The expressions of mean 
damage and its standard deviation are established. A few cases are then examined 
using other hypotheses (mean not equal to zero, taking account of the fatigue limit, 
non-linear accumulation law, etc.). The main laws governing low cycle fatigue and 
fracture mechanics are also presented. 
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Volume 5 is dedicated to presenting the method of specification development 
according to the principle of tailoring. The extreme response and fatigue damage 
spectra are defined for each type of stress (sinusoidal vibrations, swept sine, shocks, 
random vibrations, etc.). The process for establishing a specification as from the 
lifecycle profile of the equipment is then detailed taking into account the uncertainty 
factor (uncertainties related to the dispersion of the real environment and of the 
mechanical strength) and the test factor (function of the number of tests performed 
to demonstrate the resistance of the equipment). 

First and foremost, this work is intended for engineers and technicians working 
in design teams responsible for sizing equipment, for project teams given the task of 
writing the various sizing and testing specifications (validation, qualification, 
certification, etc.) and for laboratories in charge of defining the tests and their 
performance following the choice of the most suitable simulation means. 

 



Introduction 

Materials which are transported by or loaded onto land vehicles, aircraft or 
marine vehicles, or which are installed close to turning machines, are subject to 
different vibrations and mechanical shocks. These materials must be able to endure 
such shocks and vibrations without being damaged. To achieve this goal, the first 
step consists of noting the values of these environments in the specifications of the 
material to be developed, so that the research departments can take them into 
account during dimensioning. The following step is the qualification of the designed 
material, starting from these specifications, to experimentally demonstrate its 
behavior under its future conditions of use. 

The specifications used for dimensioning and testing today are elaborate, starting 
from measurements of the real environment which the equipment will undergo (test 
tailoring). It is thus necessary to correctly measure the vibrations and shocks before 
analyzing them and to synthesize them to obtain specifications leading to reasonable 
qualification tests of a reasonable duration. 

Taking into account vibrations and shocks thus requires us: 

– to identify the future conditions of use; 

– to carry out, if possible, significant measurements; 

– to digitize the measured signals; 

– to identify each type of vibration in order to characterize them by analysis in 
the frequency domain, adapted to proceed to severity comparisons between the 
collected measurements under various conditions, or between real environments and 
values provided in normative documents, or with specifications established in 
another context; 

– to finally transform measurements into specifications. 
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The object of this series of five volumes is thus to describe all the mathematical 
tools that are currently used in the analysis of vibrations and shocks, while starting 
with the sinusoidal vibrations. 

Sinusoidal vibrations were first used in laboratory tests to verify the ability of 
equipment to withstand their future vibratory environment in service without 
damage. Following the evolution of standards and testing facilities, these vibrations, 
generally speaking, are currently studied only to simulate vibratory conditions of the 
same nature as encountered, for example, in equipment situated close to revolving 
machinery (motors, transmission shafts, etc.). Nevertheless, their value lies in their 
simplicity, enabling the behavior of a mechanical system subjected to dynamic stress 
to be demonstrated, and the introduction of basic definitions. 

Given that, generally speaking, the real environment is more or less random in 
nature, with a continuous frequency spectrum in a relatively wide range, in order to 
overcome the inadequacies of the initial testing facilities, testing rapidly moved to 
the “swept sine” type. Here the vibration applied is a sinusoid, the frequency of 
which varies over time according to a sinusoidal or exponential law. Despite the 
relatively rapid evolution of electrodynamic exciters and electrohydraulic vibration 
exciters, capable of generating wideband random vibrations, these swept sine 
standards have lasted, and are in fact still used, for example in aerospace 
applications. They are also widely used for measuring the dynamic characteristics of 
structures. 

After an introductory chapter (Chapter 1) to this series, pointing out the 
characteristics of some important vibratory environments and the various steps 
necessary to arrive at the qualification of a material, we follow-up with a few brief 
reminders of basic mechanics (Chapter 2). Chapter 3 examines the relative and 
absolute response of a mechanical system with one degree of freedom subjected to a 
given excitation, and defines the transfer function in different forms. Chapter 4 is 
devoted more particularly to the response of such a system to a unit impulse or to a 
unit step. 

The properties of sinusoidal vibrations are then presented in the context of the 
environment and in laboratory tests (Chapter 5). The transitory and steady state 
response of a system with one degree of freedom to viscous damping (Chapter 6) 
and to non-linear damping (Chapter 7) is then examined. 

Chapter 8 defines the various sinusoidal sweeping modes, with their properties 
and eventual justification. Chapter 9 is devoted to the response of a system with one 
degree of freedom subjected to linear and exponential sweeping vibrations, to 
illustrate the consequences of an unsuitable choice of sweep rate, resulting in the 
presentation of a rule for the choice of a rate. 
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The major properties of the Laplace transform are reviewed in the Appendix. 
This provides a powerful tool for the analytical calculation of the response of a 
system with one degree of freedom to a given excitation. Inverse transforms 
particularly suitable for this application are given in a table. 





 

List of Symbols 

The list below gives the most frequent definition of the main symbols used in 
this book. Some of the symbols can have another meaning locally which will be 
defined in the text to avoid confusion. 

 
A t  Indicial admittance or step 

response 
A p  Laplace transform of A t  
c Viscous damping constant 

eqc  Equivalent viscous 
damping constant 

C  Part of the response 
relating to non-zero initial 
conditions 

d Lever arm 
D  Damping capacity 
e  Neper number 
E  Young’s modulus 

aE  Damping energy 
Ed  Dynamic modulus of  

elasticity 

cE  Kinetic energy 

PE  Potential energy 
E( ) Function characteristic of 

sweep mode 

f  Frequency of excitation 
fm  Expected frequency 

sampf  Sampling frequency 
f  Sweep rate 
f0 Natural frequency 

iF  Inertial force 

rF  Restoring force 
F t  External force applied to a 

system 
Fc Peak factor (or crest 

factor) 

dF  Damping force 
Ff  Form factor 
Fm  Maximum value of F t  
g Acceleration due to gravity 
G  Coulomb modulus 
G  Attenuation related to 

sweep rate 
h Interval (f f0 ) 
HAD  Transmissibility 
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RDH  Dynamic amplification 
factor 

HRV Relative transmissibility 
h t  Impulse response 
H( ) Transfer function 
i 1 
I  Moment of inertia 
J Damping constant 
k Stiffness or uncertainty 

coefficient 

rms  rms value of t  

m  Maximum value of t  
t  Generalized excitation 

(displacement) 
t  First derivative of t  
t  Second derivative of t  

L  Lagrange function 
L p  Laplace transform of t  
L  Fourier transform of t  
m Mass 
M Moment of a force 
n Number of cycles 
nd  Number of decades 
N  Normal force 

sN  Number of cycles 
performed during swept 
sine test 

p  Laplace variable 
P  Reduced pseudo-pulsation 
P  Impulse vector 

iq  Generalized coordinate 
q m Maximum value of q  
q0  Value of q  for 0  
q  Reduced response 

q0  Value of q  for 0  
q  First derivative of q  
q  Second derivative of q  
Q  Q factor (quality factor) 
Q p  Laplace transform of q  
r  Position vector 

Rm Ultimate tensile strength 

omR  Number of octaves per 
minute 

osR  Number of octaves per 
second 

s Number of degrees of 
freedom 

S Action 
t Time 

st  Sweep duration 
T  Duration of application of 

vibration 
T0  Natural period 
T1 Time-constant of 

logarithmic swept sine 
u t  Generalized response 

sU  Maximum elastic strain 
energy stored during one 
cycle 

tsU  Elastic strain energy per 
unit volume 

U p  Laplace transform of u t  
U  Fourier transform of u t  
v  Velocity vector 
xm Maximum value of x t  
x t  Absolute displacement of 

the base of a one-degree-
of-freedom system 
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x t  Absolute velocity of the 
base of a one-degree-of-
freedom system 

xm Maximum value of x t  
x t  Absolute acceleration of 

the base of a one-degree-
of-freedom system 

X  Fourier transform of x t  
y t  Absolute displacement 

response of the mass of a 
one-degree-of-freedom 
system 

y t  Absolute velocity response 
of the mass of a one-
degree-of-freedom system 

y t  Absolute acceleration 
response of the mass of a 
one-degree-of-freedom 
system 

zm  Maximum value of z t  
zs  Maximum static relative 

displacement 
z t  Relative displacement 

response of the mass of a 
one-degree-of-freedom 
system with respect to its 
base 

 Rotation angle 
 Logarithmic decrement 
g( ) Dirac delta function 
 Energy dissipated per unit 

time 

dE  Energy dissipated by 
damping in one cycle 

f  Interval of frequency 
between half-power points 

N  Number of cycles between 
half-power points 

 Relative deformation 
 Velocity of relative 

deformation 
 Coefficient of dissipation 

(or of loss) or reduced 
sweep rate 

z t  Relative velocity response 
z t  Relative acceleration 

response 
Z p  Generalized impedance 
 Phase 

 Reduced excitation 
p  Laplace transform of  

 Coefficient of friction 
 3.14159265 ... 
 Radius of gyration 
 Reduced time q  

b  Reduced sweep rate 
 Reduced pseudo-period 
 Stress 

m  Mean stress 

0 Natural pulsation (2 0f ) 
 Pulsation of excitation 

(2 f ) 
 Damping factor 

eq  Equivalent viscous 
damping factor 

 Phase

 
 





 

 

Chapter 1 

The Need 

1.1. The need to carry out studies into vibrations and mechanical shocks 

During their service life, many materials are subjected to vibratory environments, 
during their transport [OST 65], [OST 67], because they are intended to equip 
themselves with means of transport (airplanes, road vehicles, etc.) or because they are 
placed beside vibratory sources (engines, wind mills, roads, etc.). These vibratory 
environments (vibrations and shocks) create dynamic strains and stresses in the 
structures which can, for example, produce intermittent or permanent breakdowns in 
electrical equipment, plastic deformations or fractures by up-crossing an ultimate 
stress of the material (yield limit, rupture limit), optical misalignments of systems or 
may contribute to the fatigue and the wear of the machine elements. 

It is therefore necessary to take all of these points into consideration during the 
design phase of structures and of mechanical equipment. The approach is normally 
made up of several steps: 

– measuring the vibration phenomena; 

– analyzing the results of the measurements, bearing in mind that this analysis will 
be used for different objectives, including: 

- the characterization of the frequency contents of the vibration (the search for 
predominant frequencies, amplitudes, etc.), for example, to compare the natural 
frequencies of the structures,  
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- comparing the relative severity of several different vibratory environments 

(transport on various vehicles) or comparing the severity of such vibration 
environments with a standard, 

- confirming a posteriori the validity of a dimensioning or test specification 
which is established starting from fallback level values, from data collected at the time 
of a preceding project or starting from values resulting from normative documents;  

– the transformation of measurements into dimensioning specifications for 
research departments; these are presented in the simplest possible form requiring a 
synthesis of all the measured data;  

– during and at the end of the design phase, at the time of the qualification, 
realization of tests intended to validate the behavior of the materials developed from  
these environments. 

The vibrations most frequently encountered in the real environment are of a 
random nature. Along with shocks, they constitute the main part of mechanical 
excitations. These two environments can be severe, shocks by their amplitude and 
random vibrations by their duration. 

In certain situations, however (near turning machines), it is possible to observe 
sinusoidal vibrations which are often polluted by noise. This is especially the case for 
vibrations which are produced by propeller airplanes and helicopters. In these cases, 
the random noise which is produced is significantly important compared to the 
sinusoidal lines (fundamental and harmonics). 

Whenever such rotating machines are switched on and off, their frequency varies, 
in a continuous way, generating a vibration similar to a swept sine. This type of 
environment is primarily used in laboratory tests in order to carry out research into the 
resonance frequency of structures. 

The mechanical excitations which are then analyzed, resulting from measurements 
of the environment or test laboratory, belong to one of the following groups: 

– sinusoidal vibrations; 

– swept sine vibrations; 

– random vibrations; 

– mechanical shocks; 

or a combination of these vibrations: 

– sine on random (one or several lines); 

– a swept sine on random (with a sweeping on one or several frequency bands); 



      The Need     3 

 
– a narrowband random vibration swept on a wideband noise, etc. 

The vibrations which are produced in the real world have quite different frequency 
domains: 

– between approximately 1 and 500 Hz for road vehicles; 

– between approximately 10 and 2,000 Hz for airplanes and spacecraft; 

– between approximately 1 and 35 Hz for earthquakes; 

– more than 10,000 Hz for shocks which are created by metal–metal impacts,  
several tens of thousands of Hz for shocks which are created by pyrotechnic devices. 

Vibrations are often classed into three different categories, depending on their 
frequency. The different categories are as follows: 

– very low frequency for frequency values between 0 and 2 Hz; 

– medium frequency for frequency values between 2 and 20 Hz; 

– high frequency for frequency values between 20 and 2,000 Hz. 

These values in conventional matter are given only as an indication and do not 
have any theoretical legitimacy. The low frequency concept can in fact be definite 
only according to the natural frequency of the system which undergoes the vibration. 
The frequency of a vibration will be low for a mechanical system if it induces any 
dynamic response (no attenuation and no amplification). 

1.2. Some real environments 

1.2.1. Sea transport 

The sources of vibrations on board ships have various origins and natures. They 
are primarily due to: 

– the propeller (periodic vibrations); 

– the propelling unit and the auxiliary groups (periodic vibrations); 

– the equipment used on board (for example, winches); 

– the effects of the sea (random vibrations). 

The measured levels are in general the lowest amongst all the means of surface 
transport. 
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1.2.1.1. Vibrations produced by the ship’s propeller 

The rotation of the propeller can excite the modes of the ship’s frame in different 
ways: 

– the accelerations transmitted to the hull via the line shafts; 

– forces exerted on the ship’s rudder; 

– hydroelastic coupling between the propeller and the shafts’ line; 

– fluctuations in pressure distributed on all parts of the back hull, having as an 
origin the wake in which the propeller works. These fluctuations in pressure are 
dependent on: 

- the variations of propeller’s push. When the propeller provides a push, the back 
of each blade is subjected to a “negative pressure” (suction) compared to the 
environmental pressure, and the front face is subjected to an overpressure, 

- the number, area and thickness of the blades. The fluctuations in pressure are a 
linear function of the average thickness of the blades and decrease very quickly when 
the number of blades increases, 

- the presence of a variable vapor pocket on the surface of the blade and in its 
slipstream, as a consequence of cavitation. 

Around the propeller is formed a cavity filled with vapor within the liquid, due to a 
local pressure lower than the saturating steam pressure. When the vapor bubbles reach 
higher pressure zones, they condense brutally. This phenomenon, known as cavitation, 
involves very strong mechanical actions (vibrations, noises, etc.). 

Cavitation is the source of the majority of vibration problems encountered on 
ships. It is equivalent to an increase of the thickness of blades and, as a result, 
increases the pressure fluctuations. The variation of the volume of the cavitation 
pocket over time is a second source of pressure fluctuation. The fundamental 
frequency is around 20 Hz for fixed blade propellers from 5 to 6 m in diameter and 
10 Hz for propellers from 8 to 10 m in diameter. The natural frequencies of the blades 
decrease when the diameter increases. 

1.2.1.2. Vibrations produced by the ship’s engine 

The vibrations which are produced by a ship’s engine are caused by the alternate 
movements of the piston, connecting rod and crankshaft systems.  

They can excite the modes of the ship’s frame, especially for medium-sized ships. 
Their vibratory frequency generally lies between 3 and 30 Hz. 
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1.2.1.3. Vibrations produced by the state of the sea 

Vibrations due to the swell 

The swell heave leads to the creation of vibrations of a long duration and of very 
low frequency (less than 2 Hz) in both the longitudinal (pitching) and transverse 
direction (rolling). These random oscillations are always of a seismic nature. 

Their frequency varies between 0.01 Hz (when the sea is very calm) and 1.5 Hz 
(during bad weather). Their associated accelerations range from approximately 
0.1 m/s2 to 9 m/s2. 

Vibrations of the whole of the ship due to the state of the sea  

In general, two types of vibrations are considered: 

– hydrodynamic shocks applied to the front of the ship lead to the vibration of the 
whole of the ship, which works like a beam. This phenomenon occurs whenever the 
ship navigates the sea with its front first, with relative movements of the stem 
sufficiently significant to create impacts. These impacts can be distinguished as 
follows: 

- shocks which are produced on the flat part at the bottom of the ship, when the 
ship makes contact with the sea, after it emerges from the water,  

- shocks on planking of the stem, without emergence, without the ship 
resurfacing from the sea, 

- areas of seawater; 

– excitations which are caused by the swell’s variable hydrodynamic forces, which 
lead to a steady state free vibration of the entire ship. 

These vibrations generally have low or very low frequencies and, to a lesser 
extent, some can have high frequencies [VIB 06]. The frequencies range from 0.01 Hz 
to 80 Hz, with a maximum value of between 3 Hz and 30 Hz. The vibrations are 
periodic or random. 

1.2.2. Earthquakes 

The rapid release of the deformation energy which is accumulated in the Earth’s 
crust or mantle (the underlying layer) is felt as a vibration on the Earth’s surface: an 
earthquake. The vibration (the tremor) lasts in general for a few tens of a second. 
Their amplitude on the ground level can reach several m/s2.  
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The shock response spectrum was created in the 1930s in order to group together 

the different effects that earthquakes of different amplitudes have on buildings. The 
amplitudes are taken from actual acceleration signals which were measured from real 
earthquakes (see Volume 2). 

1.2.3. Road vibratory environment  

The road transport vibratory environment is complex. It can be described as a 
mixture of permanent vibrations and discrete superimposed vibrations. The permanent 
part is comprised of variable proportions of the following types of vibrations: 

– wideband noise, with a distribution of the instantaneous values which is 
generally Gaussian; 

– very narrowband excitation with amplitude distribution very close to a Gauss 
law (for example, in response to a suspension);  

– excitation of only one frequency and of constant amplitude (a poorly balanced 
rotor). 

The discrete components can be recurring (i.e. with a periodicity), for example at 
the time of the passage of joints of a road made up of concreted plates, or intermittent 
(only one or some occurrences), for example during the crossing of a railway crossing. 

Four main sources of vibrations can be distinguished: the suspension system, tires, 
the driving system and parts of the vehicle’s framework [FOL 72]. The spectrum’s 
characteristics depend on the state of the road or the type of terrain on which the 
vehicle is being used, the speed at which the vehicle is traveling and the vehicle’s 
suspension. 

The vehicle suspension generates vibrations at quite high amplitudes with 
frequencies between 3 and 6 Hz. The tires produce recurring components between 15 
and 25 Hz. The engine and the driving train produce continuous excitation with 
frequencies between 60 and 80 Hz. The structural responses can range from 100 Hz to 
120 Hz [FOL 72]. Other frequency domains can reach frequencies of up to 1,000 Hz 
according to the type of vehicle that is being used, due for example to the operation of 
electrical brakes. 

The road vibratory environment is mainly made up of the following components: 

– longitudinal movements which are linked to the acceleration and slowing down 
of a vehicle; 

– lateral movements which correspond to driving around bends; 
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– vibrations which occur along the vertical axis, related to rolling on the road; 

– longitudinal and lateral movements which are both associated with vertical  
non-symmetric excitation. 

The first two environments are relatively weak and quasi-static. The last two are 
dependent on the state of the road. The frequencies of the spectrum can reach up to 
approximately 30 Hz, with low frequencies being able to produce large displacements. 
Frequencies larger than 30 Hz can also exist, being able to excite local resonances of 
structures [HAG 63]. The vibrations according to the vertical axis are generally 
dominant. 

The rms acceleration of these vibrations ranges between 2 and 7 m/s2 
approximately [RIS 08]. 

The spectrum measured on the tracked vehicles is comprised of a random 
broadband noise and other higher energy bands of random vibrations which are 
created by the interaction of the caterpillar with the track and the toothed wheels. It is 
preferable to simulate these types of vibrations by using a swept sine on a wideband 
noise. 

1.2.4. Rail vibratory environment 

The permanent excitation measured during the rail transport is of a slightly smaller 
amplitude than that measured on the road [VIB 06]. 

The origin of the vibrations is primarily related to defects which exist on railway 
lines, for example, gaps between the rails, distance between the rails, switch point 
areas, etc. These examples are only a few of those that exist. 

The vertical axis is in general the most excited, but the vibrations according to the 
transverse axes can also be severe, at least for particular frequency bands. The highest 
levels correspond to the frequency of the suspension (between 1 and 10 Hz), to the 
frequency of the train’s framework (between 10 and 100 Hz) and to the areas where 
there are joints which hold the rails together (between 10 and 30 Hz). The switch point 
areas produce the strongest excitations [FOL 72] like the shocks between coaches 
during the process of putting the train together – attaching the wagons of the trains 
(the most severe levels of all types of surface transport). 



8     Sinusoidal Vibration 

 
1.2.5. Propeller airplanes 

The vibrations measured on the propeller planes have a spectrum that is made up 
of a wideband noise and of several sinusoidal or narrowband lines. Wideband noise 
comes from the flow of air that occurs around the airplane and also from the multiple 
periodic components which are produced by all the elements in rotation in the 
propeller. 

The peaks come from the flow of air that exists between the blades of the 
propellers, creating periodic aerodynamic pressure fields on the structure of the plane. 
The narrowbands are centered on a frequency which corresponds to the number of 
propeller blades multiplied by the engine’s rotation speed and on its harmonics. 

The most visible lines are generally the fundamental frequency as well as the first 
two or three harmonics. The amplitude of these rays depends on the stage of the flight, 
i.e. take-off, ascent, cruise, landing, etc., and also depends on the point at which the 
measurement is taken. 

The same spectrum can also be observed around the airplane’s engine. The 
majority of engines have an almost constant rotation speed. This rotation speed can be 
modified by supplying fuel to the engine, or by changing the angle of the propeller’s 
blades. The frequency of the peaks is also quite stable. Their width is linked to the 
small change in rotation speed and to the fact that the vibrations which are generated 
are not purely sinusoidal vibrations. 

Other engines function with a more variable rotation speed. In this case, simulation 
in a laboratory is instead carried out by specifying a test defined by a swept sine on a 
wideband random vibration. 

1.2.6. Vibrations caused by jet propulsion airplanes 

1.2.6.1. During take-off and ascent 

The strongest vibrations occur along the vertical axis of an airplane during its take-
off and ascent. The weakest vibrations occur along the airplane’s horizontal axis. 

Depending on the type of airplane, the typical frequency has a value of between 60 
and 90 Hz, with a root mean square of about 5 m/s2. 

1.2.6.2. The cruising phase 

The amplitudes of the vibrations are much lower during the cruising phase of the 
plane than is the case during the take-off and ascent phases. Nevertheless, the 
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amplitudes remain stronger along the vertical axis. These values are much lower along 
the other two  axes. There is also a constant frequency of between 60 and 90 Hz.  

1.2.7. Vibrations caused by turbofan aircraft 

We observe here a tendency towards a continuous rise of the levels of amplitude 
between 20 and 1,000 Hz, then a decrease of the amplitudes. 

Once again, the strongest vibrations occur along the vertical axis and the weakest 
vibrations along the longitudinal axis. The vibration signal tends to be made up of a 
sine wave which is superimposed onto a wideband Gaussian noise. 

This type of vibration occurs on the fighter airplane and is produced by many 
sources, including: 

– the engine’s noise which is then transmitted by the airplane’s bodywork; 

– aerodynamic flow; 

– dynamic responses due to operations (airbrakes, missile launches, etc.). 

In addition to these vibrations, shocks (which are sometimes severe) also occur, 
related to landing, taking-off, catapult-launchings, etc. 

1.2.8. Helicopters 

The vibrations which are produced by helicopters are made up of a random 
wideband noise and sinusoidal lines which are produced by the helicopter’s main 
rotor, tail rotor and engine. The frequency of the sinusoidal lines does not vary much, 
the rotation speed of all of these components remaining relatively constant (variation 
of approximately 5%). The fundamental frequency which can be found in the 
sinusoidal lines corresponds to the rotation speed of the rotor and to its harmonic 
frequencies.  

The amplitude of the lines is a function of the type of the helicopter and the point 
of measurement (proximity of the source). 

The helicopter produces the most severe environment among all the means of air 
transport, producing high amplitudes at low frequency. The permanent random 
wideband component is very complex and has an extremely large amplitude. 
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The dynamic environment of the helicopters is different from that created by fixed 

wing airplanes. There is little difference here between take-off and cruising, and the 
amplitudes are generally larger.  

The rotation speed does not vary much during flight for helicopters, except during 
hovering flight. Random vibrations (approximately Gaussian) are superimposed on 
sine lines, with a significant component at very low frequency. These lines are 
difficult to identify (frequency and amplitude) and extract. The amplitude of the rays 
varies depending on whether the vibration was recorded close to the rotors and engine, 
or not. 

The vertical axis is in general the most severe. The fundamental frequency of the 
vibration depends on the rotation speed of the blades and also on the number of blades 
present.  

The first component, between 15 and 25 Hz for the main rotor, is easily 
identifiable on the three axes and is more important according to the longitudinal and 
transverse axes [FOL 72]. The back rotor produces higher frequencies in general, 
between 20 and 100 Hz approximately, according to the type of apparatus and the 
number of blades. 

The tail rotor tends to produce frequencies of a higher value, i.e. between 20 Hz 
and 100 Hz. These values depend on the type of helicopter and on the number of 
blades on the helicopter’s propeller. 

Example 1.1. 

 

Figure 1.1. Frequency contents of a vibration measured  
on a helicopter (power spectral density) 
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1.3. Measuring vibrations and shocks 

Different physical parameters can be a priori used for characterizing a vibration: 
an acceleration, a velocity, a displacement, a force or even a stress directly. All these 
parameters are measurable, but the most frequently used is undoubtedly acceleration. 
The main reason for this is due to the diversity of the different sensors which are 
available, their different acceleration and frequency ranges and their different sizes.  

A sensor is an energy converter. Accelerometers are composed of a seismic mass 
suspended by an elastic element. Measuring the force F at which the mass m is 
subjected allows the acceleration G to be derived. The dynamic mass may carry 
compressive, bending or shearing forces. The different types of accelerometers differ 
in the force measurement principle.  

Accelerometers are mechanically one-degree-of-freedom systems (see Figure 1.2). 
The system’s mass response, which is subject to a certain level of acceleration applied 
at its base, will be studied in later chapters. 

 

Figure 1.2. Mechanical principle of an accelerometer 

Several physical principles are used to convert movement into an electric signal. 
These principles are as follows [ERE 99], [WAL 07]: 

– the piezoelectric effect: a crystal which has a dynamic stress applied to it 
produced, in response to the acceleration which is to be measured, electrical charges 
which are converted into tension; 
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– a variation of capacity between two very near microstructures. This variation in 

capacity is also transformed into a variation of tension; 

– the piezoresistive effect (change in resistance with acceleration); 

– etc. 
 

 

Figure 1.3. Example of piezoelectric accelerometer (PCB 357B81, 2000 g, 20 pC/g, 
 9kHz shear ceramic) (courtesy of PCB Piezotronics) 

 

Figure 1.4. Example of piezoresistive accelerometer (MEMS, 20000 g – 0 to 10 kHz – 2.83 g,  
-54 to 121°C, shock measurements) (courtesy of PCB Piezotronics) 

The resulting signal can be analog (continuous tension proportional to 
acceleration) or digital. 

These sensors are characterized by their bandwidth (frequency domain, which is a 
function of the sensor’s resonance frequency), by their effective range, by their 
sensitivity (V/g) and their size (or masses). Some make it possible to measure 
acceleration according to three axes. 
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Table 1.2. Advantages and disadvantages of piezoelectric accelerometers  
with integrated electronics 

MEMS are Micro Electro Mechanical Systems which use small silicon surfaces 
(the material used for CMOS technology). They are measured in micrometers.  

Theoretically, MEMS accelerometers do not have a zero derivative. One drawback 
with MEMS accelerometers in shock measurement is their considerable amplification 
at resonance (for example, 1000:1). This can lead to a rupture in response to high 
frequency inputs (for example, metal metal impacts, pyroshocks, etc.). This defect 
can be improved by incorporating a small damping film.  

Signal conditioners 

Conditioners are used to carry out a load/voltage or voltage/voltage conversion, 
with an amplification and attenuation gain. Some conditioners also make it possible to 
integrate the signal in order to obtain at the output velocity or displacement signals. 
Signal pre-filtering functions often enable us to optimize the signal before saving 
and/or analysis.  

Measurements must be carried out under real conditions of use if possible, for 
example, the same vehicle (if the material is embarked), the same interfaces, etc. 
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Some simple rules must be respected: 

– the vibration should be measured at the input of material, the sensor being placed 
onto its support near an area which is very close to the material’s fixation point, 
preferably on the most rigid surface available [STA 62]. It would be best to avoid 
placing the sensor on a sheet of metal or on the hood, etc.; 

 

Figure 1.5. Position of the sensor for measuring vibrations 
 experienced by equipment 

– a sufficient number of sensors should be used so that a better understanding of 
how the material works is obtained. However, caution is required, as we do not want 
to have too many sensors present in order to avoid modifying its mechanical behavior. 

It is important to evaluate the representativeness of measurement compared to the 
physical phenomenon. Is one measurement enough? Does the variability of the results 
require the realization of several recordings, statistical processing, etc.? 

1.4. Filtering 

1.4.1. Definitions 

Filters are used to remove components of undesired frequencies in a measured 
signal, shock or random vibration. They can also be used to extract the useful 
components of a signal in a given frequency domain. The filter transfer function (the 
ratio of the response divided by the input to each frequency) should have a value of 1, 
or as close to 1 as possible for the frequencies which are to be kept. For all of the other 
frequencies this value should be zero. The transition zone needs to be as small as 
possible. 
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There are two types of filters that exist:

– analog filters. These filters use electronic circuits. The original signal is analog
(current, tension), such as the filter’s response signal, or filtered signal as it is
otherwise known. Examples of such filters include the Butterworth filter, the
Tchebycheff filter and the Bessel filter;

– digital filters. Using these filters makes it possible to process signals which have
already been digitized and which rely on the use of data processing calculations.

1.4.1.1.

A low-pass filter is a filter which lets low frequencies pass through the filter
without making any modification to them. This type of filter then rejects frequencies
which have a value of more than fc. This frequency is known as the cutoff frequency.

An ideal low-pass filter has a constant gain of 1 in its frequency range, and a zero
gain in its stop band. For the frequency values of between zero and fc, the shape of this
filter is rectangular. In practice, the transition from a value of 1 to a value of zero is
done with a more or less important slope according to the quality of the filter.

The most simple analog low-pass filter (order 1 filter) has the characteristic

c

1
H( j f )

j f
1

f

[1.1]

The gain equals

2

c

1
H( j f )

f
1

f

[1.2]

where cf is the , the frequency for which the gain has decreased by
3 dB.
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We use the larger n-order filters instead, in which the gain is given by
(Butterworth filter):

2 n

c

1
H( j f )

f
1

f

[1.3]

The larger the order of the filter, the quicker the return to zero (Figure 1.6). It is
easy to show than the decrease slope is about equal to –6 n dB / octave. A 20 order
filter is therefore necessary to obtain a decrease of –120 dB / octave.

1.4.1.2.

A high-pass filter is a filter which lets high frequencies pass through the filter, and
rejects the low-value frequencies which have a value that is less than the cutoff
frequency. An ideal high-pass filter has a constant gain of 1 for frequencies which are
greater than fc and a zero gain for frequencies which are lower than fc .

The n-order filter gain is as follows
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n

c
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f
f

H( j f )
f

1
f

 [1.4] 

 

Figure 1.7. High-pass filter - Gain versus cf / f , for different values of the filter order n 

1.4.1.3. Band-pass filter 

A band-pass filter is a filter which only lets frequencies within a certain range pass 
through the filter. This range includes frequencies which are greater than the low 
cutoff frequency and which are lower than the high cutoff frequency. The ideal filter 
gain is zero for all frequencies except for the frequencies which can be found in this 
particular range. Here the value of the filter gain is 1. 

1.4.1.4. Band-stop filter 

A band-stop filter is a filter which prevents some frequencies, which can be found 
in a certain interval, from passing through the filter.  

The band-stop filter is made up of a band-pass filter and a high-pass filter, and 
whose cutoff frequency is greater than the cutoff frequency of the low-pass frequency. 
The band-stop filter can be used to remove any parasite frequencies. 
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1.4.2. Digital filters 

The digital filters can be grouped into two different categories: 

– Finite impulse response (FIR) filters. These filters are said to be finite because 
their impulse response is stabilized ultimately to zero. The response which is provided 
by these filters depends entirely on the entry signal. There is no counter-reaction. FIR 
filters are said to be non-recursive. Each point of the filtered signal is calculated from 
the entry signal at the same time and also from preceding points of the signal. These 
filters are always stable. 

The method used consists of numerically carrying out filtering by means of a 
convolution product, which makes it possible to produce any filter, but requires longer 
calculations. 

Its specifications must specify: 

- the ripple ratio in the passing band, 

- the all-off rate in the rejected band, 

- the width of the transition band.  

– Infinite impulse response  (IIR) filters. These filters use analog filtering 
techniques. Their impulse response does not settle. This type of filter is said to be 
recursive: the response which is provided by this type of filter depends on both the 
input signal and the output signal because of the existence of a feedback loop. Each 
point from the filtered signal is calculated from the original signal at the same time, 
from the amplitudes of the preceding points of the original signal and from the 
preceding values of the filtered signal. These filters require fewer calculations to be 
carried out in comparison to their FIR equivalents.  

The response of a digital filter can be written as follows: 

 
y(n) a j x(n j) bk y(n k)

k 0

M

j 0

N

 [1.5] 

where aj
 and bk are coefficients, x is the current point of the original signal (the input 

signal) and y is the current point of the filtered signal (the output signal). 

The bk coefficients have a value of zero for the FIR filters. 

The order of a non-recursive filter is the largest number of values of the original 
signal that are necessary to calculate one point of the filter’s response. 
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The order of a recursive filter is equal to the largest number of values from the 

original signal from the response which is taken into account in this calculation. In 
general, the number of values considered in the original signal and the response is the 
same. Thus, each point of index n of the response of the second order filter is 
calculated starting from the last two points of the original signal (i.e. indices n–1 and 
n) and of the two preceding points of the response (indices n–2 and n–1).  

The slope of the filter at its cut-off frequency is dependent on the order of the 
filter:  

Slope in dB/oct = 6 x Order [1.6] 

If no particular precaution is taken, it is possible that the filters might introduce a 
type of phase difference (or delay) when compared to the original signal. It is possible 
to remove this dephasing during the calculation of the response.  

Advantages and disadvantages of digital filters 

Advantages Disadvantages 

Not sensitive to environmental conditions 
(temperature, humidity, etc.) 

Can process low frequency signals with 
precision 

Designed and tested directly on a computer  

As they are programmable, their 
characteristics can be changed easily 
without changing the hardware 

No problem with deriving their components 

Some filters can only be realized digitally 
(FIR)  

Known and controlled precision 

Reproducible without fine-tuning 

Filtering limited to 100 MHz 

Analog to digital conversion necessary 

Requires an analog anti-aliasing filter for 
sampling and restitution 

Performance of the filter directly proportional 
to the power of the calculation unit (processor 
or DSP) 
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Advantages and disadvantages of FIR (Finite Impulse Response) filters 

These non-recursive filters have no feedback. 

Advantages Disadvantages 

Always stable 

Linear phase coefficient symmetry 

No phase distortion 

Possible to create all sorts of filters (through 
calculation of the inverse Fourier transform 
from a gauge in the frequency range) 

Larger calculations with respect to an 
equivalent IIR filter 

Delay of the filter can be significant 

Advantages and disadvantages of IIR (Infinite Impulse Response) filters 

These recursive filters have feedback. 

Advantages Disadvantages 

Much less calculation with respect to an FIR Need to check stability 

Nonlinear phase (phase distortion) 

1.5. Digitizing the signal 

In order to be processed by a computer, the measured signals must be digitized and 
represented as a time–amplitude couple. How is it possible to choose the number of 
points per second that need to be digitized, i.e. to choose the sampling frequency? 

Digitization consists of: 

– sampling, which consists of representing an analog signal using a series of n 
values quantified at integer multiple instants of a time interval t, the sampling period; 

– and quantization, which consists of approaching each value of the signal using 
an integer multiple of a basic quantity , called the quantization step. 

1.5.1. Signal sampling frequency 

In 1920, H. Nyquist, from Bell Laboratories, was the first person to demonstrate, 
without any practical application, that “if a function does not contain any frequency 
which is larger than fmax Hz, then it is completely determined by sampling it with a 
frequency equal to 2 fmax” [SHA 49]. 
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This theory is often associated with Claude Shannon, who worked in the same
laboratory. It was Shannon who in 1948 used this theory once again, but this time on
applications which were part of the world’s first computers.

If we want to analyze any signal with a frequency value of up to fmax, it is
therefore necessary to make sure that there are no frequencies which have a value that
is greater than the value of fmax before it is finally digitized at a value of 2 fmax. These
frequencies can sometimes resemble a real physical object or can simply be a noise. In
Volume 3 we will see that these frequencies lead to a phenomenon known as spectrum
folding (or aliasing). As far as this phenomenon is concerned, the signal is filtered
with the help of a low-pass analog filter, whose cutoff frequency value is fmax.

NOTE.–

Thus, it should be considered that the true contents of the filtered signal extend to
the frequency corresponding to this attenuation (f–40), which is calculated as follows.

In practice, however, the low-pass filters are not perfect as they do not always
reject the frequencies which are above the requested cutoff level. Let us take the
example of a low-pass filter which decreases by 120 dB per octave once the cutoff
frequency has been passed It is estimated that the signal is sufficiently attenuated with
–40 dB. Thus, it should be considered that the true contents of the filtered signal
extend to the frequency corresponding to this attenuation (f–40), which is calculated as
follows [1.7].

A reduction of 120 dB per octave means that:

2log

f
f

log

A
A

log10
120

0

1
0

1

[1.7]
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where 0A  and 1A  are the amplitudes of the non-reduced signal (with a frequency of 
fmax) and the reduced signal to 40 dB (with a frequency of f–40) respectively.  

This yields: 

2log

f
f

log

10
40

10
120

max

40
 [1.8] 

and:  

log 2
40 3

max

f
10 1.26

f
 [1.9] 

If f–40 is the largest frequency signal, then according to Shannon’s theorem we 
obtain the following equation: samp. 40f 2 f , i.e.:  

samp.

max

f
2.52

f
 [1.10] 

f–40 is the Nyquist frequency and is written as fNyquist. 

A number like 2.5 times would be adequate, but in order to comply with the 
computer world, 2.56 is usually the number employed (sometimes 2.6) [BRA 11], 
[SHR 95]. This result has sometimes led us to state that Shannon’s theorem imposes a 
sampling rate equal to 2.6 times the largest frequency of the signal to be analyzed.  

Using this theorem makes it possible to determine the minimum sampling 
frequency that is required, so that a signal keeps its full frequency contents. 

According to this theorem, the sampled signal possesses all of the characteristics of 
the original signal without any loss of information. This means that it is possible to 
reconstruct the original signal from the sampled signal (see section 1.5). However, the 
sampled signal tends not to have the same effects on a mechanical system when it is 
compared to the original signal.  
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Example 1.2. 

Let us consider the sinusoid from Figure 1.9. The sinusoid has a frequency of 
100 Hz and is sampled with a sufficiently large frequency to represent the signal 
correctly. Figure 1.10 shows the same sampled sinusoid which is sampled at a 
frequency of 200 Hz (two times the frequency of the sinusoid). The signal’s 
frequency can be read without ambiguity, but the signal is very deformed. It is 
easily understood that it will not have the same effects on any mechanical system 
on which it will be applied. 

 

Figure 1.9. Sampled sinusoid (100 Hz) with a frequency of 8,000 Hz  
(1,600 points over 200 ms) 

 

Figure 1.10. Sampled sinusoid (100 Hz) with a frequency of 200 Hz  
(40 points over 200 ms) 
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A.G. Marshall and F. R. Verdun [MAR 90] have shown that it is necessary to 

sample a signal with a frequency equal to 20 times its maximum frequency to be able 
to correctly reproduce its initial form. T. E. Rosenberger and J. DeSpirito [ROS 93] 
proposed to use a factor of 5 as a set standard.  

The best practice today for each signal which is used to digitally calculate the 
responses produced by a mechanical system is to sample it with a frequency that is:  

– ten times larger than the mechanical system’s natural frequency for shocks 
(Volume 2); 

– seven times higher than the signal maximum frequency if it is a vibration 
(Volume 5). 

In Volume 3 we will see that Shannon’s sampling frequency is sufficient for the 
calculation of power spectral densities. 

1.5.2. Quantization error 

The variation field of the signal m mX , X  is divided into intervals of width . 

A signal x(t) is quantified correctly (without clipping) with a converter on n bits if 
its amplitude mx  is in the interval m mX , X where n 1

mX 2 . In the opposite 
case, the signal will be clipped [HAY 99]. 

 

Figure 1.11. Sampling and quantization 
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 is called the quantization step size or the resolution of the quantizer, and the 

quantizer is said to be a uniform or a linear quantizer. 

We have 

resolution (dB)
20m2 X 10  [1.11] 

Each signal value can thus be written as 

n 1
i

i
i 0

x a 2  [1.12] 

where ia  is equal to 0 or 1. 

This operation cannot be carried out without error. The difference between the 
actual analog value and quantized digital value is called the quantization error. This 
error is either due to rounding or truncation.  

Assume that each error is independent of the rest, and that the error amplitude is 
evenly distributed in the range – /2 to /2, where  is the step in the analog-to-digital 
converter (ADC) process, its probability density p(x) being equal to 1/ . 

We may then calculate the mean square value of the error: 

2
2 2 22

2

1
x p(x) dx x dx

12
 [1.13] 

The noise standard deviation (rms quantization error) is equal to 

0.29
2 3

, i.e. 

m
n
2 X

2 12
 [1.14] 

Figure 1.12 shows the variations of this error as a function of the number of bits n 
for different values of mX . 
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Figure 1.12. Rms quantizing error versus bits number n 

Number of bits 8 10 12 16 20 24 
Number of levels 256 1024 4096 65536 1.05 106 1.68 107 

Absolute error 
(mV) 40 10 2.5 0.15 0.01 0.0006 

Relative error (%) 0.4 0.1 0.025 1.5 10–3 1 10–4 6 10–6 
 

Table 1.3. Quantization error for an input range of the analog-digital converter of 0 V to 10 V 

The quantization effects can be reduced by a low-pass filtering of the digital signal 
[BAC 87], with a cut-off frequency a little larger than that of the filter used before the 
digitization (anti-aliasing filter). 

If n is the number of binary bits in the converter, the dynamic range is given by 

n
R

n

rms of largest sine 2D 6 1.5 2
2rms of quantisation noise

12 2

 [1.15] 
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i.e. in decibels:

n
R 10D 20 log ( 1.5 2 ) 1.76 6.02 n [1.16]

Today, current ADC have 24 bits.

n 11 12 14 16 18 20 22 24
RD 68 74 86 98 110 122 134 146

The error related to the quantization appears as a white noise having a PSD of
amplitude [BAC 87]:

2
m

PSD 2n
samp

X
e

3 f 2
[1.17]

where sampf is the sample rate of the signal.

Sampling a signal transforms a continuous analog curve into a series of points.
Shannon’s theorem states that the sampling frequency must be equal to twice the
largest signal’s frequency. This sampling leads to the creation of high frequencies.

It is possible to reconstruct the signal by removing these high frequencies by
applying a rectangular window into the frequency domain (a low-pass filter), and at
the same time by increasing the number of points of the signal [LAL 04], [SMA 00],
[WES 10]. This can be carried out using the following remarks.
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The inverse Fourier transform of a rectangular window becomes a function in the 

form sin x/x in the time domain. 

Let us suppose that the functions mentioned below are continuous. Consider a 
function defined in the frequency interval – fmax, fmax (after a low-pass filtering if the 
studied signal refers to a measurement) by n points with a sampling rate of 

samp. maxf 2f . 

If we only consider the physical case in which frequencies only have positive 
values then this function can be expressed in the form of a Fourier integral: 

max i t
0

1x ( t ) X ( ) e d
2

 [1.18] 

where f2  and max max2 f . 

In this frequency band, the function )(X  can be developed into a Fourier series: 

max

i n

n
n 0

X ( ) a e  [1.19] 

yielding: 

max
n

n i ( t t )
0

n 0

a
x ( t ) e d

2
 [1.20] 

where n
max

nt . 

After integration: 

max nn

nn 0

sin ( t t )a
x ( t )

t t
 [1.21] 
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Since: 

maxj

tt

a
)t(xlim

j

 [1.22] 

it becomes: 

max n
n

max nn 0

sin ( t t )
x ( t ) x ( t )

( t t )
 [1.23] 

Knowing that 
 
fmax

fsamp.

2
 and that the signal’s temporal step is equal to 

samp.

1
t

f
, this expression can be written as: 

0n )tnt(
t

)tnt(
t

sin
)tn(x)t(x  [1.24] 

In order to reconstruct the signal at a given time t, the procedure thus consists of 
centering a function of the form sinc = sin x/x on each point of the signal and adding 
all the sinc functions thus defined [BRA 11]. 

Theoretically, in order to perfectly reconstruct a signal, it is necessary for the 
signal to have an infinite number of points. In practice, the number of sampling points 
is necessarily limited and its sum of all of these functions is truncated. Due to this fact, 
the reconstructed signal can differ slightly from the original signal. This is, however, 
only a small error which can be ignored whenever the initial sampling frequency is 
multiplied by 10. 

Example 1.4. 

Consider a sinusoid which has an amplitude of 100 m/s2 and a frequency of 
100 Hz. The sinusoid is sampled with a frequency of 250 points/s (50 points over 
0.2 s).  
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The signal is reconstructed using equation [2.7]. The number of points of the
new curve is multiplied by 20 (i.e. 1,000 points over 0.2 s). The reconstructed
signal is compared with the signal sampled with 50 points in Figure 1.13 and, just
like a reference, the reconstructed signal is also compared with the original sinusoid
which has a very large sampling frequency (5,000 points/s).

The reconstructed signal is very similar to the ideal signal.

The recorded signal is generally made up of several types of successive signals,
such as random stationary vibrations, shocks, non-stationary vibrations, etc. It is
necessary to split the signal so that, with the appropriate mathematical tools, it
becomes possible to study the individual components of the signal.

The mechanical shocks are generally characterized by the effects they have on a
one-degree-of-freedom linear system according to its natural frequency, i.e. the

(see Volume 2).

The frequency content of the random vibrations is studied, when they are
stationary, by using a spectrum called obtained by taking the
average of all the Fourier transforms of several samples of the signal (see Volume 3).
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Vibrations, just like shocks, can be analyzed by using another spectrum, the 

extreme response spectrum, giving the largest response of a linear one-degree-of-
freedom system over the studied duration (see Volume 5). 

If we take the duration of the vibrations (which can be quite long) into 
consideration, they are capable of damaging the mechanical parts of a system by the 
fatigue which is created by the repetition of stress cycles (see Volume 4). To take this 
mode of failure into account, a second spectrum is defined, the fatigue damage 
spectrum, which gives the fatigue damage experienced by this same one-degree-of-
freedom system according to its natural frequency when it is subjected to the vibration 
for a given duration of time. These two spectra can be calculated for any type of 
vibration, for random stationary and non-stationary vibrations in particular or for a 
large number of repeated shocks (Volume 5). 

1.8. Elaboration of the specifications 

The dimensioning of a material and the realization of a qualification test with this 
material require environmental specifications which can result from normative 
documents or are developed from measurements of the real environment. The MIL 
STD 810 standards in the USA, GAM EG 13 in France and the international NATO 
standard recommend this last method, called “test tailoring”. This approach involves: 

– analyzing the conditions in which a material is used (life profile); 

– linking environment measurements with each of the different conditions in 
which the material is used; 

– synthesizing all the data thus joined together; and 

– for tests, establishing the test program in the most representative and least 
expensive way. 

Each of these operations which make up the four step approach is extremely 
important, but the most technical is the synopsis which will lead us, for the vibrations, 
to define a test of the same severity as all vibrations and shocks of the life profile. This 
test must be able to produce the same failures in the material that would also be 
created if the material were to be used in a real environment. 

Two different synopsis methods exist nowadays. One of these methods involves 
using envelopes from power spectral densities, whilst the other method aims to 
reproduce the largest instantaneous stress which is produced by the vibrations, as well 
as the fatigue damage which is caused by the accumulation of all the different stress 
cycles. Volume 5 will deal with the second of these methods, which is based on the 
behavioral laws of fatigue of materials described in Volume 4. As the structure is 
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generally not known at the time of the writing of specifications, the search for a 
specification respecting these two criteria is carried out by studying the response of a 
simple mechanical system, the one-degree-of-freedom linear system already used to 
characterize shocks. This choice highlights the advantage of standardizing the 
methods that are used to analyze vibrations and shocks. 

1.9. Vibration test facilities 

1.9.1. Electro-dynamic exciters 

1.9.1.1. Principle 

An electro-dynamic exciter converts electrical energy into mechanical energy. The 
force which is generated on the table supporting the specimen to be tested is produced 
by the presence of a constant magnetic field which acts upon a conductor coil. The 
conductor coil is linked to the table and has a variable current that runs through it. The 
conductor being placed perpendicularly to the magnetic field is subjected to a force 
perpendicular to the flow and the current. 

The constant magnetic field in the air-gap where the coil moves is created by a DC 
current circulating in two fixed coils. 

1.9.1.2. Main components 

An electro-dynamic exciter is made up of: 

– a table supporting the specimen to test, made from an aluminum alloy. This table 
is connected to an armature by suspension, which makes it possible for the table to 
move in the axial direction, minimizing the movements in the other directions; 

– a mobile coil which is firmly attached to the table and which is placed inside the 
magnetic circuit’s air-gap. This coil is guided using hydrostatic bearings; 

– an armature, which forms the polar parts of the magnetic circuit; 

– field coils; 

– a fixed frame to which the exciter is connected by using two pivots allowing its 
rotation (for the large exciters). 

However, a certain number of extra components are required within the electro-
exciter, such as water circulating pumps for the cooling process, different security 
devices, a control system, etc. 
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The exciter is installed in a seismic mass with the aim of protecting the room from
the vibrations.

1.9.1.3.

The moving assembly includes:

– the specimen-holder table which is made out of a cast aluminum alloy. The
mobile coil is firmly attached to the table. The table is connected by eight tighteners to
a central tube guided by using two hydrostatic bearings;

– the mobile coil which is made up of two superimposed coils:

- the interior coil is made out of hollow aluminum and has a variable current
running through it. This coil is cooled by water. It is this coil which transforms
electrical energy into mechanical energy,

- the exterior coil is stuck onto the main coil. The exterior coil has a DC current
running through it, intended to compensate for the axial loadings;

– the mounting fixture and the test specimen.

1.9.1.4.

To obtain a given acceleration on the table at the specimen input, it is necessary to
generate an electrical signal which takes account of the transfer function of the
facility, the non-linearities of the shaker, the dynamic interactions, the fixture, etc.
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The compensation for the transfer function is obtained from feedback making it 

possible to create the required level of acceleration on the table according to the 
frequency. 

The acceleration signal which is to be generated is sinusoidal, random or a shock. 

The control system, which was originally analog, is nowadays digital. 

 

Figure 1.15. The acceleration/current transfer function of an exciter 

Figure 1.16 shows a diagram which highlights the way in which an exciter 
provides feedback.  

 

Figure 1.16. Diagram showing the principle of the feedback process 
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1.9.1.5. Main characteristics 

The maximum force which is generated is generally defined by a peak value for 
sinusoids and by a root mean square for random materials. As far as the random 
materials are concerned, in order to ensure that the test is reliable, it is necessary to 
have a root mean square which is approximately 5.5 times smaller than the maximum 
force. 

The mass of the moving assembly includes the masses of the table and of the coils, 
the masses of the mounting fixture and of the specimen. The moving assembly mass 
limits the maximum value of the specimen’s acceleration. Other characteristics 
include: 

– the maximum mass which can be dealt with without any external compensation; 

– the maximum couple which can be applied to the moving assembly by a 
horizontal charge; 

– the maximum displacement that can take place between mechanical stops; 

– the maximum velocity; 

– the maximum frequency range. 

1.9.1.6. The horizontal table 

The exciter’s axis is generally the vertical axis. When a specimen needs to 
experience a vibration in any other direction, the exciter’s axis is changed by turning 
the specimen over in order to vertically place the new test axis, using a square fixture 
to keep the table horizontal. 

If the specimen is too heavy, it is best to keep its axis in a vertical position. The 
solution therefore involves turning the exciter around (using its pivots) so that it is 
possible to slide a horizontal table onto a thin layer of oil (see Figure 1.17). 

 

Figure 1.17. Assembly with a horizontal table 
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1.9.2. Hydraulic actuators 

1.9.2.1. Principle 

Electro-hydraulic vibration systems are remote power transmitter systems which 
use a low pressure fluid that is not very compressible. 

These vibration systems are made up of three main parts: 

– the generator of pressure (pump), which receives the energy of the external 
medium (electrical motor) and which communicates it to the fluid; 

– the receiver (the actuator), which receives the energy of the fluid and restores it 
in the external medium; 

– focal points, which exist between the pump and the receiver (tubes, valves, etc.). 

 

Figure 1.18. How a hydraulic actuator works 

1.9.2.2. Description 

The hydraulic actuator is made up of: 

– a hydraulic power unit which supplies oil throughout the jack with the help of 
several pumps that are equipped with a cooling system and an oil reservoir (example: 
a flow of 600 l/min for 210 bars); 

– an electro-hydraulic exciter which converts electrical energy into mechanical 
energy with the help of a hydraulic amplifier. The electro-hydraulic exciter receives 
its commands from a servo-valve; 
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– the servo-valve is responsible for supplying oil within the actuator. The servo-

valve is made up of an electro-dynamic exciter attached to the servo-valve distributor; 

– a double acting jack made up of a sliding piston in a cylinder, receiving oil on its 
two sides from the servo-valve distributor. 

The piston is guided by hydrostatic bearings at the ends of the cylinder. 

1.9.2.3. How the hydraulic actuator functions 

The servo-valve distributor, which is connected to the mobile coil of the electro-
dynamic exciter, moves in relation to the current which runs through the mobile coil. 

The distributor’s main high pressure supply is connected to one of the pipes that 
supplies one of the jack’s chambers with oil. The other chamber is connected to the 
low pressure hydraulic return. 

Due to the difference in pressure that exits on its two sides, the piston moves at a 
speed which is proportional to the opening of the pipes in the servo-valve’s casing. 

1.9.2.4. Principal characteristics 

– The maximum force generated (for example, 120 kN). At higher frequencies, the 
performances in acceleration are limited. This limitation is due to the maximum 
dynamic effort which is allowed, and also due to the effects of the hydraulic natural 
frequency. 

– The mass of the moving assembly, including the masses of the table and of the 
piston, the mass of the mounting fixture and of the test specimen. The moving 
assembly’s total mass limits the maximum value of the specimen’s acceleration. 

– The maximum displacement, e.g. of 10 cm (limitation at low frequencies). 

– The maximum velocity, e.g. of 1.56 m/s. In the medium frequency range, the 
velocity is limited by the maximum flow of oil throughout the system. 

– The frequency range (for example, between 0.1 and 300 Hz). 

1.9.3. Test Fixtures 

It is generally impossible to fix a test object directly to the shaker table itself. 
The fixture acts as a transition piece between the two. They are generally used to 
enable us to carry out tests in the three directions. 
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The real vibratory environment is generally tri-axial. Tests are usually carried out
axis by axis, basically due to the cost of tri-axial testing installations. To reduce
parastic vibrations as far as possible on the two axes perpendicular to the axis under
test, the rule is to place the center of gravity of the specimen and the assembly over
that of the testing table.

In real service conditions, equipment is often fixed onto structures which may to a
greater or lesser extent deform under the vibrations according to the mass of the
specimen. Ideally, the assemblies should reproduce the real fixture conditions, such as
stiffnesses, support masses (mechanical impedances). However, these characteristics
are generally not specified are not even known.

The assemblies are thus designed instead to be as rigid as possible in order to
transmit uniformly to the specimen the forces produced by the exciter at all its fixation
points. They are designed so as to not deform the spectrum that will be applied to the
specimen. It is thus necessary that their resonance frequencies be larger than
the maximum specification frequency. It is however difficult to completely suppress
the resonance frequencies between 1000 and 2000 Hz. In order to reduce their effects,
we can add materials that create a damping reducing the amplitude of the resonance
peaks.

Amongst the rules for a good design, the following must be retained [LEV 07]:

– the contact surfaces between the specimen and the test table must be machined to
be as flat as possible;

– the joints between the elements making up the assembly must be welded, in a
continuous manner (no simple welded joints) and bolts should be avoided;

– the bolts used to fix the specimen to the table must be screwed over a length at
least equal to twice their diameter.

The most commonly used materials are steel, aluminum and magnesium,
sometimes titanium. The disadvantage of steel is its weight, and magnesium its cost
[FIX 87].

The natural frequency is linked with respect to the Young’s modulus E and the
density , which varies slightly according to the material and is therefore not a chosen
criterion (Table 1.5).
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 Steel Magnesium Aluminum Titanium 
Young’s modulus E (N/m2) 21 1010 4.14 1010 6.9 1010 10.7 1010 
Density  (kg/m3) 7840 1800 2770 4510 
E /  ratio (N m / kg) 2.64 107 2.3 107 2.49 107 2.38 107 

Table 1.5. Comparison of the mechanical characteristics of the most commonly used materials 
for the design of assemblies  

Table 1.6 compares the main ways to build an assembly; the assembly usually 
being machined or welded. 

Mode of manufacture Advantages Disadvantages 

Machining Easy to manufacture 

Good fixture (no joints) 
 
Used for small 
specimens 

Costly for large specimens 

Casting Monolithic and 
homogeneous 
construction 
 
Less handling to be 
carried out 

Only of interest for a small 
number of assemblies (cost 
of mold manufacture) 

Bolting  Not recommended (behavior 
of bolts under vibration, loss 
of rigidity) 

Laminating strips of 
material 

Simple to manufacture 
 
Possibility of including 
layers of a damping 
material (rubber, plastic) 

Cost linked to time spent on 
construction 

Welding Best solution  

Table 1.6. Advantages and disadvantages of main methods for fabrication of assemblies  



Chapter 2 

Basic Mechanics 

2.1. Basic principles of mechanics 

2.1.1. Principle of causality 

The state of the universe at a given moment determines its state at any later 
moment. 

2.1.2. Concept of force 

A force can be defined as any external cause able to modify the rest state or the 
movement of a material point. 

A force is characterized by: 

– its point of application (material point on which it acts); 

– its line of action, which is that of the straight line whereby it is applied; 

– its direction, which is that of the movement that it tends to produce; 

– its size (or intensity). 
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2.1.3. Newton’s first law (inertia principle) 

In the absence of any force, a material point, if it is at rest, remains at rest; if it is 
moving, it preserves a rectilinear and uniform motion. 

2.1.4. Moment of a force around a point 

Given a force F  and an arbitrary point O, the moment of the force around point 
O is defined as the product M F d , where d is the perpendicular distance from 
point O to F (d is called the lever arm). 

 

Figure 2.1. Lever arm for the calculation of the moment of a force 

Let us set O' as the foot of the perpendicular to the support of F  drawn from O. 

The moment M is positive if F  tends to make O' turn clockwise around O, negative 
in the contrary case. 

2.1.4.1. Couple – moment of a couple 

Two forces form a couple if they are parallel, of opposite direction and equal in 
size. 

The moment of the couple is equal to dFM , where F is the amplitude of each 
force and d is the distance which separates them (couple lever arm). 
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2.1.5. Fundamental principle of dynamics (Newton’s second law) 

The application of a force F  to the point of mass m involves a variation of its 

momentum, defined by the product of its mass by its instantaneous speed x , 
according to the relation: 

d m x
F

dt
 [2.1] 

m is a coefficient characteristic of the body. If the mass m is invariable, the 
relation becomes: 

d x
F m

dt
 [2.2] 

i.e. 

F m x  [2.3] 

where x  is the acceleration undergone by the mass subjected to F . 

2.1.6. Equality of action and reaction (Newton’s third law) 

If two particles isolated from the remainder of the universe are brought into each 
other’s presence, they exert upon each other two forces, carried by the line which 
joins them, of equal sizes and opposite directions. One is the action, the other the 
reaction. 

2.2. Static effects/dynamic effects 

In order to evaluate the mechanical characteristics of materials, it is important to 
be aware of the nature of stresses [HAU 65]. There are two main load types that 
need to be considered when doing this: 

– those which can be considered as applied statically; 

– those which are the subject of a dynamic analysis of signal versus time. 



44     Sinusoidal Vibration 

Materials exhibit different behaviors under static and dynamic loads. Dynamic 
loads can be evaluated according to the following two criteria: 

– the load varies quickly if it communicates significant velocities to the particles 
of the body in deformation, so that the total kinetic energy of the moving masses 
constitutes a large part of the total work of the external forces; this first criterion is 
that used during the analysis of the oscillations of elastic bodies; 

– the speed of variation of the load can be related to the velocity of evolution of 
the plastic deformation process occurring at a time of fast deformation whilst 
studying the mechanical properties of the material. 

According to this last criterion, plastic deformation does not have time to be 
completed when the loading is fast. The material becomes more fragile as the 
deformation velocity grows; elongation at rupture decreases and the ultimate load 
increases (Figure 2.2).  

 

 

Figure 2.2. Tension diagram for static and dynamic loads 

Thus, a material can sometimes sustain an important dynamic load without 
damage, whereas the same load, statically, would lead to plastic deformation or 
failure. Many materials subjected to short duration loads have ultimate strengths 
higher than those observed when they are static [BLA 56], [CLA 49], [CLA 54], 
[TAY 46]. The important parameter is in fact the strain rate, defined by: 

1

0 t
 [2.4] 

where  is the deformation observed in time t  on a test-bar of initial length 0 
subjected to stress. 
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If a test-bar of initial length 10 cm undergoes in 1 s a lengthening of 0.5 cm, the
strain rate is equal to 0.05 s–1. The observed phenomena vary according to the value
of this parameter. Table 2.1 shows the principal fields of study and the usable test
facilities [AST 01], [DAV 04], [DIE 88], [LIN 71], [MEN 05], [SIE 97]. This book
will focus on the values in the region 110 to 110 s–1 (these ranges being very
approximate).

Certain dynamic characteristics require the data of the dynamic loads to be
specified (the order of application being particularly important). Dynamic fatigue
strength at any time t depends, for example, on the properties inherent in the
material concerning the characteristics of the load over time, and on the previous use
of the part (which can reflect a certain combination of residual stresses or corrosion).

0 510 110 110
Strain rate (s-1)
510

Phenomenon
Evolution of

creep velocity
in time

Constant
strain rates

Response of
structure,
resonance

Elastic-plastic
wave

propagation

Shock wave
propagation

Type of test Creep Quasi-statics
Slow

dynamics
Fast dynamics

(impact)
Very fast
dynamics

(hypervelocity)

Test
facility

Constant load
or stress
machine

Hydraulic or
screw driven

machine

Hydraulic
vibration
machine
Shakers

Impact
metal–metal
Pyrotechnic

shocks

Explosives
Gas guns

Negligible inertia forces Important inertia forces

Plane stress Plane strain

Hopkinson [HOP 04] noted that copper and steel wire can withstand stresses
that are higher than their static elastic limit and are well beyond the static ultimate
limit without separating proportionality between the stresses and the strains. This is
provided that the length of time during which the stress exceeds the yield stress is of
the order of 310 seconds or less.
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From tests carried out on steel (annealed steel with a low percentage of carbon) it 
was noted that the initiation of plastic deformation requires a definite time when 
stresses greater than the yield stress are applied [CLA 49]. It was observed that this 
time can vary between 5 ms (under a stress of approximately 352 MPa) and 6 s (with 
approximately 255 MPa; static yield stress being equal to 214 MPa). Other tests 
carried out on five other materials showed that this delay exists only for materials 
for which the curve of static stress deformation presents a definite yield stress, and 
the plastic deformation then occurs for the load period. 

Under dynamic loading, an elastic strain is propagated in a material with a 
velocity corresponding to the sound velocity c0  in this material [CLA 54]. This 
velocity is a function of the modulus of elasticity, E, and of the density, , of the 
material. For a long, narrow part, we have: 

c
E

0  [2.5] 

The longitudinal deflection produced in the part is given by: 

v

c
1

0

 [2.6] 

where v1= velocity of the particles of the material. In the case of plastic 
deformation, we have [KAR 50]: 

c  [2.7] 

where  is the slope of the stress deformation curve for a given value of the 

deformation . The velocity of propagation c is therefore a function of . The 
relation between the impact velocity and the maximum deformation produced is 
given by: 

v c d1 0
1  [2.8] 

A velocity of impact v1 produces a maximum deformation 1 that is propagated 
with low velocity since the deformation is small. This property makes it possible to 
determine the distribution of the deformations in a metal bar at a given time. 
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Most of the materials present a total ultimate elongation which is larger at impact 
than for static loading (Figure 2.3). 

 

Figure 2.3. Example of a stress–strain diagram [CAM 53] 

Some examples of static and dynamic ultimate strengths are given in Table 2.2.  

 
Material 

Ultimate strength (107 Pa) 

Statics Dynamics 

SAE 5150 hardened 
and annealing  95.836 102.111 

302 standard 
stainless steel 

64.328 76.393 

Annealing copper 20.615 25.304 
2 S annealing 

aluminum  
7.998 10.618 

24S.T aluminum 
alloy 

44.919 47.298 

magnesium alloy 
(Dow J) 30.164 35.411 

Table 2.2. Properties of static and dynamic traction [KAR 50] 
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2.4. Elements of a mechanical system 

In this section, we will consider lumped parameter systems, in which each 
particular component can be identified according to its properties and can be 
distinguished from other elements (in distinction from distributed systems). 

Three fundamental passive elements can be defined, each playing a role in linear 
mechanical systems which correspond to the coefficients of the expressions of the 
three types of forces which are opposed to the movement (these parameters can be 
identified for systems with rotary or translatory movements). These passive 
elements are frequently used in the modeling of structures to represent a physical 
system in simple terms [LEV 76]. 

2.4.1. Mass 

A mass is a rigid body whose acceleration x is, according to Newton’s law, 
proportional to the resultant F of all the forces acting on this body [CRE 65]: 

F m x  [2.9] 

This is a characteristic of the body. 

In the case of rotational movement, the displacement has the dimension of an 
angle, and acceleration can be expressed in rad/s2. The constant of proportionality is 
then called the moment of inertia of the body, not mass, although it obeys the same 
definition. The moment of inertia has the dimension M L. The inertia moment  is 
such that: 

I
d

dt

2

2   [2.10] 

where I  is the moment of inertia and  the angular displacement. If 
d

dt
 is the 

angular velocity we have: 

dt
d

I  [2.11] 

In the SI system, which will be used throughout the book, mass is expressed in 
kilograms (kg), acceleration in m/s2 and force in Newtons (N) (dimension MLT–2). 
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The mass is schematically represented by a rectangle [CHE 66] (Figure 2.4).  

 

Figure 2.4. Symbol used to represent mass 

2.4.2. Stiffness 

2.4.2.1. Definition 

In the case of linear movement, the stiffness of a spring is the ratio k of the 

variation of force F to the spring deflection z which it produces: 
z
F

k . The 

minus sign indicates that the force is opposed to the displacement (restoring force) 
(Figure 2.5). 

 

Figure 2.5. Symbol used for spring 

This definition implicitly assumes that the spring obeys Hooke’s law when the 
deformation is weak. 

In the SI system, stiffness k, the spring constant, is expressed in n Newtons per 
meter. It is assumed that the stiffness is that of a perfectly elastic massless spring 
[CRE 65], [CHE 66]. It is represented diagrammatically by the symbol 
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or sometimes . The points at zero 
imposed displacement are shown as  (ground). 

In the case of rotation around an axis, the restoring moment is defined by: 

C  [2.12] 

with the same convention used for the negative sign. The constant C, which 
characterizes elasticity here, is expressed in Newtons per radian. 

The stiffness of a perfectly rigid medium would thus be theoretically infinite. 
The input and output would be identical (the input being, for example, a force 
transmitted by the medium). The elongation would, of course, be zero. This is a 
theoretical case, since no material is perfectly rigid. When the stiffness decreases, 
the response of the spring (value function of time obtained at the end of the spring 
when an input excitation is applied at the other end) changes and can become 
different from the input. 

2.4.2.2. Equivalent spring constant 

Certain systems comprising several elastic elements can be reduced to the simple 
case of only one spring whose equivalent stiffness can easily be calculated from the 
general expression F k z. If the system can be moved in just one direction, it can 
be seen that the number of degrees of freedom is equal to the number of elements of 
mass. The number of elements of elasticity does not intervene and it is possible to 
reduce the system to a simple unit mass–spring equivalent; see Figure 2.6 for some 
examples. 

 

Figure 2.6. Parallel stiffnesses  
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The two diagrams in Figure 2.6 are equivalent to those in Figure 2.7. When the
mass is moved by a quantity z, the restoring force is written [CLO 03], [HAB 68],
[VER 67]:

zkzkzkF eq21r [2.13]

21eq kkk [2.14]

The stiffness elements have parallel configuration here.

In (Figure 2.8), the equivalent constant is calculated in a similar way.

F is a force directed downwards and produces an elongation of each spring
respectively equal to:

1
1

Fz
k

[2.15]

and
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z
F

k
2

2

 [2.16] 

 

Figure 2.8. Stiffnesses in series 

This yields 

21

21
eq

k
F

k
F

F
zz

F
z
F

k  [2.17] 

i.e. 

eq 1 2

1 1 1
k k k

 [2.18] 

The equivalent stiffness of two springs in parallel is equal to the sum of their 
stiffnesses. The inverse of the stiffness of two springs in series is equal to the sum of 
the inverses of their stiffness [HAB 68], [KLE 71a]. 

It is easy to generalize this to n springs. 
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2.4.2.3. Stiffness of various parts  

Springs in 
compression or axial 
tension 

D = average diameter 
of a coil 
d = diameter of the 
wire 
n = number of active 
coils 
G = shear elasticity 
modulus  

 
 
 

 

 

k
G d

n D

4

38
 

 
Deformation: 

8 3

4

F D n

G d

y  

Beam cantilever 
axial load 

S = area of the cross-
section 
E = Young’s modulus 

 

 

k
ES F

X
 

Cantilever beam 
I = moment of inertia 
of the section 

 

 

k
E I F

X

6

30
3

0

 

 

Cantilever beam 
 

 

 

k
E I F

X

6

30
3

0

 

 

Cantilever beam 
 

 

 

k
E I M

X

2
2  

Beam on two simple 
supports, charged at 
an arbitrary point 
 

 

 

k
E I3

1
2

2
2  

Table 2.3(a). Examples of stiffnesses [DEN 56], [THO 65a] 
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Fixed beam, loaded 
in its center 

 

 

k
E I192

3  

 
Circular plate 
thickness t, 
centrally loaded 
and circumferential 
edge simply 
supported 

 

k
D

R

16 1

32  

where D
E t3

212 1
 

 = Poisson’s coefficient 
( 3.0 ) 

 
Circular plate 
centrally loaded, 
circumferential 
edge clamped 

 

 

k
D

R

16
2  

Table 2.3(b). Examples of stiffnesses [DEN 56], [THO 65a] 

Stiffnesses in rotation  

Twist of coil spring 

D = average coil 
diameter 
d = wire diameter 
n = number of turns 

 

 

 

Dn64
dE

k
4

 

 
Bending of coil spring 

 k
E d

n D E G

4

32

1

1 2
 

Spiral spring 
= total length 

I = moment of inertia 
of cross section  

k
E I

 

Table 2.4(a). Examples of stiffnesses (in rotation) 
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Twist of hollow 
circular tube 
 
D = outer diameter 
d = inner diameter 

= length 

 

k
G I G D d

32

4 4

 

Steel: 

44
6 dD

1018.1k  

 
Cantilever beam 
 
End moment  

 

k
M E I

 

 
Cantilever beam 
End load 

 

 

k
M E I2

2  

 
Beam on two simple 
supports 
Couple at its center  

k
M E I12

 

Clamped-clamped 
Couple at center 

 

k
M E I16

 

Circular bar  

D = diameter 
= length 

 

k
G D4

32
 

 
Rectangular plate k

G w t3

3
 

Bar of arbitrary form 

S = section 
IP= polar inertia 
moment of the cross-
section  

 

k
G S

IP

4

24
 

Table 2.4(b). Examples of stiffness (in rotation) 
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2.4.2.4. Non-linear stiffness 

A linear stiffness results in a linear force–deflection curve (Figure 2.9) 
[LEV 76]. Figures 2.10 to 2.12 show examples of non-linear stiffnesses. 

 
Figure 2.9. Linear stiffness 

 
 

Figure 2.10. Non-linear stiffness 
 

 

 
 

Figure 2.11. Examples of bilinear stiffnesses 

 
 

 

Figure 2.12. An example of non-linear stiffness 
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2.4.3. Damping 

2.4.3.1. Definition 

No system subjected to a dynamic stress maintains constant amplitude without 
an external input of energy. Materials do not behave in a perfectly elastic manner, 
even at low levels of stress. When cycles of alternate stress (stress varying between 
a positive maximum and a negative minimum) are carried out on a metal test-bar, 
we can distinguish the following [BAS 75]: 

1. Microelastic ultimate stress me , such that me , the stress–strain curve is 
perfectly linear (zero surface). The stress me  is, in general, very small. 

2. Anelastic stress an  such that me an , the stress–strain cycle remains 
closed (without its surface being zero). In this case, the deformation remains 
“reversible”, but is associated with a dissipation of energy. 

3. Accommodation ultimate stress ac , which is the strongest stress, although the 
first cycle is not closed. The repetition of several alternate stress cycles can still lead 
to the closing of the cycle (“accommodation” phenomenon). 

4. For ac , the cycle is closed, leading to permanent deformation.  

 

 

Figure 2.13. Beginning of a stress–strain curve 

Figure 2.13 shows the beginning of a stress–strain curve. The yield stress Rm0 2. , 
which is defined in general as the stress that produces a deflection of 0.2%, is a 
conventional limit already located in the plastic range. 
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There is always a certain inelasticity that exists, although it is often very low and 
negligible. Due to this inelasticity, which can have several origins, the material or 
the structure dissipates part of the energy which it receives when a mechanical stress 
is applied to it. This is said to be damping. 

Dissipated energy leads to a decrease in the amplitude of the free vibration of the 
system in the course of time, until it returns to its equilibrium position. This loss is 
generally connected to the relative movement between components of the system 
[HAB 68]. The energy communicated to the cushioning device is converted into 
heat. A damping device is thus a non-conservative device. 

The inelastic behavior is underlined by plotting the stress–strain curve of a test-
bar of material subjected to sinusoidal stress (for example in tension–compression) 
[LAZ 50], [LAZ 68]. 

Figure 2.14 shows such a curve (very deformed in order to show the 
phenomenon more clearly). 

 

 

Figure 2.14. Hysteresis loop 

At the time of the first tension loading, the stress–strain law is represented by arc 
OA. The passage of tension to compression is done along arc ABCD, while the 
return towards maximum tension follows arc DEFA. 

Curve ABCDEFA is called a hysteresis loop and it occurs for completely 
alternating loads. 
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2.4.3.2.

A natural phenomenon observed in materials, hysteresis is related to partial
relaxation of stress applied by means of plastic deformations and characterized by
the absorption and the dissipation of energy [FEL 59]. This property of materials,
studied since being highlighted by Lord Kelvin [THO 65b], has been given various
names [FEL 59]:

– [F P 36], the term most frequently used, which can be
defined as the aptitude of a material to dissipate vibratory energy; this parameter,
denoted by D, defined in 1923 by O. F ppl represents the work dissipated in heat
per unit of volume of material during a complete cycle of alternated load, and is
calculated by evaluating the area delimited by the hysteresis loop [FEL 59]:

cycle1
dD [2.19]

Thus D is the energy absorbed by a macroscopically uniform material, per unit
of volume and stress cycle (tension–compression, for example);

– [ZEN 40], relating to the capacity of a solid to convert its
mechanical energy into internal energy;

– [STA 53];

– [HOP 12].

Whether for a part comprised of a single material, which may or may not be part
of a structure, or for a more complex structure, the hysteresis loop can be plotted by
considering the variations of the deformation z due to the application of a sinusoidal
force F. The energy dissipated by the cycle is then equal to:

cycle1d dzFE [2.20]

dE is the (equal to , where V is the volume of the
part). dE is usually expressed in the following units:

– for a material: Joules per m3 and cycle;

– for a structure: Joules per cycle.

The total plastic deformation can be permanent or anelastic, or a combination of
both. Hysteresis thus appears as the non-coincidence of stress–strain loading and
unloading curves on the diagram.
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Figure 2.15. Strain or hysteresis 

If the stress is sufficient to produce plastic deformation, the part will never return 
to its initial state ( 0 , 0). Even if the deformation is only anelastic, there is 
still the formation of a hysteresis loop. However, if the stress is maintained at zero 
for a sufficient period of time, the part can return to zero initial condition. 

The anelastic strain is therefore not just a function of stress, but also of time (as 
well as temperature, magnetic field, etc.). 

2.4.3.3. Origins of damping 

Damping in materials has been studied for around 200 years. The principal 
motivation for this has been the analysis of the mechanisms which lead to inelastic 
behavior and the dissipation of energy, the control of certain characteristics of the 
materials during manufacturing (purity, fissures, etc.) and especially the design of 
structures, where it is interesting to attenuate the dynamic response stresses. 

The damping of a complex structure is dependent on [HAY 72], [LAZ 68]: 

– the internal damping of the materials which constitute each part; 

– the damping introduced by connections or contacts between the various parts 
(structural damping). 

Internal damping indicates the complex physical effects which transform the 
deformation energy in a vibrating mechanical system composed of a volume of 
macroscopically continuous matter into heat [GOO 76]. 
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When a perfectly elastic system is deformed by the application of an external 
force, the energy exerted by the force during the deformation is stored in the 
material. When the external force is removed, the stored energy is released and the 
material oscillates around its equilibrium position (the system is not damped). 

In a perfectly plastic material, all the energy exerted by the external force is 
dissipated and no energy is stored in the material. The suppression of the external 
force thus leaves the material in its deformed state (completely damped system). 

Typical materials are neither perfectly elastic, nor perfectly plastic, but partly 
both. The ratio of the plasticity and the elasticity of a particular material, used to 
describe the behavior of this material, is the damping or loss coefficient of the 
material. 

The origins of internal damping are multiple [CRA 62]: dislocations, 
phenomena related to the temperature, diffusion, magnetomechanical phenomena, 
etc. Damping depends on the level of stress to which the material is subjected, the 
distribution of the stresses in the specimen, sometimes the frequency, the static load, 
the temperature, etc. The external magnetic field can also be an important factor for 
ferromagnetic materials [BIR 77], [FÖP 36], [LAZ 68] and [MAC 58]. The 
effects of these different parameters vary according to whether the inelasticity 
belongs to the one of the following categories: 

1. inelasticity function of the rate of setting in stress (
d

dt
 or 

d

dt
); 

2. inelasticity independent of the rate of setting in stress; 

3. reversible strain under stress (Figures 2.16(a) and 2.16(b)); 

4. irreversible strain under stress. 

 

 

Figure 2.16. Reversible strain under stress 
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These four cases can combine in pairs according to [LAZ 68]: 

– case (1 and 3): the material undergoes a strain known as anelastic strain. The 
anelasticity is characterized by: 

- linear behavior: to double the stress results in doubling the strain, 

- the existence of a single stress–strain relation, on the condition of allowing 
sufficient time to reach equilibrium; 

– case (1 and 4): the material in this case is known as viscoelastic. The 
viscoelastic strain can be reversible or not. Case (1 and 3) is a particular case of (1 
and 4) (recoverable strain); 

– case (2 and 4): the material works in a field of plastic strain (under strong 
stresses in general). 

The energy dissipated in cases 1 and 2 can be a function of the amplitude of the 
stress, but only (2 and 4) is independent of the stress frequency (i.e. of the rate of 
setting in stress).  

Cases (1 and 3) and (1 and 4), for which damping is a function of the loading 

rate, thus lead to equations which involve the first derivatives 
d

dt
 or 

d

dt
. These 

cases of damping can be encountered in metals (anelasticity), in polymers 
(elastomers) (molecular interaction phenomena), in structures with various names: 
dynamic hysteresis; rheological damping; and internal friction [LAZ 68]. 

The relation between applied stress and damping is often complex; we can, 
however, in a great number of cases, approach this satisfactorily by a relation of the 
form [LAZ 50], [LAZ 53], [LAZ 68]: 

D J n
 [2.21] 

where: 

J and n are constants for the material; 

J = damping constant (or dissipated energy at an unity amplitude stress); 

n = damping exponent whose value varies (from 2 to 8) according to the 
behavior of the material, related to the stress amplitude, according to the 
temperature. 
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The exponent n is a constant for many materials when the stress amplitude is 
below a certain critical stress which is close to the stress of the ultimate resistance of 
the material. 

Above this limit, damping becomes a function of the stress according to time 
[CRA 62]. 

 

Figure 2.17. Elliptical cycle (n = 2) 

For low stress amplitudes and ambient temperature, n is equal to 2 (quadratic 
damping) and its hysteresis loop has an elliptical form. 

We define the case n 2 as that of a linear damping, because it is observed in 
the case of a viscosity phenomenon, for which the differential equations describing 
the movement are linear. 

At intermediate and high amplitudes, non-linear behaviors characterized by non-
elliptic hysteresis loops and exponents n generally greater than 2 (observed up to 30 
on a material with high stress) are observed. 

The damping capacity D is defined for a material under uniform stress. Relation 
[2.21] is generally valid up to a limit called the limit of sensitivity to the cyclic 
stresses, which is in the fatigue limit zone of the material [MOR 63a]. 

Structural damping, the least well-known, is the dominant phenomenon 
[NEL 80]. The phenomenology of the dissipation of energy at the ideal simple 
junction is reasonably well understood [BEA 82], [UNG 73], in particular at low 
frequencies. The problem is more difficult at high frequencies (much higher than the 
fundamental resonance frequency of the component). We can schematically 
distinguish three principal types of interface: 
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– interfaces with dry friction: metal–metal or more generally material–material 
(Coulomb friction); the frictional force is directly proportional to the normal force 
and the friction coefficient  and independent of the sliding velocity. Dissipated 
energy is equal to the work spent against the frictional force; 

– lubricated interfaces (fluid film, plastic, etc.) [POT 48]. In this mechanism, 
the friction is known as viscous. The amplitude of the damping force is directly 
proportional to the velocity of the relative movement, and its direction is opposite to 
that of the displacement; 

– interfaces that are bolted, welded, stuck, riveted, etc. 

 
 

Dry friction 
(Coulomb friction) 

 
The frictional force is 

proportional (coefficient ) to 
the normal force Fn  of 

application of the moving part 
on its support. 

 
Viscous friction 

 
 

The frictional force is 
proportional to the relative 
velocity of the two parts in 

contact. 
 

 
 

Case of an aperture  
 

 
The frictional force is 

proportional to the square of 
the velocity of the piston 
relative to the cylinder. 

 

Figure 2.18. Examples of damping forces 

In the first two categories, the forces can be applied in the direction normal to the 
plane of interface or according to a direction located in the plane of the interface 
(shearing). It is in this last case that the energy dissipation can be strongest. 

There are many other mechanisms of energy dissipation, such as: 

– damping due to the environment (air), the moving part activating the air or the 
ambient fluid (damping force dF  is in general proportional to z2 ); 

– magnetic damping (passage of a conductor in a magnetic field; the damping 
force is then proportional to the velocity of the conductor); 

– the passage of a fluid through an aperture, etc. 
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2.4.3.4. Specific damping energy  

The specific damping energy [FEL 59] is the ratio; 

s

d

U
E

 [2.22] 

where: 

dE = damping capacity (area under the hysteresis loop); 

d

2

s E2
U = maximum strain energy in the specimen during the cycle; 

Ed = dynamic modulus of elasticity. 

 
 

Figure 2.19. Strain energy

 
 

Figure 2.20. Damping capacity 

The damping of a material can also be defined as the ratio of the dissipated 
energy to the total strain energy (by cycle and unit of volume): 

stU2
D

 [2.23] 

For a linear material, D J 2  and 
d

2
s

st E2
1

V
U

U
1

2

F

S
,  

yielding: 

J Ed  [2.24] 
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Constants similar to those used above for viscoelasticity can be defined for
anelastic materials. For anelastic materials, lies between 0.001 and 0.1, while for
viscoelastic materials, varies between 0.1 and 1.5.

2.4.3.5.

The theory of viscous internal friction is very old and has been employed for a
long time. Proposed by Coulomb, it was developed by W. Voight and E.J. Rought,
and then used by other authors. It supposes that, in solid bodies, there are certain
viscous attributes which can be compared with the viscosity of a fluid and which are
proportional to the first derivative of the deformation [VOL 65]. This yields the
damping force:

d
dzF c
dt

[2.25]

The factor c, which we will suppose to be constant at first approximation, can
vary more or less in practice according to the material, and with the frequency of the
excitation. This parameter, the “viscous damping coefficient” (N s / m), is a function
of the geometry of the damping device and the viscosity of the liquid used. It is
encountered at the time of the slip between lubricated surfaces in damping devices
with fluid, or certain types of laminar flows through an aperture. Damping can be
considered to be viscous as long as the flow velocity is not too large.

It is estimated in general that elastomers and rubber bladders (with low
velocities) have comparable behavior to viscous damping. This type of damping is
very often used in studies of the behavior of structures under vibration [JON 69],
[JON 70], because it leads to linear equations which are relatively easy to treat
analytically.

Viscous damping will be represented on the diagrams by the symbol
[JON 69].

In the case of a linear system in rotation, the damping torque d is:

dt
d

DDd [2.26]
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where:

D = viscous damping constant in rotation;

dt
d

= angular velocity.

2.4.3.6.

relates to the study of the flow and deformation of matter [ENC 73].
Theoretical rheology attempts to define mathematical models accounting for the
behavior of solids under stresses. The simplest models are those with only one
parameter:

– elastic solid following Hooke’s law, with force varying linearly with the
displacement, without damping (Figure 2.21);

– damping type of device with force linearly proportional to the
velocity (Figure 2.22).

Among the models, which account for the behavior of real solids better, are those
models with two parameters [BER 73] such as:

– the Maxwell model, adapted to represent the behavior of the viscoelastic
liquids rather well (Figure 2.23);
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Figure 2.23. Maxwell model 

– the Kelvin–Voigt model, better adapted to the case of viscoelastic solids. It 
allows a complex representation of the stiffness and damping for a sine wave 
excitation of the form: 

cikk  [2.27] 

 

Figure 2.24. Kelvin–Voigt model 

2.4.3.7. Damper combinations 

Dampers in parallel 

The force necessary to produce a displacement z between the ends of the 
dampers is equal to: 

F F F c z c z1 2 1 2  [2.28] 

zczccF eq21  [2.29] 

21eq ccc  [2.30] 
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Figure 2.25. Dampers in parallel 

Dampers in series [CLO 03], [VER 67] 

F c z c z1 1 2 2 [2.31] 

z z z
F

c

F

c

F

c
1 2

1 2

 [2.32] 

21
eq c1c1

1
c  [2.33] 

 

Figure 2.26. Dampers in series 
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2.4.3.8. Non-linear damping 

Types of non-linear damping are described in Chapter 7 and their effect on the 
response of a one-degree-of-freedom mechanical system is examined. As an 
example, the case of dry friction (Coulomb damping) and that of an elastoplastic 
strain [LEV 76] are described. 

Dry friction (or Coulomb friction) 

The damping force here is proportional to the normal force N between the two 
moving parts (Figure 2.27):  

 

 

Figure 2.27. Dry friction 

F N  [2.34] 

if k x Nf  
xkF f  [2.35] 

if N k x Nf  
F N  [2.36] 

if k s Nf . 

This case will be detailed in Chapter 6. 
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Elements with plastic deformation 

Figures 2.28 and 2.29 show two examples of force–displacement curves where 
plastic behavior intervenes. 

 

Figure 2.28. Example of plastic  
deformation 

 
Figure 2.29. Example of plastic  

deformation 

2.4.4. Static modulus of elasticity 

The static modulus of elasticity of a material, which is dependent on the stiffness 
under the static load of the parts in which they are cut, is defined as the ratio of the 

variation of stress  to the resulting strain . 

Linear materials have a single modulus even with very strong damping. For 
phenomena which are independent of the rate of setting in stress, such as those 
observed for metals working under the usual conditions of stress and temperature, 
the hysteresis loop no longer has an elliptical form which would make it possible to 
separate the elastic strain component which stores the energy and the component of 
energy dissipation. Two types of static modules are thus defined [LAZ 50], 
[LAZ 68]: 

– the tangent modulus of elasticity, for a given value of the stress; this modulus 
is proportional to the slope of the stress–strain curve measured for this given stress; 

– the secant modulus of elasticity, which is proportional to the slope of a straight 
line segment joining two given points of the stress–strain curve. 
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As an example, the tangent modulus at the origin is given (Figure 2.30) by the 
slope of tangent OG to arc OA at the origin and the secant modulus by the slope of 
segment OA (for a viscous linear material thus having an elliptic hysteresis loop, the 
secant modulus is none other than the static modulus of elasticity). The tangent OG 
corresponds to a material which would be perfectly elastic. 

In practice, materials in the stress domain have similar tangents and secant 
moduli of elasticity where they follow Hooke’s law reasonably well. In general, the 
secant modulus decreases when the maximum stress amplitude grows. 

2.4.5. Dynamic modulus of elasticity 

The dynamic modulus of elasticity of a material is the modulus of elasticity 
calculated from a stress–strain diagram plotted under cyclic dynamic stress. A 
tangent dynamic modulus and a secant dynamic modulus are defined in the same 
way. The values measured in dynamics often differ from static values. 

 

Figure 2.30. Tangent modulus 

The stress–strain curve can be modified in dynamics by: 

– a change in the initial tangent modulus (at the origin) (modification of the 
slope of OG or any other arc of curve and possibly even by rotation of the hysteresis 
loop); 

– a variation in the surface delimited by the curve, i.e. of the damping capacity of 
the material. 
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A perfectly elastic material which has a stress–strain curve such as HOG
undergoes a strain e under the maximum stress 0 , whereas the inelastic material
takes a deformation i under the same stress. The difference i e is a
measurement of the dynamic elasticity reduction (to which an increase in the
damping capacity corresponds).

When the damping capacity of a material grows, the material becomes more
deformed (for the same stress) and its dynamic modulus of elasticity decreases.

These variations can be represented by writing the dynamic modulus (
) in the form:

0
d

i
E [2.37]

0
d

ee
0 0

1E [2.38]

1

d
e 0

1E
E

[2.39]

The initial tangent dynamic modulus Ee is assumed to be equal to the static
module. Since the specific damping capacity D is equal to the area under the curve
of the hysteresis loop, we can set:

D K 0 [2.40]

where K is a constant function of the shape of the cycle (for example, K 4 for a
trapezoidal cycle such as LAMDL). This yields:

1

d 2
e 0

1 DE
E K

[2.41]

The value of K depends on the shape of the loop, as well as on the stress
amplitude. An average value is K 3 [LAZ 50].
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The modulus Ed is thus calculable from [2.41] provided that the initial tangent
modulus (or the slope of arcs DF or AC) does not vary (with the velocity of loading,
according to the number of cycles, etc.). B.J. Lazan [LAZ 50] has shown that in a
particular case this variation is weak and that expression [2.41] is sufficiently
precise.

A is a unit made up of mechanical elements having properties of mass,
stiffness and of damping. The mass, stiffness and damping of a structure are
important parameters since they determine its dynamic behavior.

The system can be:

– a when the components can be isolated by
distinguishing the masses, stiffnesses and dampings, by assuming them to be lumped
in separate elements. In this case, the position at a given time depends on a finite
number of parameters;

– a when this number is infinite. The movement is then a
function of time and space [GIR 08].
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2.5.2. Lumped parameter systems 

In practice, and generally for a real structure, these elements are distributed 
continuously, uniformly or not, with the properties of mass, stiffness and damping 
not being separate. The structure is made up of an infinite number of infinitesimal 
particles. The behavior of such a system with distributed constants must be studied 
using complete differential equations with partial derivatives. 

It is often interesting to simplify the structure to be studied in order to be able to 
describe its movement using complete ordinary differential equations, by dividing it 
into a discrete number of specific masses connected by elastic massless elements 
and of energy dissipative elements, so as to obtain a lumped parameter system 
[HAB 68], [HAL 78]. 

The transformation of a physical system with distributed constants into a model 
with localized constants is generally a delicate operation, with the choice of the 
points having an important effect on the results of the calculations carried out 
thereafter with the model. 

The procedure consists of: 

1. Choosing a certain number of points (nodes) by which the mass of the 
structure is affected. The number of nodes and number of directions in which each 
node can be driven determines the number of degrees of freedom of the model. 

The determination of the number of nodes and their position can be a function 
of: 

– the nature of the study to be carried out: to define a problem roughly, it is 
often enough to be limited to a model with a few degrees of freedom; 

– the complexity of the structure studied; 

– available calculation means: if the complexity of the structure and the 
precision of the results justify it, then a model with several hundred nodes can be 
considered. 

The choice of the number of nodes is therefore, in general, a compromise 
between a sufficient representativeness of the model and a simple analysis, leading 
to the shortest possible computing time. 

2. Distributing the total mass of the structure between the various selected points. 
This task must be carried out carefully, particularly when the number of nodes is 
limited. 
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This type of modeling makes it easier to study more complicated structures such
as a car–passenger unit (Figure 2.32) [CRE 65]. Such a model is sometimes called a

.

In these models, according to the preceding definitions, the element mass is
assumed to be perfect, i.e. perfectly rigid and non-dissipative of energy, the
elasticity element is massless and perfectly elastic, and finally the dissipative energy
element is assumed to be perfectly massless and rigid.

Computer programs have been developed to study the dynamic behavior of
structures modeled in this way numerically [GAB 69], [MAB 84], [MUR 64].

The number of degrees of freedom of a material system is equal to the number of
parameters necessary to determine the state of this system at any time. The simplest
system, a material point, has three degrees of freedom in general: three coordinates
are necessary at every moment to define its position in space. The number of
equations necessary to know the movement of the system must be equal to the
number of degrees of freedom.
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A solid has six degrees of freedom in general. This number depends on:

– the complexity of the solid;

– the connections to which it is subjected.

If each element of mass of a model can be driven only in only one direction, the
number of degrees of freedom is equal to the number of elements of mass. A very
complex system can thus have a limited number of degrees of freedom.

NOTE.–

The exploitation of these models with lumped or distributed constants shows that
the system can vibrate in a certain number of ways, called . Each one
corresponds to a specific natural frequency. This number of frequencies is therefore
equal to the number of modal shapes, and is therefore equal to the number of
coordinates necessary at any moment to determine the position of the system, i.e.,
according to section 2.5.3, to the number of degrees of freedom of the system.

In the case of a system with distributed masses, the number of degrees of
freedom is infinite. Each frequency corresponds to a single oscillatory mode, which
is determined by its characteristic function or normal function. A transient or
permanent forced excitation will excite, in general, some or all of these frequencies,
the response in each point being a combination of the corresponding modal shapes.
In the case of a linear system, we shall be able to use the principle of superposition
to calculate this response.

This concept of a mode is important and deserves further development. The
chapters which follow are limited to systems with only one degree of freedom.

1. Case of a beam fixed at one end, length L, uniform section and bending
stiffness EI (E = modulus of elasticity and I = inertia moment of the section).

The natural pulsation 0 is given by [CRE 65], [KAR 01]:

0
2 2

4
2 2

4n
g E I

P L
n

E I

m L
[2.42]
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where n is an integer: n = 1, 2, 3... and g is the acceleration of gravity
(9.81 m/s2)

yielding frequencies

f
n g E I

P L
K

g E I

P L
0

2

4 42
(Hertz) [2.43]

where P is the weight of the beam per unit of length. Each value of n
corresponds a frequency f0. Figure 2.33 shows the first five modes.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

56.0K 51.3K 82.9K 24.19K 81.31K

2. Beam fixed at two ends [STE 78]:

Natural frequency

f
E I g

P L
0 3

22 44

2

,

where

[2.44]

E = Young’s modulus (units SI) I = moment of inertia
P = weight of the beam L = length of the beam
g = 9.81 m/s2

In a system with several degrees of freedom, the mode of one of the degrees can
influence the movement corresponding to that of another degree.



Basic Mechanics     79 

It is important to distinguish between coupled and uncoupled movements. When 
two movements of a mass, horizontally and vertically for example, are not coupled, 
and can coexist simultaneously and independently, the system is not regarded as one 
with several degrees of freedom, but as being composed of several systems with 
only one degree of freedom, whose movements are collectively used to obtain the 
total resulting movement [CRE 65]. 

2.5.5. Linear systems 

A vibrating linear system is any system whose positional variables follow, in the 
absence of an external exciting force, a system of linear differential equations, with 
constant coefficients, and no second members, in a number equal to that of the 
unknowns [MAZ 66]. 

In a linear structure, the characteristics of the response are additive and 
homogeneous [PIE 64]: 

– the response to a sum of excitations is equal to the sum of the responses to each 
individual excitation; 

– the response to k times the excitation (k = constant) is equal to k times the 
response to the excitation. 

This concept of linearity generally imposes an assumption of weak 
displacements (for example, small relative displacement response of the mass of a 
one-degree-of-freedom system). 

2.5.6. Linear one-degree-of-freedom mechanical systems 

The simplest mechanical system consists of mass, stiffness and a damping device 
(Voigt model) (Figure 2.35). The response is calculated using a linear differential 
equation of the second order. Due to its simplicity, the results can be expressed in 
concise form, with a limited number of parameters. 

The one-degree-of-freedom system is a model used for the analysis of 
mechanical shocks and vibrations (comparison of the severity of several excitations 
of the same nature or different nature, development of specifications, etc.). The 
implicit idea is that if a vibration (or a shock A) leads to a relative displacement 
response larger than a vibration B on a one-degree-of-freedom system, vibration A 
will be more severe than B on a more complex structure. 
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Figure 2.35. Voigt model 

The displacement of an arbitrary system subjected to a stress being, in general, 
primarily produced by the response of the lowest frequency, this one-degree-of-
freedom model very often makes it possible to obtain a good approximation to the 
result. For more precise stress calculations, the use of a more complicated 
mathematical model is sometimes necessary. 

2.6. Setting an equation for n degrees-of-freedom lumped parameter  
mechanical system 

Various methods can be used to write the differential equations of the 
movement of a several-degrees-of-freedom mechanical system with localized 
constants. 

2.6.1. Lagrange equations 

2.6.1.1. General survey – definitions 

The differential equations describing the movement of a material point or a 
system can be established either starting from Newton’s laws, or by using the 
Lagrange equations. There are two basically different approaches for the problems 
of dynamics. 

Without rewriting the theory behind the Lagrange equations we will provide an 
overview with the aim of highlighting the definitions of the terms used. We will also 
show the approach that should be used when it comes to writing the equations. 
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The position of a system in space can be characterized by using s arbitrary
parameters iq where i, the , is an integer
that ranges from 1 to s. iq are the and their derivatives iq
are the . The different s functions tqi will vary
independently. The state of the system is completely and univocally determined by
its coordinates and velocities.

The Hamilton principle (or the ) leads to the creation of
the Lagrange equations: if the system considered is characterized by a function

i iL q ,q , t , the system is then moved between two given positions for the times 1t
and 2t so that the action

2

1

t

t
S L q, q, t dt [2.45]

has the smallest value possible [LAN]. i iL q ,q , t is then referred to as the
system’s Lagrange function. The principle of least action is written as:

2

1

t
i it

S L q , q , t dt 0 [2.46]

yielding

i i

d L L 0
dt q q

[2.47]

These equations are the Lagrange equations. For a material point in free
movement, the Lagrange function can be written as follows:

2m v
L

2
[2.48]

where m is the mass of the weighted point and v is the velocity module.

For a system of n weighted points (which do not react with one another), which
have a mass jm and a velocity jv , the Lagrange function can then be written as:
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2n
j j

j 1

m v
L

2
[2.49]

(j = 1, 2, ..., n). In a closed system, in other words where the weighted points react
with one another, and are isolated from any foreign body, the Lagrange function L
needs to take into consideration the fact that these different weighted points react
with one another:

2
j j

P 1 2
j

m v
L E r , r ,

2
[2.50]

where PE is a function of the points’ coordinates, and depends on the interaction

that occurs between the different points. jr is the radius vector of the j
th

point.

The quantity
2

j j

j

m v

2
is the of the system and the PE function

is the .

The Lagrange equation is therefore written as1:

j j

d L L
dt v r

[2.51]

1 The notation
L

v j

or
L

rj

does not mean a derivative of the scalar L with respect to the

vector v j or rj which does not have significance). By convention, this is the notation
however which is used to represent a vector whose components are equal to the derivatives of

L with respect to the corresponding components of the vector v j or rj .
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yielding, if L is replaced by its expression given in [2.50],

j P
j j

j

d v E
m F

dt r
[2.52]

jF is a force, whose components are
j

P

x
E

,
j

P

y
E

,
j

P

z
E

, if the

components of jr are jx , jy , jz

Whenever the system 1S is moving in a given exterior field, thus interacting
with another system 2S , the Lagrange function of the overall system 21 SSS is
calculated and it is thus the obtained closed system which is studied.

Certain properties of time and space (uniformity and isotropy) make it possible
to establish laws which are known as .

Uniformity of time allows us to write the following equation from the Lagrange
equations of a closed system:

i
ii

L
q L constant E

q
[2.53]

The energy of a system E, which is defined by [2.53], remains constant
whenever a closed system moves.

In the case of a non-closed system, this law is also applicable if the exterior field
does not depend on time.

The mechanical systems whose energy is conserved are known as conservative
systems, and as a result the following equation can be written:

c PE E q, q E q [2.54]
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cE , which is previously defined kinematic energy, is a function of the square

root of the velocities. Its value is written
2

j j

j

m v

2
in Cartesian coordinates. jm is

the mass of the point j, which has a velocity of jv .

In addition to the Lagrange equation, the homogeneous properties of space show
that in a closed mechanical system, the vector

j j
jj j

LP m v
v

[2.55]

remains unchanged during movement. The vector P is known as the or the
system’s . As far as the generalized coordinates iq are concerned,

is as follows:

i
i

Lp
q

[2.56]

and the generalized force:

i
i

LF
q

[2.57]

NOTE.– ip

iq

The isotropy of space makes it possible to demonstrate the conservation of a
parameter which is known as a system’s .

If movement is carried out in areas which offer any resistance and which tend to
slow down the system, then part of the system’s energy is converted into heat. This
type of system is known as a . There is
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or . In this case, if dissipation forces are proportional to the velocity, and if
they are derived from a potential, then the Lagrange equation can be written as,

a

i i i

Ed L L 0
dt q q q

[2.58]

where aE is the (or ) [LAN 60].

2.6.1.2.

Let us consider a linear one-degree-of-freedom system. If the movement of such
a system occurs along axis Ox, then the Lagrange function can be written as:

2

P
m x

L E x
2

[2.59]

in the case of a closed system or for a system which is subject to constant exterior
conditions. This yields:

2

P
m x

E E z
2

[2.60]

The Lagrange equation is written as:

c c Pd E E E
dt x x x

[2.61]

This equation can be used to create equations of free oscillations for a (one-
degree-of-freedom) undamped system.
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If the system is made up of s degrees of freedom then the following equations are
used:

c c P
i

i i i

E E Ed F
dt q q q

[2.62]

in generalized coordinates, where each value of i corresponds to one degree of
freedom. It is said that the system moves in a .

If the system is damped, there are forces which act against the free movement of
the system that was initially excited. These forces are linear and non-linear functions
of velocity.

Sometimes a aE is defined. It is possible to introduce this
potential into the Lagrange equations. In the general, and if the damping is viscous,
we have:

c c aP

i i i i

E E EEd
dt q q q q

[2.63]

and if the system is linear:

c c P ad E E E E
dt x x x x

[2.64]

Whenever the system is not closed, the Lagrange equations can generally be
written as follows whenever the value of aE exists,

c c aP
i

i i i i

E E EEd F
dt q q q q

[2.65]

( iF = the generalized forces external with the system. These forces are not included
in PE ).
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Weight: m g

= radius of gyration

I = m 2 = moment of inertia of m with respect to the axis passing by the center
of gravity

= angle of rotation

x = vertical displacement of the center of gravity

Kinetic energy
2 2

c
m 1

E x I
2 2

[2.66]

Potential energy
2 21 2

P 1 2
k k

E x x
2 2

[2.67]

Lagrange equation
2 22 2

1 1 2 2
1

L m x I k x k x
2

[2.68]

Yielding
2

1 2 2 2 1 12
d x

m k k x k k 0
dt

[2.69]

2
2 2

1 1 2 2 2 2 1 12
d

I k k k k x 0
dt

[2.70]

and x are independent if 1 1 2 2k k [VOL 65], [WAL 84].
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2.6.2. D’Alembert’s principle 

Using this principle, static equilibrium conditions can be applied to dynamic 
problems by considering the external exiting forces and the forces of reaction which 
are opposed to movement at the same time [CHE 66]: 

– for any solid, the algebraic sum of the external applied forces and forces 
opposed to the movement are null in any direction. 

This principle has an equivalent for systems in rotation: 

– for any solid body, the algebraic sum of the external applied couples and 
resistive torques around an arbitrary axis are null. 

2.6.3. Free-body diagram 

One of the most useful tools which can be used to resolve problems linked to 
statics is the free-body diagram (FBD). The FBD relies on the fundamental 
principles of statics. If an entire system is in equilibrium then each of its individual 
components is also in equilibrium. 

The FBD is a diagram which represents an element taken from a dynamic 
system. Such an element is taken away from its original environment, and from all 
the elements which surround it. Any interactions with these elements are replaced by 
force vectors. The FBD is therefore a simplified representation of an often complex 
system, where the system is divided into smaller, simpler elements to be studied. All 
the physical attributes of the structure are removed and are only represented for an 
element given the forces to which it is subjected.  

The links with the neighboring elements are not directly represented in the FBD 
(which is where the name free-body diagram comes from). These links are only 
created because of the forces that are transmitted. 

The drawing of an FBD is an important phase when it comes to finding a 
solution to mechanical problems. The FBD helps visualize all of the forces that act 
on a simple object and also helps resolve any equilibrium problems. 

Components of the free-body diagram 

Some components are necessary if the aim is to create a worthwhile FBD. The 
first and most important component is the object, i.e. the part of the structure which 
is represented on the diagram as a rectangle.The size and shape of the actual object 
are not important. 
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The second most important component to be included in the diagram is the force. 
The force is represented by a single arrow ( ). The direction of the arrow and its 
size are important for working out calculations:  

– the direction of the arrow shows the direction in which the force acts. More 
often than not, the direction is unknown. An arbitrary direction needs to be chosen. 
Resolving the equations which determine the position of equilibrium makes it 
possible to verify if the direction which is chosen is the correct one or not. If the 
answer is negative, then the direction is reversed; 

– the size of the arrow represents a force’s amplitude. Each arrow in the diagram 
must be labeled uniquely so that it is possible to see what exact type of force has 
been represented in the diagram. All of the forces which act on an object in a given 
situation must be represented in the FBD, unless they are specifically and 
voluntarily ignored.  

There are, of course, forces whose characteristics are not known when an FBD is 
being created, in particular those  which act on the contact point between the studied 
object and other close parts not being reproduced on the diagram.  

Types of forces used in an FBD 

Several different forces can be represented in an FBD. The most common forces 
include: 

– contact forces, which include: 

- normal forces, 

- friction forces, 

- aerodynamic resistance forces, 

- forces which are applied by a person or by another object (traction, thrust, 
etc.), 

- tension; 

– forces having a remote action, which include  

- gravity, 

- electric forces, 

- magnetic forces. 
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Figure 2.37. Free-body diagram 

The first force to be considered, the most frequently observed, is the force of 
gravity. The acceleration which is due to gravity (on Earth) is roughly g = 9.8 m/s². 

The normal force is the force which prevents an object resting on a surface from 
falling; it is always perpendicular to the surface on which the object rests. If an 
object is resting on a non-horizontal surface, the normal force is perpendicular to 
this surface. 

If the contact surface is smooth then there will be no friction and the reaction 
force acts in its normal position to the tangent of the surface at the point of contact. 
If this surface is flat, then the reaction force is always perpendicular to the surface. 

Friction is a force which is linked to the normal force. This is because friction is 
also linked to the surface with which an object is in contact. Unlike the normal 
force, which acts perpendicularly to the surface on which the object is placed, 
friction always acts parallel to the surface on which the object is placed. Friction 
prevents or acts against movement; the vector which is used to represent friction 
having the same direction as the friction force. 

There are two types of friction which can act on an object: 

 static friction, which is produced when an object is at rest. This is the force 
which makes it difficult for an object to start moving; 

 dynamic friction, which takes place when an object is moving. It is this force 
which slows down or even stops the movement of an object. 

Thrust and traction: thrust is created by a liquid or by the wind, traction of an 
object by a cable. A flexible object which has little or no rigidity (such as a rope or a 
chain, etc.) only creates traction on another object according to the axis of the 
flexible body. 
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The last of these common forces is the force of tension. Tension occurs when
two forces act on the extremities of an object (for example, the force which is
transmitted when pulling on a spring).

Not all of these forces are generally present at the same time.

NOTES.–

The system is initially assumed to be in equilibrium.

Inertial force

2

i 2
d z

F m
dt

[2.71]
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Damping force

dF c z [2.72]

Restoring force

rF k z [2.73]

External force: F.

According to d’Alembert’s theorem, the sum of all forces acting on a body,
including the inertial force, is equal to zero. This yields

2

2
d z dz

m c k z F
dtdt

[2.74]

To avoid the possible errors of sign during the evaluation of these forces when
the system is complex, the following rule can be used [STE 73]:

For each mass mi of the model, it is assumed that all the forces associated with
mass mi are positive and that all the forces associated with the other masses m j
( j i ) are negative.

In practice, for each mass mi , the sum of the damping, spring and inertia forces
is made equal to zero as follows:

: positive, equal to m yi i ;
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– restoring force: equal to i i jk y y , with ki  being the stiffness of each 

elastic element connected to the mass mi , y yi j  being written while starting with 
coordinate yi  of mass mi , and y j being the coordinate of the other end of each 
spring; 

– damping force: same rule as for the stiffnesses, with the first derivative of 
c y yi i j . 

 
Mass mi  (Figure 2.40) is as follows: 

m y c y y k y y c y y k y yi i j i j j i j k i k k i k  

c y y k y yi i 0   [2.75] 

Example 2.4. System with five degrees of freedom 

 

 
 

Figure 2.41. System with five degrees of freedom 
 
Mass 1m  

0yycyykyycyykxykxycym 31331321221201101111  
 [2.76] 
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Mass 2m

0xykxycyykyycyykyycym 02602642442412212222

[2.77]

Mass 3m

3 3 3 3 1 3 3 1m y c y y k y y 0 [2.78]

Mass 4m

4 4 4 4 2 4 4 2 5 4 5 5 4 5m y c y y k y y c y y k y y 0 [2.79]

Mass 5m

5 5 5 5 4 5 5 4m y c y y k y y 0 [2.80]

Hence the system of equations:

1 1 1 2 3 1 1 2 3 1 2 2 2 2 3 3 3 3 1 0 1 0

2 1 2 1 2 2 2 4 6 2 2 4 6 2 4 4 4 4 6 0 6 0

3 1 3 1 3 3 3 3 3 3

4 2 4 2 4 4 4 5 4 4 5 4 5 5 5

m y c c c y k k k y c y k y c y k y c x k x

c y k y m y c c c y k k k y c y k y c x k x
c y k y m y c y k y 0
c y k y m y c c y k k y c y k 5

5 4 5 4 5 5 5 5 5 5

y 0
c y k y m y c y k y 0 [2.81]

This differential equation of movement can also be obtained from Lagrange
equation [2.63]:

0
y
E

y
E

y
E

y
E

dt
d

i

a

i

P

i

c

i

c

where

c i i
i

1
E m y

2
[2.82]

2
026

2
455

2
244

2
133

2
122

2
011P xyk

2
1

yyk
2
1

yyk
2
1

yyk
2
1

yyk
2
1

xyk
2
1

E

[2.83]
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2 2 2 22 2
a 1 1 0 2 2 1 3 3 1 4 4 2 5 5 4 6 2 0

1 1 1 1 1 1
E c y x c y y c y y c y y c y y c y x

2 2 2 2 2 2

[2.84]

ii
i

c ym
y
E

dt
d

[2.85]

p
1 1 0 2 2 1 3 3 1

1

p
2 2 1 4 4 2 6 2 0

2

p
3 3 1

3

p
4 4 2 5 5 4

4

p
5 5 4

5

E
k y x k y y k y y

y
E

k y y k y y k y x
y
E

k y y
y
E

k y y k y y
y
E

k y y
y

[2.86]

0
y
E

i

c [2.87]

a
1 1 0 2 2 1 3 3 1

1

a
2 2 1 4 4 2 6 2 0

2

a
3 3 1

3

a
4 4 2 5 5 4

4

a
5 5 4

5

E
c y x c y y c y y

y
E

c y y c y y c y x
y
E

c y y
y
E

c y y c y y
y
E

c y y
y

[2.88]
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Hence [2.81] 

1 1 1 1 0 2 2 1 3 3 1 1 1 0 2 2 1 3 3 1

2 2 2 2 1 4 4 2 6 2 0 2 2 1 4 4 2 6 2 0

3 3 3 3 1 3 3 1

4 4 4 4 2 5 5 4 4 4 2 5 5 4

5 5

m y k y x k y y k y y c y x c y y c y y 0

m y k y y k y y k y x c y y c y y c y x 0

m y k y y c y y 0

m y k y y k y y c y y c y y 0

m y 5 5 4 5 5 4k y y c y y 0
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Depending on whether the response is relative or absolute, the response q is
equal to:

0 0 0q q q q e [3.102]

or

0 0 0 0q q q q 2 e [3.103]

As an example, Figures 3.12–3.14 show q , respectively, for 0 0 ,

0 0q q 1, 0q0 and 0q 1, then 0q 1 and 0q 0 .

q can be written q
q

q q e0
0 0 . For quite large ,

q0

becomes negligible and q behaves like q q e0 0 ; q thus tends towards
zero when tends towards infinity. This mode, known as is not oscillatory.
It corresponds to the fastest possible return of the system towards the equilibrium
position from all the damped exponential movements.

If qc is written as the expression of q corresponding to the critical mode,
this proposal can be verified while calculating:

q

q
c

1









































Chapter 4

Impulse and Step Responses

4.1.1.1.

Let us consider a damped mass–spring system. Before the initial time t 0 the
mass is assumed to be at rest. At time t 0 , a constant excitation of unit amplitude
continuously acts for all t 0 [BRO 53], [KAR 40]. We have seen that, for zero
initial conditions, the Laplace transform of the response of a one-degree-of-freedom
system is given by [3.29]:

2
p

Q p
p 2 p 1

[4.1]

Here p
p

1
(unit step transform), yielding the response:

q L
p p p

L
p

L
p

p p
L

p p
1

2
1 1

2
1

2

1

2 1

1

2 1

2

2 1

[4.2]
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q
e

1
1

1 1 1
2

2 2 2cos sin

2
1

1
2

2e
sin [4.3]

1

q e1 1
1

12
2

2cos sin [4.4]

i.e.

u t A t e t e tm
t t1 1

1
10 0

0
2

2 0
2cos sin

[4.5]
with m 1 [HAB 68], [KAR 40].

NOTE.–
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1. If 1

Q p
p p

1

1 2 [4.6]

Q p
p p p

1 1

1

1

1 2 [4.7]

q e1 1 [4.8]

and, for 1 ,

u t e t et t1 0 0
0 [4.9]

2. Zero damping

In the reduced form, the equation of movement can be written using the notation
of the previous sections:

2

2
d q

q
d

[4.10]

or

u t u t t0
2

0
2 [4.11]

with the initial conditions being constant, namely, for 0

q
dq

d
0 0

0
,

or, according to the case, t 0 and

t 0

duu 0 0
dt

.
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After integration, this becomes as before:

q 1 cos [4.12]

and

m 0u t 1 cos t [4.13]

the expression in which, by definition of the excitation, m 1:

u t t1 0cos [4.14]

If the excitation is a force, the equation of the movement is, for t 0,

m
d z

dt
k z

2

2 1, with, for initial conditions at t 0 , z
dz

dt t
0 0

0
. This

yields, after integration,

z t
k

k

m
t

1
1 cos [4.15]

NOTE.–
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The function z(t), a response with the step unit function, is often termed the
or and is written A(t).

It can be seen in this example that if we set, according to our notation,

z
F

k k
s

m 1
, the ratio of the maximum elongation zm to the static deflection ,

which the mass would take if the force were statically applied, reached a value of
two. The spring, in dynamics, is deformed two times more than in statics, and there
is a fear that it may undergo stresses that are twice as large.

Often, however, the materials resist transient stresses better than static stresses
(Chapter 2). This remark relates to the initial moments, during which F(t) is
transitory and is raised from 0 to 1. For this example, where F(t) remains equal to
one for all positive values of t and where the system is undamped, the effect of
shock would be followed by a fatigue effect.

4.1.1.2.

The expression for the response

q e1 1
1

12
2

2cos sin [4.16]

has a zero derivative
dq

d
for m such that

m
2

2m
2 1sin

1
1cose m

01cos1sin1e m
2

m
22m

01sin m
2

m
k

1 2
[4.17]
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The first maximum (which would correspond to the point of the positive primary
shock response spectrum at the natural frequency f0 of the resonator) occurs for

2m
1

at time
2

0
m

1f2

1t [HAL 78].

From this the value q is deduced:

q q em m 1
1

1
2

2

cos sin [4.18]

q em 1 1 2

[4.19]

(always a positive quantity). The first maximum amplitude q m tends towards 1
when tends towards 1.

NOTES.–

1.

2. , .



Impulse and Step Responses 151

For k 2,

2m
1

2
[4.20]

and

2
0

m
1f

1
t ,

21

2

mm e1qq [4.21]

q m is negative for all 0 1, .

q m 0 for 0

q m 1 for 1

4.1.1.3.

1 is searched such that:

q e1 1 1
1

11 2
1 2

2
1cos sin [4.22]
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As e 1 0 is assumed

cos sin1
1

12
1 2

2
1

i.e.

2
2

1
1tan 1 [4.23]

This yields, since tan 1 02
1 and 1 02

1 must be present
simultaneously:

2
2

1
11 arc tan [4.24]

2

21
1

tanarc
1

1
[4.25]
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If 0 ,

q 1 cos [4.26]

If q 1

2
1k [4.27]

If 1

ee11 [4.28]

The only positive root exists for infinite .

4.1.2.1.

In this case, for any and zero initial conditions,

2
p 1 2 p

Q p
p 2 p 1

[4.29]

with p
p

1
.

q L
p

p p p
L

p
L

p

p p
1

2
1 1

2

1 2

2 1

1

2 1
[4.30]

q e A1 1
1

12
2

2cos sin [4.31]

1 .



154 Sinusoidal Vibration

If 0

q 1 cos [4.32]

If 1

Q p
p

p

p

1 1 2

1 2 [4.33]

Q p
p p p

1 1

1

1

1 2 [4.34]

q e e A e1 1 1 [4.35]

u t t e t1 10
0

[4.36]

( 1 ).

4.1.2.2.

The extremum of the response q A occurs for m such that
dA

d
0, which leads to

m
2

2m
2 1sin

1
1cose m

01cos1sin1e m
2

m
22m

i.e. to

12

12
1tan 2

2

m
2 [4.37]
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For 2 1 02 (and since m is positive):

12

12
tanarc

1

1
2

2

2m [4.38]

and if 2 1 02

12

12
tanarc

1

1
2

2

2m [4.39]
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For m,

A em m m
m1 1

1
12

2
2cos sin

i.e.

me1A m [4.40]

If 1,

q e e1 [4.41]

Then

dq

d
e2 0

if 2 or if .

This yields

q em 1 2

or

q m 1

If
1

2
, m

2
2 and

2
m e1q

20788.1q
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4.1.2.3.

The first up-crossing of the unit value happens at time 1 such that

A e1
2

1 2
2

11 1
1

11 cos sin [4.42]

tan 1
12

1

2

[4.43]

2

21
1

tanarc
1

1
[4.44]

If 0 ,

1
2

If 1,

q e e1 1 [4.45]

yielding 1 1 or 1= infinity.
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4.2.1.1.

Let us consider a Dirac delta function g obeying

g

g

g

0 for 0

0 infinite

dt 1

[4.46]

such that, with 0 , q 0 and m
dq

dt
1. The quantity m

dq

dt
is the impulse

transmitted to the mass m by a force acting for a small interval of time
[KAR 40]. The contribution of the restoring force of the spring to the impulse is
negligible during the very short time interval .

Depending on whether the impulse is defined by a force or an acceleration,

2
2 2 F

0 0 02
d z dz2 z

dt kdt
[4.47]



Impulse and Step Responses 159

where F F (t) , F 1 (force) and (t) is a Dirac delta function obeying the
same definition, or

d z

dt

dz

dt
z AC

2

2 0 0
2

0
2

0
22 [4.48]

with AC x (t) and x 1 (acceleration). If g t , the generalized delta

function, is equal, according to the case, to F

k
or to AC

0
2 , then the generalized

equation is obtained as follows:

d u

dt

du

dt
u tg

2

2 0 0
2

0
22 [4.49]

Then

t F
0t

g0 t AC
2 2 20
0 0 0

1
dt I

k k
t dt

1 V
dt I

[4.50]

( V = velocity change due to the acceleration impulse). To make the differential
equation dimensionless, each member is divided by the quantity 0 homogeneous

with length, and set q
u

0

and 0 t . This becomes:

d q

d

dq

d
q g

2

2 2 [4.51]

The transform of a Dirac delta function being equal to the unit [LAL 75], the
Laplace transform of this equation is written with the notation already used,

Q p p p2 2 1 1 [4.52]
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From where

2
2

e
q sin 1 h

1
[4.53]

( 1) and

0 t
2

0 02

e
u t sin 1 t

1
[4.54]

and if 1,

0 t
2

0 02

e
h t sin 1 t

1

For an acceleration Dirac function,

0 t
2

020

V e
u t sin 1 t

1
[4.55]

and
0 t

2 2
0 0 02

e
z t V sin 1 t

1
[4.56]
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1. For 0 ,

q h( ) sin

and

0 0u t sin t [4.57]

If the impulse is defined by a force,
1

k
then

0
0 0

1u t z t sin t sin t
k k m

[4.58]

This relation is quite homogeneous, since the “number” 1 corresponds to the

impulse
1

k m

I

k m
, which has the dimension of a displacement.

The unit impulse response is denoted by h t [BRO 53], [KAR 40]. It is
called the or [GUI 63].

2. If 1,

Q p
p

1

1 2

q h e [4.59]
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u t h t t e t
0
2 0 [4.60]

4.2.1.2.

q presents a peak q m when
dq

d
0, i.e. for m such that

01cos1e1sine m
22

m
2 mm

2

m
2 1

1tan

2

2m
1

tanarc
1

1
[4.61]

This yields

q
e

m m

m

1
1

2
2sin

i.e.

2

2

1
tanarc

1
m eq [4.62]
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For 1,

q e [4.63]

dq

d
0 if 1 , yielding

q
e

m
1

[4.64]

For 0 ,

h sin [4.65]

dh

d
cos 0 if k

1

2
. If k = 0, h = 1.

NOTE.–

[4.66]
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[4.67]

[4.68]

4.2.2.1.

2
1 2 pQ p

p 2 p 1
[4.69]

q h
e

e
1

1 2 1
1

1
2

2 2
2

2sin cos sin

[4.70]
( 1)

2
2

2
2 1sin

1

21
1cos2eh [4.71]

i.e.

2
2

1sin
1

e
h
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with

2

2

21

12
tan

NOTE.–

[4.72]

If 0 , the preceding case is found

h sin [4.73]

In non-reduced coordinates the impulse response is written [BRO 62]:

0

2
t 2 2

0 0 02

1 2
u t e 2 cos 1 t sin 1 t

1
[4.74]

If 1, 0

2
t 2 2

0 0 02

1 2
h(t) e 2 cos 1 t sin 1 t

1
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If 1,

Q p
p

p p p

1 2

1

2

1

1

12 2 [4.75]

q e e e2 2 [4.76]

0 t
0 0u t 2 t e [4.77]

4.2.2.2.

The response h presents a peak when
dh

d
0 , i.e. for m such that

m
2

2

2

m
2 1sin

1

21
1cos2e m

01cos211sin12e m
22

m
22m
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i.e., after simplification, if

2

22
2

m
43

411
1tan [4.78]

If 23 4 0 (i.e.
3

2
),

2 2

m 22

11 1 4arc tan
3 41

[4.79]

and if 043 2 , i.e. 3
2

,

2

22

2m
43

411
tanarc

1

1
[4.80]

this yields

m
2

2

2

m
2

mm 1sin
1

21
1cos2ehh m [4.81]

i.e.

mehm [4.82]
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If 1,

dq

d
e e e2 0 [4.83]

Since e 0 , we obtain m 3 and 3
mh e 0.049788...

If 0 ,

h sin [4.84]

dh

d
cos 0 if m k

1

2
. If k 0, m

2
and hm 1.

NOTES.–

1.

,

[4.85]
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2.

[4.86]

3.

[4.87]

operational admittance the generalized

impedance

4.

[4.88]

The preceding results can be used to calculate the response of the linear one-
degree-of-freedom system (k, m) to an arbitrary excitation t . This response can
be considered in two ways [BRO 53]:

– either as the sum of the responses of the system to a succession of impulses of
very short duration (the envelope of these impulses corresponding to the excitation)
(Figure 4.22);

– or as the sum of the responses of the system to a series of step functions
(Figure 4.23).

The application of the superposition principle assumes that the system is linear,
i.e. described by linear differential equations [KAR 40], [MUS 68].
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Let us initially regard the excitation t as a succession of very short duration
impulses and let be the impulse amplitude at time . By hypothesis,

0 for 0.

Set h t as the response of the system at time t, resulting from the impulse at
the time pertaining to the time interval (0, t) (section 4.2.1). The response z(t) of
the system to all the impulses occurring between 0 and t is:

t

0
u t h t [4.89]

If the excitation is a continuous function, the intervals can tend towards zero;
it then becomes (Duhamel’s formula):
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u t h t d
t

0
[4.90]

The calculation of this integral requires knowledge of the excitation function
t and of the response h t to the unit impulse at time .

Integral [4.90] is none other than a convolution integral [LAL 75]; this can then
be written as:

t h t h t d
t

0
[4.91]

According to properties of the convolution [LAL 75]:

t h t t h d
t

0
[4.92]

NOTE.–

Consider the excitation as a sum of step functions separated by equal time
intervals (Figure 4.25).



172 Sinusoidal Vibration

The amplitude of each step function is , i.e. . Set A t as

the step response at time t, resulting from the application of a unit step function at
time (with 0 t ).

Set 0 as the value of the excitation at time 0 and A t as the response of
the system at time t corresponding to the application of the unit step at the instant

0.

The response of the system to a single unit step function is equal to

A t

The response of the linear system to all the step functions applied between the
times 0 and t and separated by is thus:

t

0
u t 0 . A t A t [4.93]
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If the excitation function is continuous, the response tends, when tends
towards zero, towards the limit

u t A t A t d
t

0
0

. [4.94]

where

d

d

This is the or In the majority of practical
cases, and according to our assumptions, 0 0 and

u t A t d
t

0
0

[4.95]

NOTES.–

1.

2.

u t A t A t d
t

0
0

. [4.96]

If u is a continuous and derivable function in (0, t), integration by parts gives

A t d A t
dA t

d
d

t t t

0 0 0
[4.97]

yielding, if 0 0 ,

u t A t t A A t A t d
t

0 0 0
0 [4.98]
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and, since A 0 0 , by Duhamel’s formula:

t

0
u t A t d [4.99]

Functions h t and A t were calculated directly in the preceding sections.
Their expression could be obtained by starting from the general equation of
movement in its reduced form. The next step will be to find, for example, h t . The
unit impulse can be defined, in generalized form, by the integral:

lim
0 0

1d [4.100]

being a variable of integration ( ). This relation defines an excitation where
the duration is infinitely small and whose integral in the time domain is equal to 1.
Since it corresponds to an excitation of duration tending towards zero, it can be
regarded as an initial condition to the solution of the equation of motion

q q [4.101]

(while assuming 0 ), i.e.

q C C1 2cos sin [4.102]

The initial value of the response q is equal to C1 and, for a system initially at
rest (C1 0), the initial velocity is C2 . The amplitude of the response being zero for

0 , the initial velocity change is obtained by setting q 0 in the equation of

movement [4.101], while integrating q
dq

d
over time and taking the limit when

tends towards zero [SUT 68]:

0 00 0

dqq 0 lim d lim d
d

[4.103]

yielding

C2 1
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This then gives the expression of the response to the generalized unit impulse of
an undamped simple system:

q sin [4.104]

– For zero damping, the indicial admittance and the impulse response to the
generalized excitation are written, respectively:

A t t1 0cos [4.105]

and

h t t0 0sin [4.106]

This yields

u t h t d
t

0
[4.107]

u t t d
t

0 00
sin [4.108]

for arbitrary damping,

A t e t e tt t1 1
1

10 0
0

2
2 0

2cos sin

[4.109]
and

h t e tt0
2 0

2

1
10 sin [4.110]

yielding

u t e t dtt0
2 0

2
01

10 sin [4.111]
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The response of the simple system of natural pulsation 0 can therefore be
calculated after a decline of the excitation t in a series of impulses of duration

. For a signal of given form, the displacement u t is a function of t, 0 and .

It was shown in [4.90] that the behavior of a linear system can be characterized
by its weight function (response of the system to a unit impulse function)

q h d
0

where, if the response is relative,

2
2

e
h sin 1 1

1

h 1

[4.112]
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and, if it is absolute:

1fore2h

1for1sin
1

21
1cos2eh 2

2

2
2

[4.113]

The function h( ) can be expressed versus time. We have, for example, for the
relative response:

h t e tt0
2

2
0

1
10 sin [4.114]

The Fourier transform of h(t) is the transfer function H of the system
[BEN 63]:

H h t e dti t
0

[4.115]

Let us set h
0

. The variable h is defined as the In reduced

coordinates:

H h h e di h
0

[4.116]

NOTE.–

The function H h 1 is complex and can be put in the form [BEN 63]

H h H h e i h [4.117]

1 The dimensionless term “h” is used throughout this and following chapters. This is
equivalent to the frequency ratios f / f 0 or / 0 .
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Sometimes the modulus H h is called the [KIM 24] or or
when h is the relative response function; or

when h is the absolute response function and h is the associated phase (
)

Taking into account the characteristics of real physical systems, H h satisfies
the following properties:

1. H h H h [4.118]

where H is the complex conjugate of H

2. H h H h [4.119]

3. h h [4.120]

4. If two mechanical systems having transfer functions H h1 and H h2 are
put in series and if there is no coupling between the two systems thus associated, the
transfer function of the unit is equal to [BEN 63]:

H h H h H h1 2 [4.121]

i.e.

H h H h H h

h h h

1 2

1 2

.
[4.122]

This can be found in references [LAL 75], [LAL 82], [LAL 95a] and examples
of the use of this transfer function for the calculation of the response of a structure at
a given point when it is subjected to a sinusoidal, random or shock excitation are
given in the following chapters.

In a more general way, the transfer function can be defined as the ratio of the
response of a structure (with several degrees of freedom) to the excitation, according
to the frequency. The stated properties of H h remain valid with this definition.
Function H h depends only on the structural characteristics.
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By definition,

H h
e

e di h

1
1

2
2

0
sin [4.123]

Knowing that

e b x dx
e

a b
a b x b b xa x

a x

sin sin cos2 2 [4.124]

it becomes

H h
e

i h

i h1

1 12 2 2

i h sin cos1 1 12 2 2

0
[4.125]

H h
h i h

1

1 22
[4.126]

H h
h h

1

1 42 2 2 2
[4.127]

2
2 h

tan
1 h

[4.128]

If 0 1h :

2h1

h2
tanarc [4.129]
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If 1h

2
[4.130]

If h 1

2
2 harc tan

1 h
[4.131]

In this case,

de1sin
1

21
1cos2e)h(H hi2

2

2
2

0
[4.132]

H h e d e di h i h2 1
1 2

1
12

2

2
2

00
cos sin

[4.133]

H h
e

i h
i h d

i h

2
1

1 1 12 2
2 2 2cos sin

1 2

1 1
1 1 1

2

2 2 2
2 2 2

0

e

i h
i h

i h

sin cos

[4.134]

2 2

2 2 2

1 2 12 i h
H h

1 h 2 i h 1 1 h 2 i h
[4.135]
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H h
i h

h i h

h h i h

h h

1 2

1 2

1 4 2

1 4
2

2 2 2 3

2 2 2 2
[4.136]

H h
h

h h

1 4

1 4

2 2

2 2 2 2
[4.137]

tan
2

1 4

3

2 2 2

h

h h [4.138]

222

3

h4h1

h2
tanarc [4.139]

if 0h4h1 222 , i.e. if 2
2

1
h

1 4
. For h2

2

1

1 4
,

2
[4.140]

and for h2
2

1

1 4

222

3

h4h1

h2
tanarc [4.141]

If
1

2
, 3tan

3htanarc [4.142]

The complex transfer function can also be studied through its real and imaginary
parts (Nyquist diagram):

2
1 i 2 h

H f Re H f i Im H f
1 h i 2 h

[4.143]
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Re H f
h h

h h

1 2

1 2

2 2

2 2 2
[4.144]

Im H f
h

h h

2

1 2

3

2 2 2
[4.145]

4.4.4.1.

According to the choice of parameters for excitation and response, the transfer
function can be defined in different ways. In order to avoid any confusion, the two
letters are placed as subscripts after the letter H; the first letter specifies the nature of
the input and the second that of the response. The letter H will be used without
subscript only in the case of reduced coordinates. We will use the same rule for the

impedance
1

H
Z.

4.4.4.2.

2 22

1
H H

1 h 2 h
[4.146]
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Function H is equal to function H
u

u, . To distinguish it from the transfer

function giving the absolute responses we will denote by HR the transfer functions
bringing into play the relative displacement and its derivatives.

2
0

x t
t [4.147]

2
0

u z
x

[4.148]

x, z , u 2
0

1H H [4.149]

u z
F / k

[4.150]

H
H

k
F z

u
,

,
[4.151]

H
u u

u, [4.152]

It is assumed here that the excitation, and consequently the response, are
sinusoidal and of frequency , or that the excitation is resoluble into a Fourier
series, with each component being a sinusoid. This yields

H H Hu u, , [4.153]

Thus, if t
x t

0
2 ,
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2
0

u z H
x /

[4.154]

x, z 2
0

H H [4.155]

4.4.4.3.

In the same way, starting from [4.137],

2 2

2 22

1 4 h
H H

1 h 2 h

We will note HA the expressions of the usual transfer functions of this nature.

4.4.4.4.

Table 4.1 states the values of HA and HR for each parameter input and each
parameter response.

k z

F

k z

F

k z

F2 / / /
F

F
T

0
2 z

x
0
2 z

x
0
2

2

z

x

2 y

x

y

x

y

x
/

0
2 z

x
0
2

2

z

x
0
2

3

z

x

y

x

y

x

y

x
/

0
2

2

z

x
0
2

3

z

x
0
2

4

z

x

y

x

y

x

y

x2
/

HR HA
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These results may also be presented as in Table 4.2.

Assume that the excitation and the response are, respectively, velocities x
and z. Table 4.1 indicates that the transfer function can be obtained from the
relation

H
z

x
R

0
2

2 [4.156]

This yields

z

x h h

2

0
2 2 2 2 2

1

1 4

[4.157]

Table 4.2 gives this relation more directly. To continue to use reduced
parameters, and in particular reduced transfer functions (which is not the case
for the transfer functions in Table 4.2), these functions can be defined as
follows.

For a given excitation, we obtain the acceleration and and
transfer function while multiplying respectively by h and h2 the
transfer function (relative or absolute response).

This is used to draw the transfer function in a four-coordinate representation
from which can be read (starting from only one curve plotted against the reduced
frequency h) the transfer function for the displacement, velocity and acceleration
(section 6.7).

NOTE.–

[4.158]
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The transfer function of a mechanical system can be defined:

– in steady state sinusoidal mode, by calculation of the amplitude ratio of the
response to the amplitude of the excitation for several values of the frequency f of
the excitation [TAY 77];

– in a slowly swept sine, the sweep rate being selected as slow enough that the
transient aspect can be neglected when crossing the resonances. The frequency can
be varied in one of two ways: either by increments or in a continuous way. The time
spent at each frequency must be sufficient so that the response of the system can
reach its permanent state (i.e. to reach its highest value);

– in a quickly swept sine (method developed by C.W. Skingle [SKI 66]);

– under random vibrations (the ratio of the power spectral density functions of
the response and excitation, or the ratio of the cross-spectral density Gxy and power
spectral density of the excitation Gx ) (see Volume 3);

– under shock (ratio of the Fourier transforms of the response and excitation)
(see Volume 2). In this last case, a hammer equipped with a sensor measuring the
input force and a sensor measuring acceleration response or, as with the preceding
methods, an electrodynamic shaker can be used.

Most of the authors agree that the fast swept sine is one of the best methods of
measurement of the transfer function of a system. Shock excitation can give good
results provided that the amplitude of the Fourier transform of the shock used has a
level far enough from zero in all the useful frequency bands. The random vibrations
require longer tests [SMA 85], [TAY 75].



Chapter 5

Sinusoidal Vibration

A sinusoidal vibration is the simplest and most basic form of periodical
movement. This movement can be represented as an analytical equation in the form:

mt sin t [5.1]

where:

t is the instantaneous value of time (seconds);

m is the amplitude of the movement (maximum value of t );

t is the parameter used to define the movement;

is the pulsation (rad/sec), and is linked to a frequency f by = 2 f.
Frequency f is expressed in Hertz (Hz) or in cycles per second (cps). The
opposite of the frequency f is the period T;
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is the phase (related to the value of  for t 0 ).  is expressed in radians. In 
practice, it is assumed that 0 if possible; 

 

 

Figure 5.1. Sinusoidal vibration 

t  is generally acceleration, but it can be a velocity, a (linear or angular) 
displacement or a force. 

Displacement refers to the variation in distance, or in position of an object from a 
particular point or reference axes. The unit of displacement is the meter (m) and its 
submultiples such as the micron (μm) and the millimeter (mm). The amplitude of the 
displacement can indicate the displacement’s range of values, which are between 
zero (for the zero displacement of a resting system) and the maximum displacement 
value (zero – peak displacement). The amplitude of the displacement can also 
indicate the interval that exists between the minimum and maximum values (peak to 
peak displacement), meaning that the interval includes all possible displacement 
values. 

Velocity refers to the variation in displacement over time (it is the first derivative 
of displacement). Velocity is expressed in meters per second (m/s) and its 
submultiples (cm/s and mm/s). As is the case for displacement, it is possible to 
consider the following values of velocity: zero – peak and peak to peak. 

Acceleration refers to the variation in velocity over time. It is equal to the first 
derivative of velocity or to the second derivative of displacement. Acceleration is 
expressed in m/s2 or more usually as the value g, where g is the acceleration due to 
gravity (1 g = 9.81 m/s2). 

These three parameters are derived from each other by integration or by 
differentiation:  
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cos cos sin

sin sin sin

t
d

dt
t t t

t
d

dt
t t t

m m m

m m m

2
2

2
2

 [5.2] 

From these expressions, it can be observed that acceleration, velocity and 
displacement are all sinusoidal, of period T, and that velocity and displacement have 

a difference of phase angle of 
2

, like velocity and acceleration. 

 

Figure 5.2. Difference of phase between sinusoidal displacement,  
velocity and acceleration 

Let m  and m  be the maximum values of velocity and acceleration 
respectively. It can be noticed that whenever the value of displacement has reached 
its maximum value, the velocity is zero. The acceleration reaches its maximum level 
when the velocity is zero. The acceleration varies as the square of the frequency. If 
the acceleration is constant, then the displacement varies as the inverse of the square 
of the frequency. The displacement thus rapidly decreases as frequency increases. 
Inversely, when frequency decreases, the displacement rapidly increases. 

5.1.2. Mean value 

The mean value of the quantity t , which is defined over one period T by 

1
0T

t dt
T

 [5.3] 
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is zero (over one period, there is symmetry of all the points with respect to the time 
axis). The surface under the positive part (between the curve and the time axis) is 
equal to the surface under the negative part. The average value of the signal on a 
half-period is more significant: 

2
0

2

T
t dt

T
 [5.4] 

2T

0m dttsin
T
2

 

(yielding, since T 2 ) 

m
m 637.0

2
  [5.5] 

5.1.3. Mean square value – rms value 

The mean square value is defined as 

2 2
0

1

T
t dt

T
  [5.6] 

2 2 2
0

1

T
t dtm

T
sin  

2
2

2
m  [5.7] 

and the root mean square value (rms value) is 

m
m2

rms 707.0
2

  [5.8] 
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Figure 5.3. Characteristics of a single sinusoid 

Thus 

22
rms  [5.9] 

This can then be written in the more general form [BRO 84]: 

m
c

frms F
1

F  [5.10] 

The Ff  and Fc factors are, respectively, termed the form factor and peak factor. 
These parameters give, in real cases where the signal is not pure, some indications of 
its form and its resemblance to a sinusoid. For a pure sinusoid: 

11.1
22

Ff  [5.11] 

and 

414.12Fc  [5.12] 
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Figure 5.4. Spectrum of a sinusoid (line spectrum) 

Such a signal is also termed simple harmonic. Its spectrum comprises only one 
line at a particular frequency. 

The spectrum of a signal made up of several sinusoids is known as discrete 
(spectrum of lines) [BEN 71]. 

NOTE.– The mean square value is, generally, a total measurement of the static and 
dynamic components of the vibratory signal. The continuous component can be 
separated by calculating the mean value [BEN 63], [PEN 65]: 

T

0

1
t dt

T
 

This is zero for a perfect sinusoid, the time axis being centered, while the 
dynamic part is characterized by calculating the centered mean square value 
(variance). 

T 22
0

1
s t dt

T
 [5.13] 

We then have 

22 2s  [5.14] 

The variance is equal to the mean square value if 0 . 
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5.1.4. Periodic vibrations 

Movements encountered in the real environment are seldom purely sinusoidal. 
Some are simply periodic, the signal being repeated at regular time intervals T1 
(period). 

Its instantaneous amplitude can be written in the form: 

1(t) (t n T )  [5.15] 

where n is an integer positive constant. 

With rare exceptions, a periodic signal can be represented by a Fourier series, i.e. 
by a sum of purely sinusoidal signals: 

0
1 1

1
cos 2 sin 2

2 n n
n

at a n f t b n f t  [5.16] 

where 

1
1

1
f

T
 = fundamental frequency 

1T
n 01

2
a t cos 2 n f t dt

T
 

1T
n 01

2
b t sin 2 n f t dt

T
 

(n 0, 1, 2, 3...). 

All the frequencies f n fn 1 are multiple integers of the fundamental 
frequency f1. 

For the majority of practical applications, it is sufficient to know the amplitude 
and the frequency of the various components, the phase being ignored. The 
representation of such a periodic signal can then be made, as in Figure 5.5, by a 
discrete spectrum giving the amplitude mn  of each component according to its 
frequency. 
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With each component being sinusoidal, the rms value
2
nm

nrms or the mean

value of n t , nmmeann
2

can easily be drawn against f. These various

parameters give information on the excitation severity, but are insufficient to
describe it alone since they do not give any idea of the frequency. t can also be
written [PEN 65]:

m0 mn 1 n
n 1

t sin 2 n f t [5.17]

where:

mn amplitude of the nth component;

n phase of the nth component;
L0 continuous component.

n mn nt n fsin 2 1

m
a

0
0

2

mn n na b2 2 (n = 1, 2, 3...)



Sinusoidal Vibration     197 

n

n

a
b

tanarc
 

The periodic signal t  can thus be regarded as the sum of a constant 
component and an infinite number (or not) of sinusoidal components, called 
harmonics, whose frequencies are multiple integers of f. 

The Fourier series can be entirely characterized by coefficients an  and bn  at 
frequencies n f1 and can be represented by line spectra giving an  and bn  versus the 
frequency. If we do not consider phases n  as is often the case in practice, we can 
also draw a line spectrum giving coefficients mn  versus the frequency. 

The vertical axis can indicate the amplitude of each component or its rms value. 
We have [FOU 64]: 

m0 [5.18] 

t f tmn n n
n

sin 2
1  

1T2 2 2
rms mn 1 n01

1
sin 2 n f t dt

T
 

1T
mp mq 1 p 1 q01

2
sin 2 p f t sin 2 q f t dt

T
 

The second term, the integral over one period of the product of two sinusoidal 
functions, is zero: 

1 1T T2 2 2
rms mn 1 n mn0 01 1

1 1 1 dt
1 cos 2 2 n f t dt

T 2 T 2
 

If the mean value is zero 

1
2T2 2 mn

rms mn01 n 1 n 1

1 dt
T 2 2

 [5.19] 
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Each component has as a mean square value equal to 

n mn
2 21

2
 [5.20] 

If the mean value is not zero 

2
0
2 2

1

1

2
mn

n  [5.21] 

the variance is given by 

s mn
n

2 2 2 2

1

1

2
 [5.22] 

Relations [5.2] giving t  and t  from t  do not directly apply any more (it 
is necessary to derive each term from the sum). The forms of each one of these 
curves are different. 

The mean value and the rms value of t  can always be calculated from the 
general expressions [BRO 84], [KLE 71b]. 

5.1.5. Quasi-periodic signals 

 

Figure 5.6. Spectrum of a quasi-periodic signal 
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A signal made up of the sum of several periodic signals will not in itself be 
periodic if all the possible ratios between the frequencies of the components are 
irrational numbers; the resulting signal can then be written 

t f tmn n n
n

sin 2
1

 [5.23] 

If we also neglect the phases n  here, we can still represent t  graphically by 
a line spectrum. 

5.2. Periodic and sinusoidal vibrations in the real environment 

Perfectly sinusoidal vibrations are seldom encountered in the real environment. 
In certain cases, however, the signal can be treated in the same way as a sinusoid in 
order to facilitate the analyses. Such vibrations are observed, for example, in 
rotating machines, and in badly balanced rotating parts (unbalanced shafts, defects 
in coaxiality in reducers (shafts speed changers) with the driving shafts, electric 
motor, gears) [RUB 64]. 

The more frequent case of periodic vibrations decomposable in Fourier series is 
reduced to a sinusoidal vibrations problem, by studying the effect of each harmonic 
component and by applying the superposition theorem (if the necessary 
assumptions, in particular that of linearity, are respected). They can be observed on 
machines generating periodic impacts (presses), in internal combustion engines with 
several cylinders and so on [BEN 71], [BRO 84], [KLE 71b], [TUS 72]. 

Quasi-periodic vibrations can be studied in the same manner, component by 
component, insofar as each component can be characterized. They are measured, for 
example, in plane structures propelled by several badly synchronized engines 
[BEN 71]. 

5.3. Sinusoidal vibration tests 

The sinusoidal vibration tests carried out using electrodynamic shakers or 
hydraulic vibration machines can have several aims: 

– the simulation of an environment of the same nature; 

– the search for resonance frequencies (identification of the dynamic behavior of 
a structure). This research can be carried out by measuring the response of the 
structure at various points when it is subjected to random excitation, shocks or swept 
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frequency sinusoidal vibrations. In this last case, the frequency of the sinusoid varies 
over time according to a law which is in general exponential, although sometimes 
linear. When the swept sine test is controlled by an analog control system, the 
frequency varies in a continuous way with time. When numerical control systems 
are used, the frequency remains constant at a certain time with each selected value, 
and varies between two successive values by increments that may or may not be 
constant depending on the type of sweeping selected; 

 

Example 5.1. 

The amplitude is assumed to be xm 10  cm at a frequency of 0.5 Hz. 
 

Maximum velocity: 

314.0xf2x mm  m/s 
 

Maximum acceleration: 

987.0xf2x m
2

m  m/s2 
 

At 3 Hz, 10xm  cm 
 

Velocity: 

885.1xm  m/s 

 

Figure 5.7. Acceleration, velocity and displacement versus frequency 
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Acceleration: 

53.35xm  m/s2 

At 10 Hz, if 5xm  m/s2, the velocity is equal to 0796.0
f2

x
x m

m  m/s 

and the displacement is 3
2

m
m 1027.1

f2

x
x  m. 

– fatigue tests either on test-bars or directly on structures, the frequency of the 
sinusoid often being chosen equal to the resonance frequency of the structure. In this 
last case, the test is often intended to simulate the fatigue effects of a more complex 
real environment, generally random and making the assumption that induced fatigue 
is at a maximum around resonance [GAM 92]. The problems to be solved are then 
the following [CUR 71]: 

- the determination of an equivalence between random and sinusoidal 
vibration. There are rules to choose the severity and the duration of an equivalent 
sine test [GAM 92], 

- it is necessary to know the resonance frequencies of the material (determined 
by a preliminary test), 

- for these frequencies, it is necessary to choose the number of test frequencies, 
in general lower than the number of resonances (in order for a sufficient fraction of 
the total testing time to remain at each frequency), and then to define the severity, 
and the duration of each sinusoid at each resonance frequency selected. The choice 
of the frequencies is very important. As far as possible, those for which rupture by 
fatigue is most probable are chosen, i.e. those for which the Q factor is higher than a 
given value (2 generally). This choice can be questioned since, being based on 
previously measured transfer functions, it is a function of the position of the sensors 
and can thus lead to errors, 

- the frequent control of the resonance frequency, which varies appreciably at 
the end of the material’s lifetime. 

For the sine tests, the specifications indicate the frequency of the sinusoid, its 
duration of application and its amplitude. 

The amplitude of the excitation is generally defined by a zero-to-peak 
acceleration (sometimes peak-to-peak); for very low frequencies (less than a few 
Hertz), it is often preferable to describe the excitation by a displacement because the 
acceleration is, in general, very weak. With intermediate frequencies, velocity is 
sometimes used. 
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Chapter 6

Response of a Linear One-Degree-of-Freedom
Mechanical System to a
Sinusoidal Excitation

In Chapter 3, simple harmonic movements, both damped and undamped, were
considered, where the mechanical system, displaced from its equilibrium position
and released at the initial moment, was simply subjected to a restoring force and,
possibly, to a damping force.

In this chapter, the movement of a system subjected to steady state excitation,
whose amplitude varies sinusoidally with time and with its restoring force in the
same direction will be studied. The two possibilities of an excitation defined by a
force applied to the mass of the system, or by a movement of the support of the
system, this movement itself being defined by a displacement, a velocity or an
acceleration varying with time, will also be examined.

The two types of excitation focused on will be:

– the case close to reality where there are damping forces;

– the ideal case where damping is zero.
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The differential equation of movement was established in Chapter 3. The
Laplace transform is written, for the relative response:

Q p
p

p p

p q q q

p p2
0 0 0

22 1

2

2 1
[6.1]

q0 and q0 being initial conditions. To simplify the calculations, and by taking
account of the remarks of this chapter, it is supposed that q q0 0 0. If this were
not the case, it would be enough to add to the final expression of q the term C
previously calculated.

The transform of a sinusoid

sin h [6.2]

is given by

2 2
hp

p h
[6.3]

where h
0

( being the pulsation of the sinusoid and 0 the natural pulsation of

the undamped one-degree-of-freedom mechanical system), yielding
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Q p
h

p h p p2 2 2 2 1
[6.4]

0 1

Q p
h

h h

p h

p h

p h

p p1 4

2 1 2 4 1

2 12 2 2 2

2

2 2

2 2

2 [6.5]

2222

2
2

22
2

2222

2

h4h1

1sin
1

1h2
1cos2

eh
h4h1

hcosh2hsinh1
q

[6.6]

For non-zero initial conditions, this must be added to q

C e q
q q

0
2 0 0

2
21

1
1cos sin [6.7]

1

For zero initial conditions,

Q p
h

p h p2 2 21
[6.8]

q L
h

h

p h

p h

p h

p
1

2 2

2

2 2

2

2
1

2 1 2 3

1
[6.9]

2
2

22
h2ehsin

h
1h

hcos2
h1

h
q [6.10]
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For non-zero initial conditions, we have to add to q :

C q q q e0 0 0 [6.11]

1

Q p
h

h h

p h

p h

p h

p p1 4

2 1 2 4 1

2 12 2 2 2

2

2 2

2 2

2 [6.12]

The denominator can be written 1p2p2 , for 1,

p p p p2 2 22 1 1 1 [6.13]

yielding

hsin
h

1h
hcos2

h4h1

h
q

2

2222

12

e1e1
2

2

1212
22

12

ee
1h4

2

11
22

22

2 2
2 2

2 2

2 22 2 2 2 2 2

h 2 1
2 cosh 1 sinh 1

1 h sin h 2 h cos h 1
q h e

1 h 4 h 1 h 4 h

[6.14]
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with, for non-zero initial conditions,

2 2 2
0 0 02

eC q q sinh 1 q 1 cosh 1
1

[6.15]

10

Zero initial conditions

Q p
h p

p h p p

1 2

2 12 2 2 [6.16]

Q p
h

h h

h p h

p p

h p h h

p h1 4

2 1

2 1

2 4 1
2 2 2 2

2 2

2

2 2 2 2

2 2
[6.17]

2222

222
2

222

2222

3222

h4h1

1cosh21sin
1

h2h1

eh

h4h1

hcosh2hsinh4h1
q

[6.18]

If the initial conditions are not zero, it must be added to q

2
2

0002
0 1sin

1

2qq
1cosqeC [6.19]

1

Q p
h p

p h p

1 2

12 2 2 [6.20]
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Q p
h

h

h

p

h

p

h p

p h

h

p h1

2

1

1

1

2 3 1
2 2

2 2

2

2

2 2

2

2 2 [6.21]

hcosh2hsin1h3eh1h2h
h1

1
q 3222

22

[6.22]
Non-zero initial conditions

C q q q e0 0 0 02 [6.23]

1

Zero initial conditions

Q p
h p

p h p p

1 2

2 12 2 2 [6.24]

Q p
h

h h

h p h

p p

h p h h

p h1 4

2 1

2 1

2 4 1
2 2 2 2

2 2

2

2 2 2 2

2 2
[6.25]

i.e.

2222

3222

222
2

222

2222

h4h1

hcosh2hsinh1h4

1coshh21sinh
1

h21h

h4h1

eh
q

[6.26]

Non-zero initial conditions

1coshq11sinhq2q
1

e
C 2

0
22

0002

[6.27]
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This must be added to q .

The principal relations obtained for zero initial conditions are brought together
below.

10

2222

2

h4h1

hcosh2hsinh1
q

2222

2
2

22
2

h4h1

1sin
1

12h
1cos2

eh

1

eh2hcos2hsin
h
h1

h1

h
q 2

2

22

1

2222

2

h4h1

hcosh2hsinh1
q

2222

2
2

22
2

h4h1

1sinh
1

12h
1cosh2

eh
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0 1

2222

222
2

222

2222

3222

h4h1

1cosh21sin
1

h2h1

eh

h4h1

hcosh2hsinh4h1
q

1

hcosh2hsin1h3eh1h2h
h1

1
q 3222

22

1

2222

2

h4h1

hcosh2hsinh1
q

2222

2
2

22
2

h4h1

1sinh
1

12h
1cosh2

eh

Whatever the value of , the response q is made up of three terms:

– the first, C , related to initially non-zero conditions, which disappears when

increases, because of the presence of the term e ;

– the second, which corresponds to the transient movement at the reduced

frequency 21 resulting from the sinusoid application at time 0 . This

oscillation attenuates and disappears after a while from because of the factor e .
In the case of the relative response, for example, for 10 , this term is equal to
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h e

h

h h

2 1
2 1

1
1

1 4

2
2 2

2
2

2 2 2 2

cos sin

– the third term corresponds to an oscillation of reduced pulsation h, which is
that of the sinusoid applied to the system. The vibration of the system the
frequency of the response being imposed on the system by the excitation. The
sinusoid applied theoretically having one unlimited duration, it is said that the
response, described by this third term, is .

y

xm

z

h xm
2

y

h xm0

z

h xm
2

0

y

h xm
2

0
2

z

h xm
4

0
2

h y

xm

0 0 z

h xm

y

xm

z

h xm
2

y

h xm0

z

h xm
3

0

h y

xm

2
0
2

0
2 z

xm

h y

xm

0 0 z

h xm

y

xm

z

h xm
2

k z

Fm

k m z

h Fm

m z

h Fm
2

F

F
T

m

The steady state response for 0 1 will be considered in detail in the
following sections. The reduced parameter q is used to calculate the response of
the mechanical system. This is particularly interesting because of the possibility of
deducing expressions for relative or absolute response q easily, irrespective of the
way the excitation (force, acceleration, velocity or displacement of the support) is
defined, as in Table 6.1.
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The response to a periodic excitation can be calculated by development of a
Fourier series for the excitation [HAB 68]:

0
n n

n 1

at a cos n t b sin n t
2

[6.28]

a
T

t dt
T

0 0

2
[6.29]

a
T

t n t dtn
T2
0

cos [6.30]

b
T

t n t dtn
T2
0

sin [6.31]

The response of a one-degree-of-freedom system obeys the differential equation

u t u t u t t2 0 0
2

0
2 [6.32]

cos sinu t u t u t
a

a n t b n tn n
n

2
2

0 0
2

0
2 0

1

[6.33]

This equation being linear, the solutions of the equation calculated successively
for each term in sine and cosine can be superimposed. This yields

u t
a a n t b n t

n n

n n n n

n

0

2
2

0
2

2

0

2
12

1

cos sin
[6.34]
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with

2
0

2
2

0
n

n1

n
tanarc [6.35]

Consider a vehicle rolling at velocity v on a sinusoidal road as shown in
Figure 6.3.

x X
s

L
cos

2
[6.36]

s = distance between a maximum of the sinusoid and the vehicle

L = sinusoid period

It is assumed that [VOL 65]:

– the wheels are small, so that the hub of each wheel is at a constant distance
from the road;

– the tires have negligible deformation.

We have, with the notation already used in the preceding sections:

m y c y x k y x 0 [6.37]

m y c y k y k x c x [6.38]
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y y y x x2 20 0
2

0
2

0 [6.39]

Distance s is related to time by s v t yielding

x X tcos [6.40]

with

2 v

L
[6.41]

cos siny y y X t t2 20 0
2

0
2

0 [6.42]

cosy y y X h t2 1 20 0
2

0
2 2 [6.43]

where

tan 2 h [6.44]

h
0

y x tcos [6.45]

y x
h

h h

1 2

1 2

2

2 2 2
[6.46]

tan
2

1 2

h

h
[6.47]

Displacement y must be the smallest possible to make the suspension effective. It
is necessary, therefore, that h or the velocity is large. If tends towards zero, y tends
towards infinity when h tends towards 1, with critical velocity

v
L

cr
0

2
[6.48]
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When is non-zero, the value of y for h 1 is

y x 1
1

2 2 [6.49]

0 1

The response

q h e

h

h h

2 1
2 1

1
1

1 4

2
2 2

2
2

2 2 2 2

cos sin

[6.50]

can also be written

q e A h sin 1 2 [6.51]

where

A h
h

h h1 1 42 2 2 2 2
[6.52]

and

tan
2 1

1 2

2

2 2h
[6.53]
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A occurs The total response q is zero for 0
since the term representing the transient response is then equal to

q
h

h h
T 0

2

1 42 2 2 2
[6.54]

This response qT never takes place alone. It is superimposed on the steady state
response q P studied in the following section.

Amplitude A h is maximum when
dA h

dh
0, i.e. when

4

3 22 22 2 2

dA h 1 1 h 0
dh 1 1 h 4 h

[6.55]

dA h

dh
0 when h 1 (h 0).

In this case,

A hm
1

2 1 2
[6.56]

The movement has a logarithmic decrement equal to [KIM 29]:

2

1 2
[6.57]

and for the reduced pseudo-period
2

1 2
.

The transient response qT has an amplitude equal to
1

N
th of the first peak after

cycle number n such that
2

1

1
2 n

Nln .
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I.e.

n N
1

2

2

ln [6.58]

For small, it becomes

ln N Qn ln N
2

i.e.

Q ln Nn [6.59]

If N 23, we have n Q . When a system is subjected to a sine wave
excitation, the amplitude of the response is established gradually during the
transitional stage up to a level proportional to that of the excitation and which
corresponds to the steady state response. In section 6.5.2.1 it is seen that, if

h 1 2 , the response tends in steady state mode towards

m 2

1H
2 1

The number of cycles necessary to reach this steady state response is
independent of h. For small, this number is roughly proportional to the Q factor of
the system.
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(a) (b)

For the particular case where 1

q
h

h
h eT

1
2

2 2
2 [6.60]
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For 0 1

q

h
h h

h h
h e

2 1
1 2

1
1

1 4

2 2
2 2 2

2
2

2 2 2 2

cos sin

[6.61]

or

q e B h sin 1 2 [6.62]

with

B h
h

h h
A h

1 1 42 2 2 2 2
[6.63]

and

tan
2 1

1 2

2 2

2 2 2

h

h h
[6.64]

If 1

q
h

h
h h eT

1
2 1

2 2
2 2 [6.65]

For 0 1, the steady state response is written

2

22 2 2

1 h sin h 2 h cos h
q

1 h 4 h
[6.66]
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This expression can also be put in the form

q H h sin h [6.67]

In the amplitude of this response HRD it should also be noted that the first index
(R) recalls that the response is relative and the second (D) is about a displacement.
Therefore,

H h
h h

H hRD
1

1 42 2 2 2
[6.68]

The phase is such that

2
2 htan

1 h
[6.69]

For 0 1, the steady state response is expressed

2222

3222

h4h1

hcosh2hsinh4h1
q [6.70]

As previously, this response can be written

2 2

AD22 2 2

1 4 h sin h
q H sin h

1 h 4 h
[6.71]

where

2 2

AD 22 2 2

1 4 hH
1 h 4 h

[6.72]

and
3

2 2 2
2 htan

1 h 4 h
[6.73]
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HAD is termed the or or .

Starting with the study of the responses 0 z

xm

, 0 z

xm

and
k m z

Fm

, some

important definitions are introduced. These responses are equal to:

sin sinq
h

h h
h H hRV

1 42 2 2 2
[6.74]

where

H
h

h h
RV

1 42 2 2 2
[6.75]

The case where the input is an acceleration xm is more interesting, and the
reduced response q gives the relative displacement z t yielding

cosq
z

x
H h h

m
RD

0 [6.76]

sinq H h hRV [6.77]

with
H h HRV RD [6.78]

and

2
[6.79]
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6.4.2.1.

The amplitude HRV of the velocity passes through a maximum when the

derivative
dH

dh
RV is zero.

dH

dh

h

h h

RV 1

1 4

4

2 2 2 2
3 2 [6.80]

This function is equal to zero when h 1 (h 0). The response is thus at a
maximum (whatever the value of ) for 1. There is then , and

RVmax
1H Q

2
[6.81]

At resonance, the amplitude of the forced vibration q is Q times that of the
excitation (here the physical significance of the Q factor is seen). It should be noted
that this resonance takes place for a frequency equal to the natural frequency of the
undamped system, and not for a frequency equal to that of the free oscillation of the
damped system. It tends towards 1 when h tends towards zero. The curve thus starts
from the origin with a slope equal to 1 (whatever the value of ). For h 0,
HRV 0 .

The slope tends towards zero when h , like HRV. The expression of HRV

does not change when h is replaced by
1

h
; thus, taking a logarithmic scale for the

abscissae, the curves H hRV are symmetric with respect to the line h 1.

For 0 ,

H
h

h
RV

1 2 [6.82]

HRV when h 1.
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Since tan tan
2

1

2

2

cotan
h

h
, HRV can be written in the form

HRV
1

2 1 2tan
[6.83]

Setting y HRV2 and x tan , the curves

xtanarc
x1

1
y

2

valid for all the systems m, k, and c are known as

In the case of an excitation by force, the quantity 2 HRV is equal to

2
2

c

k m

k m z

F

c z

Fm m
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6.4.2.2.

It has been assumed up to now that damping was viscous, with the damping
force being proportional to the relative velocity between the ends of the damping
device and of the form zcFd , where c is the damping constant, acting in a
direction opposed to that of the movement. This damping, which leads to a linear
differential equation of the movement, is itself known as . If the relative
displacement response z t has the form

z z tm sin

the damping force is equal to

tcosFtcoszctF mdmd [6.84]

where

mmd zcF [6.85]

The curve zFd (hysteresis loop) has the equations, in parametric coordinates,

tcosFF
tsinzz

mdd

m

i.e. after elimination of time t:

1
z

z

F

F
2
m

2

m
2
d

2
d [6.86]
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The hysteresis loop is thus presented in the form of an ellipse of half the smaller
axis mmd zcF and half the larger axis zm .

6.4.2.3. Energy dissipated during a cycle

The energy dissipated during a cycle can be written:

T

0 dcycle1 dd dt
dt
dz

FdzFE

T

0
2

d dtzcE

Knowing that tsinztz m , we have

2

0
222

md dttcoszcE

i.e. since
2

t2cos1
tcos2

2
md zcE [6.87]

or [CRE 65]:

mdmd FzE [6.88]
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For a viscously damped system, in which the damping constant c is independent
of the frequency, the relative damping is inversely proportional to the frequency:

0

c c
2 m f2 k m

[6.89]

We can deduce the energy consumed per time unit from this. If T is the period

of the excitation T
2

,

2
m

2
m

22
m

d zc
2
1

zc
2
1

z
T
c

T
E

2 2 2 2
m 0 m

1 c z m z
2

[6.90]

Since (Chapter 4) z
z

h h
m

s

1 42 2 2 2
,

0
2

2

2 2 2 21 4
m

z

h h

s

0
3 2

2

2 2 2 21 4
m z

h

h h
s [6.91]

Energy consumed is at a maximum when the function
h

h h

2

2 2 2 21 4
,

equal to H hRV
2 is at a maximum, i.e. for h 1, yielding

2 2
0 s

m
m z

4
[6.92]
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and

m
RV

h

h h
H h

4

1 4

2 2

2 2 2 2
2 [6.93]

The energy dissipated is thus inversely proportional to . When decreases, the
resonance curve h presents a larger and narrower peak [LAN 60]. However, it
can be shown that the surface under the curve h remains unchanged.

This surface S is described by:

S d m z
h

h h
ds0 0

3 2
2

2 2 2 20 1 4
[6.94]

S m z
h

h h
dhs0

4 2
2

2 2 2 20 1 4
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The integral is equal to
4

(Volume 3), yielding

S m z k zs s0
4 2

0
2 2 [6.95]

The surface S is thus quite independent of . Therefore

0
m

S [6.96]

6.4.2.4.

The are defined by the values of h such that the energy

dissipated per unit time is equal to m

2
yielding

1

2 4 1 4

0
2 2

0
3 2

2

2 2 2 2

m z
m z

h

h h

s
s

1 4 82 2 2 2 2 2h h h
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h

h

2 1

2
1

i.e., since h and are positive,

2
1

2
2

h 1

h 1
[6.97]

A logarithmic scale is sometimes used to represent the transmissibility, and a
unit, the , is introduced, or generally in practice, a subunit, the It is said
that a power P1 is higher by n decibels (dB) than a power P0 if

n
P
P

log10
0

1 [6.98]

If P P1 0 , the system has a gain of n dB. If P P1 0 , the system produces an
attenuation of n dB [GUI 63]. If instead of the powers, forces or velocities are
considered here, the definition of the gain (or attenuation which is merely a negative
gain) remains identical with the condition of replacing the constant 10 by a factor
of 20 e(log P = 2 log V Constant), since the power is proportional to the square of
the rms velocity [LAL 95a].

The curve 2 HRV or HRV is close to a horizontal line for small values of ,
passes through a maximum for h 1, then decreases and tends towards zero when h
becomes large compared to 1. By analogy with a resonant electrical system, the
mechanical system can be characterized by the interval (bandwidth between two

frequencies h1 and h2 selected in such a way that 2 HRV is either equal to
1

2
, or

for h such that

H h
Q

RV
2

[6.99]
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Values h1 and h2 correspond to the abscissae of two points N1 and N2 named
because the power which can be dissipated by the shock absorber

during a simple harmonic movement at a given frequency is proportional to the
square of the reduced amplitude HRV [MEI 67].

6.4.2.5.

If 2
1

2
HRV , 1 22tan , i.e. tan2 1, yielding

1
h
1

hQ
h2
1h2

[6.100]

The quantity Q h
h

1
is the It is zero with resonance and

equivalent to Q h 1 in its vicinity [GUI 63]. The condition tan 1, is

4
(modulo ) which shows that undergoes, when h varies from h1 to h2 , a

variation of
4

to
4

, i.e. of
2

.

1 and 2 are calculated from [6.100]
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Q h
h

Q h
h

2
2

1
1

1
1

1
1

[6.101]

This becomes

h h
h h Q

h h
Q

2 1
1 1

1 2

1
1 2

1
[6.102]

h h
Q

2 1
1

[6.103]

The of the system h h h2 1 can also be written

2 1
0

Q
[6.104]

This is all the narrower when Q is larger.

In the general case of a system having its largest response for a pulsation m ,
the is defined by

m ( mh
h

) [6.105]

where is the previously defined bandwidth. characterizes the function of the
filter of the system, by its ability to allow through a single frequency, by eliminating
near-frequencies (of ). For a resonant system, m 0 and Q.

In electricity, the interval 2 1 characterizes the selectivity of the system.
The resonant system is a simple model of a filter where the selective transmissibility
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can make it possible to choose signals in the useful band 1 2, among other
signals external to this band which are undesirable. The selectivity is improved as
the peak becomes more acute. In mechanics, this property is used for protection
against vibrations (filtering by choosing the frequency of resonance smaller than the
frequency of the vibration).

It can also be shown [LAL 95a], [LAL 95b] that the response of a one-degree-
of-freedom system is primarily produced by the contents of the excitation in this
frequency band.

From these relations, the expressions of h1 and h2 can be deduced:

h1
21 ( 1 if is small) [6.106]

h2
21 ( 1 if is small) [6.107]

The bandwidth h h h2 1 can also be written

h
Q

2
1

[6.108]
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yielding, since h
0

,

Q
f

f
0 0 [6.109]

NOTE.–

The Q factor of mechanical systems does not exceed a few tens of units and
those of electric circuits do not exceed a few hundred.

In [3.138] it was seen that

2

yielding [GUR 59]:

Q
[6.110]
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The bandwidth can thus also be defined as the field of the frequencies
transmitted with an attenuation of dB03.32log10 below the maximum level

(attenuation between the levels Q and
Q

2
) [DEN 56], [THU 71].

Figure 6.16 represents some resonance curves, plotted versus variable h and for
various values of the Q factor with the vertical axis being in dB [GUI 63].

In [6.77] it was seen that

sinq H hRV

where [6.79]

2

yielding

tan
tan

1 1

2

2h

h
[6.111]
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To obtain curves h , it is therefore enough to shift by
2

the already plotted

curves h , while keeping the same. The phase varies from
2

to
2

since

varies from 0 to . It is zero for h 1, i.e. when the frequency of the system is equal
to that of the excitation (whatever value is taken by ).

The velocity of the mass is thus always in phase with the excitation in this case.

When h is lower than 1, the velocity of the mass is in phase advance with respect
to the excitation ( 0, i.e. 0). When h is larger than 1, the velocity of the
mass has a phase lag with respect to excitation. In passing through resonance, the
curve h presents a point of inflection. Around this point there is then a roughly
linear variation of the phase varying with h (in an interval that is larger as becomes
smaller).

In these cases,

RDq H h sin h [6.112]
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The response q is at a maximum when 1hsin , i.e. for

h k4 1
2

.

6.5.2.1.

Given that the excitation is a force applied to the mass, or an acceleration
communicated to the support, the reduced response makes it possible to calculate the
relative displacement z. The ratio HRD between the amplitude of the relative

displacement response and the equivalent static displacement (
F

k
m or

xm

0
2 ) is often

called the

NOTE.–

The function H hRD depends on parameter . This is always a positive
function which passes through a maximum when the denominator passes through a

minimum. The derivative of 1 42 2 2 2h h is canceled when

2
mh 1 2 [6.113]

(h 0 ), provided that 021 2 , i.e.
1

2
. When h tends towards zero,

H hRD tends towards 1 whatever the value of . There is resonance for h hm ,
the function H hRD is maximum and is then equal to

Hm
1

2 1 2
[6.114]
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When h , H hRD 0 . In addition, mH when 0. In this case,
hm 1. Resonance is all the more acute since the relative damping is smaller; the
damping has two effects: it lowers the maximum and makes the peak less acute.

It can be interesting to chart Hm versus h; it can be seen that the calculation of

versus hm from [6.113] gives
1

2

2hm .

This yields:

H
h

m
m

1

1 4
[6.115]

where hm can only be positive. Here interest will focus on the branch of the curve
belonging to the interval 0 1h .

There can be a maximum only for h 1 (i.e. for a frequency of the excitation

lower than that of the resonator 0); the condition
1

2
being assumed to be

realized.

If h 1 is not a condition of resonance, then there is resonance only if at the
same time 0 . Otherwise, resonance takes place when h 1.
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It can be seen that the condition 1 corresponds to the

Like all the curves of H h , the one corresponding to
1

2
, which separates

the domains of the curves with or without a maximum, has a horizontal level in the
vicinity of the vertical axis (h 0).
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1

2
gives optimum damping. It is for this value that Hm varies less versus h

(an interesting property in electro-acoustics).

It can also be seen that when
1

2
, the first three derivatives from Hm are

zero for h 0.

Finally it should be noted that this
1

2
value is lower than that for critical

damping ( 1). It could be thought that the existence of the transient state ( 1)
does not disturb the response, but in practice it has little influence. Setting , the
logarithmic decrement, it was shown that

2

1 2

For
1

2
, thus 2 . This is an enormous damping: the ratio of two

successive maximum displacements is then equal to e e2 560. The transient
state disappears very quickly and is negligible as of the second oscillation.
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6.5.2.2.

By analogy with the definition of the half-power points given for HRV in section
6.4.2.4, we can calculate the width h of the peak of HRD for the ordinate

H
H

RD
RDmax

2
. It has been seen that H

Q
RDmax

1 2
yielding

RD 2 222
2

1 QH
h 2 11 h
Q

[6.116]

and

h
Q Q Q

2
2 21

1

2

1
1

1

4
(Q

1

2
, i.e. 1)

h2 2 21 2 2 1

h2 must be positive, which requires for the first root that 22 2121 .

The other root leads to 2 2 1 12 2 . Let us make h1 and h2 the two roots.

This gives

h h2
2

1
2 2 2 2 21 2 2 1 1 2 2 1

h h2
2

1
2 24 1 [6.117]

If is small, 21h2 , h 1 2 1

h h2
2

1
2 4

2hh 12 and 2hh 12
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If is small with respect to 1, we have, at first approximation,

h 1 2 (h 0 )

h 1 [6.118]

In the particular case where is small, the abscissa of the points for which

H
H

RD
RDmax

2
is approximately equal to the abscissa of the half-power points

(defined from HRV). The bandwidth can be calculated from

h h h2 1 [6.119]

The phase is given by

tan
2

1 2

h

h
[6.120]

It should also be noted that:

– tan is unchanged when h is replaced by
1

h
;

– tan when h 1, therefore
2

: the response is in quadrature

advance with respect to the excitation;

– tan 0 , i.e. 0 when h 0 (in the interval considered);

the derivatives below do not cancel

d

dh

h

h h

2 1

1 4

2

2 2 2 2
[6.121]
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– tan 0, i.e. , when h ( cannot tend towards zero since there
is no maximum. The function which is canceled already when h 0 cannot cancel a
second time), the response and the excitation are in opposite phase;

– for all values of , is equal to
2

when h 1; all the curves thus pass through

the point h 1,
2

;

– for 1, all the curves have a point of inflection in h 1,
2

. The slope at

this point becomes greater as becomes smaller.

– For h 1 2 2 (resonance) and
1

2
2

2
1 22 htan

1 h
[6.122]

221
tanarc [6.123]
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– When h is small, mass m practically has a movement in phase with the
excitation ( 0 ). In this case, q max being closer to 1 as h is smaller, the mass
follows the movement of the support.

Values of angle ranging between 180° and 360° cannot exist because, in this
case, the shock absorber would provide energy to the system instead of dissipating it
[RUB 64].

Since HRD 1 for small values of h, for an excitation by force on the mass,
k z

Fm

1, i.e. z
F

k
m . The response is controlled in a dominating way by the

stiffness of the system. In this domain, where h is small with respect to one, the
calculations for the dimensioning of structure in statics can be carried out by taking
the values of HRD at the frequency of the vibration, in order to take account at the
same time of the static load and of the small dynamic amplification. These
calculations can possibly be supplemented by a fatigue analysis if this phenomenon
is considered to be important [HAL 75].

– For h 1, the maximum value of q is

q Qmax
1

2 1 2
[6.124]



244 Sinusoidal Vibration

and the phase is

2
[6.125]

q
hsin

2

2 1 2
[6.126]

212

hcos
q [6.127]

The amplitude of the response is a function of the damping . It is larger if is

smaller. The movement is out of phase by
2

with respect to the excitation.

If the excitation is a force, at the resonance, HRD
1

2 1 2
, i.e.

z
F

k
m

m

2 1 2
[6.128]

z
F

k

F

c
m

m m

2 0 [6.129]

Here, analysis must be of the dynamic type, the response being potentially
several times the equivalent static excitation.

– For 1h ,

2
sin h

q
h

[6.130]

where :

2h

hsin
q [6.131]
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If the excitation is a force, we have

RD 2
1H

h
[6.132]

i.e.

z
F

k h
m

m
2 [6.133]

z
F

m
m

m
2 [6.134]

where = pulsation of the excitation.

The response is primarily a function of the mass m. It is smaller than the
equivalent static excitation.

According to whether h satisfies one or the other of these three conditions, one of
the three elements stiffness, damping or mass thus has a dominating effect on the
resulting movement of the system [BLA 61], [RUB 64].
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2
sin h

q
1 h

[6.135]

(The positive root for h 1 is chosen in order to preserve at q the same sign for
0 rather than for which is very small in expression [6.66].)

max RD 2
1q H

1 h
[6.136]

The variations of q max versus h are represented in Figure 6.26. It should be
noted that, when h tends towards 1, q max tends towards infinity. It is necessary here
to return to the assumptions made, and to remember that the system is considered
linear, which assumes that the amplitude of the variations of the response q remains
small. This curve q hmax thus does not make sense in the vicinity of the
asymptote.
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The case where 0 is an ideal case: in practice, friction is never negligible in
the vicinity of resonance (apart from resonance, it is sometimes neglected at first
approximation to simplify the calculations).

As h varies, q max changes sign while passing through infinity. To preserve the
character of an always positive amplitude at the reduced amplitude (the temporal
response being symmetrical with respect to the time axis), an abrupt phase shift of
value is introduced into the passage of h 1.

The phase is zero in the interval 0 1h ; it is then equal to for h 1
(the choice of the sign is unimportant). If the value is taken in ),1( , then for
example, for 0 1h :

2max
h1

hsin
q [6.137]

and, for 1h :

2max
h1

hsin
q [6.138]



248 Sinusoidal Vibration

Here

hcos2hsin
h
h1

h1

h
q

2

22
[6.139]

or

q H h hRD sin [6.140]

with

RD 2
1H h

1 h
[6.141]

and

2
2 htan

1 h
[6.142]

NOTE.–

h 1 2 2
1

2 1 2

h 1
1

2

h
1

1 2 2

1

2 1 2
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Here

ADq H sin h [6.143]
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The maximum amplitude of q obtained for 1hsin , occurring for

h k4 1
2

, is equal to

H
h

h h
AD

1 4

1 4

2 2

2 2 2 2
[6.144]

If the excitation is an absolute displacement of the support, the response is the
absolute displacement of mass m. The is defined as the
ratio of the amplitude of these two displacements:

T
y

x
m

m

m

[6.145]

For certain applications, in particular in the case of calculations of vibration
isolators or package cushioning, it is more useful to know the fraction of the force
amplitude applied to m which is transmitted to the support through the system
[BLA 61], [HAB 68]. Then a force transmission coefficient or
Tf is defined by

T
F

F
f

T

m

[6.146]

T T Hf m AD is then obtained according to Table 6.1.

The amplitude H hAD is at a maximum when
dH h

dh
AD 0, i.e. for h such

that

dH

dh

h h h

h h h

AD 2 1 2

1 4 1 4

2 2 4

2 2 2 2 2 2
3 2
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This derivative is zero if h 0 or if

0h2h1 422 [6.147]

i.e. for

h2
2

2

1 1 8

4

or, since h 0 ,

h
1 1 8

2

2

[6.148]
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yielding

HADmax
4

16 8 2 2 1 8

2

4 2 2
[6.149]

When h tends towards zero, amplitude HAD tends towards 1 (whatever the value
of ). When h , HAD 0. From relation [6.147] is drawn

2
2

4

1

2

h

h
[6.150]

yielding h 1.

The locus of the maxima thus has as an equation

H
h

AD
1

1 4
[6.151]

This gives the same law as that obtained for relative displacement.
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With this assumption, H HAD RD . For all values of , all the curves H hAD
pass through 1, for h 0 and for h 2 . Indeed, H hAD 1 if

222222 h4h1h41 , i.e. h h2 2 2 0 (h 0).

For h 2 , all the curves are above 1HAD . Indeed, the condition

222222 h4h1h41 is carried out only if
22h11 , i.e. if h 2 .

In the same way, for h 2 , all the curves are below the straight line 1HAD .

If

H h H h eAD AD
j h [6.152]

tan
2

1 4

3

2 2 2

h

h h
[6.153]
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– tan 0 when 0 ;

– tan if 0 and h 1 (thus
2

);

– tan 0 if h 0, i.e. 0;

– tan behaves like
2

1 4 2

h
when h .

The denominator is zero if 0h4h1 222 , i.e. for h2
2

1

1 4
( 5.0 ) or, since h 0 ,

h
1

1 4 2
[6.154]

In this case, tan and
2

.

All the curves have, for 1, a point of inflection at h 1. The slope at this
point gets larger as gets smaller.

For 5.0 , tan h3 (
2

when h ).
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For h 1,

2
1

tan [6.155]

then becomes smaller as becomes larger.

For h
1 1 8

2

2

,

tan 2
1 8 1

2 1 1 8 1

2

2
[6.156]

The transfer functions can be plotted in a traditional way on linear or logarithmic
axes, but also on a four-coordinate nomographic grid, which makes it possible to
deduce the transfer functions of the displacements, the velocities and the
accelerations directly. In this plane diagram, which has four inputs, the frequency is
always carried on the abscissa.

Knowing that H HRV RD and that H HRA RV , from the ordinate, the
following can be read along the vertical axis:



256 Sinusoidal Vibration

– either the velocity (Figure 6.39). Accelerations are then located on an axis of
negative slope (–45°) with respect to the axis of the velocities, while the amplitude
of the displacements are on an axis at 45° with respect to the same vertical axis.
Indeed (Figure 6.40):

log log log logH H fRA RV 2

However, a line at 45° with respect to the vertical axis,

O K O J JK H fRVlog log log2
2

2

2

2

O K H f HRV RA
2

2
2

2

2
log log log log

O K is thus proportional to log HRA ;

– or the amplitude of the displacements. A similar calculation shows that the axis
of the velocities forms an angle of 45° with respect to the horizontal line and that
of the accelerations an angle of 90° with respect to the axis of the velocities.
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The complex transfer functions
z
F

and
F
z

are called (or )

and respectively.



258 Sinusoidal Vibration

In the case of a one-degree-of-freedom system, these functions can be calculated
from

2
1

H( )
k m j c

[6.157]

thus

2

2
00

1
H(f )

f f
k 1 j 2

ff

[6.158]

Figures 6.41 and 6.42 show module variations of
z
F

and
F
z

according to
0

f
f

.

This curves are usually traced in the logarithmic axes. We can see the presence of 3
areas in each of which one of the parameters stiffness, damping or mass is of
predominant importance. We can thus read on the asymptotes, at low frequency, the
stiffness and at high frequency the mass.

In a similar way, and are the transfer functions
z
F

and
F
z

(Figures 6.43 and 6.44). They are calculated from the modulus of
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2
j

H( )
k m j c

[6.159]

0
2

2
00

f
j

f
H(f )

f f
k m 1 j 2

ff

[6.160]

The and transfer functions give variations with respect to

acceleration over force
z
F

and its inverse
F
z

as a function of
0

f
f

(or of f)

(Figures 6.45 and 6.46), from

2

2
H( )

k m j c
[6.161]
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2

2
0

2

2
00

f

f
H(f )

f f
m 1 j 2

ff

[6.162]



Chapter 7

Non-viscous Damping

In real structures, damping, which is not perfectly viscous, is actually a
combination of several forms of damping. The equation of movement is as a

consequence more complex, but the definition of damping ratio remains
c

cc
,

where cc is the critical damping of the mode of vibration considered. The exact
calculation of is impossible for several reasons [LEV 60]: probably insufficient
knowledge of the exact mode of vibration, and of the effective mass of the system,
the stiffnesses, the friction of the connections, the constant c and so on. It is
therefore important to measure these parameters when possible.

In practice, non-linear damping can often be compared to one of the following
categories, which will be considered in the following sections:

– damping force proportional to the power b of the relative velocity z;

– constant damping force (Coulomb or dry damping), which corresponds to the
case where b 0 ;

– damping force proportional to the square of the velocity (b 2 );

– damping force proportional to the square of the relative displacement;

– hysteretic damping, with force proportional to the relative velocity and
inversely proportional to the excitation frequency.
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Such damping produces a force which is opposed to the direction or the velocity
of the movement.

Generally, the differential equation of the movement can be written [DEN 56]:

m
d z

dt
f z z k z

F t

m x t

m
2

2 ,
sin

[7.1]

with, for viscous damping, f z z c z, . Because of the presence of this term, the
movement is no longer harmonic in the general case and the equation of the
movement is no longer linear. Such damping leads to non-linear equations which
make calculations complex in a way seldom justified by the result obtained.

Except in some particular cases, such as Coulomb damping, there is no exact
solution. The solution of the differential equation must be carried out numerically.
The problem can sometimes be solved by using a development of the Fourier series
of the damping force [LEV 60].

Damping is, fortunately, very often rather weak in practice, so the response can
be approached using a sinusoid. This makes it possible to go back to a linear
problem, which is easier to treat analytically, by replacing the term f z z, by a
force of viscous damping equivalent zceq ; by assuming that the movement

response is sinusoidal, the eqc of a system with

viscous damping is calculated which would dissipate the same energy per cycle as
non-linear damping.

The practice therefore consists of determining the nature and the amplitude of
the dissipation of energy of the real damping device, then of replacing the
mathematical models of the damping component by a viscous damping device
having a dissipation of equivalent energy [CRE 65]. This is equivalent to saying that
the hysteresis loop is modified.

In contrast to structures with viscous damping, non-linear structures have non-
elliptic hysteresis loops zFd whose form approaches, for example, those shown in
Figures 7.1 and 7.2 (dotted curve).
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results in the transformation of the real hysteresis loop into an
equivalent (Figure 7.2) [CAU 59], [CRE 65], [KAY 77], [LAZ 68].

Equivalence thus consists of seeking the characteristics of a viscous damping
which include:

– the surface delimited by the cycle zFd (same energy dissipation);

– the amplitude of the displacement zm .

The curve obtained is equivalent only for the selected criteria. For example, the
remanent deformation and the coercive force are not exactly the same. Equivalence
leads to results which are much better when the non-linearity of the system is lower.

This method, developed in 1930 by L. S. Jacobsen [JAC 30], is general in
application and its author was able to show good correlation with the results
calculated in a precise way when such calculations were possible (Coulomb
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damping [DEN 30a]) and with experimental results. This can, in addition, be
extended to the case of systems with several degrees of freedom.

If the response can be written in the form tsinztz m , the energy
dissipated per cycle can be calculated using

d 1 cycle 1 cycle

dzE F dz f z, z dt
dt

[7.2]

2
d m 0

E z f z, z cos t dt [7.3]

2
d m 0

E 4 z f z, z cos t dt [7.4]

Energy dE is equal to that dissipated by an equivalent viscous damping eqc if

[HAB 68]:

22
d eq m m 0

E c z 4 z f z, z cos t dt [7.5]

i.e. if [BYE 67], [DEN 56], [LAZ 68], [THO 65a]:

2 d
eq 20m m

E4c f z, z cos t dt
z z

[7.6]
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The transfer function of a one-degree-of-freedom system 0
2 z

x
m

m

(or in a more

general way
z

F k

zm

m

m

m/
) can be written while replacing eqc by this value in the

relation established, for viscous damping:

2
eq22

m

m

k

c
h1

1z
[7.7]

(since
4 2

0
2

2

2

c

k
) and for the phase

eq
2

c
tan

k 1 h
[7.8]

(h
0

).

In addition, h2h
mk

c
k

c
k

c eq
eq

0
0

eq
eq , yielding

eq eq 0
eq

c c
2 k h 2 k

[7.9]

2
m

d
eq

zkh2

E
[7.10]

2
eq

22m

m

h2h1

1z
[7.11]

If dE is the energy dissipated by the cycle, the amplitude of the equivalent
force applied is [CLO 03]:

d
m

m

EF
z

[7.12]
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References in Table 7.1: [DEN 30b], [GAM 92], [HAB 68], [JAC 30],
[JAC 58], [MOR 63a], [PLU 59], [VAN 57], [VAN 58].

It has been shown [JAC 30], [LAL 96] that if the stress is proportional to the
relative displacement zm ( K zm ), coefficient J of the B.J. Lazan expression

(D J n ) is related to parameter b by

b
b 0J
K

[7.13]

J depends on parameters related to the dynamic behavior of the structure being
considered (K and 0).

If the damping force opposed to the movement is independent of displacement
and velocity, the damping is known as or This damping is
observed during friction between two surfaces (dry friction) applied one against the
other with a normal force N (mechanical assemblies). It is [BAN 77], [BEA 96],
[BYE 67], [NEL 80], [VOL 65]:

– a function of the materials in contact and of their surface quality;

– proportional to the force normal to the interface;

– mainly independent of the relative velocity of slipping between two surfaces;

– larger before the beginning of the relative movement than during the
movement in steady state mode.
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The difference between the coefficients of static and dynamic friction is
generally neglected, and force N is assumed to be constant and independent of the
frequency and of the displacement.

A one-degree-of-freedom system damped by dry friction is represented in
Figure 7.4.

Damping force zsgnNFd

Equation of the
hysteresis loop md zzNF

Energy
dissipated by

damping during a
cycle

Nz4E md

Equivalent
viscous damping

m
eq z

N4
c

Equivalent
damping ratio

m
eq zhk

N2

Amplitude of the
response H

z

h
m

m

1

1
12 0

2
0

4

4

4

N

k

N

F

N

k x
m

m

m

Phase of the
response

tan 0

0
21

References in Table 7.2: [BEA 80], [CRE 61], [CRE 65], [DEN 29],
[DEN 56], [EAR 72], [HAB 68], [JAC 30], [JAC 58], [LEV 60], [MOR 63b],
[PAI 59], [PLU 59], [ROO 82], [RUZ 57], [RUZ 71], [UNG 73], [VAN 58].

The free response displacement of a one-degree-of-freedom system thus damped
decreases following a linear law. The natural period remains constant. The
oscillation frequency of the system damped using solid friction is the same as for the



Non-viscous Damping 269

non-damped system. The stopping position can be different from the initial
equilibrium position.

A damping of this type is observed in the case of a body moving in a fluid

(applications in fluid dynamics, the force of damping being of the form C A
z

x

2

2
)

or during the turbulent flow of a fluid through an aperture (with high velocities of
the fluid, from 2 to 200 m/s, resistance to the movement ceases to be linear with the
velocity). When the movement becomes fast [BAN 77], the flow becomes turbulent
and the resistance non-linear. Resistance varies with the square of the velocity
[BAN 77], [BYE 67], [VOL 65].
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References in Table 7.3: [CRE 65], [HAB 68], [JAC 30], [RUZ 71],
[SNO 68], [UNG 73].

Constant is termed the It is characteristic of the
geometry of the damping device and of the properties of the fluid [VOL 65].
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Such damping is representative of the internal damping of materials, of the
structural connections, and cases where the specific energy of damping can be
expressed as a function of the level of stress, independent of the form and
distribution of the stresses and volume of the material [BAN 77], [BYE 67],
[KIM 26], [KIM 27].

Damping
coefficient

function of

Damping force
proportional to the

displacement
Complex stiffness
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This kind of damping is observed when the elastic material is imperfect, when
the dissipation of energy is mainly obtained by deformation of material and slip, or
friction in the connections of a system. Under a cyclic load, the curve , of the
material forms a closed hysteresis loop rather than a single line [BAN 77]. The
dissipation of energy per cycle is proportional to the surface enclosed by the
hysteresis loop. This type of mechanism is observable when repeated stresses are
applied to an elastic body, causing a rise in temperature of the material.

This is called internal friction, hysteretic damping, structural damping or
displacement damping. Various formulations are used [BER 76], [BER 73],
[BIR 77], [BIS 55], [CLO 03], [GAN 85], [GUR 59], [HAY 72], [HOB 76],
[JEN 59], [KIM 27], [LAL 75], [LAL 80], [LAZ 50], [LAZ 53], [LAZ 68],
[MEI 67], [MOR 63a], [MYK 52], [PLU 59], [REE 67], [REI 56], [RUZ 71],
[SCA 63], [SOR 49], [WEG 35].

If several types of damping, as is often the case, are simultaneously present
together with a linear stiffness [BEN 62], [DEN 30a], equivalent viscous damping
can be obtained by calculating the energy idE dissipated by each damping device
and by computing eqc [JAC 30], [JAC 58]:

2
m

i
id

eq
z

E

c [7.14]

Viscous damping and Coulomb damping [JAC 30], [JAC 58], [LEV 60],
[RUZ 71]

z z tm sin

z
F c k m F k m c F

c k m
m

m
2 2 2 2 2

2
2 2 2

1 2

2 2 2 2

16 4

[7.15]
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tan

4 1 1

2

F z c

k m

m [7.16]

Fm = maximum F t (excitation);
F = frictional force;
c = viscous damping ratio;

= pulsation of the excitation

czF
4

c 11
meq [7.17]

The cases considered above do not cover all the possibilities, but are
representative of many situations.

The viscous approach supposes that although non-linear mechanisms of damping
are present, their effect is relatively small. It is thus applicable if the term for viscous
damping is selected to dissipate the same energy per cycle as the system with non-
linear damping [BAN 77]. Equivalent viscous damping tends to underestimate the
energy dissipated in the cycle and the amplitude of a steady state forced vibration:
the real response can be larger than envisaged with this simplification.

The decrease of the transient vibration calculated for equivalent viscous damping
takes a form different from that observed with Coulomb damping, with a damping
force proportional to the square of the displacement or with structural damping. This
difference should not be neglected if the duration of the decrease of the response is
an important parameter in the problem being considered.

The damped natural frequency is itself different in the case of equivalent viscous
damping and in the non-linear case. However, this difference is generally so small
that it can be neglected.

When damping is sufficiently small (10%), the equivalent viscous damping
method is a precise technique for the approximate solution of non-linear damping
problems.
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All moving mechanical systems dissipate energy. This dissipation is often
undesirable (in an engine, for example), but can be necessary in certain cases
(vehicle suspension, isolation of a material to shocks and vibrations and so on).

Generally, mass and stiffness parameters can be calculated quite easily. It is
much more difficult to evaluate damping by calculation because of ignorance of the
phenomena concerned, and difficulties in modeling them. It is thus desirable to
define this parameter experimentally.

The methods of measuring damping generally require the object being tested to
be subjected to vibration and to measure the vibratory energy dissipated, or a
parameter directly related to this energy. Damping is generally studied through the
properties of the response of a one-degree-of-freedom mass–spring–damping system
[BIR 77], [CLO 03], [PLU 59]. There are several possible methods for evaluating
the damping of a system:

– amplitude of the response or amplification factor;

– quality factor;

– logarithmic decrement;

– equivalent viscous damping;

– complex modulus;

– bandwidth
f

f
.

The damping of the one-degree-of-freedom system tends to reduce the amplitude
of the response to a sine wave excitation. If the system were subjected to no external
forces, the oscillations created in response to a short excitation would attenuate and
disappear in some cycles. In order for the response to preserve a constant amplitude,
the excitation must provide a quantity of energy equal to the energy dissipated by
damping in the system.

The amplitude of the velocity response z is at a maximum when the frequency of
the sine wave excitation is equal to the resonance frequency f0 of the system. Since
the response depends on the damping of the system and since the one-degree-of-
freedom system is supposedly linear, this damping can be deduced from
measurement of the amplitude of the response:
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Q
z

x
m

m

0 [7.18]

or

Q
k m z

Fm

[7.19]

For sufficiently small , it has been seen that with a small error, the amplification

factor, defined by H
z

x
RD

m

m

0
2

, was equal to Q. The experimental determination

of can thus consist of plotting the curve HRD or HRV and of calculating from
the peak value of this function. If the amplitude of the excitation is constant, the sum
of potential and kinetic energies is constant. The stored energy is thus equal to the

maximum of one or the other; it will be, for example 2
ms zk

2
1

U . The energy

dissipated during a cycle is equal to [6.87] 2
md zcE , yielding, since it is

assumed that 0:

2
s m
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d 0 m 0

U 1 k z k k Q m
E 2 c z 2 c 2 k m k

[7.20]
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U Q
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d

2 UQ
E

[7.22]

NOTE.–
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2

Another evaluation method (known as Kennedy–Pancu [KEN 47]) consists of
measuring the bandwidth f between the half-power points relating to one peak of
the transfer function [AER 62], with the height equal to the maximum of the curve
HRD (or HRV) divided by 2 (Figure 7.5).

From the curve H hRV ( ) , we will have, if h1 and h2 are the abscissae of the
half-power points:

0f1Q
2 f

[7.23]

where (f0 peak frequency, h
f

f
1

1

0

, h
f

f
2

2

0

)

and

c

c

f

f
h h

c 2

1

20
2 1 [7.24]

If T0 is the natural period and T1 and T2 are the periods corresponding to an

attenuation of
2

2
, damping c is given by

c m
T T

2
1 1

2 1

[7.25]
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since c kmc 2 and k m 0
2, and

T T T

T T
0 2 1

1 22
[7.26]

i.e. with the approximation f
f f

0
1 2

2
,

f f

f f
2 1

1 2

[7.27]

From the curve HRD, these relations are valid only if is small. The curve HAD
could also be used for small .

The precision of the bandwidth method is often limited by the non-linear
behavior of the material or the reading of the curves. Sometimes it is better to use
the traditional relation of logarithmic decrement, defined from the free response of
the system after cessation of the exciting force (Figure 7.6).
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The amplitude ratio of two successive peaks allows the calculation of the
logarithmic decrement from

m n 1

m n

z
e

z
[7.28]

In addition, the existence of the following relation between this decrement and
damping ratio is also shown

2

2

1
[7.29]

The measurement of the response of a one-degree-of-freedom system to an
impulse load thus makes it possible to calculate or from the peaks of the curve
[FÖR 37] and [MAC 58]:

2 24
[7.30]
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The curve of Figure 7.7 can be used to determine from . In order to improve
the precision of the estimate of , it is preferable to consider two non-consecutive
peaks. The definition then used is:

1

1
1

n

z

z
m

mn

ln [7.31]

where zm1 and zmn are, respectively, the first and the nth peak of the response
(Figure 7.8). In the particular case where is much lower than 1, from [7.29] is
obtained:

2
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D
U2 ts [7.32]
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with being small

z

z
n nm
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a

1
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1 1 2 [7.34]

yielding the approximate value a

a
mn
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z z

n z
1 1

12
[7.35]
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The error caused by using this approximate relation can be evaluated by plotting

the curve a according to (Figure 7.8) or that giving the exact value of

according to the approximate value a (Figure 7.9). This gives

a
m m
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z z
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z
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yielding

ln

ln

1 2

1 2 42 2
a

a

[7.38]



Non-viscous Damping 281

and

22 1a a 11 1 e 1
2

[7.39]

The specific damping capacity p, the ratio of the specific energy dissipated by
damping to the elastic deformation energy per unit of volume, is thus equal to

ts

Dp % 100 200
U

[7.40]

In a more precise way, p can also be written

2 2
m1 mn 1

2
m1

z zp 100
n z

[7.41]

while assuming that tsU is proportional to the square of the amplitude of the
response. For a cylindrical test-bar,

2 2
ts

1 1W S U k z m z
2 2

[7.42]

(potential energy kinetic energy)

2 2 21W m z z
2

[7.43]

i.e. since z z tm sin ,

2 2 2
m m

1W m z constant z
2

[7.44]

tsU is thus proportional to zm
2 yielding, from [7.31] and [7.41] for two

successive peaks:

2p % 100 1 e [7.45]
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The use of the decrement to calculate p from the experimental results assumes
that is constant during n cycles. This is not always the case. It was seen that
damping increases as a power of the stress, i.e. of the deformation, and it is thus
desirable to use this method only for very low levels of stress.

For small, we can write [7.45] in the form of a series:

2 32 22p % 100
1 2 3

[7.46]

If 01.0 , we find p 200 .

The method of logarithmic decrement takes no account of non-linear effects. The
logarithmic decrement can also be expressed according to the resonance peak
amplitude Hmax and its width f at an arbitrary height H [BIR 77], [PLU 59].
F. F rester [FÖR 37] showed that

f

f

H

H H0

2

2 2
max

[7.47]

f

f

H

Q H0

2

2 2 [7.48]
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If H
Q

2
,

3 0

f

f
[7.49]

Setting as ne the number of cycles such that the amplitude decreases by a
factor e (Neper’s number), it becomes

1

1

1 1

1

1

0n e n f te e e

ln [7.50]

where te= time to reach the amplitude
z

e
m1 . If envelope Z t of the response z t

(which is roughly a damped sinusoid) is considered, this gives

0 0 0

1 dZ 1 d ln Z 2.302 d ln Z
f Z dt f dt f dt

[7.51]
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and if the amplitude in decibels is expressed as

y ZdB 20 log

0

0.115 dy
f dt

[7.52]

For a value of H such that H
Q2

2

2
,

0

f
f

[7.53]

If 1.0 ,
Q

, yielding Q
f

f
0 , a relation already obtained. The calculation

of the Q factor from this result and from the curve H f can lead to errors if the
damping is not viscous.

In addition, it was assumed that the damping was viscous. If this assumption is
not checked, different values of are obtained depending on the peaks chosen,
particularly for peaks chosen at the beginning or end of the response [MAC 58].

Another difficulty can arise in the case of a several-degrees-of-freedom system
for which it can be difficult to excite only one mode. If several modes are excited,
the response of a combination of several sinusoids to various frequencies will be
presented.

An alternative method can consist of subjecting the mechanical system to
harmonic excitation and to evaluate, during a cycle, the energy dissipated in the
damping device [CAP 82], this parameter being largely accepted as a measure of
the damping.

This method can be applied to an oscillator whose spring is not perfectly elastic.
This then leads to constants k and c of an equivalent simple oscillator.
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It has been seen that, if a one-degree-of-freedom mechanical system is subjected
to a sinusoidal force F t F tm sin such that the pulsation is equal to the natural
pulsation of the system ( 0), the displacement response is given by

z t z tm cos

where

z
F

k
m

m

2

The force sF in the spring is equal to tzkFs and the force dF in the
damping device to tsinzk2zm2zcF md , yielding dF according
to z:

2
m

2
2

2
m

2
d

z

z
1tsin

zk2

F
[7.54]
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This function is represented by an ellipse. During a complete cycle the potential
energy stored in the spring is entirely restored. On the other hand, energy dE is
spent in the damping device, which is equal to the surface of the ellipse:

2
d mE 2 z k [7.55]

The superposition of Figures 7.13 and 7.14 makes it possible to plot ds FFF
against z (Figure 7.15).

From these results, the damping constant c is measured as follows:

– by plotting the curve zF after moving the system out of equilibrium (force F
applied to the mass);

– by taking the maximum deformation mz .

It is assumed here that stiffness k is linear and k is thus calculated from the slope
of the straight line plotted at the centre of the ellipse (Figure 7.15).

The surface of the ellipse gives dE , yielding

kz2

E
2
m

d [7.56]
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NOTES.–

[7.57]

Some examples of different values of are given in Table 7.6 [BLA 61] and
[CAP 82].

The dynamic properties of Neoprene show a very weak dependence on the
frequency. The damping ratio of Neoprene increases more slowly at high
frequencies than the damping ratio of natural rubber [SNO 68].

Welded metal frame 0.04

Bolted metal frame 0.07

Concrete 0.010

Pre-stressed concrete 0.05

Reinforced concrete 0.07

High-strength steel (springs) 0.637 10–3 to 1.27 10–3

Mild steel 3.18 10–3

Wood 7.96 10–3 to 31.8 10–3

Natural rubber for damping devices 1.59 10–3 to 12.7 10–3

Bolted steel 0.008

Welded steel 0.005
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The dynamic modulus of these materials increases very rapidly with the
frequency. The damping ratio is large and can vary slightly with the frequency.

Other methods have been developed to evaluate the damping of structures such
as, for example, that using the derivative of the phase at the resonance with respect
to the frequency (Kennedy–Pancu improved method) [BEN 71].

We considered in section 7.3 the influence of non-linear damping on the
response of a one-degree-of-freedom system. The non-linearity was thus brought
about by damping. Another possibility relates to the non-linearities due to stiffness.
It can occur that the stiffness varies according to the relative displacement response.
The restoring force, which has the form F k z, is no longer linear and can follow

a law such as, for example, F k z r z3 where k is the constant used before and
where r determines the rate of non-linearity. The stiffness can increase with relative
displacement (hardening spring) (Figure 7.16) or decrease (softening spring)
(Figure 7.17) [MIN 45].

There is a “jump” from A to B, for example, [BEN 62] that can then be
observed on the transfer function.
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When the frequency increases slowly from zero, the transmissibility increases
from 1 up to point A while passing through D and then decreases to B (Figure 7.18)
[TIM 74].

If, on the contrary, resonance is approached from high frequencies by a slow
sinusoidal sweeping at decreasing frequency, the transfer function increases, passes
through C and moves to D near the resonance, and then decreases to 1 as f tends
towards zero (Figure 7.19).

It should be noted that the area CA is unstable and therefore cannot represent the
transfer function of a physical system.

The shape of the curve depends, like the frequency of resonance, on the
amplitude of the force of excitation. The mass can vibrate at its natural frequency
with an excitation frequency that is much larger (a phenomenon known as

) [DUB 59].





Chapter 8 

Swept Sine 

8.1. Definitions 

8.1.1. Swept sine 

The swept sine is a logical extension of the sinusoidal vibration at constant 
frequency (this is a somewhat redundant expression because the definition of a 
sinusoid includes this assumption; this terminology is, however, commonly used for 
distinguishing between these two vibration types better. This test is also called the 
dwell test). This is a sinusoidal vibration at a given moment, whose frequency varies 
with time according to a certain law. 

 

Figure 8.1. Example of swept sine time history 

A swept sine can be defined as a function characterized by a relation of the form: 

t E tm sin  [8.1] 
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where: 

– the phase  is generally zero; 

– E t  is a time function characteristic of the sweep mode; 

– t  is generally an acceleration, sometimes a displacement, a velocity or a 
force. 

The pulsation of the sinusoid can be defined as the derivative of the function 
under the symbol sine [BRO 75], [HAW 64], [HOK 48], [LEW 32], [PIM 62], 
[TUR 54], [WHI 72], i.e. by: 

= 2 f
dE

dt
 [8.2] 

We will see that the most interesting sweep modes are: 

– the linear sweep, where f has the form f t ; 

– the logarithmic sweep (which should rather be termed exponential) if 
f f et T

1
1 ; 

– the hyperbolic sweep (or parabolic, or log-log) if: ta
f

1

1f

1
. 

These sweeps can be carried out at an increasing frequency or a decreasing 
frequency. 

The first two laws are the most frequently used in laboratory tests. Other laws 
can however be met, some of which have been the subject of other published work 
[SUZ 78a], [SUZ 79], [WHI 72]. 

Under this vibration, the material is thus subjected during a certain time interval 
(function of the sweeping rate) to a sinusoid whose frequency is lying in a specified 
range. This range must include a priori the resonance frequency (or frequencies) of 
the material. These frequencies of resonance will thus be necessarily excited. 



Swept Sine     293 

 

Figure 8.2. Example of time history response to a swept sine 

To estimate the importance of a resonance, a number without dimension, the 
transmissibility, can be used. Transmissibility was previously defined as the ratio 
between the response acceleration of one point of the product and the system’s input 
acceleration which is measured on the exciter table (or on the fixture). 

A frequency with a local transmissibility peak that exceeds a predetermined 
value (typically two) is considered as a resonance frequency.  

 

Figure 8.3. Local transmissibility peaks which are considered as resonance peaks 
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NOTE.– After the resonance frequencies were determined, a common test was used 
consisting of applying sinusoidal vibration to these frequencies for a given duration. 
The vibration’s amplitude is determined in relation to the future real environment of 
the product. The aim of this test is to ensure that the material is able to function 
under the harshest conditions, the highest stresses appearing at the resonance 
frequencies. The test duration varies largely, but five minutes is a common value. 

8.1.2. Octave – number of octaves in frequency interval ( 1f , 2f ) 

An octave is the interval between two frequencies whose ratio is 2. The number 
of octaves ranging between two frequencies f1and f2 is such that: 

f

f
n2

1

2  [8.3] 

yielding 

n

f

f
ln

ln

2

1

2
 [8.4] 

(logarithms in both cases being base e or base 10). 

8.1.3. Decade 

A decade is the interval ranging between two frequencies whose ratio is 10. The 
number of decades nd  ranging between two frequencies f1 and f2 is such that: 

f

f
nd2

1

10  [8.5] 

yielding 

n
f

f

f f
d log

ln

ln
2

1

2 1

10
 [8.6] 

(ln 10 = 2.30258 ...). 
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The relation between the number of decades and the number of octaves ranging 
between two frequencies: 

ln ln ln
f

f
n nd

2

1

2 10 [8.7] 

...3219.3
2ln

10ln
n
n

d
 [8.8] 

8.2. “Swept sine” vibration in the real environment 

Such vibrations are relatively rare. They are primarily measured on structures 
and equipment installed in the vicinity of rotating machines, at times of launching, 
stopping or changes of speed. They were more particularly studied to evaluate their 
effects during transition through the resonance frequency of a material [HAW 64], 
[HOK 48], [KEV 71], [LEW 32], [SUZ 78a], [SUZ 78b], [SUZ 79]. 

8.3. “Swept sine” vibration in tests 

Tests on materials were and still are frequently carried out by applying a sine-
type excitation to the specimen, the objectives being: 

– identification of the material: the test is carried out by subjecting the material 
to a swept sine having in general a rather low and constant amplitude (not to damage 
the specimen), about 5 ms–2, the variation of the frequency with time being rather 
small (close to one octave per minute) in order to study the response at various 
points of the specimen, to emphasize the resonance frequencies and to measure the 
amplification factors; 

– the application of a test defined in a standard document (MIL STD 810 C, AIR 
7304, GAM T 13, etc.), the test being intended to show that the material has a given 
standard robustness, independent or difficult to relate to the vibrations which the 
material will undergo in its service life; 

– the application of a specification which, as well as being feasible, covers 
vibrations in its future real environment. 

Swept sinusoidal vibration tests are badly adapted to the simulation of random 
vibrations, whose amplitude and phase vary in a random way and in which all the 
frequencies are excited simultaneously. 
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Many parameters are necessary to define a swept sine test. 

So far in this chapter we have mentioned the physical quantities which were used 
to carry out the control, which can be, exactly as in the case of a fixed frequency 
sinusoidal vibration test, an acceleration, a displacement or a velocity. It is also 
necessary, however, to specify the frequency range to be swept.  

The swept sine can have a constant level over all the frequency band studied 
(Figure 8.4(a)) or can be composed of several constant levels at various frequency 
intervals (Figure 8.4(b)). 

 

Figure 8.4. Examples of swept sines 

In the same test, each frequency range can be characterized by a different 
quantity and/or a different amplitude: a displacement is sometimes specified at very 
low frequencies, this parameter being easier to measure in this frequency domain, 
more rarely a velocity, and, in general, an acceleration. 

Example: a swept sine of between 5 and 500 Hz is defined: 

– in the 5 to 15 Hz range by a displacement of 1 mm; 

– in the 15 to 200 Hz range by an acceleration of 18 m/s2;  

– in the 200 Hz to 500 Hz range by an acceleration of 40 m/s2. 

Sweep is most frequently logarithmic. The specification sometimes specifies the 
direction of sweep: increasing or decreasing frequency. 

Either the sweep rate (number of octaves per minute) or the sweep duration 
(from lowest frequency to highest or in each frequency band) is specified. 

The level is defined by the peak value of the sinusoid or the peak-to-peak 
amplitude.  
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The sweep rate is generally, selected to be sufficiently low to enable the response 
of the equipment being tested to reach a very high percentage of the level obtained 
in steady operation under pure sinusoidal excitation. 

If the sweep is fast, it can be estimated that each resonance is excited one after 
the other, in a transient way, when the frequency sweeps the interval ranging 
between the half-power points of each peak of the transfer function of the material. 
We will see (Volume 3) how this method can be used to measure the transfer 
functions. 

In this approach, the swept sine is a vibration the effects of which can be 
compared with those of a shock (except the fact that under a shock, all the modes are 
excited simultaneously) [CUR 55]. 

Several questions arise in relation to how to carry out sweeps: 

– How can we choose the direction of sweeping starting from the initial 
frequency (i.e. at increasing or decreasing frequency)? Should the sweep be carried 
out in one direction or both? 

– How can we vary the frequency according to time (linearly or logarithmically)? 

– How can we choose sweep rate? 

– What should the duration of the test be? How many unidirectional sweeps are 
necessary? 

Several parameters thus remain to be determined, their choice being function of 
the aims and constraints of the test to be realized. 

8.4. Origin and properties of main types of sweepings 

8.4.1. The problem 

We know that for a linear one-degree-of-freedom mechanical system the 
damping ratio is given by: 

=
c

k m2
 [8.9] 
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the Q factor by: 

Q
k m

c
f

m

c

1

2
2 0  [8.10] 

the resonance frequency by: 

f
k

m
0

01

2 2
 [8.11] 

and the width f  of the peak of the transfer function between the half-power points 
by: 

f
f

Q
0  [8.12] 

 

Figure 8.5. One-degree-of-freedom system 

NOTE.–  

We saw that the maximum of the transfer function 
2
0 max

max

z
H f =

x
 is actually 

equal to 

m 2 2

1 Q
H

2 1 1
 [8.13] 
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Mechanical systems have, in general, rather weak damping so that the 
approximation mH Q  (which is the exact result for the maximum of the transfer 
function acceleration–relative velocity instead here of the function acceleration–
relative displacement) can be used. It should be remembered that the half-power 
points are defined, because of a mechanical–electrical analogy, from the transfer 
function acceleration–relative velocity. 

Writing: 

f
df

dt
 [8.14] 

for the sweep rate around the resonance frequencyf0, the time spent in the band f  
is given roughly by: 

t
f

f
 [8.15] 

and the number of cycles performed by: 

N f t
f

f
f0 0  [8.16] 

When such a system is displaced from its equilibrium position and then released 
(or when the excitation to which it is subjected is suddenly stopped), the 
displacement response of the mass can be written in the form: 

z t z e f tm
t T cos 2 10

2  [8.17] 

where T is a time constant equal to: 

T
m

c

2
 [8.18] 

i.e. according to [8.10]: 

T
Q

f0 0

1
 [8.19] 
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It will then be assumed that the Q factor is independent of the natural frequency 
f0, in particular in the case of viscoelastic materials. Different reasoning can take 
into account a variation of Q with f0 according to various laws [BRO 75]; this leads 
to the same sweeping laws. 

In a swept sine test, with the frequency varying according to time, the response 
of a mechanical system is never perfectly permanent. It is closer to the response 
which the system would have under permanent stress at a given frequency when the 
sweep rate is slower. To approach as closely as possible this response in the vicinity 
of the resonance frequency, it is necessary that the time t  spent in f  is long 
compared to the constant T, a condition which can be written [MOR 76]: 

t T  [8.20] 

1 ; yielding1 

f
f

t
f

f

Q

f

Q

f

Q
0 0 0  [8.21] 

f
f

Q
= 0

2  [8.22] 

Natural frequency f0 can be arbitrary in the band considered (f1, f2) and, 
whatever its value, the response must be close to Q times the input to the resonance. 
To calculate the sweep law f t  let us generalize f0 by writing f as: 

f
f

Q
=

2

2  [8.23] 

It can be seen that the sweep rate varies as 2Q/1 . 

NOTE.– The derivative f  is positive for increasing frequency sweep, negative for 
decreasing frequency sweep. 

                                                           
1 It is assumed here that f  is sufficiently small (i.e. is small) to be able to approximate 
with a small error the slope of the tangent to the curve f(t) by the slope of the chord relating to 
the interval f . We will see that this approximation is indeed acceptable in practice. 
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8.4.2. Case 1: sweep where time t  spent in each interval f  is constant for all 
values of 0f  

Here, since 

f
Q

=T=t  [8.24] 

it is necessary that = f  the constant  has the dimension of time, and 

t
Q

=  [8.25] 

f
f

Q

f

Q

f

T

2

2 2
1

 [8.26] 

if we set T
Q

1

2

. 

Sweeping at frequency increasing between 1f  and 2f  

We deduce from [8.26] 

f f e

t

T
1

1  [8.27] 

The constant T1 is such that, for stt  ( st  = sweep duration), f f2: 

s
1

2 1

t
T

ln f f
 [8.28] 

where T1 is the time needed to sweep the interval between two frequencies whose 
ratio is e. Relations [8.24] and [8.25] lead to 

T Q t1  [8.29] 
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NOTE.– Equation [8.27] can also be written as: 

2
1

1

s

t
tf

f f
f

 [8.30] 

Sweep at decreasing frequency 

f f e

t

T
2

1  [8.31] 

the constant T1 having the same definition as previously. 

Expression for E(t) 

Increasing frequency: 

E t f e dtt Tt
2 10

1  [8.32] 

i.e. [HAW 64], [SUN 75]: 

E t T f e T f ft T2 1 21 1 1 1
1  [8.33] 

Decreasing frequency: 

E t f e dtt Tt
2 20

1  [8.34] 

E t T f e T f ft T2 1 21 2 1 2
1  [8.35] 

Later in this section, and apart from a specific particular case, we will only 
consider sweepings at increasing frequency, the relations for the other case being 
either identical or very easy to rewrite. 

We assumed above that f1 is always, whatever the sweep direction, the lowest 
frequency, and f2 always the highest frequency. Under this assumption, certain 
relations depend on the sweep direction. If, on the contrary, it is simply supposed 
that f1 is the initial frequency of sweep and f2 the final frequency, whatever the 
direction, we obtain the same relations independent of the direction; relations, in 
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addition, identical to those established above, and in what follows in the case of an 
increasing frequency. 

Time t can be expressed versus the frequency f according to: 

t T
f

f
1

1

ln  [8.36] 

In spite of the form of relations [8.27] and [8.31], the sweep is known as 
logarithmic, by referring to expression [8.36]. 

The time necessary to go from frequency f1 to frequency f2 is given by: 

1

2
1s f

f
lnTt  [8.37] 

which can still be written: 

1

2
s f

f
lntQt  [8.38] 

The number of cycles carried out during time t is given by: 

N f t dt f e dt

t

Ttt
100

1  [8.39] 

N f T et T
1 1

1 1  [8.40] 

i.e. according to [8.27]: 

N T f f1 1  [8.41] 

The number of cycles between f1 and f2 is: 

121s ffTN  [8.42] 

which can be also written, taking into account [8.37], 
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1

2

12s
s

f
f

ln

fft
N  [8.43] 

The mean frequency (or average frequency or expected frequency) is equal to: 

12

12

s

s
m ffln

ff
t
N

f  [8.44] 

The number of cycles N  performed in the band f  between the half-power 
points (during time t ) is written [8.42]: 

N T f
Q

f
Q

1 0 01
1

2
1

1

2
 

i.e. 

N f
T

Q
0

1  

N f t0  [8.45] 

N  thus varies like f0 yielding 

1

2

0
s f

f
ln

f
NQ

t  [8.46] 

Also starting from [8.42]: 

12

s0

ffQ

Nf
N  [8.47] 

The time t  spent in an interval f  is: 

t
T

Q
1  
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Time t is constant regardless of the frequency of f0. 

Example 8.1. 

If Q = 5, the width of the interval is equal to 20 Hz when f0 = 100 Hz and to 
100 Hz when f0 = 500 Hz (Figure 8.6). 

 

Figure 8.6. Interval width between two half-power points for Q = 5  
and for two values of the natural frequency 

 

1

2

s

f
f

lnQ

t
t  [8.48] 

yielding another expression of N : 

N f t0  

1

2

s0

f
f

lnQ

tf
N  [8.49] 

The number of cycles N1 necessary to go from frequency f1 to a resonance 
frequency f0 is: 

N T f f1 1 0 1  [8.50] 
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0 1N Q t f f1  [8.51] 

N
Q N

f
f f1

0
0 1  [8.52] 

or 

1

2

10s
1

f
f

ln

fft
N  [8.53] 

This number of cycles is carried out in time: 

t T
f

f
1 1

0

1

ln  [8.54] 

t
Q N

f

f

f
1

0

0

1

ln  [8.55] 

or 

1

2
1

0
s

1

0
1

f
f

ln

f
f

lnt

f
f

lntQt  [8.56] 

If the initial frequency f1 is zero, we have N N1 0  given by: 

N f T0 0 1 [8.57] 

or 

N Q t f Q N0 0  [8.58] 

It is not possible, in this case, to calculate the time t0  necessary to go from 0  
to f0. 
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Q211
Q211

ln
R
f

2ln
60

N
om

0*  [8.74] 

 

Figure 8.9. Time spent between the half-power points 

It should be noted that t  given by [8.71] tends towards the value given by 
[8.48] as Q increases. Figure 8.9 shows the variations of t  versus Q for 

omR (oct/min) equal to 4, 2, 1, 1/2, 1/3, 1/4, 1/6 and 1/8 respectively. 

  

Figure 8.10. Sweep duration between two frequencies 
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Figure 8.10 gives the sweep time necessary to go from f1 to f2 for sweep rates 

omR  (oct/min) equal to 4, 2, 1, 1/2, 1/3, 1/4, 1/6 and 1/8. 

Number of cycles per octave 

If fA  and fB  are two frequencies separated by one octave: 

AB f2f  

The number of cycles in this octave is equal to [8.42] 

N T fA2 1  [8.75] 

i.e. according to [8.43], 

N
f fA b

2
2ln

 [8.76] 

N Q N
f

f
A

2
0

 [8.77] 

Time to sweep one octave 

Let us set t2  for this duration 

t T2 1 2ln  [8.78] 

t Q t2 2ln  [8.79] 

t
Q N

f
2

0

2ln  [8.80] 

Time to sweep 1/nth octave 

t T
T

n
n

n
1

1 12 2ln ln  [8.81] 

t
Q t

n
n ln 2 [8.82] 
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t
Q N

f n
n

0

2ln  [8.83] 

8.4.3. Case 2: sweep with constant rate 

If we wish to carry out a sweep with a constant rate, it is necessary that 

df dt  constant, i.e., since f
Q

f2
2  

f 2  [8.84] 

where  is a constant with dimension of time squared. 

t f
Q

f
0
2

0

 

t
f Q0  [8.85] 

The time spent in the band f  delimited by the half-power points varies in the 
same way as the natural frequency f0 

df

dt Q

f

f Q2

2

2 2  [8.86] 

where  is a constant. 

Increasing frequency sweep 

f t f1 [8.87] 

The constant  is such that f f2 when stt , yielding [BRO 75], [HOK 48], 
[LEW 32], [PIM 62], [TUR 54], [WHI 72], [WHI 82]: 

f f

tb

2 1  [8.88] 
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This sweep is said to be linear. 

Decreasing frequency sweep 

f t f2  [8.89] 

s

12
2 t

ff

Q
 [8.90] 

Calculation of the function E(t) [SUN 75] 

Increasing frequency: 

E t t f dt
t

2 10
 [8.91] 

E t t
t

f2
2

1  [8.92] 

Decreasing frequency: 

E t t f dt
t

2 20
 [8.93] 

E t t
t

f2
2

2  [8.94] 

Sweep rate 

This is equal, depending on the direction of sweep, to  

s

12

t
ff

dt
df

 [8.95] 
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8.4.4. Case 3: sweep ensuring a number of identical cycles N in all intervals 
f  (delimited by the half-power points) for all values of 0f  

With this assumption, since the quantity 

N f t f
Q

f

Q
 [8.96] 

must be constant, parameter  must itself be constant, yielding: 

f
f

Q
a f

2

2
2  [8.97] 

where a
Q2 . The sweep rate varies as the square of the instantaneous frequency. 

This expression is written [BIC 70, PAR 61]: 

df

f
a t2  [8.98] 

Increasing frequency sweep between 1f  and 2f  

By integration, 

1 1

1f f
a t  [8.99] 

(at t 0 , we assume that f f1, the starting sweep frequency), i.e. [PAR 61]: 

f
f

a f t
1

11
 [8.100] 

or, since, for stt , f f2: 

s21

12

tff
ff

a  [8.101] 
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Increasing frequency sweep [CRU 70], [PAR 61] 

E t
f dt

a f t a

d a f t

a f t

t a f t
2

1

2

1
1

1
0

1

1
0

1  [8.107] 

E t
a

a f t
2

1 1ln  

E t
a a f t

2 1

1 1

ln  [8.108] 

i.e. taking into account [8.100] 

E t
a

f

f

2

1

ln  [8.109] 

Decreasing frequency sweep 

We have in the same way: 

2t a f t 22
0 02 2

d a f tf dt 2
E t 2

1 a f t a 1 a f t
 

E t
a

a f t
2

1 2ln  [8.110] 

Sweep rate 

Increasing frequency: 

2

s21

122 f
tff
ff

fa
dt
df

 [8.111] 

Decreasing frequency: 

2fa
dt
df

 [8.112] 
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Tables 9.2 to 9.8 at the end of Chapter 9 summarize the relations calculated for 
the three sweep laws (logarithmic, linear and hyperbolic). 

 



Chapter 9 

Response of a Linear One-Degree-of-Freedom 
System to a Swept Sine Vibration 

9.1. Influence of sweep rate 

An extremely slow sweep rate makes it possible to measure and plot the transfer 
function of the one-degree-of-freedom system without distortion, and to obtain 
correct values for the resonance frequency and Q factor. 

When the sweep rate increases, it is seen that the transfer function obtained 
increasingly differs from the real transfer function. The deformations of the transfer 
function result in (Figure 9.1): 

– a reduction of the maximum H; 

– a displacement of the abscissa of the maximum fr ; 

– a displacement fm of the median axis of the curve (which loses its symmetry); 

– an increase in the bandwidth f (interval between the half-power points). 

When the sweep rate increases: 

– beats caused by interference between the free response of the mechanical 
system, relatively important after resonance, and the excitation “swept sine” 
imposed on the system, are observed appearing on the signal of the response 
according to time [BAR 48], [PIM 62]. The number and importance of these beats 
are weaker since the damping is greater; 
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– then, as if the system were subjected to a shock, the sweep duration decreases. 
The largest peak of the response occurs for btt  (residual “response” observed 
when the duration of the shock is small compared to the natural period of the 
system). We will see an example of this in section 9.2.3. 

 

Figure 9.1. Deformation of the transfer function related to a  
large sweep rate (according to [REE 60]) 

Example 9.1. 

Figure 9.2 shows the transfer function of a one-degree-of-freedom system 
which is measured with a slow swept sine vibration and a too fast swept sine 
vibration with increasing frequencies. The peak is shifted to the right. Conversely, 
if the swept sine vibration is carried out with decreasing frequencies, the peak 
shifts to the left (Figure 9.3). 

 

Figure 9.2. Swept sine vibration with 
increasing frequencies 

 

Figure 9.3. Swept sine vibration with 
decreasing frequencies 
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Figure 9.4. Sweep rate influence on the response of a one-degree-of-freedom system 

9.2. Response of a linear one-degree-of-freedom system to a swept sine 
excitation 

9.2.1. Methods used for obtaining response 

The calculation of the response of a linear one-degree-of-freedom system cannot 
be carried out entirely analytically because of the complexity of the equations 
(except in certain particular cases). Various methods have been proposed to solve 
the differential movement equation (analog [BAR 48], [MOR 65], [REE 60], 
numerical [HAW 64]), using the Fourier transformation [WHI 72], the Laplace 
transformation [HOK 48], the convolution integral [BAR 48], [LEW 32], 
[MOR 65], [PAR 61], [SUN 75], [SUN 80], a series [BAR 48], [MOR 65], 
[PAR 61], [SUN 75], Fresnel integrals [DIM 61], [HOK 48], [LEW 32], [WHI 72], 
asymptotic developments [KEV 71], parameter variation techniques [SUZ 78a], 
[SUZ 78b], [SUZ 79], numerical integration, etc. 

In general, the transient period of the beginning of the sweep, which relates to 
only a low number of cycles compared to the total number of cycles of sweep, is 
neglected. However, it is better to choose the initial frequency of sweep at least an 
octave below the first resonance frequency of the material, to ensure that this has no 
effect [SUN 80]. 
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9.2.2. Convolution integral (or Duhamel’s integral) 

We will see in the following sections that the choice of the initial and final 
frequencies of sweep influence the amplitude of the response, which is all the more 
sensitive since the sweep rates are larger. 

If the excitation is an acceleration, the differential equation of the movement of a 
linear one-degree-of-freedom system is written: 

txmzkzczm   [9.1] 

z z z x t2 0 0
2   [9.2] 

The solution can be expressed in the form of Duhamel’s integral: 

0
2 0

2 0
0

0
2

1
1z t x e

t
t d

t
sin   [9.3] 

if z z0 0 0 (  = variable of integration). The excitation x t  is given by: 

sinx t x E tm  

where E t  is given, according to the case, by [8.92] for a linear sweep, by [8.33] 
for a logarithmic sweep or by [8.108] for a hyperbolic sweep (increasing frequency). 
If we set 

h
f

f0 0

 

and 

0 t  

these expressions can be written respectively in reduced form: 

1
s

12 h
2

hh
E   [9.4] 

E h h1 1   [9.5] 
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s2

12

12

s21

h
hh

1ln
hh

hh
E [9.6]

where

12s1 h/hln/

and

s0s t

This yields, being a variable of integration:

2
m 20

2 0m

z 1q sin E e sin 1 d
x 1

[9.7]

It should be noted that the reduced response q is a function of the parameters
, s , h1 and h2 only, and is independent of the natural frequency f0.

Direct calculation of q from numerical integration of [9.7] is possible, but it:

– requires a number of points of integration that become larger as the sweep rate
becomes smaller;

– sometimes introduces, for the weak rates, singular points in the plot of q ,
which do not necessarily disappear on increasing the number of points of integration
(or changing the X-coordinate).

The results given in the following sections were obtained in this way. Integration
was carried out by Simpson’s method.

NOTE.–

[9.8]
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yielding 

2
2 2

0 2

1 2 1 2 1
1

m

m

y
q sin E e sin cos d

x
 

 [9.9] 

9.2.3. Response of a linear one-degree-of freedom system to a linear swept sine 
excitation 

The numerical integration of expression [9.7] was carried out for various values 
of h1 and h2 , for 1.0 , with between 400 and 600 points of calculation 
(according to the sweep rate) and, according to the sweep direction, E  being 
given by [9.4] if the sweep is at an increasing frequency or by 

2
s

12 h
2

hh
E   [9.10] 

if the frequency is decreasing. On each curve response q , we have to note: 

– the highest maximum; 

– the lowest minimum (it was noted that these two peaks always follow each 
other); 

– the frequency of the excitation at the moment when these two peaks occur; 

– the frequency of the response around these peaks starting from the relation 

,
2

1
fR  with  being the interval of time separating these two consecutive 

peaks. 

The results are presented in the form of curves in reduced coordinates with: 

– on the abscissae, parameter  defined by: 

Q

f

df

dt f f

2

0
2

0

  [9.11] 
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We will see that this is used by the majority of authors [BAR 48], [BRO 75], 
[CRO 56], [CRO 68], [GER 61], [KHA 57], [PIM 62], [SPE 61], [TRU 70], 

[TRU 95], [TUR 54], in this form or a very close form (
7

, 
2

, ...). 

Since, for a linear sweep and according to the direction of sweep, 

1
s

12 ft
t

ff
f   [9.12] 

or 

2
s

12 ft
t

ff
f  

we have: 

s

12
2
0

2

t
ff

f

Q
  [9.13] 

If frequency and time are themselves expressed in reduced form,  can be 
written: 

2 2

1
Q

dh

d h
  [9.14] 

with, for linear sweep with increasing frequency: 

1
s

12 h
hh

d
dE

h   [9.15] 

and with decreasing frequency: 

2
s

12 h
hh

h   [9.16] 
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yielding: 

s

12 hh
d
dh

  [9.17] 

and 

s

122 hh
Q2   [9.18] 

– On the ordinates the ratio G of the largest positive or negative peak (in absolute 
value) of the response q( )  to the largest peak which would be obtained in steady 

state mode ( / )Q 1 2 . 

Calculations were carried out for sweeps at increasing and decreasing frequency. 
These showed that: 

– for given  results differ according to the values of the limits h1 and h2  of the 
sweep; there is a couple h1, h2  for which the peaks of the response are largest. This 
phenomenon is all the more sensitive since  is larger ( 5); 

– this peak is sometimes positive, sometimes negative; 

– for given , sweep at decreasing frequency leads to responses larger than 
sweep at increasing frequency. 

Figure 9.5 shows the curves G  thus obtained. These curves are envelopes of 
all the possible results.  

 

Figure 9.5. Attenuation of the peak versus the reduced sweep rate 
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In addition, Figure 9.6 shows the variations with  of the quantity 

Q f

f

f

fR

 

where f f fp R , difference between the peak frequency of the transfer function 

measured with a fast sweep and resonance frequency fR  f0
21 2  measured 

with a very slow sweep. 

 

Figure 9.6. Shift in the resonance frequency (linear and logarithmic sweep) 

The frequency fp  is that of the excitation at the moment when the response 
passes through the highest peak (absolute value). f  is the width of the resonance 
peak measured between the half-power points (with a very slow sweep). 

The values of the frequencies selected to plot this curve are those of the peaks 
(positive or negative) selected to plot the curve G  of Figure 9.5 (for sweeps at 
increasing frequency). Following the initial and final frequencies, the speed and 

direction of sweep, 
R

Q f
f

 can vary within a certain range.  

NOTE.– These curves have been plotted for  varying between 0.1 and 100. This is a 
very important domain. To be convincing, it is enough to calculate for various 
values of  the number of cycles bN  carried out between 1h  and 2h  for given Q. 
This number of cycles is given by: 
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1 2 1 0 2 0
s s 0 s

f f f f f f
N t f t

2 2
 

1 2 s
s

h h
N

2 2
  [9.19] 

In addition, we showed in [9.18] that 

2 2 1

s

h h
2 Q  

2 2 1
2

0 s

f f
Q

f t
 

2 2 1
s 2

0

f f
t Q

f
 

yielding, since 1 2
s s

f f
N t

2
 

2 2 2
2 1

s

h h Q
N

2
  [9.20] 

Example 9.2. 

5.0h1  
Q 5 

5.1h2  

If 1.0 there are 250Ns  cycles and if 10 there are 5.2Ns  cycles. 

For the higher values of  and for certain couples h1, h2 , it can happen that the 
largest peak occurs after the end of sweep ( stt ). There is, in this case, a 
“residual” response, the system responding to its natural frequency after an 
excitation of short duration compared to its natural period (“impulse response”). The 
swept sine can be considered as a shock. 
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Example 9.3. 

60 
f1 10 Hz 
f0 20  Hz 
f2 30  Hz 
Q 5 

With these data, the duration tb  is equal to 20.83 ms. 

Figure 9.7 shows the swept sine and the response obtained (velocity: 
f 960 Hz/s). 

 

Figure 9.7. Example of response to a fast swept sine 

It should be noted that, for this rate, the excitation resembles a half-sine shock 
of duration st  and amplitude 1. 

On the shock response spectrum of this half-sine (Figure 9.8), we would read 
on the Y-axis (for f0 20  Hz on the X-axis) an amplitude of the response of the 
one-degree-of-freedom system (f0 20 Hz, Q 5) equal to 1.22 m/s2, a value 
which is that read above on the curve in Figure 9.7.  
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For the same value of , and with the same mechanical system, we can obtain,
by taking f1 1 Hz and 8.43f2 Hz, an extreme response equal to 1.65 m/s2

(Figure 9.9).

In this case the duration has as a value of 44.58 ms.

As defined by [9.11], this parameter is none other than the quantity from
relation [8.22]. If we calculate the number of cycles N according to carried out
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in the band f  delimited by the half-power points, we obtain, according to the 
sweep mode: 

– linear sweep 

12

s
2
0

ff
t

Q
f

N  

s

12
2
0

2

t
ff

f

Q
 

yielding 

N
Q

  [9.21] 

– logarithmic sweep 

Q

f T

2

0 1

 

Q

Tf

ffln
t

Q
f

N 10

12

s0  

1

0

s0

2

f
f

ln
tf

QQ
N   [9.22] 

– hyperbolic sweep 

s21

122

tff
ff

Q  

12

s21

ffQ
tff

N  

N
Q

  [9.23] 
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For given Q and , the number of cycles carried out in the band f  is thus 
identical. As a consequence, the time t  spent in f  is, whatever the sweep mode, 
for  and Q constant 

t
Q

f0

  [9.24] 

The expressions of the parameters considered in Chapter 8 expressed in terms of 
 are given in Tables 9.2 to 9.7 at the end of this chapter. 

 

Figure 9.10. Validity of approximate expressions for attenuation G( ) 

A good approximation of the curve at increasing frequency can be obtained by 
considering the empirical relation (Figure 9.10): 

79.039.0 003.055.2exp1G   [9.25] 

0 100 . To represent the curve G  relating to sweeps at decreasing 
frequency, we can use in the same interval the relation: 

39.018.3exp1G   [9.26] 

When damping tends towards zero, the time necessary for the establishment of 
the response tends towards infinity. When the sweep rate is weak, F.M. Lewis 
[LEW 32] and D.L. Cronin [CRO 68] stated the response of an undamped system as: 
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0

2
0

m

ffdt
df

f
67.3u   [9.27] 

i.e. if sweep is linear, by: 

12

s
0m ff

t
f67.3u   [9.28] 

NOTE.–  

For the response of a simple system having its resonance frequency 0f  outside 
the swept frequency interval ( 1f , 2f ) in steady state mode, or for an extremely 
slow sweep, the maximum generalized response is given: 

– for 0 1f f , by 

m
m 22 2

1 1
2 2

0 0

u

f f
1

f Q f

  [9.29] 

– for 0 2f f , by 

m
m 22 2

2 2
2 2

0 0

u

f f
1

f Q f

  [9.30] 

When the sweep rate is faster it is possible to obtain an approximate value of the 
response by successively combining [9.25] and [9.29], [9.25] and [9.30]: 
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– 0 1f f  

0.39 0.79
m

m 22 2
1 1

2 2
0 0

1 exp 2.55 0.003
u

f f
1

f f Q

  [9.31] 

– 0 2f f  

0.39 0.79
m

m 22 2
2 2

2 2
0 0

1 exp 2.55 0.003
u

f f
1

f f Q

  [9.32] 

where  is given by [9.13]. 

9.2.4. Response of a linear one-degree-of-freedom system to a logarithmic swept 
sine  

The calculation of Duhamel’s integral [9.7] was carried out under the same 
conditions as in the case of linear sweep, with: 

E h h1 1   [9.33] 

or 

E h h1 2   [9.34] 

according to the direction of sweep, with 1.0 , for various values of the sweep 
rate, the limits h1 and h2  being those which, for each value of , lead to the largest 
response (in absolute value). The curves G  thus obtained were plotted on 
Figure 9.11,  being equal to: 

0ff
2
0

2

dt
df

f
Q  
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Q

f

f

T

Q

f T
f f

2

0
2

1
0

2

0 1

 

 

Figure 9.11. Attenuation versus reduced sweep rate 

1

2

s

2

1

2

h
h

ln
Q2Q2

  [9.35] 

where 

1 0 12 f T   [9.36] 

These curves can be represented by the following empirical relations (for 
0 100): 

– for increasing frequencies: 

79.039.0 0025.055.2exp1G   [9.37] 

– for decreasing frequencies: 

38.018.3exp1G   [9.38] 

Figure 9.12 shows the calculated curves and those corresponding to these 
relations. 

The remarks relating to the curves G  for the linear sweep case apply 
completely to the case of logarithmic sweep. 
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Figure 9.12. Validity of the approximate expressions for attenuation G( ) 

NOTE.– These curves are envelopes of the points obtained for various values of 
parameters f1, f2, f0 and Q (for each value of ). 

The number of cycles between h1 and h2  is given here by: 

s
12

12
s t

ffln
ff

N  

2hhln
hh

N s

12

12
s   [9.39] 

yielding, starting from [9.35]: 
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N   [9.40] 
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  [9.41] 

 



Response of a Linear One-Degree-of-Freedom System     337 

Example 9.4. 

If f1 10 Hz  sN  st  (s)  

Q 5 0.1 250 137.33  
f2 30  Hz 10 2.5 0.1373  
f0 20  Hz 60 0.417 0.02289  

 100 0.25 0.01373  

Table 9.1. Examples of sweep durations for given values of  

Figure 9.13 shows the swept sine (log) for increasing frequency and the 
response calculated with these data for 60. 

It is possible to find other limits of the swept range (f1, f2) leading to a larger 
response.  

 

Figure 9.13. Example of response to a fast swept sine 

The curves G  obtained in the case of linear and logarithmic sweeps at 
increasing and decreasing frequencies are superimposed in Figure 9.14. We obtain 
very similar curves (for a given sweep direction) with these two types of sweeps. 
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Figure 9.14. Comparison of the attenuation of linear and logarithmic sweeps 

9.3. Choice of duration of swept sine test 

In this section, the duration of the tests intended to simulate a certain particular 
swept sine real environment will not be considered. 

During an identification test intended to measure the transfer function of a 
mechanical system, it is important to sweep slowly so that the system responds at its 
resonance with an amplitude very close to the permanent response, whilst adjusting 
the duration of sweep to avoid prohibitive test times. 

It has been seen that a good approximation to the measure of the resonance peak 
could be obtained if  was sufficiently small; J.T. Broch [BRO 75] advised, for 
example, that 1.0 , which ensures an error lower than 1 G = 1% . For a given 

0G1  error, the curve G  makes it possible to obtain the limit value 0 which  
should not exceed: 

df

dt
Q

f

f f0

2

0
2 0  
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Linear sweep 02
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Table 9.2. Minimal sweeping duration versus sweeping mode 

It should be noted that, in this last case, st  is independent of f0. In both other 
cases, f0 being in general unknown, f0 will be selected as equal to the value of the 
swept frequency range which leads to the largest duration st . 

Example 9.5. 

The required sweep rate for a logarithmic sweep between 5 Hz and 2,000 Hz. 

Let us assume that a resonance with a Q factor having possibly the value 50, 
can be found on the studied structure (Q factors are in general weaker). 

Then the reduced sweep rate 
1

2

b0

2

f
f

ln
tf

Q
 has to be lower than 0.1, or 

1

2

0

2

b f
f

ln
f1.0

Q
t  
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The natural frequency being unknown (the purpose of the test is to measure it) 
we consider the most penalizing case for the calculation of the duration by 
supposing that f0 is equal to the lowest frequency of the swept frequency range, 
i.e. in this example, to 5 Hz. This yields 

2

b
50 2,000t ln

0.1 5 5
 

 
bt 2,9957 s  

 
i.e. bt 499.29 min.  The number of octaves between 5 Hz and 2,000 Hz equals 
 

2 1ln(f / f ) ln(2,000 / 5)n 8.64
ln 2 ln 2

 

 
The sweep rate expressed in octaves per minute must thus be equal to  
 

017.0
29.499

64.8
 

 
For a Q factor equal to 10, the sweep rate would be equal to 19.97 min (i.e. 

 0.43 octave/min). 

 

This example shows the limits of the rule which specify a sweep rate equal to  
1 octave per minute. This rule does not apply for low natural frequencies or high Q 
factors. 

Figure 9.15 shows the required sweep rate as a function of the natural frequency, 
for three Q factor values (5, 10 and 50). It can be seen that the sweep rate has to be 
lower than 1 octave per minute if f0 is approximately less than 2.5 Hz for Q = 5,  
11.5 Hz for Q = 10 and 280 Hz for Q = 50 (Figure 9.16). 
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Figure 9.15. The required sweep rate with respect to the 
 natural frequency for a Q factor equal to 5, 10 and 50 

 

Figure 9.16. The required sweep rate with respect to the natural frequency 
 for a Q factor equal to 50 
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The couples, natural frequency – Q factor which can be measured with a
negligible error ( 0.1) with a sweep rate equal to 1 octave/minute locate at the top
of the curve corresponding to this value in Figure 9.17. For example, a Q factor
Q = 30 at 20 Hz will not be correctly measured if the sweep rate is equal to
1 octave/minute.

To search for resonance frequency the amplitude of the excitation must be:

– sufficiently high to correctly “reveal” the peaks of resonance in the response. If
the structure is linear, the values of Q measured are independent of the sweep level;

– sufficiently weak not to damage the specimen (by exceeding an instantaneous
stress level or by fatigue). The choice must thus be made by taking the levels of the
real vibratory environment into account.
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If the structure is not linear, the value of Q measured depends on the level of the 
excitation. Generally, Q decreases when the level of the excitation increases. If we 
wish to use an experimental transfer function in calculations, we will have to 
measure this function using an excitation in which the level is close to those of the 
real environment that the structure will exist in. Two levels (or more) often have to 
be chosen. 

9.5. Choice of sweep mode 

The more common use of swept sine is for the determination of the dynamic 
properties of a structure or of a material (natural frequencies, Q factors). For this 
type of test, the sweep rate must be sufficiently slow so that the response reaches a 
strong percentage of the response in steady state excitation (however, it will be seen 
(Volume 3) that there are methods using very fast sweeps). 

The relations allowing the determination of the test duration are based on the 
calculations carried out in the case of a linear one-degree-of-freedom system. It is 
admitted then that if this condition is obeyed, the swept sine thus defined will also 
create in a several degrees-of-freedom system responses very close to those which 
one would obtain in steady state mode; this assumption can be criticized for 
structures having modes with close frequencies. 

For this use, it may be worthwhile choosing a sweep mode similar to that which 
leads to the lowest test duration for the same percentage G of steady state response. 
According to the relations given in section 9.3, it unfortunately appears that the 
mode determined according to this criterion is a function of the natural frequency f0 
to be measured in the swept frequency interval. Generally a logarithmic sweep is the 
preferred choice in practice. 

The hyperbolic sweep, little used to our knowledge, presents the interesting 
property of carrying out a constant number of cycles in each interval f  delimited 
by the half-power points of a linear one-degree-of-freedom system, whatever the 
frequency of resonance (or a constant number of cycles of amplitude higher than P% 
of the Q factor [CRE 54]). 

This property can be used to simulate the effects of a shock (the free response of 
a system is made with the same number of cycles whatever the resonance frequency 
f0, provided that the Q factor is constant) or to carry out fatigue tests. In this case, it 
must be noted that, if the number of cycles carried out at each resonance is the same, 
the damage created by fatigue will be the same as if the excitation produces a 
maximum response displacement zm  (i.e. a stress) identical to all the frequencies. 
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Gertel [GER 61] advises this test procedure for materials for which the lifespan 
is extremely long (equipment installed on various means of transport, such as road 
vehicles or aircraft). 

The sweep duration st  can be defined a priori or by imposing a given number 
N  of cycles around each resonance, the duration st  then being calculated from: 

21

12
s ff

ff
NQt   [9.42] 

by introducing the value of the highest Q factor measured during the identification 
tests (search for resonance) or a value considered representative in the absence of 
such tests. Limits f1 and f2 delimit a frequency range which must include the 
principal resonance frequencies of the material. This type of sweep is sometimes 
used in certain spectral analyzers for the study of experimental signals whose 
frequency varies with time [BIC 70]. 

To simulate an environment of short duration t , such as the propulsion of a 
missile, on a material of which the resonance frequencies are little known, it is 
preferable to carry out a test where each resonance is excited during this time t  
(logarithmic sweep) [PIM 62]. The total duration of sweep is then determined by 
relation [8.38]: 

1

2
s f

f
lntQt   [9.43] 

NOTE.–  

The test duration st  thus calculated can sometimes be relatively long, 
particularly as it is generally necessary to subject the specimen to the vibrations on 
each of its three axes. Thus, for example, if Q 10 , t 20  s, 1f 10  Hz and 

2f 2,000  Hz: 

st 1,060  s, 

yielding a total test duration of 3 x 1,060 s = 3,180 s (53 min). 
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C.E. Crede and E.J. Lunney [CRE 56] recommend that a sweep is carried out in 
several frequency bands simultaneously to save time. The method consists of cutting 
out the signal (swept sine) which would be held between times 1t  and 2t  in several 
intervals taken between 1t  and at : at  and bt , ... , nt  and 2t , and applying the sum 
of these signals to the specimen. 

Knowing that the material is especially sensitive to the vibrations whose 
frequency is located between the half-power points, it can be considered that only 
the swept component which has a frequency near the frequency of resonance will act 
significantly on the behavior of the material, the others having little effect. In 
addition, if the specimen has several resonant frequencies, all will be excited 
simultaneously as in the real environment. 

Another possibility consists of sweeping the frequency range quickly and in 
reducing the sweep rate in the frequency bands where the dynamic response is 
important to measure the peaks correctly. 

C.F. Lorenzo [LOR 70] proposes a control technique based on this principle, 
usable for linear and logarithmic sweeps, making it possible to reduce with equal 
precision the test duration by a factor of about 7.5 (for linear sweep). 

The justification for a test with linear sweep clearly does not appear, unless we 
accept the assumption that the Q factor is not constant whatever the natural 
frequency 0f . If Q can vary according to a law Q = constant x 0f  (the Q factor 
often being an increasing function of the natural frequency), it can be shown that the 
best mode of sweep is the linear sweep. 
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Type of sweep Hyperbolic Logarithmic Linear 
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Table 9.3. Summary of sweep expressions 
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Table 9.5. Summary of sweep expressions  
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Type of 
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Appendix 

Laplace Transformations 

A.1. Definition 

Consider a real continuous function f t  of the real definite variable t for all 
t 0 and set 

F p L f t e f t dtp t
0

 [A.1] 

(provided that the integral converges). The function f t  is known as “origina” or 
“object”, the function F p  as “image” or “transform”. 

Example A.1. 

Consider a step function applied to t 0  and of amplitude fm . Integral [A.1] 
gives simply 

F p e f dt f
e

p
p t

m m

p t

0
0

 

 

 

[A.2] 

F p
f

p
m  [A.3] 
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A.2. Properties 

In this section some useful properties of this transformation are given, without 
examples. 

A.2.1. Linearity 

L f t f t L f t L f t1 2 1 2  [A.4] 

L c f t c L f t  [A.5] 

A.2.2. Shifting theorem (or time displacement theorem) 

 

Figure A.1. Shifting of a curve with respect to the variable t 

Consider f t , a transformable function, and operate a translation parallel to the 
axis 0t, of amplitude T (T 0). If F p  is the transform of f t , the transform of 
f t T  is equal to 

p e F pp T  [A.6] 

(formula of the translation on the right or shifting theorem). 

Application 

A square shock can be considered as being created by the superposition of two 

levels, one of amplitude mf  applied at time t 0  (transform: mf
p

, see preceding 
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example), the other of amplitude mf  applied at time t , of transform 

pmf
e

p
 yielding the expression of the transform 

pmf
L p 1 e

p
 [A.7] 

A.2.3. Complex translation 

L f t e F p aa t  [A.8] 

This result makes it possible to write the transform of f t e a t  directly when 
that of f t  is known. 

A.2.4. Laplace transform of the derivative of f(t) with respect to time 

The transform of the derivative f t  of f t  with respect to t is equal to 

L f t p F p f 0  [A.9] 

where F p  is the Laplace transform of f t  and f 0  is the value of the first 

derivative of f t  for t 0  (as t approaches zero from the positive side). 

In a more general way, the transform of the nth derivative of f t  is given by 

01nf02nfp0f2np0f1nppFnpndt

fnd
L   

 [A.10] 
where f n 1 0 , f n 2 0 ,..., f 0  are the successive derivatives of f t  for 

t 0  (as t approaches zero from the positive side). 
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A.2.5. Derivative in the p domain 

The nth derivative of the transform F p  of a function f t  with respect to the 
variable p is given by 

d F

dp
L t f t

n

n
n n1  [A.11] 

A.2.6. Laplace transform of the integral of a function f(t) with respect to time 

If lim f t dt 0
0

 when 0 , 

L f t dt
F p

p

t

0
 [A.12] 

and to the order n 

L dt dt f t dt
F p

p

t t t
n0 0 0

 [A.13] 

A.2.7. Integral of the transform F p  

The inverse transform of the integral of F p  between p and infinity is equal to: 

F p dp L
f t

tp
 [A.14] 

When integrating n times between the same limits, it becomes 

dp dp F p dp L
f t

tp p np
 [A.15] 
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A.2.8. Scaling theorem 

If a is a constant, 

L f
t

a
a F a p  [A.16] 

L f a t
a

F
p

a

1
 [A.17] 

A.2.9. Theorem of damping or rule of attenuation 

F p a e e f t dtp t a t
0

 [A.18] 

The inverse transform of F p a  is thus e f ta t . It is said that the function 

e a t  damps the function f t  when a is a positive real constant. 

A.3. Application of Laplace transformation to the resolution of linear 
differential equations  

For the principal use of the Laplace transformation, the interest resides in the 
property relating to derivatives and integrals which become, after transformation, 
products or quotients of the transform F p  of f t  by p or its powers. 

Let us consider, for example, the second order differential equation 

d q t

dt
a

dq t

dt
b q t f t

2

2  [A.19] 

where a and b are constants. Let us make Q p  and F p  the Laplace transforms of 
q t  and f t  respectively. From the relationships in section A.2.4, we have 

L q t p Q p p q q2 0 0  [A.20] 

L q t p Q p q 0  [A.21] 
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where q 0  and q 0  are the values of q t  and its derivative for t 0 . Due to the 
linearity of the Laplace transformation, it is possible to transform each member of 
differential equation [A.19] term by term: 

L q t a L q t b L q t L f t  [A.22] 

By replacing each transform with its expression, this becomes 

p Q p p q q a p Q p q b Q p F p2 0 0 0  [A.23] 

Q p
F p p q a q q

p a p b

0 0 0
2  [A.24] 

Let us expand the rational fraction 
bpap

0q0qa0qppF
2  into partial 

fractions; while noting that p1 and p2  are the roots of the denominator 

bpap2 , we have 

21
2 pp

D
pp

C

bpap

BpA
 [A.25] 

with 

A q 0  C
A p B

p p
1

1 2

 

B a q q0 0  D
A p B

p p
2

1 2

 

yielding 

Q p
F p

p a p b p p

A p B

p p

A p B

p p2
1 2

1

1

2

2

1
 [A.26] 

i.e. 

Q p
F p

p p p p p p1 2 1 2

1 1
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1 0 0 0 0 0 0

1 2

1

1

2

2p p

q p a q q

p p

q p a q q

p p
 [A.27] 

Q p
f

p p
e e d

t p t p t

1 2
0

1 2  

1
0 0 0 0 0 0

1 2
1 2

1 2

p p
q p a q q e q p a q q ep t p t  

 [A.28] 
where  is a variable of integration. In the case of a system initially at rest, 
q q0 0 0  and 

Q p
f

p p
e e d

t p t p t

1 2
0

1 2  [A.29] 

A.4. Calculation of inverse transform: Mellin–Fourier integral or Bromwich 
transform 

Once the calculations are carried out in the domain of p, where they are easier, it 
is necessary to return to the time domain and to express the output variables as a 
function of t. 

We saw that the Laplace transform F p  of a function f t  is given by [A.1] 

F p L f t e f t dtp t
0

 [A.30] 

The inverse transformation is defined by the integral known as the Mellin– 
Fourier integral 

L F p f t
i

F p e dpp t
C i

C i1 1

2
 [A.31] 

and calculated, for example, on a Bromwich contour composed of a straight line 
parallel to the imaginary axis, of positive abscissae C [ANG 61], C being such that 
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all the singularities of the function F p ep t  are on the left of the line [BRO 53]; 
this contour thus goes from C i  to C i . 

If the function F p ep t  only has poles, then the integral is equal to the sum of 
the corresponding residues, multiplied by 2 i . If this function has singularities 
other than poles, it is necessary to find, in each case, a equivalent contour to the 
Bromwich contour allowing calculation of the integral [BRO 53] [QUE 65]. 

The two integrals [A.1] and [A.31] establish a one-to-one relationship between 
the functions of t and those of p. 

These calculations can in practice be rather complex and, where possible, it is 
preferred to use tables of inverse transform which directly provide the transforms of 
the most common functions [ANG 61, DIT 67, HLA 69, SAL 71]. The inverse 
transformation is also performed using these tables after having expressed results as 
a function of p in a form revealing transforms whose inverse transform appears in 
Table A.1. 

Example A.2.  

Let us consider the expression of the response of a one-degree-of-freedom 
damped system subjected to a rectangular shock of amplitude one of the form 
f t 1 and of duration . For this length of time , i.e. for t , the Laplace 
transform is given by (Table A.1): 

F p
p

1
 [A.32] 

 
NOTE.– After the end of the shock, it would be necessary to use the relation 

p1 e
F p

p
. 

 
Equation [A.24] applies with a 2  and b 1, yielding 

q t L
p

p q q q

p p
1

0 0 0

2

1
2

2 1)
 

 

 
 

[A.33] 



Appendix     361 

q t L
p p p

q L
p

p p
1

2 0
1

2

1

2 1 2 1
 

1p2p
1

Lqq2 2
1

00                         [A.34] 

 
yielding, using Table A.1 ( 1): 

q t
e

t t
t

1
1

1 1 1
2

2 2 2sin cos  

q
e

t t
t

0 2
2 2 2

1
1 1 1cos sin  

2
1

10 0 2
2q q

e
t

t

sin                       [A.35] 

q t
e

q t q q t
t

1
1

1 1 1 1 1
2

2
0

2
0 0

2cos sin

[A.36] 

A.5. Laplace transforms 

Function f t  Transform L f t F p  

1 
1

p
 

t 
1
2p

 

eat  
1

p a
 

sin a t  
a

p a2 2  
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cos a t  
p

p a2 2  

sh a t  
a

p a2 2  

ch a t  
p

p a2 2  

t2  
2
3p

 

tn  
n

pn

!
1 (n integer 0) 

sin2 t  
2

42p p
 

cos2 t  
p

p p

2

2

2

4
 

a t a tsin  a

p p a

3

2 2 2  

sin cosa t a t a t  2 3

2 2 2
a

p a
 

t a tsin  
2
2 2 2

a p

p a
 

sin cosa t a t a t  2 2

2 2 2
a p

p a
 

t a tcos  p a

p a

2 2

2 2 2  

a b t b a tsin sin  a b a b

p a p b

2 2

2 2 2 2  
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1

2 3a
a t a t a tsin cos  

1
2 2 2

p a
 

cos cosa t b t

b a2 2  
p

p a p b2 2 2 2  

e e

b a

a t b t

 
1

p a p b
 

b e a e

b a

b t a t

 
p

p a p b
 

t ea t  
1

2p a
 

t en a t  
n

p a n
!

1 (n 1, 2, 3, ...) 
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p a

p a b2 2  

e b ta t sin  
b

p a b2 2  

1

1
4

2
1

4
1

4
1

4

2

2

2 2 2e

a

a a
t

a a
t

at

sin cos
 1

12p p a p
 

e
t t

t

1
1 1 1

2
2 2 2cos sin  

( 1) 

 
p

p p2 2 1
 

e
t

t

1
1

2
2sin  

1

2 12p p
 

e

h
h t

h t

1
1

2
2sin  

1

22 2p h p h
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e h t
e

h th t
h t

cos sin1
1

12
2

2  
p

p h p h2 22
 

e t t tt sin cos1 1 1

2 1

2 2 2

2 3 2  

1

2 12 2
p p

 

t e
t

t

2 1
1

2
2sin  

p

p p2 2
2 1

 

 

t e tt sin  2
2 2 2

p

p
 

 

t e tt cos  
p p

p

2 2 2

2 2 2

2 1  

1

2

2

e
t

t tt sin
cos  

p

p

2

2 2 2  

1

2

2

e
t

t tt sin
cos

t e t t e tt tcos sin  

2 2

2 2 2

1

p
 

t e t tt2 2 1
2 1

1
12

2

2
2cos sin  

1

2 12 2p p p
 

Table A.1. Laplace transforms 

These transforms can be used to calculate others, for example starting from 
decompositions in partial fractions such as 

1

1

1

12 2p p a p p

p a

p a p
 [A.37] 
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1

1

1

1

1

12 2 2 2

2

2p p a p p

a

p

a p

p a p

a

p a p
 [A.38] 

where, in these relations, there arises a 2 . 

A.6. Generalized impedance – the transfer function 

If the initial conditions are zero, equation [A.24] can be written 

p a p b Q p F p2  [A.39] 

i.e. while setting 

Z p p a p b2  [A.40] 

F p Z p Q p  [A.41] 

By analogy with the equation which links the current I  (output variable) and 
the tension E  (input variable) in an electrical supply network in sinusoidal mode 

E Z I  [A.42] 

Z p  is called the generalized impedance of the system, andZ  is the transfer 
impedance of the circuit. The inverse of A p  of Z p , pZ/1 , is the operational 
admittance. The function A p  is also termed the transfer function. It is by its 
intermediary that the output is expressed versus the input: 

Q p
Z p

F p A p F p
1

 [A.43] 

 





Vibration Tests:  
a Brief Historical Background 

The first studies on shocks and vibrations were carried out at the beginning of 
the 1930s to improve the behavior of buildings during earthquakes. With this 
framework in mind, M.A. Biot defined the shock spectrum to characterize these 
phenomena and to compare their severity. The term shock spectrum has since been 
changed to shock response spectrum (SRS) in order to avoid any confusion and to 
clearly show that it characterizes the response of a (linear with one-degree-of-
freedom) system subjected to the studied shock.  

Vibration tests on aircraft were developed from 1940 to verify the resistance of 
parts and equipment prior to their first use [BRO 67]. 

Such tests became necessary as a result of: 

– the increasing complexity of on-board flight equipment which was more 
sensitive to vibrations; 

– improved performance of aircraft (and, more generally, of vehicles), to the 
extent that the sources of vibration initially localized in engines became extended 
substantially outwards to the ambient medium (aerodynamic flows). 

The chronology of such developments can be summarized as follows [HUN 99], 
[PUS 77]: 

1940 Measurement of resonance frequencies. 
 Self-damping tests. 

Sine tests (at fixed frequency) corresponding to the frequencies created by 
engines running at a constant speed. 
Combined tests (temperature, humidity, altitude). 
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The exciters which were used at the time were mechanical and the vibration 
was created by the rotation of off-centered mass. Shock machines, of 
standard impact, were developed shortly after. The table, guided by vertical 
columns, fell into a tub filled with sand. The shape of the shock created 
during the impact could be selected by fixing pieces of wood of particular 
form under the table of the machine. 

1946 The first electrodynamic exciters were developed [DEV 47], [IMP 47]. 
Their limited power made it possible to carry out only tests of sinusoidal 
vibrations. 

At this time, the first standards were written and used for the acceptance 
tests carried out on each material. The measured vibratory environments 
being in general of random type, the standards quickly evolved towards 
“swept sine” tests which made it possible to cover a broad range of 
frequencies in spite of the limitations of the exciters. 

1950  Swept sine tests were introduced to simulate variations in engine speed, or to 
excite all of the resonance frequencies of the test item, regardless of its value. 

Test severities resulted from measurements of the real environment taken 
on a category of carriers. The measured signals were filtered using square 
filters and the largest peak of the response of the filters was drawn on an 
amplitude-filter central frequency diagram. 

The group of points thus obtained was largely enveloped by straight line 
segments in order to define a swept sine test, with constant displacement at 
low frequency, then eventually with constant velocity and finally with 
constant acceleration. 

Thus, the standards proposed swept sine tests, which are often still specified 
today in certain documents. It was, however, understood that it would be 
better to apply random vibration tests, and it was attempted to specify swept 
narrowband random vibration tests, broadband random vibration tests not 
being possible because of the lack of power of machines. All of these 
studies were essentially completed for military applications. 

Similarly to today, shocks carried out on the shock machines were limited 
to simple shapes: half-sine wave, square (or trapezoidal) shock and terminal 
peak sawtooth shock. For convenience, and in order to reduce costs, the 
possibility of creating shocks directly with an exciter was studied. With the 
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test specimen remaining on the same machine for both shocks and 
vibrations, it was possible to gain much time. 

1953 Specifications and tests with random vibrations (introduction of jet engines, 
simulation of jet flows and aerodynamic turbulences with continuous 
spectra). These tests were highly controversial until the 1960s [MOR 53].  
To overcome the insufficient power of such installations, attempts were 
made to promote swept narrowband random variations in the frequency 
domain of interest [OLS 57]. 

1955 First publications on acoustic vibrations (development of jet rockets and 
engines, effect of acoustic vibrations on their structures and equipment). 

1957 First acoustic chambers [BAR 57], [COL 59], [FRI 59]. 

1960 The specification of random vibration became essential and the possibilities 
of an exciter were sufficient to carry out broad band random vibrations. 
Studies were carried out to determine equivalences between random and 
sine vibrations. 

Missiles and also space vehicles and satellite launchers use many 
pyrotechnic devices, which enable them to use very precise time slots 
during the operation of equipment (separation between propelling stages, 
firing of an engine for example). These devices contain small amounts of 
explosives which generate very short, but locally very severe, high 
frequency shocks, which are propagated in the structures while attenuating 
and combining with the response of structures. The frequency contents of 
these “pyrotechnical shocks” thus increases with frequencies closer to those 
of the equipments. Their amplitude remaining still significant, these shocks 
can produce important malfunctions. 

In the 1960s some publications reported the new interest in these shocks, 
which were often regarded as not very severe because of the very high 
frequency. Following incidents, a very large number of works were published 
in the early 1980s, and this interest has continued until today, both to measure 
shocks, study the propagation, to attenuate or to filter them mechanically and 
to take them into account in the softwares used for the dimensioning of parts. 

With acceptance tests arriving late in the design/production process, in the 
event of problems with the behavior of the materials, it was preferred in 
around 1960 to carry out qualification tests before beginning the production 
of the products, using standards still defined without reference to the real 
environment. 
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1965 J.W. Cooley and J.W. Tukey’s algorithm for calculating FFTs [COO 65]. 

Although the spectrum of shock is still criticized and not used to specify the 
shocks in the standards, it was very useful for severity comparison of 
several shocks in the absence of a more powerful tool. Some first attempts 
were made to try to control the exciters directly starting from a shock 
response spectrum, in order to be able to simulate shocks for which the SRS 
is difficult to reproduce starting from a simple shape shock. 

1967 Increasing number of publications on acoustic vibrations. 

1970 Tri-axial test facility [DEC 70]. 

Development of digital control systems. 

1975 The use of standards that superficially recreate the environment sometimes 
led to the creation of products which were too large for their environment, 
or sometimes to imaginary problems – the material being designed more to 
resist the qualification tests than to resist real conditions of the 
environment. It was in addition often necessary to reduce the mass of the 
material to the maximum. It was thus necessary to dimension the material 
to resist, with a certain margin, its real conditions of use. 

This remark was at the origin of the development of a method transforming 
and epitomizing measurements of the mechanical environment into test 
specifications expressed in a simple form and with a reduced duration in 
order to reduce costs. This procedure implies: 

– determination of the life profile of the products;  

– searching for measurements corresponding to each condition of the 
identified environment;  

– then, the synopsis of all the data collected in order to calculate the 
simplest possible specification from it, with a small number of tests of 
reduced duration if the real environment is of long duration; 

– finally, the tests thus determined must be organized in order to ensure 
the best representativeness of the tests with the lowest cost. 

1975 Extreme response spectra and fatigue damage spectra developed; useful in 
writing specifications (a method in four stages starting from the lifecycle 
profile). 
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Equivalence necessary during the synopsis is based on two criteria: the 
reproduction in the tests of the largest stresses created in the product when 
it is in its real environment (except duration reduction) and the reproduction 
of the fatigue damage related to a large number of stress cycles undergone 
by the material. These two criteria are the base of the extreme response 
spectra and fatigue damage spectra developed around 1975, unifying the 
methods of shock and vibration analysis. The application of this method 
supposes the exploitation of many measurements and the realization of 
calculations, which led to the development of software running under 
Windows and, associated with databases, under Unix. 

1984 Account taken of the tailoring of tests in certain standard documents (MIL-
STD-810F [MIL 97], [GAM 92]): development of specifications on the 
basis of measuring the real environment. 

Versions of the standards MIL STD 810 D in the USA and GAM EG 13 in 
France, then NATO standards, have themselves evolved in this direction in 
years 1980/1985, requiring the test tailoring. However, only standard GAM 
EG 13 proposes and describes in its technical appendices the method by the 
equivalence of damages. 

At that time the MIL STD 810 standard explicitly authorized the use of the 
shock response spectrum to specify shocks. 

1995 Taking the environment into account in the project management (according 
to the R.G. Aero 00040 Recommendation). 

Test tailoring makes it possible to demonstrate during the qualification tests 
that the developed product will be resistant to its future real environment. 
These tests arrive late in the event of failure, since they oblige a resumption 
of the design of the object. This is why in around 1990 the concept of 
tailoring the product to its environment was introduced, which encourages 
taking into account the real environment through a step of tailoring at the 
very beginning of the project. 



372     Sinusoidal Vibration 

 

Historical background. Overview of the main developments in the  
field of vibrations, shocks and standardization of tests 

 



 

Bibliography 

[AER 62] Aeronautical Systems Division, Establishment of the approach to, and development 
of, interim design criteria for sonic fatigue”, ASD-TDR 62-26, AD 284597, Flight 
Dynamics Laboratory, Wright–Patterson Air Force Base, Ohio, June 1962. 

[AKA 69] AKAIKE H., SWANSON S.R., “Load history effects in structural fatigue”, 
Proceedings of the 1969 Annual Meeting IES, April 1969. 

[ANG 61] ANGOT A., “Compléments de mathématiques”, Editions de la Revue d’Optique, 
Collection Scientifique et Technique du CNET, 1961. 

[AST 01] ASTAKHOV V.P., SHVETS S.V., “A novel approach to operating force evaluation in 
high strain rate metal-deforming technological processes”, Journal of Materials 
Processing Technology, 117, pp.226-237, 2001. 

[BAC 87] BACA T.J., “Spectral density estimates of coarsely quantized random vibration 
data”, The Shock and Vibration Bulletin n°57, Part 2, p.11-20, January 1987.  

[BAN 77] BANDSTRA J.P., Comparison of equivalent viscous damping and nonlinear damping 
in discrete and continuous vibrating systems, Masters Thesis, University of Pittsburgh, 
1977 or Transactions of the ASME, Vol. 15, July, 382–392, 1983. 

[BAR 48] BARBER N.F., URSELL F., “The response of a resonant system to a gliding tone”, 
Philosophical Magazine, Series 7, Vol. 39, 354–61, 1948. 

[BAR 57] BARUCH J.J., “A new high-intensity noise-testing facility”, The Shock and 
Vibration Bulletin, no. 25, Part II, 25–30, Dec. 1957. 

[BAR 61] BARTON M.V., CHOBOTOV V., FUNG Y.C., A Collection of Information on Shock 
Spectrum of a Linear System, Space Technology Laboratories, July 1961. 

[BAS 75] BASTENAIRE F., “Estimation et prévision statistiques de la résistance et de la durée 
de vie des matériaux en fatigue”, Journées d’Etude sur la Fatigue, University of 
Bordeaux I, 29 May 1975. 

[BEA 80] BEARDS C.F., “The control of structural vibration by frictional damping in joints”, 
Journal of the Society of Environmental Engineers, Vol. 19, no. 2 (85), 23–7, June 1980. 



374     Sinusoidal Vibration 

[BEA 82] BEARDS C.F., “Damping in structural joints”, The Shock and Vibration Digest,  
Vol. 14, no. 6, 9–11, June 1982. 

[BEA 96] BEARDS C.F., Structural Vibration: Analysis and Damping, Arnold, London, 1996. 

[BEN 62] BENDAT J.S., ENOCHSON L.D., KLEIN G.H., PIERSOL A.G., “Advanced concepts of 
stochastic processes and statistics for flight vehicle vibration estimation and 
measurement”, ASD-TDR-62-973, Dec. 1962. 

[BEN 63] BENDAT J.S., ENOCHSON L.D., PIERSOL A.G., “Analytical study of vibration data 
reduction methods”, Contract NAS8-5093, The Technical Products Company, Los 
Angeles, Sept. 1963. 

[BEN 71] BENDAT J.S., PIERSOL A.G., Random Data: Analysis and Measurement Procedures, 
Wiley Interscience, 1971. 

[BER 73] BERT C.W., “Material damping: an introductory review of mathematical models, 
measures and experimental techniques”, Journal of Sound and Vibration, Vol. 29, no. 2, 
129–53, 1973. 

[BER 76] BERGMAN L.A. and HANNIBAL A.J., “An alternate approach to modal damping as 
applied to seismic-sensitive equipment”, The Shock and Vibration Bulletin, no. 46, Part 2, 
69–83, Aug. 1976. 

[BIC 70] BICKEL H.J., CITRIN A., “Constant percentage bandwidth analysis of swept–
sinewave data”, Proceedings of the IES, 272–6, 1970. 

[BIR 77] BIRCHAK J.R., “Damping capacity of structural materials”, The Shock and Vibration 
Digest, Vol. 9, no. 4, 3–11, April 1977. 

[BIS 55] BISHOP R.E.D., “The treatment of damping forces in vibration theory”, Journal of 
the Royal Aeronautical Society, Vol. 59, 738, Nov. 1955. 

[BLA 56] BLAKE R.E., BELSHEIM R.O., WALSH J.P., “Damaging potential of shock and 
vibration”, ASME Publication – Shock and Vibration Instrumentation, 147–63, 1956. 

[BLA 61] BLAKE R.E., “Basic vibration theory”, in HARRIS C.M. and CREDE C.E. (Eds), 
Shock and Vibration Handbook, Mc GrawHill Book Company, Inc., Vol. 1, no. 2, 1–27, 
1961. 

[BRA 11] BRANDT A., Noise and Vibration Analysis - Signal Analysis and Experimental 
Procedures, Wiley and Sons, Ltd., 2011. 

 [BRO 53] BRONWELL A., Advanced Mathematics in Physics and Engineering, McGraw-Hill 
Book Company, Inc., 1953. 

[BRO 62] BROWN D., “Digital techniques for shock and vibration analysis”, 585E, National 
Aerospace Engineering and Manufacturing Meeting, Society of Automotive Engineers, 
Los Angeles, Calif., 8–12, Oct. 1962. 

[BRO 67] BROCH J.T., “Essais en vibrations. Les raisons et les moyens”, Technical Review, 
Bruël and Kjaer, no. 3, 1967. 



Bibliography 375

[BRO 75] BROCH J.T., “Sur la mesure des fonctions de réponse en fréquence”,
, Bruël and Kjaer, no. 4, 1975.

[BRO 84] BROCH J.T., , Br el and Kjaer,
Denmark, Naerum., 1984.

[BUR 59] BURGESS J.C., “Quick estimation of damping from free damped oscillograms”,
.

[BYE 67] BYERS J.F., “Effects of several types of damping on the dynamical behavior of
harmonically forced single-degree-of-freedom systems”,

, 2 Jan. 1967.

[CAM 53] CAMPBELL J.D., “An investigation of the plastic behavior of metal rods subjected
to longitudinal impact”, , Vol. 1, 113, 1953.

[CAP 82] CAPRA A., DAVIDOVICI V., ,
Eyrolles, 1982.

[CAU 59] CAUGHEY T.K., “Response of a nonlinear string to random loading”,
, , 341–4, 26 Sept. 1959.

[CHE 66] CHENG D.K., , Addison Wesley Publishing Company,
Inc., 1966.

[CLA 49] CLARK D.S., WOOD D.S., “The time delay for the initiation of plastic deformation
at rapidly applied constant stress”,

, Vol. 49, 717–35, 1949.

[CLA 54] CLARK D.S., “The behaviour of metals under dynamic loading”,
, Vol. 46, 34–62, 1954.

[CLO 03] CLOUGH R.W., PENZIEN J., , Third Edition, Computers
Structures, Inc., Berkeley, CA, 1995.

[COL 59] COLE J.H., VON GIERKE H.E., OESTREICHER H.L., POWER R.G., “Simulation of
random acoustic environments by a wide band noise siren”,

, no. 27, Part II, 159–68, June 1959.

[COO 65] COOLEY J.W., TUKEY J.W., “An algorithm for the machine calculation of complex
Fourier series”, , Vol. 19, 297–30, April 1965.

[CRA 58] CRANDALL S.H., , The MIT. Press, Massachussetts Institute of
Technology, Cambridge, Massachussets, 1958.

[CRA 62] CRANDALL S.H., “On scaling laws for material damping”, , Dec.
1962.

[CRE 54] CREDE C.E., GERTEL M., CAVANAUGH R.D., “Establishing vibration and shock tests
for airborne electronic equipment” , June 1954.

[CRE 56] CREDE C.E., LUNNEY E.J., “Establishment of vibration and shock tests for missile
electronics as derived from the measured environment”,

, 1 Dec. 1956.



376     Sinusoidal Vibration 

[CRE 61] CREDE C.E., RUZICKA J.E., Theory of Vibration Isolation, Shock and Vibration 
Handbook, McGraw-Hill Book Company, Vol. 2, 30, 1961. 

[CRE 65] CREDE C.E., Shock and Vibration Concepts in Engineering Design, Prentice Hall, 
Inc., Englewood Cliffs, NJ, 1965. 

[CRO 56] CRONIN D.L., “Response of linear viscous damped systems to excitations having 
time-varying frequency”, Calif. Instit. Technol-Dynam-Lab Rept, 1956. 

[CRO 68] CRONIN D.L., “Response spectra for sweeping sinusoidal excitations”, The Shock 
and Vibration Bulletin, no. 38, Part 1, 133–9, Aug. 1968. 

[CRU 70] CRUM J.D., GRANT R.L., “Transient pulse development”, The Shock and Vibration 
Bulletin, Vol. 41, Part 5, 167–76, Dec. 1970. 

[CUR 55] CURTIS A.J., “The selection and performance of single-frequency sweep vibration 
tests”, Shock, Vibration and Associated Environments Bulletin, no. 23, 93–101, 1955. 

[CUR 71] CURTIS A.J., TINLING N.G., ABSTEIN H.T., “Selection and performance of vibration 
tests”, The Shock and Vibration Information Center, SVM 8, 1971. 

[DAV 04] DAVIS J.R., Tensile Testing, Second Edition, ASM International, Materials Park 
Ohio, December 2004. 

[DEC 70] DECLUE T.K., ARONE R.A., DECKARD C.E., “Multi-degree of freedom motion 
simulator systems for transportation environments”, The Shock and Vibration Bulletin, 
no. 41, Part 3, 119–32, Dec. 1970. 

[DEN 29] DEN HARTOG J.P., “Forced vibrations with Coulomb damping”, Univ. Pittsburgh 
Bull., Vol. 26, no. 1, Oct. 1929. 

[DEN 30a] DEN HARTOG J.P. , “Forced vibrations with combined viscous and Coulomb 
damping”, Philosophical Magazine, Vol. 9, no. LIX, Suppl., 801–17, May 1930. 

[DEN 30b] DEN HARTOG J.P., “Steady forced vibration as influenced by damping”,  
Transactions of the ASME, Vol. 52, Appl. Mech. Section, 178–80, 1930. 

[DEN 56] DEN HARTOG J.P., Mechanical Vibrations, McGraw-Hill Book Company, 1956. 

[DEN 60] DEN HARTOG J.P., Vibrations Mécaniques, Dunod, 1960. 

[DEV 47] “Development of NOL shock and vibration testing equipment”, The Shock and 
Vibration Bulletin, no. 3, May 1947. 

[DIE 88] DIETER G.E., Mechanical Metallurgy, McGraw-Hill Series in Materials Science and 
Engineering, 1988. 

[DIM 61] DIMENTBERG F.M., Flexural Vibrations of Rotating Shafts, Butterworths, London, 
1961. 

[DIT 67] DITKIN V.A., PRUDNIKOV A.P., Formulaire Pour le Calcul Opérationnel, Masson, 
1967. 

[DUB 59] DUBLIN M., “The nature of the vibration testing problem”, Shock, Vibration and 
Associated Environments Bulletin, no. 27, Part IV, 1–6, June 1959. 



Bibliography 377

[EAR 72] EARLES S.W.E., WILLIAMS E.J., “A linearized analysis for frictionally damped
systems”, , Vol. 24, no. 4, 445–58, 1972.

[ELD 61] ELDRED K., ROBERTS W.M., WHITE R., “Structural vibrations in space vehicles”,
, Dec. 1961.

[ENC 73] , Presses de la Cité,
Vol. 9, 539–43, 1973.

[ERE 99] EREN H., “Acceleration, Vibration and Shock Measurement”, Chapter 17,
, CRC Press Llc, 1999.

[FEL 59] FELTNER C.E., “Strain hysteresis, energy and fatigue fracture”, ,
University of Illinois, Urbana, June 1959.

[FIX 87] , Br el Kjaer, Denmark, October 1987.

[FOL 72] FOLEY J.T., GENS M.B., MAGNUSON F., “Current predictive models of the dynamic
environment of transportation”, ,
162–71, May 1972.

[FÖP 36] FÖPPL O., “The practical importance of the damping capacity of metals, especially
steels”, , Vol. 134, 393–455, 1936.

[FÖR 37] FÖRSTER F., “Ein neues Me verfahren zur Bestimmung des Elastizit ts-moduls und
der D mpfung”, , 29, Jahrgang, Heft 4, 109–15, April 1937.

[FOU 64] FOUILLE A., , Dunod, 1964.

[FRI 59] FRIKE W., KAMINSKY R.K., “Application of reverberant and resonant chamber to
acoustical testing of airborne components”, , no. 27,
Part II, 216–25, June 1959.

[FUN 58] FUNG Y.C., BARTON M.V., “Some shock spectra characteristics and uses”,
s, Vol. 35, Sept. 1958.

[GAB 69] GABRIELSON V.K., REESE R.T., “Shock code user’s manual – a computer code to
solve the dynamic response of lumped-mass systems”, , November 1969.

[GAM 92] GAM EG13, , Annexe Générale
Mécanique, DGA – Minist re de la Défense, 1992.

[GAN 85] GANTENBEIN F., LIVOLANT M., , Presses de
l’Ecole Nationale des Ponts et Chaussées, 365–72, 1985.

[GER 61] GERTEL M., “Specification of laboratory tests”, in HARRIS C.M. and CREDE C.E.,
, Vol. 2, Chapter 24, 1–34, McGraw-Hill Book Company,

1961.

[GIR 08] GIRARD A., ROY N., , ISTE, London, John Wiley
Sons, New York, 2008.

[GOO 76] GOODMAN L.E.,
, Vol. 36, McGraw-Hill Book Company, 1976.



378     Sinusoidal Vibration 

[GUI 63] GUILLIEN R., Electronique, Presses Universitaires de France, Vol. 1, 1963. 

[GUR 59] GURTIN M., Vibration analysis of discrete mass systems, G.E. Report no. 59, 
GL75, General Engineering Laboratory, 15 March 1959. 

[HAB 68] HABERMAN C.M., Vibration Analysis, C.E. Merril Publishing Company, Columbus, 
Ohio, 1968. 

[HAG 63] HAGER R.W., CONNER E.R., “Road transport dynamic”, Shock, Vibration and 
Associated Environments Bulletin, no. 31, part III, 102–9, Apr. 1963.  

[HAL 75] HALLAM M.G., HEAF N.J., WOOTTON L.R., Dynamics of marine structures: 
methods of calculating the dynamic response of fixed structures subject to wave and 
current action, Report UR 8, CIRIA Underwater Engineering Group, ATKINS Research 
and Development, Oct. 1975. 

[HAL 78] HALLAM M.G., HEAF  N.J., WOOTTON L.R., Dynamics of marine structures: 
Methods of calculating the dynamic response of fixed structures subject to wave and 
current action, Report UR 8, CIRIA Underwater Engineering Group, Oct. 1978. 

[HAU 65] HAUGEN E.B., “Statistical strength properties of common metal alloys”, SID 65 - 
1274, North American Aviation Inc., Space and Information Systems Division, 30 Oct. 
1965. 

[HAW 64] HAWKES P.E., “Response of a single-degree-of-freedom system to exponential 
sweep rates”, Shock, Vibration and Associated Environments, no. 33, Part 2, p 296–304, 
Feb. 1964. (Or Lockheed Missiles and Space Company Structures Report LMSC A 
362881 - SS/690, 12 Nov. 1963). 

[HAY 72] HAY J.A., “Experimentally determined damping factors”, Symposium on Acoustic 
Fatigue, AGARD CP 113, page 12–1 to 12–15, Sept. 1972. 

[HAY 99] HAYES M.H., Digital Signal Processing, Schaum’s Outline Series, McGraw-Hill, 
1999.  

[HLA 69] HLADIK J., La Transformation de Laplace à Plusieurs Variables, Masson, 1969. 

[HOB 76] HOBAICA C., SWEET G., “Behaviour of elastomeric materials under dynamic 
loads”, The Shock and Vibration Digest, Vol. 8, no. 3, 77–8, March 1976. 

[HOK 48] HOK G., “Response of linear resonant systems to excitation of a frequency varying 
linearly with time”, Journal of Applied Physics, Vol. 19, 242–50, 1948. 

[HOP 04] HOPKINSON B., “The effects of momentary stresses in metals”, Proceedings of the 
Royal Society of London, Vol. 74, 717–35, 1904–5. 

[HOP 12] HOPKINSON B., TREVOR-WILLIAMS G., “The elastic hysteresis of steel”, 
Proceedings of the Royal Society of London, Series A, Vol. 87, 502, 1912. 

[HUN 99] HUNTER N.F., Vibration testing – Reviewing the state of the art, Los Alamos 
National Laboratory, LA-UR-99-3413, Paper Submitted to SD 2000 Conference, June 23, 
1999. 



Bibliography     379 

[IMP 47] “Impressions of the shock and vibration tour”, The Shock and Vibration Bulletin, 
no. 2, Naval Research Laboratory, March 1947. 

[JAC 30] JACOBSEN L.S., “Steady forced vibration as influenced by damping”, Transactions 
of the ASME 52, Appl. Mech. Section, 169–78, 1930. 

[JAC 58] JACOBSEN L.S., AYRE R.S., Engineering Vibrations, McGraw-Hill Book Company, 
Inc., 1958. 

[JEN 59] JENSEN J.W., Damping capacity: Its measurement and significance, Report of 
Investigations 5441, US Bureau of Mines, Washington, 1959. 

[JON 69] JONES D.I.G., HENDERSON J.P., NASHIF A.D., “Reduction of vibrations in aerospace 
structures by additive damping”, The Shock and Vibration Bulletin, no. 40,  
Part 5, 1–18, 1969. 

[JON 70] JONES D.I.G., HENDERSON J.P., NASHIF A.D., “Use of damping to reduce vibration 
induced failures in aerospace systems”, Proceedings of the Air Force Conference on 
Fatigue and Fracture of Aircraft Structures and Materials, Miami Beach, 15–18 Dec. 
1969, or AFFDL TR70-144, 503–19, 1970. 

[KAR 40] KARMAN T.V., BIOT M.A., Mathematical Methods in Engineering, McGraw-Hill 
Book Company, Inc., 1940. 

[KAR 50] KARMAN T.V., DUWEZ P.E., “The propagation of plastic deformation in solids”, 
Journal of Applied Physics, Vol. 21, 987, 1950. 

[KAR 01] KARNOVSKY I.A., LEBED O.I.,  Formulas for Structural Dynamics: Tables, Graphs 
and Solutions, McGraw-Hill, 2001. 

[KAY 77] KAYANICKUPURATHU J.T., “Response of a hardening spring oscillator to random 
excitation”, The Shock and Vibration Bulletin, no. 47, Part 2, 5–9, 1977. 

[KEN 47] KENNEDY C.C., PANCU C.D.P., “Use of vectors in vibration measurement and 
analysis”, Journal of the Aeronautical Sciences, Vol. 14, 603–25, 1947. 

[KEV 71] KEVORKIAN J., “Passage through resonance for a one-dimensional oscillator with 
slowly varying frequency”, SIAM Journal of Applied Mathematics, Vol. 20, no. 3, May 
1971. 

[KHA 57] KHARKEVTICH A.A., Les Spectres et l’analyse, Editions URSS, Moscow, 1957. 

[KIM 24] KIMBALL A.L., “Internal friction theory of shaft whirling”, General Electric 
Review, Vol. 27, 244, April 1924. 

[KIM 26] KIMBALL A.L., LOVELL D.E., “Internal friction in solids”, Transactions of the 
ASME, Vol. 48, 479–500, 1926. 

[KIM 27] KIMBALL A.L., LOVELL D.E., “Internal friction in solids”, Physical Review,  
Vol. 30, 948–59, December 1927. 

[KIM 29] KIMBALL A.L., “Vibration damping, including the case of solid friction”, ASME, 
APM-51-21, 1929. 



380 Sinusoidal Vibration

[KLE 71a] KLESNIL M., LUKAS P., RYS P., , Inst. of Phys.
Met., Brno, 1971.

[KLE 71b] KLEE B.J., , Tustin Institute of
Technology, Santa Barbara, California, 1971.

[LAL 75] LALANNE C., La simulation des environnements de choc mécanique, Rapport CEA-
R - 4682, Vols. 1 and 2, 1975.

[LAL 80] LALANNE M., BERTHIER P., DER HAGOPIAN J., ,
Masson, 1980.

[LAL 82] LALANNE C., “Les vibrations sinuso dales fréquence balayée”,
no. 803, 8 June 1982.

[LAL 95a] LALANNE C., “Analyse des vibrations aléatoires”, , 10 May
1995.

[LAL 95b] LALANNE C., “Vibrations aléatoires – Dommage par fatigue subi par un syst me
mécanique un degré de liberté”, , 20 Jan. 1995.

[LAL 96] LALANNE C., “Vibrations mécaniques”, , 22 May 1996.

[LAL 04] LALANNE C.,
, Hermes–Lavoisier, Paris, 2004.

[LAN 60] LANDAU L., LIFCHITZ E., , Editions de la Paix,
Vol. 1, 1960.

[LAZ 50] LAZAN B.J., “A study with new equipment of the effects of fatigue stress on the
damping capacity and elasticity of mild steel”, , Vol. 42, 499–
558, 1950.

[LAZ 53] LAZAN B.J., “Effect of damping constants and stress distribution on the resonance
response of members”, , ,
Vol. 20, 201–9, 1953.

[LAZ 68] LAZAN B.J., ,
Pergamon Press, 1968.

[LEV 60] LEVITAN E.S., “Forced oscillation of a spring–mass system having combined
Coulomb and viscous damping”, , Vol. 32,
no. 10, 1265–9, Oct. 1960.

[LEV 76] LEVY S., WILKINSON J.P.D., ,
McGraw-Hill Book Company, 1976.

[LEV 07] LEVINE S., “Vibration test fixtures: theory and practice”, August 2007,
http://www.aeronavlabs.com/images/technical%20article.pdf.

[LEW 32] LEWIS F.M., “Vibration during acceleration through a critical speed”,
, , 253–61, 1932.

[LIN 71] LINDHOLM U.S., “Techniques in Metals Research,” , Vol. 1, 1971.



Bibliography     381 

[LOR 70] LORENZO C.F., “Variable-sweep-rate testing: a technique to improve the quality 
and acquisition of frequency response and vibration data”, NASA Technical Note D-7022, 
Dec. 1970. 

[MAB 84] MABON L., PRUHLIERE J.P., RENOU C., LEJUEZ W., “Modèle mathématique d’un 
véhicule”, ASTE, IXe Journées Scientifiques et Techniques, Paris, 153–61, 6–8 March 
1984. 

[MAC 58] MACDUFF J.N., CURRERI J.R., Vibration Control, McGraw-Hill Book Company, 
Inc., 1958. 

[MAR 90] MARSHALL A. G., VERDUN F.R., Fourier Transforms in NMR. Optical, and Mass 
Spectrometry, New York: Elsevier Publishing Company, Inc., 1990. 

[MAZ 66] MAZET R., Mécanique Vibratoire, Dunod, 1966. 

[MEI 67] MEIROVITCH L.,  Analytical Methods in Vibrations, The Macmillan Company, New 
York, 1967. 

[MEN 05] MENDIS P., NGO T., “Vibration and shock problems of civil engineering 
structures”, Vibration and Shock Handbook, C.W. DE SILVA (ed.), CRC Taylor & Francis, 
2005. 

[MIL 97] MIL-STD-810F, Test Method Standard for Environmental Engineering 
Considerations and Laboratory Tests, 1997.  

[MIN 45] MINDLIN R.C., “Dynamics of package cushioning”, Bell System Technical Journal, 
Vol. 24, 353–461, July–Oct. 1945. 

[MOR 53] MORROW C.T., MUCHMORE R.B., “Simulation of continuous spectra by line spectra 
in vibration testing”, The Shock and Vibration Bulletin, no. 21, Nov. 1953. 

[MOR 63a] MORLEY A.W., BRYCE W.D., “Natural vibration with damping force proportional 
to a power of the velocity”, Journal of the Royal Aeronautical Society,  
Vol. 67, 381–5, June 1963. 

[MOR 63b] MORROW C.T., Shock and Vibration Engineering, John Wiley & Sons Inc.,  
Vol. 1, 1963. 

[MOR 65] MORSE R.E., “The relationship between a logarithmically swept excitation and the 
build-up of steady-state resonant response”, The Shock and Vibration Bulletin, no. 35, 
Part II, 231–62, 1965. 

[MOR 76] MORROW T., “Environmental specifications and testing”, in HARRIS C.M. and 
CREDE C.E (Eds), Shock and Vibration Handbook, 2nd ed., 1–13, McGraw-Hill Book 
Company, 1976. 

[MUR 64] MURFIN W.B., “Dynamics of mechanical systems”, Sandia National Labs, RPT 
SC-TM 640931, Aug. 1964. 

[MUS 68] MUSTER D., “International standardization in mechanical vibration and shock”, 
Journal of Environmental Sciences, Vol. 11, no. 4, 8–12, Aug. 1968. 



382     Sinusoidal Vibration 

[MYK 52] MYKLESTAD N.O., “The concept of complex damping”, Journal of Applied 
Mechanics, Vol. 19, 284–6, 1952. 

[NEL 80] NELSON F.C., GREIF R., “Damping models and their use in computer programs”, 
Structural Mechanics Software Series, Vol. 3, 307–37, University Press of Virginia, 
1980. 

[OLS 57] OLSON M.W., “A narrow-band-random-vibration test”, The Shock and Vibration 
Bulletin, no. 25, Part I, 110, Dec. 1957. 

[OST 65] OSTREM F.E., RUMERMAN M.L., Shock and Vibration - Transportation 
Environmental Criteria, Final Report, General American Research Division, Niles, Ill., 
MR 1262, Contract NAS- 8-11451, September 21, 1965. 

[OST 67] OSTREM F.E., RUMERMAN M.L., Transportation and Handling - Shock and 
Vibration - Environmental Criteria, Final Report NAS 8-11451, Prepared by General 
American Research Division, Niles, Ill., MR 1262 - 2, Contract NAS- 8-11451, April 28, 
1967. 

[PAI 59] PAINTER G.W., “Dry-friction damped isolators”, Prod. Eng., Vol. 30, no. 31, 48–51, 
3 Aug. 1959. 

[PAR 61] PARKER A.V., “Response of a vibrating system to several types of time-varying 
frequency variations”, Shock, Vibration and Associated Environments Bulletin, no. 29, 
Part IV, 197–217, June 1961. 

[PEN 65] PENNINGTON D., Piezoelectric Accelerometer Manual, Endevco Corporation, 
Pasadena, California, 1965. 

[PIE 64] PIERSOL A.G., “The measurement and interpretation of ordinary power spectra for 
vibration problems”, NASA - CR 90, 1964. 

[PIM 62] PIMONOW L., Vibrations en Régime Transitoire, Dunod, 1962. 

[PLU 59] PLUNKETT R., “Measurement of damping”, in J. RUZICKA (Ed.), Structural 
Damping, ASME, Section Five, 117–31, Dec. 1959. 

[POT 48] POTTER E.V., “Damping capacity of metals”, USBRMI, Wash., R. of I. 4194, 
March 1948. 

[PUS 77] PUSEY H.C., “An historical view of dynamic testing”, Journal of Environmental 
Sciences, 9–14, Sept./Oct. 1977. 

[QUE 65] Quelques Formes Modernes de Mathématiques, Publications de l’OCDE,  
Nov. 1965. 

[REE 60] REED W.H., HALL A.W., BARKER L.E., Analog techniques for measuring the 
frequency response of linear physical systems excited by frequency sweep inputs, NASA 
TN D 508, 1960. 

[REE 67] REED R.R., Analysis of structural response with different forms of damping, NASA 
TN D-3861, 1967. 



Bibliography     383 

[REI 56] REID T.J., “Free vibration and hysteretic damping”, Journal of the Royal 
Aeronautical Society, Vol. 60, 283, 1956. 

[RID 69] RIDLER K.D., BLADER F.B., “Errors in the use of shock spectra”, Environmental 
Engineering, 7–16, July 1969. 

[RIS 08] RISSI G. O., SINGH S. P., BURGESS G., SINGH J., “Measurement and analysis of truck 
transport environment in Brazil”, Packaging Technology and Science, 21, p.231–246, 
2008.  

[ROO 82] ROONEY G.T., DERAVI P., “Coulomb friction in mechanism sliding joints”, 
Mechanism and Machine Theory, Vol. 17, no. 3, 207–11, 1982. 

[ROS 93] ROSENBERGER T.E., DESPIRITO J., A Method for Eliminating the Effects of 
Aliasing When Acquiring Interior Ballistic Data From Regenerative Liquid Propellant 
Guns, Army Research Laboratory, ARL-TR- 132 May 1993. 

[RUB 64] RUBIN S., “Introduction to dynamics”, Proceedings of the IES, 3–7, 1964. 

[RUZ 57] RUZICKA J.E., Forced vibration in systems with elastically supported dampers, 
Masters Thesis, MIT, Cambridge, Mass., June 1957. 

[RUZ 71] RUZICKA J.E., DERBY T.F., “Influence of damping in vibration isolation”, The 
Shock and Vibration Information Center, USDD, SVM-7, 1971. 

[SAL 71] SALLES F., Initiation au Calcul Opérationnel et à Ses Applications Techniques, 
Dunod, 1971. 

[SCA 63] SCANLAN R.H., MENDELSON A., “Structural damping”, AIAA Journal, Vol. 1, no. 4, 
938–9, April 1963. 

[SHA 49] SHANNON C.E., “Communication in the presence of noise”, Proceedings of the IRE, 
no. 37, 10–21, Jan. 1949. 

[SHR 95] SHREVE D.H., Signal Processing for Effective Vibration Analysis, IRD 
Mechanalysis, Inc Columbus, Ohio, pp.1-11, November 1995 
(http://www.irdbalancing.com/downloads/SIGCOND2_2.pdf). 

[SIE 97] SIERAKOWSKI R.L., “Strain rate behavior of metals and composites”, Atti del XIII 
Convegno del Gruppo Italiano Frattura, IGF, Cassino, 1997. 

[SKI 66] SKINGLE C.W., A method for analysing the response of a resonant system to a rapid 
frequency sweep input, RAE Technical Report 66379, Dec. 1966. 

[SMA 85] SMALLWOOD D.O., “Shock testing by using digital control”, SANDIA 85 - 0352 J, 
1985. 

[SMA 00] SMALLWOOD D.O., “Shock response spectrum calculation – Using waveform 
reconstruction to improve the results”, Proceedings of the 71st Shock and Vibration 
Symposium, Arlington, Virginia, Nov. 6–9, 2000.  

[SNO 68] SNOWDON J.C., Vibration and Shock in Damped Mechanical Systems, John Wiley 
& Sons, Inc., 1968. 



384     Sinusoidal Vibration 

[SOR 49] SOROKA W.W., “Note on the relations between viscous and structural damping 
coefficients”, Journal of the Aeronautical Sciences, Vol. 16, 409–10, July 1949. 

[SPE 61] SPENCE H.R., LUHRS H.N., “Peak criterion in random vs sine vibration testing”, 
Journal of the Acoustical Society of America, Vol. 33, no. 5, 652–4, May 1961. 

[SPE 62] SPENCE H.R., LUHRS H.N., “Structural fatigue under combined random and swept 
sinusoidal vibration”, Journal of the Acoustical Society of America, Vol. 34, no. 8, 1098–
101, Aug. 1962. 

[STA 53] STANTON L.R., THOMSON F.C., “A note on the damping charistics of some 
magnesium and aluminum alloys”, Journal of the Institute of Metals, Vol. 69, Part 1, 29, 
1953. 

[STA 62] STATHOPOULOS G., Effects of Mounting on Accelerometer Response, Electronic 
Industries, May 1962. 

[STE 73] STEINBERG D.S., Vibrations Analysis for Electronic Equipment, John Wiley & Sons, 
1973. 

[STE 78] STEINBERG D.S., “Quick way to predict random vibration failures”, Machine 
Design, Vol. 50, no. 8, 188–91, 6 Apr. 1978. 

[SUN 75] SUNG L.C., An approximate solution for sweep frequency vibration problems, PhD 
Thesis, Ohio State University, 1975. 

[SUN 80] SUNG L., STEVENS K.K., “Response of linear discrete and continuous systems to 
variable frequency sinusoidal excitations”, Journal of Sound and Vibration, Vol. 71,  
no. 4, 497–509, 1980. 

[SUT 68] SUTHERLAND L.C., Fourier spectra and shock spectra for simple undamped systems, 
NASA-CR 98417, Oct. 1968. 

[SUZ 78a] SUZUKI S.I., “Dynamic behaviour of a beam subjected to a force of time-
dependent frequency (continued)”, Journal of Sound and Vibration, Vol. 60, no. 3, 417–
22, 1978. 

[SUZ 78b] SUZUKI S.I., “Dynamic behaviour of a beam subjected to a force of time-
dependent frequency”, Journal of Sound and Vibration, Vol. 57, no. 1, 59–64, 1978. 

[SUZ 79] SUZUKI S.I., “Dynamic behaviour of a beam subjected to a force of time-dependent 
frequency (effects of solid viscosity and rotatory inertia)”, Journal of Sound and 
Vibration, Vol. 62, no. 2, 157–64, 1979. 

[TAY 46] TAYLOR G.I., “The testing of materials at high rates of loading”, Journal of the 
Institute of Civil Engineers, Vol. 26, 486–519, 1946. 

[TAY 75] TAYLOR H.R., A study of instrumentation systems for the dynamic analysis of 
machine tools, PhD Thesis, University of Manchester, 1975. 

[TAY 77] TAYLOR H.R., “A comparison of methods for measuring the frequency response of 
mechanical structures with particular reference to machine tools”, Proceedings of the 
Institute of Mechanical Engineers, Vol. 191, 257–70, 1977. 



Bibliography     385 

[THO 65a] THOMSON W.T., Vibration Theory and Applications, Prentice Hall, Inc., 1965. 

[THO 65b] THOMSON W., (Lord Kelvin), “On the elasticity and viscosity of metals”, 
Proceedings of the Royal Society of London, Vol. 14, 289, 1865. 

[TIM 74] TIMOSHENKO S., Vibration Problems in Engineering, John Wiley & Sons, Inc., 
1974. 

[THU 71] THUREAU P., LECLER D., Vibrations – Régimes Linéaires, Technologie et 
Université, Dunod, 1971. 

[TRU 70] TRULL R.V., “Sweep speed effects in resonant systems”, The Shock and Vibration 
Bulletin, Vol. 41, Part 4, 95–8, Dec. 1970. 

[TRU 95] TRULL R.V., ZIMMERMANN R.E., STEIN P.K., “Sweep speed effects in resonant 
systems: a unified approach, Parts I, II and III”, Proceedings of the 66th Shock and 
Vibration Symposium, Vol. II, 115–46, 1995. 

[TUR 54] TURBOWITCH I.T., “On the errors in measurements of frequency characteristics by 
the method of frequency modulation”, Radiotekhnika, Vol. 9, 31–5, 1954. 

[TUS 72] TUSTIN W., Environmental Vibration and Shock: Testing, Measurement, Analysis 
and Calibration, Tustin Institute of Technology, Santa Barbara, California, 1972. 

[UNG 73] UNGAR E.E., “The status of engineering knowledge concerning the damping of 
built-up structures”, Journal of Sound and Vibration, Vol. 26, no. 1, 141–54, 1973. 

[VAN 57] VAN BOMMEL P. , “A simple mass-spring-system with dry damping subjected to 
harmonic vibrations”, De Ingenieur, Vol. 69, no.10, w37–w44, 1957. 

[VAN 58] VAN BOMMEL P., “An oscillating system with a single mass with dry frictional 
damping subjected to harmonic vibrations”, Bull. Int. R. Cong. XXXV, no. 1, 61–72,  
Jan. 1958. 

[VER 67] VERNON J.B., Linear Vibration Theory, John Wiley & Sons, Inc., 1967. 

[VIB 06] Vibration Data Collection: A road Worth Travelling?, L.A.B. Equipments, Inc, 
January, 2006. 

[VOL 65] VOLTERRA E., ZACHMANOGLOU E.C., Dynamics of Vibrations, Charles E. Merril 
Books, Inc., 1965. 

[WAL 84] WALSHAW A.C., Mechanical Vibrations with Applications, Ellis Horwood 
Limited, John Wiley & Sons, 1984. 

[WAL 07] WALTER P.L., “The History of the Accelerometer, 1920s – 1996 – Prologue and 
Epilogue, 2006”, Sound and Vibration, 40th Anniversary Issue, 84-92, January 2007. 

[WEG 35] WEGEL R.L., WALTHER H., “Internal dissipation in solids for small cyclic strains”, 
Physics, Vol. 6, 141–57, 1935. 

[WES 10] WESCOTT T., “Sampling: What Nyquist Didn’t Say, and What to Do About It”, 
Wescott Design Services, http://www.wescottdesign.com/articles/Sampling/sampling.pdf, 
December 20, 2010. 



386     Sinusoidal Vibration 

[WHI 72] WHITE R.G., “Spectrally shaped transient forcing functions for frequency response 
testing”, Journal of Sound and Vibration, Vol. 23, no. 3, 307–18, 1972. 

[WHI 82] WHITE R.G., PINNINGTON R.J., “Practical application of the rapid frequency sweep 
technique for structural frequency response measurement”, Aeronautical Journal,  
no. 964, 179–99, May 1982. 

[ZEN 40] ZENER C., “Internal friction in solids”, Proceedings of the Physical Society of 
London, Vol. 52, Part 1, no. 289, 152, 1940.  



Index 

A 

accelerometer, 11 
capacitive, 12 
MEMS, 14 
piezoelectric, 11 
piezoresistive, 12  

accommodation ultimate stress, 57 
admittance 

operational -, 169 
amplification factor, 177, 274 
amplitude, 189 
analog-to-digital converter, 26 
anelastic  

- strain, 60 
- stress, 57 

anelasticity, 62 
angular frequency, 101 
attenuation, 229 

B, C 

bandwidth, 229, 231, 241, 276 
beats, 319 
cantilever beam, 53 
coercive force, 74 
compliance, 257 

 
 

conservation  
- law, 83 
- system, 144 

convolution  
- integral, 112, 321 
- product, 169  

Coulomb friction, 70 
couple, 42 
cutoff frequency, 16, 21 

D 

d'Alembert’s principle, 88 
damped aperiodic motion, 124 
dampers  

- in parallel, 68 
- in series, 69 

damping, 57 
- capacity, 59, 63  
Coulomb -, 262 
critical -, 116, 112, 205 
critical - coefficient, 125 
critical - ratio, 125 
dry -, 267 
equivalent - constant, 262 
equivalent - ratio, 268 



388     Sinusoidal Vibration 

equivalent viscous -, 262, 268, 273, 
274 

- factor, 101 
- force, 224 
hysteretic -, 261, 272 
internal -, 60 
linear -, 224 
- measurement, 274 
nonlinear -, 70  
nonviscous -, 261  
- potential, 86 
quadratic - coefficient, 270 
specific - energy, 65 
structural -, 60, 272 
subcritical -, 111, 115 
supercritical -, 113, 116, 124 
total - energy, 59 
viscous -, 64, 262 

dashpot, 67 
decade, 294 
decibel, 27, 229 
decreasing frequency, 292, 332 
degree of freedom, 77 
differential equation of the 

movement, 322 
digitization, 21  
discrete spectrum, 195 
dissonance, 230 
dry friction, 64, 70  
Duhamel’s integral, 109, 322, 323 
duration 

-of a swept sine test, 338 
dynamic  

- amplification factor, 236 
- load, 44 
- range, 28 
- stiffness, 257 

E 

earthquakes, 5 
energy 

- dissipated by cycle, 287 

dissipation of -, 85, 284 
kinetic -, 82 
potential -, 82 
specific damping -, 287 

environment 
      real -, 199, 295  
equation of the movement, 104 
equivalent  

- damping ratio, 266 
- spring constant, 50 
- viscous damping, 264  

excitation, 103 
steady state -, 203 

F 

fallback level values, 2 
fatigue damage, 343 

- spectrum, 32  
filter, 15 

analog -, 15 
anti-aliasing -, 27 
band-pass -, 18 
band-stop -, 18 
Butterworth -, 16 
digital -, 16, 18 
Finite Impulse Response, 18 
gain, 16 
high-pass -, 17 
Infinite Impulse Response, 19 
low-pass -, 16 
order, 18 

filtering, 15 
force, 41 

damping -, 93 
inertial -, 92 
restoring -, 93, 100 

form 
- factor, 193 
generalized -, 105 
reduced -, 105 

Fourier  
- series, 212  



Index     389 

- transformation, 321 
free-body diagram, 88 
fundamental frequency, 195 

G, H 

gain, 229 
- factor, 177 

generalized  
- delta function, 159 
- equation, 159 
- excitation, 104 

half-power points, 228, 230, 276, 
298, 305, 327 

Hamilton’s principle, 81 
harmonics, 194, 197 
Hooke’s law, 100 
hysteresis, 59 

- loop, 58, 223, 262, 268, 269, 270 

I, K, L 

impact, 45 
impedance, 258 

generalized -, 169 
impulse, 158 
impulsion, 84  
increasing frequency, 292, 332 
indicial admittance, 148 
inertance, 259 
inertia principle, 42 
internal friction, 59, 272 
interval, 177 
Kennedy–Pancu  

- improved method, 288 
- method, 276 

kinetic moment, 85 
Lagrange  

- function, 81 
- equations, 81 

Laplace transform, 109, 321 
lever arm, 42 
line spectrum, 194 
linear system, 79, 170 

logarithmic decrement, 133, 134, 
216, 277  

logarithmic sweep, 303 
loss coefficient, 61 
lumped parameter systems, 48 

M 

mass, 48, 259 
mathematical model, 76 
mean  

- frequency, 304 
- square value, 192 
- value, 191 

mechanical system, 74 
distributed systems, 75 
lumped parameter system, 74 

mobility, 258 
mode, 77 

coupled-, 79 
critical aperiodic -, 125 
damped aperiodic -, 121 
damped oscillatory -, 128 

modulus of elasticity 
dynamic -, 72 
secant -, 71 
static -, 71 

moment of  
- a couple, 42 
- a force, 42 
- inertia, 48 

N 

natural  
- frequency, 101 
- oscillations, 120 
- period, 101 
- pulsation, 101 

Newton  
- second law, 43 
- third law, 43 

nonlinear stiffness, 288 
number of  



390     Sinusoidal Vibration 

- bits, 27 
- cycles, 303 
- cycles in one octave, 312 
- degrees of freedom, 81 
- octaves per minute, 307 
- octaves per second, 307 

Nyquist, 21  
- diagram, 181 

O, P, Q 

octave, 294 
one degree of freedom system, 80, 98 
peak factor, 193  
potential force field, 86 
power, 229 

- spectral density, 31 
principle of  

- causality, 41 
- least action, 81 

Propeller airplanes, 8 
pseudo-period, 130, 134 

reduced -, 216 
pseudo-pulsation, 128, 130 
pseudo-sinusoidal, 215 
quadratic damping, 63 
quality factor, 145, 201, 222, 274, 

297, 342 
quantization  

- error, 25 
- step size, 26 

R 

random vibration, 188 
real environment, 3 

air, 8 
helicopters, 9 
jet propulsion airplanes, 8 
rail, 7 
road, 6  
sea, 3 
sea state, 5 
swell, 5 

turbofan aircraft, 9 
receptance, 257 
reduced sweep rate, 324 
relative damping, 134 
remanent deformation, 74 
resolution of the quantizer, 26 
resonance, 237 

- frequency, 199, 248, 295 
response, 103 

absolute -, 107 
aperiodic -, 123 
damped oscillatory -, 129 
free -, 128 
impulse -, 161 
indicial -, 145 
reduced -, 106 
steady state -, 219 
step -, 145 
-  to a swept sine, 321 
transient -, 215 

restoring force, 49 
rheology, 67 
rms quantization error, 26  
rms value, 192, 229 
Rocard integral, 173 
rotating machines, 2 
rubber, 287 

S 

sampling  
- frequency, 21 
- rate, 22 

search for resonance, 344 
selectivity, 231 
sensor, 11 
Shannon theorem, 21 
shock, 188, 328, 343 
shock response spectrum, 31 
signal conditioner, 14 
signal reconstruction, 28 
simple harmonic, 129 
sine, 188 



Index     391 

absolute response, 207, 219 
relative response, 204, 215 

sound velocity, 46 
specific damping capacity, 281 
specification, 295 

spring 
- constant, 50 
hardening -, 288 
softening -, 288 

standard 
AIR 7304, 295 
GAM T 13, 295 
MIL STD 810 C, 295  

static  
- deflection, 149 
- relative displacement, 105 

steady state vibration, 211  
step function, 172 
stiffness, 49 

non-linear -, 56 
strain rate, 44 
stress–strain diagram, 47 
superposition  

- integral, 173 
- theorem, 199 

sweep 
- duration, 296 
hyperbolic -, 292, 315, 322, 331, 

343 
linear -, 292, 313, 331, 345 
logarithmic -, 292, 322, 331, 344 
- rate, 296, 306, 314, 317, 319 
- with constant rate, 313 

swept sine, 188, 291 
- on noise, 7 

system 
overdamped -, 206 
several degrees-of-freedom 

mechanical -, 80 
underdamped -, 205 
- with localized constants, 80 

T 

test, 295 
equivalent sine -, 201 
fatigue -, 201 
- fixture, 38 
- identification, 338 
- material identification, 295 
sinusoidal vibration -, 199 
- specification, 32 
- tailoring, 32 

time  
- spent between the half-power 

points, 309 
- spent between two frequencies, 

309 
- to sweep 1/nth octave, 312 
- to sweep one octave, 312 

transfer function, 169, 176, 182, 255, 
319 
- in decibels, 185 
- measurement, 188 

transmissibility, 177, 221, 289, 293 
force -, 250 
movement -, 250 

transmittance, 221 
types of sweepings, 297 

U, V, W 

up-crossing 
first -, 151 

variance, 194 
velocity resonance, 222 
vibration 

sinusoidal -, 189 
periodic -, 195 

vibration test facility, 33 
control system, 34 
electrodynamic exciter, 33 
hydraulic actuators, 37 
maximum force, 36 
moving assembly, 34 

viscoelasticity, 62 



392     Sinusoidal Vibration 

viscous damping  
- coefficient, 66 
- constant, 66 

Voigt model, 80 
weight function, 161
































































	Cover
	Title Page
	Copyright
	Contents
	Foreword to Series
	Introduction
	List of Symbols
	Chapter 1. The Need
	1.1. The need to carry out studies into vibrations and mechanical shocks
	1.2. Some real environments
	1.2.1. Sea transport
	1.2.2. Earthquakes
	1.2.3. Road vibratory environment
	1.2.4. Rail vibratory environment
	1.2.5. Propeller airplanes
	1.2.6. Vibrations caused by jet propulsion airplanes
	1.2.7. Vibrations caused by turbofan aircraft
	1.2.8. Helicopters

	1.3. Measuring vibrations and shocks
	1.4. Filtering
	1.4.1. Definitions
	1.4.2. Digital filters

	1.5. Digitizing the signal
	1.5.1. Signal sampling frequency
	1.5.2. Quantization error

	1.6. Reconstructing the sampled signal
	1.7. Characterization in the frequency domain
	1.8. Elaboration of the specifications
	1.9. Vibration test facilities
	1.9.1. Electro-dynamic exciters
	1.9.2. Hydraulic actuators
	1.9.3. Test Fixtures


	Chapter 2. Basic Mechanics
	2.1. Basic principles of mechanics
	2.1.1. Principle of causality
	2.1.2. Concept of force
	2.1.3. Newton’s first law (inertia principle)
	2.1.4. Moment of a force around a point
	2.1.5. Fundamental principle of dynamics (Newton’s second law)
	2.1.6. Equality of action and reaction (Newton’s third law)

	2.2. Static effects/dynamic effects
	2.3. Behavior under dynamic load (impact)
	2.4. Elements of a mechanical system
	2.4.1. Mass
	2.4.2. Stiffness
	2.4.3. Damping
	2.4.4. Static modulus of elasticity
	2.4.5. Dynamic modulus of elasticity

	2.5. Mathematical models
	2.5.1. Mechanical systems
	2.5.2. Lumped parameter systems
	2.5.3. Degrees of freedom
	2.5.4. Mode
	2.5.5. Linear systems
	2.5.6. Linear one-degree-of-freedom mechanical systems

	2.6. Setting an equation for n degrees-of-freedom lumped parameter mechanical system
	2.6.1. Lagrange equations
	2.6.2. D’Alembert’s principle
	2.6.3. Free-body diagram


	Chapter 3. Response of a Linear One-Degree-of-Freedom Mechanical System to an Arbitrary Excitation
	3.1. Definitions and notation
	3.2. Excitation defined by force versus time
	3.3. Excitation defined by acceleration
	3.4. Reduced form
	3.4.1. Excitation defined by a force on a mass or by an acceleration of support
	3.4.2. Excitation defined by velocity or displacement imposed on support

	3.5. Solution of the differential equation of movement
	3.5.1. Methods
	3.5.2. Relative response
	3.5.3. Absolute response
	3.5.4. Summary of main results

	3.6. Natural oscillations of a linear one-degree-of-freedom system
	3.6.1. Damped aperiodic mode
	3.6.2. Critical aperiodic mode
	3.6.3. Damped oscillatory mode


	Chapter 4. Impulse and Step Responses
	4.1. Response of a mass–spring system to a unit step function (step or indicial response)
	4.1.1. Response defined by relative displacement
	4.1.2. Response defined by absolute displacement, velocity or acceleration

	4.2. Response of a mass–spring system to a unit impulse excitation
	4.2.1. Response defined by relative displacement
	4.2.2. Response defined by absolute parameter

	4.3. Use of step and impulse responses
	4.4. Transfer function of a linear one-degree-of-freedom system
	4.4.1. Definition
	4.4.2. Calculation of H(h) for relative response
	4.4.3. Calculation of H(h) for absolute response
	4.4.4. Other definitions of the transfer function

	4.5. Measurement of transfer function

	Chapter 5. Sinusoidal Vibration
	5.1. Definitions
	5.1.1. Sinusoidal vibration
	5.1.2. Mean value
	5.1.3. Mean square value – rms value
	5.1.4. Periodic vibrations
	5.1.5. Quasi-periodic signals

	5.2. Periodic and sinusoidal vibrations in the real environment
	5.3. Sinusoidal vibration tests

	Chapter 6. Response of a Linear One-Degree-of-Freedom Mechanical System to a Sinusoidal Excitation
	6.1. General equations of motion
	6.1.1. Relative response
	6.1.2. Absolute response
	6.1.3. Summary
	6.1.4. Discussion
	6.1.5. Response to periodic excitation
	6.1.6. Application to calculation for vehicle suspension response

	6.2. Transient response
	6.2.1. Relative response
	6.2.2. Absolute response

	6.3. Steady state response
	6.3.1. Relative response
	6.3.2. Absolute response

	6.4. Responses lω0ż/ẍml, lω0z/ẋml and √kmż/fm 
	6.4.1. Amplitude and phase
	6.4.2. Variations of velocity amplitude
	6.4.3. Variations in velocity phase

	6.5. Responses kz/Fm and ω20 z/ẍm
	6.5.1. Expression for response
	6.5.2. Variation in response amplitude
	6.5.3. Variations in phase

	6.6. Responses y/xm, ẏ/ẋm, ÿ/ẍm and Ft/Fm 
	6.6.1. Movement transmissibility
	6.6.2. Variations in amplitude
	6.6.3. Variations in phase

	6.7. Graphical representation of transfer functions
	6.8. Definitions
	6.8.1. Compliance – stiffness
	6.8.2. Mobility – impedance
	6.8.3. Inertance – mass


	Chapter 7 Non-viscous Damping
	7.1. Damping observed in real structures
	7.2. Linearization of non-linear hysteresis loops – equivalent viscous damping
	7.3. Main types of damping
	7.3.1. Damping force proportional to the power b of the relative velocity
	7.3.2. Constant damping force
	7.3.3. Damping force proportional to the square of velocity
	7.3.4. Damping force proportional to the square of displacement
	7.3.5. Structural or hysteretic damping
	7.3.6. Combination of several types of damping
	7.3.7. Validity of simplification by equivalent viscous damping

	7.4. Measurement of damping of a system
	7.4.1. Measurement of amplification factor at resonance
	7.4.2. Bandwidth or √2 method
	7.4.3. Decreased rate method (logarithmic decrement)
	7.4.4. Evaluation of energy dissipation under permanent sinusoidal vibration
	7.4.5. Other methods

	7.5. Non-linear stiffness

	Chapter 8. Swept Sine
	8.1. Definitions
	8.1.1. Swept sine
	8.1.2. Octave – number of octaves in frequency interval (f1, f2)
	8.1.3. Decade

	8.2. “Swept sine” vibration in the real environment
	8.3. “Swept sine” vibration in tests
	8.4. Origin and properties of main types of sweepings
	8.4.1. The problem
	8.4.2. Case 1: sweep where time Δt spent in each interval Δf is constant for all values of f0
	8.4.3. Case 2: sweep with constant rate
	8.4.4. Case 3: sweep ensuring a number of identical cycles ΔN in all intervals Δf (delimited by the half-power points) for all values of f0


	Chapter 9. Response of a Linear One-Degree-of-Freedom System to a Swept Sine Vibration
	9.1. Influence of sweep rate
	9.2. Response of a linear one-degree-of-freedom system to a swept sine excitation
	9.2.1. Methods used for obtaining response
	9.2.2. Convolution integral (or Duhamel’s integral)
	9.2.3. Response of a linear one-degree-of freedom system to a linear swept sine excitation
	9.2.4. Response of a linear one-degree-of-freedom system to a logarithmic swept sine

	9.3. Choice of duration of swept sine test
	9.4. Choice of amplitude
	9.5. Choice of sweep mode

	Appendix. Laplace Transformations
	Vibration Tests: a Brief Historical Background
	Bibliography
	Index
	Summary of Other Volumes in the Series



