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Foreword to Series

In the course of their lifetime simple items in everyday use such as mobile
telephones, wristwatches, electronic components in cars or more specific items such
as satellite equipment or flight systems in aircraft, can be subjected to various
conditions of temperature and humidity, and more particularly to mechanical shock
and vibrations, which form the subject of this work. They must therefore be
designed in such a way that they can withstand the effects of the environmental
conditions to which they are exposed without being damaged. Their design must be
verified using a prototype or by calculations and/or significant laboratory testing.

Sizing, and later, testing are performed on the basis of specifications taken from
national or international standards. The initial standards, drawn up in the 1940s,
were blanket specifications, often extremely stringent, consisting of a sinusoidal
vibration, the frequency of which was set to the resonance of the equipment. They
were essentially designed to demonstrate a certain standard resistance of the
equipment, with the implicit hypothesis that if the equipment survived the particular
environment it would withstand, undamaged, the vibrations to which it would be
subjected in service. Sometimes with a delay due to a certain conservatism, the
evolution of these standards followed that of the testing facilities: the possibility of
producing swept sine tests, the production of narrowband random vibrations swept
over a wide range and finally the generation of wideband random vibrations. At the
end of the 1970s, it was felt that there was a basic need to reduce the weight and cost
of on-board equipment and to produce specifications closer to the real conditions of
use. This evolution was taken into account between 1980 and 1985 concerning
American standards (MIL-STD 810), French standards (GAM EG 13) or
international standards (NATO), which all recommended the tailoring of tests.
Current preference is to talk of the tailoring of the product to its environment in
order to assert more clearly that the environment must be taken into account from
the very start of the project, rather than to check the behavior of the material a
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posteriori. These concepts, originating with the military, are currently being
increasingly echoed in the civil field.

Tailoring is based on an analysis of the life profile of the equipment, on the
measurement of the environmental conditions associated with each condition of use
and on the synthesis of all the data into a simple specification, which should be of
the same severity as the actual environment.

This approach presupposes a proper understanding of the mechanical systems
subjected to dynamic loads and knowledge of the most frequent failure modes.

Generally speaking, a good assessment of the stresses in a system subjected to
vibration is possible only on the basis of a finite element model and relatively
complex calculations. Such calculations can only be undertaken at a relatively
advanced stage of the project once the structure has been sufficiently defined for
such a model to be established.

Considerable work on the environment must be performed independently of the
equipment concerned either at the very beginning of the project, at a time where
there are no drawings available, or at the qualification stage, in order to define the
test conditions.

In the absence of a precise and validated model of the structure, the simplest
possible mechanical system is frequently used consisting of mass, stiffness and
damping (a linear system with one degree of freedom), especially for:

— the comparison of the severity of several shocks (shock response spectrum) or
of several vibrations (extreme response and fatigue damage spectra);

— the drafting of specifications: determining a vibration which produces the same
effects on the model as the real environment, with the underlying hypothesis that the
equivalent value will remain valid on the real, more complex structure;

— the calculations for pre-sizing at the start of the project;

— the establishment of rules for analysis of the vibrations (choice of the number
of calculation points of a power spectral density) or for the definition of the tests
(choice of the sweep rate of a swept sine test).

This explains the importance given to this simple model in this work of five
volumes on “Mechanical Vibration and Shock Analysis”.

Volume 1| of this series is devoted to sinusoidal vibration. After several
reminders about the main vibratory environments which can affect materials during
their working life and also about the methods used to take them into account,
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following several fundamental mechanical concepts, the responses (relative and
absolute) of a mechanical one-degree-of-freedom system to an arbitrary excitation
are considered, and its transfer function in various forms are defined. By placing the
properties of sinusoidal vibrations in the contexts of the real environment and of
laboratory tests, the transitory and steady state response of a single-degree-of-
freedom system with viscous and then with non-linear damping is evolved. The
various sinusoidal modes of sweeping with their properties are described, and then,
starting from the response of a one-degree-of-freedom system, the consequences of
an unsuitable choice of sweep rate are shown and a rule for choice of this rate is
deduced from it.

Volume 2 deals with mechanical shock. This volume presents the shock response
spectrum (SRS) with its different definitions, its properties and the precautions to be
taken in calculating it. The shock shapes most widely used with the usual test
facilities are presented with their characteristics, with indications how to establish
test specifications of the same severity as the real, measured environment. A
demonstration is then given on how these specifications can be made with classic
laboratory equipment: shock machines, electrodynamic exciters driven by a time
signal or by a response spectrum, indicating the limits, advantages and
disadvantages of each solution.

Volume 3 examines the analysis of random vibration which encompasses the
vast majority of the vibrations encountered in the real environment. This volume
describes the properties of the process, enabling simplification of the analysis,
before presenting the analysis of the signal in the frequency domain. The definition
of the power spectral density is reviewed, as well as the precautions to be taken in
calculating it, together with the processes used to improve results (windowing,
overlapping). A complementary third approach consists of analyzing the statistical
properties of the time signal. In particular, this study makes it possible to determine
the distribution law of the maxima of a random Gaussian signal and to simplify the
calculations of fatigue damage by avoiding direct counting of the peaks (Volumes 4
and 5). The relationships that provide the response of a one-degree-of-freedom
linear system to a random vibration are established.

Volume 4 is devoted to the calculation of damage fatigue. It presents the
hypotheses adopted to describe the behavior of a material subjected to fatigue, the
laws of damage accumulation and the methods for counting the peaks of the
response (used to establish a histogram when it is impossible to use the probability
density of the peaks obtained with a Gaussian signal). The expressions of mean
damage and its standard deviation are established. A few cases are then examined
using other hypotheses (mean not equal to zero, taking account of the fatigue limit,
non-linear accumulation law, etc.). The main laws governing low cycle fatigue and
fracture mechanics are also presented.
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Volume 5 is dedicated to presenting the method of specification development
according to the principle of tailoring. The extreme response and fatigue damage
spectra are defined for each type of stress (sinusoidal vibrations, swept sine, shocks,
random vibrations, etc.). The process for establishing a specification as from the
lifecycle profile of the equipment is then detailed taking into account the uncertainty
factor (uncertainties related to the dispersion of the real environment and of the
mechanical strength) and the test factor (function of the number of tests performed
to demonstrate the resistance of the equipment).

First and foremost, this work is intended for engineers and technicians working
in design teams responsible for sizing equipment, for project teams given the task of
writing the various sizing and testing specifications (validation, qualification,
certification, etc.) and for laboratories in charge of defining the tests and their
performance following the choice of the most suitable simulation means.



Introduction

Materials which are transported by or loaded onto land vehicles, aircraft or
marine vehicles, or which are installed close to turning machines, are subject to
different vibrations and mechanical shocks. These materials must be able to endure
such shocks and vibrations without being damaged. To achieve this goal, the first
step consists of noting the values of these environments in the specifications of the
material to be developed, so that the research departments can take them into
account during dimensioning. The following step is the qualification of the designed
material, starting from these specifications, to experimentally demonstrate its
behavior under its future conditions of use.

The specifications used for dimensioning and testing today are elaborate, starting
from measurements of the real environment which the equipment will undergo (zest
tailoring). It is thus necessary to correctly measure the vibrations and shocks before
analyzing them and to synthesize them to obtain specifications leading to reasonable
qualification tests of a reasonable duration.

Taking into account vibrations and shocks thus requires us:
— to identify the future conditions of use;

— to carry out, if possible, significant measurements;

— to digitize the measured signals;

—to identify each type of vibration in order to characterize them by analysis in
the frequency domain, adapted to proceed to severity comparisons between the
collected measurements under various conditions, or between real environments and
values provided in normative documents, or with specifications established in
another context;

— to finally transform measurements into specifications.
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The object of this series of five volumes is thus to describe all the mathematical
tools that are currently used in the analysis of vibrations and shocks, while starting
with the sinusoidal vibrations.

Sinusoidal vibrations were first used in laboratory tests to verify the ability of
equipment to withstand their future vibratory environment in service without
damage. Following the evolution of standards and testing facilities, these vibrations,
generally speaking, are currently studied only to simulate vibratory conditions of the
same nature as encountered, for example, in equipment situated close to revolving
machinery (motors, transmission shafts, etc.). Nevertheless, their value lies in their
simplicity, enabling the behavior of a mechanical system subjected to dynamic stress
to be demonstrated, and the introduction of basic definitions.

Given that, generally speaking, the real environment is more or less random in
nature, with a continuous frequency spectrum in a relatively wide range, in order to
overcome the inadequacies of the initial testing facilities, testing rapidly moved to
the “swept sine” type. Here the vibration applied is a sinusoid, the frequency of
which varies over time according to a sinusoidal or exponential law. Despite the
relatively rapid evolution of electrodynamic exciters and electrohydraulic vibration
exciters, capable of generating wideband random vibrations, these swept sine
standards have lasted, and are in fact still used, for example in aerospace
applications. They are also widely used for measuring the dynamic characteristics of
structures.

After an introductory chapter (Chapter 1) to this series, pointing out the
characteristics of some important vibratory environments and the various steps
necessary to arrive at the qualification of a material, we follow-up with a few brief
reminders of basic mechanics (Chapter 2). Chapter 3 examines the relative and
absolute response of a mechanical system with one degree of freedom subjected to a
given excitation, and defines the transfer function in different forms. Chapter 4 is
devoted more particularly to the response of such a system to a unit impulse or to a
unit step.

The properties of sinusoidal vibrations are then presented in the context of the
environment and in laboratory tests (Chapter 5). The transitory and steady state
response of a system with one degree of freedom to viscous damping (Chapter 6)
and to non-linear damping (Chapter 7) is then examined.

Chapter 8 defines the various sinusoidal sweeping modes, with their properties
and eventual justification. Chapter 9 is devoted to the response of a system with one
degree of freedom subjected to linear and exponential sweeping vibrations, to
illustrate the consequences of an unsuitable choice of sweep rate, resulting in the
presentation of a rule for the choice of a rate.
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The major properties of the Laplace transform are reviewed in the Appendix.
This provides a powerful tool for the analytical calculation of the response of a
system with one degree of freedom to a given excitation. Inverse transforms
particularly suitable for this application are given in a table.






List of Symbols

The list below gives the most frequent definition of the main symbols used in
this book. Some of the symbols can have another meaning locally which will be

defined in the text to avoid confusion.

A(t) Indicial admittance or step f Frequency of excitation
response f, Expected frequency

A(p) Laplace transform of A(t) fsamp Sampling frequency

c Viscous damping constant f Sweep rate

Ceq Equivalent viscous £, Natural frequency
damping constant E Inertial force

C(0) Part of the response F. Restoring force
relating to non-zero initial F(t) External force applied to a
conditions system

d Lever arm F, Peak factor (or crest

D Damping capacity factor)

e Neper number Fy Damping force

E Young’s modulus F; Form factor

E, Damping energy E, Maximum value of F(t)

E4 Dynamic modulus of g Acceleration due to gravity
elasticity G Coulomb modulus

E. Kinetic energy G(n) Attenuation related to

Ep Potential energy sweep rate

E() Function characteristic of h Interval (f/f;))
sweep mode Hap Transmissibility
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Hgrp

Hpy
h(t)

H()

e =

Dynamic amplification
factor

Relative transmissibility
Impulse response
Transfer function

V-1

Moment of inertia
Damping constant
Stiffness or uncertainty
coefficient

rms value of 4(t)
Maximum value of /(t)
Generalized excitation
(displacement)

First derivative of #(t)
Second derivative of /(t)
Lagrange function
Laplace transform of /(t)
Fourier transform of /(t)
Mass

Moment of a force
Number of cycles
Number of decades
Normal force

Number of cycles
performed during swept
sine test

Laplace variable
Reduced pseudo-pulsation
Impulse vector
Generalized coordinate
Maximum value of q(6)
Value of q(0) for 6= 0

Reduced response

-« — WU

©u

—

Value of ¢(0) for 6=0
First derivative of q(6)
Second derivative of q(e)
Q factor (quality factor)
Laplace transform of q(0)
Position vector

Ultimate tensile strength
Number of octaves per
minute

Number of octaves per
second

Number of degrees of
freedom

Action

Time

Sweep duration

Duration of application of
vibration

Natural period
Time-constant of
logarithmic swept sine
Generalized response
Maximum elastic strain
energy stored during one
cycle

Elastic strain energy per
unit volume

Laplace transform of u(t)
Fourier transform of u(t)
Velocity vector
Maximum value of x(t)
Absolute displacement of
the base of a one-degree-
of-freedom system
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AE4

Absolute velocity of the
base of a one-degree-of-
freedom system
Maximum value of X(t)
Absolute acceleration of
the base of a one-degree-
of-freedom system
Fourier transform of X(t)
Absolute displacement
response of the mass of a
one-degree-of-freedom
system

Absolute velocity response
of the mass of a one-
degree-of-freedom system
Absolute acceleration
response of the mass of a
one-degree-of-freedom
system

Maximum value of z(t)
Maximum static relative
displacement

Relative displacement
response of the mass of a
one-degree-of-freedom
system with respect to its
base

Rotation angle
Logarithmic decrement
Dirac delta function
Energy dissipated per unit
time

Energy dissipated by
damping in one cycle

Af

AN

List of Symbols Xxi

Interval of frequency
between half-power points
Number of cycles between
half-power points
Relative deformation
Velocity of relative
deformation

Coefficient of dissipation
(or of loss) or reduced
sweep rate

Relative velocity response
Relative acceleration
response

Generalized impedance
Phase

Reduced excitation
Laplace transform of A(6)
Coefficient of friction
3.14159265 ...

Radius of gyration
Reduced time ¢(0)
Reduced sweep rate
Reduced pseudo-period
Stress

Mean stress

Natural pulsation (2 7 f))
Pulsation of excitation
2mnf)

Damping factor
Equivalent viscous
damping factor

Phase






Chapter 1

The Need

1.1. The need to carry out studies into vibrations and mechanical shocks

During their service life, many materials are subjected to vibratory environments,
during their transport [OST 65], [OST 67], because they are intended to equip
themselves with means of transport (airplanes, road vehicles, etc.) or because they are
placed beside vibratory sources (engines, wind mills, roads, etc.). These vibratory
environments (vibrations and shocks) create dynamic strains and stresses in the
structures which can, for example, produce intermittent or permanent breakdowns in
electrical equipment, plastic deformations or fractures by up-crossing an ultimate
stress of the material (yield limit, rupture limit), optical misalignments of systems or
may contribute to the fatigue and the wear of the machine elements.

It is therefore necessary to take all of these points into consideration during the
design phase of structures and of mechanical equipment. The approach is normally
made up of several steps:

— measuring the vibration phenomena;

— analyzing the results of the measurements, bearing in mind that this analysis will
be used for different objectives, including:

- the characterization of the frequency contents of the vibration (the search for
predominant frequencies, amplitudes, etc.), for example, to compare the natural
frequencies of the structures,
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- comparing the relative severity of several different vibratory environments
(transport on various vehicles) or comparing the severity of such vibration
environments with a standard,

- confirming a posteriori the validity of a dimensioning or test specification
which is established starting from fallback level values, from data collected at the time
of a preceding project or starting from values resulting from normative documents;

— the transformation of measurements into dimensioning specifications for
research departments; these are presented in the simplest possible form requiring a
synthesis of all the measured data;

— during and at the end of the design phase, at the time of the qualification,
realization of tests intended to validate the behavior of the materials developed from
these environments.

The vibrations most frequently encountered in the real environment are of a
random nature. Along with shocks, they constitute the main part of mechanical
excitations. These two environments can be severe, shocks by their amplitude and
random vibrations by their duration.

In certain situations, however (near turning machines), it is possible to observe
sinusoidal vibrations which are often polluted by noise. This is especially the case for
vibrations which are produced by propeller airplanes and helicopters. In these cases,
the random noise which is produced is significantly important compared to the
sinusoidal lines (fundamental and harmonics).

Whenever such rotating machines are switched on and off, their frequency varies,
in a continuous way, generating a vibration similar to a swept sine. This type of
environment is primarily used in laboratory tests in order to carry out research into the
resonance frequency of structures.

The mechanical excitations which are then analyzed, resulting from measurements
of the environment or test laboratory, belong to one of the following groups:

— sinusoidal vibrations;
— swept sine vibrations;
— random vibrations;
— mechanical shocks;
or a combination of these vibrations:
— sine on random (one or several lines);

— aswept sine on random (with a sweeping on one or several frequency bands);
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— anarrowband random vibration swept on a wideband noise, etc.

The vibrations which are produced in the real world have quite different frequency
domains:

— between approximately 1 and 500 Hz for road vehicles;

— between approximately 10 and 2,000 Hz for airplanes and spacecraft;

— between approximately 1 and 35 Hz for earthquakes;

—more than 10,000 Hz for shocks which are created by metal-metal impacts,
several tens of thousands of Hz for shocks which are created by pyrotechnic devices.

Vibrations are often classed into three different categories, depending on their
frequency. The different categories are as follows:

— very low frequency for frequency values between 0 and 2 Hz;

— medium frequency for frequency values between 2 and 20 Hz;

— high frequency for frequency values between 20 and 2,000 Hz.

These values in conventional matter are given only as an indication and do not
have any theoretical legitimacy. The low frequency concept can in fact be definite
only according to the natural frequency of the system which undergoes the vibration.

The frequency of a vibration will be low for a mechanical system if it induces any
dynamic response (no attenuation and no amplification).

1.2. Some real environments
1.2.1. Sea transport

The sources of vibrations on board ships have various origins and natures. They
are primarily due to:

— the propeller (periodic vibrations);
— the propelling unit and the auxiliary groups (periodic vibrations);
— the equipment used on board (for example, winches);

— the effects of the sea (random vibrations).

The measured levels are in general the lowest amongst all the means of surface
transport.
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1.2.1.1. Vibrations produced by the ship’s propeller

The rotation of the propeller can excite the modes of the ship’s frame in different
ways:

— the accelerations transmitted to the hull via the line shafts;
— forces exerted on the ship’s rudder;
— hydroelastic coupling between the propeller and the shafts’ line;

— fluctuations in pressure distributed on all parts of the back hull, having as an
origin the wake in which the propeller works. These fluctuations in pressure are
dependent on:

- the variations of propeller’s push. When the propeller provides a push, the back
of each blade is subjected to a “negative pressure” (suction) compared to the
environmental pressure, and the front face is subjected to an overpressure,

- the number, area and thickness of the blades. The fluctuations in pressure are a
linear function of the average thickness of the blades and decrease very quickly when
the number of blades increases,

- the presence of a variable vapor pocket on the surface of the blade and in its
slipstream, as a consequence of cavitation.

Around the propeller is formed a cavity filled with vapor within the liquid, due to a
local pressure lower than the saturating steam pressure. When the vapor bubbles reach
higher pressure zones, they condense brutally. This phenomenon, known as cavitation,
involves very strong mechanical actions (vibrations, noises, etc.).

Cavitation is the source of the majority of vibration problems encountered on
ships. It is equivalent to an increase of the thickness of blades and, as a result,
increases the pressure fluctuations. The variation of the volume of the cavitation
pocket over time is a second source of pressure fluctuation. The fundamental
frequency is around 20 Hz for fixed blade propellers from 5 to 6 m in diameter and
10 Hz for propellers from 8 to 10 m in diameter. The natural frequencies of the blades
decrease when the diameter increases.

1.2.1.2. Vibrations produced by the ship’s engine

The vibrations which are produced by a ship’s engine are caused by the alternate
movements of the piston, connecting rod and crankshaft systems.

They can excite the modes of the ship’s frame, especially for medium-sized ships.
Their vibratory frequency generally lies between 3 and 30 Hz.
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1.2.1.3. Vibrations produced by the state of the sea
Vibrations due to the swell

The swell heave leads to the creation of vibrations of a long duration and of very
low frequency (less than 2 Hz) in both the longitudinal (pitching) and transverse
direction (rolling). These random oscillations are always of a seismic nature.

Their frequency varies between 0.01 Hz (when the sea is very calm) and 1.5 Hz
(during bad weather). Their associated accelerations range from approximately
0.1 m/s* to 9 m/s”.

Vibrations of the whole of the ship due to the state of the sea
In general, two types of vibrations are considered:

— hydrodynamic shocks applied to the front of the ship lead to the vibration of the
whole of the ship, which works like a beam. This phenomenon occurs whenever the
ship navigates the sea with its front first, with relative movements of the stem
sufficiently significant to create impacts. These impacts can be distinguished as
follows:

- shocks which are produced on the flat part at the bottom of the ship, when the
ship makes contact with the sea, after it emerges from the water,

- shocks on planking of the stem, without emergence, without the ship
resurfacing from the sea,

- areas of seawater;

— excitations which are caused by the swell’s variable hydrodynamic forces, which
lead to a steady state free vibration of the entire ship.

These vibrations generally have low or very low frequencies and, to a lesser
extent, some can have high frequencies [VIB 06]. The frequencies range from 0.01 Hz
to 80 Hz, with a maximum value of between 3 Hz and 30 Hz. The vibrations are
periodic or random.

1.2.2. Earthquakes

The rapid release of the deformation energy which is accumulated in the Earth’s
crust or mantle (the underlying layer) is felt as a vibration on the Earth’s surface: an
earthquake. The vibration (the tremor) lasts in general for a few tens of a second.
Their amplitude on the ground level can reach several m/s”.
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The shock response spectrum was created in the 1930s in order to group together
the different effects that earthquakes of different amplitudes have on buildings. The
amplitudes are taken from actual acceleration signals which were measured from real
earthquakes (see Volume 2).

1.2.3. Road vibratory environment

The road transport vibratory environment is complex. It can be described as a
mixture of permanent vibrations and discrete superimposed vibrations. The permanent
part is comprised of variable proportions of the following types of vibrations:

—wideband noise, with a distribution of the instantaneous values which is
generally Gaussian;

— very narrowband excitation with amplitude distribution very close to a Gauss
law (for example, in response to a suspension);

— excitation of only one frequency and of constant amplitude (a poorly balanced
rotor).

The discrete components can be recurring (i.e. with a periodicity), for example at
the time of the passage of joints of a road made up of concreted plates, or intermittent
(only one or some occurrences), for example during the crossing of a railway crossing.

Four main sources of vibrations can be distinguished: the suspension system, tires,
the driving system and parts of the vehicle’s framework [FOL 72]. The spectrum’s
characteristics depend on the state of the road or the type of terrain on which the
vehicle is being used, the speed at which the vehicle is traveling and the vehicle’s
suspension.

The vehicle suspension generates vibrations at quite high amplitudes with
frequencies between 3 and 6 Hz. The tires produce recurring components between 15
and 25 Hz. The engine and the driving train produce continuous excitation with
frequencies between 60 and 80 Hz. The structural responses can range from 100 Hz to
120 Hz [FOL 72]. Other frequency domains can reach frequencies of up to 1,000 Hz
according to the type of vehicle that is being used, due for example to the operation of
electrical brakes.

The road vibratory environment is mainly made up of the following components:

— longitudinal movements which are linked to the acceleration and slowing down
of a vehicle;

— lateral movements which correspond to driving around bends;
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— vibrations which occur along the vertical axis, related to rolling on the road;

— longitudinal and lateral movements which are both associated with vertical
non-symmetric excitation.

The first two environments are relatively weak and quasi-static. The last two are
dependent on the state of the road. The frequencies of the spectrum can reach up to
approximately 30 Hz, with low frequencies being able to produce large displacements.
Frequencies larger than 30 Hz can also exist, being able to excite local resonances of
structures [HAG 63]. The vibrations according to the vertical axis are generally
dominant.

The rms acceleration of these vibrations ranges between 2 and 7 m/s*
approximately [RIS 08].

The spectrum measured on the tracked vehicles is comprised of a random
broadband noise and other higher energy bands of random vibrations which are
created by the interaction of the caterpillar with the track and the toothed wheels. It is
preferable to simulate these types of vibrations by using a swept sine on a wideband
noise.

1.2.4. Rail vibratory environment

The permanent excitation measured during the rail transport is of a slightly smaller
amplitude than that measured on the road [VIB 06].

The origin of the vibrations is primarily related to defects which exist on railway
lines, for example, gaps between the rails, distance between the rails, switch point
areas, etc. These examples are only a few of those that exist.

The vertical axis is in general the most excited, but the vibrations according to the
transverse axes can also be severe, at least for particular frequency bands. The highest
levels correspond to the frequency of the suspension (between 1 and 10 Hz), to the
frequency of the train’s framework (between 10 and 100 Hz) and to the areas where
there are joints which hold the rails together (between 10 and 30 Hz). The switch point
areas produce the strongest excitations [FOL 72] like the shocks between coaches
during the process of putting the train together — attaching the wagons of the trains
(the most severe levels of all types of surface transport).
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1.2.5. Propeller airplanes

The vibrations measured on the propeller planes have a spectrum that is made up
of a wideband noise and of several sinusoidal or narrowband lines. Wideband noise
comes from the flow of air that occurs around the airplane and also from the multiple
periodic components which are produced by all the elements in rotation in the
propeller.

The peaks come from the flow of air that exists between the blades of the
propellers, creating periodic aerodynamic pressure fields on the structure of the plane.
The narrowbands are centered on a frequency which corresponds to the number of
propeller blades multiplied by the engine’s rotation speed and on its harmonics.

The most visible lines are generally the fundamental frequency as well as the first
two or three harmonics. The amplitude of these rays depends on the stage of the flight,
i.e. take-off, ascent, cruise, landing, etc., and also depends on the point at which the
measurement is taken.

The same spectrum can also be observed around the airplane’s engine. The
majority of engines have an almost constant rotation speed. This rotation speed can be
modified by supplying fuel to the engine, or by changing the angle of the propeller’s
blades. The frequency of the peaks is also quite stable. Their width is linked to the
small change in rotation speed and to the fact that the vibrations which are generated
are not purely sinusoidal vibrations.

Other engines function with a more variable rotation speed. In this case, simulation
in a laboratory is instead carried out by specifying a test defined by a swept sine on a
wideband random vibration.

1.2.6. Vibrations caused by jet propulsion airplanes

1.2.6.1. During take-off and ascent

The strongest vibrations occur along the vertical axis of an airplane during its take-
off and ascent. The weakest vibrations occur along the airplane’s horizontal axis.

Depending on the type of airplane, the typical frequency has a value of between 60
and 90 Hz, with a root mean square of about 5 m/s2.
1.2.6.2. The cruising phase

The amplitudes of the vibrations are much lower during the cruising phase of the
plane than is the case during the take-off and ascent phases. Nevertheless, the
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amplitudes remain stronger along the vertical axis. These values are much lower along
the other two axes. There is also a constant frequency of between 60 and 90 Hz.

1.2.7. Vibrations caused by turbofan aircraft

We observe here a tendency towards a continuous rise of the levels of amplitude
between 20 and 1,000 Hz, then a decrease of the amplitudes.

Once again, the strongest vibrations occur along the vertical axis and the weakest
vibrations along the longitudinal axis. The vibration signal tends to be made up of a
sine wave which is superimposed onto a wideband Gaussian noise.

This type of vibration occurs on the fighter airplane and is produced by many
sources, including:

— the engine’s noise which is then transmitted by the airplane’s bodywork;
—aerodynamic flow;

— dynamic responses due to operations (airbrakes, missile launches, etc.).

In addition to these vibrations, shocks (which are sometimes severe) also occur,
related to landing, taking-off, catapult-launchings, etc.

1.2.8. Helicopters

The vibrations which are produced by helicopters are made up of a random
wideband noise and sinusoidal lines which are produced by the helicopter’s main
rotor, tail rotor and engine. The frequency of the sinusoidal lines does not vary much,
the rotation speed of all of these components remaining relatively constant (variation
of approximately 5%). The fundamental frequency which can be found in the
sinusoidal lines corresponds to the rotation speed of the rotor and to its harmonic
frequencies.

The amplitude of the lines is a function of the type of the helicopter and the point
of measurement (proximity of the source).

The helicopter produces the most severe environment among all the means of air
transport, producing high amplitudes at low frequency. The permanent random
wideband component is very complex and has an extremely large amplitude.
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The dynamic environment of the helicopters is different from that created by fixed
wing airplanes. There is little difference here between take-off and cruising, and the
amplitudes are generally larger.

The rotation speed does not vary much during flight for helicopters, except during
hovering flight. Random vibrations (approximately Gaussian) are superimposed on
sine lines, with a significant component at very low frequency. These lines are
difficult to identify (frequency and amplitude) and extract. The amplitude of the rays
varies depending on whether the vibration was recorded close to the rotors and engine,
or not.

The vertical axis is in general the most severe. The fundamental frequency of the
vibration depends on the rotation speed of the blades and also on the number of blades
present.

The first component, between 15 and 25 Hz for the main rotor, is easily
identifiable on the three axes and is more important according to the longitudinal and
transverse axes [FOL 72]. The back rotor produces higher frequencies in general,
between 20 and 100 Hz approximately, according to the type of apparatus and the
number of blades.

The tail rotor tends to produce frequencies of a higher value, i.e. between 20 Hz
and 100 Hz. These values depend on the type of helicopter and on the number of
blades on the helicopter’s propeller.

Example 1.1.
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Figure 1.1. Frequency contents of a vibration measured
on a helicopter (power spectral density)
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1.3. Measuring vibrations and shocks

Different physical parameters can be a priori used for characterizing a vibration:
an acceleration, a velocity, a displacement, a force or even a stress directly. All these
parameters are measurable, but the most frequently used is undoubtedly acceleration.
The main reason for this is due to the diversity of the different sensors which are
available, their different acceleration and frequency ranges and their different sizes.

A sensor is an energy converter. Accelerometers are composed of a seismic mass
suspended by an eclastic element. Measuring the force F at which the mass m is
subjected allows the acceleration G to be derived. The dynamic mass may carry
compressive, bending or shearing forces. The different types of accelerometers differ
in the force measurement principle.

Accelerometers are mechanically one-degree-of-freedom systems (see Figure 1.2).
The system’s mass response, which is subject to a certain level of acceleration applied
at its base, will be studied in later chapters.

e
e
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m
k —C Acceleration
to be measured
¥

..
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Figure 1.2. Mechanical principle of an accelerometer

Several physical principles are used to convert movement into an electric signal.
These principles are as follows [ERE 99], [WAL 07]:

—the piezoelectric effect: a crystal which has a dynamic stress applied to it
produced, in response to the acceleration which is to be measured, electrical charges
which are converted into tension;
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— a variation of capacity between two very near microstructures. This variation in
capacity is also transformed into a variation of tension;

— the piezoresistive effect (change in resistance with acceleration);

— etc.

Figure 1.3. Example of piezoelectric accelerometer (PCB 357B81, 2000 g, 20 pC/g,
9kHz shear ceramic) (courtesy of PCB Piezotronics)

Figure 1.4. Example of piezoresistive accelerometer (MEMS, 20000 g — 0 to 10 kHz — 2.83 g,
-54 to 121°C, shock measurements) (courtesy of PCB Piezotronics)

The resulting signal can be analog (continuous tension proportional to
acceleration) or digital.

These sensors are characterized by their bandwidth (frequency domain, which is a
function of the sensor’s resonance frequency), by their effective range, by their
sensitivity (V/g) and their size (or masses). Some make it possible to measure
acceleration according to three axes.
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. Accelerometer Advantages Disadvantages Field of Use
Piezoelectric - Usable at high - Does not filter DC - Impulse or
tempcrature (up to components non-impulse vibratory
700°C) - Badly adapted to phenomena
- Generally low costs | pyroshocks beyond - Characterization of
- Large measurement 100,000 g structure and
scale (from 10-5 to equipment behavior
105 g) - Measurements at
- Sensitive to weak high temperatures
amplitude vibrations - Seismic
- Low volume measurements
- Response in a wide - Shock measurements
frequency, from - Low frequency
0.5 Hz to 40 kHz vibratory phenomena
(vibratory comfort
analysis)
Piezoresistive - Does not filter DC - Temperatures - Low amplitude and
components lower than 130°C low frequency
- Low volume - More expensive vibration acceleration
- Adapted to the than piezoelectric measurements (up to
measurement of - Less sensitive to several thousand Hz)
amplitude shocks weak levels than - Shock measurements
(greater than piezoelectric - Characterization of
100,000 g) structures and
equipment (quasi-
static measurement):
vehicle behavior,
suspension during
road tests, crash-tests,
elc.
Capacitive - Does not filter DC - Cost - Low amplitude and
components - Fragility low frequency inertial
- Very high - Volume phenomena
resolution - Temperatures measurements
(up to 10°° g) lower than 150°C - Examples: trajectory
- High output signal correction,

Table 1.1. Advantages and disadvantages of the different types of accelerometers
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Advantages Disadvantages Applications
Large dynamic field Field limited by temperatures Modal analysis
of use
Large frequency range Motors

Maximum: 170°C

Resistance to high level shocks In-flight tests

Integrated electronics

L 1 1 . . D test:

OW SUppLy COSIS subjected to same environment rop tests
Less sensitive to the as sensor Earthquake
electromagnetic environment behavior tests

Low frequency response
Easy to use determined by construction HALT/HASS
High impedance output Cold
Large length of cable possible ::ens\;ronment

without noise

Output parameters fixed by
construction

Table 1.2. Advantages and disadvantages of piezoelectric accelerometers
with integrated electronics

MEMS are Micro Electro Mechanical Systems which use small silicon surfaces
(the material used for CMOS technology). They are measured in micrometers.

Theoretically, MEMS accelerometers do not have a zero derivative. One drawback
with MEMS accelerometers in shock measurement is their considerable amplification
at resonance (for example, 1000:1). This can lead to a rupture in response to high
frequency inputs (for example, metal-metal impacts, pyroshocks, etc.). This defect
can be improved by incorporating a small damping film.

Signal conditioners

Conditioners are used to carry out a load/voltage or voltage/voltage conversion,
with an amplification and attenuation gain. Some conditioners also make it possible to
integrate the signal in order to obtain at the output velocity or displacement signals.
Signal pre-filtering functions often enable us to optimize the signal before saving
and/or analysis.

Measurements must be carried out under real conditions of use if possible, for
example, the same vehicle (if the material is embarked), the same interfaces, etc.
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Some simple rules must be respected:

— the vibration should be measured at the input of material, the sensor being placed
onto its support near an area which is very close to the material’s fixation point,
preferably on the most rigid surface available [STA 62]. It would be best to avoid
placing the sensor on a sheet of metal or on the hood, etc.;

e

S
# 77 e

Figure 1.5. Position of the sensor for measuring vibrations
experienced by equipment

— a sufficient number of sensors should be used so that a better understanding of
how the material works is obtained. However, caution is required, as we do not want
to have too many sensors present in order to avoid modifying its mechanical behavior.

It is important to evaluate the representativeness of measurement compared to the
physical phenomenon. Is one measurement enough? Does the variability of the results
require the realization of several recordings, statistical processing, etc.?

1.4. Filtering
1.4.1. Definitions

Filters are used to remove components of undesired frequencies in a measured
signal, shock or random vibration. They can also be used to extract the useful
components of a signal in a given frequency domain. The filter transfer function (the
ratio of the response divided by the input to each frequency) should have a value of 1,
or as close to 1 as possible for the frequencies which are to be kept. For all of the other
frequencies this value should be zero. The transition zone needs to be as small as
possible.
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There are two types of filters that exist:

— analog filters. These filters use electronic circuits. The original signal is analog
(current, tension), such as the filter’s response signal, or filtered signal as it is
otherwise known. Examples of such filters include the Butterworth filter, the
Tchebycheff filter and the Bessel filter;

— digital filters. Using these filters makes it possible to process signals which have
already been digitized and which rely on the use of data processing calculations.

1.4.1.1. Low-pass filter

A low-pass filter is a filter which lets low frequencies pass through the filter
without making any modification to them. This type of filter then rejects frequencies
which have a value of more than f; This frequency is known as the cutoff frequency.

An ideal low-pass filter has a constant gain of 1 in its frequency range, and a zero
gain in its stop band. For the frequency values of between zero and f,, the shape of this
filter is rectangular. In practice, the transition from a value of 1 to a value of zero is
done with a more or less important slope according to the quality of the filter.

The most simple analog low-pass filter (order 1 filter) has the characteristic

. 1
H() = — [1.1]
1+J—
fC
The gain equals
) 1
[HG )| = —— [1.2]
2
f
1+ —
f

where f is the cut-off frequency, the frequency for which the gain has decreased by
3 dB.



The Need 17

We use the larger n-order filters instead, in which the gain is given by
(Butterworth filter):

1
H(G )] = ——= [1.3]
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Figure 1.6. Low-pass filter — gain versus [/ f., for different values of the filter order n

The larger the order of the filter, the quicker the return to zero (Figure 1.6). It is
casy to show than the decrease slope is about equal to —6 n dB / octave. A 20 order
filter is therefore necessary to obtain a decrease of —120 dB / octave.

1.4.1.2. High-pass filter

A high-pass filter is a filter which lets high frequencies pass through the filter, and
rejects the low-value frequencies which have a value that is less than the cutoff
frequency. An ideal high-pass filter has a constant gain of 1 for frequencies which are
greater than f; and a zero gain for frequencies which are lower than f .

The n-order filter gain is as follows
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Figure 1.7. High-pass filter - Gain versus f / f., for different values of the filter order n

1.4.1.3. Band-pass filter

A band-pass filter is a filter which only lets frequencies within a certain range pass
through the filter. This range includes frequencies which are greater than the low
cutoff frequency and which are lower than the high cutoff frequency. The ideal filter
gain is zero for all frequencies except for the frequencies which can be found in this
particular range. Here the value of the filter gain is 1.

1.4.1.4. Band-stop filter

A band-stop filter is a filter which prevents some frequencies, which can be found
in a certain interval, from passing through the filter.

The band-stop filter is made up of a band-pass filter and a high-pass filter, and
whose cutoff frequency is greater than the cutoff frequency of the low-pass frequency.
The band-stop filter can be used to remove any parasite frequencies.
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1.4.2. Digital filters

The digital filters can be grouped into two different categories:

— Finite impulse response (FIR) filters. These filters are said to be finite because
their impulse response is stabilized ultimately to zero. The response which is provided
by these filters depends entirely on the entry signal. There is no counter-reaction. FIR
filters are said to be non-recursive. Each point of the filtered signal is calculated from
the entry signal at the same time and also from preceding points of the signal. These
filters are always stable.

The method used consists of numerically carrying out filtering by means of a
convolution product, which makes it possible to produce any filter, but requires longer
calculations.

Its specifications must specify:

- the ripple ratio in the passing band,
- the all-off rate in the rejected band,
- the width of the transition band.

— Infinite impulse response (IIR) filters. These filters use analog filtering
techniques. Their impulse response does not settle. This type of filter is said to be
recursive: the response which is provided by this type of filter depends on both the
input signal and the output signal because of the existence of a feedback loop. Each
point from the filtered signal is calculated from the original signal at the same time,
from the amplitudes of the preceding points of the original signal and from the

preceding values of the filtered signal. These filters require fewer calculations to be
carried out in comparison to their FIR equivalents.

The response of a digital filter can be written as follows:
N M
y(n)=Y a x(n-j)= D b, y(n-k) [1.5]
=0 k=0
where a; and by are coefficients, x is the current point of the original signal (the input
signal) and y is the current point of the filtered signal (the output signal).

The by coefficients have a value of zero for the FIR filters.

The order of a non-recursive filter is the largest number of values of the original
signal that are necessary to calculate one point of the filter’s response.



20  Sinusoidal Vibration

The order of a recursive filter is equal to the largest number of values from the
original signal from the response which is taken into account in this calculation. In
general, the number of values considered in the original signal and the response is the
same. Thus, each point of index n of the response of the second order filter is
calculated starting from the last two points of the original signal (i.e. indices n—1 and
n) and of the two preceding points of the response (indices n—2 and n—1).

The slope of the filter at its cut-off frequency is dependent on the order of the
filter:

Slope in dB/oct = 6 x Order [1.6]
If no particular precaution is taken, it is possible that the filters might introduce a

type of phase difference (or delay) when compared to the original signal. It is possible
to remove this dephasing during the calculation of the response.

Advantages and disadvantages of digital filters

Advantages Disadvantages

Not sensitive to environmental conditions | Filtering limited to 100 MHz

temperature, humidity, etc. .. .
(temp 4 ) Analog to digital conversion necessary
Can process low frequency signals with . Lo
p d v Sig Requires an analog anti-aliasing filter for
precision . e
sampling and restitution

Designed and tested directl t . .
esigned and fested directly on a computer Performance of the filter directly proportional

As they are programmable, their | to the power of the calculation unit (processor
characteristics can be changed easily | or DSP)
without changing the hardware

No problem with deriving their components

Some filters can only be realized digitally
(FIR)

Known and controlled precision

Reproducible without fine-tuning
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Advantages and disadvantages of FIR (Finite Impulse Response) filters

These non-recursive filters have no feedback.

Advantages Disadvantages

Always stable Larger calculations with respect to an

ivalent IR filt
Linear phase coefficient symmetry equvatett et

No phase distortion Delay of the filter can be significant
Possible to create all sorts of filters (through
calculation of the inverse Fourier transform
from a gauge in the frequency range)

Advantages and disadvantages of IIR (Infinite Impulse Response) filters

These recursive filters have feedback.

Advantages Disadvantages

Much less calculation with respect to an FIR | Need to check stability

Nonlinear phase (phase distortion)

1.5. Digitizing the signal

In order to be processed by a computer, the measured signals must be digitized and
represented as a time—amplitude couple. How is it possible to choose the number of
points per second that need to be digitized, i.e. to choose the sampling frequency?

Digitization consists of:

— sampling, which consists of representing an analog signal using a series of n
values quantified at integer multiple instants of a time interval 8t, the sampling period;

—and quantization, which consists of approaching each value of the signal using
an integer multiple of a basic quantity A, called the quantization step.

1.5.1. Signal sampling frequency

In 1920, H. Nyquist, from Bell Laboratories, was the first person to demonstrate,
without any practical application, that “if a function does not contain any frequency
which is larger than f,,x Hz, then it is completely determined by sampling it with a

frequency equal to 2 fi,,” [SHA 49].
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This theory is often associated with Claude Shannon, who worked in the same
laboratory. It was Shannon who in 1948 used this theory once again, but this time on
applications which were part of the world’s first computers.

If we want to analyze any signal with a frequency value of up to fi ., it is
therefore necessary to make sure that there are no frequencies which have a value that
is greater than the value of f,,,4 before it is finally digitized at a value of 2 f,,,,4. These
frequencies can sometimes resemble a real physical object or can simply be a noise. In
Volume 3 we will see that these frequencies lead to a phenomenon known as spectrum
folding (or aliasing). As far as this phenomenon is concerned, the signal is filtered
with the help of a low-pass analog filter, whose cutoff frequency value is fx.

NOTE.~ The Nyquist frequency can be shown as fy, ... = framp. /2 -

Thus, it should be considered that the true contents of the filtered signal extend to
the frequency corresponding to this attenuation (f 4), which is calculated as follows.

In practice, however, the low-pass filters are not perfect as they do not always
reject the frequencies which are above the requested cutoff level. Let us take the
example of a low-pass filter which decreases by 120 dB per octave once the cutoff
frequency has been passed It is estimated that the signal is sufficiently attenuated with
—40 dB. Thus, it should be considered that the true contents of the filtered signal
extend to the frequency corresponding to this attenuation (f 49), which is calculated as
follows [1.7].

dB
0

-40

-80

Figure 1.8. Taking into account of the real characteristics of the
low-pass filter for the determination of the sampling rate

A reduction of 120 dB per octave means that:

A
lolog—1
-120 = —fAO log?2 [1.7]
log—1
fo
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where A and A; are the amplitudes of the non-reduced signal (with a frequency of
fiax) and the reduced signal to —40 dB (with a frequency of f_4() respectively.

This yields:
—40
10—
~120=—10 1502 [1.8]
log -=40
max
and:
f log2
. -103 =1.26 [1.9]

max

If f 49 is the largest frequency signal, then according to Shannon’s theorem we
obtain the following equation: f__ =21, ie.

samp.

fsam
052 [1.10]

{40 is the Nyquist frequency and is written as fyquist-

A number like 2.5 times would be adequate, but in order to comply with the
computer world, 2.56 is usually the number employed (sometimes 2.6) [BRA 11],
[SHR 95]. This result has sometimes led us to state that Shannon’s theorem imposes a
sampling rate equal to 2.6 times the largest frequency of the signal to be analyzed.

Using this theorem makes it possible to determine the minimum sampling
frequency that is required, so that a signal keeps its full frequency contents.

According to this theorem, the sampled signal possesses all of the characteristics of
the original signal without any loss of information. This means that it is possible to
reconstruct the original signal from the sampled signal (see section 1.5). However, the
sampled signal tends not to have the same effects on a mechanical system when it is
compared to the original signal.
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Example 1.2.

Let us consider the sinusoid from Figure 1.9. The sinusoid has a frequency of
100 Hz and is sampled with a sufficiently large frequency to represent the signal
correctly. Figure 1.10 shows the same sampled sinusoid which is sampled at a
frequency of 200 Hz (two times the frequency of the sinusoid). The signal’s
frequency can be read without ambiguity, but the signal is very deformed. It is
easily understood that it will not have the same effects on any mechanical system
on which it will be applied.

100 T
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40
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0

m/g?

-20

40

-60

-80

IR 4q)) 2T UL Y PR ST, U NN S P U SR S T SR ST ST ST [ S
0 0.02 0.04 0.06 0.08 01 012 014 0.16 018 02
Time (s)

Figure 1.9. Sampled sinusoid (100 Hz) with a frequency of 8,000 Hz
(1,600 points over 200 ms)
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Figure 1.10. Sampled sinusoid (100 Hz) with a frequency of 200 Hz
(40 points over 200 ms)
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A.G. Marshall and F. R. Verdun [MAR 90] have shown that it is necessary to
sample a signal with a frequency equal to 20 times its maximum frequency to be able
to correctly reproduce its initial form. T. E. Rosenberger and J. DeSpirito [ROS 93]
proposed to use a factor of 5 as a set standard.

The best practice today for each signal which is used to digitally calculate the
responses produced by a mechanical system is to sample it with a frequency that is:

— ten times larger than the mechanical system’s natural frequency for shocks
(Volume 2);

— seven times higher than the signal maximum frequency if it is a vibration
(Volume 5).

In Volume 3 we will see that Shannon’s sampling frequency is sufficient for the
calculation of power spectral densities.

1.5.2. Quantization error

The variation field of the signal [-X,,,X ] is divided into intervals of width A.

A signal x(t) is quantified correctly (without clipping) with a converter on n bits if
its amplitude X, is in the interval [-X ,,X , ] where X, = 2"~ A In the opposite
case, the signal will be clipped [HAY 99].

44 Qo .~
34 la]

24 (e

Quantization

8t 28t 38t 48t 56t
Sarmnpling

Figure 1.11. Sampling and quantization



26  Sinusoidal Vibration

A is called the quantization step size or the resolution of the quantizer, and the
quantizer is said to be a uniform or a linear quantizer.

We have

resolution (dB)
A=2X_10 20 [1.11]

Each signal value can thus be written as

n-1

x=Y a;2 [1.12]

i=0
where a; is equal to 0 or 1.

This operation cannot be carried out without error. The difference between the
actual analog value and quantized digital value is called the quantization error. This
error is either due to rounding or truncation.

Assume that each error is independent of the rest, and that the error amplitude is
evenly distributed in the range —A/2 to A/2, where A is the step in the analog-to-digital
converter (ADC) process, its probability density p(x) being equal to 1/A.

We may then calculate the mean square value of the error:

A | A2
o’ =j_°;x2p(x)dx=j2A X2de=E [1.13]
2

The noise standard deviation (rms quantization error) is equal to

A
c=——==029A,ie.

2.3

2X
m [1.14]

o=
212

Figure 1.12 shows the variations of this error as a function of the number of bits n
for different values of X, .



The Need 27

L LN LML LIRY L LA SLL R L LA R LN LR LR LAY LR ERLILI AT LR

3
O 107
102 L
= 10tk E = =
% 100: {f \
o =
E 10-12\\”\2 /\
T 102 ]
=2 E 10 g
E 107k
10 L
107¢ E
-5: 3
103§III 111 111 111 111 111 111 111 111 m’%
4 6 © 10 12 14 16 18 20 22 24

n

Figure 1.12. Rms quantizing error versus bits number n

Number of bits g 10 12 16 20 24
Number of levels | 556 | 1024 | 4096 | 65536 | 1.0510° | 1.68 10’
Absolute error 40 10 25 0.15 0.01 0.0006

(mV)
Relative error (%)

0.4 0.1 0.025 | 1510°| 110" 610°

Table 1.3. Quantization error for an input range of the analog-digital converter of 0 V to 10 V

The quantization effects can be reduced by a low-pass filtering of the digital signal
[BAC 87], with a cut-off frequency a little larger than that of the filter used before the
digitization (anti-aliasing filter).

If n is the number of binary bits in the converter, the dynamic range is given by

D rms of largest sine
R = . =
rms of quantisation noise

=ﬁi=ﬁzn [1.15]

A
on

é“>§‘|l>
[\
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i.e. in decibels:

Dy =201log;(+/1.52") = 1.76+ 6.02 n [1.16]

Today, current ADC have 24 bits.

n 11 12 14 16 18 20 22 24
Dy 68 74 86 98 110 122 134 146

Table 1.4. Dynamic range versus bit number

Example 1.3.

Let us consider a pyroshock measured with a sensor + 100 000 g. With an ADC
11 bits (+ sign bit), the quantization step is equal to 200 000 /2" = 97.6g.

Influence on the calculation of a PSD

The error related to the quantization appears as a white noise having a PSD of
amplitude [BAC 87]:

epgp = — M [1.17]
3f, 220

samp

where fg,, is the sample rate of the signal.

1.6. Reconstructing the sampled signal

Sampling a signal transforms a continuous analog curve into a series of points.
Shannon’s theorem states that the sampling frequency must be equal to twice the
largest signal’s frequency. This sampling leads to the creation of high frequencies.

It is possible to reconstruct the signal by removing these high frequencies by
applying a rectangular window into the frequency domain (a low-pass filter), and at
the same time by increasing the number of points of the signal [LAL 04], [SMA 00],
[WES 10]. This can be carried out using the following remarks.
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The inverse Fourier transform of a rectangular window becomes a function in the
form sin x/x in the time domain.

Let us suppose that the functions mentioned below are continuous. Consider a
function defined in the frequency interval — fi,, finax (after a low-pass filtering if the

studied signal refers to a measurement) by n points with a sampling rate of
£ 22F

samp.

If we only consider the physical case in which frequencies only have positive
values then this function can be expressed in the form of a Fourier integral:

. 1 Qmax L 'Qt
t)y=— X (Q)e'™ ! dQ 1.18
(= TX(Q)e [1.18]

where Q =27nf and Q , =27f .

In this frequency band, the function X(€) can be developed into a Fourier series:

inQ
X(Q):Zan e P [1.19]
yielding:
“ a Q.
X(t)=zij. ¢ @) 4o [1.20]
2mY 0
n=0
where t, = or

max

After integration:

Q
%(t)= za—sm “m(t ) [1.21]

1’1
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Since:
a; Q
tl;n: X(t) = % [1.22]
it becomes:
e sin Q (t—t, )
i(t)=25€(tn ) e ° [1.23]
n=0 Qmax ( t—t, )
samp.

Knowing that f = and that the signal’s temporal step is equal to

ot = ! , this expression can be written as:
fsamp.
. sin{n (t-n St)}
k()= ) k(nd) —= t [1.24]
n=0 —(t—ndt)
dt

In order to reconstruct the signal at a given time t, the procedure thus consists of
centering a function of the form sinc = sin x/x on each point of the signal and adding
all the sinc functions thus defined [BRA 11].

Theoretically, in order to perfectly reconstruct a signal, it is necessary for the
signal to have an infinite number of points. In practice, the number of sampling points
is necessarily limited and its sum of all of these functions is truncated. Due to this fact,
the reconstructed signal can differ slightly from the original signal. This is, however,
only a small error which can be ignored whenever the initial sampling frequency is
multiplied by 10.

Example 1.4.

Consider a sinusoid which has an amplitude of 100 m/s? and a frequency of
100 Hz. The sinusoid is sampled with a frequency of 250 points/s (50 points over
0.2 s).
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The signal is reconstructed using equation [2.7]. The number of points of the
new curve is multiplied by 20 (i.e. 1,000 points over 0.2 s). The reconstructed
signal is compared with the signal sampled with 50 points in Figure 1.13 and, just
like a reference, the reconstructed signal is also compared with the original sinusoid
which has a very large sampling frequency (5,000 points/s).

150 T T al T T

s Reconstructed signal
Original ,%

M\ signal /’ \. //7\
\ £ '5‘ ‘fl.

: / . / II\-. _
S0 /’, \\ “\ /M ;
I\ P

\ / \ k 3

/
Y

RN 13 135 14 145 15 155 16 1.65

100

nfs
(=]
——

-100 — \J

n
-0

Figure 1.13. Sampled sinusoid with a frequency of 250 Hz,
which is superimposed on a reconstructed signal and on the original signal

The reconstructed signal is very similar to the ideal signal.

1.7. Characterization in the frequency domain

The recorded signal is generally made up of several types of successive signals,
such as random stationary vibrations, shocks, non-stationary vibrations, etc. It is
necessary to split the signal so that, with the appropriate mathematical tools, it
becomes possible to study the individual components of the signal.

The mechanical shocks are generally characterized by the effects they have on a
one-degree-of-freedom linear system according to its natural frequency, i.e. the shock
response spectrum (see Volume 2).

The frequency content of the random vibrations is studied, when they are
stationary, by using a spectrum called power spectral density obtained by taking the
average of all the Fourier transforms of several samples of the signal (see Volume 3).
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Vibrations, just like shocks, can be analyzed by using another spectrum, the
extreme response spectrum, giving the largest response of a linear one-degree-of-
freedom system over the studied duration (see Volume 5).

If we take the duration of the vibrations (which can be quite long) into
consideration, they are capable of damaging the mechanical parts of a system by the
fatigue which is created by the repetition of stress cycles (see Volume 4). To take this
mode of failure into account, a second spectrum is defined, the fatigue damage
spectrum, which gives the fatigue damage experienced by this same one-degree-of-
freedom system according to its natural frequency when it is subjected to the vibration
for a given duration of time. These two spectra can be calculated for any type of
vibration, for random stationary and non-stationary vibrations in particular or for a
large number of repeated shocks (Volume 5).

1.8. Elaboration of the specifications

The dimensioning of a material and the realization of a qualification test with this
material require environmental specifications which can result from normative
documents or are developed from measurements of the real environment. The MIL
STD 810 standards in the USA, GAM EG 13 in France and the international NATO
standard recommend this last method, called “fest tailoring”. This approach involves:

— analyzing the conditions in which a material is used (life profile);

— linking environment measurements with each of the different conditions in
which the material is used;

— synthesizing all the data thus joined together; and

—for tests, establishing the test program in the most representative and least
expensive way.

Each of these operations which make up the four step approach is extremely
important, but the most technical is the synopsis which will lead us, for the vibrations,
to define a test of the same severity as all vibrations and shocks of the life profile. This
test must be able to produce the same failures in the material that would also be
created if the material were to be used in a real environment.

Two different synopsis methods exist nowadays. One of these methods involves
using envelopes from power spectral densities, whilst the other method aims to
reproduce the largest instantaneous stress which is produced by the vibrations, as well
as the fatigue damage which is caused by the accumulation of all the different stress
cycles. Volume 5 will deal with the second of these methods, which is based on the
behavioral laws of fatigue of materials described in Volume 4. As the structure is
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generally not known at the time of the writing of specifications, the search for a
specification respecting these two criteria is carried out by studying the response of a
simple mechanical system, the one-degree-of-freedom linear system already used to
characterize shocks. This choice highlights the advantage of standardizing the
methods that are used to analyze vibrations and shocks.

1.9. Vibration test facilities
1.9.1. Electro-dynamic exciters

1.9.1.1. Principle

An electro-dynamic exciter converts electrical energy into mechanical energy. The
force which is generated on the table supporting the specimen to be tested is produced
by the presence of a constant magnetic field which acts upon a conductor coil. The
conductor coil is linked to the table and has a variable current that runs through it. The
conductor being placed perpendicularly to the magnetic field is subjected to a force
perpendicular to the flow and the current.

The constant magnetic field in the air-gap where the coil moves is created by a DC
current circulating in two fixed coils.
1.9.1.2. Main components

An electro-dynamic exciter is made up of:

— a table supporting the specimen to test, made from an aluminum alloy. This table
is connected to an armature by suspension, which makes it possible for the table to
move in the axial direction, minimizing the movements in the other directions;

— a mobile coil which is firmly attached to the table and which is placed inside the
magnetic circuit’s air-gap. This coil is guided using hydrostatic bearings;

— an armature, which forms the polar parts of the magnetic circuit;
— field coils;
— a fixed frame to which the exciter is connected by using two pivots allowing its

rotation (for the large exciters).

However, a certain number of extra components are required within the electro-
exciter, such as water circulating pumps for the cooling process, different security
devices, a control system, etc.
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The exciter is installed in a seismic mass with the aim of protecting the room from
the vibrations.

r----_ Test item
| I i\ Drive coil
Table \9/ Annular
Flexures E K, airgap
l_ll_ll LT Field coil
Tl
Magnetic . —
flux lines Electromagnet /

Pedestal

Figure 1.14. Composition of an electro-dynamic exciter

1.9.1.3. Moving assembly
The moving assembly includes:

—the specimen-holder table which is made out of a cast aluminum alloy. The
mobile coil is firmly attached to the table. The table is connected by eight tighteners to
a central tube guided by using two hydrostatic bearings;

— the mobile coil which is made up of two superimposed coils:

- the interior coil is made out of hollow aluminum and has a variable current
running through it. This coil is cooled by water. It is this coil which transforms
electrical energy into mechanical energy,

- the exterior coil is stuck onto the main coil. The exterior coil has a DC current
running through it, intended to compensate for the axial loadings;

— the mounting fixture and the test specimen.

1.9.1.4. Control system

To obtain a given acceleration on the table at the specimen input, it is necessary to
generate an electrical signal which takes account of the transfer function of the
facility, the non-linearities of the shaker, the dynamic interactions, the fixture, etc.
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The compensation for the transfer function is obtained from feedback making it
possible to create the required level of acceleration on the table according to the
frequency.

The acceleration signal which is to be generated is sinusoidal, random or a shock.

The control system, which was originally analog, is nowadays digital.
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Figure 1.15. The acceleration/current transfer function of an exciter

Figure 1.16 shows a diagram which highlights the way in which an exciter
provides feedback.

Analyzer

Equalizer

TestItemn Sensor Level selector

Conditioner Average calculator
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digital gain
caontrol
A
Power
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Noise or sine
generator

Figure 1.16. Diagram showing the principle of the feedback process
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1.9.1.5. Main characteristics

The maximum force which is generated is generally defined by a peak value for
sinusoids and by a root mean square for random materials. As far as the random
materials are concerned, in order to ensure that the test is reliable, it is necessary to
have a root mean square which is approximately 5.5 times smaller than the maximum
force.

The mass of the moving assembly includes the masses of the table and of the coils,
the masses of the mounting fixture and of the specimen. The moving assembly mass
limits the maximum value of the specimen’s acceleration. Other characteristics
include:

— the maximum mass which can be dealt with without any external compensation;

— the maximum couple which can be applied to the moving assembly by a
horizontal charge;

— the maximum displacement that can take place between mechanical stops;
— the maximum velocity;

— the maximum frequency range.

1.9.1.6. The horizontal table

The exciter’s axis is generally the vertical axis. When a specimen needs to
experience a vibration in any other direction, the exciter’s axis is changed by turning
the specimen over in order to vertically place the new test axis, using a square fixture
to keep the table horizontal.

If the specimen is too heavy, it is best to keep its axis in a vertical position. The
solution therefore involves turning the exciter around (using its pivots) so that it is
possible to slide a horizontal table onto a thin layer of oil (see Figure 1.17).

Shaker

Test Itemn
—

Selsmic
Iass

Figure 1.17. Assembly with a horizontal table
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1.9.2. Hydraulic actuators

1.9.2.1. Principle

Electro-hydraulic vibration systems are remote power transmitter systems which
use a low pressure fluid that is not very compressible.

These vibration systems are made up of three main parts:

— the generator of pressure (pump), which receives the energy of the external
medium (electrical motor) and which communicates it to the fluid;

— the receiver (the actuator), which receives the energy of the fluid and restores it
in the external medium;

— focal points, which exist between the pump and the receiver (tubes, valves, etc.).

P = Pressure
R = Return

Transducers

Electrodynamic
Shaker

Figure 1.18. How a hydraulic actuator works

1.9.2.2. Description
The hydraulic actuator is made up of:

— a hydraulic power unit which supplies oil throughout the jack with the help of
several pumps that are equipped with a cooling system and an oil reservoir (example:
a flow of 600 1/min for 210 bars);

—an electro-hydraulic exciter which converts electrical energy into mechanical
energy with the help of a hydraulic amplifier. The electro-hydraulic exciter receives
its commands from a servo-valve;



38  Sinusoidal Vibration

— the servo-valve is responsible for supplying oil within the actuator. The servo-
valve is made up of an electro-dynamic exciter attached to the servo-valve distributor;

—a double acting jack made up of a sliding piston in a cylinder, receiving oil on its
two sides from the servo-valve distributor.

The piston is guided by hydrostatic bearings at the ends of the cylinder.

1.9.2.3. How the hydraulic actuator functions

The servo-valve distributor, which is connected to the mobile coil of the electro-
dynamic exciter, moves in relation to the current which runs through the mobile coil.

The distributor’s main high pressure supply is connected to one of the pipes that
supplies one of the jack’s chambers with oil. The other chamber is connected to the
low pressure hydraulic return.

Due to the difference in pressure that exits on its two sides, the piston moves at a
speed which is proportional to the opening of the pipes in the servo-valve’s casing.

1.9.2.4. Principal characteristics

— The maximum force generated (for example, 120 kN). At higher frequencies, the
performances in acceleration are limited. This limitation is due to the maximum
dynamic effort which is allowed, and also due to the effects of the hydraulic natural
frequency.

— The mass of the moving assembly, including the masses of the table and of the
piston, the mass of the mounting fixture and of the test specimen. The moving
assembly’s total mass limits the maximum value of the specimen’s acceleration.

— The maximum displacement, e.g. of 10 cm (limitation at low frequencies).

— The maximum velocity, e.g. of 1.56 m/s. In the medium frequency range, the
velocity is limited by the maximum flow of oil throughout the system.

— The frequency range (for example, between 0.1 and 300 Hz).

1.9.3. Test Fixtures

It is generally impossible to fix a test object directly to the shaker table itself.
The fixture acts as a transition piece between the two. They are generally used to
enable us to carry out tests in the three directions.
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The real vibratory environment is generally tri-axial. Tests are usually carried out
axis by axis, basically due to the cost of tri-axial testing installations. To reduce
parastic vibrations as far as possible on the two axes perpendicular to the axis under
test, the rule is to place the center of gravity of the specimen and the assembly over
that of the testing table.

In real service conditions, equipment is often fixed onto structures which may to a
greater or lesser extent deform under the vibrations according to the mass of the
specimen. Ideally, the assemblies should reproduce the real fixture conditions, such as
stiffnesses, support masses (mechanical impedances). However, these characteristics
are generally not specified are not even known.

The assemblies are thus designed instead to be as rigid as possible in order to
transmit uniformly to the specimen the forces produced by the exciter at all its fixation
points. They are designed so as to not deform the spectrum that will be applied to the
specimen. It is thus necessary a priori that their resonance frequencies be larger than
the maximum specification frequency. It is however difficult to completely suppress
the resonance frequencies between 1000 and 2000 Hz. In order to reduce their effects,
we can add materials that create a damping reducing the amplitude of the resonance
peaks.

Amongst the rules for a good design, the following must be retained [LEV 07]:

— the contact surfaces between the specimen and the test table must be machined to
be as flat as possible;

— the joints between the elements making up the assembly must be welded, in a
continuous manner (no simple welded joints) and bolts should be avoided;

— the bolts used to fix the specimen to the table must be screwed over a length at
least equal to twice their diameter.

The most commonly used materials are steel, aluminum and magnesium,
sometimes titanium. The disadvantage of steel is its weight, and magnesium its cost
[FIX 87].

The natural frequency is linked with respect to the Young’s modulus E and the
density p, which varies slightly according to the material and is therefore not a chosen
criterion (Table 1.5).
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Steel Magnesium Aluminum Titanium
Young’s modulus E (N/m?) 21 10" 414107 6.910" 10.7 10"
Density p (kg/m®) 7840 1800 2770 4510
E / p ratio (N m / kg) 2.64 10 23107 2.49 10 2.38 10

Table 1.5. Comparison of the mechanical characteristics of the most commonly used materials
for the design of assemblies

Table 1.6 compares the main ways to build an assembly; the assembly usually
being machined or welded.

Mode of manufacture

Advantages

Disadvantages

Machining Easy to manufacture Costly for large specimens
Good fixture (no joints)
Used for small
specimens
Casting Monolithic and Only of interest for a small
homogeneous number of assemblies (cost
construction of mold manufacture)
Less handling to be
carried out
Bolting Not recommended (behavior
of bolts under vibration, loss
of rigidity)
Laminating strips of Simple to manufacture Cost linked to time spent on
material construction
Possibility of including
layers of a damping
material (rubber, plastic)
Welding Best solution

Table 1.6. Advantages and disadvantages of main methods for fabrication of assemblies
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Basic Mechanics

2.1. Basic principles of mechanics
2.1.1. Principle of causality

The state of the universe at a given moment determines its state at any later
moment.

2.1.2. Concept of force

A force can be defined as any external cause able to modify the rest state or the
movement of a material point.

A force is characterized by:

— its point of application (material point on which it acts);

— its line of action, which is that of the straight line whereby it is applied;

— 1its direction, which is that of the movement that it tends to produce;

— its size (or intensity).
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2.1.3. Newton’s first law (inertia principle)

In the absence of any force, a material point, if it is at rest, remains at rest; if it is
moving, it preserves a rectilinear and uniform motion.

2.1.4. Moment of a force around a point

N
Given a force F and an arbitrary point O, the moment of the force around point
O is defined as the product M = Fd, where d is the perpendicular distance from

point O to F (d is called the lever arm).

Figure 2.1. Lever arm for the calculation of the moment of a force

N
Let us set O' as the foot of the perpendicular to the support of F drawn from O.

%
The moment M is positive if F tends to make O' turn clockwise around O, negative
in the contrary case.
2.1.4.1. Couple — moment of a couple
Two forces form a couple if they are parallel, of opposite direction and equal in

size.

The moment of the couple is equal to M = Fd, where F is the amplitude of each
force and d is the distance which separates them (couple lever arm).
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2.1.5. Fundamental principle of dynamics (Newton’s second law)

5
The application of a force F to the point of mass m involves a variation of its

-

momentum, defined by the product of its mass by its instantaneous speed X ,

according to the relation:
-
dl m x
N
F= 7/ [2.1]
dt

m is a coefficient characteristic of the body. If the mass m is invariable, the
relation becomes:

R
F=mox [2.2]
dt
ie.
— —
F=m % [2.3]

5
where X is the acceleration undergone by the mass subjected to F .

2.1.6. Equality of action and reaction (Newton’s third law)

If two particles isolated from the remainder of the universe are brought into each
other’s presence, they exert upon each other two forces, carried by the line which
joins them, of equal sizes and opposite directions. One is the action, the other the
reaction.

2.2. Static effects/dynamic effects

In order to evaluate the mechanical characteristics of materials, it is important to
be aware of the nature of stresses [HAU 65]. There are two main load types that
need to be considered when doing this:

— those which can be considered as applied statically;

— those which are the subject of a dynamic analysis of signal versus time.
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Materials exhibit different behaviors under static and dynamic loads. Dynamic
loads can be evaluated according to the following two criteria:

— the load varies quickly if it communicates significant velocities to the particles
of the body in deformation, so that the total kinetic energy of the moving masses
constitutes a large part of the total work of the external forces; this first criterion is
that used during the analysis of the oscillations of elastic bodies;

— the speed of variation of the load can be related to the velocity of evolution of
the plastic deformation process occurring at a time of fast deformation whilst
studying the mechanical properties of the material.

According to this last criterion, plastic deformation does not have time to be
completed when the loading is fast. The material becomes more fragile as the

deformation velocity grows; elongation at rupture decreases and the ultimate load
increases (Figure 2.2).

Dynamic load
o P ¥

A Static load

.
™

&

Figure 2.2. Tension diagram for static and dynamic loads

Thus, a material can sometimes sustain an important dynamic load without
damage, whereas the same load, statically, would lead to plastic deformation or
failure. Many materials subjected to short duration loads have ultimate strengths
higher than those observed when they are static [BLA 56], [CLA 49], [CLA 54],
[TAY 46]. The important parameter is in fact the strain rate, defined by:

1A
g=—— [2.4]
0o At

where A/ is the deformation observed in time At on a test-bar of initial length ¢,
subjected to stress.
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If a test-bar of initial length 10 cm undergoes in 1 s a lengthening of 0.5 cm, the
strain rate is equal to 0.05 s™'. The observed phenomena vary according to the value
of this parameter. Table 2.1 shows the principal fields of study and the usable test
facilities [AST 01], [DAV 04], [DIE 88], [LIN 71], [MEN 05], [SIE 97]. This book

will focus on the values in the region 107! to 10" s (these ranges being very
approximate).

Certain dynamic characteristics require the data of the dynamic loads to be
specified (the order of application being particularly important). Dynamic fatigue
strength at any time t depends, for example, on the properties inherent in the
material concerning the characteristics of the load over time, and on the previous use
of the part (which can reflect a certain combination of residual stresses or corrosion).

Strain rate (s)

0 107 107! 10! 10°
Phenomenon Evolution Qf Constant ||Response off| Elastic-plastic Shock wave
creep v_eloc1ty strain rates | structure, wave propagation
in time resonance || propagation
. . Slow Fast dynamics Very fast
Type of test Creep Quasi-statics dynamics (impact) dynamics
(hypervelocity)
Test Constant load || Hydraulic or | Hydraulic Impact )
facilit or stress screw driven Vlbrat}on metalfmet'al Explosives
y machine machine machine Pyrotechnic Gas guns
Shakers shocks
Negligible inertia forces Important inertia forces
Plane stress Plane strain

Table 2.1. Fields of strain rate

2.3. Behavior under dynamic load (impact)

Hopkinson [HOP 04] noted that copper and steel wire can withstand stresses
that are higher than their static elastic limit and are well beyond the static ultimate
limit without separating proportionality between the stresses and the strains. This is
provided that the length of time during which the stress exceeds the yield stress is of

the order of 10™> seconds or less.



46  Sinusoidal Vibration

From tests carried out on steel (annealed steel with a low percentage of carbon) it
was noted that the initiation of plastic deformation requires a definite time when
stresses greater than the yield stress are applied [CLA 49]. It was observed that this
time can vary between 5 ms (under a stress of approximately 352 MPa) and 6 s (with
approximately 255 MPa; static yield stress being equal to 214 MPa). Other tests
carried out on five other materials showed that this delay exists only for materials
for which the curve of static stress deformation presents a definite yield stress, and
the plastic deformation then occurs for the load period.

Under dynamic loading, an elastic strain is propagated in a material with a
velocity corresponding to the sound velocity ¢, in this material [CLA 54]. This
velocity is a function of the modulus of elasticity, E, and of the density, p, of the
material. For a long, narrow part, we have:

E
co=.|— [2.5]
p
The longitudinal deflection produced in the part is given by:
Vi
e= L [2.6]
o

where v,= velocity of the particles of the material. In the case of plastic
deformation, we have [KAR 50]:

ofe) = /a"/ o [2.7]
P

lo}
where — is the slope of the stress deformation curve for a given value of the
de
deformation €. The velocity of propagation ¢ is therefore a function of €. The
relation between the impact velocity and the maximum deformation produced is
given by:

v, = jos ¢ de [2.8]

A velocity of impact v; produces a maximum deformation ¢ that is propagated

with low velocity since the deformation is small. This property makes it possible to
determine the distribution of the deformations in a metal bar at a given time.
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Most of the materials present a total ultimate elongation which is larger at impact
than for static loading (Figure 2.3).

Aluminum
100 B

—~ Dynamic. | | -
E 75 |
= —— 7
o ////"”g Static
o 50
w1
i/
a2 25

0

0 20 40 60

Relative displacement () x 104

Figure 2.3. Example of a stress—strain diagram [CAM 53]

Some examples of static and dynamic ultimate strengths are given in Table 2.2.

Ultimate strength (107 Pa)
Material
Statics Dynamics
SAE 5150 hardened | o5 ¢3¢ 102,111
and annealing
302 standard 64.328 76.393
stainless steel
Annealing copper 20.615 25.304
2 S annealing 7.998 10.618
aluminum
24S.T aluminum 44919 47.298
alloy
magnesium alloy
(Dow J) 30.164 35.411

Table 2.2. Properties of static and dynamic traction [KAR 50]
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2.4. Elements of a mechanical system

In this section, we will consider lumped parameter systems, in which each
particular component can be identified according to its properties and can be
distinguished from other elements (in distinction from distributed systems).

Three fundamental passive elements can be defined, each playing a role in linear
mechanical systems which correspond to the coefficients of the expressions of the
three types of forces which are opposed to the movement (these parameters can be
identified for systems with rotary or translatory movements). These passive
elements are frequently used in the modeling of structures to represent a physical
system in simple terms [LEV 76].

2.4.1. Mass

A mass is a rigid body whose acceleration X is, according to Newton’s law,
proportional to the resultant F of all the forces acting on this body [CRE 65]:

F=mx [2.9]
This is a characteristic of the body.

In the case of rotational movement, the displacement has the dimension of an
angle, and acceleration can be expressed in rad/s>. The constant of proportionality is
then called the moment of inertia of the body, not mass, although it obeys the same
definition. The moment of inertia has the dimension M L. The inertia moment I is
such that:

F=I,— [2.10]

do
where I is the moment of inertia and O the angular displacement. If Q = — is the
dt

angular velocity we have:

Q
r-1,9¢ [2.11]
dt

In the SI system, which will be used throughout the book, mass is expressed in
kilograms (kg), acceleration in m/s* and force in Newtons (N) (dimension MLT ?).
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The mass is schematically represented by a rectangle [CHE 66] (Figure 2.4).

Figure 2.4. Symbol used to represent mass

2.4.2. Stiffness

2.4.2.1. Definition

In the case of linear movement, the stiffness of a spring is the ratio k of the

AF
variation of force AF to the spring deflection Az which it produces: k = ———. The

Az
minus sign indicates that the force is opposed to the displacement (restoring force)
(Figure 2.5).

(2802900202000 4005

Figure 2.5. Symbol used for spring

This definition implicitly assumes that the spring obeys Hooke’s law when the
deformation is weak.

In the SI system, stiffness k, the spring constant, is expressed in n Newtons per
meter. It is assumed that the stiffness is that of a perfectly elastic massless spring
[CRE 65], [CHE 66]. It is represented diagrammatically by the symbol
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~BREQCQ QS or sometimes —WANAANAASN— | The points at zero
imposed displacement are shown as TSI (ground).

In the case of rotation around an axis, the restoring moment is defined by:
I'=-—Coa [2.12]

with the same convention used for the negative sign. The constant C, which
characterizes elasticity here, is expressed in Newtons per radian.

The stiffness of a perfectly rigid medium would thus be theoretically infinite.
The input and output would be identical (the input being, for example, a force
transmitted by the medium). The elongation would, of course, be zero. This is a
theoretical case, since no material is perfectly rigid. When the stiffness decreases,
the response of the spring (value function of time obtained at the end of the spring
when an input excitation is applied at the other end) changes and can become
different from the input.

2.4.2.2. Equivalent spring constant

Certain systems comprising several elastic elements can be reduced to the simple
case of only one spring whose equivalent stiffness can easily be calculated from the
general expression F = —k z. If the system can be moved in just one direction, it can
be seen that the number of degrees of freedom is equal to the number of elements of
mass. The number of elements of elasticity does not intervene and it is possible to
reduce the system to a simple unit mass—spring equivalent; see Figure 2.6 for some
examples.

(a) (b

Figure 2.6. Parallel stiffnesses
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The two diagrams in Figure 2.6 are equivalent to those in Figure 2.7. When the
mass is moved by a quantity z, the restoring force is written [CLO 03], [HAB 68],
[VER 67]:

Bl =kz+kyz=kez [2.13]
keq = kl + k2 [214]

The stiffness elements have parallel configuration here.

"

Figure 2.7. Equivalent stiffness

In series (Figure 2.8), the equivalent constant is calculated in a similar way.

F is a force directed downwards and produces an elongation of each spring
respectively equal to:

7 =ki [2.15]
1

and
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F
zy = — [2.16]
ky
This yields
F F F
o F_ _ [2.17]
e Z Zl + Z2 F i
kp ky
i.e.
4 _ 1.1 [2.18]
keq kl k2

The equivalent stiffness of two springs in parallel is equal to the sum of their
stiffnesses. The inverse of the stiffness of two springs in series is equal to the sum of
the inverses of their stiffness [HAB 68], [KLE 71a].

It is easy to generalize this to n springs.



2.4.2.3. Stiffness of various parts
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section
E = Young’s modulus

Springs in

compression or axial 4

tension k= Gd

D = average diameter - W > [2A 8n D3

Of a COil _.! |._ d

d = diameter of the Deformation:

wire

n = number of active SF D°n

coils §=—Y

G = shear elasticity G d4

modulus

Beam cantilever , £

axial load JQ E, ES F
= k=—=—

S = area of the cross- bie Y X

Cantilever beam

I = moment of inertia K 0 6E1 F
of the section F =73 ( ) =—
= X Lo \30—4 X
S 0 0
D
£
Cantilever beam s £ — 6EI — E
= 3
gy i Lo \30-1 X
Zg = 0 ( 0)
‘ £ >
/ 2ET M
Cantilever beam /I ) M k= =—
T3 ’ X
¥, /
Beam on two simple *P
supports, charged at y 3EI/
an arbitrary point =75 5
Ll | . 00

Table 2.3(a). Examples of stiffnesses [DEN 56], [THO 65a]
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F
v
Fixed beam, loaded 7 l ,// k = 192ET
in its center /] 7 N 3
£ £
- Lail
. l6nD I+v

Circular plate LR, =
thickness t, > F R2 3+v
centrally loaded i i E t3
and c1¥'cumferent1al N ] N where D = —7
edge simply + > 12 (l -V )
supported

v = Poisson’s coefficient

(=0.3)
. PRI

Circular plate > F 16 © D
centrally loaded, / 7 =
circumferential “z /e R2
edge clamped < £ >

Table 2.3(b). Examples of stiffnesses [DEN 56], [THO 65a]

Stiffnesses in rotation

Twist of coil spring

Bending of coil spring

(' AN )

D = average coil E 4%
diameter M %—W—% M k =
d = wire diameter 64nD
n = number of turns

Ed* 1

32nD 1+E/2G

Spiral spring

/= total length

I = moment of inertia
of cross section

,@M

El
k=—
l

Table 2.4(a). Examples of stiffnesses (in rotation)
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L, _GI_76 p* -d*
. f = =
T.w1st of hollow “«—— Vi 32 Y
circular tube
) ] (O st
D = outer diameter 4 4
d = inner diameter D" -d
6
/ = length k=1.1810 —é
Cantilever beam / M EI
End moment & S 0 14
Cantilever beam M 2EI
End load = =5
o

Beam on two simple ! M 12EI
supports M Ao - k=—=
Couple at its center A - 7 0 !
Clamped-clamped — {f —» M 16EI
Couple at center - b & — k=s—=——

E—— 7 0 V4

Circular bar

= 4
S A AU Y nGD
D = diameter k= —

= length e 32/
3
t Gwt
Rectangular plate *_ ¢ . / k =
A 7 W 3¢

Bar of arbitrary form

S = section o G S4
Ip=polar inertia k= -
4 01,

moment of the cross- « . r
£

section

Table 2.4(b). Examples of stiffness (in rotation)
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2.4.2.4. Non-linear stiffness

A linear stiffness results in a linear force—deflection curve (Figure 2.9)
[LEV 76]. Figures 2.10 to 2.12 show examples of non-linear stiffnesses.

v,

Rubber

Figure 2.9. Linear stiffness Figure 2.10. Non-linear stiffness

¥
L 4

Figure 2.11. Examples of bilinear stiffnesses

F r 3
Slope ktky
i Lk Ky .
%2 L, ixm_u} m Mm
i x X 2k 2k
k 4k,

Figure 2.12. An example of non-linear stiffness
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2.4.3. Damping

2.4.3.1. Definition

No system subjected to a dynamic stress maintains constant amplitude without
an external input of energy. Materials do not behave in a perfectly elastic manner,
even at low levels of stress. When cycles of alternate stress (stress varying between
a positive maximum and a negative minimum) are carried out on a metal test-bar,
we can distinguish the following [BAS 75]:

1. Microelastic ultimate stress G, such that 6 < ., the stress—strain curve is

perfectly linear (zero surface). The stress 6. is, in general, very small.

2. Anelastic stress G,, such that 6, . < 6 < G,,, the stress—strain cycle remains

an?
closed (without its surface being zero). In this case, the deformation remains
“reversible”, but is associated with a dissipation of energy.

3. Accommodation ultimate stress G,., which is the strongest stress, although the

ac?
first cycle is not closed. The repetition of several alternate stress cycles can still lead
to the closing of the cycle (“accommodation” phenomenon).

4. For 6 > G,, the cycle is closed, leading to permanent deformation.
s A
Rmn v} .
’ , Yield stress
y o (02%)
Cag |= === ===== === Accomodation !
ultimate stress :
I
I
Can|—= = = = = 277 Anelastic stress |
’ 1
Ome|— — — /" Microelastic stress :
I
I
l [
0.2 s (%)

Figure 2.13. Beginning of a stress—strain curve

Figure 2.13 shows the beginning of a stress—strain curve. The yield stress R 02°

which is defined in general as the stress that produces a deflection of 0.2%, is a
conventional limit already located in the plastic range.
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There is always a certain inelasticity that exists, although it is often very low and
negligible. Due to this inelasticity, which can have several origins, the material or
the structure dissipates part of the energy which it receives when a mechanical stress
is applied to it. This is said to be damping.

Dissipated energy leads to a decrease in the amplitude of the free vibration of the
system in the course of time, until it returns to its equilibrium position. This loss is
generally connected to the relative movement between components of the system
[HAB 68]. The energy communicated to the cushioning device is converted into
heat. A damping device is thus a non-conservative device.

The inelastic behavior is underlined by plotting the stress—strain curve of a test-
bar of material subjected to sinusoidal stress (for example in tension—compression)
[LAZ 50], [LAZ 68].

Figure 2.14 shows such a curve (very deformed in order to show the
phenomenon more clearly).

Stress 4

k
T Tension

Ot |————=

Material 13
contraction
E .
0| ¥B in AL
/ / strain T,
C
l Compression
77777 GC

Figure 2.14. Hysteresis loop

Extension
—

At the time of the first tension loading, the stress—strain law is represented by arc
OA. The passage of tension to compression is done along arc ABCD, while the
return towards maximum tension follows arc DEFA.

Curve ABCDEFA is called a hysteresis loop and it occurs for completely
alternating loads.
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2.4.3.2. Hysteresis

A natural phenomenon observed in materials, hysteresis is related to partial
relaxation of stress applied by means of plastic deformations and characterized by
the absorption and the dissipation of energy [FEL 59]. This property of materials,
studied since being highlighted by Lord Kelvin [THO 65b], has been given various
names [FEL 59]:

— damping capacity [FOP 36], the term most frequently used, which can be
defined as the aptitude of a material to dissipate vibratory energy; this parameter,
denoted by D, defined in 1923 by O. Foppl represents the work dissipated in heat
per unit of volume of material during a complete cycle of alternated load, and is
calculated by evaluating the area delimited by the hysteresis loop [FEL 59]:

D= I o de [2.19]
lcycle

Thus D is the energy absorbed by a macroscopically uniform material, per unit
of volume and stress cycle (tension—compression, for example);

— internal friction [ZEN 40], relating to the capacity of a solid to convert its
mechanical energy into internal energy;

— mechanical hysteresis [STA 53];

— elastic hysteresis [HOP 12].

Whether for a part comprised of a single material, which may or may not be part
of a structure, or for a more complex structure, the hysteresis loop can be plotted by

considering the variations of the deformation z due to the application of a sinusoidal
force F. The energy dissipated by the cycle is then equal to:

AE, = I F dz [2.20]
1cycle

AE, is the total damping energy (equal to V' D, where V is the volume of the
part). AE; is usually expressed in the following units:

— for a material: Joules per m’ and cycle;

— for a structure: Joules per cycle.

The total plastic deformation can be permanent or anelastic, or a combination of

both. Hysteresis thus appears as the non-coincidence of stress—strain loading and
unloading curves on the diagram.
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Stress

|

|

|

|

|

|

|

Anelastic |

Permanent strain |
plastic strain { | __
" ] [/ |, Elastic Strain

T h strain
Total strain

Figure 2.15. Strain or hysteresis

If the stress is sufficient to produce plastic deformation, the part will never return
to its initial state (¢ = 0, 6 = 0). Even if the deformation is only anelastic, there is
still the formation of a hysteresis loop. However, if the stress is maintained at zero
for a sufficient period of time, the part can return to zero initial condition.

The anelastic strain is therefore not just a function of stress, but also of time (as
well as temperature, magnetic field, etc.).

2.4.3.3. Origins of damping

Damping in materials has been studied for around 200 years. The principal
motivation for this has been the analysis of the mechanisms which lead to inelastic
behavior and the dissipation of energy, the control of certain characteristics of the
materials during manufacturing (purity, fissures, etc.) and especially the design of
structures, where it is interesting to attenuate the dynamic response stresses.

The damping of a complex structure is dependent on [HAY 72], [LAZ 68]:
— the internal damping of the materials which constitute each part;

— the damping introduced by connections or contacts between the various parts
(structural damping).

Internal damping indicates the complex physical effects which transform the
deformation energy in a vibrating mechanical system composed of a volume of
macroscopically continuous matter into heat [GOO 76].
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When a perfectly elastic system is deformed by the application of an external
force, the energy exerted by the force during the deformation is stored in the
material. When the external force is removed, the stored energy is released and the
material oscillates around its equilibrium position (the system is not damped).

In a perfectly plastic material, all the energy exerted by the external force is
dissipated and no energy is stored in the material. The suppression of the external
force thus leaves the material in its deformed state (completely damped system).

Typical materials are neither perfectly elastic, nor perfectly plastic, but partly
both. The ratio of the plasticity and the elasticity of a particular material, used to
describe the behavior of this material, is the damping or loss coefficient of the
material.

The origins of internal damping are multiple [CRA 62]: dislocations,
phenomena related to the temperature, diffusion, magnetomechanical phenomena,
etc. Damping depends on the level of stress to which the material is subjected, the
distribution of the stresses in the specimen, sometimes the frequency, the static load,
the temperature, etc. The external magnetic field can also be an important factor for
ferromagnetic materials [BIR 77], [FOP 36], [LAZ 68] and [MAC 58]. The
effects of these different parameters vary according to whether the inelasticity
belongs to the one of the following categories:

do  de
1. inelasticity function of the rate of setting in stress (— or —);

dt dt
2. inelasticity independent of the rate of setting in stress;

3. reversible strain under stress (Figures 2.16(a) and 2.16(b));

4. irreversible strain under stress.

L 4
4

(@) (b

Figure 2.16. Reversible strain under stress
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These four cases can combine in pairs according to [LAZ 68]:

—case (1 and 3): the material undergoes a strain known as anelastic strain. The
anelasticity is characterized by:

- linear behavior: to double the stress results in doubling the strain,

- the existence of a single stress—strain relation, on the condition of allowing
sufficient time to reach equilibrium;

—case (1 and 4): the material in this case is known as viscoelastic. The
viscoelastic strain can be reversible or not. Case (1 and 3) is a particular case of (1
and 4) (recoverable strain);

—case (2 and 4): the material works in a field of plastic strain (under strong
stresses in general).

The energy dissipated in cases 1 and 2 can be a function of the amplitude of the
stress, but only (2 and 4) is independent of the stress frequency (i.e. of the rate of
setting in stress).

Cases (1 and 3) and (1 and 4), for which damping is a function of the loading

do de
rate, thus lead to equations which involve the first derivatives — or —. These

dt dt
cases of damping can be encountered in metals (anelasticity), in polymers
(elastomers) (molecular interaction phenomena), in structures with various names:
dynamic hysteresis; rheological damping; and internal friction [LAZ 68].

The relation between applied stress and damping is often complex; we can,
however, in a great number of cases, approach this satisfactorily by a relation of the
form [LAZ 50], [LAZ 53], [LAZ 68]:

D=Jo [2.21]

where:
J and n are constants for the material;
J = damping constant (or dissipated energy at an unity amplitude stress);

n = damping exponent whose value varies (from 2 to 8) according to the
behavior of the material, related to the stress amplitude, according to the
temperature.
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The exponent n is a constant for many materials when the stress amplitude is
below a certain critical stress which is close to the stress of the ultimate resistance of
the material.

Above this limit, damping becomes a function of the stress according to time

[CRA 62].
F 4
e

Figure 2.17. Elliptical cycle (n =2)

For low stress amplitudes and ambient temperature, n is equal to 2 (quadratic
damping) and its hysteresis loop has an elliptical form.

We define the case n = 2 as that of a /inear damping, because it is observed in
the case of a viscosity phenomenon, for which the differential equations describing
the movement are linear.

At intermediate and high amplitudes, non-linear behaviors characterized by non-
elliptic hysteresis loops and exponents n generally greater than 2 (observed up to 30
on a material with high stress) are observed.

The damping capacity D is defined for a material under uniform stress. Relation
[2.21] is generally valid up to a limit called the limit of sensitivity to the cyclic
stresses, which is in the fatigue limit zone of the material [MOR 63a].

Structural damping, the least well-known, is the dominant phenomenon
[NEL 80]. The phenomenology of the dissipation of energy at the ideal simple
junction is reasonably well understood [BEA 82], [UNG 73], in particular at low
frequencies. The problem is more difficult at high frequencies (much higher than the
fundamental resonance frequency of the component). We can schematically
distinguish three principal types of interface:
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— interfaces with dry friction: metal-metal or more generally material-material
(Coulomb friction); the frictional force is directly proportional to the normal force
and the friction coefficient u and independent of the sliding velocity. Dissipated
energy is equal to the work spent against the frictional force;

— lubricated interfaces (fluid film, plastic, etc.) [POT 48]. In this mechanism,
the friction is known as viscous. The amplitude of the damping force is directly
proportional to the velocity of the relative movement, and its direction is opposite to
that of the displacement;

— interfaces that are bolted, welded, stuck, riveted, etc.

Normal force Fn Fluid film Aperture
l Displacement A ralooit
direction Velocity Viscous friction Liquid | iﬁ)’
Velocity i Friction dz +— force cdz B —
- riction orc:Pn dt — - dt Resisting

force ¢ 22

Viscous friction

Dry friction Case of an aperture

(Coulomb friction)

The frictional force is
proportional to the relative
velocity of the two parts in

contact.

The frictional force is
proportional to the square of
the velocity of the piston
relative to the cylinder.

The frictional force is
proportional (coefficient ) to
the normal force F,| of

application of the moving part
on its support.

Figure 2.18. Examples of damping forces

In the first two categories, the forces can be applied in the direction normal to the
plane of interface or according to a direction located in the plane of the interface
(shearing). It is in this last case that the energy dissipation can be strongest.

There are many other mechanisms of energy dissipation, such as:

— damping due to the environment (air), the moving part activating the air or the

ambient fluid (damping force F; is in general proportional to '22);

— magnetic damping (passage of a conductor in a magnetic field; the damping
force is then proportional to the velocity of the conductor);

— the passage of a fluid through an aperture, etc.
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2.4.3.4. Specific damping energy
The specific damping energy [FEL 59] is the ratio;

p=—"d [2.22]

where:
AE ; = damping capacity (area under the hysteresis loop);

02

Ug = 2— = maximum strain energy in the specimen during the cycle;
Eq

E 4= dynamic modulus of elasticity.

oA

Figure 2.19. Strain energy Figure 2.20. Damping capacity

The damping of a material can also be defined as the ratio of the dissipated
energy to the total strain energy (by cycle and unit of volume):

"= D [2.23]
21 Uy

For a linear material, D = J o” and Uy = == —|=———

yielding:

n=—% [2.24]
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Constants similar to those used above for viscoelasticity can be defined for
anelastic materials. For anelastic materials, 1 lies between 0.001 and 0.1, while for
viscoelastic materials, 1 varies between 0.1 and 1.5.

2.4.3.5. Viscous damping constant

The theory of viscous internal friction is very old and has been employed for a
long time. Proposed by Coulomb, it was developed by W. Voight and E.J. Rought,
and then used by other authors. It supposes that, in solid bodies, there are certain
viscous attributes which can be compared with the viscosity of a fluid and which are
proportional to the first derivative of the deformation [VOL 65]. This yields the
damping force:

F =—C — 225
d at [2.25]

The factor ¢, which we will suppose to be constant at first approximation, can
vary more or less in practice according to the material, and with the frequency of the
excitation. This parameter, the “viscous damping coefficient” (N s / m), is a function
of the geometry of the damping device and the viscosity of the liquid used. It is
encountered at the time of the slip between lubricated surfaces in damping devices
with fluid, or certain types of laminar flows through an aperture. Damping can be
considered to be viscous as long as the flow velocity is not too large.

It is estimated in general that elastomers and rubber bladders (with low
velocities) have comparable behavior to viscous damping. This type of damping is
very often used in studies of the behavior of structures under vibration [JON 69],
[JON 70], because it leads to linear equations which are relatively easy to treat
analytically.

Viscous damping will be represented on the diagrams by the symbol —I}—
[JON 69].

In the case of a linear system in rotation, the damping torque Iy is:

d
T, =D, Q =D, d—“ [2.26]
t
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where:
D, = viscous damping constant in rotation;

do
Q= d_ = angular velocity.
t

2.4.3.6. Rheology

Rheology relates to the study of the flow and deformation of matter [ENC 73].
Theoretical rheology attempts to define mathematical models accounting for the
behavior of solids under stresses. The simplest models are those with only one
parameter:

—elastic solid following Hooke’s law, with force varying linearly with the
displacement, without damping (Figure 2.21);

%
Figure 2.21. Elastic solid

— damping shock absorber type of device, with force linearly proportional to the
velocity (Figure 2.22).

Among the models, which account for the behavior of real solids better, are those
models with two parameters [BER 73] such as:

—the Maxwell model, adapted to represent the behavior of the viscoelastic
liquids rather well (Figure 2.23);

i
ull

Figure 2.22. Shock absorber-type damping device
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o— Q0000000005

Figure 2.23. Maxwell model

—the Kelvin—Voigt model, better adapted to the case of viscoelastic solids. It
allows a complex representation of the stiffness and damping for a sine wave
excitation of the form:

k' =k+iQc [2.27]

Figure 2.24. Kelvin—Voigt model

2.4.3.7. Damper combinations
Dampers in parallel

The force necessary to produce a displacement z between the ends of the
dampers is equal to:

F:F1+F2:CIZ+C22 [228]
F=(cj+cy)z=ceq 2 [2.29]

Coq =C1+ €2 [2.30]
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Figure 2.25. Dampers in parallel

Dampers in series [CLO 03], [VER 67]

F:CI ZI+C2 22

F F F
ZZZl+22:_+_:_
g ¢ ¢
- 1
“ 1/ey + /ey
0
C1

Figure 2.26. Dampers in series
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[2.31]

[2.32]

[2.33]



70  Sinusoidal Vibration

2.4.3.8. Non-linear damping

Types of non-linear damping are described in Chapter 7 and their effect on the
response of a one-degree-of-freedom mechanical system is examined. As an
example, the case of dry friction (Coulomb damping) and that of an elastoplastic
strain [LEV 76] are described.

Dry friction (or Coulomb friction)

The damping force here is proportional to the normal force N between the two
moving parts (Figure 2.27):

¥

Figure 2.27. Dry friction

F=pN [2.34]
ifkp x>uN
F=k; x [2.35]

if —-u N<kpx<uN

F=-uN [2.36]

ifkp s <—u N,

This case will be detailed in Chapter 6.
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Elements with plastic deformation

Figures 2.28 and 2.29 show two examples of force—displacement curves where
plastic behavior intervenes.

F 4 Flastic F 4 ) )
Elastic = El\aStIC Plastic
Unload / Unload
X g x "

Figure 2.28. Example of plastic Figure 2.29. Example of plastic
deformation deformation

2.4.4. Static modulus of elasticity

The static modulus of elasticity of a material, which is dependent on the stiffness
under the static load of the parts in which they are cut, is defined as the ratio of the

Al
variation of stress AcG to the resulting strain € = —.

Linear materials have a single modulus even with very strong damping. For
phenomena which are independent of the rate of setting in stress, such as those
observed for metals working under the usual conditions of stress and temperature,
the hysteresis loop no longer has an elliptical form which would make it possible to
separate the elastic strain component which stores the energy and the component of
energy dissipation. Two types of static modules are thus defined [LAZ 50],
[LAZ 68]:

— the tangent modulus of elasticity, for a given value of the stress; this modulus
is proportional to the slope of the stress—strain curve measured for this given stress;

— the secant modulus of elasticity, which is proportional to the slope of a straight
line segment joining two given points of the stress—strain curve.
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As an example, the tangent modulus at the origin is given (Figure 2.30) by the
slope of tangent OG to arc OA at the origin and the secant modulus by the slope of
segment OA (for a viscous linear material thus having an elliptic hysteresis loop, the
secant modulus is none other than the static modulus of elasticity). The tangent OG
corresponds to a material which would be perfectly elastic.

In practice, materials in the stress domain have similar tangents and secant
moduli of elasticity where they follow Hooke’s law reasonably well. In general, the
secant modulus decreases when the maximum stress amplitude grows.

2.4.5. Dynamic modulus of elasticity

The dynamic modulus of elasticity of a material is the modulus of elasticity
calculated from a stress—strain diagram plotted under cyclic dynamic stress. A
tangent dynamic modulus and a secant dynamic modulus are defined in the same
way. The values measured in dynamics often differ from static values.

F 9

G
So

Fl

0 .

Figure 2.30. Tangent modulus

The stress—strain curve can be modified in dynamics by:

—a change in the initial tangent modulus (at the origin) (modification of the
slope of OG or any other arc of curve and possibly even by rotation of the hysteresis

loop);

— a variation in the surface delimited by the curve, i.e. of the damping capacity of
the material.
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A perfectly elastic material which has a stress—strain curve such as HOG
undergoes a strain €, under the maximum stress G, whereas the inelastic material

takes a deformation €; under the same stress. The difference Ae=¢; —¢_ is a

measurement of the dynamic elasticity reduction (to which an increase in the
damping capacity corresponds).

When the damping capacity of a material grows, the material becomes more
deformed (for the same stress) and its dynamic modulus of elasticity decreases.

These variations can be represented by writing the dynamic modulus (secant
modulus) in the form:

Eg=20 [2.37]
&
py=—%0 __ 1 [2.38]
4 e +Ae g , Ae '
6o O
-1
Ey=| o428 [2.39]
Ee Op

The initial tangent dynamic modulus E. is assumed to be equal to the static

module. Since the specific damping capacity D is equal to the area under the curve
of the hysteresis loop, we can set:

D =K A¢e () [240]

where K is a constant function of the shape of the cycle (for example, K = 4 for a
trapezoidal cycle such as LAMDL). This yields:

-1
Ey=| -t Dz [2.41]
Ee KGO

The value of K depends on the shape of the loop, as well as on the stress
amplitude. An average value is K = 3 [LAZ 50].
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The modulus E; is thus calculable from [2.41] provided that the initial tangent
modulus (or the slope of arcs DF or AC) does not vary (with the velocity of loading,
according to the number of cycles, etc.). B.J. Lazan [LAZ 50] has shown that in a
particular case this variation is weak and that expression [2.41] is sufficiently
precise.

D

Figure 2.31. Tangent and secant moduli:
— slope of OG = initial tangent modulus of elasticity
(i.e. approximately the slope of arcs AB and of which are approximately linear);
—slope of OA = secant modulus of elasticity,
— OB = remanent deformation;
— OF = coercive force

2.5. Mathematical models
2.5.1. Mechanical systems

A system is a unit made up of mechanical elements having properties of mass,
stiffness and of damping. The mass, stiffness and damping of a structure are
important parameters since they determine its dynamic behavior.

The system can be:

—a lumped parameter system when the components can be isolated by
distinguishing the masses, stiffnesses and dampings, by assuming them to be lumped
in separate elements. In this case, the position at a given time depends on a finite
number of parameters;

— a distributed system, when this number is infinite. The movement is then a
function of time and space [GIR 08].
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2.5.2. Lumped parameter systems

In practice, and generally for a real structure, these elements are distributed
continuously, uniformly or not, with the properties of mass, stiffness and damping
not being separate. The structure is made up of an infinite number of infinitesimal
particles. The behavior of such a system with distributed constants must be studied
using complete differential equations with partial derivatives.

It is often interesting to simplify the structure to be studied in order to be able to
describe its movement using complete ordinary differential equations, by dividing it
into a discrete number of specific masses connected by elastic massless elements
and of energy dissipative elements, so as to obtain a lumped parameter system
[HAB 68], [HAL 78].

The transformation of a physical system with distributed constants into a model
with localized constants is generally a delicate operation, with the choice of the
points having an important effect on the results of the calculations carried out
thereafter with the model.

The procedure consists of:

1. Choosing a certain number of points (nodes) by which the mass of the
structure is affected. The number of nodes and number of directions in which each
node can be driven determines the number of degrees of freedom of the model.

The determination of the number of nodes and their position can be a function
of:

— the nature of the study to be carried out: to define a problem roughly, it is
often enough to be limited to a model with a few degrees of freedom;

— the complexity of the structure studied,

—available calculation means: if the complexity of the structure and the
precision of the results justify it, then a model with several hundred nodes can be
considered.

The choice of the number of nodes is therefore, in general, a compromise
between a sufficient representativeness of the model and a simple analysis, leading
to the shortest possible computing time.

2. Distributing the total mass of the structure between the various selected points.
This task must be carried out carefully, particularly when the number of nodes is
limited.
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Passenger mass
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Figure 2.32. Mathematical model of a car

This type of modeling makes it easier to study more complicated structures such
as a car—passenger unit (Figure 2.32) [CRE 65]. Such a model is sometimes called a
mathematical model.

In these models, according to the preceding definitions, the element mass is
assumed to be perfect, i.e. perfectly rigid and non-dissipative of energy, the
elasticity element is massless and perfectly elastic, and finally the dissipative energy
element is assumed to be perfectly massless and rigid.

Computer programs have been developed to study the dynamic behavior of
structures modeled in this way numerically [GAB 69], [MAB 84], [MUR 64].

2.5.3. Degrees of freedom

The number of degrees of freedom of a material system is equal to the number of
parameters necessary to determine the state of this system at any time. The simplest
system, a material point, has three degrees of freedom in general: three coordinates
are necessary at every moment to define its position in space. The number of
equations necessary to know the movement of the system must be equal to the
number of degrees of freedom.
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A solid has six degrees of freedom in general. This number depends on:
— the complexity of the solid;

— the connections to which it is subjected.

If each element of mass of a model can be driven only in only one direction, the
number of degrees of freedom is equal to the number of elements of mass. A very
complex system can thus have a limited number of degrees of freedom.

NOTE.— 4 deformable system has an infinite number of degrees of freedom.

2.5.4. Mode

The exploitation of these models with lumped or distributed constants shows that
the system can vibrate in a certain number of ways, called modes. Each one
corresponds to a specific natural frequency. This number of frequencies is therefore
equal to the number of modal shapes, and is therefore equal to the number of
coordinates necessary at any moment to determine the position of the system, i.e.,
according to section 2.5.3, to the number of degrees of freedom of the system.

In the case of a system with distributed masses, the number of degrees of
freedom is infinite. Each frequency corresponds to a single oscillatory mode, which
is determined by its characteristic function or normal function. A transient or
permanent forced excitation will excite, in general, some or all of these frequencies,
the response in each point being a combination of the corresponding modal shapes.
In the case of a linear system, we shall be able to use the principle of superposition
to calculate this response.

This concept of a mode is important and deserves further development. The
chapters which follow are limited to systems with only one degree of freedom.

Example 2.1.

1. Case of a beam fixed at one end, length L, uniform section and bending
stiffness EI (E = modulus of elasticity and I = inertia moment of the section).

The natural pulsation o, is given by [CRE 65], [KAR 01]:

> |8EL 5 o | EI

wy=n’n [2.42]
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where n is an integer: n = 1, 2, 3... and g is the acceleration of gravity
(9.81 m/s?)

yielding frequencies

n’n [gEI cEI
f, = =K (Hertz) [2.43]
0 4 4
2 \prL PL

where P is the weight of the beam per unit of length. Each value of n
corresponds a frequency fiy. Figure 2.33 shows the first five modes.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

% L % L ﬂ L % ﬁ L

K =10.56 K =351 K=9.82 K =19.24 K =31.81

Figure 2.33. First five modes of a fixed beam

2. Beam fixed at two ends [STE 78]:

// /§
_/7‘ 7

Figure 2.34. Beam fixed at both ends

Natural frequency

244 [Elg
fy = : [2.44]
2n \PL

where
E = Young’s modulus (units SI) I = moment of inertia
P = weight of the beam L = length of the beam
g=9.81 m/s’

Coupled modes

In a system with several degrees of freedom, the mode of one of the degrees can
influence the movement corresponding to that of another degree.
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It is important to distinguish between coupled and uncoupled movements. When
two movements of a mass, horizontally and vertically for example, are not coupled,
and can coexist simultaneously and independently, the system is not regarded as one
with several degrees of freedom, but as being composed of several systems with
only one degree of freedom, whose movements are collectively used to obtain the
total resulting movement [CRE 65].

2.5.5. Linear systems

A vibrating linear system is any system whose positional variables follow, in the
absence of an external exciting force, a system of linear differential equations, with
constant coefficients, and no second members, in a number equal to that of the
unknowns [MAZ 66].

In a linear structure, the characteristics of the response are additive and
homogeneous [PIE 64]:

— the response to a sum of excitations is equal to the sum of the responses to each
individual excitation;

—the response to k times the excitation (k = constant) is equal to k times the
response to the excitation.

This concept of linearity generally imposes an assumption of weak
displacements (for example, small relative displacement response of the mass of a
one-degree-of-freedom system).

2.5.6. Linear one-degree-of-freedom mechanical systems

The simplest mechanical system consists of mass, stiffness and a damping device
(Voigt model) (Figure 2.35). The response is calculated using a linear differential
equation of the second order. Due to its simplicity, the results can be expressed in
concise form, with a limited number of parameters.

The one-degree-of-freedom system is a model used for the analysis of
mechanical shocks and vibrations (comparison of the severity of several excitations
of the same nature or different nature, development of specifications, etc.). The
implicit idea is that if a vibration (or a shock A) leads to a relative displacement
response larger than a vibration B on a one-degree-of-freedom system, vibration A
will be more severe than B on a more complex structure.
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Figure 2.35. Voigt model

The displacement of an arbitrary system subjected to a stress being, in general,
primarily produced by the response of the lowest frequency, this one-degree-of-
freedom model very often makes it possible to obtain a good approximation to the
result. For more precise stress calculations, the use of a more complicated
mathematical model is sometimes necessary.

2.6. Setting an equation for n degrees-of-freedom lumped parameter
mechanical system

Various methods can be used to write the differential equations of the
movement of a several-degrees-of-freedom mechanical system with localized
constants.

2.6.1. Lagrange equations

2.6.1.1. General survey — definitions

The differential equations describing the movement of a material point or a
system can be established either starting from Newton’s laws, or by using the
Lagrange equations. There are two basically different approaches for the problems
of dynamics.

Without rewriting the theory behind the Lagrange equations we will provide an
overview with the aim of highlighting the definitions of the terms used. We will also
show the approach that should be used when it comes to writing the equations.
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The position of a system in space can be characterized by using s arbitrary
parameters q; where i, the number of degrees of freedom of the system, is an integer

that ranges from 1 to s. q; are the generalized coordinates and their derivatives (;
are the generalized velocities. The different s functions qi(t) will vary

independently. The state of the system is completely and univocally determined by
its coordinates and velocities.

The Hamilton principle (or the principle of least action) leads to the creation of
the Lagrange equations: if the system considered is characterized by a function
L(qi ,d; ,t) , the system is then moved between two given positions for the times t;

and t, so that the action

S = J' (¢4t [2.45]

has the smallest value possible [LAN]. L(qi,qi,t) is then referred to as the

system’s Lagrange function. The principle of least action is written as:

tZ
ss=6j L(q;, g, t) dt =0 [2.46]
tl
yielding
d(sL) oL
< -0 2.47
dt(e‘»qi] S0 247

These equations are the Lagrange equations. For a material point in free
movement, the Lagrange function can be written as follows:

L=

2.48
5 [2.48]

where m is the mass of the weighted point and v is the velocity module.

For a system of n weighted points (which do not react with one another), which
have a mass m; and a velocity v;, the Lagrange function can then be written as:
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D m.ve
L= Z% [2.49]
j=1

G=1,2,..,n). In a closed system, in other words where the weighted points react
with one another, and are isolated from any foreign body, the Lagrange function L
needs to take into consideration the fact that these different weighted points react
with one another:

2
m:; Vv - =
L=Z le —Ep(rl,rz,..} [2.50]
]

where Ep is a function of the points’ coordinates, and depends on the interaction

. . . . theo
that occurs between the different points. rj is the radius vector of the j  point.

Definitions

2
m; Vi

The quantity Z is the kinetic energy of the system and the Ep function

]
is the potential energy.

The Lagrange equation is therefore written as!:

ajs | s

=— [2.51]
dt — g
dv j ) I'j
oL dL o _
1 The notation or —— does not mean a derivative of the scalar L with respect to the
ov j ) I'j

- —

vector V j or I'j (which does not have significance). By convention, this is the notation

however which is used to represent a vector whose components are equal to the derivatives of
- -

L with respect to the corresponding components of the vector V jor I‘j .
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yielding, if L is replaced by its expression given in [2.50],

N
dv; E -
mj—J=—8—P=F- [2.52]
dt - )
5rj
- SOE SOE OE
Fj is a force, whose components are - P, - P, - P, if the
dx; dy dz;

N
components of Ij are Xj, yj, Zj

Whenever the system S; is moving in a given exterior field, thus interacting
with another system S,, the Lagrange function of the overall system S =S; +8S, is
calculated and it is thus the obtained closed system which is studied.

Certain properties of time and space (uniformity and isotropy) make it possible
to establish laws which are known as conservation laws.

Uniformity of time allows us to write the following equation from the Lagrange
equations of a closed system:

oL
Zqi —— — L =constant = E [2.53]
i 8qi

The energy of a system E, which is defined by [2.53], remains constant
whenever a closed system moves.

In the case of a non-closed system, this law is also applicable if the exterior field
does not depend on time.

The mechanical systems whose energy is conserved are known as conservative
systems, and as a result the following equation can be written:

E=E.(q,q)+Ep(q) [2.54]
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E., which is previously defined kinematic energy, is a function of the square
2
. . . mj vy . . .
root of the velocities. Its value is written z in Cartesian coordinates. m; is
i
the mass of the point j, which has a velocity of v;.

In addition to the Lagrange equation, the homogeneous properties of space show
that in a closed mechanical system, the vector

- SL -
P =zg=2mj v [2.55]
i

5
remains unchanged during movement. The vector P is known as the impulse or the
system’s movement quantity. As far as the generalized coordinates q; are concerned,

the generalized impulse is as follows:

dL
pi=—o [2.56]
5q;
and the generalized force:
F = L [2.57]
8q;

5
NOTE.— p; are only components of P for Cartesian coordinates. They are not

generally represented in the simple product of mass by velocity. They are linear
Sfunctions of q; [LAN 60].

The isotropy of space makes it possible to demonstrate the conservation of a
parameter which is known as a system’s kinetic moment.

If movement is carried out in areas which offer any resistance and which tend to
slow down the system, then part of the system’s energy is converted into heat. This
type of system is known as a non-conservative system. There is dissipation of energy
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or damping. In this case, if dissipation forces are proportional to the velocity, and if
they are derived from a potential, then the Lagrange equation can be written as,

d[SLj 8L, 8B, _, [2.58]

dt(dq; ) 8q; 89
where E, is the damping energy (or dissipation function) [LAN 60].

2.6.1.2. Application

Let us consider a linear one-degree-of-freedom system. If the movement of such
a system occurs along axis Ox, then the Lagrange function can be written as:

mi(2

2

L:

~Ep(x) [2.59]

in the case of a closed system or for a system which is subject to constant exterior
conditions. This yields:

mxz
E:

+Ep (z) [2.60]

The Lagrange equation is written as:

i(SEcj_SEC _ 8B 2.61]
de\ 8% ox dx

This equation can be used to create equations of free oscillations for a (one-
degree-of-freedom) undamped system.
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If the system is made up of s degrees of freedom then the following equations are
used:

d(SE,) SE, OEp
dt( 8¢; ] 8q;  8q 12621

in generalized coordinates, where each value of i corresponds to one degree of
freedom. It is said that the system moves in a potential force field.

If the system is damped, there are forces which act against the free movement of
the system that was initially excited. These forces are linear and non-linear functions
of velocity.

Sometimes a damping potential E, is defined. It is possible to introduce this

potential into the Lagrange equations. In the general, and if the damping is viscous,
we have:

i(fijf’iﬁif’i 2.63)
dt{ 8q; ) 8q;  dq;  8q; .
and if the system is linear:
i[SECj_ SE, _ O8Ep JE, 02.64]
del 8% ) 8x &x &% '

Whenever the system is not closed, the Lagrange equations can generally be
written as follows whenever the value of E, exists,

1(5Ecj_5£:_&5_f>_&5_a+5 [2.65]

de( g, ) 8 dqp g

(F, = the generalized forces external with the system. These forces are not included
in EP )
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Example 2.2. Using the Lagrange equations

Figure 2.36. Suspended mass with two springs
Weight: m g
p = radius of gyration

I = mp”> = moment of inertia of m with respect to the axis passing by the center
of gravity
o, = angle of rotation

x = vertical displacement of the center of gravity

Kinetic energy

m. ., | _ .,
E.=—x"+—=1T0a [2.66]
2 2
Potential energy
k k
Bp =t (x-1, 0c)2+72(x+(2 a)’ [2.67]
Lagrange equation
1 2 .2 2 2
L=E mx“+Ia —kl(X—floﬂ) —kz(X‘FZzO() [268]
Yielding
d’x [2.69]
m—2+(k1+k2)x+(k2 gz—kl 61)0(,=0 .
dt
d’o 2 2 2.70
I—2+(k1f1+k2f2)0€+(k2€2—k1€1)x=0 [ ]
dt

o and x are independent if k; /; =k, ¢/, [VOL 65], [WAL 84].
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2.6.2. D’Alembert’s principle

Using this principle, static equilibrium conditions can be applied to dynamic
problems by considering the external exiting forces and the forces of reaction which
are opposed to movement at the same time [CHE 66]:

— for any solid, the algebraic sum of the external applied forces and forces
opposed to the movement are null in any direction.

This principle has an equivalent for systems in rotation:

— for any solid body, the algebraic sum of the external applied couples and
resistive torques around an arbitrary axis are null.

2.6.3. Free-body diagram

One of the most useful tools which can be used to resolve problems linked to
statics is the free-body diagram (FBD). The FBD relies on the fundamental
principles of statics. If an entire system is in equilibrium then each of its individual
components is also in equilibrium.

The FBD is a diagram which represents an element taken from a dynamic
system. Such an element is taken away from its original environment, and from all
the elements which surround it. Any interactions with these elements are replaced by
force vectors. The FBD is therefore a simplified representation of an often complex
system, where the system is divided into smaller, simpler elements to be studied. All
the physical attributes of the structure are removed and are only represented for an
element given the forces to which it is subjected.

The links with the neighboring elements are not directly represented in the FBD
(which is where the name free-body diagram comes from). These links are only
created because of the forces that are transmitted.

The drawing of an FBD is an important phase when it comes to finding a
solution to mechanical problems. The FBD helps visualize all of the forces that act
on a simple object and also helps resolve any equilibrium problems.

Components of the free-body diagram

Some components are necessary if the aim is to create a worthwhile FBD. The
first and most important component is the object, i.e. the part of the structure which
is represented on the diagram as a rectangle.The size and shape of the actual object
are not important.
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The second most important component to be included in the diagram is the force.
The force is represented by a single arrow (—). The direction of the arrow and its
size are important for working out calculations:

— the direction of the arrow shows the direction in which the force acts. More
often than not, the direction is unknown. An arbitrary direction needs to be chosen.
Resolving the equations which determine the position of equilibrium makes it
possible to verify if the direction which is chosen is the correct one or not. If the
answer is negative, then the direction is reversed;

— the size of the arrow represents a force’s amplitude. Each arrow in the diagram
must be labeled uniquely so that it is possible to see what exact type of force has
been represented in the diagram. All of the forces which act on an object in a given
situation must be represented in the FBD, unless they are specifically and
voluntarily ignored.

There are, of course, forces whose characteristics are not known when an FBD is
being created, in particular those which act on the contact point between the studied
object and other close parts not being reproduced on the diagram.

Types of forces used in an FBD

Several different forces can be represented in an FBD. The most common forces
include:

— contact forces, which include:
- normal forces,
- friction forces,
- aerodynamic resistance forces,

- forces which are applied by a person or by another object (traction, thrust,
etc.),

- tension;

— forces having a remote action, which include
- gravity,
- electric forces,

- magnetic forces.
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Normal
force
Friction Applied
force force

Gravity
force

Figure 2.37. Free-body diagram

The first force to be considered, the most frequently observed, is the force of
gravity. The acceleration which is due to gravity (on Earth) is roughly g = 9.8 m/s2.

The normal force is the force which prevents an object resting on a surface from
falling; it is always perpendicular to the surface on which the object rests. If an
object is resting on a non-horizontal surface, the normal force is perpendicular to
this surface.

If the contact surface is smooth then there will be no friction and the reaction
force acts in its normal position to the tangent of the surface at the point of contact.
If this surface is flat, then the reaction force is always perpendicular to the surface.

Friction is a force which is linked to the normal force. This is because friction is
also linked to the surface with which an object is in contact. Unlike the normal
force, which acts perpendicularly to the surface on which the object is placed,
friction always acts parallel to the surface on which the object is placed. Friction
prevents or acts against movement; the vector which is used to represent friction
having the same direction as the friction force.

There are two types of friction which can act on an object:

— static friction, which is produced when an object is at rest. This is the force
which makes it difficult for an object to start moving;

— dynamic friction, which takes place when an object is moving. It is this force
which slows down or even stops the movement of an object.

Thrust and traction: thrust is created by a liquid or by the wind, traction of an
object by a cable. A flexible object which has little or no rigidity (such as a rope or a
chain, etc.) only creates traction on another object according to the axis of the
flexible body.
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The last of these common forces is the force of tension. Tension occurs when
two forces act on the extremities of an object (for example, the force which is
transmitted when pulling on a spring).

Not all of these forces are generally present at the same time.

NOTES.—
Masses are not forces.
Do not confuse movement and force.
Do not include fictional forces such as centrifugal forces in an FBD.

Identify pairs of forces, such as those which are grouped together in Newton's
third law, clearly.

Do not forget forces, and do not add forces that do not exist.

There are no forces on elements of a mechanical device that are still connected
together.

Reaction forces cannot be produced anywhere other than at a point of contact.

Example 2.3. Linear one degree-of-freedom system

TF

m
z
k ==l ¢
77
Figure 2.38. Linear one degree-of Figure 2.39. Free-body diagram of the
Jreedom system one degree-of-freedom system

The system is initially assumed to be in equilibrium.
Inertial force
d’z
FE

- m— [2.71]
’ dt?
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Damping force

Fy=-cz [2.72]
Restoring force

F=-kz [2.73]
External force: F.

According to d’Alembert’s theorem, the sum of all forces acting on a body,
including the inertial force, is equal to zero. This yields
2
m3Z oo [2.74]
a>  dt

To avoid the possible errors of sign during the evaluation of these forces when
the system is complex, the following rule can be used [STE 73]:

For each mass m; of the model, it is assumed that all the forces associated with

mass m; are positive and that all the forces associated with the other masses m;

(j # 1) are negative.

In practice, for each mass m;, the sum of the damping, spring and inertia forces
is made equal to zero as follows:

— inertial force: positive, equal to m; y;;

T Y k; T ¥ kg T Yy
m;j T 1y - my
Ll il
Cj Cz
ko =] ex

tn
my

Figure 2.40. Example of a lumped parameter system
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—restoring force: equal to k; (yi —yj), with k; being the stiffness of each

elastic element connected to the mass m;, y; — Yj being written while starting with

coordinate y; of mass m;, and Yj being the coordinate of the other end of each
spring;
— damping force: same rule as for the stiffnesses, with the first derivative of

Ci (Yi - Yj)~

Mass m; (Figure 2.40) is as follows:

m; ¥; + ¢ ('yi —'yj)+kj (Yi —Yj)+0k (3 =91+ (v = )

oy (3= 0) 4k, (vi—y,) =0 [2.75]

Example 2.4. System with five degrees of freedom

ms Jys

ks 3 [ cs
jy-3 j yq_
m3 m4
k3 &) |1 c3 kg Q1= c4
LXD (o8] TYL s} Ty2 Cg Xj
T T Il
| 1y L] il Mo 1 i
28089 %— h 2886009 2 9.0 8.2 5%
ky ky kg

Figure 2.41. System with five degrees of freedom

Mass my

m ¥y +oy(§1 — %o )+ kilyr = xo) + kalyr = y2)+ ca(31 = ¥2) + ks(y1 = y3)+e3(31 - ¥3)

=0
[2.76]
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Mass m,

My +5(V2 = ¥1) + Kalya = v1)+ ca(¥2 = a) + ka(ya = ya) + c6(y2 = %o) + kely2 = x0) = 0

[2.77]
Mass mjy
m;3 3 +c3 (3 -v1)+k3(y3—y1)=0 [2.78]
Mass my

My 54+ 4 (Y4 —2)+ka (Y4 —y2)+es(Ja—¥s)+ks (ya—ys)=0 [2.79]

Mass mjs

ms §s5 +c¢s5 (Y5 = ¥4) +ks (y5 —y4) =0 [2.80]
Hence the system of equations:

my §1 + (e +ep +e3) v+ (ki +ky+ks)yr—ca 2 —ka ya —c3 Y3 —k3 y3 = ¢ %o +ki xg
—Cy §1 —ky yp+my §3 +(cy +eg +6) Vo + (kg +ky +Ke) v —cy ¥4 kg y4 =6 %o the x
—c3 ¥ —k3 yp+m3 ¥3+c3 ¥3+ky y3 =0

—Cq Yo —kyq yp +my Y4 +(cq +cs) Vg + (kg +ks)ys —Cs ¥5s—ks ys =0

—Cs Y4 —Ks yg +ms Y5 +cs5 Y5 +ksys =0 [2.81]

Use of the Lagrange equation

This differential equation of movement can also be obtained from Lagrange
equation [2.63]:

i{ﬁécJ_&+6E_p+&=0
dt\ 8y; ) dy; dy; 8y

where
1 )
Be =3 D om [2.82]
i

1 1 1 1 1 1
Ep = Ekl(YI -xo) +Ek2(}’2 -n) +Ek3(Y3 -vi) +Ek4(}’4 -v2) +Ek5(§’5 -yva) +Ek6<YZ -x)]

[2.83]
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1 . 1 . . 1 . . 1 . . 1 . o2 1 . .
E, =5 (S’l—xo)z*'gcz (Yz‘Y1)2+EC3 (Y3—Y1)2+EC4(Y4—Y2)2+595 (5= ¥4) 3% (y2 = %)

[2.84]
d(oE.) .
E[ayi ] i [2.85]
SE
—L =% (y1-x0)-ka (v2-v1)-ks (v3 - 1)
dy;
OE
—L2 =k (v2-y1) - kg (va—¥2) + ke (v2 — o)
5}’2
SE
T2 sk (ys - y1) [2.86]
dy3
SE
—L =ky (v4-v2)-ks (v5s - v4)
dyy
OE
—L = ks (Y5 - Y4)
dys
O _, [2.87]
dy;
SE . . . . . .
,a =0 (Y1 —Xo)—cz (Yz —Y1)—C3 (Y3 —Y1)
8y
— =C (Yz —Y1)—C4 (Y4 _YZ)+C6 (Yz —Xo)
8y,
51§a =c3(y3-91) [2.88]
8y
3E, o o
=y (Y4 —¥2)—cs (V5 —Va)
84
OE . .
.a =C5 (Y5 —Y4)
85




96

Sinusoidal Vibration

Hence [2.81]

my ¥y 4k (v =x0) —ka (y2 = y1) =k (ys=vi) +e (31 = %) =2 (y2 = %) —c3 (y3-91) =0
my §y +ky (v2 = i) = ks (V4 = v2) + ke (y2 =%o)+ca (J2 =¥1) —c4 (J4 = ¥2) +¢6 (2 = %) =0
my §3+k3 (y3-yi)+e3(y3-91)=0

my Y4 +kg (va—y2)—ks (ys-ya)+ca (Ja—2)—cs (35-34)=0

ms §s +ks (ys = y4)+cs (§5 - ¥4) =0




Chapter 3

Response of a Linear
One-Degree-of-Freedom Mechanical System
to an Arbitrary Excitation

3.1. Definitions and notation

Any mechanical system can be represented by a combination of the three pure
elements: mass, spring and damping device (Chapter 2). This chapter examines the
movement of the simplest possible systems comprising one, two or three of these
different elements when they are displaced from their rest position at an initial
instant of time. The movement of mass alone is commonplace and without practical
or theoretical interest for our applications. The cases of a spring alone, a damping
device alone or a damper—spring system are really not of much more practical
interest than any real system just having a mass. The simplest systems which are of
interest are those composed of:

—mass and spring;
— mass, spring and damping.
We will consider the spring and damping to be linear and that the mass m can

move in a frictionless manner along a vertical axis (for example) [AKA 69]. This
system can be excited by:

— a force applied to the mass m, with the spring and the damping device being
fixed to a rigid support (Figure 3.1(a));
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—a movement (displacement, velocity or acceleration) of a massless rigid
moving support (Figure 3.1(b)).

M

LF(t)
m |? =
>
t
==l ¢

LA Irrrrririss

Fized support

R VT "
@ (o)

Figure 3.1. Mass—spring—damping system

One variable is enough at each instant of time to define the position of mass m
on the axis 0z since it is a one-degree-of-freedom system. The origin of the abscissa
of mass m is the point where the mass is at rest (unstretched spring). Gravity is
ignored, even if the axis 0z is vertical (as in the case of Figure 3.1). It can be seen
that the movement of m around its new static equilibrium position is the same as that
around the rest position, excluding gravity.

Note that:

is the absolute displacement of the support with respect to a
fixed reference (Figure 3.1(b));

are the corresponding velocity and acceleration;

is the absolute displacement of mass m with respect to a fixed
reference;

are the corresponding velocity and acceleration;

is the relative displacement of the mass relative to the support.
To consider only the variations of z around this position of
equilibrium (point 0) and to eliminate length from the spring at
rest, the support was drawn so that it goes up to point 0 in
Figure 3.1;

are the corresponding velocity and acceleration;

is the force applied directly to mass m (Figure 3.1(a)).
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NOTE.— In the case of Figure 3.1(a), we have y = z.

The movement considered is a small excitation around the equilibrium position
of the system. The excitations x(t), x(t), X(t) or F(t) can be of a different nature,
i.e. sinusoidal, swept sine, random or shock.

3.2. Excitation defined by force versus time

Fit)=F,, MD*
B =Fpm MD Force
Fpt———————
Time
0 t

Figure 3.2. Force versus time
Let F(t) be the force applied to mass m of a mass—spring—damping oscillator
(one-degree-of-freedom system) [BAR 61], [FUN 58] (Figure 3.3).
We will express the excitation F(t) in a dimensionless form A(t) such that:
F(t)=F, A(t)

Mt)=0 fort<0 [3.1]
max A(t) = k(tm) =1

The spring is assumed to be linear in the elastic range, with one end fixed and the
other connected to the mass.

The forces which act on the mass m are:

) ) dzz
—inertia m ——-;
dt
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—an elastic force due to the spring, of value —k z (restoring force), so long as it
follows Hooke’s law of proportionality between the forces and deformations. This
force is directed in the opposite direction to the displacement;

d
— a resistant damping force, proportional and opposing the velocity d_Z of the
t

dz
mass, —¢ —;
dt

— the imposed external force F(t).

7 k
~ R8T F(t)
- m |,
LR

/'77777777%:—,
z(t)

Figure 3.3. Force on a one-degree-of-freedom system

The result of the forces acting on mass m (the spring and the damping device of

dz
our model being supposed to be ideal and without mass), -k z(t) — ¢ — + F(t), thus

dt
obeys Newton’s second law:
2
mIZ - e ¥R [3.2]
dt? dt

This is the differential equation of the movement of the vibrating one-degree-of-
freedom system [DEN 60], yielding:

2
F(t
&z cdz k _F(Y [3.3]
dt? mdt m m
If we set
c
£= [3.4]

2m0)0



Response of a Linear 1-dof Mechanical System to an Arbitrary Excitation 101

and
k
wp = — [3.5]
m
it becomes:
2
d'z dz F,
—+28w) —+op 2=~ (1) [3.6]
dt dt m

o is the natural pulsation of the system or angular frequency and is expressed

in radians per second (the pulsation of the undamped oscillator when the mass is
moved away from its equilibrium position). It is only a characteristic of the system
as long as the small oscillation assumption is checked (i.e. as long as it can be
assumed that the potential energy is a function of the square of the coordinate)
[POT 48].

The natural period of the system is defined as:

T, = — [3.7]

£ =20 [3.8]

where T, is expressed in seconds (or its submultiples) and f;, in Hertz
(1 Hz =1 cycle/s).

C C

& is the damping factor or damping ratio: & = = .
2mo, 2,km

NOTE.—
When the mass moves horizontally without friction on a perfectly smooth

surface, we do not have to consider other forces. The rest position is then both the
equilibrium position of the mass and the unstretched position of the spring.
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If we assume that the mass is suspended on the spring and is moving along a
vertical axis, an application of the equation can be made, either by only considering
the equilibrium position, or by considering the rest position of the spring.

If we count the amplitude z starting from the equilibrium position, i.e. starting
from position 0, where the force of gravity m g is balanced by the spring force

kzpy (zeg being the deflection of the spring due to gravity g, measured from the
point 0), its inclusion in the equation is absolutely identical to that of the preceding
paragraphs.

If, however, we count amplitude z from the end of the spring in its rest position 0,
zj is equal to z + z,,, it is thus necessary to replace z by z + z,, in equation [3.6]
and to add in the second member, a force m g. After simplification (k z,, =m g ),

the final result is, of course, the same. In all the following sections, regardless of
excitation, the force m g will not be taken into account.

LIS IS IS

1Y ¥Z
Figure 3.4. Equilibrium position
If weset u=z and
ot) = —=—"=A(t) [3.9]

then equation [3.6] can be written in the form:

fi+2&mp u+wpu=0t) o [3.10]
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3.3. Excitation defined by acceleration

The base (support of the one-degree-of-freedom system) receives an excitation,
which we will assume to be defined by a known acceleration X(t). The excitation is
propagated towards the mass through elements k and c. The disturbance which m
undergoes is translated by a response movement.

Excitation and response are not independent entities, but are mathematically
related (Figure 3.5).

We will assume that:

— the simple one-degree-of-freedom system (Figure 3.6) is such that mass and
base are driven in the same direction;

— the movement x(t) of the support is not affected by the movement of the
equipment which it supports.

Support
structure

Figure 3.5. One-degree-of-freedom system

:’ o
=) k
NESTTES
1 § T m
M (L
I — R
2 o ozt
———»
a vyt

Figure 3.6. Acceleration on the one-degree-of-freedom system
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The excitation is this known movement x(t) of the support or the acceleration
%(t) communicated to this support. The equation for the movement is written:

2
d-y dy dx)
m —=-k — —Cc | ——— 3.11
dt2 (y X) (dt dt [ ]

i.e. using the same notation as before:

2
d7y(t) dy(t) dx(t)
Lz"' g Y +03(2) y(t):coé x(t)+2§u)0 [3.12]
dt dt dt
The relative displacement of the mass relative to the base is equal to
() = y(t) - x(1) [3.13]

yielding, after the elimination of y (absolute displacement of m) and its derivative,

2 2
z dz 2 d x
— +2&w) —+ag z(t)=——2 [3.14]
dt dt dt
If weset u=z and /(t) = - (generalized excitation), the equation above can
®q
be written as:
. R 2 2
u(t)+2§coo u+wmy u= 0, /(1) [3.15]

This similar equation for an excitation by force or acceleration is known as the
generalized form.

3.4. Reduced form

3.4.1. Excitation defined by a force on a mass or by an acceleration of support

X F
Let us set, according to case, z, = ——I; or z, = —_ This parameter is the
[0) k
0

maximum static relative displacement, indeed:
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F _ max |F(t)| _ max|F(t)|

z,=-1 3.16
ok k m o} B3-16]
Xm m X,  max. of static force corresponding to the max. of X(t)
VA - = =
’ m% m 03(2) m m%
[3.17]
/(t)
Let us note that 7, =z, =——=.
A(t)
e
T2
. @9
(¢, = maximum of /t) = ),
Fl'l'l
L
from [3.6] or [3.14]:
ii(t) u(t) u(t) /()
—— 428y —— + g —— = @y — [3.18]
NOTE.— 7 (t) has the dimension of a displacement.
u
Letussetq = —:
gm
.. . 2 2
q(t)+2<";w0 q+omy q=wy At) [3.19]
and
0, t=0 [3.20]
dq dq do dq
— = — =) —
dt do dt do
d’q  d’q(de) , d’
— == oy —
dt* e’ Ldt de’
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yielding:
d’q . dq
—+2&—+q(0)=A(6 3.21
o2 2o ra®=2(0) [3.21]
System Excitation all:sllctll:gfl (())If Reduced response
Real Generalized ¢ (t) L q(t)
Fixed base F( t) E(t) 7, = F_ ()
k k Y .
Moving - X( t) X Z( t)
base x(t) - zg=——5 2

Table 3.1. Reduced variables

A problem of vibration or shock transmitted to the base can thus be replaced by
the problem of force applied to the mass of the resonator.
3.4.2. Excitation defined by velocity or displacement imposed on support

We showed in equation [3.12] that the equation of the movement of the system
can be put in the form:

JH2Ew, y+wp y=2Ewmy k+0p X [3.22]
By double differentiation we obtain:
2.. 2. 2
d-y dy r d°x [3.23]

. .
L 428wy 2+ 08 =2 E @y —+0F —
dt? dt dt?

If the excitation is a displacement x(t) and if the response is characterized by the
absolute displacement y(t) of the mass, the differential equation of movement

[3.22] can be written as [3.24], while setting:
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i+2Ewyu+ofu=28wy [ +og ! [3.24]

If the excitation is the velocity x(t) and if y(t) is the response, equation [3.23] is
written as [3.25], while noting:

i+2Emyu+0gu=2&w /+nf ! [3.25]

In the same way, if the input is acceleration X(t) and response ¥(t), we have,
with:

u(t) = y(t)
i+2Ewyu+0f u=2&wy /+0f ¢ [3.26]

This equation is thus another generalized form applicable to a movement
imposed on the base and an absolute response.

Reduced form

Let us set, as before, /(t) = I At) (¢ ,,= maximum of /(t)) and o, t =0, this
then becomes:

éj(9)+2@q(6)+q(6):2§1(9)+k(9) [3.27]
NOTE.—If & =0, then equations [3.21] and [3.27] take the single form
(60)+4(0) = 4(0)

The excitation for the relative motion is simply the inertial force m x(t) required

by the adoption of an accelerating frame of reference [CRA 58]. We will find an
application of this property in the study of shock response spectra [LAL 75]. These
reduced forms could be used for the solution of the equations. The following table
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indicates the input and response parameters corresponding to the variables #(t) and
u(t) [SUT 68].

System Excitation /¢ (t) Response u(t)
F( t) /k Mass relative displacement
Fixed base Force on the Z(t)
mass Reaction force on base
F( t) FT( t)

Mass absolute

Base displacement x(t) displacement y(t)

. L. Mass absolute velocity
Moving Base velocity x(t) $(t)
base

Mass absolute acceleration

(1) 5(t)

. X( t) Relative displacement of
Base acceleration - . ( )
wy spring z
. Reaction force on base
m x(t)

Fr(t)

Table 3.2. Values of the reduced variables

The solution of these two types of differential equation will make it possible to
solve all the problems set by these inputs and responses. In practice, however, we
will have to choose between the two formulations according to the parameter
response desired, which is generally the relative displacement, related to the stress in
the simple system.

The more usual case is when the excitation is an acceleration. Equation [3.21] is
then essential. If the excitation is characterized by a base displacement, the
differential equation will in response provide the absolute mass displacement. To
return to the stresses we will have to calculate the relative displacement y — x.
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3.5. Solution of the differential equation of movement
3.5.1. Methods

When the excitation can be expressed in a suitable analytical form, the
differential equation of the movement can be explicitly solved for q(0) or u(t).

When this is not the case, the response must be sought using analog or digital
techniques.

The solution q(6) can be obtained either by the traditional method of the
variation of constants method, or by using the properties of Fourier or Laplace

transforms. It is this last, faster method that we will generally use in the following
sections and chapters.

Duhamel integral

A more general method consists of solving the differential equation in the case of
an arbitrary excitation A(0) with, for example, the Laplace transform. The solution
q(0) can then be expressed in the form of an integral which, according to the nature
of A(0) (numerical data, function leading to an analytically integrable expression),
can be calculated numerically or analytically.

3.5.2. Relative response

3.5.2.1. General expression for response

The Laplace transform of the solution of a differential second order equation of
the form:

d’q dq

can be written as (see Appendix) [LAL 75]:

A(p)+pq0+aq0+q0
2
p +ap+b

Qp) = [3.29]

where A(p) is the Laplace transform of A(6)

Alp) = L[(0)] [3.30]
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dp =4q(0)
do =4(0)
and, in our case:
a=2§
b=1

(0)+2¢&q(0) +q(0)
After the solution of the rational fraction P =4 d into simple

p2+2§p+1

elements, [3.29] becomes, with p; and p, the roots of p2 +2&p+1=0,

A(P) 1 1 1 Qo P1+2&qp+qg qoPr+t2&qg9+qyg
Qlp) = - + -
Pr—=P2P—P1 PPy | ) P—DP P—Pp

[3.31]
The response q(6) is obtained by calculating the original of Q(p) [LAL 75]:

q(6) = J.()e—px(a; [ep‘ (0-0) _ P (e_a)}da
17 P2

1

. 0 . 6
+ [(qo py+2&q +q0) e —(qo Py +2&q +q0) eP? ] [3.32]

P1 —P2
where a is a variable of integration.

Particular case

For a system initially at rest:

Ao =9dp=0 [3.33]
Then:
_ (O M) [opi(0-0) _ _ps (0-0)
q(e)—joﬁ[e —e }da [3.34]
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Movement q() is different according to the nature of roots p, and p, of

P +2Ep+1=0.

3.5.2.2. Subcritical damping

In this case, roots p; and p, of the denominator p2 +2 & p+1 are complex:

P =i 1-& (e 0<E<]) [3.35]

While replacing p; and p, with these expressions, response q(0) given by
equation [3.32] becomes:

+e %[ q, cosy/1-&’ 6+msin 1-8* 0 [3.36]

i

For a system initially at rest, q(6) is reduced to:

q(6) = — I: M) e 2 gin1-€2 (6-a) da [3.37]

Y

Ac o

Figure 3.7. Elemental impulses

This integral is called Duhamel’s integral or the superposition integral or
convolution integral. We will indeed see that the excitation can be regarded as a
series of impulses of duration Aa and that the total response can be calculated by
superimposing the responses onto all these impulses.
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For a small damping & << 1
0 £(6-a)
q(6) = o Ma) e sin(0— o) do
and for zero damping:

q(8) = Ie Ma) sin (60— a) do

[}

3.5.2.3. Critical damping

[3.38]

[3.39]

Roots p; and p, are both equal to —1. This case occurs for § = 1. The differential

equation of movement is then written:
G(6)+2q(6) +q(6) = 1(6)
.. 2 .
L(d)=p" Qlp)~pap —dg

L(4) = p Q(p) -y

p” Q(p)-pao —do +2pQ(p)-24q9 +Q(p) = A(p)

yielding:
Alp Pqy +qp +29
Q(p)Z : () + 02 0 0
p +2p+1 p +2p+1
Q(p)= A(P) +P‘lo+qO+2qO= A(P)
(p+1)° (p+1)° (p+1)° p+1 (p+1)?
i.e.

q(e) = joe Ma) (6-a) e_(e_a) do +[q0 + (qo + qo) 6] e ?

[3.40]

[3.41]

[3.42]

[3.43]

[3.44]

[3.45]

[3.46]
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3.5.2.4. Supercritical damping

The roots are real (&> 1):

q(e) = I: pk(_ol)) [epl (6-a) P (G—oc):| do
1 2

1

[(Pl Qo +28q0+0) €™ ~(py ag +28qq +dp) ™ 6] [3.47]

+
P1 = P2

where

Py =EtyE —1 [3.48]
since

p2+2§p+1=p2+2§p+§2—§2+1 [3.49]

p2+2ap+1=(p+a)2—(az—l):(p+§+x/a2—1)(p+a— az—lj

[3.50]

P —py=2yE -1 [3.51]

yielding

q(6) = \/i .[fx(a)e“?(e‘“) sinh“iz “1(6- oc)} dat

+ \/e;i [(& o + Clo)sinh(\/éz -1 e) +qoy&: -1 cosh(\/E_,z -1 eﬂ [3.52]
g -1

3.5.3. Absolute response

3.5.3.1. General expression for response
The solution of a differential second order equation of the form:
dzq dq da

—2+a—+bq(9)=k(6)+b— [3.53]
do do do
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has as a Laplace transform Q(p) [LAL 75]:

A(p)(1+ap)+pq0+a(q0—k0)+q0

Qlp) = 5 [3.54]
p +ap+b
where
q0 = q(0) Ao = M0) a=2¢
dg = 4(0) Alp) = L[M0)] b=1
As previously:
Alp) 2&A(p)
T2 T
p +2&p+1l p +2&Ep+1
L] {qo P1+2&(do—ho)+do _do P2 +2§(Q0—7\‘0)+%} 3.55]
Pi—P2 P—Pi P—P2
q(6) is obtained by searching the original of Q(p)
0 A .
q(e) _ J. ((X.) |:(1+2 E_,p]) epl (9‘0() _(1+2 E_, p2) epz (6 0():|da
0 P1 = P2
1
+— {[qo P1 +2§(q0 —7\40) +q0] Cp] 0 _[qo ) +2(\."_,,(q0 —}\,0) +q0] epz 9}
P =P
[3.56]

(o = variable of integration).

Particular case
Ao =d9 =4o

0 A » »
Q(G)ZIO %[(H%pl)ep‘(e ) -(1+2¢8p,) e ):|doc [3.57]
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3.5.3.2. Subcritical damping

The roots of p2 +2¢&p+1are complex (0 <&<1)

P12 =g+iyl-& [3.58]

While replacing p; and p, with their expressions in q(0), it becomes:

q(0) = : joe Ma) ¢ 56 {(1 -2 &2) siny/1 —E_,z (0-a)

1-&2

+2§\/1_§2 cosx/l—éz (9—&)} da

B In + -2 A —|
te ée[qo cosy/1— &2 0+ 20 & ay 2] siny1-&2 0 [3.59]

i yi-¢ |

If Ag=q9=qp =0

e}
—
D
S—
Il
—
—_—
@

Ma) ¢ 5 (0-0) {2 £ cosy/1 —e2 (0-a)
{1-28) siny1-& (e—a)} da [3.60]

If moreover & =0

q(8) = j: Ma) sin(6—a) da [3.61]

3.5.3.3. Critical damping

The equation p2 +2&p+1=0 has a double root (p = —1). In this case & =1
and

Alp) (1+2p)+pag+dp+2(ap—2)
(p+1)°

q(6) = [3.62]
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q(6) = _[(? Ma) [2-6+al ¢ (0 4o 4 [qo + G(qo +q4y-2 7‘0)] eV [3.63]

3.5.3.4. Supercritical damping
The equation p2 +2 & p+1=0 has two real roots. This condition is carried out

when &> 1. Let us replace p; =&+ ﬁz -1 and p, =-€- &2 —1 by their
expressions in equation [3.56] [KIM 26]:

q(6) = J'OG ) \7% {{14_ 2 a(_&+ EJ2 _lﬂ e(‘é*’\/ﬁj(@—a)

_ {1 Y (— £ e - 1)} e(_é_\/@J (e_a)} dot

+2 \/é {K—Eﬁ \/ﬁ)q0+2g(qo —%)+q0}e[_§+‘/ﬁje

—K— 62 ~1)ao + 22 ao —7”0)+C'10}e(_§_ éz‘l)e} [3.64]
yielding

q(@) = I()e\/% e_é (0-at) {(1 -2 gz)sinh{@ (9 — OL)}

+28E -1 cosh[\/é‘;z ~1(6- oc)}} do + C(0) [3.65]
where
o8 _ ee\/a_e—e g1
C(e):\/ﬁ [i(q0—2l0)+q0] 5
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04e%-1 te 04e%-1 l

N Igz “1q, © [3.66]
2
Another form
-£0
C(6) = — > { 19{@ 0 -2 %) +dg+E - qu
2482 -1

+e‘\/@9[\/§2—1qo—é(q0—2%0)—q0}} [3.67]

C(0)=a e(‘“@) ° b e(‘é‘@) 0 [3.68]
with

. 2
o= 8(do—=2%0)+dp +E ~1dg [3.69]

24e? -1

\/ 1q9—&(do—229)— [3.70]
2e2 -1

Ifq0=q0=>\,0=0

q(0) = _f: \/% e t(0-0) {(1 -2 gﬂmr{ﬂ (0- oc)}

28 gz—lcosh[ gz—l(e—a)}}da [3.71]

If moreover §=0:

q(O)szk(a)sinh(O—a)da [3.72]
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3.5.4. Summary of main results

Zero initial conditions:

Relative response

0<g<l

q(0) = : : : I: 3 (o)e 0 gin 1-£2(6- ) da [3.73]
== q(6) = jj Ma) (0-a) @ do [3.74]
£>1

q(0) = : i . J‘Oek(oc)e_é (6-0) sinh[\/ﬁ (0 - oc)} da [3.75]

Absolute response

0<g<l

q(e) = : 5 J-(? Ma) e (0-) {2 13 coswll—gz (6—0a)
1-¢
+ (1 - 2&2)sin J1-¢*(6- oc)} [3.76]

a(0)= | f M) (2—0+ ) 09 4o (3.77]

E=1

E>1

q(0) = : i . .[:x(oc)e*éi (0-a) {(1 —2 gz)sinh[\/ﬁ(e - a)}
+2E4E% -1 cosh{\/ﬁ(e - a)]} do. [3.78]

If the initial conditions are not zero, we have to add to these expressions,
according to the nature of the response, the following relations:
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For0<g<1

Relative response

c(0)=¢® {qo cos y/1-&2 e+%¢%m J1-¢2 e} [3.79]
1-¢
Absolute response
C(6)=e"%°qq cos ety d0tE@0—2%) o T Tg|  [3.80]
f-¢
For&=1

Relative . -0
C(0) = +0 + e 3.81
response ( ) [qo (qo qo)] [ ]

. -0
Absolute C(0) = [ao +(ag +d9 -2 %) 0] [3.82]
response

For &€ > 1

Relative response

c(0)= e 50 {&(102% sinh{ﬂﬁz -1 6}4— do cosh{\lﬁz -1 9}} [3.83]
g2 -1

Absolute response

C(6)= 750|590 qu —25h smh(w/g2 -1 e) +do cosh(\/};z -1 ej [3.84]
£2 -1

In all these relations, the only difference between cases 0 <& <1 and &>1
resides in the nature of the sine and cosine functions (hyperbolic for £ > 1).

3.6. Natural oscillations of a linear one-degree-of-freedom system

We have just shown that the response q(6) can be written for non-zero initial
conditions:

qic(6)=q(6)+C(6) [3.85]
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The response qIC(O) is equal to the sum of the response q(0) obtained for zero

initial conditions and the term C(8) corresponds to a damped oscillatory response
produced by non-zero initial conditions. So A(6) =0 is set in the differential
equation of movement [3.21]:

Gq(6)+2&q(6)+q(6) =0
It then becomes, after a Laplace transformation,

_q0+2§q0+pq0

5 (0<e<1) [3.86]
p +2&p+1

Qlp)

The various cases related to the nature of the roots of:
P H+2Ep+1=0 [3.87]

are considered here.

3.6.1. Damped aperiodic mode

In this case & > 1. The two roots of p2 +2 & p+1=0 are real. Suppose that the

response is defined by an absolute movement. If this were not the case, it would be
enough to make A, = 0 in the relations of this section. The response q(0) of the

system around its equilibrium position is written:

q(0) =80 q0+a\/(qzo—2 %) Gio (\/az—l 9j+q0 cosh («/&2—1 e) [3.88]
2]

q(6) can also be written in the form:

e(—gﬂ/ﬁ o o e_(&/ﬁ Jo

q(6)=a [3.89]

where

L _&(a0=2%)+do+y&" -1 [3.90]

24e2 -1
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and

a4 V& —1-E(dg =2 %) -4y
2 e -1

It should be noted that the roots —& + 4/ éz -1 and -& - iz —1 of the equation

p2 +2&p+1=0 are both negative, their sum being negative and their product

b

[3.91]

positive. Thus, the two exponential terms are decreasing functions of time, like q(0).

d
The velocity —q, which is equal to:
de

Y[ Lo (e S g
de

is also, for the same reason, a decreasing function of time. Therefore, the movement
cannot be oscillatory. It is @ damped exponential motion. q(0) can also be written:

(-erei1)o b e(—a—@ﬂ—@%

q0)=ae [3.93]
a

q(0) = a e(_£+ L {1 LR 9} [3.94]
a

2
When 0 tends towards infinity, e 2 V5 ! tends towards zero (e>1). After a

certain time, the second term thus becomes negligible in comparison with one and
q(6) then behaves like:

g ol [3.95]

As (—& +4 &2 - lj is always negative, q(0) decreases constantly with time.

If the system is moved away from its equilibrium position and released with a
zero velocity , with an elongation g, at time t =0, coefficient a becomes, for

A =0,
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a=qy—F— [3.96]

q being assumed positive, a being positive and q(0) always remaining positive: the
system returns towards its equilibrium position without crossing it.

The velocity can also be written:

da_ I S S =
de_a(—<:+ Ef—lje Ll_a —a+\/ﬁez 5 leJ[3.97]

T T [T [T T I[P I [T I [T TIT T

I
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Figure 3.8. Damped aperiodic response

We have:

j_‘; SEE s [3.98)

when 6 is sufficiently large. The velocity is then always negative.

Variations of the roots p; and p, according to &

Characteristic equation [3.87] p2 +2&p+1=0 is that of a hyperbole (in the
axes p, &) whose asymptotic directions are:

p’+2Ep=0
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1.e.

p=0
{p+2<§.=0 [3.99]

The tangent parallel with the axis Op is given by 2p+2& =0,1ie. p=-§.

p 4
0

R

(Double root)

Figure 3.9. Characteristic equation

This yields & = 1 while using equation [3.87] (since & is positive or zero), i.e.

c=c,=2km [3.100]

Any parallel line with the axis Op such as § > 1 crosses the curve at two points
corresponding to the values p, and p, of p.

The system returns all the more quickly to its equilibrium position, as q(6)

decreases quickly, therefore |p1| is larger (the time-constant, in the expression

(e 1)o 1 1

, 1s of value |—| = —————=———), i.c. the relative damping &
i ‘—§+\/§2 -1

(or the coefficient of energy dissipation ¢) is still smaller.

q@)=ae
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|p1| has the greatest possible value when the equation p2 +2&p+1=0 has a
double root, i.e. when & = 1.

NOTE.— If the system is released from its equilibrium position with a zero initial
velocity, the resulting movement is characterized by a velocity which changes only
once in sign. The system tends towards its equilibrium position without reaching it.
It is said that the motion is ‘damped aperiodic’ (& > 1). Damping is supercritical.

012 ' 8 I o | TTTT TTrrT | LU | TTT |_ 12 'I L UL TTT1 | UL | LI I_
0.10 ho=0] 5 1.0F ro=0]
qp=10 ] B = 2
008 | qgo=1] 08| .
= [ £=4 ] e N 1

ae] | =
G 006 ¢ ] T, 06f =
0.04 | - 04F -
0.02 | = 02F 3
OOO _I 111 | 111 | 111 | 111 | e | :I o ol | e o Ll L Id
0 5 10 15 20 25 0.04 ‘ 1'0 1'5 2'0 55

G
0

Figure 3.10. Aperiodic damped response Figure 3.11. Aperiodic damped

(for qp =0) response (for qg = 1)

3.6.2. Critical aperiodic mode

On the assumption that & =1, the two roots of p2 +2&p+1=0 are equal to
—1. By definition

C [3.101]

oo

yielding ¢ =c, = 2vkm. Parameter c_, the critical damping coefficient, is the
smallest value of ¢ for which the damped movement is non-oscillatory. This is the
reason why & is also defined as the fraction of critical damping or critical damping
ratio.
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Depending on whether the response is relative or absolute, the response q(6) is

equal to:

a(0)=[do +(a0+do)0] e [3.102]
or

a(0)=[ag+(do+dg—2%¢)0]e™® [3.103]

As an example, Figures 3.12-3.14 show q(0), respectively, for Ay =0,
qQo=q9 =1, q9o=0 and q¢ =1, then q5 =1 and gy =0.

1.4‘|Kf TIT[TTOIrrrIrs” I||[f||||l| LA lll' O.40_III LA AR AR A A L LA s
12F hg=0 . 0.35;/\\ =
{ qp=1 ] 030F Ao=0p -
IE): \ qo=1 3 s :/ C_In=0 3
~ 08F §= 1~ TH| [\ L 1IE
© [ 1 = o020 t=1H—
T 06 = I :
TE \ 3 015 =
L ] 0.10 . .
02F . 005 F =
r ] - ] 3
Oo—lrl peabosslieeloss i sl O_OO“lul poa Lo lvwadonale o T ol
00 20 40 60 80 100 0. 20 40 60 80 100
6 6
Figure 3.12. Critical aperiodic response Figure 3.13. Critical aperiodic response
(90 =1, q9=1) (40=0.49=1)

q(6) can be written q(6)={q—0+(qo+q0)JGe_9. For quite large 0, %o
0 0

becomes negligible and q(6) behaves like (qo + qo) 0e Y, q(0) thus tends towards

zero when 0 tends towards infinity. This mode, known as critical, is not oscillatory.
It corresponds to the fastest possible return of the system towards the equilibrium
position from all the damped exponential movements.

If q,(6) is written as the expression of q(6) corresponding to the critical mode,
this proposal can be verified while calculating:

q.(0)
QQ>1(9)
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If we consider the expression of q(0) [3.89] given for & > 1 in the form of a sum,

the exponential terms eventually become:

(Ve1-¢)e

q@) ~ae

1.0 g
05 ]

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
[l
0.0 v boaa Lo b e i T

q®

IR ANEE N RN RN LA LR LN EELE LA
1
o
|

IR RN AN RIS N RN NI RN INEETE]

o
o
o
o
+
o
O
o
<«
o
s
o

.0

Figure 3.14. Critical aperiodic response (qyp =1, g9 =0)

where:
. & [ag —zx0)+q0+q0\/ﬁ
2 e -1
whereas:
qc(0) ~ (qg +d0)0e™®
yielding;

[3.104]

[3.105]

[3.106]

[3.107]
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With the coefficient 1-§& + \12‘?2 —1 always being positive for & > 1, this means

that the exponential term tends towards zero when 0 tends towards infinity and
consequently:

This return towards zero is thus performed more quickly in critical mode than in
damped exponential mode.

3.6.3. Damped oscillatory mode

It is assumed that 0 < § < 1.

3.6.3.1. Free response

The equation p2 +2 & p+1=0 has two complex roots. Let us suppose that the
response is defined by an absolute movement (A, = 0 for a relative movement). The
response

: —22
q(0)=¢5° | gq cosy1-£> g J0+E(=2%0) o [T 0| (3108

J1-¢2

can also be written:

q(0) = q,, ¢ =’sin (\/1—8 e+¢j [3.109]

with

) [q0+§(q0_2x0)]2
Am =190 * 1_@2

2
tan ¢ = — d0 V176 [3.111]

o +&(a0 —22)

[3.110]
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The response is of the damped oscillatory type with a pulsation equal to

T
P=+1- &2 , which corresponds to a period ® = —. It is said that the movement is
P

damped sinusoidal or pseudo-sinusoidal. The pseudo-pulsation P is always lower
than 1. For the usual values of &, the pulsation is equal to 1 at first approximation

(e<0.1).

The envelopes of the damped sinusoid have as equations:

q=49, € [3.112]
and

q=-qp ¢ [3.113]

The free response of a mechanical system around its equilibrium position is
named “simple harmonic”.
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Figure 3.15. Damped oscillatory response

The exponent of the exponential term can be written as:

t
E0=Eaoyt=—
to

where t is the time constant of the system and

= =0 _ ¢ [3.114]
Eoy 2Q 2m
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Application

If we return to the non-reduced variables, equation [3.108] can be written for the
relative displacement response as:

u(t)z e 5t u( cos (omll—é:;z t+%sin (1)0\/1—532 t

1-¢
[3.115]

The relative velocity, calculated by deriving u(t), is equal to

1:1('()267& ®o t U COSM \/1—5_,2 t—w% sinwg \/1—§2 t| [3.116]
1-¢

The pseudo-pulsation is equal to

[3.117]

with o always being equal to or lower than o).

®
Figure 3.16 shows the variations of the ratio — with &.
®
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Figure 3.16. Influence of damping on the pseudo-pulsation



130  Sinusoidal Vibration

The pseudo-period

_275

T [3.118]

®

which separates two successive instants from the time axis crossing in the same
direction is always higher than the period of the undamped motion.

Figure 3.17 represents, as an example, the variations of q(6) with 0 for qo and
q, equal to 1 and for & = 0.1. Figures 3.18 and 3.19 show q(6) for & = 0.1 and for
(dp =1, 9y =0)and (qq =0, qo = 1), respectively. Figure 3.20 gives the absolute
response q(6) for £ =0.1, qp=1,gp=1and A, =1.

Relative response

1.5§|||m| T T T T T T l.O§||:| T T [T T T T T
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1.02\ =1 |3 06% a=1 |3
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Figure 3.17. Example of relative response Figure 3.18. Example of relative response
Jor(qg =1, 49 =1) Jor(qg =1,49=0)
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Figure 3.19. Example of relative response  Figure 3.20. Example of absolute response
fOF(QoZO,qO=I) for(qt)zl,q-ozl)
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3.6.3.2. Points of contact of the response with its envelope

From q(0)=q,, ¢ =" sin(\/l-éz 6+¢) , the points of contact of the curve with
its envelope can be determined by seeking 6 solutions of sin( 1- §2 0+ ¢j: 1.

These points are separated by time intervals equal to —.
2

The points of intersection of the curve with the time axis are such that
sin (P 0+ ¢) =0.

The maximum response is located a little before the point of contact of the curve
with its envelope.

C)
The system needs a little more than — to pass from a maximum to the next
4

C)
position of zero displacement and little less than — to pass from this equilibrium
position to the position of maximum displacement.
q®) 4

D

Qy COS O

Maximum

Minimum

"Y1

Figure 3.21. Points of contact with the envelope
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3.6.3.3. Reduction of amplitude: logarithmic decrement

Considering two successive maximum displacements Ay and SPIVE
-£0, .
dipy =9m © 58 sm(P 91+¢)
-£0, .
dopg =9m © 56 sm(P 0, +¢)

qiey &

Figure 3.22. Successive maxima of the response

d
where the times &, and &, are such that S 0:

de
j—g = qm(— &) e c? sin(PG + (|))+ dm pec? cos(P 0+ (I)) [3.119]
d_q= 0 if
de
tan (P e+¢):3= 1-g [3.120]
g g
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ie.if
e Vs
2
Sin(PO+¢) =+ —=>— [3.121]
1+1é§

sin(P O+¢)=+1-& [3.122]

However, #sin(P0; + ¢) = #sin(P 6, + ¢) (+ according to whether they are two

maxima or two minima, but the two signs are taken to be identical), yielding

div _ -5(61-6,) [3.123]

The difference 0, — 0, is the pseudo-period ©.

q
—M_ 50 [3.124]
sz
q
Since ™ _ ea, we can connect the relative damping, &, and the logarithmic

qZM
decrement, J, by:

£O=3% [3.125]

d is called the logarithmic decrement.

§=1In [3.126]

sz

This is a quantity which is accessible experimentally. In practice, if damping is
weak, the measurement of & is imprecise when carried out from two successive
positive peaks. It is better to consider n pseudo-periods and & is then given by
[HAB 68]:
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q
§=—In—M_ [3.127]
n q(n+1)M

Here n is the number of positive peaks. In fact, the ratio of the amplitude of any
two consecutive peaks is [HAL 78], [LAZ 68]:

@2 B 9 [3.128]
d> 4d3 d4 dn+1
yielding
@992 9% o [3.129]
Qn+1 ') q3 An+1
qE) 4
A

U

Figure 3.23. Successive peaks of the response

NOTES.—

1. It is useful to be able to calculate the logarithmic decrement O starting from a
maximum and a consecutive minimum. In this case, we can write:

am = 49m e sin (P91 + ¢)

9y =4m e =% sin (P6?2 +¢)
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sin(PO; +¢) = —sin (PO, + )

2 2
am _ ~6(0-0:) _ °7 _ 2
9u
yielding
§=2n|IM [3.130]
9u

If n is even (positive or negative peaks), which corresponds to the first positive
peak and the last negative peak (or the reverse), we have:

5=L:ln
n—1

1M
9u

[3.131]

2. The decrement 6 can also be expressed according to the difference of two
successive peaks:

9im —92m _ ;_492M _ 4 _ -0 [3.132]
qd1m q1m

(indices 1 and 2 or more generally n and n+ 1).

q@t

RiY

=
= Il
.

B
-

i
R

K 4

Figure 3.24. Different peaks
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If damping is weak, A1y and qy,, are not very different and if we set:

Aq =dpy —day

Aq can be considered as infinitely small:

ane _ [, Aa |
§ = oM _ | 2L
A2m L szJ

A
N

sz

In the case of several peaks, we have:

A
o~ d

ndq,,,

Knowing that [HAB 68]:

2n

P
27§

1_2

8:

or

vi-¢
o
B \/52+4n2

[3.133]

[3.134]

[3.135]

[3.136]

[3.137]

Example 3.1. [LAZ 50]

Material ] g

Concrete 0.06 0.010
Bolted steel 0.05 0.008
Welded steel 0.03 0.005

Table 3.3. Examples of decrement and damping values
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NOTE.- If & is very small, in practice less than 0.10, & 2 can, at first approximation,

be neglected.
Then:
o=2rné [3.138]
yielding
gz_ﬁi_ [3.139]
27 4oy
and
~_ A [3.140]
2rnqyy

Figure 3.25 represents the variations in the decrement & with damping & and
shows how, in the vicinity of the origin, we can, at first approximation, confuse the
curve with its tangent [THO 65a].

12_I'I[ TTT[TTT[OITO[IOT[UIT [T [reT [y'l[l_
0] :
oF 5=jwi ]

B {5 7 ]

w 6F ]
4: o ]

C 217 [ [Bs2me] ]

2_ = -
O:FTI/TI\ AN SN NS NN AN NN III:
0.0 20 40 60 80 100

Figure 3.25. Variations in decrement with damping
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We defined o starting from [3.128]:

qlM nod

q(n+l)M

yielding, by replacing 6 with expression [3.138],

N 271§
av__, 1€ [3.141]
q(n+l)M
ie.
q(l’l+1)M _ e—2nn§/\ 1—&2 [3142]
qlM
].Ow T T T T \III:
o =
NN
A 5 o5k NN\ _Y
A ok R N-
- 1IN N
ik RN
SiE RN
001_3 1 1 !llllllo_z L 1 L1 10]

Figure 3.26. Reduction of amplitude with damping

A(n+

1)
The curves in Figure 3.26 give the ratio M

versus &, for various values
qlM
of n. For very small &, we have, at first approximation:

q(n+l)M N e_2 Tné

~

[3.143]
qlM
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3.6.3.4. Number of cycles for a given reduction in amplitude
Amplitude reduction of 50%

On the assumption that

qlM
2

q(n+1)M

relation [3.126] becomes

1 27
=—In2= 5 [3.144]
n 1-&
If € is small:
1
2n Ex—In2
n
0.693
né= ~ 0.110
2n
60'_""“ T |||||||||||Jl||“||||||I_
5.0F \ :
Ty Wit :
@ 30f :
20f N :
Lof L
OO-III pridrredepndepntopadpnndeneliiafngn III-

0 2 4 6 8 10 12 14 16 18 20 22
€ x 1072

Figure 3.27. Number of cycles for amplitude reduction of 50%

The curve in Figure 3.27 shows the variations of n versus &, in the domain where
the approximation & = 27 § is correct [THO 65a].
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Amplitude reduction of 90%

In the same way, we have:

~ Qim
q(n+1)M - 10
1
=—1In10
n

and for small values of &:

1
n&~—1In10
2n
n &~ 0.366
40_III LI TTT TTT TTT TTT TTT TTT TTT
35k
30 n= . ln[ : ]
=099 ZnE l-o
25 B

n(€)

—
h
FTTTT T LT TTTT

B
d
A

\\’9?5

J“ propdppandypundpppadppnnrpariongl

10 0.50
NiSTas
5»— L ] B
DElIIT:‘-Ill%FT_ITT;l.:
2 4 6 8 10 12 14 16 18 20
g  SoHE

Figure 3.28. Number of cycles for an amplitude reduction of 90%

Reduction of a%

More generally, the number of cycles described for an amplitude reduction of
a% will be, for small &:
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[3.145]

3.6.3.5. Influence of damping on period
Unless it is very large, damping generally has little influence over the period; we

2n
have ®, = — for £ = 0 (P, = 1) and, for small £,

Po
2 >
A6 _ 6-6_6 ,_ p P, 8 [3.146]
© Oy O 2n P \/1_(22 8 i’
Py

For most current calculations, it is possible to confuse ® with . For the first
order, the pulsation and the period are not modified by damping. For the second
order, the pulsation is modified by a corrective term that is always negative and the
period is increased:

0 (@)
a7l

Q= 5 O |l1+— [3.147]
-t 2
and
2 g
P=P,41-& =P, 1—? [3.148]
(P():l) or

[ &2)

0=0yV1-& ~ o, L1—E’—J [3.149]
2

NOTE.— The logarithmic decrement also represents the energy variation during a
cycle of decrease. For sufficiently small 6 we have [LAZ 50]:
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Mi(Energy(n—l)—E"ergy(”)] [3.150]
2 Energy(n—1)

[Energy(n - 1) = Energy to the (n - ])th cycle}

In practical cases where & lies between 0 and 1, the energy initially provided to
the system dissipates itself little by little to the external medium in various forms
(friction between solid bodies, with air or another fluid, internal slips in the metal
during elastic strain, radiation, energy dissipation in electromagnetic form).

Consequently, the amplitude of the oscillations decreases constantly with time. If
we wanted to keep a constant amplitude, it would be necessary to put back into the

system the energy which it loses every time. The system is then no longer free: the
oscillations are maintained or forced. We will study this case in Chapter 6.

3.6.3.6. Particular case of zero damping

In this case, q(0) becomes:
q(6) = q( cos 0+¢, sin 0 [3.151]

which can also be written as:

q(0) =q,, sin (6+0) [3.152]
where
2 .2
Am =90 + 4o [3.153]
tan ¢ = 30 [3.154]
do

If it is assumed that the mechanical system has moved away from its equilibrium
position and then released in the absence of any external forces at time t =0, the
response is then of the non-damped oscillatory type for £ = 0.

In this (theoretical) case, the movement of natural pulsation w should last

indefinitely, since the characteristic equation does not contain a first order term. This
is the consequence of the absence of a damping element. The potential energy of the
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spring decreases by increasing the kinetic energy of the mass and vice versa; the
system is known as conservative.

To summarize, when the relative damping & varies continuously, the mode
passes without discontinuity to one of the following:
E=0 undamped oscillatory mode;

0<&<1 damped oscillatory mode. The system moves away from its equilibrium
position, oscillating around the equilibrium point before stabilizing;

E=1 critical aperiodic mode, corresponding to the fastest possible return of
the system without crossing the equilibrium position;

E>1 damped aperiodic mode. The system returns to its equilibrium position
without any oscillation, all the more quickly because & is closer to 1.

In the following chapters, we will focus more specifically on the case 0 <& <1,
which corresponds to the values observed in the majority of real structures.

OOA vl

Figure 3.29. Various modes for qy =1, gy =1

1 per e
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Figure 3.30. Various modes for qy =1, gy =0
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3.6.3.7. Quality factor
The quality factor or Q factor of the oscillator is the number Q defined by:

C C (DO C
= =2¢ [3.155]

1

Q_2m0_,/km_ k
The properties of this factor will be considered in more detail in the following

chapters.



Chapter 4

Impulse and Step Responses

4.1. Response of a mass—spring system to a unit step function (step or indicial
response)

4.1.1. Response defined by relative displacement

4.1.1.1. Expression for response

Let us consider a damped mass—spring system. Before the initial time t = 0 the
mass is assumed to be at rest. At time t = 0, a constant excitation of unit amplitude
continuously acts for all t >0 [BRO 53], [KAR 40]. We have seen that, for zero
initial conditions, the Laplace transform of the response of a one-degree-of-freedom
system is given by [3.29]:

___Ap) 4.1
p2+2§p+1 1]
Here A(p) = l(unit step transform), yielding the response:
p
| I 1T I
a0 = —— 2
Lp(p +2€p+1)J o) Le*+28p+1]  [p*+28p+1]

[4.2]
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20
q(e)=1—%[\/1—§2 cos 1 —E2 0 siny1 - 2 e}
1-¢
-0
€ . P
-2¢& siny/1-& 0 [4.3]
1-¢
(&#1)
q(9)=1—e_§e(cos 1—&2 0+ : sin 1—&2 0 [4.4]
i =g |
ie.
£ 1
u(t) = A(t) = £m| 1—e o cos 1-8 t- e—é%tsmwo 1-¢ ¢
L h-8 |

[4.5]
with ¢ =1 [HAB 68], [KAR 40].

NOTE.— This calculation is identical to that carried out to obtain the primary
response spectrum to a rectangular shock [LAL 75].

£=005
20 :IYillYflllflllI]lflllflllifllfl'llfl'lfll: 1.0:III TIT[TTT[ITT II‘J-J'L
18f = 0.9F <]
1.6H = 0.8 ]
144 = 0.7E
1.2H - 0.6F -
—~ H = ~ - 4
u - [a=) - 3
Q; 1.0 E 4 0.5E / E
0.8 3 04F q@)=1-(1+8)e™®
0.6 3 0.3F ]
0.4 3 0.2;/’ 3
02 = C.1E 3
D. 'IIDIIIIIIIIIIIIIIIIIIPIII'!IIII'III'III: OO_II Lot laa e tle it hetelo il igl III:
0 10 20 30 40 50 60 70 80 90100 012 3 456 7 8 910
6 0
Figure 4.1. Example of relative Figure 4.2. Response to a unit step
displacement response to a unit step excitation for £ =1

excitation
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Specific cases

LIfE=1
Q(p) : [4.6]
p)=—"5 .

p(p+1)°
11 1

QAp)=—-—-— [4.7]
p p+l (p+1)

q(@)=1-(1+0) ¢ [4.8]

and, for 7,, =1,
u(t)=1-e ™' —pyte ™" [4.9]

2. Zero damping

In the reduced form, the equation of movement can be written using the notation
of the previous sections:

d’q 0)
d6(2 +q(6)=1(6) [4.10]
or
ii(t) + of u(t) = op A1) [4.11]

with the initial conditions being constant, namely, for 6 = 0

(dq\
q(0) = LELO =0,

or, according to the case, t = 0 and

a(0) :(%LO _0
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After integration, this becomes as before:

q(8) =1-cos © [4.12]
and

u(t)="¢p, (1-cos wy t) [4.13]
the expression in which, by definition of the excitation, ¢, =1:

u(t) =1-cos w, t [4.14]

Example 4.1.

If the excitation is a force, the equation of the movement is, for t=>0,

2
v/ dz
m—-+ k z=1, with, for initial conditions at t =0, z(0) = (—J = 0. This
dt dt /i

yields, after integration,

)
z(t)=l[l—cos\/EtJ [4.15]
k m

NOTE.- The dimensions of [4.15] do not seem correct. It should be remembered that
the excitation used is a force of amplitude equal to one and is thus homogeneous
with a displacement.

IO

2
k

£
k

Figure 4.3. Step response for £ =0
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The function z(t), a response with the step unit function, is often termed the
indicial admittance or step response and is written A(t).

It can be seen in this example that if we set, according to our notation,
F

z, = — = —, the ratio of the maximum elongation z_ to the static deflection z

S
k k
which the mass would take if the force were statically applied, reached a value of
two. The spring, in dynamics, is deformed two times more than in statics, and there
is a fear that it may undergo stresses that are twice as large.

Often, however, the materials resist transient stresses better than static stresses
(Chapter 2). This remark relates to the initial moments, during which F(t) is
transitory and is raised from O to 1. For this example, where F(t) remains equal to
one for all positive values of t and where the system is undamped, the effect of
shock would be followed by a fatigue effect.

4.1.1.2. Extremum for response

The expression for the response

: - siny1-E> 0 [4.16]

q(6)=1—e_ée{cos 1-8% 0+
1-€

d
has a zero derivative bk for 6 = 0, such that
de

g
1-¢

—ée_éem cosq/1 — &2 O + 2sin 1-¢2 Om

0

+e 50 {—\/l—éz sin\/1—§2 0, + &cos 1-¢2 Gm}

siny/1-&% 0, =0
km
1-¢

[4.17]
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The first maximum (which would correspond to the point of the positive primary
shock response spectrum at the natural frequency f;, of the resonator) occurs for

0, = !

T
" J1-E2 2fy y1-82

From this the value q(0) is deduced:

at time t,, = [HAL 78].

L ]
q(Gm)zqmzl—e =5 cos m+ sin 1t [4.18]
1-¢
qu =1+e ¢ [4.19]

(always a positive quantity). The first maximum amplitude q,, tends towards 1
when & tends towards 1.

2.0
1.9
1.8
1.7
1.6
15
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1.3
1.2
1.1
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g
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\ qp=1+e

dm

N

TITITTITIT T IT [T oI I I a[ ITroar oo
Lirdrardpntdenfaenndpgelngl

||||I|||||l|||I-T¥|\:\F‘I_‘i'I“-1.| Ll
0.

8

—
o

Figure 4.4. First maximum amplitude versus &

NOTES.—

1. q,, is independent of the natural frequency of the resonator.

2.For £=0,q,=2.
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Figure 4.5. Amplitude of the first minimum versus &

Fork=2,

2
9 —-_-" [4.20]

and

1
t, = ———,
fo y/1- &2
_2mné&

qOm) = qm =1-¢ VI [4.21]

q,, is negative for all § € [0, 1].
qy, =0for&=0
qn =1for&=1

4.1.1.3. First up-crossing of the unit value by the response

0, is searched such that:

q@)=1=1- e | cos V1= &2 0, + : siny/1 - éz 0, [4.22]

1-¢

.
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-0 .
As e <0, # 0 1s assumed

cosy/l— £ 6=

sm\[l - 9

ie.

tan\1-&> 0, =
This yields, since tan\ll—?‘,z 6, <0 and \/1—&2 0, >0 must be present

simultaneously:

[ 2
J1-E2 0, =m—arc tan 1;& [4.24]

[4.23]

r
tanx
] 1 1 60h||'[ LA AR AR AR AR AR AL BRI IlT_
. | .i . T T T T ™ :
! ! ! 50F 1-82 | |1
i ! ! o= i 5 [u—arctan ﬁg ] 1
i i i - - -
i i i 40t 15 ]
1 1 1 B ]
i [ | . < 30
I I ox B
J / +7 | / ! 20F
I T I B
' ! ! - :
1 1 | 10
i i i r |+ 1
I ! ! O-Ill IFFEESEESTERSEERSEE! IJJTT:II] IJJ-
| [ | 0.0 0.2 04 0.6 0.8 1.0
i i i £
Figure 4.6. Resolution of [4.23] Figure 4.7. Time of first up-crossing of the unit

value by the response

1 J1-¢2
0, = ﬁ T — arc tan : [4.25]
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If&£=0,
q(6) =1-cos 6 [4.26]
Ifq(6) =1
6= (k + ljn [427)
2
IfE=1
1=1-¢%-pe® [4.28]

The only positive root exists for infinite 0.

4.1.2. Response defined by absolute displacement, velocity or acceleration

4.1.2.1. Expression for response

In this case, for any & and zero initial conditions,

Q(p)=M [4.29]

p2+2§p+1

| | [ ]

_ 1+2&p _1[11 4 p
(g)=L" U= |-U) —mM—|
! L)( J e L[p*+2&p+1]

430
p2 +2&p+ 1) [4.30]
| ¢
(1(9)=1—e_§9|tcos\/1—§2 9—\/—25in 1-& J:A(e) [4.31]
1-¢

(€=1).
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If&=0
q(8) =1-cos0 [4.32]
Ife=1
1 1+2
Qlp) = ———3 [4.33]
p(p+1)
11 1
Qlp)=—-—+ 5 [4.34]
p p+l (p+1)
q(0)=1-¢"+0e" = A(0) =1+(0-1) ¢ [435]
u(t) =1+ ((1)0 t— l) e ™ ! [4.36]

4.1.2.2. Extremum for response

The extremum of the response q(6) = A(8) occurs for 6 =0,, such that

—— = 0, which leads to
do

g
1-¢

_t0 .
—éeé m | cosy1— &2 Om — —sin 1-¢2 O

+e 50 |:—\/1—<t32 sin\/l—ﬁz 0, — Ecos 1_(;;2 em:| =0
i.e. to

2
tanyfl- g2 o, = 2oVI=& [437]

282 -1
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Figure 4.8. Example of absolute response

For 2 &2 —12>0 (and since 0., is positive):

[ 2
0, = —— arc tanM [4.38]
- g2 287 -1

andif 2 £2 1< 0

2
6, = 2541-8° [4.39]

= ———| M +arctan 3
1/1_§2 28 -1
" I ] B,
L [
1.0F — 30\ ]
0.8’/ : 28f .
: £=1 ] :
§ o.s_l 1 & 26}
0.45 | - 1 24 AN
q(8)=1-(1-8)e” ] E
o.zt | 22 ™
0'00 1 2 3 4 5 6 7 8 ¢ 10 2'C:.'I!.fl' 02 04 06 08 10
8 &
Figure 4.9. Amplitude of the absolute Figure 4.10. Time of extremum versus &

response for & =1
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For 0=10,,,

.

r
e i
1-¢
1.e.
AlDy) =1+ ¢ 50 o
IfE=1,
q0)=1-¢ ?+pe" 4a1]
Then
d
_qz(z_e) e_e =0
do

if0=2 orif 6 — oo.
This yields
Q(Qm) —l+e

or

q(6,,) =1

1 n
If&=—,0 =—x/5and
N

q(em) =1+e™?

q(6) =1.20788...
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Figure 4.11. Amplitude of absolute response versus &

4.1.2.3. First up-crossing of the unit value by the response

The first up-crossing of the unit value happens at time 0; such that

Alg)=1-¢%% {cosx/l—&z q—\/%simll—az 91} [4.42]

2
any1- & 6 - —“j [4.43]

1 1-¢&2
0, = arc tan S [4.44]
Ni-¢
IfE=0,
T
el =
2
IfE=1,
q@)=1=1-¢2+0e?® [4.45]

yielding 6, =1 or 0;= infinity.
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Figure 4.12. Time of first up-crossing of the unit value versus &

4.2. Response of a mass—spring system to a unit impulse excitation
4.2.1. Response defined by relative displacement

4.2.1.1. Expression for response

Let us consider a Dirac delta function 8, (8) obeying

3,(0)=0 for 00
84 (0) infinite [4.46]
T8, (0) dt=1
such that, with 6=0, q =0 and m d_q= 1. The quantity m d_q is the impulse
transmitted to the mass m by a forccitt acting for a small int(::‘i'val of time AO

[KAR 40]. The contribution of the restoring force of the spring to the impulse is
negligible during the very short time interval A8.

Depending on whether the impulse is defined by a force or an acceleration,

—+2§(D0%+(DO Z=Wy — [447]
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where 0p =F 8(t), F =1 (force) and 3(t) is a Dirac delta function obeying the

same definition, or

2
dz dz )
—2+2§w0—+méz=—mgL2C [4.48]
dt dt (O

with dpc =X 8(t) and X =1 (acceleration). If Sg(t), the generalized delta

) )
function, is equal, according to the case, to —Lorto —LZC, then the generalized
k (O
equation is obtained as follows:
d*u du 2 5
dt dt

Then

At O 1
J.O ! ?F dt = E I
At
= t)dt = 4.
3= 8, (t)dt=| e | SV [4.50]
Jo |5 |dt=-—1|=

g )
(8V = velocity change due to the acceleration impulse). To make the differential
equation dimensionless, each member is divided by the quantity 3 w, homogeneous

with length, and set q = and 0= w, t. This becomes:

3 w,

d’q dq
—2+2§—+q(6):6g(9) [4.51]
do do

The transform of a Dirac delta function being equal to the unit [LAL 75], the
Laplace transform of this equation is written with the notation already used,

Q(p)(p2+2ép+l =1 [4.52]



160  Sinusoidal Vibration

From where
e G0
q(0) = siny/1- %6 = h(0) [4.53]
1-¢2
(E#1)and
Ew, t

u(t) = o 3" Ginwg[1-£2t [4.54]

h(®)

[ =0.05

T FETRINNI AT AT AT IIIIIIIII!I-
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Figure 4.13. Impulse response

For an acceleration Dirac function,

-Ew,t
u(t) = Ve sinwg /1-E2t [4.55]

and
e—& w, t

0§ z(t) =~ 8V W sinwg +/1- &%t [4.56]
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Specific cases

1.For£=0,

q(6) =h(6) =sin 6

and
u(t) = 0y Isin wg t [4.57]
Example 4.2.
1
If the impulse is defined by a force, 3 = — then
k
u(t)=2(t) = 22 sin wp t=— sin g ¢ [4.58]
k Jkm
This relation is quite homogeneous, since the “number” 1 corresponds to the
1
impulse = , which has the dimension of a displacement.

I
km Lkm

.

hit)

Figure 4.14. Impulse response

The unit impulse response is denoted by h(t) [BRO 53], [KAR 40]. It is
called the impulse response, impulsive response or weight function [GUI 63].

2.IfE=1,

[4.59]
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Imtial velocity

§<1,c<¢

/7, E>1,c>c

T T
o o v

Figure 4.15. Examples of impulse responses versus &

4.2.1.2. Extremum for response

d
q(6) presents a peak q,, when A 0,i.e. for @ =0, such that
do

—Ee O siny1-E2 0, +e 0 \/1—?,2 cos\/l—iz 0, =0

tan1-&2 0, = "1_&"2

m

g
1 J1-82

0, = arc tan 2

1-¢2 g

This yields
_é elﬂ
€ . 2

qm = > siny1-&" 0,

1-¢

Le.

A\

[4.60]

[4.61]

[4.62]
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For =1,
-0
q(@)=0e [4.63]
dg .
—=0if 0=1, yielding
do
1
Qpy = — [4.64]
e
For&=0,
h(B) =sin 0 [4.65]
dh ()
— = cos 6=01f6=Lk+—J1‘c.Ifk=O,h=l.
do 2
16 TTTTTTT T T LA |"'|"'|“'_ 10 LN LA Ill||ll||ll||lllllll'lllllll'll_
1.55\ 6,,= arctanm ; 09 - 7 m“n\ﬁ-? 3
[ i 1_53 4 ] o Qm = © 1-§ ‘ f
14F N 08N E
C 07
g 3f I £ =
- \\ “ o6F N
1.2F o5k
- Ak ~]
11 ™ o Y
- ™ E
%0702 “6.4“;6.'6“ 08 10 036 6 e 08 o
g

Figure 4.16. Time of the first

maximum versus &

Figure 4.17. Amplitude of the first
maximum versus &

NOTE.- The comparison of the Laplace transforms of the response with the unit step

function

o(p)

1 1
P plH2&p+l

[4.66]
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and the unit impulse

Q( )=; [4.67]
P p2+2§p+1 .

1
shows that these two transforms differ by a factor — and that, consequently
p

[BRO 53], [KAR 40],

h(1) = [4.68]

4.2.2. Response defined by absolute parameter

4.2.2.1. Expression for response

_ 1+2&p 4o
p?+2Ep+1 [4.69]
¢ o0 I ¢
q(6) = h(6) = sin\/1—§26+2§e_§e| cosy1-E20— siny1-£20]
NI L ’1—};2 J
[4.70]
€=1)
2
h(0)=e"0|2E cosy1 - £20 + %sin 1-£%0 [4.71]
1-¢
ie.
-£0
h(6) = sin( 1—§2G+(pj
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Figure 4.18. Absolute response

NOTE.- For 68 =0,

If & = 0, the preceding case is found

h(6) = sin 0

In non-reduced coordinates the impulse response is written [BRO 62]:

165

[4.72]

[4.73]

52
u(t)szSe_iwot 2&005‘”0Wt+£sinwoﬁt [4.74]
fi-¢

1-2¢2

If 3=1, h(t) = eTEont 2§cosw0\/1—§2t+

sinwgy/1- &2t
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Figure 4.19. Absolute response for & = 1

Ife=1,
1+2p 2 1
p) = _ _ [4.75]
(p) (p+1)2 p+1 (p+1)2
q@)=2e%-0e%=(2-0) e [4.76]
u(t)=S oy (2-wgt)e ™! [4.77]

4.2.2.2. Peaks of response

dh
The response h(6) presents a peak when — = 0, i.e. for 0 = 0,, such that
de

siny1-&2 6,

_ 1-2¢?
-Ee 50, 2 & cos 1—&26m+—§2

Vy1-&
+ 80 {—2&/1—&2 sinyfl €2 6, + (1 - 282 Jcos 1 - &2 em} —0
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i.e., after simplification, if

tan(em V1= gz) _yi- & (1 4 az) [4.78]

gl-42?)

If3-4£%2<0 (ie. §>£),
2

0,, = ! alrctan{“l_éz 1_4?’2}

= [4.79]
- & 3-4¢
and if 3—4E%2 20, ie. fs?,
1 J1-E2 1-482
0, = T + arc tan § S [4.80]
—g2 3-4¢2
JI-¢ g
this yields
g2
h(0,,)=h,, = e 50 2E&cosy1 - &2 O + ! 222 siny/1 -2 0, [4.81]
1_
ie.

h,, = - %0 [4.82]



168  Sinusoidal Vibration

0.0 prrprer T T

- |t}
48;:II TIT[TTTI[TTT[TITT[TTIT[TAT[ITITTIIT Ifl; '0.1; /
46EY 3 0.2F
4.4F N 1 0.3
42K : 04F
g 40F : £ 05 7
® 38E = -0.6F
3.6; ; ~0.'?;/
34E - . -08;;
32F e 09§ ;
00wl bl g lanadesalansl i i 1) =T ¥ STWE FENE FEWE FTRE FETE FRTE YT KTTE A Ve
0o 02 0.4 0.6 0.8 1.0 00 02 04 06 08 1.0
g 3
Figure 4.20. Time of the first maximum of ~ Figure 4.21. Amplitude of the first maximum
the absolute response versus & of the absolute response versus &
IFE=1,
dq 6 -6, -0

=0 [4.83]

Since ¢ ° # 0, we obtain 0, =3 and h,, =e” =—0.049788...

If¢=0,
h(6) =sin 6 [4.84]
dh ) (1) b
—=cos6=01f6m=nLk+—J.Ifk:0,6m=—andhm=
de 2 2
NOTES.—

1. Equation [3.37], which can be written
2I gw”t“)sina)o 1-&2 (t-a)da,
" Tre b V
is none other than a convolution integral applied to the functions ¢ (t) and

h(t) = —2— e sinwy [ 1-£7 [4.85]

(h (t) = impulse response or weight function).
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2. The Fourier transform of a convolution product of two functions ¢ and H is
equal to the product of their Fourier transforms [LAL 75]. If u =/ *h

U(RQ)=FT(U)=FT(/*h)=L(2).H(2) [4.86]

The function H (.Q) , Fourier transform of the impulse response, is the transfer
function of the system [LAL 75].

3. In addition, the Laplace transformation applied to a linear one-degree-of-
freedom differential equation leads to a similar relation:

U(p)=4(p)L(p) [4.87]

A( p) is termed the operational admittance and Z ( p) = the generalized

1
A(p)
impedance of the system.

4. In the same way, relation [3.60] can be considered as the convolution product
of the two functions ¢ (t) and

0=t 1-26 o187 026 (18 covan 187

J-a*

[4.88]

4.3. Use of step and impulse responses

The preceding results can be used to calculate the response of the linear one-
degree-of-freedom system (k, m) to an arbitrary excitation /(t). This response can
be considered in two ways [BRO 53]:

— cither as the sum of the responses of the system to a succession of impulses of
very short duration (the envelope of these impulses corresponding to the excitation)
(Figure 4.22);

—or as the sum of the responses of the system to a series of step functions
(Figure 4.23).

The application of the superposition principle assumes that the system is linear,
i.e. described by linear differential equations [KAR 40], [MUS 68].
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f(t) 4

L 4

[ —————p—'¢~ t
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Figure 4.22. Arbitrary pulse as a series of impulses

ON

Afle)| ===
f(0)

A4

o Ao

Figure 4.23. Arbitrary pulse as a series of step functions

Let us initially regard the excitation /(t) as a succession of very short duration
Ao, impulses and let /(o) be the impulse amplitude at time o. By hypothesis,
o) =0 for o< 0.

Set h(t — o) as the response of the system at time t, resulting from the impulse at
the time o pertaining to the time interval (0, t) (section 4.2.1). The response z(t) of
the system to all the impulses occurring between ot = 0 and o =t is:

u(t)=a=t£(oc)h(t—oc)Aoc [4.89]

a=0

If the excitation is a continuous function, the intervals Ao can tend towards zero;
it then becomes (Duhamel’s formula):
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()= a) nlt-0) do [4.90]

The calculation of this integral requires knowledge of the excitation function
/(t) and of the response h(t —a) to the unit impulse at time .

Integral [4.90] is none other than a convolution integral [LAL 75]; this can then
be written as:

(0 *n(0) = [ a) n(1-0) do [4.91]

According to properties of the convolution [LAL 75]:

t
A0 *nl) = | fe-0) bl da [4.92]
A _
2t pd
wf 111 | R
> a’
I
A I |
[
IF(@)
3“ : t
! X 2.
0 o \ t
h(t-ct)

Figure 4.24. Summation of impulse responses

NOTE.- It is presumed in this calculation that at time t the response to an impulse
applied at time « is observed, so that this response is only one function of the time
interval t — o, but not of t or of a separately. This is the case if the coefficients of
the differential equation of the system are constant. This assumption is in general
not justified if these coefficients are functions of time [KAR 40].

Consider the excitation as a sum of step functions separated by equal time
intervals Ao (Figure 4.25).
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Alo)

Ao
the step response at time t, resulting from the application of a unit step function at
time o (with 0 < a < t).

The amplitude of each step function is Al(a), i.e. Ao, Set A(t—oa) as

Set £(0) as the value of the excitation at time o= 0 and A(t) as the response of
the system at time t corresponding to the application of the unit step at the instant
o=0.

The response of the system to a single unit step function is equal to

Ao
() Ao At — o)
Ao
A
()
|
Z(O)f _
0 oL %
-
= fﬂ‘q Adlor)

A |

|

|

|
I | .
0 or,i £

A |

|
T I@ P -
0l o E

Figure 4.25. Summation of step responses

The response of the linear system to all the step functions applied between the
times o = 0 and o = t and separated by Ac: is thus:

Ao A(t—a) [4.93]
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If the excitation function is continuous, the response tends, when Aol tends
towards zero, towards the limit

u(t)= 10) . A+ ] () Alt-a) da [4.94]
where
Wa) = d/(or)
da

This is the superposition integral or Rocard integral. In the majority of practical
cases, and according to our assumptions, #(0) = 0 and

u(t) = jot 7(0) A(t—a) do [4.95]

NOTES.—

1. Expression [4.95] is sometimes called Duhamel’s integral and sometimes
[4.90] is called Rocard’s integral [RID 69].

2. Integral [4.90] can be obtained by the integration by parts of [4.94] while
setting U = A(t - 0() and dV = /(0() do using integration by parts, by noting

that A(O) is often zero in most current practical problems (knowing moreover that

h(e) = d”;ft) )
u(t) = 10). A+ [ o) Al-a) da 14.96]

Ifu is a continuous and derivable function in (0, t), integration by parts gives
t. t t dA(t-o)
. o) Alt—a) doo=[ (o) A(t—oc)]o -1, o) ———da  [4.97]
do

yielding, if 7, = £(0),

u(t) =2, A(t)+ 4(t) A(0) - ¢ A(t) + J.(Ié(oc) At -a) do [4.98]
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and, since A(0) = 0, by Duhamel’s formula:
u(t) :L:f(oc)A(t—oc) dot [4.99]

Functions h(t) and A(t) were calculated directly in the preceding sections.
Their expression could be obtained by starting from the general equation of
movement in its reduced form. The next step will be to find, for example, h(t). The
unit impulse can be defined, in generalized form, by the integral:

0
lim_[ Ma) do=1 [4.100]
00" 0

o being a variable of integration (o < 0). This relation defines an excitation where
the duration is infinitely small and whose integral in the time domain is equal to 1.
Since it corresponds to an excitation of duration tending towards zero, it can be
regarded as an initial condition to the solution of the equation of motion

G(6) +q(6) = A(6) [4.101]
(while assuming & = 0), i.e.
q(6) = C; cos 0+ C, sin 0 [4.102]

The initial value of the response q(0) is equal to C, and, for a system initially at
rest (C; = 0), the initial velocity is C,. The amplitude of the response being zero for

0= 0, the initial velocity change is obtained by setting q = 0 in the equation of

d
movement [4.101], while integrating q = A over time and taking the limit when 0
do

tends towards zero [SUT 68]:

. . 0 dgq .
0—0)=1 —da |=1
4 ) lm(-[o do OL] eglo( 0

6—0

je (o) doc] [4.103]

yielding

C2=1
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This then gives the expression of the response to the generalized unit impulse of
an undamped simple system:

q(6) =sin 0 [4.104]

—For zero damping, the indicial admittance and the impulse response to the
generalized excitation are written, respectively:

A(t)zl—cos W t [4.105]
and
h(t) = @, sin o, t [4.106]
This yields
t
u(t) = IO (o) h(t o) dot [4.107]
t
u(t) = o, J.O o) sin o (t—o) do [4.108]
for arbitrary & damping,
Alt)=1-e>" "cos woy1-& t—% e > 'sin w1 -& t
1-&
[4.109]
and
) _
h(t) = ——2— ¢ =% "sin wy /1 - €2 t [4.110]
1-&
yielding
0 t _ _
u(t) = —— Iof(a) et 0 G, V18 (t-a) do [4.111]
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A 4

Figure 4.26. Decline in impulses

The response of the simple system of natural pulsation m, can therefore be
calculated after a decline of the excitation /(t) in a series of impulses of duration
Act. For a signal of given form, the displacement u(t) is a function of t, o, and &.
4.4. Transfer function of a linear one-degree-of-freedom system

4.4.1. Definition

It was shown in [4.90] that the behavior of a linear system can be characterized
by its weight function (response of the system to a unit impulse function)

al6) = ] * A(0) n(0-0) do

where, if the response is relative,

-£0
h(0)=—— sin1-£2 0 1
©) J1-§&2 i : (6= [4.112]

h(e)=07"° (&=1)
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and, if it is absolute:

2
isin 1-8%0| for £#1
- g2 [4.113]

h(6)=(2-0)e™® for & =1

h(e)ze:_E~‘e 2&cos 4l —E2 0+

The function h( ) can be expressed versus time. We have, for example, for the
relative response:

siny1-&" o t [4.114]

The Fourier transform of h(t) is the transfer function H(Q) of the system
[BEN 63]:

H(Q) = I: h(t) e 2tdt [4.115]

Q
Let us set h =——. The variable h is defined as the interval. In reduced
o
coordinates:

H(h)zf:h(e) ¢ M0 4e [4.116]

NOTE.- Rigorously, H (h) is the response function in the frequency domain,
whereas the transfer function is the Laplace transform of h(@) [KIM 24].

Commonly, H (h) is also known as the transfer function.
The function H(h)! is complex and can be put in the form [BEN 63]

H(h) = [H(h)| ¢~ "o} [4.117]

1 The dimensionless term “h” is used throughout this and following chapters. This is

equivalent to the frequency ratios f/fjor ®/@,.
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Sometimes the modulus |H(h)| is called the gain factor [KIM 24] or gain, or
amplification factor when h(0) is the relative response function; or transmissibility
when h(0) is the absolute response function and ¢(h) is the associated phase (phase
factor).

Taking into account the characteristics of real physical systems, H(h) satisfies
the following properties:

1. H(=h) = H (h) [4.118]

2. [H(=h)| = [H(h)| [4.119]

3. ¢(~h) = —o(h) [4.120]

4. If two mechanical systems having transfer functions Hl(h) and Hz(h) are

put in series and if there is no coupling between the two systems thus associated, the
transfer function of the unit is equal to [BEN 63]:

H(h) = H,(h) Hy(h) [4.121]

ie.

[4.122]
o(h) = ¢;(h) +¢,(h)

This can be found in references [LAL 75], [LAL 82], [LAL 95a] and examples
of the use of this transfer function for the calculation of the response of a structure at
a given point when it is subjected to a sinusoidal, random or shock excitation are
given in the following chapters.

In a more general way, the transfer function can be defined as the ratio of the
response of a structure (with several degrees of freedom) to the excitation, according
to the frequency. The stated properties of H(h) remain valid with this definition.
Function H(h) depends only on the structural characteristics.
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4.4.2. Calculation of H (h) for relative response

By definition,
o e g6 .
H(h) =I sin( 1-¢2 ej e M0 [4.123]
0 2
1-g
Knowing that
ax
Ieaxsinbxdxz 3 2(asinbx—bcosbx) [4.124]
a +b
it becomes
e—(§+i h)

1
H(h) =
(b) N/1_&_’2 1—§Z+(<§+ih)2

{—(§+i h) sin1-E2 -1 cosyl- & e}}w [4.125]
0
1
Hh)=+—+——
(1-n?)+2ing a6
|H(h)| = : [4.127]

h
tan ¢ = LZ [4128]
-h
If0O<h<l:
¢ = arctan [4.129]

1-h?



180  Sinusoidal Vibration

Ifh=1

o=— [4.130]

Ifh>1

¢ =7+ arc tan

5 [4.131]

4.4.3. Calculation of H (h) for absolute response

In this case,

282 24| ~iho
H(h)—J. 59{2&05 - &29+Fs1n 1-829|eh0d9  [4.132]
1-¢2

2
it —(E+i 1-2 o _(£4i
H(h)=J-0 2&e (&r h)ecos 1-¢ 6d9+1—§2.|.0 e (&+ h)esin 1-¢% 0do
[4.133]

(<§+1h)
H(h) {x(&: o7 +1_§2{—(<§+ih) cosy1 -2 041 siny1-& ede}

oo

e@ﬂhm

12§
Jl §+1h +1—&

2[—(§+ih) sin\/l—éz 9—\/1—§2 cole—é2 9}

0

[4.134]

28(E+ih) (1-282)1-¢

1-h2+2i&h \/1_§2(1—h2+2i§h)

H(h)=

[4.135]
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142iEh (1—h2+4h%2—2iaf
= 2 ; = 2
1-h +21§h( (1-02) +48’ 0

Ji+4n% g

|H(h)| = - [4.137]
J@—hz 14 K

H(h)

[4.136]

26 h°
tanq):—2 )
2&h°
¢ = arc ‘[anza—2§2 [4.139]
I1-h"+4h
1 1
if 1-h2+4h%E2>0,ie if h2 <—— For h’ = ,
2 2
1-4¢ 1-4¢&

s
¢=E [4.140]

2

and for h™ > 3
1-4¢
2Eh?
(1)=7't+arctan2—<tb22 [4.141]
1-h“+4&°h
1 3
IfE=—, tangp=h

2

¢ = arc tan h* [4.142]

The complex transfer function can also be studied through its real and imaginary
parts (Nyquist diagram):

H“)=I;f;f¥%éﬁ=Reﬁﬂfﬂ+im{H(Q] [4.143]
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1-h2+(22&n)

Re[H(f)] = 5 . [4.144]

(1-0%) +(2&n)
2’

Im[H(f)] = > ; [4.145]
(1-1?) +(22h)
=01

4'0{"I"'I'"I"'I"'I'”I"'l"'!"'l"‘—

il 3 /\ Realpart

3 al part 3 B

20F -

—" | : E ;
o 00— s
5 10F 8 - <

20F E _

'30__ Imaglmr/yf :g g

4.0 part E S 55

:ZgEl_ulj-1l|u|xullul|u|n||:nl|n|u_; '6-0E'm""l'"”"“l""'”"ll""""h”"'”'l"""”;

00 04 08 12 16 20 -20 -10 00 10 20 30 40

h Real part
Figure 4.27. Real and imaginary Figure 4.28. Nyquist diagram
parts of H(h)

4.4.4. Other definitions of the transfer function

4.4.4.1. Notation

According to the choice of parameters for excitation and response, the transfer
function can be defined in different ways. In order to avoid any confusion, the two
letters are placed as subscripts after the letter H; the first letter specifies the nature of
the input and the second that of the response. The letter H will be used without
subscript only in the case of reduced coordinates. We will use the same rule for the

impedance — = Z.
H

4.4.4.2. Relative response

H, =[H|= [4.146]
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u
Function |H| is equal to function ‘H ¢.u| = — To distinguish it from the transfer
' 1

function giving the absolute responses we will denote by Hy the transfer functions
bringing into play the relative displacement and its derivatives.

Calculation of |Hjc',z

% (t
(V)= (2) [4.147]
o
%:?w%, [4.148]
X
1
[y | = [0 | [4.149]
o

Calculation of ‘HF,z

u__z [4.150]
¢ F/k
‘HIZ, u
‘HF 4= [4.151]
’ k
Response defined by the relative velocity
u Qu
‘Hg W=—=— [4.152]
' l l

It is assumed here that the excitation, and consequently the response, are
sinusoidal and of frequency Q, or that the excitation is resoluble into a Fourier
series, with each component being a sinusoid. This yields

‘HM =Q ‘HM =Q [H| [4.153]
(1
Thus, if |¢(t)] = iz)
g
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;: =QI|H 4.154

14 X/(n% | | [ ]
Q

Hg , :—2|H| [4.155]
o

4.4.4.3. Absolute response

In the same way, starting from [4.137],

1+4E%h?
(1—112)2 +(2&h)?

Ha=|H|=

We will note H, the expressions of the usual transfer functions of this nature.

4.4.4.4. Summary tables

Table 4.1 states the values of H, and Hp for each parameter input and each
parameter response.

Response = . . . . Reaction
Excitation z Z V/ y y y force Fy on
U base
Force F on E kz kz / / / F_T
the mass m F QF QZ F F
2 2. 2 .. 2 . .
- Wy z Wy z woz | Qy | QY y ,
2 2 . 2 .. . .
“ ) z 0y Z 0, Z Qy y y ;
ox | @'x | @°x X x| Qx
2 2. 2 .. . .
x (DO V4 0‘)0 Z (DO Z Z y y /
2
Q’x | o'x | o'x x | Qx | @ x
Reduced
transfer HR H A
function

Table 4.1. Transfer function corresponding to excitation and response
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These results may also be presented as in Table 4.2.

Example 4.3.

Assume that the excitation and the response are, respectively, velocities x
and z. Table 4.1 indicates that the transfer function can be obtained from the
relation

wg z
Hy = —— [4.156]
Q7 x
This yields
. 2
Q 1
z_ - [4.157]
: 2
X \/(1—112) 14812

Table 4.2 gives this relation more directly. To continue to use reduced
parameters, and in particular reduced transfer functions (which is not the case
for the transfer functions in Table 4.2), these functions can be defined as
follows.

For a given excitation, we obtain the acceleration and velocity and acceleration

transfer function while multiplying respectively by h and h? the displacement
transfer function (relative or absolute response).

This is used to draw the transfer function in a four-coordinate representation
from which can be read (starting from only one curve plotted against the reduced
frequency h) the transfer function for the displacement, velocity and acceleration
(section 6.7).

NOTE.—
The transfer functions are sometimes expressed in decibels

H(dB) = 20log o H(h) [4.158]

where H(h) is the amplitude of the transfer function as defined in the preceding
tables. A variation of H(h) by a factor of 10 corresponds to an amplification of
20 dB.



Response

Displacement Velocity Acceleration
= (m) (m/s) (m/s?)
Excitation Absolute| Relative | Absolute| Relative | Absolute| Relative
b v | A0 | w0 | #) | s | E)
Displacement Q2 Q3 5 94
o x(t)a Hy [ Hr|QH, |3 Hg|QHA|—5Hy
£ ®o o @
% Velocity X(t) Hp 2 H Q? X
= Q (O wg o
2
S H H H Q 2
o Acceleration [; 12{ A — Hip | Ha Q H
Q 0, Q |wp w2 R
X(t) (m/s?) 0
H Q 2
Force on the mass m = —Hp Q_ H
k k Kk R

Table 4.2. Transfer function corresponding to excitation and response




Response = Displacement Velocity Acceleration
Absolute Relative Absolute Relative Absolute Relative
Excitation | . . . ..
v(t) 2(t) ¥(1) 2(t) ¥(t) i(t)
Displacement| 'y 2 y z 3 y > z 4
x(t) ~=H, |[—=h"Hy =hH,|—=h"Hg |5 =h"Hy|5—=h"Hg
= X X Wy X X 0y X Wy X
D
Velocit, o, H, |0z z z
E ‘ y oY _Ha ? —h Hy Z:HA _:thR y —hH, 7.=h3HR
g x(t) X h | % X X ) X oy X
%)
w)
< . . .
Acceleration | 2 2 : ; y z
2 " woy:_HA wOZ:H woy:_HA mOZ:hHR —=Hjp _ZhZHR
X(t) % h2 % R X h X X X
Force F(t) on the kz lkm z mZz 2
() — =Hg N T -hHy =h" Hp
mass m F F F

Table 4.3. Transfer function corresponding to excitation and response
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4.5. Measurement of transfer function

The transfer function of a mechanical system can be defined:

—in steady state sinusoidal mode, by calculation of the amplitude ratio of the
response to the amplitude of the excitation for several values of the frequency f of
the excitation [TAY 77];

—in a slowly swept sine, the sweep rate being selected as slow enough that the
transient aspect can be neglected when crossing the resonances. The frequency can
be varied in one of two ways: either by increments or in a continuous way. The time
spent at each frequency must be sufficient so that the response of the system can
reach its permanent state (i.e. to reach its highest value);

—in a quickly swept sine (method developed by C.W. Skingle [SKI 66]);

—under random vibrations (the ratio of the power spectral density functions of
the response and excitation, or the ratio of the cross-spectral density Gi&‘y and power

spectral density of the excitation G ) (see Volume 3);

—under shock (ratio of the Fourier transforms of the response and excitation)
(see Volume 2). In this last case, a hammer equipped with a sensor measuring the
input force and a sensor measuring acceleration response or, as with the preceding
methods, an electrodynamic shaker can be used.

Most of the authors agree that the fast swept sine is one of the best methods of
measurement of the transfer function of a system. Shock excitation can give good
results provided that the amplitude of the Fourier transform of the shock used has a
level far enough from zero in all the useful frequency bands. The random vibrations
require longer tests [SMA 85], [TAY 75].



Chapter 5

Sinusoidal Vibration

5.1. Definitions
5.1.1. Sinusoidal vibration

A sinusoidal vibration is the simplest and most basic form of periodical
movement. This movement can be represented as an analytical equation in the form:

((t)=1,sin(Qt+09) [5.1]
where:
t is the instantaneous value of time (seconds);
¢, isthe amplitude of the movement (maximum value of /(t));

/(t) 1is the parameter used to define the movement;

Q is the pulsation (rad/sec), and is linked to a frequency f by Q=2mn f.
Frequency f is expressed in Hertz (Hz) or in cycles per second (cps). The
opposite of the frequency f is the period T;
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[0} is the phase (related to the value of 7 for t = 0). @ is expressed in radians. In
practice, it is assumed that @ = 0 if possible;

L.

2 £ =peak-to-peak amplitude

*

Figure 5.1. Sinusoidal vibration

/(t) is generally acceleration, but it can be a velocity, a (linear or angular)
displacement or a force.

Displacement refers to the variation in distance, or in position of an object from a
particular point or reference axes. The unit of displacement is the meter (m) and its
submultiples such as the micron (um) and the millimeter (mm). The amplitude of the
displacement can indicate the displacement’s range of values, which are between
zero (for the zero displacement of a resting system) and the maximum displacement
value (zero — peak displacement). The amplitude of the displacement can also
indicate the interval that exists between the minimum and maximum values (peak to
peak displacement), meaning that the interval includes all possible displacement
values.

Velocity refers to the variation in displacement over time (it is the first derivative
of displacement). Velocity is expressed in meters per second (m/s) and its
submultiples (cm/s and mm/s). As is the case for displacement, it is possible to
consider the following values of velocity: zero — peak and peak to peak.

Acceleration refers to the variation in velocity over time. It is equal to the first
derivative of velocity or to the second derivative of displacement. Acceleration is
expressed in m/s> or more usually as the value g, where g is the acceleration due to
gravity (1 g=9.81 m/s?).

These three parameters are derived from each other by integration or by
differentiation:
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[. d/ . . ) T
Nt)=—=10_,QcosQt=/_cosQt=1/_ sinQt+—
dt 2
[5.2]
2
- d=/ 5 . . .
ﬁ(t)=—2=—£m Q7 sinQt=—(_sinQt=/_ sm(§2t+n)
dt

From these expressions, it can be observed that acceleration, velocity and
displacement are all sinusoidal, of period T, and that velocity and displacement have

i
a difference of phase angle of —, like velocity and acceleration.

e Dlsplacem_ent
f ———

i BN e

f. Velocity

m

AN AN
\_/ fm \_/ Acceleration

Time —

Figure 5.2. Difference of phase between sinusoidal displacement,
velocity and acceleration

Let 7 m and Zm be the maximum values of velocity and acceleration
respectively. It can be noticed that whenever the value of displacement has reached
its maximum value, the velocity is zero. The acceleration reaches its maximum level
when the velocity is zero. The acceleration varies as the square of the frequency. If
the acceleration is constant, then the displacement varies as the inverse of the square
of the frequency. The displacement thus rapidly decreases as frequency increases.
Inversely, when frequency decreases, the displacement rapidly increases.

5.1.2. Mean value

The mean value of the quantity /(t), which is defined over one period T by

_ 1T
/@:;IO £(t) dt [5.3]
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is zero (over one period, there is symmetry of all the points with respect to the time
axis). The surface under the positive part (between the curve and the time axis) is
equal to the surface under the negative part. The average value of the signal on a

half-period is more significant:

_ 9 T/2
£=—€mI/ sin Qt dt
T 0

(yielding, since Q T=2 1)

="M 206370,

T

5.1.3. Mean square value — rms value
The mean square value is defined as

- 1T
A==\ At dt
T 0

- 1T
zzz—f (% sin® Qt dt
T O

[5.4]

[5.5]

[5.6]

[5.7]

[5.8]
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arnplitude
1 £ TS

/J/
.

peak-to-peak
amplitude

Figure 5.3. Characteristics of a single sinusoid

Thus

n p—
lims =—— 1 [5.9]
rms 2 \/3
This can then be written in the more general form [BRO 84]:

-1
foms = Fr 0= — I [5.10]

C
The F; and F, factors are, respectively, termed the form factor and peak factor.

These parameters give, in real cases where the signal is not pure, some indications of
its form and its resemblance to a sinusoid. For a pure sinusoid:

T
~1.11 [5.11]
242

Fr =

and

F, =2 = 1414 [5.12]
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A
Amplitude

£l

m

[

f Frequency

Figure 5.4. Spectrum of a sinusoid (line spectrum)

Such a signal is also termed simple harmonic. Its spectrum comprises only one
line at a particular frequency.

The spectrum of a signal made up of several sinusoids is known as discrete
(spectrum of lines) [BEN 71].

NOTE.— The mean square value is, generally, a total measurement of the static and
dynamic components of the vibratory signal. The continuous component can be
separated by calculating the mean value [BEN 63], [PEN 65]:

_ ] ¢T
/:7-[0 /(t)dt

This is zero for a perfect sinusoid, the time axis being centered, while the

dynamic part is characterized by calculating the centered mean square value
(variance).

2 1 ¢T -2

52 _F.[o [2(e)-7] ar [5.13]
We then have

— 2

=57 +(7) [5.14]

The variance is equal to the mean square value if { = 0.
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5.1.4. Periodic vibrations

Movements encountered in the real environment are seldom purely sinusoidal.
Some are simply periodic, the signal being repeated at regular time intervals T,

(period).
Its instantaneous amplitude can be written in the form:
L) =L(t+nT)) [5.15]
where n is an integer positive constant.
With rare exceptions, a periodic signal can be represented by a Fourier series, i.e.
by a sum of purely sinusoidal signals:
f(z)=a?0+i(an cos2zn fit+b,sin27n f1) [5.16]
n=1

where

1
fi = ? = fundamental frequency
1

2 T,
an=—J‘ ((t)cos2mnft dt
Ty 70

2 T .
bn=—j ((t)sin2mnft dt
Ty 90

(n=0,1,2,3..).

All the frequencies f, =nf]; are multiple integers of the fundamental
frequency fj.

For the majority of practical applications, it is sufficient to know the amplitude
and the frequency of the various components, the phase being ignored. The
representation of such a periodic signal can then be made, as in Figure 5.5, by a
discrete spectrum giving the amplitude ¢ mp of each component according to its

frequency.
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Amplitude
F Y e

ms

v

f1 2f1 3fy 4f, 56 f

Figure 5.5. Spectrum of a periodic signal

. L . 1
With each component being sinusoidal, the rms value /o = % or the mean

2
value of |€n(t)|, ! ==/, can easily be drawn against f. These various
n

N'mean

parameters give information on the excitation severity, but are insufficient to
describe it alone since they do not give any idea of the frequency. /(t) can also be
written [PEN 65]:

(()=Llimo+ D Ly sin(27n £ t—0,) [5.17]
n=l
where:
£, = amplitude of the n" component;

0, = phase of the n" component;
L, = continuous component.

fn(t) =L, sin(21‘cn f —(pn)

m

é =

a9
moT o,

0. =yas+br (n=1,2,3.)

mp
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bn
(¢ = arc tan —
an

The periodic signal /(t) can thus be regarded as the sum of a constant
component and an infinite number (or not) of sinusoidal components, called
harmonics, whose frequencies are multiple integers of f.

The Fourier series can be entirely characterized by coefficients a, and b, at
frequencies n f| and can be represented by line spectra giving a, and b, versus the
frequency. If we do not consider phases @, as is often the case in practice, we can
also draw a line spectrum giving coefficients Kmn versus the frequency.

The vertical axis can indicate the amplitude of each component or its rms value.
We have [FOU 64]:

/= gmo [5.18]

/(t) = men sin(Z nf t+ (pn)

n=1

(%ms: ZJ. 2 sin? (20 £y t+6,) dt

+%Zj§]€mp linq Sin(27p fy t+@, )sin(2mq £ t+0,) dt

The second term, the integral over one period of the product of two sinusoidal
functions, is zero:

2f JT 1- cos[2 27tnf1t+(pn =—Z mn IT &

If the mean value is zero

dt <2
rms = ZJ. 5 :z ) [5.19]
n=]

1nl




198  Sinusoidal Vibration

Each component has as a mean square value equal to

2 =

n

2
O

1
2

If the mean value is not zero
5 2 1IN
A==

2
n=1

the variance is given by

2
mp

=0 -(1 ==

1 oo
2 n=1

[5.20]

[5.21]

[5.22]

Relations [5.2] giving #(t) and E(t) from /(t) do not directly apply any more (it

is necessary to derive each term from the sum). The forms of each one of these

curves are different.

The mean value and the rms value of /(t) can always be calculated from the

general expressions [BRO 84], [KLE 71b].

5.1.5. Quasi-periodic signals

Amplitude or
r.ms. value
F 3
£ m,
£ m,
£ m,
£ ms
1 fz 13 fy Prequency'

Figure 5.6. Spectrum of a quasi-periodic signal
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A signal made up of the sum of several periodic signals will not in itself be
periodic if all the possible ratios between the frequencies of the components are
irrational numbers; the resulting signal can then be written

o

()= b sin(27f, t+o,) [5.23]

n=1

If we also neglect the phases @, here, we can still represent /(t) graphically by
a line spectrum.

5.2. Periodic and sinusoidal vibrations in the real environment

Perfectly sinusoidal vibrations are seldom encountered in the real environment.
In certain cases, however, the signal can be treated in the same way as a sinusoid in
order to facilitate the analyses. Such vibrations are observed, for example, in
rotating machines, and in badly balanced rotating parts (unbalanced shafts, defects
in coaxiality in reducers (shafts speed changers) with the driving shafts, electric
motor, gears) [RUB 64].

The more frequent case of periodic vibrations decomposable in Fourier series is
reduced to a sinusoidal vibrations problem, by studying the effect of each harmonic
component and by applying the superposition theorem (if the necessary
assumptions, in particular that of linearity, are respected). They can be observed on
machines generating periodic impacts (presses), in internal combustion engines with
several cylinders and so on [BEN 71], [BRO 84], [KLE 71b], [TUS 72].

Quasi-periodic vibrations can be studied in the same manner, component by
component, insofar as each component can be characterized. They are measured, for

example, in plane structures propelled by several badly synchronized engines
[BEN 71].

5.3. Sinusoidal vibration tests

The sinusoidal vibration tests carried out using electrodynamic shakers or
hydraulic vibration machines can have several aims:

— the simulation of an environment of the same nature;

— the search for resonance frequencies (identification of the dynamic behavior of
a structure). This research can be carried out by measuring the response of the
structure at various points when it is subjected to random excitation, shocks or swept
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frequency sinusoidal vibrations. In this last case, the frequency of the sinusoid varies
over time according to a law which is in general exponential, although sometimes
linear. When the swept sine test is controlled by an analog control system, the
frequency varies in a continuous way with time. When numerical control systems
are used, the frequency remains constant at a certain time with each selected value,
and varies between two successive values by increments that may or may not be

constant depending on the type of sweeping selected;

Example 5.1.

K =(@nf)

Xp =271t Xy,

The amplitude is assumed to be x,, =10 cm at a frequency of 0.5 Hz.

Maximum velocity:

=0.314 m/s

Maximum acceleration:

X = 0.987 m/s*

At3 Hz, x,, =10 cm

Velocity:
Xy =1.885 m/s
A Acceleration
A Velocity

4 Displacement

Displacerment at
constant acceleration

~. Acceleration at
constant displacement

[

Frequency '

Figure 5.7. Acceleration, velocity and displacement versus frequency
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Acceleration:
X, = 35.53 m/s®
At 10 Hz, if X, =5 m/s’, the velocity is equal to X, = mef =0.0796 m/s
T
and the displacement is x,, = X—m2 =127107 m.
2nf)

— fatigue tests either on test-bars or directly on structures, the frequency of the
sinusoid often being chosen equal to the resonance frequency of the structure. In this
last case, the test is often intended to simulate the fatigue effects of a more complex
real environment, generally random and making the assumption that induced fatigue
is at a maximum around resonance [GAM 92]. The problems to be solved are then
the following [CUR 71]:

- the determination of an equivalence between random and sinusoidal
vibration. There are rules to choose the severity and the duration of an equivalent
sine test [GAM 92],

- it is necessary to know the resonance frequencies of the material (determined
by a preliminary test),

- for these frequencies, it is necessary to choose the number of test frequencies,
in general lower than the number of resonances (in order for a sufficient fraction of
the total testing time to remain at each frequency), and then to define the severity,
and the duration of each sinusoid at each resonance frequency selected. The choice
of the frequencies is very important. As far as possible, those for which rupture by
fatigue is most probable are chosen, i.e. those for which the Q factor is higher than a
given value (2 generally). This choice can be questioned since, being based on
previously measured transfer functions, it is a function of the position of the sensors
and can thus lead to errors,

- the frequent control of the resonance frequency, which varies appreciably at
the end of the material’s lifetime.

For the sine tests, the specifications indicate the frequency of the sinusoid, its
duration of application and its amplitude.

The amplitude of the excitation is generally defined by a zero-to-peak
acceleration (sometimes peak-to-peak); for very low frequencies (less than a few
Hertz), it is often preferable to describe the excitation by a displacement because the
acceleration is, in general, very weak. With intermediate frequencies, velocity is
sometimes used.






Chapter 6

Response of a Linear One-Degree-of-Freedom
Mechanical System to a
Sinusoidal Excitation

In Chapter 3, simple harmonic movements, both damped and undamped, were
considered, where the mechanical system, displaced from its equilibrium position
and released at the initial moment, was simply subjected to a restoring force and,
possibly, to a damping force.

In this chapter, the movement of a system subjected to steady state excitation,
whose amplitude varies sinusoidally with time and with its restoring force in the
same direction will be studied. The two possibilities of an excitation defined by a
force applied to the mass of the system, or by a movement of the support of the
system, this movement itself being defined by a displacement, a velocity or an
acceleration varying with time, will also be examined.

The two types of excitation focused on will be:
— the case close to reality where there are damping forces;

— the ideal case where damping is zero.
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Figure 6.1. Excitation by a force Figure 6.2. Excitation by an acceleration

6.1. General equations of motion
6.1.1. Relative response

The differential equation of movement was established in Chapter 3. The
Laplace transform is written, for the relative response:

alp) = Alp) +qu+(q0+2§qo)

=— ; [6.1]
p +2&p+1 p +2&p+1

qo and (, being initial conditions. To simplify the calculations, and by taking
account of the remarks of this chapter, it is supposed that q, = q, = 0. If this were
not the case, it would be enough to add to the final expression of q(0) the term C(6)
previously calculated.

The transform of a sinusoid

M0) =sin h 0 [6.2]
is given by
h
A(p)= 6.3
(p) n? [6.3]

Q
where h = — (€ being the pulsation of the sinusoid and w the natural pulsation of
g

the undamped one-degree-of-freedom mechanical system), yielding
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Qlp) : [6.4]
p)= .
(p2+h2) (p2+2§p+l)
Case 1: 0 <& <1 (underdamped system)
~h ’72§p+h2—1 2§p+4§2+h2—1-|
Qlp) = 2 5 5 2 .2 2 [6-5]
(1-02) +4&’n | p +h p +2&p+1
2 2&2 +h2 -1 2
28cosy1-&°0+—=———siny1-E°6
o(6) = (l—hz)sin(hﬁ)—2§hcos(h6) o e J1-82
(—h2)2+4§2h2 (—h2)2+4§2h2
[6.6]
For non-zero initial conditions, this must be added to q(6)
[ : 1
_ +
C(0) = e g, cos 1—&29+%—q°ésm\/1—§2e| [6.7]
i B¢ |
Case 2: £ =1 (critical damping)
For zero initial conditions,
Qp) : [6.8]
PI=T5 2 2 :
(p +h ) (p + 1)
| -h |F2 p+h*-1 2p+h2+3—|
q(6) =L - [6.9]

(1+h2)2L p’+h’ (p+1)° ]

2
q(0) = LI 2cos(h6)+usin(h6)—e_e (2+e+h2 e) [6.10]
(1+h2)2 h
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For non-zero initial conditions, we have to add to q(0):

C(6) = [qg +(a +d) 8] ¢° [6.11]

Case 3: &> 1 (overdamped system)
r
-h
Q(p) = n
(1 - ) +4 & h L

26p+h’-1 2§p+4<§2+h2—1—|
p2+h2 p2+2§p+1 J

[6.12]

The denominator can be written p> +2&p +1, for £> 1,

p2+2§p+1=(p+§+\/§27—1)(p+§—\/27—1j [6.13]

yielding
_ .
q(6) = = h o {2 £ cos(n8)+ "L sin(n )
- +
- @)e_(é_@)e (g -1) REE
2
- 248 -1
(4&2 W2 _1 e_(aﬂ/@)e _e—[é—\/aje
+ +h? -
2487 -1
2 % -
q(e):(l—hz)sin(h ) -2 & h cos(h e)+h e{elicoshwﬁ e) @ Uﬁ ej

1-n2)’ 44 £2 h? 1-h? 2+4§2 h?
(1-1%) (1-17)

[6.14]
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with, for non-zero initial conditions,

c(6)= \7% {(& qo+4o) sinh(@ 9)+q0 @ cosh(@ eﬂ [6.15]

6.1.2. Absolute response
Casel: 0<E<1

Zero initial conditions

h(1+2&p)
Q(p) = [6.16]
(p) (p2+h2)(p2+2§p+1)
1 a2 2.2, .2
Q(p)= 22h — Z&h p+h 1 2&h p+24§2h +1-h [6.17]
(1—h) cag2n2| pP+2Ep+l p-+h

(0)= (1 - n2 + 42202 sin(h 6) - 2 & h>cos(h 6)
(1—h2)2+48_,2h2
2 242
102428 0 e neos T E20 [6.18]

—he ™ “1_a

( —112)2 +4E%h?

If the initial conditions are not zero, it must be added to q(6)

C(6) == qq cos 1—629+q°+&( 2}”0) iny1-£20 [6.19]

N

Case2: £=1

[6.20]
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h |r2h2 1+h2  2h%p 3hi+41]
5| - -t 2| [6.21]
(1+h2) p+1 (p+1)> p*+h® p +h’|

Qlp) =

q(6) = m{h bn- (1 + h2) o)e® + (3 h* + l)sin(h 6)- 21 cos (h 0)]

[6.22]
Non-zero initial conditions
C(6) = [qp+(ag +dg -2 2) 0] ¢ ° [6.23]
Case 3: £> 1
Zero initial conditions
h(1+2¢&p)
QAp)= 75— [6.24]
(p +h )(p +2§p+1)
o) h {2§h2p+h2—1 —2§h2p+4§2h2+1—h2} (625
p)= 5 5 + :
(1—h2) +4em? | pT+2Ep+l p’+h’

1.e.

o0)=— D e {hZ —\/ 1é ; f ‘:ﬂzhz oinh(,/g -1 ej +2Eh> cosf(\/i,z -1 ej}

(1—112)2 +48%h2
(4 E2h2 +1 —hz)sin(h 6)-2&h’ cos(h 6)
(1—h2)z +482h?

+ [6.26]

Non-zero initial conditions

€10)= < a0 -2 o) ol & 1 )+ /&1y o {E 1

g -1

[6.27]
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This must be added to q(6).

6.1.3. Summary

The principal relations obtained for zero initial conditions are brought together
below.

Relative response

0<E<l
q(0) = (1= 12 sin(n.6) - 2£h cos(n )
(1—}12)24_4&2}]2
2 2
28 1-£%0 JRH28 -1 1—e20
+he S0 COS( ) ﬁ S( )
()
E=1

q(6) = ﬁ{% sin(h ) — 2 cos(h ) + (2 10+ h2e)e—e}

E>1

q(0) = ( - hz)Si“(h 6)—2&h cos(h6)

(1 - hz)2 +48%h?

2 ., h?+287 -1 5
- ZE»COSh( £ —19j+§2_lsmh(\/ﬁej
+he \

(1 —h2)Z +48%n?
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Absolute response

0<E<l1

q0) = (1 —hl+4 &2112) sin(h 6)— 2 h3 cos(h )
(1_h2)2+4§2h2
1_h2+2§2h2 .
s W[W 0] -28n% cos 1 -2 0]

(1—h2)2+4§2 h?

1

q(6) = m

{n by - (1 + hz)e]e“’ + (3 h* + l)sin(h 6)— 2h° cos(h 0)}

E>1
q(6) =

( — h? )sin(h 0)-2&hcos(hB)
(1 —112)z +48%h?
2§cosh(\/§2 -1 e) L0281 sinh(1/§2 -1 ej
g -1
(1 - h2)2 +48%h?

+he™0

6.1.4. Discussion

Whatever the value of €, the response q(6) is made up of three terms:

— the first, c(e), related to initially non-zero conditions, which disappears when
0 increases, because of the presence of the term e_é o ;

—the second, which corresponds to the transient movement at the reduced
frequency 1—&2 resulting from the sinusoid application at time 6 = 0. This

oscillation attenuates and disappears after a while from & because of the factor e S0,
In the case of the relative response, for example, for 0 < & < 1, this term is equal to



5 h
2&cosy1-& B+

he?
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(1—112)2 48’ n?

—the third term corresponds to an oscillation of reduced pulsation h, which is
that of the sinusoid applied to the system. The vibration of the system is forced, the
frequency of the response being imposed on the system by the excitation. The
sinusoid applied theoretically having one unlimited duration, it is said that the
response, described by this third term, is steady state.

Reaction
Response — Displacement Velocity Acceleration force
on
Excitation Absolute | Relative | Absolute | Relative | Absolute | Relative | base
xcitation . . . ..
v(6) | 2(0) | ¥(0) | 2(e) | ¥(6) | &(t) |Fr(e)
y z y z y z
. - 2 2 4 2
Displacement Xm h? X, h 0y X, h? W Xy h? op x, (h* wp x,
x(1)
=
£
o h o W, Z y z y z
Z | Velocity 2% Y 0 R 3 Y F—
g x(t) X h %, X h* %, | hopxy, b7 © *n
g
=)
2 2 2 h o, 3 Wy Z y Z
Acceleration | N~ @g ¥ W Z B IR J .
X(t) X X, X h X, X h™ X,
[Force on the mass| K z . m i E
m xz Jkm z - T
E h™ F,
(here, Z=Y) m h m m

Table 6.1. Expressions for reduced response

The steady state response for 0 <& <1 will be considered in detail in the
following sections. The reduced parameter q(0) is used to calculate the response of

the mechanical system. This is particularly interesting because of the possibility of
deducing expressions for relative or absolute response q(0)easily, irrespective of the

way the excitation (force, acceleration, velocity or displacement of the support) is
defined, as in Table 6.1.
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6.1.5. Response to periodic excitation

The response to a periodic excitation can be calculated by development of a
Fourier series for the excitation [HAB 68]:

Z(t)=a70+2(an cosnQt+b, sinnQt) [6.28]
n=l
2 J‘T
ag=—J o) d [6.29]
T
2 (T
a, =—J‘ /(t) cosn Qt dt [6.30]
0
T
2 (T
bn=—f () sinn Qt dt [6.31]
T 0

The response of a one-degree-of-freedom system obeys the differential equation

i(t)+2 &, a(t) +og ult) = og At) [6.32]

a oo
u(t) +2 & o, ult) +(1)(2) u(t) = (JJ% —0+Z(an cosnQt+b, sinnQ t) [6.33]

n=1

This equation being linear, the solutions of the equation calculated successively
for each term in sine and cosine can be superimposed. This yields

u(t):a—0+ian cos(th—(])n)+bn sin(th—d)n) (6.34]

2 o (LY [ af

) )




Response of a Linear One-Degree-of-Freedom Mechanical System 213

with

¢, = arctan — % [6.35]

6.1.6. Application to calculation for vehicle suspension response

Consider a vehicle rolling at velocity v on a sinusoidal road as shown in
Figure 6.3.

k,c

Figure 6.3. Example of a vehicle on road

2ms

x = X cos [6.36]

L
s = distance between a maximum of the sinusoid and the vehicle
L = sinusoid period

It is assumed that [VOL 65]:

—the wheels are small, so that the hub of each wheel is at a constant distance
from the road;

— the tires have negligible deformation.
We have, with the notation already used in the preceding sections:
my+c(y-x)+k(y-x)=0 [6.37]

my+cy+ky=kx+cx [6.38]
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y+2&w, y+w3 y=m§ x+2&wy x
Distance s is related to time by s = v t, yielding
x=XcosQt
with

2mv

L

y+2&w, y+wé y:u)?) XcosQt-2Ew, QsinQt

§+2Em, y+op y=wp X y1+(28h)° cos(Qt+0)

y= xcos(Qt+6—(p)

) 1+(28n)
o (1-1%) + (28 h)?
tan @ = 2&};

1-h

[6.39]

[6.40]

[6.41]

[6.42]

[6.43]

[6.44]

[6.45]

[6.46]

[6.47]

Displacement y must be the smallest possible to make the suspension effective. It
is necessary, therefore, that h or the velocity is large. If & tends towards zero, y tends

towards infinity when h tends towards 1, with critical velocity
wy L

Vv =
2m

cr

[6.48]
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When & is non-zero, the value of y for h =1 is

6.2. Transient response
6.2.1. Relative response

For0<&<1

The response

h+28% -1

V1-¢

2 & cos 1—&2 0+ sin 1—&29

q(8)=he*?

2
(1—h2) +488 n?
can also be written

q(8) = ¢ 5% A(n) sin( 1-¢ e—aj

where

Alh) = -
Ji-¢ \/(1—h2) 148 1

and

2641-82

tan o0 =
1-h?-2¢

[6.49]

[6.50]

[6.51]

[6.52]

[6.53]
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A pseudo-sinusoidal movement occurs. The total response q(0) is zero for 6= 0
since the term representing the transient response is then equal to

2Eh
q(0) = [6.54]
! (1—112)2+4a2 h2

This response q never takes place alone. It is superimposed on the steady state
response qp(0) studied in the following section.

. . . dA(h) .
Amplitude A(h) is maximum when =0, i.e. when
dh
dA(h _n
(h)_ 1 I=h ~0 [6.55]
dh \/1—§2 2\2 2.2 2
{(1—11 ) +482n }
dA(h)
=0 when h=1(h>0).
dh
In this case,
1
A, (h) = ——— [6.56]

The movement has a logarithmic decrement equal to [KIM 297]:

2né
§ = - [6.57]
1-¢
2mn
and for the reduced pseudo-period >
1-g

1
The transient response q has an amplitude equal to —™ of the first peak after
N

2né 1 ,
cycle number n such that ——==—1In N.

1-g% n
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ILe.

J1-82
n=~———MmN [6.58]
2né

For & small, it becomes

In N
n= =glnN
2né w
ie.
In N
n=QinN [6.59]
T
120 . .
100}
L’ﬂkw[m
1)
80y 500 ]
= 60 T\\‘ \\ ]
\‘Q'\ 200 ]
M SN\ ]
20 .
. unime
:N—'[Oh%f_?m
0 Ly
10 10t 10°

Figure 6.4. Cycle number for attenuation N of the
transient relative response

If N=23, we have n= Q. When a system is subjected to a sine wave
excitation, the amplitude of the response is established gradually during the
transitional stage up to a level proportional to that of the excitation and which
corresponds to the steady state response. In section 6.5.2.1 it is seen that, if

h=+1- &2 , the response tends in steady state mode towards

Ho-_ L
" e fi-e?

The number of cycles necessary to reach this steady state response is
independent of h. For & small, this number is roughly proportional to the Q factor of
the system.
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Sinusoidal Vibration
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Figure 6.5. Establishment of the relative
response for £= 0
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Figure 6.6. Establishment of the relative
response for £ = 0.1
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Figure 6.7. Ratio of transient response/steady state response

For the particular case where & = 1

O]

L2(2+e+h2 o) "

0 2 4 6 8 10 12 14 16
Number of cycles
(b)
[6.60]
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6.2.2. Absolute response
For0<&<1

h? —1-28%h?

Zﬁh2 cos 1—&2 6+ﬁsin 1—&26
q(6) = . 1-% he? [6.61]
(1-02) +4g? n?

or
q(6) = ¢ 59 B(h) sin( 1-8% 9 Bj [6.62]
with
h
B(h) = 5 = A(h) [6.63]
J1-&2 \/(1 —hz) +482 12
and
2E41-8 h®
tan B = m [6.64]
Ife=1
h )
a7(6) = ﬁ[z h? —(1+1?) e} S [6.65]

s

6.3. Steady state response
6.3.1. Relative response

For 0 < £ < 1, the steady state response is written

(1-1) sin(h 6) =2 & h cos (n 6)

q(8)= [6.66]

(1—}12)2+4§2 h2
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This expression can also be put in the form
q(6)=H(h)sin(h 6-0) [6.67]

In the amplitude of this response Hyyy it should also be noted that the first index

(R) recalls that the response is relative and the second (D) is about a displacement.
Therefore,

1
H(h) = = Hgp(h) [6.68]

\/(1—112)2 c482n?

The phase is such that

tan @ = 2 &1; [6.69]
h

6.3.2. Absolute response

For 0 < € < 1, the steady state response is expressed

) (1 ~h?+4 azhz)sin(h 0) - 2&h3cos(h 0)

q(6) = (1 - h2)2 e [6.70]

As previously, this response can be written

242 .
q(6)=YFAE h2 sin(h 0-0)_yy, 1 sin(h 6-0) [6.71]
\/(1—112) +482 12

where
144 &% h?
HAD = I 2& [672]
\/(1—h2) +482 K2
and
2EH°
tang = [6.73]

1-h?+4 &% h?
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H p is termed the transmissibility factor or transmissibility or transmittance.

and ‘kmi

m Xm| m

|(D0 Z| |(D0 Z|
" s |

6.4. Responses

6.4.1. Amplitude and phase

) ) |w z| |m z| Jkm z
Starting with the study of the responses 0 , 07 and , some
Xm ‘ Xm Fm

important definitions are introduced. These responses are equal to:

h
q(6) = sin(h 8- y) = Hyy sin(h 6-) [6.74]

\/(1—}12)2 +48%n?

where

h

Hpy = _ [6.75]
\/(1—h2) + 4822

The case where the input is an acceleration X, is more interesting, and the
reduced response q(0) gives the relative displacement z(t) yielding

lg(0)| = u.).o 2~ Hgp b cos(h 6-) [6.76]
Xm
|4(6)| = Hgy h sin(h 6-) [6.77]
with
Hpy =h Hyp [6.78]
and

T
vegp-" [6.79]
2
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6.4.2. Variations of velocity amplitude

6.4.2.1. Quality factor

The amplitude Hpy, of the velocity passes through a maximum when the
dHgpy

dh

derivative is zero.

dHpy 1-n?

/
dh {(1_h2)2+4&2 hz}“

[6.80]

This function is equal to zero when h =1 (h = 0). The response is thus at a
maximum (whatever the value of &) for 4 =1. There is then velocity resonance, and

HRvmax =2L§=Q [6.81]

At resonance, the amplitude of the forced vibration ¢(6) is Q times that of the

excitation (here the physical significance of the Q factor is seen). It should be noted
that this resonance takes place for a frequency equal to the natural frequency of the
undamped system, and not for a frequency equal to that of the free oscillation of the
damped system. It tends towards 1 when h tends towards zero. The curve thus starts
from the origin with a slope equal to 1 (whatever the value of &). For h=0,
Hgy = 0.

The slope tends towards zero when h — <o, like Hpy,. The expression of Hyy,
1

does not change when h is replaced by —; thus, taking a logarithmic scale for the
h

abscissae, the curves HRV(h) are symmetric with respect to the line h = 1.

For£=0,

[6.82]
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2

T h™ -1

Since tan y = tan((p - —J = cotan @ =
2

, Hpy can be written in the form

1
Hyy = —F— [6.83]
2&41+ tan’ U

Setting y = 2 € Hyy and x = tany, the curves

1

y:\/1+x2

Y = arctan x

valid for all the systems m, k, and ¢ are known as universal.

In the case of an excitation by force, the quantity 2 & Hyy, is equal to

C 1/km'z_ci

2 -
2.4k m F F

m m

6.0 T

5.0

4.0

30

Hgy

e el ol AL e R

‘i T A AT O T RN U AN S I T A OO

Lol
O-I 100
h

_.
-

Figure 6.8. Amplitude of velocity response
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6.4.2.2. Hysteresis loop

It has been assumed up to now that damping was viscous, with the damping
force being proportional to the relative velocity between the ends of the damping
device and of the form Fy = —c z, where ¢ is the damping constant, acting in a

direction opposed to that of the movement. This damping, which leads to a linear
differential equation of the movement, is itself known as linear. If the relative
displacement response z(t) has the form

=2z, sin(Q t —(p)

the damping force is equal to

Fy(t)=czy Qeos(Qt—¢)= Fir cos(Qt - ) [6.84]
where

Fi, =¢cQzp, [6.85]

The curve Fy (z) (hysteresis loop) has the equations, in parametric coordinates,

z =27, sin(Qt - o)
Fy = Fqp, cos(Qt — o)

1.e. after elimination of time t:

2 2

F,

- Zz ~1 [6.86]
de Zm

Relative deflection z
A Damping force Fy

Fd=decoth d de=csz

Figure 6.9. Viscous damping force
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Fd=Ci 2 z?n

Figure 6.10. Hysteresis loop for viscous damping [RUZ 71]

The hysteresis loop is thus presented in the form of an ellipse of half the smaller
axis Fy =cQz, and half the larger axis z, .

6.4.2.3. Energy dissipated during a cycle

The energy dissipated during a cycle can be written:

AE4

T dz
.[1 cycle|Fd| dz = .[0 |Fd| Edt

T ,
AEy CJ- z° dt
0
Knowing that z(t) = z,, sin(Qt — @), we have

21/Q
AEj=c zﬁl Q? Io cosz(Q t—o)dt

i.e. since COSZ(Q t— (p) _ 1+ COs[Zz(Q t— (p)]

AEy =mcQz2 [6.87]
or [CRE 65]:

AEq =Tz, Fy [6.88]



226  Sinusoidal Vibration

For a viscously damped system, in which the damping constant c is independent
of the frequency, the relative damping & is inversely proportional to the frequency:

[6.89]

£= c C
2 Jkm 2mmf,

We can deduce the energy A consumed per time unit from this. If T is the period

2m
of the excitation | T = — |,
Q
AE mcQ 1 1
A=2d T z,2n=—c§22Z§1=—C212n
T T 2
1
A=E=c§222r2n=§mom£22 7% [6.90]

Since (Chapter 4) z,, =

S

(1—112)2 c4elp?

h2

(1—112)2+4<g2 h?

A=Ewymz [6.91]

h2

(1—112)2+4§2 h?

Energy consumed is at a maximum when the function

equal to wa(h) , is at a maximum, i.e. for h = 1, yielding

2 2
Wy M Zg
=—— 6.92
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and

2,2
A 48 h
- % = Hpy(h) [6.93]
2 2,2
A (1-0?) +4€n

The energy dissipated is thus inversely proportional to & When & decreases, the
resonance curve A (h) presents a larger and narrower peak [LAN 60]. However, it
can be shown that the surface under the curve A (h) remains unchanged.

This surface S is described by:

h2

(1—112)2+4<g2 n?

S= .[O A(Q) dQ =f0 Ewp m 72 aQ [6.94]

S

- h
szamgmzzj.o dh

251 ™
L E=0 ]
201 0.10 7
s 15 =
s
dle r
Lo =] |
3 10_— =
sk 5
O— 11
107 10!

Figure 6.11. Energy dissipated by damping
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Figure 6.12. Reduced energy dissipated by damping

s
The integral is equal to — (Volume 3), yielding
4¢

S=nmawyz =nog k2 [6.95]

The surface S is thus quite independent of €. Therefore

S =n& o, [6.96]

m

6.4.2.4. Half-power points
The half-power points are defined by the values of h such that the energy

A
dissipated per unit time is equal to —— yielding

2

1 2 2
Wy m Zg 3 2 h
- =§(1)0st 22 Sy
2 4¢ (1-02) +48%n

(1—112)2+4a2 h?=ge? nl
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2

=

-1
2&h

=l

i.e., since h and € are positive,

hy =—E+1+&2
hy = —E+4/1+&°

A logarithmic scale is sometimes used to represent the transmissibility, and a
unit, the Bel, is introduced, or generally in practice, a subunit, the decibel. It is said
that a power P, is higher by n decibels (dB) than a power P if

[6.97]

P
10log— =n [6.98]
Py

If P, > Py, the system has a gain of n dB. If P; < P, the system produces an
attenuation of n dB [GUI 63]. If instead of the powers, forces or velocities are
considered here, the definition of the gain (or attenuation which is merely a negative
gain) remains identical with the condition of replacing the constant 10 by a factor
0of 20 (log P =2 log V, + Constant), since the power is proportional to the square of

the rms velocity [LAL 95a].

The curve 2 § Hyy or Hyy is close to a horizontal line for small values of &,
passes through a maximum for h = 1, then decreases and tends towards zero when h
becomes large compared to 1. By analogy with a resonant electrical system, the
mechanical system can be characterized by the interval (bandwidth) between two

1
frequencies h; and h, selected in such a way that 2 & Hyy, is either equal to —, or

NG
for h such that

Hpy (h) = [6.99]

il
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Figure 6.13. The transfer function of a linear one-degree-of-freedom system

Values h; and h, correspond to the abscissae of two points N; and N, named

half-power points because the power which can be dissipated by the shock absorber
during a simple harmonic movement at a given frequency is proportional to the
square of the reduced amplitude Hpy, [MEI 67].

6.4.2.5. Bandwidth

1
If 28 Hyy = E, V1+ tan” Y = x/z, ie. tan’ v =1, yielding

h? -1 1
=Q|h—-— =%l [6.100]
2&h h
. R . .
The quantity Q Lh - —J is the dissonance. It is zero with resonance and
h
equivalent to Q (h—1) in its vicinity [GUI 63]. The condition tany = %1, is
s
y = £ — (modulo 7) which shows that y undergoes, when h varies from h; to h,, a
4

o T M T
variation of —— to —, i.e. of —.
4 4 2

hy and h, are calculated from [6.100]
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Q[_j
h2

6.101

]\ [ ]

Q hl——J=—1
hl

This becomes

[6.102]
1
hyhy=—
Q
1
hy, —h; =— [6.103]
Q
The bandwidth of the system Ah = h, —h; can also be written
Wo
Q) —Q =— [6.104]
Q

This is all the narrower when Q is larger.

Selectivity

In the general case of a system having its largest response for a pulsation ®,,,
the selectivity 6 is defined by

(’01’1’1 hm
c=-0(=_m 6.105
a0 ") [6.105]

where AQ is the previously defined bandwidth. 6 characterizes the function of the
filter of the system, by its ability to allow through a single frequency, by eliminating
near-frequencies (of AQ). For a resonant system, ®,, = ®; and 6 = Q.

In electricity, the interval Q, —€2; characterizes the selectivity of the system.
The resonant system is a simple model of a filter where the selective transmissibility
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can make it possible to choose signals in the useful band (Ql, Qz) among other

signals external to this band which are undesirable. The selectivity is improved as
the peak becomes more acute. In mechanics, this property is used for protection
against vibrations (filtering by choosing the frequency of resonance smaller than the
frequency of the vibration).

. £=0.05
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Figure 6.14. Domains of the transfer function H gy

It can also be shown [LAL 95a], [LAL 95b] that the response of a one-degree-
of-freedom system is primarily produced by the contents of the excitation in this
frequency band.

From these relations, the expressions of h; and h, can be deduced:
hy =-€+ 1+& (= 1-E if & is small) [6.106]

hy = +E+y1+ & (= 1+ & if € is small) [6.107]

The bandwidth Ah = h, —h; can also be written

1
Ah=2E=— [6.108]
Q



Response of a Linear One-Degree-of-Freedom Mechanical System 233

Q
yielding, since h = —,
@
) f
-0 __0 [6.109]
AQ  Af

Q- w
NOTE.— The ratio 0 = h—1 is also sometimes considered. For the abscissae
2

Q; and 2, of the half-power points, and for small & this ratio is equal,

. 1 1
respectively, to ——Q and +—.

20

The Q factor of mechanical systems does not exceed a few tens of units and
those of electric circuits do not exceed a few hundred.

In [3.138] it was seen that
d=2m¢g

yielding [GUR 59]:

T
d=~— [6.110]
Q
q(h)“
Q w
QW2
1/Q «
1-1/20Q 1+1/2Q =
0 1 o

Figure 6.15. Bandwidth
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The bandwidth can thus also be defined as the field of the frequencies
transmitted with an attenuation of 10log2 = 3.03 dB below the maximum level

(attenuation between the levels Q and %) [DEN 56], [THU 71].
2

10f
-2of
30f
-405

20 log(Hgpy/Q) (dB)

-S50F

-60

n
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.80 L L L PR N S T L
107! 10° 10!

Figure 6.16. Representation in dB of the transfer function H py,

Figure 6.16 represents some resonance curves, plotted versus variable h and for
various values of the Q factor with the vertical axis being in dB [GUI 63].

6.4.3. Variations in velocity phase

In [6.77] it was seen that
q(6) = Hyy sin(h 6—1)

where [6.79]

b
y=0-—
2
yielding
1 h’-1
tan Y = — = [6.111]

tan@ 2&h
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i
To obtain curves y(h), it is therefore enough to shift by — the already plotted
2

o i
curves @(h), while keeping & the same. The phase  varies from —— to +— since @
2 2

varies from 0 to 7. It is zero for h = 1, i.e. when the frequency of the system is equal
to that of the excitation (whatever value is taken by &).

100
30
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40
20

0
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-40
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-80

Velocity phase @ (degrees)

10" 10° 10!
h

Figure 6.17. Velocity phase versus h

The velocity of the mass is thus always in phase with the excitation in this case.

When h is lower than 1, the velocity of the mass is in phase advance with respect
to the excitation (y <0, i.e. =y > 0). When h is larger than 1, the velocity of the
mass has a phase lag with respect to excitation. In passing through resonance, the
curve y(h) presents a point of inflection. Around this point there is then a roughly
linear variation of the phase varying with h (in an interval that is larger as & becomes
smaller).

w22

X

kz
6.5. Responses T and

m m

6.5.1. Expression for response
In these cases,

q(8)=Hgp (h) sin(h6-0) [6.112]
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The response q(6) is at a maximum when sin(h®-¢@)=1, ie. for

b1
ho-@=(4k+1)—.
2

6.5.2. Variation in response amplitude

6.5.2.1. Dynamic amplification factor

Given that the excitation is a force applied to the mass, or an acceleration
communicated to the support, the reduced response makes it possible to calculate the
relative displacement z. The ratio Hyp between the amplitude of the relative

F X
displacement response and the equivalent static displacement (—- or —n; ) is often
o
called the dynamic amplification factor.

k
NOTE.— Some authors [RUZ 71] call the amplification factor of the quantities F—Z ,

m
Jkmz mZz

or F_ (amplification factor of the displacement, of the velocity and of the

Fm m
. . . s H z z
acceleration respectively) and relative transmissibility —, — or —

(acceleration, velocity or displacement).
The function Hpp(h) depends on parameter & This is always a positive
function which passes through a maximum when the denominator passes through a

minimum. The derivative of (1 - h2) +4 &2 h? is canceled when

h,, =1-2& [6.113]

1
(h>0), provided that 1-282>0, ie. &sf. When h tends towards zero,
2

Hyp(h) tends towards 1 whatever the value of &. There is resonance for h=h_,
the function Hypy(h) is maximum and is then equal to

[6.114]

1
Hm_zgw/l—gz
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When h — oo, HRD(h) — 0. In addition, H, — o when & — 0. In this case,
h,, = 1. Resonance is all the more acute since the relative damping  is smaller; the
damping has two effects: it lowers the maximum and makes the peak less acute.
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Figure 6.18. Frequency of the maximum of ~ Figure 6.19. Maximum of H pp versus &
H pp versus &

It can be interesting to chart H,, versus h; it can be seen that the calculation of &

versus h, from [6.113] gives § =

This yields:

H =——— [6.115]

where h,, can only be positive. Here interest will focus on the branch of the curve
belonging to the interval 0 <h <1.

There can be a maximum only for h <1 (i.e. for a frequency of the excitation

1
lower than that of the resonator m,); the condition § < —— being assumed to be
realized.

If h=1 is not a condition of resonance, then there is resonance only if at the
same time & = 0. Otherwise, resonance takes place when h < 1.
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Figure 6.20. Maximum of H pp versus the peak frequency

It can be seen that the condition & = 1 corresponds to the critical modes.
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Figure 6.21. Dynamic amplification factor around the critical mode

1
Like all the curves of H(h), the one corresponding to & = —, which separates
2

the domains of the curves with or without a maximum, has a horizontal level in the
vicinity of the vertical axis (h = 0).
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&= E gives optimum damping. It is for this value that H  varies less versus h

(an interesting property in electro-acoustics).

6.0

5.0

4.0

3.0

Hgp(h)

Figure 6.22. Dynamic amplification factor for various values of &

1
It can also be seen that when § = ——, the first three derivatives from H,, are

zero for h = 0.

1
Finally it should be noted that this & = — value is lower than that for critical
2

damping (€ = 1). It could be thought that the existence of the transient state (§ < 1)
does not disturb the response, but in practice it has little influence. Setting d, the
logarithmic decrement, it was shown that

2né
1-¢?

8:

1
For £ =—, thus 8 =2 m. This is an enormous damping: the ratio of two

successive maximum displacements is then equal to e8 = ¢’ ™ = 560. The transient

state disappears very quickly and is negligible as of the second oscillation.
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H
6.5.2.2. Width of H(h) for H g, = —R2max

2

By analogy with the definition of the half-power points given for Hyy, in section
6.4.2.4, we can calculate the width Ah of the peak of Hyp for the ordinate

Q .
Hgp = %. It has been seen that Hppy = o yielding
1-

Hgp = 1 = Q
\/(1 h2)2 B V2y1-g2
Q

5 11 1 -
hW=l-—at— I-—7 (Q=—,ie. £EL)
202 Q| 40 2

h2=1-28%+2¢41-8

h? must be positive, which requires for the first root that 1+ 2&4/1 - g2 >282.

[6.116]

and

The other root leads to 2 éz +2E41- &2 < 1. Let us make h; and h, the two roots.

This gives

h%—hlz:1—2§2+2§W—1+2§2+2§E

h%—hf:4§ﬁ [6.117]
If&is small, h2 <1228, h = \1£2E =12 &

hi—hi =4¢

h2—h1 zZ& and h2 +h1 =2
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Particular case

If & is small with respect to 1, we have, at first approximation,
h=1£2¢& (h=20)
h=1%§& [6.118]

In the particular case where & is small, the abscissa of the points for which

RD max

(defined from Hpyy;). The bandwidth can be calculated from

is approximately equal to the abscissa of the half-power points

Ah =h; —h, [6.119]

6.5.3. Variations in phase
The phase is given by

2Eh
1-h?

tan @ = [6.120]

It should also be noted that:

- |tan (p| is unchanged when h is replaced by —;

T
—tan@ — oo when h — 1, therefore ¢ — —: the response is in quadrature

advance with respect to the excitation;
—tan@ =0, 1i.e. = 0 when h = 0 (in the interval considered);
the derivatives below do not cancel
a0 28 (1+1?)

- [6.121]
2
dh(1-n?) +4gn?
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—tan@ — 0, i.e. @ — 7, when h — oo (@ cannot tend towards zero since there
is no maximum. The function which is canceled already when h = 0 cannot cancel a
second time), the response and the excitation are in opposite phase;

]80_ T T T T TTTT
]605 D'D-D_.'/_ﬂl/ ,;? ,E?/j‘/f;?jﬁ:
1401 § o 0.10 / 0.75 f
- 120§ R /41.0 f
= s0F 3
s 60F y/ 1
a0f /f//ﬂ ]
20F 3
0""—1&//’—/;.4-"‘-// I T e
107 10° 10!

h

Figure 6.23. Phase of response

b
— for all values of &, @ is equal to — when h = 1; all the curves thus pass through
2

s
the pointh =1, p=—;
2

i
—for & < 1, all the curves have a point of inflection in h = 1, @ = —. The slope at

this point becomes greater as & becomes smaller.

Particular cases

1
—For h=41-2 g2 (resonance) and £ < —

2
/ 2
28h _y1-28 [6.122]

tan@ =
1-h? g
J1-28?
@ = arc tanT&" [6.123]
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—When h is small, mass m practically has a movement in phase with the
excitation (¢ = 0). In this case, q,,,, being closer to 1 as h is smaller, the mass

follows the movement of the support.

Values of angle ¢ ranging between 180° and 360° cannot exist because, in this
case, the shock absorber would provide energy to the system instead of dissipating it
[RUB 64].

Attheresonance (h=V1-2&2)
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Figure 6.24. Resonance phase

Since Hgpy =1 for small values of h, for an excitation by force on the mass,

kz F,
— =1, ie. z=—". The response is controlled in a dominating way by the
F, k
stiffness of the system. In this domain, where h is small with respect to one, the
calculations for the dimensioning of structure in statics can be carried out by taking

the values of Hypy at the frequency of the vibration, in order to take account at the
same time of the static load and of the small dynamic amplification. These
calculations can possibly be supplemented by a fatigue analysis if this phenomenon
is considered to be important [HAL 75].

— For h =1, the maximum value of q(0) is

1
- .0 [6.124]

2E41-8

q max
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and the phase is

0 — L [6.125]
2
sin(h 0+ th

q(6) = ———22 [6.126]
2641-8

q(6) = c0s(h0) [6.127]

) 2E41-E2

The amplitude of the response is a function of the damping &. It is larger if & is

i
smaller. The movement is out of phase by — with respect to the excitation.
2

If the excitation is a force, at the resonance, Hypy = ——F———, i.e.
2
2841-¢
“Fm [6.128]
zZ, = — .
2kEN1-E
_Fm _Fm
Zy = =
2kE  coy [6.129]

Here, analysis must be of the dynamic type, the response being potentially
several times the equivalent static excitation.

—For h >>1,
q(6) zw [6.130]
where ¢ = —m:
q(6) ~ - sin(n.0) [6.131]



If the excitation is a force, we have

1
HRD = —
h2
ie.
Fm
zZ. =
Tokn?
FI'Il
7. =
" m Qz

where Q = pulsation of the excitation.
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[6.132]

[6.133]

[6.134]

The response is primarily a function of the mass m. It is smaller than the
equivalent static excitation.

According to whether h satisfies one or the other of these three conditions, one of
the three elements stiffness, damping or mass thus has a dominating effect on the
resulting movement of the system [BLA 61], [RUB 64].

h<<1

|

|
Response function I

of the stiffnessk |
|
|
|
|
|
|

Response
function of
the damping ¢

h>>1

Response function
of the mass m

Dynamic analysis

Static analysis :
-«
|

>

v

Figure 6.25. Fields of dynamic amplification factor
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Particular case where & =0

[6.135]

(The positive root for h <1 is chosen in order to preserve at q(6) the same sign for
& = 0 rather than for & which is very small in expression [6.66].)

[6.136]

The variations of q,,,,  versus h are represented in Figure 6.26. It should be
noted that, when h tends towards 1, q,,,,, tends towards infinity. It is necessary here

to return to the assumptions made, and to remember that the system is considered
linear, which assumes that the amplitude of the variations of the response q remains
small. This curve qmax(h) thus does not make sense in the vicinity of the

asymptote.
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g
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Figure 6.26. Variations of q,,, versus h
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Figure 6.27. Dynamic amplification Figure 6.28. Phase for £=0
Jactor for £=0

The case where & = 0 is an ideal case: in practice, friction is never negligible in
the vicinity of resonance (apart from resonance, it is sometimes neglected at first
approximation to simplify the calculations).

As h varies, q,,,, changes sign while passing through infinity. To preserve the

character of an always positive amplitude at the reduced amplitude (the temporal
response being symmetrical with respect to the time axis), an abrupt phase shift of
value T is introduced into the passage of h = 1.

The phase @ is zero in the interval 0 < h <1; it is then equal to + m for h > 1
(the choice of the sign is unimportant). If the value —m is taken in (1, o), then for
example, for 0 <h <1:

sin(h ©)
max — (—2 [6.137]
I1-h
and, for h > 1:
3 sin(h@—ﬂ:) 6.138
Qmax = [ . ]
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Particular case where & = 1

Here
h  [1-h*
q6)= sin(h ) - 2 cos(h ©) [6.139]
(1 + h2)Z h
or
q(6) = Hgp(h) sin(h 6-@) [6.140]
with
Hyp (h)= ! [6.141]
P 1+h? '
and
tan @ = [6.142]

1-h2

NOTE.- The resonance frequency, defined as the frequency for which the response is
at a maximum, has the following values.

Response Resonance frequency | Amplitude of the relative response

1
Displacement h=q1-2¢ 2
2e41-¢
1

Velocity h=1 Z

1

1
Acceleration h =
J1-28 2841-8

Table 6.2. Resonance frequency and maximum of the transfer function

(The natural frequency of the system being equal to h =/ 1 — 52 . For the majority

of real physical systems, & is small and the difference between these frequencies is
negligible.)
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6.6. Responses L, _L, L and —L
Xl'll Xl'll Xl'll m

6.6.1. Movement transmissibility

Here

q(0)=Hup sin(h 6-9)

Error (%)

Error (%)

Resonance frequency
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Figure 6.30. Error made by always
considering h = 1

Amplitude of the response
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Figure 6.32. Error made by always
taking 1/2&

[6.143]
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The maximum amplitude of q(0) obtained for sin(he - (p) =1, occurring for

TE .
he—(p=(4 k+1) —, is equal to
2

1+48%h?

(1—112)2 +48 B2

H,p = [6.144]

If the excitation is an absolute displacement of the support, the response is the
absolute displacement of mass m. The movement transmissibility is defined as the
ratio of the amplitude of these two displacements:

T = [6.145]

For certain applications, in particular in the case of calculations of vibration
isolators or package cushioning, it is more useful to know the fraction of the force
amplitude applied to m which is transmitted to the support through the system
[BLA 61], [HAB 68]. Then a force transmission coefficient or force transmissibility
Ty is defined by

FT
T, = | [6.146]
F

m

Ty = T, = H,p is then obtained according to Table 6.1.

6.6.2. Variations in amplitude

. , . dH yp (h) ,
The amplitude H,p(h) is at a maximum when ——=—— =0, i.e. for h such

dh
that

dHyy 2h(1-n? —28 0]

dh s p? [(1—}12)2 148 hzf/z
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Hap(h)

Figure 6.33. Transmissibility

This derivative is zero if h = 0 or if

1-h?-28%hn* =0

1.e. for

or, since h >0,

\/—1+W

2¢

[6.147]

[6.148]

251
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Figure 6.34. Frequency of the maximum of  Figure 6.35. Maximum of transmissibility
transmissibility versus & versus &
yielding
4

[6.149]

HAD max =
\/16§4—8§2—2+21/1+8§2

When h tends towards zero, amplitude H o tends towards 1 (whatever the value
of §). When h — e, H,p — 0. From relation [6.147] is drawn

2
&=— [6.150]

yielding h <1.
The locus of the maxima thus has as an equation
1
Hpp =T [6.151]
1-h

This gives the same law as that obtained for relative displacement.
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Figure 6.36. Locus of maximum of transmissibility versus h

Caseof £ =0

With this assumption, H . = Hgpy. For all values of &, all the curves |H AD(h)|
pass through 1, for h=0 and for h= \/E Indeed, HAD(h) =1 if

1+422n2 = [1-n2f + 48202 ie n? (h?~2)=0 (h20).

For h<+/2 , all the curves are above Hap =1. Indeed, the condition

1+48%h? > (1—112)2 +4&>h? is carried out only if 1> (1—h2)2,i.e. ifh<+2.

In the same way, for h > V2 , all the curves are below the straight line Hyp =1.

6.6.3. Variations in phase

If
Hpp (h) = [H yp (h)] 7O [6.152]

26h°

tan 0 = —————
1-h?+481°

[6.153]
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—tan¢ =0 when £ = 0;
. Y
2

—tand=0ifh=0,ie ¢ =0;

— tan ¢ behaves like — when h — oo,

2

1-4¢&
180_ T T T I rrrr O-E)I?__f\_\l_\_l\_\l\l‘l;
160F 5=01 0,05 3
140 0.10 n
1202_ 0.15 J
B 100:_ 0.25 3
8 i =
Z 20 0.50 =
€ 60F =
40F =
20F =
O' L 111
107 10° 10!

h

Figure 6.37. Phase variations

1
The denominator is zero if 1-h%+ 4&2 h? = 0, ie. for h? = 5
1-4¢
(£<0.5)orssinceh>0,
1
h= [6.154]

J1-4¢8

b
In this case, tan ¢ — o and ¢ — —.
2

All the curves have, for £ <1, a point of inflection at h = 1. The slope at this
point gets larger as & gets smaller.

T
For £=0.5, tan ¢ = h’ (¢ — — when h — o),
2
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Forh=1,

tan § = 2% [6.155]

0 then becomes smaller as & becomes larger.
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Figure 6.38. Phase versus &for h = 1

—14+41+8E

Forh=———7—""—,
2¢

J1+8E% 1

(25-1){1+88 +1

tan ¢ =2 & [6.156]

6.7. Graphical representation of transfer functions

The transfer functions can be plotted in a traditional way on linear or logarithmic
axes, but also on a four-coordinate nomographic grid, which makes it possible to
deduce the transfer functions of the displacements, the velocities and the
accelerations directly. In this plane diagram, which has four inputs, the frequency is
always carried on the abscissa.

Knowing that Hpy = Hpp and that Hp, = Hyy, from the ordinate, the
following can be read along the vertical axis:
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— either the velocity (Figure 6.39). Accelerations are then located on an axis of
negative slope (—45°) with respect to the axis of the velocities, while the amplitude
of the displacements are on an axis at 45° with respect to the same vertical axis.

Indeed (Figure 6.40):
logHp s =logHgy +logf + log2m

However, a line at 45° with respect to the vertical axis,

NG

2
OK=07T+JK = (logHRV + log2n) —+—logf
2 2

B ;
OK:—(logHRV+logf+log27t) =—logHpu
2 2

O’K is thus proportional to log Hg 4 ;

<+— Hpp(®)

10?2 10! 10°
10"
T 10° 4
o
=
[v4
s
107!
w100
10°2 — A — EdA s o L 110
10° 10° 10 10

Frequency (Hz) ——»
Figure 6.39. Four-coordinate diagram
— or the amplitude of the displacements. A similar calculation shows that the axis

of the velocities forms an angle of + 45° with respect to the horizontal line and that
of the accelerations an angle of 90° with respect to the axis of the velocities.



Response of a Linear One-Degree-of-Freedom Mechanical System 257

log Hgy

> log Hga

Figure 6.40. Construction of the four input diagram

6.8. Definitions

6.8.1. Compliance — stiffness

6 dB [ octave

Stiffness

z/F
Filz

Stiffness

o £1E,

Figure 6.41. Compliance Figure 6.42. Dynamic stiffness

. z F .
The complex transfer functions — and — are called compliance (or receptance)
Z

and dynamic stiffness respectively.
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In the case of a one-degree-of-freedom system, these functions can be calculated

from
H(w) = [6.157]
(k -m (1)2) +jcw
thus
1
H(f) = > [6.158]
f . f
k 1——2 +j2&—

F .
Figures 6.41 and 6.42 show module variations of Z and = according to o
z 0

This curves are usually traced in the logarithmic axes. We can see the presence of 3
areas in each of which one of the parameters — stiffness, damping or mass — is of
predominant importance. We can thus read on the asymptotes, at low frequency, the

stiffness and at high frequency the mass.

6.8.2. Mobility — impedance

-3dB/ octave [ 3dB/octave
2
Stiffness g Idass
=] N
& =
Stiffriess ki Mass
i
g
3/dB [/ octave ol -3 dB/ octave
1
£11, £ Fy
Figure 6.43. Mobility Figure 6.44. Impedance
In a similar way, mobility and impedance are the transfer functions — and —
Z

(Figures 6.43 and 6.44). They are calculated from the modulus of
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H(w) = JO
(k -m (1)2) +jcw
i f
f,
H(f) = 0
2 f
Jkm || 1-— +j2&—
f() fO
6.8.3. Inertance — mass
Mass
Ly 4
) g
fal
Stiffness
6 dB / octave

£1F,

Figure 6.45. Inertance

F/Z

[6.159]

[6.160]

-6 dB [ octave

Stiffness

Darnping

Ivlass

£/,

Figure 6.46. Mass

The inertance and mass transfer functions give variations with respect to

acceleration over force — and its inverse — as a function of . (or of f)

(Figures 6.45 and 6.46), from

H(w):(k—mm2)+jcm

0

[6.161]
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[6.162]
m 1—ﬁ +'2<‘,i
f02 ! fo



Chapter 7

Non-viscous Damping

7.1. Damping observed in real structures

In real structures, damping, which is not perfectly viscous, is actually a

combination of several forms of damping. The equation of movement is as a

c
consequence more complex, but the definition of damping ratio & remains —,
CC
where ¢ is the critical damping of the mode of vibration considered. The exact
calculation of & is impossible for several reasons [LEV 60]: probably insufficient
knowledge of the exact mode of vibration, and of the effective mass of the system,
the stiffnesses, the friction of the connections, the constant ¢ and so on. It is

therefore important to measure these parameters when possible.

In practice, non-linear damping can often be compared to one of the following
categories, which will be considered in the following sections:

— damping force proportional to the power b of the relative velocity z;

— constant damping force (Coulomb or dry damping), which corresponds to the
case where b =0;

— damping force proportional to the square of the velocity (b = 2);
— damping force proportional to the square of the relative displacement;

— hysteretic damping, with force proportional to the relative velocity and
inversely proportional to the excitation frequency.
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Such damping produces a force which is opposed to the direction or the velocity
of the movement.

7.2. Linearization of non-linear hysteresis loops — equivalent viscous damping
Generally, the differential equation of the movement can be written [DEN 56]:

d%z F, sinQt
m—+f(z.z)+kz= ] [7.1]
dt -m X(t)

with, for viscous damping, f( Z, z) = ¢ z. Because of the presence of this term, the

movement is no longer harmonic in the general case and the equation of the
movement is no longer linear. Such damping leads to non-linear equations which
make calculations complex in a way seldom justified by the result obtained.

Except in some particular cases, such as Coulomb damping, there is no exact
solution. The solution of the differential equation must be carried out numerically.
The problem can sometimes be solved by using a development of the Fourier series
of the damping force [LEV 60].

Damping is, fortunately, very often rather weak in practice, so the response can
be approached using a sinusoid. This makes it possible to go back to a linear
problem, which is easier to treat analytically, by replacing the term f( Z, z) by a

force of viscous damping equivalent c.qz; by assuming that the movement

response is sinusoidal, the equivalent damping constant c., of a system with

eq
viscous damping is calculated which would dissipate the same energy per cycle as
non-linear damping.

The practice therefore consists of determining the nature and the amplitude of
the dissipation of energy of the real damping device, then of replacing the
mathematical models of the damping component by a viscous damping device
having a dissipation of equivalent energy [CRE 65]. This is equivalent to saying that
the hysteresis loop is modified.

In contrast to structures with viscous damping, non-linear structures have non-
elliptic hysteresis loops Fy (z) whose form approaches, for example, those shown in

Figures 7.1 and 7.2 (dotted curve).
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\4
v

/ Z 0 z

Figure 7.1. Hysteresis loops of non-linear systems

Linearization results in the transformation of the real hysteresis loop into an
equivalent ellipse (Figure 7.2) [CAU 59], [CRE 65], [KAY 77], [LAZ 68].

b

Fm
| e
S
i

Figure 7.2. Linearization of hysteresis loop

Equivalence thus consists of seeking the characteristics of a viscous damping
which include:

— the surface delimited by the cycle Fy (z) (same energy dissipation);

— the amplitude of the displacement z_ .

The curve obtained is equivalent only for the selected criteria. For example, the
remanent deformation and the coercive force are not exactly the same. Equivalence
leads to results which are much better when the non-linearity of the system is lower.

This method, developed in 1930 by L. S. Jacobsen [JAC 30], is general in
application and its author was able to show good correlation with the results
calculated in a precise way when such calculations were possible (Coulomb



264  Sinusoidal Vibration

damping [DEN 30a]) and with experimental results. This can, in addition, be
extended to the case of systems with several degrees of freedom.

B

Figure 7.3. Linearization of hysteresis loop

If the response can be written in the form z(t) = z,, sin(Qt — @), the energy

dissipated per cycle can be calculated using

dz
AEg = F dz= f(z, 2) <2 dt 2
d J.l cycle dz J.l cycle (Z’ Z) dt d [7.2]
271/Q )
AEg =7, Q IO £(z, ) cos(Q t—0) dt [7.3]
/2 Q
AEg=4 7, Q J'O £(z, 2) cos(Q t—0) dt [7.4]

Energy AEq is equal to that dissipated by an equivalent viscous damping cq if
[HAB 68]:

5 /2 Q )
AEj=ceq Q m 7y =4 7, QJ.O f(z, z) cos(Q t—0) dt [7.5]

i.e.if[BYE 67], [DEN 56], [LAZ 68], [THO 65a]:

[7.6]

f(z, z) cos(Qt—¢) dt=

4 J-TE/ZQ AEd
0 Qmn sz
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2
0y Zp,

The transfer function of a one-degree-of-freedom system (or in a more

Xm

z
general way = —) can be written while replacing ¢ eq by this value in the

F,/k ¢
relation established, for viscous damping:

m

1

;—m - : [7.7]
‘m Ceq Q

_h2 + i

22
(since — = —2) and for the phase

(ON k

Cog
tan = —— [7.8]

k (1-n7)
Q
(h=—)
@9
Q Q
In addition, coq — = feq 22 0y = N Eeq h, yielding
k  k o Jkm
Coq £ Ceq W
-« _"« "7 7.9

Sea 2kh 2k 791

AE
Eeq = [7.10]

2nhkzy,
1

m _ [7.11]

tm \/(1 - hZ)Z +(2g4nf

If AE, is the energy dissipated by the cycle, the amplitude of the equivalent
force applied is [CLO 03]:

E, _AEg [7.12]
T Zy
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7.3. Main types of damping

7.3.1. Damping force proportional to the power b of the relative velocity

Damping force

Fy = B|z| or Fy= B|Z|b sgn(z)

Equation of the hysteresis

{z =7, sin(Qt - )
Fy = B[Q Zm cos(Qt - (p)]b sgn(i)

loo b/2
’ F—d = sgn(z) 1- i
pQ’ zp, Zm
AEg =By, Q° zp'!
with
Energy dissipated by (b)
damping during a cycle [LI + 7J
rLI b+1 J
Equivalent viscous damping =B QP! zgl_l
b-1 b-1_b
Equivalent damping ratio £ = Bzm Yoh™ wg
eq —
2k
obeys
2
2\ 2(b-1) 2b
Zzb+(1 h)gm 2__'m
Amplitude of the response m ptz) 120 m plz) B20 B
where
b 1 ,b-1
Pr =B vy oo k1
b b-1
h™ z
Phase of the response tan @ = P =
b-1 2
A (1-n?)

Table 7.1. Expressions for damping proportional to power b of relative velocity
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References in Table 7.1: [DEN 30b], [GAM 92], [HAB 68], [JAC 30],
[JAC 58], [MOR 63a], [PLU 59],[VAN 57], [VAN 58].

Relation between b and parameter J — the B. J. Lazan expression

It has been shown [JAC 30], [LAL 96] that if the stress is proportional to the
relative displacement z,, (0 =K z,,), coefficient J of the B.J. Lazan expression

(D =1J o") is related to parameter b by

b
J:M [7.13]
K

J depends on parameters related to the dynamic behavior of the structure being
considered (K and o).

7.3.2. Constant damping force

If the damping force opposed to the movement is independent of displacement
and velocity, the damping is known as Coulomb or dry damping. This damping is
observed during friction between two surfaces (dry friction) applied one against the
other with a normal force N (mechanical assemblies). It is [BAN 77], [BEA 96],
[BYE 67], [NEL 80], [VOL 65]:

— a function of the materials in contact and of their surface quality;
— proportional to the force normal to the interface;
— mainly independent of the relative velocity of slipping between two surfaces;

—larger before the beginning of the relative movement than during the
movement in steady state mode.

_ Sliding
surfaces

N

Figure 7.4. One-degree-of-freedom system with dry friction
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The difference between the coefficients of static and dynamic friction is
generally neglected, and force N is assumed to be constant and independent of the
frequency and of the displacement.

A one-degree-of-freedom system damped by dry friction is represented in
Figure 7.4.

Damping force Fy=p N sgn(i)
Equation of the
. Fy=tu N <
hysteresis loop a ==K (IZ| Zm)
Energy
dissipated by AEj =4z, uN
damping during a
cycle
Equivalent AuN
viscous damping Ceq =
Tz Q
Equivalent 2 uN
damping ratio E.zeq = ; Khaz
m
|[4 N
Amplitude of the . 1 4 uN J nE,
response H=-2_ 1-p2 pp=——=
2 0 0
L ‘l—h‘ n ki, _4MN
Tk X,
Phase of the tan @ = Po
response /1 ~ p2
0

Table 7.2. Expressions for a constant damping force

References in Table 7.2: [BEA 80], [CRE 61], [CRE 65], [DEN 29],
[DEN 56], [EAR 72], [HAB 68], [JAC 30], [JAC 58], [LEV 60], [MOR 63b],
[PAT 59],[PLU 59], [ROO 82], [RUZ 57], [RUZ 71], [UNG 73], [VAN 58].

The free response displacement of a one-degree-of-freedom system thus damped
decreases following a linear law. The natural period remains constant. The
oscillation frequency of the system damped using solid friction is the same as for the
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non-damped system. The stopping position can be different from the initial
equilibrium position.

7.3.3. Damping force proportional to the square of velocity

A damping of this type is observed in the case of a body moving in a fluid
.2

z
(applications in fluid dynamics, the force of damping being of the form C, p A —)
2

or during the turbulent flow of a fluid through an aperture (with high velocities of
the fluid, from 2 to 200 m/s, resistance to the movement ceases to be linear with the
velocity). When the movement becomes fast [BAN 77], the flow becomes turbulent
and the resistance non-linear. Resistance varies with the square of the velocity
[BAN 77], [BYE 67], [VOL 65].

Damping force F, =Bz |Z| or Fy=B 52 sgn(i)
Equation of the hysteresis 72 Fy
loop 5t = 1
Zm  Fap
Energy dissipated by _ § 2.3
damping during a cycle AEq 3 Bz,
Equivalent viscous damping e = 8PQzy,
“ 3n
hz,
Equivalent damping ratio aeq =P Y
m
2 4
2 2 2 .4
0o \/—(1—11 ) +\/(1—h J"+ap3n
Amplitude of the response z, =% 3
V2 Py h
8 w(z)
=By
3n k
,h% 2
Phase of response tan @ = 2 2 5
I=h \/\/(1—112) +4psnt +(1-n?)

Table 7.3. Expressions for quadratic damping
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References in Table 7.3: [CRE 65], [HAB 68], [JAC 30], [RUZ 71],
[SNO 68], [UNG 73].

Constant f is termed the quadratic damping coefficient. It is characteristic of the
geometry of the damping device and of the properties of the fluid [VOL 65].

7.3.4. Damping force proportional to the square of displacement

Damping force Fy=v 72 ﬁ or Fy=v 72 sgn(i)
Vi
Equation of hysteresis 2t) = 2y sin(Q t-0)
toop Fy(t) = v 2% sgn(2) = vy zq, sin*(Q t - @) sen(2)

Energy dissipated by

_ 2 _ 43
damping during a cycle AEg =mQceq Zpy = E ¥Zm

Equivalent viscous damping c = 4Yzy
“43nQ

& _ 2 Y Zm

“ 3nkh

Equivalent damping ratio

. G [z ef 2T o (2]
Amplitude of response L L4 YJ L4 YJ mL 4 YJ
" 2
0 V2
tan@ = 1—h2
Phase of response \/(1—h2)z +9 (1—h2)4 +46°
4
p=—"— =B/,

3nk

Table 7.4. Expressions for damping force proportional to the square of the displacement
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Such damping is representative of the internal damping of materials, of the
structural connections, and cases where the specific energy of damping can be
expressed as a function of the level of stress, independent of the form and

distribution of the stresses and volume of the material [BAN 77], [BYE 67],
[KIM 26], [KIM 27].

7.3.5. Structural or hysteretic damping

Damping Damping force )
coefficient proportional to the Complex stiffness
function of Q displacement
F=k'z=(k+ia)z
Damping force Fy = a 7 Fy=d ‘E z=d ‘z‘ sgn(2) or
Q z
F=k'z=k(l+in)z
Equation of the i . Fd2 -1 z2 nng ‘F"‘ =kzzta \lzfn -7
hysteresis loop 2 22 - TS5 = 1
Zm & Zm z5,  4d° oz,
Energy dissipated _ 2
by damping | \p g 52 AEg =2dz2 Srazrinz
during a cycle d=TazZy d=<0Zm (=ma 72 )
- m
Equivalent _a _2d _kn @
viscous damping Ceq = a Ceq = 1O Ceq = E (= Q)
Equivalent £ = a Eop = d g, = a_ _ "
damping ratio 4 9m m% 9 1m w% 4" 5kh  2h
Fm
. Zm =
Amplitude of 5 a2
response k (1 — h2) +
k
2a/k
Phase of response (@ = arc tan >
I1-h

Table 7.5. Expressions for structural damping
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This kind of damping is observed when the elastic material is imperfect, when
the dissipation of energy is mainly obtained by deformation of material and slip, or
friction in the connections of a system. Under a cyclic load, the curve o, € of the
material forms a closed hysteresis loop rather than a single line [BAN 77]. The
dissipation of energy per cycle is proportional to the surface enclosed by the
hysteresis loop. This type of mechanism is observable when repeated stresses are
applied to an elastic body, causing a rise in temperature of the material.

This is called internal friction, hysteretic damping, structural damping or
displacement damping. Various formulations are used [BER 76], [BER 73],
[BIR 77], [BIS55], [CLO 03], [GAN85], [GUR 59], [HAY 72], [HOB 76],
[JEN 59], [KIM 27], [LAL75], [LAL 80], [LAZ50], [LAZ 53], [LAZ68],
[MEI 67], [MOR 63a], [MYK 52], [PLU59], [REE 67], [REI56], [RUZ 71],
[SCA 63], [SOR 49], [WEG 35].

7.3.6. Combination of several types of damping

If several types of damping, as is often the case, are simultaneously present
together with a linear stiffness [BEN 62], [DEN 30a], equivalent viscous damping
can be obtained by calculating the energy AE,. dissipated by each damping device

and by computing Ceq [JAC 30], [JAC 58]:

D AEg
S [7.14]
“ anﬁl

Example 7.1.

Viscous damping and Coulomb damping [JAC 30], [JAC 58], [LEV 60],
[RUZ 71]

zZ=2, sin(Qt—(p)

/
{Fﬁl [cz Qz+(k—m§22)2}—;§ F2 (k—mgz)z}lz—ich

Zm:

< @+ (k-m 92)2
[7.15]
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4 1
—Fz, Q +c
tan(p=n—2£2
k-m Q

[7.16]

F,, =maximum F(t) (excitation);
F = frictional force;
¢ = viscous damping ratio;
Q = pulsation of the excitation

4 1ol
Ceq=;FZmQ +c [7.17]

7.3.7. Validity of simplification by equivalent viscous damping

The cases considered above do not cover all the possibilities, but are
representative of many situations.

The viscous approach supposes that although non-linear mechanisms of damping
are present, their effect is relatively small. It is thus applicable if the term for viscous
damping is selected to dissipate the same energy per cycle as the system with non-
linear damping [BAN 77]. Equivalent viscous damping tends to underestimate the
energy dissipated in the cycle and the amplitude of a steady state forced vibration:
the real response can be larger than envisaged with this simplification.

The decrease of the transient vibration calculated for equivalent viscous damping
takes a form different from that observed with Coulomb damping, with a damping
force proportional to the square of the displacement or with structural damping. This
difference should not be neglected if the duration of the decrease of the response is
an important parameter in the problem being considered.

The damped natural frequency is itself different in the case of equivalent viscous
damping and in the non-linear case. However, this difference is generally so small
that it can be neglected.

When damping is sufficiently small (10%), the equivalent viscous damping
method is a precise technique for the approximate solution of non-linear damping
problems.
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7.4. Measurement of damping of a system

All moving mechanical systems dissipate energy. This dissipation is often
undesirable (in an engine, for example), but can be necessary in certain cases
(vehicle suspension, isolation of a material to shocks and vibrations and so on).

Generally, mass and stiffness parameters can be calculated quite easily. It is
much more difficult to evaluate damping by calculation because of ignorance of the
phenomena concerned, and difficulties in modeling them. It is thus desirable to
define this parameter experimentally.

The methods of measuring damping generally require the object being tested to
be subjected to vibration and to measure the vibratory energy dissipated, or a
parameter directly related to this energy. Damping is generally studied through the
properties of the response of a one-degree-of-freedom mass—spring—damping system
[BIR 77], [CLO 03], [PLU 59]. There are several possible methods for evaluating
the damping of a system:

— amplitude of the response or amplification factor;
— quality factor;

— logarithmic decrement;

— equivalent viscous damping;

— complex modulus;

Af
— bandwidth —.
f

7.4.1. Measurement of amplification factor at resonance

The damping of the one-degree-of-freedom system tends to reduce the amplitude
of the response to a sine wave excitation. If the system were subjected to no external
forces, the oscillations created in response to a short excitation would attenuate and
disappear in some cycles. In order for the response to preserve a constant amplitude,
the excitation must provide a quantity of energy equal to the energy dissipated by
damping in the system.

The amplitude of the velocity response z is at a maximum when the frequency of
the sine wave excitation is equal to the resonance frequency f;, of the system. Since
the response depends on the damping of the system and since the one-degree-of-
freedom system is supposedly linear, this damping can be deduced from
measurement of the amplitude of the response:
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W, Z
Q=—2"m [7.18]
or

Q="—-= [7.19]

For sufficiently small &, it has been seen that with a small error, the amplification
2 z,,

Q)
factor, defined by Hpp = , was equal to Q. The experimental determination

im
of & can thus consist of plotting the curve Hyp or Hyy and of calculating & from

the peak value of this function. If the amplitude of the excitation is constant, the sum
of potential and kinetic energies is constant. The stored energy is thus equal to the

1
maximum of one or the other; it will be, for example U; = —k zfn. The energy
2

dissipated during a cycle is equal to [6.87] AE4 =mcQ zrzn, yielding, since it is
assumed that Q = w:

u 1 kzZ k _ kQ+vm 7201
AE, 2mcwm, 2z 2mncwo, 2m.kmk '
U . Q [7.21]
AE;, 2m
ie.
2 1 Ug
= 7.22
Q AR, [7.22]

NOTE.— The measurement of the response/excitation ratio depends on the
configuration of the structure as much as the material. The system is therefore
characterized by this rather than the basic properties of the material. This method is
not applicable to non-linear systems, since the result is a function of the level of
excitation.
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7.4.2. Bandwidth or \J2 method

Another evaluation method (known as Kennedy—Pancu [KEN 47]) consists of
measuring the bandwidth Af between the half-power points relating to one peak of
the transfer function [AER 62], with the height equal to the maximum of the curve

Hpp (or Hpy) divided by 2 (Figure 7.5).

From the curve Hyy (h), we will have, if h; and h, are the abscissae of the

half-power points:
1 1y
= =0 7.23
Q== [7.23]
1(‘1 l(‘2
where (f;; = peak frequency, h; = —, h, = =)
f0 fO
and
c Af 1
t= S o (hy-ny) [7.24]
c. 21 2

If T, is the natural period and T; and T, are the periods corresponding to an

2
attenuation of —, damping c is given by
2

(1 1)
c=2nmL€—£J [7.25]
%
B ?\ / \\
A /
LV \ \\FU M\

fo f(Hz)

Figure 7.5. Bandwidth associated with resonance
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since ¢, =2 vkm and k = m w%, and

_ Ty (TZ_TI) [7.26]
2T, T,
S o fi+5
i.e. with the approximation f;, = ,
2
£, —f
e —" [7.27]
fi+1,

From the curve Hypy, these relations are valid only if € is small. The curve H
could also be used for small &.

7.4.3. Decreased rate method (logarithmic decrement)
The precision of the bandwidth method is often limited by the non-linear
behavior of the material or the reading of the curves. Sometimes it is better to use

the traditional relation of logarithmic decrement, defined from the free response of
the system after cessation of the exciting force (Figure 7.6).

4 ZD

max

z
'
1

2N s >

[

Figure 7.6. Measurement of logarithmic decrement [BUR 59]
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The amplitude ratio of two successive peaks allows the calculation of the
logarithmic decrement 8 from

(Zm )n+1

(Zm )n

= [7.28]

In addition, the existence of the following relation between this decrement and
damping ratio is also shown

5=_215 [7.29]

The measurement of the response of a one-degree-of-freedom system to an
impulse load thus makes it possible to calculate § or & from the peaks of the curve
[FOR 37] and [MAC 58]:

g0 [7.30]

\/82 +4n°

Dampingratio € =c¢/c,~ 8/2m
0 002 004 006 008 010
1 | 1 | I | I I 1 | I | I | 1 | Ll I I | 1

o

| 0

b © e
~) 0 o)

©
o

Decrease of the amplitudes in dB

=
w

Ol]llll|l|]||ll||l]l|IlIIIIlJIII[|II]II|l|IIII|IIII

0 01 02 03 04 05 06 07
Logarithmic decrement &

Ratio of the amplitudes of two successive peaks (e~6)

Figure 7.7. Calculation of damping from &



Non-viscous Damping 279

The curve of Figure 7.7 can be used to determine & from d. In order to improve
the precision of the estimate of §, it is preferable to consider two non-consecutive
peaks. The definition then used is:

1 z
5= In— [7.31]
n-1 Zmg
where Zm, and Zp, are, respectively, the first and the n™ peak of the response

(Figure 7.8). In the particular case where & is much lower than 1, from [7.29] is
obtained:

)
e~ —
27
yielding
i
—=Q
)
and
n_ 27U, [7.32]
d D
with
Zimp _ 1 Zm
d=1In =—1In [7.33]
Zmy M Zmpy

with & being small

Zml

~1+nd=1+2nn§, [7.34]
Zmpy
yielding the approximate value &,
7, -2
g, = 1 Tmngr [7.35]

2nnz,
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The error caused by using this approximate relation can be evaluated by plotting

the curve according to & (Figure 7.8) or that giving the exact value of &

according to the approximate value &, (Figure 7.9). This gives

[ ]
Z. —Z 1|z
g, =u=_{ﬂ_lJ [7.36]
2T Zmmy 2T Zm,y
3 T T TTTT T T TTTTIT T T T T ]OU= T T TTTTT T T TTTTT T T T
109 // F vy
: a : =8t~
s i / - 1071 L - .
* 101t / 1w f 7 ]
W s ] i |
- B i 10'25 3
102 : F 3
3%1:[“1 L1l L II|JIJE }0'3 L1l (R Ll 1 uiiin
10 102 107 10° 107 102 107 10°
a a
Figure 7.8. Error related to the approximate Figure 7.9. Exact value of & versus
relation &(6) approximate value &,
z
In —2L
) z
£ = - —= m2 [7.37]
\/8 +t4m 1nzZmlJr4n2
Zmsy
yielding
In(l1+2m¢&
( a) [7.38]

i \/ln2(1+2n§a)+4n2
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and

8-8 _ G __1 |2nt/ig _
: =1 &—1 2n§{ 1} [7.39]

The specific damping capacity p, the ratio of the specific energy dissipated by
damping to the elastic deformation energy per unit of volume, is thus equal to

p(%)=100 2~ =200 § [7.40]

ts

In a more precise way, p can also be written

2 2
p=100 ZmL—Zmnl [7.41]
anl

while assuming that U, is proportional to the square of the amplitude of the
response. For a cylindrical test-bar,

W=S/Ug=~k2+Lm# [7.42]
2 2
(potential energy + kinetic energy)
_1 2,022
W—Em(z +Q? 7 ) [7.43]
ie.since z=z, sin(Q t— (p),

1
W= 5 m Q? zﬁl = constant ZIZn [7.44]

U is thus proportional to zfn yielding, from [7.31] and [7.41] for two
successive peaks:

p(%)=100(1-¢">°) [7.45]
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Figure 7.10. Specific damping Figure 7.11. Specific damping
capacity versus & capacity versus 0

The use of the decrement to calculate p from the experimental results assumes
that § is constant during n cycles. This is not always the case. It was seen that
damping increases as a power of the stress, i.e. of the deformation, and it is thus
desirable to use this method only for very low levels of stress.

For & small, we can write [7.45] in the form of a series:

2 3
p (%) =100 21_?_@+@_... [7.46]

If 6 <0.01, we find p = 200 9.

The method of logarithmic decrement takes no account of non-linear effects. The
logarithmic decrement & can also be expressed according to the resonance peak
amplitude H . and its width Af at an arbitrary height H [BIR 77], [PLU 59].

F. Forester [FOR 37] showed that

[7.47)]

[7.48]
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H(f)n
Hmax

Figure 7.12. Bandwidth at amplitude H

IfH:g,
2

n Af
d=—— [7.49]

V3 1

Setting as n, the number of cycles such that the amplitude decreases by a
factor e (Neper’s number), it becomes

§=- In—= - [7.50]

z
where t. = time to reach the amplitude Lor envelope Z(t) of the response z(t)
e

(which is roughly a damped sinusoid) is considered, this gives

s 1 dz_ 1 dlnz_ 2302 dinZ (751]
foz dt £, dt f,  dt
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and if the amplitude in decibels is expressed as

vag = 20 log Z
__0.115 dy (7.52]
fo dt
2
» Q
For a value of H such that H™ = —,
2
5= nA—f [7.53]
fo

i fi

If £<0.1, 8 = —, yielding Q = —0, a relation already obtained. The calculation
Q Af

of the Q factor from this result and from the curve H(f) can lead to errors if the

damping is not viscous.

In addition, it was assumed that the damping was viscous. If this assumption is
not checked, different values of § are obtained depending on the peaks chosen,
particularly for peaks chosen at the beginning or end of the response [MAC 58].

Another difficulty can arise in the case of a several-degrees-of-freedom system
for which it can be difficult to excite only one mode. If several modes are excited,
the response of a combination of several sinusoids to various frequencies will be
presented.

7.4.4. Evaluation of energy dissipation under permanent sinusoidal vibration

An alternative method can consist of subjecting the mechanical system to
harmonic excitation and to evaluate, during a cycle, the energy dissipated in the
damping device [CAP 82], this parameter being largely accepted as a measure of
the damping.

This method can be applied to an oscillator whose spring is not perfectly elastic.
This then leads to constants k and ¢ of an equivalent simple oscillator.
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F, 4

kKZnl———

I
“ZIm Slope k

ll Zy Z
|
————— -kzy,

Figure 7.13. Force in a spring

r-
»-

It has been seen that, if a one-degree-of-freedom mechanical system is subjected
to a sinusoidal force F(t) = F,, sinQ t such that the pulsation is equal to the natural
pulsation of the system (wy)), the displacement response is given by

Z(t)= -z cosQt

m

The force F, in the spring is equal to F, =k z(t) and the force Fy in the
damping device to Fy =cz=2m&Qz=2kEz, sinQt, yielding F; according

to z:
2 2
F
— 4 —sin?Qi=1-" [7.54]
(Zkf;Zm) Zm
r 3
Fq
2Ekzy
-zm/\\+zm_
\‘xi// Zr
-28kzy

Figure 7.14. Damping force versus displacement
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This function is represented by an ellipse. During a complete cycle the potential
energy stored in the spring is entirely restored. On the other hand, energy AE, is

spent in the damping device, which is equal to the surface of the ellipse:

ABy=2mz% kE [7.55]
F=F,+Fq 4
Zol———= T
2§kzm£
-Zm Slope k /|
: T
“2&kzy
< =—"|.kz,

Figure 7.15. Total force versus elongation

The superposition of Figures 7.13 and 7.14 makes it possible to plot F = F; + Fy4
against z (Figure 7.15).
From these results, the damping constant ¢ is measured as follows:

— by plotting the curve F(z) after moving the system out of equilibrium (force F
applied to the mass);

— by taking the maximum deformation z, .

It is assumed here that stiffness k is linear and k is thus calculated from the slope
of the straight line plotted at the centre of the ellipse (Figure 7.15).

The surface of the ellipse gives AE,, yielding

AEq

2nzy, k
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NOTES.—

1. When z,, increases, the spring has an increasingly non-linear behavior in

general and the value of & obtained grows.

2. The energy dissipated by the cycle (AE ;) depends on the form, dimensions

and the distribution of the dynamic stresses. It is preferable to consider the specific
damping energy D, which is a basic characteristic of the material (damping energy
per cycle and unit of volume by assuming a uniform distribution of the dynamic
stresses in the volume V considered) [PLU 59].

AE, = IVD av [7.57]

where AE ; is in Joules/cycle and D is in Joules/cycle/m’.

Some examples of different values of & are given in Table 7.6 [BLA 61] and
[CAP 82].

Rubber-type materials with weak damping

The dynamic properties of Neoprene show a very weak dependence on the
frequency. The damping ratio of Neoprene increases more slowly at high
frequencies than the damping ratio of natural rubber [SNO 68].

Material E
Welded metal frame 0.04
Bolted metal frame 0.07
Concrete 0.010
Pre-stressed concrete 0.05
Reinforced concrete 0.07
High-strength steel (springs) 0.637 107 t0 1.27 107
Mild steel 3.1810°

Wood

7.96 10°t0 31.8 107>

Natural rubber for damping devices

1.59107t0 12.7 107

Bolted steel

0.008

Welded steel

0.005

Table 7.6. Examples of damping values
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Rubber-type materials with strong damping

The dynamic modulus of these materials increases very rapidly with the
frequency. The damping ratio is large and can vary slightly with the frequency.

7.4.5. Other methods

Other methods have been developed to evaluate the damping of structures such
as, for example, that using the derivative of the phase at the resonance with respect
to the frequency (Kennedy—Pancu improved method) [BEN 71].

7.5. Non-linear stiffness

We considered in section 7.3 the influence of non-linear damping on the
response of a one-degree-of-freedom system. The non-linearity was thus brought
about by damping. Another possibility relates to the non-linearities due to stiffness.
It can occur that the stiffness varies according to the relative displacement response.
The restoring force, which has the form F = —k z, is no longer linear and can follow

a law such as, for example, F=k z+r z where k is the constant used before and

where r determines the rate of non-linearity. The stiffness can increase with relative
displacement (hardening spring) (Figure 7.16) or decrease (softening spring)
(Figure 7.17) [MIN 45].

F 4 F A
= ’.’./-’ /;ﬂﬁ
z oo z”
Figure 7.16. Hardening spring Figure 7.17. Softening spring

There is a “jump” from A to B, for example, [BEN 62] that can then be
observed on the transfer function.
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Figure 7.18. Transmissibility for an Figure 7.19. Transmissibility for a
increasing stiffness with frequency decreasing stiffness with frequency

When the frequency increases slowly from zero, the transmissibility increases
from 1 up to point A while passing through D and then decreases to B (Figure 7.18)
[TIM 74].

If, on the contrary, resonance is approached from high frequencies by a slow
sinusoidal sweeping at decreasing frequency, the transfer function increases, passes
through C and moves to D near the resonance, and then decreases to 1 as f tends
towards zero (Figure 7.19).

&

® € <Cy<Cy /’751;1
//{? )
2 /// f Vi C'J
/%/ i *'/
; M{Q\ ___________
i
LN
| =S
0 £

Figure 7.20. Influence of damping

It should be noted that the area CA is unstable and therefore cannot represent the
transfer function of a physical system.

The shape of the curve depends, like the frequency of resonance, on the
amplitude of the force of excitation. The mass can vibrate at its natural frequency
with an excitation frequency that is much larger (a phenomenon known as resonance
of the n™ order) [DUB 59].






Chapter 8

Swept Sine

8.1. Definitions

8.1.1. Swept sine

The swept sine is a logical extension of the sinusoidal vibration at constant
frequency (this is a somewhat redundant expression because the definition of a
sinusoid includes this assumption; this terminology is, however, commonly used for
distinguishing between these two vibration types better. This test is also called the

dwell test). This is a sinusoidal vibration at a given moment, whose frequency varies
with time according to a certain law.

Time (5) —»

Figure 8.1. Example of swept sine time history

A swept sine can be defined as a function characterized by a relation of the form:

ot) = ¢, sin[E(t) + ¢] [8.1]
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where:

— the phase ¢ is generally zero;
— E(t) is a time function characteristic of the sweep mode;

— /(t) is generally an acceleration, sometimes a displacement, a velocity or a
force.

The pulsation of the sinusoid can be defined as the derivative of the function
under the symbol sine [BRO 75], [HAW 64], [HOK 48], [LEW 32], [PIM 62],
[TUR 54], [WHI 72], i.e. by:

dE
Q=2nf=— [8.2]
dt

We will see that the most interesting sweep modes are:
— the linear sweep, where f has the form f = o t + f3;

—the logarithmic sweep (which should rather be termed exponential) if
T,

1

f=1 et/ ;

I 1
— the hyperbolic sweep (or parabolic, or log-log) if: —— — = at.
f; f
1

These sweeps can be carried out at an increasing frequency or a decreasing
frequency.

The first two laws are the most frequently used in laboratory tests. Other laws
can however be met, some of which have been the subject of other published work
[SUZ 78a], [SUZ 79], [WHI 72].

Under this vibration, the material is thus subjected during a certain time interval
(function of the sweeping rate) to a sinusoid whose frequency is lying in a specified
range. This range must include a priori the resonance frequency (or frequencies) of
the material. These frequencies of resonance will thus be necessarily excited.
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T

Time (s) —»

Figure 8.2. Example of time history response to a swept sine

To estimate the importance of a resonance, a number without dimension, the
transmissibility, can be used. Transmissibility was previously defined as the ratio
between the response acceleration of one point of the product and the system’s input
acceleration which is measured on the exciter table (or on the fixture).

A frequency with a local transmissibility peak that exceeds a predetermined
value (typically two) is considered as a resonance frequency.

=& /

LYY

Frequency (Hz)

k4

Figure 8.3. Local transmissibility peaks which are considered as resonance peaks
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NOTE.— After the resonance frequencies were determined, a common test was used
consisting of applying sinusoidal vibration to these frequencies for a given duration.
The vibration’s amplitude is determined in relation to the future real environment of
the product. The aim of this test is to ensure that the material is able to function
under the harshest conditions, the highest stresses appearing at the resonance
frequencies. The test duration varies largely, but five minutes is a common value.

8.1.2. Octave — number of octaves in frequency interval ( f;, f;)

An octave is the interval between two frequencies whose ratio is 2. The number
of octaves ranging between two frequencies fjand f, is such that:

£
=— [8.3]
fl
yielding
I 2
n2
fl
n= [8.4]
In 2

(logarithms in both cases being base e or base 10).

8.1.3. Decade

A decade is the interval ranging between two frequencies whose ratio is 10. The
number of decades n4 ranging between two frequencies f; and f, is such that:

f
=T [8.5]
f]
yielding
£, Inf,/f
ny = log—2=A [8.6]
fi In 10

(In 10 =2.30258 ...).
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The relation between the number of decades and the number of octaves ranging
between two frequencies:

fy
In—==nln2=n4 In10 [8.7]
fi
IO 5. [8.8]
ng In2

8.2. “Swept sine” vibration in the real environment

Such vibrations are relatively rare. They are primarily measured on structures
and equipment installed in the vicinity of rotating machines, at times of launching,
stopping or changes of speed. They were more particularly studied to evaluate their
effects during transition through the resonance frequency of a material [HAW 64],
[HOK 48], [KEV 71], [LEW 32], [SUZ 78a], [SUZ 78b], [SUZ 79].

8.3. “Swept sine” vibration in tests

Tests on materials were and still are frequently carried out by applying a sine-
type excitation to the specimen, the objectives being:

— identification of the material: the test is carried out by subjecting the material
to a swept sine having in general a rather low and constant amplitude (not to damage
the specimen), about 5 ms %, the variation of the frequency with time being rather
small (close to one octave per minute) in order to study the response at various
points of the specimen, to emphasize the resonance frequencies and to measure the
amplification factors;

— the application of a test defined in a standard document (MIL STD 810 C, AIR
7304, GAM T 13, etc.), the test being intended to show that the material has a given
standard robustness, independent or difficult to relate to the vibrations which the
material will undergo in its service life;

—the application of a specification which, as well as being feasible, covers
vibrations in its future real environment.

Swept sinusoidal vibration tests are badly adapted to the simulation of random
vibrations, whose amplitude and phase vary in a random way and in which all the
frequencies are excited simultaneously.
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Many parameters are necessary to define a swept sine test.

So far in this chapter we have mentioned the physical quantities which were used
to carry out the control, which can be, exactly as in the case of a fixed frequency
sinusoidal vibration test, an acceleration, a displacement or a velocity. It is also
necessary, however, to specify the frequency range to be swept.

The swept sine can have a constant level over all the frequency band studied
(Figure 8.4(a)) or can be composed of several constant levels at various frequency

intervals (Figure 8.4(b)).

Amplitude
Armplitude

» >

I f 28 ' B f2 f3 fa f
(@ )

Figure 8.4. Examples of swept sines

In the same test, each frequency range can be characterized by a different
quantity and/or a different amplitude: a displacement is sometimes specified at very
low frequencies, this parameter being easier to measure in this frequency domain,
more rarely a velocity, and, in general, an acceleration.

Example: a swept sine of between 5 and 500 Hz is defined:

—in the 5 to 15 Hz range by a displacement of 1 mm;

— in the 15 to 200 Hz range by an acceleration of 18 m/s’;

— in the 200 Hz to 500 Hz range by an acceleration of 40 m/s’.

Sweep is most frequently logarithmic. The specification sometimes specifies the
direction of sweep: increasing or decreasing frequency.

Either the sweep rate (number of octaves per minute) or the sweep duration
(from lowest frequency to highest or in each frequency band) is specified.

The level is defined by the peak value of the sinusoid or the peak-to-peak
amplitude.
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The sweep rate is generally, selected to be sufficiently low to enable the response
of the equipment being tested to reach a very high percentage of the level obtained
in steady operation under pure sinusoidal excitation.

If the sweep is fast, it can be estimated that each resonance is excited one after
the other, in a transient way, when the frequency sweeps the interval ranging
between the half-power points of each peak of the transfer function of the material.
We will see (Volume 3) how this method can be used to measure the transfer
functions.

In this approach, the swept sine is a vibration the effects of which can be
compared with those of a shock (except the fact that under a shock, all the modes are
excited simultaneously) [CUR 55].

Several questions arise in relation to how to carry out sweeps:

— How can we choose the direction of sweeping starting from the initial
frequency (i.e. at increasing or decreasing frequency)? Should the sweep be carried
out in one direction or both?

— How can we vary the frequency according to time (linearly or logarithmically)?
— How can we choose sweep rate?

— What should the duration of the test be? How many unidirectional sweeps are
necessary?

Several parameters thus remain to be determined, their choice being function of
the aims and constraints of the test to be realized.

8.4. Origin and properties of main types of sweepings
8.4.1. The problem

We know that for a linear one-degree-of-freedom mechanical system the
damping ratio is given by:

c
&= [8.9]

2/km
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the Q factor by:
1 Jkm m
2& c c

[8.10]

[8.11]

and the width Af of the peak of the transfer function between the half-power points

by:
f()
Af =— [8.12]
Q
b z(t)
m
0
k Jl=lc
it
Base ®
7
Figure 8.5. One-degree-of-freedom system
NOTE.—

We saw that the maximum of the transfer function |H ( f )|

equal to

1
H

i 0
"oaei-er -2

Wi z
=0 Zmax ¢ actually

xmax

[8.13]
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Mechanical systems have, in general, rather weak damping so that the
approximation H,, = Q (which is the exact result for the maximum of the transfer

function acceleration—relative velocity instead here of the function acceleration—
relative displacement) can be used. It should be remembered that the half-power
points are defined, because of a mechanical—electrical analogy, from the transfer
function acceleration—relative velocity.

Writing:
. df
f=— [8.14]
dt

for the sweep rate around the resonance frequencyf;, the time spent in the band Af

is given roughly by:
Af
At=— [8.15]
f

and the number of cycles performed by:

Af
AN = fy At=— f, [8.16]
i

When such a system is displaced from its equilibrium position and then released
(or when the excitation to which it is subjected is suddenly stopped), the
displacement response of the mass can be written in the form:

At) =z, VT 005(2 mfy V1-& t+¢) [8.17]

where T is a time constant equal to:

T="— [8.18]
C

i.e. according to [8.10]:

T=—=— [8.19]
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It will then be assumed that the Q factor is independent of the natural frequency
fy, in particular in the case of viscoelastic materials. Different reasoning can take

into account a variation of Q with f;; according to various laws [BRO 75]; this leads
to the same sweeping laws.

In a swept sine test, with the frequency varying according to time, the response
of a mechanical system is never perfectly permanent. It is closer to the response
which the system would have under permanent stress at a given frequency when the
sweep rate is slower. To approach as closely as possible this response in the vicinity
of the resonance frequency, it is necessary that the time At spent in Af is long
compared to the constant T, a condition which can be written [MOR 76]:

At=p T [8.20]
(u >>1) ; yielding!

Af nfy, f nf

li|]=—=af [8.21]
At nQ QuQ

. n £

fl = [8.22]

-2

Natural frequency f;, can be arbitrary in the band considered (fj, f,) and,

whatever its value, the response must be close to Q times the input to the resonance.
To calculate the sweep law f(t) let us generalize fy by writing f as:

Fos [8.23]

It can be seen that the sweep rate varies as 1/ Q2 .

NOTE.— The derivative f is positive for increasing frequency sweep, negative for

decreasing frequency sweep.

1 It is assumed here that Af is sufficiently small (i.e. & is small) to be able to approximate
with a small error the slope of the tangent to the curve f(t) by the slope of the chord relating to
the interval Af . We will see that this approximation is indeed acceptable in practice.
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8.4.2. Case 1: sweep where time At spent in each interval Af is constant for all
values of f

Here, since

At=pT == [8.24]

it is necessary that p = y f the constant y has the dimension of time, and

At = B [8.25]
T
. onf? nf  f
f=+ =1 F=t— [8.26]
uQ Y Q T
2
ifweset T) = Y Q .
i
Sweeping at frequency increasing between f; and f,
We deduce from [8.26]
f=f e [8.27]
The constant Tj is such that, for t = t; (tg = sweep duration), f = f,:
tS
T, [8.28]

- In fz/fl

where T, is the time needed to sweep the interval between two frequencies whose
ratio is e. Relations [8.24] and [8.25] lead to

T, = Q At [8.29]
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NOTE.— Equation [8.27] can also be written as:

Il
f=hn—=
l(flj

Sweep at decreasing frequency

f=fe

the constant T; having the same definition as previously.

Expression for E(t)

Increasing frequency:
E(t) =2 njg f, et/ T gt
i.e. [HAW 64], [SUN 75]:
E(t) =2 nT, (et/Tl ~1)=2a7 (£ 1)
Decreasing frequency:

t _
E(t)=2nIO et/ Mgt

E(t) = 27T, f, (e‘t/Tl —1) =2nT(f-16)

[8.30]

[8.31]

[8.32]

[8.33]

[8.34]

[8.35]

Later in this section, and apart from a specific particular case, we will only
consider sweepings at increasing frequency, the relations for the other case being

either identical or very easy to rewrite.

We assumed above that f] is always, whatever the sweep direction, the lowest
frequency, and f, always the highest frequency. Under this assumption, certain

relations depend on the sweep direction. If, on the contrary, it is simply supposed
that f] is the initial frequency of sweep and f, the final frequency, whatever the

direction, we obtain the same relations independent of the direction; relations, in
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addition, identical to those established above, and in what follows in the case of an
increasing frequency.

Time t can be expressed versus the frequency f according to:

f
t=Tln— [8.36]
f1

In spite of the form of relations [8.27] and [8.31], the sweep is known as
logarithmic, by referring to expression [8.36].

The time necessary to go from frequency f; to frequency f, is given by:

f
ty =Ty In—= [8.37]
f)

which can still be written:

f
t, = Q At In—> [8.38]
1

The number of cycles carried out during time t is given by:

t
t t
N :jo £(t) dt :fo frel dt [8.39]

N=f T (et/Tl —1) [8.40]
i.e. according to [8.27]:
N=T/(f-f) [8.41]
The number of cycles between f; and f, is:
N, =T (f, - f,) [8.42]

which can be also written, taking into account [8.37],
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£~ f
N, < (=) [8.43]

The mean frequency (or average frequency or expected frequency) is equal to:

N f, —f
f,=—S= 27 [8.44]
tS In fZ/fl

The number of cycles AN performed in the band Af between the half-power
points (during time At) is written [8.42]:

I 1 )
AN = T,| f0[1+—J—f0[l——J|
LU 20 20/

1.e.
T
Q
AN = f;, At [8.45]

AN thus varies like f, yielding

AN  f
tg = QAN | B [8.46]
fo fy
Also starting from [8.42]:
fo N
AN=—2 2 [8.47]
Q(fy - f;)

The time At spent in an interval Af is:

T
At = —
Q



Swept Sine 305

Time At is constant regardless of the frequency of f.

Example 8.1.
If Q =5, the width of the interval is equal to 20 Hz when fy = 100 Hz and to

100 Hz when f; = 500 Hz (Figure 8.6).

fo=100Hz fo=500Hz R
0
)
jus]
Frequency (Hz)
Figure 8.6. Interval width between two half-power points for Q = 5
and for two values of the natural frequency
ts
At = F [8.48]
Q-2
fy
yielding another expression of AN :
AN = f; At
fot
AN = ; [8.49]
QIn2
fy

The number of cycles N; necessary to go from frequency f; to a resonance

frequency fj, is:
[8.50]

N =T (f, - )
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N = QAt(fy—1f,)

QAN
Ny =f—(fo _fl)
0

or

This number of cycles is carried out in time:

f0
tp=TIn—
1

fo

Q AN
— ]n_

t =

or

If the initial frequency fj is zero, we have N; = N, given by:

No=1f, T

or

Ny = Q Atfy = QAN

[8.51]

[8.52]

[8.53]

[8.54]

[8.55]

[8.56]

[8.57]

[8.58]

It is not possible, in this case, to calculate the time t; necessary to go from 0

to fo.
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Sweep rate

According to the sweep direction, we have:

By

df T £
_ S [8.59]

dt f2 —t/T, T1
—e
T

The sweep rate is generally expressed as the number of octaves per minute. The
number of octaves between two frequencies f] and f, is equal to [8.4]:

Inf, /f;
In2

n

yielding the number of octaves per second:

n _ lnfz/fl
tg  tgIn2

R - [8.60]

0s

(tg being expressed in seconds) and the number of octaves per minute:

60
Rom = —— = 60 R [8.61]

om
tS

60 f

t. =
Y Ry, In2 f

om

If we set £ = £, in [8.36] for t = tg, we obtain:

(=Tl 260 Inf/f [8.62]
f] R In2

om

From [8.60] and [8.62]:

£, t
In-2=-5=R t;In2
fi T
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1

T2 [5:63]
yielding another expression of the sweep law:
f=f Rt [8.64]
or
f = f; 2Ront/00 [8.65]

according to the definition of R.

%107
6 A B M L -
E Roym=01loct/mmn | _ —+—""7
sE E
45 E
KO -
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¢ " | 0.5 E
//‘”;1 2
0 ﬁmmm b e e d
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£ b

Figure 8.7. Sweep duration

Figure 8.7 shows the variations of t; versus the ratio f, /f;, for R, equal to

0.1 -=0.2-0.3-0.5-1 and 2 oct/min (relation [8.61]). In addition we deduce from
[8.59] and [8.63] the relation:

af  f
= — =fRIn2 [8.66]
dt T
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Case where the sweep rate R, is expressed in decades per minute

By definition and according to [8.6]

ng _ 60 In fZ/fl

Ro - _ 8.67]
M7 60 o Inlo
60 log £, /f
Ry, =20 108 2/fi [8.68]
tS
or
m2 R
Ry = mS o _—om [8.69]

“"In10  3.3219...
Time spent between two arbitrary frequencies in the swept interval f;, f>

Let us set f, and fz (> f, ) as the limits of a frequency interval located in (f},
f,). The time tg —t, spent between f, and fg is calculated directly, starting from
[8.36] and [8.37] for example:

In fB/fA
f
n-2
fi

tB - tA = tS [870]

Time spent between the half-power points of a linear one-degree-of-freedom system

Let us calculate the time At™ between the half-power points using the relations
established for small &.

A Af
The half-power points have as abscissae f —— and f, + — respectively, i.e.
2

1) 1)
fy (l ——J and f [1+—J, yielding, starting from [8.70], the time At" spent
2Q 2Q

between these points:
1+1/2
n 1tY2Q

At =t _1-12Q [8.71]
In fZ/fl
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This relation can be written:
1+§
AT =T, In
1-¢

i.e. since At =T, /Q

—=— Ih— [8.72]

At
Figure 8.8 shows the variations of — versus &. It should be noted that, for
At
At
£<0.2,— isverycloseto I.
At

4.0
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Figure 8.8. Validity of approximate expression of the time spent
between the half-power points

h{ln/zQJ
Ao 60 li-120

= [8.73
In2 R ]

om

(where At s expressed in seconds) [SPE 61], [SPE 62], [STE 73]. The number
of cycles in this interval is equal to

* *
AN" = f, At



Swept Sine 311

AN*=6_0 fo 1n[1+1/2Q] .
In2 Ry, 1-12Q

ANARAW I

80§‘ \\\ \\ Rom %

2_5 602\ \@X\\ 1/8 %

40% \1 \\\ &1/6 %

20% - \ %214/3
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Oliol\wlrw g{(ﬂ

Q factor

Figure 8.9. Time spent between the half-power points

It should be noted that At given by [8.71] tends towards the value given by

[8.48] as Q increases. Figure 8.9 shows the wvariations of At" versus Q for
R (oct/min) equal to 4, 2, 1, 1/2, 1/3, 1/4, 1/6 and 1/8 respectively.

10?
F 4 2 ]
102 ] 5
s i B
[ER) R .
L 1/2 /
1
B - BESRITE
r | —"] 1/6 ]
T e e i E
] 1/8
109 T Lo el e ben g by gy
0 100 200 300 400 500 600

ts(s)

Figure 8.10. Sweep duration between two frequencies
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Figure 8.10 gives the sweep time necessary to go from f; to f, for sweep rates
Rym (oct/min) equal to 4, 2, 1, 1/2, 1/3, 1/4, 1/6 and 1/8.

Number of cycles per octave

If f, and fy are two frequencies separated by one octave:
fg =21,y
The number of cycles in this octave is equal to [8.42]
N, =T, f, [8.75]

i.e. according to [8.43],

fof
N, =220 [8.76]
In2
fA
N, = QAN [8.77]
f()

Time to sweep one octave

Let us set t, for this duration

ty =T In2 [8.78]

t, = QAtIn2 8.79]
AN

ty = QAN ) [8.80]
fo

Time to sweep 1/n™ octave

T
t, =T 2"/ "="Lm2 8.81]
n

QAt

n

n

In2 [8.82]
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AN
t = In2 [8.83]

8.4.3. Case 2: sweep with constant rate

If we wish to carry out a sweep with a constant rate, it is necessary that

f2

df/dt = constant, i.e., since f = +

uQ’

w=>3sf? [8.84]

At=3f; Q
f0
S f,
A= 2f0€ [8.85]
T

The time spent in the band Af delimited by the half-power points varies in the
same way as the natural frequency f,

df
—=t———=t——=%q [8.86]

where o is a constant.
Increasing frequency sweep
f:oct+f1 [8.87]

The constant o is such that f = f, when t = t¢, yielding [BRO 75], [HOK 48],
[LEW 32], [PIM 62], [TUR 54], [WHI 72], [WHI 82]:
f, —f
=21 [8.88]
by
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This sweep is said to be linear.

Decreasing frequency sweep

fy — f
o=t -2
Q"8

Calculation of the function E(t) [SUN 75]

Increasing frequency:
E(t) = 211;_[t (o t+1;)at
0

E(t) = 2nt{%t+flj

Decreasing frequency:
E(t) = 2 nIt (~oct+£,) dt
0

E(t) = 2nt{—%t+f2J

Sweep rate

This is equal, depending on the direction of sweep, to

I gzl

dt tg

[8.89]

[8.90]

[8.91]

[8.92]

[8.93]

[8.94]

[8.95]
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8.4.4. Case 3: sweep ensuring a number of identical cycles AN in all intervals
Af (delimited by the half-power points) for all values of f,

With this assumption, since the quantity

AN=fAt=fﬁ=ug [8.96]

nf T

must be constant, parameter [3 must itself be constant, yielding:

[8.97]

T
where a = —- The sweep rate varies as the square of the instantaneous frequency.
nQ
This expression is written [BIC 70, PAR 61]:

df
—=tat [8.98]
f

Increasing frequency sweep between f; and f,

By integration,

11
———=at [8.99]
f f

(at t = 0, we assume that f = f}, the starting sweep frequency), i.e. [PAR 61]:

f,
F— [8.100]
1—af1t
or, since, for t =ty , f = f,:
£y -1,
a=-—2 L [8.101]

B f1 l(‘2 tg
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In this case, little used in practice, the sweep is known as Ayperbolic [BRO 75]
(also called parabolic sweep, undoubtedly because of the form of the relation [8.97],
and log—log sweep [ELD 61], [PAR 61]).

NOTE.—

In spite of the form of the denominator of expression [8.100], frequency f cannot
be negative. For that, it would be necessary that 1 —a f;t <0, i.e.

1 — tsz
afr  fa-11

t>

i.e. that t >t .

Decreasing frequency sweeping between f, and f;

df
— = —adt [8.102]
f2

11

——=_at [8.103]
£, f

£
fo—2 [8.104]
I+af,t

For t =ty we have f = f|, yielding:

fy — f
a=-2_1 [8.105]

fy £ t

Expression for E(t)

Function E(t) in the sine term can be calculated from expression [8.2] of f(t):

E(t) =f0t 2nf(t)dt [8.106]
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Increasing frequency sweep [CRU 70], [PAR 61]

E(t)=2nJ't f, dt =2_1'5J'afltd(af1t)

[8.107]
O1-afit a "% 1-afjt

E(t) = —ﬁln(l —af t)
a

2m 1
E(t) = —ln{ J [8.108]
a I-af]t

i.e. taking into account [8.100]

27 f
E(t)=— In — [8.109]
a fi

Decreasing frequency sweep

We have in the same way:

E(t)—2nr f, dt _2_TI:J~af2td(af2t)
- Ol—afzt_ a 0 I-af,t

2
E(t):—nln(1+af2 t) [8.110]
a

Sweep rate

Increasing frequency:

f fy — 1
@ _ p_h-fio

= [8.111]
dt f £, tg
Decreasing frequency:

~ - £2 [8.112]
t
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Tables 9.2 to 9.8 at the end of Chapter 9 summarize the relations calculated for
the three sweep laws (logarithmic, linear and hyperbolic).



Chapter 9

Response of a Linear One-Degree-of-Freedom
System to a Swept Sine Vibration

9.1. Influence of sweep rate

An extremely slow sweep rate makes it possible to measure and plot the transfer
function of the one-degree-of-freedom system without distortion, and to obtain
correct values for the resonance frequency and Q factor.

When the sweep rate increases, it is seen that the transfer function obtained
increasingly differs from the real transfer function. The deformations of the transfer
function result in (Figure 9.1):

— a reduction of the maximum JH;
— a displacement of the abscissa of the maximum &f,;
— a displacement f,, of the median axis of the curve (which loses its symmetry);

— an increase in the bandwidth Af (interval between the half-power points).

When the sweep rate increases:

—beats caused by interference between the free response of the mechanical
system, relatively important after resonance, and the excitation “swept sine”
imposed on the system, are observed appearing on the signal of the response
according to time [BAR 48], [PIM 62]. The number and importance of these beats
are weaker since the damping is greater;
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— then, as if the system were subjected to a shock, the sweep duration decreases.
The largest peak of the response occurs for t > t;, (residual “response” observed

when the duration of the shock is small compared to the natural period of the
system). We will see an example of this in section 9.2.3.

H(f) A

fy 1 sH

Af AF'

/ EX

Y

Figure 9.1. Deformation of the transfer function related to a
large sweep rate (according to [REE 60])

Example 9.1.

Figure 9.2 shows the transfer function of a one-degree-of-freedom system
which is measured with a slow swept sine vibration and a too fast swept sine
vibration with increasing frequencies. The peak is shifted to the right. Conversely,
if the swept sine vibration is carried out with decreasing frequencies, the peak
shifts to the left (Figure 9.3).

Transfer function
Transfer functi
—
g

- T—
00, | L L L L L N 0o . T
1 20 30 40 50 60 70 80 20 100

| L 1 I |
10 20 50 40 50 50 70 %0 %0 100
Frequency (Hz)

Frequency (i2)
Figure 9.2. Swept sine vibration with Figure 9.3. Swept sine vibration with

increasing frequencies decreasing frequencies
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Linear sweep

Response of zg

L

Titne

Figure 9.4. Sweep rate influence on the response of a one-degree-of-freedom system

9.2. Response of a linear one-degree-of-freedom system to a swept sine
excitation

9.2.1. Methods used for obtaining response

The calculation of the response of a linear one-degree-of-freedom system cannot
be carried out entirely analytically because of the complexity of the equations
(except in certain particular cases). Various methods have been proposed to solve
the differential movement equation (analog [BAR 48], [MOR 65], [REE 60],
numerical [HAW 64]), using the Fourier transformation [WHI 72], the Laplace
transformation [HOK 48], the convolution integral [BAR 48], [LEW 32],
[MOR 65], [PAR61], [SUN 75], [SUN80], a series [BAR 48], [MOR 65],
[PAR 61], [SUN 75], Fresnel integrals [DIM 61], [HOK 48], [LEW 32], [WHI 72],
asymptotic developments [KEV 71], parameter variation techniques [SUZ 78a]
[SUZ 78b], [SUZ 79], numerical integration, etc.

E

In general, the transient period of the beginning of the sweep, which relates to
only a low number of cycles compared to the total number of cycles of sweep, is
neglected. However, it is better to choose the initial frequency of sweep at least an
octave below the first resonance frequency of the material, to ensure that this has no
effect [SUN 80].
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9.2.2. Convolution integral (or Duhamel’s integral)

We will see in the following sections that the choice of the initial and final
frequencies of sweep influence the amplitude of the response, which is all the more
sensitive since the sweep rates are larger.

If the excitation is an acceleration, the differential equation of the movement of a
linear one-degree-of-freedom system is written:

mi + ¢z + kz = —mx(t) [9.1]
7+ 280, 2+ 0g z = —X(1) [9.2]

The solution can be expressed in the form of Duhamel’s integral:

wp 2t) = - w"&z J.(: (1) o % (t_k)sinwoyh—&z(t—k) o [9.3]
1_

if z(0) = z(0) = 0 (A = variable of integration). The excitation X(t) is given by:
%(t) = X, sin E(t)

where E(t) is given, according to the case, by [8.92] for a linear sweep, by [8.33]

for a logarithmic sweep or by [8.108] for a hyperbolic sweep (increasing frequency).
If we set

and

these expressions can be written respectively in reduced form:
h, —h
E(0)=6|—2—L0+h, [9.4]
20

E(6) = 6, (h —h,) [9.5]
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E(0)=- i ba S 1n[1 (g - hl)e} [9.6]

h2 es

where
=0, /In(h, /hy)
and
0, = W tg

This yields, A being a variable of integration:

a(6) wo WI sin[ E(A) Msin[ﬁ(@—)»)}dk [9.7]

It should be noted that the reduced response q(6) is a function of the parameters
€, 05, h; and h, only, and is independent of the natural frequency fj,.

Numerical calculation of Duhamel’s integral

Direct calculation of q(0) from numerical integration of [9.7] is possible, but it:

— requires a number of points of integration that become larger as the sweep rate
becomes smaller;

— sometimes introduces, for the weak rates, singular points in the plot of q(6),

which do not necessarily disappear on increasing the number of points of integration
(or changing the X-coordinate).

The results given in the following sections were obtained in this way. Integration
was carried out by Simpson’s method.

NOTE.— If the response is characterized by the absolute acceleration of the mass of
the one-degree-of-freedom system, we have, from [4.71]:

j}(t)=waj(j 55(,1)2‘5 @ (1=4) j/z_‘fjsinw,, NI=E2 (1=2)+2 & coswy1-E7 (1=2) | dA

1-¢

[9.8]
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yielding

q(ﬁ):%—m:ﬁg sin[E(ﬂ,)]e_g(e_A{lzfz sin‘:\ll—§2 (6’—&)}+2§cos‘:\ll—§2 (H—E)Hdﬂ

[9.9]

9.2.3. Response of a linear one-degree-of freedom system to a linear swept sine
excitation

The numerical integration of expression [9.7] was carried out for various values
of h; and h,, for £€=0.1, with between 400 and 600 points of calculation

(according to the sweep rate) and, according to the sweep direction, E(6) being
given by [9.4] if the sweep is at an increasing frequency or by

hy —hy
E0)=0|-—2—1o+h 9.10
(6) { 76 +2} [9.10]

S

if the frequency is decreasing. On each curve response q(6), we have to note:

— the highest maximum;

—the lowest minimum (it was noted that these two peaks always follow each
other);

— the frequency of the excitation at the moment when these two peaks occur;
—the frequency of the response around these peaks starting from the relation

1

fr = ﬂ’ with AO being the interval of time separating these two consecutive
A

peaks.

The results are presented in the form of curves in reduced coordinates with:

— on the abscissae, parameter 1 defined by:

2(df)
n= Q_zL_J [9.11]
fo \dtear
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—

BAR 48], [BRO 75],
SPE 61], [TRU 70],

We will see that this is used by the majority of authors
[CRO 56], [CRO 68], [GER 61], [KHA 57], [PIM 62],

—

7
[TRU 95], [TUR 54], in this form or a very close form (—n, —n, ...).
b

a e

Since, for a linear sweep and according to the direction of sweep,

£y —f
f==2_Llistf [9.12]
S
or
£y — 1
f=-2_Li41,
tS
we have:
Q> f,—f
|“|=';5'*£;—L [9.13]
0 S

If frequency and time are themselves expressed in reduced form, m can be
written:

(dh)
2L2£5Jh=1 [9.14]

with, for linear sweep with increasing frequency:

n=2nQ

dE h,-h
h=—=-2_"1g+h [9.15]
do 0,

and with decreasing frequency:

hy —h;

h=- 0+h, [9.16]

N
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yielding:

% _+ hze_‘shl [9.17]
and

n| =2”Q2% [9.18]

S

— On the ordinates the ratio G of the largest positive or negative peak (in absolute
value) of the response q(0) to the largest peak which would be obtained in steady

state mode (Q / y1— &2 ).

Calculations were carried out for sweeps at increasing and decreasing frequency.
These showed that:

— for given 1 results differ according to the values of the limits h; and h, of the
sweep; there is a couple h;, h, for which the peaks of the response are largest. This
phenomenon is all the more sensitive since 1 is larger (= 5);

— this peak is sometimes positive, sometimes negative;

—for given m, sweep at decreasing frequency leads to responses larger than
sweep at increasing frequency.

Figure 9.5 shows the curves G(n) thus obtained. These curves are envelopes of
all the possible results.

LINEAR 3WEFT SINE

l.Ow T T
Decreasing

0.2 T frequency
0.8

07
0.6

G

Increasing | g

0.3 frequency

0.4
0.3
0.2

S [TTTITTT [T T I T T[T IT [T T I TTT 77T

—
—
(=]
=]
—
(=]
—
(=]
%)

Figure 9.5. Attenuation of the peak versus the reduced sweep rate
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In addition, Figure 9.6 shows the variations with 1 of the quantity

Qof of

fr  Af
where 8f = fp — fy, difference between the peak frequency of the transfer function

measured with a fast sweep and resonance frequency fi (= foy1-2 F,Zj measured

with a very slow sweep.

10 T T T T T

Decreasing
frequency

Increasing
frequency Jr

Figure 9.6. Shift in the resonance frequency (linear and logarithmic sweep)

The frequency fp is that of the excitation at the moment when the response

passes through the highest peak (absolute value). Af is the width of the resonance
peak measured between the half-power points (with a very slow sweep).

The values of the frequencies selected to plot this curve are those of the peaks
(positive or negative) selected to plot the curve G(n) of Figure 9.5 (for sweeps at

increasing frequency). Following the initial and final frequencies, the speed and

direction of sweep, can vary within a certain range.

R

NOTE.— These curves have been plotted for n varying between 0.1 and 100. This is a
very important domain. To be convincing, it is enough to calculate for various
values of 1) the number of cycles Ny, carried out between h; and h, for given Q.

This number of cycles is given by:
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_SitSo, Sl f2l S fot

N 2 ° 2
h;+h, 6
N,=-1""2"s [9.19]
2 2

In addition, we showed in [9.18] that

hy, —h
—on0? |27

n= Q2 fZ fI
f() L
tS Q2 f2 f]
fim
yielding, since Ny = Jit /2 f

2

(43 =17 )07

N =~— 7 9.20
s 27 [9.20]
Example 9.2.
hl = 05
Q=5
hz = 15
If n = 0.1there are Ny = 250 cycles and if n = 10 there are N = 2.5 cycles.

For the higher values of n and for certain couples h;, h,, it can happen that the
largest peak occurs after the end of sweep (t>t;). There is, in this case, a

“residual” response, the system responding to its natural frequency after an
excitation of short duration compared to its natural period (“impulse response”). The
swept sine can be considered as a shock.
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Example 9.3.
n=:60
f; =10 Hz
fy =20 Hz
f, =30 Hz
Q=5

With these data, the duration t, is equal to 20.83 ms.

Figure 9.7 shows the swept sine and the response obtained (velocity:
f =960 Hz/s).

LINEAR SWEPT SINE

05

o= -
AW
g ]
- oof S
3 \/ ]
= s ]
2 05F \/ E
3] L i
g = ]
REETI=REN -
E Response ]

IS (3 w¥T1 RETY FRTY FYRY FETA FUT AT RRTA U1 VA

0 40 80 120 160 200

Time (ms)

Figure 9.7. Example of response to a fast swept sine

It should be noted that, for this rate, the excitation resembles a half-sine shock
of duration t; and amplitude 1.

On the shock response spectrum of this half-sine (Figure 9.8), we would read
on the Y-axis (for f; = 20 Hz on the X-axis) an amplitude of the response of the

one-degree-of-freedom system (f; =20 Hz, Q = 5) equal to 1.22 m/s’, a value
which is that read above on the curve in Figure 9.7.
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Half-sine shock
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Figure 9.8. Shock response spectrum of a half-sine shock
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For the same value of 1, and with the same mechanical system, we can obtain,
by taking f; =1 Hz and f, =43.8 Hz, an extreme response equal to 1.65 m/s”

(Figure 9.9).

In this case the duration has as a value of 44.58 ms.

LINEAR SWEPT SINE
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05f \/ J
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Figure 9.9. Response for the same 1 value and for other limit frequencies
of the swept domain

Note on parameter n

As defined by [9.11], this parameter 1) is none other than the quantity m/u from
relation [8.22]. If we calculate the number of cycles AN according to 1 carried out
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in the band Af delimited by the half-power points, we obtain, according to the

sweep mode:

— linear sweep

£2
AN:Lt_S
Q f, -1
_Q@ f-f
7t

yielding

an=2

n

— logarithmic sweep

2
_Q
fo Ty
anofo b folh
Q Infy/fi Q
2
f,
AN=2=Q_1 20
n fOts fl

— hyperbolic sweep

f, —f,
noq2=h

fi 6t
AN = _fifats

Qlfy —f)
ANZg

[9.21]

[9.22]

[9.23]
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For given Q and 7, the number of cycles carried out in the band Af is thus
identical. As a consequence, the time At spent in Af is, whatever the sweep mode,
for n and Q constant

A= [9.24]

fom

The expressions of the parameters considered in Chapter 8 expressed in terms of
1 are given in Tables 9.2 to 9.7 at the end of this chapter.

o LINEAR SWEPT SINE
. : W T T T T TTTT T T LRI II:
ooF \\f‘\\ Decreasing _
s |- frequency
0.8f s/ :
07F .
S 06 E Increasing \ p
[ frequency X \ ]
05F -
04 u Approximate [ \ 3
03F expressions \5
0_2: L |||||||| L Loty L L]

107 10° 10! 10?
1|

Figure 9.10. Validity of approximate expressions for attenuation G(1)

A good approximation of the curve at increasing frequency can be obtained by
considering the empirical relation (Figure 9.10):

G(n)=1- exp[— 2.55 n‘°~39J— 0.003 n%7° [9.25]

(0<M<100). To represent the curve G(n) relating to sweeps at decreasing
frequency, we can use in the same interval the relation:

Gln)=1-expl-3.18 n 0% [9.26]
When damping tends towards zero, the time necessary for the establishment of

the response tends towards infinity. When the sweep rate is weak, F.M. Lewis
[LEW 32] and D.L. Cronin [CRO 68] stated the response of an undamped system as:
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[9.27]

i.e. if sweep is linear, by:

t
u,, =3.67f s [9.28]
m 0 f2 _ f]

NOTE .-

For the response of a simple system having its resonance frequency f, outside
the swept frequency interval ( f;, f,) in steady state mode, or for an extremely

slow sweep, the maximum generalized response is given:

—for f, < f;,by

u, = m [9.29]

—for fy > f5,by

/
U, = - [9.30]

1{&]2 L ST
Jo 07 1§

When the sweep rate is faster it is possible to obtain an approximate value of the
response by successively combining [9.25] and [9.29], [9.25] and [9.30]:
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= Jfo</Ji

‘. { - exp[—2.55 77“’”} —0.003 770'79}

u, = - [9.31]

T4
fo 1i o’

- Jfo> 1>
7,3 1—exp| -2.55 73 | =0.003 n*”°
U, = { [ ; J } [9.32]
]_[sz +f—22
fo fi 0°

where 1 is given by [9.13].
9.2.4. Response of a linear one-degree-of-freedom system to a logarithmic swept
sine

The calculation of Duhamel’s integral [9.7] was carried out under the same
conditions as in the case of linear sweep, with:

E(6) = 6, (h —h,) [9.33]
or
E(6) = 6, (h, — h) [9.34]

according to the direction of sweep, with £=0.1, for various values of the sweep
rate, the limits h; and h, being those which, for each value of 1, lead to the largest
response (in absolute value). The curves G(n) thus obtained were plotted on
Figure 9.11, n being equal to:

_Q EJ
L g( dt Jp—g,
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Figure 9.11. Attenuation versus reduced sweep rate

21Q* 2mQ* hy
= n—-
0, 0 hy

[9.35]

[ =

S
where
0 =2mnf, T [9.36]

These curves can be represented by the following empirical relations (for
0<n<100):

— for increasing frequencies:
G(n)=1- exp[— 2.55 n‘°~39J— 0.0025 n*7° [9.37]
— for decreasing frequencies:

Gm)=1- exp[— 3.18 n‘°-38J [9.38]

Figure 9.12 shows the calculated curves and those corresponding to these
relations.

The remarks relating to the curves G(m) for the linear sweep case apply
completely to the case of logarithmic sweep.
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LOGARITHMIC SWEFPT SINE

1.0_ N% T T T T TIT1TT T T T 1717117
Dereing
0.8F == 1
07F ]

£ 06 5 Increasing -
o 05 E frequency ]
04F \ .

F Computed curves and ]

0.3 F— approximate expressions .

02 E 1 | I I| 1 1 L1l 1 Lol

107 10° 10! 10°
m

Figure 9.12. Validity of the approximate expressions for attenuation G(1)

NOTE.— These curves are envelopes of the points obtained for various values of
parameters fi, f>, fo and Q (for each value of 1).

The number of cycles between h; and h, is given here by:

f, -1
s=— .t
111 f2/f1
h, —h; ©
N, = 277 Ys [9.39]
In h2 /hl 21
yielding, starting from [9.35]:
Qz
Ng == (h, - hy) [9.40]
M
2nQ?  h
0, = nQ lrlh—2
n ! [9.41]
Qz
tS = lr1 f2 fl
n fo /
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Example 9.4.
If f; =10 Hz n Ny ts (s)
Q=5 0.1 250 137.33
f, =30 Hz 10 2.5 0.1373
fy =20 Hz 60 0.417 0.02289
100 0.25 0.01373

Table 9.1. Examples of sweep durations for given values of

Figure 9.13 shows the swept sine (log) for increasing frequency and the
response calculated with these data for n = 60.

It is possible to find other limits of the swept range (f}, f,) leading to a larger
response.

LOGARITHMIC SWEFT EINE

Ty T [ TR [T O[T T[T [ TTT[PIT[TIaI[TTT

Swept sine

0.5

0.0

-0.5

Acceleration (m/s2)

-1.0

>
>

.15 ol b b bes e b bena Bena b
40 80 120 180 200

Timne (ms)

o

Figure 9.13. Example of response to a fast swept sine

The curves G(n) obtained in the case of linear and logarithmic sweeps at

increasing and decreasing frequencies are superimposed in Figure 9.14. We obtain
very similar curves (for a given sweep direction) with these two types of sweeps.
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Figure 9.14. Comparison of the attenuation of linear and logarithmic sweeps

9.3. Choice of duration of swept sine test

In this section, the duration of the tests intended to simulate a certain particular
swept sine real environment will not be considered.

During an identification test intended to measure the transfer function of a
mechanical system, it is important to sweep slowly so that the system responds at its
resonance with an amplitude very close to the permanent response, whilst adjusting
the duration of sweep to avoid prohibitive test times.

It has been seen that a good approximation to the measure of the resonance peak

could be obtained if n

was sufficiently small; J.T. Broch [BRO 75] advised, for

example, that N <0.1, which ensures an error lower than 1-G =1%. For a given

1 -Gy error, the curve G(n) makes it possible to obtain the limit value No which 1

should not exceed:

df
K
dt Jpg,

n=——5—
fy

Ny
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2
Linear sweep Hh-fi Q_2 <M t > f - 21 2
ts £y Ny fo
L Q>  f
Logarithmic sweep ty = In-%
fomng £
Q? In(fy/f; £y Mo
f() tS Q In2
fo Mo
R om < 60—
Q“In2
f, —f, fy —f
Hyperbolic sweep Q* 2 1< o tg = 22 1
fi £ t fifamo

Table 9.2. Minimal sweeping duration versus sweeping mode

It should be noted that, in this last case, tg is independent of f;;. In both other
cases, f, being in general unknown, f; will be selected as equal to the value of the
swept frequency range which leads to the largest duration t .

Example 9.5.
The required sweep rate for a logarithmic sweep between 5 Hz and 2,000 Hz.

Let us assume that a resonance with a Q factor having possibly the value 50,
can be found on the studied structure (Q factors are in general weaker).

2
f
In—2 has to be lower than 0.1, or

Then the reduced sweep rate 1 =
foty fi
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The natural frequency being unknown (the purpose of the test is to measure it)
we consider the most penalizing case for the calculation of the duration by
supposing that f; is equal to the lowest frequency of the swept frequency range,
i.e. in this example, to 5 Hz. This yields

2
[ 250 12,000
0.15 5
t, >2,9957 s

ie. t, 2499.29min. The number of octaves between 5 Hz and 2,000 Hz equals

. In(f, /) 1n(2,000/5)
In2 In2

= 8.64

The sweep rate expressed in octaves per minute must thus be equal to

8.64
= 0.017

499.29

For a Q factor equal to 10, the sweep rate would be equal to 19.97 min (i.c.
0.43 octave/min).

This example shows the limits of the rule which specify a sweep rate equal to
1 octave per minute. This rule does not apply for low natural frequencies or high Q
factors.

Figure 9.15 shows the required sweep rate as a function of the natural frequency,
for three Q factor values (5, 10 and 50). It can be seen that the sweep rate has to be
lower than 1 octave per minute if f; is approximately less than 2.5 Hz for Q = 5,
11.5 Hz for Q = 10 and 280 Hz for Q = 50 (Figure 9.16).
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Figure 9.15. The required sweep rate with respect to the
natural frequency for a Q factor equal to 5, 10 and 50
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Figure 9.16. The required sweep rate with respect to the natural frequency
for a Q factor equal to 50
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Figure 9.17. Lowest natural frequency which can be to be correctly measured versus
O factor, for various values of the sweep rate

The couples, natural frequency — Q factor which can be measured with a
negligible error (n < 0.1) with a sweep rate equal to 1 octave/minute locate at the top
of the curve corresponding to this value in Figure 9.17. For example, a Q factor
Q=30 at 20 Hz will not be correctly measured if the sweep rate is equal to
1 octave/minute.

9.4. Choice of amplitude

To search for resonance frequency the amplitude of the excitation must be:

— sufficiently high to correctly “reveal” the peaks of resonance in the response. If
the structure is linear, the values of Q measured are independent of the sweep level;

— sufficiently weak not to damage the specimen (by exceeding an instantaneous
stress level or by fatigue). The choice must thus be made by taking the levels of the
real vibratory environment into account.



Response of a Linear One-Degree-of-Freedom System 343

If the structure is not linear, the value of Q measured depends on the level of the
excitation. Generally, Q decreases when the level of the excitation increases. If we
wish to use an experimental transfer function in calculations, we will have to
measure this function using an excitation in which the level is close to those of the
real environment that the structure will exist in. Two levels (or more) often have to
be chosen.

9.5. Choice of sweep mode

The more common use of swept sine is for the determination of the dynamic
properties of a structure or of a material (natural frequencies, Q factors). For this
type of test, the sweep rate must be sufficiently slow so that the response reaches a
strong percentage of the response in steady state excitation (however, it will be seen
(Volume 3) that there are methods using very fast sweeps).

The relations allowing the determination of the test duration are based on the
calculations carried out in the case of a linear one-degree-of-freedom system. It is
admitted then that if this condition is obeyed, the swept sine thus defined will also
create in a several degrees-of-freedom system responses very close to those which
one would obtain in steady state mode; this assumption can be criticized for
structures having modes with close frequencies.

For this use, it may be worthwhile choosing a sweep mode similar to that which
leads to the lowest test duration for the same percentage G of steady state response.
According to the relations given in section 9.3, it unfortunately appears that the
mode determined according to this criterion is a function of the natural frequency f
to be measured in the swept frequency interval. Generally a logarithmic sweep is the
preferred choice in practice.

The hyperbolic sweep, little used to our knowledge, presents the interesting
property of carrying out a constant number of cycles in each interval Af delimited
by the half-power points of a linear one-degree-of-freedom system, whatever the
frequency of resonance (or a constant number of cycles of amplitude higher than P%
of the Q factor [CRE 54]).

This property can be used to simulate the effects of a shock (the free response of
a system is made with the same number of cycles whatever the resonance frequency
fy, provided that the Q factor is constant) or to carry out fatigue tests. In this case, it
must be noted that, if the number of cycles carried out at each resonance is the same,
the damage created by fatigue will be the same as if the excitation produces a
maximum response displacement z_, (i.e. a stress) identical to all the frequencies.
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Gertel [GER 61] advises this test procedure for materials for which the lifespan
is extremely long (equipment installed on various means of transport, such as road
vehicles or aircraft).

The sweep duration tg can be defined a priori or by imposing a given number

AN of cycles around each resonance, the duration t¢ then being calculated from:

f —
t,=QAN 21 [9.42]
fi £

by introducing the value of the highest Q factor measured during the identification
tests (search for resonance) or a value considered representative in the absence of
such tests. Limits f; and f, delimit a frequency range which must include the
principal resonance frequencies of the material. This type of sweep is sometimes
used in certain spectral analyzers for the study of experimental signals whose
frequency varies with time [BIC 70].

To simulate an environment of short duration At, such as the propulsion of a
missile, on a material of which the resonance frequencies are little known, it is
preferable to carry out a test where each resonance is excited during this time At
(logarithmic sweep) [PIM 62]. The total duration of sweep is then determined by
relation [8.38]:

f
t, = QAtln—= [9.43]
fi
NOTE.—

The test duration t, thus calculated can sometimes be relatively long,

particularly as it is generally necessary to subject the specimen to the vibrations on
each of its three axes. Thus, for example, if Q =10, At =20 s, f; =10 Hz and

f> = 2,000 H:z:

ty =~ 1,060 s,

yielding a total test duration of 3 x 1,060 s = 3,180 s (53 min).



Response of a Linear One-Degree-of-Freedom System 345

C.E. Crede and E.J. Lunney [CRE 56] recommend that a sweep is carried out in
several frequency bands simultaneously to save time. The method consists of cutting
out the signal (swept sine) which would be held between times t; and t, in several

intervals taken between t; and t, : t, and t,, ... . t, and t,, and applying the sum

of these signals to the specimen.

Knowing that the material is especially sensitive to the vibrations whose
frequency is located between the half-power points, it can be considered that only
the swept component which has a frequency near the frequency of resonance will act
significantly on the behavior of the material, the others having little effect. In
addition, if the specimen has several resonant frequencies, all will be excited
simultaneously as in the real environment.

Another possibility consists of sweeping the frequency range quickly and in
reducing the sweep rate in the frequency bands where the dynamic response is
important to measure the peaks correctly.

C.F. Lorenzo [LOR 70] proposes a control technique based on this principle,
usable for linear and logarithmic sweeps, making it possible to reduce with equal
precision the test duration by a factor of about 7.5 (for linear sweep).

The justification for a test with linear sweep clearly does not appear, unless we
accept the assumption that the Q factor is not constant whatever the natural
frequency fy. If O can vary according to a law Q = constant x f, (the Q factor

often being an increasing function of the natural frequency), it can be shown that the
best mode of sweep is the linear sweep.
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Type of sweep Hyperbolic Logarithmic Linear
) o, 5 T f T
Sweeprate |f=+——f =+af” | f=2——f=4— =t——=ta
uQ YQ T 8Q
2
T 2 n Q b ocQ2
T]:—:aQ T]:—Z_ n=—2= 5
Constant H vh T 8y fo
2
! pogtloh _Q @ h-h
f,
£7 A — f_flet/Tl f=at+f
Law fi(t) f
£l f= 2 f:fzet/Tl f=-ot+f,
1+af2t
2n o
E(t)=——(1-af t)]|] E=2nT|f -1 E=2nt[+f)
£f7 . ( ) 1( 1) , h
2 (
fL1 B0 ="Cm(i+at )| B=2nT(f, -f) B=2m{-"+h
a
_h-fi _m ty, _ yQ? LI s |
tfifa nQ* | ' m/)  n Q5 1
Cst 1 n Q2
AN Q nf,
£, - f Q% In(f, /1) Q% f, -1
n Q22— 2/ QL -1
fy £ tg fo ts ot

Table 9.3. Summary of sweep expressions
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Type of Hyperbolic Logarithmic Linear
sweep
1. f I (2 o
s a“fl Ny =T (f, - 1)) s 2a(2 1)
Number of 1
cycles fi f £, | Ny=-2—1t fi + 15
carried out | Ng = ﬁts lnf— lnf—z N, = 42 t
during t 271 1 f;
between the
f, - f QAN
frequencies | Ny =QANIn—= | Ny=QAN2—1 | Ny= 2 (fzz - f12)
f, and f, fi fo 0
2 2 2
NS:Q_lnf_2 Ns:Q_(fz_fl) Ns—zifz (f22_f12)
n f n fy 0
1 £, —f 1
s = 2 ! tsleln_2 ts__(fZ_fl)
a fl f2 fl
Sweep £, - Q At
duration | ts = Q fo At 2f : 1 ts=QAtlnf—2 s=f_(f2_f1)
between the 172 1 0
frequencies —f AN  f QAN
fqandf ty = QAN 2—1 S=Q—1n—2 ty="—5—(f, - 1)
1 2 f] f2 fO f] f()
2 2 2
@nen |0 | 9
n f] f2 n fO f] n fo
1 T fo
At = _ 1 At = ——
a Qf, At = = constant @ Q
Interval of
time spent in f] £, tg 3 tg fy tg
the band Af | At= £ et At_—l £/ At = -
0Q(t ~1) QlInfy/f; Q(fy 1)
=2 =2 A=
n f, nfy nf,

Table 9.4. Summary of sweep expressions



348  Sinusoidal Vibration

Type of Hyperbolic Logarithmic curve Linear
sweep
fy T 2
Number of | AN = T =constant AN = 21 AN = fo
cycles aQ Q aQ
carried out
in the N 2
interval AN = f52 AN = fo Ns AN = 2 fg st
Af S Q(fy - f;) Qlfy ~ 1
(between 1
the half- £ £t £t 2
power AN L2 AN=—05 AN = fo ts
points) of Q (fz - 1)) Qlnfy/fy Q(f, - 1)
a one-
degree-of-
freedom AN = g AN = g AN = g
system n n n
1 f
N, =—In-2 Ny =T (f - 1)) Ny = —(f5 - £)
a fj 20
Number of
cycles to A QAN
be carried N;=Q AN In—~ IZQ—(fO— 1) 1= 5 (fg— 12)
f f 21,
out 1 0
between f;
amdfy o fifhty fo _, fo-fi t, ¢ - f2
(resonance 1 P £ 1 In £, /f 1=
frequency) 20 2/ 2 -1
2 2 2
f Q 2 2
N = Ll Ny =——(f,-f) | M= {15 - 17
1 1 o~ h 2m £
nof nfy
1f,—f
t=———t t =T In—> 6 =—(f-1)
between f] fo— QAN f QAN
0 1 0
and f, t;=Q AN 1= In— == (fo_fl)
fO fl f0 fl f0

Table 9.5. Summary of sweep expressions
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Type of sweep Hyperbolic Logarithmic curve Linear
f2 fO fl In fO / fl fO — fl
: 4= 1=t 4 =1
Time t, £y £ — In f, /f; f, -
between f
2 2 2
and f;, tle—M t) _Q_lnf_o tlz_z(fo_fl)
n fofy nfy f n fo
/ No =T fo No=—f
20
QAN
Number of / Ny =QAN 0= —
cycles 2
to carry out f02
between f; = 0 / / No =—"—1
2f,
and f;,
QZ
2n
f,
/ / tg = >
o
QAN
Time ¢, / / fo = £
between f; = 0 :
and f, / / ty ==~ 1t
f
2
/ / ty = o
n fy
Mean £ = fi lnf_2 £ = Hoh f fith
m m m
frequency f,—f, f Inf, /f) 2
. 1 1 fi £, —
Time spent |t -t =[K_E} leffl Sl —t, =t In f, /f C oty =t fo —fa
between fa In f2 /fl fz - fl
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- =Qi(i 1) -1, _Qz1 fol, _, :Qi(f Y
€, H) | e ntfa fCJ Ny f, S

Table 9.6. Summary of sweep expressions
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Type of Hyperbolic Logarithmic curve Linear
sweep
In2 N 3 fz
2= N, =T f 2= 1A
a 2 1 1A 20
Numbers of
cyclesper N2 :2fA tS 1112 N2 _ fA tS = 3fA tS
octave In2 2
(fA: lower fA 3QAN 5
frequency of | N, = QANIn2 N, =QAN— 2= 7 1A
the octave) £y 21,
2 22 2.2
3Q°f f
N, =—In2 N, = QZA 2:Q A
n 2nfy nfy
1 f
t2= t2=T11n2 tzzi
2af, o
Qfy At QAt
Time t, = t, = QAtln2 ty=—""14
necessary to AN f,
SWEEP an Q AN Q AN Q AN
octave ty=— t, = In2 ty, = > fa
2f, f, f,
' EMBED Q2 In2 Q2 fA
nf, nf,

Table 9.7. Summary of sweep expressions
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Type of Hyperbolic Logarithmic curve Linear
sweep
1/n
1 27" -1 T f
J— t =2 ty=—(2'/" 1)
afA 21/11 n o
Time QAN 2'/" -1 QAN QAN 1/,
necessary to =T T i/a t, = In2 |t, = fa (2 —1)
sweep 1/nth fa 2 fy n fo
octave ;
1/n At QAt
Qa2 o) QA h=——f (2" 1)
£ pl/m n f,
QZ 2l/n 1 Q21r12 Q2 /n
e I PR T
60Inf, /f f, - f
/ UL YA P - i
tgIn2 tg
Sweep rate 60
/ om ~ /
Tl In2
_ 601 fj T]fz
/ Q%2 R=60 —
Q

Table 9.8. Summary of sweep expressions






Appendix

Laplace Transformations

A.1. Definition

Consider a real continuous function f(t) of the real definite variable t for all
t > 0 and set

F(p) = L[f(1)] = I:e‘pt f(t) dt [A.1]

(provided that the integral converges). The function f(t) is known as “origina” or
“object”, the function F(p) as “image” or “transform”.

Example A.1.

Consider a step function applied to t = 0 and of amplitude f_, . Integral [A.1]
gives simply

[Pt

Flp) = [t = -

[A.2]
p

f
F(p) = [A3]
p
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A.2. Properties

In this section some useful properties of this transformation are given, without
examples.

A.2.1. Linearity
L[, (1) + £ (1)] = L[, ()] + L[, (1)] [A.4]

Lc f(t)] = ¢ L[f(1)] [A.5]

A.2.2. Shifting theorem (or time displacement theorem)

£t

ol T T

Figure A.1. Shifting of a curve with respect to the variable t

Consider f(t), a transformable function, and operate a translation parallel to the
axis Ot, of amplitude T (T > 0). If F(p) is the transform of f(t), the transform of
f(t—T) is equal to

-pT
o(p) =< F(p) [A.6]
(formula of the translation on the right or shifting theorem).

Application
A square shock can be considered as being created by the superposition of two

levels, one of amplitude f,, applied at time t =0 (transform: f—m see preceding
p
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example), the other of amplitude —f,, applied at time t =1, of transform

S

— M o™ PT yielding the expression of the transform
p

L(p)=f?"1(1—e‘“) [A.7]

A.2.3. Complex translation

Lt(t) ™Y = F(p+a) [A.8]

This result makes it possible to write the transform of f(t) e ! directly when
that of f(t) is known.
A.2.4. Laplace transform of the derivative of f{(t) with respect to time

The transform of the derivative f'(t) of f(t) with respect to t is equal to
Lle'(0)] = p F(p) - (0] [A9]
where F(p) is the Laplace transform of f(t) and f(0+) is the value of the first

derivative of f(t) for t = 0 (as t approaches zero from the positive side).

In a more general way, the transform of the n™ derivative of f(t) is given by

I L{j“nf} oM ()= p" (0" )= p" 20t )= - pf(n—z)(0+ ) f(n—l)(0+)
t

[A.10]
where f(n_l)(0+), f(n_z)(0+),..., f'(0+) are the successive derivatives of f(t) for

t = 0 (as t approaches zero from the positive side).
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A.2.5. Derivative in the p domain

The n™ derivative of the transform F(p) of a function f(t) with respect to the

variable p is given by

t" f(t)] [A.11]

A.2.6. Laplace transform of the integral of a function f(t) with respect to time

If lim I;’f(t) dt =0 when ¢ — 0,

LUOtf(t) dt}: % [A.12]

and to the order n

T [t [ton o1 Flp)
[{J.()dt Iodt"'-[of(t) dtJ: o [A.13]

A.2.7. Integral of the transform F ( p)

The inverse transform of the integral of F(p) between p and infinity is equal to:

f(t) |

| 7F(p) dap = Lt—J [A.14]

p t

When integrating n times between the same limits, it becomes

f:dp .[:dp'--.[:F(p) dpﬂ-ﬁﬂﬂ [A15]
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A.2.8. Scaling theorem

If a is a constant,

{f{iﬂ =a Flap) [A.16]
Lf(a t)] = i FE} [A.17]

A.2.9. Theorem of damping or rule of attenuation
F(p+a)=‘[:e_pt e 21 1(t) dt [A.18]

The inverse transform of F(p + a) is thus e *' f (t). It is said that the function

e ! damps the function f(t) when a is a positive real constant.
A.3. Application of Laplace transformation to the resolution of linear
differential equations

For the principal use of the Laplace transformation, the interest resides in the
property relating to derivatives and integrals which become, after transformation,
products or quotients of the transform F(p) of f(t) by p or its powers.

Let us consider, for example, the second order differential equation

d’q(t)  dq(t)
.

2 +a . bq(t) = f(t) [A.19]

where a and b are constants. Let us make Q(p) and F(p) the Laplace transforms of

q(t) and f(t) respectively. From the relationships in section A.2.4, we have
.. 2 .
td(t)] = p” Qlp) -p a(0) =4(0) [A.20]

La(t)]=p Q(p) -q(0) [A21]
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where q(0) and (0) are the values of q(t) and its derivative for t = 0. Due to the

linearity of the Laplace transformation, it is possible to transform each member of
differential equation [A.19] term by term:

L[g(t)] +a Lla(t)] + b L[q(t)] = LL£(t)] [A.22]

By replacing each transform with its expression, this becomes

p° Q(p) —p a(0)-q(0) +a[p Q(p) ~a(0)] + b Q(p) = F(p) [A.23]
Q(p) _ F(P)+Pq2(0)+aQ(0)+Q(O) [A24]
p +ap+b

F(p)+ pa(0) + aq(0) +4(0)
p2 +ap+b
fractions; while noting that p; and p, are the roots of the denominator

Let us expand the rational fraction into partial

p2+ap+b,wehave

Ap+B C D
. - + [A.25]
p"+ap+b p-p P-pP2
with
Ap, +B
A =q(0) c=~PTZ
P = P2
Ap,+B
B =aq(0)+q(0) p=_—P277
b1 P2
yielding
F(p) 1 I—Ap1+B Ap2+B—|
Qlp) =— + - [A.26]
p-+ap+b pl—sz P-p; P-py J
ie.
F(p)|r 1 1 1|
Qlp) = -
Pl_PzLP_Pl P‘pz_‘
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q(0) p; +a q(0)+q(0) q(0) p, +a q(0) +q(0)

[A.27]

=

|
=l
v
1
o

|
=

| Sl %)

{[q(O) pi +aq(0)+4(0)] ™ “ =[q(0) p, +a q(0) +¢(0)] ™ t}
P1~P2

[A.28]
where A is a variable of integration. In the case of a system initially at rest,
q(0) = q(0) = 0 and

(2
Qlp) = IJ—( ) [ep' (1=2) _ P2 (H“)}d?» [A.29]
P1 = P2

A.4. Calculation of inverse transform: Mellin—Fourier integral or Bromwich
transform

Once the calculations are carried out in the domain of p, where they are easier, it

is necessary to return to the time domain and to express the output variables as a
function of't.

We saw that the Laplace transform F(p) of a function f(t) is given by [A.1]

F(p) = L[f(t)] = I: e P () dt [A.30]

The inverse transformation is defined by the integral known as the Mellin—
Fourier integral

L_I[F(p)] = (1) = 1 C+ioo

pp i JF(p) e dp [A31]

and calculated, for example, on a Bromwich contour composed of a straight line
parallel to the imaginary axis, of positive abscissae C [ANG 61], C being such that
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all the singularities of the function F(p) P are on the left of the line [BRO 53];

this contour thus goes from C —1i oo to C+1 oo.

If the function F(p) P! only has poles, then the integral is equal to the sum of
the corresponding residues, multiplied by 2 mi. If this function has singularities

other than poles, it is necessary to find, in each case, a equivalent contour to the
Bromwich contour allowing calculation of the integral [BRO 53] [QUE 65].

The two integrals [A.1] and [A.31] establish a one-to-one relationship between
the functions of t and those of p.

These calculations can in practice be rather complex and, where possible, it is
preferred to use tables of inverse transform which directly provide the transforms of
the most common functions [ANG 61, DIT 67, HLA 69, SAL 71]. The inverse
transformation is also performed using these tables after having expressed results as
a function of p in a form revealing transforms whose inverse transform appears in
Table A.1.

Example A.2.

Let us consider the expression of the response of a one-degree-of-freedom
damped system subjected to a rectangular shock of amplitude one of the form
f(t) =1 and of duration t. For this length of time 7, i.e. for t <1, the Laplace
transform is given by (Table A.1):

F(p)=— [A.32]

NOTE.— After the end of the shock, it would be necessary to use the relation

1-e P7
F(p)=—%__
(=12

Equation [A.24] applies with a = 2 € and b =1, yielding

{l+pqo+2§qo+qo-‘
dﬂ:Iﬂlp [A.33]
{ b2+2§p+D) J




Appendix 361

I N
q(t)ZLle(pzﬂépH)f%thmJ

1
2 o) Ul ——— A34
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yielding, using Table A.1 (& # 1):

-
e (&sin\/l—ﬁz t+\/l—§2 cosx/l—&2 t)
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—Et
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2 {@(% —1) COSQP[&(I_%)_%] Sinﬁt}

[A.36]

e ot

q(t) =1+
1-&

A.S. Laplace transforms

Function f(t) Transform L[f(t)] = F(p)
1
1 —_—
p
1
t 2
p
1
at
e
p-a
i a
sin a t -
p +a
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Table A.1. Laplace transforms

These transforms can be used to calculate others, for example starting from

decompositions in partial fractions such as

1 1

p(p2+ap+l) p p2+ap+1

pta

[A.37]



Appendix 365

e, . [A.38]

where, in these relations, there arises a = 2 &.

A.6. Generalized impedance — the transfer function

If the initial conditions are zero, equation [A.24] can be written
2
(p +ap+b) Q(p) = F(p) [A.39]
i.e. while setting
2
Z(p)=p°+ap+b [A.40]

F(p) = Z(p) Q(p) [A41]

By analogy with the equation which links the current 1(Q) (output variable) and
the tension E(Q) (input variable) in an electrical supply network in sinusoidal mode

E(Q) = Z2(Q) 1(Q) [A.42]

Z(p) is called the generalized impedance of the system, andZ(Q) is the transfer
impedance of the circuit. The inverse of A(p) of Z(p), I/Z(p), is the operational

admittance. The function A(p) is also termed the transfer function. It is by its
intermediary that the output is expressed versus the input:

Q(p) = —— F(p) = Alp) F(p) [A.43]






Vibration Tests:
a Brief Historical Background

The first studies on shocks and vibrations were carried out at the beginning of
the 1930s to improve the behavior of buildings during earthquakes. With this
framework in mind, M.A. Biot defined the shock spectrum to characterize these
phenomena and to compare their severity. The term shock spectrum has since been
changed to shock response spectrum (SRS) in order to avoid any confusion and to
clearly show that it characterizes the response of a (linear with one-degree-of-
freedom) system subjected to the studied shock.

Vibration tests on aircraft were developed from 1940 to verify the resistance of
parts and equipment prior to their first use [BRO 67].

Such tests became necessary as a result of:

—the increasing complexity of on-board flight equipment which was more
sensitive to vibrations;

— improved performance of aircraft (and, more generally, of vehicles), to the
extent that the sources of vibration initially localized in engines became extended
substantially outwards to the ambient medium (aecrodynamic flows).

The chronology of such developments can be summarized as follows [HUN 99],
[PUS 771:

1940  Measurement of resonance frequencies.
Self-damping tests.
Sine tests (at fixed frequency) corresponding to the frequencies created by
engines running at a constant speed.
Combined tests (temperature, humidity, altitude).
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The exciters which were used at the time were mechanical and the vibration
was created by the rotation of off-centered mass. Shock machines, of
standard impact, were developed shortly after. The table, guided by vertical
columns, fell into a tub filled with sand. The shape of the shock created
during the impact could be selected by fixing pieces of wood of particular
form under the table of the machine.

The first electrodynamic exciters were developed [DEV 47], [IMP 47].
Their limited power made it possible to carry out only tests of sinusoidal
vibrations.

At this time, the first standards were written and used for the acceptance
tests carried out on each material. The measured vibratory environments
being in general of random type, the standards quickly evolved towards
“swept sine” tests which made it possible to cover a broad range of
frequencies in spite of the limitations of the exciters.

Swept sine tests were introduced to simulate variations in engine speed, or to
excite all of the resonance frequencies of the test item, regardless of its value.

Test severities resulted from measurements of the real environment taken
on a category of carriers. The measured signals were filtered using square
filters and the largest peak of the response of the filters was drawn on an
amplitude-filter central frequency diagram.

The group of points thus obtained was largely enveloped by straight line
segments in order to define a swept sine test, with constant displacement at
low frequency, then eventually with constant velocity and finally with
constant acceleration.

Thus, the standards proposed swept sine tests, which are often still specified
today in certain documents. It was, however, understood that it would be
better to apply random vibration tests, and it was attempted to specify swept
narrowband random vibration tests, broadband random vibration tests not
being possible because of the lack of power of machines. All of these
studies were essentially completed for military applications.

Similarly to today, shocks carried out on the shock machines were limited
to simple shapes: half-sine wave, square (or trapezoidal) shock and terminal
peak sawtooth shock. For convenience, and in order to reduce costs, the
possibility of creating shocks directly with an exciter was studied. With the
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test specimen remaining on the same machine for both shocks and
vibrations, it was possible to gain much time.

Specifications and tests with random vibrations (introduction of jet engines,
simulation of jet flows and aerodynamic turbulences with continuous
spectra). These tests were highly controversial until the 1960s [MOR 53].
To overcome the insufficient power of such installations, attempts were
made to promote swept narrowband random variations in the frequency
domain of interest [OLS 57].

First publications on acoustic vibrations (development of jet rockets and
engines, effect of acoustic vibrations on their structures and equipment).

First acoustic chambers [BAR 57], [COL 59], [FRI 59].

The specification of random vibration became essential and the possibilities
of an exciter were sufficient to carry out broad band random vibrations.
Studies were carried out to determine equivalences between random and
sine vibrations.

Missiles and also space vehicles and satellite launchers use many
pyrotechnic devices, which enable them to use very precise time slots
during the operation of equipment (separation between propelling stages,
firing of an engine for example). These devices contain small amounts of
explosives which generate very short, but locally very severe, high
frequency shocks, which are propagated in the structures while attenuating
and combining with the response of structures. The frequency contents of
these “pyrotechnical shocks” thus increases with frequencies closer to those
of the equipments. Their amplitude remaining still significant, these shocks
can produce important malfunctions.

In the 1960s some publications reported the new interest in these shocks,
which were often regarded as not very severe because of the very high
frequency. Following incidents, a very large number of works were published
in the early 1980s, and this interest has continued until today, both to measure
shocks, study the propagation, to attenuate or to filter them mechanically and
to take them into account in the softwares used for the dimensioning of parts.

With acceptance tests arriving late in the design/production process, in the
event of problems with the behavior of the materials, it was preferred in
around 1960 to carry out qualification tests before beginning the production
of the products, using standards still defined without reference to the real
environment.
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J.W. Cooley and J.W. Tukey’s algorithm for calculating FFTs [COO 65].

Although the spectrum of shock is still criticized and not used to specify the
shocks in the standards, it was very useful for severity comparison of
several shocks in the absence of a more powerful tool. Some first attempts
were made to try to control the exciters directly starting from a shock
response spectrum, in order to be able to simulate shocks for which the SRS
is difficult to reproduce starting from a simple shape shock.

Increasing number of publications on acoustic vibrations.
Tri-axial test facility [DEC 70].
Development of digital control systems.

The use of standards that superficially recreate the environment sometimes
led to the creation of products which were too large for their environment,
or sometimes to imaginary problems — the material being designed more to
resist the qualification tests than to resist real conditions of the
environment. It was in addition often necessary to reduce the mass of the
material to the maximum. It was thus necessary to dimension the material
to resist, with a certain margin, its real conditions of use.

This remark was at the origin of the development of a method transforming
and epitomizing measurements of the mechanical environment into test
specifications expressed in a simple form and with a reduced duration in
order to reduce costs. This procedure implies:

— determination of the life profile of the products;

— searching for measurements corresponding to each condition of the
identified environment;

— then, the synopsis of all the data collected in order to calculate the
simplest possible specification from it, with a small number of tests of
reduced duration if the real environment is of long duration;

— finally, the tests thus determined must be organized in order to ensure
the best representativeness of the tests with the lowest cost.

Extreme response spectra and fatigue damage spectra developed; useful in
writing specifications (a method in four stages starting from the lifecycle
profile).
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Equivalence necessary during the synopsis is based on two criteria: the
reproduction in the tests of the largest stresses created in the product when
it is in its real environment (except duration reduction) and the reproduction
of the fatigue damage related to a large number of stress cycles undergone
by the material. These two criteria are the base of the extreme response
spectra and fatigue damage spectra developed around 1975, unifying the
methods of shock and vibration analysis. The application of this method
supposes the exploitation of many measurements and the realization of
calculations, which led to the development of software running under
Windows and, associated with databases, under Unix.

Account taken of the tailoring of tests in certain standard documents (MIL-
STD-810F [MIL 97], [GAM 92]): development of specifications on the
basis of measuring the real environment.

Versions of the standards MIL STD 810 D in the USA and GAM EG 13 in
France, then NATO standards, have themselves evolved in this direction in
years 1980/1985, requiring the test tailoring. However, only standard GAM
EG 13 proposes and describes in its technical appendices the method by the
equivalence of damages.

At that time the MIL STD 810 standard explicitly authorized the use of the
shock response spectrum to specify shocks.

Taking the environment into account in the project management (according
to the R.G. Aero 00040 Recommendation).

Test tailoring makes it possible to demonstrate during the qualification tests
that the developed product will be resistant to its future real environment.
These tests arrive late in the event of failure, since they oblige a resumption
of the design of the object. This is why in around 1990 the concept of
tailoring the product to its environment was introduced, which encourages
taking into account the real environment through a step of tailoring at the
very beginning of the project.
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First standards
Acceptance tests

Qualification tests
Severities specified in standards

Qualification tests

Test tailoring

(MIL STD 810 D, GAM EG13)
NATO Standards

Taking environement into account
in the project management
RG Aero 00040)

1930

1935

1940

1945
1950

1955
1960
1965
1970
1975

1980

1985
1990
1995

|
i
2010

Shock spectrum (earthquakes)

High impact shock machines
Measurement of resonance frequencies
Self-damping tests

Sine tests (on resonance)

First electrodynamic exciter
Impact shock machines

Swept sine tests

Swept narrow band random tests
Shaocks on exciters

Broad band random vibration tests
Pyrotechnic shocks

Exciter control using a SRS

Triaxial test faciity

Development of exciter contrel using a SRS
MRS and FDS - Test talloring
4 steps (IRIS 80)

Papers on pyroshocks

Reference to SRS in the MIL STD810D Std
Test taloning softwares on PC

Test taloring softwares under TN

Test tailoring softwares on workstation

Historical background. Overview of the main developments in the
field of vibrations, shocks and standardization of tests
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- diagram, 181

0,P,Q

octave, 294

one degree of freedom system, 80, 98

peak factor, 193
potential force field, 86
power, 229

- spectral density, 31
principle of

- causality, 41

- least action, 81
Propeller airplanes, 8
pseudo-period, 130, 134

reduced -, 216
pseudo-pulsation, 128, 130
pseudo-sinusoidal, 215
quadratic damping, 63
quality factor, 145, 201, 222, 274,

297, 342
quantization

- error, 25

- step size, 26

R

random vibration, 188
real environment, 3
air, 8
helicopters, 9
jet propulsion airplanes, 8
rail, 7
road, 6
sea, 3
sea state, 5
swell, 5

turbofan aircraft, 9
receptance, 257
reduced sweep rate, 324
relative damping, 134
remanent deformation, 74
resolution of the quantizer, 26
resonance, 237

- frequency, 199, 248, 295
response, 103

absolute -, 107

aperiodic -, 123

damped oscillatory -, 129

free -, 128

impulse -, 161

indicial -, 145

reduced -, 106

steady state -, 219

step -, 145

- to a swept sine, 321

transient -, 215
restoring force, 49
rheology, 67
rms quantization error, 26
rms value, 192, 229
Rocard integral, 173
rotating machines, 2
rubber, 287

S

sampling

- frequency, 21

- rate, 22
search for resonance, 344
selectivity, 231
sensor, 11
Shannon theorem, 21
shock, 188, 328, 343
shock response spectrum, 31
signal conditioner, 14
signal reconstruction, 28
simple harmonic, 129
sine, 188



absolute response, 207, 219

relative response, 204, 215
sound velocity, 46
specific damping capacity, 281
specification, 295

spring

- constant, 50

hardening -, 288

softening -, 288
standard

AIR 7304, 295

GAMT 13,295

MIL STD 810 C, 295
static

- deflection, 149

- relative displacement, 105
steady state vibration, 211
step function, 172
stiffness, 49

non-linear -, 56
strain rate, 44
stress—strain diagram, 47
superposition

- integral, 173

- theorem, 199
sweep

- duration, 296

hyperbolic -, 292, 315, 322, 331,

343
linear -, 292, 313, 331, 345

logarithmic -, 292, 322, 331, 344
- rate, 296, 306, 314, 317, 319

- with constant rate, 313
swept sine, 188, 291

- on noise, 7
system

overdamped -, 206

several degrees-of-freedom

mechanical -, 80
underdamped -, 205
- with localized constants, 80

T

Index

test, 295

equivalent sine -, 201
fatigue -, 201

- fixture, 38

- identification, 338

- material identification, 295
sinusoidal vibration -, 199

- specification, 32

- tailoring, 32

time

- spent between the half-power
points, 309

391

- spent between two frequencies,

309
- to sweep 1/n™ octave, 312
- to sweep one octave, 312

transfer function, 169, 176, 182, 255,

319
- in decibels, 185
- measurement, 188

transmissibility, 177, 221, 289, 293

force -, 250
movement -, 250

transmittance, 221
types of sweepings, 297

U, V, W

up-crossing

first -, 151

variance, 194
velocity resonance, 222
vibration

sinusoidal -, 189
periodic -, 195

vibration test facility, 33

control system, 34
electrodynamic exciter, 33
hydraulic actuators, 37
maximum force, 36
moving assembly, 34

viscoelasticity, 62
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viscous damping Voigt model, 80
- coefficient, 66 weight function, 161
- constant, 66
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Summary of Volume 2
Mechanical Shock

Chapter 1. Shock Analysis

1.1. Definitions
1.1.1. Shock
1.1.2. Transient signal
1.1.3. Jerk
1.1.4. Simple (or perfect) shock
1.1.5. Half-sine shock
1.1.6. Versed sine (or haversine) shock
1.1.7. Terminal peak sawtooth (TPS) shock (or final peak sawtooth (FPS))
1.1.8. Initial peak sawtooth (IPS) shock
1.1.9. Square shock
1.1.10. Trapezoidal shock
1.1.11. Decaying sinusoidal pulse
1.1.12. Bump test
1.1.13. Pyroshock
1.2. Analysis in the time domain
1.3. Temporal moments
1.4. Fourier transform
1.4.1. Definition
1.4.2. Reduced Fourier transform
1.4.3. Fourier transforms of simple shocks
1.4.4. What represents the Fourier transform of a shock?
1.4.5. Importance of the Fourier transform
1.5. Energy spectrum
1.5.1. Energy according to frequency
1.5.2. Average energy spectrum
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1.6. Practical calculations of the Fourier transform
1.6.1. General
1.6.2. Case: signal not yet digitized
1.6.3. Case: signal already digitized
1.6.4. Adding zeros to the shock signal before the calculation of its
Fourier transform
1.6.5. Windowing

1.7. The interest of time-frequency analysis
1.7.1. Limit of the Fourier transform
1.7.2. Short term Fourier transform (STFT)
1.7.3. Wavelet transform

Chapter 2. Shock Response Spectrum

2.1. Main principles
2.2. Response of a linear one-degree-of-freedom system

2.2.1. Shock defined by a force

2.2.2. Shock defined by an acceleration

2.2.3. Generalization

2.2.4. Response of a one-degree-of-freedom system to simple shocks
2.3. Definitions

2.3.1. Response spectrum

2.3.2. Absolute acceleration SRS

2.3.3. Relative displacement shock spectrum

2.3.4. Primary (or initial) positive SRS

2.3.5. Primary (or initial) negative SRS

2.3.6. Secondary (or residual) SRS

2.3.7. Positive (or maximum positive) SRS

2.3.8. Negative (or maximum negative) SRS

2.3.9. Maximax SRS
2.4. Standardized response spectra

2.4.1. Definition

2.4.2. Half-sine pulse

2.4.3. Versed sine pulse

2.4.4. Terminal peak sawtooth pulse

2.4.5. Initial peak sawtooth pulse

2.4.6. Square pulse

2.4.7. Trapezoidal pulse
2.5. Choice of the type of SRS
2.6. Comparison of the SRS of the usual simple shapes
2.7. SRS of a shock defined by an absolute displacement of the support
2.8. Influence of the amplitude and the duration of the shock on its SRS
2.9. Difference between SRS and extreme response spectrum (ERS)
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2.10. Algorithms for calculation of the SRS

2.11. Subroutine for the calculation of the SRS

2.12. Choice of the sampling frequency of the signal

2.13. Example of use of the SRS

2.14. Use of SRS for the study of systems with several degrees of freedom
2.15. Damage boundary curve

Chapter 3. Properties of Shock Response Spectra

3.1. Shock response spectra domains

3.2. Properties of SRS at low frequencies
3.2.1. General properties
3.2.2. Shocks with zero velocity change
3.2.3. Shocks with AV =0 and AD # 0 at the end of a pulse
3.2.4. Shocks with AV =0 and AD =0 at the end of a pulse
3.2.5. Notes on residual spectrum

3.3. Properties of SRS at high frequencies

3.4. Damping influence

3.5. Choice of damping

3.6. Choice of frequency range

3.7. Choice of the number of points and their distribution

3.8. Charts

3.9. Relation of SRS with Fourier spectrum
3.9.1. Primary SRS and Fourier transform
3.9.2. Residual SRS and Fourier transform
3.9.3. Comparison of the relative severity of several shocks using their
Fourier spectra and their shock response spectra

3.10. Care to be taken in the calculation of the spectra
3.10.1. Main sources of errors
3.10.2. Influence of background noise of the measuring equipment
3.10.3. Influence of zero shift

3.11. Specific case of pyroshocks
3.11.1. Acquisition of the measurements
3.11.2. Examination of the signal before calculation of the SRS
3.11.3. Examination of the SRS

3.12. Pseudo-velocity shock spectrum
3.12.1. Hunt’s relationship
3.12.2. Interest of PVSS

3.13. Use of the SRS for pyroshocks

3.14. Other propositions of spectra
3.14.1. Pseudo-velocity calculated from the energy transmitted
3.14.2. Pseudo-velocity from the “input” energy at the end of a shock
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3.14.3. Pseudo-velocity from the unit “input” energy
3.14.4. SRS of the “total” energy

Chapter 4. Development of Shock Test Specifications

4.1. Introduction
4.2. Simplification of the measured signal
4.3. Use of shock response spectra
4.3.1. Synthesis of spectra
4.3.2. Nature of the specification
4.3.3. Choice of shape
4.3.4. Amplitude
4.3.5. Duration
4.3.6. Difficulties
4.4. Other methods
4.4.1. Use of a swept sine
4.4.2. Simulation of SRS using a fast swept sine
4.4.3. Simulation by modulated random noise
4.4.4. Simulation of a shock using random vibration
4.4.5. Least favorable response technique
4.4.6. Restitution of an SRS by a series of modulated sine pulses
4.5. Interest behind simulation of shocks on shaker using a shock spectrum

Chapter 5. Kinematics of Simple Shocks

5.1. Introduction

5.2. Half-sine pulse
5.2.1. General expressions of the shock motion
5.2.2. Impulse mode
5.2.3. Impact mode

5.3. Versed sine pulse

5.4. Square pulse

5.5. Terminal peak sawtooth pulse

5.6. Initial peak sawtooth pulse

Chapter 6. Standard Shock Machines

6.1. Main types
6.2. Impact shock machines
6.3. High impact shock machines
6.3.1. Lightweight high impact shock machine
6.3.2. Medium weight high impact shock machine
6.4. Pneumatic machines
6.5. Specific testing facilities
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6.6. Programmers
6.6.1. Half-sine pulse
6.6.2. TPS shock pulse
6.6.3. Square pulse — trapezoidal pulse
6.6.4. Universal shock programmer

Chapter 7. Generation of Shocks Using Shakers

7.1. Principle behind the generation of a signal with a simple

shape versus time

7.2. Main advantages of the generation of shock using shakers

7.3. Limitations of electrodynamic shakers
7.3.1. Mechanical limitations
7.3.2. Electronic limitations

7.4. Remarks on the use of electrohydraulic shakers

7.5. Pre- and post-shocks
7.5.1. Requirements
7.5.2. Pre-shock or post-shock
7.5.3. Kinematics of the movement for symmetric pre- and post-shock
7.5.4. Kinematics of the movement for a pre-shock or a post-shock alone
7.5.5. Abacuses
7.5.6. Influence of the shape of pre- and post-pulses
7.5.7. Optimized pre- and post-shocks

7.6. Incidence of pre- and post-shocks on the quality of simulation
7.6.1. General
7.6.2. Influence of the pre- and post-shocks on the time history
response of a one-degree-of-freedom system
7.6.3. Incidence on the shock response spectrum

Chapter 8. Control of a Shaker Using a Shock Response Spectrum

8.1. Principle of control using a shock response spectrum
8.1.1. Problems
8.1.2. Parallel filter method
8.1.3. Current numerical methods

8.2. Decaying sinusoid
8.2.1. Definition
8.2.2. Response spectrum
8.2.3. Velocity and displacement
8.2.4. Constitution of the total signal
8.2.5. Methods of signal compensation
8.2.6. Iterations

8.3. D.L. Kern and C.D. Hayes’ function
8.3.1. Definition
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8.3.2. Velocity and displacement
8.4. ZERD function
8.4.1. Definition
8.4.2. Velocity and displacement
8.4.3. Comparison of ZERD waveform with standard decaying sinusoid
8.4.4. Reduced response spectra
8.5. WAVSIN waveform
8.5.1. Definition
8.5.2. Velocity and displacement
8.5.3. Response of a one-degree-of-freedom system
8.5.4. Response spectrum
8.5.5. Time history synthesis from shock spectrum
8.6. SHOC waveform
8.6.1. Definition
8.6.2. Velocity and displacement
8.6.3. Response spectrum
8.6.4. Time history synthesis from shock spectrum
8.7. Comparison of WAVSIN, SHOC waveforms and decaying sinusoid
8.8. Waveforms based on the cos™(x) window
8.9. Use of a fast swept sine
8.10. Problems encountered during the synthesis of the waveforms
8.11. Criticism of control by SRS
8.12. Possible improvements
8.12.1. IES proposal
8.12.2. Specification of a complementary parameter
8.12.3. Remarks on the properties of the response spectrum
8.13. Estimate of the feasibility of a shock specified by its SRS
8.13.1. C.D. Robbins and E.P. Vaughan’s method
8.13.2. Evaluation of the necessary force, power and stroke

Chapter 9. Simulation of Pyroshocks

9.1. Simulations using pyrotechnic facilities

9.2. Simulation using metal to metal impact

9.3. Simulation using electrodynamic shakers

9.4. Simulation using conventional shock machines
Appendix
Mechanical Shock Tests: A Brief Historical Background
Bibliography
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Random Vibration

Chapter 1. Statistical Properties of a Random Process

1.1. Definitions
1.1.1. Random variable
1.1.2. Random process
.2. Random vibration in real environments
.3. Random vibration in laboratory tests
4. Methods of random vibration analysis
.5. Distribution of instantaneous values
1.5.1. Probabilitydensity
1.5.2. Distribution function
1.6. Gaussian random process
1.7. Rayleigh distribution
1.8. Ensemble averages: through the process
1.8.1. n order average
1.8.2. Centered moments
1.8.3. Variance
1.8.4. Standard deviation
1.8.5. Autocorrelation function
1.8.6. Cross-correlation function
1.8.7. Autocovariance
1.8.8. Covariance
1.8.9. Stationarity
1.9. Temporal averages: along the process
1.9.1. Mean
1.9.2. Quadratic mean — rms value
1.9.3. Moments of order n

—
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1.9.4. Variance — standard deviation
1.9.5. Skewness
1.9.6. Kurtosis
1.9.7. Crest Factor
1.9.8. Temporal autocorrelation function
1.9.9. Properties of the autocorrelation function
1.9.10. Correlation duration
1.9.11. Cross-correlation
1.9.12. Cross-correlation coefficient
1.9.13. Ergodicity
1.10. Significance of the statistical analysis (ensemble or temporal)
1.11. Stationary and pseudo-stationary signals
1.12. Summary chart of main definitions
1.13. Sliding mean
1.14. Test of stationarity
1.14.1. The reverse arrangements test (RAT)
1.14.2. The runs test
1.15 Identification of shocks and/or signal problems
1.16. Breakdown of vibratory signal into “events”: choice of signal samples
1.17. Interpretation and taking into account of environment variation

Chapter 2. Random Vibration Properties in the Frequency Domain

2.1. Fourier transform
2.2. Power spectral density
2.2.1. Need
2.2.2. Definition
2.3. Amplitude Spectral Density
2.4. Cross-power spectral density
2.5. Power spectral density of a random process
2.6. Cross-power spectral density of two processes
2.7. Relationship between the PSD and correlation function of a process
2.8. Quadspectrum — cospectrum
2.9. Definitions
2.9.1. Broadband process
2.9.2. White noise
2.9.3. Band-limited white noise
2.9.4. Narrow band process
2.9.5. Colors of noise
2.10. Autocorrelation function of white noise
2.11. Autocorrelation function of band-limited white noise
2.12. Peak factor
2.13. Effects of truncation of peaks of acceleration signal on the PSD



Summary of Volume 3

2.14. Standardized PSD/density of probability analogy
2.15. Spectral density as a function of time
2.16. Sum of two random processes
2.17. Relationship between the PSD of the excitation and the
response of a linear system
2.18. Relationship between the PSD of the excitation and the
cross-power spectral density of the response of a linear system
2.19. Coherence function
2.20. Transfer function calculation from random vibration measurements
2.20.1. Theoretical relations
2.20.2. Presence of noise on the input
2.20.3. Presence of noise on the response
2.20.4. Presence of noise on the input and response
2.20.5. Choice of transfer function

Chapter 3. Rms Value of Random Vibration

3.1. Rms value of a signal as a function of its PSD
3.2. Relationships between the PSD of acceleration,
velocity and displacement
3.3. Graphical representation of the PSD
3.4. Practical calculation of acceleration, velocity
and displacement rms values
3.4.1. General expressions
3.4.2. Constant PSD in frequency interval
3.4.3. PSD comprising several horizontal straight line segments
3.4.4. PSD defined by a linear segment of arbitrary slope
3.4.5. PSD comprising several segments of arbitrary slopes
3.5. Rms value according to the frequency
3.6. Case of periodic signals
3.7. Case of a periodic signal superimposed onto random noise

Chapter 4. Practical Calculation of the Power Spectral Density

4.1. Sampling of signal
4.2. PSD calculation methods
4.2.1. Use of the autocorrelation function
4.2.2. Calculation of the PSD from the rms value of a filtered signal
4.2.3. Calculation of PSD starting from a Fourier transform
4.3. PSD calculation steps
4.3.1. Maximum frequency
4.3.2. Extraction of sample of duration T
4.3.3. Averaging
4.3.4. Addition of zeros
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44 FFT
4.5. Particular case of a periodic excitation
4.6. Statistical error
4.6.1. Origin
4.6.2. Definition
4.7. Statistical error calculation
4.7.1. Distribution of the measured PSD
4.7.2. Variance of the measured PSD
4.7.3. Statistical error
4.7.4. Relationship between number of degrees of freedom,
duration and bandwidth of analysis
4.7.5. Confidence interval
4.7.6. Expression for statistical error in decibels
4.7.7. Statistical error calculation from digitized signal
4.8. Influence of duration and frequency step on the PSD
4.8.1. Influence of duration
4.8.2. Influence of the frequency step
4.8.3. Influence of duration and of constant statistical error
frequency step
4.9. Overlapping
4.9.1. Utility
4.9.2. Influence on the number of degrees of freedom
4.9.3. Influence on statistical error
4.9.4. Choice of overlapping rate
4.10. Information to provide with a PSD
4.11. Difference between rms values calculated from a signal
according to time and from its PSD
4.12. Calculation of a PSD from a Fourier transform
4.13. Amplitude based on frequency: relationship with the PSD
4.14. Calculation of the PSD for given statistical error
4.14.1. Case study: digitization of a signal is to be carried out
4.14.2. Case study: only one sample of an already
digitized signal is available
4.15. Choice of filter bandwidth
4.15.1. Rules
4.15.2. Bias error
4.15.3. Maximum statistical error
4.15.4. Optimum bandwidth
4.16. Probability that the measured PSD lies
between + one standard deviation
4.17. Statistical error: other quantities
4.18. Peak hold spectrum
4.19. Generation of random signal of given PSD
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4.19.1. Random phase sinusoid sum method
4.19.2. Inverse Fourier transform method

4.20. Using a window during the creation of a random signal from a
PSD

Chapter 5. Statistical Properties of Random Vibration
in the Time Domain

5.1. Distribution of instantaneous values
5.2. Properties of derivative process
5.3. Number of threshold crossings per unit time
5.4. Average frequency
5.5. Threshold level crossing curves
5.6. Moments
5.7. Average frequency of PSD defined by straight line segments
5.7.1. Linear-linear scales
5.7.2. Linear-logarithmic scales
5.7.3. Logarithmic-linear scales
5.7.4. Logarithmic-logarithmic scales
5.8. Fourth moment of PSD defined by straight line segments
5.8.1. Linear-linear scales
5.8.2. Linear-logarithmic scales
5.8.3. Logarithmic-linear scales
5.8.4. Logarithmic-logarithmic scales
5.9. Generalization: moment of order n
5.9.1. Linear-linear scales
5.9.2. Linear-logarithmic scales
5.9.3. Logarithmic-linear scales
5.9.4. Logarithmic-logarithmic scales

Chapter 6. Probability Distribution of Maxima of Random Vibration

6.1. Probability density of maxima
6.2. Moments of the maxima probability distribution
6.3. Expected number of maxima per unit time
6.4. Average time interval between two successive maxima
6.5. Average correlation between two successive maxima
6.6. Properties of the irregularity factor
6.6.1. Variation interval
6.6.2. Calculation of irregularity factor for band-limited white noise
6.6.3. Calculation of irregularity factor for noise of
form G = Const.f"
6.6.4. Case study: variations of irregularity factor for two
narrowband signals
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6.7. Error related to the use of Rayleigh’s law instead of a complete
probability density function
6.8. Peak distribution function
6.8.1. General case
6.8.2. Particular case of narrowband Gaussian process
6.9. Mean number of maxima greater than the given
threshold (by unit time)
6.10. Mean number of maxima above given threshold between two times
6.11. Mean time interval between two successive maxima
6.12. Mean number of maxima above given level reached by signal
excursion above this threshold
6.13. Time during which the signal is above a given value
6.14. Probability that a maximum is positive or negative
6.15. Probability density of the positive maxima
6.16. Probability that the positive maxima is lower than a given threshold
6.17. Average number of positive maxima per unit of time
6.18. Average amplitude jump between two successive extrema
6.19. Average number of inflection points per unit of time

Chapter 7. Statistics of Extreme Values

7.1. Probability density of maxima greater than a given value
7.2. Return period

7.3. Peak / »expected among N peaks

7.4. Logarithmic rise

7.5. Average maximum of N peaks

7.6. Variance of maximum

7.7. Mode (most probable maximum value)

7.8. Maximum value exceeded with risk o

7.9. Application to the case of a centered narrowband normal process
7.9.1. Distribution function of largest peaks over duration T
7.9.2. Probability that one peak at least exceeds a given threshold
7.9.3. Probability density of the largest maxima over duration T
7.9.4. Average of highest peaks
7.9.5. Mean value probability
7.9.6. Standard deviation of highest peaks
7.9.7. Variation coefficient
7.9.8. Most probable value
7.9.9. Median
7.9.10. Value of density at mode
7.9.11. Value of distribution function at mode
7.9.12. Expected maximum
7.9.13. Maximum exceeded with given risk o
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7.10. Wideband centered normal process
7.10.1. Average of largest peaks
7.10.2. Variance of the largest peaks
7.10.3. Variation coefficient
7.11. Asymptotic laws
7.11.1. Gumbel asymptote
7.11.2. Case study: Rayleigh peak distribution
7.11.3. Expressions for large values of N,
7.12. Choice of type of analysis
7.13. Study of the envelope of a narrowband process
7.13.1. Probability density of the maxima of the envelope
7.13.2. Distribution of maxima of envelope
7.13.3. Average frequency of envelope of narrowband noise

Chapter 8. Response of a One-Degree-of-Freedom Linear System
to Random Vibration

8.1. Average value of the response of a linear system
8.2. Response of perfect bandpass filter to random vibration
8.3. The PSD of the response of a one-dof linear system
8.4. Rms value of response to white noise
8.5. Rms value of response of a linear one-degree of freedomsystem
subjected to bands of random noise
8.5.1. Case where the excitation is a PSD defined by a straight line
segment in logarithmic scales
8.5.2. Case where the vibration has a PSD defined by a straight line
segment of arbitrary slope in linear scales
8.5.3. Case where the vibration has a constant PSD between
two frequencies
8.5.4. Excitation defined by an absolute displacement
8.5.5. Case where the excitation is defined by PSD comprising
n straight line segments
8.6. Rms value of the absolute acceleration of the response
8.7. Transitory response of a dynamic system under stationary
random excitation
8.8. Transitory response of a dynamic system under amplitude
modulated white noise excitation

Chapter 9. Characteristics of the Response of a One-Degree-of-Freedom
Linear System to Random Vibration

9.1. Moments of response of a one-degree-of-freedom linear system:
irregularity factor of response
9.1.1. Moments
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9.1.2. Irregularity factor of response to noise of a constant PSD
9.1.3. Characteristics of irregularity factor of response
9.1.4. Case of a band-limited noise
9.2. Autocorrelation function of response displacement
9.3. Average numbers of maxima and minima per second
9.4. Equivalence between the transfer functions of a bandpass filter
and a one-degree-of-freedomlinear system
9.4.1. Equivalence suggested by D.M. Aspinwall
9.4.2. Equivalence suggested by K.W. Smith
9.4.3. Rms value of signal filtered by the equivalent bandpass filter

Chapter 10. First Passage at a Given Level of Response of a
One-Degree-of-Freedom Linear System to a Random Vibration

10.1. Assumptions
10.2. Definitions
10.3. Statistically independent threshold crossings
10.4. Statistically independent response maxima
10.5. Independent threshold crossings by the envelope of maxima
10.6. Independent envelope peaks
10.6.1. S.H. Crandall method
10.6.2. D.M. Aspinwall method
10.7. Markov process assumption
10.7.1. W.D. Mark assumption
10.7.2. J.N. Yang and M. Shinozuka approximation
10.8. E.H. Vanmarcke model
10.8.1. Assumption of a two state Markov process
10.8.2. Approximation based on the mean clump size
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Fatigue Damage

Chapter 1. Concepts of Material Fatigue

1.1. Introduction
1.1.1. Reminders on the strength of materials
1.1.2. Fatigue
1.2. Types of dynamic loads (or stresses)
1.2.1. Cyclic stress
1.2.2. Alternating stress
1.2.3. Repeated stress
1.2.4. Combined steady and cyclic stress
1.2.5. Skewed alternating stress
1.2.6. Random and transitory stresses
1.3. Damage arising from fatigue
1.4. Characterization of endurance of materials
1.4.1. S-N curve
1.4.2. Influence of the average stress on the S-N curve
1.4.3. Statistical aspect
1.4.4. Distribution laws of endurance
1.4.5. Distribution laws of fatigue strength
1.4.6. Relation between fatigue limit and static properties of materials
1.4.7. Analytical representations of S-N curve
1.5. Factors of influence
1.5.1. General
1.5.2. Scale
1.5.3. Overloads
1.5.4. Frequency of stresses
1.5.5. Types of stresses
1.5.6. Non-zero mean stress
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1.6. Other representations of S-N curves

1.6.1. Haigh diagram

1.6.2. Statistical representation of Haigh diagram
1.7. Prediction of fatigue life of complex structures
1.8. Fatigue in composite materials

Chapter 2. Accumulation of Fatigue Damage

2.1. Evolution of fatigue damage
2.2. Classification of various laws of accumulation
2.3. Miner’s method
2.3.1. Miner’s rule
2.3.2. Scatter of damage to failure as evaluated by Miner
2.3.3. Validity of Miner’s law of accumulation of damage in case
of random stress
2.4. Modified Miner’s theory
2.4.1. Principle
2.4.2. Accumulation of damage using modified Miner’s rule
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