O'REILLY"

Programmability
and Automation

SKILLS FOR THE NEXT-GENERATION NETWORK ENGINEER

Jason Edelman,
Scott S. Lowe & Matt Oswalt

9

O'REILLY"

Network Programmability and Automation

Like sysadmins before them, network engineers are finding that they “Jason, Scott, and

cannot do their work manually anymore. As the field faces new protocols,
technologies, delivery models, and a pressing need for businesses to
be more agile and flexible, network automation is becoming essential.
This practical guide shows network engineers how to use a range of
technologies and tools—including Linux, Python, JSON, and XML—to
automate their systems through code.

Network Programming and Automation will help you simplify tasks involved
in configuring, managing, and operating network equipment, topologies,
services, and connectivity. Through the course of the book, you'll learn the
basic skills and tools you need to make this critical transition.

This book covers:
m Python programming basics: data types, conditionals, loops,
functions, classes, and modules

m Data formats and models: JSON, XML, YAML, and YANG for
networking

m The role of application programming interfaces (APIs) in
network automation

m How Ansible, Salt, and StackStorm open source automation
tools can be used to automate network devices

Jason Edelman, founder of Network to Code, helps clients adopt and deploy
network automation tools and technologies. He's been a vocal advocate of
network automation and the intersection of DevOps and network operations
since 2013.

Scott S. Lowe, an engineering architect for VMware, Inc, focuses on cloud
computing and network virtualization. He's written several technical books on
topics including VMware vSphere and OpenStack.

Matt Oswalt is a Network Software Developer focused on the intersection of
software development and network infrastructure. He publishes his work in this
area and more at keepingitclassless.net.

Matt have been key
contributors in educating
network engineers about
both network automation
and Linux networking.
They have written

and talked extensively
about the importance

of automation, on how
automation impacts
network engineers, and
on the mechanics of
automating networking

devices.”

—Kirk Byers
Creator of the Netmiko Python Library

US $49.99 CAN $65.99
ISBN: 978-1-491-93125-7
VINEINIONET) i
AL

Twitter: @oreillymedia
facebook.com/oreilly

Praise for Network Programmability and Automation

Jason, Scott, and Matt have been key contributors in educating network engineers about
both network automation and Linux networking. They have written and talked
extensively about the importance of automation, on how automation impacts network
engineers, and on the mechanics of automating networking devices.

—Kirk Byers
Creator of the Netmiko Python Library

Network automation is no longer just a proof of concept: it represents both the present
and the future! Network Programmability and Automation provides the needed
background for modern engineers, by widening the toolset for more consistent, stable
and reliable networks.

—Mircea Ulinic
Network Systems Engineer, Cloudflare

Network automation is not hype anymore; it is a means to do your job faster, more
consistently and more reliably. However, network automation is not just a single
discipline; it is a collection of protocols, tools, and processes that can be overwhelming to
the uninitiated. This book does a great job covering everything you will need to get your
automation up and running.

—David Barroso
creator of NAPALM

Network Programmability

and Automation
Skills for the Next-Generation
Network Engineer

Jason Edelman, Scott S. Lowe, and Matt Oswalt

Bejng - Boston « Farham - Sebastopol - Tokyo @Y RIIMNY

Network Programmability and Automation
by Jason Edelman, Scott S. Lowe, and Matt Oswalt

Copyright © 2018 Jason Edelman, Scott S. Lowe, Matt Oswalt. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti-
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Virginia Wilson and Courtney Allen Interior Designer: David Futato

Production Editor: Colleen Cole Cover Designer: Karen Montgomery

Copyeditor: Dwight Ramsey lllustrator: Rebecca Demarest

Proofreader: Rachel Monaghan Technical Reviewers: Patrick Ogenstad, Akhil Behl,
Indexer: Judy McConville Eric Chou, Sreenivas Makam

February 2018: First Edition

Revision History for the First Edition
2018-02-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491931257 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Network Programmability and Automa-
tion, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-93125-7
(M]

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491931257

I dedicate this book to all network engineers starting their network automation journey.
I sincerely hope it provides each of you with the knowledge needed to further enhance
your career. I'd also like to thank Scott, Matt, and the whole O’Reilly team—I know it

was a much longer process than we all planned, but we ultimately got through it! Thanks

to everyone for making it a reality.

Jason Edelman

Id like to dedicate this book to the Lord, who granted me the wisdom and understanding
I needed to write this book (Exodus 31:3 NIV). Id also like to dedicate it to my wife,
Crystal, without whose support things like this wouldn’t be possible.

Scott S. Lowe

I dedicate this book to anyone with a hunger and a passion for learning—every word
was written with you in mind. Id also like to thank my wife Jamie, who keeps me moti-
vated and upbeat when life gets a little too crazy.

Matt Oswalt

Table of Contents

Preface. ...oovn xiii
1. Network Industry Trends.ooveiiiiiiiiriii i iiieiieriereaaennans 1
The Rise of Software Defined Networking 1
OpenFlow 1
What Is Software Defined Networking? 5
Summary 16

2. Network Automation.............oovviiiiiiiiiiiiiiiiiiiiiiiiiii i 17
Why Network Automation? 18
Simplified Architectures 18
Deterministic Outcomes 19
Business Agility 19
Types of Network Automation 20
Device Provisioning 20
Data Collection 23
Migrations 24
Configuration Management 25
Compliance 25
Reporting 26
Troubleshooting 26
Evolving the Management Plane from SNMP to Device APIs 28
Application Programming Interfaces (APIs) 28
Impact of Open Networking 32
Network Automation in the SDN Era 33

Summary 33

vii

R I 11 35

Examining Linux in a Network Automation Context 35
A Brief History of Linux 36
Linux Distributions 37
Red Hat Enterprise Linux, Fedora, and CentOS 37
Debian, Ubuntu, and Other Derivatives 39
Other Linux Distributions 40
Interacting with Linux 40
Navigating the Filesystem 41
Manipulating Files and Directories 46
Running Programs 52
Working with Daemons 55
Networking in Linux 60
Working with Interfaces 60
Routing as an End Host 71
Routing as a Router 75
Bridging (Switching) 77
Summary 83
4, Learning PythoninaNetwork Context.........coovviiiniiiiiiiieennernnnnens 85
Should Network Engineers Learn to Code? 86
Using the Python Interactive Interpreter 88
Understanding Python Data Types 90
Learning to Use Strings 91
Learning to Use Numbers 100
Learning to Use Booleans 102
Learning to Use Python Lists 105
Learning to Use Python Dictionaries 111
Learning About Python Sets and Tuples 115
Adding Conditional Logic to Your Code 117
Understanding Containment 119
Using Loops in Python 121
Understanding the while Loop 121
Understanding the for Loop 122
Using Python Functions 126
Working with Files 129
Reading from a File 130
Writing to a File 132
Creating Python Programs 134
Creating a Basic Python Script 134
Understanding the Shebang 135
Migrating Code from the Python Interpreter to a Python Script 137

vii | Table of Contents

Working with Python Modules
Passing Arguments into a Python Script
Using pip and Installing Python Packages

Learning Additional Tips, Tricks, and General Information When Using

Python
Summary

. DataFormatsandDataModels.ovvriiiiiiiiiiiiiiiiiiiiienennes

Introduction to Data Formats
Types of Data
YAML
Reviewing YAML Basics
Working with YAML in Python
Data Models in YAML
XML
Reviewing XML Basics
Using XML Schema Definition (XSD) for Data Models
Transforming XML with XSLT
Searching XML Using XQuery
JSON
Reviewing JSON Basics
Working with JSON in Python
Using JSON Schema for Data Models
Data Models Using YANG
YANG Overview
Taking a Deeper Dive into YANG
Summary

. Network Configuration Templates...........ccoovviiiiiiiiiiiiiiieiinennnen.

The Rise of Modern Template Languages
Using Templates for Web Development
Expanding On the Use of Templates
The Value of Templates in Network Automation
Jinja for Network Configuration Templates
Why Jinja?
Dynamically Inserting Data into a Basic Jinja Template
Rendering a Jinja Template File in Python
Conditionals and Loops
Jinja Filters
Template Inheritance in Jinja
Variable Creation in Jinja
Summary

138
140
141

143
149

151
151
153
154
155
158
159
160
160
161
163
167
167
167
170
171
172
172
173
176

177
178
179
180
180
181
181
182
183
185
191
195
196
196

Table of Contents

ix

7. Working with Network APIs.coviiniiiiiiiiiiiiiiiiii i, 199

Understanding Network APIs 200
Getting Familiar with HTTP-Based APIs 200
Diving into NETCONF 204

Exploring Network APIs 213
Exploring HTTP-Based APIs 213
Exploring NETCONF 220

Automating Using Network APIs 229
Using the Python requests Library 230
Using the Python ncclient Library 259
Using netmiko 284

Summary 289

8. Source Control withGit.............cooiiiiiiiiiiii 291

Use Cases for Source Control 291

Benefits of Source Control 292
Change Tracking 292
Accountability 292
Process and Workflow 293

Benefits of Source Control for Networking 293

Enter Git 294
Brief History of Git 294
Git Terminology 295
Overview of Gits Architecture 296

Working with Git 297
Installing Git 297
Creating a Repository 297
Adding Files to a Repository 298
Committing Changes to a Repository 300
Changing and Committing Tracked Files 303
Unstaging Files 306
Excluding Files from a Repository 309
Viewing More Information About a Repository 313
Distilling Differences Between Versions of Files 317

Branching in Git 321
Creating a Branch 326
Checking Out a Branch 327
Merging and Deleting Branches 329

Collaborating with Git 334
Collaborating Between Multiple Systems Running Git 334
Collaborating Using Git-Based Online Services 351

Summary 355

X | Tableof Contents

9, AUtOMAtIONTOOIS. ..ttt ttttii ittt it teeneneeneneneenenennenenns 357

Reviewing Automation Tools 357
Using Ansible 359
Understanding How Ansible Works 360
Constructing an Inventory File 361
Executing an Ansible Playbook 368
Using Variable Files 373
Writing Ansible Playbooks for Network Automation 375
Using Third-Party Ansible Modules 393
Ansible Summary 396
Automating with Salt 396
Understanding the Salt Architecture 397
Getting Familiar with Salt 400
Managing Network Configurations with Salt 416
Executing Salt Functions Remotely 425
Diving into Salt’s Event-Driven Infrastructure 427
Diving into Salt a Bit Further 433
Salt Summary 436
Event-Driven Network Automation with StackStorm 436
StackStorm Concepts 437
StackStorm Architecture 439
Actions and Workflows 440
Sensors and Triggers 450
Rules 452
StackStorm Summary 455
Summary 455
10. Continuous Integration.covvvuiiieinieiieneennenneenrenseneennnns 457
Important Prerequisites 459
Simple Is Better 459
People, Process, and Technology 460
Learn to Code 460
Introduction to Continuous Integration 460
Basics of Continuous Integration 461
Continuous Delivery 463
Test-Driven Development 464
Why Continuous Integration for Networking? 466
A Continuous Integration Pipeline for Networking 467
Peer Review 468
Build Automation 474
Test/Dev/Staging Environment 479
Deployment Tools 482

Table of Contents | xi

1.

A. Advanced Networking in Linux

Testing Tools and Test-Driven Network Automation
Summary

Building a Culture for Network Automation.........................

Organizational Strategy and Flexibility
Transforming an Old-World Organization
The Importance of Executive Buy-in
Build Versus Buy

Embracing Failure

Skills and Education
Learn What You Don’t Know
Focus on Fundamentals
Certifications?

Won't Automation Take My Job?!

Summary

484
486

487
488
488
489
490
492
493
493
494
495
496
496

Xii

| Table of Contents

Preface

Welcome to Network Programmability and Automation!

The networking industry is changing dramatically. The drive for organizations and
networking professionals to embrace the ideas and concepts of network programma-
bility and automation is greater now than perhaps it has ever been, fueled by a revolu-
tion in new protocols, new technologies, new delivery models, and a need for
businesses to be more agile and more flexible in order to compete. But what is net-
work programmability and automation? Let’s start this book with a quick look at how
to answer that question.

What This Book Covers

As its title implies, this book is focused on network programmability and automation.
At its core, network programmability and automation is about simplifying the tasks
involved in configuring, managing, and operating network equipment, network top-
ologies, network services, and network connectivity. There are many, many different
components involved—including operating systems that are now seeing far broader
use in networking than in the past, the use of new methodologies like Continuous
Integration, and the inclusion of tools that formerly might have fallen only in the
realm of the system administrator (tools like source code control and configuration
management systems). We feel like all of these play a part in the core definition of
what network programmability and automation is, so we cover all these topics. Our
goal for this book is to enable readers to establish a foundation of knowledge around
network programmability and automation.

How This Book Is Organized

This book isn’'t necessarily intended to be read from start to end; instead, we've bro-
ken the topics up so that you can easily find the topics in which youre most interes-
ted. You may find it useful to start out sequentially reading the first three chapters, as

xXiii

they provide background information and set the stage for the rest of the book. From
there, youre welcome to jump to whatever topic or topics are most useful or interest-
ing to you. We've tried to keep the chapters relatively standalone, but—as with any
technology—that’s not always possible. Wherever we can, we provide cross-
references to help you find the information you need.

Here’s a quick look at how we've organized the topics:

Chapter 1, Network Industry Trends
Provides an overview of the major events and trends that launched Software
Defined Networking (SDN). As you’ll see in Chapter 1, SDN was the genesis for
an increased focus on network programmability and automation.

Chapter 2, Network Automation
Takes the SDN discussion from Chapter 1 and focuses specifically on network
automation—the history of network automation, types of automation, tools and
technologies involved in automation, and how automation affects operational
models (and how operational models affect automation).

Chapter 3, Linux
Provides an overview of the Linux operating system. By no means a comprehen-
sive discussion of Linux, this chapter aims to get networking professionals up to
speed on Linux, basic Linux commands, and Linux networking concepts.

Chapter 4, Learning Python in a Network Context
Introduces networking professionals to the Python development language.
Python is frequently used in network programmability and automation contexts,
and this chapter covers many of the basics of programming with Python: data
types, conditionals, loops, working with files, functions, classes, and modules.

Chapter 5, Data Formats and Data Models
Introduces common data formats that are often seen in network automation
projects. JavaScript Object Notation (JSON), eXtensible Markup Language
(XML), and YAML Ain’t Markup Language (YAML) are all discussed. The chap-
ter then introduces the concepts of data modeling and provides a light introduc-
tion to YANG, a common data modeling language for networking.

Wondering what a “data format” is?

If youre new to some of this stuff, don’t let the terminology throw
you off. A data format is nothing more than how data is encoded or
encapsulated when being transferred between two points (for
example, when data is returned in response to an API call). Chap-
ter 5 breaks it all down for you.

xiv | Preface

http://python.org

Chapter 6, Network Configuration Templates
Looks at the use of templating languages to create network device configurations.
The primary focus of this chapter is on the Jinja templating language, as it inte-
grates natively with Python. We'll also discuss Mako and ERB, two other templat-
ing languages. Mako integrates with Python, while ERB is primarily used with
Ruby.

Chapter 7, Working with Network APIs
Will take a look at the role of application programming interfaces (APIs) in net-
work programmability and automation. We'll explore key terms and technologies
pertaining to APIs, and use some popular vendor-specific APIs—both device
APIs and controller APIs—as examples to see how they can be used for network
programmability and automation.

Chapter 8, Source Control with Git
Introduces Git, a very popular and widely used tool for source code control. We'll
talk about why source code control is important, how it is used in a network pro-
grammability and automation context, and how to work with popular online
services such as GitHub.

Chapter 9, Automation Tools
Explores the use of open source automation tools such as Ansible, Salt, and
StackStorm, and how these tools can be used specifically for network programm-
ability and automation.

Chapter 10, Continuous Integration
Examines the concepts of Continuous Integration (CI) and the key tools and
technologies that are involved. We'll discuss the use of test-driven development
(TDD), explore tools and frameworks like Jenkins and Gerrit, and take a look at a
sample network automation workflow that incorporates all these CI elements.

Chapter 11, Building a Culture for Network Automation
Examines why a good culture is a crucial and foundational element for network
automation, and shows how to nurture such a culture.

Appendix A, Advanced Networking in Linux
Continues the discussion started in Chapter 3, but dives much deeper into net-
working with macvlan interfaces, networking with virtual machines (VMs),
working with network namespaces, networking with Linux containers (including
Docker containers), and using Open vSwitch (OVS).

Appendix B, Using NAPALM
Provides an introduction to using the NAPALM (Network Automation and Pro-
grammability Abstraction Layer with Multi-vendor support) Python library. This
section explores the use of NAPALM for both vendor-neutral configuration man-

Preface | xv

https://git-scm.com
https://github.com
http://www.ansible.com/home
http://saltstack.com
https://stackstorm.com/
https://www.docker.com
http://openvswitch.org

agement and retrieving data from network devices. Finally, we take a look at how
NAPALM integrates with tools such as Ansible, Salt, and StackStorm, all covered
in Chapter 9.

Who Should Read This Book

As we mentioned earlier, the goal of the book is to equip readers with foundational
knowledge and a set of baseline skills in the areas of network programmability and
automation. We believe that members of several different IT disciplines will benefit
from reading this book.

Network Engineers

Given the focus on network programmability and automation, it's natural that one
audience for this book is the “traditional” network engineer, someone who is reasona-
bly fluent in network protocols, configuring network devices, and operating and
managing a network. We believe this book will enable today’s network engineers to be
more efficient and more productive through automation and programmability.

Prerequisites

Network engineers interested in learning more about network programmability and
automation don’t need any previous knowledge in software development, program-
ming, automation, or DevOps-related tools. The only prerequisite is an open mind
and a willingness to learn about new technologies and how they will affect you—the
networking professional—and the greater networking industry as a whole.

Systems Administrators

Systems administrators, who are primarily responsible for managing the systems that
connect to the network, may already have previous experience with some of the tools
that are discussed in this book (notably, Linux, source code control, and configura-
tion management systems). This book, then, could serve as a mechanism to help
them expand their knowledge and understanding of such tools by presenting them in
a different context (for example, using Ansible to configure a network switch as
opposed to using Ansible to configure a server running a distribution of Linux).

Prerequisites

What this book doesn’t provide is any coverage or explanation of core networking
protocols or concepts. However, as a result of managing network-connected systems,
we anticipate that many systems administrators also have a basic knowledge of core
networking protocols. So most experienced systems administrators should be fine. If
youre a bit weak on your networking knowledge, wed recommend supplementing

xvi | Preface

this book with a book that focuses on core networking concepts and ideas. For exam-
ple, Packet Guide to Core Network Protocols (O'Reilly) may be a good choice.

Software Developers

Software developers may also benefit from reading this book. Many developers will
have prior experience with some of the programming languages and developer tools
discussed in this book (such as Python and/or Git). Like systems administrators,
developers may find it useful to see developer tools and languages used in a
networking-centric context (for example, seeing how Python could be used to
retrieve and store networking-specific data).

Prerequisites

We do assume that readers have a basic understanding of core network protocols and
concepts, and all the examples we provide are networking-centric examples. As with
systems administrators, software developers who are new to networking will probably
find it necessary to supplement the material in this book with a book that focuses on
core networking concepts.

Tools Used in this Book

As with any field of technology, there are many different versions and variations of
the technologies and tools found in the network programmability and automation
space. Therefore, we standardized on a set of tools in this book that we feel best rep-
resent the tools readers will find in the field. For example, there are many different
distributions of Linux, but we will only be focusing on Debian, Ubuntu (which is
itself a derivative of Debian), and CentOS (a derivative of Red Hat Enterprise Linux
[RHEL]). To help make it easy for readers, we call out the specific version of the vari-
ous tools in each tool’s specific chapter.

Online Resources

We realize that we can’t possibly cover all the material wed like to cover regarding
network automation and network programmability. Therefore, throughout the book
we'll reference additional online resources that you may find helpful and useful in
understanding the concepts, ideas, and skills being presented.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Preface | xvii

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

N

0'Reilly Safari

Safari (formerly Safari Books Online) is a membership-based
1 o training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac-
tive tutorials, and curated playlists from over 250 publishers, including O’'Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes-
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

xviii | Preface

http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/network-programmability-and-
automation.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

This book would not have been possible without the help and support of a large com-
munity of people.

First, wed like to extend our thanks to the vibrant network automation community.
There are too many folks to name directly, but these are the folks who have created
open source projects like NAPALM and Netmiko, who have helped lead the charge in
educating folks about network automation, and who have tirelessly contributed their
knowledge and experience for the benefit of others. Thank you all for your efforts
and your contributions.

Our contributing authors helped make this book more complete and comprehensive
than we would have been able to without their assistance, and we are deeply grateful
for their help. Mircea Ulinic contributed the SaltStack section in the chapter on con-
figuration management tools, and Jere Julian contributed some Puppet content that
we unfortunately could not get included in this version of the book. Our thanks go to
both Mircea and Jere.

Preface | xix

http://bit.ly/network-programmability-and-automation
http://bit.ly/network-programmability-and-automation
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Our technical reviewers were critical in ensuring that the content was both techni-
cally accurate and easily consumable by readers. Wed like to extend our thanks to
Patrick Ogenstad, Akhil Behl, Eric Chou, and Sreenivas Makam. Thanks for helping
make sure this book is the best it could be!

Finally, our thanks would not be complete without including the staff of O’Reilly
Media: Virginia Wilson and Courtney Allen, our editors; Dwight Ramsey, our copy
editor; Rachel Monaghan, our proofreader; Judy McConville, our indexer; Colleen
Cole, our production editor; Randy Comer, the cover designer; and Rebecca Demar-
est, the illustrator. The importance of their efforts in helping us take this book from
concept to production cannot be understated, and we thank them for their dedication
and commitment.

xx | Preface

CHAPTER 1
Network Industry Trends

Are you new to Software Defined Networking (SDN)? Have you been hung up in the
SDN craze for the past several years? Whichever bucket you fall into, do not worry.
This book will walk you through foundational topics to start your network pro-
grammability and automation journey starting with the rise of SDN. This chapter
provides insight to trends in the network industry focused around SDN, its relevance,
and its impact in today’s world of networking. We'll get started by reviewing how
Software Defined Networking made it into the mainstream and ultimately led to
trends around network programmability and automation.

The Rise of Software Defined Networking

If there was one person that could be credited with all the change that is occurring in
the network industry, it would be Martin Casado, who is currently a General Partner
and Venture Capitalist at Andreessen Horowitz. Previously, Casado was a VMware
Fellow, Senior Vice President, and General Manager in the Networking and Security
Business Unit at VMware. He has had a profound impact on the industry, not just
from his direct contributions (including OpenFlow and Nicira), but by opening the
eyes of large network incumbents and showing that network operations, agility, and
manageability must change. Let’s take a look at this in a little more detail.

OpenFlow

For better or for worse, OpenFlow served as the first major protocol of the Software
Defined Networking (SDN) movement. OpenFlow is the protocol that Martin
Casado worked on while he was earning his PhD at Stanford University under the
supervision of Nick McKeown. OpenFlow is only a protocol that allows for the de-
coupling of a network device’s control plane from the data plane (see Figure 1-1). In
simplest terms, the control plane can be thought of as the brains of a network device

and the data plane can be thought of as the hardware or application-specific integrated
circuits (ASICs) that actually perform packet forwarding.

Forwarding paths are calculated by
OpenHow the controller and then OpenFlow
Controller match/action rules are pushed
down to each network element.

OpenFlow

Protocol
OpenFlow Agent OpenFlow Agent

OpenFlow Agent

Network devices do
NOT run control
Data Plane Data Plane Data Plane functions such as
HW Tables, Ports, ASICs HW Tables, Ports, ASICs HW Tables, Ports, ASICs BGP OSPE STP etc.

OpenFlow-Enabled OpenFow-Enabled OpenFow-Enabled

Network Device Network Device Network Device

Figure 1-1. Decoupling the control plane and data plane with OpenFlow

Running OpenFlow in Hybrid Mode

Figure 1-1 depicts the network elements having no control plane. This represents a
pure OpenFlow-only deployment. Many devices also support running OpenFlow in a
hybrid mode, meaning OpenFlow can be deployed on a given port, virtual local area
network (VLAN), or even within a normal packet-forwarding pipeline such that if
there is not a match in the OpenFlow table, then the existing forwarding tables (MAC,
Routing, etc.) are used, making it more analogous to Policy Based Routing (PBR).

What this means is OpenFlow is a low-level protocol that is used to directly interface
with the hardware tables (e.g., Forwarding Information Base, or FIB) that instruct a
network device how to forward traffic (for example, “traffic to destination
192.168.0.100 should egress port 48”).

OpenFlow is a low-level protocol that manipulates flow tables, thus
directly impacting packet forwarding. OpenFlow was not intended
to interact with management plane attributes like authentication or
SNMP parameters.

2 | Chapter 1: Network Industry Trends

Because the tables OpenFlow uses support more than the destination address as com-
pared to traditional routing protocols, there is more granularity (matching fields in
the packet) to determine the forwarding path. This is not unlike the granularity
offered by Policy Based Routing. Like OpenFlow would do many years later, PBR
allows network administrators to forward traffic based on “non-traditional”
attributes, like a packet’s source address. However, it took quite some time for net-
work vendors to offer equivalent performance for traffic that was forwarded via PBR,
and the final result was still very vendor-specific. The advent of OpenFlow meant that
we could now achieve the same granularity with traffic forwarding decisions, but in a
vendor-neutral way. It became possible to enhance the capabilities of the network
infrastructure without waiting for the next version of hardware from the manufac-
turer.

History of Programmable Networks

OpenFlow was not the first protocol or technology used to decouple control func-
tions and intelligence from network devices. There is a long history of technology
and research that predates OpenFlow, although OpenFlow is the technology that
started the SDN revolution. A few of the technologies that predated OpenFlow
include Forwarding and Control Element Separation (ForCES), Active Networks,
Routing Control Platform (RCP), and Path Computation Element (PCE). For a more
in-depth look at this history, take a look at the paper “The Road to SDN: An Intellec-
tual History of Programmable Networks” by Jen Rexford, Nick Feamster, and Ellen
Zegura.

Why OpenFlow?

While it's important to understand what OpenFlow is, it’s even more important to
understand the reasoning behind the research and development effort of the original
OpenFlow spec that led to the rise of Software Defined Networking.

Martin Casado had a job working for the national government while he was attending
Stanford. During his time working for the government, there was a need to react to
security attacks on the IT systems (after all, this is the US government). Casado
quickly realized that he was able to program and manipulate the computers and
servers as he needed. The actual use cases were never publicized, but it was this type
of control over endpoints that made it possible to react, analyze, and potentially re-
program a host or group of hosts when and if needed.

When it came to the network, it was near impossible to do this in a clean and pro-
grammatic fashion. After all, each network device was closed (locked from installing
third-party software, as an example) and only had a command-line interface (CLI).
Although the CLI was and is still very well known and even preferred by network

The Rise of Software Defined Networking | 3

https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/sdnhistory.pdf
https://www.cs.princeton.edu/courses/archive/fall13/cos597E/papers/sdnhistory.pdf

administrators, it was clear to Casado that it did not offer the flexibility required to
truly manage, operate, and secure the network.

In reality, the way networks were managed had never changed in over 20 years except
for the addition of CLI commands for new features. The biggest change was the
migration from Telnet to SSH, which was a joke often used by the SDN company Big
Switch Networks in their slides, as you can see in Figure 1-2.

PROBLEM: NETWORK AGILITY
Not Much has Changed in the Last 20 Years

1994 2014

Router> enable Router> enable

Router# configure terminal Router# configure terminal

Router (config) # enable secret cisco Router (config)# enable secret cisco

Router (config) # ip route 0.0.0.0 0.0.0.0 20.2.2.3 Router(config)# ip route 0.0.0.0 0.0.0.0 20.2.2.3
Router (config) # interface ethernet0 Router (config) # interface ethernetd

ip address 10.1.1.1 255.0.0.0 Router (e
no shutdown Router(c

)# ip address 10.1.1.1 255.0.0.0
no shutdown

Router (conf

Router (co:

Router (config # exit Router (cor exit

Router (config)

interface serial0 Router (con: terface seriall

Router (conf

ip address 20.2.2.2 255.0.0.0 Router (con:)4 ip address 20.2.2.2 255.0.0.0

Router (conf # no shutdown Router (con)# no shutdown

Router (config-if) # exit Router (con: 14 exit

Router (config) # router rip Router (con:)# router rip

Router (conf. router) # network 10.0.0.0 Router (c -router) # network 10.0.0.0

Router (conf. router) # network 20.0.0.0 Router (c -router) # network 20.0.0.0
Router (config-router)# exit Router (config-router) # exit
Router (config) # exit Router(config) # exit
Router# copy running-config startup-config Router# copy running-config startup-config
Router# disable Router# disable

Terminal Protocol: Telnet Terminal Protocol: SSH

Figure 1-2. What's changed? From Telnet to SSH (source: Big Switch Networks)

All joking aside, the management of networks has lagged behind other technologies
quite drastically, and this is what Casado eventually set out to change over the next
several years. This lack in manageability is often better understood when other tech-
nologies are examined. Other technologies almost always have more modern ways of
managing a large number of devices for both configuration management and data
gathering and analysis—for example, hypervisor managers, wireless controllers, IP
PBXs, PowerShell, DevOps tools, and the list can go on. Some of these are tightly
coupled from vendors as commercial software, but others are more loosely aligned to
allow for multi-platform management, operations, and agility.

If we go back to the scenario while Casado was working for the government, was it
possible to redirect traffic based on application? Did network devices have an API?

4 | Chapter 1: Network Industry Trends

Was there a single point of communication to the network? The answers were largely
no across the board. How could it be possible to program the network to dynamically
control packet forwarding, policy, and configuration as easily as it was to write a pro-
gram and have it execute on an end host machine?

The initial OpenFlow spec was the result of Martin Casado experiencing these types
of problems firsthand. While the hype around OpenFlow has died down since the
industry is starting to finally focus more on use cases and solutions than low-level
protocols, this initial work was the catalyst for the entire industry to do a rethink on
how networks are built, managed, and operated. Thank you, Martin.

This also means if it weren't for Martin Casado, this book would probably not have
been written, but we'll never know now!

What s Software Defined Networking?

We've had an introduction to OpenFlow, but what is Software Defined Networking
(SDN)? Are they the same thing, different things, or neither? To be honest, SDN is
just like Cloud was nearly a decade ago, before we knew about different types of
Cloud, such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS).

Having reference examples and designs streamlines the understanding of what Cloud
was and is, but even before these terms did exist, it could be debated that when you
saw Cloud, you knew it. That’s kind of where we are with Software Defined Network-
ing. There are public definitions that exist that state white-box networking is SDN or
that having an API on a network device is SDN. Are they really SDN? Not really.

Rather than attempt to provide a definition of SDN, we will cover the technologies
and trends that are very often thought of as SDN, and included in the SDN conversa-
tion. They include:

o OpenFlow o Network automation

o Network Functions Virtualization o Bare-metal switching

o Virtual switching o Data center network fabrics
o Network virtualization o SD-WAN

« Device APIs o Controller networking

We are intentionally not providing a definition of SDN in this
book. While SDN is mentioned in this chapter, our primary focus
is on general trends that are often categorized as SDN to ensure
you’re aware of each of these trends more specifically.

The Rise of Software Defined Networking | 5

Of these trends, the rest of the book will focus on network automation, APIs, and
peripheral technologies that are critical in understanding how all of the pieces come
together in network devices that expose programmatic interfaces with modern auto-
mation tools and instrumentation.

OpenFlow

Even though we introduced OpenFlow earlier, we want to highlight a few more key
points you should be aware of related to OpenFlow.

One of the major benefits that was supposed to be an outcome of using a protocol
like OpenFlow between a controller and network devices was that there would be true
vendor independence from the controller software, sometimes referred to as a net-
work operating system (NOS), and the underlying virtual and physical network devi-
ces. What has actually happened, though, is that vendors who use OpenFlow in their
solution (examples include Big Switch Networks, HP, and NEC) have developed
OpenFlow extensions due to the pace of standards and the need to provide unique
value-added features that the off-the-shelf version of OpenFlow does not offer. It is yet
to be seen if all of the extensions end up making it into future versions of the Open-
Flow standard.

When OpenFlow is used, you do gain the benefit to getting more granular with how
traffic traverses the network, but with great power comes great responsibility. This is
great if you have a team of developers. For example, Google rolled out an OpenFlow-
based WAN called B4 that increases efficiency of their WAN to nearly 100%. For most
other organizations, the use of OpenFlow or any other given protocol will be less
important than what an overall solution offers to the business being supported.

While this particular section is called OpenFlow, architecturally it’s
about decoupling the control plane from the data plane. OpenFlow
is just the main protocol being used to accomplish this
functionality.

Network Functions Virtualization

Network Functions Virtualization, known as NFV, isn’t a complex concept. It refers to
taking functions that have traditionally been deployed as hardware, and instead
deploying them as software. The most common examples of this are virtual machines
that operate as routers, firewalls, load balancers, IDS/IPS, VPN, application firewalls,
and any other service/function.

With NFYV, it becomes possible to break down a monolithic piece of hardware that
may have cost tens or hundreds of thousands of dollars, with hundreds to thousands
of lines of commands, to get it configured into N pieces of software, namely virtual

6 | Chapter 1: Network Industry Trends

appliances. These smaller devices become much more manageable from an individual
device perspective.

The preceding scenario uses virtual appliances as the form factor
for NFV-enabled devices. This is merely an example. Deploying
network functions as software could come in many forms, includ-
ing embedded in a hypervisor, as a container, or as an application
running atop an x86 server.

It's not uncommon to deploy hardware that may be needed in three to five years just
in case, because it's too complicated and even more expensive to have gradual
upgrades. So not only is hardware an intensive capital cost, it’s only used for the what-
if scenarios if growth occurs. Deploying software-based, or NFV, solutions offers a
better way to scale out and minimize the failure domain of a network or particular
application while using a pay-as-you-grow model. For example, rather than purchas-
ing a single large Cisco ASA, you can gradually deploy Cisco ASAv appliances and
pay as you grow. You can also scale out load balancers easily with newer technologies
from a company like Avi Networks.

If NFV could offer so much benefit, why haven't there been more solutions and prod-
ucts that fit into this category deployed in production? There are actually a few differ-
ent reasons. First, it requires a rethink in how the network is architected. When there
is a single monolithic firewall (as an example), everything goes through that firewall
—meaning all applications and all users, or if not all, a defined set that you are aware
of. In the modern NFV model where there could be many virtual firewalls deployed,
there is a firewall per application or tenant as opposed to a single big-box FW. This
makes the failure domain per firewall, or any other services appliances, fairly small,
and if a change is being made or a new application is being rolled out, no change is
required for the other per-application (per-tenant) based firewalls.

On the other hand, in the more traditional world of having monolithic devices, there
is essentially a single pane of management for security policy—single CLI or GUI.
This could make the failure domain immense, but it does offer administrators
streamlined policy management since it’s only a single device being managed. Based
on the team or staff supporting these devices, they may opt still for a monolithic
approach. That is the reality, but hopefully over time with improved tools that can
help with the consumption and management of software-centric solutions, as an
industry, we'll see more deployments leveraging this type of technology. In fact, in a
world with modern automated network operations and management, it'll matter less
which architecture is chosen from an operational efficiency perspective as you'll be
able to manage either a single device or a larger quantity of devices in a much more
efficient manner.

The Rise of Software Defined Networking | 7

Aside from management, another factor that plays into this is that many vendors are
not actively selling their virtual appliance edition. Were not saying they don’t have
virtual options, but they are usually not the preferred choice of many traditional
equipment manufacturers. If a vendor has had a hardware business for the past sev-
eral years, it’s a drastic shift to a software-led model from a sales and compensation
perspective. Because of this, many of these vendors are limiting the performance or
features on their virtual appliance-based technology.

As will be seen in many of these technology areas, a major value of NFV is in agility
too. Eliminating hardware decreases the time to provision new services by removing
the time needed to rack, stack, cable, and integrate into an existing environment. Lev-
eraging a software approach, it becomes as fast as deploying a new virtual machine
into the environment, and an inherent benefit of this approach is being able to clone
and back up the virtual appliance for further testing, for example in disaster recovery
(DR) environments.

Finally, when NFV is deployed, it eliminates the need to route traffic through a spe-
cific physical device in order to get the required service.

Virtual switching

The more common virtual switches on the market these days include the VMware
standard switch (VSS), VMware distributed switch (VDS), Cisco Nexus 1000V, Cisco
Application Virtual Switch (AVS), and the open source Open vSwitch (OVS).

These switches every so often get wrapped into the SDN discussion, but in reality
they are software-based switches that reside in the hypervisor kernel providing local
network connectivity between virtual machines (and now containers). They provide
functions such as MAC learning and features like link aggregation, SPAN, and sFlow
just like their physical switch counterparts have been doing for years. While these vir-
tual switches are often found in more comprehensive SDN and network virtualiza-
tion solutions, by themselves they are a switch that just happens to be running in
software. While virtual switches are not a solution on their own, they are extremely
important as we move forward as an industry. They've created a new access layer, or
new edge, within the data center. No longer is the network edge the physical top-of-
rack (TOR) switch that is hardware-defined with limited flexibility (in terms of fea-
ture/function development). Since the new edge is software-based through the use of
virtual switches, it offers the ability to more rapidly create new network functions in
software, and thus, it is possible to distribute policy more easily throughout the net-
work. As an example, security policy can be deployed to the virtual switch port that is
nearest to the actual endpoint, be it a virtual machine or container, to further enhance
the security of the network.

8 | Chapter 1: Network Industry Trends

Network virtualization

Solutions that are categorized as network virtualization have become synonymous
with SDN solutions. For purposes of this section, network virtualization refers to
software-only overlay-based solutions. The popular solutions that fall into this cate-
gory are VMware’s NSX, Nuage’s Virtual Service Platform (VSP), and Juniper’s Con-
trail.

A key characteristic of these solutions is that an overlay-based protocol such as Vir-
tual eXtensible LAN (VXLAN) is used to build connectivity between hypervisor-
based virtual switches. This connectivity and tunneling approach provides Layer 2
adjacency between virtual machines that exist on different physical hosts independent
of the physical network, meaning the physical network could be Layer 2, Layer 3, or a
combination of both. The result is a virtual network that is decoupled from the physi-
cal network and that is meant to provide choice and agility.

It's worth pointing out that the term overlay network is often used
in conjunction with the term underlay network. For clarity, the
underlay is the underlying physical network that you physically
cable up. The overlay network is built using a network virtualiza-
tion solution that dynamically creates tunnels between virtual
switches within a data center. Again, this is in the context of a
software-based network virtualization solution. Also note that
many hardware-only solutions are now being deployed with
VxLAN as the overlay protocol to establish Layer 2 tunnels
between top-of-rack devices within a Layer 3 data center.

While the overlay is an implementation detail of network virtualization solutions,
these solutions are much more than just virtual switches being stitched together by
overlays. These solutions are usually comprehensive, offering security, load balancing,
and integrations back into the physical network all with a single point of management
(i.e., the controller). Oftentimes these solutions offer integrations with the best-of-
breed Layer 4-7 services companies as well, offering choice as to which technology
could be deployed within network virtualzation platforms.

Agility is also achieved thanks to the central controller platform, which is used to
dynamically configure each virtual switch, and services appliances as needed. If you
recall, the network has lagged behind operationally due to the CLI that is pervasive
across all vendors in the physical world. In network virtualization, there is no need to
configure virtual switches manually, as each solution simplifies this process by pro-
viding a central GUI, CLI, and also an API where changes can be made
programmatically.

The Rise of Software Defined Networking | 9

Device APIs

Over the past several years, vendors have begun to realize that just offering a standard
CLI was not going to cut it anymore and that using a CLI has severely held back oper-
ations. If you have ever worked with any programming or scripting language, you can
probably understand that. For those that haven’t, we'll talk more about this in Chap-
ter 7.

The major pain point is that scripting with legacy or CLI-based network devices does
not return structured data. This meant data would be returned from the device to a
script in a raw text format (i.e., the output of a show version) and then the individual
writing the script would need to parse that text to extract attributes such as uptime or
operating system version. When the output of show commands changed even slightly,
the scripts would break due to incorrect parsing rules. While this approach is all
administrators have had, automation was technically possible, but now vendors are
gradually migrating to API-driven network devices.

Offering an API eliminates the need to parse raw text, as structured data is returned
from a network device, significantly reducing the time it takes to write a script.
Rather than parsing through text to find the uptime or any other attribute, an object
is returned providing exactly what is needed. Not only does it reduce the time to
write a script, lowering the barrier to entry for network engineers (and other non-
programmers), but it also provides a cleaner interface such that professional software
developers can rapidly develop and test code, much like they operate using APIs on
non-network devices. “Test code” could mean testing new topologies, certifying new
network features, validating particular network configurations, and more. These are
all things that are done manually today and are very time consuming and error
prone.

One of the first more popular APIs in the network scene was that by Arista Networks.
Its API is called eAPI, which is HTTP-based API that uses JSON-encoded data. Don’t
worry, HTTP-based APIs and JSON will be covered in chapters to follow, starting
with Chapter 5. Since Arista, we've seen Cisco announce APIs such as Nexus NX-API
and NETCONF/RESTCONF on particular platforms and a vendor like Juniper,
which has had an extensible NETCONF interface all along but hasn’t publicly drawn
too much attention to it. It's worth noting that nearly every vendor out there has
some sort of API these days.

This topic will be covered in much more detail in Chapter 7.

Network automation

As APIs in the network world continue to evolve, more interesting use cases for tak-
ing advantage of them will also continue to emerge. In the near term, network auto-
mation is a prime candidate for taking advantage of the programmatic interfaces
being exposed by modern network devices that offer an API.

10 | Chapter1: Network Industry Trends

To put it in greater context, network automation is not just about automating the con-
figuration of network devices. It is true that is the most common perception of net-
work automation, but using APIs and programmatic interfaces can automate and
offer much more than pushing configuration parameters.

Leveraging an API streamlines the access to all of the data bottled up in network
devices. Think about data such as flow level data, routing tables, FIB tables, interface
statistics, MAC tables, VLAN tables, serial numbers—the list can go on and on. Using
modern automation techniques that in turn leverage an API can quickly aid in the
day-to-day operations of managing networks for data gathering and automated diag-
nostics. On top of that, since an API is being used that returns structured data, as an
administrator, you will have the ability to display and analyze the exact data set you
want and need, even coming from various show commands, ultimately reducing the
time it takes to debug and troubleshoot issues on the network. Rather than connect-
ing to N routers running BGP trying to validate a configuration or troubleshoot an
issue, you can use automation techniques to simplify this process.

Additionally, leveraging automation techniques leads to a more predictable and uni-
form network as a whole. You can see this by automating the creation of configura-
tion files, automating the creation of a VLAN, or automating the process of
troubleshooting. It streamlines the process for all users supporting a given environ-
ment instead of having each network administrator having their own best practice.

The various types of network automation will be covered in Chapter 2 in much
greater depth.

Bare-metal switching

The topic of bare-metal switching is also often thought of as SDN, but it’s not. Really,
it isn’t! That said, in our effort to give an introduction to the various technology
trends that are perceived as SDN, it needs to be covered. If we rewind to 2014 (and
even earlier), the term used to describe bare-metal switching was white-box or com-
modity switching. The term has changed, and not without good reason.

Before we cover the change from white-box to bare-metal, it’s important to under-
stand what this means at a high level since it’s a massive change in how network devi-
ces are thought of. Network devices for the last 20 years were always bought as a
physical device—these physical devices came as hardware appliances, an operating
system, and features/applications that you can use on the system. These components
all came from the same vendor.

In the white-box and bare-metal network devices, the device looks more like an x86
server (see Figure 1-3). It allows the user to disaggregate each of the required compo-
nents, making it possible to purchase hardware from one vendor, purchase an operat-

The Rise of Software Defined Networking | 11

ing system from another, and then load features/apps from other vendors or even the
open source community.

White-box switching was a hot topic for a period of time during the OpenFlow hype,
since the intent was to commoditize hardware and centralize the brains of the net-
work in an OpenFlow controller, otherwise now known as an SDN controller. And in
2013, Google announced they had built their own switches and were controlling
them with OpenFlow! This was the topic of a lot of industry conversations at the
time, but in reality, not every end user is Google, so not every user will be building
their own hardware and software platforms.

In parallel to these efforts, we saw the emergence of a few companies that were solely
focused on providing solutions around white-box switching. They include Big Switch
Networks, Cumulus Networks, and Pica8. Each of them offers software-only solu-
tions, so they still need hardware that their software will run on to provide an end-to-
end solution. Initially, these white-box hardware platforms came from Original
Direct Manufacturers (ODM) such as Quanta, Super Micro, and Accton. If you've
been in the network industry, more than likely you've never even heard of those ven-
dors.

Traditional Network Device Bare-Metal (Disaggregated) Device
Applications Applications
Operating System Operating System
Hardware Hardware
Network Device Network Device
Fully integrated network device Bare-metal switching (disaggregation).
provided and supported by a Each component within the stack could
single vendor. potentially be provided by different vendors.

Figure 1-3. A look at traditional and bare-metal switching stacks

It wasn’'t until Cumulus and Big Switch announced partnerships with companies
including HP and Dell that the industry started to shift from calling this trend white-
box to bare-metal, since now name-brand vendors were supporting third-party oper-
ating systems from the likes of Big Switch and Cumulus Networks on their hardware
platforms.

There still may be confusion on why bare-metal is technically not SDN, since a ven-
dor like Big Switch plays in both worlds. The answer is simple. If there is a controller
integrated with the solution using a protocol such as OpenFlow (it does not have to

12 | Chapter1: Network Industry Trends

be OpenFlow), and it is programmatically communicating with the network devices,
that gives it the flavor of Software Defined Networking. This is what Big Switch does
—they load software on the bare-metal/white-box hardware running an OpenFlow
agent that then communicates with the controller as part of their solution.

On the other hand, Cumulus Networks provides a Linux distribution purpose-built
for network switches. This distribution, or operating system, runs traditional proto-
cols such as LLDP, OSPE, and BGP, with no controller requirement whatsoever, mak-
ing it more comparable, and compatible, to non-SDN based network architectures.

With this description it should be evident that Cumulus is a network operating sys-
tem company that runs their software on bare-metal switches while Big Switch is a
bare-metal-based SDN company requiring the use of their SDN controller, but also
leverages third-party, bare-metal switching infrastructure.

In short, bare-metal/white-box switching is about disaggregation and having the abil-
ity to purchase network hardware from one vendor and load software from another,
should you choose to do so. In this case, administrators are offered the flexibility to
change designs, architectures, and software, without swapping out hardware, just the
underlying operating system.

Data center network fabrics

Have you ever faced the situation where you could not easily interchange the various
network devices in a network even if they were all running standard protocols such as
Spanning Tree or OSPF? If you have, you are not alone. Imagine having a data center
network with a collapsed core and individual switches at the top of each rack. Now
think about the process that needs to happen when it’s time for an upgrade.

There are many ways to upgrade networks like this, but what if it was just the top-of-
rack switches that needed to be upgraded and in the evaluation process for new TOR
switches, it was decided a new vendor or platform would be used? This is 100% nor-
mal and has been done time and time again. The process is simple—interconnect the
new switches to the existing core (of course, we are assuming there are available ports
in the core) and properly configure 802.1Q trunking if it’s a Layer 2 interconnect or
configure your favorite routing protocol if it’s a Layer 3 interconnect.

Enter data center network fabrics. This is where the thought process around data cen-
ter networks has to change.

Data center network fabrics aim to change the mindset of network operators from
managing individual boxes one at a time to managing a system in its entirety. If we
use the earlier scenario, it would not be possible to swap out a TOR switch for
another vendor, which is just a single component of a data center network. Rather,
when the network is deployed and managed as a system, it needs to be thought of as a
system. This means the upgrade process would be to migrate from system to system,

The Rise of Software Defined Networking | 13

or fabric to fabric. In the world of fabrics, fabrics can be swapped out when it’s time
for an upgrade, but the individual components within the fabric cannot be—at least
most of the time. It may be possible when a specific vendor is providing a migration
or upgrade path and when bare-metal switching (only replacing hardware) is being
used. A few examples of data center network fabrics are Ciscos Application Centric
Infrastructure (ACI), Big Switch’s Big Cloud Fabric (BCF), or Plexxi’s fabric and
hyper-converged network.

In addition to treating the network as a system, a few other common attributes of
data center networking fabrics are:

« They offer a single interface to manage or configure the fabric, including policy
management.

o They offer distributed default gateways across the fabric.
o They offer multi-pathing capabilities.

o They use some form of SDN controller to manage the system.

SD-WAN

One of the hottest trends in Software Defined Networking over the past two years has
been Software Defined Wide Area Networking (SD-WAN). Over the past few years, a
growing number of companies have been launched to tackle the problem of Wide
Area Networking. A few of these vendors include Viptela (most recently acquired by
Cisco), CloudGenix, VeloCloud, Cisco IWAN, Glue Networks, and Silverpeak.

The WAN had not seen a radical shift in technology since the migration from Frame
Relay to MPLS. With broadband and internet costs being a fraction of what costs are
for equivalent private line circuits, there has been an increase in leveraging site-to-site
VPN tunnels over the years, laying the groundwork for the next big thing in WAN.

Common designs for remote offices typically include a private (MPLS) circuit and/or
a public internet connection. When both exist, internet is usually used as backup
only, specifically for guest traffic, or for general data riding back over a VPN to cor-
porate while the MPLS circuit is used for low-latency applications such as voice or
video communications. When traffic starts to get divided between circuits, this
increases the complexity of the routing protocol configuration and also limits the
granularity of how to route to the destination address. The source address, applica-
tion, and real-time performance of the network is usually not taken into considera-
tion in decisions about the best path to take.

A common SD-WAN architecture that many of the modern solutions use is similar to
that of network virtualization used in the data center, in that an overlay protocol is
used to interconnect the SD-WAN edge devices. Since overlays are used, the solution

14 | Chapter 1: Network Industry Trends

is agnostic to the underlying physical transport, making SD-WAN functional over the
internet or a private WAN. These solutions often ride over two or more internet cir-
cuits at branch sites, fully encrypting traffic using IPSec. Additionally, many of these
solutions constantly measure the performance of each circuit in use being able to rap-
idly fail over between circuits for specific applications even during brownouts. Since
there is application layer visibility, administrators can also easily pick and choose
which application should take a particular route. These types of features are often not
found in WAN architectures that rely solely on destination-based routing using tradi-
tional routing protocol such as OSPF and BGP.

From an architecture standpoint, the SD-WAN solutions from the vendors men-
tioned earlier like Cisco, Viptela, and CloudGenix also typically offer some form of
zero touch provisioning (ZTP) and centralized management with a portal that exists
on premises or in the cloud as a SaaS-based application, drastically simplifying man-
agement and operations of the WAN going forward.

A valuable by-product of using SD-WAN technology is that it offers more choice for
end users since basically any carrier or type of connection can be used on the WAN
and across the internet. In doing so, it simplifies the configuration and complexity of
carrier networks, which in turn will allow carriers to simplify their internal design
and architecture, hopefully reducing their costs. Going one step further from a tech-
nical perspective, all logical network constructs such as Virtual Routing and Forward-
ing (VRFs) would be managed via the controller platform user interface (UI) that the
SD-WAN vendor provides, again eliminating the need to wait weeks for carriers to
respond to you when changes are required.

Controller networking

When it comes to several of these trends, there is some overlap, as you may have real-
ized. That is one of the confusing points when you are trying to understand all of the
new technology and trends that have emerged over the last few years.

For example, popular network virtualization platforms use a controller, as do several
solutions that fall into the data center network fabric, SD-WAN, and bare-metal
switch categories too. Confusing? You may be wondering why controller-based net-
working has been broken out by itself. In reality, it oftentimes is just characteristic
and a mechanism to deliver modern solutions, but not all of the previous trends
cover all of what controllers can deliver from a technology perspective.

For example, a very popular open source SDN controller is OpenDaylight (ODL), as
shown in Figure 1-4. ODL, as with many other controllers, is a platform, not a prod-
uct. They are platforms that can offer specialized applications such as network virtu-
alization, but they can also be used for network monitoring, visibility, tap
aggregation, or any other function in conjunction with applications that sit on top of
the controller platform. This is the core reason why it’s important to understand what

The Rise of Software Defined Networking | 15

controllers can offer above and beyond being used for more traditional applications
such as fabrics, network virtualization, and SD-WAN.

LEGEND
AAA: Authentication, Authorization & Accounting OVSDB: Open vSwitch DataBase Protocol

AuthN: Authentication PCEP: Path Computation Element Communication Protocol
BGP: Border Gateway Protocol PCMM: Packet Cable MultiVledia
COPS: Comemon Open Plcy Seice PluginZOC: Plugin o OpenContr
DLUX: OpenDaykght User Exprience SN I o (e el Feenaon)
DDoS: Distributed Denial OF Service $8C Sqme Function Chaining
DOCSIS: Data Over Cable Service Interface Sp SNBI. i

@ 7] ERM Forwarding Rules Manager SNMP: Srmph et Management Protocol

H E LI U M GBP: Group Based Polic TTP: Table Type Patterns

LISP Locator/ldentifer Separation Protocol VTN: Vitual Tenont Network

VTN OpenStack SONI DDoS Network Applications
Coordinator Neutron Wrapper Protection Orchestrations & Services

OpenDaylight APls (REST)

Base Network Service Functions ~
OpenStack Service Se
e - E n .
Tracker
- 0VsSDB LISP Controller
Neutron Service SWN “WW""" Platform

Service Abstraction Layer (SAL)

(Plugin Manager, Capability Abstr: , Flow Programming, Inventory, etc.)

GBP Hendﬁa’s

DP!“FIW' Southbound Interfaces
5 Data Plane Elements
Openﬂnv! Enabled Open Additional Virtual & (Virtual Switches, Physical
Devices vSwitches Physical Devices .
Device Interfaces)

Figure 1-4. OpenDaylight architecture

Summary

There you have it: an introduction to the trends and technologies that are most often
categorized as Software Defined Networking, paving the path into better network
operations through network programmability and automation. Dozens of SDN start-
ups were created over the past seven years, millions in VC money invested, and bil-
lions spent on acquisitions of these companies. It’s been unreal, and if we break it
down one step further, it’s all with the common goal of leveraging software principles
and technology to offer greater power, control, agility, and choice to the users of the
technology while increasing the operational efficiencies.

In Chapter 2, we'll take a look at network automation and dive deeper into the vari-
ous types of automation, some common protocols and APIs, and how automation
has started to evolve in the last several years.

16 | Chapter 1: Network Industry Trends

CHAPTER 2
Network Automation

In this chapter, we're focused on providing a baseline of high-level network automa-
tion concepts so that you are better equipped to get the most out of each individual
chapter going forward.

To accomplish this, the following sections are included in this chapter:

Why Network Automation?
Examines various reasons to adopt automation and increase the efficiencies of
network operations while proving there is much more to automation than deliv-
ering configurations faster to network devices.

Types of Network Automation
Explores various types of automation from traditional configuration manage-
ment to automating network diagnostics and troubleshooting, proving once
again, there is more to automation than decreasing the time it takes to make a
change.

Evolving the Management Plane from SNMP to Device APIs
Provides a brief introduction to a few different API types found on network devi-
ces of the past and present.

Network Automation in the SDN Era
Provides a short synopsis of why network automation tooling is still valuable
when SDN, specifically referring to controller-based architectures, solutions are
deployed.

17

This chapter is not meant to be a deep technical chapter, but rather
an introduction to the ideas and concepts of network automation.
It simply lays the foundation and provides context for the chapters
that follow.

Why Network Automation?

Network automation, like most types of automation, is thought of as a means of
doing things faster. While doing things more quickly is nice, reducing the time for
deployments and configuration changes isn’t always a problem that needs solving for
many IT organizations.

Including speed, we'll take a look at a few of the reasons that IT organizations of all
shapes and sizes should be looking at gradually adopting network automation. You
should note that the same principles apply to other types of automation as well
(application, systems, storage, telephony, etc.).

Simplified Architectures

Today, most network devices are configured as unique snowflakes (having many one-
off non-standard configurations), and network engineers take pride in solving trans-
port and application issues with one-off network changes that ultimately make the
network not only harder to maintain and manage, but also harder to automate.

Instead of network automation and management being treated as a secondary project
or an “add-on,” it needs to be included from the outset as new architectures are being
created. This includes ensuring there is the proper budget for personnel and/or tool-
ing. Unfortunately, tooling is often the first item that gets cut when there is a shortage
of budget.

The end-to-end architecture and associated day 2 operations need to be one and the
same. You need to think about the following questions as architectures are created:

o Which features work across vendors?
o Which extensions work across platforms?

o What type of API or automation tooling works with particular network device
platforms?

« Is there solid API documentation?
o What libraries exist for a given product?
When these questions get answered early on in the design process, the resulting

architecture becomes simpler, repeatable, and easier to maintain and automate, all
with fewer vendor-proprietary extensions enabled throughout the network.

18 | Chapter2: Network Automation

Even after the simplified architecture gets deployed with the right management and
automation tooling, remember it’s still a necessity to minimize one-off changes to
ensure the network configurations don’t become snowflakes again.

Deterministic Outcomes

In an enterprise organization, change review meetings take place to review upcoming
changes on the network, the impact they have on external systems, and rollback
plans. In a world where a human is touching the CLI to make those upcoming
changes, the impact of typing the wrong command is catastrophic. Imagine a team
with 3, 4, 5, or 50 engineers. Every engineer may have his or her own way of making
that particular upcoming change. Moreover, the ability to use a CLI and even a GUI
does not eliminate or reduce the chance of error during the control window for the
change.

Using proven and tested network automation to make changes helps achieve more
predictable behavior than making changes manually, and gives the executive team a
better chance at achieving deterministic outcomes, moving one step closer to having
the assurance that the task at hand will get done right the first time without human
error. This could be any task from a virtual local area network (VLAN) change to on-
boarding a new customer that requires several changes throughout the network.

Business Agility

We know that network automation offers speed and agility for deploying changes, but
it does the same for retrieving data from network devices as fast as the business
demands, or more practically, as fast as needed to dynamically troubleshoot a net-
work issue.

Since the advent of server virtualization, server and virtualization administrators have
had the ability to deploy new applications almost instantaneously. And the faster
applications are deployed, the more questions are raised as to why it takes so long to
configure network resources such as VLANS, routes, firewall (FW) policies, load-
balancing polices, or all of the above, if deploying a new three-tier application.

It should be fairly obvious that by adopting network automation, the network engi-
neering and operations teams can react faster to their IT counterparts for deploying
applications, but more importantly, it helps the business be more agile. From an
adoption perspective, it’s critical to understand the existing, and often manual, work-
flows before attempting to adopt automation of any kind, no matter how good your
intentions are for making the business more agile.

If you don’t know what you want to automate, it'll complicate and prolong the pro-
cess. Our number one recommendation as you start your network automation jour-
ney is to always understand existing manual workflows, document them, and

Why Network Automation? | 19

understand the impact they have to the business. Then, the process to deploy auto-
mation technology and tooling becomes much simpler.

From simplified architectures to business agility, this section introduced some of the
high-level points on why you should consider network automation. In the next sec-
tion, we take a look at different types of network automation.

Types of Network Automation

Automation is commonly equated with speed, and considering that some network
tasks don’t require speed, it’s easy to see why some IT teams don't see the value in
automation. VLAN configuration is a great example because you may be thinking,
“How fast does a VLAN really need to get created? Just how many VLANSs are being
added on a daily basis? Do I really need automation?” And they are all valid ques-
tions.

In this section, we are going to focus on several other tasks where automation makes
sense, such as device provisioning, data collection, troubleshooting, reporting, and
compliance. But remember, as we stated previously, automation is much more than
speed and agility; it also offers you, your team, and your business more predictable
and more deterministic outcomes.

Device Provisioning

One of the easiest and fastest ways to get started with network automation is to auto-
mate the creation of the device configuration files that are used for initial device pro-
visioning and pushing them to network devices.

If we take this process and break it down into two steps, the first step is creating the
configuration file, and the second is pushing the configuration onto the device.

In order to automate the creation of configuration files, we first need to decouple the
inputs (configuration parameters) from the underlying vendor-proprietary syntax
(CLI) of the configuration. This means we'll end up with separate files with values for
the configuration parameters such as VLANs, domain information, interfaces, rout-
ing, and everything else being configured, and then, of course, a configuration tem-
plate. This is something we cover in great detail in Chapter 6.

For now, think of the configuration template as the equivalent of a standard golden
template that’s used for all devices getting deployed. By leveraging a technique called
network configuration templating, you are quickly able to produce consistent network
configuration files specifically for your network. What this also means is you’ll never
have to use Notepad ever again, copying and pasting configs from file to file—isn't it
about time for that?

20 | Chapter2: Network Automation

Two tools that streamline using configuration templates with variables (data inputs)
are Ansible and Salt. In less than a few seconds, these tools can generate hundreds of
configuration files predictably and reliably.

Building and generating configuration files from templates is cov-
ered in much more detail in Chapter 6, while performing the tem-
plating process with Ansible and Salt is covered in Chapter 9. This
section is merely showing a high-level basic example.

Let’s look at an example of taking a current configuration and decomposing it into a
template and separate variables (inputs) file to articulate the point we’re making.

Here is an example of a configuration file snippet:

hostname leaf1

ip domain-name ntc.com
]

vlan 10

name web
1

vlan 20

name app
]

vlan 30

name db
1

If we decouple the data from the CLI commands, this file is transformed into two
files: a template and a data (variables) file.

First let’s look at the YAML (we cover YAML in depth in Chapter 5) variables file:

hostname leaf1
domain_name: ntc.com
vlans:
- id: 10
name: web
- id: 20
name: app
- id: 30
name: db

Note the YAML file is only our data.

For this example, we're showing the Python-based Jinja templating
language. Jinja is covered in detail in Chapter 6.

Types of Network Automation | 21

The resulting template that'll be rendered with the data file looks like this and is given
the filename leaf.j2:

]
hostname {{ inventory_hostname }}
ip domain-name {{ domain_name }}
]
!
{% for vlan in vlans %}
vlan {{ vlan.id }}
name {{ vlan.name }}
{% endfor %}

|

In this example, the double curly braces denote a Jinja variable. In other words, this is
where the data variables get inserted when a template is rendered with data. Since the
double curly braces denote variables, and we see those values are not in the template,
they need to be stored somewhere. Again, we stored them in a YAML file. Rather
than use flat YAML files, you could also use a script to fetch this type of information
from an external system such as a network management system (NMS) or IP address
management (IPAM) system.

In this example, if the team that controls VLANs wants to add a VLAN to the net-
work devices, no problem. They just need to change it in the variables file and regen-
erate a new configuration file using Ansible or the rendering engine of their choice
(Salt, pure Python, etc.).

In Chapter 6, we also cover how you use native Python with Jinja
templates, showing how you can create a Python script that can be
used as a basic rendering engine.

At this point in our example, once the configuration is generated, it needs to be
pushed to the network device. The push and execution process is not covered here, as
there are plenty of ways to do this, including vendor-proprietary zero touch provi-
sioning solutions as well as a few other methods that we look at Chapters 7 and 9.

Additionally, this was only meant to be a high-level introduction to templates; do not
worry if it’s not 100% clear yet. As we've said, working with templates is covered in far
greater detail in Chapter 6.

Aside from building configurations and pushing them to devices, something that is
arguably more important is data collection, which happens to be the next topic we
cover.

22 | Chapter2: Network Automation

Data Collection

Monitoring tools typically use the Simple Network Management Protocol (SNMP)—
these tools poll certain management information bases (MIBs) and return data to the
monitoring tool. Based on the data being returned, it may be more or less than you
actually need. What if interface stats are being polled? You may get back every
counter that is displayed in a show interface command, but what if you only needed
interface resets and not CRC errors, jumbo frames, output errors, etc. Moreover, what if
you want to see the interface resets correlated to the interfaces that have CDP/LLDP
neighbors on them, and you want to see them now, not on the next polling cycle?
How does network automation help with this?

Given that our focus is giving you more power and control, you can leverage open
source tools and technology to customize exactly what you get, when you get it, how
it's formatted, and how the data is used after it’s collected, ensuring you get the most
value from the data.

Here is a very basic example of collecting data from an IOS device using the Python
library netmiko, which we cover in more detail in Chapter 7.

from import ConnectHandler

device = ConnectHandler(device_type='cisco_ios', ip='csril',username='ntc’',
password="'ntc123")
output = device.send_command('show version')

print(output)

The great part is that output contains the show version response and you have the
ability to parse it as you see fit based on your requirements.

In the example given, we are describing pulling the data off the
devices, which may not be ideal for all environments, but still suit-
able for many. Be aware that newer devices are starting to support a
push model, often referred to as streaming telemetry, where the
device itself streams real-time data such as interface stats to an
application server of your choice.

Of course, any of this may require some up-front custom work but is totally worth it
in the end, because the data being gathered is what you need, not what a given tool or
vendor is providing you. Plus, isn’t that why you're reading this book?

Network devices have an enormous amount of static and ephemeral data buried
inside, and using open source tools or building your own gets you access to this data.
Examples of this type of data include active entries in the BGP table, OSPF adjacen-
cies, active neighbors, interface statistics, specific counters and resets, and even coun-
ters from application-specific integrated circuits (ASICs) themselves on newer

Types of Network Automation | 23

platforms. Additionally, there are more general facts and characteristics of devices
that can be collected too, such as serial number, hostname, uptime, OS version, and
hardware platform, just to name a few. The list is endless.

Always consider these questions as you start an automation project:
“Does it make sense to build, buy, or customize?” and “Does it
make sense to consume or operate?”

Migrations

Migrating from one platform to the next is never an easy task. This may involve plat-
forms from the same vendor or from different vendors. Vendors may offer a script or
a tool to help with migrations to their platform, but various forms of automation can
be used to build out configuration templates, just like our example earlier, for all
types of network devices and operating systems in such a way that you could generate
a configuration file for all vendors given a defined and common set of inputs (com-
mon data model).

Of course, if there are vendor-proprietary extensions, they’ll need to be accounted for
too. The beautiful thing is that a migration tool such as this is much simpler to build
on your own than have a vendor do it because the vendor needs to account for all
features the device supports as compared to an individual organization that only
needs a finite number of features. In reality, this is something vendors don’t care
much about; they are concerned with their equipment, not making it easier for you,
the network operator, to manage a multi-vendor environment.

Having this type of flexibility helps with not only migrations, but also disaster recov-
ery (DR), as it’s very common to have different switch models in the production and
DR data centers, and even different vendors. If a device fails for any reason and its
replacement has to be a different platform, youd be able to quickly leverage your
common data model (think parameter inputs) and generate a new configuration
immediately. We're starting to use the term data model loosely, but rest assured, we
spend more time on describing and highlighting what data models are in Chapter 5.

Thus, if you are performing a migration, think about it at a more abstract level and
think through the tasks necessary to go from one platform to the next. Then, see what
can be done to automate those tasks, because only you, not the large networking ven-
dors, have the motivation to make multi-vendor automation a reality. For example,
think about adding a VLAN as an abstract step—then you can worry about the lower-
level commands per platform. The point is, as you start adopting automation, its
extremely important to think about tasks and document them in human-readable
format that is vendor-neutral, before putting hands to keyboard typing in CLI com-
mands or writing code (per platform).

24 | Chapter2: Network Automation

Configuration Management

As stated, configuration management is the most common type of automation, so we
aren’t going to spend too much time on it here. You should be aware that when we
mention configuration management we are referring to deploying, pushing, and
managing the configuration state of the device. This includes anything as basic as
VLAN provisioning to more complex workflows that configure top-of-rack switches,
firewalls, load balancers, and advanced security infrastructure, to deploy three-tier
applications.

As you can see already through the different forms of automation that are read-only,
you do not need to start your automation journey by pushing configurations. That
said, if you are spending countless hours pushing the same change across a given
number of routers or switches, you may want to!

The reality is that there are so many ways to start a network automation journey, but
when you start automating configuration management, remember, with great power
comes great responsibility. More importantly, don’t forget to test before rolling out
new automation tools into production environments.

The next few types of network automation we cover stem from automating the pro-
cess of data collection. We've broken a few of them out to provide more context, and
first up is automating compliance checks.

Compliance

As with many forms of automation, making configuration changes with any type of
automation tool is seen as a risk. While making manual changes could arguably be
riskier, as you've read and may have experienced firsthand, you have the option to
start with data collection, monitoring, and configuration building, which are all read-
only and low-risk actions. One low-risk use case that uses the data being gathered is
configuration compliance checks and configuration validation. Does the deployed
configuration meet security requirements? Are the required networks configured? Is
protocol XYZ disabled? When you have control over the tools being deployed, it is
more than possible to verify if something is True or False. It’s easy enough to start
small with one compliance check and then gradually add more as needed.

Based on the compliance of what you are checking, it’s up to you to determine what
happens next—maybe it just gets logged, or maybe a complex operation is performed,
making your application capable of auto-remediation. These are forms of event-
driven automation that we also touch upon when we cover StackStorm and Salt in
Chapter 9. Our recommendation is that it’s always best to start simple with network
automation, but being aware of what’s possible adds significant value as well. For
example, if you just log or print messages to see what an interface maximum trans-
mission unit (MTU) is, youre already prepared should you want to automatically

Types of Network Automation | 25

reconfigure it to the right value if it is not the desired MTU. Youd just have to have a
few more lines underneath your existing log/print messages. Again, the point is to
start small, but think through what else you may need in the future.

Reporting

Once you start automating the collection of data, you may want to start building out
custom and dynamic reports too. Maybe the data being returned becomes input to
other configuration management tasks (event-driven again or more basic conditional
configuration), or maybe you just want to create reports.

Given that reports can also be easily generated from templates combined with the
actual ephemeral data from the device that’ll be inserted into the template, the pro-
cess to create and use reporting templates is the same process used to create configu-
ration templates that we touched upon earlier in the chapter (remember, we'll explore
templates in much more depth in Chapter 6).

Because of the simple nature of using text-based templates, it is possible to produce
reports in any format you wish, including but not limited to:

o Simple text files

o Markdown files that can be easily viewed on GitHub, or some other Markdown
viewer

o HTML reports that are deployed to a web server for easy viewing

It all depends on your requirements. The great thing is that the network automator
has the power to create the exact type of report they need. In fact, you can use one set
of data to generate different types of reports, maybe some technical and some higher-
level for management.

Next up, we take a look at the value of automated troubleshooting.

Troubleshooting

Who enjoys getting consistently pulled into break/fix problems, especially when you
should be sleeping or focused on other things?

Once you have access to real-time data and don’t need to do any manual parsing on
that data, automated troubleshooting becomes a reality.

Think about how you troubleshoot. Do you have a personal methodology? Is that
methodology consistent across all members on your team? Does everyone check
Layer 2 before troubleshooting Layer 3? What steps do you take to troubleshoot a
given problem?

26 | Chapter2: Network Automation

Let’s take troubleshooting OSPF as an example:

« Do you know what it takes to form an OSPF adjacency between two devices?
« Can you rattle off the same answers at 2 a.m. or while on vacation at the beach?

« Maybe you remember some like devices need to be on the same subnet, have the
same MTU, and have consistent timers, but forget they need to be the same OSPF
network type.

o Do we really need to remember all of this and the associated commands to run
on the CLI to get back each piece of data?

And these questions are only a few of the things that need to match for OSPE.

In any given environment, these types of compatibility checks need to be performed.
Can you fathom running a script or using a tool for OSPF neighbor validation versus
performing that process manually? Which would you prefer?

Again, OSPF is only the tip of the iceberg. Think about these other questions, still just
being the tip:

+ Can you correlate particular log messages to known conditions on the network?
o What about BGP neighbor adjacencies? How is a neighbor formed?

o Are you seeing all of the routes you think you should in the routing table?

o What about VPC and MLAG configuration?

o What about port-channels? Are there any inconsistencies?

o Do neighbors match the port-channel configuration (going down to the
vSwitch)?

« What about cabling? Are all of the cables plugged in properly?

Even with these questions, we are just scratching the surface with what is possible
when it comes to automated diagnostics and troubleshooting.

As you start to consider all of the types of automation possible,
start to imagine a closed-loop system such that data is collected in
an automated fashion, the data is then processed and analyzed in
an automated fashion, and then you use advanced analytics to
troubleshoot in an automated fashion. As these start to happen
together in a uniform fashion, this becomes a closed loop, fully
changing the way operations are managed within an organization.

If you are the rock star network engineer on your team, you may want to think about
partnering up with a developer, or at the very least, start documenting your work-
flows, so it’s easier to share the knowledge you possess and it becomes easier to codify.

Types of Network Automation | 27

Better yet, start your own personal automation journey so you can sleep in every so
often and empower everyone else to troubleshoot using some of your automated
diagnostic workflows.

As you can see, network automation is much more than deploying configurations
faster. After looking at several different types of automation, we are going to shift top-
ics now and look at a few different ways automation tools and applications communi-
cate with network devices, starting with SSH and ending with NETCONF and HTTP-
based RESTful APIs.

Evolving the Management Plane from SNMP to Device
APIs

If you want to improve the way networks are managed and operated day-to-day,
improvements must begin with how you interface with the underlying devices being
managed. This interface is how you and, more importantly, automation tools com-
municate with devices to perform the various types of network automation, such as
data collection and configuration management.

In this section, we provide an overview of the different methods available to connect
to the management plane of network devices starting with SNMP and then move on
to more modern ways such as NETCONF and RESTful APIs. We then look at the
impact of the open networking movement as it pertains to network operations and
automation.

Application Programming Interfaces (APIs)

As a network engineer, you need to embrace APIs going forward, and not fear them.
Remember that an API is just a mechanism that is used for computer software on one
device to talk to computer software on another device. APIs are used nearly every-
where on the internet today—they just happen to finally be getting the focus they
deserve from the network vendors. We'll soon see that APIs will become the primary
means of managing network devices.

While we cover specific network APIs in more detail in Chapter 7, this section pro-
vides a high-level overview of a few different types of APIs that you'll find on network
devices today.

SNMP

SNMP has been widely deployed for over 20 years on network devices. It shouldn’t be
new to anyone reading this book, but SNMP is a protocol that is used quite com-
monly for polling network devices for information such as up/down status and CPU,
memory, and interface utilization.

28 | Chapter2: Network Automation

In order to use SNMP, there must be an SNMP agent on a managed device and a net-
work management station (NMS), which is the device that functions as a server that
monitors and/or controls the managed devices.

Each network device being managed exposes a set of data that can be collected and
configured via the SNMP agent. This set of data that is managed through SNMP is
described and modeled through management information bases, or MIBs. Only if
there is a MIB exposing a certain feature can it be monitored or managed. This
includes making configuration changes through SNMP. Often overlooked, SNMP not
only supports GetRequests for monitoring, but also supports SetRequests for
manipulating objects and variables exposed through MIBs. The issue is that not many
vendors offer full support for configuration management via SNMP; when they do,
they often use custom MIBs, slowing down the integration process to network man-
agement platforms.

As mentioned, SNMP has been around for decades, but it was not built to be a real-
time programmatic interface to network devices. We are already seeing vendors claim
the gradual death of SNMP as it pertains to next-generation management and auto-
mation tooling. That said, SNMP does exist on nearly every network device, and
Python libraries for SNMP also exist—so, if you need to collect basic information
from a vast amount of device types, it may still make sense to use SNMP.

Just like SNMP has been used for years to perform network monitoring, SSH/Telnet
and the CLI has been used for configuration management. Let’s take a look now at
SSH/Telnet and the CLI.

SSH/Telnet and the CLI

If you have ever managed a network device, you've definitely used the CLI to issue
commands to perform some action on a device. You probably entered commands
through the console and over Telnet and SSH sessions. As we stated in Chapter 1, the
reality is that the migration from Telnet to SSH is arguably the biggest shift we've had
in network operations over the past decade, and that shift wasn't about operations; it
was about security ensuring that communications to network devices were encrypted.

The most important thing to realize as it pertains to managing devices via the CLI is
that the CLI was built for humans. It was put on devices to improve usability for
human operators. The CLI was not meant to be used for machine-to-machine com-
munication (i.e., network scripting and automation).

If you issue a show command on the CLI of a device, you get raw text back. There is
no structure to it. The best options to parse the response are to use the pipe (|) and
keywords such as grep, include, and begin to look for particular lines of configura-
tion. An example of that would be to check the description of an interface with the
command show interface Ethl | 1include description. This means if you

Evolving the Management Plane from SNMP to Device APIs | 29

needed to know how many CRC errors were on an interface after issuing a show
interface in a script, youd be forced to use some type of regular expression or man-
ual parsing to figure it out. This is unacceptable.

However, when all we have is the CLI, CLI is what gets used. This is why there are
plenty of network management platforms and custom scripts that have been built
over the past two decades that perform management and automated operations using
the CLI over SSH dealing with expect scripts and manual parsing. Its not that
SSH/CLI makes it impossible to automate; rather, it makes automation extremely
error prone and tedious.

The network vendors started to realize this, and now most newer device platforms
have some type of API that simplifies machine-to-machine communication (many
are incomplete, so be sure to test your favorite device’s API), yielding a much simpler
approach to automation that is also more in line with general software development
principles.

After a brief look at common protocols such as SSH and SNMP, we'll look at NET-
CONE an API that is becoming quite popular as it pertains to network automation.

NETCONF

NETCONTF is a network management layer protocol. At the highest level, it can be
compared to SNMP, as they are both protocols used to make configuration changes
and retrieve data from networking devices.

The differences come in the details, of course. We cover a few high-level points here,
but spend more time on NETCONF in Chapter 7.

o NETCONTEF is a connection-oriented protocol and commonly leverages SSH as its
transport.

o Data sent between a NETCONF client (automation tool/script) and NETCONF
server (network device) is encoded in XML. Don't worry if you aren’t familiar
with XML; we cover it in Chapter 5.

« Remote procedure calls (RPCs) are encoded in the XML document sent to the
device and the device processes these RPCs. The <rpc> element is used to enclose
a NETCONF request sent from the client to the server. In this context, think of
these remote procedure calls as performing a prearranged operation on the
device. RPCs are a way for a client to communicate to the server what structure
and what type of request is being made.

o Supported RPCs map directly to supported NETCONF operations and capabili-
ties for particular devices. For example, if you are making a change on a device
you use the edit-config operation. If you are retrieving configuration data, you

30 | Chapter2: Network Automation

use the get or get-config operation. These operations are wrapped inside the
XML document within the <rpc> element sent to the device.

Additionally, NETCONF offers value in that it supports transaction-based changes.
This means that if you are making more than one change in a given NETCONF ses-
sion, or single XML document, and one of those changes fails, the complete change is
not applied to the device (of course, these types of settings can usually be overridden
too). This is in contrast to sending CLI commands sequentially and ending up with a
partial configuration due to a typo or invalid command.

This was a short introduction to NETCONE and as mentioned, we dive into NET-
CONF in more detail later on in Chapter 7.

It's worth pointing out that just because two different device plat-
forms support NETCONF (or any common transport method)
does not mean they are compatible from a tooling and developer’s
perspective. Even with the assumption that both devices support
the same NETCONF features and capabilities, how the data is
modeled is, more often than not, vendor specific. Data modeling is
how the device represents state and configuration data. We'll learn
more about data representation in JSON and XML and YANG, a
common data modeling language, in Chapter 5.

RESTful APls

REST stands for REpresentational State Transfer and is a style used to design and
develop networked applications. Thus, systems that implement and adhere to a
REST-based architecture are said to be RESTful.

Keeping this in context from a network perspective, the most common devices that
expose APIs and adhere to the architectural style of REST are network controllers.
That said, there are network devices that expose RESTful and general HTTP-based
APIs too.

While the terms REST and RESTful APIs are new from a network standpoint, youre
already interacting with many RESTful systems on a daily basis as you browse the
internet using a web browser. We said that REST is a style used to develop networked
applications. That style relies on a stateless client-server model in which the client
keeps track of the session and no client state or context is held on the server. And best
yet, the underlying transport protocol used is most commonly HTTP. Doesn't this
sound like most systems found on the internet?

This means that RESTful APIs operate just like HTTP-based systems. First, you need
a web server accessible via a URL (i.e., SDN controller or network device to communi-
cate with), and second, you need to send the associated HTTP request to that URL.

Evolving the Management Plane from SNMP to Device APIs | 31

For example, if you need to retrieve a list of devices from an SDN controller, you just
need to send an HTTP GET to the given URL of the device, which could look some-
thing like this: http://1.1.1.1/v1/devices. The response that comes back would be
some type of structured data like XML or JSON (which we cover in Chapter 5).

There are a few other things that we didn’t touch upon, such as authentication, data
encoding, and how to send an HTTP request if youre making a configuration change
(HTTP PUT/POST/PATCH). As this section was just a short high-level introduction
to REST and RESTful APIs, we cover more of those details in Chapter 7.

Next up is a short look at the impact open networking is having on the overall man-
agement of network devices.

Impact of Open Networking

There is a growing trend of all things open—open source, open networking, Open
APIs, OpenFlow, Open Compute, Open vSwitch, OpenDaylight, OpenConfig, and
the list goes on. While the definition of open can be debated, there is one thing that is
certain: the open networking movement is improving what is possible when it comes
to network operations and automation.

With this movement, we are seeing drastic changes in network devices, and this is a
primary reason for writing this book.

First, many devices now support Python on-box. This means that you are able to
drop into the Python Dynamic Interpreter and execute Python scripts locally on each
network device. We cover Python in much more detail in Chapter 4, and you’ll see
what we mean firsthand.

Second, many devices now support a more robust API other than SNMP and SSH.
For example, we just looked at NETCONF and RESTful HTTP-based APIs. One or
both of those APIs are supported on many of the newer device operating systems that
have emerged in the past 18 to 24 months. Remember, we cover device APIs in more
detail in Chapter 7.

Finally, network devices are exposing more of the Linux internals that have been hid-
den from network operators in the past. You can now drop into a bash shell on net-
work devices and issue commands such as ifconfig, write bash scripts, and install
monitoring and configuration management tools via package managers such as apt
and yum. You'll learn about all of these things in Chapter 3.

While open networking doesn’t always mean interoperability, it is evident that network
devices and controllers are opening themselves up to be operated in a much more
programmatic manner better suited for enhanced network automation. There are a
number of APIs on network devices that didn't exist a few years ago, ranging from
Cisco's NX-API, Arista’s eAPI, and Ciscos IOS-XE RESTCONF/NETCONF to any

32 | Chapter2: Network Automation

new SDN controllers that have APIs. The net result, for you as operators, is that you
can take control of your networks and reduce the number of operational inefficien-
cies that exist today as you start using these APIs.

Network Automation in the SDN Era

We'll now take a look at the continued importance of network automation even when
controller solutions are being deployed such as OpenDaylight or even commercial
offerings like Cisco ACI or VMware NSX. The operations that the controllers per-
form on the network, such as acting as the control plane or managing policy and con-
figuration, are irrelevant for this section.

The fact is that controllers are becoming common in next-gen architectures. Vendors
such as Cisco, Juniper, VMware, Big Switch, Plexxi, Nuage, Viptela, and many others
all offer controller platforms for their next-gen solutions, not to mention open source
controllers such as OpenDaylight and OpenContrail.

Almost every controller on the market exposes northbound RESTful APIs, making
controllers extremely easy to automate. While controllers themselves inherently sim-
plify management and visibility through a single pane of glass, you can still end up
making manual and error-prone changes through the GUI of a controller. If there are
several pods or controllers deployed, from the same or different vendors, the prob-
lems of manual changes, troubleshooting, and data collection do not go away.

As we start to wrap up this chapter, it’s important to note that even in the new era of
SDN architectures and controller-based network solutions, the need for automation,
better operations, and more predictable outcomes does not go away.

Summary

This chapter provided an overview of the value of network automation and various
types of network automation; an introduction to common device APIs including
SNMP, CLI/SSH, and more importantly NETCONF and RESTful; and a brief men-
tion of YANG, a network modeling language that we’ll cover in more detail in Chap-
ter 5.

The chapter closed with a brief look at the impact that the open networking move-
ment is having on network operations and automation. Finally, we touched on the
value of network automation even when SDN controllers are deployed.

In each subsequent chapter, we dive deeper into each technology, providing hands-on
practical examples whenever possible, but at the same time reviewing the importance
of the people, process, and culture required to adopt comprehensive automation
frameworks and pipelines. In fact, we focus significantly on people and culture in
Chapter 11.

Network Automationinthe SDNEra | 33

CHAPTER 3
Linux

This chapter aims to help readers become familiar with the basics of Linux, an oper-
ating system that is becoming increasingly common in networking circles. You might
wonder why we've included a chapter about Linux in this book. After all, what in the
world does Linux, a UNIX-like operating system, have to do with network automa-
tion and programmability?

Examining Linux in a Network Automation Context

In looking at Linux from a network automation perspective, there are several reasons
why we felt this content was important.

First, several modern network operating systems (NOSes) are based on Linux,
although some use a custom command-line interface (CLI) that means they don’t
look or act like Linux. Others, however, do expose the Linux internals and/or use a
Linux shell such as bash.

Second, some new companies and organizations are bringing to market full Linux
distributions that are targeted at network equipment. For example, the OpenCom-
pute Project (OCP) recently selected Open Network Linux (ONL) as a base upon
which to build Linux-powered NOSes (Big Switch’s Switch Light is an example Linux-
based NOS built on ONL). Cumulus Networks is another example, offering their
Debian-based Cumulus Linux as a NOS for supported hardware platforms. As a net-
work engineer, you're increasingly likely to need to know Linux in order to configure
your network.

Third, and finally, many of the tools that we discuss in this book have their origins in
Linux, or require that you run them from a Linux system. For example, Ansible (a
tool we'll discuss in Chapter 9) requires Python (a topic we'll discuss in Chapter 4).
For a few different reasons we’ll cover in Chapter 9, when automating network equip-

35

ment with Ansible you’ll typically run Ansible from a network-attached system run-
ning Linux, and not on the network equipment directly. Similarly, when you're using
Python to gather and/or manipulate data from network equipment, you’ll often do so
from a system running Linux.

For these reasons, we felt it was important to include a chapter that seeks to accom-
plish the following goals:

« Provide a bit of background on the history of Linux

« Briefly explain the concept of Linux distributions

« Introduce you to bash, one of the most popular Linux shells available
« Discuss Linux networking basics

« Dive into some advanced Linux networking functionality

Keep in mind that this chapter is not intended to be a comprehensive treatise on
Linux or the bash shell; rather, it is intended to get you “up and running” with Linux
in the context of network automation and programmability. Having said that, lets
start our discussion of Linux with a very brief look at its history and origins.

A Brief History of Linux

The story of Linux is a story with a couple of different threads.

One thread started out in the early 1980s, when Richard Stallman launched the GNU
Project as an effort to provide a free UNIX-like operating system. GNU, by the way,
stands for “GNU’s Not UNIX,” a recursive acronym Stallman created to describe the
free UNIX-like OS he was attempting to create. Stallman’s GNU General Public
License (GPL) came out of the GNU Project’s efforts. Although the GNU Project was
able to create free versions of a wide collection of UNIX utilities and applications, the
kernel—known as GNU Hurd—for the GNU Project’s new OS never gained momen-
tum.

A second thread is found in Linus Torvalds’ efforts to create a MINIX clone in 1991
as the start of Linux. Driven by the lack of a free OS kernel, his initial work rapidly
gained support, and in 1992 was licensed under the GNU GPL with the release of ver-
sion 0.99. Since that time, the kernel he wrote (named Linux) has been the default OS
kernel for the software collection created by the GNU Project.

Because Linux originally referred only to the OS kernel and needed the GNU Proj-
ect’s software collection to form a full operating system, some people suggested that
the full OS should be called “GNU/Linux,” and some organizations still use that desig-
nation today (Debian, for example). By and large, however, most people just refer to
the entire OS as Linux, and so that’s the convention that we will follow in this book.

36 | Chapter3:Linux

Linux Distributions

As you saw in the previous section, the Linux operating system is made up of the
Linux kernel plus a large collection of open source tools primarily developed as part
of the GNU Project. The bundling together of the kernel plus a collection of open
source software led to the creation of Linux distributions (also known as Linux dis-
tros). A distribution is the combination of the Linux kernel plus a selection of open
source utilities, applications, and software packages that are bundled together and
distributed together (hence the name distribution). Over the course of Linux’s history,
a number of Linux distributions have risen and fallen in popularity (anyone remem-
ber Slackware?), but as of this writing there are two major branches of Linux distribu-
tions: the Red Hat/CentOS branch and the Debian and Debian derivative branch.

Red Hat Enterprise Linux, Fedora, and Cent0S

Red Hat was an early Linux distributor who became a significant influencer and com-
mercial success in the Linux market, so it’s perfectly natural that one major branch of
Linux distributions is based on Red Hat.

Red Hat offers a commercial distribution, known as Red Hat Enterprise Linux
(RHEL), in addition to offering technical support contracts for RHEL. Many organi-
zations today use RHEL because it is backed by Red Hat, focuses on stability and reli-
ability, offers comprehensive technical support options, and is widely supported by
other software vendors.

However, the fast-moving pace of Linux development and the Linux open source
community is often at odds with the slower and more methodical pace required to
maintain stability and reliability in the RHEL product. To help address this dichot-
omy, Red Hat has an upstream distribution known as Fedora. We refer to Fedora as
an “upstream distribution” because much of the development of RHEL and RHEL-
based distributions occurs in Fedora, then flows “down” to these other products. In
coordination with the broader open source community, Fedora sees new kernel ver-
sions, new kernel features, new package management tools, and other new develop-
ments first; these new things are tested and vetted in Fedora before being migrated to
the more enterprise-focused RHEL distribution at a later date. For this reason, you
may see Fedora used by developers and other individuals who need the “latest and
greatest,” but you won't often see Fedora used in production environments.

Although RHEL and its variants are only available from Red Hat through a commer-
cial arrangement, the open source license (the GNU GPL) under which Linux is
developed and distributed requires that the source of Red Hat’s distribution be made
publicly available. A group of individuals who wanted the stability and reliability of
RHEL but without the corresponding costs imposed by Red Hat took the RHEL sour-
ces and created CentOS. (CentOS is a named formed out of “Community Enterprise

Linux Distributions | 37

0OS?”) CentOS is freely available without cost, but—like many open source software
packages—does not come with any form of technical support. For many organiza-
tions and many use cases, the support available from the open source community is
sufficient, so its not uncommon to see CentOS used in a variety of environments,
including enterprise environments.

One of the things that all of these distributions (RHEL, Fedora, and CentOS) share is
a common package format. When Linux distributions first started emerging, one key
challenge that had to be addressed was the way in which software was packaged with
the Linux kernel. Due to the breadth of free software that was available for Linux, it
wasn't really effective to ship all of it in a distribution, nor would users necessarily
want all of the various pieces of software installed. If not all of the software was
installed, though, how would the Linux community address dependencies? A depend-
ency is a piece of software required to run another piece of software on a computer.
For example, some software might be written in Python, which of course would
require Python to be installed. To install Python, however, might require other pieces
of software to be installed, and so on. As an early distributor, Red Hat came up with a
way to combine the files needed to run a piece of software along with additional
information about that software’s dependencies into a single package—a package for-
mat. That package format is known as an RPM, perhaps so named after the tool origi-
nally used to work with said packages: RPM Manager (formerly Red Hat Package
Manager), whose executable name was simply rpm. All of the Linux distributions
we've discussed so far—RHEL, CentOS, and Fedora—leverage RPM packages as their
default package format, although the specific tool used to work with such packages
has evolved over time.

RPM’s successors

We mentioned that RPM originally referred to the actual package
manager itself, which was used to work with RPM packages. Most
RPM-based distributions have since replaced the rpm utility with
newer package managers that do a better job of understanding
dependencies, resolving conflicts, and installing (or removing)
software from a Linux installation. For example, RHEL/CentOS/
Fedora moved first to a tool called yum (short for “Yellowdog
Updater, Modified”), and are now migrating again to a tool called
dnf (which stands for “Dandified YUM”).

Other distributions also leverage the RPM package format, such as Oracle Linux, Sci-
entific Linux, and various SUSE Linux derivatives.

38 | Chapter3:Linux

RPM portability

You might think that, because a number of different Linux distribu-
tions all leverage the same package format (RPM), RPM packages

" are portable across these Linux distributions. In theory, this is pos-
sible, but in practice it rarely works. This is usually due to slight
variations in package names and package versions across the distri-
butions, which makes resolving dependencies and conflicts practi-
cally impossible.

Debian, Ubuntu, and Other Derivatives

Debian GNU/Linux is a distribution produced and maintained by the Debian Project.
The Debian Project was officially founded by Ian Murdock on August 16, 1993, and
the creation of Debian GNU/Linux was funded by the Free Software Foundation’s
GNU Project from November 1994 through November 1995. To this day, Debian
remains the only major distribution of Linux that is not backed by a commercial
entity. All Debian GNU/Linux releases since version 1.1 have used a code name taken
from a character in one of the Toy Story movies. Debian GNU/Linux 1.1, released in
June 1996, was code-named “Buzz” The most recent stable version of Debian GNU/
Linux, version 9.0, was released in June 2017 and is code-named “Stretch.”

Debian GNU/Linux offers three branches: stable, testing, and unstable. The testing
and unstable branches are rolling releases that will, eventually, become the next stable
branch. This approach results in a typically very high-quality release, and could be
one of the reasons that a number of other distributions are based on (derived from)
Debian GNU/Linux.

One of the more well-known Debian derivatives is Ubuntu Linux, started in April
2004 and funded in large part by Canonical Ltd., a company founded by Mark Shut-
tleworth. The first Ubuntu, released in October 2004, was released as version 4.10
(the “4” denotes the year, and the “10” denotes the month of release), and was code-
named “Warty Warthog” All Ubuntu codenames are cmposed of an adjective and an
animal with the same first letter (Warty Warthog, Hoary Hedgehog, Breezy Badger,
etc.). Ubuntu was initially targeted as a usable desktop Linux distribution, but now
offers both desktop-, server-, and mobile-focused versions. Ubuntu uses time-based
releases, releasing a new version every six months and a long-term support (LTS)
release every two years. LTS releases are supported by Canonical and the Ubuntu
community for a total of five years after release. All releases of Ubuntu are based on
packages taken from Debians unstable branch, which is why we refer to Ubuntu as a
Debian derivative.

Speaking of packages: like RPM-based distributions, the common thread across the
Debian and Debian derivatives—probably made clear by the term Debian derivatives
used to describe them—is that they share a common package format, known as the

Linux Distributions | 39

Debian package format (and denoted by a .deb extension on the files). The founders
of the Debian Project created the DEB package format and the dpkg tool to solve the
same problems that Red Hat attempted to solve with the RPM package format. Also
like RPM-based distributions, Debian-based distributions evolved past the use of the
dpkg tool directly, first using a tool called dselect and then moving on to the use of
the apt tool (and programs like apt-get and aptitude).

Debian package portability

Just as with RPM packages, the fact that multiple distributions lev-
erage the Debian package format doesn’t mean that Debian pack-
“ages are necessarily portable between distributions. Slight
variations in package names, package versions, file paths, and other
details will typically make this very difficult, if not impossible.

A key feature of the apt-based tools is the ability to retrieve packages from one or
more remote repositories, which are online storehouses of Debian packages. The apt
tools also feature better dependency determination, conflict resolution, and package
installation (or removal).

Other Linux Distributions

There are other distributions in the market, but these two branches—the Red Hat/
Fedora/CentOS branch and the Debian/Ubuntu branch—cover the majority of Linux
instances found in organizations today. For this reason, we'll focus only on these two
branches throughout the rest of this chapter. If youre using a distribution not from
one of these two major branches—perhaps youre working with SUSE Enterprise
Linux, for example—keep in mind there may be slight differences between the infor-
mation contained here and your specific distribution. You should refer to your distri-
bution’s documentation for the details.

Now that we’'ve provided an overview of the history of Linux and Linux distributions,
let’s shift our focus to interacting with Linux, focusing primarily on interacting via the
shell.

Interacting with Linux

As a very popular server OS, Linux can be used in a variety of ways across the net-
work. For example, you could receive IP addresses via a Linux-based DHCP server,
access a Linux-powered web server running the Apache HTTP server or Nginx, or
utilize a Domain Name System (DNS) server running Linux in order to resolve
domain names to IP addresses. There are, of course, many more examples; these are
just a few. In the context of our discussion of Linux, though, were going to focus pri-
marily on interacting with Linux via the shell.

40 | Chapter3:Linux

The shell is what provides the command-line interface by which most users will inter-
act with a Linux system. Linux offers a number of shells, but the most common shell
is bash, the Bourne Again Shell (a play on the name of one of the original UNIX
shells, the Bourne Shell). In the vast majority of cases, unless you've specifically con-
figured your system to use a different shell, when you’re interacting with Linux you're
using bash. In this section, were going to provide you with enough basic information
to get started interacting with a Linux system’s console, and we’ll assume that you're
using bash as your shell. If you are using a different shell, please keep in mind that
some of the commands and behaviors we describe might be slightly different.

A good bash reference

Bash is a topic about which an entire book could be written. In fact,
one already has—and is now in its third edition. If you want to
learn more about bash than we have room to talk about in this
book, we highly recommend O'Reilly’s Learning the bash Shell,
Third Edition.

We've broken our discussion of interacting with Linux into four major areas:

« Navigating the filesystem
+ Manipulating files and directories
» Running programs

« Working with background services, known as daemons

This is introductory-level content

This section is primarily targeting users who are new to Linux (a
lot of network engineers and IT professionals are mostly familiar
with Microsoft Windows). If you're familiar with Linux, feel free to
skip ahead.

Let’s start with navigating the filesystem.

Navigating the Filesystem

Linux uses what’s known as a single-root filesystem, meaning that all of the drives and
directories and files in a Linux installation fall into a single namespace, referred to
quite simply as /. (When you see / by itself, say “root” in your head.) This is in stark
contrast to an OS like Microsoft Windows, where each drive typically has its own
root (the drive letter, like C:\ or D:\). Note that it is possible to mount a drive in a
folder under Windows, but the practice isn’t as common.

Interacting with Linux | 41

Everything is treated like a file

Linux follows in UNIX’s footsteps in treating everything like a file.
This includes storage devices (which are treated as block devices),
ports on the computer (like serial ports), or even input/output
devices. Thus, the importance of a single-root filesystem—which
encompasses devices as well as storage—becomes even greater.

Like most other OSes, Linux uses the concept of directories (known as folders in some
other OSes) to group files in the filesystem. Every file resides in a directory, and
therefore every file has a unique path to its location. To denote the path of a file, you
start at the root and list all the directories it takes to get to that file, separating the
directories with a forward slash. For example, the command ping is often found in
the bin directory off the root directory. The path, therefore, to ping would be noted
like this: /bin/ping.

In other words, start at the root directory (/), continue into the bin/ directory, and
find the file named ping. Similarly, on Debian Linux 8.1, the arp utility for viewing
and manipulating Address Resolution Protocol (ARP) entries is found at (in other
words, its path is) /usr/sbin/arp.

This concept of path becomes important when we start considering that bash allows
you to navigate, or move around, within the filesystem. The prompt, or the text that
bash displays when waiting for you to input a command, will tell you where you are
in the filesystem. Here’s the default prompt for a Debian 8.1 system:

vagrant@jessie:~$

Do you see it? Unless you're familiar with Linux, you may have missed the tilde (~)
following vagrant@jessie: in this example prompt. In the bash shell, the tilde is a
shortcut that refers to the user’s home directory. Each user has a home directory that
is their personal location for storing files, programs, and other content for only that
user. To make it easy to refer to one’s home directory, bash uses the tilde as a shortcut.
So, looking back at the sample prompt, you can see that this particular prompt tells
you a few different things:

1. The first part of the prompt, before the @ symbol, tells you the current user (in
this case, vagrant).

2. The second part of the prompt, directly after the @ symbol, tells you the current
hostname of the system on which you are currently operating (in this case, jes
sie is the hostname).

3. Following the colon is the current directory, noted in this case as ~ meaning that
this user (vagrant) is currently in his or her home directory.

42 | Chapter3:Linux

4. Finally, even the $ at the end has meaning—in this particular case, it means that
the current user (vagrant) does not have root permissions. The $ will change to a
hash sign (the # character, also known as an octothorpe) if the user has root per-
missions. This is analogous to the way that the prompt for a network device, such
as a router or switch, may change depending on the user’s privilege level.

About the Environments We're Using

Throughout this chapter, you'll see various Linux prompts similar
to ones we just showed you. Were using a tool called Vagrant to
simplify the creation of multiple different Linux environments—in
this case, Debian GNU/Linux 8.1 (also known as “Jessie”), Ubuntu
Linux 14.04 LTS (named “Trusty Tahr”), and CentOS 7.1.

The default prompt on a CentOS 7.1 system looks like this:
[vagrant@centos ~]$

As you can see, it’s very similar, and it conveys the same information as the other
example prompt we showed, albeit in a slightly different format. Like the earlier
example, this prompt shows us the current user (vagrant), the hostname of the cur-
rent system (centos), the current directory (~), and the effective permissions of the
logged-in user ($).

The use of the tilde is helpful in keeping the prompt short when you're in your home
directory, but what if you don't know the path to your home directory? In other
words, what if you don’t know where on the system your home directory is located?
In situations like this where you need to determine the full path to your current loca-
tion, bash offers the pwd (print working directory) command, which will produce
output something like this:

vagrant@jessie:~$ pwd

/home/vagrant

vagrant@jessie:~$
The pwd command simply returns the directory where you're currently located in the
filesystem (the working directory).

Now that you know where you are located in the filesystem, you can begin to move
around the filesystem using the cd (change directory) command along with a path to
a destination. For example, if you were in your home directory and wanted to change
into the bin subdirectory, youd simply type cd bin and press Enter (or Return).

Note the lack of the leading slash here. This is because /bin and bin might be two very
different locations in the filesystem:

Interacting with Linux | 43

http://www.vagrantup.com

« Using bin (no leading slash) tells bash to change into the bin subdirectory of the
current working directory.

« Using /bin (with a leading slash) tells bash to change into the bin subdirectory of
the root (/) directory.

See how, therefore, bin and /bin might be very different locations? This is why
understanding the concept of a single-root filesystem and the path to a file or direc-
tory is important. Otherwise, you might end up performing some action on a differ-
ent file or directory than what you intended! This is particularly important when it
comes to manipulating files and directories, which we’ll discuss in the next section.

Before moving on, though, there are a few more navigational commands we need to
discuss.

To move up one level in the filesystem (for example, to move from /usr/local/bin/
to /usr/local/), you can use the .. shortcut. Every directory contains a special entry,
named .. (two periods), that is a shortcut entry for that directory’s parent directory
(the directory one level above it). So, if your current working directory is /usr/local/
bin, you can simply type c¢d .. and press Enter (or Return) to move up one directory.

vagrant@jessie:/usr/local/bin$ cd ..
vagrant@jessie:/usr/locals

Note that you can combine the .. shortcut with a directory name to move laterally
between directories. For example, if youre currently in /ust/local and need to move
to /usr/share, you can type cd ../share and press Enter. This moves you to the direc-
tory whose path is up one level (. .) and is named share.

vagrant@jessie:/usr/local$ cd ../share
vagrant@jessie:/usr/share$

You can also combine multiple levels of the .. shortcut to move up more than one
level. For example, if you are currently in /ust/share and need to move to / (the root
directory), you could type cd ../../ and press Enter. This would put you into the
root directory.

vagrant@jessie:/usr/share$ cd ../..

vagrant@jessie:/$
All these examples are using relative paths—that is, paths that are relative to your cur-
rent location. You can, of course, also use absolute paths—that is, paths that are anch-
ored to the root directory. As we mentioned earlier, the distinction is the use of the
forward slash (/) to denote an absolute path starting at the root versus a path relative
to the current location. For example, if you are currently located in the root directory
(/) and need to move to /media/cdrom, you don’t need the leading slash (because
media is a subdirectory of /). You can type cd media/cdrom and press Enter. This will
move you to /media/cdrom, because you used a relative path to your destination.

44 | Chapter3:Linux

vagrant@jessie:/$ cd media/cdrom
vagrant@jessie:/media/cdrom$

From here, though, if you needed to move to /ust/local/bin, youd want to use an
absolute path. Why? Because there is no (easy) relative path between these two loca-
tions that doesn’t involve moving through the root (see the following sidebar for a bit
more detail). Using an absolute path, anchored with the leading slash, is the quickest
and easiest approach.

vagrant@jessie:/media/cdrom$ cd /usr/local/bin
vagrant@jessie:/usr/local/bins$

More Than One Path

If you're thinking that you could have also used the command
cd ../../usr/local/bin to move from /media/cdrom to /usr/
local/bin, you've mastered the relationship between relative paths
and absolute paths on a Linux system.

Finally, there’s one final navigation trick we want to share. Suppose you’re in /usr/
local/bin, but you need to switch over to /media/cdrom. So you enter cd [media/
cdrom, but after switching directories realize you needed to be in /usr/local/bin after
all. Fortunately, there is a quick fix. The notation c¢d - (using a hyphen after the cd
command) tells bash to switch back to the last directory you were in before you
switched to the current directory. (If you need a shortcut to get back to your home
directory, just enter cd with no parameters.)

vagrant@jessie:/usr/local/bin$ cd /media/cdrom
vagrant@jessie:/media/cdrom$ cd -
Jusr/local/bin

vagrant@jessie:/usr/local/bin$ cd -
/media/cdrom

vagrant@jessie:/media/cdrom$ cd -
Jusr/local/bin

vagrant@jessie:/usr/local/bins$

Here are all of these filesystem navigation techniques in action.

vagrant@jessie:/usr/local/bin$ cd ..
vagrant@jessie:/usr/local$ cd ../share
vagrant@jessie:/usr/share$ cd ../..
vagrant@jessie:/$ cd media/cdrom
vagrant@jessie:/media/cdrom$ cd /usr/local/bin
vagrant@jessie: /usr/local/bin$ cd -
/media/cdrom

vagrant@jessie:/media/cdrom$ cd -
Jusr/local/bin

vagrant@jessie:/usr/local/bin$

Interacting with Linux | 45

Now you should have a pretty good grasp on how to navigate around the Linux file-
system. Let’s build on that knowledge with some information on manipulating files
and directories.

Manipulating Files and Directories

Armed with a basic understanding of the Linux filesystem, paths within the filesys-
tem, and how to move around the filesystem, let’s take a quick look at manipulating
files and directories. We'll cover four basic tasks:

« Creating files and directories
o Deleting files and directories
« Moving, copying, and renaming files and directories

« Changing permissions

Let’s start with creating files and directories.

Creating files and directories

To create files or directories, you'll work with one of two basic commands: touch,
which is used to create files, and mkdir (make directory), which is used—not surpris-
ingly—to create directories.

Other ways to create files

There are other ways of creating files, such as echoing command
output to a file or using an application (like a text editor, for exam-
ple). Rather than trying to cover all the possible ways to do some-
thing, we want to focus on getting you enough information to get
started.

The touch command just creates a new file with no contents (it's up to you to use a
text editor or appropriate application to add content to the file after it is created). Let’s
look at a few examples:

[vagrant@centos ~]$ touch config.txt
Here’s an equivalent command (we'll explain why it’s equivalent in just a moment):
[vagrant@centos ~]$ touch ./config.txt

Why this command is equivalent to the earlier example may not be immediately
obvious. In the previous section, we talked about the .. shortcut for moving to the
parent directory of the current directory. Every directory also has an entry noted by a
single period (.) that refers to the current directory. Therefore, the commands touch

46 | Chapter3:Linux

config.txt and touch ./config.txt will both create a file named config.txt in the
current working directory.

If both syntaxes are correct, why are there two different ways of doing it? In this case,
both commands produce the same result—but this isnt the case for all commands.
When you want to be sure that the file you're referencing is the file in the current
working directory, use . / to tell bash you want the file in the current directory.

[vagrant@centos ~]$ touch /config.txt

In this case, we're using an absolute path, so this command creates a file named con-
fig.txt in the root directory, assuming your user account has permission. (We'll talk
about permissions in “Changing permissions” on page 49.)

When ./ is useful

One thing we haven’t discussed in detail yet is the idea of bash’s
search paths, which are paths (locations) in the filesystem that bash
will automatically search when you type in a command. In a typical
configuration, paths such as /bin, /usr/bin, /sbin, and similar loca-
tions are included in the search path. Thus, if you specify a file-
name from a file in one of those directories without using the full
path, bash will find it for you by searching these paths. This is one
of the times when being specific about a file’s location (by includ-
ing ./ or the absolute path) might be a good idea, so that you can be
sure which file is the file being found and used by bash.

The mkdir command is very simple: it creates the directory specified by the user. Let’s
look at a couple quick examples.

[vagrant@centos ~]$ mkdir bin

This command creates a directory named bin in the current working directory. It’s
different than this command (relative versus absolute paths!):

[vagrant@centos ~]$ mkdir /bin

Like most other Linux commands, mkdir has a lot of options that modify its behavior,
but one you’ll use frequently is the -p parameter. When used with the -p option,
mkdir will not report an error if the directory already exists, and will create parent
directories along the path as needed.

For example, let’s say you had some files you needed to store, and you wanted to store
them in /opt/sw/network. If you were in the /opt directory and entered mkdir sw/
network when the sw directory didn't already exist, the mkdir command would report
an error. However, if you simply added the -p option, mkdir would then create the sw
directory if needed, then create network under sw. This is a great way to create an

Interacting with Linux | 47

entire path all at once without failing due to errors if a directory along the way
already exists.

Creating files and directories is one half of the picture; let’s look at the other half
(deleting files and directories).

Deleting files and directories

Similar to the way there are two commands for creating files and directories, there are
two commands for deleting files and directories. Generally, you'll use the rm com-
mand to delete (remove) files, and you’ll use the rmdir command to delete directo-
ries. There is also a way to use rm to delete directories, as we'll show you in this
section.

To remove a file, you simply use rm filename. For example, to remove a file named
config.txt in the current working directory, youd use one of the two following com-
mands (do you understand why?):

vagrant@trusty:~$ rm config.txt

vagrant@trusty:~$ rm ./config.txt
You can, of course, use absolute paths (/home/vagrant/config.txt) as well as rela-
tive paths (. /config.txt).

To remove a directory, you use rmdir directory. Note, however, that the directory
has to be empty; if you attempt to delete a directory that has files in it, you'll get this
error message:

rmdir: failed to remove 'src': Directory not empty

In this case, you'll need to first empty the directory, then use rmdir. Alternately, you
can use the -r parameter to the rm command. Normally, if you try to use the rm com-
mand on a directory and you fail to use the -r parameter, bash will respond like this
(in this example, we tried to remove a directory named bin in the current working
directory):

rm: cannot remove 'bin': Is a directory

When you use rm -r directory, though, bash will remove the entire directory tree.
Note that, by default, rm isn’t going to prompt for confirmation—it’s simply going to
delete the whole directory tree. No Recycle Bin, no Trash Can...it’s gone. (If you want
a prompt, you can add the -1 parameter.)

The same goes for the mv and cp commands we'll discuss in the
next section—without the -1 parameter, these commands will sim-
ply overwrite files in the destination without any prompt. Be sure

\ to exercise the appropriate level of caution when using these com-
mands.

48 | Chapter3:Linux

Creating and deleting files and directories aren’t the only tasks you might need to do,
though, so let’s take a quick look at moving (or copying) files and directories.

Moving, copying, and renaming files and directories

When it comes to moving, copying, and renaming files and directories, the two com-
mands you’ll need to use are cp (for copying files or directories) and mv (for moving
and renaming files and directories).

Check the man pages!

The basic use of all the Linux commands we’ve shown you so far is
relatively easy to understand, but—as the saying goes—the devil is
in the details. If you need more information on any of the options,
parameters, or the advanced usage of just about any command in
Linux, use the man (manual) command. For example, to view the
manual page for the cp command, type man cp. The manual pages
show a more detailed explanation of how to use the various com-
mands.

To copy a file, it’s just cp source destination. Similarly, to move a file you would
just use mv source destination. Renaming a file, by the way, is consider moving it
from one name to a new name (typically in the same directory).

Moving a directory is much the same; just use mv source-dir destination-dir.
This is true whether the directory is flat (containing only files) or a tree (containing
both files as well as subdirectories).

Copying directories is only a bit more complicated. Just add the -r option, like cp -r
source-dir destination-dir. This will handle most use cases for copying directo-
ries, although some less common use cases may require some additional options. We
recommend you read and refer to the man (manual) page for cp for additional details
(see the “Check the man pages!” tip earlier).

The final topic wed like to tackle in our discussion of manipulating files and directo-
ries is permissions.

Changing permissions

Taking a cue from its UNIX predecessors (keeping in mind that Linux rose out of
efforts to create a free UNIX-like operating system), Linux is a multiuser OS that
incorporates the use of permissions on files and directories. In order to be considered
a multiuser OS, Linux had to have a way to make sure one user couldn't view/see/
modify/remove other users’ files, and so file- and directory-level permissions were a
necessity.

Interacting with Linux | 49

Linux permissions are built around a couple of key ideas:

« Permissions are assigned based on the user (the user who owns the file), group
(other users in the file’s group), and others (other users not in the file’s group).

o Permissions are based on the action (read, write, and execute).

Here’s how these two ideas come together. Each of the actions (read, write, and exe-
cute) is assigned a value; specifically, read is set to 4, write is set to 2, and execute is
set to 1. (Note that these values correspond exactly to binary values.) To allow multi-
ple actions, add the values for each underlying action. For example, if you wanted to
allow both read and write, the value youd assign is 6 (read = 4, write = 2, so read
+write = 6).

These values are then assigned to user, group, and others. For example, to allow the
file's owner to read and write to a file, youd assign the value 6 to the user’s permis-
sions. To allow the file’s owner to read, write, and execute a file, youd assign the value
7 to the user’s permissions. Similarly, if you wanted to allow users in the file’s group to
read the file but not write or execute it, youd assign the value 2 to the group’s permis-
sions. User, group, and other permissions are listed as an octal number, like this:

644 (user = read+write, group = read, others = read)
755 (user = read+write+execute, group = read+execute, others = read+execute)

600 (user = read+write, group = none, others = none)

620 (user = read+write, group = write, others = none)

You may also see these permissions listed as a string of characters, like rxwr-xr-x.
This breaks down to the read (r), write (w), and execute (x) permissions for each of
the three entities (user, group, and others). Here are the same examples as earlier, but
written in alternate format:

644 =rw-r--r--

755 = rwxr-xr-w

The read and write permissions are self-explanatory, but execute is a bit different. For
a file, it means just what it says: the ability to execute the file as a program (something
we'll discuss in more detail in the next section, “Running Programs” on page 52). For
a directory, though, it means the ability to look into and list the contents of the direc-

50 | Chapter3:Linux

tory. Therefore, if you want members of a directory’s group to see the contents of that
directory, you'll need to grant the execute permission.

A couple of different Linux tools are used to view and modify permissions. The 1s
utility, used for listing the contents of a directory, will show permissions when used
with the -1 option, and is most likely the primary tool you’ll use to view permissions.
Figure 3-1 contains the output