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Preface

the work of the Education Research Center at M.I.T. (formerly

the Science Teaching Center) is concerned with curriculum im-

provement, with the process of instruction and aids thereto, and

with the learning process itself, primarily with respect to students

at the college or university undergraduate level. The Center was

established by M.I.T. in 1960, with the late Professor Francis L.

Friedman as its Director. Since 1961 the Center has been sup-

ported mainly by the National Science Foundation; generous

support has also been received from the Kettering Foundation,

the Shell Companies Foundation, the Victoria Foundation, the

W. T. Grant Foundation, and the Bing Foundation.

The M.I.T. Introductory Physics Series, a direct outgrowth

of the Center's work, is designed to be a set of short books that,

taken collectively, span the main areas of basic physics. The

series seeks to emphasize the interaction of experiment and intui-

tion in generating physical theories. The books in the series are

intended to provide a variety of possible bases for introductory

courses, ranging from those which chiefly emphasize classical

physics to those which embody a considerable amount of atomic

and quantum physics. The various volumes are intended to be

compatible in level and style of treatment but are not conceived

as a tightly knit package; on the contrary, each book is designed

to be reasonably self-contained and usable as an individual com-

ponent in many different course structures.
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The text material in the present volume is designed to be a

more or less self-contained introduction to Newtonian mechanics,

such that a student with little or no grounding in the subject can,

by beginning at the beginning, be brought gradually to a level of

considerable proficicncy. A rough guide to the possible use of

the book is suggested by its division into three parts. Part I, The

Approach to Newtonian Dynamics, is intended to serve two pur-

poses. First, it does discuss the basic concepts of kinematics and

dynamics, more or less from scratch. Second, it seeks to place the

study of mechanics squarely in the context of the world of physical

phenomena and of neccssarily imperfect physical theories. This

is a conscious reaction, on the author's part, against the preserta-

tion of mechanics as "applied mathematics," with the divorce-

ment from reality and the misleading impression of rigor that this

has engendered in generations of students (especially, alas, those

brought up in the British educational system). The student who

already has some expertise in using Newton's laws will find little

of an analytical or quantitative sort to learn from Part I, but he

may still derive some value and interest from reading through it

for its broader implications.

Part II, Classical Mechanics at Work, is undoubtedly the

heart of the book. Some instructors will wish to begin here, and

relegate Part I to the status of background reading. The initial

emphasis is on Newton's second law applied to individual objccts.

Later, the emphasis shifts to systems of two or more particlcs, and

to the conservation laws for momentum and energy. A fairly

lengthy chapter is devoted to the subject that deserves pride of

place in the whole Newtonian scheme—the theory of universal

gravitation and its successes, which can still be appreciated as a

pinnacle in man's attempts to discover order in the vast universe

in which he finds himself.

Part III, Some Special Topics, concerns itself with the prob-

lems of noninertial frames, central-force motions, and rotational

dynamics. Most of this material, except perhaps the fundamental

features of rotational motion and angular momentum, could be

regarded as optional if this book is used as the basis of a genuinely

introduetory presentation of mechanics. Undoubtedly the book

as a whole contains more material than could in its entirety be

covered in a one-term course; one could, however, consider using

Parts I and II as a manageablc paekage for beginners, and Parts II

and III as a text for students having some prior preparation.
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One of the great satisfactions of classical mechanics lies in

the vast range and variety of physical systems to which its princi-

ples can be applied. The attempt has been made in this book to

make explicit reference to such applications and, as in other books

in this series, to "document" the presentation with appropriate

citations from original sources. Enriched in this way by its own

history, classical mechanics has an excitement that is not, in this

author's view, surpassed by any of the more recent fields of

physical thory.

This book, like the others in the series, owes much to the

thoughts, criticisms, and suggestions of many people, both

students and instructors. A special acknowledgment in connection

with the present volume is due to Prof. A. M. Hudson, of Occiden-

tal College, Los Angeles, who worked with the present author in

the preparation of the preliminary text from which, five years

later, this final version evolved. Grateful thanks are also due to

Eva M. Hakala and William H. Ingham for their invaluable help

in preparing the manuscript for publication.

A. P. FRENCH

Cambridge, Massachusetts

July 1970
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In the Beginning was Mechanics.

max von laue, History ofPhysics (1950)

/ offer this work as the mathematical principles of philosophy,

for the whole burden ofphilosophy seems to consist in this—
from the phenomena ofmotions to investigate theforces of

nature, and thenfrom these forces to demonstrate the other

phenomena.

newton, Preface to the Principia (1686)



Prologue

one of the most prominent features of the universe is motion.

Galaxies have motions with respect to other galaxies, all stars

have motions, the planets have distinctive motions against the

background of the stars, the events that capture our attention

most quickly in everyday life are those involving motion, and

even the apparently inert book that you are now reading is made

up of atoms in rapid motion about their equilibrium positions.

"Give me matter and motion," said the seventeenth-century

French philosopher Rene Descartes, "and I will construct the

universe." There can be no doubt that motion is a phenomenon

we must learn to deal with at all levels if we are to understand

the world around us. .

Isaac Newton developed a precise and powerful theory
j

regarding motion, according to which the changes of_motion of

any object are the result ofJorces acting on itfln so doing he

created the subject with"wmcrTthis book is coBeerned and which

is called classical or Newtonian mechanics. I It was a landmark in

the history of science, because it replacea a merely descriptive

account of phenomena with a rational and marvelously successful

scheme of cause and effect. Indeed, the strict causal nature of

Newtonian mechanics had an impressive influence in the develop-

ment of Western thought and civilization generally, provoking

fundamental questions about the interrelationships of science,

philosophy, and religion, with repercussions in social ideas and

other areas of human endeavor.

Classical mechanics is a subject with a fascinating dual

character. For it starts out from the kinds of everyday experiences



that are as old as mankind, yet it brings us face to face with some

of the most profound questions about the universe in which we

find ourselves. Is it not remarkable that the fiight of a thrown

pebble, or the fail of an apple, should contain the clue to the

mechanics of the heavens and should ultimately involve some of

the most basic questions that we are able to formulate about the

nature of space and time? Sometimes mechanics is presented as

though it consisted merely of the routine application of self-

evident or revealed truths. Nothing could be further from the

case; it is a superb example of a physical theory, slowly evolved

and refined through the continuing interplay between observation

and hypothesis.

The richness of our first-hand acquaintance with mechanics

is impressive, and through the partnership of mind and eye and

hand we solve, by direct action, innumerable dynamical problems

without benefit of mathematical analysis. Like Moliere's famous

character, M. Jourdain, who learned that he had been speaking

prose all his life without realizing it, every human being is an

expert in the consequences of the laws of mechanics, whether or

not he has ever seen these laws written down. The skilled sports-

man or athlete has an almost incredible degree of judgment and

control of the amount and direction of muscular effort needed to

achieve a desired result. It has been estimated, for example, that

the World Series baseball championship would have changed

hands in 1962 if one crucial swing at the ball had been a mere

millimeter lower. ' But experiencing and controlling the motions

of objects in this very personal sense is a far cry from analyzing

them in terms of physical laws and equations. It is the task of

classical mechanics to discover and formulate the essential

principles, so that they can be applied to any situation, par-

ticularly to inanimate objects interacting with one another. Our

intimate familiarity with our own muscular actions and their

consequences, although it represents a kind of understanding

(and an important kind, too), does not help us much here.

The greatest triumph of classical mechanics was Newton's

own success in analyzing the workings of the solar system—

a

feat immortalized in the famous couplet of his contemporary and

admirer, the poet Alexander Pope

:

P. Kirkpatrick, Am. J. Phys., 31, 606 (1963).
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Nature and Nature's Laws Iay hid in night

God said "Let Newton be," and all was light.
1

Men had observed the motions of the heavenly bodies since time

immemorial. They had noticed various regularities and had

learned to predict such things as conjunctions of the planets and

eclipses of the sun and moon. Then, in the sixteenth century, the

Danish astronomer Tycho Brahe amassed meticulous records, of

unprecedented accuracy, of the planetary motions. His assistant,

Johannes Kepler, after wrestling with this enormous body of in-

formation for years, found that all the observations could be

summarized as follows:

1

.

The planets move in ellipses having the sun at one focus.

2. The line joining the sun to a given planet sweeps out

equal areas in equal times.

3. The square of a planet's year, divided by the cube of its

mean distance from the sun, is the same for all planets.

This represented a magnificent advance in man's knowledge

of the mechanics of the heavens, but it was still a description

rather than a theory. Why? was the question that still looked for

an answer. Then came Newton, with his concept of force as the

cause of changes of motion, and with his postulate of a particular

law of force—the inverse-square law of gravitation. Using these

he demonstrated how Kepler's laws were just one consequence

of a scheme of things that also included the falling apple and other

terrestrial motions. (Later in this book we shall go into the de-

tails of this great achievement of Newton's.)

I f universal gravitation had done no more than to relate

planetary periods and distances, it would still have been a splen-

did theory. But, like any other good theory in physics, it had

predictive value; that is, it could be applied to situations besides

the ones from which it was deduced. Investigating the predic-

tions of a theory may involve looking for hitherto unsuspected

phenomena, or it may involve recognizing that an already

familiar phenomenon must fit into the new framework. In either

case the theory is subjected to searching tests, by which it must

'To which there is the almost equally famous, although facetious, riposte:

It did not last; the Devil, howling "Ho,

Let Einstein be!" restored the status quo.

(Sir John Squire)

5 Prologue



stand or fail. With Newton's theory of gravitation, the initial

tests resided almost entirely in the analysis of known effects—

but what a list! Here are some of the phenomena for which

Newton proceeded to give quantitative explanations:

1. The bulging of the earth and Jupiter because of their

rotation.

2. The variation of the acceleration of gravity with latitude

over the earth's surface.

3. The generation of the tides by the combined action of

sun and moon.

4. The paths of the comets through the solar system.

5. The slow steady change in direction of the earth's axis

of rotation produced by gravitational torques from the sun and

moon. (A complete cycle of this variation takes about 25,000

years, and the so-called "precession of the equinoxes" is a mani-

festation of it.)

This marvelous illumination of the workings of nature

represented the last part of Newton's program, as he described

it in our opening quotation ".
. . and then from these forces to

demonstrate the other phenomena." This modest phrase con-

ceals not only the immensity of the achievement but also the

magnitude of the role played by mathematics in this develop-

ment. Newton had, in the theory of universal gravitation,

created what would be called today a mathematical model of the

solar system. And having once made the model, he followed out

a host of its other implications. The working out was purely

mathematical, but the final step—the test of the conclusions—

involved a return to the world of physical experience, in the

detailed checking of his predictions against the quantitative data

of astronomy.

Although Newton's mechanical picture of the universe was

amply confirmed in his own time, he did not live to see some

of its greatest triumphs. Perhaps the most impressive of these

was the use of his laws to identify previously unrecognized mem-

bers of the solar system. By a painstaking and lengthy analysis

of the motions of the known planets, it was inferred that dis-

turbing influences due to other planets must be at work. Thus it

was that Neptune was discovered in 1846, and Pluto in 1930.

In each case it was a matter of deducing where a telescope should

be pointed to reveal a new planet, identifiable through its chang-

ing position with respect to the general background of the stars.

6 Prologuc



What more striking and convincing evidence could there be that

the theory works?

Probably everyone who reads this book has some prior

acquaintance with classical mechanics and with its expression in

mathematically precise statements. And this may make it hard

to realize that, as with any other physical theory, its development

was not just a matter of mathematical logic applied undis-

criminatingly to a mass of data. Was Newton inexorably driven

to the inverse-square Iaw? By no means. It was the result of

guesswork, intuition, and imagination. In Newton's own words:

"I began to think of gravity extending to the orbit of the Moon,

and . . . fromKepler's Ruleof the periodictimesofthePlanets . .

.

I deduced that the forces which keep the Planets in their orbits

must be reciprocally as the squares of their distances from the

centers about which they revolve; and thereby compared the

force requisite to keep the Moon in her orbit with the force of

gravity at the surface of the Earth, and found them to answer

pretty nearly." An intellectual leap of this sort—although seldom

as great as Newton's—is involved in the creation of any theory

or model. It is a process of induction, and it goes beyond the

facts immediately at hand. Some facts may even be temporarily

brushed aside or ignored in the interests of pursuing the main

idea, for a partially correct theory is often better than no theory

at all. And at all stages there is a constant interplay between

experiment and theory, in the process of which fresh observations

are continually suggesting themselves and modification of the

theory is an ever-present possibility. The following diagram, the

relevance of which goes beyond the realm of classical mechanics,

suggests this pattern of man's investigation of matter and motion.

Laws of Motion

— INDUCTION

-

Observations

and Experiments

1
of

J

Laws of Force

•DEDUCTION-

Predictions

Mathematical

Models

I

The enormous success of classical mechanics made it seem,

at one stage, that nothing more was needed to account for the

whole world of physical phenomena. This belief reached a

pinnacle toward the end of the nineteenth century, when some

7 Prologue



optimistic physicists felt that physics was, in principle, complete.

They could hardly have chosen a more unfortunate time at which

to form such a conclusion, for within the next few decades

physics underwent its greatest upheaval since Newton. The dis-

covery of radioactivity, of the electron and the nucleus, and the

subtleties of electromagnetism, called for fundamentally new

ideas. Thus we know today that Newtonian mechanics, like

every physical theory, has its fundamental limitations. The

analysis of motions at extremely high speeds requires the use of

modified descriptions of space and time, as spelled out by Albert

Einstein's special theory of relativity. In the analysis of phe-

nomena on the atomic or subatomic scale, the still more drastic

modifications described by quantum theory are required. And

Newton's particular version of gravitational theory, for all its

success, has had to admit modifications embodied in Einstein's

general theory of relativity. But this does not alter the fact that,

in an enormous range and variety of situations, Newtonian

mechanics provides us with the means to analyze and predict the

motions of physical objects, from electrons to galaxies. Its range

of validity, and its limits, are indicated very qualitatively in the

figure below.

In developing the subject of classical mechanics in this book,

we shall try to indicate how the horizons of its application to the

physical world, and the horizons of one's own view, can be

gradually broadened. Mechanics, as we shall try to present it, is

not at all a cut-and-dried subject that would justify its description

Cosmological

Physics

10-'° m
Atom

10 !0 m
Galaxy

Size
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as "applied mathematics," in which the rules of the game are

given at the outset and in which one's only concern is with apply-

ing the rules to a variety of situations. We wish to offer a dif-

ferent approach, in which at every stage one can be conscious of

working with partial or limited data and of making use of as-

sumptions that cannot be rigorously justifled. But this is the

essence of doing physics. Newton himself said as much. At the

beginning of Book III of the Principia he propounds four "Rules

of Reasoning in Philosophy," of which the last runs as follows:

"In experimental philosophy we are to look upon proposi-

tions inferred by general induction from phenomena as accurately

or very nearly true, notwithstanding any contrary hypotheses

that may be imagined, till such time as other phenomena occur,

by which they may either be made more accurate, or liable to

exceptions." The person who waits for complete information is

on the way to dooming himself never to finish an experiment or

to construct a useful theory. Lest this should be taken, however,

as an encouragement to slipshod or superficial thinking, we shall

end this introduction with a little fable due to George Polya.
1

He writes as a mathematician, but the moral for physicists (and

others) is clear.

The Logician, the Mathematician,

the Physicist, and the Engineer

"Look at this mathematician," said the logician. "He observes

that the first 99 numbers are less than 100 and infers, hence, by

what he calls induction, that all numbers are less than a hundred."

"A physicist believes," said the mathematician, "that 60 is

divisible by 1, 2, 3, 4, 5, and 6. He examines a few more cases,

such as 10, 20, and 30, taken at random (as he says). Since 60 is

also divisible by these, he considers the experimental evidence

sufficient." "Yes, but look at the engineers," said the physicist.

"An engineer suspected that all odd numbers are prime numbers.

At any rate, 1 can be considered as a prime number, he argued.

Then there come 3, 5, and 7, all indubitably primes. Then there

comes 9; an awkward case; it does not seem to be a prime num-

'This cautionary tale is to be found in a book entitled Induction and Analogy

in Mathematics, Princeton University Press, Princeton, N.J., 1954. This

volume and its companion, Patterns of Plausible Inference, make delightful

reading for any scientist.
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ber. Yet 1 1 and 13 are certainly primes. 'Corning back to 9,' he

said, 'I conclude that 9 must be an experimental error.' " But

having done his teasing, Polya adds these remarks.

It is only too obvious that induction can lead to error. Yet it is

remarkable that induction sometimes leads to truth, since the

chances of error seem so overwhelming. Should we begin with

the study of the obvious cases in which induction fails, or with

the study of those remarkable cases in which induction succeeds?

The study of precious stones is understandably more attractive

than that of ordinary pebbles and, moreover, it was much more

the precious stones than the pebbles that led the mineralogists

to the wonderful science of crystallography.

With that encouragement, we shall, in Chapter l, begin our

approach to the study of classical mechanics, which is one of the

most perfect and polished gems in the physicist's treasury. We
end this Prologue, however, with some preparatory exercises.

EXERCISES-HORS D'OEUVRES

The literal meaning of the phrase "hors d'oeuvre" is "outside

the work." The exercises below correspond exactly to that

definition, although it is hoped that they will also whet the

appetite as hors d'oeuvres should. They deal mostly with order-

of-magnitude estimates (i.e., estimates to the nearest power of 10)

and judicious approximations—things that play an important

role in a physicist's approach to problems but seldom get em-

phasized or systematically presented in textbooks. For example,

everybody learns the binomial theorem, but how many students

think of it as a useful tool for obtaining a quite good value for

the hypotenuse of a right triangle, by the approximation

^ + b^'^a{\+^

where we assume b < a? (Even in the worst possible case, with

b = a, the result is wrong by only about 6 percent— 1.5 instead

of 1.414 . . . .) Moreover, it takes practice and some conscious

effort to develop the habit of assessing, quite crudely, the magni-

tudes of quantities and the relative importance of various pos-

sible effects in a physical system. For example, in dealing with

objects moving through liquids, can one quickly decide whether
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viscosity or turbulence is going to be the chief source of resistance

for an object of given speed and linear dimensions? An awareness

of the effects of changes of scale can give valuable insights into

the properties of systems. [A beautiful example of this is the

well-known essay by J. B. S. Haldane, "On Being the Right

Size," which is reprinted in The World of Mathematics, Vol. II

(J. R. Newman, ed.), Simon and Schuster, New York, 1956.]

By the use of such methods and ways of thought one can deepen

one's appreciation of physical phenomena and can improve one's

feeling for what the world is like and how it behaves.

It is surprising how much one can do with the help of a

relatively small stock of primary information—which might in-

clude such items as the following:

Physical Magnitudes

Gravitational acceleration (g)

Densities of solids and liquids

Density of air at sea level

Length of day

Length of year

Earth's radius

Angle subtended by finger thickness

at arm's length

Thickness of paper

Mass of a paperclip

Highest mountains, deepest oceans

Earth-moon separation

Earth-sun separation

Atmospheric pressure

Avogadro's number

Atomic masses

Linear dimensions of atoms

Molecules/cm 3
i n gas at STP

Atoms/cm 3
in solids

Elementary charge (e)

Electron mass

Speed of light

Wavelength of light

10 m/sec'2

10
3-10 4 kg/m 3

1 kg/m3 (approx.)

10
5
sec (approx.)

3.16 X 10
7
sec « I0

75
sec

6400 km

1° (approx.)

0.1 mm (approx.)

0.5 g (approx.)

10 km (approx.)

3.8 X 10
5 km

1.5 X 10
8 km

Equivalent to weight of

1 kg/cm 2
or a 10-m

column of water

6.0 X 10
23

1.6 X 10- 27 kgto

4 X 10
_25 kg

10
_,0 m (approx.)

2.7 X 10
13

10
23 (approx.)

1.6 X lO
-1

9

C
10~ 30 kg (approx.)

3 X 108 m/sec

6 X 10
-7 m (approx.)
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Malhematical Magnitudes

w2 m 10 log,,, 4 m 0.60

e « 2.7 log, o e ~ 0.43

log 10 2«0.30 log, T«0.50
log, o 3 m 0.48 logc 10 « 2.3

Angle (radians) = arc length/radius. Full circle = 2jrrad.

1 rad « 0.16 X full circle « 57°.

Solid angle (steradians) = area/(radius)
2

. Full sphere = 4*- sr.

1 sr ~ 0.08 X full sphere.

Approximations

Binomial theorem:

Forx« 1, (1 + x)
n m 1 + «*

e.g., (1 + x)
3 « 1 + 3*

(1 -x)" 2 a 1 - **« (1 +x)- 1/2

For b « a, (a + b)" - fl*(l + jjjY ~ an (l+n?\

Othcr expansions:

e
3

For 6 « 1 rad, sin fl w >

6

e
2

cos d « 1 1

2

For a: « 1, log« (1 + x) ~ x

log, (l +Jc)« 0.43x

No answers are given to the problems that follow. For

most of them, you yourself will be the best judge. You may want

to turn to an encyclopedia or other reference book to check

some of your assumptions or conclusions. If you are not prepared

at this point to tackle them all, don't worry; you can always

return to them later.

/ What is the order of magnitude of the number of times that the

earth has rotated on its axis since the solar system was formed?

2 During the average lifetime of a human being, how many heart-

beats are there ? How many breaths ?

3 Make reasoned estimates of (a) the total number of ancestors ytou

would have (ignoring inbreeding) since the beginning of the human

race, and (b) the number of hairs on your head.

4 The present world population (human) is about 3 X 10°.

(a) How many squarc kilometers of land are there per person?
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How many feet long is the side of a square of that area?

(b) If one assumes that the population has been doubling every

50 years throughout the existence of the human race, when did Adam

and Eve start it all ? If the doubling every 50 years were to continue,

how long would it be before people were standing shoulder to shoulder

over all the land area of the world?

5 Estimate the order of magnitude of the mass of (a) a speck of dust

;

(b) a grain of sak (or sugar, or sand); (c) a mouse; (d) an elephant;

(e) the water corresponding to 1 in. of rainfall over 1 square mile;

(0 a small hill, 500 ft high; and (g) Mount Everest.

6 Estimate the order of magnilude of the number of atoms in (a) a

pin's head, (b) a human being, (c) the earth's atmosphere, and (d) the

whole earth.

7 Estimate the fraction of the total mass of the earth that is now in

the form of living things.

8 Estimate (a) the total volume of ocean water on the earth, and

(b) the total mass of sah in all the oceans.

9 It is estimated that there are about 1080 protons in the (known)

universe. If all these were lumped into a sphere so that they were

just touching, what would the radius of the sphere be? Ignore the

spaces left when spherical objects are packed and takc the radius of a

proton to be about 10~ 15 m.

10 The sun is losing mass (in the form of radiant energy) at the rate of

about 4 million tons per second. What fraction of its mass has it lost

during the lifetime of the solar system ?

11 Estimate the time in minutcs that it would take for a theatre audience

of about 1000 people to use up 10% of the available oxygen if the build-

ing were sealed. The average adult absorbs about one sixth of the

oxygen that he or she inhales at each breath.

12 Solar energy falls on the earth at the rate of about 2 cal/cm2/min.

Estimate the amount of power, in megawatts or horsepower, repre-

sented by the solar energy falling on an area of 100 square miles

—

about the area of a good-sized city. How would this comparc with the

total power requirementsofsuch a city? (1 cal = 4.2 J; 1 W = U/sec;

1 hp = 746 W.)

13 Starting from an estimate of the total mileage that an automobile

tire will give before wearing out, estimate what thickness of rubber is

worn off during one revolution of the wheel. Consider the possible

physical significance of the result. (With acknowledgment to E. M.

Rogers, Physics for the lnquiring Mind, Princeton University Press,

Princeton, N. J., 1%0.)

14 An ine.vpensive wristwatch is found to lose 2 min/day.

(a) What is its fractional dcviation from the correct rate?
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(b) By how much could the length of a ruler (nominally 1 ft long)

differ from exactly 12 in. and still be fractionally as accurate as the

watch ?

15 The astronomer Tycho Brahe made observations on the angular

posilions of stars and planets by using a quadrant, with one peephole

at its center of curvature and another peephole mounted on the arc.

One such quadrant had a radius of about 2 m, and Tycho's measure-

ments could usually be trusted to 1 minute of arc (^g°). What diameter

of peepholes would havc been needed for him to attain this accuracy ?

16 Jupiter has a mass about 300 times that of the earth, but its mean

density is only about one fifth that of the earth.

(a) What radius would a planet of Jupiter's mass and earth's

density have?

(b) What radius would a planet of earth's mass and Jupiter's

density have ?

17 Identical spheres of material are tightly packed in a given volume

of space.

(a) Consider why one does not need to know the radius of the

spheres, but only the density of the material, in order to calculate the

total mass contained in the volume, provided that the linear dimensions

of the volume are large compared to the radius of the individual spheres.

(b) Consider the possibility of packing more material if two sizes

of spheres may be chosen and used.

(c) Show that the total surface area of the spheres of part (a) does

depend on the radius of the spheres (an important consideration in

the design of such things as filters, which absorb in proportion to the

total exposed surface area within a given volume).

18 Calculate the ratio of surface area to volume for (a) a sphere of

radius r, (b) a cube of edge a, and (c) a right circular cylinder of

diameter and height both equal to d. For a given value of the volume,

which of these shapes has the greatest surface area ? The least surface

area?

19 How many seconds of arc does the diameter of the earth subtend

at the sun? At what distance from an observer should a football be

placed to subtend an equal angle?

20 From the time the lower limb of the sun touches the horizon it

takes approximately 2 min for the sun to disappear beneath the horizon.

(a) Approximately what angle (exprcssed both in degrees and in

radians) does the diameter of the sun subtend at the earth ?

(b) At what distance from your eye does a coin of about ^-in.

diameter (e.g., a dime or a nickel) just block out the disk of the sun?

(c) What solid angle (in steradians) does the sun subtend at the

earth?
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21 How many inches per mile does a terrestrial great circle (e.g., a

meridian of longitude) deviate from a straight line ?

22 A crude measure of the roughness of a nearly spherical surface

could be defined by Ar/r, where Ar is the height or depth of local

irregularities. Estimate this ratio for an orange, a ping-pong ball, and

the earth.

23 What is the probability (expressed as 1 chance in 10") that a good-

sized meteorite falling to earth would strike a man-made structure?

A human ?

24 Two students want to measure the speed of sound by the following

procedure. One of them, positioned some distance away from the

other, sets off a firecracker. The second student starts a stopwatch

when he sees the flash and stops it when he hears the bang. The speed

of sound in air is roughly 300 m/scc, and the students must admit the

possibility of an error (of undetermined sign) of perhaps 0.3 sec in the

elapsed time recorded. If they wish to keep the error in the measured

speed of sound to within 5%, what is the minimum distance over which

they can perform the experiment?

25 A right triangle has sides of length 5 m and 1 m adjoining the right

angle. Calculate the length of the hypotenuse from the binomial ex-

pansion to two terms only, and estimate the fractional error in this

approximate result.

26 The radius of a sphere is measured with an uncertainty of 1%.

What is the percentage uncertainty in the volume?

27 Construct a piece of semilogarithmic graph paper by using the

graduations on your slide rulc to mark off the ordinates and a normal

ruler to mark off the abscissa. On this piece of paper draw a graph of

the function y = 2
X

.

28 The subjective sensations of loudness or brightness have bcen

judged to be approximately proportional to the logarithm of the

intensity, so that equal mulliples of intensity are associated with equal

arithmetic increases in sensation. (For example, intensities propor-

tional to 2, 4, 8, and 16 would correspond to equal increases in sensa-

tion.) In acoustics, this has led to the measurement of sound intensities

in decibels. Taking as a reference value the intensity /o of the faintest

audible sound, the decibel level of a sound of intensity / is defined by

the equation

dB = lOlogio©
(a) An intolerable noise level is represented by about 120 dB. By

what factor does the intensity of such a sound exceed the threshold

intensity /o?
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(b) A similar logarithmic scale is used to describe the relative

brightness of stars (as seen from the earth) in terms of magnitudes.

Stars differing by "one magnitude" have a ratio of apparent brightness

equal to about 2.5. Thus a "first-magnitude" (very bright) star is 2.5

times brighter than a second-magnitude star, (2.5)
2 times brighter

than a third-magnitude star, and so on. (These differences are due

largely to differences of distance.) The faintest stars detectable with the

200-in. Palomar telescope are of about the twenty-fourth magnitude.

By what factor is the amount of light reaching us from such a star less

than we receive from a first-magnitude star ?

29 The universe appears to be undergoing a general expansion in which

the galaxies are receding from us at speeds proportional to their dis-

tances. This is described by Hubble's law, v = «r, where the con-

stant a corresponds to v becoming equal to the speed of light, c

(= 3 X 108 m/sec), at r « 10 26 m. This would imply that the mean

mass per unit volume in the universe is decreasing with time.

(a) Suppose that the universe is represented by a sphere of volume

V at any instant. Show that the fractional increase of volume per unit

time is given by

1 dV
= 3a

V dt

(b) Calculate the fractional decrease of mean density per second

and per century.

30 The table lists the mean orbit radii of successivc planets expressed in

terms of the earth's orbit radius. The planets are numbered in order («):

Planet r/rg

1 Mercury 0.39

2 Venus 0.72

3 Earth 1.00

4 Mars 1.52

5 Jupiter 5.20

6 Saturn 9.54

7 Uranus 19.2

(a) Make a graph in which \og(r/rE) is ordinate and the number

n is abscissa. (Or, alternatively, plot values of r/re against n on semi-

logarithmic paper.) On this samc graph, replot the points for Jupiter,

Saturn, and Uranus at values of n increased by unity (i.e., at n = 6,

7, and 8). The points representing the seven planets can thcn be reason-

ably well fitted by a straight line.

(b) If n = 5 in the revised plot is taken to represent the asteroid

belt between the orbits of Mars and Jupiter, what value of r/rE would
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your graph imply for this ? Compare with the actual mean radius of

the asteroid belt.

(c) If n = 9 is taken to suggest an orbit radius for the next planet

(Neptune) beyond Uranus, what value of r/re would your graph

imply ? Compare with the observed value.

(d) Consider whether, in the light of (b) and (c), your graph can

be regarded as the expression of a physical law with predictive value.

(As a matter of history, it was so used. See the account of the dis-

covery of Neptune near the end of Chapter 8.)
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// seems probable to me, that God in the Beginningfortrid

Matter in solid, massy, hard, impenetrable, moveable

Particles ....

newton, Opticks (1730)



1

A universe of particles

THE PARTICULATE VI EW

the essence of the Newtonian approach to mechanics is that

the motion of a given object is analyzed in terms of the forces to

which it is subjected by its environment. Thus from the very

outset we are concerned with discrete objects of various kinds.

A special interest attaches to objects that can be treated as if

they are point masses; such objects are called particles.
1

In the

strictest sense there is nothing in nature that fits this definition.

Nevertheless, you have lived for years in a world of particles

—

electrons, atoms, baseballs, earth satellites, stars, galaxies—and

have an excellent idea of what a particle is. If you have read

George Orwell's famous political satire Animal Farm, you may

remember the cynical proclamation : "Ali animals are equal,

but some animals are more equal than others." In somewhat

the same way, you may feel that some particles (electrons or

protons, for example) are more particulate than others. But in

any case the judgement as to whether something is a particle can

only be made in terms of specific questions—specific kinds of

experiments and observations.

And the answer to the question "Is such and such an object

a particle?" is not a clear-cut yes or no, but "It depends." For

example, atoms and atomic nuclei will look (i.e., behave) like

'Actually, Newton himself reserved the word "particle" to denote what we

might now call "fundamental particles"—atoms and other such natural

building blocks—but the usage has since changed.
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Fig. 1-1 Photograph

of a portion of the

night sky. (Photograph

from the Hale

Obsercatories.)

particles if you don't hit them too hard. Planets and stars will

look like particles (both visually and in behavior) if you get far

enough away from them (see Fig. 1-1). But every one of these

objects has spatial extension and an internal structure, and there

will always be circumstances in which these features must be

taken into account. Very often this will be done by picturing a

given object not as a single point particle but as an assemblage

of such ideal particles, more or less firmly connected to one

another. (If the connections are sufficiently strong, it may be

possible to make use of another fiction—the ideal "rigid body"

—

that further simplifies the analysis of rotational motions, in

particular.) For the moment, however, we shall restrict ourselves
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to a consideration of objects that exist as recognizable, individual

entities and behave, in appropriate circumstances, as particles

in the idealized dynamical sense.

What sort of information do we need to build up a good

description of a particle? Here are a few obvious items, which

we write down without any suggestion that the list is exhaustive

(or, for that matter, sharply categorized):

1. Mass

2. Size

3. Shape

4. Internal structure

5. Electric charge

6. Magnetic properties

7. Interaction with other particles of the same kind

8. Interaction with different sorts of particles

Partial though that list may be, it is already formidable, and

it would not be realistic to tackle it all at once. So we ask a more

modest question : What is the smalkst number of properties that

suffkes to characterize a particle? If we are concerned with the

so-called "elementary" particles (electrons, mesons, etc), the

state of charge (positive, negative, or neutral) is an important

datum, along with the mass, and these two may be sufficient to

identify such a particle in many circumstances. Most other

objects, composed of large numbers of atoms, are normally

electrically neutral, and in any event the mass alone is for many
purposes the only property that counts in considering a particle's

dynamic behavior—provided we take the forces acting on it as

being independently specified. ' It is, however, useful to know,

at least approximately, the size also. Not only is this one of our

most informative pieces of data concerning any object, but its

magnitude will help to tell us whether, in given circumstances,

the particle may reasonably be treated as a point mass.

Recognizing, then, that many of the finer details will have

to be filled in later, we shall begin with a minimal description in

which particles are objects possessing mass and size. Our survey

is not exhaustive or detailed. On the contrary, we have sought

'Of course, if we want to treat the forces as being derived from characteristic

interactions of the body with its surroundings (e.g., by gravitatton), then the

laws of interaction must also be known. That is the subject of Chapter 5.
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to reduce it to a minimum, consistent with illustrating the gen-

eral scheme of things, by considering only the masses and the

linear dimensions of some typical particles. We shall begin with

the smallest and least massive particles and go up the scale until

we reach what appears to be a fundamental limit. You will

appreciate that this account, brief though it is, draws upon the

results of a tremendous amount of painstaking observation and

research in diverse fields.

A note on units

In this book we shall most frequently employ the meter-kilogram-

second (MKS) metric system. You are probably already familiar

with it, at least for the basic measures of mass, length, and time.

If not, you should learn it at this time. We shall, however, make

occasional use of other measures. In mechanics the conversion

from one system of measurement to another presents no problem,

because it is just a matter of applying simple numerical factors.

(This is in contrast to electromagnetism, where the particular

choice of primary quantities affects the detailed formulation of

the theory.) A tabulation of MKS and other units is given in the

Appendix.

ELECTRONS AND NUCLEONS

The principal building blocks of matter from the standpoint

of physics and chemistry are electrons, protons, and neutrons.

Protons and neutrons are virtually equivalent as constituents

of atomic nuclei and are lumped together under the generic title

nucleons. The vast amount of research on the so-called ele-

mentary particles, and on the structure of nucleons, has not

brought forth any evidence for particles notably smaller (or

notably less massive) than those that were known to science 50

years ago. Thus, although the study of subatomic particles is a

field of very great richness and complexity, filled with bizarre and

previously unsuspected phenomena, the microscopic limits of

the physical world are still well represented by such familiar

particles as electrons and protons.

Theelectron,withamassofaboutl(r 30 kg(9.1 X l(T 31 kg

to be more precise), is by far the lightest (by more than three
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powers of 10) of the familiar constituents of matter. (The elusive

neutrino, emitted in radioactive beta decay, appears to have no

mass at all. This puts it in a rather special category!) The size

of the electron is not something that can be unequivocally stated.

Indeed, the concept of size is not sharply or uniquely defined for

any object. If, however, we regard the electron as a sphere of

electric charge, its radius can be estimated to be of the order of

10
-15 m. In our present state of knowledge, the electron can

properly be regarded as a fundamental particle, in the sense that

there is no evidence that it can be analyzed into other constituents.

The nucleon, with a mass of 1.67 X 10~ 27 kg, is the other

basic ingredient of atoms. In its electrically charged form—the

proton—it is (like the electron) completely stable; that is, it

survives indefinitely in isolation. In its electrically neutral form

—

the neutron— it cannot survive in isolation but decays radio-

actively (with a half-life of about 13 min) into a proton, an

electron, and a neutrino. The fact that neutrons spontaneously

give birth to the constituents of hydrogen atoms has led some

cosmologists to suggest that neutrons represent the true primeval

particles of the universe—but that is just a speculation. Nucleons

have a diameter of about 3 X 10
-15 m—by which we mean

that the nuclear matter appears to be confined within a moderately

well defined region of this size. Unlike electrons, nucleons seem

to have a quite complex internal structure, in which various types

of mesons are incorporated. But from the standpoint of atomic

physics they can be regarded as primary particles.

ATOMIC NUCLEI

The combination of protons and neutrons to form nuclei pro-

vides the basis for the various forms of stable, ordinary matter

as we know it. The smallest and lightest nucleus is of course the

individual proton. The heaviest naturally occurring nucleus

(that of 238U)—contains 238 nucleons and has a mass of 4.0 X
10
-25

kg. All nuclei have about the same mass per unit volume,

so that their diameters are roughly proportional to the cube

roots of the numbers of the nucleons. Thus nuclear diameters

cover a range from about 3 X 10~ 15
to 2 X 10~ 14 m.

A unit of distance has been defined that is very convenient

when dealing with nuclear dimensions. It is named after the
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ATOMS

Italian physicist Enrico Fermi 1
:

lfermi(F) = H)" 18 m = 10- 13 cm

Thus the range of nuciear diameters is from about 3 to 20 F.

The density of nuciear matter is enormous. Given that the

uranium nucleus has a mass of about 4 X 10
-25 kg and a radius

of about 10 F, you can deduce (do it!) that its density is about

10
17 kg/m 3

. This is so vast (it is larger, by a factor of 10
14

,

than the density of water) that we really cannot apprehend it,

although we now have evidence that some astronomical objects

(neutron stars) are composed of this nuciear matter in bulk.

A great deal was learned about atomic masses long before it was

possible to count individual atoms. From the concepts of valence

and chemical combinations, chemists established a relative mass

scale based on assigning to hydrogen a mass of 1 . The mole was

introduced as that amount of any element or compound whose

mass in grams was equal numerically to its relative mass on this

scale. Furthermore, from the relative proportions of elements

that combined to form compounds, it was known that a mole of

any substance must contain the same unique number of atoms

(or molecules in the case of compounds)—the number known as

Avogadro's constant. But this number was itself unknown.

Obviously, if the number could be determined, the mass of an

individual atom could be found.

The existence of characteristic mass transfers in electrolysis

gave corroborative evidence on relative atomic masses but also

pointed the way to absolute mass determinations, for it seemed

clear that the electrolytic phenomena stemmed from a charac-

teristic atomic charge unit. Ali that was necessary was to establish

the size of this unit (e)—a feat finally achieved in Millikan's

precision measurements in 1909. Some representative atomic

mass values are listed in Table 1-1.

'E. Fermi (1901-1954) was the greatest Italian physicist since Galileo and

one of the most distinguished scientists of the twentieth century, gifted in

both theoretical and experimental work. He achieved popular fame as the

man who produced the first self-sustained nuciear chain reaction, at the Uni-

versity of Chicago in 1942.
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TABLE 1-1: ATOMIC MASSES

Electrotytic Atomic

mass transfer, Charge Approximate mass.

Element kg/C per ion relative mass kg

H 1.04 X lO"8 e 1 1.67 X lO"27

C 6.22 X 10-8 2e 12 2.00 X 10"26

O 8.29 X 10-8 2e 16 2.66 X lO"26

Na 2.38 X 10~7 e 23 3.81 X K)-26

Al 9.32 X lO"8 3e 27 4.48 X 10
-26

K 4.05 X 10"7 e 39 6.49 X lO
-26

Zn 3.39 X 10-7 2e 65 1.09 X 10-2S

Ag 1.118 X 10-6 e 107 1.79 X 10~2S

Modern precision measurements of atomic masses are based

on mass spectroscopy (see p. 206 for an account of the principles)

and are quoted in terms of an atomic mass unit (amu). This is

now defined as tV of the mass of the isotope carbon 12.

lamu = 1.66043 X 10"27 kg

Since almost all the mass of any atom is concentrated in its

nucleus (99.95% for hydrogen, rising to 99.98% for uranium),

we can say that to a first approximation the mass of an atom is

just the mass of its nucleus. But, in terms of size, the atom

represents a leap of many orders of magnitude. Nuclear diam-

eters, as we have just seen, are of the order of 10
-14 m. Atomic

diameters are typically about 10
4
times larger than this—i.e., of

the order of 10
-1

° m. One way of getting a feeling for what this

factor means is to consider that if the dot on a printed letter i on

this page is taken to represent a medium-weight nucleus, the outer

boundary of the atom is about 10 ft away. Think of a grain of

fine sand suspended in the niiddle of your bedroom or study, and

you will get a feeling for what that means in three dimensions.

(Nuclei are really very small.)

It is very convenient to take 10
-10 m as a unit of distance

in describing atomic sizes or interatomic distances in solids and

other condensed states in which the atoms are closely packed.

The unit is named after the nineteenth-century Swedish physicist,

A. J. Angstrom:

1 angstrom (A) = 10-10 m = 10~8 cm = 105 F

It is noteworthy that the heaviest atoms are not markedly bigger

than the lightest ones, although there are systematic variations,

27 Atoms



Fig. 1-2 Relative atotnic radii (iiiferredfrom atomic

volumes) versus atomic mass number, A.

with pronounced peaks at the alkali atoms, as one progresses

through the periodic table of the elements (see Fig. 1-2).

Atoms are so small that it is hard to develop any real ap-

preciation of the enormous numbers of atoms present in even

the tiniest objects. For example, the smallest object that can be

seen with a good microscope has a diameter of perhaps a few

tenths of a micron anda mass of the order of 10~

'

7
to 10~

'

fi

kg.

This minuscule object nevertheless contains something like 1

billion atoms. Or (to take another example) a very good labora-

tory vacuum may contain residual gas at a pressure of a few times

10
-1

' of atmospheric. One cubic centimeter of such a vacuum

would likewise contain about 1 billion atoms.

The atoms or molecules of a gas at normal atmospheric

pressure are separated from one another, on the average, by

about 10 times their diameter. This justifies (although only

barely) the picture of a gas as a collection of particles that move

independently of one another most of the time.

MOLECULES; LIVING CELLS

Our first introduction to molecules is likely to be in an elementary

chemistry course, which very reasonably limits its attention to

simple molecules made up of small numbers of atoms—

H

20,

C02) Na2S0 4 , C 6H 6 , and the like, with molecular weights of

the order of 10 or 100 and with diameters of a few angstroms.
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These then, do not represent much of an advance, either in size

or in mass, on the individual atoms we have just been discussing.

But through the development of biochemistry and biophysics we

have come to know of molecules of remarkable size and com-

plexity. We can feel justified in regarding them as particles on

the strength of such features as a unique molecular weight for

all molecules of a given type. The biggest objects that are de-

scribable as single molecules have molecular weights of the order

of 10
7 amu—hence masses of the order of 10~ 20 kg and lengths

of the order of 10~ 7 m. Such objects are, however, far more

important for their structure, and for their involvement in bio-

logical processes, than for their rather precarious status as

particles. The particle dynamics of a protein molecule is a pretty

slim subject—limited perhaps to the behavior of the molecule in

a centrifuge—whereas the elucidation of its structure is a study

that requires (and merits) the most intensive efforts of brilliant

chemists and crystallographers. It would be both presumptuous

and inappropriate to attempt to discuss such matters here, but

it is perhaps worth indicating the range of magnitudes of such

particles with the help of Fig. 1-3. A convenient unit of length
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for describing biological systems is the micron:

1 micron (m) = lO" 9 m = 104 A

The largest object shown in Fig. 1-3 (a bacterium) is about 1m

across and would be visible in a good microscope (for which the

limit of resolution is about 0.2/n—rather less than one wavelength

of light).

Figure 1-3 includes some viruses, which have a peculiar

status between living and nonliving—possessed of a rather

definite size and mass, isolatable (perhaps as a crystalline sub-

stance), yet able to multiply in a suitable environment. Figure

1-4 is an electron-microscope photograph of some virus particles.

These are almost the smallest particles of matter of which we can

form a clear image in the ordinary photographic sense. (You

have perhaps seen "photographs" of atomic arrangements as

observed with the device called a field ion microscope. These

are not direct images of individual atoms, although the pattern

Fig. 1-4 Sphericat

particles of

polio virus.

[C. E. Schwerdt et

al., Proc. Soc. Exptl.

Biol. Med., 86, 310

(1954). Photograph

courtesy of Robley

C. Williams.]
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does reveal their spatial relationships.)
1

If we go one step further along this biological road, then

of course we come to the living cell, which has the kind of sig-

nificance for a biologist that the atom has for a physical scientist.

Certainly it is appropriate to regard biological cells as particles,

albeit of such a special kind that the study of most of them lies

outside physics. They do, however, provide us with some con-

venient reference points on our scale of physical magnitudes, and

that is our only reason for mentioning them here—except, per-

haps, for the matter of reminding ourselves that biological systems

also belong within a framework defined by the fundamental

atomic interactions.

Although some single cells may be less than 1/* (certain

bacteria) or more than 1 cm (e.g., the yolk of a hen's egg), the

cells of most living organisms have diameters of the order of

I0~ 5 m (1<V) on the average. Thus a human being, with a

volume of about 0. 1 m 3
, contains about 10

'

4
cells, each of which

(on the average) contains about 10
l4 atoms.

SAND AND DUST

Vast areas of our earth arc covered with particles that have come

from the breaking down of massive rock formations. These

particles, predominantly of quartz (crystalline Si0 2 ), are chem-

ically very inert and are just the kind of objects to which the

word "particle" applies in ordinary speech—small but visible,

and inanimate. The earth's surface, and the atmosphere above

that surface, are loaded with such particles. The biggest ones

(say, of the order of 1 mm across) rest more or less firmly on the

ground. Others, orders of magnitude smaller, may be seen as

motes of dust dancing in the sunlight, apparently showing no

tendency to fail. The fate of a given particle depends on the

combined effect of wind (or air resistance) and gravity. Ac-

cumulations of windblown sand are found to be made up of

particles from a maximum of about 1 mm diameter to a minimum
of about 0.01 mm. Below that size the material tends to remain

airborne, and the smallest dust particles are of the order of

'Improvemcnts in electron- and proton-microscope technique reach further

and further down into the world of small particles. In 1969 the helical struc-

ture of a protein molecule was photographed in an electron microscope.
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Fig. 1-5 Size distribulion ofparticlesfound on or above the earlh's surface.

(After R. A. Bagnold, The Physics of Blown Sand and Desert Dunes,

Meihuen, London, 1941.)

10
-4 mm (=0.1/*) diameter. Figure 1-5 shows an approximate

classification of particle sizes for dust, sand, and other small

particles.

OTHER TERRESTRIAL OBJECTS

In a range from the smallest sand grains to the largest man-made

objects we are in the realm of our most immediate experience:

things that are large enough to be apprehended by the unaided

sight or touch, yet not so big that we cannot achieve a rather

direct awareness of them. In ordinary human terms, 100 is al-

ready a large number, and a factor of 1000 up or down in linear

scale from human dimensions brings us close to the limits of

anything that can properly be regarded as a fuli, first-hand con-

tact with the physical world. Outside that domain we depend

chiefly upon indirect evidence, imagination and analogy.

Since the densities of most solid materials (as we find them

in the earth's crust) are of the order of magnitude of a few

thousand kg/m 3
, the range of diameters from a grain of sand

(1 mm) to a cliff or a dam (1 km) implies a range of masses from

about 1 mg to 10' 2 kg (i.e., 10
9

tons). Actually, if mass itself

(or the weight associated with it under the gravitational con-

ditions at the earth's surface) were to be our criterion, then the

range we have just stated goes far beyond the span of human

perceptions. In terms of weights, it would be fair to say that our

direct experience gives us some feeling for objects as light as

about 10 mg or as heavy as 1000 kg—i.e., up to a factor of 10±4

with respect to a central value of the order of 0. 1 kg (or a few

ounces).
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PLANETS AND SATELLITES

For an earthdweller going about his ordinary daily affairs, it is

almost impossible—as well as unrealistic—to regard the earth as

a particle. We cannot help but be aware, primarily, of the vast-

ness of the earth and of the fact that man's greatest edifices are,

at least in terms of physical size, totally insignificant modifica-

tions of its surface. Yet if we can imagine ourselves backing off

into space for 100 million miles or so, we can arrive at a very

different point of view. The earth loses its special status and is

placed on the same footing as the other planets. And all of them

can, on this scale, be regarded as particles moving in their orbits

about a much more massive particle, the sun. In Kepler's mathe-

matical description of the orbits of the planets, and subsequently

in Newton's dynamical theory of these motions, the planets could

legitimately be regarded as point particles—their extent and

internal structure were in no way relevant. The reason, of course,

was the simple one that on the scale of the solar system the

planets are little more than mere points, as is obvious whenever

we look up into the night sky. The earth's diameter is only about

10
-4

of the distance between earth and sun—and the sun's own

diameter is only 10
-2

of the same distance. No wonder, then,

that a good first approximation to the dynamics of the solar

system can be obtained by taking such ratios to be zero.

But we should not rest content with such an approximation;

indeed, we cannot. When Newton turned his attention from the

planetary orbits to the tides, the physical extent of the earth

became a key feature, because it was only this that made possible

the existence of tide-producing forces, through a significant

change of the moon's gravitational effect over a distance equal

to the earth's diameter. In any case, once we free ourselves of

the restriction of dealing with terrestrial objects and terrestrial

phenomena, the particles that comprise the solar system are

among the first to claim our attention.

The planets can be described as roughly spherical particles,

somewhat flattened as a result of their own rotation. Their

range of diameters is considerable—a factor of nearly 30 between

Mercury and Jupiter. Since the mean densities do not differ

really drastically (the densest is our earth, at 5.5 times the density

of water), the masses cover a very great range indeed. Again the

extremes are Mercury and Jupiter, and there is a factor of about

6000 between their masses. Figure 1-6 depicts these principal
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Fig. 1-6 Relative sizes of llre planets and the sun.

planets in correct relative scale. The size of the sun, which has

about the same density as Jupiter but 10 times the diameter and

about 1000 times the mass, is indicated for comparison. The

same data are presented in Table 1-2.

TABLE 1-2: DATA ON THE PLANETS

Mean radius, km R/Re M/ME Mean density, kg/m3

Mercury 2.42 X 10 3 0.38 0.054 5400

Venus 6.10 0.96 0.815 5100

Earth 6.37 1.00 1.000 5520

(Moon) (1.74) (0.27) (0.012) (3360)

Mars 3.37 0.53 0.108 3970

Jupiter 69.9 10.98 317.8 1330

Saturn 58.5 9.20 95.2 680

Uranus 23.3 3.66 14.5 1600

Neptune 22.1 3.48 17.2 2250

Pluto 3.0 0.47 0.8? ?

(Sun) (6.96 X 10 6
) (1093) (3.33 X 105) (1400)

The nine major planets represent almost all the mass of

matter around the sun (and Jupiter alone accounts for almost

two thirds of it), but the number of other captive objects is

enormous. There are, first, the natural satellites. If we ignore

man's contributions, there are about 30 known satellites of the

planets, most of them extremely tiny in comparison with the

planets to which they are tied. (Our own moon is relatively

the largest, but even it has only a little over 1% of the mass of

the earth.) These satellites have a very special dynamical in-

terest, because from their motions it has been possible to infer

the masses of the planets themselves.
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STARS

The planetary satellites are, however, vastly outnumbered

by the minor planets, also called planetoids or asteroids. ' Tens

of thousands of them are orbiting the sun in the region between

the orbits of Mars and Jupiter. In size they range from 500 miles

in diameter down to 1 mile or less, and they most probably come

from the breakup of a larger body. If the astronomer Walter

Baade's description of them—"the vermin of the skies"—is at

all representative, they are not greatly beloved by professional

skywatchers.

A star is a magnificently complex structure, almost inconceivably

gigantic by human standards and with a fascinating interior

dynamics that involves nuclear reactions, gravitation, and elec-

tromagnetism. Yet when we gaze out into space we see nothing

of this, unless we look with the eye—and the instruments—of an

astrophysicist. Instead, we see the stars as luminous points,

which (in contrast to the planets) continue to appear as point

sources when examined through even the most powerful tele-

scopes. In relation to their diameters, in fact, stars are much

farther away from each other than are the planets of our solar

system.

A convenient unit for specifying astronomical distances is

the Hght-year, the distance light travels in a vacuum in 1 year:

1 light-year - 9.46 X 10 15 m

The nearest star to the sun is about 4 light-years away, or

about 25,000,000,000,000 miles! A number of other stars that

are near neighbors of the sun have mutual separations of the

order of 10 light-years or 10
17 m, which makes the ratio of

diameter to separation about 10
-7

or 10
-8

. A cluster or galaxy

of stars is thus an excellent example of a system of massive point

particles, despite the fantastically large size of the particles. The

best vacua attainable in the laboratory scarcely approach a

corresponding emptiness as given by the ratio of interparticle

spacing to particle diameter. One must look to the extreme vacua

of interstellar space, where there are regions containing less than

one hydrogen atom per cubic centimeter, to find a still emptier

kind of system.

•The word "asteroid" derives from the star-like appearance of these tiny

objects as seen through a telescope.
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GALAXIES

Most of the objects that are recognizable as stars are within

the range of 10* 2
solar masses. In this sense our sun can be

regarded as an average or typical star. In terms of size or lumi-

nosity (total radiation) the range of variation is very much

greater, but a worthwhile account of these features would really

call for some discussion of the evolution and interior mechanism

of stars; and this is certainly not the place to attempt it.
1 We

shall content ourselves, therefore, with remarking that the stars,

regarded simply as aggregations of matter, with masses between

about 10
28 and 10

32kg (thus containing something of the order of

10
54

to 10
58 atoms) can still be regarded as particles when we

discuss their motions through space, because of the immense

distances that separate them from one another.

In 1900 the words "galaxy" and "universe" were regarded as

being synonymous. Our universe appeared to consist primarily

of a huge number of stars—many billions of them—scattered

through space (see Fig. 1-1). Here and there, however, could be

seen cloudy objects—nebulae—near enough or big enough to

have an observable extent and even structure, as contrasted with

the pointlike appearance of the stars. By 1900 many thousands

of nebulae were known and catalogued. But what were they?

To quote the astronomer Allan Sandage: "No one knew before

1900. Very few people knew in 1920. AH astronomers knew

after 1924." 2 For it was in 1924 that the great astronomer

Edwin Hubble produced the conclusive proof that the nebulae

were, in the picturesque phrase, "island universes" far outside

the region of space occupied by the Milky Way, and that our

own Galaxy (distinguished with a capital G) was only one of in-

numerable systems of the same general kind. The first suggestion

for such a picture of the universe was in fact put forward by the

philosopher Immanuel Kant as long ago as 1755, but of course

at that time it was no more than a pure hypothesis.

; For extensive discussion, see (for example) F. Hoyle, Fronliers of Aslronomy,

Harper & Row, New York, 1955.

2The story of this development is fascinatingly told by Sandage in his iniro-

duction to a beautifui book entitled The Hubble Alias of Galaxies, published

in 1961 by the Carnegie Institution of Washington, D.C. See also Hubble's

own classic work, The Realm of the Nebulae, Dover Publications, New York,

1958.
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Fig. 1-7 Cluster of

galaxies in the con-

stellation Corona

Borealis. Dislance

about 600 million

light-years. (Photo-

graphfrom the Hale

Observatories.)

To quote Sandage again: "Galaxies are the largest single

aggregates of stars in the universe. They are to astronomy what

atoms are to physics." And so far as we can tell at present, they

represent the largest particles in the observable scheme of things.

A single galaxy may contain anywhere from about 10 6
to

10 '
' stars. Our own Galaxy appears to be one of the larger ones,

with a diameter of about 10
21 m (10

5
light-years). As we have

already seen, the stars within an individual galaxy are very widely

spaced indeed, so that the average density of matter in a galaxy

is very, very low—only about 10~ 20 kg/m 3
. But even so, galaxies

represent notable concentrations of matter. On the average the

spacing between galaxies is about 100 times their diameter,

although there is a tendency for them to exist in clusters with

separations perhaps 10 times less than this. Thus even the

galaxies may, on an appropriately large scale, be regarded as

particles, and the interactions between them may be approximated

by treating them as points (see Fig. 1-7).

Astronomical surveys indicate that space contains a roughly

uniform concentration of galaxies. If we assume that this con-

tinues to be true up to the theoretical limits of observation, we

can make some estimate of the content of the universe as a whole.

For it would appear that the universe can be represented by a

sphere with a radius of about 10
10

light-years (10
26 m). The
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PROBLEMS

galaxies in general appear to be receding from us with speeds

proportional to their distances, and at a distance of 10
l0

light-

years the recessional speed would reach the speed of light. At

this speed, because of the "galactic red shift" (a form of the

wavelength and frequency shift for radiation from a moving

source—called in general the Doppler effect), the transmission

of energy back to us would fail to zero, thus setting a natural

limit to the extent of the knowable universe.

If we take the average density of matter throughout space

to be about 10
-a(i kg/m 3

(10
-6

of the density within an individ-

ual galaxy) and assume the total volume of the universe to be

of the order of (10
26

)
3

, i.e., 10
78 m 3

, we arrive at a total mass

of about 10
52 kg (equivalent to about 10

79 hydrogen atoms).

This would then correspond to a total of about 10
il

galaxies,

each containing about 10" stars. Such numbers are of course so

stupendous that they defy any attempt to form a mental image of

the universe as a whole. But it scems that we can be assured of one

thing, at least, which is that the basis of our description of the

physical world—what we described at the outset as "the par-

ticulate view"—flnds some justiflcation over the entire range

of our experience, from the nucleus to the cosmos. And the fact

that this approach to the description of nature makes sense, while

embracing a span of about 10
40

in distance and 10
80

in mass, is

not merely aesthetically pleasing; it also suggests that something,

at least, of the physical description we give. to the behavior of

atoms will be found applicable to the behavior of galaxies, too.

If we want to find a unifying theme for the study of nature,

especially for the applications of classical mechanics, this par-

ticulate view is a strong candidate.

1-1 Make a tabulation of the orders of magnitude of diameter,

volume, mass, and density for a wide selection of objects that you

regard as being of physical importance—e.g., nucleus, cell, and star.

For the diameters and masses, rcprcsent the data by labclcd points on

a straight line marked off logarithmically in successive powers of 10.

This should give you a useful overview of the scale of the universe.

1-2 Estimate the number of atoms in:

(a) The smallest speck of matter you can see with the naked eye.

(b) The earth.

38 A universe of partieles



1-3 Calculate the approximate mass, in tons, of a teaspoonful of

nuclear matter—closely packed nuclei or neutrons.

1-4 Sir James Jeans once suggested that each time any one of us

draws a breath, there is a good chance that this lungful of air contains

at least onc molecule from the last breath of Julius Caesar. Make your

own calculation to test this hypothesis.

1-5 A vacuum pump evacuates a bottle to a pressure of 10~ 6 mm of

mercury (about 10
-9 of atmospheric pressure). Estimate the magni-

tudes of the following quantities:

(a) The number of molecules per cubic centimeter.

(b) The average distance between molecules.

1-6 In a classic experiment, E. Rutherford and T. Royds [Phil. Mag.,

17, 281 (1909)] showed that the alpha particles emitted in radioactive

decay are the nuclei of normal helium atoms. They did this by collecting

the gas resulting from the decay and measuring its spectrum. They

started with a source of the radioactive gas radon (itself a decay product

of radium). The half-life of radon is 3.8 days; i.e., out of any given

number of atoms present at any instant, half are left, and half have

decayed, 3.8 days later. When the experiment started, the rate of alpha-

particle emission by the radon was about 5 X 109 per second. Six

days later, enough helium gas had been collected to display a complete

helium spectrum when an electric discharge was passed through the

tube. What volume of helium gas, as measured at STP, was collected

in this experiment? [The number of surviving radioactive atoms as a

function of time is given by the exponential decay law, N(t) = Noe-*'.

The number of disintegrations per unit time at any instant is \dN/dt\ =

\Noe-u . Given the value of the half-life, you can deduce the value of

the constant, X.]

1-7 The general expansion of the universe as described by Hubble's

law [o{r) = ar] implies that the average amount of mass per unit

volume in the universe should be decreasing by about 1 part in 10 17

per second (see Hors d'oeuvres no. 29, p. 16). According to one theory

(no longer so strongly held) this Ioss is being made up by the continuous

creation of matter in space.

(a) Calculate the approximate number of hydrogen atoms per

cubic meter per year that would, if produced throughout the volume

of the universe, bring in the necessary amount of new mass.

(b) It has been hypothesized (by J. G. King) that the creation

of new matter, if it occurs, might well take place, not uniformly

throughout space, but at a rate proportional to the amount of old

matter present within a given volume. On this hypothesis, calculate

the number of hydrogen atoms equivalent to the new mass created

per day in a vessel containing 5 kg of mercury. (J. G. King concluded
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on this basis that a test of the hypothesis was feasible.) Convert your

result to an equivalent volume of hydrogen gas as measured at a pres-

sure of 1 Torr (1 mm of mercury).

1-8 Theodore Rosebury, in his book Life on Man (Viking, New York,

1969), remarks that the total bulk of all the microorganisms that live

on the surface of a human being (excluding a far larger quantity on the

inner surfaces of the intestinal system) could easily be accommodated

in the bottom of a thimble. If the mean radius of these microorganisms

is taken to be 5 y. (1 n = 10
-6

m), what is the order of magnitude of

the population of such organisms that each of us carries around all

the time ? Compare the result with the total human population of the

globe.

1-9 It seems probable that the planets were formed by condensation

from a nebula, surrounding the sun, whose outer diameter corresponded

roughly to the orbit of Pluto.

(a) If this nebula were assumed to be in the form of a disk with a

thickness equal to about one tenth of its radius, what would have

been its mean density in kg/m3 ? (Do not include the mass of the sun

in the calculation.)

(b) A better picture appears to be of a gas cloud whose thickness

increases roughly in proportion to the radius. Suppose that Jupiter

were formed from a ring-shaped portion of the cloud, extending radially

for half the distance from the asteroid belt to the orbit of Saturn and

with a thickness equal to this radial extension. What would have been

the mean density of this portion of the nebula ?

(In terms of the radius of the earth's orbit, the orbit of Pluto has a

radius of about 40 units, the asteroid belt is at about 3 units, and the

orbit of Saturn has a radius of about 9.5 units.)

1-10 The core of a large globular cluster of stars may typically contain

about 30,000 stars within a radius of about 5 light-years.

(a) Estimate the ratio of the mean separation of stars to the

stellar diameter in such a core.

(b) At approximately what degree of vacuum would the same

ratio of separation to particle diameter be obtained for the molecules

of a gas?
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/ do not define time, space, place and motion, since they are

well known to all.

newton, Principia (1686)



Space, time,

and motion

WHAT IS MOTION?

you are undoubtedly familiar with motion in all kinds of mani-

festations, but what would you say if you were asked to define it?

The chances are that you would find yourself formulating a

statement in which the phrase "a change of position with time,"

or something equivalent to that, expressed the central thought.

For it seems that our ability to give any precise account of motion

depends in an essential way on the use of the separate concepts

of space and time. We say that an object is moving if it occupies

different positions at different instants, and any stroboscopic

photograph, such as that shown in Fig. 2-1, gives vivid expression

to this mental picture.

Ali of us grow up to be good Newtonians in the sense that

our intuitive ideas about space and time are closely in harmony

with those of Newton himself. The following paragraphs are a

deliberate attempt to express these ideas in simple terms. The

description may appear natural and plausible, but it embodies

many notions which, on closer scrutiny, will turn out to be naive,

and difficult or impossible to defend. So the account below (set

apart with square brackets to emphasize its provisional status)

should not be accepted at its face value but should be read with a

healthy touch of skepticism.

[Space, in Newton's view, is absolute, in the sense that it

exists permanently and independently of whether there is any

matter in the space or moving through it. To quote Newton's

own words in the Principia: "Absolute space, in its own nature,
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Fig. 2-1 Slrobo-

scopic photograph of

a motion. {Front

PSSC Physics, D. C.

Healh, Lexington,

Massachusetis, 1965.)

without relation to anything external, remains always similar

and immovable."

[Space is thus a sort of stationary three-dimensional matrix

into which one can place objects or through which objects can

move without producing any interaction between the object and

the space. Each object in the universe exists at a particular point

in space and time. An object in motion undergoes a continuous

change of its position with time. And although it would not be

practicable, one can imagine the charting of positions with the

help of a vast network of meter sticks, laid out end to end in a

three-dimensional, cubical array throughout space. One can

conceive of extending such measurements to any point in the

universe. In other words, the space is there, and we simply have

a practical task of attaching markers to it. Moreover, our

physical measurements agree with the theorems of Euclidean

geometry, and space is thus assumed to be Euclidean.

[Time, in Newton's view, is also absolute and flows on with-

44 Space, time, and motion



out regard to any physical object or event. Again quoting from

the Principia: "AbsoLute, true, and mathematical time, of itself,

and from its own nature, flows equably without relation to any-

thing external, and by another name is called duration." The

language is elegant but delightfully uninformative. As Newton

said in the remark quoted at the beginning of this chapter, he

did not attempt to define either space or time.

[One can neither speed up time nor slow down its rate, and

this flow of time exists uniformly throughout the universe. If we

imagine the instant "'now" as it occurs simultaneously on every

planet and star in the universe, and an hour later mark the end

of this 60-minute interval, we assume that such a time interval

has been identical for every object in the universe, as could (in

principle) be verified by observations of physical, chemical, or

biological processes at various locations. As an aid to measuring

time intervals, it would be possible, in principle, to place identical

clocks at each intersection of a meter-stick framework and to

synchronize these clocks so that they indicate the same time at a

common, simultaneous instant. Being identical clocks, they

would thereafter correctly mark off the flow of absolute time and

remain synchronized with each other.

[Space and time, although completely independent of each

other, are in a sense interrelated insofar as we find it impossible

to conceive of objects existing in space for no time at all, or

existing for a finite time interval but "nowhere" in space. Both

space and time are assumed to be infinitely divisible—to have no

ultimate structure.]

The preceding five paragraphs describe in everyday language

some commonsense notions about the nature of space and time.

Embedded in these notions are many assumptions that we adopt,

either knowingly or unconsciously, in developing our picture of

the universe. It is fascinating therefore that, however intuitively

correct they seem, many of these ideas have consequences that

are inconsistent with experience. This first became apparent

(as we mentioned in the Prologue) in connection with motions

at very high speeds, approaching or equaling the speed of light,

and with the phenomena of electromagnetism ; and it was Einstein,

in his development of special relativity theory, who exposed

some of the most important limitations of classical ideas, in-

cluding Newton's own ideas about relativity, and then showed

how they needed to be modified, especially with regard to the

concept of time.
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The crux of the matter is that it is one thing to have abstract

concepts of absolute space and time, and it is another thing to

have a way of describing the actual motion of an object in terms

of measured changes of position during measured intervals of

time. Newton himself understood this very well, at least as far

as spatial measurements were concerned. Thus in the Principia

we find him remarking: "But because the parts of space cannot

be seen, or distinguished from one another by our senses, there-

fore in their stead we use sensible [i.e., observable] measures

of them . . . And so, instead of absolute places and motions, we

use relative ones . . . For it may be that there is no body really at

rest, to which the places and measures of others may be re-

ferred." If there is any knowledge to be gained about absolute

space, it can only be by inference from these relative measure-

ments. Thus our attention turns to the only basis we have for

describing motion—observation of what a given object does in

relation to other objects.

FRAMES OF REFERENCE

If you should hear somebody say "That car is moving," you

would be quite certain that what is being described is a change

of position of the car with respect to the earth's surface and any

buildings and the like that may be nearby. Anybody who an-

nounced "There is relative motion between that car and the

earth" would be rightly regarded as a tiresome pedant. But this

does not alter the fact that it takes the pedantic statement to

express the true content of the colloquial one. We accept the

local surroundings—a collection of objects attached to the earth

and therefore at rest relative to one another—as defining a frame

ofreference with respect to which the changes of position of other

objects can be observed and measured.

It is clear that the choice of a particular frame of reference

to which to refer the motion of an object is entirely a matter

of taste and convenience, but it is often advantageous to use a

reference frame in which the description of the motion is simplest.

A ship, for example, is for many purposes a self-contained world

within which the position or path of any person is most efficiently

described in terms of three perpendicular axes based on the

directions fore and aft, port and starboard, and up and down

(according to deck number). The uniform motion of the ship itself
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with respect to a frame of reference attached to the earth may be

unnoticed or even ignored by the passengers, as long as they can

rely on the navigation officers.

Is the earth itself at rest? We would not say so. We have

become accustomed to the fact that the earth, like the other

planets, is continually changing its position with respect to a

greater frame of reference represented by the stars. And since

the stars constitute an almost completely unchanging array of

Fig. 2-2 Apparent

circular molions of

the stars. (Carillon

Tower of Wellesley

College, Wellesley,

Mass., from J. C.

Duncan, Astronomy,

5th edilion, Harper

&Row,J954,p. 19.)
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reference points in the sky, we regard the totality of them as

representing a fixed frame of reference, within which the earth

both rotates and moves bodily. It remains true, however, that

our primary data are only of relatioe positions and displacements;

the belief that it makes more sense to assume that the earth is

really rotating on its axis once every 24 hours, rather than that

the system of stars is going around us, is one that cannot be

justified by primary observations alone (see Fig. 2-2). With our

present knowledge of the great masses and enormous numbers of

the stars, it does, to be sure, simply seem more reasonable to

attribute the motion to our puny earth. But it would be hard to

elevate that subjective judgment into a physical law.

Later we shall see that there are powerful theoretical reasons

for preferring some reference frames to others. The "best"

choice of reference frame becomes ultimately a question of

dynamics—i.e., dependent on the actual laws of motion and

force. But the choice of a particular reference frame is often

made without regard to the dynamics, and for the present we

shall just concern ourselves with the purely kinematic problems

of analyzing positions and motions with respect to any given

frame.

COORDINATE SYSTEMS

A frame of reference, as we have said, is defined by some array

of physical objects that remain at rest relative to one another.

Within any such frame, we make measurements of position and

displacement by setting up a coordinate system of some kind. In

doing this we have a free choice of origin and of the kind of

coordinate system that is best suited to the purpose at hand.

Since the space of our experience has three dimensions, we must

in general specify three separate quantities in order to fix uniquely

the position of a point. However, most of the problems that we

shall consider will be of motion confined to a single plane, so let

us first consider the specification of positions and displacements

in two dimensions only.

As you are doubtless well aware, the position of a point

in a plane is most often designated with respect to two mutually

perpendicular straight lines, which we call the x and y axes of a

coordinate system, intersecting at an origin O. The position

of the point P [Fig. 2-3(a)] relative to O is then described by a

position vector r, as shown, characterized by a specific length and
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Fig. 2-3 (a) Square

grid; the basis of

Carlesian coordinates

in a plane. (b) Plane

polar coordinate grid.

a specific direction. Using our perpendicular axes, we can

uniquely define r by the pair of rectangular (Cartesian) co-

ordinates (x, y), which are projections of r onto the x and y
axes, respectively. However, another important way of specify-

ing r is in terms of polar coordinates (r, 0), as shown in Fig.

2-3(b). Here r is the distance of P from O and d is the angle that

r makes with the positive x axis, as measured in a counterclock-

wise (conventionally positive) direction. The two schemes of

designating the position of P are related as follows:

(In two dimcnsions)

r 2 = x 2 + y
2

y
tan = -

X

x = r cos d y == r sin

(2-1)

Figure 2-4 shows examples of the use of these coordinate systems.

We shall on various occasions be making use of unit vectors

that represent displacements of unit length along the basic co-

ordinate directions. In the rectangular (Cartesian) system we

shall denote the unit vectors in the x and y directions by i and j,

respectively. The position veetor r can be written as the sum of its

two veetor components:

(In two dimensions) r = xi + y\ (2-2)

In the polar coordinate system, we shall use the symbol er to

denote a unit veetor in the direction of increasing r at constant

6 and the symbol ee to denote a unit veetor at right angles to r

in the direction of increasing 9. (The use of the symbol e for this

purpose comes from the German word for unit, which is

49 Coordinate systems



/*>" '""'V

(a)

y>«iui.i«ns< *

(b)

fig. 2-4 (a) Example of Cariesian coordinales in use—a portion of mid-

town Manhattan, New York City. (b) Example ofplane polar coordinales in

use—a radar scopeface with afew incipient thunderslorms (June 3, 1970).

North is shown as O" azimuth. The heavy circles ofr = const are at 100 km,

200 km; the lighter circles are spaced by 25 km. (Photograph courtesy of

Department of Meteorology, M.l.T.)

"Einheit.") In this polar-coordinate system, the vector r is simply

equal to rer, and one might wonder why the unit vector e« is

introduced at all. As we shall see, however, it becomes very

important as soon as we consider motions rather than static

displacements, for motions will often have a component per-

pendicular to r.

Although the above coordinate schemes are the most familiar

ones—and are the only ones we shall be using in this book for

two-dimensional problems—it is worth noting that any mapping

of the surface that uniquely fixes the position of a point is a

possible system. Figure 2-5 shows two examples—one a non-

orthogonal system based on straight axes, and the other an

orthogonal system based on two sets of intersecting curves. Such

systems are introduced to capitalize on the kinds of symmetry

that particular physical systems may possess.
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Fig. 2-5 (a) Oblique coordinate system, ofthe kind

Ihal isfreguently used in Minkowski diagrams (space-

time diagrams) in special relativity. (b) Orthogonal

curvilinear coordinate system, made o/ intersecting sets of

confocal ellipses and hyperbolas.

If it is necessary to specify all three of the spatial coordinates

of a point, the most generally useful coordinate systems are the

three-dimensional rectangular (Cartesian) coordinates (x, y, z),

and spherical polar coordinates (r, 6, <p). These are both illus-

trated in Fig. 2-6(a). The Cartesian system is almost always

chosen to be right-handed, by which we mean that the positive z

direction is chosen so that, looking upward along it, the process

of rotating from the positive x direction toward the positive y
direction corresponds to that of a right-handed screw. It then

follows that the cyclic permutations of this operation are also

right-handed—from -\-y to +z, looking along +x, and from

+z to +x, looking along +y. You may note that the two-

dimensional coordinate system, as shown in Fig. 2-3(a), would

on this convention bc associated with a positive z axis sticking

up toward you out of the plane of the paper. Introducing a unit

vector k in the +z direction, analogous to the i and j of Eq. (2-2),

we can write the vector r as the sum of its three Cartesian vector

components:

r = xi + yi + zk
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Fig. 2-6 (a) Coordinates ofa poinl in three dimensions,

showing both spherical polar and right-handed Carlesian

coordinates. (6) Point located by angular coordinates

(lalitude and longitude) on a sphere, and the unit vectors

ofa local Carlesian coordinate system at the point in

question.

The description of the position or displacement in spherical

polar coordinates makes use of one distance and two angles.

(Notice that three dimensions requires three independent co-

ordinates, whatever particular form they may take.) The distance

is, as with plane polar coordinates, the distance r from the chosen

origin. One of the angles [the one shown as in Fig. 2-6(a)] is

simply the angle between the vector r and the positive z axis;

it is known as the polar angle. The other angle represents the

angle between the zx plane and the plane defined by the z axis

and r. It can be found by drawing a perpendicular PN from the

end point P of r onto the xy plane and measuring the angle be-

tween the positive x axis and the projection ON. This angle (p)

is called the azimuth. The geometry of the figure shows that the

rectangular and spherical polar coordinates are related as follows:

x = r sin cos tp

y = r sin sin <p

z = r cos

(2-4)

If we set = tt/2, we make z = and so get back to the two-
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dimensional world of the xy plane. The first two equations of

(2-4) then give us

x = r cos ¥>

y = r sin v?

It is very unfortunate that a long-established tradition uses the

symbol d, as we ourselves did earlier, to denote the angle between

the vector r and the x axis in this special two-dimensional case.

This need not become a cause for confusion, but one does need

to be on the alert for the inconsistency of these conventions.

We have all grown up with one important use of spherical

polar coordinates, the mapping of the earth's surface. This is

indicated in Fig. 2-6(b). The longitude of a given point is just

the angle ip, and the latitude is an angle, X, equal to jr/2 — 6.

(This entails calling north latitudes positive and south latitudes

negative.) At any given point on the earth's surface a set of three

mutually orthogonal unit vectors defines for us a local coordinate

system; the unit vector er points vertically upward, the vector ee

points due south, parallel to the surface, and the third unit

vector, e^,, points due east, also parallel to the surface. As with

the plane polar coordinates, the vector r is given simply by re r .

COMBINATION OF VECTOR DISPLACEMENTS

Suppose we were at a point P\ on a flat horizontal plane [Fig.

2-7(a)] and wished to go to another point P g. Imagine that we

chose to make the trip by moving only east and north (represented

by +x and +y in the figure). We know there are two particularly

Fig. 2-7 (a) Suc-

cessiue displacements

on a plane; the final

position is independen!

of the order in which

the displacements are

made. {b) Addition

of secerat displace-

ment vectors in a

plane.
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multiples of a given

veetor r, including

negative multiples.
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straightforward ways of doing this: (1) travel a certain distance

sz due cast and then a certain distance su due north, or (2) travel

su due north, followed by sx due east. The order in which we

take these two component displacements does not matter; we
rcach the same point P2 in either casc. Our representation of the

veetor r in Eq. (2-2) as the sum of the individual veetors xi and

yj is an example of such a combination. This simple and familiar

property of linear displacements exemplifies an essential feature

of all those quantities we call veetors and is not confined to

combinations at right anglcs. Thus, for example, in Fig. 2-7(b)

we illustrate how three veetor displacements, A, B, and C, placed

head to tail, can be combined into a single veetor displacement S

drawn from the original starting point to the final end point.

This is what we mean by adding the veetors A, B, and C. The

order in which veetors are added is of no consequence; thus

successive displacements of an object can be combined according

to the veetor addition law, without regard to the sequence in

which the displacements are made. What we mean by a veetor

quantity, in general, is that it is a direeted quantity obeying the

same laws of combination as positional displacements.

We shall often be concerned with forming a numerical

multiple of a given veetor. A positive multiplier, n, means that

we changc the length of the veetor by the faetor n without chang-

ing its direetion. The negative of a veetor (multiplication by — 1)

is defined to mean a veetor of equal magnitude but in the opposite

direetion, so that added to the original veetor it gives zero. A
negative multiplier, —n, then defines a veetor reversed in diree-

tion and changed in length by the faetor n. These operations are

illustrated in Fig. 2-8.

Subtracting one veetor from another is accomplished by

noting that subtraetion basically involves the addition of a nega-

tive quantity. Thus if veetor B is to be subtraeted from veetor A,

we form the veetor —B and add it to A:

A - B = A I
(-B)
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Fig. 2-9 Addilion

and subtraction of

Iwo given vectors.

Note that the magni-

tude ofthe vector

difference may be {as

here) larger than the

Fig. 2-10 Construc-

tion of the relative

position vector ofone

point (i>2) with re-

spect to another point

OPi).

In Fig. 2-9 we show both the sum and the difference of two given

veetors. We have deliberately chosen the direetions of A and B
to be such that the vector A — B is longer than the vector A + B;

this will help to emphasize the faet that vector combination is

something rather different from simple arithmetical combination.

The evaluation of the vector distance from a point P^ to a

point P 2 , when originally the positions of these points are given

separately with respect to an origin O [see Fig. (2-10)], is a

direct application of vector subtraction. The position of P2

relative to P\ is given by the vector r 12 such that

ri2 = r2 — ri

(The subseript "12" is to be read as "one-two" and is a common
notation in the deseription of two-particle systems.) Similarly,

the position of P! relative to P 2 is given by the vector r2 i
=

r, — r 2 . Clearlyr2 i
= — r 12 .
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Fig. 2-11 (a) Com-

ponents ofa given

vector in two different

rectangular coordi-

nate systems related

by an angular dis-

placemenl 9 in the

xy plane. (b) Com-

ponents of a given

vector in a rectangu-

lar coordinate system

and in an obligue co-

ordinate system.

THE RESOLUTION OF VECTORS 1

In discussing the description of a given vector in terms of its

components, we have indicated that this is a process that can be

operated in either direction. There is the analysis (resolution)

of the vector into its components in a given coordinate system,

or there is the synthesis (addition) of the vector components to

reconstitute the original vector. There is, however, an important

difference between thcse two operations. The vector sum of the

components is unique—it is the particular vector that we are

considering—but the process of resolving the vector into com-

ponents can be done in an infinity of ways, depending on the

choice of coordinate system.

If we are using a coordinate system based on orthogonal

axes (whether Cartcsian or polar or anything else), the com-

ponents of the vector are easily found by multiplying the length

of the vector by the cosine of the angle that the vector makes

with cach of the coordinate axes in turn. Thus, for example, if

we had a vector A confined to the xy plane [see Fig. 2-1 l(a)] its

components in the xy coordinate system are given by

A x = Acosa A„ = /4cos<3

We know that /3 = (tt/2) - «> but by introducing the two

separate angles we have a formalism that lends itself to being

'U is hoped that this seetion may be helpful in a general way, but the only

fcaturc that will be specifically needed later is the scalar produet of two arbi-

trary veetors.

56 Space, (ime, and motion



extended to the case of three dimensions, making use of the three

separate angles a, 0, and T that the vector makes with the three

axes. In this more general case there is no simple connection

between the angles themselves, but we have the relationship

cos2a + cos 2
/3 + cos27 = 1

Our two-dimensional case corresponds to putting 7 = w/2.

The total vector A in Fig. 2- 11 (a) can of course be written

A = AJ + Av\

= {A cos d)\ + (A cos ;8)j

A very convenient way of expressing such results is made possible

by introducing what is called the scalar product of two vectors.

This is defined in general in the following way: If the angle be-

tween any two vectors, A and B, is 0, then the scalar product, S,

is equal to the product of the lengths of the two vectors and the

cosine of the angle d. This product is also called the dot product

because it is conventionally written as A • B. Thus we have

scalar product (S) = A B = AB cos d

If for the vector B we now choose one or other of the unit vectors

of an orthogonal coordinate system, the scalar product of A
with the unit vector is just the component of A along the direction

characterized by the unit vector:

Ax = A i Ay = A •

j

Thus the vector A can be written as follows:

A = (A-i)i + (A-j)j

This result can, in fact, be developed directly from the basic

statement that A can be written as a vector sum of components

along x-and y:

A = Ax\ + Ay\

Forming the scalar product of both sides of this equation with

the unit vector i, we have

A • i = A x(i i) + A„(i i)

Now (i • i) = 1 and (j • i) = 0, because these vectors are all of

unit length and the values of are and t/2, respectively. Thus
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we have a more or less automatic procedure for selecting out

and evaluating each component in turn.

If one were to take this no further, the above development

would seem perhaps pointlessly complicated. Its value becomes

more apparent if one is interested in relating the components of a

given vector in different coordinate systems. Consider, for

example, the second set of axes (x\ y') shown in Fig. 2-1 1 (a)

;

they are obtained by a positive (counterclockwise) rotation from

the original (x,y) system. The vector A then has two equally

valid representations:

A - AJL + A„j = AJV + A u
'¥

If we want to find A» in terms of Ax and Av , we just form the

scalar product with i' throughout. This gives us

A,' = AS • i') + A„(i i')

Looking at Fig. 2-1 l(a), we see the following relationships:

i • i' = cos 6 j • i' = cos f |
- 6 j

= sin

Hence

Az
' = A z cos + A„ sin

Similarly,

A y
' = AA-f) + AJl'f)

= /*xCOs(;; + B ) + /*„COS0

Therefore,

Ay
' = -A x sin d + A y cos 6

This procedure avoids the need for tiresome and sometimes

awkward considerations of geometrical projections of the vector

A onto various axes of coordinates.

The same approach can be useful if a vector is to be resolved

into nonorthogonal components. Consider, for example, the

situation shown in Fig. 2-1 1 (b). The axes are the lines Osi and

Os2 , and the components of the vector A in this system are OE
and OF. If we denote unit veetors along the coordinate direetions

by ei and e 2 , we havc
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A = siei + S2*2 = Azi + A„\

If we form the scalar product throughout with, let us say, ei,

we havc

s\ + J2(e2 • ei) = Ax (i ei) + /i„(j • ci)

Given a knowledge of the angles between the various axes, this

is a linear equation involving the two unknowns Si and s2 . A
second equation can be obtained by forming the scalar product

throughout with e 2 instead of ei, and it then becomes possible

to solve for Si and s2 separately. It is important, in this case,

to recognize that the base vectors e! and e2 are no longer or-

thogonal, so that the scalar product (e, • e2 ) does not vanish.

The use of oblique coordinate systems of this kind is, however,

rather special, and as a rule the resolution of a vector along the

three independent directions of an orthogonal coordinate system

is the reasonable and useful thing to do.

VECTOR ADDITION AND THE PROPERTIES OF SPACE 1

You may be tempted to think that the basic law of vector addi-

tion, and the fact that the final result is independent of the order

in which the combining vectors are taken, is more or less obvious.

Let us therefore point out that it dcpends crucially on having

our space obey the rules of Euclidean geometry. If we are dealing

with displacements confined to a two-dimensional world as

represented by a surface, it is essential that this surface be flat.

This is not just a pedantic consideration, because one of our

most important two-dimensional reference frames—the earth's

surface—is curved. As long as displacements are small compared

to the radius of the curvature, our surface is for practical pur-

poses flat, our observations conform to Euclidean plane geometry,

and all is well. But if the displacements along the surface are

sufliciently great, this idcalization cannot be used. For cxample,

a displacement 1000 miles eastward from a point on the equator,

followed by a displacement 1000 miles northward, does nol

bring one to the same placc as two equivalent displacements

(i.e., again on grcat circles intersecting at right angles) taken in

This scction can be omitted without loss of continuity.
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Fig. 2-12 Successiue

displacements on a

sphere are not com-

mutative if the sizes

of the displacements

are not small com-

pared to the radius of

the sphere.

the opposite order; it misses by about 40 miles! (See Fig. 2-12.)

This means, in effect, that the correctness of vector addition is a

matter for experiment and that tests for departures from it can

be used to make deductions about the geometrical properties

of the space in which we operate. For example, we could take

the results of sensitive measurements on the difference between

the two possible ways of making two successive displacements

on a sphere and use the data to deduce the radius of the sphere.

When we acknowledge that the space of our ordinary ex-

perience is really three-dimensional, then, of course, we look at

the foregoing analysis from a different point of view. We recog-

nize that displacements on the surface of a sphere can actually

be scen as displacements in a three-dimensional world that obeys

Euclidean geometry rather than in a merely two-dimensional

world that appears, within itself, to be non-Euclidean. But at

this point a very intercsting speculation suggests itself: Can we

say that our space of three dimensions is rigorously Euclidean?

Is it possible that the result of adding displacements along the

three basic coordinate dircctions is dependent to some minute

extent on the order of addition? If this were discovered to be

the case, then we might proceed by analogy and introduce a

fourth spatial dimension, associated with some characteristic

radius of curvature, such that our non-Euclidean space of three

dimensions could be described as Euclidean in a "hyperspace"

of four dimensions.
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Some distinguishcd scientists, beginning with the great Kari

Friedrich Gauss ("the Prince of mathematicians") ' have sought

by direct observation to test the validity of Euclidean geometry,

by measuring whether the angles of a closed triangle add up to

exactly 180°. (For example, in the non-Euclidean space repre-

sented by the surface of a sphere, the angles of a triangle add up

to more than 180°.) No departure from a Euclidean character for

three-dimensional space has been detected through such observa-

tions. The concept that space may, however, be "curved," and

that this curvature might be revealed if one could only carry out

observations over sufficiently great distances, occupies an im-

portant place in thcoretical cosmology.

You may have read about the curvature of space in another

connection—Einstein's theory of gravitation—which describes

local gravitational effects in terms of a modification of geometry in

the space surrounding a massive object such as the sun. We shall

not pursue this topic here, although we shall touch on it very

briefly at the end of our account of gravitation in general

(Chapter 8).

In the preceding sections we have developed the basic analysis

of spatial displacements. To describe motion we must link such

displacements to the time intervals during which they occur.

Before considering this as a quantitative problem, let us very

briefly supplement the remarks that we made at the beginning

of the chapter concerning the actual nature of time. This is, of

course, a hugc subject that has engaged the thoughts and specula-

tions of men—philosophers, scientists, and humanists alike—

throughout history, and continues to do so. We shall not presume

to do more than to cxamine one or two aspects of the problem

from the standpoint of physical seienec.

The sense of the passage of time is deeply embedded in

every one of us. We know, in some elemental sense, what time is.

'Kari Friedrich Gauss (1777-1855) was one of the outstanding mathema-

ticians of all time. In the originality and range of his work he has never been

surpassed, and probably never equaled. He delved deeply into astronomy

and geodesy and was perhaps the first to recognize the possibility of a non-

Euclidean geometry for space. See E. T. Bell's essay about him in The World

of Mathemalics (J. R. Newman, ed.), Simon and Schuster, New York, 1956.
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But can we say what it is? The distinguished Dutch physicist

H. A. Kramers once remarked: "My own pet notion is that in

the world of human thought gencrally, and in physical science

particularly, the most important and most fruitful concepts are

those to which it is impossible to attach a well-defined meaning."

'

To nothing, perhaps, does this apply more cogently than to time.

Nevertheless, if one tries to analyze the problem, one can perhaps

begin to see that it is not entirely elusive. Even though a defini-

tion of time may be hard to come by, one can recognize that our

concept of the passage of time is tied very directly to the fact

that things change. In particular we are aware of certain recurrent

events or situations—the beats of our pulse, the daily passage

of the sun, the seasons, and so on. We almost subconsciously

treat these as though they are markers on some continuous line

that already exists—rather like milestones along a road. But

all we have in terms of direct knowledge is the set of markers;

the rest is an intellectual construction. Thus, although it may

be valuable to have an abstract concept of time continuously

flowing, our first-hand experience is only the observed behavior

of a device called "a clock." In order to assign a quantitative

measure to the duration of some process or the interval between

two events, we simply associatc the beginning and end points

with readings on a clock. It is not essential that the clock make

use of a recurrent phenomenon—one need only consider ancient

devices such as water clocks and graduated candles, or modern

parallels such as continuously weakening radioactive sources

—

but we do ask that it provide us with a means of marking off

successive intervals in some recognizable way, and most such

devices do, in fact, make use of repetitive phenomena of some

kind.

How do we know that the successive time intervals defined

by our chosen clock are truly cqual? The fact is that we don't;

it is ultimately a matter of faith. No clock is perfect, but we

have learned to recognize that some clocks are better than

others—better in the sense that the segments into which they

divide our experience are more nearly equal. A doctor observes

his wristwatch and tells us that our pulse is irregular; the wrist-

watch, however, is found to be itself irregular when compared

'Physical Sciences and Human Values (a symposium), Princeton University

Press, Princeton, N.J., 1947.
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more critically against a crystal-controlled oscillator; the oscil-

lator wandcrs noticeably when checked against a clock based on

atomic vibrations. Whether or not the uniform flow of time, as

an ultimate abstraction, has any physical meaning, the remarkable

fact is that we approach the measurement of time as if this steady

flow existed. We evaluate the behavior of any given clock by

observing its consistency and reproducibility, so that in using it

we can quote its measure of a time or a time interval with a

specified range of possible error. And then, when we proceed

from individual measurements to general equations involving

time, we introduce the symbol t and treat r as a continuous

variable in the mathematical sense.

UNITS AND STANDARDS OF LENGTH AND TIME

Most of our discussion of motion will be in terms of unspecified

positions and times, represented symbolically by r, /, and so on.

It should never be forgotten, however, that the description of

actual motions involves the numerical measures of such quan-

tities and the use of universally accepted units and standards.

Our choice of acceptable standards of both distance and time is

the result of a continuing search for the highest degree of con-

sistency and reproducibility in such measurements. The evolution

and present state of this process is briefly summarized below.

Length

The current Standard of length—the meter—was introduced,

along with the rcst of the metric system, in the drive for scientific

and cultural order that developed in France in the latter half

of the 18th century. The meter was originally intended to repre-

sent 1 ten-millionth (10
-7

) of the distance from pole to equator

of the earth along a meridian of longitude. But it proved im-

possible to construct any sufficiently precise Standard on the

basis of this definition, and the meter was then defined as the

length of a particular metal bar kept in Sevres, near Paris, and

finally as a multiple of the wavelength of a charaeteristie spectral

line—most recently (since 1960) as being a distance equal to

1,650,763.73 wavelengths of orange-red light from the isotopc

krypton 86.

Although the use of the extremely small units of length
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represented by light waves means that the meter can be defined

with immense precision—to 1 part in 10
8
or better—there is the

disadvantage that an object as long as a meter cannot be directly

measured, in a one-step process, in terms of light waves from

ordinary sources. The reason is that the measurements depend

on observing optical interference effects that begin to wash out

if the distance in question becomes more than about 1 ft. The

development of lasers has completely transformed this situation,

and interference effects have been observed up to path lengths

of over 100 m. It thus seems quite probable that the meter will

at some future date be defined in terms of an optical wavelength

obtainable from a laser source, perhaps one of the characteristic

spectral lines of neon in a helium-neon laser.

Time

The process of defining a Standard of time involves a feature that

sets it significantly apart from the establishment of a Standard

of length. This is that, as Allen Astin has remarked: "We cannot

choose a particular sample of time and keep it on hand for

reference."
1 We depend upon identifying some recurring phe-

nomenon and assumirrg that it always supplies us with time

intervals of the same length.

The Standard of time—the second—was originally based on

the assumed constancy of the earth's rotation. It was first defined

as being equal to 1/86,400 of a mean solar day—i.e., the average,

over 1 year, ol the time from noon to noon or midnight to mid-

night at a given placc on the earth's surfacc. This is an awkward

definition, because the length of the day, as measured from noon

to noon, is not a constant; it varies because the earth's speed

and its distance from the sun are continuously changing during

one complete orbit. A logically more satisfaetory definition of

the second can be based on the sidereal day—the time for any

given star to return to the same position overhead. If the earth's

rotation were truly uniform, the length of every sidereal day

would be the same.

In faet, it has gradually come to be rccognized, thanks to

'Allen V. Astin, "Standards of Measurement," Sci. Am., 218 (6), 50 (1968).

Some people would, however, argue that even a solid, tangible bar as a length

Standard is equally vulnerable on philosophical and logical grounds.
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the extraordinary precision of astronomical raeasurements ex-

tended over thousands of years, that neither the length of the

solar year nor the earth's rate of rotation on its axis is exactly

constant, the latter in particular being subject to minute but

abrupt variations. The year has been found to be lengthening

at the rate of about £ sec per century, so that in 1956 the second

was redefined as being equal to 1/31,556,925.9747 of the tropical

year 1900. (A tropical year is defined as the interval of time

between two successive passages of the sun through the vernal

equinox. We shall not attempt here to deseribe just how one

"latehes on" to a second of the year 1900 for calibration pur-

poses.) It should be recognized that the variations being dis-

cussed here are fantastically small, as is implied by the ability

to define the year in terms of the second to 12 significant figures.

Finally, in 1967, the use of atomic vibrations to specify a

time Standard was adopted by international agreement ; it defines

the second as corresponding to 9,192,631,770 eyeles of vibration

in an atomic clock controlled by one of the charaeteristie fre-

quencies associated with atoms of the isotope cesium 133.

Quite apart from the practical challenge of defining units

and standards of time with the maximum attainable precision,

there are some questions of fundamental interest involved. Does

time as defined by celestial motions, controlled by gravitation,

keep step at all epochs with time as defined by atomic vibrations,

controlled by electric forees within the atom? It was suggested

in 1938 by P. A. M. Dirac 1

that the constant of universal gravita-

tion might be slowly changing with time—with a "time constant"

on the order of the age of the universe itself, i.e., about 10
10

years. If this were true, our astronomical and atomic standards

would, in the long run, be found to reveal diserepancies.

This matter of units and standards is one that most of us

do not bother our heads with. We think we know well enough

what is meant by a meter and a second; and a ruler or a wateh

is usually near at hand. But perhaps the above diseussion may

help to suggest that the detailed story of how these basic mea-

sures are defined, redefined, and made more and more precise

is a quitc faseinating business—especially, perhaps, for time, to

Dirac, a British theorelical physicist, was one of the leaders in the develop-

ment of quantum thcory around 1926-1930. He was awarded the Nobel

prize for this work.
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which astronomical observations over the centuries have con-

tributed data of a refinement that almost passes belief.

'

SPACE-TIME GRAPHS

The primary data in the description of any motion will be a set

of associated measures of position and time. Such data might,

for example, be a tabulation i n an astronomer's logbook, or a

single stroboscopic photograph such as Fig. 2—1. In general

the statement of position at any instant will require the use of

three coordinates, corresponding to the three independcnt di-

mensions of space. I n many circumstances, however, the motion

may be confined to a planc, requiring two coordinates only, or

to a single line, so that a single positional coordinate sumces.

In this last case, and especially if the motion is along a straight

line, it is often extremely convenient to display the motion in

Fig. 2-13 Example

of a space-lime graph

for a one-dimen-

sional motion. (From

the PSSCfilm,

"Straight Line Kine-

matics," by E. M.

Hafner, Edueation

Deiselopment Center

Film Studio, Newton,

Mass., 1959.)

Time

'For further reading see, for instance, An Introduction to the Physics of Mass,

Length and Time, by N. Fealher, Edinburgh University Press, Edinburgh,

1959. On the matler of time in parlicular, which probably holds the greatest

interest, the following books and articles are recommended: J. T. Fraser (ed.),

The Voices ofTime, Gcorgc Braziller, New York, 1966; T. Gold and D. L.

Schumacher (eds.), The Nature of Time, Corncll University Press, Ithaca,

N.Y., 1967; G. M. Clemence, "Siandards ofTime and Frequency," Science,

123, 567 (1956); Lee Coe, "The Nature of Time," Am. J. Phys., 37, 810

(1969); Richard Schlegel, Time and the Physical World, Dover, New York,

1968.
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VELOCITY

terms of a space-time graph in which, as a rule, thc time is re-

garded as an independent variable, plotted along the abscissa,

and the position is plotted along the ordinate. Figurc 2-13 shows

such a graph. It has the great merit that it conveys directly, in a

way that a numerical table cannot, a complete picture of a given

motion. One can immcdiately identify points of maximum and

minimum distance from the origin, regions of time in which the

motion temporarily ccases altogether, and so on.

'

The central concept in the quantitative description of motion is

that of velocity. It is a vcctor. The quantitative measure of

velocity, in the case of one-dimensional motion, is one of the

first pieces of information that we can extract from a space-time

graph such as Fig. 2-13. Our way of designating velocities

—

miles per hour, meters per second, and so on— is a constant

reminder of thc fact that velocity is a deriued quantity, based on

these separatc mcasures of spacc and time. Has it ever struck

you that although physicists have invcntcd names for the units

of measurcment of all sorts of physical quantitics, they have

never introduced special names for units of velocity? (Seafaring

men have done it, though, with their unit the knot, equal to 1

nautical mile per hour.) In nature itself, things seem to be quite

otherwise, for although we have not as yet idcntified anything

that is directly rccognizablc as a fundamental natural unit of

length or time, we do find a fundamental unit of velocity—thc

magnitude (c) of the velocity of light in empty space:

c = (2.997925 ± 0.000001) X 108 m/sec

It has become customary in high-energy partiele physics to

express velocities as fraetions of c. And in a comparable way,

in connection with high-speed (light, the Mach number is used

to express the speed of an aireraft as a fraelion or multiple of

the speed of sound in air. But this does not alter the fact that

'Such graphical representations of correlated quantities often provide a much
more immediale and vivid insight into a situalion ihan do numerical tab-

ulations or algebraic formulas, and cven a rough graph, sketehed freehand,

can be a great aid to thinking aboul a situalion. A facility in drawing and
interpreling graphs as cxpressions of physical relalionships is well worth

devcloping.
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our basic description of velocities is in terms of the number of

units of distance per unit of time.

The measurement of a velocity requires at least two measure-

ments of the position of an object and the two corresponding

measurements of timc. Let us denote these measurements by

(ri, Ij) and (r 2 , t 2)- Using these we can deduce the magnitude

and direction of what we can loosely call the average velocity

between those points:

_ T2—U
Vav —

t% — /l

However, this average velocity is not, in most cases, a very

interesting quantity. Sometimes we may find that a graph of s

versus / (let us assume a onc-dimensional motion) is a straight

linc, so that the value of v deduced from any two pairs of values

s and t is the same. But there is a much more basic and general

problem: What can we do about defining and evaluating the

velocity at an arbitrary instant in a nonuniform motion such as

that represented by Fig. 2-13? The next section is devoted to this

question, which is of fundamental importance to the whole of the

mathematical analysis of motion.

INSTANTANEOUS VELOCITY

Richard P. Feynman tells the story of the lady who is caught

for speeding at 60 miles per hour and says to the police ofncer:

"That's impossible, sir, I was traveling for only seven minutes." 1

The lady's objection does not convince us (or the police omcer);

we understand that what is at issue is not the persistence of a

uniform motion for a long time but the property of the motion

as measured over a time interval that might be arbitrarily short.

In order to talk about this in specific terms, imagine that along-

side a straight section of a road in each direction from a chosen

point, P, we have placed a set of equally spaced poles, say at

'This story, further embellished by Feynman with entertaining and instructive

details, can be found in The Feynman Lectures on Physics, Vol. I (R. P.

Feynman, R. B. Leighton, and M. Sands, eds.), Addison-Wesley, Reading,

Mass., 1963. These lectures, of wonderful freshness and originality, range

over the whole of physics and provide rich and exciting fare for everyone,

whether a beginner or a veteran in the subject. Feynman, one of the most

outstanding physicists of our time, was awarded the Nobel prize in 1966 for

his fundamental contributions to quantum field theory.
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Fig. 2-14 Arrange-

menl for inferring the

instantaneous velocity

ofa car as it passes

the point P.

5-meter intervals (see Fig. 2-14). On each pole is an electric

clock with a sweep second hand. The clocks are synchronized

and run continuously. A movie camera is placed opposite each

pole, so as to photograph the pole, the clock face, and the road.

A car comes along the road; the cameras are set running and the

photographic records are developed. It is like the photofinish

of a race. Each film will contain one frame in which, let us say,

the front bumper of the car is more or less exactly in line with the

pole. We now assemble the records. Take the data for the poles

in pairs, equal distances before and after the central point P.

For a given pair let the separation in distance be called As (a

multiple of 10 m) and let the differcnce of time readings be

called A;. Then the ratio As/A/ is the average velocity over the

range of distance Ax centered on P. Now construct a graph, as

shown in Fig. 2-1 5(a), of As/A/ as a funetion of As. Unless the

motion of the car has been extraordinarily erratic, the points can

be fitted by a smooth curve that flattens out for the smaller

values of As. We extrapolate it baekward, and the value of

As/A/ for As = is our measure of the instantaneous velocity

at the central point P. We could equally well plot the values of

As/A/ against the time intervals A/, as shown in Fig. 2- 15 (b);

the value of As/A/ at A/ = is again the same, even though the

Fig. 2-15 (a) Eual-

ualion ofthe instan-

taneous velocity ds/dt

by extrapolation to

As m ofa graph of
As/At against As.

{b) Evalualion of the

instantaneous velocity

ds/dt by extrapola-

tion WAt = ofa

graph ofAs/At

against At.
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Fig. 2-16 The "slope" ofa graph ofone physica!

guantity against another is not primarily geometrical; U

is defined by the ratio of the changes AQ and Aq, each

measured in whatever unils are appropriale.

graph itself looks somewhat different. And here, in physical

terms, is what we mean by evaluating the limit of the average

velocity, when the range of position or time over which As/At is

evaluated is shrunk to zero.

The process described above corresponds to the mathe-

matical process of determining a derivative—in this case, of

displacement with respect to time. Using the Standard calculus

notation, which in the context of the above discussion almost

speaks for itself, we write

instantaneous velocity o = lim — = —
A«-oA/ dt

(2-5)

The quantity ds/dl, a synonym for the limit of As/At, is, in mathe-

matical parlance, the first derivative of 5 with respect to t. In

geometrical terms, it reprcsents the slope of (a tangent to) the

graph of s versus t at a particular value of t.

[A note concerning the mcaning of the word "slope" in

graphs of physical data is in order. The graph—e. g., as in

Fig. 2-16— is a display of the numerical measure of one physical

quantity plotted against the numerical measure of another, using

scales that are entirely arbitrary and dictated by convenience

alone. Thus there is, in general, no physical significance to the

inclination of such a line as measured by a protractor. By "slope"

we mean simply the ratio of the change in the quantity repre-

sented on the ordinate to the corresponding change in the quan-

tity represented on the abscissa—e.g., (Q 2 — <2i)/(<72 — <7i)- In

this ratio, numerator and denominator are each a pure number

times a unit, and the slope is then expressible as the quotient of

these numbers, labeled with its own characteristic units—e.g.,

metcrs per second.]

If the same ideas as above are applied to changes with time

of the displacement in space, we arrive at a general definition

of instantaneous velocity as a veetor:

.. Ar dt
v = hm — = —

Ar—O Ar dt
(2-6)

In Fig. 2-17(a) we indicate what the evaluation of Ar entails.

Clearly, if wc display the path of an object as a continuous curve,

as in Fig. 2-17(b), the instantaneous velocity veetor is tangent
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Fig. 2-17 (a) Vector

diagram to define a

small chaiige ofposi-

tion. (b) Instan-

taneous velocity vec-

tor, tangent to the

path.

to this curvc; this is implicit in the definition.

With this departurc from straight-line notion, we shall draw

attention to the distinetion that is made technically (but not

always faithfully observed) bctwcen the words velocity and speed.

The speed is the magnitude of the vector velocity v. The spced is

thus, by definition, a positive, scalar quantity. The o that figures

in our analysis of straight-line motion has, in faet, represented

the velocity; it may take on negative as well as positive values,

which of course is all the information needed to specify the

direetion of motion in the one-dimensional case.

Even if we are dealing with motion along a single straight

line, the use of the vectorial deseription of position and velocity

will be necessary if displacements are referred to an origin not

Fig. 2-18 (a) Vector positions in a straight-line motion,

referred to an origin not on the line. (b) Corresponding

diagram for a curvilinear path.
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on the line itself. It is, in fact, a very instructive thing to consider

a straight-line motion from this point of view [see Fig. 2-18(a)],

because it helps us to scc the one-dimensional situation in its

larger context. We can become accustomed to the idea that the

displacement vcctor Ar is, in general, in a different direction from

the position vcctor r, when the latter is referred to an arbitrary

origin O. This then makcs the transition from the description of

a rectilinear path to the description of an arbitrary curved path

[Fig. 2-18(b)] scem less abrupt. It also emphasizes the fact that

although it may be very convcnient, in the case of straight-line

motion, to choose an origin on the line itself, this is certainly not

necessary and may not always be possible.

RELATIVE VELOCITY AND RELATIVE MOTION

Sincc the vector velocity is the time derivative of the vector dis-

placement, the velocity of one object relative to another is just

the vector difference of the individual velocities. Thus if one

object is at r! and another object is at r 2 , the vector distance R

from object 1 to object 2 is given by

R = r2 - n

The rate of changc of R is then the velocity, V, of object 2 relative

to object 1 , and wc have

V m — -— ——
dt dt dt

i.e.,

V = v2 - vi (2
~7)

This relative velocity V is the velocity of object 2 in a frame of

reference attached to object 1.

In diseussing frames of reference earlier in this chapter,

we pointed out how the choice of some particular frame of

reference may be advantageous because it gives us the clearest

picture of what is going on. Nothing could illustrate this better

than the practical problems of navigation and the avoidance of

collisions at sea or in the air. Imagine, for example, two ships

that at some instant arc in the situation shown in Fig. 2-19(a).

The veetors v, and v 2 represent their velocities (which we take to

be constant) with respect to the body of water in which they both
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Fig.2-19 (a)Paths

of two ships moving

at consiam velocity

along courses that

intersect. (b) Path of

ship B relative to ship

A, showing that they

do not collide even

lhough their paths

cross.

move. The paths of the ships, extended along the directions of

motion from the initial points A and B, intersect at a point P.

Will the ships collide, or will they pass one another at a safe

distance? The answer to this question is not at all elear if we

stiek to the ocean frame, but if we deseribe things from the

standpoint of one of the two ships the analysis becomes very

straightforward. Let us imagine that we are standing on the deck

of the ship marked A . Putting ourselves in that frame of reference

means giving ourselves the velocity Vi with respect to the water.

But from our standpoint it is as if the water, and everything else,

were given a velocity equal and opposite to vj. Thus to every

motion as observed in the ocean frame we add the veetor — Vi,

as implied by Eq. (2-7). This automatically, and by definition,

brings A to rest, as it were, and shows us that the velocity of the

ship B, relative to A, is obtained by combining the veetors v 2

and —V], as shown in Fig. 2-1 9(b). The veetor distance between

the ships is unaffected by this change of viewpoint. So now we

can see the whole picture. B follows the straight line shown, as

indicated by several successive positions in the diagram. It will

miss A by the distance AN, the perpendicular distance from A

to the line of V. The time at which this elosest approach oecurs

is equal to the distance BN divided by the magnitude of V. Thus

B seems to sweep aeross /4 's bow, more or less sideways. If you

have had oceasion to observe a elose encounter of this sort,

especially if it is out on the open water with no landmarks in

sight, you will know that it can be a curious experience, quite
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disturbing to the intuitions, because the observed motion of the

other ship seems to be unrelated to the direction in which it is

pointing.

PLANETARY MOTIONS: PTOLEMY VERSUS COPERNICUS

Some of the most fascinating problems in the study of motion,

and in particular of its relative character, have arisen in man's

attempts to elucidate the motions of the heavenly bodies, in-

cluding our own earth, through space. Observational astronomy,

the first of the exact sciences, has yielded data of marvelous

accuracy for several thousand years. But the question has always

been how to interpret these data. Let us consider some of the

main features of the problem.

The first thing to recognize is that naked-eye astronomy is,

Fig. 2-20 (a) Palh

of Venus omong the

stars during a 6-

month period, showing

reoersed (retrograde)

motion at one stage.

(b) Similar set ofob-

servalions on Mars.

{.Both diagrams after

E. M. Rogers,

Physics for the In-

quiring Mind,

Princeton Uniuersity

Press, Princeton,

N.J., 1960.)
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almost exclusively, the study of directions rather than distancei

These unaided observations reveal nothing about the distances

of the stars. The great Greek astronomers Aristarchus (third

century B.c.) and Hipparchus (~150b.c.) did make reasoned

estimates of the distances of sun and moon (the latter very

successfully), ' but the only direct clues to the distances of the

planets are through such quantitative evidence as changes of

apparent brightness with time, suggesting that whatever the

distances of the planets from the earth may be, they undergo

systematic variations. Thus, as is still the practice, the positions

of astronomical objects are defined in the first place in terms

of their directions only (this being all we need to find them with

a telescope) and can be described as if they were points on the

surface of a sphere of large but arbitrary radius—the celestial

sphere—with its center at the earth, and with a polar axis and an

equator defined by the earth's own axis of rotation (cf. Fig. 2-2).

In these terms the primary data on the motions of the planets

are of the type shown in Fig. 2-20.

It is already a tribute to the genius of the early astronomers

that they were able to visualize such strange-looking paths as

the projections, on the celestial sphere, of orbital motions of

various kinds. In particular, the belief took hold that the orbits

must be combinations of circular motions. This is not the place

to go into a detailed account of the problem; some outstandingly

fine accounts exist elsewhere.
2

Instead, we shall simply focuson

an idealized presentation of the two main models: an earth-

centered (geocentric) or a sun-centered (heliocentric) solar

system.

The most intuitively reasonable picture of the universe, in

terms of everyday experience, is undoubtedly one that places

the earth at the center of everything. Not one of us, without

benefit of hindsight, could interpret his first impressions in any

other way, and the ancient descriptions, such as the biblical one

in Genesis, are entirely justifiable in these terms. It was the

Alexandrian astronomer Ptolemy (—150 a.d.) who built this

picture into a quantitative model of planetary motions and

'See the problems at the end of this chapter, and also Chapter 8.

2See, for example, E. M. Rogers, Phyiics for the Inguiring Mind, Princeton

University Press, Princeton, N.J., 1960, Chaps. 12-18, or E. C. Kemble,

Physical Science, lis Structure and Developmenl, MIT Press, Cambridge,

Mass., 1966, Chaps. 1-5; or any of a number of excellent books on elementary

astronomy.
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Fig. 2-21 (a) Apparent matian ofa planet as explained

in the Ptolemaic syslem. The planet P moues on the

epicycle whose center Cfollows a circular path around

the earth, E. {b) Copernican explanation ofobserved

motion. The epicycle of (a) Is seen as being a reflection

of the earth's own motion around the sun.

described it in his great work, the Almagest. Figure 2-21 (a)

illustrates the essential features. Setting aside the effects of the

earth's daily rotation, the motion of the sun is an approximately

circular path, with a period of 1 year, around the earth, E, as

center.
l The motion of a planet, however, is compound. It can

be fairly closely approximated by imagining that a point C
travels uniformly around a circular path, and that the planet, P,

travels in another circular path with respect to C as center. This

extra circle is called an epicycle; the combination of these two

motions, if they are in the same plane, gives rise to a complicated

path that can have backward loops as shown. Precisely the same

result would be obtained if we interchanged the roles of the two

circles. (Verify this.)

If we now imagine viewing this motion from the earth, and

projecting it onto the celestial sphere or to any other constant

distance, we obtain almost the kind of variation of angular posi-

tion that is shown in Fig. 2-20. We can come even closer by

tilting the plane of the epicycle out of the plane of the primary

This path, which carries the sun eastward through the constellations around

the celestial sphere, is known as the ecliptic.
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circle a little. To fit the motion of a particular planet it is neces-

sary to choose appropriate values for the ratio of the radii of the

two circles and also for the times to make one complete circuit

of each. It is a noteworthy fact that in two cases (Mercury and

Venus) the period of the primary circle is exactly 1 sidereal year

(i.e., the period for one complete orbit of the sun around the

ecliptic), and in the other three cases (Mars, Jupiter, and Saturn)

the period of the epicycle is 1 sidereal year. Indeed, this can be

taken as the crucial clue to what we now regard as the truer

picture.

Suppose that we now place the sun at the center, as in

Fig. 2-21 (b), and make the earth travel around a circle that has

the same radius as the epicycle in Fig. 2-21 (a). Then if the

planet, P, travels around another simple circle, of radius equal

to that of the primary circle in Fig. 2-21 (a), the relative positions

and velocities of E and P can be made precisely the same as

before. We have drawn the positions of E and P in the two

diagrams to display this exact correspondence. The reason for

the appearance of the sidereal year in one or other of the two

component motions of a planet in the Ptolemaic model is now

very clear, and much of the arbitrariness of the whole description

disappears. It is this new, heliocentric, description with which we

associate the name of Copernicus. He presented it in great detail

in his principal work, De Revolutionibus Orbiwn Celestium

("On the Revolutions of the Celestial Spheres") published in

1543, the year of his death. Actually, the first suggestion that

the sun occupied the central position had been made about 1800

years earlier by Aristarchus, who from other observations knew

that the sun was much bigger than the earth (although he seri-

ously underestimated just how huge and distant it is). There is

no record, however, that the heliocentric theory was developed

in quantitative detail before Copernicus. It is interesting, by the

way, to note his clear understanding of the relativity of motion.

Here is a translation of his own statement of the principle:

"For all change in position which is seen is due to a motion

either of the observer or of the thing looked at, or to changes in

the position of both, provided that these are different. For when

things are moved equally relatively to the same things, no motion

is perceived, as between the object seen and the observer."
l

'From Arthur Berry, A Short History of Astronomy, Dover Publications,

New York, 1961.
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PROBLEMS

Given the persistent intrusion of the sidereal year into the

Ptolemaic scheme, it may seem surprising that the heliocentric

picture did not prevail at a much earlier stage, especially when

its possibility had been recognized by Aristarchus about 400 years

before Ptolemy's day. It must be remembered, however, that

we have been presenting a greatly oversimplified model of the

solar system, and the ancient astronomers were legitimately

worried over discrepancies between thcse idcalized models and

the precise, hard facts of observation. Both Ptolcmy and Coper-

nicus were driven to introduce numerous auxiliary circular

motions to obtain even approximate agreement between theory

and observation. The Copernican scheme, in the form in which

Copernicus himself developed it, was not in fact notably less

arbitrary or less complex than the Ptolemaic. Not until the

theory could free itself of the cirele as the basis of all celestial

motion was a fundamental solution to be finally attained, al-

though the introduetion of dynamical considerations—the laws

of foree and the laws of motion—transformed the context within

which the observations were interpreted. We shall come back to

these questions in Chaptcr 8 and, more fully, in Chaptcr 13.

2-1 Slarting from a point that can be laken as the origin, a. ship

travels 30 miles northeast in a straight line, and then 40 miles on

a course that heads SSW (a direetion making a countcrclockwise

angle of 247^° with a reference linc drawn eastward). Find the x and

y coordinates of its final posilion (x eastward, y northward) and its

distance from the slarting point.

2-2 The scalar (dot) produet of two veetors, A - B, is equal to

ABcosOah, where 6mi is the angle between the veetors.

(a) By expressing the veetors in terms of their Cartesian compo-

nents, show that

AZBX + AyBy + A,BZ
cos da u =

AB

(b) By using the relation between rectangular and spherical

polar coordinates [Eq. (2-4)], show that the angle 0i2 between the

radii to two points (R, 6\, <p\) and (R, 02, <P2) on a sphere is given by

cos0i2 = cos0i cos 62 + sin 0i sin $2 cos (^2 — <pi)

(Notc that the distance between the two points as measured along the
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great circle that passes through them is equal to Rd 12, where 0i2 is

expressed in radians. This can be used, for example, to calculate

mileages between points on the earth's surface.)

2-3 (a) Calculate the Cartesian coordinates of New York, U.S.A.

(41° N, 74° W) and Sydney, Australia (34° S, 151° E). Take an origin

of coordinates at the earth's center, with a z axis through the north

pole and an x axis passing through the equator at the zero of longitude.

The earth's mean radius is 6370 km.

(b) Find the distance along an imaginary straight tunnel bored

through the earth between New York and Sydney.

(c) Compare the result of (b) with the shortest practicable route

between these points by a great-circle flight. You can either calculate

this, using the result of Problem 2-2(b), or measure it directly on a

globe with the help of a piece of string.

2-4 (a) Starting from a point on the cquator of a sphere of radius R,

a partiele travels through an angle a eastward and then through an

angle /3 along a great circle toward the north pole. If the initial position

of the point is taken to correspond to x — R, y = 0, z = 0, show

that its final coordinates are R cos a cos /3, R sin a cos /3, and R sin 0.

Verify that x 2 + y
2 + z2 = R2

-

(b) Find the coordinates of the final position of the same par-

tiele if it first travels through an angle a northward, then changes

course by 90° and travels through an angle /3 along a great circle that

starts out eastward.

(c) Show that the straight-line distance As between the end

points of the displacements in (a) and (b) is given by

As2 = 2«2(sin/3 - sin a cos P)
2

(d) Using the above result, check the statement in the text

(p. 60) that there is a difference of about 40 miles in the end points

of (1) a displacement of 1000 miles eastward on the earth along the

equator, followed by a displacement 1000 miles north, and (2) a dis-

placement of 1000 miles north, followed by a displacement of 1000

miles starting out eastward on another great circle. (Put Ra = Rp =

1000 miles. The approximation cos 6 s» 1 — d2/2 will be found

useful.)

2-5 If you found yoursclf transported to an unfamiliar planet, what

methods could you suggest

(a) To verify that the planet is spherical?

(b) To find the value of its radius?

2-6 The radius of the earth was found more than 2000 years ago by

Eratosthenes through a brilliant piece of analysis. He lived at Alex-

andria, at the mouth of the Nile, and observed that on midsummer

day at noon, the sun's rays were at 7.2° to the vertical (see the figure).

He also knew that the people living at a placc 500 miles south of
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Alexandria saw the sun as being directly overhead at the same date

and time. From this information, Eratosthenes deduced the value of

the earth's radius. What was his answer?

2-7 It has been suggested that a fundamental unit of length is repre-

sented by a distance about equal to a nucleon diameter, and that a

fundamental unit of time is represented by the time it would take a

light signal (i.e., the fastest kind of signal achievable) to travel across

a nucleon diameter. Express the radius of the universe and the age

of the universe in terms of these units, and ponder the results.

2-8 A particle is confined to motion along the x axis between re-

fiecting walls at x = and x = a. Between these two limits it moves

freely at constant velocity. Construct a space-time graph of its motion

(a) If the walls are perfectly reflecting, so that upon reaching

either wali the particle's velocity changes sign but not magnitude.

(b) If upon each reflection the magnitude of the velocity is

reduced by a factor/(i.e., i>2 = —foi).

2-9 A particle that starts at x = at t = with velocity +v (along x)

collides with an identical particle that starts at x = xo at / = with

velocity —v/2. Construct a space-time graph of the motion before

and after collision

(a) For the case that the particles collide elastically, exchanging

velocities.

(b) For the case that the particles stick together upon impact.

2-10 A particle moves along the curve y = Ax 2 such that its x posi-

tion is given by x = Bt.

(a) Express the vector position of the particle in the form

r(f) = xi + yy
(b) Calculate the speed v (= ds/di) of the particle along this

path at an arbitrary instant /.

2-11 The refraction of light may be understood by purely kinematic

considerations. We need to assume that light takes the shortest
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(timewise) path between two points (Fermat's principle of least time).

Referring to the figure, let the speed of light in medium 1 be vi and in

medium 2, i?2- Calculate the time it takes light to go from point A to

point B as a function of the variable x. Minimize with respect to x.

Given that

vi = c/rti and V2 = c/ri2

where the n's are known as indices of refraction, prove Snell's law of

refraction:

«i sinfli = /»2sin02

2-12 At 12:00 hours ship A is 10 km east and 20 km north of a certain

port. It is steaming at 40 km/hr in a direction 30° east of north. At

the same time ship B is 50 km east and 40 km north of the port, and is

steaming at 20 km/hr in a direction 30° west of north.

(a) Draw a diagram of this situation, and find the velocity of B
relative to A.

(b) If the ships continue to move with the above velocities, what

is their closest distance to one another and when does it occur ?

2-13 The distance from A to B is /. A plane fiies a straight course

from A to B and back again with a constant speed V relative to the

air. Calculate the total time taken for this round trip if a wind of

speed v is blowing in the following directions:

(a) Along the line from A to B.

(b) Perpendicular to this line.

(c) At an angle d to this line.

Show that the time of the round trip is always increased by the existence

of the wind.

2-14 A ship is steaming parallel to a straight coastline, distance D
offshore, at speed V. A coastguard cutter, whose speed is v ( < V) sets

out from a port to intcrcept the ship.
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(a) Show that the cutter must start out before the ship passes a

point a distance D(V 2 — v2)
1 '21o back along the coast. (Hini: Draw

a vector diagram to show the vclocity of the cutter as seen from the

ship.)

(b) Tf the cutter starts out at the latest possible moment, where

and when does it reach the ship ?

2-15 With respect to the "fixed stars/' the earth rotates once on its

axis in one sidereal day—that is how the sidereal day is defined.

(a) The length of the year is about 366 sidereal days. By what

amount is the mean solar day (from noon to noon) longer than the

sidereal day ?

(b) The moon completes one orbit with respect to the stars in

27.3 sidereal days. That is, in this time the line from earth to moon

turns through 360° with respect to the stars. The time between cor-

responding high tides on successive days is longer than 1 solar day

(24 hr) because of this motion of the moon. (The high tide is an ocean

bulge at a fixed direetion with respect to the moon—see the figure.)

Show that the daily lag is elose to 50.5 min (60 min = ^ solar day).

2-16 (a) The orbital radii of Venus and Mars are 0.72 and 1.52 times

the radius of the earth 's orbit. Their periods are about 0.62 and 1 .88

times the earth's year. Using these data, construct diagrams by which

to find how the apparent angular positions of Venus and Mars change

with time as seen from the earth, assuming that the orbits of all three

planets lie in the same plane. Compare your results with Fig. 2-20.

(b) With respect to the ecliptic (the plane of the earth's own

orbit) the planes of the orbits of Venus and Mars are tilted by about

3.5° and 2°, respectively. Consider how the apparent paths of Venus

and Mars are affected by this additional feature.

2-17 (a) What methods can you suggest for finding the distance from

the earth to the moon (without using radar or space fiight) ?

Moon
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(b) The astronomer Hipparchus, more than 2000 years ago,

found the distance of the moon as a multiple of the earth's radius by

observing the duration of a total eclipse of the moon by the earth

(see the figure). The rays from the sun have a spread of directions of

about ±5°, and the moon itself subtends an angle of just about ^°

(the same as the sun within about 2%). The moon takes about 29

days to circle the earth, and the duration of the total eclipse is about

l£ hr. Use these data to obtain the moon's distance.

2-18 The astronomer Aristarchus had the idea of comparing the

distances of the sun and the moon from the earth by measuring the

angular separation 6 between them when the moon was exactly half

full (see the figure). Using our present knowledge of what these

distances are, criticize the feasibility of the method. Aristarchus found

6 = 87°. What result would this imply? Calculate what the angle

really is and what error would be introduced in the distance if this

angle were uncertain by ±0.1°.
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At present it is the purpose of our Author merely to

investigate and to demonstrate some of the properties of

accelerated motion (whatever the cause of this acceleration

may be).

galileo, Dialogues Concerning

Two New Sciences (1638)



Accelerated motions

ACCELERATION

from THn purely descriptive point of view, the central feature

of motion is velocity—the instantaneous rate of change of

position with time. But we must dig a little deeper to get to the

quantity that proves to be the crucial one in relating motion per

se (kinematics) to motion as governed by forces (dynamics).

This is acceleration, the rate of change of velocity with time.

Again we shall develop the basic ideas in the first instance in the

context of straight-line motion. If the instantaneous velocity is

found to be a linear function of time, as in Fig. 3-1 (a), then we

conclude that the instantaneous acceleration is the same at all

times and equal to the slope of the graph as evaluated from any

two points on it.
!

If, on the other hand, the values of the instan-

taneous velocity define some sort of curve, as in Fig. 3-1 (b),

then we must obtain the instantaneous acceleration at a par-

ticular value of f by a limiting process:

• • i-
Ad dv .. ,.

instantaneous acceleration a = lim — — — (3-1)
a,_o A? di

Thus the acceleration is the first derivative of the velocity with

'The units in which this is expressed will be defined by our chosen unit of

velocity divided by whatever unit of time is found convenient. For example,

the acceleration of a car is expressed most effectively and vividly in m.p.h.

per second. But in the more analytical treatment of motions it is almost

essential to use the same time units throughout, e.g., expressing velocities

in m/sec and accelerations in m/sec 2
. Otherwise, when we see a symbol

such as i/, we have to stop and ask ourselves which of the different units it is

measured in, and that makes for confusion and error.
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Fig. 3-1 (a) Oraph

ofv versus t for a

uniformly acceleraled

motion. (b) Motion

with varying accelera-

tion. In the indicated

time interval Al ihe

acceleralion is

negative.

v(/ + A/)

respect to time. If, however, we wish to tie our definition of

acceleration to a priinary record of position against time, then

wc can write it as the second derivative of s with respect to /:

(3-2)

In general, we must be ready to take into account a variation of

velocity in direction as well as magnitude. This then requircs

us to considcr the acceleration explicitly as a vector quantity.

Just as we previously considered vectorial changes of position,

so now we can show the instantaneous velocity vectors at two

neighboring instants, as in Fig. 3-2, and can proceed to a state-

ment of the instantaneous vector acceleration, a:

.. Av dv d r

'-^oAt-di-dfi

As far as kinematics by itself is concerned, there is no good

reason why we should stop here. We could define and evaluate

the rate of change of acceleration, but in general this does not

represent information of any basic physical interest, and so our

discussion of mechanics is based almost exclusively on the three

quantities displacement, velocity, and acceleration.

You may fcel, cspccially if you have some prior familiarity

with calculus, that we have gone to excessive lengths in our dis-

Fig. 3-2 Small change of a velocity that is changing in

bot/i magnitude and direction.
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cussion of instantaneous velocity and acceleration. But make no

mistake about it; these are very subtle concepts. The notion

that an object could both be at a certain point and moving past

that point was one that perplexed some of the best minds of

antiquity. Indeed, it is the subject of one of the famous paradoxes

of the Greek philosopher, Zeno, who contended that if an object

was moving it could not be said to be anywhere. l

If you want to test your own mastery of these ideas, try

explaining to someone how an object that is at a certain point

with zero velocity (i.e., instantaneously at rest) can nonetheless

move away from that point by virtue of having an acceleration.

It really isn't trivial.

THE ANALYSIS OF STRAIGHT-LINE MOTION

Given a detailed record of position versus time in a straight-line

motion, the procedures that we have described enable us to find

the associated variations of velocity and acceleration. The

sequence of diagrams in Fig. 3-3, going from top to bottom,

shows an example of this. But how about the converse of this

process: given the acceleration as a function of time, to infer the

graphs of velocity and displacement? The basic definitions of

velocity and acceleration suggest the appropriate procedure for

doing this. From Eq. (3-1) we see that the change of velocity Av

in a short time At is given, at least approximately, by the equation

Av = aAt

Of course, "approximately" is not good enough, but we recognize

that the smaller we choose At to be, the more nearly is Av an

accurate statement of the change of v. Again we resort to a

graphical presentation. In Fig. 3-4(a) we show a graph of ac-

celeration versus time ; it then becomes apparent that a At can be

read as the area of a narrow rectangular strip, the top of which

cuts aeross the curve of a versus t. From there it is a short step

to concluding that the over-all change of v between two given

values of t is obtained by summing all such rectangular con-

tributions. (We must, of course, recognize that wherever a is

negative, the area represented by a At, and hence the change of v,

is also negative.) We then imagine that the widths At are made

'On a quite different basis, the uncertainty principle of quanlum mechanies

expresses our inability to measure both the position and the velocity of a

moving object with arbitrarily high precision.
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Fig. 3-3 Sel ofre-

lated graphs showing

the time dependence

of (a) posilion,

(b) velocity, and

(c) acceleralion.

(a)

vanishingly small so that the sum of all the strips coincides, in

this limit, with the area under the smooth curve of a versus t.

This is then written mathematically as a definite integral:

u2 — 01 = aU) di (3-3)

wherc we write a(t) to show that the acceleration is to be con-

sidered as a specific function of time. Most often this integral is

evaluated up to some indefinite time /, starting from some choscn

zero of time at which the velocity is v . Thus we put

— 00 = fl(0 di (3-4)

Notice, then, that our integral, starting from knowledge of the

acceleration as a function of time, gives us only the change of

velocity during the time /. Information about the value of v at

t = (or at some other specific time) must be supplied sep-
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(a) (b)

Fig. 3-4 (a) Graphical integration o/a graph of

acceleration versus time to find change ofvelocity.

(b) Graphical integration of velocity-time graph to find

displacement.

arately; v is a typical example of a constant of integration that

requires some knowledge of the initial conditions—or of the

specific value of v at any one value of t.

In like manner, given the curve such as that of Fig. 3-4(b)

of v against / (which may represent the initial data or may itself

have come from the above integration of the acceleration function)

we can proceed to find the distance traveled. It is represented

by the area contained between the velocity-time curve, the r axis,

and the ordinates at two given values of t:

S2 - si = v(t) dt (3-5)

Again it is most usual to evaluate the integral from / = up to

an arbitrary time, and again a constant of integration—the

position so at t = —must be supplied

:

s — Si) = v(t) dt (3-6)

Very often, of course, it is possible to choose Sq = 0, but one

should never forget that the area included under the velocity-

time graph gives us only the change of position.

The simplest applications of these kinematic equations, for

a = or a = constant, are undoubtedly familiar to you. In the

first case the velocity-time graph is simply a rectangle, as shown

in Fig. 3-5(a). If the acceleration is constant (but not zero),
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Fig. 3-5 (a) Veloc-

ity-time graph for the

special case ofzero

acceleration. (b)

Velocity-lime graph

for a constant

(positice) accelera-

tion.

Fig. 3-5(b) is appropriate. The magnitude of the constant ac-

celeration is given by

a = slope = v — do

This conforms to the definition of acceleration in Eq. (3-1).

If we took a as given, then we would obtain this same result by

integration, according to Eq. (3-4),

V — DO i / dt -
Jo

at (3-7)

The area in Fig. 3-5(b) that represents the distance traveled

can be thought of as made up of the two shaded regions as shown.

Hence

s — so = vot + \{o — Uo)l

Combining the last two equations, we get

s — so = Dot + \at2

which we can recognize also as the result of evaluating the

integral in Eq. (3-6) with v(l) = v + at:

— so = /

./o

(dq + at) dt = Dot + %at (3-8)

It is sometimes convenient to remove all explicit reference to

the time, by combining Eqs. (3-7) and (3-8). This gives us

o 2 = u 2 + 2a(s - so) (3-9)
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For ease of reference, we repeat these equations below as a group:

Kinematic ( o = v + at (3-10a)

equations l v2 = vq2 + 2a(s — so) (3-10b)

(valid only for constant a){ s = s + o t + \at2 (3-1Oc)

Although these mathematical expressions for accelerated

motion are tidy and extremely useful, it should be remembered

that a truly constant acceleration is never maintained indefinitely.

For example, the problems that everyone learns to solve on free

fail under gravity, using a constant acceleration g, really do not

correspond to the facts, because air resistance causes the ac-

celeration to become less as the velocity increases. For low

velocities the error may not be big enough to worry about, but it

is there. Later we shall be dealing with situations in which the

acceleration varies in some mathematically well-defined way

with position or time. Thus the emphasis will shift away from

Eq. (3-10) and toward the more general statements expressed in

Eqs. (3-4) and (3-6). Another very important factor in solving

real problems in kinematics is the digital computer. Whether or

not the acceleration i s described by a mathematically convenient

function, the actual technique of getting numerical answers to

problems on motion—e.g., the path of a rocket or a satellite

—

will be the summation of small but finite contributions, corre-

sponding to the strips of Fig. 3-4. The program for solving

problems in motion is then represented not by mathematical

integrals, but by equations such as the following:

v(t +&t) = v(t) +a(/)Ar

s(/+A/) = s(l) + v(t)At

s(t) = so +!>(') A'

There are many problems in motion that can be handled as

one-dimensional problems, even though the space in which

dynamical processes go on is a space of three dimensions. A
prime reason for this is that it is often feasible to resolve the

vectors of position, velocity and acceleration into their com-

ponents in a rectangular coordinate system and then proceed to

work with the separate components. Under these conditions, as

we have mentioned before, it is not necessary to make use of

vector notation as such, even though we know that we are dealing
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with directional quantities. It becomes sufficient to choose an

axis of reference along the given line of the motion and adopt a

convention that selects one direction along this axis as positive

and the opposite direction as negative. Which we choose as

positive is arbitrary, but having made a choice for the purpose

of a particular problem we must stick to it. Directed quantities

that are to be found as a result of a calculation—e.g., the un-

known final coordinate, x, of a particle moving along a straight

line—will always be taken as measured along the positive direc-

tion of the axis. If the answer comes out negative, this auto-

matically tells us that the final position is on the negative side

of the origin. In other words, it is not necessary (and may be

actually inadvisable, because it can lead to confusion) to inject

preconceived ideas as to which sign or direction a quantity will

be found to have; the mathematics will do it for you.

Example. A particle starts out at / = from the point

x = 10 m with an initial velocity v = 15 m/sec and a constant

acceleration a = — 5 m/sec 2
in the x direction. Find its velocity

and position at t = 8 sec.

We have

o(0 = oo + at

d(8) = 15 + (-5)(8) = -25 m/sec

Also

x(t) = x + v l + ial 2

x(8) = 10 + (15)(8) + |(-5)(8)2 - -30 m

Thus at t = 8 sec the particle has passed back through the origin

to a point on the far side and is traveling in the direction of in-

creasingly negative x. The whole progress of the motion up to

t = 8 sec is shown in the two graphs of Fig. 3-6. Notice how

much information is provided at a glance in these diagrams. One

sees at once how the velocity falls to zero at / = 3 sec and at

t = 6 sec becomes equal and opposite to its initial value. One

sees how the maximum value of x corresponds to the instant at

which u reaches zero and reverses sign, and that the particle

returns to its original displacement (x ) at t = 6 sec when v has

reached the negative of its initial value vQ , so that the total area

under the velocity-time curve up to that instant is zero. Even

though this is a very simple and straightforward example, it dis-
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Fig. 3-6 (a) Veloc-

ity-time graph for

specific values of ini-

tial velocily and con-

sianl (negatiue)

acceleration.

(b) Posiiion versus

timefor the motion

represented in (a).
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plays many features that are worthy of note. And seeing how the

various details fit together will greatly strengthen one's grip of

basic kinematics.

A COMMENT ON EXTRANEOUS ROOTS

Occasionally, in turning the mathematical handle in the solution

of the kinematic equations, one cranks out extraneous roots that

are contrary to the physical situation. How docs one recognize

these "incorrect" answcrs and when can thcy be discarded?

Many of thcsc cxtraneous answers have their origin in the

fact that in solving a problem we always state initial conditions

which specify the situation at the moment we first begin to follow

the motion of the particle at t = 0. Specifying the position and

velocity at t = does not tell us anything whatsoever about the

past dynamical history of the particle. lndeed, it is of no con-

sequence whatsoever how the particle attained these initial values.

For example, if we think of the motion of a body falling freely

from rest at an initial height h above the earth's surface, we have
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v = O and y = h. We may have held the body at its initial

position and released it from rest, or we may have thrown it

upward so that it rises to a maximum height h. The motion of the

particle subsequent to the instant of time (t = 0) when it was at

the height h with zero velocity is identical in both cases.

The most frequent source of extraneous roots is the equation

relating displacement to time in motion with constant acceleration

—i.e., Eq. (3-10c). Mathematically, this is a quadratic equation

for t and must be solved as such if the displacement is given and

the time is to be found.

Because initial conditions alone do not give us information

about the earlier motion of the particle (unless additional relevant

data are given), a root of this equation corresponding to a

negative value of t may not be valid. To illustrate this, consider

the problem used as an example in the last section. Suppose we

ask for the value of / at which x = 0. We have

x(t) = 10 + 15? - £/
2

Putting x = 0, we get the following quadratic equation:

i
2 - 6t - 4 =

with the roots t = 3 ± V 13 = 6.6 sec or — 0.6 sec. Figure

3-6(b) makes quite apparent the origin of these two roots and

shows how the negative root follows from an extrapolation of the

graph backward into the region of times prior to t = 0. But that

may be quite unjustified. We might, if asked, say: "Oh yes, I

held the particle at + 10 m from the origin until t = and then

fired it off in the positive x direction with its initial velocity of

15 m/sec." If that were the case, the solution x = Oat* = —0.6

sec would be a complete fabrication; one would be forced to

recognize that it simply did not correspond to reality. One

should not, however, discard extraneous roots without first

asking, in the way we have just done, whether there is a clear

physical reason for doing so.

The matter of extraneous roots has had an interesting con-

sequence in the history of physics. In quantum mechanics,

developing a relativistically correct equation led to two values

for the total energy of an electron : positive and negative. Nega-

tive values were initially rejected outright as having no physical

significance. After all, what meaning can one attach to a kinetic

energy less than zero? However, at a later time, P. A. M. Dirac

investigated more carefully the nature of these negative energy
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Fig. 3-7 Idealized

parabolic trajectory

for motion under grav-

ity in the absence of

air resistance.

states and was led to a highly successful theory of electrons which

predicted the existence of positrons and other "antimatter"

particles.

TRAJECTORY PROBLEMS IN TWO DIMENSIONS

One of the most famous and widely studied problems in motion

is that of free fail near the earth's surface. It provides an illus-

tration of the fact that, in the rectangular-coordinate system

represented by horizontal and vertical directions, the two ortho-

gonal components of the motion are completely independent

(provided that air resistance is negligible—see p. 225). The path

of an object may be treated as two, separate motions occurring

simultaneously, and each may be analyzed as if the other were

not present. Galileo, in his Dialogue on the Two Chief World

Systems (1632), first recognized this fact.
1

We shall consider the motion of an object hurled with

initial speed v at an angle as shown in Fig. 3-7 from a height h

'The accomplishmenls of Galileo Galilei, born in Pisa in 1564, the year of

Shakespeare's birth and Michaelangelo's dealh, are often citetl as the be-

ginning of modern science. Galileo's publication on astronomy, Dialogue

on The Two Chief World Sysiems, incorporated the Copernican model and

led to confiicts with church authorities. While technically a prisoner of the

Inquisition, Galileo turncd to the studies of mechanics and published (1638)

surreptitiously in Holland the results of his investigations "Discourses and

Mathematical Demonsirations Concerning Two New Sciences Pertaining

to Mechanics and Local Motion," commonly referred to as Two New Sciences

(translated, Dover Publications, New York). These books, written largely

in the form of imaginary conversations, have a surprisingly modern flavor,

and impress one with Galileo's insight and intellectual sophistication. They

are well worth reading.

95 Trajectory problems in two dimensions



above a level plain. As you know, an approximation to the actual

motion is obtained by assuming that the horizontal component

of velocity, vz , remains constant and that the vertical component

of velocity, vv, is subject to a constant acceleration of magnitude

g (= 9.8 m/sec 2
) downward. This approximate description of

the motion works well provided that the effects of air resistance

are unimportant, which generally speaking requires compact

(dense) objects and fairly low velocities. Later we shall consider

cases in which the resistive effects are important and our present-

idealized picture of the motion becomes seriously inadequate.

Let us now see how to answer the following questions:

1. How long is the object in flight?

2. What is the range R (the horizontal distance traveled)?

3. What is the velocity upon striking the ground?

We shall choose our origin of coordinates at the starting

point of the particle, and we shall take the positive coordinate

directions to be upward (y) and to the righl (x). The values of the

initial and final coordinates, the initial velocity components, and

the acceleration components are then as shown in Fig. 3-8.

Fig. 3-8 Anatysis oflhe motion o/Fig. 3-7 in terms of

separale horizontal and vertical components.

p»t = t'o cos e
-—*-

.

wmm,
Horizontal Component Vertical Component

< !

ox " l'o COS W,, v„ sin o

„ cos «„ «e-0
u li (minus because it is

H (unknown) below the origin of the

ai (always) coordinate system

g (acceleration due to

gravity)

(a) (b)
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[A note about signs is in order here. The acceleration due

to gravity is represented by a vector, g. In this book we shall

use the symbol g to represent the scalar magnitude of this vector.

That is, g denotes the positive quantity equal to 9.8 m/sec 2 or

32 ft/sec
2

. This is in accord with the usual convention in which

the symbol A represents the positive scalar magnitude of any

vector A. After a coordinate system has been chosen, and if the

upward vertical direction is taken to be positive, then the y com-

ponent of the vector g becomes —g (i.e., ay = —9.8 m/sec2
). In

some situations it may be convenient to choose the downward

direction as positive. In this case the y component of g must be

set equal to +g. We must of course be consistent, within a given

calculation, about what we mean by the positive coordinate

direction, but we are completely free to take whichever choice we

please; the actual content of the final answers cannot depend

on this.]

We return now to the trajectory problem, as depicted in

Figs. 3-7 and 3-8:

1. How long is the object in flight?

We know the initial velocity, the initial and final values of

y, and the vertical acceleration. Therefore, if we take Eq. (3-10c),

as applied to motion in the y direction, we know everything

except the time of flight /

:

y = voyt + \ayt
2

i.e.,

-h = (do sin 8 )t + \{-g)t2

We solve this equation and take the positive root as the physically

relevant one.

2. What is the range RP.

Apply Eq. (3-10c) to the horizontal-component problem:

x = v0zt + ha**
2

i.e.,

R = (do cos 0o)t + = (do cos 0oV

In this we substitute the specific value of t obtained in cal-

culation 1.
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3. What is the velocity upon striking the ground?

The components of v may be found from Eq. (3-10b) using

the value of / obtained from calculation 1.

Vz — od 4- azt oy = i»o» + Oyt

vx = do cos Ba vv = "o sin do + (— g)'

Then from these components we have

Magnitude of v

:

o = (vz
2 + vu

2
)
l/2

ov
Direction of v : tan d = —

ox

(In this case tan will be negative, because represents a direc-

tion pointing downward below the horizontal.) Alternatively,

we can calculate the magnitude of o
2 directly from Eq. (3-10b)

as follows:

o 2 = «Or
2 = oo2 cos2 0o

vy
2 = v y

2 + 2auy = o 2 sin2 6 + 2(-*)(-A)

Therefore,

v 2 = o 2 + oy
2 = o 2 + 2gh

The direction of v can then be calculated from the relation

sin d = —
v

FREE FALL OF INDIVIDUAL ATOMS

Atoms moving in a vacuum cast sharp shadows and give evidence

of traveling in straight lines. On the other hand, it must surely

be true that atoms and molecules, as samples of ordinary matter,

are subject to the usual free fail under gravity at the earth's

surface. The effect is not very noticeable because evaporated

atoms have high average speeds—about the same as a rifle

bullet—but it is measurable. How far would a beam of atoms

(initially moving horizontally) fail vertically under gravity while

traveling a horizontal distance L at such speeds? Figure 3-9(a)

illustrates the problem. It would be just like the trajectory prob-

lem of the last section, except that this time we take the horizontal

distance as given and then solvc for the vertical distance y. If an

origin is taken at the point O as shown, from which the atoms
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Fig. 3-9 (a) Trajec- o
tory ofaloms in ^^^^.

vacuum with an inisial

horizontal velocity.

The vertical displace-

ment is greatly exag-

gerated. {b) Para-

bolic trajectory of

(b) Lt

>3

atoms in an atomic

>beam ihat must pass

Ihrough the slils A Oven

and B to reach the

detector D.
lm-—*j« lm - D H

start out horizontally with a speed v, we have

Horizontal component:

X = GQxt + %axt
2

Therefore,

L = vt

Vertical component:

y = v0yt + \ayt~
2

y = + K-*)'
2

which upon substitution for / gives us

y = -g L

Suppose that we apply this result to a beam of atoms with a

speed of about 500 m/sec. In traveling a horizontal distance of

1 m, the time of flight would be 1/500 sec (2 msec) and we should

have

y = —
2 \500/

2 X 10
-5 m

The deviation from a straight-line path is thus extremely small,

only a few hundredths of a millimeter.

Despite the small size of the effect, it has been studied with
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precision in an experiment by Estermann et al.
1 Their arrange-

ment was as shown schematically in Fig. 3-9(b). Atoms of

cesium or potassium were evaporated out of an "oven" at about

450°K inside a vacuum system. Since the atoms emerge from the

oven in a variety of directions, the beam was collimated by two

slits A and B on the same horizontal level, as shown. The slits

were about 0.02 mm wide. The beam of atoms was detected by

a horizontal hot-wire detector D, also about 0.02 mm across.
2

As Fig. 3-9(b) shows, any atom that reaches the detector must

have a small initial upward component velocity at A in order to

negotiate the slit system. However, from a point midway be-

tween A and B where the beam is horizontal, the trajectory is

just like that shown in Fig. 3-9(a).

The detector is moved vertically across the beam and the ion

current, produced by atoms that strike the wire, is recorded.

In the absence of any gravitational deflection, the intensity dis-

tribution across the beam should be trapezoidal as in Fig. 3-10(a)

because the central region would be bordered by "penumbra"

regions that are a consequence of the two-slit system. Some

results are shown in Fig. 3-10(b).

The most obvious feature of these graphs is that they reveal

a wide spread of speeds in the atoms of a beam. Some atoms are

moving so fast that they are scarcely deflected at all; others are

moving so slowly that their deflection is many times greater

than the most probable deflection (which corresponds to the

maximum of the intensity distribution). The complete curve

must reflect a characteristic distribution of speeds of the atoms

in the oven at a particular temperature.

We shall not consider the detailed shape of the intensity

pattern but will fix attention on the deflection of the peak. A
comparison of the graphs for cesium and potassium makes it

obvious that potassium atoms (atomic mass = 39) move on the

'I. Estermann, O. C. Simpson, and O. Stern, Phys. Reo., 71, 238 (1947).

Similar experiments were reported at about the same time on the free fail of

thermal neutrons—see L. J. Rainwater and W. W. Havens. Phys. Rev., 70,

136 (1946).

2A neutral Cs or K. atom, striking the hot wire, becomes ionized by losing

an electron. A nearby electrode at a negative potential with respect to the

wire will collect these positive ions and the resultant current flow can be

detected with a sensitive electrometer or galvanometer. If a thin straight wire

is used, it acts as a detector of width equal to its own diameter. Some atoms

(e.g., the halogens) tend to capture electrons and form negative ions; the

sign of the potential of the electrode can be adjusted accordingly.
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F/g. 3-10 (a) Magnified detail of geometrical image

formed by atoms moving in siraiglu lines through Iwo

slits. The intensity is proportional to the area ofthe source

that can be "seen" by the detector in any given position.

(6) Actual data on the deflection of beams ofcesium and

potassium atoms. [After 1. Estermann, O. C. Simpson,

and O. Stern, Phys. Rev., 71, 238 U947).]

average much faster than cesium atoms (atomic mass = 133) at

comparable temperatures. This is an expression of the fact that

the molecules of different gases at the same temperature have

equal average kinetic energies—a result that we quote without

further discussion at this point. As for the actual magnitude of

the thermal velocities, let us look at the peak of the cesium curve.

It is displaced relative to the center of a gravitation-free beam

by about 0.11 mm. Now in the arrangement shown in Fig.
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3-9(b), if AB = BC = L, then an analysis of the trajectory will

show (see Problem 3-10) that atoms of speed v will be displaced

downward by a distance y given approximately by

y
v*

Hence

L'-
1/2

Substituting the values L = lm and y = 1.1 X 10~ 4m we get,

for the approximatc speed, v = 300 m/sec.

This very beautiful and delicate experiment was used as a

test of the theoretical velocity distribution of atoms at a given

temperature. ' We cite it here as a nice illustration that atoms,

like baseballs or earth satellites, follow curved paths under the

action of gravitational forces. Since the motion takes place in a

vacuum it is, in fact, a more justifiable applicatibn of the idealized

laws of free fail than are the more usual problems of objects

moving through the air. You may wonder if it is possible to

demonstrate the free fail of individual electrons in a similar way.

This is an immensely more difficult problem, because whereas

atoms, being electrically neutral, experience only the gravitational

acceleration, electrons are exposed to stray electric forces that

completely swamp all gravitational effects unless extraordinary

precautions are taken. Nonetheless, some experiments have

been attempted on this problem, although the interpretation of

the results is a rather complicated affair.

OTHER FEATURES OF MOTION IN FREE FALL

In the idealized description of motion of a freely moving object

near the earth's surface, the horizontal component of velocity

always remains constant and the vertical acceleration always

has the same value, g (downward). It may be interesting to point

out that, under these assumptions, every trajectory associated

with the same value of the constant horizontal velocity, v0x,

forms part of a single parabola—a kind of universal curve (see

Fig. 3-1 1) on which one can mark in the beginning and end points

of any particular trajectory, as shown. There is nothing profound

'A similar experimenl, using velocity-selected atoms, has been reported by

N. B. Johnson and J. C. Zorn, Am. J. Phys., 37, 554 (1969).
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Fig. 3-11 "Universal

parabola" that em-

bodies all possible

parabolic trajectories

for a gicen downward

acceleralion and a

given horizontal

component of velocity.

The heavily marked

pari ofthe curve

beiween poinis C and

D corresponds lo the

atomic beam trajec-

lory ofFig. 3-9(b). about this, but it can be useful in helping one to see any in-

dividual trajectory as part of a larger scheme. For example, it

makes very clear the relation between the two atomic-beam paths

shown in Fig. 3-9.

A closely related feature is the way in which the total velocity

vector changes during the course of the motion. This is illus-

trated in Fig. 3-12. Suppose that the initial velocity is repre-

sented by the vector v i. Then the velocity v 2 , at a time At later,

is obtained by adding to v i a vertical (downward) vector a At as

shown. Similarly, every vector representing the instantaneous

velocity at a subsequent stage in the motion has its end point on

a vertical line drawn from the end of W\. This result embodies

the fact that the horizontal component of every such vector has

the same value.

Yet another aspect of this same free-fall problem is illus-

trated by the venerable demonstration of the hunter and the

Fig, 3-12 Array of

successive velocity

vectors for a motion

in which the accel-

eralion is constant

and vertically down-

ward, as in free fail

under gravity in the

absence ofair re-

sistance. (This type

ofdiagram is known

as a hodograph.)

aA/
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Fig. 3-13 Classic monkey-shooting demonsiration. The

bullet and Ihe monkey undergo egual gravilational dis-

placements in egual limes and are doomed to meet if ihe

monkey lets go as soon as he sees ihe gun fired.

monkey. The hunter aims directly at the monkey as it hangs

from a limb (see Fig. 3-13). This is really a mistake, because it

makes no allowance for the fact that the bullet follows a parabolic

path as shown. But the monkey makes a compensating mistake.

Seeing the gun aimed directly at him, he lets go of the limb as

soon as he sees the flash of the gun. Thus the bullet and the

monkey begin falling at the same instant (ignoring any delays

due to the time of transit of the light flash and—less justifiably—

the reaction time of the monkey). It then follows that, in what-

ever time it takes for the bullet to travel the horizontal distance

from the gun to the vertical line of the monkey's descent, both

bullet and monkey receive the same contributions, \gt 2
, to their

displacement as a result of the gravitational acceleration alone.

Thus the bullet's trajectory crosses the line of the monkey's fail

at a point that is bound to be reached at the same time by the

monkey—with dirc consequences to himself. Note that this

result is indcpendent of both the speed of the bullet and the

value of g; it requires only that the bullet would, in the absence

of gravity, go straight to the monkey's original position. Quite

remarkable, on the face of it, yet easily understood in terms

of the basic analysis of accelerated motion.
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Fig. 3-14 (a) Small displacement CP1P2) in a uniform

circular motion. (b) Velocily veciors at the beginning

and end of the shorl element ofpath. (c) Vector diagram

for the evaluation of the change ofvelocity, At.

UNIFORM CIRCULAR MOTION

Probably the most interesting direct application of the vector

definitions of velocity and acceleration is to the problem of

motion in a circular path at some constant speed. In this case,

if the center of the circle is chosen as an origin, the vector r

always has the same length and simply changes its direction at a

uniform rate. The instantaneous velocity is always at right angles

to r, and its magnitude v is constant. From this we can readily

calculate the acceleration. For during a short time, A/, the

distance traveled is v A/, from P x to Pz along a circular arc

[Fig. 3-14(a)]. The angle A0 between the two corresponding

directions of r is therefore given by

A0 = oAt

Imagine that the bisector of this angle is drawn [Fig. 3-14(b)]

and consider the changes in velocity parallel and perpendicular

to this bisector. Initially the velocity has a component v sin(A 0/2)

away from O, and v cos(A0/2) transversely. Subsequently it has

a component v sin(A0/2) toward O, and again i; cos(A0/2) trans-

versely in the same direction as before. Thus the change of

velocity is of magnitude 2v sin(A0/2) toward O. Figure 3-14(c)

shows how this same result comes from considering a vector
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diagram in which Av is defined as that vector which, added to

v(r), gives v(/ + M).

As A0 is made vanishingly small, sin(A0/2) becomes in-

distinguishable from A0/2 itself (in radian measure). ' Thus we

can put

|Av| = 2usin(A0/2)-x;A0

But &d = v M/r, so we have

|Av| = o 2 M/r

Hence the magnitude of the acceleration is given by

(Uniform circular motion) |a| = — (3-12)

and its direction is radially inward, regardless of whether the

circular path is being traced out clockwise or counterclockwise.

This is called the centripetal acceleration (literally, "center-

seeking") asscciated with any circular motion. The need for a

dynamical means of supplying this acceleration to an object is an

essential feature of any motion that is not strictly straight, be-

cause any change in the direction of the path implies a component

of Av perpendicular to v itself.

VELOCITY AND ACCELERATION IN POLAR COORDINATES

The result of the last section, and other results of more general

application, are very nicely developed with the help of polar

coordinatcs in the plane. The use of this type of analysis is

particularly appropriate if the origin represents a center of force

of some kind—e.g., the sun, acting on an orbiting planet. The

starting point is to writc the position vector r as the product of

the scalar distance r and the unit vector er :

r = rer
(3-13)

We now consider the change of r with time. This can arise from

a change of its length, or from a change of its direction, or from

Mathematically, this approximation is equivalent to (sin 6)19 -» 1 for

g-,0. We shall be using this approximaiion often. For a diseussion of it,

sec, for example, G. B. Thomas Jr., Calculus and Analylic Geometry, 3rd ed.,

Addison-Wesley, Reading, Mass., 1960, p. 172.
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Fig. 3-15 (a) Vector

change ofdisplace-

ment, Ar, during a

short time At in a uni-

form circular motion.

(b) Changes in the

unit vectors t, and e«

during At, showing

how Ae, is parallel to

et and Ae« is parallel

{but opposite) to e,.

a combination of both. For the present we shall limit ourselves

to circular motion, in which the length of r remains constant. The

change of r in a short time At is then as shown in Fig. 3- 15 (a),

which is almost the same as Fig. 3-14(a). The direction of this

change (Ar) is in the direction of the unit vector e$ drawn at

right angles to er as shown in Fig. 3-1 5(b). Its magnitude, as is

clear from Fig. 3-15(a), is equal to r A0. Thus we can put

Ar = rAdee

Dividing by A/, and letting At tend to zero, we then have the

result

(Circular motion)
dt dB

v = — = r — e»
dt dt

(3-14a)

If we designate dd/dt by the single symbol w, for angular velocity

(measured in rad/sec), we have

(Circular motion) v = wree = ce» (3-14b)

The derivation of the above result embodies the important

fact that the unit vector er is changing with time. Although its

length is by definition constant, its direction changes in accord

with the direction of r itself. In fact, we can obtain the explicit

expression of its rate of change as a special case of Eq. (3-14a),

with r = 1

:

d d6
ues (3-15a)

In an exactly similar way, as Fig. 3-15(b) shows, a change of 8

implies a change of the other unit vector, ej. If the change of 6 is

positive, as shown, it can be seen that the change of e$ is in the

direction of — e r ; it is given by the equation
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PROBLEMS

| (e.)- -** = -wer (3-15b)

This possible time dependence of the unit vectors in a polar-

coordinate system is a feature that has no counterpart in rectan-

gular coordinates, where the unit vectors i, j, and k are defined

to have the same directions for all values of the position vector r.

Once we have Eqs. (3-14a) and (3-14b) we can proceed to

calculate the acceleration by taking the next time derivative.

If we limit ourselves to the case of uniform circular motion, both

r and to are constant, so we have

(Uniform circular d , . 2 o
... a = cor — (e») = -co rer = er

motion) di r

(3-16)

Thus the result expressed by Eq. (3-12) falls out automatically,

together with its correct direction. If we label this acceleration

specifically as a radial acceleration of magnitude ar , we can put

If, still restricting ourselves to motion in a circle, we remove

the condition that the motion be uniform, then the acceleration

vector a has a transverse component also. Starting from Eq.

(3-14b), we have

(Arbitrary circular do dd ,. ,_
. „ a = — e« — o — er (3-17)

motion) di dt

The radial component of a is the same as we obtained for uniform

circular motion (since dd/dt = v/r = «), but it is now joined

by a transverse component, a«. Thus we have

{_ — = — • = _ 2

r

do do) d 6
ae = -r=r— =r -—

di dt dfi

(where co = dd/dt)

(3-18)

3-1 At t = an object is released from rest at the top of a tali

building. At the time /o a second object is dropped from the same

point.

(a) Ignoring air resistance, show that the time at which the
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objects have a vertical separation / is given by

t = — + 1T
glo 2

How do you interpret this result for / < £«*o
2?

(b) The above formula implies that there is an optimum value

of fo so that the separation / reaches some specified value at the earliest

possible value of /. Calculate this optimum value of fo, and interpret

the result.

3-2 Below are some careful measurements taken on a stroboscopic

photograph of a particle undergoing accelerated motion. The distance

is measured from the starting point, but the zero of time is set at the

first position that could be separately identified:

Time Distance (cm)

(in strobe flashes) in photo

0.56

1 0.84

2 1.17

3 1.57

4 2.00

5 2.53

6 3.08

7 3.71

8 4.39

Plot a straight-line graph, based on these data, to show that they are

fitted by the equation s = %a(t — to)
2
, and find /o-

3-3 A child's toy car rolling across a sloping floor is known to have

a constant acceleration. Taking x = at / = 0, it is observed that

the car is at x = 3 m at / = 1 sec, and at x = 4 m at / = 2 sec.

(a) What are the acceleration and initial velocity of the car?

(b) Plot the position of the car as a function of time up to

/ = 4 sec.

(c) When is the car at x = 2 m?

3-4 The faculty resident of a dormitory sees an illegal water-filled

balloon fail vertically past his window. Having lightning reflexes, he

observes that the balloon took 0.15 sec to pass from top to bottom of

his window—a distance of 2 m. Assuming that the balloon was re-

leased from rest, how high above the bottom of his window was the

guilty party?

3-5 The graph on the next page is an actual record of distance

versus time in a straight-line motion.
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(a) Find the values of the instantaneous velocity at / = 25, 45,

and 65 sec.

(b) Sketch a graph of y as a function of / for the whole trip.

(c) From (b) estimate very roughly the times at which the ac-

celeration had its greatest positive and negative values.

3-6 In 1965 the world records for women's sprint races over different

distances were as follows:

60 m 7.2 sec

100 yd 10.3 sec

100 m 11.2 sec

(a) Make an accurate graph of distance in meters versus time in

seconds.

(b) The graph will show you that the data can be well fitted by

assuming that a sprinter has a certain accelcration a for a short time t

and then continues with a constant speed v. Set up the equation for

distance x in terms of a, t, and /.

(c) Find the numerical values of l>, a, and t that fit the de-

scription given in (b). If this description is correct, what is the dis-

tance in meters traveled by the sprinters before they reach their steady

velocity?

3-7 Two cars are traveling, one behind the other, on a straight road.

Each has a speed of 70 ft/sec (about 50 mph) and the distance be-

tween them is 90 ft. The driver of the rear car decides to overtake the

car ahead and does so by accelerating at 6 ft/sec2 up to 100 ft/sec

(about 70 mph) after which he continues at this speed until he is 90 ft
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ahead of the other car. How far does the overtaking car travel along

the road between the bcginning and end of this operation? If a third

car were in sight, coming in the opposite direction at 88 ft/sec (60 mph),

what would be the minimum safe distance between the third car and

the overtaking car at the beginning of the overtaking operation? (If

you are a driver, take note of how large this distance is.)

3-8 In Paradise Lost, Book I, John Milton describes the fail of Vulcan

from Heaven to earth i n the following words:

. . . from Mom
To Noon he fell, from Noon to dewy Eve,

A Summer's day ; and with the setting Sun

Dropt from the Zenith like a falling Star ....

(It was this nasty fail that gave Vulcan his limp, as a result of his

being thrown out of Heaven by Jove.)

(a) Clearly air resistance can be ignored in this trip, which was

mostly through outer space. If we assume that the acceleration had

the value g (9.8 m/sec2
) throughout, how high would Heaven be

according to Milton's data ? What would have been Vulcan's velocity

upon entering the top of the atmosphere?

(b) (Much harder) One really should take account of the fact

that the acceleration varies inversely as the square of the distance

from the earth's center. Obtain revised values for the altitude of

Heaven and the atmospheric entry speed.

3-9 A particle moves in a vertical plane with constant acceleration.

Below are values of its x (horizontal) and y (vertical) coordinates at

three successive instants of time:

/, sec x, m y, m

4.914 4.054

2 X 10-2 5.000 4.000

4 X 10~2 5.098 3.958

Using the basic definitions of velocity and acceleration (ux = Ax/At,

etc), calculate

(a) The x and v components of the average velocity vector during

the time intervals to 2 X 10
-2

sec and 2 X 10~2 to 4 X 10
-2

sec.

(b) The acceleration vector.

3-10 (a) The figure [similar to Fig. 3-9(b)] shows a parabolic atomic-

beam trajectory in vacuum, passing through two narrow slits, a dis-

tance L apart on the same horizontal level, and traveling an addi-

tional horizontal distance L to the detector. Verify that the atoms

arrive at the detector at a vertical distance v below the first slit, such
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that >> » gL2/v2, where u is the speed of the atoms. (You can assume

y« L.)

(b) A beam of rubidium atoms (atomic weight 85) passes

through two slits at the same level, 1 m apart, and travels an additional

distance of 2 m to a detector. The maximum intensity is recorded

when the detector is 0.2 mm below the level of the other slits. What is

the speed of the atoms detected under these conditions? Compare

with the results for K and Cs shown in Fig. 3-10(b). What was the

initial vertical component of velocity at the first slit?

3-11 (a) Galileo, in his book Two New Sciences (1638), stated that

the theoretical maximum range of a projectile of given initial speed

over level ground is obtained at a firing angle of 45° to the horizontal,

and furthermore that the ranges for angles 45° ± 5 (where 5 can be

any angle < 45°) are equal to one another. Verify these results if you

have not been through such calculations previously.

(b) Show that for any angle of projection (to the horizontal)

the maximum height reached by a projectile is half what it would be

at the same instant if gravity were absent.

3-12 A perfectly elastic ball is thrown against a house and bounces

back over the head of the thrower, as shown in the figure. When it

leaves the thrower's hand, the ball is 2 m above the ground and 4 m
from the wali, and has i>ox - i>o» = 10 m/sec. How far behind the

thrower does the ball hit the ground? (Assume that g = 10 m/sec2
.)

3-13 A man stands on a smooth hillside that makes a constant angle

a with the horizontal. He throws a pebble with an initial speed vo

at an angle d above the horizontal (see the figure).

(a) Show that, if air resistance can be ignored, the pebble lands

at a distance j down the slope, such that

s = 2v sin(0 + a) cos 8

g cos2<x

(b) Hence show that, for given values of uo and a, the biggest

value of s is obtained with = 45° — a/2 and is given by

•Tmn* —
t-'o (1 + sina)

g COS2£*

(Use calculus if you likc, but it is not necessary.)
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3-14 A baseball is hit out of the stadium and is observed to pass over

the stands, 400 ft from home plate, at a height of 50 ft. The ball

leaves the bat at an angle of 45° to the horizontal, and is 4 ft above

the ground when struck. If air resistance can be ignored (which it

actually cannot), what magnitude of the ball's initial speed would be

implied by these numbers? (g = 32 ft/sec2.)

3-15 A stopwatch has a hand of length 2.5 cm that makes one com-

plete revolution in 10 sec.

(a) What is the vector displacement of the tip of the hand be-

tween the points marked 6 sec and 8 sec? (Take an origin of rec-

tangular coordinates at the center of the watch-face, with a y axis

passing upward througjt I = 0.)

(b) What are the velocity and acceleration of the tip as it passes

the point marked 4 sec on the dial ?

3-16 Calculate the following centripetal accelerations as fractions or

multiples of g (« 10 m/sec2
):

(a) The acceleration toward the earth's axis of a person standing

on the earth at 45° latitude.

(b) The acceleration of the moon toward the earth.

(c) The acceleration of an electron moving around a proton at

a speed of about 2 X 106 m/sec in an orbit of radius 0.5 A (the first

orbit of the Bohr atomic model).

(d) The acceleration of a point on the rim of a bicycle wheel

of 26 in. diameter, traveling at 25 mph.

3-17 A particle moves in a plane; its position can be described by

rectangular coordinates (x, y) or by polar coordinates (r, 0), where

x = r cos and y = r sin 6,

(a) Calculate az and ay as the time derivatives of r cos and

r sin 0, respectively, where both r and B are assumed to depend on /.

(b) Verify that the acceleration components in polar coordinates

are given by

ar = az cos 9 + au sin 6

a» = — ax sin 6 + a„ cos 6

Substitute the values of az and 0j, from (a) and thus obtain the general

expressions for ar and a» in polar coordinates.

3-18 A particle oscillates along the x axis according to the equation

x = 0.05 sin(5/ — tt/6), where x is in meters and / in sec.

(a) What are its velocity and acceleration at t = 0?

(b) Make a drawing to show this motion as the projection of a

uniform circular motion.

(c) Using (b), find how long it is, after the particle passes through

the position x = 0.04 m with a negative velocity, before it passes again

through the same point, this time with positive velocity.
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// seems clear to me that no one ever does mean or ever

has meant by "force" rate ofchange of momentum.

C. D. broad, Scientific Thought (1923)



Forces and equilibrium

as we said at the beginning of this book, Newton's great achieve-

ment, in creating the science of mechanics, was to develop

quantitative relationships between the forces acting on an object

and the changes in the object's motion. More than that, he

declared that the main task of mechanics was to learn about

forces from observed motions. But this does not alter the fact

that the idea of force exists independently of the quantitative

laws of motion and comes initially from very subjective ex-

periences—the muscular effort involved in applying a push or a

puli. We shall begin from this point of view, and rather than

plunge at once into dynamics, we shall first take a look at forces

in balance. It has become rather unfashionable to do this be-

cause, as you probably already know, the accepted units for the

absolute measurement of force are defined in terms of the motions

that unbalanced forces produce. We are bound to come to that,

and in doing so we shall come to the heart of mechanics. Never-

theless, the quantitative notion of force can be (and was) de-

veloped in another context—the study of objects at rest, in static

equilibrium. Indeed, our basic knowledge of the two most im-

portant forces in mechanics—the gravitational force and the

Coulomb force between electric charges—was obtained largely

through laboratory observations of static equilibrium situations,

using techniques that are still important and broadly applied.

In discussing forces in equilibrium, we shall begin with

experiences that are familiar and seemingly quite straightforward.

Later, after considering some of the problems of motion, we shall

recognize that tacit assumptions and unsuspected subtleties are
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involved; we shall then be equipped to return to the problem of

equilibrium with deeper insights and a broader view. But, as we

said earlier, that kind of development is very good physics; we

do not try to handle everything at once, but proceed by easy

stages to extend the range and sophistication of our ideas.

FORCES IN STATIC EQUILIBRIUI

Let us consider a very simple physical system—an archer's bow.

In Fig. 4-1 (a) we show the bow in its resting state; the string is

straight and taut. We know that to bring the bow into the

situation shown in Fig. 4-1 (b), and to hold it there, a force must

be supplied. Remove that force and the bowstring snaps back

toward its straight condition, perhaps launching an arrow in the

process [Fig. 4-1 (c)]. What conditions have to be satisfied to

hold the bow in the shape shown in Fig. 4-1 (b)? Putting aside

the human, subjective aspects of the situation, one can say that

the forces at the point C are in balance. But what does this

mean? A force is not disembodied; it is applied to something.

Fig. 4-1 (a) Schematic diagram of an archer's bow in

resting stale. (b) Bowstring drawn back at midpoint,

regu/ring appliedforce along the bisector ofthe angle

between the two segments of string. (r) Arrow in the pro-

cess ofbeing launched. (d) Forces applied at the center of

the bowstring in situation (6).
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Fig. 4-2 (a) Balanc-

ing ofequalforces in

simple egual-arm ar-

rangement. (b) Bal-

aiicing ofunequal

forces in accordance

with the law ofthe

lever.

S

l>

O

(a)

o

S S ^> S fe

f l
(b)

One cannot imagine a force in the absence of a physical object

on which it is exerted. In this case the object in question is some

small part of the bowstring in the immediate neighborhood of

point C. This little piece of string is exposed to pulls along

directions CA and CB from the adjoining portions of the string,

and to a third force, supplied by the archer, along the bisector

of angle ACB. We can draw a separate diagram, as in Fig.

4-1 (d), showing the piece of string at C in equilibrium under the

action of three forces—a force F from the archer, and two forces,

which by symmetry are of equal magnitude T, from the string.

These latter combine to give a force, equal and opposite to F,

along the line of symmetry. But how do we know that the equi-

librium requires that the bowstring supply a net force equal and

opposite to F? You might say that this is obvious, but we can

back up this intuition with a real experiment. It will involve one

assumption: that identical objects, equally deformed, supply

pulls or pushes of cqual size. For example, a small loop of string

can remain at rest if pullcd in opposite directions by two identical

coiled springs extended by equal amounts. And this balancing

of equal and opposite forces is the most elementary of all equi-

librium situations.

Problems such as that of the archer's bow will not be new

to you. But let us point out that the analysis of them involves

our ability to assign numerical magnitudes to individual forces

and to compare one force with another. How can we do that?

Archimedes showed the way, when he discovered the law of the

lever over 2000 years ago. Equal forces balance when applied

at equal distances on either side of the pivot O [Fig. 4-2(a)].

Unequal forces balance [Fig. 4-2(b)] if the condition F\l\ =

F2h is satisfied. Considerations of symmetry alone would

suggest the first result, but the second has to be based on experi-

ment. ' To establish it we need to have a way of obtaining

Archimedes believed that he could obtain the result by pure logic, but this

is not so. See Problem 4-5.
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Fig. 4-3 Basic ar-

rangement of a "steel-

yard" for weighing

an unknown (X) with

the help of a Standard

weight (S) that can

be moved along the

horizontal arm.

multiples of a given force. One method would be to construct a

number of identical coiled springs. We could first verify that,

when stretched by equal amounts, they would balance one

another individually in an equal-arm arrangement. Then we
could attach several, all at the same distance on one side of the

pivot, and balance them with a single spring, or some different

multiple, at the appropriate distance on the other side, as shown

in Fig. 4-2(b). (Note that such a procedure entails no assump-

tions about the way in which the force varies with extension for

an individual spring.) Once the law of the lever has been justified

in this way, we can use it to measure an unknown force in terms

of an arbitrary Standard. The technique has been used since

Archimedes' time, at the very least, for the purpose of weighing

objects (see Fig. 4-3), and its basic principle, which allows us to

balance a small force against a large one, using suitably chosen

lever arms, is exploited in many familiar mechanical devices.

UN1TS OF FORCE

For the purposcs of this introductory study of forces in equi-

librium, we do not strictly necd to worry about the absolute

magnitudes of forces. The introduction of an arbitrary unit of

force, and the specification of other forces as multiples of this

unit, would really suffice. However, it will often be convenient

to express forces in terms of their customary measures, so before

going further we shall state what these measures are. (You have

probably met them all before, in any case.)

The unit of force that we shall most frequently employ, here

and throughout the book, is the newton (N). This is a force of
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such a size that it can give an acceleration of 1 m/sec2
to a mass

of 1 kg ; it represents the basic unit of force in the MKS system.

The detailed basis of this definition will be discussed in Chapter 6;

all that we need for the moment is the recognition that this does

uniquely define a force of a certain size. The magnitude of this

unit is such that the gravitational puli exerted on a mass of 1 kg

near the earth's surface is about 9.8 N. A force of about 1 N
is represented by the earth's puli on a medium-sized apple—

a

most appropriate result in view of the old tradition (which may

well be true) that the fail of an apple provided the starting point

of Newton's profound thoughts about gravitation.

In the CGS (centimeter-gram-second) system, the unit of

force is the dyne (dyn), defined as the force that can give an

acceleration of 1 cm/sec 2
to a mass of 1 g. Since 1 cm = 10~ 2 m,

and 1 g = 10
-3

kg, we have the relationship

1 dyn = 10- 5 N

(In saying this we take the relation F = ma as already estab-

lished, so that changing m and a by given factors implies changing

F by the product of those factors.) The dyne is thus an ex-

ceedingly small force, about equal to the earth's gravitational

puli on a mass of 1 mg—as represented, for example, by roughly

a £-in.-square piece of this page.

The only other force that we shall have occasion to mention

is the pound. Unlike the newton and the dyne, the pound is

(or at least was, originally) based directly on the measure of the

earth's gravitational puli on a Standard object. As soon as one

recognizes that the gravitational puli on any given object changes

from one place to another, this definition loses its exactness and

has to be adjusted. However, setting aside such difnculties of

detail, we can still say that the pound is a force equal in mag-

nitude to about 4.5 N. Every time we buy something that is

weighed out on a spring scale, we are accepting the use of gravita-

tional units of force such as the pound. We shall considcr the

practical implications of that in more detail later (Chapter 8).

EQUILIBRIUM CONDITIONS; FORCES AS VECTORS

The static equilibrium of a given object entails two distinct

conditions:

1 . The object shall not be subject to any net force tending to
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Fig. 4-4 (a) An ob-

ject in ekuilibrium

uuder the action of

three nonparailel

forces. (6) Two

equally acceptable

vector diagrams show-

ing the eguilibrium

condition 2F = 0.
(a) (b)

move it bodily; it is in what we call translational equilibrium.

2. The object shall not be subject to any net infiuence tending

to twist or rotate it; it is in what we call rotational equilibrium.

The first condition involves, in general, the combination of

forces acting in different directions, as in our initial example

of the bowstring. It has been known since long before Newton's

time that forces are vectors. This says much more than that they

have characteristic directions; it says that they combine with one

another in the same way as the prototype vector quantity, posi-

tional displacement. Imagine, for example, a ring that is a loosc

fit over a vertical peg. Suppose that it has three strings attached

to it and that these strings are pulled by forces of relative mag-

nitudes 3, 4, and 5, as defined by corresponding numbers of

identical springs equally extended [see Fig. 4-4(a)]. Then ex-

periment will show that the ring remains in equilibrium, even

when the peg is removed, if the directions of the forces cor-

respond exactly to those of a 3-4-5 triangle. This means that the

forces, represented as vectors with lengths proportional to their

magnitudes, form a closed triangle, which can be drawn in two

different ways, as shown in Fig. 4-4(b). In formal terms, we say

that the three force vectors add up to zero:

Fi +F2 + F3 =

It is a basic property of vectors that the order of addition is

immaterial (Chapter 2). Thus, if we have a large number of

forces applied to the same object, it is possible to represent their

addition in many different ways; Fig. 4-5 gives an example. The

one essential feature is that, in every case, the force vectors form
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Fig. 4-5 (a) Seueral

forces acting at the

same poin:, (b) The

force veciorsform a

closed polygon, show-

ing equilibrium.

(c) Equioalent veclor

diagram lo (b).

a closed polygon (i.e., they add up to zero) if equilibrium exists.

Since forces may be applied in any direction in three-dimensional

space, the force polygon is not necessarily confined to a plane,

and the single statement that the force vectors add up to zero

will in general be analyzable into three separate statements per-

taining to three independently chosen directions—usually, al-

though not necessarily, the mutually orfhogonal axes of a rec-

tangular coordinate system. Geometrically, one can think of this

as the projection of the closed vector polygon onto different

planes; regardless of the distortions of shape, the projected

polygon remains a closed figure. When written out in algebraic

terms, the projection involves a statement of the analysis of an

individual force vector into components, or resolved parts, along

the chosen directions. Thus the first condition of equilibrium

—

equilibrium with respect to bodily translation—can be written

as follows:

Vector statement:

F = Fi +F2 + F3 + •• =

Component statement:

Fz = FU + F2l + F3l + =

Fu = Fi„ + F2u + Fa, + =

Fz = Fu + F2l + F3l + • • • =

(4-la)

(4-1 b)

It is worth noticing the relationship between the process

of adding force vectors and the process of resolving an individual

force vector into its components. In Fig. 4-6(a) we show a

force F, in the xy plane, resolved into the usual orthogonal

components:

F = Fj + F„j
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Fig. 4-6 (a) Resolu tion ofaforce inlo orthogonal com-

ponents. (b) The components of F, added vectorially to

theforce —F, giue zero. (c) Resoluiion of F inlo

nonorthogonal components.

We represent F by a full line and its components by dashed lines,

to emphasize that the components are a replacement—a sub-

stitute—for F itself. In Fig. 4-6(b) we show a elosed veetor foree

triangle, in which the veetors Fx \ and F„\, added to the foree veetor

—F, represent an cquilibrium situation:

FA + Fvi + (-F) =

We can then recognize that any other pair of veetors that give

zero when added to — F are a complete equivalent to F itself.

Thus we have at our disposal an infinite variety of ways of re-

solving a given foree into components. For example, the two

forees Fm> and Fv > in Fig. 4-6(c) could represent the way of

analyzing F into components in an oblique coordinate system;

the faet that F,< may happen to be larger than F itself does not

invalidate this way of resolving the original foree.

In a similar vein, if any set of forees combine to give zero,

as in Fig. 4-7(a), we can regard one of them (which we have

Fig. 4-7 (a) The

combination offorees

Fi, F 2 , and F3 is bal-

anced by the equil-

ibrantFB . (b) The

same combination of

forees Fi, F2, and F3

has the resultant FK .
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labeled here as ¥E) as the equilibrant (i.e., the balancer) of all

the others. A force equal and opposite to FE is then a force

completely equivalent to the vector sum of these other forces:

it is their resuJtant, shown as ¥R in Fig. 4-7(b). A familiarity

with these simple relationships can be a considerable help in

problems of combining or resolving forces and can strengthen

one*s understanding of equilibrium situations in general.

ACTION AND REACTION IN THE CONTACT OF OBJECTS

We have already used a kind of principle of uniformity to pre-

scribe a way of reproducing a force of a given magnitude or

making a known multiple of the force. We assume that identical

springs, stretched or compressed by equal amounts, define equal

forces. This assumption leads to consistent conclusions in the

analysis of equilibrium situations. Picture now a simple ex-

periment that any two people can do with a pair of identical

springs. They stand facing each other, and one of them, A,

agrees to be the active agent. His goal is to push (via the spring

that he holds) on the end of the spring held by B, the passive

partner, who tries to avoid pushing back. The size of the push

that each person exerts is measured by the amount by which his

spring is compressed.

You know the result of the experiment, of course. Regard-

less of the maneuvers made by A and B, the compressions of the

two springs are always the same ; only the amount of both com-

pressions together can be varied. This displays, in a particularly

direct manner, the phenomenon that is expressed by the familiar

statement: Action and reaction are equal and opposite. In its

general form this says that, regardless of the detailed form of the

contact or of the relative hardness or softness of the two objects

involved, the magnitudes of the forces that each object exerts

on the other are always exactly equal. Note particularly that,

from the very way they are defined, these two forces cannot both

act on the same object. This may seem a trivial and obvious

remark, but many calculations in elementary mechanics have

come to grief through a failure to recognize it.

The production of a force of reaction in response to an

applied force always involves deformation to some extent. You

push on a wali, for example, and that is a conscious muscular act;

but how does the wali know to push back? The answer is that it
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yields, however imperceptibly, and it is as a result of such elastic

deformations that a contact force exerted by the wali comes into

existence. No matter how rigid a surface may sefem, it always

gives a little under a push or a puli and cannot supply a contrary

force until it has done so. There is no basic difference between

what happens when we sit down in a comfortably upholstered

chair and what happens when we sit down on a concrete ftoor.

But in the one case the springs are soft and yield visibly by

distances of an inch or more, whereas in the other case the springs

are essentially the individual atoms in a tightly packed solid

structure, and a deformation by a small fraction of an atomic

diameter is enough to produce the support required.

ROTATIONAL EQUILIBRIUM; TORQUE

We shall now consider the second condition for static equilib-

rium of an object, assuming that the first condition, £F = 0,

has been satisfied. Whether the object is, in fact, in equilibrium

will now depend on whether or not the forces are applied in such

a way as to produce a resultant twist. Figure 4-8 illustrates the

problem with the simplest possible example. An object is acted

on by two equal and opposite forces. If, as in Fig. 4-8(a), the

forces are along the line joining the points A and B at which the

forces are applied, the object is truly in equilibrium; it has no

tendency to rotate. In any other circumstances [e.g., as shown in

Fig. 4-8(b)] the object is bound to twist. If the directions of the

forces remain unchanged as the object turns, equilibrium orienta-

tion is finally reached, as shown in Fig. 4-8(c). How do we con-

Fig. 4-8 (a) Rota-

tional equilibrium with

equal, opposite forces

applied at different

points of an extended

object. (b) Equal,

opposite forces ap-

plied in a way that

does not give rota-

tional eouilibrium.

(c) Iffree to rotate,

the object mouesfrom

orientation (b) to an

equilibrium orienta-

tion.
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Fig. 4-9 Alt the forces acling

on a pivoted bar (pfnegligible

weight) in rolalional equilib-

rium with one force applied on

each side ofthe pivot.

F,+F,

struct out of such familiar knowledge a quantitative criterion for

rotational equilibrium?

The law of the lever provides the clue. Look again at the

situations shown in Fig. 4-2. In particular, consider situation (b).

The balancing of the forces F t and F2 with respect to the pivot

at O reauires the condition FJi = F2 /2 . The product of the

force and its lever arm describes its "leverage," or twisting

ability; the technical term for this is torque. The torques of F t

and F2 with respect to O are equal in magnitude but opposite in

direction—that due to F2 is clockwise and that due to F\ is

counterclockwise. Let us call one of them positive and the other

one negative; then the condition of balance can be expressed in

another way: The total toraue is equal to zero.

Although the situation as described above is extremely

simple, there is more to it than meets the eye, because a further

force is exerted on the bar at the position of the pivot ; it must be

of magnitude F, + F2 if the first condition of equilibrium is to

be satisfied. Thus the complete array of forces is as shown in

Fig. 4-9. Now, to be sure, this third force exerts no torque

about the pivot point O itself. However, what if we choose to

consider the torques about, let us say, the left-hand end of the

bar, some distance d to the left of the point of application of F x ?

Then clearly, with respect to this new origin, the force at O is

supplying a counterclockwise torque—but it turns out that this

is exactly balanced by the sum of the torques due to Fj and F2

(both clockwise, notice, with respect to the new, hypothetical

pivot), provided that the condition F\l\ = F2 /2 is satisfied. If

this result is new to you, take a momcnt to convince yourself

of its correctness. What it says is that, if the vector sum of the

forces on an object is zero, and if the sum of the torques about

any one point is zero, then the sum of the torques about any

other point is also zero.

So far we have limited ourselves to the balancing of torques

of parallel forces. Now let us make things more general. Suppose

that a force F is applied at a point P, somewhere on or in an
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( = r sin^)
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(a) (b)

Rgi 4-/0 (a) Force F applied at a vector distance r

front a pivot point. (6) Resolution of F into components

along and perpendicular lo r. (c) Evaluation of lorgue of
F by finding its effeclive lever arm, I.

object [Fig. 4-10(a)]. Consider the torque produced by F about

some other point O, which might be the position of a real pivot,

or just an arbitrary point. Let the vector distance from O to

Z' be r. The first thing to notice is that r and F between them

define a plane, which we have chosen to be the plane of the

diagram. Experience, so familiar that it has become second

nature, tells us that if O were indeed a real pivot point, the effect

of F would be to produce rotation about an axis perpendicular

to the plane in which r and F lie. It therefore makes excellent

sense to associate this direction with the torque itself, regarded

as a vector of some sort. Now, what about the magnitude of the

torque? We can calculate this in two ways. The first, indicated

in Fig. 4-10(b), is to resolve the force into components along and

perpendicular to r. If the angle between r and F is <p, these

components are Fcos<p and F sin v», respectively. The radial

component represents a force directed straight through O and

hence contributes nothing to the torque. The transverse com-

ponent, perpendicular to r, gives a torque of magnitude rFsin <?.

Another way of seeing this result is, as suggested in Fig. 4-10(c),

to recognize that the effective lever arm of the total force F can

be formed by drawing the perpendicular ON from O to the line

along which F acts. Then the torque due to F is just the same as

if it were actually applied at the point W, at right angles to a

lever arm of length / equal to r sin <p.
'

We shall introduce the single symbol M for the magnitude

•Leonardo da Vinci envisaged the effeclive lever arm of a force in this way
and called it "the spiritual distance of the force."
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Fig. 4-11 {a) Cross product. C, oftwo arbilrary vectors,

A and B. (b) Torque vector, M, as the cross product oft

and F. (c) Silualion resulling in a torque vecior opposile

in direclion to thal in (b).

of the torque. Then we have

M = rF siri <p
(4-2a)

This equation does not contain the necessary information about

the direclion of the torque, but a compact statement in vector

algebra, invented specifically for such purposes, is at hand. This

is the so-called cross product or vector product of two vectors.

Given two vectors A and B, the cross product C is defined

to be a vector perpendicular to the plane of A and B and of

magnitude given by

C = AB sin 6

where is the Iesser of the two angles between A and B (the

other being 2v — d). There are, of course, two opposite vector

directions normal to the plane ofA and B. To establish a unique

convention we proceed as follows. Imagine rotating the vector A

through the (smaller) angle until it lies along the direction of B

[see Fig. 4-1 l(a)]. This establishes a sense of rotation. If the

fingers of the right hand are curled around in the sense of rota-

tion, keeping the thumb extended (do it!), the direction of the

cross product is along the direction of the pointing thumb. The

shorthand mathematical statement, which is understood to em-

body all these properties, is then written as

C = A X B
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Note carefuily that the order of the factors is crucial; reversing

the order reverses the sign

:

B X A = -(A X B)

Using this vector notation, the torque as a vector quantity

is completely specified by the following equation:

M = r X F (4-2b)

Figure 4- 11 (b) and (c) illustrates this for two different values

of <p; in each case a right-handed rotation about the direction in

which M points represents, as you can verify, the direction in

which F would cause rotation to occur. Then, finally, we can

write down the vector sum of all the torques acting on an object,

and the second condition of cquilibrium—equilibrium with

respect to rotation—can be written as follows:

YM = ri X Fi + r 2 X F2 + r3 X F3 + • • • = (4-3)

If the object on which a set of forces acts can be regarded

as an ideal particle (i.e., a point object), then the condition of

rotational equilibrium becomes superfiuous. Since all the forces

are applied at the same point, they cannot exert a net torque

about this point; and if the condition £F = is also satisfied,

they cannot exert a net torque about any other point either.

If one wants to put this in more formal terms, one can say that

the same value of r applies to every term in Eq. (4-3), so that the

condition £M = reduces to the condition

r X (EF) =

and so embodies the condition £F = o for translational equi-

librium; the equation for rotational equilibrium adds no new

information.

FORCES WITHOUT CONTACT; WEIGHT

Figure 4-12 depicts a pair of situations that look so simple, and

embody results that are so familiar, that you may never have

paused to wonder about the relation between them. In Fig.

4-1 2(a) an object is shown attached to two spring balances that

puli on it horizontally with equal and opposite forces—a clear

case of static equilibrium. In Fig. 4-1 2(b) the same object hangs
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-~n=\—#—E>^Fig. 4-12 (o) Objecl in equi-

librium under equal and

opposite horizontalforces

(from spring balances).
(g)

{b) Objecl in eauilibrium under

the action ofa single uerlical

contaclforce (from a spring

balance) and an incisible in-

fluence (gracity). (c) The

reading on the spring balance in

(b) defines the measured weight

(W) of the objecl. Byinference

the gravitationalforce F„ is (b) (C)

equal and opposite to W.

from a single spring balance that pulls vertically upward on it.

Experience tells us that this is also a case of static equilibriutn,

yet as far as visible connections are concerned, it is quite clearly

an unbalanced situation. How do we resolve the dilemma?

This may seem like a trite or even trivial question. In fact, it is a

very profound one. At this time we shall examine it only from

the standpoint of our knowledge of static equilibrium. Later we

shall see that it has much wider ramifications.

Try to imagine coming to situation (b) of Fig. 4-12 for the

first time, with a background of experience in other kinds of

static equilibrium. You have learned from this previous ex-

perience that equilibrium always corresponds to having the

vector sum of the applied forces equal to zero. You are used to

having tangible and visible evidence of these forces being applied,

via strings, springs, and so on. Now you see an equilibrium

situation in which only one force is in fuli view, so to speak. But

your confidence in the general validity of the equilibrium con-

ditions is so strong that you say: "Even though there is no other

contact, there must be another force acting on the object, equal

and opposite to the force supplied by the spring." And so you

postulate the force of gravity, pulling downward on the object.

But your only measure of it is the reading on the spring balance

that counteracts this gravitational force.

It is in terms such as these that we have come to postulate

and accept the existence of a downward gravitational force

exerted on every object at or near the earth's surface. In order

to hold an object at rest relative to the earth, we must apply a

certain upward force on it. The magnitude of this equilibrating

force, as measured for example on a spring balance, is what we

shall call the weight of an object. This is an important definition;

129 Forces without contact; weight



we shall restate it : The weight of cm object will be defined as the

magnitude, W, of the upward force that must be applied to the

object to hold it at rest relative to the earth. This is an example

of what is called an operalional dcfinition; we describe the actual

process that is to be followed to get a practical measurement

of the quantity in question. Notice especially that we are not

defining the weight of an object as the gravitational force on it.

If the connection with the supporting spring is broken, so that

the object begins to fail freely, then by our definition the object

is now weightless, although there is no suggestion that the gravi-

tational force on the object has been changed in any way in the

process of breaking the connection. (We shall diseuss weight-

lessness further in Chapter 8.)

If we return to the situation in which the object is held

stationary relative to the earth by the puli of the spring, then

our picture of the forees aeting on the object is as shown in

Fig. 4-l2(c). On the assumption that this is indeed a static

equilibrium situation, then we can say that the spring force W
and the gravitational force F„ are equal and opposite, so that

the magnitude of W does provide, under these cireumstances,

a measure of the magnitude of F„. But keep it firmly in mind

that, in our usc of the terms, weight and gravitational force are

not synonymous. By maintaining this distinetion we shall be

much better equipped to handle dynamical problems involving

gravity later on.

PULLEYS AND STR1NGS

The use of pulleys and strings to transmit forees has more physics

in it than one might think and contains some nice applications

of the principles of static equilibrium. Consider a string passing

over a cireular pulley of radius R [Fig. 4-1 3(a)]. Let the string

be pulled by forees F i and F 2 as shown. If this is to be a situation

of static equilibrium, the pulley must be in both translational

and rotational cquilibrium. Let us consider the rotational equi-

librium first. If the pivot is effectivcly frictionless, the only

torques on the pulley are supplied by the forees Fi and F2 .

Since both of these are applied tangcntially, they have equal

lever arms of length R (assuming that the pulley is pivoted

exactly at its center). Therefore, to give zero net torque, the

magnitudes of Fj and F2 must both be equal to the same value,

T, which we can thus call the tension in the string—the strength
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Fig. 4-13 (o) Ten-

sions in the segments

of a string where it

meels a slationary

circular pulley must

be in rotational equi-

librium. (b) Set of

three forces involced

in the static eguilib-

rium of a pulley. (c)

Pulley as a deuicefor

applying a force of

gicen magnitude in

any desired direction.

(a) (b) (O

of the puli that would be found to be exerted by the string at any

point along its length. The pulley thus enables us to change the

direction of an applied force without changing its magnitude.

However, to satisfy the condition of translational equilibrium,

the pivot must be able to supply a force F3 equal and opposite

to the vector sum of F, and F 2 . This force must therefore lie

along the bisector of the angle between the two straight seg-

ments of the string, and its magnitude must be equal to

2Tcos(6/2) [see Fig. 4-13(b)].

If the tension at one end of a string passing over a pulley

is supplied by a suspended object, then a force F of magnitude

equal to the weight, W, of the object is needed to maintain equi-

librium [Fig. 4-13(c)]. This means that a pulley-string system

can be used to supply a force of magnitude W in any desired

direction. Figure 4-14 illustrates the typical kind of arrangement

that exploits these features in a simple experiment to study the

equilibrium of three concurrent forces. To the extent that the

pulleys can be treated as ideal, the magnitudes of the forces Fi,

Fig. 4-14 (a) Simple

static equilibrium ar-

rangement involving

three nonparallel

forces (string ten-

sions) applied at the

pomt P. (b) Vector

diagram showing the

equilibrium condition.

(a) (b)
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PROBLEMS

K

(a)

H l-

H-. -I'

(b)

F 2) and F 3 are equal to the respective weights W\, W2 , and W3

of the suspended objects.

4-1 The ends of a rope are held by two men who puli on it with

equal and opposite forces of magnitude F. Construct a clear argument

to show why the tension in the rope is F, not 2F.

4-2 It is a well-known fact that the total gravitational force on an

object may be represented as a single force acting through a uniquely

defined point—the "center of gravity"—regardless of the orientation

of the object.

(a) For a uniform bar, the center of gravity (CG) coincides with

the geometrical center. Use this fact to show that the total gravita-

tional torque about the point P [see part (a) of the figure] may be

considered as arising from a single force W at the bar's center, or from

two individual forces of magnitudes Wx/L and W(L — x)/L acting

at the midpoints of the two scgments defined by P.

(b) If a bar or rod has a weight W, and a small weight w is hung

at one end [see part (b) of the figure], use the simpler of the above

two methods to show that the system balances on a fulcrum placed

atPif x = LW/UW + »v).

4-3 Diagram (a) represents a rectangular board, of negligible weight,

with individual concentrated weights mounted at its corners.

3
1

H'. H»,

>

iy

O w, 'W,

(a) (b)

(a) To find the position of the CG of this system, one can

proceed as follows: Choose an origin at the corner O, and introduce

x and y axes as shown. Imagine the board to be pivoted about a

horizontal axis along y, and calculate the distance x from this axis at

which an upward force W (= wi +K-2-f-H'3 + w4) will keep the
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system in rotational equilibrium. Next imagine the board to be

pivoted about a horizontal axis along x, and calculate the correspond-

ing distance y. Then the center of gravity, C, is at the point (x. y).

(b) An experimental method of locating the CG is to hang the

board from two corners in succession (or any other two points, for

that matter) and mark the direction of a plumbline across the board

in each case. To verify that this is consistent with (a), imagine the

board to be suspended from O in a vertical plane [diagram (b)] and

show by direct consideration of the balancing of torques due to W2,

h% and m>4 that the board hangs in such a way that the vertical line

from O passes through C (so that tan d = y/2).

4-4 You have just finished a 20-page letter to your giri friend (or

boyfriend) and you want to mail it at once, so that it will be collected

first thing in the morning. You have a supply of stamps, but un-

fortunately it is 2 a.m., the local post office is closed, and you haven't

a letter scale of your own. However, you do have a 12-in. ruler and a

nickel, and you happen to have learned somewhere that the density

of nickel is about 9 g/cm 3
. The ruler itsclf balances at its midpoint.

When the nickel is placed on the ruler at the 1-in. mark, the balance

point is at the 5-in. mark. When the letter is placed on the ruler,

centered at the 2-in. mark, the balance point is at S^in. The postal

rate is 20 cents per half-ounce (international airmail). How much

postage should you put on? (This problem is drawn from real life.

You might like to do a similar experiment for yourself, perhaps using

a differcnt coin as your Standard of weight.)

4-5 (a) As mentioned in the text (p. 1 17), Archimedes gave what he

believed to be a theoretical proof of the law of the lever. Starting from

the necessity that equal forces, F, at equal distances, /, from a fulcrum

must balance (by symmetry), he argued that one of these forces could,

again by symmetry, be replaced by a force F/2 at the fulcrum and

another force F/2 at 21. Show that this argument depends on the

truth of what it is purporting to prove.

(b) A less vulnerable argument is based on the experimental
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(b)

£-

r

knowledge that forces combine as vectors. Suppose that parallel

forces F\ and F2 are applied to a bar as shown. Imagine that equal

and opposite forces of magnitude / are introduccd as shown. This

gives us two resultant force vectors that intersect at a point that

defines the line of action of their resultant (of magnitude Fi + F2).

Show that this resultant intersects the bar at the pivot point for which

Fili = F2/2.

4-6 Find the tensions in the ropes in the two configurations shown.

The weight W is in static equilibrium in each case.

4-7 (a) A elothesline is tied between two poles, 10 m apart, in such

a way that the sag is negligible. When a wet shirt with a mass of

0.5 kg is hung at the middle of the line, the midpoint is pulled down

by 8 cm. What is the tension in the elothesline?

(b) (With acknowledgements to F. W. Sears.) A car is stranded

in a diteh, but the driver has a length of rope. The driver knows that

he is not strong enough to puli the car out directly. Instead, he ties

the rope tightly between the car and a tree that happens to be 50 ft

away ; he then pushes transversely on the rope at its midpoint. If the

midpoint of the rope is displaced transversely by 3 ft when the man

pushes with a, force of 500 N (= 50 kg ), what force does this exert

on the car? If this were suflicient to begin to move the car, and the

man pushed the midpoint of the rope another 2 ft, how far would

the car be shifted, assuming that the rope does not streteh any further?

Does this seem like a practical method for dealing with the situation?

4-8 Prove that if three forces act on an object in equilibrium, they

must be coplanar and their lines of action must meet at one point

(unless all three forces are parallel).

4-9 Painters sometimes work on a plank supported at its ends by

long ropes that pass over fixed pulleys, as shown in the figure. One

end of each rope is attached to the plank. On the other side of the

pulley the rope is loopcd around a hook on the plank, thus holding

the plank at any desired height. A painter weighing 175 lb works on

such a plank, of weight 50 lb.

(a) Keeping in mind that he must be able to move from side to

side, what is the maximum tension in the ropes?

(b) Suppose that he uses a rope that supports no more than

150 lb. One day he finds a firm nail on the wali and loops the rope

around this instead of around the hook on the plank. But as soon as

he lets go of the rope, it breaks and he falls to the ground. Why?

4-10 An inn sign weighing 100 lb is hung as shown in the figure. The

supporting arm, freely pivoted at the wali, weighs 50 lb, and the

system is held by a guywire that should not be subjected to a tension

of more than 250 lb.
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(a) What is the minimum safe distance of the point B above

poin t A ?

(b) What is the magnitude and direction of the force exerted on

the supporting arm at A under these conditions?

4-11 A man begins to climb up a 12-ft ladder (see the figure). The

man weighs 180 lb, the ladder 20 lb. The wali against which the ladder

rests is very smooth, which means that the tangential (vertical) com-

ponent of force at the contact between ladder and wali is negligible.

The foot of the ladder is placed 6 ft from the wali. The ladder, with

the man's weight on it, will slip if the tangential (horizontal) force

at the contact between ladder and ground exceeds 80 lb. How far up

the ladder can the man safely climb?

4-12 You want to hang a picture at a certain place on a wali, but the

only available nails are at points 1 ft to the left and 2 ft to the right

of the edges of the picture (see the figure). You attach strings of the

appropriate lengths from these nails to the top corners of the picture,

as shown, but the picture will not hang straight unless you add a

balancing weight of some kind.

(a) If the picture with its frame weighs 10 lb, what is the least

possible balancing weight, and where would you put it ? (Hint: Find

the point of intersection of the two tension forces in the strings.)

(b) In the absence of the balancing weight, how would the

picture hang? (If you want to go beyond a qualitative discussion, be

prepared for some rather messy trigonometry.)

4-13 A yo-yo rests on a table (see the figure) and the free end of its

string is gently pulled at an angle 6 to the horizontal as shown.

(a) What is the critical value of 6 such that the yo-yo remains

stationary, even though it is free to roli? (This problem may be solved

geometrically if you consider the torques about P, the point of contact

with the table.)
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(b) What happens for greater or lesser values of 0? (If you have

a yo-yo, test your conclusions experimentally.)

4-14 A simple and widely used chain hoist is based on what is callcd

a diffcrential pulley. In this arrangement two pulleys of slightly

different diameter are rigidly connected with a common, fixed axis

of rotation. An endless chain passes over these pulleys and around a

free pulley from which the load W is suspended (see the figure). If the

components of the ditferential pulley have radii a and 0.9a, respec-

tively, what downward puli applied to one side of the freely hanging

part of the chain will (ignoring friction) suffice to prevent the load

from descending if

(a) the weight of the chain itself can be neglected?

(b) (more realistic) one takes account of the fact that the freely

hanging portion of the chain (PQR) has a total weight w?

4-15 A force F with components Fz — 3N, Fy = AN, and Fz = is

applied at the point x = 0, y = 5 m, and z = 4 m. Find the mag-

nitude and direction of the torque, M, of F about the origin. (Express

the direction in terms of the direction cosines—i.e., the cosines of the

angles that M makes with the axes.)

4-16 Analyze in qualitative but careful terms how the act of pushing

vertically downward on the pedal of a bicycle results in the production

of a horizontal force that can accelerate the bicycle forward. (Clearly

the contact of the rear wheel with the ground plays an essential role

in this situation.)
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And thus Nature will be very conformable to herselfand

very simple, performing all the great Motions of the

heavenly Bodies by the attraction of gravity . . . and

almost all the small ones of their Particles by some other

attracting and repelling Powers ....

newton, Opticks (1730)



The various forces

of nature

THE BASIC TYPES OF FORCES 1

all forces arise from the interactions between difFerent objects.

Once upon a time it must have seemed that these interactions

were bewilderingly diverse, and one of the most remarkable

features in the development of modern science has been the

growing realization that only a very few basically distinct kinds

of interaction are at work. The following are the only forces

that we know of at present:

1

.

Gravitational forces, which arise between objects because

of their masses.

2. Electromagnetic forces, due to electric charges at rest or

in motion.

3. Nuclear forces, which dominate the interaction between

subatomic particles if they are separated by distances less than

about 10
-15 m.

It may be that evcn this degree of categorization will prove

>An excellent background to this topic is the PSSC film, "Forces," by J. R.

Zacharias, produced by Education Development Center, Inc., Newton, Mass.,

1959. The title of this chapter is borrowed from that of a set of popular lec-

tures delivered in London by the great scientist, Michael Faraday, just over

100 years ago and available in paperback (Viking, New York, 1960). They

make easy and rather delightful reading.
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to be unnecessarily great; the theoretical physicist's dream is to

find a unifying idea that would allow us to recognize all these

forces as aspects of one and the same thing. Albert Einstein

spent most of his later years on this problem but to no avail,

and at the present time the assumption of several different kinds

of forces seems meaningful as well as convenient.

In the following sections we shall briefly consider these

three primary types of forces, with examples of physical systems

in which they are significant. It will be useful, and from the

standpoint of classical mechanics very important, to add to our

classification what we shall call "contact forces"—the forces

manifested in the mechanical contact of ordinary objects. Al-

though these forces are merely the gross, large-scale manifesta-

tion of the basic electromagnetic forces between large numbers

of atoms, they serve so well to describe most of the familiar

interactions in mechanical phenomena that they merit a category

of their own.

GRAVITATIONAL FORCES

Ali our experience suggests that a gravitational interaction be-

tween material objects is a universal phenomenon. It is always

an attractive interaction. The gravitational forces exerted by the

earth on different objects near its surface can be compared, by

using a spring balance for example, and these gravitational

attractions are proportional, in every case, to the property of the

attracted object that we call its mass. (The content and the im-

plications of this familiar and seemingly simple statement will

be a matter for detailed discussion in later chapters.)

The general law of gravitational interaction arrived at by

Newton states that the force F with which any particle attracts

any other is proportional to the product of the masses of the

particles, inversely proportional to the square of thcir separation,

and directed along the line separating the two particles. It is

found experimentally that this force has no measurable de-

pendence on the velocity of the particle on which it acts. ' The

magnitudo of the force F

1

3 that a particle of mass m 1 exerts on a

Departures from ihis velocity indcpendence are analyzcd in the general

theory of relativity. They are discernible only if the effect of quantities of

the order of o 2/c 2 (where c is the speed of light) can be detected in the gravi-

tational interaction.
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particle of mass m 2 can be written as

Fl2 = G^f (5-1)

where r l2 is the distance from the center of mi to the center

of m 2 and G is a constant of proportionality called the universal

gravitational constant. This law of force holds for point masses

and for uniform spheres of finite size. The value of the constant

G is 0.667 X 10- lo m 3/kg-sec2
.

Equation (5-1), and the preceding verbal expression of it,

is the first example in this book of the quantitative expression

of a physical law. It is worth spending a few words to discuss

what it really says. Every mathematical statement of experi-

mental relationships in physics is no more than a statement of a

relationship between numbers. By m i
and m2 we simply mean the

numerical measures of the masses of particles 1 and 2 in terms

of some arbitrarily chosen unit. The concept of mass is one that

has been developed to aid us in our description of nature—like-

wise the concepts of force and distance. But it is always the

numbers that we deal with. Thus the full verbal equivalent of

Eq. (5-1) would be:

The numerical measure of the force F with which any particle at-

tracts any other is proportional to the product of the numerical

measures of their masses and inversely proportional to the square

of the numerical measure oftheir separation.

Keep those italicized phrases in mind whenever you read the

mathematical statement of a physical relationship. They are

almost never included explicitly, yet without them there is a

danger of reading more into such a statement than it really con-

tains. Thus the customary type of abbreviated colloquial state-

ment of the law of gravitation begins: "The force of gravitational

attraction between two particles is proportional to the product

of their masses . . .
." What, one may ask, is meant by the product

of two masses? What sort of a physical quantity is that? Even

very good seientists have been drawn, at times, into almost

metaphysical arguments through the effort to read some special

significance into the "dimensions" of such combinations. By

reminding oneself what an equation such as Eq. (5-1) actually

represents, one can avoid any such confusion.

The classic experiment to measure G was performed by

the British physicist Henry Cavendish in 1798. It involved a
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Fig. 5-1 Sehematic diagram of a gravity lorsion-

balance experiment.

measurement of the gravitational foree between solid lead spheres

of modest dimensions and made use of an ingenious mechanical

arrangement—a torsion balance—to detect this tiny attractive

foree. Figure 5-1 shows the essential features of the arrangement.

Two small lead spheres are placed at the ends of a light rod. The

rod is suspended horizontally by a very thin metal fiber attached

to its midpoint. Two larger lead spheres are positioned elose to

the smaller ones, in symmetrical fashion, so that the gravita-

tional attraction between these pairs of large and small masses

tends to rotate the rod in a horizontal plane. An equilibrium

orientation is reached when the twist of the supporting fiber

provides a restoring effect that just balances the gravitational

attraction. A beam of light reflected from a small mirror attached

to the rod allows the tiny angular deflection to be amplified into

a substantial movement of a spot formed by the reflected light on

a distant wali (the "optical lever" effect). A torsion-balance

arrangement of this type, incorporating an optical lever, is one

of the most sensitive of all mechanical devices.

The gravitational foree is astonishingly weak under the

conditions of a laboratory cxperiment involving the interaetion

of relatively small objects, and the detection and measurement

of it is an extremely delicate operation. For example, a modern

version of the Cavendish apparatus 1

uses two small suspended

lead spheres, each of 15-g mass, and large spheres of 1.5 kg each.

The center-to-center distance between a small sphere and a

Manufactured by the Leybold Co.
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Fig. 5-2 Globular

cluster ofstars held

together by graoita-

lionalforces (globular

cluster M 13 in the

constellation Her-

cules). (Photograph

from the Hale Obser-

vatories.)

large one is about 5 cm. Under these conditions the gravita-

tional force of attraction is only about 6 X 10~ 10 N. The

weight of a single human hair is about 10,000 times greater

than this!

Although the gravitational interaction is intrinsically so very

feeble, it plays the prime role in most astronomical systems,

because (1) the interacting objects are extremely massive and (2)

other forces are almost absent. An interesting example is pro-

vided by globular star clusters. These are collections of stars

in a spherically symmetric distribution ; more than 120 such

clusters have been identified in our galaxy. Figure 5-2 shows a

globular cluster containing perhaps more than a million stars.

One can infer from the symmetry of this system that there is

probably no net rotational motion to the cluster as a whole

though individual stars undoubtedly travel in all directions.

Direct experimental evidence on the actual motions of individual

stars is very meager. If we consider a star "at rest" near the outer

edge of the cluster, the net force due to all other stars should be

(by symmetry) toward the center of the cluster and the star will

accelerate, reaching its maximum speed at the center. The net

force on the star (again by symmetry considerations) will ap-

proach zero as the star reaches the center of the cluster. Having

gained considerable speed, the star will pass through the center

and gradually slow down due to the resultant force of attraction
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Fig. 5-3 Schematic

diagram ofa group of

globular clusters asso-

ciated with our

Galaxy.

of all the other stars (which at all times is a net force directed

toward the center of the cluster). The star will finally reach a

point diametrically opposite its starting position. Thus a star

could perform oscillations along a diameter passing through the

center of cluster. Because the separation between stars is so very

much greater than the diameter of any star, the chance of a

stellar collision is very small, even at the center of the cluster

(although the photograph would not suggest this).

Thcre is clear astronomical evidence for other systems of a

similar type but on a much larger scale. Our Galaxy is surrounded

by a spherically symmetric "halo" of globular clusters (see the

sketch shown in Fig. 5-3). Since the individual clusters maintain

their compact identity, each can itself be considered a "mass

point," and together they form a sort of supercluster of globular

clusters. Direct observational evidence shows that clusters are

traveling in all directions and there is no reason to doubt that a

single cluster can perform oscillations through the heart of our

Galaxy (just as single stars can oscillatc within a cluster), again

with almost negligible chance of individual stars colliding with

each other.

These two similar examplcs illustrate cases where gravita-

tional attraction between masses is the sole force that governs

the motion. Usually gravitational forces are important only

where at least one body of astronomical size is involved—note

that it is solely because the earth is in this category that gravity

exercises a major influence on our everyday lives. One can

think of certain exceptions to this general rule, as for example

the initial stages of the aggregation of neutral hydrogen atoms
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under their mutual gravitational attractions to form a proto-

galaxy.

ELECTRIC AND MAGNETIC FORCES

The forces that electrically charged particles exert on one another

are of fundamental importance in nature. The basic law of

electric force is that found by the nineteenth-century French

physicist C. A. Coulomb, and known by his name. Like

Cavendish, Coulomb used a torsion balance for his measure-

ments. 1 But whereas Cavendish simply measured the gravita-

tional constant, taking the basic form of the force law as already

known, Coulomb explored the actual form of the law of electric

force. Coulomb's law states that a charged particle at rest will

attract or repel another charged particle at rest with a force

proportional to the product of the charges, inversely propor-

tional to the square of their separation and directed along the

line separating the two particles.
2 The force is attractive when

the charges are unlike and repulsive when they are alike in sign.

If one denotes by qi and q2 the charges carried by the particles,

the magnitude of the force that particle 1 exerts on particle 2 is

given by

*»-km (5-2)

identical in form with the law of universal gravitation. The

metric unit of electric charge is the coulomb (C). The constant k

in Coulomb's law has the value 9 X 10
9 N-m 2/C 2

.

A coulomb is a huge amount of electric charge—vastly

more than is usually found in isolation in nature. One coulomb

separated from a similar charge 1 mile distant would experience

a repulsive force of about 3500 N (approximately 800 lb). Yet

an electrically neutral droplet of water | in. in diameter contains

nearly 1000 C of positive charge in the nuclei of the hydrogen

and oxygen atoms, balanced by an equal amount of negatively

charged electrons. (Check this for yourself.)

'Their experiments were performed at almost the same time, but apparently

they acted quite independently of one another in their choice and development

of the torsion-balance technique.

2Note that insertion, where appropriate, of the phrase "numerical measure

of" is tacitly assumed.
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Fig. 5-4 Cakulaled irajectories

ofprotons ofaboul 14 Gev kinetic

energy approaching the earth 'm its

magnetic egualorial place and

deflected by its magnetic field.

(After D. J. X. Monlgomery,

Cosmic Ray Physics, Princeton

Unioersity Press, 1949.)

It is interesting to compare the sizes of electrical forces with

those of gravity. Consider, for example, the gravitational torsion

balance mentioned earlier. If only one out of every 10

'

8
electrons

in each lead sphere were missing, the resultant imbalance of

electric charge on the masses would produce an electrical force

comparable to the gravitational force. Through such examples

one can appreciate the immense strength of the electrical force

compared to the gravitational force.

Although gravity is always present, the electrical force is

overwhelmingly the most significant agent in all chemical and

biological processes and in the interactions between physical

objects of everyday size (i.e., below those of the astronomical

domain). It holds atoms together, provides the rigidity and

tensile strength of material objects, and is the only force involved

in chemical reactions.

We have been discussing the electrical forces between

stationary charged particles. Moving charged particles also exert

electrical forces on each other. But an additional force arises in

this case which we call the magnetic force. It has the interesting

property that it depends on the velocity of the charges and always

acts on a given charged particle at right angles to the particle's

motion. We shall discuss these magnetic forces more precisely

in Chapter 7.

An illustration of the magnetic force is provided by the

trajectories of protons (positively charged) ejected from the sun

and approaching the earth. Figure 5-4 shows possible paths

of protons approaching in the equatorial plane, when they pass
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in the vicinity of the earth's magnetic field. It is confidently

believed that the earth's magnetic field itself arises as a result

of charged particles in motion inside the earth, so basically this

is an example of the electromagnetic interaction between charges

in motion.

Actually, from the standpoint of relativity theory, the mag-

netic force is not something new and different. Charges that are

moving with respect to one observer can be stationary with

respect to another. Thus, if one accepts the basic idea of rela-

tivity, one may expect to be able to relate a magnetic force, as

observed in one reference frame, to a Coulomb force, as ob-

served in another frame. For the detailed working out of this

idea, see for example the volume Special Relativity in this series.

NUCLEAR FORCES

Although electric forces are responsible for holding atoms to-

gether, they would, by themselves, prevent the existence of

atomic nuclei. For we all know that nuclei contain protons,

electrically repelling one another and not stabilized by a com-

pensating negative charge. But nature has supplied another

force, known as the sirong interaction, which binds together the

nucleons (protons and neutrons) in a nucleus. Although much

stronger than the Coulomb force at sufficiently short distances,

its properties were relatively unknown until recently because

of its extremely short range. For distances greater than about

10
-13 cm (= 1 F) this nuclear force quickly becomes negligibly

small, but it dominates over all other interactions between

nucleons at shorter distances. It is an exceedingly complex type

of interaction, attractive down to about 0.4 F and strongly re-

pulsive for still smaller separations. It is, in part, a noncentral

force—that is, in contrast to the gravitational and Coulomb

interactions, it is not directed along the line joining the centers

of the interacting particles. Somewhat analogously to the Cou-

lomb force, which exists only between electrically charged

particles, the strong nuclear interaction exists only among a

certain class of particles, known as hadrons (Gr. hadros: heavy,

bulky), which besides the nucleons themselves includes a number

of lighter particles (mesons) and heavier particles (baryons), all

of which are unstable and very short-lived (10
-8

sec or less).

Another type of force associated with nuclear interactions
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is also known to exist but is not very well understood as yet.

It is called the "weak interaction." The range of this force is

even less than that of the strong interactions, and its strength is

estimated to be only about 10
-15

as great as the other. This

weak interaction is important only for certain types of nuclear

process, such as radioactive beta decay.

It is instructive to compare the magnitudes of the different

types of forces exerted between two protons 10~ 15 m apart—i.e.,

separated by about one nucleon diameter:

Type of interaction Approximate magnitude of the force, N

Gravitational 2 X 10-"

Coulomb 2 X 10 2

Nuclear (strong) 2 X 10»

The magnitude of the weak nuclear interaction, within the range

in which it is effective, is of the order of 10~ 1 3 of the electrical

force, but even so it is greater, by a factor of the order of 10
23

,

than the calculated gravitational force at the same distance be-

tween two particles.

The nuclear forces have really no place in a discussion of

Newtonian mechanics. Indeed, the very use of the word "force"

in connection with nuclear interactions is open to question, for

any statement about the force between two nuclear particles is

at best a remote inference. We cannot cite any direct observa-

tions comparable to those of Cavendish and Coulomb for

gravitational and electrical forces. Moreover, the subject of

nuclear forces, like everything else in subatomic physics, requires

the ideas and techniques of quantum mechanics, which is a

theory that has almost no use for the concept of force as such.

Thus, when we talk of classical or Newtonian mechanics, we are

really concerned with situations in which the only relevant kinds

of interactions are electromagnetic or gravitational.

FORCES BETWEEN NEUTRAL ATOMS

It is a fact of profound importance that, in contrast to gravita-

tion, the electric forces between individual particles may be

repulsive as well as attractive, because of the existence of two

different signs of electric charge. This duality of charge makes

possible the existence of mattcr that is clectrically neutral in
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bulk and of atoms that are individually neutral by virtue of

having equal numbers of protons and electrons.
1

On the face of it, therefore, two neutral atoms would exert

no forces on one another at all when separated (if one excepts

the usually negligible gravitational force). This, however, is not

quite true. It would be the case if the positive and negative

charges in an atom were located at a single point. We know,

however, that the electrons and the nucleus are separated by a

certain small amount. Also, the atom is not a rigid structure;

and although the "center of gravity" of the negative charge

distribution due to the electrons coincides with the positive

nucleus when the atom is isolated, the approach of another

particle can disturb this situation. One manifestation of this is a

characteristic force of attraction between neutral atoms—a force

named after the great Dutch physicist J. van der Waals. This

force increases much more rapidly than l/r
2
as two atoms ap-

proach one another—or (to put it in a way that carries a subtly

different message) the force falls off with increasing distance

much more rapidly than the attraction between two unbalanced

charges of opposite sign.

The basis of the van der Waals force is still, of course, the

inverse-square law of force between point charges, but its detailed

character cannot be calculated without the use of quantum

mechanics. The final result is a force varying as l/r
7 between

neutral atoms of the same kind.

There is, however, another kind of force that comes into

play between neutral atoms when the attempt is made to squash

them together. This is a positive (repulsive) force that increases

with decreasing separation even more rapidly than the van der

Waals force. The result is that the net force exerted by one

neutral atom on another, as a function of the separation r be-

tween their centers, has the kind of variation shown in Fig. 5-5.

The force passes through zero at a certain value of r, and this

value (ro) can be thought of as the sum of the two atomic radii—

i.e., one atomic diameter if the atoms are identical. The repulsive

component of F grows so sharply with further decrease of r

below r that atoms behave to some approximation as hard

spheres; one manifestation of this is the highly incompressible

'J. G. King has shown by direct invesligation of the degree of neutrality of a

volume of gas that the basic units of positive and negative charge in ordinary

matter cannot differ by more than about 1 part in 10" (private communica-

tion).
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Fig. 5-5 Qualitative graph oflhe

force between two neutral aloms

as a function of the distance be-

tween their centers. The dashed

line represents the nonphysical

idealization of aloms thai act as

completely hard spheres Ihal

attract one anolher.

nature of condensed matter. The dashed line in Fig. 5-5 in-

dicates the result of idealizing the interatomic force to correspond

to complete impenetrability for r < r and the van der Waals

attraction for r > r . This model can be used quite effectively

to analyze the deviations of an actual gas from the ideal gas laws.

Since almost all the objects we deal with in classical me-

chanics are electrically neutral, this basic atomic interaction

—

the electric force between neutral particles—is of fundamental

importance, as we shall discuss next.

CONTACT FORCES

Many of the physical systems we shall deal with are the ordinary

objects of everyday experience, acted upon by such forces as

friction, the push and puli of struts and beams, the tension of

strings and cables, and so on. Each of these forces involves what

we naively call physical "contact" with the object under ob-

servation.

Consider, for example, a book resting on a horizontal table.

The book is supported by the sum total of countless electro-

magnetic interactions between atoms in the adjacent surface

layers of the book and the table. A submicroscopic analysis of

these interactions would be prohibitively complex. For most

purposes, however, we can ignore this complexity and can lump

all these interactions together into a single force that we shall

call a contact force. This is a rather artificial category but a

useful one. Broadly speaking, all the familiar forces of a me-

chanical nature, including the force that a liquid or a gas exerts

on a surface, are contact forces in this sense. Our discussion in

the previous section makes it clear that they are electric forces
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Fig. 5-6 (a) Two charged spheres, obciously not in

conlact. The weight of the upper sphere is balanced by

the electrical repulsion. (b) Two uncharged spheres,

apparently in conlact. Oli a sufficiently magnified scale,

this appearance ofa conlact ofsharp geometrical bound-

aries would disappear.

Fig. 5-7 (a) Quali-

tatwe graph offorce

versus separation for

the charged spheres

ofFig. 5-6{a). The

conlact is "soft"—
i.e., the difference be-

tween F and W varies

slowly with r.

(b) Comparable graph

for the uncharged

spheres ofFig. 5-5(6).

The conlact is "hard"

—the near equality of

F and W occurs only

over an extremely

narrow range of

values of r.

exerted between electrically neutral objects. The development

of such forces when one smooth, hard object is pressed against

another comes about through a distortion of the distributions

of positive and negative electric charges. It is characteristic of

such forces that their variation with the distance between the

objects is much more rapid than the inverse-square dependence

that holds for objects carrying a net charge. Thus the contact

forces are, in effect, forces of very short range; they fail to

negligible size when objects are more than about one atomic

diameter apart. The fact, however, that they do have a syste-

matic dependence on the distance of separation means that the

notion of what we ultimately mean by "contact" is not clear-cut.

There is no fundamental distinction between the situation repre-

sented by two charged spheres, visibly held apart by their elec-

trical repulsion, and the same two spheres, uncharged, apparently

in contact, as shown in Fig. 5-6. In each case the upper sphere

assumes a final position of equilibrium in which the net elec-

trical force on it just balances its weight. For any smaller

separation it exceeds the weight. But if we display these variations

of force with distance, as in Fig. 5-7, we see a drastic difference.

In the case of uncharged objects, the transition from negligible

force to very large force is so abrupt that it supports our im-

pression of a completely rigid object with a geometrically sharp

Separation of centers, r

(a)

Separation of centers. t

(b) H
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boundary and no interaction outside that boundary. Do not

forget, however, that this is an idealization, and that sufficiently

refined measurements would always reveal a continuous variation

of force with separation.

FRICTIONAL CONTACT FORCES

Fig.5-8 (a) Block

on a rough horizontal

table, subjected to a

horizontal puli, P.

{b) Qualitative graph

of the frictional force,

S, as afunclion ofP.

The condiiion S = P
can be satisfied up to

the point at which

S = nN. After that,

the eguilibrium is

bound to be broken.

The discussion in the previous section has concentrated on

contact forces called into play by the simple pushing together

of two objects. Such forces are then at right angles to the surface

of contact—we call them normal forces in the geometrical sense

of that word. But much importance and interest attaches to the

tangential forces of friction that appear when the attempt is

made to drag an object sidcways along a surface. Figure 5-8(a)

depicts a block resting on a horizontal surface; its weight is

supported by a normal contact force N. We now apply a hori-

zontal force P. Suppose that the magnitude of P is gradually

increased from zero. At first nothing seems to happen ; the block

remains still. We know, from our analysis of equilibrium situa-

tions, that this means that a force equal and opposite to P is

being supplied via the contact between the block and the surface.

This is the frictional force, S. It automatically adjusts itself to

balance P, just as the normal force N would automatically in-

crease if we deliberately pushed down harder, in a vertical di-

rection, on the top of the block. In both cases we can imagine

minute deformations of the electric charge distributions along

the interface, sufficient to develop the requisite forces. But then,

when P is increased beyond a certain value, the frictional force S

is no longer ablc to keep step with it. The equilibrium is broken

down, and motion ensues. A graph of S against the applied

force P might look like Fig. 5-8(b). Once S has been brought to

its maximum limiting value, it may even drop at first as P is
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Fig. 5-9 (a) Force

on a sphere in a

flowing fluid.

(b) Total force of
fluidfriction is mode

1
1P ofseparate terms

that are respectively

linear and quadratic

in the relativeflow

celocity, v.

F

v
«(i')/
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further increased, although it tends to remain at a fairly constant

value thereafter. However, the whole regime P > S corresponds

to motion, and ff may depend in detail on the velocity. The only

uniquely defined region is that of static equilibrium, throughout

which we can put JF = P, as represented by the 45° line on the

graph of Fig. 5-8(b). The other feature of interest is the empirical

fact that the limiting value of £F is roughly proportional to the

normal force N, so that their quotient—the coefficient of friction

(n)—is a property of the two surfaces in contact:

= 11N (5-3)

The above discussion applies to the contact of two solid

surfaces. If the contact is lubricated, the behavior is very dif-

ferent. One is then dealing, in effect, with the properties of the

contact between a fluid (liquid or gas) and a solid. The basic

properties of so-called fluidfriction can be studied by measuring

the force exerted on a fixed solid object as a stream of fluid is

driven past it at a given speed d [see Fig. 5-9(a)]. Over a wide

range of values of u, this fluid frictional resistance is well described

by the following formula:

R(v) = Ao + Bv 2 (5-4)

where A and B are constants for a given object in a given fluid.

The first term depends on the viscosity of the fluid, and the

second is associated with the production of turbulence. Since

the ratio of the second term to the first is proportional to v, one

knows that at sufficiently high speeds the fluid friction is domi-
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nated by turbulence, however small the ratio B/'A may be. The

same consideration guarantees that at sufficiently low speeds the

resistance will be dominated by the viscous term, directly propor-

tional to o [see Fig. 5-9(b)].

CONCLUDING REMARKS

PROBLEMS

In this chapter we have given a brief account of the three major

types of physical interactions and have indicated the general

areas in which they are dominant. To recapitulate: Nuclear

forces are significant only for nuclear distances, the gravitational

force is important only if objects of astronomical scale are in-

volved, and nearly everything else ultimately depends on electro-

magnetic interactions. The study of physics is essentially the

attempt to understand these interactions and all their con-

sequences. In mechanics we have, for the most part, the more

modest goal of taking the forces as given and considering various

dynamical situations in which they enter. We shall, however, be

discussing two classic cases—gravitation and alpha-particle

scattering—in which Newtonian mechanics provided the key to

the basic laws of force. The present chapter has provided a kind

of preview, because it summarizes the state of our current knowl-

edge without entering into any detailed discussion of how we

have come to know it. The real work lies ahead!

5-1 At what distance from the earth, on the line from the earth to

the sun, do the gravitational forces exerted on a mass by the earth

and the sun become equal and opposite? Compare the result with

the radius of the moon's orbit around the earth.

5-2 By what angle, in seconds of are, will a plumbline be pulled out

of its normal vertical direetion by the gravitational attraction of a

10-ton truck that parks 20 ft away? Do you think that this effect

could be detected ?

5-3 In a Cavendish-type apparatus (see the figure) the large spheres

are each 2 kg, the small spheres each 20 g. The length of the arm con-

necting the small spheres is 20 cm, and the distance between the centers

of a small sphere and the big sphere elose to it is 5 cm. The torsion

constant of the suspending fiber is 5 X 10
-8 m-N/rad. The angular

deflection of the suspended system is deduced from the displacement
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Scale

^20 g

of a reflected spot of light on a scale 5 m away. (Remember that the

change in direction of the reflected light is twice the angle through

which the mirror is turned.)

It is observed that when the large spheres are moved from their initial

positions to equivalent positions on the other side (dashed lines) the

mean position of the spot of light is shifted by 8 cm.

(a) Deduce the value of G according to these data, ignoring the

effect on each small sphere of the force due to the more distant of the

larger spheres.

(b) Estimate the percentage correction on the result of (a) re-

quired to allow for the effect of the more distant spheres.

5-4 The original Cavendish experiment was done with a large-size

apparatus, as is natural if one wants to make the gravitational forces

and torques as big as possible. However, this requires a strong, stiff

wire to support the suspended masses. Much later (1895) C. V. Boys

made a miniature apparatus, using thin fibers of fused quartz for the

suspensions. It is an interesting exercise to see how the attainable

sensitivity of the apparatus depends on its size. Imagine two versions

of the Cavendish apparatus, A and B, both using solid lead spheres,

in which the radii and separations of all the masses in B, together with

the length of the torsion fiber, are scaled down by a certain factor L

with respect to A. We then design for maximum sensitivity in each

apparatus by using the thinnest possible torsion fiber that will take

the weight of the suspended masses without breaking. Now for a

torsion fiber of given material and of circular cross section, the maxi-

mum supportable load is proportional to d2
, where d is its diameter,

and its torsion constant is proportional to d* /I, where / is its length.

Using this information, compare the maximum angular deflections

obtainable with the two different sizes of apparatus. (Remember, the

lengths of the torsion fibers also differ by the scaling factor L.)

5-5 The radius of the hydrogen atom according to the original Bohr
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theory is 0.5 A.

(a) What is the Coulomb force between the proton and the

electron at this distance? What is the gravitational force?

(b) How far apart must the proton and electron be for the

Coulomb force to be equal to the value that the gravitational attrac-

tion has at 0.5 A? What familiar astronomical distance is this com-

parable to?

5-6 Suppose electrons could be added to earth and moon until the

Coulomb repulsion thus devcloped was of just the size to balance the

gravitational attraction. What would be the smallest total mass of

electrons that would achieve this?

5-7 For a person living at 45° latitude, what is the approximate

fractional difference, during the day, between the maximum and

minimum gravitational forces due to the moon—the change resulting

from the fact that the earth's rotation causes the person's distance

from the moon to vary ? What is a manifestation of this kind of force

effect in nature?

5-8 You know that the Coulomb force and the gravitational force

both obey an inverse-square law. Suppose that it were put to you

that the origin of the gravitational force is a minute difference be-

tween the natural unit of positive charge, as carried by a proton, and

the natural unit of negative charge, as carried by an electron. Thus

"neutral" matter, containing equal numbers of protons and electrons,

would not be quite neutral in fact.

(a) What fractional difference between the positive and negative

elementary charges would lead to "gravitational" forces of the right

magnitudo between lumps of ordinary "neutral" matter ? How could

such a difference be looked for by laboratory experiments?

(b) Is the theory tenable?

5-9 (a) The text (p. 148) quotes a valuc of the nuclear force for two

nucleons close together but also suggests that to describe the nuclear

interactions in terms of forces is not very practical. Can you suggest

any way in which a nuclear force as such could be measured?

(b) According to one of the earliest and simplest theoretical

descriptions of the nuclear interaction (by H. Yukawa) the force of

attraction between two nucleons at large separation would be given by

F(,) = _d e-'"o

where the distance ro is about 10~ 15 m and the constant A is about

10"

'

1 N-m. At about what separation between a proton and a neutron

would the nuclear force be equal to the gravitational force between

these two particlcs?

5-10 Can you think of any systems or processes in which gravita-
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tional, electromagnetic, and nuclear forces all play an important role?

5-11 As mentioned in the text, the attractive (long-range) part of the

force between neutral molecules varies as l/r 7
. For a number of

molecules, the order of magnitude of this van der Waals force is well

represented by the equation

Fvw(r)~ -10-76A7

where FVw is in newtons and r in meters. Compare the magnitude of

the van der Waals force with the Coulomb force between two ele-

mentary charges [Eq. (5-2), with<?i = ?2 = e = 1.6 X 10~ C]:

(a) For r = 4 A. (This is a distance about equal to the diameter

of a molecule of oxygen or nitrogen and hence barely exceeding the

closest approach of the centers of two such molecules in a collision.)

(b) For a value of r corresponding to the mean distance between

molecules in a gas at STP.

5-12 One of the seemingly weakest forms of contact force is the

surface tension of a liquid film. One of the seemingly strongest is the

tensile force of a stretched metal wire. However, when expressed in

terms of a force between individual atoms in contact, they do not

look so different. Use the following data to evaluate them in these

terms:

(a) If a water film is formed between a rectangular wire frame,

3 in. wide, and a freely sliding transverse wire (see the figure), it takes

the weight of about 1 g to prevent the film from contracting. This

contractile force can be ascribed to the contact of the atoms lying

within a monomolecular layer along each side of the film. Supposing

that the molecules are 3 A across and closely packed, calculate the

force per molecule.

(b) A copper wire of 0.025-in. diameter was found to break

when a weight of about 10 kg was hung from its lower end. First,

calculate this breaking force in tons per square inch. If the fracture is

assumed to involve the rupturing of the contacts between the atoms

on the upper and lower sides of a horizontal section right across the

wire, calculate the force per atom, assuming an atomic diameter of

about 3 A.

5-13 A time-honored trick method for approximately locating the

midpoint of a long uniform rod or bar is to support it horizontally

at any two arbitrary points on one's index fingers and then move the

fingers together. (Of course, just finding its balance point on one

finger alone works very well, too!) Explain the workings of the trick

method, using your knowledge of the basic principles of static equi-

librium and a property of frictional forces: that they have a maximum

value equal to a constant /x (the coefficient of friction) times the com-

ponent of force normal to the surface of contact between two objects.

157 Problems



5-14 (a) A string in tension is in contact with a circular rod (radius r)

over an arc subtending a small angle A0 (see the figure). Show that

the force with which the string presses radially inward on the pulley

(and hence the normal force AN with which the pulley pushes on the

string) is equal to TA9.

(b) Hence show that the normal force per unit length is equal

to T/r. This is a sort of pressure which, for a given value of T, gets

bigger as r decreases. (This helps to explain why, when a string is

tightly tied around a package, it cuts into the package most deeply

as it passes around corners, where r is least.)

(c) If the contact is not perfectly smooth, the values of the

tension at the two ends of the arc can differ by a certain amount AF
before slipping occurs. The value of AT is equal to y. AN, where n is

the coeffkient of friction between string and rod. Deduce from this

the exponential relation

T(6) = T ep»

where To is the tension applied at one end of an arbitrary arc (0) of

string and T(6) is the tension at the other end.

(d) The above result expresses the possibility of withstanding a

large tension T in a rope by wrapping the rope around a cylinder, a

phenomenon that has been exploited since time immemorial by sailors.

Suppose, for example, that the value of n in the contact between a rope

and a bollard on a dock is 0,2. For 7" = 100 lb, calculate the values

of T corresponding to one, two, three and four complete turns of rope

around the bollard.

(It is interesting to note that T is proportional to To- This allows

sailors to produce a big puli or not, at will, by having a rope passing

around a continuously rotating motor-driven drum. The arrangement

can be described as a force amplifier.)

5-15 In a very dclicate torsion-balance experiment, such as the

Cavendish experiment, the stray forces due to the fluid friction of slow

air currents pushing on the suspended system may be quite significant.

To make this quantitative, consider the gravity torsion-balance ex-

periment described in Problem 5-3. For suspended spheres of the

size stated (r « 0.8 cm), the force due to a flow of air of speed v is

given approximately by the formula [Eg. (5-4)]

-s,,2R (newtons) = 2.5 X 10-6
<; + 5 X 10

where u is in m/sec. Calculate the value of v that would cause a force

due to air currents that equaled the gravitational force exerted on the

sphere in this experiment (i.e., the force exerted on a 20-g sphere by a

2-kg sphere with their centcrs 5 cm apart). (Hint: Do not bother to
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solve a quadratic equation for v. Just find the values of d for which

the contributions to R, taken separately, would equal the gravitational

force. The smaller of the two values of u so obtained is clearly already

enough to spoil the experiment.)
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To tell us that every species of things is endowed with an

occult specific quality by which it acts andproduces manifest

effects, is to tell us nothing. But to derive two or three

general principles of motion from phenomena, and afterwards

to tell us how the properties and actions of all corporeal

thingsfollowfrom those manifest principles, would be a

very great step in Philosophy, t/wugh the causes of those

principles were not yet discovered.

newton, Opticks (1730)



Force, inertia, and motion

THE PRINCIPLE OF INERTIA

the preceding chapters have treated matter, motion, and force

as separate topics. Now we come to the central problem of

Newtonian dynamics: How are motions of material objects

affected by forces? We shall preface this with a question that is,

on the face of it, much simpler: What can we say about the

motion of an object that is subjected to no forces? It was in the

analysis of this problem by Galileo that the science of dynamics

really began. ]

We saw in Chapter 4 how the study of static cquilibrium

situations leads us to a basic principle: For an object at rest, the

net force aeting is zero. What could be more natural than to

turn this statement around and infer that, if the net force on

an object is zero, the object must remain at rest—and, as a kind

of corollary to this, to conclude that in order to keep an object

moving a net force must bc maintained. After all, our experience

>You will undoubtedly have solved many problems in the use of Newton's

laws before rcading this chapter. Do not, on that account, assume that the

following diseussion is superfluous. A wish to get down to business

—

writing equations and using them—is very sound. The quantitative use of a

physical theory is an essential part of the game; physics is not a spectator

sport. But to gain real insight and understanding—Where do the equations

come from? What do they really say?—one must also examine the basic

assumptions and phenomena. And some of the greatest advances in physics

have come about in just this way. Einstein arrived at special relativity by

thinking deeply about the nature of time. And Newton, when asked once

about how he gained his insight into the problems of nature, replied "By

constantly thinking unto them."
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Fig. 6-1 Limitalions on in-

ertial molion at the earth's

surface. An object starling oul

horizontally in a Iruly straight

line at A mighl end up on a

hilttop at B. In the process it

would be bound to slow down.

shows that moving objects on the earth's surface do come to

rest if left to themselves, and a continuing effort does have to

be applied to keep an object moving steadily. But, as Galileo was

the first to realize, an extrapolation beyond the range of ordinary

experience is possible; it is expressed in his principle of inertia.

Initially, this simply asserted that an object would, if free of all

resistive forces, continue with unchanging speed on a horizontal

plane. Galileo himself recognized that this assertion is true only

in a limited sense. For a truly flat horizontal plane is tangent

to the earth's surface; therefore, if extended far enough, it must

be seen as going perceptibly up hill (Fig. 6-1), and objects

traveling outward along it must ultimately slow down.

'

Subsequently Isaac Newton stated the principle of inertia in

a generalized form in his "first law" of motion as presented in

the Principia: "Every body perseveres in its state of rest, or of

uniform motion in a right line, unless it is compelled to change

that state by forces impressed upon it." It is a familiar statement,

which we probably all learn in our first encounter with me-

chanics, and Fig. 6-2 shows a practical illustration of it. But

what does it really say? The first thing we must recognize is

that, as discussed in Chapter 2, every statement about the motion

of a given object involves a physical frame of reference; we can

only measure displacements and velocities with respect to other

objects. Thus the principle of inertia is not just a clear-cut

statement about the behavior of individual objects; it goes much

deeper than that. We can, in faet, turn it around and make a

statement that goes roughly as follows:

There exist certain frames of reference with respect to which the

motion of an object, free of all external forces, is a motion in a

straight line at constant velocity (including zero).

For Galileo's own diseussion of these matters, see his Dialogues Concerning

Two New Sciences (H. Crew and A. de Salvio, translators), Dover Publica-

tions, New York.
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Fig. 6-2 A motion al conslanl velocity—a bullet

traveling at about 1,500 J1/sec, photographed strobo-

scopically at 30,000 flashes/sec. (Photograph by Prof.

Harold E. Edgerton, M. I. T.)

A reference frame in which the law of inertia holds good

is called an inertial frame, and the question as to whether a

given frame of reference is inertial then becomes a matter for

observation and experiment. Most observations made within

the confines of a laboratory on the earth's surface suggest that a

frame of reference attached to that laboratory is suitable. After

all, it was on the strength of observations within such a frame

that Galileo arrived at the principle of inertia in the first place!

A more critical serutiny shows that this is not quite good enough,

and we need to look further afield—but we shall do that later.

For the moment we shall limit ourselves to introducing the main

principle, which is not affected by the later refinements.

Sir Arthur Eddington, who had a flair for making comments

that were both penetrating and witty, offered his own version

of the principle of inertia: "Every body continues in its state

of rest or uniform motion in a straight line, except insofar as

it doesn't."
1

In other words, he regarded it as being, in the last

'A. S. Eddington, The Nalure o/the Physical World (Ann Arbor Paperbacks),

University of Michigan Press, Ann Arbor, Mich., 1958.
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analysis, an expendable proposition. (He was paving the way for

a discussion of general relativity and gravitation.) This remark

of Eddington's nevertheless draws attention, in a colorful way,

to what is the very foundation of Newtonian mechanics: Any

deviation from a straight-line path is taken to imply the existence

of a force. No deviation, no force—and vice versa. It must be

recognized that we cannot "prove" the principle of inertia by

an experimental test, because we can never be sure that the object

under test is truly free of all external interactions, such as those

due to extremely massive objects at very large distances. More-

over, there is the far from trivial question of defining a straight

line in a real physical sense: it is certainly not intuitively obvious,

nor is it an abstract mathematical question. (How would you

define a straight line for this purpose?) Nevertheless, it can be

claimed that the principle of inertia is a valid generalization

from experience; it is a possible interpretation of observed

motions, and our belief in its validity grows with the number

of phenomena one can correlate successfully with its help.

FORCE AND INERTIAL MASS: NEWTON'S LAW

The law of inertia implies that the "natural" state of motion

of an object is a state of constant velocity. Closely linked to

this is the recognition that the effect of an interaction between

an object and an external physical system is to change the state

of motion. For example, we havc no doubt that the motion of a

tennis ball is affected by the racket, that the motion of a compass

needle is affected by a magnet, and that the motion of the earth

is affected by the sun. "Inertial mass" is the technical phrase

for that property which determines how difficult it is for a given

applied force to change the state of motion of an object. Let us

consider how this description of things can be made quantitative.

"Force" is an abstract term, but we have seen how to asso-

ciate it with practical operations such as compressing springs,

stretching rubber bands, and so on. We can readily study the

effect of pushing or pulling on an object by such means, using

forces of definite magnitude. The observations become par-

ticularly clear-cut if we apply a force to an object that would

otherwise move with constant velocity. A very close approxima-

tion to this ideal can be obtained by supporting a flat-bottomed

object on a cushion of gas—for example by placing the object on
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Fig. 6-3 (a) Strobo-

scopic pholograpli of

a uniformly accel-

eraled molion. The

time interval between

Hght flashes was £

sec. (From PSSC
Physics, D. C. Heath,

Lexington, Massa-

chuselts, 1960.)

(b) Simple dynamical

experimenls ihat can

be used as a basisfor

deoeloping Newton'

s

second law.

2 springs

o

1 block

1 block

1 spring

Acceleratior

(b)

Acceleration = « a °

a horizontal table pierced with holes through which air is blown

from below. It is then possible to puli horizontally on the object

and make such observations as the following (see also Fig. 6-3):

1. A spring, stretched by a constant amount, causes the

velocity of the object to change linearly with time—the accelera-

tion produced in a given object by a given force is constant.

2. If a second spring, identical with the first and stretch-

by the same amount, is used side by side with the first, the ac-

celeration is doubled. That is, if we take a known multiple of a

force, according to our criteria for comparing forccs in static

equilibrium (see Chapter 4), then the acceleration produced in a

given object is directly proportional to the total force.

It thus becomes possible to write down simple equations

expressing the relation betwccn forces F and accelerations a:
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a = kF

or

F= k'a

where k and k' describc thc inertial properties of the particular

object. Which of the above two statements of the results is more

convenient? We find the answer in another simple experiment:

3. If we place on the first object a second, identical object,

it is observed that all accelerations produced by given arrange-

ments of the springs are rcduced to half of what was obtained

with one object alone. We can express this most easily by choos-

ing the second of the above equations, so that the inertial property

is additive—i.e., the inertial constants k' of two different objects

can be simply added together, and the acceleration of the com-

bined system under a given force is immediately given by

F = (Ar'i + k'2 )al+2

i.e.,

1+2
fci + JG

It is by such steps that one can be led to the equation that

is universally known as "Newton's (second) law":

F = ma = m— (6-1

)

di

where the proportionality factor m (identical with k' as defined

above) is called the inertial mass of the object and F is the net

force acting on it. Embodied in this basic statement of Newton's

law is the feature that force and acceleration are vector quan-

tities and that the acceleration is always in the same direction as

the net force.

An interesting historical fact, often overlooked, is that

Newton's own statement of the basic law of mechanics was nol

in the form of Eq. (6-1); the equation F = ma appears nowhere

in the Principia. Instead, Newton spoke of the change of

"motion" (by which he meant momentum) and related this to

the value of force X time. In other words, Newton's version

of the second law of motion was essentially the following:

FAt = mAo (6-2)
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We shall see in Chapter 9 that Newton's way of formulating the

law grew, by inference, out of the particular kind of evidence

available to him: the consequences of collision processes. Direct

experiments of the kind illustrated in Fig. 6-3 were not possible

with the limited techniques of Newton's day. (The only type

of uniformly accelerated motion easily accessible to Newton was

that of motion under gravity, but this, of course, did not allow

any independent control over the value of F applied to a given

object—unless the use of an inclined plane, giving a driving force

mgsin 6, is regarded as fulfilling this purpose.)

SOME COMMENTS ON NEWTON'S LAW

Sitnple and familiar as Eq. (6-1) is, it nevertheless contains an

enormous wealth of physical concepts—indeed, almost the whole

basis of classical dynamics. First comes the assumption that

quantitative measurements of displacements and time intervals

lead us to a unique value of the acceleration of an object at a

given instant. If we remind ourselves that displacements can

only be measured with respect to other physical objects, we see

that this, like the principle of inertia, cannot be separated from

the choice of reference frame. In fact, we tacitly assume that the

frame in which the acceleration is measured is an inertial frame.

For the kinds of basic experiments illustrated in Fig. 6-3, the

earth fills this role.

Next comes the feature, already emphasized, that the ac-

celeration vector is in the direction of the net force vector. This

is an important result; it is an expression of the fact that the

accelerative effects of several different forces combine in a linear

way. Suppose, for example, that an object has two springs

attached to it [see Fig. 6-4(a)]. Spring 1 exerts on the object a

force Fi in the x direction. Acting alone it would produce an

acceleration F t
/m along x. Spring 2 exerts a force F 2 i n the y

direction. Acting alone it would produce an acceleration F-i/m

along y. It is then a matter of experiment—not predictable by

pure logic—that the acceleration caused by the two springs

acting together is just what one would calculate by adding the

vectors Fi and F2 to form a resultant force F [Fig. 6-4(b)] and

applying this single force to the mass [Fig. 6-4(c)]. The observed

acceleration a is equal to F/m. This result provides the dynamical

basis for the "independence of motions" that we discusscd as a

purely kinematic effect in the trajectory problem of Chapter 3.

It tells us that the instantaneous acceleration of an object is the
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Fig. 6-4 (a) Object pulled by two springs in perpendic-

ular directions. (b) Resultan! force calculated according

to Ihe laws ofveclor addUion. (c) Obserced acceleralion

ofthe objecl agrees With lhal due lo the net force cector

as found in (b).

consequence of a linear superposilion of the applied forces or of

the accelerations that they would individually produce. If this

resiilt did not hold, the prediction and analysis of motions as

produced by forces would become vastly more complicated and

difficult.

Let us add a word of explanation and caution here. The

linear superposition of instantaneous components of acceleration

does not mean that we can always automatically proceed to

calculate, let us say, the whole course of development of the y

component of an object's motion without reference to what is

happening in the x direction. To take an example that we shall

consider in more detail later, if a charged particle is moving in a

magnetic field, the component of force in a given direction de-

pends on the component of velocity perpendicular to that direc-

tion. In such a case, we have to keep traek of the way in which

that perpendicular velocity component changes as time goes on.

In the case of an object subjected to a single force, one may

be tempted to think that it is intuitively obvious that the ac-

celeration is in the same direction as the force. It may be worth

pointing out, therefore, that this is not in general true if high-

velocity particles are involved—sufficiently fast to require the

modified kinematies and dynamics of special relativity.

'

Finally comes the assertion that a given force, applied to a

particular object, causes the velocity of that object to change

at a certain rate a, the magnitude of which depends only on the

See, for example, the volume Special Relatioity in this series.
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Fig. 6-5 Increase of i

inertial mass with

speed, as revealed in

experiments on high-

speed electrons.

Based on data of

(open circles) Kauf-

mann (1910), (filled

circles) Bucherer

(1909), and (crosses)

Guye and Lauanchy

(1915). (AflerR.S.

Shankland, Atomic

and Nuclear Physics,

Macmillan, New

York, 1961.)

magnitude and direction of F and on a single scalar quantity

characteristic of the object— its inertial mass m. This is a very

remarkable result; let us consider it further.

Newton's law asserts that the acceleration produced by any

constarit force, as for example by a stretched spring, has the

same value under all conditions. Thus, according to this state-

ment, it does not matter whether the object is initially stationary

or is traveling at high speed. Is this alvvays, and universally true?

No! It turns out that for extremely high speeds—speeds that

are a significant fraction of the speed of light—the acceleration

produced by a given force on a given object does depend on v.

Under these high-speed conditions Newton's mechanics gives

way to Einstein's, as described by the special theory of relativity:

The inertia of a given object increases systematically with speed

according to the formula

m(o) =
(1 - oVc2)"2

(6-3)

This relation is shown in Fig. 6-5, with experimental data that

substantiate it. The quantity m Q , which is called the "rest mass"

of the object, represents what we can simply call the inertial mass

in all situations to which classical mechanics applies, because

for any v « c the value of m according to Eq. (6-3) is inap-

preciably different from m .

Another implication of Newton's law, as expressed by Eq.

(6-1), is that the basic dynamics of an object subjected to a

given force does not depend on d2
v/dt

2 or on any of the higher

time derivatives of the velocity. The absence of any such com-
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plication is in itself a remarkable result, which as far as we know

continues to hold good even in the "relativistic" region of very

high velocities. It has, however, been pointed out that if one

considers physiological effects, not just the basic physics, the

existence and magnitude of d2
o/dt

2 (= da/dt) can be important.

We all know the good feeling of a "smooth acceleration" in a

car, and what we mean by that phrase is an acceleration that is

close to being constant. A rapid rate of change of acceleration

produces great discomfort, and it has even been suggested that a

unit of da/dt—to be called a "jerk"—should be introduced as

a quantitative measure of such effects!

The conclusion that we can draw from the above discussion

is that Newton's law, although ultimately limited in its applica-

tion, does express with insignificantly small error the relation

between the acceleration of an object and the force acting on it

for almost everything outside the realm of high-speed atomic

particles.

SCALES OF MASS AND FORCE

Granted that a given force produces a unique acceleration of a

given object, we can then apply this same force to different

objects. Such observations can be used to establish quantitative

scales for measuring both inertial masses and forces. In taking

this step, we adopt Newton's law as the central feature of me-

chanics. Although we have hitherto used static situations to

compare forces with one another, we now turn to dynamics for

defining the absolute magnitudes of forces in terms of the motions

they produce. This also means that instead of relying on static

measurements to give us prior knowledge of the magnitude of a

force, we accept the idea that Newton's law can be used as an

analytical tool for deducing the force from the observed ac-

celeration that it produces. Because the measures of force and

inertial mass are linked in the single equation F = ma, there is

danger of circularity in our definitions. But we shall not delve

into the subtleties of this problem; we shall simply present a

pragmatic method of establishing scales of measures for these

quantities.

Our observations permit us to assume that every time a

given spring is stretched to the same elongation, it exerts the

same magnitude of force on an object attached to it—for we
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observe a reproducible acceleration. We can then take a number

of different objects, labeled 1, 2, 3, ...
,
puli them one at a time

with the same force (i.e., our spring stretched to the same elon-

gation) and measure the individual accelerations : a x ,
a 2 , a3 ,

We can use these experimental results to define an inertial mass

scale because we can put

F = m\a\ = «12^2 = W3<33 - • •

Therefore,

m\ fl2 W!l fl3

One particular object (e.g., m,) can be chosen (arbitrarily) as a

Standard unit mass called a "kilogram." A quantitative measure

of all other inertial masses can then be obtained in terms of the

Standard object. Originally, the kilogram was defined to be the

mass of 1000 cm 3 of water at its temperature of maximum

density (about 4°C), but it is now the mass of a particular cylinder

of platinum-iridium alloy, kept at the International Bureau of

Weights and Measures in Sevres, France. (This object was in-

tended to be exactly equivalent to the liter of water, but when a

small discrepancy was discovered it was decided to switch to the

metal Standard as being generally superior in terms of durability,

reproducibility, and convenience.)

If the inertial mass is truly a property of the object alone,

then the ratios (6-4) must be independent of the particular force

used. Repeating the procedure with a spring extended by a

different amount and hence with different accelerations, one

finds experimentally that the mass ratios are the same as before.

The fact that these experimentally determined mass ratios are

independent of the magnitude of the force establishes the inertial

mass as a characteristic property of the object.

Our quantitative scale for forces likewise stems from New-

ton's law once the scale of inertial masses has been established,

so that in the MKS system, as we mentioned in our first dis-

cussion of forces in Chapter 4, the unit force (the newtori) is

defined as the force that imparts to 1 kg an acceleration of

1 m/sec 2
:

1 N = 1 kg-m/sec2

Dynamical units of force in other systems of measurement can
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be defined in an exactly similar way, A newton, as we noted in

Chapter 4, is about equal to the gravitational force on an apple,

i.e., on a mass of a few ounces.

In describing the kinds of simple experiments on which the

formulation of F = ma might be based, we introduced the result

that the inertial property represented by mass is additive. You
may be tempted to feel that this is obvious and not worthy of an

experimental test. As far as ordinary objects are concerned, this

commonsense reaction to the problem is sound. But just to

recognize that there is, in principle, a legitimate question here,

imagine that we have measured the inertial masses of a proton

and an electron, separately, and that we then let them come

together to form a hydrogen atom. Is the inertial mass of the

atom equal to the sum of the masses of the electron and proton?

No; it is a shade less. Why? Because in the formation of the

atom, with the binding together of the proton and electron, the

equivalent of a tiny amount of mass escapes in the form of

radiation. Conversely, if an object is made up of various parts

held together by cohesive forces, so that effort has to be supplied

to separate it into those parts, then the sum of the masses of the

individual parts is greater than the mass of the original object.

For ordinary objects the difference is immeasurably small, but

in atomic and nuclear systems it can become a significant feature

of the total mass, and provides the basis of calculations on the

energy of nuclear reactions, etc.

Returning now to the observed additivity of inertial masses

for macroscopic objects, we can see that this property fully

justifies the procedure of making a set of Standard masses by

constructing blocks of a given material with their volumes in

simple numerical ratios—e. g., 1 :2:5: 10 .... This proportion-

ality of mass to volume was taken by Newton himself as basic,

embodying the concept of a constant density for a given material.

The very first sentence in the Principia is, in fact, a definition

of mass as the product of density and volume—a definition that

has drawn heavy fire, because some critics regard it as circular.

"How," they say, "can one define density except as the quotient

of mass and volume?" But Newton had a picture of solid matter

as built up of small particles packed together in a uniform

manner, and it probably seemed to him more logical to take this

inner structure as primary. The calculation of the mass of a

lump of matter would then be in essence a matter of counting

the number of particles that it contained and multiplying by the

mass of a single particle.
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THE EFFECT OF A CONTINUING FORCE

Our main concern in this chapter and the next is with the in-

stantaneous effect of a force. Let us, however, take a first look

at a question that will be the subject of very extensive analysis

later in the book. This question is: What is the effect of a force

that is applied to an object and maintained for a while? You

are no doubt aware that the answer to this question can be given

in more than one way, depending on whether we consider the

time or the distance over which the force is applied. To take the

simplest possible case, let us suppose that a constant force F is

applied to an object of mass m that is at rest at time zero. Then

we have F = ma, defining a constant acceleration. The resulting

motion is thus deseribed by the most elementary versions of the

kinematic equations:

d = at

x = \ttfi

At time t the object has traveled a total distance x, and we can

caleulate two possible measures of the total effect of F:

Ft = mat = mv

Fx = (ma)$at 2
) = %mv2

Thus we arrive at the two primary dynamical properties that we

associate with a moving object: its momentum and its kinetic

energy.

The effect of F as measured by the produet Ft is called its

impulse; the effect of F as measured by the produet Fx is of course

what we call work. The quantitative measures of Ft and Fx are

newton-seconds and newton-meters. The former, which defines

our measure of momentum, does not have a special unit named

in its honor. The latter, however, is expressed in terms of the

basic unit of work or energy in the MKS system—the joule.

Thus we have

impulse —* momentum in N-sec = kg-m/sec

work > kinelic energy in N-m = joules

THE INVARIANCE OF NEWTON'S LAW; RELATIVITY

We have emphasized how the experimental basis of Newton's

law involves the observation of motions with respect to an inertial
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Fig. 6-6 Molion of

a particle P referred

to iwoframes that

have a relatiue

uelocity v.

frame of reference. The actual appearance of a given motion

will vary from one such frame to another. It is worth seeing,

therefore, how the dynamical conclusions are independent of the

particular choice of frame—which means that Newton's me-

chanics embodies a principle of relativity.

The first point to establish is that, if we have identified any

one inertial frame, S (i.e., a frame in which an object under no

forces moves uniformly in a straight line), then any other frame,

S', having a constant velocity relative to the first is also an inertial

frame. This follows directly from the fact that if an object has the

instantaneous velocity u in S, and if the velocity of S' relative to

S is v, then the instantaneous velocity of the object relative to S'

is given (see Chapter 2) by

Thus if u and v are constant velocities, so also is u', and the

object will obey the law of inertia as observed in S'.

To discuss the problem further, let us set up rectangular

coordinate systems in both frames, with their x axcs along the

direction of the velocity v (see Fig. 6-6). Let the origins O and

O' of the two systems be chosen to coincide at t — 0, at which

instant, also, the y and z axes of S' coincide with those of S.

Let a moving object be at the point P at a later time, /, when the

origin O' has moved a distance vt along the x axis of S. Then

the coordinates of P in the two systems are related by the follow-

ing equations. (It is appropriate, in view of Galileo's pioneer

work in kinematics and especially of his clear statement of the

law of inertia, that they should have become known as the

Galilean transformations.)
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(Galilean transformalion: x' = X -- vt (o = const.)

S' moves relative to S with |

L' =y
(6-5)

a constant speed u in the z' = z

-\-x direction)
| r' = r

The last of these equations expresses the Newtonian assumption

of a universal, absolute flow of time, but it also embodies the

specific convention that the zero of time is taken to be the same

instant in both frames of reference, so that all the clocks in both

frames agree with one another.

We can then proceed to obtain relationships between the

components of an instantaneous velocity as measured in the two

frames. Thus for the x components we have

, dx' dx
**
=

-d7
u
'
=

'di

Putting x' = x — vi, and dt' = dt, we have

d , ^
u'z = — (x — vt) = u, - v

dt

The transformations of all three components of velocity are as

follows:

u'x = ux — v

u'y
= u„ (6-6)

«'s = "z

Finally, diflferentiating these velocity components with respect to

time, we have (for v = const.) three equalities involving the

components of acceleration:

du'x dux dUy dUy du'z du z

dt' dt dt' dt dt' dt

Thus the measure of any acceleration is the same in both frames:

a' = a (6-7)

Since this identity holds for any two inertial frames, whatever

their relative velocity, we say that the acceleration is an invariant

in classical mechanics. This result is the central feature of

relativity in Newtonian dynamics (and it ceases to hold good in

the description of motion according to special relativity).

To illustrate the application of these ideas, consider the
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Fig. 6-7 Two dif-

ferent views of the

trajectory ofan object

after it has been

releasedfrom rest

with respect to a

movingframe. S'.

ide released

from rest

i n .V frame

Frame S Frame S'

BI

simple and familiar example of a particle falling freely under

gravity. Suppose that at t = 0, when the axes of the systems

5 and S' are coincident, an experimenter in S' drops a particle

from rest in this frame. The trajectories of the particle, as seen

in S and 5', are plotted in Fig. 6-7. In each frame the particle

is observed to follow the expected trajectory according to the

kinematic equations with a vertical acceleration g. In the S
frame, the particle has an initial horizontal velocity and therefore

it follows a parabolic path, whereas in S' the particle, under the

aetion of gravity, falls straight down. Observers in these two

different frames would agree that the equation F = ma, where

they use the same F, accounts properly for the trajectories for

any particle launehed in any manner in either frame. The frames

are thus equivalent as far as dynamical experiments are con-

cerned—either frame may be assumed stationary and the other

frame in motion, with the same laws of mechanies providing

correct explanations from the observed motions. This is a simple

example of the invariance of Newton's law itself.

INVARIANCE WITH SPECIFIC FORCE LAWS 1

In this seetion we shall consider a little more carefully what is

involved in a transformation of Newton's second law of motion.

What do we mean by a transformation of this law? Unless we

have an explicit law of foree, F = ma can be regarded as only

a preseription for deducing F from the observed motions. So let

us consider the foree provided by the interaetion between two

objects. Suppose, for simplicity, that the interaetion is provided

by something like a stretehed rubber band, so that the foree is

a funetion only of the distance r between the objects; i.e., we

can put F = f(r). For further simplicity, let us assume that the

'This seetion can be omitted without loss of continuity.
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motion is confined to the x axis. Then the force exerted on

object 2 by object I , as measured in frame S, can be written

:

F12 =/(*2- *i) (6-8)

Newton's law, as applied to object 2, is then stated as follows in

terms of measurements in S alone:

F12 = f(x? — x\) = /M2fl2 (6-9)

We shall now rewrite this equation so that it is expressed

entirely in terms of measurements made in the frame S'. From

Eq. (6-5) we have

X2 - Xi = (X2 + vl) - (x[ + ot) = x2 - x\

Thus

Fl2 = f(X2 ~ X[)

but according to the assumed law of force, the function

f(x'2 — x[) is precisely the specification of the force Fi2 in

terms of measurements in S'. Hence we can put

Fl2 = F\2

Turning now to the right-hand side of Eq. (6-9), the Galilean

transformations give us a = a'; and in Newtonian dynamics the

inertial mass is a constant: m 2 = m'i. Thus we are able to write

F[ 2 = f(x2 - x\) = m'2a2 (6-10)

We see here in explicit terms how the Newtonian law of

motion is invariant with respect to the particular choice of

inertial frame, provided that the Galilean transformations cor-

rectly describe the transformations of displacements and times

between one frame and another. A more complicated force law,

as long as it involved only the relative positions and velocities

of two interacting objects, would possess this same property of

invariance. If, however, the force depended on absolute positions

and velocities—e.g., if the force law were of the form

F12 = f(xl - x?)

then the form of the equation of motion would cease to be the

same in all inertial frames. Nothing in our experience has re-

vealed such a situation, which would make the laws of physics
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appear different in a laboratory and in a train or plane moving

at constant velocity. If the physical laws were different for

different observers, this might be a clue to the uniqueness of

certain frames of reference. It was, indeed, believed for a long

time that a unique reference frame must exist, in the form of a

medium, pervading space, in which the waves of light could be

carried. (Otherwise, how could light travel from the stars to the

earth?) But Einstein showed how the equivalence of all inertial

frames and the invariance of all physical laws could be pre-

served, provided that the kinematics of Galileo and the dynamics

of Newton were replaced by ncw formulations that merged into

the old ones in the region of moderate or small velocities.

NEWTON'S LAW AND TIME REVERSAL

The subject of this section might be more dramatically, although

less accurately, stated as a question: Is time reversible? Look

at the two stroboscopic photographs in Fig. 6-8. The first shows

an individual object moving vertically under gravity. Is it falling

down or "falling up"? The second shows a collision between

two objects. Which were the paths of the objects before collision?

In both cases the answer must be "We don't know." A motion

picture of these two sequences of events could be run backward

and it would be impossible for the viewer to detect any violation

of Newton's laws. The reason is that all velocities of a collection

of particles can be reversed without violating Newton's law of

motion. A time-reoersal operation (replacing t by — t in the

kinematical equations) changes every u to -v, but it leaves the

acceleration unchanged. (Gravity, for example, remains in

the downward direction.) This is because acceleration involves

the second derivative with respect to time. Thus any conclusions

about forces that we reach as a result of watching a dynamical

process in reverse sequcnce are identical with what we would

conclude from the process itself. We do not see attractions

apparently turn into repulsions, or anything like that.

And yet, when we see an ordinary motion picture in reverse,

it quickly becomes apparent from the behavior of inanimate

objects—leaving aside the ludicrous effects of reversing human

actions, which appear strange for quite different reasons—that

most physical actions havc a well-defined direction. Imagine, for

example, a sequence in which a glass falls from a table and

shatters into small fragments on the floor. If wc saw a motion
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(a) (b)

Fig. 6-8 (a) Strohoscopic photograph ofan object

moving vertically under gravily. Which way is it moving—
up, or down? (b) Slroboscopic photograph ofan elaslic

collision. lis time sequence is lo all intents and purposes

completely reversible. (From PSSC Physics, D. C.

Heath, Lexinglon, Massachusells, 1965.)
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picture in which the fragments gathered themselves together into

a whole glass, which then jumped up onto the table, this would

clearly be unbelievable—nature doesn't act like that. Yet a

"micromovie" of the individual atomic encounters at every stage

of the process ought to be perfectly time-reversible.

Thus we are faced with a puzzle: Newton's law implies that

the fundamental dynamical behavior of an individual particle is

reversible in time, but when one takes a system of very large

numbers of particlcs, apparently the behavior ceases to be time-

reversible. The resolution of this mystery is found in the detailed

statistical analysis of many-particle systems—the subject known

as statistical mechanics. As long as we are dealing, as we shall

be here, with systems of only a few particles, the problems

associated with time rcvcrsal do not arise and we shall not con-

sider them further.

CONCLUDING REMARKS

It will probably have become apparent to you during the course

of this chapter that the foundation of classical mechanics, as

represented by Newton's second law, is a complex and in many

respects subtle matter. The precise content of the law is still a

matter for debate, nearly three centuries after Newton stated

the first version of it. In a fine diseussion entitled "The Origin

"

and Nature of Newton's Laws of Motion," one author (Brian

Ellis) says: "But what of Newton's second law of motion? What

is the logical status of this law? Is it a definition of foree? Of

mass? Or is it an empirical proposition relating foree, mass, and

acceleration?"
1

Ellis argucs that it is something of all of these:

Consider how Newton's second law is actually used. In some

fields it is unqueslionably truc that Newton's second law is used

to define a seale of foree. How else, for example, can we mea-

sure interplanetary gravitational forees? But it is also un-

questionably true that Newton's second law is sometimes used

to define a scale of mass. Consider, for example, the use of the

mass spectrograph. And in yet other fields, where foree, mass,

and acceleration are all easily and independently measurable,

Newton's second law of motion funetions as an empirical cor-

relation between these three quantities. Consider, for example,

'Published in a colleclion of essays, Beyond the Edge ofCeriainly (Robert G.

Colodny, ed.), Prentice-Hall, Englewood Cliffs, N.J., 1965.
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PROBLEMS

the application of Newton 's second law in ballistics and rock-

etry . . . To suppose that Newton's second law of motion, or

any law for that matter, must have a unique role that we can

describe generally and call the logical status is an unfounded

and unjustifiable supposition.

Since forcc and mass are both abstract concepts and not

objective realities, we might conceive of a description of nature

in which we dispensed with both of them. But, as one physicist

(D. H. Frisch) has remarked, "Whatever we think about ultimate

reality it is convenient to follow Newton and split the description

of our observations into 'forces,' which are what make masses

accelerate, and 'masses,' which are what forces make accelerate.

This would be just tautology were it not that the observed phe-

nomena can best be classified as the result of different forces

acting on the sameset of masses." Ellis spells out this same idea

in more detail

:

Now there are, in fact, many and various procedures by which

the magnitudes of the individual forces acting on a given system

may be determined—electrostatic forces by charge and distance

measurements, elastic forces by measurement of strain, magnetic

forces by current and distance determinations, gravitational

forces by mass and distance measurements, and so on. And it is

an empirical fact that when all such foree measurements are

made and the magnitude of the resultant foree determined, then

the rate of change of momentum of the system under considera-

tion is found to be proportional to the magnitude of this re-

sultant foree.

And so it is that we obtain an immensely fruitful and accurate

description of a very large part of our whole experience of

objects in motion, through the simple and compaet statement

of Newton's second law.

'

6-1 Make a graphical analysis of the data represented by the strobo-

scopic photograph of Fig. 6-2(a) to test whether this is indeed ac-

celeration under a constant foree.

JFor further diseussion of these questions, the American Journal of Physics

is a perennial source. See, for example, the following artieles: L. Eisenbud,

"On the Ciassical Laws of Motion," Am. J. P/iys., 26, 144 (1958); N. Austern,

"Presentation of Newtonian Mechanics," Am. J. Phys., 29, 617 (1961);

R. Weinstock, "Laws of Ciassical Motion: What's F? What's ml What's

a?", Am. J. Phys., 29, 698 (1961).
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6-2 A cabin cruiser of mass 15 metric tons drifts in toward a dock

at a speed of 0.3 m/scc after its engines have been cut. (A metric ton

is 10 :i kg.) A man on the dock is able to touch the boat when it is 1 m
from the dock, and thereafter he pushes on it with a force of 700 N to

try to stop it. Can he bring the boat to rest before it touches the dock?

6-3 (a) A man of mass 80 kg jumps down to a concrete patio from

a window ledge only 0.5 m above the ground. He neglects to bend

his knees on landing, so that his motion is arrested in a distance of

about 2 cm. With what average force does this jar his bone structure ?

(b) If the man jumps from a ledge 1.5 m above the ground but

bends his knees so that his centcr of gravity descends an additional

distance h after his feet touch the ground, what must h be so that the

average force exerted on him by the ground is only three times his

normal weight ?

6-4 An object of mass 2 kg is acled upon by the following combina-

tion of forces in the xy plane: 5 N at 6 = 0, 10 N at 6 = jt/4, and

20 N at 8 = 47r/3. The direction 6 = corresponds to the +x direc-

tion. At t = the object is at the pointj;=-6m and y = 3 m and has

velocity components vx = 2 m/sec and vy = 4 m/sec. Find the

object's velocity and position at t = 2 sec.

6-5 The graphs shown give information regarding the motion in the

xy plane of three different particles. In diagrams (a) and (b) the small

(a)

Parabolic

Note!

° (Vertical lines

equally spaced)

N

Direction

,of motion

(b)

/ =
(c)
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dots indicate the positions at equal intervals of time. For each case,

write equations that describe the force components Fx and F„.

6-6 An observer first measures the velocity of an approaching object

to be 10~2 m/sec and then, 1 sec later, to be 2 X 10-2 m/sec. No

intermediate readings are possible because the observer's instruments

take a full second to determine a velocity. If the object has a mass

of 5 g, what conclusions can the observer make about

(a) The size of the force that had been aeting?

(b) The impulse supplicd by the force?

(c) The work donc by the force?

6-7 A partiele of mass 2 kg oscillates along the x axis according to

the equation

-!)x = 0.2 sin 1 5/

where x is in meters and / in seconds.

(a) What is the force aeting on the partiele at / = 0?

(b) What is the maximum force that acts on the partiele?

6-8 A car of mass 103 kg is traveling at 28 m/sec (a little over

60 mph) along a horizontal straight road when the driver suddenly

sees a fallen tree blocking the road 100 m ahead. The driver applies

the brakes as soon as his reaetion time (0.75 sec) allows and comes to

rest 9 m short of the trec.

(a) Assuming constant deceleration caused by the brakes, what

is the decelerating force? What fraetion is it of the weight of the car

(take g = 9.8 m/sec 2)?

(b) If the car had been on a downward grade of sin
-1^) with

the brakes supplying the same decelerating force as before, with what

speed would the car have hit the tree ?

6-9 A partiele of mass m follows a path in the xy plane that is de-

seribed by the following equations:

x = A(at — sin a*)

y = A(l — cos at)

(a) Sketch this path.

(b) Find the time-dependent force veetor that causes this motion.

Can you suggest a way of producing such a situation in praclice?

6-70 A piece of string of Iength /, which can support a maximum

tension T, is used to whirl a partiele of mass m in a cireular path.

What is the maximum speed with which the partiele may be whirled

if the circle is (a) horizontal; (b) vertical?
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Does the engineer ever predict the acceleration of a given

bodyfrom a knowledge of its mass and of the forces acting

upon it ? Of course. Does the chemist ever measure the

mass of an atom by measuring its acceleration in a given

field offorce? Yes. Does the physicist ever determine the

strength of a field by measuring the acceleration of a known

mass in that field? Certainly. Why then, should any one

of these roles be singled out as the role of Newton's second

law ofmotion? Thefact is that it has a variety of roles.

brian ellis, The Origin and Nature

of Newton's Laws of Motion (1961)



Using Newton's law

rr is worth reemphasizing the fact that Newton's law may be

used in two primary ways:

1. Given a knowledge of all the forces acting on a body,

we can calculate its motion.

2. Given a knowledge of the motion, we can infer what

force or forces must be acting.

'

This may seem like a very obvious and quite trivial separa-

tion, but it is not. The first category represents a purely deductive

activity—using known laws of force and making clearly defined

predictions therefrom. The second category includes the in-

duclive, exploratory use of mechanics—making use of observed

motions to learn about hitherto unknown features of the inter-

actions between objects. Skill in the deductive use of Newton's

law is of course basi c to successful analytical and design work

in physics and engineering and can bring great intellectual

satisfaction. But, for the physicist, the real thrill comes from the

inductive process of probing the forces of nature through the

study of motions. It was in this way that Newton discovered

the law of universal gravitation, that Rutherford discovered the

atomic nucleus, and that the particle physicists explore the struc-

ture of nucleons (although, to be sure, this last fleld requires

analysis in terms of quantum mechanics rather than Newtonian

mechanics).

If the law of force is also known, this can be used to obtain information

about an unknown mass. The quotation opposite treats this as a third

category.
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SOME INTRODUCTORY EXAMPLES

Kinemalic = do + at

equations

:

> s = so + eot +W2

(Constant acceleration only) d2 = do2 + 2a(s — so)

In Chapter 8 we shall have something to say about the way in

which Newton arrived at his insight into gravitational forces

from the study of planetary motions. But first we shall discuss

how onc goes about calculating motions from given forces.

There will be a certain lack of glamour about some of this initial

work—but that is an inescapable aspect of science, as of every-

thing else. And some systematic groundwork at the beginning

will pay rich dividends later. We shall restrict ourselves at first

to cases in which the forces are constant. Thus we shall be able

to use the kinematic equations for constant acceleration [Eq.

(3-10)]. For convenience, we quote the equations again here:

(7-1)

In any given problem our procedure will be first to identify

all the forces acting on an object and, from Fnct = ma, to cal-

culate the resultant acceleration. We can then use the kinematic

equations to describe the subsequent motion. Generally, this

latter step is merely an exercise in mathematics; the real "physics"

of the situation lies in the analysis of what forces are present.

Do not be misled by the apparently trivial nature of these in-

troductory problems. Taken at face value, they are, indeed,

uninteresting and inconsequential. But the method of analysis is

of salient importance—exactly the same approach is used in far

more sophisticated problems. We purposely begin by choosing

rather elementary systems to clarify the procedure, so the prob-

lems are trite. But keep your eye on the method— it is powerful.

Examp!e 1: Block on a smooth table. By a "smooth" surface

we mean one that is incapable of exerting any force tangential

to itself. No such surface exists but some come close enough for

this to be a useful idealization.

Consider a block of mass m pulled horizontally along a

frictionless surface. Question: What is the motion of the block?

'

Wc first must dctcrmine what forces act on the block. To

assist the analysis, mentally "isolate the block" with an imag-

In this and succeeding cxamplcs we make the assumption that an object at

rest rclative to the earth's surface has zero acceleration. This is only approxi-

mately true—see Chapter 12 for a full diseussion.
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Fig. 7-1 (a) BIock

pulled horizontally on

a perfeclly smooth

surface. (b) Same

block with a slring

puliing in an arbitrary

direction.

inary boundary surface [see Fig. 7-1 (a)] and draw a sketch

showing all the forces that act from outside through this surface

on the block.
1 They are

F„ = force of gravity

T = tension in the string (a contact force)

N = contact force the table exerts on the block; this force is

normal to the surface, hence our choice of the letter N

We have introduced vector symbols here because clearly forces

acting in more than one direction are involved. The complete

statement of Newton's law for this case is thus T + N + F„ =

ma. Since we assume that the block has no acceleration in the

vertical direction, we conclude that N and F„ are equal and

opposite vectors; i n other words,

N + F„ =

Expressing this a diflferent way, we can say that the magnitude

F of F„ is equal to the magnitude A' of N, because the mag-

nitude of a vector, without regard to its direction, is defined as a

positive quantity. The condition of zero net force component

along y can then be stated in the equation N — F„ = 0. The

sum of the forces on the block—the "net" force—is thus (by

vector addition) equal to T, and hence we have T = ma (with

both T and a horizontal).

'We shall, in these examples, treat each object as if it were a point particle,

with all forces accordingly acting through a single point.
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I

The problem becomes somewhat more substantial if we
suppose that the puli of the string is not horizontal [Fig. 7-1 (b)].

The initial vector statement of Newton's law is of the samc form

as before, but the analysis of it into vertical and horizontal

components now gives us the following equations:

Vertically

:

Horizontally

:

N + Tsind - F„ =

Tcosf? = ma

The first equation tells us the magnitude of N'.

N = Fg
- Tsmd

(The vertical component of the tension in the string hclps to

support the block, and so A' becomes less than Fg .) The second

equation tells us directly the magnitude of the horizontal ac-

ccleration.

We notice that there is a physical limitation on this analysis.

Unless the table can puli downward on the block, as well as

being able to push upward on it to support its weight, the force N
is necessarily upward, as shown in the diagram, and the scalar N
is necessarily positive. Thus, if Tsin > F„, we cannot satisfy

the assumed conditions. What happens then?

Example 2: Block on a rough table. As in Example 1, we

shall suppose that the block is pulled by a string with a force T,

and we shall, for simplicity, take the puli to be horizontal (see

Fig. 7-2). Although this is certainly not a difficult problem, we

cannot say what will happen unless we have some information

about the properties of the frictional force 3\ If it is "dry fric-

tion," we can put 5 < fiN, where /* is the coefficient of friction.

The value of A' is cqual to Fa in this case, and so, writing FB as

equal to m times the gravitational acceleration g, we have

9 < nmg. The inequality expresses the ability of the frictional

force to adjust itself, up to a certain limit, to balance the force T.

Fig. 7-2 Block

pulled horizontally

on a rough surface.
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Thus the equation T + JF = ma, which defines the horizontal

acceleration, leads to two separate statements:

If T < nmg: 7 - ff =

If T > nmg: T — nmg = ma

(and hence a = 0)

[and hence a = (T/m) — fig]

We shall not consider in detail what would happen ifT were

applied at an angle to the horizontal. But one can see that this

will modify the value of N and hence, in turn, the limiting value

of 5F. You should analyze this case for yourself.

Example 3: Block on a smooth incline. Two forces act on

the block (Fig. 7-3): the force N normal to the (frictionless)

surface and the gravitational force F„. These are in different

directions, they are bound to have a nonzero resultant, and the

block must accelerate. We could, if we wished, introduce hori-

zontal and vertical coordinates x and y and write equations for

F = ma that would define the components az and ay of the

vector acceleration a

:

Ncosd — F„ = ma„

N siri 6 = max

It is clear, however, that a is parallel to the slope, and it is simpler

in this case to introduce the coordinate s representing distance

along the slope in the downward direction. Resolving the forces

along and perpendicular to 5, we have

F„ sin 6 = ma

N - F cos 6 =

If we write the magnitude of the gravitational force as equal to

m times the gravitational acceleration g, the first of these equa-

tions gives us

a = g sin d

Fig. 7-3 Forces acting on a

block on a perfectly smooth

incline.
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Fig. 7-4 BIock at resi with

respect to an accelerating elevator;

the spring scale records its

apparent weight.

Example 4: BIock in an elevator. A block sits on a package

scale (a spring scale!) in an elevator (Fig. 7-4). Question: What

does the scale read as the elevator moves up and down?

Mentally isolating the block, we recognize that only two

forces act on it. They are:

Va
= the force of gravity (downward)

N = the contact force (upward) exerted by the scale on the block

The package scale records the magnitude of N, because, by the

equality of action and reaction for objects in contact, the force

exerted on the scale is —N. The value of this reading, under any

conditions, is what we shall call the measwed weight {W) of the

block.

If the elevator (and the block and scale with it) has an

acceleration a, measured as positive upward, then Newton's

law requires

Thus, if the elevator is stationary or is moving with constant

velocity upward or downward, the reading of the scale is equal to

the gravitational force on the block. But if the elevator has a

positive acceleration (upward), then we have

N = m(g + a)

In this case the weight of the block, as measured by the scale,

is greater than the gravitational force on it. One will often
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notice this effect personally, as an increased force on the soles

of the feet, when riding an elevator in two situations: (a) when

the elevator is picking up speed, going upward, and (b) when it

is slowing down, going downward. Both of these involve upward

acceleration . Similarly, if the elevator is slowing down in its

upward motion or just beginning its downward motion, a is

downward, so that the measured weight is less than F„. (Inci-

dentally, the internal discomfort that one sometimes feels in an

elevator can be linked directly to Newton's law. If the elevator

acquires a positive (upward) acceleration, onc's heart and

stomach must—literally—sink a little before they experience

extra forces from the surrounding tissues to supply the accelera-

tion called for.

Example 5 : Two connected masses. Here is a simple example

designed to illustrate the important point that one is free to

isolate, in one's imagination, any part of a complete system, and

apply F = ma to it alone. Figure 7-5 shows two masses con-

nected by a light (massless) string on a smooth (frictionless)

surface. A horizontal force, P, pulls at the right-hand mass.

What can we deduce about the situation?

First, we can imagine an isolation boundary drawn around

both m, and m 2 and the string that connects them. The only

external horizontal force applied to this system is P, and the

total mass is rtii plus m 2 - Hence we have

P = (mi + mi)a

This at once tells us the acceleration that is common to both

masses. Next, we can imagine an isolation boundary surrounding

the connecting string alone. In Fig. 7-5 we indicate the forces

T! and T2 with which the string pulls on the masses; by the

equality of aetion and reaetion, the string has forces equal to

—Ti and —

T

2 applied to its ends. The sum of these forces must

equal the mass of the string times its acceleration a. Assuming

Fig. 7-5 Two con-

nected blocks pulled

horizontal/y on a per-

fectly smooth surface.

Newton's law must

apply to any part of

the system that one

chooses to consider.
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the mass of the string to be negligible, this means that T] and T 2

would have the same magnitude, T, which we call the tension in

the string. (This idealized result is, of course, rather obvious;

what is worth noting is that, in any real situation, there would

have to be enough differencc of tcnsions at the ends of the string

to supply the requisitc accelerative force to the mass of the

string itself.)

Finally, we can imagine drawing isolation boundaries around

m x and m 2 separately, and applying Newton's law to the hori-

zontal motion of each:

T = m\a

P — T = mza

Adding these equations, we arrive at the equation of motion of

the total system once again. But if we take either equation alone,

substitution of the already determined value of a will give the

value of the tension T in terms of P and the masses.

Once again we shall acknowledge the simple character of

these problems. But if they are studied in the spirit in which they

are offered—not for their own sake, but for the way in which

they exemplify the systematic use of Newton's law—they will be

found to suggest a sound approach to almost any problem that

involves a direct application of F = mz.

MOTION IN TWO DIMENSIONS

Ali the examples in the last section dealt with motion along one

dimension only. This is not a serious limitation because, thanks

to the "independence of motions," we can always analyze a

situation at any given instant in terms of the components of

force and acccleration along separate coordinate directions. The

simplest case of this occurs when the acceleration a is a constant

vector. It is then very convenient to choose the direction of a

itself as one coordinate; along any direction perpendicular to

this the acceleration component is, by definition, zero, and the

velocity component must be constant. Probably the most familiar

example of this procedure is the analysis of motion under gravity

in the idealization that air resistance can be ignorcd. We con-

sidered this as a purely kinematic problem in Chapter 3. Another

example, with the additional feature that we have control over

194 Using Newton's law



(a)

Accelerating

anode

Controlgrid-

Focusing anode -

Vertical

deflectins

plates

Fluorescent

screen

Horizontal

deflecting

plates
Glasswallof tube

Vertical deflection

plates (simplified)

(b)

Fluorescent

screen

Resultant

deflection

from central

axis

Fig. 7-6 (a) Diagram of the main features ofa simple

cathode-ray tube. (b) Simplified diagram ofelectrical

connections and electron trajectory.

the applied force, is the motion of an electron beam in a cathode-

ray tube. Let us consider this as a dynamical problem.

'

Figure 7-6(a) shows a sketch of a cathode-ray tube, and

Fig. 7-6(b) is a schematic diagram of some principal features.

A well-focused beam from an electron gun passes between two

pairs of deflection plates which, if appropriately charged, will

deflect the beam transversely away from the central axis so as to

strike any particular point on the fluorescent screen. We shall

call the central axis the z direetion, so that the direetions of

transverse deflection, perpendicular to z and to one another,

can be called x and y, just as in a real oscilloscope.

The electron gun accelerates the electrons through a po-

'We shall make use of certain results concerning the effects of electric forees.

If these are not already familiar to you, see, for example, PSSC, Physics

(2nd ed.), Part IV, Heath, Boston, 1965.
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tential difference K . This gives to each electron a kinetic energy

eV (where e is the elementary charge) so that it acquires a lon-

gitudinal velocity component v2 given by

j»n?,fi = eVo (7-2)

Therefore,

After leaving the gun, the electron is not subjected to further

acceleration or decelcration along the z direction, so its z co-

ordinate continues to change at the rate vz .

We shall suppose that a potential difference V is applied

between the upper and lower ^-deflection plates. This means that

if an electron were to travel all the way from one plate to another,

it would acquire an energy eV in consequence of the work done

on it by the transverse electric force Fy. If we suppose the plates

to be parallel and spaced by a distance d that is small compared

to their length, the force Fv would have the same value at all

points between the plates, so that the gain of energy would also

be given by Fvd. Hence we have

F =^
*

.
d

Given this value of Fv the electron will, throughout its passage

between the plates, have an upward acceleration given by

* m md

How far vertically will the electron be deflected? This will

depend on the amount of time it spends between the deflection

plates. If the horizontal extent of the plates is /, and the hori-

zontal component of the electron's velocity has the constant

value vz , the time is given simply by

= ]_

Vz

From Eq. (7-1) we cari determine the transverse displacement y
that occurs during the time this upward force acts:

sy = vovt + \ay t

y = +
2 md\vj
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But from Eq. (7-2), mvz
2/e is just 2V , so we obtain

, = IL (7-3)

This expression gives the transverse displacement of the electron

as it emerges from the deflection plates. The resultant displace-

ment away from the central axis of the spot on the fluorescent

screen may bc found from trigonometric considerations. The z and

y components of the displacement of the electron while between

the plates are given by

z = o,

t

y = W2

Eliminating t from these equations shows that y is proportional

to z
2

, and the trajectory is therefore a parabola.

Once the electron leaves the region between the plates, there

is no further force on it and it travcls in a straight line at an

angle equal to arctan (o„/o,), where vu is its transverse velocity

component upon leaving the plates. Now we have

eV i

vy = aj = —% —

v„ eVI VI

v z mdo? IVad

The additional transverse deflection Y as the electron travels the

distance D from the deflector plates to the screen is thus given by

r-*?-g£ (7-4)
v, 2Vod

If D » /, as is usually the case in practice, most of the total

transverse deflection is contained in Y, and we can use Eq. (7-4)

to estimate the approximate sensitivity of an actual oscilloscope

[sensitivity = (spot deflection)/(deflection voltage).]

We may note in passing a striking feature of Eqs. (7-3) and

(7-4). AU distinguishing characteristics of the particle as an

electron have disappeared. Any negatively charged particle, with

any charge or any mass, could in principle pass through the

system and end up at the same spot on the screen.

In a real oscilloscope, as Fig. 7-6(a) indicates, the deflector

plates are not flat and parallel; thus Eqs. (7-3) and (7-4) do not

strictly apply. It remains true, however, that these equations

indicate the way in which the deflection depends on the ac-

celerating and deflecting voltages, and also, in a less specific way,
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on the characteristic dimensions of the tube.

MOTION IN A CIRCLE

The problem of circular motion is often presented as though it

were separate from the kinds of applications of Newton's law

that we have discussed so far. It may therefore be worth em-

phasizing that it involves a completely straightforward use of

F = wa. The only special feature is that the radial component

of the acceleration is uniquely related to the radius of the path

and the instantaneous speed.

Consider first the simplest case, in which we suppose that

an object of mass m is traveling around a circle of radius r at a

constant speed v (Fig. 7-7). Such a motion can be set up, for

example, by tethering a puck, by means of a taut string, to a

fixed peg on a very smooth horizontal surface (e.g., an air table)

and giving the puck an arbitrary velocity at right angles to the

string. Then, as wc saw in Chapter 3, the acceleration of the

object is purely toward the center of the circle and is of mag-

nitude o'
2
/r. We know that the production of this "centripetal"

acceleration necessitates the existencc of a corresponding force:

F = ma = (7-5)

In the hypothetical case that we have described, this force would

have to be supplied by the tension T in the tethering string. And
if the string is not strong enough to supply a force of the required

magnitude, it will break and the object, being now free of forces

(at least in the plane of the motion), will fly off along a tangent.

Fig. 7-7 Basic dynamical situa-

tion for a parlicle traveling in a

circle at constant speed.
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Rjf. 7-5 (a) View ofa curve in a road, as seenfrom

vertically ocerhead. (b) Car on the banked curve, as seen

front directly behind or m front.

The motion ofa car on a banked curve presents an important

practical problem of this type. Suppose that a road has a radius

of curvature r (measured in a horizontal plane), as indicated in

Fig. 7-8(a) and is banked at an angle a as shown in Fig. 7-8(b).

A car, traveling into or out of the plane of the latter diagram

with speed v, has a centripetal acceleration v
2
/r. The purpose

of banking is to make it possible for the car, traveling at some

reasonable speed, to be held in this curved path by a force exerted

on it purely normal to the road surface— i.e., thcre would be no

tangential force, as there would have to be if the road surface

were horizontal. (And the inability of the road-tire contact to

supply such a tangential force would rcsult in skidding.)

Consider, then, the ideal case as shown in Fig. 7-8(b).

Resolving the forces vertically and horizontally, and applying

F = wa, we have

Nsina =
r

(7-6)

Ncosa - F„ =

Replacing Fa by mg, and solving for a, we find that

tana = —
gr

(7-7)

which defines the correct angle of banking for given values of v
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and r. Altematively, given r and a, Eq. (7-7) defines the speed

at which the curve should be taken. The situations that arise if

greater or lesser values of v are used will require the introduction

of a frictional force J perpendicular to N (and of limiting mag-

nitude ij.N) acting inward or outward along the slope of the

banked surface (see Problem 7-17).

CURVILINEAR MOTION WITH CHANGING SPEED

If a particle changes its speed as it travels along a circular path,

it has, in addition to the centripetal acceleration toward the

center of the curvature, a component of acceleration tangent to

the path. This tangential acceleration component represents the

rate of change of the magnitude of the vclocity vector. (This is in

contrast to the centripetal acceleration component, which de-

pends upon the rate of change of the direction of the velocity

vector.) We derivcd the relevant results in Chapter 3 [Eq. (3-18)].

The situation is most easily handled by considering the two

components separately:

radial component of

acceleration (at right
J
= a, = -

angles to the path)
1

j

(r is the radius of

r curvature)

transverse acceleration) ,-
£o do [note that this is

}
= a$ = lim — = — «

(tangent to the path)| a<-.o Al di the change of

magnitude (only)

of the velocity

vector]

(7-8)

With only slight rcinterpretation, we may apply these results

to the case of motion along any arbitrary curvilinear path. For

every point along such a path, therc is a center of curvature and

an associatcd radius of curvature (both of which change as one

movcs along the path). Provided that we interpret the symbols

r and u to mean the instantaneous values of the radius of curvature

and the speed, the above expressions are perfectly general. They

give the instantaneous acceleration components—tangent to the

' In our formal diseussion of coordinate systems in Chapter 2 we defined the

outward radial direction as positive. We are introducing here the symbol a,

to denote the acceleration component along this direction. The minus sign

indicates that this acceleration is in faet toward the center (i.e., centripetal),

as we have diseussed. Sce also the diseussion on pp. 106-108.
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Arbitrary path

Fig. 7-9 Acceleration componenls at a poinl on

an arbitrarily curved palh.

path, and normal to the path—for the general curvilinear motion.

In this case Fig. 7-9 indicates a more appropriate notation for

these acceleration components.

A particle of dust that rides, without slipping, on a phono-

graph turntable as it starts up provides a simple and familiar

example of a particle possessing both radial and tangential ac-

celeration components. Its total acceleration a (Fig. 7-10) is the

combination of a r and o» at right angles: a = (ar
2 + a»

2
)

1 ' 2
.

The net horizontal force applied to the particle by the turntable

must be in the direction of a and of magnitude ma. If the contact

between the turntable and the particle cannot supply a force

of this magnitude, such circular motion is not possible and the

particle will slip relative to the surface.

If we analyze the process of whirling an object at the end

of a string, so as to bring it from rest up to some high speed of

circular motion (as, for example, in the athletic event "throwing

the hammer") we see that the string must perform two functions:

(1) supply the tangential force to increase the speed of the object,

and (2) supply the force of the appropriate magnitude mv2/r

Fig. 7-10 Net acceleration

vector ofa particle attached to

a disk ifthe angular velocity of

the disk is changing.
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Fig. 7-11 Pariide tracels in a

circular path about O. To in-

crease its speed, the slring PO'

must provide a force com-

ponent langenlial to the circle.

toward the center of the circle. To fiil this dual role, the puli

supplied by the string must "lead" the object, so that the tension

supplied by it has a tangential component, as shown in Fig. 7-11.

This can be maintained if the inner end, O', of the string is con-

tinually moved around in a circular path, as indicated. This is

the kind of thing we do more or less instinctively in practice.

CIRCULAR PATHS OF CHARGED PARTICLES IN

UNIFORM MAGNETIC FIELDS

One of the most important examples of circular motion is the

behavior of electrically charged particles in magnetic fields.

The separate section on pp. 205-206 summarizes the properties of

the magnetic force and describes how this force is in general

given by the following equation:

Fmag = W X B (7-9)

where q is the electric charge of the particle (positive or negative).

Let us now imagine a charged particle of (positive) charge

q, moving in the plane of this page, in a region in which the

magnetic fieid B points perpendicularly down into the paper.

Then from Eq. (7-9) we have

F = qvB (7-10)

This is a pure deflccting force, always at right angles to the

particle's motion. Hence the magnitude of the velocity v cannot

change, but its direction changes uniformly with time. Thus,

although there is no center of force in the usual sense, the par-

ticle describes a circular path of radius r with center O [Fig.
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(a) (b)

Fig. 7-12 (a) Charged parliclefollowing a circular path

in a uniform magnelicfield. (b) Magnelicalty curved

tracks ofelectrons and posilrons in a cloud chamber.

The main fealure is the paih ofan eleclron of inilial

energy 30 MeV going through a succession ofalmosl

circular orbils ofdecreasing radius as U loses energy.

(Courtesy oflhe Unicersily of California Lawrence

Radiation Laboralory, Berkeley.)

7-1 2(a)]. The centripetal acceleration is v2
/r, and so by Newton's

law we have

mu
qvB =

whence

mo
(7-11)

Thus the radius of the circle is a mcasure of the momentum mv
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of a particle of given charge in a given magnetic field. This fact

underlies the nuclear physicist's method for determining the

momenta of charged particles in a cloud or bubble chamber

[see Fig. 7-1 2(b)]. From the radius of the circular track which

a charged particle generates in a cloud chamber placed between

the poles of a magnet the momentum can be readily found if the

charge of the particle is known. To get the period T (or the

angular velocity), wc write

qvB = mwv

or

o> = % = 1 B (7-12)

which is independent of the particle's spced. The angular fre-

quency given by Eq. (7-12) is called the "cyclotron" frequency

and depends, for a fixed magnetic field, only on the ratio of charge

to mass of the particle. It was the recognition of this by E. O.

Lawrence that led him in 1929 to design the first cyclotron, in

which protons could be raiscd to high energies by the application

of an alternating electric field of constant frequency. The hold-

ing of charged particles in an orbit of a given radius by means

of a magnetic field is an essential feature of most high-energy

nuclear accelerators.

Having the velocity in a plane perpendicular to B is, of

course, a very special case. But if this condition is not satisfied,

we can imagine v to be resolved into one component perpendic-

ular to B and a second component parallel to B. The latter, by

Eq. (7-9), has no magnetic forcc associated with it; the former

Fig. 7-13 Helical

path ofcharged par-

ticle having a velocity

component parallel

to a magnetic field.

v s = const.
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changes with time in precisely the way described above. Thus

the resultant motion is a helix, whose projection on the plane

perpendicular to B is a fixed circle, as shown in Fig. 7-13.

CHARGED PARTICLE IN A MAGNETIC FIELD

It is a matter of experimental fact that an electrically charged

particle may, at a givcn point in space, experience a force when

it is moving which is abscnt if it is at the same point but sta-

tionary. The cxistence of such a force depends on the presence

somewhere in the neighborhood (although perhaps quite far

away) of magnets or electric currents. Detailed observations

reveal the following featurcs [cf. Fig. 7-14]:

1

.

The force is always exerted at right angles to the direction

of the velocity v of the particle. The force is reversed if the

direction of the velocity is reversed.

2. The force is proportional to the amount of charge, q,

carried by the particle. The force reverses if the sign of the

charge is reversed.

3. For a given value of q and a given direction of v, the size

of the force is proportional to the magnitude of v.

4. For motion parallel to one certain direction at a given

point, the force is zero. This direction coincides with the direc-

tion in which a compass needle placed there would align itself.

It is called the direction of the magnetic _/?eW at that point.

5. For any other direction of motion, the direction of the

Fig. 7-14 (o) Situa-

tions ofzero force

and maximum force

for a charged par-

ticle moving in a

magnetic field.

(b) General veetor

relationship of veloc-

ity, magnetic field,

and magnetic force.

Field direction

Field direction

(b)
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force is perpendicular to the plane formed by v and the field

direction.

6. The magnitude of the force is proportional, for given

values of q and v and for a fixed magnetic field arrangement, to

the sine of the angle between v and the field direction.

Ali the above results can be summarized in a very compaet

mathematical statement. We are going to intro'duce a quantitative

measure of the magnetic field strength and denote it by the

veetor symbol B, in such a way that Fig. 7-14 shows the relation

of the direetions of qv, B, and F for a charged partiele. (Note

that q may be of either sign and that F is normal to the plane

containing v and B.) Then the value of F, in both magnitude and

direction, is given by the following equation, involving the cross

produet of veetors (see p. 127):

F = «vXB

We can then use this equation to define the quantitative measure

of the magnetic field strength, such that a field of unit strength,

applied at right angles (sin 6 = 1) to a charge of 1 C moving

with a speed of 1 m/sec, would produce a force of 1 N.

MASS SPECTROGRAPHS

The charaeteristie curvature of a partiele of given q/m in a

magnetic field provides the basis of nearly all methods of obtain-

ing precise relative values of atomic and isotopic masses. Such

devices often make use of the magnetic force in two ways, first

as a velocity selector and second in the manner deseribed in the

last seetion. The velocity selection takes advantage of the faet

that the magnetic force on a charged partiele is proportional to

v, whercas the electric force is not. If a beam of charged partieles

travels between parallel plates a distance d apart, with voltage

difference V, the electric force is given by

Fa = ^ (7-13)

But the magnetic force is given by Eq. (7-10),

fmag = $<-'£

These forees can be arrangcd to be in opposite direetions by
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Fig. 7-15 (a) Schematic design ofa simpleform ofmass

spectrometer. (b) Exampfe ofisolopic separalion and

mass analysisfor isolopes of xenon with a spectrometer

like that in (a). [After A. O. Nier, Phys. Rev., 52, 933

(.1937).]
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applying the magnetic field at right angles to the electric field.

There is then only one speed at which particles can travel through

these "crossed fields" undeflected:

V_

Bd
(7-14)

Figure 7-15(a) is a diagram of a simple mass spectrograph

that uses a velocity filter of this type, followed by a region in

which the chargcd particles (ions) travel in a semicircular path

under the influence of the magnetic field alone. Figure 7— 15(b)

shows an example of the separation of isotopes by such a device.

THE FRACTURE OF RAPIDLY ROTATING OBJECTS

The question of the stresses set up in a rotating object, and the

possibility of fracture i f they bccome excessive, provides another

good example of Newton's law applied to uniform circular

motion. Whenever an object such as a wheel is rotating, every

portion of it has an acceleration toward the axis of rotation, and

a corresponding accelcrative force is required. Suppose, for

example, that a thin wheel or hoop of radius r is rotating about

its axis at n revolutions per second (rps) [see Fig. 7-1 6(a)]. Then

any small section of the hoop, such as the one shown shaded,

must be supplied with a forcc cqual to its mass, m, multiplied

by its centripetal acceleration v
2
/r. In this case the magnitude

of the angular velocity w is defined by the equation

to = 2irn

Fig. 7-16 (a) Rotat-

ing hoop. (i) Forces

aeting on a small ele-

men! of the hoop.
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Thus the instantaneous specd is given by

v = ar = lirrn (7-15)

If we make an isolation diagram [Fig. 7-16(b)] for the small

portion of material shown shaded in Fig. 7-16(a), it is clear

that the forces acting on it must be supplied via its contact with

adjacent material of the rim. ' These forces must, by symmetry,

be tangential to the rim at each point. (For example, if the force

exerted on Am at one end had a component radially outward,

then by the equality of action and reaction the portion of ma-

terial with which it was in contact would be subjected to a force

with a component radially inward. But in a uniform hoop, all

portions such as Am are equivalent; there is no basis for any

asymmetries of this kind.) Thus we can picture the small portion

of the rim being acted on by a force of magnitude T at each end.

If the length of arc represented by this portion is As, it subtends

an angle A0, equal to As/r, at the center O, and each force has a

component equal to Tsin(A0/2) along the bisector of AS. Thus

by Newton's law we have

o
2

27"sin(A0/2) = Am

—

Putting sin(A0/2) « A0/2, this then gives us

2

7"A0 ^ Am —
r

i.e.,

T— ~ Am —
r r

or

7" A.? = o2 Am (7-16)

Let us now express the mass Am in terms of the density, p,

of the material and the volume of the piece of the rim. If the

cross-sectional area o f the rim is A, we have

Am = pAAs

'We shall assume that the spokcs of the wheel serve primarily to give just a

geometrical connection between the rim and the axis and have almost negli-

gible strength.
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Substituting this into Eq. (7-16) and substituting o = lirrn from

Eq. (7-15), we obtain the following result:

T = 4t¥rV< CM7)

Now, it is an cxperimental fact that a bar or rod of a given

material will fracture under tension if the ratio of the applied

force to the cross-sectional area exceeds a certain critical value

—

the ultimate tensile strength, S. Thus we can infer from Eq. (7-17)

that a hoop of the kind we have bcen discussing has a critical

ratc of rotation, above which it will burst. We have, in fact,

Wmox =iw
1/2

(7-18)

Suppose, for cxample, that we have a steel hoop of radius 1 ft

(i.e., about 0.3 m). The density of steel is about 7600 kg/m 3
,

and its ultimate strength is about 10° N/m 2
. These values lead

to a value of nmax of about 500 rps, or 30,000 rpm—much faster

than any such wheel would normally be driven. However, the

rotors of ultracentrifuges arc, in fact, driven at speeds of this

order, up to a significant fraetion of the bursting speed for their

particular radius (sec p. 513).

MOTION AGAINST RESISTIVE FORCES

We shall now consider an important class of problems in which

an object is subjected to a constant driving force, F , but has its

motion opposed by a resistive force, R, that always acts in a

direetion opposite to the instantaneous velocity. Typical of such

forees are the frictional resistance as an object is pulled along a

solid surface, or the air resistance to falling raindrops, moving

cars, and so on. In general this resistive force is a funetion of

speed, so that the statement of Newton's law must be written

as follows:

F - R(o) = m j
(7-19)

As we saw in Chaptcr 5, the resistive force of dry frietion is

in fact nearly independent of u, as indicated in Fig. 7-1 7(a), so

that we can put

R(c) -= 5 ~ const.
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Fig. 7-17 (o) Dric-

mg and resistive

forcesfor an object

resisted by dryfric-

lion. (b) Dricing and

resistiveforcesfor an

object resisted by

fluidfriction.

Resistive

force RW

Driving force
F„

Driving force /

ff

Frictional force

"m

(a) (b)
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Equation (7-19) then reduces to the simplc case of acceleration

undcr a constant net force, as dcscribed by the kinematics of

Eqs. (7-1). The situation is very different in the case of fluid

resistance, for which R(o) increases monotonically with o, as

indicated in Fig. 7-1 7(b) and as described [Eq. (5-4)] by the

relation

R(c) = Ac + Bv2 (7-20)

In this case, if we consider an object starting out from rest under

the force F , the initial acceleration is FJm, but the net driving

force is immediately rcduced to a value below F , because as soon

as the object has any appreciable velocity it is exposed, in its

own frame of reference, to a wind or flow of fluid past it at the

speed v. The statement of Newton's law as it applies to this

problem must now be written

m— = Fq — Av — Bu
dt

(7-21)

(In this equation F , A, B, and v are all taken to be positive.

One must be careful to consider what is the appropriate state-

ment of Newton's law for this system if the direetion of v is

reversed.)

The solving of Eq. (7-21) is not at all such a simple matter

as our familiar problems involving constant forces or forces

perpendicular to the velocity. Wc are now faced with finding the

solution to an awkward differential equation. We do not intend

to plunge into all the formal mathematies of this problem. In-

stead, this is a suitable moment to point to the value of ap-
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proximate numerical methods—in other words, the method of

the digital computer, using finitely small intervals. We outlined

the principle of the method in Chapter 3 [Eq. (3-11)]; here we

have a good case for using it. First, however, let us consider

some individual features of the solution:

1. For some rangc of small values of v, the acceleration will

be almost constant and o will start off as a linear funetion of t

with slope F /m.

2. As c increases, a decreases monotonically, giving a steadily

decreasing slope in the graph of v versus t (Fig. 7-18).

3. There is a limiling speed, vm , under any given applied

foree. It is the speed at which the graph of R(v) versus v is inter-

seeted by a horizontal line at the ordinate equal to F [see Fig.

7-17(b)]. Algebraically, it is the positive root of the quadratic

equation

Bv* Ao - F =

(What is the status of the negative root, and why is it to be

discarded?)

Notice the contrast between the sharply defined value of v„,

in the graph of R(v) versus o, and the gradual manner in which

this velocity is approached (and in principle never quite reached)

if one considers u as a funetion of time (Fig. 7-18).

It is well worth taking a moment to consider the dynamical

situation represented by v = v,„. It is a motion with zero ac-

celeration under zero net foree, but it seems a far cry from the

unacceleratcd motion of objects moving under no foree at all;

and it is ccrtainly not an application of what we understand by

the principle of inertia. But let us emphasize that, like static

equilibrium, it is a case of ZF = 0. Every time we see a car

Fig. 7-18 Asymplolic approach

lo terminal speedfor object in a

fluid resislice medium.
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hurtling along a straight road at a steady 80 mph, or a jet plane

racing through the air at a constant 600 mph, we are seeing objects

traveling under zero net force. This basic dynamical fact tends to

be obscured because what matters in practical terms is the large

value of the driving force F needed to maintain the steady

motion once it has been established.

DETAILED ANALYSIS OF RESISTED MOTION

In order to see how Newton's law for resisted motion [Eq. (7-21)]

works in practice we need to introduce one additional feature

already describcd in Chapter 5—that the two terms in the rc-

sistive force differ not only in their dependcncc on d but also in

their dependence on the linear dimensions of the object (see

Fig. 7-19). Specifically, for a sphere of radius r we have

A = C\r

B = C2r'
2

and thus

R(v) = C\ro + C2'V (7-22)

The two terms in the resistance thus become equal at a critical

speed, vc , defined by the formula

V c =
c2r

(7-23)

We know that the term proportional to v will dominate the

picture if v is sufficiently small (since Bv2/Av ~ v), but we know

Fig. 7-19 (a) Linear

and quadratic terms

influid resistancefor

a small object, with

viscous resistance

predominant.

(b) Similar graphfor

a large object, for

which the v 2 term

predominates at a/l

except low speeds.
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equally that for speeds much in excess of vc (say v > 10uc) the

quadratic term takes over. If the resistive medium is air, the

coeffkients c t and c2 have the following approximate values:

ci = 3.1 X 10- 4 kgm- 1 sec
_1

c 2 = 0.87 kg/m 3

Thus, if r is expressed in meters, we have

... 3.6 X 10~4
,, ...

v c (m/sec) = (7-24)

This means that for an object such as a small pebble, with

r » 1 cm, the value of vc is only a few centimeters per second; a

speed equal to 10 times this (say 0.5 m/sec) would be acquired

in free fail under gravity within a time of about 0.05 sec and a

distance of about 0.5 in. (Check thcsc numbers!) Thus for most

problems of practical interest (we shall consider an exception in

the next section) the motion under a constant applied force in a

resisting medium can be extremely well described with the help

of the following simplified version of Eq. (7-21):

m ^ « F - B 2
(7-25)

di

The resistive term, Bv 2
, is quite important in the motion of

ordinary objects falling through the air under gravity. This

becomes very apparent if we calculate the terminal speed, v t , by

putting dv/dt = in Eq. (7-25), with F set equal to the gravita-

tional force, mg. Take, for example, the case of our pebble of

radius 1 cm. The density of stone or rock is about 2.5 times that

of water, i.e., about 2500 kg/m :!

, so we have

m = ^ pr
:s « 4(2.5 X 10

a
) X (10"

2
)
3 « 10"2 kg

The value of F is thus about 0.1 N. The value of the coef-

ficient B (= c 2r
2
) for an object of this size is about 10

-4
kg/m.

Substituting these values in the equation

F - Bu,2 =

we find

Vi « 30 m/sec

Under the assumptions of genuinely free fail, this speed would
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be attained in a time of about 3 sec and a vertical distance of

about 150 ft. We can be sure, then, that the effects of the re-

sistance become quite significant within times and distances

appreciably Iess than these. This means that many of the ideal-

ized problems of free fail under gravity, of the sort that everyone

meets in his first encounter with mechanics, do not correspond

very well with reality.

Let us now consider the computer procedure for solving

these problems. Given a computer, it is almost as little trouble

to handle the full equation [Eq. (7-21)] as it is to use the ap-

proximation represented by Eq. (7-25). But for the purposes

of discussing the method, we shall use the simpler, approximate

form.

We choose some convenient small increment of time, A/,

and will measure time from t = in terms of integral multiples

(n) of Af. In the simplest approach, we assume that the accelera-

tion during each small interval remains constant at the value

calculated for the beginning of that interval. Thus, for an initial

velocity equal to zero, the acceleration during the first At is set

equal to a (= FJm). The velocity Vi at the end of this interval

is thus given by

ci = + aoA/

Using this velocity, we calculate the acceleration d\ at / = At:

B 2
a i = tfo Clm

Applying this acceleration to the next interval, the velocity at

t = 2 At is given by

02 = vi + fli At

We know that the first step in the calculation, as performed in

this way, leads to an overestimate of Pj, but we see that in this

particular problem the error is in some measure compensated by

leading in turn to an underestimate of a%. The calculated values

of a in successive time intervals are as indicated in Fig. 7-20(a).

Applying an exactly similar treatment to the changes of position

(jt„) we would take our set of values of velocities, as given by the

above calculation and represented graphically in Fig. 7-21 (a),

and would use the following formula

:

x„ +i = x„ + v„At
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Fig. 7-20 (d) Basis

ofsimple ealculation

of acceleration versus

time for objecl start-

ingfrom resi in a

resistive medium.

The acceleration is

calculaiedfrom the

speed al the begin-

ning ofeach time in-

terval. {b)lmproved

approach to the same

problem, using ac-

celeration calculated

from speed at mid-

point ofeach time

interval. Thus we should have

x\ = ro A/ = (clearly an underestimate)

X2 = x\ + oi At = vi At

X3 = X2 + CiAt

Our graph of x versus t would be the result of summing the areas

of the rectangles in Fig. 7-21 (a) up to successively greater values

of n.

A more sophisticated analysis takes account of the fact that

a better average value of the acceleration or velocity during a

given time interval is provided by the instantaneous value at the

midpoint of that interval. Thus the acceleration between n At and

(n + 1) At is set equal to the instantaneous value at (n + -J) At.

This Ieads to the following formulas:

Fig. 7-21 (a) Veloc-

ity-time graph based

on velocities at the

beginnings of the suc-

cessive time intervals.

(b) Improved graph

based on velocities

evaluated at mid-

points of the time

intervals.
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vn+i = c„ + an+ i /2 A/

*»+l = X„ + Vn+i /2 &l
(7-26)

This looks fine, but we now run into a slight snag when we try

to get the calculation started. To find vu the velocity at the cnd
of the first interval, we now need v (= 0) and a ll2 . The lattcr,

however, by Eq. (7-25), depends on a knowledge ofvU2, which
we do not yet know. (Noticc that in the first, crude method, we
were able to start out directly from the initial conditions v

and a .) We are thus forced to compromise a little, although we

Fig. 7-22 (a) Com-
parison ofidealized

(resistanceless) and

aclual dependence of
speed on lime for a

falling pebble of

radius l cm.

(b) Idealized and

aclual dislancesfallen I

by such a pebble.
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are still Ieft with a better treatment than before. What we do is

to calculate an approximate value of vn 2 from the equation

V112 » «o -z (7-27)

and then we are under way. Figures 7-20(b) and 7-21 (b) show

what this method means in terms of graphs of a and v against

time.

Figure 7-22 shows graphs of the actual calculated variation

of speed and distance with time for our 1-cm-radius pebble falling

in air, under gravity; the idcalizcd frce-fall curves are given

for comparison.

MOTION GOVERNED BY VISCOSITY

If we are dealing with microscopic or near-microscopic objects,

such as particlcs of dust, then, in contrast to the situations dis-

cussed above, the resistance is due almost entirely to the viscous

term, Av, up to quite high values of v. If, for cxample, we con-

sider a tiny particle of radius 1 m (= 10
-6

m), then Eq. (7-24)

tells us that the critical spccd, vc , at which the contributions Av

and Bo
2 bccome equal, is 360 m/sec. This implies a wide range

of lower speeds for which the motion is controlled by viscous

resistance alone, and the statcmcnt of Newton's law can be

writtcn, without any appreciable error, in the following form:

m *° mFo -Ao (7-28)
di

with

A = c\r

Motion under these conditions played the central role in

R. A. Millikan's cclebrated "oil-drop" experiment to determine

the elcmentary electric charge. The basic idea was to measure

the electric foree exerted on a small charged object by finding the

terminal spced of the object in air. If the radius of the particle is

known, the resistive foree is completely determined, and the

driving foree must be equal and opposite to it at v = v
t

.

In Millikan's original experiments the charged partieles

were tiny droplets of oil in the mist of vapor from an "atomizer."

Such droplets havc a high probability of carrying a net electric
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Fig. 7-23 Basic paratlel-plate arrangement in Millikan

experiment.

charge of either sign when they are produced. In order to apply

electric forces to them, Millikan used the arrangement shown

schematically in Fig. 7-23. Two parallel metal plates, spaced by

a small fraction of their diameter, are connected to the terminals

of a battery. ' The force on a particle of charge q anywhere be-

tween these plates is given by

_ v
(7-29)

where V is the voltage difference applied to the plates and d is

their separation in meters. If q is measured in coulombs, F is

given in newtons by this equation. (See also our discussion of the

cathode-ray oscilloscope, p. 195.) Thus if a dynamic balance

were set up between this electric driving force and the resistive

force Av-, we should have

V
q-j= Ad, = ciru,
a

The droplets randomly produced in a mist of oil vapor are

of various sizes. The ones that Millikan found most suitable for

his experiments were the smallest (partially because they had the

lowest terminal speed under their own weight). But these drop-

lets were so tiny that even through a medium-power microscope

they appeared against a dark background merely as points of

light; no direct measurement could be made of their size.

Millikan, however, used the clever trick of exploiting the law of

viscous resistance a second time by applying it to the fail of a

droplet under the gravitational force alone, with no voltage

between the plates. Under these conditions we have

Fo = mg = y pr g

where p is the density of oil (about 800 kg/m 3
). The terminal

speed of fail under gravity is then given by

Millikan himself used plates about 20 cm across and 1 cm apart and several

thousand volts. Most modern versions of the apparatus use smaller values

of all three quantities.
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4jt a

y pr g = cirDB

(Gravitational) u„ = y — r
2

(7-30)

Putting in the approximate numcrical values we find

(Gravitational) i?„ ~ 10 r2 (u ( in m/sec, /• in m)

Putting r « lju = 10
-0

m, we have

f « 10
-4

m/sec = 0.1 mm/sec

Such a droplet would take over 1 min to fail 1 cm in air under

its own weight, thus allowing prccision measurements of its speed.

(It is clear, incidentally, that for such motions as this the re-

sistive term Bo 2
is utterly negligible.)

It is worth noting the dynamical stability of this system,

and indeed of any situation involving a constant driving force

and a resistive force that increases monotonically with speed. If

by chance the droplet should slow down a little, there is a net

force that will speed it up. Conversely, if it should speed up, it is

subjected to a net retarding force. If one could observe the

motion of a falling droplet in sufficient detail, this behavior would

doubtless be found, because the air, being made up of individual

molecules, does not behave as a perfectly homogeneous fluid. In

other words, the speed of the droplet would fluetuate about some

average value, although the fluetuations would be exceedingly

small.

In the Millikan experiment proper, the vertical motion of

the charged droplets is studied with the electric force either aiding

or opposing the gravitational force. Thus if we measure velocities

as positive downward, the terminal velocity in both magnitude

and sign will be defined by the equation

mg + *r- cm, (7-31)

where V is the voltage of the upper plate relative to the lower

and q is the net charge on the drop (positive or negative). Al-

though in principle the terminal velocity is approached but never

quite reached (see Fig. 7-18), the small droplets under the con-

ditions of the Millikan experimcnt do, in effect, reach this speed

within a very short time—much less than 1 msec in most cases

(see the next seetion).

Millikan was able to follow the motion of a given droplet
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for many hours on end, using its electric charge as a handle by

which to puli it up or down at will. In the course of such pro-

tracted observations the charge on the drop would often change

spontaneously, and several different values of v, would be ob-

tained. The crucial observation was that in any such experiment,

with a given value of the voltage V, the speed v t was limited to a

set of sharp and distinct values, implying that the electric charge

itself comes in discrete units. But Millikan went further and

obtained the first precise value of the absolute magnitude of the

elementary charge.

'

You might wonder why Millikan used such a roundabout

method to measure the electric force exerted on a charged

particle. After all, it would in principle be possible to hang such

an electrified particle on a balance and measure the force in a

static arrangement. However, in practice, when only a few

elementary charges are involved, the forces are extremely weak

and such a method is not feasible. For example, the force on a

particle with a net charge of 10 elementary units, between plates

1 cm apart with 500 V between them, is only about 10~ 13 N,

equal to the gravitational force on only 10 ,upg!

GROWTH AND DECAY OF RESISTED MOTION

We have seen how the velocity under a constant force in a

resistive fluid medium rises asymptotically toward the terminal

value. What happens if the driving force is suddenly removed?

We can guess that the velocity will decay away toward zero in a

similar asymptotic way, as indicated in Fig. 7-24. If the initial

speed is small enough, the whole decay depends on viscous re-

sistance alone and is governed by a special, simplified form of

Eq. (7-28) in which F is set equal to zero:

m— = — Av
dt

or (7-32)

do— = —at)
dt

where a = A/m.

'For his own full and interesting account (and much other good physics),

see R. A. Millikan, The Electron (J. W. M. Du Mond, ed.), University of

Chicago Press (Phoenix Series), Chicago, 1963.
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Fig. 7-24 Growth

and decay of the

velocity ofa parlicle

controlled by a vis-

cous resistiue force

proportional to v.

You may recognizc Eq. (7-32) as the basic differential

equation of all forms of exponential decay. Whether you do or

not, you may like to see how this equation can be solved by what

is in effect just arithmetic, using the approach of numerical

analysis and digital-computer techniques. We divide up the time

into a large number of equal intervals Al, and interpret Eq. (7-32)

as telling us that the changc of v between t = n At and t =

(n + 1)A/ is proportional to the mean velocity during that

interval:

Au = vn+ i -*~-"\—2—) At

Solving this, we have

t;„+ i 1 - aAt/2 _
1 + a Al/2

where/is a constant ratio, less than unity. The velocities at equal

intervals of time thus decrease in geometric proportion. If the

initial velocity is u , the velocity at time t (= k Al) is given by

Substituting the expression for / from the preceding equation

and putting k = t/At, we thus get

o(t) fO
1 - aAr/2\

1 + a At/l)

l/Ai

We shall now consider what happens to this expression as we

imagine the intervals At to be made shorter and shorter, and their

number correspondingly greater. To simplify the discussion, we

shall put

aAt = -
z
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The quantity z is then a large number that we shall allow to

approach infinity.

Besides substituting oi/= l/z in the above equation for

u(l), we shall also replace the exponent t/At by its equivalent

quantity, azt. Thus we have

/l - \/2z\
a"

\TTtj2z)\i -r i/^z/

i.e.,

o(0 «» tfO/>

where

Let us look at the behavior of p(z) as z is made larger and

larger (Table 7-1). As z increases, the number p is clearly ap-

TABLE 7-1

z y(z) Decimal value ofp

1

2

3

4

5

0/3)'

(3/5)
2

(5/7)3

(7/9)*

(9/1 l)
5

0.3333 . . .

0.3600

0.3644

0.3659

0.3667

10 (19/21)'» 0.3676

proaching a limiting value; this value is 0.367879 . . . and is the

reciprocal of the famous number e (= 2.71828 . . .), which forms

the base of natural or Napierian logarithms. Thus in Eq. (7-32)

we can put

lim p(z) = 0.367879 . . . = e
-1

Z—*X

and hence we have the following expression, now exact, for the

value of v(i):

v(t) = v e~°' (7-34)

The reciprocal of a in Eq. (7-34) is of the dimension of time
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and represents a characteristic time constant, t, for the ex-

ponential decay pjocess. I n the particular case of small spheres

moving through the air, r is defined by the equation

_ m m_ 0.

A ar

We can express this in much more vivid terms by introducing the

terminal velocity of fail under gravity, vg . For from Eq. (7-30)

we have

mg

"'w
It follows that we have

r = 2» • (7-35)
g

Thus t is equal to the time that a particle would take to reach

a velocity equal to the terminal Velocity under conditions of

free fail. For an oil drop of radius 1 /j., with v„ » 0.1 mm/sec,

this time would be only about 10
-5

sec (= 10/tsec).

In a time equal to any substantial multiple of t, the value

of v(t) as given by Eq. (7-34) falls to a very small fraction of vo-

For example, if we take the basic equation

v(t) = voe-'
ir

.
(7-36)

and put t = 10r, then the value of v becomes less than 10
-4

of

v , which for many purposes can be taken to be effectively zero.

It is more or less intuitively clear that the growth of velocity

toward its limiting value, after a particle starts from rest under

the action of a suddenly applied driving force, must be a kind

of upside-down version of the decay curve (see Fig. 7-24). In

fact, if the terminal velocity is o«, the approach to it, under these

conditions of viscous rcsistance, is described by

v(l) = oAl - e-"
T

)
(7-37)

If one chooses to write this in the form

t v — lir
v, — u(0 - »(

e

one can see explicitly how closely the growth and decay curves

are related. Indeed, one could almost deduce Eq. (7-37) from

Eq. (7-36) plus the recognition of this symmetry.
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AIR RESISTANCE AND "INDEPENDENCE OF MOTIONS"

When Galileo put forward the proposition that the motion of a

projectile could be analyzed into separate horizontal and vertical

* parts, with a constant velocity horizontally and a constant ac-

celeration under gravity vertically, he made a great contribution

to the conceptual basis of mechanics. It may be worth pointing

out, however, that this "independence of motions" breaks down

if one takes into account the resistive force exerted on objects

of ordinary size. We have seen how for such objects the magnitude

of the resistive force is proportional to the square of the speed.

Consider an object moving in a vertical plane (Fig. 7-25).

At a given instant let its velocity v be directed at an angle 6 above

the horizontal, as shown." The object is then subjected to the

gravitational force, F„, and a resistive force R(u), of magnitude

Bv2
, in a direction opposite to v. Newton's law applied to the

x and y components of the motion at any instant, thus gives us

m
d-^= -Rz = -Bo2

cose
at

dCy _ 2 • nm-^ = —mg — Bu sin 6

Since v cos 6 = vz, and v sin 6 = vu, we can rewrite these equa-

tions as foliows:

do* la \m— = - {BojOm

m-— = -mg - (flOPy
dt

Thus the equation governing each separate component of the

velocity involves a knowledge of the magnitude of the total

velocity and hence of what is happening at each instant along the

other coordinate direction. The larger the magnitude of v,

the more important does this cross connection between the dif-

(a ) ferent components of the motion become. Thus we really cannot

caleulate the vertical motion of a falling body without reference

Fig. 7-25 Resistive and gravitationalforce vectorsfor a

partiele moving in a vertical plane.
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to the horizontal component. Recognition of this fact may be

salutary for those who are accustomed to taking for granted the

idealized equations of falling objects. In the folklore of physics

there is the story of the impecunious student who would make

money off his nonscientific acquaintances by a bet. He asked

them to consider two identical objects. One is dropped from

rest at a certain height above the ground; the other is fired off

horizontally at the same instant. Which one will reach the ground

first? The victim (poor ignoramus!) would often have some

vague idea that the fast horizontal motion of the second object

must somehow keep it in the air longer. But of course that is

demonstrably false, isn't it?—look at the analysis of motion

under gravity in Chapter 3. And even a direct test would appear

to prove the poin t if the velocities were kept small. But the

complete equations, as written above, show that a large initial

horizontal velocity would increase the time taken to descend a

given vertical distance. Moral: Beware of facile idealizations.

Notice that if the resistance is purely viscous, varying as the

first power of v, then the x and y components of the motion can

be handled entirely separately, even though the problem is not

that of idealized free fail. Thus, although one can always take

a statement of Newton's law as the starting point of any problem

of a particle exposed to forces, the way of proceeding from there

to the analysis of the complete motion may depend critically on

the precise nature of the individual problem.

SIMPLE HARMONIC MOTION

One of the most important of all dynamical problems is that

of a mass attracted toward a given point by a force proportional

to its distance from that point. If the motion is assumed to be

confined to the x axis we have

F(x) = -kx (7~38)

A good approximation to this situation is provided by an object

on a very smooth horizontal table (e.g., with air suspension) and

a horizontal coiled spring, as shown in Fig. 7-26(a). The object

would normally rest at a position in which the spring is neither

compressed nor extended. The force brought into play by a

slight displacement of the mass in either direction is then well

described by Eq. (7-38). The constant k is called the spring
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(a)

o

Fig. 7-26 (a) Mass-spring sysiem on a frictionless

horizontal surface. (b) Mass hanging front a vertical

spring. (c) Graph offorce versus displacement with a

linearforce law; the equilibrium silualions O and O'

correspond to (a) and (b), respeclivety.

constant and is measured in newtons per meter. This linear force

law for a spring was discovered by Robert Hooke in 1676 and is

named after him. ' An even simpler arrangement in practice,

although slightly more complicated theoretically, is to suspend

a mass at the bottom end of a vertical spring, as in Fig. 7-26(b).

In this case the normal resting situation already involves an

extension of the spring, sufficient to support the weight of the

object. A further displacement up or down from this equilibrium

position leads, however, to a net restoring force exactly of the

form of Eq. (7-38). This is indicated in Fig. 7-26(c), which shows

the magnitude of the force exerted by the spring as a funetion

of its extension y. If one takes as a new origin of this graph the

point O', then one has a net restoring force (F — mg) propor-

tional to the extra displacement (y — ya).

The great importance of this dynamical problem of a mass

on a spring is that the behavior of very many physical systems

under small displacements from equilibrium obeys the same basic

equation as Eq. (7-38). We shall diseuss this in more detail in

Chapter 10; for the present we shall just concern ourselves with

solving the problem as such.

JHe first announced it in a famous anagram—ceiiinosssttuv—which 2 years

later he revealed as a Latin sentence, "ut tensio, sic vis" ("as. the cxtension,

so the force"). By this device (popular in his day) Hooke could claim prior

publication for his discovery without actually telling his competitors what

it was!
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This makes a good case in which to begin with the computer

method of solution rather than with formal mathematics. The

basic equation of motion, expressed in the form ma = F, is as

follows:

d\ .

(7-39)

Rewriting this as

d
2
x k

dfi m
X

we recognize that k/m is a constant, of dimension (time)
2
.

Denoting this by w 2
,
our basic equation thus becomes

dfi
= —W X (7-40)

We can read this as a direct statement of the way in which dx/dt

is changing with time and can proceed to calculate the ap-

proximate change of dx/dt in a small interval of time At

:

i(i) - -
di \<//^

and so

(f)~-w!

2
CO X

xM (7-41)

This is the reverse of the process by which d2x/dt 2 was originally

defined (cf. Chapter 3).

Fig. 7-27 Displace-

ment versus time in

simple harmonic

motion.
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Suppose, to be specific, that we start out at f = with

x = x and v (= dx/di) = v both positive, as shown in Fig.

7-27. Then at time / = A/ we have

x *» xo + fo Ar

rfx 2 »— « i>o - w A;oAr

The displacement is a little bigger, the slope a little less. Using

these new values, we take another step of A/, and so on. Several

features can be read from Eq. (7-41):

1. As long as x is positive, the slope dx/dt decreases when

we go from t to / + A/. That is, \idx/dt is positive it gets smaller;

if dx/dt is negative it becomes more negative.

2. The rate of change of dx/dt is proportional to x. The

graph has its greatest curvature at the largest x, and as x — it

becomes almost a straight line.

3. As soon as x becomes negative, dx/dt becomes less

negative or more positive with each time increment A/.

Using these considerations, we can construct the picture of

a curve that is always curving toward the line x = (i.e., the

t axis), necessarily forming a repetitive wavy pattern.

Now anyone who has ever drawn graphs of trigonometric

functions will recognize that Fig. 7-27 looks remarkably like a

sine or cosine curve. More specifically, it suggests a comparison

with the following analytic expression for the distance x as a

function of time

:

x = A sin(af + ^o)

where A is the maximum value attained by x during the motion,

a a constant with the dimension (time)
-1

, and <p an adjustable

angle that allows us to fit the value of x at t = 0.

Testing this trial function against the original differential

equation of motion [Eq. (7-40)] requires differentiating x twice

with respect to /:

v = — = aA cos(atf + <^o)
at

.2

a = -— = —oc A sin(a/ + <f>o) — —a x
at2

We see that the solution does indeed fit, provided that we put

a = w. This then brings us to the following final result:
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„v 1/2

x(t ) = A sin(w/ + *?o) where w = I —
J

(7-42a)-ay
Equation (7-42a) is the characteristic equation of what is

called simple harmonic motion (SHM), and any system that obeys

this equation of motion is called a harmonic oscillator. The

constant A is the amplitude of the motion, and v>o (Gk: phi) is

what is called the initial phase (at / = 0). The complete argument,

at + ip , of the sine function is called just "the phase" of the

motion at any given instant. The result represented by Eq. (7-42a)

could be equally well expressed by writing x as a cosine function,

rather than a sine function, of /:

x(l) = A cos(at + <p'
) (7-42b)

with an appropriate value of the constant <p'
. This form of the

solution is found more convenient for some purposes.

The harmonic motion is characterized by its period, T, which

defines successive equal intervals of time at the end of which

the state of the motion reproduces itself exactly in both dis-

placement and velocity. The value of T is readily obtained from

Eqs. (7-42) by noting that each time the phase angle (at + ip )

changes by 2w, both x and v have passed through a complete

cycle of variation. Thus we can put

<pi = uti + </>o

tpi + 2vr = o>(/i + T) + vo

Therefore, by subtraction,

2w = 10T

or

/' (r)
'

(7-43)!-(!)'

The form of this result corresponds to one's commonsense

knowledge that if m gets bigger the oscillation goes more slowly,

and if the spring is madc stiffcr (largcr k) the oscillation becomes

more rapid.

Example. A spring of negligible mass hangs vertically from

a fixed point. When a mass of 2 kg is hung from the bottom end

of the spring, the spring is stretched by 3 cm. What is the period

of simple harmonic vibration of this system?

First we calculatc the foree constant k. The gravitational
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force on the mass is 2 X 9.8 N = 19.6 N. This force causes an

extension of 0.03 m; therefore, k = 19.6/0.03 = 653 N/m.

Using Eq. (7-43) we then have

. 1/2
""

sec'-*(&) =°-35!

(You might like to note that we need not have specified the mass.

Any spring that extends 3 cm when a certain mass is hung on it

will have a vibration period of 0.35 sec with this same mass.

Why?)

MORE ABOUT SIMPLE HARMONIC MOTION

Fitting the initial conditions

We have come to recognize, both as a general principle and

through various examples, that the complete solution of any

problem in the use of Newton's law requires not only a knowledge

of the force law but also the speciflcation of two independent

quantities that correspond to the constants of integration intro-

duced as we go from a (= d 2x/dt2
) to x. Most commonly we

have talked of giving the initial position, x , and the initial

velocity, v . Here, in our analysis of the motion of a harmonic

oscillator, we also need initial conditions or their equivalent.

Actually they appear as the two constants A and <p >n Eq- (7-42).

We have already identified A as the amplitude of the motion and

<p as the initial phase. If we are given the values of x and v we

can readily solve for A and <po as follows:

From Eq. (7-42a),

x = A sin(co/ + ifio)

= ^ = wA cos(o>/ + *>o) (7-44)
dt

Therefore,

xo = A sin v>o

Vq = o>A cos v>o

It follows that

1/2

'-k+(?)T (7-45)
oixo

tan^o =
oo
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A geometrical representation ofSHM
There is a very basic connection between simple harmonic

motion and uniform motion in a circular path. This fact leads to

a particularly simple way of displaying and visualizing SHM.
Imagine that a horizontal disk, of radius A, rotates with constant

angular speed u about a vertical axis through its center. Suppose

that a peg P is mounted on the rim of the disk as shown in Fig.

7-28(a). Then, if the disk is viewed edge on (horizontally) the

peg will seem to move back and forth along a horizontal straight

line [Fig. 7-28(b)]. Its motion along this line will correspond

exactly to Eq. (7-42a) if the angular position of the peg at t =

is correctly chosen so that the angle SOP in Fig. 7-28(c) is equal

to ut + <pq. In this representation the quantity w is seen as the

actual angular velocity of P as it travels around the circle. The

peg has a velocity v that changes direction but always has the

magnitude uA. Resolving v parallel to Ox at once gives Eq.

(7-44). Thus the motion of the point B in Fig. 7-28(c) corre-

Fig. 7-28 (a) Peg on

a uniformly rotating

disk. (b) Displace-

ment of the peg as

viewed in a plane con-

laining the disk.

(c) Detailed relation

ofcircular motion to

simple harmonic

motion.
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sponds in every respect to that of a particle performing SHM
along the x axis.

Dynamical relation between SHM and circular motion

Although the analysis just described is a purely geometrical one,

it suggests a close dynamical connection, also, between the actual

linear motion of a harmonic oscillator and the projection of a

uniform circular motion. The acceptance of F = ma means that

the same motion implies the same force causing it, whatever the

particular origin of the force may be. This equivalence can be

understood with the help of Fig. 7-29. A particle of mass m is

kept moving in a circle of radius A by means of a string attached

to a fixed support at the center of the circle, O. If the particle

has a constant speed, v, the tension, T, in the string must be

given by

T = mv
~A

Here v
2/'A is the magnitude of the instantaneous acceleration,

a„ of m toward the center of the circle.

Now the total force and the total acceleration at any instant

can be resolved into their x and y components in a rectangular

coordinate system. (Normally we would not be interested in

doing this, because T and a, have well-defined constant mag-

Fig. 7-29 Dynamical

relationship between

circular motion and

linear harmonic

motion.
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PROBLEMS

nitudes.) Taking the x components alone, we have

2
mu

Fx = - T cos e = — cos e
A

2
v

ax
= r cos 8

A

Thus the x component of the complete vector equation, F = ma,

is Fx = max , with the values of Fx and ax stated above.

In order to display the dynamical identity of this component

motion with SHM, we can take the expressions for Fx and ax

separately, introducing the angular velocity « and putting v =

uA. We then have

Fx - —mco 2Acosd = —mw2x

ax = —u2Acos8 = —u2x

The first of these equations defines a restoring force proportional

to displacement, exactly in accord with our initial statement of

Hooke's law [Eq. (7-38)]. The second corresponds exactly to

the equation [Eq. (7-40)] that was our starting point for the

kinematic analysis of the problem:

d x 2

Thus we see that the dynamical correspondence is complete in

every respect. It tells us, moreover, that we could, if we wished,

go the other way and treat a uniform circular motion as a super-

position of two simple harmonic motions at right angles. This

is, in fact, an extremely important and useful procedure in some

contexts, although we shall not take time to follow it up here

and now.

7-1 Two identical gliders, each of mass m, are being towed through

the air in tandem, as shown. Initially they are traveling at a constant

speed and the tension in the tow rope A is 7"o. The tow plane then

begins to accelerate with an acceleration a. What are the tensions in

A and B immediately aftcr this acceleration begins?
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M
7-2 Two blocks, of masses M = 3 kg and m = 2 kg, are in contact

on a horizontal table. A constant horizontal force F = 5 N is applied

to block M as shown. There is a constant frictional force of 2 N be-

tween the table and the block m but no frictional force between the

table and the first block M

.

(a) Calculate the acceleration of the two blocks.

(b) Calculate the force of contact between the blocks.

7-3 A sled of mass m is pulled by a force of magnitude P at angle 8

to the horizontal (see the figure). The sled slides over a horizontal

surface of snow. It experiences a tangential resistive force equal to

M times the perpcndicular force W exerted on the sled by the snow.

(a) Draw an isolation diagram showing all the forces exerted

on the sled.

(b) Write the equations corresponding to F = ma for the

horizontal and vertical components of the motion.

(c) Obtain an expression for the horizontal acceleration in

terms of P, 6, m, n, and g.

(d) For a given magnitude of P, find what value of 6 gives the

biggest acceleration.

7-4 A block of mass mi rests on a frictionless horizontal surface;

it is connected by a massless string, passing through a frictionless

eyelet, to a second block of mass mi that rests on a frictionless incline

(see the figure).

(a) Draw isolation diagrams for the masses and write the equa-

tion of motion for each one separately.

(b) Find the tension in the string and the acceleration of mi.

(c) Verify that, for 6 = jt/2, your answers reducc to the ex-

pected results.

7-5 In the figure, P is a pulley of negligible mass. An external force

F acts on it as indicated.

(a) Find the relation between the tensions on the right-hand

and left-hand sides of the pulley. Find also the relation between F
and the tensions.

(b) What relation among the motions of m. M, and P is pro-

vided by the prescncc of the string?

(c) Use the above results and Newton's law as applied to each

block to find the accelerations of m, M, and P in terms of m. M, g,

and F. Check that the results make sense for various specialized or

simplified situations.

7-6 A man is raising himsclf and the platform on which he stands

with a uniform acceleration of 5 m/sec2 by means of the rope-and-

pulley arrangement shown. The man has mass 100 kg and the plat-

form is 50 kg. Assumc that the pulley and rope are massless and

move without frietion, and neglect any tilting effects of the platform.
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Assume g = 10m/sec2
.

(a) What are the tensions in the ropes A, B, and C?

(b) Draw isolation diagrams for the man and the platform and

draw a separate force diagram for each, showing all the forces acting

on them. Label each force and clearly indicate its direction.

(c) What is the force of contact exerted on the man by the

platform ?

7-7 In an equal-arm arrangement, a mass 5/no is balanced by the

masses 3mo and 2mo, which are connected by a string over a pulley

of negligible mass and prevented from moving by the string A (see

the figure). Analyze what happens if the string A is suddenly severed,

e.g., by means of a lighted match.

"S
-

5»i„

3»i„

2m

7-8 A prisoner in jail decides to escape by sliding to freedom down

a rope provided by an accomplice. He attaches the top end of the

rope to a hook outside his window; the bottom end of the rope hangs

clear of the ground. The rope has a mass of 10 kg, and the prisoner

has a mass of 70 kg. The hook can stand a puli of 600 N without

giving way. If the prisoner's window is 15 m above the ground, what

is the least velocity with which he can reach the ground, starting from

rest at the top end of the rope?

7-9 (a) Suppose that a uniform rope of length L, resting on a fric-

tionless horizontal surface, is accelerated along the direction of its

length by means of a force F pulling it at one end. Derive an expression

for the tension T in the rope as a function of position along its length.

How is the expression for Tchanged if the rope is accelerated vertically

in a constant gravitational field ?

(b) A mass M is accelerated by the rope in part (a). Assuming

the mass of the rope to be w, calculate the tension for the horizontal

and vertical cases.

7-10 In 1931 F. Kirchner performed an experiment to determine the

charge-to-mass ratio, e/m, for electrons. An electron gun (see the

figure) produced a beam of electrons that passed through two "gates,"

each gate consisting of a pair of parallel plates with the upper plates

connected to an alternating voltage source. Electrons could pass
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straight through a gate only if the voltage on the upper plate were

momentarily zerc. Wilh the gates separated by a distance / equal to

50.35 cm, and with a gate voltage varying sinusoidally at a frequency

/ equal to 2.449 X 10
7 Hz (1 Hz = 1 cycle/sec), Kirchner found that

electrons could pass completely undeflected through both gates when

the initial accelerating voltage (K ) was set at 1735 V. Under these

conditions the flight-time between the gates corresponded to one

half-cycle of the alternating voltage.

(a) What was the electron speed, deduced directly from / and /?

(b) What value of eIm is implied by the data ?

(c) Were corrections due to special relativity significant?

[For Kirchner's original paper, see Ann. Physik, 8, 975 (1931).]

7-11 A certain loaded car is known to have its center of gravity half-

way between the front and rear axles. It is found that the drive wheels

(at the rear) start slipping when the car is driven up a 20° incline.

How far back must the load (weighing a quarter the weight of the

empty car) be shifted for the car to get up a 25° slope? (The distance

between the axles is 10 ft.)

7-12 A child sleds down a snowy hillside, starting from rest. The

hill has a 15° slope, with a long stretch of level field at the foot. The

child starts 50 ft up the slope and continues for 100 ft on the level

field before coming to a complete stop. Find the coefficient of friction

between the sled and the snow, assuming that it is constant throughout

the ride. Neglect air resistance.

7-13 A beam of electrons from an electron gun passes between two

parallel plates, 3 mm apart and 2 cm long. After leaving the plates

the electrons travel to form a spot on a fluorescent screen 25 cm

farther on. It is desired to get the spot to deflect vertically through

3 cm when 100 V are applied to the deflector plates. What must be

the accelerating voltage Vo on the electron gun? (Show first, in

general, that if the linear displacement caused by the deflector plates

can be neglected, the required voltage is given by Vo = V(lD/2Yd),

where Y is the linear displacement of the spot on the screen. The

notation is that used on p. 197.)
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7-14 A ball of mass m is attached to one end of a string of length /.

It is known that the string will break if pulled with a force equal to

nine times the weight of the ball. The ball, supported by a frictionless

table, is made to travel a horizontal circular path, the other end of the

string being attached to a fixed point O. What is the largest number

of revolutions per unit time that the mass can make without breaking

the string?

7-75 A mass of 100 g is attached to one end of a very light rigid rod

20 cm long. The other end of the rod is attached to the shaft of a

motor so that the rod and the mass are caused to rotate in a vertical

circle with a constant angular velocity of 7 rad/sec.

(a) Draw a force diagram showing all the forces acting on the

mass for an arbitrary angle of the rod to the downward vertical.

(b) What are the magnitude and the direction of the force exerted

by the rod on the mass when'the rod points in a horizontal direction,

i.e., at0 = 90°?

7-16 You are fiying along in your Sopwith Camel at 60 mph and

2000-ft altitude in the vicinity of Saint Michel when suddenly you

notice that the Red Baron is just 300 ft behind you fiying at 90 mph.

Recalling from captured medical data that the Red Baron can with-

stand only 4 g's of acceleration before blacking out, whereas you can

withstand 5 g's, you decide on the following plan. You dive straight

down at full power, then level out by fiying in a circular are that comes

out horizontally just above the ground. Assume that your speed is

constant after you start to puli out and that the acceleration you

experience in the are is 5 g's. Since you know that the Red Baron

will follow you, you are assured he will black out and crash. Assuming

that both planes dive with 2 g's ucceleration from the same initial

point (but with initial speeds given above), to what altitude must you

deseend so that the Red Baron, in trying to follow your subsequent

are, must either crash or black out? Assuming that the Red Baron

is a poor shot and must get within 100 ft of your plane to shoot you

down, will your plan succeed ? After starting down you recall reading

that the wings of your plane will fail off if you excced 300 mph. Is

your plan sound in view of this limitation on your plane?

7-17 A curve of 300 m radius on a level road is banked for a speed

of 25 m/sec (« 55 mph) so that the force exerted on a car by the road

is normal to the surface at this speed.

(a) What is the angle of bank ?

(b) The frietion between tires and road can provide a maximum

tangential force equal to 0.4 of the force normal to the road surface.

What is the highest speed at which the car can takc this curve without

skidding?

7-18 A large mass M hangs (stationary) at the end of a string that
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passes through a smooth tube to a small mass m that whirls around

in a circular path of radius / sin 6, where / is the length of the string

from m to the top end of the tube (see the figure). Write down the

dynamical equations that apply to each mass and show that m must

complete one orbit in a time of 2ir(lm/gM) v2 . Consider whether

there is any restriction on the value of the angle 6 in this motion.

7-19 A model rocket rests on a frictionless horizontal surface and is

joined by a string of length / to a fixed point so that the rocket moves

in a horizontal circular path of radius /. The string will break if its

tension exceeds a value T. The rocket engine provides a thrust F of

constant magnitude along the rocket's direction of motion. The

rocket has a mass m that does not decrease appreciably with time.

(a) Starting from rcst at / = 0, at what later time / 1 is the rocket

traveling so fast that the string breaks ? Ignore air resistance.

(b) What was the magnitude of the rocket's instantaneous net

acceleration at time 1 1/2? Obtain the answer in terms of F, T, and m.

(c) What distance does the rocket travel between the time t\

when the string breaks and the time 2/i? The rocket engine continues

to operate after the string breaks.

7-20 It has been suggested that the biggest nuclear accelerator we

are likely to make will be an evacuated pipe running around the

earth's equator. The strength of the earth's magnetic field at the

equator is about 0.3 G or 3 X 10
-5 MKS units (N-sec/C-m). With

what speed would an atom of lead (at. wt. 207), singly ionized (i.e.,

carrying one elementary charge), have to move around such an orbit

so that the magnetic force provided the correct centripetal acceleration?

(e = 1.6 X 10~ 10
C.) Through what voltage would a singly ionized

lead atom have to be accelerated to give it this correct orbital speed ?

7-21 A trick cyclist rides his bike around a "wali of death" in the

form of a vertical cylinder (see the figure). The maximum frictional

force parallel to the surface of the cylinder is equal to a fraction n of

the normal force exerted on the bike by the wali.

(a) At what speed must the cyclist go to avoid slipping down?
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(b) At what angle (<p) to the horizontal must he be inclined?

(c) If m ~ 0.6 (typical of rubber tires on dry roads) and the

radius of the cylinder is 5 m, at what minimum speed must the cyclist

ride, and what angle does he make with the horizontal?

7-22 The following expression gives the resistive force exerted on a

sphere of radius r moving at speed v through air. It is valid over a

very wide range of speeds.

R(c) = 3.1 X 10
-4

r«J + 0.87/-V

where R is in N, r in m, and v in m/sec. Consider water drops falling

under their own weight and reaching a terminal speed.

(a) For what range of values of small r is the terminal speed

determined within 1% by the first term alone in the expression for

R(v)l

(b) For what range of values of Iarger r is the terminal speed

determined within 1% by the second term alone?

(c) Calculate the terminal speed of a raindrop of radius 2 mm.

If there were no air resistance, from what height would it fail from

rest before reaching this speed?

7-23 An experiment is performed with the Millikan oil-drop ap-

paratus. The plates are 8 mm apart. The expcriment is done with

oil droplets of density 896 kg/m3
. The droplets are timed between

two horizontal lines that are 2.58 mm apart. With the plates un-

charged, a droplet is observed to take 23.6 sec to fail from one line to

the other. When the upper plate is made 1100 V positive with respect

to the lower, the droplet rises and takes 22.0 sec to cover the same

distance. Assume that the resistive force is 3.1 X 10~ 4
n; (MKS units).

(a) What is the radius of the droplet?

(b) What is its net charge, measured as a number of elementary

charges? (e = 1.6 X 10" 19
C.)

(c) What voltage would hold the droplet stationary? [Use the

precise value of the charge deduccd in part (b)].

7-24 Two solid plastic spheres of the same material but of different

radii, R and 2R, are used in a Millikan expcriment. The spheres carry

equal charges q. The Iarger sphere is observed to reach terminal

speeds as follows: (1) plates uncharged: terminal speed = vo (down-

ward), and (2) plates charged: terminal speed = lm (upward). As-

suming that the resistive force on a sphere of radius r at speed o is

ciro, find, in terms of i>o and vi, the corresponding terminal speeds

for the smaller sphere.

7-25 Analyze in retrospect the legcndary Galilean experiment that

took place at the leaning tower of Pisa. Imagine such an experiment

done with two iron spheres, of radii 2 and 10 cm, respectively, dropped

simultaneously from a height of about 15 m. Make caleulations to
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(a)

determine, approximately, the difference in the times at which they

hit the ground. Do you think this could be detected without special

mcasuringdevices? (Density of iron « 7500 kg/m3
.)

7-26 Estimate the terminal speed of fail (in air) of an air-filled toy

balloon, with a diameter of 30 cm and a mass (not counting the air

inside) of about 0.5 g. About how long would it take for the balloon

to come to within a few percent of this terminal speed? Try making

some real observations of balloons inflated to different sizes.

7-27 A spring that obeys Hooke's law in both extension and com-

pression is extended by 10 cm when a mass of 2 kg is hung from it.

(a) What is the spring constant k ?

(b) The spring and the 2-kg mass are placed on a smooth table.

The mass is pulled so as to extend the spring by 5 cm and is then

released at / = 0. What is the equation of the ensuing motion?

(c) I f, instead of being released from rest, the mass were started

off at x = 5 cm with a speed of 1 m/sec in the direetion of increasing

x, what would be the equation of motion?

7-28 When the mass is doubled in diagram (a), the end of the spring

deseends an additional distance //. What is the frequency of oscillation

for the arrangement in diagram (b)? AH individual springs shown

are identical.

7-29 Any object, parlially or wholly submerged in a fluid, is buoyed

up by a foree equal to the weight of the displaced fluid. A uniform

cylinder of density p and length / is floating with its axis vertical, in a

fluid of density po. What is the frequency of small-amplitude vertical

oscillations of the cylinder?

7-30 (a) A small bead of mass m is attached to the midpoint of a

string (itself of negligible mass). The string is of length L and is under

constant tension T. Find the frequency of the SHM that the mass

deseribes when given a slight transverse displacement.

(b) Find the frequency in the case where the mass is attached

at a distance D from one end instead of the midpoint.

7-31 A block rests on a tabletop that is undergoing simple harmonic

motion of amplitude A and period T.

(a) If the oscillation is vertical, what is the maximum value of A
that will allow the block to remain always in contaet with the table?

(b) If the oscillatior. is horizontal, and the coefficient of frietion

betwcen block and tabletop is p., what is the maximum value of A that

will allow the block to remain on the surface without slipping?

7-32 The springs of a car of mass 1 200 kg give it a period when empty

of 0.5 sec for small vertical oscillations.

(a) How far does the car sink down when a driver and three

passengers, each of mass 75 kg, get into the car?
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(b) The car with its passengers is traveling along a horizontal

road whcn it suddenly runs onto a piece of new road surface, raised

2 in. above the old surface. Assume that this suddenly raises the

wheels and the bottom ends of the springs through 2 in. before the

body of the car begins to movc upward. In the ensuing rebound, are

the passengers thrown clear of their seats? Consider the maximum
acceleration of the resulting simple harmonic motion.
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If it universally appears, by experiments and astronomical

obseruations, that all bodies about the earth gravitate

towards the earth . . . in proportion to the auantity ofmatter

that they severally contain; that the moon likewise . . .

gravitates towards the earth . . . and all the planets one

towards another; and the comets in like manner towards

the sun; we must, in conseauence of this rule, universally

allow that all bodies whatsoever are endowed with a principle

of mutual gravitation.

newton, Principia (1686)



8

Universal gravitation

THE DISCOVERY OF UNIVERSAL GRAVITATION

in chapters 6 and 7 we have built up the kind of foundation in

dynamics that Newton himself was the first to establish. In a

nutshell, it is the quantitative identification of force as the cause

of acceleration, coupled with the purely kinematic problem of

relating accelerations to velocities and displacements. We shall

now consider, as a topic i n its own right, the first and most

splendid example of how a law offorce was deduced from the

study of motions.

It is convcnient, and historically not unrcasonable, to con-

sider separately three aspects of this great discovery:

1. The analysis o f the data concerning the orbits of the

planets around the sun, to the approximation that these orbits

are circular with the sun at the center. Several people besides

Newton were closely associated with this problem.

2. The proof that gravitation is universal, in the sense that

the law of force that governs the motion of objects near the

earth's surface is also the law that controls the motion of celestial

bodies. It seems clcar that Newton was the true discoverer of this

result, through his analysis of the motion of the moon.

3. The proof that the true planetary orbits, which are

ellipses rather than circles, are explained by an inverse-square

law of force. This achievement, certainly, was the product of

Newton's genius alone.

In the present chapter we shall be able to discuss the first

of these questions quitc fully, using only our basic results in the
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kinematics and dynamics of particles. The second question

requires us to learn (as Newton himself originally had to) how

to analyze the gravitating properties of a body, like the earth,

which is so obviously not a geometrical point when viewed from

close to its surface. We shall present one approach to the prob-

lem here and complcte the story in Chapter 11, where this special

feature of the gravitational problem is discussed. The third

question, concerning the exact mathematical description of the

orbits, is something that we shall not go into at all at this stage;

such orbit problems will be the exclusive concern of Chapter 13.

THE ORBITS OF THE PLANETS

We have described in Chapter 2 how the knowledge of the

motions of the classical planets—Mercury, Venus, Mars, Jupiter,

and Saturn—was already exceedingly well developed by the time

of the astronomer Ptolemy around 150 a.d. By this we mean

that the angular positions of these planets as a function of time

had been catalogucd with remarkable accuracy and over a long

enough span for their periodic returns to the same position in

the sky to bc cxtremely well known. We have pointed out pre-

viously, however, that the interpretation of such results depends

on the model of the solar system that one uses. Let us now look

more carefully at the original observational data and the con-

clusions that can be drawn from them.

The first thing to recognize is that, whether or not one

accepts the earth as the real center of the universe, it is the

center as far as all primary observations are concerned. From

this vantage point, the motion of each planet can be described,

to a first approximation, as a small circle (the epicycle) whose

center moves around a larger circle (the deferent). Now there

are some facts about the motions of two particular planets—

Mercury and Venus— that point the way to some far-reaching

conclusions. These are

1. That for these two planets, the time for the center C

of the epicycle [Fig. 8-1 (a)] to travel once around the deferent

is exactly 1 solar year— i.e., the same time that it takes the sun

to complcte one circuit around the ecliptic.

2. The planets Mercury and Venus never get far from the

sun. They are always found within a limited angular range from

the line joining the earth to the sun (about ±22J° for Mercury,
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Fig. 8-1 (a) Motions

of .'/.'( sun and Venus

as seen from the

earlh. Venus always

lies within the angular

range ±$m of the

sun's direction.

(6) Heliocentric

picture of the same

situation.

±46° for Venus). Both of these facts are beautifully accounted

for if we go over to the heliocentric, Copernican system [Fig.

8— l(b)]. We see that the larger circle of Fig. 8-l(a) corresponds

in this case to the earth's own orbit around the sun, of radius rs,

and the smaller circle—the epicycle—represents the orbit of the

other planet (Venus or Mercury, as the case may be). Given

this interpretation, we can proceed to make quantitative in-

ferences about the radii of the planetary orbits themselves. This

is a crucial advance of the Copernican scheme over the Ptolemaic.

Although Ptolemy had excellent data, they were for him just the

source of purely geometric parameters, but with Copernicus we

arrive at the basis of a truly physical model. Thus in Fig. 8-1 (b)

the maximum angular deviation, dm , of the planet P from the

earth-sun line ES defines the planet's orbit radius r by the

equation

— = sin i (rB > r) (8-la)

The radius of the earth's orbit is clearly a natural unit for mea-

suring other astronom ical distances, and has long been used

for this purpose:

1 astronomical unit (AU) mean distance from earth to sun

(1.496 X 10" m)

In terms of this unit, we then have
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For Mercury: r « sin 225°

For Venus: r « sin 46°

0.38 AU
0.72 AU

When it comes to the other planets (Mars, Jupiter, and

Saturn) the tables are turned. These planets are not closely

linked to the sun's position; they progress through the full 360°

with respect to the earth-sun line. This can be readily explained

if we interchange the roles of the two component circular motions,

so that the large primary circle (the deferent) is taken to be the

orbit of the planet, now larger than that of the earth, and the

epicycle is seen as the expression of the earth 's orbit around the

sun. In the case of Jupiter, for example, the Ptolemaic picture is

represented by Fig. 8-2(a) and the Copernican picture by Fig.

8-2(b). Thus the periodic angular swing, ±0m, of the epicycle is

now related to the ratio of orbital radii through the equation

^=sin-
r

(rB < r) (8-1 b)

in which the roles of r and rB are reversed with respect to Eq.

(8-la). Ptolemy's recorded values of 6m for Mars, Jupiter, and

Saturn were about 41°, 1 1°, and 6°, respectively. These would

then lead to the following results:

For Mars: r « esc 41° « 1.5 AU

For Jupiter: r « esc 11° « 5.2 AU
For Saturn: r « esc 6° ~ 9.5 AU

Thus with the Copernican seheme (and this was its great triumph)

it became possible to use the long-established data to construct

Fig. 8-2 (a) Motions

of the sun and

Jupiter as seen from

the earth. The

angle 8m here

charaeterizes the

magnitude of the

retrograde (epicyclic)

motion. (6) Helio-

centric picture of the

same situation.
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Fig. 8-3 Universe

according lo

Copernicus.

(Reproducedfrom

his hisloric work,

De Revolutionibus.)

a picture of the planets in their orbits in order of their increasing

distance from the sun. Figure 8-3 is a reproduction of the

historic diagram by which Copernicus displayed the results in

his book {De Revolutionibus) in 1543.

The data with which Copernicus worked (and Ptolemy, too,

1400 years before him) were actually far too good to permit a

simple picture of the planets describing circular paths at con-

stant speed around a common center. Thus Copernicus carried

out a detailed analysis to find out how far the center of the

orbit of each planet was offset from the sun. But even with this

adjustment, the detailed change with time of the angular positions

of the planets could not be fitted unless the motion around the

orbit was made nonuniform. Copernicus, like Ptolemy before

him, introduced auxiliary circular motions to deal with the

problem, but this, as we now know, was not the answer and we

shall not discuss its compIexities. For the moment we shall use

the basic idealization of uniform circular orbits and set aside

until later the rcfincmcnts that were first mastered by Kepler

when he recognized the planctary paths as being ellipses.

PLANETARY PERIODS

The problem of determining the periodicities of the planets, like

that of finding the shapes of their orbits, must begin with what
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Fig. &-4 (a) Relative

posilions of the sun,

the earth, and Jupiter

at the beginning

(SEiJi) and end

(SE2J2) ofone

synodic period.

(b) Comparable dia-

gram for the sun, the

earth, and Venus,

allowingfor the fact

that Venus must be

offset from the line

between sun and earth

ifit is to be visible.
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can be observed from the moving platform that is our earth.

The recurring situation that can be most easily recognized is the

one in which the sun, the earth, and another planet return, after

some characteristic time, to the same positions relative to one

another. The length of this recurrence time is known as the

synodic period of the planet in question. In terms of a helio-

centric model of the solar system, this is easily related to the

true (sidereal) period of one complete orbit of the planet around

the sun.

Consider first the case of one of the outer planets, say

Jupiter. Figure 8-4(a) shows a situation that can be observed

from time to time. The positions of the sun, the earth, and

Jupiter lie in a straight line. Observationally this could be

established by finding the date on which Jupiter passes aeross

the celestial meridian at midnight, thus placing it 180° away

from the sun.

'

Now if one such alignment is represented by the positions

Ei and J t of the earth and Jupiter, the next one will oecur rather

more than 1 ycar later, when the earth has gained one whole

revolution on Jupiter. This is shown by the positions E2 and J2 .

Jupiter has traveled through the angular distance 9 while the

earth goes through 2k + 6. Both Ptolemy and Copernicus knew

"The celestial meridian is the projection, on the celestial sphere, of a plane

containing the earth's axis and the point on the earth's surface where the

observer is located. It is thus a great cirele on the celestial sphere, running

from north to south through the observer's zenith point, vertically above him.

Noon is the instant at which the sun crosses this celestial meridian in its

daily journey from cast to west.
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that the length of the synodic period separating these two con-

figurations is close to 399 days. Let us denote the synodic period

in general by the symbol r. Then if the earth makes ns complete

revolutions per unit time and Jupiter makes nj revolutions per

unit time, we have

H£r = rtjr + 1

But nE and tij are the reciprocals of the periods of revolution

Te and Tj of the two planets. Thus we have

and solving this for Tj we have

Tj = -
T
i. (8-2a)

1 - Te/t

Putting Tb/t ~ 365/399 w 0.915, we thus find that

The same type of observation and calculation can be applied

to Mars and Saturn and the other outer planets that we now know.

When we come to Venus and Mercury, however, the situation,

as with the determination of orbital radii, is a little different.

First is the practical difficulty that we cannot, at least with the

naked eye, see these planets when they are in line with the sun,

because it would rcquire looking directly toward the sun to do

so. We can easily get around this by considering any other

situation [see Fig. 8-4(b)] in which the angle between the direc-

tions ES and EV is measured. This particular diagram shows

Venus as a morning star, appearing above the horizon 1 hr or so

before the sun as the earth rotates from west to east. The same

value of the angle a will recur after one synodic period. This

takes over l^yr—about 583 days, to be more precise. In this

case, however, it is Venus that has gaincd one revolution on the

earth. Thus instead of the form of the equation that applies to

the outer planets, we now have

tivr = ngt + 1

leading to the result

1 + Tb/t
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Putting TE/r « 365/583 « 0.627, we find that

7V« ^»224 days

It is a curious fact that Copernicus, in the introductory

general account of his model of the solar system, quotes values

of the planetary periods which are so rough that some of them

could even be called wrong. These values are marked on his

diagram (Fig. 8-3) and are repeated in his text: Saturn, 30 yr;

Jupiter, 12yr; Mars, 2yr; Venus, 9 months; Mercury, 80 days.

The worst cases are Mars (2 yr instead of about I i) and Venus

(9 months instead of about 7$). This seems to havc led some

peoplc to think that Copernicus had only a crude knowledge of

the facts, which was certainly not the case. Perhaps he was

careless about quoting the periods because his real interest was

in the geometrical details of the planetary orbits and distances.

The truth of the matter, in any event, is that his quantitative

knowledge of both periods and radii, as spelled out in detail

later in his book, was so good that the best modern values do

not, for the most part, differ significantly from the ones he

quoted. This is shown in Table 8-1, which lists both the Copern-

ican and the modern data on the classical planets. (Incidentally,

the values to be extracted from Ptolemy's data are almost iden-

TABLE 8-1: DATA ON PLANETARY ORBITS

Orbital radius, AU Synodic period, days Sidereal period

Planet Copernicus Modern Copernicus Copernicus Modern

Mercury 0.376 0.3871 115.88 87.97 days 87.97 days

Venus 0.719 0.7233 538.92 224.70 days 224.70 days

Earth 1.000 1.0000 — 365.26 days 365.26 days

Mars 1.520 1.5237 779.04 1.882 yr 1.881 yr

Jupiter 5.219 5.2028 398.96 11.87 yr 11.862 yr

Saturn 9.174 9.5389 378.09 29.44 yr 29.457 yr

tical with those of Copernicus, an astonishing tribute to those

astronomers whose measurements, from about 750 b.c. up to

the time of Ptolemy's own observations around 130 a.d., pro-

vided the basis of his analysis.)

KEPLER'S THIRD LAW

The data of Table 8-1 point clearly to a systematic relationship

between the planetary periods and distances. This is displayed
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Fig. 8-5 Smooth

curue relating the

periods and the orbital

radii of the planets.

graphically in Fig. 8-5. The precise form of the relationship was

first discovered by Johann Kepler in 1618 and published by him

the following year in his book The Harmonies of the World.

In it he triumphantly wrote: "I first believed I was dreaming . .

.

But it is absolutely certain and exact that the ratio which exists

between the periodic times of any two planets is precisely the

ratio of the ^th powers of the mean distances . . .
." Table 8-2

TABLE 8-2: KEPLER'S THIRD LAW

Planet

Radius r of

orbit of planet,

AU
Period T, rs/T2,

days (AU)'i/(dayy2 X 10"

Mercury 0.389 87.77 7.64

Venus 0.724 224.70 7.52

Earth 1.000 365.25 7.50

Mars 1.524 686.98 7.50

Jupiter 5.200 4,332.62 7.49

Saturn 9.510 10,759.20 7.43

shows the data used by Kepler and a test of the near constaney

of the ratio r3/T 2
. Figure 8-6 is a different presentation of the

planetary data (actually in this case the data of Copernicus from

Table 8-1) plotted in modern fashion on log-log graph paper so

as to show this relationship:

T~ r3 '2 (8-3)

This is known as Kepler's third law, having been preceded, 10

years earlier, by the statement of his two great discoveries (quoted
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Fig. 8-6 Log-log

plot of planetary

period T versus orbit

radius r, using data

guoted by Copernicus.

The graph shows that

T is proporlional to

r3'" (Kepler's third

law).

in the Prologue) concerning the elliptical paths of the individual

planets.

The dynamical expIanation of Kepler's third law had to

await Newton's discussion of such problems in the Principia.

A very simple analysis of it is possible if we again use the sim-

plified picture of the planetary orbits as circles with the sun at

the center. It then becomes apparent that Eq. (8-3) implies that

an inverse-square law of force is at work. For in a circular orbit

of radius r we have

Expressing v in terms of the known quantities, r and T, we have

v = 2itr
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ar
= ==- (toward the center) (8-4)

From Newton's law, then, we infer that the force on a mass in a

circular orbit must be given by

Fr =mar
=- *&£ (8-5)

From Kepler's third law, however, we have the relation

Y2 = K (8-6)

where K might be called Kepler's constant—the same value of it

applies to all the planets traveling around the sun. From Eq. (8-6)

we thus have l/T 2 = K/rz
, and substituting this in Eq. (8-5)

gives us

Fr = -^ (8-7)

The implication of Kepler's third law, therefore, when

analyzed in terms of Newton's dynamics, is that the force on a

planet is proportional to its inertial mass m and inversely pro-

portional to the square of its distance from the sun. Newton's

contemporaries Halley, Hooke, and Huygens all appear to have

arrived at some kind of formulation of an inverse-square law in

the planetary problem, although Newton's, in terms of his

deflnite concept of forces acting on masses, seems to have been

the most clear-cut. The general idea of an influence falling off

as l/r
2 was probably not a great novelty, for it is the most

natural-seeming of all conceivable effects—something spreading

out and having to cover spheres of larger and larger area, in

proportion to r2 , so that the intensity (as with light from a source)

gets weaker according to an inverse-square relationship.

The proportionality of the force to the attracted mass, as

required by Eq. (8-7), was a feature of which only Newton

appreciated the full significance. With his grasp of the concept

of intcractions exerted mutually between pairs of objects, Newton

saw that the reciprocity in the gravitational interaction must

mean that the force is proportional to the mass of the attracting

object just as it is to the mass of the attracted. Each object is

the attracting agent as far as the other one is concerned. Hence

the magnitudo of the force exerted on either one of a mutually
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gravitating pair of particles must be expressed in the famous

mathematical statement of universal gravitation

:

F _ _ Gmxm2
(8_g)

where G is a constant to be found by experiment, and m, and m 2

are the inertial masses of the particles. We shall return to the

matter of determining G in practice, but first we shall discuss

the famous problem that led Newton toward some of his greatest

discoveries concerning gravitation.

THE MOON AND THE APPLE

It is an old story, but still an enthralling one, of how Newton,

as a young man of 23, came to think about the motion of the

moon in a way that nobody had ever done before. The path of

the moon through space, as referred to the "fixed" stars, is a

line of varying curvature (always, however, bcnding toward the

sun), which crosses and recrosses the earth's orbit. But of course

there is a much more striking way of looking at it—the familiar

earth-centered view, which shows the moon describing an ap-

proximatcly circular orbit around the earth. To this extent it is

quitc like the planetary-orbit problem that we have just been

discussing. But Newton, with his extraordinary insight, con-

structed an intellectual bridge between this motion and the

behavior of falling objects—the latter being such a commonplace

phenomenon that it needed a genius to rccognize its relevance.

He saw the moon as being just an object falling toward the earth

like any other—as, for example, an apple dropping off a tree in

his garden. A very special case, to be sure, because the moon was

so much farther away than any other falling object in our ex-

perience. But perhaps i t was all part of the same pattern.

As Newton himself described it, ' he began in 1665 or 1666

to think of the earth's gravity as extending out to the moon's

orbit, with an inverse-square relationship already suggested by

Kepler's third law. We could of course just restate the cen-

tripetal acceleration formula and apply it to the moon, but it is

illuminating to trace the course of Newton's own way of dis-

cussing the problem. In effect hc said this: Imagine the moon

at any point A in its orbit (Fig. 8-7). If freed of all forces, it

'See the Prologue of this book.

256 Universal gravitation



Fig. 8-7 Geometry ofa small

portion ofa circular orbit, show-

ing the deviation y from the

tangential straiglu-line displace-

ment AB ( = x) lltat would be

followed in the absence ofgracity.

would travel along a straight line AB, tangent to the orbit at A.

Instead, it follows the arc AP. If O is the center of the earth,

the moon has in effect "fallen" the distance BP toward O, even

though its radial distance r is unehanged. Let us caleulate how
far the moon falls, in this sense, in 1 sec, and compare it with

the distance of about 16 ft that an object projected horizontally

near the earth's surface would fail in that same time.

First, a bit of analytic geometry. If we denote the distance

AB as x, and the distance BP as y, it will be an exceedingly good

approximation to put

y ~2r (8-9)

One way of obtaining this result is to consider the right triangle

ONP, in which we have

ON = r - y NP = x OP = r

Hence, by Pythagoras' theorem,

(r - y)
2 + x2 = r2

x2 = 2ry - y
2

Since y « r for any small value of the angle d, Eq. (8-9) follows

as a good approximation. Furthermore, since (again for small d)

the arc length AP (= s) is almost equal to the distance A B, we
can equally well put
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y « *- (8-10)

In order to put numbers into this formula we need to know

both the radius and the period of the moon's orbital motion.

The distance to the moon, as known to Newton, depended on the

two-step process devised by the ancient astronomers—finding

the earth's radius and finding the moon's distance as a multiple

of the earth's radius. A rcminder of these classic measurements

is given in Figs. 8-8 and 8-9 and the accompanying discussion

(pp. 259-261). The final result, familiar to everyone, is that the

moon's orbit radius r is about 240,000 miles ~ 3.8 X 10
8 m.

Its period T is 27.3 days « 2.4 X 10
fi

sec. Therefore, in 1 sec it

travels a distance along its orbit given by

r , s
2ttX 3.8 X 10* _ |WM(m 1 sec) s =
2A x 1Q|

- - « 1000 m

During this same time it falls a vertical distance, which we will

denote y>i to identify it, given [via Eq. (8-10)] by

(ini sec) >-i«7:
6-^lo«

=1
-3X,0

~
3m

In other words, in 1 sec, while traveling "horizontally" through

a distance of 1 km, the moon falls vertically through just over

1 mm, or about 5V in.; its deviation from a straight-line path is

indeed slight. On the other hand, for an object near the earth's

surface, projected horizontally, the vertical displacement in

1 sec is given by

y2 = yr- = 4.9 m

Thus

'i
- « x 'O"'' -m

Newton knew that the radius of the moon's orbit was about

60 times the radius of the earth itself, as the ancient Greeks

had first shown. And with an inverse-square law, if it applied

equally well at all radial distances from the earth's center, we

would expect yjy* to be about 1/3600. It must bc right!

And yet, what an astounding result. Even granted an inverse-

square law of attraction between objccts separated by many

times their diamctcrs, one still has the task of proving that an

258 Universal gravitation



object a few feet above the earth's surface is attracted as though

the whole mass of the earth were concentrated at a point 4000

miles below the ground. Newton did not prove this result until

1685, nearly 20 years after his first great insight into the problem.

He published nothing, either, until it all came out, perfect and

complete, in the Principia in 1687. One way of solving the problem

follows on p. 262 (after the special section below).

FIND1NG THE D1STANCE TO THE MOON

The earth's radius

About 225 B.c. Eratosthenes, who lived and worked at Alexandria

near the mouth of the Nile, reported on measurements made on

the shadows cast by the sun at noon on midsummer day. At

Alexandria (marked A in Fig. 8-8) the sun's rays made an angle

of 7.2° to the local vertical, whereas corresponding measurements

made 500 miles farther south at Syene (now the site of the

Aswan Dam) showed the sun to be exactly overhead at noon.

(In other words, Syene lay almost exactly on the Tropic of

Cancer.) It follows at once from these figures that the arc AS,

of length 500 miles, subtends an angle of 7.2° or g rad at the

center of the earth. Hcnce

500 _ 1

Re ~ 8

or

Re ~ 4000 miles

Fig. 8-8 Basis of the

method useci by

Eratosthenes to find

the earth's radius.

When the midday sun

was exactly overhead

at Syene (S) its rays

fell at 7.2° to the verti-

cal at Alexandria (A).
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The moon's distance measured in earth radii

Hipparchus, a Grcek astronomer who lived mostly on the island

of Rhodes, made observations in about 130 B.c. from which he

obtained a remarkably accurate estimate of the moon's distance.

His method was one suggested by another great astronomer,

Aristarchus, about 150 years earlier.

The method involves a clear understanding of the positional

relationships of sun, earth, and moon. We know that sun and

moon subtend almost exactly the same angle a. at the earth.

Hipparchus measured this angle to be 0.553° (« 1/103.5 rad); he

also knew what Aristarchus before him had found—that the

sun is far more distant than the moon. Hipparchus used this

knowledge in an analysis of an eclipse of the moon by the earth

(Fig. 8-9). The shaded region indicates the area that is in com-

plete shadow; its boundary lines PA and QB make an angle a

with one another, because this is the angle between rays coming

from the extreme edges of the sun. The moon passes through the

shadowed region, and from the measured time that this passage

took, Hipparchus deduced that the angle subtended at the earth

by the arc BA was 2.5 times that subtended by the moon itself.

Thus Z AOB « 2.5a.

Let us now do some geometry. If the distance from the

earth's center to the moon is D, the length of the arc BA is very

nearly equal to the earth's diameter PQ diminished by the

amount aD:

AB « 2RB - aD

Fig. 8-9 Basis of the method used by Hipparchus tofind

the moon's distance. The method depended on obseroing

the duration {and hence the augular widtli) of the moon's

total eclipse in the shadow of the earth, as represented by

the arc AB.
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But we also have

AB _
D
~ 2.5a

or

AB « 2.5aZ>

Substituting this in the first equation WC have

3.5aDi» 2RF,

or

D _ 2

3.5o

Since a «s 1/103.5 rad, this gives

Z) _5-
Combining this with the value of .Re itself, we have

D » 236,000 miles

Modern methods

Refined triangulation techniques give a mean value of 3,422.6",

or 0.951°, for the angle subtended at the moon by the earth's

radius. Using the modern value of the earth's radius

(Re = 6378 km = 3986 miles)

one obtains almost exactly 240,000 miles for the moon's mean

distance. Such traditional methods, however, are far surpassed

by the technique of making a precision measurement of the time

for a radar echo or laser reflection to return to earth. The fiight

time of such signals (only about 2.5 sec for the roundtrip) can

be measured to a fraction of a microsecond, giving range deter-

minations that are not only of unprecedcntcd accuracy but are

also effectively instantaneous.

THE GRAVITATIONAL ATTRACTION OF A LARGE SPHERE

It has long been suggested that Newton's failure to publicize

his discovery about an invcrse-square law of the earth's gravity
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extcnding to the moon was due primarily tO an actual numerical

discrepancy, resulting from his use of an erroneous value for the

earth's radius. This would, via Eq. (8-10), falsify the value of

the moon's distance of fail, since /• (the radius of the moon's

orbit) was calculated, according to the method discovered by

Hipparchus, in tcrms of the earth's radius. When Newton first

did the calculation he was home in the countryside, out of reach

of reference books, and it is reliably recorded that he calculated

the earth's radius by assuming that 1° of latitude is 60 miles,

instead of the correct figurc of nearly 70 miles. Be this as it may,

it remains almost certain that Newton, with his outstandingly

thorough and critical approach to problems, would never have

regarded the theory as complete until he had solved the problem

of gravitation by large objects. Let us now consider a way of

analyzing this problem. (In Chapter 1 1 we shall tackle it again

in a more sophisticated way.)

Suppose we have a large solid sphere, of radius R , as shown

in Fig. 8-10(a), and wish to calculate the force with which it at-

tracts a small object of mass m at an arbitrary point P. We shall

assume that the density of the material of the sphere may vary

with distance from the ccnter (as is the case for the earth, to a

very marked degree) but that the density is the same at all points

equidistant from the center. We can then consider the solid

sphere to be built up of a very large number of thin uniform

Fig. 8-10 (a) A solid sphere can be regarded as built

up ofa set ofthin concentric splierieal shells. (b) The

gravitational effect of an individual shell can befound

by treating it as an assembtage ofeireular zones.
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spherical shells, like thc successive layers of an onion. The total

gravitational effect of the sphere can be calculated as the super-

position of the effects of all these individual shells. Thus the

basic problem becomes that of calculating the force exerted by a

thin spherical shell of arbitrary radius, assuming that the funda-

mental law of force is that of the inverse square between point

masses.

In Fig. 8-10(b) we show a shell of mass M, radius R, of

negligible thickness, with a particle of mass m at a distance r

from the center of the shell. If we consider a small piece of the

shell, near point A, the force that it exerts on m is along the line

AP. It is clear from the symmetry of the system, howcver, that

the resultant force due to the whole shell must be along the line

OP; any component of force transverse to OP due to material

near A will be canceled by an equal and opposite contribution

from material near A'. Thus if we have an element of mass dM
near A, we need only consider its contribution to the force along

OP, i. e., the radial direction from the center of the shell to m.

Hence we have

GmdM
s2

Let us now consider a complete belt or zone of the shell, shown

shaded in the diagram. It represents the portion of the shell that

is contained between the directions and 6 + dd to the axis OP,

and the same mean values of s and <p apply to every part of it.

Thus, if we calculate its mass, we can substitute this value as

dM in Eq. (8-11) to obtain the contribution of the whole belt to

the resultant gravitational force along OP. Now the width of

the belt is R dd and its circumference is 2irR sin 9; thus its area

is 2irR
2
sin 6 dd. The area of the whole shell is 4irR

2
; hence the

mass of the belt is given by

_. 2TrR
2 sm6d6 .. M . Q „dM = —

—

M = — sin d6

Thus Eq. (8-11) gives us

GMm cos f sin 9 dd .. ,.
OFr = j Ti

(o-lZ)

Our task now is to sum the contributions such as dFr over the
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whole of the shell, i.e., over thc whole range of values of .?, <p,

and e. This looks like a formidable task, but with the help of a

little calculus (another of Newton's inventions!) the solution

turns out to be surprisingly straightforward.

From the geometry of the situation [Fig. 8-10(b)], it is

possible to exprcss both of the angles and <p in terms of two

fixed distances, r and R, and the variable distance s. By two

separate applications of the cosine rule we have

,»+ *»- l r
2 + s

2 - R 2

cose = - -uar "* v =~ ~^T

From the first of these, by differentiation, we have

• „ ,n sds
sin 6 dd = —--

rR

Hence, substituting the values of cos <p and sin 6 dd in Eq. (8-12),

we obtain

GMm (r
2 + s

2 - R2
)ds

dFr = " ~4^R ^

The total force is found by integrating this expression from the

minimum value of s (= r — R) to its maximum value (r + R).

Thus we have

"--^ird±4^-'f -

The integral is just the sum of two elementary forms; we have

r
2 -R2

Inserting the limits, we then find that

/

r+B
2 J. 2 _ »2

f "*"% — ds m [(r + R)- (r - R)]
T-R S*

_ (
r
2 - R2 _ r

2 - R2
\

\r+ R " r- R J
= 2R - (r- R) + (r + R)

= 4R
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Substituting this value of the definite integral in Eq. (8-13) we

have

Fr = -^ (8-14)

What a wonderful result! It is of extraordinary simplicity, and

the radius R of the shell does not appear at all. It is uniquely a

consequence of an inverse-square law of force between particles;

no other force law would yield such a simple result for the net

effect of an extended spherical object.

Once we have Eq. (8-14), the total effect of a solid sphere

follows at once. Regardless of the particular way in which the

density varies between the center and the surface (provided that

it depends only on R) the complete sphere does indeed act as

though its total mass were concentrated at its center. It does

not matter how close the attracted particle P is to the surface

of the sphere, as long as it is in fact outside. Take a moment to

consider what a truly remarkable result this is. Ask yourself: Is

it obvious that an object a few feet above the apparently fiat

ground should be attracted as though the whole mass of the

earth (all 6,000,000,000,000,000,000,000 tons of it!) were con-

centrated at a point (the earth's center) 4000 miles down? It is

about as far from obvious as could be, and there can be little

doubt that Newton had to convince himself of this result before

hc could establish, to his own satisfaction, the grand connection

between terrestrial gravity and the motion of the moon and

other celestial objects.

OTHER SATELLITES OF THE EARTH

Newton's thinking quite explicitly embraced the possibility—at

least theoretically—of having other satellites of the earth. Figure

8—1 1 is an illustration from Newton's book, The System of the

World (which is incorporated in the Principia); it shows the

transition from the effectively parabolic trajectories of short-

range projectiles (although the apparent parabolas are really

small parts of ellipses) to a perfectly cireular orbit and then to

other elliptic orbits of arbitrary dimensions.

Let us derive the formulas for the required velocity v and

the period T of a satellite launehed horizontally in a cireular

orbit at a distance r from the center of the earth. The necessary
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Fig. 8-11 Newlon's

diagram showing the

transitionfront normal

parabolic trajectories

to complete orbits

encircling the earth.

(From The System of

the World.)

force to maintain circular motion is provided by gravitational

attraction:

mv
r

= G
Mnm
r*

where Mg is the mass of the earth, m the mass of the satellite,

and G the universal gravitational constant. Solving for v,

.-(«T (8-15)

It is often convenient to express this result in terms of more

familiar quantities. We can do this by noticing that, for an

object of mass m at the earth 's surface, the gravitational force

on it, by Eq. (8-8), is

F. - GMatn

Re2

But this is the force that can be set equal to mg for the mass in

question. Hence we have

mg = GMgm
Rs2

or

GME = gRE

Substituting this in Eq. (8-15), we get
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v 1/2-W
The period, T, of the satellite is then given by

2xr _ 2^/2

v g ll2RE
(8-16)

Putting g = 9.8 m/sec 2
, /?g = 6.4 X 10° m, we have a nu-

merical formula for the period of any satellite in a circular orbit

of radius r around the earth:

(Earth satellites) T w 3.14 X 10~7
r3/2 (8-17)

where T is in seconds and r in meters.

For example, a satellite at minimum practicable altitude

(about 200 km, say), has r « 6.6 X 10° m, and hence

T « 5.3 X 10 ;i sec w 90 min

The first man-made satellite, Sputnik I (October 1957) had

an orbit as shown in Fig. 8-1 2(a). Its maximum and minimum

distances from the earth's surface were initially 228 and 947 km,

respectively, giving a mean value of r equal to about 6950 km.

Fig. 8-12 (a) Orbit ofSputnik I, the first man-made

satellite (October 1957). (A) Synchronous satellite com-

munication System. Orbital diameter in relation to

earth's diameter is approximately to scale.
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With this value of r, Eq. (8-17) gives an orbital period of about

96 min, which agrees closely with the observed figure.

Particular interest attaches to synchronous satellites that

have an orbital period equal to the period of the earth's rotation

on its axis. If placed in orbit in the earth's equatorial plane, such

satellites will remain above the same spot on the earth's surface,

and a set of three of them, ideally in a regular triangular array

as shown in Fig. 8-12(b), can provide the basis of a worldwide

Communications system with no blind spots. Putting T = 1 day

in Eq. (8-17), one finds r « 42,000 km or 26,000 miles. Thus

such satellites must be about 22,000 miles above the earth's sur-

face, i. e., about 5£ earth radii overhead. The first such satellite

to be successfully launched was Syncom II in July 1963.

Equation (8-16), on which the above calculations are based,

has a very noteworthy feature. A satellite traveling in a circular

orbit of a given radius has a period independent of the mass of

the satellite. Thus a massive spaceship of many tons will, for

the same value of r, have precisely the same orbital period as a

flimsy object such as one of the Echo balloons, with a mass of only

about 100 kg—or, for that matter, a small piece of interplanetary

debris with a mass of only a few kilograms. This result is a

direct consequence of the fact that the gravitational force on

any object is strictly proportional to its own mass.

THE VALUE OF G, AND THE MASS OF THE EARTH

Although the result expressed by Eq. (8-14) was obtained by

considering a large sphere and a small particle, one can quickly

convince oneself that it is also the correct statement of the force

between any two spherical objects whose centers are a distance

r apart. For suppose that we have two such spheres, as shown

in Fig. 8-1 3(a). The calculation that we have carried out shows

that one sphere (say the one on the left) attracts every particle

of the other as if the left-hand mass were a point [Fig. 8-1 3(b)].

This therefore reduces the problem to the mutual gravitational

attraction between a sphere (the right-hand sphere, of mass m)

and a point particle of mass M. But now we can apply the result

of the Iast section a second time. Thus we arrive at Fig. 8-1 3(c),

with two point masses separated by a distance r, as a rigorously

correct basis for calculating the force of attraction between the

two extended masses shown in Fig. 8-1 3(a).

The above result is important in the analysis of the experi-

ment, already described in Chapter 5, for finding the universal
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Fig. 8-13 (a) Two gracilaiing spheres at small separa-

lion. (b) Effect ofone spliere (M) can be calculated by

treating it as a poinl mass. (c) The argumen! can be

repeated, so thal the attraction between the spheres can

be calculated as lhougli bolh were poinl masses.

gravitation constant. G, from the measured force between two

spheres of known masses. In order to get the biggest possible

effect with an interaction that is so extremely weak, it is usual

to arrange things so that the centers of the spheres are separated

by only a little more than the sum of the radii. It is then a great

convenience to be able to calculate the force, even under these

conditions, on the basis of Eq. (8-14). Notice, however, that

the result holds only for spheres. Some of the measurements to

determine G have made use of cylindrical masses, because of the

greater ease of machining them to high precision. In such cases

it becomes necessary to calculate the net force by an explicit

integration over the spatial distribution of material.

The prescntly accepted value of G, as obtained from labora-

tory measurements of the force exerted between two known

masses, is (as already quoted in Chapter 5):

G = 6.670 X 10-" m :7kg-sec2 (8-18)

Newton himself did not know the value of G, although he made

a celebrated guess a t the mean density of the earth, from which

he could have obtained a conjectural figure. In Book III of the

Principia, he remarks at one point as follows : "Since ... the

common matter of our earth on the surface thereof is about

twice as heavy as water, and a little lower, in mines, is found

about three, or four, or even five times heavier, it is probable

that the quantity of the whole matter of the earth may be five

or six times greater than if it consisted all of water . . .
."

If we denote the mean density of the earth as p and its radius

as R, the gravitational force exerted on a partiele of mass m just

at the earth's surface is given by
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F = 9Mn (8-19)
R 2

where

Hence

4*
F = -- (GpR)m

Since, however, this is just the force that gives the particle an

acceleration g in free fail, we also have

F = mg

It follows, then, that

g = ^GpR (8-20)

If in this cquation we put g « 9.8 m/sec 2
, R ~ 6.37 X 10° m,

and (using Newton's estimate) p ~ 5000 to 6000 kg/m 3
, we

find that

G « (6.7 ± 0.6) X 10-" m :,/kg-sec2

Thus Newton's estimate was almost exactly on target. In prac-

tice, of course, the calculation is done the other way around.

Given the directly determined value of G [Eq. (8-18)] we sub-

stitute in Eqs. (8-19) and (8-20) to find the mass and the mean

density of the earth. The result of these substitutions (with

R = 6.37 X 10° m) is

M = 5.97 X 10
24 kg

p = 5.52 X 10 3 kg/m 3

LOCAL VARIATIONS OF g

If we take the idealization of a perfectly spherical, symmetrical

earth, then the gravitational force on an object of mass m at a

distance h above the surface is given by

GMm
F =

(R + A)2
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If we identify F with m times the value of g at the point in ques-

tion, we have

» -m (8-2,)

For /i « R, this would imply an almost exactly linear decrease

of g with height. Using the binomial theorem, we can rewrite

Eq. (8-21) as follows:

,,, GM(.,h\—

m \ * *2~ 7

Hence, for small h, we have

gCA)-w(l-f) (8-22)

where g = GM/R 2
, the value of g at points extremely close to

the earth's surface. [Alternatively, we can use a calculus method

that can be extremely useful whenever we want to consider the

fractional variation of a quantity. It is based on the fact that the

differentiation of the natural logarithm of a quantity leads at

once to the fractional variation. In the present case we have

.. GM
«W = -^T

Therefore,

ln g = const. — 2 ln r

Differentiating,

As k _ 2
Ar

g r

Hence, putting r = R, g = go, and Ar = h, we have

Ag ^ - 2go -

which leads us back to Eq. (8-22). Notice how this method

frees us of the need to concern ourselves with the values of any

multiplicative constants that appear in the original equation

—

e.g., the value of GM in the equation for g. A recognition of this

fact can enable one to avoid a lot of unnecessary arithmetic in
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the computation of small changes of one quantity that depends

upon another according to some well-defined functional re-

lationship.]

Newton's contcmporary, Robert Hooke, made several

efforts to detect a variation of the gravitational attraction with

height. He did this by looking for any changes in the measured

weights of objects at the tops of church towers and the bottoms

of deep wells. Not surprisingly, he was unable to find any dif-

ference. By Eq. (8-22) one would have to ascend to a point

about 1000 ft above ground (e. g., the top of the Empire State

Building) before the decrease of g was even as great as I part in

10,000. As we shall see in a moment, however, such variations

are detected with the greatest of ease by modern techniques.

Superimposed on the systematic variations of the gravita-

tional force with height are the variations produced by in-

homogeneities in the material of the earth's crust. For example,

if one is standing above a subterranean deposit of salt or sand,

much lower in density than ordinary rocks, one would expect the

value of g to be reduced. Such changes, although extremely

small, can be measured with remarkable accuracy by modern

instruments and have become a very valuable tool in geophysical

prospccting.

Almost all modern gravity meters are static instruments, in

which a mass is in equilibrium under the combined action of

gravity and an elastic restoring force supplied by a spring. In

other words, it is just a very sensitive spring balance. A change

in g as the instrument is moved from one point to another leads

to a minute change in the equilibrium position, and this is de-

tected by sensitive optical methods or electrically by, for ex-

ample, making the suspended mass part of a tuned circuit whose

capacitance, and hencc frequency, is changed by the slight

displaccment. To be useful, such instruments must be capable

of detecting fractional changes of g of 10
-7

or less. Figure

8-14(a) shows the basic construetion of one such device. With

it one can trace out contours of constant g over a region of

interest. Figure 8-14(b) shows the results of such a survey, after

allowance has been made for effects due to varying altitude,

surface features, and so on. Such contours can give good in-

dications of ore concentrations. The primary unit of mcasure-

ment in these gravity surveys is known as the gal (after Galileo):

1 gal = 1 cm/sec2 « \Q~* g
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(a)

Fig. 8-14 ia) Sketch of basic features ofa sensitiue

grammeter, made offused quarlz. The arm marked W
acts as the main weight. U is picoied al A and B and

carries a pointer P. The restoringforce is provided by a

control spring S\ and a null reading can be oblained

wilh the help ofthe ca/ibrajed spring 52. (.b) Example

ofa gravity surcey ouer an area about 400 by 500 m,

with contours of conslant g indicating an ore deposit.

(After a survey made by the Boliden Mining Co.,

Sweden, and reproduced in D. S. Parasnis, Mining

Geophysics, Elsevier, Amsterdam, 1960.)
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This is far too large for convenience, so most surveys, like that

of Fig. 8-14(b), show contours labeled in terms of milligals

(1 mgal = 10
-3 cmsec 2 « 10~"g). Under the best conditions,

relativc mcasurements accurate to 0.01 mgal may be achievable.

One can appreciate how impressive this is by noting that a

change of g by 0.01 mgal (1 part in 10
8
) corresponds to a change

in elevation of only about 3 cm at the earth's surface!

THE MASS OF THE SUN

Let us return to the simple picture of the solar system in which

each planet deseribes a cireular orbit about a fixed central sun

(Fig. 8-15). We have seen, in the diseussion of Kepler's third

law, how the use of Newton's Iaw of motion implies that the

foree on the planet is given, in terms of its mass, orbital radius,

and period, by the following equation [Eq. (8-5)]:

Fr = -
. 2
4tt mr

/-

According to the basic law of the foree, however, as exprcssed

by Newton's law of universal gravitation [Eq. (8-8)], the value

of Fr is given by the equation

Fr = - GMm
r*

where M is the mass of the sun. From the equality of these two

expressions, we obtain the following result:

4*y
GM (8-23)

We may again note the feature, already commented on in con-

Fig. 8-15 Planelary orbit approxi-

maled by a cirele wiih the sun at the

cemer.
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nection with earth satellites, that the period is independent of the

mass of the orbiting object, in this case the earth itself or some

other planet. What does matter is the mass of the sun, and if we

turn Eq. (8-23) around, we have an equation that tells us the

value of this mass, M, in terms of observable quantities:

*-££ <H4>

Kepler's third law expresses the fact that the value of r
3/T2

is

indeed the same for a U the planets. The statement of this result

does not, however, rcquire the use of absolute values of r—or,

for that matter, of T either. It is sufficient to know the values

of r and T for the various planets as multiples or fractions of the

earth's orbital radius and period. In order to deduce the mass

of the sun from Eq. (8-24), however, the use of absolute values is

essential. We have seen, earlier in this chapter, how the length

of the earth's year has been known with great accuracy since the

days of antiquity. A knowledge of the distance from the earth

to the sun is, however, rather recent. The development of this

knowledge makes an interesting story, which is summarized in

the special seetion following. The final result, expressed as a

mean distance in meters, can be substituted as the value of r in

Eq. (8-24), along with the other necessary quantities as foliows:

r*** 1.50 XlOH m
TK ~ 3.17 X 10

7
sec

G = 6.67 X 10-" m 3/kg-sec 2

We then find that

M„m « 2.0 X 10
30 kg

FINDING THE DISTANCE TO THE SUN

The first attempt to estimate the distance of the sun was made

by the great Greek astronomer, Aristarchus, in the third century

B.c, and he arrived at a result which, although quite erroneous,

held the field for many centuries. His method, sound in principle

but made ineffectual by the great remoteness of the sun, is in-

dicated in Fig. 8-16(a). He knew that one half of the moon was

illuminated by the sun and that the phases of the moon were

the result of viewing this illuminated hemisphere from the earth.
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Sun Earth

Fig. 8-16 (a) Melhod allempied by Arislarchus to find

Ihe sun's dislance by measuring ihe angle SEM at half-

moon. (b) Triangutation melhod of cslablishing the

scale of ihe solar sysiem by finding ihe dislance o/

Mars, iising Ihe earth's radius as a base line. (c) Direel

delerminalion of ihe sun's dislance by obserc'mg Ihe

transit of Venus front differenl poinls on Ihe earth.

When the moon is exactly half full, the angle SME is 90°. If, in

this situation, an exact measurement can bc made of the angle d,

the difference in directions of the sun and moon as seen from a

point on the earth, we can deduce the angle a (= 90° - 6)

subtcnded at the sun by the earth-moon distance rm- Aristarchus

judged to be about 87°, which gives a ~ 3° ~ 55 rad and

hcnce /\s
« 20/\u. Since, however, the measured angle is 9 and

not a, the error in the final result may be (and is) very great.

Our present knowledge tells us that the value of in the situation

represented by Fig. 8-16(a) is actually about 89.8° instead of

87°; this relatively small change in 6 raises the ratio rs/rM to

several hundred instead of 20.

A complctcly different attack on the problem was initiated

by Kcpler, although its full exploitation was not possible until

much later. Even so it at once becamc clear that the sun is

more distant than Aristachus had concluded. The basis of the

method is indicated in Fig. 8-16(b). It involves observations on
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the planet Mars. When Mars is closest to the earth, it lies on a

line joining both planets to the sun. Under these conditions the

distance between them is the difference between their orbital

radii. Now if Mars is viewed from two different points on the

earth, it should appear in slightly different directions with respect

to the vastly more distant background of "fixed" stars. The

particular angular difference, S, for observers placed at A and B

is called the parallax; it is the angle subtended by the earth's

radius at the position of Mars. To measure this angle one does

not need to have observers at two different points on the earth;

the rotation of the earth itself would carry an observer from A.

to B in about 6 hr during a given night. Now Kepler was able

to deduce from the very careful observations of his master,

Tycho Brahe, that the value of S must be less than 3 minutes of

arc, which is about 1/1200 rad; he could conclude that the

distance to Mars in this configuration must be greater than 1200

earth radii or about 5 million miles. Then, using the known

relatioe values of orbital radii from the Copernican seheme

(Table 8-1), it follows that the distance of the sun from the earth

is more than 2400 earth radii, i.e., more than 10 million miles.

John Flamsteed, a contemporary of Newton to whose

observations Newton owed a great deal (he was Astronomer

Royal from 1675 to 1720), reduced the upper limit on the parallax

of Mars to about 25 seconds of arc, and concluded that the sun's

distance was at least 80 million miles. An Italian astronomer,

Cassini, arrived at a specific value of about 87 million miles at

about the same time, using observations made by himself in

Europe and by a French astronomer, Richer, at Cayenne in

South America. Another contemporary of Newton's—Edmund

Halley 1—proposed a method that finally led, 100 years later, to

the first precision measurements of the sun's distance. The method

involved what is known as a transit of Venus, i.e., a passage of

Venus aeross the sun's disk, as seen from the earth. Figure

8-16(c) illustrates the basis of the method. As it passes aeross

the sun, Venus looks like a small black dot. Its apparent path,

and also the times at which the transit begins or ends, depend on

the position of the observer on earth. Since the motion of Venus

Edmund Halley, best known for the comet named after him, succeeded

Flamsteed in 1720 as Astronomer Royal. Long before this, however, he had

been very active in physics and astronomy. He became a devoted friend and

admirer of Newton, and it was largely through his help and persuasion that

the Principia was published,
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is accurately known, the timing of the transit can be used to

yield accurate measures of the differences in angular positions

of Venus as seen by observers at different positions. From such

observations the parallax of Venus can be inferred, after which

one can use an analysis just like that for Mars. These transits

arc fairly rare, because the orbits of the earth and Venus are not

in the same plane, but Halley pointed out that a pair of them

would occur in 1761 and 1769, and again in 1874 and 1882, and

then in 2004 and 2012. From the first two of these (both occurring

long after Halley 's own death) the solar parallax was found to be

dcfinitely between about 8.5 and 9.0 seconds of arc, correspond-

ing to a distance of between about 92 and 97 million miles. Thus

the currently accepted result was approached. (The best mea-

surements of this type have been made on the asteroid Eros at

its elosest approach to the earth.)

Further refinements came with the observations made in

the late nineteenth century. One of the most notable of these

was the use of an accurately known value of the speed of light

to deduce the diameter of the earth's orbit from the accumulated

time lag, over a period of 6 months, in the observed eclipses

of the moons of Jupiter. The situation is indicated in Fig. 8-17.

While the earth moves from E x to E2 , Jupiter moves only from

J, to J\. This introduces an extra transit time of about 16 min

for the light that tells us that one of Jupiter's moons has, for

example, just appeared from behind the planet. Knowing that

the speed of light is 186,000 miles/sec in empty space, we can

deduce that the earth's orbital radius is equal to this speed times

about 480 sec, or about 90 million miles. (The caleulation was

originally donc just the other way around, by the Danish astron-

omer Roemer in 1675. Using an approximate value of the

distance from earth to sun, he made the first quantitative estimate

of the speed of light.)

Fig. 8-17 Measure-

ment of the diameter

of the earth's orbit by

observing the eclipses

of Jupiter's moons

and the apparent

delays due to the

travel time of light

through space.
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Although the modern measurements of the sun's distance

are of great accuraey, we must still reckon with the fact that

this distance varies diiring the course of a year. If we ignore this

relatively small variation, however, we can make use of the

average value, already quoted near the beginning of this chapter:

rE = 1 AU = 1.496 X 10n m

MASS AND WEIGHT

Perhaps the most profound contribution that Newton made to

science was the fundamental connection that he recognized be-

tween the inertial mass of an object and the earth's gravitational

force on it—a force roughly equal to the measured weight of the

object. (Remember, we have defined weight as the magnitude

of the force, as measured for example on a spring balance, that

holds the object at rest relative to the earth's surface.)

It had been known since Galileo's time that all objects near

the earth fail with about the same acceleration, g. Until Newton

it was just a kinematic fact. But in terms of Newton's law it

took on a much deeper significance. If an object is observed to

have this acceleration, there must be a force F„ acting on it given

by F = ma, i.e.,

F, = mg (8-25)

It then becomes a vitally significant dynamical fact that, since

the acceleration g is the same for all objects, the force F, causing

it is strictly proportional to the inertial mass. To appreciate how

remarkable this result is, imagine starting from serateh to in-

vestigate the force of attraction between two objects in a purely

static experiment. One measures the force by balancing it with

a springlike device—a torsion fiber. One finds a quantity, which

might be called (by analogy with electrical interaetions) a gravita-

tional charge, qg . This "charge" is charaeteristie of any object

and has, as far as these experiments are concerned, nothing at all

to do with the inertial mass, which is defined solely in terms of

acceleration (under the aetion of forees produced, for example, by

stretehed springs). One cxperiments with objects of all sorts of

materials, in different states of aggregation, and so on. It then

turns out that, in each and every instance, the gravitational

charge is strictly proportional to an independently established

quantity, the inertial mass. Is this just a remarkable coincidence,
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or does it point to something very fundamental? For a long time

this apparent coincidence was regarded as one of the unexplained

mysteries of nature. It took the sagacity of an Einstein to suspect

that gravitation may, in a sense, be equioalenI to acceleration.

Einstcin's "postulate of equivalence," that the gravitational

charge q and the inertial mass m are measures of the same

quantity, provided the basis of his own theory of gravitation as

embodied in the general theory of relativity. We shall come back

to this in Chapter 12, when we discuss noninertial frames of

reference.

We are quite accustomcd to exploiting the proportionality

of F„ to m in our use of the equal-arm balance [Fig. 8-1 8(a)].

What we are doing is balancing the torques of two forces, but

what we are actually interested in is the equality of the amounts

of material. We make use of the fact that, to very high accuracy,

the valuc of g is the same at the positions of both masses, and

we do not need to bother about what its particular value is.

Thanks to the proportionality of gravitational force to mass, we

could, with an equal-arm balance and a set of Standard weights,

measure out a requircd quantity of any substance equally well

on the earth, the moon, or Mars. The spring balance [Fig.

8-1 8(b)], on the other hand, has a calibration that depends

directly on a particular value of g. Its readings are in effect

readings of force, even though we use them as a basis for mea-

suring out required amounts of mass. We might find it con-

venient to use a spring balance for this purpose on the moon,

but if its scale were marked in kilograms, we should have to

mask this out and attach a fresh calibration with the help of

Standard masses.

Fig. 8-18 (a) Weigh-

ing with an egual-arm

balance—in effect a

direct comparison of

masses, valid whatever

the value of g.

(b) Weighing with a

spring balance—a

measurement of the

gravitational force,

directly dependent on

the value of g.
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Fig. 8-19 Forces acling on the bob ofa simple

pendulum.

Newton himself recognized that the strict proportionality

of the gravitational force to the inertial mass, as evidenced by the

identical local acceleration of falling objects, was a key feature

in his own statement of universal gravitation as expressed in

Eq. (8-8). He therefore made a series of very careful pendulum

experiments to test whether a pendulum of a given length, but

with a variety of objects used as the bob, always had the same

period. To see how this works, consider an object of inertial

mass m hung on a string (Fig. 8-19). The two forces on it (ignor-

ing air resistancc) are the tension T and the gravitational force F„.

The tension T is at every instant pcrpendicular to the path of the

pendulum bob and so has no effect on the tangential acceleration

a$. The tangential acceleration is due to the tangential com-

ponent of F„. From Fig. 8-19,

Fe = ma» = —Fa smd

from which

a« = — (Fg/m)sin 9 (8-26)

At every angle 6 the acceleration ag depends on the ratio F„/m.

Therefore—for given initial conditions—the vehcity of the bob

at every angle 6 will be determined by this ratio. So also the

period for one completc round trip will depend upon the ratio

(Fs/m). Newton observed the periods of pcndulums with dif-

ferent bobs but with equal lengths. From his observation that

the periods of all such pendulums were equal within his experi-

mental error, Newton concluded that F was proportional to m
to better than 1 part in 1000.

More recent experiments (beginning with Baron Eiitvos in

Budapest in the nineteenth century) have made use of a very

clever idca that permits a static measurement. It depends on

recognizing that an object hanging at rest relatioe to the earth i n

fact has an acceleration toward the earth's axis because, by

virtue of the earth's rotation, it is traveling in a circular path of

radius r = R cos \, whcrc X is the latitudc (see Fig. 8-20). This

means that a net force of magnitude mu 2
r must be acting on it,

where m is the inertial mass. How is this force provided? The

answer is that, when a body hangs on a string ncar the earth's

surface, the string, exerting a force T, is not in quite the same
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Fig.8-20 Basis of the Eotvos

methodfor comparing the inerlial

mass and the gravitational mass of

mi object that is at rest relatice to

the earth and hence is being aceeler-

ated toward the earth' s axis.

Fig. 8-21 Principle

oftlte Eoluos lorsion-

balance measurement

:

(o) Two approximately

egual masses hang

from a torsion bar.

(b) If the objects do

not have identical

ratios of inerlial to

gracitational mass, the

lensions in the sus-

pending strings must

be in slightly different

directions. In eguilib-

rium, the direction of

the main supporting

fiber must be interme-

diate between the

directions ofTi and

T 2. (c) This implies

the possibility of a net

torque that twists the

torsion bar abotit a

vertical axis.

direction as the gravitational force F„. And if F„ is not strictly

proportional to m, the angle between T and F„ will be different

for different objects. To search for any such variations, a very

sensitive torsion balance is used, carrying dissimilar objects at

the two ends of a horizontal bar [Fig. 8-21 (a)]. If the directions

of the tensions T, and Ta are different [Fig. 8-21 (b)], there will

be small horizontal components [Fig. 8-21(c)] that act in op-

posite directions with respect to the horizontal bar but that givc

torques in the same sense. On the other hand, if the directions

of T! and T 2 are identical, even if their magnitudes are not

quite the same, there is no net torque tending to twist the torsion

fiber. To test for the existence of any such torque, Eotvos placed

the whole apparatus i n a case that could be rotated. The hori-

jyi

'6

T, sin B

(a) (b)

r, sin i*

(c)
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Fig. 8-22 To see

whether a net torque

exisls in the Eotvos

experiment, the whole

apparatus is turned

through 180". This

would recerse the

sense ofthe torque.

zontal beam carrying the two masses was aligned in an east-west

direction [Fig. 8-22(a)] and a reading was taken of its position

with respect to the case. The whole system was then rotated

through 180°, as inFig. 8-22(b). If you analyze both situations

on the basis of Fig. 8-21, you will find that, with respect to the

center line of the case, the angle of twist would be reversed by

this operation; hence, if any net torque existed, its existence

would be revealed.

More recently, some elegant modernized experiments of

this type have been performed by R. H. Dicke and his collab-

orators. ' By such experiments it has been shown that the strict

proportionality of FB to m holds to 1 part in 10
10 or better.

The description of the above experiments points to a closely

related phenomenon—a systematic variation with latitude of the

measured weight of an object. If we take the idealization of a

perfectly spherical earth (Fig. 8-23), the equilibrium of the object

is maintained by applying a force of magnitude W at an angle a

to the radius such that the following conditions are satisfied:

Wsina = moi 2rsin\

F„ — Jfcosa = mui2rcos\

where r = R cos X. Since a is certainly a very small angle, it is

justifiable to put cos « « 1 in the second equation, thus giving

the result

W « Fg
- mo>2R cos2 X

'See R. H. Dicke, Sci. Am., 205, 84 (Dec. 1961).
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Fig. 8-23 The force needed to

balance the weiglil of an object is

different 'm bolh direction and magni-

tude from the force ofgravity.

It follows that

W(\) « Wo + mu 2R sin2 X

where W is the measured weight on the equator. Putting

iy = mgo, we can also obtain a corresponding expression for

the latitude dependence of g:

l?(X) = 80 + <*
2R sin2 X

If in this expression we substitute w = 27r/86,400sec
-1

and

R = 6.4 X 10° m, we find w 2
/? « 3.4 X 10~ 2 m/sec 2

, which

with g « 9.8 m/sec
2
gives us

g(\) « 9.8(1 + 0.0035 sin 2 X) m/sec 2

This formula is more successful than it deserves to be, for we

have no right to ignore the significant flattening of the earth,

due again to the rotation, which makes the equatorial radius

of the earth about 1 part in 300 greater than the polar radius.

This eliipticity has two consequences: It puts a point on the

equator farther away from the earth's center than it otherwise

would bc, but it also in effect adds an extra belt of gravitating

material around the equatorial region. The resultant value of g

at sea level, taking these effects into account, is quite well de-

scribed by the following formula:

g(\) = 9.7805(1 + 0.00529 sin2 X) (8-27)

Thus our simplc calculation has the correct form, but its value

for the numerical coefRcient of the latitude-dependent correction

is only about two thirds of the true figure.
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WE1GHTLESSNESS

It is appropriate, after thc detailed discussion of the relations

among mass, gravitational force, and weight, to devote a few

words to the propcrty that is called weightlessness. The very

explicit distinction that we have drawn between the gravitational

force on an object and its measured weight makes use of what is

called an operational definition of the latter quantity. The weight,

as we have defined i t, is the magnitude of the force that will

hold an object at rest relative to the earth. Our definition of

weightlessness derives very naturally from this: An object is

weightless whenever it is in a state of completely free fail. In this

state each part of the object undergocs the same acceleration,

of whatcvcr value corresponds to the strcngth of gravity at its

location. (In saying this we assume that g does not change ap-

preciably over the linear extent of the object.) An object that

is prevented from falling, by being restrained or supported,

inevitably has internal stresses and deformations in its equi-

librium state. This may become very obvious, as when a drop

of mercury flattens somewhat when it rests on a horizontal sur-

face. Ali such stresses and deformations are removed in the

weightless state of free fail. The mercury drop, for cxample, is

free to take on a perfectly spherical shape.

The above definition of weightlessness can be applied in

any gravitational environment, and this is the way it should be.

The bizarre dynamical phenomena of life in a space capsule do

not depend on getting into regions far from the earth, where the

gravitational forces are much reduced, but simply on the fact that

the capsule, and everything in it, is falling freely with the same

acceleration, which in consequence goes undetected. For ex-

ample, if a spacecraft is in orbit around the earth, 200 km above

the earth's surface, the gravitational force on the spacecraft,

and on everything iri it, is still about 95% of what one would

measure at sea level, but the phenomena associated with what

we call weightlessness are just as pronounced under these con-

ditions as they are in another spacecraft 200,000 miles from earth,

where the earth's gravitational attraction is down to j^Vo of that

at the earth's surface. In both situations an object released inside

the spacecraft will remain poised in midair. The same would

be true in a spacecraft that was simply falling radially toward

the earth's center rather than pursuing a cireular or elliptical

orbit around the earth. When viewcd in these terms the phe-
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nomena of weightlessness are not in the least mysterious, al-

though they are still startling because they conflict so strongly

with our normal experience.

LEARNING ABOUT OTHER PLANETS

The recognition of the universality of gravitation gives us a

powerful tool for obtaining Information about planets other

than the earth, and indeed about celestial objects in general. In

particular, if a planet has satellites of its own, we can find its

mass by an analysis exactly similar to the one we used for de-

ducing the mass of the sun from the motions of the planets

themselves. This provides the simplest way of finding the mass

of any planet that has satellites. Such satellites, if a planet has

more than one of them, also provide a further test of Kepler's

third law, taking the planet itself as the central gravitating body.

Newton himself applied an analysis of this kind to Jupiter,

using data for its four most prominent satellites. These were

the satellites (or "moons") that made history when Galileo dis-

covered them with his new astronomical telescope in 1610 (see

pp. 287-290). Figure 8-24(a) shows their changing positions as

seen through a modern telescope, and Fig. 8-24(b) reproduces a

few of the sketches that Galileo himself made, night after night,

over a period of many months. Figure 8-24(c) is a graph con-

structed from Galileo's quantitative records, using the readings

that can be unambiguously associated with the outermost of the

four satellites. A period of about 16 days can be inferred. Galileo

had no hesitation in interpreting his observations in terms of the

four satellites following circular orbits that were seen edgewise

—

giving, as we would describe it, the appearance of simple harmonic

motion at right angles to our line of sight. On the basis of further

measurements Galileo arrived at rather accurate values of the

orbital periods of all four satellites and at moderately good values

of the orbital radii expressed as multiples of the radius of Jupiter

itself.

Newton, in the Principia, used similar data of greater pre-

cision, obtained by his contemporary John Flamsteed. Table 8-3

(p. 290) lists these data, and in Fig. 8-25 they are plotted loga-

rithmically (cf. Fig. 8-6) in such a way as to show how they give

another demonstration of the correctness of Kepler's third law.

The slope is accurately f.

The use of Jupiter's radius as a unit for measuring the

orbital radii was not merely a convenience. As we have already
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noted in our discussion of the mass of the suri, the absolute scale

of the solar system was not known with any great certainty in

Newton's day. It is interesting, however, that using the data as

presented in Table 8-3, without absolute values of the radii,

one can deduce the mean density, pj, of Jupiter. By analogy

with our analysis of earth satellites [p. 266, and in particular

Eq. (8-15)], we have

2xr (GMj\ 1/2

whence

Mj =—
Putting

Mj = ^ PjRj
3

we get

i '>

_ 3t n

Substituting n*/T2 ~ 7.5 X 10
-9

sec
-2

, and G - 6.67 X
10- n m3/kg-sec

2
, wefind

pj m 1050 kg/m 3

i.e., about the same density as water.

If a planet does not have satellites of its own, the magnitude

of its mass may be inferable from a detailed analysis of the tiny

disturbing effects—called perturbations—that planets exert on

one another's orbits. This technique has been used for Mercury

and Venus. The unraveling of these mutual interactions is a

complicated and difficult matter, however, and in at least one

case it posed a problem that was not adequately answered for a

long time. This was the interaction between the two most

massive planets, Jupiter and Saturn, which caused irregularities

of a very puzzling kind in the orbits of both. It was even con-

sidered possible that the basic law of gravitation would need to

be modified slightly away from a precise inverse-square relation-

ship. The solution to the mystery was finally achieved, almost a

century after the publication of the Principia, by the Frcnch

mathematician Laplace, building on work by his great fellow
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The moons of Jupiter

In 1608 Hans Lippershey, in Holland, patented what may hace been the first

successful lelescope. Galileo learned of this, and soon made lelescopes of his

own design. His Ihird instrumen!, of more than 30 diamelers' magnification,

led him lo a dramalic discouery, as recounted by him in his book, The Slarry

Messenger:

"On the secenth day of January in this prcsenl year 1610, al Ihe first

hour of Ihe night, when I was ciewing ihe heavenly bodies with a teleseope,

Jupiter presented itself lo me, and . . . I perceiced that beside Ihe planet

there were three small starlets, small indeed, bui cery bright. Though I

belieced them lo be among Ihe hosl offixed stars, they aroused my curiosily

somewhat by appearing lo lie in an exacl straight line parallel to the ecliplic

. . . I paid no attenlion to the distances between them and Jupiter, for at Ihe

oulsel l thoughl them lo be fixed stars, as l hace said. Bui returning lo the

same incestigalion on January eighth — ledby what, l do not know— Ifound

a uery different arrangemenl. . .
."

Afew more nights ofobseruation were enough lo concince Galileo what he was

seeing: "I hadnow [by January 11] decided beyond all question thal there exisled

in Ihe heavens three stars wandering aboul Jupiter as do Venus and Mercury

about the sun. . . . Nor were there just three such stars; four wanderers complele

their revolutions aboul Jupiter. ... Also I measured the distances between them

by means of the teleseope. . . . Moreocer I recorded the times of the observa-

tions . ..for the revolutions ofthese planets are so speedily completed that it is

usually possible to lake eien their hourly varialions."

Fig. 8~24(a) Jupiter

and its four mosi

prominent salellites as

seen through a modern

teleseope. The first

and second photo-

graphs illustrale

Galileo's observa-

tion that noticeable

changes oecur within a

single night. ( Yerkes

Obsercatory photo-

graphs)
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Fig. 8-24(b) Facsimile of a page of Golileo's own

handwritten records ofhis observations diiring the later

months (July-October) of 1610.

Fig. 8-24(c) A graph

conslruciedfrom

Galileo's own records,

showing the periodic

molion ofCallisto, the

outermost of the four

satellites visible to

Mm. The period of

about 16 3/4 days is

clearly exhibited. M " *" '° " " *
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countryman Lagrange. It turned out that a curious kind of

resonance effect was at work, resulting from the fact that the

periods of Jupiter and Saturn are almost in a simple arithmetic

TABLE 8-3: DATA ON SATELLITES OF JUPITER-

Satellile n = r/Rj Period (T) n3/T2
, sec~

2

Io

Europa

Ganymede
Callisto

5.578 1.7699 days « 1.53 X 105 sec 7.4 X 10-°

8.876 3.5541 days « 3.07 X 105 sec 7.5 X 10~9

14.159 7.1650 days « 6.19 X 105 sec 7.5X10-°
24.903 16.7536 days « 1.45 X 106 sec 7.4 X IO"9

Fig. 8-25 A log-log

grapli displaying the

applicabilily of

Kepler's thitd law IO

the Galilean satellites

ofJupiter. It may be

seen that Calileo's

results are little dif-

ferent from those ob-

tained by John Flam-

steed nearly 100 years

later.

"Thcse same data have been presented in a striking way in Eric Rogers,

Physicsfor the Inauiring Mind, Princeton University Press, Princeton,

N.J., 1960:

r\

Satellile (milesy

T2
,

(hours)2

Io 1.803 X 10" 1.803 X 10 3

Europa 7.261 X 10 10 7.264 X 10 3

Ganymede 29.473 X 10 lfl 29.484 X 10 3

Callisto 160.440 X 10 16 160.430 X 103

How would you convince your friends that this close numerical coin-

cidencc is not evidence of a new fundamental law?
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relationship (5Tj » 2TS)- This made large an otherwise negligible

term in the perturbation, with a repetition period so long

(~900 yr) that it seemed to be increasing without limit. When

the mystery was finally resolved the belief in Newton's theory

was, of course, strengthened still further.

THE DISCOVERY OF NEPTUNE

Probably the most vivid illustration of the power of the gravita-

tional theory has been the prediction and discovery of planets

whose very existence had not previously been suspected. It is

noteworthy that' the number of known planets remained un-

changed from the days of antiquity until long after Newton.

Then, in 1781, William Herschel noticed the object that we now

know as Uranus. He was engaged in a systematic survey of the

stars, and his only clue to start with was that the object seemed

slightly less pointlike than the neighboring stars. Then, having

a telescope with various degrees of magnification, he confirmed

that the size of the image increased with magnification, which

is not true for the stars—they remain below the limit of resolution

of even the biggest telescopes, and always produce images in-

distinguishable from those due to ideal point sources.

Once his attention had been drawn to the object, Herschel

returned to it night after night and confirmed that it was moving

with respect to the other stars. Also, as has happened in various

other cases, it was found that the existence of the object had in

fact been recorded i n earlier star maps (first by John Flamsteed

in 1690). These old data suddenly became extremely valuable,

because they were a ready-made record of the object's move-

ments dating back through nearly a century. When combined

with new measurements carried out over many months, they

showed that the object (finally to be called Uranus) was indeed

a member of our solar system, following an almost circular orbit

with a mean radius of 19.2 AU and a period of 84 years.

This is where our main story begins. Once it was discovered,

Uranus and its motions became the subject of a continuing study,

and cvidence began to accumulate that there were some ex-

tremely small irregularities in its motion that could not be

aseribed to perturbing effects from any known source. Figure

8-26(a), a tribute to the wonderful precision of astronomical

observation, shows the anomaly as a funetion of time since 1690.

The suspicion began to grow that perhaps there was yet another
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Fig. 8-26 (a) Unexplained residual devialions in the

observed positions of Uranus between 1690 and 1840.

(b) Basis ofascribing the devialions lo the influence of

an extra planet. The arrows indicate the relalive mag-

nitude of the perturbing force at dijferent times.

planet beyond Uranus, unknown in mass, period, or distance.

Two men—J. C. Adams in England and U. J. LeVerrier in

Francc—indepcndcntly workcd on the problem. Both men used
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as a starting point the assumption that the orbital radius of the

unknown planet was almost exactly twice that of Uranus. The

basis of this was a curious empirical relation, known as Bode's

law (actually discovered by J. D. Titius in 1772, but publicized

by J. Bode), which expresses the fact that the orbital radii of the

known planets can be roughly fitted by the following formula:

R„ (AU) = 0.4 + (0.3X2")

where n is an appropriate integer for each planet. Putting n = 0,

1, 2, we get the approximate radii for Venus, earth, and Mars

(Mercury requires n = — cc, which is hard to defend). Using

n = 4, 5, and 6 one gets quite good values for Jupiter, Saturn,

and Uranus. (The missing integer, n = 3, corresponds to the

asteroid belt.) Figure 8-27 shows this relation of orbital radii

with the help of a semilog plot; it is clear that a simple exponential

relation (linear on this graph) works almost as well, but if one

accepts Bode's law, then n = 7 gives r = 38.8 AU, and this is

what Adams and LeVerrier used.

Fig. 8-27 Graph for

predicting the orbital

radius of the new

planet with the help of

Bode's law.
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Given the radius, the period is automatically defined by

Kepler's third law, and then it becomes possible to construct a

definite picture, as shown in Fig. 8-26(b), of the way in which

the new planet could alternately accelerate and retard Uranus

in its orbital motion, depending on their relative positions. With

the help of laborious analysis, onc can then deduce where in its

orbit the new planet should be on a particular date. Adams
supplied such information in October 1845 to the British Astron-

omer Royal, G. B. Airy, who acknowledged Adams' letter,

raised a question of detail, but otherwise did nothing. LeVerrier

did not complete his own calculations until August 1846, but

the astronomer to whom he wrote (J. G. Galle, in Germany)

made an immediate search and identified the new planet

(Neptune) on his very first night of observation. It was only

about a degree from the predicted position (see Fig. 8-28). The

next night it had visibly shifted, thereby confirming its planetary

status.

Although the discovery of Neptune is in some respects a

great success story, it is also a story of luck, both good and bad,

and of human frailty. Adams was really first in the field, but he

received no support from his seniors (he was fresh from his

bachelor's degree when he bcgan his calculations). Airy missed

Fig. 8-28 Star map
showing the discovery

ofNeptune, September

23, 1846. (From

Herbert Hal/ Turner,

Astronomical Dis-

covery, Edward

Arnold, London,

1904.)

• -.

v'--

O .

« *.
'

•

f -, -
.

m m » a

i • • 4 l t r •

• (•••«« •

294 Universal gravitation



the credit, which he might readily have won, of being the man

who first identified Neptune. But the locations that both Adams

and LeVerrier predicted might well have been hopclessly mis-

leading, for in their reliance on Bode's law they used an orbital

radius (and hence a period) that was far from correct. The true

value is about 30 AU instead of nearly 40 as they had assumed,

which means that they overestimated the period by nearly 50%.

'

It was therefore largely a lucky accident that the planet was so

near to its predicted position on the particular date that Galle

sought and found it. But let this not be taken as disparagement.

A great discovery was made, with the help of the laws of motion

and the gravitational foree law, and it remains as the most

triumphant confirmation of the dynamical model of the universe

that Newton invented.
2 The discovery of Pluto by C. Tombaugh

in 1930, on the basis of a detailed record of the irregularities of

Neptune's own motion, provided an echo of the original achieve-

ment.

GRAVITATION OUTSIDE THE SOLAR SYSTEM

When Newton wrote his System of the World, nothing was

known about the distances or possible motions of the stars.

They simply provided a seemingly fixed background against which

the dynamics of the solar system proceeded. There were ex-

ceptions. A few prominent stars—e.g., Sirius—known since

antiquity by naked-eye astronomy, were found to have shifted

position within historic time. But the serious and systematic

investigation of stellar motions was begun by William Herschel.

His observations, continued and refined by his son John Her-

schel and by other astronomers, revealed two classes of results.

The first was the continuing apparent displacement of individual

stars in a way that suggested that the solar system is itself in-

volvcd in a general movement of the stars in our neighborhood,

at a speed of the order of 10 miles/sec (comparable to the earth's

own orbital speed around the sun). This, as it stood, was just

an empirical faet. But the second type of result pointed directly

This also means that they overestimated the mass necessary to produce the

observed perturbations of Uranus. LeVerrier gave a figure of about 35 times

the mass of the earth; the currently accepted value is about half this.

2For a detailed account of the whole matler, see H. H. Turner, Astronomku!

Discovery, Edward Arnold, London, 1904. A shorter but more readily

accessible account may be found in an essay entitled "John Couch Adams

and the Discovery of Neptune," by Sir H. Spencer Jones, in The World of

Mathemaiks (J. R. Newman, ed.), Simon and Schuster, New York, 1956.
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reprinted by Dover
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to the operation of Newton's dynamics. For the Herschels

discovered numerous pairs of stars that were evidently orbiting

around one another as binary systems. Figure 8-29 shows one

of the best documented early examplcs, and the first to be sub-

jccted to a detailed analysis in terms of Kepler's laws. (It is

£-Ursae, in one of the hind paws of the constellation known as

the Grcat Bear.)

The period of a binary star depends on the total mass of the

system, not on the individual masses. This is easily proved in

the case in which the orbits are assumed to be circles around the

common center of mass [see Fig. 8-30(a)]. ' The individual

stars are always at opposite ends of a straight line passing through

the center, C. If we write the statement of F = ma for one of the

stars, say mi, we have

,
/W2WI1

(r. + r2 )2

mi»t = miu r\

where w (= 2tt/T) is the angular velocity common to both stars.

Hence

2
CO =

Gnt2

ri(ri + r2 )2

For a full discussion of the concept of center of mass, sce Ch. 9, p. 337.
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(a)

Fig. 8-30 (a) Motion

ofthe members of a

binary star system

with respect to the

center of mass. C, for

the case ofcircular

orbits. (b) Direct

visual euidence of the

motion of a binary

system—Krueger 60,

photographed by E. E.

Barnard. (Yerkes

Obseroatory photo-

graph.)

(b)

However, by the definition of the center of mass, we have

'i =
mi + rri2

where

r = n + ri

It follows at once that

2 G(m\ + m2 )

03 = r,

Thus if the distance r between the stars can be obtained by

direct astronomical observation (e.g., starting from a knowledge

of their angular scparation), the sum of the masses is at once

determined. Finding the individual masses entails the somewhat

harder job of measuring the motion of each star in absolute

terms against the background ofthe "fixed" stars. Figure 8-30(b)

shows convincing direct evidence of the orbital motion of an

actual binary system.
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Fig. 8-31 Rotating

galaxy (spiral galaxy

NGC 5194 in the

constellation Canes

Venatici). (Photo-

graph from the Hale

Obsercatories.)

With the development of modern astronomy, the systematic

motions of our sun and its neighbors came to be seen as part

of a greater scheme of movements controlled by gravity. AU
around us throughout the universe were the immense stellar

systems—the galaxies—most of them vividly suggesting a state

of general rotation, as i n Fig. 8-31, for example. The most

difficult structurc to elucidate was the onc in which we ourselves

are embedded, i.e., the Milky Way galaxy. It finally became

clear, however, that its basic structure is very much like that of

Fig. 8-31, and that in it our sun is describing some kind of orbit

around the center, with a radius of about 3 X 10
20 m (= 30,000

light-years) and an estimated period of about 250 million years

(=» 8 X 10
,5

sec). Using these figures we can infer the ap-
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proximate gravitating mass, inside the orbit, that would define

this motion. From Eq. (8-24) we have

.23

With G = 7 X 10~" m 3/kg-sec
2

, we find that

m ~ 40 v 3 X1 °
G1

« 3 x 10
41

ke

Since the mass of the sun (a typical star) is about 2 X 10
30 kg,

we see that a core of about 10" stars is implied. This is not

really a figure that can be independently checked. It is a kind

of ultimate tribute to our belief in the universality of the gravita-

tional law that it is confidently used to draw conclusions like

those above concerning masses of galactic systems.

EINSTEIN'S THEORY OF GRAVITATION

We have described carlier how Newton rccognized that the

proportionality of weight to inertial mass is a fact of fundamental

significance; it played a central role in leading him to the con-

clusion that his law of gravitation must be a general law of

nature. For Newton this was a strictly dynamical result, ex-

pressing the basic properties of the force law. But Albert Einstein,

in 1915, looked at the situation through new eyes. For him the

fact that all objects fail toward the earth with the same accelera-

tion g, whatcver their size or physical state or composition,

implied that this must be in some truly profound way a kinematic

or geometrical result, not a dynamical one. He regarded it as

being on a par with Galileo's law of inertia, which expressed the

tendeney of objects to persist in straight-line motion.

Building on these ideas, Einstein developed the theory that

a planet (for example) follows its charaeteristie path around the

sun because in so doing it is traveling along what is called a

geodesic line—that is to say, the most economical way of getting

from one point to another. His proposition was that although

in the absence of massive objects the geodesic path is a straight

line in the Euclidean sense, the presence of an extremely massive

object such as the sun modifies the geometry locally so that the

geodesies become curved lines. The state of affairs in the vicinity
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of a massive object is, in this view, to be interpreted not in terms

of a gravitational field of force but in terms of a "curvature of

space"—a facile phrase that covers an abstract and mathe-

matically complex description of non-Euclidean geometries.

For the most part the Einstein theory of gravitation gives

results indistinguishable from Ncwton's; the grounds for pre-

ferring it might seem to be conceptual rather than practical.

But in one celebrated instance of planetary motions there is a

real discrepancy that favors Einstein's theory. This is in the

so-called "precession of the perihelion" of Mercury. The phe-

nomenon is that the orbit of Mercury, which is distinctly el-

liptical in shapc, very gradually rotates or precesses in its own
planc, so that the major axis is along a slightly different direction

at the end of each complete revolution. Most of this precession

(amounting to about 10 minutes of arc per century) can be

understood in terms of the disturbing effects of the other planets

according to Newton's law of gravitation. ' But there remains a

tiny, obstinate residual rotation equal to 43 seconds of arc per

century. The attempts to explain it on Newtonian theory—for

example by postulating an unobserved planet inside Mercury's

own orbit—all came to grief by conflicting with other facts of

observation concerning the solar system. Einstein's theory, on

the other hand, without the use of any adjustable parameters,

led to a calculated precession rate that agreed exactly with

observation. It corresponded, in effect, to the existence of a very

small force with a different dependence on distance than the

dominant l/r 2
force of Newton's theory. The way in which a

disturbing effect of this kind causes the orbit to precess is dis-

cussed in Chapter 13. Other cmpirical modifications of the

basic law of gravitation—small departures from the inverse-

square law—had been tried before Einstein developed his theory,

but apart from their arbitrary character they also led to false

predictions for the other planets. In Einstein's theory, however,

it emerged automatically that the size of the disturbing term was

proportional to the square of the angular velocity of the planet

and hence was much more important for Mercury, with its

short period, than for any of the other planets.

The apparent amount of precession as viewed from the earth is aclually

about 1.5° per century, but most of this is due to the continuous change in

the direction of the earth's own axis (the precession of the equinoxes— see

Chapter 14).
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PROBLEMS

8-1 Given a knowledge of Kepler's third law as it applies to the

solar system, together with the knowledge that the disk of the sun

subtends an angle of about £° at the earth, deduce the period of a

hypothetical planet in a circular orbit that skims the surface of the sun.

8-2 It is well known that the gap between the four inner planets and

the five outer planets is occupied by the asteroid belt instead of by a

tenth planet. This asteroid belt extends over a range of orbital radii

from about 2.5 to 3.0 AU. Calculate the corresponding range of

periods, expressed as multiples of the earth's year.

8-3 It is proposed to put up an earth satellite in a circular orbit with

a period of 2 hr.

(a) How high above the earth's surface would it have to be?

(b) If its orbit were in the plane of the earth's equator and in

the same direction as the earth's rotation, for how long would it be

continuously visible from a given place on the equator at sea level?

8-4 A satellite is to be placed in synchronous circular orbit around

the planet Jupiter to study the famous "red spot" in Jupiter's lower

atmosphere. How high above the surface of Jupiter will the satellite

be? The rotation period of Jupiter is 9.9 hr, its mass Mj is about

320 times the earth's mass, and its radius Rj is about 11 times that

of the earth. You may find it convenient to calculate first the gravita-

tional acceleration gj at Jupiter's surface as a multiple of g, using the

above values of Mj and RJt and then use a relationship analogous to

that developed in the text for earth satellites [Eq. (8-16) or (8-17)].

8-5 A satellite is to be placed in a circular orbit 10 km above the

surface of the moon. What must be its orbital speed and what is the

period of revolution ?

8-6 A satellite is to be placed in synchronous circular earth orbit.

The satellite's power supply is expected to last 10 years. If the maxi-

mum acceptable eastward or westward drift in the longitude of the

satellite during its lifetime is 10°, what is the margin of error in the

radius of its orbit?

8-7 The springs found in retractable ballpoint pens have a relaxed

length of about 3 cm and a spring constant of perhaps 0.05 N/mm.

Imagine that two lead spheres, each of 10,000 kg, are placed on a

frictionless surface so that onc of thesc springs just fits, in its un-

compressed state, between their nearcst points.

(a) How much would the spring be compressed by the mutual

gravitational attraction of the two spheres? The density of lead is

about 1 1,000 kg/m3
.
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(b) Let the system be rotatcd in the horizontal plane. At what

frequency of rotation would the presencc of the spring become ir-

relevant to the separation of the masses?

8-8 During the cighteenth century, an ingenious attempt to find the

mass of the earth was made by the British Astronomer Royal, Nevil

Maskelyne. He observed the extent to which a plumbline was pulled

out of true by the gravitational attraction of a mountain. The figure

illustrates the principle of the method. The change of direction of the

plumbline was measured between the two sides of the mountain.

(This was donc by sighting on stars.) After allowance had been made

for the change in direction of the local vertical because of the curvature

of the earth, the residual angular difference a was given by 2Fm/Fb,

where ±Fm is the horizontal force on the plumb-bob due to the moun-

tain, and Fe = GMEm/RE^. (m is the mass of the plumb-bob.)

The value of a is about 10 seconds of arc for measurements on

opposite sides of the base of a mountain about 2000 m high. Suppose

that the mountain can be approximated by a cone of rock (of density

2.5 times that of water) whose radius at the base is equal to the height

and whose mass can be considered to be concentrated at the center

of the base. Deduce an approximate value of the earth's mass from

these figures. (The true answer is about 6 X 10
24

kg.) Compare the

gravitational deflection a to the change of direction associated with

the earth's curvature in this experiment.

8-9 Imagine that in a certain region of the ocean floor there is a

roughly cone-shaped mound of granite 250 m high and 1 km in diam-

eter. The surrounding floor is relatively flat for tens of kilometers in

all directions. The ocean depth in the region is 5 km and the density

of the granite is 3000 kg/m 3
. Could the mound's prcscnce be de-

tected by a surface vessel equipped with a gravity meter that can

detect a change in g of 0.1 mgal?

(Hint: Assume that the field produced by the mound at the

surface can be approximated by the field of a mass point of the same

total mass locatcd at the level of the surrounding floor. Note that in

calculating the change in g you must keep in mind that the mound
has displaccd its own volume of water. The density of water, even at

such depths, can be taken as about equal to its surface value of about

1000 kg/m3
.
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8-10 Show that the period of a particle that moves in a circular orbit

close to the surface of a sphere depends only on G and the mean

density of the sphere. Deduce what this period would be for any

sphere having a mean density equal to the density of water. (Jupiter

almost corresponds to this case.)

8-11 Calculate the mean density of the sun, given a knowledge of G,

the length of the earth's year, and the fact that the sun's diameter

subtends an angle of about 0.55° at the earth.

8-12 An astronaut who can lift 50 kg on earth is exploring a planetoid

(roughly spherical) of 10 km diameter and density 3500 kg/m3
.

(a) How large a rock can he pick up from the planetoid's surface,

assuming that he finds a well-placed handle?

(b) The astronaut observes a rock falling from a cliff. The

rock's radius is only 1 m and as it approaches the surface its velocity

is 1 m/sec. Should he try to catch it? (This is obviously a fanciful

problem. One would not expect a planetoid to have cliffs or loose

rocks, even if an astronaut were to get there in the first place.)

8-13 It is pointed out in the text that a person can properly be termed

"weightless" when he is in a satellite circling the earth. The moon is a

satellite, yet it is noted in many discussions that we would weigh | of

our normal weight there. Is there a contradiction here?

8-14 A dedicated scientist performs the following experiment. After

installing a huge spring at the bottom of a 20-story-high elevator shaft,

he takes the elevator to the top, positions himself on a bathroom scale

inside the airtight car with a stopwatch and with pad and pencil to

record the scale reading, and directs an assistant to cut the car's

support cable at I = 0. Presuming that the scientist survives the

first encounter with the spring, sketch a graph of his measured weight

versus time from / = up to the beginning of the second bounce.

(Note: Twenty stories is ample distance for the elevator to acquire

terminal velocity.)

8-15 A planet of mass M and a single satellite of mass M/10 revolve

in circular orbits about their stationary center of mass, being held

together by their gravitational attraction. The distance between their

centers is D.

(a) What is the period of this orbital motion?

(b) What fraction of the total kinetic energy rcsides in the

satellites?

(Ignore any spin of planet and satellite about their own axes.)

8-16 We have considered the problem of the moon's orbit around

the earth as if the earth's center represented a fixed point about which

the motion takes place. In fact, however, the earth and the moon

revolve about their common center of mass.
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(a) Calculate the position of the center of mass, given that the

earth's mass is 81 limes that of the moon and that the distance be-

tween their centers is 60 earth radii.

(b) How much longer would the month be if the moon were of

negligible mass compared to the earth ?

8-17 The sun appears to be moving at a speed of about 250km/sec

in a circular orbit of radius about 25,000 light-years around the center

of our galaxy. (One light-year^ 10
10

m.) The earth takes 1 year to

describe an almost circular orbit of radius about 1.5 X 10" m around

the sun. What do these facts imply about the total mass responsible

for keeping the sun in its orbit? Obtain this mass as a multiple of the

sun's mass M. (Note that you do not need to introduce the numerical

value of G to obtain the answer.)

8—18 (A good problem for discussion.) In 1747 Georges Louis Lesage

explained the inverse-square law of gravitation by postulating that

vast numbers of invisible particles were flying through space in all

directions at high speeds. Objects like the sun and planets block these

particles, leading to a shadowing effect that has the same quantitative

result as a gravitational attraction. Consider the arguments for and

against this theory.

(Suggestion: First consider a theory in which opaque objects

block the particles completely. This proposal is fairly easy to refute.

Next consider a theory in which the attenuation of the particles by

objecls is incomplete or even vcry small. This theory is much harder

to dismiss.)

8-19 The continuous output of energy by the sun corresponds (through

Einstein's relation E = Mc 2
) to a steady decrease in its mass M, at

the rate of about 4 X 10° tons/sec. This implies a progressive in-

crease in the orbital periods of the planets, because for an orbit of a

given radius we have T~ A/
- "2 [cf Eq. (8-23)].

A precise analysis of the effect must take into account the fact

that as M decreases the orbital radius itself increases—the planets

gradually spiral away from the sun. However, one can get an order-

of-magnitude estimate of the size of the effect, albeit a little bit on the

low side, by assuming that r remains constant. (See Problem 13-21

for a more rigorous treatment.)

Using the simplifying assumption of constant r, estimate the

approximate increasc in the length of the year resulting from the sun's

decrease in mass over the timc span of accurate astronomical ob-

servations—about 2500 years.

8-20 It is mentioned at the end of the chapter how Einstein's theory

of gravitation leads to a small correetion term on top of the basic

Newtonian foree of gravitation. For a planet of mass m, traveling at

speed o in a circular orbit of radius r, the gravitational foree becomes
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in effect the following:

_ GMm
r2 (•«a

where c is the speed of light. (Correction terms of the order of v 2/c2

are typical of relativistic effects.)

(a) Show that, if the period under a pure Newtonian force

GMm/r 2
is denoted by 7"o, the modified period T is given approxi-

mately by

-»(«-3»)
(Treat the relativistic correction as representing, in effect, a small

fractional increase in the value of G, and use the value of v corre-

sponding to the Newtonian orbit.)

(b) Hence show that, in each revolution, a planet in a circular

orbit would travel through an angle greater by about 24T3r2/c2To2

than under the pure Newtonian force, and that this is also expressible

as 6irGM/c2r, where M is the mass of the sun.

(c) Apply these results to the planet Mercury and verify that

the accumulated advance in angle amounts to about 43 seconds of

arc per century. This corresponds to what is called the precession

of its orbit.
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God . . . created matter with motion and rest in its parts,

and . . . now conserves in the universe, by His ordinary

operations, as much ofmotion and of rest as He originally

created.

rene descartes, Principia Philosophiae (1644)



9

Collisions and

conservation laws

in this chapter we shall be discussing some concepts and results

that are at the very heart of mechanics. They are rooted in the

fact that it takes at least two particles to make a dynamical

system. Until now we have rather glossed over that fact, by

talking in terms of individual particles subjected to forces of

various kinds. Thus, for example, the motion of a planet around

the sun, or of an electron between the deflection plates of a

cathode-ray tube, was discussed as the problem of a single par-

ticle exposed to the force supplied by some completely immovable

body or structure. But this is a very special way of looking at

things and is not in general justified. The sun pulls on a planet

and gives it an acceleration, to be sure, but the law of gravitation

doesn't play favorites—it has a completely symmetrical form

—

and the planet pulls back on the sun with an equal and opposite

force. So the sun must accelerate, too, and will follow some kind

of path under the combined action of all the planets. It happens

that the sun is hundreds of times more massive than the rest of

the solar system put together, so that to a first approximation

we can ignore its wanderings. But this is only an accident of

disparity. The basic dynamical system is made up of two inter-

acting particles, the motions of both of which must be con-

sidered. The experimental study of such systems, via collision

processes, was in fact the true starting point of dynamics. The

study of collisions has lost none of its importance to physics in
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the 300 years since it first became a subject of exact investigation

;

let us then consider it with care.

THE LAWS OF IMPACT

In 1668 the Royal Society of London 1 put out a request for the

experimental clarification of collision phenomena. Contribu-

tions were submitted shortly afterward by John Wallis (mathe-

matician), Sir Christopher Wren (architect), and Christian

Huygens (physicist, and Newton's great Dutch contemporary).

The results embody what we are familiar with today as the rules

governing exchanges of momentum and energy in the collision

between two objects. Most importantly, they involve at one

stroke the concept of inertial mass and the principle of con-

servation of linear momentum.

These experiments revealed that the decisive quantity in a

collision is what Newton called "the quantity of motion," defined

as the product of the velocity of a body and the quantity of matter

in it—this latter being what we have called the inertial mass.

We have already (in Chapter 6) discussed Newton's straight-

forward concept of mass: how he was quite ready to assume that

the total mass of two objects together is just the sum of their

separate masses, and how he took it for granted that the masses of

difierently sized portions of a homogeneous material are pro-

portional to their volumes. You will recall from our earlier

diseussion that these assumptions, however reasonable they may

seem, are not always strictly justified. On the other hand, their

use does not lead to detectable inconsistencies in the dynamics

of ordinary objects. And what Newton and his contemporaries

found was that, if these commonsense ideas were accepted as a

quantitative basis for relating masses, then a very simple de-

seription of all collisions could be made, which expressed mathe-

matically is as follows:

m\u\ + m-iu-i = mwi + /M2t"2 (9-1)

wherc M] and u t are the velocities before impaet, and v x and v 2

are the velocities after impaet (a one-dimensional motion is

assumed). This is a very powerful generalization, because it

'The Society was formally chartered in 1662. (Newton was its President

from 1703 until his death in 1727.) Several other great European seientific

academies came into existence at about the same period.
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applies to quite different sorts of collisions—those with almost

perfect rebound, such as occur between two glass spheres, down

to thosc with no rebound at all, as between two lumps of putty.

Qualitatively, collisions can be described in terms of their degree

of elasticity— i.e., bounciness. A quantitative but purely em-

pirical measure of this, used by Newton and others, is the ratio

of v2 — v y
(the relative velocity after impact) to Ui — u> (the

relative velocity before impact). If this ratio is zero, the collision

is called completely inelastic. If the ratio is unity, the collision is

called elastic (somctimes, more vividly, "perfectly elastic"). A
hardened steel ball is much more elastic than a rubber ball in

this sense. In the early investigations Wallis confined his studies

to completely inelastic collisions, Wren and Huygens to almost

perfectly elastic objects, and Newton, some time later, added

experiments on objects of intermediate elasticity.

THE CONSERVATION OF LINEAR MOMENTUM

The physicist is always on the lookout for quantities that remain

conserued (i.e., unehanged) in physical processes. Once he has

discovered such quantities, they become powerful tools in his

analysis of phenomena. They start out by being just an aid in

codifying pasi experience. But as they are found to be applicable

to more and more new instances, their value grows and one begins

to make confident predielions with their help. The statement

about conservation of a particular quantity is promoted to the

status of a conservation law. If in some new instance the con-

servation law appears to break down, one's faith in the law may
be so great that one hunts around for the missing piece. Should

it be found, the conservation law is strengthened still further.

Thus, for example, the law of conservation of mass in chemical

reaetions is accepted as a guide to all possible measurements on

the masses of the reaeting materials. When the chemical balance

was first applied to the study of chemical reaetions, it appeared

that in some processes mass was gained, in some it was Iost, and

in some it remained unehanged. But when Lavoisier proved,

through numerous examples, that mass was merely transferred,

and that in a elosed system it was conserved, the whole seheme

became clear. Chemists could then exp]oit the conservation law.

For example, they could confidently infer the mass of a gaseous

produet (eseaping from an unclosed system) from easily made

measurements on solid and Iiquid reactants.
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Some of the most powerful aspects of our physical descrip-

tion of the world are embodied in statements about conserved

quantities. In mechanics the law of conservation of linear mo-

mentum is such a statement—one might even claim that it is

the most important single principle in dynamics. It is based

directly on the results of the experiments on impact as sum-

marized in Eq. (9-1). If, for a given particle, we introduce the

single word momentum to describe the product mv, then we have

a compact statement:

Tbe total momentum of the system of two colliding particles re-

mains unchanged by the collision, i. e., the total linear momentum
is a conserved quantity.

Underlying this generalization concerning two-particle col-

lisions is the tacit assumption that the system is effectively isolated

—the particles interact with each other but not with anything

else. In the experiments of Newton and others this was achieved

by hanging the colliding objects on long strings, so that they

swung as pendulums and collided at the lowest point of their

swing. In the brief duration of the impact, therefore, the objects

were essentially free of all horizontal forces except those provided

by their mutual interaction.

Since the momentum carried by an object is given, in

Newton's words, by "the velocity and the quantity of matter

conjointly,"—i.e., by the value of the product mv and not by the

values of m and v separately
1—it is convenient to introduce a

single symbol, p, to represent the momentum of a mass m moving

along a given line with velocity v. The relation

Pi + P'i = const. (9-2)

then describes the conservation of momentum in two-body

collisions of the type studied by Newton and his contemporaries.

MOMENTUM AS A VECTOR QUANTITY

We have based our discussion so far on one-dimensional col-

lisions. It is important to appreciate, however, that—as is

apparent from its definition—the momentum of a particle is a

vector quantity having the same direction as the velocity of the

So that, for example, a body of mass \m traveling with velocity 2v has the

same momentum as m traveling with v.
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particle. Thus our statement of the conservation of linear mo-

mentum in a collision between two bodies should really be

written as follows:

Pli + P2i = pi/ + P2/ (9-3)

where the subscripts i and / are used to denote initial and final

values, respectively (i.e., precollision and postcollision).

This single vector equation defines the magnitude and the

direction of any one of the momentum vectors if the other three

are known. It will very often be convenient to separate Eq. (9-3)

into three equations in terms of the resolved parts of the vectors

along three mutually orthogonal axes (x, y, z). Each of these

component equations must then be separately satisfied. Thus, for

example, if two bodies, of masses m
i and m2 , have initial and

final velocities U|, u 2 and Vi, v 2 , Eq. (9-3) becomes

«mi + m2U2 = mivi + /H2V2 (9-4)

which contains the following three independen! statements:

m\u\ x + nt2U2r = fltiPia + m 2D 2 z

miui,, + nt2U 2 y = miviy + m202 V (9-5)

ntiui, + JW2«2. = mivi, + /W202.

In carrying out actual numerical calculations this resolution of

the vectors will often be necessary. But manipulations involving

unspecified masses and velocities are best made in terms of the

unresolved equations (9-3) or (9-4), without reference to any

particular coordinate system. This is, indeed, one of the main

strengths (and economies) of using vector notation.

Example. An object of mass 5 kg, traveling horizontally on

a frictionless surface at 16 m/sec, strikes a stationary object of

mass 3 kg. After the collision, the 5-kg object is observed to

have a velocity of magnitude 1 2 m/sec at 30° to its original

direction of motion, as shown in Fig. 9-1. What is the velocity

of the 3-kg object? We can choose an xy plane that contains

all the velocity vectors. Let the +x axis lie along the original

direction of motion of the 5-kg object (particle 1). Let us denote

the initial momentum of the 5-kg object as p u, and the final

momenta as pi/ and p2 /. Then we have

Pii:

= Pi/ + P2/ (sincep2 , = 0)

P2/ = Pl. - Pl/ = Pli + (— Pl/)
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Fig. 9-1 Conserva-
|

tion ofthe total vector |
momentum 'm a sim-

ple collision.

Figure 9-1 shows the vector construction by which p 2/ can be

found. The length of p h represcnts, on some appropriate scale,

the initial momentum of 80 kg-m/sec. The length of — Pi/ is

60 kg-m/sec, and its direction is as shown. The length and

direction of p2/ can be found directly from the vector triangle,

and v2/ is found as p 2/Aw 2 .

Alternatively, we can write down the momentum conserva-

tion in component form. First, let us list the known quantities:

m\ = 5 kg W2 = 3 kg

u\z = 16 m/sec «2x =

«1„ = K2„ =

v\ x = 6\/3 m/sec

i;i„ = 6 m/sec

Thus we have [using Eq. (9-5)]

Along x: 80 = 30\/3 + 3t> 2 ,

Along^: = 30 + 3l>2»

Hence

U2l = (80 - 30\/3)/3 « 9.3 m/sec

l-2 „ = — 10.0 m/sec

f2 = [(9.3)
2 + (10.0)

2]" 2 « 13.6 m/sec

The direction of v2 is at an angle d to the x axis such that

„ V2U 10.0
tan 5 = -S = - —:-

«2x 9.3

9 « -47°
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Notice that this result has been obtained through momentum

conservation alone; it requires no knowledge of the detailed

interaction between the objects. Relating the momentum changes

of the individual objects to the forces acting on them during the

collision will, however, be our next concern.

ACTION, REACTION, AND IMPULSE

Isolation

boundary

No. 1

We shall begin this discussion with an analysis along the lines

that Newton himself used. Later we shall draw attention to a

somewhat different approach, which can be more readily adapted

to relativistic dynamics, although it is in harmony with Ncwton's

analysis within the confines of classical mechanics.

Newton interpreted the collision experiments from the stand-

point that the concept of inertial mass of an individual object is

already established by experiments and arguments like those we

made use of in Chapter 6. In that case, Eq. (9-4) is a summary

of the actual experimental observations; the *'quantity of motion"

is conserved. One can then, by using F = ma, draw conclusions

about the forces acting during the collision. A collision is a

process involving two objects, each of which exerts a force on

the other. Object 1 exerts a force Fi 2 on object 2; object 2 exerts

a force F 2 i on object 1 (Fig. 9-2). We make no assumptions

about the relationship between the two forces, except that they

act for equal times. This last assumption is certainly reasonable,

because we recognize that the forces come into being as a result

of the collision, and surely the duration of the collision must be

the same for both objects. ' We can then take the statement of

F = ma as it applies to each object separately:

F21 = miai F12 = »1282

l.e.,

F21 F12
ai = &2 =

Fig. 9-2 Inferring the equalily ofaction and reaction

forcesfrom the fact ofmomentum conservation.

(9-6)

Yet this is anolher of those intuitively "obvious" conditions that is not bind-

ing and indeed has to bc qualified in some of the collision problems that re-

quire the use of special relativity.
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Suppose, to simplify this present argument, that each force re-

mains constant throughout a collision that lasts for a time At.

Then we have

Tl = ui +— A/ v2 - u2 +— At (9-7)
mi rri2

where Ui and a 2 are the initial velocities of the two objects and

?i and v 2 are their final velocities. From these equations we

therefore have

mivi = /miui + F2jA/

W2V2 = W2U2 + F\2At

Adding these two, we thus get

/KlVl + WJ2V2 = /MlUl + /M2U2 + (F21 + Fi2>A/ (9-8)

Experimentally, however, we have Eq. (9-4). We deduce, there-

fore, that

F21 + F J2 =

i.e.,

F21 = -F12 (9-9)

This is, of course, the famous statement known usually as

Newton's third law, that "action and reaction are equal and

opposite."

We have already made extensive use of this result, tacitly

or explicitly, earlier in this book, and in Chapter 4 we indicated

the kind of experimental support that one can supply for it in

static equilibrium situations. Newton, in developing the result

for dynamic situations, with forces changing from instant to

instant, made it quite clear that he regarded Eq. (9-9) as an in-

ference from observattons. In the Principia he describes an

experiment in which he floated a magnet and a piece of iron on

water, and released them from rest. He noted that there was no

motion of the combined mass after the magnetic attraction had

pulled them together, and took this as a demonstration of what

he himself called the third law of motion. His description of his

pendulum collision cxperiments, also in the Principia, is couched

in the same terms.

Kaving introduced these forces of interaction, we can now

relate them to the changes of momentum of the individual
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objects in a collision. Thus, if At is the duration of the collision

and F 2 i
is a constant force exerted by particle 2 on particle 1,

the change of momentum Api of particle 1 in the collision is

given by

F21A/ = Api

More generally, if any constant force F acts on a particle for

some short time interval A/, the change of momentum that it

generates is given by

FA/ = Ap

As we noted in Chapter 6, Newton's own approach to dynamics

was rooted in this equation rather than in F = ma. We also

introduced the terminology by which the product F At is called

the impulse of the force in A/. If F is varying in magnitude and/or

direction during the time span At, one can proceed to the limit

of vanishingly small time and so obtain the following equation:

(Newton's law reformulated) F = — (9-10)
at

This eguation, written on the assumption that F is the net force

acting on a particle, then becomes the basic statement ofNewtonian

dynamics. It is, in a sense, broader in scope than F = ma, or

at least a more emcient statement of it. For example, a given

force applied in turn to a number of different masses causes the

same rate of change of momentum in each but not the same

acceleration. In short, we come to recognize that momentum is

a valuable single quantity to be accepted in its own right and

most importantly for its property of being conserued in an isolated

system of interacting particles.

In our earlier discussion of the collision problem, we took

the forces of interaction as being constant in time. In most cases

that would be quite unrealistic. It is easy to see, however, that

through the integration of Eq. (9-10) we obtain the net mo-

mentum change caused by a varying force. Thus, for example, if

a force has some arbitrary variation between / = and / = At,

the momentum change that it generates is given by

Ap = / Fdt (9-11)
Jo

In a two-body collision, the duration of which is Ar, all that
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we actually observe is that the total momentum after the collision

is equal to the total momentum before the collision. In terms

of the impulses Api and Ap 2 given to the separate objects this

result is expressed by the condition

Api + Ap2 =

From this we infer that

/ F2 i dt = - / Pu dt

In principle, Fi a and F 2 i could have quite unrelated values at

any particular instant, as long as the above integrals are equal.

However, failing any evidence to the contrary we assume that

they are equal and opposite at each and every instant. Thus in

a one-dimensional collision the graphs of these forces as a func-

tion of time, whatever their exact form, are taken to be mirror

images of each other as shown in Fig. 9-3. It is important to

realize, however, that this is a postulate. And it is not always

true! There is no difficulty as far as "contact" collisions between

ordinary objects are concerned. But in situations in which objects

influence one another at a distance, as for example through the

long-range forces of electricity or gravitation, Newton's third

law may cease to apply. For no interaction is transmitted in-

stantaneously, and if the propagation time cannot be ignored in

comparison with the time scale of the motion, the concept of

instantaneous action and reaction can no longer be used. A
simple mechanical model of such a delayed interaction is sug-

Fig. 9-3 Corresponding variatioiis of

action and reaction forces during the

course ofa collision.

Fn

O

O

F„

A/

A/
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Fig. 9-4 Interaction wilh a time delay, mediated by

particles trauersing the gap between two separated

objects.

gested in Fig. 9-4. A cart, A, carries a gun that fires off a stream

of bullets with speed V. At a distance L away there is a second

cart, B, carrying a block in which the bullets are caught. Suppose

that the bullets carry plenty of momentum, thanks to a large

value of V, but are so Iight that they represent a negligible transfer

of mass from the first cart to the second. Suppose further that

they are invisible to an observer standing some distance away.

(We might make them extremely small, or perhaps paint them

black and set up a dark background.) Then if a brief burst of

bullets is fired off from A, we see this cart begin to recoil, ap-

parently spontaneously, whilc B remains at rest. Not until a

time L/V later does B begin to recoil in the opposite direction.

There is, in effect, a breakdown of the equality between action

and reaction in such a case. By the time the whole interaction

has been completed, with all the bullets reabsorbed in B, we

recognize that momentum has ultimately been conserved, but if

one restricts attention to the carts it does not appear to be con-

served, instant by instant, during the interaction.

The above example may seem artificial because, after all,

we could save the action-reaction principle by looking more

closely and observing the bullets at the instant of leaving A or

striking B. Nevertheless, it offers an interesting parallel to what

are probably the most important delayed interactions—those

of electromagnetism. We know that the interaction between two

separated charges takcs place via the electromagnetic field, and

the propagation of such a field takes place at a speed which,

although extremely large, is still finite—the speed of light. The

transfer of momentum from one charge to another (resulting,

let us say, from a sudden movement of the first charge) involves

a time lag equal to the distance between them divided by c. If we

looked at the charged particles alone, we would see a sudden

change in the momentum of the first charge without an equal and
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opposite change in the momentum of the other at the same time. l

There would thus appear to bc a failure of momentum conserva-

tion, instant by instant, unless we associate some momentum
with the electromagnetic field that carries the interaction. And
that is precisely what electromagnetic theory suggests. The

picture becomes even more vivid when we introduce the quantiza-

tion of the electromagnetic field and recognize that radiation is

carried in the form of photons, or light quanta. By the time we
have associated a momentum and an energy with each photon

individually, we are remarkably close to our mechanical model.

There is even a well-developed theoretical description of the

static interaction between electric charges in terms of a continual

exchange of so-called "virtual photons." In this case, however,

since the forces are constant in time, the equality of action and

reaction holds good at every instant, and the existence of a finite

time for propagating the interaction ceases to be apparent.

EXTENDING THE PRINCIPLE OF MOMENTUM CONSERVATION 2

It is perhaps worth amplifying the remarks of the last section a

little. We have seen how, in Newton's view, the law of conserva-

tion of momentum is closely tied in with the action-reaction idea.

There is, however, an alternative approach to simple collisions

which loosens this connection and eases the transition to non-

Newtonian mechanics.

This approach can be defined in terms of a question : What

do we actually observe in a collision experiment? The answer is

that our observations are purely kinematic ones—measurements

of the velocities of the two objects before and after impact.

Suppose that two objects, A and B, with initial velocities n,, and

u2 , respectively, collide with one another and afterward have

velocities Vj and v2 - In any individual collision of this type, it is

always possible to find a set of four scalar multiples (a) that

permit one to write an equation of the following form:

<*iui + a2U2 = «:»vi + a4\2 (9-12)

'In circumstances where such elfects are important, the very concept of "the

same time"— i.e., simultaneity— comes into question. It is just here that

Newtonian mechanics itself ceases to be adequate and the revised formulation

of dynamics according to special relativity becomes essential.

2This section may be omitled without destroying the continuity, but it is

recommended if you want to see how the bases of classical mechanics can be

approached in more than one way.
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This as it stands is a quite uninteresting statement. But experi-

ments for all sorts of values of u x and u2 reveal the remarkable

result that in every such collision, for two given objects, we can

obtain a vector identity by putting <*! = a3 = aA (a scalar

property of A) and a2 = on = aB (a corresponding scalar prop-

erty of B). In other words, the purely kinematic observations on

a collision process permit us to introduce a unique dynamical

property of each object. Notice that this simple situation ceases

to hold if any of the velocities involved become comparable to

that of light. In that case it is still possible to construct a vector

balance equation in the form of Eq. (9-12), but only if the

parameters a are made explicit functions of speed. In fact, we

arrive at the relativistic formula for the variation of mass with

speed [Eq. (6-3)]. •

Let us return now to the results of experiments on collisions

at low velocities. The basic statement of these results is that, in

the impact of any two given objects, the velocity change of one

always bears a constant, negative ratio to the velocity change of

the other:

V2 — u 2 = — const(vi — m) (9-13)

It is precisely because this ratio of velocity changes is found to

come out to the same value, whatever the type, strength, or

duration of the interaction between the objects, that we can infer

that it provides a measure of some intrinsic property of the

objects themselves. We define this property as the inertial mass.

One can set up an inertial mass scale for a number of objects

1, 2, 3, ... by finding the velocity changes pairwise in such inter-

action processes and defining the inertial mass ratio, let us say

of objects 1 and 2, by

m m |Av[i

«II |Av|2

Similarly for objects 1 and 3,

rm _ |Av'|i

m\ |Av'|.3

and so on. If m t is the Standard kilogram, we then have an

operation to determine the inertial masses of any other objects.

'For further discussion, see the volume Special Relaliciry in this series.
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We must however, do more. If we let objects 2 and 3 interact,

then the ratio

m3 _ |AT"| a

m2 |Av"| 3

must be consistent with the same ratio obtained from the first

two measurements. In fact it is, and this internal experimental

consistency then allows us to use the values m 2 , m z ,
... as mea-

sures of the inertial masses of the respective objects.

Having set up a consistent measure of inertial mass in this

way, we can then rewrite Eq. (9-13) in the form

v i ~ »i El (9-14)
V2 — U2 mi

which when rearranged gives us

mim + wi2U2 - mm + »I2V2 (9-15)

Thus an equation identical in appearance with the usual mo-

mentum-conservation relation emerges, but notice how this con-

trasts with the Newtonian analysis. We have used the collision

processes themselves to define mass ratios through Eq. (9-13).

Once this has been done, the terms in Eq. (9-15) automatically

add up to the same total before and after the collision.

What we have done here, in effect, is to give primacy of

place to momentum conservation. The question as to whether or

not action equals reaction does not arise. And this can be very

valuable. For when one is confronted with non-Newtonian

interactions (i.e., those for which action and reaction are not

equal opposite forces at each instant) one faces the problem of

how to incorporate them into physics—whether to abandon the

law of momentum conservation in its limited form or to extend

the idea of momentum and retain the conservation law. The

momentum-conservation principle has proved so extremely

powerful that the latter course has been chosen, and conservation

of linear momentum is a central feature of relativistic dynamics.

This way of analyzing the basic results of collision pro-

cesses exposes the very intimate relation that exists between

kinematics and dynamics. If we changc our description of space,

time, and motion, then we can expect that our dynamics must be

changed also. This is, in fact, precisely the situation as we make

the transition from the kinematics of Galileo and Newton to the

kinematics of Einstein's special theory of relativity.

320 Collisions and conservation laws



THE FORCE EXERTED BY A STREAM OF PARTICLES

The impact of a stream of particles or fluid on a solid surface

provides an instructive application of the laws of collision and

the conservation of linear momentum. Suppose that a stream

of particles, each having mass m and speed v, strikes a block of

mass M [Fig. 9-5(a)] and that the particles all lodge in the block.

Let the rate (i.e., number per second) at which particles pass

through an imaginary fixed plane at right angles to the stream

be denoted by R.

We know that momentum must be conserved, although if the

block were extremely massive one might, in watching the process,

receive the impression that the momentum brought in by the

particles was simply destroyed, because the velocity acquired is

unnoticeably small. Suppose, for example, that the block is

stationary when the first particle hits it. At the end of a short

time At the number of particles that has arrived is RAt, each

carrying momentum mv. If the stream were cut off at this instant,

the block and the particles together would continue to move with

some constant velocity u (we are assuming that the block is not

restrained in any way as far as its horizontal motion is con-

cerned). By conservation of linear momentum and mass we then

have

RmvAt = (M + AM)u

where

AM = Rm At

Fig. 9-5 (o) Stream of individual particles striking a

massive object. (b) Initial phase ofbuilding up to a

constant average force produced by the particle stream.
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Letting At approach zero, we arrive at two equations that describe

the acceleration and the rate of increase of mass of the block:

d-§ - Rm - M (9-17)
at

where we introduce the single symbol n to denote the mean rate

of transport of mass in the beam. Clearly, if M is sufficiently

large, the block will appear to remain at rest; its displacement

and its increase of velocity can remain negligible for some time.

But in any event, if the block is stationary at some instant, the

force F exerted on it at that instant must be equal to M du/dt.

Hence from Eq. (9-16) we have

F =* M~r- Rme - po (9-18)
at

Thus a strcam of particles striking a stationary surface

exerts an average fo'rce on it given by Eq. (9-18). The word

"average" should be emphasized. Our calculation treats the

stream as truly continuous, in the sense that we let At —* in

calculating F. But this is a purely mathematical step that does

not correspond to the physical reality. The force is produced by

the impact of individual discrete particles, and on a sufficiently

short time scale we might be able to detect this. Figure 9-5(b)

is an attempt to portray the hypothetical results of such observa-

tions on the basis of the following very simple model. Suppose

that each individual particle, upon striking the surface, undergoes

a constant deceleration that brings it to rest in a time T. During

this time it must be subjected to a force,/, given by

S- T

If the force exerted on the block as a result of the arrival of one

particle were plotted as a function of time, it would then be a

rectangle of height/and width T, as indicated by the small shaded

area in Fig. 9-5(b). The force would suddenly come into existence

at a certain instant and, a time T later, it would suddenly fail

to zero. Suppose now that we consider what happens as a func-

tion of time after the beam of particles is first turned on (e.g., by

'The correctness of Eqs. (9-16) and (9-17) depends, in fact, on this condition.

If the block has a speed u, the rate at which the particles strike it is reduced

from R to R{\ — u/6), and the values of du/dt and dM/dt are reduced

accordingly— see Problem 9-13.
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opening a shutter that was previously preventing them from

reaching the block). Then as successive particles arrive, each

adds its contribution / to the total force, which thus rises in an

irregular stepwise fashion. However, at a time T after arrival

of the first particle, the latter's contribution to the total force

would vanish. Thereafter there would be no net increase in the

total force, because on the average the earlier particles drop aut

of the picture as fast as the new ones appear. The total force

thus levels off at some value F but will exhibit statistical fluctua-

tions about that mean value. The force will appear to be almost

constant if the effects of the individual particles overlap con-

siderably in time, as shown in the figure. This corresponds to

making the average time interval between successive particles

very short compared to the average time that it takes for an

individual particle to be brought to rest.

We can use the above microscopic picture to recalculate

the total force F. It is equal to the force per particle,/, multiplied

by the number of particles that are effective at any one instant.

This number is equal to the total number of particles that arrive

within one deceleration period, T. [Figure 9-5(b) should make

this clear.] Since the rate of arrival is R, this number is just RT.

Thus we can put

F„ = {RT)f = RT™

i.e.,

F = Rmu

as before.

It is noteworthy that the average force the beam exerts

against the plate (and hence also the average force the plate

exerts against the beam of atoms) is quite independent of the

actual magnitude of the deceleration that each atom undergoes.

The average force is simply equal to the rate of change of mo-

mentum of the beam.

This force exerted by a stream of particles has been ex-

ploited by W. Paul and G. Wessel to measure the average speed

of a beam of silver atoms. ' A beam of atoms, evaporated from

an "oven," was directed downward onto the pan of a very delicate

balance. The force exerted on the balance pan was thus made

up of two parts: a steady force, as given by Eq. (9-18), and a

'W. Paul and G. Wessel, Z. Phys. 124, 691 (1948).

323 The force exerted by a stream of particles



Force on

balance pan

Fig. 9-6 Time dependence of

a totalforce due to the mo-

mentum transfer and the

tveight of a stream ofpar-

ticles striking an object.

O
-Time

Beamturned on

at this instant

force increasing linearly with time, due to the increasing mass as

given by Eq. (9-17) (see Fig. 9-6):

^total = V» + M'

The forces involved were equivalent to the weight of a small

number of micrograms. The experimental values for an oven

temperature of 1363°K (= 1090°C) were approximately as

follows:

tiv = 3.4 X 10- 7 N

M = 5.6 X 10- ,0
kg/sec

leading to a value for the average speed, v, of silver atoms at

1363°K:

v «= 600 m/sec

REACTION FROM A FLUID JET

Just as the impact of a stream of particles on a surface produces

a push, so the production of such a stream in the first place must

cause a force of reaction on the system that gives the stream its

momentum. In a normal jet of liquid or gas, the basic granularity

of the stream is too fine to be noticed, and any device that sends

out such a jet will experience a steady force of reaction, as given

by Eq. (9-18). Thus if we imagine a bench test of a rocket engine,

for example, with the engine clamped to a rigid structure, then

the burnt fuel is thrown out backward with speed vq, as shown

in Fig. 9-7(a), and the forward push, P, exerted on the rocket is

given by
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Fig. 9-7 Sehematic diagrams o/a lest-bed arrange-

ment of(a) a roeket englne and (b) a jet engine with air

intake at the front.

P = l*VO

One sees this same principle at work on a smaller scale in garden

sprinklers, fire hoses, and so on.

A jet engine of an aireraft presents a somewhat more com-

plicated application of these dynamical results. In this case the

air that enters at the front of the engine, and leaves as part of the

exhaust gases at the rear, plays an important role in the over-all

process of momentum transfer. The main funetion of the fuel

that is carried with the plane is to give the ejected gases a high

speed with respect to the plane, and most of the moving mass is

supplied by the air. It is very convenient to analyze the dynamics

of this system from the standpoint of a reference frame in which

the engine is instantaneously at rest. If the plane is traveling

forward at a velocity v, the air is seen as entering the engine at

the front with an equal and opposite velocity, as shown in

Fig. 9-7(b). Then, at the rear, all the ejected material has a back-

ward velocity v a in this frame. Thus, if air is being carried

through the engine at the rate /x ftir (kg/sec) and fuel is being burnt

at the rate /xfucI , the total rate of change of momentum defines a

total forward foree on the engine according to the following

equation:

P = Wuel»0 + H\t{O0 ~ ") (9-19)

Example. A jet aireraft is traveling at a speed of 250 m/sec.

Each of its engines takes in 100 m 3 of air per second, correspond-

ing to a mass of 50 kg of air per second at the plane's flying

altitude. The air is used to burn 3 kg of fuel per second, and all

the gases coming from the combustion chamber are ejected with

a speed of 500 m/sec relative to the aireraft. What is the thrust

of each engine? Substituting directly in Eq. (9-19) wc have
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P = 3 X 500 + 50(500 - 250)

= 1.4 X 10
4 N

Four engincs of this type would thus give a total driving force

of about 12,000 lb, a more or less realistic figure.

The most spectacular manifestation of these reaction forces,

at least in man-made systems, is of course the initial thrust from

the rocket engincs in a launching at Cape Kennedy (Fig. 9-8).

Fig. 9-8 Launching

of a Saturn V rocket.

(N.A.S.A. photo-

graph.)

326 Collisions and conscrvalion laws



The following approximate figurcs are based on published data 1

on the first stage of the Saturn V system:

Rate of burning 15tons/sec = 1.4 X 10
4
kg/sec

Total thrust 7.6 X 10
6
lb = 3.4 X 10

7 N
Total mass at liftoff 3100 tons = 2.8 X 10

6 kg

Burntime 2.5 min =150sec

One can infer from thesc figures that the speed of the ejected

gases is about 2500 m/sec and that the initial acceleration is

about 2 m/sec 2
. (Remember that in a vcrtical liftoff one must

first overcome the downward gravitational puli on the rocket!)

By the end of the first-stagc burn, about 2250 tons of fuel have

been consumed, and the total mass is down to only about a

quarter of the initial value. The analysis of the accelerative

process itself, as mass is continually lost, is the subject of the

next section.

ROCKET PROPULSION

This has bccome such a very large subject in recent years that

it is clear that we shall do no morc than touch upon the under-

lying dynamical principles. For anything like a substantial dis-

cussion you should look elsewhere.
2 The fact remains, however,

that the operation of any rocket does depend on the basic laws of

conservation of momentum, as applied to a system made up of the

rocket and its ejected fuel. For simplicity, let us consider the

motion of a rocket out i n a region of space where the effects of

gravity are sufficiently small to be ignored in the first approxima-

tion. Under this assumption, the only force acting on the body

of the rocket is the thrust from the ejected fuel. Suppose that the

burnt fuel has a speed v n relative to the rocket. Between time t

and time l + At, a mass Am of fuel is burnt and becomes sep-

arated from the rocket. The situations before and after ejection

are shown in Fig. 9-9, where m is the total mass of the rocket

plus its remaining fuel at / + At, and o is its velocity at time t.

NASA Facts: Space Launch Vehicles.

2Scc, for cxamplc, M. Barrere et al., Rocket Propuhion, Elsevier, Amsterdam,

1960; S. L. Bragg, Rocket Engines, Geo. Newnes, London, 1962; G. P.

Sulton, Rocket Propuhion Elements, Wiley, New York, 1963.
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f/g. 9-9 Situalions jusi before andjusi after the ejec-

tion of an element Am ofmass by a rocket.

The ejection of the fuel is a kind of inelastic collision in

reverse, since initially the masses m and Am have the same

velocity. By conservation of linear momentum we have

(w + Am)u = m(v + Av) + Am(v — vo)

Therefore,

mo + u Am = mo + mAv + oAm — voAm

Therefore,

mAv = voAm

or

Ao = v — (9-20)
m

This equation is not quite exact. (Why?) But as we let At ap-

proach zero, the error approaches zero. As long as Au/t?o is

much less than unity, Eq. (9-20) is an excellent approximation.

Given the initial total mass w, of the rocket plus fuel, and the

final mass w/ of the rocket at burnout, the velocity gained by the

rocket can be evaluated. If the initial and final velocities of

the rocket are i\ and vf , Eq. (9-20) tells us that

V — Vi » »o 2 ~ Am

The answer could be obtained numerically, by drawing a graph

(Fig. 9-10) of l/m against m, and finding the area (shaded)

between the limits m/ and m,. This is a pure number, which

when multiplied by v gives the increase of velocity. Analytically,

if m is used to denote the mass of the rocket (plus its remaining

fuel) at any instant, it is more satisfactory to interpret dm as the
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Fig. 9-10 Craph of l/m versus m. The

shaded area giues a relatlve measure of

Ihe gain of velocity resulling from a

given mass ehange.

change of mass of the rocket in a time di. Defined in this way,

dm is actually a negative quantity, which when integrated from

the beginning to the end of the burning process gives the value

of m; - rrii(< 0). In these terms the change of velocity can be

written as the following integral in closed form:

"/
f dm . (m.\— Vi = —00 / — = Poin i — i

Jmi m \mfJ
(9-21)

You should satisfy yourself that this is indeed equivalent to the

final result of the numerical-graphical method described above.

Notice that the time does not enter into the calculation at

all, although of course it would do so if we wanted to consider

the rate of increase of v or the magnitude of the thrust.

Notice also that we would be entitled, at each and every

instant, to look at the situation from the frame of reference of

the rocket itself. In this frame the velocity of the ejected fuel is

always just — v , and Eq. (9-20) follows immediately.

It is worth examining some of the implications of Eq. (9-21).

The first thing to notice is that the gain of velocity is directly

proportional to the speed of the ejected gases. Thus it pays to

make v as great as possible. The highest values of v attainable

through chemical burning processes are of the order of

5000 m/sec, and in practice, because of incomplete burning and

other losses, it is hard to do better than about 50% of the ideal

theoretical value for a given fuel (cf. the figure of 2500 m/sec for

the LOX-kerosene mixture of Saturn V, first stage). These

velocities are, of course, very high in ordinary terms, but they are

small compared to the velocities that can be given to charged
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particles by electrical acceleration. Hence the interest in develop-

ing ion-gun engines, or even using the highest available speed

(that of light) by making an exhaust jet of radiation. The trouble

with both of these, however, is the very small rate of ejection of

mass, which makes the attainable thrust very small.

The other main feature of Eq. (9-21) is the way in which

the increase of velocity varies logarithmically with the mass

ratio. This places rapidly increasing demands on the amount of

fuel needed to confer larger and larger final velocities on a given

payload. Suppose, for example, that we wanted to attain a

velocity equal to the exhaust velocity v , starting from rest.

Then, by Eq. (9-21) we have

v/ — V( = vo = foln©
Therefore,

»-. -2.718...
m,

But to attain twice this velocity, we need to have

-fe)

"

2

i.c,

Uli 2 - .— = e «7.4
m,

Table 9-1 presents the results of such calculations in more con-

venient form. The last column represents the extra mass needed,

TABLE 9-1

v, - vt mi/m, (w< - m,)/mf

vo 2.7 1.7

2o 7.4 6.4

3uo 20.1 19.1

4»o 54.5 53.5

as a multiple of the payload. The practical problems of producing

very large mass ratios are prohibitive, but the use of multistage

rockets (which also have other advantages) avoids this difficulty

(see Problem 9-12, p. 359).
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A result that may seem surprising at first sight is that there

is nothing, in principle, to prevent us from giving a rocket a

forward velocity that is considerably greater than the speed v

of the exhaust gases. Thus at a late stage in the motion one

would see both the rocket and the ejected material moving for-

ward with respect to the frame in which the rocket started out

from rest. No violation of dynamical principles would be in-

volved, and if one made a detailed accounting of the motion

of all the material that was in the rocket initially, one would find

that the total momentum of the system had remained at zero

(as long as the effects of external forces, including gravity, could

be ignored). It should of course be emphasized that our whole

analysis would hold good, as it stands, only in the absence of

gravity and of resistive forces due to the air.

COLLISIONS AND FRAMES OF REFERENCE

The seventeenth-century investigations of collision processes, by

which momentum conservation was established, were chiefly

experimental. But one of the men involved—Christian Huygens

—

applied the spirit of twentieth-century physics in a brilliant

analysis of the particular case of two objects with perfect re-

bound. He based his argument on symmetry and on the equiv-

alence of frames related by a constant velocity. The analysis is

simple but of great intrinsic interest.

Figure 9-1

1

1 provides a suitably seventeenth-century back-

ground to the situation. But though the picture may appear

quaint and archaic, the thinking is sharp and fresh. Huygens

imagines two equal elastic masses, colliding with equal and

opposite speeds ±u. He assumes that they rebound so that each

velocity is exactly reversed; this is a symmetry argument. Next,

Huygens imagines a precisely similar collision to take place on a

boat that is itself moving with speed v relative to the shore. This

collision, viewed by a man on terra firma, appears as a stationary

mass being struck by a mass with velocity 2v. After the impact,

From Ernst Mach, The Science of Mechanics, trans. T. J. McCormack, Open
Court Publishing Co., La Salle, 111., 1960. The original figure comes from

Huygens' Ireatise on impact (ca. 1700). Mach's book (which is extremely

readable and uses a minimum of mathematics) is itself a landmark in the

discussion of the fundamental principles of physics. His speculations on the

origin of inertia were a significant part of the background to Einstein's think-

ing about general relativity and cosmology (see Chapter 12).

331 Collisions and frames of rcfcrcnce

— m* m i u n i L



Fig. 9-11 Huygens'

visualization of an

elaslic collision be-

tween two equal

masses, as shown 'm

his book, De Motu
Corporum ex Per-

cussione (1703).

(Reprinled in Vol. 16

ofC. Huygens,

Oeuvres Completes,

Marlinus Nijhoff, The

Hague, Netherlands,

1940.)

O
m
O

the first mass has acquired the velocity 2v, and the second mass

is stationary.

More generally, if the boat has a speed u, different from v,

the velocities exchange as follows:

Body 1 Body 2

Before impact: u + v u — d

Afler impact: u — o u + v

Thus Huygens predicts, on theoretical grounds, the results of all

possible one-dimensional experiments on the perfectly elastic

collision of two identical masses. The feature common to all

of them is that the magnitude of the relative velocity has the

same value after the collision as it had before the collision.

Huygens went even further. Again using a kind of symmetry

argument, he deduced a general property of perfectly elastic

collisions between unegual masses. If a moving object A strikes

an unequal stationary object B, then after the collision they will

be moving with velocities v and w as indicated in Fig. 9-12(a).

Imagine that this is viewed from a boat moving to the right with

velocity w/2. Then before collision the object B is seen moving

to the left, with velocity — w/2, as shown in Fig. 9-12(b). Huygens

argues that the exact reversal of the motion of B, as seen from

this second frame, must also imply the exact reversal of the motion

of A in this perfectly elastic process. Thus the final velocity of A
must be — (m — w/2) i n this frame. But this velocity is also

equal to v — w/2, because the final velocity of A as seen from
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Fig.9-12 Elastic

collision between two

unequal objects as

seen (d) from the

laboratory frame, and

{b) from a frame in

which both celocities

are simply reversed.

(a)

(b)

Seen from

the shore

Seen from

the boat

Before

A

A

O-
""2

After

O
B

B

-*o
w
2

O^
A

or: v - -x

B

B

O*-
w
2

the shore is v. Hence we have

- (u - w/2) = v - w/2

w — v = u (9-22)

Thus Huygens concludes that in the elastic collision of any two

objects whatsoever, the magnitude of the relatioe velocity remains

unaltered. Notice, however, that something beyond the con-

servation of linear momentum is involved here. The extra some-

thing is what we have learned to call kinetic energy, and its

conservation defines a very special class of collisions. Let us

consider this further.

KINETIC ENERGY IN COLLISIONS

Suppose that a one-dimensional collision takes place as shown

in Fig. 9-1 3(a). If this system is effectively free of external in-

fluences we have conservation of linear momentum:

m\U\. + W2«2 = WlJ-'l + »12 1-"2

Suppose further that the collision is perfectly elastic, in the sense

defined by Eq. (9-22). In the present problem this implies the

following relationship:

Ml — M2 = t>2 — Di

We can solve these two equations for the final velocities, v y and

v 2 . The results are

»11 — »12
,

2»I2
"i = —

—

r— "i + r
- — «2

1$ =

»11 + »»2

2»ii

»11 + IW2
«I -

»11 + »12

mi — mi

»n + »12
U-2
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Using these values of Vi and v2 , it is a straightforward piece of

algebra to arrive at the following result:

mivi 2 + W2^2 2 = miui 2 + /W2W2 2 (9-23)

You will recognize that this equation, apart from the absence of

factors of \ throughout, corresponds to a statement that the

total kinetic energy after the collision is equal to the kinetic

energy initially. We have arrived at this result on the basis of

symmetry considerations and without any explicit mention

of forces or work. We shall bring these latter concepts into the

picture in Chapter 10, but for the moment we do not need them.

Some of the early workers in mcchanics recognized the con-

servation property represented by Eq. (9-23) for perfectly elastic

collisions, and referred to the quantity mv 2
as the "living force"

(Latin, vis vioa) of a moving object.

Having, in effect, introduced kinetic energy into the de-

scription of collision processes, we shall now develop an impor-

tant result that holds good whether or not the total kinetic energy

is conserved. Suppose that Fig. 9-13(a) represents an arbitrary

one-dimensional collision as observed in a reference frame S.

Let us consider this same collision from the standpoint of another

frame S' that has the velocity v with respect to S. (In other

words, 5 and S' are related by the Galilean transformations.)

We then have

u\ = «i — V U2 = U2 — v

v\ = Pl — B PJ = V2 — o

We shall now show that the change of kinetic energy between

initial and final states is an invariant—i. e., it has the same value

in both frames.

In S:

^initial = hm >u l

2 + 4"»2«22

#fii.al = i'Wlfl 2 + £'M2U22

AK =K,- Ki = (imim 2 + im2(.-2
2
)

- (^wiwi 2 + Jm2«22
)

In S':

^'initial = i«l(Ml - V)2 + \tm(M2 •- V)2

^'final = i«l(d - V)2 + im 2(V2 - v)2

AK' = (%mivi 2 + fffttoa
2
) — (2"»i«i

2 + i"J2«2
2
)

- VftmiVl + W2f2> — (miUi + 7M2«2)]
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Fig. 9-13 Arbilrary

one-dimensional col-

lision as seen in two

differentframes
related by a velocity v.

(a) InS:

(b) ms'-. fW o*r 0*r

By momentum conservation, for a«;> kind of collision, the com-

bination of terms in squarc brackets in AK' is zero. It follows that

AK' = AK

Thus, if the change of kinetic energy for a given collision process

is specified in one frame, it has the same value in all frames.

Given a knowledge of this quantity, and the fact of momentum

conservation, we can predict the values of u, and v> in any one-

dimensional collision process for which the initial velocities w i

and u> are specified. The value of AK may be positive, negative,

or zero. The first of these corresponds to an explosive process,

in which extra kinetic energy is given to the separating particles

as a result of the interaction. The second and third possibilities

correspond to inelastic and elastic collisions, respectively, in the

sense in which we have already been using these terms.

THE ZERO-MOMENTUM FRAME

The momentum of a particle or of a system of particles is not

an invariant; it depends on the frame of reference in which one

observes the motion. If, however, one compares the descriptions

of the motion in two different inertial frames, related by a con-

stant velocity, the difference between the measured values of the

momentum of a particle is always a constant vector of magnitude

m\, where m is the mass of the particle and v is the velocity of one

frame relative to the other. One can always find a reference

frame in which the total momentum of any particle vanishes; it

is evidently a frame in which the particle is at rest at the instant

of time one determines its momentum. One can likewise find a

reference frame in which the total momentum of any system of

particles is zero, and this zero-momentum frame of reference is of

great importance, not only as a convenience for looking at col-

lisions and interaetions in general but also, as we shall show
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Fig. 9-14 Basis of

defining the zero-

momenlum {center-of-

mass) referenceframe.

shortly, for its dynamical implications. To see how we identify

this zero-momentum framc, let us start with a simple example;

two particles /n, and m 2 move along the x axis with constant

velocities t>i and v% in a frame of reference S (Fig. 9-14). Our

task is to find the velocity D of a reference frame S' relative to S
such that in S' the total momentum m\v\ + m-iv'i 's ec

l
ua' to

zero.

Let O' be the origin of S' moving with velocity v relative to

O. From Fig. 9-14 we see that the velocities of tn^ and m 2

relative to O are given by

v\ = c\ — v

v'2 = 02 — u

Hence the momentum of the two particles in S' is

miv'i + /M2C2 = miL-i — rrtiU + /W202 — mzv

and if this is to be zero, we must have

(/Ml + m2)v = /Hl»l + OT2l>2 (9-24)

Equation (9-24) fixes the velocity of the reference frame S'

relative to S but leaves the choice of the position (x) of O' arbi-

trary. We use this freedom to choose the location of O' relative

to the positions of m, and m 2 as simply as possible. If werewrite

Eq. (9-24) in the equivalent form

or better as

— [(mi + m2)x] = — [mixi + m2X2]
dt di

evidently the simplest way of satisfying this is to equate the two
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"llg

Fig. 9-15 Basis ofdefining the cenler ofgranity, not

necessarily identical tvilli tJte center ofmass.

sets of square brackets. The difference between them must be a

m*t constant and we choose the constant equal to zero. We then have

for the position of O' in S,

_ = misi + m2x2
(9_25)

mi + m2

The origin of a zero-momentum reference frame chosen in

this way is called the center of mass of the two-particle system

made up of W] and m 2 . You will recognize that Eq. (9-25) also

defines what we are accustomed to calling the center of gravity

of two objects (cf. Fig. 9-15). In principle, however, these need

not be identical points. The center of gravity is literally the point

through which a single force, equal to the sum of the gravitational

forces on the separate objects, effectively acts. If the values of g
at the positions of the two objects were not quite identical, then

the forces Fgi and Fg2 would not be strictly proportional to m!

and m 2 , in which case the center of gravity and the center of

mass would not quite coincide. The difference is negligible for

ordinary purposes, but it should be recognized that the center of

mass, as given by Eq. (9-25), is defined without reference to the

uniformity or even the existence of gravitational forces. Perhaps

you recognized that we have already used the zero-momentum

frame in our earlier section on collisions and frames of reference.

When Huygens wanted to apply symmetry arguments to col-

lisions, this was the frame he started with. But now we have

identified it in a much more explicit fashion.

The introduction of the zero-momentum or center-of-mass

(CM) frame leads to a very important and immensely useful way

of analyzing the dynamics of a system of particles. To develop

the essential idea in the simplest possible way we shall again

consider a one-dimensional system of two particles. In frame S
(let us suppose that this is the frame defined by our laboratory)

the particles have velocities Vi and v2 . In the zero-momentum

frame (S') they have velocities v[ and v'2 given by

l/l = D] — v

V2 = V2 — C

where 15 is defined by Eq. (9-24). Putting m\ + tn% = M, we

can put
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» -^±^ = £ (9-26)

where P is the total linear momentum, which remains unchanged

in any collision proccss:

P = ntyvi + HtaD2 = const. (9-27)

We now proceed to express thc total kinetic energy K, as mea-

sured in the laboratory frame, in terms of the center-of-mass

velocity v and the velocities v[ and v2 of mi and m 2 relative to

the CM. We have

K = ImM + df + im2(o'2 + vf

= (£wiid'i
2 + JTJttPa ) + (miv'i + m2v'2)o

+ Kmi + w2)0
2

(9-28)

Now, by the very definition of the zero-momentum frame, we

have

miv'i + miv'y =

Hence the middle term on the right-hand side of Eq. (9-28) is

automatically zero! The first term we recognize as the total

kinetic energy K' of the two individual particles relative to the

CM; the last term is equal to thc kinetic energy of a single particle

of mass M moving with the velocity i; of the CM. Thus we can

write

K = K' + \Ml n- (9-29)

This is such an important result that we shall express it in words

also:

The kinetic energy of a system of two particles is equal to the

kinetic energy of motion relative to the center of mass of the system

(the internal kinetic energy), plus the kinetic energy of a single

particle of mass equal to the total mass of the system moving with

the center of mass.

The great importance of this separation of the kinetic energy

into two parts—and note well that it works only if the new

reference frame is the zero-momentum frame—is that it opens

the way to a very powerful and simplifying procedure. We have

the possibility ofanalyzing the internal motion ofa system {relative

to the CM) without reference to the bodily motion of the system

as a whole. (We shall show shortly that the result holds good not

only for one-dimensional motions, but in general.)

338 Collisions and conscrvnlion laws



One of the implications of Eq. (9-29) is that a certain amount

of kinetic energy is locked up, as it were, in the motion of the

center of mass. In the absence of external forces the velocity v

remains constant throughout the course of a collision process,

and the kinetic energy %Md2 must Iikewise remain unchanged.

This means that in the collision of two objects, only a certain

fraction of their total kinetic energy, as measured in the labora-

tory, is available for conversion to other purposes. The amount

of this available kinetic energy is, in fact, identical with K'. We
can calculate it with the help of Eq. (9-29):

K' = K- $Mo2

= (imivi + \m2v2) — \{m\ + /»2)0

Substituting for d from Eq. (9-20), this leads by simple algebra

to the following result:

K' = \ -22?- (c2 - Blf (9-30a)
2 mi + rri2

The value of K', as expressed by this equation, is thus the kinetic

energy of what can be regarded as being effectively a single mass,

of magnitude m lm 2/(m l + m 2 ), moving at a velocity equal to

the relative velocity of the colliding particles. The effective mass

is called the reducedmass of the system and is given the symbol y..

Thus we may write Eq. (9-30a) in the more compact form

(9-30b)K' = K,
where

m\m2
u =

mi + ni2

Prel = 02 — 1>1 = 02 --o':

For example, if a moving object of mass 2 units strikes a station-

ary object of mass 1 unit, two thirds of the initial kinetic energy

is locked up in center-of-mass motion, and only one third is

available for the purpose of producing deformations, and so on,

when the objects collide.

COLLISION PROCESSES IN TWO DIMENSIONS

In general the velocity vectors of two colliding objects define a

plane, and it is therefore important to extend our analysis of

collision processes into two-dimensional space. Actually one

339 Collision processes in two dimcnsions



Fig. 9-16 (a) Collision

seen as occurring in

one dimension. (b) As I

seen in another refer- I

ence frame, the colli- I

sion appears two-

dimensionat.

+M>

+.w

«M
must stand ready to go all the way into three dimensions, because

the plane defined by the velocity veetors of two partieles after

a collision may not be the same as that defined by the initial

velocities. Many collision processes are, however, purely two-

dimensional, and for simplicity we shall limit ourselves to such

cases in diseussing specific examples, even though the theory

applies equally well to three-dimensional problems.

One thing that is worth recognizing at the outset is that

the analysis of purely one-dimensional problems, of the type we

have diseussed so far, can in faet lead to predietions about

certain types of two-dimensional collisions, because we can turn

a one-dimensional collision into a two-dimensional one by

simply changing our point of view. Consider, for example, an

imperfectly elastic collision between two identical spheres that

approach one another along the y axis with equal and opposite

velocities, ±u [see Fig. 9-16(a)]. Suppose that as a result of this

collision they recoil back along the y axis with reduced velocities

±o (symmetry requires that these final velocities be equal and

opposite). Figure 9-16(b) then shows how the same collision

would appear to an observer who had a velocity — w parallel to

the x axis. This defines a whole class of oblique collision prob-

lems, all of which can be solved with reference to the simple

head-on collision of Fig. 9-16(a). One can go even further yet,

by viewing the collision of Fig. 9-16(b) from a reference frame

that has some velocity parallel to the y direetion. This removes

all the apparent symmetry, yct it is basically the same collision.

All the collisions for which, at the moment of impaet, the two

spheres have a relative velocity ofgiven magnitude along the line

joining their centers are dynamically equivalent.
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This suggests a vcry important way of simplifying the

analysis of collision problems. Imagine yourself in the frame in

which the collision is most simply described; this will be the

center-of-mass frame, in which by definition the colliding par-

ticles approach one another along a straight line with equal and

opposite momenta. Solve the problem in this CM frame, and

transfer the result to the laboratory frame by means of a Galilean

transformation.

The grcat simplicity of a collision process as viewed in the

zero-momentum frame is illustrated in Fig. 9-17. Since the

total momentum in this frame is zero, the particles separate, as

well as approach, with equal and opposite momenta, as shown in

Fig. 9-17(a). Also the magnitudes of the final momentum vectors

are independent of their direction in the CM frame. Thus, as

shown in Fig. 9-17(b), the vectors p[/ and p'
2/ can be represented

with their tips lying at opposite ends of the diameter of a circle.

The relative directions of p{,- and p[/ can be anything, de-

pending on the details of the interaction. The relative lengths

of these vectors also depend, of course, on the detailed mechanism.

In a perfectly elastic collision we have p) =
p'i. In a completely

inelastic collision we have p'f = 0. (In an cxplosive process, for

example rocket propulsion, we have the converse situation, where

p'i = 0, p} > 0.) And in atomic, chemical or nuclear reaction

processes we may find p} less than, equal to, or greater than p\.

To begin with, let us look at one or two examples of perfectly

elastic collisions so as to appreciate the beauties of a view from

the center-of-mass frame. We are defining an elastic collision

Fig. 9-17 (a) An ar-

bilrary collision as

described by equal and

opposite momentum

vectors in the CM
frame. (b) In the CM
frame, the end poinls

of the momentum

vectors lie on circles.
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here as one in which the magnitude of the relative velocity is

unchanged by the collision. As we have seen, this is equivalent

to saying that the total kinetic energy, as well as the momentum,

is conserved. The definition in terms of kinetic energy conserva-

tion will later become the dominant one.

ELASTIC NUCLEAR COLLISIONS

The nuclear physicist livcs in two worlds. One is his laboratory,

the other is the center-of-mass frame of the particles whose

collisions and interactions he is studying. By learning to skip

nimbly from one frame to the other he gets the best of both

worlds. Let us see how.

Proton-proton collisions

Figure 9-18 shows a collision between two protons, as recorded

in a photographic emulsion. One of the protons belonged to a

hydrogen atom in the emulsion and was effectively stationary

before the collision took place; the other entered the emulsion

with a kinetic energy of about 5 MeV.

The most notable feature of the collision is that the paths

of the two protons after collision make an angle of 90° with each

/
/

/ .

Fig. 9-18 Elastic

collision between an

incident proton and an

initially stationary

proton in a photo-

graphic emulsion.

{From C. F. Powell

and G.P.S. Occhia-

lini, Nuclear Physics

in Photographs, Ox-

ford Unicersity Press,

New York, 1947.)

y
. ~ «.„.. -%.,..; «...^...

\

342 Collisions and conservation laws



othcr. This is true for all such proton-proton collisions, until

we get up to energies so high that Newtonian mechanics is no

longer adequate to describe the situation. By first looking into

the center-of-mass frame we can readily understand this. Let

the velocity of the incident proton as observed in the laboratory

be v. Then the zero-momentum frame has velocity v/2, and in

this frame the protons approach and recede with equal and

opposite velocities as shown in Fig. 9-19(a). Suppose one proton

emerges from the collision in the direction d', so that the other

is at ir — B' on the other side of the line of approach. To get

back to the laboratory frame we add the velocity v/2 to each

proton, parallel to the original line of motion, as shown in

Fig. 9-I9(b). But the triangles ABC and AEF are both isosceles,

so the directions 0i and 8 2 of the protons as observed in the

laboratory are given by

$i = 6'/2

02 = (ir - 6')/2

Therefore,

0i + 62 = r/2

Moreover, we can easily find the laboratory velocities of the two

protons after the collision, for we have

ui = 2(y/2)cos0i = ucosfli

v2 = 2(u/2)cos02 = wsinfli

Fig. 9-19 (a) Elastic

collision between two

eaual masses, as seen

in the CMframe.

(b) Transformation to

the laboratory frame,

showing a 90° angle

between the final

velocities.
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We see that in any such collision the total kinetic energy is con-

served, because

Initial KE = \mv2

Final KE = £m(t>cosfli) 2 + \m(o cos 2)
2

= £/wt;
2(cos2 6i + sin2 0,)

= %mv2

Figure 9-20 shows a similar collision between equal macroscopic

objects (billiard balls); it is not perfectly elastic, but it is impres-

sively close.

Neutron-nucleus collisions

In nuclear fission processes, neutrons are ejected with a variety

of energies, but the average energy is of the order of 1 MeV.

Fig. 9-20 Slroboscopic pholograph ofan almost perfectly elastic

collision between equal masses. (Front PSSC Physics, D. C.

Heath, Lexington, Massachusetts, 1965.)
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These neutrons are however, most effective in causing further

fissions if they are reduced to energies of the order of 10~ 2
or

10
-1

eV (thermal energies). Thus an essential feature of every

slow-neutron reactor is a means of slowing down the neutrons.

And elastic collisions of neutrons with other nuclei (those com-
posing the moderator material of the reactor) do most of the job.

Suppose that a neutron of mass m makes an elastic collision

with a nucleus of mass M. Let the initial velocity of the neutron

in the laboratory be v ; in this frame the struck nucleus will be

assumed stationary. Figure 9-21 (a) shows the collision as seen

in the center-of-mass frame, which has a velocity v relative to

the laboratory frame given by Eq. (9-24):

M + m »0 (9-31)

If the collision turns the neutron through an angle d' in the zero-

momentum frame, its final velocity in the laboratory frame is the

vector v shown in Fig. 9-21 (b). The magnitudes of the final

velocities, as measured in the laboratory, for any given value

of d', are readily calculated. (Exercise: Do this calculation for

yourself, and verify that in this case, as with two equal masses,

the total kinetic energy, as measured in the laboratory, remains

unchanged as a result of the collision.)

The biggest energy loss for a neutron as seen in the lab-

oratory frame occurs if it is scattered straight backward (d' = x).

In this case we have

i;(t) = D - (v - B) = -(to - 2v)

Fig. 9-21 {a) Elastic

collision between two

uneaual masses, as

seen in the CMframe.

(b) Transformation to

the laboratoryframe;

the angle between the

velocities is different

from 90°.
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«--«*(i-jjF?y
M - m

For e' = the neutron loses no energy at all. (What sort of a

collision is this?) Thus the kinetic energy of the neutron after

the collision lies between the following limits:

KmtiX = ^mvo

Since Kmax is independent of the mass M of a moderator nucleus,

it is the expression for KmKn that tells us what value of M is most

likely to lead to the greatest reduction of the average neutron

energy. And we see that M = m makes Kmin equal to zero; we

cannot do as well as this for any other value of M, whether it be

bigger or smaller than m. Thus if no other considerations were

involved, ordinary hydrogen would make the best moderator,

since in this case M (the proton mass) is equal to m within about

1 part in 10
3

. Protons, however, also capture slow neutrons

rather effectively, thereby making them unavailable for causing

further fissions, and it turns out that certain other light nuclei

(e.g., deuterium, beryllium, and carbon) offer a better com-

promise between moderating and trapping of the fission neutrons.

INELASTIC AND EXPLOSIVE PROCESSES

We shall turn now to processes in which there may be a net

loss or gain of kinetic energy as a result of the collision. In

analyzing such processes, it is important to confirm that the

change of total kinetic energy is indeed an invariant quantity,

and that the result we obtained on the basis of a one-dimensional

collision does hold good in general. In order to show this, we

first redevelop Eq. (9-29) for two particles moving in arbitrary

directions. Let the particles have masses m , and m 2 and velocities

vj and v2 in the laboratory frame (5). Then the velocity, v, of the

CM frame (S') is defined by the equation

_ = wiivi + >"2V2
(9-33)

mi + mz

If the velocities of the particles as measured in 5' are v[ and v'2 ,
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we then have

Vl = v'i + v

v2 = v'2 + v

We now write down the total kinetic energy in S, using the fact

that the kinetic energy $mv 2 of a particle can also be expressed

as Jm(v • y), i.e., in terms of the scalar product of the vector v

with itself. Thus we have

K = £mi(vi • vi) + £m2(v 2 • v2)

= }«i(Ti + v) • (v| + v) + $m2 (v'2 + v) (v 2 + v)

Now consider one of these scalar products, using the distributive

and commutative laws that apply to the dot products of vectors:

(v'i + v) • (v', + v) = v', vi + 2v'i v + v • v

= v? + 2v', • v + v
2

Using this result and its counterpart in the second term of the

above expression for K, we have

K = (Jmii/i
8 + im202) + (miT

7

, + m2v2 ) • v + i(m, + m2)D
2

But again we note that, by the definition of the zero-momentum

frame, the second term on the right is zero, so that we come back

to the simple result of Eq. (9-29):

K = K' + £A/B2

Applying this to the states of a two-particle system before and

after collision, we have

Ki = K'i + iMV2

K, = K} + %Md2

We assume that the total mass remains unchanged and, in the

absence of external forces, so does D. Thus we again arrive at

the result

K/ - Ki = K} - Ki- Q

where Q is the amount by which the final kinetic energy exceeds

(algebraically) the initial kinetic energy. The actual value of Q
may, of course, be negative.

The results of the above analysis can be extended, with

virtually no modification, to such processes as nuclear reactions,
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in which the actual identity of the particies in the final state may

be quite different from what one has at the beginning. Suppose,

for example, that there is a collision between two nuclei, of masses

m 1 and m 2 , which react to produce two different nuclei, of

masses m 3 and m 4 . Then we can write the following statements

of conservation

:

Mass: my + /W2 » ms + »14 = M
Momentum: /wivi + W2V2 = W3V3 + mi\4 = Mv

wiv'i + »i2V2 = W3V3 + mnv'n =

Thus the initial and final kinetic energies can be written as

follows:

Ki = im^f + \m2 {o'2f + £MD2

Kf = ImM? + kmiMf + \Mo2

with Kf - Ki = Q.

Example: The D—D reaction. One of the most famous

nuclear reactions (and an important one for the process

of energy generation by nuclear fusion) is the reaction of two

nuclei of deuterium (hydrogen 2) to form a helium 3 nucleus and

a neutron '

:

?H + ?H -» 2He + i/i + 3.27 MeV

The 3.27 MeV represents the extra amount of kinetic energy, Q,

made available because the masses of the product particies (their

rest masses, to be precise) add up to a little less than the masses

of the initial particies; the total energy, including mass equiv-

alents, remains constant, of course.

Suppose now that a deuteron with a kinetic energy of 1 MeV
strikes a stationary deuteron. What is the final state of affairs

as viewed in the CM frame? (See Fig. 9-22.) First, let us cal-

culate the velocity D. The mass of a deuteron is about 2 amu, or

about3.34 X 10" 27 kg. Now, 1 MeV = 1.6 X KT 13
J. There-

forc,

D, - (HiJ e 1.0 X 10
7
m/sec

'In this equation, the subscript before the letter for a given nucleus denotes

the number of protons and the superscript shows the total number of nucleons.

D and ?H both stand for a deuteron.
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Before

m,

O
m,

O
Fig. 9-22 (o) Reac-

tion process, in which

the collision ofthe

particles m i and m 2

leads to the formation

oftwo different par-

ticles, m z and m,.

(6) Same process as

seen in the CMframe.

After

m,

After

O'"»

In Laboratory frame In CM frame

(a) (b)

Since m2 = ffli and m 2 is initially at rest, we have

D = d i/2 = 0.5 X 10 7 m/sec

In the CM frame the deuterons have equal and opposite velocities

of magnitude equal to C. Hence we have

Kinitial = 2 X %miC 2 = £/HU>l 2

i.e.,

Kfnitiai = hKx = 0.5 MeV

[We see here a particular application of Eq. (9-30). If a moving

object collides with a stationary one of equal mass, only half the

initial kinetic energy is available for their relative motion in the

CM frame.]

Now consider the result of the nuclear reaction. The final

total kinetic energy i n the CM frame is given by

Kfinal = Kinitiol + 3.27 McV
= 3.77 MeV = 6.03 X 10" ,3 J

This is partitioned between the
3He and the neutron in such a

way that the momenta are numerically equal. Denoting the

masses and velocities ofthe 3He and the neutron as m 3 and v'3 and

m4 and V4, respectively, we have

»»3v'j + W4V4 =

«a ,./

«4
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Then

= |m3 (,'3)
2 +^(^)W

1 W3( ffl3 + WI4) , , ,.2

=
2

^ «>

Putting m 3 « 3 amu and m 4 « 1 amu, this gives us

and so U4 (= 3»!) « 2.3 X 10
7 m/sec.

We thus have a full picture of the final situation as viewed

in the CM frame for any specified direction 9± of the outgoing

neutron. To go back to the laboratory frame we have simply to

add the CM velocity v to each of the vectors V3 and v4 .

The great advantage of using the CM frame in this way is

that, regardless of the final directions as specified by 4 , the

magnitudes of V3 and v^ always have the same values, whereas in

the laboratory frame v 3 (and also v4 ) has a different magnitude

for each direction. This does not mean, however, that it is always

desirable or necessary to go into the CM frame. For example, one

may wish to answer the question: What is the speed of a neutron

emitted at some given direction 4 in the laboratory with respect

to the initial direction of a deuteron beam? In such a case it is

easiest to work directly from the equations for energies and

momenta as measured in the laboratory:

ft + Q = *8 + K<
(934)

Pl = P3 + P4

(In the first equation Q represents the amount by which ATflnal

differs from Alitlah so that in the example we have just con-

sidered we have Q = +3.27 MeV. Q may be positive, negative,

or zero; the last of these represents an elastic collision.)

Note that Eq. (9-34) represents three independent equations

(one for kinetic energy, and two for momentum—treating this as

a two-dimensional problem). I n the final state there are four

unknowns: a magnitude and a direction for each of the vectors

v 3 and v4 . The situation is indeterminate unless we put in one

more piece of information, as for example the direction of one of

the particles. Q is here taken to be a known quantity (as are K x
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and p O, but one could deduce it from a complete set of measure-

ments of v3 and V4.

WHAT IS A COLLISION?

We are so used to associating the word "collision" with some

abrupt, violent event that it may be well to point out that the

results we have developed can be applied to other, quite gentle

interactions. The only essential features are these:

1. That the interaction is confined, for all practical purposes,

within some limited interval of time, so that it can be said to have

a beginning and an end.

2. That over the duration of the collision, the effect of any

external forces can be ignored, so that the system behaves as

though it were isolated.

Figure 9-23 shows stroboscopic photographs of a collision

between two frictionless pucks carrying permanent magnets,

mounted vertically so as to repel each other. There is no contact

in the usual sense, but this is certainly a collision within the

Fig. 9-23 (a) A "soft" collision, with no contact in the

ordinary sense, occurring between two objects (2:1 mass

ratio) carrying permanent magnets. (b) The identical

collision photographed by a camera moving with the

center ofmass of the two objects. (From the PSSC
film, "Moving with the Center of Mass", by Herman R.

Branson, Education Development Center Film Sudio,

Newton, Mass., 1965.)

(a) (b)
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physicist's meaning of the term. One can see that the velocities are

effectively constant in magnitude and direction except over the

limited region of close approach of the objects.

INTERACTING PARTICLES SUBJECT TO EXTERNAL FORCES

Having discussed the conservation of linear momentum, and the

general relation of force to rate of change of momentum, we can

now consider the motion of a system of interacting particles that

are not free of external influence. This is, of course, a very im-

portant extension of our ideas, because in practice a system is

never completely isolated from its surroundings.

It will suffice to look at a two-particle system. The ex-

tension to any number of particles is quite simple but will be

deferred to Chapter 14. Let m, and m 2 be the masses of the two

particles, Fi and F 2 the external forces acting on them, and f2 i

and f 12 the internal interaction forces—

f

2 i the force exerted on

particle 1 by particle 2, and f i2 the force exerted on particle 2

by particle I.

Newton's law of motion applied to the particles individually

states that

Fi + f21 = /wi -7-
m

(9-35)

t/v2
F2 + fi2 = nt2 —7-

If the interaetions are Newtonian, and we shall consider this the

case, then the third law of Newton requires that

fl2 + f21 =

Adding the two equations (vectorially), we then get

Fi + F2 = mi— + m2 -j-

or

Fi + F2 = -- (mivi + /n2v2 ) (9-36)
at

in which the internal forces f
1 2 and f2 1 have disappeared. This

equation states that the resultant of all the external forces acting

on the system equals the rate of change of the total veetor mo-

mentum of the system.
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We can express this result in another, very compact way by

introducing the concept of the center of mass of the system. If

the individual positions of the two particles are given by the

vectors r! and ra, drawn from some origin, the position of the

center of mass is given by

. _ /rnri + w 2r2
(g_37)

m\ + rri2

This is the three-dimensional analogue of (9-25) and corresponds

to the vector velocity of the center of mass as already defined by

Eq. (9-33), so that

»»lVl + /W2V2 = Mv

where M (= m\ + m 2 ) is the total mass of the system. Ac-

cordingly, we have

F, + F2 = F = M^ (9-38)
di

and this proves the result we are after:

The motion of the center of mass of a system of two particles is

the same as the motion of a single particle of mass equal to the

total mass of the system acted on by the resultant of all the ex ternal

forces which act on the individual particles.

The implications of this result are significant. First, it

suggests that a fundamental method for treating the motion of a

system of particles is to analyze its motion as the combination

of (1) the motion of its center of mass and (2) the motions of the

particles relative to their center of mass. The latter motion, the

internal motion of the system, is one of zero momentum, as we

saw earlier. Furthermore, Eq. (9-38) allows us to treat some

aspects of the motions of extended objects by the laws of dy-

namics for a simple particle. In particular, when an extended

object moves in translation, i.e., when there is no motion of any

particle in the object relative to the center of mass, Eq. (9-38)

tells the whole story. We shall return to such questions in Chap-

ter 14.

Incidentally, Eqs. (9-36) and (9-38) also provide a basis for

a criterion as to whether or not a system of colliding particles is

effectively isolated. The conservation of momentum in a col-

lision process holds good only to the extent that the effect of any

external forces can be ignored. If external forces are indeed

present, the duration A/ of the collision must bc so short that
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the product F At is negligible. A different way of stating this

same condition is that the forces of interaction between the

colliding particles must be much greater than any external forces

which may be acting.

THE PRESSURE OF A GAS

As our last example of collision processes and momentum

transfers we shall take the calculation of the pressure of a gas,

on the basis that this is due to the perfectly elastic collisions of

the molecules of the gas with the atoms that comprise the wali

of the container.

We shall assume that the gas is made up of n particles, each

of mass wi . Per urut volume. The most naive possible calculation

makes the following assumptions:

1. Ali the particles have the same speed, v.

2. The particles can be regarded as though one third of

them were, at any instant, traveling parallel to a given direction

in space, with the other two thirds traveling parallel to two other

directions, perpendicular to each other and to the first direction.

3. The gas is in a rectangular container with perfectly flat,

hard walls.

None of these assumptions is in the least realistic as it stands.

The first two are certainly false, the choice of a rectangular

container is very special, and on an atomic scale the walls are

knobbly and sticky, not flat and hard. Nevertheless, the calcula-

tion we shall make, using these assumptions, comes very close to

yielding the correct result. The reason is that, on the average,

with the huge number of particles present in a sample of gas,

there is an essential symmetry in the aggregate motion and an

effectively exact conservation of the total kinetic energy. An
individual molecule may strike the wali, sit there a short while,

and jump off again at a different angle with a different speed—

perhaps faster, perhaps slower. But on the average, we may

treat the collisions as perfectly elastic because the kinetic energy

of the gas as a whole neither increases nor decreases with time.

On this basis, we make the following very simple calculation.

Consider an element of area AA in one wali of the containing

vessel (Fig. 9-24). Resolve the motions of the molecules so that

the normal to AA is one of the three mutually perpendicular

directions along which the molecules are assumed to move. Any
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[«•—t>Af

C 3
Fig. 9-24 Simplest possible approach to calculating

the pressure ofa gas. During a time At the elemen! of

AA wali AA can be reached only by molecules that lle

inilially within the cylinder oflengtk v At.

one molecule approaches the wali with momentum m v and re-

coils with momentum —m Qv; it thus provides an impulse 2moU.

How many molecules strike AA in a time Ali If we assume that

all of them have the same speed v, molecules farther than d At

from the wali cannot arrive until after the time Ar has elapsed.

Thus our attention is limited to molecules within a cylinder of

cross section AA and length v A/. There are n molecules per

unit volume. Hence

number of molecules within cylinder = nv Ar AA

But of these, only one sixth are moving, not just along a line

perpendicular to AA, but specifically approaching AA instead of

receding from it. This, then, gives us

number of impacts with AA in A/ = \no At AA

total impulse communicated to AA in Ar = 2mov X 5/J0 A; AA

= $nmov2 AtAA

But the average force AF exerted on AA is the impulse divided by

Ar. Hence

AF = ^nmov 2 AA

The mean force per unit area, exerted normal to the containing

wali, is what we call the pressure, p. ' Thus we arrive at the

result

P = ^ = \ nr»o»
2

(9-39)

Since nm is the total mass of gas per unit volume, which is its

density p, we can alternatively put

P = hpv
2

or

"© 1/2

(<M0)

'In this section, p always refers to pressure, not momentum.
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Thus, if our calculation is justified, we can infer the speed of

the invisible molecules from perfectly straightforward measure-

ments of the bulk properties of the gas. Takung nitrogen at

ordinary atmospheric pressure and room temperature, for ex-

ample, we have

p w 105 N/m2 = 10 kg/m-sec2

p « 1.15 kg/m3

Therefore,

v « 500 m/sec

How defensible is Eq. (9-39)? A more careful calculation

is clearly called for. We have seen experimental evidence (Chap-

ter 3) that the molecules of a gas at a given temperature have a

wide spread of speeds. So the v 2
in our formula should be re-

placed by some kind of an average squared speed, u
2
,. And

certainly we could not, on the strength of our own calculation,

place much faith in the numerical factor 3—although the rigorous

theory confirms it, in fact. An acceptable treatment of the prob-

lem must investigate the consequences of having molecules

approaching the wali in quite arbitrary directions; it is only an

accident that this does not change the result in detail. (It would,

if we considered the numbers of particles striking AA, instead of

the force they exert.) Nevertheless, the simple analysis that we

have presented gives us a remarkably useful beginning for the

understanding of bulk properties in microscopic terms. And,

since the detailed kinetic theory of gases is not our present con-

cern, we shall rest content with that.

THE NEUTRINO

At the beginning of this chapter we pointed out that any con-

servation law or conservation principle in physics is provisional,

but that if, in the face of apparent failure, it is finally vindicated,

then its status may be greatly strengthened. The most dramatic

success of the conservation laws of dynamics took place in

connection with the neutrino—that elusive, neutral particle

emitted in the process of radioactive beta decay. The prediction

of its existence stemmed from an apparent nonconservation of

energy and angular momentum, but perhaps the most beautiful

and direct dynamical evidence for it is furnished by the apparent

nonconservation of linear momentum.
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PROBLEMS

Fig. 9-25 Evidence for the neutrino.

The visible tracks of the electron and

the recoiling lithium 6 nucleus in the

beta decay of helium 6 in a eloud-

chamber are not collinear. [Front J.

Csikai and A. Szalay, Soviet Physics

JETP, 8, 749 (1959).]

The situation can be simply stated as follows: It is known

that the process of beta decay involves the ejection of an electron

from a nucleus, as a result of which the nuclear charge goes up

by one unit (if the electron is an ordinary negative electron). If

no other particles were involved, the process could be written

A-»B + e~

where A is the initial nucleus and B the final nucleus. If A were

effectively isolated, and initially stationary, our belief in linear

momentum conservation would lead us to predict that, whatever

the direction (or energy) of the ejected electron, the nucleus B

would inevitably recoil in the opposite direction. Any departure

from this, regardless of all other details, would demand the

involvement of another particle.

Figure 9-25 shows a cloud-chamber photograph of the beta

decay of helium 6. The decay takes place at the position of the

sharp knee near the top of the picture. The short stubby track

pointing in a "northwesterly" direction is the recoiling nucleus

of lithium 6; the other track is the electron. There must be

another particle—the neutrino— if the final momentum vectors

are to add up to have the same resultant—i.e., zero—as the

initially stationary °He nucleus. It fails to reveal itself because

its lack of charge, or of almost any other interaction, allows it to

escape unnoticed—so readily, in fact, that the chance would be

only about 1 in 10
12 of its interacting with any matter in passing

right through the earth.

9-1 A particle of mass m, traveling with vclocity vq, makes a com-

pletely inelastic collision with an initially stationary particle of mass
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M. Make a graph of the final velocity o as a function of the ratio

m/M from m/M = to m/M = 10.

9-2 Consider how conscrvation of linear momentum applies to a

ball bouncing off a wali.

9-3 A mouse is put into a small closed box that is placed upon a

table. Could a clever mouse control the movements of the box over

the table? Just what maneuvers could the mouse make the box per-

form? If you were such a mouse, and your object were to elude

pursuers, would you prefer that the table have a large, small, or

negligible coefficient of friction?

9-4 In the Phncipia, Newton mentions that in one set of collision

experiments he found that the relative velocity of separation of two

objects of a certain kind of material was five ninths of their relative

velocity of approach. Suppose that an initially stationary object, of

mass 3wo, of this material was struck by a similar object of mass 2/wo,

traveling with an initial velocity Do- Find the final velocities of both

objects.

9-5 A particle of mass mo, traveling at speed do. strikes a stationary

particle of mass 2mo. As a result, the particle of mass mo is deflected

through 45° and has a final speed of uo/2. Find the speed and direc-

tion of the particle of mass 2/wo after this collision. Was kinetic energy

conserved ?

9-6 Two skaters (A and B), both of mass 70 kg, are approaching

one another, each with a speed of 1 m/sec. A carries a bowling ball

with a mass of 10 kg. Both skaters can toss the ball at 5 m/sec relative

to themselves. To avoid collision they start tossing the ball back and

forth when they are 10 m apart. Is one toss enough? How about

two tosses, i. e., A gets the ball back? If the ball weighs half as much

but they can throw twice as fast, how many tosses do they need? Plot

the entire incident on a time versus displacement graph, in which the

positions of the skaters are marked along the abseissa, and the advance

of time is represented by the increasing value of the ordinate. (Mark

the initial positions of the skaters at x = ±5 m, and include the

space-time record of the ball's motion in the diagram.) This situation

serves as a simple model of the present view of interaetions (repulsive,

in the above examplc) between elementary particles. An attractive

interaetion can be simulated by supposing that the skaters exchange

a boomerang instead of a ball. [Thcse theorctical models were pre-

sented by F. Reines and J. P. F. Sellschop in an artiele entitled

"Neutrinos from the Atmosphere and Beyond," Sci. Am., 214, 40

(Fcb. 1966).]

9-7 Find the average recoil foree on a machine gun firing 240 rounds

(shots) per minute, if the mass of each bullet is 10 g and the muzzle

velocity is 900 m/sec.
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9-8 Water emerges in a vertical jet from a nozzle mounted on one

end of a long horizontal metal tube, clamped at its other end and

thin enough to be rather flexible. The jet rises to a height of 2.5 m
above the nozzle, and the rate of water flow is 2 liter/min. It has

been previously found by static experiments that the nozzle is de-

pressed vertically by an amount proportional to the applied force,

and that a mass of 10 g, hung upon it, causes a depression of 1 cm.

How far is the nozzle depressed by the reaction force from the water jet ?

[This problem is based on a demonstration experiment described by

E. F. Schrader, Am. J. Phys., 33, 784 (1965).]

9-9 A "standard fire stream" employed by a city fire department

delivers 250 gallons of water per minute and can attain a height of

70 ft on a building whose base is 63 ft from the nozzle. Neglecting

air resistance:

(a) What is the nozzle velocity of the stream?

(b) If directed horizontally against a vertical wali, what force

would the stream exert? (Assume that the water sprcads out over the

surface of the wali without any rebound, so that the collision is ef-

fectively inelastic.)

9-10 A helicopter has a total mass M. Its main rotor blade sweeps

out a circle of radius R, and air over this whole circular area is pulled

in from above the rotor and driven vertically downward with a speed

i>o- The density of air is p.

(a) If the helicopter hovers at some fixed height, what must be

the value of to?

(b) One of the largest helicopters of the type described above

weighs about 10 tons and has R ^ 10 m. What is to for hovering in

thiscasc? Take p = 1.3 kg/m3
.

9-11 A rockct of initial mass Mo ejects its burnt fuel at a constant

rate \dM/dt\ = y. and at a speed po relative to the rocket.

(a) Calculate the initial acceleration of the rocket if it starts

vertically upward from its launch pad.

(b) If vo = 2000 m/sec, how many kilograms of fuel must be

ejected per second to give such a rocket, of mass 1000 tons, an initial

upward acceleration equal to 0.5 g?

9-12 This rather complicated problem is designed to illustrate the

advantage that can be obtained by the use of multiple-stage instead

of single-stage rockets as launching vehicles. Suppose that the pay-

load (e.g., a space capsule) has mass m and is mounted on a two-stage

rocket (see the figure). The total mass—both rockets fully fueled, plus

the payload— is Nm. The mass of the second-stage rocket plus the

payload, after first-stagc burnout and separation, is nm. In each

stage the ratio of burnout mass (casing) to initial mass (casing plus

fuel) is r, and the exhaust speed is vo-

(a) Show that the velocity i»j gained from first-stage burn,
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c

C
c

K

A>m

starting from rest (and ignoring gravity), is given by

vi = v ln
A'

r/V + «(1 - r).

(b) Obtain a corresponding expression for the additional velocity,

V2, gained from thc second-stage burn.

(c) Adding u i and i>2, you have the payload velocity v in terms

of N, n, and r. Taking A' and r as constants, find the value of n for

which f is a maximum.

(d) Show that the condition for v to be a maximum corresponds

to having equal gains of velocity in the two stages. Find the maximum

value of o, and verify that it makes sense for the limiting cases de-

scribed by r = and r = 1

.

(e) Find an expression for the payload velocity of a single-stage

rocket with the same values of A', r, and vo-

(f) Suppose that it is desired to obtain a payload velocity of

10 km/sec, using rockets for which vo = 2.5 km/sec and r = 0.1.

Show that the job can be done with a two-stage rocket but is im-

possible, however large the value of N, with a single-stage rocket.

(g) If you are ambitious, try extending the analysis to an arbi-

trary number of stages. It is possible to show that once again the

greatest payload velocity for a given total initial mass is obtained if the

stages are so designcd that the velocity increment contributed by each

stage is the same.

9-13 A block of mass m, initially at rest on a frictionless surface, is

bombarded by a succession of particles each of mass bm (<<C m) and

of initial speed t>o in the positive x direction. The collisions are per-

fectly elastic and each particle bounces back in the negative x direction.

Show that the speed acquired by the block after the «th particle has

struck it is given very nearly by v = i>o(l — e"an), wherea = 2Sm/m.

Consider the validity of this result for an« 1 as well as for an —» oo

.

9-14 Newton calculated the resistive force for an object traveling

through a fluid by supposing that the particles of the fluid (supposedly

initially stationary) rebounded elastically when struck by the object.

(a) On this model, the resistive force would vary as some power,

n, of the speed o of the object. What is the value of n'!

(b) Suppose that a flat-ended object of cross-sectional area A is

moving at speed v through a fluid of density p. By picturing the fluid
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as composed of n particles, each of mass m, per unit volume (such

that nm = p), obtain an explicit expression for the resistive force if

each particle that is struck by the object recoils elastically from it.

(c) If the object, instead of being flat-ended, were a massive

sphere of radius r, traveling at speed v through a medium of density p,

what would the magnitude of the resistive force be? The whole cal-

culation can be carried out from the standpoint of a frame attached

to the sphere, so that the fluid particles approach it with the velocity

-v. Assume that in this frame the fluid particles are reflected as by a

mirror—angle of reflection equals angle of incidence (see the figure).

You must consider the surface of the sphere as divided up into circular

zones corresponding to small angular increments dd at the various

possible valucs of 0.

9-15 A particle of mass mi and initial velocity «i strikes a stationary

particle of mass mi. The collision is perfectly elastic. It is observed

that after the collision the particles have equal and opposite velocities.

Find

(a) The ratio 012/011.

(b) The velocity of the center of mass.

(c) The total kinetic energy of the two particles in the center

of mass frame expressed as a fraction of %m\Ui 2
.

(d) The final kinetic energy of 011 in the lab frame.

9-16 A mass /«1 collides with a mass 012. Define relative velocity

as the velocity of 011 observed in the rest frame of 0*2. Show the

equivalence of the following two statements

:

(1) Total kinetic energy is conserved.

(2) The magnitude of the relative velocity is unchanged.

(It is suggested that you solve the problem for a one-dimensional

collision, at least in the first instance.)

9-17 A collision appa ratus is made of a set of n graded masses sus-

pended so that they are in a horizontal line and not quite in contact

with one another (see the figure). The first mass is jmo, the second is

f 2mo, the third

/

3
0!o, and so on, so that the last mass hfma. The

first mass is struck by a particle of mass 010 traveling at a speed vo.

This produccs a succession of collisions along the line of masses.
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m fm„ fm„

(a) Assuming that all the collisions are perfectly elastic, show

that the last mass flies off with a speed o„ given by

1 + /,

i>o

(b) Hence show that, if / is close to unity, so that it can be

written as 1 ± e (with e <JC 1), this system can be used to transfer

virtually all the kinetic energy of the incident mass to the last one,

even for large n.

(c) For / = 0.9, n = 20, calculate the mass, speed, and kinetic

energy of the last mass in the line in terms of the mass, speed, and

kinetic energy of the incident particle. Compare this with the result

of a direct collision between the incident mass and the last mass in

the line.

9-18 A 2-kg and an 8-kg mass collide elastically, compressing a

spring bumper on one of them; the bumper returns to its original

length as the masses separate. Assume that the collision takes place

along a single line and that you can cause the collision to occur in

different ways, each having the same initial energy:

Case A: The 8-kg mass has 16 J of kinetic energy and hits the sta-

tionary 2-kg mass.

Case B: The 2-kg mass has 16 J of kinetic energy and hits the sta-

tionary 8-kg mass.

(a) Which way of causing the collision to occur will result i n

the greater compression of the spring? Arrive at your choice without

actually solving for the compression of the spring.

(b) Keeping the condition of a total initial kinetic energy of

16 J, how should this energy be divided between the two masses to

obtain the greatest possible compression of the spring?

9-19 In a certain road accident (this is based on an actual case) a car

of mass 2000 kg, traveling south, collided in the middle of an inter-

section with a truck of mass 6000 kg, traveling west. The vehicles

locked and skidded off the road along a line pointing almost exactly

Southwest. A witness claimed that the truck had entered the inter-

section at 50 mph.

(a) Do you believe the witness?

(b) Whether or not you believe him, what fraction of the total

362 Collisions and conservation laws



initial kinetic energy was converted into other forms of energy by

thecollision?

9-20 A nucleus A of mass 2m, traveling with a velocity u, collides

with a stationary nucleus of mass 10/w. The collision results in a change

of the total kinetic energy. After collision the nucleus A is observed

to be traveling with speed Pi at 90° to its original direction of motion,

and B is traveling with speed Da at angle 8 (sin 6 = 3/5) to the original

direction of motion of A.

(a) What are the magnitudes of vi and U2?

(b) What fraction of the initial kinetic energy is gained or lost

as a result of the interaction?

9-21 A particle of mass m and initial velocity u collides elastically

with a particle of mass M initially at rest. As a result of the collision

the particle of mass m is deflected through 90° and its speed is reduced

to «/\/3. The particle of mass M recoils with speed p at an angle 6 to

the original direction of m. (Ali speeds and angles are those observed

in the laboratory system.)

(a) Find M in terms of m, and v in terms of u. Find also the

angle 0.

(b) At what angles are the particles deflected in the center-of-

mass system?

9-22 Make measurements on the stroboscopic photographs of a col-

lision of two magnetized pucks (Fig. 9-23) to test the conservation

of linear momentum and total kinetic energy between the initial state

(first three time units) and the final state (last three time units).

9-23 A particle of mass 2m and of velocity u strikes a second particle

of mass 2m initially at rest. As a result of the collision, a particle of

mass m is produced which moves off at 45° with respect to the initial

direction of the incident particle. The other product of this rearrange-

ment collision is a particle of mass 3m. Assuming that this collision

involves no significant change of total kinetic energy, calculate the

speed and direction of the particle of mass 3/w in the Lab and in the

CM frame.

9-24 In a historic piecc of research, James Chadwick in 1932 obtained

a value for the mass of the neutron by studying elastic collisions of

fast neutrons with nuclei of hydrogen and nitrogen. He found that

the maximum recoil velocity of hydrogen nuclei (initially stationary)

was 3.3 X 10 7 m/sec, and that the maximum recoil velocity of nitrogen

14 nuclei was 4.7 X 10
u m/sec with an uncertainty of ±10%. What

does this tell you about

(a) The mass of a neutron ?

(b) The initial velocity of the neutrons used?

(Take the uncertainty of the nitrogen measurement into account.

Take the mass of an H nucleus as 1 amu and the mass of a nitrogen 14
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nucleus as 14 amu.)

9-25 A cloud-chamber photograph showed an alpha particle of mass

4 amu with an initial velocity of 1.90 X 10
7 m/sec colliding with a

nucleus in the gas of the chamber. The collision changed the direction

of motion of the alpha particle by 12° and reduced its speed to 1.18 X
10

7
m/sec. The other particle, initially stationary, acquired a velocity

of 2.98 X 10
7 m/sec at 18° with respect to the initial forward direc-

tion of the alpha particle. What was this second particle ? Was the

collision elastic? (In interpreting your results, take account of the

fact that these cloud-chamber measurements of speeds and angles are

subject to errors of up to a few percent.)

9-26 A nuclear reactor has a moderator of graphite. The carbon

nuclei in the atoms of this crystal lattice can be regarded as effectively

free to recoil if struck by fast neutrons, although they cannot be

knocked out of place by thermal neutrons. A fast neutron, of kinetic

energy 1 MeV, collides elastically with a stationary carbon 12 nucleus.

(a) What is the initial speed of each particle in the center of

mass frame?

(b) As measured in the center-of-mass frame, the velocity of the

carbon nucleus is turned through 135° by the collision. What are the

final speed and direction of the neutron as measured in the lab frame?

(c) About how many elastic collisions, involving random

changes of direction, must a neutron make with carbon nuclei if its

kinetic energy is to be reduced from 1 MeV to 1 keV? Assume that

the mean energy loss is midway between maximum and minimum

values.

9-27 (a) A moving particle of mass M collides perfectly elastically

with a stationary particle of mass m < M. Show that the maximum

possible angle through which the incident particle can be deflected is

sin
-1 (/w/M). (Use of the vector diagrams of the collision in Lab and

CM systems will be found helpful.)

(b) A particle of mass m collides perfectly elastically with a

stationary particle of mass M > m. The incident particle is deflected

through 90°. At what angle d with the original direction ofm does the

more massive particle recoil?

9-28 The text (p. 348) gives an examplc of the analysis of the dynamics

of a nuclear reaction between two deuterons. Another possible reac-

tion is the following:

?H + fH - !H + ]H + 4.0 MeV

In this case the reaction products are a proton and a triton (the latter

being the nucleus of the unstable isotope hydrogen 3 or tritium).

Suppose that a stationary deuteron is struck by an incident deuteron

of kinetic energy 5 MeV.
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(a) What are the maximum and minimum possible values of the

kinetic energy of the proton produced in this reaction?

(b) What is the maximum angle (as observed in the laboratory)

that the direction of the triton can make with the direction of the

incident deuteron? What is its kinetic energy as measured in the lab-

oratory when it is emitted in this direction? (This problem can be

conveniently handled with the use of amu and MeV as units through-

out.)

9-29 A boat of mass M and length L is floating in the water, sta-

tionary; a man of mass m is sitting at the bow. The man stands up,

walks to the stern of the boat, and sits down again.

(a) If the water is assumed to offer no resistance at all to motion

of the boat, how far does the boat move as a result of the man's trip

from bow to stern?

(b) More realistically, assume that the water offers a viscous

resistance given by —kv, where A: is a constant and o is the velocity

of the boat. Show that in this case one has the remarkable result that

the boat should eventually return to its initial position.

(c) Consider the paradox presented by the fact that, according

to (b), any nonzero value of k, however small, implies that the boat

ends up at its starting point, but a strictly zero value implies that it

ends up somewhere else. How do you explain this discontinuous jump

in the final position when the variation of k can be imagined as con-

tinuous, down to zero? For enlightenment see the short and clear

analysis by D. Tilley. Am. J. Phys., 35, 546 (1967).
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Conservation ofEnergy as a principle . . . has played a

fundamental role, the most fundamental as some would say,

in the last half-century of classical physics, and since then

in quantum mechanics. . . . Yet it is a curiosity that this,

which is thefirst law of thermodynamics, should have so

fruitfully watered the stonier, the more austere terrain of

mechanics.

C. G. GILLISPIE, The Edge of Objedivity (1960)

It may be thought strange that we have brought our

discussion of thefoundations ofmechanics sofar with

hardly a mention ofenergy. . . . We have indeed had no

desire to slight the significance of this concept, but have

wished to emphasize that the logical foundation ofmechanics

is quite possible without it. . . . The guestion at once

arises: why then should it have been introduced at all?

This is what we wish to discuss.

R. B. LINDSAY AND H. MARGENAU,

Foundations of Physics (1936)



10

Energy conservation in

dynamics; vibrational

motions

INTRODUCTION

of all the physical concepts, that of energy is perhaps the most

far-reaching. Everyone, whether a scientist or not, has an aware-

ness of energy and what it means. Energy is what we have to pay

for in order to get things done. The word itself may remain in

the background, but we recognize that each gallon of gasoline,

each Btu of heating gas, each kilowatt-hour of electricity, each

car battery, each calorie of food value, represents, in one way or

another, the wherewithal for doing what we call work. We do

not think in terms of paying for force, or acceleration, or momen-
tum. Energy is the universal currency that exists in apparently

countless denominations; and physical processes represent a

conversion from one denomination to another.

The above remarks do not really define energy. No matter.

It is worth recalling once more the opinion that H. A. Kramers

expressed: "The most important and most fruitful concepts are

those to which it is impossible to attach a well-defined meaning."

'

The clue to the immense value of energy as a concept lies in its

transformation. It is consewed—that is the point. Although we
may not be able to define energy in general, that does not mean

'See p. 62, where we quoted Kramers' remark in connection with our dis-

cussion ofi the concept of time.
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that it is only a vague, qualitative idea. We have set up quantita-

tive measures of various specific kinds of energy: gravitational,

electrical, magnetic, elastic, kinetic, and so on. And whenever a

situation has arisen in which it seemed that energy had disap-

peared, it has always been possible to recognize and define a new

form of energy that permits us to save the conservation law. And

conservation laws, as we remarked at the beginning of Chapter 9,

represent one of the physicist's most powerful tools for organizing

his description of nature.

In this book we shall be dealing only with the two main cate-

gories of energy that are relevant to classical mechanics—the

kinetic energy associated with the bodily motion of objects, and

the potential energy associated with elastic deformations, grav-

itational attractions, electrical interactions, and the like. If energy

should be transferred from one or another of these forms into

Chemical energy, radiation, or the random molecular and atomic

motion we call heat, then from the standpoint of mechanics it is

lost. This is a very important feature, because it means that, if we

restrict our attention to the purely mechanical aspects, the con-

servation of energy is not binding; it must not be blindly assumed.

Nevertheless, as we shall see, there are many physical situations

for which the conservation of the total mechanical energy holds

good, and in such contexts it is of enormous value in the analysis

of physical problems.

It is an interesting historical sidelight that in pursuing the

subject of energy we are temporarily parting company with New-

ton, although not with what we may properly call Newtonian

mechanics. In the whole of the Principia, with its awe-inspiring

elucidation of the dynamics of the universe, the concept of energy

is never once used or even referred to! ' For Newton, F = ma

was enough. But we shall see how the energy concept, although

rooted in F = ma, has its own special contributions to make. We
shall begin with the quantitative connection between work and

kinetic energy.

INTEGRALS OF MOTION

In Chapter 6 we briefly presented the basic notion of the work

'As we remarked in Chapter 9, however, some of Newton's contemporaries,

particularly Huygens and Leibnitz, did recognize the importance of an energy-

like quantity—the "vis viva" mo 2—\a certain contexts, such as collisions and

pendulum motions.
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done by a force acting on an object, producing a corresponding

increase in the kinetic energy of the object. We shall now return

to this topic and develop it considerably further.

Let us again take, for a start, the simple and familiar case of

an object of mass m acted on by a constant force F (we shall begin

by assuming a straight-line motion for which vector symbols are

unnecessary). Then by Newton's law we have

do do
F = — = m — — ma

di dt

Let the force act for a time t during which the velocity changes

from Vi to v2 - Then we have

Fl = mal = m(o2 - ui) (10-la)

This expresses the fact that the impulse of F is equal to the change

of linear momentum. But suppose we multiply the force by the

distance over which it acts, instead of by the time. In this case we

obtain

VI + V2 .

Fx = max = ma — /

= £m(ar)(Di + u 2 )

= im(v 2 - ui)(ui + Wl)

Therefore,

Fx = \mv22 - J/wi 2 00-2a)

This expresses the fact that the work done by F is equal to the

change of kinetic energy. We have no reason to declare a prefer-

ence between Eqs. (10-la) and (10-2a) as statements of the effect

of the force. In fact, they will in general tell us different things.

But before amplifying that last remark, let us note that the

restriction to constant force and constant acceleration is unneces-

sary. For we have

F- m d°

Multiplying by dt and integrating gives us

/;

'2 r »2

F di = m do = m(o2 - ci) (10-lb)
J Vl

Multiplying by dx and integrating gives us
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But

dv dx
—rdx — —rdo = vav
di dt

Thus

*!

Fdx m
•a

vdv = £j»((?2 — Ci ) (10-2b)

The left-hand side of Eq. (10-1 b) is the total impulse of the force,

and the left-hand side of Eq. (10-2b) is of course defined as the

total work done by the force. Each of these integrals can be repre-

sented as the area under the appropriate graph of F against / or

x between ccrtain limits (see Fig. 10-1).

The general similarity of Eqs. (10-lb) and (10-2b) is, however,

deceptive, because force, displacement, and velocity are vector

quantities. The result of applying a force of a given magnitude

depends very much on its direction relative to the direction of

motion of the object on which it acts. Thus in circular motion, as

we have seen, a net force is continually applied to an object, the

momentum (also a vector) changes continuously, but the mag-

nitude of the velocity docs not change at all.

The situation becomes clear if we return to the proper

vector statement of Newton's law:

F = m —
dt

It is still possible to integrate directly with respect to /:

Fig. 10-1 (a) Force

that varies linearly

with time. The area

under the curve mea-

sures the total impulse.

(b) The sameforce

plotted as afunction of

displacement. The

area under the curve

measures the total

work.
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¥dt = m(v2 — vi)

The left-hand side of the expression is an instruction that, if the

direction of the force changes with time, we must form the appro-

priate vector sum of all the small impulses F A/ applied in suc-

cessive time intervals At between t\ and / 2 . That is exactly how

Newton himself conceived the action of the varying force to which

a planet, for example, finds itself exposed as it moves along its

orbit around the sun (cf. Chapter 13). But what about integrating

F over the elements of distance along a path, where these elements

(Ar) are themselves vectors? This is essentially a physical question,

not a mathematical one. We are asking: What is the effect of

applying a force at some arbitrary direction to the motion of an

object? Figure 10-2 helps to supply the answer. If a force F!

is applied at right angles to v for some very short time At, it

changes the direction of the velocity without appreciably changing

its magnitude. If a force F 2 is applied along the direction of v,

it changes the magnitude of v without changing the direction.

Thus if we want to fix our attention on changes in the magnitude

of v, we should restrict ourselves to forces or force components

along the direction of v. If the net force F acts at an angle d to v,

we have its component along v given by

|F| cos 6 = m |Av| cos d

At

where Av is the vector change in v, equal to ¥ At/m [cf. Fig.

10-2(c)]. The element of distance traveled during At is given by

Ar = vA/

Fig. 10-2 (a) Velocity change due to an impulse perpendicular to v. (b) Velocity

change due to an impulse parallel to v. (c) Velocity change due to an arbitrary

impulse.
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by the definition of the vclocity vector. Hence the force com-

ponent along v, multiplicd by the displacement, is given by

|F| [Ar| cos d = m |v| |Av| cos 6

The above is a scalar equation; we have suppressed all reference

to the effect of F in changing the direction of v and are left with

information about the magnitude only. To express this more

neatly we use the notation of the "dot product" (or scalar product)

of two vectors

:

a • b = |a; |b| cos e = ab cos e

In this notation, we have

F • Ar = m(y Av)

But we can now play a neat (and valuable) trick. Consider the

quantity v • v. This is a scalar, and its magnitude is just the square

of |v|, i.e., o
2
simply. But since

v2 = v • v

we have, by differentiation,

A(u 2
) = Av v + v - Av = 2v • Av

(This last step is possible because the scalar product of two

vectors is indepcndent of the order in which the factors come

—

i.e., the commutative law holds.) Hence

v • Av = J A(u2)

It follows that we have

F-Ar = Jmift) 2
)

So now, integrating over any path that the body may have fol-

lowed under the aetion of the force, we find the relation

W = \ F- Jt = lm(02
2 - d') (10-3)

-' r
i

which deseribes in general terms the relation between the work

done and the change of kinetic energy.

Figure 10-3 illustrates what is involved in evaluating the

work integral of Eq. (10-3), in going from a point A (r0 to a

point B (r 2) in a two-dimcnsional displacement.
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Fig. 10-3 Calcula-

tion of work done

along a given path.

Equation (10-3) displays the most important property of

work and energy: They are scalar quantities. An object moving

vertically with a speed v has cxactly the same kinetic energy as

if it were traveling horizontally at this same speed, although its

vector momentum would be quite different. This scalar property

of energy will be exp!oited repeatedly in our future work.

WORK, ENERGY, AND POWER

This chapter is chiefly conccrned with dcveloping some general

dynamical methods based upon the concepts of work and me-

chanical energy. The practical use of these methods will, however,

involve numerical measures of these quantities in terms of appro-

priate units. The purpose of this section is to introduce some

of these units for future reference.

Our basic unit, already introduced in Chapter 6, will be the

unit of work or energy in the MKS system—the joule:

1 J = 1 N-m = 1 kg-m2/sec2

If the CGS system of units is uscd, the unit of energy is the erg:

1 erg = 1 dyn-cm = 10
-7

J

Before going any further, wc shall introduce a seeming diversion

—the concept of power, defined as the rate of doing work:

power
dW
dt

(For a mechanical system, puttingdW = F • t/r, we have power =

F v.) Power is a concept (and a quantity) of great practical

importance, because the time that it takes to perform some given
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amount of work may be a vital consideration. For example, a

small electric motor may be just as capable of driving a hoist as a

big one (given, perhaps, a few extra gear wheels), but it may be

quite unacceptable because the job would take far too long.

Power is essentially a practical engineering concept ; we shall not

be using it in our development of the principles of dynamics. But

one of our accepted measures of work is often expressed in terms

of a unit of power—the watt. In terms of mechanical quantities,

1 W = 1 J/sec

i.e.,

1 W-sec = 1 J

The most familiar use of the watt is, of course, electrical, through

the relation watts = volts X amperes, but it is important to

realize that it is not a specifically electrical quantity. ' A con-

venient energy unit for domestic purposes (especially one's

electricity bill) is the kilowatt-hour (kWh):

lkWh = 3.6 X 10
6
J

In chemical and thermal calculations the Standard unit is the

Calorie, defined as the amount of energy required to raise 1 kg

ofwaterfrom 15 to 16°C:

1 Cal = 4.2 X 10 :i J

In atomic and nuclear physics, energy measurements are usually

expressed in terms of the electron volt (eV) or its related units

keV (10
3
), MeV (10

G
), and GeV (10

9
). The electron volt is

the amount of energy required to raise one elementary charge

through 1 V of electric potential difference:

leV = 1.6 X 10- 19
J

Finally, as Einstein first suggested and as innumerable observa-

'The other familiar unit of power is of course the horsepower. About this

we shall say only that 1 hp = 746 W, so that (as a very rough rule of thumb)

one can say that it takes about 1 kw to drive a 1 hp electric motor.

Most of the power levels of practical importance can be conveniently

described using power units based on the watt—microwatts (10

"

6 W,

typical of very weak radio signals), milliwatts (10~ 3 W), kilowatts (10 3 W),

and megawatts (10° W, useful as a unit in generating-plant specifications).

It is worth noticing, for comparison, that the sun's power output is about

3.8 X 10" W!
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TABLE 10-1: THE ENERGY OF THINGS

- - 10" J

- - io^J

- - I0»>J

10"J

- - I0"J

I0M

--io-">J

--io-»j

--10--J

Energy equivalenl of sun's mass (fi = mc')

Daily cncrgy oulpui of our galaxy

Kinelic energy of earth* orbital molion (relalive lo sun)

Daily energy oulpui of sun

Kinelic energy of moon's orbital motion (relalive lo earth)

Solar energy received per day on earth

World uscof cncrgy in 1950 <I0M J/y)

Kinelic energy of a eyelone

Daily energy oulput of Hoover Dam
Solar energy per day on 2 square miles

Burning of 7000 tons of coal

Energy released in complete fission of I kg of U 05

Energy equivalent (£ m< *) of I g of malter

Energy of explosion of I ton of TNT
Energy conlenl of average daily diet

One kilowatt-hour

Kinelic energy of rifle bullet

Oneerg(IO-'J)

Energy cquivalcnt (K — («<•') of one atomic mass unil

Energy produced by fission (slow neutrons) of one nueleus of U or Pu

Energy equivalent (£" = »i< *) of one cleclron mass

Average energy lo produce one ion pair in air ( - 35 e V)

Energy lo break a DNA molecule in two (-0.1 eV)

Kinetic energy per molecule ai room temperature (0.025 eV)

Energy of a photon a I radio broadeast frequencies

Kinetic energy of an electron moving al I m/sec



tions have confirmed, there is an equivalence between what we

customarily call mass and what we customarily call energy. In

classical mcchanics thcsc arc trcated as entirely separate concepts,

but it is perhaps worth quoting this equivalence here, so that we

have our selection of energy measures all in one place:

1 kg of mass is cquivalent to 9 X 10
16

J

For the sake of interest, we show in Table 10-1 some repre-

sentative physical cxamplcs involving different orders of magni-

tude of energy, all expressed in terms of our basic mechanical

unit, the joule.

GRAVITATIONAL POTENTIAL ENERGY

Wc shall begin with a simple and very familiar problem. An object

has been thrown vertically upward and is moving under gravity,

losing speed as it goes higher. Let us take a y axis, positive up-

ward, and suppose that the object passes the horizontal level

y = yi with velocity u
t
and reaches y = y2 with velocity v 2

(Fig. 10-4). Thcn the purely kinematic deseription of the motion

is given by

v 2
2 = m 2 + 2a0>2 - .yi)

with

a- -g

leading to the familiar result
1

.„2 _ ,,,2V2 = v\ 2 — 2g(yz - yi)

Now let us consider this in terms of work and energy. The changc

of the kinetie energy (K) between >>i and y2 is given by

K2 — K\ = Jmi>2
a — \mv\ z

Using the preceding kinematic equation this can be written

K2 — K\ = —mgiyz — yi)

Now the quantity —mg is just the constant gravitational foree,

Remember, we have defined g as a positice number equal to ihe magnilude

of the local gravitational acceleration in any units that may be chosen.
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4 -yt

u%
Fig. 10-4 Velocity change associated with vertkal

motion under gramty.

F„, that acts on the object as it moves up from y\ to y 2 (see Fig.

10-4). Thus we see that the change of K is precisely equal to the

work donc by the gravitational force, in conformity with the

general rcsult expressed by Eq. (10-3):

K2 - K
x
= F,0»2 - yi)

We are going to rewrite this equation in a different way,

such that the quantities referring to the position y = y\ appear

on one side, and the quantities referring to the position y = y2

appear on the other. We shall express the result in what may seem

at first to be a clumsy fashion, but the reason will quickly appear.

Our new statement of the rcsult is

K2 + (-F„y2) -Xi + (.-F yi) (10-4)

What we have done here is to deliberately frame the mathe-

matical statement in such a way that the sum of two quantities has

the same valuc at two different positions. That is the formal basis

of the statement of conscrvation of cnergy. We define the potential

energy U(y) at any given value of y through the cquation

l/GO = -F,y G0-5)

(thus making U = at y = 0). ' Notice particularly that U(y) is

the negalive of the work done by the gravitational force. Sub-

stituting this definition of the potential energy into Eq. (10-4)

we thus gct

E = K2 + U2 = tf , + Ui (10-6)

where E is the total mechanical energy. Putting Fe
— —mg in

Eq. (10-5), we have the well-known result

£/(/,) = mgh

for an object at height h above the ground (or other horizontal

level that is defined as the zero of potential energy). For this case

'We shall use the symbol U for potential energy throughout this book. The
symbol V is widely uscd also, but we shall avoid it here because we so often

use t's (large and small) to denote velocities.
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Fig. 10-5 Energy

diagram for vertical

motion above a hori-

zontal surface.

the energy-conservation statement can be simply represented as

in Fig. 10-5. We shall have more to say about such graphs shortly.

You will undoubtedly be familiar with another way of inter-

preting a potential encrgy such as U(h) in the last equation. It

represents exactly the amount of work that we would have to do

in order to raise an object through a distance h, against the gravi-

tational puli, without giving it any kinetic energy. In order to

achieve this, we must supply an exlernal force, Fext ; if this is

insignificantly greater than mg, the object will move upward with

negligibly small acceleration (Fnct « 0), thus arriving at some

higher level (Fig. 10-6) with almost zero velocity.
1 If the object

Fig. 10-6 Use ofan exterrtal

force to move an object in the

direction of increasing gravita-

tionai potential energy.

'To make it even more precise, wc could apply a force just a shade bigger

than mg for a brief time at the beginning, to get the object moving, then

change to F„t
exactly equal to mg for most of the trip (the object thus con-

tinuing to move upward at constant velocity under zero net force), and

finally let F„, become a shade less than mg for a brief time just before the

end, so that the object finishes up at rest at height /i above its starting point.
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is subsequently released, then the work done on it by the gravi-

tational force is given to the object as kinetic energy (corre-

sponding to traveling from y = h to y = in Fig. 10-5). Many

devices (pile drivers are a particularly clear example) operate in

precisely this way.

MORE ABOUT ONE-DIMENSIONAL SITUATIONS

K2 - Ki = I F(x)dx (10-7)

Equation (10-6) is a compact statement of the conservation of

total mechanical energy in any one-dimensional problem for which

the force acting on an object, due to its environment, depends

only on the object's position. To derive this energy-conservation

result more generally, suppose that the environment supplies a

force F(x) that varies with position x in any arbitrary way—but

has a unique value at any given value of x. The work done by this

force as an object moves from xi to x 2 is given by

W= \ F(x)dx

Equating this work to the change of kinetic energy, we have

In order to cast this into the form of a conservation statement,

we introduce an arbitrary reference point x and express the work

integral as follows:

r*i r 'z r 'i

/ F(x)dx =
/ F{x)dx- / F(x)dx (10-8)

y i, J x J x

Substituting this in Eq. (10-7), we have

K2 +
\-J

F(x) dx - Ki + 1 - / F(x) dx\

We then define the potential energy U(x) at any point x by the

following equation:

U(x) - U(x ) = - / F(x)dx (10-9)
Jx

Notice once again the minus sign on the right. The potential

energy at a point, relative to the reference point, is always defined
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as the negatioe of the work done by the force as the object moves

from the reference point to the point considered. The value of

U(x ), the potential energy at the reference point itself, can be

set equal to zero if we please, because in any actual problem we

are concerned only with differences of potential energy between

one point and another, and the associated changes of kinetic

energy.

In obtaining Eq. (10-9) we took the force as the primary

quantity and the potential energy as the secondary one. Increas-

ingly, however, as one goes deeper into mechanics, potential

energy takcs over the primary role, and force becomes the derived

quantity—literally so, indeed, because by differentiation of both

sides of Eq. (10-9) with respect to x, we obtain

F(x) = - ^ (10-10)

This inversion of the roles is not just a formal one (although it

does prove to be valuable theoretically) for there are many

physical situations in which one's only measurements are of

energy differences between two very distinct states, and in which

one has no direct knowledge of the forces acting. The electronic

work function of a metal, for example, and the dissociation

energy of a molecule, represent the only directly observable

quantities in these processes of removing a particle to infinity

from some initial location. How the force varies from point to

point may not be known well—perhaps not at all.

We shall often be spelling out the kinetic energy K in terms

of m and v, so that the equation of energy conservation in one

dimension is written as follows:

$mv2 + U(x) = E (10-11)

Suppose we choose any particular value of x. Then Eq. (10-11)

becomes a quadratic equation for v with two equal and opposite

roots:

D(x) = ±(^^)"
2

dO-12)

This is the expression of a familiar result, which we can discuss

in terms of motion under gravity. If an object were observed to

pass a certain point, traveling vertically upward with speed v,

then (to the approximation that air resistance could be ignored)

it would be observed, a little later, to pass the same point, traveling
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downward at the same speed v. The direction of the velocity has

been reversed, but there has becn no loss or gain of kinetic energy.

In such a case the force is said to be conseruatiue. We can see

from Eq. (10-12) that this result will hold as long as U(x) is a

unique function of x. It means that a particle, after passing

through any given point at any speed, will be found to have the

same kinetic energy every time it passes through that point again.

Under what conditions does the force have this conservative

property? It will certainly not be conservative if F(x) depends

on the direction of motion of the object to which it is applied.

Consider, for example, the addition of a resistive force to the

gravitational force in the vertical motion of an object. As the

object goes upward through a certain point, the net force on it

(downward) is greater than F„. After it reaches its highest point

and begins moving down, the net force on it (again downward)

is less than F„. Hence the net negative work done on it as it rises is

numerically greater than the net positive work as it desccnds.

Thus on balance negative work has been done and the kinetic

energy as the object passes back through the designated point is

less than initially. The crucial feature is, indeed, that the net work

done by F(x) should be zero over any journey beginning and

ending at any given value of x\ only if this condition is satisfied

can one define a potential-energy function. It might seem that an

equivalent condition is that F be a unique function of position.

In one-dimensional situations this is correct. In two- and three-

dimensional situations, howevcr, as we shall see later (Chapter

1 1), the condition that F be a single-valued function of r is neces-

sary but not sufficient. The condition of zero net work over any

closed path defines a conservative force in all circumstances and

should be remembered as a basic definition.

THE ENERGY METHOD FOR ONE-DIMENSIONAL MOTIONS

The use of energy diagrams, such as that of Fig. 10-5, provides

an excellent way of obtaining a complete, although pcrhaps quali-

tative, picture of possible motions in a one-dimensional system.

Frequently the information so obtained suffices for obtaining

physical insight into situations for which analytic solutions are

complicated or even unobtainable. In fact, even when analytic

solutions can be obtained in terms of unfamiliar functions, they

often are of little help in revealing the essential physical charac-

teristics of the motion. The general scheme is as follows: We
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Fig. 10-7 Hypothetical energy diagramfor a one-dimen-

sional system.

plot U(x) as a function of x, and on the same plot draw horizontal

lines corresponding to different total energies. In Fig. 10-7 is

shown such a potential-energy curve and several values of the

total energy.

The kinetic energy K of a particle is equal to (E — U), i.e.,

to the vertical distance from one of the lines of constant energy

to the curve U(x) at any point x. For a low energy Eu U(x) is

greater than E for all values of x; this would simply imply a

negative value of K and hence an imaginary value of v. Such a

situation has no place in classical mechanics—although it must

not be discarded so lightly when one comes to atomic and nuclear

systems requiring the use of quantum mechanics. For a higher

total energy E2 , the motion can occur in two regions, between x%

and x4 or between x 7 and x&. These represent two quite separate

situations, because a particle cannot escape from one region to the

other as long as its energy is held at the value E2 . One way of

seeing this is, of course, in terms of the impossible negative value

of K between x 4 and x 7 . But there is another way which is valu-

able as an example of how one "reads" such an energy diagram.

Suppose that our particle, with total energy £ 2 , is at the

point x = x3 at some instant. Its potential energy U(x 3 ) at this

point is equal to the total energy, for this is where the curve

of U(x) and the line E = E2 intersect. Thus the particle has zero
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kinetic energy and hence is instantaneously at rest. However,

there is a force on it:

At x = x 3 , dU/dx is negative and hence F(x 3 ) is positive—i.e.,

in the +x direction. Thus the particle accelerates to the right.

The force on it, and hence its acceleration, decreases as the slope

of the U(x) curve decreases, falling to zero at the value of x at

which U(x) is minimum. At this point the speed of the particle

is a maximum, and as it moves further in the +x direction (with

d(J/dx > 0) it now experiences a force in the — x direction. The
diagram displays all this information before us, and shows the

kinetic energy £2 — V continuing to decrease as the particle

approaches x4 . Finally, at x4 itself, the velocity has fallen to zero

—but there is still a force acting in the -x direction. What hap-

pens? The particle picks up speed again, traveling to the left, until

it reaches x 3 with its velocity reduced to zero. This whole cycle

of motion will continue to repeat itself indefinitely as long as the

total energy does not decrease. We have, in short, a periodic

motion, of which we can discern many of the principal features

without solving a single equation—just by seeing what the

energy diagram has to tell us. The motion between x 7 and x8

is likewise periodic.

We can dispose of the other possibilities more briefly, having

indicated the method. For a still higher energy E3 , two kinds of

motion are possible; either a periodic motion between X2 and x 5 ,

or the unbounded motion of a particle coming in from large

values of x, speeding up as it passes xs , then slowing down and
reversing its direction of motion at x6 , moving ofT to the right and
duplicating all the changes of speed on the way in. Finally, for

the still larger energy E4 , the only possible motion is unbounded;

a particle coming in from large values of x, speeding up, slowing

down, speeding up, slowing down again, and reversing its direc-

tion of motion at x lt after which it proceeds inexorab!y in the

direction of ever-increasing x. For each of these motions, the

speed at any point can be obtained graphically by measuring the

vertical distance from the appropriate line of constant energy to

the corresponding point on the potential-energy curve.

Caution: The curve of U(x) in Fig. 10-7 is almost too graphic.

It tends to conjure up a picture of a particle sliding down the

slopes and up the peak Iike a roller coaster. Do not forget that
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it is a one-dimensional motion that is the subject of the analysis.

The vertical scale is energy, and has nothing necessarily to do

with altitude.

After this general introduction, let us consider some specific

examples of one-dimensional motions as analyzed by the energy

method.

SOME EXAMPLES OF THE ENERGY METHOD

Bouncing ball

Suppose that a ball, moving along a vertical line, bounces re-

peatedly on a horizontal floor. Let us first imagine that there is no

dissipation (loss) of mechanical energy, so that this energy

remains constant at some value E.

We shall use>> to denote the position of the center of gravity

(CG) of the ball, and take y = to be defined by the first contaet

of the ball with the floor. We shall take this configuration to

correspond to U = 0. For y > the potential energy of the ball

is given by

U(y) = mgy {y > 0)

Now y = does not, in any real physical situation, represent the

Fig. 10-8 (a) Energy diagram for a ball bouncing ver-

lically. (b) Idealizalion of(a) 10 represent a situation in

wliicli the impaet at y = is completely rigid but in

wlrich there is some dissipation ofenergy at each bounce.
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lowest point rcached by the CG of the ball. The floor does not

exert any force on the ball until it (the floor) has been compressed

slightly. An equivalent remark can be made about the ball. Thus

the ball certainly moves into the region y < 0. As it does this,

however, it experiences a positive (upward) force that increases

extremely rapidly as y becomes more negative, and completely

overwhelms the (negative) gravitational force that exists, of course,

at all values of y. This large positive force gives rise to a very steep.

increase of U(y) with y for y < [see Fig. 10-8(a)].

For any given value of the total energy, therefore, the ball

oscillates between positions y t and y-i as shown in the figure.

The motion is periodic—that is, there is some well-defined time T
between successive passages in the same direction of the ball

through any given point.

Now in practice y x may be numerically very small compared

to y2 - For instance, if a steel ball bounces on a glass plate, we

might easily have y x of the order of 0.01 cm and y 2 of the order

of 10 cm. Thus for many purposes we can approximate the plot of

U(y) against y for y < by a vertical line, coinciding with the

energy axis of Fig. 10-8(a). This represents the physically unreal

property of perfect rigidity—an arbitrarily large force is called

into play for zero deformation. However, if we can justifiably

use this approximation, then we have a simple quantitative

description of the situation. The motion is confined to y >
and is defined by

i/w,2 + mgy = E (y> 0) (10-13)

The maximum height h is, of course, defined by putting vu = 0:

h = — (10-14)
mg

To find the period T of the motion we can calculate the time

for the ball to travel from y = to y = h and then double it.

That is, we have the following relation

:

[ a /
dy

2 J»=0 Vy
(10-15)

because the elementary contribution dt to the time of flight is

equal to dy divided by the speed vy at any given point.

Now from Eq. (10-13) we have
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OU = ±
2(£ - mgy)

"'

m *r

Taking the positive root, to correspond to upward motion, we

have, from Eq. (10-15),

/o L2(£ - ««Oj

r* r Ti/a

r=2/ Us-2—J *

«6-

g7o m/mg)- y]»«

We can simplify this by noting that £/wg is just the maximum

height h [Eq. (10-14)]. Thus we have

r- J*' *
/Wo (A->-) 1/2

This is an elementary integral (change the variable to w = h - y)

yielding the result

You will, of course, recognize the correctness of this result from

the simple kinematic problem of an object falling with constant

acceleration, and could reasonably object that this is another

of those cases in which we have used a sledgehammer to kill a

fly. But it is the method that you should focus attention on, and

perhaps the use of a familiar example will facilitate this. It

should not be forgotten that most motions involve varying accel-

erations, so that the Standard kinematic formulas for motion with

constant acceleration do not apply. But Eq. (10-15), in which v

is defined at any point by the energy equation, can be used for any

one-dimensional motion and can be integrated numerically if

necessary.

Before leaving this example, let us use it to illustrate one

other instructive feature of the energy diagram. We know that

the total mechanical energy of a bouncing ball does not in fact

stay constant but decreases quite rapidly. Although there is

little loss of energy while the ball is in flight, there is a substantial

loss at each bounce. Figure 10-8(b) shows how this behavior

can be displayed on the energy diagram. Starting at the point A,

the history of the whole motion is obtained by following the

arrows. The successive decreases in the maximum height of
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bounce, and the inevitable death of the motion at y = 0, are quite

apparent by inspection of the figure.

Mass on a spring

There are very many physical systems—not just ordinary me-

chanical systems, but also atomic systems, and even electrical

ones—that can be analyzed by analogy with a mass on a spring.

The reason for this lies in two features:

1. A mass typifies the property of inertia, which has its

analogues in diverse systems and which acts as a repository of

kinetic energy.

2. A spring represents a means of storing potential energy

according to a particular law of force that has its counterparts

in all kinds of physical interactions.

We have already studied this problem—the problem of the

harmonic oscillator—in some detail (in Chapter7) as an application

of Newton's law, but it is well worth analyzing the problem again

from the standpoint of energy conservation—in part as an illus-

tration of this method but chiefly because the description in terms

of energy opens the way to a far wider range of situations. Not

only does it provide a pattern for the handling of more complex

oscillatory problems in classical mechanics; it also supplies the

foundation for formulating equivalent problems in quantum

theory.

Our starting point will again be the restoring force of an

ideal spring as described by Hooke's law:

F = -kx (10-16)

where x is the position of the free end of the spring relative to its

relaxed position, k the "force constant" of the spring, measurable

in N/m, and the negative sign gives the direction of the force,

opposite to the displacement of the free end. No real spring

obeys this law over more than a limited range. The propertics of a

real spring can be exprcssed by a graph such as Fig. 10-9(a),

which represents the force F(x) exerted by the spring as a function

of its extension x. Within the linear range the potential energy

stored in the spring is, according to Eq. (10-9),

U(x)0- -
jo

F{x)dx= +
J

kxdx = '^- (10-17)
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Fig. 10-9 (a) Restor-

ing force versus dis-

placement for a

spring. (b) Potential-

energy diagram asso-

ciated with (a).

(c) Graph ofapplied

force versus extension

in a stalic deformalion

ofa spring.

where wc havc chosen U = for x = 0, i.e., when the spring is

relaxed. Figure 10-9(b) shows this potential energy plotted against

x. Since the potential-energy change can be calculated as the

work done by a force FCKl just sufficient to overcome the spring

force itself, the increase of potential energy in the spring for any

given increase of extension can be obtained as the area, between

given limits, under a graph of Fcxt against x [sec Fig. 10-9(c)].

F^t can be mcasurcd as the force needed to maintain the spring

at constant extension for various values of x. Outsidc the linear

region (whose boundaries arc indicated by dashed lines) F(x) can

be integrated graphically so as to obtain numerically the potential
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Compression

Fig. 10-10 Mechanical hysteresis.

energy for an arbitrary displacement.

Before we examine motion under this spring force, let us

consider briefly what would happen if the spring employcd in our

example were made of lead, for example. As we compress such a

spring from its original length, it will exert a force that behaves

very much in the way shown in Fig. 10-9(a) and by the line OQ
in Fig. 10-10. However, if we now remove the extcrnal agency,

the spring will not return to its original length but will acquire a

permanent deformation represented by point xr in Fig. 10-10.

Clearly, such a spring exerts a force that is not conservative.

The value of the force depends not only on the compression but

also on the past history. At the value x x
of the compression in

Fig. 10-10, we find two values of the force, one as the spring is

shortened and the other as it is released. This type of behavior

is called hysteresis and results in dissipation of mechanical energy.

Let us now consider in more detail the way in which the use of

the energy diagram helps us to analyze the straight-line motion of

a harmonic oscillator. In Fig. 10-11 are shown the potential

energy U = \kx 2
plotted against x, and two different total ener-

gies, Ei and E 2 .

For a given energy E\, as we have already discussed, tne

vertical distance from the horizontal line E x to the curve U =

%kx 2
for any value of a: is equal to the kinetic energy of the particle

Fig. 10-11 Energy

diagram for a spring

that obeys Hooke's

law.
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at x. This is maximum at x = 0; at this point all the energy is

kinetic and the particle attains its maximum speed. The kinetic

energy and hence the particle speed decreases for positions on

either side of the equilibrium position O and is reduced to zero

at the points x = ±.A\. For values of x to the right of +A x or

to the Ieft of — A i , (Ei — U) becomes negative ; v
2

is negative and

there exists no real value of v. This is the region into which the

particle never moves (at least in classical mechanics); thus the

positions x = ±A i
are turning points of the motion, which is

clearly oscillatory.

The amplitude A i of the motion is determined by the total

energy E\. Since the kinetic energy Ki (=£1 — U) is zero at

x = ±Au we have

$kAi2 = Ei

or

,1/2

- - (fJ
(10-18)

For a larger energy, E2 , the amplitude is larger in the ratio

(E2/E1) " 2
, but the qualitative features of the motion are the

same.

It is interesting to note that the general character of the

motion as inferred from the energy diagram would be the same for

any potential-energy curve that has a minimum at x = and is

symmetrical about the vertical axis through this point. All mo-

tions of this sort are periodic but differ one from the other in

detail, e.g., the dependence of speed on position and the de-

pendence of the period on amplitude. Suppose that the period of

the motion is T. Then for any symmetrical potential-energy dia-

gram, we can imagine this time divided up into four equal por-

tions, any one of which contains the essential information about

the motion. For suppose that, at t = 0, the particle is traveling

through the point x = in the positive x direction. Let its

velocity at this instant be called vm—it is the biggest velocity the

particle will have during its motion. At / = T/4 the particle is

at its maximum positive displacement (x = +A in Fig. 10-11),

and u = 0. It then retraces its steps, rcaching* = after a further

time T/4 and passing through this point with v = — vm . In two

further intervals T/4 it goes to its extreme negative displacement

(x = —A) and at / = T is once again passing through the point
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Fig. 10-12 Sinus-

oidal variation of

velocity with timefor

a particle subjected to

a restoring force

proportional to dis-

placement. The mo-

tion during the first

quarter-period suffices

to define the rest of

the curve.

x = O with v = vm . This sequence will repeat itself indefinitely.

Furthermore, knowing the symmetry of the problem, we could

construct the complete graph of v against t from a detailed graph

for the first quarter-period alone (see Fig. 10-12, in which the

basic quarter period is drawn with a heavier line than the rest).

In the next section we shall go beyond this rather general

examination of the mass-spring system, including nonlinear

restoring forces, and shall redevelop the rest of the detailed

results that apply to the ideal harmonic oscillator. Before doing

that, however, we shall consider one more simple example that

illustrates the usefulness of the energy method.

Dynamics of a catapult

The catapult is an ancient and effective device for launching stones

or other missiles with quite high velocities, by converting the

potential energy of a stretched elastic cord into the kinetic energy

of a mass. I n Fig. 10-13(a) we show the essentials of the arrange-

Fig. 10-13 (a) Initial

andfinal stages of the

launching of an object

by a catapult, (b) In-

termediale state,

showing the instan-

taneousforce acting.
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ment. An elastic cord, of natural (unstretched) length 2/ , is

attached to fixed supports at the points A and D (AC = CD =

/ ). An object of mass m is placed at the midpoint of the cord

and drawn back to point B. When it is released, the object

travels along the line BC, and at the point C it begins its free

flight with speed o.

Let us assume that the cord develops a tension proportional

to its increase of length. Then we can use Eq. (10-17) to calculate

the stored energy when the mass is at the initial position, B.-

Remembering that there arc two segments of cord, each of initial

length / and stretched length l x , we have

U = 2 X i*(/i - /o)
2 = Wi - /o)

2

In the idealization that the cord has negligible mass and thus

does not drain off any of the elastic energy for its own motion,

we can equate the final kinetic energy of the projectile to the

initial potential energy as given above. Thus we have

\mv* = /c(/i - /o)2

and so

,1/2

°-(S) (/i - /o)

This example displays particularly well the advantage of

making the calculation with the help of the scalar quantity, energy,

instead of the vector quantity, force. For suppose we wanted to

calculate the final velocity of the mass by direct application of

F = ma. Then, as indicated in Fig. 10-1 3(b), we should have to

consider the state of affairs at an arbitrary instant when the mass

was at some point P between B and C such that AP = I. The ten-

sion in each half of the cord would be k(l - / ), and the instan-

taneous acceleration would be obtained by resolving these

tension forces along the line BC:

m^- = Fx = 2k(l - /o) cos d
at

This equation for do/dt would then have to be integrated

between the points B and C. Or, alternatively, we could calculate

the total work done by the varying force Fx along the path BC. In

either case, this is a far harder road to the final result than is the

direct application of conservation of mechanical energy.
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THE HARMONIC OSCILLATOR BY THE ENERGY METHOD

We shall now return to the analysis of the oscillatory motion of

an object attached to a spring that obeys Hooke's law. The

basic energy equation for a mass on a spring with a restoring

forcc proportional to displaccmcnt is

£/»w2 + \kx2 = E (10-19)

where E is some constant value of the total energy. Since v =

dx/dt, this can be rcwritten as

hm (4j?\ + £**2 = E (!0-20)

Equation (10-19) already gives us v as a function of x, but to

have a full description of the motion we must solve Eq. (10-20)

so as to obtain x (and hence v) as functions of r.

Our way of dealing with Eq. (10-20) will appeal to the

knowledge of trigonometric functions and their derivatives that

one develops at an early stage of any calculus course. We start

out by dividing the equation throughout by E. Then we get

ni (dx\
2

k_

2E\dt/
+

2E
x2 = 1 (10-21)

We notice that this is a sum of two terms involving the square of

a variable (x) and the square of its derivative (with respect to t).

The sum is equal to 1 . Now we can relate this to a very familiar

relationship involving trigonometric functions: If 5 = sin •/>, then

ds

and

W + s2 = cos2 <p + sin2 p = 1 (10-22)

Equations (10-21) and (10-22) are exactly similar in form! We
must be able to match them, term by term:

2E\dt) W/

2£

The second of these is satisfied by putting
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X =
(t)""' - (t)"'***

'">-*>

What is ^s? We can find it by evaluating dx/dt by differentiation

of both sides of Eq. (10-24) with respect to t:

dx = /2EV
dt \k)

dip
cos„-

But the first equation of (10-23) is satisfied by putting

* m (2g\
V**

m (2£\
U*
QM

dt \m/ d(f> \m)

Comparing these two expressions for dx/dt we find the following

condition on <p:

J = (*Y" - u (10-25)
dt \m/

where w is the angular velocity (also called the circular frequency)

that we met in our previous solution of the harmonic oscillator

problem (Ch. 7, p. 226), starting from F = ma.

Integrating the last equation with respect to t we thus get

(p = wt + ipo

where <po is the initial phase. Substituting this expression for <p

back into Eq. (10-24) then gives us

x = fejtj sin (co/ + w>) (10-26)

If we note that (2E/k) u2 is equal to the amplitudeA of the motion

[Eq. (10-18)] we arrive finally at the same equation for x(t) that

we found in Chapter 7 [Eq. (7-42)].

[If you have some prior knowledge of differential equations,

you may regard our method of solution above as being rather

cumbersome. You may prefer to proceed at once to the recogni-

tion that Eq. (10-20) leads to the relationship

(I)f)'

and hence to the following solution by direct integration:

dx ,2 2.1/2

di'"*4 ~ X)
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,dt
dx

(4» - x2)I/2

ut + (po = sin
-1

i
-J

and so x = A sin (ut + <p ) as before.]

Equations (10-25) and (10-26) tell us something very remark-

able indeed: The period of a harmonic oscillalor, as typified by a

mass on a spring, is complelely independen! ofthe energy or ampli-

lude ofthe motion—a result that is not true of periodic oscillations

under any other force law. The physical consequences of this are

tremendously important. We depend heavily on the use of vibrat-

ing systems. If the frequency v (defined as the number of complete

oscillations per second, i.e., l/7"or u/2v) varied significantly with

the amplitude for a given system, the situation would become

vastly more complicated. Yet most vibrating systems behave, to

some approximation, as harmonic oscillators with properties as

described above. Let us see why.

SMALL OSCILLATIONS IN GENERAL

There are many situations in which an object is in what we call

stable equi1ibrium. It is at rest at some point—under no net

force—but if displaced in any direction it experiences a force

tending to return it to its original position. Such a force, unless

it has pathological properties (such as a discontinuous jump in

value for some negligible displacement) will have the kind of

variation with position shown in Fig. 10-14(a). The normal

resting position is marked as x . This force function can be inte-

grated to give the potential-cnergy graph of Fig. 10-14(b). One

Fig. 10-14 (a) Varia-

tion offorce with dis-

placement on either

side of the equilibrium

position in a one-

dimensional system.

(o) Potential-energy

curve associated

with (a).
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UU) Fig. 10-15 Potential-energy curve ofFig. 10-14(b)

referred to cm origin located at the equilibrium position.

can then form a mental picture of the object sitting at the bottom,

as it were, of the potential-energy hollow, the minimum of which

is at x = x .

Now wc can fit any curve with a polynomial expansion. Let

us do this with the potential-energy funetion—but let us do it

with reference to a new origin chosen at the point x , by putting

x = xo + s

where 5 is the displacement from equilibrium. The potential-

energy curve, now appearing as in Fig. 10-15, can be fitted by

the following expansion

:

U(s) = U + as + ic 2s
2 + %c 3s

3 + (10-27)

(The numerical faetors are inserted for a reason that will appear

almost immediately.)

The foree as a funetion of s is obtained from the general rela-

tion

m = _ _

so that we have

F(s) = —Cl — C2S — css2

However, by definition, F(s) = at 5 = 0; this is the equilibrium

position. Hence c
{
= 0, and so our equation for F becomes

F(s) = — C2S — C3S 2 (10-28)

Now, whatever the relative values of the constants c2 and c3 , there

will always be a rangc of values of s for which the term in s
2

is

much less than the term in 5, for the ratio of the two is equal to

Czs/ci, which can be made as small as we please by choosing s

small enough. A similar argument applies, even more strongly,

to all the higher terms in the expansion. Hence, unless our po-

tential-energy funetion has some very special properties (such as

having c 2
= 0) we can be sure that for sufficicntly small oscilla-

tions it will be just like the potential-energy funetion of a spring

that obeys Hookc's law. We can write
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U(s) m %c2s
2 (• 0-29)

which means that the effective spring constant A; for the motion is

equal to the constant c 2 . We shall discuss a specific application

of this analysis—molecular vibration—later in this chapter.

THE LINEAR OSCILLATOR AS A TW0-B0DY PROBLEM

So far, in all our discussions of potential energy, we have analyzed

the problems as though we had a single object exposed to given

forces. A statement of our calculation on an object near the earth's

surface could well be in the form: The polen tial energy ofan object

of mass m raised to a height h above the earth's surface is mgh.

Such a statement is perfectly legitimate for situations in which

the mass of a particle is very small compared to the mass of the

object (or objects) with which it interacts. In such a case, the center

of mass of the system is effectively determined by the position of

the larger mass. A frame of reference anchored to this larger

mass is both a zero-momentum frame and a fixed frame of refer-

ence. This is the case for the earth and an ordinary object moving

near its surface. It is also the case for interactions between

any two objects if one of them is rigidly attached to the earth.

One must remember, however, that, strictly speaking, one is

analyzing a two-body system (the earth and the object which is

raised): mgh is the increase of potential energy of the system when

the separation between the earth and the object of mass m is

increased by an amount h. I n other words, the potential energy is

a property of the two objects jointly ; it cannot be associated with

one or the other individually. If one has two interacting particles

of comparable mass, both will accelerate and gain or lose kinetic

energy as a result of the interaction between them. It is to this

basic two-body aspect of the potential-energy problem that we

now turn.

Suppose that we have two particles, of masses m, and m 2 ,

connected by a spring of negligible mass aligned parallel to the x

axis (Fig. 10-16). Let the particles be at positions x t
and x 2 , as

shown, referred to some origin O. If the spring is effectively

massless, the forces on it at its two ends must be equal and oppo-

site (otherwise it would have infinite acceleration) and hence,

accepting the equality of action and reaction in the contacts

between the masses and the spring, the forces exerted on the

masses are also equal and oppositc. Thus, denoting the force
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Fig. 10-16 System

of two masses con-

nected by a spring,

showing ihe separale

coordinates and

forces.

f«
"h

Wom

c m2

F,2

i

700 /i/l/t

O •«'i .i -Vs

exerted on mass 2 by the spring as F x 2 , the force F2 i exerted on

mass 1 by the spring is equal to — F12 .

We shall relate the changes in kinetic energy of the masses

to the changes in stored potential energy in the spring.

The potential energy of the spring

First, suppose that m
i
moves a distance dx\ while m 2 moves dx2 -

The work done by the spring is given by

dW = Fi2dx2 + F2 1 dx\

= Fi2(dx2 — dx\) (sinceF2i = —Fia)
- Fi 2 d(,X2 - Xl)

Clearly the difference x2 — x x , rather than x x and x 2 separately,

defines the elongation of the spring (and hence the energy stored

in it). Let us introduce a special coordinate, r, to denote this:

r = X2 — x\

Then

dW = F12 dr (work done by spring) (10-30)

The change of potential energy of the spring is equal to —dW.
Introducing the potential energy function U(r) we have

dU = - F12 dr

(r)= -
J
F12 dr (10-31)

The kinetic energy of the masses

Our discussion of two-body systems in Chapter 9 suggests clearly

that we should introduce the ccntcr of mass of the system and

refer the motions of the individual masses to it. This allows us,

as we have seen, to consider the dynamics in the CM frame with-
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out reference to the motion of the system as a whole. By Eq.

(9-29) we have

K = K' + £A/£52

where K' is the total kinetic energy of the two masses as measured

in the CM frame. Denoting the velocities relative to the CM by

v[ and u'2 as usual, we have

K' = imivf + \mv£ (10-32)

We have seen (pp. 338-339) that it is very convenient to express

K' in terms of the relative velocity, v„ and the reduced mass, y.,

of the two particles:

V r = V2 — f'l

m\m2
M =

From the definition of the CM (zero-momentum) frame, we have

mio'i + /«2^2 =

Using this, together with the equation for v T , we find

, w»2 , mim =
; v, 02 =; UT f2 = "r

m\ + n\2 "'i + "i2

Substituting these values into Eq. (10-32) one arrives once again

at the result expressed by Eq. (9-30a):

r.JJHL«l-iP»r* 00-33)
2mi + n\2

We shall be considering the changes of kinetic energy of the

masses as related to the work done on them by the spring. On
the assumption that no external forces are acting, we have B =

const., in which case

dK = dK'

The motions

At this point we can assemble the foregoing results and equate

the change of kinetic energy to the work done by the spring. We
evaluated dW [in Eq. (10-30)] in terms of laboratory coordinates,

although, as we saw (and could have predicted), the result depends

only onxa — Xi, which is equal to x'2 — x[—both being equal
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to the relative coordinate r. Likewise, as we have just seen,

dK = dK'. We can, in fact, put

dK' = F\zdr (work done by spring)

Integrating,

K' = / Fl2 dr + const.

And now, with the help of Eq. (10-31), we can write this as a

statement of the total mechanical energy E' in the CM frame:

K' + U(r) = E' (10-34)

For the specific case of a spring of spring constant k and natural

length r , we can put

r = r + s

U(s) = $ks2

Also

dr ds

Thus the equation of conservation of energy [Eq. (10-34)]

becomes

J*(f) +ito8-i? 00-35)

where
mim-2

M =
mi + m2

This is exactly of the form of the linear oscillator equation; its

angular frequcncy w and its period T are given by

-- ($)"* r - 2
*(?r

(, °-36)

It is to be noted that the reduced mass /x is less than either of the

individual masses, so that for a given spring the period is shorter i n

free oscillation than if one of the masses is clamped tight.

COLLISION PROCESSES INVOLVING ENERGY STORAGE

With the help of the analysis developed in the last section, we can
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gain further insight into certain inelastic or explosive collisions

of the type discussed in Chapter 9.

We shall introduce the problem by imagining a little me-

chanical gadget that could be constructed without much trouble.

The gadget is a spring equipped with a buffer that slides along a

guide and becomes lockcd iri place if the spring is compressed by

more than a certain amount [see Fig. 10-17(a)]. Suppose that

this device (assumed to be of negligible mass) is attached to an

object of mass m 2 , and that an object of mass m t collides with it.

For simplicity, let us take m 2 to be initially stationary, and let

mi approach it with a speed «i.

If Mi is small, the collision is perfectly elastic. The spring

will be compressed a little when m^ strikes it, but it will return

to its original unstretched condition, and at this instant the col-

lision process comes to an end. Throughout the time that the

spring is at all compressed, the mass m 2 is subjected to an accelera-

tive force to the right and m i is subjected to a decelerative force

to the left. A certain positive amount of work is done onm 2

and an equal amount of negative work is done on m\. The total

kinetic energy is the same after the collision as beforehand, but

it has been reapportioned.

If ui is increased, the situation is finally reached in which

the maximum compression of the spring just brings it to the

locking position. At this instant mi and m 2 are at rest relative

to one another, and because the spring is prevented from pushing

them apart again, this is the way they remain. In other words,

they would continue to move on as a single composite object of

mass mi + m 2 ; the collision has suddenly become completely

inelastic.

Fig. 10-17 (a) Collision inooking one object with an

energy-storage device. (b) Same collision in the center-

of-mass frame. The collision is elastic if the total ki-

netic energy in thisframe is less than the work needed

to compress the spring by the crilical amount.
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What defines the critical condition at which the collision

changes from elastic to inelastic? We can most easily discuss this

from the standpoint of the CM frame [Fig. 10-17(b)]. In this

frame the masses have a total kinetic energy given (cf. the previous

section) by

K' = ivu>T
2

with

u = -—— vT = — "i (because uz = 0)
m\ + n\2

If we denote the initial kinetic energy of m x in the Lab frame

as Ku we can put

mi + m2

Now at the critical value of K x
all the energy K' is used up in

compressing the spring to the Iocking position; this requires a

well-defined amount of work equal to the energy, U , stored in

the spring in this configuration. Thus we can put

K' =
m
2 K, = f/o

or

_ mi + m2
Uq (10_37)

n\2

If U is given, the above equation defines a threshold value ofKu
at which inelastic collisions become possible and below which

the collisions can only be elastic.

If we consider still higher values of Ku we obtain situations

in which the spring is compressed beyond its Iocking point but

then returns to that critical length and stops. During this partial

reextension it pushes m i
and m2 apart, giving them a final relative

velocity and a kinetic energy of relative motion in the CM frame.

The collision is still inelastic but only partially so. A well-defined

amount (C/ ) of the originally kinetic energy of the colliding

masses has been locked up in the spring, and the dynamics of the

collision can be analyzed in these terms. Our analysis in Chapter 9

of inelastic and explosive collisions was, in fact, made precisely

in this way. The quantity Q, representing the value of K/ - K
that we introduced there (p. 347) is in this case simply equal to

-t/„-
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The purely classical dynamical situation described above is

closely paralleled by many collision processes in atomic and

nuclear physics, in which an incident particle (e.g., an electron

or a proton) strikes a stationary target particle that has various

sharply defined states of higher internal energy than its normal

"ground state." The sharpness and discreteness of these charac-

teristic states is understood in terms of quantum theory, but all

that we need here is the knowledge of their existence. If a study

is made of the distribution of kinetic energies of the electrons or

protons after they have collided with target particles of a given

species, the results give information about the excited energy

levels involved. Some examples of this kind of analysis are shown

in Fig. 10-18. The higher the bombarding energy of the incident

particle, the larger the number of excited states that can be stim-

ulated and detected in this way. Figure 10-18(a) shows data

from the scattering of electrons by helium atoms, and Fig.

10—18(b) shows some results for the scattering of protons by the

nucleus boron 10. In the former case the target particle is so

massive that the available kinetic energy in the CM (K') is

insignificantly different from the electron energy K\. In the

latter case, however, the center-of-mass effect is considerable

and one must use Eq. (10-37) to infer the excitation energy U
from the threshold value ofKi> One important difference between

these atomic or nuclear scattering processes and the classical

ones is that perfectly elastic collisions may still occur, with a

certain probability, even after the threshold energy for inelastic

processes has been exceeded. This is an example of the general

feature of quantum mechanics that one only has relative proba-

bilities of events when several outcomes are possible.

To return briefly to the classical situations once again, one

can of course imagine mechanisms that would provide for an

increase rather than a decrease of kinetic energy as the result of a

collision. One could, for example, have a spring already com-

pressed that would be released if a trip mechanism were activated

by the initial impact. Such a process—an explosive collision

—

would, like the inelastic collision with energy storage, require a

certain minimum threshold energy to make it go. Something very

comparable to this happens with chemical explosive systems that

require the firing of a detonator. It is possible to do a quantitative

experiment in which a simple percussion cap (as used in a child's

toy pistol) is mounted on a mass that is free to recoil, and is deto-

nated by the impact of an incident object (e.g., on an air track).
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Fig. 10-18 Experimental resulls on elastic and inelastic collision pro-

cesses, showing Ihe production ofcharacteristic excited states ofsharply

defined energy: (a) Scattering of electrons by neutral helium atoms.

[AfterL. C. Van Alta, Phys. Rev., 38, 876 (1931).] (b) Scattering of

protons by nuclei of boron 10. Some carbon was also present as an

unavoidable contaminant. [After C. K. Bockelman, C. P. Browne,

W. W. Buechner, and A. Sperdmo, Phys. Rcv., 92, 665 (1953).]
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The threshold kinetic energy required under these conditions is

significantly greater than if the cap is mounted on an unyielding

support.

THE DIATOMIC MOLECULE 1

The diatomic molecule, as typified by such molecules as HC1

or Cl2 , is a system to which the methods developed in this chapter

can be very effectively applied. In such molecules, the atomic

nuclei play the role of point masses (which of course they are to

an extremely good approximation, being so tiny in comparison

to an atomic diameter) and the outer clectron structure of the

atoms plays the role of a spring system that can store potential

energy. We thus have the physical basis for characteristic vibra-

tions of the nuclei along the line joining them, and this will be a

possible mode of internal motion ofthe molecule. Before discussing

the oscillations as such, we must considcr the shape and energy

scale of the potential energy curve for a molecule of this type.

We begin with the knowledge that in a diatomic molecule

there is a fairly well defined distance betwecn the nuclei of the

two atoms. This is called the bond length and is always of the

order of 1 angstrom (10
-10

m). The fact that such an equilibrium

distance exists implies that the potential-energy function U(r)

has a minimum at the separation r equal to the bond length.

One way of defining such a potential, while still leaving plenty

of room for empirical adjustment of the constants to experi-

mental data, is to assume the following potential-energy function:

U(r) = d _ *
(10-38)

where A and B are positivc constants, and a and b are suitably

chosen positive exponents with a > b. The term A/r" is a

positive potential energy that falls away rapidly with increasing

distance and represents a rcpulsive force. The term - B/r6 is a

negative potential energy, also falling off with increasing r but less

rapidly than the first term, and it represents an attractive force.

These funetions, and the U(r) curve obtained by adding them,

are shown in Fig. 10-19.

Now from Eq. (10-38) we can define the equilibrium dis-

The remainder of this chapter can be omitled without loss of continuity,

but it does introduce some quile interesting fcatures in addition to the atomic

physics as such.
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Fig. 10-19 Simple

model oflhe potential-

energy diagram ofa
dialomic molecule,

defining an eguilib-

rium separation ro of

the nuclei.

tance; it is the distance at which dU/dr = 0:

dU
dr

aA bB
f<>+\

' fi+ 1

At r = r , we have

aA
ro-

bB

r "

(10-39)

(10-40)

If ro is experimentally known, this defines one connection between

the parameters A, B, a, and b. Also, at r = r , the potential

energy is given by

and substituting for A/r a from Eq. (10-40), this gives

™--£(«-l)
The energy U(r ) is a measurable quantity, for if we are to

dissociate the molecule completely we must add a quantity of

energy, the dissociation energy D, equal and opposite to U(r )

(cf. Fig. 10-19). It is typically a few eV. Thus we can put
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3H) (10-41)

Equations (10-40) and (10-41) can be used to narrow down
the choice of parameters—we have two equations and four

unknowns. Clearly, however, we must either appeal to some

further, independent information, or make some specific assump-

tions, or both, to have a quantitatively defined situation.

The molecular spring constant

The quantity we really need to know, for the purpose of con-

sidering molecular vibrations, is the effective spring constant of

the molecule for small displacements from equilibrium. We dis-

cussed this situation in general terms earlier in this chapter

(p. 395), and arrived at the result [Eq. (10-29)]

t/(s) « \C2S2

where

s = r — ro

The constant c 2 can be identified with spring constant k and can

be deduced from the given form of U(r):

*-(3L-(3)L
Applying this to the present problem, we shall differentiate both

sides of Eq. (10-39) with respect to r:

d
2U _ a(a+\)A b(b + \)B

dr2 ~
ro+2 r6+2

UW"«J

This Iooks complicated, but for the particular value r = r

we can reduce it to one term with the help of Eq. (10-40):

(d2V\ = a+ 1 bB _ 6(AJ+ \)B

Therefore,

This still looks rather forbidding, but if you compare Eq. (10-44)
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with Eq. (10-41) you will see that the equation for the dissociation

energy D contains a very similar combination of factors, and

taking D as known we can greatly simplify our statement of the

value of k, as follows. From Eq. (10-41) we have

(a - b)B

ro"
= aD

Substituting this result in Eq. (10-44) we find

k = abD

ro2
(10-45a)

Beyond this point we cannot go, even with a knowledge of

D and r , without assigning a value to the product ab which can

be taken to play the role of a single adjustable parameter, so that

we content oursclves with a final semiempirical equation:

k = C-
r 2

(10-45b)

where C is an empirical constant (=ab) greater than unity.

Fig. 10-20 Empirical potential-energy diagram for the

molecule HCI, based on the Morse potential, with ener-

gies expressed in wave numbers (cm~ ').
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Actually a quite different analytic form of the potential

function finds favor with spectroscopists. It is known as the

Morse potential (after P. M. Morse). It has the same general

features as the one we have used (see Fig. 10-20) but is based on a

difference of exponentials rather than of simple powers of r.

Like the one we have used, it has adjustable constants that can be

deduced from spectroscopic data. Indeed, once the theory of

molecular vibrations has been set up, one uses observations to

feed back the numerical values into the theoretical formulas.

It is a two-way traffic, in other words. Notice the unfamiliar

units (cm
-1

) on the ordinate of Fig. 10-20; we shall be coming

back to them shortly.

The molecular vibrations

The period of vibration of a diatomic molecule with atoms of

masses /«i and m 2 is given by combining Eqs. (10-36) and

(10-45b):

(&)'T=2xr (-£-) (10-46)

where/i = reduced mass = m\m%l(jn\ + m 2). The frequency v,

in vibrations per second, proves to be a more interesting quantity:

-U¥T
Let us see what this equation might suggest with an actual mole-

cule. We shall take carbon monoxide (CO) for which the follow-

ing data apply:

/m( l2C) = 12amu = 2.0 X 10-2C kg

m2 (
lcO) = 16amu = 2.7 X 10

-26
kg

r « 1.1 A- 1.1 X lO-^m 1

D« lOeV = 1.6 X K)
-18^

First we have

_ _m1m3_ _ 12
x 2? x ]0

_
20kg _ j 16 x 1()

_2o
kg

/Mi +- M»2 ^o

'These values come from a tabulation of molecular constants in the

Smithsonian Physical Tables (published by the Smithsonian Institution,

Washington, D.C.)
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Therefore,

DIy. « 1.4 X 108m2/sec2

whence

j- « 1.7 X lO^C'^sec- 1

If we ignored the factor C 1' 2
, we would have

*1.7X 1013 sec-'

Since molecular vibrations are studied mainly through spectros-

copy and the measurement of wavelengths of absorbed or emitted

radiation, let us calculate the wavelength X corresponding to v:

The visible spectrum extends from about 4.5 X 10
-7 m to

7 X 10
-7

m, so the wavelength we have calculated would be well

into the infrared. That is exactly where we find the spectral lines

associated with molecular vibrations. Actually there is a funda-

mental vibrational line of CO with a wavelength of about 4.7 X
10
-6 m—about one quarter of the value we have just calculated.

We would have obtained this value by putting C" 2 = 4 in

Eq. (10-47). This value of C could correspond, for example, to

having a = 5 and b = 3 in the original expression for U(r)

[Eq. (10-38)]. This specific form of potential would result from

a short-range repulsive force varying as l/r°, and a longer-range

attractive force varying as l/r
4

. We should emphasize, however,

that our model of the potential is a very crude one and should not

be regarded as a source of precise information about intramolecu-

lar forces. Our purpose in introducing it is simply to illustrate

the general way in which vibrations about an equilibrium con-

figuration can be analyzed.

There is a feature—a vital feature—that we have ignored;

this is that molecular vibration, and the radiation associated

with it, is quantized. The energy of a quantum of the radiation

is hv (where h is Planck's constant) and is provided by a transition

between two sharply defined energy states of the molecule:

hv = Ex - E2 (10-48)

We shall not go into this here, except to point out that the smallest

possible jump between successive vibrational energy levels does,
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as it happens, correspond exactly to the classical oscillator fre-

quency we have calculated. It is the basic quantum nature of the

process, as expressed in Eq. (10-48), that makes the frequency v

rather than the wavelength X the important quantity. Since,

however, spectroscopists measure wavelengths in the first instance,

and since v is inversely proportional to X, there is a custom of

giving results in terms of X
- 1

simply. To convert this to an equiva-

lent energy measurement we must use the relation, applying

to any photon, that

E = hv = hc\~ l

This scheme of units has been extended still further, and used

in spectroscopy as a measure of energies generally, whether or

not photon emission is involved. For example, in Fig. 10-20,

the dissociation energy D of HC1 is given as

D = 36,300 cm- 1 = 3.63 X 106 m" 1

Using the above relation, and substituting h

J-sec, we have in this case

D = (6.62 X 10" 34
)(3 X 108)(3.63 X 10°)

= 7.2 X 10-"J
= 4.5 eV (approx.)

6.62 X 10- 34

PROBLEMS

10—/ A particle of mass m, at rest at t = 0, is subjected to a force

F whose value at / = is Fq and which decreases linearly with time,

becoming zero at t = T. What is the kinetic energy of the particle

at t = r?

10-2 An object of mass 5 kg is acted on by a force that varies with

the position of the object as shown. If the object starts out from rest

at the point x = 0, what is its speed (a) at x = 25 m, and (b) at

x = 50 m?
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10-3 (a) A particle of mass m, initially at rest, is acted upon by a

force F which increases linearly with time: F = Cl. Deduce the

relationship between F and the particle's position x, and graph your

result.

(b) How is the graph of F versus x altered if the particle has

initial velocity uo?

10-4 (a) Since antiquity man has made use of the "mechanical

advantage" of simple machines, defined as the ratio of the load that

is to be raised to the applied force that can raise it. By analyzing the

work-energy relation dW = F • t/s, and appealing to conservation of

energy, give a reasoned definition of "mechanical advantage."

(b) In terms of your definition, calculate the particular "me-

chanical advantage" offered by each of the devices shown.

Radius b

10-5 (a) The Stanford linear accelerator ("SLAC") delivers energy

to electrons at the rate of approximately 200 IceV/ft. How does this

compare to the energy per unit length imparted to electrons by a

cathode-ray tube? By a television tube?

(b) The effects of relativity are extremely pronounced in this

examplc (after 2 miles of travel, the electrons in SLAC attain a velocity

that is within 10
_7% that of light). How far would the electrons

travel in attaining the speed of light if their kinetic energy were given

by the classical value KE = £mo2
?

10-6 A railroad car is loaded with 20 tons of coal in a time of 2 sec

while it travels through a distance of 10 m beneath a hopper from

which the coal is dischargcd.
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(a) What average extra force must be applied to the car during

this loading process to keep it moving at constant speed?

(b) How much work does this force perform?

(c) What is the increase in kinetic energy of the coal?

(d) Explain the discrepancy between (b) and (c).

10-7 A car is being driven along a straight road at constant speed v.

A passenger in the car hurls a ball straight ahead so that it leaves

his hand with a speed u relatiue to him.

(a) What is the gain of energy of the ball as measured in the

reference frame of the car? Of the road?

(b) Relate the answers in (a) to the work done by the passenger

and by the car. Satisfy yourself that you understand exactly what

forces are acting on what objects, over what distances.

10-8 A common device for measuring the power output of an engine

at a given rate of revolution is known as an absorption dynamometer.

A small friction brake, called a Prony brake, is clamped to the output

shaft of the engine (as shown), allowing the shaft to rotate, and is

held in position by a spring scale a known distance R away.

(a) Derive an expression for the horsepower of the engine in

terms of the quantities R, F (the force recordcd at the spring scale),

and 03 (the angular velocity of the shaft).

(b) You will recognize the product of the force F times its lever

arm R as the torque exerted by the engine. Does your relation between

torque and horsepower agree with the data published for automobile

engines? Explain why there may be discrepancies.

10-9 An electric pump is used to empty a flooded basemcnt which

measures 30 by 20 ft and is 15 ft high. In a rainstorm, the basement

collected water to a depth of 4 ft.

(a) Find the work necessary to pump the water out to ground

level.

(b) Supposing that the pump was driven by a 1-hp motor with

a 50% efficiency, how Iong did the operation take?

(c) If the depth of basement below ground werc 50 ft instead

of 15 ft, how much work would be required of the pump, again for

a 4-ft flood?
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10-10 (a) Look up the current world records for shot put, discus,

and javelin. The masses of these objects are 7.15, 2.0, and 0.8 kg,

respectively. Ignoring air resistance, calculate the minimum possible

kinetic energy imparted to each of these objects to achieve these

record throws.

(b) What force, exertcd over a distance of 2 m, would be re-

quired to impart these energies?

(c) Do you think that the answers imply that air resistance

imposes a serious limitation in any of these events?

10-11 A perverse traveler walks down an ascending escalator, so as

to remain always at the same vertical level. Does the motor driving

the escalator have to do more work than if the man were not there?

Analyze the dynamics of this situation as fully as you can.

10-12 The Great Pyramid of Gizeh when first erected (it has since

lost a certain amount of its outermost layer) was about 150 m high

and had a square base of edge length 230 m. It is effectively a solid

block of stone of density about 2500 kg/m 3
.

(a) What is the total gravitational potential energy of the

pyramid, taking as zero the potential energy of the stone at ground

level?

(b) Assume that a slave employed in the construction of the

pyramid had a food intake of about 1500Cal/day and that about

10% of this energy was available as useful work. How many man-days

would have been required, at a minimum, to construct the pyramid?

(The Greek historian Herodotus reported that the job involved

100,000 men and took 20 years. If so, it was not very efficient.)

10-13 It is claimed that a rocket would rise to a greater height if,

instead of being ignited at ground level (A), it were ignited at a lower

level (B) after it had been allowed to slide from rest down a friction-

less chute—see the figure. To analyze this claim, consider a simplified

model in which the body of the rocket is represented by a mass M,

the fuel is represented by a mass m, and the chemical energy released

in the burning of the fuel is represented by a compressed spring be-

tween M and m which stores a definite amount of potential energy, U,

sufficient to eject m suddenly with a velocity V relative to M. (This
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corresponds to instantaneous burning and ejection of all the fuel

—

i.e., an explosion.) Then proceed as follows:

(a) Assuming a value of g independent of height, calculate

how high the rocket would rise if fired directly upward from rest at A.

(b) Let B be at a distance h vertically lower than A, and suppose

that the rocket is fired at B after sliding down the frictionless chute.

What is the velocity of the rocket at B just before the spring is re-

leased? just after the spring is released?

(c) To what height above A will the rocket rise now? Is this

higher than the earlier case? By how much?

(d) Remembering energy conservation, can you answer a

skeptic who claimed that someone had been cheated of some energy?

(e) If you are ambitious, consider a more realistic case in which

the ejection of the fuel is spread out over some appreciable time.

Assume a constant rate of ejection during this time.

10-14 A neutral hydrogen atom falls from rest through 100 m in

vacuum. What is the order of magnitude of its kinetic energy in

electron oolts at the bottom? (1 eV = 1.6 X 10-19 J. Avogadro's

number = 6 X 1023 .)

10-15 A spring exerts a restoring force given by

F(x) = -kiX- k2x*

where x is the deviation from its unstretched length. The spring rests

on a frictionless surface, and a frictionless block of mass m and initial

velocity v hits a spike on the end of the spring and sticks (see the

figure). How far does the mass travel, after being impaled, before it

comes to rest? (Assume that the mass of the spring is negligible.)

10-16 A particle moves along the x axis. Its potential energy as a

function of position is as shown in the figure. Make a careful freehand

sketch of the force F(x) as a function of x for this potential-energy

curve. Indicate on your graph significant features and relationships.
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/0-77 A uniform rope of mass M and length L is draped symmet-

rically ovcr a frictionless horizontal peg of radius R. It is thcn dis-

turbed slightly and begins to slide off the peg. Find the speed of the

rope at the instant it leaves the peg completely.

10-18 Two masses are connected by a massless spring as shown.

(a) Find the minimum downward force that must be exerted

on m\ such that the entire assembly will barely leave the table when

this force is suddenly removed.

(b) Consider this problem in the time-reversed situation: Let

the assembly bc supported abovc the table by supports attached tonil.

Lower the system until m z barely touches the table and then release

the supports. How far will m\ drop bcfore coming to a stop? Does

knowledge of this distance help you solve the original problem?

(c) Now that you have the answer, check it against your in-

tuilion by (1) letting mz be zero and (2) letting mi be zero. Espccially

in the second case, does the theoretical answer agree with your common

sense? If not, discuss possible sources of error.

10-19 A particle moves in a region where the potential energy is

given by

U(x) = 3x 2 - x 3 (x in m, U in J)

(a) Sketch a freehand graph of the potential for both positive

and negative values of x.

(b) What is the maximum value of the total mechanical energy

such that oscillatory motion is possible?

(c) In what range(s) of values of x is the force on the particle

in the positive x direetion ?

10-20 A highly elastic ball (e.g., a "Superball") is released from rest

a distance // above the ground and bounces up and down. With each

bounce a fraelion /of its kinetic energy just before the bounce is lost.

Estimate the length of time the ball will continue to bounce if h = 5 m
and / = rtf.

10-21 The elastic cord of the catapult shown in the diagram has a

total relaxed length of 2/ ; its ends are attached to fixed supports a

distance 2b apart.
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(a) Show that if the tcnsion developed in the cord is propor-

tional to the increase in its length, the component of force in the x

direction is

F» = 2kb \-}—n - -r-sr J
cos

\sin 6 sin O/

(b) Noting that the position of the stone in the catapult is

given by x = —b cot 6, derive the expression for the work done in

moving a distance dx. Then integrate this expression between do and 9

to find the total work done in extending the catapult and compare

with the result that is obtainable directly by considering the energy

stored in the strctched cord (p. 392). (After carrying out the calculation

in the way prescribed above, you will better appreciate the advantages

that may come from the use of energy conservation instead of a work

integral that involves the force explicitly.)

10-22 A perfectly rigid ball of mass M and radius r is dropped upon

a deformable floor which exerts a force proportional to the distance

of deformation, F = ky.

(a) Make a graph of the potential energy of the ball as a func-

tion of height y. (Take y = as the undisturbed floor level.)

(b) What is the equilibrium position of the center of the ball

when the ball is simply resting on the floor? (Note that this corre-

sponds to the minimum of the potential-energy curve.)

(c) By how much is the period of M increased over its period

of bouncing on a perfectly rigid floor?

10-23 A particle of mass m = 2 kg on a frictionless table is at rest

at time f = at position x = 0. A force of magnitude Fx = 4 sin(ir/)

newtons acts on the particle from / = to t = 2 sec.

(a) Plot the resulting acceleration ax, velocity o„ and position

x as functions of t in this period.

(b) What is the total work done by the force during the period

t = Otot = 1 sec?

10-24 A spring of negligible mass exerts a restoring force given by

F(x) = -kix + k2x2

(a) Calculate the potential energy stored in the spring for a

displacement x. Take U = at x = 0.

(b) It is found that the stored energy for x = —b is twice the

stored energy for x = +b. What is ki in terms of Ari and bt

(c) Sketch the potential-energy diagram for the spring as defined

in (b).

(d) The spring lies on a smooth horizontal surface, with one

end fixed. A mass m is attached to the other end and sets out at x =
in the positive x direction with kinetic energy equal to k ib'

2
/2. How
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fast is it moving at x = +6?
(e) What are the values of x at the extreme ends of (he range

of oscillation? [Use your graph from part (c) for this.]

10-25 An object of mass m, moving from the region of negative x,

arrives at the point x = with speed vo. For x > it experiences a

force given by

F(x) = -ax 2

How far along the +x axis does it get?

10-26 The potential energy of a particle of mass m as a function of

its position along the x axis is as shown. (The discontinuous jumps in

the value of U are not physically realistic but may be assumed to

approximate a real situation.) Calculate the period of one complete

oscillation if the particle has a total mechanical energy E equal to

3l/o/2.

2t/„—

i

U

10-27 Consider an object of mass m constrained to travel on the x axis

(perhaps by a frictionless guide wire or frictionless tracks), atlached

to a spring of relaxed length /o and spring constant k which has its

other end fixed at x = 0, y / (see the figure).

(a) Show that the force exerted on m in the x direction is

~-kx
[
l -(l+ $)

(b) For small displacements (x« /o), show that the force is

proportional to x8 and hence

U{x) ~ Ax* (x« /o)

What is A in terms of the above constants?

(c) The period of a simple harmonic oscillator is independent

of its amplitude. How do you think the period of oscillation of the

above motion will depend on the amplitude? (An energy diagram

may be helpful.)

10-28 Consider a particle of mass m moving along the x axis in a
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force field for which the potenlial energy of the particle is given by

U = Ax2 + Bx* (A > 0, B > 0). Draw the potential-energy curve

and, arguing from the graph, determine something about the de-

pendence of the period of oscillation T upon the amplitude xo- Show

that, for amplitudes sufficiently small so that Bx A
is always very small

compared to Axi
, the approximate dependence of period upon ampli-

tude is given by

,_ A(i-g„)

10-29 A particle of mass m and energy E is bouncing back and forth

between vertical walls as shown, i.e., over a region where U = 0.

The potential energy is slightly changed by introducing a tiny rec-

tangular hump of height AU (« E) and width Ax. Show that the

period of oscillation is changed by approximately (m/2£3)
1/2(Ai/AAr).

[It is worth noting that the effect of the small irregularity in potential

energy depends simply on the product of AU and Ax, not on the

individual values of these quantities. This is typical of such small

disturbing effects—known technically as perturbations.]

U t
-

U =

10-30 Two blocks of masses m and 2m rest on a frictionless horizontal

table. They are connected by a spring of negligible mass, equilibrium

length L, and spring constant k. By means of a massless thread

connecting the blocks the spring is held compressed at a length L/2.

The whole system is moving with speed y in a direction perpendicular

to the length of the spring. The thread is then burned. In terms of m,

L, k, and o find

(a) The total mechanical energy of the system.

(b) The speed of the center of mass.

(c) The maximum relative speed of the two blocks.

(d) The period of vibration of the system.

How do the quantities of parts (a) through (d) change if the initial

velocity c is along, rather than perpendicular to, the length of the

spring?

10-31 The mutual potential energy of a Li + ion and an I
-

ion as a

function of their separation r is expressed fairly well by the equation
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£/(,) = __ + __

where the first term arises from the Coulomb interaction, and the

values of its constants in MKS units are

K = 9 X 10
9 N-m2/C 2

, e = 1.6 X KT 19 C

The equilibrium distance ro between the centers of these ions in the

Lil molecule is about 2.4 A. On the basis of this information,

(a) How much work (in eV) must be done to tear these ions

completely away from each other?

(b) Taking the I
-

ion to be fixed (because it is so massive),

what is the frequency v (i n Hz) of the Li+ ion in vibrations of very

small amplitude? (Calculate the effective spring constant k as the

value of d2 U/dr2
at r = ro—see p. 407. Take the mass of the Li +

as 10-26 kg.)

10-32 (a) If in addition to the van der Waals attractive force, which

varies as r
-7

, two identical atoms of mass M experience a repulsive

force proportional to r
-

' with / > 7, show that

"W-7T+I <" >6 >

and graph your result versus r.

(b) Calculate the equilibrium separation ro in this molecule in

terms of the constants by requiring

dU(r)

dr
=

(c) The dissociation energy D of the molecule should be equal to

— t/(r ). What is its value in terms of A, n, and r ?

(d) Calculate the frequency of small vibrations of the molecule

about the equilibrium separation r . Show that it is given by the mass

M, the constant n, the equilibrium separation, and the dissociation

energy of the molecule, as follows:

„ \2nD

10-33 The potential energy of an ion in a crystal lattice of alternatcly

charged ions may be written

where A, B, and n are constants, e is the elementary charge, and r is

the distance between closest neighbors in the lattice, called the lattice

constant. This potential arises from the l/r 2 force of electrostatic
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attraction, together with a short-range repulsive force as two adjacent

ions are brought close together.

(a) Make a graph of U(r) versus r. Making sure to identify r

correctly, what can you say about the stability of the crystal structure?

(b) Calculate the lattice constant ro in terms of A, B, e, and n,

from the equilibrium condition

dU(r)

dr

(This defines the inter-ionic distance for which the energy of the lattice

as a whole is minimized.)

(c) Show that the binding energy per mole of molecules is

u = —NolKro) No = Avogadro's number

~6 X 1023 mole -1

Using the result of part (b), determine u in terms of r .

(d) For NaCl crystal, the equilibrium lattice spacing ro is

2.8 A, and the exponent n is about 10. The constant A is equal to

1.7 (dimensionless) if r is expressed in centimeters and e is given in

esu (e = 4.8 X 10
-10

esu). Using these values, calculate a theoretical

value for u and compare with the experimental value of 183 kcal/mole.
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A technique succeeds in mathematical physics, not by a

clever trick, or a happy accident, but because it expresses

some aspect ofa physical truth.

o. G. sutton, Mathematics in Action (1954)



11

Conservative forces and

motion in space

EXTENDING THE CONCEPT OF CONSERVATIVE FORCES

throughout chapter 10 we consistently applied one important

simplification or restriction, by confining our discussion to

motion in one dimension only. This clearly prevented us from

studying some of the most interesting and important problems

i n dynamics. In the course of the present chapter we shall free

ourselves of this restriction and in the process show the energy

method of analysis to still greater advantage.

To begin the discussion, let us consider a problem in motion

under gravity near the earth's surface. Suppose we have two

very smooth tubes connecting two points, A and B, at different

levels in the same vertical plane (Fig. 11-1). A small particle,

placed in either of these tubes and released from rest at A, slides

down and emerges at B. If the tubes are effectively frictionless,

the forces exerted by them on the particle are always at right

angles to the particle's motion. Hence these forces do no work

Path2

Fig. 11-1 Alternatice paths between Path 1

two gtoen pointsfor motion in a

vertical plane.
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on the particle ; whatever changes may occur in its kinetic energy

cannot be ascribed to them. What these forces do achieve is to

compel the particle to follow a particular path so that it emerges

at B traveling in a designated direction. If it follows path 1, it

emerges with a velocity v t as shown; if it follows path 2, it

emerges with a velocity v 2 . Of course the energy of the particle

does change as it moves along either tube; the gravitational

force is doing work on it. But we observe a very interesting fact:

Although the directions of the velocities Vi and v 2 are quite

different, their magnitudes are the same. The kinetic energy

given to the particle by the gravitational force is the same for all

paths beginning at A and ending at B.

How does this come about? It is not difhcult to see. As

the particle travels through some clement of displacement ds the

work dW done on it is given by

dW = |F„| \ds\ cos 6 = F„ • ds

where B is the angle between the directions of F„ and ds. But

the force F„ is a constant force (i.e., the same at any position)

with the following components:

Fx = F„= -mg

(we take the y axis as positive upward). The element of dis-

placement has components (dx, dy). Now from the basic defini-

tion of dW as |F| \ds\ cos 6 we have

dW = Fx dx + F„ dy

To see this, consider any two vectors A and B in the xy plane,

making angles a and /3, respectively, with the x axis (Fig. 11-2).

Then if the angle between them is 6 we have, by a Standard

trigonometric theorem, that

cos 6 = cos(/3 — a) = cos /3 cos a + sin/3sina

The scalar product 5 (= A • B) is thus given by

S = |A| |B| (cos /3 cos a + sin/3sina)

Fig. 11-2 Basis for obtainiiiR the scalar product A • B
in terms ofindividual components, as may be convenient

in calculaling the work F • ds in an arbilrary displace-

ment.
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But

|A| cosa = A x |A| sina = A„

and similarly for the components of B. Thus we have

A • B = AXBX + AuBy (two dimensions only)

More generally, if the vectors also have nonzero z components,

A • B = A XBX + A yBu + A,B,

Thus in general we shall have

dW = F • ds = Fx dx + Fydy + F, dz (11-1)

In the present two-dimensional problem, with Fx = and

Fy = —mg, this gives us

dW = —mgdy

Hence for a change of vertical coordinate from y\ to y 2, regard-

less of the change of x coordinate or of the particular path taken,

we have a change of kinetic energy given by

— /.K2 -Kl = JdW= -mg(y2 - yi ) (11-2)

which exactly reproduces the result that we derived in Chapter 10

for purely vertical motion and which permits us again to define

a gravitational potential energy U(y) equal to mgy.

This result makes for a great extension of our energy methods

to situations wherc, in addition to gravity, we have so-called

"forces of constraint," which control the path of an object but,

because they act always at right angles to its motion, do nothing

to change its energy. Let us consider some specific examples.

ACCELERATION OF TWO CONNECTED MASSES

We shall begin with a problem which, if tacklcd by the dircct

application of Newton's laws, requires us to write a statement

of F = wa for each of two objects separately. The problem is to

find the magnitude of the acceleration of two connected masses,

mi and m 2 , moving on smooth planes as shown in Fig. 11-3.

The accelerations of the masses are different vectors, a! and a2 ,
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Fig. 11-3 Motion ofiwo coimected

masses—a simple example of the use

of energy-conseruation methods.

even though they have the same magnitude a. Thus a single

statement of F = ma will not suffice. Using the scalar quantity

energy, however, we can exploit the fact that the magnitudes

of the displacements and their time derivatives are common to

both masses. Thus we have |vi| = [v2 |
= v, so that the total

kinetic energy of the system is given simply by

K= J(mi +m2)v
2

and its change in a time dt is given by

dK = («u + mi)odv

= {m\ + mi)oadt

Now u dt is the distance moved by each mass parallel to the

surface on which it rides, and for m 2 the distance v dt down the

slope means a change dy in vertical coordinate equal to —v dt sin d

(y positive upward), The associated change dU in gravitational

potential energy is thus

dU = -m2gvdtsin6

But, given conservation of total mechanical energy, assuming

friction to be absent, we have

dK + dU -

Thus

(mi + m£)va dt — m2go dt sin 6 =

whence the familiar result

rri2

m\ + /712

gsintf

OBJECT MOVING IN A VERTICAL CIRCLE

Suppose that a particle P of mass m is attached to one end

of a rod of negligible mass and length /, the other end of which
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/

I

I

\

\
\
sFig. 11-4 Motion ofa simple

pendulum. ^-
^

'r"~ a y = O

is pivoted freely at a fixed center C. Let us take an origin O at

the normal resting position of the object (Fig. 1 1-4). Then the

position of the object is conveniently described in terms of the

single angular coordinate B, or, if we prefer, by the displacement

5 along the circular arc of its path from O (assuming the rod to

be of invariable length).

'

If the angular displacement is B, the y coordinate of the

object is given by

y = /(1 - cos 0)

and hence its potential energy by

1/(0) = mgl(\ - cos 8) (11-3)

Using our basic energy-conservation statement we have

Ki + t/i = K2 + U2

for any two points on the path. Substituting for K in terms of m
and v and for U by Eq. (11-3), we have

\mui 2 + mgl(l - cosfli) = \mv2
2 + mgl(\ - cos 02)

Therefore,

V2 2 = oi 2 + 2gl(cosB2 - cos 0,) (11-4)

Clearly, if 82 > 6 U then v2 < V\,

If the object were started out at the lowest point with a

velocity v , we should have

In a sense, therefore, the motion is one-dimensional, even though the one

dimension is not a straight line. But we shall not stress this aspect of such a

system at this point.
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02* = P0* - 2^/(1 -COS02)

With the help of this result we can answer such questions as:

What initial velocity is needed for the object to reach the top

of the circle? and: What position does it reach if started out with

less than this velocity?

Notice the great advantage that the energy method has

over the direct use of F = ma in this problem. The velocity of

the object is changing in both magnitude and direction, it has

radial and transverse components of acceleration, there is an

unknown push or puli on the object from the rod—yet none of

these things need be considered in calculating the speed v at any

given (or y). Once v has been found by Eq. (1 1^) [or perhaps

by going back to Eq. (11-2) if that is more convenient], then

one can proceed to deduce the acceleration components and

other things.

There may be subtleties in such problems, however. Sup-

pose, for example, that instead of a more or less rigid rod we had

a string to constrain the object. This is now a constraint that

works only one way; it can puli radially inward but it cannot

push radially outward. One may have a situation in which the

velocity is not great enough to take the object to the top of the

Fig. Jl-5 (a) Path of the bob of a simple pendulum

launched with insufficient velocity to maintain a tension

in the string Up to = w. (b) Stroboscopie photograph of

a batifalling away from a circular channel at the point

where the contact force becomes zero. (Photograph

by Jon Rosenfeld, Edueation Research Cenler, M.l.T.)

(a) (b)
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circle (although it might be possible with a rigid rod); the object

will fail away in a parabolic path [Fig. 1 l-5(a)]. The breakaway

point is reached when the tension in the string just falls to zero

and the component of F„ along the radius of the circle is just

equal to the mass m times the requisite centripetal acceleration

v2/L An exactly similar situation can arise if an object moves

along a circular track made of grooved metal, and Fig. ll-5(b)

shows a stroboscopic photograph of an object falling away from

such a track at the point where the normal reaction supplied

by the track has fallen to zero. The angular position, m , at

which this occurs [cf . Fig. 1 l-5(a)] is defined by a statement of

Newton's law

:

< rmg cos(tt - <L) =
'

2
nv

1 (
assumes

v
<e,

where

u* = vo2 - 2*/(l - cos 0„)

This leads to the result

COS0m =
2 oo

2

3 3gl

We can thus deduce that a particle that starts out from O with

o less than VJgl will fail to reach the top of the circle, whereas

with a rigid rod to support it an initial speed of 2\/gl would

suffice. Notice, therefore, that the energy-conservation principle

should not be used blindly; one must always be on the alert as

to whether Newton's law can be satisfied at every stage with the

particular constraining forces available.

AN EXPERIMENT BY GALILEO

It was Galileo, in his Dialogues Concerning Two New Sciences

(1638), who first clearly stated the result that the speed attained

by an object descending under gravity depends only on the

vertical distance traveled. He applied this result to the uniformly

accelerated motion of an object down smooth plancs of different

slopes, as indicated in Fig. 1 l-6(a), which is based on a diagram

from Galileo's own book. He could not, however, directly

demonstrate the corrcctness of this proposition using inclined

planes as such; instead, he performed a very clever experiment
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Fig. 11-6 (a) Speed atlained by a block sliding down a

frictionless plane depends only on the verlica! disiance

traveled, not on the slope. (b) Galileo's pendulum ex-

periment to demonstrate the properties ofmotion on

idealized inclined planes.

with a mass swinging in a circular arc, and applied his remarkable

scientific insight to what he observed in this situation. Here is

an account of the experiment, taken with only minor changes

of notation from Galileo's own description; the clarity and

modernity of his presentation is quite striking:

Imagine this page to represent a vertical wali, with a nail driven

into it; and from the nail let there be suspended a lead bullet

of one or two ounces by means of a fine vertical thread, OB, say

from four to six feet long [see Fig. ll-6(b), based on Galileo's

own sketch]. On this wali draw a horizontal line AA', at right-

angles to the vertical thread OB (which hangs about two finger-

breadths in front of the wali). Now bring the thread OB with

the attached ball into position OA and set it free; first it will be

observed to descend along the arc ABA' . . . till it almost reaches

the horizontal AA', a slight shortage being caused by the re-

sistance of the air and the string. From this we may rightly

infer that the ball in its dcscent through the arc AB acquired a

momentum on reaching B which was just sufficient to carry it

through a similar arc BA' to the same height.

Having repeated this cxperiment many times, let us now

drive a nail into the wali close to the perpendicular OB, say at

N, so that it projects out some five or six finger-breadths in

order that the thread, again carrying the bullet through the arc

AB, may strike upon the nail N when the bullet reaches B, and

thus compel it to traverse the arc BC, described about N as
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center . . . Now, gentlemen, you will observe with pleasure that

thc ball swings to the point C in the horizontal line AA', and

you would see the same thing happen if the obstacle were placed

at some lower point. . .
.

'

In this way Galileo convinced himself that the speed ac-

quired by an object in descending any vertical distance is suf-

ficient to carry it up through an equal vertical distance by a

different path. He then added to this the reversibility of the

motion along any given arc and could reach his main conclusion

that the speed attained by his suspended object must be the same

whether it descends along the arc AB or the arc CB, or any other

arc beginning on the level A A' and with its lowest point at B.

Finally, he could visualize such motion as taking place on a

continuous succession of inclined planes of different slopes, and

so formulate his proposition about uniformly accelerated motion

along different inclines. This was an enormously important

result, because he was then able to make inferences about free

fail under gravity by observing the motion of an object rolling

down an inclined plane with a very gentle slope. This per-

mitted him to stretch thc time scale of the whole phenomenon

(a = gsin 6!) and make quantitative measurements of distance

against time, using as his clock a watcr-filled container with a

hole in it that he could open and close with his finger—a bril-

liantly simple device.

MASS ON A PARABOLIC TRACK

Suppose we bend a piece of very smooth metal track so that it

has the shape of a parabola curving symmetrically upward with

its vertex at point O (Fig. 1 1-7). Let the equation of the parabola

be

y = JCx2 (11-5)

where C is a constant.

Imagine an object of mass m, free to slide along the track

with negligible friction. Its gravitational potential energy, re-

ferred to an arbitrary zero at O, is given by

U(y) = mgy

Quoted from the English translation of Dialogues Concerning Two New
Sciences (H. Crcw and A. de Salvio, translators), Dover l'ublications, New
York.
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Fig. 11-7 Motion ofa

particle on a parabolic

track in a vertical plane.

which, by Eq. (1 1-5), we can alternatively write as a function of x:

U(x) = \mgCx2 = \kx 2 (11-6)

where k is a constant of the same dimensions (newtons per meter)

as a spring constant. At any point {x, y) the mass has a speed v,

necessarily along the track, and by conservation of energy we

have

\mv2 + U = E (= const.)

Denoting the x and y components of v by vx and u„, and using

Eq. (11-6), we have

%mvx
2 + Imv,* + ikx 2 = E (11-7)

This has a marked resemblance to the energy-conservation

equation of the linear harmonic oscillator. Only the presence

of the term \moy
2
spoils things. This suggests to us that if we

had a situation in which vy were very small compared to vx , the

motion of the mass on this track would closely approximate

that of a harmonic oscillator. What do we need to achieve this?

Common sense tells us more or less immediately that if the track

is only very slightly curved, so that y « x at each point, the

vertical motion is very small compared to the horizontal and

approximately harmonic motion will occur.

Such motion can be achieved and beautifully demonstrated

with a "linear air track" 1
in which a metal glider rides on a

cushion of air blown up through holes in the track. Because of

the low friction, the oscillation can take place even if the curvature

is extremely small. To take an example, here is a specification

of the shape of the track in an actual demonstration (the setting

was by machine screws at 1-ft spacings; hence the lapse from

MKS):

'R. B. Runk, J. L. Slull, and O. L. Anderson, Am. J. Phys., 31, 915 (1963).
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X, ft ±1 ±2 ±3 ±4 ±5 ±6 ±7

y,in. & A A 1
4 ff & M

Taking any pair of these values, one establishes the value of the

constant C in Eq. (11-5), e.g.,

x = 4ft = 1.22 m
y - i in. = 6.35 X 10"» m

Thus

C = 2y/x2 = 8.55 X K)- 3 m" 1

What would be the cxpected period of the motion? For

mass m and "spring" constant k, we have T = 2r(m/ky 12
, and,

from Eq. (11-6), k = mgC. Therefore,

m/k = (gC)"' « 11.9sec
2

7"- 2»vTT9« 21.6 sec

The measured period was within a few tenths of a second of

this and independent of amplitude to the accuracy of the mea-

surement.

In this example (and the others of motion under gravity)

the moving object, i n its two-dimcnsional motion, really does

ride a contour that corresponds in form to the graph of U(x)

against x. These are truc two-dimensional motions; they arc

physically distinct from the onc-dimensional situations discussed

in Chapter 10. To appreciate the difference between them,

consider two quite realizable physical systems. The first one

[Fig. ll-8(a)] is a mass m attached to a horizontal spring and

resting on a smooth table. The second [Fig. ll-8(b)] is an equal

Fig. 11-8 (o) Mass

attached to a horizon-

tal spring. (b) Same

mass on a smooth

parabolic track.

(c) Arrangements (a)

and (b) can be made

to have identical varia-

tions ofpotential

energy with x, bui the

motions are different.
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mass m free to slide on a parabolic track. The strength of the

spring and the curvature of the track are adjusted so that the

systems have the same parabolic potential energy curve of U(x)

against x, as shown in Fig. ll-8(c). If projccted horizontally

from the origin with the same speed v , both masses will have

the same magnitude of velocity at any other value of x. If set

into oscillation, both systems will be periodic. But their periods

will be different. The mass on the spring will have the same

period at all amplitudes ; the other system will show a progressive

change of period with amplitude (which way do you think it

will be?). It is only in special situations, such as that with the

very slightly curved track, that the two motions become essentially

the same.

THE SIMPLE PENDULUM

In diseussing the simple pendulum, we are returning to the

problem of an object moving in a vertical circle. This time,

howevcr, we shall go into it more carefully. It is an important

type of physical system, over and above its use in eloeks, and it

is not quite so simple as its traditional name implies. The sim-

plicity is primarily in its structure—idealized as a point mass on

a massless, rigid rod.

As we saw earlier [Eq. (11-3)], the potential energy, U(6),

expressed in terms of the angle that the supporting rod makes

with the vertical, can be written in the form

U = mgl(l - cos 0) = 2mg/sin
2

I

"-
(11-8)

Ifwe plot this expression for U as a funetion of d, we get Fig. 11-9.

Fig. 11-9 Energy

diagram for a rigid

pendulum, using the

angle 6 as the coor-

dinate. The pendulum

is trapped in oseil/a-

tory motion about

6 = Oi/Eis/ess

than 2mgl.
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In Fig. 1 1-9, 6 can take all values from — oo to + cc . How-

ever, all positions of the pendulum in space are described by

values of 6 between —t and -\-k. Any value of d outside this

range corresponds to one and only one angle 6 inside the range.

The latter is obtained by adding to or subtracting from the

former a whole-number multiple of 2r.

Two kinds of motion are possible, depending on whether E
is less than or greater than 2mgl (referred to a zero of energy

defined by an object at rest at the lowest position of the pen-

dulum bob).

If the total energy is sufficiently great (e.g., as for E2 in the

figure), there are no turning points in the motion; 8 increases

(or decreases) without limit, corresponding to continucd rotation

of the pendulum rather than oscillation. The speed of the pen-

dulum bob is maximum at = (or ±2ir, ±4ir, etc.) and

minimum at 6 = ±tt (or ±3tt, ±5ir, etc.). It is clear from Fig.

11-9 that to produce such rotational motion the pendulum must

have a kinetic energy at least equal to 2mgl at the lowest point

of the swing.

If E < 2mgl, say E y, the motion is oscillatory and the

angle B changes from +6q to — 6q and back again (Fig. 11-9).

However, the motion is not harmonic except for sufficiently small

amplitudes. In the neighborhood of O, one can very nearly

match the potential-encrgy curve of Fig. 11-9 by a parabola

(Fig. 11-10), so that for these small amplitudes the oscillations

are just those of the linear oscillator. One way of justifying this

statement is to recall the general argument, made in Chapter 10,

that almost any symmetrical potential-energy curve can be

approximated by a parabola over some limited range of small

displacements. Another way is to note that in Eq. (1 1-8), if d

Fig. 11-10 Potential-

energy diagram ofa

simple pendulum.
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is small, one can set sin(0/2) approximately equal to 0/2, so that

we have

U(8) « Imgie1 (11-9)

A third way depends upon using the same approximation that

Newton used when he described the moon as a falling object.

Applying it to the present problem, and taking the origin at O,

the circular path is given by the equation

x2 + (l - y)
2 = /

a

(seeFig. 11-11). Therefore,

y
2 - 2ly + x2 =

y = /-(/2 -*2)" 2

= / ->('-i)
2\l/2

If x2
<5C l

2
, we can use the binomial expansion to yield the

approximate result

1 £
2 l

(11-10)

[Compare this with Eq. (11-5); you will then realize what the

constant C in that equation represents. In the actual experiment

described, the motion was like that of a simple pendulum nearly

400ftlong!]

Equation (11-10) suggests a somewhat different approxima-

tion for small oscillations of the pendulum, describing its motion

in terms of its horizontal displacement instead of its angular one.

But whatever analysis we adopt, it is clear that the period must

depend on the amplitude. We can also argue qualitatively which

way it varies. Looking at Fig. 11-10, we can say that the curve

Fig. 11-11 Geomelry ofilisplace-

ments of a simple pendulum.

l-y
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of U(6) for the pendulum describes a kind of spring that gets

"softer" at large extensions. Compared to the parabolic behavior

that would hold for an ideal spring, the restoring force is rela-

tively less at larger displacements. Thus one might guess that

the motion becomes more sluggish and hence that the period

increases. Certainly there is one extreme case that leaves" no

room for doubt. If the energy is such that the pendulum just

exactly arrives at n = jr, there is no restoring force at all; the

pendulum would sit upside down indefinitely—although in

practice this is of course an unstable equilibrium. Even at

amplitudes short of this the increase of period is drastic. If you
are interested, the section after next describes the analysis of

larger-amplitude motion. But first we shall make a detailed

study of the small-angle approximation.

THE PENDULUM AS A HARMONIC OSCILLATOR

The speed of the pendulum bob at any point is equal to / dd/dt,

so that the cncrgy-conservation cquation is

'(D'
5^/

2

(^) + U{6) = E (exact)

Using the approximate expression for U(6) from Eq. (11-9), we
have

iml
2
{^) + $mgl0

2 = E (approx.)

or

(f)Tt) + ]°
2
° const - (n-u)

By now we have met this form of equation scveral times and

can identify (g/l)
1 ' 2 as being the quantity w that defines the

period of the oscillation:

-2r-*(i)'
/2

(11-12)

[Caution: It is the angular displacement itself that undergoes

a simple harmonic variation, described by the equation

0(0 = O sin(oo/ 4- v,,) (11-13)
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This can be confusing; the actual angular displaccment of the

pendulum is deseribed in terms of the sine of the purely mathe-

matical phase angle (w/ + <p ), The actual angular velocity of

the pendulum is dB/dt—not the w in (ut + <p ), which serves

merely to define the periodicity.]

The behavior of the simple pendulum as a elose approxima-

tion to a harmonic oscillator is so important that we shall com-

ment on it further. First, let us take a moment to consider the

derivation of its equation of motion by a direct application of

Newton's law. We can do this in two different ways, according

to whether we analyze the problem in terms of linear or angular

displacements.

Linear motion

We consider the horizontal foree aeting on the pendulum bob

when it is a horizontal distance x from its equilibrium position

[Fig. 1 1— 12(a)]. If the tension in the suspending string is FT ,

we have

2

m— = -Fr sin0 = -FT -.

at* I

If the vertical component of acceleration of the bob is negligibly

small, we can, however, put

Ft cos 6 « Fa
= mg

For small angles 6, cos 8 ~ 1 - d
2
/2 w I, SO that FT « mg

and the equation of horizontal motion becomes

Fig. 11-12 Basis for

analyzing the motion

ofa simple pendulum

(a) in terms ofhori-

zontal displacements,

and (b) in terms of

angular displacements.
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J2d x mgmW~~Tx

leading once again to Eq. (11-12) for the period T.

Angular motion

In this case we consider the transverse acceleration ae
(= l d2

8/dt
2
), which is produced by the component of F„ in the

direction of the tangent to the circular arc along which the pen-

dulum bob moves (see Fig. ll-12b). The magnitude of the

tension force F^ (which actually varies with time) does not enter

into this treatment of the problem. We have, simply,

rf
2

w/—- = —F„sin0 = — mg s'm 6

For small 0, sin « 9, and so we have

which leads to Eq. (1 1-13) for as a function of time. It can be

seen that the analysis in terms of the angular variables is a

"cleaner" treatment than the other, involving only the one ap-

proximation sin 9 « 9.

The isochronous behavior of the simple pendulum—the fact

that its period is almost completely independent of amplitude

over a wide range—provides a striking example of this remark-

able and unique property of systems governed by restoring

forces proportional to the displacement from equilibrium. Sup-

pose we had two identical pendulums, each with a string of

length 30 ft, suspended from a high support. Each would have

a period of about 6 sec. And if we set one swinging with an

amplitude of only an inch or two, so that its motion was almost

imperceptible, and set the other swinging with an amplitude of

5 ft, so that it swept through the central position at a speed of

about 5 ft/sec, the difference in their periods would be too small

to put them significantly out of step in less than a hundred swings

or so.

This same isochronous property of the pendulum was of

great and perhaps crucial help to Newton, Huygens, et al. when
they made their fundamental experiments on collision phenomena
(cf. Chapter 9). AH these experiments were done with masses

suspended from equal strings. As long as the small-amplitude
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(b)

Fig. 11-13 (a) Two pendulums ofeqnal Icngth are re-

leasedfrom arbitrary posltions al ihe same instan/,

(b) The isochronous properly of ihe pendulum ensures

that ihe collision occurs w/ien bolh masses are al Ihe

boltom politis of iheir swing.

approximation is valid, two masses released at the same instant

from arbitrary positions [Fig. ll-13(a)] will rcach thcir lowcst

points at thc same instant [Fig. ll-13(b)], so that the collision

occurs when each mass is traveling horizontally with its maximum
vclocity— thc magnitude of which is given by the equations of

simplc harmonic motion. ' Even for angular amplitudes that are

large enough to require the use of the exact equation for pm„ ,

t'Lx = 2gl{\ - cos O )

the colliding masses will reach their lowest points at almost the

same instant as long as O is less than 90°, which it would have

to be for an object attached to a string rather than to a rigid rod.

The next section briefly discusses the detailed dependence of

period on amplitude for a simple pendulum.

THE PENDULUM WITH LARGER AMPLITUDE 2

To find how the period of a simple pendulum departs from

its ideal small-amplitude value, we write the equation for con-

servation of energy in the exact form

©' + 2<oo
2
(l - cos 0) = 2coo

2
(l - cos 8 ) (11-14)

where w,,
2 = g/l and #o > s tne maximum angle of dcflcction from

the vertical.

The period of oscillation is thcn given by

7X0,,) =
wo"

dO

fs/2 J-t (co$8 - cos<?o) 1/2
(11-15)

'You can easily vcrify that the magnitude of this velocity is proportional, in

thc small-amplitude approximation, to the horizontal distance through which

a mass is initially drawn aside before bcing released. This makes analysis of

thc cxperiments very simple.

2This section may be omitted without loss of continuity.
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Fig. 11-14 Precise

measuremenls on the

period of a simple

pendulum, showing the

quadratic increase of

period wilh amplitude,

and the close approach

to isochronism ob-

tained by damping

the top endofthe

supporting wire be-

tween cycloidaljaws,

so that the free length

shortens as the ampli-

tude increases.

For small amplitudes, we of course have a period T equal to

2w/(j)o, as discussed iri the previous section. The integral of

Eq. (11-15) cannot be carried out exactly; one has to resort to

numerical methods or to a series expansion of the integrand

which gives, as a next approximation to the period, the following

result:

7tyo)« To 1 +£sin['+**>'(?)] (11-16)

If O is not too large, another acceptable form of this result, in

terms of the horizontal amplitude A (= /sin 6 ) is the formula

T(A) « To(+tf)
(11-17)

Figure 11-14 shows the results of some precision measurements

that verify Eq. (11-17).
1 The pendulum had a length of about

3 m, and the greatest amplitude used was about 0.5 m, so that

values of 6 up to about 10° (« 0.17 rad) are represented. It is

worth noting that the over-all change of T from the least to the

greatest values of d studied is less than 2 parts in 1000; the in-

dividual points are accurate to about 1 part in 10
5
, and the

validity of Eq. (11-17) is very nicely demonstrated over this

range of O - The graph also shows the results of using a special

'M. K. Smith, Am. J. Pftys., 32, 632 (1964).
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pendulum support that shortens the pendulum as 6 increases, in

such a way that the tendency for T to increase with O >s almost

completely compensated. Ideally, the support should be shaped

so that the path of the pendulum is a portion of a cycloid curve.

(Incidentally, the method of making an exactly isochronous

pendulum, through the use of a cycloidal suspension, was first

discovered by Huygens. In 1673 he published a great book, the

HoroJogium Oscillatoriwn, in which many important dynamical

results were first presented within the framework of the very

practical problems of clock design.)

UNIVERSAL GRAVITATION: A CONSERVATIVE CENTRAL FORCE

The problems of energy conservation that we have discussed so

far have involved only the familiar force of gravity near the

earth's surface—a force which, as experienced by any given

object, has effectively the same magnitude and the same direction

in a given locality, regardless of horizontal or vertical displace-

ments (within wide limits).
1

But, as we know, the basic gravita-

tional interaction is a force varying as the inverse square of the

distance between two particles and exerted along the line joining

their centers. It is an example of the vcry important class of

forces—central forces—which are purcly radial with respect to a

given point, the "center of force". It has the further property

of being sphcrically symmetric; that is, the magnitude of the

force depends only on the radial distance from the center of force,

and not on the direction. We shall show that all such spherically

symmetric central forces are conservative, and shall then con-

sider the special features of the l/r
2
force that holds for gravita-

tion and electrostaties.

If a partiele is exposed to a central force, the force veetor F

aeting on it has only one component, FT . If the force is also

spherically symmetric, then Fr can be written as a funetion of r

only:

Fr =/(r) (11-18)

We shall prove that any such sphcrically symmetric central force

is conservative by showing that the work done by the force on a

•Recall, howcvcr, that small local variations are in Tacl detectable by sensitive

gravity survey instruments, as deseribed in Chapter 8.

442 Conservative forces and motion in space



__M—_______ ___)

(a)

7%. 77-75 (a) Diagram for eonsideration ofpotential-

energy changes in a Central force field. (b) Analysis

of an arbitrary paih into radial elements along which

work is done, and transverse elements along which no

work is done. (c) Closed path in a conservative central

force field.

test particle, as the latter changes its position from a point A to

another point B [Fig. II-I5(a)], does not depend on the par-

ticular path connecting A and 73, but only on these end points.

If this result holds, then it will be true that the particle, if it went

from A to B by this path, and returned from B to A by any other

path, would have no net work done on it by the central force

and would (if no work were done on it by other forces) return

to A with the same kinetic energy that it had to start with. This

then corresponds exactly to the conservative property as defined

for one-dimensional motions.

Let the center of force be at O [Fig. ll-15(a)], and consider

the work done by the central force F on the test particle as it

undergoes a displacement ds along the path as shown. This

work is given by

dW = F • ds = F ds cos a (11-19)

where a is the angle between the direction of F, i.e., the direction

of r, and the direction of ds. From the figure, however, we see

that

ds cos a = dr

where dr is the change of distance from O, resulting from the

displacement ds. Inserting this value of ds cos a into Eq. (1 1-19),

we have

dW = Fdr
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where the magnitude of the force [F = /(/)] depends only on r

as indicated in Eq. (1 1-18). We then have for the work done by

F on the test object as it moves from A to B,

r'b

W= / f(r)dr (11-20)
•> 'A

Because this integral has a value that depends only on its limits

and not on the path, we can conclude that the spherically sym-

metric central force is conservative. This result can be arrived

at in slightly different terms by picturing the actual path as being

built up from a succession of small steps, as shown in Fig.

ll-15(b). One component of each step is motion along an arc

at constant r, so that the force is perpendicular to the displace-

ment and the contribution to W is zero, and the other component

is a purely radial displacement so that the force and the dis-

placement are in the same direction, resulting in the amount of

work F dr by the central force.

[A converse to the result we have just derived is the following

important proposition

:

A central force fleld that is also conservative must be spherically

symmetric.

To show this, suppose that a center of force exists at the point O
in Fig. ll-15(c). Imagine a closed path ABCD, formed by very

short portions of two radial lines drawn from O, and by the two

circular arcs BC and DA. Since, by definition, the force is purely

central, it has no component perpendicular to the radial direction

from O at any point. Thus, if we imagine a particle carried

around ABCD, it cxperiences no force along BC and DA. The

condition that the force be conservative thus requires equal and

opposite amounts of work along AB and CD. Since these lines

are of equal length, the mean magnitude of the force must be

the same on each. If we imagine the lengths of these elements

of path to become arbitrarily small, we conclude that the value

of the force at a particular scalar value of r is independent of the

direction in which the vector r is drawn. The most important

sources of such spherically symmetric force fields are spherically

symmetric distributions of mass or electric charge.]

It is important to realize that a force may be conservative

without being central or spherically symmetric. For example,

the combined gravitational effcct of a pair of concentrated un-

equal masses, separated by some distance, has a complicated
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dependence on position and direction, but we know that it is

conservative because it is the superposition of two individually

conservative force fields of thc separate masses.

Given the rcsult expressed by Eq. (11-20), we can proceed

to define a potential energy U(r) for any object exposed to a

spherically symmetric central force:

r'd

= - / f (r)
J 'A

VB - Ua = -
/ f(r)dr (11-21)

If the kinetic energy of the object at points A and B has the values

KA and KB , respectivcly, then (if no work is done by other

forces) we have

Kg - Ka = W

and

Ka + UA - KB + Ub - B (11-22)

Thus we have established an energy-conservation statement for

an object moving under the action of any central force.

For an inverse-square force, we have

F(r) =
2̂

dl-23)

In such a case, therefore, Eq. (11-21) gives us

r 'n

UB - Ua C r"
2
dr

J 'A

from which we get

.

Vb ra)
Ub- Ua- Cl— -— J

(11-24)
Vb ra)

There remains only the choice of the zero of potential energy.

It is convenient to set U = for r = ao, i.e., at points infinitely

far from the source at O, since thc force vanishes at these points,

and in colloquial terms one can say that the existencc of either

particle is of no consequence to the other one under these con-

ditions. We now apply Eq. (11-24) to the case where rA = y-,

UA = 0, and the potential energy of thc test particle becomcs

Ub = C/rji—or, if we drop the now redundant subscript B,

there follows
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V(r) = -
f

(11-25)

for the potential energy of a test particle as a function of its

position.

Equation (11-25) is valid for either an attractive or a re-

pulsive force, the constant C being negative for attractive forces

and positive for repulsive forces. In particular, for a particle of

mass m under the gravitational attraction of a point mass M
(which we shall suppose to be fixed at the origin O) we have

F(r)=-^ (.1-26)

DW--2? 01-27)

Note that these last two equations refer only to the inter-

action between two objects that can be regarded as though they

were points— i.e., their linear dimensions are small compared to

their separation. As we saw in Chapter 8, however, some of the

most interesting and important gravitational problems concern

the gravitational forces exerted by large spherical objects such

as the earth or the sun. In our earlier discussion of such prob-

lems, we saw that the basic problem is the interaction between

a point particle and a thin spherical shell of material. In Chapter

8 we presented a frontal attack on this problem, going directly

to an evaluation of an integral over all contributions to*the net

force. Now we shall approach the problem by way of a con-

sideration of potential energies, and in the process we shall see

the great value of the potential energy concept in such cal-

culations.

A GRAVITATING SPHERICAL SHELL

Suppose, as in our earlier treatment of the problem, that we have

a thin, uniform shell of matter, of radius R and mass M (Fig.

11-16). Let a particle of mass m be placed at some point P a

distance r from the center of the shell. If we deal directly in

terms of forces, then, as we saw, the force from material in the

vicinity of a point such as A must be resolved along the line OP.

In other words, a vector sum of all the force contributions is

necessary. If we deal in terms of potential energy, however, we

can cxploit its most important propcrty: Potential energy is a
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Fig. 11-16 Diagram

for considering the

gravitational potential

energy due to a cir-

cular zone ofa thin

spherical shell of

matter.

scalar guantity. We can just add up the contributions to U from

all parts of the shell. The force on m is then obtained simply

from the relation

F --™tr
dr

(11-28)

As in our direct calculation of the force, we take advantage

of the symmetry of the system by considering the zone of material

marked off on the sphere between the angles B and B + dB

(Fig. 11-16). For this zone we have

area = 2irR sin B dd

2wR 2 sm9d6
mass

4jt/?2
M

i.e.,

dM = iMsinddd

All of this material in dM is at the same distance, s, from P.

Thus the contribution that dM makes to U is given, according

toEq. (11-27), by

dU = - GmdM GMm sin 6 dB

s 2 s

The total potential energy of m is thus

... . GMm f sin 6 dB
U(r) = - (11-29)

2 J s

This integral is to be evaluated, keeping R and r constant, by
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allowing to sweep from zero to ir (s changing accordingly) so

as to include the contributions of all parts of the shell. The

calculation is made simple by the fact that, in the triangle AOP,
we have

s
2 = R2 + r

2 - 2Rrcos0

Differentiating both sides with respect to 0, remembering that R
and r are constants for the purpose of the integration in Eq.

(11-29), wehave

2*^- = 2Rrsin6
do

Thereforc,

sin 6 dd ds^

Rr

But the left-hand side of this is just the integrand of Eq. (1 1-29),

which thus becomes

U(r) = - GMm
2Rr 7»-o

ds (11-30)

Equalion (11-30) is the key result in cakulating gravitational

potenlial energies andforces due lo spherkal objecls. In evaluating

Fig. 11-17 (o) Gravi-

tational potential

energy of a point

parlicle as a function

of its distancc from

the center of a thin

splierical shell of

radius R. (b) Varia-

tion ofF with r, de-

riaedfrom (a).
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the integral of ds, however, we must distinguish two cases:

Case 1. Point P outside the shell (i.e., r > R, as in Fig.

11-16). The limits on s are defined as follows:

= giving s,„in = r — R
= 7r giving smnx = r + R

Hence

Smnx Anln = 2*1

U(j.)--2MH (point o«to<fe shell) (11-31)

Ca.se 2. Point P inside the shell (i.e., r < R). The limits

now become

8 = giving smi „ = /? - r

9 = x giving smsx = /? + r

Hence

U(r) = - ^^ (point inside shell) (11-32)

These two results are disarmingly alike. The forces derived

from them are, however, quite different. If we proceed now to

calculate the forces from Eq. (11-28), we must remember that R
(the radius of the shell) is a constant. It is only r, the distance

of the mass m from O, that can vary. Hence we have

Case 1.

Fr = j— (point outside shell) (11-33)

Case 2.

Fr = (point inside shell) (11-34)

In Fig. 11-17 we show the graphs of potential energy and

forcc as functions of the radial distance r of the test mass m from

the center of the shell. The discontinuities at r = R are easily

seen.

Once we have obtained these results, it is a simple matter

to consider a solid sphere of material.
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A GRAVITATING SPHERE

Our primary assumption is that the sphere can be regarded as

made up of a whole succession of uniform spherical shells, even

though the density may vary with radial distance from the center.

Granted this assumption of symmetry, we can at once draw

some conclusions about the gravitational force cxerted by such

a sphere, of total mass M and radius R.

Case 1. Observation point oulside the sphere (r > R). Since

each component spherical shell acts as though its whole mass

were at the center, the same can be said for the sphere as a

whole. Regardless of the way in which the density of the ma-

terial varies with radius, we have

F(r) = — (point oulside sphere) (11-35)

This is the result that we have already used in Chapter 8 in

discussing Newton's famous comparison of the gravitational

accelerations of the moon and the apple.

Case 2. Observation point inside sphere (r < R). Here we

must be more careful, but we can at once make two clear state-

ments:

a. For all the spherical shells lying oulside the observation

point, the contribution to the force is zero, by Eq. (1 1-34).

b. For all shells lying inside the radius defined by the ob-

servation point, the mass is effectively concentrated at the center,

byEq. (11-33).

To specify the force in this case, therefore, we must know

how much mass is enclosed within the sphere of radius r drawn

through the observation point.

Case l', (special) The same as case 2, but with the extra

proviso that the density of the sphere is the same for all r—the

sphere is homogeneous. In this case, we know that the fraction

of the mass contained within radius r is equal to r
3/R 3

, because

this is the ratio of the partial volume to the whole volume. Hence

the amount of mass to be considered is equal to Mr 3/R 3
, effec-

tively at the center, i.e., a distance r from the position of the test

mass. This then gives us

F^ = W r (P°'nt inside homogeneous sphere)

(11-36)
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Fig. 11-18 (a) Force

on a poinl particle as

a function of ils dis-

lancefrom the center

ofa uniform solid

sphere ofradius R.

{b) Variation of

mutual polential

energy with r, obtained

front {a) by integra-

tion. The approxi-

mately linear increase

ofU with rjusi ouiside

r = R corresponds to

gravily as observed

near the earih's sur-

face.

The combined results of Eqs. (11-35) and (11-36) for a homo-

geneous sphere are shown in Fig. ll-18(a). One can also con-

struct the graph of potential energy versus r for all values of the

distance of a particle of mass m from the center of the sphere.

This is shown in Fig. ll-18(b). For interior points (r < R) we

have

»-w"j,"
GMm
2R3

(R2 - r2)

But we already know, by putting r = R in Eq. (11-31), that

GMm
U(R) = -

Thus we get

R

(r<R) </(,)= -^(3K2-,2)

In particular, at r = 0, we have

(11-37)
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1/(0) = - 3GMm
2R

If one imagines starting out from r = 0, then, as Fig. ll-18(b)

shows, the potential energy increases parabolically with distance

up to r = R and then goes over smoothly into the continued

increase of U with r that is described by Eq. (11-31).

The variations of F(f) and U(r) for r > R in Fig. 1 1-18 hold

good, as wc have seen, for any spherically symmetrical distribu-

tion of matter; there is no requirement that the sphere should

be homogeneous. On the other hand, one must be careful to

remember that Eqs. (11-36) and (11-37), for r < R, refer only

to the special case of a sphere of the same density throughout.

Thus it does not correctly describe the variation of gravitational

force with radial distance inside such objects as the earth and

the sun, which have drastic variations of density with r (see

Fig. 11-19). This invalidates a favorite textbook cxercise: "Show

that a particle would execute simple harmonic motion in a tunnel

bored along a diameter of the earth." The practical impossibility

of making such a tunnel may, however, be considered as a far

more powerful objection.

If one is used to thinking that the potential energy of an

object of mass m, a distance h above the earth's surface, is given

Fig. 11-19 (a) Radial variation ofdensity inside the

earth. (After E. C. Bullard.) (b) Calculated variation

of density wiih radial distance inside the sun (I. Iben and

Z. Abraham, M.I.T.).
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by the formula U = mgh, it may seem hard to reconcile this

result with the result expressed by Eq. (11-31):

U(r)=-™^ (r>R)

There is really no difficulty, however, once one recognizes that

the zero of potential energy is arbitrary and that the simple

linear formula applies only to objects raised through distances

that are exceedingly small compared to the earth's radius. We
have, in fact, from the more general formula [i.e., Eq. (11-31)],

U(R + h)-U(R)=-^- +^-R + h R
GMm
R2
h

Since, however, GMm/

R

2
is the gravitational force mg exerted

on m, this gives us

U(R + h) - U(R) « mgh

By putting U(R) = as an arbitrary reference level of potential

energy, we see that U = mgh is an acceptable approximation

that applies to small displacements near the earth's surface. This

approximatcly linear increase of potential energy with distance

just outside a sphere is indicated on Fig. ll-18(b).

ESCAPE VELOCITIES

Suppose we have an object at the surface of a large gravitating

sphere, such as a planet, and we want to shoot the object off into

outer space so that it never returns. What speed must we give it?

This problem is easily considered in terms of energy conservation.

At the surface of the planet (r = R) the potential energy is given

by

U(R) = _
R̂

At r = co we have U = 0. The particle, to reach /=<», must

survive to this distance with some kinetic energy .K(oo). Thus at

launch it must have a kinetic energy K(R) defined through the

conservation equation
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Therefore,

GMm
K(R)>

R

The critical condition is reached if we take the equality in the

above statcmcnt; the object would then just reach infinity with

zero residual speed. The minimum escape speed at radius R is

thus given by

, , GMm

Therefore,

* =^ (11-38)

In calculating the escape velocity from the earth's surface, it

may be convenient to state the result of Eq. (11-38) in another

form that makes use of our knowledge that the gravitational

force on a mass m at r = Re can be set equal to the magnitude

of w times the local acceleration due to gravity, g:

GMm
~R^ =mg

Therefore,

GM

and so, from Eq. (11-38), we have

DO = VgRE)
v2 (H-39)

Putting in the familiar values g ~ 9.8 m/sec 2
, RE ~ 6.4 X

10
G m, we have

bo « 11 .2 km/sec

Notice once again the remarkable implications of energy con-

servation. For the purpose of calculating complete escape, wc

need spccify nothing about the direetion in which the eseaping

object is fired. It could be radially outward, or tangentially, or

anything in between ; the same value of vu applics to all cases

[Fig. ll-20(a)].

It is interesting that the magnitude of the escape speed v a

is exactly \/2 times as great as the orbital speed that a partiele
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Fig. 11-20 (a) The

possibility ofescape

from a gravitating

sphere depends on the

magnitude of the

velocity, not on its

direction. (b) The

escape speedfrom a

double-star system

depends on the position

ofthe starting point P.

would have if it could skim around the earth's surface in a

circular orbit of radius Rj,;.

The preceding calculation assumes that the object from

which the escape takes place is isolated from all other objects.

More complicated escape problems would arise if, for example,

we wanted to calculatc the escape velocity from the surface of

one member of a double-star system [Fig. 1 l-20(b)]. We should

then have to consider where the Iaunching point P was in relation

to the centers O t and 2 of the two stars. But still the scalar

property of potential energy makes the calculation relatively

simple. The potential energy of a mass m at P is just the straight-

forward sum of the potential energies due to the two stars sep-

arately. And again the direction of launeh for complete escape

at the critical velocity is immaterial (as long as the trajectory

misses the other star!)

A particularly important example of this last type of system

is, of course, the earth-moon combination. This is shown

schematically in Fig. 11-21 (a). If we consider a partiele of

mass m, its potential energy as a funetion of position along a

straight line joining the centers of earth and moon is as shown
by the full line in Fig. ll-21(b). Mathematically it is given by

the formula

U(r) = - GMf.iti GM.\rm
r ' D- r

(11-40)

where D is the distance between the centers of earth and moon
and r is the distance of the partiele from the center of the earth.

This potential energy is simply the sum of the separate con-

tributions from earth and moon.
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Fig. 11-21 (a) Sche-

malic diagram of the

earth-moon system.

(b) Form ofvariation

Ofthe total potential

energy of a particle

along Ihe line joining

the centers of earth

and moon.

Moon

The maximum value of U(f) occurs at the point r = r„,

where (dU/dr)rm = 0. This is clearly also the point at which

the attractive forccs due to earth and moon are equal and op-

posite, so that we can put

GMp.m CMsttn

(.D - rmy

This gives

1 + Wm/Mk) 11*

Now the value of MM/ME is about SV. so that rm w 0.90D.

This represents a point about 24,000 milcs from the moon's

center. The value of U(r) at this value of r is given, according to

Eq. (11-40), by

U(r,„) = - GMKm GMMm
0.923

GMe>»
0.9D

1.23GMEm
D

0AD

+3 1

)

If a spacecraft is to reach the moon from the earth along the
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direct line considered, it would have to surmount this potential

energy hump. If, further, this were to be done by simply coasting

after an initial rocket blast at the point of departure from the

earth's surface, the necessary minimum initial speed at the earth

would be defined by the following equation:

,
GMEm ... l.23GMBm

fwoo2 ^— = U(rm )
=

Uh D

This then gives us

2GMk ( l.23RK\

The factor 2GMe/Re «s just the square of the speed needed for

complete escape from the earth, as given by Eq. (11-39) and

evaluated numerically as I1.2km/sec. Putting RE/D ~ g\y in

the above expression for v 2
, one finds u « 11.1 km/sec. At

this minimum velocity the traveling object would just barely

surmount the potential "hill" between earth and moon and

would then fail toward the moon, reaching its surface with a

speed of about 2.3 km/sec. (You should check thesc results

for yourself.)

MORE ABOUT THE CRITERIA FOR CONSERVATIVE FORCES 1

In our discussions of forces and potential energy, we have

pointed out that the fundamental criterion for a force to be

conservative is that the net work done by the force be zero over

any closed path. As an aside we pointed out that in one-dimen-

sional problems, but only in one-dimensional problems, this

condition is automatically met if the force is a unique function

of position. We shall now give a simple example to illustrate

how, in two dimensions, this latter condition is not sufficient.

A force F(x, y) that is a unique function of x and y may never-

theless be nonconservative.

Our example is this: Suppose that a particle, at any point

in the xy plane, finds itself exposed to a force F given by

Fx = -ky

F„ = +kx

where k is a constant and x and y are the coordinates of the

'This section may be omitted without loss of continuity.
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Fig. 11-22 (a) Rectangular path in a plane. (b) Smooth tube shaped to

force a parlicle tofollow the palit shown in (a), (c) Closed path made

up oftwo different paths between llte giuen points A and B. If the

force is conservalive, the net work is zero.

particle. Such a force evidently dcpends only on the position of

the particle. Now let us calculate the work done by this force

on the particle if the latter moves counterclockwise around the

closed path shown in Fig. ll-22(a). It may well be objected.

that the particle would never follow this path under the action

of the force F and nothing else, but (as we did in our first approach

to potential energy at the beginning of Chapter 10) we can

imagine that F is exactly balanced by another force, supplied for

example by a spring, so that the object can be freely moved

around without any net work being donc. Or, alternatively, we

can imagine a very smooth pipe, as in Fig. 1 l-22(b), which com-

pels the particle to travel along the sides of a rectangle and yet

does no work on the particle because the force exerted by the

pipeis always at right angles to the particle's motion. We should

also add the proviso, in this case, that the particle has enough

kinetic energy to carry it around the path even ifFistaking energy

away from it. Now for the caleulation.

Starting at O, let the particle move along the x axis a distance

a to the point P with coordinates x = a, y = 0. The work done

by F during this motion is

W\ = / Fx dx = -ky j dx =

since y = everywhere on this portion of the closed path. Next,

the particle moves from P to Q{x = a, y = b). The work done

by F along this path is
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= / Fy dy = +ka dy = kab
Jv-0 Jo

w»
ly-0

For the path from Q to R (0, b), the work done is

W3 = / Fx dx = -kb / dx = +kab

and finally, the work W4 done as the particle moves from R
back to the origin O is zero, since x and hence Fv is zero every-

where on this path

:

W4 =

The total work done in the round trip is therefore

W = W\ + W% + Ws + Wa = Ikab *

and the force F given by Eq. (1 1-41) is not conservative, although

it depends only on position. If k were positive, the kinetic energy

of the particle would be increased by 2kab for each complete

circuit taken in this direction. On the other hand, if the particle

traveled clockwise, its kinetic energy would be decreased by this

amount each time. This may seem—and indeed is—a very

artificial example; nevertheless, forces having precisely this non-

conservative property [although not the same analytic forms as

described by Eq. (1 1-40)] play an important role in physics,

especially in electromagnetism.

There is another way of looking at the analysis of such a

situation. The physical criterion for the force to be conservative

is that it should do no net work, either positive or negative, as

the particle to which it is applied makes a complete circuit

around the path of Fig. ll-22(a) in either direction. Let us

consider a more general situation [Fig. ll-22(c)] in which a

particle travels from a point A to a point B along one path and

returns from B to A along a dirferent path (again imagine that

constraining forces, doing no work, are applied as necessary).

We shall assume that the force we are studying (i.e., not including

any constraining forces) is a function of the position of the par-

ticle only. If this force is conservative, we then have

W = j F-ds+ F-ds =

Path l P«th 2
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It follows from this that

/ F • ds = - / F cis

Path 1 Path 2

But now, if the force is a function only of position, we can inter-

change the limits of the integral on the right and reverse its sign.

Hence, if F is conservative, we must have

•B rB

Fds
'A

Path 1 Path 2Path 1 Pi

If this condition is satisfied we can put

Wab=I Fds (ll-42a)

without reference to the particular path. And if WAB is the

same for all paths from A to B, we can conclude that the force is

conservative and that the potential-energy function can be defined

through the equation

Vb -Ua--J
a

F ds (ll-42b)

In evaluating work integrals such as that in Eq. (ll-42a),

one may wish to resolve the force F into its components Fx and

F„, and resolve the element of path ds into its components dx

and dy, thus getting (for a two-dimensional problem)

W \ F,dx+ F„dy

If one uses this equation, however, one should always remember

that, basically, the integrals are defined as being taken along an

actual designated path of the particle. This might seem to be

obvious, because the force must necessarily be applied wherever

the particle is. However, there are many situations in which an

object experiences a force wherever it happens to be (gravitational

force, for example). One can then set up a purely mathematical

statement that defines a value of F for any given x and y. In

general each component of F is a function of both x and y. And

unless one already knows that the force is conservative, it is
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FIELDS 1

Fig. 11-23 Consideration of

work done dong a specified path

between two points.

essential to f'ollow the given path, as in Fig. 11-23, and not take

the simpler but perhaps unjustified course of (for example)

finding the integral of Fx from jci to x 2 along the line AC
(y — y\ = const.), followed by the integral of Fy from y>\ to y 2

along the line CB (x = x 2 = const.).

It is perhaps worth ending this discussion with the remark

that, in many situations, one may usc the concept of potential

energy even when additional nonconscrvative forces act on the

particle. For example, a satellite moving in the gravitational

field of the earth may be subject to the frictional drag of the

earth's upper atmosphere. This drag is a dissipative force, non-

conservative, and the total mechanical energy of the motion

will not be constant but will decrease as the motion proceeds.

Nevertheless, one may still properly talk of the gravitational

potential energy that the satellite possesses at any given point.

The forces that we have labeled gravitational, electric, and

magnetic are "action-at-a-distance" forces. No apparent physical

contact between interacting objects comes into play. For this

kind of interaction, the idea of a field of force is most useful.

To introduce this concept, consider the gravitational attraction

of the earth for a particle outside it. The puli of the earth depends

both on the mass of the attracted particle and on its location

relative to the centcr of the earth. This attractive force divided

by the mass of the particle being pulled depends only on the

earth and the location of the attracted object. We can therefore

assign to each point of space a vector, of magnitude equal to

This section may bc omitted without loss of continuity.
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the earth's puli on a particle divided by its mass, and of direction

identical with that of the attractive force. Thus we imagine a

collection of vectors throughout space, in general different in

magnitude and direction at each point of space, which define

the gravitational attraction of the earth for a test particle located

at any arbitrary position. The totality of such vectors is called

a field, and the vectors themselves are called the field strengths

or intensities of the field.

In this example, the gravitational field strength g at a point

Pis

F

The magnitude of this field is measured in units of acceleration

(e.g., m/sec2
) and is given explicitly by the law of gravitation as

g ._ C£E»_6 £er (11 _43)

where M is the mass of the earth, r the position vector of the

point P relative to the center of the earth, and e r the unit vector

in the direction of r. Equation (11-43) is valid at all points out-

side the surface of an ideal spherical earth.

One can generalize this for the field produced by an arbitrary

distribution of matter, for which the field strength g as a func-

tion of position describes quantitatively the gravitational field.

The gravitational force exerted on an object of mass m by this

field is then given by F = mg.

This field description of forces is especially useful in specify-

ing electromagnetic forces. The electric field produced by a

charged particle or by a collection of such charged particles is

described by the electric field strength or intensity S, where

Z =
*

F is the vector force acting on a positive test charge of magnitude

q, and £ depends on position. For electric fields produced by

charges at rest, the situation is similar to the gravitational case.

As an aid to visualizing the character of a force field, use is

frequently made of the concept of a field line. Starting from an

arbitrary point, we draw an infinitesimal line element in the

direction of the field at that point. Being thus brought to a

neighboring point in the field, we draw another line element in
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the direction of the field at the new point, and so on. In the

limit of making the line elements vanishingly short, we obtain

a smooth curve, the tangent to which, at any point, is the direc-

tion of the field at that point. This construct—which is the field

line—has no real existence, but a vivid picture of the properties

of a force field can be obtained by drawing a whole collection

of such lines.

Hand-in-hand with the concept of a line of force goes that

of a line or surface of constant potential energy. We shall there-

fore discuss this briefly in the next section.

EQUIPOTENTIAL SURFACES AND THE GRADIENT OF
POTENTIAL ENERGY 1

Besides its utility in connection with the dynamics of conservative

systems, the concept of potential energy enables us to describe

conservative fields of force quantitatively in a relatively simple

fashion. The reason is that we can use the simple scalar field of

potential energy to calculate the relatively complicated vector

field of force. This calculation proceeds as follows. Suppose

we know the potential energy U of a test particle at each point

of space; i.e., we have a relation of the form U =f(x,y,z),

where the single-valued function f(x, y, z) depends on the par-

ticular field of force under consideration. If we wish to know at

what points of space the test particle will have a given value of

potential energy, say £/ , we set U = U and obtain an equation

of the form

f(x, y, z) = const. = Uo

This is the equation of a surface, and this surface is called

an energy eguipotenlial surface. There exists a whole family of

these equipotential surfaces, one for each value of U(,. Since,

by definition, it requires no work to move our test particle from

one point to another on the same equipotential surface, it follows

that the lines of force are everywhere perpendicular to the equi-

potentials.

We should draw attention to a distinction between two
quantities here. Just as we define field as the force per unit mass

(or charge, etc.) so we define potential (<p) as the potential energy

per unit mass (or charge, etc). To take the specific case of gravi-

This section may be omilled without loss of continuity.
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tation, we thus have the following paired quantities: gravitational

force F (newtons) with gravitational potential energy U (joules),

and gravitational field g (m/sec 2
) with gravitational potential <p

(mVsec2
).

The complete array of field lincs and cquipotential surfaces

(or, in two dimensions, equipotential lines) provides a graphic

picture of a complete field pattern. In two dimensions we see

two sets of curves which, however complicated their appearance

may be, are everywhere orthogonal to one another. The gravita-

tional field of a spherical object has a simple pattern, in which

the field lines are radial lines and the equipotentials are a set of

concentric spheres [Fig. ll-24(a)]. The field pattern due to

two spheres close together is far less simple [see Fig. ll-24(b)].

(For one way of constructing such a diagram, see Problem 1 1-26.)

In making drawings of the equipotentials, it is often convenient

Fig. 1 1-24 (a) Equipotenlials andfield lines due to a sphere with a \/r 2

force law. (b) Eauipolenlials andfield lines due lo a syslem oflwo nearby

spheres, of masses 2M and M.
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to draw them for equal successive increments of the potential

(or potential energy); this makes the picture very informative,

just like a contour map—which in effect it is (see Fig. 11-24).

To obtain a complete specification of the force field, we
must be able to get the magnitude of the force vector, as well

as its direction, at every point of space. Consider a test particle

at a point P and let it be displaced an amount ds to a neighboring

point. Its potential energy will change by an amount

dU = -F-ds F,ds

This may be written in the form

F* - -~ (11-44)
as

In words, the component of the force F in any direction

equals the negative rate of change of potential energy with

position in that direction. The spatial derivative on the right-

hand side of Eq. (1 1-44) is called a direclional derivative, because

its value depends on the direction in which ds is chosen at the

point P. (Strictly speaking, we should be using the notation of

partial derivatives: F, = —dU/ds.) If we move from P to a

neighboring point on the same equipotential surface as that on

which P lies, then dU/ds is zero for this direction. If, however,

we move to a neighboring point not on the same equipotential

surface as that containing P, dU/ds will be different from zero.

That particular direction for which dU/ds has its maximum
value at a given point defines the direction of the line of force

at that point, and the magnitude of this maximum value of

dU/ds is the magnitude of the vector force at the point in question.

This maximum value of dU/ds, together with its associated

direction, is called the gradient of the potential energy; it is a
vector directed at right angles to the equipotential surface. In

symbols, we write

F = -grad U (11-45)

To help clarify the idea of the gradient, consider a con-

servative field in two dimensions. Here the equipotentials are

lines, rather than surfaces as they would be in three dimensions.

In Fig. 1 1-25 we show two equipotentials, one for U = U and
one for U = l/ -f AU. Starting at P on U , we can move to the

equipotential U + M/ by any of an infinite number of dis-
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Fig. 11-25 Different

paths between two

neighboring equipo-

tentials.

_^\pyui*
StAT^l^' 1>u.

IH^HHHHHH

placements. However, for a given change of potential energy AU,

one moves along a line of force to attain this change in the

shortest possible displacement As. The rate of change of po-

tential energy with position is maximum for this direction and

this is the direction of the gradient of potential energy. This is

indicated in Fig. 1 1-25, where three directions from P are shown.

It is clear that As is shorter in length than either As! or As 2 and

hence that AU/As is larger than AU/As
x
or AU/As2 .

MOTION IN CONSERVATIVE FIELDS

We now turn our attention to the problem of the motion of

particles in a conservative field of force. We have of course

already discussed a number of problems involving motion under

gravity, but here we shall try to indicate the value of the energy

method as it applies to more complex situations.

If the only force acting on a particle is that due to the field,

the law of conservation of mechanical energy provides a first

step in solving for the motion. This law, expressed as

$mo 2 + U(x,y,z) = E (H-46)

where v
2 = vx

2 + vu
2 + v,

2
, does not, however, contain the

whole story. It is the result of combining three statements of

Newton's law as applied to the three independent coordinate

directions, and the synthesis of these three vector equations into

one scalar equation involves the discarding of information that

in principle is still available to us. Given that U is a conservative

potential, we can always find its gradient and hence the vector

force [Eq. (I l—45)]. With this, plus the initial conditions (values

of r and v at t = 0) everything that one needs for a solution

of the problem is provided.

Our interest here, however, lics in taking advantage of the
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energy-conservation equation as far as possible, and supple-

menting it with whatever other information may be necessary.

This extra information may take the form of the explicit use of

one or two of the Newton's Iaw statements, as we shall see in

the example about to be discussed. Or it may, in suitable cir-

cumstances, be contained in a conservation law for quantities

besides energy—in particular, angular momentum. The ex-

ploitation of this latter property is one of the principal concerns

of Chapter 13.

As a good example of the methods we shall consider the

motion of a charged particle in a combined electric and magnetic

field. Suppose we have a pair of parallel metal plates mounted

inside an evacuated tube and connected to a battery as shown in

Fig. 11-26, so that a uniform electric field 8 (= V/d) exists

between the plates. The plates are placed between the poles of a

magnet that produces a uniform magnetic field B in a direction

perpendicular to the page. We shall assume that electrons start

out with negligible energy and velocity from the lower plate.

This could, for example, be arranged by giving the lower plate a

photosensitive coating and shining light onto it, as in a com-

mercial phototube.

Consider one electron of charge q = — e emitted at O. It

will be accelerated vertically by a constant force equal to eV/d

directed along the positive y axis, and will be deflected into the

path indicated in the figure. Since the magnetic deflecting force,

always acting perpendicular to the particle's velocity, does no

work and hence does not directly affect the particle's energy, the

statement of energy conservation can be written simply as follows:

Fig. 11-26 Motion ofan electron in vacuum under the

combined action of electric and magnetic fields.
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B into

the page

*U4-Fig. 11-27 Analysis ofthe

magnelic force into compo-

nenlS associated with the

separate x and y components

0/7.

where we have chosen V [= — (eV/d)y] equal to zero for y = O,

i.e., at the bottom plate where the kinetic energy at y = O is

negligible.

As statcd at the beginning of this section, we need more

information to determine the motion. Since the electric force is

directed along the y axis, the only x component of force on the

electron is the x component of the magnetic force. To evaluate

this force, think of the velocity vector of the electron at some

point of its path resolved into x and y components (Fig. 11-27).

The component of magnetic force associated with vx in this

situation is parallel to the y axis and does not concern us here,

but the velocity component vu gives rise to a magnetic force

component Fx given by

and Newton's law of motion for the x component of motion is

accordingly

evvB=m^ (11-48)

Equations (11-47) and (11-48) can be solved for the motion of

the particle, as follows:

Since v„ = dy/dt, Eq. (11-48) can be written as

eB dy = m dox

or, integrated,

mvx = eBy (\\-49)

since vx = O when y = 0. Now we use the value of vx from

Eq. (11-49) in the energy equation (11-47) and get
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nwy2
+T®V eV

y = (11-50)

This is of the form of the energy equation in one dimension;

the total energy is zero and the effective potential energy U'(y)

is given by

U'(y) = - e
-jy + hm®"

This effective potential-energy curve is shown in Fig. 11-28. It

is precisely of the form of a harmonic oscillator potential (centered

on a point at a certain positive value of y) and its characteristic

angular frequency co is given by

eB
O) = —

m

This implies a very interesting result. Equation (11-50) and

Fig. 1 1-28 show that, as y increases from zero, the kinetic energy

of the electron increases to some maximum value and then de-

creases again. Mathematically, Eq. (11-50) defines a maximum
value of y given by putting vu = 0:

m V
y»** - eB2d

If this is less than the separation d between the plates (a con-

dition that can be obtained, as the above equation shows, by

making B large enough), the y displacement of the electron will

perform simple harmonic motion with the angular frequency w
and with an amplitude A equal to £.ymax . Taking t = at the

instant the electron leaves the lower plate, we can put

Fig. 11-28 Effective

potential-energy curve

for the y component

of motion in the

arrangement of Fig.

11-26.
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Fig. 11-29 Cycloidal

path ofelectron be-

tween charged parallel

plates in a magnetic

field.

y = /1(1 - cosco/) (ll-51a)

What about the x component of the motion? If we look at

Eq. (1 1-49), we see that vx is proportional to y. Since y is always

positive, vz is always in the positive x direction. When one

couples this with the harmonic oscillation along y, one sees that

the path of the electron is a succession of rabbit-like hops, as

shown in Fig. 11-29. Specifically, we have, from Eq. (11-49),

dx eB— y
dt m y oiy

where w is the same angular frequency, eB/m, that we introduced

earlier. Thus, substituting the explicit expression for y from

Eq. (ll-51a), we have

dx

dt
= a>/4(l — cos tor)

Integrating this and putting x = O at f = O we then find that

.v = A(ut - sinwr) (11-51 b)

Equations (11-5 la) and (ll-51b), taken together, show that the

path of the electron is in fact a cycloid—just as if it were on the

rim of a wheel of radius A rolling along the x axis.

THE EFFECT OF DISSIPATIVE FORCES

We mentioned earlier how the conservative properties of a force

field may be useful even in circumstances in which dissipative

forces are also present. The slow decay of the orbits of artificial

earth satellites provides a particularly interesting example of this.

We all know that a satellite placed in orbit a few hundred

miles above the earth's surface will eventually come down. The
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Fig. 11-30 (a) Earth

satellite spiraling

inward as it loses

energy. (b) Small

element of the path

sliown in (a).

descent is, however, spread over many thousands of revolutions.

Thus, although the actual path is a continuous inward spiral,

as shown in Fig. 1 l-30(a), the motion during a single revolution

is very nearly a closcd orbit, which we will take to be circular

for simpiicity. The statement of Newton's law at any stage is

thus given, with extremely little error, by the usual equation for

uniform circular motion:

F = GMm _ mo
r* r

Thus the kinetic energy at any particular value of r is given by

(11-52)
„ . 2 GMmK = %mu =

2r

This exposes a very curious feature. As the orbital radius gets

smaller, the kinetic energy increases—in other words, the satellite

speeds up. This happens in spite of the fact that the motion of

the satellite is continually opposed by a resistive force. If there

were no such force the orbital radius and the speed would re-

main constant.

We know, however, that the satellite must have lost energy,

and the amount of this loss is well defined. This becomes clear

when we consider the potential energy:

U= - GMm
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The total energy, E, when the orbit radius is r, is given by

E-K+V--^ (11-53)

As r decreases, E becomes more strongly negative. We may note

the following relationships in any such circular orbit:

E= -K=\U (11-54)

But still one may wonder: Why does the satellite accelerate in

the face of a resistive force? Figure 1 l-30(b) suggests the answer.

The line AB represents a small segment, of length As, of the path

of the satellite. The starting point A lies on a circle of radius r;

the end point B lies on a circle of radius r + Ar (Ar being actually

negative). We greatly exaggerate the magnitude of Ar, for the

sake of clarity. We then see that as the satellite travels from

A to B, it feels a component of the gravitational attraction along

its path. If the resistive force is R(p), the total force acting on

the satellite in the direction of As is given by

_ GMm
F = —— cos a — R(v)

Thus, in the distance As, the gain of kinetic energy, equal to the

work F As, is given by

AK = FAs = ^^Ascosa - R(v)As

In the first term on the right, we can substitute

As cos a = —Ar

In the second term on the right, we can substitute

As = v Al

If we also put AK = mu Av, we arrivc at the following equation:

GMm . „, . ,

»10 Ao = — Ar — R(u)u At

However, by diffcrcntiation of both sides of Eq. (1 1-52) we have

GMm .

nwAv = -
-2rT~

Ar

Usingthisresult, wecan substitute for the value of —(GMm/r2)Ar
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in the previous equation, and we get

nwAv = 2mv&o — R(v)vAt

Hence

Ao =
R(v)

At m

This is a most intriguing result. The positive sign is not an error.

The rate of increase of speed of the satellite is directly propor-

tional to the magnitude of the resistive force that opposes its

motion! The seeming paradox is resolved when we recognize

that the resistance, by changing the orbital path from a circle to

an inward spiral, acts as an agent that allows the gravitational

force to do positioe work on the satellite, the amount of which is

numerically twice as great as the amount of negative work done

by the resistive force itself.

GAUSS'S LAW 1

The particular case of the inverse-square field of force due to a

point mass or charge is so important that we will append here a

brief discussion of Gauss's Iaw, which is a compact and powerful

statement of the inverse-square law. Since we are primarily con-

cerned with mechanies here, we shall diseuss the problem in

terms of the gravitational rather than the electric field. We
begin with a very elementary observation. As we have seen, the

gravitational field g due to a point mass M is given by the equation

.. GM

This field acts at every point of the surface of a sphere of radius r

centered on M. If we use the convention that the positive direc-

tion is radially outward, then the radial component of g multi-

plied by the total surface area of the sphere gives us a quantity
<f>

defined as follows:

<t>
= 47rr2£r

= -4irGM

We shall call <t> the flux of the gravitational field g through the

surface of the sphere.

This seetion may be omitted without loss of continuity.
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Fig. 11-31 (a) Gaussian surface enclosing a parlicle of

mass M. There is a net gravitational ftux due to M.

(b) Gaussian surface nol enclosing M'. The net flux

due to M' is zero.

Now a noteworthy property of <j> is that it is indcpcndent

of r. If we had two spheres of different radii, r
x
and r 2 , centered

on M, the flux of g would bc the same through both. We can

extend this result to the case of a closed surface of any shape

surrounding the mass [Fig. 11-31 (a)]. If at an arbitrary point

on this surface the outward normal to the surface makes an angle

B with r, as shown, we can rcsolve g into orthogonal components,

parallel to the surface and along the normal. If we think of the

flux literally as a kind offlow of the g field aeross the surface, it

is only the normal component that contributes. Multiplying

this by the element of area dS, we thus have

d<$, = -— cos e dS

Now dS cos 6 can be equated to the projection of dS perpen-

dicular to r, and the quoticnt dS cos O/r
2

is the element of solid

angle, dil, subtended at M by dS. Thus we can put

d<f> = -GMcKl

The total flux of g through the surface, as defined in this way,

is then obtained by integrating over all the contributions dQ.

But this means simply including the complete solid angle, Air.

Thus we have

--
I ,','o -GM dtt = -4irGM
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exactly as for a sphere. If we consider the situation for a point

mass M' outside the surface, the result is quite different. This

time a cone of small angle dti intersects the surface twice; the

contribution to the flux is given by

d<t> = -GM' 'dSi cos 6i dS2 cos 2

n* r&

It is not hard to verify that the two terms inside the parentheses

are equal to —dQ and -\-dQ, respectively, so that d<t> = 0, from

which it follows that the total flux
<f>

is also zero in this case.

One can formalize these calculations a little by representing

an element of surface area as a vector, dS, with a magnitude equal

to dS and a direction along the outward normal, as shown in

Fig. 11-31. The element of flux, d<f>, is then defined as equal

to the scalar product g • dS. It is then apparent that, in Fig.

11-31 (b), gi • dSi and g2 • dS2 are of opposite sign.

Suppose now that we have a number of masses, mu m 2<

mz, . . , inside a surface of some kind, as in Fig. 1 l-32(a).

Their gravitational fields combine to produce a resultant gravita-

tional field g at any point P:

g = gi + g2 + g3 -\

The total gravitational flux is then given by

<t>
=

J
g • dS

and we see that this is simply the sum of the contributions from

the individual masses:

Fig. 11-32 (a) Basis

of calculating the

gravitationalflux due

to an arbitrary collec-

tion ofmasses inside a

given surface. (b) The

addition of external

masses does not

change the net flux,

although it will alter

the local field intensi-

ties.
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/ gi • dS + I g 2 • dS H- / g3 • rfS +

= —4irG(mi + ntz + t»i + • • •)

Thus this total flux depends only on the total enclosed mass,

regardless of how it may be distributed

:

<t>
= — 4irGA/to tai (11-55)

If, as in Fig. ll-32(b), we suppose that additional masses m[,

m'2 are placed outside the surface, our previous calculation

shows that these contribute nothing to the total gravltational

flux through the surface. Thus Eq. (11-55) emerges as a com-
pletely general result; it is known as Gauss's law (or theorem),

and its validity depends completely on the fact that the law of

force is an exact inverse-square law. An exact parallel to it

holds for electrostatics, in which context Gauss, in fact, first

developed it.

If a physical system has certain obvious symmetries, Gauss's

theorem leads at once to important conclusions about field

strengths. We shall consider a few examples, some of which we
have already treated by other methods.

APPLICATIONS OF GAUSS'S THEOREM

Field outside a sphere

Suppose we want to know the gravitational field at a point P,

outside an isolated sphere of mass M at a distance r from its

center [Fig. 1 1—33(a)]. If the mass distribution within the sphere

Fig. 11-33 Use of

Gauss's law to calcu-

lale the gracitalional

field ofa solid sphere

(a) at exterior points,

and (b) at interior

points.
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is symmetrical—i.c, if the density of matter is the same at all

points at the same distance from the center of the sphere—then

the gravitational field g itself has the same strength at all points

on a spherical surface of radius r. Thus, if we draw a "Gaussian

surface" in the form of a sphere of radius r, the total gravita-

tional flux is given by

# = 4irr2gr = -A-kGM

whence

GM
gr = - -5- at once

The result is of course entirely familiar, but the point to notice

is that, once we have Gauss's general theorem, the process of

carrying out an explicit integration over the mass distribution,

as we did in Chapter 8, becomes unnecessary.

Field inside a sphere

An exactly similar treatment holds for the other familiar problem

of the gravitational field inside a spherically symmetric mass

distribution [Fig. 11—33(b)]. Gauss's theorem tells us at once

that, if we imagine a spherical surface of radius r < R, the

material outside this surface contributes nothing to the flux of g

through the surface. Thus, if the mass enclosed within the

surface of radius r is m(r), we can at once deduce that

Gm(r)

The assumption of spherical symmetry throughout the system,

outside as well as inside the radius r, is, however, essential.

Otherwise the value of g may be different at different points on a

spherical surface, and even though the total flux still has no

contribution from exterior material, the field strength at in-

dividual points will be affected. Thus we must assume, as in the

first example, that the sphere is effectively isolated, i.e., far from

any outside masses.

Field due to afiat sheet

Suppose we have an infinite sheet of matter, of surface density <r

(mass per unit area). Symmetry in this case tells us that the field

must be everywhere normal to the sheet and that it has the same
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Fig. 11-34 Use ofGauss's law to calculate the gravi-

talionalfield ofaftat sheet ofmatler.

magnitude on the two sides (Fig. 11-34). We can construct a

Gaussian surface for this problem in the form of a right cylinder,

with ends of arbitrary shape but the same area A. Then there

is no flux of g through the curved sides of the cylinder. The

enclosed mass is just aA, so the total gravitational flux passing

through the surface is — AtrGaA. But, by Gauss's theorem, this

is equal to the field strength g multiplied by the total area of the

two ends. Thus we have

2Ag = -A-kGiA

Therefore,

g = — 2ttGV (11-56)

The strength of the field is thus entirely independent of the

distance from the sheet of matter, assuming this to be indeed

of unlimited extent.

In terms of gravitational systems, this example is not very

realistic. But the result is highly relevant in electrostatics, where

distributions of electric charge over large plane areas are fre-

quently met. The parallel-plate capacitor is a prime example,

and the constant field at all points between the charged plates

in the Millikan experiment, for example, can at once be under-

stood in the light of the above calculation.

PROBLEMS

11-1 A particle of mass m slides without friction on a wire that is

curved into a vertical circle (see the figure). The position of the particle

can be described in lerms of 0, or in terms of the arc length s, or by

the vertical distance h that it has fallen.

(a) Consider the force that acts on the particle along the direc-

tion of its path at any point, and show that the work done on the

particle as it moves through an arc length ds is given by

dW = Ft ds = mgR sin d dd

(b) By integrating this expression from d = to 6 = do, show

that the work done is W = mgR(\ — cos 0o), and express this result

in terms of the vertical distance h that the particle has descended.

11-2 Two blocks, of masses m and 2m, rest on two frictionless planes
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inclined at angles of 60° and 30°, respectively, and are connected by a

string through an eyelet of negligible friction (see the figure). Using

energy methods, find the magnitude of the acceleration of the masses,

and deduce the tension in the connecting string.

11-3 Show that if a mass on the end of a string is allowed to swing

down in a circular arc from a position in which the string is initially

horizontal (and the mass is at rest), then at the lowest point of the

swing the tension in the string is three times as great as when the mass

simply hangs there. (This result is quoted by Huygens at the end of

his book on pendulum clocks, published in 1673.)

11-4 A pendulum bob of mass m, at the end of a string of length /,

starts from rest at the position shown in the figure, with the string at

60° to the vertical. At the lowest point of the arc the bob strikes a

previously stationary block, of mass nm, that is on a frictionless hori-

zontal surface. The collision is perfectly elastic.

(a) What is the specd of the bob just before the impact occurs?

(b) What is the tension in the string at this instant?

(c) What velocity is given to the block by the impact ?

(d) In the oscillations of the pendulum after the collision,

what maximum angle 6 to the vertical does the string make? (Obtain

your answer in the form cos 6 = • • •
.)

11-5 A student is assigned a "conservation of momentum" experi-

ment in which two masses, mi and m% are suspended from strings

of length /. Mass m\ is pulled aside a horizontal distance Xi and

released. It strikes m? and sticks to it, after which the combined mass

swings out to some final position x/. The student objects that mo-

mentum is obviously not conserved in this proccss. It is zero initially,

increases, and then decreases again to zero. The student also claims

that energy is not conserved. Analyze carefully what actually goes on

in this experiment, so that you are in a position to answer the student's

objections.

11-6 A small ball of putty, of mass m, is attached to a string of

length / fastened to an upright on a wooden board resting on a hori-

zontal table (see the figure). The combined mass of the board and

upright is M. The friction coefficient between the board and the table
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is fi. The ball is released from rest with the string in a horizontal

position. It hits the upright in a completely inelastic collision. While

the ball swings down, the board does not move.

(a) How far does the board move after the collision?

(b) What is the minimum value that n must have to prevent the

board from moving to the lcft while the ball swings down? Assume

that m <3C M, which gives the critical condition at 6~ 45°.

11-7 An object of mass m slides on a frictionless loop-the-loop

apparatus. The object is released from rest at a height h above the

top of the loop (see the figure).

(a) What is the magnitude and direction of the force exerted on

the object by the track as the object passes through the point A ?

(b) Draw an isolation diagram showing the forces acting on

the object at point B, and find the magnitude of the radial acceleration

at that point.

(c) Show that the object must start from h > r/2 to success-

fully complete the loop.

(d) For h < r/2 the object will begin to fail away from the

track before reaching the top of the circle. Show that this happens at

a position such that 3 cosa = 2 -|- 2h/r, where a is the angular dis-

tance from the (upward) vertical.

11-8 A ball of mass m hangs at the end of a string of length /. It is

struck so as to start out horizontally from this position with a speed vo-

(a) What must Do be if the ball is just able to travel through a

complete circular path ?

(b) If l-o = \/4g/ (so that the ball could just rise through the

height 2/ if projected vertically), what angle does the string make with

the vertical when the ball begins to fail away from its circular path?

(c) In situation (b), analyze the subsequent motion, assuming

no losses of total mechanical energy.

11-9 A mass slides down a very smooth curved chute as shown. At

what horizontal distance from the end of the chute does it hit the

ground ?
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11-10 A daredevil astronomer stands at the top of his observatory

dome (see figure) wearing roller skates, and starts with negligible

velocity to coast down over thc dome surface.

(a) Neglecting friction, at what angle does he leave the dome's

surface?

(b) If he were to start with an initial velocity t»o, at what angle

would he leave the dome ?

(c) For thc observatory shown, how far from thc base should

his assistant position a net to break his fail, in situation (a)? Evaluate

your answer for R = 8 m, and use g =* 10 m/sec 2
.

11-11 A pendulum of length L is held at an angle a from the vertical.

A peg is located in the path of swing of the string as shown in the

figure. The pendulum is released from rest.

(a) Ifa = 60°,/3 = 30°, and r = Ly/3/4, what is the maximum
angle with the vertical that the bob will reach ?

(b) Show that the string will bucklc during thc bob's aseent

when < (rcos/3 — Lcosa) < 3(L — r)/2. At what angle B does

this buckling oecur?

481 Problcms



m.q m,q

(c) A carnival skill game involves such a pendulum and peg

apparatus. A prize is awarded for causing the bob to strike the peg.

In the game, L, r, and are fixed ; the contestant releases the bob from

rest at any desired a. Find the value ofa for which a prize will be won.

(Express your answer in the form cosor = • • •
.)

11-12 A frictionless airtrack is deformed into the parabolic shape

y = \Cx2
. An object oscillates along the track in almost perfect

simple harmonic motion.

(a) If the period is 30sec, by what distance is the track at

x = ±2 m higher than at x = 0?

(b) If the amplitude of oscillation is 2 m, how long does it

take for the object to pass from x = —0.5 m to x = +1.5 m traveling

in the positive x direction ? (The description of SHM as a projection

of uniform circular motion is useful for this.)

11-13 A pendulum clock keeps perfect time at ground level. Ap-

proximately how many seconds per week would it gain or lose at a

height of 20 m above this level? (Assume a simple pendulum, with

T = 2Tr\/I/g. Earth's radius = 6.4 X 10
6 m. 1 week~ 6 X 105 sec.)

11-14 Two identical, and equally charged, ping-pong balls are hung

from the same point by strings of length L (see the figure).

(a) Given that the mass of each is m and that the equilibrium

position is as shown in the figure, what is the charge on each? (Recall

that the electrostatic force between two charges at a separation r is

given by F = kqiq2/r'2.)

(b) Suppose that the balls are displaced slightly toward each

other by the same amount. Make appropriatc approximations and

describe the subsequent motion. Find an expression for the frequency

of oscillations.

(c) On the other hand, if the ping-pong balls are displaced

slightly in the same direction and by the same amount, what will the

subsequent motion be? In this second case, does it matter whether

they are charged or mcrely held apart by a massless rod?

11-15 (a) Show that free fail in the earth's gravitational field from

infinity results in the same velocity at the surface of the earth that

would be achieved by a free fail from a height H = RB (= radius of
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earth) under a constant acceleration equal to the value ofg at the earth's

surface.

(b) Show that the speed at the earth's surface of an object

dropped from height,/; (/i « RK) is given approximately by

| = v - (2*A)i«H i)
(c) Verify the statement in the text (p. 454) that the speed

needed for escape from the surface of a gravitating sphere is t'o\/2,

where co is the speed of a particle skimming the surface of the sphere

in circular orbit.

11-16 A physicist plans to determine the mass of the earth by ob-

serving the changc in period of a pendulum as he deseends a mine

shaft. He knows the radius R of the earth, and he measures the den-

sity ps of the crustal material that he penetrates, the distance h he

deseends, and the fractional change (AT/T) in the pendulum's period.

(a) What is the mass of the earth in terms of these measure-

ments and the earth's radius?

(b) Suppose that the mean over-all density of the earth is twice

the mean density of the portion above 3 km. (This supposition is

actually rather accurate.) How many seconds per day would a pendulum

clock at the bottom of a deep mine (3 km) gain, if it had kept time

accurately at the surface?

11-17 The figure shovvs a system of two uniform, thin-walled, con-

centric spherical shells. The smaller shell has radius R and mass M,

the larger has radius 2/? and mass 2M, and the point P is their common

center. A point mass m is situated at a distance r from P.

(a) What is the gravitational foree F(r) these shells exert on m
in each of the three ranges of r: < r < R, R < r < 2R, r > 2R?

(b) What is the gravitational potential energy of the point

mass m when it is at P? (Take the potential energv to be zero when m
is infinitely far from P.)

(c) If the particle is released from rest very far away from the

spheres, what is its speed when it reaches P'! (Assume that the particle

can pass freely through the walls of the shells.)

11-18 Assume the moon to be a sphere of uniform density with

radius 1740 km and mass 7.3 X 1022 kg. Imagine that a straight

smooth tunnel is bored through the moon so as to connect any two
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points on its surface.

(a) Show that the motion of objects along this tunnel under

the action of gravity would be simple harmonic.

(b) Calculate the period of oscillation.

(c) Compare this with the period of a satellite traveling around

the moon i n a circular orbit at the moon's surface.

11-19 The escape specd from the surface of a sphere of mass M and

radius R is ve = (2GM/R) 1 ' 2
; the mean speed v of gas molecules of

mass m at temperature T is about (3kT/m) l/2
, where k (= 1.38 X

10-23 J/°K) is Boltzmann's constant. Detailed calculation shows that

a planetary atmosphere can retain for astronomical times (10
9
ycars)

only those gases for which D J$ 0.2ye . Using the data below, find

which, if any, of the gases H2, NH3, N2, and CO2 could be retained

for such periods by the earth; by the moon; by Mars. ME =

6.0 X 10
24

kg, RE = 6.4 X 103 km, TB = 250°K. For the moon,

M = Mu/Si, R = 0.27Rn, and T = TK. For Mars, M = O.llAfe,

R = 0.53*s, and T - 0.8TE .

11-20 A double-star system consists of two stars, of masses M and

2M, separatcd by a distance D center to center. Draw a graph showing

how the gravitational potential energy of a particle would vary with

position along a straight line that passes through the centers of both

stars. What can you infer about the possible motions of a particle

along this line?

11-21 A double-star system is composed of two identical stars, each

of mass M and radius R, the centers of which are separated by a

distance of 5R. A particle leaves the surface of one star at the point

nearest to the other star and escapes to an effectively infinite distance.

(a) Ignoring the orbital motion of the two stars about one

another, calculate the escape speed of the particle.

(b) Assuming that the stars always present the same face to

one another (like the moon to the earth), calculate the orbital speed

of the point from which the particle is emitted. How would the exis-

tence of this orbital motion affect the escape problem?

11-22 The earth and the moon are separated by a distance D =

3.84 X 10
8 m. Ignoring their motion about their common center of

mass, but taking into account both of their gravitational fields, answer

the following questions:

(a) How much work must be done on a 100-kg payload for it

to reach a height 1000 km above the earth's surface in the direction

of the moon ?

(b) Calculate the diiTerence in potential energy for this mass

between the moon's surface and the earth's surface.

(c) Calculate the necessary initial kinetic energy to get the

payload to the moon. It must be greater than the potential difference
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given in (b) because the payload must overcome a "potential hill."

Find the location of the top of this hill and compute the potential

difference from the earth to it.

11-23 Two stars, each of mass M, orbit about their center of mass.

The radius of their common orbit is r (their separation is 2r). A
planetoid of mass m (« M) happens to move along the axis of the

system (the line perpendicular to the orbital plane which intersects

the center of mass), as shown in the figure.

(a) Calculate directly the force exerted on the planetoid if it is

displaced a distance z from the center of mass.

(b) Calculate the gravitational potential energy as a function of

this displacement z and use it to verify the result of part (a).

(c) Find approximate expressions for the potential energy and

the force in the cases zy> r and z« r.

(d) Show that if the planetoid is displaced slightly from the

center of mass, simple harmonic motion occurs. Compare the period

TP of this oscillation with the orbital period 7"o of the binary system.

11-24 A frictionless wire is stretched between the origin and the point

x = a, y = b in a horizontal plane. A bead on the wire starts out

from the origin and moves under the action of a force that varies with

position. Find the kinetic energy with which the bead arrives at the

point (a, b) if

(a) The components of the force are Fx = k\x, Fy = kiy-

(b) The components of the force are Fx = kiy, F„ = A:2*

(with ki, *2 >0).

In one case the force is conservative, in the other case it is not. By

considering a different path—e. g., from (0, 0) to (a, 0) and then from

(a, 0) to (a, b)—verify which is which.

11-25 The nuclear pari of the interaction of two nucleons (protons or

neutrons) is described pretty well by a potential V(r) = —\e~r/ro/r

when the separation r is greatcr than 1 F (1 F = 10~ ls
m). In this

expression, /-o = 1.4 F and X = 70 MeV-F. (The potential was

proposed by H. Yukawa and is named after him.)

(a) Find an expression for the nuclear force that acts on

(each of) two nucleons separated by r > 1 F.

(b) Evaluate this force for two protons 1.4 F apart, and com-

pare this with the repulsive Coulomb force at that separation.

(c) Estimate the separation at which the nuclear force has
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dropped to 1% of its value a t r = 1.4 F. What is the Couiomb force

at this separation?

(d) The last result indicates why the Yukawa potential is not

part of our macroscopic experience. Note that ro characterizes the

range of distance over which the interaction is important. In contrast

to the nuclear force, gravitational and Couiomb forces have been

called forces of infinite range. Indicate why such a description is

appropriate.

11-26 In Fig. ll-24(b) is shown a plot of gravitational equipotentia!s

and field lines for two spheres of masses 2M and M. One way of

developing this diagram is as follows. We know that the gravitational

potential at any point P is given by

G(2M) G(M)

where n and r2 are measurcd from the centers of the spheres. An

equipotential is defined by <pp = constant. In order to construct

such equipotcntials, draw a set of circles, with the sphere of mass M
as center, such that the values of 1/ra are in arithmetic progression

—

e.g., IA2 = 1, 1.5, 2, 2.5, 3, 3.5 Then with the sphere of mass

2M as center, draw a set of circles with radii r\ twice as great as the

values of r2 . Since <pP ~ (2/n) + (IA2), the corresponding circles

in each pair represent equal contributions to <p by 2M and M. The

two sets of circles have a number of intersections, and each intersection

corresponds to a well-defined value of <fp. For instance, with 10r2 =

2.85 units and 10n = 10 units, we have <pe ~ (2/1.0) + (1/0.285) =

5.5. But <pp ~ 5.5 is obtained also at the intersections of other pairs

of circles as follows: r2 = 0.33, n = 0.80; r2 = 0.40, n = 0.67;

/•2 = 0.67, n = 0.50. Joining these intersections having the same

value of (2/n) + (1/ra) gives us an equipotential, and other equi-

potentials can be constructed in the same way. Once the equipo-

tentials are obtained, the field lines can be drawn as lines everywhere

normal to the equipotentials.

11-27 A science fiction story concerned a space probe that was re-

trieved after passing near a neutron star. The unfortunate monkey

that rode in the probe was found to be dismembered. The conclusion

reached was that the strong gravity gradient (dg/dr) which the probe

had experienced had pulled the monkey apart. Given that the probe

had passed within 200 km of the surface of a neutron star of mass

10 33 g (about half the sun's mass) and radius 10 km, was this explana-

tion reasonable? (The probe was in free fail at the time.)

11-28 A straight chute is to be used to transport articles a given

horizontal distance /. The vertical drop of the chute can be freely

chosen. The articles are to arrivc at the top of the chute with negligiblc
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velocity and the chute is to be chosen such that the transit time is a

minimum.

(a) If the surfacc is frictionless, what is the angle of the chute

for which the time is minimized?

(b) What is the corresponding angle if the coefficient of fric-

tion is m?
(c) If a playground slide were designed to give minimum dura-

tion of ride for given horizontal displacement, and if the coefficient

of friction of the child-slide surface is 0.2, what angle would the slide

make with the horizontal? (Ignore the curved portion at the lower

end of the slide.)

(d) If the optimizaiion problem of (a) is encountered and if

curved chutcs are allowed, can you guess roughly what form the best

design would have?

11-29 The magnetic force exerted on a particle of charge q and mass m
traveling in a uniform magnetic field B (which is constant in time) is

given by F = kqs X B (where the constant k = 1 in the MKS system).

(a) Show that the work done by such a force on the particle is

zero for arbitrary particle motion.

(b) Situations arise in which a moving charged particle is

slowed by a force of constant magnitude FD and of direction opposite

to the instantaneous velocity. (For example, the ionization of atoms

along the track of a charged particle produces an almost constant

energy loss per unit distance, corresponding to a constant retarding

force.) Show that if a particle has speed eo at / = 0, thcn for / >
its speed will be given by u(t) = vo — Fnt/tn until t = /huo/Fd, after

which time the particle will remain motionless. Note that the presence

of a magnetic field will not affect this result.

(c) Under the action of a magnetic force alone, a particle with

an initial velocity vo (normal to B) describes a circle of radius r =

moo/kgB with a circular frequency o = kgB/m. Show that a particle

subject also to the force described in (b) moves inward along a spiral

and that the number of circuits it makes in the spiral before it comes

to rest is given by {kqBoa/2irFti).

11-30 (a) Obtain an expression for the gravitational field due to a

thin disk (thickncss d, radius R, and density p) at a distance h above

the center of mass of the disk. In calculating the field, assume the

surface density a = pel to be concentrated in a disk of negligible

thickness a distance h beneath the test point. This will give an accurate

result whenever h^> d, and reduces the complexity of the caleulation.

Note that for R —* « , the caleulation agrees with the predietion of

Gauss's theorem, as it must.

(b) Express the field obtained in part (a) as a fraetion of 2irGcr

for the cases R = 2h, R = 5h, and R = 25h.

(c) How many seconds per year would a pendulum clock gain
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when suspended with the bob 5 cm above a lead floor 1 cm thick, if it

keeps correct time in the absence of the floor?

11-31 Any mass of mattcr has a gravitational "self-energy" arising

from the gravitational attraction among its parts.

(a) Show that the gravitational self-energy of a uniform sphere

of mass M and radius R is equal to -3GM2/5R. You can do this

either by calculating the potential energy of the sphere directly, inte-

grating over the interactions between all possible pairs of thin spherical

shells within the sphere (and remembering that each shell is counted

twice in this calculation) or, perhaps more simply, by imagining the

sphere to be built up from scratch by the addition of successive layers

of matter brought in from infinity.

(b) Calculate the order of magnitude of the gravitational self-

energy of the earth. Check where this lies on the scale of energies

displayed in Table 10-1.
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Part III

Some special topics



Whenfirst studying mechanics one has the impression that

everything in this branch ofscience is simple, fundamental

and sett/edfor all time. One would hardly suspect the

existence ofan important clue which no one noticedfor

three hundred years. The neglected clue is connected with

one of the fundamental concepts ofmechanics—that ofmass.

A. EINSTEIN AND L. INFELD,

The Evolution ofPhysics (1938)



12

Inertial forces and

noninertial frames

imagine that you are sitting in a car on a very smooth road.

You are holding a heavy package. The car is moving, but you
cannot see the speedometer from where you sit. Ali at once you

get the feeling that the package, instead of being just a dead

weight on your knees, has begun to push backward horizontally

on you as well. Even though the package is not in contact with

anything except yourself, the effect is as if a force were being

applied to it and transmitted to you as you hold it still with

respect to yourself and the car. Ifyou did not restrain the package

in this way, it would in fact be pushed backward. You notice

that this is what happens to a mascot that has been hanging at

the end of a previously vertical string attached to the roof of

the car.

How do you intcrpret these observations? If you have any

previous experience of such phenomena, you will have no hesita-

tion in saying that they are associated with an increase of velocity

of the car—i.e., with a positive acceleration. Even if this were

your first experience of this type, but if you had a well-developed

acquaintance with Newton's laws, you could reach the same
conclusion. An acceleration of the car calls for an acceleration

of everything connected with it; the acceleration of the package

requires, through F = ma, a force of the appropriate size supplied

by your hands. Nonetheless, it does feel just as if the package

itself is somehow subjected to an extra force—a "force of in-
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ertia"—that comes into play whenever the effort is made to

change the state of motion of an object.

These extra forces form an important class. They can be

held responsible for such phenomena as the motion of a Foucault

pendulum, the effects in a high-speed centrifuge, the so-called

g forces on an astronaut during launching, and the preferred

direction of rotation of cyclones in the northern and southern

hemispheres. These forces are unique, however, in the sense

that one cannot trace their origins to some other physical system,

as was possible for all the forces previously considered. Gravita-

tional, electromagnctic, and contact forces, for example, have

their origins in other masses, other charges, or the "contact" of

another object. But the additional forces that make their ap-

pearance when an object is being accelerated have no such

physical objects as sources. Are these inertial forces real or not?

That question, and the answer to it, is bound up with the choice

of reference frame with respect to which we are analyzing the

motion. Let us, therefore, begin this analysis with a feminder

of dynamics from the standpoint of an unaccelerated frame.

MOTION OBSERVED FROM UNACCELERATED FRAMES

An unaccelerated reference frame belongs to the class of reference

frames that we have called inertial. We saw, in developing the

basic ideas of dynamics in Chapter 6, that a unique importance

and interest attaches to these frames, in which Galileo's law of

inertia holds. We have seen how, if one such frame has been

identified, any other frame having an arbitrary constant velocity

relative to the first is also inertial, and our inferences about the

forces aeting on an object are the same in both.

To a good first approximation, as we know, the surface of

the earth defines an inertial frame. So also, therefore, does any

system moving at constant speed over the earth. Galileo himself

was the first person to present a elear recognition of this faet,

and one aspect of it that he diseussed is useful as a starting point

for us now. In his Dialogue Concerning the Two World Systems,

in which he advocated the Copernican view of the solar system

in preference to the Ptolemaic, Galileo pointed out that a rock,

dropped from the top of the mast of a ship, always lands just at

the foot of the mast, whether or not the ship is moving. Galileo

argued from this that the vertical path of a falling object does

not compel one to the conclusion that the earth is stationary.
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Fig. 12-1 (a) Para-

bolic trajectory under

grauity, as observed

in the eanh's reference

frame. The initial

velocily v o is hori-

zontal, (b) Same

motion observed from

a frame wilh a hori-

zontal velocity greater

than vo. (c) Same

motion observedfrom

a frame having both

horizontal and vertical

velocily components.

The comparison here is between an object falling from rest relative

to the earth and another object falling from rest relative to the

ship. If we considered only an object that starts from rest rela-

tive to a moving shtp, its path would be vertical in the ship's

frame and parabolic in the earth's frame. More generally, if we

considered an object projected with some arbitrary velocity

relative to the earth, its subsequent path would have diverse

shapes as viewed from different inertial frames (see Fig. 12-1)

but all of them would be parabolic, and all of them, when ana-

lyzed, would show that the falling object had the vertical ac-

celeration, g, resulting from the one force F„ (= mg) due to

gravity. Let us now contrast this with what one finds if the

reference frame itself has an acceleration.

MOTION OBSERVED FROM AN ACCELERATED FRAME

Suppose that an object is released from rest in a reference frame

that has a constant horizontal acceleration with respect to the

earth's surface. Let us consider the subsequent motion as it

appears with respect to the earth and with respect to the ac-

celerating frame. We shall take the direction of the positive x
axis in the direction of the acceleration and will set up two

rectangular coordinate systems: system S, at rest relative to the

earth, and S', fixed i n the accelerating frame (Fig. 12-2). Take

+ v

Fig. 12-2 Relationship of co-

ordinales ofa particle in iwo

frames that are in accel-

erated relative motion.

T
s-

(relative to 5)

—fP

O +x
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the origins of the frames to coincide at t = 0, and suppose that

the velocity of S' with respect to S at this instant is equal to Vo-

The vertical axes of the two systems are taken as positive upward,

and the object is released at t = from a point for which x =

x' = 0, y = / = h.

What will the trajectories in S and S' look like? For an

observer in S, we already know the answer. To him, the object

is undergoing free fail with initial horizontal velocity v [Fig.

12-3(a)]. Thus we have

(As observed in S)
{x = vot

y- h- i**
2

These two equations uniquely define the position of the object

at time t, but to describe the motion as observed in S' we must

express the results i n terms of the coordinates x' and y' as mea-

sured in S'. To transform to the S' frame, we substitute

x = x — x,

y = y

where xs is the separation along the x axis of the origins of S
and S' (see Fig. 12-2). We know that

x, = vot + §at2

Substituting these values we find

.au a- ca K = Vot " (" ' + %a,2) = ~%a'
2

(As observed in S')
\ , „W = h - \gi-

Thus the path of the particlc as observed in S' is a straight line

given by the equation

x'= -"{h- y')

8
Fig. 12-3 (a) Para-

bolic trajectory of a

particle under gravily,

as observed in the

earlh's reference

frame S. (b) Same

motion observed in a

frame S' that has a

constant horizontal

acceleration.

. . . . :

O

^s
N
\-

\
Seen in S

(a)
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This is shown in Fig. 12-3(b). In the accelerated frame, the

object appears to have not only a constant downward component

of acceleration due to gravity, but also a constant horizontal

component of acceleration in the —x direction which causes the

particle to follow a nonvertical straight-line path. [A similar

simple example is the monkey-shooting drama described in

Chapter 3 (p. 104). The outcome becomes almost self-evident if

we choose to describe the events in the rest frame of the falling

monkey. In this frame the bullet just follows a straight-line path

directly toward the monkey, while the ground accelerates up-

ward at 9.8 m/sec 2
.]

There is no mystery about the unfamiliar motion repre-

sented by Fig. 12-3(b). It is a direct kinematic consequence

of describing the normal free-fall motion from a frame that is

itself accelerated. We could perfectly well use this path, de-

scribed by measurements made entirely within S', to discover

the acceleration of this frame, provided that the direction of the

true vertical were already known. However, a greater interest

attaches to learning about the acceleration through dynamic

methods. That is the concern of the next section.

ACCELERATED FRAMES AND INERTIAL FORCES

From what has bcen said, it is clear that inertial frames have a

very special status. AU inertial frames are eguivalent in the sense

that it is impossible by means of dynamical experiments to dis-

cover their motions in any absolute sense—only their relative

motions are significant. Out of this dynamical equivalence

comes what is called the Newtonian principle of relativity:

There is no dynamical observation that leads us to prefer one
inertial frame to another. Hence, no dynamical experiment will

tell us whether we have a constant velocity through space.

As we have just seen, however, a relative acceleration between

two frames is dynamically detectable. As observed in accelerating

frames, objects have unexpected accelerations. It follows at once,

since Newton's law establishes a link between force and ac-

celeration, that we have a quantitative basis for calculating the

magnitude of the inertial force associated with a measured
acceleration. Conversely, and more importantly, we have a

dynamical basis for inferring the magnitude of an acceleration

from the inertial force associated with it. This is the underlying
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principle of all the instruments known as accelerometers. They

function because of the inertial property of some physical mass.

To makc the analysis explicit, consider the motion of a

particle P with respect to two reference frames like those con-

sidered in the last section and shown in Fig. 12-2: an inertial

frame S and an accelcrated frame S'. We then have, once again,

x = X1 + x,

y = y'

The velocity components of P as measured in the two frames are

thus given by

where vs = dxs/dt at any particular instant. If S' has a constant

acccleration a, we can put ds
= v + at, but the condition of

constant acceleration is not at all necessary to our analysis.

Taking the time derivatives of the instantaneous velocity

components, we then get

az = a'x + a,

Oy = a'y

where a, is the instantaneous acceleration of the frame S'.

Although we have chosen to introduce the calculation in terms

of Cartesian components, it is clear that a single vector statement

relates the acceleration a of P, as measured in S, to its accelera-

tion a' as measured in S' together with the acceleration a, of S'

itself:

a = a' (12-1)

Multiplying Eq. (12-1) throughout by m, we recognize the left-

hand side as giving the real (net) foree, F, that is aeting on the

particle, since this defines the true cause of its acceleration as

measured in an inertial frame. That is, in the S frame,

F = «n (12-2)

but, using Eq. (12-1), this gives us

F = »ra' + ma, (12-3)

We now come to the crucial question: How do we interpret

Eq. (12-3) from the standpoint of observations made within the
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accelerated frame S' itself?

Newton's viewpoint— that the net force on an object is the

cause of accelerated motion (Fnct = ma)-is so deeply ingrained

in our thinking that we are strongly motivated to preserve this

relationship at all times. When we observe an object accelerating,

we interpret this as due to the action of a net force on the object.

Can we achieve a mathematical format that has the appearance

°f Fnct = wa f°r tne present case of an accelerated frame of

reference? Yes. By transferring all terms but ma' to the left

and treating these terms as forces that act on m, and have a

resultant F', which is of the correct magnitude to produce just

the observed acceleration a'

:

F' = F - ma, = ma' (12-4)

The net force in the S' frame is thus made up of two parts: a

"real" force, F, with components Fx and Fy , and a "fictitious"

force equal to —mas , which has its origin in the fact that the

frame of reference itself has the acceleration +a„. An important

special case of Eq. (12-4) is that in which the "real" force F is

zero, in which case the particle, as observed in S', moves under

the action of the inertial force —mas alone.

The result expressed by Eq. (12-4) is not mercly a mathe-

matical trick. From the standpoint of an observer in the ac-

celerating frame, the inertial force is actually present. If one

took steps to keep an object "at rest" in S', by tying it down

with springs, these springs would be observed to elongate or

contract in such a way as to provide a counteracting force to

balance the inertial force. To describe such a force as "fictitious"

is therefore somewhat misleading. One would like to have some

convenient label that distinguishes inertial forces from forces

that arise from truc physical interactions, and the term "pseudo-

force" is oftcn used. Even this, however, does not do justice to

such forces as experienced by someone who is actually in the

accelerating frame. Probably the original, strictly technical

name, "inertial force," which is free of any questionable over-

tones, remains the best description.

As an illustration of the way in which the same dynamical

situation may be described from the different standpoints of an

inertial frame, on the one hand, and an accelerated frame, on
the other, consider a simple pendulum suspended from the roof

of a car. The mass of the bob is m. In applying F = ma from the

standpoint of a frame of reference S attached to the earth
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Fig. 12-4 Forces

acting on a suspended

mass in (a) a slation-

ary car, (b) a car

moving al consianl

velocity, and (c) a car

imdergoing a posiliue

acceleration.

(assumed nonrotating), one can draw isolation diagrams for the

possible motions of the car as shown in Fig. 12-4. In each case,

there are just two (real) forces acting on the bob: F„, the foree

of gravity, and T, the tension in the string. Cases (a) and (b) do

not involve acceleration and the application of F = ma is trivial.

In (c), the bob undcrgoes acceleration toward the right and the

string hangs at an angle with some increase in its tension (from

rto 7",). The isolation diagram of Fig. 12-5 (a) leads us to apply

F = ma as follows:

Horizontal component: 7"i sin0 = ma

Vertical component : Ty cos 6 — mg =

In the S' frame, however, because of the acceleration of the

frame, there will be an additional foree of magnitude ma in the

direetion opposite to the acceleration of the frame. Figure

12-5(b) shows an isolation diagram for the bob as seen in S'.

The bob is in equilibrium. Here, application of F' = ma' gives

(because a' = 0):

Fig. 12-5 Forces on

an object thai is al

resi relaliue lo an

acceleraled car (a) as

judged in an inerlial

frame, and (b) as

judged in the acceler-

aledframe.
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Ti sin S - ma = O

7"i cos 8 — mg =

Thus the equilibrium inclination of the pendulum is defined by

the condition

tan 9 = -
g

(12-5)

ACCELEROMETERS

Ffe. /2-5 (a) Tie

hanging in equilib-

rium within an

accelerated cehicle.

(h) Quantitatwe ac-

celerometer based on

measuring the eguilib-

rium angle ofa simple

plumbline. (c) Car-

penter's level (in Ihis

case a pivoted marker

immersed in liquid of
greater densily) can

be used as an acceler-

omeler. (d) A bubble

irapped in a curved

tube ofliguid gices

direct readings of

acceleralion. Tliis

form of accelerometer

was deuised by W. V.

Walton (Edueation

Research Center,

M.I.T.). Figure 12-7

shows an example of
its use.

The result expressed by Eq. (12-5) provides the theoretical basis

for a simple accelerometer. If we have first established the true

vertical direction, representing e = 0, the observation of the

angle of inclination of a pendulum at any subsequent time tells

us the value of a through the equation

a = g tan d

For example, if a passenger in an airplane lets his tie, or a key-

chain, hang freely from his fingers during the takeoff run, he

can make a rough estimate of the acceleration, which is usually

almost constant [Fig. 12-6(a)]. If he also records the time from
the beginning of the run to the instant of takeoff, he can obtain
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Fig. 12-7 (a) Record obtaimd with the accelerometer ofFig. 12-6(rf) before

and afler takeoffofa commercialjet aircraft. The accelerometer was held se-

as to record the horizontal component of acceleration only. Note the sharp

decrease in a at takeoff. (b) Graph ofvelocity versus time, obtained by

graphical integration of(a). (c) Graph of distance versus time, obtained by

graphical integration of(b).



a fairly good estimate of the length of the run and the takeoff

speed. If he is more ambitious, he can go armed with a card, as

in Fig. 12-6(b), already marked out as a goniometer (= angle

measurer) or even directly calibrated in terms of acceleration

measured in convenient units (e.g., mph per second). ' Another

simple accelerometer is obtainable readymade in the form of a

carpenter's level made of a small pivoted float that is completely

immersed in a liquid [Fig. 12-6(c)]. AH these devices make use

of the fact that the natural direction of a plumbline in an ac-

celerated frame is defined by the combination of the gravitational

acceleration vector g and the negative of the acceleration a of

the frame itself.

A quite sensitive accelerometer of this same basic type, with

the further advantages of a quick response and a quick attain-

ment of equilibrium (without much overshoot or oscillation)

can be made by curving a piece of plastic tubing into a circular

arc and filling it with water or acetone until only a small bubble

remains [see Fig. 12-6(a)]. Figure 12-7(a) shows the record of

acceleration versus time as obtained with such an accelerometer

during the takeoff of a jet aircraft. Figures 12-7(b) and (c) show
the results of numerically integrating this record so as to obtain

the speed and the total distance traveled.

Accelerometers of a vastly more sophisticated kind can be

made by using very sensitive strain gauges, with electrical mea-

suring techniques, to record in minute detail the deformations

of elastic systems to which a mass is attached. Figure 12-8

shows in schematic form the design of such an instrument. If

the object on which the accelerometer is mounted undergoes an

acceleration, the inertial force experienced by the pendulum bob
begins to deflect it. This, however, unbalances slightly an elec-

trical capacitance bridge in which the pendulum forms part of

two of the capacitors, as shown. An error signal is obtained

which is used both to provide a measure of the acceleration and
to drive a coil that applies a restoring force to the pendulum.
Such an accelerometer unit may have a useful range from about

10
-5 "g" to more than 10 g.

'A book entitled Science for the Alrplane Passenger by Elizabeth A. Wood
(Ballantine, New York, 1969) has such a goniometer on its back cover and a
discussion of its use in the text. The book also describes a host of other ways
in which airplane passengers can discover or apply scientific principles during
their travels.
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Integrating

circuit

Signal

generator

Fig. 12-8 Electro-

mechanical acceler-

omeler system.

Amplifier

Bridge

unbalance

signal

ACCELERATING FRAMES AND GRAVITY

In all our discussions of accelerated frames, we have assumed

that the observers know "which way is up"— i.e., they know the

direction and magnitude of the force of gravity and treat it

(as we have done) as a real force, whose source is the gravitating

mass of the earth. But suppose our frame of reference to be a

completely enclosed room with no access to the external sur-

roundings. What can one then deduce about gravity and inertial

forces through dynamical experiments wholly within the room?

We shall suppose once again that there is an observer in a

frame, S, attachcd to the earth. This observer is not isolated;

he is able to verify that the downward acceleration of a particle

dropped from rest is along a line perpendicular to the earth's

surface and hence is directed toward the center of the earth. ' He

is able to draw the orthodox conclusion that this acceleration is

due to the gravitational attraction from the Iarge mass of the

earth. Our second observer is shut up in a room that defines the

frame S'. Initially it is known that the fioor of his room is

We are slill ignoring the rolation of the earth, which causes this statement to

be not quite correct. A falling object does nol fail exactly parallel to a plumb-

line. We shall come back to this when we diseuss rotating reference frames.
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horizontal and that its walls are vertical. In subsequent mea-

suremcnts, however, the observer in S' finds that a plumbline

hangs at an angle to what he had previously taken to be the

vertical, and that objects dropped from rest travel parallel to

his plumbline. The observers in S and S' report their findings to

one another by radio. The observer in S' then concludes that

he has three alternative ways of accounting for the component

of force, parallel to the floor, that is now exerted on all particles

as observed in his frame:

1

.

In addition to the gravitational force, there is an inertial

force in the —x direction due to the acceleration of his frame in

the +x direction.

2. His frame is not accelerating, but a large massive object

has been set down in the —x direction outside his closed room,

thus excrting an additional gravitational force on all masses in

his frame.

3. His room has been tilted through an angle e and an extra

mass has been placed beneath the room to increase the net

gravitational force. (This is close to being just a variant of

alternative 2.)

In supposing that all three hypotheses work equally well to

explain what happens in S', we must assume that the additional

massive object, postulated in alternatives 2 and 3, produccs an

effectively uniform gravitational field throughout the room.

From dynamical experiments made entirely within the closed

room, there is no way to distinguish among these hypotheses.

The acceleration of the frame of reference produces effects that

are identical to those of gravitational attraction. Inertial and

gravitational forces are both proportional to the mass of the

object under examination. The procedures for detecting and

measuring them are identical. Moreover, they are both de-

scribablc i n tcrms of the properties of a field (an acceleration

field) that has a certain strength and direction at any given point.

An object placed in this field experiences a certain force without

benefit of any contaet with its surroundings. Is all this just an

interesting parallel, or does it have a deeper significance?

Einstein, after pondering these questions, concluded that

there was indecd somcthing fundamental here. In particular, the

completely exact proportionality (as far as could be determincd)

between gravitational force and inertial mass suggested to him

that no physical distinetion could be drawn, at least within a
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(a)

(b)

Fig. 12-9 (a) Apple falling inside a box tha I rests on

Ihe earth. (b) Indistinguishable molion when Ihe apple

is inside an acceleraled box in ouler space.

limited region, between a gravitational field and a general ac-

celeration of the reference frame (see Fig. 12-9). He announced

this—his famous principle of equivalence—in 191 1.
1 The propor-

tionality of gravitational force to inertial mass now becomes an

exact necessity, not a n empirical and inevitably approximate

result. It is also implied that anything traversing a gravitational

field must follow a curved path, because such a curvature would

appear on purely kinematic and geometrical grounds if we re-

placed the gravitational field by the equivalent acceleration of our

own reference frame. I n particular, this should happen with

rays of light (see Fig. 12-10). With the help of these ideas Einstein

proceeded to construct his general theory of relativity, which

(as we pointed out in Chaptcr 8) is primarily a geometrical theory

of gravitation.

Fig. 12-10 Successive stages in ihe path of a hori-

zontally Iraveling object as observed within an enclosure

acceleraling certically upward. This illustrates ihe

eauicalence ofgraviiy and a general acceleration of the

reference frame.

'A. Einstein, Ann. Phys. (4) 35, 898 (1911), reprinted in translated form in

The Principle ofRelaticiiy (W. Perrett and G. B. Jeffery, translators), Methuen,

London, 1923 and Dover, New York, 1958.
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CENTRIFUGAL FORCE

We shall now consider a particular kind of inertial force that

always appears if the motion of a particle is described and

analyzed from the standpoint of a rotating reference frame. This

force—the centrifugal force— is familiar to us as the force with

which, for example, an object appears to puli on us if we whirl

it around at the end of a string. ' To introduce it, we shall consider

a situation of just this kind.

Suppose that a "tether ball" is being whirled around in

horizontal circular motion with constant speed (Fig. 12-11).

We shall analyze the motion of the ball as seen from two view-

points: a stationary frame S, and a rotating frame S' that rotates

with the same (constant) rotational speed as the ball. For con-

venience, we align the coordinate systems with their z and z' axes

(as well as origins) coincident. The rotational speed of S' relative

to S will be designated w (in rad/sec). Figure 12-11 shows the

analysis with respect to these two frames. The essential con-

clusions are these:

1. From the standpoint of the stationary (inertial) frame,

the ball has an acceleration (—

w

2
r) toward the axis of rotation.

The force, Fr , to cause this acceleration is supplied by the tether-

ing cord, and we must have

(In S) F, = —mo>-r

2. From the standpoint of a frame that rotates so as to kcep

exact pace with the ball, the acceleration of the ball is zero. We
can maintain the validity of Newton's law in the rotating frame

if, in addition to the force Fr , the ball experiences an inertial

force Fi, equal and opposite to Fr, and so direeted radially

outward

:

^{«-A + ft-O
[Fi = m<i>2r

The force Fi is then what we call the centrifugal force.

The magnitude of the centrifugal force can be cstablishcd

experimentally by an observer in the rotating frame S'. Let him

hold a mass m stationary (as secn in his rotating frame) by

•The name "centrifugal" comes from ihe Latin: cenlrum, the center, and

fugere, to ffee.
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Procedure Viewed from stationary frame S Viewed from rotating frame i"

l *\gj A \^
r . — a —-*—-S

Pictorial sketch of h '
- <&

problem

Bali is observed to move with

speed u in a circle of radius r

(angular speed u<)

Boy turns around at the same
angular speed o> as the ball;

from his point of view, the ball

is at rest

"Isolate fhe body." Draw
all forces that act on
the ball

\ T\>1

,
nng

T = tension in cord

mg = force of gravity

F, = inertial force due to viewing

the problem from a rotating

frame

For ease of calculation

we resolve forces into T sin $

\

T cos e

'mg

r sin 9

T cos e

F,

components in

mutually perpendicu-

lar directions
1

1 mg

Vertical Direction Vertical Direction

We now analyze the

problem in terms of

F = ma

Because there is no vertical ac-

celeration, we conclude that

the net vertical force must be

zero; hence
T cos - mg

Because there is no vertical

acceleration, we conclude that

the net vertical force must be

zero; hence;

T cos n = mg

Horizontal Direction Horizontal Direction

The object is t'

therefore acc

force (i.e.. th

forces) is hor

center of the

be equal in n

hence

T sin e -

This force is di

inward

aveling in a circle.

elerating: the net

B sum of all three

zontal toward the

circle, and must
lagnitude to mv*lr;

rected radially

The object is "at rest," therefore

the sum of all the forces on it

must be zero; hence F, is equal

in magnitude to T sin A From

the analysis in the left column.

it is given by

,. mv2 .
t

i
=—— = m<u'r

and is directed outward.

We call F, the centrifugal force

Fig. 12-11 Molion of a suspended ball, which is traveling in a horizontal

circle, as analyzedfrom the earth's reference frame andfrom a frame rotating

with the ball.
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Spring balance fastened

to the axis of rotation,

which is perpendicular

to the plane of the paper-

Fig. 12-12 Measurement of the W \^1>1)00000 t>~- A-.
force needed to hold an object at

rest in a rotating reference frame.

attaching it to a spring balance (Fig. 12-12). If the mass is at

any location except on the axis of rotation, the spring balance

will show that it is exerting on the mass an inward force propor-

tional to m and r. If the observer in S' is informed that his frame

is rotating at the rate of w rad/sec, he can confirm that this force

is equal to mwV. The observer explains the extension of the spring

by saying that it is counteracting the outward centrifugal force

on m which is present in the rotating frame. Furthermore, if the

spring breaks, then the net force on the mass is just the centri-

fugal force and the object will at that instant have an outward

acceleration of u2
r in response to this so-called "fictitious"

force. Once again the inertial force is "there" by every eriterion

we can apply (except our inability to find another physical system

as its source).

The magnitude of the centrifugal force is given, as we have

seen, by the equation

A

Fccntrifugai = m— = mw 2r (radially outward) (12-6)

A nice example of our almost intuitive use of this force, under

conditions in which there is nothing to balance it, is provided

by situations such as the following: We have been washing a

piece of straight tubing, and we want to get it dry on the inside.

As a first step we get rid of the larger drops of water that are

sitting on the inside walls. And we do this, not by shaking the

tube longitudinally, but by whirling it in a circular arc [Fig.

12-13(a)]. The analysis of what happens as we begin this rotation

gives a particularly elear picture of the difference between the

deseriptions of the process in stationary and rotating frames. It

also provides us with a different way of deriving the formula for

the centrifugal force itself.

Suppose that a drop, of mass m, is sitting on the inner wali

of the tube at a point A [Fig. 12-13(b)], a distance r from the

axis of rotation. Assume that the tube is very smooth, so that
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Fig. 12-13 (a) Shak-

ing a drop ofwater oul

ofa tube. (A) Analysis

of initial motion in

lerms of centrifugal

forces.

the drop encountcrs no resistance if it moves along the tube.

The drop must, however, be carried along in any transverse

movement of the tube resulting from the rotation. Then if the

tube is suddenly set into motion and rotated through a small

angle A0, the drop, receiving an impulse normal to the wali of

the tube at A, moves along the straight line AC. This, however,

means that it is now further from the axis of rotation than if it

had been fixcd to the tube and had traveled along the circular

arc AB. We have, in fact,

BC = r sec A0 - r

Now

sec AS = (cosA0)-' « [1 - KAfl)
2]"1

« 1 + KA<02

Therefore,

BC ~ £r(A0) 2

We can, however, exprcss A0 in terms of the angular velocity w

and the time Al: A0 = u A/. Thus we have

BC = iw 2r(Af)2

This is then recognizable as the radial displacement that occurs

in time Ar under an acceleration u 2
r. Hence we can put

"ccntrifiiciil — °> r

and so

fcentrifuRal = "'W 2 /"
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CENTRIFUGES

Notice, then, that what is, in fact, a small transverse displace-

ment in a straight line, with no real force in the radial direction,

appears in the frame of the tube as a small, purely radial dis-

placement under an unbalanced centrifugal force. The physical

fact that the drop i s moved outward along the tube is readily

understood in terms of either description. (We should add, how-

ever, that our analysis as it stands does only apply to the initial

step of the motion. Once the drop has acquired an appreciable

radial velocity, things become more complicated.)

The term "centrifugal force" is frequently used incorrectly.

For example, one may read such statements as "The satellite

does not fail down as it moves around the earth because the

centrifugal force just counteracts the force of gravity and hence

there is no net force to make it fail." Any such statement flouts

Newton's first law—A body with no net force on it travels in a

straight line. . . . For if the satellite is described as moving in

a curved path around the earth, it must also have an unbalanced

force on it. The only frame in which the centrifugal force does

balance the gravitational force is the frame in which the satellite

appears not to move at all. One can, of course, consider the

description of such motions with respect to a reference frame

rotating at some arbitrary rate different from that of the orbiting

object itself. In this case, however, the centrifugal contribution

to the inertial forces represents only a part of the story, and the

simple balancing of "real" and centrifugal forces does not apply.

In particular, let us reemphasize that in a nonrotating frame of

reference there is no such thing as centrifugal force. The long-

standing confusion that leads people to use the term "centrifugal

force" incorrectly has driven at least one author to extreme

vexation. In an otherwise sober and quite formal text the author

writes: "There is no answer to these people. Some of them are

good citizens. They vote the ticket of the party that is responsible

for the prosperity of the country; they belong to the only true

church; they subscribe to the Red Cross drive—but they have

no place in the Temple of Science; they profane it."

'

The laboratory centrifuge represents an immensely important

and direct application of the dynamical principle of centrifugal

force. The basic arrangement of a simple type of centrifuge is

'W. F. Osgood, Mechanics, Macmillan, New York, 1937.
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Fig. 12-14 (a) Ver-

lical section through

a simple centrifuge.

(b) Analysis of radial

sedimenlation in

terms of cenirifugal

forces.

shown in Fig. 12-14(a). Carefully balanced tubes of liquid are

suspended on smooth pivots from a rotor. When the rotor is

made to spin at high speed, the tubes swing upward and outward

into almost horizontal positions and may be maintained in this

orientation for many hours on end. At any point P in one of the

tubes [Fig. 12— 14(b)], distance r from the axis of rotation, there

is an effective gravitational field of magnitude w2
r, which may

be made very much greater than g. For example, if r = 15 cm

and the rotor spins at 25 rps (co = 50* sec
-1

), the value of w 2
r

is about 4000m/sec 2 or 400 g. Small particles in suspension in

the liquid will be driven toward the outward (bottom) end of the

tube much more quickly than they would ever be under the action

of gravity alone.

The basis for calculating the drift speed is the formula for

the resistive force to motion through a fluid at low speeds, which

we first met in Chapter 5. For a spherical particle of radius r

and speed v, this force is proportional to the product ro. If the

medium is water, the approximate magnitude of the force is

given by

R(v) « 0.02rv

where R is in newtons, r in meters, and v in m/sec. A steady

value of v is attained when this force just balances the driving

force associated with the effective gravitational field strength, g'.

In calculating this driving force it is important to allow for

buoyancy effects—i.e., Archimedes' principle. If the density of

the particle is pp and the density of the liquid is p ( ,
the driving

force is given by

F=y(p„-p,)rV
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This can be more simply expressed if we introduce the true

mass m of the particle (= 4irppr
3
/3), in which case we can put

To take a specific example, suppose that we have an aqueous

suspension of bacterial particles of radius 1 p., each with a mass

of about 5 X 10
-15

kg and a density about 1.1 times that of

water. If w6 take for g' the value 400 g calculated earlier, we find

F« 2 X 10~ 12 N

We thus obtain a drift speed given by

2 X 10~12

]n_4 ,^
2X10-^10-»

a '° m/S6C

This represents a settling rate of several centimeters per hour,

which makes for effective separation in reasonable times, whereas

under the normal gravity force alone one would have only a

millimeter or two per day.

The above example represents what one may regard as a

more or less routine type of centrifugation, but in 1925 the

Swedish chemist T. Svedberg opened up a whole new field of

research when, by achieving centrifugal fields thousands of times

stronger than g, he succccded in measuring the molecular weights

of proteins by studying their radial sedimentation. The type of

machine he developed for this purpose was appropriately named
the ultracenlrifuge, and Svedberg succeeded in producing centri-

fugal fields as high as about 50,000 g. The physicist J. W. Beams

has taken the technique even further through his development

of magnetic suspensions, in vacuum, that dispense with me-

chanical bearings altogether. The rotor simply spins in empty

space, with carefully controlled magnetic fields to hold it at a

constant vertical level against the normal puli of gravity. By
such methods Beams has produced centrifugal fields equivalcnt

to about 10° g in a usable centrifuge and fields as high as 10
9
#

in tiny objects (e.g., spheres of 0.001-in. diameter). The limita-

tion is set by the bursting speed of the rotor; this defines a maxi-

mum value of u proportional to l/r (see Chapter 7, p. 208).

Since the centrifugal field g' is equal to u2
r, and the limiting

speed sets an upper limit to ur, it may be seen that the attainable

value of g' varies as l/r.

The techniquc of ultracentrifuge methods has been brought
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to an extraordinary pitch of refinement. It has become possible

to determine molecular weights to a precision of bettcr than 1%
over a range from about 10

8 (virus particles) down to as low as

about 50. The possibitity of measuring the very low molecular

weights by this method is particularly impressive. Beams has

pointed out that in a solution of sucrose in water, the calculatcd

rate of descent of an individual sucrose molecule, of mass about

340 amu and radius about 5 A, would (according to the kind of

analysis we gave earlier) be less than 1 mm in 100 years under

normal gravity. (A rate as slow as this becomes in fact mean-

ingless because, as Beams points out, it would be completely

swamped by random thermal motions.) If a field of 10 5 g is

available, howevcr, the time constant of the sedimentation

process is reduced to the order of 1 day or less, which brings the

measurement well within the range of possibility.
!

This whole subject of centrifuges and centrifugation is a

particularly good application of the concept of inertial force,

because the phenomena are so appropriately described in terms

of static or quasistatic equilibrium in the rotating frame.

CORIOLIS FORCES

We have seen how the centrifugal force, mo>
2
r, exerted on a

particle of a givcn mass m in a frame rotating at a given angular

velocity w, depends only on the distance r of the particle from

the axis of rotation. In general, however, another inertial force

appears in a rotating frame. This is the Coriolis force,
2 and it

depends only on the velocity of the particle (not on its position).

We shall introduce this force in a simple way for some specific

situations. Later, by introducing vector expressions for rotational

motion, we shall develop a succinct notation that gives both the

centrifugal and Coriolis forces in a form valid in three dimensions

using any type of coordinate system.

The need to introduce the Coriolis force is easily shown by

comparing the straight-line motion of a particle in an inertial

frame S with the motion of the same particle as seen in a rotating

frame S'.

For further reading on this extremely interesting subject, see T. Svedberg

and K. O. Pedersen, The Ulrracentrifuge, Oxford University Press, New York,

1960, and J. W. Beams, "High Centrifugal Fields," Physics Teacher 1, 103

(1963).

2G. Coriolis, J. de VEcole Polytechnique, Cahier 24, 142 (1835).
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Suppose that S' is a coordinate system attached to a hori-

zontal circular table that rotates with constant angular speed w.

Let the vertical axis of rotation define the z' axis and suppose

that the table surface (in the x'y' plane) has no frietion. A string

fastened to the origin holds a partiele on the y' coordinate axis

at a radial distance r'a from the axis of rotation. Thus, in the S'

frame, the partiele is at rest in equilibrium under the combined

forees of the tension in the string and the centrifugal foree. (The

vertical foree of gravity and the normal foree of the table surface

always add to zero and need not concern us further.)

The same partiele is viewed from an inertial frame S which

coincides with S' at f = 0. In this stationary frame, the partiele

travels with uniform speed ve = ov" in a cirele of constant

radius r (= r' ) under the single unbalanced foree of the tension

in the string. There is, of course, no centrifugal foree in this

inertial frame.

At / = the string breaks. In S the partiele then travels

Fig. 12-15 Two different deseriptions of the molion of

an object that is initially tethered on a rotating disk and

begins molion under no forees at t = 0.

0, the string breaks. The dots

indicate the positions of the partiele

at successive equal time intervals

0, 1, 2, 3 At the same time instants

the rotating y' axis has the positions

shownby(O), (1), (2), (3),....

As seen in the rotating S' frame

The partiele is initially at rest. After the

string breaks, it begins to move radially

outward, but as soon as it acquires some
speed, it veers toward the right of the

y' axis.
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in a straight line with constant speed v = u>rQ as shown in Fig.

12-15(a). To find the motion in S', we compare in the stationary

frame the positions of the y' axis and the corresponding locations

of the particle at successive equally-spaced times. We discover

that the particle, as observed in S', not only moves radially

outward, but also moves farther and farther to the right of the

single radial line formed by the rotating / axis. This result is

plotted in Fig. 12— 15(b). To explain this motion as observed

in the rotating frame, it is necessary to postulate, in addition to

the centrifugal force, a sideways deflecting force. This deflecting

force is the Coriolis force. In the course of the following dis-

cussion, we shall determine its magnitude and show that it

always acts at right anglcs to any velocity v' in the S' frame.

We can find the magnitude of the Coriolis force by in-

vestigating another simple motion in these two frames. Suppose

that, instead of the situation just described, we make a particle

follow a radially outward path in the rotating frame at constant

velocity v'r . In this frame there must be no net force on the

particle. Hence we shall have to supply some real (inward) force

to counteraet the varying (outward) centrifugal force as the

particle moves. We shall not concern ourselves with these radial

components but will concentrate our attention only on the

transverse-foree components. In this way we can remove from

consideration the distortion of the trajectory by the centrifugal

force, which is purely radial.

How does the motion appear in the two frames? Figure

12— I6(b) shows the straight-line path of the object in the rotating

frame. But the path of the object in the stationary frame is a

curved line AB as shown in Fig. 12-16(a). In S the transverse

velocity vg (= ur) is greater at B than at A, because the radial

distance from the axis is greater at B. Hence there must be a

real transverse force to produce this increase of velocity seen in

the stationary frame. This real force might be provided, for

example, by a spring balance.

What does this motion look like in the rotating frame? In

S' the object moves outward with constant speed and hence has

no acceleration [see Fig. 12-16(b)]. This means, as we have

said, that there can be no net force on the object in the rotating

frame. But since an observer in S' sees the spring balance exert-

ing a real sideways force on the object in the +6 direetion, he

infers that there is a counteraeting inertial force in the — diree-

tion to balance it. This is the Coriolis force.
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Fig. 12-16 (a) Lab-

oratory view of the

path of a particle that

moves radially out-

ward on a rotaling

table. (b) The motion

as it appears in the

rotalingframe itself.

_____^_____^_____________^__

As seen in the stationary

s frame

The mass point foilows the

curved path frorrr A to 8.

As seen in the rotating

S' frame

The mass point moves radially

outward with constant speed.

co(r + 8r)

To determine its magnitude, let OA and OB in Fig. 12-17

be successive positions of the same radial line at times separated

by A/. Let OC be the bisector of the angle A0. The velocity

perpendicular to OC changes by the amount Avg during At, where

Ave = [co(r + Ar) cos(A0/2) + vT sin(A0/2)]

- [tar cos(A0/2) - v, sin(A0/2)]

For small angles we can put the cosine equal to 1 and the sine

equal to the angle, which leads to the following very simple

expression for Ao$

:

Avb a» coAr + vr A6

The transverse acceleration ao is thus given by

a6 = ai(Ar/Al) + ur(A0/Al)

But

Ar/Al = c r and A6/At = o>

Hence

at = 2uv,

Ft = 2mwor

Fig. 12-17 Basis of calculaling the Coriolis force for

a particle mocing radially at constant speed with re-

spect to a rotating tahle.
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This gives us the real force needed to cause the real acceleration

as judged in S. But as observed in the rotating frame S', there

is no acceleration and no net force. Hence the existence of the

Coriolis force, equal to — 2mcov'T , is inferred. (Note that vT — Vr.)

This inertial force is i n the negative B' direction, opposite to the

spring force, and is at right angles to the direction of motion

of the particle

:

Fs'(Coriolis) = -2mwo'r (12-7)

An important feature, which you should verify for yourself,

is that if we had considered a radially inward motion (v'r negative),

then we would have inferred the existence of a Coriolis force

acting in the positive B' direction. In both cases, therefore, the

Coriolis force acts to deflect the object in the same way with

respect to the direction of the velocity v' itself—to the right if

the frame S' is rotating counterclockwise, as we have assumed,

or to the left if S' rotates clockwise. It turns out, in fact, as we

shall prove later, that even in the case of motion in an arbitrary

direction the Coriolis force is always a deflecting force, exerted

at right angles to the direction of motion as observed in the

rotating frame.

The Coriolis force is very real from the viewpoint of the

rotating frame of reference. If you want toconvince yourself of

the reality of this "fictitious" force, ride a rotating merry-go-

round and try walking a radial line outward or inward. (Proceed

cautiously—the Coriolis force is so unexpected and surprising

that it is easy to lose one's balance!)

DYNAMICS ON A MERRY-GO-ROUND

As we have just mentioned, the behavior of objects in motion

within a rotating reference frame can run strongly counter to

one's intuitions. It is not too hard to get used to the existence

of the centrifugal force acting on an object at rest with respect

to the rotating frame, but the combination of centrifugal and

Coriolis effects that appear when the object is set in motion can

be quitc bewildering, and somctimes entertaining. Suppose, for

example, that a man stands at point A on & merry-go-round

[Fig. 12-18(a)] and tries to throw a ball to someone at B (or

perhaps aims for the bull's-eye of a dart board placed there).

Then the thrown object mystcriously veers to the right and

misses its target every time. One can blame part of this, of course,

on the centrifugal force itself. Howevcr, it is to be noted that
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Fig. 12-18 (a) Tra-

jectories ofobjects as

lliey appear to ob-

servers on a rotating

lable. (b) An object

projected on afriction-

less rotating table can

return to its starting

point.

since the magnitude of the centrifugal force is mu 2
r and that of

the Coriolis force is 2mwv', the ratio of these two forces is pro-

portional to v'fur. Thus if v' is made much greater than the actual

peripheral speed of the merry-go-round, the peculiarities of the

motion are governed almost entirely by the Coriolis effects. If

this condition holds, the net deflection of a moving object will

always be to the right with respect to v' on a merry-go-round

rotating counterclockwise. Thus if the positions A and B in

Fig. 12-18(a) are occupied by two people trying to throw a ball

back and forth, each will have to aim to the left in order to make

a good throw.

An extrcme case of this kind of behavior can cause an

object to follow a continuously curved path that brings it back

to its starting point, although it is not subjected to any real

forces at all. This phcnomenon has been demonstrated in the

highly entertaining and instructive film, Frames of Reference. 1

A dry-ice puck, launched at point A on a tabletop of plate glass

[Fig. 12-18(b)], can be caused by a skilled operator to follow a

trajectory of the kind indicated.

GENERAL ECjUATION OF MOTION IN A ROTATING FRAME 2

The goal of this discussion will be to relate the time derivatives

of the displacement of a moving object as observed in a sta-

'"Frames ofReference," by J. N. P. Humc and D. G. Ivey, Education Develop-

ment Center, Newton, Mass., 1960.
2This section may be omitted by a reader who is willing to take on trust its

final results—that the total inertial force in a rotating frame is the combination

of the centrifugal force with a Coriolis force corresponding to a generalized

formof Eq. (12-7).
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Fig. 12-19 Use of

angular velocity as a

vector to define the

linear velocity ofa

parlicle on a roiating

lable: v = to X r.

tionary frame S' and in a rotating frame 5'. To set the stage, we

shall introduce the idca that angular velocity may be represented

as a vector.

Consider first a point P on a rotating disk [Fig. 12-19(a)].

It has a purely tangential velocity, v$, in a direction at right

angles to the radius OP. We can describe this velocity, in both

magnitude and direction, if we define a vector according to the

same convention that we introduced for torque in Chapter 4.

That is, if the fingcrs of the right hand are curled around in the

sense of rotation, keeping the thumb extended as shown in

the figure, then w is represented as a vector, of length propor-

tional to the angular speed, in the direction in which the thumb

points. Thus with to pointing along the positive z direction, one

is defining a rotation that carries each point such as P from the

positive x direction toward the positive y direction. The rotation

of the disk is in this case counterclockwise as seen from above.

The velocity of P is now given by the vector (cross) produet

of to with the radius vector r:

v = to X r (12-8

This veetor-produet exprcssion is valid in three dimensions also,

if the position vector r of P is measured from any point on the

axis of rotation, as shown in Fig. 12-19(b). The radius of the

cirele in which P moves is R = r sin e. Thus we have v = vg =

cor sin 6, in a direction perpendicular to the plane defined by to

and r. That is precisely what Eq. (12-8) gives us.

Next, we consider how the change of any vector during a
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Fig. 12-20 (a) Change

ofa vector, analyzed

in terms ofits change

as measured on a

rotaling lable, to-

gel/ier with the change I
due lo rolalion of the

lable iiself. (6) Sim-

ilar analysisfor an

arbitrary veclor

referred to any origin

on the axis ofrotation.

small time interval At can be exprcssed as the vector sum of two

contributions:

1. The change that would occur if it were simply a vector

of constant length embedded in the rotating frame S'.

2. The further change described by its change of length and

direction as observed in S'.

In Fig. 12-20(a) we show this analysis for motion confined

to a plane. The vector A at time / is represented by the line CD.

If it remains fixed with respect to a rotating table, its direction

at time t + At is given by the line CE, where A8 = w At. Thus

its change due to the rotation alone would be represented by

DE, where DE = A Ad = Au At. From the standpoint of

frame S' this change would not be observed. There might, how-

ever, be a change represented by the line EF; we shall denote

this as AAS—the change of A as observed in S'. The vector

sum of DE and EF, i. e., the line DF, then represents the true

change of A as observed in 5. We therefore denote this as AXS .

In Fig. 12-20(b) we show the corresponding analysis for

three dimensions. The length of DE is now equal to A sin 6 Aip;

its direction is perpendicular to the plane defined by w and A.

Since A<p = u At, we can put

vector displacement DE = (u X A) A/

The displacement AA s- may be in any direction with respect to

DE, but the two again combine to give a net displacement DF
which is to be identified with AAs. Thus we have
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AAS = AAS ' + (w X A)Af

We can at once proceed from this to a relation between the ratcs

of change of A as observed in S and S', respectively:

\drjs \ di J s-
+ « X A (12-9)

This is a very powerful relation because A can be any vector

we please.

First, we shall choose A to be the position vector r. Then

(d\/dt)s is the true velocity, v, as observed in S, and (dA/dt)g> is

the apparent velocity, v', as observed in S'. Thus we immediately

have

v = v' + « X r (12-10)

Next, we shall choose A to be the velocity v:

Now (dv/dt)s is the true acceleration, a, as observed in S. The

quantity (d\/dt)s - is, however, a sort of hybrid— it is the rate of

change in S' of the velocity as observed in S. We can make more

sense of this if we substitute for v from Eq. (12-10); we then have

®,-(& +•*$„
The two terms on the right of this equation are now quite recog-

nizable; (d\'/dl)s- is the acceleration, a', as observed in S', and

(dr/dt)s> is just v'. Thus we have

(£), = •*- X v'

Substituting this in Eq. (12-11) we thus get

a = a'+«Xv' + «Xv

We do not need to have both v and v' on the right-hand side,

and we shall again substitute for v from Eq. (12-10). This gives

us finally

a = a' + 2u X v' + u X (w X r) (12-12)

A remark is in order regarding the last term, which involves
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the cross product of three vectors. According to the rules of

vector algebra, the cross product inside the parentheses is to be

taken first, then the other cross product performed. A nonzero

answer will result for all cases where the angle formed by u and r

is other than 0° or 180°. Performing the cross products in the

reverse (incorrect) order, however, would result in zero for all

cases, regardless of the angle between these vectors.

Multiplying Eq. (12-12) throughout by the mass m of the

object, we recognize the left side as the net external force on

the mass as seen in the stationary system.

ma = Fnct = m»' + 2m(w X v') + m[u X (<o X r)]

In the rotating frame of reference, the object m has the accelera-

tion a'. We may preserve the format of Newton's second law in

this accelerated frame of reference by rearranging the above

equation, so as to be able to write

Fi* = roa'

where

(12-13a)

FL = Fnet - 2m(« X v') - m[u X (to X r)]

"real" Coriolis centrifugal

(12-13b)

force force force

inertial

forces

The mathematical form of Eq. (12-13b) shows that both the

Coriolis force and the centrifugal force are in a direction at

right angles to the axis of rotation defined by u. The centrifugal

force, in particular, is always radially outward from the axis, as

is clear if one considers the geometrical relationships of the

vectors involved in the product —u X (w X r), as shown in

Fig. 12-21. The equation also shows that the Coriolis force

es

Fig. 12-21 Relalion of the vectors in-

volved informing the centrifugal accelera-

tion — c» X (w X r).

uxr

-» x (u x r)
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would reverse if thc direction of u were reversed, but the direction

of the centrifugal force would remain unchanged.

The specification of F' in Eq. (12-13) can be made entirely

on the basis of measurements of position, velocity, and accelera-

tion as observed within the rotating fratne itself. The centrifugal

term, involving the vector r, might seem to contradict this, but

we could just as well put r' instead of r, because observers in

the two frames do agree on the vector position of a moving object

at a given instant, granted that they use the same choice of origin.

To summarize, we have established by the above calculation

that the dynamics of motion as observed in a uniformly rotating

frame of reference may be analyzed in terms of the following

three categories of forces:

"Real": Fnnt

Coriolis:

-2m(oi X v')

This is the sum of all the "real" forces on

the object such as forces of contaet, tensions

in strings, the force of gravity, electrical

forces, magnetic forces, and so on. Only

these forces are seen in a stationary frame of

reference.

The Coriolis force is a deflecting force always

at right angles to the velocity v' of the mass

m. If the object has no velocity in the

rotating frame of reference, there is no

Coriolis force. It is an inertial force nol seen

in a stationary frame of reference. Note

minus sign.

The centrifugal force depends on position

only and is always radially outward. It is an

< inertial force not seen in a stationary frame

I of reference. We could equally well write it

(as — m[o> X (<•> X r')]. Note the minus sign.

THE EARTH AS A ROTATING REFERENCE FRAME

In this seetion we shall consider a few examples of the way in

which the earth's rotation affects the dynamical processes oc-

curring on it.

The local value of g

If a partiele P is at rest at latitude X near the earth's surface,

then as judged in the earth's frame it is subjected to the gravita-
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Fig. 12-22 (a) Forces on an objecl at rest Ott the earth,

as interpreted in a reference frame that roiates wilh l/ie

eart/i. (b) An objecl falling from rest relalive to Ihe

earth undergoes an eastward displacement. (c) The fall-

ing motion of (b), as seen from a frame thal does nol

roiale wilh ihe earth.

tional force F„ and the centrifugal force Fccnt shown in Fig.

12-22(a). The magnitude of the latter is given, according to

Eq. (12-13b), by the equation

^cent = rnu>
2R sin 9 = mu R cosX

where R is the earth's radius. We have already discussed in

Chapter 8 the way in which this centrifugal term reduces the

local magnitude of g and also modifies the Iocal direction of the

vertical as dcfined by a plumbline. The analysis is in fact much

simpler and clearer from the standpoint of our natural reference

frame as defined by the earth itself. We have, as Fig. 12-22(a)

shows, the following relations:

Fa — moi Rcos XFr = F, - Fccnt COS X

F$ = Fcnt sin X = mu R sin X cos X

Deviation offreelyfalling objects

(12-14)

If a particle is releascd from rest at a point such as P in Fig.

12-22(a), it begins to accelerate downward under the action of a

net force F' whose components are given by Eq. (12-14). As
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soon as it has any appreciable velocity, however, it also expe-

riences a Coriolis force given by the equation

Fcorioiu = -2mn X v' (12-15)

Now the velocity v' is i n the plane PON containing the earth's

axis. The Coriolis force must be perpendicular to this plane, and

a consideration of the actual directions of u and v' shows that

it is eastward. Thus if we set up a local coordinate system defined

by the local plumbline vertical and the local easterly direction,

as in Fig. 12-22(b), the falling object deviates eastward from a

plumbline AB and hits the ground at a point C. The effect is

very small but has been detected and measured in careful ex-

periments (see Problem 12-24).

To calculate what the deflection should be for an object

falling from a given height h, we use the fact that the value of v'

to be inserted in Eq. (12-15) is extremely well approximated by

the simple equation of free vertical fail

:

v' = gt

where v' is measured as positive downward. Thus if we label the

eastward direction as x', we have

m—r-r- = (2mu> cos X)gt

Integrating this twice with respect to t, we have

x' = $gwta cos X (12-16)

For a total distance of vertical fail equal to h, we have t =

(2h/g) U2 , which thus gives us

X
,_2V|«C<|X

A
3,2

(121?)

Inserting approximate numcrical values (w = 2xday-1 ~7X
10
-5

sec
-1

), one finds

x' ~ 2 X 10-5
A3/2 cos X (x' and h in m)

Thus, for example, with h = 50 m at latitude 45°, one has

x" « 5 mm, or about ? in.

It is perhaps worth reminding oneself that the effects of

inertial forces can always be calculated, if one wishes, from the
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standpoint of an inertial frame in which these forces simply do

not exist. In the present case, one can begin by recognizing that

a particle held at a distance h above the ground has a higher

eastward velocity than a point on the ground below. For sim-

plicity, let us consider how this operates at the equator (X = 0).

Figure I2-22(c) shows the trajectory of the falling object as

seen in a nonrotating frame. The object has an initial horizontal

velocity given by

DO, = o>(R + h)

After a time t it has traveled a horizontal distance x given, very

nearly, by coRt. With the object now at P (see the figure) the

gravitational force acting on it has a very small component in

the negative x direction. We have, in fact,

Fx *» — jf( « —mgmt

Hence

A

Integrating once, we have

dx , 2j
t

~ "o*- is°»

Substituting the value vQx = w(R + h), this gives, as a very

good approximation,

d
ft

= co(« + /o - iga
2

Integrating a second time, we have

x - «(* + h)i - \gut3

However, the point O at the earth's surface is also moving, with

a constant speed of coR. Thus, when the falling object hits the

ground at C, the point O has reached O', where 00' = uRl.

Hence we have

x' = O'C w oj/>/ - i*cor 3

If we substitute h = \gt 2
, we at once obtain the result given by
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Fig. J2-23 Formation ofa cyclone In the

northern hemisphere, under the aclion of

Coriolis forces on the moving air masses.

Low

Eq. (12-16) for X = 0. [Or, of course, we can substitute t =

V2h/g and arrive at Eq. (12-17)].

Patterns of atmospheric circulation

Because of the Coriolis effect, air masses being driven radially

inward toward a low-pressure region, or outward away from a

high-pressure region, are also subject to deflecting forces. This

causes most cyclones to be in a counterclockwise direction in the

northern hemisphere and clockwise in the southern hemisphere.

The origin of these preferred rotational directions may be seen

in Fig. 12-23, which shows the motions of air in the northern

hemisphere moving toward a region of low pressure. The hori-

zontal components of the Coriolis force deflect these motions

Fig. 12-24 Tiros satellite photo-

graph of a cyclone. (Courtesy of

Charles W. C. Rogers and N.A.S.A.)

i

BJty.\~ -— 31 I

^fl ^^^-*" ^f^m
*•*-»• ^^^B^^

|§£$ .RJ—«.'— fl_C^K2l^

V'
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toward the right. Thus, as the air masses converge on the center

of the low-pressure region, they produce a net counterclockwise

rotation. For air moving north or south over the earth's surface

the Coriolis force is due east or due west, parallel to the earth's

surface. If we consider a 1-kg mass of air at a wind velocity of

10 m/sec (about 22 mph) at 45° north latitude, a direct applica-

tion of Eq. (12-15) gives us

, Fcorioii, - 2mui/ sin X « (2)(1)(2tt X lO" 5
)

X (10)(0.707) w 10"3 N

If we had considered air flowing in from east or west, the Coriolis

forces would not be parallel to the earth's surface, but their

components parallel to the surface would be given by the same
equation as that used above. (Verify this.)

The approximate radius of curvature of the resultant motion

may be obtained from

2

R

or

2

R = m—^ « 1 X -r^r-r. = 10'5 m (about 60 miles)
rCorioli. 10 •»

As air masses move over hundreds of miles on the earth's sur-

face, they often form huge vortices—as is dramatically shown
in the Tiros weather satellite photograph in Fig. 12-24.

Occasionally one reads that water draining out of a basin

also circulates in a preferred direction because of the Coriolis

force. In most cases, the Coriolis force on the flowing water is

negligible compared with other larger forces which are present;

however, if extremely precise and careful expcriments are per-

formed, the effect cari be demonstrated. 1

The Foucault pendulum

No account of Coriolis forces would be complete without some
mention of the famous pendulum experiment named after the

French physicist J. B. L. Foucault, who first demonstrated in

1851 how the slow rotation of the plane of vibration of a pen-

'See, for example, the film "Balhtub Vortex," an exccrpt from "Vorticity,"

by A. H. Shapiro, National Council on Fluid Mechanics, 1962.
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Fig. 12-25 (a) A
pendulum swinging

along a north-south

line at lalilude X.

(b) Palh ofpendulum

bob, as seenfrom

above. (The change

ofdireclion per swing

is, however, grossly

exaggerated.)

dulum could be used as evidence of the earth's own rotation.

It is easy, but rather too glib, to say that of course we are

simply seeing the effect of the earth turning beneath the pendulum.

This description might properly be used for a pendulum sus-

pended at the north or south pole. One can even press things a

little further and say that at a given latitude, X [see Fig. 12-25(a)]

the earth's angular velocity vector has a component w sin X along

the local vertical. This would indeed lead to the correct result—

that the plane of the pendulum rotates at a rate corresponding

to one complete rotation in a time 7"(X) given by

HX) = lir

>sinX
24 esc X hours (12-18)

But the pendulum is, after all, connected to the earth via its

suspending wire, and both the tension in the wire and the gravita-

tional force on the bob lie in the vertical plane in which the

pendulum is first set swinging. (So, too, is the air resistance, if

this needs to be considered.) It is the Coriolis force that can be

invoked to give a more cxplicit basis for the rotation. For a

pendulum swinging in the northern hemisphere, the Coriolis

force acts always to curve the path of the swinging bob to the

right, as indicatcd in exaggerated form in Fig. 12-25(b). As

with the Coriolis force on moving air, the effect does not depend

on the direction of swing—contrary to the intuition most of us

probably have that the rotation is likely to be more marked

when the pendulum swings along a north-south line than whcn

it swings east-west.
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THE TIDES

Fig. 12-26 (a) Double

tidal bulge as it

would be if the earlh's

rotation did not dis-

place it. The size of

the bulge is enor-

mously exaggerated.

(b) Approximate true

orientation ofthe

tidal bulges, carried

eastwardby the earth's

rotation.

As everyone knows, the production of ocean tides is basically

the consequence of the gravitational action of the moon—and,

to a lesser extent, the sun. Thus we could have discussed this as

an example of universal gravitation in Chapter 8. The analysis

of the phenomenon is, however, considerably helped by intro-

ducing the concept of inertial forces as developed in the present

chapter.

The feature that probably causes the most puzzlement when

one first learns about the tides is the fact that there are, at most

places on the earth's surface, two high tides every day rather

than just one. This corresponds to the fact that, at any instant,

the general distribution of ocean levels around the earth has two

bulges. On the simple model that we shall discuss, these bulges

would be highest at the places on the earth's surface nearest to

and farthest from the moon [Fig. 12-26(a)]. While the earth

performs its rotation during 24 hr, the positions of the bulges

would remain almost stationary, being defined by the almost

constant position of the moon. Thus, if one could imagine the

earth completely girdled by water, the depth of the water as

measured from a point fixed to the earth's solid surface would

pass through two maxima and two minima in each revolution.

A better approximation to the observed facts is obtained by con-

sidering the bulges to be dragged eastward by friction from the

land and the ocean floor, so that their equilibrium positions with

respect to the moon are more nearly as indicated in Fig. 12-26(b).

To conclude these preliminary remarks, we may point out

that the bulges are, in fact, also being carried slowly eastward

all the time by the moon's own motion around the earth. This

motion (one complete orbit relative to the fixed stars every
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27.3 days) has the consequence that it takes more than 24 hr for

a given point on the earth to make successive passages past a

particular tidal bulge. Specifically, this causes the theoretical

time interval between successive high tides at a given place to be

close to 12 hr 25 min instead of precisely 12 hr (see Problem 2-15).

For example, if a high tide is observed to occur at 4 p.m. one

day, its counterpart next day would be expected to occur at about

4:50 p.m.

Now let us consider the dynamical situation. The first

point to appreciate is the manner in which the earth as a whole

is being accelerated toward the moon by virtue of the gravita-

tional attraction between them. With respect to the CM of the

earth-moon system (inside the earth, at about 3000 miles from

the earth's center), the earth's center of mass has an acceleration

of magnitude ac given by Newton's laws:

MrOc = GMeM„,

rm2

i.e.,

ac = GMm
(12-19)

where Mm and r„, are the moon's mass and distance. What may

not be immediately apparent is that every point in the earth

receives this same acceleration from the moon's attraction. If

Flg. 12-27 The or-

bital motion ofthe

earth about the moon

does not by itselfin-

volce any rotation of

the earth; the line

AiBi is carried into

the parallel configura-

tion A2B2.
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one draws a sketch, as shown in Fig. 12-27, of the arcs along

which the earth's center and the moon travel in a certain span

of time, one is tempted to think of the earth-moon system as a

kind of rigid dumbbell that rotates as a unit about the center of

mass, O. It is true that the moon, for its part, does move so that

it presents always the same face toward the earth, but with the

earth itself things are different. If the earth were not rotating on

its axis, every point on it would follow a circular arc identical in

size and direction to the arc C XC2 traced out by the earth's

center. The line AiBy would be translated into the parallel line

A 2B2 . The earth's intrinsic rotation about its axis is simply

superposed on this general displacement and the associated

acceleration.

This is where noninertial frames come into the picture.

The dynamical consequences of the earth's orbital motion around

the CM of the earth-moon system can be correctly described in

terms of an inertial force, —mac, experienced by a particle of

mass m wherever it may be, in or on the earth. This force is

then added to all the other forces that may be acting on the

particle.

In the model that we are using—corresponding to what is

called the equilibrium theory of the tides—the water around the

earth simply moves until it attains an equilibrium configuration

that remains stationary from the viewpoint of an observer on

the moon. Now we know that for a particle at the earth's center,

the centrifugal force and the moon's gravitational attraction are

equal and opposite. If, however, we consider a particle on the

earth's surface at the nearest point to the moon [point A in

Fig. 12-28(a)], the gravitational force on it is greater than the

centrifugal force by an amount that we shall call/ :

Fig. 12-28 (a) Dif-

ference belween cen-

trifugalforce and the

earth's gravity at the

points nearest to and

farthest from the

moon. (b) Tide-

producing force at an

arbitrary point P,

showing existence of a

transverse component.
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GMmm _ GMmm

Since RE « rm (RE « rm/60), we can approximate this expres-

sion as follows:

/o =

i.e.,

GMmm
[(-r-]

/„«H™^*, (12_20)

By an exactly similar calculation, we find that the tide-producing

force on a particle of mass m at the farthest point from the moon

[point B in Fig. 12-28(a)] is equal to —f ; hence we recognize

the tendency for the water to be pulled or pushed away from a

midplane drawn through the earth's center (see the figure).

By going just a little further we can get a much better in-

sight into the problem. Consider now a particle of water at an

arbitrary point P [Fig. 12-28(b)]. Relative to the earth's center,

C, it has coordinates (x, y), with x = RE cos 6, y = RE sin 6.

The tidal force on it in the x direction is given by a calculation

just like those above:

m IGM^n
x _ IGM^n^ cqs g (]2_21)

This yiclds the results already obtained for the points A and B

if we put d = or ir. In addition to this force parallel to the

line joining the centers of the earth and the moon there is also,

however, a transverse force, because the line from P to the moon's

center makes a small angle, a, with the x axis, and the net gravita-

tional force, GMmm/r'
2

, has a small component perpendicular to

x, given by

GMmm . , ... ,

/„ = j— sin a (with r = r*)

Now we have

y
tana =

Since a is a very small angle [<tan (/?/.;//•„,), which is about 1°]

wc can safely approximate the above exprcssion:

534 Inertial forces and noninerlial frames



Fig. 12-29 Pattern

of tide-producing

forces around the

earlh. The circular

dashed line shows

where the undisturbed

waler surface would

be.

y_ _ RE sin d

rm r-

The component/„ of the tidal force is then given by

GMmm GMmm
fv » 5— y = 5— Re sin (12-22)

We see that this transverse force is greatest at d = ir/2, at which

point it is equal to half the maximum value (/ ) offx . Using

Eqs. (12-21) and (12-22) together, we can develop an over-all

picture of the tide-producing forces, as shown in Fig. 12-29.

This shows much more convincingly how the forces act in such

directions as to cause the water to flow and redistribute itself in

the manner already qualitatively described.

TIDAL HEIGHTS; EFFECT OF THE SUN 1

How high ought the equilibrium tidal bulge to be? If you are

familiar with actual tidal variations you may be surprised at the

'This section goes well beyond the scope of the chapter as a whole but is

added for the interest that it may have.
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result. The equilibrium tide would be a rise and fail of less than

2 ft. We can calculate this by considering that the work done

by the tidal force in moving a particle of water from D to A
(Fig. 12-29) is equivalent to the increase of gravitational po-

tential energy needed to raise the water through a height h

against the earth's normal gravitational puli. ' The distance h is

the difference of water levels between A and D. Now, using

Eqs. (12-21) and (12-22) we have

dW = fz dx + f„dy

GMmm ,_ , .=
ir~ (2xdx - ydy)W

r rRE r°GMmm
Wda = 2x dx — / ydy

rm3 U o Jrb

3GMmm 2

Setting this amount of work equal to the gain of gravitational

potential energy, mgh, we have

_ 3GMmRB
2

(12_23)
2grma

The numerical values of the relevant quantities are as follows:

G = 6.67 X 10~n m3
/kg-sec

2

Mm = 7.34 X 10
22

kg

rm = 3.84 X 10
8 m

RE = 6.37 X 10° m
g = 9.80 m/sec

2

Substituting these in Eq. (12-23) we find

A « 0.54 m « 21 in.

The great excess over this calculated value in many places (by

factors of 10 or even more) can only be explained by considering

the problem in detailed dynamical terms, in which the accumula-

tion of water in narrow estuaries, and resonance effects, can

completely alter the scale of the phenomenon. The value that

we have calculated should bc approximated in the open sea.

The last point that we shall consider here is the effect of the

sun. Its mass and distance are as follows:

Technically, this condition corrcsponds to the water surface being an energy

equipotential.
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M, = 1.99 X 1030 kg

r„ = 1.49X10" m

If we directly compare the gravitational forces exerted by the

sun and the moon on a particle on the earth, we discover that the

sun wins by a large factor:

F, MJr? M.(rm\\
F„ Mm/rm2~ Mm \r.)

°

What matters, however, for tide production is the amount by

which these forces change from point to point over the earth.

This is expressed in terms of the gradient of the gravitational

force: •

m = 2p
/=AF=-^Ar (,2-24)

Putting M = Mm , r = rm , and Ar = ±RE , we obtain the forces

±/ corresponding to Eq. (12-20).

We now see that the comparative tide-producing forces due

to the sun and the moon are given, according to Eq. (12-24), by

the following ratio:

Substituting the numerical values, one finds

fy « 0.465
Jm

This means that the tide-raising ability of the moon exceeds that

of the sun by a factor of about 2.15. The effects of the two
combine linearly—and, of course, vectorially, depending on the

relative angular positions of the moon and the sun. When they

are on the same line through the earth (whether on the same side

or on opposite sides) there should be a maximum tide equal to

1.465 times that due to the moon alone. This should happen
once every 2 weeks, approximately, when the moon is new or

full. At intermediate times (half-moon) when the angular posi-

tions of sun and moon are separated by 90°, the tidal amplitude

should fail to a minimum value equal to 0.535 times that of the

moon. The ratio of maximum to minimum values is thus

about 2.7.
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THE SEARCH FOR A FUNDAMENTAL INERTIAL FRAME

The phenomena that we have discussed in this chapter seem to

leave us in no doubt that the acceleration of one's frame of

reference can be dctected by dynamical means. They suggest

that a very special status does indeed attach to inertial frames.

But how can we be sure that we have identified a true inertial

frame in which Galileo's law of inertia holds exactly?

We saw at the very beginning of our discussion of dynamics

that the earth itself represents a good approximation to such a

frame for many purposes, especially for dynamical phenomena

whose scale in distance and time is small. But we have now seen

* abundant evidence that a laboratory on the earth's surface is

accelerated. If the laboratory is at latitude X (see Fig. 12-30),

each point in it is accelerating toward the earth's axis of rotation

with an acceleration given by

a\ = oi
2R cos X

with

01 = 27r/86,400sec- 1

R = 6.4 X 10
6 m

This gives

a\ = 3.4 X 10- 2 cosXm/sec 2

This acceleration of a frame of reference tied to the earth is,

as we know, not the simplest case of an accelerated frame. The

linearly accelerated frames with which we began this chapter are

much more readily analyzed. It was, however, the phenomena

associated with rotating frames that led Newton to his belief in

absolute space and in the absolute character of accelerations.

Near the beginning of the Principia he describes a celebrated

Fig. 12-30 Acceleration toward ihe earth's

axis by virtue ofits rotation.
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Bucket rotating

water stationary

Bucket and
water rotating

together

Bucket stationary

water rotating

Fig. 12-31 Main features ofllie experiment that

Newton guolecl as evidence oflhe absolute character of

rotation and the associated acceleration.

experiment that he made with a bucket of water. It is ari experi-

ment that anyone may readily repeat for himself. The bucket is

hung on a strongly twisted rope and is then released. There are

three key observations, depicted in Fig. 12-31:

1. At first the bucket spins rapidly, but the water remain's

almost at rest, before the viscous forces have had time to set it

rotating. The water surface is flat, just as it was before the bucket

was released.

2. The water and the bucket are rotating together; the

water surface has become concave (see Problem 12-18).

3. The bucket is suddenly stopped, but the body of water

continues to rotate, and its surface remains curved.

'

Clearly, said Newton, the relative motion of the bucket and

the water is not the factor that determines the curvature of the

water surface. It must be the absolute rotation of the water in

space, and its attendant acceleration, that is at the bottom of

the phenomenon. And with the help of F = ma, we can account

for it quantitatively.

Newton's argument is a powerful one. He could point to

further evidence in support of his views in the bulging of the

earth itself by virtue of its rotation. The equatorial diameter

of the earth is greater than the polar diameter by about 1 part

in 300. It seems almost obvious, even without detailed calcula-

tion, that this is closely tied to the fact that a^/g is about g£t5 at

the equator and is zero at the poles (although the detailed cal-

culation is, in fact, a bit messy).

Newton did not stop here, of course, He held the key of

universal gravitation. Even a nonrotating earth would not be

an inertial frame, because the whole earth is accelerating toward

the sun.

For this system we have

a> = 2ir/(3.l6 X lO^sec- 1

R = 1.49 X 10n m
a2 = o)

2
/? = 5.9 X 10-3 m/sec 2

Newton does not suggest that he actually performed this third step, but it

represents a natural completion of the experiment as one might perform it

for oneself.
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If we could conceive of an object that was immune to the gravita-

tional attraction of the sun, it would not obey the law of inertia

as observed from a reference frame attached to the earth. From

Newton's standpoint the acceleration is real and absolute and is

linked to the existence of a well-defined gravitational force pro-

vided by the sun.

That was about the end of the road as far as Newton was

concerned. For him the system of the stars provided the arena in

which the motions that he so brilliantly analyzed took place.

A reference frame attached to these fixed stars could be taken to

constitute a true inertial system, even though it might not coin-

cide with the absolute space in which he believed.

Today, thanks to the work of astronomers, we know a good

deal about the motions of some of those "fixed" stars. We have

come to be aware of our involvement in a general rotation of our

Galaxy. The sun would appear to be making a complete circuit

of the Galaxy in about 2.5 X 10
8
years at a radial distance of

about 2.5 X 10
4 light-years from the center. For this motion

we would have

co~ 2tt/(8 X 10
15)sec-'

«« 2.4 X 1020 m
a 3 « 10- 10 m/sec2

It looks as though this acceleration can be reasonably accounted

for by means of Newton's law of universal gravitation, if we

regard the solar system as having a centripetal acceleration under

the attraction of all the stars lying within its orbit. But no

dynamical experiments that we do on earth require us to take

into account this extremely minute effect—or, even, for most

purposes, the revolution of the earth about the sun. (The rotation

of the earth on its own axis is, however, an important con-

sideration—and indeed an important aid in such matters as

gyroscopic navigation.) Figure 12-32 schematizes the three

rotating frames in which we find ourselves (we ignore here the

acceleration caused by the moon).

But we still have not found an unaccelerated object to which

we can attach our inertial frame of reference. In fact, we could

extend this tantalizing search even further. There is some evi-

dence that galaxies themselves tend to cluster together in groups

containing a few galaxies to perhaps thousands. Our local group

consists of about 10 galaxies. Although individual galaxies

could have rather complex motions with respect to each other,
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Fig. 12-32 Accelera-
|

tions ofany laboratory

referenceframe at-

tached to the earth's

surface.

this group is believed to have a more or less common motion

through space.

So where are the "fixed" stars or other astronomical objects

to which we can attach our inertial frame of reference? It ap-

pears that referring to the "fued stars" is not a solution and

contains an uncomfortable element of metaphysics (although we

frequently usc this phrasc as a shorthand designation for the

establishment of an inertial frame). This does not mean that

the astronomical search for an inertial frame has been without

value. For, at lcast up to the galactic level, it would seem that

apparent departures from the law of inertia can be traced to

identifiable accelerations of the reference frame in which motions

are observed. However, the quest is incomplete, and so it seems

likely to remain. Ultimatcly, therefore, we rely on an operational
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definition based upon local dynamical experiments and observa-

tion. We define an inertial frame to be one in which, experi-

mentally, Galileo's law of inertia holds. The very existence of the

inertial property remains, however, a deep and fascinating prob-

lem, and we shall end the chapter with a few remarks about this

most fundamental feature of dynamics.

SPECULATIONS ON THE ORIGIN OF INERTIA

Not everyone accepted Newton's view that the phenomena

associated with rotating objects demonstrated the absolute

character of acceleration. The philosopher-bishop, George

Berkeley, was perhaps the first person to argue 1
that all motions,

including rotational ones, only have meaning as motions relative

to other objects. The circling of two spheres around their center

of mass could not, he said, be imagined in a space that was

otherwise empty. Only when we introduce the background

represented by the stars do we have a basis for recognizing the

existence of such motion.

About 150 years later (in 1872) the German philosopher

Ernst Mach presented the same idea in much more cogent form.

He wrote:

For mc, only relative motions exist . . . and I can see, in this

regard, no distinction between rotation and translation. Ob-

viously it does not matter if we think of the earth as turning

round on its axis, or at rest while the fixed stars revolve around

it . . . But if we think of the earth at rest and the fixed stars

revolving around it, there is no flattening of the earth, no

Foucault's experiment and so on—at least according to our

usual conception of the law of inertia. Now one can solve the

difflculty in two ways. Either all motion is absolute, or our law

of inertia is wrongly expressed ... I prefer the second way.

The law of inertia must be so conceived that exactly the same

thing results from the second supposition as from the first. By

this it will be evident that in its expression, regard must be paid

to the masses of the universe.
2

In his iraet De Moiu, written in 1717, 30 years after the publication of

Newton's Principia.

2E. Mach, Hislory and Rool of the Principle of the Consercation of Energy,

(2nd ed.), Barth, Leipzig (1909). English translation of the 2nd edition by

P. Jourdain, Open Court Publishing Co., London, 1911. Actually the first

sentence of the quolation is taken from Mach's classic book, The Science of

Mechanics, first published in 1883.
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Thus was born the profound and novel idea—subsequently to

become famous as Mach's principle—that the inertial property

of any given object depends upon the presence and the distribu-

tion of other masses. Einstein himself accepted this idea and

took it as a central principle of cosmology.

If one admits the validity of this point of view, then one

sees that the whole basis of dynamics is involved. For consider

the method that we described in Chapter 9 (p. 319) for finding

the ratio of the inertial masses of two objects. This ratio is given

as the negative inverse ratio of the accelerations that they produce

by their mutual interaction:

/Ml _ (22

W2 O i

This looks very simple and straightforward, but it is clear that

our ability to attach specific values to the individual accelera-

tions, as distinct from the total relative acceleration, depends

completely on our having identified a reference frame in which

these accelerations can be measured. For this purpose the

physical background provided by other objects is essential.

In looking critically at the phenomena of rotational motion,

Mach attacked some intuitive notions that are much more deep-

seated than any that we have in connection with straight-line

motion. He considered the evidence provided by Newton's

rotating-bucket experiment which we discussed in the last section.

It is quite clear that the curvature of the water surface is related

overwhelmingly to the cxistence of rotation relative to the vast

amount of distant matter of the universe. When that relative

rotation is stopped, the water surface becomes fiat. When the

bucket rotates and the water remains still (both relative to the

fixed stars), the shape of the water surface remains unaffected.

But, said Mach, that may bc only a matter of degree. "No one,"

he wrote, "is competent to say how the experiment would turn

out if the sides of the vessel increased in thickness and mass

until they were ultimately several leagues thick." His own belief

was that this rotation of a monster bucket would in fact generate

the equivalent of centrifugal forces on the water insidc it, even

though this water had no rotational motion in the accepted sense.

This is a startling idea indced. Let us prcsent it in a slightly

dirTerent context. We know that the act of giving an object an

acceleration a, with respcct to the inertial frame defined by the

fixed stars, calls into play an inertial force, equal to — /wa, that

expresses the resistance of the object to being accelerated. In
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Mach's view we are equally entitled (indeed, compelled) to

accept a description of the phenomenon in a frame always

attached to the object itself. In this frame the rest of the universe

has the acceleration a' (= —a) and the inertial force ma' that

the object experiences must be ascribable to the acceleration of

the other masses.

This then brings us to the quantitative question: If a mass

M, at distance r, is given the acceleration a relative to a given

object, what contribution does it make to the total inertial force

ma that the object experiences? Since we know that the force is

proportional to m, we can argue on the grounds of symmetry

and relativity that it must be proportional to M also. But at

this point we entcr a more speculative realm. A very suggestive

analogy is provided by electromagnetic interactions. If two

electric charges, q t
and qit are separated by a distance r, we

know that the static force exerted by q x on q2 is given by

_ fr?l<?2

where k is a constant that depends on the particular choice of

units. If, however, the charge q x is given the acceleration a there

is an additional force that comes into play, directly proportional

to a and inversely proportional to the distance:

, kq xq2a
ri2 = 5

—

c2r

where c is the speed of light. Since this force falls off more slowly

with distance than the static interaction, it can survive in ap-

preciable magnitude at distances at which the static l/r
2
force

has become negligible. This is, in fact, the basis of the electro-

magnetic radiation field by which signals can be transmitted

over large distances.

Suppose now that we assume an analogous situation for

gravitational interactions. The basic static law of force is known

to be

GMm

The force on m associated with an acceleration ofM would then

be given by

,
GMma n . ,,.,

Fl2 = ~&T ( }
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On this basis we can estimate the relative magnitudes of the

contributions from various masses of interest—the earth, the

sun, our own Galaxy, and the rest of the universe. Ali we have

to do is to calculate the values of M/r for these objects. The

results are shown in Table 12-1, using numbers to the nearest

power of 10 only. (The value of M for the universe as a whole

is the somewhat speculative value quoted in Chapter 1.) We

TABLE 12-1: RELATIVE CONTRIBUTIONS TO INERTIA

Source M, kg r, m M/'r, kg/m M/r (relative)

Earth 1025 107 1018 10-8

Sun 103O 10 11 1019 io- 7

Our Galaxy 10* l 10« 1020 10-°

Universe ]
52 102G 102e 1

see that, according to this theory, the effect of a nearby object,

even one as massive as the earth itself, would be negligible com-

pared to the effect of the universe at large.

The total inertial force called into existence if everything in

the universe acquires an acceleration a with respect to a given

object would be obtained by summing the forces F'
l2 of Eq.

(12-26) over all masses other than m itself:

_ ^GM
«"inertial = ma £_,

—

—

c*r

This, however, should be identical with what we know to be the

magnitude of the inertial force as directly given by the value of

ma. Thus the theory would require the following identity to hold:

Ef-1 02-27)
universe u '

It is clear from Table 12-1 that even such a large local mass as

our Galaxy represents only a minor contribution ; what we are

invoived with is a summation over the approximately uniform

distribution of matter represented by the universe as a whole.

If we regard it as a sphere, centered on ourselves, of mean density

p and radius Rv (« 10
10

light-years = 10
26

m), we would have

univerao ' «'O »
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PROBLEMS

The total mass is however given by

Mu = — pRu

Thus we have, on this simple picture (based on Euclidean

geometry)

E M 3 Mu ,-20 1 /— = - — « 10 kg/m
universe **

Using the values G m 10
-10 N-m 2/kg2 and c

2 m 10
17 m2

/sec
2
,

we would then have

E^-io- 1

f— c&runiverse "

Taking into account the uncertainties in our knowledge of the

distribution of matter throughout space, many would say that

the factor of about 10 that separates the above empirical value

from the theoretical value (unity) called for by Eq. (12-27) is

not significant. The result is intriguing, to say the least, and many

cosmologists have accepted as fundamentally correct this develop-

ment from the primary ideas espoused by Mach and Einstein.

'

12-1 A single-engine airplane flies horizontally at a constant speed v.

In the frame of the aircraft, each tip of the propeller sweeps out a

circle of radius R at the rate of n revolutions per second. Obtain an

equation for the path of a tip of the propeller as viewed from the earth.

12-2 A person observes the position of a post from the origin of a

reference frame (S') rigidly attached to the rim of a merry-go-round,

as shown in the figure. The merry-go-round (of radius R) is rotating

with angular velocity u, the distance of the post from the axis of the

merry-go-round is D, and at / = 0, the coordinates of P in 5' are

x' = D - R,y' = (equivalently, r' = D - R, d' = 0).

(a) Find the coordinates r'(i), 6'(t) of the post; also give the

corresponding *'(/) and y'(t).

•For further reading on this fascinating topic, see, for example, R. H. Dicke,

"The Many Faces of Mach," in Gracitation and Relalicily (ed. H.-Y. Chin

and W. F. Hoffmann, eds.), W. A. Benjamin, New York, 1964; N. R. Hanson,

"Newton's First Law," and P. Morrison, "The Physics of the Large," both

in Beyond the Edge of Cenainly (R. G. Colodny, ed.), Prentice-Hall, Engle-

wood Cliffs, N.J., 1965; D. W. Sciama, The Unity ofihe Unicerse, Doubleday,

New York, 1961, and The Physical Foundaiions of General Relalicily,

Doubleday, New York, 1969.
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(b) By differentiating the results of (a), obtain the velocity and

acceleration of the post in both Cartesian and polar coordinates.

(c) Make a plot of the path of the post in S'.

12-3 A boy is riding on a railroad flatcar, on level ground, that has

an acceleration a in the direction of its motion. At what angle with

the vertical should he toss a ball so that he can catch it without shift-

ing his position on the car?

12-4 A railroad train traveling on a straight track at a speed of

20 m/sec begins to slow down uniformly as it enters a station and comes

to a stop in 100 m. A suitcase of mass 10 kg having a coefficient of

sliding friction n = 0.15 with the train's floor slides down the aisle

diiring this deccleration period.

(a) What is the acceleration of the suitcase (with respect to the

ground) during this time?

(b) What is the velocity of the suitcase just as the train comes

toahalt?

(c) The suitcase continues sliding for a period after the train

has stopped. When it comes to rest, how far is it displaced from its

original position on the floor of the train?

12-5 A man weighs himselfon a spring balance calibrated in newtons

which indicates his weight as mg = 700 N. What will he read if he

repeats the observation while riding an elevator from the first to the

twelfth floors in the following manner?

(a) Belween the first and third floors the elevator accelerates at

the rate of 2 m/sec 2
.

(b) Between the third and tenth floors the elevator travels with

the constant velocity of 7 m/sec.

(c) Between the tenth and twelfth floors the elevator decelerates

at the rate of 2 m/sec2 .

(d) He then makes a similar trip down again.

(e) If on another trip the balance reads 500 N, what can you

say of his motion? Which way is he moving?

12-6 If the cocHicient of friction between a box and the bed of a

truck is /x, what is the maximum acceleration with which the truck can
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climb a hill, making an angle 6 with the horizontal, without the box's

slipping on the truck bed ?

12-7 A block of mass 2 kg rests on a frictionless platform. It is

attached to a horizontal spring of spring constant 8 N/m, as shown

in the figure. Initially the whole system is stationary, but at t = the

platform begins to move to the right with a constant acceleration of

2 m/sec.
2 As a result the block begins to oscillate horizontally relative

to the platform.

2kg 8 N/m

immfmr-

TJ T?

2 m/sec 2

(a) What is the amplitude of the oscillation?

(b) At t = 2v/3 sec, by what amount is the spring longer than

it was in its initial unstretched condition?

12-8 A plane surface inclined 37° (sin
-1

f) from the horizontal is

accelerated horizontally to the left (see the figure). The magnitude of

the acceleration is gradually increased until a block of mass m, orig-

inally at rest with respect to the plane, just starts to slip up the plane.

The static friction force at the block-plane surface is characterized by

(a) Draw a diagram showing the forces acting on the block,

just before it slips, in an inertial frame fbced to the floor.

(b) Find the acceleration at which the block begins to slip.

(c) Repeat part (a) in the noninertial frame moving along with

the block.

12-9 A nervous passenger in an airplane at takeoff removes his tie

and lets it hang loosely from his fingers. He observes that during the

takeoff run, which lasts 30 sec, the tie makes an angle of 15° with

the vertical. What is the speed of the plane at takeoff, and how much

runway is needed ? Assume that the runway is level.

12-10 A uniform steel rod (density = 7500 kg/m3
, ultimate tensile

strength 5 X 108 N/m 2
) of length 1 m is accelerated along the direc-

tion of its length by a constant force applied to one end and directed

away from the center of mass of the rod. What is the maximum

allowable acceleration if the rod is not to break? If this acceleration

is exceeded, where will the rod break?

12-11 (a) A train slowed with deceleration a. What angle would the

liquid level of a bowl of soup in the dining car have made with the

horizontal ? A child dropped an apple from a height h and a distance d

from the front wali of the dining car. What path did the apple take as

observed by the child ? Under what conditions would the apple have

hit the ground? The front wali ?
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(b) As a reward for making the above observations, the parents

bought the child a helium-filled balloon at the next stop. For fun,

they asked him what would happen to the balloon if the train left the

station with acceleration a'. Subsequently, they were surprised to

find his predictions corrcct. What did the precocious child answer?

12-12 An elevator has a downward acceleration equal to g/3. Inside

the elevator is mounted a pulley, of negligible friction and inertia,

over which passes a string carrying two objects, of masses m and 3»i,

respectively (see the figure).

(a) Calculate the acceleration of the object of mass 3m relatice

to the elevator.

(b) Calculate the force exerted on the pulley by the rod that

joins it to the roof of the elevator.

(c) How could an observer, completely isolated inside the

elevator, explain the acceleration of m in terms of forces that he him-

self could measure with the help of a spring balance?

12-13 In each of the following cases, find the equilibrium position as

well as the period of small oscillations of a pendulum of length L:

(1) In a train moving with acceleration a on level tracks.

(2) In a train free-wheeling on tracks making an angle 6 with the

horizontal.

(3) In an elevator falling with acceleration a.

12-14 The world record for the 16-lb hammer throw is about 70 m.

Assuming that the hammer is whirled around in a circle of radius

about 2 m before being let fly, estimate the magnitude of the puli

that the thrower must be able to withstand.

12-15 (a) A man rides in an elevator with vertical acceleration a.

He swings a bucket of water in a vertical circle of radius R. With

what angular velocity must he swing the bucket so that no water spills?

(b) With what angular frequency must the bucket be swung if

the man is on a train with horizontal acceleration a? (The plane of

the circle is again vertical and contains the direetion of the train's

acceleration.)

12-16 Consider a thin rod of material of density p rotating with con-

stant angular velocity a> about an axis perpendicular to its length.

(a) Show that i f the rod is to have a constant stress 5 (tensile

force per unit area of cross seetion) along its length, the cross-sectional

area must deercase exponentialIy with the square of the distance

from the axis:

—frr
a 2A = Aue where k = po>~/2S

[Consider a small segment of the rod between r and r -f Ar, having a

mass im = pA(r) Ar, and notice that the differcnce in tensions at its

ends is AT = A(SA).]
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(b) What is ihe maximum angular velocity o)max in terms of p,

5max, and A:?

(c) The ultimate tcnsilc strength of steel is about 10
9 N/m2

.

Estimate the maximum possible number of rpm of a steel rotor for

which the "taper constant" k = 100 m~ 2
(p = 7500 kg/m 3

).

12-17 A spherically shaped influenza virus particle, of mass 6 X
10
-16

g and diameter 10
-5

cm, is in a water suspension in an ultra-

centrifuge. It is 4 cm from the vertical axis of rotation, and the speed

of rotation is 10 3 rps. The density of the virus particle is 1.1 times that

of water.

(a) From the standpoint of a rcference frame rotating with the

centrifuge, what is the effective value of 'V ?

(b) Again from the standpoint of the rotating reference frame,

what is the net centrifugal force acting on the virus particle?

(c) Because of this centrifugal force, the particle moves radially

outward at a small speed o. The motion is resisted by a viscous force

given by Frcs = Jnrr\vd, where d is the diameter of the particle and t\ is

the viscosity of water, equal to 10~- cgs units (g/cm/sec). What is cl

(d) Describe the situation from the standpoint of an inertial

frame attached to the laboratory.

[In (b) and (c), account must be taken of buoyancy effects. Think

of the ordinary hydrostatics problem of a body completely immersed

in a fluid of different density.]

12-18 (a) Show that the equilibrium form of the surface of a rotating

body of liquid is parabolic (or, strictly, a paraboloid of revolution).

This problem is most simply considered from the standpoint of the

rotating frame, given that a liquid cannot withstand forees tangential

to its surface and will tend toward a configuration in which such forees

disappear. It is instructive to consider the situation from the stand-

point of an inertial frame also.

(b) It has been proposed that a parabolic mirror for an astro-

nomical teleseope might be formed from a rotating pool of mercury.

What rate of rotation (rpm) would make a mirror of focal length 20 m?

12-19 To a first approximation, an object released anywhere within

an orbiting spacecraft will remain in the same place relative to the

spacecraft. More accurately, however, it experiences a net force

proportional to its distance from the center of mass of the spacecraft.

This force, as measured in the noninertial frame of the craft, arises

from the small variations in both the gravitational force and the

centrifugal force due to the change of distance from the earth's center.

Obtain an expression for this force as a funetion of the mass, m, of the

object, its distance AR from the center of the spacecraft, the radius R

of the spacecraft's orbit around the earth, and the gravitational ac-

celeration gR at the distance R from the earth's center.

550 Inertial forees and noninertial frames



12-20 A circular platform of radius 5 m rotates with an angular

velocity w = 0.2 rad/sec. A man of mass 100 kg walks with constant

velocity v' = 1 m/sec along a diameter of the platform. At time

t = he crosses the center and at time t = 5 sec he jumps off the edge

of the platform.

(a) Draw a graph of the centrifugal force felt by the man as a

function of time in the interval / = to t = 5 sec.

(b) Draw a similar graph of the Coriolis force. For both

diagrams, give the correct vertical scale (in newtons).

(c) Show on a sketch the direction of these forces, assuming

the platform to rotate in a clockwise direction as seen from above.

12-21 On a long-playing record (33 rpm, 12 in.) an insect starts to

crawl toward the rim. Assume that the coefficient of friction between

its legs and the record is 0.1. Does it reach the edge by crawling or

otherwise ?

12-22 A child sits on the ground near a rotating merry-go-round.

With respect to a reference frame attached to the earth the child has

no acceleration (accept this as being approximately true) and ex-

periences no force. With respect to polar coordinates fixed to the

merry-go-round, with origin at its center:

(a) What is the motion of the child?

(b) What is his acceleration?

(c) Account for this acceleration, as measured in the rotating

frame, in terms of the centrifugal and Coriolis forces judged to be

acting on the child.

12-23 The text (p. 516) derives the Coriolis force in the transverse (8)

direction by considering the motion of an object along a radial line

in the rotating frame. Correspondingly, if one considers an object

that is moving transversely in the rotating frame, one can obtain the

net radial force due to Coriolis and centrifugal effects. Consider a

particle on a frictionless turntable rotating with angular velocity w.

The particle is initially at rest relative to the turntable, at a distance r

from the axis of rotation.

(a) Set up a fixed coordinate system S with axes x transversely

and y radially and with its origin O at the position of the particle at

t = (see the figure). Set up another coordinate system S', with

origin O' and axes x' and y', which rotates with the turntable and

which coincides with S at / = 0. Show that at a later time / the co-

ordinates of a given point as measured in S' and S are related by the

following equations, where 8 = wt:

x' = x cos 8 + y sin 8 + r sin 8

y' = y cos 8 — x sin 8 — r(l — cos 8)

(b) Suppose that, at / = 0, the particle is given a velocity v'
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relative to O' in the x' direction. Its subsequent motion will be along

the x direction at the constant velocity o' — tar relative to O. Use

this to obtain its coordinates x' and / at a later time /.

(c) Making the approximations for the case wt « 1, show that

for small values of t one can put y' ~ %a'r i
2
, where a'T = co

2r — Tmvf

,

This corresponds to the required combination of centrifugal and

Coriolis accelerations.

(d) If you are feeling ambitious, apply the same kind of analysis

for an initial velocity in an arbitrary direction.

12-24 In an article entitled "Do Objects fail South?" [Phys. Rev.,

16, 246 (1903)], Edwin Hall reported the results of nearly 1000 trials

in which he allowed an object to fail through a vertical distance of

23 m at Cambridge, Mass. (lat. 42° N). He found, on the average, an

eastward deflection of 0.149 cm and a southerly deflection of 0.0045 cm.

(a) Comparc the easterly deflection with what would be ex-

pected from Eq. (12-17).

(b) Consider the fact that the development of an eastward

component of motion relative to the earth would indeed lead in turn

to a southerly component of Coriolis force. Without attempting any

detailed analysis, estimate the order of magnitudc of the ratio of the

resulting southerly deflection to the predominant easterly deflection.

Do you think that an explanation of HalPs results on southerly de-

flection can be achieved in these terms?

12-25 Calculate the Coriolis acceleration of a satellite in a circular

polar orbit as observed by someone on the rotating earth. Obtain the

direction of this acceleration throughout the orbit, thereby explaining

why the satellite always passes through the poles even though it is

subjected to the Coriolis force. Is there a similar force on a satellite

in an equatorial orbit?

12-26 Imagine that a frictionless horizontal table, circular in shape

and of radius R, is fitted with a perfectly elastic rim, and that a dry-ice
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puck is launchcd from a point on the rim toward the center. The

puck bounccs back and forth across the table at constant speed v, but

because of the Coriolis force it does not quite follow a straight-line

path along a diameter. Consider the rate at which the path of the

puck gradually turns with respect to the table, and compare the result

with that for a Foucault pendulum at the same latitude, X.

12-27 In the text (p. 536) the height of the equilibrium tide is cal-

culated by considering the work done by the tide-producing force in

carrying a particle of water from point D to point A (see the figure).

By considering the work from D to an intermediate point P, one can

obtain a general expression for the elevation or depression h{6) of the

water at an arbitrary point, relative to what the water level would be

in the absence of the tide-producing force. The calculation involves

two parts, as follows:

(a) Evaluate the work integral of the tide-producing force from

D(x = 0, y = Re) to P(x = Re cos 0, y = Re sin d) for a particle of

water of mass m. Equating this to the difference of gravitational

potential energies, mg(iip — ho), one gets an expression for the dif-

ference hp — ho-

(b) The total volume of water is a constant. Hence, if ho

represents the water depth in the absence of the tide-producing force,

we must havc

L

r/

2

2TRK-[h(6) - ho]sinddd =

Putting the results of (a) and (b) together, you should be able to

verify that the deviation of the water level from its undisturbed state

is proportional to 3 cos2 — 1

.
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What makes planets go around the sun ? At the time of

Kepler some people answered this problem by saying that

there were angels behind them beating their wings and

pushing the planets around an orbit. As you will see, the

answer is not very far front the truth. The only difference

is that the angels sit in a different direction and their wings

push inwards.

R. P. feynman, The Character of Physical Law (1965)



13

Motion under

central forces

we have already seen, especially in Chapter 8, how the motion

of objects under the action of forces directed toward some well-

defined center is one of the richest areas of study in mechanics.

Twice in the history of physics the analysis of such motions has

been linked with fundamental advances in our understanding of

nature—through the explanation of planetary motions, on the

macroscopic scale, and through Rutherford's studies of alpha-

particle scattering, which gave man his first clear view of the

subatomic world. Up until this point we have limited ourselves

to the study of circular orbits, and it is remarkable how much

can be learned on that basis. But now we shall begin a more

general analysis of motion under the action of central forces.

BASIC FEATURES OF THE PROBLEM

As we saw in Chapter 1 1 (p. 444), a central force field that is also

conservative must be spherically symmetric, and some of the most

important fields in nature (notably electrical and gravitational)

are precisely of this type. The frequent occurrence of spherically

symmetric models to describe physical reality is closely linked to

the basic assumption that space is isotropic and is the intuitively

natural starting point in building theoretical models of various

kinds of dynamical systems.

We shall begin with the specific problem of the motion of a

single particle of mass w in a spherically symmetric central field
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Fig. 13-1 (a) Unit

veciors associated

with radial and trans-

verse directions in a

plane polar coordinale

system. (b) Radial

and transverse com-

ponents ofan ele-

mentary vector

displacement Ar.

of force. Initially, at least, we shall assume that the object re-

sponsible for this central ficld is so massive that it can be regarded

as a fixed center that defines a convenient origin of coordinates

for the analysis of the motion.

The first thing to notice is that the path of the moving par-

ticle will lie in a fixed plane that passes through the center of

force. This plane is defined by the initial velocity vector v of the

particle and the initial vector position r of the particle with re-

spect to the center of force. Since the force acting on the particle

is in this plane, and sincc thcrc is no component of initial velocity

perpendicular to it, the motion must remain confined to this

plane of r and v . To analyze the motion we must first pick an

appropriate coordinate system. Because the force F is a function

of the scalar distance r only and is along the line of the vector r

(positively or negatively), it is clearly most convenient to work

with the plane polar coordinates (r, 0), as indicated in Fig. 13-l(a).

This means that we shall be making use of the acceleration vector

expressed in these coordinates. In Chapter 3 (p. 108) we calcu-

lated this vector for the particular case of circular motion

(r = constant). Now we shall develop the more general expres-

sion that embraces changes of both r and 0.

Using the unit vectors er and e» as indicated in Fig. 13-1 (a)

we have

r = re,

dr dr dd
V=

d,
=

dt
C
'
+ r

di
e°

(13-1)

(13-2)

This equation for v is readily constructed by recognizing that a

general infinitesimal change in position, Ar, is obtained by com-

bining a radial displacement of length Ar (at constant 0) and a
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transverse displacement of length r A6 (at constant r), as indicated

in Fig. 13-1 (b). Alternatively, one can just differentiate both

sides of Eq. (13-1) with respect to time, remembering that

d(er)/dt = {dO/dtytt [see Eq. (3-17a)].

We now proceed to differentiate both sides of Eq. (13-2) with

respect to /

:

dv d
2
r , dr d , dr dO , <f$

a =
dt

= dT*
er +

dt d,
e

'
+

dl d-t
ee + r

dT2
e'

,
dd d+ r
dtdt*

Substituting d(er)/dt = (d6/dt)ee, and d(e$)/dt = - (dd/dt)cT, the

expression for a can be rewritten as follows:

ir.
dfi

e r + ^1+ 2— —r
dfi di dt

Cfl (13-3)

It will be convenient to extract from this the separate radial and

transverse components of the total acceleration

:

d\ (de\
2

a
'
=
dfi-

r
\jt)

d
2
d

, , dr dB
at=r-rT + 2-r-r

dfi dt dt

(13-4)

(13-5)

The statement of Newton's law in plane polar coordinates can

then be made i n terms of these separate acceleration components:

FT = m

F» = m

d\
dfi 1
d^£ dr dd

r
dfi

+
dt dt

(13-6)

(13-7)

The above two equations provide a basis for the solution of any

problem of motion in a plane, referred to an origin of polar

coordinates. We shall, however, consider their application to

central forccs in particular.

THE LAW OF EQUAL AREAS

In the case of any kind of conservative central force, we have

FT
= F(r) simply, and Fe

= 0. The second of these immediately

implies that as = 0. Substituting the specific expression for as
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Fig. 13-2 Illustrating the basis

ofcalculating areal velocity

(area swept oul per unit lime by

ihe radius vector).

from Eq. (13-5), we have

r£+2$£-0 03-8)
dt2 dt dt

This equation contains a somewhat veiled statement of a simple

geometrical result—that the vector r sweeps out area at a constant

rate. One way of seeing this is to multiply Eq. (13-8) throughout

by r:

2d
2
6 drdd

' dfi
+ lr

7iJi
= Q

The left-hand side may then be recognized as the derivative with

respect to / of the product r
2
dd/dt:

rf/s«\ 2d2 drdd

dt\ di)
r

dt2
+

' dt dt

If we integrate this expression, we therefore have

r
2? = const. (13-9)
dt

Now in Fig. 1 3-2 we show the area AA (shaded) swept out by r

in a short time Al. It is the triangle POQ (we take PQ to be

indistinguishable from a straight line if it is short enough) and

we have

AA - iKr + Ar) sin A6

The rate at which area is being swept out, instantaneously, is the

limit of AA/At for At —* 0. Since, as we approach this limit,

Ar/r —» and sin Ad —> A0, we arrive at the result

dA = \ r^l (,3-10a)
dt 2 dt

Thus we recognize the constant on the right-hand side of Eq.
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Fig. 13-3 (a) A por-

tion of Newton'

s

manuscript, De Motu,

showing the basis of

his proofofthe law of

equal areas for a

cenlral force. (6) En-

larged copy of New-

ton's diagram. (.Front

J. Herivel, The Back-

ground to Newton's

Principia, Oxford

University Press,

London, 1965.)

(a)

(13-9) as twice the rate (a constanl rate) at which the radius

vector r sweeps out area, and we therefore have

(Any central force)
dA 1 2 dd— = s r — = const.
dt 2 t/r

(13-10b)

The result expressed by Eq. (13-10b) was first discovered by

Kepler in his analysis of planetary motions (of which more later).

It was stated by him in what is known as his second law (although

it was actually the first chronologically). Newton understood it

on the samc dynamical grounds as we have discussed above,

i.e., as a feature of the motion of an object acted on by any

kind of force that is directed always to the same point. He
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visualized the action of such a force as a succession of small kicks

or impulses, which in the limit would go over into a continuously

applied infiuence. He set out this view of the process in a tract

written in 1684 (about 2 years before the Principia).
1 Figure

13-3(a) is a reproduction of a small fragment of the work,

indicating Newton's approach to the problem. With the help of

an enlarged version of his sketch [Figure 13-3(b)] we can

more readily follow Newton's argument, which as usual was

geometrical.

Newton imagines an object traveling along AB and then

receiving an irripulse directed toward the point S. As a result it

now travels along the line BC instead of Bc. Similar impulses

carry it to D, E, and F. To make things quantitative, Newton

visualizes the displaccmcnt BC as being, in effect, the combination

of the displacement Bc, equal to AB, that the object would have

undergone if it had continued for an equal length of time with its

original velocity, together with the displacement cC parallel to

the line BS along which the impulse was applied. This at once

yields the Iaw of areas by a simple argument: The triangles SAB
and SBc are equal, having equal bases {AB and Bc) and the same

altitude. The triangles SBc and SBC are equal, having a common
base (SB) and lying between the same parallels. Hence

ASAB = ASBC.

THE CONSERVATION OF ANGULAR MOMENTUM

We give a more modern and more fundamental slant to the law

of areas by expressing it in terms of the conservation of orbital

angular momentum. If a particle at P [Fig. 13-4(a)] is acted on

by a force F, we have

&
F = /na = m-7-

dt

Let us now form the vcetor (cross) produet of the position

veetor r with both sides of this equation:

rXF = rXm^- (13-11)
at

The left-hand side is the torque M due to F about O.

'This tract, called De Motn (Concerning the Motion of Bodies), contains

many of the important results that were later incorporated in the Principia.
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Fig. 13-4 (a) Vector

relationship ofposi-

lion, linear momentum,

and orbital momen-

tum, (b) Analysis of

the velocity into radial

and transverse com-

ponents.

We now introduce the moment of the momentum, I, of the

particle with respect to O'.

l = rX/wv = rXp (13-12)

Thus 1 bears the same relation to the linear momentum, p, as

the moment of the force, M, does to F. It is a vector, as shown

in Fig. 13-4(a), perpendicular to the plane defined by r and v.

If we calculate the rate of change of 1—i. e., the derivative of 1

with respect to /—we have

d\ dt w , w dv

Jt
=

ji
x my+rxm-

= \Xmv + rXm dt

dt

However, the value of v X mv is zero, because it is the cross

product of two parallel vectors. The second term on the right

of the above equation is, by Eq. (13-1 1), equal to the torque or

moment of the applied force about O. Thus we have the simple

result

M=rXF=
d̂t

(13-13)

This, then, relates the moment of F to the rate of change of the

moment of momentum, or orbital angular momentum, of the

particle about the origin O. If, now, we take F to be a central

force direeted radially toward or away from O, the value of M
is zero. In this case, therefore, we have

?=°
dt

561 The conservation of angular momentum



and

1 = r X p = const. (13-14)

This, then, is the statement of the conservation of orbital angular

momentum for motion under a central force—or, of course,

under zero force.

If we look at the situation in the plane of the motion

[Fig. 13-4(b)] the vector 1 points upward from the page, and its

scalar magnitude / is given by

2 de
I = rmo» = mr —

dt
(13-15a)

This means that the constant rate of sweeping out area, as ex-

pressed by Eqs. (13-10a) and (13-10b), is given quantitatively by

dA _\_ 2 d8 = J_
dt

~
2
T

dt
~ 2m

(13-15b)

The result expressed by Eqs. (13-14) and (13-15) is a valu-

able one. As we have pointed out before, if we find quantities

that remain constant throughout some process— i.e., they are

"conserved"—these bccome powerful tools in the analysis of

phenomena. Angular momentum is a conserved quantity of this

sort which is particularly valuable in the analysis of central field

problems. It should be noted that the conservation of angular

momentum depends only on the absence of a torque and is inde-

pendent of the conservation or nonconservation of mechanical

energy. A nice example of this last feature is the speeding up of

an object that whirls around at the end of a gradually shortening

string (Fig. 13-5). If the decrease of r in one revolution is small

compared to r itself, the velocity v is almost perpendicular to r

at each instant, and the angular momentum (rmog) is very nearly

equal to mur. The tension T in the string that pulls the object

inward exerts no torque about O, and so we have / = const. In

a change of r from r\ to r 2 we thus have

mv\r\ = mwi

Fig. 13-5 Small portion of the path of an object that

is being whirled around O at the end of a string the

length of which is heing steadily shorlened.
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or

r\
V2 = — 01

Thus, if r2 is less than n, there is a gain of kinetic energy given by

K2 - Kt = JW (^ - l)

The work equivalent to this gain of kinetic energy must be pro-

vided by the tension in the string. In an equilibrium orbit we

would have

2

T = —
r

Substituting v = I/mr, this becomes

2 2
mvi r\

T =
.2

/wr3 r*

The work done by 7" in a change from r to r + dr is —T dr (since

T acts radially inward). Thus the total work between r x and r 2

is given by

w 2 2 f dr . 22/1 l\

It may be seen that this equals the value of K2 — ATi already

calculated. The problem has a good deal in common with that

of the earth satellite spiraling inward, although in that casc con-

servation of orbital angular momentum does not apply, because

the air resistance represents a transverse force providing a nega-

tive torque (see discussion on pp. 470-473).

ENERGY CONSERVATION IN CENTRAL FORCE MOTIONS

If we are dealing with a conservative central force (which was not

the case in the example analyzed above) we can write a statement

of the conservation of total mechanical energy in the following

form:

I [Or
a + V,*}+ f/(r) = E (13-16)

In addition, we have the law of conservation of angular momen-
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tum as given by Eq. (13-15a):

mrvt = l

The quantities E and / are thus "constants of the motion."

U(r) is the potential energy of the particle m in the central field.

The orbital-momentum equation allows us to reduce Eq. (13-16)

to the form of a problem of a particle moving in one dimension

only undcr the action of a conservative force. This is the key to

the method of handling central field problems. From Eq. (13—15a)

we take the value of u$ and use this value in Eq. (13-16). There

follows

¥ +h + ™ - B (13-17)

which describes the radial part of the motion. This is of the form

^- + U'(r) = E (13-18)

where

/
2

u'(r) = V(r) +
Imr-i

The quantity V '(r) plays the rolc of an equioalent potential energy

for the one-dimcnsional radial problem. The additional term

l
2/2mr 2

takes complete account, as far as the radial motion is

concerned, of the fact that the position vector r in the actual

motion is continuously changing its direction. But it is to be

noted that nothing that depends explicitly on the angular coordi-

nate d or its time derivatives appears in Eq. (13-18).

The term l
2/2mr2

is often referred to as the "centrifugal*'

potential energy, because the force represented by the negative

gradient of this potential energy is given by

dr \2mr2/ mr*
rwntrifugnl

Putting / = mr'z (de/dl), this becomes

ftmttrtfugal = T \
--

which is identical with the centrifugal force mui 2
r in a frame

rotating at an angular velocity co cqual to the instantaneous value

of dOIdi.
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It must be remembered, of course, that the "centrifugal

potential energy" is in fact a portion of the kinetic energy of the

particle: that part due to the componcnt of its motion transverse

to the instantaneous direction of the radius vector. The circum-

stance that this kinetic-encrgy contribution can be expressed as

a function of radial position alone enables us to treat the radial

motion as an independent one-dimensional problem.

The potential-encrgy function U(r) in Eq. (13-17) can be any

function of radius. In developing this discussion we shall first

consider the general properties of motion in any central field for

which U(r) approaches zero as r increases. Subsequently we shall

take up the important special case of an inverse-square foree

field in which the potential energy of a particle is inversely pro-

portional to r.

USE OF THE EFFECTIVE POTENTIAL-ENERGY CURVES

The general properties of the motion of a particle in a central

field can be most readily obtained by using the energy-diagram

method of Chapter 10 applied to Eq. (13-17) or Eq. (13-18).

There are, however, two significant differences between the use

of the energy method for one-dimensional motion and its use

for any two-dimensional motion which can be reduced to two

one-dimensional motions, as in the case of central fields. First,

in one dimension, the energy alone determines the general char-

aeter of the motion in a conservative field. In the central-field

case, however, specification of the energy is not enough. The

angular momentum / of the particle must also be specified, and

the motion depends on both parameters E and /, instead of on E
alone. This shows up clearly in the energy diagram, because the

plot of U' = U + (l
2/2mr 2

) will be different for different values

of /. We have, then, a whole family of curves of equivalent poten-

tial energy, corresponding to different values of the angular

momentum, and must consider what happens to the motion with

a given energy for the different values of /.

In addition, to translate the results obtained for the radial

motion by this seheme into the actual motion of the particle, we

must remember that while the radial coordinate r is changing

with time, so is 6. The changes in r are accompanied by a simul-

taneous rotation of the vector r, and the actual orbit of the

particle depends on both. The rotation of the vector r is not
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uniform except in the special case of circular motion, for which

the length of the position vector r does not change with time.

The angular momentum / and the energy E define the basic

dynamical conditions and are related to the position r and

velocity v at an arbitrary time / by

E = —=- + LH.ro)

I = mro(ct )o

(13-19)

Since we are dealing with a two-dimensional problem, we need

a total bf four initial conditions to specify the situation com-

pletely. A statement of the vectors r and v (two components

each) fulfills this purpose.

Fig. 13-6 (a) True potential energy U(r), and several

"centrifugal poleiitial energy" curves belonging to dif-

ferent values ofl. (b) Resultan! effective potential

energy U' (r) for different orbital momenta.
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Now let us look at a typical energy diagram. In Fig. 13-6(a)

are plotted the curves of t
2/2mr2

against r for several different

values of the angular momentum, and U(r) against r for an at-

tractive potential that rises with increasing distance from r = 0.

U(r) —» as r —> oo . Figure 13-6(b) shows the effective potential-

energy curves U'(r) obtained by combining the single function

U(r) with each of the separate centrifugal potential curves. (To

obtain curves with minima as shown, it is necessary for the

variation of U with r to be less rapid than l/r
2
.) Let us now

consider how to use such curves to draw valuable qualitative

conclusions about the possible motioijs.

In Figure 13-7 we show an effective potential-energy curve

drawn for a particular value of /. We then see that, given this

value of /, no physically meaningful situation can exist for any

value of the total energy less than the energy Em equal to the

minimum value of U'(r). At this minimum possible value of E,

no radial motion can occur; the motion must be circular with a

radius equal to r . For a range of larger values of E, between Em
and zero, the radial motion will be periodic (e.g., E = Ea or Eb).

With the assumed form of U(r), all motions with a positive value

of E (e.g., Ec ) are unbounded; there is a least possible value of r

but no upper limit. I f one chooses to regard the value of E as

given, but the orbital momentum as a variable, then it may be

seen [most readily from Fig. 13-6(b)] that there is a maximum
permissible value of /; any value from this down to zero is allowed,

and the maximum value corresponds to a circular orbit.

Fig. 13-7 Effective

polential-energy

diagram from wlrich

the character ofthe

radial motion for

different values ofthe

total energy can be

inferred.
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BOUNDED ORBITS

With the hclp of the above preliminary analysis of the radial

component of the motion, one can then proceed to develop some

ideas about the appearance of the actual orbits in space. Suppose,

for example, that we had the situation corresponding to the

energy Eb in Fig. 13-7. The radial motion is bounded between

certain minimum and maximum values of r. It is periodic with

a certain period T,. Thus we know that the partiele moves

always within the area between two circles as shown in Fig. 13-8.

Furthermore, the radial distances rmin and rmax represent turning

points of the radial motion. The orbit must be such that it is

tangent to both these circles, because at these points the radial

velocity is zero but the tangential velocity cannot be zero, given

that the partiele has angular momentum. Consider the partiele

after it has reached point A of the figure. It moves in as indicated,

its trajectory becoming tangent to the inner cirele at point C
and continuing until it again becomes tangent to the outer cirele

at point B. The time it takes for this part of the motion is the

radial period Tr . On the other hand, the radius veetor is con-

tinually changing its direetion, always in the same sense (i.e.,

either eloekwise or counterclockwise) and will have turned

through 2w after a charaeteristie period T$. In Fig. 13-8 the line

OA represents the veetor position of the partiele at some instant,

and the line OA' represents the veetor position at the time Tg later.

It is clear that the charaeter of the orbit depends strongly

on the ratio of the two periods, T, and Tg, of the doubly periodic

Fig. 13-8 Plan view

of an orbital motion

for a case in which the

radial and angular

periods differ. The

effect is that ofan

approximately elliptic

orbit that keeps turn-

ing {precessing) in its

own plane.

568 Motion under central forees



motion. If the periods are commensurable (i.e., if their ratio can

be expressed as the ratio of two integers), the moving particle

will ultimately (after a time equal to the lowest common multiple

of Tr and 7» find itself in exactly the same position as initially

and the orbit will thus have been closed. If the two periods

happen to be exactly equal, this closure will happen after only

one radial period and one increment of lir in 6. In Fig. 13-8

this would mean that the points A and B would coincide. One

sees that this is a unique and (on the face of it) a thoroughly

improbable situation, yet it is precisely what one has if the force

is one of attraction proportional to the inverse square of r.

Thus the most important forces in nature (gravitational and elcc-

trostatic) yield orbits of this remarkable character, as we shall

show shortly.

If the radial and angular periods are comparable but def-

initely different, then one has just the kind of situation shown in

Fig. 13-8. This corresponds to a case in which T, is somewhat

greater than 7"«, so that the radius vector rotates through rather

more than 2x before r completes its variation from rmax to rmin

and back again. In a situation like this, where the path is near

to being a closed curve but is, in effect, also turning (either

forward or backward), one says that the orbit is precessing.

The study of orbital precession is important in astronomical

systems.

If the radial and angular periods are incommensurable, the

orbit will never close and will eventually fiil up the whole region

between rmi„ and rm„.

UNBOUNDED ORBITS

We have already pointed out that a positive total energy leads to

a lower limit of r but to no upper limit in the effective potential

of Fig. 13-7. This is, in fact, a rather general result, applying to

any potential that tcnds to zero at r = oo, because it corresponds

to the fact that the particle has a positive kinetic energy at infinity.

If U(r) is a repulsive potential, everywhere positive, then (assum-

ing that it decreases monotonically with increasing r) there are no

bounded motions at all. Figure 13-9 compares the situations

obtained by taking a given centrifugal potential and combining it

with attractive and repulsive potential-energy curves that differ

only in sign. Figure 13-10 shows what this means in terms of the

trajectories that a particle of a given energy would follow in these
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Fig. 13-9 (a) Centrifugal potential-energy curve, and

two potential-energy curves, differing only in sign, that

might arise from electrical interactions oflike and un-

like charges. (b) Effectice potential-energy curves cor-

responding to tlie two cases shown in (a), indicating

different distances ofclosest approach for a gicen posi-

liue total energy.

two situations. At large distances from the center of force, such

that the magnitudes of U(r) and l
2/2mr 2 are both negligible, the

particle travels in a straight linc with a speed v equal to

(2£/w) 1/2
. This line of motion is offsct from a parallel line

through the center of force by a certain distance b that is directly

related to the angular momentum ; we have, in fact,

/ = mv b (13-20)

Thus an assumption of given values of E and / in Fig. 13-9 is

expressed by using the values of Po ar|d b "n F'g- 13-10(a), which

corresponds to an attractivc potcntial, and in Fig. 13—10(b),

which corresponds to a repulsivc potential. The distance b is

called the impact parameter, and it is a very useful quantity for

characterizing situations in which a particle, in an unbounded

orbit, approachcs a center of force from a large distance away.

For a given value of ua , the value of b completely defines the

orbital angular momentum, via Eq. (13-20).

It is clear that thesc unbounded trajectories represent single

encounters of the particle with the center of force; there is no

possibility of successive rcturns as we have with the bounded
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Fig. 13-10 (a) Plan

view oftrajectory ofa

parlicle moving around

a center of attraction.

The angular momen-

tum is defined by Ihe

"impactparameter" b.

(b) Corresponding

trajectory with the

same impact param-

eter, but with a

repulsive center of

force.

orbits of the kind shown in Fig. 13-8. The situations shown in

Fig. 13-10 thus represent individual collisions or scattering pro-

cesses, of the kind so important in atomic and nuclear physics.

We shall return to them later.

Certain potentials may lead to the possibility of having both

Fig. 13-11 Con-

struction ofeffective

potential-energy dia-

gram for an attractive

potential that varies

more strongly than

l/r".
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bounded and unbounded motions at the same energy. This

possibility exists for any attractive potentiai curve U(r) that falls

off more rapidly than l/r
2
with increasing r. An example is

shown in Fig. 13-11. As long as / is not zero, the combination

of U(r) with the centrifugal potentiai gives an effective potential-

energy curve that looks very much like an upside-down version

of Fig. 13-7. For a positive total energy E that is less than the

maximum of £/'(/), there are now two distinct regions of possible

motion:

< r < r\ bounded orbits

ri < r < w unbounded orbits

This is not just an academic curiosity. The effective potential-

energy curve representing the interaetion between, let us say, a

proton and an atomic nuclcus resembles Fig. 13-11 and suggests

that the partiele may be either trapped within r it or frec outside

r2> with no possibility of going from one state to the other. It is,

as we first mentioned in Chapter 10, one of the faseinating results

of quantum mechanies that a transition through the classically

forbidden region can in faet oecur with a certain probability

—

a probability that is far too small to be significant in most cases

but can become very important in atomic and nuclear systems.

CIRCULAR ORBITS IN AN INVERSE-SQUARE FORCE FIELD

As a quantitative example of the general approach diseussed in

the preceding seetions, we shall take the case of circular or almost

cireular orbits under an attractive central foree varying as l/r
2

.

This means that we shall mainly be diseussing, from a different

point of view, a situation that we have already analyzed in some

detail in earlier chapters. There is merit in this, because it enables

one to see more readily the relationship between the different

approaches.

To be specific, let us consider the motion of a satellite of

mass m in the gravitational field of a vastly more massive planet.

For this case, the potentiai energy in the field of a planet of mass

M takes the special form [see Eq. (11-31)]

u(r) = -9Mm (i3-2i)

where G is the universal gravitational constant and M the mass

of the attracting object. Equation (13-17) becomes for this case
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2 ,2 GMm
= E (13-22)

2 2mr2

In Fig. 13-12 are plotted the equivalent potential-energy curves

U'(r) = f GMm
2mr2

for two valucs of the angular momentum /.

A circular orbit corresponds, as we have seen, to a total

energy equal to the minimum value of U'(r) for a given value of /.

Now from the above equation for U '(r), taking / as fixed, we have

di/ = _ _T_ GMm
dr ' mr* r*

Putting dU'/dr = 0, we thus find that

f
= GMm = const. (13-23)

The orbital radius is therefore proportional to the square of the

orbital angular momentum. This is indicated qualitatively in

Fig. 13-12.

Let us now consider the energy of the motion. A circular

orbit is characterized by having the radial velocity component,

vr , always equal to zero. Thus in Eq. (13-22) we can put

(Circular orbit) E = GMm
2/W/-2

From Eq. (13-23), however, we have

Fig. 13-12 Energy

diagrams for orbils of

different orbital

angular momentum

around a given center

offorce.
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GMm l
2

r mr*

Hence the energy can be expressed in either of the following ways:

(Circular orbit) E = - -^-r = - ^^ (13-24)

The second form shows that the orbital radius is inversely pro-

portiond to \E\; the first, taken together with Eq. (13-23), shows

that \E\ is inversely proportional to l
2

. These properties, too, are

qualitatively indicated in Fig. 13-12.

The period of the orbit can be obtained, in this approach,

with the help of the law of areas. Earlier in this chapter we estab-

lished the following result [Eq. (13-15b)]:

dA _ J
dt 2ra

For a circular orbit, the total area A is *r2 and the value of /

is simply mvr. Thus we have dA/dt = vr/2 and hence 7» =

irr
2/(ur/2) = 2irr/v —hardly a surprising result! To express Tg

in more interesting terms we can make use of Eq. (13-23),

putting / = mvr:

(mvr) = GMm
mr

giving

1/2

°-m
Using this explicit expression for uasa function of r, we then

arrive once again at the equation that expresses Kepler's third law:

T. _ 2t - r
312

(13-25)
9 (G/uy*

SMALL PERTURBATION OF A CIRCULAR ORBIT

In the previous scction we limitcd ourselves to redeveloping some

familiar results. But now let us do something new, which exploits

the insights provided by the effcctive potential-energy method.

Imagine that a satellitc is describing a circular orbit of

energy E and radius r around a sphcrical planet whose center
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Fig. 13-13 (a) Resull ofapplying a radial impuhe to an

object that is initially in a circular orbit with its center

at the earth's center, O. The impulse is applied at F,

and the subsequent path is the almost-circular path

FAGP. (b) Effeclive radial potential-energy diagram

for the analysis of the molion shown in ia).

is at O [Fig. 13— 13(a)]. Suppose now that the satellite, when at

the point F, is given a small radial impulse, along the line OF,

by means of a brief firing of one of its control jets. What happens

to the orbit?

Let us examine the situation with the help of the energy

diagram in Fig. 13-13(b). Initially the satellite is in the state

represented by the minimum point, M, of the effective potcntial

curve. The impulse, being purely radial, leaves the orbital

momentum unchanged. Thus the function l
2/2mr 2

, and hence

the whole function U'(r), is unaffected.
1 The impulse does,

however, raise the total energy of the satellite slightly. Thus,

immediately after the firing, the satellite finds itself in the state

represented by the point N in Fig. 13-13(b); it is still at r = ro,

but it has a small radial velocity corresponding to the energy

increment AE. But we know what this means! The form of

U'(r) in the vicinity of its minimum, M, is approximatcly para-

bolic, and simple harmonic radial oscillations will ensue. Let us

calculate their period.

We are assuming that the decrease of mass associated with the firing of the

jet can bc ignored. Actually, since both the kiaetic energy and the gravita-

tional potential energy associated with the satellite are proportional to m,

the loss of a signilicant amount of mass would not affect the conclusions.

What matters is that the velocity, v, of the satellite is increased without any
change in the transverse component ce .

575 Small perlurbalion of a circular orbit



We saw in Chapter 10 how the effective spring constant, k,

for oscillations around the minimum of a potential-energy curve

is equal to the second derivative of U with respect to distance,

evaluated at the minimum point. [See pp. 395-397, and especially

Eq. (10-29).] In the present case wc have

dU' l
2

.
GMm

+
dr mr3 r2

d
2
U' 3/

2 2GMm
<jr2 mr\ r3

This now is to be evaluated at r = r :

k = 3/
2 2GMm

n,3

But from Eq. (13-23) we can put l
2/mr = GMm; using this we

obtain the following valuc for k:

GMm

We can immediately write down the period for one complete

cycle of these small radial oscillations:

1/2 -,2w _ 3/2

This is identical with the period of one complete sweep of the

radius veetor through 27r, as given by T6 in Eq. (13-25) with

r = rn . For Ar « rn , this angular motion takes place with an

almost constant value of dO/dt. Thus when $ has advanced by

tt/2 from the point F, the satellite is just about at its maximum

distance from O, as represented by the point A in Fig. 13-13(a).

After a further quarter-period it is at G, with r = r once again,

and another quarter-period brings it to P, where it is at its

minimum distance from O. The orbit eloses at the original firing

point F and would continue in its new form, which for small

radial oscillations is, to an exceedingly good approximation, a

cirele of the same radius as the original orbit but with its center

shifted by a distance equal to the amplitude of the oscillations.

We actually have herc (although we have not proved it) the con-

version of a cireular orbit into an elliptic one. What we have

shown is that small radial oscillations, in synchronism with the
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Fig. 13-14 Stalionary, c/osed el-

liptic orbit (l/r 2 law offorce) in

which the periods of the radial and

angular molions are eaual.

angular motion, generate a closed, repeating, eccentric orbit.

The same effect with a larger radial impulse, resulting in much

larger (and asymmetrical) radial oscillations, can in fact lead to

noticeably flattened closed orbits, as shown in Fig. 13-14, tangent

to the circles of radii rm -, n and rmax . Our approximate (small

perturbation) calculation could not, however, be taken as any

guarantee of the closure property in this more extreme case

—

although exact analysis shows that it does hold.

If the central gravitating object were the earth, the far point A
would be called the apogee, and the near point P the perigee

(from the Greek ap, away from; peri, near; geos, earth). The

prefixes ap- and peri- are used quite generally to denote far and

near points of orbits around given objects [e.g., aphelion and

perihelion for the sun (Helios)].

THE ELLIPTIC ORBITS OF THE PLANETS 1

Before proceeding with the subject of orbit dynamics, wc shall

briefly describe the remarkable achievement of Johannes Kepler

in establishing the proposition that the planetary orbits are not

compounded circles but simple ellipses. This great discovery was

bascd almost entirely on the analysis of the motion of a single

planet—Mars. The behavior of Mars had puzzled and exasperated

astronomers for a very long time, because the apparent irregu-

larities in its motion were greater than those of any other planet

and defied any easy analysis in terms of combinations of uniform

circular motions.

'This seelion is a historical digression, included on the grounds that the

question, How do we know what we know? is always worth asking and often

has as much to teach us as the final answer does.
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To appreciate the development of Kepler's discovery one

must constantly keep in mind the fact that the primary data of

observational astronomy (and this was especially true in the days

before the telescope) are directions rather than distances. Al-

though it was well understood that variations in the apparent

brightness of the planets were linked to variations of distance

from the earth, the precise data were only of angular positions.

The whole theoretical machinery of superposed circular motions

was primarily a means of reproducing the observed angular

position of each planet as a function of time.

Kepler began his study of Mars at the direction of the great

observational astronomer Tycho Brahe, whom he joined as an

assistant in 1600. Kepler's task was to construct the actual path

of Mars in space from the accumulation of original observations;

it took him 6 years, and many false scents, before he arrived at

the picture that is now familiar to us.

Kepler fully accepted a heliocentric model of the solar system,

and (unlike Copernicus himself) he consistently held to the idea

that the path of a planet must be a smooth, continuous curve of

some kind around the sun. His problem was to find this curve

on the basis of observations made from a laboratory—the earth

—

which was itself orbiting the sun in a nonuniform way. A first

task was thcrefore to establish the path of the earth itself. Kepler

attacked this problem i n several ways. The one most directly

based on observation was brilliant. Kepler knew the length of

the Martian year to be 687 days. He used this knowledge to

identify the dates on which Mars must have returned to a given

point M in its orbit [Fig. 13-15(a)]. He chose this point to be one

corresponding initially to a configuration in which the earth was

at E , on a straight line between Mars and the sun (what the

astronomers call oppositiori). During one Martian year, the

earth travels through about 677°, or 43° less than two complete

revolutions. Thus the next time Mars is at M, the earth is at E\.

Since the angular positions of the sun and Mars against the back-

ground of the stars were a matter of record, Kepler could locate

the point E\ with respect to the baseline SM. Using the same

base line he was able to locate the points E-2 , E3 , . . . at the ends

of successive Martian years. Thus a plot of the earth's orbit

could be constructed.

What Kepler found was that the earth's orbit is indistin-

guishable from a circle in shape—but the sun is not at the center

and the rate of change of the earth's angular position with respect
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Fig. 13-15 (a) Principle of Kepler

1

s method ofcharting

the earth's orbit by reference to a Standard posilion of

Mars {at the ends ofsuccessioe Martian years). (6) Ap-

proximate representation ofa planetary orbit (with the

sun at S) obtained by assuming that the line QE {from

the eguant point Q) rotates at constant angular speed.

to the sun (or vice versa) is not constant. To describe the earth's

motion, Kepler first used a clever and effective trick that had been

discovered by Ptolemy; this was to locate a fictitious center with

respect to which the angular motion was uniform. Its use by

Kepler is indicated in Fig. 13-15(b). The earth's orbit is a circle

of radius R with center C. The sun is at S, a distance d from C.

If one takes a point Q on the line SC produced, such that

CQ = SC = d, then a uniform angular motion of the line QE
causes the line SE (from sun to earth) to change its inclination d

in almost exactly the right way. The point Q was called the

eguant, because it acted as a center of equal (i.e., uniform) angular

change.

Kepler found from his analysis of the earth's orbit that the

ratio d/R is only about 0.018. A figure of about this size was

substantiated by observations (initiated by Tycho Brahe) of the

variation of the sun's measured angular diameter duringthe course

of the year. Figure 1 3-16 shows the results of some more recent

observations of the same effect. Thus Kepler could feel that his

picture of the earth's orbit in space was substantially correct. If

one introduces the aphelion and perihelion points [A and P, re-
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Fig. 13-16 Evidence

of the change in the

sun's distance during

one year, as shown by

the change in size of

the sun's image

formed by a telescope.

(After a graph in

Science in Secondary

Schools, Ministry of

Educalion Pamphlet

No. 38, H. M. Sta-

tionery Office, London,

1960.)

10.8 H
/// # / / #/^##/ /

spectively in Fig. 13— 15(b)], then we have

famx = SA = R + d

Tmin = SP = R - d

The eccentricity, t, of any such orbit is defined by the formula

fmax ''min
eccentricity (e) =

+ ''min

(13-27)

In the present case this is equal to the ratio d/R =» 0.018.

We can understand why the model represented by Fig.

13-15(b) worked so well. First, as we saw in the previous seetion,

an inverse-square law of foree can lead to orbits that are closely

cireular but do not have the center of foree at the geometrical

center. Second, the use of the equant, Q, in Fig. 13-15(b) comes

elose to defining motion with a constant orbital angular momen-

tum about the true center of foree, S. Consider, in particular,

the perihelion and aphelion points, P and A. If the line QE
rotates at a constant angular velocity w, then at A we have

ve = o>(R — d), and at P we have vg — u(R + d). The distances

SA and SP are, however, equal to R + d and R — d, respectively.

Thus in both cases we have a rate of sweeping out area given by

dA

dt
= \u(R 2 d

2
)

At the point A' the rate is equal to %o(R 2 + d 2
). (Check this.)

Thus for d 2/R 2 « 1 the "areal velocity" defined by this con-

struetion is very nearly constant. Since for the earth's orbit the
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ratio d2/R 2
is only about 3 X 10~ 4

the above approximate

description works very well indeed.

After this lengthy introduction we can abbreviate the rest of

the story. With his knowledge of the earth's orbit Kepler could

now, in a straightforward manner, construct a picture of the

successive angular positions of Mars as seen from the sun [Fig.

13-17(a)]. Again he tried to represent the orbit as an eccentric

circle with an equant, as in Fig. 13-15(b). But this time it did

not work; there were small but significant discrepancies between

the calculated angular positions and the observed positions as

function of time. The discrepancies were less than 10 minutes of

arc, but Kepler had such faith in the reliability and accuracy of

Tycho Brahe's observations that he discarded the theory rather

than try to bend the data to his ideas. Finally his prodigious

analytical efforts were rewarded with two decisive insights:

1. The law of equal arcas, referred to the sun as origin,

made the fictitious equant unnecessary, and worked just as well

(or, indeed, even better).

2. If the original circle were modified to an inseribed ellipse

with the sun at one focus, as shown in Fig. 13-17(b), then (apply-

ing the law of areas to this new orbit) the agreement between

theory and observation became excellent. The distance SN is

equal to the radius CA of the original circle.

The cireumstance that made the motion of Mars so hard to

explain (but without which Kepler would probably not have been

brought to his great discovery) was the large eccentricity of the

orbit (about 0.09—five times greater than that of the earth, and

more than 12 times greater than that of Venus). It should be

Fig. 13-17 {a) Kep-

ler's triangulation

methodfor locating a

point on the orbit of

Mars, once the earth's
|

orbit is known.

{b) Kepler's discovery

that the orbit of Mars

is an ellipse, not an

eccentric circle.

(Based on one ofhis

own diagrams in the

New Astronomy.)
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noted, however, that even in the case of Mars the departure of

the actual shape of the orbit from a circle is exceedingly small;

the difference between the shortest diameter, AW', and the longest

diameter, PA [see Fig. 13-17(b)] is less than 1 part in 200.

Kepler published the full story of his labors—the many
failures as well as the final successes—in a book, The New Astron-

omy (Astronomia Nova), published in 1609. It is a classic of

scientific discovery.

'

Once the basic character of the planetary motions had been

established, the wealth of pre-existing records made it easy to infer

the orbital parameters of other planets. Table 13-1 presents a

modern tabulation of such parameters, and other relevant data,

for all the major planets. (The inclination, /, is the angle made

by the plane of the orbit with the plane of the earth's own orbit

—

i.e., the ecliptic.) Figure 13-18 is a scale drawing of the orbits of

the four inner planets, projected onto the plane of the ecliptic.

(The angles of inclination are so small that this projection does

not change the shape of the orbits detectably, and they all look like

perfect circles.)

TABLE 13-1: PLANETARY ORBIT DATA

Semimajor

AU

axis (a)

106 km

Eccentricily

(«)

Inclination

(')> deg

Period (D

Years 108 sec

Mercury 0.387 57.9 0.206 7.00 0.241 0.076

Venus 0.723 108.2 0.007 3.39 0.615 0.194

Earth 1.000 149.6 0.017 — 1.000 0.316

Mars 1.523 227.9 0.093 1.85 1.881 0.594

Jupiter 5.203 778.3 0.048 1.31 11.862 3.75

Saturn 9.540 1427 0.056 2.50 29.46 9.31

Uranus 19.18 2869 0.047 0.77 84.02 26.6

Neptune 30.07 4498 0.009 1.78 164.77 52.1

Pluto 39.44 5900 0.249 17.2 248 78.4

The book is usually rcferred to simply as the New Astronomy. Its full title,

however, when translated, reads "A New Causal Astronomy or Celestial

Physics Together with Commentaries on the Movements of the Planet Mars.

From the Observations of Count Tycho Brahe."

Arthur Koestler's book, The Watershed, Doubleday (Anchor Books),

New York, 1960, is a full and interesting account of Kepler's life and work.

A more detailed and critical discussion of Kepler's approach to his first and

second laws is an article by Curtis Wilson, "Kepler's Derivation of the

EUiptical Path," Isis, 59, 5-25 (1968).
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Fig. 13-18 Scale drawing oflhe

orbiis ofthefour inner planets.

They are ali indist'mguishable

from circles in shape but are not

concentric. AU are, in fact, el-

lipses with Ihe sun at one focus.

DEDUCING THE INVERSE-SQUARE LAW FROM THE ELLIPSE

In 1689 Newton received a letter from the philosopher John

Locke. Locke wrote that he had been reading the Principia

(which had been published two years earlier) but found some of

the mathematics quite beyond him. Could Newton give him a

less formidable explanation of how to infer the inverse-square

law from the observed elliptic orbits of the planets? Newton

replied with a delightfully simple argument, which we shall use

as the starting point of our own discussion. It rests on a remark-

able property of these orbits—their geometrical symmetry, which

exists in spite of the fact that in kinematic and dynamic terms the

orbits are asymmetrical.

Consider the elliptic orbit represented by Fig. 13-19. There

is a center of force at the focus, F. Located at an equal distance

to the other side of the geometrical center, C, is a second focal

A'

Fig. 13-19 Geometrical symmetry

ofan ellipse with respect to reflec-

tion in ils minor axis, NN''.

'V"" ^^V'y'"-.
s \

/ \
/ X s \

y \

* ' «
1

\
F C F' /

N'
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point, F', but it is empty. [The equant point, Q, of Kepler's

original model, as shown in Fig. 13-15(b), was at this second

focus.] The ellipse has perfect reflection symmetry, not only

about the major axis passing through F and F', but also about the

perpendicular (minor) axis NN' drawn through C. Yct, as we

have seen, the velocities at symmetrically placed points, e. g., Pi

and P 2 in the figure, are quite different; the orbiting object moves

much faster at P 2 than at P u in accordance with the law of equal

areas.

Consider now, said Newton, the motion of a planet as it

passes through its perihelion point p and its aphelion point a

[Fig. 13-20(a)]. Mark off the ares pq and ab that would be

traversed in equal, short times just after passing these points.

The lengths of these ares are related to the distances from the sun

by the law of equal areas, using the faet that at p and a the

planet's velocity is purely transverse to the radius veetor from F.

Hence to a very good approximation we have

1*1*1 = T2*2

Now in the absence of any gravitational foree, the planet after

passing p would travel along the tangent pT. Because of the

attraction, it follows the curved path pg, which is indistinguishable

from a parabola over a short distance. (This is just like Newton's

analysis of the motion of the moon—see Chapter 8, p. 257.)

The planet "falls" through the distance Tq (= d{), which is

Fig. 13-20 (a) lllusirating Newton's simple argument

to deduce the inverse-square law from the motion ofa

planet near perihelion and aphelion. (Based on his own

diagram), (h) Geometrical construetion for deducing

the inverse-square lawfrom the elliptic path and the

law ofeaual areas.
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proportional to the square of the tangent pT. Remembering that

the deviation Tq is, in fact, much less than pT, we can put

di = Csi

where C is the constant defining the shape of the parabola. But

the parabolic curvature of the ellipse near the aphelion, a, is

identical, because of the symmetry, to the curvature near the

perihelion, p. Thus we can also put

d2 = Cs2

where C is the same constant as before and d2 is the deviation of

the planet's path in going from a to b. It follows from these

results, taken together with the law of areas, that

di = rg_

d2 ry
2

Since, however, the distances fallen in equal times are propor-

tional to the accelerations and hence to the forces, it follows that

the gravitational forces acting on the planet at the points /> and a

are also inversely as the squares of the distances r x and r2 .

The above argument does not demonstrate the applicability

of the inverse-square law at other points around the orbit, but an

extension of the same basic geometrical approach can be used to

achieve this, although it no longer appeals to the geometrical

symmetry of the orbit. Figure 13-20(b) indicates the method.

Sectors of equal area are constructed, using various positions

(Pi,Ps,Pjd as starting points. This defines the points q\, q 2 ,

and qz reached by the planet after equal time intervals. The

tangent lines at Pu P 2, and P% are also drawn. The radial dis-

placements due to the gravitational force are then given by

Trfu T2q 2 , and T
:tqs . With a very carefully drawn figure one

can verify that these distances are in proportion to l/r
2

. The

construction does, however, have to be extremely carefully done,

as the radial displacements are very small.
1

ELLIPTIC ORBITS: ANALYTICAL TREATMENT

We begin with the fundamental "pins-and-string" definition of

the ellipse, which requires that

The method has bcen nicely presented in the PSSC film "Elliptic Orbits,"

by Albert Baez, Education Dcvclopment Center, Newton, Mass., 1959. See

also the paper by Baez, Am. J. Phys., 28, 254 (1960).
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Fig. 13-21 Basic geomet-

ricalfeatures ofan elliplic

orbit wilh a cenler offorce

at Ihefocus F.

r + r' = 2a (13-28)

as shown in Fig. 13-21, where the ellipse has a major axis equal

to la and has its foci F and F' separated by a distance 2ea. First,

we need a little trigonometry, to obtain a relation between the

radial and angular coordinates (r, 6) of an arbitrary point P.

Applying the law of cosines to the triangle FPF', we have

r'
2 = r

2 + (2ea)
2 - 4tarcosd

From Eq. (13-28), however, we have

r
' 2 = 4a

2 - 4ar + r
2

Equating these two expressions for r'
2

, we get

4eV - 4ear cos d = 4a
2 - 4ar

Hence

r(l - t cos 0) = a(l - e )

or

r =
aji - e)

1 - tcosO
(13-29)

We can simplify this a little by introducing the semiminor axis, b,

of the ellipse, which is the distance ON in Fig. 13-21. By the

geometry of the triangle FON we have

b
2 = a

2 - Uaf = a
2
(\ - t

2
)

Using this, Eq. (13-29) can be written as

! = iL(I- ecostf)
r b2

(13-30)
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With the help of this last equation, together with conserva-

tion of orbital momentum as expressed in the law of areas, we

can deduce that the force acting on a moving particle at any

point is proportional to l/r
2

. The essential step is to calculate

the radial component of acceleration. By Eq. (13-4) we have

->($)'" = %- ]

Now by differentiating both sides of Eq. (13-30) with respect to t,

we get

1 dr ta . „dd

However, by the law of areas we have

r*
d4=C (13-32)
di

where C is a constant (equal to twice the areal velocity). Using

this, the previous equation gives us

dr Cta . „

d,'--*™ 6

Differentiating a second time, we get

<fV Cta . dd_=__ cosfl_

Again using Eq. (13-32) to eliminate dd/dt we have

£* = ^J£ cose

dfi b" ri

To obtain aT in Eq. (13-31), we must subtract from this the

quantity r(dd/dt)
2

. By Eq. (13-32) this can be written as

(d6\
2 C2

F
\di)

=
"rl

Combining this with the previous equation, we thus get

This looks complicated, but if we look back at the original

equation for l/r [Eq. (13-30)] we see that
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ea cos B 1 a

b*
+

~r

= P
Hence the term in parentheses in the above equation for ar is

just a geometrical constant of the ellipse, and we have

C2
a 1

"' = ~ ~bT 72 (,3"33)

Thus the operation of an inverse-square law is mathematically

verified for any elliptic orbit known to be taking place under the

aetion of a central foree direeted toward one focus. (But note

the Iast qualification. It is perfcctly possible, for example, to have

an elliptic path under the aetion of a foree direeted toward the

geometric center of the ellipse, but the law of foree is no longer

the inverse square. Can you guess what it is? See Problem 13-23.)

We can at once use Eq. (13-33) to develop another important

result—Kepler's third law in a rigorous form. The parameter C
is, as we have said, equal to twice the constant rate of sweeping

out area. But the total area of an ellipse is given by the equation

A = irab

Hence the period T of the orbit is given by

T = 22^
C/2

i.e.,

2-Kub
C =

T

Substituting this value in Eq. (13-33) we find

A 2 a 14t a 1

7-2 r2
(13-34)

However, by introducing the specific law of gravitation be-

tween the orbiting mass m and a mass M fixed at F, we obtain

another expression for the radial acceleration:

GMm
F' W

Therefore,

aT = -^ (13-35)
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Fig. 13-22 Family ofelliptic orbils

of the same total energy, sharing tlie

focus F, where the center offorce is

located. The major axes of the el-

lipses are all equal.

Equating the right-hand sides of Eqs. (13-34) and (13-35), we

have the identity

.23
4ir a

T2

whence

= GM

-2

=w
This result, although identical in form with what we identified

in Chapter 8 as Kcpler's third law, contains an important new

feature. Previously we considered only cireular orbits. Now we

see that, according to Eq. (13-36), all orbits having the same major

axis have the same period (for a given value of M), whether they

are cireular or strongly flaltened. If one takes into account the

faet that the gravitating mass must be at one focus, a group of

elliptic orbits of the same period but different eccentricities might

be as shown i n Fig. 13-22.

Kepler, in stating his third law, said that the squares of the

planetary periods are proportional to the cubes of the mean

distances from the sun. We see now that the rather vaguc phrase

"mcan distance" takes on a very sharp and precise meaning; it

is just the average of the maximum and minimum distances of a

planet from the sun. This is identical with the semimajor axis, a,

for from Eq. (13-29) or from Fig. 13-21, we have

'mu = a(l + t)

rm in = a(l - t)

rmax ~r ''min
O = -z

ENERGY IN AN ELLIPTIC ORBIT

The purpose of this seetion is to show that, as with the orbital

period, the only geometrical parameter entering into the total
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energy is the length of the major axis of the elliptical path.

Since the total energy is constant, we are free to evaluate it

at any convenient point in the orbit. We shall choose the point a

on the major axis (Fig. 13-21), for which we have

r = /W* = a(l + t)

The potential energy can be stated directly:

*W) = - -^r (13-37)
a(l + e)

The kinetic energy is a little harder to come by. Since the velocity

at a is purely transverse, we have

K = %mvt = imr
(f)"

With the help of Eq. (13-32) this becomes

mC2

Specifically,

*(r«,) = mC2

2fl2(l + «) 2

Now the constant C is twice the rate of sweeping out area, which

means, as we saw before, that C = 2irab/T. Hence

. 2 2,2 .2 i,. 2«
i _ 4ir a b _ 4w a (1 — e )

7^
_

T2

Substituting now for T2 from Eq. (13-36) we have

C2 = GMa(l - e

2
)

Using this expression for C2
in the equation for tf(rmax) we find

that

Ifr—)
=

2a0 + e)
(13 38)

Combining the results expressed in Eqs. (13-37) and (13-38) we

obtain the following formula for the total energy of the motion

:

E= - GJp- (13-39)
la

The total energy of any elliptic orbit is thus the same as that of
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Fig. 13-23 A parlicle at any poinl P
in an elliptic orbit has a speed equal

W what it would acguire in falling

from resi inwardfrom the circle of

radius equal to the major axis of the

ellipse.

a circular orbit whose diameter is equal in length to the major

axis of the ellipse.

It may be seen from Eq. (13-39) that any increase of E
implies an increase in length of the major axis; the total energy

remains negative but becomes numerically smaller. The negative

total energy of an elliptic orbit expresses the fact that the orbiting

object is bound to the center of force and cannot escape unless a

positive amount of energy at least equal to GMm/2a is supplied.

If we consider an object at an arbitrary point in its orbit,

its gravitational potential energy is — GMm/r and the total energy

must, by Eq. (13-39), be equal to —GMm/2a. Thus we have

i 2 GMm GMm nt-AmE = smu = =

—

(13-40)
r 2a

The amount of kinetic energy defined by this equation can be

considered with the help of a diagram (Fig. 13-23). Taking the

focus F of the ellipse as center, draw a circle whose radius is

equal to the major axis, 2a, of the ellipse. To find the speed of

the orbiting particle at a point P, imagine that the particle has

been released from rest at the point / on the circle and has fallen

from I to P under the gravitational attraction. Then the kinetic

energy in Eq. (13-40) corresponds precisely to the change of

potential energy associated with the displacement from / to P.

If one could construct a device that would smoothly steer the

particle into the direction of the tangent at P without changing

the magnitude of the velocity, the ensuing motion would be the

elliptic orbit as shown.

MOTION NEAR THE EARTH'S SURFACE

With the background provided by the foregoing analysis of

elliptic orbits in general, one can recognize that all low-level
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Fig. 13-24 Limited trajectory above Ihe

earth's surface, seen as a small pari of

an ellipse with the earth's cenler al the

more distanl focus.

trajectories at the earth's surface, hitherto regarded as parabolic

paths under a uniform g field, are actually small portions of

ellipses, as indicated in Fig. 13-24. The approximation of the

trajectory by a parabola is in fact excellent, but strictly one should

regard the high point of the trajectory as the apogee, a, of a

very narrow ellipse. If an object is launched with a speed v from

a point A on the earth's surface, the total energy is given by

i 2 _ GMm = p = _ GMm
Re 2a

The major axis 2a is larger than the earth's radius by only a small

amount, say H. Wc can then put

GMm
Re Re \ ReJ

GMm
,
GMm

Rp. Re2

Hcnce

H-
2g

This distance H is the sum of the maximum altitude h reached

by the object, plus the distance Op from the earth's center to the

fictitious perigee point. In the event that the object is fired

vertically upward, the ellipse degenerates into a straight line and

the perigee point moves into coincidence with the earth's center.

In this case the value of h becomes equal to H, i.e., to o
2
/2g, just

as wc would calculate directly from simple kinematics.

INTERPLANETARY TRANSFER ORBITS

A problem that used to be rather academic but has now becomc

very practical is that of sending a spacecraft from the carth to
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another planet. The most efncient method is not to aim the

spacecraft radially inward or outward along a radial line from

the sun, but to let it coast in an elliptic orbit that joins smoothly

to the orbits of the earth and the other planet in question.

To take a specific example, consider the problem of getting

from the earth to Venus. We shall use the quite good approxi-

mation that the orbits of the two planets are circles with the sun

at their common center. The transfer orbit would then be as

shown in Fig. 13-25; it starts out tangent to the earth 's orbit

at E and joins the orbit of Venus tangentially at V. The length

of the major axis of the transfer orbit is thus the sum of the

orbital radii of the earth and Venus, which makes a total of

1.72 AU. This major axis is intermediate between those of the

two planets, and it follows from Eq. (13-39) that the total energy

is also intermediate between the values associated with the initial

and final circular orbits. Thus to carry out the transfer the space-

craft needs to be given a sudden retardation at E and (if it is to

be put in orbit with Venus) another sudden retardation at V. Let

us now make this quantitative.

The speed va appropriate to the earth's orbit is given by the

equation

GMsm mvo

rB

where Ms is the mass of the sun. Therefore,

GMS2

re
(13-41)

The actual magnitude of this speed is known directly from the

earth's orbit radius rE (= 1.49 X 10
8 km) and the length of the

Fig. 13-25 Interplanetary transfer

orbitfrom the earth to Venus. The

orbit is an ellipse that touches the

circular orbits of the two planets.

0.72AU
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year, TE (= 3.16 X 10
r

sec). Thus we have

2t X 1.49 X 10
8 „.. .

»° =
3.16X10^ - 296km/sec

The speed v i that the spacecraft must have at E in order to follow

the transfer orbit is given, according to Eq. (13-40), by the

condition

GMsm , 2 GMsm
E " " TjiTe - *"Wl —7T

Therefore,

(-i) = -^ = ^f 2-^ = 0.84
GMs

ra \ 0.86/ re

Thus, by Eq. (13-41), we have

vi « 0.92i;o « 27.2 km/sec

The necessary retardation is thus quite small—only about

2.5 km/sec.

Once placed in the transfer orbit, the spacecraft will take

half of an orbital period to join the orbit of Venus at V. Since,

by the generalized form of Kepler's third law, T2
is proportional

to the cube of the major axis, we have

\2.00/

3/2

TB = 0.807-b

Thus the journey takes about 0.40 of a terrestrial year, or about

146 days. During this time the speed of the spacecraft is con-

tinually increasing. Using the energy-conservation condition

once again, the speed v2 at V is given by

, 2 GMsm GMsm
imV2 ~ "6772^ " " T72^

Therefore,

2 GMS ( 1 1 \ _ -.2
2 -—V536""WV2 =

02 *» 1.27oo « 37.7 km/sec

The orbital speed of Venus is about 34.9 km/sec. Thus an im-

pulse sufficient to reduce the speed of the spacecraft by about

2.8 km/sec will complete the transfer operation. It may be seen,
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from this example, how the properties of the free orbital motions

can be judiciously exploited so as to make such transfers with a

relatively small expenditure of energy in rocket propulsion.

CALCULATING AN ORBIT FROM INITIAL CONDITIONS

Suppose that a particle is launched with a velocity v from a

point P, at a vector distance r from the center of force, F
(Fig. 13-26). How do we deduce the size, shape, and orientation

of the subsequent orbit?

The first thing to do is to test whether the total energy is

positive or negative (or perhaps, by chance, zero). Only if it is

negative will we have a bounded orbit, and we shall limit our

attention here to such cases, i.e., to closed elliptic orbits. From
the values of v and r we know the total energy and hence the

length of the major axis:

Fig. 13-26 Elliptic

orbit resulting from

the launching ofa
particle with an arbi-

trary velocity ?o at a

vector distance r o

from the center of

force (given that the

total energy is less

than zero).

E = %rrwo — GMm
ro

GMm
2a

(13-42)

Thus we know the distance a.

Next we can use the fact that the orbital angular momentum
is uniquely defined

:

/ = Iro X mvol mvoro sin <p (13-43)

At perigee (r = n) and apogee (r = rz ) the directions of v and r

are orthogonal, so that we can put

/ = mvir\ = mv2T2,

or

1 T2 l

595 Calculating an orbit from initial conditions



We can insert the value of l/r as defined by either of these equa-

tions in the expression for the total energy at apogee or perigee:

GMm
\mvi -— vi = -

la

This quadratic, when solved, has as its roots the values of both

i>i and v2 , from which we can at once deduce the values of rj

and r2 . This then fixes the eccentricity, by the relations

n = a(l -e) r2 = fl(l + e)

Finally, the orientation of the major axis, relative to which

the initial position vector makes an angle d , is determined through

the general polar equation of the curve [Eq. (13-29)]:

ro
_ «a - «

2
)

1 — < COS 00

Thus the orbit is completely specified, as shown in Fig. 13-26.

A FAMILY OF RELATED ORBITS

If we have a given force center and a given launching point, it is

instructive to consider the variety of orbits that correspond to

various possible values of the total energy. In the particular case

of an attractive inverse-square force law, the situation can be

illustrated with the help of Fig. 13-27. We shall suppose, for

simplicity, that a particle is launched from P in a direction at right

angles to the line FP from the force center F.

Hyperbola

Parabola

Ellipse 2

Fig. 13-27 Family of orbits of

Jifferenl total energy but sharing

the focus F {the center offorce)

and the launching point P.
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If the launching speed is close to zero, the particle follows

an almost straight line toward F; strictly, it would be an elliptical

path with an extremcly small width and a major axis only very

slightly longer than FP.

At a slightly higher launching speed, the orbit would re-

semble the orbit labeled "Ellipse 1." The launching point P
would be the apogee. At some higher value of the energy the

orbit would be a perfect circle with F at the center. A still further

increase of energy would lead to elliptic orbits once again, but

now P is the perigee point—i.e., the force center now represents

the nearer of the two foci with respect to the launching point.

Ultimately the situation is reached where the total energy is

precisely zero. A detailed analysis of the dynamics shows that

the trajectory in this case is a parabola; the particle would move

continually further from the center of force and would approach

infinite distance with vanishingly small velocity.

Any further increase of launching speed produces a trajectory

that is one branch of a hyperbola ; the particle now approaches

infinity with a significant positive kinetic energy.

One sees by this kind of evolutionary picture that there is no

sharp distinction between the various trajectories shown in Fig.

13-27, despite the fact of their being mathematically different

forms of conic sections. It may, in fact, be a quite difficult

matter to determine, on the basis of measurements made near P,

whether a given trajectory is part of an ellipse, a parabola, or a

hyperbola. This is a real consideration in the analysis of the

paths of comets through the solar system. The bounded orbit of

a comet with a total energy only barely less than zero is almost

indistinguishable from that of a hyperbolic orbit of small positive

energy if the comet is visible only when it penetrates the inner

regions of the solar system. An outstanding example of this is

the famous comet named after Newton's friend Halley, who

recognized that the comet he observed in 1682 had been recorded

in previous approaches to the sun at intervals of about 76 years.

With the help of Kepler's third law one can then infer that its

orbit is, in fact, an ellipse with a major axis equal to (76)
2/3

times the diameter of the earth's orbit, or a distance of about

40 AU. The orbit in relation to the rest of the solar system is

shown in Fig. 13-28. At its nearest approach to the sun

(~0.6 AU) the comet goes inside the orbit of Venus and shines

brightly; at its most distant points it goes beyond the orbit of

Neptune and is quite invisible over most of its path.
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Fig. 13-28 Orbit of

Halley's comel (period

about 76 years) pass-

ing among the orbits

of the planels.

CENTRAL FORCE MOTION AS A TWO-BODY PROBLEM

We have, of course, been treating these planetary problems and

so on as two-body problems in the sense that the basis of the

motion is the interaction between one object and another, but

there has been something of an inconsistency. We have used the

Newtonian law to define the force between two masses (M and

m), but we have assumed that one mass (M) could be taken as

fixed. This can be a quite good approximation for M » m
(e.g., the sun and any one of the planets), but it is never rigorously

true and must fail seriously if M and m are comparable.

We have already seen an example of the correct approach in

connection with a double-star system with circular orbits (p. 296);

the motion of both partners is recognized, and the displacement

of each is referred to the center of mass as origin, as indicated in

Fig. 13-29. The particles P and Q have coordinates ri and r 2

with respect to the center of mass C; the vector distance from Q
to P is r. We then have

M
M + m

598 Motion under cenlral forces



Fig. 13-29 Binary system, in

which the parlicles follow geo-

metrically similar orbits aboul the

cenler ofmass. C, always at

opposite ends ofa slraighl line

through C.

If the particles move only under the action of a central force F(r)

exerted between them, it is possible to choose a reference frame

in which C is fixed and the vectors n and r 2 are always exactly

opposite with a length ratio equal to M/m. The radial acceleration

ofP with respect to C is then given by

M \d
2
r /d6\

2
]ari =

M-+H,[d72-
r
\7t)\

Thus the statement of Newton's law for the radial component

of the motion of P can be written

F(r) = mM
M+ m[§-(£)! (13-44a)

(Note that F is a function of the total separation, r, of the par-

ticles.) The identical equation would arise from Newton's law

applied to the other particle, Q; it involves only the relative

coordinate, r, and the reduced mass y. [= mM/(M + m)]. Thus
we can put

->[&-'(S)l (13-44b)

If F is the gravitational force, —GMm/'r
2
, we see from Eq.

(13-44a) that the radial equation becomes

d\_ (de\
2

_
dfi

r
\dt)

G(M + m)
r*

The total mass, M + m, thus plays the role that was occupied

by M alone in the previous treatment.

The fact that the partners in a two-body system are following

geometrically similar orbits about their common center of mass
has been beautifully shown in a computer-generated film by
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(a) (b)

Fig. 13-30 (o) Paths oflWO members of a binary system as they might

appear in an arbitrary reference frame. (b) Same molions as seen in the CM
frame. (From the film "Force, Mass and Motion," by F. W. Sinden, Bell

Telephone Laboratories and Education Developmenl Center Film Studio,

Newton, Mass., 1965.)

Frank Sinden. Figure 13-30 shows two stills from the film; one

is of the motions as observed in a frame in which the center of

mass is itself moving, and the other refers the motions to the

CM frame.

DEDUCING THE ORBIT FROM THE FORCE LAW 1

Earlier in this chapter we showcd how the operation of an inverse-

square law could be inferred from the observed faet that the orbit

of a planet is an ellipse with the sun at one focus. Later, however,

we pointed out that parabolic and hyperbolic orbits were also

possible. How do we know this? The answer is, as we said in

Chapter 7, that Newton's second law can be used in two main

ways. We can infer the forees from the motions, or we can infer

the motions from the forees. Gcncrally speaking, the latter is

easier than the former and also leads to results of much greater

generality. For examplc, the analysis of the path of one particular

object over a limited trajectory near the earth's surface allows us

to conclude that a constant vertical acceleration, g, is at work.

But if we start out with the faet of this acceleration, we can

quickly deduce that all trajectories near the earth's surface

(ignoring air resistance) are parabolas or parts of parabolas. A
similar situation holds for ccntral forees, and we shall illustrate

'This seetion can be omitted without loss of continuity.
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the power of the deductive use of Newton's laws in such problems.

The basic equations governing such motions are, as we have

seen, the following:

A%-mFr = ma,

(13-45)

dt m

The shape of the orbit is something ihat can be described without

reference to the time; i t is just the spatial description of the curve

—given, in these problems, by r as a function of d. Thus we shall

be interested in suppressing the explicit time dependence that is

represented by the derivatives d2r/dt 2 and dd/dt. The clue to

doing this is given by the second equation of (13-45): We can

put

d6 = C
dt r2

It proves to be very advantageous in the analysis to introduce

the reciprocal of r as a variable. Calling this u we have

1

r = -

d8
"

,
(1M6 >

dt

Also, taking the first derivative of r with respect to /, we have

dr =
\_du

dt u* dt

Using the chain rule, we can rewrite this as follows:

dr _ }_dud$ _ du

dt " «2 dd dt
"

dd

[This last step follows from Eq. (13-46).] Differentiating again,

we get

Using Eqs. (13-46) and (13-47) gives us the following expression

ofNewton's law as applied to the radial component of the motion:

Fr = ma T = -mC2
u
2
(-£ + uj (13-48)
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The value of developing this particular formulation of the

radial equation of motion shows up at once when we designate Fr

as a specific funetion of r. In particular, for the case of motion

under gravity with a mass M fixed at the origin, we have

GMm „,. 2
F, = — = —GMmu

Substituting this in Eq. (13-48) then leads at once to the following

simple equation:

where A is a constant of the motion. If we rewrite this in the

form

-(u- A) --tu-A)

it is easy to see that the integrated solution can be written (with

a suitable choice of the zero of 0) in the form

u - A = B cos d

where B is another constant. Returning now to r as a variable,

we have the following equation for the orbit:

- = A + Bcose 03-50)
T

We shall point at once to one feature of Eq. (13-50), resulting

from our particular choice of the zero of 6. This is that as 8

increases from zero, in either the positive or the negative sense,

the value of l/r decreases and so r increases (provided that B is

positive). Thus the point corresponding to B = is the perigee

point of the orbit; r is passing through its minimum value, which

we shall call r, [see Fig. 13-31 (a)].

Equation (13-50) has a geometrical interpretation that can

be deseribed with reference to Fig. 13-31 (b). Rewriting the

equation slightly, we have

- = d = ar + r cos 6
B

where d = l/B and a = A/B. If we take a line FD of length d

passing through the perigee and draw an axis at right angles to

this at D, then the orbit is the locus of a point P that moves so
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Fig. 13-31 (a) Par-

ticle at perigee in an

orbit under an inverse-

sguare force. (6) Por-

tion oflhe orbit, show-

ing the geometrical

relationships of the

focus, the particle's

position, and the

directrix (.the line

DN).

that its perpendicular distance from the line DN is a constant

multiple, a, of its distance (d — r cos 0) from the focus F. This

corresponds to a general prescription for generating the various

conic sections.

To interpret the result more fully, we must consider the values

of the constants A and B in Eq. (13-50). The value of A is

defined in Eq. (13-49):

A = GM

Now C is the constant value of r
2
dO/dt. We can express this in

terms of the radial distance and the speed at perigee:

C = ii0i

Hence

GM
A =

r,2Wl2

Now the potential energy and the kinetic energy at perigee are

given by the following expressions:

Vi - - GMm
K\ = \moi

This permits us to write the constant A as follows:

A = -
2r t Ki

The value of B follows immediately from putting d = in Eq.

(13-50) itself:

-*-*-£(' +a)
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Now consider the difference between B and A

:

where E is the /ow/ energy of the motion at every point in the

orbit. This is the key to the problem, for we can now recognize

three different situations that correspond to the three types of

orbit discussed earlier, according to whether E is zero, negative,

or positive:

£=0 (B = A,<x=l): - = /1(1 + cos (?)

£ > (B > A, a < 1): - = A(ah + cos 6) (13-51)

E < (B < A, a > 1): - = A(a„ + cos d)

These equations define a parabola, a hyperbola, and an ellipse,

in that order. The first two equations clearly permit r to become

infinitely great (the first of them as 6 —* x, the second as cos B —

»

— an). The third equation defines maximum and minimum values

of r at 6 = x and zero, respectively. Further analysis would

relate the specific values of the orbit parameters to the dynamical

constants of the motion—i.e., to the magnitudes of the energy

and the orbital momentum.

Many problems involving force laws other than the inverse

square can also be effectively attacked by the methods developed

at the beginning of this section and culminating in Eq. (13-48).

RUTHERFORD SCATTERING

As another example of motion in an inverse-square central field

of force, we shall consider the defiection of an electrically charged

particle in the electric field of a much more massive object carrying

an electrical charge of the same sign. The field is repulsive, obeys

Coulomb's law, and has the equivalcnt potcntial energy

U'(r) = *Sm + J- (13-52)

as shown plotted in Fig. 13-32(a). k is the proportionality con-

stant in Coulomb's law and q Y and q 2 are the electrical charges

on the two particles.
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Fig. 13-32 (a)Effec-

tive radial potential-

energy diagram for a

particle v/Uh orbital

angular momentum l

in a repuhive Coulomb

field. (b) Plan view

ofthe trajectory ofan

alpha particle (q i) in

the neighborhood of

a massive nuclear

charge (qz).

Wbi-^*:

'"min

(b)
i*

o rmln
Axis of symmetry

Motion is possible only for positive energies (£) and all such

motions are unbounded, characterized by a distance of nearest

approach, rmin , which depends on the energy of the moving

particle. Becausc the particle retraces all the values of radial

speed on the way out that it had on the way in, and because the

angular velocity (dd/dt) of the particle depends only on its distance

r from O, the trajectory will be symmetrical as shown in

Fig. 13-32(b).

Historically, the understanding of this type of motion played

a basic role in one of the most important experiments of this

century. About 1910 Lord Rutherford and his students, especially

Geiger and Marsden, performed a series of experiments on the

scattering of a beam of alpha particles by thin metallic foils.

Thesc experiments showed that most of the mass of atoms is

conccntratcd in a small positively charged nucleus. Presumably

the electrons in the atom surrounded this nucleus like a cloud.

This nuclear model of an atom was in sharp contrast to that

previously proposed by J. J. Thomson, which was essentially a

ball of distributed positive charge in which the electrons were

embedded.
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Fig. 13-33 Scatter-

ing of alpha particles

by the nuclei in a thin

metalik foil.

Figure 13-33 is a schematic diagram of one such experiment,

using a thin gold foil as a target for the alpha particles. A colli-

mated beam of alpha particles (helium nuclei) from a polonium

source is incident on a gold foil about 4 X 10
-7 m (4000 A) in

thickness. Although most of the alpha particles were observed

to pass through the foil, dcflected chiefly through small angles

(forward scattering), a few were found to be deflected through

angles greater than 90° (backward scattering). The fraction under-

going backward scattering was exceedingly small, only a few

parts in a million. Rutherford reasoned that alpha particles

could not be scattered backward by electrons in the gold atoms

because electrons have such a small mass relative to the mass of

He2+ . In fact, since this mass ratio is of the order of 1/7000,

the scattering effect of the electrons should be quite negligible

even in forward direction. The occurrence of backward scattering

can be accounted for only if alpha particles pass very close to a

mass that is very large compared to the mass of alpha particles.

This argument led Rutherford to propose an atomic model with

a very small but massive nucleus. If this is a correct model, one

should be able to predict the relative number of alpha particles

scattered in different directions under the influence ofthe Coulomb

field that surrounds a much more massive positively charged gold

nucleus. This was done and the quantitative experimental results

agreed with the calculations. Let us see how such a calculation of

scattering is obtained.

For a thin foil, an alpha particle scattered by one of the gold
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nuclei (there are about 6 X 10
19

gold atoms/mm 3
in the foil)

has a small chance of being deflected appreciably by a second

nucleus before it emerges from the foil. Therefore, we can con-

sider all scattering of the beam to be the result of single scattering

processes. First, then, we must find the deflection of an alpha

particle by one gold nucleus. Next, since we cannot aim each

alpha particle, we must compute the relative number deflected

through a certain angle, taking into account all possible "aiming

errors."

Although we can use the methods of satellite orbits to obtain

the deflection of an alpha particle by a gold nucleus, we shall

present a much simpler and more direct argument. Consider an

alpha particle (charge q t and mass m) moving with a speed v

toward a gold nucleus of charge q 2 as shown in Fig. 13-34.

Clearly, the deflection will be larger, the more nearly u

points at the charge q>. The distance b in the figure is the impact

parameter defined earlier in this chapter (p. 570) and is a measure

of the aiming error. Since at large distances from q, the potential

energy ofm in the field of q2 is negligibly small, the kinetic energy

%mv 2
at such distances is the total energy of the motion. This

total energy is conserved in the encounter. Hence the alpha

particle regains its initial speed after scattering, and the only

effect of the process is to change the direction of its motion by an

amount equal to the angle <p in Fig. 13-34. To be sure, the alpha

Fig. 13-34 Geomelry

ofa Rutherford-

seatterlng event.
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particle slows down as it approaches the gold nucleus, but it

regains its original speed on the way out. In addition, the angular

momentum ofm about q 2 is conserved and this constant angular

momentum / is given by

/ = moob = mr — = const.
dt

(13-53)

The total change of momentum A(mv) in the scattering pro-

cess is the difference of the two vectors, each of magnitude mvo,

shown in Fig. 13-35, and is equal in magnitude to

10
A(mo) = 2mvo sin - (13-54)

This must be equal to the total impulse supplied by the

foree F of Fig. 13-34 during the scattering process. This impulse

is the veetor

Ap = / F dt

From the symmetry of Fig. 1 3-34, we see that only the com-

ponent Fx of F contributes to this impulse, because the perpen-

dicular contributions from Fy at points on the trajectory below the

x axis just cancel the corresponding contributions at points above

the x axis. This makes sense, because A(/wv) is parallel to x as

indicated in Fig. 13-35. Thus, Newton's law of motion gives us

Ap = / Fx di = / Fcos 6 dt = A(nw) = 2mv sin
|

and we must evaluate the integral. Writing this integral as

kqiq2 cos 6
Ap =

r*
dt

and using Eq. (13-53), we have

Hmv )

Ap m
kg\q2 f

*

vob J>,

cos Ode = -~^ (sin 62 - sin 0i) (13-55)
vob

Fig. 13-35 Net dynamical result of a scattering event

in terms of the impulse Ap lliat changes the direetion

but not the magnitude of the alpha-partiele momentum.
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di and 02 are the values of 8 before and after scattering. From

Fig. 13-34 we see that

*— (tp) «- *-+(^)
Since sin [(ir — <p)/2] = cos (v/2), Eq. (13-55) becomes

Ap =
;
— cos r

to» 2

Equating this expression for A/» to the value of A(mv) according

toEq. (13-54), we find

tanf = ^i|| (13-56)

This tells us, for each value of the impact parameter b, the

angle of scattering of particles of a given energy. If the beam of

alpha particles is essentially monoenergetic, we can proceed to

use Eq. (13-56) to calculate the relative numbers of the incident

particles that are scattered through different angles y. This

involves finding the fraction of the incident alpha particles that

have impact parameters betwecn b and b + db and from this

the fraction scattered into the corresponding range of angles <p.

CROSS SECTIONS FOR SCATTERING

It is customary to express the relative numbers of particles

scattered through different angles in terms of a quantity called the

scattering cross section of the particle that does the scattering.

The primary dcfinition of a cross section is simply that it is the

effective target area presented by each scattering center to the

incident beam. To develop this quantitatively, consider a greatly

magnified picture of a very small square of a scattering foil

[Fig. 13-36(a)] and imagine that one can look right through the

thickness of the foil. Each scattering center blocks out an area <r,

and we shall assume that the foil is so thin that, as viewed from

the front, there is no overlapping of the cross sections at various

depths in the foil (see the figure).

Now the material of the foil has a certain characteristic

number, n, of atoms per unit volume. Thus if the thin slice is a

square of edge / and thickness Ax, the number of atoms in it is

n/2 Ax. With each atom wc associate a nuclear cross section <x,
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Fig. J3-36 (a) Sehematic view ofa portion ofa scatter-

ing foil, with each nueleus presenling an effective target

area a. (b) The total target area ofa nueleus can be

subdivided into pantai cross seetions corresponding to

the rings contained between neighboring ualues of the

impaet parameter, b.

so that the amount of area blocked with respect to the incoming

partieles is ani2 Ax. The total area within which this portion is

blocked out is just I
2

. This then means that the fraetion, f, of

the total area that is obstructed is given by

/- ani Ax
/2

= 071 Ajc

Since the incident partieles are striking the foil at completely

random positions as measured on the scale of interatomic dis-

tances (even though the beam as a whole is limited in extent

laterally, within perhaps a millimeter or so), the fraetion of par-

tieles falling within a nuelear target area is identical with the

fraetion / given above. Thus if n' alpha partieles approach the

scattering foil and An' of them undergo a nuelear scattering inter-

aetion of some kind, we have

/=^-<r»A* (13-57)
n'

Hence from a measurement of An'/n', using a scattering foil of
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Fig. 13-37 Relation

between scattering

angles and impact

parameters.

known thickness and composition, the effective cross section of

an individual nucleus can be deduced. 1

One often speaks of partial as well as total scattering cross

sections. This concept is especially important in the analysis of

"Rutherford scattering" and of many similar processes. The

partial cross section has a very direct interpretation. Imagine that

one is looking toward a scattering nucleus whose center is at the

point O in Fig. 13-36(b). Then one can picture a ring contained

between the impact parameters b and b + db. The area of this

ring defines a partial cross section da

:

da = 2Tb db (13-58)

Now Eq. (13-56) implies a unique connection between the value

of b and the consequent scattering angle <p. This is indicated in

Fig. 13-37. Since the partial cross section da is completely

defined by Eq. (13-58), it follows that the use of Eq. (13-56)

leads to a specific prediction about the relative number of alpha

particles scattered into angles between <p and ip + d<p. Let us

make this quantitative.

Writing Eq. (13-56) in the form

b = s-cot-
mvo'

we have

,. kqiq2 2 V jdb = - r esc -
d(fi

2mvo2 2

'In this deseription, we have ignored the electrostatic "sereening" provided

by the electrons around a nucleus. Such sereening drastically affects the

scattering process for large impact parameters (comparable to an atomic

radius).
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LXI. The Lam of Vefierion of* Particle* througK Lafjf
AngUi*. B>j Dr. H. Geioek and E. Mabsdkk t-

IN n former paper } one of us has sliown that in the
paasnge of a particles through matter tho deflexions are,

oa tlio nveruge, small nnd. of ihe order of a few degri'r->

only. In tho expuriments a narrow pencil of a particles fell

un a zinc-anlphido screen in vacuum, and the distribntion
o! the scintillations on the screcn wasobserved when dinVu-iu
metal foiU were placed in Ihe path of ihe a particles. Frimi
the distribution obtained, tlie most probable anglo of seai-

tering could bo deduced, and it «as sliown that the resuita

could be cxplained on the assiimption tbat tlu; dcttcxion oi

a single a pnrticle is tho resnltant of a large nunibor of wrv
small detlc\ions causcd by the passugc of the a partieb-

through the succcssive individual atoms of the scattering
sobstance.

• Ct-iuimniicAL-i! t./.-. rf-iV. ,4i*rf,*/. WVm. Umk.
t OnummImSmI by Pn.f. B. HullK-tford.F.U-S.
I H, CioiKrr, Koy. Boe, l'roc. \ul. l\xxiii.

i». 402 (1910>; *vl \xtxih
p. S)ti(lUl-J).

In au earlier paper *, howevcr, we pointed ont that «
!'-i: I ide? n re somulimes turned through very large angle*.

Tlils VtU niude ovidcnt by the faet tbat when a ]iarticles fail

mi a metal plnte, a small fraotion of them, ahout 1/8000 in

lho 0M0 of platinnm, appears to l>e dift'iisoly reflectod. This
iinioiuit of rchVxion, alibough small, i$, however, too largo to

Iri o\pliiined on ihe above siinple theory of scattering. It is

ensy to cnlculnte from the expe.rimentaf data that the proba-
hility of a deflciion through on angle of 90° is vnnisfiingly
.«mal), and of n diffcrent order to lho value found experi-
menuilly.

Profeasor Ruthcrford t has rceently devcloped a theory to

nccount for tbo scattering of a particles through these large

nnglcs, the ussumption being that the denVxions are the
result of an intimate encoonter of an a particle with a
-ungle atom of the matter traversed. In this iheory an atom
ii supposed to con*i9t of i* strong positivo or negative contral
charge concentrated within a sphere of less than about
3x10"" cm. radio;, and sarronnded by electricity of the
opposite »ign distributed throughout the remainder of the
atom of about 10~* cm. radius. In considering the de-
fleiion of an a pnrticle directed against such an atom, tho
main dofleiion-effoct can be supposed to be doe to tho central
•concentrated cbarge which will cause tho « particle to describe
BB hyperbola witli tho centre of the atom as one focus.

The angle lietween tbe directions of the « particle before

and after deflexion will depeodon tbe perpendicnlar distanoe

of tbe initial trajectory from the centre of the atom. Tho
fraclion of the a particles whose paths are sufficiently near

to the centre of tho atom will, however, be small, so tbat the

probability of an a particle snffering a large deflexion of this

natnre will be correspondiogly small. Tbus, assuming a

narrow pencil of a particles directed against a thin sheet of
matter containing atoms distribnted at random thronghont
its volume, if the scattered particles are counted by tlie

i.-iii' iil;i* i
«

*
i r

. they produce on a ziuc-sulphide screen dis-

tanoe r from tho point of incidence of tbe pencil in a direction

inaking nn angle ./' v-'" t ' 1 H, the nnmber of a particles fatling

on unil area of the screen per second is deduced to be equal to

Qnt&* cosec* d»/2

whcre Q it the number of * particles per second in the

• H. Geigtr ud E. Mareden, Roy. Soc. Proc vol. lxxaiL p. 406

t E. Rulherfoid, PUL Mag. toL ssi. p. 069 (1911).

original pencil, n the nnmber of atoms in unit volume of the

material, and / the thickness of tbe foil. The quantity

_ 2NrE

wbere N# is the central cbarge of the atom, nnd m. E, and »

are the respective mass, cbarge, and velocity of the o particle.

The number of deflected a particles is thus proportional to

S.

)
fUNiv' <*>/'.', {-) thickness of scattering material t if tlie

ickness is small, (3) the square of tlie central charge Nc of

the atoms of tlio particular matter employed to scatter tho
liarticles, (4) the inverse fourth power of the velocity u of
the incident a particles.

At tbo suggestion of Prof. llutberford, wo haVfl carriid
out experimenH to ti-st the main conclusions of tbe abovo
theory. Tho tollowing [toints were invesligtited i

—

(1) Variation with angle.

(2) Variation with luieknera of scattering material.

(3) Variation with atomic weight of scattering matori:il.

(4) Variation with volocity of incidt-nt a particles.

(5) The fraetion of particles M-uttcred through a dofinito
angle.

Tho main difhcutty of Ihe experiments has arisan from tl«-

necessity of minff n very intense and narrow sonreo or
a particlos owing to Uip »mallncs* of tbe scattering effect.

Ali tbe mea»ureiiients have bcen carriod out by obforving
the scintillntions due to tbe scattered a prticles'on a »inc-
aulpbide teroen, and during the coiirse of tho experimentr>
over 100,000 sein u liati ons liaro been counted. It mav l»c

mentioncd in anticipation that all the i<->ul;s of our investi-

gati,>n aro in good agreeinent with the theoretical doductioiis
of Prof. Kutberford, rmd afford strong evidence of the cor-
reetness of ihe undorlying nssumption that an atom 00ntain>
m strong clmrge at the centre of dimensions, small oomiiurwl
with tho diameter of the atom.

(1) Variation of .%\illeri»(i with .\riqle.

"Wo have already pointed out that to obtiiin mettDtlruhlf

oftccts an intonso pencil of « particles is rouuirod, ll in

fiirthor nccossjiry that the pati) of tlie a pnrticles shoulil Ih'

in an evncanted ehaiiib.'r to avoij conmlicntioilri d»e t» the

itbsbrption and scattering of the air. Tiic appamtns tisi'il i*

ahown in tig. 1. and mainly consisted of u strong uyHmlrh'iil

metal bos 1(, which contaiiied the source of « partifiloi It.

the scatlering foil F, nnd a microseope al to which tho zinc-

snlpliido screen S was rigidly attaclicd. Tlie bos was fastenod

down to n graduated eireiilnr |>latform A, which could bo
rotated by means nf B conical airtight joint C By rotating
ihe platform tho U>x and microseone nioved wilh it, whilst
tho sciittering foil and radiating sOurce remaincd in jiosition,

lK>ing attached to tho tube T, whieh was fastened to the
»lnndard L. The \>ox B was elosed by the ground-glass
plato P, and could I* cslumsted tlirough tho tnltc 'f.

Tho source of a pnrticles employed was similar to that
.]•: originally by Rutherford and Boyds * in their experi-

ments on the miture of the * particle. It consisted of o
-nn)) thin-walled glass tube about 1 mm. in diameter, con-
taining a large quantity of well purified radium emanation.

The particles emitted by the emanation and its activo

deposit could pass through the glass wnlb without much re-

duetion of range. For tnese experiments tho unbomogeneitv
uf tbe source, due to tbe different a particles from the emona-
tion, Ra A and Rn C, does not interfere with the Application

of tbo law of scattering with angle as deduced from the
theory, as each group of a particles is scattered according to
the same law.

Ity means of a diaphragm placed at D, a pencil of a par-
ticles was directed normally nn to tbe scattering foil F. By

• E. Kuthcrford ind T. Koyda, Phfl. Mtg. vol. xvii. p. 281 (1909).



rotating the microscope tbe m particles scattered ia different

directioos oonld be observed on the screen S. Althoagh over

100 millicnries ot radium emanBtioo were available for tbe

esperiments, the smallness of the effect for the btrger angles

of defleiion oeceuttated ahort distances of screen and sonrce

from the scattering foil. Ia some eiperimenls tbe distance

between the eoaroe and scattering £oil «as 2*5 cm., aod the

•screen movod in a circle of 1'6 cm. radius, white in other

eiperiments these distances were increased. Obseivations
were taken in variooa experimenta for angles of deflexion

from 5° to 150°. When measoring the scattering throngh
iarge angles the sino-snlphjde Bcreen had to be turned
very near to the sonrce, and the & and y rays prodnccd a
oonsiderable laminescence od i t, thns malang oonntings of
the scintillatioDs dillioult. The effect of the /8 rays was
rednced as far as poasible by enolosing tho socrco in a lead
hox sbown shaded in the diagram. The amount of lead was,
however, Hmited by considerations of the Bpace taken up by
it, and consecpiently observations conld not be mode for
angles of deflezion between 150° and 180°

in the investigation of the scattering throngh relatively

small angles the distances of source nnd seroen from the

scatteruig foil were increased considerably in order to obtain

beams of smaller solid angle.

Table II.

1.

Aiigl. of

d-C-;.OL.

n.

i

III. IV.

tara.
V. VI.

Ooi».

«'/B' Uumb.r of

•ClDlil-

!ationt,S.
.i,,-.,-2-

NaiiibroT
Klnlil-

l.lions. N.

a
•L.'**

I» ....

135
12) .....

105
75
60
43 ....

57-5 ,

30
22-5

13

30
22-5....

15
10
7-5

* .

1-15
1-38

1-79
2-53

7-25

16«
46-6

957
225
090
»445

223
690
3445
17330
64650
276300

22-2

27-4

ai-o
47-3

136
320
999
1760
5390
20300
105400

5S
16-6M

506
1710

19-3

108
18-4

18-7

18-8

20«
21-2

18«
23-6

21N
30«

0024
0024
0O27OM
0031

33-1

43«
:.!«

695
Sll
477
1435
3300
7800

27300
132000

H
»4
482
200
1107

MO

288
314
20«
273
291
29-8

3»8
35»
35-0

3911

»»4

011
OOI2
0O14
0115

0011
ooia

Variation with Thickneu of Material,

In investigating the variation of scattering with thioknes*

of material, it seemed necessary to use a homogeneous sonrce

of a particles, for ac-ording to the tbeory the effeot of the

change of velocity with inoreasing thiokness will be very
appreciable for a particles of low velocity.

i

1

1

>fT '•$'

ji
7*

U'

1/
oi 5 S 12 't

iQui**tt*T eerem.
\

For all the metal* esamined th* pointslie on straight line*

which mes ihrough the origin. The eiperiments thoreforc

prove tbat for small thicknefses of matter the scattering is

proportional to the tbickness.

Table VTI.

Variation of Scattering with Velocity.

I. 11. m IV. V.

BopUof
«pM4klM

«ft?r lOkTil.^

R*UUto XumbnKof
kMtaof T.1.M Of *-ilUill»tlOTl»

per miiiut..

H*.

5-5 io 247 25
1 4-76 1-21 290 24
2 406 1-60 33-4 22
S ssa 1-91 44 23
4 2-51 2-84 81 28
S 1-84 432 101 23
6 1-04 9-23 255 28

Summary.

Tho expcrimcnts deseribed in the foregoing paper were

Carrieu out to test a theory of the atom proposed by Prof.
Kutherford, the main fentnre of whicli is tbat there exi$t*

ut the cuntre of the atom an intense highly concentrated
«jlectricol charge. The verification is based o»* the laws of
•''il'Tiii;; which were deduced from this tboory. The
l'ollowing rrl:iiions hm l«cn verified expcrimcntally ^~

(1) Tho numbor of « particles emerging from a scattering

foil at nnanglu d> witli the original boam varies as l/iin* if>/2,

when the c particle$ are conntod on a definito area at a con-
stant distanci from the foil. This rolation has bcen tested

*or nngles varying from D° to 150°, and over this range tli"

namber of o particles varied from I to 250,000 in good
ngreeuient witli tho theory.

(2) Tbe nninl>er of m particles scattored in a definito

direetion is directly proportional to the thickness of tlie

-caltering foil for small thicknesscs. For larger thicknesscs

the decrease of velocity of the a particles in the foil causes a
Mjinewhat more rapid increase in the ainotmt- of scattering.

(3) The scatbjring per atom of foil* of d!fTen>nt materials

varies approzimately as the sqnare of the atomic weight.

This relation was tested for foils of atomic weight from that
.»f carbon to that of gold.

(4) The amount of scattering by a given foil is npproxi-
mutely proportional to the iDWN lonrth pomr of thn

velocity of tho inciilent a particles. This relation was tested

over a range of velocities sach that tlie namber of scattered

particles varied as 1 : 10.

(5) Quantitative esperiments show that the fraetion of

a particles of UaC, which is scattvred through an angle of
15° by n gold foil of 1 mm. air equivnlent (2'lx I0"

J
cm.),

is 3"7x 10~ T when the scattered particles are countcd on n

•icreen of 1 sq. mm. arca ploccd at a disiance of 1 cm. from
the scattering foil. Frorn this figure and the foregoing
re.nnlts, it cati be calcul.ited that the number of elementary

charges coinposing the centre of the atom is eqnal to half the

atomic weight.

FACSIMILE EXCERPTS
FROM THE
PHILOSOPHICAL
MAGAZINE
VOLUME 25, 1913



(We have suppressed the negative sign that tells us that ip de-

creases as b increases.) Thus the partial cross section, as given

by Eq. (13-58), becomes

_ (kgigtf
cos (y/2) d<p

a° *\mv<fi) sin3(v/2)

Now the scattering experiment is actually done by observing, as

a function of <p, the number of alpha particles that enter a detector

subtending a certain fixed solid angle at the place on the foil

where the scattering processes are occurring. Thus a direct

measure of the process is the amount of scattering per element of

solid angle. This measure is provided by the so-called differential

cross section, which is d<x divided by the solid angle dO. contained

between the directions <p and <p + d<p. Since

ip tp

dQ = 2tt sin f d<? = 4ir sin - cos - d<p

we have

da 1 (kqmV 1
( 59)

<Kl 4\»"-o2 / sin< (*>/2)
K '

This theoretical result for Coulomb scattering can then be com-

pared with experimental observation, using an equation analogous

to Eq. (13-57) but now limiting attention to scattering into a

certain solid angle Afi at a scattering angle <p:

nAx
(lt)

A/=*Ax(^jAn (13-60)

In Eq. (13-59), q\ is the charge on the alpha particles,

(qi = 2e, where e is the elementary charge) and q2 (= Ze) is

the charge on the scattering nucleus. mo 2
is just twice the kinetic

energy of the alpha particles. The dependence of the observed

scattering on Z, the atomic number of the scattering nucleus, on

the energy of the alpha particles and on the angle of scattering <e

agrees very well with the predictions of Eq. (13-59). One would

expect deviations from the theory under two kinds of conditions:

1. If the impact parameter b is so large as to be a significant

fraction of an atomic radius, the nuclear charge is partially

shielded by the surrounding electron cloud, and the angle of

scattering is correspondingly reduced, compared to that predicted

by Eq. (13-56).
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2. If the impact parameter is so small that the alpha particle

comes within range of the specifically nuclear forces, one can no

longer expect the scattering to conform to that calculated accord-

ing to Coulomb's law for a point charge.

Since deviations o f type 2 from the Rutherford scattering law

[Eq. (13-59)] occur for those alpha particles which get in close

to the scattering nucleus, they will become apparent in the back-

ward scattering, especially for alpha particles of higher energy.

From the observation of the energy of alpha particles for which

this back scattering starts to depart from the Rutherford formula,

one gets an upper limit for the size of the scattering nucleus. For

the case of gold, one finds in this manner that the gold nucleus

has a radius less than about 1.5 X 10
-14 m (= 15 F). This

may be compared to the radius of the gold atom which is about

1.5 X 10
-10

m. The ratio of the radius of the atom to that of

the nucleus is thus about 10
4

, so that the volume of the atom is

of the order of 10
I2 times that of its nucleus. The massive nucleus

is thus concentrated into an extremely small fra^tion of the

whole atomic volume, and the deflection of an alpha particle

occurs as it passes through a region close to the nucleus, after

penetrating the electrostatic shield provided by the atomic

electrons.

AN HISTORICAL NOTE

Lord Rutherford (1871-1937), born in New Zealand, was an

experimental physicist of remarkable skill. He received the

Nobel prize in chemistry in 1908 and achieved the first experi-

mental transmutation of matter in 1919 when he bombarded

nitrogen with alpha particles, producing an isotope of oxygen.

The steps that led to his discovery of the atomic nucleus are

interestingly expressed in Rutherford's own words:

Now 1 myself was very interested in the next stage, so I will give

you it in some detail, and I would like to use this example to

show how you often stumble upon facts by accident. In the

early days I had observed the scaitering of a-particles, and Dr.

Geiger in my laboratory had examined it in detail. He found, in

thin pieces of heavy metal, that the scattering was usually small,

of the order of one degree. One day Geiger came to me and

said, "Don't you think that young Marsden, whom I am train-

ing in radioaclive methods, ought to begin a small research?"
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Now I had thought that too, so I said, "Why not let him see if

any a-particles can be scattered ihrough a large angle?" I may

tell you in confidence that I did not believe that they would be,

since we knew that the a-particle was a very fast massivc particle,

with a great deal of energy, and you could show that if the

scattering was due to the accumulated effect of a number of small

scatterings the chance of an a-particle's being scattered back-

wards was very small. Then I remembered two or three days

later Geiger coming to me in great excitement and saying, "We

have been able to get some of the a-particles coming back-

wards . .
." It was quite the most incredible event that has ever

happened to me in my lifc. It was almost as incredible as if you

fired a 15-inch shell at a piece of tissue paper and it came back

and hit you. On consideration I realized that this scattering

backwards must be the result of a single collision, and when I

made calculations I saw that it was impossible to get anything

of that order of magnitude unless you took a system in which the

greater part of the mass of the atom was concentrated in a

minute nucleus. It was then that I had the idea of an atom with

a minute massive centre carrying a charge. 1 worked out mathe-

matically what laws the scattering should obey, and I found that

the number of particles scattered through a given angle should

be proportional to the thickness of the scattering foil, the square

of the nuclear charge, and inversely proportional to the fourth

power of the velocity. These deduetions were later verified by

Geiger and Marsden in a series of beautiful experiments.

'

On pp. 612-613 we have reproduced some excerpts from

the original paper by Geiger and Marsden. It is interesting to

caleulate the cxpected baekward scattering (> 90°) on the

basis of the most widely accepted atomic model of 1910. This

was the Thomson model, in which the negative electrons were

imagined to be distributed throughout a sphere of uniform posi-

tive charge of radius about 10
_8

cm. A passing alpha particle

could be deflected by the clectrostatic repulsion of the positive

charge, which constituted most of the mass of the atom. The

maximum deflection in a single encounter was quite small.

However, "multiple scattering*' from several atoms might oecur

From Background w Modern Science (ten lectures by various seientists at

Cambridgc University in 1936; J. Needham and W. Pagel, eds.), Cambridge

University Press, England (1938).

2The electrons, as we mentioned carlicr, are so light compared to the alpha

particles that they would be simply brushed aside in a collision between

the two.
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PROBLEMS

in sufficiently thick foils, producing a net deflection which is

large. For a gold foil 10
-4 cm thick such as Geiger and Marsden

used for some of their experiments, the Thomson theory pre-

dicted that the fraction of alpha particles scattered at angles

greater than 90° would be about one out of every 10
1000

! That

is tantamount to saying that it would never happen. (Recall, for

the purposes of comparison, that the total number of all the

electrons, protons, and neutrons in all the galaxies of the observ-

able universe is only about 10
80

.) No wonder Rutherford was

astonished when Geiger and Marsden observed for a foil of this

thickness that approximately one out of every 10
4 alpha particles

was dcflected at angles greater than 90°.

13-1 The circular orbits under the action of a certain central force

F(r) are found all to have the same rate of sweeping out area by the

radius vector, independent of the orbital radius. Determine how F
varies with r.

13-2 In the Bohr model of the hydrogen atom an electron (mass m)

moves in a circular orbit around an effectively stationary proton,

under the central Coulomb force F(r) = —ke2/r2 .

(a) Obtain an expression for the speed v of the electron as a

function of r.

(b) Obtain an expression for the orbital angular momentum /

as a function of r.

(c) Introduce Bohr's postulate (of the so-called "old quantum

theory," now superseded) that the angular momentum in a circular

orbit is equal to nh/2ir, where h is Planck's constant. Obtain an

expression for the permitted orbital radii.

(d) Calculate the potential energy of the system from the

equation

W) = - F(r)dr
,
«'00

Hence find an expression for the total energy of the quantized system

as a function of n.

(e) For the lowest energy state of the atom (corresponding to

n = 1) calculate the numcrical values of the orbital radius and the

energy, measured in electron volts, needed to ionize the atom.

(k = 9 X 10° N-m2/C 2
; e = 1.6 X 10

_19
C; m = 9.1 X KT31 kg;

h = h/2ir = 1.05 X 10
-34

J-sec.)

13-3 A mass m is joined to a fixed point O by a string of length /.
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A

Initially the string is slack and the mass is moving with constant speed

uo along a straight line. At its closest approach the distance of the

mass from O is h. When the mass reaches a distance / from O, the

string becomes taut and the mass goes into a circular path around O.

Find the ratio of the final kinetic energy of the mass to its initial

kinetic energy. (Neglect any effects of gravity.) Where did the energy

go?

13-4 A particle A, of mass m, is acted on by the gravitational force

from a second particle, B, which remains fbced at the origin. Initially,

when A is very far from B (r = oo), A has a velocity v o directed along

the line shown in the figure. The perpendicular distance between B
and this line is D. The particle A is deflected from its initial course

by B and moves along the trajectory shown in the figure. The shortest

distance between this trajectory and B is found to be d. Deduce the

mass of B in terms of the quantities given and the gravitational con-

stant G.

Vo

r
D

.Trajectory

13-5 A particle of mass m moves in the field of a repulsive central

force Am/r 3
, where A is a constant. At a very large distance from the

force center the particle has speed vo and its impact parameter is b.

Show that the closest m comes to the center of force is given by

rmia = (b2 + A/vo2
)
1 '2

13-6 A nonrotating, spherical planet with no atmosphere has mass

M and radius R. A particle is fired off from the surface with a speed

equal to three quarters of the escape speed. By considering conserva-

tion of total energy and angular momentum, calculate the farthest

distance that it reaches (measured from the center of the planet) if it

is fired off (a) radially and (b) tangentially. Sketch the effective po-

tential-energy curve, given by

GMm , /
2

V'tr) = — +
2mr2

for case (b). Draw the line representing the total energy of the motion,

and thus verify your result.

13-7 Imagine a spherical, nonrotating planet of mass M, radius R,

that has no atmosphere. A satellite is fired from the surface of the

planet with speed vo at 30° to the local vcrtical. In its subsequent

orbit the satellite reaches a maximum distance of 5R/2 from the center
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of the planet. Using the principles of conservation of energy and

angular momentum, show that

vo = (5GA//4/?)"2

13-8 A particle moves under the influence of a central attractive

force, —k/r 3
. At a very large (effectively infinite) distance away, it

has a nonzero velocity that does not point toward the center. Con-

struct the effective potential-energy diagram for the radial component

of the motion. What conclusions can you draw about the dependence

on r of the radial component of velocity?

13-9 A satellite in a circular orbit around the earth fires a small

rocket. Without going into detailed calculations, consider how the

orbit is changed according to whether the rocket is fired (a) forward

;

(b) backward; (c) toward the earth; and (d) perpendicular to the

plane of the orbit.

13-10 Two spacecraft are coasting in exactly the same circular orbit

around the earth, but one is a few hundred yards behind the other.

An astronaut in the rear wants to throw a ham sandwich to his partner

in the other craft. How can he do it? Qualitatively describe the

various possible paths of transfer open to him. (This question was

posed by Dr. Lee DuBridge in an after-dinner speech to the American

Physical Society on April 27, 1960.)

13-11 The elliptical orbit of an earth satellite has major axis 2a and

minor axis 2b. The distance between the earth 's center and the other

focus is 2c. The period is T.

(a) Verify that b = (a 2 - c 2
)

1 '2
.

(b) Consider the satellite at perigee (ri = a — c) and apogee

(r2 = a + c). At these two points its velocity vector and its radius

vector are at right angles. Verify that conservation of energy implies

that

i
2 GMm , 2 GMm _

mv\ = *mv2 ;— = E
a — c a + c

Verify also that conservation of angular momentum implies that

-f
= Ua - <0»i = Ha + c)v2

(c) From the above relationships, deduce the following results,

corresponding to Eqs. (13-36) and (13-39) in the text:

T2 = 4rV/CM and E = -GMm/2a

13-12 A satellite of mass m is in an elliptical orbit about the earth.

When the satellite is at its perigee, a distance Ro from the center of
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the earth, it is traveling with a speed vo- The mass of the earth, M, is

much greater than m.

(a) If the length of the major axis of the elliptical orbit is 4/?o,

what is the speed of the satellite at its apogee (the maximum distance

from the earth) in terms of G, M, and Rof

(b) Show that the length of the minor axis of the elliptical orbit

is 2V3 i?o. a°d find the period of the satellite in terms of Vo and Ro-

13-13 A satellite of mass m is traveling at speed r>o in a circular orbit

of radius ro under the gravitational force of a fbced mass at O.

(a) Taking the potential energy to be zero at r = oo
, show that

the total mechanical energy of the satellite is — J/m»o
2

-

(b) At a certain point B in the orbit (see the figure) the direction

of motion of the satellite is suddenly changed without any change in

the magnitude of the vehcity. As a result the satellite goes into an

elliptic orbit. Its closest distance of approach to O (at point P) is now

ro/5. What is the speed of the satellite at P, expressed as a multiple

ofuo?

(c) Through what angle a (see the figure) was the velocity of

the satellite turned at the point B?

13-14 A small satellite is in a circular orbit of radius n around the

earth. The direction of the satellite's velocity is now changed, causing

it to move in an elliptical orbit around the earth. The change in

velocity is made in such a manner that the satellite loses half its orbital

angular momentum, but its total energy remains unchanged. Cal-

culate, in terms of n, the perigee and apogee distances of the new

orbit (measured with respect to the earth's center).

13-15 An experimental rocket is fired from Cape Kennedy with an

initial speed oo and angle d to the horizontal (see the figure). Neglect-

ing air friction and the earth's rotational motion, calculate the maxi-

mum distance from the center of the earth that the rocket achieves in

terms of the earth's mass and radius (M and R), the gravitational

constant G, and and vo.

13-16 A satellite of mass m is traveling in a perfectly circular orbit

of radius r about the earth (mass M). An explosion breaks up the

satellite into two equal fragments, cach of mass m/2. Immediately
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after the explosion the two fragments have radial components of

velocity equal to »o/2, where vo is the orbital speed of the satellite

prior to the explosion; in the reference frame of the satellite at the

instant of the explosion the fragments appear to separate along the

line joining the satellite to the center of the earth.

(a) In terms of G, M, m, and r, what are the energy and the

angular momentum (with respect to the earth's center) of each frag-

ment?

(b) Make a sketeh showing the original circular orbit and the

orbits of the two fragments. In making the sketeh, use the faet that

the major axis of the elliptic orbit of a satellite is inversely proportional

to the total energy.

13-17 A spaceship is in an elliptical orbit around the earth. It has

a certain amount of fuel for orbit alteration. Where in the orbit

should this fuel be used to attain the greatest distance from earth?

Do you notice any similarity between this problem and the one con-

cerning a roeket ignited after falling down a chute (Problem 10-13)?

13-18 The commander of a spaceship that has shut down its engines

and is coasting near a strange-appearing gas cloud notes that the ship

is following a circular path that will lead directly into the cloud (see

the figure). He also deduces from the ship's motion that its angular

momentum with respect to the cloud is not changing. What attractive

(central) foree could account for such an orbit?

Spaceship

13-19 (a) Make an analysis of an earth-to-Mars orbit transfer similar

to that carried out in the text for the transfer to Venus. Assume that

earth and Mars are in circular orbits of radii 1 and 1.52 AU, re-

spectively.

(b) In part (a), and in the diseussion in the text, the gravita-

tional fields of the planets are neglected. (The problem was taken to

be simply that of shifting from one orbit to another, not from the

surface of one planet to the surface of the other.) At what distance

from the earth is the earth's field equal in magnitude to that of the
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sun? Similarly, at what distance from Mars is the sun's field equaled

by that of the planet? Further, compare the work done against the sun's

gravity in the transfer with that done against the earth's gravity, and

with the energy gained from the gravitational field of Mars.

13-20 The problem of dropping a spacecraft into the sun from the

earth's orbit with the application of minimum possible impulse (given

to the spacecraft by firing a rocket engine) is not solved by firing the

rocket in a direction opposite to the earth's orbital motion so as to

reduce the velocity of the spacecraft to zero. A two-step process can

accomplish the goal with a smaller rocket. Assume the initial orbit to

be a circle of radius r t with the sun at the center (see the figure). By

Qtnr> (1 • C4
m Falls into sun V Sun & t Boost

means of a brief rocket burn the spacecraft is speeded up tangentially

in the direction of the orbit velocity, so that it assumes an elliptical

orbit whose perihelion coincides with the firing point. At the aphelion

of this orbit the spacecraft is given a backward impulse sufficient to

reduce its space velocity to zero, so that it will subsequently fail into

the sun. (As in the previous transfer problem, the effects of the earth's

gravity are neglected.)

(a) For a given value of the aphelion distance, r2 of the space-

craft, calculate the required increment of speed given to it at first firing.

(b) Find the speed of the spacecraft at its aphelion distance,

and so find the sum of the speed increments that must be given to the

spacecraft in the two steps to make it fail into the sun. This sum pro-

vides a measure of the total impulse that the rocket engine must be

able to supply. Compare this sum with the speed of the spacecraft in

its initial earth orbit for the case r-z = 10n.

[Note: This problem is discussed by E. Feenberg, "Orbit to the Sun,"

Am. J. Phys., 28, 497 (1960).]

13-21 The sun loses mass at the rate of about 4 X 10
6 tons/sec.

What change in the length of the year should this have produced

within the span of recorded history (~5000 yr)? Note that the equa-

tion for circular motion can be employed (even though the earth

spirals away from the sun) because the fractional yearly change in

radius is so small. The other condition needed to describe the gradual

shift is the over-all conservation of angular momentum about the CM
of the system. (This problem was given in a simplified form as Prob-

lem 8-19.)
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13-22 A particle of mass m moves about a massive center of force C,

with the attraction given by —/(r)er , where r is the position of the

particle as measured from C. If the particle is also subjected to a

retarding force — Xv, and initially has angular momentum Lo about

C, find its angular momentum as a function of time.

13-23 Consider a central force in a horizontal plane given by F(r) =
— kr, where A: is a constant. (This provides a good description, for

example, of the pendulum encountered in the laboratory. Rarely is a

pendulum physically confined to swing in only one vertical plane.)

(a) A particle of mass m is moving under the influence of such

a force. Initially the particle has position vector ro and velocity vo as

measured from the stationary force center. Set up a Cartesian co-

ordinate system with the xy plane containing ro and vo, and find the

time dependence of the position (x, y) of the particle. Does the orbit

correspond to any particular geometric curve? (Keep in mind the

differences between this interaction and the gravitational problem.)

What physical quantities are conserved ?

(b) Suppose the particle is originally in a circular orbit of

radius R. What is its orbital speed ? If at some point its velocity is

doubled, what will be the maximum value of r in its subsequent

motion?

13-24 According to general relativity theory, the gravitational po-

tential energy of a mass m orbiting about a mass M is modified by

the addition of a term —GMmC2/c2r 3 , where C = r 2 dd/dt and e is

the speed of light. Thus the period of a circular orbit of radius r

is slightly smaller than would be predicted by Newtonian theory.

(a) Show that the fractional change in the period of a circular

orbit of radius r due to this relativistic term is — (12x 2r2/c2 7"o
2
),

where 7"o is the period predicted by Newtonian theory.

(b) Since, by Kepler's third law, we have To2 ~ r 3
, the effect

of this relativistic correction is greatest for the planet closest to the sun,

i. e., Mercury. Consider the effect of the relativistic term on the radial

and angular periods, and see if you can thereby arrive at the famous

result that the perihelion of Mercury's orbit precesses at the rate of

about 43 seconds of arc per century. You may find it useful to refer

back to Problem 8-20, which also deals with this question.

13-25 A beam of atoms traveling in the positive x direction and

passing through a medium containing n particles per unit volume

suffers an attenuation given by

dN(x) - —AnN(x)

where A is the cross section for scattering of an atom in the beam by
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an atom of the medium. Therefore, if the beam contains No atoms at

x = 0, the number still traveling in the beam at x is just N(x) =

Noe~Anx .

(a) Set up a simple model of beam attenuation that gives the

results stated above.

(b) The graph summarizes a set of measurements of the at-

tenuation of a beam of potassium atoms by argon gas at various

pressures (the pressures are given in millimeters of mercury; the

temperature is 0°C throughout). (These data are from the film "The

Size of Atoms from an Atomic Beam Experiment," by J. G. King,

Education Development Center, Newton, Mass., 1961.) Deduce the

cross section for the scattcring of a potassium atom by an argon atom.

(1 cm 3 of a perfect gas at STP contains 2.7 X 10 19 molecules.) Check

whether the results for different values of the pressufe agree.

(c) If the potassium and argon atoms are visualized simply as

hard spheres of radii rK and rA , respectively, what is implied about

rK and rA by the result of part (b)?

13-26 (a) In the Rutherford scattering problem one can calculate a

distance of closest approach do for alpha particles of a given energy

approaching a nucleus head on. Verify that do is given by do =

2kqiq2/mvo2.

(b) The force of repulsion between two protons, separated by

10
-14

m, is 2.3 N. Use this to deduce the value of do for alpha par-

ticles (charge 2e) of kinetic energy 5 MeV approaching nuclei of gold

(charge 79e).

(c) By introducing do, the expression for the fraction of in-

cident alpha particles scattered into (Kl at f> becomes
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1 2 dti

where n is the number of nuclei per unit volume and As is the length

of the path through the foil. Putting dQ = 2tt sin <p d<p, show that the

fraction of alpha particles scattered through angles > <po is given by

/(>w) = 5«'Wcot2

^
(d) A foil of gold leaf 10

-4 cm thick is bombarded with alpha

particles of energy 5 MeV. Out of 1 million alpha particles, incident

normally on the foil, how many would be deflected through 90° or

more? (Density of gold - 1.9 X 10
4 kg/m 3

; atomic weight = 197.)
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In nature we have to deal, not with material points, but with

material bodies offinite extent. But we may regard every

body as composed ofvery many material points .... This

reduces the question ofthe eauations ofmotion of material

bodies to that ofthe mechanics ofsystems of material

points.

max planck, General Mechanics (1916)



14

Extended systems

and rotational

dynamics

nearly all OUR discussion of dynamics so far has been limited

to the translational motions of particles regarded as point masses.

About the only exception has been our brief consideration of the

vibration of a diatomic molecule (Chapter 10). But every par-

ticle has structure; it has a finite size and a greater or lesser

degree of rigidity. The full description of the motion of any real

physical object must include, in addition to the motion of its

center of mass, a consideration of its rotation and other internal

motions. In many instances one may regard a complex, ex-

tended object as being an assemblage of the ideal particles of

basic mechanics. In this chapter we shall discuss a number of

topics, touching upon what are in many respects widely different

physical systems, yet having in common the feature that they

involve the motions of two or more individual particles. We
shall be devoting spccial attention to those physical systems in

which particles interact strongly with one another and, in some

instances, we shall treat the interactions as being so strong that

the system is efTectively rigid. The discussion will range from

molecules to flywheels to galaxies; different though they may
seem (and indeed are), they also have important properties in

common. Most of this chapter will be concerned with rotational

motion, but we shall begin by developing a couple of important
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general results that apply to the instantaneous motions of a

collection of arbitrarily many particles engaged in any type of

motion whatsoever.

MOMENTUM AND KINETIC ENERGY OF A MANY-PARTICLE SYSTEM

In Chapter 9 we analyzed the dynamics of two-particle systems

as described in an arbitrary frame (the laboratory) and in the

unique center-of-mass (CM) frame defined by the particles them-

selves. We saw how the introduction of the center of mass allows

one to separate motions relative to the center of mass from

bodily motions of the system as a whole. We shall now show

that this possibility exists for any system of particles; it is a

result that makes for very important simplifications in our

analysis of complete objects of arbitrary shapes and sizes.

We shall suppose that our system is made up of particles

of masses «i,, m 2 , m 3 , . . . , located instantaneously at the posi-

tions n, r2 , r 3, . . . and moving instantaneously with the veloc-

ities i%, t2 , V3, . . . . The position and velocity of the center of

mass, C, are then defined by the following equations:

Mtc = min + »»2r2 + "»3r3 + • •

M\c = «lTi + ffJ2*2 + W3V3 + •

where

M = mi + "»2 + nti + • • •

We can express these results more compactly as follows:

(14-1)

i

where the suffix i runs from 1 to N (N being the total number

of particles in the system).

Consider now the statement of F = ma as it applies to any

one partiele, i, in the system. In general it may be subjected

to an external foree, F,, and also to internal interaetions from

all the other particles of the system. We shall denote these latter

by symbols such as f,*, to be read as the foree exerted on partiele i
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by particle k. ' Then the specific statement of Newton's law for

particle i is as follows:

F, + 2 f« = i (j**d

We can now proceed to write a similar equation for every other

particle in the system and add them all up. When we do this,

the right-hand side is, by Eq. (14-1), just the rate of change

of the momentum of a single particle of mass M traveling at the

center-of-mass velocity vc . What about the left-hand side? The

first part of it is the sum (Fext) of all the external forces, regard-

less of which particles they are applied to. The second part

—

let us call it fj nt—is a double summation over all the interactions

that can occur between the particles in pairs:

fint = 2_< 2_< f«*

Now if you consider what this summation entails, you will see

that it can be broken down into a set of pairs of contributions

of the type f,-* + f*,. (It may help you to take the simplest

specific case, N = 3, and write out all the terms in detail.) In

other words, it is madc up of a set of terms, each of which is the

sum of the forces of action and reaction between two particles.

Since, however, Newtonian mechanics has it as a basic tenet that

the forces of action and reaction are equal and opposite, each

one of these pairs gives zero, and it follows that the resultant

of all the internal forces, fint, is itself zero. (This is, of course,

an ancient piece of folk wisdom, as expressed colloquially in the

statement "You can't puli yourself up by your bootstraps.")

Thus, for any system of particles whatever, we have a statement

of Newton's law exactly like that for a single particle of the total

mass M:

F«t = | (Mvc ) = M~f (14-2)
at di

Figure 14-1 shows an example of this result in action. The

center of mass of a complex object, with innumerable internal

interactions, follows a simple parabolic path under gravity.

The total kinetic energy of the system is also amenable to a

'Earlier, in dealing with two-partiele systems only, we used the symbol F )2

to denote the foree exerted by particle 1 on particle 2. The revised definition

is more convenient for our present purposes and should not lead to any
confusion in the brief use that we shall be making of it.
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Fig. 14-1 The center

ofmass ofa compli-

cated object follows

a simple parabolic

path under the net

gravitationalforce.

Photograph by Prof.

Harold E. Edgerton,

M. I. T., of a drum

majorelte tossing a

balon. Time between

flashes was 1/60 sec.

Dashed lines show

path ofCM before

the baton was released

and after it was

caught again.

simple analysis. In this case we shall introduce the velocities

*i> v 2> v3> • • of tne particles relative to the center of mass.

Thus the velocity, \u of any particle as measured in the laboratory

can be written as v,- + vc . The kinetic energy Ki of this particle

can thus be written as follows:

Ki = £mtV{ = £wi(v.--v;)

= \nnWi + v c ) • K- + v c)

= imMf + »'.M • v*) + i"»*"»

Thus we have

Ki = K', + (m,v<) • v c + \niiV
2
c

Let us now consider the result of summing the individual kinetic

energies such as Ki for all the particles in the system. The first

term on the right gives us the total kinetic energy, K', of all the

particles relative to the center of mass. The last term gives us
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the kinetic energy of a particle of the total mass, M, moving

with the speed vc of the center of mass. And the middle term

vanishes, because by the definition of the center of mass we have

2 mic'i =
i

and hence

f 23 mfliyvt

Thus, for any system of particles, we can put

K = K' + \Mo? (14-3)

A very familiar example of such a system is a gas in a Con-

tainer. If the container is at rest in the laboratory the total

momentum is zero (i.e., the laboratory frame and the CM frame

coincide and vc = 0) but the kinetic energy K' of the internal

motion is large. Suppose we have 1 mole of gas at temperature

T°K. It contains N molecules (N = Avogadro's number), each

of mass m . The total kinetic energy of the internal motion is

given by

K' = Jjffo(i/i
2 + i>'2

2 + • + tS)

Introducing the mean squared speed v^, this can be written

K' = \Nmovl = %Mvl (14^t)

where M is the molecular weight.

From the kinetic theory of gases, however [see, for example,

Eq. (9-39)], the pressure P of the gas, if it occupies a volume V,

is given by

P = frmovl with n = N/V (14-5)

(n = number of molecules per unit volume, and we have assumed

N molecules in a volume V.) From Eq. (14-5) we have

PV = \Mol

and combining this with Eq. (14-4) gives us

K' = %PV = %RT

where R is the universal gas constant. ' We know that 1 mole of

'R = 8.32 J/(mole-°K) = 0.0821 Iiter-atm/(mole-°K)
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gas occupies a volume of 22.4 liters at a pressure of 1 atm

(= 1.013 X 10
8 N/m 2

) at 0°C. Hence

K' = §(1.013 X 10
5
)(2.24 X 10~2) « 3.4 X 103 J

This is about equal to the kinetic energy of a 16-lb shot, as used

in field events, traveling at nearly 70 mph! It is a good thing

that molecular motions are random.

ANGULAR MOMENTUM

In Chapter 13 we recognizcd that the orbital angular momentum,

1, of a particle with respect to a center of force is an important

dynamical quantity. You will recall that 1 (the "moment of

momentum") is defined through the following equation:

] = r X (mv) = r X p C4"6)

Thus the actual magnitude of 1 depends on the particular choice

of origin from which the position vector r of the particle is

measured. If, as in the situations we considered, there is a well-

defined fixed center of force, the appropriate choice of origin is

clear. In general, however, the angular momentum of an in-

dividual moving particle is not a uniquely definable quantity.

But as soon as one has two or more particles, or a single object

that cannot be approximated as a point particle, it does become

possible to speak unambiguously of the internal angular mo-

mentum of the complete system. Let us see how.

To introduce the discussion, consider first a very simple

and specific situation. Two particles, of masses m, and m2 , are

joined by a very light rigid bar that is pivoted at the center of

mass, C, of the two particles [see Fig. 14-2(a)]. The system

rotates with angular velocity w about an axis through C perpen-

dicular to the plane of the diagram. We shall calculate the total

angular momentum of the two particles about a parallel axis

through an arbitrary origin, O. With respect to O, the orbital

angular momentum of mi is counterclockwise and that of m 2

is clockwise. To calculate the actual magnitude of the combined

angular momentum, we can draw a line OA parallel to the line

joining the masses. The velocity vectors are perpendicular to

this line and intersect it at the points A and B. A line through C

parallel to these velocity vectors intersects OA at a point D.

Let OD = d. Then the total angular momentum of the two
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Fig. 14-2 (a) A rigid two-body system rotaiing about

its center ofmass, C. The angular momentum can be

calculaled with respect to C or to cm arbitrary point, O.

(b) Individual and center-of-mass motions in an arbi-

trary two-parlicle system.

particles with respect to O is given by the following expression:

Lo = m\Vi(ft + r'i) — miPs(d — r'2 )

= (rmvi — maDsV + («lf i'"! + m2U2r'2 )

where r[ and r'2 are the distances of the particles from their

common center of mass. The second term in parentheses is the

total angular momentum, Lc, about the axis through C. The

first term in parentheses is zero; this follows at once from the

faet that we have taken C to bc at rest and therefore we are in

the zero-momentum frame (or we could write v t
= wr( and

vz = w/'a and invoke the definition of the center of mass as such).

Thus in this case we have L = Lc—the rotational angular

momentum of the system has the same value about any axis

parallel to the true rotational axis through C. Sinceoi = cor ,' and

cor'2 , the magnitude of this total angular momentum isv> =

given by

L c = (rrn/t + m2 r'2 )co

Introducing the distance r bctween the particles, we have

/W2
, mi

/. =
mi Bfl + /772

Substituting these valucs in the cxpression for Lc gives
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mim2 2 2 ... _.
L c = r u = \ir w (14-7)

mi + m2

where /* [= m \m 2/{m \ + m 2 )] is the reduccd mass of the system.

Equation (14-7) is an important result for the angular mo-

mentum of a so-called "rigid rotator," and the quantity p.r
2

is an example of what is called the moment of inertia, I, of a

rigidly connected system. (We shall consider more complex

cases later.) For such a system it is convenient to put

Le = h> (14-8)

where, in the present case, we have

2 /2 , /2
/ = i*r = m\ri + m2r2

Let us now consider the more general case of a system of

two particles moving with arbitrary velocities, as shown in

Fig. 14-2(b). Again we shall refer the total angular momentum

to an arbitrary origin O, and this time we make no assumption

that the center of mass C is at rest relative to O. Instead we

assume that it may have some velocity vc . We can always orient

our diagram so that the origin O and the veetor r from m2 to m\

lie in the plane of the paper, but the velocity veetors v 1; v 2 , and

vc need not be confined to this plane. Let us now consider the

total angular momentum defined by the veetor sum of the con-

tributions associated with m x and m 2 separately.

If the position veetors of «i and m2 with respect to O are

ri and r2 , as shown in the figure, we have

Lo = n X (wivi) + r2 X (/M2V2)

Let us now introduce the positions and velocities of the particles

relative to the center of mass:

ri = r'i + r c fz = F2 + r*

Vi = v'i + V c V2 = *2 + V c

Then we have

L = (ri + r e ) X ™.(v'i + v c ) + (6 + r c) X m2(v2 + v e )

This can be rearranged into a sum of four terms as follows:

Lo = (ri X miv\ + r2 X m2v2 )

+ ('"iri + >«2r2) X v c

+ r c X (miv'i + m2v2 )

+ r e X (mi + w2)vc
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Now it follows from the definition of the center of mass that the

second and third of the above terms vanish, for we have

mir'i + m2T2 =

miy'i + WJ2V2 =

The first term in the expression for Lq is the combined angular

momentum, Lc , of the particles about C, and so we have

L = Lc + rc X M\c (14-9)

where

L c = r'i X (miT'O + r2 X (m2v2)

Thus the total angular momentum about O is the net angular

momentum about the center of mass, plus the orbital angular mo-

mentum associated with the motion of the center of mass itself.

If the particles have a rigid connection and so rotate as a unit

about C, we can use Eq. (14-7) or (14-8) to give the explicit

expression for the magnitude of Lc in Eq. (14-9).

A study of the above analysis will make it clear that equiv-

alent results hold good for a system of arbitrarily many particles;

thus in Eq. (14-9) we have a strong basis for the analysis of

angular momentum in general. Notice in particular that if the

center of mass of an arbitrary system of moving particles is at

rest, then the total angular momentum has the same value, equal

to Lc, about any point. The angular momentum of a rotating

bicycle wheel, for instance (Fig. 14-3), has the same value about

Fig. 14-3 The rotalional angular momentum of a bi-

cycle wheel has the same value about the axis P of the

pedal wheel as it has about its own axis through C.
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a horizontal axis through the point P on the bicyclc frame as it

has about its own axis through C, because the wheel has no net

translational velocity with respect to either point.

For any two-particlc system, rigidly connected or not, the

value of Lc can be conveniently expressed in terms of the relative

coordinate r of the two masses and their relative velocity vrel .

We take the expression for Lc in Eq. (14-9):

U = ri X (miv'i) + r'2 X (maV2 )

and we first substitute for r
J
and t'2 in terms of r. From the

defining equations

mir'i + m2X>
2 =

v'2 - ri = r

we have

,
m2 . mi _ „

ri
= : r \2 =

m\ + rri2 mi + m2

It then follows that L„ can be written as follows:

m\rrt2
(-r X v'i + r X y'a)

mi + ni2

i.e.,

U = Mf X (v'2 - v',) = r X (^vrel )
(14-10)

In the particular case of a rigid system rotating with angular

velocity u, we can further put

Vrcl = « X r

If w is perpendicular to r this reduces Eq. (14-10) to Eq. (14-7);

otherwise the result is slightly more complicated.

'

ANGULAR MOMENTUM AS A FUNDAMENTAL QUANTITY

The preceding analysis has established that two connected masses,

regarded as a single system with mass and size, have what can

We have, in fact, Lc
= /tt X (w X r). Now there is a general veclor identity

applying to any triple vector product: A X (B X C) = B(A • C) - C(A • B).

In the present case, with A = C = r, B = o>, this leads to the result

Lc = li^oi — nr(w r)
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properly be dcscribed as an intrinsic angular momentum about

the center of mass. Regardless of the actual motion of the CM,

one can identify this rotational property of the system. But

angular momentum took on a even more basic aspect when it

was discovered, in the development of quantum mechanics, that

there was a natural unit of angular momentum, equal to Planck's

constant h divided by 2jt:

Basic unit of angular momentum = —
/ir

= 1.054 X 10~34 kg-m
2
/sec

This is of coursc a very tiny unit, but it implies enormously

high speeds of rotation in systems of atomic size. Let us con-

sider one example. For many purposes a diatomic molecule,

such as N 2 , can be regarded as a rigid system such as we have

discussed—two point masses a fixed distance apart. Nitrogen

has two equal nuclei, each of mass about 2.3 X 10
-2C

kg,

separated by about 1.1 A (= 1.1 X 10
-10

m). The moment of

inertia [cf. Eq. (14-8)] is thus given by

/ = 2/n(V2)
2

= 2(2.3 X 1CT 26
)(5.5 X 10- n

)
2 kg-m 2

w 1.4 X 10 _4C kg/m2

If we put

/a. = 1.054 X 10"34 kg-m2/sec

then we find that

w « 7.5 X 10u sec-'

The frequency (rps) corresponding to this would be u/2t, or

about 10" sec
-1

. Frequencies of this order are typical of

molecules behaving as rigid rotators and can be studied through

the techniques of microwave spectroscopy (the frequency just

mentioned would correspond to a wavelength of 3 mm).

1 1 may be noted that these rotational frequencies are far

lower (by about two orders of magnitude) than the typical fre-

quency of molecular vibration calculated at the end of Chapter 10.

I n actual molecules there is usually a complex admixture of

vibrational and rotational motions, the latter providing a kind

of fine detail superimposed on the former. In molecular spectros-

copy one speaks of "rotation-vibration bands" arising in this

way.
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Even more fundamentally, it appears that all the elementary

particles of the universe have an intrinsic angular momentum
which is some integral multiple (including zero) of h/Aw. In

particular, our most familiar building blocks, nucleons and
electrons, have just h/4r, At this level, however, the specification

of what, if anything, is rotating becomes a moot question; one

simply contents oneself with the fact of an intrinsic angular

momentum that has the important property of being conserved

in all the interactions and rearrangements of such particles.

This conservation property of angular momentum in general is

the subject of the next seetion.

Fig. 14-4 The conservation of angular momentum. A seguence showing a man
making a baekward somersaull. These photographs were taken by Eadweard

Muybridge, apioneer of motion photography at the beginning of the 20th

century. (From Eadweard Muybridge, The Human Figure in Motion, Dover

Publications, New York, 1955. Reprinted through permission of the publisher.)
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CONSERVATION OF ANGULAR MOMENTUM

Many interesting experiments can be performed that illustrate

the important property that the total internal angular momentum
of a system of particles is conserved if external influences are

absent. Some of the qualitative demonstrations are no doubt

familiar to you—the speeding up of a whirling ice skater, for

example, or of an cxpert gymnast when he hunches his body after

beginning a somersault (Fig. 14-4). A quite unskilled person

(e.g., a professor) can do similar tricks if he sits on a freely

pivotcd stool, gets himself turning slowly with a couple of dumb-
bells held at arm's length, and then pulls the dumbbells inward

[Fig. 14-5(a)].

The conservation of internal angular momentum holds good,

whatever internal rearrangements of the system take place.

Some particularly nice consequences of this conservation can be

shown if onc has a good flywheel—e.g., a bicycle wheel with an

extra loading of lead around the rim. For example, one person

can sit on a pivoted stool [Fig. 14-5(b)] and another person can

hand him the wheel after it has been set spinning with angular

momentum Lw as shown (corresponding to clockwise rotation

about a vertical axis pointing upward). The person on the stool

is not himself rotating, but the system, person + stool, has the

Fig. 14-5 Experiments on the consercation of angular

momentum: (a) The person on the stool rotates faster

ifhe pulls the dumbbells inward. (b) and (c) The man on

the stool begins to rotate when he inverls the spinning

wheel.
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total internal angular momentum Lw . If the wheel is now in-

vertcd its rotational angular momentum about its own center

of mass is changed to -L,r . It follows that the system of two

masses, M (the person) and m (the wheel), must acquire a clock-

wise rotation with a total rotational angular momentum of

+2L K [Fig. 14-5(c)]. If the wheel in this new orientation is

handed to the assistant, who inverts it and hands it back, the

total angular momentum is raised to 3Ltt.. If the person on the

stool again inverts the wheel, the general rotation of M + m is

raised to 5LW . Thus angular momentum can be transferred back

and forth in paekets in such operations—although here we are

going beyond the conservation of total angular momentum in a

completely isolated system.

The formal proof of the conservation of angular momentum

is not difficult. The total internal angular momentum (with

respect to the center of mass or to any other point in the CM
frame) is given, according to Eq. (14-9), by

U = Z fi X (m.vO 04-11)

Let us consider the variation of Lc with time. Differentiating,

we have

^ = E v; X (m.*) + Z r'i X t><a',)

where a! is the acceleration of partiele i relative to the CM. The

first summation vanishes, because every produet v,- X v< is

idcntically zero. In the second summation, we shall write a, as

the veetor difference between the true acceleration, a,, of par-

tiele i, as measured in an inertial frame, and the acceleration a c

(= dsjdl) of the center of mass. (It is important to rcalize that

a c may exist even in a frame in which vc is zero at some instant.)

Thus we have

^=Er',Xm,(a,-a c )
clt

= Z r'» X (m.a e ) ~ ( Z mfij X a c

However, by the definition of the CM, the summation in the

second term is zero. The first term is the total torque about C

of all the forees aeting on the partieles, because m&i is the net

foree aeting on any given partiele. This foree may be a com-

bination of an external foree F,- and a set of internal forees f,*;
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thus we put

m <a, = F,- + E ta

Substituting this statement of m,-a< in the equation for dLc/dt we

therefore have

dL

dt
7-2 '' X F, + E Z ri X f«

Now, as in our earlier discussion of the total linear momentum
of a system of particles, we can arrange the double summation

involving internal forces into pairs of terms, in this case of the

type

ri X t* + ri X f*,

If, however, we can assume that the forces of interaction be-

tween any two particles are equal, opposite forces along the line

joining them [Fig. 14-6(a)], then each such pair of torques adds

up to zero, because each force has the same lever arm CD with

respect to C. Thus we arrive at a very simple equation

:

^ = Zr;xF. = LM; (14-12)

Fig. 14-6 (a) The

equal and opposite

internal forces be-

tween two particles

can produce no toraue

abon t C if they are

along the line joining

the particles. (b) If

the forces are not

along the line joining

the particles they

produce a toraue

which is, however,

nullified by other

internalforces (see

discussion in the text).

where M, is the torque exerted by F, about the CM. Equation

(14-12) is a very basic equation of rotational dynamics; we shall

spell it out in words:

Regardless of any acceleration that the center of mass of a system

of particles may have as a result of a net extemal force exerted

on the system, the rate of change of internal angular momentum
about the CM i s equal to the total torque of the ex terna I forces

about the CM.

In particular, therefore, if the net torque about the center of

mass is zero, the internal angular momentum remains constant,

whatever internal rearrangements may go on within the system.
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[Our derivation of Eq. (14-12) contains one weak link. This

is the argument by which we conclude that the net torque of the

internal interactions is zero. It is perfectly possible to imagine

that the forces f,* and ft, are equal in magnitude and opposite

in direction, thus conforming to Newton's third law, without

having them act along the same line [see Fig. 14-6(b)]. In this

case they would constitute a couple with a resultant torque

about C or any other point. The vanishing of the net torque

of the internal forces, and the consequent conservation of total

angular momentum if external forces are absent, is however a

result that holds good in general; it does not depend on the

limited assumption that the forces of interaction act along the

lines joining pairs of particles. A powerful theoretical argument

in support of this proposition—but requiring virtually no mathe-

matics at all—can be made on the basis of the uniformity and

isotropy of space. It runs as follows.

Consider first the conservation of the total linear momentum

of a system of particles. This holds good if the total potential

energy, U, of the system remains unaffected by linear displace-

ment, because the vanishing of grad U corresponds to the absence

of any net foree. If we know that external forces are absent, the

invariance of U with respect to linear displacements is more or

less axiomatic; it corresponds to our belief that absolute position

along a line has no significance in physics. In an exactly similar

way, we can argue that the total potential energy, U, associated

with the internal forces of a system of particles is complctely

insensitive to a rotation through an arbitrary angle of the

system as a whole. Now just as we can evaluate a foree from

a potential-energy funetion through relations of the type

dx

so we can evaluate torques through relations of the type

M, = -~ (14-13)

where Mz is the torque about the axis z around which the rota-

tion is imagined. Hencc, if U is independent of 0, therc can be

no net torque, regardless of the detailed charaeter of the internal

interactions. Thus we can conclude that the conservation of

total internal angular momentum of any isolated system must

hold true in general.]
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MOMENTS OF INERTIA OF EXTENDED OBJECTS

For an arbitrary system of particles, the intrinsic rotational

angular momentum is defined by the equation

L c = £ n X (mi\i) (14-14)

This is just a restatement of Eq. (14-11) except that we are now

choosing an origin at the center of mass and using the unprimed

symbols r,- and v,' to denote the position vectors and the velocities

of the individual particles with respect to the CM. We shall

now consider in detail the application of Eq. (14-14) to a system

that is rotating as a unit with an angular velocity <o. In particular,

we shall concern ourselves with the case of an object that has

well-defined geometrical symmetry and is rotating about an axis

of symmetry through the center of mass. For each particle in

such an object, the linear velocity v; is given by v* = u X r,-, and

hence the total angular momentum is given by

L c = X "" X mi(to X r,) (14-15)

Let us consider the contribution to Lc from a pair of par-

ticles, t and y, of equal masses (because of the symmetry) situated

symmetrically with rcspcct to the axis of rotation as shown in

Fig. 14-7(a). Particle /' has a velocity u X r, down into the plane

of the diagram; the magnitude v, of this velocity is given by

Fig. 14-7 (a) Conlribulions by two symmetrically

placed particles to the net rotational angular momentum

ofa rigid object. (b) Main spin axis and two otlter

principal axes bfinertia of an object with well-defined

symmetry.

Rotation axis

I, r, x(m,v,)

MBaHnHUaHHB||HBMHnHBMM|

)\, « 0> X t,
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u,- = cor, sin 0, = ojRi

where /?; is the perpendicular distancc of the particle from the

axis. The angular momentum of this particle is then a vector h
directed as shown in the diagram. Its magnitude is given by

|r,- X (mn)\, but since v, is perpendicular to r, itself, we have

simply

/, = m,co/?,r,

Now if we consider the angular momentum ly of particle j, we

see that it has the same magnitude as h but points in a different

dircction, in such a way that the components of 1, and \j per-

pendicular to the rotation axis cancel, but their components

parallel to the axis add. Thus, when we consider carrying out

the summation reprcsented by Eq. (14-15) for the complete

system, we need take only the component of angular momentum

parallel to to for each particle. The relevant contribution for

particle i is thus given by k sin 0,, and we have

lisindi = muaRiTi sin B\ — m{R, u

It is clear that the total rotational angular momentum is then a

vector in the direction of u itself, and we can put

U = fe millA u = /u (14-16)

where

/ = E mRi2
(14-17)

Equation (14-17) then defines the moment of inertia of the com-

plete system about a given axis of symmetry.

If we consider an object with a well-defined symmetry, such

as a flywheel [Fig. 14-7(b)] it is clear that the obvious axis—the

normal rotational axis—may not be the only axis of symmetry

that it possesses. If we label this normal rotational axis as z,

then any other axis perpendicular to z and passing through the

center of mass is also an axis of symmetry (although not of

complete rotational symmetry) for the purposes of the kind of

analysis we have presented above. Thus we recognize the pos-

sibility of defining, in addition to h, two other moments of

inertia, Jz and Iu, about a pair of independent axes perpendicular

to z and to one another. These three quantities (Ix , Iu , I2) are

known as the principal moments of inertia of the object. In the
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case illustrated, we would of course have Ix = Ju (*h)-

It is important to recognize that it is only when the axis of

rotation, as defincd by the direction of u, coincides with an

axis corresponding to a principal moment of inertia that the

rotational angular momentum vector Lc is parallel to u itself

and can be expressed simply as /co. We shall, however, be con-

cerned mostly with situations in which this is the case. [It is a

remarkable fact that for any cbject at all, even if it has no kind

of symmetry, onc can still find a set of three orthogonal rotation

axes for which L and u are parallel. ' The existence of these

axes allows us to identify three principal moments of inertia for

an object of completely arbitrary shape.]

For an object composcd of so many particles that it is

effectively continuous, we can write the moment of inertia about

a given symmetry axis as an integral instead of a summation:

/ r
2 dm (14-18)

where dm is an clement of mass situated at a perpendicular

distance r from the axis through the center of mass.

Special cases

1. Uniform ring. (The axis is taken to be perpendicular to

the plane of the ring.) If the mass of the ring is M and its radius

is R [Fig. 14-8(a)] we have simply

(Ring) / = MR2
(14-19)

2. Uniform disk. This can be regarded as a set of concentric

rings, as in Fig. 14-8(b). An individual ring is made of the

material lying between r and r + dr. Its area is thus 2-wr dr, and

the area of the whole disk is wR 2
. Hence the mass of the ring

is given by

2vrdr
A/f

2M

(14-20)

'For a proof of this statement, see, for example, K. R. Symon, Mechanics,

2nd cd., Addison-Wesley, Reading, Mass., 1960.
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(Disk) / =
r/l

2M / .)—- / r dr =
MR2

2



Fig. 14-8 Geometrically simpie objects with exactly

cakulable moments ofinertia: (a) ring, (b) disk, (c) bar

or rod, and {d) solid sphere.

The same result applies to a long cylinder, regardcd as a pile

of disks. (The axis of rolation is the axis of the cylinder.)

3. Uniform Bar. (The axis is taken through the center, per-

pendicular to its length.) The length of the bar is L, so the radial

distance r goes from to L/2 on each side. If the bar is uniform,

wc have

dm = — dr

We evaluate Jr
2 dm from r = to r = L/2 and double it, to

take account of both ends:

(Uniform bar or rod) '--H
2 , ML*

(14-21)

A result of exactly this same form holds also for the moment of

inertia of a flat board of length L about an axis, perpendicular

to the L dimension, that passes through the CM and lies in the

plane of the board.

4. Sphere. [Any axis through the center. See Fig. 14-8(d).]
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We shall quote this result without proof. (For a derivation, see

almost any calculus text.)

(Sphere) / = fMR
2

(14-22)

It may be noted that in each case the moment of inertia is the

mass of the object, times the square of a characteristic linear

dimension, times a numerical coefficient not very different from 1.

It is hard to be wildly wrong in estimating the moment of inertia

of a body, even without detailed calculation. It is quite common

practice to write the moment of inertia simply as the total mass

times the square of a Iength k that is called the radius ofgyration

about the axis in question:

I = Mk 2 (14-23)

Thus for the special cases considered above, we have the following

values of the radius of gyration

:

Object Radius of gyration (k)

Ring R

Disk «/•s/2 (= 0.707/?)

Bar (Iength L) L/2y/l (= 0.289Z.)

Sphcrc Ry/I/5 (= 0.632«)

TWO THEOREMS CONCERNING MOMENTS OF INERTIA

The calculation of moments of inertia can often be simplified

with the help of two theorems that we shall now present. The

first of them applics to any kind of object; the second is applicable

only to objects that can be treated, to some approximation, as

flat objects of negligible thickness.

The theorem of parallel axes

When we speak of "the moment of inertia" of an object we

normally mean the moment of inertia about a symmetry axis

drawn through the center of mass. There are, however, many

situations in which the actual physical axis of rotation does not

pass through the CM. In such cases one can make use of a

theorem that directly relates the moment of inertia about the

given axis to the moment of inertia about a parallel axis through

the center of mass.

Figurc 14-9(a) illustratcs the situation. Suppose that the
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Fig. 14-9 (a) Dia-

gram lo show ihe basis

of ihe parallel-axis

theorem. (b) Use of

Ihe paral/el-axis

theorem makes easy

such cakulations as

finding ihe moment of

ihe cylinder abotit Ihe

hinge A A'.

given axis is perpendicular to the plane of the paper and passes

through the point O. Imagine a parallel axis through C, and

consider the object as being built up of a set of thin slices parallel

to the plane of the paper. The vector distance from the axis

through O to the axis through C is a constant, h. Within any

one slice we can consider elements of mass such as dm at point P
in the figure, a vector distance r from O and r' from C. We have

The contribution dl of dm to the moment of inertia about the

axis through O is then given by

dlo = r2 dm = (h + r') (h + r') dm

= h2 dm + 2h- r' dm + r'
2 dm

The last term on the right is, however, just the contribution of

dm to the moment of inertia about the parallel axis through C.

Thus we have

dlo = h 2 dm + 2hr'dm + dlc

We can now carry out the summation or integration of all such

contributions, first within the slice and then over all the slices

that build up to the complete object. This gives us

I = h
J
dm + 2/i • J r' dm + Ic

By the definition of the center of mass, the middle term on the

right is zero. The first term is simply the total mass. M, of the

object times h
2

. Thus we finally have the following result:
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(Parallel-axis theorem) h = h + Mh2 (14-24a)

If we choose to express Ic , according to Eq. (14-23), in terms

of the mass M and the radius of gyration k, we can write Eq.

(14-24a) in the alternative form:

(Parallcl-axis theorem) /o = M(k 2 + h2) (14-24b)

It may be seen from Eqs. (14-24a) and (14-24b) that the moment

of inertia of an object about an arbitrary axis is always greater

than its moment of inertia about a parallel axis through the CM.

Example. A cylinder of mass M and radius R is hinged

about an axis A A' lying in its surface and running parallel to its

axis, as shown in Fig. 14-9(b). What is its moment of inertia

about AA"?

We know by Eq. (14-20) that the value of Jc for this case is

MR 2
/2. Hence by Eq. (14-24a), with h = R, we have

Ia A' = hMR 2 + MR2 = %MR 2

Theorem ofperpendicular axes

Suppose now that we have a flat object of arbitrary shape, cut

out of thin sheet material [Fig. 14-10(a)]. Let us take an arbi-

trary origin O in the plane of the object, and a z axis perpen-

dicular to it. Consider now the moment of inertia, Iz , of the

object about the z axis. An element of mass dm, a distance r

from the axis, makes the contribution r
2 dm, and we have

-P dm

However, since r lies in the xy plane, we have

r2 = x2 + y
2

Thus we can put

h = x
2 dm + y

2 dm

Since the object is flat, however, the first term on the right

simply defines the moment of inertia I„ of the object about the

y axis, and the second term correspondingly is Iz. Thus we have

(Flat objects) l. = /, + I„ (14-25)

This is known as the perpendicular-axis theorem. Its usefulness
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Fig. 14-10 (a) Diagram to show the basis of the per-

pendiatlar-axis theorem. (b) and (c) Flat objecls to

which the perpeitdicular-axis theorem ean be usefutly

applied. (d) Calculation of the momenl of inertia ofa

circular lid abont the axis AA' exp!oils bolh the

parullel-axis and the perpendicular-axis theorems.

can be illustrated by two different kinds of examples:

Exampk 1. An object is iri the form ofa uniform rectangular

plate [Fig. 14-10(b)]. What is its moment of inertia about an

axis through its center and perpendicular to its plane?

By Eq. (14-21) we have

_ Ml/_ _ Ma_
Ix ~ 12 " ' 12

It follows at once that

/; =
M(a2 + b

2
)

12
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Example 2. A uniform disk has mass M and radius R.

What is its moment of inertia about an axis along one of its own

diameters, say the x axis in Fig. 14-10(c)?

This illustrates a more elegant use of the perpendicular-axis

theorem. The direct calculation of the moment of inertia of a

disk about a diameter would be quite awkward. We know, how-

ever, that the moment of inertia has the same value about any

diameter. We also know, by Eq. (14-20), the moment of inertia

/, about the axis perpendicular to the disk through its center.

Thus we can at once put

/,+ /,- 2/x = /, = -=-

Therefore,

MR 2

Finally, in Fig. 14-10(d), we show a situation in which we can

exploit both of the above theorems. A circular disk (e.g., the

lid of a cylindrical tank) is pivoted about an axis AA' that lies

in the plane of the disk and is tangent to its periphery. What is

the moment of inertia of the disk about AA'l

Beginning with Eq. (14-20) for the moment of inertia MR 2
/2

about the axis through C perpendicular to the disk, we first use

the perpendicular-axis theorem to deduce that the moment of

inertia about the axis DD' is MR 2
/4. We can then use the

parallel-axis theorem, Eqs. (14-24a) and (14-24b), to deduce

that the moment of inertia about AA' is given by

,
Mr2

j. wp! 5Mr2
Iaa 4- + MR = —4-

Such a result is not worth memorizing for its own sake; the

important thing is to realize that in these two theorems we have

a powerful way of extending a few basic results, as represented

for example by Eqs. (14-19) through (14-22), to handle a whole

variety of more complicated situations.

KINETIC ENERGY OF ROTATING OBJECTS

A rotating system of course has kinetic energy by virtue of its

rotation about its center of mass. Thanks to the general validity
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of Eq. (14-3) this can be calculated separately and added to

any kinetic energy associated with motion of thc center of mass

itself. When a "rigid" object rotates with angular velocity w
about an axis, a particle within it of mass m, distance r from the

axis, has a speed wr and hence a kinetic energy imo}
2
r
2

. The
total kinetic energy of rotation is thus given by

v i 2 v^ 2
Arot = 2°> 2-1 mr «*/«' (14-26)

Hence, if the CM has a speed vc with respect to the Iab-

oratory, the total kinetic energy as measured in the laboratory is

given by

K = £/co2 + §ikfo.a (14-27)

For an object that rolls along the ground, there will be a purely

geometrical connection between vc and u (e.g., for a wheel of

radius R, vc = uR). In such a case the kinetic energy can be

expressed in terms of w (or vc) alone.

If a round rigid object rolls down a slope, we can apply

conservation of energy to caleulate its acceleration. For example,

if a solid cylinder rolls down a slope of angle d [Fig. 14-11 (a)],

its total kinetic energy at any instant is given by putting / =

%MR 2 and w = vc/R in Eq. (14-27):

= fMv\

Let us, at this point, drop the suffrx c on vc and let the symbol v

represent what we can properly call the translational speed of

the rolling object. Thcn in a short space of time di, the change

of the total kinetic energy is given by

dK = fMu dv

Fig. 14-11 (a) Disk or cylinder

rolling down an inelined plane.

(6) Mass deseending at thc end

of a rope wrapped around a

fiywlieel.

(a)

7^\M,

k

J'

3
(b)
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However, there is a corresponding change of gravitational po-

tential energy. I n time di the CM of the cylinder travels a distance

vdt parallel to the slope, which means a (negative) change of

vertical coordinate equal to —vdt sin d. Hence

dll = — Mgvdt sin 6

Putting

dK + dU =

we have

|A/0 <to - Mgo di sin 6 =

whence

do 2 „
a = — = §g sin

It is interesting that this result is independent of both the mass

and the radius of the cylinder; only the fact that it is a solid

cylinder is important. Ali solid spheres have some differcnt

characteristic acceleration in rolling down such a slope. (What

is it?)

It may be noted that the need to create rotational kinetic

energy causcs the linear acceleration of a rolling object to be

always lcss than the acceleration that the same object would

have if it could simply slide, without friction, down the same

slope. The rotational inertia acts, in effect, as a kind of brake on

the motion. This inertial property can be exploited in the some-

what difTerent context represented by Fig. 14-1 l(b). A mass m
descends under gravity at the end of a rope that is wound around

a flywheel mounted on a fixed axis through C. The flywheel has

a moment of inertia / (= Mk 2
) and a radius R. The angular

velocity w of the wheel is equal to the linear velocity v of m
divided by R. Thus the kinetic energy of the whole system is

given by

K = \mi? + £/co
2

The change of potential energy of m in descending a distance h
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is, however, simply mgh. The speed v acquired by m in descend-

ing a distance h from rest is therefore given by

A-m
V + H^) =mgh

or

Thus the acceleration g' can be reduced to any desired fraction

of g so as to produce a gentle, controlled descent.

Another aspect of rotational kinetic energy is that a large

rotating object is an energy reservoir of possibly very large

capacity. The use of flywheels as energy-storage devices in this

sense is an important feature of all sorts of machines, giving to

such systems a much improved stability with respect to sudden

changes of load. One of the most impressive examples of the

use of flywheels for energy storage is in the National Magnet

Laboratory at M.I.T. There are two flywheels, each being an

assembly of circular plates of steel, 190 in. in diameter, with a

mass of 85 tons. They are part of a generating system for pro-

ducing extremely strong magnetic fields. The normal speed of

rotation of each flywheel is 390 rpm. From these figures we have

(for each flywheel)

M = 7.7 X 10
4
kg R = 2.4 m

/ = %MR2 « 2 X 10
s kg-m2

01 = 2tt X 390/60 « 40 rad/sec

Therefore,

K = i/o>2 m 1.6 X 10
8
J

When one of these flywheels is used as a power source, its speed

of rotation can be lowered from 390 to 300 rpm in 5 sec. This

means that about 40% of the stored energy can be drawn upon,

at the rate of about 8% per second. The power output corre-

sponding to this is close to 15 MW—enough, while it lasts, to

equal the total rate of electrical energy consumption of a town

of about 20,000 inhabitants.

ANGULAR MOMENTUM CONSERVATION AND KINETIC ENERGY

The conservation of rotational angular momentum has some
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Fig. 14-12 (a) Pair ofobjecls

rolating at fixed distances

about iheir center ofmass.

(b) Rotaiional displacements

accompanied by a change of

radial distance between the

objects. (a) (b)

interesting implications for the total kinetic energy of a system

that changes its shape or size. To take the simplest possible

example, consider a system of two masses rotating about their

center of mass [Fig. 14-1 2(a)]. We shall assume that the center

of mass is stationary in our frame of reference, but in the absence

of external forces it does not have to be defined by a fixed pivot

or anything of that kind.

Suppose that the system is rotating with an angular velocity

w about an axis perpendicular to the plane of the diagram. Then

if the distances of the masses from C are rj and rz , respectively

(with m^i = m^r-i), we have

ISl — Oi?i l>2 = Uf2

We can then proceed at once to write down expressions for the

total angular momentum and the total kinetic energy:

Lc = (min 2 + m2r22
)oi

K = iOitin8 + mara8)»8

It will simplify things if we introduce the reduced mass m
[= m 1m 2/(mi + m 2 )], the relative separation r{= r, + r2 ), and

the moment of inertia / (= nr
2
). We then have

Le = ixr
2w = /w (= const.)

K = yr2w2 = i/»
2

Combining these two equations, we arrive at the following result:

K =
2Mr2 2/

(14-28)

Consider now what happens if the particles draw closer

together under some mutual interaction—e.g., the puli of a
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spring or elastic cord that connects them. The value of Lc re-

mains constant, but r and the moment of inertia / decrease;

hence the values of w and K must increase. Where does the

extra energy come from? Clearly, it has to be supplied through

the work done by the internal forces that puli the masses to-

gether. One can feel this very directly if one does the cxperiment

of sitting on a rotating stool with two weights at arm's length

and then pulling the weights inward toward the axis [cf. Fig.

I4-5(a)]. One very simplc way of interpreting this from the

standpoint of the rotating frame itself is to consider the small

change of ATassociated with a small change of r. From Eq. (14-28)

we have

L
2

AK = --^Ar

Substituting Lc = fir
2u, this becomes

AK = —fiw2rAr

But nu>
2
r is the magnitudc of the ccntrifugal force that is trying

(from the standpoint of the rotating frame) to make the masses

fiy apart. A force equal and opposite to this must be supplied

to hold the masses at a constant separation r, and an amount

of work equal to this force times the magnitude of the displace-

ment Ar is needed to puli the masses toward one another. (Note

that, in the case we have assumed, Ar is negative and so AK is

positive.)

From the standpoint of a stationary obscrvcr, of course,

the change of kinetic energy can be understood in terms of the

fact that if r is changing [Fig. 14-12(b)], the radial forces of

interaction, f 12 and f2 i, have components along the paths of

the masses (e.g., the curve AN for m t ) so that work is done,

which would not be the case if the masses remained on circular

ares [e.g., AK in Fig. 14-1 2(b)] with the radial forces always

perpendicular to the displaccments and velocities.

The fact that the increase in rotational kinetic energy of a

contraeting system must come from the internal interaetions

places restrietions on the possibility that such contraetion can

oecur at all in a particular case. If the increase that would be

callcd for in the kinetic energy is greater than the work that

could be supplied by the internal forces, then the contraetion

cannot take place. Especially interesting situations of this type

may arise in the gravitational contraetion and condensation of a
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slowly rotating galaxy or star. The mutual gravitational energy,

U, of any system of particles is always negative and becomes

more so as the linear dimensions of the system shrink and the

particles of the system come closer together. (Remember that,

for a two-particle system, U = — Gm^m^/r.) Thus, qualitatively

at least, we recognize a source of the extra kinetic energy needed.

There is more to it than this, however, because the magnitudes

of the corresponding changes AK and AU, for a given change AR

in the radius of the system, are not automatically equal. The

relationship between them will depend on the magnitude of Lc

and on the precise distribution of matter in the system. If AK
would be larger than AU, the total energy would be required to

increase, and this simply could not happen. If AK were less

than AU, however, there would be a surplus of released gravita-

tional energy that could be disposed of by developing random

particle motions (heating) and by radiation of heat and light

into space.

With the help of certain cxtrcmc simplifying assumptions

the discussion can be made quantitative. Suppose, in particular,

that the contraction occurs in such a way that the system mcrely

undergoes a change of linear scale without altering the relative

distributions of density or velocity. This means that if the linear

dimensions shrink by a factor n, the density at distance r/n from

the center is n
3 times the original density at r. The moment of

inertia, /, is then simply proportional to the square of any charac-

teristic dimension of the system—e.g., its outer radius R if it

can be considered as being a spherical object with an identifiable

boundary. Thus the kinetic energy K (= L 2
/21) varies as l /R 2

.

The assumed uniform contraction also increases the potential

energy (~\/r) between every pair of particles by the factor n.

It follows that the total (negative) potential energy U varies as

l/R. Under these assumptions, therefore, the total energy E of

the system is given by an equation of the form

E(R) = £ -
f

(14-29)

The constant A is given dimensionally, and perhaps even in

order of magnitude, by the combination L 2/2M, where M is the

total mass. Similarly, B is proportional to GM 2
, where G is

the universal gravitation constant. (The gravitational self-cncrgy

of a sphere of matter is of the order of —G

M

2/R—see Prob-

lem 11-31.)
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Fig. 14-13 Depen-

dence ofkinetic, po-

tential, and total

energy on radiusfor a

rotating system held

together by gravita-

tional attraction.

The two contributions to E, and their sum, are shown graph-

ically as functions of
1 R in Fig. 14-13. The whole situation is

very reminiscent of our discussion of energy diagrams in Chapters

10 and 11, and it is clear that we can calculate a radius Rm that

corresponds to an equilibrium configuration of minimum energy:

Fig. 14-14 Succes-

sioe stages of contrac-

tion of a rotating gas

cloud toform a disk-

shaped galaxy.
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Fig. 14-15 Example

of a rolaling galaxy,

seen almost edge on

(NGC 4565 in the

constellalion Coma
Berenices). (Photo-

graph front the Hale

Observatories).

dR m +
R2

R - 2-A-

If we put A « L 2/2M and B « GM 2
, we then have

Rm~ GM3
(14-30)

which would indicate the way in which the linear dimensions of

similar galaxies might depend on the mass and the total angular

momentum.

Figure 14-14 indicates the more probable trend of a con-

tracting rotating mass. Since contraction parallel to the direction

of Lc can take place without any increase of rotational kinetic

energy, it is quite reasonable that this type of deformation can

continue after a limit has been reached to the contraction radially

inward toward the axis of rotation. One can certainly under-

stand in these terms the progression through stages (a), (b), and

(c) of Fig. 14-14, which might well result in the kind of galactic

structure actually observed (Fig. 14-15).

TORSIONAL OSCILLATIONS AND RIGID PENDULUMS

One of the most valuable and widely used physical systems
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Fig. 14-16 (o) Simple torsional

pendulum, (b) Diagram to

Indicate the work done in twist-

ing a lorsion fiber.
(a) (b)

consists of a mass suspended from a wire, fiber, or other device

that provides a torquc in response to a twist [Fig. 14-16(a)].

The restoring torque comes from an elastic deformation of the

suspension and, like the linear deformations discussed in con-

nection with the linear harmonic oscillator problem in Chapter 7,

such angular deformations usually result in a restoring effect

proportional to the deformation.

These torsion devices are often used in static measurements

—for example in ammeters, where a steady current passing

through the instrumen t may be used (with the help of a per-

manent magnet) to produce a steady torque, leading to a steady

deflection that is the meter reading of the current. But the free

torsional oscillation of such a system is also of interest and

importance. The analysis of this oscillatory motion is very con-

veniently made in terms of the constant total energy of the

rotating system.

We shall suppose that the suspended mass has a moment of

inertia / about the axis defined by the torsion fiber. Let the

angle of deflection around this axis (we shall call it the z axis)

be 6. Then the kinetic energy K is given by

-Hi)
!

(14-31)

The potential energy U is the work done in twisting the ends

of the suspension through an angle 6 relative to one another.

If we let the fiber define a z axis, the restoring torque MZy assumed

proportional to 6, is given by

Mz = -c8 (14-32)

where c is the torsion constant (measured in m-N/rad or di-

mensionally cquivalcnt units).
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It is not hard to guess that, by analogy with a stretched

spring, a system that obeys Eq. (14-31) will lead to a storage of

potential energy proportional to 6
2

. To make this quantitative

we need only consider one simple idea. Suppose we are looking

down the axis of a torsion wire [Fig. 14-16(b)] to which is

attached a lever arm of length r. A force F is applicd at right

angles to thc end of the lever, just sufficient to overcome the

torque Ma. This means that

rF = -M.

Suppose that the angle of twist is increased by dd. Then the end

of the lever moves through a distancc r dO, and the work done

by F is given by

dW = Frdd = -M.dd

Hence thc total potential energy stored in the system, in going

from its normal configuration to a twist e, is given by

vw = / cBdOm \ce
2

(14-33)
Jo

Combining Eqs. (14-31) and (14-33), we see that the total me-

chanical energy of thc system is given by

**(S)
+ ^c°

2 = E (= const) (14_34)

which is thc familiar form of a harmonic-oscillator equation.

The period will be given by

T =
2*(-J

' (14-35)

It is worth noting, by the way, that the rclation between Mz , as

given by Eq. (14-32), and U(e), as given by Eq. (14-33), satisfies

the general relation betwccn potential energy and torque that

we cited earlicr [Eq. (14-13)] in our diseussion of angular-

momentum conservation:

dUM' m -le

Situations very similar to those of the torsional oscillator

are represented by a so-called rigid pendulum—an arbitrary

object free to swing about a horizontal axis, as shown in Fig.
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Fig. 14-17 (a) Ex-

ample ofa rigid pen-

dulum, (b) Period of

oscillation ofa rigid

pendulum as a func-

lion of Ihe dislance h

belween the CM and

Ihe poinl ofsuspen-

rrl
'

) r ^ / '«

.^

1 Mg
J

. /j

o k

(a) (b)

^^'B^tfi

14-17(a). Let us suppose that this axis is a distancc h from the

center of mass. Normally, therefore, the center of mass C is a

vertical distancc h below the axis through O, but if the systcm is

displaced through an angle 6, the CM moves along a circular

arc of radius h. This causes the CM to rise through the distance

A(l — cos d); if d is small the consequent increase of gravitational

potential energy is given by

U(d) « \Mgh6 1 (14-36)

The kinetic energy of the system is equal to the kinetic energy

associated with the linear velocity of the CM, plus the energy of

rotation about the CM

:

^K = \Mo? + ^1

[The term representing the rotational energy about C in this

equation embodies an important feature. If the object has the

angular velocity dO/dt about its true axis of rotation through O,

every point in it also has the angular velocity dO/dt about a

parallel axis through C, or through any other point for that

matter. One can propcrly speak of the angular velocity of a ro-

tating object without reference to a specific axis of rotation.

Any line drawn on a rotating disk, for example, has the same

rate of angular displacement as one of the radii.]

Returning now to the expression for K, wc can put
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°'- h
Tt

Thus we can write

K(0) = l(Mh
2 + fc )

(jjfy

or

K(9) = «°($j

where Io is the moment of inertia of the object about the axis

through O, and the whole motion of every point in the object is

expressed, as we know it can be, in terms of pure rotation about

this axis.

For our present purposes, it is most illuminating to write

Ie in the form Mk 2
, where k is the radius of gyration. If we do

this, we have

Kifi) = iMC2 + k
2
) P^J (14-37)

The equation of energy conservation, given by adding the results

of Eqs. (14-36) and (14-37), is thus

%M(Ji
2 + k

2
)(-jj + \MghQ

2 = E (= const.) (14-38)

This defines simple harmonic vibrations with a period that

depends in a systematic way on the distancc h of the CM from

the axis: mh2 -i- £2V'2

T(h) = 2tt I
, )

(14-39)

This period would become infinitely long for h = (rotational

axis passing through CM) and has a minimum value Tm for h = k.

The over-all variation of T with h is as shown in Fig. 14— 17(b).

For any given value of h, the period of oscillation corre-

sponds to that of an "cquivalcnt simple pendulum" of length

/ such that

,2 . ,2

/ = ' + *
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MOTION UNDER COMBINED FORCES AND TORQUES

Near the beginning of this chapter we developed the two results

which, between them, provide the basis for analyzing the motion

of extended objects under any circumstances. These results are

as follows:

1. The rate of change of linear momentum is equal to the

resultant external force. Expressed in terms of the motion of the

center of mass, this statement becomes

rfv
F^ = M—c = Ma c (14-40)

dt

where M is the total mass.

2. The rate of change of angular momentum about the

center of mass is equal to the resultant torque of the external

forces about the CM

:

M„ = ^ (L«) (14-41)
dt

In the present section we shall limit ourselvcs to cases in which

both the torque and the angular motion are about an axis parallel

to the axis of symmetry of the object [as defined in the discussion

leading up to Eq. (14-16)]. This means that we can put Lc =

Icu, and Eq. (14-41) takes on the following special form:

(Special case, Le \\ «) M c = /t^= Ica (14-42)
dt

where a is a vector representing the angular acceleration.

Let us at once consider a specific situation in which Eqs.

(14-40) and (14-42) are applicable. An airplane is just touching

down. When one of the landing wheels first makes contact with

the ground, it has a large horizontal velocity v a but no angular

motion; therefore, it is bound to skid at first. Anyone who has

watched a plane landing will have seen the initial puff of smoke

from burning rubbcr rcsulting from this violent skidding. After

touchdown there are forces on the wheel applied at its two con-

tacts with the external world—its axle and the place where the

wheel touches the ground. The forces at the axle pass through

the CM and so can exert no torque. The normal componcnt, N,

of the force of contact with the ground also passes through the

CM ; furthermore, since N is vertical, it does not affcct the hori-
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zontal motion of the wheel. Thus we have two forces to consider

in analyzing the forward motion of the wheel and its rotational

motion. These are a force F, pushing the wheel forward at the

axle, and a frictional force 5 acting backward, as shown in

Fig. 14-18(a). By Eq. (14-40) we then have

F - ff = Mac

We can guess that ac is negative, because the wheel remains

attached to the plane (we hope) and the reaction force —F
applied by the wheel to the plane represents an unbalanced force

that is acting to decelerate the plane as a whole. If we assume

that ac is constant, we then have

ve = vo + act (ae < 0) (14-43)

When we look at the rotational component of the motion,

we see that the only force that produces a torque about C is the

frictional force ff. Furthermore, although 5 acts to slow down
the linear motion, its torque is in such a direction as to speed

up the angular motion. We have, in fact, by Eq. (14-42),

Mc = /CF = Mk2— = Mka
at

where k is the radius of gyration of the wheel and R its actual

radius. If we assume further that the angular acceleration a is

constant, we have

u = at (14-44)

Fig. 14-18 (a) Forces

and motions for a

landing wheel of an

airplane. (b) The

velocity ofany point

on a wheel is the

superposilion of the

linear motion of the

center and the rotation

about the center, as

shownfor an arbitrary

point P andfor the

special cases repre-

sented by the top and

bottom points, A and

B.
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As long as the skidding goes on, Eqs. (14-43) and (14-44)

operate separately to define the linear and angular velocities

of the wheel. At any instant, the resultant velocity of any point

on the rim of the wheel is the veetor sum of the horizontal

velocity vc of C and a velocity of magnitude uR along the tangent,

as shown in Fig. 14-1 8(b). This then allows us to identify the

condition for the skidding to stop. Skidding means the existence

of relative motion between the ground and the point on the

wheel that is instantaneously in contaet with it. Since the ground

defines our rest frame for this problem, the cessation of skidding

requires that the velocity of the lowest point, B, on the wheel

becomes zero. This velocity, vB , is, however, the resultant of vc

forward and coR baekward. Thus we have

VB — Vc — wR

Skidding therefore stops, and rolling begins, when we have

vc = uR

Using Eqs. (14-43) and (14-44), we see that this oecurs at a

time / such that

vo + act = aRt

By using the dynamical equations that define the actual values

of ac and a, we can find the time t and hence the amount by

which ve has been reduced from its initial value u n at this instant.

To solve the problem completcly, we would also have to consider

the linear deceleration imposed on the total mass of the plane

by air resistance and by the forees of the type — F due to all the

wheels together.

The above problem is a valuable one because it does em-

phasize the separate consideration of linear and angular motions.

On the other hand, it does not lend itself to well-defined calcula-

tions. A simpler problem of the same type is represented by a

ball (c.g., a bowling ball) being projectcd horizontally along the

floor [Fig. 14-19(a)]. In this case the frictional foree alonc pro-

vides both the linear deceleration and the angular acceleration.

Furthermore, we can use our knowledge of the cocfficicnt of

frietion and the wcight of the ball to define the magnitude of fr:

The equations of motion then become the following:
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Fig. 14-19 (a) Forces

and motions for a ball

projecled dong a

ftoor. (b) Circular

object accelerating

down a slope. It may

either roli or slip,

depending on the angle

of the slope and the

coefficient offriction.

—liMg = Ma„

,xMgR = Mk 2a

Hence, if we assume that the ball starts out with horizontal

velocity v and no rotation, we have

v c = v, - fXgt

Rolling (vc = uR) then begins at a time defined by the following

equation:

R 2

C — M^'roll = **•? TJ 'roU

or

/roli

Vo

ngO + »/m
The linear velocity at this instant is therefore given by

D*oll =
1 + k2/R2

Ideally, the ball would then continue to roli indefinitely at this

speed.

If we can assume rolling from the outset, the calculations

may bc cvcn more direct. Consider, for example, a problem such

as that of a cylinder rolling down a slope, which we solved earlier

by energy conservation. We shall now analyze it explicitly in

terms of the forces and torques acting [see Fig. 14-1 9(b)]. We
resolve the contact force at the plane into normal and tangential
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components, N and S. Since there is no acceleration perpen-

dicular to the plane, we have N = Mg cos 8. This defines a

maximum available value of S, equal to ixMg cos B. At some

point in the calculation we must check to see whether the as-

sumption of rolling is consistent with this limitation. But to

begin with, we proceed as though this were assured. The equa-

tions of rotation, and of linear acceleration along the plane,

are as follows

:

5R = Mk 2a

Mg sin B — S = Maa

In this case, however, we also have the purely geometrical con-

nection between linear and angular accelerations if slipping is

not to occur:

ac = aR

Solving the two dynamical equations with the help of this "equa-

tion of constraint," we at once find

g sin B
a c =

1 + k2/

R

2

If we put k 2 = R 2
/2 (corrcsponding to a uniform disk or

cylinder) we arrive once again at the result obtained on page 653.

Once we have the value of ac or a demanded by this solution,

we should check to see whether the associated value of 'S is under

the permitted ceiling. I f not, we must begin again with the value

of S set equal to its maximum value /xN, and calculate the linear

and angular accelerations separately. Either way, however, the

problem is soluble in definite terms.

One could easily multiply examples of this kind of analysis,

but once one has clearly grasped the basic approach defined by

Eqs. (14-^iO) and (14-42) the solution to any particular problem

of this type should present no difficulties.

IMPULSIVE FORCES AND TOROUES

Anyone who has played a game that involves hitting a ball with

a bat or a racket will have experienced the satisfying feeling that

comes from hitting the ball just right, whcn it seems that the

bat or racket is doing the work unaided. More often, perhaps,

one is conscious of the sense of effort, or cven a painful sting in
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the hands, when the ball does not make contact at the optimum

point. These are both manifestatipns of the dynamical phe-

nomena that occur when a rigid object (e. g., a bat) is subjected

to a sudden impulse by the impact of the ball.

The simplest example of this kind of behavior is the ap-

plication of an impulse to an object that is not restrained in any

way. Imagine, for this purpose, an object, as shown in Fig.

14-20(a), resting on a frictionless horizontal surface and sub-

jected to a foree F for a time At along a line at a distance b from

the center of mass, C. As a result of this the center of mass

acquires a velocity vc and the object acquires an angular velocity

w. Applying our basic equations [Eqs. (14-40) and (14-42)] we

have

FAt = Mvc

bFAt - Mk2
o>

If we denote the magnitude of the impulse by Ap, representing

the integral of Fover time, whatever its precise variation, we have

Ap

= M£w ~ Mk*

These equations, bctween them, determine the subsequent motion

of every point in the object. The quantity b Ap is the angular

Fig. 14-20 (a) An
object completely free

to recoil is given a

sudden impulse by a

foree passing through

the point A. (b) The

object recehes an

impulse like that in

(a) but is now foreed

to pivot about O.

(c) A suspended base-

ball bal is struck by

the ball. If the point

of impact is correclly

chosen, the bal pivots

about O without pro-

ducing any impulsice

foree there.
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impulse about C due to the linear impulse Ap. And, just as a

linear impulse has the dimensions of linear momentum, so an

angular impulse has the dimensions of angular momentum.

The situation is changed considerably if the objcct is attached

to a fbced axis passing through some point O, at a distance h

from the CM [see Fig. 14-20(b)]. We must now assume that the

impulse Ap due to F is accompanied by another impulse Ap'

applied to the object by the pivot. We now have

Ap + Ap' = Mve

bAp - hAp' = Mk2u

If we take Ap and the values of M, k, and h as known, we have

three quantities undetermincd

—

vc , u, and Ap'—and so far only

two equations. But we also have an equation of constraint; the

point O must rcmain at rest. As Fig. 14-20(b) shows, we must

have

vo = Vc — uh

and this requires that

oc = «A

If one solves these equations for Ap' (do it!) one finds

^ >
bk ~ *2 A

Clearly Ap' may be of cither sign, depcnding on the precise

values of b, k, and h. And we can now identify a condition that

allows Ap' to be zero; this means that even though the pivot is

present at O, it is not called upon to supply any restraining force

when the impulse Ap is applied, or in other words the point O
automatically remains at rest. The necessary condition, from

the above equation for Ap', is

bh - A-
2 =

or

»-*

This locates a point A on the axis of the object, a distance k /h

below the center of mass. The distance / of A from the pivot

point itsclf is givcn by
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/ = A +_____

If you refer back to Eq. (14-39) you will see that / is identical

with thc length of a simple pendulum having the same period as

our object would have if allowed to swing about a horizontal

axis through O.

We actually have here a good dynamical basis for locating

the right point on a bat or racket at which the ball should be

struck. This point is called the center of percussion. If one

suspends a baseball bat, for example, on a long string [Fig.

14-20(c)], one can study directly the effect of making the impact

with the ball occur at various distances on the far side of the

center of mass from the region around O where the bat would

normally be held. If CA is too large, the impact causes O to

kick to the left (if the ball itself comes from the left, as shown).

If CA is too small, then O kicks to the right. If CA has just the

proper value (k'
2
/h) so that A is the center of percussion, the

bat begins to rotate freely about O, which acts as a self-defined

pivot. One could thus predict the optimum location of A first

by a pendulum experiment and then see how things work in

practice.

BACKGROUND TO GYROSCOPIC MOTION

Everybody is intrigued by gyroscopic devices, and probably

everybody feels that their behavior somehow flies in the face of

the usual rules of mechanics, even though intellectually one

knows that this cannot be the case. It cannot be denied, however,

that gyroscopic motions often seem surprising and bizarre, and

this of course is the main source of their fascination.

The primc requirement for the appreciation and under-

standing or gyroscopic behavior is a full awareness of angular

momentum as a vector. And with angular momentum as the

central quantity, one must also Icarn to think primarily in terms

of torques rather than forces, and in terms of angular rather

than linear velocities and accelerations. Once one has achieved

this, the phenomena fail far more rcadily into a rational pattern.

An cffectivc, although rather empirical, way of demonstrat-

ing the vector charaeter of angular momentum is to show that

the rotational angular momenta of sevcral separate flywheels can
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Fig. 14-21 (a) An array of ihree motor-driven flywheels

can be adjusted to hace zero total spin momentum,

(b) The vector addition ofthe three angular momenta

to gice zero.

be made to add up to zero. ' This can be donc by mounting the

flywheels on a freely pivoted board [Fig. 14-21 (a)]. Each fly-

wheel has its own motor drive and can be run at a controlled

and measurable rotation rate. The relative moments of inertia

of the flywheels are also known. We shall take the case of three

flywheels, as shown, set at different orientations. The system is

statically balanced with respect to the pivot and has no pre-

ferred orientation if the flywheels are not rotating. If one of the

flywheels is set spinning at high speed, the system acquires an

easily recognizable gyroscopic stability; the board tends to

preserve a given orientation. Setting a second flywheel into

rotation does not change the situation qualitativcly. But if now

the third flywheel is set spinning, one can suddenly reach a con-

dition in which the gyroscopic stability vanishes; the board will

tend to flop over as if it simply had a few dead weights on it.

It is then possible to verify that this condition is achieved when

the individual angular momenta, as veetors, have a zero resultant

as shown in Fig. 14-21(b). The values of these angular momenta

are given by Li = I%ui, L 2 = I2P2, and L s = /3M3.

The above is a particularly simple situation to visualize,

because we have individual flywheels, each with just one, readily

identified contribution to its angular momentum. It is basic to

The experiment deseribed licrc is shown in the film "Angular Momentum—

A Vector Quantity," by A. Lemonick, Education Development Center,

Newton, Mass., 1962.
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the analysis of gyroscopic problems, however, that we recognize

the possibility that a single object may have simultaneous con-

tributions, along different axcs, to its total rotational angular

momentum. An essential preliminary to this, which we have

not needed to consider previously, is the fuli implication of

angular velocity itself as a vector. If it is to be possible to speak

of the angular velocity vector of a rotating object, then the in-

stantaneous linear velocity, w X r, of any point in the object

must also be describable as the vector sum of the linear velocities

due to component angular velocities «x , a>„, and oiz along orthog-

onal axes. The validity of this description also requires that,

if only one component of u—say az
—were present, the motion

of the object would be pure rotation about the axis (x) in question.

To see how these ideas do work correctly in a simple specific

case, consider the situation shown in Fig. 14-22. A uniform

rectangular board is made to rotate with angular velocity u

about an axis (in the plane of the board) making an angle 8 with

an axis of x drawn parallel to one pair of edges. Consider the

motion of a point P with coordinates deseribed equivalently by

(x, y) or (r, 8). The instantaneous velocity of P, as given by

w X r, is vertically upward from the plane of the diagram and

its magnitude is given directly by the produet of a with the

perpendicular distance PN from P to the rotation axis. Thus we

have

u = o>r sin (8 — S)

= wr sin 8 cos 5 — wr cos 8 sin 6

However, by resolving u> and r along the x and y axes, we have

o>x = to cos B

x = r cos 9

o)„ = w sin S

y = r sin 8

Fig. 14-22 Angular velocity

as a vector. The rotational

dynamics of the rotating board

can be complelely anatyzed in

terms of the components ofu
along the x and y axes.
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This means that the expression for v can be rewritten as follows:

o = oizy — o>ux

We see that, physically, this is exactly what we would get from

the superposition of two separate rotational motions with

angular velocites wz and wv about the x and y axes, respectively.

Let us proceed now to the angular momentum of the whole

board about the axis of u. The linear momentum of an element

of mass dm at P is u dm, and its contribution to the angular

momentum about o> is v dm multiplied by the distance PN.

Since v itself is equal to w times PN, we see that the magnitude

of the rotational angular momentum Lu about the axis of <o is

given by the following integral:

/L„ =
f
dm cor

2
sin

2
(6 - 8)

Expanding this by writing out the expression for sin
2
(0 — 8) in

full, we have

C f
La = 03 cos 8

J
r sin d dm + o sin S j

r cos 5 dm

f -
— 2w sin 5 cos S I r' sin 6 cos 5 rfm

That is,

La = w cos
2
& I y

2 dm + w sin
2
8 I x

2 dm

I'
— 2w sin 5 cos 5 / xy dm

Now the first tw integrals are the definitions of the moments

of inertia, Ix and /„, respectively, about the principal axes x and y.

And the third integral (an example of what is called a produet

of inertia) vanishes, as one can see from the faet that for each

element of mass dm at (x, y) there is an equal element at (x, —y).

Thus we have

La = IxU cos2 5 + /^oj sin- 8

Introducing the components ux and co„ of u, this can bc written

La = Ix<»x cos 5 + V>„ sin 8 (14-45)

This shows that the angular momentum about the axis of to is
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precisely what we would get from the projections along w of

separate angular momenta h<s>x and /„«„ about the x and y axes.

[In general, the vector combination of the angular momenta

Izux and IyOy will also have a component perpendicular to u,

and the total vector angular momentum of the board is the

combination of Lu with this other component. We shall not

interrupt the present discussion to consider this other component

of L. (See, however, Problem 14-30.)]

Finally, let us look at the total rotational kinetic energy.

This is defined by

K = / \»
2 dm

Putting v = «r sin(0 — 5), this becomes

K = £w
2

/ r
2
sin

2
(0 - S) dm

We see that the expression for K involves precisely the same

integral that appeared in the calculation of La , and we there-

fore have

K = £(«
2 cos2 &)IZ + £(<o 2 Sin

2
S)IU

Substituting w cos B = wT , w sin 8 = <o„, we thus arrive at the

result

K = £W + *W d 4"46)

We see, then, (at least in the special case discussed above) how

the dynamics of a rotating object is analyzable into separate

contributions associated with component rotations about the

principal axes.

Although we shall not take the matter any further here,

it is not difficult to show that results of the form that we have

developed are true in general.
1 The essential starting point is

again the vector property of angular velocity, and we shall close

this discussion with a few additional remarks about that. For a

rigid object, pivoted at the CM or at some other fixed point,

the motion of any given point in the object is confined to the

surface of a sphere. Any given change in position can be pro-

duced by rotations about three chosen axes. It is, however,

'See, for example, K. R. Symon, op. cit. (see p. 645).

675 Background to gyroscopic motion



impossible to represent these finite angular displacements as

rotation vectors with x, y, and z as axes, because (as we noted in

Chapter 2) the resultant of two successive displacements depends

on the order in which they are made [Fig. 14-23(a) shows a

Fig. 14-23 (a) Finite

angular displace-

ments do not com-

mute. Startingfram

the point A, two suc-

cessive 90° clockwise

rotations aboitt the x

and y axes lead to the

very different points

C and E, depending

on the order in which

the rotations are

made. (.b) The infini-

lesimal displacements

on which the definition

ofangular velocity is

based do have the

commutative property

andjustify the treat-

ment ofu asa vector.

The small displace-

ment (co X r) St can

be obtained as the

resultant of small

rotations of the posi-

tion vector t about the

x and y axes. The

vectors ri and 1 1 are

drawn perpendicular

to the x andy axes,

respectively, from the

tip of the T vector.
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rather extreme example]. Thus there does not exist a unique

angular displacement, characterized by an axis direction and a

magnitude, that represents the combination of two or more

individual rotations. However, the definition of angular velocity,

like that of linear velocity, is based on infinitesimal displacements

during a time Si that becomes zero in the limit. When one

considers the combination of displacements of this type [Fig.

14-23(b)] one finds that the vector sum is unique, regardless of

the order of addition, and can always be represented by a single

infinitesimal rotation through the angle w S/, where « is the

vector sum of i«s,
jwj,, and k<o2 . (In our diagram we have as-

sumed, for simplicity, that wz = 0.) If we choose to spell out the

calculation of the linear velocity of any point P in terms of

components, we thus have

v = (iaix + iu„ + kco.) X (i* + )y + kz)

Using the relations i X i = 0, i X j = -j X i = k, and so on,

it is easy to establish that this equation gives us

v = i(o)„z - u2y) + j(&>iX — uzz) + k(o*y — w^)

It may be noted that the last term corresponds exactly to the

value of v that we obtained in our special example of the rotating

board (for which we took wz = and z = everywhere). It is

often convenient, as with any vector cross product expressed in

orthogonal components, to write the general expression for v as

a determinant:

i i k

Oli Uy 01,

X y z

GYROSCOPE I N STEADY PRECESSION

A gyroscope is basically just a flywheel that is mounted so that

it has three different possible axes of rotation, which can if

desired be made orthogonal to one another. The first axis is the

normal spin axis of the flywheel itself ; the other two allow this

spin axis to tilt in any direction. Figure 14-24 shows how this

can be achicved by mounting the flywheel inside a pair of freely

pivoted gimbal rings. Our concern will not be with the details

of the arrangement but with the dynamics of the response of the
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Fig. 14-24 (a) GyrOSCOpe with Us gimbal rings lying in

the same plang, (b) Gyroscope with Us gimbal rings

perpendiculur, sfiowing l/w ucailabiliiy of ihree mulually

perpendieidar axes ofrotalion.

flywheel to torqucs of various kinds, granted that the complete

latitudc in angular position exists.

One of the simplest and most striking tricks that one can

do with a gyroscope is to start it spinning about a horizontal

axis and then set one end of its axis down on a pivot, as shown

schematically in Fig. 14-25(a). The gyroscope then begins to

precess; i.e., its axis OA, instead of slumping downward, pro-

cecds to move around so that the extreme end A scttles down

(after some initial irregularitics that we shall diseuss later) into

a horizontal circular path at conslant speed. Wc can explain this

as a direct conscquencc of the torque aeting on the flywheel,

but by way of introduetion let us first consider a different situation

that probably appears childishly simple. The flywheel is spinning

with angular velocity 01 about its axis [Fig. 14-25(b)] and a

torque M is applied about that same axis for a timc Si. Then

of course the rotation rate simply specds up or slows down.

The general equation for the rate of change of angular momen-
tum under the aetion of a torquc [Eq. (14-41)] is

M, =!*•>
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[f r <^ ] Precession

Itu

CO M<.8t

(a) (b)

Fig. 14-25 (a) Gyro-

scope in sleady pre-

cession. (b) Addition

of angular momentum

to a flywheel about the

spin axis itself. (c) Ad-

dition of angular

momentum to a fly-

wheel at right angles

to the initial spin axis,

resulting in precession.

Jt

C:>
lo>

(C)

but it reduces in this case to the special form given in Eq. (14-42):

.dia
M, = /

di

and we have

Mc Si = SL = I 8w

The angular momentum v£ctor simply gets longer or shorter

without changing direction.

Consider now the circumstances in which precession occurs.

The flywheel, supported at one end of its axis, is subjected to a

vertical downward force F„ at its CM and an equal, opposite

force at the pivot O [Fig. 14-25(c)]. These two forces constitute

a couple whose axis is horizontal and at right angles to the spin

axis. In a time St the torque of this couple adds an amount of

angular momentum M c St at right angles to L. The result of this

is to change the direction of L without changing its magnitude.

If we denote by ip the angle between the axis of the flywheel and

some Standard horizontal reference axis (x) we have

M, St = L hp
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If the distance from the pivot O to the center of mass is /, we have

Mc = Fgl = Mgl

where M is the mass of the flywheel. Putting L = /w, we then

find that

where 9. is the angular velocity of precession about the vertical

(z) axis, as shown in Fig. 14-25(c). Equation (14-47) gives

quantitative expression to the property of gyroscopic stability.

The necessary condition is to make Iw large, so that the pre-

cessional angular velocity £2 is small under an applied torque and

can, within certain limits, be made negligible in a practical

gyroscopic system.

Notice the relationship between the directions of the various

vectors involved here. The spin angular momentum is horizontal

(a condition that we shall relax in a moment). The torque vector

is also horizontal and is always perpendicular to L. The pre-

cession is described by an angular velocity vector Cl directed

along the z axis, perpendicular to both L and M.

The above discussion shows that the steady precessional

motion is a direct consequence of the basic vector relation be-

tween torque and the rate of change of angular momentum.

One last remark may help to put the result in contcxt. If we

placed one end of the flywheel axis on the pivot O without giving

the flywheel any initial spin, then the flywheel would of course

fail down immediately, its center following a circular arc in a

vertical plane. What we see here is again the addition of angular

momentum about a horizontal axis by virtue of the gravitational

torque, but in this case there is no pre-existing spin angular mo-

mentum to which it can be added, and the consequences appear

(and are) very different.

MORE ABOUT PRECESSIONAL MOTION

The kind of steady precessional motion described in the last

section is not confined to flywheels spinning with their axes

horizontal. A gyroscope set down with its axis at an angle d to

the vertical [Fig. 14-26(a)] will quickly settle down into pre-

cession of just the kind that we have discussed. Its axis sweeps
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Fig. 14-26 (a) Steady

precession with gyro-

scope axis at an arbi-

trary angle to the

vertical. (b) Vector

diagram to show the

change ofangular

momentum in a short

time St in (a).

out a cone of semiangle B, as indicated. Moreover, quantitative

measurements would show that the time to complete one circuit

of precession is almost independent of 6 for a given value of the

spin angular velocity w and is always nearly equal to 2x/fi,

where fi is calculated according to Eq. (14-47). This result is

entirely reasonable when one considers that the gravitational

torque for the inclination 6 is reduced to Mg! sin 0, but that the

amount of rotation about the z axis in time St [see Fig. 14-26(b)]

is equal to the angular impulse Mc St divided by the projection

lu sin 5 of L onto a horizontal plane. Thus the quotient of these

two quantities is independent of 6. For all its plausibility, how-

ever, this result is not quite correct. The reason is that the pre-

cessional motion itself implies a further contribution to the

angular momentum, and this must be taken into account. We

shall give a primitive argument to suggest what this entails.
1

Consider the motion of a point P on the spin axis of the

gyroscope [Fig. 14-27(a)]. Its instantaneous velocity is due to

the precession alone and is of magnitude Qr sin 6, downward

into the plane of the diagram. This same motion can be described

alternatively in terms of a certain angular velocity w2 that the

whole flywheel has about an axis perpendicular to its spin axis.

All we need to do is to put

co2 = £2 sin

'The rest of this section can bc omitted without loss of continuity.
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Fig. 14-27 (a) A
precessing gyroscope

has angular oelocity

about an axis perpen-

dicular to its spin

axis. (b) The total

angular momentum

vector ofa precessing

gyroscope is not par-

allel to the spin.

With this value of w 2 we can describe the additional velocity,

due to precession, of any point in the gyroscope. However, the

direction of oi2 corresponds to one of the principal axes of inertia

of the fiywheel. Thus we can write an expression for the total

angular momentum in terms of the angular velocities u\ and oj 2 ,

and the moments of inertia I\ and /2 for rotation about these

axes:

L = /iWl + /2«2 (14-48)

Now we know the way in which L is changing with time, for

in steady precession the whole system turns with angular velocity

Si about the vertical (z) axis. Thus we have the simple and very

important equation

dLr flxL (14-49)

corresponding to the rate of change of any vector that is rotating

at the rate SI. In the present case this therefore gives us

— = /i(ii X wj) + /2 (£J X co2 )

at

Now if we look at the geometry of the situation [Fig. l4-27(a)

and (b)], we see that /jii X »i is a vector of length I£lw\ sin

pointing down into the papcr, and /2ii X w2 is a vector of length

I2 ila>2 cos B pointing up from the paper. Together they form a

horizontal vector, pointing down into the paper, of magnitude

given by
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— = /iwifl sin 6 - hw£l cos d
dt

However, we have seen that u 2 = fl sin 0. Thus we find that

— = /iwifi sin d - htf sin 6 cos 6
dt

Setting this rate of change of angular momentum equal to the

gravitational torque in the same direction, we have

Mgl sin 6 = /iwiS2 sin d — h&2 sin 6 cos d

or

Mgl = /iwiSJ - /2«2 cos 9 (14-50)

For the particular case d = jt/2 (spin axis horizontal) we re-

produce the simple result expressed by Eq. (14-47) in the previous

section. But we see that in general we are confronted with a

quadratic equation leading to two different values of Q. One

of these represents a slow precession at a rate not very different

from Mgl/IiUi, and this represents the normal situation. In

principle, however, one can also obtain a fast precession, al-

though it is difficult to start the gyroscope off with just the right

motion to achieve it. In practice, as long as the gyroscope is

operated in the usual way with a large value of w u the possibility

of the fast precession can be ignored.

GYROSCOPES I N NAVIGATION

We shall give here a very rudimentary discussion of the use of

gyroscopes as devices for direction finding, guidance, and control.

To introduce the subject, we shall describe another of the simple

and initially surprising features of gyroscopic behavior. If a

gyroscope, mounted in its gimbal rings, is set spinning about

a horizontal axis, and the outer gimbal ring is rotated in a hori-

zontal plane [Fig. 14-28(a)], then the inner gimbal ring, carrying

the flywheel, tilts up out of the horizontal plane in which it, too,

first lay, and after a fcw oscillations, damped out by friction, the

axis of spin of the gyroscope settles down along a vertical di-

rection.

This behavior can be qualitatively understood if one rec-

ognizes that the pivots on which the inner gimbal is mounted can

supply torques about the vertical direction and about the spin
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Flg. 14-28 (a) A torque app/ied lo a gyroseope can

force ils spin axis lo lili. (b) Reorienlation ofa gyro-

seope through lorque indttced by ihe earth's roialional

molion. (c) Principle ofa gyroscopic compass. The

earth's rolalion causes a difference of levels in ihe U-

tube anaclied lo Ihe gyroseope frame, and ihe resulling

toryue makes ihe gyroseope axis liirn lo align wilh a

norlh-soulh direelion.

axis of the fiywheel, but not about the axis connecting the pivots

themselves. This last faet, implying conservation of angular

momentum about the axis AA', can be used to explain why the

tilting begins. The attempt to rotate the spin axis of the gyroseope

in a horizontal plane would, by itself, introduce a component

of angular momentum along AA'. The tilting motion provides

an equal and oppositc angular momentum component that

keeps the angular momentum about AA' equal to zero. The

torques that can bc supplied via the forees at A and A' are able
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to perform the main task of canceling out angular momentum

about the axis BB' and creating angular momentum about the

vertical axis, corresponding to the reorientation of the spin

angular momentum /w from horizontal to vertical. This process

will continue until the axis of the flywheel is fully aligned with

the axis of the torque.

Imagine now that a gyroscope, mounted as described above,

were set spinning with its axis initially horizontal and in an

east-west direction at a point on the equator [Fig. 14-28(b)].

Then the rotation of the earth itself would apply just such a

torque to the gyroscope, about an axis parallel to the earth's

axis of rotation. The gyroscope would therefore, in the course

of time, pass through the succession of positions indicated in

Fig. 14-28(b) until its spin axis was pointing true north, after

which it would continue to act as a compass pointing in this

direction.

In order to make a nonmagnetic compass of this type—

a

gyrocompass—for general navigational purposes, use is made

of the gravitational torque that comes into existence if the

gyroscope is unbalanced. This can be exploited in the way in-

dicated schematically in Fig. 14-28(c). A U-tube containing

liquid is clamped to the inner gimbal ring. (The outer gimbal

ring is omitted from the diagram, but must be assumed present.)

If one imagines an initial situation in which the axis of the

gyroscope lies east-west, the preservation of this orientation

would, through the earth's rotation, bring about a difference of

levels in the two arms of the U-tube, because the ncw local

horizontal makes an angle with the original one. This difference

of levels results in a net gravitational torque parallel to the earth's

axis, and the gyroscope reorients itself in the manner alrcady

described, turning within the outer gimbal ring, until the plane

containing the U-tubc and the spin axis of the gyroscope is

parallel to the local north-south meridian.

Inertial guidance systems make use of very similar phe-

nomena. Once a gyroscope has been set spinning about a chosen

axis, any motion that would cause it to deviate from this direction

calls into existence a torque that can be used as an error signal

to control corrective maneuvers. The same techniques, in essence,

can be used for stabilization of ships or vehicles against un-

desirable rolling motions.

Somc of the most important applications of gyroscopic

phcnomcna are in aircraft instruments. A free (perfectly balanced)
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gyroscope can give a constant indication of a chosen reference

direction for checking the correct course, and a gravitationally

loaded gyroscope can be used to identify the true vertical at all

times and so define an artificial horizon against which the pilot

can measure the angles of bank and climb.

ATOMS AND NUCLEI AS GYROSCOPES

We mentioned earlier the intrinsic "spin" angular momentum
that is possessed by elementary particles. A Iarge fraction of all

atomic nuclei and neutral atoms also have such angular mo-

mentum, in amounts corresponding to simple multiples of the

natural unit h/2w. This gives to these particles a natural gyro-

scopic stability. The spin angular momentum is, however, al-

ways accompanied by intrinsic magnetism; it is as if the atom or

nucleus contains a tiny bar magnet pointing along the direction

of its spin axis, and in the presence of a magnetic field this leads

to steady precessional motion.

The basic phenomenon can be well described with the help

of a simple classical model. Figure 14-29 portrays a spherical

particle with its spin axis at angle d to a magnetic field. If we
imagine a bar magnet inside the particle, the north and south

poles of this magnet experience forces in opposite directions

parallel to B, as shown. These forces produce a torque with its

axis pointing up out of the plane of the diagram. In the absence

of the spin this torque would simply cause the magnet (after

Fig. 14-29 Atoms and nuclei are like spinning

magnets and precess in a magnetic field.
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some preliminary oscillations) to align itself with the field, like

a compass needle. The existence of an intrinsic angular mo-

mentum L, however, changes the situation and leads to precession

in the direction indicated.

An expression for the rate of precession is easily derived if

we picture the magnet as having poles of strength m separated

by a distance /. The foree F on each pole is equal to mB, so that

the torque is given by

Mc = mBI sin 6

We can write the produet ml as a single quantity, p—the magnelic

dipole moment of the partiele. Thus we have

Mc
= /iBsinfl (14-51a)

If we write the magnetic field and the magnetic moment as

veetors, we can deseribe the torque completely by the equation

Mc
= M X B (14-51b)

Setting the torque equal to the rate of change of angular mo-

mentum due to a precessional angular velocity £2, we then have

nB sin 6 = QL sin d

or

Q = *£ (14-52)

The existcnce and the rate of this precession can be detected by

pieking up the tiny electrical signals that the rotating atomic or

nuelear magnet can cause, by electromagnetic induetion, in a coil

placed nearby. Of course the signal from an individual partiele

is almost inconceivably small, but by using a sample containing

vast numbers of identical particles, all precessing in the same way,

the effect becomes measurable. ' The detection of nuelear spin

magnetism in this way is known as nuelear magnetic induetion

and was first studied by F. Bloch and E. M. Purcell (indepen-

dently, and by different methods) in 1946. They shared the

Nobel prizc in 1952 for this work, and in his Nobel lecture

We shall not go inlo the special techniques used to observe the precession.

For an introduetory account one cannot do better than to read the Nobel

lectures by F. Bloch and E. M. Purcell in Nobel Lectures, Pliysics, 1942-1962.

Elsevier, Amsterdam, 1964.
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Purcell said: "I have not yet lost a feeling of wonder, and of

delight, that this delicate motion should reside in all the ordinary

things around us, revealing itself only to him who looks for it.

I remember, in the winter of our first experiments . . . looking

on snow with new eyes. There the snow lay around my door-

step . . . great heaps of protons quietly precessing in the carth's

magnetic field."

(The actual precessional frequency of protons in the earth's

field is about 2500 rps. The fundamental experiments were,

however, done at a magnetic field about 10,000 times greater

than this and hence at a correspondingly higher valuc of fi.)

GYROSCOPIC MOTION IN TERMS OF F = ma"

Although the thoroughgoing use of angular quantities is certainly

the most fruitful approach to gyroscopic phenomena, one.may

still wish to see how the motions relate back to a basic statcment

of Newton's law for individual particles. We shall therefore give

here a simple example of an analysis in these terms.
2

Picture

a primitive gyroscopc madc of four equal masses m, mounted

symmetrically at distances r from a spindle, with thcir CM a

distance / from the pivot point [Fig. 14-30(a)]. Consider the

situation when one of the masses (No. 1) is at its highest point,

traveling horizontally. The point C has a linear velocity V (= fi/)

due to the precession, and each mass has a velocity v (= ur)

relative to C. Mass 1 thus has, instantaneously, a velocity

Vi (= v — V) backward with respect to the precessional direc-

tion, and mass 3 has a velocity i>3 (= v + V) forward at this

instant (we assumc v > V). During a short time 5/, the pre-

cession turns the axis of rotation through the angle il 5t, and this

changes the directions of the velocities Vj and v 3 in the manner

shown in Fig. 14-30(b). Physically, this means that mass 1 has

to be accelerated radial ly outward from the precession axis, and

mass 3 has to be accelerated radially inward. The forces to

supply these extra accelerations have to come from the support-

ing spokes, and if we consider the situation as it appears from

the side (looking horizontally, perpendicular to the spin axis),

'This section can be omitted wilhout loss of continuity.

2This analysis owes a debt to an article by F. W. Sears, Am. J. Phys., 7, 342

(1939). See also E. F. Barker, Am. J. Phys., 28, 808 (1960), and J. L. Snider,

Am. J. Phys., 33, 847 (1965).
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Fig. 14-30 (a) Simple gyroscope made offour con-

centrated masses. (b) Changes of ihe velocilies »i and

v 3 in a shorl time Si. (c) Forces needed to change the

velocities ofmasses 1 and 3, corresponding to the pre-

cessional lorque.

we see that the spokes must apply a net clockwise torque about C.

Masses 2 and 4 do not require any such forces and torques be-

cause their instantaneous velocities, being vertical, are not re-

oriented by the precessional motion.

We have kept the above discussion rather qualitative, be-

cause as it stands it is not quite correct. If we used the diagrams

of Fig. 14-30(b) to calculate the radial accelerations of the

masses, we should have

ai = Slv, = 2(o - M) = fit - G2
/

a3 = -8»8 = -&(» + 00 = -Of - O2
/

In both of these we recognize a centripetal acceleration (due to

the precession) in a circle of radius /, which is as it should be,

but the terms ±fiu do not represent all the rest of the story. The

reason is somewhat subtle. What we have calculated is the change

of a velocity vector that remains always at the top or bottom

end of a vertical diameter of the rotor. However, the masses, by

virtue of their rotation, move away from these positions during

dt, and it turns out that this corresponds to a further contribution

of =fcfio to the radial accelerations. (You will find a more rigorous

discussion below if you are interested.) Thus we end up with

the following corrected expressions:

Fi = 2mQu - niSfil

Fz = -2mQv - rr£l
2
l
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You may recognize these as precisely the forces needed to balance

the combined Coriolis and centrifugal forces for particles travel-

ing horizontally at speed v in a frame rotating with angular

velocity Q about a vertical axis.

The net clockwise torque about the CM due to Fi and Fa

combined is given by

Mc = 4mSlur = 4mr2wtt

We know, however, that 4mr2
is precisely the moment of inertia

of the whole system of four masses about the spin axis. Thus

we have Mc = /wfi, exactly as needed. Ultimately, as we know,

this torque is supplied via the framework of the rotor by the

gravitational forces acting on all four masses.

Formal analysis

Consider a particle of mass m at the position P shown in Fig.

14-31. Set up a system of axes x', y', and z' (with unit vectors

i', j', and k') that rotate with the precessional angular velocity

Ok. The velocity v' ofm in the precessing frame is given by

v' = v cos 6V — v sin dk'

Within this frame the motion of the particle is just around the

circle of radius r and must be describable by the following state-

ment of Newton's law:

F' = -mco2
r

However, the true force F acting on m, as measured in a sta-

Fig. 14-31 Diagram

for analysis of the

forces acting on a

particle P in a pre-

cessing gyroscope.
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NUTATION

tionary frame, is related to F' by the following equation [cf.

Eq. (12-13b)]:

F' = Ftrue + Fcor iolig + Fcenttifugal

This gives us

Ftrae = '"^t + 2nglk X V' + ",i]k X (fik X R)

where

r = /j' + r = /j' + r sin di' + r cos 0k'

Now we have

k X v' = v cos 0(k X i') = v cos 0j'

k X R = /(k X j') + rsin0(k X i') = -H' + rsinflj'

Substituting these above, we find

Ftrue = -mu2r + lit&o cos 0j' + wifik X (-Mi' + Grsinflj')

or

Ftrue = -muh + 2n£lo cos 0j' - mUHli' + r sin «i') (14-53)

In this expression for the total force we then recognize three

distinct cx>ntributions:

1. The force needed to maintain the circular path of m

around C.

2. The force corresponding to the Coriolis acceleration.

3. The force needed to give m the centripetal acceleration

toward the precession axis when it is at any radial distance

ON (= /j' + r sin 0i') from that axis.

We can then substitute specific values of 6 in Eq. (14-53) to

correspond to the instantaneous positions of any set of particles

comprising the spinning rotor. One can verify at once that

putting = and w gives us two forces whose horizontal com-

ponents are equal to Fi and F3, as quoted earlier.

However convincing the analysis of gyroscopic precession may

seem, one may still wonder how a gyroscope can possibly defy

This section can be omitted without loss of continuity.
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Fig. 14-32 Nuiation ofa precessing gyro-

scope. 0"0

gravity in the way that it appcars to do. The answer is that this

immunity is indeed only apparent. If a flywheel is set spinning

about a horizontal axis, with both ends of its axle supported

[Fig. 14-32], the first thing that happens if thesupportat one end

(A) is removed is that this end does begin to fail vertically.

Immediately thereafter, however, the precessional motion in a

horizontal plane begins, and as this happens the falling motion

slows down, until the point A is moving in a purely horizontal

direction. It does not stay like this; what happens next is that

the precession slows down and the end of the axle rises again,

ideally to its initial level. This whole sequence is repeated over

and over, as indicated in the figurc. The process is called nutation

(after the Latin word for "nodding") and always occurs unless

a gyroscope is started out with the exact motion needed for

steady precession. The net effect is that the center of gravity

of the flywheel remains at an average level below its starting

point, and one can guess that the gravitational potential energy

so released provides what is needed for the kinetic energy of the

precessional motion.

Formal analysis

We shall give a simple analysis of nutation for the type of situa-

tion discussed above, in which the support at one end of the axis

of a flywheel is suddenly removed at / = 0. Figure 14-33(a)

indicates the essential features as seen in a vertical plane con-

taining the spin axis. The angle of precession of this plane about

a vertical axis will be denoted by <p. The flywheel has a spin

angular momentum I xw, it has moments of inertia /2 and /
;i

(with I-i = I3) about the other two principal axes.

Since no torques act about a vertical axis, we have con-

servation of angular momentum about the axis Oz. The tilting

downward of I\u would introduce a vertical component /ito 86;

this must therefore be compensated by an angular momentum

/.j 50 due to a change of the precessional velocity fi. Thus
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Fig. 14-33 (a) Intermediate slage in the nutaiion of

a gyroscope whose spin axis is initially horizontal. (6) Re-

lation of nutational angle (9) w precessional aiigle (<fi).

(c) Examples ofnutation with different inilial conditions.

h 89. = hai 86

This can be integrated at once to give

dt h
(14-54)

(We put dp/dt - at $ = 0.)

Next, let us consider energy conservation. A change of 6

with time implies a kinetic energy of rotation about a horizontal

axis perpendicular to the spin axis, and the precession means

kinetic energy of rotation about a vertical axis. The release of

gravitational potential energy is equal to Mgl hd. Thus we put

MglSB = i*>($ H-Wli
dtp

Dividing throughout by Si and going to the limit St -* 0, we have
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_, .<to dd d
2
e

,
. dv> d

2
<p

M8l
T, = h

J,-dfi
+ h

T,dfi

Substituting for dy/dt from Eq. (14-54), we have

., ,dd . d0d2
6 (huf.M

Mgl7l

= h 7t dT2
+ -ir e

d7

Canceling out dd/dl, and putting /2 = /3, this gives us

dh
dfi

_Mg[_ (ivA2

This is of the form

g = -* 2
<* - e )

where k = I\o>/Iz and <?o
= MglIs/(Iico)

2
. The solution is a

harmonic vibration about 6 = 0o :

6 = O(1 - cos kt)

Substituting this equation for B into Eq. (14-54) and integrating,

we find that

<p = do(kl - sin kt)

The combination of these simultaneous variations of 8 and <p is

a cycloidal motion in angle, as shown in Fig. 14-33(b).

If the initial conditions are varied, different types of nuta-

tional motion may occur, as shown in Fig. 14-33(c), but they

are all understandablc in terms of the principles underlying the

above analysis.

THE PRECESSION OF THE EQUINOXES

It is fitting that we should end this book with another of the

great astronomical problems for which Newton first supplicd

the explanation. This is the slow precession of the earth, which

behaves as a gyroscope under the torques due to the gravitational

pulls of the sun and the moon.

The story begins with the ancient astronomers, who through

their amazingly careful observations had discovered that the

celestial sphere of "fixed" stars seems to be very gradually turn-
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Fig. 14-34 Preces-

sion ofllie equinoxes

as described (a) in

lerms ofa movement

of the ecliptic around

the celestial sphere,

and (6) in lerms oflhe

conical paih traced

out by the earth's spin

axis with respect to a

fixed axis perpen-

dicular to the ecliptic.

ing from west to east with respect to a reference line defined by

the intersection of the celestial equator with the ecliptic [Fig.

14-34(a)]. This reference line also defines the positions of the

equinoxes, when the sun lies in the equatorial plane of the celestial

sphere (and of the earth) so that day and night are of equal

695 The precession of the equinoxes



length over the whole earth. Since only relative motions are

involved, thc phenomenon could be described as a slow westward

drift or precession of the equinoctial points themselves. It was

the Greek astronomer Hipparchus, about 130 B.c, who dis-

covered the phenomenon and reported its magnitude as about

36" of arc per year (the true value is close to 50"). He also

recognized that the existence of this precession of the equinoxes

allowed two different definitions of the year—either the time

between spring equinoxes, bringing the sun back into the same

positional relationship to the earth, or the slightly longer time

(longer by about 20 min) for the sun to return to exactly the

same place with respect to the fixed stars. These times are known

as the tropical year and the sidereal year, respectively.

For Hipparchus the precession of the equinoxes was just an

empirical fact, and so it remained until 1543, when Copernicus,

in his De Revolutionibus, put forward the explanation—that the

earth's axis, although it always keeps the same inclination (66£°)

to the plane of the earth's orbit, nevertheless traces out a cone

of semiangle 23J° with respect to the normal to this plane [Fig.

14-34(b)]. Copernicus also concluded that the average pre-

cessional rate is 50.2" per year, corresponding to a complete

precessional period of just about 26,000 years. (The quoted

number is excellent, but Copernicus was misled by some bad

data into the false belief that the precessional rate is not constant.)

Thus by Newton's day the descriptive account of the pre-

cession of the equinoxes was well established, but its cause

remained a mystery. Then, in the Principia (Book III: The

System of the World, Proposition 39), Newton gave a quantitative

dynamical explanation. It has something in common with the

explanation of the tides (p. 531); the moon is the chief cause,

but the sun also plays an important role, in just the same ratio

as for tidal action [cf. Eq. (12-25)].

Figure 14-35 presents the basis for describing the phe-

nomenon in modern terms, using the dynamics of gyroscopic

precession. The earth's spin axis makes an angle 6 to the normal

to the plane of the ecliptic, so that the earth's equatorial bulge

(&R/Re '«
3ijo) is oriented unsymmetrically, as shown. Now

the period of the precession is, as we have seen, immensely long;

thus, from the standpoint of the earth, both the sun and the

moon go through very many orbits within a time (e.g., 100 years)

in which the direction of the spin axis hardly changes. This
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Fig. 14-35 Origin ofprecessional tonpie due Io graci-

lalional attraction between the earth's equatorial bulge

and a ring represenling the effectice distribmion of the

moon's mass around its orbit.

means, in effect, that the mass represented by the sun or the moon

is smeared out uniformly around its orbit as seen from the earth.

In other words, the earth's gravitational environment is just like

two rings of material; the one representing the moon is indicated

in Fig. 14-35.

The origin of the precession is now clear. The earth's bulge

in the vicinity of A cxperiences a net force toward the left of the

diagram, and the bulge near B experiences an equal force to the

right. Together these give a torque whose axis points upward

from the plane of the diagram. Since the earth's steady rotation

from west to east means a spin angular momentum /w directed

as shown, the result is a precession in which the tip of the spin

angular momentum vector traces out a circular path from east

to west.

What about the actual rate of precession? We shall indicate

a very cavalier approach, just for the sake of coming up with an

order of magnitude. (You will perhaps devise a much better

calculation for yourself.) It is clear that the biggest effects are

caused by interactions involving material close to the plane of

Fig. 14-35—i.c., the plane that contains the spin axis and the

normal to the celiptie. If we consider an element of mass AMf.

near A, acted on by cqual elements of mass (AA/m) of the moon

ring near P and Q, the force on LMg is given by

F- -
CAM.AWbGAMm AMK

(rm - RH cos 9)2 (r, + RK cos OY
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or

4GAMm AMgRg cos
(14-55a)

Let us arbitrarily say that an approximation to the net pre-

cessional force can be obtained by using in this equation the

amounts of the earth's bulge and the moon's ring included within

an angular range ±45° of the center line (see plan view, Fig.

14-36). We then have AA/m = Mm/4. To get an estimate of

AMe, we must calculate the volume of material contained in the

bulge. Its thickness is about Re/300, we have chosen its length

equatorially to be a quarter of the circumference, i.e., tRe/2,

and now we must pick a value for its length from north to south.

Let us try the range from 22£° south to 22J° north latitude;

this takes us almost exactly from the plane of the ecliptic to the

Tropic of Cancer and represents an eighth of the earth's circum-

ference, or itRe/4. Thus the volume, AVE , of our patch would

be given by

,
Re tRm *Rk K KK

2400

The volume of the whole earth is 4kRe 3
/3; hence we have

AVR
Vb

l m 10-3

2400 4tt

Since the density of material near the earth's surface is only

Fig. 14-36 Plan

oiew to Musirute

erude model of the

precessioii-producing

torgue due to the

moon aeting on the

earth's eguatorial

bulge.
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about half of the mean density, we have thus defined a patch

of material whose mass is given approximately by

AMB « 5 X 10~ 4A&

That completes the most awkward (and most shaky) part of the

calculation. If we substitute our values of AMm and AMg in

Eq. (14-55a), we have

_4 GMmMBRB cos B
(i4-55b)5 X 10

Clearly a similar calculation will apply (or not!) to the earth-sun

interaction, and so for the net torque-producing force we shall

have

(MM M,\
F « 5 X \0-*GMERB cos 8 \-2 + -^j (14-56)

Although the magnitudc of the numerical coefficient in F\s quite

doubtful, the form of the equation is correct. In particular, we

see explicitly how the relative contributions of sun and moon

are defined by the same combination of mass and distance as in

the calculation of tide-producing forces.

Let us turn now to the calculation of the torque and the

precessional velocity. For the torque, we have simply

Mr. = 2REFsin d

The moment of inertia, if we take the earth to be a uniform

sphere, is 2MeRe 2
/5, and so the precessional equation is

2Rt;Fsin = fMKRB
2uQ sin 6

or

MgRgta

with w « 7 X 10
-5

sec
-1

. Substituting for Ffrom Eq. (14-56),

we thus have

^ 2.5 X 1<T
3
G<< ;

2.5 X 10
-Ol

M, M\
rm-!

+
r?)
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PROBLEMS

Now

M»=7X 10
22

kg, rJ' «6X 10
25 m3

M, « 2 X 10
30

kg, r,
8 « 4 X 10

33 m3

Hence

P. « (2.5 X 10-°)(1.7 X 10"3
) « 4 X 10- 12 sec-'

and so

T = ^ « 1.5 X 10
12

sec « 50,000 years

We could try to trim this result a little—for example, we have

somewhat underestimated the mean density of the earth's crust

and (by treating the earth as a uniform sphere) we have some-

what overestimated the inoment of inertia. Both of these would

cause us to underestimate the precessional rate and obtain too

large a valuc for the precessional period. But in view of the

gross assumptions we have made elsewhere in the calculation,

we should not set any great store on making small refinements

of this type. The important thing is that, by quite simple means,

we have verified that the precession of the equinoxes can indeed

be understood in terms of Newtonian dynamical principles. But

Newton got there first!

14-1 (a) Devise a criterion for whether there is external force acling

on a system of two particles. Use this criterion on the following one-

dimensional system. A particle of mass m is observed to follow the

path

x{i) = A sin (o>r) + L + vt

The other particle, of mass M, follows

X(t) = B sin (w/) + Vt

The different constants are arbitrary except that mA = — MB.

(b) Try it on the system with

x(t) = A sin (o;) and A"(0 = B sin (o>/ + <p)

where A and B are related as before, and <p t± 0.
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14-2 Consider a system of three particles, each of mass m, which

remain always in the same plane. The particles interact among them-

selves, always in a manner consistent with Newton's third law. If the

particles A, B, and C have positions at various times as given in the

table, determine whether any external forces are acting on the system.

Time

(1,1) (2,2) (3,3)

1 (1,0) (0,1) (3,3)

2 (0, 1) (1,2) (2,0)

14-3 Two skaters, each of mass 70 kg, skate at speeds of 4 m/sec in

opposite directions along parallel lines 1.5 m apart. As they are about

to pass one another they join hands and go into circular paths about

their common center of mass.

(a) What is their total angular momentum?

(b) A third skater is skating at 2 m/sec along a line parallel to

the initial directions of the other two and 6 m off to the side of the

track of the nearer one. From his standpoint, what is the total angular

momentum of the other two skaters as they rotate?

14-4 A molecule of carbon monoxide (CO) is moving along in a

straight line with a kinetic energy equal to the value of kT at room

temperature (k = Boltzmann's constant = 1.38 X 10~ J/°K). The

molecule is also rotating about its center of mass with a total angular

momentum equal to h (= 1.05 X 10- 34
J-sec). The internuclear

distance in the CO molecule is 1.1 A. Compare the kinetic energy of

its rotational motion with its kinetic energy of translation. What does

this result suggest about the case or difficulty of exciting such rotational

motion in a gas of CO molecules at room temperature?

14-5 A uniform disk of mass M and radius R is rotating freely about

a vertical axis with initial angular velocity o> .
Then sand is poured

onto the disk in a thin stream so that it piles up on the disk at the

radius r (< R). The sand is added at the constant rate m (mass per

unit time).

(a) At what rate are the angular velocity and the rotational

kinetic energy varying with time at a given instant?

(b) After what length of time is the rotational kinetic energy

reduced to half of its initial value? What has happened to this energy?

14-6 Two men, each of mass 100 kg, stand at opposite ends of the

diameter of a rotating turntable of mass 200 kg and radius 3 m. ln-

itially the turntable makes one revolution every 2 sec. The two men

make their way to the middle of the turntable at equal rates.

(a) Calculate the final rate of revolution and the faetor by which
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the kinetic energy of rotation has been increased.

(b) Analyze, at least qualitatively, the means by which the in-

crease of rotational kinetic energy occurs.

(c) At what radial distance from the axis of rotation do the

men experience the greatest centrifugal force as they make their way
to the center?

14-7 Estimate the kinetic energy in a hurricane. Take the density of

air as 1 kg/m 3
.

14-8 A useful way of calculating the approximate value of the moment
of inertia of a continuous object is to consider the object as if it were

built up of concentrated masses, and to calculate the value of J^mr2
.

As an example, take the case of a long uniform bar of mass M and

length L (with its transverse dimensions much less than L). We know
that its moment of inertia about one end is ML2

/3.

(a) The most primitive approximation is to consider the total

mass M to be concentrated at the midpoint, distant L/2 from the end.

You will not be surprised to find that this is a poor approximation.

(b) Next, treat the bar as being made up of two masses, each

equal to M/2, at distances L/4 and 3L/4 from one end.

(c) Examine the improvements obtained from finer subdivisions

—e.g., 3 parts, 5 parts, 10 parts.

14-9 (a) Calculate the moment of inertia of a thin-walled spherical

JX shell, of mass M and radius R, about an axis passing through its center.

^N Consider the shell as a set of rings defined by the amounts of material

\ lying within angular ranges d& at the various angles d to the axis

' / (see the figure).

/ (b) Verify the formula / = 2MR 2
/5 for the moment of inertia

/ of a solid sphere of uniform density about an axis through its center.

You can proceed just as i n part (a), except that the system is to be

regarded as a stack of circular disks instead of rings.

14-10 (a) Calculate the moment of inertia of a thin square plate about

an axis through its center perpendicular to its plane. (Use the per-

pendicular-axis theorem.)

(b) Making appropriate use of the theorems of parallel and

perpendicular axes, calculate the moment of inertia of a hollow cubical

box about an axis passing through the centers of two opposite faces.

(c) Using the result of (a), deduce the moment of inertia of a

uniform, solid cube about an axis passing through the midpoints of

two opposite faces.

(d) For a cube of mass M and cdge a, you should have obtained

the result Ma 2
/6. It is noteworthy that the moment of inertia has this

same value about any axis passing through the center of the cube.

See how far you can go toward verifying this result, perhaps by con-

sidering other special axes—e.g., an axis through diagonally opposite

corners of the cube or an axis through the midpoints of opposite edges.
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14-11 Refer to Fig. ll-19(a), which shows the variation of density

with radial distance inside the earth. Using this graph, compare the

moment of inertia of the earth about its axis with the moment of inertia

of a sphere of the same mass and radius but of uniform density. You

can do quite well by considering the earth to be made up of a central

core and two thick concentric shells, each of approximately uniform

density. The boundaries between these three regions correspond to the

abrupt changes of density shown in the graph. [Alternatively, consider

the earth as built up of three superposed solid spheres—a basic one,

occupying the whole volume of the earth, with the density of the outer-

most region (r > 0.54Re) and two other spheres with densities corre-

sponding to the mean density differences between the successive regions.]

14-12 (a) A hoop of mass M and radius R rolls down a slope that

makes an angle d with the horizontal. This means that when the

linear velocity of its center is v its angular velocity is v/R. Show that

the kinetic energy of the rolling hoop is Mv 2
.

(b) There is a traditional story about the camper-physicist who

has a can of bouillon and a can of beans, but the labels have come off,

so he lets them roli down a board to discover which is which. What

would you expect to happen? Does the method work ? (Try it!)

14-13 A skier is enjoying the mountain air while standing on a 30°

snow slope when he suddenly notices a huge snowball rolling down at

him. By the time he notices the ball, it is only 100 m away and is

traveling at 25 m/sec. The skier gives himself a speed of 10 m/sec

almost instantaneously and proceeds to accelerate down the slope at

g sin 6 (= g/2). Does he get away? (Assume that the snowball has a

constant acceleration corresponding to that of a sphere of given radius

rolling, without slipping, down the slope. Assume that the moment of

inertia of the snowball about an axis through its center is 2MR2
/5.)

14-14 The preceding problem suggests another one. If an object is

rolling down a slope, gathering material as it goes, how does its acceler-

ation compare, in fact, with a similar object that is not adding material

in this way ? To give yourself a relatively straightforward situation to

consider, take the case of a cylinder, rather than a sphere, that grows

in size as it rolls. Make whatever assumptions seem reasonable about

the way in which the rate of increase in radius depcnds on the existing

radius. R, and on the instantaneous speed, o.

14-15 Two masses, of 9 kg and 1 kg, hang from the ends of a string

that passes around a pulley of mass 40 kg and radius 0.5 m (/ = \MR2
)

as shown in the diagram. The system is released from rest and the

9-kg mass drops, starting the pulley rotating.

(a) What is the acceleration of the 9-kg mass?

(b) What is the angular velocity of the pulley after the 9-kg

mass has dropped 2 m ?

(c) What is the tension in the part of the string which is between
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the pulley and the 9-kg mass? Between the pulley and the 1-kg mass?

(d) If the coefficient of friction between the string and the pulley

is 0.2, what is the least number of turns that the string must make

around the pulley to prevent slipping? (Cf. Problem 5-14.)

14-16 An amusement park has a downhill racetrack in which the

competitors ride down a 30° slope on small carts. Each cart has four

wheels, each of mass 20 kg and diameter 1 m. The frame of each cart

has a mass of 20 kg.

(a) What is the acceleration of a cart if its rider has a mass of

50 kg? (Assume that the moment of inertia of a wheel is given by

O.SMR2
, where R is its radius.)

(b) If two riders, of masses 50 and 60 kg, respectively, start off

simultaneously, what is the distance between them when the winner

passes the finishing line 60 m down the slope?

14-17 A uniform rod of length 36 swings as a pendulum about a

pivot a distance x from one end. For what value(s) of x docs this

pendulum have the same period as a simple pendulum of length 26?

14-18 (a) A piece of putty of mass m is stuck very near the rim of a

uniform disk of mass 2m and radius R. The disk is set on edge on a

table on which it can roli without slipping. The equilibrium position

is obviously that in which the piece of putty is closest to the table.

Find the period of small-amplitude oscillations about this position

and the length of the equivalent simple pendulum.

(b) A circular hoop hangs over a nail on a wali. Find the

period of its small-amplitude oscillations and the length of the equiva-

lent simple pendulum.

(In these and similar problems, use the equation of conservation of

energy as a starting point. The more complicated the system, the

greater is the advantage that this method has over a direct application

of Newton's law.)

14-19 A uniform cylinder of mass M and radius R can rotate about

a shaft but is restrained by a spiral spring (like the balance wheel of

your watch). When the cylinder is turned through an angle from its

equilibrium position, the spring exerts a restoring torque M equal to

— c8. Set up an equation for the angular oscillations of this system

and find the period, T.

14-20 Assuming that you let your legs swing more or less like rigid

pendulums, estimate the approximate time of one stridc. Hence

estimate your comfortable walking speed in miles per hour. How does

it compare with your actual pace?

14-21 A torsion balance to measure the momentum of electrons con-

sists of a rectangular vane of thin aluminum foil, 10 by 2 by 0.005 cm,

attached to a very thin vertical fiber, as shown. The period of torsional

oscillation is 20 sec, and the density of aluminum is 2.7 limes that of

water.
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Electron-

beam spot

2 cm 4 cm

10 cm-

(a) What is the torsion constant of the suspension, in m-N/rad?

(b) What horizontal force, applied perpendicular to the surface

of the vane at a point 3 cm from the axis, will produce an angular

deflectionof 10°?

(c) A beam of 1 mA of electrons accelerated through 500 V

strikes the vane perpendicularly at a point 4 cm from the axis. What

steady angular deflection is produced, assuming that the electrons are

stopped in the vane ?

14-22 The torsion constant of a wire or fiber of length /, and of circular

cross* section of radius a, is given by c = E,-wa /21, where E, is an

elastic constant of the material known as the shear modulus, measured

in N/m2
. The maximum load that can be supported by such a fiber

is given by its cross-sectional area, ira2 , multiplied by the ultimate

tensile strength of the material, also measured in N/m2
. For glass

fibers the value of E, is about 2.5 X 10
10 N/m2

, and the ultimate

tensile strength is about 10
9 N/m2

.

(a) Calculate the diameter of the thinnest glass fiber that can

safely support two lead spheres, each of mass 20 g, in a gravity torsion

balance. Allow a safety factor of about 3.

(b) If the spheres are at the ends of a light bar of length 20 cm,

and the length of the suspending fiber is also 20 cm, what is the period

of torsional oscillation of this system? (The measurement of this

period is the practical way of inferring the torsion constant of the

suspension.)

(c) What angular deflection of this system is produced by

placing lead spheres of mass 2 kg with their centers 5 cm from the

centers of the small suspended spheres? What linear displacement

would this give in a spot of light reflected from a mirror on the torsion

arm to a scale 5 m away? Compare this result with the figures used

in Problem 5-3 on a Cavendish experiment.

14-23 A wheel of uniform thickness, of mass 10 kg and radius 10 cm,

is driven by a motor through a belt (see the figure). The drive wheel

on the motor is 2 cm in radius, and the motor is capable of delivering

a torque of 5 m-N.

(a) Assuming that the belt does not slip on the wheel, how long

does it take to accelerate the large wheel from rest up to 100 rpm?

(b) If the coefficient of frietion between belt and wheel is
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'Drive wheel

>-*«,

-Path of CM

Driven wheel

0.3, what are the tensions in the belt on the two sides of the wheel ?

(Assume that the belt touches the wheel over half its circumference.)

14-24 A possible scheme for stopping the rotation of a spacecraft of

radius R is to let two small masses, m, swing out at the ends of strings

of length /, which are attached to the spacecraft at the points P and P'

(see the figure). Initially, the masses are held at the positions shown

and are rotating with the body of the spacecraft. When the masses

have swung out to their maximum distance, with the strings extending

radially straight out, the ends P and P' of the strings are released from

the spacecraft. For givcn valucs of m, R, and / (the moment of inertia

of the spacecraft), what value of / will leave the spacecraft in a non-

rotating state as a result of this operation? Apply the result to a

spacecraft that can be regarded as a uniform disk of mass M and

radius R. (Put in some numbers, too, maybe.)

P

14-25 The technique of "pumping" a playground swing in order to

increase the amplitude of its motion can be learned by example or

(less easily) by trial and error. The mechanics of the procedure are

not trivial. According to one model of the process, the pumping is

taken to consist of a sudden elevation of the rider's center of mass at

each passing of the vertical, or low point (the rider lifts and holds

himself above the seat), and a subsequent return to resting on the

swing seat at each turning point (see the figure). The support ropes

are assumed to be always straight, and the insiantaneous changes of

effective length of the "pendulum" allow conservation of angular

momentum to be applied not only to the low-point pumping motions

but also to those at the turning points.

(a) Carry out the analysis as indicated above and show that

increase of amplitude can be achieved. Note that the result agrees

with the qualitative experience that any given amount of increase is

more easily achieved as the amplitude increases.
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(b) Consider in what ways the analysis indicated above may be

imperfect. AIso, how well does this idealized technique match the

actual pumping method that children utilize every day? [The analysis

suggested above may be found in an article by P. L. Tea, Jr., and

H. Falk, "Pumping on a Swing," Am. J. Phys., 36, 1165 (1968).]

14-26 Two gear wheels, A and B, of radii Ra and Rb, and of moments

of inertia Ia and /b, respectively, are mounted on parallel shafts so

that they are not quite in contact (see the figure). Both wheels can

rotate completely freely on their shafts. Initially, A is rotating with

angular velocity coo, and B is stationary. At a certain instant, one shaft

is moved slightly so that the gear wheels engage. Find the resulting

angular velocity of each in terms of the given quantities. (Warning: Do

not be tempted into a glib use of angular momentum conservation.

Consider the forces and torques resulting from the contact.)

14-27 A section of steel pipe of large diameter and relatively thin wali

is mounted as shown on a flat-bed truck. The driver of the truck, not

realizing that the pipe has not been lashed in place, starts up the truck

with a constant acceleration of 0.5 g. As a result, the pipe rolls back-

ward (relative to the truck bed) without slipping, and falls to the

ground. The length of the truck bed is 5 m.

(a) With what horizontal velocity does the pipe strike the

ground ?

(b) What is its angular velocity at this instant?

(c) How far does it skid before beginning to roli without slip-

ping, if the coefticicnt of friction between pipe and ground is 0.3?

(d) What is its linear velocity when its motion changes to rolling

without slipping?

14-28 (a) How far above the center of a billiard ball or pool ball

should the ball be struck (horizontally) by the cue so that it will be

sure to begin rolling without slipping?

(b) Analyze the consequences of striking the ball at the level

of its center if the coeffirient of friction between the ball and the table

is/z.

14-29 A man kicks sharply at the bottom end of a vertical uniform

post which is stuck in the ground so that 6 ft of it are above ground.
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Unfortunately for him the post has rotted where it enters the ground

and breaks off at this point. To appreciate why "unfortunately" is the

appropriate word, consider the subsequent motion of the top end of

the post.

14-30 Refer to page 673 for the discussion of a rectangular board

rotating about an axis in its plane. Using the notation and the method

of attack of that discussion, show that the angular momentum com-

ponent L' about an axis i n the plane of the board and perpendicular to

<o is given by combining the resolved parts of Ixoix and Ivwu in this

direction; i.e.,

L' = Ixcox sin d — I„icu cos 5

14-31 A flywheel in the form of a uniform disk of radius 5 cm is

mounted on an axle that just fits along the diameter of a gimbal ring

of diameter 12 cm. The flywheel is set rotating at 1000 rpm and the

gimbal ring is supported at the point where one end of the axle meets it.

Calculate the rate of precession in rpm.

14-32 In most cars the engine has its axis of rotation pointing fore

and aft along the car. The gyroscopic properties of the engine when

rotating at high speed a re not negligible. Consider the tendency of

this gyroscopic property to make the front end of the car rise or fail as

the car follows a curve in the road. What about the corresponding

effects for a car with its engine mounted transversely? Try to make

some quantitative estimates of the importance of such effects. Con-

sider whether a left-hand curve or a right-hand curve might involve

the greater risk of losing control over the steering of the car.

14-33 See if you can pick up the challenge, given in the text, of making

a more respectable calculation of the precession of the equinoxes.
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Appendix

THE METRIC SYSTEM OF UNITS

establishing a system of units and setting up standards for the

quantitative measurement of length, mass, and time involves a

great many practical problems, and also some philosophical ones

(as discussed in Chapter 2). Primary standards are continually

being revised and improved, with a trend toward incorporating

atomic or nuclear phenomena that have the advantages of re-

producibility and accessibility.

Mass

The Standard kilogram, a platinum-iridium cylinder kept at

Sevres, France, is defined to have a mass of exactly 1 kilogram.

Secondary mass standards are compared to this primary Standard

by using a beam balance.

Length

The former Standard, defined as the distance between two

scratches on a platinum-iridium bar, has been replaced by an

atomic Standard that defines the meter as the distance equal to

1,650,763.73 wavelengths of orange-red light from the isotope

K.rypton-86.

Time

The second has been (since 1967) defined as equal in duration to

9,192,631,770 cycles of vibration i n an atomic clock, controlled
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by one of the characteristic frequencies associated with atoms of

the isotope cesium-133.

Units of measurement which are definite multiples of the

kilogram, meter, and second are denoted by prefixing the basic

unit. A list of prefixes (and the multiple of the basic unit that

each prefix represents) i s given below.

Prefix Abbreviation Multiple

tera- T 10 12

giga- G 10 9

mega- M 10 6

kilo- k 103

centi- c 10- 2

milli- m 10- 3

micro- M io-6

nano- n 10-9

pico- P io- 12

femto- f 10-15

atto- a io- 18

In addition, special names have been given to particularly useful

multiples of the meter:

IO
-15 m = 1 fermi (F)

10_10 m = 1 angstrom (A)

IO
-6 m = 1 micron (jx)

CONVERSION FACTORS

The values quoted have mostly been "rounded off" to three

significant figures. For precise values, see a technical handbook

or an advanced physics text.

Plane Angle 1 radian = 57.3° (57°20') = (1/2tt) revolution

= 0.159 revolution

Solid Angle 1 steradian = (l/4x) sphere = 0.0796 sphere

Length 1 in = 2.54 cm
1 ft = 30.5 cm
1 m = 39.37 in.

1 km = 0.621 mile = 3281 f%
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Length

(continued)

Mass, Weight,

and Force

Volume

Time

Speed

Pressure

Energy and

Work

1 mile = 5280 ft = 1609 m
1 astronomical unit = 1.49 X 10

8 km
1 light year = 9.46 X 10

12 km
1 parsec = 3.08 X 10n km

(where g has the Standard value of

9.80665 m/sec2
)

1 newton = 10
5 dynes = 0.225 Ib

1 kg mass weighs 2.2 lbs (or 9.8 newtons)

1 Ib object has a mass of 0.4536 kilogram and

weighs 4.448 newtons

1 liter is the volume of 1 kg of water at its

maximum density (3.98°C and 1 atmosphere)

= 1000.028 cm 3

1 cubic inch (1 in 3
) = 16.4 cm3

1 cubic foot = 0.0283 m3

1 gallon (U.S.) = 231 in
3

1 gallon (U.K.) = 277 in
3

(all values are mean solar)

1 year = 365.2 days = 3.16 X 10
7
sec

1 day = 8.64 X 10
4
sec

1 ft/sec = 0.305 m/sec = 1.10 km/hr

= 0.682 mile/hr

1 mile/hr = 0.447 m/sec =1.61 km/hr

= 1.47 ft/sec

1 atmosphere = 76 cm of Hg
= 1.013 X 10

5 newtons/m2

1 mm of Hg = 1 Torr (or Tor)

= 133 newtons/m 2

1 joule (1 newton-meter) = 0.738 ft-lb

= 6.24 X 10
18 electron volts

= 0.239 calorie = 10
7
ergs

1 electron volt = 1.60 X 10
-19

joule

f 1 electron mass = 0.511 Mev
nCr8y

,
1 proton mass = 938.2 Mev

eauivalent < _ ,

.

,_ .,. 1 neutron mass = 939.5 Mev
t0(£ = WC)

lamu =931.1 Mev

1 kilowatt-hour = 3.6 X 10°joules
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GENERAL CONSTANTS

c speed of light in vacuum = 3.00 X 108 m/sec

G gravitational constant

= 6.67 X 10
_u newton-meter 2/kg2

N Avogadro's number = 6.02 X 1023/mole

h Planck's constant = 6.63 X 10
-34

joule-sec

h Planck's constant/2jr = 1.05 X 10
-34

joule-sec

e electron charge = 1.60 X 10
_19 coulomb

m e electron rest mass = 9.11 X 10~ 31 kg

M nucleon rest mass (proton or neutron; their exact

masses differ slightly) = 1.67 X 10
-27

kg

Mp/m, (proton/electron) mass ratio = 1836

1 amu (1 atomic mass unit) = t^ of mass of C 12

= 1.66 X 10"27 kg

Note: For astronomical data, see pp. 34, 252, 290, 582.
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Bibliography

it has seemed useful to categorize this bibliography to some extent,

although the divisions are not always clcarcut. In particular, the pro-

found involvement of the development of mechanics with observational

astronomy, on the one hand, and with the whole rise of the scientific

point of view, on the other, has suggested special attention to these areas

as well as to a more conventional listing of textbooks of various types

and levels. Since the teaching of mechanics is also so often a part of a

more comprehensive introductory course, a short list of books written

for this purpose is included. In a subject so vast there can be no claim

to completeness; the author offers his apologies in advance for having

omitted, through ignorance or inadvertence, many titles that should

rightfully have been included.

SOME CLASSIC WORKS

Ptolemy, C, The Almagest (trans. R. C. Taliaferro), Encyclopaedia

Britannica, Inc., Great Books, Vol. 16, pp. 1-478, Chicago, 1952.

This book, incorporating Ptolemy's geocentric view of the

universe, displays the marvelously detailed and exact knowledge

of the heavens that had already been accumulated nearly 2000

years ago.

Copernicus, N., On the Revolulions of the Heavenly Spheres (1543)

(trans. C. G. Wallis), Encyclopaedia Britannica, Inc., Great Books,

Vol. 16, pp. 505-838, Chicago, 1952.

The complete, documented account of the evidence and the

reasoning by which Copernicus was led to the heliocentric

picture of the universe.

Kepler, J., Astronomia Nova (Commentaries on the Motion of Mars)

(1609), Johannes Kepler, Gesammelte Werke, Vol. 3, C. H. Beck,

Munich, 1937.
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Answers to problems

CHAPTER 1

1-2

1-3

1-4

1-5

1-6

1-7

(a) 10n-10 13 atoms; (b) 1050 atoms.

109 tons.

Probability of at least one «0.1.

(a) 10 10 molecules/cm3 ; (b) 5 X 10"4 cm.

(a) 3 X 10~9 H atoms/(m3-year);

(b) 3 X 10 15 H atoms/day or about 10"' cm3 at 1 Torr.

1-8 About 109 microorganisms ; the number is comparable with the

total human world population.

1-9 (a) p « 5 X 10-' » kg/m3
; (b) p belt « 2 X 10"9 kg/m3

.

1-10 (a) 106 approx; (b) p « 5 X 10- ,5 atm « 4 X 10-' 2 mmHg
at T = 300°K.

CHAPTER 2

x = 5.9, >• = -15.8, r = 16.9 (in miles).

(a) New York: (x,y,z) - (1330, -4620,4180) km;
Sydney: (x, y, z) = (-4620, 2560, -3560) km;
(b) 12,100 km; (c) *min = 16,000 km.

(b) (x,y,z) = /?(cos a cos /3, sin/3, sinarcos/3).

/?e m (25,000/27r) w 4000 miles.

Ru = 1041 fundamental length units; Tv » 1041 fundamental

time units.

2-10 (a) r« = Bti + AB 2
i
2
y, (b) v = B[l + (2ABI)2 ]

1 '2
.

2-11 tAD(x) = [0>a
2 + *2

)
1/2M1 + (b-s

2 + (/ - x)2Y'
2/v2 }.

2-1

2-3

2-4

2-6

2-7
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CHAPTER 3

2-12 (a) |v| = 20\T3 km/hr, directed 120° west of north

;

(b) Minimum separation of 2.6 km occurs at about 13:17 hours.

2-13 Putting T = 21/ V. the results are: (a) Fo/(l - v2/V2
);

(b) r /(l - v2/V2
)

1 ' 2
;

(c) r [l - (osmd/V) 2
}
m/(l - v 2IV2

).

2-14 (b) The cutter reaches the ship a distance Do/(V2 -v2
)
1 '2

down the coast from the port and a time DV/v(V2 - v2)
1 '2 after

leaving port.

2-15 (a) About 4 minutes.

2-17 (b) 3.8 X 105 km.

2-J8 6 = 87° implies / (= sun's distance/moon's distance) = 19.

Correctvalueof0is89o51',correspondingto/ = 385. ForAS = ±0.1°,

150 </< 1300.

3-1 (b) fo = (.21/g)
1 ' 2

, t = /o (i.e. second object is not dropped

until separation is /).

3-3 (a) a = -2 m/sec2 , v = 4 m/sec; (c) I = (2 ± V2).sec.

J-4 10 m.

J-5 (a) i>(25) » 35 mph, u(45) = 5 mph, u(65) « 40 mph

;

(c) /+ ~ 58 sec, /_ « 80 sec.

i-6 (b) x = ar(/ - t/2);

(c) u = 10 m/sec, a = 4.17 m/sec2 , t = 2.4 sec. Distance to

attain steady velocity = 1 2 m.

3-7 Overtaking car travels 775 ft approx; minimum distance =
1523 ft ~ 0.3 mile.

3-8 (a) yhMven w 1.9 X 106 km, vmia « 620 km/sec (assuming

1 7.5 hr of daylight, which is the length of the longest day of the year m
England, where Milton wrote).

(b) y ~ 9 X 10" km, v ~ 10 km/sec.

3-9 (a) In first interval, u, = 4.3 m/sec, c„ = -2.7 m/sec;

In second interval, vx = 4.9 m/sec, i>„ = —2.1 m/sec;

(b) fll = a„ = +30 m/sec2
.

3-10 (b) u « 380 m/sec. This corresponds to the same value for

mo2/2 (~T) as for Cs and K in Fig. 3-10(b); d,«I.3X 10"2 m/sec.

3-/2 2(1 + V33) m « 13.8 m behind thrower.

3-14 v « 120 ft/sec « 84 mph.

5-75 (a) r(r = 8) - r(/ = 6) = -0.911 + 2.80J,

where r(/ = 0) = 2.5j; r(/ = 2.5) - 2.5i.

(b) v(/ = 4) = (7r/2)[-icos (jt/5) - j sin (ir/5)];

a (/ = 4) = (jr
2/10)[-i sin (tt/5) + j cos (tt/5)].

3-16 (a) 3 X 10-3
g; (b) 6 X 10~* g; (c) 8 X 1021 g;

(d) 40 g (all approx.).

3-17 (a) ax = (r - r02) cos 9 - (2r0 + r&) sin 6,

a„ = (r - rd2) sin + (2r0 + r6) cos B;

(b) a r
= r - rS 2

, a» = 2r0 + rd.

Each dot above a variable denotes a differentiation with respect to

time; e.g. r = dr/di, d = d26/dt2 .

3-18 (a) v = (\/3/8) m/sec, a = (5/8) m/sec2
;

(c) t = f[7r — cos
-
'(4/5)] sec « 1 sec.
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CHAPTER 4

CHAPTER 5

CHAPTER 6

4-3 (a) (*, J) = (1/W0[<j(m>2 + w B ), *0v3 + w*)].

4-4 80(2.

4-6 In clockwise order beginning with the vertical rope, the tensions

i n each case are:

(a) W, H7(tan ip cos B + sin d), J*7(tan d cos y + sin v);
(b) H', J*' cot e, W esc e.

4-7 (a) About 150 N. (b) The force on the car is about 2100 N;
the distance it is moved by an additional 2 ft displacement of the mid-
point is about 7 in.

4-9 (a) 100 lb.

(a) 3.5 ft;

(b) F = 235 lb in a direction 12° above the horizontal.

2(8V3 - l)/3 m 8.6 ft.

(a) 5 lb; anywhere along the left hand edge of the frame.

(a) d = cos-'(r/J?).

(a) W/20; (b) (W - >v)/20.

M = 25m-N; cos (M Ai) = ~M> cos (M Aj) = +Jf,
cos (MAk) = —f.

4-10

4-1

1

4-12

4-13

4-14

4-15

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-11

5-12

5-14

5-15

2.6 X 105 km « § X radius of moon's orbit around the earth.

3.5 X 10
-4

seconds of arc. No.

(a) G « 6.24 X 10" 11 N-m 2/kg 2
; (b) 1.4% higher.

(A0X, = (A0)„.

(a) Fc = 9.2 X 10-8 N; Fa = 4.1 X 10"47 N;
(b) 2.4 X 106 km, slightly more than 6 times the distance from

earth to moon.

650 kg.

about 5%.
10-18 approx.

/J« 10- ,3 m.

(a) Fvw~ 4X 10-2 Fc ; (b) Fvw « 10- 6 FC.

(a) 4 X H)"11 N; (b) 20 tons/in2 ; 3 X 10" 11 N.

(d) 350 lb, 1,230 lb, 4,330 lb, 15,200 lb.

v « 0.4 mm/sec.

6-2

6-3

6-4

6-5

6-6

Yes—just barely.

(a) F,vg « 1.96 X 104 N; (b) h = 0.5m.

x = (5V2 - 7) m « 0.07 m,
vx = (5V2 - 3) m/sec « 4.07 m/sec,

y = [11 - 5(2V3 - V2)] m « 0.75 m,
o, = [4 - 5(2V3" - V2)] m/sec « -6.25 m/sec.

(a) F* = 0,F„ = -A; (b)

(c) Fx = -A, F, = 0.

(a) F > 5 X 10~ 5 N; (b) Ap = 5

(c) W = 7.5 X 10-7 joules.

F, = -kx, Fy
= -ky;

X 10~ 5 N-sec;
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CHAPTER 7

6-7 (a) F(t = 0) = 5 N; (b) Fmax = ±10 N.

6-8 (a) F = -5.6 X 108 N, F/mg = f;

(b) v ~ V42 m/sec « 15 mph.

6-9 (b) F(t) = mAa2
(i sina/ + j cos a/); a mass attached to the

rim of a rolling whecl.

6-10 (a) iw = (7-///7i)
1/2

tl - (mg/T)2
]
1 ' 2

;

(b) iw = [(r - mgV/m] 1".

7-1 TA = To + 2ma\ TB = Wo + ma.

7-2 (a) a = 0.6 m/sec2
; (b) Fc = 3.2 N.

7-3 (c) a = [P(cos0 + lisin 6)/m] - ng; (d) tan
-1

m-

7-4 (b) T = m\m2g sin 0/(mi + W2); «2 = "»2£ sin 0/(m\ + m-z).

7-5 (a) Ti = Tr = F/2; (b) The dynamically important form of

the relation is: 2ap(t) = am (i) + an(t);

(c) am = (F/2m) - g; ay, = (F/2M) - g;

aP = -g + [(M + m)F/4Mm\.

7-6 (a) TA = 2250 N; T„ = Tc = 1125 N; (c) Fc = 375 N.

7-8 9 m/sec.

7-9 (a) 7X0 = f(1 - W)> where / is the distance from the pulled

end. Doing it vertically does not change the value of T<J).

(b) 7X0 = W + /n(l - l/L))a;

7X0 =[M + m(l - l/L)](a + g).

7-10 (a) v = 2.466 X 107 m/sec; (b) (e/m) = 1.75 X 10 11 coul/kg;

(c) Relativistic correction requires increasing the value obtained

by 0.5%.

7-11 7 ft.

7-12 m = 0.09.

7-13 2800volts.

7-14 vmax = Gr/0
1/2

/27r.

7-15 F = (0.98V2 « 1.4 N in plane of motion and directed 45°

above line to center from rim.

7-16 Begin to puli out at 1 300 ft altitude.

7-17 (a) 12°; (b) 44 m/sec ss 97 mph.

7-19 (a) /i = (mlT/F2
)

1 '2
; (b) a«i/2) = (F2 + 1SF*) 1 '2/*»;

(c) s = 3IT/2F.

7-20 i> = 9 X 107 m/sec; Ko = 90 million volts in Newtonian
mechanics; relativistic correction increases Vo by about 10%.

7-27 (a) umin = (gr/v) 1 '2
; (b) <p = tan" 1

M ;

(c) 9 m/sec = 20 mph; 31°.

7-22 (a) r < 0.03 mm; (b) r > 2 mm; (c) 9.5 m/sec; 4.6 m.

7-25 (a) 0.97/j; (b) 3 (negative); (c) 530.

7-24 vo' = eo/4; m' = 2i>i + (7/4)t> .

7-25 About 1 millisec.

7-2(5 50 cm/sec, jfo sec.

7-27 (a) 200 N/m;
(b) x(i) = 5 cos 10/ (x in cm, positive for extension, t in sec);

(c) x(f) = 10 sin 10/ + 5 cos 10/ (x in cm, / in sec).

7-28 w = (6g/5h) U2 .

7-29 w = (p g/pl)m.
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CHAPTER 8

7-30 (a) 2(T/mL) 1/2
; (b) [TL/mD(L - D)] 1 '2

.

7-31 (a) gT2/^ 2
; (b) pgl*/** 2

.

7-32 (a) About 1.6 cm; (b) No (amBX < g).

5-/ 7". « 2.88 X 10-4
7"b « 2jhr.

«-2 5V10/4 » 4.0 < TjJTb < 3V3 » 5.2.

8-3 (a) R - Rb " 1,700 km; (b) r « A hr « 27 min + 20 sec.

5-4 fi-^«9XlO'ra« 9/0/16.

8-5 i» « 1.7 X 103 m/sec, T' « 6.5 X 103 sec = 1 hr 50 min.

5-6 Ar/r « 5.1 X 10
-6

; or Ar ss 210 m.

8-7 (a) A* « 10
-4 m « 0.1 mm;

(b)f~ 1.35 X 10
_4

rev/sec ~ 0.49 rev/hr.

5-5 Afj«9X 1024 kg, A0 « 13a.

5-9 No, Ag « 3.5 X 10"2 mgal.

8-10 T = (3t/pG)
u2

; TH20 ™ 1.2 X 104 sec.

5-// p3Un« 1.3 X 1 O3 kg/m3
.

S-/2 (a) Af « 105 kg, 7? = 1.9 m; (b) No
8-15 (a) T = (7.4 X 105)(D3/M)" 2

;
(b) *?.

5-/6 (a) 0.73-R, from center of earth

;

(b) AT « (6.6 X 10-3)rmo„th « 4 hours.

8-17 Mtotal» 10 n Af,un.

5-79 A7
- « 2.5 X 10"3 sec.

CHAPTER 9

9-4

9-5

9-6

9-7

9-8

9-9

9-10

9-11

9-12

V3 = 28uo/45; V2 = «o/15.

o = (o /4)(5 - 2V2) 1 '2 « 0.37UO,

d = tan-'[l/(2\/2 - 1)] « 29°.

Two tosses in both cases.

Fav = 36 N.

Ax =* 2.35 cm.

v = 73 ft/sec = 22 m/sec, F = 350 N = 80 lb.

(a) t> = [Mg/irR2p}
uz

. (b) oo = 15.5 m/sec.

(a) a = O«oo/Afo) - g; (b) m = 7 X 103 kg/sec.

9-/4

9-/J

9-/7

9-/5

9-/9

(b) c2 = d©6i
[„, + "i _ r)]

S (C) » = V/V;

P N 1 '2
T

(d) pm« = 2o !n
[rNl/2 + (1 _ r)j

;

(e) »- »o/«
[riV + (1 .J-

(a) /i = 2; (b) F = 2^p«;2 ;
(c) F = irr

2
pt;

2
.

(a) ntj/nti = 3; (b) vcm = wi/4; (c) K^/Mim2);
(d) A(i«i«i8)-
(c) /m„ = 0.12mo, PB = 2.8uo, /C/f» = 0.95/CEo-

(a) B; (b) £2 = 4£o/5, Es = Eo/5.

(a) impliesui = 150 mph; (b) f.
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9-20 (a) »i = %u, v2 = i«; (b) /j /8 is lost.

9-21 (a) A/ = 2m, v = k/V3, & = t/6;
(b) m* = 2r/3, 0«* = 5^/3.

9-2J Lab: y = 0.48«, = -34°; CM, o = (V3/6)«, 5 111°.

9-24 (a) Mn - (1.2 ± 0.4) amu;
(b) finitiai - (3.1 =fc 0.4) X 107 m/sec.

9-25 (a) Proton; (b) Yes, within experimental error.

9-26 (a) wN* = 12.7 X 10 6 m/sec, uC-i2* = 1.06 X 1 O6 m/sec;
(b) uw'-b = 107 m/sec, = 132°; (c) n = 50.

9-27 (b) = tan- 1 [(A/ - m)/(M + m)] 1 '2
.

9-28 (a) 2.01 Mev < KEP < 8.98 Mev; (b) max « 68.5°, KE(0m„)
= 0.25 Mev.

9-29 (a) <7 = mL/(M + m).

CHAPTER 10

10-1 F 2T2/8m.

10-2 (a) 10 m/sec; (b) 5V6 « 12.2 m/sec.

70-3 (a) *(/) = F3(i)/6C2m;
(b) *(/) = [PoF(rVC][l + (F2(t)/6Cmv )l

(b) lever, /2//1 ; inclined plane, cosec 0; pulley system, 6;
crank, 7?/(Z> - a).

(b) about 15 in.

(a) 5 X 10* N; (b) 5 X 10 5 J; (c) 2.5 X 105 J.

(a) mu 2/2; /w(m2 + 2uv)/2, where »1 is the mass of the ball.

(a) FuR.
(a) 1.95 X 10 6 ftlbs(= 1.33 X 106 J);

(b) 118 min m 2 hr; (c) 7.80 X 106 ft lbs.

(a) 2.4 X 10 12 J; (b) 3.8 X 106 man-days « 104 man-years.

(a) Um/M(M + m)g = H ;

(b) (2ghy>2
,
(2gh) i/S + [2Um/M(M + m)] 1 '2

;

(c) Ho + 2(H hy>2
, which is higher than in (a) by 2(H fi)

u2
.

10~s eV.

(*i/*2)
1/2

[(l + 2wi;2A:2/A:i 2)
,/2 - l] 1 '2

.

GrL/2)"2
.

(a) (mi + m2)g.

(b) 4 J; (c) x < Om, x > 2 m.

About 39 sec.

(b) r - (MSp/*);
(c) AT = Gr/« ) + (2/o)0)sin- 1

{1/[1 + (a. r /2)
2
]
1/2

)

where 7"o = period of bouncing for perfectly rigid floor; «o = v k/M.
Note that when o> T » 1 (that is, when 77» Mg/k), AT = tt/coo;

when co 7"o« 1, AT = 2r/u .

10-23 (b) 16/tt2 J = 1.62 J.

10-24 (a) U(x) = +(k tx 2/2) - (k2x3
/3); (b) k2 = (*i/26);

(d) y = (*,6V3m) 1/2
.

70-25 (3mv2/2a) 1 '3
.

70-2(5 (2 + y/J)(mb/3Uo)m.

10-27 (b) /4 = (-t/8/0
2
).

70-J0 (a) (3mv2
/2) + (kL 2

/8); (b) v; (c) (3*L2/8m) 1/a
;

(d) 2i:{2m/3k)v2 .

10-4

10-5

10-6

10-7

10-8

10-9

10-12

10-13

10-14

10-15

10-17

10-18

10-19

10-20

10-22
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10-31 (a) 5.4 eV; (b) 1.9 X 10 13 Hz.

10-32 (b) r = (/Hfl/6/D1/(m
- 6>

; (c) D = (n - 6)A/nr e
.

10-33 (b) ro = (nB/Ae2)
1'*-»; (c) h = AT (n - l)Ae2/nr

;

(d) u = 180 kcal/mole.

CHAPTER 11

11-4

11-6

11-7

11-8

11-9

11-10

11-11

11-12

11-13

11-14

11-16

11-17

oo2/gR)/3]; (c) 5.8 m.

11-2 a = g(2 - \Z3V6 (2w accelerates down the 30° slope);

T = mg(\ + V3)/3.

(a) fe/)
I/2

;
(b) 2mg; (c) 2<g!)v*/(n + 1);

(d) cos fl = 1 - (n - l)2/2(n + l)
2

.

(a) (//V)[m/(Af + m)] 2
; (b) M „Hioi = 3m/2M

(a) mg(5 + 2A/r) directed vertically upward;
(b) g(3 + Ih/r).

(a) (5g/)
1/2

; (b) COS-H2/3).

(3 + V3)m.
(a) cos" 1 (2/3); (b) oos-*[(2

(a) 6 = cos" 1
[(4 + V3)/26];

(b) «buckiing = cos_I [-2(rcos/3 - Lcosa)/3(L - r)];

(c) cos a = (r/L) cos /3 - (V3/2)[l - (r/L)].

(a) 9 mm; (b) 5.4 sec.

It would lose nearly 2 sec per week.

(a) q = 2L sin (0/2)[/wgtan (9/2)/*] 1/2
.

(a) M = 2TrR 2hp./l(AT/T) + (h/R)]; (b) 10 sec/day.

(a) For < r < R, F(r) = 0; For R < r < 2R,
F(r) = GMm/r2

; For 2R < r, F(r) = IGMm/r2
.

(b) -2GMm/R; (c) 2(GM/R) 1/2
.

11-18 (b) Ttuual = (3t/pC)
1/2 = 1 hr. 49 min;

(c) Tjatellilo = TYunnel-

11-19 According to this criterion, the earth could retain all four of

these gases; the moon, only N2 and CO2; Mars, all except H2. It

should be noted that an era of higher temperature could have resulted

in the loss of heavier gases.

11-21 (a) iwape - (5GM/2R) 1 '2
. (b) The launch point has a speed

0.12uescape relative to the center of mass of the system, so the needed
launch speed can be reduced.

11-22 (a) 8.4 X 108 J; (b) 2.7 X 109 J; (c) 5.8 X 109 J;

(d) The "hilltop" is about 0.9D from the earth, the kinetic

energy needed at the earth 's surface to overcome it is about 6.1 X 109 J.

11-23 (a) F(z) = -2GMmz/(r2 + z 2
)
3 '2

;

(b) U(z) = -2GMm/(r2 + z2)
1 '2

;

(c) For z» r, F(z) ~ -2GMm/z2
, U(z) « -2GM/z;

For z« r, F(z) « -2GMmz/r3
,

U(z) = -2GM(\ - z 2/2r2)/r;
(d) TP = 7b/2V2.

11-24 For the path given (straight line),

(a) KE = k ia
2/2 + k2b

2
/2; (b) KE - (ftj + k2)ab/2.

The force of case (a) is the conservative force.

11-25 (a) FN (r) - [-\e-"">/(r r)]H + (r /r)];

(b) FN (r = 1.4F) w -4.2 X 10 3 N,
Fc(r = 1.4F)« 1.2 X 10 2 N;

(c) F/f(r) = lO~ 2FN(ro) for r just over 5F; the coulomb force

is about 10 N there.
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CHAPTER 12

11-28 (a) 0-45°; (b) B = Jtan" 1
(-\/n); (c) 6 « 50.8°.

11-30 (a) g = 2irC<r{l - [h/(R 2 + h2)
1 '2

]} ;

(b) For R = 2h,g = 0.55(2,rG<r); For /? = 5h,

g = 0.80(2irGcr); For/? - 25/r, g = 0.96(2irGa);

(c) 0.08sec/yr.

/2-/ x = vt, y = — Rsin2nnt, z = H + Rcos2imt, where the

observer's x axis has been taken along the direction of flight, where H
is the (constant) altitude of the propeller hub, and where the sense of
the propeller rotation is clockwise (as viewed by the pilot). The
coordinate and time origin have been chosen for maximum simplicity.

J2-2 (a) r'(t) = (R 2 + D 2 - 2RD cos u/)" 2
;

B' (t) = tan- 1
[/(/)/*'(/)],

where ^(t) = D cos ut - R, y'(l) = — D sin w/,

(b) did/dt = -uDsinwt; d//dt = -uDcosut;
d2x'/di2 co

2 Dcosco/; d2//di 2 = u2D sin tor.

/2-i tan
-1

(a/g) (forward of the vertical).

12-4 (a) —1.5 m/sec2 (relative to ground);
(b) +5 m/sec (relative to ground); (c) 33 m.

12-5 (a) 840 N; (b) 700 N; (c) 560 N; (d) 560 N, 700 N, 840 N;
(e) The elevator has an acceleration of 20/7 m/sec2 directed

upward. The direction of the elevator's motion is not
determined.

12-6 ammx = ngcosB.

12-7 (a) 0.5 m; (b) 0.25 m.

12-8 (b) a..* = 31g/8.

12-9 Speed is 79 m/sec (~ 175 mph), 1180 m of runway is used

(«S mi.).

12-10 am„ = 6.7 X 104 m/sec2
.

12-11 (a) tan-1 (a/g); the apple dropped in a straight line at an
angletan -1 (a/g) forward of "straight down". Thus, if (h/d) < (a/g),

it hit the fioor; otherwise it hit the wali. (b) The balloon tilted forward
at an angle tan

-1
(a'/g) to the (upward) vertical.

12-12 (a) a3m = g/'i downward; (b) FP = 2mg.

12-13 (a) It is in equilibrium at tan
-1

(a/g) back from vertically

downward; T = 2*-[//(<j
2 + g

2
)

1 '2
]
1 '2

.

(b) It is in equilibrium when string is normal to track (i.e., 6

back from vertical); T = 2*-[//(gcos0)] 1/2
.

(c) It is in equilibrium when string is vertically down, pro-

vided that a < g; T = 2r[l/(g - a)] 1 '2
.

12-14 500 lbs « 2200 N.

12-15 (a) <o > [(a + g)/R] 1 '2
; (b) w > [(a 2 + g

2y i2/R] i/2
.

12-16 (b) aw = (2kSm„/P) 1 '2
;

(c) aim„ « 5.2 X 10 3 sec
-1

, or about 50,000 rpm.

12-17 (a) geft « 160,000 X normal"g";(b)F - 9.5 X 10~9 dynes;

(c) v = 0.1 mm/sec.

12-18 15/irrpm.

12-19 F„„, = 3mgR(AR/R). (Note that F„et acts in the direction of

the radial displacement A/?.)
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CHAPTER 13

13-1 F l/r3 .

13-2 (a) o = (ke2/mr) 1 '2
; (b) / = (ke2mr) 112

;

(c) r„ = n2A2/4ir2itc
2m;

(d) £/(/•„) = -*rs*Vm/i»2A2 ;

thus £(r„) = -2irWm/n2h2 ;

(e) n « 0.5 X 10-10 m « 0.5 A; -£i ~ 14 eV.

/J-3 X£,inB,/ii:£i„i ti.i = h2/!2 .

/J-4 /wB = i>o
2(02 - cP)/2Gd.

13-6 (a) rn« = 16/?/7; (b) rm« = 9R/7.

13-12 (a) i> = vo/3 = (GM/6R0) 1 '2
; (b) 7" = 2V3(2^o/fo).

13-13 (b) yF = 3u ;
(c) a = cos- 1

(3/5).

13-14 [1 ± (V3/2)]n.
13-15 {.8/2(1 - a)} {1 + [1 - 4a(l - a) cos2 6]

1 '2
}, where

a = v 2R/2GM.
13-16 (a) £ = -3GMm/16r; / = m(GMr) 1,2

/2.

13-18 F l/r5 .

13-19 (a) Using the notation of the text discussion, o\ = l.loo =

32.6km/sec; T = (1.26)
3/2TS « 1.47*, so that the time of flight is

0.7 years, and v2 = 0.72o ~ 21.3 km/sec. Note that 00 = 29.6

km/sec and i;M ar. = 24.0 km/sec. (b) gE = gmn at about 2 X 10 s

AU from earth; gM .r. = g.un at about 10"3 AU from Mars; work

against sun « 5 X work against earth « -25 X work against Mars.

13-20 (a) (r„/rB) - [1 + (Aoi/p )]
2
/{2 - [1 + (Aui/00)] 2

}, where

rap is the aphelion distance in AU, vo is the earth s orbital

speed, and Ain is the increment.

(b) (o.p/uo) = [1 + (AuiA-o)](rs/r,p) =
{2 - [1 + (Ai>,A>o)]

2}/[l + (Adi/i»o)1;

Thus, [(Au)to t»i n<*d«d/i?o] = (Aui/uo) + 0>»pA>o) =
[1 - (Am/i>o)]/[l + (Afi/1^0)].

/5-2/ The year has lengthened about 20 millisec in 5000 years.

13-22 L(f) = Loc-x"-».

13-23 (a) x(t) = x coso> / + 0W&>o) sin« r;

v«) = yo cos w / + (iW«o) sin oi t, where «</ = */»».

The orbit is an ellipse; total energy and angular momentum
are conserved.

(b) ojo^; rm »x = 2R.

13-25 (b) 1.7 X 10" I4 cm2
;
(c) rA + rK = 7.4 A.

/5-26 (b) «/o = 4.5 X 10~ 12 m; (d) about 50.

CHAPTER 14

14-3

14-4

14-5

14-6

(a) ±420 J-sec; the sign depends on the sense of the rotation

(b) ±2310 J-sec if the third skater travels in same direction as

the nearer one was initially skating; ±1470 J-sec if the third

skater travels in the opposite direction as the nearer one.

KErot « 0.01 KE«M .

(a) doi/dt [Mr
2
/o/(/o + nr

2
t)

2]u ;

dEIoi/di = -[pr 2/o/(/o + fir
2
')

2][/<xoo72], where

/o = MR2 /2.

(b) t = /0/Mr2 = (M//*)(* 2/2r2).

(a) ojjinai = 3wo; rotational KE increased by factor 3.

(c) R/Vl.
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14-7 1017±1 J.

14-8 In the answers below, /„ represents the value obtained by ap-
proximating the bar as n equal mass points.

(a) /, = MZ.2/4; (b) /2 = 5A/L 2/16;

(c) Ia = CM/«)Z2-i K2* - l)£/(2*)] 2

= [A/Z.
2
/3][l - (l/4« 2

)].

/4-9 (a) / = 2MR2
/3.

14-10 (a) / = Ma2
/6, plate of edge a, mass M;

(b) / = 5Ma 2/l8, box of edge a, mass M;
(c) / = Ma2

/6, cube of edge a, mass M.
14-13 Yes.

/4-/5 (a) 4^/15; (b) 8V5/3SCC-';
(c) 66 N; 12.7N(using* = 10m/sec2

);

(d) One full turn beyond the minimum half-turn.

14-16 (a) 0.35 g = 3.4 m/sec 2
; (b) 6.6 m.

14-17 x = b.

14-18 (a) T = 2ir(3/?/s)
1/2

; the equivalent simple pendulum has
length 3R.
(b) T = 2ir(2R/g) 1/2

; the equivalent simple pendulum has
length 2R.

14-19 T = 2wR(M/2c)m .

14-21 (a) 2.2 X 10-8 m-N/rad; (b) 1.3 X 10~7 N; (c) 7.7°.

14-22 (a) 2.9 X 10~8 m-N/rad; (b) 12 min;
(c) 7.5 X 10- 3 rad = 0.43°; 7.5 cm.

14-23 (a) (t/30) sec « 0.105 sec; (b) T x
« 82 N; r2 « 32 N.

/4-24 / = /?rVl + (I/2mR 2~) - 1];

for / = A//? 2
/2; / = *[V1 + (A//4^ - 1].

14-26 wAf = W0/[l + (/b/?x
2
//^/?b

2
)]; «*/ - -(Ra/Rb)ua/.

14-27 (a) 5 m/sec in the direction of the truck's motion;
(b) u = — (5 m/sec)/r, where r is the radius of the pipe:
(c) 5/4M = 4.16 m; (d) 0.

14-28 (a) h = 2r/5.

14-31 108/t 2 « 11 rev/min.
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Index

Abetti, G., 717

Abraham, Z., 452

Acceleration, 85

centripetal, 106, 200

in circular motion, 106, 108

invariance of, 175

in polar coordinates, 108, 557

radial, 108, 557

related to force, 165

transverse, 108, 200, 557

Accelerometers, 498, 501

Action and reaction

in collisions, 313, 316,320

in jets and rockets, 324

in static equilibrium, 123

Adam, 13

Adams, J. C, 292

Air resistance, 153, 214, 218

and independence of motions, 225

Airy, G. B., 294

Almagest, 76

Alpha particle scattering, 604, 612

Anderson, O. L., 432

Angels, motivc power of, 554

Angstrom, A. J., 27

Angular momentum
conservation of, 562, 639

and kinetic energy, 654

internal, 632, 641

orbital, 560

and centrifugal potential energy, 564

quantum of, 637

total, 633

vector additivity of, 672, 679

Angular velocity, 107

vector properties of, 673

Animals

cruelty to, 104, 486

equality of, 21

Aphelion, 577

Apogee, 577

Apple, see Moon
Approximations, 10, 12

Archimedes, 117, 133

Archimedes' principle, 512

Aristarchus, 75, 77, 78, 83, 275

Asteroids, 35

Astin, A. V., 64

Astronomical unit, 247, 279

Atomic mass unit (amu), 27

Atoms, 26

free fail of, 98

gyroscopic behavior of, 686

masses of, 27

(table), 27

radii of, 28

velocity distribution of, 100, 102

Austern, N., 181
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Baade, W., 35

Baez, A., 585

Bagnold, R. A., 32

Balance, 117

Banking of curves, 199

Barker, E. F., 688

Barnard, E. E., 297

Barrere, M., 327

Bathtub vortex, 529

Beams, J. W., 513

Bell, E. T., 61

Berkeley, G., 542

Berry, A., 77, 296

Binary stars, 296

Bloch, F., 687

Bockelman, C. K., 404

Bode, J., 293

Bode's law, 293

Bounded orbits, 568

Boys, C. V., 155

Bragg, S. L., 327

Brahe, Tycho, 5, 14, 277, 578

Branson, H. R., 351

Broad, C. D., 114

Browne, C. P., 404

Bucherer, A. H., 169

Buechner, W. W., 404

Bullard, E. C, 452

Bursting speed (of rotating object), 208, 513

Butler, J. A. V., 29

Caesar, J., 39

Cartesian coordinates, 49

Cassini, G. D., 277

Catapult, 391

Cathode-ray tube, 195

Cavendish, H., 141

Cavendish experiment, 142, 154, 155

Cells, 31

Center of gravity, 132, 337

Center of mass, 296, 337

and center of gravity, 132, 337

kinetic energy of, 338, 631

motion of, 353, 629

See also CM frame

Center of percussion, 671

Central force

conservative propcrty of, 442

definition of, 442

Central-force motion

energy conservation in, 563

and law of equal areas, 557, 584

radial part of, 564

effective potential-energy curves, 565,

570

as two-body problem, 598

Centrifugal force, 507

Centrifugal potential energy, 564

Centrifuges, 511

Centripetal acceleration, 106, 200

Chadwick, J., 363

Circular motion

energy conservation in, 426

non-uniform, 108, 200

uniform, 105

acceleration in, 106

of charged particle in magnetic field,

202

dynamics of, 198

relation to SHM, 233

Clemence, G. M., 66

Cloud chamber, electron paths in, 203

CM frame, 335

and collision processes, 337, 341, 342,

345, 349

kinetic energy in, 338, 339

Coe, L., 66

Collisions

definition of, 351

elastic and inelastic, 309

elastic (perfectly elastic), 332, 342

with energy storage, 400

explosive, 347

with external forces, 352

first experiments on, 308

and frames of reference, 331, 340, 342

inelastic, 346

invariance of KE changes, 334

and kinetic energy, 333

and momentum conservation, 308, 311

nuclear, 342

two-dimensional, 339

and zero-momentum frame, 335, 341

Colodny, R. G., 180

Conservation

of angular momentum, 562, 639

of energy, see Energy

of linear momentum, 308, 309, 312, 318

of mass, 309
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Conservative forces, 381, 423, 442, 457

Constraints, 425

Contact, 150, 151

Contact forces, 150, 152,157

Conversion factors, 710, 711

Coordinate systems, 48

Coordinates

Cartesian, 49, 50, 52

oblique, 51

orthogonal, 51, 56

polar, 49, 50, 52

rectangular, see Coordinates, Cartesian

Copernican system, 76, 247, 249

Copernicus, N., 77, 78, 249, 696

Coriolis, G., 514

Coriolis forces, 514

and cyclones, 528

and deviation of falling objects, 525

and Foucault pendulum, 529

in gyroscope, 691

Coulomb, C. A., 145

Coulomb forces, 145, 149, 151

Coulomb's law, 145

Crew, H., 162, 431

Cross product, 127

Cross section

differential, 614

partial, 611

scattering, 609

Csikai, J., 357

Cyclotron, 204

DaVinci, L., 126

Day
sidereal, 64, 82

solar, 64, 82

De Recolutionibus, 77, 249

De Salvio, A., 162, 431

Descartes, R., 3, 306

Diatomic molecule

rotation of, 637

vibration of, 405

Dicke, R. H., 283, 546

Dirac, P. A. M., 65, 94

Displacement, 52, 53

relative, 55

Dissipative forces, 210, 381, 470

DuBridge, L. A., 619

Du Mond, J. W. M., 221

Dust, 31

Dyne (def.), 119

Earth

as gyroscope, 694

mass of, 268, 302

mean density of, 270

radial variation of density, 452 •

radius of, 259

as rotating frame, 524

deviation of falling objects, 525

effect on g, 524

and formation of cyclones, 528

and Foucault pendulum, 529

Earth satellites, 265

orbit decay of, 470

Earth-moon system

gravitational potential of, 455

and precession of equinoxes, 696

and tide production, 532

Eddington, A. S., 163

Edgerton, H. E., 163, 630

Einstein, A., 8, 45, 161, 169, 178, 280, 299,

492, 506, 543

Eisenbud, L., 181

Electric field, 462, 467

Electric force, 145

and motion of charged particles, 195, 467

between neutral atoms, 149

Electrons, 24

in combined electric and magnetic fields,

467

in magnetic field, 206, 467

trajectory in oscilloscope, 196

Ellipse, geometry of, 583

Elliptic orbits, see Orbits

Ellis, B., 180, 186

Energy, 367

conservation of, 367, 377, 381, 425

in central force motion, 563

kinetic, see Kinetic energy

potential, see Potential energy

(table), 375

unitsof, 373, 711

Energy diagrams, 382, 389

Eotvos, R., 281

Eotvos experiment, 282

Epicycle, 76, 77

Equal areas, law of, 557

Equant, 579
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Equilibrant (ofset of forces), 123

Equilibrium

rotational, 120, 124, 131

stable, 395

static, 116, 119

translational, 120

Equinoxes, precession of, 6, 694

Equipotentials, 463

Equivalence principle, 280, 506

Equivalent simple pendulum, 663

Eratosthenes, 79, 259

Eros, 278

See also Venus, transit of

Escape velocities, 453

Estermann, I., 100, 101

Euclidean geometry, 59

Eve, 13

ExpIosive collisions, 347

Exponentials, 222

Extrancous roots, 93

Falk, H., 707

Faraday, M., 139

Feather, N., 66

Feenberg, E., 622

Fermat's principle, 81

Fermi, E., 26

Fermi (unit), 26

Feynman, R. P., 68, 554

Field(s), 461

electric, 462, 467

gravitational, 462, 473, 476

of flat sheet, 477

flux of, 473

of sphere, 462, 476

Field lines, 462, 464

"Fixed stars" (reference frame), 47, 295, 540

Flamsteed, J., 277, 286, 291

Flux (of field), 473

Flywheels, 654

Force, 115

central (def.), 442

centrifugal, see Centrifugal force

conservativc, 381

criteria for, 457

electric, 145, 149, 151, 468

electromagnetic, 139, 147

of fluid jet, 324

frictional, 152, 210

gravitational, 139, 140

conservative property of, 442

inertial, see Inertial forces

lines of, 462, 463

magnetic, 146, 202, 205, 468

nuclear, 139, 147, 156

of particle stream, 321

as rate of change of momentum, 315

units of, 118, 171

vector nature of, 119

See also Forces

Forces

contact, see Contact forces

equilibrium of, 116

polygon of, 121

resolution of, 122

vector combination of, 120, 168

Foucault, J. B. L., 529

Foucault pendulum, 529

Frame of reference, 46, 162

and collisions, 331, 340, 342

of "fixed stars," 47, 295, 540

inertial, see Inertial frame

linearly accelerated, 495

and Newton's Second Law, 174

rotating, 507

thc carth as, see Earth

free fail in, 525

inertial forces in, 510, 518, 523

Fraser. J. T., 66

Free fail, 95, 102

and air resistance, 214

of atoms, 98

of neutrons, 100

on rotating earth, 525

and weightlessness, 285

Friction

coefficient of, 153, 190

dry, 152, 210

fluid, 153,211

Newtonian theory of, 360

Frisch, D. H., 181

8, 96, 279

altitude dependence of, 270

as gravitational field, 462

latitude dependence of, 284, 524

local variations of, 272

G, 141, 268
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Gal (unit), 272

Galaxies, 36

contracting, dynamics of, 657

Galaxy

mass of, 299

rotation of, 298

Galilean transformation, 175, 334

Galilei, G., 84, 95, 112, 161, 162, 225, 240,

286, 288, 429, 494

Galle, J. G., 294

Gas
internal KE of, 631

pressure of, 354, 631

Gauss, K. F., 61

Gaussian surface, 474

Gauss's Law (or Theorem), 473

applications of, 476

Geiger, H., 605, 612, 616

Geodesic, 299

Gillispie, C. G., 366

Gimbal rings, 677

Globular cluster, 143, 144

Gold, T., 66

Gravimeter, 272

Gravitation

Einstein's theory of, 299

law of, 5, 139, 140, 245, 256

Newton's theory of, 5, 6, 245, 256

Gravitational forces, 139, 140

conservative property of, 442

Gravity

acceleration due to, see g
equivalence to accelerated frame, 504

forceof, 119, 129

Gravity meter (gravimeter), 272

Great Pyramid of Gizeh, 414

Guye, C, 169

Gyrocompass, 685

Gyroscope, 677

analyzed via F = ma, 688

navigational use of, 683

nutation of, 691

in steady precession, 678, 681

Hadron, 147

Hafner, E. M., 66

Haldane,J. B. S., 11

Hall, E., 552

Halley, E., 255, 277, 597

Halley's comet, 597

Hanson, N. R., 546

Harmonic motion, see Simple harmonic

motion

Harmonic oscillators, 226, 233, 393, 432, 437

Havens, W. W., 100

Heaven, altitude of, 111

Herivel, J., 559

Herodotus, 414

Herschel, J., 295

Herschel, W., 291, 295

Hipparchus, 75, 83, 260, 696

Hodograph, 103

Hooke, R., 227, 255, 272

Hooke's law, 227, 387

Hoyle, F., 36

Hubble, E., 36

Hubble's law, 16, 39

Hume, J. N. P., 519

Huygens, C, 255, 308, 331, 442, 479

Hyperbolic orbits, 604, 607

Hysteresis, 389

Iben, I., 452

Impact, laws of, 308

See also Collisions

Impact parameter, 570, 607

Impulse, 173, 313, 369

Impulsive force, 315, 371, 669

Impulsive torque, 669

Independence of motions, 95, 194

limitations to, 225

Inelastic collisions, 346

Inertia

lawof, 161,494,542

moment of, see Moments of inertia

origin of, 542

Inertial forces, 494, 497, 507, 518

and Mach's principle, 545

Inertial frame(s), 163, 494

dynamical equivalence of, 174, 497

fundamental, 538

Inertial mass, 166, 280, 319, 543

velocity dependence of, 169

Infeld, L., 492

Integrals of motion, 368

Invariance

of energy changes, 334

of Newton's law, 173
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rotational, and torque, 642

translational, and force, 642

Inverse-square law

electric, 145

and a-particle scattering, 604

gravitational, 5, 141, 245

deduced from elliptic orbit, 583

deduced from Kepler's Third Law, 254

types of orbits, 600

Ivey, D. G., 519

Jeans, J. H., 39

Jeffery, G. B., 506

Jet propulsion, 324, 359

Johnson, N. B., 102

Jones, H. S., 295

Joule (unit), 173, 373

Jupiter (planet)

mean density of, 286

moons of, 278, 286, 288

discovered by Galileo, 288

orbit of, 248

Kant, L, 36

Kaufmann, W., 169

Kemble, E. C, 75

Kepler, J., 5, 253, 276, 577

Kepler's laws, 5, 7, 252

Kepler's Second Law, 5, 559

implies central force, 559

Kepler's Third Law, 252

explained by Newton's laws, 254

and Jupiter's moons, 290

Kilogram (def.), 171

Kinetic energy (KE), 173

in CM frame, 338

in collisions, 333

of many-particle system, 630
of rolling object, 652

of rotating objects, 651, 654, 675

of two-body system, 338, 347, 398

King, J. G., 39, 149, 624

Kirchner, F., 236

Kirkpatrick, P., 4

Knot (unit), 67

Koestler, A., 582

Kramers, H. A., 62, 367

Laboratory frame, 337

Lagrange, J. L., 290

Laplace, P. S. de, 287

Lavanchy, C., 169

Lavoisier, A. L., 309

Lawrence, E. O., 204

Laws of motion, 162

Leibnitz, G. W. von, 368

Leighton, R. B., 68

Lemonick, A., 672

Length, units of, 63, 709, 710

Lesage, G. L., 304

Lever, law of, 117, 125, 133

LeVerrier, U. J., 292

Light, speed of, 67

Light-year, 35, 711

Lindsay, R. B., 366

Linear oscillator, 387

as two-body problem, 397

Lines of force, 462, 463

Lippershey, H., 288

Locke, J., 583

Mach, E., 331, 542

Mach number, 67

Mach's principle, 543

Magnetic field, 205

Magnetic force, 146, 202, 205

and motion of charged particles, 146, 202,

206, 467

Many-particle system

angular momentum of, 643

dynamics of, 629, 641

kinetic energy of, 631

momentum of, 628

Margenau, H., 366

Mars (planet)

motion of, 74

orbit of, 252, 581,582

analyzed by Kepler, 578

parallax of, 277

Marsden, E., 605, 612, 616

Maskelyne, N., 302

Mass. 23, 164, 166

additivity of, 166, 172

conservation of, 309

energy equivalence of, 376

inertial, 166, 280, 319, 543

scales of, 170, 319

standards of, 171, 709
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units of, 27, 171

velocity dependence of, 169

and weight, 279

Mass spectrograph, 206

Mechanical advantage, 412

Mercury (planet)

orbit of, 77, 246

precession of, 300, 305, 623

Meter (def.), 63

Metric system, 24, 709

Micron. 30

Milky Way, 22, 36

Millikan, R. A., 26, 218, 221

Milton, J., 111

MKS system, 24

Molecules, 28

diatomic

rotation of, 637

vibration of, 405, 409

Moliere, 4

Moment, see Torque

Moment of momentum, see Angular

momentum
Moments of inertia, 634, 644

principal, 644

special theorems, 647

Momentum, 166, 173, 310

angular, see Angular momentum
conservation of, 308, 309, 312, 318

rate of change of, 315, 321

vector character of, 310

Monkey-shooting demonstration, 104

viewed from monkey-frame, 497

Montgomery, D. J. X., 146

Moon
and apple, 256

distance to, 259

as a falling object, 256

and precession of equinoxes, 694

and tide production, 531

Morrison, P., 546

Morse, P. M., 409

Morse potential, 408

Motion, 3, 43

accelerated, 87, 165

under central force, see Central-force

motion

of charged particles, 146, 195, 202, 205,

467

circular, see Circular motion

in conservative fields, 466

near earth's surface, 591

laws of, 162, 164

oscillatory, 395

relativity of, 46

against resistive forces, 210, 213

numerical solutions, 215

rotalional, see Rotational motion

simple harmonic, see Simple harmonic

motion

two-dimensional, 95, 102, 194

uniformly accelerated, 90, 91, 188

Muybridge, E., 638

Neptune, discovery of, 291, 294

Neutrino, 356

Neutrons, 24

elastic collisions of, 344, 363

free fail of, 100

Newman, J. R., 11, 61

Newton, I., 3, 21, 161, 166, 172, 256, 262,

281, 559

bucket experiment, 539

collision experiments, 308, 310, 314, 358

concepts of space and time, 43, 44

deduces l/r2 law from ellipse, 583, 585

De Molu, 559

and law of equal areas, 559

on moon's motion, 256

Principia, 9, 18, 43, 46, 162, 172, 244, 254,

259, 269, 314, 538, 696

on proportionality of weight to mass, 281

quotations, 2, 7, 9, 20, 42, 43, 45, 46, 138,

160, 162, 244, 269

System ofthe World, 265, 295

theory of fluid resistance, 360

theory of precession of the equinoxes, 6,

694

theory of tides, 6, 533

and universal gravitation, 5, 6, 187, 245,

255, 265

Newton (unit), 118, 171

Newton's First Law, 162

See also Inertia, law of

Newton's Second Law, 166, 315

discussion of, 167, 173, 180

invariance of, 173, 177

and relativity, 174
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simple applications of, 188

and time reversal, 178

Newton's Third Law, 314

limitations to, 316, 320

Nier, A. O., 207

Nuclear forces, 139, 147, 156

Nuclear reactions, dynamics of, 348

Nuclei, 25

gyroscopic behavior of, 686

and Rutherford scattering, 604, 609

Nucleons, 25

Numerical methods

in kinematics, 91

for harmonic oscillator, 229

for resisted motion, 215, 222

Nutation, 691

Occhialini, G. P. S., 342

Oil-drop experiment, 218, 240

Orbits

bounded, 568

calculated from initial conditions, 595

circular, 572

perturbed, 574

elliptic, 576, 577, 583

energy in, 589

families of, 589, 596

from force law, 600

hyperbolic, 604, 607

under inverse-square attraction, 577,

585,600

shape versus energy, 604

parabolic, 604

planetary, 246, 249, 252, 577, 582, 583

precession of, 300, 305, 569, 623

unbounded, 569, 597, 604

Orders of magnitude, 10

Orwell, G., 21

Osgood, W. F., 511

Parabolic orbit, 604

Parabolic potential, 431

Parabolic trajectories, 95, 99, 103, 197, 496,

592

Parallax

of Mars, 277

of Venus, 278

Parallel-axis theorem, 647

Parallel forces, 125

Parasnis, D. S., 273

Particle, 21

properties of, 23

Paul, W., 323

Pedersen, K. O., 514

Pendulum

cycloidal, 442

energy conservation in, 427, 429

as harmonic oscillator, 437

period versus amplitude, 440

rigid, 434, 661

Percussion, center of, 671

Perigee, 577

Perihelion, 577

precession of, 300, 305, 623

Perpendicular-axis theorem, 649

Perrett, W., 506

Perturbation

of circular orbit, 574

of planetary orbits, 6, 287, 291, 295

Physical magnitudes (table), 11

Pisa, Tower of, 240

Planck, M., 627

Planetoids, 35

Planets, 33

data on (table), 34

motions of, 74, 82, 246

orbital radii, 247

orbits of, 246, 577

tabulated data, 16, 252, 582

periods of, 249

relative sizes of, 34

Pluto, discovery of, 6, 295

Polar coordinates, 49, 51

velocity and acceleration in, 556

Polya, G., 9

Polygon of forces, 121

Pope, A., 4

Potential, 463

Potential energy (PE), 377

effective, in central-force motion, 564,

573, 576

gradient of, 465

gravitational, 376, 384, 424, 431

scalar character of, 425, 446, 455

of spring, 387, 398

Pound (def.), 119

Powell, C. F., 342

Power, 373
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Precession

of atoms and nuclei, 686

of equinoxes, 6, 694

of gyroscope, 678

of orbits, 569

of perihelion of Mercury, 300, 305, 623

Pressure of a gas, 354

Principia, see Newton, Principia

Principle of equivalence, 280, 506

Product of inertia, 674

Proton-proton collisions, 342

Protons, 24

magnetic deflection of, 146

Ptolemaic system, 76, 247

Ptolemy, C, 75, 78, 246

Pulleys, 130

Purcell, E. M., 687

Radius of gyration, 647

Rainwater, L. J., 100

Red Baron, 238

Reduced mass, 339

Reference frames, see Frame of reference

Reines, F., 358

Relative displacement, 55, 73

Relative motion, 46

Relative velocity, 72

Relativity

Einstein's general theory, 280, 299, 506

Einstein's special theory, 8, 45, 161, 169,

178

Newtonian, 46, 173, 177, 497, 538

Resisted motion, 210, 213, 218

growth and decay of, 221

numerical analysis of, 215, 222

Resistive forces, 152, 153, 210, 360, 381, 470

Resultant (ofset of forces), 123

Richer, J., 277

Rigid pendulum, 434, 661

Rocket

principle of, 324

thrust of, 325, 327

Rocket propulsion, 327

Roemer, C, 278

Rogers, C. W. C, 528

Rogers, E. M., 13, 74, 75, 290

Rolling objects, 652, 667

Roscbury, T., 40

Rosenfeld, J., 428

Rotating frame, see Frame of reference

Rotating objects

fracture of, 208, 513

kinetic energy of, 651, 654, 675

Rotational equilibrium, see Equilibrium

Rotational motion, 632, 639, 651

combined with linear, 641 , 664

Royds, T., 39

Runk, R. B., 432

Rutherford, E., 39, 187, 605, 615

Rutherford scattering, 604

cross sections for, 611, 614

Sand, 31

Sandage, A., 36, 37

Sands, M., 68

Satellites

ofearth, 265

of Jupiter, 286,288, 290

synchronous, 268

Saturn V rocket, 327

Scalar product, 57, 372, 424

Scattering of alpha-particles, 604, 612

Schlegel, R., 66

Schrader, E. F, 359

Schumacher, D. L., 66

Schwerdt, C. E., 30

Sciama, D. W., 546

Sears, F. W., 134,688

Second (def.), 64, 65

Sellschop, J. P. F., 358

Shankland, R. S., 169

Shapiro, A. H., 529

Sidereal day, 64

Sidereal period, 250

Sidereal year, 696

Simplc harmonic motion (SHM), 226, 231

by energy method, 389, 393, 432

geometrical representation, 232

numerical solutions, 229

in parabolic potential, 432

related to circular motion, 233

Simple pendulum, 434

as harmonic oscillator, 437

isochronism of, 439

See also Pendulum

Simpson, O. C, 100, 101

Sinden, F. W., 600

Slope of graph, 70
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Small oscillations, 395

Smith, M. K., 441

Solar day, 64

Solar system, 34, 582

acceleration of, 540

Solar year, 65

Space, 43

curvature of, 59

geometry of, 59

Space-time graphs, 66, 88

Special relativity, 8, 168, 169

Speed, 71

Sperduto, A., 404

Sphere

gravitational attraction of, 261, 450

moment of inertia of, 647

Spherical shell, gravitational effect of, 263,

446

Spring constant, 226, 387

of diatomic molecule, 407

Sputnik I, 267

Squire, J., 5

Standards

of length and time, 63, 709

of mass, 171,709

Stars

apparent circular motions, 47

binary, 296

"fixed," 47, 295, 540

globular clusters of, 143, 144

orbits of, 296, 298, 540

as particles, 22, 35

Static equilibrium, 115, 119, 124

Stern, O., 100, 101

Straight-line motion, 66, 85, 88

Strong interaction (nuclear), 147

Stull, J. L., 432

Sun

distance to, 247, 275

influence on tides, 537

mass of, 274

radial density variation of, 452

Superposition of forces, 168

Surface tension, 157

Sutton, G. P., 327

Sutton, O. G., 422

Svedberg,T., 513

Symon, K. R., 645, 675

Synchronous satellites, 268

Synodic period, 250

Szalay, A., 357

Tea, P. L., 707

Terminal speed, 212, 214

Thomas, G. B., 106

Thomson, J. J., 605

Threshold energy, 402

Tides, 531

equilibrium theory of, 533

height of, 535

Tilley, D., 365

Time, 45, 61, 66

units of, 64

Time constant, 224

Time rcversal and Newton's law, 178

Titius, J. D., 293

Tombaugh, C. W., 295

Torque, 125

and change of angular momentum, 561,

641,664

vector character of, 126

Torques, vector addition of, 128

Torsion balance, 142, 145

Torsion constant, 154, 660

Torsional oscillations, 659

Trajectories

helical, 204

hyperbolic, 604, 607

parabolic, 95, 103, 197, 496, 592

Transfer orbits (interplanetary), 592

Transit of Venus, 277

Trick

clever and effective, 579

neat (and valuable), 372

Turner, H. H., 294, 295

Ultracentrifuge, 513

Unbounded orbits, 569, 597, 604

Unit vectors, 49, 57, 58, 106

Units, 24, 709

of force, 118

of length, 63, 709, 710

of mass, 27, 171

oftime, 64, 709, 711

Universal gravitation, 5, 6, 245, 256

constant of, 141, 268

Uranus

discovery of, 291

perturbations of, 292
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Van Atta, L. C, 404

Van der Waals, J., 149

Van der Waals forces, 149, 157

Vector product, see Vectors

Vectors, 48

addition of, 53

and properties of space, 59

components of, 56

cross product of, 127

orthogonal, 57

resolution of, 56

scalar product of, 57, 372, 424

subtraction of, 54

vector product of, 127

Velocity, 67, 70

angular, see Angular velocity

instantaneous, 68

in polar coordinates, 107, 556

relative, 72

unit of, 67

Velocity-time graphs, 88, 89, 90, 93

Venus

motion of, 74

orbit of, 77, 246

parallax of, 278

transfer orbit from earth, 593

transit of, 277

Virus, 30

Vis viva, 334, 368

Von Laue, M., 2

Vulcan, 111

Wallis, J., 308

Walton, W. U., 501

Watt (unit), 374

Weak interaction (nuclear), 148

Weight, 129, 192, 279

proportionality to mass, 279

Weightlessness, 130, 285

Weinstock, R., 181

Wessel, G., 323

Williams, R. C, 30

Wilson, C, 582

Wood, E. A., 503

Work, 173, 369

Wren, C, 308

Year

sidereal, 696

solar, 65

tropical, 65, 696

Yukawa, H., 156,485

Yukawa potential, 485

Zacharias, J. R., 139

Zeno, 87

Zero-momentum frame, 335

See also CM frame

Zorn, J. C, 102
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