
1

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Cloud
Computing Cookbook
Third Edition

Over 110 effective recipes to help you build and
operate OpenStack cloud computing, storage,
networking, and automation

Kevin Jackson

Cody Bunch

Egle Sigler

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

OpenStack Cloud Computing Cookbook
Third Edition

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2012

Second edition: October 2013

Third edition: August 2015

Production reference: 1170815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-478-3

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Kevin Jackson

Cody Bunch

Egle Sigler

Reviewers
Chris Beatty

Walter Bentley

Victoria Martinez de la Cruz

Stefan Lenz

Andy McCrae

Melissa Palmer

Sriram Rajan

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Indrajit Das

Content Development Editor
Akashdeep Kundu

Technical Editors
Naveenkumar Jain

Narsimha Pai

Copy Editors
Roshni Banerjee

Trishya Hajare

Project Coordinator
Milton Dsouza

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword

At CERN, the European Organization for Nuclear Research, physicists and engineers are
probing the fundamental structure of the universe. They use the world's largest and most
complex scientific instruments to study the basic constituents of matter—the fundamental
particles. The particles are made to collide together at close to the speed of light. The
process gives clues to physicists about how the particles interact and provides insights into
the fundamental laws of nature.

The Large Hadron Collider (LHC) is the world's largest and most powerful particle accelerator.
The LHC consists of a 27-kilometer ring of superconducting magnets with a number of
accelerating structures to boost the energy of the particles along the way. Inside the
accelerator, two high-energy particle beams travel at close to the speed of light, before they
are made to collide. This produces 27 petabytes of data every year, which is recorded and
analyzed by thousands of computers in the CERN data centre.

With an upgrade to the LHC in 2015 to nearly double the collision energy, it was clear that
further computing resources were needed. To provide the additional capacity and be more
responsive to the users, a new approach was needed. In 2012, a small team at CERN started
looking at OpenStack, a piece of open source software, to create computing clouds. It was a
very promising technology with an enthusiastic community but a significant level of complexity.
Along with the code being very new, those were very early days for the documentation and
training. We wanted to educate people rapidly to start the project and so looked for guides
to make the new administrators productive. This was when we encountered the first edition
of the book, OpenStack Cloud Computing Cookbook. It became the standard document for
newcomers in the team to understand the concepts, set up their first clouds, and then start
work on the CERN cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

As the cloud evolved and the OpenStack technology matured, we continued to use this guide,
even as the members of the team rotated, building small clouds to try out new concepts and
investigate the flexibility of cloud computing.

Over the years, I have frequently met Kevin, Cody and Egle at the OpenStack summits that
give the community an opportunity to meet and exchange experiences. With OpenStack
evolving so rapidly, it also gives an opportunity to get the latest editions of the cookbook,
which they have continued to keep up to date.

The CERN cloud is now in production across two data centers in Geneva and Budapest, with
over 3,000 servers running tens of thousands of virtual machines. With new staff members
joining frequently, we continue to use the cookbook as a key part of the team's training and
look forward to the updates in the latest edition.

Tim Bell

Infrastructure Manager, CERN

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Kevin Jackson is married and has three children. He is an experienced IT professional
working with business and enterprises of all sizes at Rackspace as an OpenStack and private
cloud specialist. Kevin has been working with OpenStack since early 2011 and has extensive
experience of various flavors of Linux, Unix, and hosting environments. Kevin can be found on
Twitter at @itarchitectkev.

Kevin authored the first edition and coauthored the second edition of the OpenStack Cloud
Computing Cookbook, Packt Publishing. Kevin also coauthored OpenStack Foundation's
OpenStack Architecture Design Guide during a 5-day book sprint in California.

I'd like to thank Cody for stepping up to the plate again to go through the
pain and anguish to get another edition of the book out. Also thanks, of
course, go to Egle, whom we somehow commandeered to help get this out
the door bigger and better than before. We have a whole bunch of tech
reviewers from across the globe too who have helped keep us within reach
of our goals, so thanks for keeping it real.

I'd also like to thank my family, although I'm not sure they have realized
I wrote another one. I think I may have just about gotten away with this
one unscathed.

Finally, I'd like to thank Rackspace for giving me the opportunity and support
to pursue such endeavors and the many people I bug now for answers to
stupid questions.

www.it-ebooks.info

http://www.it-ebooks.info/

Cody Bunch is a principal architect in the Rackspace Private Cloud group based out of
San Antonio, Texas. Cody has been working with OpenStack since early 2012, coauthored
the second edition of this book and also coauthored OpenStack Security Guide. Cody has
extensive experience with virtualized and cloud environments in various-sized enterprises
and hosting environments. Cody can be found on Twitter at @cody_bunch.

I'd like to thank Kevin for coming along on this crazy ride, yet again. I would
also like to thank Egle, who jumped into the fray and has gone above and
beyond to make this book more awesome than the last one. This book
would not be possible without the wonderful reviewers, as well as the folks
at Packt who stepped up their game between editions.

Next up, and likely much more important, to thank are my kids and loving
wife. Without their support, well, I'm not entirely sure this edition would have
made it out the door. Also, on the time, understanding, and support list is
my employer, Rackspace.

I'd like to thank the writers, publisher, reviewers, and employer. While this
is a small army of folks who help with the writing and publishing of this
edition, I think it would be super amiss if I didn't thank the awesome-tastic
OpenStack community for whom we wrote this. Y'all provide not just the
support, technical guidance, and such, but also the "why" behind putting
another volume out in the market. Thanks!

www.it-ebooks.info

http://www.it-ebooks.info/

Egle Sigler is an OpenStack Foundation board member and a principal architect in the
Rackspace Private Cloud group based out of San Antonio, Texas. Egle holds an M.S. degree
in computer science. She started her career as a software developer and still has a soft spot
for all the people who write, test, and deploy code, since she has had the chance to do all
of those tasks throughout her career. Egle dreams about a day when writing, testing, and
deploying code will be a seamless and easy process—bug and frustration free for all. Egle
believes that knowledge should be shared and has tried to do this by writing this book, giving
talks and workshops at conferences, and blogging. Egle can be found on Twitter at @eglute.

She has coauthored DevOps for VMware Administrators (VMware Press Technology).

I would like to thank my husband, my love, and my technical advisor for his
constant and unwavering support while writing, traveling, installing, and
troubleshooting. For some reason, it is always the networking that needs
troubleshooting.

I ask for forgiveness from my friends and family, who didn't get to talk to me
very much while I was working on this book.

OpenStack developers, quality engineers, operators, users, and
documentation writers, thank you for making OpenStack better each day!

Kevin and Cody, thank you for bringing me along on this adventure! I
cannot believe how much quality work was already put into this book, as
well as into the Vagrant environment scripts. Technical reviewers, thank
you for volunteering hundreds of hours to review everything. Reviewers and
editors from Packt, thank you for your prompt communication and constant
feedback. Rackers, thank you for your advice and guidance. Lastly, thanks
to Rackspace for supporting my writing endeavors.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Chris Beatty is a seasoned IT professional with a varied background in systems
administration and infrastructure architecture. He is currently working for Rackspace,
helping enterprise customers design and run high-performant hosted solutions.

I'd like to thank my wife and children for giving me the time to review this
book, as well as my colleagues for asking me to help out!!

Walter Bentley is a Rackspace private cloud solutions architect. He is a new Racker
with a diverse background in production systems administration and solutions architecture.
He brings over 17 years of experience across numerous industries, such as online marketing,
financial, insurance, aviation, the food industry, and education. In the past, he has always
been the requestor, consumer, and advisor to companies to use technologies such as
OpenStack. Now, he is a promoter of the OpenStack technology and a cloud educator.

I would like to sincerely thank the authors for allowing me to be part of this
great publication and opportunity.

www.it-ebooks.info

http://www.it-ebooks.info/

Victoria Martinez de la Cruz is a licentiate in computer sciences from the Computer
Sciences and Engineering department of Universidad Nacional del Sur in Bahia Blanca,
Argentina. During her last years in college, she got started with OpenStack through the
GNOME Outreachy and Google Summer of Code internships. She is currently a software
engineer at Red Hat and a core member of OpenStack's Trove and Zaqar projects. Her main
interests are operative systems, networks, and databases. She is FOSS passionate and loves
to help newcomers to get involved with open source projects. Victoria can be contacted at
victoria@vmartinezdelacruz.com.

I would like to thank the authors and publishers of OpenStack Cookbook
Third Edition for giving me the opportunity to join as a technical reviewer;
it was a great experience!

Stefan Lenz works for BMW in Munich. He is a manager of the data center and cloud
services division in BMW's global IT organization. In this role, he is responsible for the
delivery of compute, storage, and network services for BMW worldwide.

He holds a PhD in nuclear physics from Erlangen University in Germany and has worked as
a postdoctoral associate at Yale university, doing nuclear research on high-performance
computers. He worked as a consultant for high-performance computing in the German
automotive industry before becoming an IT architect for high-performance computers
and engineering IT at BMW. From 2002 to 2014, he worked in several initiatives and
projects to consolidate and globalize BMW's IT organization.

He is married, lives in Munich, and likes to ski, hike, and bike in the Alps. Together
with his wife, he has written six books on hiking, mountain bike tours, and the Camino
de Santiago in Spain. You can contact him on Twitter as @stefan_km_lenz or via his
website www.serverfabrik.de.

During the summer of 2014, I spent long hours in my private computer lab
in the basement of our house, learning the basics of Openstack. My guide
on that journey was the first edition of OpenStack Cookbook. I'd like to thank
the authors, who have helped me a lot. I would also like to thank my wife for
her support, her patience, and for donating two old computers from her own
business to my lab.

www.it-ebooks.info

www.serverfabrik.de
http://www.it-ebooks.info/

Andy McCrae is a software developer at Rackspace working within the Rackspace
Private Cloud team. Andy began his career in 2007 as a Linux system administrator for
Rackspace after completing master's of engineering (MEng), majoring in computer science
at University College London (UCL).

Andy specializes in Swift (Object Storage) and Ansible. Andy was the core contributor to
OpenStack-Chef and is now working on the os-ansible-deployment community projects
within OpenStack.

Recently, Andy spoke at the Vancouver OpenStack Summit on managing logging within an
OpenStack environment.

Melissa Palmer is a systems engineer and architect and a virtualization, infrastructure,
and OpenStack enthusiast. She has bachelor's and master's of engineering degrees focused
on electrical engineering and secure networked systems design. As a strong advocate of the
community, Melissa is a VMUG member and has been featured on panel discussions and
podcasts for IT architecture and community programs. She is also the creative director of the
Virtual Design Master challenge located at http://virtualdesignmaster.com. Melissa
enjoys cooking, writing, and attending rocket launches in her free time. You can find Melissa
on Twitter at @vMiss33 or on her blog at http://vMiss.net.

Sriram Rajan is a principal engineer at Rackspace, where he is responsible for designing
solutions for its customers and assists them with their automation needs. Prior to Rackspace,
he worked as a systems programmer at Texas State University, from where he also earned his
master's degree in computer science. He has more than a decade of professional experience
working with Linux systems, networks, programming, and security. In his nonprofessional life,
he spends time traveling, working on home automation, watching cricket, programming for
fun, and discussing technology.

www.it-ebooks.info

http://virtualdesignmaster.com
http://vMiss.net
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

i

Table of Contents
Preface vii
Chapter 1: Keystone – OpenStack Identity Service 1

Introduction 1
Installing the OpenStack Identity Service 2
Configuring OpenStack Identity for SSL communication 5
Creating tenants in Keystone 7
Configuring roles in Keystone 8
Adding users to Keystone 10
Defining service endpoints 15
Creating the service tenant and service users 22
Configuring OpenStack Identity for LDAP Integration 28

Chapter 2: Glance – OpenStack Image Service 31
Introduction 31
Installing OpenStack Image Service 32
Configuring OpenStack Image Service with OpenStack Identity Service 36
Configuring OpenStack Image Service with OpenStack Object Storage 37
Managing images with OpenStack Image Service 39
Registering a remotely stored image 43
Sharing images among tenants 45
Viewing shared images 47
Using image metadata 48
Migrating a VMware image 51
Creating an OpenStack image 52

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 3: Neutron – OpenStack Networking 61
Introduction 61
Installing Neutron and Open vSwitch on a dedicated network node 63
Configuring Neutron and Open vSwitch 66
Installing and configuring the Neutron API service 74
Creating a tenant Neutron network 79
Deleting a Neutron network 82
Creating an external floating IP Neutron network 85
Using Neutron networks for different purposes 90
Configuring Distributed Virtual Routers 95
Using Distributed Virtual Routers 102

Chapter 4: Nova – OpenStack Compute 105
Introduction 106
Installing OpenStack Compute controller services 107
Installing OpenStack Compute packages 108
Configuring database Services 110
Configuring OpenStack Compute 112
Configuring OpenStack Compute with OpenStack Identity Service 119
Stopping and starting nova services 120
Installation of command-line tools on Ubuntu 123
Using the command-line tools with HTTPS 124
Checking OpenStack Compute services 125
Using OpenStack Compute 128
Managing security groups 130
Creating and managing key pairs 132
Launching our first cloud instance 135
Fixing a broken instance deployment 140
Terminating your instances 142
Using live migration 143
Working with nova-schedulers 145
Creating flavors 146
Defining host aggregates 149
Launching instances in specific Availability Zones 153
Launching instances on specific Compute hosts 156
Removing Nova nodes from a cluster 158

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 5: Swift – OpenStack Object Storage 163
Introduction 163
Configuring Swift services and users in Keystone 165
Installing OpenStack Object Storage services – proxy server 167
Configuring OpenStack Object Storage – proxy server 169
Installing OpenStack Object Storage services – storage nodes 172
Configuring physical storage for use with Swift 174
Configuring Object Storage replication 177
Configuring OpenStack Object Storage – storage services 179
Making the Object Storage rings 182
Stopping and starting OpenStack Object Storage 186
Setting up SSL access 187

Chapter 6: Using OpenStack Object Storage 191
Introduction 191
Installing the swift client tool 192
Creating containers 193
Uploading objects 194
Uploading large objects 197
Listing containers and objects 199
Downloading objects 201
Deleting containers and objects 203
Using OpenStack Object Storage ACLs 205
Using Container Synchronization between two Swift Clusters 207

Chapter 7: Administering OpenStack Object Storage 213
Introduction 213
Managing the OpenStack Object Storage cluster with swift-init 214
Checking cluster health 216
Managing the Swift cluster capacity 218
Removing nodes from a cluster 222
Detecting and replacing failed hard drives 224
Collecting usage statistics 225

www.it-ebooks.info

http://www.it-ebooks.info/

iv

Table of Contents

Chapter 8: Cinder – OpenStack Block Storage 229
Introduction 229
Configuring Cinder-volume services 231
Configuring OpenStack Compute for Cinder-volume 233
Creating volumes 237
Attaching volumes to an instance 239
Detaching volumes from an instance 241
Deleting volumes 243
Configuring third-party volume services 244
Working with Cinder snapshots 245
Booting from volumes 247

Chapter 9: More OpenStack 251
Introduction 251
Using cloud-init to run post-installation commands 252
Using cloud-config to run the post-installation configuration 254
Installing OpenStack Telemetry 257
Using OpenStack Telemetry to interrogate usage statistics 262
Installing Neutron LBaaS 267
Using Neutron LBaaS 270
Configuring Neutron FWaaS 275
Using Neutron FWaaS 278
Installing the Heat OpenStack Orchestration service 285
Using Heat to spin up instances 290

Chapter 10: Using the OpenStack Dashboard 295
Introduction 295
Installing OpenStack Dashboard 296
Using OpenStack Dashboard for key management 298
Using OpenStack Dashboard to manage Neutron networks 304
Using OpenStack Dashboard for security group management 311
Using OpenStack Dashboard to launch instances 319
Using OpenStack Dashboard to terminate instances 324
Using OpenStack Dashboard to connect to instances using a VNC 325
Using OpenStack Dashboard to add new tenants – projects 327
Using OpenStack Dashboard for user management 329
Using OpenStack Dashboard with LBaaS 337
Using OpenStack Dashboard with OpenStack Orchestration 347

www.it-ebooks.info

http://www.it-ebooks.info/

v

Table of Contents

Chapter 11: Production OpenStack 359
Introduction 359
Installing the MariaDB Galera cluster 360
Configuring HA Proxy for the MariaDB Galera cluster 362
Configuring HA Proxy for high availability 365
Installing and configuring Pacemaker with Corosync 371
Configuring OpenStack services with Pacemaker and Corosync 376
Bonding network interfaces for redundancy 382
Automating OpenStack installations using Ansible – host configuration 384
Automating OpenStack installations using Ansible – Playbook
configuration 389
Automating OpenStack installations using Ansible – running Playbooks 396

Index 401

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Preface
OpenStack is open source software for building public and private clouds. It is now a global
success and is developed and supported by thousands of people around the globe; backed
by leading players in the cloud space today. This book is specifically designed to quickly help
you get up to speed with OpenStack and give you the confidence and understanding to roll it
out into your own data centers. From test installations of OpenStack running under VirtualBox
to automated installation recipes that help you scale out production environments, this book
covers a wide range of topics that help you install and configure a private cloud. This book will
show you the following:

 f How to install and configure all the core components of OpenStack to run an
environment that can be managed and operated just like Rackspace, HP Helion,
and other cloud environments

 f How to master the complete private cloud stack; from scaling out Compute resources
to managing object storage services for highly redundant, highly available storages

 f Practical, real-world examples of each service built upon in each chapter, allowing
you to progress with the confidence that they will work in your own environments

The OpenStack Cloud Computing Cookbook gives you clear, step-by-step instructions to
install and run your own private cloud successfully. It is full of practical and applicable
recipes that enable you to use the latest capabilities of OpenStack and implement them.

What this book covers
Chapter 1, Keystone – OpenStack Identity Service, takes you through the installation and
configuration of Keystone, which underpins all of the other OpenStack services.

Chapter 2, Glance – OpenStack Image Service, teaches you how to install, configure,
and use the Image service within an OpenStack environment.

Chapter 3, Neutron – OpenStack Networking, helps you install and configure OpenStack
networking, including new features such as DVR.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

viii

Chapter 4, Nova – OpenStack Compute, teaches you how to set up and use OpenStack
Compute along with examples to get you started by running OpenStack Compute within
a VirtualBox environment.

Chapter 5, Swift – OpenStack Object Storage, teaches you how to configure and use
OpenStack Object Storage along with examples showing this service running within a
VirtualBox environment.

Chapter 6, Using OpenStack Object Storage, teaches you how to use the storage service
to store and retrieve files and objects.

Chapter 7, Administering OpenStack Object Storage, takes you through how to use tools
and techniques that can be used to run OpenStack Storage within data centers.

Chapter 8, Cinder – OpenStack Block Storage, teaches you how to install and configure the
persistent block storage service for use, by using instances running in an OpenStack Compute
environment.

Chapter 9, More OpenStack, explores other features of OpenStack such as Neutron's
LBaaS and FWaaS services, Ceilometer, and Heat.

Chapter 10, Using the OpenStack Dashboard, teaches you how to install and use the web
user interface to perform tasks such as creating users, modifying security groups, and
launching instances.

Chapter 11, Production OpenStack, shows you how to use Ansible for automated
installations and introduces you to tools and techniques for making OpenStack
services resilient and highly available.

What you need for this book
To use this book, you will need access to computers or servers that have hardware
virtualization capabilities. In a typical small starter installation of OpenStack, you will
need a Controller host, Network host, and Compute host. To run Swift, we provide the
steps to create a multi-node environment consisting of a proxy server and five storage nodes.

To set up the lab environment, you will install and use Oracle's VirtualBox and Vagrant.
You can access details of how to set up your computer using VirtualBox and Vagrant by
visiting http://bit.ly/OpenStackCoobookSandbox.

There are additional recipes to get you started with the lab environment, and these are
available at http://www.openstackcookbook.com. Refer to this website for information
on the installation of supporting software such as MariaDB/MySQL. More information can be
found at http://bit.ly/OpenStackCookbookPreReqs.

www.it-ebooks.info

http://bit.ly/OpenStackCoobookSandbox
http://www.openstackcookbook.com
http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Preface

ix

To fully utilize the automated Ansible scripts in Chapter 11, Production OpenStack, it is
assumed that the reader has access to six physical servers.

Who this book is for
This book is aimed at system administrators and technical architects moving from a
virtualized environment to cloud environments; who are familiar with cloud computing
platforms. Knowledge of virtualization and managing Linux environments is expected.
Prior knowledge or experience of OpenStack is not required, although beneficial.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Controlling
OpenStack Object Storage services is achieved using the tool called swift-init."

A block of code is set as follows:

account-server: bind_port = 6000
container-server: bind_port = 6001
object-server: bind_port = 6002

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[swift-hash]
Random unique string used on all nodes
swift_hash_path_prefix=a4rUmUIgJYXpKhbh
swift_hash_path_suffix=NESuuUEqc6OXwy6X

Any command-line input or output is written as follows:

sudo swift-init all start

sudo swift-init all stop

sudo swift-init all restart

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

x

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "An important field is the
Common Name field."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book at https://github.com/
OpenStackCookbook/OpenStackCookbook. All the support files are available here.

www.it-ebooks.info

www.packtpub.com/authors
https://github.com/OpenStackCookbook/OpenStackCookbook
https://github.com/OpenStackCookbook/OpenStackCookbook
http://www.it-ebooks.info/

Preface

xi

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: http://www.packtpub.com/sites/default/files/
downloads/4783OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com/sites/default/files/downloads/4783OS_ColoredImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4783OS_ColoredImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

1

1
Keystone – OpenStack

Identity Service

In this chapter, we will cover:

 f Installing the OpenStack Identity Service

 f Configuring OpenStack Identity for SSL communication

 f Creating tenants in Keystone

 f Configuring roles in Keystone

 f Adding users to Keystone

 f Defining service endpoints

 f Creating the service tenant and service users

 f Configuring OpenStack Identity for LDAP Integration

Introduction
The OpenStack Identity service, known as Keystone, provides services for authenticating
and managing user accounts and role information for our OpenStack cloud environment.
It is a crucial service that underpins the authentication and verification between all of
our OpenStack cloud services and is the first service that needs to be installed within an
OpenStack environment. The OpenStack Identity service authenticates users and tenants
by sending a validated authorization token between all OpenStack services. This token is
used for authentication and verification so that you can use that service, such as OpenStack
Storage and Compute. Therefore, configuration of the OpenStack Identity service must be
completed first, consisting of creating appropriate roles for users and services, tenants, the
user accounts, and the service API endpoints that make up our cloud infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

2

In Keystone, we have the concepts of tenants, roles and users. A tenant is like a project and has
resources such as users, images, and instances, as well as networks in it that are only known to
that particular project. A user can belong to one or more tenants and is able to switch between
these projects to gain access to those resources. Users within a tenant can have various roles
assigned. In the most basic scenario, a user can be assigned either the role of admin or just be
a member. When a user has admin privileges within a tenant, they are able to utilize features
that can affect the tenant (such as modifying external networks), whereas a normal user is
assigned the member role, which is generally assigned to perform user-related roles, such as
spinning up instances, creating volumes, and creating tenant only networks.

Installing the OpenStack Identity Service
We will be performing an installation and configuration of the OpenStack Identity service,
known as Keystone, using the Ubuntu Cloud Archive. Once configured, connecting to our
OpenStack cloud environment will be performed through our new OpenStack Identity service.

The backend datastore for our OpenStack Identity service will be a MariaDB database. The
environment we will be installing is shown in the following figure. In this chapter, we will be
concentrating on the Controller host.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3

Getting ready
To ensure that we're running the Ubuntu Cloud Archive, we must first configure our Ubuntu
14.04 installation to use this service. For more information, visit http://bit.ly/
OpenStackCookbookCloudArchive.

All of the steps can be found at
http://www.openstackcookbook.com/.

We will configure Keystone to use MariaDB as the database backend, so this needs to be
installed prior to installing Keystone.

If MariaDB is not installed, visit
http://bit.ly/OpenStackCookbookPreReqs
for instructions on how to do this.

Ensure that you have a suitable server available for installation of the OpenStack Identity
service components. If you are using the accompanying Vagrant environment, as described
in the Preface, this will be the controller node.

Make sure that you are logged in to the controller node and ensure that it has Internet
access to allow us to install the required packages in our environment for running Keystone.
If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

The instructions here assume that the controller node has two IP addresses. It will have a
front-facing IP address, 192.168.100.200, and a backside IP address, 172.16.0.200, (which
is also the address of the MariaDB server). The reason it has two addresses is that internal
data will communicate over the backside IP address (for example, database traffic), and any
Keystone traffic will traverse the front.

How to do it...
Carry out the following instructions to install the OpenStack Identity service:

1. Installation of the OpenStack Identity service is done by specifying the Keystone
package in Ubuntu, and we do this as follows:
sudo apt-get update

sudo apt-get install ntp keystone python-keyring

www.it-ebooks.info

http://bit.ly/OpenStackCookbookCloudArchive
http://bit.ly/OpenStackCookbookCloudArchive
http://www.openstackcookbook.com/
http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

4

2. Once installed, we need to configure the backend database store, so we first create
the keystone database in MariaDB. We do this as follows (here, we have a user in
MariaDB called root with the password openstack, which can create databases):
MYSQL_ROOT_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "CREATE DATABASE \

 keystone;"

3. It is good practice to create a user that is specific to our OpenStack Identity service,
so we create a Keystone user in the database as follows:
MYSQL_KEYSTONE_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
keystone.* TO 'keystone'@'localhost' IDENTIFIED BY \
'$MYSQL_KEYSTONE_PASS';"

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
keystone.* TO 'keystone'@'%' IDENTIFIED BY \
'$MYSQL_KEYSTONE_PASS';"

4. We then need to configure the OpenStack Identity service by editing the
/etc/keystone/keystone.conf file to have the following content:
[DEFAULT]
admin_token = ADMIN
log_dir=/var/log/keystone

[database]
connection = mysql://keystone:openstack@172.16.0.200/keystone

[extra_headers]
Distribution = Ubuntu
use_syslog = True
syslog_log_facility = LOG_LOCAL0

5. We can now restart the keystone service to pick up these changes:
sudo stop keystone

sudo start keystone

6. With keystone started, we can now populate the keystone database with the
required tables by issuing the following command:

sudo keystone-manage db_sync

Congratulations! We have now installed the OpenStack Identity service and it is ready for use
in our OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

5

How it works...
A convenient way to install the OpenStack Identity service in our OpenStack environment is by
using the Ubuntu packages. Once installed, we configure our MariaDB database server with a
keystone database and set up the keystone.conf configuration file with the corresponding
values. After starting the Keystone service, running the keystone-manage db_sync
command populates the keystone database with the appropriate tables ready for us to
add in the required users, roles, and tenants required in our OpenStack environment.

Configuring OpenStack Identity for SSL
communication

One of the many updates to this book will be a more hardened all-around approach. To
that end, we begin by enabling SSL communication for services with Keystone by default.
It is important to note that we will be doing this via self-signed certificates to illustrate how
to configure the services. It is strongly recommended that you acquire the appropriate
certificates from a Certificate Authority (CA) for deployment in production.

Getting ready
Ensure that you are logged in to the controller node and that it has Internet access to
allow us to install the required packages in our environment for running Keystone. If you
created this node with Vagrant, you can execute the following command:

vagrant ssh controller

How to do it...
Carry out the following instructions to configure the Keystone service:

1. Before we can configure Keystone to use SSL, we need to generate the required
OpenSSL Certificates. To do so, log in to the server that is running Keystone and
issue the following commands:
sudo apt-get install python-keystoneclient

keystone-manage ssl_setup --keystone-user keystone \
 --keystone-group keystone

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

6

The command keystone-manage ssl_setup is not intended
for production use. This is a convenient tool for creating self-signed
certificates for Keystone.

2. Once our certificates are generated, we can use them when communicating with
our Keystone service. We can refer to the generated CA file for our other services
by placing this in an accessible place. To do so, issue the following commands:
sudo cp /etc/keystone/ssl/certs/ca.pem /etc/ssl/certs/ca.pem

sudo c_rehash /etc/ssl/certs/ca.pem

3. We also take the same CA and CA Key file to use on our client, so copy these
where you will be running the relevant python-*client tools. In our Vagrant
environment, we can copy this to our host as follows:
sudo cp /etc/keystone/ssl/certs/ca.pem /vagrant/ca.pem

sudo cp /etc/keystone/ssl/certs/cakey.pem /vagrant/cakey.pem

4. We then need to edit the Keystone configuration file /etc/keystone/keystone.
conf to include the following section:
[ssl]
enable = True
certfile = /etc/keystone/ssl/certs/keystone.pem
keyfile = /etc/keystone/ssl/private/keystonekey.pem
ca_certs = /etc/keystone/ssl/certs/ca.pem
cert_subject=/C=US/ST=Unset/L=Unset/O=Unset/CN=192.168.100.200
ca_key = /etc/keystone/ssl/certs/cakey.pem

5. Finally, restart the Keystone service:

sudo stop keystone

sudo start keystone

How it works...
The OpenStack services normally intercommunicate via standard HTTP requests.
This provides a large degree of flexibility, but it comes at the cost of all communication
happening in plain text. By adding SSL certificates and changing Keystone's configuration,
all communication with Keystone will now be encrypted via HTTPS.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

Creating tenants in Keystone
A tenant in OpenStack is a project, and the two terms are generally used interchangeably.
Users can't be created without having a tenant assigned to them, so these must be created
first. For this section, we will create a tenant called cookbook for our users.

Getting ready
We will be using the keystone client to operate Keystone. If the
python-keystoneclient tool isn't available, follow the steps described at
http://bit.ly/OpenStackCookbookClientInstall.

Ensure that we have our environment set correctly to access our OpenStack environment
for administrative purposes:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available
on your network, as this has the python-keystoneclient and the
relevant access to the OpenStack environment. If you are using the Vagrant
environment issue the following command to get access to the Controller:
vagrant ssh controller

How to do it...
To create a tenant in our OpenStack environment, perform the following steps:

1. We start by creating a tenant called cookbook:
keystone tenant-create \

 --name cookbook \

 --description "Default Cookbook Tenant" \

 --enabled true

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

8

This will produce output similar to:

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | Default Cookbook Tenant |

| enabled | True |

| id | fba7b31689714d1ab39a751bc9483efd |

| name | cookbook |

+-------------+----------------------------------+

2. We also need an admin tenant so that when we create users in this tenant, they
have access to our complete environment. We do this in the same way as in the
previous step:

keystone tenant-create \

 --name admin \

 --description "Admin Tenant" \

 --enabled true

How it works...
Creation of the tenants is achieved by using the keystone client, specifying the tenant-
create option with the following syntax:

keystone tenant-create \

 --name tenant_name \

 --description "A description" \

 --enabled true

The tenant_name is an arbitrary string and must not contain spaces. On creation of the tenant,
this returns an ID associated with it that we use when adding users to this tenant. To see a list of
tenants and the associated IDs in our environment, we can issue the following command:

keystone tenant-list

Configuring roles in Keystone
Roles are the permissions given to users within a tenant. Here, we will configure two roles: an
admin role that allows for the administration of our environment, and a member role that is
given to ordinary users who will be using the cloud environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

Getting ready
We will be using the keystone client to operate Keystone. If the
python-keystoneclient tool isn't available, follow the steps described
at http://bit.ly/OpenStackCookbookClientInstall.

Ensure that we have our environment set correctly to access our OpenStack environment for
administrative purposes:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available
on your network, as this has the python-keystoneclient and the
relevant access to the OpenStack environment. If you are using the Vagrant
environment, issue the following command to get access to the Controller:
vagrant ssh controller

How to do it...
To create the required roles in our OpenStack environment, perform the following steps:

1. Create the admin role as follows:
admin role

keystone role-create --name admin

You will get an output like this:

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| id | 625b81ae9f024366bbe023a62ab8a18d |

| name | admin |

+----------+----------------------------------+

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

10

2. To create the Member role, we repeat the step and specify the Member role:

Member role

keystone role-create --name Member

How it works...
Creation of the roles is simply achieved by using the keystone client and specifying the
role-create option with the following syntax:

keystone role-create --name role_name

The role_name attribute can't be arbitrary for admin and Member roles. The admin role
has been set by default in /etc/keystone/policy.json as having administrative rights:

{

 "admin_required": [["role:admin"], ["is_admin:1"]]

}

The Member role is also configured by default in the OpenStack Dashboard, Horizon, for a
non-admin user created through the web interface.

On creation of the role, the ID associated with is returned, and we can use it when assigning
roles to users. To see a list of roles and the associated IDs in our environment, we can issue
the following command:

keystone role-list

Adding users to Keystone
Adding users to the OpenStack Identity service requires that the user has a tenant that they
can exist in and there is a defined role that can be assigned to them. For this section, we will
create two users. The first user will be named admin and will have the admin role assigned
to them in the cookbook tenant. The second user will be named demo and will have the
Member role assigned to them in the same cookbook tenant.

Getting ready
We will be using the keystone client to operate Keystone. If the python-
keystoneclient tool isn't available, follow the steps described at
http://bit.ly/OpenStackCookbookClientInstall.

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Chapter 1

11

Ensure that we have our environment set correctly to access our OpenStack environment
for administrative purposes:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available
on your network, as this has the python-keystoneclient and the
relevant access to the OpenStack environment. If you are using the Vagrant
environment, issue the following command to get access to the Controller:
vagrant ssh controller

How to do it...
To create the required users in our OpenStack environment, perform the following steps:

1. To create a user in the cookbook tenant, we first need to get the cookbook tenant
ID. To do this, issue the following command, which we conveniently store in a variable
named TENANT_ID with the tenant-list option:
TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

2. Now that we have the tenant ID, the admin user in the cookbook tenant is created
using the user-create option and a password is chosen for the user:
PASSWORD=openstack

keystone user-create \

 --name admin \

 --tenant_id $TENANT_ID \

 --pass $PASSWORD \

 --email root@localhost \

 --enabled true

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

12

The preceding code will produce the following output:

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| email | root@localhost |

| enabled | True |

| id | 2e23d0673e8a4deabe7c0fb70dfcb9f2 |

| name | admin |

| tenantId | 14e34722ac7b4fe298886371ec17cf40 |

| username | admin |

+----------+----------------------------------+

3. As we are creating the admin user, which we are assigning the admin role, we need
the admin role ID. We pick out the ID of the admin role and conveniently store it in a
variable to use it when assigning the role to the user with the role-list option:
ROLE_ID=$(keystone role-list \

 | awk '/\ admin\ / {print $2}')

4. To assign the role to our user, we need to use the user ID that was returned when
we created that user. To get this, we can list the users and pick out the ID for that
particular user with the following user-list option:
USER_ID=$(keystone user-list \

 | awk '/\ admin\ / {print $2}')

5. With the tenant ID, user ID, and an appropriate role ID available, we can assign that
role to the user with the following user-role-add option:
keystone user-role-add \

 --user $USER_ID \

 --role $ROLE_ID \

 --tenant_id $TENANT_ID

Note that there is no output produced on successfully running
this command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

6. The admin user also needs to be in the admin tenant for us to be able to administer
the complete environment. To do this, we need to get the admin tenant ID and then
repeat the previous step using this new tenant ID:
ADMIN_TENANT_ID=$(keystone tenant-list \

 | awk '/\ admin\ / {print $2}')

keystone user-role-add \

 --user $USER_ID \

 --role $ROLE_ID \

 --tenant_id $ADMIN_TENANT_ID

7. To create the demo user in the cookbook tenant with the Member role assigned,
we repeat the process defined in steps 1 to 5:

Get the cookbook tenant ID

TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

Create the user

PASSWORD=openstack

keystone user-create \

 --name demo \

 --tenant_id $TENANT_ID \

 --pass $PASSWORD \

 --email demo@localhost \

 --enabled true

Get the Member role ID

ROLE_ID=$(keystone role-list \

 | awk '/\ Member\ / {print $2}')

Get the demo user ID

USER_ID=$(keystone user-list \

 | awk '/\ demo\ / {print $2}')

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

14

Assign the Member role to the demo user in cookbook

keystone user-role-add \

 --user $USER_ID \

 -–role $ROLE_ID \

 --tenant_id $TENANT_ID

How it works...
Adding users in the OpenStack Identity service involves a number of steps and dependencies.
First, a tenant is required for the user to be part of. Once the tenant exists, the user can be
added. At this point, the user has no role associated, so the final step is to designate the role
to this user, such as Member or admin.

Use the following syntax to create a user with the user-create option:

keystone user-create \

 --name user_name \

 --tenant_id TENANT_ID \

 --pass PASSWORD \

 --email email_address \

 --enabled true

The user_name attribute is an arbitrary name but cannot contain any spaces. A password
attribute must be present. In the previous examples, these were set to openstack. The
email_address attribute must also be present.

To assign a role to a user with the user-role-add option, use the following syntax:

keystone user-role-add \

 --user USER_ID \

 --role ROLE_ID \

 --tenant_id TENANT_ID

This means that we need to have the ID of the user, the ID of the role, and the ID of the tenant
in order to assign roles to users. These IDs can be found using the following commands:

keystone tenant-list

keystone user-list

keystone role-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

Defining service endpoints
Each of the services in our cloud environment runs on a particular URL and port—these are
the endpoint addresses for our services. When a client communicates with our OpenStack
environment that runs the OpenStack Identity service, it is this service that returns the
endpoint URLs that the user can use in an OpenStack environment. To enable this feature, we
must define these endpoints. In a cloud environment, we can define multiple regions. Regions
can be thought of as different datacenters, which would imply that they would have different
URLs or IP addresses. Under the OpenStack Identity service, we can define these URL
endpoints separately for each region. As we only have a single environment, we will reference
this as RegionOne.

Getting ready
We will be using the keystone command line client to operate Keystone. If the python-
keystoneclient tool isn't available, follow the steps described at http://bit.ly/
OpenStackCookbookClientInstall.

Ensure that we have our environment set correctly to access our OpenStack environment for
administrative purposes:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available on
your network, as this has the python-keystoneclient and has the
relevant access to the OpenStack environment. If you are using the Vagrant
environment, issue the following command to get access to the Controller:
vagrant ssh controller

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

16

How to do it...
Defining the services and their endpoints in the OpenStack Identity service involves
running the keystone client command. Although we might not have all services currently
running in our environment, we will be configuring them within the OpenStack Identity service
for future use. To define endpoints for services in our OpenStack environment, carry out the
following steps:

1. We can now define the actual services that the OpenStack Identity service needs to
know about in our environment:
OpenStack Compute Nova API Endpoint

keystone service-create \

 --name nova \

 --type compute \

 --description 'OpenStack Compute Service'

OpenStack Compute EC2 API Endpoint

keystone service-create \

 --name ec2 \

 --type ec2 \

 --description 'EC2 Service'

Glance Image Service Endpoint

keystone service-create \

 --name glance \

 --type image \

 --description 'OpenStack Image Service'

Keystone Identity Service Endpoint

keystone service-create \

 --name keystone \

 --type identity \

 --description 'OpenStack Identity Service'

Neutron Networking Service Endpoint

keystone service-create \

 --name network \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

 --type network \

 --description 'OpenStack Network Service'

#Cinder Block Storage Endpoint

keystone service-create \

 --name volume \

 --type volume \

 --description 'Volume Service'

2. After we have done this, we can add in the service endpoint URLs that these services
run on. To do this, we need the ID that was returned for each of the service endpoints
created in the previous step. The ID is then used as a parameter when specifying the
endpoint URLS for that service.

The OpenStack Identity service can be configured to service requests on
three URLs: a public facing URL (that the end users use), an administration
URL (that users with administrative access can use that might have a
different URL), and an internal URL (that is appropriate when presenting
the services on either side of a firewall to the public URL).

3. For the following services, we will configure separate public, admin, and internal
service URLs to provide appropriate separation for our environment. The public
endpoint in the accompanying lab environment will be the nominated public interface
IP of our controller, which is 192.168.100.200. The internal endpoint will be
172.16.0.200. The admin endpoint will also be the public IP of 192.168.100.200.
To do this run the following commands:
OpenStack Compute Nova API

NOVA_SERVICE_ID=$(keystone service-list \

 | awk '/\ nova\ / {print $2}')

PUBLIC_ENDPOINT=192.168.100.200

ADMIN_ENDPOINT=192.168.100.200

INT_ENDPOINT=172.16.0.200

PUBLIC="http://$PUBLIC_ENDPOINT:8774/v2/\$(tenant_id)s"

ADMIN="http://$ADMIN_ENDPOINT:8774/v2/\$(tenant_id)s"

INTERNAL="http://$INT_ENDPOINT:8774/v2/\$(tenant_id)s"

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

18

keystone endpoint-create \

 --region RegionOne \

 --service_id $NOVA_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

You will get output similar to what is shown below:

+-------------+--+
| Property | Value |
+-------------+--+
adminurl	http://192.168.100.200:8774/v2/$(tenant_id)s
id	87b59c5ce8314d8b9029bf1efd5044d7
internalurl	http://172.16.0.100:8774/v2/$(tenant_id)s
publicurl	http://192.168.100.200:8774/v2/$(tenant_id)s
region	RegionOne
service_id	a3529dcbeab44d479d1f258ae6d202b4
+-------------+--+

4. We continue to define the rest of our service endpoints, as shown in the
following steps:

OpenStack Compute EC2 API

EC2_SERVICE_ID=$(keystone service-list \

 | awk '/\ ec2\ / {print $2}')

PUBLIC="http://$PUBLIC_ENDPOINT:8773/services/Cloud"

ADMIN="http://$ADMIN_ENDPOINT:8773/services/Admin"

INTERNAL="http://$INT_ENDPOINT:8773/services/Cloud"

keystone endpoint-create \

 --region RegionOne \

 --service_id $EC2_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Glance Image Service

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

GLANCE_SERVICE_ID=$(keystone service-list \

 | awk '/\ glance\ / {print $2}')

PUBLIC="http://$PUBLIC_ENDPOINT:9292/v1"

ADMIN="http://$ADMIN_ENDPOINT:9292/v1"

INTERNAL="http://$INT_ENDPOINT:9292/v1"

keystone endpoint-create \

 --region RegionOne \

 --service_id $GLANCE_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Keystone OpenStack Identity Service

Note we're using SSL HTTPS here

KEYSTONE_SERVICE_ID=$(keystone service-list \

 | awk '/\ keystone\ / {print $2}')

PUBLIC="https://$PUBLIC_ENDPOINT:5000/v2.0"

ADMIN="https://$ADMIN_ENDPOINT:35357/v2.0"

INTERNAL="https://$INT_ENDPOINT:5000/v2.0"

keystone endpoint-create \

 --region RegionOne \

 --service_id $KEYSTONE_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

Neutron Networking Service

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

20

NEUTRON_SERVICE_ID=$(keystone service-list \

 | awk '/\ network\ / {print $2}')

PUBLIC="http://$PUBLIC_ENDPOINT:9696"

ADMIN="http://$ADMIN_ENDPOINT:9696"

INTERNAL="http://$INT_ENDPOINT:9696"

keystone endpoint-create \

 --region RegionOne \

 --service_id $NEUTRON_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

#Cinder Block Storage Service

CINDER_SERVICE_ID=$(keystone service-list \

 | awk '/\ volume\ / {print $2}')

PUBLIC="http://$PUBLIC_ENDPOINT:8776/v1/%(tenant_id)s"

ADMIN=$PUBLIC

INTERNAL=$PUBLIC

keystone endpoint-create \

 --region RegionOne \

 --service_id $CINDER_SERVICE_ID \

 --publicurl $PUBLIC \

 --adminurl $ADMIN \

 --internalurl $INTERNAL

How it works...
Configuring the services and endpoints within the OpenStack Identity service is done with the
keystone client command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

We first add the service definitions using the keystone client and the service-create
option with the following syntax:

keystone service-create \

 --name service_name \

 --type service_type \

 --description 'description'

In the service_name is an arbitrary name or label defining our service of a particular type.
We refer to the name when defining the endpoint to fetch the ID of the service.

The type option can be one of the following: compute, object-store, image-service,
network, and identity-service. Note that we haven't configured the OpenStack Object
Storage service (type object-store) at this stage, as this is covered in later recipes in
the book.

The description field is again an arbitrary field describing the service.

Once we have added in our service definitions, we can tell OpenStack Identity service from
where these services run by defining the endpoints using the keystone client and the
endpoint-create option. The syntax is as follows:

keystone endpoint-create \

 --region region_name \

 --service_id service_id \

 --publicurl public_url \

 -–adminurl admin_url \

 --internalurl internal_url

Here, service_id is the ID of the service when we created the service definitions in the first
step. The list of our services and IDs can be obtained by running the following command:

keystone service-list

As OpenStack is designed for global deployments, a region defines a physical datacenter or
a geographical area that comprises of multiple connected datacenters. For our purpose, we
define just a single region—RegionOne. This is an arbitrary name that we can reference when
specifying what runs in what datacenter/area and we carry the region name through to when
we configure our client for use with these regions.

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

22

All of our services can be configured to run on three different URLs, as follows, depending on
how we want to configure our OpenStack cloud environment:

 f public_url: This parameter is the URL that end users would connect on. In a public
cloud environment, this would be a public URL that resolves to a public IP address.

 f admin_url: This parameter is a restricted address for conducting administration.
In a public deployment, you would keep this separate from the public_url by
presenting the service you are configuring on a different, restricted URL. Some
services have a different URI for the admin service, so this is configured using
this attribute.

 f internal_url: This parameter would be the IP or URL that existed only within the
private local area network. The reason for this is that you can connect to services
from your cloud environment internally without connecting over a public IP address
space, which could incur data charges for traversing the Internet. It is also potentially
more secure and less complex to do so.

Once the initial keystone database has been set up, after running the initial
keystone-manage db_sync command on the OpenStack Identity service
server, administration can be done remotely using the keystone client.

Creating the service tenant and service
users

Now that the service endpoints are created, we can configure them so that our other
OpenStack services can utilize them. To do this, each service is configured with a username
and password within a special service tenant. Configuring each service to have its own
username and password allows for greater security, troubleshooting, and auditing within
our environment. When setting up a service to use the OpenStack Identity service for
authentication and authorization, we specify these details in their relevant configuration file.
Each service itself has to authenticate with keystone in order for it to be available within
OpenStack. Configuration of that service is then done using these credentials. For example,
for glance, we specify the following lines in /etc/glance/glance-registry.conf,
when used with OpenStack Identity service, which matches what we created previously:

[keystone_authtoken]

identity_uri = https://192.168.100.200:35357

admin_tenant_name = service

admin_user = glance

admin_password = glance

insecure = True

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

The use of insecure = True here is only required as self-signed
certificates are used throughout this book. In production, we would use
issued certificates and omit this option in our configs.

Getting ready
We will be using the keystone client to operate Keystone. If the
python-keystoneclient tool isn't available, follow the steps described at
http://bit.ly/OpenStackCookbookClientInstall.

Ensure that we have our environment set correctly to access our OpenStack environment
for administrative purposes:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available
on your network, as this has the python-keystoneclient and the
relevant access to the OpenStack environment. If you are using the Vagrant
environment, issue the following command to get access to the Controller:
vagrant ssh controller

How to do it...
To configure an appropriate service tenant, carry out the following steps:

1. Create the service tenant as follows:
keystone tenant-create \

 --name service \

 --description "Service Tenant" \

 --enabled true

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

24

This produces output similar to what is shown as follows:

+-------------+----------------------------------+

| Property | Value |

+-------------+----------------------------------+

| description | Service Tenant |

| enabled | True |

| id | 8e77d9c13e884bf4809077722003bba0 |

| name | service |

+-------------+----------------------------------+

2. Record the ID of the service tenant so that we can assign service users to this ID:
SERVICE_TENANT_ID=$(keystone tenant-list \

 | awk '/\ service\ / {print $2}')

3. For each of the services in this section, we will create the user accounts to be named
the same as the services and set the password to be the same as the service name
too. For example, we will add a user called nova with a password nova in the service
tenant by using the user-create option:
keystone user-create \

 --name nova \

 --pass nova \

 --tenant_id $SERVICE_TENANT_ID \

 --email nova@localhost \

 --enabled true

The preceding code will produce an output similar to what is shown here:

+----------+----------------------------------+

| Property | Value |

+----------+----------------------------------+

| email | nova@localhost |

| enabled | True |

| id | 50ea356a4b6f4cb7a9fa22c1fb08549b |

| name | nova |

| tenantId | 42e5c284de244e3190e12cc44fbbbe62 |

| username | nova |

+----------+----------------------------------+

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

4. We then repeat this for each of our other services that will use OpenStack
Identity service:
keystone user-create \

 --name glance \

 --pass glance \

 --tenant_id $SERVICE_TENANT_ID \

 --email glance@localhost \

 --enabled true

keystone user-create \

 --name keystone \

 --pass keystone \

 --tenant_id $SERVICE_TENANT_ID \

 --email keystone@localhost \

 --enabled true

keystone user-create \

 --name neutron \

 --pass neutron \

 --tenant_id $SERVICE_TENANT_ID \

 --email neutron@localhost \

 --enabled true

keystone user-create \

 --name cinder \

 --pass cinder \

 --tenant_id $SERVICE_TENANT_ID \

 --email cinder@localhost \

 --enabled true

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

26

5. We can now assign these users the admin role in the service tenant. To do this,
we use the user-role-add option after retrieving the user ID of the nova user.
For example, to add the admin role to the nova user in the service tenant, we
use the following code:

Get the nova user id
NOVA_USER_ID=$(keystone user-list \
 | awk '/\ nova\ / {print $2}')

Get the admin role id
ADMIN_ROLE_ID=$(keystone role-list \
 | awk '/\ admin\ / {print $2}')

Assign the nova user the admin role in service tenant
keystone user-role-add \
 --user $NOVA_USER_ID \
 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

6. We then repeat this for our other service users, glance, keystone, neutron,
and cinder:
Get the glance user id
GLANCE_USER_ID=$(keystone user-list \
 | awk '/\ glance\ / {print $2}')

Assign the glance user the admin role in service tenant
keystone user-role-add \
 --user $GLANCE_USER_ID \
 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID
Get the keystone user id
KEYSTONE_USER_ID=$(keystone user-list \
 | awk '/\ keystone\ / {print $2}')

Assign the keystone user the admin role in service tenant
keystone user-role-add \
 --user $KEYSTONE_USER_ID \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

Get the cinder user id
NEUTRON_USER_ID=$(keystone user-list \
 | awk '/\ neutron \ / {print $2}')

Assign the neutron user the admin role in service tenant
keystone user-role-add \
 --user $NEUTRON_USER_ID \
 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

Get the cinder user id
CINDER_USER_ID=$(keystone user-list \
 | awk '/\ cinder \ / {print $2}')

Assign the cinder user the admin role in service tenant
keystone user-role-add \
 --user $CINDER_USER_ID \
 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

How it works...
Creation of the service tenant, which is populated with the services required to run
OpenStack, is no different from creating any other users on our system that require the
admin role. We create the usernames and passwords and ensure that they exist in the
service tenant with the admin role assigned to each user. We then use these credentials
when configuring the services to authenticate with the OpenStack Identity service.

Downloading the example code
You can download the example code files for this book
at https://github.com/OpenStackCookbook/
OpenStackCookbook. All the support files are available here.

www.it-ebooks.info

https://github.com/OpenStackCookbook/OpenStackCookbook
https://github.com/OpenStackCookbook/OpenStackCookbook
http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

28

Configuring OpenStack Identity for LDAP
Integration

The OpenStack Identity service that we have built so far provides you with a functional, but
isolated, set up for your OpenStack environment. This is a useful setup for Proof of Concept
and lab environments. However, it is likely that you will need to integrate OpenStack with your
existing authentication system. OpenStack Identity provides a pluggable authentication back
end for this, with LDAP being the most widely used.

Getting ready
We will be using the keystone client to operate Keystone. If the
python-keystoneclient tool isn't available, follow the steps described at
http://bit.ly/OpenStackCookbookClientInstall.

Ensure that we have our environment set correctly to access our OpenStack environment for
administrative purposes:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

You can use the controller node if no other machines are available
on your network, as this has the python-keystoneclient and the
relevant access to the OpenStack environment. If you are using the Vagrant
environment, issue the following command to get access to the Controller:
vagrant ssh controller

Additionally, to connect to an external LDAP service, you will need to possess the hostname or
IP address of the LDAP server and have appropriate access to the server. You will also need
to have the LDAP path information for an admin user, and for the Organizational Units that
contain the Users, Roles, and Tenants.

We have provided a sample OpenLDAP server that is prepopulated
with the required values as part of this book's supplementary
materials, and instructions on how to use it located on our book
blog at http://bit.ly/OpenStackCookbookLDAP

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://bit.ly/OpenStackCookbookLDAP
http://www.it-ebooks.info/

Chapter 1

29

How to do it...
To configure OpenStack Identity to communicate with LDAP, perform the following steps:

1. Using your favorite editor, enable LDAP authentication in the keystone.conf file:
[identity]
driver=keystone.identity.backends.ldap.Identity

2. Next, create the ldap section and add the URL to your existing LDAP server:
[ldap]
url = ldap://openldap

3. On the following lines, specify the LDAP path for the admin user you will use,
along with its password and the suffix, or where you would like Keystone to begin
searching LDAP:
user = cn=admin,dc=cook,dc=book
password = openstack
suffix = cn=cook,cn=book

4. In the same [ldap] section, we tell Keystone four pieces of information about
how to find users. user_tree_dn specifies which OU within the LDAP tree to
search for users. user_objectclass specifies how a user is represented within
LDAP. user_id_attribute tells Keystone which property of the user to use as
a username. Similarly, user_mail_attribute tells Keystone where to find the
user's e-mail address. The code is as follows:
user_tree_dn = ou=Users,dc=cook,dc=book
user_objectclass = inetOrgPerson
user_id_attribute = cn
user_mail_attribute = mail

5. Next, add the same details for Tenants and Roles:
tenant_tree_dn = ou=Projects,dc=cook,dc=book
tenant_objectclass = groupOfNames
tenant_id_attribute = cn
tenant_desc_attribute = description

role_tree_dn = ou=Roles,dc=cook,dc=book
role_objectclass = organizationalRole
role_id_attribute = cn
role_member_attribute = roleOccupant

www.it-ebooks.info

http://www.it-ebooks.info/

Keystone – OpenStack Identity Service

30

6. Save the file and restart keystone:

sudo stop keystone

sudo start keystone

How it works...
The OpenStack Identity service, like other OpenStack services, is based on plugins. In its
default state, Keystone will store and access all user identity and authentication data from a
SQL database. However, when integrating OpenStack into an existing environment, this is not
always the most desirable or secure method. To accommodate this, we changed the identity
back end to LDAP. This allows for integration with OpenLDAP, Active Directory, and many
others. However, when configuring the backend, you need to pay special attention to the
LDAP paths.

Where are the entries for the services catalog? These are still stored
in Keystone's SQL database, as they aren't specifically related to user
identity or authentication.

www.it-ebooks.info

http://www.it-ebooks.info/

31

2
Glance – OpenStack

Image Service

In this chapter, we will cover the following recipes:

 f Installing OpenStack Image Service

 f Configuring OpenStack Image Service with OpenStack Identity Service

 f Configuring OpenStack Image Service with OpenStack Object Storage

 f Managing images with OpenStack Image Service

 f Registering a remotely stored image

 f Sharing images among tenants

 f Viewing shared images

 f Using image metadata

 f Migrating a VMware image

 f Creating an OpenStack image

Introduction
OpenStack Image Service, also known as Glance, is a service that allows you to register,
discover, and retrieve virtual machine images for use in our OpenStack environment.
Images made available through OpenStack Image Service can be stored in a variety
of backend locations, from local filesystem storage to distributed filesystems, such as
OpenStack Object Storage.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

32

In this chapter we will be concentrating on the Controller host as shown below:

Installing OpenStack Image Service
Installation of the latest OpenStack Image Service is simply achieved by using the packages
provided from the Ubuntu Cloud Archive repositories, which have been packaged for our
Ubuntu 14.04 LTS GNU/Linux installation.

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host where OpenStack
Image Service will be installed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

33

To log in to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

Ensure that our Ubuntu 14.04 LTS release is using the Ubuntu Cloud Archive
that has the packages required for the Juno release. For more information, visit
http://bit.ly/OpenStackCookbookCloudArchive.

All of the steps can be found at
http://www.openstackcookbook.com/.

We will configure Glance to use MariaDB as the database backend, so this needs to be
installed prior to installing Glance.

If MariaDB is not installed, visit
http://bit.ly/OpenStackCookbookInstallMariaDB
for instructions on how to do this.

We will also need to have RabbitMQ installed as our message queue service, so this needs to
also be installed prior to installing Glance.

If RabbitMQ is not installed, visit
http://bit.ly/OpenStackCookbookInstallRabbitMQ
for instructions on how to do this.

The instructions in this section assume the controller node has two IP addresses. It will
have a front-facing IP address 192.168.100.200 and a backside IP address 172.16.0.200
(which is also the address of the MariaDB server). It has two addresses because the internal
data will communicate over the backside IP address (for example, database traffic) and any
Glance traffic will traverse the front.

How to do it...
Carry out the following steps to install OpenStack Image Service:

1. Installation of OpenStack Image Service is done by specifying the glance
package in Ubuntu:
sudo apt-get update

sudo apt-get install ntp glance python-keyring

www.it-ebooks.info

http://bit.ly/OpenStackCookbookCloudArchive
http://www.openstackcookbook.com/
http://bit.ly/OpenStackCookbookInstallMariaDB
http://bit.ly/OpenStackCookbookInstallRabbitMQ
http://www.it-ebooks.info/

Glance – OpenStack Image Service

34

2. Once installed, we need to configure the backend database store, so we first create
the glance database in MariaDB. We do this as follows:
MYSQL_ROOT_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "CREATE DATABASE \

 glance;"

We have a user called root in MariaDB with the password openstack, which is able to
create databases.

3. It is a good practice to create a user that is specific to our OpenStack Image service,
so we create a glance user in the database as follows:
MYSQL_GLANCE_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
glance.* TO 'glance'@'localhost' IDENTIFIED BY \
'$MYSQL_KEYSTONE_PASS';"

mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
glance.* TO 'glance'@'%' IDENTIFIED BY '$MYSQL_GLANCE_PASS';"

4. We can now configure OpenStack Image Service to use this database by editing the
/etc/glance/glance-registry.conf and /etc/glance/glance-api.conf
files and changing the sql_connection line to match the database credentials. We
do this by ensuring the following lines are in the files:
[database]
backend = sqlalchemy
connection = mysql://glance:openstack@172.16.0.200/glance

5. We configure OpenStack Image Service to use RabbitMQ by ensuring the following
lines are present in /etc/glance/glance-registry.conf:
rabbit_host = localhost
rabbit_port = 5672
rabbit_use_ssl = false
rabbit_userid = guest
rabbit_password = guest
rabbit_virtual_host = /
rabbit_notification_exchange = glance
rabbit_notification_topic = notifications
rabbit_durable_queues = False

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

6. We can now restart the glance-registry service:
sudo stop glance-registry

sudo start glance-registry

7. Restart the glance-api service:
sudo stop glance-api

sudo start glance-api

8. The glance database is version controlled under Ubuntu 14.04 to allow the upgrade
and downgrade of the service. We first set the version control to be 0 by issuing the
following command:
sudo glance-manage db_version_control 0

9. We now sync the database to ensure the correct table structure is present. We do
this by issuing the following command:

sudo glance-manage db_sync

Congratulations! We now have OpenStack Image service installed and ready for use in our
OpenStack environment.

How it works...
OpenStack Image Service is split into two running services: glance-api and
glance-registry. It is the glance-registry service that connects to the database
backend. The first step is to create our glance database and the glance user, so it
can perform operations on the glance database that we have created.

Once this is done, we modify the /etc/glance/glance-registry.conf and
/etc/glance/glance-api.conf files so that glance knows where to find and
connect to our MySQL database. This is provided by the standard SQLAlchemy connection
string that has the following syntax:

sql_connection = mysql://USER:PASSWORD@HOST/DBNAME

See also
 f Chapter 1, Keystone – OpenStack Identity Service

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

36

Configuring OpenStack Image Service with
OpenStack Identity Service

Configuring OpenStack Image Service to use OpenStack Identity Service is required to allow
our OpenStack Compute to operate correctly.

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host or the host that is
running OpenStack Image Service. If the OpenStack Identity Service is not installed, carry
out the steps in the Installing the OpenStack Identity Service recipe of Chapter 1, Keystone –
OpenStack Identity Service. We also require that the Glance service user and endpoints have
been set up. See the Defining Service Endpoints and Creating the service tenant and service
users recipes of Chapter 1, Keystone – OpenStack Identity Service.

To log in to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

How to do it...
To configure OpenStack Image Service to use OpenStack Identity Service, carry out the
following steps:

1. We first edit the /etc/glance/glance-api.conf file to tell OpenStack Image
Service to utilize OpenStack Identity Service by adding a [keystone_authtoken]
section. Note that we are using insecure = True in the configuration because we
are using self-signed certificates. In production, it is expected that issued
certificates are used and they don't require this parameter. The code is as follows:
[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = glance
admin_password = glance
insecure = True

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

2. We repeat this process for the /etc/glance/glance-registry.conf file,
configuring the glance service user in the [keystone_authtoken] section.
We are using insecure = True here because our example used self-signed
certificates. The code is as follows:
[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = glance
admin_password = glance
insecure = True

3. Finally, we restart the two services to pick up the changes:

sudo restart glance-api

sudo restart glance-registry

How it works...
OpenStack Image Service runs two services: glance-api, which is the service that our
clients and services talk to, and the glance-registry service that manages the objects on
the disk and database registry. Both of these services need to have matching credentials that
were defined previously in OpenStack Identity Service in their configuration files in order to
allow a user to authenticate with the service successfully.

Configuring OpenStack Image Service with
OpenStack Object Storage

By default, images are stored as files in the /var/lib/glance/images/ directory.
However, OpenStack Image Service can be configured to use OpenStack Object Storage
(Swift) for storing images, as well as other backend storage such as Ceph and GlusterFS.
In this recipe, we will go through the steps required to configure OpenStack Image service
(Glance) to use Object Storage service (Swift).

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

38

Getting ready
To begin with, ensure you're logged in to our OpenStack Controller host or the host that is
running OpenStack Image Service.

To log in to our OpenStack Controller host that was created using Vagrant, issue the
following command:

vagrant ssh controller

How to do it...
To configure OpenStack Image Service to use OpenStack Object Storage, carry out the
following steps:

1. We first edit the /etc/glance/glance-api.conf file to notify Glance that we
will use Swift instead of the default filesystem by editing the following line under the
[DEFAULT] section:
[DEFAULT]

default_store = swift

2. We then edit the [glance_store] section in the same file to configure Swift:
[glance_store]
stores = glance.store.filesystem.Store,
 glance.store.http.Store,
 glance.store.swift.Store
swift_store_auth_version = 2
swift_store_auth_address = https://192.168.100.200:5000/v2.0/
swift_store_user = service:glance
swift_store_key = glance
swift_store_container = glance
swift_store_create_container_on_put = True
swift_store_large_object_size = 5120
swift_store_large_object_chunk_size = 200
swift_enable_snet = False
swift_store_auth_insecure = True

We are using swift_store_auth_insecure = True
because we are using self-signed certificates for our SSL Keystone
implementation. Adjust this to suit your environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

3. Then, we restart the two OpenStack Image Service processes to pick up the changes:

sudo restart glance-api

sudo restart glance-registry

How it works...
OpenStack Image Service can be configured to use several different backend for storing images,
such as Ceph, OpenStack Object Storage, and raw disk. Once Object Storage is configured as a
backend, images will be uploaded to Swift instead of being stored locally. Check Chapter 5,
Swift – OpenStack Object Storage on configuring and using Object Storage.

Managing images with OpenStack Image
Service

Uploading and managing images within OpenStack Storage is achieved using the glance
command-line tool. This tool allows us to upload, remove, and change information about the
stored images for use within our OpenStack environment.

Getting ready
To begin with, ensure that you are either logged in to an Ubuntu client where we can run the
glance tool, or on our OpenStack Controller where OpenStack Image Service is running
directly. If the Glance client isn't installed, this can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-glanceclient

Ensure that you have your environment variables set up correctly with our admin user and
password, as created in the previous chapter:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

40

How to do it...
We can upload and view images in our OpenStack Image Service in a number of ways.
Carry out the following steps to upload and show details of our uploaded images.

Uploading Ubuntu images
Ubuntu provides images that can easily be added to our OpenStack environment, as follows:

1. We download an Ubuntu cloud image from http://uec-images.ubuntu.com,
as follows:
wget https://cloud-images.ubuntu.com/trusty/current/trusty-server-
cloudimg-amd64-disk1.img

2. We then upload our cloud image:

glance image-create \

 --name='Ubuntu 14.04 x86_64 Server' \

 --disk-format=qcow2 \

 --container-format=bare \

 --is-public True < \
 trusty-server-cloudimg-amd64-disk1.img

You will see an output like this:

www.it-ebooks.info

http://uec-images.ubuntu.com
http://www.it-ebooks.info/

Chapter 2

41

Listing images
To list the images in our OpenStack Image Service repository, we use the Glance client to
interrogate the Image Service directly, or use the Nova client that is used to manage our
OpenStack environment. This is covered in Chapter 4, Nova – OpenStack Compute.

To list the images available to our user using the Glance client, we issue the
following command:

glance image-list

The preceding command produces a result like this:

Viewing image details
We can view further details of our images in the repository. To show further details of any
image, issue the following command:

glance image-show IMAGE_ID

Consider the following example:

glance image-show 18584bff-2c12-4c2d-85f6-59771073c936

This returns the same details as when we uploaded our image (shown on the previous page).

Deleting images
There will be times when you will need to remove images from being able to be called
within your OpenStack cloud environment. You can delete images where you have
permission to do so:

1. To delete an image, issue the following command:
glance image-delete IMAGE_ID

2. Consider the following example:
glance image-delete 794dca52-5fcd-4216-ac8e-7655cdc88852

3. OpenStack Image Service will not produce any output when you successfully delete
an image. You can verify this with the glance image-list command.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

42

Making private images public
When you upload an image, they get entered into OpenStack Image Service as private, by
default. If an image is uploaded this way but you want to make it public, you perform the
following steps in OpenStack Image Service:

1. First, list and view the image(s) that you want to make public. In this case, we will
choose our first uploaded image:
glance image-show IMAGE_ID

Consider the following example:
glance image-show 18584bff-2c12-4c2d-85f6-59771073c936

This produces results somewhat similar to what is shown here:

2. We can now convert this to a public image that is available to all the users of our
cloud environment with the following command:
glance image-update 18584bff-2c12-4c2d-85f6-59771073c936 \

 --is-public True

3. List the available public images as follows:

glance image-show 18584bff-2c12-4c2d-85f6-59771073c936

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

We will now see the following output:

How it works
OpenStack Image Service is a very flexible system for managing images in our private
cloud environment. It allows us to modify many aspects of our OpenStack Image Service
registry—adding new images, deleting them, updating information, such as the name
that is used so that end users can easily identify them, and making private images public
or vice-versa.

To do all this, we use the glance tool from any connected client.

Registering a remotely stored image
OpenStack Image Service provides a mechanism to remotely add an image that is stored at
an externally accessible location. This allows for a convenient method of adding images we
might want to on our private cloud that have been uploaded to an external third-party server.

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

44

Getting ready
To begin with, ensure you are logged in to our Ubuntu client where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get install python-glanceclient

Ensure that you have your environment variable set up correctly with our admin user and
password, as created in the previous chapter:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to remotely store an image in our OpenStack Image Service:

1. To register a remote virtual image into our environment, we add a location parameter
instead of streaming the image through a pipe on our glance command line:
glance image-create \

 --name='Ubuntu 12.04 x86_64 Server' \

 --disk-format=qcow2 \

 --container-format=bare \

 --public \

 --location http://webserver/precise-server-cloudimg-amd64-
disk1.img

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

45

2. The preceding step returns information similar to what you can see here, which is
then stored in our OpenStack Image Service:

How it works...
Using the glance tool to specify remote images directly provides a quick and convenient way
to add images to our OpenStack Image Service repository. The way this happens is with the
location parameter. We add in our usual meta information to accompany this, as we would
with a locally-specified image.

Sharing images among tenants
When an image is private, it is only available to the tenant to which that image was uploaded.
OpenStack Image Service provides a mechanism whereby these private images can be shared
between different tenants. This allows greater control over images that need to exist for
different tenants without making them public for all tenants.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get install glance-client

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

46

Ensure that you have your environment variable set up correctly with our admin user and
password, as created in the previous chapter:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to share a private image in our cookbook tenant to
another tenant:

1. We first get the tenant ID of the tenant that is able to use our image. We do this
as follows:
keystone tenant-list

2. We then list our images as follows:
glance image-list

3. From our cookbook tenant with ID 45c787efeaec42aa9cab522711bf5f4d and an
image with ID 18584bff-2c12-4c2d-85f6-59771073c936, we would share the
image as follows:

glance member-create \

 18584bff-2c12-4c2d-85f6-59771073c93 \

 45c787efeaec42aa9cab522711bf5f4d

How it works...
The member-create option for the glance command allows us to share images with other
tenants. The syntax is as follows:

glance [--can-share] member-create image-id tenant-id

The preceding command comes with an optional extra parameter, --can-share, that gives
permission to that tenant to share the image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

Viewing shared images
We can view what images have been shared for a particular tenant when someone has used
the member-create option. This allows us to manage and control which users have what
type of access to images in our OpenStack environment.

Getting ready
To begin with, ensure that you are logged in to our Ubuntu client where we can run the
glance tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get install python-glanceclient

Ensure that you have your environment variable set up correctly with our admin user and
password, as created in the previous chapter:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to view the images that have been shared for a particular tenant:

1. We first get the tenant ID of the tenant we want to view. We do this as follows:
keystone tenant-list

2. We can now list the images that have been shared with that tenant ID as follows:

glance member-list --tenant-id \

 45c787efeaec42aa9cab522711bf5f4d

This produces the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

48

How it works...
The member-list option in the glance command allows us to view which images have
been shared with other tenants. The syntax is as follows:

glance member-list --image-id IMAGE_ID

glance member-list –-tenant-id TENANT_ID

Using image metadata
We can set arbitrary metadata to help describe images and how they are associated to other
OpenStack components. This specific data that is set during image creation or updated at a
later time can be used to enable specific functionality in other OpenStack services or to simply
allow a custom description of the images.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client where we can run the glance
tool. This can be installed using the following command:

sudo apt-get update

sudo apt-get install python-glanceclient

Ensure that you have your environment variable set up correctly with our admin user and
password, as created in the previous chapter:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Image metadata can be added, updated, and deleted, as well as used for host scheduling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

Updating image properties
Carry out the following steps to update the metadata on the image:

1. We first get the image ID for which we want to update metadata. We do this
as follows:
glance image-list

2. Add metadata to the image and set the image_state and os_distro properties:
glance image-update db02ab51-f9a1-4e38-8c3d-22b367962154

 --property image_state=available \

 --property os_distro=ubuntu

3. We get the following output:

Deleting all image properties
Carry out the following steps to delete image properties:

1. We first get the image ID for which we want to delete metadata. We do this as follows:
glance image-list

2. To remove all the metadata, enter the following command:

glance image-update db02ab51-f9a1-4e38-8c3d-22b367962154 \

--purge-props

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

50

Deleting specific image properties
Carry out the following steps to delete image properties:

1. We first get the image ID for which we want to delete metadata. We do this as follows:
glance image-list

2. To remove specific metadata, we need to specify which properties to keep during
the update. In this example, we will remove the image_state property and any
others that might have been set, but we keep the os_distro property. Note that
user-added properties are removed if not specified. The code is as follows:

glance image-update db02ab51-f9a1-4e38-8c3d-22b367962154 \

--purge-props --property os_distro=ubuntu

Using metadata for host scheduling
Metadata can be used to determine the scheduling of hosts. For example, if you have hosts
with different hypervisor types, you can specify properties to identify on which hypervisor the
image may be deployed. Carry out the following steps to enable scheduling based on
image metadata:

1. We first need to edit the /etc/nova/nova.conf file to update the
scheduler property:
Scheduler
scheduler_default_filters=ImagePropertiesFilter

While scheduling is inherently an OpenStack compute function,
we are including this section with Glance for completeness.

2. Restart nova scheduler:
sudo stop nova-scheduler

sudo start nova-scheduler

3. Get the image ID for which we want to update metadata:
glance image-list

4. Set architecture and hypervisor type properties, both kvm and qemu will have
the qemu hypervisor type:

glance image-update db02ab51-f9a1-4e38-8c3d-22b367962154 \

 --property architecture=arm \

 --property hypervisor_type=qemu

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

51

How it works...
The glance image-update option in the glance command allows us to add, modify,
and remove custom image properties. The syntax is as follows:

glance image-create [other options] --property <key=value>

glance image-update IMAGE_ID --property <key=value>

See also
 f Chapter 4, Nova – OpenStack Compute

Migrating a VMware image
We can migrate a VMware based image, vmdk, to other disk image formats. This can be
achieved using an image conversion utility. This same utility can be used to verify that the
conversion worked properly. Once the image has been converted, it can be uploaded to
OpenStack Image Service.

Getting ready
To begin with, ensure you are logged in to our Ubuntu client where we will be doing the
image conversion. Make sure you have qemu-util installed; if not, you may install it
using the following:

sudo apt-get install qemu-utils

How to do it...
Carry out the following steps to convert a VMDK image to the QCOW2 format:

1. Verify the image using the following command:
qemu-img info custom-iso-1415990568-disk1.vmdk

2. You will get the following output:
image: custom-iso-1415990568-disk1.vmdk

file format: vmdk

virtual size: 39G (41943040000 bytes)

disk size: 2.7G

cluster_size: 65536

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

52

Format specific information:

 cid: 2481477841

 parent cid: 4294967295

 create type: monolithicSparse

 extents:

 [0]:

 virtual size: 41943040000

 filename: custom-iso-1415990568-disk1.vmdk

 cluster size: 65536

 format:

3. Convert the image using the following command:
qemu-img convert -f vmdk -O qcow2 -c \
-p custom-iso-1415990568-disk1.vmdk \
custom-iso-1415990568-disk1.qcow2

Here, -f is the input disk image format, -O is the output format, -c target should be
compressed QCOW format only), and -p show progress.

4. Verify the converted image as follows and it should show that the images are identical
if all went as expected:

qemu-img compare -s -f vmdk \
-F qcow2 custom-iso-1415990568-disk1.vmdk \
custom-iso-1415990568-disk1.qcow2

Images are identical.

How it works...
The qemu-img convert command-line tool works on multiple formats, including VMDK.
Conversion to VMDK or other desired formats would work as well. Since the QCOW format
supports image compression, it can be useful to get a smaller image which then can grow.

Creating an OpenStack image
We can now create our custom OpenStack image, however, it is advisable to do so outside
of our OpenStack installation. Also, you need to make sure that you do not have VirtualBox,
Fusion, or similar virtualization technology, running on the system where you will be creating
your image. We will be creating a KVM-based, CentOS image.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

53

Getting ready
To begin with, ensure you are logged in to a Linux system that is not your OpenStack
environment.

On Ubuntu, install the kvm/qemu and libvirt libraries:

sudo apt-get install qemu-kvm libvirt-bin virt-manager

Start the libvirt-bin service with the following command:

sudo start libvirt-bin

On CentOS or RHEL:

sudo yum groupinstall "Virtualization" "Virtualization Platform"

sudo chkconfig libvirtd on

sudo service libvirtd start

On Fedora:

sudo yum groupinstall "Virtualization" "Virtualization Platform"

sudo systemctl enable libvirtd

sudo systemctl start libvirtd

Ideally, you will also need a VNC client, though our example could be done without using one.

How to do it...
Carry out the following steps to create a custom image:

1. Create a kickstart file called openstack.txt:
install
text
url --url http://mirror.rackspace.com/CentOS/6.6/os/x86_64/
lang en_US.UTF-8
keyboard us
network --onboot yes --bootproto dhcp --noipv6
timezone --utc America/Chicago
zerombr
clearpart --all --initlabel

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

54

bootloader --location=mbr --append="crashkernel=auto rhgb quiet"
part / --fstype=ext4 --size=1024 --grow
authconfig --enableshadow --passalgo=sha512
rootpw openstack
firewall --disable
selinux --disabled
skipx
shutdown
%packages
@core
openssh-server
openssh-clients
wget
curl
git
man
vim
ntp
%end
%post
%end

2. Execute the following command:
sudo virt-install --virt-type kvm --name centos-6.6 --ram 1024 \
--location=http://mirror.rackspace.com/CentOS/6.6/os/x86_64/ \
--disk path=/tmp/centos-6.6-vm.img,size=5 \
--network network=default --graphics vnc,listen=0.0.0.0 \
--noautoconsole --os-type=linux --os-variant=rhel6 \
--initrd-inject=centos-6.6-x86_64-openstack.txt \
--extra-args="noverifyssl console=tty0 console=ttyS0,115200 \
ks=file:/centos-6.6-x86_64-openstack.txt "

3. You should see something similar to the following output:
Starting install...

Retrieving file .treeinfo...
| 728 B 00:00 ...

Retrieving file vmlinuz...
| 7.9 MB 00:00 ...

Retrieving file initrd.img...
| 66 MB 00:00 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

55

Creating domain...
| 0 B 00:01

Domain installation still in progress. You can reconnect to the
console to complete the installation process.

4. Verify that the image creation was completed by using VNC. The VNC server will be
running by default on host:5900:

If you do not have access to a VNC client, or for some reason cannot use it,
wait for 10 minutes (a rough estimate) and proceed to the next step. We will
assume things worked.

5. List the running VMs in virsh with the following commands:
sudo virsh list --all

 Id Name State

--

 62 centos-6.6 running

6. Stop (destroy) the VM with the following command:
sudo virsh destroy centos-6.6

Domain centos-6.6 destroyed

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

56

7. Start the VM with the following commands:
sudo virsh start centos-6.6

Domain centos-6.6 started

8. Log in to the VM console as root user with the password openstack. To escape
from the console session, press Ctrl +].
sudo virsh console centos-6.6

Connected to domain centos-6.6

Escape character is ^]

Now, let's exit by clicking Enter:

CentOS release 6.6 (Final)

Kernel 2.6.32-504.el6.x86_64 on an x86_64

localhost.localdomain login: root

Password:

9. In the guest, install the cloud-init package with the following commands:
sudo yum install http://dl.fedoraproject.org/pub/epel/6Server/
x86_64/epel-release-6-8.noarch.rpm

sudo yum install cloud-init cloud-utils cloud-utils-growpart

10. Change guest's cloud config file /etc/cloud/cloud.cfg with the
following commands:
rm /etc/cloud/cloud.cfg

vi /etc/cloud/cloud.cfg

11. Paste the following:
users:
 - default

disable_root: 1
ssh_pwauth: 0

locale_configfile: /etc/sysconfig/i18n
mount_default_fields: [~, ~, 'auto', 'defaults,nofail', '0', '2']
resize_rootfs_tmp: /dev
ssh_deletekeys: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

57

ssh_genkeytypes: ~
syslog_fix_perms: ~

cloud_init_modules:
 - bootcmd
 - write-files
 - resizefs
 - set_hostname
 - update_hostname
 - update_etc_hosts
 - rsyslog
 - users-groups
 - ssh

cloud_config_modules:
 - mounts
 - locale
 - set-passwords
 - timezone
 - puppet
 - chef
 - salt-minion
 - mcollective
 - disable-ec2-metadata
 - runcmd

cloud_final_modules:
 - rightscale_userdata
 - scripts-per-once
 - scripts-per-boot
 - scripts-per-instance
 - scripts-user
 - ssh-authkey-fingerprints
 - keys-to-console
 - phone-home
 - final-message

system_info:
 distro: rhel
 default_user:
 name: centos
 lock_passwd: True
 shell: /bin/bash

www.it-ebooks.info

http://www.it-ebooks.info/

Glance – OpenStack Image Service

58

 sudo: ["ALL=(ALL) NOPASSWD: ALL"]
 paths:
 cloud_dir: /var/lib/cloud
 templates_dir: /etc/cloud/templates
 ssh_svcname: sshd

12. Make sure the guest can communicate with the metadata service with the
following command:
sudo echo "NOZEROCONF=yes" >> /etc/sysconfig/network

13. Remove persistent rules with the following command:
sudo rm -f /etc/udev/rules.d/70-persistent-net.rules

14. Remove machine-specific MAC address and UUID. Edit the /etc/sysconfig/
network-scripts/ifcfg-eth0 file and remove lines starting with HWADDR
and UUID:
sudo sed -i '/HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0

sudo sed -i '/UUID/d' /etc/sysconfig/network-scripts/ifcfg-eth0

15. After making the changes, the /etc/sysconfig/network-scripts/ifcfg-
eth0 file should look like this:
DEVICE="eth0"
BOOTPROTO="dhcp"
IPV6INIT="no"
MTU="1500"
NM_CONTROLLED="yes"
ONBOOT="yes"
TYPE="Ethernet"

16. Clean up the yum, logs, temporary files, and history with the following commands:
sudo yum clean all

sudo rm -rf /var/log/*

sudo rm -rf /tmp/*

sudo history -c

17. Shutdown the guest with the following command:
sudo shutdown -h now

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

59

18. Compress the newly created image with the following command:
sudo qemu-img convert -c /tmp/centos-6.6-vm.img \
-O qcow2 /tmp/centos-6.6.img

19. Upload the image to Glance with the following command:

glance image-create --name centos-6.6 \
--disk-format=qcow2 --container-format=bare --file /tmp/centos-
6.6.img

How it works...
The qemu-img convert command-line tool works on multiple formats, including VMDK.
Conversion to VMDK or other desired formats would work as well. Since the QCOW format
supports image compression, it can be useful to get a smaller image that can grow later.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

61

3
Neutron – OpenStack

Networking

In this chapter, we will cover the following recipes:

 f Installing Neutron and Open vSwitch on a dedicated network node

 f Configuring Neutron and Open vSwitch

 f Installing and configuring the Neutron API service

 f Creating a tenant Neutron network

 f Deleting a Neutron network

 f Creating an external Floating IP Neutron network

 f Using Neutron networks for different purposes

 f Configuring Distributed Virtual Routers

 f Using Distributed Virtual Routers

Introduction
OpenStack Networking is the Software Defined Networking (SDN) component of OpenStack
and its project name is Neutron. With SDN, we can describe complex networks in a secure
multitenant environment that overcomes the issues often associated with the Flat and VLAN
OpenStack networks. In OpenStack, SDN is a pluggable architecture, which means we are
able to plug in and control various switches, firewalls, and load balancers and achieve various
functions such as Firewall-as-a-Service. All this is defined in software to give you fine-grained
control over your complete cloud infrastructure.

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

62

OpenStack Networking is a replacement for the networking component that is available with
OpenStack Compute itself: nova-network. While nova-network is still seen as more robust
and available for use, many people are deploying OpenStack Networking in production.
Nova-network is expected to be deprecated in an upcoming release of OpenStack.

The following figure shows the OpenStack architecture as described in this chapter.

In this environment, we have a Controller, a Network host, and one or more Compute hosts.
The hosts are all running Ubuntu 14.04 and have a number of network cards installed as
shown in the figure. For the purpose of this chapter, we reference the virtual environment
that accompanies the text and as such an interface eth0 is dedicated to the out-of-band
management for the environment itself. Therefore, it remains unassigned. As you begin to
work with OpenStack in a production environment, the networking requirements will likely
vary, and will need to change the interface assignments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

For consistency of network configuration, each interface has a dedicated network associated
with it. This is described in the following table:

Interface Subnet Purpose
eth1 172.16.0.0/16 This is the management network. This network is for

internal traffic between OpenStack services.
eth2 10.10.0.0/24 This is the tenant Neutron network. This network has the

tunnel endpoints that OpenStack uses when creating
software-defined networks based on VXLAN or GRE. VLAN
networks will also traverse this interface if configured.

eth3 192.168.100.0/24 This is the Public and External Neutron network. Our
client PCs connect to this network and it will become the
Floating IP network so we can route traffic from our client
PCs to our instances.

Installing Neutron and Open vSwitch on a
dedicated network node

To create a SDN layer in OpenStack, we first need to install the software on our network
node. This node will utilize Open vSwitch as our switch that we can use and control when
defining our networks. Open vSwitch (OVS) is a production-quality, multilayer switch. In this
section, we are going to configure the network node and we will use eth2 for creating
Neutron tenant networks and eth3 for creating an externally routable network.

Getting ready…
Ensure that you have a suitable server available for installation of the OpenStack network
components. If you are using the accompanying Vagrant environment, this will be the
network node that we will be using.

Ensure that you are logged in to the network node and that it has Internet access to allow
us to install the required packages in our environment for running OVS and Neutron. If you
created this node with Vagrant, you can execute the following command:

vagrant ssh network

Neutron requires access to a database and message queue. Check
that the pre requisites have been installed by following the instructions
at http://bit.ly/OpenStackCookbookPreReqs.

www.it-ebooks.info

http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Neutron – OpenStack Networking

64

How to do it...
To configure our OpenStack network node, carry out the following steps:

1. When we started our network node, using vagrant, we had to assign the third and
fourth interfaces (eth2 and eth3) an IP address. We no longer want an IP assigned
to this physical interface, but we still want this under the control of Neutron and OVS.
We will then move their corresponding addresses to a bridge. These bridges are
shown in the preceding figure as br-eth2 and br-ex.

2. Use the following commands to remove these IPs from our interfaces on the Network
virtual machine created by Vagrant:
sudo ifconfig eth2 down

sudo ifconfig eth2 0.0.0.0 up

sudo ip link set eth2 promisc on

sudo ifconfig eth3 down

sudo ifconfig eth3 0.0.0.0 up

sudo ip link set eth3 promisc on

If you are in a virtual environment, you need to ensure that your
virtualization software is configured to allow VMs to enter promiscuous
mode. Your virtualization software vendor documentation will provide
guidance on how to do this.
On a physical server running Ubuntu, we configure this in our /etc/
network/interfaces file as follows:

auto eth2
iface eth2 inet manual
 up ip link set $IFACE up
 down ip link set $IFACE down
auto eth3
iface eth3 inet manual
 up ip link set $IFACE up
 down ip link set $IFACE down

3. We then update the packages installed on the node using the following commands:
sudo apt-get update

sudo apt-get upgrade

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

4. Next, we install the kernel headers package as the installation will compile some new
kernel modules:
sudo apt-get install linux-headers-`uname -r`

5. We need to install some supporting applications and utilities using the following
commands:
sudo apt-get install vlan bridge-utils dnsmasq-base \

 dnsmasq-utils ipset python-mysqldb ntp

6. We are now ready to install Open vSwitch:
sudo apt-get install openvswitch-switch \

 openvswitch-datapath-dkms

7. After this has installed and configured some kernel modules, we can start our OVS
service with the following command:
sudo service openvswitch-switch start

8. Now we will proceed to install the Neutron components that run on this node: the
Neutron DHCP Agent, the Neutron L3 Agent, the Neutron OVS Plugin, and the Neutron
ML2 Plugin. The commands are as follows:

sudo apt-get install neutron-dhcp-agent \

 neutron-l3-agent neutron-plugin-openvswitch-agent \

 neutron-plugin-ml2

How it works...
We have completed the installation of the packages on a new node in our environment that
runs the software networking components of our SDN environment. This includes the OVS
service through the ML2 Neutron plugin system and various Neutron components that interact
with this. While we have used OVS in our example, there are many vendor plugins that include
Nicira and Cisco UCS/Nexus among others. More details on the plugins that Neutron supports
can be found at https://wiki.openstack.org/wiki/Neutron.

First, we configured our interface on this switch node that will serve as our tenant Neutron
and External networks. The External network in OpenStack terms is often referred to as
the Provider Network. On a physical server in a datacenter, this externally bridged interface
(br-ex) will be connected to the network that routes to the rest of our physical servers. The
assignment of this network is described in the recipe Creating an external Floating IP Neutron
network. Both of the interfaces used by Neutron are created without an IP address so that
our OpenStack environment can control this by bridging new networks to it. We assign IP
addresses to the bridges themselves to create tunnels between these IP endpoints that have
overlay networks created on them. It is these networks created within the tunnels that our
instances get attached to in OpenStack.

www.it-ebooks.info

https://wiki.openstack.org/wiki/Neutron
http://www.it-ebooks.info/

Neutron – OpenStack Networking

66

A number of packages were installed on this network node. The list of packages that we
specify for installation (excluding dependencies) is as follows:

Operating System linux-headers-`uname -r`

Generic Networking Components vlan

bridge-utils

dnsmasq-base

dnsmasq-utils

Open vSwitch openvswitch-switch

openvswitch-agent

Neutron neutron-dhcp-agent

neutron-l3-agent

neutron-plugin-ml2

neutron-plugin-openvswitch

neutron-plugin-openvswitch-agent

Configuring Neutron and Open vSwitch
Configuration of OVS and Neutron involves running OVS commands to configure the software
switch and a number of configuration files for Neutron. For this section, we are configuring
the network node. We will be using eth2 for creating Neutron tenant networks and eth3 for
creating an externally routable network.

Getting ready
Ensure that you have a suitable server available for installation of the OpenStack network
components. If you are using the accompanying Vagrant environment, this will be the
network node that we will be using.

Ensure that you are logged in to the network node and it has the required packages in our
environment for running OVS and Neutron. If you created this node with Vagrant, you can
execute the following command:

vagrant ssh network

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

How to do it...
To configure OVS and Neutron on our OpenStack network node, carry out the following steps:

1. With the installation of the required packages complete, we can now configure
our environment. To do this, we first configure our OVS switch service. We need to
configure a bridge that we will call br-int. This is the integration bridge that glues
our bridges together within our SDN environment. The command is as follows:
sudo ovs-vsctl add-br br-int

2. We now configure the Neutron Tenant tunnel network bridge, which will allow us to
create GRE and VXLAN tunnels between our Compute hosts and network node to
give us our Neutron network functionality within OpenStack. This interface is eth2
so we need to configure a bridge called br-eth2 within OVS as follows:
sudo ovs-vsctl add-br br-eth2

sudo ovs-vsctl add-port br-eth2 eth2

3. We now assign the IP address that was previously assigned to our eth3 interface to
this bridge:
sudo ifconfig br-eth2 10.10.0.201 netmask 255.255.255.0

This address is on the network that we will use to create the GRE and
VXLAN Neutron tunnel mesh networks. Instances within OpenStack
will attach to the OpenStack created networks encapsulated on this
network. We assigned this range as 10.10.0.0/24, as described in
the vagrant file:
network_config.vm.network :hostonly, "10.10.0.201",
:netmask => "255.255.255.0"

4. Next add an external bridge that is used on our external network. This will be used to
route traffic to/from the outside of our environment and onto our SDN network:
sudo ovs-vsctl add-br br-ex

sudo ovs-vsctl add-port br-ex eth3

5. We now assign the IP address that was previously assigned to our eth3 interface
to this bridge:
sudo ifconfig br-ex 192.168.100.201 netmask 255.255.255.0

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

68

This address is on the network that we will use to access instances
within OpenStack. We assigned this range as 192.168.100.0/24,
as described in the vagrant file:
network_config.vm.network :hostonly,
"192.168.100.201", :netmask => "255.255.255.0"

6. We need to ensure that we have set the following in /etc/sysctl.conf:
net.ipv4.ip_forward=1
net.ipv4.conf.all.rp_filter=0
net.ipv4.conf.default.rp_filter=0

7. To pick up these system changes in this file, run the following command:
sysctl -p

8. We now need to configure the backend database store, so we first create the
neutron database in MariaDB. We do this as follows (where we have a user in
MariaDB called root, with password openstack, that is able to create databases):
MYSQL_ROOT_PASS=openstack
mysql -uroot -p$MYSQL_ROOT_PASS -e "CREATE DATABASE \
 neutron;"

9. It is good practice to create a user that is specific to our OpenStack Networking
service, so we create a neutron user in the database as follows:
MYSQL_NEUTRON_PASS=openstack
mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
neutron.* TO 'neutron'@'localhost' IDENTIFIED BY \
'$MYSQL_KEYSTONE_PASS';"
mysql -uroot -p$MYSQL_ROOT_PASS -e "GRANT ALL PRIVILEGES ON \
neutron.* TO 'neutron'@'%' IDENTIFIED BY '$MYSQL_NEUTRON_PASS';"

10. Next we will edit the Neutron configuration files. There are a number of these to edit
on our network node. The first is the /etc/neutron/neutron.conf file. Edit this
file and insert the following content:
[DEFAULT]
verbose = True
debug = True
state_path = /var/lib/neutron
lock_path = $state_path/lock
log_dir = /var/log/neutron

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

use_syslog = True
syslog_log_facility = LOG_LOCAL0

bind_host = 0.0.0.0
bind_port = 9696

Plugin
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True

auth
auth_strategy = keystone

RPC configuration options. Defined in rpc __init__
The messaging module to use, defaults to kombu.
rpc_backend = neutron.openstack.common.rpc.impl_kombu

rabbit_host = 172.16.0.200
rabbit_password = guest
rabbit_port = 5672
rabbit_userid = guest
rabbit_virtual_host = /
rabbit_ha_queues = false

===== Notification System Options ==========
notification_driver = neutron.openstack.common.notifier.rpc_
notifier

[agent]
root_helper = sudo

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = neutron
admin_password = neutron
insecure = True

[database]
connection = mysql://neutron:openstack@172.16.0.200/neutron

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

70

As we are using self-signed SSL certificates, we set insecure = True.
In a production environment, you will want to obtain proper SSL certificates
and set insecure = False.

11. After this, we edit the /etc/neutron/l3_agent.ini file with the following
content:
[DEFAULT]
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver
use_namespaces = True

12. Locate the /etc/neutron/dhcp_agent.ini file and insert the following content:
[DEFAULT]
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver
dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq
use_namespaces = True
dnsmasq_config_file = /etc/neutron/dnsmasq-neutron.conf

13. Create a file called /etc/neutron/dnsmasq-neutron.conf and add in the
following content to alter the maximum transmission unit (MTU) of our Neutron
Tenant interface of our guests:
To allow tunneling bytes to be appended
dhcp-option-force=26,1400

14. After this, we edit the /etc/neutron/metadata_agent.ini file to insert
the following content:
[DEFAULT]
auth_url = https://192.168.100.200:5000/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_user = neutron
admin_password = neutron
nova_metadata_ip = 172.16.0.200
metadata_proxy_shared_secret = foo
auth_insecure = True

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

15. The last Neutron service file we need to edit is the /etc/neutron/plugins/ml2/
ml2_conf.ini file. Insert the following content:
[ml2]
type_drivers = gre,vxlan
tenant_network_types = vxlan
mechanism_drivers = openvswitch

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ml2_type_vxlan]
vxlan_group =
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
vxlan_group =
local_ip = 10.10.0.201
l2_population = True

[agent]
tunnel_types = vxlan
vxlan_udp_port = 4789

[ovs]
local_ip = 10.10.0.201
tunnel_type = vxlan
enable_tunneling = True
[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

16. With our environment and switch configured, we can restart the relevant services to
pick up the changes:

sudo service neutron-plugin-openvswitch-agent restart

sudo service neutron-dhcp-agent restart

sudo service neutron-l3-agent restart

sudo service neutron-metadata-agent restart

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

72

How it works...
We completed the configuration of a new node in our environment that runs the software
networking components of our SDN environment.

Once we installed our applications and service dependencies and started the services,
we configured our environment by assigning a bridge that acts as the integration bridge
that internally bridges our instances with the rest of the network. It also connects bridges
to our interfaces on the Tenant and Provider networks.

We then edit a number of files to get Neutron up-and-running in our environment. The first is
the /etc/neutron/neutron.conf file. This is the main configuration file for our Neutron
services. In this file, we define how Neutron is configured and what components, features,
and plugins should be used.

In the /etc/neutron/l3_agent.ini file, we specify that we are allowing tenants to create
overlapping IP ranges (use_namespaces = True). This means that Tenant A users can
create and use a private IP CIDR that also exists within Tenant B. We also specify that we are
to use OVS to provide L3 routing capabilities.

The /etc/neutron/dhcp_agent.ini file specifies that we are going to use Dnsmasq
as the service for DHCP within our environment. We also reference the /etc/neutron/
dnsmasq-neutron.conf file, which allows us to pass extra options to Dnsmasq when it
starts up processes for that network. We do this so we can specify an MTU of 1400 that gets
set on the instance network interfaces. This is because the default of 1500 conflicts with the
extra bytes that tunneling adds to the packets and its inability to handle fragmentation. By
lowering the MTU, all the normal IP information plus the extra tunneling information can be
transmitted at once without fragmentation.

The /etc/neutron/metadata_agent.ini file notifies Neutron and our instances where
to find the metadata service. It points to our controller node and ultimately the nova API
service. Here, we set a secret key as described in the metadata_proxy_shared_secret
= foo line that matches the same random keyword that we will eventually configure in /
etc/nova/nova.conf on our controller node: neutron_metadata_proxy_shared_
secret=foo.

The last configuration file, /etc/neutron/plugins/ml2/ml2_conf.ini, configures
the L2 plugins within our environment and describes our L2 capabilities. The configuration
options are as follows:

[ml2]

type_drivers = gre,vxlan

tenant_network_types = vxlan

mechanism_drivers = openvswitch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

We're configuring our networking type to be either Generic Routing Encapsulation (GRE) or
Virtual eXtensible LAN (VXLAN) tunnels. This allows our SDN environment to capture a wide
range of protocols over the tunnels we create.

We specify that VXLAN tunnels are to be created when a non-admin user creates their
own private Neutron networks. An admin user is able to specify GRE as an option on the
command line:

[ml2_type_gre]

tunnel_id_ranges = 1:1000

This specifies that, when a user specifies a private Neutron tenant network without specifying
an ID range for a GRE network, an ID is taken from this range. OpenStack ensures that each
tunnel created is unique. The code is as follows:

[ml2_type_vxlan]
vxlan_group =
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
vxlan_group =
local_ip = 10.10.0.201
[agent]
tunnel_types = vxlan
vxlan_udp_port = 4789

The preceding sections describe our VXLAN options. In the same way as for GRE, we have an
endpoint IP that is the IP assigned to the interface that we want tunneled traffic to flow over,
and we specify the valid vxlan IDs to use within our environment. The code is as follows:

[ovs]
local_ip = 10.10.0.201
tunnel_type = gre
enable_tunneling = True

The preceding section describes the options to pass to OVS, and details our tunnel
configuration. Its endpoint address is 10.10.0.201 and we're specifying the tunnel
type GRE to be used. The code is as follows:

[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

The preceding code tells Neutron to use IPtables rules when creating security groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

74

Note that we have added a line to our keystone reference lines that says
insecure = True. This is because our environment uses self-signed
certificates and would cause SSL errors that are ignored with this setting.

Installing and configuring the Neutron API
service

The Neutron service provides an API for our services to access and define our software-
defined networking. In our environment, we install the Neutron service on our controller
node alongside our other API services such as Glance and Keystone.

Getting ready
Ensure you have a suitable server available for installation of the OpenStack network
components. If you are using the accompanying Vagrant environment, this will be the
controller node that we will be using.

Ensure you are logged in to the controller node. If you created this node with Vagrant,
you can execute the following command:

vagrant ssh controller

Neutron requires access to a database and message queue. Check that
the pre requisites have been installed by following the instructions at
http://bit.ly/OpenStackCookbookPreReqs.

How to do it...
To configure our OpenStack Controller node for Neutron, carry out the following steps:

1. First update the packages installed on the node:
sudo apt-get update

sudo apt-get upgrade

2. We are now ready to install the Neutron service and the ML2 plugin using the
following commands:
sudo apt-get install neutron-server \

 neutron-plugin-ml2 ntp

www.it-ebooks.info

http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Chapter 3

75

3. Next we will edit the Neutron configuration files. As we are just providing the Neutron
API service, we first need to configure the service in the /etc/neutron/neutron.
conf file. Edit this file to insert the following contents that match the configuration
found on our network node:
[DEFAULT]
verbose = True
debug = True
state_path = /var/lib/neutron
lock_path = $state_path/lock
log_dir = /var/log/neutron
use_syslog = True
syslog_log_facility = LOG_LOCAL0

bind_host = 0.0.0.0
bind_port = 9696
Plugin
core_plugin = ml2
service_plugins = router
allow_overlapping_ips = True

auth
auth_strategy = keystone

RPC configuration options. Defined in rpc __init__
The messaging module to use, defaults to kombu.
rpc_backend = neutron.openstack.common.rpc.impl_kombu

rabbit_host = 172.16.0.200
rabbit_password = guest
rabbit_port = 5672
rabbit_userid = guest
rabbit_virtual_host = /
rabbit_ha_queues = false

===== Notification System Options ==========
notification_driver = neutron.openstack.common.notifier.rpc_
notifier

======== neutron nova interactions ==========
notify_nova_on_port_status_changes = True
notify_nova_on_port_data_changes = True
nova_url = http://172.16.0.200:8774/v2
nova_region_name = RegionOne

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

76

nova_admin_username = nova
nova_admin_tenant_name = service
nova_admin_password = nova
nova_admin_auth_url = https://192.168.100.200:35357/v2.0
nova_ca_certificates_file = /etc/ssl/certs/ca.pem
[agent]
root_helper = sudo

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = neutron
admin_password = neutron
insecure = True

[database]
connection = mysql://neutron:openstack@172.16.0.200/neutron

4. We then need to edit the /etc/neutron/plugins/ml2/ml2_conf.ini file
to have the following content that matches the network node's configuration for
consistency (except the local_ip option):
[ml2]
type_drivers = gre,vxlan
tenant_network_types = vxlan
mechanism_drivers = openvswitch

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ml2_type_vxlan]
vxlan_group =
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
vxlan_group =
local_ip =
[agent]
tunnel_types = vxlan
vxlan_udp_port = 4789

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

77

[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

5. After these files have been configured correctly, we run the following command to
ensure our Neutron database is at the correct level for the version of OpenStack we
are using:
sudo neutron-db-manage \

 --config-file /etc/neutron/neutron.conf \

 --config-file /etc/neutron/plugins/ml2/ml2_conf.ini \

 upgrade juno

6. At this stage, we configure Nova to use Neutron. Nova component installation is
covered in the next chapter, but it is shown here for your convenience. After the Nova
components have been installed, configure the /etc/nova/nova.conf file to tell
the OpenStack Compute components to utilize Neutron. Add the following lines under
[Default] in our /etc/nova/nova.conf file:
Network settings
network_api_class=nova.network.neutronv2.api.API
neutron_url=http://172.16.0.200:9696/
neutron_auth_strategy=keystone
neutron_admin_tenant_name=service
neutron_admin_username=neutron
neutron_admin_password=neutron
neutron_admin_auth_url=https://192.168.100.200:35357/v2.0
neutron_ca_certificates_file=/etc/ssl/certs/ca.pem
libvirt_vif_driver=nova.virt.libvirt.vif.
LibvirtHybridOVSBridgeDriver
linuxnet_interface_driver=nova.network.linux_net.
LinuxOVSInterfaceDriver
firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver
service_neutron_metadata_proxy=true
neutron_metadata_proxy_shared_secret=foo

7. Using the following command, restart our Neutron services running on this node to
pick up the changes:
sudo service neutron-server restart

8. When Nova has been installed, restart the Nova services running on this node to pick
up the changes in the /etc/nova/nova.conf file:

ls /etc/init/nova-* | cut -d '/' -f4 | cut -d '.' -f1 | while read
S; do sudo stop $S; sudo start $S; done

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

78

How it works...
Configuring our Neutron API service on the controller node is very straightforward with
the right information at hand. We install a couple of required packages.

Use the following commands to install the Neutron package:

neutron-server

neutron-plugin-ml2

Once the Neutron package is installed, we configure the /etc/neutron/neutron.conf
file that matches our network node config, with only one new section: the neutron nova
interaction section. Here, we ensure correct settings to allow nova to interoperate with
Neutron. We also configure the ML2 plugin file that also matches our network node,
but we can omit the OVS section because it is surplus on our controller node.

We then run a command to ensure that our Neutron database has the correct rows and
columns for use with the OpenStack Juno release.

Finally, we configure /etc/nova/nova.conf, which is the most important configuration
file for our OpenStack Compute services:

 f network_api_class=nova.network.neutronv2.api.API: This tells our
OpenStack Compute service to use Neutron Networking.

 f neutron_url=http://172.16.0.200:9696/: This is address of our Neutron
Server API (running on our controller node).

 f neutron_auth_strategy=keystone: This tells Neutron to utilize the OpenStack
Identity and Authentication service, Keystone.

 f neutron_admin_tenant_name=service: This is the name of the service tenant
in Keystone.

 f neutron_admin_username=neutron: This is the username that Neutron uses for
authentication in Keystone.

 f neutron_admin_password=neutron: This is the password that Neutron uses to
authenticate with in Keystone.

 f neutron_admin_auth_url=https://172.16.0.200:35357/v2.0:
This is the address of our Keystone service.

 f neutron_ca_certificates_file = /etc/ssl/certs/ca.pem:
This references the Certificate Authority file that we generated in Chapter 1,
Keystone – OpenStack Identity Service, to allow our SSL calls to Keystone to
work correctly without setting an insecure flag.

 f libvirt_vif_driver=nova.virt.libvirt.vif.
LibvirtHybridOVSBridgeDriver: This tells Libvirt to use the OVS Bridge driver.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

 f linuxnet_interface_driver=nova.network.linux_net.
LinuxOVSInterfaceDriver: This is the driver used to create Ethernet devices on
our Linux hosts.

 f firewall_driver=nova.virt.libvirt.firewall.
IptablesFirewallDriver: This is the driver that is used to manage the firewalls.

 f service_neutron_metadata_proxy=true: This allows us to utilize the metadata
proxy service that passes requests from Neutron to the Nova API service.

 f foo: This is the random key we set in order to utilize the proxy service. It must
match on all nodes running this service to ensure a level of security when passing
proxy requests.

neutron_metadata_proxy_shared_secret=foo

See Also
 f Chapter 4, Nova – OpenStack Compute

Creating a tenant Neutron network
Now that we have our OpenStack Network services running, we can use these to create
networks within our OpenStack environment. Networks are created for each tenant and we
can use these to connect to our VMs. Neutron networks can either be private or shared. When
a Neutron network is private, only the operators and instances of that tenant can utilize these
networks. When they are marked as shared, all instances can attach to this shared network
so it is important to utilize this shared network feature carefully to ensure security between
tenants. When using shared networks, we implement Security Group rules to ensure the traffic
flow matches our security requirements.

Getting ready
Ensure you have a suitable client available for using Neutron. If you are using the
accompanying Vagrant environment, you can use the controller node. This has the
python-neutronclient package that provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

80

Ensure you have the following credentials set (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

At this stage, Keystone should be installed and configured correctly.
See the Installing the OpenStack Identity Service recipe in Chapter 1,
Keystone – OpenStack Identity Service, for more information.

How to do it...
To create a private Neutron network for a particular tenant, follow these steps:

1. We first need to get the tenant id that we can reference when creating the network
information for that particular tenant. To do so, issue the following command:
TENANT_ID=$(keystone tenant-list \

 | awk '/\ cookbook\ / {print $2}')

2. We then use this value to create the layer 2 network for this tenant:
neutron net-create \

 --tenant-id ${TENANT_ID} \

 cookbook_network_1

3. With the network in place, we now allocate a subnet to this network using the CIDR
format (10.200.0.0/24):
neutron subnet-create \

 --tenant-id ${TENANT_ID} \

 --name cookbook_subnet_1 \

 cookbook_network_1 \

 10.200.0.0/24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

4. We will now create a router on this network that we can use to act as the
default gateway for our instances. Adding routers is optional—they are a design
consideration, allowing you to route from one network that we create to another.
This option avoids multihoming instances with multiple interfaces and networks.
This router will be used to allow us to assign an IP from our physical host range
that provides access to our instances:
neutron router-create \

 --tenant-id ${TENANT_ID} \

 cookbook_router_1

5. We add this router to our subnet:

neutron router-interface-add \

 cookbook_router_1 \

 cookbook_subnet_1

How it works...
We created a network with a defined subnet that our VMs utilize when they start up.
To create a network, the following syntax is used:

neutron net-create \

 --tenant-id TENANT_ID \

 NAME_OF_NETWORK

To create a subnet, the following syntax is used:

neutron subnet-create \

 --tenant-id TENANT_ID \

 --name NAME_OF_SUBNET \

 NAME_OF_NETWORK \

 CIDR

Routers are optional on networks and the function is to route traffic from one subnet to
another. In a Neutron SDN, this is no different. Layer 3 (L3) Routers allow you to configure
gateways and routes to other networks on-demand. If we only require our instances to
communicate between each other on the same subnet, there is no need to have a router
because there will be no other network that needs to be routed to or from. The syntax to
create routers is as follows:

neutron router-create \

 --tenant-id TENANT_ID \

 NAME_OF_ROUTER

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

82

The syntax to add the router to our Subnet (used to allow routes from one network
(physical or software-defined)) is as follows:

neutron router-interface-add \

 ROUTER_NAME \

 SUBNET_NAME

We can then add further subnets using the preceding syntax to this router and allow traffic to
flow between instances on different OpenStack Neutron-created subnets.

Deleting a Neutron network
The steps to remove a Neutron network are similar to the set of steps we followed to create
the network.

Getting ready
Ensure that you have a suitable client available for using Neutron. If you are using the
accompanying Vagrant environment, you can use the controller node. This has the
python-neutronclient package that provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have the following credentials set (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
To delete a Neutron network for a particular tenant, follow these steps:

1. List the networks with the following command:
neutron net-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

You will get the following output:

2. To list the subnets, issue the following command:
neutron subnet-list

You will get the following output:

3. To delete a network and subnets, ensure that there are no instances and
services using the networks and subnets you are about to delete. To check
which ports are connected to your network, query the port list in Neutron using
the following command:
neutron port-list

You will get the following output:

4. You can also look at the running instances and the networks that they are attached to
by issuing the following command:
nova list

You will get the following output:

You can see that we have a cookbook_network_1 instance on the network that we
want to delete.

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

84

5. You need to delete any instances that are running on this network, for example:
nova delete test1

6. Now that you have stopped the instances that you want to remove, you can remove
any router interfaces attached to this network with the following commands:
ROUTER_ID=$(neutron router-list \

 | awk '/\ cookbook_router_1\ / {print $2}')

SUBNET_ID=$(neutron subnet-list \

 | awk '/\ cookbook_subnet_1\ / {print $2}')

neutron router-interface-delete \

 ${ROUTER_ID} \

 ${SUBNET_ID}

7. With the router interface removed, you can proceed to delete the subnet with the
following command:
neutron subnet-delete cookbook_subnet_1

8. With the subnet removed, you can delete the network with the following command:

neutron net-delete cookbook_network_1

How it works...
In the preceding steps, we performed a series of steps to remove a network. This involves
first removing any (virtual) devices attached to this network such as instances and routers,
removing the subnet that has been attached to that network, and removing the underlying
network itself. Let's see the net list:

 f To list a nework, use the following command:
neutron net-list

 f To list a subnet, use the following command:
neutron subnet-list

 f The following command lists used Neutron Ports:
neutron port-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

 f To remove a router interface from a subnet, use the following syntax:
neutron router-interface-delete \

 ROUTER_ID \

 SUBNET_ID

 f To remove a subnet, use the following syntax:
neutron subnet-delete NAME_OF_SUBNET

 f To remove a network, use the following syntax:
neutron subnet-delete NAME_OF_NETWORK

Creating an external floating IP Neutron
network

In Neutron, it is easy to create many private networks that allow communication between your
instances. To allow access from your client to these, though, we must create a router on the
provider network (an external network) that is routed into our OpenStack environment. This
provider network allows us to allocate floating addresses to our instances.

Getting ready
Ensure that you have a suitable client available for using Neutron. If you are using the
accompanying Vagrant environment, you can use the controller node. This has the
python-neutronclient package installed that
provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have the following credentials set (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

86

How to do it...
To create an external router on our Neutron network for a particular tenant, we need to have
tenant admin privileges. We will first create a public network in our admin tenant and then
attach this to a tenant's router that requires external access to our instances. This will be
achieved by assigning of a floating IP to the instance.

Once our environment has been set correctly with admin privileges, follow these steps:

1. We first need to get the service tenant ID that we can reference when creating the
public shared network. To do so, issue the following command:
ADMIN_TENANT_ID=$(keystone tenant-list \

 | awk '/\ service\ / {print $2}')

The use of the service tenant is not a strict requirement. We are
referring to a tenant outside all our private tenants that is under the
control of our admin user only.

2. We can now create a new public network, which we will call floatingNet, to provide
our external routing capability. To do this, we issue the following commands:
neutron net-create \

 --tenant-id ${ADMIN_TENANT_ID} \

 --router:external=True \

 floatingNet

3. We then create our external/floating range on this network. In this example, this
external subnet is 192.168.100.0/24. To do this, we specify a n address range
that we will manually assign to instances as floating address, ensuring that the
allocation pool (the list of allowed IPs) does not conflict with any IPs used currently
in our physical environment:
neutron subnet-create \

 --tenant-id ${ADMIN_TENANT_ID} \

 --name floatingSubnet \

 --allocation-pool \

 start=192.168.100.10,end=192.168.100.20 \

 --enable_dhcp=False \

 floatingNet \

 192.168.100.0/24

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

4. We now need to set a gateway on our Cookbook router (described in step 4 of the
Creating a tenant Neutron network recipe) to this floating network using the following
commands:
neutron router-gateway-set \

 cookbook_router_1 \

 floatingNet

5. With the networking elements complete, we can now utilize this floating network. To
do so, we assign a floating IP to our running instance, so first we need to see what IP
has been assigned to our instance on the cookbook_network_1 network by issuing
a nova list command:
nova list

You will get the following output:

6. We also gather some information about the routers and Neutron network ports used
in our environment. To collect information about our cookbook_router_1 network,
issue the following command:
neutron router-show cookbook_router_1

You will get the following output. The information we need is the router ID and the
Network ID:

7. To assign a floating IP to the instance attached to this port, we issue the following
command that first creates a new floating IP available for our use from the
floatingNet network:
neutron floatingip-create \

 --tenant-id ${ADMIN_TENANT_ID} \

 floatingNet

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

88

You will get the following output:

8. We assign this floating IP to the port that our instance is attached to. This information
can be found by interrogating the list of ports in use on the router:
neutron port-list \

 --router_id=e63fe19d-7628-4180-994d-72035f770d77

You will get the following output and the information you need matches the IP
address listed in the nova list command. In this case, we need the port ID
matching the IP address 10.200.0.2, as this is assigned to our instance:

9. In the preceding output, the instance with the IP address 10.200.0.2 is attached
to port ID 3e5a298b-5ca8-4484-b473-fa71410fd31c. When we created the
floating IP, this had an ID of 48e2ca77-af4d-44b3-8c10-b6574d94d6ce. We
associate this floating IP ID with the instance port ID to assign the floating IP to the
instance using the following commands:
neutron floatingip-associate \

 48e2ca77-af4d-44b3-8c10-b6574d94d6ce \

 3e5a298b-5ca8-4484-b473-fa71410fd31c

You will get the message Associated floating IP 48e2ca77-af4d-44b3-
8c10-b6574d94d6ce when successful.

You can view a list of available floating IP addresses and IDs with the
neutron floatingip-list command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

10. We are now able to access our instance using the assigned Floating IP address of
192.168.100.11, which had limited access from our network node:

How it works...
We have created a network that allows us to assign floating addresses to our instances.
This subnet is routable from the rest of the network outside OpenStack, or a public address
space directly on the Internet. To do this, we first create a network in an admin tenant that
can have a gateway set by using the --router:external=True flag to our neutron net-
create command:

neutron net-create \

 --tenant-id ADMIN_TENANT_ID \

 --router:external=True \

 NAME_OF_EXTERNAL_NETWORK

As we will be configuring addresses manually to allow us to assign floating IP addresses to
instances, we specify a subnet where we define the range of IP addresses but disable DHCP:

neutron subnet-create \

 --tenant-id ADMIN_TENANT_ID \

 --name NAME_OF_SUBNET \

 --allocation-pool start=IP_RANGE_START,end=IP_RANGE_END \

 --enable_dhcp=False \

 EXTERNAL_NETWORK_NAME \

 SUBNET_CIDR

We assign a router gateway to the network by issuing the following command on an existing
router on our network. This router then provides the appropriate NAT when we assign this to
an instance on the private network connected to that router:

neutron router-gateway-set \

 ROUTER_NAME \

 EXTERNAL_NETWORK_NAME

Once configured, we can now allocate a floating IP address from this new range to our running
instance. To do this, we run the following command:

nova list

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

90

Get the IP address of our running instance using the following command:

neutron router-show ROUTER_NAME

To get the ports in use on our router, use the following command:

neutron port-list \

 --router_id=ROUTER_ID

To create a floating IP for our use from our external network, use the following command
(note the tenant ID doesn't have to be the admin tenant as used in the example):

neutron floatingip-create \

 --tenant-id=TENANT_ID \

 EXTERNAL_NETWORK_NAME

To associate the Floating IP to the instance, we use the port ID associated with the instance
(as shown in the port listing on our router):

neutron floatingip-associate \

 FLOATING_IP_ID \

 VM_PORT_ON_ROUTER

At this point, we can access this instance from our physical network on this floating
IP address.

Using Neutron networks for different
purposes

In Neutron, it is easy to create many private networks that allow communication between your
instances. Sometimes, you might require certain features of a particular network such as
when utilizing a dedicated 10G interface; creating a VLAN network to operate with a physical
network device, for example, a load balancer; or a SQL Server cluster. With Neutron's SDN, an
administrator can set up networks to cater for these purposes.

The following figure shows an example environment with another interface that we can
use within Neutron. The physical SQL servers in this environment could be on a Subnet of
192.168.200.0/24 on VLAN 200. To use to this network from within OpenStack, we can
specify another interface, eth4, that will be used to connect OpenStack Virtual instances to
physical servers using this same subnet and VLAN.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

The network on eth4 can be configured for a number of different VLANs as you would expect
on this type of network.

Getting ready
Ensure that you are logged in to both the Network and Compute nodes, as we will be
configuring a new interface for use with OpenStack Networking on each. If you created
these nodes with Vagrant, you can execute the following command:

vagrant ssh network

vagrant ssh compute

As we will be utilizing the Neutron client too, log in to the controller node (or a suitable
computer that has the python-neutronclient available). If you created these nodes
with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

92

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
An example environment might have a tenant Neutron network configured such that the
tunneling occurs over 1G interfaces; in our environment, this could be our eth2 bridge,
br-eth2. The environment can also utilize any number of network interfaces that might
route to different devices or be cabled up to different segments of the network. In OpenStack
networking, we create new bridges that Neutron knows about that an administrator can use
when creating networks.

As an administrator of the tenant, carry out the following instructions to set up this new
interface bridge and specify a Neutron network, of type VLAN, that allows us to communicate
with the physical servers on 192.168.200.0/24:

1. We first configure this new interface on both the network and compute nodes:
sudo ifconfig eth4 down

sudo ifconfig eth4 0.0.0.0 up

sudo ip link set eth4 promisc on

On a physical server running Ubuntu, we would configure this in
our /etc/network/interfaces file as follows:

auto eth4
iface eth4 inet manual
 up ip link set $IFACE up
 down ip link set $IFACE down

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

2. We then create a new bridge in OVS that includes the new eth4 interface.
We do this on all Compute and network nodes in our environment using
the following commands:
sudo ovs-vsctl add-br br-eth4

sudo ovs-vsctl add-port br-eth4 eth4

3. As we are using VLANs for this example, we need to configure our ML2 Plugin
configuration to be aware of the interface(s) used for VLAN networks. To do so,
edit the /etc/neutron/plugins/ml2/ml2_conf.ini file so it has the
following content:
[ml2]
type_drivers = gre,vxlan,vlan
tenant_network_types = vxlan
mechanism_drivers = openvswitch,l2population

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ml2_type_vxlan]
vxlan_group =
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
vxlan_group =
local_ip = 10.10.0.202

[agent]
tunnel_types = vxlan
vxlan_udp_port = 4789

[ml2_type_vlan]
network_vlan_ranges = physnet4:100:300

[ovs]
bridge_mappings = physnet4:br-eth4
[securitygroup]
firewall_driver = neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

94

4. We can use the new bridge (via bridge_mappings of physnet4) when
creating a VLAN network. In this example, the SQL servers exist on the subnet
192.168.200.0/24 with VLAN ID 200. To create a Neutron network with these
details, we use the following commands:
neutron net-create sqlServerNet \

 --provider:physical_network=physnet4 \

 --provider:network_type=vlan \

 --provider:segmentation_id=200 \

 --shared

5. We can now use this network to create the subnet details. To do this, we will use
a segment of the subnet 192.168.200.0/24 for use by OpenStack by restricting
the DHCP range to avoid conflict with any physical servers already on that subnet.
To do so, we issue the following commands:

neutron subnet-create sqlServerNet 192.168.200.0/24 \
 --name sqlServerSubnet \
 --allocation-pool start=192.168.200.201,end=192.168.200.240 \

 --gateway 192.168.200.1

We can now spin up OpenStack instances using this network, defined as sqlServerNet on the
subnet 192.168.200.0/24, that can communicate with physical servers on the same subnet.

How it works...
We created another interface bridge on our Compute and network nodes that we can
then use when creating VLAN Neutron networks. By using VLAN networks in this way
with OpenStack, we can set up communication between our OpenStack Compute cloud
environment and physical servers on that same Subnet and VLAN.

To do this, we ensured that our new eth4 interface was set to promiscuous mode and we
created a bridge called br-eth4 within OVS. This bridge is then referenced in the /etc/
neutron/plugins/ml2/ml2_conf.ini file within the [ovs] section, as shown here:

[ovs]
bridge_mappings = physnet4:br-eth4

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

We assign a mapping between that bridge and a name we can use on the neutron command
line when specifying it for use, as shown in the following neutron net-create command:

neutron net-create sqlServerNet \

 --provider:physical_network=physnet4 \

 --provider:network_type=vlan \

 --provider:segmentation_id=200 \

 --shared

As you can see, we also specify that we are creating a network of type vlan and we are
assigning the VLAN ID 200.

Finally, as we are creating this as an admin user, the --shared flag allows us to ensure that
this network is available to all tenants.

With this network in place, we assign the relevant subnet associated with the VLAN and
restrict the DHCP range to avoid conflict with the other part of this subnet. We do this within
the neutron subnet-create command by specifying the --allocation-pool flag as shown here:

neutron subnet-create sqlServerNet 192.168.200.0/24 \
 --name sqlServerSubnet \
 --allocation-pool start=192.168.200.201,end=192.168.200.240 \

 --gateway 192.168.200.1

We only allow OpenStack to spin up instances between the IP addresses 192.168.200.201
and 192.168.200.240.

Configuring Distributed Virtual Routers
The OpenStack Juno release comes with a feature that brings closer parity with the legacy
nova-network called Distributed Virtual Routers (DVR). This feature allows L3 Routers to be
distributed across our Compute hosts, in the same way as the nova-network feature, and thus
provide high availability of this important routing feature. The result is that each instance
attaches to the router located on the Compute host, rather than a central point on the network
nodes. This is an acceptable HA failure scenario; if a Compute host fails (and therefore that
router), it only affects the instances running on that Compute host.

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

96

The following figure shows the environment used in this chapter, but our Compute hosts are
now running the L3 Agent. We also utilize the eth3 interface and the external bridge, br-ex,
to our Compute host. This interface wasn't needed in a Legacy L3 Router environment but, for
a DVR-enabled Compute host, we are adding in the capabilities that previously existed only on
our network node. Overall, the result is similar to a network node with additional Compute/
Hypervisor functionality.

Getting ready
To demonstrate the features of DVR, we naturally require more than one Compute host in
our environment. Ensure that you have a second Compute host that has been configured
for Neutron networking. Complete installation instructions for Compute hosts can be found
in the next chapter.

If you are using the accompanying Vagrant environment, ensure that the second compute
host, compute2, is running in our environment. Edit the Vagrant file, to ensure that
compute2 is available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

Ensure that you are logged in to the network, compute, compute2, and controller
nodes as we will be configuring configuration files for DVR on all of these nodes. If you created
these nodes with Vagrant, you can execute the following commands in separate shells:

vagrant ssh controller

vagrant ssh network

vagrant ssh compute

vagrant ssh compute2

How to do it...
To set up DVR, we make small adjustments in a number of Neutron configuration files in our
environment. These are described in the following sections.

Network node
1. Edit the /etc/neutron/neutron.conf file and specify that we are to use

distributed routers by adding the following lines to the configuration in the
[DEFAULT] section:
router_distributed = True

2. Ensure that the /etc/neutron/l3_agent.ini file has the following content in
the [DEFAULT] section:
[DEFAULT]
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver
use_namespaces = True
agent_mode = dvr_snat
external_network_bridge = br-ex

3. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file to make sure it has
the following content:
[ml2]
type_drivers = gre,vxlan,vlan,flat
tenant_network_types = vxlan
mechanism_drivers = openvswitch,l2population

[ml2_type_gre]
tunnel_id_ranges = 1:1000

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

98

[ml2_type_vxlan]
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
local_ip = 10.10.0.201
l2_population = True

[agent]
tunnel_types = vxlan
l2_population = True
enable_distributed_routing = True
arp_responder = True

[ovs]
local_ip = 10.10.0.201
tunnel_type = vxlan
enable_tunneling = True
l2_population = True
enable_distributed_routing = True
tunnel_bridge = br-tun

[securitygroup]
firewall_driver neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

4. Restart your Neutron services on the network node using the following commands:

sudo service neutron-plugin-openvswitch-agent restart

sudo service neutron-l3-agent restart

The Controller Node
We can now configure the Neutron service on the controller node:

1. Edit the /etc/neutron/neutron.conf file to specify that we will use distributed
routers by adding the following lines to the configuration in the [DEFAULT] section:
router_distributed = True

2. Restart your Neutron API service to pick up this change using the following command:

sudo neutron-server restart

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

Compute nodes
For the Compute nodes, we need to add in an extra service because these nodes will be
routing most of the Neutron traffic instead of the network node:

1. Add the following packages:
sudo apt-get install neutron-plugin-ml2 \

 neutron-plugin-openvswitch-agent \

 neutron-l3-agent \

 neutron-metadata-agent

2. Ensure that you have an external bridge that is used on our external network.
This will be used to route traffic to/from the outside of our environment and
onto our SDN network:
sudo ifconfig eth3 down

sudo ifconfig eth3 0.0.0.0 up

sudo ip link eth3 promisc on

sudo ovs-vsctl add-br br-ex

sudo ovs-vsctl add-port br-ex eth3

3. Assign the IP address that was previously assigned to our eth3 interface to
this bridge:
sudo ifconfig br-ex 192.168.100.202 netmask 255.255.255.0

This address is on the network that we will use to access instances
within OpenStack. We assigned this range as 192.168.100.0/24, as
described in the vagrant file:
network_config.vm.network :hostonly,
"192.168.100.201", :netmask => "255.255.255.0"

4. Edit the /etc/neutron/l3_agent.ini file so it has the following content:
[DEFAULT]
interface_driver = neutron.agent.linux.interface.
OVSInterfaceDriver
use_namespaces = True
agent_mode = dvr
external_network_bridge = br-ex

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

100

5. Edit the /etc/neutron/metadata_agent.ini file so it has the following content:
[DEFAULT]
auth_url = https://192.168.100.200:5000/v2.0
auth_region = RegionOne
admin_tenant_name = service
admin_user = neutron
admin_password = neutron
nova_metadata_ip = 172.16.0.200
auth_insecure = True
metadata_proxy_shared_secret = foo

6. Ensure that the /etc/neutron/plugins/ml2/ml2_conf.ini file has the
following content:
[ml2]
type_drivers = gre,vxlan,vlan,flat
tenant_network_types = vxlan
mechanism_drivers = openvswitch,l2population

[ml2_type_gre]
tunnel_id_ranges = 1:1000

[ml2_type_vxlan]
vni_ranges = 1:1000

[vxlan]
enable_vxlan = True
local_ip = 10.10.0.202
l2_population = True

[agent]
tunnel_types = vxlan
l2_population = True
enable_distributed_routing = True
arp_responder = True

[ovs]
local_ip = 10.10.0.202
tunnel_type = vxlan
enable_tunneling = True
l2_population = True
enable_distributed_routing = True
tunnel_bridge = br-tun

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

[securitygroup]
firewall_driver neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver
enable_security_group = True

7. Stop and start the Neutron L3 Agent service using the following commands:

sudo stop neutron-l3-agent

sudo start neutron-l3-agent

sudo stop neutron-plugin-openvswitch-agent

sudo start neutron-plugin-openvswitch-agent

sudo stop neutron-metadata-agent

sudo start neutron-metadata-agent

How it works...
We modified a typical Neutron installation to add DVR capabilities. This moves L2 Plugin
and L3 Agents to our Compute hosts so that instances running on that Compute host
utilize that L3 router agent as their router, rather than an L3 router running centrally on the
network nodes. We are performing steps similar to the ones we used to set up a network
node, but replicating these steps on our Compute hosts. This makes sense as we're adding
in routing capabilities that were previously possessed only by our Network host in Legacy L3
Routing mode.

The key steps were as follows:

 f Modify the network node's /etc/neutron/l3_agent.ini to include the
following content:
[DEFAULT]
agent_mode = dvr_snat

 f Modify the network node's /etc/neutron/plugins/ml2/ml2_conf.ini
file to include the following lines:
[DEFAULT]
mechanism_drivers = openvswitch,l2population

[agent]
tunnel_types = vxlan
l2_population = True
enable_distributed_routing = True
arp_responder = True

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

102

[ovs]
l2_population = True
enable_distributed_routing = True

 f On the Controller node, edit the /etc/neutron/neutron.conf file that sets
the default mode of created routers so they are always distributed:
[DEFAULT]
router_distributed = True

 f On the Compute nodes, install the following packages:
neutron-plugin-ml2

neutron-plugin-openvswitch-agent

neutron-l3-agent

neutron-metadata-agent

 f Ensure that the external interface, eth3, is enabled. This is then set up as a br-ex
bridge that Neutron can use for External routed networks.

 f These packages were configured on our Computes to match our network node,
with one key difference in the /etc/neutron/l3_agent.ini file (on a network
node only, this line reads agent_mode = dvr_snat):

[DEFAULT]
agent_mode = dvr

Using Distributed Virtual Routers
When we create Neutron routers in DVR mode, the routers are created on our Compute nodes
instead of the network node. This allows for a much more distributed layout of routing,
and prevents bottlenecks through our network nodes. In normal operation, the process
of creating and deleting routers behaves in the same way as for the Legacy mode, but
understanding and troubleshooting them is a little different.

Getting ready
Ensure that you have a suitable client available for using Neutron. If you are using the
accompanying Vagrant environment, you can use the controller node. This has the
python-neutronclient package that provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

Ensure that you have the following credentials set (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
In this section, we will create and view the details of a DVR mode router and see how these
present themselves to our Compute hosts. The steps are as follows:

1. First, create a router using the following command:
neutron router-create cookbook_router_1

You will get the following output:

As you can see in the output, a new distributed field is shown that is
set to True.

2. We can attach any of our networks to this router as we did before:
neutron router-interface-add \

 cookbook_router_1 \

 cookbook_subnet_1

3. We still haven't seen any difference yet between this router and any Legacy routers.
To locate this router, we can use the following command:
neutron l3-agent-list-hosting-router cookbook_router_1

www.it-ebooks.info

http://www.it-ebooks.info/

Neutron – OpenStack Networking

104

You will get the following output:

In the output, you can see that the router is available on our Compute host and not
our network node.

4. In Legacy L3 Routing mode, when we troubleshoot the Namespace of the router,
we had Namespaces of the form qrouter-{netuuid} on our network node.
In DVR, we have this as well as a new fip-{extent-uuid} namespace that we
can use to troubleshoot Floating IP assignments. On the Compute host, issue the
following command:
ip netns list

You will get the following output:

5. We can then use this Namespace to test connectivity to any instances that have
a Floating IP assigned. Assume we have 192.168.100.11 assigned to an instance
running on our Compute host:

ip netns exec fip-ca2fc700-b5e2-4c8b-9fa4-6a80f1174360 ping
192.168.100.11

You will get the following output:

How it works...
We discussed a few steps to highlight the difference when running routers in distributed
mode. By default, due to the setting in distributed /etc/neutron/neutron.conf where we
set router_distributed = True, any routers we normally create will be created on our
distributed Compute hosts. To troubleshoot them, we can connect to our Compute hosts and
view the namespaces created.

www.it-ebooks.info

http://www.it-ebooks.info/

105

4
Nova – OpenStack

Compute

In this chapter, we will cover:

 f Installing OpenStack Compute controller services
 f Installing OpenStack Compute packages
 f Configuring database Services
 f Configuring OpenStack Compute
 f Configuring OpenStack Compute with OpenStack Identity Service
 f Stopping and starting Nova services
 f Installation of command-line tools on Ubuntu
 f Using the command-line tools with HTTPS
 f Checking OpenStack Compute Services
 f Using OpenStack Compute
 f Managing security groups
 f Creating and managing key pairs
 f Launching our first cloud instance
 f Fixing a broken instance deployment
 f Terminating your instances
 f Using live migration
 f Working with nova-schedulers
 f Creating flavors
 f Defining host aggregates

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

106

 f Launching instances in specific Availability Zones
 f Launching instances on specific Compute hosts
 f Removing Nova nodes from a cluster

Introduction
OpenStack Compute, also known as Nova, is the compute component of the open source
cloud operating system, OpenStack. It is the component that allows you to run multiple
instances of multiple types across any number of hosts that run the OpenStack Compute
service, allowing you to create a highly scalable and redundant cloud environment. The open
source project strives to be hardware and hypervisor agnostic. OpenStack Compute powers
some of the biggest compute clouds such as the Rackspace Open Cloud.

This chapter gets you to speed up quickly by giving you the information you need to provide
a cloud environment. At the end of this chapter, you will be able to create and access virtual
machines using the OpenStack tools. The following figure shows the OpenStack architecture
we are working with in this chapter:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

107

We are specifically working with the Compute block of the figure.

Installing OpenStack Compute controller
services

Before we create a server to run the OpenStack Compute services to run our instances,
there are some final services that need be installed on the controller node where the
OpenStack Identity and Image services are running. Separating out controller services from
the Compute nodes allows us to scale our OpenStack environment resources horizontally in
the controller and Compute services.

To do this, we will install some further packages to our controller node that we created
in Chapter 1, Keystone – OpenStack Identity Service; Chapter 2, Glance – OpenStack Image
Service; and Chapter 3, Neutron - OpenStack Networking, currently running Keystone and
Glance. The services are as follows:

 f nova-scheduler: This scheduler picks the server for fulfilling the request to run
the instance.

 f nova-api: This is service requests OpenStack to operate the services within it.
For example, you make a call to this service to start up a new Nova instance.

 f nova-conductor: This is a new service introduced in the Grizzly release to remove
direct database calls by the Compute service.

 f nova-objectstore: This is a file storage service.

 f nova-common: Common Python libraries that underpin all of the OpenStack
environment.

 f nova-cert: This is the Nova certificate management service that is used for
authentication to Nova.

 f ntp: Network Time Protocol is essential in a multi-node environment; the nodes
must have the same time (tolerance is within 5 seconds and outside of this you get
unpredictable results).

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

108

Getting ready
Ensure that you are logged in to the OpenStack controller node. If you used Vagrant to create
this, as described in Chapter 1, Keystone – OpenStack Identity Service, we can access this
with the following command:

vagrant ssh controller

How to do it...
Installation of OpenStack under Ubuntu 14.04 is simply achieved using the apt-get tool,
as the OpenStack packages are available from the Ubuntu Cloud Archive repositories.

We can install the required packages with the following command:

sudo apt-get update

sudo apt-get install nova-api \

 nova-conductor nova-scheduler nova-objectstore

How it works...
Installation of OpenStack Compute controller packages from the Ubuntu Cloud Archive
package repository represents a very straightforward and well-understood way of getting
the latest OpenStack onto our Ubuntu server. This adds a greater level of certainty around
stability and upgrade paths by not deviating away from the main archives.

Installing OpenStack Compute packages
Now that we have a machine for running OpenStack Compute, we can install the appropriate
packages that will allow us to spawn its own virtual machine instances.

To do this, we will create a machine that runs all the appropriate services for running
OpenStack Nova. The services are as follows:

 f nova-compute: This is the main package for running the virtual machine instances.

 f nova-api-metadata: This is the Nova API metadata frontend. It is used when we
are running a multihost nova network in our environment, so our compute instances
can download metadata.

 f nova-compute-qemu: This provides QEMU services on our compute host. It is only
required where hardware virtualization assistance isn’t available (as required to run
OpenStack under VirtualBox).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

109

Getting ready
Ensure that you are logged in to the server that you will install as the Openstack Compute
node. This should be a server running Ubuntu 14.04 LTS, and it should have networking
configured, as shown in the figure in the Introduction section of this chapter.

How to do it...
Once logged in to the node where you plan to install the OpenStack Compute services,
proceed with the following steps:

1. We can install the required packages with the following command:
sudo apt-get update

sudo apt-get install nova-compute \

 nova-api-metadata nova-compute-qemu

Refer to the recipe Configuring Ubuntu Cloud Archive in Chapter 1,
Keystone – OpenStack Identity Service, for instructions on setting up
the Ubuntu Cloud Archive repository on this server.

Once the installation is complete, we need to install and configure ntp as follows:

sudo apt-get install ntp

2. NTP is important in any multinode environment. In the OpenStack environment, it is a
requirement that server times are kept in sync. To do this, we edit /etc/ntp.conf
with the following contents:
Replace ntp.ubuntu.com with an NTP server on your network

server ntp.ubuntu.com

server 127.127.1.0

fudge 127.127.1.0 stratum 10

3. Once NTP has been configured correctly, we restart the service to pick up the change:

sudo service ntp restart

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

110

How it works...
Installation of OpenStack Compute from the Ubuntu Cloud Archive package repository
represents a very straightforward and well-understood way of getting the latest OpenStack
onto our Ubuntu server. This adds a greater level of certainty around stability and upgrade
paths by not deviating away from the main archives.

There’s more...
There are various ways to install OpenStack, from source code building to installation from
packages, but this represents the easiest and most consistent method available. There are
also alternative releases of OpenStack available. By using the Ubuntu Cloud Archive, we are
able to use various releases on our Ubuntu 14.04 LTS platform.

Using an alternative release
If you wish to optionally deviate from stable releases, it is appropriate when you are helping
develop or debug OpenStack or require functionality that is not available in the current
release. To enable different releases, you add different Personal Package Archives (PPA)
to your system. To view the OpenStack PPAs, visit http://wiki.openstack.org/PPAs.
To use them, we first install a prerequisite tool that allows us to easily add PPAs to our system,
as follows:

sudo apt-get update

sudo apt-get install software-properties-common python-software-
properties

To use a particular release of PPA, for example, Kilo, we issue the following command:

sudo add-apt-repository cloud-archive:kilo

Configuring database services
OpenStack supports a number of database backends—an internal SQLite database (the
default), MySQL, and Postgres. SQLite is used only for testing and is not supported and should
not be used in a production environment. Ultimately, the choice of using MySQL or PostgreSQL
is down to the experience of the database staff. As discussed at the beginning of this book,
we will be using MariaDB.

www.it-ebooks.info

http://wiki.openstack.org/PPAs
http://www.it-ebooks.info/

Chapter 4

111

Getting ready
We will configure our OpenStack controller services to use MariaDB as the database backend,
so this needs to be installed prior to configuring our OpenStack Compute environment.

For instructions on setting up MariaDB,
follow the recipe on our companion website:
http://bit.ly/OpenStackCookbookPreReqs.
To configure MariaDB for high availability, refer to Installing the
MariaDB Galera cluster of Chapter 11, Production OpenStack.

If you are not already logged into the OpenStack Controller, ssh into it now.

How to do it...
To use OpenStack Compute (Nova), we first need to ensure that our backend database
has the required nova database. To create this, perform the following steps on our controller
host running MySQL:

1. With MySQL running, we configure an appropriate database user called nova and
privileges for use by OpenStack Compute:
MYSQL_ROOT_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS -e ‘CREATE DATABASE nova;’

MYSQL_NOVA_PASS=openstack

mysql -uroot -p${MYSQL_ROOT_PASSWORD} \
 -e “GRANT ALL PRIVILEGES ON nova.* TO ‘nova’@’%’ IDENTIFIED BY
‘${MYSQL_NOVA_PASSWORD}’;”
mysql -uroot -p${MYSQL_ROOT_PASSWORD} \
 -e “GRANT ALL PRIVILEGES ON nova.* TO ‘nova’@’localhost’
IDENTIFIED BY ‘${MYSQL_NOVA_PASSWORD}’;”

2. We now simply reference our MySQL server in our /etc/nova/nova.conf file to
use MySQL by adding in the sql_connection flag:

sql_connection=mysql://nova:openstack@192.168.100.200/nova

www.it-ebooks.info

http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Nova – OpenStack Compute

112

How it works...
MySQL is an essential service to OpenStack as a number of services rely on it. Configuring
MySQL appropriately ensures your servers operate smoothly. We added in a database called
nova that will eventually be populated by tables and data from the OpenStack Compute
services, and granted all privileges to the nova database user so that user can use it.
Finally, we configured our OpenStack.

Compute installation to specify these details so they can use the nova database.

See also
 f The Installing the MariaDB Galera cluster recipe in Chapter 11,

Production OpenStack

Configuring OpenStack Compute
The /etc/nova/nova.conf file is a very important file and is referred to many times in this
book. This file informs each OpenStack Compute service how to run and what to connect to in
order to present OpenStack to our end users. This file will be replicated amongst our nodes as
our environment grows.

The same /etc/nova/nova.conf file is used on all of our
OpenStack Compute service nodes. Create this once and copy to all
other nodes in our environment.

Getting ready
We will be configuring the /etc/nova/nova.conf file on both the Controller host and
Compute host.

If you are using the Vagrant environment provided with this book, log in to our OpenStack
Controller and Compute hosts using the following commands:

vagrant ssh controller

vagrant ssh compute-01

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

How to do it...
To run our sandbox environment, we will configure OpenStack Compute so that it is accessible
from our underlying host computer. We will have the API service (the service our client tools
talk to) listen on our public interface and configure the rest of the services to run on the
correct ports. The complete nova.conf file, as used by the sandbox environment, is laid out
next and an explanation of each line (known as flags) follows:

1. First, we amend the /etc/nova/nova.conf file to have the following contents:
[DEFAULT]
dhcpbridge_flagfile=/etc/nova/nova.conf
dhcpbridge=/usr/bin/nova-dhcpbridge
logdir=/var/log/nova
state_path=/var/lib/nova
lock_path=/var/lock/nova
root_wrap_config=/etc/nova/rootwrap.conf
verbose=True

use_syslog = True
syslog_log_facility = LOG_LOCAL0

api_paste_config=/etc/nova/api-paste.ini
enabled_apis=ec2,osapi_compute,metadata

Libvirt and Virtualization
libvirt_use_virtio_for_bridges=True
connection_type=libvirt
libvirt_type=qemu

Messaging
rabbit_host=192.168.100.200

EC2 API Flags
ec2_host=192.168.100.200
ec2_dmz_host=192.168.100.200
ec2_private_dns_show_ip=True

Network settings
network_api_class=nova.network.neutronv2.api.API
neutron_url=http://192.168.100.200:9696
neutron_auth_strategy=keystone
neutron_admin_tenant_name=service
neutron_admin_username=neutron

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

114

neutron_admin_password=neutron
neutron_admin_auth_url=https://192.168.100.200:5000/v2.0
libvirt_vif_driver=nova.virt.libvirt.vif.
LibvirtHybridOVSBridgeDriver
linuxnet_interface_driver=nova.network.linux_net.
LinuxOVSInterfaceDriver
#firewall_driver=nova.virt.libvirt.firewall.IptablesFirewallDriver
security_group_api=neutron
firewall_driver=nova.virt.firewall.NoopFirewallDriver
neutron_ca_certificates_file=/etc/ssl/certs/ca.pem

service_neutron_metadata_proxy=true
neutron_metadata_proxy_shared_secret=foo

#Metadata
#metadata_host = 192.168.100.200
#metadata_listen = 192.168.100.200
#metadata_listen_port = 8775

Cinder
volume_driver=nova.volume.driver.ISCSIDriver
volume_api_class=nova.volume.cinder.API
iscsi_helper=tgtadm
iscsi_ip_address=172.16.0.200

Images
image_service=nova.image.glance.GlanceImageService
glance_api_servers=192.168.100.200:9292

Scheduler
scheduler_default_filters=AllHostsFilter

Auth
auth_strategy=keystone
keystone_ec2_url=https://192.168.100.200:5000/v2.0/ec2tokens

NoVNC
novnc_enabled=true
novncproxy_host=192.168.100.200
novncproxy_base_url=http://192.168.100.200:6080/vnc_auto.html
novncproxy_port=6080

xvpvncproxy_port=6081

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

xvpvncproxy_host=192.168.100.200
xvpvncproxy_base_url=http://192.168.100.200:6081/console

vncserver_proxyclient_address=192.168.100.200
vncserver_listen=0.0.0.0

Database
[database]
sql_connection=mysql://nova:openstack@192.168.100.200/nova

[keystone_authtoken]
auth_host = 192.168.100.200
auth_port = 35357
auth_protocol = https
admin_tenant_name = service
admin_user = nova
admin_password = nova
insecure = True

2. Repeat the first step and create the file /etc/nova/nova.conf on each
Compute host.

3. Back on the Controller host, issue a command that ensures that the database
has the correct tables schema installed and initial data populated with the
right information:

sudo nova-manage db sync

There is no output when this command runs successfully.

How it works...
The /etc/nova/nova.conf file is an important file in our OpenStack Compute environment
and the same file is used on all compute and controller nodes. We create this once
and then we ensure this is present on all of our nodes. The following flags are present in
our /etc/nova/nova.conf configuration file:

 f dhcpbridge_flagfile=: This is the location of the configuration (flag) file for the
dhcpbridge service.

 f dhcpbridge=: This is the location of the dhcpbridge service.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

116

 f logdir=/var/log/nova: It writes all service logs here. This area will be written to
as root user.

 f state_path=/var/lib/nova: This is an area on your host where Nova will
maintain various states about the running service.

 f lock_path=/var/lock/nova: This is the location where the nova will write its
lock files.

 f root_wrap_config=/etc/nova/rootwrap.conf: This specifies a helper
script configuration to allow the OpenStack Compute services to obtain specific
root privileges.

 f verbose: This sets whether more information should be displayed in the logs or not.

 f use_syslog: This send logs to syslog logging facility.

 f syslog_log_facility: This indicates which log facility to use. We configure
the same one, LOG_LOCAL0, for all services. For production use, we recommend
separate ones for different services.

 f api_paste_config: This is the location of the paste file containing the
paste.deploy configuration for the nova-api service.

 f enabled_apis: This specifies which APIs are enabled by default.

 f connection_type=libvirt: This specifies the connection to use libvirt.

 f libvirt_use_virtio_for_bridges: This uses the virtio driver for bridges.

 f libvirt_type=qemu: This sets the virtualization mode. qemu is a software
virtualization that runs under VirtualBox. Other options include kvm and xen.

 f sql_connection=mysql://nova:openstack@192.168.100.200/nova:
This is our SQL connection line created in the previous section. It denotes the
user:password@HostAddress/database name (in our case, nova).

 f rabbit_host=192.168.100.200: This tells OpenStack services where to find the
rabbitmq message queue service.

 f ec2_host=192.168.100.200: This denotes the external IP address of the
nova-api service.

 f ec2_dmz_host=192.168.100.200: This denotes the internal IP address of the
nova-api service.

 f ec2_private_dns_show_ip: This returns the IP address for the private hostname
if set to true, and it returns the hostname if set to false.

 f network_api_class: This sets the full name of network API class to use.

 f neutron_url: This sets the API for Neutron (networking) service.

 f neutron_auth_strategy: This sets the authentication strategy to be used. We are
using Keystone.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

 f neutron_admin_tenant_name: This sets the tenant to be used when
authenticating to neutron service.

 f neutron_admin_username: This sets the user name for authenticating to
neutron service.

 f neutron_admin_password: This sets the password for authenticating to
neutron service.

 f neutron_admin_auth_url: This indicates the neutron authentication end point.

 f libvirt_vif_driver: This sets VIF plugin to be used with nova security filtering.

 f linuxnet_interface_driver: This sets the driver to create Ethernet devices.

 f security_group_api: This sets the class name of the security API.

 f firewall_driver: This sets the firewall driver.

 f neutron_ca_certificates_file: This sets a certificate file to be used
for SSL validation.

 f service_neutron_metadata_proxy: This indicates the Compute node to be
used for metadata proxy.

 f neutron_metadata_proxy_shared_secret: This sets the secret to be used for
metadata proxy.

 f volume_driver: This sets the full class name for the volume driver class.

 f volume_api_class: This sets the full class name of the volume API class
to be used.

 f iscsi_helper: This specifies that we are using the tgtadm daemon as our
iSCSI target user-land tool.

 f iscsi_ip_address: This specifies the iSCSI IP address.

 f image_service: This specifies that we’ll be using Glance in order to manage our
images for this installation.

 f glance_api_servers: This specifies the server that is running the Glance
Imaging service.

 f scheduler_default_filters: This specifies that the scheduler can send
requests to all compute hosts.

 f auth_strategy: This specifies that we will be using Keystone for all authentication.

 f keystone_ec2_url: This specifies the Keystone ec2 URL.

 f novnc_enabled: We are enabled noVNC client for our compute instances. This
provides VNC through a web browser.

 f novncproxy_host: This specifies the noVNC proxy IP.

 f novncproxy_base_url: This specifies noVNC base URL.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

118

 f novncproxy_port: This specifies noVNC proxy port.

 f xvpvncproxy_port: This specifies the nova XVP VNC console proxy port.

 f xvpvncproxy_host: This specifies the nova XVP VNC IP.

 f xvpvncproxy_base_url: This specifies the nova XVP VNC console URL.

 f vncserver_proxyclient_address: This specifies the VNC server proxy
client address.

 f vncserver_listen: This indicates where the VNC server is listening.

 f auth_host: This sets the Keystone address.

 f auth_port: This sets the Keystone port.

 f auth_protocol: This sets the authentication protocol. We are using HTTPS.

 f admin_tenant_name: This sets the tenant name for authentication.

 f admin_user: This sets the user name for Compute services to authenticate
to Keystone.

 f admin_password: This sets the password for authenticating to Keystone.

After changing configuration options, we will need to restart the Nova services. We will show
you how to do so in the Stopping and starting Nova services recipe.

There’s more...
There are a wide variety of options that are available for configuring OpenStack Compute.
These will be explored in more detail in later chapters as the nova.conf file underpins most
of OpenStack Compute services.

See also
 f You can find a description of each flag at the OpenStack website at http://docs.

openstack.org/juno/config-reference/content/list-of-compute-
config-options.html

www.it-ebooks.info

http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html
http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html
http://docs.openstack.org/juno/config-reference/content/list-of-compute-config-options.html
http://www.it-ebooks.info/

Chapter 4

119

Configuring OpenStack Compute with
OpenStack Identity Service

With OpenStack Identity Service (Keystone) installed and configured, we now need to tell our
OpenStack Compute Service (Nova) that it can be used to authenticate users and services.

The following steps are repeated on all Controller and Compute
hosts in our environment.

Getting ready
To begin with, ensure that you’re logged in to our OpenStack compute and Controller hosts. If
you did this through Vagrant, you can log in with the following commands in separate shells:

vagrant ssh controller

vagrant ssh compute-01

How to do it...
Configuring the authentication mechanism in our OpenStack Compute sandbox environment
is achieved with the following steps:

1. We first ensure that our OpenStack Compute host has the required python-
keystone package installed, if this host is a standalone compute host:
sudo apt-get update

sudo apt-get install python-keystone

2. Configuration of the OpenStack Compute service to use the OpenStack Identity
Service is then done by filling in the [default] and [keystone_authtoken]
sections of the /etc/nova/nova.conf file with the details that we created for
the Nova service user in the recipe Creating the service tenant and service users in
Chapter 1, Keystone – OpenStack Identity Service. The code is as follows:
[DEFAULT]
api_paste_config=/etc/nova/api-paste.ini
auth_strategy=keystone
keystone_ec2_url=https://192.168.100.200:5000/v2.0/ec2tokens

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

120

[keystone_authtoken]
admin_tenant_name = service
admin_user = nova
admin_password = nova
identity_uri = https://192.168.100.200:35357/
insecure = True

3. With the nova.conf file configured correctly, we edit /etc/nova/api-paste.ini
and set keystone as the authentication mechanism by adding in the following lines
under the [filter:keystonecontext] and [filter:authtoken] sections:
[filter:keystonecontext]
paste.filter_factory = nova.api.auth:NovaKeystoneContext.factory

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_
factory

4. With OpenStack Identity service running, we can restart our OpenStack Compute
services to pick up this authentication change, as follows:

ls /etc/init/nova-* | cut -d ‘/’ -f4 | cut -d ‘.’ -f1 | while read
S; do sudo stop $S; sudo start $S; done

How it works...
Configuration of OpenStack Compute to use OpenStack Identity Service is done on all hosts
in our environment running OpenStack Compute (Nova) services (for example, the Controller
and Compute hosts). This first involves editing /etc/nova/nova.conf file, and adding the
credentials and Keystone details.

We then configure the /etc/nova/api-paste.ini file and fill the
[filter:keystonecontext] and [filter:authtoken] parts of the file with
details of the keystone factory.

Stopping and starting nova services
Now that we have configured our OpenStack Compute installation, it’s time to start our
services so that they’re running on both of our OpenStack Compute virtual machines
(Controller and Compute), ready for us to launch our own private cloud instances.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

Getting ready
If you haven’t done so already, ssh to our OpenStack controller and OpenStack Compute
virtual machines. If you created these using Vagrant, you can log in to these using the
following commands in separate shells:

vagrant ssh controller

vagrant ssh compute-01

This ensures that we can access our virtual machines, as we will need access to spin up
instances from your personal computer. Let’s see the OpenStack services that we have
running as part of our sandbox environments.

Controller
The following are the services:

 f nova-api

 f nova-objectstore

 f nova-scheduler

 f nova-conductor

 f nova-cert

 f nova-novncproxy

 f nova-consoleauth

Compute
The following are the services:

 f nova-compute

 f nova-api-metadata

 f nova-novncproxy

 f libvirt-bin

How to do it...
Carry out the following steps to stop the OpenStack Compute services that we have running:

1. As part of the package installation, the OpenStack Compute services start up by
default. So, the first thing to do is to stop them, as shown here.

On the controller node, use the following commands:
sudo stop nova-api

sudo stop nova-scheduler

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

122

sudo stop nova-objectstore

sudo stop nova-conductor

sudo stop nova-cert

sudo stop nova-novncproxy

sudo stop nova-consoleauth

On the Compute node, use the following commands:

sudo stop nova-compute

sudo stop nova-api-metadata

sudo stop nova-novcnproxy

To stop all of the OpenStack Compute services, use the following command:
ls /etc/init/nova-* | cut -d ‘/’ -f4 | cut -d ‘.’ -f1
| while read S; do sudo stop $S; done

2. There is also the libvirt service we installed, which can be stopped in the
same way:
sudo stop libvirt-bin

Carry out the following steps to start the OpenStack Compute services:

3. You can start the OpenStack Compute services in the same way that you
stopped them.

On the controller node, use the following commands:
sudo start nova-api

sudo start nova-scheduler

sudo start nova-objectstore

sudo start nova-conductor

sudo start nova-cert

sudo start nova-novncproxy

sudo start nova-consoleauth

 On the Compute node, use the following commands:

sudo start nova-compute

sudo start nova-network

sudo start nova-api-metadata

sudo start nova-novcnproxy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

To start all of the OpenStack Compute services, use the following
command:
ls /etc/init/nova-* | cut -d ‘/’ -f4 | cut -d
‘.’ -f1 | while read S; do sudo start $S; done

4. There is also the libvirt service we installed that can be stopped in the same way:

sudo start libvirt-bin

How it works...
Stopping and starting OpenStack Compute services under Ubuntu are controlled using upstart
scripts. This allows us to simply control the running services by the start and stop commands,
followed by the service we wish to control.

Installation of command-line tools on
Ubuntu

Management of OpenStack Compute from the command line is achieved using the
nova client. The nova client tool uses the OpenStack Compute API and the
OS-API. Understanding this tool is invaluable in comparison to understanding the
flexibility and power of cloud environments, as it will allow you to create powerful
scripts to manage your cloud.

Getting ready
The tools will be installed on your host computer if it’s running Ubuntu, which is the
easiest way to get hold of the nova client packages that are ready to manage your
cloud environment.

How to do it...
The nova client packages are conveniently available from the Ubuntu repositories. If the
host PC isn’t running Ubuntu, creating an Ubuntu virtual machine alongside our OpenStack
Compute virtual machine is a convenient way to get access to these tools.

As a normal user on our Ubuntu machine, type the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

124

How it works...
Using nova client on Ubuntu is a very natural way of managing our OpenStack cloud
environment. Installation is very straightforward as these are provided as part of standard
Ubuntu packaging.

See also
 f More information can be found at

http://bit.ly/OpenStackCookbookClientInstall

Using the command-line tools with HTTPS
When OpenStack Identity endpoint is configured to use HTTPs, using the command-line tools
with OpenStack Compute will require specifying SSL certificates for validation.

Getting ready
The tools will be installed on your host computer if it’s running Ubuntu, which is the easiest
way to get hold of the nova client packages ready to manage your cloud environment. If using
our Vagrant lab environment, self-signed certificates are installed and set up for using with
HTTPS endpoints. We recommend that you use certificates issued by a trusted Certificate
Authority (CA) for your production environment.

How to do it...
The nova client packages are conveniently available from the Ubuntu repositories.
SSL certificates are already installed and configured for use by Keystone for validation.

1. As a normal user on our Ubuntu machine, type the following commands:
sudo apt-get update

sudo apt-get install python-novaclient

2. After installing the command-line tools, set up your environment credentials.
You will need to use your OpenStack cluster’s SSL certificates. Adjust the path to
your certificates and key file to match your environment, if not using the Vagrant
environment:
export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack

www.it-ebooks.info

http://bit.ly/OpenStackCookbookClientInstall
http://www.it-ebooks.info/

Chapter 4

125

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

Note that we have set up the OS_KEY environment variable points to
our private key. The OS_CACERT variable points to the CA bundle file
to use in verifying a TLS (https) server certificate.

3. For troubleshooting certificate or connectivity issues, you can use the --insecure
flag to bypass SSL validation. When using this flag with the nova command-line
client, your server’s certificate will not be verified against any certificate authorities.

Note that the --insecure flag is very useful for troubleshooting
connectivity issues. It also bypasses all certificate validation—they may
as well not even be enabled.

How it works...
Using nova client on Ubuntu is a very natural way to manage our OpenStack cloud
environment. However, if your authentication endpoints are setup to use HTTPS, you will
need to point your command-line client to the certificates installed on your system. Adding
environment variables to point to certificates will automatically validate against them.

Checking OpenStack Compute services
Now that we have OpenStack Compute installed, we need to ensure what we have configured is
what we expect. OpenStack Compute provides tools to check various parts of our environment.
We’ll also use common system commands to check whether the other underlying services that
support our OpenStack Compute environment are running as expected.

Getting ready
Log in to the OpenStack controller node. If you used Vagrant to create this node, log in to
it using the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

126

How to do it...
To check whether the OpenStack Compute services are running, we invoke the nova-manage
tool and ask it various questions of the environment as follows:

1. To check whether the OpenStack Compute hosts are running OK, use the
following command:
sudo nova-manage service list

You will see the following output:

The :-) icons are indicative that everything is fine.

2. If you see XXX where the :-) icon should be, then you have a problem.

If you do see XXX, then the answer will be in the logs at /var/log/nova/.

If you get intermittent XXX and :-) icons for a service, first check
whether the clocks are in sync.

3. Glance doesn’t have a tool to check, so we can use some system commands instead:
ps -ef | grep glance

netstat -ant | grep 9292.*LISTEN

These should return process information for Glance to show it is running
and 9292 is the default port that should be open in the LISTEN mode on your
server ready for use.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

4. Other services that you should check are as follows:

 � Check rabbitmq with the following command:

sudo rabbitmqctl status

 � Here is an example output from rabbitmqctl when everything is
running OK:

 � You can check NTP with the following command:
ntpq -p

 � It should return output about contacting NTP servers, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

128

 � You can check the MySQL database server with the following command:
MYSQL_ROOT_PASS=openstack

mysqladmin –uroot –p{$MYSQL_ROOT_PASS} status

 � This will return some basic statistics about MySQL, if it is running:

How it works...
We have used some basic commands that communicate with OpenStack Compute and other
services to show they are running. This elementary level of troubleshooting ensures you have
the system running as expected:

 f sudo nova-manage service list: This lists Nova services and their
respective statuses

 f ps -ef | grep glance: This lists the running Glance services

 f netstat -ant | grep 9292.*LISTEN: This allows you to check whether the
glance daemon is listening on the network

 f sudo rabbitmqctl status: This allows you to validate that the rabbitMQ
services are running

 f ntpq -p: This confirms whether NTP is functional and connecting to the configured
remote servers

 f mysqladmin -uroot -p{$MYSQL_ROOT_PASS} status: This returns basic
information about the MySQL process

Using OpenStack Compute
OpenStack Identity Service underpins all of the OpenStack services. With OpenStack Image
Service configured to use OpenStack Identity Service, the OpenStack Compute environment
can now be used.

Getting ready
To begin with, log in to an Ubuntu client and ensure that Nova client is available. If it isn’t,
it can be installed as follows:

sudo apt-get update

sudo apt-get python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

How to do it...
To use OpenStack Identity Service as the authentication mechanism in our OpenStack
environment, we need to set our environment variables accordingly. For our demo user,
this is achieved as follows:

1. With the Nova client installed, we use them by configuring our environment with
the appropriate environment variables. We do this as follows:
export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

Add these to a file called novarc in your home area. We can
then source these credentials each time by simply executing the
following command:
novarc

Note that if the user credential environment variables have been
set in a shell that has the SERVICE_TOKEN and SERVICE_
ENDPOINT environment variables. These will override our user
credentials set in this step. Remove the SERVICE_TOKEN and
SERVICE_ENDPOINT variables before continuing.

2. To access any Linux instances that we launch, we must create a key pair that
allows us to access our cloud instance. Key pairs are SSH private and public key
combinations that together allow you to access a resource. You keep the private
portion safe, but you’re able to give the public key to anyone or any computer without
fear or compromise to your security. However, only your private portion will match
enabling you to be authorized. Cloud instances rely on key pairs for access. We create
a key pair using Nova client with the following commands:
nova keypair-add demo > demo.pem

chmod 0600 *.pem

3. We can test that this is successful by issuing some nova commands, for example:

nova list

nova credentials

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

130

How it works...
Configuring our environment to use OpenStack Identity Service for authentication for Nova
client, so that we can launch our instances, involves manually creating an environment
resource file with the appropriate environment variables in.

Our environment passes on our username, password, and tenant to OpenStack Identity
Service for authentication and passes back—behind the scenes—an appropriate token
that validates our user. This allows us to seamlessly spin up instances within our tenancy
(project) of cookbook.

Managing security groups
Security groups are firewalls for your instances, and they’re mandatory in our cloud
environment. The firewall actually exists on our OpenStack Compute host that is running
the instance, and not as iptables rules within the running instance itself. They allow us to
protect our hosts by restricting or allowing access to specified service ports, and also protect
our instances from other users’ instances running on the same hosts. Security groups are the
only way to separate a tenant’s instances from another user’s instances in another tenant
when VLAN or tunnel separation isn’t available, or in instances where the flat networking
model is in use.

Getting ready
To begin with, ensure that you’re logged in to a client that has access to the Nova client tools.
These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

And ensure you have set the following credentials:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

How to do it...
The following sections describe how to create and modify security groups in our
OpenStack environment.

Creating security groups
To create a security group that opens TCP port 80 and port 443 on our instances using Nova
client, grouping that under a security group called webserver, we run the following commands:

nova secgroup-create webserver “Web Server Access”

nova secgroup-add-rule webserver tcp 80 80 0.0.0.0/0

nova secgroup-add-rule webserver tcp 443 443 0.0.0.0/0

The reason we specified a new group, instead of assigning these to the default group, is that
we might not want to open up our web server to everyone, which would happen every time we
spin up a new instance. Putting it into its own security group allows us to open up access to
our instance to port 80 by simply specifying this security group when we launch an instance.

For example, we specify the --security_groups option when we boot an instance:

nova boot myInstance \

 --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4

 --flavor 2 \

 --key_name demo \

 --security_groups default,webserver

Removing a rule from a security group
To remove a rule from a security group, we run the nova secgroup-delete command.
For example, suppose we want to remove the HTTPS rule from our webserver group.
To do this by using a Nova client, we run the following command:

nova secgroup-delete-rule webserver tcp 443 443 0.0.0.0/0

Deleting a security group
To delete a security group, for example, webserver, we run the following command:

nova secgroup-delete webserver

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

132

How it works...
Creation of a security group is done in just two steps. We add a group using the nova
secgroup-create command. Following the creation of a security group, we can define
rules in that group using the nova secgroup-add-rule command. With this command,
we can specify the destination ports that we can open up on our instances and the networks
that are allowed access.

Defining groups and rules using Nova client
The nova secgroup-create command has the following syntax:

nova secgroup-create group_name “description”

The nova secgroup-add-rule command has the following basic syntax:

nova secgroup-add-rule group_name protocol port_from port_to source

Removing rules from a security group is done using the nova secgroup-delete-rule
command and is analogous to the nova secgroup-add-rule command. Removing a
security group altogether is done using the nova secgroup-delete command and is
analogous to the nova secgroup-create command.

Creating and managing key pairs
SSH key pairs consist of two elements—a public key and a private key. Key pairs are used
for access to our Linux hosts via SSH. The public portion of our key pair is injected into our
instance at boot-time through a service known as cloud-init. It can perform many tasks,
one of which is managing this public key pair injection. Only this specific combination of the
public and private key will allow us access to our instances.

Getting ready
To begin with, ensure that you are logged in to your Ubuntu client that has access to the Nova
client tools. This can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

Ensure you have set the following credentials:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
To create a key pair, we use the nova keypair-add command. We name the key
accordingly, and we will subsequently refer to it when launching instances. The output
of the command is the SSH private key that we will use to access a shell on our instance:

1. First create the key pair as follows:
nova keypair-add demokey > demokey

2. Then, protect the private key output so that only our logged in user account can
read it:

chmod 0600 demokey

This preceding command has generated a key pair and stored the public portion within our
database, at the heart of our OpenStack environment. The private portion has been written to
a file on our client, which we will protect by making sure that only our user can access this file.

When we want to use this new key under Nova client, this looks as follows, using the nova
boot command:

nova boot myInstance \

 --image 0e2f43a8-e614-48ff-92bd-be0c68da19f4 \

 --flavor 2 --key_name demokey

When we want to run the ssh instance, we specify the private key on the ssh command line
with the -i option:

ssh ubuntu@172.16.1.1 -i demokey

As with most things in Unix, the values and files specified are
case sensitive.

Listing and deleting key pairs using Nova client
To list and delete key pairs using Nova client, carry out the set of commands in the
following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

134

Listing the key pairs
To list the key pairs in our project using Nova client, we simply run the nova keypair-list
command, as follows:

nova keypair-list

The preceding command brings back a list of key pairs in our project, for example:

+---------+---+

| Name | Fingerprint |

+---------+---+

| demokey | 77:ad:94:d6:8b:c6:d8:45:85:55:22:2b:ad:b3:22:e9 |

+---------+---+

Deleting the key pairs
To delete a key pair from our project, we simply specify the name of the key as an option
to the nova keypair-delete tool:

 f To delete the myKey key pair, we use the following command:
nova keypair-delete demokey

 f We can verify this by listing the keys available, using the following command:

nova keypair-list

Deleting key pairs is an irreversible action. Deleting a key pair to a running
instance will prevent you from accessing that instance.

How it works...
Key pairs are important in our cloud environment as most Linux images don’t allow access to
a command-line prompt using usernames and passwords. An exception to this is the Cirros
image, which comes with a default username cirros and password cubswin:).

The Cirros image is a cut down image that is used for troubleshooting and testing OpenStack
environments. Images like Ubuntu only allow access using key pairs.

Creation of a key pair allows us SSH access to our instance and it is carried out using
the nova keypair-add command. This stores the public key in our backend database
store that will be injected into the .ssh/authorized_keys file on our cloud instance,
as a part of the cloud instance’s boot/cloud init script. We can then use the private
key that gets generated to access the system by specifying this on the ssh command line
with the -i option.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

We can, of course, also remove keys from our project, and we do this to prevent further
access by that particular key pair. The command nova keypair-delete does this for us,
and we can verify which keys are available in our project by running the nova keypair-
list commands.

Launching our first cloud instance
Now that we have a running OpenStack Compute environment and a machine image to use,
it’s now time to spin up our first cloud instance! Let’s see how we can use the information
from the nova image-list and nova flavor-list commands to reference this on the
command line to launch the instance that we want.

Getting ready
The following steps are to be carried out on our network node under the user that has
access to our OpenStack Compute credentials (as created in the Installation of command-line
tools on network recipe).

Ensure you are logged in to the network node and that it has Internet access to allow us to
install the required packages in our environment for running OVS and Neutron. If you created
this node with Vagrant, you can execute the following command:

vagrant ssh network

Before we spin up our first instance, we must create the default security settings that define
the access rights. We do this only once (or when we need to adjust these) using the nova
secgroup-add-rule command under Nova client. The following set of commands gives us
SSH access (port 22) from any IP address and also allows us to ping the instance to help
with troubleshooting. Note the default group and its rules are always applied if no security
group is mentioned on the command line.

The steps are as follows:

1. With the Nova client installed, we use them by configuring our environment with the
appropriate environment variables:
export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

136

Add these to a file called novarc in your home area. We can
then source these credentials in each time by simply executing the
source novarc command.

2. Using Nova client, we can simply add the appropriate rules using the following
commands:

nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

If there are no images available yet, follow the steps of the recipe
Managing images with OpenStack Image Service in Chapter 2,
Glance – OpenStack Image Service.

How to do it...
Now that our environment is set up correctly, we carry out the following steps to launch our
first instance:

1. List the images available by executing the following command:
nova image-list

This should produce an output like this:

2. Then, we get the available image flavors (think of them as sizes) by executing the
following command:
nova flavor-list

Available flavors for our OpenStack installation will be listed like this:

We can specify flavor either by its ID or name.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

3. Since our lab environment is configured to with two networks, we will need to choose
to which network to attach our instance. First, list the available networks using the
following command:
neutron net-list

The available networks will be displayed like this:

4. To launch our instance, we need to specify image, flavor, network, and key name
information we got earlier on the command line. To launch an instance using Nova
client tools, we issue the following command using the UUID of our image that is
named trusty-image and cookbook_network_1:
nova boot myInstance \

 --image 5bfb4a6d-da77-4502-ba52-2e8e40597e96 \

 --flavor 2 \

 --nic net-id=0375e772-b021-425c-bc17-5a3263247fb8 \

 --key_name demokey

You should see output like the following screenshot when you launch an instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

138

5. This will take a few brief moments to spin up. To check the status of your instances,
issue the following commands:
nova list

nova show 5971ab77-9d91-40d8-9961-d86da0945f26

6. The preceding commands will give an output similar to the output of the previous
command lines. However, this time it has created the instance, it is now running,
and it has IP addresses assigned to it:

7. After a short while, you will be able to connect to this instance. If you are using the
Vagrant environment, from the network node, you will be able to connect to the
instance using network space and SSH private key. First, get a list of network spaces
using the following command:

ip netns

This will show the following example output:
qdhcp-0375e772-b021-425c-bc17-5a3263247fb8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

Now, connect to the instance using the following command:

sudo ip netns exec \

 qdhcp-0375e772-b021-425c-bc17-5a3263247fb8 \

 ssh -i demokey ubuntu@10.200.0.5

The default user that ships with the Ubuntu cloud images is ubuntu.

Congratulations! We have successfully launched and connected to our first OpenStack
cloud instance.

How it works...
After creating the default security settings, we made a note of our machine image identifier,
UUID value, and then called a tool from Nova client to launch our instance. Part of that
command line refers to the key pair to use. We then connect to the instance using the private
key as part of that key pair generated.

How does the cloud instance know what key to use? As part of the boot scripts for this image,
it makes a call back to the meta-server, which is a function of the nova-api and nova-
api-metadata services. The meta-server provides a go-between that bridges our instance
and the real world that the Cloud init boot process can call. In this case, it downloads a
script to inject our private key into the Ubuntu user’s .ssh/authorized_keys file. We can
modify which scripts are called during this boot process, and this will be covered later on.

When a cloud instance is launched, it generates a number of useful metrics and details
about that instance. This is presented by the nova list and nova show commands. The
nova list command shows a convenient short version listing the ID, name, status, and IP
addresses of our instance.

The type of instance we chose was specified as an ID of 2 when using the nova boot
command. The instance types supported can be listed by running the following command:

nova flavor-list

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

140

These flavors (specification of instances) are summarized as follows:

Type of instance Memory VCPUS Storage Version
m1.tiny 512 MB 1 1 GB 32-bit and 64-bit
m1.small 2048 MB 1 20 GB 32-bit and 64-bit
m1.medium 4096 MB 2 40 GB 64-bit only
m1.large 8192 MB 4 80 GB 64-bit only
m1.xlarge 16384 MB 8 160 GB 64-bit only

Fixing a broken instance deployment
When deploying an instance, sometimes an error occurs and deployment fails. If this happens
with a new deployment, usually it is simplest to delete the failed instance and deploy again.
However, if you must fix the broken instance, there is a nova rescue command that will help
you. This section explains how to use the nova rescue command to fix broken instances.

Getting ready
If you are using the Vagrant environment, these steps are to be carried out on our network
node under the user that has access to our OpenStack Compute credentials (as created
in the Installation of command-line tools on network recipe).

Ensure that you are logged onto the network node and that it has Internet access to allow
us to install the required packages in our environment for running OVS and Neutron. If you
created this node with Vagrant, you can execute the following command:

vagrant ssh network

How to do it...
From our network machine, list the running instances to identify the instance you want to fix
using the following steps:

1. We first identify the instance that we want to fix by issuing the following command
from our client:
nova list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

2. To set instance in a rescue mode, we can either specify the name of our instance or
use the UUID:
nova rescue myInstance

nova rescue 6f41bb91-0f4f-41e5-90c3-7ee1f9c39e5a

The preceding commands will give you a temporary root password:
+-----------+--------------+

| Property | Value |

+-----------+--------------+

| adminPass | VMHm2BEyCnKa |

+-----------+--------------+

However, if the instance was created with a nova key, you will still need to use the key
rather than the password to log in. The instance will be set in the RESCUE status now.

3. To log in to the node, first get a list of network spaces:
ip netns

The preceding command gives the following example output:
qdhcp-0375e772-b021-425c-bc17-5a3263247fb8

Connect to the instance using the following commands:
sudo ip netns exec \

 qdhcp-0375e772-b021-425c-bc17-5a3263247fb8 \

 ssh -i demokey ubuntu@10.200.0.5

This will allow you to repair the instance.

4. After repairing the instance, restart the server from the normal boot disk again:

nova unrescue myInstance

How it works...
We identify a server that needs rescuing via the nova list command. Then, we use either
the server name or the server ID to set the server in rescue mode using the nova rescue
command. This reboots the server into a rescue mode, which starts the machine from the
initial image and attaches the current boot disk as a secondary. After repairing the server, we
need to set it back to ACTIVE status and reboot by using the nova unrescue command.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

142

Terminating your instances
Cloud environments are designed to be dynamic and this implies that cloud instances are
being spun up and terminated as required. Terminating a cloud instance is easy, but it is
equally important to understand some basic concepts of cloud instances.

Cloud instances such as the instance we have used are not persistent. This means that
the data and work you do on that instance only exists for the time that it is running. A cloud
instance can be rebooted, but once it has been terminated, all data is lost.

To ensure no loss of data, the OpenStack Block Storage service Cinder
provides a persistent data store functionality that allows you to attach a
volume to it that doesn’t get destroyed on termination. It allows you to attach
it to running instances. A volume is like a USB drive attached to your instance.
For more information, go to Chapter 8, Cinder – OpenStack Block Storage.

How to do it...
From our Ubuntu machine, list the running instances to identify the instance you want
to terminate:

1. We first identify the instance that we want to terminate by issuing the following
command from our client:
nova list

2. To terminate an instance, we can either specify the name of our instance or
use the UUID:

nova delete myInstance

nova delete 6f41bb91-0f4f-41e5-90c3-7ee1f9c39e5a

You can re-run nova list again to ensure your instance is terminated.

Of the two methods, named and UUID, the UUID method is
preferable as it allows you to avoid ambiguity. Further, the named
commands may return unexpected results if multiple items exist
with the same name. This is not the case with UUID.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

How it works...
We simply identify the instance we wish to terminate by its UUID or by name when using nova
list. Once identified, we can specify this as the instance to terminate using nova delete.
Once terminated, that instance no longer exists—it has been destroyed. So if you had any data
in there, it will be deleted along with the instance.

Using live migration
OpenStack Nova supports live migration of VM-based instances between compute hosts.
This is useful during maintenance and cluster balancing operations. To use live migration,
you must first add a node to your Nova cluster.

Getting ready
Let’s assume that you have more than one host running the Nova Compute services, as
described in the Configuring OpenStack Compute section. If that is not the case, you will need
to configure a second host before continuing. The destination host also needs to be remotely
accessible and have resources available to run the instance(s) that will be migrated.

Checking network connectivity
To successfully complete live migration, both hosts must be able to communicate with each
other by hostname. You can validate this by logging in to each host and pinging the other:

$ ping compute-02

PING compute-02.book (192.168.100.203) 56(84) bytes of data.

64 bytes from compute-02.book (192.168.100.203): icmp_seq=1 ttl=64
time=2.14 ms

64 bytes from compute-02.book (192.168.100.203): icmp_seq=2 ttl=64
time=0.599 ms

$ ping compute-01

PING compute-01.book (192.168.100.202) 56(84) bytes of data.

64 bytes from compute-01.book (192.168.100.202): icmp_seq=1 ttl=64
time=1.29 ms

64 bytes from compute-01.book (192.168.100.202): icmp_seq=2 ttl=64
time=0.389 ms

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

144

Ensuring resources
Live migration is also dependent on the remote host having available resources for the
workload. This can be done by logging into a host with the nova command-line utilities and
using the following nova commands:

$ nova host-describe compute-02

+------------+------------+-----+-----------+---------+

| HOST | PROJECT | cpu | memory_mb | disk_gb |

+------------+------------+-----+-----------+---------+

| compute-02 | (total) | 2 | 3107 | 37 |

| compute-02 | (used_now) | 0 | 512 | 0 |

| compute-02 | (used_max) | 0 | 0 | 0 |

+------------+------------+-----+-----------+---------+

The first line shows the total resources available on the host. In this case, there are two vCPU,
3 GB memory, and 37 GB disk. To find out what is available on the host, subtract the values
from the used_now row from the total row. In our case, the only change is that there are 512
MB of RAM in use, leaving 2.5 GB available for migrations.

How to do it...
If you are not already logged into a host with the Nova command-line utilities, you will
need to be before proceeding. To migrate a VM-based instance between nodes, run the
following commands:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

nova live-migration --block-migrate <UUID> compute-02

How it works...
Live migration is an essential feature that enables OpenStack operators and administrators
to perform maintenance of the underlying cloud infrastructure without affecting the
consumers of said cloud. Additionally, the OpenStack administrator can use telemetry
data from Ceilometer and make live-migration decisions to balance workloads across the
OpenStack cloud.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

Live-migration in OpenStack is handled by the libvirt drivers. Specifically, when you
issue the nova live-migration command, OpenStack compute creates a connection
from libvirtd on one compute host to the same process on the remote host. Once this
connection is established, depending on the parameters you specified, the memory state
of the instance is synchronized and control is transferred. In our example, we specified the
additional --block-migrate parameter, which handles the movement of the instance’s
disk files in the absence of shared storage.

Working with nova-schedulers
When you launch an instance with OpenStack, the job of the nova-schedulers is to determine
which Compute Host (hypervisor) the instance will be created on. The scheduler can be
configured to make some basic decisions, such as whether or not RAM exists or not to
run the instance and whether enough cores are available. It can also be configured to be
more complex and make decisions based on environmental factors and metadata, so that
instances can be grouped together on hosts or spread across different hosts to ensure a level
of stability in the event of a compute host failure.

Getting ready
Ensure that you are logged in to the OpenStack controller node. If you used Vagrant to
create this, we can access this with the following command:

vagrant ssh controller

How to do it...
Let’s modify the /etc/nova/nova.conf file to enable all the scheduler filters discussed:

1. Add the following lines to the [Default] section of the /etc/nova/nova.conf file on
the Controller:
scheduler_driver=nova.scheduler.multi.MultiScheduler
scheduler_driver_task_period = 60
scheduler_driver = nova.scheduler.filter_scheduler.FilterScheduler
scheduler_available_filters = nova.scheduler.filters.all_filters
scheduler_default_filters = RetryFilter, AvailabilityZoneFilter,
 RamFilter, ComputeFilter, ComputeCapabilitiesFilter,
 ImagePropertiesFilter, ServerGroupAntiAffinityFilter
 ServerGroupAffinityFilter

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

146

2. Restart the nova-scheduler service to pick up the change:

sudo service nova-scheduler restart

How it works...
You can modify the nova.conf file to expose additional features of the nova-scheduler to be
used in our environment. In this example, the default scheduler enabled with OpenStack Juno
will consider scheduling an instance to a host, if the host meets all of the following criteria:

 f RetryFilter: This will retry each host (in the first instance, implies the host
hasn’t been requested before)

 f AvailabilityZoneFilter: This specifies that the host is in the request
availability zone (the default is nova)

 f RamFilter: This specifies that the Compute host has enough RAM available

 f ComputeFilter: This specifies that the Compute host is available to service
the request

 f ComputeCapabilitiesFilter: This specifies that the Compute host satisfies
any extra specs associated with the instance type requested

 f ImagePropertiesFilter: This specifies that the image (and associated
properties) requested can run on the particular host

 f ServerGroupAntiAffinityFilter: If requested, whether the instance should
run on a different host to another instance in the same group

 f ServerGroupAffinityFilter: If requested, whether the instance should run on
hosts belonging to the same instance group

There’s more...
There are a number of schedulers available for a wide variety of scenarios. For more
information, visit http://docs.openstack.org/juno/config-reference/content/
section_compute-scheduler.html.

Creating flavors
Flavors describe the size of the instance specified. They describe the number of cores (virtual
CPUs), amount of RAM, and size of allocated local or ephemeral disk resource available to an
instance. The standard flavors are usually m1.tiny, m1.small, m1.large and m1.xlarge.
A user specifies these either on the command line or through the Horizon interface.

www.it-ebooks.info

http://docs.openstack.org/juno/config-reference/content/section_compute-scheduler.html
http://docs.openstack.org/juno/config-reference/content/section_compute-scheduler.html
http://www.it-ebooks.info/

Chapter 4

147

Getting ready
Ensure you are logged in to an Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the
python-novaclient package that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
To create a new flavor that specifies 2 vCPU, 16 GB RAM, and 30 GB disk, carry out the
following steps:

1. We run the following commands:
nova flavor-create m1.javaserver

 49 16384 30 2

 --is-public=true

The preceding commands produce an output like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

148

2. We can now list the flavors available with the following command:

nova flavor-list

The preceding command produces an output like this:

How it works...
Create new flavors using the following syntax:

nova flavor-create $FLAVOR_NAME

 $FLAVOR_ID $RAM $DISK $CPU

 --is-public={true|false}

 --ephemeral $EPHEMERAL_SIZE_GB

 --swap $SWAP_SIZE_GB

 --rxtx-factor $FACTOR

The nova flavor-create command doesn’t automatically update flavor IDs; therefore, you
must specify this and ensure that this is unique. We then specify the amount of RAM, disk and
CPU for that flavor. Here are a few extra options:

 f --is-public=true|false: This specifies whether the flavor exists only within the
current tenant, or it is available to all tenants. Only an administrator can specify this.
The default value is true.

 f --ephemeral $EPHEMERAL_SIZE_GB: This allows you to specify a secondary
ephemeral disk.

 f --swap $SWAP_SIZE_GB: This specifies an additional swap partition associated
with the instance.

 f --rxtx-factor: This specifies the bandwidth factor of the flavor compared to other
flavors. This defaults to 1. A factor of 0.5 specifies the bandwidth capacity to be half
available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

149

Defining host aggregates
Host aggregates allow us to logically group hardware and create partitions in our deployment.
Host aggregates are often used to group same specification hardware together, such as
Compute hosts that have a certain type of hardware such as SSDs available. We can then
define extra pieces of information associated with that grouping of hardware (known as
metadata), which is exposed to a user when launching instances. For example, we can launch
an instance and specify that we want it to run on compute hosts that have SSDs. By supplying
this extra information, the compute hosts that understand this metadata will request that the
instance be launched on that hardware.

Compute hosts can also belong to more than one host aggregate. This allows for greater
flexibility when defining the partitions by allowing compute hosts to be organized in multiple
ways. The following diagram shows an example of using host aggregate to define groups of
Compute resource. Only an administrator can create host aggregates:

Getting ready
Ensure that you are logged onto an Ubuntu host that has access to our OpenStack
environment on the 192.168.100.0/24 public network. This host will be used to run client
tools against the OpenStack environment created. If you are using the accompanying Vagrant
environment, as described in the Preface, you can use the controller node. This node has
the python-novaclient package installed that provides the swift command-line client.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

150

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
To create a host aggregate called TestAggregate that consists of a compute host called
compute-02, carry out the following steps:

1. We first create the host aggregate, using the following command:
nova aggregate-create TestAggregate

This produces the following output:

2. To find out the specific hostname we should use for our host aggregate, issue the
following command:
nova host-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

151

The preceding command will result in the following output:

3. With the host aggregate created and name of our host recorded, we can simply add
our hosts to this aggregate as follows:
nova aggregate-add-host TestAggregate compute-02

This will give the following output if it was successful:

4. We can list the available host aggregates in our environment by issuing the
following command:
nova aggregate-list

This will give the following output:

5. We can get further information about an aggregate, such as which hosts are in the
aggregate, any metadata associated with it, and whether or not any availability zones
are associated with it, by issuing the following command:
nova aggregate-details TestAggregate

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

152

This will give the following details:

6. To define metadata for a host aggregate such that we can later use this extra
metadata information to direct our instances to be launched on a host in this
group, use the following command:
nova aggregate-set-metadata TestAggregate highspec=true

This sets the information highspec=true, which will be used later on. The
command produces the following output:

7. We can then expose this metadata through the flavors used to launch the
instances. To demonstrate this, we will create a flavor called m1.highspec
and set the metadata on this to match the metadata for our host aggregate.
Use the following commands to create a new flavor called m1.highspec:
nova flavor-create

 m1.highspec

 50 2048 20 2

 --is-public=true

8. We can set extra information on this flavor to match the metadata set on the
TestAggregate aggregate with the following command:
nova flavor-key m1.highspec set highspec=true

9. We can then view the details of this flavor with the following command:

nova flavor-show m1.highspec

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

153

This will give you the following output:

We can specify this flavor when launching an instance. This will automatically
schedule to one of the instances in the TestAggregate aggregate, which
will be compute-02 in this example.

How it works...
Host Aggregates allow an administrator to define compute resources in a way that is
transparent to the end user but group them logically according to their purpose. When
metadata is added to an aggregate that matches a flavor's metadata, and when that flavor is
used to launch an instance, the instance will be scheduled to run on the compute hosts that
have been assigned that to that aggregate.

Launching instances in specific
Availability Zones

Availability zones are logical separations of compute resources, representing groups of
hypervisors that a user will be able to select when requesting to launch an instance. If no
availability zones have been created, the default called nova will be used. When an instance
is launched in most default cases, the scheduler determines which host will run it within that
zone. As a user of the OpenStack cloud, you can specify which availability zone to use if more
than one is available. This can help you create more resilient applications. By allowing an
instance to be spun up in two separate places, we are protecting ourselves against the failure
of a complete zone.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

154

Getting ready
Ensure you are logged onto an Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the
python-novaclient package that provides the nova command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
1. To launch an instance into a specific availability zone, we use the following syntax:

nova boot

 --flavor $FLAVOR

 --image $IMAGE

 --availability-zone $AZ

 $INSTANCE_NAME

2. The name of the $AZ comes from nova hypervisor-list. We use the complete
name listed as shown:

To launch an instance called myInstance onto compute-02, issue the following
command:
nova hypervisor-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

155

This will give you the following output:

+----+----------------------+

| ID | Hypervisor hostname |

+----+----------------------+

| 1 | compute-01.cook.book |

| 2 | compute-02.cook.book |

+----+----------------------+

3. We then boot this onto compute-02 using the following commands:

nova boot

 --flavor 1

 --image trusty-image

 --availability-zone nova:compute-02.cook.book

 MyInstance

Note that OpenStack can successfully launch an instance to a specific
host only if there are enough cores and RAM available, as well as still
satisfying quota counts. You will be presented with an error saying no
more hosts available if the resources are not available.

How it works...
To launch an instance into a specific availability zone, we use the following flag to our nova
boot command line:-

-availability-zone $NAME_OF_ZONE

The name of the zone comes from the following command:

nova availability-zone-list

This command lists the Zones available in our environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

156

Launching instances on specific Compute
hosts

When an instance is launched, in most cases, the scheduler determines which host will run it.
There are times, however, when it is good to be able to directly assign an instance to a host,
for example, when helping to troubleshoot or perhaps when the orchestration is managing
resource allocation.

Getting ready
Ensure you are logged in to an Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the python-
novaclient package that provides the nova command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
1. To launch an instance onto a specific host, we use the following syntax:

nova boot

 --flavor $FLAVOR

 --image $IMAGE

 --availability-zone nova:$HYPERVISOR_NAME

 $INSTANCE_NAME

The name of the $HYPERVISOR_NAME comes from nova hypervisor-list. We use the
complete hypervisor name as shown.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

157

2. To launch an instance called myInstance onto compute-02, issue the following
command:
nova hypervisor-list

This will give you the following output:

+----+----------------------+

| ID | Hypervisor hostname |

+----+----------------------+

| 1 | compute-01.cook.book |

| 2 | compute-02.cook.book |

+----+----------------------+

3. We then boot this onto compute-02 using the following commands:

nova boot

 --flavor 1

 --image trusty-image

 --availability-zone nova:compute-02.cook.book

 myInstance

Note that OpenStack can successfully launch an instance to a specific
host only if there are enough cores and RAM available, as well as still
satisfying quota counts. You will be presented with an error saying no
more hosts available if the resources are not available.

How it works...
To launch an instance onto a specific compute host, we use the following flag to our nova boot
command line:

--availability-zone nova:$HYPERVISOR_NAME

The name of the hypervisor can be obtained using the following command:

nova hypervisor-list

The preceding command lists the Compute hosts available in our environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

158

Removing Nova nodes from a cluster
Sometimes, you may need to remove a compute node from a cluster for troubleshooting or
maintenance reasons. You should be careful while doing so, since it could negatively affect
running VMs. Before getting started, make sure you have enough resources in your compute
cluster to migrate running VMs to other compute nodes before removing the node.

Getting ready
Ensure you are logged in to an Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the
python-novaclient package that provides the nova command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
We will use nova command-line client to disable services and migrate the VMs.

1. Determine which nova services you want to stop by using the nova
service-list command:
nova service-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

159

This will give you the following output:

2. We will need the list of all of the VMs running on compute-01. To get the list,
search by hostname using the following command:
nova list --host compute-01

In our case, we have only one VM, test1:

3. We then need to disable compute-01 with the following command:
nova service-disable compute-01 nova-compute

The preceding command will give you the following output:

+------------+--------------+----------+

| Host | Binary | Status |

+------------+--------------+----------+

| compute-01 | nova-compute | disabled |

+------------+--------------+----------+

4. Now, when we check running services with the nova service-list command,
we will see that compute-01 is disabled:

www.it-ebooks.info

http://www.it-ebooks.info/

Nova – OpenStack Compute

160

Note that even though compute nodes are disabled, it does not
mean that they are not running. VMs could still be running on them,
and if so, they should be migrated.

5. We now need to migrate all VMs running on the compute-01 node. We need to
use the nova migrate command on each VM:
nova migrate test1

There is no output for this command. In our case, we have only one VM test1 that
we will migrate. If you have other VMs that need to be migrated, migrate them as well.

6. Check the status of the VM being migrated by using the nova show command:
nova show test1

7. While the VM is being migrated, you should see the following output:

We will wait until the VM is in the VERIFY_RESIZE status before proceeding to the
next step.

8. Verify that the VM migrated successfully and confirm resize with the nova
resize-confirm command:

nova resize-confirm test1

The compute-01 is now disabled and contains no VMs. We can now power it off or perform
maintenance on the node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

161

How it works...
To remove a compute node from the cluster, we first need to make sure that there are enough
resources in the rest of the cluster for VMs running on that node. Then, we need to disable the
node with the nova service-disable command.

Disable the Compute node by issuing the nova service-disable $SERVICE
nova-compute command. After disabling the node, we need to migrate all VMs running
on the disabled node to other compute nodes. The nova migrate command will migrate
the VM to other nodes with sufficient resources.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

163

Swift – OpenStack
Object Storage

In this chapter, we will cover the following recipes:

 f Configuring Swift services and users in Keystone

 f Installing OpenStack Object Storage – proxy server

 f Configuring OpenStack Object Storage – proxy server

 f Installing OpenStack Object Storage services – storage nodes

 f Configuring physical storage for use with Swift

 f Configuring Object Storage replication

 f Configuring OpenStack Object Storage – storage services

 f Making the Object Storage rings

 f Stopping and starting OpenStack Object Storage

 f Setting up SSL access

Introduction
OpenStack Object Storage, also known as Swift, is the service that allows massively scalable
and highly redundant storage on commodity hardware. This service is implemented by
Rackspace as cloud files and is also analogous to Amazon's S3 storage service. It is managed
in a similar way under OpenStack. With OpenStack Object Storage, we can store many objects
of virtually unlimited size—restricted by the available hardware—and grow our environment
as needed in order to accommodate our storage. The highly redundant nature of OpenStack
Object Storage is ideal for archiving data (such as logs) as well as providing a storage system
that OpenStack Compute can use for virtual machine instance templates.

5

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

164

In this chapter, we will set up a multi-node environment consisting of a single Swift proxy
server and five Swift storage nodes with a single extra disk at /dev/sdb1 where the object
storage will be written. The authentication and authorization will be handled by Keystone.
The data stored in Swift will be replicated three times. This means that a file of size 1 GB will
actually use 3 GB of space across our cluster. It will replicate this data by spreading them
across the five nodes (any three of the five nodes will have the data stored), so any failure
of a node vastly reduces the amount of time to recover. This guarantees that quorum is
maintained regardless of which node failed. This is considered the minimum recommended
architecture for any Swift installation.

Typical reference architecture is shown in the following diagram and shows the proxy servers
sitting behind a Load Balancer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

For the multi-node Swift installation that accompanies this chapter,
visit http://bit.ly/OpenStackCookbookSwift.

Configuring Swift services and users in
Keystone

Configuring our OpenStack Object Storage environment in Keystone follows the familiar
pattern of defining the service, the endpoint, and creating an appropriate user in the service
tenant. These details will then be used to configure the storage services later in the chapter.

In this environment, we are defining the address and ports of the proxy server. In the
test environment, the proxy server's IP addresses are 192.168.100.209 (public) and
172.16.0.209 (internal/management). In production, this would be a Load-Balanced
pool address.

Getting ready
Ensure that you are logged in to the controller node or an appropriate client that has
access to the controller node to configure keystone. If this was created using the
Vagrant environment, you can issue the following command:

vagrant ssh controller

How to do it...
Configure Keystone for use by Swift by carrying out the following steps:

1. To do this, we use the Keystone client and configure it for use by an administrator by
setting the following environment variables:
export ENDPOINT=192.168.100.200
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=https://${ENDPOINT}:35357/v2.0
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://bit.ly/OpenStackCookbookSwift
http://www.it-ebooks.info/

Swift – OpenStack Object Storage

166

2. We can now define the swift service in Keystone as follows:
Configure the OpenStack Object Storage Endpoint
keystone service-create \
 --name swift \
 --type object-store \
 --description 'OpenStack Object Storage Service'

3. We define the endpoint as follows. Here, we are setting public endpoint to be
our public network, 192.168.100.0/24, and internal and admin URLs on the
management network, 172.16.0.0/16:
Service Endpoint URLs
SWIFT_SERVICE_ID=$(keystone service-list \
 | awk '/\ swift\ / {print $2}')

PUBLIC_URL="http://192.168.100.209:8080/v1/AUTH_\$(tenant_i
d)s"
ADMIN_URL="http://172.16.0.209:8080/v1"
INTERNAL_URL=="http://172.16.0.209:8080/v1/AUTH_\$(tenant_i
d)s"

keystone endpoint-create --region RegionOne \
 --service_id $SWIFT_SERVICE_ID \
 --publicurl $PUBLIC_URL \
 --adminurl $ADMIN_URL \
 --internalurl $INTERNAL_URL

4. With the endpoints configured to point to our OpenStack Object Storage server,
we can now set up the swift user so that our proxy server can authenticate with
the OpenStack identity server:

Get the service tenant ID
SERVICE_TENANT_ID=$(keystone tenant-list \
 | awk '/\ service\ / {print $2}')

Create the swift user with password swift
keystone user-create \
 --name swift \
 --pass swift \
 --tenant_id $SERVICE_TENANT_ID \
 --email swift@localhost \
 --enabled true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

Get the swift user id
USER_ID=$(keystone user-list \
 | awk '/\ swift\ / {print $2}')

Get the admin role id
ROLE_ID=$(keystone role-list \
 | awk '/\ admin\ / {print $2}')

Assign the swift user admin role in service tenant
keystone user-role-add \
 --user $USER_ID \
 --role $ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

How it works...
To use Swift, we will be authenticating through Keystone and, as a result, Swift also
needs entries in Keystone to function. We first define the service as we do for any service in
OpenStack. In this case, Swift is the object-store type. Then, we define the endpoints.
Swift will utilize two networks—a front-facing network labeled as public (referring to
the network the API requests from the client would traverse) and an internal network for
intercommunication between the services. Finally, we create the service tenant user.
In this case, we are using swift as the username, and we are also setting swift as the
password. In production, you would choose a much stronger, randomly generated password
for this purpose. Like any other OpenStack service, this user is given the admin role in the
service tenant.

Installing OpenStack Object Storage
services – proxy server

Clients connect to OpenStack Object Storage via the Swift proxy servers. This allows us
to scale out our OpenStack Object Storage environment as needed, without affecting the
frontend to which the clients connect. The proxy servers have the following packages installed:

 f swift: These are the underlying common files shared among other the OpenStack
Object Storage packages, including the Swift client

 f swift-proxy: This is the proxy service responsible for providing access to the
OpenStack Object Storage nodes

 f memcached: This is a high-performance memory object caching system

 f python-swiftclient: This is the Swift client for accessing the OpenStack Object
Storage environment using the Command-line Interface (CLI)

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

168

 f python-keystoneclient: These are the clients, as well as libraries allowing the
services to communicate with Keystone

 f python-webob: This is the Python module providing Web Service Gateway
Interface (WSGI) request and response objects

 f curl: This is the command-line tool for accessing web resources

More than one proxy server can be used for Swift. In fact, in production environments, at least
two are required, and they would be placed behind a Load Balancer. Repeat these steps for all
the proxy servers you have in your environment.

Getting ready
Ensure that you are logged in to the swift-proxy nodes. If you created this with vagrant,
you can access this node by issuing the following command:

vagrant ssh swift-proxy

Ensure that NTP is installed across all hosts in the OpenStack Object
Storage environment. For more information, visit http://bit.ly/
OpenStackCookbookPreReqs.

How to do it...
Installation of the OpenStack Object Storage proxy server and associated packages in Ubuntu
14.04 is simply achieved using the familiar apt-get tool, as the OpenStack packages
available from the official Ubuntu repositories. To install the packages required on each
storage node, execute the following steps:

1. We can install all of the OpenStack Object Storage packages used on a storage
node as follows:
sudo apt-get update

sudo apt-get install swift swift-proxy memcached \

 python-keystoneclient python-swiftclient \

 curl python-webob

2. We then create a number of directories that will be used by Swift, and set the
appropriate permissions:

Create signing directory and set owner to swift

mkdir /var/swift-signing

www.it-ebooks.info

http://bit.ly/OpenStackCookbookPreReqs
http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Chapter 5

169

chown -R swift /var/swift-signing

Create cache directory and set owner to swift

mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

Create config directory and set owner to swift

mkdir -p /etc/swift

chown -R swift:swift /etc/swift

Repeat this installation on each of the storage nodes in
the environment.

How it works...
Installation of the Swift proxy server from the main Ubuntu package repository represents a
straightforward and well-understood way of getting OpenStack onto our Ubuntu server. This
adds a greater level of certainty around stability and upgrade paths by not deviating away
from the main archives.

Configuring OpenStack Object
Storage – proxy server

Clients connect to OpenStack Object Storage via the proxy servers. This allows us to scale
out our OpenStack Object Storage environment as needed, without affecting the frontend to
which the clients connect. Configuration of the Swift proxy service is simply done by editing
the /etc/swift/proxy-server.conf file.

Getting ready
Ensure that you are logged in to the swift-proxy nodes. If you created this with vagrant,
you can access this node by issuing the following command:

vagrant ssh swift-proxy

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

170

How to do it...
To configure the OpenStack Object Storage proxy server, carry out the following steps:

1. We first create the /etc/swift/proxy-server.conf file with the following
content:
[DEFAULT]
bind_port = 8080
user = swift
swift_dir = /etc/swift
log_level = DEBUG

[pipeline:main]
Order of execution of modules defined as follows
pipeline = catch_errors healthcheck cache authtoken
keystone proxy-server

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true
set log_name = swift-proxy
set log_facility = LOG_LOCAL0
set log_level = INFO
set access_log_name = swift-proxy
set access_log_facility = SYSLOG
set access_log_level = INFO
set log_headers = True

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:cache]
use = egg:swift#memcache
set log_name = cache

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

[filter:authtoken]
paste.filter_factory =
keystoneclient.middleware.auth_token:filter_factory

Delaying the auth decision is required to support token-
less
usage for anonymous referrers ('.r:*').
delay_auth_decision = true

auth_* settings refer to the Keystone server
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
insecure = True # using self-signed certs

the service tenant and swift username and password
created in Keystone
admin_tenant_name = service
admin_user = swift
admin_password = swift

signing_dir = /var/swift-signing

[filter:keystone]
use = egg:swift#keystoneauth
operator_roles = admin, Member

2. We also create a new file called /etc/swift/swift.conf that must be present
on all servers in our environment. We will copy this same file with exactly the same
content to all servers (proxy servers and storage nodes):

[swift-hash]
Random unique string used on all nodes
swift_hash_path_prefix=a4rUmUIgJYXpKhbh
swift_hash_path_suffix=NESuuUEqc6OXwy6X

How it works...
The contents of the /etc/swift/proxy-server.conf file define how the OpenStack
Object Storage proxy server is configured.

For our purposes, we will run our proxy on port 8080 as the user swift, and it will log to
syslog using the log level of INFO (this is the default logging level).

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

172

The [filter:authtoken] and [filter:keystone] sections connect our OpenStack
Object Storage proxy to keystone running on our controller virtual machine. The contents
of [filter:authtoken] take the same syntax as our other OpenStack services when
configuring to keystone.

The /etc/swift/swift.conf file is not unique to the proxy server. This file must be
present on all of our Swift servers and have exactly the same contents. This will be replicated
onto the storage nodes when we configure the services on them.

See also
 f There are more complex options and features described in the

following file that is installed when you install OpenStack Swift
/usr/share/doc/swift-proxy/proxy-server.conf-sample.

Installing OpenStack Object Storage
services – storage nodes

The storage nodes run a number of OpenStack Object Storage services. These services and
libraries can be installed using apt, and they are listed as follows:

 f swift: These are the underlying common files shared among other OpenStack
Object Storage packages, including the Swift client

 f swift-account: This is the account service for accessing OpenStack
Object Storage

 f swift-object: This is the package responsible for object storage and the
orchestration of rsync

 f swift-container: This is the package for the OpenStack Object Storage
container server

 f rsyncd: This is the file replication daemon for replicating our objects across our
storage nodes

 f python-keystoneclient: These are the clients, as well as libraries, allowing
services to communicate with Keystone

 f python-webob: This is the Python module providing WSGI requests and
response objects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

Getting ready
Ensure that you are logged in to the swift storage nodes. If you created these nodes with
vagrant, you will carry out these actions on all five storage nodes. You can access each by
issuing the following commands:

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

Ensure that NTP is installed across all hosts in the OpenStack Object
Storage environment. Follow the instructions at http://bit.ly/
OpenStackCookbookPreReqs for more information.

How to do it...
Installation of OpenStack Object Storage node services in Ubuntu 14.04 is achieved
using the familiar apt-get tool, as the OpenStack packages are available from the official
Ubuntu repositories. To install the required packages on each storage node, execute the
following steps:

1. We can install all of the OpenStack Object Storage packages used on a storage node
as follows:
sudo apt-get update

sudo apt-get install swift swift-account \

 swift-container swift-object python-webob \

 python-keystoneclient rsync

2. We then create a number of directories that will be used by Swift and set the
appropriate permissions by running the following commands:

Create signing directory and set owner to swift

mkdir /var/swift-signing

chown -R swift /var/swift-signing

www.it-ebooks.info

http://bit.ly/OpenStackCookbookPreReqs
http://bit.ly/OpenStackCookbookPreReqs
http://www.it-ebooks.info/

Swift – OpenStack Object Storage

174

Create cache directory & set owner to swift

mkdir -p /var/cache/swift

chown -R swift:swift /var/cache/swift

Create config directory and set owner to swift

mkdir -p /etc/swift

chown -R swift:swift /etc/swift

Repeat this installation on each of the storage nodes in the
environment.

How it works...
Installation of the services required for running OpenStack Object Storage nodes from the
main Ubuntu package repository represents a straightforward and well-understood way of
getting OpenStack onto our Ubuntu server. This adds a greater level of certainty around
stability and upgrade paths by not deviating away from the main archives.

Configuring physical storage for use
with Swift

OpenStack Object Storage, Swift, has relatively simple architecture. It uses proxy servers at
the frontend that pass the data to an allocated storage node. The storage nodes can use as
many disks as you have available—whether it is one extra disk or a Just a Bunch Of Disks
(JBOD) full of drives. In this recipe, the accompanying virtual environment consists of five
storage nodes–each with an extra disk/partition, /dev/sdb1, mounted as /srv/node/
sdb1, which is where the data will be written. This recipe will describe the process in ensuring
these drives are configured correctly for use with Swift.

Getting ready
Ensure that you are logged onto the swift storage nodes. If you created these nodes with
vagrant, you will carry out these actions on all five storage nodes. You can access each
by issuing the following commands:

vagrant ssh swift-01

vagrant ssh swift-02

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
To configure our OpenStack Object Storage disks for use with Swift, carry out the following
steps on all five of our storage nodes. Repeat all the steps until each node has been
configured correctly:

1. First, ensure that the tools required to prepare our disk are installed on our storage
nodes. The parted tool is usually available, but XFS isn't installed by default. Install
both as follows:
sudo apt-get update

sudo apt-get install parted xfsprogs

2. Then, we prepare our extra disk, seen as /dev/sdb, under our Linux installation
using a tool called parted. Execute the following commands to create a new
partition that uses the whole disk:
sudo parted /dev/sdb mklabel msdos

NUM_CYLINDERS=$(sudo parted /dev/sdb unit cyl print \

 | awk '/Disk.*cyl/ {print $3}')

sudo parted mkpart primary 0cyl $NUM_CYLINDERS

3. To get Linux to see this new partition without rebooting, run partprobe to reread the
disk layout:
sudo partprobe

4. Once completed, we can create our filesystem on the partition /dev/sdb1. For this,
we will use the XFS filesystem as follows:
sudo mkfs.xfs -i size=1024 /dev/sdb1

5. We can now create the required mount point and set up fstab to allow us to mount
this new area:
sudo mkdir /srv/node/sdb1

6. Then, edit /etc/fstab to add in the following contents:
/dev/sdb1 /srv/node/sdb1 xfs
 noatime,nodiratime,nobarrier,logbufs=8 0 0

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

176

7. We can now mount this area as follows:
sudo mount /srv/node/sdb1

8. Ensure that this area is writeable by the Swift user and group:

sudo chown -R swift:swift /srv/node

Repeat the preceding steps on all Swift storage nodes.

How it works...
We first created a new partition on our extra disk using parted and formatted it with the
XFS filesystem. XFS is very good at handling large objects and has the necessary extended
attributes (xattr) required for the objects in this filesystem. The commands used in step 1
utilize the entire disk for use by Swift, which is denoted by making a partition that starts from
cylinder 0 and goes up to the last cylinder of the disk.

Any filesystem can be used for OpenStack Object Storage,
provided it supports xattr, which is by far the most widely
used and supported is XFS.

Once created, we mounted this area as /srv/node/{device_name}. This recommended
structure allows an administrator of OpenStack Object Storage to understand which disk is
being used by Swift in a meaningful way.

In order to accommodate the metadata used by OpenStack Object Storage, we increase the
inode size to 1024. This is set at the time of the format with the -i size=1024 parameter.

Further performance considerations are set at mount time. We don't need to record file
access times (noatime) and directory access times (nodiratime). Barrier support flushes
the write-back cache to disk at an appropriate time. Disabling this yields a performance
boost, as the highly available nature of OpenStack Object Storage allows for failure of a drive
(and therefore, write of data), so this safety net in our filesystem can be disabled (with the
nobarrier option) to increase speed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

Configuring Object Storage replication
For a highly redundant and scalable object storage system, replication is a key requirement.
Rsync is responsible for performing the replication of the objects stored in our OpenStack
Object Storage environment, and it is mandatory that this is configured correctly for Swift
to operate. Rsync is configured so that the three services used by Swift (account server,
container server, and object server) are set up as Rsync modules. The ccount server provides
information about the user, the container server provides information about the containers
owned by the user, and the object server is responsible for the data stored in the container.

Getting ready
Ensure that you are logged into the swift storage nodes. If you created these nodes with
vagrant, you will carry out these actions on all five storage nodes. You can access each by
issuing the following commands:

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
Configuring replication in OpenStack Object Storage means configuring the rsync service
on each of the storage nodes. The following steps set up Rsync synchronization modules
configured for each of our OpenStack Object Storage services—account server, container
server, and object server:

1. We first create our /etc/rsyncd.conf file in its entirety, as follows:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 172.16.0.221 # Amend for each storage node's management
IP address

[account]
max connections = 25

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

178

path = /srv/node/
read only = false
lock file = /var/lock/account.lock

[container]
max connections = 25
path = /srv/node/
read only = false
lock file = /var/lock/container.lock

[object]
max connections = 25
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

2. Since the rsync process will be reading and writing files as the swift user and
group, ensure that the path used (/srv/node) and any files and directories in here
are owned by the swift:swift user/group, as shown here:
sudo chown -R swift:swift /srv/node

3. Once complete, we enable rsync and start the service:

sudo sed -i 's/=false/=true/' /etc/default/rsync

sudo service rsync start

Repeat the step for each storage node in the environment.

How it works...
This recipe described how to configure rsyncd.conf appropriately for use with Swift. We
configured various rsync modules that become targets on our Rsync server. Additionally,
each section of the rsyncd.conf file has a number of configuration directives, such
as max connections, read only, and the lock file. While most of these values should be
self-explanatory, it is important to pay attention to the max connections value. In our test
environment, this is set to not overwhelm the small servers that we are running Swift on. In
the real world, you will want to tune the maximum connections value per guidance provided in
the Rsync documentation. A full discussion of this, however, is beyond the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

Configuring OpenStack Object
Storage – storage services

The account server lists the available containers on our nodes. The container servers contain
object servers seen in our OpenStack Object Storage environment. The object server contains
the actual objects seen in our OpenStack Object Storage environment. The following steps
must be conducted on all of the storage nodes in our environment.

Getting ready
Ensure that you are logged in to the swift storage nodes. If you created these nodes with
vagrant, you will carry out these actions on all five storage nodes. You can access each by
issuing the following commands:

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
For this recipe, we're creating four different account server configuration files that differ
only in the port that the service will run on and the path on our single disk that corresponds
to that service on that particular port. To create the configuration files, follow these steps:

1. We begin by creating the account server configuration file for our first node.
Edit /etc/swift/account-server.conf with the following contents:
[DEFAULT]
devices = /srv/node
bind_port = 6002
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = account-server

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

180

[app:account-server]
use = egg:swift#account

[account-replicator]
vm_test_mode = yes

[account-auditor]

[account-reaper]

2. Next, we edit the container server configuration file for the same node.
Edit /etc/swift/container-server.conf with the following contents:
[DEFAULT]
devices = /srv/node
mount_check = false
bind_port = 6001
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[account-replicator]
vm_test_mode = yes

[account-updater]

[account-auditor]

[account-sync]

[container-auditor]

[container-replicator]

[container-updater]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

181

3. We then configure the final service, the object server, by editing the /etc/swift/
object-server.conf with the following contents:
[DEFAULT]
devices = /srv/node
mount_check = false
bind_port = 6000
user = swift
log_facility = LOG_LOCAL2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]
vm_test_mode = yes

[object-updater]

[object-auditor]

4. Create the Swift configuration file, /etc/swift/swift.conf, with the same
contents as those detailed in step 2 of the Configuring OpenStack Object
Storage – proxy server recipe in this chapter:

[swift-hash]
Random unique string used on all nodes
swift_hash_path_prefix=a4rUmUIgJYXpKhbh
swift_hash_path_suffix=NESuuUEqc6OXwy6X

Repeat the steps for all of the storage nodes in the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

182

How it works...
What we have configured here are the three services that run on each of the storage
nodes—the account server, the container server, and the object server.
Each of these services run on three different ports on our storage node as defined by
the bind_port flag:

account-server: bind_port = 6000
container-server: bind_port = 6001
object-server: bind_port = 6002

We then refer to these ports (at the storage node's addresses) when we make the rings
associated with OpenStack Object Storage.

They all reference the parent directory of the path before the directory where the devices
are mounted. In this case, the devices flag refers to /srv/node because our disk is
mounted at /srv/node/sdb1.

Making the Object Storage rings
The final step is to create the object ring, account ring, and container ring that each of our
virtual nodes exists in. The OpenStack Object Storage rings keeps track of where our data
exists in our cluster. There are three rings that OpenStack Object Storage understands: the
account, container, and object rings. To facilitate quick rebuilding of the rings in our cluster,
we will create a script that performs the necessary steps.

Getting ready
Ensure that you are logged in to the swift-proxy node and have the packages installed
and configured for running Swift and have the five storage nodes installed and configured, as
described earlier in this chapter. If you created the swift-proxy node with vagrant, you
can execute the following command:

vagrant ssh swift-proxy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

183

How to do it...
To create the three rings used by the OpenStack Object Storage service, carry out the
following steps:

1. The most convenient way to create the rings for our OpenStack Object Storage
environment is to create a script. Create /usr/local/bin/remakerings
with the following contents:

This file can be downloaded from http://bit.ly/
OpenStackCookbookSwift.

#!/bin/bash

cd /etc/swift
rm -f *.builder *.ring.gz backups/*.builder
backups/*.ring.gz

Object Ring
swift-ring-builder object.builder create 18 3 1
swift-ring-builder object.builder add r1z1-
172.16.0.221:6000/sdb1 1
swift-ring-builder object.builder add r1z1-
172.16.0.222:6000/sdb1 1
swift-ring-builder object.builder add r1z1-
172.16.0.223:6000/sdb1 1
swift-ring-builder object.builder add r1z1-
172.16.0.224:6000/sdb1 1
swift-ring-builder object.builder add r1z1-
172.16.0.225:6000/sdb1 1
swift-ring-builder object.builder rebalance

Container Ring
swift-ring-builder container.builder create 18 3 1
swift-ring-builder container.builder add r1z1-
172.16.0.221:6001/sdb1 1
swift-ring-builder container.builder add r1z1-
172.16.0.222:6001/sdb1 1

www.it-ebooks.info

http://bit.ly/OpenStackCookbookSwift
http://bit.ly/OpenStackCookbookSwift
http://www.it-ebooks.info/

Swift – OpenStack Object Storage

184

swift-ring-builder container.builder add r1z1-
172.16.0.223:6001/sdb1 1
swift-ring-builder container.builder add r1z1-
172.16.0.224:6001/sdb1 1
swift-ring-builder container.builder add r1z1-
172.16.0.225:6001/sdb1 1
swift-ring-builder container.builder rebalance

Account Ring
swift-ring-builder account.builder create 18 3 1
swift-ring-builder account.builder add r1z1-
172.16.0.221:6002/sdb1 1
swift-ring-builder account.builder add r1z1-
172.16.0.222:6002/sdb1 1
swift-ring-builder account.builder add r1z1-
172.16.0.223:6002/sdb1 1
swift-ring-builder account.builder add r1z1-
172.16.0.224:6002/sdb1 1
swift-ring-builder account.builder add r1z1-
172.16.0.225:6002/sdb1 1
swift-ring-builder account.builder rebalance

2. Now, we can run the script as follows:
sudo chmod +x /usr/local/bin/remakerings

sudo /usr/local/bin/remakerings

You will see an output similar to this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

185

3. Once this has been completed (and this step can take a while), it creates three
gzipped files in the /etc/swift directory called /etc/swift/account.ring.gz,
/etc/swift/container.ring.gz, and /etc/swift/object.ring.gz.
These files now need to be placed into the /etc/swift directory of all of our
storage nodes.

Copy the *.gz files from the proxy server's /etc/swift directory to each of the storage
node's /etc/swift directories.

How it works…
In Swift, a ring functions like a cereal box decoder ring. It keeps track of where various bits of
data reside in a given Swift cluster. In our example, we have provided details for creating the
rings, as well as executed a rebuild of said rings.

Creation of the rings is done using the swift-ring-builder command and involves the
following steps, repeated for each ring type (object, container, and account):

1. To create the ring, we use the following syntax:
swift-ring-builder builder_file create \

 part_power replicas min_part_hours

This syntax specifies the builder file to create three parameters—part_power,
replicas, and min_part_hours. This means 2^part_power (18 is used in
this instance) is the number of partitions to create, replicas are the number of
replicas (3 is used in this case) of the data within the ring, and min_part_hours
(1 is specified in this case) is the time in hours before a specific partition can be
moved in succession.

2. To assign a device to a ring, we use the following syntax:
swift-ring-builder builder_file add \

 zzone-ip:port/device_name weight

Adding a node to the ring specifies the same builder_file created in the first step.
We then specify a zone (for example, 1, prefixed with z) that the device will be in;
ip (172.16.0.222) is the IP address of the server that the device is in, port (for
example, 6000) is the port number that the server is running on, and device_name
is the name of the device on the server (for example, sdb1). The weight is a float
weight that determines how many partitions are put on the device, relative to the rest
of the devices in the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

186

3. A balanced Swift ring is one where the number of data exchanges between nodes
is minimized, while still providing the configured number of replicas. A number of
cases for rebalancing a Swift ring are provided in Chapter 6, Using OpenStack Object
Storage, and Chapter 7, Administering OpenStack Object Storage. To rebalance the
ring, we use the following syntax within the /etc/swift directory:

swift-ring-builder builder_file rebalance

The preceding command will distribute the partitions across the drives in the ring.

The previous process is run for each of the rings—object, container, and account.

After the swift-ring-builder steps have finished, remember to copy the resultant
account.ring.gz, container.ring.gz, and object.ring.gz files to each of the
nodes in our environment, including other proxy servers we might have.

Stopping and starting OpenStack Object
Storage

After OpenStack Object Storage services has been installed across all our nodes, it's time to
start our services for storing objects and images in our OpenStack environment.

Getting ready
Ensure that you are logged in to all of the nodes and have the relevant packages installed and
configured for running Swift. If you created this environment with vagrant, you can execute
the following commands to access all the nodes:

vagrant ssh swift-proxy

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
Controlling OpenStack Object Storage services is achieved using the tool called swift-init.
We can start, stop, and restart the various services on that node using this tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

187

On the Object Storage nodes, we can start, stop, and restart all the services with the
following commands:

sudo swift-init all start

sudo swift-init all stop

sudo swift-init all restart

On the proxy server node, we can start, stop, and restart the proxy service with the
following commands:

sudo swift-init proxy-server start

sudo swift-init proxy-server stop

sudo swift-init proxy-server restart

On all the nodes, ensure that the services have all started with the start command.

How it works...
The OpenStack Object Storage services are simply started, stopped, and restarted using the
following syntax:

sudo swift-init all {start, stop, restart}

sudo swift-init swift-proxy {start, stop, restart}

Setting up SSL access
Setting up Secure Sockets Layer (SSL) access provides secure access between the
client and our OpenStack Object Storage environment in exactly the same way SSL
provides secure access to any other web service. To do this, we configure our proxy
server with SSL certificates.

In production, you wouldn't set up SSL directly on the proxy server.
You would use a hardware Load Balancer or another appropriate
device to do the SSL offloading. Setting up SSL as described in the
following recipe is for testing and development purposes only.

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

188

Getting ready
Ensure that you are logged in to the swift-proxy node and have the packages installed
and configured for running Swift. If you created this node with vagrant, you can execute the
following command:

vagrant ssh swift-proxy

How to do it...
Configuration of OpenStack Object Storage to secure communication between the client and
the proxy server is done as follows:

1. In order to provide SSL access to our proxy server, we first create the certificates:
cd /etc/swift

sudo openssl req -new -x509 -nodes -out cert.crt \

 -keyout cert.key

2. We need to answer the following questions that the certificate process asks us:

3. Once created, we configure our proxy server to use the certificate and key by editing
the /etc/swift/proxy-server.conf file, as shown here:
bind_port = 443
cert_file = /etc/swift/cert.crt
key_file = /etc/swift/cert.key

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

189

4. With this in place, we can restart the proxy server using the swift-init command
to pick up the change:
sudo swift-init proxy-server restart

5. We now need to update our Keystone endpoint to reflect this change. We do this
by first removing the current entry, and then adding the endpoint with the change of
details. First, source your environment variables so that you have admin privileges,
or set the following:
export ENDPOINT=192.168.100.200
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=https://${ENDPOINT}:35357/v2.0
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

6. List the endpoints to verify the entry to remove by issuing the following command:
keystone endpoint-list

This will bring back output such as the following. The Swift endpoint has been
highlighted and output truncated to fit the page.

7. To remove the Swift endpoint, execute the following command:
keystone endpoint-delete bd46a06576a3489ba9f9a8a7eaa2b2bd

8. We then add in the correct endpoint with the new values:

PUBLIC_URL="https://192.168.100.209:443/v1/AUTH_\
$(tenant_id)s"

ADMIN_URL="https://172.16.0.209:443/v1"

INTERNAL_URL=="https://172.16.0.209:443/v1/AUTH_\
$(tenant_id)s"

www.it-ebooks.info

http://www.it-ebooks.info/

Swift – OpenStack Object Storage

190

keystone endpoint-create --region RegionOne \

 --service_id $SWIFT_SERVICE_ID \

 --publicurl $PUBLIC_URL \

 --adminurl $ADMIN_URL \

 --internalurl $INTERNAL_URL

How it works...
Configuring OpenStack Object Storage to use SSL involves configuring the proxy server to use
SSL. We first configure a self-signed certificate using the openssl command, which asks for
various fields to be filled in. An important field is the Common Name field. Put in the Fully
Qualified Domain Name (FQDN) hostname or IP address that you would use to connect to the
Swift server.

Once that has been done, we specify the port that we want our proxy server to listen on. As we
are configuring an SSL HTTPS connection, we will use the standard TCP port 443 that HTTPS
defaults to. We also specify the certificate and key that we created in the first step so that
when a request is made, this information is presented to the end user to allow secure data
transfer. With this in place, we restart our proxy server to listen on port 443.

Finally, we modify the entry in Keystone to reflect this change. To do this, we identify the
endpoint ID of the Swift service by first list the endpoints. After this, we delete this endpoint
with the keystone endpoint-delete $ENDPOINT_ID command and add in the correct
ones, we ensure that we specify https and port 443.

With this in place, we can carry on using Swift as usual and the end user won't need to modify
anything to take advantage of this change.

www.it-ebooks.info

http://www.it-ebooks.info/

191

6
Using OpenStack

Object Storage

In this chapter, we will cover the following recipes:

 f Installing the swift client tool

 f Creating containers

 f Uploading objects

 f Uploading large objects

 f Listing containers and objects

 f Downloading objects

 f Deleting containers and objects

 f Using OpenStack Object Storage ACLs

 f Using Container Synchronization between two Swift Clusters

Introduction
Now that we have an OpenStack Object Storage environment running, we can use it to store
our files. To do this, we can use the swift client tool. This allows us to operate our OpenStack
Object Storage environment by allowing us to create containers, upload files, retrieve them,
and set required permissions on them, as appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

192

Installing the swift client tool
In order to operate our OpenStack Object Storage environment, we need to install an
appropriate tool on our client. Swift ships with the swift tool, which allows us to upload,
download, and modify files in our OpenStack Object Storage environment.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
you can use the controller node. It has the python-swiftclient package that provides
the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
We download and install the swift client conveniently from the Ubuntu repositories
using the familiar apt-get utility as follows:

1. Installation of the swift client is done by installing the swift package as well
as requiring the Python libraries for the OpenStack Identity Service: Keystone.
We do this using the following commands:
sudo apt-get update

sudo apt-get install python-swiftclient python-keystone

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

193

2. No further configuration is required. To test that you have successfully installed
swift and can connect to your OpenStack Object Storage server, issue the
following command:
swift stat -v

3. This will output the statistics of our OpenStack Object Storage environment to which
the admin user, who is a member of the cookbook tenant, has access. An example
is shown in the following screenshot:

How it works…
The swift client package is easily installed under Ubuntu and it requires no further
configuration after downloading as all parameters needed to communicate with OpenStack
Object Storage using the command line.

Creating containers
A container can be thought of as a root folder under our OpenStack Object Storage. It allows
for objects to be stored within it. Creating objects and containers can be achieved in a number
of ways. A simple way is by using the swift client tool.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
you can use the controller node. This node has the python-swiftclient package that
provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

194

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to create a container under OpenStack Object Storage:

1. To create a container named test under our OpenStack Object Storage server
using the swift tool, we use the following command:
swift post test

2. We can verify the creation of our container by listing the containers in our OpenStack
Object Storage environment. To list containers, execute the following command:

swift list test

This will simply list the containers in our OpenStack Object Storage environment, as
shown in the following section:

How it works...
Creation of containers using the supplied swift tool is very simple. The syntax uses the post
parameter for this purpose:

swift post container_name

Uploading objects
Objects are the files or directories that are stored within a container. You can upload objects
in a number of ways. A simple way is by using the swift client tool. This allows you to create,
delete, and modify containers and objects in the OpenStack Object Storage environment.
Individual objects up to 5 GB in size can be uploaded to OpenStack Object Storage using the
methods described in this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

195

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the
python-swiftclient package that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to upload objects in our OpenStack Object Storage environment.

Uploading files
Use the following steps to upload files:

1. Create a 500 MB file under /tmp as an example file that will be uploaded:
dd if=/dev/zero of=/tmp/example-500Mb bs=1M count=500

2. Upload this file to your OpenStack Object Storage account using the
following command:

swift upload test /tmp/example-500Mb

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

196

Uploading directories and their contents
Use the following steps to upload directories:

1. Create a directory and two files to upload to our OpenStack Object Storage
environment:
mkdir /tmp/test

dd if=/dev/zero of=/tmp/test/test1 bs=1M count=20

dd if=/dev/zero of=/tmp/test/test2 bs=1M count=20

2. To upload directories and their contents, we issue the same command but just
specify the directory. The files within the directory are recursively uploaded. The
command is as follows:

swift upload test /tmp/test

Uploading multiple objects
We can upload a number of objects using a single command. To do this, we simply specify
each of them on our command line. To upload our test1 and test2 files, we issue the
following command:

swift upload test /tmp/test/test1 /tmp/another/test2

How it works...
Uploading files to our OpenStack Object Storage environment is simple with the help
of the swift client tool. We can upload individual files or complete directories. The syntax
is as follows:

swift upload container_name file|directory {file|directory … }

Note that, when uploading files, the objects that are created are of the
form that we specify to the swift client, including the full paths. For
example, uploading /tmp/example-500Mb uploads that object as tmp/
example-500Mb. This is because OpenStack Object Storage is not the
traditional tree-based hierarchical file system that our computers and
desktops usually employ, where paths are delimited by a single slash (/ or
\). OpenStack Object Storage consists of a flat set of objects that exist in
containers where that slash forms the object name itself.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

197

Uploading large objects
Individual objects up to 5 GB in size can be uploaded to OpenStack Object Storage.
However, by splitting the objects into segments, the download size of a single object is
virtually unlimited. Segments of the larger object are uploaded and a special manifest file is
created that, when downloaded, sends all the segments concatenated as a single object. By
splitting objects into smaller chunks, you also gain efficiency by allowing parallel uploads.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. It has the python-
swiftclient package that provides the swift command line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps to upload large objects split into smaller segments:

1. Create a 1 GB file under /tmp as an example file to upload:
dd if=/dev/zero of=/tmp/example-1Gb bs=1M count=1024

2. Rather than uploading this file as a single object, we will utilize segmenting to split
this into smaller chunks (in this case, 100-MB segments). To do this, we specify the
size of the segments with the -S option, as follows:

swift upload test -S 102400000 /tmp/example-1Gb

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

198

Note that the size specified by the -S flag is specified in bytes.

You will see output similar to the following screenshot that shows the status
of each upload:

How it works...
OpenStack Object Storage is very good at storing and retrieving large objects. To efficiently do
this in our OpenStack Object Storage environment, we have the ability to split large objects
into smaller objects with OpenStack Object Storage, maintaining this relationship between the
segments and the objects that appear as a single file. This allows us to upload large objects in
parallel, rather than streaming a single large file. To achieve this, we use the following syntax:

swift upload container_name -S bytes_to_split large_file

Now, when we list our containers under our account, we have an extra container
named test_segments that holds the actual segmented data fragments for our file.
Our test container holds the view that our large object is a single object. Behind the
scenes, the metadata within this single object will pull back the individual objects from
the test_segments container to reconstruct the large object. The command as follows:

swift list

When the preceding command is executed, we get the following output:

test

test_segments

Now execute the following command:

swift list test

The following output is generated:

tmp/example-1Gb

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

199

You can also inspect the segments by listing the test_segments container with the
following command:

swift list test_segments

You will get the following output:

Listing containers and objects
The swift client tool allows you to easily list containers and objects within your OpenStack
Object Storage account.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. It has the python-
swiftclient package that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

200

How to do it...
Carry out the following to list objects within our OpenStack Object Storage environment.

Listing all objects in a container
Let's list all the objects in a container:

1. In the preceding recipes, we uploaded a small number of files. To simply list the
objects within our test container, we issue the following command:
swift list test

The preceding command will give you an output like this:

Listing specific object paths in a container
Let's list all the specific object paths in a container:

1. To list just the files within the tmp/test path, we specify this with the -p parameter:
swift list -p tmp/test test

The preceding command will list our two files:

tmp/test/test1
tmp/test/test2

2. We can put partial matches in the -p parameter too. For example, we issue the
following command to list all files starting with tmp/ex:

swift list -p tmp/ex test

The preceding command will list files that match the string we specified:

tmp/example-500Mb

How it works...
The swift tool is a basic but versatile utility that allows us to do many of the things we want
to do with files. Listing them in a way that suits the user is also possible. To simply list the
contents of our container, use the following syntax:

swift list {container_name}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

201

To list a file in a particular path within the container, we add in the -p parameter to the syntax:

swift list -p path {container_name}

Downloading objects
Now that we have configured OpenStack Object Storage, we can also retrieve the stored
objects using our swift client.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This has the python-
swiftclient package installed that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
We will download objects from our OpenStack Object Storage environment using different
swift client options.

Downloading objects
To download the tmp/test/test1 object, we issue the following command:

swift download test tmp/test/test1

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

202

The preceding command downloads the object to our filesystem. As we downloaded a file
with the full path, this directory structure is preserved. So, we end up with a new directory
structure of tmp/test with a file called test1.

Downloading objects with the -o parameter
To download the file without preserving the file structure, or to simply rename it to something
else, we specify the -o parameter:

swift download test tmp/test/test1 -o test1

Downloading all objects from a container
We can also download complete containers to our local filesystem. To do this, we simply
specify the container we want to download:

swift download test

The preceding command will download all objects found under the test container.

Downloading all objects from our OpenStack Object Storage
account
We can download all objects that reside under our OpenStack Object Storage account.
If we have multiple containers, all objects from all containers will be downloaded. We do
this with the --all parameter:

swift download --all

The preceding command will download all objects with full paths preceded by the container
name, as shown here:

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. You can download objects and containers using the following syntax:

swift download container_name {object … }

To download an object and rename the file on the local filesystem, we use the -o parameter
to specify a different local filename:

swift download container_name object -o renamed_object

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

203

To download all objects from our account (for example, from all containers), we specify
the following syntax:

swift download --all

Deleting containers and objects
The swift client tool allows us to directly delete containers and objects within our
OpenStack Object Storage environment.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. It has the python-
swiftclient package that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
We will delete objects in our OpenStack Object Storage environment using different
swift client options.

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

204

Deleting objects
To delete the object tmp/test/test1, we issue the following command:

swift delete test tmp/test/test1

This deletes the tmp/test/test1 object from the test container.

Deleting multiple objects
To delete the tmp/test/test2 and tmp/example-500Mb objects, we issue the
following command:

swift delete test tmp/test/test2 tmp/example-500Mb

This deletes the tmp/test/test2 and tmp/example-500Mb objects from the
test container.

Deleting containers
To delete our test container, we issue the following command:

swift delete test

This will delete the container, any objects under this container, and any segment objects
if the object was split when originally uploaded.

Deleting everything from our account
To delete all containers and objects in our account, we issue the following command:

swift delete --all

This will delete all containers and any objects under these containers.

How it works...
The swift client is a basic but versatile tool that allows us to do many of the things we want
to do with files. You can delete objects and containers using the following syntax:

swift delete {container_name} {object … }

To download all objects from our account (for example, from all containers), we use the
following syntax:

swift delete --all

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

205

Using OpenStack Object Storage ACLs
Access Control Lists (ACLs) allow us to have greater control over individual objects and
containers without requiring full read/write access to a particular container. With ACLs,
you can expose containers globally or restrict them to individual tenants and users.

Getting ready
Ensure you are logged in to a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. It has the python-
swiftclient package installed that provides the swift command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_NO_CACHE=1
export OS_KEY=/vagrant/cakey.pem
export OS_CACERT=/vagrant/ca.pem

How to do it...
Carry out the following steps:

1. We will first create an account in our OpenStack Identity Server that is only a Member
in the cookbook tenant. We will call this user user. The code is as follows:
export ENDPOINT=192.168.100.200
export SERVICE_TOKEN=ADMIN
export SERVICE_ENDPOINT=https://${ENDPOINT}:35357/v2.0
export OS_KEY=/vagrant/cakey.pem

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

206

export OS_CACERT=/vagrant/ca.pem

First get TENANT_ID related to our 'cookbook' tenant
TENANT_ID=$(keystone tenant-list \
 | awk ' / cookbook / {print $2}')

We then create the user specifying the TENANT_ID
keystone user-create \
 --name test_user \
 --tenant_id $TENANT_ID \
 --pass openstack \
 --email user@localhost \
 --enabled true

We get this new user's ID
USER_ID=$(keystone user-list | awk ' / user / {print $2}')

We get the ID of the 'Member' role
ROLE_ID=$(keystone role-list \
 | awk ' / Member / {print $2}')

Finally add the user to the 'Member' role in cookbook
keystone user-role-add \
 --user $USER_ID \
 --role $ROLE_ID \
 --tenant_id $TENANT_ID

2. After creating our new user, we will now create a container using a user that has
admin privileges (and therefore a container that our new user initially doesn't have
access to), as follows:
swift post testACL

3. We will then set this container to be read-only for our user named test_user:
swift post –r test_user testACL

4. We will upload a file to this container using our new user:
swift upload testACL /tmp/test/test1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

207

This brings back an "HTTP 403 Forbidden" message similar like this:

Object HEAD failed: https://proxy-server:8080/v1/AUTH_53d87d9b6679
4904aa2c84c17274392b/testACL/tmp/test/test1 403 Forbidden

5. We will now give write access to the testACL container for our user by allowing write
access to the container:
swift post –w test_user –r test_user testACL

6. When we try to upload the file again, it is successful:

swift upload testACL /tmp/test/test1

How it works
Granting access control is done on a container basis and is achieved at the user level. When
a user creates a container, other users can be granted that access by adding them to the
container. The users will then be granted read and write access to containers, for example:

swift post -w user -r user container

Using Container Synchronization between
two Swift Clusters

Replicating container content from one Swift Cluster to another in a remote location is a
useful feature for disaster recovery and running active/active datacenters. This feature allows
a user to upload objects as normal to a particular container, and have those contents upload
to a nominated container in a remote cluster automatically.

Getting ready
Ensure you are logged in to both swift proxy servers that will be used for the
replication. An example of this feature can be found with the Swift Vagrant environment
at https://github.com/OpenStackCookbook/VagrantSwift. If you created these
nodes with this environment, ensure that you have both swift and swift2 running and
you have a shell on both by executing the following command:

vagrant ssh swift

vagrant ssh swift2

www.it-ebooks.info

https://github.com/OpenStackCookbook/VagrantSwift
http://www.it-ebooks.info/

Using OpenStack Object Storage

208

How to do it...
To set up Container Sync replication, carry out the following steps:

1. On both Proxy Servers, edit /etc/swift/proxy-server.conf to add in the
container_sync to the pipeline:
[pipeline:main]
Order of execution of modules defined below
pipeline = catch_errors healthcheck cache container_sync authtoken
keystone proxy-server
[filter:container_sync]
use = egg:swift#container_sync

2. On each Proxy Server, create /etc/swift/container-sync-realms.conf
with the following contents:
[realm1]
key = realm1key
cluster_swift = http://swift:8080/v1/
cluster_swift2 = http://swift2:8080/v1/

3. On each Proxy Server, issue the following command to pick up the changes:
swift-init proxy-server restart

4. On the first Swift cluster (swift), identify the account on the second cluster
(swift2), where the first cluster will sync:
swift --insecure -V2.0 -A https://swift2:5000/v2.0
 -U cookbook:admin
 -K openstack

The preceding command shows an output similar to the following (note the
Account: line):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

Note that we're using the --insecure flag on this command as
Swift2 is running a self-signed certificate and we don't have access
to the generated CA file from our Swift node. If you copy this file across
so it is accessible, you can omit this flag.

5. Set up a container called container1 on the first swift cluster that synchronizes
content to a container called container2 on the second cluster, swift2:
swift -V2.0 -A https://controller:5000/v2.0

 -U cookbook:admin -K openstack post

 -t '//realm1/swift2/AUTH_d81683a9a2dd46cf9cac88c5b8eaca1a/
container2'

 -k 'myKey' container1

6. Set up the container2 container referenced in the previous step on the second
cluster that can also synchronize content back to container1 on the first cluster
(two-way sync) as follows. Note that we're running this command from the node
called swift and remotely creating the container on swift2:
swift --insecure -V2.0 -A https://swift2:5000/v2.0

 -U cookbook:admin

 -K openstack

 post container2

7. Upload a file to container1 on swift1:
swift -V2.0 -A https://controller:5000/v2.0

 -U cookbook:admin -K openstack

 upload container1 my_example_file

8. You can now view the contents on container2 on swift2 that will show the same
files listed in container1 on swift.

If the file hasn't appeared yet on container2 on the second
swift cluster, run the following:
swift-init container-sync once

www.it-ebooks.info

http://www.it-ebooks.info/

Using OpenStack Object Storage

210

How it works...
Container Synchronization is an excellent feature when multiple datacenters are running and
our disaster recovery plan requires data to be kept consistent in each datacenter. Container
sync operates at the container level, so we can control where our data is synced to.

To enable this feature, we modify the pipeline in the /etc/swift/proxy-server.conf
file to notify Swift to run Container Sync jobs.

Once configured, we create a file called /etc/swift/container-sync-realms.conf
that has the following structure:

[realm_name]
key = realm_name_key
cluster_name_of_cluster = http://swift1_proxy_server:8080/v1/
cluster_name_of_cluster2 = http://swift2_proxy_server:8080/v1/

This structure is important and is referenced when we create the synchronization on the
containers shown in the following syntax:

swift post

 -t '//realm_name/name_of_cluster2/AUTH_UUID/container_name'

 -k 'mykey' container_name_to_be_syncd

The AUTH_UUID comes from the following command shown that gives us the Swift account
associated with the user on the remote (receiving) Swift:

swift -V2.0 -A https://cluster2:5000/v2.0

 -U tenant:user -K password

 stat

The key is then used—along with the key references in the /etc/swift/container-sync-
realms.conf file—to create our shared secret that is used for authentication between
the containers.

As a result of this configuration, when we upload a file to the container created on our first
cluster that has been instructed to sync with the second, the file will automatically sync in
the background.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

211

There's more…
Container Synchronization is one approach that allows different Swift clusters to replicate
data between them. Another approach is using Global Clusters. For more information, visit
https://swiftstack.com/blog/2013/07/02/swift-1-9-0-release/.

www.it-ebooks.info

https://swiftstack.com/blog/2013/07/02/swift-1-9-0-release/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

213

7
Administering

OpenStack Object
Storage

In this chapter, we will cover the following recipes:

 f Managing the OpenStack Object Storage clusters with swift-init

 f Checking cluster health

 f Managing the Swift cluster capacity

 f Removing nodes from a cluster

 f Detecting and replacing failed hard drives

 f Collecting usage statistics

Introduction
Day-to-day administration of our OpenStack Object Storage cluster involves ensuring that the
files within the cluster are replicated to the right number of nodes, reporting on usage within
the cluster, and dealing with any failures with the cluster. This chapter builds upon the work
done in Chapters 6, Using OpenStack Object Storage, to show you the tools and processes
required to administer OpenStack Object Storage.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

214

Managing the OpenStack Object Storage
cluster with swift-init

Services in our OpenStack Object Storage environment can be managed using the
swift-init tool. This tool allows us to control all the daemons in OpenStack Object
Storage in a convenient way. For information on installing and configuring the Swift services
or daemons, see Chapter 5, Swift – OpenStack Object Storage.

Getting ready
Login to any OpenStack Object Storage node. If using the vagrant environment, these can
be accessed by using the following commands:

vagrant ssh swift-proxy

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
The swift-init tool can be used to control any of the running daemons in our
OpenStack Object Storage cluster rather than calling individual init scripts, which
makes it a convenient tool.

To control OpenStack Object Storage proxy, use the following command:

swift-init proxy-server { command }

To control OpenStack Object Storage object daemons, use the following commands:

swift-init object { command }

swift-init object-replicator {command }

swift-init object-auditor { command }

swift-init object-updater { command }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

215

To control OpenStack Object Storage container daemons, use the following commands:

swift-init container { command }

swift-init container-update { command }

swift-init container-replicator { command }

swift-init container-auditor { command }

To control OpenStack Object Storage account daemons, use the following commands:

swift-init account { command }

swift-init account-auditor { command }

swift-init account-reaper { command }

swift-init account-replicator { command }

To control all daemons, use the following command:

swift-init all { command }

The { command } term can be one of the following:

Command Description
stop, start, and restart As stated, the start and stop commands are used to

start and stop the daemon objects. The restart
command will include both functions of the stop and
start commands successively.

force-reload and reload A graceful shutdown and restart.
shutdown Shutdown after waiting for current processes to finish.
no-daemon Start a server within the current shell.
no-wait Spawn server and return immediately.
once Start server and run one pass.
status Display the status of the processes for the server.

How it works...
The swift-init tool is a single tool that can be used to manage any of the running
OpenStack Object Storage daemons. This allows for consistency in managing our cluster.

There's more…
Explanation of the various features and services of Swift can be found at
http://docs.openstack.org/developer/swift/admin_guide.html.

www.it-ebooks.info

http://docs.openstack.org/developer/swift/admin_guide.html
http://www.it-ebooks.info/

Administering OpenStack Object Storage

216

Checking cluster health
We can measure the health of our cluster by using the swift-dispersion-report tool.
This is done by checking the set of our distributed containers to ensure that the objects are in
their proper places within the cluster.

Getting ready
Ensure you are logged in to the swift-proxy nodes. If you created this node with Vagrant,
you can access it by using the following command:

vagrant ssh swift-proxy

How to do it...
Carry out the following steps to set up the swift-dispersion tool to report on
cluster health:

1. We create the configuration file (/etc/swift/dispersion.conf) required
by the swift-dispersion tool, as follows:
[dispersion]
auth_url = https://192.168.100.200:5000/v2.0
auth_user = cookbook:admin
auth_key = openstack
auth_version = 2.0
keystone_api_insecure = yes

We're using keystone_api_insecure in this environment
because we are using a self-signed certificate for our keystone
endpoint. This skips the validation of the certificate.

2. Now, we need to create containers and objects throughout our cluster so that they
are in distinct places. We use the swift-dispersion-populate tool, as follows:
sudo swift-dispersion-populate

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

217

This produces an output similar to the following:

3. Once these containers and objects have been set up, we can run
swift-dispersion-report:
sudo swift-dispersion-report

This produces the following report output:

4. We then set up a cron job that repeatedly checks the health of these containers
and objects:

echo "/usr/bin/swift-dispersion-report" \

 | sudo tee -a /etc/cron.hourly/swift-dispersion-report

How it works...
The health of objects can be measured by checking whether the replicas are correct.
If our OpenStack Object Storage cluster replicates an object three times and two of these
three objects are in the correct place, the object would be 66.66 percent healthy.

To ensure we have enough replicated objects in our cluster, we populate it with the
swift-dispersion-populate tool, which creates 2,621 containers and objects,
thereby increasing our cluster size. Once in place, we can then set up a cron job that
will run hourly to ensure our cluster is consistent which therefore gives a good indication
whether our cluster is healthy.

By setting up a cron job on our proxy node (which has access to all our nodes), we can
constantly measure the health of our entire cluster. In our example, the cron job runs
hourly, executing the swift-dispersion-report tool.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

218

Managing the Swift cluster capacity
A zone is a group of nodes that is as isolated as possible from other nodes (separate servers,
network, power, and geography). A Swift ring function similar to a cereal box decoder ring,
allowing the Swift services to locate each object. The ring guarantees that every replica is
stored in a separate zone. To increase the capacity of our environment, we can add an extra
zone to which data will then be replicated. In this example, we will add an extra storage node
with 172.16.0.212 as its IP address and /dev/sdb as its second disk. This node will be
used for our OpenStack Object Storage. This node makes up the only node in this zone.

To add additional capacity to existing zones, we repeat the instructions for each existing
zone in our cluster. For example, the following steps assume that zone 5 (z5) does not exist,
so this gets created when we build the rings. To simply add additional capacity to existing
zones, we specify the new servers in the existing zones (zones 1-4). The instructions remain
the same throughout.

Getting ready
Ensure you are logged in to the swift-proxy nodes. If you created this node with Vagrant,
you can access it by issuing the following command:

vagrant ssh swift-proxy

How to do it...
To add an extra zone to our OpenStack Object Storage cluster, carry out the following steps:

1. Create a proxy server.

2. Create a storage node.

Proxy server creation
To create a proxy server, follow these steps:

1. Add the following entries to the ring, where STORAGE_LOCAL_NET_IP is the IP
address of our new node and ZONE is our new zone:

Ensure that you run these commands while in the
/etc/swift directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

219

cd /etc/swift

ZONE=5

STORAGE_LOCAL_NET_IP=172.16.0.212

WEIGHT=100

DEVICE=sdb1

swift-ring-builder account.builder add z$ZONE-
$STORAGE_LOCAL_NET_IP:6002/$DEVICE $WEIGHT

swift-ring-builder container.builder add z$ZONE-
$STORAGE_LOCAL_NET_IP:6001/$DEVICE $WEIGHT

swift-ring-builder object.builder add z$ZONE-
$STORAGE_LOCAL_NET_IP:6000/$DEVICE $WEIGHT

2. We need to verify the contents of the rings by issuing the following commands:
swift-ring-builder account.builder

swift-ring-builder container.builder

swift-ring-builder object.builder

3. Finally, we rebalance the rings, which could take some time to run:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

4. Then, we need to copy account.ring.gz, container.ring.gz and
object.ring.gz in our new storage node and all other storage nodes:

scp *.ring.gz $STORAGE_LOCAL_NET_IP:/tmp

And other scp to other storage nodes

Storage node creation
To create a storage node, follow these steps:

1. We first move the copied account.ring.gz, container.ring.gz, and
object.ring.gz files to the /etc/swift directory and ensure they're
owned by swift:
mv /tmp/*.ring.gz /etc/swift

chown swift:swift /etc/swift/*.ring.gz

Prepare the storage on this node, as described in the Configuring physical storage
for use with Swift recipe in Chapter 5, Swift – OpenStack Object Storage.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

220

2. Edit the /etc/swift/swift.conf file so that the [swift-hash] section is
similar on all nodes, as shown here:
[swift-hash]
Random unique string used on all nodes
swift_hash_path_prefix=a4rUmUIgJYXpKhbh
swift_hash_path_suffix=NESuuUEqc6OXwy6X

3. We now need to create the appropriate /etc/rsyncd.conf file with the
following content:
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 172.16.0.212

[account]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = false
lock file = /var/lock/object.lock

4. Enable and start rsync with the following commands:
sed -i 's/=false/=true/' /etc/default/rsync

service rsync start

5. We need to create the /etc/swift/account-server.conf file with the
following content:
[DEFAULT]
bind_ip = 172.16.0.212
workers = 2

[pipeline:main]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

221

pipeline = account-server

[app:account-server]
use = egg:swift#account

[account-replicator]

[account-auditor]

[account-reaper]

6. Create the /etc/swift/container-server.conf file with the following content:
[DEFAULT]
bind_ip = 172.16.0.212
workers = 2

[pipeline:main]
pipeline = container-server

[app:container-server]
use = egg:swift#container

[container-replicator]

[container-updater]

[container-auditor]

7. Finally, create the /etc/swift/object-server.conf file with the following
content:
[DEFAULT]
bind_ip = 172.16.0.212
workers = 2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

222

8. We can now start this storage node, which we have configured to be in our fifth zone,
as follows:

swift-init all start

How it works...
Adding extra capacity by adding additional nodes or zones is done in the following two steps:

1. Configure the zones and nodes on the proxy server.

2. Configure the storage node(s).

For each storage node and the devices on those storage nodes, we run the following
command to add the storage node and device to our new zone:

swift-ring-builder account.builder add zzone-storage_ip:6002/device
weight

swift-ring-builder container.builder add zzone-storage_ip:6001/device
weight

swift-ring-builder object.builder add zzone-storage_ip:6000/device
weight

Once this has been configured on our proxy node, we rebalance the rings. This updates the
object, account, and container rings. We copy the updated gzipped files, as well as the Swift
hash key used within our environment for all our storage node(s).

On the storage node, we simply run through the following steps:

1. Configure the disk (partition and format with XFS).

2. Configure and start rsyncd.

3. Configure the account, container, and object services.

4. Start the OpenStack Object Storage services on the storage node(s).

Data is then redistributed within our OpenStack Object Storage environment onto this
new zone's node.

Removing nodes from a cluster
There may be times when we need to scale back or remove a failed node from for service.
We can do this by removing nodes from the zones in our cluster. In the following example,
we will remove the node 172.16.0.212 in z5, which only has one storage device attached,
which is /dev/sdb1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

223

Getting ready
Ensure you are logged in to the swift-proxy nodes. If you created this node with Vagrant,
you can access it by issuing the following command:

vagrant ssh swift-proxy

How to do it...
To remove a storage node from a zone, you need to make changes in the proxy server
configuration, which is highlighted in the next section.

Proxy Server
We need to make changes in our proxy server configuration by following these steps:

1. To remove a node from OpenStack Object Storage, we first set its weight parameter
to 0 so that data is drained away from this node when the rings get rebalanced:
cd /etc/swift

swift-ring-builder account.builder set_weight z5-
172.16.0.212:6002/sdb1 0

swift-ring-builder container.builder set_weight z5-
172.16.0.212:6001/sdb1 0

swift-ring-builder object.builder set_weight z5-
172.16.0.212:6000/sdb1 0

2. We then rebalance the rings as follows:
swift-ring-builder account.builder rebalance

swift-ring-builder container.builder rebalance

swift-ring-builder object.builder rebalance

3. Once this is done, we can remove the node in this zone from the ring using the
following commands:
swift-ring-builder account.builder remove z5-
172.16.0.212:6002/sdb1

swift-ring-builder container.builder remove z5-
172.16.0.212:6001/sdb1

swift-ring-builder object.builder remove z5-
172.16.0.212:6000/sdb1

4. We then copy the resulting account.ring.gz, container.ring.gz, and
object.ring.gz files over to the rest of nodes in our cluster. We are now free
to decommission this storage node by physically removing this device.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

224

How it works...
Manually removing a node from our OpenStack Object Storage cluster is done in three steps:

1. Set the node's weight parameter to 0, so data isn't being replicated to it, by using
the swift-ring-builder <ring> set_weight command.

2. Rebalance the rings to update the data replication.

3. Remove the node from the OpenStack Object Storage cluster using the
swift-ring-builder <ring> remove command. Once done, we are then free
to decommission that node. We repeat this for each node (or device) in the zone.

Detecting and replacing failed hard drives
OpenStack Object Storage won't be of much use if it cannot access the hard drives
where our data is stored; therefore, being able to detect and replace failed hard drives is
essential. OpenStack Object Storage can be configured to detect hard drive failures with the
swift-drive-audit command. This will allow us to detect failures so that we can replace
the failed hard drive, which is essential to the system health and performance.

Getting ready
Ensure that you are logged in to the swift-proxy nodes. If you created this node with
Vagrant, you can access it by issuing the following commands:

vagrant ssh swift-proxy

vagrant ssh swift-01

How to do it...
To detect a failing hard drive, carry out the following steps:

Storage node
We need to follow these steps to make changes in our storage node:

1. We first need to configure a cron job that monitors /var/log/kern.log for
failed disk errors on our storage nodes. To do this, we create a configuration file
named /etc/swift/swift-drive-audit.conf as follows:
[drive-audit]
log_facility=LOG_LOCAL0
log_level=INFO

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

225

device_dir=/srv/node
minutes=60
error_limit=1

2. We then add a cron job that executes swift-drive-audit hourly, or as often as
needed for your environment:
echo '/usr/bin/swift-drive-audit /etc/swift/swift-drive-
audit.conf' | sudo tee -a /etc/cron.hourly/swift-drive-audit

3. With this in place, when a drive has been detected as faulty, the script will unmount it
so that OpenStack Object Storage can work around the issue. Therefore, when a disk
has been marked as faulty and taken offline, you can now replace it.

Without swift-drive-audit taking care of this automatically,
you would have to manually to ensure that the disk has been
dismounted and removed from the ring.

4. Once the disk has been physically replaced, we can follow the instructions described
in the Managing the Swift cluster capacity recipe in this chapter to add our node or
device back into our cluster.

How it works...
Detection of failed hard drives can be picked up automatically by the swift-drive-audit
tool, which we set up as a cron job to run hourly. This looks in /var/log/kern.log for any
drive failures. By default, Ubuntu 14.04 logs hardware system information to this file. With this
in place, it detects failures, unmounts the drive so that it cannot be used, and updates the
ring so that data isn't being stored or replicated to it.

Once the drive has been removed from the rings, we can run maintenance on that device and
replace the drive.

With a new drive in place, we can then put the device back in service on the storage node by
adding it back into the rings. We can then rebalance the rings by running the swift-ring-
builder commands.

Collecting usage statistics
OpenStack Object Storage can report on usage metrics by using the swift-recon
middleware added to our object-server configuration. By using a tool named swift-
recon, we can then query these collected metrics.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

226

Getting ready
Ensure that you are logged in to all of the nodes and have the relevant packages installed and
configured for running Swift. If you created this environment with Vagrant, you can execute
the following commands to access all the nodes:

vagrant ssh swift-proxy

vagrant ssh swift-01

vagrant ssh swift-02

vagrant ssh swift-03

vagrant ssh swift-04

vagrant ssh swift-05

How to do it...
To collect usage statistics from our OpenStack Object Storage cluster, carry out the
following steps:

1. We first need to modify our /etc/swift/object-server.conf configuration
file on storage nodes to include the swift-recon middleware, so that it looks
similar to the following:
[DEFAULT]
bind_ip = 0.0.0.0
workers = 2

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

227

In the example vagrant environment, we are running a number
of Swift nodes collapsed into a single host. As such, we need to
edit each of the simulated node object-server configuration files in
/etc/swift/object-server/ directory.

2. Once this is in place, we simply restart our object-server service using
swift-init:

swift-init object-server restart

Now that the command is running, we can use the swift-recon tool on the proxy server
to get usage statistics:

 f Disk usage:
swift-recon -d

The preceding command will report on disk usage in our cluster.
swift-recon -d -z5

The preceding command will report on disk usage in zone 5.

 f Load average:
swift-recon -l

The preceding command will report on the load average in our cluster.
swift-recon -l -z5

The preceding command will report on load average of the nodes in zone 5.

 f Quarantined statistics:
swift-recon -q

The preceding command will report on any quarantined containers, objects,
and accounts in the cluster.
swift-recon -q -z5

The preceding command will report on this information for zone 5 only.

 f Check for unmounted devices:
swift-recon -u

The preceding command will check for any unmounted drives in our cluster.
swift-recon -z5 -u

The preceding command will work the same way for zone 5 only.

www.it-ebooks.info

http://www.it-ebooks.info/

Administering OpenStack Object Storage

228

 f Check replication metrics:

swift-recon -r

The preceding command will report on replication status within our cluster.
swift-recon -r -z5

The preceding command will just perform this for nodes in zone 5.

We can perform all these actions with a single command to get all telemetry data
back about our cluster:
swift-recon --all

We can just get this information for nodes within zone 5 by adding -z5 at the end,
as follows:
swift-recon --all -z5

Finally, you can also check for any asynchronous pending objects in our environment
by running a cron job periodically. This cron job can be set up as follows:

*/5 * * * * swift /usr/bin/swift-recon-cron /etc/swift/object-
server.conf

How it works...
To enable usage statistics within OpenStack Object Storage, we add in the swift-recon
middleware so that metrics are collected. We add this to the object server by adding the
following lines to /etc/swift/object-server.conf on each of our storage nodes:

[pipeline:main]
pipeline = recon object-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

With this in place and our object servers restarted, we can query this telemetry data
by using the swift-recon tool. We can collect the statistics from the cluster as a whole,
or from specific zones with the -z parameter.

Note that we can also collect all or multiple statistics by specifying the --all flag or
appending multiple flags to the command line. For example, to collect load average and
replication statistics from our nodes in zone 5, we would execute the following command:

swift-recon -r -l -z5

www.it-ebooks.info

http://www.it-ebooks.info/

229

8
Cinder – OpenStack

Block Storage

In this chapter, we will cover the following recipes:

 f Configuring Cinder-volume services

 f Configuring OpenStack Compute for Cinder-volume

 f Creating volumes

 f Attaching volumes to an instance

 f Detaching volumes from an instance

 f Deleting volumes

 f Configuring third-party volume services

 f Working with Cinder snapshots

 f Booting from volumes

Introduction
Data written to currently running instances on disks is not persistent—when you terminate
such instances, any disk writes will be lost. Volumes are persistent storage that you can
attach to your running OpenStack compute instances; the best analogy is that of a USB drive
that you can attach to an instance. Similar to USB drives, you can only attach instances to one
computer at a time.

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

230

In prior OpenStack releases, volume services were provided by nova-volume, which has
evolved over time into OpenStack Block Storage; that is, Cinder. OpenStack Block Storage
is very similar to Amazon EC2's Elastic Block Storage—the difference is in how volumes are
presented to the running instances. In OpenStack compute, volumes can easily be managed
using an iSCSI-exposed LVM volume group named cinder-volumes. So, this iSCSI volume
group must be present on any host running the Cinder volume service.

At times, managing OpenStack Block Storage can be confusing as Cinder volume is the
running service name, and cinder-volumes is the name of the LVM volume group that is
exposed by the cinder-volumes service.

In this chapter, we will be adding an additional node to run our OpenStack Block Storage
services. The following diagram describes this environment and where Cinder fits:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

231

Configuring Cinder-volume services
In this recipe, we will configure an additional server running Ubuntu 14.04 LTS to host
the volumes, and we'll explore the prerequisites of Cinder-volume when it comes to attaching
volumes to our instances.

Getting ready
To use Cinder volumes, you will need to have an additional host running Ubuntu 14.04 LTS.
This host will be configured to provide a loopback filesystem on which we will build the LVM
volumes and install the required services for Cinder.

If you are using the Vagrant environment that accompanies this book, be sure to login to the
cinder node with the following commands:

vagrant up cinder

vagrant ssh cinder

The terms OpenStack Block Storage and Cinder will be used interchangeably in this chapter.

How to do it...
First, we will set up a loopback filesystem and set up LVM appropriately. After that, we will
install and configure prerequisites such as open-iscsi. Finally, we will configure Cinder.

To configure your new host for cinder-volume, perform the following steps:

1. First login to the new host.

2. Install the prerequisites using the following commands:
Install some dependencies

sudo apt-get update

sudo apt-get install linux-headers-`uname –r` \

 build-essential python-mysqldb xfsprogs

sudo apt-get install cinder-api cinder-scheduler \

 cinder-volume open-iscsi python-cinderclient tgt \

 iscsitarget iscsitarget-dkms

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

232

3. Now we need to restart open-iscsi using the following command:

sudo service open-iscsi restart

To create a loopback filesystem and set up LVM for cinder-volume, perform the
following steps.

4. Next, we create a 5-GB file that will be used for the loopback filesystem:
dd if=/dev/zero of=cinder-volumes bs=1 count=0 seek=5G

Once that file is created, we create the loopback filesystem:

sudo losetup /dev/loop2 cinder-volumes

5. Finally, we create the LVM setup required for cinder-volume using the
following command:

sudo pvcreate /dev/loop2

sudo vgcreate cinder-volumes /dev/loop2

It is important to note that this is not a persistent filesystem. Rather, it is shown here for
demonstration. In a production setup, you would use an actual volume, rather than a loopback
file, and set it up to mount persistently.

How it works...
In order for us to use cinder-volume, also change the formatting, we need to prepare a
suitable disk or partition that has been configured as an LVM volume and that is specifically
named cinder-volumes. For our book, we simply create a loopback filesystem that we can
then set up to be part of this LVM volume group. In a physical installation, the steps are no
different. We simply configure a partition to be of type 8e (Linux LVM) in fdisk and then add
this partition to a volume group named cinder-volumes.

Once done, we then install the required Cinder-volume packages and supporting services. As
Cinder-volume uses iSCSI as the mechanism for attaching a volume to an instance, we install
the appropriate packages that are required to run iSCSI targets.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

233

Configuring OpenStack Compute for
Cinder-volume

We now need to tell our OpenStack compute service about our new Cinder-volume service.

Getting ready
As we are performing this setup in a multi-node environment, you will need to be logged into
your controller, compute, and cinder nodes.

If you are using the Vagrant environment that accompanies this book, you can log in to these
nodes as follows:

vagrant ssh controller

vagrant ssh cinder

This recipe assumes you have created an openrc file. To create an openrc file on each node
where you need it, open a text file named openrc and add the following contents:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_KEY=/path/to/cakey.pem
export OS_CACERT=/path/to/ca.pem

How to do it...
In our multi-node installation, we will need to configure the controller, compute,
and cinder nodes. Thus, we have broken down the instructions in that order.

To configure your OpenStack controller node for cinder-volume, perform the
following steps:

1. In our multi-node configuration, the OpenStack controller node is responsible for
authentication (Keystone) as well as hosting the Cinder database. First, log in to the
controller to configure authentication by running the following code:
source openrc
keystone service-create \
 --name volume \
 --type volume \

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

234

 --description 'Volume Service'

CINDER_SERVICE_ID=$(keystone service-list | awk '/\ volume\
/ {print $2}')

PUB_CINDER_ENDPOINT="192.168.0.211"
INT_CINDER_ENDPOINT="172.16.0.211"

PUBLIC="http://$PUB_CINDER_ENDPOINT:8776/v1/%(tenant_id)s"

ADMIN="http://$INT_CINDER_ENDPOINT:8776/v1/%(tenant_id)s"

INTERNAL=$PUBLIC

keystone endpoint-create \
 --region RegionOne \
 --service_id $CINDER_SERVICE_ID \
 --publicurl $PUBLIC \
 --adminurl $ADMIN \
 --internalurl $INTERNAL

keystone user-create \
 --name cinder \
 --pass cinder \
 --tenant_id $SERVICE_TENANT_ID \
 --email cinder@localhost --enabled true

CINDER_USER_ID=$(keystone user-list \
 | awk '/\ cinder \ / {print $2}')

keystone user-role-add \
 --user $CINDER_USER_ID \
 --role $ADMIN_ROLE_ID \
 --tenant_id $SERVICE_TENANT_ID

2. Next we create the MariaDB/MySQL database for use with Cinder:
MYSQL_ROOT_PASS=openstack

MYSQL_CINDER_PASS=openstack

mysql -uroot -p$MYSQL_ROOT_PASS \
 -e 'CREATE DATABASE cinder;'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

235

mysql -uroot -p$MYSQL_ROOT_PASS \
 -e "GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%';"

mysql -uroot -p$MYSQL_ROOT_PASS \
 -e "SET PASSWORD FOR 'cinder'@'%' =
PASSWORD('$MYSQL_CINDER_PASS');"

3. Add the following lines to the /etc/nova/nova.conf file under the
[Default] section:
volume_driver=nova.volume.driver.ISCSIDriver

enabled_apis=ec2,osapi_compute,metadata
volume_api_class=nova.volume.cinder.API
iscsi_helper=tgtadm

4. Now restart the nova services:

for P in $(ls /etc/init/nova* | cut -d'/' -f4 | cut -d'.' -f1)

do

 sudo stop ${P}

 sudo start ${P}

done

To configure the OpenStack compute nodes for Cinder, perform the following steps:

1. Next on our list for configuration are the OpenStack compute nodes. We will show
you how to configure the first node. You will need to replicate this configuration
against all of your compute nodes. Start by logging in to a compute node:
vagrant ssh compute-01

2. Add the following lines to the /etc/nova/nova.conf file under the
[Default] section:
volume_driver=nova.volume.driver.ISCSIDriver
enabled_apis=ec2,osapi_compute,metadata
volume_api_class=nova.volume.cinder.API
iscsi_helper=tgtadm

3. Now restart the nova services:

for P in $(ls /etc/init/nova* | cut -d'/' -f4 | cut -d'.' -f1)

do

 sudo stop ${P}

 sudo start ${P}

done

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

236

To configure the Cinder node with the cinder-volume service, log into the Cinder node and
perform the following steps:

1. Add the following lines to /etc/cinder/cinder.conf to enable communication
with Keystone on its internal address as follows:
[keystone_authtoken]
auth_uri = https:// 192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = cinder
admin_password = cinder
insecure = True

2. Next we modify /etc/cinder/cinder.conf to configure the database, iSCSI, and
RabbitMQ. Ensure cinder.conf has the following lines:
[DEFAULT]
rootwrap_config=/etc/cinder/rootwrap.conf

[database]
backend=sqlalchemy
connection = mysql://cinder:openstack@172.16.0.200/cinder

iscsi_helper=tgtadm
volume_name_template = volume-%s
volume_group = cinder-volumes
verbose = True
auth_strategy = keystone

Add these when not using the defaults.
rabbit_host = 172.16.0.200
rabbit_port = 5672

state_path = /var/lib/cinder/

3. To wrap up, we populate the Cinder database and restart the Cinder services:

cinder-manage db sync

cd /etc/init.d/; for i in $(ls cinder-*); do sudo service $i
restart; done

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

237

How it works...
In our multi-node OpenStack configuration, we have to perform configuration across our
environment to enable the cinder-volume service. On the OpenStack controller node,
we created a Keystone service, endpoint, and user. We additionally assigned the cinder user
and the admin role within the service tenant. On the controller, we created a cinder
MySQL database and modified nova.conf to allow the use of Cinder.

On our compute nodes, the modifications were much simpler as we only needed to modify
nova.conf to enable Cinder.

Finally, we configured the Cinder node itself. We did this by enabling Keystone, initializing the
Cinder database, and connecting the Cinder service to its MySQL database. After this, we
wrapped up by restarting the Cinder services.

Creating volumes
Now that we have created a Cinder volume service, we can create volumes for use by
our instances. We do this under our Ubuntu client using one of the Cinder client tools,
python-cinderclient, so we are creating volumes specific to our tenancy (project).

Getting ready
To begin with, ensure you are logged in to your Ubuntu client that has access to the Cinder
client tools. If using the Vagrant environment that accompanies the book, you can access
these tools from the cinder node:

vagrant ssh cinder

This recipe assumes you have created an openrc file. To create an openrc file on each node
where you need it, open a text file named openrc and add the following contents:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_KEY=/path/to/cakey.pem
export OS_CACERT=/path/to/ca.pem

These packages can be installed using the following command:

sudo apt-get update

sudo apt-get install python-cinderclient

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

238

How to do it...
Carry out the following steps to create a volume using Cinder client:

1. First create the volume that we will attach to our instance by running the
following command:
source openrc

cinder create --display-name cookbook 1

2. On completion, the command returns the following output:

How it works...
Creating Cinder volumes for use within our project, cookbook, is very straightforward.

With the Cinder client, we use the create option with the following syntax:

cinder create --display_name volume_name size_Gb

Here, volume_name can be any arbitrary name with no spaces. We can see the actual LVM
volumes on cinder-volumes, using the usual LVM tools, as follows:

sudo lvdisplay cinder-volumes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

239

You will get the following output:

Notice the LV name matches the ID of the volume created with Cinder.

Attaching volumes to an instance
Now that we have a usable volume, we can attach this to any instance. We do this by using
the nova volume-attach command in the Nova client.

Getting ready
To begin with, ensure you are logged in to the Ubuntu client that has access to the Nova client
tools. If using the Vagrant environment that accompanies the book, you can access these
tools from the controller node by running this command:

vagrant ssh controller

This recipe assumes you have created an openrc file. To create an openrc file on each node
where you need it, open a text file named openrc and add the following contents:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_KEY=/path/to/cakey.pem
export OS_CACERT=/path/to/ca.pem

These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

240

How to do it...
Carry out the following steps to attach a volume to an instance using the Nova client:

1. If you have no instance running, spin one up. Once it is running, run the nova
list command and note the instance ID:
source openrc

nova list --fields name

The following output is generated:

+--------------------------------------+-------+

| ID | Name |

+--------------------------------------+-------+

| f9659289-82f1-435f-98fc-add99c7a611b | test1 |

+--------------------------------------+-------+

2. Using the instance ID, we can attach the volume to our running instance, as follows:
nova volume-attach <instance_id> <volume_id> /dev/vdc

3. The preceding command will output the name of the volume when successful. To
view this, log into your running instance and view the volume that is now attached by
running the following:
sudo fdisk -l /dev/vdc

4. We should see 1 GB of space available for the running instance. As this is like adding
a fresh disk to a system, you need to format it for use and then mount it as part of
your filesystem, as shown here:
sudo mkfs.ext4 /dev/vdc

sudo mkdir /mnt1

sudo mount /dev/vdc /mnt1

5. We should now see the newly-attached disk available at /mnt1, as shown here:

df -h

Filesystem Size Used Avail Use% Mounted on

/dev/vda 1.4G 602M 733M 46% /

devtmpfs 248M 12K 248M 1% /dev

none 50M 216K 50M 1% /run

none 5.0M 0 5.0M 0% /run/lock

none 248M 0 248M 0% /run/shm

/dev/vdb 5.0G 204M 4.6G 5% /mnt

/dev/vdc 1.0G 204M 784M 5% /mnt1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

241

How it works...
Attaching a Cinder volume is no different from plugging in a USB stick on your own computer;
similar to a USB stick, a Cinder volume can only be attached to a single host and must be
formatted and mounted.

Under Nova client, the option volume-attach takes the following syntax:

nova volume-attach instance_id volume_id device

The instance_id parameter is the ID returned from the Nova list for the instance that we
want to attach the volume to. The volume_id is the name of the device within the instance
that we will use to mount the volume that can be retrieved using the nova volume-list.
This device is the device that will be created on our instance that we use to mount the volume.

Detaching volumes from an instance
As Cinder volumes can only be attached to one host at a time, you need to detach it from one
instance before attaching it to another. To detach a volume, we use another Nova client option
called volume-detach.

Getting ready
To begin with, ensure you are logged in to the Ubuntu host that has access to Nova client
tools. If using the Vagrant environment that accompanies the book, you can access these
tools from the controller node:

vagrant ssh controller

This recipe assumes you have created an openrc file. To create an openrc file on each node
where you need it, open a text file named openrc, and add the following contents:

export OS_TENANT_NAME=cookbook
export OS_USERNAME=admin
export OS_PASSWORD=openstack
export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/
export OS_KEY=/path/to/cakey.pem
export OS_CACERT=/path/to/ca.pem

These packages can be installed using the following commands:

sudo apt-get update

sudo apt-get install python-novaclient

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

242

How to do it...
To detach a volume using Nova client, carry out the following steps:

1. First, we identify the volumes attached to running instances by running the
following command:
nova volume-list

This returns the following output:

2. On the instance that has the volume mounted, we must first unmount it with the
following command (if using the earlier example, this is on /mnt1):
sudo unmount /mnt1

3. Back on the Ubuntu client, where Nova client is installed, we can now detach this
volume with the following command:

nova volume-detach <instance_id> <volume_id>

Now we can attach this to another running instance and the data will be preserved.

How it works...
Detaching Cinder volumes is no different from removing a USB stick from a computer. We first
unmount the volume from our running instance. Then we detach the volume from the running
instance using nova volume-detach from the Nova Client.

The nova volume-detach command has the following syntax:

nova volume-detach instance_id volume_id

The instance_id parameter is the ID from the attached to column returned from
the nova volume-list command, and this notifies which ID we want to detach the
volume from.

The volume_id parameter is the ID listed in the ID column from the nova volume-list
command.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

243

Deleting volumes
At some point, you will no longer need the volumes you have created. To remove the volumes
from the system permanently so they are no longer available, we simply pull out another tool
from the Nova client—the volume-delete option.

Getting ready
Ensure that you are logged in to the Ubuntu host where Nova client is installed and
have sourced in your OpenStack environment credentials. If you are using the Vagrant
environment that accompanies this book, be sure to log in to the controller node
with the following command:

vagrant ssh controller

This is a one-way deletion of data. It's gone unless you've got a
backup—you should be sure that you really want it gone.

How to do it...
To delete a volume using Nova client, carry out the following steps:

1. First we list the volumes available to identify the volume we want to delete with
the following command:
cinder list

2. We now simply use the volume ID to delete this from the system with the
following command:

cinder delete <volume_id>

On deletion, the volume you have deleted will be printed on the screen.

How it works...
Deleting images removes the LVM volume from use within our system. To do this, we simply
specify the volume ID as a parameter to nova volume-delete (when using the Nova
client), ensuring that the volume is not in use.

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

244

Configuring third-party volume services
The OpenStack Block storage project, Cinder, relies on Linux iSCSI by default. While that is
fairly robust, you may need to integrate OpenStack into your existing environment or wish to
use more advanced features provided by third-party storage devices. In this section, we will
show you how to configure Cinder to use a different storage provider plugin.

Getting ready
Ensure that you are logged in to the Ubuntu host where the cinder-api service is installed,
and have sourced in your OpenStack environment credentials.

This example highlights the use of the NFS backend for Cinder. It
is important to note that, while this setup is straightforward, you
should consult vendor documentation for other third-party drivers.

How to do it...
To change the Cinder volume driver to NFS, carry out the following steps:

1. You will need a properly configured NFS server and to create a file called
/etc/cinder/nfsshares on the node where cinder-api is running that
contains one line per NFS volume in the following format:
cinder.book:/exports

2. Next, you will need to edit your /etc/cinder/cinder.conf file so that it contains
the following line:
volume_driver = cinder.volume.drivers.nfs.NfsDriver

The file should also contain the following line:
nfs_shares_config = /etc/cinder/nfsshares

The final file will look like the following:

[DEFAULT]
rootwrap_config=/etc/cinder/rootwrap.conf
api_paste_config = /etc/cinder/api-paste.ini
volume_driver = cinder.volume.drivers.nfs.NfsDriver
nfs_shares_config = /etc/cinder/nfsshares

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

245

verbose = True
use_syslog = True
syslog_log_facility = LOG_LOCAL0

auth_strategy = keystone

rabbit_host = 172.16.0.200
rabbit_port = 5672
state_path = /var/lib/cinder/

[database]
backend=sqlalchemy
connection = mysql://cinder:openstack@172.16.0.200/cinder

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = cinder
admin_password = cinder
signing_dir = \$state_path/keystone-signing
insecure = True

3. Finally, restart the Cinder services:

cd /etc/init/; for c in $(ls cinder-* | cut -d '.' -f1) ; \

do sudo stop $c; start $c; done

How it works...
The /etc/cinder/nfsshares file lets Cinder know which NFS servers and shares to
connect to for volume placement, while the volume_driver tells Cinder to use a different
storage back end. The nfs_shares_config variable tells the Cinder services where to look
for additional configuration details. Once the services are restarted, Cinder is able to use the
specified NFS servers for volume storage.

Working with Cinder snapshots
Within Cinder, volume snapshots provide a way to non-disruptively copy a volume. This allows
for volume backups. It also enables more advanced backup features and provides the ability
to boot an instance from a given snapshot or point in time.

In this section, we will show you how to create a snapshot, refresh a snapshot, and delete a
given snapshot.

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

246

Getting ready
Ensure that you are logged in to the Ubuntu host where the Cinder command-line utilities are
installed and source your OpenStack environment admin credentials.

How to do it...
1. To create a snapshot, the volume must not be attached to an instance. To list your

current volumes, you can use the cinder list command:
$ cinder list

Here's the output:

If the volume you wish to take a snapshot of has an in-use status, you
will need to detach it using the instructions in the Detaching volumes from
an instance recipe in this chapter.

2. As our volume is available, we will create a snapshot of the volume using the cinder
snapshot-create command:
cinder snapshot-create b3e0f6b2-19cb-436f-a190-4b5c66ba2daf

Here's the output:

3. Once the snapshot is complete, you can reattach it to an instance and continue
operations. If using snapshots as part of an ongoing test/validation process or
part of a backup scheme, you may want to update the snapshot with fresh data.
To do this, we use the cinder snapshot-reset-state command, which produces
no output if successful.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

247

4. Finally, you will need to delete snapshots. To do this, use the cinder
snapshot-delete command as follows:

cinder snapshot-delete 63c3173b-4f30-4240-99f2-fd2e82cb757e

Confirm whether the volume is deleted with the cinder snapshot-list
command:
cinder snapshot-list

Here's the output:

+----+-----------+--------+--------------+------+

| ID | Volume ID | Status | Display Name | Size |

+----+-----------+--------+--------------+------+

+----+-----------+--------+--------------+------+

How it works...
Cinder volume snapshots provide a flexible way to clone volumes for backup, attaching to
other instances and more. The cinder snapshot- commands we used here—specifically
cinder snapshot-create, cinder snapshot-list, cinder snapshot-reset-
state, and cinder-snapshot-delete—instruct Cinder to work with the storage driver to
perform snapshot-specific actions: create, list, update, and delete, respectively. The
specific implementation of a particular snapshot depends on the underlying driver.

Booting from volumes
Booting from a Cinder volume gives a number of benefits as an OpenStack Operator. You can
provide a level of resiliency to your instances, or you can enable Live-Migration of an instance
where you are not counting on Libvirt to migrate the disk for you.

Getting ready
Ensure you are logged in to the Ubuntu host where the cinder command-line utilities are
installed and source your OpenStack environment admin credentials.

www.it-ebooks.info

http://www.it-ebooks.info/

Cinder – OpenStack Block Storage

248

How to do it...
To boot an instance from a volume, we first need to select an image to boot from as well as a
flavor of our choice. The steps are follows:

1. Get the UUID of the image to boot:
nova image-list

The command generates the following output:

2. Get the flavor ID for m1.tiny:
nova flavor-list

The command generates the following output:

3. Since our lab environment is configured with two networks, we will need to choose
the network to attach our instance to. First, list available networks:
neutron net-list

The available networks will be displayed:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

249

4. Finally, we issue the nova boot command:

nova boot \

 --flavor m1.tiny \

 --block-device source=image,id=trusty-
image,shutdown=preserve,dest=volume,size=15,bootindex=0 \

 --key_name demokey \

 --nic net-id=03575e772-b021-425c-bc17-5a3263247fb8 \

 --config-drive=true \

 CookBook_Instance

How it works...
As you can see, in the final step we passed a lot of new parameters to nova boot to tell
Nova to use Cinder while booting the image. Specifically, --block-device, along with its
sub-parameters source, id, shutdown, destination, size, and boot index, tell Nova
to boot from a specific image (source and id), to preserve the Cinder volume when you
shutdown the instance (shutdown), and that the destination is to be a cinder-volume of a
specific size (dest and size).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

251

9
More OpenStack

In this chapter, we will cover the following recipes:

 f Using cloud-init to run post-installation commands

 f Using cloud-config to run the post-installation configuration

 f Installing OpenStack Telemetry

 f Using OpenStack Telemetry to interrogate usage statistics

 f Installing Neutron LBaaS

 f Using Neutron LBaaS

 f Configuring Neutron FWaaS

 f Using Neutron FWaaS

 f Installing the Heat OpenStack Orchestration service

 f Using Heat to spin up instances

Introduction
So far in this book, we have discussed how to build and operate an OpenStack Cloud. By
necessity, we were exceedingly pragmatic in doing so and erred on the side of showing you
the most useful bits to get you up-and-running. In this chapter, we will cover a number of
OpenStack-related projects, functions, and features that will enhance your understanding
and ability to effectively design, implement, and operate your OpenStack Cloud. So, grab your
super-hero cape and let's get started.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

252

Using cloud-init to run post-installation
commands

Cloud-init was originally developed by Canonical and is the de facto standard for running
post-installation commands and configuration on a cloud instance. When an instance is
launched, if cloud-init is part of the image being used, it will look for metadata information
passed to it at launch time to do post-installation execution of commands. When a shell
script is used (as demonstrated in the following How to do it… section of this recipe), it can
be analogous to running commands in the /etc/rc.local working directory of a Linux
machine. Cloud-init relies on data being sent from the nova-metadata API service. An
instance looks for data associated with the particular instance and executes it accordingly.
This section will cover the basics of using cloud-init.

Getting ready
Ensure that you are logged into a Ubuntu host that has access to our OpenStack
environment on the 192.168.100.0/24 public network. This host will be used to run
client tools against the OpenStack environment created. If you are using the accompanying
Vagrant environment, as described in the Preface, you can use the controller node. This
has the python-novaclient package that provides the nova command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if you're not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

How to do it...
For this section, we will demonstrate how to run a script that brings up all interfaces on a
standard Ubuntu image. Without this approach, if you run a Ubuntu image with more than
one network interface, only the first interface eth0 is brought up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

253

In this example, we will launch a Ubuntu instance with two Neutron networks and pass a shell
script on the command line to bring up all interfaces. The steps are as follows:

1. We first create a small shell script to demonstrate the ability to pass shell scripts
to an instance. Create a file called multi-nic.sh in the current directory with the
following content:

#!/bin/bash
ifconfig -a | awk '/^eth/ {print $1}' | while read I

do

 dhclient $I

done

2. We can then simply pass this file as an argument to the nova boot line with the
--user-data flag as follows:

nova boot

 --flavor m1.tiny

 --image trusty-image

 --nic net-id=e8e4ed14-97a6-4715-a065-3ff0347f40dd

 --nic net-id=8cb0f8f3-c529-45fe-ac5f-bd00c9814005

 --user-data ./multi-nic.sh

 myInstance

The second nic, and eth1, lines will now have an IP associated with it.

The net-id value can be found by running the neutron
net-list command and looking up the ID associated with
the network you want to use. You can specify any number of
--nic flags (limited by the amount the image supports).

How it works...
Cloud-init is a very powerful system that is the cornerstone of hands-free orchestration
of your instances. By providing the ability to run post-installation scripts, cloud-init paves
the way for full-stack system automation and integration with third-party configuration
management utilities.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

254

To be able to execute a cloud-init script that is similar to an rc.local script, start
the file with #!, followed by the interpreter such as /bin/bash or /bin/python.
This tells cloud-init to run this script very late into the boot sequence after the initial
services have started.

Cloud-init also supports a wide range of other features ranging from running upstart jobs
(if the file begins with #upstart-job), which will place the file in /etc/init and execute
this as any other type of upstart job, to the ability to consume the gzip files. These files get
unzipped and executed for that file type as normal. Using the gzip files is very common as
the input size is limited to 16,384 bytes.

There's more…
More information on cloud-init can be found at http://cloud-init.readthedocs.org/.

Using cloud-config to run the
post-installation configuration

Cloud-config is a feature of cloud-init and is the simplest way to install packages via apt and
configure our instances. With cloud-config, we can use a Yet Another Markup Language
(YAML) file to describe how an instance is configured, which would require more effort if
performed with shell scripts.

Getting ready
Ensure you are logged into a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This has the python-
novaclient package that provides the nova command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

www.it-ebooks.info

http://cloud-init.readthedocs.org/
http://www.it-ebooks.info/

Chapter 9

255

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

How to do it...
In this section, we will demonstrate the configuration of the instance's hostname and
installation of the Apache web server, as well as creation of groups and users. The steps
are as follows:

1. We first create the .yaml file describing this behavior. Create a file called
webserver.yaml in the current directory with the following content:
#cloud-config
hostname: myWebserver
fqdn: mywebserver.cook.book
manage_etc_hosts: true
groups:
 - developers
users:
 - auser
 gecos: A User
 primary-group: users
 groups: users, developers
 passwd: $6r$j632wezy/grasdfds7/efew7fwq/fdfws.8ewfwefwe
packages
 - apache2

2. We can simply pass this file as an argument to the nova boot line with the
--user-data flag, as follows:
nova boot

 --flavor m1.tiny

 --image trusty-image

 --nic net-id=e8e4ed14-97a6-4715-a065-3ff0347f40dd

 --user-data ./webserver.yaml

 myWebserver

The net-id value can be found by running the neutron
net-list command and looking up the id associated with the
network you want to use.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

256

3. The output can be seen with the nova console-log command. Cloud-init will
interpret this cloud-config data and as a result will output commands such as
apt-get update and apt-get install. At the end of the cloud-config run,
your web server will be accessible.

Note that the output of nova list, which shows the status of the
instance, will show as Active despite the fact that cloud-init might not
have completed yet. Be aware of this if you are relying on this status to
check whether a service running on the instance is ready or not.
Remember to open up the relevant security group ports for the services
running on the instances too.

How it works...
Cloud-config is a feature of cloud-init and is a very simple method for the post-configuration
tasks of our instances. A number of configuration options are available.

In the preceding example, we set the following line:

#cloud-config

Any file starting with this on the first line will be interpreted by cloud-init as cloud-config data.

The hostname parameter sets the short hostname of the instance.

The fqdn parameter sets the fully qualified domain name of the instance.

The manage_etc_hosts: true line allows us to modify the entries of /etc/hosts with
the preceding information.

Adding users to the instance is simple when used with the groups and users statements. We
simply list the groups to be added to the system and the users. Each user section begins with:

 - name: username

This line is followed by the system information you'd expect to see. The next user will start with
the next section as follows:

 - name: anotheruser

Package installation starts with the packages and we simply list each package we want to
install, as shown in the following code. Ensure there is an Internet connection available to your
instances if you are accessing them outside your network:

packages
- apache2
- openssl

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

257

If the outside world isn't available, you can configure apt to point to a repository internally:

apt_mirror: http://internal-apt.cook.book/ubuntu/
apt_mirror_search_dns: false

This method is great for installation of packages for instances that cannot reach the Internet.

There's more...
Cloud-config can do a lot more than just install packages. Cloud-config can be used to
install and run Chef recipes and puppet manifests, allowing you to integrate your OpenStack
instances into your favorite orchestration and configuration management system. More
information on cloud-config can be found at http://cloud-init.readthedocs.org/.

Cloud-init is not just limited to Linux-based instances. Cloudbase-init from Cloudbase brings
the same ability to Windows instances also. Visit http://www.cloudbase.it/cloud-
init-for-windows-instances/ for more information on how to set up a cloud-init
instance in Windows with Powershell.

Installing OpenStack Telemetry
The OpenStack Telemetry project, also called Ceilometer, provides you with the ability to
collect metering data of the physical and virtual resources comprising deployed OpenStack
components and persist this data for subsequent retrieval and analysis. It can also trigger
actions when the defined criteria are met.

Getting ready
Ensure you have suitable servers running the OpenStack components. If you are using the
accompanying Vagrant environment, as described in the Preface, we will use the same
controller and compute-01 nodes for this recipe.

We will be installing Ceilometer packages on a controller node and a compute node.
Ensure you are logged into the controller and compute-01 nodes in our environment.
If you created these nodes with Vagrant, you can execute the following command:

vagrant ssh controller

vagrant ssh compute-01

www.it-ebooks.info

http://cloud-init.readthedocs.org/
http://www.cloudbase.it/cloud-init-for-windows-instances/
http://www.cloudbase.it/cloud-init-for-windows-instances/
http://www.it-ebooks.info/

More OpenStack

258

How to do it...
To enable the Telemetry (ceilometer) service, first carry out the following steps on the
controller node:

1. Ceilometer requires its own database to store all the data it collects. We will install
MongoDB and the required dependencies to use with OpenStack's Telemetry service.
On a controller node, execute the following command:
sudo apt-get install mongodb python-pymongo python-bson

2. After installing MongoDB, edit the MongoDB configuration file /etc/mongodb.conf
on the controller node and set the bind_ip parameter:
bind_ip = 172.16.0.200

3. Restart MongoDB as follows:
sudo service mongodb restart

4. MongoDB uses JavaScript syntax for its commands. To configure MongoDB for use
with Ceilometer, add the ceilometer user by issuing the following command:
db.addUser({ user: "ceilometer",
 pwd: "openstack",
 roles: ["readWrite", "dbAdmin"]
 });

5. Keystone needs to be aware of Ceilometer, so ensure that there are Keystone
credentials for the ceilometer service by executing the following commands:
keystone user-create --name=ceilometer --pass=ceilometer \

--email=ceilomoter@localhost

keystone user-role-add --user=ceilometer \

--tenant=service --role=admin

6. We then add the following service and endpoint for Ceilometer in Keystone by
executing the following commands:
keystone service-create --name=ceilometer \

--type=telemetry \

--description="Ceilometer Metering Service"

METERING_SERVICE_ID=$(keystone service-list \

| awk '/\ ceilometer\ / {print $2}')

keystone endpoint-create \

 --region RegionOne \

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

259

 --service-id=${METERING_SERVICE_ID} \

 --publicurl=http://192.168.100.200:8777 \

 --internalurl=http://192.168.100.200:8777 \

 --adminurl=http://192.168.100.200:8777

7. We are now ready to install the required ceilometer packages using apt:
sudo apt-get update

sudo apt-install ceilometer-api \

ceilometer-collector \

ceilometer-agent-central \

python-ceilometerclient

8. Configure ceilometer by editing the /etc/ceilometer/ceilometer.conf file.
It should contain the following configuration to work with our environment:
[DEFAULT]
policy_file = /etc/ceilometer/policy.json
verbose = true
debug = true
insecure = true

AMQP
notification_topics = notifications,glance_notifications

rabbit_host=172.16.0.200
rabbit_port=5672
rabbit_userid=guest
rabbit_password=guest
rabbit_virtual_host=/
rabbit_ha_queues=false

[database]
connection=mongodb://ceilometer:openstack@172.16.0.200:
27017/ceilometer

[api]
host = 172.16.0.200
port = 8777

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

260

identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = ceilometer
admin_password = ceilometer
revocation_cache_time = 10
insecure = True

[service_credentials]
os_auth_url = https://192.168.100.200:5000/v2.0
os_username = ceilometer
os_tenant_name = service
os_password = ceilometer
insecure = True

9. We restart all ceilometer services:
sudo service ceilometer-agent-central restart

sudo service ceilometer-agent-notification restart

sudo service ceilometer-alarm-evaluator restart

sudo service ceilometer-alarm-notifier restart

sudo service ceilometer-api restart

sudo service ceilometer-collector restart

Now that controller node is set up, we proceed to install the Ceilometer agent
on a compute-01 node.

10. On a compute-01 node, install the ceilometer agent:
sudo apt-get install ceilometer-agent-compute

11. Edit the /etc/ceilometer/ceilometer.conf file and insert the following lines:
[DEFAULT]
policy_file = /etc/ceilometer/policy.json
verbose = true
debug = true
insecure = true

AMQP
notification_topics = notifications,glance_notifications

rabbit_host=172.16.0.200
rabbit_port=5672
rabbit_userid=guest

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

261

rabbit_password=guest
rabbit_virtual_host=/
rabbit_ha_queues=false

[database]
connection=mongodb://ceilometer:openstack@172.16.0.200:
27017/ceilometer

[api]
host = 172.16.0.200
port = 8777

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0/
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = ceilometer
admin_password = ceilometer
revocation_cache_time = 10
insecure = True
[service_credentials]
os_auth_url = https://192.168.100.200:5000/v2.0
os_username = ceilometer
os_tenant_name = service
os_password = ceilometer
insecure = True

12. Add the Ceilometer section to the /etc/nova/nova.conf configuration file:
Ceilometer
instance_usage_audit=True
instance_usage_audit_period=hour
notify_on_state_change=vm_and_task_state
notification_driver=nova.openstack.common.notifier.
rpc_notifier

13. Restart the nova services:
sudo service nova-compute restart

14. Restart the Ceilometer agent:

sudo service ceilometer-agent-compute restart

Your compute node is now reporting all its usage statistics to the controller node.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

262

How it works...
We installed and configured MongoDB on our controller node. We set up MongoDB to
listen on the internal controller IP, which is similar to the RabbitMQ service. Ceilometer uses
Keystone for communication, so we also created a ceilometer user and services using
keystone commands. After creating the ceilometer user, we installed and configured
ceilometer packages. The configuration file for Ceilometer is /etc/ceilometer/
ceilometer.conf. Apart from the [api], [keystone_authtoken], and [service_
credentials] sections, we also specified the database connection section:

[database]

connection=mongodb://ceilometer:openstack@172.16.0.200:27017/
ceilometer

To properly configure the MongoDB database for production use, refer to the
MongoDB documentation at http://docs.mongodb.org/manual/.

We could have used any supported database, such as MongoDB, MySQL, PostgreSQL,
HBase, and DB2.

After configuring the controller node, we set up the compute-01 node by installing the
Ceilometer agent. We then updated the /etc/ceilometer.conf and /etc/nova/nova.
conf files. Now, the Ceilometer service is ready to be used.

Using OpenStack Telemetry to interrogate
usage statistics

With the telemetry modules installed and configured, we can now use the Ceilometer
command line to interrogate resource usage statistics. We do this by retrieving meters that
were set up for our environment and in listing the data.

Getting ready
Ensure that you are logged into a Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This has the python-
ceilometer package that provides the ceilometer command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://docs.mongodb.org/manual/
http://www.it-ebooks.info/

Chapter 9

263

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

vagrant ssh controller

How to do it...
We will first list the meters available in our environment:

1. We will list the meters available in our environment:
ceilometer meter-list

The preceding command will display the following information:

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

264

2. Narrow down the meter list by a particular VM:
ceilometer meter-list --query resource=4be430e2-9b12

We get the following output:

3. We can view sample data for different meters related to our VM. To view the sample
data, use the following command:
ceilometer sample-list -m disk.write.bytes

This will provide a lot of raw data:

We trimmed the preceding output for readability; usually there will be a lot more data.

4. Ceilometer comes with some helpful tools to perform calculations and provide
statistics. We can now get the statistics for individual meters and investigate the
disk write rate:
ceilometer statistics --meter disk.write.bytes.rate

The preceding command will provide the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

265

5. Ceilometer allows custom queries. To view the data for a particular date range,
we will enter start and end times:
ceilometer statistics -m disk.write.bytes.rate \

-q 'timestamp>2015-04-14T22:38:15; \

timestamp<=2015-04-19T04:28:15' --period 60

The preceding command will give us a lot of data for a given range. Here is
the truncated output:

6. To investigate statistics for cumulative data, we will check network outgoing bytes
with the following command:
ceilometer statistics -m network.outgoing.bytes

The preceding command will give us the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

266

Here, we wrapped the table output for easier readability. Normally,
all columns would be presented together.

The main difference is that, in addition to all the other columns as before,
we now have a Sum column that has the total sum of all outgoing bytes.

7. To list a running sum of bytes for outgoing networks, we will use a query for a specific
time range:

ceilometer statistics -m network.outgoing.bytes \

-q 'timestamp>2015-04-14T22:38:15;\

timestamp<=2015-04-19T04:28:15' --period 60

We will get the following output:

We can see the cumulative running total during the specified time interval. For the
sake of readability, we removed the Period, Count, and Duration columns and
some data in the middle of the time range.

How it works...
Ceilometer collects data from various OpenStack components. We have viewed meters that
were set up for our environment and queried data based on the date range. Ceilometer
provides three types of data—cumulative, gauge, and delta. We have looked at gauge data,
which provided information about the disk write rate. We also looked at cumulative data for a
date interval. To list the Ceilometer meters, use the following command:

ceilometer meter-list

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

267

To view sample data for individual meters, we used the -m or --meter flags with the
following command:

ceilometer sample-list -m disk.write.bytes

Ceilometer also provides statistics for the various data it collects. To view statistics, we issue
the following command:

ceilometer statistics --meter disk.write.bytes.rate

The preceding command also accepts queries in the following format:

ceilometer statistics -m disk.write.bytes.rate -q \

'timestamp>2015-04-14T22:38:15;\

timestamp<=2015-04-19T04:28:15' --period 60

Ceilometer collects, stores, and queries what can be middling-to-
large amounts of data or big data—depending on the number of
hosts and meters configured. While it is beyond the scope of this
book to teach you how to handle middling-to-large data problems,
it is recommended that, if you deploy Ceilometer in production,
you should host its operations where it will not otherwise impact
your workloads.

Installing Neutron LBaaS
Unlike its cartoon namesake Jimmy Neutron, OpenStack Neutron has an extensible plugin
mechanism that enables more network features through the Neutron API. By enabling the
Load-Balancer-as-a-Service (LBaaS) agent plugin on our Network node, we are able to create
and manage Load Balancers through Neutron API calls. There are drivers for many hardware
vendors; the following example uses the HA Proxy reference driver for Open vSwitch.

To install Neutron LBaaS, we install the LBaaS agent on the network node and configure
Neutron on both the network and controller nodes to pick up the service.

Getting ready
Ensure that you have a suitable server running the OpenStack network components.
If you are using the accompanying Vagrant environment, as described in the Preface,
we will use the same network node for this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

268

Ensure that you are logged into the network node as well as the controller
node in our environment. If you created these nodes with Vagrant, you can execute
the following command:

vagrant ssh network

vagrant ssh controller

How to do it...
To enable the Neutron LBaaS feature, first carry out the following steps on the network node:

1. We install the LBaaS agent using apt:
sudo apt-get update

sudo add-apt-repository ppa:openstack-ubuntu-testing/kilo

neutron-lbaas-agent haproxy

2. We enable the Load Balance service in the [Default] section of the /etc/
neutron/neutron.conf file by adding lbaas to the service_plugins
line as follows:
service_plugins = lbaas

The service_plugins line is a comma-delimited list, for example:
service_plugins = lbaas,router

3. We enable the HA Proxy Load Balancer service by adding the following lines
to /etc/neutron/neutron.conf:
[service_providers]
service_provider =
LOADBALANCER:Haproxy:neutron.services.loadbalancer.drivers.
haproxy.plugin_driver.HaproxyOnHostPluginDriver:default

4. We then edit the /etc/neutron/lbaas_agent.ini file to have the following lines:
[DEFAULT]
debug = False
interface_driver =
neutron.agent.linux.interface.OVSInterfaceDriver
device_driver =
neutron.services.loadbalancer.drivers.haproxy.
namespace_driver.HaproxyNSDriver

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

269

[haproxy]
loadbalancer_state_path = $state_path/lbaas
user_group = nogroup

5. On the network node, we start the Neutron LBaaS agent:
sudo start neutron-lbaas-agent

6. On the controller node, where our Neutron API is running, we edit the /etc/
neutron/neutron.conf file to match the same configuration presented previously.
Under the [Default] section, we enable the Load Balance service by adding lbaas
to the service_plugins line:
service_plugins = lbaas

The service_plugins line is a comma-delimited list, for example:
service_plugins = lbaas,router

7. We then enable the HA Proxy Load Balance service by adding the following lines to
the /etc/neutron/neutron.conf configuration file:
[service_providers]
service_provider =
LOADBALANCER:Haproxy:neutron.services.loadbalancer.drivers.
haproxy.plugin_driver.HaproxyOnHostPluginDriver:default

8. On the controller node, we restart the Neutron API service:
sudo restart neutron-server

9. Horizon, the OpenStack Dashboard, can also be configured for use with Neutron's
LBaaS. To enable this feature, edit the /etc/openstack-dashboard/local_
settings.py file to insert the following lines:
OPENSTACK_NEUTRON_NETWORK = {
 'enable_lb': True,
 ...
}

10. Restart Apache to pick up the changes:

service apache2 restart

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

270

How it works...
We have enabled the Neutron LBaaS plugin in our environment by first installing the Neutron
LBaaS agent package on our network node, and then configuring this for use with HA Proxy.
The /etc/neutron/neutron.conf file notifies our neutron services of this feature with
the following lines:

[Default]
service_plugins = lbaas
[Service_Providers]
service_provider =
LOADBALANCER:Haproxy:neutron.services.loadbalancer.drivers.haproxy
.plugin_driver.HaproxyOnHostPluginDriver:default

The specific configuration of the LBaaS Agent is achieved in the /etc/neutron/lbaas-
agent.ini file on the node running the agent, which is our network node.

We then notify the Neutron API service running on the controller about the Neutron LBaaS
plugin. We copy the same neutron.conf settings file created here onto the controller
node and restart the Neutron Server API service.

Using Neutron LBaaS
With Neutron LBaaS now installed, we can use this through the Neutron API and command
line. This allows us to create simple HA Proxy Load Balance services for our instances. We
do this by creating Load Balance pools and adding the running instances to those pools.
Optionally, we can add in monitoring to help the Load Balancer decide whether to send traffic
to an instance or not.

In this section, we will configure a basic HTTP Load Balancer pool with two instances running
Apache. The result will be the ability to use the HTTP Load Balancer pool address to send
traffic to two instances running Apache.

Getting ready
Ensure you are logged into a Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This node has the
python-neutronclient package that provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

271

Ensure you have set the following credentials (adjust the path to your certificates and key file
to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

How to do it...
We will first create the Load Balancer pool then add in members (instances) running Apache
to this pool. The steps are as follows:

1. We first list the subnets available in our environment and choose the subnet on which
the Load Balancer will be created:
neutron subnet-list

The preceding command will give an output similar to this:

2. We take the subnet-id value of the subnet we want and use this to create
the Load Balance pool as follows. Here we're using one of the private subnets,
cookbook_subnet_1:
neutron lb-pool-create \

 --description "Web Load Balancer" \

 --lb-method ROUND_ROBIN \

 --name Web-Load-Balancer \

 --protocol HTTP \

 --subnet-id 11c11dca-479b-435d-889d-fc29479b0a24

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

272

This creates output similar to this:

3. We now add the members to this Load Balancer pool. To do this, ensure
two instances are running Apache. We can follow the Using cloud-config to run
the post-installation configuration recipe in this chapter to create appropriate
servers on the same network as the subnet used:
nova boot \

 --flavor m1.tiny \

 --image trusty-image \

 --nic net-id=25153759-994f-4835-9b13-bf0ec77fb336 \

 --user-data ./webserver.yaml \

 --max-count 2 \

 webServer

4. With two web servers running, we can take assigned IPs and assign them to the
created Load Balancer pool, Web-Load-Balancer:
nova list

You will get an output similar to this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

273

5. We take the first IP, 10.200.0.4, and add it to the pool:
neutron lb-member-create \

 --address 10.200.0.4 \

 --protocol-port 80 \

 Web-Load-Balancer

You will get the following output:

6. We repeat this for the IP of the second web server:
neutron lb-member-create

 --address 10.200.0.5 \

 --protocol-port 80 \

 Web-Load-Balancer

7. We can view the status of pool members by issuing the following command:
neutron lb-member-list

The preceding command will give an output similar to this:

8. We now need to create the Virtual IP (VIP) to access the Load Balance pool and the
instances sitting behind it. We will create this VIP on the public network:
neutron subnet-list

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

274

The preceding command will give an output similar to this:

9. We take the floating/external subnet ID to create our publically accessible VIP:

neutron lb-vip-create \

 --name WebserverVIF \

 --protocol-port 80 \

 --protocol HTTP \

 --subnet-id 11c11dca-479b-435d-889d-fc29479b0a24 \

 Web-Load-Balancer

You will get output similar to this:

We can see it has an IP of 192.168.100.12. We can use a web browser and point it to that
address; it will be balancing the traffic between our two web servers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

275

How it works...
We create a Load Balancer pool with two instances as members, and then assign a VIP to the
pool to be used to access the instances. To do this, we perform the following steps:

1. Create the Load Balance pool with neutron lb-pool-create.

2. Add the member instances to the pool with neutron lb-member-create by
adding the IPs of the subnet used.

3. Create a VIP on the external floating IP range so the pool is accessible from the
network using neutron lb-vip-create.

4. When creating the Load Balance pool, we use the following syntax:

neutron lb-pool-create \

 --description $DESCRIPTION \

 --lb-method $LB_METHOD \

 --name $LB_NAME \

 --protocol $PROTOCOL \

 --subnet-id $SUBNET_ID

Configuring Neutron FWaaS
After our work with the OpenStack Neutron LBaaS plugin, let's look at another useful
plugin, FireWall as a Service (FWaaS). By enabling the FWaaS agent plugin on our
network node, we are able to create and manage firewalls through Neutron API calls.
There are drivers for many hardware vendors; the following example uses IPTables to
provide the firewalling service.

We configure Neutron FWaaS on the nodes running the Neutron L3 agent (this will be
the network node if not using Distributed Virtual Routers (DVR), or the compute node
if using DVR) and configure Neutron Server API on the controller nodes to pick up the
service. We can also expose the FWaaS feature in Horizon on the controller nodes.

Getting ready
Ensure that you have a suitable server running the OpenStack network components.
If you are using the accompanying Vagrant environment, as described in the Preface,
we will use the same network and controller nodes for this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

276

Ensure that you are logged into the network node as well as the controller node
in our environment. If you created these nodes with Vagrant, you can execute the
following command:

vagrant ssh network

vagrant ssh controller

How to do it...
To enable the Neutron FWaaS feature, first carry out the following steps on the nodes running
the L3 agent. In normal circumstances this will be the network node. If you are running DVR,
this will be on the compute nodes. Follow these steps:

1. We enable the firewall service in the [DEFAULT] section of the /etc/neutron/
neutron.conf file by adding firewall to the service_plugins line:
service_plugins = firewall

The service_plugins line is a comma-delimited list, for example:
service_plugins = router, firewall

2. In the same file, we add the following lines to the [SERVICE_PROVIDERS] section:
[SERVICE_PROVIDERS]
service_provider =
FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver:default

3. We then edit the /etc/neutron/fwaas_driver.ini file so it has the
following content:
[fwaas]
driver = neutron.services.firewall.drivers.linux.iptables_fwaas.
IptablesFwaasDriver
enabled = True

4. Restart the neutron-l3-agent service to pick up these changes as follows:
sudo restart neutron-l3-agent

5. On the controller node running the Neutron Server API and Horizon, make the
same change to the /etc/neutron/neutron.conf file:
[DEFAULT]
service_plugins = firewall

[SERVICE_PROVIDERS]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

277

service_provider =
FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver:default

Add firewall to the service_plugins list if something already
exists here, such as router:

service_plugins = router, firewall

6. Restart the Neutron Server service to pick up this change:
sudo restart neutron-server

7. Edit the /etc/openstack-dashboard/local_settings.py file to enable the
FWaaS feature in Horizon:
OPENSTACK_NEUTRON_NETWORK = {
 'enable_firewall': True,
 ...
}

8. Restart Apache to pick up this change:

sudo service apache2 restart

How it works...
We have enabled the Neutron FWaaS plugin in our environment by configuring the relevant
Neutron configuration files on our nodes that are running the L3 agent (network nodes in
the non-DVR mode or compute nodes in the DVR mode).

The /etc/neutron/neutron.conf file notifies our Neutron services of this feature
with the following lines:

[DEFAULT]
service_plugins = firewall

[SERVICE_PROVIDERS]
service_provider =
FIREWALL:Iptables:neutron.agent.linux.iptables_firewall.
OVSHybridIptablesFirewallDriver:default

The specific configuration of the LBaaS agent is achieved in the /etc/neutron/fwaas-
driver.ini file on the node running the L3 agent.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

278

We then notify the Neutron API service running on the controller node about the
Neutron FWaaS Plugin. We copy the same neutron.conf settings found earlier onto the
controller node and restart the Neutron Server API service.

We can then enable this feature in Horizon by setting the configuration enable_firewall
to True and restarting Apache to pick up this change.

Using Neutron FWaaS
With Neutron FWaaS now installed, we can use this service through the Neutron API and
command line. This allows us to create perimeter firewall policies between our routed
Neutron networks.

With a Neutron firewall in place on the L3 router, any traffic traversing that router will be
inspected there before it is allowed to continue. This allows us to have a firewall between
layers of an application. For example, you may have a standard multi-tiered web application
where a web server communicates with a database server. With Neutron firewalls in place, we
can allow only database traffic to traverse between the database and the web server. Policies
at the router level can be seen as traditional edge perimeter firewall policies, whereas security
groups can be seen as similar to host-based security. Policy driven security also fits well with
traditional network security teams moving to an OpenStack environment and allows standards
to be controlled at the network level, rather than the compute level.

The following diagram explains this logical view with a clear separation of services
provided by Neutron FWaaS. In this example, the Web App Tier is on a different subnet to
the Database Tier and the Neutron L3 router and FWaaS is routing traffic between the two.
The policy applied here will allow the traffic to communicate between the database and web
servers—for example, only allowing TCP port 3306 from the Web App Tier subnet to the
Database Tier subnet:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

279

Getting ready
Ensure that you are logged into a Ubuntu host that has access to our OpenStack environment
on the 192.168.100.0/24 public network. This host will be used to run client tools against
the OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use the controller node. This has the python-
neutronclient package that provides the neutron command-line client.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

vagrant ssh controller

How to do it...
In this section, we will create a firewall with a policy that has a rule to allow TCP port 80
connections and demonstrate its effect on the environment. The steps are as follows:

1. We first create the rule:
neutron firewall-rule-create \

 --protocol tcp \

 --destination-port 80 \

 --action allow

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

280

You will get the following output:

2. We then create a policy with the rules created:
neutron firewall-policy-create \

 --firewall-rules "e43bade8-f50d-4655-bbf3-0030b7aa3dc8" \

 allow-http-policy

This gives the following output:

3. With the policy in place, we can now create the firewall by specifying the policy ID
we just created:
neutron firewall-create

 --name cookbook-firewall

 b12d0be0-9645-448a-b010-a8a8f47580d8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

281

You will get the following output:

4. We can list the available firewalls with the following command:
neutron firewall-list

The preceding command produces output similar to this:

5. We can show the details of the firewall, policy, and rules with the following set of
commands. We begin with this command:
neutron firewall-show 1e0c0c8f-f8cf-46e2-bfd2-2b97f39d6ada

You will get the following output:

The firewall will only show as ACTIVE if you have created a floating IP
network, as this uses the L3 agent.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

282

We execute this command:
neutron firewall-policy-show b12d0be0-9645-448a-b010-a8a8f47580d8

This gives the following output:

We execute this command:
neutron firewall-rule-show e43bade8-f50d-4655-bbf3-0030b7aa3dc8

This gives the following output:

6. We will now spin up two instances on two different networks that are routed via
our L3 routers:
Create another network
neutron net-create anotherNet
SUBNET_ID=$(neutron subnet-create anotherNet \
 --name anotherSubnet 10.201.0.0/24
 | awk '/\ id\ / {print $4}')

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

283

Connect to cookbook_router_1
neutron router-interface-add cookbook_router_1 ${SUBNET_ID}

Get Network IDs
NET1=$(neutron net-list | awk '/network_1/ {print $2}')
NET2=$(neutron net-list | awk '/anotherNet/ {print $2}')

Boot 2 instances
nova boot --flavor 1 --image cirros-image \
 --nic net-id=${NET1} net1-instance
nova boot --flavor 1 --image cirros-image \
 --nic net-id=${NET2} net2-instance

7. With a Neutron firewall policy in place on the L3 router between these two instances
and networks, all other traffic is denied by default. This means we are unable to ping
or SSH despite our default security group having this enabled. The policy rule we
created allowed TCP port 80 traffic between our instances (source and destination
were blank, meaning that the TCP port 80 would work in both directions). With a web
server, say Apache, running on port 80 on either of the instances, we can execute the
following command to test our firewall policy rule:
wget http://10.200.0.2/

This will return the following output if the test was successful:

Ensure that your local security group has a rule to allow TCP port 80
for this to work. Neutron firewall policy rules do not automatically
override security group rules.

8. Now we will try to use Secure Shell (SSH) to connect the same instance:
ssh cirros@10.200.0.2

This ssh command will timeout because our firewall policy only allows TCP port
80 at present.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

284

9. To add a rule to our Neutron firewall, we carry out the following steps. We first create
a new firewall rule, specifying TCP port 22:
neutron firewall-rule-create \

 --protocol tcp \

 --destination-port 22 \

 --action allow

10. We can either update an existing policy, or create a new one specifically for this rule.
We will create a new policy in this example:
neutron firewall-policy-create \

 --firewall-rules "451e65e0-a1c2-4cc1-8a5d-1ef0608ec1f6" \

 allow-ssh-policy

You will get an output similar to this:

11. We then update the firewall with this new policy:
neutron firewall-update \

 --policy e78ba041-d1f3-4f9f-93c2-c6f0fc680e86 \

 cookbook-firewall

You will get a message saying that the firewall has been updated.

12. We can now test whether we can use SSH between our instances again:

ssh cirros@10.200.0.2

This will now connect to our instance (although a failure might occur because of
incorrect credentials, the fact we got a message about the authentication failure
proves TCP port 22 is open).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

285

How it works...
Neutron firewalls are policy-driven firewall rules that exist on the router between different
subnets. This allows a network administrator of our OpenStack cloud to create policies
at a network level, instead of relying on users to maintain security group rules.

To create a Neutron firewall, carry out the following steps:

1. Create the firewall rule with neutron firewall-rule-create.

2. Create the policy with neutron firewall-policy-create $RULE_ID.

3. Create the firewall with the policy using neutron firewall-create
$POLICY_ID.

The order of priority of rules when using Neutron firewalls is as follows:

1. Neutron firewall policy.

2. Security group rules.

3. Any host-based rules inside the running instance (for example, iptables).

It is important to ensure that we allow correct access to services running on the
instances; security group rules exist to allow access for these running service. In other
words, a network administrator might have a policy to allow TCP port 80 through the L3
router between subnets, but there needs to be a security group rule applied to the instance
to allow TCP port 80 too.

Installing the Heat OpenStack Orchestration
service

Heat is the OpenStack Orchestration service and provides a template-based system to define
environments and resources in OpenStack. It is said that the Dragon Operator only ever
needed OpenStack Heat and the nascent energies of the Universe to deploy on OpenStack.
With Heat, you can describe Compute resources, the installation of software, and the
relationship with Load Balancers and databases.

Getting ready
Ensure that you have a suitable server running the OpenStack components. If you are using
the accompanying Vagrant environment, as described in the Preface, we will use the same
controller node.

Ensure that you are logged into the controller node in our environment. If you created this
node with Vagrant, you can execute the following command:

vagrant ssh controller

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

286

How to do it...
To install Heat, carry out the following steps on the controller node:

1. We create a heat database using the following commands:
MYSQL_ROOT_PASS=openstack

mysql -uroot

 -p$MYSQL_ROOT_PASS

 -e 'CREATE DATABASE heat;'

2. We create a heat user with the password openstack and with privileges to
use this database:
MYSQL_HEAT_PASS=openstack

mysql -uroot -p${MYSQL_ROOT_PASS}

 -e "GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'%'
IDENTIFIED BY '${MYSQL_HEAT_PASS}';"

mysql -uroot -p${MYSQL_ROOT_PASS}

 -e "GRANT ALL PRIVILEGES ON heat.* TO 'heat'@'localhost'
IDENTIFIED BY '${MYSQL_HEAT_PASS}';"

3. Keystone needs to be aware of Heat, so first ensure that there are Keystone
credentials for the Heat service by executing the following commands:
keystone user-create \

 --name=heat \

 --pass=heat \

 --email=heat@localhost

keystone user-role-add \

 --user=heat \

 --tenant=service \

 --role=admin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

287

4. We then add the following two services and endpoints for Heat in Keystone by
executing the following commands:
keystone service-create \

 --name=heat \

 --type=orchestration \

 --description="Heat Orchestration API"

ORCHESTRATION_SERVICE_ID=$(keystone service-list \

 | awk '/\ orchestration\ / {print $2}')

keystone endpoint-create

 --region RegionOne \

 --service-id=${ORCHESTRATION_SERVICE_ID} \

 --publicurl=http://172.16.0.200:8004/v1/$\(tenant_id\)s \

 --internalurl=http://172.16.0.200:8004/v1/$\(tenant_id\)s \

 --adminurl=http://172.16.0.200:8004/v1/$\(tenant_id\)s

keystone service-create \

 --name=heat-cfn \

 --type=cloudformation \

 --description="Heat CloudFormation API"

CLOUDFORMATION_SERVICE_ID=$(keystone service-list \

 | awk '/\ cloudformation\ / {print $2}')

keystone --insecure endpoint-create \

 --region RegionOne \

 --service-id=${CLOUDFORMATION_SERVICE_ID} \

 --publicurl=http://172.16.0.200:8000/v1/ \

 --internalurl=http://172.16.0.200:8000/v1 \

 --adminurl=http://172.16.0.200:8000/v1

5. We can now install the packages required for Heat using apt:
sudo apt-get install heat-api heat-api-cfn heat-engine

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

288

6. The Heat configuration file is /etc/heat/heat.conf. Edit this file to include the
following lines:
[DEFAULT]
rabbit_host=172.16.0.200
rabbit_port=5672
rabbit_userid=guest
rabbit_password=guest
rabbit_virtual_host=/
rabbit_ha_queues=false
log_dir=/var/log/heat

[database]
backend=sqlalchemy
connection = mysql://heat:openstack@172.16.0.200/heat

[keystone_authtoken]
auth_uri = https://192.168.100.200:35357/v2.0
identity_uri = https://192.168.100.200:5000
admin_tenant_name = service
admin_user = heat
admin_password = heat
insecure = True
heat_watch_server_url = http://192.168.100.200:8003
heat_waitcondition_server_url =
http://192.168.100.200:8000/v1/waitcondition
heat_metadata_server_url = http://192.168.100.200:8000

[clients]
endpoint_type = internalURL

[clients_ceilometer]
endpoint_type = internalURL

[clients_cinder]
endpoint_type = internalURL

[clients_heat]
endpoint_type = internalURL

[clients_keystone]
endpoint_type = internalURL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

289

[clients_neutron]
endpoint_type = internalURL

[clients_nova]
endpoint_type = internalURL

[clients_swift]
endpoint_type = internalURL

[clients_trove]
endpoint_type = internalURL

[ec2authtoken]
auth_uri = https://192.168.100.200:5000/v2.0

[heat_api]
bind_port = 8004

[heat_api_cfn]
bind_port = 8000

[heat_api_cloudwatch]
bind_port = 8003

7. Before we can start the services, we must create the Heat database tables and
initial entries with the following command:
heat-manage db_sync

8. We finally restart the services with the following commands:

service heat-api restart

service heat-api-cfn restart

service heat-engine restart

How it works...
Heat, just as with any other OpenStack Service, requires credentials to be present in our
database backend, with credentials and service endpoints defined in Keystone. We then use
these credentials in the /etc/heat/heat.conf file that describes the service.

It is important to note that the initialization of the database with the heat-manage db_sync
command is done before starting the services. This process prepares the table structure in
our database for Heat to use.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

290

Using Heat to spin up instances
With Heat, we can create a wide variety of templates—from spinning up basic instances to
creating complete environments for an application. In this section, we will show the basics of
Heat by spinning up an instance, attaching it to an existing Neutron network, and assigning
a floating IP to it. Heat templates, known as Heat Orchestration Templates (HOT) are Yet
Another Markup Language (YAML) based files. The files describe the resources being used,
the type and size of the instances, and the network an instance will be attached to, among
other pieces of information required to run that environment.

In this section, we will show how to use a HOT file to spin up two web servers running Apache
that are connected to a third instance running HA Proxy.

Getting ready
Ensure you are logged into a Ubuntu host that has access to our OpenStack environment on
the 192.168.100.0/24 public network. This host will be used to run client tools against the
OpenStack environment created. If you are using the accompanying Vagrant environment,
as described in the Preface, you can use controller node. This has the python-
heatclient package that provides the heat command-line client.

If you are using the provided Vagrant environment, this public network
isn't routed to the Internet as a physical environment will be. The
result is that our instances have no way to access remote packages
for installation as described in the Heat templates. To overcome this,
we can run a proxy server, such as Squid, on our host running this
virtual environment. This should be configured to allow access on the
192.168.100.0/24 network. The example HOT file assumes Squid
to be running at the address http://192.168.100.1:3128/,
which has been assigned on a physical host.

If you created this node with Vagrant, you can execute the following command:

vagrant ssh controller

Ensure that you have set the following credentials (adjust the path to your certificates and key
file to match your environment if not using the Vagrant environment):

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

291

export OS_AUTH_URL=https://192.168.100.200:5000/v2.0/

export OS_NO_CACHE=1

export OS_KEY=/vagrant/cakey.pem

export OS_CACERT=/vagrant/ca.pem

How to do it...
In this section, we will download a HOT file called cookbook.yaml, which will describe our
instance and the network to attach it to. The steps are as follows:

1. First, we download the HOT file from the Cookbook GitHub repository using the
following command:
wget -O cookbook.yaml \

https://raw.githubusercontent.com/OpenStackCookbook/
OpenStackCookbook/master/cookbook.yaml

2. Heat takes input parameters from the command line or from an environment
file that gets passed to the template. These parameters are seen at the top
of the HOT file as shown in the following code:
parameters:
 key_name:
 type: string
 description: Name of keypair to assign to servers
 image:
 type: string
 description: Name of image to use for servers
 flavor:
 type: string
 description: Flavor to use for servers
 public_net_id:
 type: string
 description: >
 ID of public network for which floating IP addresses
will be allocated
 private_net_id:
 type: string
 description: ID of private network into which servers
get deployed
 private_subnet_id:
 type: string
 description: ID of private sub network into which
servers get deployed

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

292

3. As you can see, we have to pass in various parameters when we launch this template.
Ensure that you have these details by running the following commands:
nova keypair-list

nova image-list

nova flavor-list

neutron net-list

The neutron net-list output may look similar to this:

4. With the information at hand, we create an environment file that will be used to store
our parameters. These parameters will be passed to the HOT file when we launch the
stack. Create cookbook-env.yaml in the same directory as cookbook.yaml with
the following lines, based on the output of the previous commands:
parameters:
 key_name: demokey
 image: trusty-image
 flavor: m1.tiny
 public_net_id: 5e5d24bd-9d1f-4ed1-84b5-0b7e2a9a233b
 private_net_id: 25153759-994f-4835-9b13-bf0ec77fb336
 private_subnet_id: 4cf2c09c-b3d5-40ed-9127-ec40e5e38343

5. We're now ready to launch this stack with the following commands:
heat stack-create haproxy101 \

 --template-file=cookbook.yaml \

 --environment-file=cookbook-env.yaml

This will produce the following output:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

293

6. To view a list of stacks, execute the following command:
heat stack-list

You will get a list of stacks that are currently running:

7. A section in the template references outputs. Outputs allow a user to interrogate
these values so they can access the running stack; without this, the user would
have to do more digging into the running systems to find out which IP addresses
were assigned to the instances that make up the stack. To see a list of outputs
associated with our running stack, execute the following command:
heat output-list

You will get the following output:

8. To view a particular value, we will access the public IP (floating IP) assigned to our
HA Proxy so that we can access the websites that are running on private addresses
behind the Load Balancer:
heat output-show haproxy101 haproxy_public_ip

This gives you the IP address:

192.168.100.12

9. We can then use the address http://192.168.100.12/ to send the request
to either of the web servers running configured as part of this HA Proxy Load
Balancer demonstration.

www.it-ebooks.info

http://www.it-ebooks.info/

More OpenStack

294

How it works...
HOT are YAML files (also known as stacks) that describe our environment. The basic templates
generally have the following structure:

description:
parameters:
resources:
outputs:

 f The description: section: This section helps a user understand what is expected
to occur when the template is used.

 f The parameters: section: This section defines the input variables—for example,
the type of image(s) to be used, the network(s) to attach the instances on, and
key pair names to be associated with the instances. Parameters are arbitrary and
can contain any information you may need to execute the template properly. The
parameters: section works with the information found in the accompanying
environment file (as specified by --environment-file= parameter). Each
parameter must either have a default value or be specified in the environment file
for the stack to launch successfully.

 f The resources: section: This section is the biggest as it describes the environment.
It can describe the instances that will be used, the naming of them, what networks
to attach, how all of the elements relate to each other, and how the environment is
orchestrated. Explanations of how best to write these resources are beyond the scope
of this book.

 f The outputs: section: This section refers to the return values from the stack
execution. For example, a user will need to know how to access a particular stack
that has just been created. Random IPs and hostnames can all be assigned as part
of the normal operation of running stacks, so you should be able to ask for the right
information in order to access the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

295

10
Using the OpenStack

Dashboard

In this chapter, we will cover the following recipes:

 f Installing OpenStack Dashboard
 f Using OpenStack Dashboard for key management
 f Using OpenStack Dashboard to manage Neutron networks
 f Using OpenStack Dashboard for security group management
 f Using OpenStack Dashboard to launch instances
 f Using OpenStack Dashboard to terminate instances
 f Using OpenStack Dashboard to connect to instances using a VNC
 f Using OpenStack Dashboard to add new tenants – projects
 f Using OpenStack Dashboard for user management
 f Using OpenStack Dashboard with LBaaS
 f Using OpenStack Dashboard with OpenStack Orchestration

Introduction
Managing our OpenStack environment through a command-line interface allows us to have
complete control of our cloud environment, but having a web-based interface that operators
and administrators can use to manage their environments and instances makes this process
easier. OpenStack Dashboard, known as Horizon, provides this graphical, web-based, user
interface. Horizon is a web service that runs from an Apache installation, using Python's Web
Service Gateway Interface (WSGI) and Django, a rapid development web framework.

With OpenStack Dashboard installed, we can manage all the core components of our
OpenStack environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

296

Installing OpenStack Dashboard
Installing OpenStack Dashboard is a straightforward process using Ubuntu's
package repository.

Getting ready
Ensure that you are logged in to the OpenStack controller node. If you use Vagrant to
create this as described in the Installing the OpenStack Identity service recipe of Chapter 1,
Keystone – OpenStack Identity Service, we can access this with the following command:

vagrant ssh controller

How to do it...
To install OpenStack Dashboard, we simply install the required packages and dependencies
by following these steps:

1. Install the required packages as follows:
sudo apt-get update

sudo apt-get install openstack-dashboard

2. We can configure the OpenStack Dashboard by editing the /etc/openstack-
dashboard/local_settings.py file, thus:
OPENSTACK_HOST = "192.168.100.200"
OPENSTACK_KEYSTONE_URL = "http://%s:5000/v2.0" %
OPENSTACK_HOST
OPENSTACK_KEYSTONE_DEFAULT_ROLE = "_member_"
CACHES = {
 'default': {
 'BACKEND':
'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 }
}
ALLOWED_HOSTS = '*'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

297

3. Now we need to configure OpenStack Compute to use our Virtual Network Console
(VNC) proxy service that can be used through our OpenStack Dashboard interface. To
do so, add the following lines to /etc/nova/nova.conf:
NoVNC
novnc_enabled=true
novncproxy_host=192.168.100.200
novncproxy_base_url=http://192.168.100.200:6080/vnc_auto.
html
novncproxy_port=6080

xvpvncproxy_port=6081
xvpvncproxy_host=192.168.100.200
xvpvncproxy_base_url=http://192.168.100.200:6081/console

vncserver_proxyclient_address=192.168.100.200
vncserver_listen=0.0.0.0

4. Restart nova-api to pick up the changes:

sudo restart nova-api

sudo restart nova-compute

sudo service apache2 restart

Installing OpenStack Dashboard under Ubuntu gives a slightly different
look and feel from a stock installation of Dashboard. The functions remain
the same, although Ubuntu adds an additional feature to allow the user to
download environment settings for the Canonicals' orchestration tool, Juju.
To remove the Ubuntu theme, execute the following command:
sudo dpkg --purge openstack-dashboard-ubuntu-theme

How it works...
Installing the OpenStack Dashboard, Horizon, is done using the Ubuntu package repository.
Given that the OpenStack Dashboard runs over an Apache web server,
we have to restart the web server to pick up the changes.

We also include the VNC Proxy service. It provides us with a great feature to access our
instances over the network, through the web interface.

For the remainder of this chapter, the screenshots show the standard OpenStack interface
after the removal of the Ubuntu theme.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

298

Using OpenStack Dashboard for key
management

The Secure Shell (SSH) key pairs allow users to connect to Linux instances without requiring
to input passwords and is the default access mechanism for almost all Linux images that
you will use for OpenStack. Users can manage their own key pairs through the OpenStack
Dashboard. Usually, this is the first task a new user has to do when given access to our
OpenStack environment.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created
in the Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service,
with the password openstack.

How to do it...
Management of the logged-in user's key pairs is achieved with the steps discussed in the
following sections.

Adding key pairs
Key pairs can be added by performing the following steps:

1. A new key pair can be added to our system by clicking on the Access & Security tab
under the Project | Compute section:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

299

2. We will now see a screen allowing access to security settings and key pair
management. Under the Key Pairs tab, there will be a list of valid key pairs that
we can use when launching and accessing our instances. To create a new key pair,
click on the Create Key Pair button:

3. On the Create Key Pair screen, type in a meaningful name (for example, demo)
ensuring there are no spaces in the name, and then click on the Create Key
Pair button:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

300

4. Once the key pair is created, we will be asked to save the private key portion of our
key pair on the disk:

A private SSH key cannot be recreated, so keep this safe and store it
safely and appropriately on the file system.

5. Click on the Access & Security tab to return to our list of key pairs. We will now see
the newly created key pair listed. When launching instances, we can select this new
key pair and gain access to it only by using the private key that we have stored locally:

Deleting key pairs
Key pairs can be deleted by performing the following steps:

1. When key pairs are no longer required, we can delete them from our OpenStack
environment. To do so, click on the Access & Security tab on the left of the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

301

2. We will then be presented with a screen allowing access to security settings and
key pair management, as shown in the following screenshot. Under Key Pairs,
there will be a list of key pairs that we can use to access our instances. To delete a
key pair from our system, click on the Delete Key Pair button for the key pair that we
want to delete:

3. We will be presented with a confirmation dialog box:

Once we click on the Delete Key Pair button, the key pair will be deleted.

Importing key pairs
If you have your own key pairs that you use to access other systems, these can be imported
into your OpenStack environment so that you can continue to use them for accessing
instances within your OpenStack Compute environment. To import key pairs, perform the
following steps:

1. We can import key pairs that have been created in our traditional Linux-based
environments into our OpenStack setup. If you don't have one already, run the
following command from your Linux-based or other Unix-based host:
ssh-keygen -t rsa -N "" -f id_rsa

2. This will produce the following two files on our client:

 � .ssh/id_rsa

 � .ssh/id_rsa.pub

3. The .ssh/id_rsa file is our private key and has to be protected, as it is the only key
that matches the public portion of the key pair: .ssh/id_rsa.pub.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

302

4. We can import this public key to use in our OpenStack environment so that, when an
instance is launched, the public key is inserted into our running instance. To import
the public key, ensure that you're at the Access & Security screen, and, then, under
Key pairs, click on the Import Key Pair button:

5. We are presented with a screen that asks us to name our key pair and paste in
the contents of our public key, as shown in the following screenshot. So, name the
key pair and then copy-and-paste the contents of the public key into the space—for
example, the contents of .ssh/id_rsa.pub. Once entered, click on the Import
Key Pair button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

303

Once completed, we see the list of key pairs available for that user, including our
imported key pair:

How it works...
Key pair management is important, as it provides a consistent and secure approach for
accessing our running instances. Allowing the user to create, delete, and import key pairs to
use within their tenants enables them to create more secure systems.

The OpenStack Dashboard allows a user to create key pairs easily. The user must ensure,
though, that the private key that he/she downloads is kept secure.

While deleting a key pair is simple, the user must remember that deleted key pairs that
are associated with running instances will remove access to the running system. Every key
pair created is unique, regardless of the name. The name is simply a label, but the unique
fingerprint of the key is required and cannot be recreated.

Importing key pairs has the advantage that we can use our existing secure key pairs that we
have been using outside OpenStack within our new private cloud environment. This provides a
consistent user experience when moving from one environment to another.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

304

Using OpenStack Dashboard to manage
Neutron networks

The OpenStack Dashboard has the ability to view, create, and edit Neutron networks, which
makes managing complex software-defined networks much easier. Certain functions, such as
creating shared networks and provider routers, require a user to be logged into the OpenStack
Dashboard as a user with admin privileges, but any user can create private networks. To help
with managing complex software-defined networks, the OpenStack Dashboard provides an
automatically updating network topography.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created
in the Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service,
with the password openstack.

How to do it...
In this section, we will learn the following topics:

 f Creating networks

 f Deleting networks

 f Viewing networks

Creating networks
To create a private network for a logged in user, carry out the following steps:

1. To manage networks within our OpenStack Dashboard, select the Networks tab:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

305

2. When this has been selected, we will be presented with a list of networks that we can
assign to our instances:

3. To create a new network, click on the Create Network button.

4. We are presented with a dialog box that first asks us to name our network:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

306

5. After choosing a name and keeping the Admin State set to UP (which means our
network will be on and available for instances to connect to), we then assign a
subnet to it by selecting the Subnet tab:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

307

6. After filling in details for our subnet, we select the Subnet Detail tab that allows us
to configure details such as Dynamic Host Configuration Protocol (DHCP) range,
Domain Name System (DNS), and any additional routes we want when a user
chooses that network:

7. After filling in all the details, clicking on the Create button makes this network
available to users of our tenant and returns us to the list of available networks:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

308

Deleting networks
To delete a private network for a logged in user, carry out the following steps:

1. To manage networks within our OpenStack Dashboard, select the Network tab:

2. When this has been selected, we will be presented with a list of networks that we
can assign to our instances:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

309

3. To delete a network, select the checkbox next to the name of the network we want to
delete, and then click on the Delete Networks button:

4. We will be presented with a dialog box asking us to confirm the deletion:

5. Clicking on the Delete Networks button will remove that network and return us to the
list of available networks.

You can only remove a network that has no instances attached to it.
You will be warned that this isn't allowed if there are instances still
attached to that network.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

310

Viewing networks
The OpenStack Dashboard gives users and administrators the ability to view the topology of
our environment. To view the topology, carry out the following steps:

1. To manage networks within our OpenStack Dashboard, select the Network tab:

2. Clicking on the Network Topology tab launches a rich interface that gives an
overview of our networks and instances attached to them:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

311

3. From this interface, we can click on various parts of this interface such as the
networks (which takes us to the manage network interface) and the instances
(which takes us to the instances interface); we can also create new networks and
routers, and launch new instances.

How it works...
The ability to view and edit Neutron networks is a feature introduced in the Grizzly release of
OpenStack. Managing Neutron networks can be quite complicated, but having a visual aid
such as the one provided by the OpenStack Dashboard makes this much easier.

As an administrator (a user with the admin role), you can create shared networks. The same
process applies in the preceding recipes, but you are presented with an extra option to allow
any created networks to be seen by all tenants.

Using OpenStack Dashboard for security
group management

Security groups are network rules that allow instances in one tenant (project) be kept
separate from other instances in another. Managing security group rules for our OpenStack
instances is done as simply as possible with OpenStack Dashboard.

As described in the Creating tenants in Keystone recipe of Chapter 1,
Keystone – OpenStack Identity Service, projects and tenants are used
interchangeably and refer to the same thing. Under the OpenStack
Dashboard, tenants are referred to as projects, whereas in Keystone,
projects are referred to as tenants.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created in the
Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service, with the
password openstack.

How to do it...
To administer security groups under OpenStack Dashboard, carry out the steps discussed in
the following sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

312

Creating a security group
To create a security group, perform the following steps:

1. A new security group is added to our system by using the Access & Security tab
under the Compute section, so click on it:

2. Next we see a screen allowing access to security settings and managing key pairs.
Under Security Groups, there will be a list of security groups that can be used when
we launch our instances. To create a new security group, click on the Create Security
Group button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

313

We are asked to name the security group and provide a description. The name cannot
contain spaces:

3. Once a new security group is created, the list of available security groups will appear
on screen. From here we are able to add new network security rules to the new
security group:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

314

Editing security groups to add and remove rules
To add and remove rules, security groups can be edited by performing the following steps:

1. When we have created a new security group, or wish to modify the rules in an
existing security group, we can click on the Manage Rules button for that
particular security group:

2. After clicking on the Manage Rules button, we are taken to a screen that lists any
existing rules and enables us to add new rules to this group:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

315

3. To add a rule to our new security group, we click on the Add Rule button. This allows
us to create rules based on the different protocol types—ICMP, TCP, and UDP. There
is also a list of rule templates for commonly added services. As an example, we will
add in a security group rule that allows HTTPS access from anywhere. To do this, we
choose the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

316

4. We select the HTTPS option from the drop-down menu. This returns us to the Add
Rule menu where we can specify the source of the network traffic:

5. When we click on the Add button, we are returned to the list of rules now associated
with our security group. Repeat the previous steps until all the rules related to our
security group have been configured:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

317

6. We can also add custom security rules for services that do not have built-in rule
templates. After we click on the Add button, we choose the Custom TCP Rule option
from the Rule drop-down list. Then we select the Port Range option from the Open
Port drop-down list, which presents us with From Port and To Port fields. We enter a
port range and click on the Add button:

7. Note that we can remove rules from the screen associated with step 5 too. Simply
select the rule that we no longer require and click on the Delete Rule button. We are
asked to confirm this removal.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

318

Deleting security groups
Security groups can be deleted by performing the following steps:

1. Security groups are deleted by selecting the security group that we want to remove
and clicking on the Delete Security Groups button:

2. You will be asked to confirm this. Clicking on OK removes the security group and
associated access rules:

You will not be able to remove a security group while an instance with
that assigned security group is running.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

319

How it works...
Security groups are important to our OpenStack environment, as they provide a consistent
and secure approach for accessing our running instances. Allowing users to create, delete,
and amend security groups to use within their tenants allows them to create secure
environments. Rules within a security group are deny by default, which means that, if there is
no rule for that particular protocol, no traffic for that protocol can access the running instance
with that assigned security group.

Security groups are associated with instances on creation, so we can't add a new security
group to a running instance. We can, however, modify the rules assigned to a running
instance. For example, suppose an instance was launched with only the default security
group. The default security group that we have set up has only TCP port 22 accessible and
the ability to ping the instance. If we require access to TCP port 80, we either have to add this
rule to the default security group or relaunch the instance with a new security assigned to it to
allow TCP port 80.

Modifications to security groups take effect immediately, and any
instance assigned with that security group will have those new rules
associated with it.

Using OpenStack Dashboard to launch
instances

Launching instances is easily done using the OpenStack Dashboard. We simply select our
chosen image, choose the size of the instance, and then launch it.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created in the
Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service, with the
password openstack.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

320

How to do it...
To launch an instance by using the OpenStack Dashboard interface, carry out the
following steps:

1. Navigate to the Images tab under the Compute section and select an appropriate
image to launch—for example, the trusty-image server image:

2. Click on the Launch button under the Actions column applying to the image
to be launched.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

321

3. A dialog box appears requesting a name for the instance (for example, horizon1).
Choose a flavor type of m1.tiny for the instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

322

4. Next select the Access & Security tab and choose the key pair and security groups
for this image:

If you haven't created a key pair, you can click on the + button and
import a key from this dialog box.

5. With Neutron configured in our environment, selecting the Networking tab allows us
to choose the networks that our instance will be attached to by dragging the networks
listed under Available networks into the Selected networks box:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

323

6. Once selected, we can click on the Launch Instance button.

7. We will be returned to the Instances Tab that shows the instance in a Build status,
which will eventually change to Active:

If the display hasn't refreshed, click on the Instances tab to
refresh the information manually.

How it works...
Launching instances from Horizon—the OpenStack Dashboard—is done in two stages:

1. Selecting the appropriate image from the Images tab.

2. Choosing the appropriate values to assign to the instance.

The Instances tab shows the running instances under our cookbook project.

You can also see an overview of what is running in our environment
by clicking on the Overview tab.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

324

Using OpenStack Dashboard to terminate
instances

Terminating instances is very simple when using OpenStack Dashboard.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created in
the Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service,
with the password openstack.

How to do it...
To terminate instances by using OpenStack Dashboard, carry out the following steps:

1. Select the Instances tab and choose the instance to be terminated by selecting the
checkbox next to the instance name (or names), and then click on the red Terminate
Instances button:

2. We will be presented with a confirmation screen. Click on the Terminate Instances
button to terminate the selected instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

325

3. We will be presented with the Instances screen with a confirmation that the instance
has been terminated successfully.

How it works...
Terminating instances by using OpenStack Dashboard is easy. We select our running instance
and click on the Terminate Instances button, which is highlighted when an instance is
selected. After clicking on the Terminate Instances button, we are asked to confirm this
action to minimize the risk of accidentally terminating an instance.

Using OpenStack Dashboard to connect to
instances using a VNC

OpenStack Dashboard has a very handy feature that allows a user to connect to our running
instances through a VNC session within our web browser. This gives us the ability to manage
our instance through a virtual console window without invoking an SSH session separately
and is a great feature for accessing desktop instances such as those running Windows.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the demo user created in the
Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service, with the
password openstack.

How to do it...
To connect to a running instance by using VNC through a web browser, carry out the
following steps:

1. Click on the Instances tab and choose an instance to which you want to connect.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

326

2. Next to the Create Snapshot button is a down arrow button, which reveals more
options. Click on it:

3. Select the Console option. This takes you to a console screen, which allows you
to log in to your instance:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

327

Your instance must support local logins. Many Linux cloud images
expect a user to authenticate by using SSH Keys.

How it works...
Connecting through our web browser uses a VNC proxy session, which was configured by
using the novnc, nova-consoleauth, and nova-console packages, as described in
the installation section. Only browsers that support WebSocket connections are supported.
Generally, this can be any modern browser with HTML5 support.

Using OpenStack Dashboard to add new
tenants – projects

OpenStack Dashboard is a lot more than just an interface to our instances. It allows an
administrator to configure environments, users, and tenants.

Tenants are known as projects within the OpenStack Dashboard. Adding new tenants that
users can be members of is achieved quite simply in OpenStack Dashboard.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the admin user created in the
Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service, with the
password openstack.

How to do it...
To add a new tenant to our OpenStack environment, carry out the following steps:

1. After we login as a user with admin privileges, we get more menu options under the
Identity tab. One of them is the Projects option:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

328

2. To manage tenants, we click on the Projects option listed under Identity. This will list
the available tenants in our environment, as shown in the following screenshot:

3. To create a new tenant, click on the Create Project button.

4. Next, we are presented with a form that asks for the name of the tenant and a
description. Enter horizon as our tenant name and enter a description:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

329

5. We enable the tenant by selecting the Enabled checkbox, and then click on the
Create Project button.

We will be presented with the list of tenants that are now available and a message
saying that the horizon tenant was created successfully.

How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options
available to you when managing your OpenStack environment. This means we can simply
create a tenant (Ubuntu's interface refers to this as a project) to which users can belong using
OpenStack Dashboard. When creating new tenants, we need to be logged in as a user with
admin privileges to get access to the full tenant management interface.

Using OpenStack Dashboard for user
management

OpenStack Dashboard gives us the ability to administer users through the web interface.
This allows an administrator to easily create and edit users within an OpenStack environment.
To manage users, you must log in using an account that is a member of the admin role.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as a user, such as the admin user created in the
Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service, with the
password openstack.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

330

How to do it...
User management under OpenStack Dashboard is achieved by carrying out the steps
discussed in the following sections.

Adding users
To add users, perform the following steps:

1. Under the Identity panel, click on the Users option to bring up a list of users set up
on the system:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

331

2. To create a new user, click on the Create User button.

3. We will be presented with a form that asks for user name details. Enter the user
name, e-mail, and the password for that user. In the example shown in the following
screenshot, we create a user named test, set openstack as the password, and
assign that user to the horizon tenant with the role of admin:

4. We are returned to the screen listing the users of our OpenStack environment with a
message stating that our user creation was successful.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

332

Deleting users
To delete users, perform the following steps:

1. Under the Identity panel, click on the Users option to bring up a list of users on
the system.

2. We will be presented with a list of users in our OpenStack environment. To delete
a user, click on the appropriate Edit button, which will present a drop-down list with
the Delete User option:

3. Clicking on the Delete User option will bring up a confirmation dialog box. Confirm by
clicking on the Delete User button to remove the user from the system:

Updating user details and passwords
To update user details and passwords, perform the following steps:

1. Under the Identity panel, click on the Users option to bring up a list of users
on the system.

2. To change a user's password, e-mail address, or primary project (tenant),
click on the Edit button for that user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

333

3. This brings up a dialog box asking for the relevant information. When the information
has been set as we want it to be, click on the Update User button:

Adding users to tenants
To add users to tenants, perform the following steps:

1. Under the Identity panel, click on the Projects option to bring up a list of tenants
on the system:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

334

2. Click on the appropriate Modify Users option to bring up a list of users associated
with a tenant as well as a list of users, which we can add to that tenant:

3. To add a new user to the list, simply click on the + (plus sign) button next to that user.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

335

4. To change the role of the user within that tenant, select the drop-down arrow next to
the username and select a new role:

5. After clicking on the Save button at the bottom of the dialog box, we see a message
saying that our tenant has been updated. This user can now launch instances in
different tenants when they log on.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

336

Removing users from tenants
To remove users from tenants, perform the following steps:

1. Under the Identity panel, click on the Projects option to bring up a list of tenants
on the system.

2. To remove a user from a tenant, for example, horizon, click on the appropriate
Modify Users button:

3. After clicking on the Modify Users button, you will get a modal window with a list of
all users as well as project members, which we can remove from that tenant:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

337

4. To remove a user from this tenant, click on the - (minus sign) button next to that
particular user under project members.

5. After clicking on the Save button at the bottom of the dialog box, we see a message
saying that our tenant has been updated.

How it works...
OpenStack Dashboard is a feature-rich interface that complements the command-line options
available to us when managing our cloud environment. The interface has been designed so
that the functions available are as intuitive as possible to the administrator. This means that
we can easily create users, modify their membership within tenants, update passwords, and
remove them from the system altogether.

Using OpenStack Dashboard with LBaaS
The OpenStack Dashboard has the ability to view, create, and edit Load Balancers, add
Virtual IPs (VIPs), and add nodes behind a Load Balancer. Dashboard also provides a
user interface for creating HA Proxy server Load Balance services for our instances. We do
this first by creating load balancing pools and then adding running instances to those pools.

In this section, we will use two instances running Apache that were created in the previous
chapter. We will create an HTTP Load Balance pool, create a VIP, and configure instances to
be part of the pool. The result will be the ability to use the HTTP Load Balancer pool address
to send traffic to two instances running Apache.

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/, and log in as an admin user, such as the admin user created
in the Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity Service,
with the password openstack.

How to do it...
First we will create an HTTP Load Balance pool.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

338

Creating pools
To create a Load Balancer pool for a logged in user, carry out the following steps:

1. To manage Load Balancers within our OpenStack Dashboard, select the Load
Balancers tab:

2. This will show available Load Balancer pools. Since we currently do not have any
created, click on the Add Pool button in the top-right corner to add a pool.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

339

3. After clicking on the Add Pool button, we are presented with a modal window.
Fill out the details to add a new pool:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

340

4. Set name, description, and provider in the modal window. We name our pool
web-pool and give an appropriate description. We choose to go with a default
provider since we are creating an HA Proxy.

5. Select a subnet for the pool by clicking on the drop-down menu. All of our instances
are attached to the private network, so we select 10.200.0.0/24.

6. We select the HTTP protocol, but HTTPS and TCP are also available. This selection
will depend on what kind of applications you are running.

7. Select your preferred routing algorithm; we choose the ROUND_ROBIN balancing
method. Other options are LEAST_CONNECTIONS, and SOURCE_IP.

8. We leave the Admin State set to UP.

9. Click on the Add button to create a new pool. You should see the new pool created in
the pool list:

Adding pool members
To add instances to the Load Balancer, follow these steps:

1. After adding a pool, you should still be on the Load Balancer page. Click on the
Members tab. You should see a list of active members, if you have any, or an
empty list:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

341

2. On the Members tab, click on the Add Member button. This will present you with the
following menu:

3. We select the pool we just created, web-pool, and specify members or instances
that will be part of this pool. If you do not have any instances running with Apache
installed, refer to the Using cloud-config to run the post-installation configuration
recipe in Chapter 9, More OpenStack, for creating instances with running Apache.

4. Select weights for the members of the pool. In our case, both members of the pool
will have equal weights, so we assign the weight as 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

342

5. The selected protocol port will be used to access all members of the pool and, since
we are using HTTP, we set the port to 80. We set Admin State to UP.

6. Click on the Add button to add members to the pool.

7. Now the member list should contain two newly added nodes:

Adding a VIP to the Load Balancer pool
Creating a VIP on the external network will allow access to the Load Balance pool and the
instances behind it. To create the VIP, carry out the following steps:

1. From the Load Balancer page, select the Pools tab and click on the drop-down
arrow next to the Edit Pool button. This will give you a drop-down menu with an
option to add a VIP:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

343

2. Click on the Add VIP option. This will present you with the modal window for creating
a new VIP:

3. We enter a custom name and description for our VIP.

4. For VIP Subnet, we pick external subnet 192.168.100.0/24, followed by
an available IP in that subnet. We choose 192.168.100.12.

5. Enter 80 for Protocol Port, followed by selecting HTTP for Protocol.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

344

6. Set -1 for Connection Limit if you do not wish to have a maximum number of
connections for this VIP.

7. Click on the Add button to create the VIP. This will create a new VIP and show the
current pool list:

8. Now, when we click on web-pool, we will see the following details:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

345

9. Click on the web-vip link in the details to view the VIP details:

10. You can test this Load Balancer by entering the VIP's IP in a browser. If you selected
ROUND_ROBIN for your routing algorithm, each time you refresh your browser it
should hit a different node.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

346

Deleting the Load Balancer
To delete the Load Balancer, we will first need to delete the attached VIP and then delete
the pool.

1. From the Load Balancer page, check the Pools tab and click on the drop-down
arrow next to the Edit Pool button. This will give you a drop-down menu with an
option to delete a VIP:

2. Selecting the Delete VIP drop-down option will give you a warning and ask you to
confirm the deletion of the VIP. Click on the Delete VIP button to confirm:

3. After deleting the VIP, now we can delete the pool. From the Load Balancer page's
Pools tab, click on the drop-down arrow next to the appropriate Edit Pool button:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

347

4. Select the Delete Pool option from the drop-down list to delete the pool. You will
get asked to confirm the deletion. If you are ready to delete the Load Balance pool,
click on the Delete Pool button:

How it works...
We created a Load Balance pool and added two instances with Apache to it. We also created
a virtual IP to be used on the external network and assigned it to our pool. To do this, we
executed the following steps:

1. Create a pool from the Load Balancer page's Pools tab.

2. Select the subnet to which all the nodes are attached when creating the pool.

3. Add members to the pool.

4. Create a VIP for the pool.

Both the pool and VIP can be edited after being created. Additional members can also be
added to the pool at a later time.

Using OpenStack Dashboard with
OpenStack Orchestration

Heat is the OpenStack Orchestration engine that enables users to quickly spin up whole
environments using templates. Heat templates, known as Heat Orchestration Templates
(HOT), are Yet Another Markup Language (YAML) based files. The files describe the
resources being used, the type and the size of the instances, the network an instance
will be attached to, among other pieces of information required to run that environment.

In the previous chapter, we showed you how to use the Heat command line client. In this
section, we will show how to use an existing Heat template file in OpenStack Dashboard to
spin up two web servers running Apache, connected to a third instance running HA Proxy.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

348

Getting ready
Load a web browser, point it to our OpenStack Dashboard address at
http://192.168.100.200/ and log in as an admin user, such as the admin user
created in the Adding users to Keystone recipe of Chapter 1, Keystone – OpenStack Identity
Service, with the password openstack.

How to do it...
First, we will launch stack within our OpenStack Dashboard.

Launching stacks
To launch a Heat stack for a logged in user, carry out the following steps:

1. To view available Heat stacks within our OpenStack Dashboard, select the Stacks
tab under the Orchestration menu:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

349

2. After clicking on the Stacks tab, you will see all running stacks in your environment.
In our case, our list is empty:

3. Click on the Launch Stack button to create a new stack. You will see the
following window:

4. There are several ways to specify what template source to use in a stack: File,
Direct Input, or URL. Choose which option is the most convenient for you. For
our example, you can either use the URL directly or upload a file. The template
file can be downloaded from https://raw.githubusercontent.com/
OpenStackCookbook/OpenStackCookbook/master/cookbook.yaml.
We will upload files from our system.

www.it-ebooks.info

https://raw.githubusercontent.com/OpenStackCookbook/OpenStackCookbook/master/cookbook.yaml
https://raw.githubusercontent.com/OpenStackCookbook/OpenStackCookbook/master/cookbook.yaml
http://www.it-ebooks.info/

Using the OpenStack Dashboard

350

5. Just like we downloaded the cookbook.yaml file, we can also download the
Environment Source file. In this case, we do not have to use the environment source,
but it makes it convenient. The environment file stores the values we would have to
enter into the browser manually, but instead loads the values for us on the Launch
Stack screen, as shown in step 8. In our example, we are using the environment
file that can be downloaded from https://raw.githubusercontent.com/
OpenStackCookbook/OpenStackCookbook/master/cookbook-env.yaml.
Update the public_net_id, private_net_id, and private_subnet_id fields
to match your environment.

If you are not sure where to find network information, please refer
to the Using OpenStack Dashboard to manage Neutron networks
recipe in this chapter.

6. After selecting the Template Source and Environment Source files, click on Next:

7. Our sample environment file contains the following code:
parameters:
 key_name: demokey
 image: trusty-image
 flavor: m1.tiny
 public_net_id: 5e5d24bd-9d1f-4ed1-84b5-0b7e2a9a233b
 private_net_id: 25153759-994f-4835-9b13-bf0ec77fb336
 private_subnet_id: 4cf2c09c-b3d5-40ed-9127-ec40e5e38343

www.it-ebooks.info

https://raw.githubusercontent.com/OpenStackCookbook/OpenStackCookbook/master/cookbook-env.yaml
https://raw.githubusercontent.com/OpenStackCookbook/OpenStackCookbook/master/cookbook-env.yaml
http://www.it-ebooks.info/

Chapter 10

351

8. Clicking on Next will give you a Launch Stack window with all the inputs:

9. Note that most of the inputs in our template are now populated. If you did not
specify the environment source file in the previous step, you will need to enter
the key_name, image, flavor, public_net_id, private_net_id, and
private_subnet_id fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

352

These fields are specific to each template used. Your templates may
have different fields.

10. Enter the stack name and user password for your user. If you are logged in as admin
or demo, the password is openstack.

11. Click on the Launch button to start stack creation. If all inputs were correct, you
should see your stack being created:

12. After the stack creation finishes and if there were no errors during creation, you will
see your stack's status updated to Complete:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

353

Viewing stack details
After launching a stack, there is a lot of information associated with it, including inputs,
outputs, and, in the case of errors, information about why stack creation failed.

1. To view the details of the stack, click on the stack name from the Stacks list. The first
available view is Topology:

Explore the topology by clicking on the nodes. If the graph does not fully fit or you
would like a different perspective, you can drag the graph around the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

354

2. The next tab under Stack Detail will provide all of the information that was used in
creating the stack:

Stack information available in the Overview tab is as follows:

 � Info

 � Status

 � Outputs

 � Stack parameters

 � Launch parameters

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

355

3. The Resources tab will show all the HEAT resources that were created during
stack launch:

If there were any errors during stack launch, check this page to see which
component's creation failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

356

4. The Events tab shows all the events that occurred when the stack was created.
This page can also be very helpful in troubleshooting Heat templates:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10

357

5. While your Heat stack is running, you can also see how many instances it created
under the Compute tab's Instance option. The following is what our instances look
like on the Instances page:

Note that the test1 instance was not part of the stack creation. All the
other VMs were created during the stack launch.

Deleting stacks
Stack deletion is simple; however, it will delete all resources that were created during stack
launch. Follow these steps:

1. To delete a stack, first view the available stacks on the Stacks page:

www.it-ebooks.info

http://www.it-ebooks.info/

Using the OpenStack Dashboard

358

2. Click on the appropriate Delete Stack button to delete a stack. You will be asked to
confirm the deletion:

3. After confirming deletion, all resources associated with the stack will be deleted.

How it works...
We have used the OpenStack Dashboard to launch, view, and delete Orchestration stacks.
We first needed to download a sample HA Proxy Heat Orchestration Template from GitHub.
Since we were using an environment file, we also had to modify the appropriate inputs.
Your own templates may have different inputs.

After launching our HA Proxy stack, we explored its topology, resources, and events. Resources
created during stack launch will also be reflected in the rest of your environment. If you are
launching new instances, all of them will also be available on the Instance page. Delete and
modify resources created during the stack launch only through Orchestration section in the
OpenStack dashboard or on the command line. Deleting stacks through the dashboard will
delete all associated resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

359

11
Production OpenStack

In this chapter, we will cover the following recipes:

 f Installing the MariaDB Galera cluster

 f Configuring HA Proxy for the MariaDB Galera cluster

 f Configuring HA Proxy for high availability

 f Installing and configuring Pacemaker with Corosync

 f Configuring OpenStack services with Pacemaker and Corosync

 f Bonding network interfaces for redundancy

 f Automating OpenStack installations using Ansible – host configuration

 f Automating OpenStack installations using Ansible – Playbook configuration

 f Automating OpenStack installations using Ansible – running Playbooks

Introduction
OpenStack is a suite of software designed to offer scale-out cloud environments,
deployed in datacenters around the world. Managing the installation of software in a
remote location is different (and sometimes challenging) than installing software locally,
and so tools and techniques have been developed to ease this task. Design considerations
of how to deal with hardware and software failure must also be taken into consideration in
operational environments. Identifying Single Points Of Failure (SPOF) and adding ways of
making them resilient ensures that our OpenStack environment remains available when
something goes wrong.

This chapter introduces some methods and software that help manage OpenStack in production
datacenters—from making the services highly available to automating installations for
consistency and repeatability.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

360

Installing the MariaDB Galera cluster
OpenStack can be backed by a number of database backends, and one of the most common
options is MySQL or its other open source fork, MariaDB. There are a number of ways to
make MariaDB more resilient and highly available. The following approach uses a Load
Balancer to front a multi-read/write master with Galera, taking care of the synchronous
replication required in such a setup. Galera is a synchronous multimaster cluster for MariaDB
InnoDB databases. Galera clusters allow synchronous data writes across all nodes with
any node being able to take that write in a fully active/active topology. It features automatic
node management- that is, failed nodes are removed from the cluster and new nodes are
automatically registered. The advantage of this is that we are adding resilience in the event
of a database node failure, as each node stores a copy of the data. Galera clusters consist
of odd-numbered nodes. This is important when a node fails. Galera takes a quorum vote
from the remaining nodes to determine the state. Quorum requires a majority, that is, you
cannot have automatic failover in a two-node cluster. This is because the failure of one
causes the remaining nodes to automatically go into a nonprimary state. Clusters that have
an even number of nodes risk split-brain conditions. If should you lose network connectivity
somewhere between the partitions in a way that causes the number of nodes to split exactly
in half, neither of the partitions can retain quorum and both enter a nonprimary state.

Getting ready
Ensure that you have three servers running Ubuntu 14.04 and at least one interface that
will be used to access the machines and be configured for Galera replication. Follow the
instructions at https://github.com/OpenStackCookbook/MariaDB-Galera to bring
up a suitable vagrant environment. These steps are also repeated in the following How to
do it… section.

How to do it...
For this recipe, we will install MariaDB and Galera on three nodes that we will call
Galera1, Galera2, and Galera3. They will each have a single IP assigned to them on the
172.16.0.0/16 network and the interface will be referenced as eth1 on the machines. The
IPs used in the following steps are 172.16.0.191, 172.16.0.192, and 172.16.0.193.
They will all be running Ubuntu 14.04 LTS. The steps are as follows:

1. On the first server, Galera1, we configure apt to be able to retrieve MariaDB Cluster
10.0 packages with the following command:
apt-get install software-properties-common

sudo apt-key adv --recv-keys --keyserver \

 hkp://keyserver.ubuntu.com:80 0xcbcb082a1bb943db

www.it-ebooks.info

https://github.com/OpenStackCookbook/MariaDB-Galera
http://www.it-ebooks.info/

Chapter 11

361

sudo add-apt-repository 'deb
http://lon1.mirrors.digitalocean.com/mariadb/repo/10.0/ubuntu
trusty main'

sudo apt-get update

2. Install the packages by running the following command:
DEBIAN_FRONTEND=noninteractive apt-get install \
 rsync galera mariadb-galera-server

3. Ensure that MariaDB isn't running by executing the following command:
sudo service mysql stop

4. Repeat step 1 to step 3 for Galera2 and Galera3.

5. We then configure MariaDB to use Galera by editing the /etc/mysql/conf.d/
galera.cnf file to include the following contents:
[mysqld]
mysql settings
binlog_format=ROW
default-storage-engine=innodb
innodb_autoinc_lock_mode=2
query_cache_size=0
query_cache_type=0
bind-address=0.0.0.0
galera settings
wsrep_provider=/usr/lib/galera/libgalera_smm.so
wsrep_cluster_name="my_wsrep_cluster"
wsrep_cluster_address="gcomm://172.16.0.191,172.16.0.192,17
2.16.0.193"
wsrep_sst_method=rsync

6. Log in to Galera1 and execute the following command to start up a new Galera
replication cluster:
sudo service mysql start --wsrep-new-cluster

7. Log in to Galera2 and Galera3 to execute the following command on each node:
sudo service mysql start

8. Test whether mysql service was started by logging into any of the nodes and
running the following command:

mysql -u root -e 'SELECT VARIABLE_VALUE as "cluster size" \

 FROM INFORMATION_SCHEMA.GLOBAL_STATUS \

 WHERE VARIABLE_NAME="wsrep_cluster_size"'

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

362

It should return the following output:

How it works...
We configured three servers running Ubuntu 14.04 to be able to install MariaDB and Galera.
We do this by adding the MariaDB repository to our apt environment and installing the
appropriate packages.

Once this has been done on each of the three nodes, we configure MariaDB to use Galera
by editing the /etc/mysql/conf.d/galera.cnf file. This has a section that describes
how Galera is used. We specify a cluster name, the IP addresses used in the cluster, and
the method by which the data will be replicated:

wsrep_provider=/usr/lib/galera/libgalera_smm.so
wsrep_cluster_name="my_wsrep_cluster"
wsrep_cluster_address="gcomm://172.16.0.191,172.16.0.192,172.16.0.
193"
wsrep_sst_method=rsync

After this, we start up the cluster. To do this, we choose one of the nodes and execute the
following command:

service mysql start --wsrep-new-cluster

We then start up the remaining nodes as usual using the following command:

service mysql start

Configuring HA Proxy for the MariaDB Galera
cluster

With our MariaDB Galera cluster configured, each node can take traffic, and the writes are
seamlessly replicated to other nodes in the cluster. We could use any of the MariaDB node
addresses and place them in our configuration files, but if that node failed, we would not have
a database to attach to and our OpenStack environment would fail. A possible solution to this
is to front the MariaDB cluster using Load Balancing. Given that any of the nodes can take
reads and writes, with data consistency, Load Balancing is a great solution. Generally, physical
Load Balancers, such as those from F5 or Brocade, are recommended. In the absence of
physical Load Balancers, High Availability (HA) Proxy can be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

363

Getting ready
Install two servers, both running Ubuntu 14.04, which are configured on the same
management network as our OpenStack environment and the MariaDB Galera cluster.
In the following steps, the two nodes will be on the IP addresses 172.16.0.248 and
172.16.0.249. In the next recipe, we will configure these two nodes with a FloatingIP
address (that will be set up using keepalived) of 172.16.0.251. This address will be used
when we configure the database connections in our OpenStack configuration files.

How to do it...
As we are setting up identical servers to act in a pair, we will configure a single server first
and then repeat the process for the second server. The first will utilize the IP address
172.16.0.248. We then repeat the steps utilizing the IP address 172.16.0.249.

To configure HA Proxy for MariaDB Galera Load Balancing, carry out step 1 to step 5 twice
to create two HA Proxy instances—both configured to access our MariaDB Galera nodes.

1. We first install HA Proxy using the usual apt-get process, as follows:
sudo apt-get update

sudo apt-get install haproxy

2. With HA Proxy installed, we'll simply configure this first proxy server appropriately for
our MariaDB Galera cluster. To do this, we edit the /etc/haproxy/haproxy.cfg
file and insert the following contents:
global
 log 127.0.0.1 local0
 log 127.0.0.1 local1 notice
 maxconn 4096
 user haproxy
 group haproxy
 daemon

defaults
 log global
 mode http
 option tcplog
 option dontlognull
 retries 3
 option redispatch
 maxconn 4096
 timeout connect 50000ms
 timeout client 50000ms

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

364

 timeout server 50000ms

MySQL Load Balance Pool
listen mysql 0.0.0.0:3306
 mode tcp
 balance roundrobin
 option tcpka
 option mysql-check user haproxy
 server mysql1 172.16.0.191:3306 weight 1
 server mysql2 172.16.0.192:3306 weight 1
 server mysql3 172.16.0.193:3306 weight 1

3. Save and exit the file, and then start up HA Proxy with the following command:
sudo sed -i 's/^ENABLED.*/ENABLED=1/' /etc/defaults/haproxy

sudo service haproxy start

4. Before we can use this HA Proxy server to access our three MariaDB nodes, we must
create the user specified in the haproxy.cfg file that is used to do a very simple
check to see if MariaDB is up and running. To do this, we add a user into our cluster
that is simply able to connect to MariaDB. Using the mysql client on any of our
Galera nodes, create the user haproxy with no password set. This user is allowed
access from the IP address of the HA Proxy server. Run the following commands:
mysql -u root -h localhost \

 -e "GRANT ALL ON *.* to haproxy@'172.16.0.248';"

5. We carry out a similar step to add in a root user to our MySQL Galera cluster that
has permission to run MySQL commands originating from the HA Proxy servers:

mysql -u root -h localhost \

 -e "GRANT ALL ON *.* to root@'172.16.0.248' IDENTIFIED BY
'openstack' WITH GRANT OPTION;"

Repeat step 1 to step 5, replacing the IP address 172.16.0.248
with the IP address of our second node, 172.16.0.249.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

365

How it works...
HA Proxy is a very popular and useful proxy and Load Balancer that makes it ideal for
fronting a MariaDB cluster to add load-balancing capabilities. It is simple to set up the
service to front MariaDB.

The first requirement is listening on the appropriate port, which for MariaDB is 3306. The
listen line in the configuration files here also specifies that it will listen on all addresses by
using 0.0.0.0 as the address, but you can bind this to a particular address by specifying
this to add an extra layer of control in our environment.

To use MariaDB, the mode must be set to tcp and we set keepalived with the tcpka
option to ensure long-lived connections are not interrupted and closed when a client opens
up a connection to our MariaDB servers.

The Load Balance method used is round robin, which is perfectly suitable for a multi-master
cluster where any node can perform reads and writes.

We add in a basic check to ensure that our MariaDB servers are marked offline appropriately.
Using the inbuilt mysql-check option (which requires a user to be set up in MariaDB to log in
to the MariaDB nodes and quit), when a MariaDB server fails, the server is ignored and traffic
passes to a MariaDB server that is alive. Note that it does not perform any checks for whether
a particular table exists—though this can be achieved with more complex configurations using a
check script running on each MariaDB server and calling the check script as part of our checks.

The final configuration step for HA Proxy is listing the nodes and the addresses that they listen
on, which forms the Load Balance pool of servers.

Configuring HA Proxy for high availability
The steps in the preceding recipe configure a two-node HA Proxy setup that we can use as
a MariaDB endpoint to place in our OpenStack configuration files. Having a single HA Proxy
acting as a Load Balancer to a highly available multimaster cluster is not recommended, as
the Load Balancer then becomes our single point of failure. To overcome this, we can simply
install and configure keepalived, which gives us the ability to share a FloatingIP address
between our HA Proxy servers. This allows us to use this FloatingIP address as the address
to use for our OpenStack services.

Getting ready
Log in to the two HA Proxy servers created in the previous recipe as root.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

366

How to do it...
As we have two identical HA Proxy servers running—one on address 172.16.0.248, and
another at 172.16.0.249—we will assign a floating "virtual IP" address of 172.16.0.251,
which is able to attach itself to one of the servers and switch over to the other in the event of
a failure. To do this, follow these steps:

1. Having a single HA Proxy server sitting in front of our multimaster MariaDB cluster
makes the HA Proxy server our single point of failure. To overcome this, we use a
simple solution provided by keepalived for Virtual Redundant Router Protocol
(VRRP) management. To do this, we need to install keepalived on both of our HA
Proxy servers. As we did before, we will configure one server, and then repeat the
steps for our second server. We do this as follows:
sudo apt-get update

sudo apt-get install keepalived

2. To allow running software to bind to an address that does not physically exist on
our server, we add in an option to sysctl.conf. Add the following line to /etc/
sysctl.conf:
net.ipv4.ip_nonlocal_bind=1

3. To pick up the change, issue the following command:
sudo sysctl -p

4. We can now configure keepalived. To do this, we create a /etc/keepalived/
keepalived.conf file with the following contents:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or
 not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state MASTER
 virtual_router_id 51 # Assign one ID for this router
 priority 101 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

367

 track_script {
 chk_haproxy
 }
}

5. We can now start up keepalived on this server by issuing the following command:
sudo service keepalived start

6. With keepalived now running on our first HA Proxy server, which we have
designated as the master node, we repeat the previous steps for our second HA
Proxy server with only two changes to the keepalived.conf file (state should
be set to BACKUP and priority should be set to 100) to give the complete file
on our second host the following contents:
vrrp_script chk_haproxy {
 script "killall -0 haproxy" # verify the pid exists or
not
 interval 2 # check every 2 seconds
 weight 2 # add 2 points if OK
}

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state BACKUP
 virtual_router_id 51 # Assign one ID for this router
 priority 100 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }
 track_script {
 chk_haproxy
 }
}

7. Start up keepalived on this second node, and they will be acting in coordination
with each other. So, if you powered off the first HA Proxy server, the second server will
pick up the FloatingIP address 172.16.0.251. After 2 seconds, new connections
can be made to our MariaDB cluster without disruption. We can test whether the
HA Proxy and MariaDB with Galera setup is working by connecting to the database
cluster with the following command:

mysql -uroot -popenstack -h 172.16.0.251

8. To check whether keepalived is working correctly, view the messages in /var/
log/syslog on each of our nodes. Execute the following command:

sudo grep VRRP /var/log/syslog

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

368

On the node that currently has the FloatingIP address, you will see the
following output:

On the node that doesn't have the FloatingIP assigned, you will see the
following output:

OpenStack backend configuration using FloatingIP address
With both HA Proxy servers running the same HA Proxy configuration and both running
keepalived, we can use the virtual_ipaddress address (our FloatingIP address)
configured as the address that we would then connect to and use in our configuration files.
In OpenStack, we would identify each of the configuration files that refer to our database
and change the following configuration to use our FloatingIP address of 172.16.0.251
where appropriate:

1. First, we must ensure that our new Galera cluster has all the usernames
and passwords that we need for our OpenStack environment. In the test
vagrant environment accompanying the book at https://github.com/
OpenStackCookbook/OpenStackCookbook.git, we configure our database
usernames to be the same as the service name, for example, neutron, and
password to be openstack. To replicate this, execute the following commands
to create all users and passwords:
USERS="nova

neutron

keystone

glance

cinder

heat"

HAPROXIES="172.16.0.248

www.it-ebooks.info

https://github.com/OpenStackCookbook/OpenStackCookbook.git
https://github.com/OpenStackCookbook/OpenStackCookbook.git
http://www.it-ebooks.info/

Chapter 11

369

172.16.0.249"

for U in ${USERS}

do

 for H in ${HAPROXIES}

 do

 mysql -u root -h localhost -e "GRANT ALL ON *.* to
${U}@\"${H}\" IDENTIFIED BY \"openstack\";"

 done

done

It is recommended that you use stronger, random passwords in production.

2. We can now use these details to replace the SQL connection lines in our configuration
files used in OpenStack. Some examples are as follows:

Nova
/etc/nova/nova.conf
sql_connection = mysql://nova:openstack@172.16.0.251/nova

Keystone
/etc/keystone/keystone.conf
connection =
mysql://keystone:openstack@172.16.0.251/keystone

Glance
/etc/glance/glance-registry.conf
connection = mysql://glance:openstack@172.16.0.251/glance

Neutron
/etc/neutron/neutron.conf
[DATABASE]
connection = mysql://neutron:openstack@172.16.0.251/neutron

Cinder
/etc/cinder/cinder.conf
connection = mysql://cinder:openstack@172.16.0.251/cinder

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

370

How it works...
We install and configure keepalived, a service that gives us the ability to have an IP
address that can float between each of our HA Proxy servers. In the event of a failure,
it will be promoted and attached to the remaining running server.

We configure keepalived by editing the /etc/keepalived/keepalived.conf file.
These look very similar on both nodes but with one difference—we specify the MASTER
and the slave nodes.

On the MASTER node (it can be any nominated instance), we chose the first HA Proxy server.
This is illustrated in the following code:

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state MASTER
 virtual_router_id 51 # Assign one ID for this route
 priority 101 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }

On the slave node, the code is as follows:

vrrp_instance VI_1 {
 interface eth1 # interface to monitor
 state BACKUP
 virtual_router_id 51 # Assign one ID for this route
 priority 100 # 101 on master, 100 on backup
 virtual_ipaddress {
 172.16.0.251 # the virtual IP
 }

In our example, the IP address we use that can float between our instances is 172.16.0.251.
This is configured as shown in the preceding virtual_ipaddress code snippet.

When we start keepalived on both servers, the MASTER node gets the 172.16.0.251 IP
address. If we powered this host off, or it unexpectedly failed, the other HA Proxy server will
inherit this IP address. This gives us our HA feature to our HA Proxy servers.

With this in place, we then ensure that our new database has all the relevant usernames and
passwords configured and we replace all references to our non-HA configuration to our new
MariaDB cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

371

Installing and configuring Pacemaker with
Corosync

OpenStack has been designed for highly scalable environments where it is possible to avoid
single point of failures (SPOFs), but sometimes you must build this into your own environment.
For example, Keystone is a central service underpinning your entire OpenStack environment,
so you would build multiple instances into your environment. Glance is another service
that is key to the running of your OpenStack environment. By setting up multiple instances
running these services, controlled with Pacemaker and Corosync, we can enjoy an increase
in resilience to failure of the nodes running these services. Using Pacemaker and Corosync is
one way of providing a highly available solution to OpenStack services. This recipe is designed
to give you options for your deployments and allow you to use Pacemaker and Corosync
elsewhere in your environment.

Getting ready
For this recipe, we will assume that there are two controller nodes available that are
running Glance and Keystone. Installation of Keystone and Glance was covered in the first
two chapters of this book.

The first controller1 node will have a host management address of 192.168.100.221.
The second controller2 node will have a host management address of
192.168.100.222.

Visit https://github.com/OpenStackCookbook/
Controller-Corosync.git for a two-node OpenStack
Controller example that accompanies this section.

How to do it...
To install Pacemaker and Corosync on the two servers that will be running OpenStack
services such as Keystone and Glance, carry out the following steps.

Setting up the first node – controller1
1. Once Keystone and Glance have been installed with an address in our OpenStack

environment that our other OpenStack services can communicate with, we can
proceed to install Pacemaker and Corosync as follows:
sudo apt-get update

sudo apt-get install pacemaker corosync

www.it-ebooks.info

https://github.com/OpenStackCookbook/Controller-Corosync.git
https://github.com/OpenStackCookbook/Controller-Corosync.git
http://www.it-ebooks.info/

Production OpenStack

372

2. It's important that our two nodes know each other by address and hostname,
so enter their details in /etc/hosts to avoid DNS lookups:
192.168.100.221 controller1.book controller1

192.168.100.222 controller2.book controller2

3. Edit the /etc/corosync/corosync.conf file so that the interface section
matches the following code:
interface {
 # The following values need to be set based on your
environment
 ringnumber: 0
 bindnetaddr: 192.168.100.0
 mcastaddr: 226.94.1.1
 mcastport: 5405
}

Corosync uses multicast. Ensure that the values don't conflict with any
other multicast-enabled services on your network.

4. By default, the corosync service isn't set to start. To ensure that it starts, edit the
/etc/default/corosync service and set START=yes, as follows:
sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

5. We now need to generate an authorization key to secure the communication
between our two hosts:
sudo corosync-keygen

6. You will be asked to generate a random entropy by typing using the keyboard. If
you are using an SSH session instead of a console connection, you won't be able
to generate the entropy using a keyboard. To do this remotely, launch a new SSH
session, and in that new session, while the corosync-keygen command is waiting
for entropy, run the following command:
while /bin/true

do

 dd if=/dev/urandom of=/tmp/100 bs=1024 count=100000

 for i in {1..10}

 do

 cp /tmp/100 /tmp/tmp_$i_$RANDOM

 done

 rm -f /tmp/tmp_* /tmp/100

done

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

373

7. When the corosync-keygen command has finished running and an authkey
file has been generated, simply press Ctrl + C to cancel this random entropy
creation loop.

Setting up the second node – controller2
We now need to install Pacemaker and Corosync on our second host, controller2.

1. We install the pacemaker and corosync packages as follows:
sudo apt-get update

sudo apt-get install pacemaker corosync

2. We also ensure that our /etc/hosts file has the same entries for our other host
(as before):
192.168.100.221 controller1.book controller1

192.168.100.222 controller2.book controller2

3. By default, the corosync service isn't set to start. To ensure that it starts, edit the
/etc/default/corosync service and set START=yes:

sudo sed -i 's/^START=no/START=yes/g' /etc/default/corosync

Configuring the first node – controller1
With the /etc/corosync/corosync.conf file modified and the /etc/corosync/
authkey file generated, we copy this to the other node (or nodes) in our cluster:

scp /etc/corosync/corosync.conf /etc/corosync/authkey

openstack@192.168.100.222:

Configuring the second node – controller2
We can now put the same corosync.conf file as used by our first node and the generated
authkey file into /etc/corosync:

sudo mv corosync.conf authkey /etc/corosync

Starting the Pacemaker and Corosync services
1. We are now ready to start the services. On both nodes, issue the following commands:

sudo service pacemaker start

sudo service corosync start

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

374

2. To check that our services have started fine and our cluster is working, we can use
the crm_mon command to query the cluster status:
sudo crm_mon -1

This will return output similar to the following where the important information
includes the number of nodes configured, the expected number of nodes, and
a list of our two nodes that are online:

3. We can validate the configuration using the crm_verify command:
sudo crm_verify -L -V

4. We will get an error mentioning STONITH (short for Shoot The Other Node In The
Head). STONITH is used to maintain quorum when there are at least three nodes
configured. It isn't required in a two-node cluster. As we are only configuring a two-
node cluster, we disable stonith:
sudo crm configure property stonith-enabled=false

5. Verifying the cluster using crm_verify again will now show errors:
sudo crm_verify -L

6. Again, as this is only a two-node cluster, we disable any notion of quorum using
the following command:
sudo crm configure property no-quorum-policy=ignore

7. On the first node, controller1, we can now configure our services and set up
a floating address that will be shared between the two servers. In the following
command, we've chosen 192.168.100.253 as the FloatingIP address and
a monitoring interval of 5 seconds. To do this, we use the crm command again to
configure this FloatingIP address, which we will call the FloatingIP
command. The command is as follows:
sudo crm configure primitive FloatingIP \

 ocf:heartbeat:IPaddr2 params ip=192.168.100.253 \

 cidr_netmask=32 op monitor interval=5s

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

375

8. On viewing the status of our cluster using crm_mon, we can now see that the
FloatingIP address has been assigned to our controller1 host:
sudo crm_mon -1

The output is similar to the following example that now says we have one resource
configured for this setup (our FloatingIP):

9. We can now use this FloatingIP address of 192.168.100.253 to connect to our
first node. When we power that node off, this address will be sent to our second node
after 5 seconds of no response from the first node. We can test this FloatingIP
address by executing the following commands from either of the controller hosts:

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

export OS_AUTH_URL=https://192.168.100.253:5000/v2.0/

keystone --insecure endpoint-list

We will get an output similar to this:

Note that we're using the --insecure flag on the command line
because we're using self-signed certificates generated independently
on both controllers. In production, this would not be required.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

376

How it works...
Making OpenStack services highly available is a complex subject, and there are a number of
ways to achieve this. Using Pacemaker and Corosync is a very good solution to this problem.
It allows us to configure a floating IP address assigned to the cluster that will attach itself to
the appropriate node (using Corosync), as well as control services using agents, so the cluster
manager can start and stop services as required to provide a highly available experience to
the end user.

We install both Keystone and Glance onto two nodes (each configured appropriately with a
remote database backend such as MySQL and Galera), having the images available using
a shared filesystem or cloud storage solution. Doing this provides us with the advantage
of configuring these services with Pacemaker, and allowing Pacemaker to monitor these
services. If the required services are unavailable on the active node, Pacemaker can start
those services on the passive node.

Configuring OpenStack services with
Pacemaker and Corosync

This recipe represents two nodes running both Glance and Keystone, controlled by Pacemaker
with Corosync in active/passive mode that allows for a failure of a single node. In a production
environment, it is recommended that a cluster consist of at least three nodes to ensure
resiliency and consistency in the case of a single node failure.

Getting ready
For this recipe, we will assume the previous recipe, Installing and configuring Pacemaker
with Corosync, has been followed to give us two controllers called controller1 and
controller2, with a FloatingIP address 172.16.0.253 provided by Corosync.

How to do it...
To increase the resilience of OpenStack services, carry out the following steps:

1. With Keystone running on controller1, we should be able to query Keystone using
both its own IP address (172.16.0.221) and the FloatingIP (172.16.0.253)
from a client that has access to the OpenStack environment using the following code:
Assigned IP (192.168.100.221)

export OS_TENANT_NAME=cookbook

export OS_USERNAME=admin

export OS_PASSWORD=openstack

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

377

export OS_AUTH_URL=https://192.168.100.221:5000/v2.0/

export OS_KEY=/vagrant/cakey-controller1.pem

export OS_CACERT=/vagrant/ca-controller1.pem

keystone user-list

FloatingIP (Keepalived and HA Proxy)

export OS_AUTH_URL=https://172.16.0.253:5000/v2.0/

keystone user-list

2. Copy the /etc/keystone/keystone.conf file from the first host, put it in place
on the second node, and then restart the keystone service. There is no further work
required, as the database has already been populated with the endpoints and users
when the install was completed on the first node. Restart the service to connect to
the database, as follows:
sudo stop keystone

sudo start keystone

3. We can now interrogate the second keystone service on its own IP address.

Second Node

export OS_AUTH_URL=http://172.16.0.112:5000/v2.0/

keystone user-list

Glance across two nodes with FloatingIP
For Glance to be able to run across multiple nodes, it must be configured with a shared
storage backend (such as Swift) and be backed by a database backend (such as MySQL). On
the first host, install and configure Glance, as described in Chapter 2, Glance – OpenStack
Image Service. After that, follow these steps:

1. On the second node, install the required packages to run Glance, which is backed
by MySQL and Swift, by running the command:
sudo apt-get install glance python-swift

2. Copy over the configuration files in /etc/glance to the second host, and start
the glance-api and glance-registry services on both nodes:
sudo start glance-api

sudo start glance-registry

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

378

3. We can now use either the Glance server to view our images, as well as the
FloatingIP address that is assigned to our first node, by using this code:

First node
glance -I admin -K openstack -T cookbook -N
 http://172.16.0.111:5000/v2.0 index
Second node
glance -I admin -K openstack -T cookbook -N
 http://172.16.0.112:5000/v2.0 index
FloatingIP
glance -I admin -K openstack -T cookbook -N
 http://172.16.0.253:5000/v2.0 index

Configuring Pacemaker for use with Glance and Keystone
With Keystone and Glance running on both nodes, we can now configure Pacemaker to
take control of this service so that we can ensure Keystone and Glance are running on
the appropriate node when the other node fails. The steps are as follows:

1. To do this, we first disable the upstart jobs for controlling Keystone and Glance
services and then create upstart override files for these services (on both nodes).
Create /etc/init/keystone.override, /etc/init/glance-api.override
and /etc/init/glance-registry.override with just the keyword manual in:

2. We now grab the OCF (short for Open Cluster Format) resource agents that are shell
scripts or pieces of code that are able to control our Keystone and Glance services.
We must do this on both our nodes. To do so, run the following commands:
wget https://raw.github.com/madkiss/keystone/ha/tools/ocf/keystone

wget https://raw.github.com/madkiss/glance/ha/tools/ocf/glance-api

wget https://raw.github.com/madkiss/glance/ha/tools/ocf/glance-
registry

sudo mkdir -p /usr/lib/ocf/resource.d/openstack

sudo cp keystone glance-api glance-registry \

/usr/lib/ocf/resource.d/openstack

sudo chmod 755 /usr/lib/ocf/resource.d/openstack/*

3. We should be now be able to query these new OCF agents available to us,
which will return the three OCF agents:
sudo crm ra list ocf openstack

4. We can now configure Pacemaker to use these agents to control our Keystone
service. To do this, we run the following set of commands:
sudo crm cib new conf-keystone

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

379

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_keystone
ocf:openstack:keystone \

 params config="/etc/keystone/keystone.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="keystone" \

 client_binary="/usr/bin/keystone" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-keystone

5. We then issue a similar set of commands for the two Glance services, as follows:
sudo crm cib new conf-glance-api

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_api
ocf:openstack:glance-api \

 params config="/etc/glance/glance-api.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 client_binary="/usr/bin/glance" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-glance-api

sudo crm cib new conf-glance-registry

sudo crm configure property stonith-enabled=false

sudo crm configure property no-quorum-policy=ignore

sudo crm configure primitive p_glance_registry \
ocf:openstack:glance-registry \

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

380

 params config="/etc/glance/glance-registry.conf" \

 os_auth_url="http://localhost:5000/v2.0/" \

 os_password="openstack" \

 os_tenant_name="cookbook" \

 os_username="admin" \

 user="glance" \

 op monitor interval="5s" timeout="5s"

sudo crm cib use live

sudo crm cib commit conf-glance-registry

6. We can verify that we have our Pacemaker configured correctly by issuing the
following command:
sudo crm_mon -1

This brings back something similar to the following output:

Here's what to do if you receive an error similar to the following error:
Failed actions:

 p_keystone_monitor_0 (node=controller2, call=3,
rc=5, status=complete): not installed

Issue the following commands to clear the status and then view the
status again:
sudo crm_resource -P
sudo crm_mon -1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

381

7. We can now configure our client so that they use the FloatingIP address
172.16.0.253 for both Glance and Keystone services. With this in place, we can
bring down the interface on our first node and still have our Keystone and Glance
services available on this FloatingIP address.

We now have Keystone and Glance running on two separate nodes, where a node can fail and
services will still be available.

How it works...
The configuration of Pacemaker is predominantly done with the crm tool. This allows us to
script the configuration. If invoked on its own, it allows us to invoke an interactive shell that we
can use to edit, add, and remove services, as well as query the status of the cluster. This is a
very powerful tool to control an equally powerful cluster manager.

With both nodes running Keystone and Glance, and with Pacemaker and Corosync running
and accessible on the FloatingIP provided by Corosync, we configure Pacemaker to control
the running of the Keystone and Glance services by using an Open Cluster Framework (OCF)
agent written specifically for this purpose. The OCF agent uses a number of parameters that
will be familiar to us, and they require the same username, password, tenant, and endpoint
URL that we would use in a client to access that service.

A timeout of 5 seconds was set up for both the agent and when the FloatingIP address
moves to another host.

After this configuration, we have a Keystone and Glance active/passive configuration,
as shown in the diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

382

Bonding network interfaces for redundancy
Running multiple services across multiple machines and implementing appropriate HA
methods ensure a high degree of tolerance to failure within our environment. But if it's the
physical network that fails and not the service, outages will occur if traffic cannot flow to and
from that service. Adding in Network Interface Card (NIC) bonding (also known as teaming
or link aggregation) can help alleviate these issues by ensuring traffic flows through diverse
routes and switches as appropriate.

Getting ready
NIC bonding requires coordination between system administrators and the network
administrators who are responsible for the switches. There are various methods available for
NIC bonding. The method presented here is active-passive mode, which describes that traffic
will normally flows through a single switch, leaving the other teamed NIC to take no traffic until
it is required.

How to do it...
Setting up NIC bonding in Ubuntu 14.04 requires an extra package installation to allow
bonding. We set an NIC bond by following these steps:

1. We install the ifenslave package in the usual manner, as follows:
sudo apt-get update

sudo apt-get install ifenslave

2. With the ifenslave package installed, we simply configure networking as normal
in Ubuntu but add in the required elements for bonding. To do this, we edit the /etc/
network/interfaces file with the following contents (for active-passive
mode bonding). Here, we're bonding eth1 and eth2 to give us bond0 with an
address of 172.16.0.111:
auto eth1
iface eth1 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto eth2
iface eth2 inet manual
 bond-master bond0
 bond-primary eth1 eth2

auto bond0
iface bond0 inet static

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

383

 address 172.16.0.111
 netmask 255.255.0.0
 network 172.16.0.0
 broadcast 172.16.255.255
 bond-slaves none
 bond-mode 1
 bond-miimon 100

3. To ensure that the correct bonding mode is used, we add the following contents
into /etc/modprobe.d/bonding.conf. This describes an active/passive bond
(mode=1) with a monitoring interval of 100 milliseconds:
alias bond0 bonding
options bonding mode=1 miimon=100

4. We can now restart our networking, which in turn will bring up our bonded
interface with the required IP address:

sudo service networking restart

How it works...
Bonding network interfaces in Ubuntu to cater to a switch failure is relatively straightforward.
This is achieved by providing the coordination with how the switches are set up and configured.
With different paths to different switches configured and each network interface going to
separate switches, a high level of fault tolerance to network-level events, such as a switch
failure, can be achieved.

To do this, we configure our bonding in the traditional /etc/network/interfaces file
under Ubuntu, but we specify which NICs are teamed with which bonded interface. Each
bonded interface configured has at least a unique pair of interfaces assigned to it, and then we
configure that bonded interface, bond0, with the usual IP address, netmask, and so on. We tag
a few options specifically to notify Ubuntu that this is a bonded interface of a particular mode.

To ensure the bonding module that gets loaded as part of the kernel has the right mode
assigned to it, we configure the module in /etc/modprobe.d/bonding.conf. When the
bonding module loads along with te network interface, we end up with a server that is able
to withstand isolated switch failures.

See also
 f For more information on the different bonding modes that Ubuntu Linux supports,

see https://help.ubuntu.com/community/LinkAggregation

www.it-ebooks.info

https://help.ubuntu.com/community/LinkAggregation
http://www.it-ebooks.info/

Production OpenStack

384

Automating OpenStack installations using
Ansible – host configuration

There are a number of ways to automate an installation of OpenStack. These methods
predominantly make use of configuration management tools such as Chef, Puppet, and
Ansible. In this recipe, we will see how to use Ansible for the installation of OpenStack and
how the Playbooks make use of LXC containers, in which isolate resources and filesystems
to the service are running in the container. At the time of writing, the Ansible Playbooks that
are used for installing OpenStack are hosted on Stackforge. These will soon move to the
OpenStack GitHub branch as an official project.

Getting ready
The environment that we will be using in this recipe will consist of seven physical servers:

 f Three Controller nodes make up a cluster of nodes running the OpenStack API
services, such as Glance, Keystone, and Horizon, as well as MariaDB and RabbitMQ.

 f One Storage node is used for Cinder LVM volumes.

 f Two (or more) nodes will be the Compute nodes. With this infrastructure, we can
scale out the Compute to meet demand in our environment, as well as separate
our Controller services across a larger set of nodes and scale as required.

 f One HA Proxy node will be the host we will install our environment from, as well
as provide HA Proxy services to Load Balance the APIs of the services.

In production environments, it is highly recommended that a pair of
physical Load Balancers are used instead of HA Proxy.

 f All of the machines will need to have Ubuntu 14.04 LTS release freshly installed
as used in the rest of the book.

 f All of the machines will have access to the Internet.

Each server will have at least two network cards installed and utilize VLANs (a total of four
distinct networks are created for the installation). In production, it is assumed you will have
at least four network cards so that you create two bonded pair of interfaces and appropriately
cable them to different HA switches for resilience.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

385

To better understand the networking, refer to the following diagram:

The following networks will be used for our OpenStack installation using Ansible:

 f eth0: This will be used for accessing the host itself (untagged VLAN). This interface
will have an IP assigned on the host subnet. This will also be used for storage traffic.
An optional br-storage bridge and interface can be used for dedicated storage
traffic. This isn't used in this section.

 f eth0.1000: This will be the VLAN (tag 1000) interface that the container bridge
(br-mgmt) will be created on. The eth0.1000 interface will not have an IP assigned
to it directly; this IP will be assigned to the bridge (br-mgmt) as described here.

 � br-mgmt: This will be the bridge created that connects to eth0.1000 and
is a network utilized solely for container to container network traffic. This
network carries the communication between OpenStack services, such as
Glance requiring access to Keystone. This br-mgmt bridge will have an IP
address on the management network (also called the container network)
so our hosts can access the containers.

 f eth1: This will be the network interface that all VLAN based Neutron traffic will
traverse. The controllers and computes will need this interface configured. The
storage nodes and HA Proxy node do not need this configuring.

 � br-vlan: This will be a bridge that connects to eth1. Neither br-vlan
nor eth1 will have an IP assigned as OpenStack Neutron controls these
on the fly when networks of type VLAN are created.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

386

 f eth1.2000: This will be the VLAN (tag 2000) interface that a VXLAN network will be
created on. OpenStack Neutron has the ability to create private tenant networks of
type VXLAN. This will be created over this interface.

 � br-vxlan: This will be a bridge that includes eth1.2000 to carry the data
created in a VXLAN tunnel network. For our OpenStack environment, this
network will allow a user to create Neutron networks of type VXLAN that will
be overlaid over this network. This bridge will have an IP assigned to it in the
tunnel network.

How to do it...
The first stage is to ensure that the seven hosts described in this section are configured and
ready for installation of OpenStack using the Ansible Playbooks; to do so, follow these steps.

1. Configure the network on all seven hosts by editing the /etc/network/
interfaces file with the following contents (consider using bonded interfaces
for production, and edit to suit your network details):
Host Interface
auto eth0
 iface eth0
 inet static
 address 192.168.1.101
 netmask 255.255.255.0
 gateway 192.168.1.1
 dns-nameservers 192.168.1.1

Neutron Interface, no IP assigned
auto eth1
 iface eth1
 inet manual

Container management VLAN interface
iface eth0.1000
 inet manual
 vlan-raw-device eth0

OpenStack VXLAN (tunnel/overlay) VLAN interface
iface eth1.2000
 inet manual
 vlan-raw-device eth1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

387

2. We continue editing the same /etc/network/interfaces file to add in the
matching bridge information, as follows:
Bridge for Container network
auto br-mgmt
 iface br-mgmt inet static
 bridge_stp off
 bridge_waitport 0
 bridge_fd 0
 # Bridge port references tagged interface
 bridge_ports eth1.1000
 address 172.16.0.101
 netmask 255.255.0.0
 dns-nameservers 192.168.1.1

Bridge for vlan network
auto br-vlan
 iface br-vlan inet manual
 bridge_stp off
 bridge_waitport 0
 bridge_fd 0
 # Notice this bridge port is an Untagged interface
 bridge_ports eth1

Bridge for vxlan network
auto br-vxlan
 iface br-vxlan inet static
 bridge_stp off
 bridge_waitport 0
 bridge_fd 0
 # Bridge port references tagged interface
 bridge_ports eth1.2000
 address 172.29.240.101
 netmask 255.255.252.0
 dns-nameservers 192.168.1.1

3. We can now restart our networking, which, in turn, will bring up our host interfaces
and bridges with the required IP addresses:
sudo service networking restart

4. Repeat step 1 to step 3 for each host on your network that will have OpenStack
installed, adjusting the IP addresses accordingly.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

388

5. Ensure that all seven nodes in the environment are reachable on all networks
created. This can be achieved using fping, as shown here:

host network (eth0)

fping -g 192.168.1.101 192.168.1.107

container network (br-mgmt)

fping -g 172.16.0.101 172.16.0.107

For Computes and Controllers Only

tunnel network (br-vxlan)

fping -g 172.29.240.101 172.29.240.105

How it works...
Setting up the networking correctly is important. Retrospectively, altering the network
once an installation of OpenStack has occurred can be tricky.

We used two physical interfaces (if using bonding, it is a total of four but is referred to as two),
allocating appropriate VLANs and dropping the created interfaces into specific bridges.
These bridged interfaces, br-mgmt, br-vxlan and br-vlan, are referenced directly
in the Ansible Playbook configurations, so do not change these names.

The host network on eth0 is the network that will have the default gateway of your LAN,
and this network will be used to access the Internet to pull down the required packages as
part of the OpenStack installation.

We create a VLAN tagged interface eth0.1000 on eth0, which will be used for container-to-
container traffic. The Ansible Playbooks install the OpenStack services in LXC containers, and
these containers must be able to communicate with each other. This network is not routable
and is only used for inter-container communication. This VLAN tagged interface is dropped
into the bridge, br-mgmt. The br-mgmt bridge is given an IP address on this management
(container) network so that the hosts can communicate with the containers when they
eventually get created in the next two recipes.

The second interface (or second bonded interface) carries the traffic for Neutron, so only the
controllers and computes need this interface. As we are configuring our environment to carry
both VLAN Neutron tenant networks and VXLAN tenant networks, we first create a VLAN tagged
interface eth1.2000 and drop this into the bridge br-vxlan. As this is for VXLAN traffic, we
assign an IP to this bridge. Now, tunnels can be created over this network. This network doesn't
have any routes associated with it. We then create a br-vlan bridge and drop the untagged
interface eth1 into this. This is because when we eventually come to create Neutron tenant
networks of type VLAN, Neutron adds the tags to this untagged interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

389

Automating OpenStack installations using
Ansible – Playbook configuration

Now that the hosts have been configured correctly and all of the network interfaces are set
up correctly, we can begin editing the configuration files that will be used when the Ansible
Playbooks are run. In this recipe, we use Git to check the OpenStack Ansible Deployment
(OSAD) Playbooks, the same ones originally developed by Rackspace and used by them to
deploy OpenStack for its customers. We will be using the latest release at the time of writing:
Git Tag 11.0.3 that refers to the Kilo release (Kilo refers to the letter K, which is the 11th
letter in the alphabet).

The environment we will configure is shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

390

Getting ready
It is important that the previous recipe, Automating OpenStack installations using
Ansible – host configuration, has been followed and that all the configured networks
are working as expected.

The environment will consist of three Controller nodes, one Storage node, one HA Proxy node,
and two Compute nodes. Identify which of these will be the HA Proxy server and log into it as
the root user. Out of convenience, this server will also be used to install OpenStack.

How to do it...
In this recipe, we are configuring the YAML configuration files that are used by the Playbooks.
There are three files that we will be configuring: openstack_user_config.yml, user_
variables.yml, and user_secrets.yml. The three of these files combined describe our
entire installation, from what server in our datacenter is running which OpenStack function to
passwords and features to enable in OpenStack.

1. We first need to get the Ansible Playbooks from GitHub and place them into
/opt/os-ansible-deployment. This is achieved with the following command:
cd /opt

git clone -b 11.0.3 \

 https://github.com/stackforge/os-ansible-deployment.git

2. We then proceed to configure the installation by first copying the example and empty
configuration files from the cloned GitHub repository to /etc/openstack_deploy,
as shown here:
cp -R /opt/os-ansible/etc/openstack_deploy /etc

3. The first file we configure is a large file located at /etc/openstack_deploy/
openstack_user_config.yml, which describes our physical environment.
The information here is very specific to our installation describing network ranges,
interfaces used, and the nodes that are running each service. The first section
refers to the CIDRs used in our environment:

cidr_networks:
 management: 172.16.0.0/16
 tunnel: 172.29.240.0/22

used_ips:
 - 172.16.0.101,172.16.0.107
 - 172.29.240.101,172.29.240.107

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

391

This file can be found online at https://github.com/
OpenStackCookbook/OpenStackCookbook/blob/master/
ansible-openstack/openstack_user_config.yml.

4. In the same file, we have the global_overrides section. The global_
overrides section describes our Load Balance VIP addresses, our network bridges,
and details of the Neutron networking. This a longer section that has the following
in our environment. Note that we are pre-empting how things will be installed. Here,
we set the IP addresses needed for a Load Balancer that does not yet exist in our
environment. We will be using HA Proxy (installed in the next recipe) that will use
these addresses:
global_overrides:
 internal_lb_vip_address: 172.16.0.107
 external_lb_vip_address: 192.168.1.107
 lb_name: haproxy
 tunnel_bridge: "br-vxlan"
 management_bridge: "br-mgmt"
 provider_networks:
 - network:
 group_binds:
 - all_containers
 - hosts
 type: "raw"
 container_bridge: "br-mgmt"
 container_interface: "eth1"
 container_type: "veth"
 ip_from_q: "management"
 is_container_address: true
 is_ssh_address: true
 - network:
 group_binds:
 - neutron_linuxbridge_agent
 container_bridge: "br-vxlan"
 container_type: "veth"
 container_interface: "eth10"
 ip_from_q: "tunnel"
 type: "vxlan"
 range: "1:1000"
 net_name: "vxlan"
 - network:
 group_binds:
 - neutron_linuxbridge_agent

www.it-ebooks.info

https://github.com/OpenStackCookbook/OpenStackCookbook/blob/master/ansible-openstack/openstack_user_config.yml
https://github.com/OpenStackCookbook/OpenStackCookbook/blob/master/ansible-openstack/openstack_user_config.yml
https://github.com/OpenStackCookbook/OpenStackCookbook/blob/master/ansible-openstack/openstack_user_config.yml
http://www.it-ebooks.info/

Production OpenStack

392

 container_bridge: "br-vlan"
 container_type: "veth"
 container_interface: "eth11"
 type: "vlan"
 range: "1:1"
 net_name: "vlan"
 - network:
 group_binds:
 - neutron_linuxbridge_agent
 container_bridge: "br-vlan"
 container_type: "veth"
 container_interface: "eth12"
 host_bind_override: "eth12"
 type: "flat"
 net_name: "flat"

5. After this section, we get to describe what servers make up our OpenStack
installation. In the same file, next, add these, details which will refer to our
infrastructure hosts (or the controller nodes). Each section has the three servers
listed we allocated as our controller nodes. This section is about the shared services
such as MariaDB and RabbitMQ:
Shared infrastructure parts
shared-infra_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

6. This section is where our OpenStack Compute services, such as the Nova API,
will get installed:
OpenStack infrastructure parts
os-infra_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

393

7. The storage-infra section is where the Cinder storage API will be found:
OpenStack Storage infrastructure parts
storage-infra_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

8. This describes where we will find the Keystone API:
Keystone Identity infrastructure parts
identity_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

9. Next, we describe the servers that will be used for our Compute nodes (the hypervisor
nodes). In the same file, add these details that refer to our Compute hosts:
Compute Hosts
compute_hosts:
 compute-01:
 ip: 172.16.0.104
 compute-02:
 ip: 172.16.0.105

10. Next, we configure any Cinder storage nodes. We enter the information about how
this is configured (such as the backend type such as NFS with NetApp or LVM) here:
storage_hosts:
 storage:
 ip: 172.16.0.106
 container_vars:
 cinder_backends:
 limit_container_types: cinder_volume
 lvm:
 volume_group: cinder-volumes
 volume_driver:
cinder.volume.drivers.lvm.LVMISCSIDriver
 volume_backend_name: LVM_iSCSI

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

394

11. As part of the Playbooks, we can install the Neutron services on a number of
infrastructure nodes. We tell Ansible to deploy this software at these addresses:
network_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

12. Define the repository hosts that are used for installation of the packages within
the environment:
User defined Repository Hosts
repo-infra_hosts:
 controller-01:
 ip: 172.16.0.101
 controller-02:
 ip: 172.16.0.102
 controller-03:
 ip: 172.16.0.103

13. Finally, we add in the following section so that when we install HA Proxy
(to wrap our cluster behind), the Playbooks know where to install the service:
haproxy_hosts:
 haproxy:
 ip: 172.16.0.107

14. The next file that we need to edit is the /etc/openstack_deploy/user_
variables.yml file. This file is a much smaller file that describes OpenStack
configuration options. For example, we specify in here what the backend filesystem
is used for Glance, options for Nova, as well as options for Apache (which sits in
front of Keystone):
Glance Options
Set default_store to "swift" if using Cloud Files
or swift backend or file to use NFS or local filesystem
glance_default_store: file
glance_notification_driver: noop

Nova options
nova_virt_type: kvm
nova_cpu_allocation_ratio: 2.0
nova_ram_allocation_ratio: 1.0

Apache SSL Settings

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

395

These do not need to be configured unless you're creating
certificates for
services running behind Apache (currently, Horizon and
Keystone).
ssl_protocol: "ALL -SSLv2 -SSLv3"
Cipher suite string from
https://hynek.me/articles/hardening-your-web-servers-ssl-
ciphers/
ssl_cipher_suite:
"ECDH+AESGCM:DH+AESGCM:ECDH+AES256:DH+AES256:ECDH+AES128:DH
+AES:ECDH+3DES:DH+3DES:RSA+AESGCM:RSA+AES:RSA+3DES:!aNULL:!
MD5:!DSS"

This file can be found online at https://github.
com/OpenStackCookbook/OpenStackCookbook/
ansible-openstack/user_variables.yml.

15. The last file that we need to configure is the /etc/openstack_deploy/user_
secrets.yml file, which holds the passphrases the services use within OpenStack.
To configure this securely for our environment, and to provide randomly generated
strings, execute the following command:

cd /opt/os-ansible-deployment

scripts/pw-token-gen.py --file

 /etc/openstack_deploy/user_secrets.yml

Congratulations! We're now ready to use the Ansible Playbooks to install OpenStack.

How it works...
All configuration management and automated system installations require a lot of effort in
the first few stages, which reduces a lot of time later on. Installing something as complex
as OpenStack is no different.

After we fetched the Playbooks from GitHub, we configured the following files:

 f /etc/openstack_deploy/openstack_user_config.yml: This file describes
our physical environment (which includes networking, the hosts that are being used,
and what services those hosts will run)

 f /etc/openstack_deploy/user_variables.yml: This file describes the
configuration of OpenStack services, such as the CPU contention ratio for KVM

 f /etc/openstack_deploy/user_secrets.yml: This file has the service
passphrases, such as the MariaDB root user passphrase for use with MariaDB,
and the Nova service passphrase when the service gets created in Keystone

www.it-ebooks.info

https://github.com/OpenStackCookbook/OpenStackCookbook/ansible-openstack/user_variables.yml
https://github.com/OpenStackCookbook/OpenStackCookbook/ansible-openstack/user_variables.yml
https://github.com/OpenStackCookbook/OpenStackCookbook/ansible-openstack/user_variables.yml
http://www.it-ebooks.info/

Production OpenStack

396

Once these files have been edited to suit the environment, the Playbooks in the next recipe,
Automating OpenStack installations using Ansible – running Playbooks, can be executed.
Then, we can run through a hands-free installation of OpenStack.

See also
 f More information on configuring and running the OpenStack Ansible Deployment can

be found in the Rackspace documentation at http://docs.rackspace.com/

Automating OpenStack installations using
Ansible – running Playbooks

In this recipe, we simply run a series of Ansible Playbooks that lay down the infrastructure
needed on top of our six Ubuntu 14.04 LTS hosts, and then install all of the software required
to run a highly available OpenStack installation.

Ansible uses SSH and Python to execute the Playbooks that describe how to install and
configure software on distributed systems. Its lightweight design with very few dependencies
makes it perfect to install OpenStack across our many Ubuntu hosts.

Getting ready
It is important that the previous two recipes, Automating OpenStack installations using
Ansible – host configuration and Automating OpenStack installations using Ansible –
Playbook configuration, have been followed, that all the configured networks are working as
expected, and that the relevant configuration files are edited to suit the upcoming installation.
If not, please log in to the Logging host where the Ansible OpenStack Deployment has
been configured.

How to do it...
Now that we have a set of configuration files in /etc/openstack_deploy that our Ansible
Playbooks will look for and understand, we can begin the installation of OpenStack by
following these steps:

1. First, we need to ensure that Ansible is installed on our host that we're using to run
the installation from. In this case, this is the Logging host. This can be achieved by
running the following command:
cd /opt/os-ansible-deployment

scripts/bootstrap-ansible.sh

www.it-ebooks.info

http://docs.rackspace.com/
http://www.it-ebooks.info/

Chapter 11

397

2. Once the installation has finished, it will have produced a wrapper script called
openstack-ansible that we will use to run the Playbooks. The first Playbook to
run is the setup-hosts.yml file. This is run by executing the following commands:

cd /opt/os-ansible-deployment/playbooks

openstack-ansible setup-hosts.yml

We will get an output that will be familiar to anyone running Ansible and give verbose
information during the running of the Playbooks.

If the Playbook fails, as denoted by the final message with the states of the
changes, we can re-run the Playbooks and target only the failed portions
by executing the following commands:
openstack-ansible setup-hosts.yml \

 --limit @/root/setup-hosts.retry

3. If the output shows all OK messages in green, with no failed or unreachable hosts,
then we can proceed to run the next set of Playbooks. As we're running HA Proxy in
this recipe, we run this next by executing the following. Note that if you are installing
OpenStack sitting behind a Load Balancer such as an F5, this must be configured
separately at this stage:
openstack-ansible haproxy-install.yml

If the Playbook fails as denoted by the final message with the states of the
changes, we can re-run the Playbook and targeting only the failed portions
by executing the following commands:
openstack-ansible haproxy-install.yml \

 --limit @/root/haproxy-install.retry

4. If the output shows all OK messages in green, with no failed or unreachable hosts,
then we can proceed to run the next set of Playbooks that runs the infrastructure
services required to support OpenStack. This Playbook configures the many LXC
containers used in this installation and the Galera and RabbitMQ services that
support OpenStack. To execute this Playbook, run the following command.
Note that this usually takes quite a bit of time to run, so be patient:
openstack-ansible setup-infrastructure.yml

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

398

If the Playbook fails, as denoted by the final message with the states of the
changes, we can re-run the Playbook and target only the failed portions
by executing the following command:
openstack-ansible setup-infrastructure.yml \

 --limit @/root/setup-infrastructure.retry

5. If the output is all green and OK, we can now carry on and install all of the OpenStack
services by simply executing the following command. This step takes a while:
openstack-ansible setup-openstack.yml

If the Playbook fails, as denoted by the final message with the states of the
changes, we can re-run the Playbook and target only the failed portions by
executing the following command:
openstack-ansible setup-openstack.yml \

 --limit @/root/setup-openstack.retry

6. Congratulations! We have completed the installation of OpenStack using Ansible.
To log in to the environment either use Horizon, by pointing the browser to the Load
Balancer address, or use ssh command to connect to a utility container as follows:
grep utility /etc/hosts

Identify one of them to connect using the ssh command to the following:
ssh controller-01_utility_container-88105269

Source in the OpenStack credentials and use the environment as usual:

. openrc

How it works...
Ansible is a very powerful yet lightweight system that runs Playbooks over SSH to install and
configure software. It is perfect for installing OpenStack that lays down software across the
many number of nodes.

A number of Playbooks are run, and they are listed as follows:

 f setup-hosts.yml: This installs and configures the LXC containers across
our nodes, which will be the targets for the installation of the various OpenStack
services in the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11

399

 f haproxy-install.yml: This allows us to use HA Proxy for our installation. As we
are running a set of three controllers, we need a Load Balancer to allow the services
to communicate correctly in our environment.

 f setup-infrastructure.yml: This installs all the ancillary services such,
as MariaDB, Galera, memcached, and RabbitMQ.

 f setup-openstack.yml: This installs all the OpenStack services required to
give a complete, production-ready installation on our environment.

Should any of the Playbooks fail, a shortcut to fix just the necessary parts can be achieved by
specifying --limit @/root/{playbook}.retry (omitting the .yml extension). Ansible
is very verbose in its output and will inform you when this is possible, as shown here:

This environment has been configured so that Glance uses the local
filesystem for the uploaded images to be used in OpenStack. As we have
installed a cluster of three Glance image servers, it is assumed that
images will be uploaded to Glance using the --location <IMAGE_
URL> flag. This flag tells Glance to fetch the image from the IMAGE_
URL provided rather than store the image locally. Adjust the /etc/
openstack_deploy/user_variables.yml file as described in the
previous recipe to choose a different storage option for Glance to suit your
environment.

There's more...
This installation involved a number of Playbooks that configured our host, installed extra
services, and then installed OpenStack. There is a wrapper script that can be used that
covers all of these steps in one command. This can be achieved by running the following
command instead:

cd /opt/os-ansible-deployment

scripts/run-playbooks.sh

Note that by splitting up the installation, we can fix specific Playbook issues as well as having
a chance for HA Proxy to be configured correctly. It is therefore prudent to use the preceding
Playbook when setting up a test environment on a single host.

www.it-ebooks.info

http://www.it-ebooks.info/

Production OpenStack

400

See also
 f More information on configuring and running the OpenStack Ansible Deployment can

be found at the Rackspace documentation site at http://docs.rackspace.com/

 f Further information can also be found by reading the README at https://github.
com/stackforge/os-ansible-deployment

www.it-ebooks.info

http://docs.rackspace.com/
https://github.com/stackforge/os-ansible-deployment
https://github.com/stackforge/os-ansible-deployment
http://www.it-ebooks.info/

401

Index
A
Access Control Lists (ACLs) 205
admin_url parameter 22

B
broken instance deployment

fixing 140, 141

C
Certificate Authority (CA) 5, 124
Cinder

about 230
environment 230
snapshots, creating 245-247

Cinder-volume services
configuring 231, 232

cloud-config
about 254-257
URL 257
used, for running post-installation

configuration 254-257
cloud-init

about 252, 253
URL 254
used, for running post-installation

commands 252, 253
cluster health

checking 216, 217
Command-line Interface (CLI) 167
command-line tools

installing, on Ubuntu 123, 124
using, with HTTPS 124, 125

containers
about 193
creating 193, 194
deleting 203, 204
listing 199

Container Synchronization
about 210
using, between Swift Clusters 207-210

Container Sync replication
setting up 208, 209

D
database services

configuring 110, 111
Database Tier 278
Distributed Virtual Routers (DVR)

about 95, 275
configuring 95-97
using 102-104
working 101, 102

Domain Name System (DNS) 307
Dynamic Host Configuration

Protocol (DHCP) 307

E
eth0.1000 network 385
eth0 network 385
eth1.2000 network 386
eth1 network 385
external floating IP Neutron network

creating 85-90

www.it-ebooks.info

http://www.it-ebooks.info/

402

F
failed hard drives

detecting 224, 225
replacing 224, 225

files
uploading 195

FireWall as a Service (FWaaS) 275
first cloud instance

launching 135-138
working 139

flavors
creating 146-148

Fully Qualified Domain Name (FQDN) 190

G
Generic Routing Encapsulation (GRE) 73
Glance

about 74
configuring across two nodes,

with FloatingIP 377

H
HA Proxy

about 362
configuring, for high availability 365-368
configuring, for MariaDB Galera

cluster 362-365
Heat OpenStack Orchestration service

installing 285-289
used, for spinning up instances 290-293

Heat Orchestration Templates (HOT) 290, 347
High Availability Proxy. See HA Proxy
host aggregates

defining 149-152
HTTP Load Balancer pool

creating 338-340
deleting 346, 347
pool members, adding 340, 341
VIP, adding to 342-345

I
image metadata

image properties, deleting 49
image properties, updating 49
specific image properties, deleting 50
using 48
using, for host scheduling 50, 51

images
deleting 41
details, viewing 41
listing 41
managing, with OpenStack Image

Service 39, 40
private images, making public 42, 43
sharing, among tenants 45, 46
Ubuntu images, uploading 40

instances
launching, in specific Availability

Zones 153, 154
launching, on specific Compute

hosts 156, 157
terminating 142

internal_url parameter 22

J
Just a Bunch Of Disks (JBOD) 174

K
key management, with OpenStack Dashboard

about 298
key pairs, adding 298-300
key pairs, deleting 300
key pairs, importing 301, 302
working 303

key pairs
creating 132, 133
deleting 134
deleting, Nova client used 133
listing 134
listing, Nova client used 133
managing 132
working 134

www.it-ebooks.info

http://www.it-ebooks.info/

403

Keystone
about 1, 74
roles 2
Swift services and users,

configuring in 165-167
tenants 2
users 2

L
large objects

uploading 197, 198
live migration

about 144
network connectivity, checking 143
resources, ensuring 144, 145
using 143

Load-Balancer-as-a-Service (LBaaS) 267
Load Balancer pool. See HTTP Load

Balancer pool

M
MariaDB Galera cluster

HA Proxy, configuring for 362-365
installing 360-362

maximum transmission unit (MTU) 70
MongoDB database

reference 262
multi-node Swift installation

reference 165
multiple objects

deleting 204
uploading 196

N
Network Interface Card (NIC) bonding 382
network interfaces

bonding, for redundancy 382, 383
Neutron

configuring 66-73
installing, on network node 63-65

Neutron API service
configuring 74-78
installing 74

Neutron FWaaS
configuring 275-277
using 278-285

Neutron LBaaS
installing 267-270
using 270- 274

Neutron network
deleting 82-85
using, for different purposes 90-95

Neutron networks, managing with
OpenStack Dashboard

about 304
networks, viewing 310, 311
private network, creating 304-307
private network, deleting 308, 309

Neutron service
configuring, on Compute node 99-101
configuring, on controller node 98
configuring, on network node 97, 98

nodes
removing, from cluster 158-160, 222
proxy server configuration, for removing

from cluster 223
nova 153
nova-api 107
nova-api-metadata 108
nova-cert 107
nova-common 107
nova-compute 108
nova-compute-qemu 108
nova-conductor 107
nova-objectstore 107
nova-scheduler

about 107
working with 145, 146

nova services
starting 120-123
stopping 120-123

ntp 107

O
objects

about 194
deleting 203, 204
downloading 201

www.it-ebooks.info

http://www.it-ebooks.info/

404

downloading, from container 202
downloading, from OpenStack Object

Storage account 202
downloading, with -o parameter 202
listing 199
listing, in container 200
specific object paths, listing in container 200
uploading 195

Object Storage replication
configuring 177, 178

Object Storage rings
creating 182-186

OCF (Open Cluster Format) 381
OpenStack architecture

about 62
Compute host 62
Controller 62
network configuration 63
Network host 62

OpenStack backend configuration
FloatingIP address, used 368-370

OpenStack Compute
about 106
alternative release 110
configuration file, for services 78
configuring 112-118
configuring, for Cinder-volume 233-237
configuring, with OpenStack Identity

Service 119, 120
controller services, installing 107, 108
packages, installing 108, 109
services, checking 125-128
using 128, 129

OpenStack Dashboard
about 337
installing 296, 297
using, for adding new tenants 327-329
using, for connecting to instances

through VNC 325, 327
using, for key management 298
using, for launching instances 319-323
using, for managing Neutron networks 304
using, for security group management 311
using, for terminating instances 324, 325
using, for user management 329
using, with LBaaS 337
using, with OpenStack Orchestration 347

OpenStack Identity Service
configuring, for LDAP integration 28-30
configuring, for SSL communication 5, 6
installing 2-5

OpenStack image
creating 52-59

OpenStack Image Service
configuring, with OpenStack Identity

Service 36, 37
configuring, with OpenStack Object

Storage 37-39
images, managing with 39, 40
installing 32-35

OpenStack installations
automating, Ansible host

configuration used 384-388
automating, Ansible Playbook

configuration used 389-395
automating, Ansible Playbooks used 396-399

OpenStack Networking 61
OpenStack network node

configuring 64
reference 65

OpenStack Object Storage
about 163
proxy server, configuring 169, 171
proxy server, installing 167-169
starting 186, 187
stopping 186, 187
storage nodes, installing 172, 173
storage services, configuring 179-181
typical reference architecture 164

OpenStack Object Storage ACLs
using 205, 206

OpenStack Object Storage cluster
managing, with swift-init 214, 215

OpenStack Orchestration
about 347, 348
stack details, viewing 353-357
stacks, deleting 357, 358
stacks, launching 348-352

OpenStack PPAs
URL 110

OpenStack services
configuring, with Pacemaker and

Corosync 376, 377

www.it-ebooks.info

http://www.it-ebooks.info/

405

OpenStack Telemetry
about 257
installing 257-262
used, for interrogating usage

statistics 262-266
Open vSwitch (OVS)

about 63
configuring 66-73
installing, on network node 63-65

P
Pacemaker

configuring, for Glance and
Keystone 378-381

Pacemaker and Corosync services
starting 373-376

Pacemaker, installing with Corosync
about 371
first node, configuring 373
first node, setting up 371, 372
second node, configuring 373
second node, setting up 373

Personal Package Archives (PPA) 110
physical storage

configuring 174, 176
Playbooks

haproxy-install.yml 399
setup-hosts.yml 398
setup-infrastructure.yml 399
setup-openstack.yml 399

post-installation commands
running, cloud-init used 252, 253

post-installation configuration
running, cloud-config used 254-256

proxy servers
curl 168
memcached 167
python-keystoneclient 168
python-swiftclient 167
python-webob 168
swift 167
swift-proxy 167

public_url parameter 22
python-keystoneclient tool

URL 15

R
remotely stored image

registering 43-45
roles

about 8
configuring, in Keystone 8-10

S
Secure Shell (SSH) 298
Secure Sockets Layer (SSL) access

setting up 187-190
security group management,

with OpenStack Dashboard
about 311
security group, creating 312, 313
security group, deleting 318
security group, editing 314-317

security groups
about 130, 311, 319
creating 131, 312, 313
defining, with Nova client 132
deleting 131, 318
editing 314-317
managing 130, 131
rule, removing 131
rules, defining with Nova client 132
working 132

service endpoints
defining 15-21

service tenant
creating 22-27

service users
creating 22-27

shared images
viewing 47, 48

Shoot The Other Node In The Head
(STONITH) 374

Single Points Of Failure (SPOF) 359
Software Defined Networking (SDN) 61
stacks 294
Swift 163
swift client tool

installing 192, 193

www.it-ebooks.info

http://www.it-ebooks.info/

406

Swift cluster capacity
managing 218
proxy server creation 218, 219
storage node creation 219-222

swift-init tool
about 215
used, for managing OpenStack Object

Storage cluster 214
Swift ring 218
Swift services

configuring, in Keystone 165-167

T
tenant Neutron network

creating 79-82
tenants

about 7, 327
creating, in Keystone 7, 8

third-party volume services
configuring 244, 245

U
usage statistics

collecting 225-228
interrogating, OpenStack

Telemetry used 262-267
user management, with

OpenStack Dashboard
about 329
passwords, updating 332
user details, updating 332
users, adding 330, 331
users, adding to tenants 333-335
users, deleting 332
users, removing from tenants 336, 337

users
adding, to Keystone 10-14
configuring, in Keystone 165-167

V
Virtual eXtensible LAN (VXLAN) 73
Virtual IPs (VIPs) 337
Virtual Network Console (VNC) 297
Virtual Redundant Router Protocol

(VRRP) 366
VMware image

migrating 51, 52
volumes

attaching, to instance 239-241
booting from 247-249
creating 237-239
deleting 243
detaching, from instance 241, 242

W
Web App Tier 278
Web Service Gateway Interface

(WSGI) 168, 295

Y
Yet Another Markup Language

(YAML) 254, 290, 347

Z
zone 218

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

OpenStack Cloud Computing Cookbook
Third Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Implementing Cloud Storage
with OpenStack Swift
ISBN: 978-1-78216-805-8 Paperback: 140 pages

Design, implement, and successfully manage your own
cloud storage cluster using the popular OpenStack
Swift software

1. Learn about the fundamentals of cloud storage
using OpenStack Swift.

2. Explore how to install and manage OpenStack
Swift along with various hardware and
tuning options.

3. Perform data transfer and management using
REST APIs.

OpenStack Essentials
ISBN: 978-1-78398-708-5 Paperback: 182 pages

Demystify the cloud by building your own private
OpenStack cloud

1. Set up a powerful cloud platform
using OpenStack.

2. Learn about the components of OpenStack and
how they interact with each other.

3. Follow a step-by-step process that exposes the
inner details of an OpenStack cluster.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Learning OpenStack
Networking (Neutron)
ISBN: 978-1-78398-330-8 Paperback: 300 pages

Architect and build a network infrastructure for your
cloud using OpenStack Neutron networking

1. Build a virtual switching infrastructure for virtual
machines using the Open vSwitch or Linux
Bridge plugins.

2. Create networks and software routers that
connect virtual machines to the Internet using
built-in Linux networking features.

3. Scale your application using Neutron's
load-balancing-as-a-service feature using the
haproxy plugin.

Mastering Citrix® XenServer®

ISBN: 978-1-78328-739-0 Paperback: 300 pages

Design and implement highly optimized virtualization
solutions using Citrix® XenServer® 6.2

1. Master mission-critical aspects of virtualization
to develop, deploy, and administer
virtual infrastructures.

2. Integrate Citrix XenServer with OpenStack and
CloudStack to create a private cloud.

3. Implement automation with command-line
Windows PowerShell scripting.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Keystone – OpenStack Identity Service
	Introduction
	Installing the OpenStack Identity service
	Configuring OpenStack Identity for SSL Communication
	Creating tenants in Keystone
	Configuring roles in Keystone
	Adding users to Keystone
	Defining service endpoints
	Creating the service tenant and service users
	Configuring OpenStack Identity for LDAP Integration

	Chapter 2: Glance – OpenStack Image Service
	Introduction
	Installing OpenStack Image Service
	Configuring OpenStack Image Service with OpenStack Identity Service
	Configuring OpenStack Image Service with OpenStack Object Storage
	Managing images with OpenStack Image Service
	Registering a remotely stored image
	Sharing images among tenants
	Viewing shared images
	Using image metadata
	Migrating a VMware image
	Creating an OpenStack image

	Chapter 3: Neutron – OpenStack Networking
	Introduction
	Installing Neutron and Open vSwitch on a dedicated network node
	Configuring Neutron and Open vSwitch
	Installing and configuring the Neutron API service
	Creating a tenant Neutron network
	Deleting a Neutron network
	Creating an external floating IP Neutron network
	Using Neutron networks for different purposes
	Configuring Distributed Virtual Routers
	Using Distributed Virtual Routers

	Chapter 4: Nova – OpenStack Compute
	Introduction
	Installing OpenStack Compute controller services
	Installing OpenStack Compute packages
	Configuring database services
	Configuring OpenStack Compute
	Configuring OpenStack Compute with OpenStack Identity service
	Stopping and starting nova services
	Installation of command-line tools on Ubuntu
	Using the command-line tools with HTTPS
	Checking OpenStack Compute services
	Using OpenStack Compute
	Managing security groups
	Creating and managing key pairs
	Launching our first cloud instance
	Fixing a broken instance deployment
	Terminating your instances
	Using live migration
	Working with nova-schedulers
	Creating flavors
	Defining host aggregates
	Launching instances in specific Availability Zones
	Launching instances on specific Compute hosts
	Removing nodes from a cluster

	Chapter 5: Swift – OpenStack Object Storage
	Introduction
	Configuring Swift services and users in Keystone
	Installing OpenStack Object Storage services – proxy server
	Configuring OpenStack Object Storage – proxy server
	Installing OpenStack Object Storage services – storage nodes
	Configuring physical storage for use with Swift
	Configuring Object Storage replication
	Configuring OpenStack Object Storage – storage services
	Making the Object Storage rings
	Stopping and starting OpenStack Object Storage
	Setting up SSL access

	Chapter 6: Using OpenStack Object Storage
	Introduction
	Installing the swift client tool
	Creating containers
	Uploading objects
	Uploading large objects
	Listing containers and objects
	Downloading objects
	Deleting containers and objects
	Using OpenStack Object Storage ACLs
	Using Container Synchronization between two Swift Clusters

	Chapter 7: Administering OpenStack Object Storage
	Introduction
	Managing OpenStack Object Storage cluster with swift-init
	Checking cluster health
	Managing the Swift cluster capacity
	Removing nodes from a cluster
	Detecting and replacing failed hard drives
	Collecting usage statistics

	Chapter 8: Cinder – OpenStack Block Storage
	Introduction
	Configuring Cinder-volume services
	Configuring OpenStack Compute for Cinder-volume
	Creating volumes
	Attaching volumes to an instance
	Detaching volumes from an instance
	Deleting volumes
	Configuring third-party volume services
	Working with Cinder snapshots Cinder snapshots
	Booting from volumes

	Chapter 9: More OpenStack
	Introduction
	Using cloud-init to run post-installation commands
	Using cloud-config to run post-installation configuration
	Installing OpenStack Telemetry
	Using OpenStack Telemetry to interrogate usage statistics
	Installing Neutron LBaaS
	Using Neutron LBaaS
	Configuring Neutron FWaaS
	Using Neutron FWaaS
	Installing the Heat OpenStack Orchestration service
	Using Heat to spin up instances

	Chapter 10: Using the OpenStack Dashboard
	Introduction
	Installing OpenStack Dashboard
	Using OpenStack Dashboard for key management
	Using OpenStack Dashboard to manage Neutron networks
	Using OpenStack Dashboard for security group management
	Using OpenStack Dashboard to launch instances
	Using OpenStack Dashboard to terminate instances
	Using OpenStack Dashboard for connecting to instances using a VNC
	Using OpenStack Dashboard to add new tenants – projects
	Using OpenStack Dashboard for user management
	Using OpenStack Dashboard with LBaaS
	Using OpenStack Dashboard with OpenStack Orchestration

	Chapter 11: Production OpenStack
	Introduction
	Installing the MariaDB Galera cluster
	Configuring HA Proxy for the MariaDB Galera cluster
	Configuring HA Proxy for high availability
	Installing and configuring Pacemaker with Corosync
	Configuring OpenStack Services with Pacemaker and Corosync
	Bonding network interfaces for redundancy
	Automating OpenStack installations using Ansible – host configuration
	Automating OpenStack installations using Ansible – Playbook configuration
	Automating OpenStack installations using Ansible – running Playbooks

	Index

