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Preface to the Second Edition

The authors accepted enthusiastically the opportunity offered by Taylor & 
Francis to publish a second edition of our book for two reasons: On the one 
hand, the proposal itself means that the interest in sliding mode control has 
remained at a high level even 10 years after publication of the fi rst edition. 
On the other hand, it is a good opportunity to include new results into the 
book related to both the control design methodology and applications.

The chapters and sections related to the new theoretical developments 
embrace results on second order sliding mode with continuous control 
actions, state observers with simple binary sensors, and methods of analysis 
and chattering suppression—the phenomenon known to be the main obsta-
cle for sliding mode control implementation. The above list is complemented 
by design principles for simultaneous estimation of state and parameters of 
electric motors and for designing multiphase power converters with chatter-
ing (ripple) suppression. 

Results in automotive application of sliding mode control are presented in 
the concluding chapter.

Vadim Utkin, Jürgen Guldner, and Jingxin Shi
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1

1
Introduction

In the course of the entire history of automatic control theory, the inten-
sity of investigation of systems with discontinuous control actions has 
been maintained at a high level. In particular, at the fi rst stage, relay, or 
“on-off’ regulators, ranked highly for design of feedback systems. The 
reason was twofold: ease of implementation and high effi ciency of hard-
ware. Monographs by Flugge-Lotz [1953] and Tsypkin [1955] were most 
obviously the fi rst theoretical generalizations of the wide diversity of 
analysis and design methods for relay systems.

In systems with control as a discontinuous state function, so-called 
“sliding modes” may arise. The control action switches at high frequency 
should the sliding mode occur in the system. The study of sliding modes 
embraces a wide range of heterogeneous areas from pure mathematical 
problems to application aspects.

Systems with sliding modes have proven to be an effi cient tool to 
control complex high-order nonlinear dynamic plants operating under 
uncertainty conditions, a common problem for many processes of mod-
ern technology. This explains the high level of research and publication 
activity in the area and unremitting interest of practicing engineers in 
sliding mode control during the past two decades.

1.1. Examples of Dynamic Systems with Sliding Modes

Sliding modes as a phenomenon may appear in a dynamic system governed 
by ordinary differential equations with discontinuous right-hand sides. 
The term sliding mode fi rst appeared in the context of relay systems. It may 
 happen that the control as a function of the system state switches at high 
(theoretically infi nite) frequency, and this motion is called sliding mode. It 
may be enforced in the simplest fi rst-order tracking relay system with the 
state variable x(t):

 �x f x u= +( )

with the bounded function f(x), |f(x)| < f0 = constant and the control as a 
relay function (Figure 1.1) of the tracking error e = r(t)−x; r(t) is the reference 
input, and u is given by

 u
u e

u e
u u e u c=

>
− <

⎧
⎨
⎩

= =0

0
0 0

0

0

if

if
or sign( ),  oonst
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2 Sliding Mode Control in Electro-Mechanical Systems

The values of e and 
de
dt

e r f x u e= = − −� � ( ) ( )0sign  have different signs if
u f r0 0> + � .

It means that the magnitude of the tracking error decays at a fi nite rate, and 
the error is equal to zero identically after a fi nite time interval T (Figure 1.2). 
The argument of the control function, e, is equal to zero, which is the discon-
tinuity point. For any real-life implementation attributable to imperfections 
in switching device, the control switches at high frequency or takes interme-
diate values for continuous approximation of the relay function. The motion 
for t > T is called sliding mode. 

Formally, sliding mode may appear not only in a control system with dis-
continuous control but in any dynamic system with discontinuities in the 
motion equations. In the simple mechanical example system with Coulomb 
friction depicted in Figure 1.3, the right-hand side is a discontinuous func-
tion of the state. 

FIGURE 1.1
Relay control.

e              u  

           u0

 
                         e   
             −u0

     

FIGURE 1.2
Sliding mode tracking control.
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r(t) 

T t 
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e 

FIGURE 1.3
Mechanical system with Coulomb friction.
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Introduction 3

The motion equation is given by

 mx kx u xf�� �+ = − ( )

where x(t) is the displacement, k is the spring stiffness, and the friction force 
is a discontinuous function of the speed:

 u u x u constf = =0 0sign .( ),�

If u0 < k|x|, then the friction force takes one of the extreme values and the 
motion is described by nonhomogenous differential equations with the right-
hand side equal to u0 or −u0. For u0 > k|x(t0)| and �x t( )0 0= , the mass sticks 
and �x t( ) ≡ 0, x(t) ≡ x(to) for t > t0. This motion may be referred to as sliding 
mode because, similar to the previous example, the argument of the discon-
tinuous function u u xf = 0sign( )�  is equal to zero identically. 

The third example illustrates sliding motions in an electric system: an 
alternating current/direct current voltage converter (see Figure 1.4) with 
dynamics equations

 

di

dt

V

L
t

v
L

u

dv
dt

v
RC

i

C
u

g g

g

= −

= − +

sin( ) ,ω 0

0 0

where the input voltage vg = Vg sin(ωt) and the switches s1A, s2A, s1B, and s2B 
constitute the control input:

 u
S S

S
A B

B

=
1 1 2

1

if and are closed

–1 if aand are closed
.

S A2

⎧
⎨
⎩

FIGURE 1.4
AC/DC voltage converter.
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4 Sliding Mode Control in Electro-Mechanical Systems

The switching logic should be found such that the output voltage v0 is equal 
to the desired value vd(t). It seems reasonable to switch the function u depend-
ing on the sign of the tracking error ve = vd − v0 :

 u
v v i

v v
d g

d

=
− >
−

1 00

0

if (

–1 if (

)

)ii
u v v i

g
d g<

⎧
⎨
⎩

= −
0 0or sign ([( ) ].

Calculate the time derivative of the tracking error as

 � �v v
v
RC

i

C
ve g

g

e= + −0 sign( ).

If i
v
R

Cvg g> +0 � , then ve and �ve have different signs, hence the error ve will 

vanish after fi nite time interval T and will be equal to zero identically after-
ward. The plots ve(t), v0(t), and vd(t) are similar to those of e(t), x(t), and r(t) on 
Figure 1.2. As for the fi rst-order example, ideal tracking is provided attribut-
able to enforcing sliding mode. 

1.2. Sliding Modes in Relay and Variable Structure Systems

The ideas underlying modern analysis and design methods for “sliding mode 
control” (SMC) may be found in the publications of the early 1930s. Figure 1.5 
illustrates the so-called vibration control studied by Kulebakin [1932] in the 
context of voltage control for a DC generator of an aircraft.

Notice that the output voltage is close to the set point as a result of discon-
tinuous feedback and high-frequency switching in the excitation winding. 
It seems that 1930s-era “vibration control” is just the same as our contempo-
rary sliding mode control. 

The second example from the 1930s (Figure 1.6) concerns relay systems 
with sliding modes for controlling the course of a ship [Nikolsky 1934]. It 
is amazing that the paper published more than 60 years ago was written in 
the language of modern control theory: “phase plane,” “switching line,” and 
even sliding mode. 

In all the examples, except for the last one, the phenomenon sliding mode 
was revealed and discussed in time domain, although this term was not 
used directly. However, for analysis and design of sliding mode control, the 
state space method looks much more promising. 
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FIGURE 1.5
Vibration control of DC generator.
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FIGURE 1.6
Sliding mode control of ship course.
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6 Sliding Mode Control in Electro-Mechanical Systems

The conventional example to demonstrate sliding modes in terms of the 
state space method is a second-order time-invariant relay system:

 
�� �

�
x a x a x u f t

u M s s x cx

+ + = +
= − = +

2 1 ( ),

( ), ,sign
 (1.2.1)

where M, a1, a2, c are constant parameters, and f(t) is a bounded disturbance.
The system behavior may be analyzed in the state plane ( , )x x� . The state 

plane in Figure 1.7 is shown for a1 = a2 = 0. The control u undergoes discon-
tinuities at the switching line s = 0, and the state trajectories are constituted 
by two families: the fi rst family corresponds to s > 0 and u = −M (upper 
semiplane), and the second corresponds to s < 0 and u = M (lower semi-
plane). Within the sector m − n on the switching line, the state trajectories 
are oriented toward the line. Having reached the sector at some time t1, the 
state cannot leave the switching line. This means that the state trajectory will 
belong to the switching line for t > t1 . This motion with state trajectories in 
the switching line is called sliding mode. Because, in the course of sliding 
mode, the state trajectory coincides with the switching line s = 0, its equation 
may be interpreted as the motion equation, i.e., 

 �x cx+ = 0. (1.2.2)

It is important that its solution x t x t e c t t( ) ( ) ( )= − −
1

1  depends on neither the plant 
parameters nor the disturbance. This so-called “invariance” property looks 
promising for designing feedback control for the dynamic plants operating 
under uncertainty conditions.

We have just described an ideal mathematical model. In real implementa-
tions, the trajectories are confi ned to some vicinity of the switching line. The 

FIGURE 1.7
State plane of the second-order relay system.
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deviation from the ideal model may be caused by imperfections of switch-
ing devices such as small delays, dead zones, or hysteresis, which may lead 
to high-frequency oscillations as shown in Figure 1.6. The same phenom-
enon may appear as a result of small time constants of sensors and actuators 
having been neglected in the ideal model. This phenomenon, referred to as 
“chattering,” was a serious obstacle to the use of sliding modes in control 
systems, and special attention will be paid to chattering suppression meth-
ods in Chapter 8. Note that the state trajectories are also confi ned to some 
vicinity of the switching line for continuous approximation of a discontinu-
ous relay function (Figure 1.8) as well. In a δ vicinity of the line s = 0, control 
is the linear state function with a high gain k, and the eigenvalues of the 
linear system are close to −k and −c. This means that the motion in the vicin-
ity consists of the fast component decaying rapidly and the slow component 
coinciding with solution to the ideal sliding mode (Equation 1.2.2).

Sliding modes became a principle operation mode in variable structure 
systems or systems consisting of a set of continuous subsystems with a 
proper switching logic. For example, the second-order systems

 

��

�

x ax u a

u k x s

s cx x

− = >
= −
= +

, ,

( ),

,

sign

0

kk c> >0 0,

consists of two unstable linear structures (see Figure 1.9).
By varying the system structure along the switching lines s = 0 and x = 0 

and enforcing sliding mode, the system becomes asymptotically stable 
(Figure 1.10). The switching line is reached for any initial conditions. If the 

FIGURE 1.8
Continuous approximation of discontinuous control.
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8 Sliding Mode Control in Electro-Mechanical Systems

slope of the switching line is lower than that of the asymptote of the struc-
ture I (c < c0), than the state trajectories are oriented toward the line and 
sliding mode may start at any point of s = 0. Similar to the relay system, the 
sliding mode is governed by the fi rst-order Equation 1.2.2 with the solution
x t x t e c t t( ) ( ) ( )= − −

1
1 . Again, the solution depends on neither the plant param-

eters nor any disturbances to which the plant may be subjected. 
The examples of relay and variable structure systems demonstrated order 

reduction and invariance with respect to plant uncertainties of the systems 
with sliding modes. Use of these properties was the key idea of variable 

FIGURE 1.9
Variable structure system consisting of two unstable subsystems.
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.

X
.

X
.

FIGURE 1.10
State plane of variable structure system.
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structure theory at the fi rst stage when only single-input-single-output sys-
tems with motion equations in canonical space were studied [Emelyanov 
et al. 1970]. A control variable x = x1 and its time derivatives x(i−1) = xi, i = 1,…, n 
are components of a state vector in the canonical space:

 

�

�

x x i n

x a t x f t

i i

n i i

= = −

= − +

+1 1 1, , ...,

( ) ( )) ( ) ,+
=
∑ b t u
i

n

1

 (1.2.3)

where ai(t) and bi(t) are unknown parameters and f(t) is an unknown 
disturbance.

Control undergoes discontinuities on some plane s(x) = 0 in the state 
space:

 u
u x t s x

u x t s x
=

>
<

+

−

( , ) ( )

( , ) ( ) ,

if

if

0

0

⎧⎧
⎨
⎩

where u+(x, t) and u−(x, t) are continuous state functions, u+(x, t) ≠ u−(x, t) and 

s x c x c c ci i n n
i

n

( ) , ...= = −
=
∑ 1 , and 1 1

1

 are constant coeffi cients. The discontinuous 

control was selected such that the state trajectories are oriented toward the 
switching plane s = 0; hence, sliding mode arises in this plane (Figure 1.11). 
Once sliding mode has begun, the motion trajectories of system (Equation 
1.3) are in the switching surface,

 x c xn i i
i

n

= −
=

−

∑ .
1

1

Substitution into the (n−1)th equation yields the sliding mode equations

 

�

�

x x i n

x c x

i i

n i i

= = −

= −

+

−

1

1

1 2, , ...,

or ...x c x cn
n

n

i

n
( ) ( ) .−

−
−

=

−

+ + + =∑ 1
1

2
1

1

1

0
 (1.2.4)

The motion equation is of reduced order and depends on neither the plant 
parameters nor the disturbance. The desired dynamics of the sliding mode 
may be assigned by a proper choice of the parameters of switching plane ci. 

Although the invariance property is very useful, it did create the illusion 
that any control problem can be easily solved by enforcing the sliding mode in 
the system. The main problem is that the space of state derivatives is a math-
ematical idealization, and ideal differentiators can hardly be implemented. 
As a result, another extreme appeared refl ecting a certain pessimism over 
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the practical possibility of implementing of variable structure systems with 
sliding modes. However, the refusal to use sliding modes in control systems 
proved to be unreasonable as well. 

In modern technological processes, it is common that control and system 
output may be vector-valued quantities, and only some components of the 
state vector are accessible for measurement. The canonical space approach 
did not give any recipe how the control may be designed in such situations. 
The second stage of variable structure system studies was dedicated to the 
development of design methods for systems with motion equations in an 
arbitrary state space with vector control action and vector variable to be con-
trolled [Utkin 1983]. The basic idea underlying the majority of control meth-
ods is enforcing multidimensional sliding modes.

1.3. Multidimensional Sliding Modes

In the previous examples of control systems with sliding modes, the control 
was a scalar state function, and the sliding mode was governed by a differen-
tial equation with the order by one less than the order of the original system. 
So we may assume that sliding motion may appear in an intersection of sev-
eral surfaces if the control is a vector-valued quantity and each component 
undergoes discontinuities in its own switching surface. The planar motion of 
a point mass m with Coulomb friction (Figure 1.12) may serve as an example 
of such sliding mode.

FIGURE 1.11
Sliding mode in canonical state space.
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The motion in the orthogonal frame (x, y) is governed by the fourth-order 
system:

 

x x y y

x x

mx kx F

y y

my k

x

= =
=

= − −
=

= −

1 1

1 2

2 1

1 2

2

, ,

�
�

�
� yy Fy1 −

⎧

⎨
⎪
⎪

⎩
⎪
⎪ ,

where both springs have the same stiffness k, F
x

x y
x =

+
2

2
2

2
2

 and F
y

x y
y =

+
2

2
2

2
2

 

are (x, y)− components of the friction force vector F Mv v= − / , M = const, v is 

a speed vector with components x2 and y2, and v x y= +2
2

2
2 .

The magnitude of the friction force is equal to M for v ≠ 0. F undergoes 
discontinuities when x2 and y2 are equal to zero simultaneously. If at initial 
time v = 0 (i.e., x2 = 0 and y2  = 0) and the maximal value of the friction force 

exceeds the spring force, M k x y> +1
2

1
2 , then the mass is stuck and v ≡ 0 for 

the additional motion. 
Thus, beyond the intersections of two surfaces x2 = 0 and y2 = 0, the fric-

tion force is a continuous state function, and, in the domain M k x y> +1
2

1
2 , 

the state trajectories (x1(t) = const, y1(t) = const) belong to this manifold. This 
motion may be called the “two-dimensional sliding mode” in the intersec-
tion of two discontinuity surfaces.

The next example illustrates two-dimensional sliding mode in a control 
system with a two-dimensional control vector:

 

�
�
�

x x

x x f t u

x f t u

1 2

2 3 1 1

3 2 2

=
= + +
= +

( )

( )

 (1.3.1)

where f1(t) and f2(t) are unknown bounded disturbances with a known range 
of variation.

FIGURE 1.12
Mechanical system with Coulomb friction on a plane.
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The components of the control undergo discontinuities in two planes of 
the three-dimensional state: 

 u1 = −M1 sign(s1), s1 = x1 + x2,

 u2 = −M2 sign(s2), s2 = x1 + x2 + x3,

where M1, M2 are positive constant values. If M2 > |x2 + x3 + f1(t) + f2(t)| + M1, 
then the values s2 and �s x x u M s2 2 3 1 2 2= + + − sign( ) have different signs. 
Hence, the plane s2 = 0 is reached after a fi nite time interval, and then sliding 
mode with state trajectories in this plane will start (see Figure 1.13). For this 
motion, x3 = −x1 − x2, and the sliding mode is governed by the second-order 
equation: 

 
�
�
x x

x x x f t u
1 2

2 1 2 1

=
= − − + +

⎧
⎨
⎩ 1( ) .

Again, for M1 > |–x1 + f1(t)|, the values s1 and �s x f M s1 1 1 1 1= −– sign(+ )( )t  
have different signs, and, after a fi nite time interval, the state will reach the 
intersection of the planes s1 = 0 and s2 = 0. The additional motion will be in 
this manifold (straight line formed by intersection of the two planes), and its 
fi rst-order equation may be derived by substituting −x1 for x2 (because s1 = 0) 
into the fi rst equation to obtain �x x1 1= − .

The two-dimensional sliding mode is asymptotically stable, its order is by 
two less than that of the original system, and the motion does not depend on 
the disturbances f1(t) and f2(t).

FIGURE 1.13
Two-dimensional sliding mode.
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1.4. Outline of Sliding Mode Control Methodology 

The examples of the control systems in the previous sections let us outline 
the main reasons why enforcing sliding modes is a promising method to 
control high-order nonlinear dynamic plants operating under uncertainty 
conditions. 

In this book, we will deal mainly with processes described by nonlin-
ear differential equations in an arbitrary n-dimensional state space with 
m-dimensional vector control actions (see Figure 1.14): 

 �x f x t u= ( , , ), (1.4.1)

with x n∈ℜ , f n∈ℜ , u m∈ℜ , and t denoting the time. The control is selected 
as a discontinuous function of the state. For example, each component of the 
control ui may undergo discontinuities on some nonlinear surface si(x) = 0 in 
the state space:

 u
u x t s x

u x t si
i i

i i

=
>+

−

( , ) ( )

( , ) (

if

if

0

xx
i m

)
, ..., ,

<
=

⎧
⎨
⎩ 0

1  (1.4.2)

where u x ti
+ ( , ) and u x ti

− ( , ) are continuous state functions, with u x ti
+ ≠( , )

u x ti
− ( , ) and si(x) ’ s being continuous state functions.
Similar to the example with two-dimensional sliding mode in the intersec-

tion of two discontinuity planes in Section 1.3, we may expect that sliding 
mode may occur in the intersection of m surfaces si(x) = 0, (i = 1,…,m), and the 
order of the motion equations is by m less than that of the original system. In 

FIGURE 1.14
Systems with sliding mode control.
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connection with control of high-dimensional plants, great interest is attached 
to design methods permitting decoupling the overall system motions into 
independent partial components. As we can see, enforcing sliding modes in 
systems with discontinuous control enables order reduction, which results 
in decoupling and simplifi cation of the design procedure.

Furthermore, the element implementing a discontinuous function u(x) has 
the input s(x) close to zero during sliding mode (see Figure 1.15), whereas 
its output takes fi nite values (to be precise, the average value of the output 
because it contains a high-frequency component).

This means that the element implements high (theoretically infi nite) gain, 
which is the conventional tool to suppress the infl uence of disturbances and 
uncertainties in the plant behavior. Unlike continuous high-gain control sys-
tems, the invariance effect is attained using fi nite control actions. 

Our brief discussion of the motions in systems with sliding modes has 
shown that (1) the order of the system is reduced, and (2) sensitivity with 
respect to parameter variation and disturbances may be reduced should slid-
ing mode occur.

As was demonstrated in the previous sections, the order reduction and 
invariance properties are feasible easily in second-order systems with motion 
equations in the canonical space. The sliding mode dynamics depend on the 
switching surface equations and do not depend on control. Hence, the design 
procedure should consist of two stages. First, the equation of the manifold 
with sliding mode is selected to design the desired dynamics of this motion 
in accordance with some performance criterion. Then, the discontinuous 
control should be found such that the state would reach the manifold and 
sliding mode exists in this manifold. As a result, the design is decoupled 
into two subproblems of lower dimension, and, after a fi nite time interval 
preceding the sliding motion, the system will possess the desired dynamic 
behavior. 

We have dwelt on the main reasons for using sliding modes in control sys-
tems and outlined the sliding mode control design methodology. The basic 
design concept of the control methods studied in this book will focus on 

FIGURE 1.15
Sliding mode for high gain implementation.
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enforcing sliding modes. Decoupling or invariance (or both) will be inherent 
in the majority of the proposed design techniques. 

The decoupling and invariance properties make sliding mode methodol-
ogy an effi cient tool to control complex electrical and mechanical dynamic 
processes governed by high-order differential equation with bounded infor-
mation on parameters and disturbances. An induction motor and multil-
ink manipulator with unknown load torque and inertia and with position, 
speed or torque to be controlled are examples of such processes. The design 
methods for control of (1) pure mechanical systems with a force or torque as 
control actions such as manipulators and mobile robots, (2) pure electrical 
systems such as power converters, and (3) electromechanical systems such 
as electric motors will be developed in the book. 

It is worth mentioning an implementation aspect of sliding mode control. 
Widely used electrical servomechanisms are controlled by power electronic 
converters. When using them, it seems reasonable to turn to control algo-
rithms with discontinuous control actions, because only an on-off operation 
is admissible for such converters and discontinuities in control are dictated 
by the very nature of the converter elements.
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2
Mathematical Background

Sliding mode control is in the class of nonlinear control systems and 
inherently introduces discontinuities into the control loop. However, 
most tools for system analysis and control synthesis were developed for 
“continuous” linear and nonlinear systems. Consequently, these tools 
are not applicable to “discontinuous” methods such as sliding mode con-
trol and variable structure systems.

This chapter provides the mathematical background of the most 
important tools developed for discontinuous systems, in particular for 
the design of sliding mode control. Because this book is mainly intended 
to provide suffi cient tools for practical control design in real-life applica-
tions, the interested reader is referred to the study by Utkin [1992] for a 
more detailed mathematical description of sliding mode techniques.

2.1. Problem Statement

The sketch of design methods discussed in Section 1.3 assumed that the 
properties of sliding modes in canonical spaces (Equation 1.2.3) would be 
preserved for arbitrary systems. These properties—order reduction and 
invariance—were revealed after the sliding mode equation had been derived. 
It was an easy problem because the equation of a switching surface was also 
the equation of sliding mode (see Equations 1.2.2 and 1.2.4). This is not the 
case for systems with motion equations with respect to arbitrary state vari-
ables. The analytical problems arising in such systems with sliding modes 
may be illustrated with the help of a linear second-order system, 

 
�
�
x a x a x b u d f t

x a x a x b
1 11 1 12 2 1 1

2 12 1 22 2

= + + +
= + +

( )

22 2u d f t+ ( )
 (2.1.1)

with relay control u M s s c x c x= − = +sign( ), .1 1 2 2  All parameters a b d cij i i i, , ,
i j( , , ),= 1 2 M are constant, and f t( ) is a bounded disturbance.

Similar to relay systems in canonical space, the state trajectories in the state 
plane ( , )x x1 2  may be oriented toward the switching line s = 0, and sliding 
mode arises along this line. To analyze the system behavior in sliding mode 
the question “what is the motion equation?” should be answered. In contrast 
to the second-order systems in canonical space, x c c x2 2

1
1 1= − −  resulting from 

s = 0 is not a motion equation. For the particular case b1 0= , substitution of 
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18 Sliding Mode Control in Electro-Mechanical Systems

− −c c x2
1

1 1 for x2 into the fi rst equation of Equation 2.1.1 lets us derive the fi rst-
order sliding mode equation

�x a a c c x d f t1 11 12 2
1

1 1 1= − +−( ) ( ).

As we can see, the order reduction property takes place but invariance with 
respect to the disturbance does not, because the right-hand side of the motion 
equation depends on f t( ) directly. 

The example has shown the fundamental problems related to mathe-
matical models of sliding modes in systems described in the general form 
(Equations 1.4.1 and 1.4.2). To determine conditions for sliding mode to be 
insensitive to system uncertainties, special mathematical methods will need 
to be developed. 

Next, having derived the sliding mode equations, the desired dynamics 
may be assigned by proper choice of the discontinuity surfaces equations 
as the fi rst stage of the design procedure outlined in Section 1.4. The second 
stage implies selection of the discontinuous control inputs to enforce sliding 
mode in the intersection of the surfaces. To solve this problem, the conditions 
for sliding mode to exist should be obtained. For systems with scalar control, 
this condition may be interpreted easily from a geometrical point: the state 
trajectories should be oriented toward the discontinuity surface in its vicinity, 
or the variable describing deviation from the surface and its time derivative 
should have opposite signs. The components of the two- dimensional control 
in the third-order system (Equation 1.3.1) were designed based on these con-
ditions. For the general case, the problem of enforcing sliding mode in the 
intersection of a set of discontinuity surfaces cannot be reduced to sequential 
treatment of scalar subproblems. This may be illustrated by a third-order 
controllable system with a two-dimensional control vector 

 

�
�
�

x x

x x u u

x x u u

1 3

2 3 1 2

3 3 1 2

2

2

=
= − + −
= − + + , (2.1.2)

 

u s s x x

u s
1 1 1 1 2

2 2

= − = +
= −

sign(

sign(

), ,

), s x x2 1 3= + .  

The analysis of the condition for sliding mode to exist in the intersection of 
the discontinuity surfaces may be performed in terms of motion projection 
on subspace ( , ) :s s1 2

 

�
�
s s s

s s
1 1 2

2 12

= − +
= − −

sign( ) 2sign(

sign( ) s

)

iign(s2 ).

The state trajectories are straight lines in the state plane ( , )s s1 2  (see 
Figure 2.1). It is clear from the picture that, for any point on s1 0=  or s2 0= , 
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the state trajectories are not oriented toward the line; therefore, sliding mode 
does not exist at any of the switching lines taken separately. At the same 
time, the trajectories converge on the intersection of them: the origin in the 
subspace ( , )s s1 2 . Let us calculate the time needed for the state to reach the 
origin. For initial conditions s s1 20 0 0 0( ) , ( )= >  (point 1),

 
�
�
s

s
1

2

1

3

=
= −

 for 0 < < ′t T ,

and s T T s T2 10
3 3

( ) , ( )′ = ′ = ′ =1
s (0),

1
s (0)2 2  at point 2. For the additional motion, 

 
�
�
s

s
1

2

3

1

= −
= −

 for ′ < < ′ +T t T T",

  

s T T T s s T T s1 2 2 20
1

9
0

1

9
( ) , ( ), ( ) (′ + = = ′ + = −" " " 00

1

9
0

4

9
02 1 2 1 2

)

( ) ( ), ( )

or

s T s T T T s= − = ′ + =" at point 3.

This means that 

 

s T s s T

T T T

i
i

i

i i i

2 2 1

1

1

9
0 0( ) ( ) ( ) , ( ) ,= =

= − =−Δ 44

9

4

9

1

9
0 1 22 1

1
2s T s ii

i( ) ( ) ( ), , , ...−
−= =for ,, and T0 0= .

FIGURE 2.1
Sliding mode in the system with two-dimensional control.

s1(T’) > 0, s2(T’) = 0

s1(T1) = 0, s2(T2) < 0

s2(0) > 0
s1(0) = 0

1

2

3
s1 = 0

s2 = 0
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Because

 lim [ ( )] , ( ) , lim lim
i i i i

s T s T
→∞ →∞

= = =
2 1

0 0
ii iT s s
→∞ =

∞

∑ =
−

=Δ
i 1

4

9
(0)

1

1 1

1

2
(0)

2 2

9

,

the state will reach the manifold ( , )s s1 2 0=  after a fi nite time interval, and 
thereafter sliding mode will arise in this manifold as in all the above systems 
with discontinuous scalar and vector controls. The example illustrates that 
the conditions for two-dimensional sliding mode to exist cannot be derived 
from analysis of scalar cases. Even more, sliding mode may exist in the inter-
section of discontinuity surfaces, although it does not exist on each of them 
taken separately. 

In addition to the problems of mathematical model and invariance condi-
tions for the general case, we face one more problem of mathematical fl avor: the 
existence conditions for multidimensional sliding modes should be derived. 
The mathematical models and existence conditions for sliding modes will be 
studied in this chapter, and the invariance conditions will be addressed in the 
chapter dedicated to the design methods for sliding mode control. 

2.2. Regularization

The fi rst mathematical problem in the context of our plan to use sliding 
modes for designing feedback control systems is the problem of mathemati-
cal description of this motion. It arises as a result of discontinuities in the 
control inputs and hence in right-hand sides of the motion differential equa-
tions. Discontinuous systems are not a subject of the conventional theory 
of differential equations dealing with continuous state functions.* The con-
ventional theory does not answer even the fundamental questions: whether 
the solution exists and whether the solution is unique. Formally, even for 
our simple examples of second-order systems in canonical form (Equation 
1.2.1), our method of deriving the sliding mode equations was not legitimate. 
The solution x t x t e c t t( ) ( ) ( )= − −

1
1  should satisfy the original differential equa-

tion (Equation 1.2.1) rather than the heuristically written equation (Equation 
1.2.2). Direct substitution of x t( ) into Equation 1.2.1 leads to s t( ) = 0 and 

( ) ( ) ( ) ( ).( )
?

1 02 1 1
1− + =− +− −a a x t e M f tc t t sign  Because the function sign( )⋅  is not 

defi ned at zero point, we cannot check whether the solution x t( ) is correct.

* Strictly speaking, the most conventional method requires the right-hand sides of a differential 
equation to consist of functions f(x) satisfying the Lipschitz condition f x f x L x x( ) ( )1 2 1 2− < −  
with some positive number L, referred to as the Lipschitz constant, for any x1 and x2. The con-
dition implies that the function does not grow faster than some linear one, which is not the 
case for discontinuous functions if x1 and x2 are close to a discontinuity point.
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In situations in which conventional methods are not applicable, the com-
mon approach is to use different methods of regularization or replacing 
the original problem by a closely similar one for which familiar methods 
are applicable. For systems with discontinuous controls, the regularization 
approach has a simple physical interpretation. Uncertainty of system behav-
ior at the discontinuity surfaces appears because the motion Equations 1.4.1 
and 1.4.2 are an ideal system model. Nonideal factors, such as small imper-
fections of switching devices (delay, hysteresis, small time constants) and 
unmodeled dynamics of sensors and actuators, are neglected in the ideal 
model. Incorporating them into the system model makes discontinuity point 
isolated in time and eliminates ambiguity in the system behavior. Next, small 
parameters characterizing all these factors are assumed to tend to zero. If the 
limit of the solutions exists with the small parameters tending to zero, then 
they are taken as the solutions to the equations describing the ideal sliding 
mode. Such a limit procedure is the “regularization” method for deriving 
sliding mode equations in the dynamic systems with discontinuous control.

To illustrate the regularization method, we consider a linear time-invari-
ant system with one control input, being a scalar relay function of a linear 
combination of the state components:

 �x Ax bu x n= + ∈ℜ, ,  (2.2.1)

where A and b are n n×  and n × 1 constant matrices, u M s= sign( ), M is a sca-
lar positive constant value, and s cx c c c cn= = =, ( , , ..., ) const.1 2

As in the examples in Chapter 1 and Section 2.1, the state trajectories may 
be oriented in a direction toward the switching plane s x( ) = 0 in the state 
space x x x xT

n= ( , , ..., ).1 2  Hence, the sliding mode occurs in the plane (Figure 
2.2), and the motion equation should be found. A similar problem was left 
unanswered for system Equation 2.1.1.

FIGURE 2.2
Sliding mode in a linear system.

s(x) = 0
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Following the regularization procedure, small imperfections of a switch-
ing device should be taken into account. If a relay device is implemented with 
a hysteresis loop with the width 2Δ (see Figure 2.3), then the state trajectories 
oscillate in a Δ  vicinity of the switching plane (see Figure 2.4). The value of Δ
is assumed to be small such that the state trajectories may be approximated 
by straight lines with constant state velocity vectors Ax bM+  and Ax bM−  in 
the vicinity of some point x on the plane s x( ) .= 0

Calculate times Δt1 intervals and Δt2 and increments Δx1 and Δx2 in the state 
vector for transitions from point 1 to point 2 and from point 2 to point 3, 
respectively:

 

Δ Δ Δ

Δ Δ

t
s cAx cbM

x Ax bM t Ax

1

1

2 2= = −
+

= + = +

+�
,

( ) (1 bbM
cAx cbM

) .
−
+
2Δ

Similarly, for the second interval,

 

Δ Δ Δ

Δ Δ

t
s cAx cbM

x Ax bM t Ax b

2

2

2 2= =
−

= − = −

−�
,

( ) (2 MM
cAx cbM

) .
2Δ
−

Note that, by our assumption, sliding mode exists in the ideal system; 
therefore, the values s and �s have opposite signs, i.e., �s cAx cbM+ = + < 0 and
�s cAx cbM− = − > 0. This implies that both time intervals Δt1 and Δt2 are posi-
tive. Note that the inequalities may hold if cb < 0.

The average state velocity within the time interval Δ Δ Δt t t= +1 2 may be 
found as

 
�x

x x
t

Ax cb bcAxav = + = − −Δ Δ
Δ

1 2 1( ) .

The next step of the regularization procedure implies that the width of the 
hysteresis loop Δ  should tend to zero. However, we do not need to calculate
lim( )
Δ→0

�xav : the limit procedure was performed implicitly when we assumed

that state trajectories are straight lines and the state velocities are constant. 
This is the reason why �xav does not depend on Δ. As it follows from the more 
accurate model, the sliding mode in the plane s x( ) = 0 is governed by

 �x I cb bc Axn= − −( ( ) )1

 (2.2.2)

with initial state s x[ ( )]0 0=  and In being an identity matrix. It follows from 
Equations 2.2.1 and 2.2.2 that 
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 �s c= ( ( ) )I cb bc Axn − ≡−1 0.

Hence, the state trajectories of the sliding mode are oriented along the switch-
ing plane. The condition s x[ ( )]0 0=  enables one to reduce the system order by 
one. To obtain the sliding mode equation of ( )n − 1 th order, one of the compo-
nents of the state vector, let it be xn, may be found as a function of the other 
n − 1 components and substituted into the system (Equation 2.2.2). Finally, 
the last equation for xn can be disregarded.

Applying the above procedure to the second-order system (Equation 
2.1.1) results in a fi rst-order sliding mode equation along the switching line
s c x c x= + =1 1 2 2 0:

 
�x a a c c cb b ca ca c c1 11 12 2

1
1

1
1

1 2
2

1
1= − − −( )− − −( ) ( ) xx d b cb cd f1 1 1

1+ −( )−( ) ( ) ,

FIGURE 2.3
Relay with hysteresis.

M

− M

u

s
Δ

− Δ

FIGURE 2.4
Oscillations in a vicinity of the switching surface.

3 Δ=s
0=s

1
Δ−=s

2
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where c c c b b b a a aT T= = =( , ), ( , ), ) ( , ),1 2 1 2
1

11 21( ((a a a d d dT T2
12 22 1 2) ( , ), ( , )= = , 

and cb and c2 are assumed to be different from zero. As we can see for this 
general case of a linear second-order system, the sliding mode equation is of 
reduced order and depends on the plant parameters, disturbances, and coef-
fi cients of the switching line equation but does not depend on control.

For the systems in canonical form in Equations 1.2.1 and 1.2.3, the above 
regularization method may serve as validation that the reduced order slid-
ing mode Equations 1.2.2 and 1.2.4 depend on neither plant parameters nor 
disturbances.

Exactly the same equations for our examples result from regularization 
based on an imperfection of “delay” type [Andre and Seibert 1956a,b]. It is 
interesting to note that nonlinear systems of an arbitrary order with one 
discontinuity surface were studied in this paper, and the motion equations 
proved to be the same for both types of imperfections: hysteresis and delay. 
This result may be easily interpreted in terms of relative time intervals for 
control input to take each of two extreme values. For a system of an arbitrary 
order with scalar control,

 �x f x u x f u xn= ∈ℜ ∈ℜ( , ), , , ( ) ,  (2.2.3)

 
u x

u x s x

u x s x
( )

( )

( ) ( )
=

>
>

⎧
⎨
⎩

+

−

( ) if

if

0

0,

where the components of vector f , scalar functions u x u x+ −( ), ( ) and s x( ) are 
continuous and smooth, and u x u x+ −≠( ) ( ). We assume that sliding mode 
occurs on the surface s x( ) = 0 and try to derive the motion equations using 
the regularization method. Again, let the discontinuous control be imple-
mented with some imperfections of unspecifi ed nature; control is known 
to take one of the two extreme values, u x+ ( ) or u x− ( ), and the discontinuity 
points are isolated in time. As a result, the solution exists in the conventional 
sense, and it does not matter whether we deal with small hysteresis, time 
delay, or time constants neglected in the ideal model. 

Like for the system (Equation 2.2.1) with hysteresis imperfection, the state 
velocity vectors f f x u+ += ( , ) and f f x u− −= ( , ) are assumed to be constant 
for some point x on the surface s x( ) = 0 within a short time interval [ , ].t t t+ Δ  
Let the time interval Δt consist of two sets of intervals Δt1 and Δt2 such that 
Δ Δ Δt t t u u= + = +

1 2 ,  for the time from the set Δt1 and u u= − for the time from 
the set Δt2 . Then the increment of the state vector after time interval Δt is 
found as

 Δ Δ Δx f t f t= ++ −
1 2

and the average state velocity as
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 �x
x
t

f fav = = + −+ −Δ
Δ

μ μ( ) ,1

where μ = Δ
Δ

t
t

1  is relative time for control to take value u+ and ( )1 − μ  to 
take value u−, 0 1≤ ≤μ . To get the vector �x the time Δt should be tended to 
zero. However, we do not need to perform this limit procedure, because it is 
hidden in our assumption that the state velocity vectors are constant within 
time interval Δt; therefore, the equation

 �x f f= + −+ −μ μ( )1  (2.2.4)

represents the motion during sliding mode. Because the state trajectories 
during sliding mode are in the surface s x( ) = 0, the parameter μ should be 
selected such that the state velocity vector of the system (Equation 2.2.4) is in 
the tangential plane to this surface, or

 � �s s x x s x f f= ⋅ = + −+ −grad grad[ ( )] [ ( )][ ( ) ]μ μ1 =0, (2.2.5)

 with grad[ ( )]
...

s x s
x

s
xn

= ∂
∂

∂
∂

⎡
⎣⎢

⎤
⎦⎥1

. 

The solution to Equation 2.2.5 is given by

 μ =
⋅

⋅ −

−

− +

grad(

grad(

s f
s f f

)

) ( )
. (2.2.6)

Substitution of Equation 2.2.6 into Equation 2.2.4 results in the sliding mode 
equation

 �x f f
s f

s f f
fsm sm= =

⋅
⋅ −

−

− +,
( )

( ) ( )

grad

grad
++

+

− +
−−

⋅
⋅ −

( )

( ) ( )
,

grad

grad

s f
s f f

f  (2.2.7)

representing the motion in sliding mode with initial condition s x[ ( )] .0 0=  
Note that sliding mode occurs in the surface s x( ) = 0; therefore, the functions 
s and �s have different signs in the vicinity of the surface (Figure 2.5) and 
� �s s f s s f+ + − −= ⋅ < = ⋅ >( ) , ( ) .grad grad0 0  As follows from Equation 2.2.6, 
the condition 0 1≤ ≤μ  for parameter μ holds. It is easy to check the condi-
tion �s s fsm= ⋅ =( )grad 0 for the trajectories of system (Equation 2.2.7) and 
to show that they are confi ned to the switching surface s x( ) = 0. As could 
be expected, direct substitution of grad s c= , f Ax bu+ += +  and f Ax bu− −= +  
into Equation 2.2.7 results in the sliding mode Equation 2.2.2 derived for the 
linear system in Equation 2.2.1 with the discontinuity plane s x cx( ) = = 0 via 
hysteresis regularization.

It is interesting to note that the above regularization method for deriving the 
sliding mode equation may be considered as a physical interpretation of the 
famous Filippov method. The method is intended for solution  continuation 

TAF-65602-08-1101-C002.indd   25TAF-65602-08-1101-C002.indd   25 3/31/09   7:47:15 PM3/31/09   7:47:15 PM



© 2009 by Taylor & Francis Group, LLC

26 Sliding Mode Control in Electro-Mechanical Systems

at a discontinuity surface for differential equations with discontinuous right-
hand sides [Filippov 1988]. According to this method, the ends of all state 
velocity vectors in the vicinity of a point on a discontinuity surface should be 
complemented by a minimal convex set, and state velocity vector of the slid-
ing motion should belong to this set. In our case, we have two points, ends of 
vectors f + and f −, and the minimal convex set is the straight line connecting 
their ends (see Figure 2.5). The equation of this line is exactly the right-hand 
side of Equation 2.2.4. The intersection of the line with the tangential plane 
defi nes the state velocity vector in the sliding mode fsm, or the right-hand side 
of the sliding mode equation. It is clear that the result of Filippov’s method 
coincides with the equation derived by the regularization approach.

The regularization methods discussed above and the methods studied 
by Andre and Zeibert [1956a,b] were developed under rather restrictive 
assumptions: a special class of imperfections (delay or hysteresis) in which 
control may take only two extreme values, with scalar control and one dis-
continuity surface. The general regularization concept embracing a wider 
class of imperfections (such as continuous approximation of a discontinuous 
function) and sliding modes in the intersection of several surfaces is regular-
ization via “boundary layer” [Utkin 1971, 1992]. We describe the idea of the 
boundary layer approach for an arbitrary system with vector control:

 �x f x u x f u xn m= ∈ℜ ∈ℜ( , ), , , ( ) , (2.2.8)

  u x
u x s x

u x s x
( )

( )

( ) ( )
=

>
<

⎧
⎨

+

−

( ) for

for

0

0⎩⎩
 (componentwise).

The components of vector s x s x s xT
m( ) [ ( )... ( )]= 1  are m smooth functions, 

and the ith component of the control undergoes discontinuities on the ith 

FIGURE 2.5
Sliding mode equation by Filippov’s method.

f –

f +

fsm

x1

xn

grad s

s(x) = 0
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 surface s xi ( ) = 0. Similar to sliding mode in the intersection of two planes in 
Equation 2.1.2, sliding mode may occur in the manifold s x( ) = 0. To obtain the 
sliding mode equations, the ideal control in Equation 2.2.8 is replaced by a 
new control �u such that the solution to Equation 2.2.8 with this control exists 
in the conventional sense. Because of the substitution, the trajectories are not 
confi ned to the manifold s x( ) = 0 but run in its boundary layer with the width 
Δ > 0 (see Figure 2.6):

 s x s sT( ) , ( ) ./≤ =Δ s 1 2

The imperfections taken into account in the control �u are not specifi ed, and it 
is only known that the solution to Equation 2.2.8 with the new control exists 
in the conventional sense. As a rule, real-life imperfections belong to this 
class (including hysteresis, time delay, and small time constants neglected in 
the ideal model). 

The core idea of the boundary layer regularization method is as follows. 
If the limit of the solution to Equation 2.2.8, with u u= �  and the width of the 
boundary layer tending to zero, exists and is unique and does not depend on 
the type of imperfections and the way of tending Δ  to zero, i.e., is indepen-
dent of the limit procedure in

 lim
Δ

Δ
→

=
0

x t x t( , ) ( )*  (2.2.9)

then the function x t* ( ) is taken as the solution to Equation 2.2.8 with ideal 
sliding mode. Otherwise, we should recognize that the motion equations 
beyond the discontinuity manifold do not let us derive unambiguously the 

Boundary layer   s(x)  ≤ Δ

sm(x) = 0

s1(x) = 0

Manifold s(x) = 0

State
trajectory

FIGURE 2.6
Sliding mode equation by boundary layer method.
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 equations for the motion in the manifold. The particular cases of  regularization 
for the systems with scalar discontinuous control handled in this section 
have shown that Equation 2.2.7 is the “right” model of sliding mode. More 
general cases will be discussed in the next section using the boundary layer 
approach.

2.3. Equivalent Control Method

From a methodological point of view, it is convenient to develop a procedure 
for deriving the sliding mode equations for the system in Equation 2.2.8, fi rst 
using heuristic method and then analyzing whether they can be taken as the 
motion model based on the boundary layer regularization approach. 

We assume that the initial state vector of the system in Equation 2.2.8 is 
in the intersection of all discontinuity surfaces, i.e., in the manifold s x( ) = 0, 
and sliding mode occurs with the state trajectories confi ned to this manifold 
for t > 0.

Because motion in the sliding implies s x( ) = 0 for t > 0, we may assume that 
ds dt s/ = =� 0 as well. Hence, in addition to s x( ) = 0, the time derivative �s x( ) = 0 
may be used to characterize the state trajectories during sliding mode. The 
fast switching control u is an obstacle for using conventional methods, so 
disregard the control discontinuities and calculate the vector u such that 
time derivative of vector s on the state trajectories of Equation 2.2.8 is equal 
to zero:

 �s x G f x u( ) ( , ) ,= ⋅ = 0  (2.3.1)

where G s x= ∂ ∂( ) is m n×  matrix with gradients of functions s xi ( ) as rows. Let 
a solution to the algebraic Equation 2.3.1 exist. The solution u xeq( ) will further 
be referred to as “equivalent control.” This continuous function is substituted 
for the discontinuous control u into the original system in Equation 2.2.8:

 �x f x ueq= ( , ). (2.3.2)

It is evident that, for initial conditions s x( )0 0( ) =  in compliance with Equation 
2.3.1, additional motion governed by Equation 2.3.2 will be along the state 
trajectories in the manifold s x( ) = 0 like in sliding mode in the system in 
Equation 2.2.8. Equation 2.3.2 is taken as the equation of sliding mode in 
the intersection of m discontinuity surfaces s xi ( ) ,= 0  ( , ..., )i m= 1 . The proce-
dure of deriving the equation will be referred to as the “equivalent control 
method.”

From a geometrical point of view, the equivalent control method means 
replacement of discontinuous control on the intersection of switching 
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surfaces by a continuous one such that the state velocity vector lies in the tan-
gential manifold. For example, in the system with scalar control (Equation 
2.2.3), this vector may be found as the intersection of the tangential plane 
and the locus f x u( , ) with control u running from u− to u+ (see Figure 2.7). 

The intersection point defi nes the equivalent control ueq and the right-hand 
side f x ueq( , ) in the sliding mode Equation 2.1.2. Note that the right-hand 
side f x ueq( , ) of the motion equation resulting from the equivalent control 
method does not coincide with that of Filippov’s method ( fsm in Equation 
2.9 and Figure 2.5). They are equal if the system (Equation 2.2.3) with sca-
lar control is linear with respect to control f x u f x b x u( , ) ( ) ( )= +0  ( f0 and b are 
n-dimensional vectors). Then the locus f x u( , ) of the equivalent control 
method (Figure 2.7) coincides with a minimal convex set (the straight line 
connecting the end of vectors f + and f −) of Filippov’s method. The discrep-
ancy refl ects the fact that different ways of regularization lead to different 
sliding mode equations in systems with nonlinear functions of control input 
in motion equations [Utkin 1972].

We apply the equivalent method procedure to so-called affi ne systems, 
i.e., nonlinear systems with right-hand sides in the motion Equation 2.2.8 as 
linear functions of the control input u,

 �x f x B x u x f x B x un n m= + ∈ℜ ∈ℜ ×( ) ( ) , , ( ) , ( ) (, xx m) ,∈ℜ  (2.3.3)

 u x
u x s x

u x s x
( )

( )

( ) ( )
=

>
<

⎧
⎨

+

−

( ) for

for

0

0⎩⎩
 (componentwise), s x s x s xT

m( ) [ ( ) ... ( )].= 1  

Similar to the system in Equation 2.2.8, each surface s xi ( ) = 0 is the set of dis-
continuity points for corresponding control component ui . Equation 2.3.1 of 
the equivalent control method for the system in Equation 2.3.2 is of form

 �s Gf GBueq= + = 0,   (2.3.4)

FIGURE 2.7
Equivalent control method for nonlinear systems with scalar control.

nx

),( −uxf
0)( =xs 1u ),( equxf

2u

1x
),( +uxf 3u Tangential plane 
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where G s x= ∂ ∂( ).
Assuming that matrix GB is nonsingular for any x, fi nd the equivalent con-

trol u xeq( ) as the solution to Equation 2.3.4 

 u x G x B x G x f xeq( ) ( ) ( ) ( ) ( )= −( )−1

and substitute u xeq( ) into Equation 2.14 to yield the sliding mode equation as 

 �x f x B x= −( ) ( ) G x B x G x f x( ) ( ) ( ) ( )( )−1
. (2.3.5)

Equation 2.3.5 is taken as the equation of sliding mode in the manifold 
s x( ) .= 0  The equation has been postulated. According to our concept, the 
question whether it is a right model of the motion in sliding mode may be 
answered involving the regularization method based on introduction of a 
boundary layer of the manifold s x( ) = 0. For the affi ne systems (Equation 
2.3.3), the sliding mode equation is found uniquely in the framework of the 
method, and it coincides with Equation 2.3.5 resulting from the equivalent 
control method. This statement is substantiated by Utkin [1971] under gen-
eral assumptions related to smoothness and growth rate for the functions 
f B u u, , ,+ −, ands. According to these results, the condition in Equation 2.2.9 
holds, which means that any solution in the boundary layer x t( , )Δ  tends to 
a solutions x t* ( ) of Equation 2.3.5 regardless of what kind of imperfection 
caused the motion in the boundary layer and in what way the boundary 
layer is reduced to zero. 

Formally, the equivalent control method may be applied to systems that 
are nonlinear with respect to control as well. As was mentioned, the result 
differs from the equations of Filippov’s method even for systems with scalar 
control.

Attempts to show that this or that method is right by using the regulariza-
tion approach have been unsuccessful because the sliding mode equations 
resulting from the limit procedure depend on the nature of introduced imper-
fections and the way of tending them to zero. For example, sliding modes in 
relay systems with small delay or hysteresis in a switching device are gov-
erned by the equation of Filippov’s method, but, for a piecewise smooth con-
tinuous approximation of a discontinuous function, they are governed by the 
equation of the equivalent control method. The reader may fi nd the details of 
sliding mode analysis in nonlinear systems with explanations of the reasons 
of ambiguity in the work of Utkin [1992]. 

Qualitatively, the result for affi ne systems may be explained in terms of a 
system block diagram (Figure 2.8). In compliance with the equivalent control 
method, the time derivative �s is formally set to be equal to zero (Equation 
2.3.4). For the motion in a boundary layer, s is a small value of order Δ , but 
�s takes fi nite values and does not tend to zero with Δ . This means that real 
control does not satisfy the Equation 2.3.4 and may be found as
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 u u GB seq= + −( ) 1 �. 

The motion equation in the boundary layer is governed by

 � �x f Bu GB seq= + + −( ) .1

It differs from the ideal sliding Equation 2.3.5 by the additional term 
( )BG s−1 �. In terms of block diagrams, any dynamic system may be repre-
sented as a series of integrators, and it is natural to assume that an output 
of each of them may be estimated by an upper bound of the integral of 
an input. 

In our case, the input is �s and its integral s tends to zero with Δ → 0. 
Therefore, the response to this input tends to zero. This explains why the 
solution with the boundary layer reduced to zero tends to that to the equation 
of the equivalent control method. Of course, this is not the case for the sys-
tems with nonlinear functions of control in motion equations; indeed, gener-

ally speaking, h s d
t

( )� τ
0

∫ does not tend to zero even if s does and h( )0 0= . For

example, if s t= −( / )cos ,1 ω ω  �s t= sinω , then s tends to zero with butω → ∞

[( )�s d
t

2

0

τ∫ does not. 

Uniqueness of sliding mode equations in affi ne systems explains why 
the major attention is paid to this class in theory of sliding mode control. 
It is worth noting that systems nonlinear with respect to a state vector and 
linear with respect to a control input are the most common in practical 
applications.

2.4. Physical Meaning of Equivalent Control 

The motion in sliding mode was regarded as a certain idealization. It was 
assumed that the control changes at high, theoretically infi nite, frequency 

FIGURE 2.8
Equivalent control method for affi ne systems.

s x
+ +

f + Bueq

(GB)–1 ∫
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such that the state velocity vector is oriented precisely along the intersection 
of discontinuity surfaces. However, in reality, various imperfections make 
the state oscillate in some vicinity of the intersection, and components of 
control are switched at fi nite frequency alternatively taking the values u xi

+ ( )
and u xi

− ( ). These oscillations have high frequency and slow components. The 
high frequency is fi ltered out by a plant under control, whereas its motion 
in sliding mode is determined by the slow component. Conversely, sliding 
mode equations were obtained by substitution of equivalent control for the 
real control. It is reasonable to assume that the equivalent control is close to 
the slow component of the real control, which may be derived by fi ltering out 
the high-frequency component by a low-pass fi lter. Its time constant should 
be suffi ciently small to preserve the slow component undistorted but large 
enough to eliminate the high-frequency component. As shown previously by 
Utkin [1992], the output of a low-pass fi lter

 τ �z z u+ =

tends to the equivalent control:

 lim .
, /τ τ→ →

=
0 0Δ

z ueq

This way of tending z to ueq is not something involved but naturally follows 
from physical properties of the system. Indeed, the vicinity of a  discontinuity 
manifold of width Δ , where the state oscillates, should be reduced to make 
the real motion close to ideal sliding mode. For reduction of Δ , the  switching 
frequency f  of the control should be increased; otherwise, the amplitude 
of oscillations would exceed Δ  because Δ ≈ 1/ f . To eliminate the high-
 frequency component of the control in sliding mode, the frequency should 
be much higher than 1/τ , or 1/ f << τ ; hence, Δ << τ . Finally, the time con-
stant of the low-pass fi lter should be made to tend to zero because the fi lter 
should not distort the slow component of the control. Thus, the conditions 
τ τ→ →0 0and Δ /  (which implies Δ → 0) should be fulfi lled to extract the 
slow component equal to the equivalent control and to fi lter out the high-
frequency component. 

It is interesting that the equivalent control depends on plant parameters 
and disturbances that may be unknown. For example, let us assume that 
sliding mode exists on the line s = 0 in the system in Equation 2.1.1:

 
�� �

�
x a x a x u f t

u M s s x cx

+ + = +
= − = +

2 1 ( ),

( ), ,sign

where M a a c, , ,1 2  are constant parameters, and f t( ) is a bounded disturbance. 
Equivalent control is the solution to the equation � �s a x a x u f t= − − + + =2 1 0( )  
with respect to u under condition s = 0, or �x cx= − :

 u a c a x f teq = − + −( ) ( )2 1 . 
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As we can see, the equivalent control depends on parameters a1, a2, and dis-
turbance f t( ). Extracting equivalent control by a low-pass fi lter, this informa-
tion may be obtained and used for improvement of feedback control system 
performance. Furthermore, this opportunity will be used in Chapter 6 for 
designing state observers with sliding modes and in Chapter 8 for chattering 
suppression.

2.5. Existence Conditions

The methods developed in the previous section enable us to write down the 
sliding mode equation should sliding mode occur in a system. If the slid-
ing mode exhibits the desired dynamic properties, the control should be 
designed such that this motion is enforced. Hence, the conditions for sliding 
mode to exist should be derived: the second mathematical problem in the 
analysis of sliding mode as a phenomenon. For the systems with scalar con-
trol studied in this chapter and Chapter 1, the conditions were obtained from 
geometrical considerations: the deviation from the switching surface s and 
its time derivative should have opposite signs in the vicinity of a discontinu-
ity surface s = 0 [Barbashin 1967] or

 l i m s 0,
s→+

<
0

�  and l i m s 0.
s→−

>
0

�   (2.5.1)

For the system in Equation 1.2.1, the domain of sliding mode (sector m n−  on 
the switching line) (see Figure 1.7) was found based on geometric consider-
ations. It may be found analytically from Equation 2.5.1 as

 �s c a c a x M s f t= − + − − +( ) ( ) ( )2
2 1 sign , 

and the domain of sliding for bounded disturbance f t f( ) < 0 is given by

 x
M f

c a c a
<

−
− + −

0

2
2 1

. 

As was demonstrated in Equation 2.1.2, for existence of sliding mode in an 
intersection of a set of discontinuity surfaces s xi ( ) ,= 0 ( , ..., )i m= 1 , it is not nec-
essary to fulfi ll inequalities (Equation 2.5.1) for each of them. The  example 
showed that the trajectories converge to the manifold s s sT

m= =[ ... ]1 0 and 
reach it after a fi nite time interval similarly to the systems with scalar con-
trol. The term “converge” means that we deal with the problem of stability 
of the origin in m-dimensional subspace ( , ..., )s sm1 ; therefore, the existence 
conditions may be formulated in terms of stability theory. 

In addition, a nontraditional condition, “fi nite time convergence,” should 
take place. This last condition is important to distinguish systems with 
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 sliding modes from continuous systems with state trajectories converging 
to some manifold asymptotically. For example, the state trajectories of the 
system ��x x− = 0 converge to the manifold s x x= − =� 0 asymptotically because
�s s= − ; however, it would hardly be reasonable to call the motion in s = 0 slid-
ing mode. 

In the sequel, we examine the conditions for sliding mode to exist for affi ne 
systems (Equation 2.3.3). To derive the conditions, stability of the motion pro-
jection on subspace s governed by the differential equation

 �s Gf GBu= +  (2.5.2)

should be analyzed. 
The control Equation 2.3.3 

  u x
u x s x

u x s x
( )

( )

( ) ( )
=

>
>

⎧
⎨

+

−

( ) for

for

0

0⎩⎩
 (componentwise), s x s x s xT

m( ) [ ( ) ... ( )]= 1

may be represented as 

 u x u x x s( ) ( ) ( ) ( ),= +
0

U sign  (2.5.3)

where u x
u x u x

0
2

( )
( ) ( )= ++ −

, U ( )x  is a diagonal matrix with elements 

U i
i ix

u x u x
( )

( ) ( )
=

−+ −

2
 for i m= 1,..., , and the discontinuous control sign( )s  takes 

the form of a componentwise sign function

 sign sign sign( ) [ ( ) ... ( )]s s sT
m= 1 . (2.5.4)

Then the motion projection on subspace s is governed by

 �s d x D x s= −( ) ( ) ( )sign , (2.5.5)

with d Gf GBu D GB= + = −
0
, .U  To fi nd the stability conditions of the ori-

gin s = 0 for nonlinear system (Equation 2.5.5), i.e., the conditions for sliding 
mode to exist, we will follow the standard methodology for stability analy-
sis of nonlinear systems and try to fi nd a Lyapunov function. At the same 
time, we should remember that the right-hand side in the motion equation 
is discontinuous and not defi ned in the points in which arguments of the 
sign functions are equal to zero. To illustrate that the problem needs subtle 
treatment, let us turn to the example in Equation 2.1.2 in Section 2.1 with the 
equation of motion projection on subspace ( , )s s1 2  given by

  
�
�
s s s

s s
1 1 2

2 12

= − +
= − −

sign 2sign

sign sign s2 .
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The time derivative of the positive defi nite Lyapunov function candidate 
V s s= +1 2  along the system trajectories, 

 � � �V
V
s

s
V
s

s s s= ∂
∂

+ ∂
∂

= − +
1

1

21

2 1 1sign sign 2( )( ssign sign sign signs s s s2 2 1 22 2) ( )( )+ − − = − ,

is negative defi nite, and we may conclude that the origin of the state plane 
( , )s s1 2  is asymptotically stable. Figure 2.1 shows that this is the case. The time 
needed for the state to reach the origin is calculated as T V V V= =( )/ ( )/0 0 2�  = 
s2 0 2( ) /  for initial condition s s1 20 0 0 0( ) , ( )= ≠ . The result coincides with the 
reaching time found by the point-to-point transform method in Section 2.1.

However, the conclusion on asymptotic stability made for the example is 
not always correct. The time derivative of the positive defi nite Lyapunov 
function candidate

 V s s= +4 1 2

along the trajectories of another example system

 
�
�
s s s

s s
1 1 2

2 1

2

2

= − −
= − +

sign sign

sign sign ss2

is negative

 � � �V
V
s

s
V
s

s s s= ∂
∂

+ ∂
∂

= − −
1

1

2

2 1 27 6sign sign(( ) )

everywhere except at the discontinuity surfaces. However, it does not testify 
to stability. As can be seen in the state plane shown in Figure 2.9, the state 
trajectories reach the plane s1 0=  on which sliding mode occurs (the existence 
conditions in Equation 2.5.1 hold in this plane). Following the equivalent con-
trol method, the motion equation may be obtained by fi nding [ ( )]sign s eq1  from 
equation �s1 0=  and substituting it into the second equation. This results in slid-
ing equation �s s2 22= sign( ) with unstable solution and s 2 tending to infi nity.

Instability of the motion along the plane s1 0=  means that no sliding mode 
occurs in the intersection of the discontinuity surfaces s1 0=  and s2 0= . The 
trajectories intersect the surfaces V const= . from outside everywhere except 
for the corner points with s1 0= , and the trajectories of sliding mode in s1 0=  
diverge through these points. In the fi rst example in Figure 2.1, sliding mode 
occurs on none of the discontinuity surfaces; therefore, the discontinuity 
points of the right-hand side in motion equations are isolated. This is the rea-
son for decreasing of the Lyapunov function and difference in signs of V and
�V, suggesting asymptotic stability of the origin in subspace ( , )s s1 2  and exis-
tence of sliding mode in the intersection of planes s1 0=  and s2 0= . However, 
as evidenced by the second example in Figure 2.9, knowledge of the signs of 
a piecewise smooth function and its derivative, generally speaking, is not 
suffi cient to ascertain that sliding mode does exist. 
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To be able to use a Lyapunov function in the form of the sum of absolute 
values whenever sliding mode occurs on some of the discontinuity surfaces, 
the corresponding components of discontinuous control should be replaced 
by their equivalent ones, and only then the time derivative of the Lyapunov 
function should be found. 

Definition 2.1

The set S x( ) in the manifold s x( ) = 0 is the domain of sliding mode, if for the 
motion governed by Equation 2.5.6, the origin in the subspace s is asymptoti-
cally stable with fi nite convergence time for each x from S x( ).

Definition 2.2

Manifold s x( ) = 0 is referred to as sliding manifold if sliding mode exists at 
each point, or S x( ) = {x s x: ( ) }.= 0

Theorem 2.1

If the matrix D in the equation

 �s D s= − sign( ) (2.5.6)

FIGURE 2.9
s—plane of the system with two-dimensional control.

02 =s

          01 =s

constVSurfaces =
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is positive defi nite

 D DT+ > 0, (2.5.7)

then the origin s = 0 is an asymptotically stable equilibrium point with fi nite 
convergence time.       □

Proof 2.1

Let the sum of absolute values of si

 V s sT= >sign( ) 0 (2.5.8)

be a Lyapunov function candidate. Partition vector s into two subvectors
s s sT k T m k T= −( ) ( ) , assuming that sliding mode occurs in the intersection of k 
discontinuity surfaces, sk = 0, whereas the components of vector sm k−  are dif-
ferent from zero. 

According to the equivalent control method, vector sign( )sk  in the motion 
equation must be replaced by the function [ ( )]sign sk

eq such that �sk = 0. Because 
sk = 0 in sliding mode, the time derivative of V in Equation 2.5.8 consists of 
( )m k−  terms:

 

�

�

V
d
dt

s s

s

m k T m k

m k T

= ( )
= ( )

− −

−

( ( ))

( )

sign

sign ssm k− .
 

The value of sign( )s sk

eq

T k( ) �  is equal to zero in sliding mode; therefore,

 
� � �V s s s sk

eq

T k m k T m k= ( ) + ( )− −sign sign( ) ( ) .

Replacing vector �s with its value form (Equation 2.5.6) and vector sign( )sk  
with sign( )sk

eq
( ) , we have

 �V z Dz z
D D

zT T
T

= − = − +
2

, 

where z s sT k

eq

T m k T
= ( ) ( )−sign sign( ) ( ) . Because matrix D is positive defi nite 

(Equation 2.5.7), �V z≤ −λmin

2
, λmin > 0 is the minimal eigenvalue of matrix

D DT+
2

, z z zT= . † Because at initial time, at least one of the components of

† Of course, generally speaking Q
Q QT

≠ +
2

 but z Qz z
Q Q

zT T
T

= +
2

.
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vector s is different from zero and one of the components of vector z is equal to 
+1 or –1, z ≥ 1, the Lyapunov function (Equation 2.5.8) decays at a fi nite rate

 �V ≤ −λmin . (2.5.9)

The condition in Equation 2.5.9 means that V and vector s vanish after a fi nite 
time interval, and the origin s = 0 is an asymptotically stable equilibrium 
point with fi nite convergence time. □

The two second-order examples were studied in this section. For both of 
them, time derivatives of positive defi nite Lyapunov functions of “sum of 
absolute values” type were negative defi nite everywhere except at the dis-
continuity surfaces.

For the fi rst second-order example in this section, D =
−⎛

⎝⎜
⎞
⎠⎟

1 2

2 1
 and matrix

D DT+ > 0 is positive defi nite, which testifi es to stability (Figure 2.1). 

The second system with D =
−

⎛
⎝⎜

⎞
⎠⎟

2 1

2 1
 is unstable (Figure 2.9), and matrix 

D DT+ =
−

⎛
⎝⎜

⎞
⎠⎟

4 3

3 2
 is not positive defi nite.

The suffi cient stability (or sliding mode existence) condition formulated 
in Theorem 2.1 for the system in Equation 2.5.6 can be easily generalized for 
the case in Equation 2.5.2 or 2.5.5. For s x( ) = 0 to be a sliding manifold, it is 
suffi cient that, for any x S S x s x∈ =, { : ( ) }0 ,

 

D x D x

d m x

T( ) ( ) ,

( )

+ >

> > >

0

00 0with0 minλ λ λ ,,

( ) ,d x d< 0

 (2.5.10)

where λmin ( )x  is the minimal eigenvalue of 
D DT+

2
0, λ  is a constant positive 

value, and d0 is an upper estimate of vector d x( ) in Equation 2.5.5.
The time derivative of Lyapunov function (Equation 2.4.8) along the trajec-

tories of Equation 2.5.2 is of the form similar to Equation 2.5.9:

 
�V z d x z

D D
z

z d x

T T
T

= − +

≤ −

( )

( ) min

2

λ
.

The components of vector z are either sign( )si  or [ ( )]sign si eq. As shown in 
Section 2.3, the equivalent control is an average value of discontinuous 
control, and this value is a continuous function varying between the two 

extreme values of the discontinuous control. This means that sign( )si eq
( ) ≤ 1; 
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hence, the norm of m-dimensional vector z with components from the range 
±1 does not exceed m and

 �V d m≤ − <0 0 0λ . (2.5.11)

Because the Lyapunov function decays at a fi nite rate, it vanishes and sliding 
mode occurs after a fi nite time interval. 

Remark 2.1

If inequality (Equation 2.5.11) holds for any x, then it simultaneously is “the 
reaching condition,” i.e., the condition for the state to reach the sliding mani-
fold from any initial point.

Remark 2.2 

Upper and lower estimates of d x( ) and λmin ( )x , respectively, may depend on x. 
Then the condition for sliding manifold to exist and the reaching condition is 
of the form

 �V d x m x v≤ − < −( ) ( )minλ 0, (2.5.12)

where v0 is constant positive value.

Remark 2.3

Functions d x( ) and D x( ) depend on control Equations 2.5.3 and 2.5.5. The 
value of λmin ( )x  may be increased by increasing the difference between u xi

+ ( ) 
and u xi

− ( ) without varying u x0( ) and d x( ). Then the condition in Equations 
2.5.11 and 2.5.12 can be fulfi lled.

General Remark for Chapter 2

When studying the equations of sliding modes and conditions for this motion 
to exist, only time-invariant systems were handled, but all results are valid 
for time-varying systems as well. The difference for a time-varying switch-
ing manifold s x t( , ) = 0 is as follows: to fi nd the equivalent control, Equation 
2.3.4 should be complemented by an additional term ∂ ∂s x t t( , )/ ,

 �s Gf GBu s x t teq= + + ∂ ∂ =( , )/ 0, 

and its solution u GB Gf s teq = − + ∂ ∂−( ) ( / )1  should be substituted into Equation 
2.3.3 regardless of whether functions f  and B in motion Equation 2.3.3 
depend on time or are time invariant.

TAF-65602-08-1101-C002.indd   39TAF-65602-08-1101-C002.indd   39 3/31/09   7:47:25 PM3/31/09   7:47:25 PM



© 2009 by Taylor & Francis Group, LLC

40 Sliding Mode Control in Electro-Mechanical Systems

References

Andre J, Seibert P. 1956a. “Über Stückweise Lineare Differential-Gleichungen, die bei 
Regelungsproblemen Auftreten I” (in German). Arch der Math 7.       

Andre J, Seibert P. 1956b. “Über Stückweise Lineare Differential-Gleichungen, die bei 
Regelungsproblemen Auftreten II” (in German). Arch der Math 7.        

Barbashin E. 1967. Introduction to the Theory of Stability (in Russian). Moscow: Nauka.
Filippov A. 1988. Differential Equations with Discontinuous Right-Hand Sides. Durdrecht, 

The Netherlands: Kluwer Publishers. 
Utkin V. 1971. “Equations of Slipping Regimes in Discontinuous Systems I.” Automat 

Remote Control 32:1897–1907. 
Utkin V. 1972. “Equations of Slipping Regimes in Discontinuous Systems II.” Automat 

Remote Control 33:211–219. 
Utkin V. 1992. Sliding Modes in Control and Optimization. London: Springer-Verlag.

TAF-65602-08-1101-C002.indd   40TAF-65602-08-1101-C002.indd   40 3/31/09   7:47:26 PM3/31/09   7:47:26 PM



© 2009 by Taylor & Francis Group, LLC

41

3
Design Concepts

The key idea of the design methodology for sliding mode control was 
outlined in Chapter 1 (Section 1.4). According to this idea, any design 
procedure should consist of two stages. As established in Chapter 2, slid-
ing modes are governed by a reduced order system depending on the 
equations of some discontinuity surfaces. The fi rst stage of design is the 
selection of the discontinuity surfaces such that sliding motion would 
exhibit desired properties. The methods of conventional control theory, 
such as stabilization, eigenvalue placement, and dynamic optimization, 
may be applied at this stage. The second stage is to fi nd discontinu-
ous control to enforce sliding mode in the intersection of the surfaces 
selected at the fi rst stage. The second problem is of reduced order as well 
because its dimension is equal to the number of discontinuity surfaces, 
which is usually equal to the dimension of control.

Partitioning of the overall motion into two motions of lower dimen-
sions—the fi rst motion preceding sliding mode within a fi nite time 
interval and the second motion being sliding mode with the desired 
properties—may simplify the design procedure considerably. In addi-
tion, sliding modes may be insensitive with respect to unknown plant 
parameters and disturbances, although the invariance property does 
take place for any system, as demonstrated for the system in Equation 
2.1.1 in Chapter 2 (Sections 2.1 and 2.2). In this chapter, different sliding 
mode control design methods based on the decoupling principle will be 
developed and special attention will be paid to the class of the system 
with invariant sliding motions.

3.1. Introductory Example

As an example of sliding mode control design, a multilink manipulator may 
be considered under the assumption that each link is subjected to a control 
force or torque. The system motion is represented by a set of interconnected 
second-order equations:

 M q q f q q t u( ) ( , , ) ,�� �+ =

where q and u are vectors of the same dimension of generalized states and 
force or torque control components, respectively, M(q) is a positive-defi nite 
inertia matrix, and f q q t( , , )�  is a function depending on the system geometry, 
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the velocity vector, unknown parameters, and disturbances. The motion 
equation may be represented as

 � �p v M p v f p v t u= = − +, ( ) ( , , )

with q = p, �q v= .
If sliding mode is enforced in the manifold s = cp + v = 0, then 

 �p cp= − .

(Formally, equivalent control ueq should be found from equation �s = 0, substi-
tuted into the second equation, and then v should be replaced by −cp; it will 
result in the above equation with respect to p). Assigning the eigenvalues of 
the sliding mode equation by a proper choice of matrix c, the desired rate of 
convergence of p = q and v q= � (note that s = cp + v = 0) to zero may be deter-
mined. To enforce the sliding mode with the desired dynamics, convergence 
of the motion projection on subspace

 � � �s cp v cv M f M u= + = − +− −1 1

should be provided. The inertia matrix as well as its inverse, M−1, are positive 
defi nite. It follows from Theorem 2.1 of Section 2.4 that the discontinuous 
control

 u U q q s U q q= − >( , ) ( ), ( , )� �sign 0

with suffi ciently high value of scalar function U q q( , )�  enforces sliding motion 
in manifold s = 0. Only an upper bound of function f q q t( , , )�  and low esti-
mate of minimal eigenvalue of M−1 (see Remarks 2.2 and 2.3 in Section 2.4) 
are needed for the design of the control stabilizing the mechanical system 
operating under uncertainty condition with the desired rate of convergence. 
Of course, it should be mentioned that the solution has been obtained in the 
framework of an ideal model with known state vector (pT, vT) and assum-
ing that the control forces may be implemented as discontinuous state 
functions. 

3.2. Decoupling

In the sequel, we will deal with affi ne systems 

 �x f x t B x t u x f B x un n m= + ∈ℜ ∈ℜ ×( , ) ( , ) , , , ( ) , (( ) ,x m∈ℜ  (3.2.1)
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 u x
u x t s x

u x t s x
( )

, ( )

( , ) ( )
=

>
>

+

−

( ) if

if

0

0

⎧⎧
⎨
⎩

 (componentwise), s(x)T = [s1(x)…sm(x)],

with the right-hand side of Equation 3.2.1 being a linear function of control. 
To obtain the equation of sliding mode in manifold s(x) = 0 under the 

assumption that matrix GB (matrix G = {∂s/∂ x} with rows as gradients of the 
components of vector s is nonsingular the equivalent control 

 ueq(x, t) = −(G(x) B(x, t))−1 G(x) f(x, t)

should be substituted into Equation 3.1 for the control u(x) to yield

 
�x f x t

f x t f x t B x t G x B x

sm

sm

=

= −

( , ),

( , ) ( , ) ( , ) ( ) ( ,, ) ( ) ( , ).t G x f x t( )−1  (3.2.2)

Because s(x) = 0 in sliding mode, this system of m algebraic equations may be 
solved with respect to m component of the state vector constituting subvec-
tor x2:

 x s x x x x x xm n m T T T
2 0 1 2 1 1 2= ∈ℜ ∈ℜ =−( ), , , [ ] aand ( ) = 0.s x

Replacing x2 by s0(x1) in the fi rst n − m Equation 3.2.2 yields a reduced order 
sliding mode equation,

 �x f x s x tsm1 1 1 0 1= ( ), ( ), , (3.2.3)

where f x t f x x t f x x t fsm
T

sm
T

sm
T( , ) ( , , ) [ ( , , )= =1 2 1 1 2 2ssm

T x x t( , , )]1 2 .
The motion Equation 3.2.3 depends on function s0(x1), i.e., on the equa-

tion of the discontinuity manifold. Function s0(x1) may be handled as m-
 dimensional control for the reduced order system. It should be noted that 
the design problem is not a conventional one because right-hand sides in 
Equations 3.2.2 and 3.2.3 depend not only on the discontinuity manifold 
equation but on the gradient matrix G as well. If a class of functions s(x) is 
preselected, for instance linear functions or in the form of fi nite series, then 
both s(x), G and, as a result, the right-hand sides in Equation 3.2.3 depend on 
the set of parameters to be selected when designing the desired dynamics of 
sliding motion. 

The second-order system (Equation 2.1.1) with a scalar control 

 

�
�
x a x a x b u d f t

x a x a x b
1 11 1 12 2 1 1

2 12 1 22 2

= + + +
= + +

( )

22 2

1 1 2 2

u d f t

u s s c x c x

+
= − = +

( )

( ),signM
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may serve as an example. As shown in Section 2.2, sliding mode along the 
switching line s = c1x1 + c2x2 = 0 is governed by the fi rst-order equation

 �x a a c c cb b ca ca c c1 11 12 2
1

1
1

1
1 2

2
1

1= − − −( )− − −( ) ( ) xx d b cb cd f t1 1 1
1+ −( )−( ) ( ) ( ),

where c = [c1 c2], bT = [b1 b2], (a1)T = [a11 a21], (a2)T = [a12 a22], dT = [d1 d2], and cb 
and c2 are assumed to be different from zero. The equation may be rewritten 
in the form

 �x a a c c b b c a c a c x1 11 12 1
1

1
1 2

1 1= − − −( ) +−* * * * *( ) ( ) dd b c b c d f t1 1
1−( )−( ) ( ) ( )* *

with c c* *[ ]= 1 1 , and c c c1 2
1

1
* = − . Hence, only one parameter c1

* should be 
selected to provide the desired motion of the fi rst-order dynamics in our 
second-order example. The second stage of the design procedure is selection 
of discontinuous control enforcing sliding mode in manifold s(x) = 0, which 
has been chosen at the fi rst stage. The condition for sliding mode to exist is 
equivalent to stability condition of the motion projection on subspace s

 �s Gf GBu= +  (3.2.4)

with a fi nite convergence time (see Section 2.4).
Generally speaking, matrix − (GB + (GB)T ) is not positive defi nite; there-

fore, the stability cannot be provided by increasing the elements of matrix U 
as it is recommended in Remark 2.3 of Section 2.4 for control (Equation 3.2.1). 
Let the positive-defi nite function 

 V = 0.5 sT s > 0

be a Lyapunov function candidate. Its time derivative along the system tra-
jectories is of the form

 �V s Gf s GBuT T= + . (3.2.5)

Assuming that matrix GB is nonsingular, select the control u as a discontinu-
ous function

 u = −U(x)sign(s*) with s* = (GB)T s, (3.2.6)

where U(x) is a scalar positive function of the state. Then Equation 3.2.5 is of 
form

 �V s Gf U sT= − * ,
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where |s*| = (s*)T sign(s*), or

 �V s GB Gf U sT= −−( ) ( ) .* *1

Because s s* *≥  is attributable to s si
i

m

i
i

m
* *( )

= =
∑ ∑≥ ⎛

⎝⎜
⎞
⎠⎟1

2

1

1
2

, it follows from Equation 
3.2.6 that

 �V s GB Gf U s≤ −−* *( ) .1

If an upper estimate F ≥ |(GB)−1 Gf| is known, then �V < 0 for U > F, the 
motion is asymptotically stable and sliding mode is enforced in the sys-
tem. Later it will be proven that the time interval preceding sliding mode 
is finite and may be decreased by increasing the magnitude U(x) of the 
discontinuous control. Sliding mode occurs in the manifold s* = 0. The 
transformation (Equation 3.2.6) is nonsingular; therefore, the manifolds 
s = 0 and s* = 0 coincide and sliding mode takes place in the manifold 
s = 0, which was selected to design sliding motion with the desired 
properties. 

The design procedure has been decoupled into two independent subprob-
lems of lower dimensions m and n − m. Decoupling is feasible because the 
sliding mode equations do not depend on control but they do depend on the 
sliding manifold equation. When designing a switching manifold, only one 
constraint should be taken into account: matrix GB should be nonsingular. 
Exact knowledge of plant parameters and disturbances (vector f and matrix 
B) is not needed; only knowledge of an upper bound F is suffi cient to enforce 
sliding mode in manifold s* = 0. Matrix B(x, t) is needed to calculate vector s* 
in Equation 3.2.6. However, the range of parameter variation in matrix B(x, t) 
may be found such that sliding mode can be enforced without exact knowl-
edge of these parameters. 

First, we will show that any m × m transformation matrix Q in 

 s* = Q(x)s

fi ts if (Q−1)T GB = L(x) is a matrix with a dominant diagonal

 l l l lii ij
j

j i

m

i ii ij
j

j i

m

i> = −
=
≠

=
≠

∑ ∑
1 1

, or ,α α >> =0 1for any i m, ..., .

Indeed, for control u = −U(x)(sign(L))(sign(s*)) with signL being a diagonal 
matrix with elements sign(lii),
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�V s Q Gf U s L L sT T T= −−( ) ( ) ( ) ( ))( ( ))* * *1 sign( sign

== − +
= =
∑ s q U s l l l s si i
i

m

i ii ij ij i j
j

* * * *( ( )
1 1

sign

jj i

m

i

m

≠
=

∑∑
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

,
1

where qi are elements of vector (Q−1)T Gf. The time derivative of the Lyapunov 
function is negative, i.e., sliding mode is enforced in s* = 0 if

 U x q x t
i

i i( ) max ( , ) / .> α

To illustrate the design method for the system in Equation 3.2.1, assume 
that matrix B consists of a known nominal part and unknown variation B 
= B0 + ΔB. Then for Q = (GB0)

T, matrix L is of form L = Im + Δ  L,   ΔL = (GB0)
−1 

GΔB (Im is m × m identity matrix). This form enables finding admissible 
range of variations in matrix B: the sum of absolute values on any row 
of matrix ΔL should not exceed 1. Hence, sliding mode can be enforced 
with control Equation 3.2.6 in systems with unknown parameters in the 
input matrix B(x, t).

3.3. Regular Form

The two-stage design procedure—selection a switching manifold and then 
fi nding control enforcing sliding mode in this manifold—becomes simpler 
for systems in so-called “regular form.” The regular form for an affi ne sys-
tem (Equation 3.2.1) consists of two blocks:

 
�
�
x f x x t

x f x x t B x x t u
1 1 1 2

2 2 1 2 2 1 2

=
= +

( , , )

( , , ) ( , , ) ,,
 (3.3.1)

where x xn m m
1 2∈ℜ ∈ℜ− , , and B2 is an m × m nonsingular matrix, i.e., 

det B2 ≠  0. The fi rst block does not depend on control, whereas the dimension 
of the second block coincides with that of the control. 

The design is performed in two stages as well. First, m-dimensional state 
vector x2 is handled as the control of the fi rst block and designed as a func-
tion of the state x1 of the fi rst block in correspondence with some perfor-
mance criterion

 x2 = −s0(x1). (3.3.2)
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Again, we deal with a reduced order design problem. At the second stage, dis-
continuous control is to be selected to enforce sliding mode in the manifold 

 s(x1, x2) = x2 + s0(x1) = 0. (3.3.3)

After sliding mode occurs in the sliding manifold (Equation 3.3.3), the condi-
tion (Equation 3.3.2) holds, and the additional motion in the system will be 
governed by the differential equation 

 �x f x s x t1 1 1 0 1= −( ), ( ),  (3.3.4)

with the desired dynamic properties.
The design of the discontinuous control may be performed using the 

methods of Section 3.1 with x x xT T T= [ ]1 2 , f f fT T T= [ ]1 2 , B BT T= ×[0 ]m (n-m) 2 , G = 
[G1 Im], G1 = {∂s0/∂ x1} being an m × (n − m) matrix.

Note the following characteristics for the design in the regular form:

 1. In contrast to Equations 3.2.2 and 3.2.3, the sliding mode equation 
does not depend on gradient matrix G, which makes the design prob-
lem at the fi rst stage a conventional one: design of m- dimensional 
control x2 in (n − m)-dimensional system with state vector x1.

 2. Calculation of the equivalent control to fi nd the sliding mode equa-
tion is not needed.

 3. The condition det(GB) = det(B2) ≠ 0 holds. (Recall that this condi-
tion is needed to enforce sliding mode in the preselected manifold 
s(x) = 0.)

 4. Sliding mode is invariant with respect to functions f2 and B2 in the 
second block.

These characteristics suggest that we should fi nd a coordinate transforma-
tion reducing the original affi ne system (Equation 3.2.1) to the regular form 
(Equation 3.3.1) before designing sliding mode control. We will confi ne our-
selves to systems with scalar controls. The methods related to systems with 
vector control may be found in the work of Luk’yanov and Utkin [1981]. We 
assume that, in a system,

 
�x f x t b x t u

x u f f fn T

= +

∈ℜ ∈ℜ =

( , ) ( , ) ,

, , [ , ...,1 nn],
 (3.3.5)

b(x, t) is an n-dimensional vector with components bi(x, t), i = 1,…,n. Assume 
that at least one of them, let it be bn(x, t), is different from zero for any x and t 

 bn(x, t) ≠ 0.
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Let a solution to an auxiliary system of (n − 1)th order,

 dxi/dxn = bi/bn, i = 1,…,n, xT = (x1,…,xn), (3.3.6)

be a set of functions:

 xi = φi(xn, t), i = 1,…,n − 1. (3.3.7)

Let us introduce the nonsingular coordinate transformation

 yi = xi − φi(xn, t), i = 1,…,n − 1. (3.3.8)

According to Equations 3.3.5 through 3.3.8, the motion equations with respect 
to new state vector (y1,…,yn−1, xn) are of the form

 

� � �

� �

y x
d x t

dx
x

x
dx
dx

x f

i i
i n

n
n

i
i

n
n i

= −

= − =

ϕ ( , )

++ − +

= −

b u
b
b

f b u

f
b
b

f

i
i

n
n n

i
i

n
n

( )

, ii n

x f b un n n

= −

= +

1 1,...,

.�

Replacing xi by yi +φi(xn) leads to motion equations 

 
�

�

y f y x t

x f y x b y x t u
n

n n n n n

=

= +

*

* *

( , , ),

( , ) ( , , ) ,,
 (3.3.9)

where y and f* are (n − 1)-dimensional vectors, and fn
*and bn

* are scalar functions.
The system with respect to y and xn is in the regular form (Equation 3.3.1) 
with (n − 1)th and fi rst-order blocks.

For a particular case with bi depending only on one coordinate xn, the state 
transformation may be found in the explicit form

 y x
b t
b t

di i
i

n

xn

= − ∫
( , )

( , )

γ
γ

γ
0

. (3.3.10)

The system with respect to the new variables is in the regular form (Equation 
3.3.9) as well.
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3.4. Invariance 

Consider a control system with time-varying parameters operating in the 
presence of disturbances. Given reference inputs may be treated as distur-
bances if the deviations of control variables from the inputs are included 
into a state vector. The possibility of designing systems with invariant 
sliding motions in canonical spaces was discussed in the introduction to 
Chapter 1.

Let variable x1 and its time derivatives x xi
i1

1− = , i = 2,…,n be components of 
a state vector in the canonical space. Then the motion equations of a single-
input-single-output system in canonical space are of the form

 

�

�

x x i n

x a t x f t

i i

n i i

= = −

= − +

+1 1 1, , ...,

( ) ( )) ( ) ,+
=
∑ b t u
i

n

1

 (3.4.1)

where ai(t) and b(t) are bounded parameters with known range |ai(t)| ≤ ai0, 
|b(t)| ≥ b0, f(t) is a bounded disturbance |f(t)| ≤ f0 with ai0, b0, f0 being known 
scalar numbers. Let the control be a discontinuous state function

 u x M s x x s c xi
i

n

i i
i

n

= − + = =
= =
∑ ∑( ) ( ), ,α sign

1 1

,,

where α , M, and ci are constant values and cn = 1. Calculate the time deriva-
tive of function s as 

 �s c a x b x M s ci i i
i

n

= − − +−
=
∑ ( ) ( ) ( )1

1
0α sign with == 0.

The conditions for the state to reach plane s = 0 in the state space and for slid-
ing mode to exist (see Equation 2.4.1) are fulfi lled if

 b0α > max(ci−1 − ai0), i = 1,…,n, b0M > f0.

After a fi nite time interval, sliding mode occurs in the plane s = 0. To obtain 

the sliding mode equation, x c xn i i
i

n

= −
=

−

∑
1

1

 should be substituted into the 

(n − 1)th equation of the system in Equation 3.4.1 and the last one should be 
disregarded:

 

�

�

x x i n

x c x

i i

n i i
i

n

= = −

= −

+

−
=

−
1

1
1

1 2, ,...,
11

∑ .
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The sliding mode equation is invariant to the plant parameter variations and 
the disturbance, and its dynamics are determined by the roots of the char-
acteristic equation

 pn−1 + cn−1pn−2 + … + c2p +c1 = 0,

which may be shaped by a proper choice of coeffi cients ci in the equations of 
the discontinuity surface. 

However, technical diffi culties involved in obtaining time derivatives of 
the plant output x1 are the major obstacles for implementation of such spe-
cifi c sliding modes. At the same time, by means of both scalar and vector 
control, invariant sliding modes can be enforced in the spaces whose coordi-
nates may not only be derivatives but arbitrary physical variables as well.

Let us formulate the invariance conditions for arbitrary affi ne systems of 
the form in Equation 3.2.1:

 �x f x t B x t u h x t= + +( , ) ( , ) ( , ), (3.4.2)

where vector h(x, t) characterizes disturbances and parameter variations that 
should not affect the feedback system dynamics. In compliance with the 
equivalent control method (see Section 2.3), the solution to �s G f Bu h= + + =( ) 0 
with respect to control,

 ueq = −(GB)−1 (  f + h)

should be substituted into the system Equation 3.4.2 to yield

 �x f B GB Gf I B GB G hn= − + −− −( ) ( ( ) ) .1 1  (3.4.3)

Let range B(x, t) be a subspace formed by the base vectors of matrix B(x, t) for 
each point (x, t). Sliding mode is invariant with respect to vector h(x, t) if

 h(x, t) ∈ range(B(x, t)). (3.4.4)

The condition in Equation 3.4.4 means that there exists vector γ (x, t) such that 

 h(x, t) = B(x, t) γ (x, t). (3.4.5)

Direct substitution of vector h(x, t) in the form of Equation 3.4.5 into Equation 
3.4.3 demonstrates that the sliding motion in any manifold s(x) = 0 does not 
depend on perturbation vector h(x, t). As follows from the design methods in 
Sections 3.1 and 3.2, an upper estimate of this vector is needed to enforce the 
sliding motion. The condition in Equation 3.4.5 generalizes the invariance 
condition obtained by Drazenovic [1969] for linear systems.
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3.5. Unit Control 

The objective of this section is to demonstrate a design method for discon-
tinuous control enforcing sliding mode in some manifold without individual 
selection of each component of control as a discontinuous state function. The 
approach implies design of control based on a Lyapunov function selected 
for a nominal (feedback or open-loop) system. The control is to be found 
such that the time derivative of the Lyapunov function is negative along the 
trajectories of the system with perturbations caused by uncertainties in the 
plant model and environment conditions.

The roots of the above approach may be found in papers by Gutman and 
Leitmann published in the 1970s [Gutman and Leitmann 1976; Gutman 1979]. 
The design idea may be explained for an affi ne system:

 �x f x t B x t u h x t= + +( , ) ( , ) ( , ), (3.5.1)

with state and control vectors x n∈ℜ , u m∈ℜ , state-dependent vectors f(x, t), 
h(x, t), and control input matrix B x t n m( , ) ∈ℜ × . The vector h(x, t) represents 
the system uncertainties, and its infl uence on the control process should be 
rejected. The equation

 �x f x t= ( , ) (3.5.2)

represents an open-loop nominal system that is assumed to be asymptoti-
cally stable with a known Lyapunov function candidate

 

V x

W dV dt V f Vo h u
T

( ) ,

/ ( ) , (, grad grad

>

= = <= =

0

00 0 )) ... .T

n

V
x

V
x

= ∂
∂

∂
∂

⎡

⎣
⎢

⎤

⎦
⎥

1

 (3.5.3)

The perturbation vector h(x, t) is assumed to satisfy the matching conditions 
(Equation 3.4.4); hence, there exists vector γ  (x, t) ∈ Rm such that

 h(x, t) = B(x, t) γ (x, t). (3.5.4)

 γ (x, t) may be an unknown vector with known upper scalar estimate γ  0(x, t),

 γ γ( , ) ( , ).x t x to<  (3.5.5)

Calculate the time derivative of Lyapunov function V(x) along the trajecto-
ries of the perturbed system (Equations 3.5.2 through 3.5.5) as

 W = dV/dt = Wo + grad(V)T B(u + γ  ). (3.5.6)
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For control u depending on the upper estimate of the unknown disturbance, 
chosen as 

 u x t
B V
B V

T

T
= −ρ( , )

( )

( )
,

grad

grad
 (3.5.7)

with a scalar function ρ (x, t) > γ0(x, t) and 

 B V V B B VT T Tgrad grad grad( ) ( ) ( ) ,
2

= ( )( )

the time derivative of the Lyapunov function, 

 
W W x t B V V B x t

W

o
T T

o

= − +

<

ρ γ( , ) ( ) ( ) ( , )grad grad

−− −

<

B V x t x tTgrad( ) [ ( , ) ( , )]ρ γ 0

0

is negative. This implies that the perturbed system with control (Equation 
3.5.7) is asymptotically stable as well.

Two important features should be underlined for the system with control 
(Equation 3.5.7):

 1. Control (Equation 3.5.7) undergoes discontinuities in (n − m)-dimen-
sional manifold s(x) = BT grad(V) = 0 and is a continuous state function 
beyond this manifold. This is the principle difference between control 
(Equation 3.5.7) and all the control inputs in the previous sections with 
individual switching functions for each control component.

 2. The disturbance h(x, t) is rejected because of enforcing sliding mode 
in the manifold s(x) = 0. Indeed, if the disturbance (Equation 3.5.4) is 
rejected, then control u should be equal to −γ (x, t) which is not gen-
erally the case for the control (Equation 3.5.7) beyond the discon-
tinuity manifold s(x) = BT grad(V) ≠ 0. It means that sliding mode 
occurs in the manifold s = 0, and the equivalent value of control ueq 
is equal to −λ(x, t). 

Note that the norm of control (Equation 3.5.7) with the gain   
ρ(x, t) = 1 

 
B V
B V

T

T

grad

grad

( )

( )

  is equal to one for any value of the state vector. It explains the term 
“unit control” for the control (Equation 3.5.7).
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Later on, unit control was used directly with a Lyapunov function at the 
second stage of the conventional two-stage design procedure for sliding 
mode control: selection of a sliding manifold s(x) = 0 and enforcing sliding 
mode in this manifold [Ryan and Corless 1984; Dorling and Zinober 1986]. 
The manifold s(x) = 0 was selected in compliance with some performance 
criterion and the control was designed similar to that of Equation 3.5.7:

 u x t
D s x
D s x

T

T
= −ρ( , )

( )

( )
, (3.5.8)

with D = GB, G = {∂s/ ∂x}, and D was assumed to be nonsingular.
The equation of the motion projection of the system in Equation 3.5.1 on 

the subspace s is of form

 �s G f h Du= + +( ) . (3.5.9)

The conditions for the trajectories to converge to the manifold s(x) = 0 and for 
sliding mode to exist in this manifold may be derived based on a Lyapunov 
function candidate

 V s sT= >1

2
0. (3.5.10)

Find the time derivative of Lyapunov function (Equation 3.5.10) along the 
trajectories of the system in Equation 3.5.9 with control Equation 3.5.8:

 

�V s G f h x t D s x

s D D G f h

T T

T

= + −

= + −−

( ) ( , ) ( )

[ ][ ( )]

ρ

ρ1 (( , ) ( )

( ) ( ) ( , ) .

x t D s x

D s x D G f h x t

T

T≤ + −⎡⎣ ⎤⎦
−1 ρ

For ρ( , ) ( )x t D G f h> +−1 , the value of �V is negative; therefore, the state will reach 
the manifold s(x) = 0. Next, we will show that, if ρ ρ( , ) ( )x t D G f h− + ≥ >−1

0 0 
( ρ0 is constant value), then s(x) vanishes and sliding mode occurs after a fi nite 
time interval. Preliminarily, we estimate D s xT ( ) :

 s D D s D D s D s D sT T T T T T= ≤ ≥− − − −
( ) ( ) ( ) .1 1 1 1

and

Thus, �V D sT≤ − − −
( ) 1 1

0ρ , and, because V s s V= =1

2
2

2
,  leads to 

 �V V DT< − = − −
η η ρ1 2 1 1

02/ , ( ) .
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The solution to the differential inequality V(t) is nonnegative and is bounded by 

 V t t V V V( ) , ( ).< − + ⎞
⎠⎟ =

⎛
⎝⎜

η
2

00

2

0

Because the solution vanishes after some t Vs < 2
0η

, the vector s vanishes as 

well and sliding mode starts after a fi nite time interval.
Again, the principle difference should be underlined in motions preced-

ing the sliding mode in s(x) = 0 for the conventional componentwise control 
and unit control design methods. For the conventional method, the control 
undergoes discontinuities should any of the components of vector s change 
sign, whereas the unit control is a continuous state function until the mani-
fold s(x) = 0 is reached. 

3.6. Second-Order Sliding Mode Control

3.6.1. Preliminary Remarks

The systems with scalar control

 

�x f x t b x t u x f b

u x
u x s x

n= + ∈

=
+

( , ) ( , ) , , ,   ,

( )
( ) (

!

if ))

( ) ( )
,   , ,

>
<−

+ −0

0u x s x
u u s

if
are continuous sccalar functions.

⎧
⎨
⎩

 (3.6.1)

will be treated in this section.
Time derivative of s is a discontinuous state function (or (grad(s))T b   ≠ 0), 

and sliding mode is enforced on the surface s(x) = 0. The above condition 
means that the relative degree with respect to function s(x) is equal to one, 
i.e., the derivative of s(x) depends directly on control u(x). Of course, gener-
ally speaking, the control system is designed to control some output variable 
y(x), and the relative degree with respect to the output should not be equal 
to one. It depends on the structure of the plant and does not depend on the 
controller. For enforcing sliding mode, relative degree with respect to s(x) 
equal to one can be provided by selecting it as a state function or, as we will 
see in Section 9.2, a function of the state of a dynamic controller. 

The principal design idea of sliding mode control implies generating 
reduced order motion in some manifold s(x) = 0 with the desired properties. 
The question of interest is, “Can a similar effect be reached for cases with 
a relative degree greater than one, i.e., when the time derivative of s(x) is 
continuous, but ��s x( ) is a discontinuous state function and the control input 
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is a continuous state function?” If true, the range of applications of sliding 
mode control will be increased because not all actuators can operate with 
discontinuous inputs. For example, high-frequency switching in an output 
may result in damage of valves in hydraulic actuators. This chattering prob-
lem will be addressed in Chapter 8.

In numerous publications, different design methods were offered for 
these cases, and the authors referred to these methods as “high-order slid-
ing mode control.” For a survey, see the work of Levant [2007]. The design 
methods will be discussed in this chapter except for the cases when high-
order sliding modes can be easily interpreted in terms of the conventional 
sliding modes (or fi rst-order sliding modes). For example, conventional slid-
ing mode occurs in the switching line cx x+ =� 0 in the system in Equation 
1.2.1 studied in the introductory chapter. If s0 = x denotes the switching 
function, then �s0 is continuous, whereas ��s0 is discontinuous, but it is hardly 
reasonable to call the conventional sliding mode in the point x x= =� 0 
 second-order sliding mode. Similarly, sliding mode in the origin of the 
canonical space of the system in Equation 1.2.3 should not be referred to as 
the nth order sliding mode with respect to s0 = x, or the (n − 1)th order with 
respect to s cx x1 = + � , and so on.

As a fi nal remark of this section, the problem of sliding mode existence in 
the system with continuous control will be addressed. The design objective 
is the same as in fi rst-order sliding mode system, e.g., Equation 1.2.2: the state 
trajectories should be in the manifold s(x) = 0. If the right-hand side of the 
motion equation satisfi es the Lipschitz condition (which is not the case for 
control as a discontinuous state function), then the manifold s(x) = 0 cannot 
be reached for arbitrary initial conditions as a result of uniqueness of solu-
tions. However, it can happen if control is a continuous non-Lipschitzian 
function. Indeed, let the continuous control in the system in Equations 2.3.3 
and 2.3.4 with GB = I be of form

 u u
s

s
u

s

s
eq s

= − + =
→0 1

2 0
1

2
0, lim

||||
 (3.6.2)

Then the time derivative of Lyapunov function V s sT= >1
2

0 is

 � �V s V V= − < = −
3

2
3

40 2and ( ) . (3.6.3)

The solution of Equation 3.6.3 V t V t( ) ( )= −
−

0

1
4

5
4 42  is equal to zero for 

t V≥ 2
5

4
0

5
4. It means that the trajectories of the system with continuous con-

trol belong to the manifold s x( ) = 0  after a fi nite time interval. The motion is 
similar to that of the systems with discontinuous control: it is reasonable to 

call this motion sliding mode. 

TAF-65602-08-1101-C003.indd   55TAF-65602-08-1101-C003.indd   55 3/31/09   7:48:03 PM3/31/09   7:48:03 PM



© 2009 by Taylor & Francis Group, LLC

56 Sliding Mode Control in Electro-Mechanical Systems

3.6.2. Twisting Algorithm 

The system in Equation 3.6.1 is assumed to have a relative degree with respect 
to s(x) equal to one. Then discontinuous control can be designed such that 
sliding mode occurs on the surface s(x) = 0. If because of technological con-
ditions control actions have to be continuous, the problem can be solved by 
inserting a dynamic block, for instance an integrator, between discontinuous 
control and the system input:

 �u v= .  (3.6.4)

It is assumed that the time derivative �s is available, and v is designed as a 
discontinuous function of s and �s.

Of course, this assumption means that the relative degree of the system 
has not been changed and still is equal to one. The problem of reducing 
s to zero can be easily solved based on the conventional sliding mode v = v0 
signS, S s cs= +�  with v0 being constant or a continuous state function. Because 
�S is discontinuous, sliding mode can be enforced on S = 0, which means that 
s → 0. As discussed in Section 3.6.1, it is hardly reasonable to refer to slid-
ing mode in point s s= =� 0 as the second-order sliding mode. Conventional 
sliding mode can be enforced on the line S s c s= + =� 0. Similar to Equation 
3.6.3, the solution to this equation is reduced to zero after a fi nite time. The 
fi niteness of the reaching time served as the argument for several authors to 
label the conventional sliding mode in the point s s= =� 0 “second-order slid-
ing mode.”

One more interesting modifi cation of the control algorithm for the system in 
Equations 3.6.1 and 3.6.4 was proposed under the assumption that the point 
s s= =� 0 is reached after a fi nite time interval, but sliding mode does not occur 
at this fi rst stage of motion. Illustrate the design idea for the case (grad(s))T 
b = 1. Control v M sign s M sign s= − −0 1( ) ( )� , M0, M1 are positive constant 
values, then �� �s F x t u M sign s M sign s= − −( , , ) ( ) ( )0 1 , F(x, t ,u) is a continu-
ous function of all arguments, |F(x, t, u)| ≤ F0, F0 is a constant value, 
M0 > M1 + F0, M1 > F0. Although the control undergoes discontinuities on 
�s = 0, sliding mode cannot exist on this switching line, if s ≠ 0, because 
M0 > M1 and ��s does not change sign.

Calculate time derivative of positive defi nite Lyapunov function 

V s M s= +2
1

2
2

0
� | |:

 
V

sF M s

s M s

M= −

+
≤ − ′

1

2

1

2
0

� � �

�

| |

| |

|| |
, .

�

�

s

s M s
M M F

1

2

0 0
2

0

1 0

+
< ′ = − >

Because the condition �s = 0 cannot hold for any fi nite interval with s ≠ 0, the 
motion in the subspace ( , )s s�  is asymptotically stable, and, starting from a 
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fi nite time instant for any initial conditions, both state components will be 
bounded. Next, the fi nite time convergence to the origin will be shown. Time 
derivative of V can be written as:

 �

�

V
M

M
s
s

= −
+

<'

1

2

0

0 2

.

For 
| |

,
s
s

k k const
�2

≤ =  beyond domain D on the plane ( , )s s� , see Figure 3.1 with 

boundaries S s sI = − =� ε 0 and S s sII = + =� ε 0, ε = 1/ k ,

 �V M
M k

≤ −
+

= − <'
1

1

2

0

0

α , (3.6.5)

and the Lyapunov function decays at fi nite rate. 
Without loss of generality, the motion starting in semiplane s > 0 

will be studied only. It follows from differentiation of SI and SII that 

�S M M F x t uI = − − + +0 1
21

2
( , , ) ε  on SI = 0 and �S M M F x t uII = − + + +0 1

21

2
( , , ) ε  

S

SI > 0
SI = 0

SII = 0 SII = 0

S
SI < 0
SII > 0

0

1

2

3

•

D

FIGURE 3.1
State trajectory in the plane ( , )s s� .
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on SII = 0 are negative for some value of ε > 0.  This means that state  trajectories 
can penetrate into domain D through line SI = 0 and leave it through line 

SII = 0 only. For initial conditions on SI = 0  ( s s s0 0 0and � = ε ,  point 0) 

the state trajectory crosses axis S at time t s s t s s t1 1 1 1 1 0 1point( ( ), ( ) , ),= = =� �
 

then SII = 0 at time t t s s t t s s t t s1 2 2 1 2 2 1 2 2+ = + = + = − po( ( ), ( ) ,� � ε iint 2),

and then axis �s at time t t t s s t t t s s t t t1 2 3 3 1 2 3 1 1 2 30+ + + + + +( ( ) , (= = =� � )), ) .point 3

Further it will be shown that the average rate of decreasing of the Lyapunov 
function V is negative and does not depend on the system state. 

The system Equation 3.6.4 for s > 0 can be represented in the form

  

��
�

s m m

m S s

m S
I

II= − =
< >

,

,if

if

1

2

0 0

>> <
< <

⎧
⎨
⎪

⎩⎪
0 0

0 03

,

, .

�
�
s

m S sIIif
 

Calculate the values of the state variables at point 1,2,3 and t1, t2, t3 assuming 

that m1, m2, m3 are constant, and keeping in mind that the solution for 

each interval is of form s t m t c t c s m t c i ci
i( ) , , , , ,= + + = + =2 1 2 32

1 2 1 1 a� nnd c2 

depend on initial and boundary conditions:  

  

t
s

m
t s

m

m m
1

0

1

2 0

2

1

2
2

2

2

1
2

2

= =
+

+

ε
ε

ε

ε
, .

  (3.6.6)

It follows from Equations 3.6.4 and 3.6.6 that

t t s1 2 1 0+ ≤ β ε ,

 

β

ε

ε1

0 1 0

2

0 1 0

0 1 0
2

2

1
1

2

2

=
+ −

+
+

+ −

− − +M M F
M M F

M M F

( )

( ) (( )

.

M M F0 1 0− −  

 (3.6.7) 

For the point 2

TAF-65602-08-1101-C003.indd   58TAF-65602-08-1101-C003.indd   58 3/31/09   7:48:05 PM3/31/09   7:48:05 PM



© 2009 by Taylor & Francis Group, LLC

Design Concepts 59

  

s s t t s
m

m

s s t t2 1 2 0

2

1
2

2

2 1 2

1
2

1
2

= + =
+

+
= +( ) , ( )

ε

ε
� � == −

+

+
ε

ε

ε
s

m

m

0

2

1
2

2

1
2

1
2

 

and

  s s t t s
M M F

2 1 2 2 0 2

2

0 1 0
2

1
2

1
2

= + ≥ =
+

+ +

+
( ) ,

( )β β

ε

ε
(( )

.

M M F0 1 0− −

 (3.6.8)

The time t3 for the third interval can be found as a solution to the equation 

− − + =m
t

s t s3

2

2 2
2

0ε :

 

t
s

m
3

2

2
3

2

2
=

+ +ε ε
 

and as follows from Equations 3.6.4 and 3.6.8:

  t s
M M F

3 3 0 3

2

2
0 1 0

2

2
≥ =

+ + − +
β β

β
ε ε

,
( )

. (3.6.9) 

For initial conditions at point 0, average value of the time derivative of 

the Lyapunov can be estimated for time interval [ , ]0 1 2 3t t t+ +  taking into 

account that for time interval [ , ]0 1 2t t+  it is nonpositive:

 
 

�V
t t t

tav <
+ +

−1

1 2 3

3( ).α
 
 (3.6.10)

As follows from (3.6.7–3.6.10) the upper estimate of the average rate of decay-
ing V is negative and does not depend on the state

 

�V constav < − = =
+

>α α αβ
εβ β0 0

3

1 2

0, .

 

This estimate is valid for trajectories with arbitrary F x t u F( , , ) ≤ 0
 starting 

from any point of domain D since they run between the trajectories of the 
system with different combinations of extreme  values of mi.
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The above analysis let us make the conclusion:

Beyond the domain D for any value of the state vector the Lyapunov 
function decays at fi nite rate greater than α, for any initial conditions 
in the boundary of D or in its inner part the average rate is also fi nite 
greater than α0. This means that under the condition 

  M M F M F0 1 0 1 0> + >,  

the origin in the plane ( , )s s�  is reached after a fi nite time interval and 
then the second order sliding mode starts. It follows from the motion 
equations that the time functions S(t) and �s t( ) cannot remain sign-con-
stant; they have interlacing zeros. Therefore the sliding mode control 
algorithm discussed in this section is called “twisting.”

3.6.3. Super-Twisting Algorithm 

Similar to the twisting algorithm, the super-twisting sliding mode control 
algorithm [Levant 2007] relies on inserting an integrator into the control loop, 
such that control becomes a continuous time function. However, in contrast 
to the twisting algorithm, the time derivative of function s is not needed. 
As a result, the relative degree of the system is increased. Nevertheless, the 
new control design methodology allows enforcing the second-order sliding 
mode after a fi nite time interval and suppressing unknown disturbances 
with bounded time derivatives. The design idea of the super-twisting con-
trol again will be illustrated for the system in Equation 3.6.1 assuming that 
(grad(s))T b = 1.

For the system in Equation 3.6.1 with continuous control,

 
u a s sign s v

v Msign s a M a M c

= − +
= − > > −

| | ( ) ,

( ), , , ,� 0 0 oonst
 (3.6.11)

fi nd the second time derivative of s:

 ��
� �s a
s

s
Msign s f t= − − +

2 | |
( ) ( ), (3.6.12)

where f(t) is a function of the state and disturbances, 

 | | �f f const≤ −0 .

The Lyapunov function in Section 3.6.2 

 V s M s= +2
1

2
2� | |

will be used for stability analysis. Its time derivative for the system in 
Equation 3.6.12 is of form

TAF-65602-08-1101-C003.indd   60TAF-65602-08-1101-C003.indd   60 3/31/09   7:48:06 PM3/31/09   7:48:06 PM



© 2009 by Taylor & Francis Group, LLC

Design Concepts 61

 �

� � �

�
V

a
s

s
s

s
f

s
s M

=
− +

+

2

2

2

2

.
 

(3.6.13)

Further analysis is similar to that in the previous section.  If 
�s
s

const
2

2 0> > −ε ε,  
and

 �f a const0

1

2
1< = <εγ γ γ, ,  (3.6.14) 

then the Lyapunov function decays at a fi nite rate beyond domain D on the 
plane ( , )s s�  (Figure 3.1) with boundaries S s sI = − =� ε 0 and S s sII = + =� ε 0:

 �V a
M

≤ − −
+

<1

2
1

1

2

0
2

2

( ) .γ ε

ε
 (3.6.15)

(Again, it is assumed that s > 0.) Motion Equation 3.6.12 in the domain D may 
be written in the form

 �� �s Msign s F x u t F x u t
a

f= − + ≤ +( ) ( , , ), ( , , )
2

0ε ..

Analysis of the motion in the domain D can be done similarly to that in sec-
tion 3.6.2 assuming that

 
M M M F

a
f M F1 2 0 0 00

2
= = = + >, , , .ε �

 
(3.6.16)

It means that the estimates in Equations 3.6.7 and 3.6.8 are valid for control 

in Equation 3.6.11. Function − a s

s2

�
 is positive for the part of the trajectories 

2-3, therefore t3 can be estimated from equation �� �s M f= − − 0  similarly to the 
estimate in Equation 3.6.9:

 
t s

M f
3 3 0 3

2

2
0

2

2
≥ =

+ + +
β β

β

ε ε
,

( )
.

�  
(3.6.17)

The upper estimate of �V  in the domain D follows from Equations 3.6.13 and 
3.6.14:
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�V a
M

< γ ε2 2

4
.
 

(3.6.18)

The average rate of the Lyapunov function on the trajectory 0-1-2-3 can be 
estimated from Equations 3.6.7, 3.6.8, 3.6.15, 3.6.17, and 3.6.18:

  

�V a
M

t t a
M

t t t t< + − −
+

+ +[ ( ) ( ) ]/(
γ ε γ ε

ε

2 2

1 2

2

2 3 1 2
4

1 33

2 3
1

2

2 3

1 3

0

4
1

)

( )

.=
− −

+
+

< −
a

M
a

M

γ ε β γ ε
ε

β

εβ β
α

  

Since β1 and  β3 are not equal to zero with ε = 0, there exists a pair ε and 
 
γ

such that α0 0>
 
 which means that the Lyapunov functions decay at a fi nite 

rate. Hence the second order sliding mode in the origin of the state plane ( , )s s�  
will occur with after a fi nite time interval in the system with disturbance 
satisfying the conditions in Equations 3.6.14 and 3.6.16. The advantages of the 
super-twisting control with the second order sliding mode are: a continuous 
control suppressing arbitrary disturbances with bounded time derivative; 
there is no need to use the derivative of a switching function. 
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4
Sliding Mode Control of Pendulum Systems

The design of sliding mode control for nonlinear multivariable systems 
has been extensively studied in many books and papers. The design 
procedure of such high-order nonlinear control systems may be com-
plicated and varies from case to case. The objective of this chapter is to 
develop design methods for nonlinear mechanical systems governed by 
a set of second-order equations. The proposed approach assumes that 
the control systems can be transformed into a regular form (see Section 
3.2), which enables decoupled control design. The control laws are illus-
trated for different inverted pendulum systems. 

4.1. Design Methodology

When controlling mechanical systems, we deal with a set of interconnected 
second-order nonlinear differential equations:

 J q q f q q Bu( ) ( , ) ,�� �= +  (4.1.1)

where q un m∈ℜ ∈ℜ, , u is a vector of control forces and torques, elements of 
matrix B are equal to either 0 or 1, rank (B) = m. In particular, for rotational 
mechanical systems, J(q) is an inertia matrix. The system may be underactu-
ated, i.e., it has fewer inputs than degrees of freedom, and/or is unstable. 

The system in Equation 4.1.1 may be represented in the form of 2n equa-
tions of fi rst order with respect to vectors q1 = q and q q2 1= � , and then the regu-
lar form approach can be applied. Here, we will generalize the approach for 
systems consisting of blocks governed by the second-order equations. Then 
it can directly be applied to nonlinear mechanical systems (Equation 4.1.1).

The inertia matrix J(q) in mechanical systems is nonsingular, and B has full 
rank matrix; hence, J−1(q)B has full rank as well. The components of vector q 
may be reordered such that, in the motion equations,

 

�� � � �

�� � � �
q f q q B q u

q f q q B q

1 1 1

2 2 2

= +

= +

( , ) ( )

( , ) ( )uu

q
q

q
q q

f

f
=

⎡

⎣
⎢

⎤

⎦
⎥ ∈ℜ ∈ℜ

⎡
1

2
1 2

1

2

, ,,n-m m
�

�⎣⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=− −J f
B

B
J B1 1

2

1, , det(
�

�
��B2 0) .≠

 

(4.1.2)
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According to the regular form technique, as discussed in Section 3.2, a coor-
dinate transformation z q n m= ∈ℜ −φ( ) , y = q2 with continuously differentiable 
function φ(q) should be found such that the condition 

 

∂
∂

=−φ( )q
q

J B1 0

is fulfi lled. Then � �z
q

q
q=

∂
∂
φ( )

, �� � �z
q

q
q

q q
q

q
J f Bu= ∂

∂
∂

∂
⎛
⎝⎜

⎞
⎠⎟

+
∂

∂
+−φ φ( ) ( )

( )1  and the

mechanical system equation is reduced to the regular form consisting of a 
set of second-order equations:

 

�� � �
�� � �
z f z y z y

y f z y z y B z y u

=
= +

1

2 2

( , , , )

( , , , ) ( , ) ,, det( ) .B2 0≠  
(4.1.3)

For the regular form with blocks consisting of fi rst-order equations (Section 
3.2), the state of the low block was handled as control in the top block. The 
desired dependence between the two subvectors was provided by enforcing 
sliding mode. 

In our case, the top block equation in Equation 4.1.3 depends on both vec-
tors y and �y. This fact introduces some peculiarities that should be taken 
into account when designing sliding mode control. Furthermore, stabiliza-
tion tasks for different types of mechanical systems will be studied. It is 
assumed that the origin in a system state space is an equilibrium point of an 
open-loop system:

 f1(0, 0, 0, 0) = 0,

 f2(0, 0, 0, 0) = 0. 

4.1.1. Case 4.1

First, the stability of the system zero dynamics with vector y as an output 
is checked. They are governed by the fi rst equation in Equation 4.1.3 with 
y = 0, �y = 0:

 �� �z f z z= 1 0 0( , , , ). (4.1.4)

If they are stable, then sliding mode is enforced in the manifold s y cy= + =� 0 
with scalar parameter c > 0. It is a simple task because rank (B2) = m and 
any method of enforcing sliding modes in Sections 3.1 and 3.3 is applicable. 
After sliding mode starts in the manifold s = 0, the state y tends to zero as 
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a  solution to �y cy+ = 0, and, hence, because of stability of zero solution of 
Equation 4.1.4, z decays as well.

4.1.2. Case 4.2

Now stability of the system zero dynamics with vector z as an output is 
checked. If z(t) ≡ 0, then the zero dynamics equation are obtained from the 
top block of Equation 4.1.3:

 f y y1 0 0 0( , , , ) .� =  (4.1.5)

Note that the zero dynamics are a set of fi rst-order equations, whereas they 
are a set of second-order equations in Case 4.1. If the zero dynamics are sta-
ble, then sliding mode is enforced in the manifold 

 s f c z c z= + + =1 1 2 0� .

After sliding mode starts, 

 f c z c z1 1 2= − − �, (4.1.6)

and the equation for z in Equation 4.1.3 is of the form 

 �� �z c z c z= − −1 2 . (4.1.7)

For positive scalar parameters c1 and c2, the solution to Equation 4.1.7 tends 
to zero, and then y(t) as a solution to Equation 4.1.6 tends to zero as well. This 
stabilization method for systems with stable zero dynamics is applicable if

 
rank dim( ) dim( ).

∂
∂

⎛
⎝⎜

⎞
⎠⎟

≥ =
f
y

B s z1
2�

 
(4.1.8)

Then � � �
�

s F z y z y
f
y

B u= +
∂
∂

( , , , ) 1
2  (F is a function independent of the control u),

and, as shown in Section 3.2, sliding mode can be enforced. Generally speak-
ing, this condition holds if dim(z) ≤ dim(y).

4.1.3. Case 4.3

We assume that function f1 in Equation 4.1.3 does not depend on �y, 
i.e., f f z y z1 1= ( , , ).�  If the condition in Equation 4.1.6 holds, then z and �z tend 
to zero. After z decays, y is found from the algebraic equation f1(0,y,0) = 0. 
Because the origin of the state space is the equilibrium point, f1(0,0,0) = 0, 
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coordinate y tends to zero as well. To provide the condition in Equation 4.1.6, 
the switching manifold is selected as

 s s s= + = >�
1 1 0α α, 0,

with s f c z c z1 1 1 2= + + � . The time derivative of s1 and s are of form

� � �s
f
y

y F z y z1
1

1=
∂
∂

+ ( , , ), where function F z y z1( , , )�  depends on neither �y nor 

 control, and � � �s F z y z y
f
y

B u= +
∂
∂

( , , , ) 1
2 , where function F z y z y( , , , )� �  does not 

depend on control. As for Case 4.2, sliding mode can be enforced in the 
 manifold s = 0 if the condition in Equation 4.1.8 holds. In sliding mode, s1(t) 
decays as a solution to the equation �s s1 1 0+ =α . This means that the condi-
tion in Equation 4.1.6 holds, and z t z t( ), ( )� , and y(t) tend to zero.

4.1.4. Case 4.4

Let us assume that the condition in Equation 4.1.8 holds and consider the 
special case of function f1: 

 f f y y f z y z1 11 12= +( ) ( , , ),� �

which is linear with respect to �y and the zero dynamics governed by 
f y y f y11 12 0 0 0( ) ( , , )� + =  are unstable (otherwise the design method of Case 4.2 
is applicable). Then the fi rst equation of Equation 4.1.3 with respect to new 
variables,

 z z g y z z z z n m
1 2 1 2= − = ∈ℜ −� ( ), , , ,

is transformed to 

 

� � �

�

z f z z y f y y
g
y

y

z z g

1 12 1 2 11

2 1

= ′ + −
∂
∂

= +

( , , ) ( ) ,

(yy

g
y

g
y

i n m

j
i

j

),

,
, ...,∂

∂
=

∂
∂

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= −
=
1

1,, ..., m

 (4.1.9)

 ′ = +( )f z z y f z y z g y12 1 2 12 2 1( , , ) , , ( ) .

If the function g(y) is a solution to the partial differential equation

 
∂
∂

=
g
y

f y11( ), (4.1.10)
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then the system in Equation 4.19 is reduced to

 �p F p y p
z

z
f

f z z y
= =

⎡

⎣
⎢

⎤

⎦
⎥ =

′
( , ), ,

( , ,1

2

12 1 2 ))

( )
.

z g y1 +
⎡

⎣
⎢

⎤

⎦
⎥  (4.1.11)

In the reduced order system in Equation 4.1.11, the state of the second block 
in Equation 4.1.3 y is handled as (n − m)-dimensional control. For instance, it 
may be selected 

 y s p= − 0( ) (4.1.12)

such that the system

 �p F p s p= −( ), ( )0

is asymptotically stable. The relationship in Equation 4.1.12 is valid if sliding 
mode is enforced in the manifold 

 s = y + s0(p) = 0.

Similar to Case 4.2, this can be done because Equation 4.1.8 holds by our 
assumption.

Remark 4.1

The design procedures for Cases 4.2 through 4.4 were developed under the 
assumption in Equation 4.1.8. If this condition does not hold, a multistep pro-
cedure may be applied similar to that described by Luk’yanov and Dodds 
[Luk’yanov 1993; Luk’yanov and Dodds 1996].

An example of a two-step design will be described in Section 5.6 for lin-
ear time-varying systems. Three nonlinear pendulum systems based on the 
above design procedures will be studied in the following section. The spe-
cifi c design procedures for selecting a sliding manifold and discontinuous 
control for a cart pendulum, a double-inverted pendulum, and a rotational 
inverted pendulum will be demonstrated. The theoretical studies will be 
complemented by simulation and experimental results.

4.2. Cart Pendulum

Figure 4.1 shows the physical model of a cart-pendulum system. M and m are 
masses of the cart and the inverted pendulum, respectively. l is the distance 
from the center of gravity of the link to its attachment point. The coordinate x 
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represents the position of the cart on the horizontal axis to a fi xed point, and 
θ is the rotational angle of the pendulum. Using the method of Lagrangian 
equations, one can easily show that the dynamic equations of the cart pen-
dulum [Mori, Nishihara, and Furuta 1976] are

 

( ) cos sin

c

M m x ml ml u

ml mx

+ + − =

+

�� �� �

�� ��

θ θ θ θ

θ

2

4

3
oos sin .θ θ− =

⎧
⎨
⎪

⎩⎪
mg 0

 (4.2.1)

The goal of the control is to stabilize the system in a position in which the 
pendulum is in the unstable vertical position θ = 0 and the cart is at a given 
point on the straight line x = 0 under the action of the control force u. It is 
assumed that the parameters and the state vector are available. For conve-
nience of design, we fi rst rewrite the given system in Equation 4.2.1 with 
respect to the second derivatives of the coordinates x and θ as

 

��

��

x
k

mg u

kl
M m g

= − +⎛
⎝⎜

⎞
⎠⎟

= +

1 4

3

1

cos sin

( ) si

*θ θ

θ nn cos ,*θ θ−( )

⎧

⎨
⎪⎪

⎩
⎪
⎪ u

 

(4.2.2)

where

 
k M m m= + − >4

3
02( ) cos θ

and 

 u u ml* sin .= + �θ θ2  (4.2.3)

FIGURE 4.1
The cart-pendulum system.
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The system in Equation 4.2.2 with scalar control u* is in the form of Equation 
4.1.2 with

 

�

�
B

B
k

kl

1

2

4

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
−

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

cos( )θ
.

To reduce the system to the regular form of Equation 4.2.2, coordinate 
transformation

 y = ϕ (x, θ)

should be found such that the second-order differential equation with respect 
to y does not depend on the control u*. The solution to the problem is given in 
Section 3.2. According to Equations 3.2.5 and 3.2.8,

 

y x

x

=
= −

φ θ
ϕ θ

( , )

( ),  
(4.2.4)

where φ(θ) is a solution to the equation 
d
d

B
B

ϕ
θ

=
�
�

1

2

 or

 

d
d

lϕ
θ θ

= − 4

3cos( )
.

The coordinate transformation in Equation 4.2.4 with the solution to this 
equation 

 
ϕ θ θ

θ
( ) ln

tan( )

tan( )
= −

+
−

4

3

1 2

1 2
l

results in

 
� �

�
y x l= + 4

3

θ
θcos

and 

 
�� ��

�� �
y x l l= + +4

3

4

3

2

2

θ
θ

θθ
θcos

sin

cos
.
 

(4.2.5)
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The regular form of the system obtained from Equations 4.2.2 and 4.2.5 is 
in the form 

 

�� �

��
y G

v u

=

=

( , )tan

( , )
,

*

θ θ θ

θ θ  
(4.2.6)

where

 
G

g
k

m M l( , ) cos
c

θ θ θ θ�
�

= −⎛
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⎞
⎠⎟ +⎛
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⎞
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+4

3

4

3

4

3
2

2

oosθ

and

 
v u

kl
M m g u( , ) ( ) sin cos .* *θ θ θ= + −( )1

 
(4.2.7)

Control of the nonlinear system (Equation 4.2.6) may be found as outlined 
below.

Step 1: Consider the fi rst equation of the system in Equation 4.2.6. The 
function denoted as G( , )θ θ�  is positive for any values of the arguments if 

− < <π θ π
2 2

. The function tan(θ) is handled as control based on the choice

proposed in Equation 4.1.6. For this intermediate control, select tan(θ) as lin-
ear combination of y and �y,

 tan( ) ,θ α α= − > = +1 2 1 2s s y y0, �  (4.2.8)

then, the upper equation of the system in Equation 4.2.6 is represented as

 

�

� �
y y s

s y G s

= − +

= − − −
2

2 1 21( ( , ) ) .α θ θ

The time derivative of the Lyapunov function candidate

 
V y s= +1

2
2

2
2( ),

with V = 0 at the origin (y, s2) = (0,0) is �V y G s= − − −2
1 2

21( )α . Because G( , )θ θ� > 0 

for − < <π θ π
2 2

, we observe that �V < 0 for α1G > 1, i.e., design parameter α1

should be chosen such that α1 > 1/G > 0 for any t. Hence, the equilibrium 
point is asymptotically stable with y → 0 and s2 → 0 as t → ∞. Consequently, 
(x, θ) → (0, 0) as t → ∞, as follows from Equations 4.2.4 and 4.2.8.

TAF-65602-08-1101-C004.indd   70TAF-65602-08-1101-C004.indd   70 3/31/09   7:49:10 PM3/31/09   7:49:10 PM



© 2009 by Taylor & Francis Group, LLC

Sliding Mode Control of Pendulum Systems 71

To implement intermediate control (Equation 4.2.8), control u* will be 
designed such that the function s y y t1 1 0= + + → → ∞tan ( ) ,θ α � as then
tan ( ).θ α→ − +1 y y�

Step 2: The function s1 tends to zero asymptotically, if it is a solution to 
differential equation 

 
�s s1 2 1= − α

θcos

or

 s y y s s( , , , ) (cos ) ,θ θ θ α� � �= + =2
1 1 0

with s y y1 1= + +tan ( )θ α �  and � � �s y G1 2 1

1= + +
cos

( tan )
θ

θ α θ .

Step 3: To assign the control law such that 

 s y G s= + + + =� �θ α θ θ α1
2

1 0cos ( tan ) ,

calculate the time derivative of the function s along the solutions of Equation 
4.2.6:

 � � � �s v F y= +Ψ( , ) ( , , )θ θ θ θ , (4.2.9)

where

 
Ψ( , ) (sin )θ θ α θ θ� �= +1

8

3
1l

and

 

F y G s G( , , ) (cos ) tan [ (cos siθ θ α θ θ α α θ� �= + + −1
2
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θ θ θ

α θ θ θ

� �y G
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2

2

2

1 ssin
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cos
.θ θ θ

θ
θ+⎛

⎝⎜
⎞
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4

3
2

2
l � �

The state reaches the surface s = 0 for any initial conditions, and sliding mode 
exists at any point of the surface if the deviation from the surface s and its 
time derivative have opposite signs. This condition is satisfi ed if 

 v v so= − sign( ( , ))Ψ θ θ�  (4.2.10)

where

 
v Fo ≥ 1

Ψ
min

max
.
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Finally, the real control is obtained from Equations 4.2.10, 4.2.7, and 4.2.3:

 u M m g ml klv signo= + −( ) +1 2

cos
( ) sin cos sin (

θ
θ θ θθ� ssΨ) .( )

It should be noticed that sliding mode may disappear, if Ψ = 0, because �s in 
Equation 4.2.9 does not depend on control v for Ψ = 0. On one hand, the func-

tion Ψ is positive for the domain 
8

3
11α θ θl(sin ) � > − , including the origin. On 

the other hand, for the domain,

 
9

64 1
2 2 2α

θ
θ

θ
l

vo

cos

sin
(sin ) ,>  (4.2.10)

a system trajectory may intersect the surface Ψ = 0 once only. To derive this 
condition, calculate time derivative of the function Ψ on system trajectories 
for the points on the surface Ψ = 0: 

 � � ��Ψ = +( ) =8

3

8

3

9

64
1

2
1

1
2 2

α θ θ θ θ α
α

l l
l

(cos ) (sin )
ccos

sin
(sin ) ( ) .

θ
θ

θ
2

−
⎛
⎝⎜

⎞
⎠⎟

v sign so Ψ

It is clear that �Ψ > 0 if the condition in Equation 4.2.10 holds, and it can be 
fulfi lled by a proper choice of α1 for the range

 −π/2 < θ < π/2.

4.3. Rotational Inverted Pendulum Model

A rotational inverted pendulum system as described by Widjaja [1994] is con-
sidered in this section. Figure 4.2 shows the plant consisting of a rotating 
base and a pendulum. 

m1 and J1 are mass and inertia of the pendulum, l1 is the distance from the 
center of gravity of the link to its pivot point, g is the gravity acceleration, and 
C1 is the frictional constant between the pendulum and the rotating base. 
The coordinate θ0 represents the rotational angle of the base with respect 
to some horizontal axis (usually defi ned as the starting position), and θ1 is 
the rotational angle of the pendulum with respect to the vertical axis. θ0 = 0 
refers to the unstable equilibrium point. 
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The dynamic equations of the system are represented by
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θ θ

θ θ θ
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1
1

1

1
1 1

1

1

= − +

= − + +

a K u
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m gl
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p o p

sin 11

1

0J
��θ

 

(4.3.1)

The upper equation is a simplifi ed model of the permanent magnet DC 
motor used to drive the rotating base with constants ap and Kp. The bottom 
equation of the system in Equation 4.3.1 is the dynamics of the pendulum. K1 
is a proportionality constant. The sign of K1 depends on the position of the 
pendulum: K1 < 0 inverted position and K1 > 0 for noninverted position. The 
applied armature voltage u is the only control input of the system.

As addressed  by Widjaja [1994], the inverted pendulum system includes 
several control problems: swing-up, balancing, and both swing-up and bal-
ancing. In this section, we will concentrate on a sliding mode controller for 
balancing the pendulum. The swing-up algorithm in the experiments will be 
directly taken from the work by Widjaja [1994]. First, we will try to stabilize 
the system such that the pendulum is in the unstable vertical position θ1 = 0 
and allow the base to be at an arbitrary fi xed position. Then, the design 
method will be generalized to drive both the pendulum and the rotating 
base to the equilibrium point θ1 = θ0 = 0 and maintain it there.

FIGURE 4.2
Inverted pendulum with rotating base.

l1

θ1

θ0

m1

u

Kp  ap

J1

TAF-65602-08-1101-C004.indd   73TAF-65602-08-1101-C004.indd   73 3/31/09   7:49:11 PM3/31/09   7:49:11 PM



© 2009 by Taylor & Francis Group, LLC

74 Sliding Mode Control in Electro-Mechanical Systems

4.4. Rotational Inverted Pendulum

4.4.1. Control of the Inverted Pendulum

Notice, fi rst, that in the system in Equation 4.3.1 rewritten in the form
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�� �

θ θ

θ θ θ

0

1
1

1

1
1 1

1

1

= − +

= − + −
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J
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J

K
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sin 11

1

1

1J
a

K
J

K up p+ ,
 

(4.4.1)

the control u is multiplied by constant coeffi cients. Because B(x) in this case is 
a constant matrix, a linear transformation needed to reduce the system into 
the regular form can easily be found:

 
y

J
Ko= −θ θ1

1

1.
 

(4.4.2)

Differentiating Equation 4.4.2 results in

 
� � �y

J
Ko= −θ θ1

1

1 ,
 

(4.4.3)

and the motion equations are the regular form

 

�� �

�� �

y
C
K

m gl
K

a K

J
y

C
J

p

= −

= − −

1

1

1
1 1

1

1

1

1

1

1

1

θ θ

θ

sin

++
⎛
⎝⎜

⎞
⎠⎟

+ +a
m gl

J

K K

J
up

p�θ θ1
1 1

1

1

1

1

sin .
 

(4.4.4)

Let us fi rst consider the lower subsystem of the regular form in Equation 
4.4.4 and try to stabilize the system with respect to θ1 = 0. If the discontinu-
ous control u = −M sign(s) is applied with s = +�θ αθ1 1; α > 0, both �θ1 0→  and 
θ1 → 0 as t → ∞ after sliding mode is enforced in the plane s = 0. However, 
the zero dynamics of the pendulum from the upper equation of Equation 
4.4.4 are governed by ��y = 0; hence, y → ∞ as t → ∞, and the system is unstable. 
Therefore, the conventional design approach (Case 4.1 in Section 4.1) does 
not work for the pendulum system if the control should stabilize the inverted 
pendulum in the unstable vertical position with an arbitrary fi xed position 
of the rotating base, θ0 = const.

Now we design a sliding mode controller for the pendulum system based 
on the procedure of Case 4.2 in Section 4.1. Consider the upper equation of 
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the system in Equation 4.4.4. According to Equation 4.1.6, the sliding mani-
fold should be selected as

 

C
J

m gl
J

y y1

1

1
1 1

1

1 1
� �θ θ α− = − +sin ( ).

Hence, the upper subsystem is stable,

 �� �y y y= − +α1( ),

for a positive constant α1. Both y → 0 and �y → 0 as t → ∞, but, as follows from 
the upper equation of Equation 4.4.4, the zero dynamics of the reduced order 
system,

 

�θ θ1
1 1

1

1
1 1

1

0= >
m gl

C
m gl

C
sin , ,

are unstable. Case 4.2 in Section 4.1 is not applicable and does not work. We 
now combine the ideas of Cases 4.3 and 4.4 to stabilize the pendulum. 

Step 1: Following the approach of Case 4.4, introduce a new variable, 

 
x y

C
K

= −� 1

1

1θ ,
 

(4.4.5)

such that the right-hand side of the upper block in the motion equations 
would not depend on the time derivative of the state variable of the botton 

block. Because � �� �x y
C
K

= − 1

1

1θ , substitution of ��y from the system in Equation 
4.4.4 yields
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(4.4.6)

The right-hand side of the upper equation in the system in Equation 4.4.6 
does not depend on �θ1. Then, following the approach of Case 4.3, select the 
control such that the condition

 

m gl
K

x1 1

1

1 1sinθ α=
 

(4.4.7)
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holds. The reduced order system becomes

 �x x= −α1 ,

with x → 0 as t → ∞ for positive constant α1. In addition, because x decay 
exponentially, we can conclude from Equations 4.4.7, 4.4.5, and 4.4.3 that 
functions θ1, �y, �θ1, and �θo all decay exponentially as well. As a result, the 
desired system dynamics with ( , ) ( , )�θ θo 1 0 0→  as t → ∞ are obtained, and the 
rotating base remains at a fi xed position (θ0 = const.).

Step 2: The condition in Equation 4.4.7 holds if the function

 
s

m gl
K

x1
1 1

1

1 1 0= − =sin .θ α
 

(4.4.8)

The derivative of s1 does not depend on the control u,
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but decays to zero if

 �s s1 1= −α

or

 

m gl
K

m gl
K

s1 1

1

1 1 1
1 1

1

1 1 0cos sin ; .θ θ α θ α α� + = − >

Step 3: This condition is satisfi ed if sliding mode is enforced in the surface
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1α θ θ α θ αcos sin 11 0= .
 

(4.4.9)

Sliding mode exists if the functions s and �s have opposite signs. Because 
only the derivative of �θ1 depends on the control force u, the function �s may be 
represented in the form

 
� �� �s

m gl
K

x
K m gl

J
p= + =1 1

1

1 1 1 1 1

1 1

1

cos ( , , ) cθ θ ψ θ θ oos ( , , ),θ ψ θ θ1 1 1 1u x+ � �

where Ψ1 and �ψ 1 are functions of the system states. Notice that the function 
cos θ1 is positive for the pendulum angle −π/2 < θ1 < π/2. The condition for 
existence of the sliding mode is satisfi ed if

 u = −uo sign(s), (4.4.10)
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where

 
u

J
K m glo

p

≥ ′1

1 1 1

1
cos

.
maxθ

ψ

Once the state trajectories of sliding mode are confi ned to the switching man-
ifold s = 0 after a fi nite time interval s1 → 0 and x → 0 as t → ∞. The desired 
dynamic behavior with θ0 → const and θ1 → 0 as t → ∞ is guaranteed.

4.4.2. Control of the Base Angle and Inverted Pendulum

We have just shown that the system can be stabilized with respect to θ1 = 0 

and �θ0 0=  by introducing a new variable of x. Design of the control system 
for stabilizing both the pendulum and the rotating base at the equilibrium 
point (θ0, θ1) = (0,0) is performed as follows.

Step 1: The fi rst equation of Equations 4.4.6 and 4.4.5 constitute the system 
similar to Equation 4.1.11 in the design method of Case 4.4: 
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(4.4.11)

The state component θ1 in the system in Equation 4.4.11 is handled as control. 
If the last term of the upper equation satisfi es

 sin ( ),θ λ1 1= − +x y  (4.4.12)

 with constant λ1, then the system is equivalent to

 

�
�
x a x y

y x a h x y

= − +
= + +

1 1

2 1 1

λ
λ θ
( )

( )( ), 
(4.4.13) 

where constants a1 and a2 for the interval pendulum angle −π/2 < θ1 < π/2 are 
positive because they are defi ned as

 
α α1

1 1

1

1

1

10 0 0= − > = − > <
m gl

K
C
K

K, ; .2

 
(4.4.14)

h is a function of the pendulum angle θ1, h(θ1) = θ1/sinθ1. Stability of the sys-
tem in Equation 4.4.13 is analyzed using the Lyapunov function candidate

 
V x y x= + +1

2

1

2
2 2( ) ,
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with the time derivative along the solutions of the system in Equation 4.4.13:

 
� � � �V x y x y xx a a h x y x= + + + − −( ) + +( )( ) ( ) ( ) (1 2 1 1

2θ λ xx y a x x y+ − +) ( ).1 1λ

The function �V t( ) is negative semidefi nite,

 
�V a a h x y= − −( ) + ≤1 2 1 1

2 0( ) ( ) ,θ λ

if 

 
λ1

1

1
0= >

a

and the coeffi cient

 a a h1 2 1 0−( ) >( ) .θ  (4.4.15)

The function h(θ1) satisfi es the inequalities 

 1 21≤ <h( ) / ,θ π  (4.4.16)

for pendulum angle −π/2 < θ1 < π/2. Combining the inequalities in Equations 
4.4.15 and 4.4.16 and substituting a1 and a2 from Equation 4.4.14, one obtains 
a suffi cient condition for the pendulum system to be stable as 

 

m gl
C
1 1

1

2> π / .

From a practical point of view, because the inverted pendulum is designed 
to rotate freely around its pivot, the frictional constant C1 is much less than 
the torque (m1gl1) of the pendulum itself. Therefore, the condition in Equation 
4.4.15 holds for a real pendulum system. Moreover, if �V = 0 or x + y = 0, it fol-
lows from Equation 4.4.13 that x is a constant value but y → ∞ as t → ∞ if this 
constant value is different from zero. Therefore, the system in Equation 4.4.13 
can maintain the �V = 0 condition only at the equilibrium point (x,y) = (0,0). It 
is shown that the equilibrium point is asymptotically stable in the large with 
x → 0 and y → 0 as t → ∞. Consequently, as follows from Equations 4.4.12 and 
4.4.2, (θ0,θ1) → (0,0) as t → ∞, which is control objective. 

Step 2: Following the same procedure as described in the previous case, 
Equation 4.4.12 holds if the function

 s1 = sin θ1 + λ1(x + y) = 0.
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The function s1 satisfi es the linear fi rst-order differential equation

 �s s1 1 0= − >λ λ, ,

if 

 cos ( )θ θ λ λ1 1 1 1
� � �+ + = −x y s , (4.4.17)

because, in this case,

 � � � �s x y1 1 1 1= + +cos ( ).θ θ λ

Step 3: To satisfy Equation 4.4.17, sliding mode should be enforced in the 
switching surface

 s s s x y s= + = + + + =� � � �
1 1 1 1 1 1 0λ θ θ λ λcos ( ) .

The time derivative of the function s is of the form

 � �� � �s x y
K K

J
up= + = +cos ( , , , ) cosθ θ ψ θ θ θ ψ1 1 2 1 1

1

1

1 22 1 1( , , , ),x y θ θ�

where Ψ2 and �ψ 2 are functions of the system states. The function cos θ1 is 
positive, and parameter K1 is negative for the pendulum angle −π/2 < θ1 < 
π/2. The condition for existence of sliding mode (the functions s and �s need 
to have opposite signs) is satisfi ed if

 u u s u
J

K Ko o
p

= ≥ −
sign( )

cos
.

max
with 1

1 1

2θ
ψ�

After sliding mode occurs on the surface s = 0, s1 → 0 and (x,y) → (0,0) as t → ∞. 
Finally, the desired dynamic behavior, (θ0,θ1) → (0,0) as t → ∞ is obtained.

4.5.  Simulation and Experiment Results for Rotational 

Inverted Pendulum

Both simulation and experimental results for stabilizing the rotational 
inverted pendulum system will be presented in this section. Special empha-
sis will be placed on robustness by investigating the ability of the sliding 
mode controllers for signifi cant plant parameter variations. 

TAF-65602-08-1101-C004.indd   79TAF-65602-08-1101-C004.indd   79 3/31/09   7:49:14 PM3/31/09   7:49:14 PM



© 2009 by Taylor & Francis Group, LLC

80 Sliding Mode Control in Electro-Mechanical Systems

The experimental setup was developed, and it is currently available for 
both undergraduate and graduate control system laboratories at The Ohio 
State University. 

Figure 4.3 describes the complete hardware setup confi guration of the 
inverted pendulum system. The real-time control system mainly consists of 
three parts: the controller, interface circuits, and the pendulum system. Two 
optical encoders are used to measure the angular positions of both the pen-
dulum and the base. All parameters of the inverted pendulum system are 
listed in Table 4.1, and they are determined experimentally by identifi cation 
techniques [for more details, see Widjaja 1994]. 

The inverted pendulum system allows the user to change the system 
parameters or add disturbances by attaching containers of various size and 
contents to the end of the pendulum. A container of metal bolts and water 
will later be added to the pendulum in the set of experiments. The mass of 
the container and its contents signifi cantly change the system parameters, 
whereas the motion of the water within the container acts as a disturbance 
to the system. 

FIGURE 4.3
Hardware setup confi guration of the pendulum system.
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Figure 4.4 shows the simulation results for stabilizing both the 
pendulum and the rotating base using the LQR technique with 
u o o= + + +0 7 1 0 10 8 0 71 1. . . .θ θ θ θ� � . The pendulum is fi rst swung up with the 

TABLE 4.1

Parameters of the Rotational Inverted Pendulum System

Parameters/Values Parameters/Values

l1 = 0.113 m m1 = 8.6184 × 10−2 kg

g = 9.8066 m/s2 J1 = 1.301 × 10−3 N · m ·s2

ap = 33.04 C1 = 2.979 × 10−3 N · m · s/rad

Kp = 74.89
K1
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FIGURE 4.4
Simulation results by LQR.
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swing-up algorithm, and then the LQR begins to take over the control when 
the rotational angle of the pendulum is within the range of |θ1| ≤ 0.3rad. The 
experimental results for nominal conditions by using the LQR has been pro-
vided previously [Widjaja 1994; Ordonez, Zumberge, Spooner, and Passino 
1997]. 

We will focus on the performance of the inverted pendulum system 
using our previously developed sliding mode controllers. Two case stud-
ies of the control objectives will be presented: stabilizing the pendulum at 
θ1 = 0 with �θo = 0, and stabilizing both the pendulum and the rotating base 
with respect to the equilibrium point θ1 = θo = 0. 

4.5.1. Stabilization of the Inverted Pendulum

The simulation results using the control laws developed in this section are 
shown in Figure 4.5. The required information for calculating the control 

FIGURE 4.5
Simulation results by SMC for stabilizing the pendulum.
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input is Equations 4.4.2, 4.4.5, 4.4.8, 4.4.9, and 4.4.10. As can be seen, the pen-
dulum angle is driven to zero, and the rotating base at the same time remains 
at a fi xed position (its angular velocity equals to zero) with the selected input 
gains λ1 = 0.08, λ = 100, and u0 = 3.

The discontinuous controller was implemented for real-time control of 
the pendulum. We observed that, as a result of the sampling issue of the 
discrete-time control system, in practice, the ideal sliding mode control 
cannot be implemented. Besides, as presented in many publications [Utkin 
1978; Kwatny and Siu 1987; Bartolini 1989], the chattering that appears as a 
high-frequency oscillation at the vicinity of the desired manifold may be 
excited by unmodeled high-frequency dynamics of the system. To suppress 
the  chattering, the saturating continuous approximation [Slotine and Sastry 
1983; Burton and Zinober 1986] (see also Chapters 8 and 9) will be used to 
replace the ideal switching at the vicinity of the switching manifold. This 
results in a tradeoff between accuracy and robustness. 

Figures 4.6 through 4.8 show the experimental results of the SMC for sta-
bilizing the pendulum with different loads attached to the end of the pen-
dulum. The sampling time for the control system is Δ t = 5ms, and it is fi xed 
for other experimental results in the later fi gures. The control law using a 
continuous approximation by a sinusoidal function is designed as

 u
u s s

u s

o

o

=
⎛
⎝⎜

⎞
⎠⎟ ≤sin ,

( ),

π
δ

δ
2

if

sign othherwise

,

⎧
⎨
⎪

⎩⎪
 (4.5.1)

where δ is the allowable maximum width of the continuous zone from the 
desired ideal sliding manifold s = 0. It can be easily shown that the ideal 
discontinuous control is implemented if δ = 0. The larger the value of δ, the 
less invariance to system uncertainties is anticipated, although the less chat-
tering in the system states is accomplished. The input gains of the SMC pen-
dulum system are selected as λ1 = 0.08, λ = 400, u0 = 2.5.

As can be seen in Figure 4.6 for the nominal plant, the pendulum angle is 
stabilized close to zero. The control force input, as we expected, swings up 
the pendulum from the beginning, switches to the SMC at time around 1.5 
sec, and then stays in the δ zone |u| < u0 = 2.5 after 2 sec. It should be noted 
that the system is stabilized at the point ( , ) ( , )�θ θo 1 0 0=  and it is marginally 
stable with respect to ( , )�θ θo 1 . It explains why the position of the rotating base 
is slowly drifting (θo is not constant). Similar results were obtained when the 
same controller is used to drive the pendulum with both the water (Figure 4.7) 
and the metal bolts (Figure 4.8). We observe that the controller can still 
manage the balance of the inverted pendulum quite well without satura-
tion of the control input. The interesting differences include the following: 
small ripples are generated as a result of the distributed disturbance from 
the water in Figure 4.7, the average values of the control input in both cases 
gradually converge to zero when disturbances get settled at the fi nal time 
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10 sec, and a smaller amplitude of the control input is observed at the steady 
state when additional weight, the metal bolts, are added to the system as 
shown in Figure 4.8.

4.5.2. Stabilization of the Inverted Pendulum and the Base

The sliding mode control for stabilizing both the pendulum and the base 
will be designed following Equations 4.4.2, 4.4.3, 4.4.5, and 4.4.8 through 
4.4.10. The simulation results for control (Equation 4.4.10) with the gains 
λ1 = 0.08, λ = 800, and u0 = 3 are shown in Figure 4.9. 

Figure 4.10 shows the experimental results of the SMC for the nominal 
pendulum using the modifi ed controller in Equation 4.5.1 with λ1 = 0.08, 
λ = 800, and u0 = 2.5. For a small value of δ, we observe that the control input 

FIGURE 4.6
Experimental results by SMC: no weight.
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is still similar to the discontinuous control in Figure 4.5, although its switch-
ing frequency is considerably reduced. As a result, chattering exists in both 
of the state responses. The results for a larger value of δ are shown in Figure 
4.11. The control input is no longer saturated and varies between the extreme 
values ± 2.5.

The most interesting experimental results are depicted in Figures 4.12 and 
4.13. The controller is able to provide convergence of the pendulum with both 
metal bolts and sloshing water using the same gains for the control input. The 
system states are stabilized at the vicinity of the equilibrium point (θ0,θ1) =
(0,0). The low-amplitude oscillations similar to Figure 4.7 under the effect of 
sloshing water dynamics is still observed in Figure 4.12, where the control 
input has an average value close to zero. We observe an underdamped sys-
tem response in Figure 4.12 for the pendulum with metal bolts. The control 

FIGURE 4.7
Experimental results by SMC: sloshing water.
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input oscillations are relatively large at the beginning of the process com-
pared with Figure 4.8, but then they decrease to the same level after a couple 
of seconds when both the pendulum and the rotating base get settled. 

FIGURE 4.8
Experimental results by SMC: metal bolts.
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FIGURE 4.9
Simulation results by SMC for stabilizing both the pendulum and the base.
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FIGURE 4.10
Experimental results by SMC: no weight.

0 1 2 3 4 5

SMC: no weight

6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0
–4

–2

0

Co
nt

ro
l i

np
ut

 (v
ol

ts
)

2

4

–1
0
1
2

Pe
nd

ul
um

 an
gl

e (
ra

d)

3
4
5

–1

–1.5

–0.5

0

0.5

Ba
se

 an
gl

e (
ra

d)
1

1 2 3 4 5
Time (sec)

6 7 8 9 10

TAF-65602-08-1101-C004.indd   88TAF-65602-08-1101-C004.indd   88 3/31/09   7:49:18 PM3/31/09   7:49:18 PM



© 2009 by Taylor & Francis Group, LLC

Sliding Mode Control of Pendulum Systems 89

FIGURE 4.11
Experimental results by SMC: no weight.
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FIGURE 4.12
Experimental results by SMC: sloshing water.
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FIGURE 4.13
Experimental results by SMC: metal bolts.
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5
Control of Linear Systems

The objective of this chapter is to demonstrate the sliding mode control 
design methodology for linear systems. Reducing system equations to 
the regular form will be performed as a preliminary step in all design 
procedures. The core idea is to use the methods of linear control theory 
for reduced-order equations and to use different methods of enforcing 
sliding modes with the desired dynamics.

5.1. Eigenvalue Placement

We start with the conventional problem of linear control theory: eigenvalue 
placement in a linear time invariant multidimensional system

 �x Ax Bu= + , (5.1.1)

where x and u are n- and m-dimensional state and control vectors, respec-
tively, A and B are constant matrices, rank(B) = m. The system is assumed to 
be controllable.

For any controllable system, there exists a linear feedback u = Fx (F being 
a constant matrix) such that the eigenvalues of the feedback system, i.e., of 
matrix A + BF, take the desired values, and, as a result, the system exhibits 
desired dynamic properties [Kwakernaak and Sivan 1972]. 

Now we will show that the eigenvalue task may be solved in the frame-
work of sliding mode control technique dealing with a reduced order sys-
tem. As demonstrated in Section 3.2, the design becomes simpler for systems 
represented in regular form. Because rank(B) = m, matrix B in Equation 5.1.1 
may be partitioned (after reordering the state vector components) as

 B
B

B
=

⎡

⎣
⎢

⎤

⎦
⎥

1

2

, (5.1.2)

where B Bn m m m m
1 2∈ℜ ∈ℜ− × ×( ) ,  with det B2 ≠ 0. The nonsingular coordinate 

transformation 

 
x

x
Tx T

I B B

B
n m1

2

1 2
1

2
10

⎡

⎣
⎢

⎤

⎦
⎥ = =

−⎡

⎣
⎢

⎤

⎦
⎥

−
−

−,  (5.1.3)
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reduces the system Equations 5.1.1 and 5.1.2 to regular form

 
�
�
x A x A x

x A x A x u
1 11 1 12 2

2 21 1 22 2

= +
= + + ,

 (5.1.4)

where x n m
1 ∈ℜ −( ), x m

2 ∈ℜ , and Aij are constant matrices for i, j = 1, 2. It fol-
lows from controllability of (A, B) that the pair (A11, A12) is controllable as 
well [Utkin and Young 1978]. Handling x2 as an m-dimensional intermediate 
control in the controllable (n − m)-dimensional fi rst subsystem of Equation 
5.1.4, all (n − m) eigenvalues may be assigned arbitrarily by a proper choice 
of matrix C in

 x2 = −Cx1.

To provide the desired dependence between components x1 and x2 of the 
state vector, sliding mode should be enforced in the manifold

 s = x2 + Cx1 = 0, (5.1.5)

where sT = (s1,…,sm) is the difference between the desired and real values 
of x2. 

After sliding mode starts, the motion is governed by a reduced order sys-
tem with the desired eigenvalues

 �x A x A C x1 11 1 12 1= −( )  (5.1.6)

For a piecewise linear discontinuous control

 u = −(α(|x| + δ)sign(s), (5.1.7)

with x xi
i

n

=
=
∑

1

, sign(s)T = [sign(s1) … sign(sm)], whereas α and δ are constant 

positive values, calculate the time derivative of positive defi nite function 

V s sT= 1

2

 
�V s CA A x CA A x x s

s

T= + + +( ) − +

≤

( ) ( ) ( )

(

11 21 1 12 22 2 α δ

CCA A x CA A x x s11 21 1 12 22 2+ + + − +) ( ) ( ) .α δ

It is evident that there exists such value of α that for any δ the time derivative 
�V is negative, which validates convergence of the state vector to manifold s = 0 
in Equation 5.1.5 and existence of sliding mode with the desired dynamics. 
The time interval preceding the sliding motion may be decreased by increas-
ing parameters α and δ in control (Equation 5.1.7).
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A similar result may be obtained in the system with unit control (see 
Section 3.4):

 u x
s
s

s s sT= − + =( ) , ( ) ,/α δ 1 2  (5.1.8)

which undergoes discontinuities on manifold s = 0 in contrast to control 
(Equation 5.1.7) with discontinuity points on each surface si = 0 (i = 1,…,m). 
The time derivative of V for the system in Equation 5.1.4 with control in 
Equation 5.1.8 is of the form

 
�V s CA A x CA A x x sT= + + +( ) − +( ) ( ) ( )11 21 1 12 22 2 α δ

≤≤ + + + − +s CA A x CA A x x s( ) ( ) ( ) .11 21 1 12 22 2 α δ

Again, there exists α such that �V is negative for any δ and states reach mani-
fold s = 0 after a fi nite time interval.

If the system is not reduced to the regular form, the manifold s = Cx (C 
being an m × (n − m) matrix) may be selected in terms of the original system 
(Equation 5.1.1) based on the equivalent control method approach and the 
conditions for sliding mode to exist (Sections 2.3 and 2.4). Assume that slid-
ing mode in s = 0 has the desired dynamic properties and matrix CB is not 
singular. Then 

 �s CAx CBu= + ,

and the time derivative of Lyapunov function V s sT= 1

2
 is of the form

 �V s CAx s CBuT T= + .

If matrix (CB + (CB)T) is positive defi nite, then discontinuous control 

 u = −M(x)sign(s),

with M(x) = (α|x| + δ) and suffi ciently high but fi nite α and an arbitrary value 
of δ leads to sliding mode after a fi nite time interval. (The proof is similar to 
the one for nonlinear systems in Section 3.2).

For an arbitrary matrix CB, control should be selected in compliance with 
the method of Section 3.2:

 u = −U(x)sign(s*), s* = (CB)Ts.

The time derivative of Lyapunov function candidate V s sT= 1

2
 for the system 

with U(x) = (α|x| + δ ),
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�V s CB CAx s x

s CB CAx s

T= − +

≤ −

−

−

( ) ( ) ( )

( )

* *

*

1

1

α δ
** ( )α δx +

is negative defi nite for suffi ciently high α and an arbitrary value of δ as well. 
Finally, it is interesting to note that, for systems with the nonlinear unit 

control, a sliding mode existence condition may be derived by the algebraic 
stability criteria developed for linear systems. Indeed, if CB is a Hurwitz 
matrix, then Lyapunov equation (CB)P + PT(CB) = −Im has a positive defi -
nite solution P > 0, and the time derivative of Lyapunov function candidate

V s PsT= >1

2
0 in the system with control u M x

s
s

= ( )  may be found as

 

�V s PAx M x s P CA
s
s

s PAx M x s
P CA

T T

T T

= +

= +

( ) ( )

( )
( )) ( )

( ) .

+

≤ −

CA P s
s

s PAx M x s

T

2

1

2

If function M(x) = (α|x| + δ), then �V is negative and sliding mode occurs after 
a fi nite time interval (see Section 3.5).

5.2. Invariant Systems

One of the main objectives of designing feedback control systems is to reduce 
sensitivity with respect to disturbances and plant parameter variations. As 
shown in Section 3.3, sliding modes in any manifold are invariant to those 
factors if they act in a control space (Equations 3.4.4 and 3.4.5). For linear 
systems

 �x A A t x Bu Qf t f t l= +( ) + + ∈ℜΔ ( ) ( ), ( ) , (5.2.1)

the invariance conditions were formulated in terms of system and input 
matrices in the work by Drazenovic [1969]: sliding modes in any manifold 
are invariant with respect to parameter variations ΔA(t) and disturbance 
 vector f(t) if

 ΔA ∈ range(B), Q ∈ range(B),

or there exist matrices ΛA and ΛQ (constant or time varying) such that
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 ΔA = BΛA, Q = BΛQ. (5.2.2)

If the conditions in Equation 5.2.2 hold, then the regular form for Equation 
5.2.1 is similar to Equation 5.1.4,

 
�
�
x A x A x

x A x A x u x f tA Q

1 11 1 12 2

2 21 1 22 2

= +
= + + + +Λ Λ ( )..

Selecting discontinuous control in the form (Equation 5.1.7) with manifold 
(Equation 5.1.5) leads to the sliding mode equation (Equation 5.1.6) with 
desired dynamics and invariance property. Assuming that the ranges of 
plant parameter variations and an upper bound of the disturbance vector 
f f t fQ0 0( ( ) )Λ ≤  are known, s = 0 can be made a sliding manifold in the sys-
tem with control (Equation 5.1.7) under the additional condition

 δ ≥ f0. (5.2.3)

A similar approach may be applied to decouple l interconnected systems

 �x A x A x B u i li i i ij j i i
j
j i

l

= + + =
=
≠

∑ , , ..., ,1
1

where xi
ni∈ℜ , ui

mi∈ℜ , and Ai, Bi, and Bi are constant matrices.
Interconnection terms may be handled as disturbances, and the invariance 

conditions may be reformulated for each subsystem:

 A Bij i∈range( ).

Discontinuous control in the ith system

u x s x x xi i i i
T

i
T

l
T= − + =( ) ( ), ( , ..., ),α δ sign ss C x C si i i i i

mi= = ∈ℜ, , ,const.

with suffi ciently high but fi nite values αi enforces sliding mode in manifold 
si = 0 governed by an (ni − mi) order equation that does not depend on the 
states of the other subsystems. The dynamics of each subsystem may be 
designed by a proper choice of matrices Ci in the equations of the sliding 
manifolds.

5.3. Sliding Mode Dynamic Compensators

The value of δ should exceed an upper estimate of a disturbance vector 
(Equation 5.2.3) in discontinuous control (Equation 5.1.7) designed to reject 
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disturbances. To soften the control action, it would be desirable to reduce 
the control amplitude in sliding mode if the magnitude of the disturbance 
decreases. Usually, disturbances are not accessible for measurement, which 
is the main obstacle for designing a control system with the above property. 
Nevertheless, the formulated task is solvable if rather fuzzy a priori knowl-
edge on a class of disturbances is available.

Let the disturbance in motion Equation 5.2.1 with ΔA = 0 satisfy the invari-
ance condition in Equation 5.2.2 and let Q be a constant matrix. Then the 
system may be represented in the regular form

 
�
�
x A x A x

x A x A x u f tQ

1 11 1 12 2

2 21 1 22 2

= +
= + + + Λ ( ),

 (5.3.1)

and the equation of sliding mode in manifold s = Cx1 + x2 = 0 (Equation 5.1.6) 
does not depend on the disturbance vector. Assume that the components 
of vector f(t) cannot be measured and a “disturbance model” is taken in the 
form of a time-varying linear dynamic system: 

 f t fk
i

i

i

k
( ) ( )( ) .+ =

=

−

∑θ 0
1

1

 (5.3.2)

The scalar coeffi cients θi(t) can vary arbitrarily over bounded intervals

 |θi(t)| ≤ ϑi0. (5.3.3)

It is assumed that neither initial conditions nor functions θi(t) are measured, 
and only ranges ϑi0 are known. Equation 5.3.2 embraces a rather wide class 
of disturbances. For example, for k = 2, it includes exponential and harmonic 
functions, polynomials of any fi nite power (beginning from a certain time), 
all kinds of products of these functions, etc.

The controller is designed as a dynamic system with control u as an 
output

 u d u vk
i

i

i

k
( ) ( ) ,+ =

−

−

∑
0

1

 (5.3.4) 

where di are constant scalar coeffi cients whose choice is dictated by conve-
nience of implementation only.

The input v will be selected as a piecewise linear function of the controller 
and system states. Each of m control channels of the system has a kth-order 
dynamic element, the total order of the system being equal to n + mk. The 
state coordinate of the additional dynamic system can be measured.

Let us write the motion equations of the extended system in the space con-
sisting of x1, x2,…,xk+2, if

 �x x i ki i= = ++1 2 1, , ..., . (5.3.5)
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Because �x x2 3= , it follows from the second equation of Equation 5.3.1 that 

 u = x3 − A21x1 − A22x2 − ΛQf. (5.3.6)

Differentiating Equation 5.3.6 k times and substituting the right-hand sides 
of Equations 5.3.1, 5.3.5, and 5.3.6 for the time derivatives of xi and u, we 
obtain

 u x A x f i ki
i j

i
j Q

i

j

i
( ) ( ) , , ..., ,= + − = −+

=

+

3
1

1 1Λ
22

∑  (5.3.7)

 u x A x fk
k j

k
j Q

k

j

k
( ) ( ) ,= + −+

=

+

∑�
2

1

2

Λ  (5.3.8)

where Aj
i and Aj

k are constant matrices. By substituting the values of deriva-
tives u(i) from Equations 5.3.7 and 5.3.8 into Equation 5.3.4 and replacing the 
kth derivative of the disturbance vector in accordance with Equation 5.3.2 by 
a linear combination of vectors f,…,fk−1, we obtain

 �x A x d t f vk i i i i Q
i

i

k

i

k

+
=

−

=

+

= + − +∑∑2
0

1

1

2

( ( )) ( )θ Λ ,, (5.3.9)

where Ai are constant matrices.
Bearing in mind that vectors ΛQf(i) (i = 0,…,k − 1) may be computed from 

Equation 5.3.7, Equation 5.3.9 may be represented as

 �x A t x d t u vk i i i i
i

i

k

i

k

+
=

−

=

+

= + − +∑2
0

1

1

2

( ) ( ( )) ( )θ∑∑ , (5.3.10)

where A ti ( ) are matrices depending on θi(t) and, consequently, time. Introduce 
notations

 

x x x x x x x xT T T T T
k
T

k= = =+ +[ ], [ ... ],1 2 1 1 1 2 22
1, [ ... ( ) ],

( ( ))

( )

(

u u u u

d t u

T T T k T

i i
i

=

−

−�

θ )) ( ) , [( ( ) ... ( (= = − −
=

−

−∑ θ θ θ θt u d t d
i

k

i i k
0

1

1 1 tt)]

and rewrite the fi rst equation in Equation 5.3.1 and Equations 5.3.5 and 
5.3.10 as

 

dx
dt

A x A x

dx
dt

A t x A t x

1
11 1 12 2

2
21 1 22 2

= +

= + +( ) ( ) (θ tt u v) ,+
 (5.3.11)
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where A11 and A12 are constant matrices, and A t21( ), A t22 ( ), and θ(t) are 
time-varying matrices with bounded elements because the coeffi cients θi(t) 
(Equation 5.3.3) were assumed to be bounded.

The system (Equation 5.3.11) is in regular form, and, by handling x2 as 
an intermediate control in the fi rst block, the desired dynamics may be 
assigned by a proper choice of matrix C in x Cx2 1= − . Then, following the 
design methodology of Section 3.2, sliding mode is enforced in the manifold 
s x Cx= + =2 1 0 by control

 v x x u s= − + + +( )α δ( ) ( ).1 2 sign  (5.3.12)

Indeed, time derivative of Lyapunov function candidate V s sT= 1

2

 �V s CA A x CA A x u x xT= + + + +( ) − +( ) ( ) (11 21 1 12 22 21 1θ α 22 + +( )u s) δ

is negative for a suffi ciently high but fi nite value of α and any δ. After a fi nite 
time interval, sliding mode governed by

 
dx
dt

A A C x1
11 12 1= −( )  (5.3.13)

will occur with the desired dynamics and invariance properties with respect 
to disturbances. 

The objective of the design was to decrease the magnitude of control 
with decreasing disturbances without measurement of the disturbances. 
This is the case for our system: in the solution to Equation 5.3.13, x t1( )and 
x t2 ( ) tend to zero, which means that functions u(i) tend to −ΛQf(i) (Equation 
5.3.7); because u(i) (i = 1,…,k − 1) are components of vector u, and the control 
v (Equation 5.3.12) decreases with the disturbances. The output of the addi-
tional dynamic system u is a continuous function and tends to −ΛQf, which 
leads to disturbance rejection. In real systems, often there is no need to intro-
duce an additional dynamic system; its part may be played by actuators with 
outputs usually accessible for measurement. Then, an actuator input is the 
control to be designed, and its magnitude depends on disturbances and their 
derivatives.

Example 5.1

The disturbance rejection method will be illustrated with a second-order system 
in which the plant and actuator are integrators (Figure 5.1).

An external disturbance f(t) is applied to the plant and is not accessible for 
measurement. The control u is designed as a piecewise linear function of the 
controlled value x = x1, which should be reduced to zero but also of the actuator 
output y. Then the behavior of the plant and the system is governed by the systems 
of the fi rst and second order, respectively,
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andu x f

x x

x f

= −

=

= −

2

1 2

2

�

� �υ .

 (5.3.14)

Select control for the system in Equation 5.3.14 in the form similar to Equation 
5.3.12 v = −(α|x1| + β|u| + δ )sign(s), with α, β, and c > 0 being constant coef-
fi cients. The control low may be also written as 

 υ δ= − − −Ψ Ψx u su1 sign( ),

where Ψ = α sign(x1s) and Ψu = β sign(us). The system in Equation 5.3.14 is gov-
erned by piecewise linear differential equations

 

�

� �

x x

x x x s f fu u

1 2

2 1 2

=

= − − − + +Ψ Ψ Ψδ sign( ) .

As shown for a similar second-order system with no disturbance in Section 2.1 
(with f(t) ≡ 0), the coeffi cients of control can be selected such that the state reaches 
the switching line and sliding mode is enforced at each point of this line. After 
some fi nite time interval, the state tends to zero in sliding mode with motion 
equation �x cx+ = 0. The state planes of the two unstable linear structures of the 
system are shown in Figure 1.9, and the state plane of the asymptotically stable 
system with variable structure is shown in Figure 1.10. If f(t) ≠ 0, singular points 
( )� �x x1 2 0= =  of each of the four linear structures, corresponding to the four com-
binations of ± α and ± β, are shifted from the origin. The magnitudes and signs 
of the shifts are dependent on coeffi cients α, β, and disturbance f(t). Figure 5.2.A 
and Figure 5.2.B separately shows right and left semiplanes of the system state 
plane for the area |x2| ≤ f(t), where, by virtue of the plant equation, sign(u) = 
−sign(f(t)). The fi rst-order actuator takes part of an additional dynamic system 
(Equation 5.3.4); therefore, the disturbance f(t) is assumed to satisfy the condi-
tions in Equation 5.3.2 for k = 1:

 �f t f t= ≤θ θ β( ) , ( ) .

FIGURE 5.1
Sliding mode dynamic compensator in a second-order system.

Actuator f(t) Plant

v
uController x
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As can be seen from the state plane, the singular points are shifted such that the 
state trajectories in the vicinity of the switching line s = 0 are directed toward 
it and sliding mode occurs in the system.* The same conclusion can be made 
analytically. Because sign(u) = −sign(f(t)), the term Ψu f in the motion equation is 
equal to −β|f|sign(s) and for the points x2 = −cx1 on the switching line 

 � �s c x s f s fu= − + − − − +( ) ( ) ( ) .2
1Ψ Ψ δ βsign sign

*  Strictly speaking, the curves of Figure 5.2 are not state trajectories because the disturbance 
makes the system time varying. Each curve should be regarded as the locus of points for 
which, at each fi xed time, the tangential to the curve coincides with state velocity vector. 

FIGURE 5.2A
Right, semiplane of state plane.

x1

x2=−| f |

s = 0

0

x2 x2=| f |

FIGURE 5.2B
Left, semiplane of state plane.
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The values of s and �s have opposite signs, or the conditions in Equation 2.4.1 for 
sliding mode to exist hold for α > c2 + β and an arbitrary positive δ. Thus, the 
change of signs in the main and local feedback enables one to reject unmeasured 
disturbances. 

5.4. Ackermann’s Formula

Ackermann’s formula enables us to determine a linear state-feedback scalar 
control law in explicit form resulting in a system with desired eigenvalues 
[Ackermann 1992]. A similar task arises when designing sliding model con-
trol in linear systems with a linear discontinuity surface because the corre-
sponding sliding mode equation is linear and depends on the coeffi cients of 
the surface equation.

The traditional approach to sliding mode control design implies trans-
forming the linear system into the regular form (Section 5.1) consisting of 
two blocks and handling the state vector of one of the blocks as a fi ctitious 
control.

In this section, the design method of scalar sliding mode control rests 
on Ackermann’s formula and is oriented toward obtaining a discontinu-
ity plane equation in explicit form as well in terms of the original system 
without transforming it into regular form [Ackermann and Utkin 1998]. For 
a linear plant operating under uncertainty conditions, the control enforces 
sliding motions governed by a linear equation with the desired eigenvalue 
placement and independent of disturbance.

Consider a controllable system described by a differential equation,

 �x Ax b u f x t= + +( )( , ) , (5.4.1)

where x is an n-dimensional state vector, u is a scalar control, A and b are 
known matrix and vector, and f(x,t) is a nonlinear disturbance with known 
upper bound |f(x,t)| < f0(x,t). As follows from Equation 5.4.1, the control and 
disturbance vectors (bu and bf) are collinear, so the invariance condition 
(Equation 5.2.2) is satisfi ed, and, consequently, the sliding mode in any plane 
is invariant with respect to the disturbance.

The design of sliding mode control in Equation 5.4.1 implies the selec-
tion of a plane s = cTx = 0 (cT is an n-dimensional constant row vector) and 
consequently design of the control enforcing the sliding mode in s = 0. The 
sliding mode equation is of the (n−1)th order and does not depend on the 
 disturbance. The desired dynamic properties may be provided by a proper 
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choice of the vector c. Traditionally, the sliding mode equation is derived fi rst 
and then the conventional methods of the linear theory are applied.

As mentioned above, the aim of this section is to show how the vector c 
may be found in an explicit form without the sliding motion equation using 
Ackermann’s formula, as far as the eigenvalue placement task is concerned.

The desired eigenvalues λ1, λ2,….,λn of linear system �x Ax bua= +  may be 
assigned using Ackermann’s formula [Ackermann 1992]

 ua = −kTx, kT = eT P(A), (5.4.2)

where 

 eT = [0 … 0 1][b Ab … An−1b]−1

 P(λ) = (λ − λ1)(λ − λ2)…(λ − λn−1)(λ − λn).

Suppose now that the real or pairwise conjugate complex values λ1, λ2,….,λn−1 
are the desired eigenvalues of the sliding mode.

Theorem 5.1 

If

 cT = eT P1(A) (5.4.3)

with P1(λ) = (λ − λ1)(λ − λ2)…(λ − λn−1) = p1 + p2λ + … + pn−1λn−2 + λn−1, then 
λ1, λ2,…,λn−1 are the eigenvalues of the sliding mode dynamics in the plane 
s = cTx = 0.         □

Proof 4.1

According to Ackermann’s formula (Equation 5.4.2), λ1, λ2,…,λn are eigenval-
ues of the matrix A* = A − bkT, with λn being an arbitrary value. Vector cT is a 
left eigenvector of A* corresponding to λn. Indeed, as follows from Equations 
5.4.2 and 5.4.3

 cTA* = cTA − cTbeT P(A).

Because

c b e P A b

b Ab A b b Ab A b

T T

n n

=

= − − −
1

1 1 10 0 0 1

( )

[ ][ ] [� � � ]][ ]p p T
1 2 1

1

�
=

 
 (5.4.4)
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and P(A) = P1(A)(A − λnI),  

 cTA* = cTA − eTP1(A)(A − λnI),

which reduces with Equation 5.4.3 to 

 cTA* = λncT (5.4.5)

and means that cT is a left eigenvalue of A*, correspodning to eigenvalue λn.
The system �x A bk x b u u f x tT

a= − + − +[ ]( ) ( , )  is now transformed such that 
s = cTx becomes the last state and the fi rst n − 1 states x x x xn

T* [ ]= −1 2 1�  
remain unchanged, i.e.,

 
x

s

I

c
x TxT

*⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

0

For T to be invertible, the last component of cT must be nonzero. Because this 
vector is nonzero, the condition can always be satisfi ed by reordering the 
components of the state vector x. Under the conditions in Equations 5.4.4 and 
5.4.5, the transformed system is

 �x A x a s b u u f x ts a* * * ( , )= + + − +( )1  (5.4.6)

 �s s u u f x tn a= + − +λ ( , ), (5.4.7)

where

 
A a

T A bk T
b

Tbs

n

T1 1

0 1λ
⎡

⎣
⎢

⎤

⎦
⎥ = −( ) ⎡

⎣
⎢

⎤

⎦
⎥ =− ,

*
.

The spectrum of matrix A1 consists of desired eigenvalues λ1, λ2,…, λn−1.
To derive the sliding mode equation in the plane s = 0, the solution to the 

algebraic equation �s = 0 with respect to u should be substituted into Equation 
5.4.6. It results in the motion of equation

 �x A x* *= 1  (5.4.8)

with the desired dynamics, independent of the unknown disturbance f(x,t).  □

The result has a transparent geometric interpretation. Vector cT is a left 
eigenvector of the matrix A* corresponding to the eigenvalue λn. This means 
that the plane s = cTx = 0 is an invariant subspace of A* with the motion deter-
mined by the previously selected set of (n − 1) eigenvalues λ1, λ2,…., λn−1. If 
sliding mode is enforced in the plane s = cTx = 0, then it exhibits the desired 
dynamics. Note that the design of the plane s = cTx = 0 does not imply assign-
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ing the eigenvalue λn; it only appears in the proof of the theorem and may 
take an arbitrary value.

The discontinuous control u is designed to enforce sliding mode in the 
plane s = 0. This implies that the conditions in Equation 2.4.1 should be satis-
fi ed, i.e., the values of s and �s should have different signs in some vicinity of 
the plane,

 
�s c Ax u f x t

u M x t s

T= + +
= −

( , )

( , ) ( ),sign
 (5.4.9)

where M(x,t) is chosen such that 

 M(x,t) > |CT Ax| + f0(x,t).

If the control may take only two extreme values +M0 or −M0 (which is com-
mon in applications), then Equation 5.4.9 with M(x,t) = M0 enforces a sliding 
mode in the plane s = 0 governed by Equation 5.4.8 as well. Of course, the 
domain of initial conditions and the disturbance should be bounded.

Example 5.2 

Let λ = −1 be the desired eigenvalue of sliding motion for the second-order 
system

 �x Ax b u f x t= + +( )( , ) ,

where 

 A b x
x

x
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

0 0

0 1

1

1
1

2
, , .

According to Equation 5.4.3,

 cT = [0  1][b  Ab]−1 P1(A), P1(A) = A + I,

 cT = [−1  2]

and the sliding surface equation is of the form (note that cTb = 1)  s = −x1 + 
2x2 = 0. By the equivalent control method, the solution to the system s = 0, �s = 0 
with respect to x2 and u 

 u x f x t x xeq = − − =1 1 2 1
1
2

( , ),

should be substituted into the original system to derive the sliding motion equa-
tion �x x1 1= − . The sliding mode is determined by the eigenvalue λ = −1 and does 
not depend on the disturbance f(x,t). 
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The design procedure based on Ackermann’s formula is summarized as 
follows.

Step 1: The desired spectrum of the sliding motion λ1, λ2,….λn−1 is 
selected.

Step 2: The equation of the discontinuity plane s = cTx = 0 is found as

 cT = eT(A − λ1I)(A − λ2I)…(A − λn−1I).

Step 3: The discontinuous control (Equation 5.4.9) is designed.

Remark 5.1

It follows from Equation 5.4.9 that sliding mode may be enforced in an unper-
turbed system by

 u x s= − +( ) ( )α δ sign

with some fi nite positive number α and any positive δ. The control tends to 
zero in the system with asymptotically stable sliding modes. 

5.4.1. Simulation Results

The design procedure will be demonstrated for sliding mode stabilization of 
an inverted pendulum (Figure 5.3) subjected to a bounded unknown distur-
bance force. 

The linearized motion equations are of the form [Kortüm and Lugner 
1994]

 �x Ax b u f t= + +( )( ) ,

where 

 A
a

a

b
b

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

0 0 1 0

0 0 0 1

0 0 0

0 0 0

0

0

32

42

,
33

4b

x

x

x

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,
α

α
�
�

and

 

a c mga a M m

a M m c mga
t

t

32

42

3 4

3

= − − +

= − + −

( )/ ( ),

( )( )/ aa m M m

b M m

b M m

t

t

t

2

3

4

4

4 4

3 4

( ),

/( ),

/( ).

+
= +
= +
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Mt and m are masses of the trolley and pendulum, a is the pendulum length, 
c is the spring stiffness, g = 9.81m/s2, u and f(t) are control and disturbance 
forces, and |f(t)| ≤ f0 = const, in which f0 is assumed to be known.

Sliding mode control is designed for Mt = 5, m = 1, a = 1, c = 1. Let λ1 = −1, 
λ2 = −2, λ3 = −3 be the desired eigenvalues of sliding motion. According to 
Equation 5.4.3, the discontinuity plane equation 

 s = cTx = 0,

 cT = [0 0 0 1][b Ab A2b A3b]−1 (A + I)(A + 2I)(A + 3I),

I is an identity matrix,

 cT = [−4.77 48.4 −8.75 18.7].

The control is assumed to take two extreme values only:

 u = −M0sign(s), M0 = const.

As follows from the above studies, for any M0 > f0, there exits a domain of 
initial conditions such that sliding mode is enforced in the plane s = 0.

The simulation examples are given for sliding mode control with 

 M0 = 40 and f(t) = f0sin(3t), f0 = 0.5.

FIGURE 5.3
Inverted pendulum with trolley system.
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Figure 5.4 shows the stabilization process for initial conditions x(0) = 0.5, 
α(0) = 0.2, � �x( ) , ( )0 0 0 0= =α . Sliding mode occurs after a fi nite time interval, 
and, thereafter, both coordinates x and α do not depend on the time-varying 
disturbance and tend to zero.

FIGURE 5.4
Sliding mode control of inverted pendulum, x(0) = 0.5, α(0) =0.2.
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The system without feedback is unstable and control is bounded; therefore, 
the motion may turn to be unstable should initial conditions be increased. 
The system is still stable for α(0) = 0.38 (Figure 5.5) and becomes unstable 
with α(0) = 0.39 (Figure 5.6). As mentioned in Remark 5.1, sliding mode may 
be enforced in an unperturbed system ( f(t) = 0) for arbitrary initial condi-
tions with piecewise linear control

 u x x s= − + + + +β α α δ( ) ( ),� � sign

where β, δ are positive values and some fi nite β and arbitrary δ. 
The simulation results with β = 30, δ = 0, x(0) = 1, �x( )0 0= , α(0) = 1, �α( )0 0=

are shown in Figures 5.5 through 5.7.

FIGURE 5.5
Both the state vector and control tend to zero in sliding mode.
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5.5. Output Feedback Sliding Mode Control

Implementation of the design methods developed in the previous sections 
implies that all components of a state vector have to be accessible for mea-
surement. However, this is not the case for many practical situations. Two 
approaches may be studied for these cases. The fi rst method is the design of 
state observers to restore the state vector using available measurements of 
some states, and the second method is to derive a class of systems such that 
the control task may be solved by designing a static output feedback control-
ler. The second approach to sliding mode control design under incomplete 
information on the system states is studied in this section. The observer 
design methods are studied in Chapter 6.

FIGURE 5.6
Sliding mode control of inverted pendulum α(0) = 0.39.
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It is assumed that, for the system 

 �x Ax B u= +  (5.5.1)

 y = Cx (5.5.2)

with l-dimensional output vector y,

 1. The pair (A, B) is controllable and the pair (A, C) is observable.

 2. Rank B = m and rank C = l.

 3. l>m.

The system (Equations 5.5.1 and 5.5.2) is referred to as output pole assign-
able if the eigenvalues of matrix A + BLC or of a feedback system with linear 
control u = Ly (L is a constant m × l matrix) take any desired values. The 
class of such linear systems may be found based on the well-known result 
by Kimura [1975]:

FIGURE 5.7
Sliding mode control of inverted pendulum; unperturbed system with state-dependent control 
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Theorem 5.2 

If the system (Equations 5.5.1 and 5.5.2) is controllable and observable and 
satisfi es the relation

 n ≤ l + m − 1, (5.5.3)

then it is pole assignable by gain output feedback.   □

There exists a nonsingular coordinate transformation reducing the system 
to regular form (see also Section 3.2)

 
�
�
x

x

A A

A A

x

x
1

2

11 12

21 22

1

2

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

00

I
u

m

⎡

⎣
⎢

⎤

⎦
⎥ , (5.5.4)

where the pair (A11, A12) is controllable. Equation 5.5.2 is transformed into 

 y C C
x

x
C x C x C l n m= [ ]⎡

⎣
⎢

⎤

⎦
⎥ = + ∈ℜ × −

1 2

1

2
1 1 2 2 1, ,( ) CC l m

2 ∈ℜ × .

If C2 is a matrix with full rank, then it may be represented in the form (with 
reordering the components of vector x2 if needed) 

 C
C

C
C Cl m m m m

2

21

22
21 22=

⎡

⎣
⎢

⎤

⎦
⎥ ∈ℜ ∈ℜ− × ×, ,( ) , ddet( ) ,C22 0≠

and for a nonsingular matrix 

 

P
I C C

C

y Py PC PC x

l m=
−⎡

⎣
⎢

⎤

⎦
⎥

= = [ ] =

−
−

−
21 22

1

22
1

1 2

0

*
CC

C I

x

xm

11

21

1

2

0⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ .

The switching manifold s = 0 in sliding mode control is defi ned as 

 s Fy F I
C x

C x x
F C Cm= = [ ] +

⎡

⎣
⎢

⎤

⎦
⎥ = +* ( )1

11 1

21 1 2
1 11 21 xx x1 2+ ,

where F ∈ Rm×l, F1 ∈ Rm×(l−m).
The control input is selected as a discontinuous function of the output 

 u K s K k k km= − ⋅ = [ ]sign diag( ) .1 2 �
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The control gains ki are chosen such that

 ki > |fi|, fT = [f1,…,fm], f = [(F1C11 + C21)A11 + A21]x1 + [(F1C11 + C21)A12 + A22]x2,

which means that the time derivative of Lyapunov function candidate 

V s sT= 1

2

 �V s f s K sT T= − ⋅ <sign( ) 0

is negative defi nite, and sliding mode will be enforced after a fi nite time 
interval.

In sliding mode, s = 0 and 

 x2 = −(F1C11 + C21)x1. (5.5.5)

Substituting Equation 5.5.5 into Equation 5.5.4 yields

 �x A A C x A1 11 12 21 1 12= − +( ) ,υ  (5.5.6)

where υ = −F1C11x1 = −F1y1 ∈ Rm is handled as a control input. The original 
system in Equations 5.5.1 and 5.5.2 in sliding mode is replaced by the reduced 
order system in Equation 5.5.6 and s = 0 

 �x A x A1 1 12= +* υ (5.5.7)

 y1 = C11x1, (5.5.8)

where A* = (A11 − A12C21), and pair (A*, A12) is controllable as a result of con-
trollability of pair (A11, A12).

Now we deal with a pole placement task for a reduced order controllable 
system with an (l − m)-dimensional output vector. The condition of Kimura’s 
Theorem 5.2 may be reformulated for eigenvalue placement of system 
(Equations 5.5.7 and 5.5.8):

Theorem 5.3

If the original system in Equations 5.5.1 and 5.5.2 is controllable and the sys-
tem in Equations 5.5.7 and 5.5.8 is observable and satisfi es the relation

 (n − m) ≤ (l − m) + m* −1  m* = rank A12, (5.5.9)

then it is pole assignable by gain output feedback.   □

Under the condition in Equation 5.5.9, there exists matrix F1 such that 
eigenvalues of sliding mode equation

 �x A A F C x1 12 1 11 1= −( )*  (5.5.10)
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takes the desired values.
Because m* ≤ m, the condition in Equation 5.45 n ≤ l + m* −1 means that the 

original system (Equations 5.5.1 and 5.5.2) is pole assignable by gain out-
put feedback if the reduced-order system (Equations 5.5.7 and 5.5.8) is pole 
assignable. 

If the pair (C11, A*) is not observable, the same procedure is applicable to 
the observable part of x1. The unobservable system (Equations 5.5.7 and 5.5.8) 
may be presented in the form [Kwakernaak and Sivan 1972] 

 

�
�
′
′′

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

′
′′

⎡x

x
A

A A

x

x
1

1

11

21 22

1

1

0*

* *
⎣⎣
⎢

⎤

⎦
⎥ +

′
′′

⎡

⎣
⎢

⎤

⎦
⎥

= ′ ′

A

A

y C x

12

12

1 11 1

υ

with an observable pair ( , )*′C A11 11 . Then the upper subsystem is pole assignable 
if it satisfi es the condition in Equation 5.5.9, whereas the eigenvalues of the 
second subsystem are those of A21

* and can be changed under no conditions. 

Remark 5.2

The above eigenvalue placement method is applicable for systems with plant 
parameter variations and disturbances (Equation 5.2.1) 

 
�x A A x B u Qf

y Cx

= + + +
=

( ) ,

.

Δ

If the invariance conditions in Equation 5.2.2 hold, then the motion in slid-
ing mode depends on neither ΔA nor f(t) is and governed by Equation 5.5.10 
as well.

Example 5.3

Assumption: The original system is pole assignable but the sliding mode control 
system is not pole assignable:

 

�

�

�

�

x

x

x

x

1

2

3

4

0 1 1 0

1 0 2 0

0 0 0 0

0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
⎡

⎣
⎢

⎤

⎦
⎥

0 0

0 0

1 0

0 1

1

2

u

u
,

 
y

y

y

x

x1

2

3

1

2
1 0 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

xx

x

n m l
3

4

4 2 3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= = =, , , .
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This system is controllable and observable. The relation in Equation 5.5.9 is satis-
fi ed. The switching manifold is designed as

 s
f

f

y

y

y

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=1

2

1

2

3

1 0

0 1
0

with parameters f1 and f2 to be selected.
The reduced order system is 

 

�

�
x

x

x

x
1

2

1

2

0 1

1 0

1 0

2 0
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥⎥

= ⎡⎣ ⎤⎦
⎡

⎣
⎢

⎤

⎦
⎥

υ

.

y
x

x1
1

2
1 0

 (5.5.11)

This system is controllable and observable as well, but the relation in Equation

5.5.9 is not satisfi ed, because rank
1 0

2 0
1

⎡

⎣
⎢

⎤

⎦
⎥ = =m*  and n > l + m* −1. 

It is  impossible to locate poles arbitrarily. Substituting υ = F1y = −(f1,f2)T x1 into 
Equation 5.5.11 yields

 
�

�
x

x

f

f

x

x
1

2

1

1

1

2

1

1 2 0
⎡

⎣
⎢

⎤

⎦
⎥ =

−
−

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ .

Because one parameter is free, only one pole may be located arbitrarily.

Example 5.4

Assumption: Both the original system and the system with the sliding mode con-
trol are pole assignable:
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This system is controllable and observable and satisfi es the relation in Equation 
5.5.9. The switching manifold is

 s
f

f

y

y

y

=
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣

⎢
⎢
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⎤

⎦

⎥
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=1
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1

2

3

1 0

0 1
0.

The reduced order system,
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⎣
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⎡
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⎤

⎦
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,

y
x

x1
1

2
1 0

is controllable and observable and satisfi es the relation in Equation 5.5.9; there-
fore, it is pole assignable. Indeed, any eigenvalues of the system with control υ = 
−F1y1 = −(f1, f2)T x1

 
�

�
x

x

f

f

x

x
1

2

1

2

1

2

1

1 0
⎡

⎣
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⎤

⎦
⎥ =

−
+

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

may be assigned by a proper choice of coeffi cients f1 and f2.

5.6. Control of Time-Varying Systems

Design of desired dynamics of time-varying control systems is a consid-
erably more diffi cult task than that for the systems with constant param-
eters, because the properties of time-varying systems cannot be interpreted 
in terms of their eigenvalues. Decoupling system motions into motions of 
lower dimension enables one to simplify the control design. Therefore, it is 
of interest to apply sliding mode control methodology to reduce the order of 
the motion equations. We will follow the so-called “block control principle” 
[Drakunov et al. 1990] for reducing the original design problem to a set of 
independent problems with lower dimensions. 

In time-varying system 

 �x A t x B t u x u B mn m= + ∈ℜ ∈ℜ =( ) ( ) , , , ( ) ,rank  (5.6.1)

let the elements of A(t) and B(t) be bounded with time derivatives of proper 
orders. Similar to Equations 5.1.1 and 5.1.2, it is assumed that matrix B(t) may 
be represented in the form
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 B t
B t

B t
B t( )

( )

( )
=

⎡

⎣
⎢

⎤

⎦
⎥ ≠1

2

and det( ( ) 0 for an2 yy .t

The nonsingular coordinate transformation
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1 1
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1 2,
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⎡

⎣
⎢

⎤

⎦
⎥

1

2
10 B

,
 (5.6.2)

reduces the system Equations 5.6.1 to the regular form consisting of two 
blocks:

 
�
�
x A x A x

x A x A x u
1 11 1 12 2

2 21 1 22 2

= +
= + + ,

 (5.6.3)

where x xn m m
1 2∈ℜ ∈ℜ−( ) , , and Aij are time-varying matrices (i,j = 1, 2).

The state vector x2 of the second block in Equation 5.6.3 is handled as con-
trol for the fi rst block. x2 should be selected as a function of the state vector x1 
to shape the desired dynamics of the fi rst block. We will confi ne our choice 
to linear functions with time-varying gains

 x C t x C t m n m
2 1= − ∈ℜ × −( ) , ( ) .( )  (5.6.4)

Shaping desired dynamics of the system 

 �x A A C x1 11 12 1= −( )

in accordance with some performance criterion is reduced to design of the 
linear time-varying system of the (n − m)th order with the feedback matrix 
C(t). This task is easier than the original one of nth order with control u being 
a linear function of the full state vector x x xT T T= [ ]1 2 .

If the matrix C(t) is found, then discontinuous control enforcing sliding 
mode in the manifold 

 s = x2 + C(t)x1 = 0, sT = (s1,s2,…,sm) (5.6.5)

should be designed. The equation of the motion projection on subspace s in 
the system with control

 u = −(α(|x1| + |x2|) + δ)sign(s)
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is of form

 � �s CA A C x CA A x x x= + + + + − +( ) ( ) (| | |(11 21 1 12 22 2 1 2α ||) ( ),)+ δ sign s

where α and δ are positive constants. The coeffi cient α may be found such 
that, for any positive δ, the conditions in Equation 2.4.1 hold for any function 
si. Then sliding mode exists on each plane si = 0 and their intersection s = 0.

Although design of desired dynamics in sliding mode is easier than for the 
original system, we deal with a time-varying system, and special methods 
should be used for stabilization. We will discuss one of them resulting in 
exponentially stable time-varying systems.

The idea of the design procedure is to decouple the fi rst system in Equation 
5.6.3 with intermediate control x2 into two subsystems similarly to transfor-
mation in Equation 5.6.2 applied to the original system. If m ≤ n − m and rank 
(A12) = m, then the fi rst system in Equation 5.6.3 may be transformed into

 
�

�

x A x A x

x A x A x
1 11 1 12 1

1 21 1 22 1

′ ′ ′ ′ ′′

′′ ′ ′ ′ ′′

= +

= + ++ ∈ℜ ∈ℜ−x x xn m m
2 1

2
1, , ,′ ′′

 (5.6.6)

where
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x
T x T

I B Bn m1

1

1 1 1

2 1 2
1
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′
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′ ′′⎡

⎣
⎢

⎤

⎦
⎥ = =

−−
−

,
( )

(( )
, , det(

B
A

B

B
B

2
1 12

1

2

2′′
′
′−

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ ′′) .≠ 0  (5.6.7)

Vector x1 ′′ in the fi rst subsystem of Equation 5.6.7 is handled as control, and 
it is assumed that rank( )A n m12 2′ = − . Then for any matrix A1(t) 

 �x A x1 1 1′ ′=  (5.6.8)

if 

 x C t x1 1 1′′ ′= − ( ) ,  (5.6.9)

where C A A A1 12 11 1= −+( ) ( )′ ′  with ( )A12 ′ + being the pseudoinverse to A12 ′ :

 A A In m12 12 2′ ′( ) .+
−=

The condition in Equation 5.6.9 holds if 

 s x C t x1 1 1 1= +′′ ′( )  (5.6.10)

tends to zero. The equation for s1 is derived from Equations 5.6.6 and 5.6.9,

 �s S x S x x1 1 1 2= + +′ ′ ′′ ′′
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with matrices S′ and S′′ depending on the elements of Equations 5.6.6 and 
5.6.9 and their time derivatives.

For any matrix A2(t),

 �s A s1 2 1=  (5.6.11)

if 

 x A s S x S x2 2 1 1 1= − −′ ′ ′′ ′′. (5.6.12)

Because vectors x1, x x1 1′ ′′, and s1 are correlated through nonsingular trans-
formations in Equations 5.6.7 and 5.6.9, Equation 5.6.12 may be presented as

 x2 = −C(t)x1, (5.6.13)

with C(t) depending on the matrices A and B in the original systems in 
Equation 5.6.1, their time derivatives, and matrices A1 and A2.

The condition in Equation 5.6.13 holds if control u in Equation 5.6.1 is 
designed as a discontinuous function of the state enforcing sliding mode in 
the manifold

 s = x2 + C(t)x1 = 0.

The above design procedure with control 

 u = −(α(|x1| + |x2|) + δ)sign(s)

is applicable for this task. After sliding mode in s = 0 occurs, the conditions 
in Equations 5.6.12 and 5.6.13 hold and s1 will be governed by autonomous 
Equation 5.6.11. As follows from the fi rst equation of Equation 5.6.6 and 5.6.8 
through 5.6.10,

 �x A x A s1 1 1 12′ ′ ′= + . (5.6.14)

The system dynamics in sliding mode are determined by differential 
Equations 5.5.11 and 5.6.14 or by matrices A1 and A2, which may be selected 
by the designer. For example, they may be assigned constant with spectra 
such that exponential convergence at the desired rate is provided. 

Generalization of the design method for the cases rank(A12) < m and 
rank( )A n m12 2′ < −  may be found in the work by Drakunov et al. [1990]. It is 
shown there that exponential stability of sliding mode may be provided for 
controllable time-varying systems.
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6
Sliding Mode Observers

All design methods of the previous chapters, except for Section 5.5, 
were developed under the assumption that the state vector is available. 
In practice, however, only a part of its components may be measured 
directly. The output feedback sliding mode control method of Section 5.5 
is applicable to rather limited types of systems. An alternative approach 
is designing asymptotic observers, which are dynamic systems for esti-
mating all the components of the state vector using those measured 
directly. First, we will study the conventional full-order and reduced 
order observers intended for linear time-invariant systems Next, we 
present sliding mode modifi cations for state observation of time-invari-
ant [Utkin 1992] and time-varying systems with disturbance estimation 
[Hashimoto et al. 1990 ].

6.1. Linear Asymptotic Observers

The idea underlying observer design methods may be illustrated for a linear 
time-invariant system (Equation 5.1.1) as shown:

 �x Ax Bu= +  (6.1.1)

with output vector

 y = Cx, y ∈ ℜl, C = const, rank(C) = l. (6.1.2)

The pair (C, A) is assumed to be observable.
A linear asymptotic observer is designed in the same form as the original 

system (Equation 6.1.1) with an additional input depending on the mismatch 
between the real (Equation 6.1.2) and estimated values of the output vector:

 ˆ ˆ ( ˆ ),�x Ax Bu L Cx y= + + −  (6.1.3)

where x̂ is an estimate of the system state vector, L ∈ ℜn×l is an input matrix.
Of course the state vector of the observer x̂ is available because the auxil-

iary dynamic system is implemented in a controller. The motion equation 
with respect to mismatch x x x= −ˆ  is of form

 �x A LC x= +( ) . (6.1.4)
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The behavior of the mismatch governed by homogenous Equation 6.1.4 is 
determined by eigenvalues of matrix A + CL. For observable systems, they 
may be assigned arbitrarily by a proper choice of input matrix L [Kwakernaak 
and Sivan 1972]. It means that any desired rate of convergence of the mis-
match to zero or estimate ˆ( )x t  to state vector x(t) may be provided. Then any 
full state control algorithms with vector ˆ( )x t  are applicable.

The order of the observer may be reduced because of the fact that rank(C) = 
l and the observed vector may be represented as

 y C x C x x x x x xT T T n l= + = ∈ℜ ∈−
1 1 2 2 1 2 1 2, [ ], , ℜℜ ≠l C, det( ) .2 0

It is suffi cient to only design an observer for vector x1, whereas the compo-
nents of vector x2 are calculated as

 x C y C x2 2
1

1 1= −− ( ). (6.1.5)

Write the equation of the system in Equations 6.1.1 and 6.1.2 in space (x1, y),

 
�
�
x A x A y B u

y A x A y B u
1 11 1 12 1

21 1 22 2

= + +
= + + ,

 (6.1.6)

where TAT
A A

A A
TB

B

B
− =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 11 12

21 22

1

2

, , TT
I

C C
n l=

⎡

⎣
⎢

⎤

⎦
⎥

− 0

1 2

 (the coordinate trans-

formation is nonsingular, det(T) ≠ 0). The design of a reduced order observer 
rests on coordinate transformation

 x′ = x1 + L1y, (6.1.7)

and the system behavior is considered in the space (x′, y). The coordinate 
transformation is obviously nonsingular for any L1. The equation with 
respect to x′ is obtained from Equations 6.1.5 through 6.1.7:

 
� ′ = + ′ + ′ + +

=
x A L A x A y B L B u

A A

( ) ( ) ,

'

11 1 21 12 1 1 2

12 12LL L A A L A L1 1 22 11 1 21 1+ − +( ) .

The observer is designed in the form of a dynamic system of the (n − l)th 
order

 ˆ ( ) ˆ ( ) ,� ′ = + ′ + ′ + +x A L A x A y B L B u11 1 21 12 1 1 2  (6.1.8)

with ˆ ′x  as an estimate of the state vector x′. The mismatch ′ = ′ − ′x x xˆ  is gov-
erned by

 ′ = + ′�x A L A x( ) .11 1 21  (6.1.9)
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Again, if the original system is observable, the eigenvalues of matrix 
A11 + L1A21 may be assigned arbitrarily [Kwakernaak and Sivan 1972]. It means 
that ′x  tends to zero and ˆ ′x  tends to x′ at any desired rate. The components of 
the state vector x1 and x2 are thus found from Equations 6.1.5 and 6.1.7.

6.2. Observers for Linear Time-Invariant Systems

Let us proceed to the design of a state observer with inputs as discontinu-
ous functions of mismatches in which motion preceding sliding mode and 
motion in the intersection of discontinuity surfaces may be handled inde-
pendently. The observer is described by differential equations 

 
ˆ ˆ ˆ

ˆ ˆ ˆ

�

�
x A x A y B u L v

y A x A y B

1 11 1 12 1 1

21 1 22

= + + +

= + + 22u v− ,
 (6.2.1)

where x̂1 and ŷ are the estimates of the system state,

 v M y y M M= − > =sign const.( ˆ ), ,0

The vectors x̂1, ŷ, and, therefore, ŷ − y are measured.
The discontinuous vector function ν ∈ ℜl is chosen such that sliding mode 

is enforced in the manifold y y y= − =ˆ 0 and the mismatch between the out-
put vector y and its estimate ŷ is reduced to zero. A matrix L1 must be found 
such that the mismatch x x x1 1 1= −ˆ  between x1 and its estimate x̂1 decays 
at the desired rate. Equations with respect to x1 and y  are obtained from 
Equations 6.1.6 and 6.2.1:

 

�

�
x A x A y L v

y A x A y v

v M

1 11 1 12 1

21 1 22

= + +

= + −
= ⋅

,

(sign yy).

 (6.2.2)

As shown in Section 2.4, the sliding mode is enforced in the manifold y = 0 
if the matrix multiplying ν in the second equation of Equation 6.2.2 is nega-
tive defi nite and M takes high but fi nite value. It is the case for our system 
because ν is multiplied by a negative identity matrix. Hence, for bounded 
initial conditions, sliding mode can be enforced in manifold y = 0. As follows 
from the equivalent control methods, the solution νeq to equation �y = 0 should 
be substituted into the fi rst equation of Equation 6.2.2 with y = 0 to derive the 
sliding mode equation

 
v A x

x A L A x

eq =

= +
21 1

1 11 1 21 1
� ( ) ,

 (6.2.3)
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which coincides with Equation 6.1.9. Hence, the desired rate of convergence 
of x1 to zero and convergence of x̂1 to x1 can be provided by a proper choice of 
matrix L1, and then x2 is found from Equation 6.1.5.

The observer with the input as a discontinuous function of the mismatch 
(Equation 6.2.2) in sliding mode is equivalent to the reduced order observer 
(Equation 6.1.8). However, if the plant and observed signal are affected by 
noise, the nonlinear observer may happen to be preferable as a result of fi l-
tering properties because its structure coincides with that of a Kalman fi lter 
[Drakunov 1983].

6.3. Observers for Linear Time-Varying Systems

6.3.1. Block-Observable Form

For time-varying system 

 �x A t x B t u= + ( )( )  (6.3.1)

 y = C(t)x,  (6.3.2)

where x ∈ ℜn, u ∈ ℜm, y ∈ ℜl, the output vector y(t) and matrices A(t), B(t), and 
C(t) are assumed to be known. An observer is to be designed to estimate the 
state vector x(t).

For any nonsingular transformation of the state x into ( , )y xo
T T

1 , yo
l∈ℜ 0, 

x n l
1

0∈ℜ − , Equation 6.3.1 is represented as follows:

 �y A t y A t x B t uo0 00 01 1 0= + ( ) +( ) ( )*  (6.3.3)

 �x A t y A t x B t uo1 10 11 1 1= + ( ) +* * *( ) ( ) . (6.3.4)

The system in Equations 6.3.3 and 6.3.4 with known vector y0 is called the 
“block-observable form.” Superscripts and subscripts in Equations 6.3.3 
and 6.3.4 denote block matrices of the transformed system matrices A, B in 
Equation 6.3.1. The system in Equations 6.3.1 and 6.3.2 can be represented in 
block-observable form, if the rank l0 and the principle minor position of the 
time-varying matrix C(t) do not vary in time. In this case, after reordering 
vectors x and y, there exists (l − l0) × l0 matrix Λ0(t) such that

 C t
C t

t C t
C t l( )

( )

( ) ( )
( )=

⎡

⎣
⎢

⎤

⎦
⎥ =0

0 0
0 0Λ

, rank ,,

and l0 × n matrix C0(t) is of the form 

 C t C t C to ( ) [ ( ) ( )]= ′ ′′0 0
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with nonsingular l0 × l0 matrix ′′C t0( ). Vector y0 is found as

 y C t x C t x C t xo0 0 1 0 1= = +( ) ( ) ( ) ,*′ ′′

where x x xT T T= [ ]*
1 1  is transformed into [ ]y xo

T T
1

 
y

x
T

x

x

C C

In l

0

1
0

1

1

0 0

0
0

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

−
*

′′ ′′

⎦⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ ≠

x

x
T1

1
0 0* , det( )  (6.3.5)

The output Equation 6.3.2 is written as 

 y
C

C
x

C

C

x

x

y
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ =0

0 0

0

0 0

1

1

0

Λ Λ Λ*
00 0 0

0
0

y

I
yl⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥Λ

,

where Il0
 is an identity matrix. Vector y0 consists of linearly independent 

components of vector y, and the system can be transformed to the block -
observable form using Equation 6.3.5.

The above procedure leads to block -observable forms for 0 < l0 < n. The 
l0 = 0 case implies that the original system is unobservable (under the assump-
tion that the position of the principle minor does not vary in time). For 
l0 = n, the state vector may be obtained directly as a solution of the equation 
y = C(t)x.

Treating vector A t x01 1
* ( )  in Equation 6.3.3 as an output vector of the subsys-

tem in Equation 6.3.4 and assuming that the rank and position of the princi-
ple minor of the matrix A t01

* ( ) do not vary in time, the subsystem in Equation 
6.3.3 can be represented in block -observable form. The rank of A t01

* ( ) is equal 
to l1 (0 ≤ l1 ≤ l0). There exists (l0 − l1) × l1 matrix Λ1(t) such that

 
A t

C t

t C t

A t l

01

1

1 1

01 1

*

*

( )
( )

( ) ( )

( )

=
⎡

⎣
⎢

⎤

⎦
⎥

=

Λ

rank rank C t l1 1( ) .=

C1(t) is represented as 

 C t C t C t C t1 1 1 0( ) ( ) ( ) det ( ) ,= ′ ′′[ ] ′′ ≠,

where C t l n l l′1 1 0 1( ) ( )∈ℜ × − − , ′′ ∈ℜ ×C t l l
1

1 1( ) . Then y1(t) is 

 y t C t x C t x C t x1 1 1 1 2 1 2( ) ( ) ( ) ( ) ,*= = ′ + ′′
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where y l
1

1∈ℜ , x n l l
2

0 1∈ℜ − − , and x l
2

1* ∈ℜ .
The transformation matrix of x x xT T T

1 2 2= ( ), *  into y xT T
1 2,( ) is

 
y

x

C C

I
x

xn l l

1

2

1 1 2

21 0
0

⎡

⎣
⎢

⎤

⎦
⎥ =

′ ′′⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦− −
* ⎥⎥ =

⎡

⎣
⎢

⎤

⎦
⎥ ≠T

x

x1

2

2

0* ) ., det(T1

Applying this transformation to the system in Equation 6.3.4, the following 
equation is obtained:

 
�
�

�y

x
T A y T A T T T

y1

2
1 10 0 1 11 1

1
1 1

1⎡

⎣
⎢

⎤

⎦
⎥ = + +( )− −* * 11

2
1 1x

T B u
⎡

⎣
⎢

⎤

⎦
⎥ + * , (6.3.6)

where

 

T A
A

A
T A T T T1 10

10

20
1 11 1

1
1 1

1*
*

*,=
⎡

⎣
⎢

⎤

⎦
⎥ +( )− −� ==

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

A A

A A

T B
B

B

11 12

21 22

1 1

1

2

*

* *

*
*

,

.

Equation 6.3.6 is rewritten as

 
�

�

y A t y A t y A t x B t u

x A
o1 10 11 1 12 2 1

2

= + ( ) + +

=

( ) ( ) ( )*

220 21 1 22 2 2
* * * *( ) ( ) ( ) .t y A t y A t x B t uo + ( ) + +

The block in Equation 6.3.3 is rewritten as 

 �y A t y A t y B t uo0 00 01 1 0= + ( ) +( ) ( ) , (6.3.7) 

where A t
I

t
A t ll

01
1

01 1
1( )
( )

( )=
⎡

⎣
⎢

⎤

⎦
⎥ =

Λ
, rank .

For l1 < n − l0, the subsystem in Equation 6.3.4 can be represented in block-
observable form again (l1 > 0, otherwise the system in Equations 6.3.1 and 
6.3.2 is unobservable). Because after each step the dimension of xi is less than 
that of xi−1, the procedure terminates after a fi nite number of steps.

Recall that the procedure is implementable if, in the block-observable form 
of the ith subsystem 

 

�

�

y A t y A t x B t u

x

i i j j i i i i
j

i

i

= + ( ) ++ +
=
∑ , ,

*( ) ( )1 1
0

++ + + + +
=

= + ( ) +1 1 1 1 1A t y A t x B t ui j j i i i i
j

,
*

,
* *( ) ( )

00

i

∑ ,

 (6.3.8)
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 the rank and the position of the principle minor of the matrix A ti i,
* ( )+1  do not 

vary in time.
Finally, this procedure terminates after r steps and y C x C xr r r r r= = ′′ +1

*   (xr+1 = 0). 
The rth subsystem is written as 

 

� �y A t y A t y A t y A tr r o r rr r r r= + ( ) + + + +0 1 1 1( ) ( ) ( ),
* xx B u

A t y B t u

r r

r j j r
j

r

+

=

+

= +∑
1

0
, ( ) ( ) .

Similar to Equations 6.3.3 and 6.3.7, A t xi i i,
* ( )+ +1 1 in Equation 6.3.8 may be 

replaced by Ai,i+1(t)yi+1 as follows:

 � …y A t y A t y B t u i ri i i i i i i= + ( ) + =+ +( ) ( ) ( , ,*
, 1 1 1 −− 1) (6.3.9)

 �y A t y B t ur r r r= +( ) ( )* , (6.3.10)

where A t A A Ai i i ii( ) , , ,= ( )1 2 � , y y y yi
T T T

i
T* , , ,= ( )0 1 � , yi

li∈ℜ , rank Ai,i+1(t) = li+1, 
and Ai,i+1 is a full rank matrix. Then the system in Equations 6.3.9 and 6.3.10 
is represented as a set of block observable forms,

 
d
dt

y

y

y

y

A A

A

r

0

1

2

00 01 0 0 0

�
�

�⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

110 11 12

20 21 22 23

1

0 0

0

A A

A A A A

Ar r

�
�

� � � � � �
� � � � � − ,

AA A A A A

y

y

y

r r r r rr0 1 2 3

0

1

2

�

�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥ yy

B

B

B

Br r

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

0

1

2

�
�

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

u,

with full rank matrices Ai,i+1.

6.3.2. Observer Design

Using the sliding mode approach, the design procedure for an observer for a 
time-varying system may be decoupled into r trivial and independent stabi-
lization subproblems. Let the observer equation be of the form

 ˆ ( ) ˆ ˆ ( ) (*
,

�y A t y A t y B t u v ii i i i i i i i= + ( ) + ++ +1 1 == −0 1, , ),… r  (6.3.11)

 ˆ ( ) ˆ ( ) .*�y A t y B t u vr r r r r= + +  (6.3.12)
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Observer inputs νi are designed as

 v M y y0 0 0 0= −sign( ˆ ) (6.3.13)

 v M A z z z v ii i i i i i i i i= + = =−
+

−sign (( ),,1 1 1τ � ,, ,… r), (6.3.14)

where the left pseudoinverse matrix Ai i−
+

1,  (A A Ii i i i li−
+

− =1 1, , ) exists, because Ai−1,i 
is a full-rank matrix. Equations for mismatches �y y yi i i= − ˆ  are 

 
d
dt

y

y

y

y

A A

A

r

0

1

2

00 00 0 0 0

�
�

�⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

110 11 12

20 21 22 23

1

0 0

0

A A

A A A A

Ar r

�
�

� � � � � �
� � � � � − ,

AA A A A A

y

y

y

r r r r rr0 1 2 3

0

1

2

�

�
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥ yy

v

v

v

vr r

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

0

1

2

�
�

⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥

.

For bounded initial conditions and any fi nite numbers M1,…,Mr there exists 
a number such that, after a fi nite time interval, sliding mode occurs at the 
manifold y0 0=  because each component of �y0 and its time derivative have 
different signs (Equation 2.4.1). According to the equivalent control method 
(Section 2.3), the solution of �y0 0=  with y0 0=

 ( ( )]v M y A yeq0 0 0 01 1) [ signeq = =

should be substituted into Equation 6.3.14 to fi nd the sliding mode equation. 
Then the output of the fi rst-order fi lter z1 approaches the equivalent control 
input v eq0

 lim lim .
τ τ1 10

1 0 01 1 1
0

01 1→ →

+= = =z v A y y A zeq and

Similarly, y2can be found from the second block (subsystem with respect to
y1) 

 y A z2
0

12 2
2

=
→

+lim
τ

Consequently, sliding mode will occur at each block, and then all the subvec-
tors y yr1 , ,…  will converge to zero. Because y y y i ri i i= + =ˆ ( , , )1 … , all subvec-
tors of the state vector (y1,…,yr) and correspondingly x will be found.

Remarks 6.1

 1. The procedure is invariant with respect to li × (lr +…+ li) matrices Ai(t) 
i = 0,…,r.

 2. There is no need to enforce sliding mode in the last block because

  v A t yr eq r r r− −=1 1, , ( ) ,
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  and the last subvectors yr may be found as 

 y y A t zr r r r r= + −
+ˆ ( ) .,1

 3. At the presence of an unknown disturbance vector f(t) in the last 
block

 �y A t y B t u f t f tr r r r
lr= + + ∈ℜ( ) ( ) ( ), ( ) ,

  the mismatch equation is of the form

 �y A t y f t vr r r r= + −( ) ( ) .

   After sliding mode occurs in this subsystem, yr = 0 and 

  νreq = f(t) and lim ( )
τ f

z v f tf r eq→
= =

0
 

  if τ f f f rz z v� + = .

As a result, the last block enables one to fi nd the equivalent disturbance 
vector, which includes external disturbances, parameter variations, and non-
linear state functions. This approach is developed in Chapter 8 as one of the 
methods for chattering suppression. 

6.3.3. Simulation Results

As an example of the above observer design, let us consider the following 
time-varying system:

 �x A t x B t u f t= + ( ) +( ) ( )

 y = C(t)x,

where

 

A t

a a a

a a

a a

a a

( ) =

⎡

⎣

⎢
⎢

00 01 03

11 12

20 23

31 33

0

0 0

0 0

0 0

⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, B t

b

b
( ) ,

00

11

0

0

0 0

0 0

CC t
c c

c
f t( ) ( )=

⎡

⎣
⎢

⎤

⎦
⎥ =00 01

11

0 0

0 0 0
0, 00 2 3f f[ ].

TAF-65602-08-1101-C006.indd   131TAF-65602-08-1101-C006.indd   131 3/31/09   7:50:34 PM3/31/09   7:50:34 PM



© 2009 by Taylor & Francis Group, LLC

132 Sliding Mode Control in Electro-Mechanical Systems

The elements of the coeffi cient matrices, the inputs, and the disturbances are 
as follows:

 

a e a t

a t a

t
00 01

11 2

4 2 2

5 0 3

= − ⋅ = − +
= − ⋅

− sin( /

cos( . ) 33

31 33

03 12 20

2

1
2

1
2

1

= − ⋅

= − − +
+

= −

= = = −

−e

a
t

t
a

a a a

b

t

000 11
5

00 10
5

3 5

4 2 2

= − = − ⋅

= + = −

−

−

b e

c t c e

c

t

tsin( / ) /

111

0 1

5
1

2
0 3

5 3

= − + −

= = −

sin( . )

cos( ), .

t

u t u

For output matrix C(t) 

 rank
c c

c
t11 12

220
2 0

⎡

⎣
⎢

⎤

⎦
⎥ = ∈ ∞, [ , ).

The rank and the principle minor position of the time-varying matrix C(t) do 
not vary in time. 

The block-observable form can be easily obtained following the above 
method,

 
d
dt

y

y

A A

A A

y

y
0

1

00 01

10 11

0

1

⎡

⎣
⎢

⎤

⎦
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⎡

⎣
⎢

⎤
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⎡

⎣
⎢

⎤

⎦
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u
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1

0⎡

⎣
⎢

⎤

⎦
⎥ +

⎡

⎣
⎢

⎤

⎦
⎥ ,

where

 

y
c c

c

x

x

y
x

x

0

00 01
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1

2

1

3

4

0
=

⎡
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⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

,

..

The observer in Equations 6.3.11 through 6.3.14 for our system is the form

 
d
dt

y

y

A A

A A
y

y

ˆ

ˆ

ˆ

ˆ
0

1

00 01

10 11

0
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⎡

⎣
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⎤

⎦
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⎣
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⎤

⎦
⎥

⎡

⎣
⎢

⎤⎤

⎦
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⎡

⎣
⎢

⎤

⎦
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⎡

⎣
⎢

⎤

⎦
⎥

B

B
u

v
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0

1

0
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,

TAF-65602-08-1101-C006.indd   132TAF-65602-08-1101-C006.indd   132 3/31/09   7:50:34 PM3/31/09   7:50:34 PM



© 2009 by Taylor & Francis Group, LLC

Sliding Mode Observers 133

where ν0 and ν1 are observer inputs

 

v M y y

v M A z

z z

0 0 0 0

1 1 01
1

1

1 1

= −

=
+

−

sign

sign

( ˆ ),

( )

τ �
11 0

1 0 0

( ) ( )

( ) .

t v t

z

=
=

Simulations were performed for two cases.

6.3.4. Case 6.1: The System with Zero Disturbances

The initial value of system states are given by

 
x x

x x
0 1

2 3

0 5 0 5

0 5 0 5

( ) , ( ) ,

( ) , ( )
.

= =
= =

Because the disturbance is assumed to be zero, only the state estimation is 
considered. The initial values of the observer state are equal to zero. 

Because the sampling interval Ts confi nes the switching frequency, the fi l-
ter constant τ1, which must theoretically approach zero, is selected as 4Ts. The 
sampling interval is 100μs.

Figures 6.1.A and 6.1.B depict both the system states x2(t), x3(t) and the 
outputs ˆ ( )x t2 , ˆ ( )x t3  of the sliding mode observer. As can be viewed from 
the fi gure, the estimated states converge to the real states rapidly. The gain 
matrices M0 and M1 are 

 M M0 1

5 0

0 5

10 0

0 10
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥, .

FIGURE 6.1.A
Real system state values.
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6.3.5. Case 6.2: The System with Disturbances

Because the unknown disturbances f2, f3 are to be estimated, the additional 
fi lter is introduced (see Remark 6.1, item 3):

 
τ f f f

f
T

z z t v t

z

� + =

=

( ) ( ),

( ) [ ] .

1

0 0 0

The estimated disturbance is the output of the above fi lter

 ˆ( ) ( ), ˆ( ) [ ˆ ( ) ˆ ( )].f t z t f t f t f tf
T= = 2 3

The time constant τ1 is chosen to be 500 μsec. Other conditions for simulation 
are the same as in Case 6.1. 

By observing the estimation response from Figures 6.2.A and 6.2.B, it can 
be concluded that the unknown disturbances can be found by the sliding 
mode observer.

FIGURE 6.1.B
Estimated system state.
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FIGURE 6.2.A
Real disturbances.
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6.4. Observer for Linear Systems with Binary Output

As long as a linear system with an output as a linear function of the state is 
observable, the state variables can be estimated using conventional observ-
ers, although robustness to disturbance and modeling uncertainty need to be 
considered further. However, the conventional observer approach is not fea-
sible when a binary sensor limits output information to the sign of the out-
put. An example is the oxygen sensor of an air/fuel ratio control  system for 
internal combustion engines. Its reading indicates only whether the  control 
output is higher or lower than the desired value.

A design methodology for such systems was developed by Drakunov and 
Utkin [1995] and Kim, Rizzoni, and Utkin  [1998]. The two-stage observer 
was proposed to consist of a discrete time-varying observer to estimate 
the states at each sensor switching instant and of a continuous system to 
estimate the state trajectory between the switching instants. Generally 
speaking, the observer equations are time varying, and the conventional 
eigenvalue placement methodology is not applicable. The observer design 
approach described below overcomes this diffi culty and guarantees 
convergence. 

6.4.1. Observer Design

Consider the system

 
�x Ax Bu

y sign Cx b

= +
= −( ),

 (6.4.1)

where x is the state, u is the control and y is the scalar output, A, B, and C 
are constant matrices, and b is a scalar parameter. Let zk be the state  vector 

FIGURE 6.2.B
Estimated disturbances.
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at sensor switching instants and τk be the interval between switching 
instants:

 
z x t

t t
k k

k k k

=
= − −

( )
.

τ 1

 (6.4.2)

If the zk values are known exactly for the entire process, the estimation of the 
states becomes an initial-value problem with known initial conditions: if all 
the states are available at every sensor switching instants 

 y = zk , (6.4.3)

then estimation of the continuous state variables during the sensor switch-
ing interval becomes the initial value problem with the state variables at the 
switching instant tk as the initial condition. Consequently, the state trajectory 
until the next sensor switching instant tk+1 can be calculated by

 

x t e z e Bu d
t

t
tA t k

A t

k

k

k

k( ) ( )
( ) ( )

= + ∫ ≤− −+
τ τ

τ τ
1

for tt tk≤ +1.

 

(6.4.4)

However, if information on the zk values is limited, as is the case with the 

binary sensor measurement, a discrete observer is needed to estimate the 
discrete sequence zk. Then, the continuous states x(t) can be obtained by 
using the discrete estimation as an initial value during the sensor switch-
ing intervals (i.e., the time interval between tk and tk+1) according to Equation 
6.4.4. Now the measurement equation becomes 

 yk = sign(Czk − b). (6.4.5)

As mentioned above, the observer design procedure is divided into two 
steps. The fi rst step consists of estimating the state variables at each switch-
ing instant of the binary sensor, i.e., ẑk= estimation of zk at time tk. The second 
step consists of estimating the states between the sensor switching times, i.e., 
ˆ( )x t is equal to estimation of x(t) for the time interval between tk and tk+1. This 
two-step procedure leads to a continuous estimate of the state variables for 
the entire process. 

Using the defi nition given in Equation 6.4.3, the discrete system (defi ned 
only at sensor switching instant) can be expressed as follows:

 
z e z e Bu d

t

t
k k

k

k
A k A tk= + ∫− −

−

−

τ τ τ τ1
1

1

( )
( ) .

 

(6.4.6)

A discrete observer can be designed to estimate the sequence zk. In this 
case, the updates of the estimates of these discrete state variables occur in 
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nonuniformly distributed time intervals (time between tk-1 and tk), which are 
the intervals between binary sensor switching times. Because at  switching 
instants Czk = b for any k, the discrete observer can be constructed in the form 

 
ˆ ˆ ( ) (

( )

z e z e Bu d
t

t
Lk

k
k

k

k

k
A A t

= + ∫ +−
−

−

−

−τ τ

τ τ1
1

1

1 CCz bk
ˆ ),− −1

 

(6.4.7)

which results in the equation with respect to mismatch z z z Cz b czk k k k k= + − =ˆ , ˆ

 z e L C z
k

A k
k k= +−

− −( )
τ 1

1 1 . (6.4.8)

Vector Lk−1 should be selected such that this homogenous system is stable 
with the desired rate of convergence. The selection of the gain for this 
type of observer is not a trivial task because the system in question is time 
varying (because the sensor switching interval τ varies in time) and the 
conventional approach based on eigenvalue placement is not applicable. 
The observer design will be illustrated for the second-order system with 
C L l lk

T

k k
= =( , ), ( , )1 0

1 2
 in Equation 6.4.8:

 
z a l z a z

z a
k k k k k k

k

1 11 1 1 1 1 1 12 1 12 1

2 2

= + +
=

− − − − −( )

( 11 1 2 1 1 1 22 1 12 1k k k k kl z a z− − − − −+ +)
,

where aijk−1 are elements of matrix e
A

k
τ

−1 , a12k−1 ≠ 0 −suffi cient observability 
condition.

Coordinate transformation

 s z z q a
a qk k k k k

k

k
= + = − <−

−
α α1 2

22 1

12 1
1, ,

results in

 z −
1k = (a11k−1 + l1k−1 − αk−1a12k−1)z –

1k−1 + a12k−1sk−1

 sk = [αk(a11k−1 + l1k−1 − αk−1a12k−1) + a21k−1 + l2k−1 − αk−1a22k−1] z –
1k−1 + qsk−1.

For

 l r a a r r constk k k k1 1 11 1 1 12 1 1− − − −= − + < =α , ,

and

 l2k−1 = −αk(a11k−1 + l1k−1 − αk−1a12k−1) − a21k−1 + αk−1a22k−1,

the observer motion is governed by
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z rz a s

s qs
k k k k

k k

1 1 1 12 1 1

1

= +
=

− − −

− .

Since lim sk = 0 and lim z –
1k = 0 with k →∞, the state of the observer tends to 

the system state with the desired rate defi ned by q and r. In the second stage, 
the state values are found for any time between switching instants following 
Equation 6.4.4.

Remark 6.2

A similar methodology can be applied to systems with delayed binary 
observation: 

 
�x t Ax t Bu t

y t sign Cx t b co

( ) ( ) ( )

( ) [ ( ) ],

= +
= − − =θ θ nnst > 0.

Design of the observer for the system

 
�x t Ax t Bu t

y t sign Cx t b

( ) ( ) ( )

( ) [ ( ) ]

− = − + −
= − −
θ θ θ

θ

is identical to Equation 6.4.1 with t replaced by t − θ ; therefore, the observer 
proposed in this section can be used to fi nd the value of x(t − θ). Finally, the 
convolution equation

 x t e x t e Bu t dA A t

t

t
( ) ( ) ( )( )= − + −−

−∫θ τ

θ
θ τ τ

can be used for calculating the current value of the state vector.
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7
Integral Sliding Mode

The robustness property of conventional sliding mode control with 
respect to variations of system parameters and external disturbances 
can only be achieved after the occurrence of sliding mode. During the 
reaching phase, however, there is no guarantee for robustness. Integral 
sliding mode seeks to eliminate the reaching phase by enforcing sliding 
mode throughout the entire system response. Different from the con-
ventional design approach, the order of the motion equation in integral 
sliding mode is equal to the order of the original system rather than 
reduced by the dimension of the control input. As a result, robustness 
of the system can be guaranteed starting from the initial time instant. 
Uniform formulations of this new sliding mode design principle will be 
developed in this chapter. It is shown with examples that this general-
ized scheme of integral sliding mode enables a wide scope of applica-
tion areas, including control in robotics and electric drives. The concept 
of integral sliding mode can also be extended to construct a new type of 
perturbation estimator that solves the chattering problem without loss 
of robustness and control accuracy. Additional details on integral slid-
ing mode can be found in the work of Utkin and Shi [1996]. 

7.1. Motivation

Sliding mode plays a dominant role in variable structure systems (VSS) the-
ory. The core idea of designing VSS control algorithms consists of enforcing 
sliding mode in some manifold of state space. Traditionally, these mani-
folds are constructed as the intersection of hyper-surfaces in the state space. 
This intersection domain is normally called switching manifold. Once the 
system reaches the switching plane, the structure of the feedback loop is 
adaptively altered to slide the system state along the switching plane; the 
system response depends thereafter on the gradient of the switching plane 
and remains insensitive to variations of system parameters and external dis-
turbances under so-called matching conditions (Section 3.3). The order of the 
motion equation in sliding mode is equal to (n m− ), with n being the dimen-
sion of the state space and m the dimension of the control input. However, 
during the reaching phase, i.e., before sliding mode occurs, the system pos-
sesses no such insensitivity property; therefore, insensitivity can not be 
ensured throughout an entire response. 
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As an extension of traditional sliding mode schemes, the concept of inte-
gral sliding mode concentrates on robustness during the entire response. 
The order of the motion equation in this new type of sliding mode is equal 
to the dimension of the plant model. Therefore, sliding mode is established 
without a reaching phase, implying that the invariance of the system to para-
metric uncertainty and external disturbances is guaranteed starting from 
the initial time instant. This chapter generalizes the sliding mode control 
concept and emphasizes the background philosophy used for developing 
such new variable structure systems. 

We assume that there already exists an ideal system consisting of a nominal 
plant model and a properly designed feedback control. To this existing control-
ler, a discontinuous term is added based on integral sliding mode to ensure 
the desired performance despite parametric uncertainty and external distur-
bances. Design examples in some application areas are given to illustrate the 
methodology of this design philosophy. The basic idea of integral sliding mode 
for linear systems can be found in the work of Ackermann and Utkin [1994].

Integral sliding mode may also be used to prevent chattering in a control 
loop, often caused by controller discontinuities exciting unmodeled dynam-
ics. For chattering prevention, the discontinuous control term is low-pass 
fi ltered before being fed to the plant, thus moving the discontinuity to an 
auxiliary control loop without unmodeled dynamics to be excited. The fi l-
tered control acts as a perturbation compensator and preserves the invari-
ance property of sliding mode. The chattering prevention aspect of integral 
sliding mode is discussed in detail in Section 8.5. 

This chapter only deals with uncertainties that satisfy the matching condi-
tions. For systems with unmatched uncertainties, the readers are referred to 
the work of Cao and Xu [2004] and Castaños and Fridman [2006].

7.2. Problem Statement

For a given dynamic system represented by the following state space 
equation

 �x f x B x u= +( ) ( ) , (7.2.1)

with x n∈ℜ  being the state vector and u m∈ℜ  being the control input vector 
(rank B x m( ) = ), suppose there exists a feedback control law u u x0= ( ), normally 
a continuous control, such that the system in Equation 7.2.1 can be stabilized 
in a desired way (e.g., its state trajectory follows a reference trajectory with a 
given accuracy). We denote this ideal closed-loop system as

 �x f x B x u0 0= +( ) ( )0 0 , (7.2.2)
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where x0 represents the state trajectory of the ideal system under control u0. 
However, in practical applications, the system in Equation 7.2.1 operates 
under uncertainty conditions that may be generated by parameter variations, 
unmodeled dynamics, and external disturbances. Under this consideration, 
the real trajectory of the closed-loop control system may be summarized by

 �x f x B x u h x,t= + +( ) ( ) ( ), (7.2.3)

in which vector h x,t( ) comprises the perturbation attributable to parameter 
variations, unmodeled dynamics, and external disturbances and is assumed 
to fulfi ll the matching condition (see Section 3.4)

 h x,t B x( ) span{ ( )}∈ ,  (7.2.4)

or equivalently, 

 h x,t B x uh( ) ( )=  with uh
m∈ℜ . (7.2.5)

In other words, control u is assumed to be able to infl uence all components of 
vector h x,t( ) via control matrix B x( ).

Assume that h x t( , ) is bounded and an upper bound can be found as

 h x t h x ti i( ) ( ), ,≤ + , i n= 1, ..., ,  (7.2.6)

with h x ti
+ ( ),  being known positive scalar functions. The control design chal-

lenge thus becomes the following: fi nd a control low u x t( , ) such that the tra-
jectories of the system in Equation 7.2.3 satisfy x(t) ≡ x0 (t) starting from the 
initial time instant, i.e., x x( ) ( )0 00= .

7.3. Design Principles

For the system in Equation 7.2.3, fi rst redesign the control law to be

 u u u0 1= + , (7.3.1)

where u0
m∈ℜ  is the “ideal control” defi ned in Equation 7.2.2, and u1

m∈ℜ  is 
designed to reject the perturbation term h x t( , ). Substitution of the control 
law in Equation 7.3.1 into Equation 7.2.3 yields

 �x f x B x u B x u h x,t0 1= + + +( ) ( ) ( ) ( ). (7.3.2)
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Furthermore, defi ne a sliding manifold as

 s s x z= +0( ) , with s s x z m, ( ),0 ∈ℜ ,  (7.3.3)

which consists of two parts: the fi rst part s x0( ) may be designed as a linear 
combination of the system states, similar to the conventional sliding mode 
design; the second part z introduces the integral term and will be deter-
mined below.

The philosophy of integral sliding mode is as follows: to achieve x(t) ≡ x0 (t) 
at all time t > 0, the equivalent control of u1, denoted by u eq1 , should fulfi ll

 B x u h x,t1eq( ) ( )= − ,  (7.3.4)

or, in terms of Equation 7.2.5,

 u ueq h1 = − . (7.3.5)

The equivalent control u eq1  accurately describes the system trajectories when 
sliding along the manifold s x( ) = 0 in Equation 7.3.3. See also Section 2.3 or 
the work by Utkin [1992] for details of the mathematical derivation of equiva-
lent control.

To adequately defi ne auxiliary variable z x t( , ) in Equation 7.3.3 to achieve 
Equation 7.3.5, set the time derivative �s equal to zero,

 � � �s s x z
s
x

f x B x u x B x u xeq= + = + +0
0

0 1( ) ( ) ( ) ( ) ( ) (
∂
∂

)) ( )+{ } + =B x u zh � 0. (7.3.6)

To ensure the requirement in Equation 7.3.5, defi ne

 �z
s
x

f x B x u x= − +{ }∂
∂

0
0( ) ( ) ( ) , z s x( ) ( ( ))0 00= − , (7.3.7)

where initial condition z( )0  is determined based on the requirement s( )0 0= . 
In other words, sliding mode is to occur starting from the initial time instant. 
Because Equation 7.3.5 is satisfi ed, the motion equation of the system in slid-
ing mode will be 

 �x f x B x u x= +( ) ( ) ( )0 ,  (7.3.8)

as if the perturbation term h x t( , ) did not exist, identical to the ideal system 
trajectories (Equation 7.2.2). 

Definition 7.1: Integral Sliding Mode 

A sliding mode is said to be an integral sliding mode if its motion equation 
is of the same order as the original system (i.e., the order of sliding motion is 
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equal to n). The control u1 in Equation 7.3.1 is defi ned to enforce sliding mode 
along the manifold (Equation 7.3.3) via discontinuous

 u M x s1 = − ( )sign( ), (7.3.9)

where control gain M x( ) can be selected as a scalar function or even a con-
stant to simplify the control design. Based on Equations 7.3.3, 7.3.7, and 7.3.9, 
the time derivative of s can be calculated as 

 �s
s
x

B x u
s
x

B x M x sh= −∂
∂

∂
∂

0 0( ) ( ) ( )sign( ).  (7.3.10)

In the above equation, s0 should be selected such that matrix 
∂
∂
s
x

B x0 ( ) is non-
singular during the entire system response. Then, the control gain M x( ) 

should be selected depending on the property of 
∂
∂
s
x

B x0 ( ) such that sliding 
mode is enforced in the manifold s = 0 (see Sections 2.5 and 3.2).

7.4. Perturbation and Uncertainty Estimation

A crucial part of the nature of sliding mode control schemes is the control dis-
continuity. In closed loop, the “switching” in the control action often results 
in high-frequency oscillations in practical implementations. Fast dynam-
ics, like those of actuators and sensors, which were neglected in the control 
design process, are excited by the sliding mode control switches, occurring 
at high but fi nite frequencies. This phenomenon, common to all high-gain 
control systems, is referred to as chattering.

Several methods have been presented in the literature to alleviate chatter-
ing. The key idea is to limit the controller gain or the controller bandwidth. A 
detailed discussion of the causes of chattering and the various tools to prevent 
this phenomenon can be found in Chapter 8. The remainder of this section is 
devoted to a brief description of using integral sliding mode to design per-
turbation estimators, rejecting overall system perturbations that satisfy the 
matching condition, with the chattering level being signifi cantly reduced.

As mentioned above, high-gain controllers are frequently limited by loop 
dynamics, especially by actuator dynamics preventing direct implementa-
tion of sliding mode schemes. Conversely, discontinuous control inputs are 
often prescribed by the nature of the system, e.g., by conventional pulse 
width modulation (PWM) units in power electronics. To resolve such seem-
ingly contradictory specifi cations, recall that the actual effect of a discontin-
uous controller on a given plant is equal to the average of the control action, 
the so-called equivalent control (see Section 2.3).
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With this in mind, reformulate the integral sliding mode principle in 
Section 7.3 in terms of a perturbation estimator. Instead of Equation 7.3.1, 
change the control input to

 u u u eq= +0 1 . (7.4.1)

However, the control in Equation 7.4.1 cannot be implemented directly because 
the equivalent value of discontinuous control u1 depends on unknown dis-
turbance h x,t( ) in Equation 7.2.3. It was shown in Section 2.4 that the equiva-
lent value of a discontinuous control is equal to the average value measured 
by a fi rst-order linear fi lter, with the discontinuous control as its input. The 
time constant of the fi lter should be suffi ciently fast such that the plant and 
disturbance dynamics are allowed to pass through the fi ltering without sig-
nifi cant phase lag. Therefore, substitute u ueq av1 1=  with u av1  defi ned by

 μ �u u uav av1 1 1+ = ,  (7.4.2)

where the time constant μ should be selected small enough not to distort the 
slow component of the switched action, equal to u eq1 . In most practical appli-
cations, the frequency spectrum of perturbation to be compensated for does 
not overlap with the high-frequency components of the switching unit.

One may be tempted to ask the following: if the discontinuity in the real 
control path is smoothed, how can sliding mode be generated? Furthermore, 
does u av1  (= u eq1 ) still cancel the perturbation term uh? As shown in the sequel, 
these questions can be answered positively, if the discontinuous control u1 is 
shifted from the plant input to the input of an auxiliary dynamic system. 

Similar to Equations 7.3.3 and 7.3.7, redesign the switching function 

 s s x z= +0( ) ,   (7.4.3)

with z defi ned in

 �z
s
x

f x B x u B x u= − + −{ }∂
∂

0
1( ) ( ) ( ) , z s x( ) ( ( ))0 00= − .  (7.4.4)

The time derivative of sliding variable s in Equation 7.4.3 can be calculated 
as

 �s
s
x

f x B x u B x u
s
x

f x B x uh= + +{ } − +
∂
∂

∂
∂

0 0( ) ( ) ( ) ( ) ( ) −−{ }B x u( ) 1

 =
∂
∂

∂
∂

s
x

B x u
s
x

B x uh
0 0

1( ) ( )+ . (7.4.5)

TAF-65602-08-1101-C007.indd   144TAF-65602-08-1101-C007.indd   144 3/31/09   7:51:10 PM3/31/09   7:51:10 PM



© 2009 by Taylor & Francis Group, LLC

Integral Sliding Mode 145

Design the same discontinuous control for u1 as shown in Equation 7.3.9 

and assume that matrix 
∂
∂
s
x

B x0 ( ) is nonsingular during the entire system 

response; sliding mode can be enforced in the system using methods given 
in Sections 2.5 and 3.2. 

Solving for u1 after setting �s = 0 in Equation 7.4.5 reveals that u ueq h1 = −  holds 
as well, implying that u av1  (= u eq1 ) is indeed an estimate of the perturbation 
term uh. In this case, Equation 7.4.4 can be interpreted as an internal dynamic 
process for generating sliding mode defi ned by Equation 7.4.3; discontinu-
ity appears only in the internal process; thus, no chattering is excited in the 
real control path. Moreover, because u av1  cancels the perturbation u h1  without 
precise knowledge of the system model and associated parameters, a high 
degree of robustness is maintained. The information needed for this control 
scheme is the upper bound of the perturbation. From a conceptual point of 
view, integral sliding mode is used here only for estimating the system per-
turbation rather than for the purpose of control. The control action to the real 
plant will be continuous and is signifi cantly enhanced by the perturbation 
compensator.

7.5. Examples

Four application examples will be presented in the following sections. The 
main content of each section and the signifi cance of each application exam-
ple are listed in Table 7.1.

TABLE 7.1

Application Examples and Their Signifi cance

Application Signifi cance of the Application Example

7.5.1.  Linear time-invariant 

systems

Linear time-invariant systems are special case of the 

proposed general design principle

7.5.2.  Control of robot 

manipulators

Robust control of rigid-body robots under parameter 

uncertainties

7.5.3.  Pulse-width modulation 

for electric drives

Design philosophy of integral sliding mode can be directly 

applied to practical systems 

7.5.4.  Robust current control 

for permanent-magnet 

synchronous motors

Version 1 : Robust current control of permanent-magnet 

synchronous motors

Version 2 : Utilization of proposed perturbation estimator to 

achieve advanced performance 
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7.5.1. Linear Time-Invariant Systems

Consider a controllable linear time-invariant system with scalar control

 �x Ax B u d x t= + +( )( , ) , (7.5.1)

with state vector x n∈ℜ , scalar control u ∈ℜ, known system matrix A n n∈ℜ × , 
B n∈ℜ , and d x t( , ) being a nonlinear perturbation with known upper bound

 d x t d x t( , ) ( , )< + . (7.5.2)

Design control u as stated in Equation 7.3.1 as u u u= +0 1, where u0 is pre-
determined such that system �x Ax Bu= + 0 follows a given trajectory with 
desired accuracy. For example, u0 may be designed as linear static feedback 
control u k x kT n

0
1= − ∈ℜ ×, , in which gain vector k can be determined by pole-

 placement or linear-quadratic Gaussian methods.
For pole-placement design, Ackermann’s formula (Section 5.4) may be 

used. Assuming that the desired eigenvalues for system �x Ax Bu= + 0 are
λ λ λ1 2, , ..., n, the control gain kTcan be determined explicitly depending on 
Ackermann’s formula

 kT T= e AP( ), (7.5.3)

where eT nB AB A B= − −( , ..., , )( , , ..., )0 0 1 1 1 and P( )⋅  is the characteristic poly-
nomial of the system, defi ned by P n n( ) ( )( )...( )( )λ λ λ λ λ λ λ λ λ= − − − −−1 2 1 .

According to Equations 7.3.3 and 7.3.7, design the sliding manifold as

 s C x zT= + = 0, C n∈ℜ , (7.5.4)

with

 �z C Ax Bu z C xT T= − +( ) = −0 0 0, ( ) ( ).  (7.5.5)

Particularly, vector C n∈ℜ  may be selected to be equal to B n∈ℜ , resulting in

 s B x zT= + ,  (7.5.6)

and

 �z B Ax B B u z B xT T T= − − = −( ) , ( ) ( )0 0 0 .  (7.5.7)

The time derivative of s can be calculated as

 �s B B u d x tT= +( )( ) ( , )1 . (7.5.8)
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Solving for u1 by formally setting �s = 0 shows that u d x teq1 = − ( , ). Thus, the 
motion equation in sliding mode coincides with that of the ideal sys-
tem �x Ax Bu= + 0 without perturbation d x t( , ). Furthermore, because 
s B x zT( ) ( ) ( )0 0 0 0= + = , sliding mode will occur from the initial time 
instant t = 0. 

For a controllable linear time-invariant system (B ≠ 0), C B B BT T= > 0 holds 
and the second part of the control, u1, can be designed as

 u m x s1 0= − ( )sign( ), (7.5.9)

where m x d x t0( ) ( , )> +  should be satisfi ed such that the function s and �s have 
different signs, implying that sliding mode can be enforced. For systems in 
which only discontinuous control inputs are allowed, e.g., for switching con-
trolled devices such as power converters, the control input can be designed as

 u m s= − 0 sign( ),  (7.5.10)

instead of the u u u= +0 1. To enforce sliding mode, control gain m0 should 
satisfy

 m u d x t0 0> + + ( , ).   (7.5.11)

Integral sliding mode may also be called “full order sliding mode” [see 
Ackermann and Utkin 1994]. 

7.5.2. Control of Robot Manipulators

The model of a rigid body robot manipulator (see Section 12.1) with n degrees 
of freedom can be written as

 M q q N q q( ) ( , )�� �+ = τ ,  (7.5.12)

where M n n∈ℜ ×  is the mass matrix, N n∈ℜ ×1is the vector including centrifu-
gal, Coriolis, and gravity forces, q n∈ℜ ×1 represents the joint angle vector, and 
τ ∈ℜ ×n 1 denotes the joint torque vector.

Using the so-called “computed torque method” based on the nominal 
model without perturbations, the required nominal joint torque for the 
tracking control of the joint position is defi ned as

 τ 0 0 0= − − +M q q K q K q N q qd D e P e( )( ) ( , )�� � � , (7.5.13)

where M N0 0,  are the nominal values of M N, , K KP
n n

D
n n∈ℜ ∈ℜ× ×,  are posi-

tive defi nite diagonal gain matrices determining the closed-loop performance, 
and the tracking error is defi ned as q t q t q te d( ) ( ) ( )= − , with q t q t q td d d( ) ( ) ( )� ��[ ] 
being the desired trajectory and its time derivatives.
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Substituting Equation 7.5.13 into Equation 7.5.12 under the assumption of 
exact knowledge of the model parameters, i.e., M M= 0 and N N= 0, the result-
ing closed-loop error dynamics are given by

 �� �q K q K qe v e p e+ + = 0, (7.5.14)

implying that tracking error q te ( ) tends to zero asymptotically.
However, for a real robot with uncertain parameters M M≠ 0 and N N≠ 0, 

the error dynamics are perturbed as shown

 �� �q K q K q Me D e P e p+ + = −
0

1τ , (7.5.15)

where τ p is given by

 τ p Mq N= +( )�� ,  (7.5.16)

with M M M= −0  being the parameter error for matrix M q( ) and N N N= −0  
being the parameter error for vector N q q( , )� . Thus, no matter how the constant 
matrices KP and KD are chosen, the tracking error q te ( ) will not tend to zero.

To suppress the perturbation caused by modeling uncertainty, design a 
robust controller based on the proposed integral sliding mode principle and 
show that the ideal closed-loop error dynamics as given by Equation 7.5.14 
can still be achieved.

Because the disturbance torque τ p contains ��q, which is a function of the 
control input τ τ τ= +0 1, to design the control input τ1 rejecting the system 
disturbance, it is necessary to reformulate the system model such that the 
resulting disturbance term is not a function of the control input τ 1. The ideal 
robot dynamics with M M= 0, N N= 0, and τ τ= 0 can be rewritten in terms of 
the error dynamics as

 �� ��q M N M qe d0 0
1

0 0
1

0= − + −− − τ .  (7.5.17)

For the real system (Equation 7.5.12) under control τ τ τ= +0 1, error dynamics 
similar to the ideal tracking error (Equation 7.5.17) can be derived as

 �� ��q M N M qe d= − + −− −1 1τ . (7.5.18)

According to the proposed integral sliding mode design method in Equations 
7.3.3 and 7.3.7, let the switching function be s s z= +0  with

 s C I
q

q
e

e
0 = [ ] ⎡

⎣
⎢

⎤

⎦
⎥�

, (7.5.19)
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and

 �
�

��
z C I

q

M N M q
e

d

= −[ ]
− + −

⎡

⎣
⎢

⎤

⎦
⎥− −

0
1

0 0
1

0τ
, z Cq qe e( ) ( ) ( )0 0 0= − − � ,  (7.5.20)

where C n n∈ℜ ×  is a positive defi nite gain matrix and I n n∈ℜ ×  is an n n×  unit 
matrix. 

The time derivative of vector s t( ) can then be obtained by differentiation 
of Equation 7.5.19 with substitution of error dynamics (Equation 7.5.18) and 
auxiliary variable z as defi ned in Equation 7.5.20,

 � � �s s z M= + = + + −
0 1 2 0

1
1ζ ζ τ τ , (7.5.21)

where ζ1 0
1

0
1= −− −( )M N M N  and ζ2

1
0

1= −− −( )M M  are due to the mismatches 
between the nominal parameters M0 and N0, and the real system parameters 
M q( ) andN q q( , )� , viewed as system perturbations similar to Equation 7.5.16 
in Equation 7.5.15. In the following, we assume that vector ζ ζ τ1 2 0+  is norm 
bounded.

Note that, for the derivation of Equation 7.5.21, the joint torque is composed 
of two additive parts as shown 

 τ τ τ= +0 1,  (7.5.22)

with τ 0 already defi ned in Equation 7.5.13 and τ 1 being the discontinuous part 
to reject the system perturbations. Defi ne

 τ1 0= −Γ sign( )s ,  (7.5.23)

where Γ0 is a positive constant and design a Lyapunov function candidate

V s sT= 1

2
. The time derivative of V along the solutions of Equation 7.5.21 is 

given by

 � �V s s s s M sT T T= = + − −( ) sign( )ζ ζ τ1 2 0
1

0Γ .  (7.5.24)

Because the kinetic energy of a robot, i.e., 
1

2
� �q M q qT ( ) , is always positive for

�q ≠ 0, matrix M q( ) is positive defi nite, and the inverse matrix M q( )−1 is posi-
tive defi nite as well. One of the suffi cient conditions for �V < 0 is to select the 
control gain Γ 0 as

 Γ 0 1 2 0

1> +
ρ

ζ ζ τ ,  (7.5.25)

where ρ is a positive number smaller than λmin M−( )1 , the smallest eigen-
value of matrix M q( )−1. Under the above condition, sliding mode will be 
enforced in fi nite time. Defi nition of the initial conditions in Equation 7.5.20 
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as z Cq qe e( ) ( ) ( )0 0 0= − − �  eliminates the reaching time to the sliding manifold. 
Once sliding mode occurs and the system is confi ned to the manifold s t( ) = 0, 
the equivalent control of τ1 can be used to examine the system behavior. The 
equivalent control is obtained by formally setting �s = 0, yielding

 τ ζ ζ τ1 1 2 0eq M= − +( ).  (7.5.26)

Substitution of τ τ τ= +0 1eq in Equation 7.5.12 with equivalent control (Equation 
7.5.26) leads to the motion equation during sliding mode, which can be sim-
plifi ed as

 M q q N q q0 0 0( ) ( , )�� �+ = τ . (7.5.27)

Control τ 0 in Equation 7.5.13 thus achieves the ideal closed-loop error dynam-
ics (Equation 7.5.14) as if perturbations caused by the parametric uncertainty 
did not exist.

7.5.3. Pulse-Width Modulation for Electric Drives

In contrast to the examples in Sections 7.5.1 and 7.5.2, the integral sliding 
mode design philosophy is directly exploited to implement the PWM in an 
electric drive system instead of applying Equations 7.3.3 and 7.3.7. Without 
loss of generality, an electric drive supplied by a power converter can be 
described by the affi ne dynamic system like

 �x f x B x u= +( ) ( ) , (7.5.28)

where x Rn∈  represents the current and fl ux components, and u Rm∈  is the 
control voltages taking only two values, −u0 and +u0, with u0 being the DC-
Bus (also called DC-link or link) voltage. For fi eld-oriented control design (see 
Chapter 10), Equation 7.5.28 is often transformed into a rotating coordinate 
system aligned with one of the fl ux vectors (rotor fl ux or stator fl ux). Using 
a transformation matrix T, a nonlinear projector with sinusoidal entries, the 
system Equation 7.5.28 may be transformed into the new coordinate system, 
denoted as ( , )d q :

 �x f x B x udq dq dq dq dq dq= +( ) ( ) , (7.5.29)

where udq is the new control input in coordinate system ( , )d q . Suppose that 
the control udq has been determined to satisfy the given specifi cations. The 
task then is to transform the control udq back to the original coordinate sys-
tem using the inverse transformation T −1 (if matrix T is not a square matrix, 
the pseudo-inverse will be used; see Chapter 10). Denote this transformed 
control as u*and let

 u T udq
* = −1 . (7.5.30)
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Now the question arises, how to obtain the actual control u for the system in 
Equation 7.5.28, which may only take two discontinuous values −u0 and +u0 
and should be exactly equivalent to u*?

The solution is to make the equivalent value of the control u to be equal to 
the equivalent value of u*, i.e. u ueq eq= * . Design a sliding mode manifold

 s u u d
t

= −( ) =∫ * ( ) ( )ζ ζ ζ
0

0, (7.5.31)

with associated control u

 u u s= 0 sign( ). (7.5.32)

For a Lyapunov function candidate V s sT= 1

2
, the time derivative of V is given 

by

 � �V s s s u s u sT T T= = −* sign( )0 . (7.5.33)

It is obvious that sliding mode can be enforced if the DC-Bus voltage satisfi es
u u0 > * , or, in other words, the DC-Bus voltage should be high enough to 
enforce the desired motion.

An example of applying sliding mode PWM to the current control of per-
manent-magnet synchronous motors can be found in Section 10.2.3.

7.5.4.  Robust Current Control for Permanent-Magnet 
Synchronous Motors

For high-performance operation of permanent-magnet synchronous motors 
(PMSM), current control may be implemented using the so-called fi eld-
oriented control (FOC) approach (see Chapter 10 for more details). From 
a control point of view, this control approach uses a state transformation, 
after which the decoupling and linearization tasks can be performed eas-
ily. However, high-performance FOC needs precise knowledge of the motor 
parameters. Practically, those parameters cannot be known exactly because, 
fi rst, the model used for FOC is a simplifi ed motor model; second, the motor 
parameters are normally obtained by an identifi cation procedure in which 
errors are always present; and third, these parameters may vary with the 
rotor position and ambient temperature. As a result, the motor torque and 
the motor fl ux cannot be controlled independently, resulting in torque pulsa-
tion and lower effi ciency.

Two solutions exist for solving this problem, namely, adaptive  control and 
robust control. Adaptive control recursively calculates the motor  parameters 
depending on the state measurements, whereas robust control tries to 
 suppress the parameter uncertainty using high control gains. The former 
involves a high computational overhead and an additional  convergence 
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 problem, while the latter may result in low control effi ciency and may excite 
high frequency unmodeled dynamics. In the following, we propose two ver-
sions of control approaches based on integral sliding mode. These control 
strategies belong to the category of robust control. However, as one can see 
from the second version of the control design based on the perturbation esti-
mation described in Section 7.4, the control approach is actually an adap-
tation to the system perturbation, resulting in continuous control actions 
suitable to interface with a conventional PWM unit.

In the (d q, ) synchronously rotating reference frame (see Section 10.2.2 for 
the details of modeling a PMSM in different coordinate frames), the voltage 
equations of a PMSM are expressed by the following nonlinear differential 
equations

 
di
dt L

u
R
L

i id
d d e q= − +1 ω ,

 
di

dt L
u

R
L

i iq
q q e d e= − − −1 ω λω , (7.5.34)

with the defi nitions shown in Table 7.2.
In practice, parameters L, R, and λ are not known exactly. For the control 

design, the nominal values of these parameters, denoted as L0, R0, and λ0, are 
used. In the ideal case with L L= 0, R R= 0, and λ λ= 0, we may exploit FOC to 
design the current controller. For the motor currents i td ( ) and i tq ( ) to track 
desired current references i td

* ( ) and i tq
* ( ), control voltages u ud d= 0 and u uq q= 0 

can be designed to achieve the desired performance

 i t i td d d( ) ( )*− < ε , i t i tq q q( ) ( )*− < ε , ∀ >t t0, (7.5.35)

where εd, εq, and t0 are specifi ed by the control designer. As an example, the 
pole-placement design can be performed based on the known motor param-
eters and the closed-loop poles can be placed arbitrarily. 

TABLE 7.2

Variables of PMSM Motor Model

Variables Physical Meaning Variables Physical Meaning

id d-axis stator current iq q-axis stator current

ud d-axis stator voltage uq q-axis stator voltage

ωe Electrical angular velocity R Armature resistance

L Armature inductance λ Flux linkage of permanent magnet

TAF-65602-08-1101-C007.indd   152TAF-65602-08-1101-C007.indd   152 3/31/09   7:51:15 PM3/31/09   7:51:15 PM



© 2009 by Taylor & Francis Group, LLC

Integral Sliding Mode 153

In practice, however, L L≠ 0, R R≠ 0, and λ λ≠ 0, and the above FOC design 
may result in an unacceptable control error. To suppress the parameter 
uncertainty, the control voltages are augmented to

 u u ud d d= +0 1,

 u u uq q q= +0 1. (7.5.36)

For the fi rst version of the control design, ud1 and uq1 are selected discontinu-
ous to suppress the perturbation caused by discrepancies between the true 
motor parameters and the nominal motor parameters (the latter were used 
for FOC design by u ud d= 0 and u uq q= 0):

 u M sd d d1 = − sign( ),

 u M sq q q1 = − sign( ), (7.5.37)

where Md and Mq are the control gains to be determined later. The switching 
functions sd and sq are now designed based on the proposed integral sliding 
mode control 

 s s zd d d= +0 ,

 s s zq q q= +0 , (7.5.38)

in which sd0 and sq0 are selected as s i id d d0 = − * , s i iq q q0 = − *; zd and zq are given 
as follows

 �z
L

u
R
L

i i
di
dtd d d e q

d= − − +
⎛
⎝⎜

⎞
⎠⎟

+1

0

0
0

0

ω
*

,

 z i id d d( ) ( ) ( )*0 0 0= − −( ),

 �z
L

u
R
L

i i
di

dtq q q e d e
q= − − − −

⎛
⎝⎜

⎞
⎠⎟

+1

0

0
0

0

0ω λ ω
*

,

 z i iq q q( ) ( ) ( )*0 0 0= − −( ),  (7.5.39)

with i id q
* *,  and their time derivatives being provided by an outer control loop, 

e.g., a speed control loop. Now let us analyze the system stability and deter-
mine the discontinuous control gains Md and Mq. First, we deal with the d 
component. Taking the time derivative of sd yields
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 � � �s s z
L

u u id d d d d d= + = + −0 1 1 0 2

1 ε ε , (7.5.40)

where ε1 01 1= −( )L L  and ε2 0 0= −( )R L R L . Substitute Equation 7.5.37 into 
Equation 7.5.40 to obtain

 �s
M
L

sign s u id
d

d d d= − + −( ) ( )ε ε1 0 2 . (7.5.41)

To enforce sliding mode in Equation 7.5.41, the discontinuous control gain 
Md can be selected as 

 M L u id d d> −{ }max ε ε1 0 2 . (7.5.42)

The right-hand side of the above inequality is assumed to be bounded. Once 
sliding mode is achieved, sd = 0 holds; the equivalent control of ud1 compen-
sates exactly for the perturbation in terms of uhd (see Equations 7.2.5 and 
7.3.5),

 ( ) ( )u u L u id eq hd d d1 1 0 2= − = − −ε ε . (7.5.43)

Similar derivations hold for the q component, where �sq can be given as 

 � � �s s z
L

u u iq q q q q q e= + = + − −0 1 1 0 2 3

1 ε ε ε ω ,  (7.5.44)

in which ε1 and ε2 are the same as for the d component in Equation 7.5.40 and
ε λ λ3 0= −( ). Substitution of Equation 7.5.37 into Equation 7.5.44 yields

 �s
M

L
sign s u iq

q
q q q e= − + − −( ) ( )ε ε ε ω1 0 2 3 . (7.5.45)

Enforcing sliding mode in Equation 7.5.45 requires 

 M L u iq q q e> − −{ }max ε ε ε ω1 0 2 3 . (7.5.46)

Again, the equivalent control of uq1 compensates exactly the perturbation in 
terms of uhq:

 ( ) ( )u u L u iq eq hq q q e1 1 0 2 3= − = − − −ε ε ε ω . (7.5.47)

It should be noted that, unlike Md, control gain Mq depends on the electrical 
rotor speed ωe if the fl ux linkage λ is not known precisely. 

Because the DC-Bus voltage of a drive system is always limited, the ampli-

tude of the control voltages, i.e., u ud q
2 2+ , is also limited, implying that Md and 

Mq cannot  be selected arbitrarily: increasing Mq leads to a decrease of Md. 
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As long as inequalities in Equations 7.5.42 and 7.5.46 hold, sliding mode can 
be enforced. Otherwise, stability of sliding mode is not guaranteed, which 
means that the parameter uncertainties cannot be fully compensated. This is 
one of the drawbacks of the fi rst version of control design.

Another drawback of the fi rst version algorithm lies in the fact that the 
resulting controllers ud and uq are diffi cult to be implemented by a conven-
tional PWM unit, because they contain a discontinuous part. It should be 
noted that the standard FOC relies on a PWM unit to adopt the continuous 
controller ud0 and uq0 for the discontinuous control voltages of PMSM motors. 
However, ud and uq as defi ned in Equation 7.5.36 are a mixture of continuous 
and discontinuous parts. After the coordinate transformation, i.e., from the 
( )d q,  frame to the stator ( , )α β  frame resulting in uα and uβ (and if necessary 
further to the phase coordinate frame resulting in ua, ub and uc), they should 
be applied to the PWM unit. If these controls contain a discontinuous part, 
the associated sudden jumps in the PWM duty ratio may be harmful to the 
used power converter. 

Now let us modify the control design such that the above-mentioned draw-
backs will be solved, resulting in the second version of control approach 
based on the perturbation estimator, as discussed in Section 7.4. 

The controls ud and uq are of similar form to Equation 7.5.36:

 u u ud d d= +0 1
� ,

 u u uq q q= +0 1
� , (7.5.48)

where the continuous functions �ud1 and �uq1 are low-pass fi ltered values of 
discontinuous controls ud1 and uq1. The discontinuous controls ud1 and uq1 are 
designed to have the same form as given by Equation 7.5.37:

 u M sd d d1 = − sign( ),

 u M sq q q1 = − sign( ). (7.5.49)

The switching functions sd and sq are of the same form as Equation 7.5.38:

 s s zd d d= +0 ,

 s s zq q q= +0 , (7.5.50)

where the integral terms zd and zq, following Equation 7.4.4, are now 
becoming

 �z
L

u
R
L

i i
u
L

di
dtd d d e q

d d= − − + −
⎛
⎝⎜

⎞
⎠⎟

+1

0

0

0

1

0

ω
*

, 
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 z i id d d( ) ( ) ( )*0 0 0= − −( ),

 �z
L

u
R
L

i i
u

L

di
q q q e d e

q q= − − − − −
⎛
⎝⎜

⎞
⎠⎟

+1

0

0

0

0

1

0

ω λ ω
**

dt
, 

 z i iq q q( ) ( ) ( )*0 0 0= − −( ). (7.5.51)

The time derivatives of �sd and �sq are, respectively, 

 � �s
M
L

s u u id
d

d d d d= − + + −( )
0

1 0 1 2sign( ) ( )ε ε ,

 � �s
M

L
s u u iq

q
q q q q e= − + + − −( )

0

1 0 1 2 3sign( ) ( )ε ε ε ω . (7.5.52)

The conditions for enforcing sliding mode in Equation 7.5.52 are

 M L u u id d d d> + −{ }max ( )0 1 0 1 2ε ε� ,

 M L u u iq q q q e> + − −{ }max ( )0 1 0 1 2 3ε ε ε ω� . (7.5.53)

After the occurrence of sliding mode, the equivalent control can be 
written as

 ( ) ( )u L u u id eq d d d1 0 1 0 1 2= − + −( )ε ε� ,

 ( ) ( )u L u u iq eq q q q e1 0 1 0 1 2 3= − + − −( )ε ε ε ω� . (7.5.54)

In practice, the equivalent control can be obtained by applying low-pass fi l-
ters with ud1 and uq1 as the fi lter inputs, and �ud1 and �uq1 as the fi lter outputs 
(see Section 2.4). Thus, for the controller implementation, the disturbance 
compensation terms �ud1 and �uq1 can be obtained as

 �u u lowpass ud d eq d1 1 1= =( ) ( ),

 �u u lowpass uq q eq q1 1 1= =( ) ( ). (7.5.55)
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Based on Equation 7.5.55 and �ud1 and �uq1 from Equation 7.5.54, resulting in

 �u L u id d d1 1 0 2= − −( )ε ε ,

 �u L u iq q q e1 1 0 2 3= − − −( )ε ε ε ω . (7.5.56)

They are exactly the same as the perturbation terms identifi ed in the fi rst ver-
sion of current control (see Equations 7.5.43 and 7.5.47). The above derivations 
show that the system perturbations are indeed compensated by �ud1 and �uq1.

Now �ud1 and �uq1 are continuous and thus acceptable for the PWM unit. 
Because the dynamics defi ned by Equation 7.5.51, which contain the discon-
tinuous controls ud1 and uq1, are calculated in the control computer, ud1 and 
uq1 are not sent to the real control path, so that Md and Mq are independent 
from the DC-Bus voltage and can be selected as high as required to enforce 
sliding mode.

Remark 7.1

If the resulting �ud1 and �uq1 are too high such that u ud q
2 2+  exceeds the DC-

Bus voltage, the system perturbations cannot be compensated completely. 
However, the perturbation estimation given by Equation 7.5.56 remains true. 
This case indicates that the system disturbances are too large and cannot be 
fully compensated by any control algorithm. 

Another example of using the perturbation estimation concept will be 
given in Chapter 12, showing the effectiveness of this control scheme in the 
torque control of a fl exible robot joint. In this application, the mass of inertia 
of the motor rotor and of the link, the joint stiffness, and the frictions at both 
motor and link sides are assumed to be unknown.

7.6. Summary

This chapter has developed a new sliding mode design concept: integral 
 sliding mode. The proposed uniform formulation of the integral sliding mode 
enables a wide scope of applications. The main advantage of this new design 
principle is that the robustness provided by sliding mode can be guaranteed 
throughout an entire response of the system starting from the initial time 
instant. We emphasized the basic idea and the background philosophy used 
to develop such a new sliding mode design approach. Furthermore, applica-
tion examples of practical systems were discussed in detail. The chattering 
effect, which was a major drawback of sliding mode control, is reduced using 
the proposed algorithms, while preserving the robustness and the accuracy 
of the control system.
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8
The Chattering Problem

Almost ever since sliding mode ideas have been put forward, the audible 
noise some sliding mode controllers exhibit has irritated control engi-
neers and often has led to resentments, even rejection of the technique. 
The phenomenon is best known as chattering. Two main causes have 
been identifi ed: First, fast dynamics in the control loop, which were 
neglected in the system model, are often excited by the fast switching of 
sliding mode controllers. Second, digital implementations in microcon-
trollers with fi xed sampling rates may lead to discretization chatter. 

This chapter concentrates on the fi rst cause, the unmodeled dynamics 
in the control loop, and introduces multiple methods to reliably prevent 
chattering. Sliding mode in discrete-time systems without discretization 
chatter is discussed in Chapter 9.

8.1. Problem Analysis

The term chattering describes the phenomenon of fi nite-frequency, fi nite-
amplitude oscillations appearing in many sliding mode implementations. 
These oscillations are caused by the high-frequency switching of a sliding 
mode controller exciting unmodeled dynamics in the closed loop. “Unmodeled 
dynamics” may be those of sensors and actuators neglected in the principal 
modeling process because they are generally signifi cantly faster than the main 
system dynamics. However, because “ideal” sliding mode systems are infi -
nitely fast, all system dynamics should be considered in the control design.

Fortunately, preventing chattering usually does not require a detailed 
model of all system components. Rather, a sliding mode controller may be fi rst 
designed under idealized assumptions of no unmodeled dynamics. In a sec-
ond design step, possible chattering is to be prevented by one of the methods 
discussed in this chapter. The solution of the chattering problem is of great 
importance when exploiting the benefi ts of a sliding mode controller in a real-
life system. To some extent, chattering, without proper treatment in the control 
design, has been a major obstacle for implementation of sliding mode to a wide 
range of applications. It should be noted that the switching action itself as the 
core of a continuous-time sliding mode system is not referred to as chattering 
because, in the ideal case, the switching is intended and its frequency tends 
to infi nity; chattering, in the terminology of this book, describes undesired 
system oscillations with fi nite frequency caused by system imperfections.
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This section seeks to provide an in-depth analysis of the chattering prob-
lem. Both analytical and numerical studies are used to examine how unmod-
eled dynamics in a closed system with a controller discontinuity are excited, 
leading to oscillations in the system trajectory.

8.1.1. Example System: Model

A simple fi rst-order plant with second-order unmodeled actuator dynamics 
is used as an example for illustration purposes throughout this section. For 
clarity of presentation, we refrain from using a more complex system such 
as the inverted pendulum. The model of the fi rst-order example system with 
state and output x(t) is given by:

 �x t ax t d x t bw t( ) ( ) ( , ) ( ),= + +  (8.1.1)

where a− ≤ a ≤ a+ and 0 < b− ≤ b ≤ b+ are unknown parameters within known 
bounds, w(t) is the control variable, and disturbance d(t) is assumed to be 
uniformly bounded for all operating conditions (x, t) as |d(x, t| ≤ d+. Control 
variable w(t) is the output of an unmodeled actuator with stable dynamics 
dominated by second-order 

 w t
p p

u t
p

u t( ) ( ) ( ),=
+ +

=
+( )

ω
ω ω μ

2

2 2 22

1

1
 (8.1.2)

where u(t) is the actual control input to plant (Equation 8.1.1) and p denotes 
the Laplace variable. In Equation 8.1.2 and in the sequel, a mixed representa-
tion of time domain and frequency (Laplace) domain functions is used for 
ease of presentation, although not formally correct. For example, it is under-
stood in Equation 8.1.2 that time-domain control variable w(t) is the output of 
the low-pass fi lter described by the inverse of the Laplace-transfer function 
in p with time-domain input u(t).

In Equation 8.1.2, ω > 0 is the unknown actuator bandwidth with ω >> a in 

Equation 8.1.1. The small time constant μ
ω

= >1
0 was substituted to symbol-

ize that the actuator dynamics are assumed to be signifi cantly faster than the 
system dynamics (Equation 8.1.1).

The goal of control is to make state and output x(t) of the system in 

Equation 8.1.1 track a desired trajectory xd(t) with a known amplitude bound 

as x t xd d( ) ≤ +
 and a known bound on the rate of change �x t vd d( ) ≤ +. The param-

eters for the exemplary simulations in this section are a = 0.5, b = 1, d(t) = 

0.2 sin(10t) + 0.3 cos(20t) ≤ 0.5, ω = 50, thus μ = 0.02, with a limit on avail-

able control resources of u t( ) .≤ 2 01 and a desired trajectory xd(t) = sin(t), i.e., 

xd
+ = 1 and vd

+ = 1. Note that with a > 0, the example plant in Equation 8.1.1 is 

unstable.
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8.1.2. Example System: Ideal Sliding Mode

Standard sliding mode control design for the ideal plant (Equation 8.1.1), i.e., 
neglecting actuator dynamics (Equation 8.1.2) by setting w(t) = u(t), defi nes 
the sliding variable as

 s(t) = xd(t) − x(t) (8.1.3)

and the associated sliding mode controller as

 w(t) = M sign s(t). (8.1.4)

Stability of the closed-loop system and tracking of desired xd(t) are mani-
fested by examination of the Lyapunov function candidate*

 V t
b

s t( ) ( ).= 1

2
2  (8.1.5)

Differentiation of Equation 8.1.5 along the system trajectories (Equation 
8.1.1) under control w(t) Equation 8.1.4 and without the actuator dynamics of  
Equation 8.1.2 yields

 
� �V t

b
s t s t

g x x t s t M s td

( ) ( ) ( )

( , , ) ( ) ( ) ,

=

= −

1

 (8.1.6)

where the term g x x t
x t ax t d t

bd
d( , , )
( ) ( ) ( )

=
− −�

 is upper bounded by

 g x x t g
v a x d

bd
d d( , , ) ≤ =

+ ++
+ + + +

−  (8.1.7)

under the assumption that x(t) ≈ xd(t). For M g
b

≥ ++

−

ξ
2

 with scalar ξ > 0, 

substitution of the control law in Equation 8.1.4 into Equation 8.1.6 leads to 

 �V t V t( ) ( ),≤ −ξ 1 2  (8.1.8)

* Although stability analysis in this simple example does not require detailed derivation via 
a Lyapunov function, this method is used for uniformity of presentation throughout the 
chapter.
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which testifi es to convergence to s(t) = 0 within fi nite time (see also Section 
3.4 for more details): solution of Equation 8.1.8 for an arbitrary initial condi-
tion V(0) > 0 yields

 V t t V( ) ( ) ,= − +⎛
⎝⎜

⎞
⎠⎟

ξ
2

01 2

2

 (8.1.9)

which implies that V(t) is identical to zero after fi nite time t Vsm ≥ 2
01 2

ξ
( ). 

Reaching time tsm is a conservative estimate of the maximum time necessary 
to reach s(t) = 0. In practice, sliding mode often occurs earlier.

Subsequently, the system is invariantly confi ned to the manifold s(t) = 0 in 
Equation 8.1.3 despite parametric uncertainty in a and b and unknown dis-
turbance d(x, t). A block diagram of the ideal sliding mode system is shown 
in Figure 8.1.

The behavior of plant (Equation 8.1.1) in sliding mode under control 
(Equation 8.1.4) can be examined using the equivalent control method (see 
also Section 2.3). Because s(t) is invariantly identical to zero after reaching 
the sliding manifold, �s t( ) can be formally set to zero. Solving 

 

� � �s t x t x t

b g x t w t
d( ) ( ) ( )

   ( , ) ( )

= −

= −( )
≡ 0

 (8.1.10)

for the continuous equivalent control yields 

 weq(t) = g(x, t), (8.1.11)

x td ( ) s t( ) )(tw

...x =
−

Controller Plant

x t( )

FIGURE 8.1
Block diagram of ideal sliding mode control loop. A discontinuous controller forces the output 

x(t) of the plant to exactly track the desired trajectory xd(t). No chattering occurs because the 

control loop is free of unmodeled dynamics.
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which can be viewed as an average of the discontinuous control w(t) in 
Equation 8.1.4. Applying equivalent control weq(t) to plant (Equation 8.1.1) 
would result in exactly the same motion trajectory as applying discontin-
uous control w(t) (Equation 8.1.4), which, however, is not possible because 
g(x, t) contains unknown terms. Substitution of weq(t) into Equation 8.1.1 vali-
dates the exact tracking performance in sliding mode with xd(t) = x(t). 

For the simulation of Equation 8.1.1 under control Equation 8.1.4 with 
M = 2.01 in Figure 8.2, initial condition x(0) = 1 was chosen. After reaching the 
sliding manifold s(t) = 0 at t ≈ 0.45 sec, system trajectory x(t) coincides exactly 
with desired xd(t), and control w(t) is switched at very high frequency, creat-
ing a solidly black area. For illustration, equivalent control weq(t) in Equation 
8.1.11 is shown as a white line in this black area in Figure 8.2.b. Setting the 
parameter bounds to a− = a+ = a = 0.5 and b− = b+ = b = 1.0 results in g+ = 2,
which leads to slow convergence to s(t) = 0 attributable to small ξ  ≈ 0.014. 
This slow convergence was chosen to illustrate the reaching process.

FIGURE 8.2
Ideal sliding mode in fi rst-order system. State x(t) converges to desired xd(t) in fi nite time, i.e., 

s(t) = 0 after t ≈ 0.45 sec. Thereafter, control u(t) switches with infi nite frequency and shows as 

a black area. Equivalent control ueq(t) is drawn as a dashed line.
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8.1.3. Example System: Causes of Chattering

In a practical application, unmodeled dynamics in the closed-loop-like actu-
ator (Equation 8.1.2) often prevent ideal sliding mode to occur and cause fast, 
fi nite amplitude oscillations. Figure 8.3 shows a block diagram of the closed 
control loop, including the previously neglected actuator dynamics.

To study the causes of these oscillations, fi rst revisit the differences between 
continuous and discontinuous systems. In accordance with singular pertur-
bation theory [for a comprehensive survey, see Kokotovic 1984] for systems 
with continuous motion equations, fast motion components like those of 
actuators for large ω in Equation 8.1.2 decay rapidly provided they are stable 
(as is the case for ω > 0). The slow motion component of plant (Equation 8.1.1) 
thus continuously depends on the steady-state solution of Equation 8.1.2. In 
other words, the algebraic solution of Equation 8.1.2 for μ → 0 may be substi-
tuted into Equation 8.1.1 as an approximation, and continuous control design 
may very well neglect the actuator dynamics. In the case of Equation 8.1.2, 
w = u results as assumed in Figures 8.1 and 8.2.

In systems with discontinuities, the solution to the motion equation 
depends on the small time constants of fast components as well. However, 
unlike in systems with continuous control, discontinuities in the control 
excite the unmodeled dynamics, which lead to oscillations in the state vector. 
This phenomenon is also referred to as chattering in control literature. These 
oscillations are known to result in low control accuracy, high heat losses in 
electrical power circuits, and high wear of moving mechanical parts. 

Figure 8.4 shows the chattering behavior of system Equation 8.1.1 under 
control w(t) of Equation 8.1.4 but with actuator dynamics in Equation 8.1.2 in 
the loop as shown in Figure 8.3. The top graph depicts output x(t) oscillating 
around desired xd(t) after t ≈ 0.5 sec. In the bottom graph, control u(t), shown 
as a solid line, switches with fi nite frequency, whereas output w(t) of the 
actuator, shown as a dotted line, clearly is not able to follow the steps in con-
trol command u(t). Note that an increase of the actuator bandwidth would 
increase the frequency of the square-wave behavior of u(t) but would not 

FIGURE 8.3
Control loop with actuator dynamics neglected in ideal control design. Sliding mode does not 

occur because the actuator dynamics are excited by the fast switching of the discontinuous 

controller, leading to chattering in the loop.

x td ( ) s t( ) u t( ) w t( ) x t( )

(..)2 =μ w ...x =
−

Controller Actuator Plant
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be able to eliminate the oscillations. In fact, in case of a mechanical device 
performing oscillations as in Figure 8.4 at high frequency, audible noise 
often results, which led to the name chattering and is extremely harmful to 
mechanical system components. 

For additional study of the nature of the oscillations, consider the situa-

tion immediately after a switch in control u(t) from u t Msw( )− = −  to u t Msw( )+ =  

at time tsw. Immediately after the switch, input u tsw( )+  and output w tsw( )+  of the
actuator differ by 2M. Although the discrepancy between u(t) and w(t) 
decreases after the switch at a rate faster than the motion of system Equation 
8.1.1, u(t) and w(t) are not “close” in the sense of singular perturbation the-
ory [see also Utkin 1993]. Consequently, the small time constants cannot be 
neglected when examining the behavior of a system with discontinuities in 
the motion equation. 

Consider the system trajectories in Figure 8.4. Initially, x(t) converges to 
xd(t) until t ≈ 0.5 sec. Thereafter, instead of tracking xd(t) exactly as in the 

FIGURE 8.4
Chattering in fi rst-order system with second-order actuator dynamics under discontinuous 

control. After switches in control u(t), actuator output w(t) lags behind, leading to oscillatory 

system trajectories.
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ideal case shown in Figure 8.2, x(t) goes through cycles of divergence and 
convergence. This suggests that the manifold s(t) = xd(t) − x(t) = 0 is attractive 
for large deviations, but the trajectories might diverge in some small vicinity 
ε(μ) of s(t) = 0, where scalar ε depends on the bandwidth of the unmodeled 
actuator dynamics (Equation 8.1.2). The motion trajectory is ultimately con-
fi ned to this vicinity, i.e., |s(t)| ≤ ε; however, inside the ε vicinity, oscillations 
of fi nite frequency and fi nite amplitude occur. 

Stability for large deviations, i.e., for |s(t)| > ε, can be illustrated using the 
fact that u(t) is constant for |s(t)| > ε. The actuator dynamics (Equation 8.1.2) 
decay rapidly because they are stable and w(t) ≈ u(t) after some short time 
interval. In the example of Figure 8.4, the actuator dynamics have decayed 
after less than 0.1 sec. Hence, the stability analysis (Equations 8.1.5 through 
8.1.8) can be used to establish convergence of the system trajectories to s(t) = 0
until the fi rst switching of u(t) takes place, at t ≈ 0.5 sec in the example in 
Figure 8.4. 

To examine the subsequent system behavior, assume steady-state condi-
tions with u(t) = w(t) = − M for |s(t)| > ε. The step response of the actuator for 
the fi rst switch at tsw from u(t) = −M to u(t) = +M  at  s(t) = 0 is given by

 w t M
t t

e
t t

( ) .= −
−

+
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
− −

1 2 1sw

μ
μ

sw

 (8.1.12)

For some initial time interval Δt = t − tsw, actuator output w(t) < u(t) = M and 
�V t( ) > 0 in Equation 8.1.6 results for the case g(x, xd, t)s(t) > 0. Only after the 
decay of the exponential term in Equation 8.1.12, i.e., after Δt(μ), |w(t)| > g+

is established once more and �V t( ) < 0 testifi es to the convergence to sliding 
manifold s(t) = 0. During the time interval Δt, the maximum deviation from 
ideal tracking can be approximated by

 |Δs| ≤ ε(μ) = (g+ + M)Δt(μ). (8.1.13)

Similar derivations hold for the next switch from u(t) = +M  to u(t) = −M. 
Summarizing the above shows that, in the nonideal system, s(t) is con-

verging toward zero for |s(t)| > ε. For large deviations from the sliding 
manifold , system (Equation 8.1.1) with unmodeled dynamics (Equation 
8.1.2) under control (Equation 8.1.4) behaves similar to the ideal system, 
converging to the sliding manifold. Hence, its motion is ultimately con-
fi ned to |s(t)| ≤ ε after some fi nite time interval. Inside the ε(μ) vicinity, sta-
bility cannot be guaranteed. In fact, temporary divergence can be shown 
for |s(t)| < ε. 

To qualitatively illustrate the infl uence of unmodeled dynamics on the 
system behavior, consider the simplest case a = 0, d(x, t) = 0, b = 1, xd(t) = 0 in 
Equations 8.1.1 and 8.1.3 as shown in Figure 8.5.
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The motion equations may be written in the form

 

�
�

�

x w

w v

v v w u

=
=

= − − +2 1 1
2 2μ μ μ

.

 (8.1.14)

For the control u = −M sign(x), the sign-varying Lyapunov function 

 V = xν − 0.5w2 (8.1.15)

has a negative time derivative

 
�V x v w u= − − +

⎛
⎝⎜

⎞
⎠⎟

2 1 1
2 2μ μ μ  (8.1.16)

for small magnitudes of ν and w. This means that the motion is unstable in 
an ε(μ)-order vicinity of the manifold s(x) = x = 0. 

Alternatively to Figure 8.5, the block diagram of the system in Equation 
8.1.14 may be represented in the form depicted in Figure 8.6.

The motion equations may now be written as

 
�
�� �

x M x

x x x x

*

*

sign( )

.

= −
+ + =μ μ2 2

 (8.1.17)

Sliding mode cannot occur in the systems because the time derivative �x is a 
continuous time function and cannot have its sign opposite to x in the vicin-
ity of the point x = 0 where the control undergoes discontinuities. 

The value of �x* is bounded, and, as follows from the singular perturbation 
theory [see Kokotovic, O’Malley, and Sannuti 1976; Kokotovic 1984], the dif-
ference between x and x* is of μ order. The signs of x and x* coincide beyond 
the ε(μ) vicinity of s(x) = x = 0, hence the magnitudes of x* and x decrease, i.e., 
the state trajectories converge to this vicinity and after a fi nite time interval 
t1 the state remains in the vicinity. According to the analysis of Equations 
8.1.14, the motion in the vicinity of x = 0 is unstable.

FIGURE 8.5

Block diagram illustrating divergence within ε vicinity of sliding manifold.

2)1(
1
+pμ p

1
-1 

u(t) w(t) x(t)
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The fact of local instability explains why chattering may appear in the sys-
tems with discontinuous controls at the presence of unmodeled dynamics. 
The high-frequency oscillations in the discontinuous control system may be 
analyzed in time domain as well. 

These brief periods of divergence occur after switches of the control input 
variable u(t) when the output w(t) of the actuator is unable to follow the abrupt 
change of the control command. The proposed solutions to the chattering prob-
lem thus focus on either avoiding control discontinuities in general or move the 
switching action to a controller loop without any unmodeled dynamics. After 
introducing the Describing Function to analyze the frequency and amplitude 
of chattering, the remainder of this chapter will discuss various types of chat-
tering prevention schemes and examine their respective benefi ts.

8.1.4. Describing Function Method for Chattering Analysis

For analyzing the infl uence of mismatch in modeling from neglecting the 
small time constants of actuators and sensors, the describing function 
method can be used to estimate the amplitude and frequency of chattering. 
Intuitively, the amplitude of chattering will be related to amplitude of dis-
continuous control. 

Let us consider the following system with scalar control: 

 

�x f x l x u x

s s x

u M x sign s

n= + ∈ℜ
=
= −

( ) ( ) ( )

( )

( ) ( ).

  (8.1.18)

The time derivative of s can be written as

 �s Gf Glu G
s
s

T

= + = ∂
∂

⎧
⎨
⎩

⎫
⎬
⎭

, .  (8.1.19)

When chattering occurs at high frequency, state components as well as terms 
Gf and Gl in Equation 8.1.19 may be considered to be constant for short time 
interval. Thus, the system in Equation 8.1.18 becomes

 �x a bu x n= + ∈ℜ( ), (8.1.20)

FIGURE 8.6
Alternative representation of block diagram.

2)1(
1
+pμp

1
-1

)(tu x*(t) x(t)
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where the vectors a and b are constant. The system in Equation 8.1.18 is 
used to analyze chattering qualitatively. For simplicity, the sliding surface 
is selected as

 s = 0, s = cx,  (8.1.21)

where c is an 1 × n row vector with constant elements. For cb > 0, the control 
input u becomes

 u
M s

M s
=

<
− >

⎧
⎨
⎩

for

for

0

0,
  (8.1.22)

where M is a positive constant. Now, let us assume that linear sensor dynam-
ics with small time constant μ are disregarded in the model in Equation 
8.1.20. The system state vector x is regarded as an input of the unmodeled 
subsystem with state vector z (z ∈ ℜm):

 μ �z Az Bx= + . (8.1.23)

The time constant μ is a suffi ciently small, positive value, A and B are m × m 
and m × n matrices, respectively. The matrix A is assumed to have eigenval-
ues with negative real parts. Instead of the system state vector x, the control-
ler will use a vector x*(x* ∈ ℜn), which is a linear combination of the elements 
in the sensor state vector z:

 x* = Hz,  (8.1.24)

where H is a constant n × m matrix. Because the controller is using x*, rather 
than the vector x directly from the plant, the sliding mode surface (Equation 
8.1.21) now becomes

 s* = cx*. (8.1.25)

With this alternative switching surface, the system in Equation 8.1.20 will be 
as follows:

 �x a bu u
M for s

M for s
= + =

<
− >

⎧
⎨
⎩

* *

*

*
,

.

0

0
 (8.1.26)

The entire system including sensor dynamics is depicted in Figure 8.7. In 
static mode, when the left-hand side of Equation 8.1.23 is zero, the vector x* 
should follow the state x without any distortion. Therefore,

 x* = − HA−1Bx, (8.1.27)

 −HA−1B = I. (8.1.28)
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Note that A−1 exists because A has nonzero eigenvalues as assumed previously. 
To implement the describing function method, Laplace transformation is 

applied to Equations 8.1.23 through 8.1.26:

 

  ( ) ( ) ( ) ( )

( )

s p G p u p G a p

G p cH pI A B

u a

u

∗ ∗

−

= +

= −( )μ 1 bb
p

G p cH pI A B
pa

,

( ) ( ) .= − −μ 1 1

  (8.1.29)

In compliance with the describing function method, the solution of 
Equations 8.1.26 and 8.1.29 is assumed to be a harmonic function plus a 
constant (Figure 8.8):

 s*(t) = α + β sin ωt, (α < β),  (8.1.30)

where α, β, and ω are constant. Then, the fi rst two terms of Fourier expansion 
of the input function u* = −Msign(s) can be found as follows:

 u t u u t∗ ∗ ∗= +( ) sin0 1 ω  (8.1.31)

 u u t dt M0
1

0

2

2

2∗ ∗ −= = −∫
ω
π π

α
β

π ω

( ) sin
/

 (8.1.32)

 u u t tdt
M M

1
14 4∗ ∗ −= = −

⎛
⎝⎜

⎞
⎠⎟

= −ω
π

ω
π

α
β

( )sin cos sin
ππ

α
β

π ω

1

2

0

2

−
⎛
⎝⎜

⎞
⎠⎟∫

/

.  (8.1.33)

The relation between α and constant inputs u0
∗ can be found replacing vari-

able p in transfer functions by zero. Considering the condition in Equation 
8.1.28, this results in

 α = +∗1
0p

cbu ca( )

FIGURE 8.7
System with a fast sensor dynamics.

Sensor

bu*ax +=

Plant 

s* u*
BxAzz +=μ Hx  z

-c

x*
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Because 
1

0
p

p→ ∞ → with , the constant component of the function u* is 

determined as

 u
ca
cb0

* ,= −  (8.1.34)

which is known as the equivalent control for the original system without 

unmodeled dynamics: the solution to �s ca cbu= + = 0 with respect to u. To fi nd 

the amplitude of the harmonic component u1
∗ in the control input, calculate 

α
β

 

from Equations 8.1.34 and 8.1.32 and then substitute this value into Equation 

8.1.33

 
u

M ca
cb M1

4

2
∗ = − ⎛

⎝⎜
⎞
⎠⎟π

π
cos .

 
(8.1.35)

It can be seen from Equation 8.1.35 that the amplitude of chattering depends 
on the value of M. Increasing M leads to increasing of the harmonic compo-
nent in the input and, as a result, increasing the amplitude of chattering β in 
the output. 

The chattering frequency can be found from balance of phases of the fi rst 
harmonics in input and output variables: 

 − + −⎡⎣ ⎤⎦ = ± =∗ −π ω π
2

0 1 21arg ( ) , , , , ,cH j I A Bb k k …   (8.1.36)

where ω μω∗ = . If it is assumed that Equation 8.1.36 has a solution for ω ω∗ = � , 

then the chattering frequency can be written as ω
ω
μ

=
�

 . 

FIGURE 8.8
The switching function s*and corresponding control input u*.

t

u* = −Msign(s)

s* = α + β sinωt
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Because the amplitude of chattering depends on the magnitude of control, 
the intuitive way of chattering reduction is decreasing the control magni-
tude M but ensuring that sliding mode still exists.

8.2. Boundary Layer Solution

The boundary layer solution, proposed by Slotine and Sastry [1983] and 
Slotine [1984], seeks to avoid control discontinuities and switching action in 
the control loop. The control law in Equation 8.1.4 is replaced by a satura-
tion function that approximates the sign(s) term in a boundary layer of the 
manifold s(t) = 0. Numerous types of saturation functions sat(s) have been 
proposed in the literature. 

“In the large”, i.e., for |s(t)| > ε, sat(s) = sign(s). However, in a small ε 
vicinity of the origin, the so-called boundary layer, sat(s) ≠ sign(s) is con-
tinuous. As an illustrative example, consider a simple linear saturation 
function

 u

M s s

s s

( )

sign ( ) for ( )

M
( ) for ( )

t

t t

t t

=
( ) >

≤

⎧

⎨

⎪ ε

ε
ε

⎪⎪

⎩

⎪
⎪

, (8.2.1)

with linear proportional feedback gain 
M
ε

 within the boundary layer in the 

vicinity of the origin, |s(t)| ≤ ε, and symmetrically saturated by M for |s(t)| > ε
outside the boundary layer. A block diagram of the example system under 

control (Equation 8.2.1) is shown in Figure 8.9. 

FIGURE 8.9
Saturation function replaces discontinuous controller. Instead of achieving ideal sliding mode, 

the system trajectories are confi ned to a boundary layer of the manifold s(t) = 0.

xd(t) s(t) u(t) w(t) x(t)
  (..)2 =μ w ...x =

- Controller Actuator Plant

TAF-65602-08-1101-C008.indd   172TAF-65602-08-1101-C008.indd   172 3/31/09   7:51:52 PM3/31/09   7:51:52 PM



© 2009 by Taylor & Francis Group, LLC

The Chattering Problem 173

For a stability analysis, substitute Equation 8.2.1 into Equation 8.1.6 instead 
of Equation 8.1.4 to yield

 �V t

V t

s g
M

s

( )

( )

≤
− >

−⎛
⎝⎜

⎞
⎠⎟

+

ξ 1 2 for ( )

( ) ( ) f

s t

t t

ε

ε
oor ( )s t ≤

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

ε

. (8.2.2)

Direct examination of Equation 8.2.2 shows similar stability properties as 
Equation 8.1.8 for |s(t)| > ε and undetermined stability for |s(t)| ≤ ε. Hence, 
the system trajectories are guaranteed to converge to the boundary layer. 
Because within the boundary layer the system is continuous and linear in 
this simple example, linear control theory can be used to further study the 

stability. Substituting u t
M

s t( ) ( )=
ε

 into Equations 8.1.2 and 8.1.1 with Equation 

8.1.3 yields Laplace-domain expression:

 

μ μ μ μ2 3 22 1 2p a p a p b
M

a x+ −( ) + −( ) + −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ε

(tt h x x t

h x x t b
M

x t p d x

d

d d

) ( , , ),

( , , ) ( ) (

=

= + +( )
ε

μ 1
2

,, ),t

 (8.2.3)

where h(x, xd, t) can be interpreted as a disturbance to the left-hand side of 
the fi rst row in Equation 8.2.3. The Hurwitz stability bounds for the left-hand 
side of the fi rst equation in Equation 8.2.3 are given as

 aμ < 1/2 (8.2.4)

and

 
M

b
a

ε
< −( )2

1
2

μ
μ .  (8.2.5)

The fi rst stability bound (Equation 8.2.4) states that the unmodeled dynam-
ics have to be stable and faster than the system dynamics (Equation 8.1.1) 
themselves. The stability boundary (Equation 8.2.5) defi nes the highest 
feedback gain the system (Equation 8.1.1) with actuator dynamics (Equation 
8.1.2) can sustain in the linear sense. Higher gains, in particular theoreti-
cally infi nite gains of discontinuous sliding mode controllers, result in 
instability in the vicinity of s(t) = 0, causing chattering as shown in the 
previous section.
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Furthermore, for oscillation-free trajectories with critically damped eigen-

values in Equation 8.2.3, 
M

b
a

ε
< − −( )3 2 4

1 2
2

μ
μ is required. It is interesting to 

note that, in this simple example, the boundary layer width ε depends almost 
linearly on the actuator time constant μ and inverse linearly on the avail-
able control resources M. In the simulation shown in Figure 8.10, ε = 0.1 was 
chosen, which leads to stable but less than critically damped eigenvalues. 
Consequently, small overshoot results when x(t) converges to xd(t).

One of the benefi ts of the boundary layer approach is that sliding mode 
control design methodologies can be exploited to derive a continuous con-
troller. The invariance property of sliding mode control is partially preserved 
in the sense that the system trajectories are confi ned to a δ(ε) vicinity of the 
sliding manifold s(t) = 0, instead of exactly to s(t) = 0 as in ideal sliding mode 
in Figures 8.1 and 8.2. Within the δ(ε) vicinity, however, the system behavior 
is not determined, i.e., further convergence to zero is not guaranteed. This 
type of control design is part of a class of robust controllers that satisfy the 
“globally uniform ultimate boundedness” condition proposed by Leitmann 
[1981]. Note that no real sliding mode takes place because the switching 
action is replaced by a continuous approximation.

FIGURE 8.10
Saturation function approximating control discontinuity in boundary layer yields chattering 

free system trajectories. State x(t) converges to desired xd(t), but does not track exactly as in 

ideal sliding mode.
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8.3. Observer-Based Solution

The boundary layer approach discussed above avoids generating sliding mode 
by replacing the discontinuous switching action with a continuous saturation 
function. In many applications, however, control discontinuities are inherent to 
the system, e.g., in various voltage inputs of power converters or electric drives. 
When implementing a continuous controller, a technique such as PWM has to 
be exploited to adapt the control law to the discontinuous system inputs. In 
light of recent advances of high-speed circuitry and insuffi cient linear control 
methodologies for internally nonlinear high-order plants such as AC motors, 
sliding mode control has become increasingly popular. Commercially avail-
able electronic converters enable handling switching frequencies in the range 
of hundreds of kilohertz. Hence, it seems unjustifi ed to bypass a system’s 
discontinuous control inputs by converting a continuous controller, e.g., via a 
PWM scheme. Rather, such system specifi cations call for alternative methods 
to prevent chattering while preserving control discontinuities.

An asymptotic observer in the control loop can eliminate chattering 
despite discontinuous control laws. The key idea as proposed by Bondarev, 
Bondarev, Kostyleva, and Utkin  [1985] is to generate ideal sliding mode in 
an auxiliary observer loop rather than in the main control loop. Ideal sliding 
mode is possible in the observer loop because it is entirely generated in the 
control software and thus does not contain any unmodeled dynamics. The 
main loop follows the observer loop according to the observer dynamics. 
Despite applying a discontinuous control signal with switching action to the 
plant, no chattering occurs and the system behaves as if an equivalent con-
tinuous control was applied. A block diagram for the example system of this 
chapter with an auxiliary observer is shown in Figure 8.11.

FIGURE 8.11
Control loop with auxiliary observer loop. Ideal sliding mode occurs in observer manifold 

ˆ( )s t = 0 because the observer loop is free of unmodeled dynamics. The plant output x(t) follows 

the observer output ˆ( )x t  without chattering despite discontinuous control u(t) applied to main 

loop with actuator dynamics. 

Controller Actuator Plant

x td ( ) ( )s t u t( ) w t( ) x t( )

(..)2 =μ w ...x =

-

Auxilliary
observer

loop
Main control loop

( )x t
...x =
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Defi ne a fi rst-order observer for the example system in Equation 8.1.1 as

 ˆ( ) ( ) ( ) ( ),�x t ax t bu t L x t= + + 1  (8.3.1)

where L1 is the linear feedback gain for the observation error x t x t x t( ) ( ) ˆ( )= − . 
Exact knowledge of the system parameters a and b is assumed in Equation 
8.3.1 for ease of presentation. In the case of parametric uncertainty, param-

eter estimates â and b̂  replace a and b in Equation 8.3.1 and a more complex 
analysis results.

The linear dynamics of the observation error are governed by

 �x t d x t L x t( ) ( , ) ( ).= − 1  (8.3.2)

Error x t( ) in Equation 8.3.2 is stable and bounded by

 x t
d
L

( ) ,≤
+

1

 (8.3.3)

with the disturbance bounded by |d(x, t)| ≤ d+. Introducing an observer slid-
ing manifold 

 ˆ( ) ( ) ˆ( )s t x t x td= −  (8.3.4)

allows defi nition of an ideal sliding mode controller for the observer loop as

 u t M s t( ) sign ˆ( )=  (8.3.5)

to replace Equations 8.1.3 and 8.1.4. Stability of the auxiliary observer loop is 
examined via a similar Lyapunov function candidate as in Equation 8.1.5,

 ˆ ( ) ˆV t
b

s t= 1

2
2 ( ). (8.3.6)

Substitution of Equation 8.3.1 under control (Equation 8.3.5) into the time 
derivative of Equation 8.3.6 reveals

 

ˆ ( ) ˆ ˆ� �

�

V t
b

s t s t

b
x t ax t L x td

=

= − −(

1

1
1

( ) ( )

( ) ( ) ( ))) −

≤ + +( ) −−
+ + + +

ˆ ˆ

ˆ ˆ

s t M s t

b
v a x d s t M s td d

( ) ( )

( ) (
1

)) ,

 (8.3.7)

where observation error bound (Equation 8.3.3) was used to reduce the 
expression. Substitution of the bound of the independent observer error sys-

tem of Equation 8.1.7 and condition M g
b

≥ ++

−

ξ
2

 leads to 
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 ˆ ( ) ˆ ( )
�V t V t≤ −ξ 1 2  (8.3.8)

under similar assumptions as for Equation 8.1.8. Sliding mode is established 
in the observer loop after fi nite time as in Equation 8.1.9 and ˆ( )s t = 0 holds 
exactly thereafter. 

To examine the behavior of the overall system under sliding mode in the 
auxiliary observer loop, the equivalent control method is used. Solving

 ˆ( ) ( ) ( ) ( ) ( )  � �s t x t ax t bu t L x td= − − − ≡1 0 (8.3.9)

for the equivalent control of input u(t) yields

 bu t x t ax t L x tdeq ( ) ( ) ( ) ( ).= − −�
1  (8.3.10)

Substitution of Equation 8.3.10 into the plant Equation 8.1.1 with actuator 
dynamics (Equation 8.1.2) leads to 

 
μ μ μ μ2 3 2

12 1 2p a p a p L x t h x x td+ −( ) + −( ) +( ) =( ) ( , , )* ,,

( , , ) ( ) ( , ).*h x x t p L x t p d x td d= +( ) + +( )1

2
1μ

 (8.3.11)

Equation 8.3.11 is similar to Equation 8.2.3 except for two details. First, the 
desired trajectory xd(t) enters the disturbance function h*(x, xd, t) in a differ-
ent manner then h(x, xd, t). Second, left-hand side of stability bound Equation 
8.2.5 is modifi ed to

 L a a1

22
1+ < −( )

μ
μ . (8.3.12)

The analytical similarities between the boundary layer approach and the 
asymptotic observer-based solution in this simple fi rst-order example are 
also apparent in the system trajectories. Compare the simulation of the 
observer-based approach in Figure 8.12 with the boundary layer approach 
simulation in Figure 8.8. Both show similar behavior with a small over-
shoot when reaching the sliding manifold. Note that, for the observer-
based solution, the observed state ˆ( )x t  achieves ideal sliding mode with 
discontinuous switching action (black area in Figure 8.12), whereas the 
true state x(t) follows according to the observer dynamics without exhibit-
ing chattering.

The observer-based solution requires slightly more effort in the control 
design. However, in many control applications, observers for immeasurable 
states are vital parts of the overall system and can be readily included into 

TAF-65602-08-1101-C008.indd   177TAF-65602-08-1101-C008.indd   177 3/31/09   7:51:54 PM3/31/09   7:51:54 PM



© 2009 by Taylor & Francis Group, LLC

178 Sliding Mode Control in Electro-Mechanical Systems

the control design. Note that the design of the actual observer depends on 
the system specifi cations; both full-state and reduced order observers may 
be used. Furthermore, observers provide more fl exibility. For instance, in 
the example studied in this chapter, the observer (Equation 8.3.1) may be 
extended to include an estimate of the disturbance under the assumption 
that �d t( ) is small as shown

 
ˆ( ) ( ) ˆ( ) ( ) ( ),

ˆ( ) (

�

�
x t ax t d t bu t L x t

d t L x

= + + +

=

1

2 tt),
 (8.3.13)

where L1 and L2 determine the observer dynamics. The simulation in Figure 
8.13 shows that the tracking performance of the extended observer (Equation 
8.3.13) is improved compared with the initial design (Equation 8.3.1), i.e., 
ˆ( )x t  tracks x(t) closer after the initial overshoot when reaching the sliding 
manifold. 

FIGURE 8.12
Observer in auxiliary control loop enables chattering free system trajectories despite discon-

tinuous control switching after sliding manifold ˆ( )s t = 0 is reached. Plant output x(t) tracks 

observer output x̂ t( ) according to observer error dynamics.
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8.4. Regular Form Solution

Both the boundary layer approach and the observer-based solution to the 
chattering problem assume that the unmodeled dynamics are completely 
unknown. In practical applications, however, at least partial information 
about unmodeled dynamics, in particular of actuators, is often available 
together with measurements of the actuator outputs. For example, for electric 
drives, models are readily available but may contain uncertain parameters. 
Thus, in the design of a controller for the overall system, these dynamics can 
be included into the control design to enhance the performance of the overall 
system.

Because the actuator dynamics and the plant dynamics are block separated, 
i.e., the output(s) of the actuator(s) are the input(s) to the plant, a cascaded 
control structure can be designed following the regular form approach or the 
block control principle (see Sections 3.2 and 5.6 or Drakunov et al. [1990a,b]). 
The basic idea is to design a cascaded controller in two steps. In the fi rst step, 
a continuous controller is derived for the plant under the assumption that 

FIGURE 8.13
Tracking performance is improved by increasing the order of the observer in auxiliary control 

loop. After sliding manifold ˆ( )s t = 0 is reached, plant output x(t) tracks observer output x̂ t( ) and 

desired xd(t) closely.

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6

ueq(t)

0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6 0.7 0.8 0.9 1

1

0.5

0

2

1
0

-1

-2

-3

(b) Control inputs and sliding variable

(a) Output, desired output and observed output

Co
nt

ro
l s

pa
ce

St
at

e s
pa

ce

w(t) s(t)

u(t)

x(t)

xd(t)

x(t)^

s(t)^

TAF-65602-08-1101-C008.indd   179TAF-65602-08-1101-C008.indd   179 3/31/09   7:51:55 PM3/31/09   7:51:55 PM



© 2009 by Taylor & Francis Group, LLC

180 Sliding Mode Control in Electro-Mechanical Systems

the plant input(s) is (are) the actual control input(s) to the overall system, 
defi ning “desired” actuator output(s) wd(t). In the second step, the actuator 
input(s) u(t), i.e., the real control input(s) of the system, is (are) used to ensure 
the actuator output(s) track the desired output(s) exactly via sliding mode 
control with w(t) = wd(t). This approach is a special case of cascaded control 
structures as applied to the block control principle [Drakunov et al. 1984, 
1990a,b] and the integrator back-stepping method [Krstic, Kanellakopoulos, 
and Kokotovic 1995]. 

The regular form approach to prevent chattering is especially intriguing 
for systems with electrical actuators in which control input discontinuities 
are often imposed by the system specifi cations. Particularly for electrome-
chanical systems, the benefi ts of sliding mode control can be fully exploited 
based on the wealth of available control designs for electric drives and power 
converters (described  in Chapters 10 and 11). 

Assume the main source of unmodeled dynamics in a control loop being 
the actuator as depicted in Figure 8.3. Further assume availability of a model 
for the actuator in Equation 8.1.2, e.g., with uncertain parameters as

 w t
p p

u t
p

u t( )
ˆ

ˆ ˆ
( )

ˆ
( ),=

+ +
=

+( )
ω
ω ω μ

2

2 2 22

1

1
 (8.4.1)

where ˆ / ˆω μ= 1  is an estimate for the actuator bandwidth, u(t) is the control 
input to the overall system, and w(t) is the measurable actuator output. For 
more realistic actuator dynamics, refer to Chapter 10. A block diagram of the 
complete control system is shown in Figure 8.14. Note that the regular form 
approach is not applicable to systems with unmodeled dynamics mainly 
introduced by sensors rather than by actuators because measurement of 
both input(s) and output(s) of the unmodeled dynamics is required. Because 
sensor input(s) are usually not available via measurement(s), other methods 
such as the observer-based approach should be used to prevent chattering.

FIGURE 8.14
Cascaded controller with continuous auxiliary control and discontinuous actuator control 

loop.
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In the fi rst design step, a continuous auxiliary control law wd(t) is derived 
for plant (Equation 8.1.1) to track desired trajectory xd(t). Although any con-
trol design methodology, linear or nonlinear, can be used, it is important to 
ensure trackability in the face of limited bandwidth actuator dynamics. In 
other words, the rate of the auxiliary controller should be bounded as

 � �w t wd d( ) .≤ +  (8.4.2)

Depending on the order of the actuator dynamics, additional bounds on 
higher time derivatives of wd(t) might be necessary. For the example system 
(Equation 8.1.1), a fi rst-order linear controller

 wd(t) = C(xd(t) − x(t)) = Cxe(t) (8.4.3)

with proportional gain C > 0 may be used to yield error dynamics

 �x t b Cx t g x x te e d( ) ( ) ( , , ) ,= − +( )  (8.4.4)

where an upper bound g+ for disturbance function g(x, xd, t) was given in 
Equation 8.1.7. Error dynamics (Equation 8.4.4) are stable but are disturbed 
by g(x, xd, t). If available, the performance of controller in Equation 8.4.3 can 
be improved by feedforward of a disturbance estimate ˆ( , , )g x x td  as

 w t Cx t
b

g x x td e d( ) ( )
ˆ

ˆ( , , ).= + 1
 (8.4.5)

The second design step is to drive the error we(t) = wd(t) − w(t) between 
desired wd(t) in Equations 8.4.3 or 8.4.5 and actual actuator output w(t) to 
zero. Because this inner control loop is free of unmodeled dynamics, a dis-
continuous sliding mode controller can be designed as 

 u t p w t M s td( ) ˆ ( ) sign ( )= +( ) +μ 1
2

 (8.4.6)

with second-order sliding variable

 s t Kw t w t Ke e( ) ( ) ( ), .= + >� 0  (8.4.7)

Control Equations 8.4.6 and 8.4.7 assume that the fi rst and second time 
derivatives of wd(t) in Equations 8.4.3 or 8.4.5 and the fi rst time derivative 
of the actuator output, �w t( ), are available, e.g., from an observer. Controller 
Equation 8.4.6 leads to the inner loop error dynamics

 μ μ μ μ2 22�� �w t w t w t M s t p pe e e( ) ( ) ( ) sign ( )+ + + = +( )ww td ( ), (8.4.8)
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where μ μ μ= − ˆ  is the estimation error of the actuator dynamics, and p is the 
Laplace variable. Following the conventional design methodology of sliding 
mode control, it can be shown that the values of s(t) and �s t( ) have different 
signs for bounded �w td ( ), ��w td ( ) and high enough but fi nite magnitude of con-
trol resource M. Hence, sliding mode is enforced in the manifold s(t) = 0 with 
we(t) decaying to zero as determined by K in Equation 8.4.7. Consequently, 
desired control Equations 8.4.3 or 8.4.5 is directly implemented to plant 
Equation 8.1.1.

In the simulation shown in Figure 8.15, the desired actuator output 
was limited according to the real actuator limits, i.e., −M ≤ wd(t) ≤ M. The 
sliding variable in Equation 8.4.7 converges to zero within fi nite time. 
Thereafter, s(t) = 0 and the control switches at (theoretically) infi nite fre-
quency, resulting in the black solid area in Figure 8.15b. At the same time, 
x(t) converges to desired xd(t), but tracking is not exact because of linear 
control Equation 8.4.3.

FIGURE 8.15
Cascaded controller structure to prevent chattering. Despite discontinuous control action in 

actuator control loop, plant output x(t) follows desired trajectory xd(t) without oscillations.
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8.5. Disturbance Rejection Solution

The regular form solution in the previous section relies on a continuous con-
troller to achieve tracking of the desired trajectory xd(t) by the output x(t) of 
plant Equation 8.1.1. The linear controller Equation 8.4.3 was augmented by 
an estimate of the disturbance g(x, xd, t) in Equation 8.4.5. Often, such an esti-
mate is not readily accessible. The disturbance rejection approach discussed 
in this section provides means to obtain an accurate disturbance estimate 
while avoiding chattering in the main control loop. This approach can be 
viewed as a special case of so-called integral sliding mode. A more math-
ematical background of integral sliding mode is described in Chapter 7. 

The main idea of disturbance rejection via sliding mode is to compose the 
overall controller of a continuous part and a discontinuous part, i.e.,

 u(t) = uc(t) + ud(t). (8.5.1)

The idea of combining a continuous and a discontinuous part for the con-
trol input has been used by many authors [for a survey see, DeCarlo, Zak, 
and Matthews 1988]. The continuous component uc(t) is used to control the 
overall behavior of the system, whereas the discontinuous component ud(t) 
is used to reject disturbances and to suppress parametric uncertainties. A 
block diagram is shown in Figure 8.16.

Assume that, for the example system in Equation 8.1.1, the desired tra-
jectory xd(t) is known but the disturbance d(x, t) is unknown. Also assume 
the parameter b to be known and parameter a to be entirely unknown. 

FIGURE 8.16
Disturbance rejection via sliding mode with auxiliary controller loop to avoid chattering. A 

continuous controller uc(t) is augmented by a disturbance rejection controller ud(t), derived 

from a low-pass-fi ltered discontinuous controller for an auxiliary control variable z(t).
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A  continuous controller with linear feedback and feedforward of the desired 
trajectory xd(t) then can be designed as

 u t
b

Cx t x tc e d( ) ( ) ( ) ,= +( )1 �  (8.5.2)

where C > 0 is a proportional feedback gain for the tracking error xe(t) = 
xd(t) − x(t). Substitution of Equation 8.5.2 with the disturbance rejection term 
ud(t) being set to zero, i.e., u(t) = uc(t), into system dynamics (Equation 8.1.1) 
without actuator dynamics (Equation 8.1.2) yields stable error dynamics

 �x t Cx t f x te e( ) ( ) ( , ),+ =  (8.5.3)

which are perturbed by the disturbance function f(x, t) = −ax(t) − d(x, t). Due 
to f(x, t) ≠ 0, the tracking error xe(t) does not go to zero. A simulation in Figure 
8.17 illustrates this with a “weak” feedback gain C, leading to imperfect 
tracking of the desired trajectory xd(t). 

FIGURE 8.17
Linear feedback controller with feedforward of desired trajectory, uc(t), leads to inaccurate 

tracking of desired trajectory xd(t), because the closed-loop system (Equation 8.5.3) is perturbed 

by unknown plant dynamics ax(t) and external disturbance d(x,t).

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6 0.7 0.8 0.9 1

1

0.5

0

1

0

-1

-2

-3

(b) Control inputs and sliding variable

(a) Output and desired output

Co
nt

ro
l s

pa
ce

St
at

e s
pa

ce

s(t)

w(t)u(t)

x(t)

xd(t)

TAF-65602-08-1101-C008.indd   184TAF-65602-08-1101-C008.indd   184 3/31/09   7:51:57 PM3/31/09   7:51:57 PM



© 2009 by Taylor & Francis Group, LLC

The Chattering Problem 185

To reduce the infl uence of disturbance f(x, t) on the tracking performance, 
the second term in controller Equation 8.5.1 is designed as a disturbance esti-
mator using sliding mode control. Defi ne a sliding manifold as

 s(t) = xe(t) + z(t), (8.5.4)

where z(t) is an auxiliary sliding variable with 

 � �z t x t bu t bM s td( ) ( ) ( ) sign ( ).= − + −  (8.5.5)

Differentiation of the sliding variable s(t) in Equation 8.5.4 and substitution of 
plant (Equation 8.1.1) and auxiliary sliding variable (Equation 8.5.5) yields

 

� � �s t x t z t

ax t d x t b u t w t
e( ) ( ) ( )

( ) ( , ) ( ) ( )

= +
= − − + −(( ) −

< + +
+
+

⎛
⎝

+ +

bM s t

a x t d b
p p
p

sign ( )

( )
( )

μ μ
μ

2 2

2

2

1⎜⎜
⎞
⎠⎟

−u t bM s t( ) sign ( ).

 (8.5.6)

The third term in the right-hand side of the last row in Equation 8.5.6 is the 
mismatch between the actuator input and the actuator output and decays 
rapidly according to actuator dynamics (Equation 8.1.2). Note that this term 
can be fully eliminated if the actuator output is measurable and Equation 
8.5.5 can be changed to

 � �z t x t bw t bM s td( ) ( ) ( ) sign ( ).= − + −  (8.5.7)

Stability of the sliding manifold s(t) can be established using Lyapunov func-
tion candidate

 V t s t( ) ( ).= 1

2
2  (8.5.8)

Differentiation of Equation 8.5.8 and substitution of Equation 8.5.6 yields

 

� �V t s t s t

s t a x t d b
p p
p

( ) ( ) ( )

( ) ( )
(

=

< + +
+
+

+ + μ μ
μ

2 2

1))
( ) ( ) .

2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟ −u t bM s t

 (8.5.9)

Because the actuator time constant μ is assumed small, sliding mode exists 
for suffi ciently large 

 M
b

a x t d> +( )+ +1
( )  (8.5.10)
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and s(t) = 0 after fi nite time. Choosing the initial conditions of the auxiliary 
sliding variable z(t) in Equation 8.5.5 as z(0) = −xe(0) eliminates the reaching 
phase by setting s(0) = 0 in Equation 8.5.4. While the system is in sliding 
mode, the motion trajectories can be examined using the equivalent control 
method. Solving �s t( ) = 0 in Equation 8.5.6 under the assumption w(t) = u(t) for 
the discontinuity term yields the continuous equivalent control

 

u t
b

ax t d x t

f x t
b

deq
( ) ( ) ( , )

( , )
,

= − −( )

=

1

 (8.5.11)

which delivers an exact estimate of the disturbance perturbing the error 
dynamics (Equation 8.5.3) of the system under continuous control alone. 
Thus, defi ning the second term in Equation 8.5.1 as

 u t u td d( ) ( )=
eq

 (8.5.12)

leads to exact tracking with error dynamics 

 �x t Cx te e( ) ( )+ = 0 (8.5.13)

instead of Equation 8.5.3 under u(t) = uc(t). Equation 8.5.13 ensures asymp-
totic tracking of xd(t) with disturbances. The equivalent control u tdeq

( ) can be 
obtained by averaging the discontinuous switching component in the right-
hand side of Equation 8.5.5, e.g., via a low pass

 

u t u t

u t
M
p

s t

d d

d

ave

ave

eq
( ) ( )

( ) sign ( ),

=

=
+( )ε 1

 (8.5.14)

where p denotes the Laplace variable and ε > 0 is a small time constant. 
Disturbance rejection controller ud(t) in Equation 8.5.14 is continuous. It was 
shown by Utkin [1992] that the low-pass average of the discontinuity term 
in Equation 8.5.14 equals the equivalent control (Equation 8.5.11). In systems 
with the ability to use discontinuous control inputs directly, the low-pass 
fi lter may be omitted completely. 

The simulation in Figure 8.18 shows the improvement of the controller per-
formance achieved by the disturbance estimator ud(t) compared with Figure 
8.17. The bottom graph depicts the performance of the disturbance estimator 
and shows that s(t) = 0 at all times attributable to setting z(0) = −xe(0) and thus 
s(0) = 0. Estimation u tdave

( ) tracks the disturbance f(x, t) consistently, with a 
small lag introduced by the averaging low pass in Equation 8.5.14.
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The closed-loop system is free of chattering despite the discontinuity in 
Equation 8.5.5 because the disturbance rejection term ud(t) is continuous. 
However, x(t) tracks desired xd(t) exactly because of the rejection of distur-
bance f(x, t), which also contains uncertainty in parameter a of the system 
in Equation 8.1.1. Note that the rejection of the parametric uncertainty does 
not assume constant system parameters but rather is able to also account for 
parameter variations.

8.6. State-Dependent Gain Method

This section provides an alternative way to suppress chattering without 
designing an additional system, e.g., an asymptotic observer that needs pre-
liminary information of the system or plant. In Section 8.1.4, it was shown 

FIGURE 8.18
Performance of linear feedback controller with feedforward of desired trajectory, uc(t), is 

signifi cantly improved by disturbance rejection controller ud(t) based on auxiliary variable z(t) 
for estimating unknown plant dynamics ax(t) and external disturbance d(x, t) summarized as 

f(x, t) = −ax(t) − d(x,t).

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5
Time t

0.6 0.7 0.8 0.9 1

1

0.5

0

1.5

1

0.5

0

-0.5

(b) Auxilliary sliding variable and disturbance/uncertainty estimation

(a) Output and desired output

Au
xi

lli
ar

y c
on

tr
ol

 sp
ac

e
St

at
e s

pa
ce

f(x,t)

z(t)

-udave(t)

x(t)

xd(t)

TAF-65602-08-1101-C008.indd   187TAF-65602-08-1101-C008.indd   187 3/31/09   7:51:58 PM3/31/09   7:51:58 PM



© 2009 by Taylor & Francis Group, LLC

188 Sliding Mode Control in Electro-Mechanical Systems

that the magnitude of chattering is proportional to the gain M. Thus, the idea 
is to reduce the value of M without losing guarantee of existence of sliding 
mode. To support this idea, a state-dependent gain method is proposed [Lee 
and Utkin 2006]. The design idea will be illustrated for the second-order sys-
tem with a state-dependent gain M(x) in the sliding mode controller

 
�
�
x x

x a x a x u
1 2

2 1 1 2 2

=
= + +

 (8.6.1)

 

s cx x

u Msign s

M M x M x

= +
= −
= = +

1 2

1 0 1

( )

( ) (| | ),δ
 (8.6.2)

where c and M0 are positive constant values, and δ is a suffi ciently small, 
positive constant. Note that the gain M is not constant but a function of the 
state x1. The constant M0 should be selected to force sliding mode to occur 
along the switching surface. It may be found analytically from Equations 
8.6.1 through 8.6.2:

 �s a a c c x M x sign s= − − − +( ) (| | ) ( ).1 2
2

1 0 1 δ  (8.6.3)

Sliding mode exists if 

 |a1 − a2c − c2| ≤ M0. (8.6.4)

The approach based on state-dependent gain stems from the early publica-
tions on variable structure control of the 1960s [Emelyanov, Utkin Taran, 
Kostyleva, Shubladze, Ezerov, and Dubrovsky 1970].

Figure 8.19 demonstrates simulation results of the system (Equation 8.6.1) 
with constant and state-dependent gains in control 

 
u M sign s

u M x sign s
1 0

2 0 1

= −
= − +

( )

(| | ) ( ).δ
 (8.6.5)

It can be seen that the amplitude of the system input is signifi cantly reduced 
by using the proposed controller compared with the result using conven-
tional sliding mode control with a fi xed gain M. In addition to the effect 
of chattering reducing, the state-dependent gain in control is expected to 
decrease the control effort. As the simulation shows, the both control algo-
rithms result in the same trajectory for x1(t). 

Now, second-order actuator dynamics

 w p
p

u p( )
( )

( )=
+
1

1 2μ
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are introduced into the system. At the presence of unmodeled dynamics, 
chattering arises but the magnitude of chattering is reduced by using state-
dependent gain M as expected (Figure 8.20).

8.7. Equivalent Control-Dependent Gain Method

Any method would be helpful to suppress chattering if it can decrease the 
gain M while maintaining sliding mode. In the previous section, reducing M 
along with the system state was suggested. This methodology will hardly be 
applicable for nonlinear systems at the presence of unknown disturbances. 
As shown in Section 2.3, the motion in sliding mode is determined by the 
equivalent control ueq, a solution to equation �s = 0 with respect to control. 
The function ueq is an average value of the real discontinuous control, and, of 
course, the real control amplitude should be greater than |ueq|. Conversely, ueq 

can be easily obtained using a low-pass fi lter. Hence, the smallest  allowable 
amplitude of the discontinuous control can be based on the equivalent  control 

FIGURE 8.19
Simulation results for the system in Equation 8.6.1 with two different controllers.
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obtained by low-pass fi ltering of the real, discontinuous control such that 
sliding mode is maintained once it has occurred [Lee and Utkin 2006].

Although the equivalent control-dependent gain method will be demon-
strated for a fi rst-order system, it is applicable for any system with scalar 
control. 

For the following system,

 �x f x t u= +( , ) , (8.7.1)

select control as a discontinuous function of equivalent control

 u = − M(|σ| + δ)sign(x), (8.7.2)

where  M > |f(x, t)|, δ is a positive constant value, and σ is the average value of 
sign(s), which is equal to [sign(x)]eq. The value of [sign(s)]eq can be found using 
a low-pass fi lter τσ σ� + = sign s( ) (τ <<1). 

FIGURE 8.20
Chattering is reduced by using state-dependent gain in control.
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Suppose that, at initial time x(0) ≠ 0, then sign(x) = ± 1, |σ| = 1 and  functions 
x(t) and �x t( ) have opposite signs; therefore, sliding mode will appear at point 
x = 0 after fi nite time interval. After sliding mode occurs, it will not disap-
pear, as follows.

Lemma 8.1 

The absolute value of equivalent control approximation σ is less than 1.

Proof 8.1

If sliding mode exists, �x becomes zero and the equivalent control sign x eq( )    = σ : 

 �x f x M= − + =( ) (| | ) .σ δ σ 0 (8.7.3)

 1. If f(x) > 0, then σ > 0 and Equation 8.7.3 becomes 

 Mσ2 + Mδσ − f = 0,

  with the solution 

 σ
δ δ

σ δ δ

δ
=

− + +
= − + ⎛

⎝⎜
⎞
⎠⎟ + =

+

M M Mf

M
f

m

f
M( )

,
2 4

2 2 2

2

or
δδ
2

2
⎛
⎝⎜

⎞
⎠⎟ + f

M

.

  Hence, 0 < ≤σ
f

M
 because M > |f(x)|. 

 2. If f(x) < 0, then σ < 0. Similarly, Equation 8.7.3 is rewritten as 
Mσ2 − Mδσ + f = 0. With the solution

 
σ δ δ

δ δ
= − ⎛

⎝⎜
⎞
⎠⎟ − = −

−

+ ⎛
⎝⎜

⎞
⎠⎟ −

2 2

2 2

2

2

f
M

f
M

f
M

.

  Therefore, − < − − < <1 0
f

M
σ . Finally, −1 < σ <1.  □

 The system dynamics (Equation 8.7.3) may be rewritten as

 

�x f x M sign x

f x M sign x

= − +

= − +

( ) (| | ) ( )

( ) (| | ) (

σ δ
σ δ ))

( ) .

− +{ }
= − −{ }

σ σ

σM sign x

TAF-65602-08-1101-C008.indd   191TAF-65602-08-1101-C008.indd   191 3/31/09   7:52:00 PM3/31/09   7:52:00 PM



© 2009 by Taylor & Francis Group, LLC

192 Sliding Mode Control in Electro-Mechanical Systems

Because |σ| < 1, x and �x have different signs, sliding mode cannot disappear.
If f(x, t) is reduced to zero during sliding mode, then control u tends to 

−Mδ sign(x), which leads to a decreased control amplitude. As a result, the 
chattering will be attenuated.

Simulation results for the system (Equation 8.6.1) with control u1 = −M(|σ| 
+ δ)sign(s), σ = [sign(s)]eq, and u2 = −Msign(s), (M = const) are shown in Figure 
8.21. Chattering reduction is observed in the system with equivalent control-
dependent gain.

FIGURE 8.21
Comparison of chattering for equivalent control-dependent and constant gains.
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8.8. Multiphase Chattering Suppression

8.8.1. Problem Statement

Although the introduction of state observers leads to a signifi cant reduc-
tion of chattering, their application needs information about the process 
equations. The common way to implement sliding mode control is based 
on electronic power converters with “on/off” as the only admissible switch-
ing operation mode. An output of converters can take only two (or fi nite 
number of) values; therefore, the methodologies of Sections 8.5 and 8.6 are 
not applicable for chattering suppression. A natural way to reduce chatter-
ing is increasing switching frequency. However, it is not always possible as 
a result of limitation of switching frequency or losses in power converters. 
In addition, implementation of sliding modes in power converters results in 
frequency variations, which is unacceptable in many applications. 

The challenge is to design a multiphase converter system based on a given, 
fi xed switching frequency, reducing chattering to a desired level. This may 
be possible by providing a desired phase shift between phases for any loads 
and frequencies to implement the “harmonic cancellation” method. Attempts 
to apply this idea to PWM have been made such that phase shifts are inter-
connected and can be controlled, using a transformer with primary and sec-
ondary coils in different phases. Alternatively, the phase shift was obtained 
using delays, fi lters, or set of triangular inputs with selected delays [Miwa, 
Wen, and Schecht 1992; Xu, Wei, and Lee 2003; Woo, Lee, and Schuellein 2006]. 
Frequency control can be performed changing the width of a hysteresis loop 
in switching devices [Ngyuen and Lee 1995; Cortes and Alvarez 2002]. 

The approach in this section stems from the nature of the sliding mode 
control and provides a desired phase shift between phases for any frequency 
without any additional dynamic elements.

To formulate the problem statement, consider the system with scalar 
control, 

 

�x f x t b x t u

x f b n

= +

∈ℜ

( , ) ( , )

( , , , ).  (8.8.1)

For system Equation 8.8.1, it is assumed that control should be designed as 
a continuous function of state variables u0(x). This situation is common for 
so-called “cascade control” used for electric motors with current as a control 
input. To implement the desired control, power converters often use PWM 
as a principle operation mode. Sliding mode is one of the tools to implement 
this mode based on the feedback approach as shown in Figure 8.22, which 
illustrates that the output u tracks the reference input u0(x) in sliding mode: 

 
s u x u u Msign s M

s g x Msign s

= − = = >

= −
0 0( ) , ( ), ,

( ) (

�

�

ν
)), ( ) [ ( )] ( ).g x grad u f buT= +0

 (8.8.2)
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It is evident that sliding mode in the surface s = 0 with u ≡ u0(x) exists if 
M >|g(x)|. If the control is implemented with a hysteresis loop, chattering 

with oscillation amplitude A = Δ
2

 in s is illustrated in Figure 8.23. 

Under the assumption that the switching frequency is high enough, the 
state x can be considered as constant within the time interval [t0, t2], and the 

switching frequency is found as f
t t

=
+
1

1 2

, where t
M g x

t
M g x1 2= Δ

−
= Δ

+( )
,

( )
. 

So, Δ can be selected as

 Δ =
−M g x
M fdes

2 2

2

1( )
 (8.8.3)

to maintain the switching frequency at the desired level fdes; however, 
the magnitude of oscillation may be unacceptable. The hysteresis loop 
can be implemented by a switching element with gain Kh as depicted in 
Figure 8.24.

 Let us assume now that the desired control is implemented by m power 

converters, called “multiphase converter,” with s
u
m

u i mi i= − =0 1 2,( , , ... )  and 
u
m

0  as reference inputs as shown in Figure 8.25.

FIGURE 8.22
Sliding mode control for a simple power converter model.
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FIGURE 8.23
Oscillation in the vicinity of switching surface.
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If each power converter operates properly, the output is equal to the desired 
control u0(x). Amplitude and frequency in each converter can be found as 
follows: 

 A f
M

g x
m

M
= =

− { }Δ
Δ2 2

2

2

,

( )

.  (8.8.4)

The amplitude of chattering in u0 depends on the oscillation in each con-
verter phase, and, in the worst case, it can be m times higher than that of each 
converter. For the system in Figure 8.22, phases depend on initial conditions 
and cannot be controlled. However, as was demonstrated for the system in 
Equation 2.1.1 (see also Figure 2.1), switching instants or phase shift between 
oscillations in different control channels are not independent if the chan-
nels are interconnected. Hence, if discontinuous inputs of the integrators are 
interconnected, then the phases of oscillations will be interdependent, which 
gives hope to reduce the chattering amplitude in the output signal. First, it 
should be demonstrated that, by controlling phases, the output oscillation 
amplitude can be reduced.

FIGURE 8.24
Implementation of hysteresis loop with width Δ = KhM.
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FIGURE 8.25
m-phase converter with evenly distributed reference input.
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Suppose that a multiphase converter with m phases is to be designed such 
that the period of chattering T is the same in each phase, and two subsequent 
phases have phase shift T m. Because chattering is a periodic time function, 
it can be represented as Fourier series with frequencies 

 ω ω ω π
k k

T
k= ⋅ = = ∞, ( , , , ).

2
1 2 �  (8.8.5)

The effect of kth harmonic in the output signal is the sum of individual out-
puts from all of phases and can be easily calculated as follows: 

 

sin ω π
ω

ω π

k

j t
k

m
i

i

t
m

i Im e
k

( )
( )

−⎡
⎣⎢

⎤
⎦⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

−2 2

==

−

=

−

−

=

−

∑∑

∑= =

0

1

0

1

2

0

1

m

i

m

j t j
k

m
i

i

m

Im e Z Z ek( ),ω
π

..  (8.8.6)

To fi nd Z, let us consider the following equation: 

 Ze e e
j

k
m

j
k

m
i

i

m j
k

m
i

i

m− − +

=

− −

=

= =∑
2 2

1

0

1 2

1

π π π
( ) '

'

∑∑ .  (8.8.7)

Because Ze e
j

k
m

i

i m

j
k

m
i

i

−

=

−

=

=
2 2

0

π π

,  it follows from Equation 8.8.7, 

 
Ze Z

j
k

m
−

=
2π

.

The function e
j

k
m

− 2π

 is equal to one only if 
k
m

 is integer or k m m= , ,2 …, which 

means that Z = 0 for all other cases. This analysis shows that all harmonics 

except for lm l ( , , )= 1 2 …  are suppressed in the output signal. As a result, the 
amplitude of chattering can be reduced to the desired level by increasing the 
number of phases, providing a desired phase shift between two subsequent 
phases from the methodology proposed in the previous section. 

The above analysis lets us outline the design method for suppressing chat-
tering: fi rst select the width of the hysteresis loop in each phase in compliance 
with Equation 8.8.3 (or K Mh = Δ ) to have the desired switching frequency. 
Then select the number of phases m and switching functions to provide the 

desired phase shifts T
m.  The last problem will be addressed in the next 

section.

8.8.2. Design Principle

Let two power converters be implemented as shown in Figure 8.26, and the 
switching function for the second converter is proposed as s s s2 2 1

∗ = − : (s1 = 
u0/2 − u1, s2 = u0/2−u2, ν1 = Msign(s1), and ν2 2= ∗Msign s( )). 
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 Then, time derivatives of s1 and s2
∗ become 

 

s a Msign s a
g x

k
s Msign s Msign

1 1

2 1

= − =

= −∗

( ) (
( )

)

( ) (ss2
∗ ).  (8.8.8)

The system behavior in the plane s1 and s2
∗
 is analyzed with the widths of 

hysteresis loops for the two sliding surfaces being Δ and αΔ, respectively. 
First, the case a = 0 and α = 1 is considered. As can be seen from Figure 8.27, 
phase shift between ν1 and ν2 is equal to T

4
 for any value of Δ, where T is the 

period of oscillations T
M

= Δ2
. 

It is evident that, for any initial conditions different from point 0 (for 
instance, 0′), the motion represented in Figure 8.27 will appear in time less 

than 
T
2

. A similar analysis may be performed for the case a ≠ 0 (of course 

M >|a|) and α ≠ 1. In Figure 8.28, s plane is demonstrated for a > 0 and α > 1. 
Also, the period of oscillations T can be easily found from the equation with 
respect to s1 as follows: 

 
T

M a M a
M

M a
= Δ

−
+ Δ

+
= Δ

−
2

2 2
.
 (8.8.9) 

From Figure 8.28 and Equation 8.8.8, it can be seen that the phase shift 
becomes 

 φ α= Δ
2M

, (8.8.10)

which is equal to the time for changing s2
∗ from αΔ

2
 to − αΔ

2
 or vice versa. The 

switching illustrated in Figure 8.28 takes place if 

 
αΔ Δ
2M M a

≤
+| |

. (8.8.11)

FIGURE 8.26
A controller model with two interconnected phases.

+-

+ +-
-

Phase I

Phase II

u1v1S1u0/2

u0/2
S2

u2v2s2
+

TAF-65602-08-1101-C008.indd   197TAF-65602-08-1101-C008.indd   197 3/31/09   7:52:03 PM3/31/09   7:52:03 PM



© 2009 by Taylor & Francis Group, LLC

198 Sliding Mode Control in Electro-Mechanical Systems

Otherwise, for the trajectory starting from point 2 in Figure 8.28, ν1 will 
switch from M to −M before ν2 switches from −M to M at point 3. 

As follows from this example, the phase shift between oscillations can be 
selected by proper choice of α for any switching frequency without using 
dynamic elements, e.g., transformers and fi lters. 

Next, we show that the selection of the phase number depends on the 
range of the function a. First, the value α is calculated to provide the desired 
phase shift. Because ϕ must be equal to T m , α can be found from Equations 
8.8.9 through 8.8.11 as 

 α =
−

4 2

2 2

M
m M a( )

, (8.8.12)

FIGURE 8.28
Control of the phase between ν1 and ν2.
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where the function a is assumed to be bounded as |a| < amax < M. According 
to Equations 8.8.11 and 8.8.12 for a positive a, the following condition should 
hold: 

 
4

2

2

2 2

M
m M a M M a( )

.
−

Δ ≤
+

Δ

or 

 m
M

M a
>

−
2

max

.  (8.8.13)

Similarly, it also can be shown that the same condition should hold for a 
negative a. 

The above results may be summarized as the design procedure for the 
multiphase converter: 

Select the width of hysteresis loop as a state function such that the 
switching frequency in the fi rst phase is maintained at the desired 
level. 

Determine the number of phases for a given range of function a 
variation. 

Find the parameter α as a function of a such that the phase shift 

between two subsequent phases is equal to 1

m
 of the oscillation 

period of the fi rst phase. 

Remark 8.1.

As follows from Equation 8.8.13, the following condition for a should hold: 

 
| | ( )a M

m
m≤ −⎛

⎝⎜
⎞
⎠⎟ ≥1

2
2 .

 
(8.8.14)

If not, it can lead to the collapse of the switching sequence. Also, the fre-
quency of the second phase may change. To preserve the switching sequence 

and frequency even in case |a| > amax a M
mmax = −⎛

⎝⎜
⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

1
2

, the condition in 

Equation 8.8.11 must be always fulfi lled. Therefore, the function α should 
be selected as in Equation 8.8.12 for Equation 8.8.14 and in compliance with 
Equation 8.8.11, i.e., 

•

•

•
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α =
−

< −⎛
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+

4
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2

2

2 2

M
m M a

if a M
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M
M a

if amax

( )
| |

| |
<< <

⎧

⎨
⎪⎪

⎩
⎪
⎪

| | .a M
 

(8.8.15)

Another version, called “master-slave mode,” of multiphase converters is 
proposed here based on phase shift control with sliding mode. The approach 
implies frequency control in the fi rst phase and open-loop control for the 
others as illustrated in Figure 8.29.

The fi rst phase (master) is connected to the next phase (slave) through an 
additional fi rst-order system as a shifter such that the discontinuous input 
ν2 for the slave has a desired phase shift from ν1 without changing switching 
frequency. 

To demonstrate the design idea, a two-phase converter system similar to 
the one in Section 8.8.2 is considered. The equation of the fi rst phase, 

 �s a Msign s1 1 1 1= − =ν ν, ( ),
  (8.8.16)

is complemented by the following equation of an additional fi rst-order 
dynamic system: 

 �s K Msign s2 1 2 2 2
∗ ∗= − =( ), ( ).ν ν ν   (8.8.17)

The second phase cannot be governed by Equation 8.8.17 for K ≠ 1, because 
the control input in any phase can take only the two values +M and −M. The 

FIGURE 8.29
Two-phase power converter model in the master-slave mode.
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analysis of the system behavior can be performed in the same manner as in 
the previous sections. With the width of hysteresis loop Δ, the phase shift 
between ν1 and ν2 becomes 

 φ = Δ
2KM

,  (8.8.18)

whereas the phase shift from the earlier design principle can be found in 
Equation 8.8.10. Comparing Equation 8.8.10 with Equation 8.8.18, the value of 

K is found as 1α  or

 
K

m M a
M

= −( )
.

2 2

24  (8.8.19)

For multiphase converters, the desired control of each phase can be obtained 
similarly from the control of the previous phase; the input to kth phase, νk, is 
a phase-shifted signal from the input to the previous phase νk−1. 

Remark 8.2

In the additional dynamic system (Equation 8.8.17), the width of hyster-
esis loop �Δ  ( )�Δ Δ= α  and the amplitude of both discontinuous functions 
�M ( )�M M= β  may be chosen arbitrarily (α, β = const.). Then, the phase shift 

becomes 

 
�

�
�φ α

β
β

α
= =

′
=⎛

⎝⎜
⎞
⎠⎟

Δ Δ
2 2K M KM

K
K

,

and �K should be selected properly from Equation 8.8.12. 

Remark 8.3

Similar to the fi rst version varying the width of a hysteresis loop, the desired 
phase shift cannot be provided by master-slave modifi cation in Figure 8.29 if 
the condition in Equation 8.8.13 does not hold. However, for the master-slave 
version, the necessary phase shift can be gained by sequential connection of 
several “slaves” such that each of them has an admissible phase shift.

8.9. Comparing the Different Solutions 

In applications of sliding mode control, unmodeled dynamics in the control 
loop are often excited by the discontinuous switching action of a sliding 
mode controller, leading to oscillations in the motion trajectory. Because of 
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the acoustic noise that such oscillations may cause in mechanical systems, 
this phenomenon is also referred to as chattering. This chapter studied the 
chattering problem and presented several solutions to reliably eliminate 
or signifi cantly reduce chattering in the control loop. To successfully pre-
vent chattering, these methods require some estimate of the time constant 
or the bandwidth of the unmodeled dynamics. Instead of achieving exact 
tracking performance as in ideal sliding mode, small tracking errors are 
tolerated. 

In general, the achievable performance of a control system depends on the 
performance of sensors and actuators, availability of knowledge about the 
system, i.e., the quality of the system model, and the availability of measure-
ments of system variables. For example, a system with a slow actuator cannot 
fully reject fast disturbances, regardless of the control design methodology 
used. A sliding mode controller under ideal conditions is able to fully exploit 
the system capabilities. Under realistic conditions, a chattering prevention 
scheme should be selected to meet the system specifi cations and to ensure 
good control performance. 

The fi rst method substitutes the discontinuity of a sliding mode controller 
by a saturation function and yields motion in a boundary layer of the slid-
ing manifold instead of true sliding along the manifold. Effectively, sliding 
mode methodology is used to design a continuous high-gain controller that 
respects bounds on the control resources. 

The second method shifts the switching action of the sliding mode control-
ler into an auxiliary observer loop, thus circumventing unmodeled dynamics 
in the main loop and achieving ideal sliding mode in the observer loop. The 
plant follows the ideal trajectory of the observer according to the observer 
performance. Because the control input to the plant is still discontinuous, 
this method is ideal for systems that already have an observer in the control 
structure or for systems with inherently discontinuous control inputs such as 
voltage inputs of electric drives. Implementation of a continuous controller in 
a system with discontinuous inputs generally requires PWM, whereas direct 
implementation of sliding mode control with an observer avoids PWM.

The third method is mainly designed for systems in which some knowl-
edge of the unmodeled dynamics and intermediate measurements are avail-
able, e.g., known actuator dynamics. Such systems consisting of separated 
blocks may be controlled with a cascaded control structure that avoids chat-
tering by explicitly taking the unmodeled dynamics into account for the con-
trol design. In this sense, they are no longer unmodeled but rather part of the 
overall system model.

The fourth method combines a continuous and a discontinuous control-
ler to achieved good performance without chattering. The continuous part 
controls the overall motion, whereas the task of the discontinuous part is to 
reject the infl uence of parametric uncertainty and disturbances. This method 
is a special case of integral sliding mode and is especially useful for systems 
with large uncertainties and/or disturbances.
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The state- or equivalent-control-dependent gain methods are effi cient 
tools to signifi cantly reduce chattering. However, in many cases, they are not 
applicable because the actuators in the control systems are power converters 
with a fi nite number of output voltage values.

In addition, even without unmodeled dynamics, the switching frequency 
of power converters should be bounded as a result of heat losses during each 
switching, which is proportional to the square of the switched current. A 
multiphase sliding mode power converter is a feasible method for reducing 
both chattering and heat losses. 

All methods possess their advantages and disadvantages, both of which 
depend on the system specifi cations. When designing a sliding mode con-
troller for a given system, the chattering prevention method usually requires 
careful consideration of all details; unfortunately, no textbook solution exists 
to cope with all systems in a general manner.
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9
Discrete-Time and Delay Systems

Sliding mode is a very powerful tool for control design. So far, this text 
has concentrated on sliding mode control design for continuous-time 
systems. However, in many practical problems, controllers are imple-
mented in discrete time, e.g., using microprocessors. Similar to the 
development of linear systems theory in the 1960s and 1970s, the dis-
cretization process requires the approach to be rethought. This chapter 
seeks to develop a general concept for discrete-time sliding mode and 
presents linear systems as design examples. This new concept is further 
extended to systems with delays and distributed systems.

9.1. Introduction to Discrete-Time Systems

Most sliding mode approaches are based on fi nite-dimensional continuous-
time models and lead to discontinuous control action. Once such a 
dynamic system is “in sliding mode,” its motion trajectory is confi ned 
to a manifold in the state space, i.e., to the sliding manifold. Generally 
speaking, for continuous-time systems, this reduction of the system order 
may only be achieved by discontinuous control, switching at theoretically 
infi nite frequency. 

When challenged with the task of implementing sliding mode control in a 
practical system, the control engineer has two options:

Direct, analog implementation of a discontinuous control law with a 
very fast switching device, e.g., with power transistors.

Discrete implementation of sliding mode control, e.g., with a digital 
microcontroller.

The fi rst method is only suitable for systems with a voltage input, allowing 
the use of analog switching devices. Most other systems are usually based 
on a discrete microcontroller-based implementation. However, a discon-
tinuous control designed for a continuous-time system model would lead 
to chatter when implemented without modifi cations in discrete time with 
a fi nite sampling rate. This discretization chatter is different from the chat-
tering problem caused by unmodeled dynamics as discussed in Chapter 8. 
Discretization chatter is attributable to the fact that the switching frequency 

•

•
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is limited to the sampling rate, but correct implementation of sliding mode 
control requires infi nite switching frequency. The following example will 
illustrate the difference between ideal continuous-time sliding mode and 
direct discrete implementation with discretization chatter. The subsequent 
sections of this chapter are dedicated to the development of a discrete-time 
sliding mode concept to eliminate the chatter. This concept then is extended 
to systems with delays and distributed systems governed by differential-
 difference equations.

Example 9.1: Ideal Sliding Mode versus Discrete Implementation

Examine a fi rst-order example system modeled in continuous time as

 �x t g x t u t( ) ( ) ( ),= ( ) +  (9.1.1)

with state x(t), bounded dynamics g x g( ) ≤ , and control input u(t). To enforce slid-
ing mode on a manifold 

 σ = {x: x(t) = 0}, (9.1.2)

a discontinuous control law may be designed as

 u(t) = − u0 sign x(t), (9.1.3)

with available control resources u g0 > . The usual Lyapunov-based stability analy-
sis examines

 V x t= 1
2

2( ) (9.1.4)

along the trajectories of system (Equation 9.1.1) with control (Equation 9.1.3), 
 leading to 

 
V t x t g x t u x t

x t u g

i
( ) ( ) ( ) sign ( )

( ) ( ),

= ( ) −( )
≤ − −

0

0

 (9.1.5)

which testifi es to convergence to the manifold (Equation 9.1.2) within fi nite 
time. An example trajectory is shown in Figure 9.1 with g(t) = sin(t) and 
u0 = 2, starting from initial conditions x(t = 0) = 3. At tsm the system reaches the 
sliding manifold x = 0. Thereafter, the motion trajectory is invariantly confi ned to 
the manifold (Equation 9.1.2) via discontinuously switching control, illustrated in 
the bottom diagram of Figure 9.1 by a black rectangle.

A direct discrete implementation with sampling time Δt would result in

 
x x g u t

u u x

k

k k k k

k k

+ = + +
= −
=

1

0

1 2

( ) ,

sign ,

, ,... ,

Δ
 (9.1.6)
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where subscript k denotes the sampling points, e.g., the system state xk at time 
instance tk = kΔt. The motion trajectory may not reach the manifold x = 0 because 
control uk is only calculated at the sampling points k, i.e., the switching frequency 
is limited by the sampling rate 1/Δt. During the sampling interval Δt, the control is 
constant and the system behaves like an open-loop system [Kotta 1989]. 

The example with exaggerated large sampling time Δt = 0.1sec as depicted in 
Figure 9.2 illustrates the need to develop a discrete-time sliding mode algorithm 
rather than implementing Equation 9.1.6.

It should be noted that increasing the sampling rate decreases the ampli-
tude of the discretization chatter and increases its frequency but may not 
eliminate this discrete-time phenomenon unless Δt → 0. Moreover, the sam-
pling rate of a control system should correspond to the fastest dynamics of 
the system instead of “wasting” computational power for the control algo-
rithm’s sake.

FIGURE 9.1
Ideal sliding mode in fi rst-order example system achieved via direct, analog implementation 

of a discontinuous control law with infi nitely fast switching.
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9.2. Discrete-Time Sliding Mode Concept

Before developing the concept of discrete-time sliding mode, let us revisit 
the principle of sliding mode in continuous-time systems with ideal discon-
tinuous control from an engineering point of view. A more mathematical 
treatment may be found in the work of Utkin [1993] or Drakunov and Utkin 
1990]. Rewrite Equation 9.1.1 as a general continuous-time system 

 x f x u ti = ( , , ), (9.2.1)

with a discontinuous scalar control law

 u
u s x

u s x
=

≥
− <

⎧
⎨
⎩

0

0

0

0

if

if

( )

( )
 (9.2.2)

and sliding mode in some manifold s(x) = 0 (see also Figure 9.3).

 x(t = 0)

FIGURE 9.2
Direct implementation of sliding mode control in discrete time. Sampling instances are marked 

with small circles. Control uk may only be switched at sampling instances, resulting in discreti-

zation chatter in the motion trajectory after reaching the vicinity of the sliding manifold at 

tsm = ksmΔt.
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Note the following observations characterizing the nature of sliding mode 
systems:

The time interval between the initial point t = 0 and the reaching 
of the sliding manifold σ = {x: s(x) = 0} at tsm is fi nite, in contrast to 
systems with a continuous control law that exhibit asymptotic con-
vergence to any manifold consisting of state trajectories.

Once the system is “in sliding mode” for all t ≥ tsm, its trajectory 
motion is confi ned to the manifold σ = {x: s(x) = 0}, and the order of 
the closed-loop system dynamics is less than the order of the origi-
nal uncontrolled system.

After sliding mode has started at tsm, the system trajectory cannot 
be backtracked beyond the manifold σ = {x: s(x) = 0} like in systems 
without discontinuities. In other words, at any point t0 ≥ tsm, it is not 
possible to determine the time instance tsm or to reverse calculate the 
trajectory for t < tsm  based on information of the system state at t0.

However, during both time intervals before and after reaching the sliding 
manifold, the state trajectories are continuous time functions and the rela-
tion between two values of the state at the ends of a fi nite time interval t = [t0, 
t0 + Δt] may be found by solving Equation 9.2.1 as

 x(t0 + Δt) = F(x(t0)), (9.2.3)

where F(x(t)) is a continuous function as well. When derived for each sam-
pling point tj = kΔt, k = 1, 2, …, Equation 9.2.3 is nothing but the discrete-time 
representation of the continuous time prototype (Equation 9.2.1), i.e.,

 xk+1 = F(xk), xk = x(kΔt). (9.2.4)

Starting from time instance tsm, the state trajectory belongs to the sliding 

manifold with s(x(t)), or for some k
t

tsm
sm≥
Δ

,

 s(xk) = 0, ∀k ≥ ksm. (9.2.5)

•

•

•

FIGURE 9.3
Motion trajectory of continuous-time system with scalar sliding mode control. Starting from 

initial point x(t = 0), the trajectory reaches the sliding manifold s(x) = 0 within fi nite time tsm and 

remains on the manifold thereafter.

x(t = 0)
0)( =xs

)( smtx
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It seems reasonable to call this motion “sliding mode in discrete time,” or 
“discrete-time sliding mode.” Note that the right-hand side of the motion 
equation of the system with discrete-time sliding mode is a continuous state 
function.

So far, we have generated a discrete-time description of a continuous-time 
sliding mode system. Next, we need to derive a discrete-time control law that 
may generate sliding mode in a discrete-time system. Let us return to the 
example in Equation 9.2.1 and suppose that, for any constant control input u 
and any initial condition x(0), the solution to Equation 9.2.1 may be found in 
closed form, i.e., 

 x(t) = F(x(0), u). (9.2.6)

Now also assume that control u may be chosen arbitrarily. With the help of 
Equation 9.2.6, follow the procedure below:

 1. At t = 0, select constant u(x(t = 0), Δt) for a given time interval Δt such 
that s(x(t = Δt)) = 0. 

 2. Next, at t = Δt, fi nd constant u(x(t = Δt), Δt) such that s(x(t = 2Δt)) = 0.

 3. In general, for each k = 0, 1, 2,…, at t = kΔt choose constant u(xk, Δt) 
such that s(xk+1) = 0.

In other words, at each sampling point k, select uk such that this control input, 
to be constant during the next sampling interval Δt, will achieve s(xk+1) = 0 at 
the next sampling point (k + 1). During the sampling interval, state x(kΔt < t 
< (k + 1) Δt) may not belong to the manifold, i.e., s(x(t)) ≠ 0 is possible for kΔt < 
t < (k + 1) Δt. However, the discrete-time system

 
x F x u

u u x
k k k

k k

+ = ( )
=

1 ,

( )
 (9.2.7)

hits the sliding manifold at each sampling point, i.e., s(xk+1) = 0 ∀ k = 0, 1, 
2, … is fulfi lled.

Because F(x(0), u) tends to x(0) as Δt → 0, the function u(x(0), Δt) may 
exceed the available control resources u0. As a result, the bounded con-
trol shown in the bottom diagram of Figure 9.4 steers state xk to zero only 
after a finite number of steps ksm. Thus, the manifold is reached after a 
finite time interval tsm = ksmΔt, and, thereafter, the state xk remains on the 
manifold. In analogy to continuous-time systems, this motion may be 
referred to as discrete-time sliding mode. Note that sliding mode is gen-
erated in the discrete-time system with control −u0 ≤ u ≤ u0 as a continu-
ous function of the state xk and is piecewise constant during the sampling 
interval.
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The above fi rst-order example clarifi es the defi nition of the term discrete-
time sliding mode introduced by Drakunov and Utkin [1990] for an arbitrary 
fi nite-dimensional discrete-time system.

Definition 9.1: Discrete-Time Sliding Mode

In the discrete-time dynamic system

 xk+1 = F(xk, uk), x ∈ ℜn, u ∈ ℜm, m ≤ n, (9.2.8)

discrete-time sliding mode takes place on a subset Σ of the manifold σ = 
{x: s(x) = 0}, s ∈ ℜm, if there exists an open neighborhood ℵ of this subset such 
that, for each x ∈ ℵ, it follows that s(F(xk+1)) ∈ Σ.

In contrast to continuous-time systems, sliding mode may arise in discrete -
time systems with a continuous function in the right-hand side of the 

FIGURE 9.4
Proper implementation of sliding mode control in discrete time. Sampling instances are 

marked with small circles. Control uk is selected as −u0 ≤ uk ≤ u0 at each sampling instance to 

achieve s(xk+1) = 0 as quickly as possible in accordance with the available control resources, 

resulting in chatter-free motion after reaching the sliding manifold at tsm = ksmΔt.
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closed-loop system equation. Nevertheless, the aforementioned characteris-
tics of continuous-time sliding mode have been transferred to discrete-time 
sliding mode. The mathematical implications in terms of group theory may 
be found in the work by Drakunov and Utkin [Drakunov and Utkin 1990; 
Utkin 1993]. Practical issues will be discussed in the subsequent section 
using linear systems as an example.

9.3. Linear Discrete-Time Systems with Known Parameters

This section deals with discrete-time sliding mode control for linear time-
invariant continuous-time plants. Let us assume that a sliding mode mani-
fold is linear for an nth-order discrete-time system xk+1 = F(xk), i.e., sk = Cxk, 
C ∈ ℜm×n with m control inputs. According to Defi nition 9.1, the sliding mode 
existence condition is of the form

 sk+1 = C(F(xk)) (9.3.1)

for any xk ∈ ℵ. To design a discrete-time sliding mode control law based on 
the condition in Equation 9.3.1, consider the discrete-time representation of 
the linear time-invariant system 

 x t Ax t Bu t Dr ti
( ) ( ) ( ) ( ),= + +  (9.3.2)

with state vector x(t) ∈ ℜn, control u(t) ∈ ℜm, reference input r(t), and constant 
system matrices A, B, and D. Transformation to discrete time with sampling 
interval Δt yields 

 xk+1 = A*xk + B*uk + D*rk, (9.3.3)

where 

 A e B e B D e DA t A t t
t

A t t* * ( ) * ( ), d , d= = =− −∫Δ Δ
Δ

Δ
Δ

τ τ
0 0

tt

∫   (9.3.4)

and the reference input r(t) is assumed to be constant during the sampling 
interval Δt. In accordance with Equation 9.3.1, discrete-time sliding mode 
exists if the matrix CB* has an inverse and the control uk is designed as the 
solution of 

 sk+1 = CA*xk + CD*rk + CB*uk = 0. (9.3.5)

In other words, control uk should be chosen as

 uk = −(CB*)−1(CA*xk + CD*rk). (9.3.6)
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By analogy with continuous-time systems, the control law in Equation 9.3.6 
yielding motion in the manifold s = 0 will be referred to as equivalent con-
trol. To reveal the structure of ukeq

, let us represent it as the sum of two linear 
functions: 

 u CB s CB CA C x CD rk k k keq
= −( ) − ( ) −( ) +( )− −* * * *1 1

 (9.3.7)

and 

 sk+1 = sk + (CA* − C)xk + CD*rk + CB*uk. (9.3.8)

As in the fi rst-order example considered in the previous section, ukeq
 may 

exceed the available control resources with Δt → 0 for initial sk ≠ 0 because, 
attributable to (CB*)−1→ ∞, (CB*)−1(CA* − C) and (CB*)−1CD* take fi nite values. 
Hence, the real-life bounds for control uk should be taken into account. 

Suppose that the control can vary within u uk ≤ 0 and the available control 
resources are such that

 CB CA C x CD r uk k
* * * .( ) ⋅ −( ) + <

−1

0  (9.3.9)

Note that, otherwise, the control resources are insuffi cient to stabilize the 
system. 

The control 

 u

u u u

u
u

u
u u

k

k k

k

k

k

eq eq

eq

eq

eq

=

≤

>

⎧

⎨

⎪
⎪
⎪

⎩

for

for

0

0 0

⎪⎪
⎪
⎪

 (9.3.10)

complies with the bounds on the control resources. As shown above, u uk keq
=

for u ukeq
≤ 0 yields motion in the sliding manifold s = 0. To proof convergence 

to this domain, consider the case u ukeq
> 0 but in compliance with the condi-

tion in Equation 9.3.9. From Equations 9.3.7 through 9.3.10, it follows that

 s s CA C x CD r
u

u
wik k k k

keq

+ = + −( ) +( ) −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟1

01* * tth u ukeq0 < . (9.3.11)
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Thus,

 

s s CA C x CD r
u

u

s

k k k k

keq

+ = + −( ) +( ) −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

≤

1
01* *

kk k k

k

CA C x CD r
u

CB

s

+ −( ) + −
( )

<

−
* *

*

0

1
 (9.3.12)

as a result of Equation 9.3.9.

Hence, sk  decreases monotonously and, after a fi nite number of steps, 

u ukeq
< 0 is achieved. Discrete-time sliding mode will take place from the 

next sampling point onward.
Control (Equation 9.3.10) provides chatter-free motion in the manifold 

s = 0 as shown in Figure 9.4, in contrast to the direct implementation of 
discontinuous control in Figure 9.2, resulting in discretization chatter in the 
vicinity of the sliding manifold. Similar to the case of continuous-time sys-
tems, the equation s = Cx = 0 enables the reduction of system order, and the 
desired system dynamics in sliding mode can be designed by appropriate 
choice of matrix C. 

9.4. Linear Discrete-Time Systems with Unknown Parameters

Complete information of the plant parameters is required for implementation 
of control in Equation 9.3.10, which may not be available in practice. To extend 
the discrete-time sliding mode concept to systems with unknown param-
eters, suppose that the system in Equation 9.3.5 operates under uncertainty 
conditions: the matrices A and D and the reference input rk are assumed to be 
unknown and may vary in some ranges such that the condition in Equation 
9.3.9 holds. Similar to Equation 9.3.10, the control law

 u

CB s CB s u

u
CB s

CB

k k

k

=

−( ) ( ) ≤

−
( )
(

− −

−

* *

*

*

1 1

0

0

1

for

))
( ) >

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

−

−

1

1

0

s
CB s u

k

kfor *

 (9.4.1)
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respects the bounds on the control resources. Furthermore, control (Equation 
9.4.1) does not depend on the plant parameters A and D and the reference 
input rk. Substitution of Equation 9.4.1 into the system equations of the previ-
ous section leads to

 s s
u

CB s
CA C x CD rk k

k

k+ −= −
( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ −( ) +1
0

1
1

*

* *
kk ku CB sfor 0

1
< ( )−* , (9.4.2)

and, similar to Equation 9.3.12,

 

s s
u

CB s
CA C x CDk k

k

k+ −≤ −
( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ −( ) +1
0

1
1

*

* *  rr

s
u s

CB s
CA C x CD r

s
u

k

k
k

k

k k

k

≤ −
( )

+ −( ) +

≤ −

−
0

1

0

*

* * 

CCB
CA C x CD r

s

k k

k

*

* *

.

( )
+ −( ) +

<

−1

 (9.4.3)

Hence, as for the case with complete knowledge of system parameters dis-

cussed in Section 9.3, the value of sk  decreases monotonously, and, after a 

fi nite number of steps, control u uk < 0 will be within the available resources. 

Substituting Equation 9.4.1 into Equation 9.3.8 results in

 sk+1 = (CA* − C)xk + CD*rk. (9.4.4)

Because the matrices (CA* − C) and CD* are of Δt order, the system motion 
will be in a Δt-order vicinity of the sliding manifold s = 0. Figure 9.5 shows 
a simulation of the fi rst-order Example 9.1 for unknown matrices A and D. 
Convergence to the vicinity of the sliding manifold is achieved in fi nite 
time; thereafter, the motion trajectory does not follow the sliding manifold 
exactly but rather remains within a Δt-order vicinity. This result is expected 
from systems operating under uncertainty conditions, because we are deal-
ing with an open-loop system during each sampling interval. In contrast to 
discrete-time systems with direct implementation of discontinuous control 
as shown in Figure 9.2, this motion is free of discretization chatter.
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9.5. Introduction to Systems with Delays 

and Distributed Systems

This section discusses design methods for systems described by difference 
and differential-difference equations. These types of equations may serve 
as mathematical models for dynamic systems with delays or for distributed 
systems with fi nite dimensional inputs and outputs. The following section 
presents the basic sliding mode control design methodology. A fl exible shaft 
as an example for a distributed system is discussed in Section 9.7.

Consider a system modeled by differential-difference equations in regular 
form as

 x t A x t A z ti
( ) ( ) ( ),= +11 12  (9.5.1)

 z(t) = A21x(t − τ) + A22z(t − τ) + B0u(t − τ), (9.5.2)

FIGURE 9.5
Discrete-time sliding mode control for system with uncertain parameters. Sampling instances 

are marked with small circles. Control uk is selected as −u0 ≤ uk ≤ u0 at each sampling instance 

such that s(xk+1) approaches the vicinity of the sliding manifold in fi nite time and remains in 

the vicinity afterward with chatter-free motion.

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4
x0

Discrete−time sliding mode control in system with unknown parameters

Time (sec)

St
at

e x
k

0 0.5 1 1.5 2 2.5 3 3.5 4

−2

−1

0

1

2

Time (sec)

Co
nt

ro
l u

k

TAF-65602-08-1101-C009.indd   216TAF-65602-08-1101-C009.indd   216 3/31/09   7:52:36 PM3/31/09   7:52:36 PM



© 2009 by Taylor & Francis Group, LLC

Discrete-Time and Delay Systems 217

where x ∈ ℜn, z ∈ ℜk, and u ∈ ℜm. The pair (A11, A12) is assumed to be con-
trollable, and the difference system Equation 9.5.2 is assumed invertible 
with output Ã12z(t), where Ã12 consists of the basic rows of A12 in Equation 
9.5.1.

Recall the sliding mode concept for discrete-time systems presented in 
Section 9.2 and in Defi nition 9.1. For differential-difference system as in 
Equations 9.5.1 and 9.5.2, sliding mode can be defi ned in a similar manner: 
sliding mode exists in some manifold σ if the state trajectories starting 
outside this manifold reach σ within fi nite time and all state trajectories 
that belong to the manifold σ at some time instance tsm remain in σ for all 
t ≥ tsm.

System (Equations 9.5.1 and 9.5.2) is written in block-control form as 
described by Drakunov et al. [1990a,b] for ordinary differential equa-
tions (see also Section 3.2). The two-step design procedure fi rst derives a 
desired control zd(x(t)) for Equation 9.5.1 to yield the desired motion along 
a manifold σ = {x: S(x) = 0} in this fi rst block, assuming z = zd. The second 
design step uses real control input u(x, t) in Equation 9.5.2 to ensure that 
this assumption holds by enforcing sliding mode in the second block along 
manifold σ0 = {x: z − zd = 0}. In the overall system (Equations 9.5.1 and 9.5.2), 
sliding mode exists in the intersection of both manifolds as described by 
σ ∩ σ0.

9.6. Linear Systems with Delays

This section deals with linear systems with known parameters in anal-
ogy to Section 9.3. The extension to systems with unknown parameters 
follows similar procedures as for discrete-time systems in Section 9.4 and 
is omitted here.

As an example, consider a time-invariant linear system with a delay in the 
input variable

 x t Ax t Bu ti
( ) ( ) ( ),= + − τ  (9.6.1)

where x ∈ ℜn, u ∈ ℜm, t > 0, and the initial conditions are denoted by x(0) = x0 
and u(ξ) = u0(ξ) for − τ < ξ < 0. The system in Equation 9.6.1 can be represented 
in differential-difference block-form (Equation 9.5.1 and 9.5.2) by setting 
A11 = A, A12 = B, A21 = 0m×n, A22 = 0m×m and B0 = Im×m:

 x t A x t A z ti
( ) ( ) ( ),= +11 12  (9.6.2)

 z(t) = u(t − τ). (9.6.3)
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First, design a smooth function S(x) = (s1(x), …, si(x), …, sm(x)) ∈ ℜm and a dis-

continuous control z z x z x z xd d d d
m

i m
= ( ) ∈ℜ

1
( ), ..., ( ), ..., ( )  with components

 z x t
z x t s x t

z x td
d i

d
i

i

i

( )
( ) ( )

( )
( ) =

( ) ( ) >
( )

+

−

for 0

ffor s x t
i m

i ( )
, , ...,( ) <

⎧
⎨
⎪

⎩⎪
=

0
1 2  (9.6.4)

such that, after a fi nite time interval, every trajectory belongs to the intersec-

tion σ σ=
=
Ι

i

m

i
1

 of the surfaces σi = {x: si(x) = 0} and sliding mode exists thereafter. 

Second, to implement control Equation 9.6.4 in Equation 9.6.2, assign 

 u(t) = zd(x(t + τ)) (9.6.5)

for Equation 9.6.3 to enforce sliding mode on the manifold σ0 = {x: z − zd = 0}. 
The values of x(t + τ) have to be extrapolated from the solution of Equation 
9.6.2 as

 x t e x t e Bu tAt At( ) ( ) ( ) .+ = + −∫τ ξ ξ
τ

0

d  (9.6.6)

Note that control u(t) needs to be stored in the microcontroller for the time 
interval [t, t − ξ]. 

Similar to discrete-time systems as discussed in Sections 9.2 through 9.4, 
control u(t) is designed with preview such that z(t + τ) = zd(t + τ) at some future 
point, τ ahead of the current time instance t. In contrast to discrete-time sys-
tems, time t is continuous rather than sampled at discrete-time instances kΔt.

The system motion (Equations 9.6.2 through 9.6.2) in sliding mode along 
manifold σ0 is described by

 x t Ax t Bz x td
i
( ) ( ) ( ) .= + ( )  (9.6.7)

Once sliding mode also occurs on the intersection σ σ=
=
Ι

i

m

i
1

 by design of Equa- 

tion 9.6.4, sliding mode exists along the intersection of all (m + 1) sliding manifolds 

Σ Ι= ∩ = =
=

σ σ σ σ0
1i

m

i  with the desired dynamics of the system in Equation 9.6.1.

9.7. Distributed Systems

This section discusses a fl exible shaft as an example for a distributed sys-
tem. Because distributed systems can be described by similar differential-
difference equations as systems with delays, the design methodology of 
Section 9.6 will be used.
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Consider a fl exible shaft with lengths l and inertial load J acting as a tor-
sion bar as depicted in Figure 9.6. Let e(t) be the absolute coordinate of the left 
end of the bar with input torque M and let d(x, t) be the relative deviation at 
location 0 ≤ x ≤ l at time t. Hence, the absolute deviation of a point 0 < x < l at 
time t is described by q(x, t) = e(t) + d(x, t) and governed by 

 
∂

∂
=

∂
∂

2

2

2
2

2

q x t
t

a
q x t

x
( , ) ( , )

, (9.7.1)

where a is the fl exibility constant depending on the geometry and the mate-
rial of the bar. The boundary conditions corresponding to the input torque 
M and the load inertia J are 

 M a
q t

x
J

q l t
t

a
q l t
x

= −
∂

∂
∂

∂
= −

∂
∂

2
2

2

2
2

2

0( , )
,

( , ) ( , )
. (9.7.2)

Consider the input torque F as the control input u(t) and the load position 
q(l, t) as the system output. To fi nd the transfer function W(p) via Laplace 
transform, assume zero initial conditions

 q x
q x

t
( , ) ,

( , )
0 0

0
0=

∂
∂

=  (9.7.3)

to yield

 

a Q p U p

p Q x p a Q x p

a Q l p

2

2 2

2

0( , ) ( ),

( , ) ( , ),

( ,

= −

= ′′

′ )) ( , ),= − Jp Q l p2

 (9.7.4)

where Q(x, p) denotes the Laplace transform of q(x, t) with spatial derivatives 

′ =
∂

∂
Q x p

Q x p
x

( , )
( , )

 and ′′ =
∂

∂
Q x p

Q x p
x

( , )
( , )2

2
, and U(p) represents the Laplace 

FIGURE 9.6
Flexible shaft with input torque M and load J acting as a torsion bar.
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transform of input variable u(t). The solution to the boundary value problem 
in Equation 9.7.4 is given by

 Q x p

J
a

p e
J
a

p e

ap
J

l x
a

p
l x

a
p

( , )
( ) ( )

(

= −
− + +

− −

− − −

1 1

1
aa

p e
J
a

p e
U p

l
a

p
l
a

p
) ( )

( )
−

+ +
⎛
⎝⎜

⎞
⎠⎟

1

 (9.7.5)

from which W(p) may be found by setting x = l to yield

 W p
e

ap
J
a

p
J
a

p e

p

p
( ) ,=

+⎛
⎝⎜

⎞
⎠⎟ + −⎛

⎝⎜
⎞
⎠⎟

−

−

2

1 1 2

τ

τ
 (9.7.6)

where τ = l
a describes the “delay” between the left end and the right end of 

the bar. The corresponding differential-difference equation may be written 
in the form

 Jq t Jq t aq t aq t u tii i i
( ) ( ) ( ) ( ) ( ).+ − + − − = −τ τ τ2 2  (9.7.7)

Denoting x1(t) = q(t), x t q t2 ( ) ( )= i
, and z t Jq t aq t( ) ( ) ( )= +ii i

, we obtain the motion 
equations as 

 
x t x t

x t ax t z t J

i

i

1 2

2 2

( ) ( )

( ) ( ) ( ) /

=

= − +( )  (9.7.8)

 z(t) = 2ax2(t − 2τ) − z(t − 2τ) + 2u(t − τ), (9.7.9)

which correspond to the block structure in Equations 9.5.1 and 9.5.2. In the 
fi rst design step, assign a desired control zd(t) for the fi rst block as shown

 zd(t) = −M sign(kx1(t) + x2(t)), k > 0. (9.7.10)

To achieve z(t) = zd(t) in the second design step, choose control input u(t) as

 u t u t ax t z t M kx teq( ) ( ) ( ) ( ) sign (= = − − + − − +1

2
2 2 1τ τ ττ τ) ( ) .+ +( )( )x t2  (9.7.11)

The manifold s(t) = zd(t) − z(t) = 0 is reached within fi nite time t < τ and 
sliding mode exists thereafter. If control u(t) is bounded by | u(t)| ≤ u0, 
choose
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 u t

u t u t u

u u t u t
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( ) ( )

sign ( ) (
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≤for

for

0

0 ))

,

>

⎧

⎨
⎪

⎩
⎪ u0

 (9.7.12)

and there exists an open domain containing the origin of the state space of 
the system in Equations 9.7.8 and 9.7.9 such that, for all initial conditions in 
this domain, sliding mode occurs along the manifold s(t) = 0. The values of 
x1(t + τ) and x2(t + τ) have to be calculated as the solution of Equation 9.7.8 
with known input z(t) from Equation 9.7.9 as shown in Equation 9.6.6. If 
only output y(t) = x1(t) is measurable but not its time derivative y t x ti

( ) ( )= 2 , 
an asymptotic observer should be used to estimate the state x2(t). For details 
of sliding mode control for systems with delays and for distributed sys-
tems, see the work of Drakunov and Utkin [Drakunov and Utkin 1990; 
Utkin 1993].

9.8. Summary 

Wide use of digital controllers has created a need to generalize the sliding 
mode concept to discrete-time control systems, which raises the fundamen-
tal question: What is sliding mode in a discrete-time system? Discontinuous 
control in a continuous-time system may result in sliding mode in some 
manifold of the state space, whereas it results in chatter in a discrete-time 
implementation. Hence, we fi rst defi ned the essence of sliding mode, con-
stituting a general concept. In short, sliding mode exists in a manifold if 
the system trajectories reach this manifold in fi nite time and remain in the 
manifold thereafter. Mathematically speaking, the trajectory of a system 
in sliding mode is not invertible, i.e., after sliding mode has occurred, it 
is impossible to fi nd the point in time and the state space location sliding 
mode started, nor is it possible to backtrack the system trajectory beyond 
this point.

Following this defi nition, sliding mode may be generated in discrete-
time systems using a continuous control input. Design methods have been 
developed in this chapter and were extended to systems with delays and 
distributed systems. They enable decoupling of the overall dynamics into 
independent partial motion of lower dimension and low sensitivity to 
system uncertainties. For all systems, the motion trajectories are free of 
chatter, which has been the main obstacle for certain applications of dis-
continuous control action in systems governed by discrete and difference 
equations.
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10
Electric Drives

In recent years, much research effort has been devoted to the application of 
sliding mode control techniques to power electronic equipments and electri-
cal drives. Interest in this control approach has emerged because of its poten-
tial for circumventing parameter variation effects under dynamic conditions 
with a minimum of implementation complexity. In electric drive systems, the 
existence of parameter changes caused by, for instance, winding tempera-
ture variation, converter switching effect, and saturation, is well recognized 
although infrequently accounted for. In servo applications, signifi cant param-
eter variations arise from often unknown loads; for example, in machine tool 
drives and robotics, the moment of inertia represents a variable parameter 
depending on the load of the tool or the payload. Among the distinctive 
features claimed for sliding mode control are order reduction, disturbance 
rejection, strong robustness, and simple implementation by means of power 
converters. Hence, sliding mode is attributed to high potentials as a prospec-
tive control methodology for electric drive systems. The experience gained 
so far testifi es to its effi ciency and versatility. In fact, control of electric drives 
is one of the most challenging applications because of increasing interest in 
using electric servo-mechanisms in control systems, the advances of high-
speed switching circuitry, as well as insuffi cient linear control methodology 
for inherent nonlinear high-order multivariable plants such as AC motors.

Implementation of sliding mode control by means of the most com-
mon electric components has turned out to be simple enough. The com-
mercially available power converters enable handling powers of several 
dozen kilowatts at frequencies of several hundred kilohertz. When using 
converters of this type, confi ning their function to pulse-width modula-
tions seems unjustifi ed, and it is reasonable to turn to algorithms with 
direct discontinuous control actions. Introduction of discontinuities is 
dictated by the very nature of power converters.

This chapter consists of three main parts: sliding mode control of DC 
motors, permanent-magnet synchronous motors, and induction motors. 
These three types of electric motors are the most commonly used drive 
systems in industrial applications. All these drive systems have much in 
common: current control, speed control, observer design, and issues of 
sensorless control. As will be shown in each particular section, sliding 
mode control techniques are used fl exibly to achieve the desired control 
performance, not only in controller design but also in observer design 
and estimation processes.

The basic framework of this chapter has been given previously [Utkin 
1993; Sabanovic, Sabanovic, and Ohnishi 1993]. However, both the con-
tent and theoretical aspect have been extended considerably with respect 
to the above framework.
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10.1. DC Motors

10.1.1. Introduction

To show the effectiveness of sliding mode techniques in the control of elec-
tric drives, we start with the most simple drive systems, i.e. DC-motor-based 
drive systems. This section is an extension of the sliding mode approaches 
applied to DC motors given by Utkin [1993]. Moreover, some implementation 
aspects will be enhanced, aiming at applications of theoretical derivations 
given in the proceeding chapters to real-life systems.

10.1.2. Model of the DC Motor 

From the point of controllability, a DC motor with a constant excitation is the 
simplest electric drive. Figure 10.1 shows the structure of the electric circuit 
of a permanently excited DC motor. 

The motor dynamics are governed by two coupled fi rst-order equations 
with respect to armature current and shaft speed

 L
di
dt

u Ri= − − λ ω0 ,

 J
d
dt

k it l

ω τ= − , (10.1.1)

where i is armature current, u is terminal voltage, ω is shaft speed, J is inertia 
of the motor rotor and load, R is armature resistance, L is armature induc-
tance, λ0 is back electromotive force (EMF) constant, kt is torque constant, and 
τl is load torque.

Throughout this section, the motor parameters used to verify the design 
principles are as follows: L = 1.0 mH, R = 0.5 Ω, J = 0.001 kg⋅m2, kt = 0.008 

FIGURE 10.1
Electric model of a DC motor with permanent excitation.
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Nm/A, λ0 = 0.001 V⋅s/rad, and τl = Bω, with B being the coeffi cient of viscous 
friction equal to 0.01 Nm⋅s/rad. The supplied link voltage is u0 = 20 V.

For speed control of a DC motor, a cascaded control structure usually is 
preferred, with an inner current control loop and an outer speed control 
loop. Control input u may be continuous or discontinuous, depending on the 
output power of the DC motor. For a low-power system, a continuous control 
may be selected. For a high-power system, a discontinuous control (e.g., in 
the form of PWM) has to be used because a continuous controlled voltage, 
whilst providing large current, is diffi cult to generate. 

We concentrate on discontinuous control in the sequel of this chapter, 
because control discontinuities are the very nature of sliding mode control. 
Furthermore, discontinuous control of DC motors is universal in the sense 
that it can be used both for low-power systems and high-power systems. 
Figure 10.2 shows the typical control structure of a DC-motor-based drive 
system.

10.1.3. Current Control

At fi rst, assume there exists an outer control loop providing a desired cur-
rent i*. Let us consider the current control problem by a defi ning switching 
function

 s = i * − i (10.1.2)

as the error between the real, measured current i and the reference current i* 
determined by the outer-loop controller. Design the discontinuous control as

 u = u0 sign(s), (10.1.3)

where u0 denotes the supplied link voltage. As discussed in the previous 
chapters, to enforce the sliding mode, control gain u0 should be selected such 
that ss� < 0. Now check this condition by evaluating ss� and select u0 as

FIGURE 10.2
Cascaded control structure of DC motors. SM, sliding mode; DCM, DC motor.
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λ ω0

0

0

1

ii + λ ω0 ,

 (10.1.4)

then sliding mode can be enforced.
Examine inequality Equation 10.1.4. If the reference current is constant, 

the link voltage u0 needed to enforce sliding mode should be higher than the 
voltage drop at the armature resistance plus the induced back EMF; other-
wise the reference current i* cannot be followed. Furthermore, reference cur-
rent i* may not vary arbitrarily; its time derivative di*/dt should be bounded 
to ensure existence of sliding mode for a given link voltage u0.

Figure 10.3 depicts a simulation result of the proposed current controller.

10.1.4. Speed Control

For the speed controller in an outer loop, the current control loop may be 
treated as an ideal current source, i.e., given a reference current i*, it will be 
tracked immediately. This assumption may become true only for systems in 

FIGURE 10.3
Current control of DC motor. Dashed line, reference current; solid line, real current.
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which the electrical time constant is much smaller than the mechanical time 
constant or for systems in which the dynamic response of the speed control 
is not a critical problem. Any control design technique, linear or nonlinear, 
may be used for speed control: proportional-integral-derivative control or a 
more sophisticated methodology but without discontinuities such as a slid-
ing mode controller. The reason is as follows: a sliding mode controller has 
already been used in the inner current control loop; thus, if we would use 
another sliding mode controller for speed control, the output of the speed 
controller i* would be discontinuous, implying an infi nite di*/dt that destroys 
the inequality Equation 10.1.4 for any implementable u0.

In many industrial systems, proportional-integral controllers are used 
with or without a feedforward compensation depending on the nature of the 
controlled system and the performance requirements. This type of controller 
is simple but may be sensitive to disturbances in the mechanical subsystem. 

Suppose an exponential stability of the speed tracking error is desired and 
design

 c( ) ( ) ,* *ω ω ω ω− + − =� � 0  (10.1.5)

where c is a positive constant determining the convergence rate. As follows 
from the motor mechanical Equation 10.1.1, the reference current i* feeding to 
the inner current controller should be selected as 

 i
J
k

c
J
k kt t t

l
* * *( ) .= − + −ω ω ω τ� 1

 (10.1.6)

However, implementation of speed controller Equation 10.1.6 requires knowl-
edge of the motor parameters J, kt and the load torque τl, which are normally 
unknown.

10.1.5. Integrated Structure for Speed Control

To overcome the problems of the cascade control structure, we propose 
another control approach based on the sliding mode control principle to 
track a given speed trajectory. In this new control structure, the inner cur-
rent controller is removed. Current control is achieved in an implicit manner. 
The advantages of this control structure lie in the fast dynamic response 
and high robustness with respect to disturbances in both the electrical and 
mechanical subsystems. 

Let ω*(t) be the reference shaft speed and e = ω* − ω be the speed tracking 
error. Defi ne state variables x1 = e and x e2 = �. The motion equation of the DC 
motor with respect to the states x1, x2 is given by 

 
�
�
x x

x a x a x f t bu
1 2

2 1 1 2 2

=
= − − + −

,

( ) ,
 (10.1.7)
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where a1 = ktλ0/(JL), a2 = R/L, and b = kt/(JL) are constant values. The linear 
part of Equation 10.1.7 is perturbed by f t a a R JL Jl l( ) * * *= + + + +�� � �ω ω ω τ τ2 1 , 
depending on the desired speed and load torque disturbances. Because 
Equation 10.1.7 is a second-order system, the switching function is designed as 

 s cx x= +1 1
� , (10.1.8)

with c being a positive constant. The associated controller is defi ned as 

 u = u0 sign(s), (10.1.9)

where u0 is the link voltage. According to the above equations, the speed 
tracking error x1 decays exponentially after sliding mode occurs in the mani-
fold s = 0, i.e.,

 s cx x= + =1 1 0� , (10.1.10)

where constant c determines the rate of the convergence. The system motion 
in sliding mode is independent from parameters a1, a2, b and disturbances in 
f(t). Similar to the case of current control, the link voltage u0 should satisfy 
the condition

 u
b

cx a x a x f t0 2 1 1 2 2

1> − − + ( )  (10.1.11)

for sliding mode to exist. Then, after a fi nite time interval, the system state 
will reach the sliding manifold (Equation 10.1.10). Thereafter, the system 
response depends only on the design parameter c.

Figures 10.4 through 10.6 show the simulation results of the proposed 
speed controller. The control gain c is selected as c = 100. Figure 10.4 depicts 
the response of the speed control. As illustrated in the fi gure, the speed tran-
sition time is about 0.05 sec. Figure 10.5 is the wave form of the motor current. 
Bear in mind that the motor current is not controlled explicitly; the ordinary 
behavior of the current is the result of the acceleration control. Figure 10.6 
gives the response of the sliding variable s.

10.1.6. Observer Design

For the implementation of the control algorithm given in Equations 10.1.8 and 
10.1.9, angular acceleration of the shaft is needed for calculating the sliding 
variable s in Equation 10.1.8 attributable to x2 = −� �ω ω* . However, in practice, 
the angular acceleration is not measured. Instead, the motor current i and 
the shaft velocity ω are normally available. Numerical differentiation of the 
speed signal may result in a high level of noise in the calculated acceleration 
signal. In this case, the acceleration signal may be calculated as
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 �ω τ= −1 1

J
k i

Jt l , (10.1.12)

where the load torque τl is assumed to be known; parameters J and kt may be 
found by an identifi cation process.

However, if the load torque is unknown or is varying under different 
working conditions, we may estimate it by making some assumptions that 
correspond to real-life conditions. For example, we may assume that the load 
torque changes very slowly, i.e., �τ l = 0. This condition means that the load 
torque is assumed to be constant. Practically, this assumption has great sig-
nifi cance because it provides an equation for the observer design and enables 
one to estimate the load torque that varies “slowly” with the time. The word 
“slowly” is relative to the mechanical and the electrical time constant of the 
DC motor. An observer is proposed here for estimation of the load torque.

To involve the measured current and the velocity signals into the observer 
design, we use the design technique of Luenberger reduced-order asymp-
totic observer (see Section 6.1). An intermediate variable is introduced,

 z = τl + lω, (10.1.13)

FIGURE 10.4
Speed response of the speed control. Dashed line, reference speed; solid line, real speed.
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where l is a constant observer gain. The motion equation for z, under the 
assumption �τ l = 0, is of form

 
dz
dt

l
J

lz l lk it= = − + +�ω ω1 2( ). (10.1.14)

Design an observer for the intermediate variable z as

 
dz
dt J

lz l lk it

ˆ
( ˆ ).= − + +1 2ω  (10.1.15)

The solution to the mismatch equation

 
dz
dt

l
J

z z z z= − = −, ˆwith  (10.1.16)

tends to zero exponentially, and the rate of convergence can be selected by a 
proper choice of the observer gain l. As a result, ẑ will converge to z asymp-
totically, and the load torque can be estimated as

 τ ωl z l= −ˆ . (10.1.17)

FIGURE 10.5
Current response of the speed controller.
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Now we are able to calculate the acceleration signal using Equation 10.1.12. 
Estimation of the shaft acceleration can also be achieved by the following 

Luenberger observer (see Section 6.1) without explicitly involving knowledge 
of load torque: 

 

dz
dt

z l

dz
dt

k
JL

u Ri zt

ˆ
ˆ ˆ ,

ˆ
ˆ

1
2 1

2
0 1

= − −( )

= − −( )

ω ω

λ −− −( )l2
ˆ ,ω ω

 (10.1.18)

where ω̂  is an estimate of the shaft speed, ˆ ˆz1 = ω  and ˆ ˆz2 = �ω, and l1, l2 are 
observer gains. Assumption �τ l = 0 was also used when deriving Equation 
10.1.18. Denoting z z z1 1 1= −ˆ  and z z z2 2 2= −ˆ  as the mismatches between esti-
mated and real quantities, the mismatch dynamics can be obtained as

 

dz
dt

z l z

dz
dt

k
JL

l zt

1
2 1 1

2 0
2 1

= −

= − +⎛
⎝⎜

⎞
⎠⎟

,

.
λ

 (10.1.19)

FIGURE 10.6
Response of the sliding variable s of the speed controller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−100

−80

−60

−40

−20

0

20

40

60

80

100

Time (sec)

Sl
id

in
g 

Va
ria

bl
e s

TAF-65602-08-1101-C010.indd   231TAF-65602-08-1101-C010.indd   231 3/31/09   7:53:27 PM3/31/09   7:53:27 PM



© 2009 by Taylor & Francis Group, LLC

232 Sliding Mode Control in Electro-Mechanical Systems

The characteristic polynomial of the above system is given by

 p l p
k
JL

lt2
1

0
2 0+ + +⎛

⎝⎜
⎞
⎠⎟

=
λ

. (10.1.20)

Obviously, the poles of the observer system can be placed arbitrarily by 
adjusting the observer gains l1, l2. 

Figures 10.7 and 10.8 show the simulation results of the proposed estima-
tion algorithms in Equations 10.1.12 through 10.1.17 for estimating the load 
torque as well as the shaft acceleration. The observer gain is designed to be 
l = 40. The mass of inertia J in the observer model is selected to have 10% 
difference from the real inertia in the motor model to generate a difference 
in the fi gures. Otherwise, the observer outputs and the model outputs would 
be too close to be distinguished.

10.1.7. Speed Control with Reduced-Order Model

As discussed in the previous sections, speed control of a DC motor requires 
control of either the motor current or the motor acceleration. However, in 

FIGURE 10.7
Real and observed load torque. Dashed line, real load torque; solid line, observed load torque.
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some industrial systems, simple relay-controlled DC motors based only 
on speed measurement have been used. In this subsection, we will design 
simplifi ed sliding mode control based only on speed measurement without 
estimation of other state components. Furthermore, the control methods pro-
posed below will solve the chattering problem often encountered in those 
industrial systems.

Normally, the mechanical motion of a DC motor is much slower than the 
electromagnetic dynamics, implying that the relation L J<<  holds. Suppose 
the speed tracking error is ωe = ω* − ω; we may rewrite the DC motor model 
in terms of ωe

 

L
di
dt

u Ri

J
d
dt

k i J

e

e
t l

= − − −

= − + +

λ ω ω

ω τ ω

0( ),

.

*

*�
 (10.1.21)

Calling on the theory of “singularly perturbed systems” [Kokotovic, 
O’ Malley, and Sannuti 1976], we may formally let L be equal to zero because 
L J<< . Solving for i from the resulting algebraic Equation 10.1.21 yields

FIGURE 10.8
Real and observed shaft acceleration. Dashed line, real acceleration; solid line, observed 

acceleration.
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 i
R R

ue= − − +λ ω ω0 1
( ) .*  (10.1.22)

Substituting Equation 10.1.22 into Equation 10.1.21 results in

 J
d
dt

k
R

k
R

u Je t
e

t
l

ω λ ω ω τ ω= − − + +0 ( ) .* *�  (10.1.23)

The above equation is a reduced-order (fi rst-order) model of the DC motor 
system and can be used for the purpose of speed control without involving 
the knowledge of current and acceleration. The controller is designed as

 u = u0 sign(ωe), (10.1.24)

and the existence condition for the sliding mode ωe = 0 will be

 u
R

k
JR
k

l

t t
0 0> + +λ ω τ ω� * . (10.1.25)

However, in real-life systems under sliding mode control, neglected dynam-
ics in the closed loop may result in the so-called chattering phenomenon. 
In the case of the speed controller (Equation 10.1.24), current i is assumed 
to be a linear function of the input voltage u in Equation 10.1.22 because 
of the assumption L ≈ 0. From a macroscopic perspective, this assumption 
holds true. For high-frequency switching of the discontinuous input volt-
age u according to Equation 10.1.24, however, the electrical dynamics prevent 
armature current i from ideal tracking of voltage u, leading to chattering as 
explained in detail in Chapter 8. Moreover, the order reduction technique 
of the singular perturbation theory is formally not applicable to differential 
equations with discontinuous right-hand sides.

In a sliding mode controlled system with unmodeled dynamics, chattering 
can be bypassed by constructing the sliding manifold using observed states 
rather than direct measurements (see also Chapter 7). Bearing in mind the 
assumption �τ l = 0, design an asymptotic observer for estimating ωe and τl as 

 

J
d
dt

k
R

k
R

u J le t
e

t
l e

ˆ
( ˆ ) ˆ ( ˆ* *ω λ ω ω τ ω ω= − − + + − −0

1
� ωω

τ ω ω

e

l
e e

d
dt

l

),

ˆ
( ˆ ),= − −2

 (10.1.26)

where l1 and l2 are positive observer gains. The mismatch dynamics of the 
observer can be obtained as

 J
k
R

l
l
Je

t
e e

�� �ω λ ω ω+ +⎛
⎝⎜

⎞
⎠⎟

+ =0
1

2 0, (10.1.27)
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with ω ω ωe e e= −( ˆ ). Because all the coeffi cients in the above equation are posi-
tive, ωe will tend to zero asymptotically, and the desired convergence rate can 
be provided by selection of the constants l1 and l2. The discontinuous control 
using estimated state ω̂e will be 

 u u e= 0 sign( ˆ ).ω  (10.1.28)

The ideal sliding mode can be enforced if 

 u
R

k
JR
k

l R
ke

l

t t t
e0 0

1> − + + +λ ω ω τ ω ω( ˆ )
ˆ

.* *�  (10.1.29)

Under this control scheme, chattering is eliminated, whereas the robustness 
provided by the sliding mode control is preserved within an accuracy of L/J 
(remember that the reduced-order equation was obtained under the assump-
tion L J/ << 1) . The sliding mode occurs in the observer loop, which does not 
contain unmodeled dynamics. The observer gains l1 and l1 should be cho-
sen to yield mismatch dynamics (Equation 10.1.27) slower than the electrical 
dynamics of the DC motors to prevent chattering. Because the estimated ω̂  is 
close to ω, the real speed ω tracks the desired value ω*. Figure 10.9 shows the 
control structure based on the reduced-order model and observed state.

Figure 10.10 shows a simulation result of the reduced-order speed control 
with measured speed (Equation 10.1.24). The high-frequency chattering is 
attributable to neglect of the fast dynamics, i.e., the dynamics of the electric 
part. Figure 10.11 depicts the response of the speed control with observed 
speed using Equation 10.1.26. The observer gains are selected as l1 = l2 = 20. 
As can be seen from the fi gures, the high-frequency chattering now has dis-
appeared, confi rming the theory described above.

FIGURE 10.9
Speed control based on reduced-order model and observed state.
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10.1.8. Observer Design for Sensorless Control

Strictly speaking, the word “sensorless” is not correct because one must 
sense or measure some variable to obtain some information as the base of 
estimating the unknown variable(s). Normally, sensorless control of an elec-
tric drive implies that no sensor for any mechanical variable is necessary, but 
electrical variables such as motor current and voltage should be available. In 
the following, we treat the problem of estimating the motor speed and/or the 
load torque based on the motor current and voltage. The methodology used 
here is again based on the sliding mode design principle.

10.1.8.1. Estimation of the Shaft Speed

Design a current observer as follows:

 Ldi dt u Ri l iˆ ˆ sign( ),= − − 1  (10.1.30)

FIGURE 10.10
Reduced-order speed control with measured speed. Dashed line, reference speed; solid line, 

real speed.
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where i i i= −ˆ  and l1 > 0 is a constant observer gain. The dynamics of the 
mismatch i  can be obtained by subtracting Equation 10.1.30 from the model 
equation given in Equation 10.1.1:

 Ldi dt Ri l i= − + −λ ω0 1 sign( ). (10.1.31)

Now select the constant l1 to enforce sliding mode ( )s i= = 0  by applying the 
existence condition ss� < 0 to yield

 l Ri1 0> −λ ω , (10.1.32)

under which i  will decay to zero in fi nite time. Using the concept of equiva-
lent control (see Section 2.3), we obtain

 Ldi dt Ri l i eq= − + − =λ ω0 1 0( sign( )) , (10.1.33)

and

FIGURE 10.11
Reduced-order speed control with observed speed. Dashed line, reference speed; solid line, 

real speed.
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 ( sign( )) .l i Rieq1 0= − + λ ω  (10.1.34)

After the reaching phase of sliding mode, i  is equal to zero, and, for known 
back-EMF constant λ0 (which can be determined during the parameter iden-
tifi cation), the motor speed can be obtained as

 ω λ= ( sign( )) .l i eq1 0  (10.1.35)

Now the problem is how to determine the value of ( sign( ))l i eq1 . To determine 
an equivalent control, a low-pass fi lter may be used (see Section 2.4). Only 
fi rst-order fi lters were analyzed in Section 2.4. In fact, the same methodology 
is applicable for higher-order low-pass fi lters, for example, an l-order low-
pass fi lter such as

 
μ �x Ax B l i

y C xT

= +

=

( sign( )),

,

1
 (10.1.36)

where A ∈ ℜl×l, B ∈ ℜl, and C ∈ ℜl are the fi lter parameters that satisfy 
CTA−1B = −1, x ∈ ℜl represents the state vector of the fi lter, and y is the fi l-
ter output; small positive parameter μ < < 1 represents the fi lter time con-
stant. Calling on  the theory of singularly perturbed systems, if μ → 0, then 
y l i eq→ ( sign( ))1 .

So far, we have discussed the problem of estimating the speed signal. Once 
the speed signal is available, a speed controller may be constructed. Bearing 
in mind that the speed signal is obtained by passing the discontinuous con-
trol through a low-pass fi lter, high-frequency components of the discontin-
uous control may not be fi ltered out completely because of the limitation 
on the fi lter time constant (i.e., μ should be small enough). A sliding mode 
controller will no longer be suitable for speed control because of the high-
frequency disturbances. It would be helpful if the speed control includes an 
integral term, e.g., a PI-type controller is appropriate. In this case, the con-
trolled real speed will follow the mean value of the estimated speed.

10.1.8.2. Estimation of Load Torque

As the speed signal is available, estimated or measured, the load torque can 
also be obtained by applying the sliding mode technique to an observer. 
First, design a speed observer as follows:

 J
d
dt

k i l witht

ˆ
sign( ), ˆ .

ω ω ω ω ω= − = −2  (10.1.37)

Suppose that the parameters J and kt are known; then the mismatch ω  is 
governed by

 J
d
dt

ll

ω τ ω= − 2 sign( ), (10.1.38)
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where l2 is a constant observer gain. Applying the existence condition for 
sliding mode to occur in ω = 0 yields

 ωω τ ω ω� = − <l

J
l
J
2 0, (10.1.39)

implying that l2  > |τl| should hold. Because l2 appears only in the observer 
algorithm, it can be selected high enough. Once sliding mode occurs, the 
load torque is equal to the equivalent control of the discontinuous term
l2 sign( )ω , i.e.,

 τ ωl eql= ( sign( )) .2  (10.1.40)

To extract the equivalent control given above, we need a low-pass fi lter 
again.

It should be noted that, during the derivations of the load torque observer, 
no assumption such as �τ l = 0 was made. Actually, this observer design scheme 
works as long as the spectrum of the load torque does not intersect with the 
spectrum of the high-frequency components of the switching action.

Figures 10.12 through 10.14 show the simulation results of the proposed 
observer algorithms for sensorless control. The observer gains are chosen 
as l1 = l2 = 20000. The low-pass fi lters for extracting the motor speed and 
the load torque are both of Butterworth type with second order. The cutoff 
frequencies of the low-pass fi lters are 1000 and 550 rad/sec, respectively. The 
motor is commanded to follow a block signal of reference speed. As shown 
in Figure 10.12, the estimated speed signal tracks the real speed signal very 
closely, as do the estimated acceleration and the estimated load torque. 

10.1.9. Discussion

Generally speaking, uncertainties in the plant model of any observer design 
will cause the observed state to differ from the real state. If this observed 
state is used within the control loop, it may result in a control error. However, 
if the observer error is within a small range, the control error is also bounded 
by a similar small range, implying that the observed state may still be useful 
for increasing the control performance.

For implementation of an observer, the observer equation should be 
integrated in real time using a microprocessor or signal processor with a 
fi xed sampling period. As a result, the system to be controlled is continu-
ous in time, but the observer in the control computer is a discrete time sys-
tem. Furthermore, the error of the integration will be large if the following 
applies:

 1. The sampling period of the microprocessor is too large.

 2. The integration algorithm is primitive.
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 3. The observer gain is too high.

 4. The time constant of the observer system is too small.

The system accuracy may be improved by decreasing the sampling inter-
val. However, for a larger sampling interval, more complex and effi cient 
control algorithms may be implemented. The control engineer has to fi nd a 
suitable tradeoff. Readers particularly interested in microprocessor imple-
mentation of sliding mode controllers and observers are encouraged to study 
Chapter 9 on discrete-time systems.

10.2. Permanent-Magnet Synchronous Motors

10.2.1. Introduction

Permanent-magnet synchronous motors (PMSMs) belong to the category 
of AC drives. The terminology “brushless DC motor,” used in the fi elds of 
machine tools and robotics, often refers to a current-controlled PMSM.

FIGURE 10.12
Response of the sliding mode speed observer. Dashed line, reference speed; solid line, real 

speed; dash-dotted line, observed speed.
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It is interesting to point out that the discussion of the control problem of 
PMSMs in the fi eld-oriented reference frame, referred to as (d, q) frame, is 
independent from the number of phases of a motor, i.e., no matter of a two-
phase or a three-phase motor, they have the same structure in this coordinate 
frame. The differences lie only on the forward and backward transforma-
tions of the states and controls (here, currents and voltages). In fact, a model 
in the (d, q) frame is an uniform description of an AC device based on the 
electromagnetic principle including all types of AC drives and power con-
verters. Control design methods performed in the (d, q) coordinates are 
called fi eld-oriented control (FOC). FOC is sometimes referred to as “vector 
control,” implying that a current vector should be controlled rather than only 
one current component as in the case of a pure DC motor. The principle of 
FOC was developed more than 30 years ago [Blaschke 1974]. From a control 
point of view, this control approach uses a state transformation, after which 
the decoupling and linearization tasks can be performed easily. Recently, 
because of the rapid progress in the technology of semiconductors, high-
speed microprocessors as well as signal processors are massively introduced 

FIGURE 10.13
Observed acceleration versus real acceleration. Dashed line, observed acceleration; solid line, 

real acceleration.
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in the area of electric drive systems. As a result, the concept of FOC has been 
implemented in many drive systems of AC machines. The remaining prob-
lem is robustness associated with parameter variations and load variations. 

Theoretically, sliding mode control provides advantages over conven-
tional control designs (e.g., decoupling, linearization, linear control, and 
PWM) because of the simple control structure and the robustness prop-
erty of the sliding mode control principle. However, it is recognized that, in 
microprocessor-based implementations, the sampling interval and thus the 
minimum switching interval of the sliding mode controller, is much larger 
than the resolution of a hardware-based PWM. As a result, some deteriora-
tion in control performance was observed. This problem may be solved by 
discrete-time sliding mode control (see Chapter 9) in conjunction with hard-
ware PWM techniques. Moreover, because the structure of a sliding mode 
controller is very simple, a nonmicroprocessor, purely hardware-based 
implementation is possible and often leads to favorable results. Hence, the 
effectiveness of the sliding mode control can be fully demonstrated without 
using PWM units.

FIGURE 10.14
Observed load torque versus real load torque. Dashed line, observed load torque; solid line, 

real load torque.
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10.2.2. Modeling of Permanent-Magnet Synchronous Motors

The structure of a PMSM-based drive system is shown in Figure 10.15. For 
sliding mode control design, it is convenient if the control inputs take values 
from the discrete set {–u0, u0} instead of on-off signals from the discrete set 
{0, 1}. Let the six on-off signals be sw = [sw1 sw2 sw3 sw4 sw5 sw6]

T with sw4 = 1 − sw1, 
sw5 = 1 − sw2, and sw6 = 1 − sw3, and the control inputs for sliding mode control 
design be Ugate = [u1 u2 u3]

T, then the following relation holds

 U u G s Ggate 0 w w w= =
−

−
−

⎡

⎣

, with

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (10.2.1)

The backward transformation can be obtained as

 sw1 = 0.5(1 + u1/u0), sw4 = 1 − sw1,
 sw2 = 0.5(1 + u2/u0), sw5 = 1 − sw2, (10.2.2)
 sw3 = 0.5(1 + u3/u0), sw6 = 1 − sw3.

In general, the dynamic model of an AC motor can be established using 
physical laws

 
U RI

LI

= +

= +

d
dt
Ψ

Ψ Ψ

,

,M

 (10.2.3)

where U, I, and Ψ are the voltage vector, the current vector, and the fl ux 
vector, respectively; R and L are the resistance matrix and the inductance 

FIGURE 10.15
Structure of a PMSM drive system. N and S denote the magnetic north and south, respectively; 

n is the neutral point of the stator windings; ua, ub and uc are the potential differences between 

points a, b, c and the neutral point n, respectively.
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matrix, respectively; and ΨM is the fl ux vector caused by the permanent 
 magnet, if applicable.

The system in Equation 10.2.3 is a general description of electromagnetic 
effects and is independent of the used coordinate system. For PMSMs, three 
reference frames are normally used for describing the dynamic behavior of a 
motor (see Figure 10.16): the phase frame, i.e., the (a, b, c) coordinate frame; the 
stator frame, i.e., the (α, β) coordinate frame; and the fi eld-oriented frame, i.e., 
the (d, q) coordinate frame (same as the rotor coordinate frame for PMSMs). 

For a symmetrical PMSM in the (a, b, c) coordinate, the fl ux components 
generated by the permanent magnet are given as

 Ψma = λ0 cos θe,
 Ψmb = λ0 cos (θe − 2π/3), (10.2.4)
 Ψmc = λ0 cos (θe + 2π/3),

where λ0 is the fl ux linkage of the permanent magnet and θe is the electri-
cal angular position of the motor rotor. The electrical motion equations of a 
PMSM, neglecting the reluctance effects, can be written as

 

di
dt

R
L

i
L

e
L

u

di
dt

R
L

i
L

e
L

u

a
a a a

b
b b b

= − − +

= − − +

1 1

1 1

,

,,

,
di
dt

R
L

i
L

e
L

uc
c c c= − − +1 1

 (10.2.5)

where R is the winding resistance and L is the winding inductance, ia, ib, ic are 
the phase currents, and ua, ub, uc are the phase voltages. Furthermore, ea, eb, ec 
are the induced EMF components of the following form:

FIGURE 10.16
Coordinate systems of PMSM.
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e
d

dt

e
d

dt

a
ma

e e

b
mb

e e

= = −

= = − −

Ψ

Ψ

λ ω θ

λ ω θ

0

0

sin ,

sin( 22 3

2 3
0

π

λ ω θ π

),

sin( ),e
d

dtc
mc

e e= = − +
Ψ

 (10.2.6)

in which ωe = dθe/dt is the electrical angular speed of the rotor. The relation-
ship between the phase voltages ua, ub, uc and the discontinuous controls u1, 
u2, u3 is given by

 [ [ ,u u u A u u ua b c
T

abc
T] ]= 123

1 2 3  (10.2.7)

where matrix Aabc
123 is defi ned as

 Aabc
123 1

3

2 1 1

1 2 1

1 1 2

=
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (10.2.8)

Note that matrix Aabc
123 is a singular matrix implying that the phase voltages ua, 

ub, uc are not independent. As shown later, the sum of ua, ub, uc is equal to zero 
because of the physical confi guration given in Figure 10.15.

The motor model in (α, β) coordinates can be obtained by either apply-
ing the defi nition given in Equation 10.2.3 or transforming the motor model 
from the (a, b, c) coordinate frame into the (α, β) frame. The electrical part of 
the motor model in this coordinate frame is

 

di
dt

R
L

i
L

e
L

u

di

dt
R
L

i
L

e
L

u

α
α α α

β
β β β

= − − +

= − − +

1 1

1 1

,

,,

 (10.2.9)

where eα = −λ0ωe sin θe and eβ = λ0ωe cosθe are the induced EMF components 
in the (α, β) coordinate frame; the stator currents [iα iβ]

T and the stator volt-
ages [uα uβ]

T are defi ned as follows: 

 
[ ] [ ] ,

[ ]

,
, ,i i A i i i

u u A

T a b c
a b c

T

T

α β α β

α β

=

= αα β,
, , [ ] ,a b c

a b c
Tu u u

 (10.2.10)

where Aa b c
α β,

, ,  denotes the transformation matrix

 Aa b c
α β,

, , .=
− −

−
⎡

⎣
⎢

⎤

⎦
⎥2 3

1 1 2 1 2

0 3 2 3 2
 (10.2.11)
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Because the rank of this matrix is two, the backward transformation has 
no unique solution. For the backward transformation of Equation 10.2.10, 
the concept of “pseudo-inverse (also called “Moore-Penrose inverse”) of a 

matrix can be used. The pseudo-inverse of matrix Aa b c
α β,

, , , denoted as Aa b c
α β,

, ,( )+
, 

is calculated as

A A A Aa b c a b c T a b c a b c
α β α β α β α β,

, ,
,
, ,

,
, ,

,
, ,( ) = ( )+ (( )( ) = ( ) =

− −

−
⎡

⎣
⎢

⎤

⎦
⎥

−T a b c T
A

1 3

2

1 1 2 1 2

0 3 2 3 2
α β,

, ,

TT

.

 (10.2.12)

It is easy to prove that A Aa b c a b c
α β α β,

, ,
,
, ,( )+

 is a 2 × 2 unit matrix. As a result, the back-
ward transformation of the stator currents and voltages can be given as

 
[ ] [ ] ,

[

,
, ,i i i A i i

u u

a b c
T a b c T

a b

= ( )+

α β α β

uu A u uc
T a b c T] [ ] .,

, ,= ( )+

α β α β

 (10.2.13)

The motor model in the (d, q) coordinate frame, which rotates synchronously 
with the motor rotor, can also be obtained by transforming the motor model 
from the (α, β) coordinate frame to (d, q) coordinates as shown:

 

di
dt

R
L

i i
L

u

di

dt
R
L

i i
L

d
d e q d

q
q e d

= − + +

= − − −

ω

ω λ

1

1
0

,

ωωe qL
u+ 1

,

 (10.2.14)

where id and iq are the stator currents in the (d, q) coordinate frame, and ud and 
uq are the stator voltages in the same coordinate frame. The term λ0ωe = eq is 
the q component of the induced EMF generated by the permanent magnet, 
and the d component of the EMF ed is equal to zero. Note the second equation 
in Equation 10.2.14. If the current component id could be made equal to zero, 
we would get exactly the behavior of a constant-excited DC motor. This is the 
main idea of fi eld-oriented control: to decouple the motor dynamics such that 
the resulting system behaves like a DC motor. The current vector [id iq]

T and the 
voltage vector [ud uq]

T can be transformed from the (α, β) coordinate frame

 
[ ] [ ] ,

[ ]

,
,

,
,

i i A i i

u u A

d q
T

d q
T

d q
T

d q

=

=

α β
α β

α β [[ ] ,u u T
α β

 (10.2.15)

in which matrix Ad q,
,α β  is defi ned as

 Ad q
e e

e e
,
,

cos sin

sin cos
.α β θ θ

θ θ
=

−
⎡

⎣
⎢

⎤

⎦
⎥  (10.2.16)

TAF-65602-08-1101-C010.indd   246TAF-65602-08-1101-C010.indd   246 3/31/09   7:53:34 PM3/31/09   7:53:34 PM



© 2009 by Taylor & Francis Group, LLC

Electric Drives 247

This matrix is an orthogonal matrix whose inverse is equal to its transpose. 
As a result, the backward transformation can be written as

 
[ ] [ ]

[ ]

,
,

,

i i A i i

u u A

T
d q

T

d q
T

T
d q

α β
α β

α β
α

= ( )
= ,, [ ] .β( )T

d q
Tu u

 (10.2.17)

The relationship between the (d, q) coordinate frame and the (a, b, c) coordi-
nate frame can also be established. The phase currents ia, ib, ic and the phase 
voltages ua, ub, uc are transformed into the (d, q) coordinates as follows:

 
[ ] [ ] ,

[ ]

,
, ,i i A i i i

u u A

d q
T

d q
a b c

a b c
T

d q
T

=

= dd q
a b c

a b c
Tu u u,

, , [ ] ,
 (10.2.18)

where matrix Ad q
a b c
,
, ,  depends also on the electrical angular position of the 

rotor θe and is defi ned as

 A A Ad q
a b c

d q
a b c

,
, ,

,
,

,
, , .= α β

α β  (10.2.19)

Matrix Ad q
a b c
,
, ,  is a 2 × 3 matrix; hence, for the backward transformation, we 

need again its pseudo-inverse given as

 A A A Ad q
a b c

d q
a b c T

d q
a b c

d q
a b c

,
, ,

,
, ,

,
, ,

,
, ,( ) = ( )+ (( )( ) = ( )

−T

d q
a b c T

A
1 3

2
,
, , , (10.2.20)

resulting in

 
[ ] [ ] ,

[

,
, ,i i i A i i

u u

a b c
T

d q
a b c

d q
T

a b

= ( )+

uu A u uc
T

d q
a b c

d q
T] [ ] .,

, ,= ( )+
 (10.2.21)

The relationship between the control voltages ud, uq and the discontinuous 
controls u1, u2, u3 can be established as

 [ ] [ ] ,,
, ,u u A u u ud q

T
d q

T= 1 2 3
1 2 3  (10.2.22)

where matrix Ad q,
, ,1 2 3 is defi ned as

 A A A Ad q d q
a b c

a b c,
, ,

,
,

,
, ,

, ,
, , .1 2 3 1 2 3= α β

α β  (10.2.23)

Matrices Aa b c
α β,

, ,  and Aa b c, ,
, ,1 2 3 satisfy the condition A A Aa b c

a b c
a b c

α β α β,
, ,

, ,
, ,

,
, ,1 2 3 = ; therefore,

 A A A Ad q d q
a b c

d q
a b c

,
, ,

,
,

,
, ,

,
, , .1 2 3 = =α β

α β  (10.2.24)

However, to maintain clarity, we prefer to use matrix Ad q,
, ,1 2 3 denoting the 

transformation between the discontinuous controls u1, u2, u3 and the control 
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voltages ud, uq. Matrix Ad q,
, ,1 2 3 is a 2 × 3 matrix; hence, for the backward trans-

formation, we need its pseudo-inverse as well:

 A A A Ad q d q

T

d q d q,
, ,

,
, ,

,
, ,

,
, ,1 2 3 1 2 3 1 2 3 1 2 3( ) = ( )+ (( )( ) = ( )

−T

d q

T
A

1
1 2 33

2
,
, , , (10.2.25)

resulting in

 [ ] [ ] .,
, ,u u u A u uT

d q d q
T

1 2 3
1 2 3= ( )+

 (10.2.26)

Finally, the generated motor torque τe and the mechanical power P of the 
motor are given by

 τe = Ktiq,
   P = τeωr, (10.2.27)

in which Kt is the torque constant, assumed to be equal to (3/2)λ0Nr with Nr 
being the number of pole pairs of the motor, and ωr is the mechanical angu-
lar speed of the motor rotor. 

In developing the motor models, we assume that there is no reluctance 
torque in the PMSM motor. Under this assumption, the output torque of the 
motor is proportional to the q-axis stator current iq. The mechanical motion 
equation of the motor can be written as

 

J
d
dt
d
dt

r
e l

r
r

ω τ τ

θ ω

= −

=

,

,

 (10.2.28)

where τl and θr denote the load torque and the mechanical angular position 
of the motor rotor. For the electrical angular position/speed and the mechan-
ical angular position/speed, the following relations hold:

  ωe = Nr ωr ,
 θe = Nrθr . (10.2.29)

Usually, θr is measured, and ωr , θe , ωe are calculated according to Equations 
10.2.28 and 10.2.29.

For stator windings connected at the neutral point n, the following balance 
conditions hold

 Ia + Ib + Ic = 0,
 ea + eb + ec = 0, (10.2.30)
 ua + ub + uc = 0. 
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Throughout this section, the motor parameters used to verify the design 
principles are as follows: L = 1.0 mH, R = 0.5 Ω, J = 0.001 kg⋅m2, B = 0.001 
Nm⋅sec/rad, Nr = 4, λ0 = 0.001 V⋅s/rad, and kt = (3/2)λ0Nr Nm/A. The supplied 
link voltage is u0 = 20 V. 

So far we have discussed the model descriptions in the different coordi-
nate systems and the transformations of the state variables and the control 
signals between these reference frames. In the following sections, we deal 
with the sliding mode control issues of PMSMs.

10.2.3. Sliding Mode Current Control

The goal of the current control is to design a current controller to track the 
desired currents that are normally provided by an outer-loop speed/posi-
tion controller. A current controller can be implemented with either pure 
hardware or a microprocessor. The so-called “chopper control” and “hyster-
esis control” are the hardware versions of a current controller attributable to 
the simplicity in the implementation. For the fi eld-oriented current control, 
however, a microprocessor-based implementation is recommended. Current 
control based on the sliding mode approach can be implemented either with 
pure hardware or within a microprocessor, and, for both implementations, 
the control performance provided by the fi eld orientation concept can be 
achieved. 

In the context of sliding mode control of AC drives, there are two methods 
to determine the discontinuous controls u1, u2, u3 as well as the on-off signals 
sw1, sw2, sw3, sw4, sw5, sw6. The on-off signals may also be called switching pat-
terns. The switching patterns are the control signals feeding to the gates of 
the power converters, e.g., a voltage source inverter as shown in Figure 10.15. 

The fi rst method implies that the control voltages ud and uq are designed 
using the existence condition of sliding mode and mapping the resulting 
controls to the switching patterns of the inverter. The second method deter-
mines the switching patterns directly using the method of switching surface 
transformation (see Section 3.2). Both methods are able to generate switching 
commands for the voltage source inverter without involving the traditional 
PWM technique. 

10.2.3.1. First Method for Current Control

Because the model in (d, q) coordinates gives clear physical interpretation 
in terms of a DC motor, we prefer to start with this model. Equation 10.2.14 
is still a coupled nonlinear dynamic system with two control inputs ud and 
uq. However, as mentioned above, if we are able to reduce the current com-
ponent id to zero, we would get exactly the same behavior as for a DC motor 
with constant excitation fl ux. Another difference from a DC motor is that all 
variables with subscripts d and q cannot be measured directly but rather are 
transformed from the variables measured in the (a, b, c) coordinate frame. For 
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performing this transformation, the electrical angular position of the rotor 
θe is required.

As in the DC motor case, for current control of a PMSM, we may design the 
switching functions as the difference between the desired and real currents. 
Select the switching functions for both current components id and iq as

 
s i i

s i i
d d d

q q q

= −

= −

*

*

,

,
 (10.2.31)

where id
*  and iq

*  denote the desired value for the currents id and iq, respec-
tively. Conventional fi eld-oriented control of PMSMs uses linear con-
trol design techniques. The nonlinear model (Equation 10.2.14) has to be 
decoupled and linearized before linear control techniques can be applied. 
However, because the sliding mode control approach belongs to the cat-
egory of nonlinear control techniques, no such decoupling and linear-
ization procedures are necessary. Nevertheless, it can be shown that the 
controlled errors, i.e., sd and sq, vanish after fi nite time. As to the switch-
ing functions given by Equation 10.2.31, the existence condition of sliding 
mode (Equation 2.4.1) may be applied to fi nd the controls. Select the con-
trol voltages as 

 ud = ud0 sign(sd),
 uq = uq0 sign(sq), (10.2.32)

where ud0, uq0 are the amplitudes of ud, uq, respectively. It follows from
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 (10.2.33)

that the derivation from each of the switching surfaces and its time deriva-
tive have opposite signs if

 

u L
di
dt

Ri L i

u L
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dt
Ri L i

d
d

d e q

q
q

q e d

0

0

> + −

> + +

*

*

,ω

ω ++ λ ω0 e .

 (10.2.34)

Obviously, unlike in the case of DC motors, in addition to the back EMF, the 
control voltages should suppress the coupling terms that are proportional to 
the angular speed of the motor rotor.
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Remark 10.1

 1. In the case of discontinuous reference currents id
*  and iq

*  with associ-
ated “large” time derivatives, the real currents will not be able to 
follow their reference values. This can happen, for example, if the 
outer-loop controllers use high feedback gains. Because of the induc-
tive nature of electric drives, discontinuous reference currents cannot 
be followed with any controller. However, a sliding mode controller 
is able to immediately use the full available control resources ud0 and 
uq0 such that the fastest possible response is guaranteed.

 2. It is also possible to perform the decoupling and linearization pro-
cedure fi rst and then apply the sliding mode technique to the result-
ing linear system. In this case, the resulting control voltages ud and 
uq will no longer be in the form of sign function but will contain an 
additive continuous part attributable to the decoupling procedure. 
Because the decoupling procedure involves the motor parameters, 
the resulting control is sensitive to these parameters. 

Once the control voltages ud and uq are obtained, the next step is to map 
them into the switching patterns of the inverter. Lookup table techniques 
are often used for this purpose with the electrical angular position θe as 
the input of the table [Sabanovich and Utkin 1994]. This solution is simple 
but cannot implement arbitrary voltage vectors [ud uq]

T because of the fi nite 
resolution of a lookup table. In the following, we propose a novel PWM 
technique using the sliding mode principle, which may be called “sliding 
mode PWM.”

The basic problem is that the controls u1, u2, and u3, required by the inverter, 
take only discrete values −u0 or u0. As a result, a direct implementation of 

the transformation Ad q,
, ,1 2 3( )+

 is not possible. Instead, a second set of switching 
functions is defi ned for u1, u2, and u3. 

Defi ne a set of desired controls according to transformation Ad q,
, ,1 2 3( )+

 in 
Equation 10.2.25 as

 

u

u

u

A
u s

d q
d d

1

2

3

1 2 3 0

*

*

*

,
, ,

sign( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= ( )+

uu sq q0 sign( )
.

⎡

⎣
⎢

⎤

⎦
⎥  (10.2.35)

These controls cannot yet be applied to the inverter directly because matrix 

Ad q,
, ,1 2 3( )+

 is a function of the electrical angular position θe, so that they do not 
take the values from the discrete set {−u0, +u0}. The second set of switching 
functions for controls u1, u2, and u3 is chosen as

 s u u d ii i i

t
* * ( ) ( ) ,    , , .= −( ) =∫ ζ ζ ζ

0

1 2 3  (10.2.36)
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Note that the time derivatives �si
* are linear in the inputs ui (i = 1, 2, 3). 

Consequently, control laws

 u u s ii i= =0 1 2 3sign( ), , ,*  (10.2.37)

enforce sliding mode in manifold s ii
* , ( , , )= =0 1 2 3  if

 u u u u0 1 2 3> ( )max , ,* * * . (10.2.38)

The sliding condition (Equation 10.2.38) is derived from the existence condi-
tion s si i

* *� < 0. Using the equivalent control method (see Section 2.3) by setting 
�si

* = 0 and solving for inputs ui (for each i = 1, 2, 3) yields

 u u iieq i= =* , , , ,1 2 3  (10.2.39)

which implies that the coordinate transformation (Equation 10.2.35) was 
implemented exactly by the proposed method.

As the last step of the control design, the resulting discontinuous controls 
u1, u2, and u3 will be transformed to the switching patterns sw1, sw2, sw3, sw4, sw5, 
sw6 using Equation 10.2.2.

At this point, we have completed the design procedure for the fi rst ver-
sion of the current control. For the implementation, phase currents ia, ib, ic 
should be available. The design sequence assumes that an outer control loop 
provides desired currents id

*  and iq
*  and can be summarized in the following 

steps.
Step 1: Transform the measured phase currents ia, ib, ic into the (d, q) coor-

dinate frame to obtain the torque current iq and the fi eld current id using 
Equation 10.2.18. In practice, only two components of the phase currents are 
measured; the third one is calculated according to the balance condition, e.g., 
ic = −(ia + ib).

Step 2: Design switching functions s i id d d= −* , s i iq q q= −*  and associated 
control voltages ud, uq according to Equations 10.2.32 and 10.2.34. Because the 

maximum value of u ud q0
2

0
2+  is limited by the DC link voltage, the selec-

tion of ud0 and uq0 is not arbitrary, i.e., ud0 and uq0 should be selected such 

that the inequalities in Equation 10.2.34 and u0 > ui
*  (i = 1, 2, 3) are satisfi ed.

Step 3: Transform the resulting discontinuous controls ud and uq to u u u1 2 3
* * *, ,  

according to Equation 10.2.35.
Step 4: Calculate the integral of Equation 10.2.36 to obtain the new switch-

ing functions s s s1 2 3
* * *, , ; compute the discontinuous controls u1, u2, and u3 

using Equation 10.2.37.
Step 5: Apply Equation 10.2.2 to the resulting controls u1, u2, and u3 to 

derive the switching patterns of the inverter sw1, sw2, sw3, sw4, sw5, sw6.
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Figure 10.17 shows an example of the proposed sliding mode PWM tech-
nique that modulates a sinusoidal voltage waveform to the width of a switch-
ing signal. Figure 10.18 gives the simulation result of the proposed current 
controller. The relatively high switching noise is attributable to the integra-
tion error of the sliding mode PWM, caused by the fi nite sampling period. 
Also, the integration action in closed loop may introduce additional dynam-
ics that enlarge the high-frequency oscillations. The reference currents are 
selected as id

* = 0 and i sqw tq
* . ( . )= 5 0 15 7 , where sqw represents a square-wave 

function. 

10.2.3.2. Second Method for Current Control

The second version of the current control is able to generate the discontin-
uous controls u1, u2, and u3 directly without involving a PWM technique. 
Moreover, this design method is theoretically compact and straightforward 
(although no PWM technique is used, the implementation does not imply 
that the role of a power converter is reduced to amplifying some continuous 
control signal). This method may need high enough DC link voltage u0 for 
every time instant.

FIGURE 10.17
Example of the sliding mode PWM.
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The second method also uses the (d, q) coordinate frame for ease of presen-
tation. Given the desired currents id

*
 and iq

*
, provided by an outer control loop, 

design switching functions

 

s L i i

s L i i
d d d

q q q

= −

= −

( ),

( ),

*

*

 
(10.2.40)

where L is the inductance of the stator windings. Note that L does not change 
the sign of sd and sq; it is involved here only for simplifying the derivations. 
The time derivatives of sd and sq in matrix-vector form are given by

 
�S F Udq dq dq= − ,

 (10.2.41)

where Sdq = [sd sq]
T, Udq = [ud uq]

T, and 

FIGURE 10.18
Responses of the proposed current controller. Dashed lines, reference currents; solid lines, real 

currents.
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Fdq
d

q

d

d
e

F

F

L
di
dt

L
di
dt

=
⎡

⎣
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⎤

⎦
⎥ =

+

⎡

⎣

⎢
⎢
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⎢

⎤

⎦

⎥
⎥

*

*

λω ⎥⎥
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−⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

R L

L R

i

i
e

e

d

q

ω
ω

.

 

(10.2.42)

Substitution of Equation 10.2.22 into Equation 10.2.41 yields

 
�S F Udq dq d q gate= − A ,

, , ,1 2 3

 (10.2.43)

where Ugate = [u1 u2 u3]
T. The above equation establishes the direct relation 

between the controlled errors sd, sq and the discontinuous controls u1, u2, and 
u3. Design controls u1, u2, and u3 as follows

 Ugate = u0 sign(S*), (10.2.44)

where S* * * *= ⎡⎣ ⎤⎦s s s
T

1 2 3 , is a vector of transformed switching functions to be 
determined later, and 

 
sign( ) sign( ) sign( ) sign( )* * *S s s s** = ⎡⎣ ⎤

1 2 3 ⎦⎦
T

.
 

(10.2.45)

Controls u1, u2, and u3 take values from the discrete set {−u0, +u0}. The trans-
formed vector S* should be designed such that, under controls (Equation 
10.2.44), sd and sq vanish in fi nite time. A proper candidate for S* is

 
S S S* = ( ) = ( )+

A Ad q dq d q

T

dq,
, ,

,
, , ,1 2 3 1 2 33

2  
(10.2.46)

where matrix Ad q,
, ,1 2 3( )+

 can be found as 

 

Ad q

a a

b b

c

,
, ,

cos sin

cos sin

cos si

1 2 3( ) =
−
−
−

+
θ θ
θ θ
θ nn

,

θc

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (10.2.47)

with θa = θe, θb = θe − 2π/3, and θc = θe + 2π/3. Matrix A Ad q d q,
, ,

,
, ,1 2 3 1 2 3( )+

 is a 2 × 2 
identity matrix.

Theorem 10.1

For high enough link voltage u0, system Equation 10.2.43 under control 
Equation 10.2.44 via transformation Equation 10.2.46 converges to its origin 
sd = 0, sq = 0 in fi nite time. □
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Proof 10.1

Design a Lyapunov function candidate

 
V dq

T
dq= 1

2
S S

 
(10.2.48)

and take the time derivative of V along the solutions of Equation 10.2.43 to 
yield

 
�V A AT T

d q

T

d q gate= − ( )( ) ( ) ,* * *
,
, ,

,
, ,S F S U1 2 3 1 2 3

 
(10.2.49)

where F F F F F* * * *
,
, ,= ⎡⎣ ⎤⎦ = ( )1 2 3

1 2 3T

d q

T

dqA . Substitution of controls in Equation 
10.2.44 into Equation 10.2.49 results in

 
�V u A AT T

d q

T

d q= − ( )( ) ( ) sign* * *
,
, ,

,
, ,S F S0

1 2 3 1 2 3 (( ),S*

 
(10.2.50)

where matrix A Ad q

T

d q,
, ,

,
, ,1 2 3 1 2 3( )  is a singular matrix and can be calculated as

 

A Ad q

T

d q,
, ,

,
, ,1 2 3 1 2 3 4

9

1
1

2

1

2
1

2
1

1

2
1

2

1

( ) =

− −

− −

− −
22

1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

.

 

(10.2.51)

Depending on the signs of s s1 2
* *, , and s3

*, there are eight possible combinations 
of values of sign( ), sign( )* *s s1 2 , and sign( )*s3 . Evaluation of Equation 10.2.46 
shows that sign( ), sign( )* *s s1 2 , and sign( )*s3  can never be all +1 or all –1 simulta-
neously. The remaining six combinations can be summarized as

 sign( ) sign( ) sign( ),* * *s s s l m nl m n≠ = ≠ ≠with and ll m n, , , , .∈{ }1 2 3  (10.2.52)

Starting from this notion, Equation 10.2.50 can be expanded based on 
Equation 10.2.51 to yield

 
�V s F s F s F u s s sl m= + +( ) − ( ) + +1 1 2 2 3 3

2

02 3 2* * * * * * * *
nn
* ,( )  (10.2.53)

with l ≠ m ≠ n and l, m, n ∈ {1, 2, 3}.
Apparently, as long as ||  S*|| ≠ 0 and the DC link voltage u0 is selected as

 
u F F F0

2
1 2 33 2> ( )( ) max , , ,* * *

 (10.2.54)
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�V < 0 will be guaranteed for all possible l, m, n. This proof implies that sd = 0, 
sq = 0 can be reached in fi nite time by switching directly the discontinuous 
controls u1, u2, and u3 in sign according to Equation 10.2.44. □

Similar to the fi rst version of the current control, the next step is to map 
the resulting controls u1, u2, and u3 into the switching patterns applied to the 
inverter. For this purpose, Equation 10.2.2 can be used.

For the implementation, matrix Ad q,
, ,1 2 3( )+

 is needed to carry out the transfor-
mation (Equation 10.2.46), and the exact values of Fdq are not required. It is 
interesting to point out the physical meaning of the transformed switching 
functions s s1 2

* *, , and s3
*
. From Equations 10.2.46 and 10.2.21, we have

 
s s s L i i i i i i

T

a a b b c c

T

1 2 3
* * * * * * ,⎡⎣ ⎤⎦ = − − −⎡⎣ ⎤⎦  

(10.2.55)

where i ia b
* *, , and ic

*  are the reference currents in the (a, b, c) coordinate frame 
transformed from the reference currents i id q

* *, , usually determined by an 
outer-loop speed controller. From Equations 10.2.55 and 10.2.44, controls 
u1, u2, and u3 can be found as

 

u u i i

u u i i

u u

a a

b b

1 0

2 0

3 0

= −

= −

=

sign( ),

sign( ),

si

*

*

ggn( ).*i ic c−  

(10.2.56)

The reader familiar with conventional current control of AC motors 
will immediately recognize that Equation 10.2.56 is similar to the con-
ventional techniques, in which, for reducing heat loss and electric-
magnetic disturbances caused by the switching actions, a hysteresis circuit is 
usually added after each sign function, or, alternatively, the switching actions 
are synchronized with a fi xed clock source. The former is called hysteresis 
control and the latter chopper control.

The sliding mode method presented here gives a condition, inequality 
Equation 10.2.54, for the current controller to be effective. Furthermore, it 
provides a way of transforming the reference currents i id q

* *,  to the (a, b, c) 
coordinate frame to track the reference currents i i ia b c

* * *, ,  (see Equation 
10.2.46). In the (d, q) coordinate frame, reference current id

*  is set to zero if no 
fi eld weakening operation (see Section 10.2.4) is required. For fi eld weaken-
ing operations of a PMSM, reference current id

*
 should be varied depending 

on the current motor speed. Reference current iq
* , provided by an outer-loop 

controller, corresponds to the required motor torque.
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Figure 10.19 shows the simulation results of the second version of the cur-
rent control. The reference currents are the same as in the case of the fi rst 
version of the current control.

10.2.4. Speed Control

Similar to DC motors, speed control of permanent-magnet synchronous 
motors can be realized in a cascaded control structure, with a current con-
troller in an inner loop and a speed controller in an outer loop, providing the 
reference currents id

*
 and iq

*  for the inner loop. As discussed in the preceding 
section, reference current id

*  is normally set to zero such that the motor is able 
to provide a constant torque. However, in some applications, high torque or 
high-speed performance is desired. For high-speed operation, the reference 
current id

*  may be varied from zero to some negative value depending on the 
current motor speed. This technique is called fi eld-weakening technique and 
is able to extend the operation range of the motor speed several times larger 
than in the case of zero id

* . See the work of Shi and Lu [1996] for details of the 
fi eld-weakening operation of PMSMs.

FIGURE 10.19
Responses of the second version current controller. Dashed lines, reference currents; solid 

lines, real currents.
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For the outer speed control loop, most control techniques may be applied, 
with the exception of high gain and sliding mode techniques, because the 
reference input of the inner control loop should have a bounded time deriva-
tive. This may explain why some researchers argue that sliding mode con-
trol techniques do not work properly for some mechanical systems such as 
robotics manipulators. In general, a high gain or a sliding mode controller 
may only be used once in a cascaded control structure, namely, in the most 
internal control loop.

A suitable solution for designing the speed controller is to apply sliding 
mode control directly to the motor model to achieve the discontinuous con-
trols u1, u2, and u3 without explicitly involving a current control loop. This 
control scheme may be called “direct speed control.” The advantages of such 
a control scheme have already been stated in the section on speed control of 
DC motors. Because we deal with sliding mode control applications, we are 
interested in the details of the direct speed control for permanent-magnet 
synchronous motors.

Let ωr
*  be the desired mechanical angular speed of the motor rotor. Design 

two switching functions for the speed control as

 

s
K
J

i i

s c
d
dt

d
t

d d

r r r r

= −( )

= − + −

*

* *

,

[ ] [ ],ω ω ω ω ω
 

(10.2.57)

where c is a positive constant determining the motion performance in slid-
ing mode, positive coeffi cient Kt/J is introduced to simplify the derivations, 
reference current id

*  is normally set to zero, and, for fi eld-weakening opera-
tion, id

*  is a function of the motor speed and motor parameters [Shi and Lu 
1996]. From the above equations, if sω ≡ 0 can be achieved after a fi nite time 
interval, then ωr will converge to ωr

*  exponentially.
The motion projection of the system onto the subspaces sω, sd is

 
�S F Ud dω ω ω= − D gate , (10.2.58)

where Ugate is the same as for the current control; Sdω = [sd sω]T, and 

Fdω
ω ω ω ω

=
⎡

⎣
⎢

⎤

⎦
⎥ =

− + +

F

F
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di
dt
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t d
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q

,
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K
JL

At
d qω = ,

, , ,1 2 3

 (10.2.59)

where matrix Ad q,
, ,1 2 3 is defi ned by Equation 10.2.23. 
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From this stage on, we may follow the same procedure as in the second 
version of the current control. At fi rst, the switching function transformation 
should be performed by

 S S* = +D dω ω ,  (10.2.60)

where S* * * *= ⎡⎣ ⎤⎦s s s
T

1 2 3
 is again the vector representing the transformed 

switching functions, and Dω
+  is the pseudo-inverse of matrix Dω and 

given as

 
D D D D

JL
K

AT T

t
d q

T

ω ω ω ω
+ −= = ( )( ) .,

, ,1 1 2 33

2  
(10.2.61)

Matrix Dω
+
 can be expanded to

 

D
JL
K

A
JL
Kt

d q

T

t

a a

bω

θ θ
θ+ = ( ) =

−
3

2
1 2 3

,
, ,

cos sin

cos −−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

sin

cos sin

,θ
θ θ

b

c c  

(10.2.62)

where θa = θe, θb = θe − 2π/3 and θc = θe + 2π/3. Matrix D Dω ω
+  is a 2 × 2 identity 

matrix. 
The controls u1, u2, and u3 have the same form as the second version of the 

current control, 

 Ugate = u0 sign(S*), (10.2.63)

with sign( ) sign( ) sign( ) sign( )* * *S* = ⎡⎣ ⎤s s s1 2 3 ⎦⎦
T
.

Theorem 10.2

For high enough link voltage u0, system Equation 10.2.58 under control 
Equation 10.2.63 via transformation Equation 10.2.60 converges to its origin 
sd = 0, sω = 0 in fi nite time. □

Proof 10.2

Following the same procedure as for the current control, select a Lyapunov 
function candidate as

 V d
T

d= 1

2
S Sω ω .  (10.2.64)
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Differentiation of V along the system trajectories yields

 �V s F s F s F
K
JL

u st= + +( ) − ⎛
⎝⎜

⎞
⎠⎟1 1 2 2 3 3

2

0

2

3
2* * * * * *

ll m ns s* * * ,+ +( )  (10.2.65)

with l ≠ m ≠ n and l, m, n ∈ {1, 2, 3}. 

F F1 2
* *, , and F3

* are defi ned by D F F FT
d

T

ω ωF = ⎡⎣ ⎤⎦1 2 3
* * * . Assume that di dtd

* ,

�τ l, and ��ωr
* are bounded, then DT

dω ωF  is bounded as well (see Equation 10.2.59).

Obviously, as long as|| S*|| ≠ 0 and the DC link voltage u0 satisfi es

 u
JL
K

F F F
t

0

2

1 2 3

3

2
>

⎛
⎝⎜

⎞
⎠⎟ ( )max  , , ,* * *  (10.2.66)

the condition �V < 0 holds for all possible l, m, n. It means that the surfaces 
sd = 0, sω = 0 are reached in fi nite time in the system with the discontinuous 
controls u1, u2, and u3 given in Equation 10.2.63. □
 

By high enough u0, the proposed speed controller is robust with respect 
to the terms included in DT

dω ωF . For example, under condition Equation 
10.2.66, the speed controller is robust with respect to the load torque 
variation, because �τ l  is contained in DT

dω ωF . Again, the knowledge on exact 
values of Fdω is not needed for the implementation. Only matrix Dω

+  is rel-
evant, because we need this matrix for calculating the switching function 
transformation. 

To construct the sliding surface sw = 0, the acceleration signal of the motor 
rotor is needed. Normally, this variable cannot be obtained directly but rather 
has to be obtained by a state observer based on the measured rotor speed and 
stator currents. Similar techniques as in Section 10.1.6 for the control of DC 
motors can be applied to retrieve the acceleration signal. 

Figures 10.20 and 10.21 show the simulation results of the proposed sliding 
mode speed controller. The transition time of the speed control is about 0.1 
sec. Figure 10.21 gives the smoothed wave forms of the motor currents. Bear 
in mind that the current iq is not controlled explicitly; the ordinary behavior 
of the current components is the result of the acceleration control. The con-
trol gain c in Equation 10.2.57 is selected as c = 50.

10.2.5. Current Observer

From the viewpoint of practical applications, it is of interest to design a con-
trol system with no current transducers. In practice, there are two  diffi culties 
to obtain the stator currents id and iq in the fi eld-oriented  coordinate frame. 
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The fi rst one is attributable to the noise in the measured phase currents ia 
and ib , and the second one is attributable to the coordinate transformation. 
The noise problem is evident, whereas the second diffi culty lies in the speed 
limitation of the calculation unit used for the transformation. Usually, ia 
and ib are high-frequency signals compared with the current components id 
and iq, especially for PMSMs with a large number of pole pairs. These high-
frequency signals must be sampled with a high enough sampling rate; other-
wise, information will be lost. Furthermore, to transform the measured phase 
currents into the fi eld-oriented coordinate frame, the rotor position signal 
with high enough resolution must be available. This is normally achieved by 
involving a high-resolution incremental encoder. 

As a result, it is meaningful to design a current observer using the rotor 
speed measurement. Examination of the motor model leads to the conclu-
sion that online simulation of the motor model suffi ces to achieve a sta-
ble observation of the stator currents. Let îd and îq be the estimates of the 
stator currents; the observer equations are just a copy of the motor model 
(Equation 10.2.14),

FIGURE 10.20
Response of the sliding mode speed control. Dashed line, reference speed; solid line, real 

speed.
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di
dt
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L
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di

dt
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i i

d
d e q d

q
q e

ˆ
ˆ ˆ ,

ˆ
ˆ ˆ

= − + +

= − −

ω

ω

1

dd e qL L
u− +1 1

0λ ω .

 (10.2.67)

It is proven below that this current observer is stable, and the observer errors 
will tend to zero asymptotically. The mismatch dynamics can be obtained as

 

di
dt

R
L

i i

di

dt
R
L

i i

d
d e q

q
q e d

= − +

= − −

ω

ω

,

,

 (10.2.68)

where i i id d d= −ˆ , i i iq q q= −ˆ . Under the assumption that the electrical rotor 
speed ωe = Nrωr varies much slower than currents observation errors id and
iq, Equation 10.2.68 can be treated as a linear system with characteristic 
polynomial

FIGURE 10.21
Currents response of the speed control. Dashed line, current id; solid line, current iq.
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 p
R
L

p
R
L e

2
2

2

22 0+ + + =ω , (10.2.69)

which is stable for any physically plausible R, L > 0. Thus, îd and îq will tend 
to id and iq asymptotically. 

Figure 10.22 shows the responses of the proposed current observer while 
a current controller is working. The real currents id and iq should follow their 
given references: id

* = 0 and iq
* .= 5 0A, respectively. The initial conditions of 

the observed currents are selected as ˆ ( )i Ad 0 20=  and ˆ ( )i Aq 0 20= −  to see the 
convergence process. Because the current observer is just the online simula-
tion of the motor model, no observer gain is to be adjusted. 

10.2.6. Observer for Speed Sensorless Control

In the section concerning the DC-motor control, we have discussed the issue 
of sensorless control. Sensorless control of AC machines is more diffi cult 
than the control of DC motors because of the coupling effects in the motor 
dynamics. 

The terminology sensorless control indicates that some internal states 
of a dynamic system are available, measured or estimated, but the output 

FIGURE 10.22
Responses of the current observer. Solid lines, real currents; dashed lines, observed currents. 
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 measurements are unknown; however, these unmeasured output variables 
serve as principal control variables. In the case of PMSMs, the phase voltages 
(or the line voltages) and the phase currents are normally measured, whereas 
the motor speed ωr as well as the motor position θr are unknown, despite 
being the principal control variables of a PMSM drive system.

To estimate these variables, the motor model in the fi eld-oriented coor-
dinate frame (i.e., the (d, q) coordinate frame) is usually not used, because 
the state variables in this coordinate frame are transformed from the fi xed 
coordinate frames (i.e., from (a, b, c) coordinate frame through (α, β) coordi-
nate frame) using transformation matrix Adq

a b c, ,  defi ned by Equation 10.2.19 
for which the electrical angular position of the motor rotor θe is essential. As 
a result, the model in (α, β) coordinate frame is usually used. Rewriting the 
motor model in this coordinate system yields

 

di
dt

R
L

i
L

e
L

u

di

dt
R
L

i
L

e
L

u

α
α α α

β
β β β

= − − +

= − − +

1 1

1 1

,

,,

 (10.2.70)

where eα = −λ0ωesinθe and eβ = λ0ωecosθe are the induced EMF components. 
Assuming the motor speed changes slowly, implying that �ωe ≈ 0, the model 
of these induced EMF components, is

 
�

�
e e

e e
e

e

α β

β α

ω
ω

= −
=

,

.
 (10.2.71)

Conventional approaches to sensorless control of PMSMs usually follow a 
two-step procedure. First, the induced EMF components are observed. The 
electrical angular speed and position are then derived in a second step. 
Furthermore, in conventional sensorless control designs, the mechanical 
motion equation is normally involved in the observation algorithms. This 
model contains inaccurate mechanical parameters as well as the unknown 
load torque that are recognized to be major obstacles. Here, we propose a 
sliding-mode-based observer design technique using only the electrical 
motion equations. 

10.2.6.1. Current Observer for EMF Components

Design a set of observer equations for the model in Equation 10.2.70 as

 

di
dt

R
L

i
L

u
l
L

i i

di

dt

ˆ
ˆ sign(ˆ ),

ˆ

α
α α α α

β

= − + − −

= −

1 1

RR
L

i
L

u
l
L

i iˆ sign(ˆ ),β β β β+ − −1 1

 (10.2.72)
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where l1 > 0 is a constant observer gain. Assume that the parameters R and L 
are known exactly and thus are identical with those in the model. Subtracting 
the above equations from the model equations (Equation 10.2.70) yields the 
mismatch dynamics

 

di
dt

R
L

i
L

e
l
L

i

di

dt
R
L

i
L

α
α α α

β
β

= − + −

= − +

1

1

1 sign( ),

ee
l
L

iβ β− 1 sign( ),

 (10.2.73)

where i i iα α α= −ˆ  and i i iβ β β= −ˆ  denote the observation errors. The mis-
match dynamics are disturbed by the unknown induced EMF compo-
nents. However, because the EMF components are bounded, they can be 
suppressed by discontinuous inputs with l1 > max(|eα|, |eβ|). Then, sliding 
mode with iα = 0, iβ = 0 will occur after a fi nite time interval. To examine 
the system behavior during sliding mode, the equivalent control method 

(see Section 2.3) is exploited. We formally set 
di
dt

α = 0 and 
di

dt
β = 0 in Equation 

10.2.73, resulting in

 
l i e

l i e

eq

eq

1

1

sign( ) ,

sign( ) .

α α

β β

( ) =

( ) =
 (10.2.74)

Again, to extract eα, eβ from the corresponding equivalent control values in 
Equation 10.2.74, we use low-pass fi lters with zα, zβ as the fi lter outputs

 zα(t) = eα(t) + Δμ(t),

 zβ(t) = eβ(t) + Δμ(t), (10.2.75)

where Δμ(t) is the error determined by the distortions of both slow and fast 
components of the discontinuous fi lter input. Filter time constant μ directly 
determines the amount of error Δμ(t). It should be chosen small enough to 
have fi lter dynamics faster than those of the system (Equation 10.2.70) and at 
the same time not too small, to fi lter out the high-frequency components of 
the discontinuous switching actions. 

10.2.6.2. Observer for EMF Components

For high-performance applications, zα, zβ cannot be used directly as the esti-
mation of the induced EMF components, because they contain disturbance 
Δμ(t). Model Equations 10.2.71 are thus needed to design the observer for bet-
ter fi ltering and simultaneously estimating the rotation speed. The following 
observer is designed to undertake this fi ltering task
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 (10.2.76)

where l2 > 0 is a constant observer gain. The observer is expected to have 
high fi ltering properties. Therefore, additional analysis will be performed 
under the assumption Δμ(t) = 0. Bearing in mind that ωe = const., the mis-
match equations are
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β β

α α β β β αω�
 (10.2.77)

where e e eα α α= −ˆ , e e eβ β β= −ˆ  and ω ω ωe e e= −ˆ  are the observation errors. 
Substituting ω̂ ω ωe e e= +  into Equation 10.2.77 yields a simplifi ed equation 
system:

 

�

�
e e e l e e

e e e l

e e

e e

α β β α α

β α α

ω ω

ω ω

= − − − −

= + −

ˆ (ˆ ),

ˆ

2

22 (ˆ ),

ˆ (ˆ )ˆ (ˆ )ˆ .
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−
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 (10.2.78)

To prove the convergence of observer (Equation 10.2.76), we design a 
Lyapunov function candidate:

 V e e e= + +( )1

2
2 2 2

α β ω . (10.2.79)

Its time derivative along the solutions of Equation 10.2.77 can be calcu-
lated as

 �V l e e= − + ≤2
2 2( ) 0,α β  (10.2.80)

implying that ˆ , ˆe eα β  tend to eα, eβ asymptotically. Now, in the fi rst two equa-
tions of Equation 10.2.78, all terms except for ω αe ê  and ω βe ê  are equal to zero. 
Because ˆ ( )e tα ≠ 0 and ˆ ( )e tβ ≠ 0, the speed estimation error ωe should be equal 
to zero as well. Thus, the convergence of ω̂e to ωe is proven.

For fi eld-oriented control of PMSMs, transformation matrix Ad q,
,α β  is needed 

that is based on the electrical angular position θe for PMSMs. Denoting the 
estimated matrix as ˆ

,
,Ad q

α β , we have

TAF-65602-08-1101-C010.indd   267TAF-65602-08-1101-C010.indd   267 3/31/09   7:53:47 PM3/31/09   7:53:47 PM



© 2009 by Taylor & Francis Group, LLC

268 Sliding Mode Control in Electro-Mechanical Systems
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e e
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α β θ θ

θ θ
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⎦
⎥
⎥

 (10.2.81)

where θ̂e is an estimate of θe. Considering relations 
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λ ω θ
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 (10.2.82)

the matrix elements sinθ̂e and cosθ̂e can be obtained as

 

sin ˆ ˆ

ˆ
,

cos ˆ
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ˆ
,

θ
λ ω

θ
λ ω

α

β

e
e

e
e

e

e

= −

=

1

1

0

0

 (10.2.83)

with sin ˆ sinθ θe e→  and cos ˆ cosθ θe e→  as t → ∞.
The estimate of mechanical rotor speed, denoted as ω̂r, can be obtained 

from Equation 10.2.29 as 

 ˆ
ˆ

,ω ω
r

e

rN
=  (10.2.84)

and ω̂ ωr r→  as t → ∞.

Remark 10.2 

To develop the EMF model discussed in this section, we assumed that the 
motor speed varies slowly. Under this assumption, the observation problem 
can be simplifi ed signifi cantly. For the case of variable speed, it is also pos-
sible to design an observer; however, the convergence proof is a considerably 
more complicated problem. □
 

Figures 10.23 through 10.25 show the simulation results of the proposed 
observers for the speed sensorless control, i.e., from Equations 10.2.72 to 
10.2.76. As shown in Figure 10.23, the observed speed converges to the true 
speed rapidly. To show the convergence process, the initial conditions of the 
observed EMF components are selected differently from those of the real 
EMF components: ˆ ( ) .eα 0 0 002=  and ˆ ( ) .eβ 0 0 002= − , whereas eα(0) = 0 and 
eβ(0) = 0. The observer gains in Equations 10.2.72 and 10.2.76 are selected as 
l1 = 20,000 and l2 = 20,000. The low-pass fi lters used to obtain the equivalent 
controls in Equation 10.2.74 are of Butterworth type, with a cutoff frequency 
of 10,000 rad/s.
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10.2.7. Discussion

Dynamic models in each coordinate frame have been given as the starting 
point of this section. Two versions of current controllers have been pre-
sented. The fi rst version is a standard method of sliding mode current control 
except the last part for deriving the control voltages: instead of the standard 
table lookup approach, the so-called sliding mode PWM technique has been 
introduced. 

The second version of the current control is actually an open-loop approach 
of fi eld-oriented control, i.e., the current controller is actually implemented in 
phase coordinates rather than in (d, q) coordinates, only the reference currents 
are transformed from the fi eld-oriented coordinates. As has been shown, if 
the link voltage is high enough, it is equivalent to the closed-loop approach 
(pure fi eld-oriented approach). Moreover, the stability condition is given and 
the resulting control algorithm is very simple. For speed control, we have not 
followed the traditional control structure, i.e., the cascade control structure, 
because it has been discussed in many textbooks. Instead, motor speed and 
acceleration are controlled simultaneously without an inner current control 
loop. The advantages are fast response and robustness with respect to the 

FIGURE 10.23
Speed response of the observer. Dashed line, reference speed; solid line, real speed; dotted line, 

observed speed.
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mechanical parameters, but the motor acceleration has to be available. The 
motor acceleration can be estimated based on the motor model and the speed 
measurements, which involves a larger calculation overhead.

To avoid using (often noisy) current sensors, a current observer may be 
implemented in fi eld-oriented coordinates. However, the dynamic response 
of this observer is sensitive to the motor parameters and relies on the volt-
age vector that is usually not measured. Instead, the reference voltages 
feeding to the power converter, i.e., the outputs of the current controllers, 
are normally used, which may be slightly different from the real voltages 
applied to the motor windings.

As the last part of this section, the sensorless control issue has been treated 
based on a sliding mode observer combined with a conventional asymp-
totic observer. Any algorithm for sensorless control problem will rely on 
model parameters. In the presence of modeling uncertainties, the control 
 performance may not be as good as expected.

FIGURE 10.24
Responses of the induced voltages. Solid lines, real induced voltages eα and eβ; dashed lines, 

observed induced voltages êα and êβ. 
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10.3. Induction Motors 

10.3.1. Introduction

From a control point of view, induction motors are nonlinear, high-order 
dynamic systems of considerable complexity. They are quite amenable to 
a formal mathematical analysis. However, it is not a trivial matter to com-
prehend the principles of their operation in an imaginative way, especially 
under transient conditions. Conversely, induction motors are widely used 
in practical systems because of their simple mechanical construction, low 
maintenance requirements, and lower cost compared with other types of 
motors, such as brushless DC motors. Therefore, it is of great signifi cance to 
investigate the dynamic control problems of these kinds of drive systems.

As discussed in the previous section on permanent-magnet synchronous 
motors, the fi eld-oriented coordinate frame coincides with the rotor coor-
dinate frame, such that only three frames of reference are considered. For 

FIGURE 10.25
Responses of the commutation signals. Solid lines, real commutation signals sin(θe) and cos(θe); 

dashed lines, observed commutation signals sin ( eθ̂ ) and cos ( eθ̂ ).
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an induction motor, however, the fi eld (normally the rotor fl ux)-oriented 
 coordinate frame differs from the rotor coordinate frame; hence, there are 
four different frames of reference to be considered. 

For an induction motor, the angular difference between the rotor fl ux 
and the electrical angular position of the rotor is called “slip.” Its time 
derivative is called “slip frequency,” which is proportional to the devel-
oped motor torque. All state and control variables in the fi eld-oriented 
coordinate frame are transformed based on the rotor-fl ux angular posi-
tion ρ, called “rotor-fl ux angle” in the sequel, instead of the electrical rotor 
angle θe. To calculate the rotor fl ux angle, a “fl ux observer” is used because 
fl ux measurements are usually not available. If the electrical angular speed 
of the rotor, ωe, is available, as proven later, the fl ux observer is simply an 
online simulation of the fl ux dynamics in the stator coordinate frame (the 
α, β coordinates); the rate of convergence depends on the rotor time con-
stant. However, it is recognized that this time constant may vary slowly 
with changing ambient temperature. As a result, some online adaptation 
mechanisms are often involved, making the control problem of induction 
motors more complicated than the control of permanent-magnet synchro-
nous motors. Moreover, if the rotor speed is not available, so-called sen-
sorless control techniques have to be used. Currently, sensorless control 
techniques are not mature enough for application in high-performance 
industrial systems.

The current research in the control of induction motors is characterized by 
a great variety of control methodologies with different control/observation/
adaptation algorithms combined with different coordinate systems, different 
state variables, and different notations. For the sliding mode control design 
described in this section, we mainly use the dynamic model given in the 
orthogonal stator coordinate frame (the α, β coordinates), with stator current 
components and rotor fl ux components as state variables, complemented by 
the mechanical equation.

10.3.2. Model of the Induction Motor

The structure of an induction motor drive system is shown in Figure 10.26. 
For sliding mode control design, it is convenient if the control inputs take 
values from the discrete set {−u0, u0} instead of on-off signals from the dis-
crete set {0, 1}. Let the six on-off signals be sw = [sw1 sw2 sw3 sw4 sw5 sw6]

T with sw4 
= 1 − sw1, sw5 = 1 − sw2, sw6 = 1 − sw3, and the control inputs for sliding mode 
control design be Ugate = [u1 u2 u3]

T; then the following relation holds: 

 Ugate = u0Lwsw with Lw =
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

. (10.3.1)
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The backward transformation can be obtained as

 sw1 = 0.5(1 + u1/u0), sw4 = 1 − sw1,

 sw2 = 0.5(1 + u2/u0), sw5 = 1 − sw2, (10.3.2)

 sw3 = 0.5(1 + u3/u0), sw6 = 1 − sw3. 

Four frames of reference are normally used for describing the dynamic 
behavior of the motor (see Figure 10.27): the phase frame in (a, b, c) coordi-
nates, the stator frame in (α, β) coordinates, the rotor frame in (x, y) coordi-
nates, and the fi eld-oriented frame in (d, q) coordinates. 

The relationship between the phase voltages ua, ub, uc and the discontinu-
ous controls u1, u2, u3 can be given as follows:

 [ua ub uc]
T = G[u1 u2 u3]

T, (10.3.3)

FIGURE 10.26
Structure of an induction motor drive system. n is the neutral point of the stator windings; ua, 

ub and uc are the potential difference between points a, b, c and the neutral point n, respectively. 

ia, ib and ic are the phase currents.
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FIGURE 10.27
Coordinate systems of induction motor model. θe is the electrical rotor angular position and 

ωe is the electrical rotor angular speed; ρ is the angular position of the rotor fl ux and ωρ is the 

angular speed of the rotor fl ux.
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where matrix G is defi ned as

 G =
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

3

2 1 1

1 2 1

1 1 2

. (10.3.4)

Note that matrix G is a singular matrix implying that the phase voltages ua, 
ub, uc are not linearly independent. In fact, the sum of ua, ub, uc is equal to zero 
because of the physical confi guration given in the Figure 10.26. The motor 
model in (α, β) coordinates is important for our control design and can be 
written as
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with
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where the parameters are defi ned in Table 10.1.
The stator currents iα, iβ and the stator voltages uα, uβ are transformed from 

the phase currents ia, ib, ic and the phase voltages ua, ub, uc by

 
[ ] [ ] ,

[ ]

,
, ,i i A i i i

u u A

T a b c
a b c

T

T

α β α β

α β

=

= αα β,
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 (10.3.7)
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where Aa b c
α β,

, ,  denotes the transformation matrix

 Aa b c
α β,

, , .=
− −

−
⎡

⎣
⎢

⎤

⎦
⎥2 3

1 1 2 1 2

0 3 2 3 2
 (10.3.8)

Because the rank of this matrix is two, the backward transformation has no 
unique solution; hence, the pseudo-inverse concept is used. The pseudo-

inverse of matrix Aa b c
α β,

, , , denoted as Aa b c
α β,

, ,( )+
, is calculated as

A A A Aa b c a b c T a b c a b c
α β α β α β α β,

, ,
,
, ,

,
, ,

,
, ,( ) = ( )+ (( )( ) = ( ) =

− −

−
⎡

⎣
⎢

⎤

⎦
⎥

−T a b c T
A

1 3

2

1 1 2 1 2

0 3 2 3 2
α β,

, ,

TT

. (10.3.9)

It is easy to show that A Aa b c a b c
α β α β,

, ,
,
, ,( )+

 is a 2 × 2 identity matrix. As a result, 
the backward transformation of the stator currents/voltages to the phase 
 currents/voltages can be given as

 [ ] [ ]

[

,
, ,i i i A i i

u u u

a b c
T a b c T

a b

= ( )+

α β α β

cc
T a b c TA u u] [ ] .,

, ,= ( )+

α β α β

 
(10.3.10)

The motor model in (d, q) coordinates, which fi xes on the rotor fl ux vector, 
can also be obtained by transforming the motor model from (α, β) coordi-
nates to (d, q) coordinates using the rotor fl ux angle ρ = arctg(λβ/λα):

TABLE 10.1
Parameters of the Induction Motor

uα , uβ Stator voltages in (α β) coordinates

iα , iβ Stator currents in (α β) coordinates

λα , λβ Rotor fl ux components in (α β) coordinates

Lr, Ls, Lh Rotor, stator, and manual inductance

Rr, Rs Rotor and state resistance

P Number of pole pairs 

ωe Electrical rotor speed

J Mass of inertia

τ Motor torque 

τl Load torque
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(10.3.11)

where id and iq are the stator currents in (d, q) coordinates, ud and uq are the 
associated stator voltages, and λd is the d component of the rotor fl ux (the q 
component of the rotor fl ux is equal to zero, i.e., λq = 0). Currents id, iq and 
voltages ud, uq are transformed from (α, β) coordinates by

 
[ ] [ ] ,

[ ]

,
,

,
,

i i A i i

u u A

d q
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d q
T

d q
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d q
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 (10.3.12)

in which matrix Ad q,
,α β  is defi ned as

 Ad q,
,

cos sin

sin cos
.α β ρ ρ

ρ ρ
=

−
⎡

⎣
⎢

⎤

⎦
⎥  (10.3.13)

This matrix is an orthogonal matrix whose inverse is equal to its transpose. 
As a result, the backward transformation can be written as
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d q
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 (10.3.14)

 The relationship between (d, q) coordinates and (a, b, c) coordinates can also 
be established. The phase currents ia, ib, ic and the phase voltages ua, ub, uc can 
be transformed into (d, q) coordinates using
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,
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u u A

d q
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d q
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d q
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 (10.3.15)

where matrix Ad q
a b c
,
, ,  depends on the rotor fl ux angle ρ and is defi ned as

 A A Ad q
a b c

d q
a b c

,
, ,

,
,

,
, , .= α β

α β  (10.3.16)

TAF-65602-08-1101-C010.indd   276TAF-65602-08-1101-C010.indd   276 3/31/09   7:53:50 PM3/31/09   7:53:50 PM



© 2009 by Taylor & Francis Group, LLC

Electric Drives 277

Matrix Ad q
a b c
,
, ,  is a 2 × 3 matrix; hence, for the backward transformation, we 

again need its pseudo-inverse given as

 A A A Ad q
a b c

d q
a b c T

d q
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d q
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,
, ,

,
, ,

,
, ,

,
, ,( ) = ( )+ (( )( ) = ( )
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d q
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A
1 3

2
,
, , , (10.3.17)

leading to the backward transformation

 
[ ] [ ] ,

[

,
, ,i i i A i i

u u

a b c
T

d q
a b c

d q
T

a b

= ( )+

uu A u uc
T

d q
a b c

d q
T] [ ] .,

, ,= ( )+
 (10.3.18)

The relationship between the control voltages ud, uq and the discontinuous 
controls u1, u2, u3 can be established as

 [ ] [ ] ,,
, ,u u A u u ud q

T
d q

T= 1 2 3
1 2 3  (10.3.19)

where matrix Ad q,
, ,1 2 3 is defi ned as

 A A A Ad q d q
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a b c,
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,
,

,
, ,

, ,
, , .1 2 3 1 2 3= α β

α β  (10.3.20)

Following the properties of matrices Aa b c
α β,

, ,  and Aa b c, ,
, ,1 2 3, we have A Aa b c

a b cα β,
, ,

, ,
, ,1 2 3 �
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, , , such that

 A A A Ad q d q
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,
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,
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,
, ,

,
, , .1 2 3 = =α β

α β  (10.3.21)

However, to maintain clarity, we prefer to use matrix Ad q,
, ,1 2 3 denoting the 

transformation between the discontinuous controls u1, u2, u3 and the control 
voltages ud, uq. Matrix Ad q,

, ,1 2 3 is a 2 × 3 matrix; hence, for the backward trans-
formation, we need its pseudo-inverse as well:

 A A A Ad q d q

T

d q d q,
, ,

,
, ,
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,
, ,1 2 3 1 2 3 1 2 3 1 2 3( ) = ( )+ (( )( ) = ( )
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1 2 33

2
,
, , , (10.3.22)

leading to the backward transformation

 [ ] [ ] .,
, ,u u u A u uT

d q d q
T

1 2 3
1 2 3= ( )+

 (10.3.23)

If not specifi ed in associated context, the default parameters of the induction 
motor used to verify the design principles are: Lr = 650 × 10−6H, Ls = 650 × 
10−6H, Lh = 610 × 10−6H, Rr = 0.015Ω, Rs = 0.035Ω, P = 2, J = 4.33 × 10−4 kg . m2 and 
τl = Bωr, with B being the coeffi cient of viscous friction equal to 0.01 Nm⋅sec/
rad. The DC-bus voltage is u0 = 12 V.
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Thus far, the induction motor model in the (α, β) and in the (d, q) coordinate 
systems has been presented. Current and voltage transformations between 
the different coordinate systems were also given. They are very important 
for the control design of induction motors. 

Rotor fl ux-oriented current control of induction motors is very similar 
to that of permanent-magnet synchronous motors (see Section 10.2.3). The 
major difference lies in the angle used for the current/voltage transforma-
tions. Here, the rotor fl ux angle ρ is used instead of the electrical rotor angle 
θe. It is recognized that, for high control performance, angle ρ should be 
available. For a sliding mode-based control design, the angle ρ is needed 
as well.

We begin with the rotor fl ux observation problem with known rotor angu-
lar speed. Then, simultaneous observation of rotor fl ux and rotor speed is 
discussed, which is essential for sensorless control of an induction motor. In 
the next step, we deal with rotor speed and rotor time constant estimation. 
Finally, we discuss direct torque and fl ux control based on the sliding mode 
control principle. The topics of sliding mode current control and direct speed 
control are omitted here because of the similarity with permanent-magnet 
synchronous motors (see Sections 10.2.3 and 10.2.4).

10.3.3. Rotor Flux Observer with Known Rotor Speed

10.3.3.1. Online Simulation of Rotor Flux Model 

The original motion equation of the rotor fl ux can be used directly as the 
observer equation. The implementation of such a fl ux observer is just the 
online simulation of the controlled induction motor. As proven below, this 
observer is stable in the large with the rate of convergence depending on the 
rotor time constant. In this case, the observer equations are given by
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 (10.3.24)

where ˆ , ˆλ λα β  are the estimates of the rotor fl ux components. Defi ning the 

estimation errors as λ λ λα α α= −ˆ  and λ λ λβ β β= −ˆ  results in the following 
error dynamics:
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 (10.3.25)
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For the stability proof, select a Lyapunov function candidate as

 V = + >1

2
2 2( )   λ λα β 0 (10.3.26)

and calculate the time derivative of V along the solution of Equation 10.3.25 
to yield

 �V V= − + = − <η λ λ ηα β( ) .2 2 2 0  (10.3.27)

This means that by simply integrating Equation 10.3.24, the mismatch 
between the real and estimated rotor fl ux will tend to zero asymptotically, 
and the rate of the convergence depends on the rotor time constant 1/η. The 
rate of convergence may be improved by properly designed observer gains 
as usually done for reduced-order observers (see next approach given in the 
sequel). 

With the estimates of the rotor fl ux components, the rotor fl ux angle ρ̂ can 
be calculated as 

 ˆ arctan( ˆ ˆ ).ρ λ λβ α=  (10.3.28)

Figure 10.28 depicts the simulation results of the rotor fl ux observer 
(Equation 10.3.24). To show the convergence process, the initial conditions 
of the observed fl ux components are selected differently from those of the 

real fl ux components: ˆ ( ) .λα 0 0 045= −  and ˆ ( ) .λβ 0 0 045= , whereas λα(0) = 0 and 
λβ(0) = 0. Because the fl ux observer is just the online simulation of the motor 
model, no observer gain is to be adjusted. 

10.3.3.2. Sliding Mode Observer with Adjustable Rate of Convergence 

Now a fl ux observer based on the sliding mode approach with measure-
ments of stator current, state voltages, and rotor speed is demonstrated. 
Compared with the open-loop fl ux observer discussed before, this observer 
has the advantage that its convergence rate is tunable. 

The sliding mode observer is designed as 
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 (10.3.29)
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where αˆ ,i  βˆ ,i  αλ̂ , and βλ̂  are estimates of the stator current and rotor fl ux, and 
k is a positive gain to be chosen. Vα and Vβ are discontinuous functions of the 
current errors, 

 
V V sign i V sign i i

V V sign i

α α α α

β β

= − = − −
= −

0 0

0

( ) (ˆ )

( )) (ˆ )= − −V sign i i0 β β
 (10.3.30)

where V0 is also a positive gain. 
From Equation 10.3.29 and the induction motor model in Equation 10.3.5, 

the error dynamics for the current is obtained as

 

d i
dt i V

d i
dt

e

e

α
α β α α

β
β α β

βηλ βω λ γ

βηλ βω λ γ

= + − +

= − −

,

ii V+ β .

 (10.3.31)

Let us select Lyapunov function candidate V i i= +1
2

2 2( )α β . Its time derivative 
along the state trajectories of current error system can be written as 

FIGURE 10.28
Responses of the fl ux observer with known rotor speed. Solid lines, real fl ux components λα 

and λβ; dashed lines, observed fl ux components αλ̂  and βλ̂ .
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 (10.3.32)

where f eα α ββηλ βω λ= +  and f eβ β αβηλ βω λ= − . 

If V0 > max{|fα|,|fβ|}, then �V < 0 until iα = 0 and iβ = 0, which means that 
sliding mode will occur in the intersection of the surfaces iα = 0 and iβ = 0. 
The estimated currents îα  and îβ will converge to the real currents after 

 sliding mode has been reached in iα = 0 and iβ = 0. 
The equivalent control components Vα _eq and Vβ _eq of the discontinuous 

functions Vα and Vβ can be obtained by setting �iα = 0, iα = 0 and �iβ = 0, iβ = 0 
in Equation 10.3.31:

 
V

V
eq e

eq e

α α β

β β α

βηλ βω λ
βηλ βω λ

_

_ .

= − −

= − +
 (10.3.33)

Note that the equivalent control Vα _eq and Vβ _eq in Equation 10.3.33 are only for 
analysis of the proposed observer convergence. It is not necessary to obtain 
them in the observer implementation. 

Substituting the above equivalent control into the fl ux observer (Equation 
10.3.29) yields the dynamics for fl ux estimation in sliding mode: 
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 (10.3.34)

The error dynamics for the fl ux estimation can then be derived as 
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 (10.3.35)

To prove the convergence of the rotor fl ux estimation, let us choose the 
Lyapunov function candidate V = +1

2
2 2( )α βλ λ . Substituting Equation 10.3.35 

gives the time derivative of V: 

 �V k= − + + ,η β λ λα β( )( )1 2 2  (10.3.36)
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from which we can see that the convergence rate of the fl ux observer is 
 determined by η(1 + βk). Increasing the tunable and positive observer gain k 
leads to faster convergence, in contrast to the open-loop fl ux observer with 

the convergence rate determined by the rotor time constant 1η.
The simulation results in Figure 10.29 show that the estimated rotor fl ux 

converges immediately to the real rotor fl ux after the observer equations 
being executed. In the simulation, V0 = 5000 and k = 0.004 are selected. Note 
that V0 > max{|fα|,|fβ|} is required, but fα and fβ are functions of rotor speed 
ωe. To keep the chattering level (attributable to limited sample time) in the 
current observation within a reasonable range, V0 may be selected to be rotor 
speed dependent. 

The sliding mode fl ux observer is not the only way to achieve an adjustable 
convergence rate. Similar results can be achieved by an asymptotic observer 
(i.e., Luenberger observer) applied to the reduced order model λ λα α α

' = + Li  
and λ λβ β β

' = + Li , where L is a constant gain to be determined. 

FIGURE 10.29
Responses of the fl ux observer with known rotor speed and adjustable rate of convergence. 

Solid lines, real fl ux components λα and λβ; dashed lines, observed fl ux components αλ̂  

and βλ̂ .
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10.3.4. Simultaneous Observation of Rotor Flux and Rotor Speed

Simultaneous observation of rotor fl ux and rotor speed has been a challeng-
ing problem in the control of induction motors. Different approaches use the 
physical properties of induction motors, such as

Structural modifi cation of motor rotor [Lorenz 1995]

Extraction of speed information from the harmonic components 
[Jiang and Holtz 1997]

Test current method [Blaschke, Vandenput, and van der Burgt 1995]

Involving stator fl ux estimation [Xu and Novotny 1993]

The above methods were tested in practical systems and shown to yield 
a well acceptable performance at very low rotor speed. Another trend in 
the research of sensorless control involves sophisticated control/estimation 
algorithms without additional source of information being exploited. These 
methods include some adaptive/robust algorithms, such as 

Kalman-Filter method [Henneberger, Brunsbach, and Klepsch 1991]

Model reference adaptive control method [Tamai, Sugimoto, and 
Yano 1987]

The fl ux/speed observer discussed here is an extended version of [Isozimov 
1983] and was presented by Yan, Jin, and Utkin [2000], in which some other 
important research works on this topic are referenced. 

The objective in this subsection is to design a fl ux/speed observer to esti-
mate the rotor fl ux and rotor speed simultaneously based on the measure-
ment of the stator currents and voltages, under the natural assumption that 
there exists a torque/fl ux controller such that the estimated torque and esti-
mated rotor fl ux are controlled and following their references.

The observer is designed as
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 (10.3.37)

where αλ̂ , βλ̂  represent the estimated rotor fl ux components, and αî , βî  rep-
resent the estimated stator currents. C is a parameter to be selected. The 

•

•

•

•

•

•
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 estimate of the rotor electrical angular speed ω̂e and the auxiliary variable μ 
are discontinuous quantities given by

 
ˆ ( )

( )

ω
μ μ μ

e nn sign s

sign s

=
=

0

0

 , (10.3.38)

where n0, μ0 are constants, and sn, sμ are nonlinear functions of the stator cur-
rent errors and estimated rotor fl ux components
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β β α α α β

μ α α α

λ λ

λ ββ β βλˆ ) ˆi i−
 (10.3.39)

Note that sn and sμ are actually proportional to the current estimation errors 
projected in the (d, q) coordinates based on the estimated rotor fl ux angle 
instead of the real rotor fl ux angle.

First, it will be shown that there exist constant values n0 and μ0 such that 
sliding mode occurs in the surfaces of sn = 0 and sμ = 0, and, as a result, the 
estimation errors

 α α α β β βi i i i i i= − , = −ˆ ˆ  (10.3.40)

are equal to zero. Then, under the natural assumption that a controller exists 
such that estimated motor torque and estimated rotor fl ux track their refer-
ences, it will be shown that the fl ux estimation errors

 α α α β β βλ λ λ λ λ λ= − , = −ˆ ˆ  (10.3.41)

will tend to zero as well, and, furthermore, the average value of the discon-
tinuous variable ω̂e tends to the real speed ωe. 

10.3.4.1. Analysis of Current Tracking

To analyze the convergence of the estimates to the real values in the pro-
posed observer structure, we fi rst need to analyze the stator current track-
ing property. As it follows from the observer equations (Equation 10.3.37) 
and the motor model equations (Equation 10.3.5), the error dynamics with 
respect to the errors αi , βi , αλ , and βλ  can be written as

 

d
dt

C

d

dt

e e

e

α
α β β β

β
β α

λ ηλ ω λ ω λ λ μ

λ ηλ ω λ

= − − − +

= − + +

ˆ ˆ

ωω λ λ μ

βηλ βω λ βω λ βλ μ

α α

α
α β β α

β

e

e e

C

d i
dt

d

ˆ ˆ

ˆ ˆ

−

= + + −

ii
dt e e= − − −βηλ βω λ βω λ βλ μβ α α β

ˆ ˆ

 (10.3.42)
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Based on the error dynamics and the observer equations, the time derivative 
of sn can be derived as

 ns i i i i� � � � �= − + −β α α β β α α βλ λ λ λˆ ˆ ˆ ˆ , (10.3.43)

where

 β α α β

β α

λ λ βω λ βω λ βη βω� �i i e e

i

e e e
ˆ ˆ ˆ ˆ ˆ− = − + + −

2 2

2 1

ˆ̂ ˆ ˆ ( )� �λ λ ω η μα β μ β α α β μ− = − + − +i s L i i i i Cse h

 (10.3.44)

With the substitition of Equation 10.3.38 for ˆ ,ωe  Equation 10.3.43 can be refor-
mulated as

 n n es s n sign s f i i e e� = − +( ) + , , , ,β λ ωμ α β
ˆ ( ) ( ),

2

0 1 2  (10.3.45)

with ˆ ˆ ˆ ,λ λ λα β= +2 2

 f i i e e L i i i i ee e h( ) ˆ ( )ω βω λ η βηα β β α α β, , , , = + − +1 2

2

22 1− βωee
+ Csμ μ, and

 
e

e

1

2

= +

= −
α α β β

β α α β

λ λ λ λ

λ λ λ λ

ˆ ˆ

ˆ ˆ
. (10.3.46)

It follows from Equation 10.3.45 that, if the condition

 β λ μ
ˆ 2

0+ > ,s  (10.3.47)

holds, then for high enough n0, s sn n� < 0, i.e., sliding mode will occur on the 
surface sn = 0. Similarly, for sμ, we have

 
μ α α β β α α β βλ λ λ λ� � � � �s i i i i= + + +ˆ ˆ ˆ ˆ

 
  ( ) ˆ ( )= + + + −βη βω η βμ λα α β β μe e L i i i i sign se h1 2 0

2 . (10.3.48)

If μ0 is high enough, s sμ μ� < 0, and sliding mode will occur on the surface 
sμ = 0. 

After sliding mode arises on the intersection of both surfaces 
s i in = − =β α α βλ λˆ ˆ 0 and s i iμ α α β βλ λ= + =ˆ ˆ 0, αi = 0 and βi = 0 are the unique 

solution under the assumption λ̂
2

0≠  , which means that the estimated cur-
rents αî , βî  converge to the real currents iα, iβ, respectively.

The equivalent control of the discontinuous functions ˆ ( )ωe nn sign s= 0  and 
μ = μ0sign(sμ) are the solutions of the algebraic equations �sn = 0 and �sμ = 0. 
For our case, 
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 ˆ
ˆ ˆ

._ω ω ω

λ

η

λ
e eq e

e e e= − +2 1 2 2  (10.3.49)

As seen from Equation 10.3.49, if the estimated rotor fl ux converges to the 
real fl ux, which leads to e1 = 0 and e2 = 0 (see Equation 10.3.46), then, ˆ

_ωe eqwill 
tend to the real rotor (electrical) speed. The next step is to prove e1 = 0 and 
e2 = 0. Before doing that, let us go through the following remarks.

Remark 10.3.1

Equation 10.3.49 is only for the theoretical analysis to show that the equiva-
lent control of ˆ ( )ωe nn sign s= 0 , i.e., ˆ

_ωe eq is indeed equal to the real rotor speed. 
In practice, however, ˆ

_ωe eq will be obtained through a low-pass fi lter with 
discontinuous term ˆ ( )ωe nn sign s= 0  as the input, i.e.,

 t z z n sign s zc n e eq� + = , ≈0 ( ) ˆ ,_ω  (10.3.50)

where the time constant of the low-pass fi lter, tc, should be small compared 
with the slow component of n0sign(sn) but large enough to fi lter out the high 
rate component.

Remark 10.3.2

The condition Equation 10.3.47 for sliding mode to occur on the surface sn = 0 
is not very restrictive because the stator currents iα and iβ are measurable. We 
can always choose the initial conditions α

ˆ ( )i 0  and β
ˆ ( )i 0  close enough to the 

true stator currents iα(0) and iβ(0) such that the initial errors αi ( )0  and βi ( )0 , 
and hence sμ, are small enough to guarantee that this condition holds.

Remark 10.3.3

Although the structure of the observer is selected in the framework of the 
work by Isozimov [1983], an extension is made to guarantee the conver-
gence of the observer. It will be shown later that, under certain conditions, the 
asymptotic stability of the sliding mode observer can be guaranteed with the 

fl ux errors αλ  and βλ  converging to zero and z tending to the real speed ωe.

Remark 10.3.4

Although the fl ux/speed observer is of the fourth order, after sliding mode 
occurs on the surfaces sn = 0 and sμ = 0, the error dynamics of the sliding 
mode observer are actually of second order. This order-reduction property 
of the sliding mode is very helpful for the stability analysis of the nonlinear 
time-varying error system. 
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10.3.4.2. Composite Observer-Controller Analysis

Now we will prove that e1 → 0 and e2 → 0 under certain conditions. In a con-
trol system based on observed state variables, the solutions of the observer 
will be under some constrains regarding the reference inputs of the con-
trol system. For a properly designed controller, the observed state variables 
closely follow their references and cannot become arbitrarily large.

Assumption 

There exists a torque/fl ux controller such that the estimated torque and esti-
mated rotor fl ux are controlled to follow their references starting from some 
time instant, i.e.,

 
ˆ

ˆ
.

*

*

τ τ

λ λ

=

=
 (10.3.51)

As mentioned previously, the error system of the observer is of second order 
as a result of the order reduction of sliding mode. Calculate the time deriva-
tive of the transformed fl ux errors e1 and e2 to build the error system of the 
rotor fl ux estimation: 

 
1

2

� � � � �

� �

e

e

= + + +

= −
α α β β α α β β

β α α

λ λ λ λ λ λ λ λ

λ λ

ˆ ˆ ˆ ˆ

ˆ �� � �λ λ λ λ λ λβ β α α β
ˆ ˆ ˆ+ −

 (10.3.52)

and solve αλ  and βλ  from Equation 10.3.46, 

 

α
α β

β
β α

λ λ
λ

λ

λ

λ
λ

λ
λ
λ

= −

= +

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

2 1 2 2

2 1 2 2

e e

e e

. (10.3.53)

Substituting the observer model (Equation 10.3.37) and the observer error 
dynamics (Equation 10.3.42) into Equation 10.3.52, by denoting

 

ˆ
ˆ

ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ

ˆ

i i i

i i i

d

q

= +

= −

α
α

β
β

α
β

β
α

λ
λ

λ
λ

λ
λ

λ
λ

, (10.3.54)

yields 
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L i
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⎟
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+ − +e e C C ee1 1

2

1ω λ μ μˆ

. (10.3.55)

Note that the introduced auxiliary variables îd and îq in Equation 10.3.54 are 
actually stator currents projected onto the (d, q) coordinates, which aligns 
with the estimated rotor fl ux vector instead of the real (but unknown) rotor 
fl ux vector. The value of ωe is defi ned as ω ω ωe e e= −ˆ . After sliding mode 
occurs, ω̂e and ˆ

_ωe eq are equivalent. Hence, the speed deviation ωe can be cal-
culated from Equation 10.3.49: 

 ω ω

λ

η

λ
e

e e e= − +
ˆ ˆ

.2 1 2 2  (10.3.56)

Substitution of Equation 10.3.56 into Equation 10.3.55 results in the error 
dynamics in matrix form: 
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(10.3.57)

Because sliding mode on manifold sμ = 0 has also been enforced, we can solve 
the algebraic equation μ�s = 0 in Equation 10.3.48 with respect to μ to yield 

 μ η

λ

ω

λ
eq

ee e= +
ˆ ˆ

.2 1 2 2  (10.3.58)

Equation 10.3.58 can be used to eliminate the discontinuous control μ 
from the error system in Equation 10.3.57. In the next step, we replace ˆ , ˆi id q 
with the reference torque τ*and reference fl ux λ*, using the assumption 

that the torque/fl ux controller will make τ* and λ* to be equal to τ̂  and λ̂ , 
respectively. 

Similar to the induction motor model in (d, q) coordinates aligned with 
the real rotor fl ux vector, the fl ux and torque model in (d, q) coordinates 
aligned with the estimated rotor fl ux vector can also be found compared 

with Equation 10.3.11 under the notation ||λ|| = λd (and also ˆ ˆλ λ= d):
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. (10.3.59)

Taking into account the assumption in Equation 10.3.51 and considering the 
steady-state solution of the fl ux model in Equation 10.3.59 (note that �λ * = 0 is 
normally required), we have

 

ˆ

ˆ

*

*

*

i
L

i
L

PL

d
h

q
r

h

=

=

λ

τ
λ

2

3

.  (10.3.60)

Finally, substituting Equations 10.3.58 (note that μ = μeq in sliding mode), 

10.3.60, and ˆ *λ λ=  into the error dynamic system (Equation 10.3.57) and 
performing linearization, yields
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e

e
1
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, (10.3.61)

where a = (2τ*Rr)/[3P(λ*)2].
Note that the linearized error system (Equation 10.3.61) does not depend 

on the real speed, real rotor fl ux, and real stator currents. It depends only on 
the reference torque τ*, the reference fl ux λ*, the equivalent rotor speed ˆ

_ωe eq, 
and the adjustable parameter C. As follows from Equation 10.3.61, for large 
C, the motion of the error dynamic system can be classifi ed into the slow and 
fast motion. The fast component η ωe ee eq1 2+ ˆ

_  decays rapidly with

 lim
ˆ

.
_

t
e eq

e e
→∞

= −2 1

η
ω

 (10.3.62)

The slow motion is governed by 

 1 11�e
a

e
e eq

= − +
⎛

⎝
⎜

⎞

⎠
⎟η

ω̂
.

_

  (10.3.63)

One of the suffi cient conditions for the asymptotic stability of the slow motion 
for any time-varying speed is 1 0+ >a e eq

ˆ
_ω . It is clear that 

TAF-65602-08-1101-C010.indd   289TAF-65602-08-1101-C010.indd   289 3/31/09   7:53:58 PM3/31/09   7:53:58 PM



© 2009 by Taylor & Francis Group, LLC

290 Sliding Mode Control in Electro-Mechanical Systems

 
a

e eq
ˆ

_ω
> 0 (10.3.64)

is a suffi cient condition as well. This means that the solution to Equation 

10.3.63 is stable and lim
t

e
→∞

=1 0 if the reference torque τ* and the  equivalent 

speed ˆ _ωe eq have the same sign. Finally, according to Equation 10.3.62, lim
t

e
→∞

=2 0. 

We have described qualitatively the fl ux convergence issue based on the 

motion separation approach.

Remark 10.3.5

According to the theory of singularly perturbed systems, the asymptotic 
stability of the fast motion of the error dynamic (Equation 10.3.61) requires 
that the parameter C and ˆ

_ωe eq have the same sign. Because the equivalent 
speed ˆ

_ωe eq can be calculated through Equation 10.3.50 online, the sign of 
the parameter C can be adapted accordingly. At the instants when ωe_eq = 0, 
the stability of the system in Equation 10.3.61 will depend on the signs of 
parameter C and parameter a, whereas a has the same sign as the reference 
torque. Thus, the sign of parameter C can be adapted to the sign of the refer-
ence torque, guaranteeing the stability of the system. 

10.3.4.3. Simulation Results

The proposed estimation algorithm was fi rst simulated using Matlab®. In 
the simulation, the torque/fl ux controller was also implemented besides 
the sliding mode observer to build up the whole closed-loop system. For the 
torque/fl ux control in the simulation, no PWM technique was used and the 
dynamics in the voltage source inverter were ignored. 

Parameters used in the torque controller, the fl ux/speed observer, and the 
induction motor model for the simulations are listed in Table 10.2. Figures 
10.30 through 10.34 show the piecewise continuous situation, and Figures 
10.35 through 10.39 show the sinusoidal situation for torque tracking. From 
these simulation results, we can see that the proposed sliding mode fl ux/
speed observer exhibits high accuracy. Note that convergence of estimations 
to real values of fl ux and speed takes place if torque estimate tracks the refer-
ence input.

10.3.4.4. Experimental Results

The proposed control scheme was also implemented in a laboratory experi-
ment. The real-time control and estimation program was written in C. The 
proposed algorithm was tested at the experiment environment in PEEM 
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TABLE 10.2
Parameters Used in the Simulation

Ls = 590 × 10–6 H τl = BP ωe N. m

Lr = 590 × 10–6 H BP = 0.04 N. m. s/rad

Lh = 555 × 10–6 H n0 = 120

Rs = 0.0106Ω μ0 = 200

Rr = 0.0118Ω λ* = 0.01

u0 = 12V τ* = 1.0 N.m

P = 1.0 tc = 0.0015

J = 4.33 × 10–4 N. m. s2

FIGURE 10.30
Torque tracking: reference τ*, real τ, and observed τ̂ .
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(Power Electronics and Electrical Machines) Laboratory of The Ohio State 
University. The motor is a Westinghouse 5 hp, 220 V, Y-connected, four-pole 
induction machine with the parameters listed in Table 10.3.

Main components of the experiment environment include the following: 
a digital signal processor (DSP) system; the induction motor and associated 
voltage source inverters; an optical encoder attached to the motor shaft for 
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the  verifi cation and comparison of the speed estimation; cables for connect-
ing the whole analog/digital signals; and AC current sensors. 

The torque control is executed every 100 μsec, which serves the insulated 
gate bipolar transistor (IGBT) inverter with a switching frequency of 10.5 kHz. 
Because the system was tested without load, we had to apply a sign-varying 
torque reference input.

To verify and compare the estimated fl ux of our sliding mode observer 
without using a rotor speed sensor, the reduced-ordered observer (Equation 
10.3.24) with rotor speed sensor is used, because direct measurement of rotor 
fl ux is generally not possible. Figure 10.40 shows the result of the experiment 
in which only the torque/fl ux controller is implemented while the speed is 

measured by the optical sensor. τ̂  is defi ned as ˆ ( )( )( ˆ ˆ )τ λ λβ α α β= −P L L i ih r3 2 . 
The rotor fl ux is from the reduced-ordered observer with known rotor speed. 
Figure 10.41 shows the fl ux estimations of the fourth-order sliding mode 
observer (Equation 10.3.37). We also compare them with the fl ux estimation 
from the reduced-ordered observer. Figure 10.42 shows the results for the 
system with both the torque/fl ux controller and sliding mode observer work-
ing together. In this case, we do not need to use the optical sensor to obtain 
the speed, i.e., we implemented the real sensorless control. All the variables 
needed for the controller implementation, such as fl ux components, their 
derivatives, and rotor speed, are obtained from the sliding mode observer.

FIGURE 10.31
Magnitude of fl ux tracking: reference λ*, real ||λ||, and observed ||λ̂||.
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FIGURE 10.32
Flux convergence: observed αλ̂  and real λα (upper plot) and observed βλ̂  and real λβ (lower 

plot).
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FIGURE 10.33
Speed estimation: observed speed ωe_eq and real speed ωe.
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FIGURE 10.34
Current convergence for stator currents: observed and real (upper plot) and observed and real 

(lower plot).
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FIGURE 10.35
Torque tracking: reference τ*, real τ, and observed τ̂ .
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FIGURE 10.36
Magnitude of fl ux tracking: reference λ*, real ||λ||, and observed ||λ̂||.
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FIGURE 10.37
Flux convergence: observed αλ̂  and real λα (upper plot) and observed βλ̂  and real λβ (lower 

plot).
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FIGURE 10.38
Speed estimation: observed speed ωe_eq and real speed ωe.
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FIGURE 10.39
Current convergence for stator currents: observed  and real (upper plot) and observed and real  

(lower plot).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

100

50

–50

0

–100

Time (sec)

i β 
(A

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

100

50

–50

0

–100

i α
 (A

)

iα

iα

iβ

iβ

TAF-65602-08-1101-C010.indd   297TAF-65602-08-1101-C010.indd   297 3/31/09   7:54:01 PM3/31/09   7:54:01 PM



© 2009 by Taylor & Francis Group, LLC

298 Sliding Mode Control in Electro-Mechanical Systems

In the experiment, the rotor speed control was also implemented. Speed 
control can be achieved based on the torque control using a cascaded 
structure. For the case of zero load, dωe/dt = (P/J)τ. As shown in the sim-
ulation and the experiment, the estimate ωe_eq tends to ωe; therefore, if 
the torque is set as τ ω ω= −k e eq e( )_

* , then d dt kP Je e eq eω ω ω= ( ) −( )_
*  and the 

motor speed converges to ωe
*  exponentially with the rate determined by 

the parameter kP/J. Figure 10.43 shows the case in which the speed is con-
stant, and Figure 10.44 shows the case with time-varying speed  reference 
input. 

TABLE 10.3
Parameters of the Induction 
Motor Used in Experiment

5 Hp Rs = 0.6Ω

4 poles Rr = 0.412Ω

14.8 A Ls = 0.0431H

60 Hz Lr = 0.0431H

1720 rpm Lh = 0.0412H

FIGURE 10.40
Torque control with speed sensor. Curve 1, ωe; curve 3, 10τ*; curve 4, 10τ.
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FIGURE 10.41
Flux estimation. Curves 1 and 3, αλ̂  and βλ̂  from observer with speed sensor. Curves 2 and 4, αλ̂  

and βλ̂  from SM observer without speed sensor. SM, sliding mode observer.
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10.3.5. Speed, Rotor Time Constant Observer, and Experimental Results 

This section describes a new closed-loop approach to estimate the induction 
motor speed and rotor time constant from measured terminal voltages and 
stator currents [see also Derdiyok, Yan, Guven, and Utkin 2001]. A new state 
space system is defi ned without explicitly involving the fl ux information of 
the motor. A Lyapunov function is derived to determine the motor speed 
and the rotor time constant simultaneously, under the condition that these 
two quantities are unknown constant parameters. The rotor time constant 
estimation is useful to compensate the rotor resistance variation, especially 
in fi eld-oriented control of induction motors. The proposed algorithms are 
validated by both simulation and experiment. 

The stator current equations in the orthogonal stator frame ((α, β) coordi-
nates) can be rewritten as follows:

 

di
dt

R
L

L i
L

u

d

e
s

s
h

s

α
α β α αβηλ βω λ

σ
β η

σ
= + − +

⎛
⎝⎜

⎞
⎠⎟

+ 1

ii

dt
R
L

L i
L

ue
s

s
h

s

β
β α β ββηλ βω λ

σ
β η

σ
= − − +

⎛
⎝⎜

⎞
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+ 1
. (10.3.65)
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FIGURE 10.42
Sensorless torque control. Curve 1, ωe from sensor; curve 2, ωe_eq  from observer; curve 3, 10τ*; 

curve 4, 10τ̂ . Top plot, Case 1 (period time is 4 sec); bottom plot, case 2 (period is 2 sec).
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FIGURE 10.43
Sensorless speed control. Curve 1, ωe; curve 2, ωe_eq. Top plot, Case 1, ωe

*  = 0.2 (600r/min); bottom 

plot, case 2, ωe
*
 = 0.1 (300r/min).
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This form of equations is required because the rotor time constant η is now 
treated explicitly. These equations are obtained by substituting γ into the 
induction motor model (see Equations 10.3.5 and 10.3.6).

First, a stator current observer is designed with associated known 
parameters

 

di
dt

R
L

i
L

u V

di
dt

R
L

i

s

s s

s

s
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α α α

β
β

σ σ

σ σ
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= − + +

= − +

1

1

LL
u V

s
β β+

, (10.3.66)

where αî , βî  are estimates of the two current components. Vα and Vβ are dis-
continuous functions of the current errors 

 
V V sign s V sign i i

V V sign s
α α α α

β β

= − = − −
= −

0 0

0

( ) (ˆ )

( )) (ˆ ).= − −V sign i i0 β β

 (10.3.67)

It will be shown that there exists a constant value V0 such that sliding mode 
occurs in the surfaces sα = 0 and sβ = 0. As a result, the estimation errors 

 α α α β β βi i i i i i= − , = −ˆ ˆ  (10.3.68)

FIGURE 10.44
Sensorless speed control. Curve 1, ωe; curve 2, ωe_eq; curve 3, ωe

*. Case 3, ωe
* = 0.05 sin [(π/2)t].
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tend to zero in fi nite time. Combining the above equations, the current 
 estimation errors can be derived as 

 

d i
dt

V
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L i L i
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s

s
h
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s
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L i L i .

 (10.3.69)

To fi nd the discontinuous controls such that sliding mode is enforced in the 
manifolds sα = 0 and sβ = 0, select Lyapunov function candidate V s s= +1

2
2 2( )α β . 

Its time derivative along the state trajectories of system Equation 10.3.69 can 
be written as 
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 (10.3.70)

where fα(t) and fβ(t) are continuous functions of the motor states iα, iβ, λα, λβ 
and ωe but not dependent on the control signals Vα and Vβ. 

It is obvious that, if V0 is large enough, �V < 0 can be guaranteed, i.e., sliding 
mode will occur in the intersection of the surfaces sα = 0 and sβ = 0. Hence, 
the estimated currents αî  and βî  will converge to the real ones after sliding 
mode occurs.

As next step, the equivalent control of Vα and Vβ will be investigated and 
associated auxiliary state variables are introduced. As we know from the 
previous sections, once sliding mode occurs, the equivalent control compo-
nents, Vα _eq and Vβ _eq can be obtained by setting α�s = 0 and β�s = 0: 

 Vα _eq = βηλα + βωeλβ − βLhηiα

 Vβ _eq = βηλβ − βωeλα − βLhηiβ. (10.3.71)

In practice, Vα _eq and Vβ _eq cannot be calculated directly by the above two 
equations because they contain unknown information in the right-hand side. 
In fact, the two discontinuous controls Vα and Vβ have slow and fast com-
ponents, where the slow components are corresponding to Vα _eq and Vβ _eq. 
As usually done in the previous sections, Vα _eq and Vβ _eq can be obtained 
through a low-pass fi lter with discontinuous values Vα and Vβ as the 
inputs, i.e., 
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where μ is the time constant of the low-pass fi lters, which should be chosen 
small compared with the slow component of the real values Vα and Vβ but 
large enough to fi lter out the high-frequency components. The output zα and 
zβ of the low-pass fi lters are taken as Vα _eq and Vβ _eq, respectively. Because zα 
and zβ can be obtained directly, from now on we assume that Vα _eq and Vβ _eq 
are available. 

For the notation convenience, let us introduce auxiliary state variables 
Lα = Vα _eq and Lβ = Vβ _eq with unit Volt.H−1 (voltage/inductance). It is reason-
able to assume that �ωe = 0 and �η = 0 because they vary much slower than the 
electrical variables such as stator currents and rotor fl ux. Hence,
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  (10.3.73)

Comparing the rotor fl ux model Equation 10.3.5 with Equation 10.3.71, it is 
obvious that 

 � �λ β λ βα α β β= − / , = − /L L . (10.3.74)

Substituting Equation 10.3.74 into Equation 10.3.73 yields the dynamics of Lα 
and Lβ:
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Finally, we are able to design the observer for Lα and Lβ as well as the desired 
adaptation law for η and ωe. The observer for Lα and Lβ can be designed as 
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where η̂, ω̂e are the estimates of η, ωe and will be determined by an adapta-
tion law, K is a positive constant to be chosen, and α α αL L L= −ˆ  and β β βL L L= −ˆ  
denote the observer errors. 

Then the error dynamics read as follows:
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Let us select the Lyapunov function candidate

 V L L e= + + + ≥1
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1

2

1

2
02 2 2 2

α β ω η . (10.3.78)

Combined with Equation 10.3.77, the time derivative of V is obtained as

 

� � � � �

� �
V L L L L

KL K
e e

e e

= + + +

= + − −
α α β β

α β

ω ω ηη

ω ω ηη 2 2
LL L L L L i

L L L L
e h

e h

+ − − −

+ − −
α α β α

β α β β

η ω β η

ω η β η

( )

(

�

�ii ).

 (10.3.79)

To eliminate the unknown terms ωe and η in the right-hand side of �V, the 
adaptation law can be selected as 
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In this case, �V becomes 

 �V K L L= − + ≤ ,( )α β
2 2 0  (10.3.81)

which means that, under the adaptation law (Equation 10.3.80), the Lyapunov 
function V is diminishing until 

 α βL L= = .0 0,  (10.3.82)

From Equations 10.3.80 and 10.3.82, we know �ωe = 0 and �η = 0, which means 
ωe and η are constant values. Conversely, substituting Equation 10.3.82 into 
Equation 10.3.77, we get 
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which is equivalent to
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Because terms L L ihα αβ+ � , Lβ, L L ihβ ββ+ � , and Lα are all functions with respect 
to time and are not proportional to each other, they are linearly  independent 
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time functions. As a result, the solution of Equation 10.3.84 will be 
η = 0 and ω = 0, implying that η̂ η=  and ω̂ ωe e= . 

The system is summarized as follows. For the observer (Equation 10.3.76), 
under the adaptation law (Equation 10.3.80), the estimated rotor speed and 
rotor time constant will converge to their real values. 

The proposed observer was verifi ed by simulation and experiment. The 
parameters of the induction motor used for the simulation and the experi-
ment were taken from a real induction motor, which is a Westinghouse 
5 hp, 220 V, Y-connected, four-pole induction machine, as listed in Table 10.4. 
The performance of the observer is verifi ed by using it in an open loop, i.e., in 
the feedback loop, the actual speed from an encoder is used and the observer 
structure works parallel to the overall system without affecting the closed-
loop system. The closed-loop system follows the commanded reference 
trajectories (in the speed control loop, a PI controller is used). The observer 
estimates the speed and the rotor time constant of the motor in parallel to 
the control loop. 

Here only the experimental results are presented. The proposed algorithm 
was tested at the experiment environment in the PEEM Laboratory of The 
Ohio State University. The experimental results for different commanded 
speed trajectories in Figures 10.45 through 10.55 show that the observer 
system works satisfactorily in the experiment. For more details of the pro-
posed observer system in this subsection, readers are referred to the work of 
Derdiyok, Yan, Guven, and Utkin [2001]. 

10.3.6 Direct Torque and Flux Control 

In this section, the motor torque and the amplitude of rotor fl ux will be 
controlled directly by the inverter On-Off gating signals, without explicitly 
involving the stator current control and conventional PWM techniques.

TABLE 10.4
Parameters of the Induction Motor Used 
for the Simulation and the Experiment

5 Hp Rs = 0.6Ω

4 poles Rr = 0.412Ω

14.8 A Ls = 1.9 mH

60 Hz Lr = 1.9 mH

1800 rpm Lh = 41.2 mH

TAF-65602-08-1101-C010.indd   306TAF-65602-08-1101-C010.indd   306 3/31/09   7:54:06 PM3/31/09   7:54:06 PM



© 2009 by Taylor & Francis Group, LLC

Electric Drives 307

FIGURE 10.45
Measured and estimated speed.
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FIGURE 10.46
Measured and observed currents (between 7.5 and 9.5 sec) iα and îα..
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FIGURE 10.47
Calculated and observed states Lα and L̂α.
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FIGURE 10.48
Enlargement of Figure 10.47 for 6-8 sec interval.
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FIGURE 10.49
Measured and estimated speed.
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FIGURE 10.50
Calculated and observed states Lα and L̂α.
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FIGURE 10.51
Enlargement of Figure 10.50 (between 1.2 and 2.4 sec).
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FIGURE 10.52
Measured and observed currents iα and iα.
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FIGURE 10.53
Enlargement of Figure 10.52 (between 5 and 6 sec).
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FIGURE 10.54
Measured and estimated speed.
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Let Sτλ τ λ= [ ]s s T be the vector contains sliding surfaces of torque and fl ux: 

 

s

s c

τ

λ

τ τ

λ λ λ λ

= −

= − + −

⎧
⎨
⎪

⎩⎪

∗

∗ ∗
( ) ( )� �

 

(10.3.85)

where λ λ λα β= +2 2 , �λ  denotes d dtλ , c is a designed positive constant 
and τ λ* *, are the reference value of motor torque and rotor fl ux, respectively. 
If sτ = 0, then τ τ= ∗ and if sλ = 0, then λ tends to λ∗ at the rate defi ned by c. 
Time derivatives of sτ  and sλ  can be obtained by substituting the induction 
motor model Equation 10.3.5. 
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(10.3.86)
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(10.3.87)

FIGURE 10.55
Estimated η̂ .
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where f1 and f2 are continuous nonlinear functions of all arguments (note 
that they are not functions of uα and uβ), and ��λ  denotes d d t2 2λ . Vector �Sτλ 
can be expressed in matrix form
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(10.3.88)

where F = [ ]f f T
1 2 , C1 is a diagonal matrix with elements C1

11 3= PL L Lh r s( )σ  and
C1

22 1= . Note that stator voltages uα, uβ can be handled as the control inputs of 
the induction motor system, but they cannot be implemented directly, since 
only the switching elements of the inverter (they receive the PWM signals 
in the conventional motor control techniques) can be controlled. Thus the 
control inputs should be formulated in terms of phase voltages as well as of 
gating signals of the inverter. As follows from Equation 10.3.8, the relation 
between uα, uβ and the phase voltages is 
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(10.3.89)

where the phase voltages u u ua b c, ,  are the potential differences between 
points a b c, ,  and the neutral point n, respectively, as defi ned in Figure 
10.26.

From Equations 10.3.88  and 10.3.89, 
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where [ ]Q Q T
1 2  is a vector that represents the product of 2 2×  matrix C1, the 

2 3×  matrix (depending on the fl ux components), and the 3 1×  vector in the 
penultimate step in Equation 10.3.90. Now consider the Lyapunov function 
candidate 
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2
S Sτλ τλ

 
(10.3.91)

Its time derivative is 
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(10.3.92)

where fV is a continuous function of all the possible arguments, and 
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(10.3.93)

From Equations 10.3.3 and 10.3.4, we have
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(10.3.94)

Note that the control variables u u u1 2 3, ,  take values from the discrete set 
−{ }u u0 0,  with u0 being the DC-bus voltage (as showed in Figure 10.26).
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Substitute Equation 10.3.94 into Equation 10.3.92 and denote
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(10.3.95)

Then �V is of the form

 
�V f u u u= + + +V

2

9
1 1 2 2 3 3( )Λ Λ Λ

 
(10.3.96)

Defi ne the control logic signals as g u u g u u g u u1 1 0 2 2 0 3 3 0= = =, ,  which 

take values from the discrete set −{ }1 1, , �V can be further derived as

 
�V f u g g gV= + + +2

9
0 1 1 2 2 3 3[( ) ( ) ( ) ]Λ Λ Λ

 (10.3.97)

Select control logic of the inverter as
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Λ
Λ
Λ  (10.3.98)

 resulting in 

 
�V f uV= − + +2

9
0 1 2 3[ ]Λ Λ Λ

 (10.3.99)

When the DC-bus voltage u0 0>  has enough magnitude, �V < 0 can be guar-
anteed, implying that sτ = 0 and sλ = 0 in fi nite time. It means that the real 
torque is equal to the reference torque  (τ τ= ∗), and λ  tends to λ∗ at the 
desired rate c.  

Finally, the On-Off signals, which take values from the discrete set 0 1,{ } 
(with 0=Off and 1=On), can be generated based on Equation 10.3.2

 s gw1 10 5 1= +( ). , s sw w4 11= − ,

 s gw2 20 5 1= +( ). , s sw w5 21= − , (10.3.100)

 s gw3 30 5 1= +( ). , s sw w6 31= − .
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These On-Off signals are illustrated in Figure 10.26. Note that in the practi-

cal implementation, s s sw w w4 5 6, ,  should have several microsecond time delay 

with respect to s s sw w w1 2 3, , , respectively, in order to prevent short circuits 
(during the switching state exchange between the upper and lower power-
transistors, see Figure 10.26) in inverters such as IGBTs. In the stability proof 
given above, the control law Equation 10.3.98 is sensitive to the sign of the 

terms Λ Λ Λ1 2 3, , . Thus some practical treatments, e.g. a hysteresis band, may 
be required to implement the control algorithm.

Figure 10.56 shows the simulation results of proposed torque/fl ux con-
troller. The simulation uses the default motor parameters as given in 10.3.2 

except that u V0 = 50  instead of u V0 = 12 .

10.3.6.1. Supplement: Cascaded Torque and Flux Control Via Phase Currents

In the method described above, the motor torque and the amplitude of rotor 
fl ux are controlled directly by the inverter gating signals, without explic-
itly involving the stator current control and conventional PWM techniques. 
A conventional approach called “cascade control method” can be used to 
achieve the same goal. In the cascade method, given reference torque and 
reference fl ux, the corresponding phase currents are generated, and the lat-
ter are realized by conventional PWM or by sliding mode current control. 
The concept of cascade control method is sketched here without going into 
the details of the current control.

FIGURE 10.56
Torque tracking (upper plot) and fl ux tracking (lower plot).
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Suppose the reference torque and the reference fl ux τ*, λ * are given. 
Substituting τ * into the torque equation of induction motor model (Equation 
10.3.5), an algebraic equation of the desired torque control error can be 
derived as

 F i i
PL
L

i ih

r
1

3

2
0( , , , , ) ( ) .* *

α β α β β α α βλ λ τ τ λ λ= − − =  (10.3.101)

Note that, in the above equation, iβλα − iαλβ = λdiq, with λ λ λ λα βd = = +2 2 , 
according to the motor model in (d, q) coordinates (Equation 10.3.11). Also, 
the desired fl ux dynamics can be given as

 ( ) ,*λ λ λ λ− + −( ) =∗ c � � 0  (10.3.102)

which corresponds to sλ = 0 in Equation 10.3.85. The time derivative of the 
fl ux amplitude can be calculated as 

 � � �λ
λ λ

λ λ λ λ
α β

α α β β=
+

+1
2 2

( ). (10.3.103)

Substituting � �λ λα β,  from the motor model (Equation 10.3.5) into the above 
equation results in

 �λ η λ λ η
λ λ

λ λ
α β

α α β β

α β

= − + +
+

+
2 2

2 2
L

i i
h . (10.3.104)

Note that this equation is actually the fl ux model �λ ηλ ηd d h dL i= − +  in 
(d, q) coordinates (see Equation 10.3.11). Substituting Equation 10.3.104 into 
Equation 10.3.102 results in the second algebraic equation

F i i c L
i i

h2
2 2( , , , , ) ( )α β α β α β

α α βλ λ λ η λ λ η
λ λ∗ = − + +

+ ββ

α βλ λ
λ λ

2 2
0

+
− + =∗ ∗

( ) .c �  (10.3.105)

For the equation system 

 F1(iα, iβ, λα, λβ, τ*) = 0

 F2(iα, iβ, λα, λβ, λ*) = 0, (10.3.106)

the fl ux components λα, λβ can be obtained by the fl ux observer (see Section 
10.3.3). There are therefore two unknown variables iα, iβ in the two equations. 
The solution is actually the desired i iα β

* *, , corresponding to the references τ*, 
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λ *. If necessary, the corresponding values of three-phase currents i i ia b c
* * *, ,  can 

also be found using transformation Equation 10.3.10.
Therefore, given the reference torque and reference fl ux, the desired cur-

rents in (α, β) coordinates and in (a, b, c) coordinates can be calculated. Then, 
conventional techniques can be used to control the phase currents in either 
(α, β) coordinates or (a, b, c) coordinates. 

It should be pointed out that, technically, the desired i iα β
* *,  can be found 

through the currents components in (d, q) coordinates, i.e., i id q
* *,  (see transfor-

mation Equation 10.3.14), and i id q
* *,  are the solution of the following equation 

system:

 
τ λ

η λ η λ λ

* *

* * *( ) ( )

=

− + − + =

3

2

0

PL
L

i

c L i c

h

r
d q

d h d d d
�

 (10.3.107)

where λ λd
* *=  and λ λ λ λα βd = = +2 2 . The above equation system is the same 

equation system (Equation 10.3.106) in (d, q) coordinates. Because now the 
two equations are decoupled, the solution for i id q

* *,  is straightforward. The 
transformation from i id q

* *,  to i iα β
* *,  needs rotor fl ux angle ρ or components 

sin ρ and cos ρ (see Equation 10.3.13 and 10.3.14), the latter can be obtained by

 

sin

cos

ρ
λ

λ λ

ρ λ
λ λ

β

α β

α

α β

=
+

=
+

2 2

2 2

. (10.3.108)

The design approaches given above are actually the conventional rotor fl ux 
 oriented control of induction motors from another point of view.

10.4. Summary

In this chapter, control algorithms for DC motors, permanent-magnet syn-
chronous motors, and induction motors using the sliding mode design 
principle have been presented. Beside the advantages provided by the slid-
ing mode approach in the sense of control techniques, this unifi ed design 
principle also provides a deeper understanding of the functionality and 
mechanism of electric drive systems. For AC motors, the ultimate object of 
fi eld-oriented control is to enable a decoupling between the motor torque 
and the motor fl ux, resulting in a system similar to a separately excited DC 
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motor. However, the traditional decoupling characteristic is sensitive to 
motor parameter variations. The design goals of sliding mode control are 
also given in the fi eld-oriented coordinates, and the fi eld orientation is real-
ized by the switching surface transformation. Because no exact decoupling 
is required for sliding mode control, the resulting system is insensitive to 
the motor parameters and the solutions are quite simple. In this sense, slid-
ing mode control may be considered as an extension of the traditional con-
trol techniques such as hysteresis control but with the following advantages: 
achieving fi eld-oriented control performance, providing stability conditions, 
and extension beyond current control to outer-loop control such as speed 
and fl ux control. 

Another impressive feature of sliding mode techniques is the combina-
tion with asymptotic observers and even the observer design itself. In these 
applications, the concept of equivalent control plays a key role. This concept 
originated from the observation of physical systems, providing an additional 
source of information to the control design and thus reducing the complexity 
of the overall system. Based on the concept of equivalent control, numerous 
estimation algorithms, i.e., observer designs, were presented in this chapter. 
Because the mathematical model of an electric motor matches the real motor 
quite well, the presented estimation algorithms open a wide range of practi-
cal applications. 
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11
Power Converters

This chapter presents a sliding mode approach for the design of 
control systems for power converters. A cascaded control structure 
is chosen for ease of control realization and to exploit the motion 
separation property of power converters. For power converters, 
the fast motion is dominated by the dynamics of the loop current, 
whereas the slow motion stems from the dynamics of the output 
voltage. Because power converters inherently include switching 
devices, it is straightforward to implement sliding mode control 
design, yielding a discontinuous control law. Detailed control 
design and numeric simulations will demonstrate the effi ciency 
of sliding mode control design principle in this fi eld as a powerful 
alternative to the existing PWM techniques. 

11.1. DC/DC Converters

For circuits controlled by switching devices, in which the control variable 
can take only values from a discrete set, it is natural to consider sliding 
mode strategies to synthesize the switching policy, from both a techno-
logical and a theoretical point of view. In the past, the method of state-
space averaging has been widely used to analyze DC/DC converters. In 
the state-space averaging method, the linear circuit models and the state-
space equation are identifi ed for each of the possible switch positions of 
the converter during the switching period. These state-space equations 
are then averaged over the switching period, leading to a low-frequency 
equivalent model of the converter. The low-frequency model thus obtained 
may be linearized to apply linear control theory to design feedback com-
pensators. In essence, state-space averaging provides a method of low-
frequency characterization of converters such that frequency domain 
design approaches may be applied. Sliding mode control theory belongs 
to the category of time domain techniques and can be used to characterize 
the system under both small signal and large signal conditions. Sliding 
mode control uses state feedback and sets up directly the desired closed-
loop response in time domain or in terms of differential equations. The 
most important feature of the sliding mode approach is the low sensitivity 
to system parameter variations.
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11.1.1. Bilinear Systems 

Commonly used DC/DC converters can be classifi ed into “buck,” “boost,” 
“buck-boost,” and “cuk” converters. Some of these DC/DC converters can be 
summarized with a unifi ed state-space formulation in the form of a bilinear 
system defi ned on ℜ n:

 �x Ax uBx= + , (11.1.1)

where x ∈ ℜ n is the state vector; A ∈ ℜ n×n and  B ∈ ℜ n×n are matrices with 
constant real entries, and u is a scalar control taking values from the discrete 
set U =:{0, 1}. For system Equation 11.1.1, we may design a discontinuous con-
trol as

 
u s= −( )1

2
1 sign( ) ,

 
(11.1.2)

where s is a scalar switching function in the sense of sliding mode theory, 
defi ned by

 s = cTx,  (11.1.3)

with vector c = [∂s/∂x] and c ∈ Rn  denoting the gradient of the scalar func-
tion s with respect to state space vector x. The motion projection of system 
Equation 11.1.1 onto the subspace s can be obtained as

 

� �s c x c Ax uc Bx

c Ax c Bx s c

T T T

T T T

= = +

+ −=
1

2

1

2
sign( ) BBx.

 

(11.1.4)

For sliding mode to exist in the manifold s = 0, system Equation 11.1.4 needs 
to satisfy the sliding condition ss� < 0, which implies that

 
ss s c Ax c Bx s c BxT T T� = +⎛

⎝⎜
⎞
⎠⎟ − <1

2

1

2
0.

 
(11.1.5)

From the above inequality, the necessary condition for sliding mode to exist 
may be obtained.

If sliding mode exists, then in the vicinity of s = 0, the following relations 
hold:

 �s C Axs
T

> = <0 0,

 �s C Bx C Axs
T T

< = > −0 . (11.1.6)
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The motion equation of system Equation 11.1.1 in sliding mode can be derived 
using the equivalent control method (see Section 2.3). The equivalent con-
trol of the discontinuous control u is calculated by formally setting �s = 0 and 
solving Equation 11.1.4 for u  to yield

 u
c Ax
c Bxeq

T

T= − . (11.1.7)

The motion equation of the sliding motion is governed by

 �x Ax u Bx seq= + =( ).0  (11.1.8)

Theorem 11.1 

For sliding mode to locally exist on s = 0, the corresponding equivalent con-
trol satisfi es

 0 1< = − <u
c Ax
c Bxeq

T

T . (11.1.9)

          □

Proof 11.1

For sliding mode to exist, ss� < 0 holds. The second line of Equation 11.1.4 
states that

 
1

2

1

2
c Bx c Bx c AxT T T> + . (11.1.10)

Solving this inequality leads to 

 0 1< = − <u
c Ax
c Bxeq

T

T . (11.1.11)

          □

Note that condition ss� < 0 defi nes an attraction domain of the sliding mani-
fold. It is the task of the control designer to ensure that this condition is 
always fulfi lled in both transient behavior and steady state. This may also 
involve careful choices of initial conditions, as will become clearer during 
the study of different types of power converters.

In the remainder of this chapter, the control problems of buck and boost 
converters are investigated. The design approaches can be naturally extended 
to the buck-boost and cuk converters.

Boost converters are used for applications in which the required output 
voltage is higher than the source voltage. Conversely, buck converters are 
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used for applications with the output voltage being smaller than the source 
voltage. From a control design point of view, the boost converters are more 
diffi cult than the buck converters, because the standard design model of 
a boost converter is a nonminimum phase system [Venkataramanan, 
Sabanovic, and Slobodan 1985]. In the following, the control problems 
regarding the output-voltage regulation of both types of DC/DC converters 
will be discussed.

Traditionally, the control problems of the DC/DC converters are solved by 
using PWM techniques. Sira-Ramirez [1988] demonstrated the equivalence 
between sliding mode control and PWM control in the low-frequency range 
for a boost converter. Generally speaking, hardware implementation of a slid-
ing mode control is much easier than a PWM control. Because the maximum 
frequency of commercially available switching elements increases higher 
and higher, the sliding mode approach is expected to become increasingly 
popular in the fi eld of power converter control.

11.1.2. Direct Sliding Mode Control

For DC/DC converters, the input inductor (the word “inductor” is often used 
in the literature for DC/DC converters instead of “inductance”) current and 
the output capacitor voltage are normally selected as the state variables. For 
most converters used in practice, the motion rate of the current is much faster 
than the motion rate of the output voltage. Calling on the theory of singular 
perturbations [Kokotovic, O’Malley, and Sannuti 1976], the control problem 
can be solved by using a cascaded control structure with two control loops: 
an inner current control loop and an outer voltage control loop. The latter is 
usually realized with standard linear control techniques, whereas the cur-
rent control is implemented using either PWM or hysteresis control. Here, 

Linear
voltage
controller

Vd

V

E V

I*

I

u

SM
current
controller

DC/DC
converter

Source Output

FIGURE 11.1 
Cascaded control structure of DC/DC converters.
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we use the sliding mode approach for the control of inductor current. Figure 
11.1 shows the general structure of control system for DC/DC converters.

11.1.2.1. Buck-Type DC/DC Converter

The circuit structure of a buck DC/DC converter is shown in Figure 11.2, 
where the variables are defi ned as follows: L, loop inductor; C, storage capaci-
tor; R, load resistance; E, source voltage; I, input current; V, output voltage; 
and u, switching signal taking value from discrete set U =:{0,1}.

The dynamic model of the buck type converter is given by

 

x
L

x u
E
L

x
C

x
RC

x

.
,

.
,

1 2

2 1 2

1

1 1

= − +

= −
 (11.1.12)

with x1 = I and x2 = V.
The goal of control is to achieve a constant output voltage denoted by Vd. 

In other words, the steady-state behavior of the buck converter (Equation 
11.1.12) should be given by 

 
x V

x V
d

d

2

2 0

=

= =

,

.� �  
(11.1.13)

The control design follows a two-step procedure known as integrator back-
stepping [Krstic, Kanellakopoulos, and Kokotovic 1995] or regular form con-
trol (see Section 3.3). First, it is assumed that x1 in the second equation of 
Equation 11.1.12 can be handled as a control input. However, because x1 is the 
output of the current loop in the fi rst equation of Equation 11.1.12, this fi rst 

FIGURE 11.2 
Buck DC/DC converter.
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design step yields desired current x1
*. The control goal (Equation 11.1.13) is 

substituted into the voltage loop, i.e., the second equation of Equation 11.1.12, 
to yield the desired current:

 x V Rd1
* / .=  (11.1.14)

The task of the second design step is to ensure that the actual current x1 
tracks the desired current (Equation 11.1.14) exactly. Because of its exact 
tracking properties, the sliding mode approach is an ideal tool for this task. 
If sliding mode is enforced in

 s x x= − =1 1 0* , (11.1.15)

then x1 = Vd/R. To enforce sliding mode in the manifold s = 0 in Equation 
11.1.15, control u (taking only two values, 0 or 1) in the fi rst equation of 
Equation 11.1.12 is defi ned as 

 u s= −( )1

2
1 sign( ) . (11.1.16)

The condition for sliding mode to exist is derived from ss� < 0. In compliance 
with the derivations in Section 11.1.1, sliding mode exists if 

 0 < x2 < E. (11.1.17)

This condition defi nes an attraction domain of the sliding manifold. Because 
the control (Equation 11.1.16) contains no control gain to be adjusted, the 
domain of attraction (Equation 11.1.17) is predetermined by the system archi-
tecture. In steady state, Equation 11.1.17 is fulfi lled by the defi nition of a buck 
converter: the output voltage is smaller than the source voltage.

 After the state of the inner current loop has reached the sliding manifold, 
i.e., converged to s = 0 at time t = th, x x V Rd1 1= =* /  holds for t > th, and the 
outer voltage loop is governed by 

 �x
RC

x
RC

Vd2 2

1 1= − + . (11.1.18)

The solution of the above system,

 x t V x t V ed h d
RC

t th

2 2

1

( ) ( ) ,
( )

= + −( ) − −
 (11.1.19)

tends to Vd exponentially. Hence, the design goal of control is achieved. 
Figures 11.3 and 11.4 show the simulation results of proposed control algo-

rithm for the buck DC/DC converter. In the simulation, the converter param-
eters are selected as: E = 20 V, C = 4 μF, R = 40 Ω, and L = 40 mH. The desired 
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FIGURE 11.3 
Current response of a sliding-mode-controlled buck DC/DC converter.
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output voltage is Vd = 7 V. As can be seen from the fi gures, both the inductor cur-
rent and the output capacitor voltage converge rapidly to their reference values.

11.1.2.2. Boost-Type DC/DC Converter

Figure 11.5 shows the principle of a boost type converter, in which the vari-
ables are defi ned as follows: L, loop inductor; C, storage capacitor; R, load 
resistance; E, source voltage; I, input current; V, output voltage; and u, switch-
ing signal taking value from discrete set U =:{0, 1}.

The main difference of the boost converter in Figure 11.5 compared with 
the buck converter in Figure 11.2 is the location of inductor L. The dynamic 
model of the boost converter is given as

 �x u
L

x
E
L1 21

1= − − +( ) ,

 
�x u

C
x

RC
x2 1 21

1 1= − −( ) ,
 

(11.1.20)

with x1 = I and x2 = V.
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FIGURE 11.5
Boost DC/DC converter.
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FIGURE 11.4
Voltage response of a sliding-mode-controlled buck DC/DC converter.
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The topological modifi cation of locating the inductor before the switching 
element rather than after it, as in the buck converter, enables a higher out-
put voltage than the source voltage. However, from a control point of view, 
the boost converter is more diffi cult to control than the buck converter. This 
lies in the fact that the control u appears in both the current and voltage 
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 equations and both in bilinear fashion. Such a confi guration implies a highly 
nonlinear system with associated diffi culties in control design.

Just like buck converters, boost converters satisfy the motion-separation 
principle, which originates from the singular perturbation theory. In engi-
neering words, the motion rate of the current is much faster than the motion 
rate of the output voltage. Consequently, the control problem can again be 
solved by using two cascaded control loops: an inner current loop and an 
outer voltage control loop. Again, a design of the current control loop based 
on sliding mode control techniques is presented.

Similar to the control design for the buck converter in the previous section, 
a desired current is obtained from the outer voltage loop as

 x V REd1
2* ,=  (11.1.21)

where Vd is the desired output capacitor voltage. The switching function for 
the inner current control is defi ned as

 s x x= −1 1
* , (11.1.22)

to enforce the current x1 to track the desired current x1
*. Control u can be 

designed as

 u s= −( )1

2
1 sign( ) . (11.1.23)

Under the above control scheme, the equivalent control of u is derived by 
solving � �s x= =1 0 for the control input u with the substitution of Equation 
11.1.20

 u
E
xeq = −1

2

, (11.1.24)

where x2 is the output voltage of the slow voltage loop. The motion equation 
of the outer voltage loop during sliding mode in the inner current loop is 
obtained by substituting the equivalent control (Equation 11.1.24) into the 
second line of Equation 11.1.20

 �x
RC

x
V
x

d
2 2

2

2

1= − −
⎛
⎝⎜

⎞
⎠⎟

. (11.1.25)

The above equation can be solved explicitly as

 x t V x t V ed h d
RC

t th

2
2

2
2 2

2

( ) ( ) ,
( )

= + −( ) − −
 (11.1.26)
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where th stands for the reaching instant of the sliding manifold s = 0, and x2(th) 
is the output voltage at time th. Apparently, x2 tends to Vd asymptotically as t 
goes to infi nity.

The attraction domain of the sliding manifold s = 0 is found by applying 
the convergence condition ss� < 0 to the system Equation 11.1.20, yielding

 x2 > E, or 0 1 1
2

< = − <u
E
xeq .  (11.1.27)

Condition Equation 11.1.27 implies that, as long as the output voltage is higher 
than the source voltage, sliding mode can be enforced. This requirement is 
essential for a boost-type DC/DC converter, and careful consideration of the 
initial conditions is required to guarantee the convergence to s = 0.

Figures 11.6 and 11.7 show the simulation results of proposed control algorithm 
for the boost DC/DC converter. In the simulation, the converter parameters are 
selected as E = 20 V, C = 4 μF, R = 40 Ω, and L = 40 mH. The desired output volt-
age is Vd = 40 V. As can be seen from the fi gures, both the inductor current and 
the output capacitor voltage converge rapidly to their reference values.

11.1.3. Observer-Based Control

Recently, research on sliding mode control theory has revealed great advan-
tages by introducing certain dynamics into a sliding mode controller (see 

FIGURE 11.6 
Current response of a sliding-mode-controlled boost DC/DC converter.
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Chapter 6 through Chapter 8). These approaches fall into the category of 
dynamic feedback control. For observer-based sliding mode control, an ideal 
model is simulated in the controller in parallel to the real plant. For the slid-
ing mode control itself, measurements of real plant states are substituted by 
observer states, reducing the number of plant states to be measured. The mis-
match between some measurable plant output(s) and the observer output(s) 
is the “bridge” to keep both systems operating “closely.” This mismatch has 
been used in different ways to improve the control performance. In general, 
an observer can be viewed as an artifi cially introduced auxiliary dynamic 
system to improve the control performance.

As seen from the previous derivations, for DC/DC converters, there is no 
control gain to be adjusted. The attraction domain of the sliding manifold 
s = 0 is bounded. The remaining degrees of freedom for the control design 
are the initial conditions of the auxiliary system. It has been shown that, by 
proper selection of the initial conditions of the auxiliary system, the per-
formance of an observer-based sliding mode controller may be improved 
signifi cantly [Sira-Ramirez, Escobar, and Ortega 1996].

It is worth pointing out the evolution process of sliding mode control the-
ory. Originally, sliding mode control theory, as a general control design meth-
odology for a large class of nonlinear systems, fell into the fi eld of nonlinear 
control with order reduction and decoupling capabilities. The order reduction 

FIGURE 11.7 
Voltage response of a sliding-mode-controlled boost DC/DC converter.
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and decoupling issues were some of the most diffi cult problems in the control 
of high-order nonlinear dynamic systems. Applications of sliding mode tech-
niques in the fi elds of robotics and electric drives have confi rmed the validity 
of this compact, uniform, and straightforward design methodology. In recent 
years, researchers have started to incorporate the dynamic feedback into the 
sliding mode controller to achieve higher control performance. Dynamic 
feedback increases the system order in the controller space and establishes 
coupling between the plant system space and the controller space. As a result, 
the complexity of the overall system will be increased in return.

Similar to the direct sliding mode control of DC/DC converters, the fol-
lowing sections investigate inductor current control and subsequently out-
put capacitor voltage regulation based on observed states. Figure 11.8 shows 
the structure of the observer-based control system for DC/DC converters.

The price for observer-based control strategy is a more involved control 
design and an increasingly complex stability analysis. A general design 
strategy proceeds as follows:

  1.  The observer dynamics are derived with a similar structure as the 
plant model.

 2.  The stability of the observer system is examined to ensure that the 
observer states converge to the states of the real system (asymp-
totic stability). 

 3.  A sliding mode current controller is designed based on the 
observed current rather than the measured current. Supposing 
sliding mode exists, observed current tracks the desired reference 
current and associated equivalent control can be obtained.

 4.  As motion in sliding mode, a reduced-order system consisting of 
the real plant model and the output voltage equation of the observer 
system can be derived by substitution of the equivalent control.

 5.  It is proven that, under the equivalent control, the reduced order-
system provides (a) the real current convergence to the desired 

FIGURE 11.8
Observer-based control structure.
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reference current and (b) the real output voltage convergence to 
the observed output voltage.

 6.  The observed output voltage converges to the desired output volt-
age, and so does the real output voltage.

 7.  The existence of sliding mode is established by proper selection of 
the initial conditions of the observer dynamics. 

11.1.3.1. Observer-Based Control of Buck Converters

The observer equations, or the auxiliary system, are designed as

 ˆ ˆ ( ˆ ),�x
L

x u
E
L

l x x1 2 1 1

1= − + − −

 
ˆ ˆ ˆ ,�x

C
x

RC
x2 1 2

1 1= −
 

(11.1.28)

where l is a positive scalar observer gain, and ˆ , ˆx x1 2 are the observed induc-
tor current and output voltage, i.e., the outputs of the observer. Note that 
only measurement of the inductor current x1 is required; there is no need to 
measure the output voltage x2.

Theorem 11.2

Observer Equation 11.1.28 is an asymptotic observer whose outputs ˆ , ˆx x1 2 
converge to the real states x1, x2 asymptotically.

          

□

Proof 11.2

Defi ning the observer errors as x x x1 1 1= −ˆ  and x x x2 2 2= −ˆ , the error dynam-
ics can be derived by subtracting Equation 11.1.12 from Equation 11.1.28: 

 �x
L

x lx1 2 1

1= − − ,

 
�x

C
x

RC
x2 1 2

1 1= − .
 (11.1.29)

Because control u is applied to both the observer system and the real plant 
model, it is canceled out in the error dynamics. The characteristic polyno-
mial of the above linear system is

 p l
RC

p
l

RC LC
2 1 1

0+ +⎛
⎝⎜

⎞
⎠⎟ + +⎛

⎝⎜
⎞
⎠⎟ = . (11.1.30)
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Because all coeffi cients in Equation 11.1.30 are positive, system Equation 
11.1.29 is stable, implying that observer errors x1 and x2 tend to zero 
asymptotically.

         

 □

The switching function for the sliding mode current control will be 
designed based on the observed current x̂1 instead of measured current x1 as 
done in Equation 11.1.15:

 ˆ ˆ / .s x V Rd= −1  (11.1.31)

The control u, applied to both the real plant and the observer system, is of 
the same form as in the case of the control scheme without an observer (see 
Equation 11.1.16):

 u s= −( )1

2
1 sign(ˆ) . (11.1.32)

Suppose that sliding mode can be enforced in the vicinity of the sliding man-
ifold ŝ = 0, which results in

 ˆ ( ) / )x t V R t td h1 ≡ ∀ >with (  (11.1.33)

where th denotes the reaching instant of the sliding manifold ŝ = 0. The equiv-
alent control of u can be obtained by solving �̂s = 0:

 u
L

x l x x
L
Eeq = + −( )⎛

⎝⎜
⎞
⎠⎟

1
2 1 1

ˆ ˆ . (11.1.34)

Substituting ueq into the real plant model (Equation 11.1.12) and considering 
the observer model (Equation 11.1.28), the motion in sliding mode can be rep-
resented as a reduced-order system, comprising the motion of the real plant 
and the slow dynamics (about output voltage) of the observer:

 

�

�

x
L

x
L

x l
V
R

x

x
C

x

d
1 2 2 1

2

1 1

1

= − + + −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

ˆ ,

11 2

2 2

1

1 1

−

= −

RC
x

x
C

V
R RC

xd

,

ˆ ˆ .�

 (11.1.35)

By defi ning errors x V R xd1 1
* = −  and x x x2 2 2= −ˆ , the above equations can be 

transformed into a second-order error system: 

 �x
L

x lx1 2 1

1* * ,= − −
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�x

C
x

RC
x2 1 2

1 1= −* ,
 

(11.1.36)

where x2 has the same meaning as defi ned for Equation 11.1.29 but x1
* rep-

resents the difference between the desired reference current and the real 
current rather than the difference between the observed current and the 
real current, denoted by x1. Formally, system Equation 11.1.36 is the same 
as the observer error system Equation 11.1.29, which is proven to be stable, 
implying that the real current converges to the desired reference current 
asymptotically. 

So far, we have proven that, after sliding mode occurs, i.e., for t ≥ th, observed 
current is equal to the desired reference current, and the real current will 
also tend to the desired reference current. It means that

 lim ( ) ˆ ( ) .
t t t

dx t x t
V
Rh→∞ ≥

= =1 1  (11.1.37)

As the next step, we should prove that the observed output voltage con-
verges to the desired output voltage, and so does the real output voltage. 
Substitute Equation 11.1.33 into the second equation of Equation 11.1.28 and 
solve the resulting equation with a similar procedure as used for Equation 
11.1.18; this gives 

 lim ˆ ( ) .
t dx t V
→∞

=2  (11.1.38)

Following Theorem 11.2, the real output voltage and the observed output 
voltage are identical as t→ ∞ . Finally, we achieve

 lim ( ) lim ˆ ( ) .
t t dx t x t V
→∞ →∞

= =2 2  (11.1.39)

The remaining task is to fi nd the condition under which the occurrence of 
the sliding mode can be guaranteed. Applying the existence condition of 
sliding mode to the fi rst line of Equation 11.1.28 with the substitution of 
Equations 11.1.32 and 11.1.31 yields

 − − < < − −Ll x x x E Ll x x( ˆ ) ˆ ( ˆ ).1 1 2 1 1  (11.1.40)

This condition is consistent with the statement in Theorem 11.1, i.e.,

 0
1

12 1 1< = + −( )⎛
⎝⎜

⎞
⎠⎟ <u

L
x l x x

L
Eeq

ˆ ˆ . (11.1.41)

Because x1 is measured and x̂1, x̂2 are state variables in the controller space, 
i.e., variables in the control algorithm, the initial conditions of the observer 
ˆ ( )x1 0  and ˆ ( )x2 0  can be designed such that the occurrence of the sliding mode 
can always be guaranteed. 
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As an important specifi cation of DC/DC converters, the so-called “stored 
error energy” has been defi ned previously [Sira-Ramirez, Escobar, and 
Ortega 1996]. For the buck converter, this quantity is defi ned as 

 H t L
V
R

x t C V x td
d( ) = − ( )⎛

⎝⎜
⎞
⎠⎟ + − ( )( )⎛

⎝⎜
⎞

⎠⎟
1

2
1

2

2

2
,, (11.1.42)

where H(t) represents the energy difference between the desired value and 
the real value providing to the load. For a well-controlled DC/DC converter, 
this energy difference should converge to zero smoothly.

Figures 11.9 through 11.11 show the simulation results of the observer-
based control algorithm for the buck DC/DC converter. In the simulation, 
the converter parameters are selected as E = 20 V, C = 4 μF, R = 40 Ω, and 
L = 40 mH. The desired output voltage is Vd = 7 V. The observer gain is 
designed as l = 200. The initial conditions of the observer are selected as 

( ) = . A, ( ) = . Vˆ ˆx x1 20 0 12 0 5 0  and ( ) = . A, ( ) = 2. Vˆ ˆx x1 20 0 07 0 5 , respectively.
Note that both the inductor current and the output capacitor voltage con-

verge rapidly to their reference values, and the system response can be infl u-
enced by the design of the observer initial conditions. 

FIGURE 11.9
Response of real (curves starting from zero) and estimated current under different initial conditions. 

Solid line ( ) = . , ( ) = .ˆ ˆx x1 20 0 12 0 5 0; dashed line, ( ) = . , ( ) = 2.ˆ ˆx x1 20 0 07 0 5.
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11.1.3.2. Observer-Based Control of Boost Converters

To simplify the derivation, a new control input is defi ned as v = (1 − u). The 
observer dynamics designed for a boost converter are governed by

 ˆ ˆ ( ˆ ),�x v
L

x
E
L

l x x1 2 1 1

1= − + − −

 
ˆ ˆ ˆ ,�x v

C
x

RC
x2 1 2

1 1= −
 

(11.1.43)

where ˆ , ˆx x1 2 are the observed inductor current and output voltage, i.e., the 
outputs of the observer, and l is a positive scalar observer gain.

Theorem 11.3

Observer Equation 11.1.43 is an asymptotic observer whose outputs ˆ , ˆx x1 2 
converge to the real states x1, x2 asymptotically.          □

FIGURE 11.10
Response of real (curves starting from zero) and estimated voltage under different initial con-

ditions. Solid line, ( ) = . , ( ) = .ˆ ˆx x1 20 0 12 0 5 0; dashed line, ( ) = . , ( ) = 2.ˆ ˆ .x x1 20 0 07 0 5
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Proof 11.3

Defi ning the observer errors as x x x1 1 1= −ˆ  and x x x2 2 2= −ˆ , the error dynam-
ics can be derived by subtracting Equation 11.1.20 from Equation 11.1.43:

 �x v
L

x l x1 2 1

1= − − ,

 
�x v

C
x

RC
x2 1 2

1 1= − .
 

(11.1.44)

Equation 11.1.44 is a nonlinear system, because the system states are multi-
plied by the control input v. For the convergence proof, we design a Lyapunov 
function candidate as

 V Lx Cx= +( ) >1

2
01

2
2
2 . (11.1.45)

Its time derivative along the solutions of Equation 11.1.44 can be found as 

 �V Ll x
R

x= − − <1
2

2
21

0; (11.1.46)

FIGURE 11.11
Stored error energy. Solid line, ( ) = . , ( ) = .ˆ ˆx x1 20 0 12 0 5 0; dashed line, ( ) = . , ( ) = 2.ˆ ˆ .x x1 20 0 07 0 5
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therefore, system Equation 11.1.44 is stable for any l > 0. As a result, observer 
errors x1 and x2 tend to zero asymptotically. The convergence rate for the 
inductor current estimation can be adjusted by the observer gain l.          □

The switching function for the sliding mode current control will be 
designed based on the observed current x̂1 instead of measured current x1 as 
in Equation 11.1.22, i.e.,

 ˆ ˆ .s x
V
RE

d= −1

2

 (11.1.47)

The control u applied to both the real plant and the observer is of the same 
form as in the case of the control scheme without an observer,

 u s= −( )1

2
1 sign(ˆ) . (11.1.48)

In terms of the new control input v = (1 − u), we have 

 v s= +( )1

2
1 sign(ˆ) . (11.1.49)

Suppose that sliding mode is enforced in the manifold  ŝ = 0; then, according 
to Equation 11.1.47,

 ˆ )x
V
RE

t td
h1

2

≡ ∀ >with (  (11.1.50)

where th denotes the reaching instant of the sliding manifold ŝ = 0. The equiv-
alent control of v can be obtained by solving �̂s = 0:

 v
E Ll V RE x

xeq
d=

− −( )

ˆ
.

2
1

2

 (11.1.51)

The motion of the system in sliding mode is of a reduced order and com-
prises the motion of the real plant and the slow dynamics (about output volt-
age) of the observer, 

 �x v
L

x
E
Leq1 2

1= − + ,

 
�x v

C
x

RC
xeq2 1 2

1 1= − ,

 
ˆ ˆ .�x v

C
V
RE RC

xeq
d

2

2

2

1 1= −
 

(11.1.52)
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By defi ning errors x V RE xd1
2

1
* = −  and x x x2 2 2= −ˆ , with the substitution of 

Equation 11.1.51, the above equations can be transformed into a second-order 
error system 

 �x
x
x

l x
E
L

x
x

E
L1

2

2

1
2

2

* *

ˆ ˆ
,= − + −

 

�x
E
C x

x
Ll

Cx
x

RC
x2

2

1

2

1
2

2

1 1= − −
ˆ ˆ

( ) ,* *

 
(11.1.53)

where x2 has the same meaning as defi ned for Equation 11.1.44, but x1
* rep-

resents the difference between the desired reference current and the real 
current rather than the difference between the observed current and the real 
current, denoted by x1.

Substituting x x x2 2 2= −ˆ  into Equation 11.1.53 further simplifi es the equa-
tions to

 �x l x
l

x
x x

E
L

x
x1 1

2

1 2
2

2

* * *

ˆ ˆ
,= − + −

 

�x
RC

x
Ll

Cx
x

E
C x

x2 2

2

1
2

2

1

1 1= − − +
ˆ

( )
ˆ

.* *

 
(11.1.54)

For the convergence proof, we design a Lyapunov function candidate as

 V L x Cx= +( ) >1

2
01

2
2
2( ) .*  (11.1.55)

Its time derivative along the solutions of Equation 11.1.54 can be found as 

 �V Ll x
R

x= − − <( ) ;*
1

2
2
21

0  (11.1.56)

therefore, the system Equation 11.1.54 is stable for any l > 0. As a result, errors 
x1

* and x2 tend to zero asymptotically, showing that the real current converges 
to the desired reference current. 

So far, we have proven that, after sliding mode occurs, i.e., for t ≥ th, observed 
current is equal to the desired reference current and the real current will also 
tend to the desired reference current. Mathematically, this statement can be 
expressed as

 lim ( ) ˆ ( ) .
t t t

dx t x t
V
REh→∞ ≥

= =1 1

2

 (11.1.57)

The next task is to prove that x̂2 converges to the desired voltage value Vd. 
With the substitution of Equation 11.1.51, the third line of Equation 11.1.52 
can be transformed to
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 �y
RC

y
RC

V
E

Ll x y x Vd
d= − − = −2 2 2

1 2
2 2* , ˆ .with  (11.1.58)

This equation is a linear asymptotically stable system, with the input x1
* tend-

ing to zero; hence, its output y tends to zero as well. Consequently, x̂ Vd2 = ± . 
Because x̂2 0>  is required for generating sliding mode (proven below), the 
unique steady-state solution is x̂ Vd2 = .

Following Theorem 11.3, the real output voltage and the observed output 
voltage are identical as t → ∞ . Finally, we achieve

 lim ( ) lim ˆ ( ) .
t t dx t x t V
→∞ →∞

= =2 2  (11.1.59)

So far, we have proven that the real inductor current x1 tends to the desired 
reference current V REd

2  if sliding mode can be enforced in the manifold
ˆ ˆs x V REd= − =1

2 0. As a consequence, both the observed output voltage x̂2 
and the real output voltage x2 converge to the desired output voltage Vd.

The remaining task is to fi nd the condition under which the occurrence 
of the sliding mode can be guaranteed. Applying the existence condition of 
sliding mode to Equation 11.1.47 with the substitution of Equations 11.1.43 
and 11.1.49 yields

 0 1 1 2< − − <E Ll x x x( ˆ ) ˆ . (11.1.60)

This condition is consistent with Theorem 11.1, i.e.,

 0 11 1

2

< =
− −( )

<v
E Ll x x

xeq

ˆ

ˆ
. (11.1.61)

Bearing in mind that v = 1 − u, from the above inequality, we have also

 0 < ueq < 1. (11.1.62)

Because x1  is measured and x̂1, x̂2 are state variables in the controller space, 
i.e., variables in the control algorithm, the initial conditions of the observer, 
ˆ ( )x1 0  and ˆ ( )x2 0 , can be designed such that the occurrence of sliding mode can 
always be guaranteed. The stored error energy for boost DC/DC converters 
is defi ned as 

 H t L
V
RE

x t C V x td
d( ) = − ( )⎛

⎝⎜
⎞
⎠⎟

+ − ( )( )
⎛

⎝
⎜

⎞1

2

2

1

2

2

2

⎠⎠
⎟ , (11.1.63)

where H(t) represents the energy difference between the desired value and 
the real value provided to the load. For a well-controlled DC/DC converter, 
this energy difference should converge to zero smoothly.
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Figures 11.12 through 11.14 show the simulation results of the observer-
based control algorithm for the boost DC/DC converter. In the simula-
tion, the converter parameters are selected as E = 20 V, C = 4 μF, R = 40 Ω, 
and L = 40 mH. The desired output voltage is Vd = 40 V. The observer gain 
is designed as l = 200. The initial conditions of the observer are selected 
as ˆ ˆx x1 20 0( ) = 0 A, ( ) = 0 V and ( ) = 1.95 A, ( ) = 38. V,ˆ ˆx x1 20 0 5  respectively. 
As can be seen from the fi gures, both the inductor current and the out-
put capacitor voltage converge rapidly to their reference values, and the 
system response can be infl uenced by selection of the observer initial 
conditions.

For zero initial conditions, i.e., ( ) = 0 A, ( ) = 0 V,ˆ ˆx x1 20 0  the observer-based 
control system converges to the non-observer-based control system. In this 
case, the stored error energy is not smooth (see Figure 11.14); the time deriv-
ative of H(t) has discontinuous points. However, if the initial conditions of 
the observer are designed properly, the stored error energy decreases to 
zero smoothly, as illustrated by Figure 11.14. This important improvement 
to the boost DC/DC converter is produced by the observer-based control 
design. 

FIGURE 11.12
Current response. Solid line, ( ) = ( ) = 0ˆ , ˆx x1 20 0 0 ; dashed line, ( ) = 1.95, ( ) = 38.5ˆ ˆx x1 20 0 .
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FIGURE 11.13
Response of real (curves starting from zero) and estimated voltage under different initial 

conditions. Solid line, ( ) = ( ) = 0ˆ , ˆx x1 20 0 0 ; dashed line, ( ) = 1.95, ( ) = 38.5ˆ ˆx x1 20 0 .
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11.1.4. Multiphase Converters 

The design methodology developed in Section 8.8 is applied for a DC/DC 
multiphase buck converter. A converter with two phases is depicted in 
Figure 11.15. The objective is to demonstrate via simulation to what extent 
chattering can be suppressed in multiphase power converters using the 
proposed phase shift control methodology and to check the range of the 
function a for which the chattering suppression takes place. In simulation, 
the master-slave method is accepted. The gain K is selected as in Equation 
8.8.15 as K = 1/α to maintain the switching frequency at the desired level 
in all phases even if a is beyond the admissible domain (Equation 8.8.14). 
Simulation results are presented for the two parameter sets in Table 11.1.

For simulation, the governing equations of m-phase converter are assumed 
as follows: 

 

� …I
L

I R u V k m

V
C

I
V
R

k a k L

L k
L

Lk

k = − + − =

= −

1
1 2

1

( )( , , , )

−−
∑⎛

⎝⎜
⎞
⎠⎟1

m

.

 (11.1.64)
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FIGURE 11.14
Stored error energy. Solid line, ( ) = ( ) = 0ˆ , ˆx x1 20 0 0 ; dashed line, ( ) = 1.95, ( ) = 38.5ˆ ˆx x1 20 0 .
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FIGURE 11.15
A two-phase DC/DC converter.
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TABLE 11.1

Parameter Values for Simulation

Parameters L (H) C(F) Ra(Ω) RL(Ω) Vs(V)

Set I 1 1 1 1 12

Set II 5 × 10–8 1 × 10–3 3 × 10–4 1 × 10–2 12

The following control law is used for a two-phase power converter (m = 2) 
represented in Equation 11.1.64: 

 

s I
I

m
I

V

R

u V
sign s

u

ref
ref

ref

L

s

1 1

1
1

2

1

2

= − =

=
−

=

,

( )
, VV

sign s
s

1

2
3− ( )

,
*

 (11.1.65)

where Vref and Iref are the reference voltage input and the corresponding ref-
erence load current, respectively. The desired phase shift T/2 is obtained by 
using two additional blocks, providing a phase of shift T/4 to each of them: 
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 (11.1.66)

where a
V

L

I R

mL
V
L

s ref a L= − −
2

, M
V

L
s=

2
, and b

R
L

a= . As follows from Equation 

8.8.14, the only admissible value of a is equal to zero for m = 2. As shown in 
Figure 11.16, chattering is suppressed in the output current. 

The four-phase converter (m = 4) is simulated with switching frequency 
control of the fi rst phase by appropriate choice of hysteresis width or hys-
teresis loop gain Kh as a function of Vref  to maintain switching frequency at 
50 Hz. The selected function K V V Vh ref ref ref( ) . . .= − + −0 0013 0 0127 0 00072  is 
shown in Figure 11.17.

Simulations in Figures 11.18 through 11.20 are performed for several values 
of a in the admissible domain with the following control law: 
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Because a can be out of the admissible range during transients, chattering 
appears at the beginning of the process. Note that, in the simulation, con-
trol (Equation 11.1.67) is without the modifi cation given in Equation 8.8.15. 
Again, chattering suppression is observed, and the switching frequency is 
maintained at the same level.

The design methodology is developed under the assumption that state 
variables are constant within one period of oscillation. Additional simula-
tion is performed for time-varying reference input with control (Equation 
11.1.67) and modifi cation (Equation 8.8.17). Simulation results in Figure 11.21 
demonstrate effi cient chattering suppression for both transient time inter-
vals and steady-state modes. 

Next, a set of simulation results for a six-phase converter with control law 
Equation 11.1.67 (m = 6) are shown. In Figures 11.22 through 11.24, it can 
be seen that the admissible range of reference input is wider for six-phase 

FIGURE 11.16
Simulation results for the two-phase converter (a = 0) with parameters of Set I in Table 11.1.
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converter compared with the four-phase converter (Vref,min is equal to 1.714 
and 2.4 V, respectively). The chattering suppression effect demonstrated for 
four-phase converter with time-varying Vref can be observed for six-phase 
converter as well (see Figure 11.24). For both cases, the modifi ed control 
Equation 8.8.17 instead of Equations 8.8.12 or 8.8.19 decreases chattering con-
siderably in transient intervals. 

For the real-life four-phase DC/DC power converters with parameters 
from Set II in Table 11.1, simulations are performed for different reference 
inputs. The effect of chattering suppression for reference inputs 3, 6, and 8 V 
is demonstrated in Figures 11.25 through 11.27. Note that the inductance is 
relatively small to have fast converter dynamics. This leads to a high level 
of chattering in each phase, but it is practically suppressed in the output 
signal.

Finally, it is demonstrated that chattering can be reduced considerably 
following the “master-slave method” even if for a given number of phases 
m, parameter a is beyond the admissible domain (Equation 8.8.14) and 
the desired phase shift cannot be guaranteed by varying the width of the 
 hysteresis loop. For the master-slave implementation, each phase can be 
complimented by several sequentially connected slaves, as illustrated in 

FIGURE 11.17
Hysteresis loop gain Kh. 
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Figure 11.28 for two-phase converter, such that the total phase shift is equal 
to the desired value. 

In the general case, each of the m phases, except for the last one, is comple-
mented, for example, by three slaves. 
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and K * = 3K.

FIGURE 11.18
Simulation results for four phases, Vref = 2.4V (parameters of Set I), a/b1 = 0.5.
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To get the necessary phase shift T m KM/ = Δ
2  between the fi rst and 

second phases, the gain K for the master-slave mode should be as follows 
(Equation 8.8.19): 

 K

m
a

M
=

− ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

4

2

.

However, because it cannot be implemented with one slave in each phase if 
a does not satisfy Equation 8.8.14, assume that one-third of the phase can be 
obtained by one slave.

The periods of oscillations in s1 and s2
* are the same, and, according to 

Equation 8.8.18, the phase difference between corresponding switching of v1 

and v2,1 is found as 
Δ = Δ

2 6K M KM*
.

FIGURE 11.19
Simulation results for four phases, Vref = 4.8V (parameters of Set I ), a/b1 = 0.
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As a result, the desired phase shift between v1 and v23 (control command 
for the second phase),

 φ = Δ =
2KM

T
m

,

is obtained.

A simulation is performed for a 4-phase power converter. As can be seen 

in Figure 11.29, the performance is not acceptable for a 4-phase converter 

with only one slave in each phase, such that a
M

> 0.5 and condition Equation 

8.8.14 does not hold. Of course, chattering can be suppressed by increasing 

the number of phases preserving the “one slave in one phase” approach, as 

shown in Figure 11.30 for an eight-phase converter. Simulation results for a 

four-phase power converter with application of the proposed methodology 

are shown in Figure 11.31. 

FIGURE 11.20
Simulation result for four phases, Vref = 7.2V (parameters of Set I), a/b1 = −0.5.
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Comparing the results shown in Figure 11.31 with those in Figure 11.30, 
it is observed that the effect of chattering reduction is improved signifi -
cantly by the suggested method, although the ripple magnitude is higher 
than that of the eight-phase converter model in Figure 11.30. This effect can 
be explained easily: the relative weight of higher harmonics is increasing 
with decreasing duty cycle (it is equal to 1/8 for Vref = 1.5V); the fi rst three 

FIGURE 11.21
Simulation results for four phases with time-varying Vref (t).
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harmonics are suppressed only for the four-phase converter, whereas seven 
harmonics are cancelled for the eight-phase converter.

11.2. Boost-Type AC/DC Converters

Nowadays, semiconductors using high-frequency switching devices such as 
MOSFET (metal oxide semiconductor fi eld effect transistor), IGBT, and MCT 
(metal oxide semiconductor-controlled thyristor) are commonly used for 
drive systems. One of the main control techniques used is voltage modula-
tion. The behavior of phase currents and output voltage as well as switching 
losses and dynamic responses not only depend on the choice of power semi-
conductor used but also on the choice of pulse-width modulation (PWM). 
This explains why PWM techniques have been the subject of intensive 

FIGURE 11.22
Simulation results for six phases, Vref = 1.714V (parameter of Set I), a/b1 = 2/3.
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research during the past few decades. A large variety of methods, different 
in concept and performance, have been developed. 

These modulation approaches can be classifi ed into two categories depend-
ing on the control techniques used: feedforward pulse width modulation 
based on the so called space-vector method and feedback modulation based 
on sliding mode or bang-bang control methods. The feedforward PWM 
technique is characterized by formation of the output voltage via an open-
loop control structure. In this case, the drive system does not exhibit high 
dynamic performance, and the effect of disturbances, which exist always in 
a drive system, are not automatically reduced. On the other hand, it is very 
simple to realize a minimum loss PWM strategy. The feedback modulation 
approach allows an online realization of the switching pattern. This con-
trol technique ensures that the frequency and the pulse width are generated 
automatically together in solving the control task. Feedback control systems 
possess good dynamic performance because they use all available control 

FIGURE 11.23
Simulation results for six phases, Vref = 8.571V (parameters of Set I), a/b1 = −2/3.
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resources to reduce the error. The infl uence of disturbances to the system 
is thus minimized. Many researchers demonstrated the effectiveness of the 
sliding mode control scheme [see Sabanovic, Sabanovic, and Ohnishi 1993; 
Vilathgamuwa, Wall, and Jackson 1996].

Compared to conventional PWM techniques, the sliding mode approach 
has no fi xed switching frequency, resulting in a wider spectrum of acoustic 
noise. Sliding mode control under constant switching frequencies and with 
minimized switching losses for three-phase converters has also been devel-
oped [Sergy and Izosimov 1997]. 

FIGURE 11.24
Simulation result for six phases with time-varying Vref (t).
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Three distinguished characteristics may be used to classify multiple-phase 
converters. First, there are two types of tasks for multiple-phase converters: 
“rectifi cation” and “inversion.” Rectifi cation transforms AC power into DC 
power, whereas inversion transforms DC power into AC power. Second, the 
power supply on the DC side may be in the form of either a voltage source or 
a current source. Third, similar to DC/DC converters, multiple-phase con-
verters can also be classifi ed into buck type and boost type depending on 
the circuit topology. As a result, there are eight possible combinations to 
form different types of multiple phase power converters as illustrated in 
Table 11.2.

An exhaustive study of all these types of converters goes beyond the scope 
of this text. In this section, we give an example of sliding mode control for 
a three-phase boost AC/DC converter, a typical converter used in industrial 
applications.

FIGURE 11.25
Simulation result for four phases, Vref = 3V (parameters of Set II).
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11.2.1. Model of the Boost-Type AC/DC Converter 

Figure 11.32 shows the structure of a boost-type AC/DC converter, in which 
the variables are defi ned as follows: L, phase inductance; Rw, phase resis-
tance; C, storage capacitor; i1, i2, i3, phase currents; ilink, link current;  i1, load 
current; ug1, ug2, ug3, source voltages and u0, output voltage.

For sliding mode control design, symmetric control inputs from discrete 
set {−1, 1} are more convenient than the on-off signals from discrete set {0, 1}.
Let the six on-off signals of an AC/DC converter be denoted by 

 sw = [sw1 sw2 sw3 sw4 sw5 sw6]
T. (11.2.1)

 The control inputs, as they appear in the converter model, are defi ned as 
Ugate = [u1 u2 u3]

T. Note that Ugate does not represent some control voltages 

FIGURE 11.26
Simulation result for four phases, Vref = 6V  (parameters of Set II).
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but rather a set of transformed control inputs taking values from the dis-
crete set {−1, 1} instead of {0, 1} as done by sw. Thus, the following relation 
holds: 

 U G s Ggate w w= =
−

−
−

⎡

⎣

⎢
w with

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
.  (11.2.2)

In the following, the dynamic model of the boost AC/DC converter will be 
given in both the phase coordinate frame and the fi eld-oriented coordinate 
frame. The models in these two coordinate frames are useful for our sliding 
mode controller and observer design.

FIGURE 11.27
Simulation result for four phases, Vref = 8V  (parameter Set II).

0

Σi Σ1/4
i1 i1,i2,i3,i4

2
1
0

3
4

O
ut

pu
t v

ol
ta

ge
 V

L (V
)

Cu
rr

en
t (

A
)

450

400

350

300

250

200

150

100

50

0

Cu
rr

en
t (

A
)

Time (sec) Time (sec)

5
6
7

10
9
8

1000

500

1500

2000

2500

0.5 1 1.5 2 2.5 3 3.5 4
x 10–0

00 0.5 1 1.5 2 2.5 3 3.5 4
x 10–0 x 10–3

u 1,u
2

u 3,u
4

0.2
0.4
0.6
0.8

1

0

0
0.2
0.4
0.6
0.8

1

3.513.505 3.515 3.52 3.525 3.5353.53 3.54

x 10–3
3.513.505 3.515 3.52 3.525 3.5353.53 3.54

x 10–3
3.513.505 3.515 3.52 3.525 3.5353.53 3.54

TAF-65602-08-1101-C011.indd   357TAF-65602-08-1101-C011.indd   357 3/31/09   7:55:09 PM3/31/09   7:55:09 PM



© 2009 by Taylor & Francis Group, LLC

358 Sliding Mode Control in Electro-Mechanical Systems

11.2.1.1. Model in Phase Coordinate Frame

Starting from the notation given in Equation 11.2.2, the dynamic model of a 
boost AC/DC converter in phase coordinate frame can be obtained using the 
theory of switched electric circuits,
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 (11.2.3)

FIGURE 11.28
A modifi ed master-slave mode schematic with two more additional systems. v2,3 is the switch-

ing command for the second channel.
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11.2.1.2. Model in (d, q) Coordinate Frame 

As shown in Chapter 10, the control design of an AC motor is often performed 
in a fi eld-oriented coordinate system, usually called (d, q) coordinates. For the 
control of an AC  synchronous motor, the fi eld-oriented coordinate system is 
simply the rotor coordinates. Similarly, for the control of three-phase AC/DC 
converters, it is convenient to design the control in the rotating reference frame 
synchronized with the supply frequency, i.e., the (d, q) coordinate system. In this 
case, all state  variables should be transformed into the (d, q) coordinate system 
using the following relations:

 

x jx x e x e x

x jx x

j j

d q

α β
π π

α

+ = + +

+ = +

2 3 1
2 3

2
4 3

3( ),

(

/ /

jjx e

t dt

j
β

θ

ω

) ,

( ) ,

−

= ∫�

 (11.2.4)

FIGURE 11.29
Simulation results for four-phase converter, Vref = 1.5V, RL = 1mΩ, (parameters of Set II).
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where ω(t) is the supply frequency; (x1, x2, x3) denote the state variables in 
phase coordinates, e.g., the phase currents (i1, i2, i3), the source voltages (ug1, 
ug2, ug3), and the switching controls (u1, u2, u3); (xα, xβ) represent the state 
variables, i.e., (iα, iβ), (ugα, ugβ), and (uα, uβ) in a fi xed orthogonal coordinate 
system with the α-axis aligned with the axis of phase 1; and (xd, xq) are 
the state variables, i.e., (id, iq), (ugd, ugq), and (ud, uq), in the (d, q) coordinate 
frame.

Remark 11.1 

Here ud, uq are the transformed switching controls u1, u2, u3 rather than trans-
formed phase voltages as in the case of AC motors. 

FIGURE 11.30
Simulation results for eight-phase converter, Vref = 1.5V, RL = 1mΩ, (parameters of Set II).
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Equation (11.2.4) can be rewritten in matrix form:
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A A
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d q
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⎥
⎥

,
,

,
, ,α β

α β
1 2 3

1

2

3

,, (11.2.5)

where the transformation matrices are defi ned as

FIGURE 11.31
Simulation results for a four-phase converter, Vref = 1.5V, RL = 1mΩ, (parameters of Set II) with 

triple slave method.
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TABLE 11.2

Characteristics Used to Classify Multiple-Phase Converters

Type of transform Rectifi cation (AC to DC) Inversion (DC to AC)

Power supply DC side Voltage source Current source

Circuit topology Buck Boost
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 A Ad qα β
α β

,
, ,

,
,,
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⎥  (11.2.6)

The inverse transformation is given by
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⎥ .  (11.2.7)

Using the above relations, the dynamic model (Equation 11.2.3) can be trans-
formed into the (d, q) coordinate frame:
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 (11.2.8)

where u0d = u0 (u0q = 0 as a result of the fi eld orientation).

11.2.2. Control Problems

A well-controlled three-phase AC/DC power converter should have the fol-
lowing characteristics:

FIGURE 11.32
Boost type AC/DC converter.

ug1

ug 3

ug 2 C u0

L

L

L

Rw

Rw

Rw

i1

i2

i3

il

sw1

sw4

sw2 sw3

sw5 sw5

ilink

TAF-65602-08-1101-C011.indd   362TAF-65602-08-1101-C011.indd   362 3/31/09   7:55:12 PM3/31/09   7:55:12 PM



© 2009 by Taylor & Francis Group, LLC

Power Converters 363

Unity power factor

Sinusoidal input currents 

Regenerative capability

Ripple free output voltage

From an electromagnetic interference point of view, fi xed switching fre-
quency is also an important characteristic that is inherently induced in a 
PWM-controlled converter. For a sliding mode-controlled converter, how-
ever, fi xed switching frequency cannot be guaranteed because the switching 
action occurs according to the value of a sliding function and is not synchro-
nized with a frequency source. In fact, varying switching frequencies are a 
distinct feature of sliding mode control systems.

In industrial power converter systems, one of the major design challenges 
is an unknown varying load that requires suffi cient control robustness. 
Moreover, not all state variables that are necessary for the control purpose 
are measured or are measurable. As a result, a control engineer has to face the 
problem of designing a robust control system with observed state variables 
as well as achieving a high performance of the closed-loop system.

Control design of power converters is usually performed in two steps: cur-
rent control in an inner loop and voltage control in an outer loop. In the 
frame of this cascaded control structure, sliding mode method is usually 
applied to the current control, whereas the outer-loop control, i.e., the output 
voltage regulation, is designed using linear control techniques. This holds 
for both DC/DC converters and AC/DC converters (Figure 11.33).

11.2.2.1. Sliding Mode Current Control

Similar to the control design for electric motors, the current control of a boost-
type AC/DC converter can be designed in either phase coordinates or the (d, 
q) coordinate frame. Because the control criteria (as listed in the  performance 

•

•

•

•

FIGURE 11.33
Cascaded control structure of AC/DC converters.
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characteristics) are normally given in the (d, q) coordinate frame, it is more 
convenient to design the current control in the (d, q) coordinate frame than 
in phase coordinates.

Rewrite the current dynamics in Equation 11.2.8 as follows:

 

di
dt

R
L

i
u

L
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u
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od
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2
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 (11.2.9)

These equations are the starting point for the current control. To simplify the 
derivations and to use the results developed for the electric motors, Equation 
11.2.9 is represented in a generalized matrix form:

 �I f I U Udq dq dqb= −( ,dq g, )ωω , (11.2.10)

where b
u

L
d= 0

2
, Idq d q

T
i i= ⎡⎣ ⎤⎦ , Udq d q

T
u u= ⎡⎣ ⎤⎦ , and 

 f I Udq

w
d

gd
q

w
q

gq

R
L

i
u

L
i

R
L

i
u

L

( ,dq , g )ω
ω

=
− + +

− + − ωωid

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

.  (11.2.11)

The switching functions for the current control are designed as

 s i id d d= −* ,

 
s i iq q q= −* ,

 (11.2.12)

where id
*  and iq

*  are the desired values of the currents in the (d, q) coordi-
nate frame to be determined by the outer control loop for the output volt-
age regulation. The next task is to find the condition under which sliding 
mode can be enforced. As for the AC/DC converters, no control gain can 
be adjusted. The solution is to find a domain in the system space from 
which any state trajectory converges to the sliding manifold defined by

sd = 0, sq = 0. Defining Sdq d q

T
S S= ⎡⎣ ⎤⎦  and taking the time derivative of Sdq 

yields

 � �S I f I U U F Udq dq g= − + = +dq dq dq dq gateb D* ( , ,, )ω  (11.2.13)

in which Idq d q

T
i i* * *= ⎡⎣ ⎤⎦ , F I f I Udq dq dq= −�* ( ,dq g, )ω  and
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 D bA Ad q= ,
,

,
, , .α β

α β
1 2 3  (11.2.14)

Design controls Ugate = [u1 u2 u3]
T as follows:

 Ugate = −sign(S*), (11.2.15)

where S* * * *= ⎡⎣ ⎤⎦s s s
T

1 2 3  is a vector of transformed switching functions being 
determined later, and 

 sign( ) sign( ) sign( ) sign( )* * *S* = ⎡⎣ ⎤s s s1 2 3 ⎦⎦
T

. (11.2.16)

Apparently, controls u1, u2, u3 take values from the discrete set {−1, +1}. The 
transformed vector S* should be designed such that, under controls (Equation 
11.2.15), sd and sq vanish in fi nite time. Vector S* is selected as

 S S* = 3

2 2b
DT

dq . (11.2.17)

Note that Sdq = DS* = (3/2b2)DDTSdq = Sdq.

Theorem 11.4 

Under control Equation 11.2.15 and transformation Equation 11.2.17, there 
exist a domain of sd(0) and sq(0) in which the state vector of system Equation 
11.2.13 converges to the origin sd = 0, sq = 0 in fi nite time.

      

    □

Proof 11.4

Design a Lyapunov function candidate,

 V dq
T

dq= 1

2
S S . (11.2.18)

Its time derivative along the solutions of Equation 11.2.13 is of form

 �V D DT T T
gate= +( ) ( ) ,* * *S F S U  (11.2.19)

where F F* * * *= ⎡⎣ ⎤⎦ =F F F D
T T

dq1 2 3 . Substituting control Equation 11.2.15 into 
Equation 11.2.19 results in 

 �V D DT T T= −( ) ( ) sign( ),* * *S F S S*  (11.2.20)

where matrix DTD is a singular matrix and can be calculated as
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. (11.2.21)

Similar to the case of electric motor control (see Chapter 10), depending on 
the signs of s s1 2

* *,  and s3
*, there are eight possible combinations of values of

sign( ), sign( )* *s s1 2 , and sign( )*s3 . Evaluation of Equation 11.2.17 shows that two 
of these combinations are not possible, i.e., sign( ), sign( )* *s s1 2 , and sign( )*s3  are 
never all +1 or all −1. The remaining six combinations can be summarized as

   sign( ) sign( ) sign( ),* * *s s s l m nl m n≠ = ≠ ≠with aand l m n, , , , .∈{ }1 2 3  (11.2.22)

Starting from this notation, Equation 11.2.20 can be expanded as

 �V s F s F s F b s s sl m= + +( ) − ( ) + +1 1 2 2 3 3

2 22 3 2* * * * * * * *
nn
* ,( )  (11.2.23)

with l ≠ m ≠ n and l, m, n ∈ {1, 2, 3}. This equation can be further represented 
as

�V s F s F s F b s s sl m n= + +( ) − ( ) + +1 1 2 2 3 3

2 22 3* * * * * * * * ** * .( ) − ( )2 3
2 2b sl  (11.2.24)

Apparently, inequality

 2 3
2 2

1 2 3( ) ≥ )(b F F Fmax , ,* * *
 (11.2.25)

is a suffi cient condition for �V < 0.          □

 Inequality Equation 11.2.25 defi nes a subspace in the system space in which 
the state trajectories converge to the sliding manifold Sdq = 0 in fi nite time. 
This is to show that the attraction domain of the sliding manifold is bounded 

in the state space. Note that parameter b
u

L
d= 0

2
 should be high enough at 

initial time instant. Because u0d = u0, the output voltage should not be zero at 
the initial time instant. In critical applications, this can be achieved by start-
ing the converter operation with an open-loop control. In fact, as discussed 
in the DC/DC converter part, an observer-based control scheme can also 
be applied here such that sliding mode occurs starting from the initial time 
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instant. However, the associated convergence proof is rather involved and 
thus goes beyond this text. 

As the last step of the control design, the resulting controls u1, u2, and u3 
should be mapped into the switching patterns applying to the power con-
verter using the following relations:

 

s u s s

s u s s

w w w

w w

1 1 4 1

2 2 5

1

2
1 1

1

2
1 1

= +( ) = −

= +( ) = −

, ,

, ww

w w ws u s s

2

3 3 6 3

1

2
1 1

,

, .= +( ) = −

 (11.2.26)

For implementation of the proposed current control, matrix DT is needed for 
transformation Equation 11.2.17 (exact values of Fdq are not required for the 
implementation). Matrix DTcan be found as 

 D bT
a a

b b

c c

=
−
−
−

⎡

⎣

⎢
⎢
⎢

⎤cos sin

cos sin

cos sin

θ θ
θ θ
θ θ ⎦⎦

⎥
⎥
⎥

, (11.2.27)

where θa = θ, θb = θ  − 2π/3 and θc = θ  + 2π/3.

11.2.2.2. Output Voltage Regulation

In this section, the reference currents feeding to the current controller, id
*

and iq
* , will be determined to ensure asymptotic stability of the output volt-

age regulation in the outer loop. Neglecting the voltage drop over the phase 
resistance Rw, the system model in the (d, q) reference frame can be simpli-
fi ed to

 

du
dt

i
C

i u i u

C

L
di
dt

u L i
u

d l d d q q

d
gd q

0

0

2
= − +

+
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,

ω dd
d

q
gq d

d
q

u

L
di

dt
u L i

u
u

2

2
0

,

.= − −ω

 (11.2.28)

Normally, the value of the inductance satisfi es L << 1, and the right-hand 
sides of the equations in Equation 11.2.28 have the values of the same order. 
Hence, did/dt, diq/dt >> du0d/dt, implying that the dynamics of id and iq are 
much faster than those of u0d. Provided that the fast dynamics are stable, 
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the outer-loop control can be simplifi ed considerably. Based on the singular 
perturbation theory, we can formally let the left-hand sides of the second 
and third equations in Equation 11.2.28 be equal to zero and then solve the 
algebraic equations for ud and uq. As a result, the following equation system 
is valid for control design of the slow-manifold:

 

u u L i u

u u L i u

d

d gd q d

q gq d d

= +

= −

2

2

0

0

( )/ ,

( )/ ,

*

*

ω

ω

uu
dt

i
C

i u i u

C
d l d d q q0

2
= − +

+* *

,

 (11.2.29)

where id
*  and iq

*  are the reference values of id and iq, respectively. Note that we 
replaced the real currents with their reference values, because we assume 
that the inner current control loop is in sliding mode with s i id d d= − =* 0,
s i iq q q= − =* 0. Based on Equation 11.2.29, these reference currents will be 
determined depending on the desired system performance.

The design goals have been given in the performance characteristics at the 
beginning of Section 11.2.2. The demand of sinusoidal input currents has 
been fulfi lled automatically by involving the (d, q) transformation. The fol-
lowing characteristics will cover the major requirements of a well-controlled 
boost AC/DC converter:

  1. The output voltage should converge to its reference value u0
*.

 2.  The input current phase-angle should trace its reference value
ρ* * *arctan( / )= i iq d .

 3.  The power-balance condition should be satisfi ed, i.e.,
u i u i u i u igd d gq q l d l

* * * *+ = =0 0 .

The reference currents id
*  and iq

*  will be calculated satisfying these require-
ments. Substitution of the fi rst and second equations of Equation 11.2.29 into 
the third equation yields

 
du
dt

i
C

u i u i

Cu
d l gd d gq q

d

0

0

= − +
+* *

. (11.2.30)

Considering the power-balance condition, the above equation can be simpli-
fi ed to

 
du
dt

i
C

u i
Cu

d l d l

d

0 0

0

= − +
*

. (11.2.31)

For simplicity, only the case of a pure resistance load Rl is considered 
here, thus load current il in Equation 11.2.31 can be replaced by il = u0d/Rl. 
Consequently, linear dynamics for output voltage u0d can be obtained
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du
dt

u u
R C

d d d

l

0 0 0=
−*

. (11.2.32)

Defi ning the voltage regulation error as u u ud d d0 0 0= −*  with a constant desired 
voltage �u d0 0* = , we have

 u R Cud l d0 0 0+ =� . (11.2.33)

Obviously, the voltage error tends to zero asymptotically with the time con-
stant RlC. The above derivations mean that, if the power-balance condition 
is fulfi lled, the output voltage converges to its reference value automatically. 
Solving the equations for requirements 2 and 3 with respect to id

*  and iq
*  yields

 

i
u i

u u

i
u i

u u

d
l

gd gq

q
l

gd gq

*
*

*

*
* *

tan
,

tan

=
+

=
+

0

0

ρ

ρ
ttan

.
*ρ

 (11.2.34)

The input current phase-angle ρ* defi ned in the second requirement is usu-
ally determined by the control designer. 

11.2.2.3. Simulation Results

The proposed sliding mode current controller and output voltage regulator 
are validated by the following simulation results. Parameters of the AC/DC 
converter are preset as Rw = 0.45Ω, L = 7.5 mH, C = 820μF, and load resistance 
Rl = 182Ω. The amplitude of the supply voltage is selected as E = 50 3/ V. 
The frequency of the supply voltage ω is 377 rad/sec. The simulation results 
are shown in Figures 11.34 through 11.37. 

11.2.3. Observer for Sensorless Control

In the previous section, we developed a cascaded control structure to con-
trol the phase currents, output voltage, power factor, and the input current 
phase angle of boost-type AC/DC converters. Sliding mode current control 
ensures fast convergence of the real currents to their reference counterparts. 
However, this control structure is based on the assumption that the follow-
ing information is available:

Phase currents i1, i2, i3

Source voltages ug1, ug2, ug3

Supply frequency ω
Load current il

•

•

•

•
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FIGURE 11.34
Current component id.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

Time (sec)

Cu
rr

en
t i

d 
(A

)

In industrial systems, the source voltages, assumed to have sinusoidal 
form, may come from a synchronous generator; transducers are needed for 
sensing their amplitude and frequency. The same holds for the phase cur-
rents and the load current. To minimize the number of sensors and hence 
the maintenance costs, a link current sensor may be integrated nearby the 
storage capacitor (see Figure 11.32). Based on this link current sensor, all state 
variables needed for the proposed control structure can be estimated using 
a sliding mode observer combined with the design techniques of a conven-
tional observer.

We have made the assumption that the source voltages are of sinusoidal 
form; their frequency, however, may not be constant. This is the case for 
source voltages coming from a synchronous generator that might be started, 
stopped, accelerated, or decelerated. Suppose that the frequency of the source 
voltages changes, approximately, linearly with respect to time, i.e., 

 ω(t) = αt + β, (11.2.35)

where α, β are constant values. The phase of the source voltages is thus 
given by
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 θ α β γ( ) ,t t t= + +1

2
2  (11.2.36)

with γ also being a constant value. The model of the source voltage of phase 
i = 1 can then be obtained as

 u
d
dt

E t E t t tg1
21

2
= ( ) = − + + +⎛

⎝⎜
⎞

cos ( ) ( )sinθ α β α β γ ⎠⎠⎟ , (11.2.37)

where E is a constant. Let us defi ne new state variables as x1 = ug1 and x x2 1= � . 
It may be checked that ug1 in Equation 11.2.3 is a solution to the system

 

�

�

x x

x x x

1 2

2
2

2

2 1 2

3 3

=

= − +
⎛
⎝⎜

⎞
⎠⎟

+

,

,ω α
ω

α
ω

 (11.2.38)

for any E and α. In other words, we have derived the model of the source  
voltage for one phase.

FIGURE 11.35
Current component iq.
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In the following, we propose to design observers for the state variables of 
phase i = 1. The state variables associated with phase i = 2 and i = 3 can be 
obtained in a similar manner. Note that state variable x2 stands for the time 
derivative of x1 = ug1  and should not be mixed with the phase i = 2.

As mentioned before, the link current is assumed to be measurable as a 
function of ii and ui, i = 1, 2, 3,

 ilink = f(i1, i2, i3, u1, u2, u3) (11.2.39)

where function f(⋅) is defi ned as 

 i

i u u u

i u ulink =
≠ =
≠

1 1 2 3

2 2 1

if

if ==
≠ =

⎧
⎨
⎪

⎩⎪
u

i u u u
3

3 3 1 2if

. (11.2.40)

Therefore, the link current consists of sequential “windows” during which 
the phase currents can be observed sequentially. In other words, the link 
current is equal to one of the phase currents in certain windows, which are 
determined by the combination of the switching signals u1, u2, u3. The lengths 
of the windows depend on the switching policy used.

FIGURE 11.36
Output voltage u0.
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11.2.3.1. Current Observer for Source Phase Voltage 

Design a sliding mode current observer as

 ˆ ˆ ( ) sign(
�
i

R
L

i
u
L

u u u
L

M u iw
lin1 1

0
1 2 3 1

6
2

1= − − − − + kk i− ˆ ),1  (11.2.41)

where M is a constant observer gain. Assuming that the parameters Rw and 
L are identical with those in model Equation 11.2.3 and subtracting Equation 
11.2.41 from Equation 11.2.3 leads to the mismatch dynamics:

 �i
R
L

i
L

x
L

M iw
1 1 1 1

1 1= − + − sign( ), (11.2.42)

where i i i1 1 1= − ˆ . For a suffi ciently large observer gain M, sliding mode can be 
enforced in Equation 11.2.42 with i1 0= . Using the equivalent control method 

for �i1 0=  and i1 0=  leads to

 M i x
eq

sign( ) .1 1( ) =  (11.2.43)

To extract the equivalent control from Equation 11.2.42, we use a fi rst-order 
linear fi lter (Section 2.4) with fi lter output z and fi lter time constant μ:

FIGURE 11.37
Input and output power.
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 μ �z z M i+ = sign( )1  (11.2.44)

implying that lim
μ→

= =
0

1 1z x ug  asymptotically. Hence, the source voltage of 

phase i = 1 can be reconstructed by using the sliding mode observer and 
exploiting the equivalent control method.

11.2.3.2. Observer for Source Voltage

The source voltage x1 = ug1 obtained above is often corrupted by high-
frequency noise because the time constant of the low-pass fi lter is required 
to be small enough. Otherwise, the associated phase lag as well as time delay 
would destroy the information in ug1 equal to the average value of M isign( )1 . 
In addition, the voltage ug1 is estimated only within the windows when the 
link current is equal to the current of phase i = 1.

11.2.3.3. Known Supply Frequency 

First, let us discuss a simple case to gain some theoretical insight of the EMF 
observer, i.e., the source voltage observer. Assuming that the frequency ω 
and the acceleration α of the EMFs are known and assuming that the link 
current can be measured continuously without the restriction of the watch-
ing windows, design the EMF observer as follows:

 

ˆ ˆ ,

ˆ ˆ ˆ

�

�

x x L x

x x x

1 2 1 1

2
2

2

2 1

3 3

= −

= − +
⎛
⎝⎜

⎞
⎠⎟

+ω α
ω

α
ω 22 2 1− L x ,

 (11.2.45)

where x x z1 1= −ˆ  (z denotes the output of the low-pass fi lter (Equation 11.2.44) 
and we assume that z = x1); L1 and L2 are the observer gains. The stability of 
the observer Equation 11.2.45 can be proven by a proper choice of a Lyapunov 
function. Subtracting Equation 11.2.38 from Equation 11.2.45 yields

 

�

�

x x L x

x x x L x

1 2 1 1

2
2

2

2 1 2 2

3 3

= −

= − +
⎛
⎝⎜

⎞
⎠⎟

+ −

,

ω α
ω

α
ω 11 ,

 (11.2.46)

with x x x2 2 2= −ˆ . Design the Lyapunov function candidate as

 V x x L x V x x= + −( ) = = =1

2

1

2
00

2
1
2

2 1 1

2

1 2ω , with at 00, (11.2.47)

where ω0 is a constant. The time derivative of Equation 11.2.47 along the solu-
tions of Equation 11.2.46 is given by
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�V L x L x= − −⎛
⎝⎜

⎞
⎠⎟ −( ) − +

⎛
⎝⎜

⎞
1 2 1 1

2 2
2

2

3 3α
ω

ω ω α
ω

+ 0
2

⎠⎠⎟
+ −

⎡

⎣
⎢

⎤

⎦
⎥ −( )3

1 2 1 2 1 1

α
ω

L L x x L x . 

(11.2.48)

We assume that time varying ω is lower bounded; then �V t( ) is negative semi-
defi nite if

 L L t L1 2
2

2

2 13
3 3> = − +

⎛
⎝⎜

⎞
⎠⎟

+α
ω

ω ω α
ω

α
ω

, ( ) .and 0
2  (11.2.49)

The surface x L x2 1 1 0− =  does not contain whole trajectories; the solution is
x1 0= , x2 0= . Therefore, the EMF observer with the time-varying gain L2(t) is 
shown to be asymptotically stable.

If a crude measurement of the supply frequency is available, the accelera-
tion α may be found using a linear observer:

 
ˆ
.

ˆ ( ˆ ),

ˆ ( ˆ ).

ω α ω ω

α ω ω

= − −

= − −

L

L

3

4
�  (11.2.50)

For constant positive parameters L3 and L4 , both ω̂ ω→  and α̂ α→  as 
t → ∞. It is preferable to use the estimated frequency ω̂  instead of the 
measured value ω if the crude measurement of the supply frequency is 
corrupted by noise.

11.2.3.4. Unknown Supply Frequency 

In real applications, the supply frequency as well as the acceleration sig-
nals may not be measured. To meet this requirement, we need to addition-
ally estimate ω and α. The convergence proof of this kind of observer will 
become involved. However, simulations and experimental results showed 
that the observer converges.

The following nonlinear observer for the EMFs and their frequency is 
proposed:
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ˆ ˆ
ˆ

ˆ
ˆ
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x x L W x

x x

1 2 1 1 1

2
2

2

2 1

3
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= − +
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⎝⎜

⎞
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+ω α
ω

33
2 2 1 1

3 1 1 1

4 1

ˆ

ˆ
ˆ ,

ˆ ˆ ˆ ,

ˆ

α
ω

ω α

α

x L W x

L W x x

L W

−

= +

= −

�

� xx x1 2
ˆ ,

 (11.2.51)

where Li(i = 1, 2, 3, 4) are the observer gains, and W1 is the window signal 
defi ned by
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 W
u u u

1

1 2 31

0
=

≠ =⎧
⎨
⎩

if

otherwise
. (11.2.52)

Readers who are interested in the convergence proof under certain assump-
tions should consult previous works [Utkin and Drakunov 1995; Chen 1998].

The state variables associated with phase i = 2 and phase i = 3 can be 
obtained in a similar manner. Several factors will deteriorate the perfor-
mance of the proposed observers:

 1. There exist parameter uncertainties, e.g., in parameter Rw or L.

 2. The sampling rate of a digital implementation is too low; in this case, 
we need a discrete-time version of the observer design [Utkin, Chen, 
Zarei, and Miller 1997].

 3. The time constant of the low-pass fi lter μ (see Equation 11.2.44) is 
selected inappropriately.

11.2.3.5. Simulation Results

The proposed sliding mode observer for the case of varying, and unknown, 
supply frequency is validated by the following simulation results. Parameters 
of the AC/DC converter are preset as Rw = 0.033Ω, L = 1.55 × 10−4H, C = 40F, and 
load resistance Rl = 0.12Ω. The amplitude of the supply voltage is selected as 
E = 10. The frequency of the supply voltage ω is assumed to vary in the range 
of 150–250 Hz, and the rate of frequency change, i.e., the acceleration α, may 
change within a range of ±1000 Hz/sec. Results of the estimated signals are 
shown in Figures 11.38 through 11.41. The desired rate of  convergence can 
be obtained by the choice of observer gains. In the simulations, the observer 
gains are designed as L1 = 4000, L2 = 4,000,000, L3 = 500, and L4 = 20,000.

For all simulations, the information of the phase current is available only 
within the time windows in which link current is equal to the phase current. 
Beyond the windows, the observer operates in the open loop mode.

Section 13.3 will show experimental results for a similar problem for auto-
motive applications, using a different form of back-EMF/frequency observer.

11.3. DC/AC Converter

After the intensive discussion of three-phase AC/DC converters in the pre-
vious section, this section presents sliding mode pulse width modulation 
(SMPWM) control methodologies for a three-phase DC/AC converter, i.e., 
current-controlled inverter. Two novel approaches adopting the sliding 
mode concept are proposed to make the system track the reference inputs. 
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Phase currents and the neutral point voltage are controlled simultaneously. 
Simulations and experiments are performed to confi rm the effectiveness of 
the proposed  control algorithms. Some considerations concerning the opti-
mization of different operational criteria offered by SMPWM via the control 
of the neutral point voltage are also given. The main contents of this section 
are based on the work of Yan, Utkin, and Xu [2007].

11.3.1. Dynamic Model

Consider the system in Figure 11.42. The three-phase full-bridge inverter 
under control is to provide desired currents to the load, taking into account 
that they can be dependent. 

Based on circuit analysis, the system equations are

 

L
di
dt

Ri e H U v

Ldi
dt

Ri e H U v

a
a a dc n

b
b b dc

+ + = −

+ + = −

1

3 nn

c
c c dc nL di

dt
Ri e H U v+ + = −5

 (11.3.1)

FIGURE 11.38
Estimation of the phase current î1.
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where H1, H3, H5 ∈ {±1} represent the switching control signals for six switch-
ing devices of the three-phase full-bridge converter. If a switching device is 
conducting, a value of 1 is assigned to it; otherwise, −1 is assigned. vn is the 
voltage at neutral point n. ea, eb, ec are voltages, for example, three back EMF 
in AC motors. It is assumed that ea + eb +ec = 0. Because the sum of the phase 
currents is equal to zero as well, vn of the three-phase system can be found 
from Equation 11.3.1: 

 v
U

H H Hn
dc= + +

3
1 3 5( ) (11.3.2)

Because H1, H3, H5 are discontinuous signals, vn is discontinuous as well. 
However, its average value changes continuously, and the control of vn will 
be discussed later. 

11.3.2. Control Design: Sliding Mode PWM

The objective of control algorithm is to track proper selected current refer-
ences. Some existing PWM techniques use three-phase current errors as 
inputs to its controller, for example, hysteresis band PWM. Denote 

FIGURE 11.39
Estimation of the supply voltage x̂1.
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c c

= − / − /
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= − /

( )

( )

( ) −− /e Lc .

 (11.3.3)

Substitute Equation 11.3.2 into Equation 11.3.1 and use the notation in 
Equation 11.3.3, gives 
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 (11.3.4)

Equation 11.3.4 can be written in matrix form:
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FIGURE 11.40
Estimation of the supply frequency ω̂ .
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FIGURE 11.41
Estimation of the supply acceleration α̂.
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FIGURE 11.42
Circuit diagram of three-phase inverter and load.
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 (11.3.5)

which can be summarized to

 ⇒ = +d
dt

U
L

Bdci
,f

3
1H  (11.3.6)

where i = [ ] i i ia b c
T , f = [     ]f f fa b c

T , H = [     ]H H H T
1 3 5 , and 

 B1

2 1 1

1 2 1

1 1 2

=
− −

− −
− −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
. (11.3.7)

Note that matrix B1 is singular because of ia + ib+ ic =0, hence only two phase 
currents of ia, ib, ic can be controlled independently. As a result, although the 
three currents are equal to the desired values, the motion of system is not 
unique. For example, the voltage vn in Equation 11.3.2 can be equal to dif-
ferent values. In fact, we have three control inputs H1, H3, H5 but only two 
independent controlled variables. Thus we have one superfl uous degree 
of freedom to do some additional task, e.g., to minimize the number of 
inverter switching, as shown later. In the following, we assume that refer-
ence inputs ia

∗ and ib
∗ are given and discuss how to use the additional degree 

of freedom. 
Let us complement the original system by the fi rst-order equation 

 3
�s v vn n= −∗ . (11.3.8)

See Equation 11.3.2 for the defi nition of vn. Equation 11.3.8 can be imple-
mented using an integrator. Defi ne the sliding manifold s = [sa sb s3]

T as 

 

s i i

s i i

s v v d

a a a

b b b

n n

= −
= −

= −

∗

∗

∗∫3 ( ) τ

 (11.3.9)

where i i va b n
∗ ∗ ∗, ,  are reference signals. Note that, if sa = sb = 0, ic

∗ = 
− + = − + =( ) ( )* *i i i i ia b a b c  is automatically satisfi ed. The selection of vn

∗ will be 
discussed later. The time derivative of vector s can be found from Equations 
11.3.2, 11.3.4, and 11.3.9: 
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3
1 3 5( )+ +

 (11.3.10)

Three-dimensional discontinuous control H can be designed such that slid-
ing mode is enforced on s = 0, implying that all three components of s are 
equal to zero and the tracking problem is solved. Because the system perfor-
mance in sliding mode depends on vn

∗, it can be selected in correspondence 
with some performance criterion. 

Two control methods that can be used to enforce sliding mode will 
be shown here. The first one is to design a Lyapunov function. The sec-
ond one is to decouple the three dynamic equations in Equation 11.3.10 
with respect to three controls by coordinate transformation. In the 
later approach, the frequency analysis can be performed for each phase 
independently. 

11.3.2.1. Lyapunov Approach

Having proposed the sliding surface s, the control algorithm should be 
designed such that vector s goes to zero after fi nite time. Defi ne the Lyapunov 
function candidate

 V = 1

2
s sT .  (11.3.11)

Its time derivative is 

 

� �

� � �
V

s s s s s s

f
U

L
H H

a a b b

V
dc

=
= + +

= − + +

s sT

3 3

1 3
3

[α β γγ H5 ],

 (11.3.12)

where f s i f s i f s vV a a a b b b n= − + − +∗ ∗ ∗( ) ( )� �
3  is a bounded function with ∂fV/∂Hi = 0  

(i = 1, 3, 5), and

 

α
β
γ

= − +
= − +
= − − +

( )

( )

( )

2

2

3

3

3

s s s L

s s s L

s s s L

a b

b a

a b

 (11.3.13)

Select the control logic for the inverter switches as 
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H

H

H

1

3

5

=
=
=

sign

sign

sign

( )

( )

( )

α
β
γ

 (11.3.14)

�V now becomes 

 �V f
U

LV
dc= − + +⎡⎣ ⎤⎦3

α β γ . (11.3.15)

If Udc is large enough, fV can be suppressed, and �V < 0 can be guaranteed, 
then the sliding manifold is reached after fi nite time. SMPWM with the 
Lyapunov approach takes into account all sliding surfaces directly for each 
phase’s control. Although the convergence of system states to corresponding 
sliding surfaces requires the DC-bus voltage to be high enough, SMPWM 
does not require the Udc to be constant. Note that, in the calculation of vn, the 
value of Udc is required (see Equation 11.3.2).

11.3.2.2. Decoupling Approach

The Lyapunov approach is rather simple, but it does not let us analyze the 
motion in the vicinity of the sliding manifold, because three equations in 
Equation 11.3.10 are interconnected. The decoupling approach is a little bit 
more complex than the Lyapunov approach, but it provides some benefi ts. In 
this approach, three transformed sliding surfaces are introduced, and each 
switching control will correspond only to one sliding surface, i.e., the system 
is decoupled. Equation 11.3.10 can be written in matrix form: 

 �s f H= +D
dcU
L

B
3

,  (11.3.16)

where the vector fD a a b b n
T

i f i f v= − , − ,∗ ∗ ∗[ ]� �  includes terms without control vari-
ables, and 

 B

L L L

=
− −

− −
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2 1 1

1 2 1 . (11.3.17)

Because B is a nonsingular matrix it can be transformed into a diagonal 
matrix, and the control variables can be decoupled for each sliding surface. 
Introduce new switching manifold 

 s s* ,= =−B 1 0  (11.3.18)

where B−1 can be calculated as
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 (11.3.19)

Then s* can be further expended as 
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 (11.3.20)

Differentiation of Equation 11.3.18 gives � �s s* = −B 1 , and �s can be found from 
Equation 11.3.10. Thus, 
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⎥
⎥

 (11.3.21)

where f * * * *[ ]= , ,f f f T
1 2 3  is a 3 × 1 vector whose elements have bounded values 

 

f
L

Li Lf v

f
L

Li Lf v

a a n

b b n

1

2

1

3

1

3

*

*

( )

(

= − +

= − +

∗ ∗

∗ ∗

�

� ))

( )*f
L

Li Lf Li Lf va a b b n3

1

3
= − + − + +∗ ∗ ∗� �

 (11.3.22)

Note that f* does not contain control variables H1, H3, and H5. Equation 
11.3.21 shows that the dynamics of s*can be decoupled into three individ-
ual motions (with respect to control). Select the control logic for inverter 
switches as 
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 (11.3.23)

To enforce the sliding mode s* = 0, Udc should be designed high enough, 
i.e., Udc/(3L) > sup ||f *||, for the sliding mode existence conditions s s1 1 0* *� < , 
s s2 2 0* *� < , s s3 3 0* *� <  to hold. Sliding manifold s* = 0 is reached after finite time. 
Because s = Bs*and B is nonsingular, sliding manifold s = 0 is reached at 
the same time instant, thus tracking control performance is guaranteed. 

11.3.2.3. Possible Applications of vn Control

Reference input vn
∗ may be selected depending on some operation criteria: 

control of switching frequency, minimization of this frequency with given 
accuracy, and so on. 

As follows from Equation 11.3.10, the time derivative of s3 depends on vn 
varying at high frequency in sliding mode. Because of the integration in s3, 
the high frequency will be rejected on the sliding surface and s3 will depend 
on average value of vn. 

As mentioned previously, the reference currents are tracked. At the same 
time, the average value of vn can be controlled using SMPWM. To take advan-
tage of this extra degree of freedom, proper vn

∗ can be found to optimize some 
performance criterion. For example, the switching frequency (i.e., the num-
ber of switching) can be minimized to reduce switching losses. 

Ideally, sliding mode is a mathematical abstraction in which the sliding 
motion trajectories are strictly on sliding surfaces. However, sliding mode 
in a real-life system occurs not strictly on the sliding surfaces. Instead, it 
occurs within some boundary layer. Assuming that switching devices have 
hysteresis loop Δ, then Δ defi nes the accuracy of the system, as shown in 
Figure 11.43. In the control system, the switching frequency depends on state 
velocities; it is not a constant value (unlike the case of conventional PWM, in 

FIGURE 11.43
Sliding manifold of SMPWM.
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surface
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which the switching frequency is fi xed). We consider the system using the 
decoupling approach, in which each surface si

*, i ∈ {1, 2, 3} can be handled 
independently by the corresponding control H2i−1. The switching frequency 
of one transformed sliding surface is determined by two time intervals with 
�si

* > 0 and �si
* < 0. 

Consider the switching behavior of the ith motion in Equation 11.3.21 
where i ∈ {1, 2, 3}. The function f* in Equation 11.3.21 depends on vn

∗, as shown 
in Equation 11.3.22. For each motion in Equation 11.3.21, the time duration of 
“switch on,” i.e., Hi = 1, and the time duration of “switch off,” i.e., Hi = −1, can 
be written as functions of vn

∗: 

 t v
f vi n

i n
U

L
dcon ( )

( )
,

*

∗
∗

= Δ
− 3

 (11.3.24)

 t v
f vi n

i n
U

L
dcoff ( )

( )
.

*

∗
∗

= Δ
+ 3

 (11.3.25)

It means that the switching frequency of the ith motion is a function of vn
∗ as 

well: 

 f v
t v t vi n

i n i n
switch_

on off

( )
( ) ( )

.∗
∗ ∗=

+
1

 (11.3.26)

Taking into account all three motions in Equation 11.3.21, the overall switch-
ing frequency of the system can be measured by 

 f v f vn
i

i nswitch switch_( ) ( ).∗

=

∗= ∑
1

3

 (11.3.27)

Let f vnswitch ( )∗  be the function to be minimized under the constraint Udc/(3L) > 
sup||f *||. Then the optimal vn

∗ can be found from Equations 11.3.22 and 11.3.24 
through 11.3.27, such that f vnswitch ( )∗  is minimized while tracking v vn n= ∗ is 
provided, besides tracking of i ii i

∗ =  with i ∈ {a, b, c}.

11.3.2.4. Simulation Results

To evaluate the proposed control algorithm, computer simulations have been 
conducted. Parameters used in simulation are listed in Table 11.3. The simu-
lation used the sliding surface decoupling approach. Results of three-phase 
current tracking (zoomed in) are shown in Figure 11.44. After a brief tran-
sient stage, phase currents track the references very well. In Figure 11.45, the 
average value of vn tracks a time-varying reference. This average value is 
obtained by a fi rst-order low-pass fi lter, μ �x x vn= − +  and μ = 0.001. The fi lter 
is used only to calculate the average value of vn to illustrate how close is this 
value to vn

∗. For the implementation of the system, this fi lter is not required. In 
the simulation, the reference vn

∗ is a randomly selected time-varying  function. 
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It is not optimized according to some criterion. The only objective of Figure 
11.45 is to show the ability to track a time-varying v tn

∗ ( ).
A point worth noting is that SMPWM has an advantage over conventional 

PWM techniques, e.g., the space vector PWM (SVPWM), because SMPWM does 
not require the control device to have a timing functionality, because it controls 
directly the gating signals of the inverter depending on the tracking errors. 

11.3.2.5. Experimental Results

The purpose of the experiment is to confi rm the effectiveness of SMPWM in 
a real-time environment under the infl uence of disturbances and nonideal 
circuit components. The control objective is to track a reference voltage at the 
neutral point of a three-phase load; at the same time, reference currents at 
the output of the three-phase full-bridge inverter are also tracked. 

A block diagram of the experimental setup is shown in Figure 11.46. The 
switches of the inverter are 1200 V/100 A IGBT (2MBI100NC-12). Parameters 
of the system are shown in Table 11.4. 

Results of the experiment are shown in Figures 11.47 through 11.53. Figure 
11.47 shows the result of current tracking of one phase of the converter. 
The frequency content of this switching signal (shown in Figure 11.48) has 
two peaks in frequency domain: one at 60 Hz (fundamental frequency) 
and one at 10 kHz. Different from the space vector PWM, the switching 
action of the SMPWM is not fi xed by a PWM frequency. The time-varying 
switching of SMPWM can be seen from Figures 11.49 and 11.50. The 10 
kHz component can be measured in the time domain of the fast switching 
intervals in the waveforms shown in Figure 11.50. In Figure 11.51, the fi rst 
waveform shows the current tracking, and the second waveform shows the 
tracking of a time-varying voltage reference v tn

∗ ( ) at the neutral point of the 
Y-connected load. In this experiment, the v tn

∗ ( ) is selected as a sinusoidal 
signal. In real applications, this reference can be selected according to 
 different criteria. This experiment only demonstrates SMPWM’s ability to 

TABLE 11.3

Simulation Parameters

Udc 650 (V) 

Eabc,rms 200 (V) 

i*abc,peak 18 (A) 

R 0.06 (Ω) 

L 12 (mH) 

Simulation step 10 (μsec) 

Frequency (fundamental) 60 (Hz) 
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track a time-varying v tn
∗ ( ). Figure 11.52 shows the load current (one of the 

phase current) and SMPWM’s control signal. Figure 11.53 shows the output 
voltage (one of the phase voltage) of the converter and the load current. 

For comparison, the SVPWM is also implemented to track the same current 
references without changing the hardware setup. Only the software generat-
ing PWM switching signal was changed. The load current and the SVPWM 
switching signal of one phase are shown in Figure 11.54. Compare the fi rst 
waveform of Figure 11.54 with that of Figure 11.52; the ripples of sinusoidal 
load currents are approximately at the same level. Figure 11.55 shows the 
zoomed switching action of SVPWM in fi gure 11.54. 

The spectrum of the SVPWM switching signal is shown in Figure 11.56. 
The SVPWM switching is concentrated at 20 kHz, which is determined by 

FIGURE 11.44
Current tracking using SMPWM.
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TABLE 11.4

Experimental Parameters

DC supply 50 V Load resistance 0.272Ω 

Interrupt frequency 20 kHz Load inductance 13.9 mH 
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FIGURE 11.45
Tracking a time-varying v tn

∗
( ) using SMPWM.
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FIGURE 11.46
Sliding mode PWM experimental setup.
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the interrupt frequency of the closed-loop controller. This 20 kHz switch-
ing can be measured directly in the time domain, as shown in Figure 11.55. 
Compared with the 10 kHz switching of using SMPWM (shown in Figure 
11.48), it can be observed that SMPWM can use a much slower switching 
signal to track the same reference current with the same accuracy. In this 
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experiment, the accuracy is judged by observing the level of ripples on the 
sinusoidal currents at the load. The experimental results verifi ed the effec-
tiveness of the SMPWM approach.

11.4. Summary

Sliding mode approaches to switching power converters were discussed in 
this chapter. The proper selection of the switching manifolds and a cascaded 
control structure was shown to have interesting features: 

  1.  Sliding motion is performed in the inner current loop. The struc-
ture of this loop is similar for all types of power converters. 

 2.  Because switching is the only way for controlling power convert-
ers, the sliding mode approach does not introduce any additional 
complexity or chattering. 

FIGURE 11.47
Current tracking and SMPWM control signal. The fi rst waveform (ch1) is the reference current 

given by digital signal processor (DSP). The second waveform (ch2) is the real current mea-

surement. The third waveform (ch3) shows the switching action on the corresponding phase..

Ch2: ia_real
(5A/div)

Ch3: SMPWM
control
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Ch1: ia_ref
(5A/div)

Time: 10 ms/div
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FIGURE 11.48
Frequency content of the SMPWM control signal.
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 3.  In all systems, the reference currents are calculated to be 
continuous variables. There are a few application-dependent 
parameters such that the controller can easily be realized in 
industrial systems. 

 4.  The solutions for all types of converters are global, implying that 
no linearization procedure is necessary.

As a very important aspect of this chapter, observer-based control 
approaches have been presented, either asymptotic observers or sliding 
mode observers. It was shown that an observer-based control system may 
achieve a higher control performance than a non-observer-based control 
system. To reduce the number of sensors, sliding mode observers play an 
important role in the control design. The information is extracted through 
the concept of equivalent control; thus, no high-order time derivatives of the 
internal state are necessary. Simulation and experimental results confi rmed 
the effectiveness of the proposed control approaches. 
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FIGURE 11.49
Time-varying switching action of the SMPWM.
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FIGURE 11.50
Zoomed-in experimental result of switching action of the SMPWM.

SMPWM
control
(1V/div)

Time: 50 μs/div 101.53 μs 9.8493 K HzΔt Δt
1

TAF-65602-08-1101-C011.indd   392TAF-65602-08-1101-C011.indd   392 3/31/09   7:55:26 PM3/31/09   7:55:26 PM



© 2009 by Taylor & Francis Group, LLC

Power Converters 393

FIGURE 11.51
Current tracking and time-varying v tn

∗
( ) tracking using SMPWM.
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FIGURE 11.52
SMPWM control signal and current in load.
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FIGURE 11.53
Output voltage and load current using SMPWM.
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FIGURE 11.54
Current in load and the control signal using SVPWM.
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FIGURE 11.55
Zoomed-in switching action of the SVPWM.
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FIGURE 11.56
Frequency content of the SVPWM control signal.
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12
Advanced Robotics

The control of robots, mobile robots, and manipulator arms alike, 
has fascinated control engineers for several decades. Robots are 
complex mechanical systems with highly nonlinear dynamics. 
Hence, high-performance operation requires nonlinear control 
designs to fully exploit a robot’s capabilities.

After describing the dynamic models for robots, this chapter 
fi rst discusses four basic sliding mode control design alternatives 
for the classic trajectory tracking problem, in which the robot is 
asked to follow a prescribed trajectory. Next, advanced robot con-
trol is studied using the example of gradient tracking control, in 
which the robot motion is guided online by the gradient of an 
artifi cial potential fi eld to avoid collisions with obstacles in its 
workspace. The chapter concludes with four practical examples 
of sliding mode control in advanced robotics.

12.1. Dynamic Modeling

A large number of control problems for mechanical systems are based on 
controlling the position or location of a mass using a force or a torque as the 
input variable. Instead of the pure regulation problem of driving the output 
location to a specifi ed value, the position of the mass often is required to 
follow a prescribed trajectory. Levels of complexity may be added by intro-
ducing sets of masses with coupled dynamics, to be controlled by sets of 
force/torque inputs. The standard “fully actuated” case then features one 
control force/torque input associated with each primary mass and additional 
forces/torques arising from static and dynamic coupling between the differ-
ent masses. A typical example is a robotic arm or robot manipulator with n 
links connected by n joints with force/torque-generating actuators. Usually, 
an end-effector tool is mounted at the tip of the last link for manipulating 
objects according to the specifi c robot application. The case of less control 
inputs than primary masses is called underactuation and requires extra con-
sideration. Examples were given in Chapter 4.

The input force(s)/torque(s) are the output(s) of, often electrical, actuators 
with their own complex dynamics. These actuator dynamics are usually 
neglected in the fi rst step of control design for the electromechanical sys-
tem, assuming that they are stable and considerably faster than the inertial 
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dynamics of the mass(es). Because of the large variety of actuators, we refer 
for the treatment of actuator control to Chapter 10. Also, other dynamics such 
as structural fl exibilities are often neglected when deriving a basic model 
for the mechanical system. In practice, this leads to the chattering problem 
described in Chapter 8, and one of the solutions discussed there should be 
used on top of the basic control designs outlined in this chapter.

Before designing control strategies for a mechanical system, a dynamic 
model describing the principle physical behavior should be derived. In 
this section, we consider holonomic mechanical systems in unconstrained 
motion and planar mobile robots with nonholonomic motion constraints. 
Several methods have been developed to obtain a dynamic model based on 
the physical properties of the system. A popular methodology is the Euler-
Lagrange formulation for an energy-conserving system:

 

d
dt

L
q

L
q

∂
∂

∂
∂

τ
�

− = ,
 (12.1.1)

where q ∈ ℜn×1 is a vector of generalized confi guration coordinates, τ ∈ ℜn×1 
is a vector of generalized external (input) forces/torques (excluding gravity), 
and the Lagrangian L = K − P is the difference between the total kinetic (K) 
and potential (P) energies of the system. For details and alternative formula-
tions, please refer to textbooks on the dynamics of mechanical systems; for 
robotic systems, see Craig [1986] and Spong and Vidyasagar [1989]. 

12.1.1. Generic Inertial Dynamics

For the purpose of general control design considerations in the fi rst part of 
this chapter, consider a continuous-time model of a generic, fully actuated 
n-dimensional robotic system with inertial dynamics of the form

 M q q N q q( ) ( , ) ,�� �+ = τ  (12.1.2)

where q ∈ ℜn×1 is a vector of generalized confi guration variables (transla-
tional or rotational), M(q) ∈ ℜn×n denotes an inertial mass matrix, N q q n( , )� ∈ℜ ×1 
comprises coupling forces/torques between the masses as well as gravity 
and friction, and τ ∈ ℜn×1 are the generalized input forces/torques. Equation 
12.1.2 describes the principle relationship between inertial motion of the sys-
tem masses, internal forces/torques N q q n( , )� ∈ℜ ×1, and external input forces/
torques τ, and hence is well-suited for control design.

Traditionally, robots have been categorized into “robot manipulators” and 
“mobile robots.” Robot manipulators usually have a fi xed base and consist 
of a number of rigid links, connected by translational or rotational joints. A 
set of q ∈ ℜn×1 confi guration variables of the n joints prescribes a robot con-
fi guration, also called robot posture. The set of all possible confi gurations 
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within the physical joint limitations defi nes the robot confi guration space. 
The robot “kinematics” provide a mapping between joint coordinates and 
world  coordinates. The associated locations of a given point of the manipu-
lator, e.g., the tip of its end-effector in a world coordinate system, defi ne the 
robot workspace. Note that multiple confi gurations may result in similar 
end- effector positions. Because consequently, the inverse kinematic mapping 
between end-effector location in world coordinates and the confi guration 
vector q ∈ ℜn×1 is not unique, we omit here the treatment of “inverse kine-
matics” and concentrate on control design in confi guration space. Again, the 
interested reader is referred to textbooks on robotics for a detailed treatment 
of robot kinematics and inverse kinematic mappings.

Most manipulator arms have serial links, but there are also designs with 
parallel linkages. Conversely, mobile robots possess wheels or other means 
to move about. Their workspace is defi ned by the set of points reachable 
via their means of mobility. Position and possibly orientation variables with 
respect to a workspace-fi xed coordinate system defi ne the confi gurations of a 
mobile robot. Recently, robot manipulators and mobile robots have been com-
bined to form mobile manipulators, for instance, with three degrees of free-
dom for mobility in the plane and six degrees of freedom for manipulation. 

For control design, we distinguish “holonomic” and “nonholonomic” robots. 
The motion of a holonomic robot is usually unconstraint. All joints may move 
arbitrarily within their physical limitations and the constraints of the robot 
workspace, i.e., only limits of the position variables exist. This class of robots, 
described in Section 12.1.2, incorporates both manipulators and so-called “onmi-
directional” mobile robots. Special cases include interaction between a robot 
and components of its workspace, and cooperative action of two or more robots, 
requiring special treatment beyond the scope of this text. “Nonholonomic” 
robots face additional constraints of the time derivatives �q n∈ℜ ×1 of their 
position variables, i.e., constraints on the velocity variables. Section 12.1.3 
describes a kinematic and dynamic model for nonholonomic robots.

12.1.2. Holonomic Robot Model

A well-known example of highly nonlinear, fully actuated mechanical sys-
tems with coupled dynamics is a robot manipulator with rigid links. For a 
large class of holonomic robot systems, the generic dynamics in Equation 
12.1.2 can be rewritten in confi guration space as 

 M q q V q q q F q G qm( ) ( , ) ( ) ( ) ,�� � � �+ + + = τ  (12.1.3)

where q ∈ ℜn×1 denotes the joint confi gurations (translational or rotational) 
of the n robot links, M(q) stands for the inertial mass matrix, V q qm

n n( , )� ∈ℜ ×

comprises Coriolis and centripetal forces, vector F q n( )� ∈ℜ ×1 describes viscous 
friction, and vector G(q) ∈ ℜn×1 contains the gravity terms. The formulation 
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Equation 12.1.3 follows directly from the Euler-Lagrange equations of motion 
and encompasses robot manipulators operating freely without motion con-
straints. Craig [1988] revealed the following three properties: mass matrix, 
skew symmetry, and boundedness of dynamic terms.

12.1.2.1. Mass Matrix

The square mass matrix M(q) is symmetric, positive defi nite, and can be 
 written as

 

M q

m q m q

m q m q

n

n nn

( )

( ) ( )

( ) ( )

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

11 1

1

�
� � �

� ⎥⎥
,

 

(12.1.4) 

with bounded parameters m m q m i j nij ij ij
− +≤ ≤ ≤ ≤( ) , ,1 . Hence, M(q) can be 

bounded by

 M M q M− +≤ ≤( ) ,
2  (12.1.5)

where any induced matrix norm may be used to defi ne two known scalars 0 < 
M− ≤ M+ as bounds. The known scalars M− and M+ also bound the inverse of 
M(q) as shown,

 

1 11

2M
M q

M+
−

−≤ ≤( ) .
 

(12.1.6)

In Equation 12.1.5 and in the sequel, the induced two norm will be used as an exam-
ple of bounding norms, but many other norms may be used instead. The induced two 
norm of matrix M(q) is defi ned as

 M q M MT( ) max{ ( )},
2

= λ  (12.1.7)

where λ(MT M) denotes the eigenvalues of matrix MT M.

12.1.2.2. Skew Symmetry

The time derivative of the mass matrix, M q
d
dt

M q
M q

q
q

.
( ) ( )

( )
= =

∂
∂

�, and the 

Coriolis/centripetal matrix, V q q qm( , )� �, are skew symmetric, i.e.,

 
y M q V q q yT

m
� �( ) ( , )−( ) =2 0

 (12.1.8)

holds for any nonzero vector y ∈ ℜn×1.
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12.1.2.3. Boundedness of Dynamic Terms

The Coriolis/centripetal vector V q q qm( , )� � is bounded by

 V q q q V qm( , ) ,� � �
2 2

≤ +
 (12.1.9)

where Vm
+ is a positive scalar. Viscous friction may be bounded by positive 

scalars F+ and F0 as shown:

 F q F q F( ) .� �
2 2 0≤ ++

 (12.1.10)

The gravity vector likewise is bounded by a positive scalar G+ according to

 ||G(q)||2 ≤ G+. (12.1.11)

Example 12.1: Holonomic Model of a Two-Link Manipulator

A planar, two-link manipulator with revolute joints will be used as an example 
throughout the control development in Section 12.2. The manipulator and the 
associated variables are depicted in Figure 12.1.

Examination of the geometry in Figure 12.1 reveals the “forward kinematics” of 
the two-link manipulator. The end-effector position, (xw, yw), i.e., the location of 
mass M2 in world coordinate frame (x, y), is given by

 

x L q L q q

y L q L q

W

W

= + +

= +
1 1 2 1 2

1 1 2 1

cos cos( ),

sin sin( ++ q2),  
(12.1.13)

FIGURE 12.1
Two-link manipulator with link lengths L1 and L2 and concentrated link masses M1 and M2. 

The manipulator is shown in joint confi guration (q1, q2), which leads to end-effector position 

(xW, yW) in world coordinates. The manipulator is operated in the plane, i.e., gravity acts along 

the z-axis.
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where (q1, q2) denotes the joint displacements, and L1, L2 are the link lengths. 
Solving Equation 12.1.13 for the joint displacements as a function of the end-effec-
tor position (xW, yW) yields the “inverse kinematics” as

q D C C
x y L L

L L
DW W

2

2 2
1
2

2
2

1 22
= = + − − =atan2( , ), ,with ±± −

= − +

1 2

1 2 2 1 2

C

q y x L q L LW Watan2( , ) atan2( sin , coss )q2  

(12.1.14)

which obviously is not unique because of the two sign options of the square root 
in variable D. The function “atan2( . )” describes the arctan function normalized 
to the range ±180°. 

Applying a standard modeling technique such as the Euler-Lagrange equations 
yields the dynamic model according to Equation 12.1.2 as
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(12.1.15)

with
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(12.1.16)

Note the absence of gravity terms in Equation 12.1.16 because the manipulator is 
operated in the plane, perpendicular to gravity. For the control design examples in 
the following sections, we will use the parameters shown in Table 12.1.

TABLE 12.1
Geometric and Inertial Parameters of 
Planar Two-Link Manipulator Used for 
Control Design Examples

M1 M2 L1 L2

10 kg 1 kg 1 m 1 m
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To examine the skew symmetry property in Equation 12.1.8, take the derivative 
of mass matrix M(q) in Equation 12.1.16 to yield

 

� �
� �
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M q q
m m
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12 1LL M q q2 2 2 2� sin . 

(12.1.17)

Then separate matrix N q q( , )�  into its components according to Equation 12.1.3. 
Because of the assumptions of planar operation and no friction, the gravity and 
frictions terms are equal to zero and we obtain
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(12.1.18)

Skew symmetry follows from Equations 12.1.17 and 12.1.18 as 
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(12.1.19)

Assuming exact knowledge of the parameters in Table 12.1 but ignoring all depen-
dencies on joint positions, yields upper and lower bounds for the elements of the 
matrices M(q) and N q q( , )�  in Equation 12.1.16 as listed in Table 12.2. 

Using the two norm according to Equation 12.1.7 results in upper and 
lower bounds for mass matrix M(q) as described in Equation 12.1.5 as 
M− = 0.957 kg/m2 and M+ = 204.511 kg/m2. Matrix N q q( , )�  can be upper bounded 
as G q q( ) � = 0.

TABLE 12.2
Lower and Upper Bounds of Matrix Elements in Geometric and Inertial 
Parameters

m11
−− m11

++ m m12 21
−− −−== m m12 21

++ ++== m22
−− m22

++ n1
++ n2

++

12 kg/m2 14 kg/m2 1 kg/m2 2 kg/m2 1 kg/m2 1 kg/m2 2
1 2

2
2� � �q q q+⎛

⎝
⎞
⎠ ⋅

1kg/m2

�q2
2 1⋅ kg m2
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12.1.3. Nonholonomic Robots: Model of Wheel-Set

Robots whose motion is subjected to a set of p nonintegrable constraints 
involving time derivatives of the confi guration vector q are classifi ed as non-
holonomic systems [see Neimark and Fufaev 1972]. The constraints usually 
take the form

 G q q( ) ,� = 0  (12.1.20)

with the (n − p) independent columns of the p × n matrix G(q) forming the 
base for the nonholonomic constraint condition

 �q K q u= ( ) . (12.1.21)

Note that the number of control inputs is less than the dimension of the sys-
tem, i.e., underactuation with u ∈ ℜn−p follows from Equation 12.1.20. Consider 
a set of wheels with a common axle but independent wheel actuators as an 
example of a mobile robot with nonholonomic kinematics, as shown in Figure 
12.2. Assuming no slip at the tires, the motion of each wheel is restricted to 
its longitudinal direction with velocities νR and νL, respectively, by a single 
nonholonomic constraint (p = 1). In other words, no motion can occur along 
the lateral robot coordinate axis yR. Also shown in Figure 12.2 is the robot 
confi guration q = (x, y, ϕ) ∈ ℜ3 in the world coordinate frame (xw, yw). Control 
inputs are the two wheel velocities νR and νL, which may be translated into the 
translational and rotational velocity variables u = (νc, ω) ∈ ℜ2 for convenience. 
The motion of the wheel set in the world coordinate frame is given by

 

�
�
�

x

y
c

c

=
=

=

ν φ
ν φ

φ ω

cos ,

sin ,

,  

 (12.1.22)

which form the forward kinematics for this case.
For the wheel set shown in Figure 12.2, we assume inertial dynamics of 

the form 

 Mv N vC t C t� + =( , ) ,ω τ  (12.1.23)

 J N vr C r
�ω ω τ+ =( , ) , (12.1.24)

with positive scalars M and J denoting mass and rotational inertia about 
the vertical zw-axis, τ = (τt, τr) ∈ ℜ2 being the control inputs, and scalars 

N vt C( , )� ω  and N vr C( , )� ω  comprising all additional dynamics. A more 
involved dynamic modeling was discussed by Bloch, Reyhanoglu, and 
McClamroch [1992].
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12.2. Trajectory Tracking Control

The control task commonly arising in robot control is to track a time-depen-
dent trajectory described by 

 [ ( ), ( ), ( )],q t q t q td d d� ��  (12.2.1)

with bounded desired confi gurations q t q t q t q td d d di n
( ) [ ( ), , ( ), , ( )],=

1
… …  

velocities � � … � … �q t q t q t q td d d di n
( ) [ ( ), , ( ), , ( )]=

1
, and accelerations �� �� …q t q td d( ) [ ( ), ,=

1  
�� … ��q t q td di n

( ), , ( )] for each component of an n-dimensional system like that in 
Equation 12.1.2. Control of a second-order mechanical system with a force/
torque input as in Equation 12.1.2 requires position and velocity feedback as 
a basis for stabilization, i.e., PD-type control. This requirement can be met 
by either measurement and feedback of both position and velocity variables 
or a lead compensator for position measurements in the linear sense [see 
Arimoto and Miyazaki 1984]. In sliding mode control designs, this require-
ment is refl ected in the choice of the sliding manifold with a stable motion, 
designed as a (linear) combination of position and velocity variables. 

FIGURE 12.2
Wheel set with common fi xed axis as example of nonholonomic robot kinematics. Wheels are 

constrained to longitudinal velocities vR (right) and vL (left) along robot axis xR. Lateral motion 

along axis yR is impossible. Wheel velocities vR and vL result in translational robot motion vC 

and rotational motion ω. Also shown is the robot position (x, y, ϕ) of Equation 12.1.22 in the 

world coordinate frame (xW, yW). 
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Since the fi rst set-point sliding mode controller for robot manipulators sug-
gested by Young [1978], numerous variations have been presented in the lit-
erature. In the sequel, we seek to outline the set of principle design choices to 
be made when designing a sliding mode tracking controller for a mechanical 
system like that in Equation 12.1.2. First, the designer may choose between 
componentwise control and vector control. Second, a pure discontinuous 
controller has to be compared with a continuous feedback/feedforward con-
troller with an additional discontinuity term to achieve robustness by gen-
erating sliding mode. For overviews, see Tables 12.6 and 12.7, respectively, at 
the end of this section.

Example 12.2: Circular Trajectory for Planar Two-Link Manipulator

For the control design examples in this section, we will demand the planar two-
link manipulator detailed in Example 12.1 to follow a circular trajectory in its 
workspace. The circle with center (xd, yd) and radius rd is given in world coordi-
nates (xw, yw) by

 

x t x r

y t y r

t
t

d d d d

d d d d

d

( ) cos

( ) sin

( )

= +

= −

=

0

0

2

ψ

ψ

ψ π
ff f

ft
t

t t t− ⎛
⎝⎜

⎞
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≤ ≤sin , ,
2

0
π

 

(12.2.2)

where the operation is assumed to start at time t = 0 and to be completed at fi nal 
time t = tf. The parameters for the examples are chosen as shown in Table 12.3. 
Bounds over the time interval 0 ≤ t ≤ tf can be obtained by using the inverse kine-
matics (Equation 12.1.14) as summarized in Table 12.4. The desired trajectory is 
depicted in Figure 12.3.

TABLE 12.3
Parameters of Desired 
Circular Trajectory

xd yd rd tf

1 m 1 m 0.5 m 5 s

TABLE 12.4
Bounds of Desired Circular Trajectory

ψ π
d ≤ 2

5
�ψ π

d ≤ 4

5
��ψ π

d ≤ 4

25

2 �qd1
1≤ rad/s �qd2

1≤ rad/s
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12.2.1. Componentwise Control 

The fi rst choice is mainly concerned with the structure of the sliding 
manifold(s). Because in system Equation 12.1.2 n force/torque inputs are 
assumed to control n confi guration outputs of the 2n-dimensional dynam-
ics, each component i of the n components of the output vector may be 
assigned its own sliding manifold and hence be controlled independently. 
Alternatively, the n components are dealt with as a vector (see Section 12.2.2). 
For componentwise control, the structure of the n sliding manifolds is 

 s c q q i ni i e ei i
= + =� …,    , , ,1  (12.2.3)

where ci > 0 are scalar gains to determine the rate of exponential convergence 

of the tracking error q q qe d ii i
= −  to zero after reaching the sliding manifold 

si = 0. Each component of the control input vector τi is responsible for  ensuring 

FIGURE 12.3
Desired circular trajectory for example control designs. Workspace trajectory in world coordi-

nates (xW, yW) is shown in left column. Center column depicts associated joint space trajectories 

in (q1, q2) coordinates. Right column shows time trajectory of angle Ψd.
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sliding mode to occur along its respective manifold (Equation 12.2.3), e.g., by 
choosing

 τ τi ii
s i n= =0 1sign( ), , , .…  (12.2.4)

Sliding mode is established independently in each manifold si = 0 and fi nally 

in the intersection s s sn
T

n= = ×[ , , ]1 10… . The controller gains τ 0i
 are to be deter-

mined from the stability analysis sketched in Theorem 12.1.

Theorem 12.1

The states of system (Equation 12.2.5) with components (Equation 12.2.6) 
under control (Equation 12.2.8) will reach the sliding manifolds (Equation 
12.2.7) in fi nite time.

Total System �� �q M N q q= −( )−1 τ ( , )  (12.2.5)

System component �� � ��q M N q q
m

n m qi i
ii

i i ij j
j

= −( )( ) = − −−

=

1

1

1τ τ( , )
,, j i

n

≠
∑

⎛

⎝⎜
⎞

⎠⎟
 (12.2.6)

Manifolds s c q q c q q q qi i e e i d i d ii i i i
= + = − + −� � �( ) ( ) (12.2.7)

Control τ τi ii
s= 0 sign( ) (12.2.8)

  □

Proof 12.1

Consider a Lyapunov function candidate for each component,

 
V si i= 1

2
2 ,

 
(12.2.9)

with its time derivative along the system trajectories

 

� � �� ��V s c q q
m

s n mi i i e d
ii

i i iji i i
= + − − −1

0τ sign( ) qq

m
s s c q

j
j j i

n

ii
i i i e

i

= ≠

+

∑
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

≤ − +

1

0

,

τ
�

ii i
q

m
n m qd

ii
i ij j

j j i

n

+ + +
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
−

+ +

= ≠
∑�� ��1

1,

⎜⎜
⎞

⎠
⎟ .

 

(12.2.10)
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Boundedness of the desired trajectory in Equation 12.2.1 of the elements mij 
of the mass matrix in Equation 12.1.4 and of the elements ni of vector N(q) by 
Equations 12.1.9 through 12.1.11 ensures the existence of a 

 

τ 0
1

1
i i i

m c q q
m

n m qii i e d
ii

i ij j
j j

> + + ++
−

+ +

=

� �� ��
, ≠≠

∑
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

i

n

 
(12.2.11)

to yield

 
�V si i i≤ −ξ | |, (12.2.12)

for some scalar ξi > 0. Consequently, fi nite convergence of the system Equation 
12.2.6 to the manifold si = 0 in Equation 12.2.7 is established.   □

 The assumption of boundedness of the terms 
m

m
q j n j iji

ii
j�� …, , , , ,= ≠1  implies 

bounded coupling forces/torques attributable to bounded accelerations of 
the other masses. In practical mechanical systems with one mass mi being 
associated with each control input τi, a hierarchical boundedness of cou-
pling terms is inherent. In particular, robot manipulators tend to be con-
structed with stronger and hence heavier links and joints near the base and 
with increasingly lighter links and joints toward the tip and the end effector. 
For an explicit stability analysis, the hierarchy of masses has to be solved 
reversely, a process that may become tedious for higher-dimensional sys-
tems. The details of the hierarchical design method may be found in previ-
ous work [Utkin 1992].

Alternatively to the individual design of components τi of control vector 
τ pursued in Theorem 12.1, the design may be based on a Lyapunov func-
tion constructed for the whole system instead for each subsystem. The main 
advantage of such a closed representation in vector form is the avoidance of 
hierarchical mass requirements attributable to the positive-defi nite property 
of the mass matrix M. It will be shown in Section 12.2.2 that using a control 
vector τ likewise enforces sliding mode.

Example 12.3: Componentwise Control of Two-Link Manipulator

Solving Equation 12.2.6 for the planar two-link manipulator with dynamics 
Equation 12.1.15 yields
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�� ��

��

q
m

n m q

q
m

n m

1
11

1 1 21 2

2
22

2 2 12

1

1

= − −( )

= − −

τ

τ

,

���q1( ).
 

(12.2.13)

According to Equation 12.2.7, the sliding manifolds are defi ned as

 

s c q q q q q

s c q q

e e e d

e e

1 1 1

2 2

1 1 1 1

2 2

0

0

= + = = −

= + =

�

�

, ,

, qq q qe d2 2 2= − ,  
(12.2.14)

leading to a control vector 

 
τ

τ
τ

τ
τ

=
⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1

2

0 1

0 2

1

2

sign

sign
.

s

s
 

(12.2.15)

For proving stability, a Lyapunov function candidate is used for each component. 
As an example, consider the fi rst joint controller:

 
V s1 1

21
2

= .
 (12.2.16)

The time derivative along the system dynamics (Equations 12.2.3 through 12.2.14) 
under control Equation 12.2.15 is given by

 

� �

� �� ��

V s s

s c q q q

s
s

e d

1 1 1

1 1 1

1
0

1 1

1

=

= + −

= −

( )

signτ 11

11
1

1

11

21

11
21 1m

c q q
n

m
m
m

qe d+ + + +⎛
⎝⎜

⎞
⎠⎟

� �� �� .
 

(12.2.17)

The requirement �V s1 1 1< −ξ  leads to a condition for the required control resources 
τ01 as

 
τ0 11 1

1

11

21

11
21 1 1≥ + + +

⎛
⎝

+
+

−

+

−m c q q
n
m

m
m

qe d� �� ��⎜⎜
⎞
⎠⎟

+ >ξ ξ1 1 0, .
 

(12.2.18)

The parameter bounds can be found from Tables 12.2 and 12.4. The second joint 
controller can be treated in a similar manner. 

Often, the link accelerations ��qi  are not available. In such a case, the desired 
link accelerations ��qdi  can be substituted under the assumption of close tracking. 
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For robots with on-off control inputs, i.e., control torques that may only take two 
values τ τi = − 01  or τ τi = + 01 , the maximum of Equation 12.2.18 over the whole 
desired trajectory in the interval 0 ≤ t ≤ tf should be taken. If the required control 
resources calculated from Equation 12.2.18 exceed the actual control resources of 
a given robot, the desired trajectory should be modifi ed to decrease the required 
joint accelerations.

Also, because the starting point of the robot manipulator often coincides with 
the starting point of the desired trajectory, the initial errors are zero and sliding 
mode may occur immediately at the start. Thus, all errors and their derivatives are 
zero throughout the entire operation.

Figures 12.4 and 12.5 show the time trajectory in the robot workspace, the 
distances to the sliding manifolds, and the required control resources for the 
circular example trajectory (Equation 12.2.2). The initial conditions were cho-
sen to be nonzero for illustration purposes. Convergence to the sliding man-
ifolds in fi nite time is illustrated by the top graph in Figure 12.5. Note the 
difference in required control resources for the two joints in the bottom graph 
of Figure 12.5.

FIGURE 12.4
Robot trajectory and desired trajectory in world coordinates for componentwise control 

design.
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12.2.2. Vector Control

The above componentwise control is most suitable for systems with domi-
nant terms in the diagonal of the mass matrix M(q) and with truly discon-

tinuous control inputs, i.e., inputs τ i that may only take two values τ τi i
= − 0  

and τ τi i
= + 0 . For other systems, in particular for those with range control 

inputs − ≤ ≤ +τ τ τ0 0i ii , vector control is an elegant alternative.
In contrast to the set of n one-dimensional sliding manifolds si = 0 for com-

ponentwise control design, vector control is based on a single n-dimensional 
vector sliding manifold 

 s Cq q se e
n= + ∈ℜ ×� , ,1

 (12.2.19)

where C ∈ ℜn×n is a Hurwitz and preferably diagonal gain matrix, qe(t) = 
qd(t) − q(t) is the tracking error vector, and input vector τ is defi ned as

 
τ τ τ= ∈ℜ ×

0

2

1s
s

n, .
 

(12.2.20)

FIGURE 12.5
Top graph: Distance to sliding manifolds s1(t) and s2(t). Bottom graph: Required control 

resources τ 01
 and τ 02

 for each joint.
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Sliding mode only occurs when all components of s in Equation 12.2.19 are 
equal to zero instead of occurring in each component separately as for com-
ponentwise control. Likewise, s = 0n×1 is the only discontinuity in control 
Equation 12.2.20, whereas Equation 12.2.4 features n control discontinui-
ties in vector τ τ τ τ= [ ] ∈ℜ ×

1 2
1, , ... , n

n . Note that the control vector has always 
length τ0, which led to the name “unit control” for this approach [Ryan and 
Corless 1984; Dorling and Zinober 1986]. The stability analysis in the follow-
ing theorem is also vector based.

Theorem 12.2

The system in Equation 12.2.21 with the bounds given in Equations 12.1.5 
and 12.1.9 through 12.1.11 under control Equation 12.2.23 will reach the slid-
ing manifold Equation 12.2.22 in fi nite time.

System �� �q M N q q= −( )−1 τ ( , )  (12.2.21)

Manifold s Cq q C q q q qe e d d= + = − + − =� � �( ) ( ) 0 (12.2.22)

Control τ τ= 0

2

s
s

 (12.2.23)

  □

Proof 12.2

Consider the Lyapunov function candidate 

 
V s sT= 1

2
,
 

(12.2.24)

with its derivative along the system trajectories in Equation 12.2.21 under 
control given in Equation 12.2.23,

 

� � �� �V s Cq q M q
s
s

N q qT
e d= + − −

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
−1

0

2

( ) ( , )τ
⎞⎞

⎠⎟

≤ − + + +
⎛
⎝⎜

⎞
⎠⎟+

+

−

τ 0

M
s s C q

N
M

qe d� �� .
 

(12.2.25)

Use of the boundedness assumptions on the desired trajectory in Equation 
12.2.1 and of the bounds given in Equations 12.1.5 and 12.1.9 through 12.1.11 
enables to fi nd a suffi ciently large τ0 to guarantee 
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�V s≤ −ξ

2 (12.2.26)

and henceforth fi nite converge to the manifold s = 0n×1 in Equation 12.2.22. □

Compared with componentwise control design as in Theorem 12.1, vec-
tor control exploits matrix/vector norms for bounds in Equations 12.1.5 and 
12.1.9 through 12.1.11 in the stability analysis rather than single-parameter 
bounds. Although matrix/vector norms yield a more elegant and more con-
cise mathematical formulation, they are known to be conservative and may 
result in overestimation of the required control resources. In particular, 
because τ τ0 0 1≥ ∀ =

i
i n, , ,…  in Equations 12.2.8 and 12.2.23, all components τi 

of the control input vector τ in Equation 12.2.21 are required at least resources 
τ0. For mechanical systems with inhomogeneous masses and actuators, such 
a requirement may considerably exceed the system capabilities and compo-
nentwise control design is advisable. An example is a multilink robot manip-
ulator with heavy base links with strong joint actuators but smaller links 
near the end effector with preferably less powerful actuators.

Example 12.4: Vector Control of Two-Link Manipulator

Adaptation of the control design in Theorem 12.2 to the planar two-link manipula-
tor example of Equation 12.1.15 yields a sliding manifold as shown
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(12.2.27)

which in fact is similar to the componentwise control design (Equation 12.2.14) 

for this choice of gain matrix C
c

c
=

⎡

⎣
⎢

⎤

⎦
⎥

1

2

0

0
. The difference in control design 

becomes apparent when defi ning the vector controller according to Equation 

12.2.23 as

 

τ τ τ= =
+ + +

0

2

0

1
2

2
2

1

2
1 1 2 2

0

0
s
s c q q c q q
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�

�
, (  12.2.28)

compared with Equation 12.2.15. 
Stability can be established using Lyapunov function candidate 

 
V s s s sT= = +( )1

2
1
2 1

2
2
2 ,

 (12.2.29)
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which also differs from the componentwise Lyapunov function (Equation 12.2.16). 
Differentiation along the system trajectories in Equation 12.1.15 with manifold 
Equation 12.2.27 and under control Equation 12.2.28 yields

 

� � �

� �

V s s s s

M
s s c q c q

N
e e

= + =

= − + + ++

1 1 2 2

0
1
2 2

1
2 2

1 1

τ ++

− + +
⎛
⎝⎜

⎞
⎠⎟M

q q�� ��1
2

2
2 .

 
(12.2.30)

Substituting the matrix bounds of the example in Section 12.1.2 leads to an upper 
bound on the required control resources as

 
τ0 1

2 2
1
2 2

1
2

2
2

1 1≥ + + + +
⎛
⎝⎜

⎞+
+

−M c q c q
N
M

q qe e� � �� ��
⎠⎠⎟

+ >ξ ξ, .0
 

(12.2.31)

Again, the desired link acceleration q q qd d d= +�� ��
1 2

2 2  may be substituted for the 

actual link acceleration q q q= +�� ��1
2

2
2  under the assumption of exact tracking. 

Note that vector control design requires both joints to provide resources accord-
ing to Equation 12.2.31.

Simulation results are shown in Figures 12.6 and 12.7. Because the matrix 
bounds are more conservative than the bounds on the single matrix elements in 
Table 12.2, the requirement for τ0 is considerably larger than for τ01 and τ02 in the 

FIGURE 12.6
Robot trajectory and desired trajectory in world coordinates for vector control design.
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case of componentwise control design (compare Figures 12.5 and 12.7). Because 
of the increase of control resources, convergence to the sliding manifold from the 
initial conditions is signifi cantly faster. Also note that sliding mode occurs simulta-
neously in both components of vector s s s T= ⎡⎣ ⎤⎦1 2 .

12.2.3.  Continuous Feedback/Feedforward Control with 
Additional Discontinuity Term for Sliding Mode

The two designs in Theorems 12.1 and 12.2 yield purely discontinuous con-
trollers. All system dynamics are treated as unknown disturbances and are 
suppressed by the control inputs. Only bounds on the system parameters 
are assumed to be known and are necessary for guaranteeing stability of 
the design. This approach is well suited for systems with in fact mostly 
unknown or highly uncertain parameters and with direct implementability 
of a sliding mode controller. In cases of at least partially known parameters 
and in the presence of additional unmodeled dynamics, requiring one of the 

FIGURE 12.7
Top graph: Distance to sliding manifold s(t) = [s1(t) s2(t)]T. Bottom graph: Required control 

resources τ0 for both joints.
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methods of Chapter 8 to prevent chattering, a more complex feedback/feed-
forward structure is advisable. Another advantage of this second alternative 
choice is the possibility to exploit the physical properties of the system to 
the benefi t of the control performance. In particular, for robot manipulators 
with dynamics described by Equation 12.1.3, the skew-symmetry property 
(Equation 12.1.8) can be used. Although this approach is suitable for both 
componentwise control and vector control, we focus on the latter for ease 
and clarity of presentation. Componentwise control was discussed previ-
ously [Slotine 1985; Chen, Mita, and Wahui 1990].

Assume that there exist estimates for the matrices and vectors in Equation 
12.1.3 with similar structures and estimated parameters, denoted by
ˆ ( ), ˆ ( , ), ˆ( ), ˆ ( )M q V q q F q G qm � � and . In addition to Equation 12.2.19, we defi ne

 
� � �λ = + = +Cq q s qe d  (12.2.32)

and present the following control design.

Theorem 12.3

The system in Equation 12.2.33 with bounds given in Equations 12.1.5 and 
12.1.9 through 12.1.11 under control in Equation 12.2.35 will reach the sliding 
manifold Equation 12.2.34 in fi nite time.

System �� � � �q M q V q q q F q G qm= − − −( )−1( ) ( , ) ( ) ( )τ  (12.2.33)

Manifold s q C q q qd d= − = = − +� � �λ λ0, ( )  (12.2.34)

Control τ λ λ= + + + + +ˆ ( ) ˆ ( , ) ˆ( ) ˆ( ) ˆ ( )M q V q q F q F q G qm
�� � � � � ττ 0

2

s
s

 (12.2.35)

  □

Proof 12.3

Consider the Lyapunov function candidate 

 
V s M q sT= 1

2
( ) ,

 (12.2.36)

which is positive semi-defi nite with respect to q because the mass matrix 
M(q) is positive defi nite. Differentiation along the system trajectories under 
control Equation 12.2.35 and using the skew-symmetry property (Equation 
12.1.8) yields 
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� �� � � �V s
s
s

M q V q q F q G qT
m= − + + + +

⎛
⎝

τ λ λ0

2

( ) ( , ) ( ) ( )⎜⎜
⎞
⎠⎟

≤ − + + + + +( )+ + + +τ λ λ0 0s s M V F F q Gm
�� � � .

 

(12.2.37)

Because estimates ˆ ( ), ˆ ( , ), ˆ( ), ˆ ( )M q V q q F q G qm � � and  have similar structures as their 
equivalents in Equation 12.1.3, they also fulfi ll the boundedness properties 

described in Section 12.1.2. Hence, the estimation errors M q M q M q( ) ( ) ˆ ( )= − , 

V q q V q q V q qm m m( , ) ( , ) ˆ ( , )� � �= − , F q F q F q( ) ( ) ˆ( )� � �= − , and G q G q G q( ) ( ) ˆ ( )= −  may be 
bounded similarly to Equations 12.1.5 through 12.1.11 by appropriate scalars

M−, M+, Vm
+, F0, F+, and G+ . For a bounded trajectory with q t qd d( ) ≤ +,  � �q t qd d( ) ≤ + 

and �� ��q t qd d( ) ≤ +
, and bounded link positions q(t) and velocities �q t( ), �λ( )t  and ��λ( )t  

are also bounded and there exists a fi nite 

 
τ λ λ0 0> + + + ++ + + +M V F F q Gm

�� � �
 (12.2.38)

such that the sliding condition is fulfi lled, i.e.,

 
�V s≤ −ξ

2
, (12.2.39)

and reaching of the sliding manifold Equation 12.2.34 in fi nite time is 
 guaranteed.         □

The fi rst four continuous terms in Equation 12.2.35 fulfi ll both feedback 
and feedforward tasks by compensating for dynamic terms in Equation 
12.2.33 according to the current error and the desired trajectory as com-

prised in the variable λ in Equation 12.2.32. Note that ��λ( )t  in controller 

Equation 12.2.35 does not require measurement of link acceleration ��q t( ) (see 
also defi nition Equation 12.2.32). In the case of exact knowledge of all model 

parameters, i.e., M q n n( ) = ×0 , V q qm n n( , )� = ×0 , F q n( )� = ×0 1, and G q n( ) = ×0 1, a small

discontinuous term τ 0

2

s
s

 would suffi ce to guarantee stability. In practice, 

the sliding mode term also has to cope with uncertainties in the estimates 
ˆ ( ), ˆ ( , ), ˆ( ), ˆ ( )M q V q q F q G qm � � and  and possibly also with additive external distur-

bance forces/torques not accounted for in model Equation 12.1.3.
The feedback/feedforward terms follow the ideas of feedback lineariza-

tion: to obtain a basically linearized outer control loop by appropriate cancel-
lation of all nonlinear terms in an inner control loop. In robotic applications, 
this technique is referred to as “computed torque control” [Hunt, Su, and 
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Meyer 1983; Gilbert and Ha 1984]. Related approaches directly use energy 
considerations derived from the Euler-Lagrange formulation [Takegaki and 
Arimoto 1981] or the “natural motion” of the mechanical system [Koditschek 
1991]. An advantage over classical feedback linearization is the possibility to 
exploit the dynamics of the system, such as the skew-symmetry property of 
robot manipulators, rather than canceling all nonlinear terms via feedback 
regardless of their possibly benefi cial infl uence in closed loop. Various other 
approaches in this class of controllers have been proposed in the literature to 
improve the accuracy of the feedback/feedforward terms, e.g., reducing the 
estimation error by adaptive or robust adaptive control. The underlying idea 
is to minimize control action in the outer loop. For a more detailed treatment 
of feedback/feedforward strategies , the interested reader is encouraged to 
study textbooks on robot control [such as Craig 1988; Spong and Vidyasagar 
1989; Lewis, Abdallah, and Dawson 1993]. 

Example 12.5: Feedback/Feedforward Control of Two-Link Manipulator

To design a feedback/feedforward controller, estimates of the model parameters 
are required. For clarity, the parameter estimates in this example are chosen as the 
average of the lower and upper bounds of the model parameters as given in Table 
12.2. The estimated parameters are denoted with circumfl exes (^)

�
; their numeric 

values are given in Table 12.5. Note that the estimates for Coriolis/centripetal 
effects are set to zero because of the contained trigonometric functions.

Furthermore, auxiliary variable λ( )t  needs to be calculated in addition to sliding 
manifold Equation 12.2.34:

 

� �

�
λ =

⎡

⎣
⎢

⎤

⎦
⎥

−
−

⎡

⎣
⎢

⎤

⎦
⎥ +

⎡c

c

q q

q q

q

q
d
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d

d

1

2
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0
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2

1

2⎣⎣
⎢

⎤

⎦
⎥ .

 
(12.2.40)

Given the parameter estimates in Table 12.5 and the defi nition of λ in Equation 
12.2.40, a control vector according to Equation 12.2.35 can be defi ned as

 

τ
λ

λ
=

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
ˆ ˆ

ˆ ˆ
ˆm m

m m
V

11 12

21 22

1

2

��

�� mm q q
s
s

( , ) .�
�

�
λ

λ
τ1

2

0

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

 
(12.2.41)

TABLE 12.5
Estimates for the Matrix Elements in 
Geometric and Inertial Parameters

m̂11
ˆ ˆm m12 21== m̂22 V̂m

13 kg/m2 1.5 kg/m2 1.5 kg/m2 02 2×
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Note that, because the example manipulator operates in the plane without the 
infl uence of gravity and no friction was included in model Equation 12.1.15, 
N q q V q q qm( , ) ( , )� � �=  holds. 

The stability proof exploits Lyapunov function candidate Equation 12.2.36 with 
its time derivative given in Equation 12.2.37. Matrix bounds for the estimation 
errors are obtained in a similar manner as in the example in Section 12.1.2. For 
example, the estimation error of the mass matrix, M M M= − ˆ , can be bounded 
by M− = 3 177 2. kg/m  and M+ = 5 323 2. kg/m . Note that especially the value for 
the upper bound is considerably smaller than the corresponding value of M+ = 
205.511kg/m2. Consequently, the amplitude of the control discontinuity term, τ0 in 
Equation 12.2.41, can be chosen signifi cantly smaller than in Equation 12.2.28.

Figures 12.8 and 12.9 illustrate the performance of the continuous feedback/
feedforward controller with a small discontinuity term in a similar manner as 
in the previous examples in Sections 12.2.1 and 12.2.2. However, because the 
continuous feedback/feedforward part also requires control resources, the bot-
tom graph of Figure 12.9 depicts a low-pass-fi ltered average of the total con-
trol torques τ1 and τ2. The simulation example suggests that the required control 
resources are in the same order of magnitude as in the case of componentwise 
control in Section 12.2.1. Note that convergence to the  sliding manifold is slower 
than in the previous examples, but both components reach the manifold simul-
taneously because of the unit vector characteristic of the discontinuity term in 
Equation 12.2.41.

FIGURE 12.8
Robot trajectory and desired trajectory in world coordinates for continuous feedback/feedfor-

ward control design with additional discontinuity term.
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12.2.4. Discussion of Sliding Mode Control Design Choices

The previous three sections presented three control design alternatives for 
mechanical systems based on two choices: componentwise control or vector 
control, and purely discontinuous control versus continuous feedback/feed-
forward control with an additional discontinuity term. The fourth possible 
control alternative, continuous feedback/feedforward control with an addi-
tional, componentwise discontinuity term, is omitted here for brevity. The 
interested reader is encouraged to study a simple design example such as the 
planar two-link manipulator given in Section 12.1.2 for this combination of 
choices. 

All four control design alternatives have one feature in common: they 
enforce sliding mode in some manifold and thus achieve exact tracking of the 
desired trajectory. Besides the differences in control design methodologies, 

FIGURE 12.9
Top graph: Distances to sliding manifolds s1(t) and s2(t). Bottom graph: Required average con-

trol resources τ1 and τ2 for each joint.
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the four alternatives differ in the required control resources for each joint. 
Whereas componentwise control seeks to determine the necessary resources 
for each joint but requires tedious derivations, vector control is more concise 
at the expense of higher control resource requirements. 

In all four control alternatives, the control discontinuities are used to 
suppress model uncertainties and, in practice, external disturbances. 
Continuous feedback/feedforward control reduces the amount of model 
uncertainty to be suppressed by the control discontinuity. However, for the 
choice “componentwise control versus vector control,” the uncertainty to 
be suppressed remains the same, and the difference in amplitude of the 
discontinuity terms arises from the stability proof rather than from system 
requirements. 

For ideal sliding mode control systems with direct implementation of 
the discontinuity term, pure discontinuous control as in Theorem 12.2 
is equivalent to the continuous feedback/feedforward control with addi-
tional discontinuous control in Theorem 12.3. After reaching the sliding 
manifold, the motions of the two systems are identical. This can be estab-
lished using the equivalent control method discussed in Section 2.3. In 
fact, the equivalent control torques during sliding mode are similar for 
all four alternatives: all control algorithms on average apply the torques 
necessary to follow the desired trajectory. Higher amplitudes of the dis-
continuity only shorten the transient phase for approaching the sliding 
manifold.

For sliding mode designs in systems with unmodeled dynamics, the 
feedback/feedforward structure enables to use “smaller” sliding gains τ0, 
thought to cause chattering. Even with the chattering problem being solved 
reliably, a similar qualitative argumentation holds for most chattering pre-
vention schemes, in particular for the saturation function method in Section 
8.2 and the observer-based approach in Section 8.3. These methods avoid 
excitation of unmodeled dynamics by replacing the infi nite gain of an ideal 
sliding mode controller with a fi nite gain in the linear zone of the saturation 
function or in the observer loop, respectively. 

For a given system, the nature of the unmodeled dynamics, especially 
their frequency range, determines a practical upper bound for the fi nite 
gain. This bound on the saturation feedback gain implies bounded ability to 
suppress uncertainties and disturbances. In general, the smaller the possi-
ble gains, the larger the errors, i.e., the larger the boundary zone introduced 
by the saturation function or the larger the observer errors. Consequently, 
feedback of estimated dynamics and feedforward of the desired trajectory 
improves the performance of the control system by reducing the amount of 
uncertainty to be suppressed by the sliding mode term. Tables 12.6 and 12.7 
contrast the general choices for sliding mode control design for mechanical 
systems.
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12.3. Gradient Tracking Control

Trajectory tracking control as discussed in the previous section implies an 
a priori designed trajectory qd to be given for the entire robot operation. 
Expansion of the range of robot tasks and an increase in robot autonomy led 
to the need to generate trajectories online, for example, to avoid collisions 
with obstacles in the workspace while approaching a given goal point. A 
popular tool for online trajectory generation with inherently included colli-
sion avoidance is the artifi cial potential fi eld method, pioneered by Khatib 
[1986] and refi ned by many others. The key idea is to design an artifi cial 
potential fi eld in the control computer with a global minimum at the goal 
point of the robot operation and local maxima at workspace obstacles. Robot 
motion then is guided by the gradient of the computer-generated artifi cial 
potential fi eld instead of by a predetermined trajectory.

TABLE 12.6
Comparison Between Componentwise Sliding Mode Control Design and Vector 
Control/Unit Control (Equations are Given for Purely Discontinuous Control 
Approach) 

Component-Wise Control Vector Control/Unit Control

Preferred systems Truly discontinuous inputs in 

each component that can 

take only two values, –τ0i
or –τ0i

Ability to vary inputs in a 

continuous range, i.e., 

–τ0i 
≤ τi ≤ τ0i

Sliding manifold(s) n (2n–1)-dimensional 

mani folds si = 0, i = 1,...,n in 

2n-dimensional state space 

ℜ 2nx1 

One n-dimensional manifold 

s = 0, s ∈ℜnx1, for the entire 

system vector q∈ℜnx1 

Control Discontinuous in each 

com ponent, τi = τ0
i
 sign(si), 

i = 1,..., n

Unit vector with one 

discontinuity in the origin, 

τ τ τ= ∈ ×
  , 

0

2

s

s
ℜn 1

Stability analysis Separate Lyapunov functions 

Vi is=    1
2

2
 for each component 

i = 1,...,n; often tedious 

analysis of coupling terms 

for higher-dimen sional or 

complex systems based on 

bounds for each system 

parameter

One Lyapunov function 

V =    1
2 s sT

 for the entire 

system; often conservative 

analysis based on vector/

matrix bounds for the whole 

system model
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This method is an early form of virtual reality, because the potential fi eld 
is generated “artifi cially” in the control computer without any physical rele-
vance. However, many approaches exploit physical phenomena to design the 
artifi cial potential fi eld, e.g., electrostatics, fl uid dynamics, or stress mechan-
ics. To avoid additional local minima away from the goal point, which may 
trap the robot and cause premature termination of the operation, harmonic 
Laplace fi elds are often used, using either the von-Neumann or the Dirichlet 
boundary conditions.

A number of methods to guide the robot motion using artifi cial potential 
fi elds have been presented in the literature, including the following.

Coupling of the Gradient of the Artifi cial Potential Field into the 
Robot Dynamics Via the Control Input: The control force/torques 
are applied colinear to the gradient, implementing a dynamic rela-
tionship between the robot and its environment in the general 
framework of impedance control of mechanical systems [Hogan 

1985]. Effectively, the robot acceleration vector ��q t( ) is oriented along 
the gradient, which obviously does not lead to tracking of the gra-
dient because of the robot’s inertial dynamics. However, safe colli-
sion avoidance can be guaranteed for potentials tending to infi nity 

•

TABLE 12.7
Comparison Between Pure Discontinuous Control and Continuous Feedback/
Feedforward Control with Additional Discontinuity Term (Equations are Given 
for the Unit Control Approach, Using Generic Robot Manipulator Dynamics as an 
Example)

Pure Discontinuous Control

Feedback/Feedforward with 

Additional Discontinuity Term

Preferred systems Ideal systems with truly 

discontinuous inputs and no 

unmodeled dynamics

Mechanical systems with 

continuous inputs and additional 

unmodeled dynamics

Sliding manifold s Cq q q q qe e e d= + = = −� 0, s Cq q q q q s qe e e d e= + = = − = +� � �0, , λ

Control
τ τ=  

0

2

s

s

τ λ λ= + + 
ˆ ( )    ˆ ( ,  )    ˆ( )M q V q q F q

m
� � �

+ + =ˆ ( )  G q
s

s
τ τ

0

2

Stability analysis Straightforward Lyapunov

analysis with V =    1
2 s sT

; 

discontinuous term 

suppresses all systems 

dynamics

Includes system dynamics in a 

Lyapunov function 

like V =     ( ) ;1
2 s M q sT

 

discontinuous term suppresses 

uncertainty in estimated 

feedback/feedforward terms
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at obstacle boundaries, even for bounded actuator resources [Rimon 
and Koditschek 1992].

Accounting for the Robot Dynamics and Actuator Limitations 
in the Design of the Potential Field: Krogh’s “generalized poten-
tial fi eld” [Krogh 1984] considers the time needed to reach the goal 
point or an obstacle rather than the respective distance. The con-
trol design is based on a double integrator to model a mobile robot 
and takes into account limited actuator resources, but no additional 
dynamics.

Using Feedback for Tracking the Gradient of the Potential Field: 
Khatib [1986] proposed a feedback linearization strategy, similar to 
the continuous feedback/feedforward control discussed in Section 
12.2.3, assuming exact parametric knowledge of all robot dynam-
ics. This rather restrictive requirement was relieved by Koditschek’s 
[1991] “natural motion” approach for dissipative mechanical systems 
and a related, energy-based approach by Takegaki and Arimoto 
[1981]. However, in Koditschek’s approach, the gradient of the arti-
fi cial potential fi eld implicitly takes into account the robot mass/
inertia matrix for generating natural motion and hence cannot be 
designed independently of the robot dynamics.

Using Sliding Mode Control for Exact Tracking of a Gradient: 
Utkin, Drakunov, Hashimoto, and Harashima [1991] proposed to 
orient the robot’s velocity vector along the gradient of the artifi cial 
potential fi eld to achieve exact tracking. The method was later gener-
alized by Guldner and Utkin [1995] and will be the basis for control 
design in this section. The primary advantage is the exact gradi-
ent tracking property, which allows an artifi cial gradient fi eld to be 
designed independently. 

Let the gradient of an artifi cial potential fi eld U(q) be denoted by 

 E(q) = −∇U(q), E(q) ∈ ℜn. (12.3.1)

For each point q ∈ ℜn in the robot workspace, the gradient Equation 12.3.1 
defi nes a vector of a desired direction of motion. Integration along the gradi-
ent vector via 

 

∂
∂

=
q t

t
E q t

( )
( ( ))

 
(12.3.2)

with integration variable t (not necessarily denoting time) yields a continu-
ous trajectory from the starting point q0 ∈ ℜn, called a “gradient line.” A set 
of gradient lines is depicted in Figure 12.10 for a planar example of the har-
monic dipole potential method [Guldner, Utkin, and Hashimoto 1997] with a 

•

•

•
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single obstacle being protected by a circular security zone. All gradient lines 
starting in the robot free space continuously approach the goal point without 
entering the security zone. However, a number of gradient lines come close 
to the security circle, which can only result in safe operation if exact tracking 
is guaranteed via robust sliding mode control.

12.3.1. Control Objectives

The goal of control is to track the gradient of an arbitrary artifi cial potential 
fi eld (Equation 12.3.1) with a robot manipulator described by Equation 12.1.3 
or a mobile robot such as Equations 12.1.22 through 12.1.24. Exact tracking 

can be achieved by orienting the velocity vector �q t( ) of Equation 12.1.3 colin-
ear to the gradient vector E in Equation 12.3.1. To avoid singularities at equi-
librium points E = 0n×1, we defi ne the desired motion vector �q qd

n( ) ∈ℜ  as 

 

�q q v q t
q
qd d( ) ( , )

( )

max( ( ) , )
=

E

E ε  
(12.3.3)

for some small scalar ε > 0. The task of the controller to be designed in Section 
12.3.2 is to guarantee � �q t q q td( ) ( )= ( ) at all times. In the previous section, a slid-
ing mode controller was designed for tracking a given trajectory. According 

FIGURE 12.10
Gradient lines of harmonic dipole potential fi eld (solid and dashed lines) with negative unit 

singularity in goal point and positive obstacle singularity in center of obstacle security circle 

(dotted line). For details, see Sections 12.4.2 and 12.4.3.
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to the characteristics of this desired trajectory, required control resources 
were calculated from the stability analysis. Here, we choose a different path: 
the control resource limitations are assumed to be given. Then, the motion 
profi le (velocity and acceleration) is derived online together with the desired 
trajectory, i.e., the gradient of the artifi cial potential fi eld. The desired scalar 
tracking velocity vd(q, t) thus should be adjusted to enable exact tracking with 
limited control resources. Given a maximal possible acceleration a0, to be 
determined in the sequel from the available control resources, suitable start-
ing and goal-approach phases are given by

 
v q t a t v q t ad ( , ) min , ( , ), ,= ( )0 0 02 ζ

 (12.3.4)

where v0(q, t) is the desired “traveling” velocity, to be determined below, and 
ζ is the remaining distance to the goal point qG, i.e., 

 ζ = ||q(t) − qG||. (12.3.5)

Starting from initial time t = 0, the desired velocity vd(q, t) is increased using 
maximal acceleration a0 until the traveling velocity v0(q, t) is reached.

Required acceleration a0 during “normal traveling” with vd(q, t) = v0(q, t) is 
found from Equation 12.3.3 as

 

�� �q q t v q t
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(12.3.6)

assuming E( )q > ε  and exact tracking with �q v q t
q
q

= 0( , )
( )

( )

E

E
. An upper bound 

for desired acceleration ��q q td ( , ) in Equation 12.3.6 is given by

 
�� �q q t v q t v q t

q
q
qd ( , ) ( , ) ( , )

( )

( )
= +

⎛

⎝⎜
⎞

⎠0 0
2 ∂

∂
Ε
Ε ⎟⎟ ≤ a0 .

 
(12.3.7)

For given maximum acceleration a0, determined by the available control 
resources in the subsequent section, a suitable traveling velocity v0(q, t) is 
dynamically determined by the solution of

 
�v q t a v q t

q
q
q0 0 0

2( , ) ( , )
( )

( )
.= −

⎛

⎝⎜
⎞

⎠⎟
∂
∂

Ε
Ε  

(12.3.8)
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Because E(q) is time independent, its derivatives with respect to vector q are 
known in closed form, and dynamic Equation 12.3.8 can be solved online. A 
similar procedure can be followed for E( )q ≤ ε . Note that v0(t) is automati-
cally decreased in areas of high curvature of the gradient E(q), i.e., for large 

values of 
∂
∂q

q
q

Ε
Ε

( )

( )

⎛

⎝⎜
⎞

⎠⎟
. In practice, the traveling velocity v0(t) will be bounded 

by 0 0 0≤ ≤v t v( )
max

, where v0max
 is selected according to physical limitations of 

the robot and the maximum change of curvature of the gradient encoun-
tered for the specifi c robot task.

When approaching the goal point qG, the trajectory can be approximated 
by the remaining scalar distance ζ(t) under the assumption of an approach 
with q t q q td( ) ( )= ( ) as proposed previously [Utkin, Drakunov, Hashimoto, 
and Harashima 1991],

 
�ζ ζ( ) ( ).t a t= − 2 0  (12.3.9) 

Using Equations 12.3.4 and 12.3.9, a bound on scalar �v q td ( , ) can be estab-
lished for the goal approaching phase as

 

| ( , )| ( )
( )

( )
.v q t

d
d

a t
a t
a t

ad
t

= = ≤2
1

2

2

2
0

0

0

0ζ ζ
ζ

 (12.3.10)

The choice of v q t td ( , ) ( )= 2 0α ζ  during the goal approaching phase also pre-
vents overshoot at the goal point and results in a fi nite reaching time. By vir-
tue of defi nition Equation 12.3.5, ζ ≥ 0 holds at all times. Integrating Equation 
12.3.9 from ζs = ζ(q(ts)) = ζ(s) at some starting position qs at time ts

 
d

2a
d

0

ζ
ζζ

ζ

s s

t
t

t

∫ ∫= −  (12.3.11)

directly yields

 2 20 0 0a a a t ts sζ ζ− = − −( ). (12.3.12)

Because the right-hand side of Equation 12.3.12 is negative for t > tf, ζ < ζs is 
decreasing monotonously to reach ζf = 0 after fi nite time 

 
t t

af s
s= +

2

0

ζ
.
 

(12.3.13)
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12.3.2. Gradient Tracking Control Design for Holonomic Robots

Among the four choices of control design outlined for trajectory tracking 
control in Tables 12.6 and 12.7, purely discontinuous vector control features 
the most concise mathematical formulation and hence will be used here to 
reveal the basic principle structure of gradient tracking control design. The 
design presented below can be easily reformulated in terms of one of the 
three other methods described in Section 12.2.

The control objective defi ned in the preceding section is to guarantee 
� �q t q td( ) ( )=  given in Equations 12.3.3 and 12.3.4 at all times. The main differ-
ence between trajectory tracking control and gradient tracking control is that 
in the latter, velocity vector �q n∈ℜ  rather than position vector q ∈ ℜn, is used 
as the control variable. Desired velocity �q td ( ) implicitly depends on position 
vector q ∈ ℜn via the gradient vector E(q) ∈ ℜn and hence can be regarded 
as an outer control loop encompassing the robot and its environment. For 
gradient tracking control on velocity scale, an n-dimensional sliding variable 
s ∈ ℜn is chosen as

 s q q q t q td d( , ) ( ) ( ).� � � �= −  (12.3.14)

The following theorem exemplifi es the gradient tracking control design for 
purely discontinuous vector control.

Theorem 12.4

The system in Equation 12.3.15 with bounds as given in Equation 12.1.5 and 
12.1.9 through 12.1.11 under control in Equation 12.3.17 will reach the sliding 
manifolds of Equation 12.3.16 in fi nite time.

System �� �

� �
q M N q q

s q t q td

= −( )
= − =

−1

0

τ ( , )

( ) ( )

 (12.3.15)

Manifold �q q v q t
q
qd d( ) ( , )

( )

max( ( ) , )
=

E

E ε  (12.3.16)

Control τ τ= 0

2

s
s

 (12.3.17)

  □

Proof 12.4

Consider the Lyapunov function candidate 
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 V s sT= 1

2
 (12.3.18)

with the following time derivative along Equations 12.3.15 and 12.3.16 and 
control Equation 12.2.23:

 

� �� ��V s q t q t

M
s s a

N
M

T
d= −( )

≤ − + +
⎛
⎝⎜

⎞
⎠⎟+

+

−

( ) ( )

τ 0
0 ,,

 

(12.3.19)

where the bounds in Equations 12.3.7 and 12.3.10 for ��q td ( ) helped to reduce 
the expression in Equation 12.3.19. For given control resources τ0, maximum 
acceleration for determining traveling velocity v0(t) in Equation 12.3.8 and 
the goal approach in Equation 12.3.9 is calculated as

 
a

N
M0

0<
− +

−

τ
 

(12.3.20)

such that �V s≤ −ξ
2
 is ensured. Stability and fi nite approach of the sliding 

manifold s q qd( , )� � = 0 in Equation 12.3.14 then follows along standard argu-
ments for Equation 12.3.19, guaranteeing exact tracking of the gradient 
lines.         □

12.3.3. Gradient Tracking Control Design for Nonholonomic Robots

Gradient tracking control for nonholonomic robots also follows the control 
objectives given in Section 12.3.1. As an example, we will discuss control 
design for a mobile robot modeled as a nonholonomic wheel set as shown in 
Figure 12.2 in Section 12.1.3. The kinematic and dynamic models were given 
in Equations 12.1.22 and 12.1.23 through 12.1.24, respectively. The task of ori-
enting the motion vector of the wheel set along the gradient vector according 
to Equations 12.3.3 through 12.3.5 can be split into two subtasks because of 
the defi nition of the input vector u in Equation 12.1.22: orientation control 
using ω and velocity control using vC. Hence, componentwise control design 
is most suitable. The sliding manifold for velocity control along the gradient 
lines, the translational motion, is defi ned as 

 st = vd(q, t) − vC = 0 (12.3.21)

for the case E q( ) > ε . 

TAF-65602-08-1101-C012.indd   430TAF-65602-08-1101-C012.indd   430 3/31/09   7:35:59 PM3/31/09   7:35:59 PM



© 2009 by Taylor & Francis Group, LLC

Advanced Robotics 431

The orientation error for control of the rotational motion component is 
given by

 
φ φ φ φe d d

y

x

E q

E q
= − =,

( )

( )
,Atan

 
(12.3.22)

where the arcus-tangent function Atan(.) returns angles in all four quad-
rants, i.e., ϕd ∈[−π, π], and E = [Ex(q) Ey(q)]T is the gradient vector in the 
plane. The control of the robot’s orientation again is a position control, 
and thus the associated sliding manifold is defi ned as for second-order 
systems:

 s Cr e e= + =φ φ� 0  (12.3.23)

The control designs are summarized in the following theorem.

Theorem 12.5

Systems described by Equations 12.3.24 and 12.3.25 with bounds 0 < M− ≤ M 
≤ M+, 0 < J− ≤ J ≤ J+, 0  |  ( , )|< ≤ +N v Nt C tω , and 0  | ( , )|< ≤ +N v Nt C rω  under con-
trols given in Equations 12.3.28 and 12.3.29 will reach the sliding manifolds 
in Equation 12.3.26 and 12.3.27 in fi nite time.

System Mv N vC t C t� + =( , )ω τ  (12.3.24)

 J N vr C r
�ω ω τ+ =( , )  (12.3.25)

Manifolds s v q t vt d C= − =( , ) 0 (12.3.26)

 s C
E

Er e e e d d
y

x

= + = = − =φ φ φ φ φ φ� 0, , Atan  (12.3.27)

Control τt = τt0 sign st (12.3.28)

 τr = τr0 sign sr (12.3.29)

  □
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Proof 12.5

Consider the Lyapunov function candidates 

 V s st t
T

t= 1

2
 (12.3.30)

and

 V s sr r
T

r= 1

2
. (12.3.31)

Differentiation of Equation 12.3.30 along Equations 12.3.24 and 12.3.26 under 
control Equation 12.3.28 with the above bounds yields

 

� �V s v t
N v

M M

s a
N
M

t d
t C t

t

= + −⎛
⎝⎜

⎞
⎠⎟

≤ +
⎛
⎝

+

−

( )
( , )ω τ

0⎜⎜
⎞
⎠⎟

− +s
M

tτ 0 ,
 (12.3.32)

where Equation 12.3.7 was used to reduce the expression. Stability fol-
lows from Equation 12.3.32 for suffi ciently large τt0 for a suitable choice of 
a0. Similarly, stability of the orientation controller with manifold Equation 
12.3.27 is shown by differentiation of Equation 12.3.31 with system Equation 
12.3.25 under control Equation 12.3.29:

 

� � ��

� ��

V s C
N v

J J

s C

t e d
r C r

e

= + + −⎛
⎝⎜

⎞
⎠⎟

≤ +

φ φ ω τ

φ

( , )

φφ τ
d

r rN
J

s
J

+
⎛
⎝⎜

⎞
⎠⎟

−
+

− +
0 .

 (12.3.33)

Boundedness of � �φ φ ωe d= −  and ��φd is established for ||E|| > ε attributable to 

 

�φd
y

x
C

d
dt

E q

E q
H v=

⎛
⎝⎜

⎞
⎠⎟

=Atan
( )

( )
0

 
(12.3.34)

 

��φ τd
y

x
t

d
dt

E q

E q
H

H
M

=
⎛
⎝⎜

⎞
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= +
2

2 1
0Atan

( )

( )
,
 

(12.3.35)
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where
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D D D D
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(12.3.36)

[Dx](⋅) denotes the fi rst-order differential operator 
∂

∂x
.( ) , and Dxy

⎡⎣ ⎤⎦ ( ).  denotes 

the second-order differential operator 
∂

∂ ∂

2

x y
.( ). Sliding mode was assumed 

to exist in the translational manifold Equation 12.3.26, enabling the use of 
the equivalent control methodology for τt. Solving �st = 0 for the translational 
control input yields

 τ ωt eq t C dN v Mv t( ) = +( , ) ( ),�  (12.3.37)

which was substituted for τt  into Equation 12.3.34 to reduce the expression. 
Bounds for the above terms can be determined to calculate the necessary 
control input τr0 for Equation 12.3.29.      □

Two application examples for gradient tracking control can be found in 
Sections 12.4.2. and 12.4.3.

TAF-65602-08-1101-C012.indd   433TAF-65602-08-1101-C012.indd   433 3/31/09   7:36:00 PM3/31/09   7:36:00 PM



© 2009 by Taylor & Francis Group, LLC

434 Sliding Mode Control in Electro-Mechanical Systems

12.4. Application Examples

In this section, we present a variety of examples for the use of sliding mode 
philosophy in advanced robotic systems. First, torque control of a fl exible 
robot joint using integral sliding mode is presented. Next, we discuss the 
application of the gradient tracking control derived in Section 12.3 for col-
lision avoidance of mobile robots and robot manipulators in known work-
spaces. Finally, we introduce fully automatic steering control for passenger 
cars as an extension of robotic systems.

12.4.1. Torque Control for Flexible Robot Joints

In many practical applications, robot joints and robot links exhibit fl exibili-
ties that need to be considered when designing advanced control algorithms. 
As an example [for details, see Shi and Lu 1993], consider a single revolute 
link with a fl exible joint, i.e., a robot consisting of just one link actuated by 
one drive with fl exibilities in the joint. Extension of this model to multilink 
robot arms follows along the lines of Equation 12.1.3 but is omitted here for 
ease of notation. Neglecting actuator dynamics, a fl exible joint model can be 
derived as

 

J q d

J q d
n

l l l l

m m m m
l

��

��

+ =

+ = −

τ

τ τ
, 

(12.4.1)

where J J Jl l l
− +≤ ≤  is the link inertia, ql is the joint angular position, n is the 

gear ratio, J J Jm m m
− +≤ ≤  is the motor/gear inertia, qm is the angular motor posi-

tion, k k k− +≤ ≤  denotes the joint stiffness, τ l m lk q n q= −( / ) is the link torque 
at the joint, and the motor torque τm represents the control input. Also, 
unknown but bounded torque disturbances |  |  d dl l≤ + and |  |  d dm m≤ +  were 
added to Equation 12.4.1 at the link and motor sides, respectively.

Because we already introduced trajectory tracking control (position scale) 
in Section 12.2 and gradient tracking control (velocity scale) in Section 12.3, 
we will study torque tracking control (acceleration scale) in this example, 
i.e., the problem of controlling link torque τl to track a known desired profi le
[ , , ]τ τ τd d d

� �� . 
A linear input/output representation of Equation 12.4.1 is given by

 ��τ τ τl l ma d b+ + = , (12.4.2)

with a
k

n J
k

nJm l

= +
2 , b

k
nJm

= , and d
k

nJ
d

k
J

d
m

m
l

l= + .

This example will exploit both the continuous feedback/feedforward tech-
nique discussed in Section 12.2.3 and integral sliding mode control presented 
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in Chapter 7 to reject the unknown disturbance |d| < D+ and uncertainties 
in a and b. 

The control law for τm hence is composed of a continuous controller of 
feedback-linearizing type with pole placement, τf, and a disturbance reject-
ing controller τr, i.e.,

 τm = τf + τr. (12.4.3)

Defi ne a continuous feedback/feedforward controller as

 τ τ τ τ τf l d e eb a c c= + + +−ˆ (ˆ ),1
1 0

�� �  (12.4.4)

where â and b̂  are estimates of a and b, respectively. The fi rst term 
ˆ

ˆ
a

b
lτ  in 

Equation 12.4.4 seeks to compensate the term aτl in the left-hand side of 
Equation 12.4.2 as a type of feedback linearization. The second term in 

Equation 12.4.4, 
1

b̂
d

��τ , is a feedforward term of acceleration of the desired 

torque. Finally, the last two terms in Equation 12.4.4, 
1

1 0
b̂

c ce e
�τ τ+( ), are a 

linear pole placement controller. Substitution of Equation 12.4.4 into Equation 
12.4.2 yields error dynamics for τ τ τe d l= − , � � �τ τ τe d l= − , and �� �� ��τ τ τe d l= −  as

 �� �τ τ τ τ τe e e p rc c b+ + = −1 0
ˆ . (12.4.5)

The left hand side of Equation 12.4.5 is linear with poles determined by c1, 
c0 > 0, but is subject to the perturbation torque:

 
τ τ τp l l

b
b

b
b

a a
b
b

d b= −
⎛

⎝⎜
⎞

⎠⎟
+ −

⎛

⎝⎜
⎞

⎠⎟
+ + −

ˆ ˆ
ˆ

ˆ
(1 �� ˆ̂) ,b rτ

 
(12.4.6)

which may be simplifi ed by substitution of ��τ τ τl m lb a d= − −  from Equation 
12.4.2 to

 τ τ τp l ma a b b d= − + − +( ˆ) ( ˆ ) . (12.4.7)

To improve the control performance, the disturbance in Equation 12.4.7 
should be compensated by the additional disturbance rejection term τr in 
Equation 12.4.3. Because τp is not measurable, an estimate is obtained through 
a sliding mode observer of the form

 ˆ ˆ ,� �� �z c c b ud e e r= + + + −τ τ τ τ1 0  (12.4.8)
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with ẑ being an estimate for �τ l . Basically, observer Equation 12.4.8 is a copy 

of Equation 12.4.5 with ��τ l  replaced by �ẑ and observer feedback u as a replace-
ment for τp being defi ned as

 u a b d zl m= + +( )+ + +τ τ sign . (12.4.9) 

Here, a +, b +, and d +  denote upper bounds for a a a= − ˆ , b b b= − ˆ, and d d d= − ˆ , 
respectively, obtained from the bounds on the system parameters given 
above, e.g., 

 a
k

n J
k
nJ

a a
k

n J
k

m l m

+
+

−

+

−

−

+

−

= +
⎛
⎝⎜

⎞
⎠⎟

− − +max ˆ, ˆ
2 2 nnJl

+

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. (12.4.10)

The control discontinuity is introduced along the observation error z z l= −ˆ �τ . 
Stability of the observer system is ensured via Lyapunov function candidate

V z= 1

2
2; differentiation along the system trajectories Equation 12.4.8 with 

control  Equation 12.4.9 yields

 

� �� �V c c b a b d zd e e r l m= + + + − + ++ + +τ τ τ τ τ τ1 0
ˆ ( )sign −−( )

= − +

��τ

τ τ

l

p p

z

z z ,  
(12.4.11)

where τ τ τ τp l m pa b d+ + + += + + >| |    | |    max( ) ensures the existence of sliding 
mode via

 �V z< −ξ| | (12.4.12)

for some small scalar ξ > 0.
Because Equation 12.4.8 is generated in the control computer, the initial 

conditions can be set as

 ˆ| | ,z t l t= ==0 0
�τ  (12.4.13)

such that z = 0 for all t ≥ 0, i.e., sliding mode is initiated immediately at 
t = 0. To estimate the disturbance torque τp to be compensated via distur-
bance rejection term τr in Equation 12.4.3, the equivalent control method (see 
Section 2.3) is exploited. In sliding mode, � � ��z z l= − =ˆ τ 0, i.e., 

 � �� �z c c b ue e e r eq= + + + − =τ τ τ τ1 0 0ˆ . (12.4.14)

The control signal u in Equation 12.4.9 contains two components: a high-
frequency switching component resulting from the discontinuous sign 
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term and a low-frequency component, i.e., the equivalent control ueq. As 
 discussed in detail in Section 2.4, the equivalent control is equal to the 
average of u, obtained for example by a low-pass fi lter. With this in 
mind, ueq = uave = τp follows from comparing Equations 12.4.5 and 12.4.14. 
Consequently, defi ning

 τ r eq avebu bu= =ˆ ˆ  (12.4.15)

and substituting in leads to closed-loop error dynamics

 �� �τ τ τe e ec c+ + =1 0 0. (12.4.16)

Hence, the sliding mode estimator τr successfully rejects both the uncertain-
ties in parameters a and b and additive disturbance d in Equation 12.4.2 and 
allows controller Equation 12.4.4 to perform exact pole placement. It should 
be noted that the low-pass fi lter time constant or bandwidth has to be care-
fully chosen to be faster than the perturbation dynamics in τp but at the same 
time to be slow enough not to excite unmodeled dynamics in the system 
such as the neglected actuator dynamics producing torque τm. In particular, 
the extreme case of direct implementation without averaging as τr = u with 
u defi ned in Equation 12.4.9 led to chattering in experiments reported by Lu 
and Chen [1993]. 

A simulation study of the controller discussed above is based on the 
mechanical model in Figure 12.11. The system parameters were chosen as

 Jm = 1.0e − 5, n = 600, Jl = nJm/4, k = 10, (12.4.17)

and subject to a square-wave (sqw(⋅)) disturbance of the form

 dm = 1 + sqw(50t) (12.4.18)

on the motor side. Assuming perfect parameter knowledge, i.e., known Jm, 
Jl, n and k, the poles were both assigned to −200 by defi ning c1 = 400 and 

c0 = 40,000. The disturbance was upper bounded by d
k

nJ
d

m
m

+ = =max 5000. 

The averaging of u in Equation 12.4.9 is performed by a simple fi rst-order low 
pass as shown

 
�u

u uave
ave

2000
+ = , (12.4.19)
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i.e., 10 times faster than the torque control loop. Simulation results in Figure 
12.12 are shown for step responses of τd = 1 and demonstrate the signifi cant 
performance improvement achieved by the disturbance compensation.

12.4.2.  Collision Avoidance for Mobile Robots 
in a Known Planar Workspace

In this section, we present an example of planar collision avoidance for mobile 
robots using the artifi cial potential fi eld approach already mentioned in 
Section 12.3. A mobile robot is to be guided to a specifi ed goal point through 

FIGURE 12.11
Defi nition of variable of fl exible joint control problem.

dm dl

JlJm

qm

τm

τl = K (q m / n – ql )

q l
k

FIG. 12.12 
Dynamical Responses. (a) Output torque: (Solid line) with disturbance compensation, (dashed 

line) without disturbance compensation, (dotted line) the torque command. (b) Input torque: 

(solid line) with disturbance compensation, (dashed line) without disturbance compensation, 

(dotted line) the disturbance torque on the motor side.
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a planar workspace with known obstacles. Workspaces of higher dimension 
are discussed in the subsequent section. The obstacle avoidance scheme with 
the gradient tracking algorithm of Section 12.3 form the core of a hierarchical 
path control scheme [see Guldner, Utkin, and Bauer 1995].

The known obstacles in the robot workspace are protected by security 
zones, which form the basis for the design of an artifi cial potential fi eld. A set 
of diffeomorph transformations given by Rimon and Koditschek [1992] pro-
vides a mapping between arbitrary star-shaped security zones and security 
circles. Hence, the design of an artifi cial potential fi eld may concentrate on 
obstacle security circles in transformed space. After calculating the artifi cial 
potential fi eld and its gradient in the transformed space, an inverse mapping 
provides the back transformation into the real robot workspace. The obstacle 
security zones are assumed to be nonoverlapping, with the goal point lying 
outside of all security zones.

The main advantage of the transformation procedure is the possibility 
to concentrate the design of the artifi cial potential fi eld on security circles 
for the obstacles rather than on security zones of complex shape. Thanks to 
the exact tracking capability of the gradient tracking controller discussed in 
Section 12.3, the artifi cial potential fi eld can be designed independently of 
the robot dynamics, enabling a wide variety of applications.

An example of a possible choice of an artifi cial potential fi eld is the har-
monic dipole potential in ℜ2 suggested by Guldner and Utkin [1995]. For a 
singularity at the origin, the harmonic potential is given by

 U
r

= ρ ln ,
1   (12.4.20)

where ρ denotes the “strength” of the singularity, and r is the distance from 
the origin. For convenience, a polar coordinate system (r, φ) is adopted here. 
The planar gradient is given by
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(12.4.21)

Consider a dipole for a single obstacle security circle formed by a unit singu-
larity in the goal point and a singularity of opposite polarity in the center of 
the obstacle security circle with strength: 

 0 1< =
+

<ρ R
R D

, (12.4.22)

where R is the radius of the security circle, and D is the distance between 
the two singularities. The total artifi cial potential fi eld in a polar coordinate 
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system with the origin in the goal point with the negative unit singularity 
is given by

 U r
r Dr D r

( , ) ln
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ln ,ϕ ρ
ϕ
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− +
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2
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2 2  (12.4.23)

with the associated gradient derived from Equation 12.4.21 as
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The resulting gradient lines were already displayed in Figure 12.10. Note two 
properties of harmonic dipoles:

All gradient lines beginning outside the security circle remain 
outside.

Following any gradient line outside the security circle monotonously 
decreases the distance to the goal point. 

These properties are preserved under the above mentioned diffeomorph 
transformations. For details and proofs, refer to the work of Guldner and 
Utkin [1995]. 

To reduce the computational complexity, many artifi cial potential fi eld 
approaches only consider one obstacle at each time instance and switch 
between the potentials associated with different obstacles, e.g., when the 
robot gets closer to a different obstacle than the one currently considered. 
The switching between potentials of different obstacles led to oscillations in 
several approaches, for example, reported by Koren and Borenstein [1991], 
which are caused by the robot inertia and time delays in the closed-loop sys-
tem “obstacle-potential fi eld-robot.” An example is shown in Figure 12.13 for 
a circular robot, oscillating around the equidistant line between two obstacle 
potentials. The obstacles themselves are omitted in this and the following 
fi gures.

An intuitive solution to the oscillation problem is the introduction of a 
low-pass fi lter for the artifi cial potential fi eld or its gradient, leading to a 
time-dependent fi eld. However, a low-pass fi lter is reactive, i.e., is only start-
ing to consider the new potential when the robot crosses the equidistant line 
between the obstacles. Thus, the oscillations can only be damped but not be 
eliminated completely, as illustrated in Figure 12.14.

•

•
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FIGURE 12.13
Robot, depicted by circles, oscillating along equidistant line between two obstacles i and j. 
Obstacles and goal point (located to the right of the graph) are not shown. Planar gradients 

Ei = − ∇Ui and Ej = − ∇Ui are symbolized by arrows.

Goal

Start

Ei = — ΔUi

Ej = — ΔUj

Equidistant line ⇒

FIGURE 12.14
Robot, depicted by circles, oscillating along equidistant line between two obstacles i and j. The 

oscillations are damped by a low-pass fi lter applied to the gradient. Obstacles and goal point 

(located to the right of the graph) are not shown. Planar gradients Ei = − ∇Ui and Ej = − ∇Ui are 

symbolized by arrows.

Goal

Start

Ei = — ΔUi

Ej = — ΔUj

Equidistant

line

⇒

A closer look at the oscillation phenomenon reveals that it is similar to 
chattering in variable structure systems as discussed in Chapter 8. In fact, 
the oscillations are caused by unmodeled dynamics in the closed-loop sys-
tem “obstacle-potential fi eld-robot”: the switching between the potential 
fi elds of different obstacles neglects the robot dynamics. In the vicinity of 
the equidistant line, the gradient lines may be oriented toward this line 
(see Figure 12.15a), and the trajectory fi eld resembles the state space of a 
dynamic system with sliding mode. Formally, sliding mode may appear 
along the line in our case with the robot trajectory coinciding with the equi-
distant line. In the course of this motion, the robot avoids collisions with 
obstacles and approaches the goal. Unfortunately, this ideal motion cannot 
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be implemented. Indeed, ideal sliding mode would ask for the speed vec-
tor tracking the smooth gradient lines of each of two adjoining potential 
fi elds to undergo discontinuities on the equidistant line. This implies that 
the control force or torque should develop infi nite acceleration, which is 
impossible because of physical constraints. As a result, the robot trajec-
tory oscillates in the vicinity of the equidistant line (see Figure 12.10) as 
in a system with chattering. Because of this similarity, a reliable solution 
is the application of one of the methods discussed in Chapter 8 to prevent 
chattering. 

As an example, the boundary layer approach as described in Section 8.2 
is used in the sequel. Instead of switching the potential fi eld abruptly when 
the robot crosses the equidistant line between two obstacles, both poten-
tials U1(q) and U2(q) are considered simultaneously in a boundary layer of 
width δ along the equidistant line. The resulting total potential fi eld is
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 (12.4.25)

FIGURE 12.15
Effect of boundary layer for smoothing gradient lines along equidistant lines between obstacle 

security zones. (a) Discontinuous switching between gradients of obstacle security circles i and j. 
(b) Smooth switching in boundary layer along equidistant line.
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where d denotes the distance of the robot from the equidistant line. Figure 
12.14 compares the gradient lines for an example with two obstacle security 
ellipses. Note the difference of the gradient lines in the vicinity of the equidis-
tant line denoted by sequi = 0. The discontinuities along sequi = 0 visible in the 
left graph of Figure 12.15 are eliminated by the introduction of the boundary 
layer δ along sequi = 0 in the right graph. Figure 12.16 illustrates that this appli-
cation of sliding mode theory to the collision avoidance problem successfully 
eliminates the oscillations [see Guldner, Utkin, and Bauer 1994]. 

12.4.3. Collision Avoidance in Higher-Dimensional Known Workspaces

This section extends the results of the previous section for mobile robots in pla-
nar workspaces to robots in higher-dimensional workspaces ℜn, n > 2, in par-
ticular to robot manipulators. Details of the development in this section may 
be found in previous work [Guldner, Utkin, and Hashimoto 1997]. The concept 
of transforming star-shaped obstacle security zones into security circles is car-
ried over to ℜn by using security spheres (for n = 3) and security hyperspheres 
(for n > 3). However, it is beyond this book to generalize the diffeomorph trans-
formations given previously [Rimon and Koditschek 1992] to n > 2. As in the 
planar case, obstacles are assumed to be known, with  nonoverlapping security 
zones and a reachable goal point outside any security zone.

Instead of redesigning the harmonic potential in Equation 12.4.20 for ℜn, 
n > 2, the aforementioned properties of the planar gradient (Equation 
12.4.21) are further exploited. Because in any space ℜn, n > 2, three points 
uniquely defi ne a subspace of dimension n = 2, a projection onto such a pla-
nar subspace allows to continue to use the planar harmonic dipole  potential 

FIGURE 12.16
Robot, depicted by circles, follows the equidistant without oscillations when gradients are 

smoothed inside boundary layer. Obstacles and goal point (located to the right of the graph) 

are not shown. Planar gradients Ei = − ∇Ui  and Ej = − ∇Uj are symbolized by arrows.
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of Section 12.4.2. Let the goal point qG ∈ ℜn, the center of the obstacle 
(hyper)sphere qS ∈ ℜn, and the robot position qR ∈ ℜn defi ne a plane

 ℘ = +
−
−

+
−
−

∀ ∈ℜ( ) : ,q q q
q q
q q

q q
q qR

r G

R G

R S

R s

α α α α1 2 1 2 .. (12.4.26)

The plane ℘(q) serves as a design platform for the planar harmonic dipole 
potential Equation 12.4.23 with gradient Equation 12.4.24. In ℜn, the gradient 
is directly found as

 E =
−
−

−
−
−

∈ℜ
q q

q q

q q

q q
R G

R G

R S

R S

n
2 2ρ , (12.4.27)

where ρ is found according to Equation 12.4.22 with D = ||qR − qS|| and qG, 
qR, qS ∈ ℜn are taken as vectors. A three-dimensional example is shown in 
Figure 12.17 with a sphere-like robot traveling in plane ℘(q) toward the goal 
point in the origin of the coordinate system.

For multiple obstacles in the workspace, a switching procedure similar 
to the planar case is designed. Each obstacle is assigned to its own security 
zone, each of which is separately transformed into a security (hyper)sphere. 
In ℜn, n > 2, the switching between different artifi cial potentials for vari-
ous obstacles takes place in subspaces of varying dimension. Consider 
the example of a three-dimensional situation. Between two obstacles, one 
two-dimensional equidistant subspace can be found, i.e., an equidistant 

FIGURE 12.17
Sphere-like robot in three-dimensional space avoiding spherical obstacle. Gradient is defi ned 

in two-dimensional subspace, plane ℘(q), similar to Figure 12.10.
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plane. Introducing a third obstacle in this exemplary three-dimensional 
workspace leads to a total of three equidistant planes for each combina-
tion of two of the three obstacle security zones. Additionally, the points 
of equidistant to all three obstacles form a one-dimensional subspace, an 
equidistant line.

Generalizing the above to arbitrary ℜn, n > 2, yields subspaces ℜn−1 equi-
distant to exactly two of the obstacle security zones, subspaces ℜn−2 equi-
distant to exactly three of the obstacle security zones, and subspaces ℜn−k+1  
equidistant to exactly 1 < k < n of the obstacle security zones, with k being 
the number of obstacles among all workspace obstacles that may have to be 
considered simultaneously. The equidistant subspaces for various obstacle 
security zones are equivalent to Voronoi planes [see Latombe 1991], often 
used for robot path planning. In contrast to Voronoi-based approaches, the 
equidistant subspaces do not have to be computed explicitly for the follow-
ing switching strategy.

To avoid oscillations along the switching planes, i.e., the equidistant 
subspaces, boundary zones of appropriate dimension are introduced as 
an extension of Equation 12.4.25. Consider an ℜn situation with k obsta-
cles in which the gradients in all adjacent regions converge to equidis-
tant subspace Θk

n n k∈ℜ − +1. An appropriate boundary zone of width δ > 0 
is defined as 

 Bk
n n

k
nq q= ∈ℜ ⊥ ≤{ }Θ δ , (12.4.28)

where q k
n⊥ Θ  denotes the length of the normal projection of vector q ∈ ℜn 

onto subspace Θk
n n k∈ℜ − +1. Within boundary zone Bk

n, all k obstacles contrib-
ute to the resulting potential fi eld Ures ∈ ℜn. Let UG be the unit potential of the 
goal point, which is common to all single obstacle potentials. The individual 
weights ηi of each obstacle potential USi

 with appropriate strength ρi accord-
ing to Equation 12.4.22 are given by
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(12.4.29)

with di being the distance of the robot position qR ∈ ℜn from the equidistant 
subspace with respect to obstacle i. The resulting potential fi eld is found as

 U U Ures G i S
i

k

i
= +

=
∑ η

1

. (12.4.30)

The necessary condition ηi
i

k

=
=
∑ 1

1

 ensures that the properties of the harmonic 

dipole potentials are preserved, and smooth transition between different 
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potentials enables tracking without oscillations. It should be noted that the 
robot motion is only confi ned to the boundary zone Bk

n as long as all k gra-
dients in adjacent regions are directed toward the equidistant subspace Θk

n. 
When the robot has passed an obstacle, the boundary zone may be left, and 
new equidistant subspaces with a different number of obstacles considered 
simultaneously are found until the goal point is reached. There is no inten-
tion to create sliding motion along the equidistant subspaces, although the 
motion trajectories may temporarily resemble boundary layer sliding mode 
trajectories.

This section concludes with two examples in ℜ3. First, consider the spheri-
cal robot of Figure 12.17 in a workspace with three obstacles and the goal 
point in the origin of the coordinate system as shown in Figure 12.18. The 
varying number of obstacles is illustrated in Figure 12.19 according to the 
distance of the robot to the respective obstacles. Initially, only obstacle 1 in 
the bottom left corner is considered. After about 0.6 sec, the robot enters the 
boundary plane between the two lower obstacles 1 and 2. Finally, when the 
top obstacle 3 has the same distance from the robot as obstacle 2, all three 
obstacles are considered in the calculation of the resulting potential and 
the robot travels in the boundary zone of the equidistant line toward the 
goal point.

FIGURE 12.18
Sphere-like robot in three-dimensional space avoiding three spherical obstacles. The goal point 

is located in origin of the coordinate system. See also Figure 12.19. Obstacle 1 is in the bottom 

left corner. Obstacle 2 is in the bottom right corner. Obstacle 3 is in the top center. 
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Because the previous examples in Figures 12.17 through 12.19 are rather 
abstract, being based on “free-fl ying” spherical robots, the next example 
shows the application of the above algorithm to a more realistic problem 
of a revolute robot manipulator with three links and three joints, avoiding 
cylindrical obstacles in its three-dimensional workspace. The potential fi elds 
were calculated in the robot’s ℜ3 confi guration space rather than in the ℜ3 
workspace. Figure 12.20 shows the robot motion in the actual workspace in 
nine snapshots. Details of this application have been described by Guldner, 
Utkin, and Hashimoto [1997].

12.4.4. Automatic Steering Control for Passenger Cars

Automatic steering control is the last example for the application of advanced 
robotics. Automation of vehicles, for example, for automated highways 
systems, has been discussed for several decades and is studied in various 

FIGURE 12.19
Distances between robot and obstacle security spheres of the simulation in Figure 12.18. Solid 

line, Distance to obstacle 1 (bottom left). Dotted line, Distance to obstacle 2 (bottom right). 

Dashed line, Distance to obstacle 3 (top center). Also noted in the bottom part of the graph are 

the respective obstacles considered for defi nition of potentials according to Equations 12.4.29 

and 12.4.30. 
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 programs worldwide in the framework of intelligent transport systems [see 
Stevens 1996; Tsugawa, Aoki, Hosaka, and Seki 1996]. 

Two control subtasks arise for automated driving of “robot cars”: steer-
ing control to keep the vehicle in the lane (controlling the lateral motion) 
and throttle/brake control to maintain speed and proper spacing between 
vehicles (controlling the longitudinal motion). Both subtasks have been 
solved using sliding mode control. The focus in this section will be on 
automatic steering control. Longitudinal control was studied previously 
[see Hedrick, Tomizuka, and Varaiya 1994; Pham, Hedrick, and Tomizuka 
1994]. The automatic steering system of an automated vehicle consists of 
a reference system to determine the lateral vehicle position with respect 
to the lane center, sensors to detect the vehicle motion (typically yaw rate 
and lateral acceleration), and a steering actuator to steer the front wheels. 
The variety of reference systems used ranges from look-ahead systems, 
such as machine vision or radar, to look-down systems, such as electric 
wires or magnets embedded in the road surface. “Look-ahead/look-
down” describes the point of measurement of lateral vehicle displacement 
from the reference to be ahead of the vehicle or directly down from the 
front bumper [for a more detailed treatment, see Patwardhan, Tan, and 

FIGURE 12.20
Robot arm with three links avoiding two cylindrical obstacles. Obstacle security zones, de -

picted by ellipsoids, were transformed into confi guration space, and the potential fi elds were 

calculated in this three-dimensional confi guration space.
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Guldner 1997]. The control design below, however, is valid for any refer-
ence system.

Control design is usually based on the so-called single-track model, which 
concentrates on the main vehicle mass by combining the two wheels at each 
axle into a single wheel. The road-tire interaction forces are responsible for 
generating planar lateral and yaw vehicle motions, with the front wheel 
steering angle δf being the input variable. A linearized second-order model 
for constant speed v is given by
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(12.4.31)

with states side slip angle β and yaw rate �Ψ. For a detailed derivation of 
Equation 12.4.31, see the work of Peng [1992] or Ackermann et al. [1993]. 
Parameters are vehicle mass M and yaw inertia J, distances lf and lr of front 
and rear axles from the center of gravity (CG), front and rear tire cornering 
stiffness cf and cr , and road adhesion factor μ. All parameters are uncertain 
within known bounds, e.g., 0 < μ− ≤ μ ≤ μ+ ≤ 1. 

When following a reference path with curvature ρref as depicted in Figure 
12.21, lateral vehicle displacement yeS

, measured at some sensor position dS ahead 
of CG, and angular error Ψe can be described by linearized dynamic model 
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FIGURE 12.21
Single track model of a vehicle following a lane reference. Sensors at the front and tail bumpers 

measure lateral displacements yeS
 and yeT

, respectively. Also shown are vehicle states, side slip 

angle β and yaw rate �Ψ , input steering angle δf, and various distances from CG. 
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Given Equations 12.4.31 and 12.4.32, various control design options are 
possible. As an example, we present a cascaded control design under the 
assumption that vehicle yaw rate �Ψ is measurable by a gyroscope. The 
control design follows the regular form methodology (see Section 3.2) and 
considers the subsystem in Equation 12.4.31 as the input to the subsys-
tem in Equation 12.4.32. Hence, the fi rst design step assumes yaw rate 
�Ψ to be a direct input to Equation 12.4.32 and derives a desired yaw rate 
�Ψd . The second step then ensures that the actual, measured vehicle yaw 
rate �Ψ follows �Ψd  exactly via appropriate control design for steering angle 
δf in Equation 12.4.31, the true system input. A suitable continuous feed-
back/feedforward “yaw rate” controller to stabilize the fi rst equation in 
Equation 12.4.32 would be

 �ψ β ψd
S

e el
v Cy

S
= − + +( )1

( ) , (12.4.33)

with linear feedback gain C > 0. However, neither side slip angle β nor yaw 
angle error Ψe can be measured and hence have to be estimated by an observer 
[for details, see Guldner, Utkin, and Ackermann 1994]. Introducing auxiliary 
variable z = β + Ψe, an observer is designed as
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(12.4.34)

with feedback of the observation error y y ye e eS S S
= − ˆ  via gains c1 > 0 and c2 > 0, 

chosen faster than the vehicle dynamics in Equation 12.4.31. With the help of 

the observed auxiliary variable ˆ ˆ ˆz e= +β Ψ , a desired yaw rate is defi ned as

 
�ψ β ψd

S
e el

v Cy
S

= − + +( )1
( ˆ ˆ ) .

 
(12.4.35)

The second step of control design uses the steering angle δf as the input to 
Equation 12.4.31 to drive yaw rate error � � �Ψ Ψ Ψe d= −  to zero, for example, by 
purely discontinuous sliding mode control

 δ δf e= 0sign �Ψ . (12.4.36)

The stability analysis follows the previously discussed Lyapunov approach 
and is omitted here for brevity. Alternatively to Equation 12.4.36, a combination 
of continuous feedback/feedforward and a discontinuity term could be 
used, i.e.,

 
δ δ ψ βf e

f f

f f r r f
c l

c l c l
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1 1
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(12.4.37)
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where estimates of vehicle parameters are denoted with circumfl exes ( .̂ ), the 

estimate of side slip angle, β̂, stems from an observer similar to Equation 
12.4.34, and the derivative of the desired yaw rate, ��Ψd, can be derived from 
Equation 12.4.35 by virtue of known observer dynamics. Because of the con-
tinuous feedback/feedforward terms in Equation 12.4.37, the gain of the dis-
continuity term can be reduced compared to Equation 12.4.36, i.e., δ1 < δ0.

The above control design neglects the dynamics of the steering actuator, 
which will lead to chattering in practical implementations. In addition to 
the chattering prevention methods discussed in Chapter 8, the introduc-
tion of an integrator in the control loop proved to be a promising approach. 
Originally, the integrator was a physical model of the actuator dynamics [see 
Ackermann et al. 1993], with the steering rate u being the system input as

 
�δ f u= , (12.4.38)

rather than the steering angle δf  itself. The additional integrator only requires 
to alter the outer control loop (Equations 12.4.36 and 12.4.37). Defi ne a sec-
ond-order sliding variable 

 s C e e= +3
� ��Ψ Ψ , (12.4.39) 

leading to a control law 

 δf = δ0 sign s (12.4.40)

instead of Equation 12.4.36. The alternative feedback/feedforward controller 
term in Equation 12.4.37 has to be adjusted accordingly. If the real steering 
actuator is not an integrator as in Equation 12.4.38 but features more com-
plex dynamics, for example, of an electrohydraulic actuator, two design alter-
natives are left to the control engineer. Either, a sliding mode controller is 
designed according to Equations 12.4.36 and 12.4.37 with appropriate mea-
sures to prevent chattering as discussed in Chapter 8 or an integrator like that 
in Equation 12.4.38 is introduced as part of the controller, i.e., realized in the 
controller software. The latter case follows the ideas of integral sliding mode 
by implementing sliding motion in an integral manifold rather than directly 
in the control input variable δf. Hence, the switching action of the sliding mode 
discontinuity is fi rst fi ltered by integrator Equation 12.4.38 and thus does not 
directly reach the input δf, which inherently prevents chattering. A different 
integrator location in the control loop has been proposed by Pham, Hedrick, 
and Tomizuka [1994], before rather than after the  switching discontinuity. For 
a comparison study of different integrator locations in the controller loop, 
the interested reader is referred to the work of Hingwe and Tomizuka [1995]. 
Experimental results from this work are displayed in Figure 12.22. 
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13
Automotive Applications

This chapter presents different applications of sliding modes to 
a wide range of control and estimation in automotive industry. 
Sliding mode is recognized as an effi cient approach for design of 
robust controllers for complex nonlinear systems operating under 
uncertainty con ditions, which is common for automotive systems. 
When designing such systems, high accuracy and dynamic prop-
erties should be associated with reliability, low cost, and ease of 
maintenance, which implies minimization of the number of sen-
sors to acquire the information on the system state. Sliding mode 
state observers proved to be a promising way to simplify implemen-
tation of feedback systems. The items under study embrace three 
issues: control and estimation for combustion engine AFR (air-fuel 
ratio), camless combustion engines, and an automotive alternator. 

13.1. Air/Fuel Ratio Control

The ratio of injected air and fuel into a cylinder (ARF) should be maintained 
at a specifi c level (called stoichiometric ratio, equal to 14.7 for gasoline), cor-
responding to the maximum effi ciency of a combustion engine

 
ARF

m
m

ac

fc

=
�
�

,
 

(13.1.1)

where �mac is mass fl ow rate of air entering cylinder, and �mfc is fuel fl ow rate 
entering cylinder. The air mass fl ow rate depends on the intake manifold 
pressure and engine parameters [Kim, Rizzoni, and Utkin 1998]

 
�m

p V
RTac

v m d

a

=
η ω

π4  
(13.1.2)

where ηv is charge effi ciency, pm is intake manifold pressure assumed to be 
measured, Vd is displacement volume, π is engine speed, R is ideal gas con-
stant (joules per kilogram per kelvin), and Ta is ambient temperature.

The charge effi ciency is not available but can be estimated based on mani-
fold pressure equation 
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(13.1.3)

where �math is the (measurable) air mass fl ow rate at the throttle. The fuel mfi  
from an injector is not sent to the cylinder directly; it condensates and evap-
orates in the intake port. A commonly used model of the condensation and 
evaporation dynamics of fuel in an intake port [Kim, Rizzoni, and Utkin 
1998] is based on the notion that a fraction of the fuel injected into the inlet 
port will condense to form a liquid fuel fi lm in the inlet port walls. The 
mass of liquid fuel will then change as a result of the addition of fuel from 
the injection process and the evaporation of the condensed fuel according to
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ff fi
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τ
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(13.1.4)

where mff is mass of fuel in fuel fi lm, �mfi is fuel fl ow rate from injector, X is 
fraction of injected fuel enter into the fi lm, and τf is fuel evaporation time 
constant.

As follows from the above equations,
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(13.1.5)

An important aspect of the dynamics of a spark-ignition engine is the 
inherent delay of the combustion process and the transport of the exhaust 
gas between the exhaust valve and the oxygen sensor with only binary out-
put readings. The total delay θ is the sum of combustion delay and transport 
delay. The sensor used to measure the concentration of oxygen in the exhaust 
gas can, to a fi rst approximation, be modeled as a fi rst-order lag with time 
constant τm and a delay

 
τ φ φ φ θm

m
m

d
dt

t+ = −( ),
 

(13.1.6)

with the output

 y = sign(φm − φs), (1/φs) − stoichiometric ratio. (13.1.7)

The fuel fl ow rate �mfi from the injector takes the role of the control variable 
and should be designed such that AFR is equal to the stoichiometric ratio.
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First, the charge effi ciency needed for calculation of �mac (Equation 13.1.2) 
will be found from Equation 13.1.3 using a sliding mode observer:

 

dp
dt

V
V

p
RT
V

m

sign p p

m d

m
m

a

m
ath

m

�
�

�

+ =

= −

Ψ

Ψ Ψ

ω
π4

0

,

( mm m mconst p p), , .is an estimate ofΨ0 0= > �

Because s p pm m= − �  and �s
V

V
p sign sd

m
m v= −ω

π
η

4
0[ ( )]Ψ  have different signs for 

Ψ0 > ηv, sliding mode occurs on s = 0 and Ψeq = ηv. As shown in Section 2.4, the 
value of ηv is equal to average value of Ψ obtained by fi ltering out its high-
frequency component with a low-pass fi lter. Then, the air fl ow rate entering 
the cylinder can be calculated from Equation 13.1.2.

A second sliding mode observer is intended to fi nd �mfc, the fuel fl ow rate 
entering cylinder. Bearing in mind that Equation 13.1.6 can be written as

 
τ φ φ θm m

dz
dt

z t z t+ = = −( ), ( ),

The system (Equations 13.1.4 through 13.1.7) with control �mfi and output y 
can be represented in the form of Equation 6.4.1 with the modifi cation in 
Remark 6.2 at the end of Section 6.4. Note that �mac has been estimated by 
the fi rst observer designed above. It means that the methodology developed 
in Section 6.4 is applicable and the states that mff and φ, or 1/AFR, can be 
found.

After �mac and mff are found, the control �mfi needed for maintaining the 

air/fuel ratio at the desired level φ φ( )t AFRs
s

= =( )1
 
can be calculated from 

Equation 13.1.5:
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The estimation results are compared with experimental data obtained from 
a production mass air fl ow meter (only possible at steady state) and with 
the charge effi ciency predicted by an empirical model [Krishnaswami and 
Rizzoni, 1997] consisting of a polynomial function of engine speed ω, mani-
fold pressure pm , and throttle opening α:

 η ω ωv = × − × + × −− − −1 9751 10 3 6075 10 7 0125 10 51 3 6 2. . . .. .3226 10 4 88986× +− pm α
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Figure 13.1a compares the charge effi ciency ηv estimated from the sliding 
mode observer with the estimate obtained using the polynomial approxima-
tion. Figure 13.1b repeats the comparison for the air charge variable, adding 
also the measured air charge by the mass fl ow sensor, for the same experi-
mental conditions. The estimation results of the same variables during throt-
tle transient are illustrated in Figure 13.3. Unfortunately, it is impossible to 
obtain a reliable measurement of the air fl ow rate during a transient.

Estimation of fuel fi lm and AFR using a nonlinear oxygen sensor can be 
done by the observer proposed in this section: observer with binary mea-
surement. With this observer, in addition to estimate of mff, the current value 
of AFR can also be estimated.

Figure 13.4 shows the estimation of the fuel fl ow in fuel fi lm and linear 
AFR sensor. After initial transient attributable to the difference in initial 

FIGURE 13.1 
Estimation result during steady state (α = 5%, ω = 860 rpm, pm = 50 kPa).
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conditions, the estimated states converge to the actual states within a rea-
sonable accuracy except during throttle tip-in.

The measurement was performed by the sensor with continuous reading, 
which is much more expensive than the binary oxygen sensor used for pro-
duction vehicles.

The observers in this section are simulated using for the mean value model 
[Kim, Rizzoni, and Utkin, 1998]. Figure 13.5 shows a comparison between the 
response from a standard PI controller and the response with transient fuel 
compensation using the observer-based method. As can be seen in Figure 
13.5, the AFR excursion during transient is improved remarkably with tran-
sient fuel compensation.

FIGURE 13.2
Estimation result at steady state (α =10%, ω = 1550 rpm, pm = 50 kPa).
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13.2. Camless Combustion Engine

Replacing a cam shaft by individual solenoid-type actuators for each cyl-
inder is a new promising technological approach. It leads to fuel econ-
omy as a result of reduction of pumping losses and lower idle speed, can 
improve engine performance, and reduce nitrogen oxide and hydrocarbon in 
exhaust gas attributable to individual control of each cylinder [Holfman and 
Stefanopoulou 2001; Chun and Tsao 2003] .The position of each valve (Figure 
13.6) is controlled by the input voltage of the solenoid; the valve is subjected 
to electromagnetic and spring forces. To avoid valve damage, the feedback 
control should be designed such that up and down travels of the valve are 
monotonous, called the soft-seating problem. The design idea will be illus-
trated for a simplifi ed model without a spring (Figure 13.7).

FIGURE 13.3 
Estimation result during throttle tip-in (throttle step change 15° → 20° at the 35th cycle).
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All coeffi cients in the system equations are set equal to 1:
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(13.2.1)

where fl ux Ψ is a monotonously decreasing function of the air gap z (a = const 
> 0) , and g is the gravitational force.

Steady state is described by 

FIGURE 13.4
Observer responses during throttle tip-in.
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FIGURE 13.6
Solenoid-type actuator.

Valve
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FIGURE 13.7
Simplifi ed model.
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 z i ga u Ri R ga* , * , * * .= = = =0  (13.2.2)

Represent Equation 13.2.1 as a system of three fi rst-order equations
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(13.2.3) 

The force F developed by the electromagnetic coil is inversely proportional 
to the air gap for a constant current as shown in the block diagram (Figure 
13.8). The aim of control u is to reduce the output variable z1 to zero for any 
nonzero initial conditions.

FIGURE 13.8
Block diagram of feedback control system.
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The system Equation 13.2.3 is in the regular form (Section 3.3) with the 
current i as an intermediate control in the block consisting of the two fi rst 
equations. If 

 

i
z a

g k z k z s
i

z a
g k z k

2

1

1 1 2 2

2

1

1 1 2+
− = − − =

+
− + +, or zz2 0= ,

 
(13.2.4)

the desired dynamics of z1

 

�
�
z z

z k z k z
1 2

2 1 1 2 2

=
= − −

⎧
⎨
⎩

can be obtained by a proper choice of the coeffi cients k1 and k2. The fi nal step 
of the design method based on the regular form enforces sliding mode on 
the surface s = 0 using the discontinuous control 

 
u u sign s u u

sign s
= − = −

+
0 0

1

2
( )

( )
,or
 

(13.2.5)

depending on the structure of the power converter. The coil current is always 
positive in real systems; therefore, only positive voltages are needed and the 
second version can be recommended. 

In the time derivative of s,

 
�s

i
z a

u f z z i=
+

+2
1

1 2( , , ),

f z z i( , , )1 2  is a continuous function of the state variables. The magnitude of 
the control u0 can be selected such that the values of s and �s have different 
signs. Then, according to Equation 2.4.1, sliding mode occurs after a fi nite 
time interval, and condition in Equation 13.2.4 holds. 

The control has been designed assuming that all state components are avail-
able. Two scenarios will be analyzed below: control design with position and 
current measurement, and control design with only current measurement.

First, when only current is measured, analyze local observability of the 
linearized system in the vicinity of the steady-state point (Equation 13.2.2) 
z1* = z2* = 0, i = i* + Δi, u = u* + Δu with measurement of the current only:
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The system is observable because the observability matrix is not singular
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In the framework of a linear model, an asymptotic state observer can be 
designed to obtain both variables z1 and z2 with only measuring the coil cur-
rent i (Section 6.1):

 

ˆ ˆ (ˆ ), ,�x Ax b u L i i L

l

l

l

= + + − =
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Δ
1

2

3

LL const= ,

 

(13.2.6)

where x̂ tends to x at the desired rate, which means that z1and z2 are available 
for implementation of the discontinuous control Equation 13.2.5.

The observer design method (Equation 13.2.6) was applied to the nonlinear 
system directly:
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The convergence of the estimates ẑ1 and ẑ2 to the real values of z1and z2 was 
verifi ed by simulation as well the monotonous convergence of z1 to zero 
(Figure 13.9).

The control method developed in this section was tested using an experi-
mental setup of VISTEON. The control (Equations 13.2.4 and 13.2.5) was 
implemented using measurement of both the current and the valve position. 
The speed of the valve z2 is found using the observer:

FIGURE 13.9
Simulations with measurement of current only.
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The valve position and coil current as time functions are plotted in Figure 
13.10. As the experiments showed, the processes for closing and opening the 
valve for air-fuel injection are monotonous. 

FIGURE 13.10
Soft-seating for both opening and closing processes.
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13.3. Observer for Automotive Alternator

This section presents a method for estimating back-EMF without a direct 
mechanical sensor of the rotor position [Utkin, Chen, Zarei, and Miller 1997, 
1999]. The back EMFs are needed to implement high-effi ciency control of an 
automotive alternator (AC generator). 

The electrical circuit of the automotive electrical power supply system is 
shown in Figure 13.11. 

The AC generator is composed of three identical windings with induc-
tance L and resistance Rw. The switching signals um (m = 1, 2, 3) represent the 
controllable rectifi er, which can be either 1 or −1. A value of 1 means that the 
phase winding is connected to the “plus” terminal, and a value of –1 con-
nects it to the “minus” terminal of the battery. The dynamic equations of the 
system are represented by
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(13.3.2)

where DC-bus voltage vo = CRb(duc/dt) + uc and m = 1, 2, 3. Equation 13.3.2 is 
a simplifi ed model of the battery charging system with capacitor C, internal 
resistance of the battery Rb, and consumer loads RL(t) in the automobile elec-
tric system. uc stands for the voltage of the capacitor, and im refers to the AC 
phase currents. 

The alternator’s back EMFs em(t) are needed for switching assignment 
of the controllable rectifi er. The EMFs are sinusoidal functions with 

FIGURE 13.11
Automotive electric power supply system.
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 frequency and amplitude depending on the engine speed, if the speed is 
constant.

In the following, observer design for the state variables of phase m = 1 will 
be presented. The state variables associated with the second and third phases 
can be obtained in a similar manner. Because measurement of the phase cur-
rent may be prohibitive, the proposed observer uses only two sensors of the 
electrical variables: output DC voltage v0 and DC-link current ilink of the recti-
fi er. As shown in Figure 13.12, the phase current i1 coincides with the link cur-
rent only for short, reoccurring time intervals called observation windows. 

Let us fi rst design a sliding mode observer under the assumption that both 
phase current i1 and vo are available:

 

di
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i
v
L

u u u
L

Msign iw o
ˆ

ˆ ( ) ( ˆ1
1 1 2 3 1

6
2

1= − − − − + − ii1),
 

(13.3.3)

where M is a constant observer gain such that sliding mode with i i i1 1 1 0= − =ˆ  
occurs. Having identical parameters Rw and L with those in model Equation 
13.3.1, one obtains the equivalent value of the observer switching function 

 
{ ( )}Msign i eeq1 1=

by subtracting Equation 13.3.3 from Equation 13.3.1, for m = 1, and solving 

the mismatch equation �i1 0=  for Msign i( )1  (Section 2.3). The equivalent value

{ ( )}Msign i eq1  or the EMF can be found by using a low-pass fi lter with time 
constant τ:

FIGURE 13.12
Phase and link currents.
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 τ �z z Msign i= − + ( ),1  (13.3.4)

implying that limτ→0(z) = e1, if the switching frequency tends to infi nity 
(Section 2.3). Thus, the back EMF can be estimated by applying the equiva-
lent control method. However, in real-life systems, for example, systems with 
discrete-time implementation of a controller, the switching frequency is 
fi nite and the tradeoff between fi ltering out the high-frequency component 
of control and distortion of its low-frequency component dictates selection 
of the time constant τ.

The simulation results for the proposed observer Equations 13.3.3 and 
13.3.4 demonstrate dependence of the estimation accuracy on the time con-
stant τ for the case of constant engine speed. The parameters of the recti-
fi er are given in Table 13.1. Frequency and amplitude of the real EMF are 
equal to ω = 150 Hz and A = 9.6v, the sampling interval  δ = 1 μsec, M = 60. 
A  considerable phase shift between real value of e1 and its estimate can be 
seen for the case τ = 0.2 msec (Figure 13.13). To decrease the phase delay, it 

TABLE 13.1

Parameters Values Parameters Values

Rw 0.033 Ω RL 0.12 Ω

L 1.55 x 10–4 H Rb 0.012 Ω

C 40 F

FIGURE 13.13
Estimated and real EMFs with time constant τ = 0.2 msec.
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is possible to reduce the time constant of the low-pass fi lter, for instance, to 
τ = 0.02 msec. However, this may result in a high-frequency component of 
the chattering as shown in Figure 13.14.

To overcome the chattering problem, the linear back-EMF model of the 
sinusoidal function 
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e e
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1

= ′
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⎧
⎨
⎩ ω  

(13.3.5)

with constant unknown frequency ω may be taken into account. The system 
Equation 13.3.5 is complemented by

 � �ω ω= = =0 0 2or Ω Ω, . (13.3.6)

The observer for estimation of the back EMF and speed is selected in the form
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FIGURE 13.14
Estimated and real EMFs with time constant τ = 0.2 msec.
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The observer input gains M > 0 and li > 0 (i = 1, 2, 3) are to be selected to pro-
vide convergence of all its states to the state of Equations 13.3.5 and 13.3.6. 
Observer stability analysis and selection of the observer parameters can be 
found in previous work [Chen 1998].

At a qualitative level, the design method can be explained in the fol-
lowing way. As mentioned, z ≈ e1; hence, the mismatch equations between 
states of the system and of the observer can be obtained from Equations 
13.3.6 and 13.3.7:
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(13.3.8)

 If l1»1, then ′ − ≈e l e1 1 1 0, e e l1 1 1≈ ′ / , and, as follows from Equation 13.3.8,
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(13.3.9) 

The time derivative of the positive defi nite Lyapunov function
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The values of ′e1  cannot be equal to zero identically if Ω ≠ 0, because e1 and 

ê e e1 1 1= + ′  are nonzero time functions. It means that both mismatches ′e1  and 

Ω as well as e1 tend to zero, and the back EMF, its time derivative, and fre-
quency are found simultaneously. As can be seen in the simulation results 
(Figure 13.15), the observer Equation 13.3.7 exhibits much better chatter-
ing suppression properties than a low-pass fi lter of the equivalent control 
Equation 13.3.4.

In the case of link current measurements, the input i1 in the fi rst equation 
of Equation 13.3.7 should be replaced by u1ilink, and the coeffi cients l1, l2 l3 
are selected such that the estimates converge to the real values within the 
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FIGURE 13.15
Observer for estimation of back EMF and frequency.
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observation windows, when u1 ≠ u2 = u3, and they are equal to zero beyond 
the observation windows. The estimation method with link current mea-
surement was tested at the experimental setup (Figure 13.16) in the Research 
Science Laboratory of Ford Motor Company.

The observation windows are indicated in Figure 13.17. The estimation 
result is close to the measured phase current. The estimation methods for 
time-varying engine speed with the battery current measurement, which 
is always available in commercially produced cars, and with discrete-time 
implementation can be found in previous works [Utkin, Chen, Zarei, and 
Miller 1997, 1999].

TAF-65602-08-1101-C013.indd   473TAF-65602-08-1101-C013.indd   473 3/31/09   7:56:02 PM3/31/09   7:56:02 PM



© 2009 by Taylor & Francis Group, LLC

474 Sliding Mode Control in Electro-Mechanical Systems

References 

Chen D-S. 1998. Sliding Mode Observers for Automotive Alternator. Ph.D. thesis, The 
Ohio State University, Columbus, OH.

Chun T, Tsao T-C. 2003, “Control of an Electromechanical Actuator for Camless 
Engines.” Proceedings of the American Control Conference, Denver, CO.

Filed current
and voltage

Brushes + –

DYNO
machine

(AC motor)
Alternator

3 Phase AC

Synchronous
rectifier

Battery

Load

Amplifier

Load

Dyno speed

dSpace
DSP

u1,2,3

vo

ibattery

ilink

iphase
–

+

–

–

+

+

–+

FIGURE 13.16
Schematic diagram of experimental setup.
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FIGURE 13.17
Comparison of estimated back EMF based on phase ( )ê p1  and link currents ( )ê l1 .
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Cascaded control

AC/DC converters, 363
DC/DC converters, 324
for electric motors, 199

for induction motors, 316
Cascaded controller, 185–186
Centripetal vector, 401

Chattering
bypassing of, 234
causes of, 170–174

in DC motors, 234–235
defi nition of, 149, 165
frequency of, 177

function method for analysis of, 174–178
linear back-EMF, 471
master-slave method for reducing, 347
multiphase suppression

design principle, 202–2078
problem statement, 199–202
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prevention of

boundary layer solution, 178–180
cascaded controller for, 188
comparison of solutions, 207–209
disturbance rejection solution, 

189–193
equivalent control-dependent 

gain, 195–198, 209

integral sliding mode for, 146
observer-based solution, 181–185
state-dependent gain, 

193–196, 209
regular form solution, 185–188
sliding gains, 422

Closed-loop-like actuator, 170
Collision avoidance, 423

in high-dimensional known 

workspaces, 443–447
in planar workspace, 438–443

Componentwise control, 407–412, 422

Computed torque control, 418–419
Computed torque method, 153
Constant-excited DC motor, 246

Continuous controller
description of, 185–186
with linear feedback, 190

Continuous feedback/feedforward 
control, 416–421

Continuous-time systems, 205, 208
Control

adaptive control, 157

air/fuel ratio, 455–460
block, 123
cascaded. See Cascaded control

componentwise, 407–412
computed torque, 418–419
continuous feedback/feedforward, 

416–421
current. See Current control
discontinuous

description of, 7, 9
design method for, 51
linear, 100

sliding modes in systems with, 14, 
21, 51

dynamic feedback, 331

equivalent
for affi ne systems, 29–31
description of, 28–31

nonlinear systems with scalar 
control, 29

physical meaning of, 31–33

fi eld-oriented
DC motors, 241
description of, 157

induction motor, 271
permanent-magnet synchronous 

motors, 267
gradient tracking, 423–433

design of, 423–433

for holonomic robots, 429–430
for nonholonomic robots, 430–433

observer-based, 332

sliding mode. See Sliding mode 
control

trajectory tracking, 405–423

vector, 11, 412–416
Control loop with actuator dynamics, 

170

Convergence rate, 279–282
Converters

boost. See Boost AC/DC converters; 

Boost DC/DC converters
buck. See Buck converters
multiphase, 343–352

Coordinate transformation, 64
Coriolis vector, 401
Coulomb friction, 2, 10–11

Current control
boost AC/DC converters, 363–367
DC motor, 225–226

permanent-magnet synchronous 
motors, 249–258, 269

sliding mode, 363–367

D

(d, q) frame, 241, 359–362
DC generator, 4–5
DC motor

brushless, 240, 271
cascaded control structure of, 225
chattering, 234–235

constant-excited, 246
continuous control of, 225
current control, 225–226
load torque estimations, 238–239
model of, 224–225
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observer design for

description of, 228–232
sensorless control, 236–239

permanent-magnet synchronous 

motors vs., 249
shaft speed estimations, 236–238
speed control of, 225–228, 232–235

DC/AC converter
dynamic model of, 377–378
overview of, 376–377

DC–Bus, 156, 160
DC/DC converters

bilinear systems, 322–324

boost. See Boost DC/DC converters
buck. See Buck converters
cascaded control structure of, 324

description of, 321
direct sliding mode control, 324–330
four-phase, 347, 350

observer-based control of, 330–343
state-space averaging for, 321
stored error energy of, 336, 338

two-phase, 344
Decoupling, 15, 42–46, 319, 383–385
Decoupling system motions, 123

Delay systems, 216–218
Diagonal gain matrix, 412
Diffeomorph transformations, 439

Differential equation, 47
Differential-difference equations, 216
Digital controllers, 221

Direct speed control, 259
Dirichlet boundary condition, 424
Discontinuous control

description of, 7, 9
design method for, 51
linear, 100

sliding modes in systems with, 14, 
21, 51

Discontinuous controller, 83

Discontinuous reference currents, 251
Discontinuous systems, 20
Discrete system, 142

Discrete-time systems
defi nition of, 211–212, 221
with known parameters, 212–214

overview of, 205–208
principles of, 208–211
sliding mode concept with, 217

surgical procedure for, 221
with unknown parameters, 214–216

Discretization chatter, 205–206
Distributed systems, 218–221
Disturbance rejection solution, 189–193

Dynamic compensators, 103–108
Dynamic feedback, 331–332
Dynamic modeling, 397–398

Dynamic systems, 1–4

E

Eigenvalue placement, 99–102
Electric motors, 199

Electric systems, 3–4
Electromotive force, 224, 265–268, 374, 

468

Equivalent control
for affi ne systems, 29–31
description of, 28–31

nonlinear systems with scalar 
control, 29

physical meaning of, 31–33

Equivalent control–dependent gain, 
195–198, 209

Error dynamics, 284

Euler-Lagrange formulation, 398, 419
Existence conditions, 33–39

F

Feedback control systems, 353–354, 463
Feedback linearization, 419

Feedback/feedforward
with additional discontinuity term, 

424
continuous, 416–421

Feedforward pulse width modulation, 

353
Field-oriented control

DC motors, 241

description of, 157
induction motor, 271
permanent-magnet synchronous 

motors, 267
Field-weakening, 258
Filippov method, 25–26, 30
Finite time convergence, 33–34
First-order fi lter, 136
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First-order observer, 182

First-order tracking relay system, 1, 169
Fixed switching frequency, 363
Flux convergence, 279–282, 293–297
Four-phase DC/DC converters, 347, 350

Fourth-order system, 11
Function method, for chattering 

analysis, 174–178

G

Gain

equivalent control-dependent, 
195–198, 209

state-dependent, 193–196, 209

Globally uniform ultimate 
boundedness, 180

Gradient lines, 425–426

Gradient tracking control
design of, 423–433
for holonomic robots, 429–430

for nonholonomic robots, 430–433

H

Harmonic cancellation, 199
Harmonic potential, 439

High-frequency oscillations, 149
High-frequency switching, 436
High-order sliding mode control, 55

Holonomic robots
description of, 399–403
gradient tracking control for, 429–430

Hysteresis, 23, 30, 201–202, 347
Hysteresis band pulse width 

modulation, 378

I

Ideal sliding mode
description of, 167–169
discrete implementation vs., 206–207

robotics applications, 422
Ideal tracking error, 154
Induction motor

cascade control for, 316

cascaded torque, 316–318
coordinate systems, 273
description of, 15, 271–272

fi eld-oriented control, 271
model of, 272–278
observer-controller analysis, 287–290

parameters of, 275
physical properties of, 283
rotor fl ux

control of, 306–318
description of, 272
rotor speed and, 283–299

rotor time constant observer, 299–306
structure of, 273
torque control, 306–318

Industrial power converter systems, 363
Inertia matrix, 63
Inertial dynamics, 398–399

Inner current control loop, 324
Insulated gate bipolar transistor, 292
Integral sliding mode, 145–164, 189

Intersection point, 29
Invariance property, 6, 9, 15, 17–18, 

49–50

Inverse kinematics, 399
Inversion, 355
Inverted pendulum, rotational

base angle, 77–79
control of, 74–77
elements of, 73

experimental results for, 79–91
hardware setup confi guration, 80
model of, 72–73

parameters of, 81
simulation results for, 79–91
sliding mode control of, 118

stabilization of, 82–86
with trolley system, 114

L

Laplace transform, 219

Laplace variable, 192
Laplace-domain expression, 179
Linear asymptotic observers, 129–131

Linear feedback, 190
Linear systems

Ackermann’s formula, 108–117, 152

binary output, 141–144
with delays, 216–218
eigenvalue placement, 99–102
invariant systems, 102–103
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sliding mode dynamic compensators, 

103–108
Link current, 469
Lipschitz condition, 20, 55

Lipschitz constant, 20
Load torque, 238–239
Local instability, 174

Low-pass fi lters, 32, 304, 437, 440
Luenberger reduced-order asymptotic 

observer, 229, 231

Lyapunov function, 34–39, 51, 56, 101, 
167, 299, 413, 420

M

Mass matrix, 400

Master-slave mode, 206
Metal oxide semiconductor fi eld effect 

transistor, 352

Metal oxide semiconductor-controlled 
thyristor, 352

Mismatch dynamics, 373

Models
boost AC/DC converters, 

356–362

DC motor, 224–225
DC/AC converter, 377–378
induction motor, 272–278

permanent-magnet synchronous 
motors, 243–249

rotational inverted pendulum, 

72–73
rotor fl ux, 278–279

Moore-Penrose inverse, 246

MOSFET, 352
Motion equation, 42
Motors

DC. See DC motor
induction. See Induction motor
permanent-magnet synchronous. 

See Permanent-magnet 
synchronous motors

m-phase converter, 201

Multiphase converters, 200–201, 207, 
343–352, 355, 361

Multiphase suppression, of 

chattering
design principle, 202–2078
problem statement, 199–202

N

Nonholonomic robots
description of, 404–405

gradient tracking control for, 
430–433

O

Observation windows, 469
Observer(s)

with adjustable rate of convergence, 

279–282
asymptotic, 129–131, 319
automotive alternator, 468–474

auxiliary observer loop, 181
binary output systems, 

141–144

block-observable form, 132–135
boost converters, 337–342

buck converters, 333–336
chattering, 181–185
current

permanent–magnet synchronous 
motors, 261–264

source phase voltage, 373–374

DC motor, 228–232
DC/DC converters, 330–343
discrete, 143

fi rst-order, 182
linear asymptotic, 129–131
linear time-invariant systems, 

131–132
Luenberger reduced–order 

asymptotic, 229, 231

rotor fl ux, 278–282
rotor time constant, 299–306
sensorless control

DC motor, 236–239
permanent–magnet synchronous 

motors, 264–269

power converters, 369–376
source voltage, 374
time-varying systems, 132–140

Observer-controller analysis, 287–290
Obstacle-potential fi eld-robot, 440
Order reduction, 17–18
Oscillations, 23, 441
Outer voltage control loop, 324
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Output feedback sliding mode control, 

117–123
Output voltage regulation, 367–369

P

Partial differential equation, 66
Pendulum systems

cart, 67–72
design methodology for, 

63–67

rotational inverted. See Rotational 
inverted pendulum

sliding model controller for, 

74–75
Permanent-magnet synchronous 

motors
current control, 240, 249–258, 269
current observer, 261–264

DC motor vs., 249
description of, 240–242
drive system of, 243

electromotive force, 266–268
fi eld-oriented control, 157, 241, 267
modeling of, 243–249

observers
current, 261–264
sensorless control, 264–269

pulsed width modulation, 269
reference frames for, 244
robust current control for, 157–163

sensorless control of, 264–269
speed control for, 258–261
symmetrical, 244

Perturbation, 149–151, 163
Perturbation torque, 435
Phase current, 469

Planar collision avoidance
in high-dimensional known 

workspaces, 443–447

for mobile robots in planar 
workspace, 438–443

Potential fi eld, 424–425

Power converters
control design of, 363
industrial, 363

observers for sensorless control, 
369–376

switching frequency of, 209

Pseudo-inverse, 246, 277
Pulse width modulation, 149, 156–157, 

181, 199, 208, 242, 253, 324, 

352–354
feedforward, 353
hysteresis band, 378

sliding mode. See Sliding mode pulse 
width modulation

space vector, 387

R

Rectifi cation, 355
Reduced-order model, speed control 

with, 232–235

Regular form
affi ne system, 46–48
chattering, 185–188

Regularization, 20–28
Relay control, 1–2
Relay systems

description of, 1–2
examples of, 8–9
second-order, 6

sliding modes in, 4–10
Relay with hysteresis, 23, 30
Robot manipulators

description of, 153–156, 397–398
two-link, 401, 406, 409–411, 414–416, 

419–421

Robot posture, 398
Robotic arm, 397, 448
Robot/robotics

automatic steering control for 
passenger cars, 447–452

collision avoidance for mobile robots
in high-dimensional known 

workspaces, 443–447

in planar workspaces, 438–443
dynamic modeling, 397–398
gradient tracking control, 423–433

holonomic
description of, 399–403
gradient tracking control for, 

429–430
ideal sliding mode application, 422
inertial dynamics, 398–399
kinematics of, 399
nonholonomic

TAF-65602-08-1101-IND.indd   482TAF-65602-08-1101-IND.indd   482 3/31/09   7:56:39 PM3/31/09   7:56:39 PM



Index 483

description of, 404–405

gradient tracking control for, 
430–433

sliding mode control choices for, 

421–423
sphere-like, 444, 446
torque control for fl exible robotic 

joint, 434–438
trajectory tracking control, 

405–423

Robust current control for permanent-
magnet synchronous motors, 
157–163

Rotational inverted pendulum
base angle, 77–79
control of, 74–77

elements of, 73
experimental results for, 79–91
hardware setup confi guration, 80

model of, 72–73
parameters of, 81
simulation results for, 79–91

sliding mode control of, 118
stabilization of, 82–86

Rotor fl ux

control of, 306–318
description of, 272
model, 278–279

observers, 278–282
rotor speed and, 283–299

Rotor speed, 283–299

Rotor time constant observer, 
299–306

Rotor-fl ux angle, 272

S

Saturation function, 178, 180
Scalar control, 24, 43, 54, 199
Scalar state function, 10

Second-order sliding mode control
dynamic compensator, 107
preliminary remarks for, 54–55

super twisting algorithm, 60–62
twisting algorithm, 56–60

Second-order time-invariant relay 

system, 6
Sensorless control, observers for

DC motor, 236–239

permanent-magnet synchronous 
motors, 264–269

power converters, 369–376
Single-input-single-output system, 49
Singularly perturbed systems, 233

Skew symmetry, 400–403, 419
Sliding manifold, 47, 148, 407
Sliding mode

applications of, 332
automotive applications of, 

455–475

boundary layer method, 27
in canonical state space, 10
in control systems, 14

defi nition of, 1
in discontinuous control systems, 

14, 21

disturbance rejection via, 189
dynamic compensators, 103–108
dynamic systems with, 1–4

in electric system, 3–4
features of, 319
feedback control systems designed 

with, 20–28
for high gain implementation, 14
ideal

description of, 167–169
discrete implementation vs., 

206–207

robotics applications, 422
integral, 145–164, 189
motion in, 31

multidimensional, 10–12
pulse width modulation vs., 354
in relay systems, 4–10

robotics application of. See 
Robot/robotics

speed observer, 240

tracking control, 2
two-dimensional, 11–12, 19
in variable structure systems, 4–10

Sliding mode control
advantages of, 242
benefi ts of, 186

componentwise, 423
description of, 17

design of, 421–423
direct, 324–330
evolution of, 331–332
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high-order, 55

implementation of, 15, 205
inverted pendulum, 118
outline of, 13–15
output feedback, 117–123

for power converter model, 200
robotics, 421–423
scalar, 108
second-order

preliminary remarks for, 54–55
super twisting algorithm, 60–62
twisting algorithm, 56–60

state feedback, 321
super twisting algorithm, 60–62

Sliding mode pulse width modulation

control design, 378–390
control signal, 393–394
decoupling approach, 383–385

description of, 376–377
effectiveness of, 387
frequency content of, 391

Lyapunov approach, 382–383
sliding manifold of, 385
switching signal, 388–389

time-varying switching action of, 392
Slip frequency, 272
Solenoid-type actuators, 460, 462

Source phase voltage, 373–374
Space vector pulse width modulation, 

387

Space-vector method, 353
Speed control

DC motor, 225–228, 232–235
direct, 259
permanent-magnet synchronous 

motors, 258–261
with reduced-order model, 232–235

Sphere-like robots, 444, 446

Stability boundary, 179
Stabilization of rotational inverted 

pendulum, 82–86

State feedback, 321
State space, 146
State vector, 116, 175

State velocity, 24–25
State-dependent gain, 193–196, 209
State-space averaging, 321
Stoichiometric ratio, 455–456
Stored error energy, 336, 338, 344

Subspace, 366
Super twisting algorithm, 60–62
Supply frequency, 374–376
System state vector, 175

T

Time-invariant systems

integral sliding mode, 152–153
observers for, 131–132
with scalar control, 152

Time-varying systems
control of, 123–126
observers for, 132–140

Torque control
computed, 418–419

fl exible robotic joints, 434–438
Tracking control

gradient

design of, 423–433
for holonomic robots, 429–430
for nonholonomic robots, 430–433

sliding mode, 2
Trajectory tracking control, 405–423
Twisting algorithm, 56–60

super, 60–62
Two-dimensional sliding mode, 11–12, 

19

Two-link manipulators, 401, 406, 
409–411, 414–416, 419–420

Two-phase DC/DC converter, 344

U

Uncertainty estimation, 149–151

Unit control, 51–54, 423
Unmodeled dynamics, 165, 170

V

Variable structure systems

examples of, 8–9
schematic diagram of, 8
sliding mode in, 145

sliding modes in, 4–10
Vector

Coriolis, 401
space, 353
state, 116, 175
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Vector control, 11, 412–416, 423

Vibration control of DC generator, 
4–5

VISTEON, 466

vn control, 385–386
Voltage modulation, 352
von-Neumann boundary condition, 424

Voronoi planes, 445

W

Wheel set, 404–405

Z

Zero disturbances, 139
Zero dynamics, 65
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