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Preface

The first and second volumes of the Handbook of
Soil Mechanics, published in 1974 and 1979, were
a great success in the field of soil mechanies. This
third volume deals mainly with practical problems.
This is a revised and enlarged version of the second
volume of the Handbuch der Bodenmechanik,
published in German jointly by the Akadémiai
Kiadé and VEB Verlag fiir Bauwesen (GDR).

Unfortunately, the senior author, Arpad Kézdi

was unable tocomplete theinitially planned fourvol-
umes of this series due to his sickness and untimely
death. As a colleague and friend I have been most
honoured to help in updating this third volume
which has been based on the literature of the past
twenty years and on my own research having added
several new sections. As to the reference list we ask
the readers’ understanding for its being incomplete
due to the untimely death of Professor Kézdi.
_ My aim in this book has been concordant with
Arpad Kézdi’s to summarize the results of soil
mechanics deseribing at the same time the trends
of development of this field.

The assistance and encouragement of the Aka-
démiai Kiad6 and Elsevier Science Publishers are
gratefully acknowledged.
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Chapter 1.

Soil mechanics of earthwork

1.1 Introduction

Construction of earthworks involving billions
of cubic meters are carried out every year in con-
nection with civil engineering. They serve many
purposes: they may be used as the foundation or
as a part of a structure, or they may be made
with the sole purpose of providing the necessary
space for construction, as in the case of foundation
pits. The stability and durability of the earthwork
are prerequisites for the stability and durability
of the superstructure and for economy of con-
struction. Shortsighted planning or poor work-
manship in carrying out earthworks may have
detrimental consequences: swelling or shrinkage
of the earth material, excessive deformation or
subsidence of the fill, slips of slopes, ground failure,
etc. Once the damage has occurred, reconstruc-
tion or remedial measures usually cost a multiple
of what would have been required for adequate
preliminary soil exploration, design and con-
struction.

During construction as well as after completion,
earthworks are constantly effected by weather
and exposed to atmospheric agents. Continually
changing temperature, precipitation, physical and
chemical weathering, stagnant or flowing surface
water and groundwater, frost and ice are the most
important factors that endanger stability. Among
these the action of water deserves particular
attention: earth stability problems are, as a rule,
closely linked with those of drainage. Because of
the ever-changing character of the influencing
factors, stability problems should never be re-
garded as static. The variation in soil conditions
and environment and the dynamic character of
the factors must always be taken into consider-
ation.

Only this kind of approach will enable the civil
engineer to understand the manifold interactions
between natural environment and man-made
earthworks and to tackle stability problems suc-
cessfully. It should also be pointed out that even
a most meticulous preliminary soil survey is not
likely to reveal all the hazards and influencing
factors and it is therefore impracticable to at-
tempt to solve stability and drainage problems
in advance in every detail. There will always be

contingencies to be dealt with during the course
of construction on the basis of careful observation
of site conditions. Even a thorough soil survey
might not detect some seemingly minor, but in
fact important changes in soil conditions which,
if brought to light during construction, may
necessitate a complete revision of the original
— and often only tentative — plans in order to
match the changed conditions.

Site observations should be extended not only
to soil conditions but also to the geology, hydrol-
ogy, meteorology and vegetation of the area in
question, and the combined effect of all these
factors must be taken into consideration in stahil-
ity analyses.

This chapter deals with stability problems of
various earthworks. The treatment is essentially
theoretical and is based on mechanics. Neverthe-
less, we shall never omit to point out, where
appropriate, the importance of the influencing
factors mentioned in this paragraph.

1.2 Stability of slopes
1.2.1 General remarks

When an artifical earthwork, cutting or em-
bankment (Fig. 1) is to be constructed, the incli-
nation of its lateral boundary surfaces, called the
slopes, cannot be selected arbitrarily, since this
depends on the internal resistance of the earth
material. The inclination of a slope is usually
expressed as the tangent of its angle to the hori-
zontal. Tan § values are conveniently written in
the form of a fraction whose numerator is always 1,
thus: 1in 1 (p = cot § = 4/4), 1 in 1.5 (p = 6/4),
1 in 2 (p = 8/4) etc. Typical uses of slopes are
those of embankments and cuts for roads, rail-
ways, canals, waterways, excavations, foundation
pits, spoil tips, and the like.

If a slope is made steeper than would be per-
mitted by the available shear strength of the soil,
or if the intrinsic shear resistance of the soil in
an originally stable slope has been reduced, for
example through softening of the material, a slip
or slide results; part of the sloping soil mass
begins to move downward and outward as shown



12 Soil mechanics of earthworks

Fig. 1. Earthworks confined within slopes

in Fig. 2. Similar movements — commonly
known as landslides — occur in natural slopes and
on hillsides.

The causes of instability of slopes are many, and
the resulting movements are very different in
character. An exhaustive discussion of this topic
is beyond the scope of this book. We shall there-
fore be concerned primarily with the basic problem
of finding criteria for the stability of a given slope
in a given soil, in order to ascertain what is the
safety factor against failure. It should be empha-
sized, however, that stability problems must never
be treated mechanically without regard to environ-
mental effects. The geology of the area, the strat-
ification of the soil and various external effects
such as surcharge, incidental loads, infiltration,
groundwater seepage, the action of vegetation,
should all be considered in their dialectic inter-
action with due regard to their variations with
time. In this chapter we shall discuss the mechan-
ical principles and methods necessary for stabil-
ity analysis.

Concern frequently arises in the preliminary
design stage about the stability of natural or
artifical slopes on hillsides or in mountainous
areas. The efficiency of such engineering consid-
erations can be largely enhanced by using the
maps of recorded landslides or sliding areas.

Before sliding

After sliding

/
I Movement
7 : : £ : !

A Sliding surface

" Fig. 2. Slope failure

These maps are being elaborated in an ever-
widening range in most countries. During recent
years there has been a growing interest in hazard
and risk mapping, which is certainly due to an
increase of human activity in the realm of critical
areas. As geology surely plays an important role
in landslide development, the problem of mapping
has also been included on the agenda of the Inter-
national Association of Engineering Geology (Sym-
posium at Newcastle, 1979; Congress in Paris,

1980).

1.2.2 Cohesionless granular soils

In dry, clean sands the internal resistance is
entirely due to interparticle friction. An embank-
ment made of such soil remains stable, irrespective
of its height, as long as the angle of its slope § is
smaller than the angle of internal friction @
measured in the loose state of the soil. For this
case the safety factor » against slip can be defined
as:

tan @
tan )

When f = @, the slope is in a limiting state of
cquilibrium. In an infinite slope two sets of failure
planes are developed, one being parallel to the
slope and the other vertical (See Vol. 1, Chapter 9).

The assumption of the Mohr failure theory that
the intermediate principal stress o, is irrelevant
to the state of failure is not fully satisfied in dry
sands in that the limiting value of the slope angle
seems to depend also on the state of stress, i.e.,
on whether we have to do with a two-dimensional
or a three-dimensional problem. When dry sand
is heaped up to form a conical fill, o; > (0, = 0,),
the safe angle of slope is smaller than it would be
for an infinite slope (plane strain, o, > o, > 0,).
Finally, the slope will be steepest when a conical
hollow is made in a semi-infinite horizontal sand
mass, in which case (¢; = ¢,) > 0, (Fig. 3). Here
an arching effect also comes into play and it is
more pronounced the smaller the top radius of
the hollow. This explains, in part, why vertical
boreholes remain stable without casing to a con-
siderable depth in moist sands having only a
slight cohesion.

The stability of slopes in sand may be greatly
endangered by forces resulting from vibration and
seepage. Dynamic effects caused, for example, by
an earthquake or by pile driving may result, even
in dry sands, in a radical reduction of the angle
of internal friction and as a consequence in the
flattening of the slope. In saturated or quasi-
saturated sands, quick-sand conditions may arise
(see Vol. 1, Section 6.2).

In the literature we find reports of catastrophic
landslides triggered by violent earthquakes. For
example, the 1923 earthquake in Japan caused
a huge mass of saturated and completely liquefied
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Fig. 3. Inclination of free slopes as a function of stress conditions

soil to rush downslope at the enormous speed of
one kilometre per minute (CASAGRANDE and
SHANON, 1948). A similar phenomenon known as
“mur” occurs frequently in the Alps; in this case,
however, the seepage force of flowing ground-
water also comes into play (see Vol. 1, Section 5.2).

It is interesting to note that quick condition
may occur even in dry cohesionless soils. We can
easily produce this phenomenon if we open a
cement bag and empty its content onto a smooth
plane surface so quickly that there is not enough
time for the air entrapped in the voids between
the particles to escape. As a result a considerable
portion of the stresses has to be borne temporarily
eby the por air and the shear strength of the

cement powder will be reduced to a very small
value. Such peculiar conditions, on a large scale,
might account for the devastating loess flow which
occurred in the Kansu province of China in 1922,
and which took a toll of well over 100 000 lives.
Following an earthquake, vast banks of loess over
100 m in height completely lost their stability,
collapsed and spread at an incredible speed over
several square kilometres of the valley floor. As a
contemporary report described the case, “. . .vil-
lages became buried and rivers dammed up within
seconds”. A probable explanation, gathered from
the study of photographs of the catastrophe-
stricken area, was that the shear strength of the
materigl had been reduced to a fraction of its
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original value within a very short time. As violent
shocks had destroyed the structure of the loess
(see Vol. 1, Section 3.4.2) a large portion of the
pore air became entrapped in the debris with
practically no time to escape. Thus a large portion
of the stresses due to the weight of the affected
mass was transferred to the pore air and caused
a radical decrease in shear strength and an in-
stantaneous liquefaction of the soil.

Seepage of water induces neutral stresses in
the slope. Since the total stresses in a given slope
are constant, an increase in the neutral stress
will result in an equal decrease in the effective
stress. As a consequence, the stability of the slope
will also be reduced. An especially dangerous
situation arises when water is suddenly removed
from the face of a submerged slope (rapid draw-
down).

The effect of stagnant and percolating water
on the stability of slopes will be discussed in
Section 1.3.

1.2.3 Slopes in homogeneous cohesive soils

1.2.3.1 General remarks

For cohesive soils the shear strength is given by
the general Coulomb equation:

T=octan® + ¢.

In such soils, cuts with vertical walls will stand
without bracing up to a certain limiting height.
For greater heights the slope must be flattened.
The stable height of the slope can thus be expressed
as a function of the slope angle: h = f(f). The
failure of a slope may occur in such a manner
that a body of soil breaks away from the adjacent
soil mass and slips down on a single and well-
defined rupture surface. In other cases no such
definite slip surface exists. The first type of
failure is characteristic of a stiff homogeneous

Fig. 4. Forces acting on the sliding mass

soil whose compressive stress—strain diagram shows
a sharp definite failure (see Vol. 1, Fig. 239). Only
this case will be discussed in this chapter.

Failure usually starts with the formation of
tension cracks some distance from the crest of
the slope and this is followed by the sliding down
of a large mass of soil on a rotational slip surface,
as was shown in Fig. 2. The slip surface resembles
an elliptical arc, with the sharpest curvature near
the upper end and with a relatively flat central
section.

The forces that act on the sliding soil mass are
shown in Fig. 4. Sliding is caused by the weight
of the moving soil mass itself, while internal fric-
tion and cohesion mobilized along the slip surface
tend to restrain motion.

In a homogeneous soil, failure may either take
the form of a slope failure along a slip surface
that passes through or sometimes above the toe 4
of the slope (Fig. 5a) or it may occur along a slip
surface that passes below the toe and intersects
the free surface at a point some distance from it
(base failure, Fig. 5b). The shape and position of
the critical slip surface are governed by two
factors, the inclination of the slope and the shear
strength of the soil. (This is valid for homogeneous
soil only.)

In the design of slopes we usually have to
answer one of the following two questions: first,
given the height and gradient of a slope and the
shear strength of its material, what safety factor

{b)

Fig. 5. a — Toe failure; b — base failure in homogeneous

subsoil



against failure exists, and second, given the height
of the slope and the physical properties of the soil,
what should the slope angle be to secure a required
safety factor. A number of methods, both ana-
lytical and graphical, are available for the solution
of these problems. The most widely used is the
procedure in which we work with arbitrarily
selected slip surfaces, determine the conditions
under which failure along such surfaces just
occurs and find, by trial, the critical position of
the slip surface along which the danger of failure
is greatest. The exact mathematical equation of
the slip surface is known only for certain particular
cases such as the semi-infinite half space with
horizontal or sloping surface (see Vol. 1, Chapter 9).
In practical stability analysis, the actual slip
surface is replaced by some relatively simple sur-
face which is more amenable to mathematical or
graphical treatment. Such surfaces are, as 1is
known from the theory of earth pressure, the
plane and the cylindrical surface with a circular
or a logarithmic spiral arc.

In this chapter we first discuss an early method
based on a plane surface of sliding, then we deal
with more advanced methods which assume cir-
cular slip surfaces.

1.2.3.2 Stability analysis using a plane slip surface

The first attempt to treat the problem of slope
stability mathematically was made by CuLMANKN
(1866). He assumed a plane slip surface. As was
shown in the introduction to this chapter, such
an oversimplified assumption by no means reflects
reality, since slope failures, particularly in homo-
geneous cohesive soil masses, invariably occur
along curved rotational surfaces. Culmann’s plane
slip surface theory is therefore mainly of historical
significance.

Given a slope of height h, making an angle §
with the horizontal (Fig. 6) let us find the plane

of rupture AB along which the resistance to
sliding is a minimum. The force that causes the

slope to fail is the weight of the wedge 4 BC. The

K

Fig. 6. Stability analysis on a plane
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restraining forces are, according to Coulomb’s
failure theory, those due to internal friction and
cohesion. In the limiting state of equilibrium:

T—C— Ntan® = 0.

In order to find the most dangerous position of

the slip surface AC, we have to determine the angle
at which the force of cohesion required to maintain
equilibrium is a maximum. The cohesive force
can be written as the length of the slip surface
multiplied by the cohesion, per unit area, of the
soil: C = ¢l. The weight W of the sliding wedge
ABC, as well as its perpendicular components N
and T, can be expressed, by geometry, as functions
of the inclination angle of the rupture plane. The
weight can be written as:

2
W:%(cotﬁ—cotx)

and hence, by using equilibrium conditions, we
obtain the cohesion required to just maintain
equilibrium:
C_hy sin (f — x) sin (x — @)
2 sin f§ cos @

@

To find the maximum of ¢ we differentiate the
above expression with respect to » and then solve
the equation dc/dx = 0, whence

w PP
2

In words, the most dangerous failure plane bisects
the angle between the slope and the ‘“natural
slope” i.e. the line with an inclination of @.

By substituting this value of the angle x in
the expression for ¢ and solving it for h, we obtain
the following relationship which furnishes for any
given slope angle f, the maximum height h at
which the slope is just in a limiting state of
equilibrium:

4c  sinfcos®
y 1 — cos (8 —®)

@)

Here ¢ is the cohesion and v is the unit weight of
the soil.

From Eq. (2) it can be shown that for slopes in
a limiting state of equilibrium, the locus of point B,
as the slope angle § changes, is a parabola, known
as Culmann’s cohesion parabola. Its focus coincides
with the toe A of the slope and its axis makes an
angle @ with the horizontal. The distance from
the focus to the directrice is equal to:

q=4—C cos®D.

14
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Fig. 7. Culmann’s cohesion parabola

Using polar co-ordinates, the equation of the
parabola becomes:

q

Tl D ces ()

(For notation see Fig. 7.)

With the aid of the Culmann parabola, the
limiting height can readily be determined for any
given slope angle §. An important value is the
limiting height at which a vertical bank in cohe-
sive soil stands without lateral support. Incor-

porating § = 90° in Eq. (2) gives

hy = tan {450 i 3) . (3)
y 2

If the height of the slope is smaller than h,, even
a slightly overhanging slope may remain stable.

JAKY (1925) has shown on the basis of the cohe-
sion parabola that the theoretical profile of a slope
in the limiting state of equilibrium is curved. Let
h denote the limiting height of a slope inclined at
an angle § to the horizontal (Fig. 8). If we con-
sider an upper part of height h; separately from
the rest of the slope, this part would stand in a
slope steeper than the overall slope corresponding
to the total height h. Let us now divide the height
h into, say, four equal parts. Using the Culmann
parabola we can construct the limiting slope angles
corresponding to heights h/4, h/2, 3h/4,respectively.
Clearly, the lower the slope in question, the
steeper it can be. By drawing the respective slope
for each height in such a manner that the total
weight of the sliding wedge does not change, we
obtain a profile made up of broken lines (Fig. 8).
If we use sufficiently small divisions and continue
the construction in the manner previously de-
scribed, eventually a smooth curve results. This is
called the theoretical slope. From first principles,
JAKY also derived the mathematical equation of
the theoretical slope and he developed a method
for its construction.

In practice, it would be rather awkward to form
a slope exactly to such a profile. Nevertheless,
bell-shaped and bowl-shaped slopes, which ap-
proximate the theoretical profile fairly well, are
often used for high embankments and deep cut-
tings, respectively, in order to minimize the land
area occupied.

The idea of the theoretical slope, although it
was originally developed on the assumption of
a plane surface of failure, can readily be applied
to other, more realistic, curved slip surfaces.
Providing a graph relating the limiting height to
the slope angle is available, a theoretical profile
can always be constructed by the procedure
illustrated in Fig. 8. This can then be used to
design safe and economic curved slopes.

AN

Fig. 8. The theoretical slope constructed using Culmann’s parabola



1.2.3.3 Stability analysis based on the assumption
that ® — 0

The assumption that the slip surface is plane
offers a simple solution to the problem of slope
stability, but it is certainly not a satisfactory one
since experience has shown that actual slip sur-
faces deviate considerably from the plane. Yet,
considering the many uncertainties in the values
of the soil properties on which the calculation is
based, this discrepancy would seem to be of minor
significance as long as the results obtained are on
the safe side. However, this is not so: for given
soil properties and geometry, the analysis based
on a curved slip surface always leads to smaller
safety heights than are obtainable by the slip
plane assumption. Safety is thus the main factor
which justifies the introduction of curved slip
surfaces into the following discussion.

If the soil of a slope is such that it has a con-
stant undrained shear strength, i.e. @ = 0 and
T = ¢, the stability of the slope can be investigated
by using a circular slip surface. For this particular
case the circular cylinder is the exact solution, as
has been shown by the senior author. The @ = 0
condition applies to the undrained shear of homo-
geneous, saturated clays, when their shear strength
is given as a function of the total normal stress.
The circular slip surface was assumed, on the
basis of previous observations, in some early
investigations and was first used for the @ = 0
analysis by FELLENIUS (1927, 1936). The method
became known as the Swedish method.

According to this method, as a first step we
have to find the position and radius of that circle
which replaces the actual slip surface. This circle,
known as the critical circle, must satisfy the
condition that the ratio of the moment of restrain-
ing forces acting along the slip surface to the
moment of driving forces be a minimum. The
ratio obtained is then taken as the safety factor.
If it has a value equal to 1, the slope is on the
verge of imminent failure. For stable slopes the
safety factor must be » > 1.

Figure 9 shows a slope A B inclined at angle 5 to

the horizontal. Let AC be the arc of a trial slip
surface. Its position in relation to the slope is
determined by two angles: the central angle 26,

and the angle « which the chord AC makes with
the horizontal.

Let W = weight of mass tending to slide,

a = lever arm of force W with respect to
centre of slip surface,

r radius of slip circle,
l, = length of slip surface,
l length of chord of slip surface,

c cohesion on slip surface.

!

)

I

[

I

Since there is no friction, the only force tending
to restrain sliding is the cohesive force C. Writing

2 A. Kézdi and L. Réthéti: Handbook
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Fig. 9. Circular sliding surface beneath the slope

the moment equation of equflibrium,
Wa— Cz=0. 4)

C is the resultant of the elementary cohesive
forces acting along the arc AC. Tts magnitude is
proportional to the length of the chord AC:C =
= ¢l and the distance of its action line from the
centre of rotation 0 is z = rl/l, (see Vol. 1, Section
10.5.2).

From Eq. (4) the cohesion per unit area required
to prevent rotational sliding along the surface AC
is obtained as

_ Wa

rl,

¢ (5)
The quantities W, a and I, can be expressed

by geometry (Fig. 9). Substituting the resulting
expressions into Eq. (5) gives

1
c=hy———, (6)
S(e, 8,0)
where y = unit weight of soil,
h = stable height of slope,
fle, ,0) = a dimensionsless number.

The most dangerous or critical circular slip surface
is the one along which the cohesive resistance
needed for stability is maximum. For a given
slope the angle § is constant and the position of
the critical circle is thus governed by the equations:

e (7)

90
If we solve Eqs (7) and substitute the resulting
values of o and 0 into Eq. (6), we obtain:

hyN.. (8)

2

1
C:h —_—
" f(@ 8, 6)
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In this formula N, is a dimensionless number
called the stability number.

Supposing that N, is known for any given angle
B, the cohesion required to maintain stability can
be expressed from Eq. (8). The available cohesion
of the material of the slope can be determined
experimentally and, hence, the safety factor can be
obtained:

V= Cavailable/creqv.xired .

On the other hand, if the determination of the
maximum stable height for a slope with given
angle § and cohesion ¢ is required, Eq. (8) should
be solved for h:
h— €
YN,

)

The location of the critical circle was investigated
by FeLreEntus (1927). His results are shown in
Fig. 10, where values of the angles « and 0 are
plotted against the slope angle f. With these
angles known, the critical slip surface can be
constructed and, making use of the moment
equation of equilibrium, the cohesion needed for
stability can be calculated. By repeating the cal-
culation for varying angles of 3, we obtain a graph
giving the stability number IV, as a function of §
(Fig. 11).

Let, for example, § == 90°. From the graph we
find N, = 0.266, whence h = c¢/y N, = 3.76 ¢/y.
Similarly for § = 0, N,= 0.1196 and h = 8.36 c/y.
When § = 60°, the angles 0 and « have the same
values and the critical circle has a horizontal
tangent at the toe of the slope. If the slope angle
§ is greater than 60°, the slip circle has a rising
tangent at the toe, whereas in the case of § < 60°,
the slip surface has a falling tangent at the toe,
i.e. it penetrates below the base of the slope. This
portion of the graph in Fig. 11 is therefore valid
only if the material of the slope and that of its
base are identical.

The statements in the preceding paragraph hold
only for the condition that the soil is homogeneous
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Fig. 10. Angles defining the location of the critical circle
(FELLENIUS, 1927)
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Fig. 11. Stability coefficient N, for slope failure calculations

and the slip surface passes through the toe A. The
location of the critical surface has been shown
previously to be governed by Eq. (7). The question
arises, however, whether the most dangerous slip
surface is always a toe circle ?

Observation of slides that occurred in flat slopes
has shown that the critical slip surface does not
as a rule pass through the toe but penetrates
below it and cuts the free surface at some distance
from it. The same situation arises when a slope
is made on a very soft base.

In order to determine the equilibrium condition
for such base failures, let us consider a slope in
a homogeneous soft soil as shown in Fig. 12. As
can be seen from the following reasoning, the
centre of the critical circle must be located on the
vertical that intersects the slope at the Eid-point.
In Fig. 12 the circular slip surface CD is such
that the above condition is fulfilled. The cohesion
required to maintain stability is obtained from

Eq. (5) as

rl,

where 1, is the length of arc CD. Since @ = 0, the
only internal resistance available is cohesion. If
we fix the position of the centre O and of the arc
DC and then move the face of the slope 4B by
a distance of Al to the left, the weight of the
sliding mass will be increased by AW and the



moment about the centre of rotation O will be
decreased by AWAl/2. If the plane of the slope
is shifted by Al to the right, the weight is de-
creased by AW, and the moment about O is again
decreased by AW Alj2. In either case the disturbing
moment is reduced while the restraining moment
remains unchanged. It follows that the disturbing
moment is indeed a maximum when the centre
of rotation is located on the vertical passing

through the mid-point of the slope A4B.

To fix the position of the slip surface with
respect to the slope, two addition data are needed.
One is the depth factor, defined as

n:h+t=
h

t
1+ — 10
o (10)

which signifies the depth to which rupture can
penetrate below the elevation of the toe (Fig. 13).
The difference between the elevations of the
highest and lowest points of the slip surface is nh.
The other datum required is the radius of the
circle r. Taking the moment equation of equilib-
rium, the cohesion required for stability can be
computed from Eq. (5). Expressing W, a, r and
Il from the geometry of the slope and substituting
into Eq. (5) leads to the following general formula:

e—hy— 1 (11)

f,r,n)

The most dangerous circular slip surface can again
be found from the extremum conditions:

9 gand 2 . (12)

on or

By solving Eq. (12), it can be shown that, regard-
less of the value of angle p,

1
——— = 5.54¢/y .
0.181 r

when n—oo, h=

c
v

Fig. 12. For a base failure, the centre of the critical sliding
circle is along the vertical line dividing the slope in two halves

2#
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Fig. 13. Characteristic locations of the critical sliding surface

If we plot this value of the stability number on
the vertical axis in Fig. 11, and draw a horizontal
projection line at N, = 0.181, it will intersect the
curve representing the critical toe circle at § = 53°.
This means that if § <7 53° and the ground surface
at the toe is horizontal with no surcharge acting
on it, then in a homogeneous soil a critical cirele
that passes below the toe is likely to develop. If,
however, the surface at the toe is rising, as shown
in Fig. 13g, a toe circle will be the critical one.

An underlying firm statum may prevent the
slip surface from extending to greater depths
below the toe, and the critical slip surface, whether
it is a toe circle or passes below the toe, can only
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touch the surface of the hard stratum. There are
three possible cases: (i) If the slope is not too flat
and a firm stratum is located at a depth relatively
near the toe, the critical circle will touch the
surface of the firm stratum and intersect the
slope above the toe 4 (case d, Fig. 13). (i) If a
firm stratum is encountered at increasingly greater
depths, a toe circle is likely to be the critical one
(case e), whereas (iii) for flat slopes with a firm
stratum at very great depths, the critical slip
surface always passes below the toe (case f). In all
such cases the ratio n is known and the location
of the critical slip surface is governed only by the
second equation given in Eq. (12). Hence, the
radius of the critical circle can be determined and
the cohesion needed for stability and the safety
factor can be computed.

Numerical values of the stability factor N, were
determined by Tavror (1937, 1948) on the basis
of the analysis described above, for both toe
circles and circles passing below the toe and also
taking into account the depth factor. The results
of his investigations are summarized in the chart
shown in Fig. 14. According to this figure — and
summing up the main conclusions of the previous
discussion — the following important statements
can be made concerning the stability of slopes in
soft clays whose angle of internal friction is very
near to zero.
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Fig. 14. Values of the stability coefficient N, as a function

of the depth coeflicient in the case of ® = 0

1. For slope angles greater than 60°, the eritical
circle is a toe circle and is located entirely above
the level of the toe. Relevant stability factor
values are contained in the portion II-IIT-IV of
the curve in Fig. 14.

2. If B is between 53° and 60°, the slip surface
is still a toe circle but one which penetrates below
the elevation of the toe. Should, however, a firm
base be located at a small depth below the toe,
i.e. the depth factor n is only slightly greater
than 1, the critical circle may be a slope circle
that is tangential to the firm base and intersects
the slope above the toe.

3. If 8 is smaller than 53° the value of the
stability factor depends greatly on the value of
the depth factor n. Figure 14 gives the relationship
between depth factor and stability factor for
different values of slope angle f§.

As can be seen frem the figure, if n is greater
than 4, the stability factor is practically indepen-
dent of the value of the slope angle f§, and apart
from very flat slopes (f < 15°) it can be taken as
a constant, IV, = 0.181.

For all other values of 8 and n, the stability
factor can be obtained from the curves in Fig. 14.
If the type of failure is similar to that shown in
Fig. 13g, a base failure is not likely to occur. For
such cases the dashed curves of Fig. 14 should be
used; here, too, N, depends on the depth factor n.

Figure 14 also shows values of the factor k, by
means of which we can compute, in the case of
a base failure, the distance from the toe at which
the critical circle intersects the lower, free surface.
This distance is kh. The dash-dot curves in Fig. 14
correspond to constant values of k.

Summing up the @ = 0 method, it is based on
the assumption that the shear strength is con-
stant, and that no volume change occurs during
failure. Such conditions exist only in saturated
soils with a permeability low enough to prevent
any perceptible change in water content, i.e., any
volume change during shear. In such cases the
shear strength is indeed independent of the total
normal stress.

1.2.3.4 Stability analysis when @ < 0 and ¢ == 0

We now examine the case where there is a
linear dependence of the shear strength upon the
normal stress, i.e. the failure condition is of the
form

T=g¢gtan® + ¢,

where ¢ is the effective normal stress acting on
the surface of sliding. Since the manner in which
the normal stress is distributed along the slip
surface is not known, the problem is statically
indeterminate ard can be solved only with certain
simplifying assumptions.

In practical stability analysis, two methods are
in general use. In one, we consider a sliding mass



separated by a circular slip surface from the rest
of the soil mass and examine the conditions under
which this rigid, free body is in a limiting state of
equilibrium. In the other, we subdivide the sliding
mass into a number of vertical slices, and perform
the stability analysis by taking into consideration
all the forces acting on these slices (method of
slices). The second method is the more accurate
since it permits equilibrium conditions and failure
conditions to be satisfied rigorously. This method
will be discussed first.

Only the two-dimensional case will be consid-
ered (plane state of strain). The first step is to
make an assumption for the shape of the slip
surface. The circular cylinder is the most commonly
used assumption. This, together with other sug-
gested geometrical curves, is shown in Fig. 15.
Type (a)is the usual circular slip surface. Type (b)is
composed of two circular arcs of different radii
which form a smooth curve so as to fit the actual
surface of sliding better. Type (c) is a logarithmic
spiral for a weightless material with internal fric-
tion. Type (d) shows an example of how a rotational
slip surface may be distorted by the presence of
a dipping ledge or of a firm layer located near the
disturbed zone .Finally, type (e) represents the
extreme case of the circular slip surface, ie. a
plane parallel to the ground surface. This is used
in the stability analysis of an infinite slope with
no cohesion.

If there are no excess pore pressures in a soil
mass bounded by a slope, or when the stability
analysis is performed on the basis of shear strength
referred to total stress for partially saturated soils
this does not necessarily imply that the angle @ is
equal to zero, simplified methods of analysis can
be employed. One of these, known as the friction
circle method, was developed by Tavyror (1938).
He assumed that the resultant gds of the ele-
mentary normal force ods and tangential force
7ds acting on an element of the slip surface is
inclined at the angle @ to the normal to the slip
surface so that it is tangential to a circle of radius
rsin® whose centre coincides with that of the
glip circle. Consequently, the resultant Q of ele-
mentary forces gds on all such elements must also
be tangential to that circle. (This assumption was
already discussed in connection with earth pres-
sure problems in Vol. 1, Chapter 10.)

The procedure of the friction circle method is
illustrated by Fig. 16. .

Let I, be the length of the arc AC and I, be the
length of the chord AC. Assuming a uniform
cohesion along the slip surface, the moment arm
of the resultant cohesion C is given by

z=r-2.

I

(4

Its line of action is parallel to the chord AC. The
vertical line of action of the weight W of the
sliding mass 4BC can be found by a graphical
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Fig. 15. Patterns of sliding surfaces to be used in the case of
the method of slices:

a — circle; b — compound curve; ¢ — logarithmic spiral; d — composite clongated
sliding surface; e — plane
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Fig. 16. Stability analysis for soils of friction and cohesion,
according to Taylor’s method (1938)

construction. If 4BC is a regular figure, we may
divide it into a triangle and a circular segment,
and find their common centre of gravity. If the
sliding mass is bounded by an irregular surface,
we divide the mass into vertical slices and deter-
mine the line of action of W by means of a string
polygon. The point of intersection of the forces C
and W can thus be found. For equilibrium, the
unknown resultant @ of the normal and frictional
forces acting on the slip surface must also pass
through that point. On the other hand, Q must be
tangential to the circle of radius r sin @ and hence
its line of action can be drawn. Since the mass
ABC in Fig. 16 tends to slide downwards from the
right to the left, while the restraining forces act
in the opposite sense, the line of action of  should
be tangential to the friction circle on the right.
Equilibrium also requires that the vector polygon
of the forces W, C and @ must close. Since the
magnitude and direction of W are known, and
the lines of action of the forces C and Q are fur-
nished by the construction just described, the
force triangle can readily be completed. The
resultant cohesion C needed for equilibrium can
be scaled off from the figure and the cohesion per
unit area ¢ computed from the expression ¢ = C/l,.

By repeating the construction with a sufficient
number of trial slip surfaces, the most dangerous
circle, i.e., the one giving the maximum cohesion
necessary for equilibrium, can be found. Hence
the safety factor can be computed as the ratio of
the cohesion available along the slip surface to
the maximum cohesion obtained form the con-
struction:

__ Cavailable
crequired

The assumption on which the construction is
based can only be considered as an approximation

since it can easily be seen that the resultant force
Q on the slip surface is not exactly tangential to
the circle of radius r sin @, missing tangency by
a small amount as shown in Fig. 17. This discrep-
ancy is due to the fact that the elementary forces
acting on the slip surface do not intersect on the
perimeter of the circle of radius rsin® but,
depending on the mode of distribution of the
restraining forces along the slip surface, some
small distance away from it. For example, two
such elementary forces (; and Q; intersect at
point D in Fig. 17. By making simple assumptions
for the distribution of stresses along the slip sur-
face, the error can be determined mathematically.

The distance of the line of action of the tan-
gential component T of force 0 from the centre
of rotation can be given by the general expression

2y = 1f(6)
where 6 is half of the central angle subtended by

the arc AC. The function f(f) has been evaluated
by Fromrica (1950) for three different modes of
stress distribution shown in Fig. 18. The respective
formulae, together with numerical values of the
quantity (Z/r — 1) plotted against the angle 0,
are shown in Fig. 19. Pattern b in Fig. 18 bears,
in most cases, the closest resemblance to the actual
stress distribution. Pattern a, which is tacitly
assumed in the friction circle method, is only an
approximation. Pattern ¢ shows the probable
distribution of stresses in cases where there is
some restraint at point A4 preventing the free
development of the slip surface AC.

The stability analysis based on the friction
circle method can also be treated mathematically.

Fig. 17. Direction of reactive forces on a sliding surface



Fig. 18. Three alternatives for the establishment of the
acting point of reactive forces in the case of different
normal stress distributions

{

It can be shown that the expression furnishing the
cohesion necessary for equilibrium is similar to
Eq. (8), except that in this case the function F
contains an additional variable: the angle of
internal friction @. The location of the ecritical
circle is again determined by the extremum cri-
tera

9 _ 0 ana % —o.
09

o

By solving the equations, the cohesion necessary
for equilibrium can be expressed as

hy _
F(a, 8, 6, D)

hyN., (13)

whence the height of stable slope becomes

(14)

Numerical values of the stability number N,
against the slope angle § for various values of @
are given in Fig. 20. The graph is divided by a
dash-dot line into two zones. In zone I the cri-
tical circle is always a toe circle, with its lowest
point at the toe. In zone II, which corresponds
to moderate and flat slopes, there are three variant
cases to be considered. Case 1 is likely to occur
in homogeneous soils. The most dangerous circle
passes through the toe but it may penetrate
slightly below the elevation of the toe, i.e. the
depth factor may be greater than unity. Case 2 is
valid for @ values of less than 5°. The critical circle
passes below the toe and cuts the free surface at
some distance from it. In case 3 there is a ledge
or firm stratum that limits the depth to which,
the slip surface can penetrate. For small @ angles,
a deep-seated failure cannot occur and the slip
surface finishes on the slope above the toe A.
The three cases are represented by different types
of line in the chart, each being shown only where
the occurrence of the respective case is possible
or critical.

As can be seen from the chart, a base failure is
to be expected only when the friction angle is less
than 5°. Conversely, from the occurrence of a base
failure in a homogeneous soil, it can be inferred
that at the time of failure the friction angle @ was
probably very close to zero. In the range of small
@ values the depth factor has a marked influence
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on the stability of the slope, but it becomes neg-
ligible as @ increases.

Taylor’s friction circle method was further
developed by JAky (1944) in so far as he sug-
gested that instead of laborious trials the critical
circle can be found in one step on the basis that
at the lower end of the slip surface the soil is in
a state of uniaxial compression and at the upper
end in uniaxial tension, and thus the slopes of
tangents to the circle are determined at those
points (Fig. 21). It follows from the geometry of

the circle that the chord AC of the critical circle
makes an angle of (§ + ®)/2 with the horizontal.
These conditions determine the location of the
critical slip surface unequivocally.

Although the assumptions made by Jaky on
the state of stress of the slope hold true, the actual
slip surface is not circular but is a curved surface
having the sharpest curvature near the upper end
C and becoming gradually flatter towards point A.
Therefore, the slope angles of the initial and final
tangents to the substituting circular surface can-
not be assumed to be known and, in fact, the
greatest deviations from the actual slip surface
occur at points A4 and C. In spite of this, if we
calculate the stability number N, from the fol-
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Fig. 19. Finding the location where the force ¢ acts (FrRORH-
LICH, 1950)
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lowing formula furnished by Jaky’s analytical
method (JAky, 1944),

sin p+o
— = 4cos D 2 .
N . p—D
sin
2
] cos
(cos @ — cosff) cot f+ tan [45°+ g’ (g~ f—cosf

(15)

and plot the N, values obtained on Taylor’s
stability chart (Fig. 20), the difference between
the two sets of values will be negligible. The good
agreement is all the more conspicuous since the
differences between the locations and radii of the
critical circles are indeed very significant. For
practical purposes, the Taylor curves can be

replaced, especially in the range of higher @ values,
by Eq. (15) or by the equation of a well fitting
hyperbola,

L4 600 (16)
N, B—®

(8 and @ in degrees), both of which furnish reliable
values of N,.

Bisuop (1955) developed an analytical solution
for the method of slices which takes into account
the difference of the earth pressures acting on the
two vertical sides of a slice. This method also
makes it possible to allow for pore pressure acting
in the slope.

Consider a rotational slide occurring along a toe
circle, as shown in Fig. 22. The pore-water pres-
sure u at any point can be expressed in terms of
the ratio
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Fig. 21. Establishment of the critical circular sliding surface
after JAKyY (1944)

where h is the depth of the point considered below
the ground surface and y is the unit weight of
the soil. It is assumed that the ratio r, is constant
throughout the cross-section, i.e. the pore-water
pressure at any point is proportional to the total
overburden pressure hy. The shear strength with
respect to effective normal stress is given by the
equation

1, = (0 — u)tan P’ + ¢’.

X
e~ \
- \
7 \
C_-— B \
B8 \
\
\
<A A \£
g 3 X\

;

Fig 22. Slope stability analysis after Bisaop (1955). Iden-
tification of signs
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Fig. 23. Slope stability analysis after Bisaor (1955). Forces
acting on a slice

The safety factor can be defined as the ratio of
the ultimate shear strength 7, to the mobilized
shear resistance 7:
T tan @’ c’
v=-—" and 7= (0 —u)—— + . (17)
T v v

This definition gives a safety factor with respect
to the shear strength.

The forces acting on a typical slice are shown
in Fig. 23. E, and E, denote thc normal and
tangential components, respectively, of the earth
pressure on the side of the slice, W is the total
weight of the slice, and N and T are the normal
and tangential components, respectively, of the
reaction on the base of the slice. The average total
normal stress on the base of the slice is

0= —,
1

where [ is the length of the chord. The mobilized

shear strength can thus be written, using Eq.
(17), as

z:(N ] tan @ c ‘ (18)

1 +
y

v
Equilibrium requires that the sum of the moments
about the centre O of the weight of the slices is
equal to the sum of the moments of the total
shear forces acting along the base of the slices;
therefore
2 Wx=2XTr, (19)
where T = 1l.
From Eqs (17) and (19) we obtain

r

2 Wax

Yy =

2le’'l + (N — ul) tan @’]. (20)

From the condition of vertical equilibrium,

Ncosa+tdsina =W+ E,—E ;. (21)
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Hence
W+E,—E,;;—ulcosa— Z Isina
N—ul=N'= & 4
cos @ + sin @ tan
v
(22)
Substituting into Eq. (20) gives
r
Py = .
2Wx

W+E,—E,,,—ulcosa— ¢ Isina
D'l 4-tand’

tan @’

cos « -+ sin &
»

From Fig. 23 it can be readily seen that
x = rsin «,
b=1lcosa

and

ub _ u

—=r

w hy

u-

Substituting these expressions into Eq. (23), we
obtain

1
— = ~>leb+ wa —r,
’ EWsinaZ[c + ra) T
+ (En - En+1)] tan @’ +

sec o (24)
1 +tanoctan(15 ]

v

The values of AE, = E, — E,,, are determined
by successive approximation on the basis that

3E, — Ep4,) = ZAE, = 0, ]

(25)
2(E, — Et+1) = YAE, =0,

and that the condition of moment equilibrium
must also be satisfied.

The procedure is as follows. Resolving the force
acting on a slice tangentially and using the con-
dition of equilibrium, we obtain

(W+ 4E;)sina + AE;cos a =T
or AE, = T sec « — (W + AE,) tan «. (26)

Now, if Eq. (24) is written in the form

. 1
2 Wsin a

v 2 [m]
then
m

T—",

v

and hence

ZAE, = z[in-sec o — (W — AE,) tan a]. (27)

v

The E, values must therefore also satisfy the con-
dition that

E[ﬂsec a«— (W + AE,) tana]: 0.

v

In practice, as a first approximation, a value of
v is computed from Eq. (24) on the assumption
that AE, = 0. Several trial values of v are then
assumed and entered into the right-hand side of
Eq. (24). Finally, assumed and computed v values
are compared. The correct solution when

Vassumed — Vcomputed

can be obtained by graphical interpolation. The
solution obtained will thus satisfy Eq. (24), but
not Eq. (27). Suitably assumed AE, values are
then introduced into Eq. (27) and adjusted by
iteration, until the correct value which satisfies Eq.
(27) is found. Bisuaor (1954) noted that there are a
number of different distributions of AE, which all
satisfy Eq. (27), but the corresponding variations
in the value of » are less than 19,.

The Bishop method is primarily adaptable to
the stability analysis of earth dams, normally
built with gentle slopes, in which high pore-water
pressure is likely to build up and the critical slip
surface penetrates deep below the toe and has
a great central angle.

The simplified method of Janbu (JANBU et dl.,
1956) takes account of the shear forces between
the slices by using a corrective factor f, which
depends on @ and ¢, and the shape of the sliding
surface. The normal force P can be calculated
from the equilibrium of vertical forces, i.e., from

Eqs (28) and (29), as follows:
W—(Xg— X, —Pcosa— S,,sina) =0, (28)
T ul tan @ smoch“ (29)

¢’l sin a

P=|W-—
[ F F

where u means the pore-water pressure, F the
safety factor and
m, = cos « + (sin w tan @’) : F. (30)

(The other symbols are illustrated in Fig. 24.)
The formula

Y(E, — Ep)+ ZPsina — 2 §,,cos &« +
+2XkW 4+ A —~Lcosw=0 (31)

representing the equilibrium of the horizontal
forces can be used to calculate the safety factor
in the following form

Fo— 2 [e'l cos & + (P — ul) tan @’ cos ]
0 YPsina -+ 2kW 4+ A — Leosw

. (32)



Fig. 24. Acting forces for the method of slices
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(In this equation 4 means the resultant water
forces, and o the angle of the line load from the
horizontal.)

The final (corrected) form of the safety factor
is then:

F —f,F,. (33)

Janbu elaborated a ‘“rigorous method” as well,
in which it is supposed that the point where the
interslice forces act can be defined with the help
of the “line of thrust”. New terms involved are
then defined as follows (see Fig. 25):

— t,,tp = vertical distance from the base of
the slice to the line of thrust (on the left and right
sides of the slice, respectively);

— «, = angle between the line of thrust on
the right side of a slice and the horizontal.

The normal force P can be found from the
equilibrium of all vertical forces:

P:[W—(XR_XL)—C—l—SE‘l+
F
4 ultan? smocjlzma (34)

and the safety factor from the equilibrium of all
horizontal forees:

. 2e’db+ tan @'(W — ub + X, — X,_))]
tan @’ tan «

14 2

+ F

1+ tan? «

F

(E, — Ey + 2 Wtana)
(35)

JANBU’S rigorous analysis differs from the simplified ana-
lysis in that the shear forces are retained in the derivation
of the normal force.

To solve Eq. (35) the shear forces between the
slices should first be established. An iteration is
applied after that, in which the first step is to
assume the shear forces to be equal to zero. The
next step is to calculate interslice forces from
the summary of moments that act on the centre
of each slice base:

b b btan «
X, —+X,——E; |t _
L2+ R L(L+ 2 +
+ Ej tL—{—%tanoc—btanoc,)—k——u;—hzo.

(36)
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Fig. 25. Forces acting on each slice in the case of Janbu’s
“rigorous” method
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After rearranging Eq. (36), several terms become
as negligible as the width dx. These terms are:

b b tan o
(Xp—XL) 2“3 (ER’—EL)T; (Ep — E)btan o, .

After eliminating these terms, and dividing by
the width of the slice, the shear force X becomes:

Xp = Eptana, — (Ep — EL)LI’:_+ %% (37)

The horizontal interslice forces required to
solve Eq. (37) are obtained by combining the sum-
mation of vertical and horizontal forces on each
slice:

(Ep — E;) = [W — (Xg — X)) tan & —
S

Ccos &

. (38)

+ EW.

The horizontal interslice forces are obtained by
integration from left to right across the slope.
The magnitude of the interslice shear forces in
Eq. (38) lag by one iteration. Each iteration gives
a new set of shear forces.

MorceNsTERN and Price (1965) assume an
arbitrarily taken function to describe the direction
of the interslice forces:

M(x) = —)Ig— : (39)

In this expression A represents a constant to be
evaluated for solving the safety factor, and f(x)
is the functional variable with respect to x. The
final solution is based on the summation of all
tangential and normal forces. The force equilib-
rium equations were combined and then the
Newton—-Raphson numerical technique was used
to solve moment and force equations for the
safety factor and 4.

FreprLunD and Kraun (1977) presented an
alternative method for the same problem. The
combined procedure consists essentially in the
following. The normal force is derived from
Eq. (34). Two safety factor equations are com-
puted, one in respect to the equilibrium of mo-
ments, and the other in respect to the equilibrium
of forces. (The former is allocated to a common
point; even if the sliding surface is a composite
one, a fictitious common centre can be used.)
The equation is the same as that obtained for
the simplified Bishop method. The safety factor
with respect to force eguilibrinm (Fj) is defined
with the Eq. (32). The interslice shear forces are
computed in a manner similar to that presented
before as Janbu’s rigorous method. On the fisrt
iteration, the vertical shear forces are set to zero.
On subsequent iterations, the horizontal interslice

forces are first computed (Eq. [38]) and then it

comes to the vertical shear forces using an assumed
A value and side force function:

Xp = Ep Mf(x). (40)

The side forces are recomputed after each
iteration. The moment and force equilibrium
safety factors are solved for a range of 1 values
and a specified side force function. These safety
factors are plotted in a manner similar to Fig. 26.
The safety factors vs. A are fit by a second-order
polynomial regression and the point of inter-
section satisfies both force and moment equilib-
rium.

Spencer’s method (1967) applies the premises
illustrated in Fig. 27. Accordingly, the equilibrium
of the following five forces should be analysed:

(a) The weight (W);

(b) The total reaction (P) normal to the base
of the slice. This force has two components:
(i) the force P’ due to inter-granular effective
stresses, and (i7) the force (ub sec a) due to the
pore pressure (u). Thus:

P = P + ubseca. (41)
(¢) The mobilized shear force (S,, = S/F), where
S = ¢’bseca + P tan @', (42)
lLe.: c’b tan @’

S, = 7 sec a + P’ (43)

(d) The interslice forces (Z, and Z,;;). For
equilibrium, the resultant (Q) of these two forces
has to pass through the point of intersection of
the other three forces.

By dividing the five forces shown in Fig. 27
into the components normal and parallel to the
base of the slice the following expression is ob-
tained for the resultant (@) of the two interslice
forces:

Q=

b tan & (Wcosa —ubseca) —Wsina

——8ec «
7 +

tan @’

cos (x — ) [1 + tan (o — 0)]

(44)
As W = ybh and u = r,yh (where r, is a pore-
pressure coefficient proposed by Bishop and
Morgenstern). Equation (44) can now be trans-
formed and rewritten in a dimensionless form as

follows:
Q f—
+

(1—2r,+ cos2)— — sin 2«
FyH 2HF 2H
=yHb Y ’
cos « cos (o — 0) [1 + tan® ian (x — 0)}

(45)

¢ htan®’

where H represents the height of the slope.
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Fig. 26. Variation of F with respect to moment and force
equilibrium versus 4 for the MORGENSTERN and Prick (1965)
method; soil properties: ¢’/yh = 0.02, @ = 40°, r, = 0.5,
geometry: § = 26.5°, height = 30 m

If all external forces on the slope are in equilib-
rium, the sum of interslice forces has to be zero,
i.e., the sum of both the horizontal and vertical
components of interslice forces has to be zero:

2(Qcosf)=0, (46)
and

X(Qsin6) = 0. (47)

Furthermore, if the sum of the moments of
external forces about the centre of rotation is
zero, the sum of the moments of interslice forces
must also be zero:

2 [QRcos (x — 0)] = 0. (48)

There are thus three equations to be solved in
a given problem: two in respect of forces (Eqs (46)
and (47)) and one in respect of moments (Eq.
(48)). Proper values should be found in respect of
F and 0 to satisfy all three equations, and it has
to be noted that although, for a given slice, the
value of 6 will be the same, the forces between
the slices will not necessarily be parallel through-
out.

As MorGENSTERN and PRICE (1965) have proved
that the dispersion of F-values belonging to dif-
ferent types of §-distributions is small, SPENGER
saw the merit of the allowable supposition that
the interslice forces are parallel to each other
(i.e., 6 = const.). In this manner, Eqs (46) and (47)
would be identical:

Q=0 (49)

and only two equations remain to be solved
(Eqs (48) and (49)). Following these considerations,
the procedure consists of the following steps.

(a) Several values of 6§ are assumed, and for
each, a value of F should be found to satisfy both
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Eqs (48) and (49). Using the force-equilibrium
equation (49), the value of F obtained will be
designated as Fy, the other as F,. The value of
the safety factor from the moment equation,
while 8 was taken as zero, will be marked as F,,,.

(b) A curve should then be plotted to find the
relationship between F; and 6, and a second
curve on the same graph to show the relation
between F,, and Q. The intersection of the two
curves will represent the value of the safety factor
(F;) which satisfies both equations and the cor-
responding incline (6;) of interslice forces (see
Fig. 26).

(c) These values of F; and 0; are then substi-
tuted in Eq. (45) to obtain the values of resultant
interslice forces. Hence, proceeding from the first
slice to the last, the values of every interslice
force can be established.

(d) Then, working again from the first slice to
the last, the acting points of the interslice forces
can be found by calculating the moments to the
middle points on the base of each slice. The position
of the points of action should then be marked on
the sections of the slopes.

Examination of practical examples prompted
SPENCER (1967) to derive the following conclu-
sions:

(a) the value of §; was less than the slope of
the embankment (8);

(b) the variation of 6 values influenced the F;
values to a much greater extent than those of F,,.
In fact, when 6 was less than 6;, the variation in
F,, was very small indeed. Consequently, there
was not much difference between the values of
F,,, and F;;

(c) the line passing through the points of action
of the interslice forces fit very closely to the lower
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Fig. 27. Forces on a slice for Spencer’s method (1967)
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Fig. 28. Comparison between Greenwood’s solution (1983)
and other solutions for a typical slope with circles of varying
depths

““third-point” on the interface of the slices. This
implies an approximately triangular stress distri-
bution on these boundaries, which is a quite
acceptable result.

Using a numerical example, SPENCER also
investigated, how the number of slices (n) influ-
enced the value of the safety factor (F) and
found:

128
1.251

n| 8 16 32 64
F| 1233 1.245 1249  1.251

The results of this comparison have shown that
though the accuracy of Bishop’s simplified method
decreases slightly as the slope of the embankment,
r, and @’ increase or the parameter ¢’/yH decreases,
the error was less than 19, in most of the cases
considered. The worst combination of these factors
resulted in an error in the safety factor of 49,.

GREENWOOD (1983) elaborated an approxima-
tive solution. Based on it, the safety factor can
be estimated from the following equation:

F —
1
_=— ¢’bseca +W (1 — r (1 + Ktan®x)-
ZWsinocZ[ +W X )
. cos a tan D', (50)
in which — additionally to the previous ones —

the symbol K means the ratio of horizontal to

vertical effective stresses. Supposing the situation
K = 0, the case of FELLENIUS will be reinstated.
Figure 28 compares this procedure with other
methods.

PapapopoULOs and AnNaeNosTOoPOULOs (1981) argue
that, according to observations, the sliding surface is not
always a circle, the more so not in over-consolidated and
anisotropic soils. They suggested applying an alternative
approach in such cases, for example, to describe the sliding
surface by the following function:

x=—%z2+ZH. (51)

The authors conducted a comparative analysis todemonstrate
in which case the circle and when the parable supplied lower
safety factor values. Three fundamental situations were
examined:

— the soil mass was isotopic or
— anisotropic (K = ¢max/Cmin)s
— the cohesion varied according to depth.

Cases have been found in all three situations when the parable
supplied the lower values for safety. In the first situation, for
example, the circle was more perilous for a slope with low
incline and/or when the shear resistance was small, in the
opposite cases the parable was more perilous.

1.2.3.5 Criticism of theories and general considera-
tions

The authors who attempted criticism on
theoretical works mostly examined the following
four problems:

— fulfilment of equilibrium conditions;

— distribution of normal stresses;

— the safety factor along the sliding surface;
— the influence of the “stress-path”.

It can be stated unanimously on the basis of
facts described in Section 1.2.3.4 that the method
of Fellenius, the simplified method of Bishop, and
all theories which apply the *‘stiff mass” assump-

Fig. 29. Effective normalstresses (07) in an excavated slope:
1 — in Bishop’s stability analysis (1955) and 2 — from an elastic solution
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Fig. 30. Effective normal stresses (on) under an embank-
ment in Bishop’s stability analysis (1955) and from a non-
linear elasto-plastic solution

tion, would not satisfy the requirements for
equilibrium.

With respect to normal stress distribution, the
deficiencies in the supposition will be clearly
visible in Fig. 29, where the stress distribution
in a cutting calculated by Bishop’s method is
compared with the actual one which has been
measured by La Rochelle using the photo-elasticity
method (TAVENAs et al., 1980). There are very
important differences between the two stress
distributions. They reveal a strong overestimation
of o, and thus of the available clay strength along
the upper part of the failure surface, and an even
more pronounced underestimation of o}, and 7 at
the toe of the slope. A similar outcome can be
observed generally at the foundations of embank-
ments. Figure 30 shows a typical comparison
between the normal stresses obtained from a
finite-element method (FEM) analysis — using
a hyperbolic stress—strain relationship — and
those computed according to the modified Bishop
method.

Similar results have been obtained by WricHT
et al. (1973), when it was stated that the differences

oy (kPa)
0 10 20 30 40

T

T
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between the normal stress distributions as assumed
in stability analyses and that obtained from
elasticity theories decrease when the incline of
the slope decreases.

The safety factor as determined by means of
stability theories is assumed to be the same for
every slice, and thus to be constant for each point
on the shear surface. The values calculated from
the linear elastic stress distribution (WRIGHT et al.,
1973), however, are not constant, as can be seen
in Fig. 31. For the cases studied, it was found that
along about one-third to one-half of the shear
surface the F values calculated by using linear
elastic stresses were below the average on the
slope. From these results it is possible to determine
the minimum value of an overall safety factor
required so that F would not be less than unity
at any point on the shear surface, i.e., the value
of F required to prevent overstress according to
linear elastic theory. These values are shown in
Table 1. (The definition of A4 will be explained
later.) Conseugently, for a wide range of condi-
tions, a safety factor equal to 1.5 would be suffi-
ciently large to prevent any local elastic overstress.

T

]

Fig. 31. Variation of the safety factor along the shear
surface as calculated by the finite element method
(simplified Bishop method (1955), F = 1.0)
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Table 1. Values of F required to prevent local elastic overstress
along critical shear surface

Shape ratio

Ao —_ - - .
15:1 25:1 | 85:1
0 1.46 1.44 1.49
2 1.32 1.23 1.23
5 1.34 1.18 1.14
20 2.27 1.21 1.10
50 4.36 1.37 1.12

Inadequate inference of the stress path is
illustrated in Fig. 32 by the example originally
used by TAVENAS et al. (1980). At present, there
are no means yet available by which these facts
could be evaluated.

Theories can also be classified according to the
number of equations necessary to achieve a proper
solution (WRIGHT et al., 1973). All methods employ
assumptions to reduce the number of unknowns
to be equal to the number of equilibrium equa-
tions. However, not all of the methods satisfy the
same conditions of equilibrium. Janbu’s generalized
procedure of slices, and Morgenstern and Price’s
procedure do satisfy all conditions. These provide
two equations for force equilibrium and one
equation for moment equilibrium at each slice,
and thus 3n equations are derived (n is the number
of slices). Bishop’s simplified method, and the
ordinary method of slices do not satisfy all con-
ditions of equilibrium. Bishop’s method satisfies
the requirement for vertical equilibrium at each
slice and that for the overall moment equilibrium,
but does not satisfy horizontal equilibrium or
moment equilibrium requirements at each slice;
as a result, the number of equations is n 4 1.

rh

{a)

The ordinary method satisfies only overall mo-
ment equilibrium requirements, but does not
satisfy the moment or force equilibrium condi-
tions at the individual slices; as a result, there 1s
just one equation at hand.

Several researchers attempted to compare the
individual procedures. This would require the
invention of a complex common parameter to
make the comparison unambiguous, as the ge-
ometry of the slope and the characteristics of the
soil provide a great variety of possible combina-
tions. Accepted parameters for such purpose
include for example the central angle of the
sliding surface (HupEr, 1977), or the d/L ratio
described in Fig. 28. One of the best propositions
has been introduced by JAnBU (1957) where the
dimensionless parameter

__ yHtan @

c

Ao (52)

was suggested.

Janbu’s investigations have proved that the
results of a stability analysis might be expressed
uniquely in terms of 1.4 and two other dimension-
less coeflicients, FyH/c and tan . Thus for any
combination of 4,4 and f, the value of FyHje
calculated by any method is unique, i.e., any
combination of y, H, ¢, and @ which gives the
same value of A, will result in the same value
of FyH/c. In addition, the distribution of normal
stresses on the shear surface as determined by
any method is precisely similar on any two slopes
which have the same incline and A, values.

FrEpLUND and KrAHN (1977) have suggested
that in perusing the differences among the theories
the equations for the safety factor and the normal

(b}

Fig. 32. Effective stress path up to failure, as implied
in all methods of stability analysis (a); comparison be-
tween actual and assumed stress path up to failure
in a slope or in the base of an embankment (b):

1 — effective stress path as implied in v = (¢’ + 0" tan@’): F; 2 — ty-
pical stress path in the soft clay hase of an embankment; 3 — typical
stress path for excavation in overconsolidated clay




forces should be compared separately. They
stated, among other things, that Bishop’s equation
for the calculation of F is identical to that of
the Swedish method, and difference exists only in
the calculation of P. Spencer proclaimed two equa-
tions for the safety factor: one for the moments,
and the other for the forces acting parallel to
those at the interfaces of slices. The former is
identical with the equation in Bishop’s and in
the Swedish methods. The present authors have
summarized the results of their investigation as
follows:

(a) All methods of slices that satisfy the overall
moment equilibrium requirement can be written
in the same form:

_ Z2dIR+ 2(P—ul)Rtan @’
E2Wx — 2 Pf+ 2 kWe 4+ Aa+ Ld

(see the key in Fig. 24 for symbols).

(b) All methods satisfying overall force equilib-
rium have the following form for the safety factor
equation:

Fo— 2Zclcosoa+ 2 (P — ul) tan @’ cos o
I S Psina+ SEW 4+ A —Leosw

From the theoretical standpoint, the derived
safety factor equations differ in (¢) the equations
of statics satisfied explicitly for the overall slope
and (it) in the assumption of making the problem
determinate. The assumption used causes altering
the determination of interslice forces in the normal
force equation. The latter — with the exception
of the ordinary method - has the same form:

(53)

m

(54)

P W (XX -

ultan @’ sin oc] (55)
—_— :m, .

F

It is possible to analyse the analytical aspects
of slope stability in terms of one safety factor
equation which satisfies overall moment equilib-
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Fig. 33. Stability analysis of a vertical earth wall — deter-
mination of the sliding surface
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rium and another satisfying overall force equilib-
rium requirements. In this way each method
becomes a special case of the “best-fit regression”
solution to the Morgenstern—-Price method.

1.2.3.6 Stability of vertical banks

The stability of vertical earth banks requires
special consideration, partly because it represents
a limiting case of slope stability, and partly on
account of its importance for the stability of
trench walls and excavations.

Figure 33 shows a cross-section through a
vertical bank in a cohesive soil. During the process
of excavation, deformations occur in the soil
mass, and the originally vertical face of the bank
assumes a slightly curved shape as indicated by
a dashed line in the figure. Within the shaded zone
near the ground surface, the soil is in a state of
tension which eventually leads to the formation
of tension cracks. Excessive shrinkage due to
desiccation of the soil may aggravate the situation
and cause the cracks to penetrate even deeper.
Temperature changes and infiltrating precipitation
may also add to the formation and widening of
such cracks. As a consequence, the shear strength
is greatly reduced or even ceases to exist in the
uppermost part of the bank. The effective length
of the surface of rupture upon which resistance
depends will be decreased until finally the bank
fails along a curved surface normally passing
through the toe.

A base failure is also possible. This sort of failure
is likely to occur when the underlying soil is
much softer than the material of the bank itself,
and yields under the weight of a bank of height h.

In the simplest method of stability analysis,
we assume that the soil along the vertical face
is in the active Rankine state. In this case the
surface of rupture is plane, rising at an angle of
45° 4 @/2 from the horizontal. In a cohesive soil,
the earth pressure acting on a wall of height h is
given by the expression

0 .
E;r = iy tan? [45° — 2) — 2 ch tan 450—9) .
2 2
E,, becomes zero, when
h— hy— 2 tan |45 +- EJ . (56)
14 i 2

Equation (56) would give the theoretical value of
the critical height of an unsupported vertical bank.
However, the assumptions underlying the deriva-
tion of Eq. (56) are not correct. The Rankine
theory is strictly applicable to the semi-infinite
half-space in a state of plastic equilibrium. In the
Rankine state, the upper part of a vertical section
is indeed acted upon by tensile and the lower
part by compressive normal stresses as suggested,
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Fig. 34. Stability analysis of a vertical earth wall — static
design

but along the vertical face of a bank, the normal
stresses must be zero everywhere. In addition,
the sliding wedge above a potential surface of
sliding is not in a state of plastic equilibrium.
Only a single slip surface exists, which, however,
is not plane but, as shown by experience, slightly
curved. Assuming a circular surface of sliding,
Fellenius showed that the critical height is given by

h=385". (57)
¥

The difference between the values obtained by
Eqs (56) and (57) is less than 59, and thus,
considering the many uncertainties involved, for
practical stability analyses the assumption of a
plane surface of rupture will be quite satisfactory.

On the other hand, we must take into consid-
eration the effect of the tensile cracks which may
be formed in the upper part of the bank (Fig. 34).
If one such crack penetrates so deep that it
reaches the potential surface of sliding, then the
body of soil C;CD no longer participates in the
failure.

The condition of equilibrium may be expressed
from the force polygon as

1 )
W —=_"—» (h? — 22) tan [45° — —| =
57 (= 2) ( 2]

= 2C cos [450 — —Zi) = 2¢(h — 2),

since

c(h — 2)

cos (450 — 2]
2

Considering Eq. (56), the critical height hj can be

written as

h:hgzﬁtan(4so+3]_z:ho_z.
Y 2

The depth of tension cracks does not normally
exceed one half of the height of the vertical bank.
Thus, assuming z = h}/2, we obtain

tan [450 4 %] . (58)

2h, _ 2.67c

hy =
0 3 ,

It can be proved that in a homogeneous soil
a slip surface passing through the foot of the ver-
tical bank is always more dangerous than one
passing below it, therefore, depending on whether
or not tension cracks are likely to develop, the
critical height of a vertical bank can be computed
by either Eq. (58), or Eq. (56).

1.2.4 Slopes in nonhomogeneous and stratified soils

As was previously stated, the slip surface
always follows the line of least resistance. There-
fore, in practical cases the most dangerous slip
surface determined by theory often cannot devel-
op. Should, for example, the shear strength
increase with depth, then the actual surface of
rupture will deviate from the theoretical one as
is shown in Fig. 35a. The presence of a layer with
a low shear strength may also cause a distortion
of the slip surface (Fig. 35b). Such cases can
seldom be handled by exact methods of stability
analysis and we should rather rely on experience
in judging the stability of a slope. It is important
that the engineer should correctly recognize the
factors that may influence stability.

When dealing with stratified soils, we must
always bear in mind that the shear strength of
highly cohesive soils may deteriorate substantially

— Theoretical
—— sliding surface

(a) Real sliding surface

¢ . ””,;%%;lllll”
Illlllllllll’l Soft layer
{b)

Fig. 35. Transformation of the theoretical sliding surface:

a — sgoil strength increases with depth; b — interwoven soft layer at greater
depth



because of lasting exposure to shear stresses. It
follows that failure conditions will usually not be
reached at one and the same time in every layer
out across by a potential slip surface. Let us
consider, for example, the situation shown in
Fig. 35b. A stiff clay (I) which tends to fail with
a relatively small shear deformation is underlain
by a layer of soft clay (II) which exhibits a large
deformation before it fails. Under such conditions,
a relatively small displacement may be sufficient
to bring layer I to the verge of failure, while in
layer II only a small portion of the shear resis-
tance is mobilized. On the other hand, deformations
large enough to mobilize the shear strength in
layer 11 completely, will long before have caused
failure in layer I. As a result, the resistance to
sliding in layer I becomes greatly reduced or
ceases entirely. Should the shear resistance in
either layer alone be insufficient to prevent
failure, then we must assume, for the purpose of
a stability analysis, a maximum resistance in
layer II combined with a strength greatly reduced
due to remoulding of the soil in layer I.

In the following, some examples are given of
those cases of instability for which a quantitative
analysis is possible, provided that reliable infor-
mation on stratification and soil properties is
available.

Figure 36 shows the cross-section of a typical
slide. A large mass of earth moves outwards along
the approximately plane interface of two different
soil strata. There is a likelihood of such a type of
failure if a permeable layer — wusually sand,
coarse silt, fissured clay, etc. — is underlain by
an impermeable clay stratum which has a sidelong
surface. The clay sucks in infiltrating rain water
and swells. As a result, its shear strength may be
reduced to such a level that the total frictional
resistance along the plane of sliding plus the tensile
strength in the upper layer are no longer sufficient
to balance the tangential component of the weight
of the sliding mass. Then instant sliding takes
place. Locally, where small deformations have
already taken place, the shear strength may drop
to its ultimate value which for certain soils may
be substantially smaller than the peak strength
value. The upper permeable layer usually consists
of sand, coarse silt or fissured clay.

The stability of such natural slopes cannot, as
a rule, be investigated on the basis of some exact
mathematical slip surface, since in this case the
surface of rupture is determined by the geological
conditions. A rough estimate of the degree of
stability is possible using the following method.
Figure 37 shows the cross-section of an unstable
hillside. An arbitrary vertical section I-2 is acted
upon by an active earth pressure. The resultant
earth pressure E, is a tensile force when the height
h is smaller than the limiting height of a vertical
slope k, and it is a thrust when h is greater then h,.
Because of tensile stresses acting in the zone near
the surface, cracks will develop to a depth of

3#
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Fig. 36. Sliding in the narrow sense of the word: motion atop
the stiff layer

2.67¢
4

hy= tan (45° + @/2) .

The most dangerous situation arises when, during
a rainstorm, such a crack becomes filled with
water, which exerts an additional pressure U on
the sides of the crack. The forces which tend to
cause sliding are the earth pressure E,, the inci-
dental water pressure U and the weight W of
the block of soil 4BI12. Their resultant R is
obtained by a force polygon. R can be resolved
into components normal and tangential to the
surface of sliding. The normal component /N makes
an angle » with the direction of the resultant.
As for the restraining forces, there is a frictional
resistance [N tan ¢ on the section 42 of the surface
of sliding. (¢ denotes the angle of surface friction
on the boundary of the two layers.) Equilibrium
exists only if the angle » obtained from the force
polygon is smaller than ¢. The preceding construc-
tion is repeated several times for various positions
of the vertical section I-2. By plotting the varia-
tion of tan » and comparing it with tan ¢, as is
shown in Fig. 37, we can judge the degree of the
stability of the hillside.

When the upper boundary of the firm stratum
does not intersect the free surface of the slope,

>y

0

Fig. 37. Stability analysis when the sliding surface inter-
sects the slope
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Firm layer

Fig. 38. Stability analysis when the sliding surface lies at
some depth below the toe

but passes below its foot, the slide takes the form
shown in Fig. 38. The least resistance to sliding
exists at the toe of the slope, where failure occurs
along a curved slip surface joining the boundary
of the firm stratum tangentially at point 2. The
passive earth pressure mobilized at the toe may
have an appreciable value and should be entered
into the stability computation. By determining
the passive earth pressure E, on the vertical sec-
tion I-2 and the active earth pressure E, on an
arbitrary section 3—4, we can compute the safety
factor with respect to sliding by the formula

¢l + N tan o+ Epcosi
T+ E,cos ¢ .

If the layers are approximately horizontal and
their shear strength parameters do not differ con-
siderably, a rotational slip is likely to occur and
it is possible to perform a stability analysis on the
basis of the values of @ and ¢ determined for the
individual layers. Figure 39 shows the cross-
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Fig. 39. Investigation of slope stability in the case of ap-
proximately horizontal stratification

section of such a stratified soil. The slip surface
cuts across several layers. Obviously, the most
dangerous slip surface is such that the section of
its arc located within the softest layer is as long
as possible. The manner in which a slope fails
depends on the relative cohesions of the individual
layers. Should, for example, a soft layer be located
in the upper or mid-part of the slope, the occur-
rence of a firm stratum at some greater depth is
not likely to influence stability. On the other
hand, if there is a soft layer, for example, layer 3
in Fig. 39, located just below the toe, a base failure
will most probably occur. The critical slip sur-
face will just touch the surface of the firm base.
Such considerations will help us greatly in find-
ing the location of the most dangerous slip sur-
face.

The stability analysis may be performed on
the assumption that & = 0. By tracing a trial
circle, we compute the average shear resistance
7 that would be required along the slip surface to
prevent sliding. From Fig. 39, we have

Wia, — Wa,
k

Trequired —

rl,
where a; and a, are the lever arms with respect
to the centre O of the forces W, and W,, respec-

tively, and [, is the total length of the arc CD. The
weighted average of the available cohesions of
the individual strata is computed by the formula

n
2; CiAlal'
_ =
Caverage — )

L

where ¢; is the cohesion of the ith layer and Al
is the length of the arc of the section of slip surface
in the ith layer. The safety factor with respect
to sliding can be written as

_ Cuyerage

Crequired

The investigation is repeated for different trial
slip surfaces in order to find the least value of ».
By performing a sufficient number of investiga-
tions and assigning to the centre of each one of
the trial circles the corresponding value of », we
can trace a set of contours representing equal v
values as shown in Fig. 39. The lowest point
furnishes the centre of the critical circle and at
the same time the desired value of v, .

For the case @ == 0, the investigation can be
carried out by any of the methods discussed in
Section 1.2.3.4. For the method of slices, vertical
division lines can conveniently be drawn at every
point where the ¢lip surface intersects the bound-
aries of the layers so that thereis only a single
value of ¢ for each slice.



1.8 Factors influencing the stability of slopes

1.3.1 Introduction

Earthworks are constantly exposed to various
physical and chemical effects. Ever-changing
environmental conditions influence the stability
of slopes through a variety of processes causing
deformations, erosion or other damage. The work
of the various agencies and the extent of the
damage may be extremely diverse. Some minor
decays may ruin the appearance of a slope without
endangering its stability or proper use. However,
if the start of damage is neglected or its cause
remains unrevealed, the situation may rapidly
deteriorate and initially small trouble spots may
extend over increasingly large masses of soil, so
that finally the earthwork completely fails to
serve 1ts purpose.

The harmful effects on the stability of slopes
can be categorized with regard to many different
characteristics. Table 2 shows an example of
such a categorization. Three main groups can
be distinguished. The effects of weather — pre-
cipitation, variation in temperature, movement of
air — listed in group I are the most important.
Other natural forces form group II, and effects
due to activities of man are listed in group II1.

Among atmospheric effects, the work of water
is the most significant. Surface water causes
erosion. Initially narrow and shallow gullies cut
by run-off water become widened and deepened
in the course of time, while the debris of erosion
is deposited at some lower elevations. All these
effects may considerably damage surface drainage
works. Water percolating in the soil exerts seepage
forces and in loess it may cause collapse of the soil
structure. Cohesive soils undergo seasonal swelling
and shrinkage. Hydrostatic pressure induces neu-
tral stresses in the soil with a consequent reduction

Table 2. Harmful effects on earthworks
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in the shear strength. The slopes of dykes and
canals are continually exposed to erosion by wash
and wave effects.

A rise of temperature causes water to evaporate
from the near surface zone of the soil. This leads
to the formation of shrinkage cracks. Water may
fill the cracks and penetrate to great depths.
Frost causes the formation of ice lenses in fine-
grained soils. During subsequent thaw periods
large masses of frozen soil become softened result-
ing in a destruction of structure and an almost
total loss of strength. Wind is likely to cause
serious damage to slopes of fine sand.

Chemical effects rarely cause slope failure.
Decomposition of the solid part of the soil, reduc-
tion in shear strength because of cation exchange,
etc., may be mentioned in this sub-group. The
presence of carbon dioxide in the atmosphere can
be very injurious to calcareous stone.

Sometimes tectonic effects come into play. Slow
movements in the earth’s crust cause a steepening
of slopes, usually associated with soil-creep.
Earthquakes may have violent effects. Shear
waves that propagate near the ground surface
give rise to horizontal forces which change the
magnitude and direction of the resultant body
force acting on the slope essentially and cause
additional shear stresses in the soil.

Biological effects of plants and animal life can
occasionally be very significant. Holes burrowed
by moles and other pests pipe water through or
beneath embankments and dykes and may have
catastrophic consequences.

It is commonly recognized that vegetation pro-
vides an effective means of slope protection, but
sometimes it can be harmful. Plant roots growing
in construction joints exert a wedging effect, and
they can also clog outlet of drains. Growth of
weeds on roadsides and in railway ballasts can

be very harmful.

I. Physical influence of the atmosphere

IT. Further impact of nature

IIL. Artificial impacts

1. Activity of water

(a) Erosion caused by run-off water

(b) Rainwater infiltrating in the under-
ground

(c) Activity of the groundwater:
Permanent groundwater table
Gravitational flow
Capillary rise

2. Influence of temperature (plus water)
(a) Drying, shrinkage
(b) Penetration of frost
(c) Warm springs

3. Air movement
(a) Wind erosion
(b) Abrasion

1. Actions of water
(a) Scour caused by water, lakes and
lakelets, river, wave action
(b) Impact of springs

2. Influence of gravitation; slow deforma-
tions

3. Chemical effects
(a) Exchange of bases
(b) Other chemical processes (leakage,
dissolution, etc.)

4. Tectonic movements
(a) Slow creep of the crust
(b) Earthquake

5. Biological effects
(a) Animal
(b) Vegetation
(c) Bacteria

1. Influence of water
(a) Development of water pressure,
water head, pore-water pressure,
seepage from ducts

2. Loads
(a) Own-weight
(b) External load

3. Dynamic effect
(a) Traffic
(b) Miscellaneous activities (pile driv-
ing, etc.)

4. Further activities
(a) Overcompaction
(b) Stabilization
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(d)

(i)

(e)

Fig. 40. Some harmful instances which may influence the stability of slope:

a — erosion caused by runoff water; b — wave action; ¢ — increased seepage pressure due to infiltrating rain water;
d — lowering the groundwater table; e — increased water pressure in thin embedded sand layers; f — excavation at the toe;
g — surcharge load; h — trembling due to traffic; i — slide on the surface of a stiff inclined layer

Exceptionally, bacteria may cause damage to all such changes in load which tend to increase
slopes. the shear stresses in the danger zone of a slope.
In group IIl — man’s interference — over- For example, a minor excavation or cutting down
stressing of the slope should be mentioned first. at the toe also increases the shear stresses on
In this respect, the term ‘overstressing’ is used for a potential slip surface. Initially, soil-creep takes
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Fig. 41. Landslide frequency with time in Sweden (ViBERG, 1981)



place, resulting in a further reduction of the shear
resistance. Inadequately compacted fills subside
under their own weight and may become badly
deformed. Additional loading at the top of the
slope due to spoil tipping, buildings, plants, etec.
may be the cause of imminent sliding. It is worth
noting that not only loading, but also unloading
of a slope may have detrimental consequences.

Dynamic effects caused by traffic, operating
machines, pile driving, etc., can be dangerous,
especially in cohesionless soils.

Some of the factors endangering the stability
of slopes are illustrated in Fig. 40.

Interesting statistical inventories have been
compiled in Sweden relating the frequencies of
extended landslides in the last three and a half
centuries (VIBERG, 1981). As can be seen from
Fig. 41, the number of landslides covering areas
between one and ten hectares became markedly
significant after 1890 and 1940. The reasons for
these increases are probably mainly due to the
construction of the railway system at the end of
the 19th century and the rapid urban develop-
ment after World War II. Before 1850, the
frequency of landslides was probably only affected
by natural causes. There were long periods without
large landslides and this implies that such land-
slides are triggered by transient rapid causes such
as extremely wet years and earthquakes rather
than slow continous processes such as land up-
heaval or annual erosion.
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1.3.2 The effect of water and precipitation on the
stability of slopes

In Vol. 1, Chapter 5, we discussed the body
forces that are induced by the flow of water in
a mass of soil and the different ways of combining
all body forces to obtain their resultant. For such
computations it is required that a flow net be
constructed on the basis of which the resultant
water pressure acting on a potential slip surface
can be determined and the stability of a slope
investigated by means of the methods discussed
in Section 1.2.

Figure 42 shows a slope which is entirely sub-
merged. The soil is saturated and the water is at
rest. A body of soil bounded by a potential slip
surface AC is acted upon by its own weight and
by water pressure on the face of the slope and
along the slip surface, respectively. The total
weight of the body 4 BC may be written as

Vysat = V(Véat + Yw) -

Along the boundary surfaces, neutral pressures
act. Since there is no flow of water, these can be
determined as hydrostatic pressures. The resul-
tants of the boundary water pressures are the
forces U, and U,. These two, added vectorially
to the total weight W, give the resultant body
force R which, as can be seen from the force poly-
gon in Fig. 42, is equal to the submerged weight
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Fig. 42. Stability analysis of a slope below free water level:

a — distribution of the water pressure on the sliding wedge; b — forces acting on the sliding wedge; ¢ — diagram of forces
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Fig. 43. Forces acting on a volumetric soil element near
the surface of the slope, induced by parallel flow

(i.e. total weight minus the force of buoyancy):
Vysas — Vyw = Vsar .

This resultant R should then be entered in the
stability analysis. Using, for example, the friction
circle method, R is resolved into the force of cohe-
sion C and the slip surface reaction (J, and the
cohesion necessary to maintain equilibrium is
determined as was discussed in Section 1.2. The
Taylor stability charts may also be used to obtain
the required cohesion. In this case, the submerged
unit weight must be used in the expression of the
stability number, thus

N, = c/h'}’éat .

In the following we examine an infinite slope
in which steady seepage is occurring. In Vol. 1
we already discussed {as an example of the com-
putation of body forces due to seepage) the case
that the flow is linear and parallel to the ground
surface. We also determined the resultant body
force (Vol. 1, Chapter 5). Now we investigate the
complete state of stress. As a first step, let us
determine the total and neutral stresses at an
arbitrary depth z (Fig. 43). The total pressure on
an elementary surface parallel to the ground
surface is

Oy = %Ygas COS &

and its normal and tangential components are
_ 2
G = ZYgy cos? g,
T = ZY,,t SiN £ COS €.

The straight lines perpendicular to the surface of
the slope are equipotential lines. Thus, the neutral
pressure u at depth z is equal to hy,.

Since h = z cos? ¢, the neutral pressure
U=z 2
= zy,, cos’ €.
Hence the effective normal stress is
T =0 — u= (Vsar — Yy 2 0% & = 2yg; cos® e

If the stresses are plotted on a scale such that
the total stress ¢ acting on the plane parallel to
the ground surface is represented by a vertical
line of length z, then the resultant effective stress
can readily be constructed as the vectorial sum
of the effective normal stress ¢ and the shear
stress 7. The magnitude and obliquity of the
resultant effective pressure may be expressed
mathematically as

@J?_ 1] (59)

P = YiatZ €OS € [/1 + sin® e[
Vsat

Fig. 44. Stresses in a plane parallel to the slope



Fig. 45. Determination of the critical flow direction

and

B = tan-! [Z—fat— tan e] . (60)
sat

A slope in a cohesionless soil remains stable only
if # < @. The limiting angle of the slope ¢ can be
obtained by setting § = @. Assuming that y.,; ~
A Vsat/2 We obtain tan e, ~ 1/2 tan @, as was
derived by BeErNarzIK (1947).

If the seepage is not parallel to the surface of
the slope, the critical flow direction can be deter-
mined as follows.

Figure 44 shows the cross-section of an infinite
cohesionless slope. Consider an element of unit
volume located immediately beneath the surface.
The forces acting on the element are the sub-
merged unit weight y{,; and the seepage force p.
The slope is in a limiting state of equilibrium when
the quotient of the forces parallel and normal to
the surface of the slope is equal to the friction
coeflicient tan @. In Fig. 45 the triangle of force
is shown in a cross-section of the slope. The sub-
merged unit weight is represented by the vector
00’. Prolonging this vertical line, we also plot
yw on it and using this as diameter, we construct
a circle. The resultant body force pertaining to
an arbitrary seepage direction can be determined
by drawing a line from the lower end of vector

40° y.
7
o 30
X 4R $=30°
g o7 |2 24210 kN/m® _A
2 20 N ¢ 8 7
G \/ [ /
/ [Fe L,
8 0 ~———t—]
=)
= / |
52 / }
0 1

0 10 20 30 40 50 60 70
Angle of streamiines, a

Fig. 46. Critical slope angle as a funetion of flow direction
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(c)

Fig. 47. Seepage pressure in the body of a dam owing to:

a — long lasting rain; b — sudden depression of the water level; ¢ — permanent
seepage

Ysat parallel to the direction of flow. Its point of
intersection with the circle furnishes the vector
of the seepage force p. The resultant body force
per unit volume is represented by the vector r.
The magnitude and direction of the most dan-
gerous resultant can be determined by drawing
a vector from O tangential to the circle. The
critical direction of seepage can be obtained from
the expression '

Yw
2yéat + Yw

Figure 46 shows, for @ = 30°, the limiting angle
f of an infinite slope as a function of direction of
seepage.

Let us now consider the seepage which arises
when an embankment is exposed to a heavy
rainstorm, or when the free water level adjoining
the slope is suddenly lowered (rapid drawdown).
The embankment (Fig. 47) is made of sand having
no or a negligibly small cohesion. The base of
the fill is assumed to be practically impermeable.

In dry weather the water is held in the voids of
the soil by capillary forces. The neutral stresses
have negative values, and since the shear strength
of the soil is governed by the general relationship
T = (6 — u) tan @, a negative value of u causes
an increase in shear strength. As a result, the
embankment is more stable than it would be if
the soil were completely dry.

During a heavy rainstorm, water enters the fill
through the crest and the slopes and drains out
through the lower part of the slopes (Fig. 47a).
Under unfavourable conditions, this may lead to
a permanent flow in the fill.

cos 2o, =
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Impervious layer

Fig. 48. Flow net diagram in a dam over an impermeable
subsoil in the case of stormy rains or abrupt loss of water head

The boundary conditions required for the con-
struction of the flow net are as follows: the imper-
vious base and the axis of symmetry of the section
are flow lines; the crest of the embankment is an
equipotential line; the neutral stress at any point
along the face of the slope is zero. Figure 48 shows
the complete flow net. In order to maintain a per-
manent flow, a certain intensity of rain is neces-
sary. The quantity of water which enters the
embankment between two adjacent flow lines
must be the same in each one of the channels.
Therefore, the rate of precipitation per unit of
area of the surface of entry is greatest where the
distance between two consecutive flow lines is
smallest. This condition exists at the edges of the
crest. Let the width of the channel formed here
be ay,. The total head lost as water seeps through
the channel is h, and since the number of drops
passed is n;, the potential drop as water moves
from one equipotential line to the next is 4h =
= hfn,. Near the edge of the crest (point B) the
hydraulic gradient is i = Ah/a,. The intensity
of rain (i.e., the quantity of water per unit o’
area and unit of time) necessary to maintain
a steady flow of water through the embankment is

Ah E &

v=ki=kFk = —
Amin Qmin N1

During heavy rainstorms this condition is nor-
mally satisfied for every embankment made of fine
or silty sand.

A similar seepage occurs in an embankment
which had been flooded on both sides for a suffi-
ciently long period of time to become fully satu-
rated and where the water level is suddenly
lowered (Fig. 47b). The water draining out of the
embankment exerts a seepage pressure acting
outwards on the material of the fill; since the
neutral stresses have positive values, the shear
strength of the soil is greatly reduced, as is the
stability of the embankment. Experience shows
that in embankments made of very fine sand most
troubles occur during heavy rainstorms or imme-
diately after a sudden drawdown. A different flow
net is developed in an earth dam through which

seepage of water occurs toward the downstream
slope (Fig. 47c). This case is all the more involved
since the location of the top flow line is indeter-
minate. (For a detailed discussion of this problem
see Section 1.5). Whichever is the case, the flow
of water induces seepage forces inside the embank-
ment which must be taken into account in the
stability analysis.

The stability analysis is illustrated by Fig. 49.
We assume a circular slip surface which starts
at a point near the centre of the crest and is
tangential to the impervious base of the embank-
ment. The most dangerous slip surface can be
found by trial and error. Drawing a trial circle,
we determine the weight W, of the sliding mass
using the saturated unit weight yg,, of the soil
The weight acts at the centre of gravity of the
sliding body. In a cohesionless soil the only
resistance to sliding is that due to internal friction.
In the instant of failure, the resultant of the
elementary frictional forces is tangential to the
friction circle drawn with radius r sin @ from the
centre of the slip surface. The neutral stresses
induced by seepage are normal to the slip surface,
and pass through the centre 0. The neutral stress
at an arbitrary point such as P is given by the
expression u = h’y,, where k' is the difference in
elevation between the point P and the point
where the equipotential line passing through P
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Fig. 49. Investigation of slope stability in sandy soil after the
sudden lowering of the water level:

a — cross-section of the dam, flow net diagram and pressure distribution; b — de-
termination of resulting water pressures; ¢ — diagram of forces



intersects the surface of the slope. Hence the
distribution of neutral stresses along the slip
surface is known. The elementary forces acting
on small sections of the slip surface can be com-
puted and their resultant U, determined by means
of a polygon of force.

In the case of equilibrium the three forces,
W,, U, and Q, must be concurrent and their vector
polygon must close. Unless the force ) obtained
from the construction intersects or just touches
the friction cirele, the seepage induced by a rain-
storm or by a rapid drawdown causes failure of
the slope. The safety factor with respect to
sliding is
r sin @

d

If the material of an embankment has an
appreciable cohesion, it can be taken into account
in the same way as in the usual methods for
stability analysis of slopes (Fig. 50). We draw
the action line of the force of cohesion parallel to
the chord of the slip surface, at a distance z = rl,fI,
from the centre 0, and determine the cohesion ¢,
required to maintain stability. To this end we
construct the resultant Q; of the forces I, and
U, and make its line of action intersect the
force C,. From the point thus obtained we draw
the action line of ) so that it is tangential to the
circle of friction. The polygon of forces furnishes
the magnitude of the required cohesion C,. By
comparing this force with the available cohesion
of the soil, the degree of stability can be esti-
mated. In order to obtain a numerical value for
the safety factor, we determine, by drawing a line
parallel to O; M in the force polygon, the cohesion
that would be required if there were no frictional
resistance. Its magnitude is equal to C; + S.
Hence the safety factor is

y = S + Cavallable
S+C,.

The method just described can be applied to the
investigation of any stability problem associated
with seepage; for once the flow net is constructed,
the neutral stresses induced by seepage can readily
be determined and entered in the stability anal-
sis.
Y The method explained in the foregoing is rather
tedious, since the whole procedure should be
repeated a number of times in order to find the
lowest value of the safety factor. Besides, the flow
net may, in reality, be greatly influenced by local
variations in the permeability of the soil, and an
approximate method will often do just as well.
One such method which is applicable to flat
slopes (¢ > 10/4), is illustrated in Fig. 51. In the
case the equipotential lines shown, are approxi-
mately vertical and the error we make by assum-
ing that they are truly vertical is negligible. The
resultant U of the neutral stresses can thus be
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Fig. 50. Slope stability analysis (¢ 5= 0) after sudden lower-
ing of the water level (application of Frohlich’s method
(1950))

assumed to pass through both the center of
gravity of the potential sliding body and the
centre O of the slip surface. Let the angle it makes
with the vertical be «. The vertical component of
the resultant water pressure U is approximately
equal to the cross-sectional area A4 of the sliding
body multiplied by the unit weight of water v,
Therefore the resultant U need not be determined
from the force polygon, but can simply be written

Ayy

cOos &

U =

With U known, the further procedure is the same
as that used in the examples previously discussed.

Direction of flow

|
|
7

Fig. 51. Simplified stability analysis: assumption of hori-
zontal flow lines
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Fig. 52. Values of the stability coefficient IV} in the case of
an abrupt decrease in water level
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Fig. 53. Inclination limit of a sand slope in the case of an
abrupt decrease in water level
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Fig. 54. Vertical stream lines resulting from a horizontal
permeable layer constructed at the base of the dam
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Fig. 55. Construction of a dam slope with respect to fluctua-
tion of the water level

For details see Fig. 51. The minimum of the
safety factor can again be obtained by iteration.

Another short cut in the stability analysis is
provided by the use of design charts based on

stability numbers taking into account the effect
of seepage. An analytical approach would have
been far too complicated and therefore stability
numbers, corrected for seepage, have been deter-
mined by a great number of graphic constructions.
The results are shown in Fig. 52. Reciprocals of
Taylor’s stability numbers are plotted on the
horizontal axis and 1/N] values on the vertical
axis, where N/ is the stability number corrected
for the seepage case shown in Fig. 48. Numerical
values for various angles of internal friction @ can
be read off from the set of curves.

Let, for example, @ = 20° and N, = 15. From
Fig. 52, the stability factor corrected for seepage
is N, = 8.6. For a slope 15 m high with a unit
weight of soil yg¢ = 20 kN/m?® the cohesion
required for stability when no seepage is occur-
ring is

¢ = hyg/N, = 15X 20/15 = 20 kN/mZ.

After a sudden drawdown the slope only remains
stable if the available cohesion is not less than

¢ = hygy/ N, = 15%20/8.6 = 35 kN/m2.

For cohesionless soils an approximate relation-
ship for the safe angle of slopes subjected to see-
page effect is given in Fig. 53. According to this,
the slope of an embankment in which a flow net
similar to that shown in Fig. 48 is developed, does
not remain stable unless its angle to the horizontal
is less than 0.559.

The preceding discussion has clearly shown how
seriously the stability of a slope could be affected
by seepage of water. Fortunately, there are a
number of ways of preventing failure. For example,
if a coarse-grained filter is placed immediately
beneath the base of the embankment, all the flow
lines become approximately vertical and the
equipotential lines horizontal (Fig. 54). It follows
that the neutral stresses inside the fill become
zero and thus will not affect the stability of the
embankment during rainstorms.

Another precautionary measure consists of
flattening the slope. Figure 55 shows a typical
profile recommended for slopes of canals and
reservoirs in cohesionless soils when a wide
variation in water levels is expected. The surface
of such slopes can be divided into three parts.
The highest water level plus the wave height a
gives the upper limit and the lowest water level
minus the wave height a gives the lower limit of
that central zone which is likely to be affected by
seepage. Above this buffer zone the slope never
becomes submerged and below it the slope is
constantly under water. The top and bottom
sections of the slope can be made with a safe
angle 8 normally permitted for static conditions,
but the central part must be flattened with a
reduced slope angle of §/2 to 2/38.

Among the many effects of water on the sta-
bility of slopes, yet another, the pressure of water



filling tension cracks near the surface, is worth
mentioning. Embankments made of, and cuttings
excavated in cohesive soils are subject to desic-
cation during dry spells, especially if their slopes
are not yet protected by vegetation. As a con-
sequence, deep, wide cracks may develop in the
tension zone near the surface. If they become filled
with water during torrential rain, the stability of
an otherwise safe slope may be seriously endan-
gered. The primary cause of reduced stability is
normally not the decrease in cohesion of the soil
due to soaking by water, since this is a relatively
long process, but the instantaneous effect that the
outward pressure of the water filling a crack
exerts on its side. In such case the stability
analysis can be performed according to Fig. 56.
The depths to which the cracks penetrate can be
assumed to be approximately equal to

2.67¢
7

Zg —

tan (4-50 -+ %) = 1.33¢,/v"

The effect of water pressure in the cracks may
occasionally be very significant. Taking, for
example, a cutting 10 m deep with slopes o = 6/4,
the safety factor with respect to sliding may drop
from v = 2 to v = 1.4.

The significance of precipitation can duly be
proved by histograms which show, in a monthly
arrangement the frequences of the precipitation
and slides (ViBERG, 1981). In Fig. 57 the number
of slides — that occurred in Sweden — is plotted
against the month in which a slide was observed.
There are two peaks in the histogram for the whole
of Sweden, one in the spring and one in the
autumn. The geographical separation of the slides
illustrates that the slide frequency is greatest
during the autumn months in southern Sweden
and during the spring months in northern Sweden.
A similar pattern exists in Norway (note that a
continental climate prevails in both countries).
Most slides occur during the wet seasons when
pore pressures and the activity of erosion are at
their peak. Obviously, the fact that evaporation
is at a low rate and evapotranspiration is com-
pletely absentin autumn and winter may contribute
to this outcome.

In sensitive clay deposits in Quebec, Canada,
LeBuis and RissmaN (1979) have established a
histogram which gives a very predominant peak
during the months of April and May when snow-
melt combined with rain can produce the worst
possible conditions of infiltration. The ground-
water recharge due to snowmelt is also a predom-
inant factor in Quebec; in fact, nearly all the
major landslides in Eastern Canada have occurred
during springtime.

MANFREDINI et al. (1981) have observed in the
Sinni-Valley in Italy that the rate of transient
landslides depends not only on the intensity of
the precipitation which occurs during the obser-
vation period, but also on that of the directly
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Fig. 56. Stability analysis with respect to the water pressure
in temnsion cracks

previous period. The maximum sliding velocity
ensues normally in one month after the maximum
rainfall. In the first years of the study, the speed
of the slide approached 0.5 m per year, with
marked absence in summer. The speed has gained
impetus since 1976 probably due to the beginning
of a long-lasting wet epoch. Inclinometers that
have been embedded in the sliding mass have also
proved that sliding was always initiated in winter.
(It has to be noted that the climate in that region
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Fig. 57. Monthly distribution of landslide frequencies
(ViBERG, 1981):

a—in the whole of Sweden; b — the southern and ¢ — northern Sweden
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is Mediterranean — contrary to Sweden and
Norway — and most of the precipitation occurs
in autumn and winter).

1.3.3 Effect of excess pore-water pressure

The stability of a natural hillside or an arti-
ficial earthwork can be seriously endangered if
the subsoil contains water-bearing seams or lenses
of sand in which high pore-water pressures may
develop. It is characteristic of this type of failure
that a relatively gentle slope or hillside, which has
previously been stable, moves out suddenly or
slumps while the ground in front of the toe bulges.
An explanation of this phenomenon was given by
Terzaghi. He showed that if the pore pressure in
the seam of sand is great enough to reduce the
shear strength to zero, the critical height of the
overlying slope is equal to the critical height of
a vertical slope, regardless of the actual slope
angle. This statement can be verified as follows.

Figure 58 shows a cutting of depth h which has
been excavated in a clay. The base of the slope,
as well as every horizontal plane located further
below, is acted upon by shear stresses, because
the soil mass adjoining the slope tends to settle
vertically and, at the same time, to expand
laterally under its own weight. Beneath the base,
there is a water-bearing seam of sand, I-2, in
which the pore water is under pressure. The
shear strength of the sand is determined by the
equation 7, = (0 — u) tan @. A critical condition
arises when u = ¢ and hence 7, = 0. The equi-
librium of the soil body, al2b, depends on the
ratio of the active and passive earth pressures
acting on the vertical sections ¢l and b2, respec-
tively. In the limiting state of equilibrium

E,=E,.

Assuming zero friction, we get

1
B, = pth + b — 2c(h + hy)

and
1
Ep = —2~yh§ + 2¢h, .
a
; r
[
|
|
|
E, |
—-—-’l
] Ep <-7/-
. /! 2 <

Water pressure in the sand layer

Fig. 58. Investigation of equilibrium conditions of a slope
block: there is water pressure in the sand layer, effective
stress is zero

Equating E,; and E, gives

which is the theoretical expression for the critical
height of a vertical slope in the case that @ = 0.

Geological conditions favourable for the build-up, from
time to time, of exceptionally high pore-water pressures in
thin layers of sand are responsible for recurring landslides on
the highway and railway line along the NE shore of Lake
Balaton in Hungary, which is flanked by high banks in
which all prerequisites for failure by spreading occur. The soils
of the bank are generally wet and soft with an average water
content of 35 to 459,. Their shear strength is very low, even
if the effect of pore-water pressure is not taken into consider-
ation. Relatively thick strata of silt and impervious clay are
interspersed with water-bearing seams of sand and coarse
silt, some of which apparently communicate with a layer of
gravel which covers large areas of the upper terrain. During
wet seasons, rain water infiltrates the soil and percolates
through the seams towards the lake, thereby causing the
piezometric levels in the seams to rise considerably. Usual
remedial works utilizing buttress drains, shafts and headings,
etc., have not proven successful, at least on an economic scale,
in arresting the movement of the sliding masses. The affected
section of the highway and railway track therefore had to be
abandoned altogether. A new dual rockfill embankment was
built in the lake bed at a safe distance of 100 to 150 m from
the shoreline.

If the seam of sand is not horizontal, and the
pore-water pressures acting in it are known, the
stability of the slope can be investigated according
to Fig. 59. A section through the slope is shown
in Fig. 5%a. The dashed line indicates the piezo-
metric level for the pore water in the seam I-2.
We have to determine the forces acting on the
block of soil al2b. The vertical sections el and b2
are acted upon by active and passive earth pres-
sures, respectively. The weight of the block induces.
normal and shear stresses on the plane I1-2. These
are given by the expressions ¢ = hy cos® ¢ and
T=hysinecose.co is the total normal stress,
whence the effective normal stress can be obtained
by subtracting the neutral stress: ¢ = 0 — u =
=0 — h"y,. The shear strength expressed in
terms of effective stresses, is

s =0ctan P = (¢ — h’" p,) tan D.

The distribution along the plane I-2 of the shear
and normal stresses and of the frictional resistance
are shown by the graphs (b), (c) and (d) in the
lower part of Fig. 59. The safety factor against
sliding can be computed as the sum of the forces
which resist sliding divided by the sum of the
forces which tend to produce it

2
E,cos e + {7, dx
1
v = .

2
E cos ¢ + (rdx
i
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Fig. 59. Investigation of equilibrinm conditions in a slope
block with known piezometric heads and an inclined sand
layer in it:

a — cross-section and piezometric head; b — shear stresses; ¢ — normal stresses;
d — shear resistance
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High pore-water pressures in seams of sand can
be very dangerous to natural slopes even if the
seams outcrop at the surface. Such geological
conditions are common in flood-plain deposits
which were formed during alternating flood-water
and low-water periods, and also in delta deposits.
The subsequent formation of erosion valleys or
river beds in such layered deposits may create
extremely treacherous conditions involving a per-
petual danger to the stability of banks and hill-
sides. Flood-plain deposits are, as a rule, not
horizontal since the original terrain itself had been
very uneven and undulating. It is possible that
some of the thin water-bearing layers outcrop on
the surface at some higher elevations. At such
spots precipitation may soak away through a vein
of sand. The piezometric level in the seam drops
constantly towards the lower end where water
issues freely and its pressure diminishes to zero,
but locally very high pore-water pressures may
develop on intermediate sections of the seam.
Particularly high pore-water pressures are likely
to occur if the permeability of the sand gradually
decreases at lower elevations, or if the seam is
choked up, for example, by frost action.

Figure 60 shows the stability analysis of a
natural slope in a soil containing a water-bearing
seam. In the first step we compute the normal
and shear stresses along the plane 1-2. Next we
determine the neutral stresses in the seam (Fig.
60b). It is only the effective normal stresses that

{a)

{b)

{c)

Y

Fig. 60. Establishing the location of the critical vertical section
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produce frictional resistance. The total of the
shear resistance up to a section at some arbitrary
distance from the outlet is given by the integral

fo:taan(o‘— u) dx.

0

The two curves in Fig. 60c show the variation
with x of the integrals of the shear resistance fIN,

X
and of the shear stresses T, = Y 7dx, respectively.
0

Failure starts over that section where T, exceeds
the value of fIN_.

Among the manifold effects of water on the
stability of slopes we have not yet mentioned its
lubricating action. As we pointed out in Vol. 1
(Chapter 7) water, in its interaction with solid
mineral particles, is an antilubricant. The common
observation that the strength of a cohesive soil is
rapidly reduced with increasing water content is
due to the fact that the void ratio increases with
increasing water content and the structure of the
soil becomes looser. A saturated clay cannot take
up more water unless it swells. It is therefore not
the lubricating effect of water, but the swelling
of the soil or the action of neutral stresses and
seepage forces that cause a reduction in shear
strength and ultimately leads to slope failure.

1.3.4 Stabilizing effect of a revetment

Heavy facings made of stones or concrete blocks
provide an extra protection for slopes in various
ways. Firstly they prevent erosion caused by
surface flow and by wind or wave action. They
also have an insulating effect, whereby volume
changes are greatly reduced. In addition, they

Fig. 61. Effect of lining — stability analysis

increase the stability of the slope in cases where
the critical slip surface is a toe circle. This last
effect can be evaluated quantitatively as follows
(Fig. 61).

The weight of the facing W, represents a uni-
formly distributed pressure on the surface of the
slope. W, can be resolved into the components N,
and T,. The component T, is counteracted either
by the frictional resistance on the interface of the
slope and the protective lining or by the passive
earth pressure at the toe. If the component N,
is added vectorially to the weight W of the sliding
body, the resultant R will decline from the hori-
zontal towards the inside of the earth mass. As a
result, the shear resistance necessary to maintain
equilibrium is reduced. The cohesive force C
required for stability is determined by the polygon
of force shown in Fig. 61.

Example. A 1 in 1.25 slope, 8 m high, was provided with a
protective concrete layer, 30 cm thick. The cohesion of the
soil was ¢ = 20 kIN/m?, the angle of internal friction @ = 15°
and the unit weight of the soil y = 19 kN/m3. The safety
factor for the unprotected slope was v = 1.5. With concrete
facing it was increased to » = 1.7.

1.3.5 Slopes in some peculiar soils

Certain soils show a peculiar behaviour from
the point of view of slope stability. Stiff fissured
clays with a mosaic structure are an example.
The properties of this type of soil were discussed
in detail in Vol. 1, Chapter 3. The stability of cut
slopes on such soils may be greatly endangered
by the slow deterioration of the shear strength of
the soil caused by relief from overburden pressure
or by weathering.

Example. A 6 m deep cutting was excavated in Hungary in a
brown fat clay with a mosaic structure (w; = 110%, w, =
= 25%, w = 209, g, = 300 to 600 kN/m?). Temporarily the
cut was made with nearly vertical slopes which showed no
signs of deterioration for several months. Shortly after the
final slopes of 1 to 1 had been made, giving an increased
height of 8 m (Fig. 62}, a sliding took place. The usual methods
of stability analysis, based on a preliminary soil investiga-
tion, showed the safety factor to have varied between 3 and 4.
The cause of instability was, therefore, to be found in a
reduction of the in situ shear strengt of the clay. Many factors
may have contributed to this effect. Because of the mosaic
structure of this soil, the strength measured on a small and
intact laboratory sample is invariably greater than the
average strength of a large mass of soil, since in reality the
surface of rupture tends to follow the lines of least resistance.
Furthermore, the negative pore pressures which may develop
in a laboratory sample also result in an increase in the com-
pressive strength of the sample. In addition the clay in question
was highly expansive, with a linear shrinkage of 18 to 209,
and this property led to the formation of shrinkage cracks
near the face of the slope. Blasting operations carried out
nearby added to the widening of fissures and cracks. The
combined action of all these factors inevitably led to failure.
In order to estimate the actual value of cohesion that had
existed at the time of failure, the equilibrium of the slope was
re-examined by a method proposed by FrRoNTARD (1922). This
method is especially suitable for the stability analysis of
slopes in stiff fissured clays tending to loose a greater portion
of their strength immediately after sliding has begun (FRON-
TARD, 1954). The analysis based on the observed shape and



location of the slip surface and on the soil properties given
in Fig. 62 showed the cohesion at the time of failure to have
been as low as 8 to 10 kN/m?.

In Hungary, slopes in mosaic clays have been
successfully stabilized by means of buttress drains
combined, where necessary, with removal of the
disturbed masses of soil and replacement by better
material (K£zp1r and Marké, 1969).

Loess with a macroporous structure (see Vol. 1,
Chapter 3) is extraordinarily susceptible to the
effect of water. Very great heights of vertical loess
banks can stand provided that the groundwater
table is at great depths and the vertical surfaces
are not exposed to erosion. Unless protected by
vegetation, slopes of cuttings excavated in loess
readily deteriorate by erosion. Run-off water
erodes deep channels and near-vertical caverns in
the loess and causes sloughing and slumps of the
slopes. For the reasons mentioned it is recom-
mended that cuts with nearly vertical slopes in
loess should be made as shown in Fig. 63. Even
such a precaution would not prevent the falling
down of large blocks of soil from time to time,
and for reasons of safety it is advisable to leave
a sufficiently wide berm at the toe of the bank.
Deep cuttings should be made with terraced
slopes.

Quick clay slides frequently start without any
warning and develop very rapidly embracing an
area of several hundred thousand of square metres
within a few minutes or less. Aas (1981) for
example, reported that in Norway about one mil-
lion cubic metres of earth mass is moving in each
fourth year. A nearly horizontal sliding surface
and a very gently inclined average slope are char-

80m

ccos § cos(2a-9)
7(sin B-sin § cos(2a-§+3)]
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sin(B-8)coS B _g 5 i n/m?
coS QS

c=z1y

Fig. 62. Sliding of a slope in fissured clay:

a — flattening the incline; b — assumed sliding surface after FronTarD (1954)

4 A. Kézdi and L. Réthati: Handbook
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Fig. 63. Proper shape of a cut in loess

acteristic features of this type of motion. The
extent of the slide area in the direction of sliding
is of the order of 7 to 15 times the corresponding
difference in terrain level. The typical quick clay
slide is generally described in the literature as
a combination of a minor initial slide and a
progressive failure process developing very rapidly
and spreading in all directions. According to
examples in Aas (1981) another common failure
mechanism implies a clay mass sliding out as a
huge flake. It seems that the failure in quick clay
slides might be initiated by:

— the increase of shear stresses due to inten-

sive erosion caused by the rivers;

— the increase of the density in the upper

layer due to infiltration;

— agricultural earthwork activities;

— overloading of the slopes with dumping

materials.

Aas conceived that the difference between nor-
mal and quick clays consists in the fact that the
neutral stress Au,, increases abruptly in the latter
when the indicator

. ’ 61 - 63
s (Dmob i
01— 03

reaches a critical value.

In the case of slides in quick clays in Sweden,
Norway and Canada the minimal angle of the
terrain was 7 degrees to the horizontal, and
Visere (1981) concluded from this fact that a
stability analysis should always be conducted
when the slope has an incline over 6 degrees.
According to the author’s observations, the char-
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acteristic shape of quick clay slides is of the
“bottleneck” pattern.

It often occurs that a slide of an earth mass
ensues over a thin but weak clayey surface. Such
has been the mechanism of the “Kimola-sliding™
in Finland, described by LeEoNArDs (1982). Here
the slide was triggered because the shear resis-
tance of the sensitive clay was at alow grade. It is
probable that tension cracks developed earlier in
the ground surface which then became filled with
rain water from a sudden storm and thereby the
layer became soaked.

1.3.6 Effect of a linear load on the stability of slopes

Should a linear load (p° act parallel at some
distance (A4) from the crest of a slope, two basic
situations should be distinguished.

(a) The bearing capacity of the soil is predom-
inant in the case when the shear surface does
not intersect the slope and, therefore, the problem
will be limited to investigating the neighbourhood
of the load (bearing capacity theories would apply
to such modes of failure).

(b) Slope failure should be analysed where the
critical shear surface extends beyond the crest
and hence also a part of the slope is involved in
the problem.

The latter case has been studied and solved by
Bavica et al. (1977). The authors applied the
generalized method of Taylor (see Section

normalized edge distances (4/H) have been selected
first, then the relative p? values have been cal-
culated. Results are given on Fig. 64. Here also,
the particular values of (yH/c)., are given which
correspond to Taylor’s solution for failure when
the slope is exposed to its own weight alone.

The results for steep slopes (8 > 45°) show that

1. for small values of yH/c compared to (yH/c),
the pl/cH value increases linearly with A/H.This
linearity basically means that for given values of
B, v, ¢ and A, the critical load is independent of
H if the slope has a high safety factor for its
own-weight only;

2. for large values of yH/c, the surcharge load
is small; at the limit, when yH/c = (yH/c),
Po/cH equals zero;

3. the influence of B can be seen by comparing
the results obtained for different values of §; for
given values of yH/c and A/H. p%/cH decreases
as § increases, i.e., the steeper the slope, the more
important is the influence of gravity, and hence,
the smaller the surcharge load. (This decrease in
pY/cH with 8 is also more pronounced for large
values of vH/e.)

For a flat slope, pl./cH is significantly affected
by the location of the bedrock. For given values
of yH/c and f§, the slope becomes more stable as
the depth to bedrock decreases; this results in
larger values of pd/cH.

The authors have also investigated the three-
dimensional case (when the finite length of the
linear load is L,). In this case, the critical load is:

1.2.3.4). The critical curves belonging to various or = fLP% - (61)
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Fig. 64. Stability charts for line loads of infinite extent (BALIGH et al., 1977)



The results of these calculations can be expressed
as follows:

— fi decreases when L /H increases;

— the end effect can be very significant (f; may
increase up to 20), the more so, when
yH/c approaches the critical value;

— for a given B, fi increases with yH/c and
A/H;

— fi shows hardly any dependence on 8 with
low values of yH/c.

1.4 Time effect and stability of slopes

If we considered merely the momentary state
of a slope, we would often fail to explain satis-
factorily why and how a landslide occurred, for
both the external and the internal forces that
determine the stability are time-dependent. Insta-
bility of a slope always results from the most
unfavourable combination of disturbing forces
and resistances. Unpredictable events, such as
accidental rainstorms or sudden thaw, may all
affect stability. Such events might of course have
occurred frequently in the past without ever
provoking a landslide, and if a natural slope sud-
denly begins to move, it clearly must be due to
some extraordinary disturbance or to a slow
gradual deterioration of the shear strength of the
soil. (The latter is the case in mosaic clays.)

Figure 65 shows, after SkEmpTON (1948), typical
examples of gradual reduction in the shear
strength of clays with time. Skempton made a
comprehensive study of slides occurring in the
London clay, a stiff clay with pronounced mosaic
structure. He found that banks in this soil with
vertical faces 5 to 6 m high stood only for a few
weeks, after which they invariably failed without
any apparent disturbance from weather or other
factors. Slopes of 2 horizontal to 1 vertical are
likely to remain stable for 10 to 20 years and those
of 3 to 1 for as long as 50 years. The inclination
of permanently stable natural slopes seldom ex-
ceeds a value of 10 degrees to the horizontal. On
the basis of this observation, Skempton found
the shear strength versus time relationships for
various clays shown in Fig. 65. Such empirical
curves permit a reliable assessment of the long-
term stability of slopes which would prove ex-
tremely difficult merely on the basis of laboratory
testing of the clays. Also much valuable informa-
tion can be gathered from field observations and
from the study of case histories.

Further examples of variation in the safety
factor with time are given after TERzAGHI in
Fig. 66. The curve « represents the case when
a natural slope gradually becomes steeper due to
tectonic action, or the shear strength of the soil
of a slope is gradually reduced, for example, by
physical or chemical weathering. Minor irregular-
ities on the curve indicate temporary decreases
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Fig. 65. Diminishing shear strength in London clay as a
function of time (as observed by SkEmMpTON, 1948)
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Fig. 66. Variation of the stability coefficient as a function of
time, owing to:

a — chemical decomposition, creep, increasing inclination due to tectonic move-
ments; b — the same, with the addition of an excavation at the toe; ¢ — liquefac-
tion due to dynamic effect; d — infiltration and increased water pressure due to
construction of a canal above the shoulder of the slope; ¢ — newly excavated
cutting, swell, decreased stability coefficient, slide after a heavy rain; f — creep,
swell, loss of shear strength due to dissolved capillary tension in the course of
flooding over the slope; g -— abrupt sinking of the water level
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in the safety factor due to incidental rains, thaw,
ete. Although curve ¢ has a noticable falling trend
and the safety factor would sooner or later drop
to a critical value, it is in all probability one of
these incidental effects that triggers sliding.

The tendency of the resisting forces to decrease
with time becomes greatly accelerated when a
slope is undercut at the toe (curve b). Such a
drastic interference with stability is reflected by
a sharp drop on the curve.

In case ¢, instability is due to quicksand con-
ditions; vibrations, earthquake or explosions may
produce such an effect. Curve d shows the effect
of the construction of a channel near the top of
a slope. The water seeping away from the channel
induces seepage forces in the slope and causes
swelling of the soil leading to a gradual reduction
of its shear strength. Curve e represents the case
of an embankment slope that failed during an
unprecedentedly violent rainstorm.

If capillary pressures cease to exist in a soil
because of saturation of the voids, the relief from
hydrostatic pressure causes the soil skeleton to
swell. Fine-grained soils take up a considerable
amount of water during swelling and as a result
their shear strength is greatly reduced. Under
unfavourable conditions this effect may ultimate-
ly lead to failure (curve f). Curve g corresponds
to a slope in which periodical rises and falls of
the water table take place. Failure occurs when
the water level sinks at an exceptionally fast
rate.

1.5 Problems of embankments and earth dams
1.5.1 Stresses in embankments

In Section 1.2 the stability of slopes was treated
on the basis of failure theory. A slip surface was
assumed to develop in the slope and the conditions
for limiting equilibrium of the sliding body were
sought. Stability was investigated in terms of
forces, and the stresses acting within the sliding
body were of little concern and were not deter-
mined. However, there may be cases in which it
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Fig. 68. Equilibrium of forces in one half of the embankment
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Fig. 69. Determination of stresses at the base of an em-
bankment:

a — cross-section; b — forces acting on an element

is required that one has an idea about the distri-
bution of stresses within the embankment before
it is brought to a limiting state of equilibrium.
In the following, we shall deal with this problem and
investigate the state of stress of a dam. These
considerations can, however, be readily extended
to semi-infinite slopes.

The simplest assumption used for the computa-
tion of stresses inside an embankment is illustrated
by Fig. 67. It can be useful in determining the
settlement of an embankment or the compression
of the fill itself under its own weight. But this
assumption is inadequate in the case of high dams
or when a greater accuracy is required, in that it
fails to satisfy the conditions of equilibrium and
does not furnish stresses other than vertical. In
reality, there are also horizontal stresses acting
along the base and on every horizontal section of
the embankment, as can easily be seen from the
sketch in Fig. 68. Supposing that one half of the

embankment is removed and the support it pro-



vides for the remaining half is replaced by a cor-
responding earth pressure; then equilibrium is
only maintained if a horizontal force equal to the
earth pressure acts along the base of the fill.
The distribution of the forces N and T can be
determined by the method of Renburi¢ (1936).
Consider the equilibrium of an elementary slice
of the fill, shown in Fig. 69. The lateral earth
pressures acting on the section a—a and b-b are
resolved into horizontal and vertical components.

The weight of the slice is

dW = hydx.
Equilibrium requires that
o0E,
T = 62
ox (62)
and
o= hy + o, . (63)
ox

In order to determine the distribution of the shear
stresses over the base of the embankment, the
components E; and E, of the earth pressure on
every vertical section must also be known. Ren-
duli¢ used Engesser’s graphical prodecure (cf.
Vol. 1, Chapter 9), for this purpose and assumed
that the conditions for an active limiting state are
fulfilled within the embankment.

The construction is illustrated by Fig. 70. We
determine first the earth pressure acting from the
right-hand side on a vertical section such as a-b.
We select a number of trial planes of rupture and
draw the direction of the reaction acting on it for
each plane. The weights of the sliding wedges are
plotted in a force diagram. The envelope to the
lines of the slip surface reaction gives the Engesser
curve e;. In a similar manner, we determine the
earth pressures acting from the left-hand side
and obtain the curve e,. Equilibrium requires
that the earth pressures E and E’ are equal and
opposite. Therefore, we must select such a direc-
tion for these earth pressures that the condition
of equality is fulfilled. By projecting the curve e,
radially about point P, we obtain the auxiliary
curve ej. The point 4’ where the curve e] inter-
sects the curve e, gives one end of the vector E’
sought. By repeating the whole construction for
a number of arbitrarily selected vertical sections,
we can determine the variation of the components
E, and E, along the base of the fill. The resulting
diagrams are similar to those shown in Fig. T1.
The unknown values of JE,/dx in Eqs (62) and
(63) can be obtained from these curves graphi-
cally.

Figure 72 shows the results of two numerical
examples. The stresses are plotted in terms of the
ratios o/hy and t/hy. In the first example (Fig.
72a), the values of the normal stress differ only
slightly from hy. The maximum value of the shear
stress is 0.144hy.
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Fig. 70. Determination of earth pressure in a vertical section
(a—b) across the slope (Engesser’s method)
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Fig. 72. Numerical example for the determination of stresses
at the base of a dam

The resultant stress on the base of the embank-
ment makes an angle § with the vertical. This
angle of obliquity is a maximum at the toe of
the fill, whereas in the centre it diminishes to
zero. Figure 72a also shows the variations in the
angle § over the base. The horizontal stresses
may cause failure of the embankment under
unfavourable conditions.

The preceding method is open to objection on
the grounds that it assumes the earth pressures
to be active forces. The mode of distribution and,
particularly, the magnitude of the deformations
that occur within the fill are normally not suffi-
cient to produce an active limiting state through-
out, unless the embankment is actually brought to
the verge of failure. Otherwise the earth pressure
is essentially higher than the value obtained on
the assumption of an active state. In certain cases
the coefficient of earth pressure may be as high
as 0.6, If we can form a reasonable estimate of
the degree to which the shear resistance is mobi-
lized in the fill, we can compute a reduced angle
of shear resistance and use it for determining the
stresses along the base. Supposing that the em-
bankment is in a state of rest and the earth
pressure coeflicient at rest, K, is known, the
reduced friction angle @4, can be obtained from
the equation

K, = tan® (450 — %—)

Scawarz (1963) extended the Rendulié method to the
general case when the embankment is built on a sloping
base. (Fig. 73). For this case, the normal and tangential
stresses on the base are given by the following expressions:

0 = cos (hy—}— %i") — sina E:fch
o oE, J0E,
7 = sin oc(hy—}— 9% ) + cosa 9%

E, and E, are determined by the Engesser method. By
comparing the available shear strength on the base computed
by the formula 7 = ¢ tan @, + c¢,, with the shear stresses
acting on the base, we can judge whether or not a danger of
failure exists.

For an embankment in which the deformation
can be assumed to be mainly elastic, the stresses
can be computed by means of the theory of
elasticity. CHRISTENSEN (1950) presented a method
for this. It is based on the assumption that the
stresses at a point such as O inside the fill (Fig. 74)
are due to the weight of a soil wedge having its
lower boundaries inclined at an angle y to the
vertical. The stresses can be computed by for-
mulae derived by STROHSGHNEIDER (1932). The
value of the limiting angle y depends on the shape
of the cross-section and on the freedom of lateral
deformations. In practice, we usually take p =
= 90° — B. The stress components at point O are
determined by the following expressions:

oy = vedd Xrsin 9 tan ¥ (1 — cot?yp tan® 9)
o, = yed 9 Zrcos § (1 — cot’y tan® 9) (64)
Ty, = yed 9 Zrsin 9 (1 — cot®yp tan? §),

where
in?
c—. WYy
2y — sin’y
The graphs in Fig. 75 give influence values c,,
¢, and c,,, respectively, for the stresses o, o
and 7,,, for an embankment with slopes of
cot # = 1.5. Values of 100c are plotted as funec-

Fig. 73. Stress distribution at the base of an embankment on
inclined ground



Fig. 74. Element showing the stress conditions inside a dam

tions of the dimensionless numbers x/k and y/k
where k denotes the crest width of the embank-
ment. A value of p = 90° — g = 56.3° is assumed
for the limiting angle throughout.

k/2.‘0
Values of 100 ¢y 270___
5300
27 407 05
e 4/52/'
|
7 102~ U,
///4,4{0;,/,;
[ =
7 PP
A "\OO ’/, =15
Y7 e
Ssé&/w ?5/4/, 1M,
! . . 20 ok 15 10 05 K2 00
5
Values of 100 cx = T7]
15
= 05
p—
% =kyex T B s
~ ;//’/ ~ : ’% 7
%& ,/,4;/ ,4/[;0/_,_ L 115
Z?é /éf - =y .
e o L 20
35 30 25 20 15 10 05 / 0
X/k kﬂqo
Values of 100 ¢y {2 N
5 \ —{05
A
Oxy=KyCry ) Z 22 \ \\\ 10 =
A DN
N
7 .{ Q\\\\ X 15
AR 20
35 30 25 20 15 10 0% 0

x/k

Fig. 75. Influence diagrams for the determination of stress
conditions inside a dam
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Numerical example. Given k = 6.00 m and p = 20 kN/m3,
evaluate the stress components at a depth y = 7.00 m and at
a distance x = 9.00 m from the centre line of the fill. With
¥/k = 1.25 and x/k = 1.50, we obtain from the graphs the
influence values ¢, = 0.66, ¢, = 0.25 and c,,= 0.146. Hence,
the desired stress components are

oy = 0.66 - 6.00 - 20 = 79 kN/m?,
oy = 0.25 - 6.00 - 20 = 30kN/m?,
Tpy = 0.146 - 6.00 - 20 = 17.5 kN/m?.

1.5.2 Base failure beneath embankments

The stability of an embankment may be endan-
gered by base failure in cases where the subsoil is
very soft or where it contains undesirable layers.
The quality of the fill itself can be controlled by
selecting suitable fill materials and using appro-
priate construction methods. But even a properly
built embankment is subject to damage if it rests
on a troublesome subsoil. The formation of a slip
surface is to be expected in places where the shear
strength is originally very low or where it de-
creases with time. A reduction in shear strength
is mostly due to a build-up of excess pore-water
pressures with a subsequent decrease in effective
stresses.

In the following we shall examine the different
ways in which base failures may occur. The stresses
beneath the base of an embankment can be
computed by means of the theory of elasticity
provided that the magnitude of the stresses does
not exceed a certain limit. This problem, together
with the computation of settlements, will be
studied in Chapter 2. This section deals only with
the problems of stability.

Three characteristic types of base failure can be
distinguished. In the first case, the fill rests upon
a thick, very soft, saturated layer of clay. Because
of the very low permeability of the clay it can be
assumed that undrained conditions prevail in the
subsoil not only during construction but also for
some time thereafter. It is therefore permissible
to carry out the stability analysis in terms of total
stresses, on the assumption that @ = 0. The soft
layer yields laterally under the weight of the fill
until failure occurs along a deep-seated and
approximately circular slip surface (Fig. 76). The
conditions for such a base failure were investi-
gated by JAky (1948). He showed, on the basis
of the theoretical analysis of the @ = 0 case, that
the shear pattern is similar to that shown in Fig.
77. The slip surfaces consist of two plane sections
connected by a circular section. Failure takes
place when the vertical pressure on the base of
the fill reaches a critical value given by the
expression

—=2c{1+ 2.
ag c[+2J

According to this formula, the maximum allow-
able height of an embankment built on a soft
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Fig. 76. Base failure due to the soft subsoil below the dam

subsoil is equal to

o 2c
hmax —_— =

vy vy
In Eq. (65), the cohesion ¢ can be assumed to
have a value equal to half of the unconfined
compression strength ¢,.

If there is a danger of this type of base failure,
the embankment can be stabilized by means of
a counterweight. The necessary weight of the
stabilizing mass can be determined by the follow-
ing formula (Fig. 78):

‘1 + g . (63)

We » Wia, — Wya, — clyr '

a

In a cutting, base failure can be averted by the
removal of a sufliciently large mass of soil from
the top of the slope (Fig. 78b). If both the material
of the slope and the subsoil to a considerable
depth consist of a soft clay, longitudinal sub-
surface drains should be constructed at the toe
of the slope assisted if necessary by stone-filled
buttress drains, as a precautionary or remedial
measure.

The second type of base failure occurs if a rela-
tively thin layer of soft clay is located at some
depth below the base of the embankment. In this
case the surface of rupture assumes a composite
shape similar to that shown in Fig. 79. Inside the
embankment a curved slip surface is formed (ab),
which is joined by a planar section (bc) located
on the surface of, or inside, the soft layer. The
central soil block bb;ce; acts in a similar manner
to a retaining wall which rotates about the upper
edge or is displaced horizontally. This block is

acted upon by an active earth pressure on the

Fig. 77. Development of sliding surfaces below an embank-
ment for the case @ = 0

(b)

Fig. 78. Increasing the stability of an embankment by:

a — berms; b — displacement of loads

Fig. 79. Base failure below an embankment; rupture along
the top of the stiff layer

vertical face bb, and, at the same time, it exerts
a lateral thrust on the soil located in the vicinity
of the toe, thereby mobilizing a passive earth
pressure. Accordingly, the slip surface has a curved
final section c-d.

The method of stability analysis is illustrated
by Fig. 80. We consider the equilibrium of the
soil block bceib;. The vertical section b-b; is acted
upon by an active earth pressure E,, which is
counteracted by the shear resistance T, along the
plane bc and the passive earth pressure E, on the
vertical section cc,. There is no danger of fPailure if

E,<E,+d+T,.

The magnitude of T is determined by the expres-
sion T} = Nyu; = W,u,, where y; is the coefficient
of friction on the surface of contact between the
two layers. It is assumed that the line of action
of the passive earth pressure E, is horizontal, and
that the surface of rupture for E, is a plane.
Hence

ll

2
E, %}tan2 (450 -+ %) + 2 ch tan (450 —}—%J

In order to determine the maximum value of the
active earth pressure, the investigation must be
repeated for different positions of the section bb,.
It is on the safe side to assume that the action
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Fig. 80. Static investigation of the base failure according
to the block method :

a — cross-section; b — forces acting; ¢ — foree diagram

line of E, is also horizontal. The most dangerous
position of the vertical section bb; is found by
trial and error.

The investigation can be greatly simplified if
we assume plane surfaces of rupture for both the
active and the passive earth pressure. E, and E,
can then be calculated with the aid of charts or
tabulated values of the earth pressure coefficients
K, and K. Examples of the stability analysis are
shown in Fig. 81. For the purpose of such investiga-
tions, we should use the shear strength param-
eters @, and c,, which represent the mobilized

Piezometric head
in a-a

Groundwater
level
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portion of the ultimate shear strength, i.e., the
actual value of @ and ¢ divided by an arbitrarily
selected value of the safety factor. The analysis
can be carried out by the method of slices. That
value of the safety factor at which equilibrium
conditions are satisfied can be found by successive
approximation.

The third type of base failure is due to excess
pore-water pressures in the soil beneath the fill.
Fig. 82 shows a dam whose subsoil contains a
thin layer of homogeneous clay. The load due to
the weight of the fill induces excess pore-water
pressures in the soft layer which dissipate slowly
during the course of consolidation. At an initial
stage these neutral pressures must be taken into
consideration in the stability analysis. The maxi-
mum neutral pressures exist along the mid-height

Active wedge

{a) QPA Bmp

07
Z

K y
gmp 'M/p QA/¢m
(b)

Fig. 81. Examples of plane failure surfaces:
a— earth dam with impermeable core; b — soft layer at some depth below the dam

Fig. 82. Base failure due to increased neutral stresses in the clay layer in some depth below

the dam
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of the soft layer and hence the surface of sliding
also follows this line (a—a). The piezometric level
along a—a is indicated by a dashed line in Fig. 82.

The likelihood of a base failure of this type
should be investigated with regard to the process
of consolidation. An example of a detailed analysis
is given in Fig. 83. First, we compute the total
normal stresses along the mid-height of the clay
layer. These are due to the weight of the upper
balf of the clay layer itself plus the weight of
the fill. The normal stresses caused by the weight
of the clay layer located above a—a are effective
stresses, while the excess normal stresses induced
by the fill are partly effective and partly neutral,
their ratio being dependent on the degree of con-
solidation. In the example it is estimated that the
effective stresses amount to 409, of the total

7
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Fig. 83. Investigation of a base failure taking account of
effective and neutral stresses; determination of the critical
vertical section:

a — cross-section; b — normal stresses; ¢ — shear strength; d — shear stress dis-
tribution; e — distribution of resistance forces; f — shear force; g — coefficient of
stability

excess normal stresses (Fig. 83b). With the effec-
tive stresses known, we can compute the shear
strength available along the surface of sliding
a;—¢;. Figure 83d shows the distribution of the
shear stresses 7. The distribution is approximately
parabolic. The maximum ordinate 7,,, can be
determined on the basis that the shear stresses
along a,—¢; must be in equilibrium with the earth
pressure at rest E, acting on the vertical section
a—a, in the centre line of the dam. Let us consider
an arbitrary vertical section such as b-b;. The
safety factor for the block of soil aa, bb; with
respect to sliding can be determined by the fol-
lowing expression

by

{(ctan® + ¢)dx + E,
p=2 ” . (66)
{vdx

[

The integrals to be entered in Eq. (66) are shown
diagrammatically in Figs 83e and f. By changing
the position of the vertical section b-b;, we can
compute a safety factor for each vertical and plot
the variation of v as shown in Fig. 83g. The lowest
point of the curve furnishes the minimum safety
factor. The described method is very useful in
the stability analysis of earth dams. For dams, the
hydrostatic pressure acting on the upstream slope
must also be taken into account as a force tending
to cause sliding.

The occurrence of lenses or seams of sand,
without adequate drainage, in a clay stratum also
constitutes a serious risk of base failure (Fig. 84).
The cause is again the build-up of high excess
pore-water pressures, so this type of failure can
be considered as a variant of the case discussed in
connection with Fig. 82. The pore-water squeezed
out of the clay stratum consolidating under the
weight of the fill drains into the pervious seam of
sand and there causes the hydrostatic pressures
to increase considerably. The dashed line in Fig.
84 indicates the approximate piezometric levels in
the sand seam. The shear strength of the sand
becomes drastically reduced especially in places
where the difference between the excess pore-
water pressure and the weight of the overlying
soil and fill is greatest. The worst situation arises
near the toe of the embankment, where the only
resistance to sliding is the passive earth pressure
in the layer located above the surface of rupture.
If the horizontal driving force exceeds the available
resistance near the toe, failure takes places almost
instantaneously. The central part of the crest
subsides, leaving a depression as shown in Fig. 84.

In the case that an embankment is to be con-
structed on a clay subsoil, a thorough survey of
the stratification of the soil is very important.
If the geological conditions are such that a base
failure of the types described is to be expected,
the risk of failure can be avoided by one of the
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Fig. 84. Base failure due to increase in neutral stresses in a thin sand layer

following precautionary measures. The fill should
be made with very flat slopes, or the construction
should proceed so slowly that sufficient time is left
for excess pore pressures to dissipate already
during construction. The process of consolidation
can be greatly accelerated by means of vertical
sand drains, which serve additionally as a means
of reducing settlements.

1.5.3 Construction of a flow net in an earth dam

First we consider a homogeneous dam on an
impervious base and determine the flow net
(Fig. 85). In Section 1.4 we dealt only with
flow cases in which a mass of soil was assumed
to be saturated throughout, and which was joined
on both sides to free water surfaces. In an earth
dam the conditions are different in that the zone
in which seepage occurs is bounded by a top flow
line the location of which is, however, not exactly
defined. We only know that along this line the
hydrostatic pressure must be zero.

We know various methods for locating the top
flow line. Solutions for two simple cases of dam
cross-section will be shown first, although typical
earth dams usually have composite sections. The
study of these simple cases will furnish a good
picture of the conditions characteristic of any top
flow line. Furthermore, a top flow line determined
for a simple case can often be used as a first
approximation in constructing the flow net for
a more complicated case.

Figure 86 shows one of the principal conditions
that the top flow line must obey. Along this line
atmospheric pressure exists, therefore the piezo-
metric head above the elevation head must be
zero at every point. It follows that the differences
in elevation between the points at which succes-
sive equipotential lines intersect the top flow line
must be equal as shown in Fig. 86.

Water seeping along the top flow line enters
the dam at the elevation of the upstream water
surface. At its starting point, the top flow line
must be normal to the face of the upstream slope
since the latter is an equipotential line (Fig. 87a).
Should, however, the angle » be less than 90°,
the rule just mentioned does not hold, and the

top flow line is different. This is the case, for
example, when a wedge-shaped part of the cross-
section adjacent to the toe is made of a coarse-
grained material (Fig. 87b). The permeability of
this material can be so high that it offers almost
no resistance to flow. It follows that the rear
boundary a-b of this wedge is an equipotential
line. But contrary to the case shown in Fig. 87a,
the top flow line cannot be normal to the surface
a-b since the water cannot rise above the upstream
water level without violating the rule illustrated
in Fig. 86. Consequently, the top flow line has
a horizontal tangent at the point b. This also
means that the initial gradient, and hence the
initial velocity, are both zero. The ‘zero condition’
explains why the flow lines do not intersect the
initial equipotential line a-b perpendicularly. If

7.

Fig. 85. Homogeneous earth dam resting on an impervious
underground

Ah !‘Ah | an | an | an

Fig. 86. Conditions for the uppermost seepage line
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Fig. 87. Initial conditions for the uppermost seepage line:

a ~— homogeneous earth dam; b — coarse internal material on the upwater side;
¢ — vertical boundary
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Fig. 88. Situation of the uppermost seepage line at the exit
point for different angles of y

the upstream boundary is vertical (Fig. 87c), the
conditions illustrated by Figs 87a and b lead to
the same result.

Between the exit point of the top flow line and
the toe of the downstream slope, the particles of
water tend to follow the direction of gravity.
As a result, the downstream section of the top
flow line will have the forms shown in Fig. 88 for
different values of the angle v. Figure 88d shows
the case when a horizontal filter is located at the
downstream toe of the dam. By means of this
arrangement the water can be prevented from
emerging on the face of the slope and from causing
erosion there. The filter material is many times
more permeable than the material of the dam,
so that the pressure in the filter is atmospheric.
The upper boundary of the filter is an equipoten-
tial line and the flow lines intersect it at right
angles. In addition to the cases already mentioned,
Fig. 89 shows further possibilities for the forma-
tion of flow lines when water flows across a
boundary between soils with different permeabili-
ties. In certain cases, a discontinuity on the
boundary is also possible (Fig. 89d), if the layer
of lower permeability cannot yield a sufficient
amount of water into the more permeable layer.
The magnitude of the drop depends on the angle
w and on the ratio of the two permeabilities, k/k,.
The relationships illustrated by Fig. 89 must be
taken into consideration in the study of flow nets
in dams having composite cross-sections.

One of the simplest solutions of the Laplace
equation of potential flow (Vol. 1, Chapter 6)
consists of confocal parabolas (Fig. 90). For the
hypothetical case, in which all the boundaries of
a cross-section are either flow lines or equipoten-
tial lines conforming in shape to the curves in
Fig. 90, this set of confocal parabolas furnishes
the flow net. Such a flow net is shown in Fig. 91.
Here the lines BC and DF are flow lines, and BD
and FC are equipotential lines. In reality, a dam
has a cross-section similar to that shown in Fig.
91b, for which the flow net will deviate from
that given in Fig. 91a. Nevertheless, the shape of
the zone in which seepage occurs will be similar
for the two cases. Analysis has shown the top
flow line to deflect from a true parabola only in
the vicinity of point B. CasacranDE (1939)
proposed starting the construction of the parabola
from a point E located on the upstream water
surface, where the distance EB is equal to three-
tenths of the horizontal projection AD of the
submerged slope: EB = 0.34D. The parabola can
thus be constructed. The correction near point
B can readily be sketched in freehand.

The equation of the parabola — the top flow
line — is derived as follows (Fig. 92). By defini-
tion, the distance of any point on the parabola
from the focus is equal to its distance from the
directrix. Hence, from Fig. 92, we obtain

V2 +2==x+p,
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Fig. 89. Development of the seepage line on the interface of materials of different

(c) B=270-a-w
permeabilities
whence
2 _ 2
A (67)
2p
At point 4, z = h and x = d. Therefore,
p=)d*+ k2 —d. (68)

The distance p is obtained from the construction
shown in Fig. 92. With point E as centre we draw
a circle of radius EF, which intersects the pro-
longation of the upstream water level at point J.
The distance KJ is equal to p. Having thus fixed
the locations of the vertex C (FC = p/2) and of
point G (FG = p), we can easily complete the
construction.

The quantity of seepage can be computed by
applying Eq. (116) in Vol. 1 to the portion GCFH

of the flow net. The total head at point & equals
to the elevation head p, and the head loss between
the equipotential lines GH and FC is also p.
By symmetry, the numbers of the squares n; and
n, are the same, and hence

q=Fkp. (69)

The construction for another case is shown in
Fig. 93. Since there is no underfilter, the top flow
line emerges on the downstream slope.

With the focus located at the toe of the slope,
A, the parabola can be constructed by the
method shown in Fig. 92. It intersects the down-
stream slope at point C. The distance AC is deter-
mined by the formula

AC=VaZ f & =x+p.
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Fig. 90. Set of parabolas with common focus

With The actual breakout point of the top flow line
x, = AC cos is C’. Its distance from the toe can be expressed as
we obtain 14_—6', _ EE.
7 (o S (70)
1— cosp As was shown by Casagrande, the ratio ¢ is a
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Fig. 91.

a — cross-section of a dam in which the flow net is composed from parabolas with common focus; b — application of the above
condition for a common dam
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Fig. 92. Determination of the uppermost seepage line when a horizontal filter layer has been provided
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Fig. 93. Determination of the uppermost seepage line (impermeable subsoil) after CAsAGRANDE (1937)

function of the slope angle §. The relationship is
given in Fig. 94.

" On the basis of the Dupuit formula, Casa-
GRANDE (1937) developed the following approx-
imate solution for the determination of the distance

AC’:
d2 h2

ac—a=t__| .
cos 8 cos? 8 sinZ

A more accurate solution was given by GiLBoY
(1940). This method is represented by the chart
shown in Fig. 95.

The quantity of seepage can again be estimated
by Eq. (69). For the case where f§ < 30° the
approximate formula

(1)

g=kVhR +d2— |d>—h2cot? B sin2f (72)

can be used.

For the purpose of the stability analysis of a
cross-section, it is necessary to comstruct the
complete flow net. Once the top flow line has been
obtained on the basis of the preceding considera-
tions, the boundary conditions can be stated and
the flow lines and equipotential lines can be
readily sketched in. An example of the use of

flow net in stability analysis is given in Fig. 96.
Values of the safety factor are indicated for both
the upstream and downstream slopes under dif-
ferent seepage conditions. For comparison, the
top figure shows the case when there is no seepage
through the dam. It can be seen that as a result

1.0

“30°  60°  90°  120°  150°  180°
s

Fig. 94. Diagram for the determination of the exit point of
the uppermost seepage line
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of seepage the safety factor is increased for the
upstream slope and decreased for the downstream

slope.

In the preceding discussion it was assumed that the
boundary conditions are constant and do not change with
time. In reality, however, there are cases where we have to
deal with time-dependent conditions, for example, when the
water level on the upstream face of an earth dam rises or
sinks. Similar conditions may arise in levees. A rising or
sinking water level causes the zone of saturation to change
within the dam. As a result, either dry soil becomes wetted
and saturated, or air is forced into the previously saturated
soil and thedegree of saturation drops below unity. Within the
zone of saturation the conditions of continuity are fulfilled;
hence a flow net can be constructed. Such flow nets differ
from those obtained in the steady seepage case in that flow
lines may intersect the line of saturation (phreatic line). If
the line of saturation is lowered, water is draining out of the
soil above, so flow lines must start at the line of saturation
(Fig. 97). In the case of a rising water level, flow lines end at
the advancing saturation front.

1.6 Calculation and assumption of safety
1.6.1 Safety as a function in the coordinate system of
tan @ and ¢

In stability analyses, assuming a rigid sliding
body an alternative safety factor can be defined
by the following consideration. Let us assume, for
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Fig. 95. Gilboy’s method (1940) of finding the length of the
seepage surface
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the sake of simplicity, a regular slope in a homog-
eneous soil with plane boundary surfaces and
with no surcharge and no other body force (see-
page force, pore pressure, etc.) but the weight of
the soil.

If the available shear strength of the soil be
given by the equation

T=octan® + ¢

and the greatest value of the actual shear stress
along the slip surface is 7;, then the ratio

T
P = —

31
could be regarded as the safety factor. But since
both 7 and 7; depend on the normal stress o, the
above ratio cannot be evaluated. Instead, we may
proceed as follows. We assume various fictitious
values of the friction angle @’ and for each one
we determine the value of the cohesion ¢’ that
must act on the critical slip surface to secure
stability. Using any pair of corresponding ¢’ and
¢’ values, it is possible to compute two safety
factors, one with respect to friction

tan @
e tan @’ (73)

and another with respect to cohesion

c
'VC:—,

c

(74)

The two values are interrelated, i.e. for a given
critical circle one can be computed from the other.

Let us examine the interdependence of the
safety factors v, and v, in a numerical example.
Given a 1.5 to 1 slope (§ = 33°40"), 15 m high,
in a homogeneous soil having a friction angle of
& = 15°, a cohesion of ¢ = 30 kIN/m? and a unit
weight of y = 20 kN/m?® Assuming a set of @’
values ranging from 0 to f, we determine on the
basis of a circular slip surface the corresponding
set of ¢’ values that are necessary to maintain
equilibrium. The location of the critical circles
will of course be different for different @’ values.
The results of the computation are tabulated
below.

’ o
[degrees] tan & [kN/m?]
0 0.000 48.0
5 0.087 35.1
10 0.176 25.2
15 0.268 16.8
20 0.364 10.2
25 0.466 5.2
30 0.577 2.1

33°40° 0.667 0
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Fig. 96. Stability of dam slopes:

a — seepage excluded; b — permanent seepage exists, upwater slope; ¢ — permanent seepage exists, downwater slope; d — sudden lowering of the water level in the

reservoir

By plotting the results in a (tan @', ¢’) coor-
dinate system, we obtain the graph shown in
Fig. 98. From this we may compute any combina-
tion of safety factors. Let, for example, the
assumed friction angle be @ = 10°. The cor-
responding cohesion is ¢/ = 25.2 kN/m? The safety
factor with respect to friction becomes vy =
= tan 15°/tan 10° = 1.52, and with respect to
cohesion v, = 30/25.2 = 1.19. Of the infinite pos-
sible values of the safety factor, two are of partic-
ular significance: v, when vy =1, and v, when
v, = 1. The former represents the case where the
frictional resistance is fully mobilized and the
latter where the available cohesion is fully ex-
hausted. These two extreme cases are interpreted
in terms of Coulomb’s shear envelope in Fig. 99.
The friction circle method, as will be recalled,
used the combination v, = 1 and », = ¢/c. As was
previously shown, in a homogeneous soil the value
of cohesion necessary to maintain the stability
of a slope is directly proportional to the height
of the slope, i.e. when vy = 1, the safety factor »,
at the same time gives the safety factor with
respect to height. If we plot corresponding values

5 A. Kézdi and L. Rétbati: Handbook

of v, and v, in a coordinate system as shown in
Fig. 100, the resulting curve will be a hyperbola.
Its asymptotes can readily be determined, since

when @ =f, ¢ =0 and », > oo, and
when @’ =0, ¢’ = required ¢ and vy — oo.

It is obvious from the figure that there exists
such a combination of the values 7, and ». that
the two are equal:

V, = Vg = V.

In this particular case, the @’ and ¢’ values cor-
responding to the limiting state of equilibrium
define a straight line that passes through the
same point at which the actual Coulomb envelope
intersects the o axis (Fig. 99). This value of
can also be determined from Fig. 98. If we plot
the actual tan® and ¢ values on the graph, we
obtain point 4. A straight line joining this point
with the origin of the coordinates O intersects
the curve representing the limiting state of equi-
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Fig. 97. Establishment of tentative flow net diagrams for various degrees of saturation:

a — cross-section with flow lines in the fully saturated case; b — the first step in the design of a totally transversing seepage line;
¢ — and d — intermittent positions of the progressing saturation line; e — sequence of progress

librium at point A’. By scaling off the distances
04 and 0A’, we obtain the safety factor:

_Oﬁ tan @ _ . (75)
04’ tan @’ ¢’

In the numerical example »; = 1.34,

In an actual stability analysis, it must be taken
into consideration that the available shear strength
of the soil can be determined only with a limited
accuracy; besides, it is likely to vary from point
to point and also with time. Very often, there is
a wide scatter of measured @ and ¢ values, and
therefore the strength behaviour of the soil can
be characterized by a region rather than by a
single point in the ¢’ versus tan @’ plot (Fig. 101).

Vs

The degree of safety can then be judged from the
relative position of such a region and the » =1
curve. A closer examination of the problem reveals
that in view of the many uncertainties involved
in the assumptions upon which our stability
analyses are based, the » =1 case cannot be
characterized by a single curve. It should probably
be replaced by a strip similar to that shaded in
Fig. 101, which allows for possible variations in
the assumptions, e.g. in the mode of distribution
of stresses along the slip surface.

The possibility of interpreting safety in terms
of tan @ and ¢ coordinates was originally intro-
duced by Lazarp (1961). The improved version of
this approach, which has been presented above,
aims to offer a better understanding of the
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relative to the » = F =1 curve may in itself
give an impression about the distribution of the
safety factor, but true information about the
actual situation can only be achieved when all
curves of similar degrees of safety are duly estab-
lished, as it has been done by Sincu (1970). With
the help of such a set of curves, represented after
Singh in Fig. 102, F-values can be determined at
every pair of tan @ and ¢ points, and then their
distribution and the probability p; of » = 1 value
can be established (see Section 1.6.2). An advan-
tage of this evaluation system is its independence
from any stability method applied.

1.6.2 Applied probability theories for stability calculations

From the end of the nineteen-sixties, several researchers
looked for possibilities as to which way probability theories
could be applied to solve geotechnical problems. Early

Arr

¢'=7°05" p=15°
vgfl e ——
= o=
! VSV'J—/ Vg =1
THFT T Ape1se

/224

©=30 kN/m?P
;111020 | ,

¢'=16.8 kN/m?

Qy

)
|

Fig. 99. Interpretation of the safety factor using Coulomb’s relevant straight lines

reliability of deterministic methods. The same
procedure can also be used for stochastic analyses.
The position of the spread of tan @ and ¢ points

l $=15° ¢=30 kN/m?
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Fig. 100. Relationship between the various safety factors

5*

studies dealt only with problems related to the safety factor,
and even in that field only initial steps were reached. Par-
allel to this began the statistical investigation of the variability
of soil characteristics which involved the problematics of
numbers of samples too. A breakthrough in this respect in
the field of geotechnics came in 1971 when an international
conference was organized in Hong-Kong (“Applications of
Statistics and Probability in Soil and Structural Engineer-
ing”) where also slope stability problems appeared on the
agenda.

c Laboratory values

tan ¢

Fig. 101. Limiting values of the safety factor in the case of
scattered test results
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Fig. 102. The safety factor for various pairs of @ and ¢/H
values, after a numerical example given by Sincu (1971)

Following customary views, safety can be inter-
preted in two different ways.

The central safety factor is the ratio of the
expected value of resistance (R) to the expected
value of load (Q)

R
F:'—:‘. 76
0 (76)

The conventional safety factor differs from the
above inasmuch as the resistance is assumed to
be Ry < R, and the load Qy >, and so the
safety factor becomes:

Fy="N < F,. (17)

The safety factors defined in this way have
three disadvantages:

— they do not give information about the
probability of failure;

— probability levels assigned to the nominator
and denominator (either identical or not)
are rather arbitrary;

— their common effect mostly leads to the
supposition of an event of irrealistically
low probability, and thereby to uneconom-
ical design.

These disadvantages can be eliminated by
introducing the term “‘safety margin” (SM) which
means the difference between ‘“‘resistance’ and
“load”, i.e.:

SM=R-0, (78)
so it is also a random variable. The value
pr=P[(R—0Q) <0] (79)

is called the probability of failure.

The expected value of the safety margin is
SM=R—-Q (80)

and its standard deviation (if R and Q are inde-
pendent variables) is

Ssm = VS%) + sk, (81)

where sp, is the standard deviation of the resistance,
and sq is the standard deviation of the load.

If Q and R are not independent variables, the
standard deviation of the safety margin becomes:

Ssm = Vs%; + sk — 2rsp sq (82)

where r denotes the correlation coefficient for the
relationship R, Q.

When the resistance can be described by a
function R(x;, x5, . . .%,), the expected value of
the R(x) function can be calculated from the
expression:

_ o _ 1 » R
R=R(x;, %y, ...%,) +—
(%1, x, ) 2;’(%&%

1 2 0°R
+ ?2 ox} Carst

1 i

-+

(83)

and its standard deviation from:

n (9R |2 n 9R O°R
2 3 (2R) PR et (4
® 2[3%) ’ +21‘ 0x; 0x} ’ 9

1

where C,; is the coefficient of skewness of the
variable x;.

According to Eq. (83), the value R will only be
equal to R(x, x,, ... x) calculated with the sub-
stitution of the expected values, if every second
grade calculus is zero! It can easily be envisaged
that Eq. (84) will supply the term ““mean error”
used in surveying, if C; is zero for every variable,
i.e. if the distribution is symmetric.

As an example, the case of a vertical earth wall should be
studied. Neglecting eventual tension cracks on the ground
surface, the condition for equilibrium can be written as:

m3y . o [¢/] o (/]
= tan (45 + —2~) = 2¢ m, tan (45 — T) ,
that is

myy ° g _
-5 tan (45 —3 ) = 2c, (85)

where the left side of the equation represents the load (Q)
and the right side the resistance (R).

Suppose a wall of height m; = 4 m, and that the compo-
nents of the shear resistances as measured in the soil have
been found

Do 21.0 23.5 24.6 16.5 19.0 22.4 23.5 24.2 20.6 20.9 22.8
¢(kN/m?) 28.0 23.5 19.4 33.7 35.2 35.2 28.0 29.2 27.8 18.5 26.4

Then the expected values are

@ = 22.0° and ¢ = 27.72 kN/m2,
and their standard deviations:

sp = 1.91° and s, = 5.69 kN/m?



The expected value and the standard deviation of & =

= tan (450 — %) terms are:
1 = 0.6748 and s; = 0.02426.

Neglecting the standard deviation of the bulk density
(y = 18.8 kN/m?), the variance of the load becomes, accord-
ing to Eq. (84) — when the distribution of ¢ is assumed to be

symmetric —
2
b= ([ [t = o0

and that of the resistance:

sh= [y - st =4 569 =129.5.

As both second grade calculi are zero, the expected values
for load and resistance will be:

R =2-2772 = 55.48 kN/m?

and

Q = 25.37 kN/m?
Substituting these in Eq. (80), it results that:
SM = 55.48—25.37 = 30.11 kN/m?

D
As the relation between R and Q, i.e. between (45°- 5

and ¢,hasan intermediate correlation coefficient (r = —0.46),
the standard deviation of the safety margin (Eq. (82)) be-
comes:

ssp = 10.83 + 1205 + 2 - 0.46/0.83/129.5 —11.83 kIN/m?.
The probability of failure is then:
(/]

Pf=P[2C——T;—ytan(45°—-2—)<0].

Supposing a normal distribution for SM, py can be calculated
in the following manner. The standardized variable is:

SM-0 30.11
= =200 9.
SSM 11.83 545
for which the pertinent attributive is @ (1) = 0.9946 and so

pr=1—&(}) = 0.0054 = 0.54%, .

A

In accordance with the statements above, the
possibility also exists of establishing pairs of H
and § values when p; is known (or presribed). This
type of analysis has been performed by Grivas
(1981).

The probability of failure can also be expressed
by using the coefficient of variation (standard
deviation divided by mean) of R and (. When
these two variables are normally distributed, then

VFiCs + C4

or with lognormal distribution

2
In F, 1+ G
—® 14+ C%
JIn (1 + C3o) (1 + C3R),

where F; means the central safety factor.
It will be advantageous to examine here as an
example, the case when ¢ = 0. The safety factor

pr=1 . (87)
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for a soil mass of granular material confined with
a slope of §° to the horizontal can be described as

__tan®

F, .
tan 8

(88)

This means that p, can be determined by using
the standard deviation or the coefficient of
variation of tan @. As the standard deviation of 8
(uncertainties in construction of the slope) is
negligible, the coefficient of variation on the load
side is C,o = 0. o

When, earthworks are designed, data for tan @
and C,, are given (the latter is identical with the
coefficient of variation of tan ®@). Wanted is the
slope angle 8 which pertains to the probability of
failure which is chosen. Transforming Eqs (86)
and (87) new relations can be derived; with the
assumption of a normal distribution:

B = arctan [tan @ 4 (1 — C,zA,)]  (89)
and with lognormal distribution:
B = arctan [exp (Intan @ + In 4 — 1,B)], (90)

where

A= V; (91)

B = |In (I + C%) (92)

and 4, is the argument of the normal distribution
available from the expression

pr=1—®3,). (93)

Example. The stability analysis is performed on a slope with

anincline of 1.5 to 1 (§ = 33.7°) where tan @ is 0.8185 and the
coefficient of variation of tan @ is 0.05. As the central safety
factor is

F,—= 222 _ 1228,

according to Eq. (86):

0.228
=1 — — et ) . -5
pr=1 ¢[l.228-0.05] 2.25 - 10-5,

The stability of slopes can also be examined by
using the Monte Carlo method. An example for
this application originates from Sincu (1971). The
case of @ =< 0, and ¢ 5= 0 has been analysed on
the basis of the following assumption:

— the two parameters are independent of
each other;
— they are normally distributed.

The internal friction @ has been chosen as one
of the variables and the ratio ¢/Hy as the other.
Two hundred random numbers have been ordered
to each of them. With reference to a numerical
example the results are represented, in terms of
F_ density and distribution functions, in Fig. 103.
Varying the statistical characteristics of the shear
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parameters SINGH (1971) tested different con-
figurations. Concluding the calculations, he stated
that:

— the distribution of F, can be taken as
normal;

— the coefficient of variation of F,is in between
those of @ and ¢;

— the value F, as determined by the applica-
tion of the Monte Carlo method is almost
similar to the one determined by the use

of @ and ¢.

According to data collected and reported by
Feld about 1800 earth dams were constructed in
the USA before 1959, and thirty-three failures
were registered therefrom. Having compiled these
and Middlebrook’s data, Mevyernor (1970) con-
cluded that one per cent of all earth dams which
have been constructed on the basis of proper soil
investigations in the last 30 years have failed,
partially or totally. This fact confirms the state-
ment — certified also by several other authors —
that the probability of failure is around 0.01 to
0.02 when the customary central safety factor
(F. = 1.3 — 1.6) is used. A deviation (upwards
or downwards) from this value of p, can reasonably
be made during the design work depending on
certain characteristics of the earthwork: whether
it is temporary or permanent, what would the
requirements be with respect to enhancing the
security in its lifetime or with respect to property
conditions, what cost would be implied if a
reconstruction were necessary, and so on. As the
possibility exists of assigning the probability of
fajlure to the geometry of the slope, there is also
a possibility of making the assignment on the
basis of an economic optimum (LANGEJAN, 1965).

The use of probability theory is also amenable
to investigations as to the probability of the failure
which might occur on a given length b of a linear
construction. VANMARKE (1977) has presented a

suitable procedure by which the length b = b,
having the maximal value of the probablity of
failure can be determined.

1.7 Drainage of earthworks

1.7.1 Dewatering by trench drains

The stability of earthworks may be widely
affected by the manifold action of water originat-
ing from inside or outside a site. Indeed, problems
of the stability of earthworks are inseparable from
those of drainage. The practical implications of
stability and drainage are dealt with in detail in
a book by K£zpr and Marké (1969). In this
section, some fundamental considerations, mainly
of a theoretical nature, will be discussed.

Groundwater or water seeping through thin
permeable layers may endanger the stability of
earth slopes in many ways, and the practising
engineer often faces the task of lowering the
groundwater table on a construction site. This
can be accomplished in many ways. Compact
sites such as foundation pits are usually dewatered
by filter wells. In the case where earthworks extend
over a large area or great length, trench drains
— deep and narrow slots filled with some free-
draining material — can be more expedient. Their
function is to collect and remove water from the
adjacent soil by gravity, so that a permanent
drawdown of the water table can be achieved.
In this way the moisture content of.the soil is
reduced and its shear strength increased. Trench
drains are often used in road and railway cuttings,
along the edges of runways, etc., or as a remedial
measure on unstable slopes and hillsides. In the
latter case their buttressing effect also comes into
play.

Trench drains consist of a bottom channel,
a coarse-grained core, and an impervious seal on
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Fig. 103. Distribution of F, as determined by the Monte Carlo method, after

a numerical example from SINcH (1971)



the top (Fig. 104). The most important part is the
core, which should be protected by graded filters
on both sides to prevent fine material from being
washed into the drain. Design details and the
construction of drains are dealt with by Kgfzp1
and MARkG (1969). Only the drawdown effect of
drains will be discussed here. But we must be
aware that the methods of computation described
in the following furnish dependable results only if
the soil is fairly homogeneous and its coefficient
of permeability is known with sufficient accuracy
from laboratory or field tests.

Let us study first two typical cases of flow nets
which may develop in the vicinity of drainage
slots (Fig. 105). In case (a) there is a balance
between the supply of water from the adjacent
soil and the amount of water conveyed by the
drain, so that a free water level will be formed in
the trench, the elevation of which remains con-
stant once a steady state of flow has been reached.
In practical cases, a drop usually occurs between
the breakout point of the top flow line (point A)
and the water level in the trench (point B). If the
rate of inflow is too low or the water is suddenly
removed from the trench, the situation shown in
Fig. 105b is likely to develop. There will be no
free water level in the trench, since the small
amount of water that drips from the soil and runs

vertically along the sides AC is constantly removed
before it can collect at the bottom of the drain.
The neutral stress is therefore zero everywhere

along the section AC. For the construction of
flow nets, the following boundary conditions
should be considered: the slot penetrates to the

impervious base; the line CD and the drawdown
curve AE are both flow lines. In case (a) the sec-

tion BC of the vertical side is an equipotential
line.

Let us consider first the case shown in Fig. 106.
A vertical trench of infinite length fully penetrates
a homogeneous, isotropic pervious stratum which
contains free groundwater with a horizontal sur-
face. It will be assumed that this stratum is
supplied by a line source also of infinite length.
Once a steady state of flow is reached, the quantity
of flow through any vertical section such as ab
is constant. We also assume that on this vertical
section below the drawdown curve the hydraulic
gradient is constant and equal to the slope of
the drawdown curve at its point of intersection
with the vertical line ab. This is known as the
Dupuit-Thiem assumption. The quantity of flow
through the shaded vertical element of unit width
can be written as:

q = kiz.
Since 7 = dz/dx.

=kz—.
1 dx

Integrating and making use of the boundary
conditions that at x =1, z="h and at x =0,
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Fig. 104. Trench drain for depressing the groundwater level

z=h,, gives

2qx
2= e
T
and
g = — k) (94)
2l
or
2= (k> — h2) + h2, l
, ! z (95)
hz-zzz—kl(z—x) - _zx (hz—hg)]

N R S N R N A ) s

?a}

s /‘/'/'/‘/'//«'C”/ s S

(b)

Fig. 105. Flow diagram in the vicinity of a trench drain:
a -— open free water level in the drain; h — immediate discharge
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Fig 108. Flow diagram for seepage under pressure

Here, the expression h, is the height of water in
the trench (Fig. 106), and is equal to the height
of the outbreak point of the top flow line above
the impervious stratum. As was previously men-
tioned, this point is normally located on an eleva-

tion higher than the free water level in the
trench so that water discharges freely on a part
of the vertical surface (height A, in Fig. 107).
The height h; of this surface can be estimated
with the aid of the graph in Fig. 107, developed
by CrAPMAN (1958). Except for small values of
I/ or h,/h, the shape of the drawdown curve can
be determined from Eqs (95). In the vicinity of
the trench, more accurate results can be obtained
from the following expression:

B I —«x

[A* — (o + ho)*].  (96)

As can be seen, to obtain Eq. (96), the height
of the outbreak point (hy + hg) should be sub-
stituted into Eq. (95) for the height of water h,
at the trench.

The quantity of flow ¢ from one side of the
trench can be computed by the expression

k

= - (k= k)

q

regardless of the height of the free discharge sur-
face h,.

In practice, it is often necessary to dewater
a layer containing groundwater under pressure
(artesian water). Figure 108 shows such a case;
the water-bearing layer is overlain by an imper-
vious layer. There is a steady supply of water by
a line source located at a distance l. The trench
fully penetrates the pervious layer. Water is
continuously removed from the trench, but the
water level in the trench stays above the top of
the pervious layer even after a steady state of
flow is reached, i.e. the flow occurs under pres-
sure. The rate of flow ¢ (for unit length) is given
by the expression

dz
=k—t.
1 dx

Integrating,
qx
z=—-—+C.
kt +

The constant C can be determined from the
boundary condition that h = h, where x = 0.
Hence C = h,.

Substituting, the expression for z becomes

2= 4 b, (97)
kt

The discharge from one side of the trench can be
obtained by inserting the boundary condition,
z=h at x = [l into Eq. (97). Hence

q:%m—m. (98)



The drawdown at any distance x can be deter-
mined from the following equation:

(1—x) = l—«x

= —h).
h o (h —he). (99)

The formulas derived for flow rate and draw-
down all contain the distance of the line source
of seepage from the trench. This distance can be
considered as the radius of influence of the drain.
Its value is of little significance in the computation
of seepage quantities, but may become an impor-
tant factor in the design of drains where it is often
required to determine, or to predict, the position
of the drawdown surface. For this reason, the
radius of influence should be determined as
accurately as possible. If the drain is close to
a river, the radius of influence is essentially deter-
mined by the distance between them. In the
general case, Sichardt’s empirical formula can be
used:

I=Ch—h)k.

Here the expressionin parentheses is the maximum
drawdown 1n metres and k is the coefficient of
permeability in em/s. A value of 3 was proposed
by Sichardt for the constant C for gravity wells.
This value was found to be valid in a number of
field observations. For the case of a line source
(two-dimensional flow) C values ranging from 1.5
to 2 were measured. Since the coefficient of per-
meability of coarse-grained soils is related to their
grain-size distribution, the radius of influence I
must also depend on grain size. On the basis of
field investigations (U. S. Army Corps of En-
gineers), it was possible to develop an empirical
relationship (Fig. 109) from which the value of I
can readily be obtained for soils ranging from
fine sand to sandy gravel.

The preceding formulas apply to the case where
the trench fully penetrates the pervious layer.
If the impervious base is located at a great depth,
it may not be economical to lower the drain to
that depth. We must therefore also investigate
the case where a trench only partially penetrates
the pervious layer. The quantity of gravity flow
(Fig. 110) can be computed from an empirical

formula derived from model tests by CrapmMAN
(1956):

h — hy,

q :(0.73 +0.27 )%(hz — K. (100)

If the trench is supplied on one side only as
in the case of interceptor drains, the water level
on the opposite side does not rise above a maxi-
mum height given by

hd:ho{lzzs N ]

Equations (100) and (101) are valid only for
values of I/h >> 3. In the case of flow under pres-

(101)

Drainage of earthworks 73

Influence radius for h-h, =1m depression
3 10 100 500

100 T T T —TTTT1] T
A / /
05 b e /

y /A4
Y SO N R %

|
1071 m71_'_._ o/

k*‘——-—-

|
R A
005 J..,Mg«L ) / b S
2 / AT
s S
~ / & &f R=3th-hy VK

(=2(h~hy) {k"
k'=10%

002 ~/
/

//
0005 / (
! / (o

0.002 f——A—
1073 [ A el Ly
003" 01 02 o5 1 2 5

Effective grain size mm

Fig. 109. Estimation of the radius of influence
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Fig. 110. Imperfect trench drain

sure (Fig. 111) the quantity of flow can be obtained
from the following expression:

q= M . (102)

I+r

The distance !” depends on the penetration #; of
the trench into the pervious layer and on the
thickness t of the latter. Values of I’ can be deter-
mined from the graph in Fig. 111 proposed by
Barron (1956). The maximum piezometric head
h; on the side opposite to the source is given by

hoo LO—h)

103
. (103)
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In the following we shall deal with the case where
a drain is supplied by line sources on both sides
(Fig. 112). For a gravity flow, the quantities of
seepage are simply doubled, but for flow under
pressure the equation will be different. The
quantity of flow can be computed by the formula

_ 2kt (h —hy)
Bl + 4

where the factor 1 is a function of the ratio /i
Its value is obtained from Fig. 113.

For distance x greater than 1.3t, the piezo-
metric head z can be determined from the fol-
lowing equation

x+ At

:he h—he*.
i o )l+/1t

(105)

Finally, let us discuss the case where dewatering
is carried out by means of two parallel drains
(Fig. 114). In general, Chapman’s empirical for-
mula (Eq. (100)) can also be applied to this case.
The top of the drawdown curve midway between
the drains is located at a height

€10y

I

hd:ho[ (h—ho)+1]

above the impervious base, where ¢, and ¢, are
obtained from Fig. 115. For flow under pressure,
Eqs (101) and (102) are valid, in which case I’ can
be determined from Fig. 111.

It should be mentioned that a more accurate
determination of neutral pressures and quantities
of seepage is possible by means of flow nets, as
was illustrated by Fig. 105. Figure 116 shows
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Fig. 112. Flow diagram for the seepage under pressure to an
imperfect trench drain from both sides

a further example — a flow under pressure towards
a partially penetrating (imperfect) drain from
equidistant line sources of flow on both sides.

Making use of the computation formulas given
in this section enables us to solve a number of
practical problems. Usually, we have to answer
the following questions.

1. What is the quantity of flow from a drain
necessary to produce the required drawdown at
a given point?

2. At what depth should the bottom of a slot
drain be located, if it is required to keep the
drawdown surface below a given level ?

3. How far apart may two drains be located,
if the required drawdown at a point between them
is given ?

In the following, numerical examples illustrate
solutions to these problems.
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Fig. 111. Flow diagram for seepage under pressure to an imperfect trench drain
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Fig. 114. Depression of the water table between two parallel
deep drains

Example 1. What is the required discharge from a fully
penetrating drain (Fig. 105) if the height of water in the
trench is not to exceed h, = 10 cm? Given: h = 400 cm,
E=2-10-% cm/s.

In the first approximation the radius of influence is assumed
to be I =10 m.

For flow from both sides, the discharge per length of 1 cm

. —4
21070 h00r — 107 —

k
amount to ¢ = T (h2 — RY) = ~To0o

= 0.032 cm3/s.
For a total length of 100 m

Q = 10 000 - 0.032/1000 = 0.32 Is.

1.2
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In order to compute the drawdown, the height of the free
discharge surface hy must first be determined with the aid of
Fig. 107. For the ratios l/h = 10/4 = 2.5 and h,/h = 0.1/4 =
= 0.025 we obtain hgh = 0.13. Hence kg = 0.13 - 400 =
= 52 cm.The elevation of the breakout point of the draw-
down curve from the bottom of the drain is h, = hy + ks =
= 62 cm. The height of the water table at a distance x =
= 3.0 m as computed from the expression

1—
1

h2_ 2 —

L [k —(hy + Y]

is 2 = 2.24 m.
To check this value we compute the radius of influence

I=2[h —(hy + h)] YE=2(4-0.62)/2=9.60 m

i.e., the first estimate was correct.

Example 2. An intercepting drain arranged as shown in Fig.
110 is made with the purpose of keeping the downstream
section of the drawdown curve below the height by = 5 m
from the impervious base. How deep should the trench be?
The original water table is locatedat an elevation of h = 8.0 m
above the base. The coefficient of permeability of the soil is
k= 10-3 cm/s.

The head of water in the trench should first be computed.
The radius of influence is estimated to be I = 25 m. From
Fig. 107 it is apparent that for the given ratios I/h = 25/8 =
= 3.12 and hy/h ~ 0.5 (estimated value), hy/h ~~ 0, i.e.
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Fig. 116. Flow net diagram; flow under pressure to an
imperfect drain from both sides
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Fig. 117. Arrangement of stone ribs (draining trenches filled
with crushed stones) in order to increase the stability of
slopes:

a — cross-section; b — plan

the height of the free discharge surface is small enough to be
neglected.
h, is obtained from Eq. (101):

1.48
hy=h, [~l— (h—h) + l] .
Withhy=5m,h =8mandl = 25 m,

1.48
5= h, [—25_(3—1.0)+ 1]
and

h — 249 hy 4 84.4 = 0.

2
Eo=hop/ h?dX“Ao?'Fhs

Fig. 118. Stability analysis of slopes reinforced by stone
ribs, with respect to friction on the sides of the ribs

Solving the equation for h, gives h, = 4.05 m. The rate of
discharge is given by Eq. (100).

h—hyYh . 2
b g,
8 — 4.05 103

8 2 - 2500

q= (0.73 + 0.27

q = (0.73 + 0.27 (8002 — 4052),

g = 0.082 cm?¥/s .

For a total length of 100 m, Q = 0.82 I/s. Checking the radius
of influence using Sichardt’s formula

I=2((h—h) Vk =28 — 4.05) Y10 = 24.9 m ~ 25 m.

1.7.2 Buttress drains

Stone-filled drainage trenches are often used as
a remedy in soft clays. They have a double effect.
For a while after completion, their main function
is to stabilize the adjacent soil masses by their
buttress effect which is due to the action of fric-
tional forces on the sides of the drains. Desic-
cation, the other beneficial effect, comes into play
only later. With regard to their restraining effect,
the spacing of buttress drains should be chosen so
as to provide, immediately after construction, a
sufficient degree of safety against sliding in cutting
slopes or unstable hillsides.

The buttressing effect of drains can be assessed
quantitatively as follows. An earth mass located
between two parallel buttress drains {Fig. 117)
exerts a horizontal pressure on the vertical sides
of the drains. This pressure can be computed as
an earth pressure at rest, since with the construc-
tion of the drains, the mass of soft soil between
them becomes laterally confined. It can be seen
from Fig. 118 that the resultant earth pressure
acting on one side of a drain is proportional to
the static moment of the contact surface between
drain and soil with respect to the baseline of the
drain. For clays, the coefficient of earth pressure
at rest, K,, may have values ranging from 0.5 to
0.8, depending on the consistency of the soft
material. As the earth mass tends to slip down
from between the drains, a frictional resistance is
mobilized on the surface between the soft soil
and the coarse filter material of the drain. In the
stability analysis of a slope, these frictional
resistance acting on both sides must also be taken
into account among the restraining forces. The
magnitude of the resultant frictional force is
usEq. The coefficient of friction u; between clay
and sand filter may have a value of 0.2 to 0.3.
The stability analysis is illustrated by Fig. 119.
The weight of the earth mass W is taken into
consideration, with the width a between drains
(Fig. 117). The construction shown in Fig. 119 is
based on the assumption that @ = 0. The cohesion
required for equilibrium can be determined from
the polygon of forces.

With the aid of the analysis described, we can
judge whether the spacing of buttresses, usually



based on empirical rules, is adequate to produce
the desired stability.

After completion of the buttress drains, a grad-
ual desiccation of the adjacent soil also begins
to take place. In clays which cannot be drained
successfully by gravity alone, desiccation is mainly
due to evaporation on the sides of the drains.

The top of the drains, usually formed into
a gully, should be sealed to prevent the drains
from feeding surface water straight into the soft
strata. The drains should possibly penetrate to
some depth into the impervious base. This may
not always be feasible, yet even a partially
penetrating drain may be useful in that it allows
the formation of a slip surface only at some greater
depth, so that the length of the slip surface and
the resistance to sliding are increased. This effect,
however, is usually very slight.

1.8 Prevention of damage due to groundwater
flow
1.8.1 Filter criteria

Percolating groundwater can, by the action of
seepage forces, seriously endanger the stability of
earthworks. But even if the stability of a mass of
soil is not affected by seepage, other detrimental
circumstances may arise. Water emerging on the
free surface of an earth mass may give rise to
erosion or, at worst, to liquefaction of the soil.
Such, often only minor, defects should be arrested
in time, since growing damage may lead to
serious interference with the equilibrium of the
soil mass (subsidence, structural collapse, etc.).

One of the simplest precautionary measures con-
sists of covering the free discharge surface with
a coarse-grained protective filter. The grading of
the filter material must meet certain requirements.
If the voids of the filter are very much larger
than the size of the finest grains in the soil to be
protected, these fine particles are likely to be
washed into the voids of the filter, with the result
that the drains become clogged and the free
passage of water obstructed. On the other hand,
if the voids of the filter are approximately the
same size as those in the protected material, then
an internal erosion may take place in the filter
itself. To prevent the occurrence of either of these
undesirable phenomena, the grain-size distribution
of the filter must obey a criterion known as the
filter rule, which was developed by TERZAGHI
(1948).

- Let the shaded zone A4 in Fig. 120 represent
the range of grading of the material to be pro-
tected, and let the maximum grain size at P =159%,
be denoted by d;; and the minimum grain size at
P = 859, by dg;. A material is considered suitable
for use in a protective filter if its grain size at
P = 159, is at least four times d;; and not more
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Fig. 119. Calculation of earth pressure acting on the sides
of stone ribs

than four times dg;. Any soil with a grading curve
that lies within the area B in Fig. 120 meets this
requirement.

The filter criterion can be written in the fol-
lowing general form:

d1§ of filter

15 of filter
dgs of soil )

<4to5< (106)
d,; of soil

Some further explanation is needed as to why the grain sizes
d,; and dg; and a filter ratio of 4 to 5 are used in the above
expression. Theoretical analysis has shown that the grain-size
distribution can be characterized by a quantity called the

grading index which is expressed in terms of the diameters
d;s and dg;. It is defined by

L’P =dyyyy — dyy = dyy — dys 5 -

This index has been found to be indicative of the degree of the
uniformity of a grain assembly. A statistical evaluation has
shown 959, of all cases examined to fall within the limits d,, +
4 2p, where d,; is the diameter that occurs most frequently
(cf. Vol. 1, Fig. 26).

The value of 4 to 5 for the filter ratio (d;; of filter/dy; of
soil) was found by the following consideration. In the loosest
packing of equal spheres (Fig. 121), where any sphere touches
six neighbouring spheres with centres arranged in a rectangu-
lar spaced grid, the diameter of a small sphere that can just
be accomodated in the interstices is given by the diameter
ratio

d,

=%z _1 2.
) +V2
d
100 Gravel San Fine sand
das :
ol <7 ke ]
\ 7)) .
2 60— 1 ‘%
Y —
0 4|d05 4d;5 dis I
10 5 2 7 05 02 07 005

Grain size diameter, d {mm)

Fig. 120. Rule of filtering, after TERzAGHI (1948)
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aj b)

Fig. 121. Regular arrangement of spheres in the pore space:
a — loosest disposition; b — densest disposition

In the densest packing (Fig. 121b), where the spheres form a
tetrahedral array and each sphere touches twelve neigh-
bouring spheres, the corresponding ratio is

f:ﬁ:1+2;/§.
d

The mean value of f, 3.43, is valid for irregular packing. For
natural grain assemblies with non-uniform grading, a value of
4 to 5 can be adopted for the filter ratio. The validity of the
relationship given by Eq. (106) was confirmed experimentally
by BerTrRAM (1940). Further tests were conducted by the
U. S. Army Corps of Engineers (1941) and the U. S. Bureau of
Reclamation (1955). The former stipulates that, in addition
to the requirement

d,; of filter

5
dg; of soil

IA

the following criterion must also be satisfied:

d;, of filter
" dg, of soil =25

In practice, protective filters are either made up
of several layers (graded filters) or consist of a
mixture of various grain sizes with favourable
filtering properties (mixed filters). In cases where
a greater thickness is required, the filter is usually
constructed from several layers, each of which
satisfy the filter rule with respect to the preceding
layer. Such a multiple filter is shown in Fig. 122,
Let the required filter ratio be denoted by f.
Then, for successive layers the following relation-
ships must be satisfied:

d, =fd,
d, = fid,

d, =/,

D = fr+1d,
For given values of d, D and f, the required num-
ber of layers can be obtained from the following
equation:

n _logD —logd
log f
Equation (107) can also be used to check the

(107)

actual value of f for a given number of layers n
and given representative grain sizes d and D

Thus
nt+l
D
= |/ —. 108
=] (108)

If the value of f computed by Eq. (108) is greater
than 4.5, the number of layers should be increased.

It is also possible to construct a filter of a single
material such that it contains a mixture of all
the grain sizes that would be required for a graded
filter. The grading of a mixed filter should be such
that the voids in one component are just filled
by the grains of the preceding component. For
the design of such mixtures it can be assumed that
the average porosity for each layer is equal to

n=35%. A calculated example is given in
Table 3.

Table 3. Data for producing mixed filters

Classifica- Grain size Volumetric | percentage
tion {mm) P"°P°’;t‘°" per mass
e
I 0....1 0.04 8
II 1....3 0.12 9
III 3....15 0.35 21
v 15....50 1.0 62

The required thickness of a filter depends on
the type of material to be protected, the intensity
of seepage and the number of layers. The thickness
of a single layer is seldom less than 50 ¢m, although
in simple cases 30 cm may be practicable. Typical
cases where the use of protective filters may be
necessary are illustrated by Fig. 123.

The requirement upon which the design of
mixed filters was based can also be applied to
natural soils. If seepage is occurring in a soil,
there is always a danger of fine particles being
washed out. But any soil can be conceived as
being made up of two components: one, being
a relatively coarse component, serves as a filter
for the rest of the soil. If the two components
satisfy the filter criterion with respect to each
other, the particles in the finer component are
not likely to migrate through the void spaces in
the coarser part. Such a condition is known as
self-filtration. If any two components into which

_E.a/'"th'n}as's.to bé o

n layers supported

Fig. 122. Filter composed of several layers
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Fig. 123. Dotted areas show places where it is advised to
incorporate filter layers:
a — slope; b — dike; ¢ — trench; d — foundation pit

a given soil can be split satisfy the filter rule, the
soil is said to be self-filtering.

Whether or not a soil shows this property can
be ascertained by the following test. The grain-
size distribution of the soil is given in Fig. 124a.
We choose an arbitrary diameter d, and divide
the material into two components. For the sake
of better understanding, the grain-size distri-
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Fig. 124.

a — Investigation of the soil as to its own filtering capacity; division into compo-
nents; b — establishment of the effective grain size
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bution curves of these components are also shown
in Fig. 124a. In an actual investigation only
certain significant points of the curves need to be
determined, as will be seen from the following.

The diameter d, respresentative of the compo-
nent which is to serve as the filter, will be read
off at P"=0.85P;+ 0.15 from the original curve;
for the component to be protected, the diameters
d, and d, are taken at P, = 0.15 P, and P, =
= 0.85 P, respectively. The values d, d; and d,
can be obtained directly from the original curve,
as demonstrated by Fig. 124b.

Now we choose several other values for d, and
repeat the calculation for each. If we plot the set
of d, 4d, and 4d; values against d,, we can sea
at a glance whether the criterion

4d, >d > 4d,

is satisfied or not.

The use of the method is shown in the following
three examples. Figure 125 shows the grain-size
distribution curves of three soils. Curve A4 repre-
sents a loess from Hungary, known to be very
susceptible to surface erosion, but when water
percolates through it, usually no fines are washed
out and the water remains clear. The computation
of the values d, 4d, and 4d, can conveniently be

100 \Grave/ {d Sitt Clay
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Fig. 125. Typical grain-size distribution curves of investi-

gated soils
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Fig. 126. Investigation of soil 4
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Table 4. Calculation of the critical grain-size diameter

d, S, s, s s, d 4d, 4d,
0.10 1.00 0.850 1.000 0.150 0.100 0.038 0.210
0.08 0.97 0.825 0.975 0.145 0.082 0.0375 0.208
0.06 0.89 0.756 0.901 0.134 0.060 0.034 0.184

A 0.04 0.72 0.612 0.762 0.108 0.044 0.029 0.132
0.02 0.40 0.340 0.490 0.060 0.026 0.023 0.068
0.01 0.18 0.153 0.333 0.027 0.017 0.009 0.038
0.008 0.12 0.102 0.252 0.018 0.014 0.007 0.029
1.0 0.95 0.81 0.96 0.15 1.05 0.66 2.60
0.9 0.93 0.80 0.95 0.13 1.00 0.62 2.44
0.8 0.89 0.76 0.91 0.13 0.86 0.62 2.32
0.7 0.85 0.72 0.87 0.125 0.76 0.61 2.04

B 0.6 0.78 0.66 0.81 0.12 0.64 0.60 2.00
0.5 0.70 0.60 0.75 0.10 0.56 0.56 1.60
0.4 0.60 0.51 0.66 0.09 0.45 0.53 1.40
0.3 0.40 0.34 0.49 0.06 0.34 0.44 1.06
0.2 0.21 0.18 0.33 0.03 0.26 0.36 0.72
0.1 0.04 0.03 0.18 0.01 0.18 1 0.26 0.36

50 1.00 0.850 1.000 0.150 50 10.0 176

C 15 0.38 0.323 0.473 0.057 21.5 2.4 44
3 0.17 0.144 0.294 0.026 8.6 0.8 9.6
1 0.08 0.068 0.218 0.012 4.7 — 3.1

arranged in tabulated form (Table 4). The results
are plotted in Fig. 126. It can be seen that the
filter rule is fulfilled for the whole range of grain
sizes.

Curve B in Fig. 125 shows a sand from the
Sahara, which has never been subjected to water
flow; no natural processes that would have led
to the formation of a natural filter have occurred
in it. It can be seen from the graphical represen-
tation of the test (Fig. 127) that for grain sizes
smaller than 0.5 mm the filter rule is not fulfilled,
so that movement of the fine particles may occur.

The third example (curve C) is an artificial
mixture, made with the purpose of producing a
good mixed filter, and according to experience it
1s indeed a good one. The test confirms this

20
4d;
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Fig. 127. Investigation of soil B

quality; the filter rule is fulfilled for the whole
range (Fig. 128). The ratios of the respective grain
sizes at every value of d; are approximately the
same.

1.8.2 Filter design

Filters used on the discharge surface of the core
in earth dams should be designed to meet certain
hydraulic requirements. They must quickly inter-
cept and remove seepage emerging from the core,
without inducing high seepage forces or hydrostatic
pressures. The permeability of granular materials
was found to be approximately proportional to d%
(Tayror, 1948). So if the filter rule is fulfilled,
a filter is 16 to 25 times more permeable than the
core material to be protected. Such a difference
in permeability is usually sufficient to ensure that
seepage is removed quickly, provided that ad-
equate dimensions and hydraulic gradients are
available in the drain, as is the case in the cross-
section shown in Fig. 129. If, however, the hy-
draulic gradient is too small, it is advisable to make
a check on the discharge capacity of the filter or,
better still, to design it by applying hydraulic
principles. For example, if the rate of infiltration
¢ per unit length of drain is known, the required
thickness h, of the filter layer can be computed
from Darcy’s law as follows:

q = kid = kih, - 1.

h=-1,
ki

where ¢ is the maximum allowable hydraulic gra-
dient, determined by the allowable hydrostatic

Hence
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Fig. 128. Investigation of soil C
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Fig. 129. Examples showing the arrangement of various
filter layers:

a — slanting filter layer inside the dam; b — sand layer and stone base at the outer
toe of the dam
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pressures and seepage forces in the drain. On the
other hand, 7 should not be too low lest saturation
should spread into adjacent soil to an undesirable
extent.

Example. It is required that a drain be designed for the
composite dam cross-section shown in Fig. 130. The drain is to
be made up of a steeply inclined section, called a chimney
drain, and a horizontal blanket drain. The key dimension for
both are given in Figs 130b and c.

First, we construct a flow net and, using the known coeffi-
cient of permeability of the core material, we compute the
rate of discharge through the core. In addition, we should
also estimate the quantity of seepage through the foundation
into the horizontal blanket. Let us assume that seepage
through the core per running meter of dam length is ¢; =
= 0.2 m%day and seepage into the horizontal filter is q, =
= 1.0 m3/day. On the basis of practical considerations, the
chimney drain is to have a horizontal width of b = 3.5 m.
The required permeability of the filter kg can be obtained as

hp= -0 92 (050 m/day.
by 9045
i 93 >

A clean sand with no fines usually meets this requirement.

The horizontal outlet portion of the drain should
be so designed as to be capable of discharging the
total seepage ¢ = ¢, + ¢, = 1.2 m3/day, without
excess hydrostatic pressures being induced in the
drain. In other words, the maximum head in the
drain should not be greater than the thickness of
the blanket drain: h; < d. Therefore, the perme-
ability of the filter material should not be smaller
than

kD — i — 9 + 9> — qld . (109)
id k&
ly

Substituting numerical values gives

kp =228 and d:]/ﬂ,
dz hy

90m

Filter
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Fig. 130. Dimensions of the filtering system:
a — cross-section and flow net diagram; b — and ¢ — filter units
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For example, if we select a pea gravel with a per-
meability of k, = 100 m/day (approximately 0.12
cm/s) as the filter material, the required thickness
becomes

d=1198—=140m.

The best way to design a filter system is to use
a composite flow net for dam and filter.

As is known from previous studies (see Vol. 1,
Eq. (120)), when seepage occurs from an earth
mass into a filter of higher permeability, the
length-to-width ratio of the rectangles formed in
the flow net within the filter must conform to
the following relationship:

c kg

d kg’
where ky is the permeability of the filter and kj
is the permeability of the earth mass. In practice,
either the dimensions of the filter are given and
its required permeability should be determined,
or, conversely, for an assumed permeability ratio
the required dimensions should be found.

The design procedure will be demonstrated,
after CEDERGREN (1967), by two examples shown
in Fig. 131. The flow nets in either case were con-
structed on the assumption that the permeability
of the filter is great enough to convey all of the
seepage that enters straight into a gravel collector
drain located at the toe. First we draw a flow net
for the dam and determine the position of the
point at which the top flow line emerges on the
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Fig. 131. Flow net diagrams for various filter layers of
differently inclined slopes
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Fig. 132. Diagrams for dimensioning the filter layers in the
case of differently inclined slopes

discharge surface (point A). Next we connect
point 4 and the top of the gravel toe drain with
a free-hand line and, in a similar manner, we
draw the remaining flow lines. By continuing the
equipotential lines already drawn within the dam,
so that they deflect at the boundary, we can
complete the flow net in the filter. The length-to-
width ratio of the rectangles resulting from the
construction can readily be determined and from
this the required permeability ratio computed
(Vol. 1, Eq. (120)). For the case shown in Fig. 131a

this ratio is

and for the flow net in Fig. 131b

1 k

—=F =7,

b kg
As can be seen from the flow nets, the hydraulic
gradients in the filters are fairly large.



For flow nets of the type illustrated by Fig. 131,
CEDERGREN (1967) developed a design chart
which is given in Fig. 132. It furnishes the required
kp/kg ratios for various slopes and thicknesses of
drain. It can be used to determine the required
permeability ratio kp/kg for assumed dimensions
! and b and vice versa.
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Chapter 2

Load-bearing capacity and settlement of shallow foundations

Foundations generally have to comply with three
requirements:

— to transfer loads to the subsoil without
causing failure therein;

— to confine deformations to such an extent
that the components of movement do not sur-
pass the acceptable level in the overstruec-
ture;

— to ensure the stability of the foundation
system and the overstructure against slid-
ing, tilting or floating.

In the early period of the development of soil
mechanics, a number of researchers devoted their
efforts to solve the problems related to the first
item. Interest in the question has faded, however,
during the last one or two decades, partly because
no failures have been experienced (with the excep-
tion of a few cases where the cause could have
been explained immediately by referring to the
so-called “sudden loading’) and partly because
the possibility of failure has been almost entirely
eliminated by keeping deformations below the
acceptable level. Similar considerations apply to
the stability problems as well, mostly because
few problems arise in this respect which concern
the field of soil mechanics.

This book devotes separate chapters to shallow
and pile foundation (Chapters 2 and 3). Owing to
the widely different theoretical approaches which
are needed to handle the problematic of these two
branches. This difference arises mainly from the
fact that in the case of pile foundations one can-
not neglect

— the friction on the skin;

— the superimposed effect of the individual
footings;

— the influence of the construction technology.

The topics of “Interaction between soil and
superstructure” (Section 2.3.7) and “Settlement
criteria” (Section 2.3.9) have been included in
Chapter 2 because there is hardly any difference
in practice between the two types of foundations.
General validity should also be granted to the
principle that the influence of the groundwater

should always be weighted beyond its instanta-
neous position, whichever of the three requirements
is to complied with (RETHATI, 1983).

2.1 Bearing capacity of shallow foundations
211 Mechanism of failure

If a rigid plate or a footing placed on or below
the ground surface is acted upon by continuously
increasing loads, the soil beneath the loaded area
settles, and vertical and lateral displacements
occur. Provided that the load is relatively small,
the settlement is approximately proportional to
the applied load; the soil is in a state of elastic
equilibrium. The mass of soil located beneath the
loaded area undergoes compression which results
in an increase in the shear strength and hence in
the bearing capacity of the soil. TsyTovrrcu (1951)
termed this first stage of the loading process the
phase of compression. As long as the applied load
does not exceed the upper limit of phase I, the
rate of deformation decreases with time and tends,
in general, to zero (Fig. 133). In phase I the settle-
ment of the footing is mainly due to vertical com-
pression of the soil. The lateral displacements are
negligibly small.

In phase II, plastic deformations become pre-
dominant in the soil. Plastic flow starts at the
outer edge of the footing and then, under increasing
loads, the plastic zone grows larger and larger.
If the load exceeds a threshold value, the settle-
ment no longer comes to an end, but continues
at a steady rate without any further increase in
the load. At this stage, lateral displacements also
become significant. Within the plastic zones the
shear strength of the soil is fully mobilized.

Phase IIl is characterized by arapidly increasing
rate of deformation as the load is increased, lead-
ing to excessive outward displacements in the soil
until the soil support fails by shear along a curved
surface of rupture.

Typical load—settlement curves are shown in
Fig. 134. Two modes of failure are the most
common. In the first case (curve I) failure occurs
abruptly. After a very short transitional period,
the load-settlement curve merges into a vertical
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tangent. The surface of rupture is clearly defined,
and well distinguishable. In the other case (curve 3),
after an initial linear section, the settlement curve
has a continuously steepening slope and finally
passes into a slanting tangent. Curve 1 is typical
of dense soil and curve 3 of loose soil. Curve 2
applies to dilating soils in which failure is accom-
panied by a substantial increase in volume. After
failure is reached, the application of a load some-
what smaller than the ultimate load is sufficient
to maintain a steady plastic flow, causing further
settlement.

Vesié (1963) made an attempt to define the
basic modes of the mechanism of foundation
failure in sand and to determine the likely range
of occurrence. On the basis of failure tests, he
distinguished three characteristic types of failure
(Fig. 135).

In the first case, known as a general shear
failure (Fig. 135a), well-defined twin surfaces of
rupture are formed, along which a part of the
loaded mass moves outwards and upwards. It can
be assumed, at least for the initial stage of failure,
that this part of the soil mass moves as a rigid
body in much the same way as a slope in a stiff
soil fails. The shear resistance of the soil is uniquely
determined by the shear deformations, and as the
deformations under load continue, the shear
strength becomes fully mobilized. This type of
failure is the only one amenable to mathematical
treatment. The failure of shallow foundations in
dense sands usually follows this pattern.

In the second case (Fig. 135b), continuous sur-
faces of rupture cannot develop. The foundation
sinks under increasing loads, deeper and deeper
into the ground and causes compression in the
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adjacent soil mass. This compression, however,
may not be sufficient to produce a critical state
of failure in the sand mass. Settlements are
accompanied by increasingly large lateral displace-
ments and, as a result, the load-settlement
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Fig. 135. Main types of failure:

a — total shear failure; b — partial {local) shear failure; c — penetration failure
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curve tends to an inclined asymptote instead of
a vertical one; the settlements increase steadily
with increasing load. Radial cracks are formed at
the edges of the footing as a sign of the spreading
of a zone of radial shear. Such a pattern of failure,
called a local shear failure, is characteristic of
shallow foundations on sand of medium density.

In the third case (Fig. 135¢), a shear failure in
the strict sense of the word does not take place.
Instead, the footing penetrates steadily into the
ground under increasing load and pushes the soil
aside, causing a local compression near the footing.
The settlements increase almost linearly with
increasing load. The compression due to penetra-
tion will extended only to a limited zone beneath
and around the footing since the settlements,
large as they may be, are not sufficient to produce
such lateral displacements as would compress the
surrounding soil to the state of critical density
and thus mobilize the ultimate value of the shear
strength. A wedge of compressed soil will be
formed beneath the base of the footing and,
together with the footing, it punches downward
under increasing loads and continually forces the
soil aside. This phenomenon was described by
Vesié as a punching shear failure. Figure 136 after
ScARLETT and FLEMING (1956), gives experimental
evidence for this type of failure, showing deflec-
tions of dyed layers of sand under a loaded footing
in a model test. A common feature of the tests is
that a total shear failure is never reached and the
load-settlement curve tends to an inclined asymp-
tote. In the case of foundations located at greater
depths, a general shear failure of the type shown
in Fig. 135a is not likely to occur, even in dense
sands, owing to lack of the required shear displace-
ments. Therefore, the soil located near the ground
surface may still bein a state of elastic equilibrium,
while a local shear failure has actually taken place

!

Fig. 136. Deformation below a model footing
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under the base of the foundation. In cohesive soils,
failure is indicated by the appearance on the
surface of a set of irregular tension cracks instead
of a clear shear pattern. Similar cracking may be
observed in moist sands having a slight cohesion.
The third type of failure can mainly be expected
in cases where the depth to width ratio of the
foundation is high.

The described phenomena of local shear cannot
be taken into account adequately by existing
failure theories. The main difficulty lies in the
fact that in the case of local failure, no exact
definition can be given of the state of failure.
Therefore, instead of seeking some “limit value”
of bearing capacity, a mathematical analysis of
the whole process of failure under load seems to
be a more promising future approach.

VEes1é (1973) has carried out a large number of
model tests in order to clarify the influence of the
density of the sand and of the depth to width
ratio of the foundation on the mechanism of
failure. He found the approximate limits of the
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three types of failure to vary with the relative
density of sand, D,, and the relative depth of
foundation, t/b, as shown by Fig. 137. Type «
occurs in the case of relatively shallow foundation
on dense sand. If the relative depth is large
enough, as in the case of pile or pier foundations,
type ¢ is always to be expected. In the light of
these findings, any such theory of the bearing
capacity of piles as would assume the formation
of definite failure surfaces around the pile tip
seems in general untenable.

In the following we shall use a different approach
to the problem of failure by investigating the
changes due to a surface load in the state of stress
within a semi-infinite mass of soil. Figure 138
illustrates, by means of Mohr’s circles, the varia-
tion in the state of stress at an arbitrary point
P located at a depth z under an infinite strip load
on the surface.

Before the application of load the entire mass
of soil is in a state of rest, and at point P the
principal stresses are ¢ = 0, = zy; 0, = 03 =
= Kyzy (circle ). As the intensity of the strip
load p is increased, so are the principal stresses
at point P and, at the same time, their directions
rotate. The corresponding Mohr circles will be
shifted to the right and their diameters will
become larger. Successive phases of increase in
strip load are represented by the Mohr circles
and y. All these circles have a common envelope
which is an approximately elliptical curve. At the
moment this envelope touches the Coulomb line,
the condition of failure is just reached at point P.

The changes in the state of stress under in-
creasing load can be followed in Fig. 139, which
shows o3 values plotted against the major prin-
cipal stress ¢; for several points located on a
horizontal plane at a depth z. The failure condition

g5 == oy tan? (450 — 2) — 2 ctan [450 — —(g—)—)

2 2
is represented in this plot by a straight line which
intersects the o; axis at o3 = —2¢ tan (45 — @/2
and has a gradient of tamn p = tan? (45 — @/2).
The curves a to e show the changes in the state
of stress at the respective points. They all have
a common starting point « which corresponds to
the earth pressure at rest at a depth z below the
surface. Failure condition at a point is reached
when the corresponding curve intersects the failure
line. It can be seen from the figure that the state
of stress causing failure is different for each point.
It follows that there may be a zone inside which
the soil is already in a plastic state, whereas
outside this zone the failure condition has not yet
been reached. When a body of a brittle matenal,
such as rock or concrete, is subjected to increasing
loads, as soon as failure condition has been
reached at any point within the body, the load
cannot be further increased and a complete failure
follows abruptly. For such materials, the “limit
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road” is essentially the same as the load required
to produce failure condition at a single point
anywhere in the loaded mass.

Plastic and semi-plastic materials exhibit an
entirely different behaviour under load. Plastic
yield usually starts at single points; for example,
at the edges of a strip foundation, without the
risk, however, of a complete and imminent failure
of the entire mass. The foundation may still be
capable of sustaining further increase in load
while the plastic zone spreads over increasingly
large masses of soil until finally failure takes
place.

The failure of a shallow foundation usually
follows the general fashion described in the
foregoing paragraphs. Nevertheless, the mode of
failure can be greatly influenced by various factors
not mentioned so far. The distribution of stresses
under a foundation, as well as the bearing capacity
of the soil, depend not only on the physical prop-
erties of the soil, but also on the material, shape,
size, rigidity, depth, etc., of the foundation. It is
therefore one of the principal tasks of applied
soil mechanics to define, by considering all the
influencing factors, criteria for the failure of
foundations and to predict the value of the allow-
able bearing pressure beneath a base.

2.1.2 Ultimate bearing capacity theories

As a fundamental case, we first discuss (Sec-
tions 2.1.2.1-2.1.2.3) the ultimate bearing capacity
of an infinitely long strip foundation which is
located at a shallow depth and is acted upon by
a centric vertical load. The problem is thus two-
dimensional (plane state of deformations).

When the base has a finite length (solitaire
foundation, slab) the problem is a three-dimen-
sional one (see Section 2.1.2.4).

During foregoing years, the requirements which
the bearing capacity theories have to satisfy have
been firmly established. The most important ones
among them are:

(a) Stresses developing on the shear surface
hav e tocomply with Coulomb’s failure conditions,
and satisfy Kétter’s equation.

(b) The shear surface should have a statically
suitable shape (i.e. should, for example, fit the
calculation of the equilibrium equations derived
for both the vertical and horizontal components
of forces acting and their moments).

(¢) The shear surface should kinematically
accommodate a continuous displacement of the
moving mass on the table one, so that the two
masses should maintain an uninterrupted mutual
contact, and the mass in motion should not evoke
an additional resistance.

(d) The shear surface should resemble the sur-
faces experienced during failure model-tests.

(e) The theory applied should take account of
the internal friction, cohesion and density of the
earth mass in question.

(f) The bearing capacity factors should always

relate to the same shear surface.

None of the theories known up to the present
are able to fulfil all these requirements completely,
but the most up-to-date theories have succeeded
in reflecting most of the test results experienced.

2.1.2.1 Determination of ultimate load for weight-
less sotl

An exact solution for a weightless medium was
given independently by PranpTL (1920) and by
Caquor (1934). If the footing has a perfectly
smooth base, the shear pattern is similar to that
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shown in Fig. 140. The central part II of the
plastic zone is bounded by a logarithmic spiral.
In zones I and III the soil is in the active and
passive Rankine states, respectively.

The solution can be written in the following
form:

p = ty tan® (450 + _éi) ertan® |

@ (110)
+ ¢ cot (D[tan2 [450 + __é_)entand—* o 1] ,

where ¢t = the distance between foundation
depth and ground level,
y = the bulk density of the soil mass
above foundation level.

The multiplying factor referring to the own
weight ty is marked by N, and that of the cohe-
sion ¢ by N. These are the so-called bearing
capacity factors. In Prandtl’s theory, according
to Eq. (110):

N, = cot® (N, — 1). (111)

Prandtl’s theory was first applied to soils by
Caquot. In this application the problem has
already been treated on the basis of the limiting
equilibrium condition which exists between the
active earth pressure in the soil beneath the
foundation and the passive resistance of the earth
mass on the sides. This demonstration has later
been simplified by RaES(1941) and MANGEL, and
the final form of the equation derived by these
three authors is that shown as Eq. (110).

2.1.2.2 Theories of Buisman—Raes and Terzaghi
At the beginning insufficient emphasis was put

on negligence of the soil’s own weight, but it soon
became obvious that this component of the bear-

n

ing capacity — the more so in granular soils —
could not be neglected. Thus the Prandtl-Caquot-
Magnel-Raes formula may only be used for prac-
tical purposes when the bearing capacity factor
referring to the soil’s own weight (designated as
Ng or N,) is transported from another theory to
the application on hand.

The first researcher to produce the relation for
this case was Buisman (1940); his graphic solu-
tion was later condensed in an analytic form by
RaEs (1941). According to this procedure, the
bearing capacity factor N, can be derived from
the expression:

1 —
N, = —4—{2Kp exp (1.5 = tan @) — 2 VKP +

+ 1+ K, [(Btan @ VK, — 1)

1+ 9tan2@
exp (1.5 7 tan @) 4 3 tan @ —I—VK_p]] s (112)

where

@
K, = tan® (4«50 + 7] .

Provided that the foundation depth is not
greater than the width of the footing, the shear
strength of the soil strata located above the
foundation level can be neglected, since these
strata normally consist of weak topsoil or loose
backfill. For this case, TERzacHI (1943) developed
a general solution which, although not rigorously
exact, furnishes dependable results in most prac-
tical cases. In this theory it is assumed that failure
beneath the footing takes the form of a general
shear failure characterized by the load—settlement
curve of type a in Fig. 135.

Let us consider an infinite strip footing of width
2b at a depth t below surface level (Fig. 141). The
shear strength of the layer located above the
foundation level can, as was mentioned previously,

B tand —
o  2btan(45°+§/2)e? “ [ b - b_o
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Fig. 140. Network of failure planes in a weightless mass
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be neglected Its weight is replaced by a uniformly
distributed surcharge ¢ = ty. The soil is assumed
to be homogeneous. If the footing has a rough
base, as is the case with real footings, the friction
between the soil and the base prevents lateral
displacement of the soil located immediately
beneath the footing. A wedge of soil is formed
beneath the base which remains in an elastic
state and punches downward as if it were a part
of the footing. Under such conditions, further
settlement of the footing is only conceivable if the
soil below the edge D moves vertically downward.
It follows that when failure occurs, the surface
of sliding should start from a vertical tangent in
the axis of the footing (point D). In the limiting
state of equilibrium, failure of the soil support
takes place in the following manner. The central
wedge ABD, together with the footing, moves
vertically downward. Along the lower side 4D of
the wedge, the adjacent soil mass moves upward
in the same manner as it would on the rough
back of a rigid wall. In the soil mass below, twin
curved slip surfaces are developed which have
a common vertical tangent at the axis. The sur-
faces AD and DE are both slip surfaces which
meet at point D. The tangents to the slip surfaces
at this point must intersect each other at an angle
of 90° — @. Since one of the tangents is vertical,
the other must make an angle @ with the horizon-
tal, provided the friction on the base of the footing
is sufficient to prevent the lateral displacement of
the wedge ABD. The surface of sliding has an
initially curved section which becomes gradually
flatter farther away from the axis of the footing.
This curve represents the lower boundary of the
zone of radial shear which adjoins a zone of
passive Rankine state. The boundary between the
two zones can be determined by drawing a line
at an angle of 45° — @/2 to the horizontal from
the outer edge A of the footing. This will intersect
the curved portion of the slip surface at point E.
Beyond that point the friction on the surface AD
has no influence on the shape of the slip surface.
Within the wedge AEF, the shear pattern con-

sists of two sets of parallel planes in conformity
with the passive Rankine state. At point E, the
curved slip surface DE merges smoothly into the
final plane section EF.

Now, the problem of determining the ultimate
bearing capacity of the foundation is tantamount
to computing the minimum passive earth pres-
sure on the contact surface AD. This surface will
be regarded as the rough back of a rigid wall
If the passive resistance E, on AD is known, the
bearing capacity sought P, can be determined
from the equilibrium of the central wedge 4 BD.
Let the shear strength of the soil be determined
by the equation.

T=c¢tan® + c.

Since the face AD is assumed to be a surface of
sliding, normal and tangential stresses acting on
it must obey the above relationship (here ¢
denotes the normal component of the passive
earth pressure per unit area).

The total passive resistance on 4D is made up
of two components. The first can be determined
from the assumption that the resistance to sliding
on AD is entirely due to friction, while the other
stems from the adhesion between the contact
face AD and the soil. Note that what is assumed
here to be the back of a rigid wall is, in faet,
a plane inside an earth mass along which the
shear resistance is fully mobilized. Therefore, the
angle the first component of the passive earth
pressure makes with the perpendicular to AD is
equivalent to the angle of internal friction ®;
thus its direction is vertical. The adhesion com-
ponent C of the passive resistance acts along the
face AD. Again, the adhesion per unit area is
replaced by the cohesion ¢ of the soil. Considering
that ¢ is independent of the normal pressure
acting against 4D, we get

b

cos @

Equilibrium of the wedge ABD requires that the
sum of the vertical forces should be equal to zero.

C.

C,=
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Hence

P, 4 yb*tan ® — 2E, — 2bctan @ = 0. (113)

In this equation the first term represents the
bearing capacity sought, the second is the weight
of the wedge ABD, the third is the passive resis-
tance, due to friction, on the sloping faces of the
wedge, and the fourth is the vertical component
of the cohesion force (C sin ).

The passive earth pressure E, can be deter-
mined by a method which was described in detail
in Vol. 1, Section 9.6 (cf. Fig. 434). There we also
discussed, using simplifying assumptions, the com-
putation of the distribution of stresses for the
general case when ¢5< 0, @ >0 and ¢ 5= 0 (cf.
Fig. 435). Now we shall apply these methods to
the case of a continuous footing in order to deter-
mine the passive resistance on the face BD (see
Fig. 142). Having selected a trial slip surface,
we perform the construction exactly in the same
way as was illustrated by Fig. 435 in Vol. 1, the
only difference being that instead of an adhesion
force, a force of cohesion should be taken into

The normal component of the passive earth
pressure is, in general, given by the following
expression (see Vol. 1, Section 9.6):

h
Ep = /3 (CKpc + qKPq) + —"th

sin sin /3

. (114)

For the case shown in Fig. 142, h = btan @,
f=06=®, and e = c¢; thus the passive resis-
tance can be written

1 tan @
E,, = (cKpe + qKpg) + —7b? K,,
cos cos @
and
b cos & cos @
Hence
tan @
E, = cK,, K —ybt——K,,
b cos? @ powera pe T4 pq)+2y cos2 @

Substituting this expression in Eq. (113) leads to

account on the face BD. A worked-out numerical P.— 9 K, tan @ 2 ‘K@_
example is given in Fig. 142. The construction b ¢ cos2 @ T tan +2bg cos2 @ T
should be repeated for several trial surfaces in (115)
order to find the least value of the passive earth -+ yb? {__a —_ 1) .
pressure, E . cos? P
_ !
! i
_‘7%7 2b=40m ___.1
q=tp=40 KN/ §
' 5 5°-§/2 5°-g/2
RTIIL) s 5 i

A

$=75°
¢ =20 kN/m?
2220 kN/m®

Fig. 142. Establishment of soil resistance on the sides of the
elastic earth wedge
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Fig. 143. Drawing the rupture planes for a strip foundation
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The problem is thereby essentially solved. In
practice, however, a further and rather tedious
construction work is necessary to determine the
coefficients K, K, and K, for a definite sliding
surface in Eq. (115). Therefore, TERZAGHI intro-
duced another important simplifying assumption,
namely that the values K, and K, can be com-
puted with the aid of the critical slip surface
that is valid for a weightless medium (y = 0).
For this theoretical case, a logarithmic spiral
whose centre is located at the outer edge of the
footing (point Bin Figure 143) represents a rigorous
solution. Theory supplies exact formulas for the
coefficients K, and K, (Pranprr, 1920 and
REeissNER, 1924) and hence the following quan-
tities can be derived:

e(3/27z—¢) tan @
N, =cot®|——m8M ———— 1| =
2 cos? (45° - D/2) (116)
— cot® (N, — 1)
70
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50 - b /
' ' N,
= 40 = // L
z 2b T
i = Any
P - e,
20 N,—# 7
7
.
10 Ny 7

E

70

5 N T A / /1

o - // /

) S /]

30 —— / / /

20 N ; // /
P

0} Ny L]

00 5 10 5 20 25 30 35 40

Angle of friction ¢

0
0 2 4 6 810121741618 2022242628 30 32 34 36 38

93

Bearing capacity of shallow foundations

and
o@2m—Prtand

T 2cost (45° + @)2) |

(117)

q

Introducing the above expressions into Eq. (115),
we obtain the bearing capacity for a weightless
medium y = 0:

K, K
— ‘C 1+ tan @ 2b P —
Poc + Pog = 2be cos: @ TN cos?®

— 2beN, + 2bgN, . (118)

In a real cohesionless soil (y >0, ¢ = 0) with
no surcharge on the surface (q = 0), the critical
slip surface (curve D,E,F,, Fig. 143) is located
well above that for the y = 0 case (curve DE, F)).
The rigorous equation for this slip surface is not
yet known. The critical load required to bring
about failure along this surface can be obtained
from Eq. (115).

Terzaghi’s final formula for the calculation of
the ultimate bearing capacity is:

p="byN, +tyN, + ¢cN,

for which the bearing capacity factors (IN) are
given in Fig. 144a.

(119)

After having analyzed Terzaghi’s bearing capacity factors,
Krizek (1965) concluded that the ultimate bearing capacity
could be determined for @ = 0 to 35°, with a maximum
deviation of 15%,, when the following expression is used:

p (3281 430)c+ (404 50) ty + 6Dby

0 — & (120)

When the sand is loose, the footing may undergo
very large settlements and yet no definite con-
tinuous surfaces of rupture are developed. The
load~settlement curve passes into a steeply sloping
final tangent (curve 3, Fig. 134), instead of a
vertical one. Such a condition has been referred

35
30 /
265 4 — /
20 — //
5 ,/ /
N /
10 7
5 — Ng
"]
00 5 10 5 20 25 30 35 40

Angle of friction ¢

Fig. 144. Bearing capacity factors as functions of the internal friction (TERZAGHI):

a — total failure; b — partial (local) failure
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to as a local shear failure. TERZAGHI suggested
that for this case the wvalues of cohesion ¢ and
coeflicient of friction tan @ should be divided by
1.5 and these reduced values used for the com-
putation of the bearing capacity.

The corresponding bearing capacity factors N/,
Ng and N, are given in Fig. 144b. For the case of
local shear failure

p = %CN; LN, + byN,.  (121)

2.1.2.3 Other theories for computing bearing
capacity

As was pointed out in the foregoing, Terzaghi’s
method for computing the bearing capacity was
based on a number of simplifying assumptions
and, therefore, the solution obtained is not mathe-
matically rigorous. One essential objection is that
the exact solution of the surface of sliding is
unknown. To overcome this difficulty, the curved
portion of the actual slip surface is replaced by
a circle or by a logarithmic spiral. Furthermore,
the bearing capacity factors do not belong to one
and the same surface of sliding. The superposition
adopted in the derivation of the critical load is
unjustified since the underlying equations are non-
linear. The question of superposition of particular
solutions for the limiting state of equilibrium was
investigated by Sokorovskm (1960). He found
that the sum of the stresses required to produce
failure in the three particular cases (¢ =ty =<0,
y=0¢=0; ¢g=0, y£0, ¢=0;g=0, y=0,
¢+ 0 satisfies the corresponding equations of
equilibrium.

However, because of non-linearity, the numer-
ical value of this sum does not agree with the
value that would be furnished by an exact numer-
ical analysis for a single critical slip surface.
Superposition gives the lesser value. LUNDGREN
and MorTENSEN (1953) carried out an exact
numerical analysis for the case @ = 30° and found
that the bearing capacity value obtained by super-
position was lower by 179%,. The error is, therefore,
on the safe side.

Increasing emphasis has been laid in current
research on the recognition that the critical slip
surface must be not only statically and geometri-
cally, but also kinematically admissible. If we
further assume that the soil is incompressible, the
kinematic conditions must also be satisfied every-
where within the zone of plastic equilibrium; this
requirement is an equivalent of the compatibility
condition in the theory of elasticity. In dilatant
soil, volume changes which may take place during
failure must also be taken into consideration — a
fact often disregarded in theoretical approaches.
So far, no such general solution as would simul-
taneously satisfy all the aforementioned require-
ments has been developed.

Most of the earlier theories assumed plane surfaces of
rupture. Obviously, such an assumption is both geomet-
rically and kinematically inadmissible. In addition, the
solutions are often incompatible with the laws of statics.

Mizuno’s theory (1953) assumes the effect of
the soil’s own weight influencing not only the
bearing capacity, but also the shape of the slip
surface. Similarly to the theories which operate
on the basis of plane slip surfaces, Mizuno also
assumes a configuration of zones. Purely active
earth pressure prevails in the first zone and that
is connected to the plane bounded Rankine’s
passive zone by a domain which is confined by
a logarithmic helix. After having conducted a
detailed stress analysis a graphical solution has
been produced for deriving the p/by value from
q/by. Though the theory was originally elaborated
for granular soils only, the cohesion can also be
taken into account by adding the value ¢ cot @ to
the vertical stress ¢, or by taking ¢ + ¢ cot® as
the abscissa on the horizontal axis of the graph
instead of ¢ alone.

JAKY has proved that in the range of @ = 20-40° the
stress derived from Mizuno’s diagram could also be described
by Eq. (119), and that thebearing capacity p isapproximately
a linear function of the sum (¢ + b). This latter observation
has found its place in the Hungarian Code of Practice for
Foundations inasmuch as one of the multiplying factors of the
so-called limiting stress basic value is proportional to the sum

(¢ + b).

LunDGREN and MoRTENSEN (1953) also arrived
at the same conclusion that the shape of the slip
surface was a function of the load ¢, i.e. of the
depth of foundation.

The failure theories discussed above were all
based on the simplifying assumption that for a
footing located at a shallow depth, the shear
strength of the soil above the foundation level can
be neglected and that the only contribution of
this soil mass to bearing capacity is due to an
overburden pressure ty at the depth of the footing.

A more realistic solution to the problem was
developed by MEYERHOF (1951). He assumed that
the slip surfaces extend to the ground surface
(Fig. 145a) and that they consist of planar (AC)
and curved (CDE) sections. As a first approxima-
tion, the base of the footing is assumed to be
perfectly smooth. The area ACD represents a
zone of radial shear with a set of plane slip sur-
faces radiating from the edge A4 of the footing,
and ADEF is a zone of composite — radial and
plane — shear. The conditions for plastic equi-
librium can be established from the boundary
conditions on the base and sides of the footing.
To simplify the analysis, the resultant of the forces
acting on the side AF of the footing and the
weight of the prism AEF are replaced by normal
and tangential stresses acting on the plane AE.
This plane can thus be regarded as an “equivalent
ground surface” which is acted upon by the
stresses o, and 7,. The slope angle § of the equi-
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Fig. 145. Development of sliding surfaces according to Meyerhof’s assamptions (1951)

valent ground surface increases with increasing
depth.

The analysis leads to a general expression for
bearing capacity which is of similar form to that
derived by TERZAGHI:

p»=cN,+ qN, + byN,,. (122)

N, N, and N, are again bearing capacity factors,
but with a more generalized meaning, in that they
depend not only on the angle of internal friction,
but also on the shape and depth of the footing and
on the roughness of its base. The quantities N, and
N, can be derived from the analysis of a weightless
medium. N, 15 determined from the analysis of
the case when ¢ =0 and ¢ =90. We find the
critical slip surface, and, from the corresponding
minimum passive earth resistance, we compute
the value of N,. As can be seen, Meyerhof’s solu-
tion contains the same inconsistency as Terzaghi’s,
namely that the bearing capacity factors in Eq.
(122) do not correspond to one and the same
critical slip surface.

In the zone ADE planar shear stress conditions
prevail and limiting equilibrium conditions require

the fulfilment of the relation
7, =o0;tan®P + ¢

between 7, and o; which act on the plane AD
and DE, respectively.

Should 7 mean the inclination of the failure
plane to the horizontal, and

# = 45° — @2 + 90° + p — n = 135° +
+ B —n— 02

that of the plane 4D, m should mean the ratio of
the shear stress to the shear resistance on the
substitutive ground level. As there is a radial
shear in the domain ACD here the slip surface is
a logarithmic helix (cf. Prandtl’s theory). In this
way it can be demonstrated that

(1 + sin @) - exp (24 tan D)
(1 — sin @) - sin (21 + D)
(1 + sin @) - exp (29 tan D) (123)

(1 —sin®) - sin (20 + @)

p:ccot@[ —1]+

+ Po
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In this expression the multiplier of ¢ is identical
with N, and that of p, withN,. Their values can
be read in Fig. 145b.

The third bearing capacity factor, N,, can be
derived from the particular curved slip surface
giving the least passive earth pressure. The centre
O of a trial slip surface can be chosen arbitrarily,
and then the moment of equilibrium can be
written as

_Enl + W,

Ep (124)
Iy
where Ep = means the passive earth pressure
on the plane BC,
E, = is the passive earth pressure origi-
nating from the resistance of the

prism DEG.

By repeating the procedure for a number of
centres O, we can find the location of the critical
slip surface and the minimum value of Ip. Finally,
the ultimate bearing capacity of the footing is
computed from the equilibrium of the soil wedge

ABC:
o — by [4E, sin (45° + 9[2)
2 b2y
125)
1 T by (
— —tan(45° - ®/2) = L N, .
5 an (45° + /)J 5 N

Values of IV, are plotted in Fig. 145b as func-
tions of f and @ for the two limiting cases when
m=0 and m = 1.

As a next step, approximative values should be
attributed to substitutive stresses 7, and ¢,. These
can be calculated from the forces acting on the
sides of the footing, and the weight of the earth
mass above the substitutive ground surface. The
forces on the sides of the footing are combined
from the adhesive force (4 = at) and from the
earth pressure in the direction of J, i.e.:

t2y
E=K . 126
“"2cos & (126)

The weight of the earth mass is:

t2y
= -——cot p.
5 B

Knowing the forces 4, E and W, the components
T and N acting in the plane of the substitutive
ground surface can be calculated. Knowing them,
we find:

gg — Y sinf (127)
t
and
Ty = Tsing (128)

t

To illustrate the significance of the angle £,
Fig. 146 shows five typical cases. When 8 = —90°,

the situation is equivalent to unconfined compres-
sion. When —90° <8 <0, the ground surface
slopes symmetrically downwards. The case when
B =0 and m = 0 corresponds to surface loading.
The condition 0 < 8 <L 90° characterizes shallow
foundation below the ground surface and deep
foundations. Finally, the case when 8 = 90° and
m = 0 is equivalent to that of a vertical slot for
which a solution was also given by JAxy.

Meyerhof’s theory suggests that the ecritical
load of a footing increases rapidly with increasing
depths. This is, however, contrary to the results
of loading tests. Therefore, MEYERHOF proposed
in 1951 that for foundations with a ratio ¢/b > 5
a reduced value of the angle @ should be used in
the analysis.

MEeyverHOF (1951, 1953, 1957) has subsequently
extended his theory to circular and rectangular
footings, and compared his results with those
obtained from laboratory and field loading tests.
For relatively shallow foundations he found a
good agreement between computed and observed
values. He also investigated the effect of the
groundwater and of the roughness of the base on
the load-bearing capacity and extended his anal-
ysis to eccentiic and inclined loads. Some of
these problems will be discussed in the following
sections. Also, a general formula for the load-
bearing capacity will be given in Section 2.1.2.5.

The problem of the load-bearing capacity of
a continuous footing was also investigated by
Baira (1962). His solution differs in many respects

B=90°

|
|
(e) B

Fig. 146. Five various cases for the value of angle 8



Fig. 147. Assumption of the sliding surface according to
Barra (1962)

from those previously discussed. The slip surface
is assumed to be made up of circular and plane
sections (Fig. 147). An elastic wedge is formed
beneath the rough base of the footing. The twin
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slip surfaces branch off from the centre line of the
footing with an angle 45° 4+ @/2 to the horizontal,
which is the statically correct value. BALLA used
the Kotter equations (KGTTER, 1882) to determine
the distribution of the normal and tangential
stresses on the slip surface. The parameters of the
slip surface can be obtained from equilibrium
conditions. Once the surface of rupture is estab-
lished, the critical load on the footing can be
determined by a limit state analysis which leads
to a general formula similar in form to Eq. (119).
In this case, however, the bearing capacity factors
depend not only on the angle of internal friction
of the soil, but also on its limit weight and cohe-
sion; moreover, it depends on the width and depth
of the footing. For the purpose of practical com-
putations, BALLA has worked out a set of charts
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148. Diagrams for finding the bearing capacity factors according to BarLa (1962)
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giving values of bearing capacity factors for
various geometrical conditions. These graphs are
shown in Fig. 148. As a first step, the radius r of
the critical slip surface has to be determined as
a function of the quantities @, ¢/by and t/b. Using
the parameter p = r/b thus obtained, we can find the
factors N, N;and N, from another set of graphs.

Balla’s solution gives considerably greater values
for N, than those obtainable by other theories;
this implies a more significant influence of founda-
tion width on the load-bearing capacity. On the
other hand, the effect of depth appears to be less
pronounced than suggested by the Meyerhof
theory. These differences were found to be in close
agreement with the results of loading tests and
with full-scale observations. A detailed comparison
of theoretical and measured data will be given in
the next section.

An advanced view of the field of bearing capa-
city theories is presented by Hu (1964). It is
stated therein that the angle yp between the
horizontal and the side planes of the earth wedge
below the footing depends on the density and the
angle of internal friction of the soil, and on the
load ty at the foundation level; its value ranges
between @ and (45° + @/2). Consequently, the
bearing capacity factors — in combination with
the minimum principle relating thereto — should
be selected on the basis of varying failure mecha-
nism. Values of N,, N, and N, as determined by
this procedure, are illustrated in Fig. 149. The
curve Ymn should be used in the case of @ = 0
and ¢ = 0, when @ is large and vice versa, and in
the case of granular materials (when ¢ = 0), as
well as when the load ty is zero or negligible.

Some authors suggested using some relations
among the bearing capacity factors (similar to
Eq. (111)) for the calculations. BrincH HANSEN
draws attention to the fact that in the case of
D=0

N,=N;,—1 (129)

and (with reference to the Prandtl-Caquot theory)
Eq. (111) is valid, we can calculate with these
theoretically correct relationships in their own
realm. Substituting these relations into Eq. (119):

p=[b, + ccot P} (N, — 1) + tyN,. (130)

CaquoT and KERISEL (1953) found the relation

N,=2(N,+1)tan® (131a)
and BIAREZ et al. (1961) the relation
N, =18(N, — 1) tan® (131b)

acceptable for use.

2.1.2.4 Bearing capacity of finite size footings

The bearing capacity of limited-size footings can
be estimated at present only from semi-empirical
formulas. These have been derived as representa-
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Fig. 149. Bearing capacity factors according to Hu’s theory
(1964)

tions of model test results conducted during the
last decades.

The results of tests have proved that the bearing
capacity below a footing becomes greater when
the shape of the contact area becomes more
closed, i.e. when the ratio of the periphery to
the contact loading surface decreases. This phenom-
enon can be explained by the fact that by
increasing the closeness of the foundation area a
relative increase of the slip surface areas will be
achieved which then adds to the resistance
against failure, as in this way the magnitude of
the earth mass involved in the bearing capacity
increases, While the load might originate two slip
surfaces only on the two sides of a strip founda-
tion, the failure surface has to be developed on
all four sides of a rectangular footing. In the latter
case it obviously needs more effort to mobilize the
shear resistance of the soil. As the length of the
slip surface depends on the width of the footing,
the sum of slip surface areas is substantially
greater below a square shaped footing as it would
be below a strip foundation of equal width. The
test mentioned proved that this favourable effect
can be anticipated only when the foundation sub-
merges below the ground surface (¢ =< 0).

Multiplying shape factors (f;) are generally
affixed to the basic form of the bearing capacity
formulas — which were originally derived from
experimental trial tests for strip foundations —
to extend their suitability for the calculation of
the bearing capacity beneath footings of limited
sizes. The basic formula then takes the following
form:

P = f,byN, + f#yN, + feN..  (132)
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Shape factors

Author
f‘/ fll fc
TERZAGHI circle 0.6 1.0 1.3
square 0.8 1.0 1.3
SCHULTZE circle 0.667 1.0 1.0
B B B
rectangle 1— 3T 14 3T 1+ 3L
B B
BrincH HANSEN I 1—04— 14+02— —
L L
11 1—(0.2 5P B =fuford=0f =1 1-+(0.2 o) B
—(0.2+tan’®) —— fo=fofor® =0f, = + (0.2 + tan"®) -
B B B N,
DE BEER 1 0.4-L— 1+Ttand5 1+T_c
B B
Muns 1—-0.18 T 142 T —
. B B B
Hungarian Standard 1—-o0.1 T 1402 I 1402 T

Some authors, as well as the Hungarian Code
of Practice for Foundations, suggest the use of
the shape factors listed in Table 5. The following
conclusions can be deduced therefrom.

Shape factors depend solely on the geometry
of the footing, with the exception of DE BEER’s f;
and f, factors (1970). Special attention should be
attributed to the shape factors suggested by
Muss (1969) because these have been established
on relatively large (0.5 to 2.0 m?) footings in the
course of model tests. According to these results,
the reduction in the first term of the original
bearing capacity formula will be less than that
inferred by other sources, while the increment of
the second term becomes far more substantial.

In respect to the shape factors proposed by
Schultze it can be proved that the bearing capa-
city — independently of the size of the footing,
and of the values @, t and y — decrease succes-
sively when the shape of the footing becomes
more elongated. This can be proved as follows
(RETHATI, 1976).

Failure stress below square footing of the
width B is:

B
P =fy-—2—yNy + fir N, + f.eN,. (133)
Take B as the ratio of the width (B’) to the
length (L) of a quadrangle footing; it then fol-

lows from the equality of the loaded contact
areas that

B'=BJp

and so the limiting stress becomes:

’ B B ’ ’
P:fy_';/_piNy +fqt7Nq +fCCNc' (134‘)

7#

As f, >f; and f. > f/, and the other terms
remain identical, the last two terms in Eq. (133)
are greater than in Eq. (134).

In respect to the first term it has yet to be
proved that

BJE

B ,
g =h=

which means that

f, > 1 VB.

According to SCHULTZE

(135)

2 .
fy:?andfyzl—f;—.

Substituting these values into Eq. (135) we get
2 B\i5
Zsh-£
L

which is:

2 >1B3 —p).

p varies between zero and one; at the two ex-
tremes the right side term of the inequality may
take the value zero or two, respectively. Thus it
has yet to be proved that the term on the right
side of the inequality function

y =183 —p

is nowhere greater than two, in the range of
f =0 and p = 1. This requirement is identical
to having a monotony trend of y function in the

(136)
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interval of § = 0 and § = 1, thus its calculus is
positive in each point. This actual calculus is:

, 1 = 3—B =
= = 3 _ _— _ —_ —_
y 2Vﬂ( B — VB 2/ Ve
3(L—p) (137)

— .

28
Owing to the postulatum that 0 << 8 < 1, both

the nominator and the denominator are positive
for the whole interval, and so the monotony, and
consequently the validity of the inequality (135),
is duly proved.

The demonstration above therefore confirms
that by using Schultze’s shape factors an elonga-
tion of the footing -— by keeping the contact
area identical — causes a gradual decrease in the
bearing capacity.

The same cannot be said when the shape factors proposed
by Brincu HANSEN (1955, 1961) are used. Namely, the term
of the right side of the inequality is

(1 — 0488,
the calculus of which is
1-128
28’

this gives the zero result when 8 = 0.833 <C 1. Thismeans that
the bearing capacity would not reach its maximum when the
shape of the footing is square.

’

(138)

When the requirement is accepted that the
bearing capacity of footings of identical contact
areas has to decrease monotonously between

B/L =1 and B/L =0, it can be demonstrated
that A4 has to be equal to 1/3 in the equation

B
—1— A4,
Iy L

because the maximum can be achieved at the
zero value of the expression

(1—4p) - VB, (139)

i.e. where
(0~ ) VY = = =
- lﬂ —0
2\/B '

And this condition is really only fulfilled when
A =1/3.

2.1.2.5 A general formula for the load-bearing
capacity

A formula intended for general use was pro-
posed by BrincH HanseN (1961). He retained the
basic composition of the Terzaghi formula, but

by introducing various coefficients, he arrived at
the following, more generalized equation:

ps = byN,f,d.i, + qN,fdi, + eNfdi,, (140)

where N, N;and N, = the usual bearing capacity
factors,

shape factor,
depth factor,

inclination factor.

f
d

(I

By means of Eq. (140) we can determine the
bearing capacity of a foundation of any shape,
subjected to any load, centric or eccentric and
vertical or inclined. The f factors, as proposed by
BrincH HANSEN can be read from Table 5. Here,
therefore, only the suggestion made in respect of
the d and i factors are dealt with.

The depth factors d can be obtained from the
following equations proposed by BrincH HANSEN:

0.35
d, ~1 , 141
‘ o 0.6 (141)
t 1+ 7tant®d
d —1 o
d,=d. — ; (dg ~ d; when @ > 25°), (142)

d,=1. (143)

The use of these factors is only permissible if the
shear strength of the soil strata above foundation
level is not smaller than that of the soil beneath
the base of the footing.

The equations for obliquity factors are

. 1+ sin @ sin (2a — D) e—(—;i + @ — 2djtan & Az

“ 1+ sind

H 2 (144)

~l-—1,

[ V—}—Accot(b]

L 1—,

= - 145
ic lq Nq‘— 1 ( )
iy:ig. (146)

Here H is the horizontal component and V is the
vertical component of the resultant force R on
the base of the footing, and A is the area of the
base. Table 6 gives numerical values of the factor i.

Table 6. Coefficients of inclination, after Brinci HANSEN (1961)
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Fig. 150. Network of failure surface in the case of a leaning
load:

a — in a weightless medium; b — in a heavy mass

The equation of i, results from the theoretical
analysis of a weightless medium (Fig. 150a). The
slope angle « of the initial plane section of the
slip surface can be computed from the following
equation

(] V1 — (tan 6 cot )2 — tan §
tan oo — ?} = 5 .
tan
1+
sin @

(147)

In a real soil with y >0, the failure pattern is
similar to that shown in Fig. 150b.

In the case of a skew force, the shape of the
active zone, and the set of slip surfaces in it, will
be asymmetric. For the critical value of the
force P with the incline §, DUuBROvA proposed
the expression:

P..= B*»N, + 2BqNj,. (148)

Taking the bearing capacity factor, N/, of a
cohesive soil — according to Eq. (111) — as

(N;— 1) cot®
the failure stress can be written as:

p’ = ByN, + 2qN, + ¢(N, — 1) cot ®, (149)

where
B = the width of the footing,
q = the overburden pressure on the foun-

dation level (mostly ¢ = ty).

The bearing capacity factors can be taken from
Fig. 151 as functions of § and .

In view of these considerations, the trial
tests carried out at Degebo (Berlin) are really
interesting, not only because of the impressive
sizes of the test footings, but also because the
loading events have been arranged in correspon-
dence with the long or the short sides of the
foundations.
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The loaded contact area had a length of 2 m
and a width of 0.5 m, and the foundation level
was at 0.5 m below the ground surface. From the
results the following conclusions can be drawn.

1. When the load was parallel to the long side
and had an inclination of § = 20° to the vertical,
the bearing capacity was 409, less than that for
the vertical load. As tan 20° = 0.37, Musus (1969)
concluded that the reduction in the vertical
projection of the force is in the range of (I — tan J).

2. When the load acted parallel to the short
side, the situation became even less favourable
because in this case the force acted in the same
direction in which — similarly to the case of a
vertical loading — the slip surfaces would have
developed anyhow.

Having analyzed the results of these tests (Fig.
152) Muns and Werss (1973) concluded that the
ratio of the vertical component of the force to
failure with incline § (P, and P, respectively) to
that of § = 0 can be written as:

— 2~ (1 — tan §)% (150)

The problem of eccentrically loaded footings
has been investigated by several authors. A com-
mon disadvantage of most theoretical solutions is
that they lead to very complicated formulas.
An approximate method, which is perhaps not
very accurate but which is simple and on the
safe side, was proposed by Meveruor (1963). He
introduced the concept of effective base area — a
portion of the actual base area on which the load
is centric. Its internal boundary is constructed on
the basis of axial symmetry as shown for a rect-
angular footing in Fig. 153. With this reduced
area constructed, the computation of the load-
bearing capacity proceeds as if the load on the
base were centric. Note that the width and length
of the effective base area should be entered into
the relevant equations.

PraxkasH and SAraN (1971) elaborated a theory
which is worth for attention on the ground that
the pressure to failure has been determined accord-
ing to conventional conditions — a failure mecha-
nism in the wake of an eccentric load. The bearing
capacity factors as suggested by the authors are
illustrated in Fig. 154. After investigating the
shape factors the authors found that for a dense
sand

f, =10+ (—21;— . 0.68) —:i + [0.43 _ _j’%) .
: (—f—r (151)

and for loose sand f, = 1. Factor f, was uniquely
unity for both loose and dense sands. Hardly any
variation with J has been found in respect to the
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third bearing capacity factor f,, so it was sug-
gested that a constant value of f, = 1.2 should
be used for square and circular footings.

In the light of the trial tests at Degebo the p
value calculated with the method of MEYERHOF
is less than in reality (Mugs, 1969). The results of
the model tests have been worked up to provide
a single factor (¢) to express the reduction in
respect of both the shape factors and eccentricity.

Pl B P P
sLmN | P LN | P
D=0 D=02m
0°| 1900 | 1 | 2130 | 7
10°| 1340 | 071 | 1730 | 0.81
20°) 620 | 043 | 1040 | 049
30°| 320 | 017 | 360 | 017

Fig. 152, Model test results obtained under leaning loads
(Muns and Weiss, 1973)

Pertinent proposals can be read from Fig. 155.
In the formulas:

k= ?  and k, = L s
a b
where
a, = a — l.l4ea
and

b’ = b — 1.14e,.

|1y

2_(0~ea/'_

Fig. 153. Establishment of the effective
load-bearing area under a force acting
eccentrically



2.1.3 Bearing capacity of footings expesed to particular
conditions

2.1.3.1 Foundaiions exposed to pulling forces

A shallow foundation might, in exceptional
cases, be exposed to pulling forces which then
should be accomodated with sufficient reliability.
Mors (Baugrundtagung 1956, Kéln) has con-
ducted model tests in the interest of enabling
comparison among three different design approaches
(Fig. 156). One of them (insert in Fig. 156a)
makes only use of the weight of the ripped prism
to balance the pulling force (here § is a function
of soil characteristics and the shape of the base).
The second calculates the friction on the side
walls of the prism of vertical wall (insert Fig.
156b). The third (insert Fig. 156c¢) applies the
earth pressure at rest to the vertical walls of the
prism (here the force E tan § = Ejtan® act
against pulling).

The reaction against pulling might then be
calculated in these cases as:

(a) Zpay = W, + W, + tan ﬂyt2[2b —}—%ttanﬂ],

(152)

(b) Zmax = Wy + W, + Uts, (153)

2.
(©) Zpax = Wy + Wy + U’T”K0 tan @, (154)
where W, = the weight of the footing,

W, = the weight of the earth prism above
the footing,
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Fig. 154. Bearing ‘capacity factors for eccentrically acting
vertical forces (PRAKASH and SARAN, 1971)

MoRrs’s suggestion was to apply the formulas
in the following situations:

U = perimeter of the footing, (a) for greater depth in loose soils;
s = average shear resistance, (b) for shallow foundation in cohesive soils;
K, = factor of earth pressure at rest. (c) for dense, cohesionless soils.
Case Reduction factors
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Fig. 155. Compounded shape factors for eccentric loads
according to Muns (1969)

Fig. 156. Design'of foundations exposed
to tension according to the Mors method

(1956)
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2.1.3.2 Anchorages

When the footing has an anchoring function
(Fig. 157) its bearing capacity can be estamited
by using MARIUPOLSKII’s (1965) formula:

P =
Ry/R)?+ &tan®-4(R+2¢h)R

I—(
- R— R3)yh
(R Ry 1 — (R/R)® - nh/R

(155)
where the symbols — other than in Fig. 157 and
the habitual ones — mean:

W, = the weight of the anchoring base,

& = coefficient of the side pressure (0.4-0.6),
¢ = specific cohesion,

n = coefficient which can be taken from

Fig. 157 as a function of @.
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Fig. 157. Design of anchorages by using MARIUPOLSKII’s
method (1965)
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Fig. 159. Coefficients Kp_. 4 and K, for mast foundations

For square-shaped footings, the length of the
side (B) should be used instead of the (2R).

The formula is valid for relatively shallow
pulled foundations only.

2.1.3.3 Mast foundations

The requirement that a foundation should
reliably accomodate horizontal forces from wind
pressure might be achieved in the simplest way
by employing mast (column) foundation methods.
In this case, piers are placed in boreholes and
surrounded with concrete.

The design procedure of mast foundations is
carried out in the following manner (see Fig. 158).

The horizontal force acting at the top of the
pier, then the so-called ‘““design moment’ of that
force at —0.70 m level at the fairly accurate
turning point should be calculated. According to
the trial test performed the turning point — which
separates the zones of active and passive earth
pressures — is generally in the depth of 0.7 m. The
balancing moment originating from soil resistance
can then be written as:

M, = KyK, A + hitK,, (156)

where b effective height of the base (which
is in contact with firm soil), m
K, , = value taken from the diagram in
Fig. 159,

value taken from Fig. 159,

bulk density of the soil, kN/m3,

shear resistance of the soil.

il

The following resistance of the soil can be used:

in cohesionless soils: v = 06h,y tan @,
in cohesive soils: as above, but with the addition

of ¢, kIN/m?2.



The limiting horizontal bearing capacity of a
mast foundation is then:

| L (157)

T w ht+h

where n — safety factor (< 2),
h = the height of the pier, m.

The vertical bearing capacity should be determined
as in in the case of a conventional shallow founda-
tion.

2.1.3.4 Foundation in the vicinity of slopes
Meverror (1951) suggested calculating the

bearing capacity of footings near to slopes of
granular soil from the formula

p = 0.5yBN,,, (158)
where B = the width of the footing,
N,, = a factor depending on the depth,

and on the distance of the nearest
edge of the footing to the slope.

Meveruor (1957) and Giroup and Tran-Vo-
Nuiem (1971) published numerical values for the
factor N,,. Those relating to @ = 30° are illus-
trated in Fig. 160. There is hardly any difference
between the suggestion of the two authors for
this case, but at @ = 40° the values proposed by
MEeYERHOF greatly surpass those given by GIRoUD
and TrRaN-Vo-NHIEM.

ScHIELDS et al. (1977) made trial testsin a 15 m
long and 2 m wide model-box. The density of
the dry sand employed in the box was 14.85 kN/m?
(“compact sand’), and 15.75 kN/m?® (‘“dense
sand”}, with relevant relative density values of
70 and 909, respectively. The test results are
shown in Fig. 161. On the basis of these tests,
the authors concluded that the coefficients of
Giroup and TrAN-Vo-NHIEM overestimate the
actual bearing capacity. The same can be said
in respect of Meyerhof’s coefficients also, but in
a more exaggerated manner.

2.1.4

Stability analysis of foundations
2.1.4.1 Safety against sliding

When a substantial horizontal force — due to
the incline of the resultant force — is transferred
onto the footing, consideration should be given
to checking the possibility of sliding of the footing.
According to classical suppositions, this would
ensue when.

H > Vtang, (159)

where @ represents the angle of friction between
the material of the foundation and the soil. (With

105

Bearing capacity of shallow foundations

Meyerhof
05 | 7 2 3 4 58 _,
2~ 10-2=3 e 7
/ ;0,,%:/ B
e
—_— . oding g s — — 7
Giroud 40?; -
e e g
80— ~2 =
—
100 ="
120 ' i
0 7 2 3 4 5B 36
Distance from slope
Fig. 160. Contours of theoretical Ny, values for @ = 30°
g Y
(Giroup and TraN-Vo-NHIEM, 1971, l\gIEYERHOF, 1957)
240 ] 2 3 4 58 _,
0 | " 7]
= B — 1 —
e 70:___’.—- %
———80 7
10— 5
I
0 I 2 3 4 5B

Distance from slope

Fig. 161. Contours of experimental N, values in compact-
ed sand (ScmEeLDS et al., 1977)

cohesive soils, both the cohesion and the adhesion
should be taken into account.)

Applied tests which were conducted in the
nineteen-sixties VARGA (1962) indicated that it is
not sufficient to investigate this phenomenon
solely on the basis of the above formula, as will
be seen from the following.

Concrete cubes with 25 c¢m long sides were
installed in the subsoil of the trial pits at the
Elisabeth bridge in Budapest (VARGA, 1962). Iron
blocks were applied measuring the force which
was necessary to maintain a continuous creep of
these blocks. These tests gave the surprising result
that by increasing the vertical force ¥V, the hori-
zontal force H, required to maintain the contin-
uous movement changed according to a concave
curve — instead of a linear increase — and so
was below the value which could have been
expected from Eq. (159) (see Fig. 162).

The phenomenon can be explained by the fact
that the applied skew load provoked failure along
a slip surface in the underground. To prove this
contention, a wooden plank was installed in the
ground; thereafter the tests really did show a
linear relation between the ¥ and H components,
as the development of a slip surface was obstructed
(see the dashed straight line in the figure). The

final conclusion has then been drawn beyond



106

Load-bearing capacity and settlement of shallow foundations
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Fig. 162. The force H = f(V') necessary to maintain continuous motion on
the granular subsoil with or without the application of a grid plate below
the concrete block (results of model tests carried out by K£zpr and Varca):
I — concrete cube on the soil without grid plate; 2 — as in I but with plate; 3 — gravelly sand -

smooth concrete g ~ 35°; 4 — relationship corresponding to @ = 37°

a certain limit — in contradiction to the inequality
in Eq. (159) — the normal force does not add to,
but lessens the resistance against sliding. The
validity of this concept can be felt extremely well
in that range where the vertical force approaches
the bearing capacity of the footing. A slight
additionzl horizontal force would suffice in this
case to destroy the stability of the footing. It can
be proved theoretically that the tangent on the
initial part of the curve is

Eﬂ: tan @,
dVv

while in the final section of the curve it is ver-
tical, i.e.

Insufficient safety against sliding can be reme-
died by choosing one of several possible measures
(greater depth or widening of the footing, anchor-
age, piling, etc.). In the case of a shale roofed hall
in Belgium, for example, the floor slab was used
to partially absorb horizontal forces from the
structure, in the manner of a longitudinal joint
inserted along the central axis of the building,
to ensure the development of shear forces; in addi-
tion the floor slab was slightly reinforced and bars
connected to the footings (HomEs, 1962).

2.1.4.2 Safety against tilt

This problem might emerge when the force is
eccentric.

In the case of soils, the principle of mechanics
is valid, inasmuch as a stiff body positioned on
top of an other stiff and rigid mass will tilt off
when the resultant of the forces acting intersects
the interface outside the boundaries of the sup-

porting mass. The soil will be unevenly compressed
and this process further accentuates the eccentric-
ity (this can be exceptionally dangerous in the
case of buildings with their centres of gravity
located high).

Tension cannot build up between the soil and
the footing, so there is no tensile section in the
stress distribution diagram. When the line of the
resultant force intersects the interface beyond the
internal third core, the edge pressure (o,) starts
to increase gradually. Its value can be determined
from the supposition that the centre of gravity on
the stress distribution diagram has to coincide
with the line of action of the force, and the area
of the diagram should equal the magnitude of the
force (Fig. 163). In the case of a strip foundation
the edge pressure can be found:

(a) when the acting line is inside the mternal
third core

q 6e
o, = — |14 —]|, 160
, B( B) (160)
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Fig. 163. Variation of average-, and edge-pressures as func-
tions of eccentricity e



(b) when it is outside the internal third core
o, = 493 (161)
3 B —2e
When the edge pressure due to an eccentric
load has to be determined in any horizontal cross-
section of a rigid body, it will be found that it
increases linearly with the distance of excentricity.
The same configuration exists with the pressure
acting at the edge of the foundation, in so far as
the force intersects in the internal third. As soon
as it exceeds this boundary, Eq. (161) will be in
force, and accordingly the edge pressure begins
to increase hyperbolically with excentricity. In
reality, the contact pressure distribution is not
uniform, even in the case of a central force (usually
it is not), and the formulas given above for rigid
bodies will also not be valid in their original form.
The graph indicates, however, how important it is
to check the safety against tilting when e is
greater than B/6.
There is no exact definition yet available in the
literature in respect of safety against tilt. The
general formula gives it as:

F the moment of forces preventing tilt

the moment of forces evoking tilt

This concept is not quite universal, however,
because the grouping of forces might be ambig-
uous. Some authors put all vertical forces in the
nominator, and horizontal forces in the denomi-
nator of the formula. In this way, for example,
reactive soil resistance as a force would be joined
among the preventive forces, which is not the case
in reality. Doubt arises similarly when there are
oppositely directed horizontal forces involved in
the problem. Suggestions can be found in the
literature to form the groups of forces in such
a way — and put them in the nominator or
denominator accordingly — that their turning
moment should be clockwise or anti-clockwise.
Also this concept can be dubious because when
the forces are divided into their components (or
the opposite) this may change the value of cal-
culated safety.

Leske and Kusureris (1965) proposed using
the formula below for the calculation of safety
against tilt:

F—_% (162)
a—c¢
where: a = distance between the centre of gravi-
ty of the footing and the axis of
tilt,
¢ = distance between the acting point of

the force and the axis of tilt.

According to this formula, for a centrally acting
force, F — co; and when the force acts at the
contour line (i.e. on the axis of tilt), F = 1. This
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interpretation complies with the commonly ac-
cepted principle that a definite F = f{e) safety
function has to be assigned to any eccentrically
acting vertical force. Following the definition
given by the authors, the value F = 1.5 can be
attained when the resultant force intersects the
base at 1/6th of the width.

Another question is where the axis of tilt has
to be ordered. Field experiments have shown that
the axis lies between the contour lines of the
footing when the soil is soft. Neglecting this
observation, disadvantageous consequences may
effect the safety of the foundation.

To avoid uncertainties in relation with safety
against tilt, the safety margin SM can be deter-
mined (see Section 1.6.2). This procedure has the
advantage that also the probability of tilt can be
anticipated.

2.1.5 Deformation theories

The basic idea in these theories is to find those
points in the underground which — under the
pressure of the load — attain a plastic condition.
For shallow strip foundations, this condition
would first be met at the two lower corners of the
strip. At the beginning of the research it was said
that the particular load would be the critical load
which causes the plastic zone to develop only at
these two points (PuziryEvskir, 1929; FrouLICH,
1934). Later researchers found the development
of larger plastic zones also acceptable.

The different deformation theories can be
reduced to the following common formula:

al{ty + B + c cot D)
= . 163
0 cotd + P — 7/2 T (163)

where B is not the width of the footing but y-times
the distance between the foundation level and the
depth to which the plastic zone extends.

z=0 (Pusirfevskii and
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Fig. 164. Development and dimensions of the plastic zones
according to presumptions made by PuzirJEvskm (1929),
FrOHLICH (1934), MasLov (1949) and JaroroLsku (1929)
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The formulas produced by individual authors
might be derived from Eq. (163), with the fol-

lowing substitutions:

JAxyY (1948a): B = 0, t = 0 (in the nominator
only);

Puzirievskir (1929)~-FréuricH (1934): B = 0;

Masrov (1949): B = 2b)/ tan @;

JarorpoLskir (1929): B = by tan (45° + @/2),

were b — half the width of the base.
(The above set is listed according to an increasing
q, value when b, @, ¢ and y are kept as constants.)
The conditions postulated by the above authors
in respect of the extension of the plastic zone are
illustrated in Fig. 164.
The common expression of deformation theories
(Eq. (163)) can be transformed into a configuration
similar to Eq. (119). So, for example, the Maslov-

formula can be written as:

go = byNM + oy NJT + eNM, (164)

where NM—=2Ntan®, (165)
NM N1, (166)

NM = Ncot®, (167)

Ne T respectively . (168)

cot® + b — n/2

From Eq. (165) to (167) the conclusion can also
be drawn that

NM = (NM — 1) cot® (for any @ (169)
q y

and
NM NM — 1 (for®@ = 0 and @ = 26.3°). (170)

From expressions (164) -— which were trans-
formed to resemble the failure stress formulas
— the desired allowable stress can be found by
help of similar diagrams as have been used for
failure stresses. Maslov’s bearing capacity factors
are, for example, illustrated in Fig. 165; Puuzir-
jevskii’s and Frohlich’s final values are gained
from Maslov’s formula when the first term is
eliminated (N, = 0).

When @ = 0, g, can be calculated in the fol-
lowing manner (RErHATI, 1966). Dividing the
nominator and the denominator in the first term

in Eq. (163), by cct @, it becomes:

Tty + e
gy = cot @(p cot @ b 1)
14 T

cot @ acot D

When @ = 0, the first two terms in the noini-
nator become zero (B should be substituted from
whichever theory), and the second and third terms
in the denominator would be zero as well (in
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Fig. 165. Bearing-capacity factors according to MasrLov
(1949)

respect of the second term becoming zero, the
proof can be given by the I"'Hospital-rule), and so:

qo = 7c -+ ty. (172)

In the Soviet praxis deformation theories are also used to
find the approximate value of the proportionality limit of
the deformation curve (¢, s)

2.2 Distribution of stresses in soils
2.2.1 Introduction

One important task of soil mechanics is fo pre-
dict the movements, especially settlements, that
buildings founded on a soil are likely to undergo.
If the foundation is properly designed, the stresses
induced in the soil by the load of the structure
are small enough not to give rise to plastic defor-
mations. Under such conditions, it can reasonably
be assumed that the soil is a perfectly elastic
material and so the stresses in the soil can be
estimated by the theory of elasticity. As is well
known, the equations of elastic theory are rigor-
ously correct only for materials in which stresses
and strains are proportional. When these equa-
tions are used for determining stresses in soils,
inaccuracies of unknown magnitude can occur.
But if we consider that there is normally a two-
or threefold margin of safety against the occur-
rence of plastic failure, it can well be assumed that
a constant ratio exists between stresses and the
corresponding strains, and therefore the elastic
theory based on Hooke’s law is applicable. If the
requirement of proportionality is not fulfilled, the
equation of the theory of plasticity must be used.
This means that we have to satisfy ourselves with
an analysis of the failure state in the place of an
elastic stress-strain analysis.

If a soil specimen is subjected to unconfined
compression or to triaxial compression, the stress—
strain curve will be similar to that shown in



Fig. 166. Up to a certain stress value (marked by
point A on the curve), strains appear to be pro-
portional to the corresponding stresses even }f
the test is performed with the utmost care. This
apparent linearity, however, is only due to imper-
fections in laboratory testing techniques and
apparatus, since the deformations of disperse
systems such as soils must inherently be governed
by a law different from Hooke’s law.

Nevertheless, within the stress range previously
mentioned, the approximation of linearity is per-
missible provided the stresses are kept within
these limits everywhere in a soil mass. This is
the case, for example, when the stresses acting
qh a layer at a great depth are to be estimated
for the computation of settlements.

The stress-strain diagram in Fig. 166 can be
divided into three characteristic sections. For
section I (0OA) it can be assumed that Hooke’s
law holds. The vast arsenal of the theory of
elasticity is then at our disposal to compute
stresses in soils. For the equations of elastic
theory to be applied, only the Young’s modulus
and the Poisson number of the soil need be deter-
mined. Past the limit of proportionality (point A4),
very little if anything is known about the law
governing the stress—strain relationship (see Sec-
tion 'II, AC). Even approximate solutions for
practical problems are lacking. This fact in itself
would be of minor importance if it were possible
to determine the upper limit of proportionality
with a reasonable accuracy. A definite criterion
for this, however, remains to be found.

As the stresses are further increased, a limit is
reached at which continuous deformations occur
under constant load (Section III). This condition
constitutes the fundamental criterion of plastic
flow; the soil is said to be in the plastic state.
Unlike state II, the plastic state should by no
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means be regarded as terra incognita, and in fact
it has been the subject of extensive research.
Rigorous theoretical solutions are available for
special cases such as ideally plastic and weightless
soil masses and also for a semi-infinite mass, both
cohesive and frictional, with or without a uniform
surcharge on the surface. For more complicated
practical cases, approximate solutions or semi-
empirical methods are in use.

Rigorous solutions for a variety of boundary
conditions are available only in the theory of
elasticity. This fact has to some extent biased the
theoretical approach to problems encountered in
soil mechanics. Theoretical solutions which were
developed in the 19th century have been applied
indiscriminately to practical problems in which
the boundary conditions were anything but iden-
tical with those upon which the original solution
was based. A blatant example is the attempt to
derive the stresses induced in a soil mass by fric-
tional forces acting on the shaft of a pile from
Boussinesq’s fundamental formula for stresses due
to a point load on the surface of a semi-infinite
mass. The application of elastic theory has also
been encouraged by the fact that Boussinesq’s
formula (and all those derived from it) for vertical
stresses does not contain the elastic .constants.
Young’s modulus and Poisson’s number of the
material are difficult to determine experimentally
for soils.

It should also be noted that in soil mechanics
it is the equations from elastic theory that are
primarily used for estimating stresses under loads,
whereas deformations, especially settlements, are
generally determined by entirely different methods.

Yet another aspect is worth noting.

Since a study of the mathematical theory of
elasticity is beyond the scope of undergraduate
civil engineering courses, soil engineers often use
the equations from elastic theory without being
fully aware of the specific conditions upon which
their derivations were based. Furthermore, the
relatively complicated formulas of elastic theory
produce the illusion that they are capable of
furnishing accurate results. The applicability of
a formula should not, however, be judged on the
ground of its complexity or on the multitude of
the factors involved, but by the degree to which
the assumptions upon which its derivation was
based are fulfilled in the given case.

The numerous pitfalls involved explain why,
from the very beginning of the application of
elastic theory to soils, there has been a tendency
to make use only of the simplest formulas in
practical computations. But if one accepts, sub-
ject to certain conditions, the applicability of the
theory of elasticity to soils, one must be consistent
and find solutions that satisfy all the boundary
conditions of the problem in question. Unfor-
tunately, even if some of the actual boundary
conditions are fulfilled, the resulting solution may
be too complicated for practical use. Nevertheless,
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Fig. 167. Equilibrinm on a volumetric soil element in the
plane case

it is often imperative, from both scientific and
practical viewpoints, to use exact formulas, no
matter how complicated they may be; for example,
in order to assess the relative significance of cer-
tain factors influencing the distribution of stresses
in soils or to ascertain whether or not certain
simplifications made in the computation of settle-
ments lead to tolerable errors. When such an
analysis is performed, it is possible to develop
approximate methods of calculation which are
easy to handle and at the same time accurate
enough for most practical purposes.

After these preliminary remarks on the ap-
plicability of elastic theory to soils, we shall brief-
ly discuss the fundamental relationships of the
theory of elasticity. After that we shall deal with
some common problems of the distribution of
stresses in soils.

2.2.2 Fundamental equations of the theory of elasticity
in the plane state

Many civil engineering problems associated
with the distribution of stresses are two-dimen-
sional. These can be defined as either a plane
state of stress, when all the stresses acting on
a structure or on a mass of soil are parallel to
a given plane, or a plane state of strain, and this
is more common, when the body considered is of
infinite extent in one direction whereby the strains
in that direction are equal to zero (retaining walls,
embankments, continuous footings, etc.). The
basic equations for these two kinds of plane state
are closely related and can be dealt with together.
In either case, the determination of three stress
components o, 0, and 7,, is required for the
state of stress to be defined completely. The
strains and deformations are obtained in both
cases as linear combinations of stresses.

In order to describe the state of stress, let us
consider the equilibrium of the elementary prism
shown in Fig. 167. The coordinated stresses acting
on the sides of the prism are assumed to be con-
tinuous and differentiable functions of the coor-
dinates x and z of point P. Hence, the difference
between the stresses on opposite faces in one
direction is obtained, as the elementary change in
the coordinates multiplied by the rate of change,
is given by the partial derivative with respect
to the variable considered. Provided the dimen-
sions of the prism are sufficiently small, the ele-
mentary force on one of its faces can be obtained
as the product of the width of the face and the
average stress (the stress acting at the mid-point)
on the face. In soils, a body force -~ the weight
of the prism — must also be taken into account
since it is of the same order of magnitude as the
forces acting on the boundaries of the prism. By
making use of the condition for equilibrium that
the sums of elementary forces parallel to diree-
tions x and z, respectively, must be equal to zero,
we obtain the following equations

00

x

— (rxz (AF2 dz) de = 0,
0z

o,dz —

o, +

dx] dz + 7,,dx —

(173)
o dx — (Uz —}—%’i dzJ dx + 7,.,dz —
z

0Tx,

x

— (‘sz + dx] dz 4 ydxdz = 0.

After simplifying and rearranging terms, we
obtain

@x_ + _az& =0,

0x 0z (174)
00: | 0%

0z ox )

The above system of equations, also known as the
Cauchyan equations, represents the conditions for
equilibrium in a two-dimensional problem. These
conditions must be satisfied at every point within
the mass subjected to stresses. In addition, the
stresses must satisfy the boundary conditions.

It should be pointed out that Eqs (174) are
valid also for the case where the stresses on the
sides of the elementary prism are not uniform
as assumed, but change linearly. In this case a
third equation, the moment equation of equilib-
rium should be involved to obtain Eqs (174).

As was previously stated, in a two-dimensional
problem three stress components, which are func-
tions of the coordinates, are required to define
the state of stress in the vicinity of a point. The
two equilibrium conditions expressed by Eqs (174)
are, however, insufficient to find the three un-



knowns. The problem is thus statically indeter-
minate and a third equation is needed. In a sta-
bility analysis, the missing equation is provided
by the requirement that in a limiting state of
equilibrium the stresses must satisfy the condition
of failure. As regards strains and deformations,
the problem remains indeterminate. In a problem
of deformation, the strains caused by the stresses
must be compatible with the laws of geometry;
this requirement, linked with a physical relation-
ship between strains and stresses, will furnish the
third equation required to solve Eqs (174).

In the theory of elasticity we are concerned
with very small deformations. We also assume that
the supports — the boundary forces — are suffi-
cient to prevent the body from being moved as
a rigid body. This means that an element within
the mass cannot undergo any displacement
without being deformed.

Let the components parallel to the axes x and
z of the displacement of a point O be denoted
by u and v, respectively (Fig. 168). The point A4,
located at a distance dx from O on the axis x,
will be shifted to a new position A’. Its displace-
ment parallel to x is given by

u+ ou dx.

o0x

The change in the horizontal component of the
distance between points O and A is equal to

—3—% dx and hence the horizontal strain is Ju/dx.
x

In a similar manner, the strain in the vertical
direction is found to be equal to dv/9z.

As a result of the displacements, the directions
of the straight lines OA4 and OB will also change
so that the lines 0’4" and O’B’ deflect by angles
ov/0x and Ou/0dz, respectively. The change in the
angle AOB<, which is originally a right angle,
is determined by

Py
ox 0z

This quantity is denoted by y and called the shear
strain.

The deformations in the two-dimensional case
are thus determined by the following expressions:

ou ov ou ov
== Y= — +——. (175)

0z 0z 0z Ox
Since the three components of strain were derived
of two components of displacement, u and v, they
cannot assume any arbitrary value, but are inter-
related. Differentiating the first expression twice
with respect to z, the second twice with respect
to x and the third once with respect to x and once
with respect to z, leads to the following expres-
sion:

Ex

328x + 3282 _ 327xz

= . 176
972 dx? 0x0z (176)
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Fig. 168. Modifying components

Thic is known as the equation of compatibility and
implies the requirement that the deformations
must be in harmony with the laws of geometry.

The relation between stresses and strains can
be established experimentally. In the theory of
elasticity it is postulated that the stress—strain
relation is linear, as is stated by Hooke’s law,
and that the principle of superposition is valid.
The latter statement means that the strain, in one
direction, produced by a composite state of stress,
is equal to the sum of strains, in the same direc-
tion, produced by each one of the stresses in-
dividually.

In the three-dimensional case, the linear strain
components are given by the following expressions:

1

Ex = —E" [Gx - H(Gy + o'z)]v
1

=g [oy — plox + 0], (177)
1

& = E [Gz - #(Gx + o'y)]°

In the plane state of stress o, = 0, and therefore
from Eq. (177) we obtain

1
& = _(Gx - sz) ’

E
1 ”
g, = —E— (0, — poy), (178)
kw1
E G

Here the constant G is the shear modulus.
Substituting these components of strain into
the equation of compatibility, Eq. (176), leads to

2

32
gy (0x — poy) + Ec;(dz — poy) =
. (179)
—21+ )0
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Differentiating the first of the Cauchyan equations
(174) with respect to x, and the second with respect
to z and adding the two, we obtain

Pree [ Pox _%z)
0x0z 0x? 92 |
Substituting into Eq. {(179) gives
0° *?
oy +0,)=0. 180
e [ (180)
Using Laplace’s operator
*? *?
vV = .
0x? + 0%2
Equation (180) becomes
v {0y + 0,) = 0. (181)

This is an equivalent to the equation of compati-
bility, expressed in term of stresses.

In the plane state of strain &, = 0. From Eqs
(177) we obtain

y

sx:%m ) oy — w1 ) o],

e, = % [(1— ) 0, — (1 + @) o], | (182)
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Fig. 169. Volumetric soil element in the cylindrical coordi-
nate system

By substituting Eqs (182) into Eq. (176) and
making use of the Cauchyan equations of equi-
librium, we can verify that Eq. (180) holds also
for the plane state of strain.

To sum up, the solution of a two-dimensional
problem of the theory of elasticity amounts to
solving the following simultaneous partial differ-
ential equations:

_8&‘_ + 87:’@_ =0,

ox 0z

862 8 Xz

0? 0?

—_— oy +0,)=0
8x2+ o (ox + 02)

A workable method of solution is to introduce

a stress function, known as the Airy function.

AIry (1862) showed that the first two equations,

signifying equilibrium conditions, in Eqs (183)

are satisfied by a function F(x, z) such that the

three components of stress are defined as

2F 2F 92F

= ,0,=—— and 1, = — — yz
0z2 O0x? 0x0z

(184)

The correct stress function will also satisfy the
equation of compatibility. By substituting the
expressions of stresses from Eqs (184) into the
third of Eqs (183), we obtain the following partial
differential equation for the Airy stress function:

PHF

84F 84F

2 + =0, 185
oxt + 0x202* 0zt (185)

with which the usual notation becomes
v v F=0. (186)

The solution of a problem in two dimensions con-
sists In finding a biharmonic function F which
satisfies E.q. (185) and whose partial derivatives,
representing components of stresses (Eqs (184))
satisfy the boundary conditions of the problem.
Once such a function F(x,z) is found, the com-
ponents of stresses can be obtained by differen-
tiation. The components of strain are determined
by the following expressions:

E¢, =0, — poy; Eey =0y — poy; Gy, = 1,,. (187)

In soil mechanics, it is often expedient to treat
problems of stress distribution in cylindrical coor-
dinates (Fig. 169). For such cases, neglecting the
unit weight of the soil, the equations of equilib-
rium are

80r i a":ré? + 0, — Og — 0’

or r ob r (188)
1 dos 076 + 27,6 0

r ob or r )



The solution is again obtained in the form of a
stress function f(r, 6) whose partial derivatives
furnish the components of stress:

o — L Oof 1 &f
’ r or 2 962’
o*f
Og or2 (189)
Lo 1 ¥ 0 ii’_f_)
A 06 r ordb or (r 00

It can be verified by substitution that Eqs (189)
satisfy Eqs (188). In order that the solution be
geometrically admissible, the stress function must
also satisfy the equation of compatibility. With

z
rP=2%24+2% and tan-1 6 =",
x

Equation (180) can be transformed into the fol-
lowing polar form
02 1 0 1 ¢

(— TR A

or* r or % 092

By substituting the stress components derived
from the Airy stress function f(r,6), we obtain

[_‘(’2_ 19 ‘1__32_](& Lof 19fi
or? r or r2 902/ o2 r 9r r? 962

(191)

] (6, + 0g) = 0. (190)

or using Laplace’s operator
v vf=0. (192)

A special difficulty in solving problems of the
theory of elasticity arises from the fact that apart
from Eq. (185) or (191) there is no guidance
whatsoever as to how to find the stress function.
We only know that this function must be of the
biharmonic type. A correct solution can normally
only be found after laborious experimentation.
Among the available solutions we have poly-
nomials, trigonometric functions, Fourier series
and Fourier integrals.

2.2.3 Stresses in a semi-infinite mass; plane strain
2.2.3.1 Line load on the surface

The problem is set out in Fig. 170. We have
to determine the stresses in a semi-infinite soil
mass with a horizontal surface a—a due to a uni-
form load of intensity p acting on a line of infinite
length which passes through point O at right
angles to the section considered. The stresses due
to the body force — the weight of the soil mass
itself — will be neglected and only those caused
by the surface load will be computed.

Let the stress function be of the form

f= Arfsin 6. (193)

8 A. Kézdi and L. Réthati: Handbook
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Fig. 170. Vertical line load on the surface of the half-space

By substituting the corresponding partial deri-
vates of this function in Eq. (191), we can verify
that it is indeed a biharmonic function. The com-
ponents of stress can be obtained from Eqs (189):

24 cos b
r T T e
r
6g =0,
1:)'8:0'

The state of stress is found to be very simple; the
distribution of stresses is radial. Any element of
the soil mass is subjected only to a radial compres-
sion. At any point such as P, the direction of the
major principal stress ¢, is coincident with that
of radius vector OP, while the minor principal
stress is zero.

The constant 4 in Eq. (193) still needs to be
determined. To this end we consider the equilib-
rium of a half-cylinder of radius r with its axis
passing through O (Fig. 171). The sum of the
vertical components of the elementary radial
forces o,rd0 on the cylindrical surface must be
equal to the line load per unit of length, i.e.

72 72
—p=2 J o, co8 0 rdf = 44 | cos?0df =
0 0

72
= Am,

0

1 1
=4A4|-—sin 20 + —90
[4s1n —{—2 ]

: s
A:: o rdé

Fig. 171. Equilibrium conditions
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whence

R
T

¢
After substituting in Eq. (193), the stress function
becomes

f=—Lrosin6 (194)
T

and the radial stress is

g — — 2P cosb (195)
T r

The boundary condition that on the surface
(6 = —/2) the stress must be zero is also satisfied
at every point except O which is a point of sin-
gularity.

In rectangular coordinates the stress function
becomes

P

z
F=—~xtan-1—,
14 x

Hence the components of stress in polar and
rectangular coordinates, respectively, are

2p cos® 6 2p 28
O‘z:———-————-———:—-——————,

7 r 7 rt
O‘x:_gpg_cosﬂsinzﬂz_z_px_%, (196)
7 r w
2p cos? 6 sin 0 2p xz?

Te= """ = T =
7 r w

For the case of a horizontal line load on the sur-
face, the solution is similar to that for a vertical
load. The expressions of components of stress are
identical with those in Eqs (196), except that
the angle 6 is meant to be measured from the
direction of the line load as shown in Fig. 172.

If the direction of the load is inclined at an
angle « to the vertical (Fig. 173), the solution
can be obtained by combining the equations for
vertical and horizontal loads. After resolving the
load p into the vertical and horizontal components
p cos « and p sin «, respectively, the radial stress

p

zy

Fig. 172. Horizontal line load on the surface of the half-space

Fig. 173. Slanting line load

at any point P can be obtained by superposition.
From Eq. (195) we obtain

o, = — 2r [cos « cos O + sin « cos (90° + 0)] =

ar
(197)
= —EB—cos (x + 0).

ar

Thus we see that Eq. (195) is valid for any
inclination of load, only the angle 6 should always
be measured from the direction of the line load.

The o, isobars, lines of equal radial stress, are
defined by the equation

_2_p cos 6

g, = = constant.

T r

In the case of a vertical load, these lines are found
to be ellipses, with their centres on the vertical
axis z, having the equation

z
%2 - 22

The ¢, isobars for a vertical line load are curves
of the fourth order, defined by the following

equation

= constant.

z3

(x2 + z2)2

= constant.

2.2.3.2 Strip load on the surface of a semi-infinite
mass

The case of loading discussed in the preceding
section is mainly of theoretical interest since, in
reality, a line load is always distributed over
a finite width. In a state of plane strain, this is
called a strip load. Supposing the slab through
which the load is transmitted onto the soil is
perfectly flexible, the strip load acting on the
surface of an elastic semi-infinite mass can be
divided into an infinite number of elementary line
loads, from which the equations of stresses can be
derived by integration, making use of the principle
of superposition.



Beneath the base of a real footing, the contact
pressures may be distributed in different fashions.
The character of the distribution of stress is
influenced by a number of factors. In the simplest
case the load can be assumed to be uniformly
distributed across the base of the footing. This
case can be treated, after Timosuenko (1957), as
follows (Fig. 174).

Let the Airy stress function be of the form

f="dre.

The components of stress are obtained by succes-
sive derivations:

R
r or rz 962
2

0’8: af :2A0,
or?

T,g = — —
° or \r 00

d (1 of ) .y
If we apply this state of stress to a semi-infinite
mass, the situation shown in Fig. 174a results,
with normal stresses of intensity 4x and shear
stresses of intensity — A acting on the surface.
The normal stresses change sign at the origin O
of the polar coordinates.

If we now move the point O into a new posi-
tion 0, and change the sign of the stress function,

we obtain the surface loading shown in Fig. 174b.
By superimposing loading b on loading a, we
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Fig. 174. Derived regular distribution of a line load:

a — and b — surface stresses; ¢ — transformation of loads from a and b
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Fig. 175. Direction of principal stresses: isobar and trajec-
tory stress lines

obtain a uniform finite load acting on a strip
of width 2b on the surface. If the intensity per
unit of area of this strip load be ¢, then 247 = ¢
and, hence, 4 = q/2z. The stress function for the
combined case ¢ can be written as

|
s 27

(120 — 126,). (198)

The components of stress, with the notation of
Fig. 175 are determined by the following equa-

tions:
o, = % [sin (8, — 6,) cos (B, + 6,) +
+ (0. — 6] =qF(6:,6,) ,
o, = % [— sin(8,— 0;) cos(6, + 6,)+ | (199)
+ (0. — 091,

Ty = 1 [sin? 6, — sin%6,] .
1

It is noteworthy that for a uniform strip load the
principal stresses can be computed from the fol-
lowing expressions:

oy :%(28 -+ sin 2¢), l
(200)

Oy = 1(28 — sin 2¢) .
1

The meaning of angle ¢ is shown in Fig. 175.
According to Eqs (200), the principal stresses
depend solely on angle ¢. It follows that the
principal stress isobar for a given angle ¢ is a
circle which passes through the edges I and 2 of
the footing and for which the circumferential
angle subtained by the chord 2b is equal to 2e.
The major principal stress makes an angle (6; +
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Table 7. Influence factors of vertical siresses o;/q below
a strip load of uniform distribution

\ x/b .
/b \ 0 0.5 1.0 1.5 2.
0 1.000 1.000 0.500 0.000 0.000
0.5 0.959 0.902 0.497 0.089 0.019
1.0 0.818 | 0.735 | 0.480 { 0.214 | 0.075
1.5 0.668 | 0.607 | 0.448 | 0.270 | 0.146
2.0 0.550 | 0.510 | 0.409 | 0.288 } 0.185
2.5 0.462 | 0.437 | 0.370 | 0.285 | 0.205
3.0 0.396 | 0.379 | 0.334 | 0.273 | 0.211
3.5 0.345 | 0.334 | 0.302 | 0.258 | 0.216
4.0 0.306 | 0.298 | 0.275 | 0.242 | 0.205
4.5 0.274 | 0.268 | 0.251 | 0.226 | 0.197
5.0 0.248 | 0.244 | 0.231 | 0.212 | 0.188
6.0 0.209 | 0.206 | 0.198 | 0.186 | 0.171
7.0 0.180 | 0.178 { 0.173 | 0.165 | 0.154
8.0 0.158 | 0.156 | 0.153 | 0.147 | 0.140
9.0 0.140 | 0.139 | 0.137 | 0.133 | 0.128
10.0 0.127 | 0.126 | 0124 | 0.122 ; 0.117

-+ 0,)/2 with the vertical. The principal stress
trajectories are confocal ellipses and hyperboles as
shown on the right-hand side of Fig. 175.

To facilitate computation of stresses, influence
values for the vertical stresses due an infinite
strip load are given in Table 7. For notation see

Fig. 175.

(a)

(c}

(e)

(9)

Fig. 176. Different formations of strip loads
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BriNcH HANSEN (1955) approximates the caleulation of
stresses below the center line of a strip foundation, using the
equations:

B
0 =0, = BP+ - (201)
and
B2
Oy = op = ﬁz)?. (202)

It should be noted that Eqs (199) can also be
obtained by integration from the expression of
stresses for a vertical line load (Eqs (196)). In the
same way, formulas can be derived for any other
type of distribution of strip load: linearly in-
creasing, triangular, trapezoidal, etc. Those cases
for which solutions are available in the literature
are compiled in Fig. 176. The corresponding
equations for the computation of stresses are
given in the following. All stress components are
referred to rectangular coordinates x, z.

Case 1
Uniform loading over one half of the surface of a

semi-infinite mass

Prineipal stresses:

T—f-b.
p ® e,
| 0 Al
X /N X X ANE T
< /‘P‘P\ 9 (b} /( X /\// /
g ; ST <ay
%2) z (x,z) (x,z) z (2{?)
a_. Q' 3) a.a—h—L,Q%
01\ i 0 L]
o y\;/\S X TN 2 o
QA ,\\"‘\‘fﬁ\L (d) \m
7 B NV4
RALARY (x,z) z
(x,2) (x,z)




Stress components:

Case 2

Triangularly distributed finite load

Vertical stress:

S G PY S P
% an{ (x—a)2+z2( )}

Case 3

Triangular load combined with semi-infinite uniform
loading

Principal stresses:

o= L H(a/’;’ 1 oxe zln%) 4

1
+z V1n2—< +a ]

Stress components:

o‘x:L[aﬁ —+ xo -+ 2zln&},
an R

1

0, = L [ap + xa],

am

Ty = P .
an

Case 4

Triangular load combined with finite uniform load

Principal stresses:

61,221[[‘15‘}'“’“‘{‘ 1111“111—:[:
an R,

2
= V{—(—wwun&]+

Stress components:

oy = [aﬁ—}—xa—{————(x—b)—{—2zlnR—]
amn R

2
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Case 5

Asymmetrically distributed triangular load

Principal stresses:

%J:£{1a+g+b:ﬁﬁ+iml&+
w|a b a R,
R
_1 1
+b nRz]i
pz /(1 &r «_ By
in]/a R0+ R, N a b}

Stress components:

pl=x at+b—x 2z . Ry

PR LR T T
w|a b a °
2z R
—l—_—“ln—'_l]»
b R,
o‘Z:L[ioc—{—a—l—b—x],
w)|a b
%_EF*ﬁ]
wla b
Case 6

Symmetrically distributed triangular load

Principal stresses:

RR
2= | —a(y + o) + x(a; — @,) — zln 1-2
| ot o) e — o) — e

an
pz s iRy 9
S —
x ot V R2 e T 2)?-
Stress components:
O, = [a(oc1 + ) + x(a; — a,) — 23 lnR R, ,
an R?

0, = L [a(oy + o) + 2oy — )],
a

pz
Tyz = = [“1 - Oc2] .
an

Case 7

Symmetrical combination of triangular finite loads
and semi-infinite uniform loads

Principal stresses:

mﬂ=fipw+wo—bw+av+xw-aa+

R, R; p=z V R,R; ,
In—2 2/ In2 —2 2= 4 (a0 —a')?.
TERR Rl] * rRR, )
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Stress components:

w=JLPw+ﬂﬁ+Na+w%+ﬂw—w%#

ai

R, R;

%:fiww+ﬂn—ua+wy+ﬂw—wm

Case 8
Symmetrical trdpezoidal load (embankment)

Vertical stress:

%=f§h@+ﬂ»+m+wu%+aa+
+ 2oy — ;)]

2.2.3.3 Some remarks on the computation of
stresses due to line and strip loads

1. In the literature one often encounters the
view that the equations of stresses for an infinite
line load, (Eqs (196)), are strictly valid only when
Poisson’s number is m = 2 (OupEg, 1939; Frou-
LicH, 1934). For other values of m, FrouLicu
(1934) developed an entirely independent stress
distribution theory. He started from the principle
that the propagation of stresses is radial, but the
intensity of the radial stress is proportional to
the (» — 1)th negative power of the radius vector
drawn from the point of application of the load
and not to its (—1)th power as stated in the
theory of elasticity. However, in the light of the
fact that in the theory of elasticity the equations
of stresses are derived from a stress function
satisfying the equation of compatibility, Vv F =
= 0 — which implies that the internal forces are
in equilibiium while both geometrical compatibil-
ity and boundary conditions are also satisfied —
there is no reason to suggest why the validity of
the solution obtained should be confined to certain
m values only. The simple rule of the distribution
of stresses, being radial, is found to be valid up
to any m value. Also, by deducing expressions for
the strains, we can easily verify the correctness
of the solution based on the theory of elasticity
(K£zp1, 1947). The usual argument raised against
the general validity of the elastic solution, namely
that the equations of stress components do not
contain the elastic constants, E and m, of the
material, does not hold either, since so long as the
load acts on the surface of a semi-infinite mass
and the boundary conditions refer only to stresses,
the material constants should not appear in the

equations. FrOmLicH developed his equations
from an analogy with an isotropic semi-infinite
mass, and he determined the unknown coefficients
from equilibrium conditions. In this way, he
obtained a set of possible stress distributions
which differ by a parameter termed by FrouLICH
the stress concentration factor, ». He did not,
however, go into analyzing what the implications
are of the arbitrary choice of a factor » concerning
the elastic properties of the material of the semi-
infinite mass. It can be shown that each » value
corresponds to a unique function that describes
the variation of Young’s modulus of the soil with
the depth from the surface, a function which,
however, may not always be realistic. It is only
when » == 0 that Frohlich’s generalized theory
furnishes a practicable solution. This assumption
applies to a semi-infinite medium whose modulus
of elasticity increases linearly with depth, which is
often the case with real soils.

2. An exact theoretical solution can only be
developed for the infinite line load (Eqs (196)). But
if, making use of the principle of superposition,
we extend the solution from line load to a strip
load by integration, the result contains a serious
error, notably that there is a discontinuity in the
distribution of stresses at the edges of the strip.

i R
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| Vo i // Deflection and settlement:
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Fig. 177.

a — Settlement analysis in the case of an assumed depthlimit; b — rigid footing on
the surface of the half-space



For the stress o, just beneath the surface, as
computed from Eqs (199), different values will be
obtained depending on whether the points I and
2 are approached from within or from outside the
loaded area. The result is ¢ in the first case and ¢/2
in the second. The explanation for this discrepancy
lies in the nature of partial differential equations.
Although this error has no practical significance,
it still points out the imperfection of stress distri-
bution theory.

3. In the analysis of a strip load we assumed
a uniform distribution of contact pressures on the
base of the footing. If we now determine the settle-
ment y of the surface at any vertical by integrat-
ing elastic vertical strains in that section, taking
infinity as the upper limit of integration, we
obtain the embarrassing result that the settle-
ment is infinitely large. For example, in the centre

line of the strip load (Fig. 177a):

=—fo‘dz L
E

_ 2 ( bz —}—tan“linz: (203)
B 22 :

(sm 28 + 28) d=

_ 2qb . =0
= —E—[ﬁc()tﬁ—2l()ge s1nﬁ]ﬂ=n/2 —>00.

The result is obviously absurd. But if we assume,
to be realistic, that compression of the soil is
confined to a certain limiting depth or else we
compute the differential settlements of the surface,
which unlike total settlements are found to be
finite quantities, we obtain a characteristic bowl-
shaped depression of the surface. Assuming some
value m, for the limiting depth, we obtain the
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following equation, with the notation shown in
Fig. 177a, for the settlement:

y:ib_[gx;b sin B, —

nE
(204)

mg,

Insin 5, +

x+b
2 £ F (B — ﬁl)].
b
The settlement profile computed by Eq. (204) is
also shown in Fig. 177. It follows from this result
that the assumption of a uniform strip load is
tenable only if the surface, or rather the structure
transmitting the load to the soil, is sufficiently
flexible. Otherwise, if the footing is rigid, the
distribution of contact pressures must have an
entirely different character. An advanced theory
of elasticity offers a rigorous solution for the
computation of stresses in a semi-infinite mass in
the case where the footing is perfectly rigid
(HruBaN, 1944). The equations of stress compo-
nents, with the notation shown in Fig. 177b, are

o, = q [3 (z — zl) (r— 2z) ﬂ/ + zl ]
4ar

o — q [1 +(Z — z1) (r — 211)“/ r+ zl’ (205)
4ar r2 z

., — gx r*+ (z — z) (r + 2z) '

4qr’ Va(r + 2)

The character of stress distributions obtainable
from Eqs (205) is visualized in Fig. 178. Like the
solution derived for a flexible footing (Eqs (199)),
this solution also satisfies the equation of both
equilibrium and compatibility, without containing
the absurdities inherent in the former. Its use
should, therefore, be preferred in the computation
of settlements under rigid footings.
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Fig. 178. Stresses in the half-space and distribution of contact pressures below a stiff

footing
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Fig. 179. Comparison of vertical stress distributions in the
case of flexible and rigid slabs

Equations (205) also lead, however, to discon-
tinuity in that the magnitude of the contact pres-
sure at the edges of the rigid footing tends to
infinity (Fig. 178). This is obviously in conflict
with reality, since plastic deformations that occur
in the vicinity of the edges prevent contact pres-
sures from exceeding a critical finite value. A realis-
tic assumption for the distribution of contact
pressures is that shown by the dashed line in
Fig. 178. The principal stresses for a rigid footing

are
q r+ z R 206
2mr ”/ z = V2rz . (206)

The stress components in the centre line of the
loaded area are:

01,2 =

2 2
O'Z*i rltz D
7 r3
b3 207
ax:i—3, (207)
A
er:()v
where
ri= b 22

For comparison, Fig. 179 shows the distribution
of contact pressures and of ¢, stresses for both
flexible and rigid footings. At the centre line of
the loading, the rigid footing produces smaller
stresses (SCHLEICHER, 1926).

2.2.3.4 The effect of shear stresses in the contact
plane on the stress pattern

The shear stresses invariably arising in the
contact plane between footings with a rough base
and the subsoil will to a certain extent, prevent
the latter from being displaced laterally from
under the footing. These shear stresses are respon-
sible for the fact that a soil wedge will retain its

elastic state during the process of failure. They
are further responsible for the concentration of
stresses in the center line of the footing, provided
that the load is an axial one. In other words, the
stresses about the center line are higher than the
value which would result from uniformly distri-
buted vertical bearing pressures. This circum-
stance has been verified by stress measurements,
inducing FronLicH (1934) to modify. the Bous-
sinesq formulae by a concentration factor, in order
to obtain stress values corresponding to actual
conditions. Under axial loads, these shear stresses
are directed towards the center line. Concerning
their distribution, a linear variation may be
assumed from zero in the axis of symmetry towards
the edges of the footing. There, the tendency for
the soil to yield laterally and thus the magnitude
of displacements and, in turn, the shear stresses
mobilized, are higher. The resulting stresses acting
in the contact plane are illustrated in Fig. 180.
The vertical stress due to shear can be written in
the form

0, = P inecosde
nz

The surface shear stress at the distance x (see

Fig. 181) is

sx=c(x; -+ b—2x) [x<x<w + 20]
and the elementary stress
do = 245, sin € cosd e,
nz
dS, = s, dx,
dv = > de,
cos? ¢
so that
c ) .
0, = — — - [(x; + b) sin (e, + &) sin (&g, — &) +
7
+ z(sin ¢, cos &, — sin g, cos &;) — z(e, — &)] .
(208)
pytan$
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Fig. 180. Contact pressure below a rough footing
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Fig. 181. Vertical stresses generated by tangential stresses at the bottom of the footing

The vertical stress in the center line of the
footing is
2be

Opp == (eq cOt £y — cos® &5) . (209)

The potentially highest value of these shear
stresses at the edge of the footing remains to be
determined. As the vertical load p is increased
up to the limit of plastic deformation, s;,, may
attain the value ptan¢ (where ¢ is the angle
of friction between the soil and the footing).
Though this value is well below the plastic yielding
value — and this has been mentioned as the cri-
terion for the application of the theory of elastic-

b Q_.‘ e -
s=const. |
. T4 ol - 2 -
4 [ N
. |
é‘, ,
)
1
O‘Z
{a) 5 {(b)

Sy =clx-x;)
X7§X§X7+2b

ity — it is necessarily smaller than the p tan @
value, but no positive statement can be made
concerning its magnitude. A fair approximation
of actual conditions is likely to result, however,
from assuming the same margin of safety relative
to the sliding value ptang as that available
against failure in the magnitude of the vertical
load p.

The influence of the shear stress on the stress
distribution is substantially greater in the case of
footings subjected to overturning, and occasionally
even to horizontal forces. Concerning the distri-
bution of the shear stress along the contact plane,
the cases shown in Fig. 182 may be assumed:

Fig. 182. Distribution of tangential stresses at the bottom of the footing:

a — constant; b — linearly increasing
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in case (a) the distribution is uniform, while in
case (b) a linear variation of the shear stress is
assumed, following the approximate distribution
of the vertical bearing pressures. The corre-
sponding stress distribution expressions are ob-
tained by integration as before.

Case (a)
Uniformly distributed shear stress:
o, = 25 (cos g, — cos g;) . (210)
n

Case (b)

Linear stress distribution:

c . .
g, = — [z sin €4 cos £, — sin ¢, cos £;) —

n (211)

— z(ey — &) + x,(sin? £, — sin? &;)].

2.2.3.5 Effect of embedment depth

In the cases considered in the foregoing, the
external load has been assumed to act on the
surface of the half space, although the foundations
of buildings are extended at least to below the
depth of frost penetration. Remembering the
aspects mentioned in the introduction, it is thus
deemed necessary to consider the case of embedded
loads as well. For plane conditions this problem
was solved by MErLaN (1918) by introducing the

following stress function:

le)-[izc— {tan‘li—tan—1 d ] —

1 z z+ 2t
m—1 z x% 1 22
4m _2~nx2+(z—{—2-t—)2—
- m+1 t(z+t)(z+2t)]
2m 22 4 (z + 2t)?

(212)

In this expression m is Poisson’s number, the
other symbols being explained in Fig. 183. The

magnitude of the vertical stress is

az=£{ 1 1+28°  m-—1
a (14022  [(1+ 202 +a?P? 4m
) 1 — o2 _ (1 4 28)? — o2 213
[y el @
m-+1 (1 4 2B)? — 32
a2
4m A+ 2 [ + 2p) +oc2]3} ’

where a = x/z and § = t/z.

v
Fig. 183. Line load inside the half-space

In the centerline of the load, at x = 0

_ P 1 _om— 1 . 1
T [1 R + 28 4m [ a +2,3)2]+
m+ 1 /3(1+/3)}. (214)
am (1 + 28

Since Melan’s theory applies exclusively to line
loads and is thus unsuited to direct application,
the expression for the vertical stresses acting in
the centerline of a strip load of width 2b and
intensity p has been determined by integration.
With the notations in Fig. 184, the vertical stress
is
bz,

p bz, . b
g, = *—~{—— +tan"1— f ———
‘ n{z§+b2+ z1+z§+b2+
—%—tan—li—'n_—lz1 b — b +
Zg 2m 22 4 b? 22 | b2
1 m -+ 1 zt2b(z, + 1) (215)
2m (22 + b%)? )

The influence charts computed with Eq. (215)
for different z/b ratios are shown in Fig. 185, from
which the stresses will be seen to be appreciably
lower than with the load acting on the surface.

In connection with the stress distribution for-
mulae for embedded loads it should be noted
that according to the theory, tensile stresses should
act in the soil layer of thickness t above the plane
of load transfer. However, since only cohesive
soils are capable of resisting temsile stresses, it
would be logical to conclude that the applicability
of the formulae is restricted to such soils. It should
be remembered in this context that the stresses
computed with these formulae are invariably
those due to the external load alone, which are
superimposed on those already existing within the
soil, viz. the semi-infinite half space, due to the
body force, namely the dead weight of the soil.



Fig. 184. Strip load acting at some depth

The existence of tensile stresses is thus theoret-
ically conceivable in any kind of soil as long as
the values thereof remain smaller than the mag-
nitude of compressive stresses due to dead weight.

In the application of Eqs (213), (214) and in
particular of Eq. (215), additional difficulties are
encountered on account of the fact that in con-
structing the load-transmitting footing the found-
ation pitis usually excavated with sloping sides, with
a conse quent reduction in loading. Moreover, the
backfill over the completed footing is in a disturbed
condition; it does not interact with the original
soil as a ssumed for the unloaded half space and
it usual ly has a lower bulk density than the sur-
rounding soil (Fig. 186). An approximate solution
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Fig. 185. Vertical stresses below a strip load acting at some
depth

for the case of line loads has been suggested by
JELINEK (1951).

The three-dimensional case is treated briefly
in Section 2.2.4.2.

2.2.4 Three-dimensional stress distribution

.2.2.4.1 Concentrated load

The general three-dimensional equations of the
theory of elasticity are too complicated and
cumbersome to handle to be used in normal prac-
tice. However, in most problems of practical
interest the stress distribution is symmetrical
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Fig. 186. Vertical stresses below a line load at some depth
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L dz_,

Fig. 187. Cylindrical coordinate system for a singular force:

a — stresses; b — deformations

about an axis and the formulae applying to such
cases are substantially simplified. Such problems
are expediently written in a system of cylindrical
coordinates, as shown in Fig. 187.

In the axial-symmetrical case, the stresses are
independent of the angle 6 and thus their differ-
entials with respect to 6 are zero as also are 7,
and 7,,, because of symmetry.

The equation of equilibrium are thus (Fig. 188)

dor 07,, o, — Oy

or : =0,
or + 0z + r

P 00 T
or o0z r

The solution is again obtained by introducing
a stress function. The foregoing equations can be
shown to be satisfied if the stresses are computed
by substitution from the stress function F as
follows:

O'r:i(isz— aZF)a ’
0z {m or?
omLflopoL28)
0z \m r or (216)
O (Em =l 32F],
)z m 0%
Ty :—3— (m——_lvz F— 32FJ .
or m 072

In the foregoing expressions, 2 is the operator
2 1 1 9 2
ve = __a__ i i U + U .
or? r Jr r2 962 07>
It will be observed that in the axial-symmetrical

case the third term in the above expression van-
ishes.

For the displacements to develop in conformity
with the geometrical conditions, the strain com-
ponents are required to be interrelated. This
requirement is represented here again by a com-
patibility equation, which, converted to stresses
according to Hooke’s law and in combination
with Eqs (216), gives the differential equation for
the stress function F':

(82 1 0 0?

o T o T
2

laF 10F aZF]:vzszzo
or? r or 02

(217)

from which the stress function will again be seen
to be biharmonie.

The fundamental problem consists, as shown in
Fig. 188, of finding the stresses induced in the
infinite half-space by a concentrated force acting
on its surface. The formulae of stresses in the half
space due to pressures distributed over a finite
area are then derived therefrom by applying the
principle of superposition. The problem was solved
by BoussinEsqQ (1885). According to BEREZANTSEV
(1952) the stress function

F—=Cgzlnr+ CR+ Caln L%
T e
(R={r+2)

is applicable, yielding the stress components

- 3P & 3P os? 3P 2 )
- CcO p— N C _ e,
° 2w i 2mr? i 2q 18
P -2 2
o, = 3 cos®ysin’y — =2 %%
2n2? m 1+ cosy]/
o1 (219)
m— 2 5 cos?y
Oy = — cosdpy — ————|,
m 27z 1+ cosy
3P i
Try = cost p sin p.
27
/
/ /
geel V] /-
”f:>1%’ |2 g ‘/t |-
(a) 7z (b)

Fig. 188. Equilibrium conditions for a volumetric element
in axle-symmetric situation
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Fig. 189. Horizontal singular force (H) on the surface

In the case of comparable stress-distribution
problems — e.g., concentrated force and line load
on the surface — the corresponding f and F stress
functions of the plane and axial-symmetrical
states of stress have been demonstrated by WeBER
(1925) to be interrelated and obtainable from each
other by differentiation, or integration. It should
be noted in this context that the stress distribu-
tion formulae of line load can also be found by
integration from the expression of the Bous-
sinesq load, as determined by the senior author
(1946), in contrast to the findings of OubpE (1939).

A similar solution has been developed for the
case of a horizontal, concentrated force acting at
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a point on the surface (Fig. 189). The vertical
stress is

H cos y sin 9 cos? 4. (220)
2ms?

0, =

An example for the case of a vertical load is

presented in Fig. 190, in which the curves of equal

stress have also been plotted. In the majority

of practical problems it is the vertical stresses

that are of interest; for the rapid estimation of
these the influence coeflicient

3

Ng— 2% (221)

27502
£
z /
involved in the expression

P
3P cos’y = — Np (222)
232 22

is found from Table 8.

In three-dimensional-states of stress, the effect
of embedment is even greater than in their plane
counterparts, in that the contact planes of piles,
shafts, sunk caissons, etc., are at depths cor-
responding to several times the diameter of the
load-bearing element (pile, shaft, etc.) so that the
use of formulae applying to surface loads is
completely unwarranted in such cases. Using
notations in Fig. 191, the senior author (1952)
has developed formulae giving the stress com-

ponents induced by embedded loads. He has

0

v o s o 0 G 900 .00

4,78 kN/m?

-

z=1m

|
\

119

2
R
I
2
N
3
N>

eacussasannssssSNNENE z=2m

05

|

ILI!!(X]\liI([IlILLI[III[[lIIIJJl]]I!IlJ_IL z=3m

l__/

Fig. 190. Stresses in the half-space due to a vertical load
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Table 8. Influence factors of stresses due to a vertical singular force, after BoussiNesg (1885)

r/z Npg )z Npg r/z Npg
0.00 0.4775 0.50 0.2733 } 1.00 0.0844
0.02 0.4770 0.52 0.2625 | 1.02 0.0803
0.04 0.4756 0.54 0.2518 1.04 0.0764
0.06 0.4732 0.56 0.2414 1.06 0.0727
0.08 0.4699 0.58 0.2313 1.08 0.0691
0.10 0.4657 0.60 0.2214 1.10 0.0658
0.12 0.4507 0.62 0.2117 1.12 0.0626
0.14 0.4548 0.64 0.2024 1.14 0.0595
0.16 0.4482 0.66 0.1932 1.16 0.0567
0.18 0.4409 0.68 0.1846 1.18 0.0539
0.20 0.4329 0.70 0.1762 1.20 0.0513
0.22 0.4242 0.72 0.1681 1.22 0.0489
0.24 0.4151 0.74 0.1603 1.24 0.0466
0.26 0.4054 0.76 0.1527 1.26 0.0443
0.28 0.3954 0.78 0.1455 1.28 0.0422
0.30 0.3849 0.80 0.1386 1.30 0.0402
0.32 0.3742 0.82 0.1320 1.32 0.0384
0.34 0.3632 | 0.84 0.1257 1.34 0.0365
0.36 0.3521 0.86 0.1196 1.36 0.0348
0.38 0.3408 0.88 0.1138 1.38 0.0332
0.40 0.3294 0.90 0.1083 1.40 0.0317
0.42 0.3181 0.92 0.1031 1.42 0.0302
0.44 0.3068 - 0.94 0.0981 1.44 0.0288
0.46 0.3055 0.96 0.0933 1.46 0.0275
0.48 0.2843 0.98 0.0887 1.48 0.0263

adopted the stress function

- P m+1 2(m_1)+cos2y)]sinu), ]
2azr mE m
P m+1m-—2
£ = + cosy +
2zr mE [ m ¥
-}—coszy):'siny)tan};)—,

using which the vertical stress of greatest prac-
tical interest was obtained in the form

m 3P{m—2 ( 1 1 ] 23
g, = —— B — — —_—
m—1 4= 6m r} r3 213
— _ 2 2__ 952
. 3m 4z2 m 2t —z—g-—tzz(zz—t) 3r - 3]
2m m r r}
(223)
02

1

Fig. 191. Singular force inside the half-space

rlz Np r/z Ng )z Npg

1.50 0.0251 2.00 0.0085 2.50 0.0034
1.52 0.0240 2.02 0.0082 2.52 0.0033
1.54 0.0229 2.04 0.0079 2.54 0.0032
1.56 0.0219 2.06 0.0076 2.56 0.0031
1.58 0.0209 2.08 0.0073 2.58 0.0030
1.60 0.0200 2.10 0.0070 2.60 0.0029
1.62 0.0191 2.12 0.0068 2.62 0.0028
1.64 0.0183 2.14 0.0065 2.64 0.0027
1.66 0.0175 2.16 0.0063 2.66 0.0026
1.68 0.0167 2.18 0.0060 2.68 0.0025
1.70 0.0160 2.20 0.0058 2.70 0.0024
1.72 0.0153 2.22 0.0056 2.72 0.0023
1.74 0.0147 2.24 0.0054 2.74 0.0023
1.76 0.0141 2.26 0.0052 2.76 0.0022
1.78 0.0135 2.28 0.0050 2.78 0.0021
1.80 0.0129 2.30 0.0048 2.80 0.0021
1.82 0.0124 2.32 0.0047 2.84 0.0019
1.84 0.0119 2.34 0.0045 2.91 0.0017
1.86 0.0114 2.36 0.0043 2.99 0.0015
1.88 0.0109 2.38 0.0042 3.08 0.0013
1.90 0.0105 2.40 0.0040 3.19 0.0011
1.92 0.0101 2.42 0.0039 3.31 0.0009
1.94 0.0097 2.44 0.0038 3.50 0.0007
1.96 0.0093 2.46 0.0036 3.75 0.0005
1.98 0.0089 2.48 0.0035 4.13 0.0003

The first term of the expression within the
brackets yields the stresses induced by the forces P,
of equal magnitude, acting at the points 0; and
0, in the infinite space. Since the quantity r,
figures in the denominator of this term at the
third power and in the denominators of the other
terms at the fifth and seventh powers, the effect
of these terms is considered negligible in all cases
where 2z, >t. Thus for instance, the stresses
induced by the force P, acting at depth ¢ below
the surface in a clay layer situated at greater depth,
can be computed with the foregoing simplification,
as if the infinite space were acted upon by two
concentrated forces of the same direction and
magnitude at the points 0, and 0,.

For estimating the stresses induced in the
infinite half-space by embedded, concentrated
vertical and horizontal forces, detailed tables
have been compiled by Takxeo Mocamr (1957),
who has also published the formulae for all Car-
tesian stress components.

2.2.4.2 Surface load distributed over a finite area

The stresses at a particular point in the half
space, due to pressure transmitted to the soil at
the surface of the infinite half-space, are obtained
by integrating the Boussinesq formulae. In the
case shown in Fig. 192 the pressure distributed
according to the function p, , = f(x,y) acts on
the area F. The elementary force on the area
element dF is f(x,y) dF and the resulting stress
at the point P becomes

3
v, — {dazzij-fﬁ‘iﬂdﬁ (224)
F 2 5
F
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The expression in Eq. (224) is rather difficult
to integrate, even in relatively simple cases. Thus
for instance, no explicit expression is available
for the stress at a general point under a circular
plate subjected to a uniformly distributed load.
For this case a rather slowly converging series
was published by BaBkov and Bukowskr (1950).
For the stresses induced in the vertical center line
of the circular plate, on the other hand, extremely
simple formulae are obtained; thus the vertical
stress under the uniformly distributed pressure
(Fig. 193a) is

0, = qo{1 — cos® G), (225)
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Fig. 192. Effect of uniformly distributed pressure acting on
any likely contact area
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Fig. 193. Three different forms of contact pressure distri-
butions on a circular plate

Distribution of stresses 127

O~ 90
ol i T T
. X Q
02F 80 ﬁ¥
03 - kY 4
04t 70T @ /N /// /
sl | \YQ_ 2y
- 7 Uz / /
' | 50 ///r/ -
S TE S
N E 40 bt //// //
E ol // pd
Py L d
: é Load distribution
3 20 7 Uniform (a)
4+ / Parabolic (b}
5 70 Triangle (c)
or
i AN
0 05 10
% /9max

Fig. 194. Vertical stresses in the axis of a loaded circular
plate
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Fig. 195. Determination of the vertical stress below an
internal point of a loaded rectangle

under the paraboloidic distribution (Fig. 193b)
0, = 2¢o[1 — 2 cot?2 0(1 — cos 0)] (226)

and under the conical distribution (Fig. 193¢)
o, = 3q(1 — cos §). (227)

In Eqs(225)-(227) qo = Q/F is the average unit
pressure transmitted by the circular plate.

The curves in Fig. 194 can be used to advantage
in rapid stress estimations according to Eqs
(225)-(227). The influence coefficients o,/q, com-
piled in Table 9 will permit the stresses induced
by a uniformly distributed load to be computed
more accurately in the center line of the load,
as well as in the verticals corresponding to quarter-
points of the radius and further to points around
the perimeter (L.orENZ and NEUMEUER, 1953).

The stresses due to a load distributed uniformly
over a rectangular area at the surface of the infinite
half-space are computed by the formula of STEIN-
BRENNER (1934) and Newmagrk (1935). The case
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Table 9. Stresses below a uniformly loaded circular plate

(a) Vertical stresses in the axle

Tz } I ! iz g I 7/z I /% I /= I
| :
0.00 0.00000 0.50 0.28446 100 0.64645 1.50 0.82932 2.00 0.91056
1 0.00015 1 0.29304 1 0.65171 1 0.83167 2 0.91267
2 0.00060 2 0.30162 2 0.65690 2 0.83397 4 0.91472
3 0.00135 3 0.31019 3 0.66200 3 0.83624 6 0.91672
4 0.00240 4 0.31875 4 0.66703 4 0.83847 8 0.91865
4 0.00374 | 5 0.32728 5 0.67198 | 5 0.84067 10 0.92053
6 0.00538 6 0.33579 6 0.67686 6 0.84283 15 0.92499
7 0.00731 7 0.34474 7 0.68166 7 0.84495 20 0.92914
8 0.00952 8 0.35272 8 0.68639 8 0.84670 25 0.93301
9 0.01203 9 0.36112 9 0.69104 9 0.84910 30 0.93661
35 0.93997
0.10 0.01481 0.60 0.36949 1.10 0.69562 1.60 0.85112 40 0.94310
1 0.01788 1 0.37781 1 0.70013 1 0.85312 45 0.94603
2 0.02122 2 0.38609 2 0.70457 2 0.85507 50 0.94877
3 0.02483 3 0.39431 3 0.70894 3 0.85700 55 0.95134
4 0.02870 4 0.40247 4 0.71324 4 0.85890 60 0.95374
5 0.03283 5 0.41058 5 0.71747 5 0.86077 65 0.95599
6 0.03721 6 0.41863 6 0.72163 6 0.86260 70 0.95810
7 0 04184 7 0.42662 7 0.72573 7 0.86441 75 0.96009
8 0.04670 8 0.43454 8 0.72976 8 0.86619 80 0.96194
9 0.05181 9 0.44240 9 0.73373 9 0.86794 90 0.96535
: 95 0.96691
0.20 0.05713 0.70 0.45018 1.39 0.73763 1.70 0.89966
1 0.06268 1 0.45789 1 0.74147 1 0.87136 3.00 0.96838
2 0.06844 2 0.46553 2 0.74525 2 0.87302 10 0.97106
3 0.07441 3 0.47310 3 0.74896 3 0.87467 20 0.87346
4 0.08057 4 0.48059 4 0.75262 4 0.87628 30 0.97561
5 0.08692 5 0.48800 5 0.75622 5 0.87787 40 0.87753
6 0.09346 6 0.49533 6 0.75976 6 0.87944 50 0.97927
7 0.10017 7 0.50259 7 0.76324 7 0.88098 60 0.98083
8 0.10704 8 0.50976 8 0.76666 8 0.88250 70 0.98224
9 0.11408 9 0.51685 9 0.77003 9 0.88399 80 0.98352
90 0.98468
0.30 0.12126 0.80 0.52386 1.30 0.77334 1.80 0.88546
1 0.12859 1 0.53079 1 0.77660 1 0.88691 4.00 0.98573
2 0.13605 2 0.53763 2 0.77981 2 0.88833 20 0.98757
3 0.14363 3 0.54439 3 0.78296 3 0.88974 40 0.98911
4 0.15133 4 0.55106 4 0.78606 4 0.89112 60 0.99041
5 0.15915 5 0.55766 5 0.78911 5 0.89248 80 0.99152
6 0.16706 6 0.56416 6 0.79211 6 0.89382
7 0.17507 7 0.57058 7 0.79507 7 0.89514 5.00 0.99246
8 0.18317 8 0.57692 8 0.79797 8 0.89643 20 0.99327
9 0.19134 9 0.58317 9 0.80083 9 0.89771 40 0.99396
60 0.99457
0.40 0.19959 0.90 0.58934 1.40 0.80364 1.90 | 0.89897 80 0.99510
1 0.20790 1 0.59542 1 0.80640 1+ 090021
2 0.21627 2 0.60142 2 0.80912 2! 0.90143 6.00 0.99556
3 0.22469 3] 0.60734 3 0.81179 31  0.90263 50 . 0.99648
4 0.23315 4 0.61317 4 0.81442 4 ‘ 0.90382
5 0.24165 5 0.61892 5 0.81701 51 0.90498 7.00 0.99717
6 0.25017 6 0.62459 6 0.81955 6 0.90613 50 0.99769
7 0.25872 7 0.63018 7 0.82206 7 1 0.90726
8 0.26729 8 0.63568 8 0.82448 8| 090838
9 0.27587 9 0.64110 9 0.82694 9 I 0.90948
(b) Vertical stresses below a quarter point
riz I iz I rjz I : rlz ' I iz I zjr 1
! |
0.00 1.000 0.40 0.894 0.80 0.664 ! 1.20 0.480 1.60 0.351 2.00 0.262
1 1.000 1 0.889 1 0.658 ! 1 0.476 1 0.348 2 0.259
2 0.999 2 0.883 2 0.653 | 2 0.472 2 0.345 4 0.255
3 0.999 3 0.878 3 0.648 ! 3 0.468 3 0.343 6 0.251
4 0.998 4 0.873 4 0.642 4 0.465 4 0.340 8 0.248
5 0.998 5 0.867 5 0.638 | 5 0.461 5 0.338 10 0.244
6 0.997 6 0.861 6 0.632 } 6 0.457 6 0.335 15 0.236
7 0.997 7 0.856 7 0.627 7 0.454 7 0.333 20 0.228
8 0.996 8 0.850 8 0.622 8 0.450 8 0.331 25 0.221
9 0.996 9 0.845 9 0.617 9 0.446 9 0.328 30 0.214
35 0.208




Table 9 (cont.)

Distribution of stresses

1z I 3fr 1 2fr I 3fr I zfr I zfr I
0.10 0.995 0.50 0.840 0.90 0.612 1.30 0.443 1.70 0.326 40 0.201
1 0.994 1 0.836 1 0.607 1 0.439 1 0.324 45 0.195
2 0.992 2 0.828 2 0.602 2 0.435 2 0.321 50 0.189
3 0.991 3 0.822 3 0.597 3 0.432 3 0.319 55 0.184
4 0.989 4 0.816 4 0.593 4 0.428 4 0.317 60 0.178
5 0.988 5 0.810 5 0.588 5 0.425 5 0.314 65 0.173
6 0.986 6 0.806 6 0.583 6 0.421 6 0.312 70 0.168
7 0.983 7 0.798 7 0.579 7 0.418 7 0.310 75 0.163
8 0.981 8 0.792 8 0.574 8 0.414 8 0.308 80 0.158
9 0.979 9 0.786 9 0.569 9 0.411 9 0.305 85 0.154
90 0.149
0.20 0.977 0.60 0.780 1.00 0.565 1.40 0.408 1.80 0.303 95 0.145
1 0.974 1 0.774 1 0.560 1 0.405 1 0.301
2 0.971 2 0.768 2 0.556 2 0.402 2 0.299 3.00 0.141
3 0.966 3 0.762 3 0.551 3 0.399 3 0.297 10 0.133
4 0.962 4 0.755 4 0.547 4 0.396 4 0.294 20 0.126
5 0.960 5 0.749 5 0.543 5 0.393 5 0.292 30 0.119
6 0.956 6 0.743 6 0.538 6 0.538 6 0.290 40 0.113
7 0.952 7 0.737 7 0.534 7 0.387 7 0.288 50 0.107
8 0.949 8 0.731 8 0.530 8 0.384 8 0.286 60 0.101
9 0.945 9 0.724 9 0.525 9 0.381 9 0.284 70 0.096
80 0.091
0.30 0.941 0.70 0.718 1.10 0.521 1.50 0.378 1.90 0.282 90 0.086
1 0.936 1 0.712 1 0.517 1 0.375 1 0.280
2 0.932 2 0.706 2 0.512 2 0.372 2 0.278 4.00 0.082
3 0.927 3 0.700 3 0.508 3 0.369 3 0.276
4 0.923 4 0.695 4 0.504 4 0.367 4 0.274
5 0.918 5 0.690 5 0.500 5 0.364 5 0.272
6 0.913 6 0.684 6 0.496 6 0.361 6 0.270
7 0.908 7 0.679 7 0.492 7 0.359 7 0.268
8 0.903 8 0.674 8 0.488 8 0.356 8 0.266
9 0.899 9 0.669 9 0.484 9 0.353 9 0.264
(c) Vertical stresses below an edge point
zfr I zfr I zfr I zfr I zfr I zfr I
0.00 0.500 0.30 0.447 0.60 0.395 0.90 0.346 1.20 0.298 1.50 0.254
1 0.498 1 0.445 1 0.393 1 0.344 1 0.296 1 0.252
2 0.496 2 0.443 2 0.392 2 0.342 2 0.295 2 0.251
3 0.494 3 0.441 3 0.390 3 0.340 3 0.293 3 0.250
4 0.492 4 0.440 4 0.388 4 0.339 4 0.292 4 0.248
5 0.490 5 0.438 5 0.386 5 0.337 5 0.290 5 0.247
6 0.488 6 0.437 6 0.385 6 0.335 6 0.288 6 0.246
7 0.486 7 0.435 7 0.383 7 0.334 7 0.287 7 0.245
8 0.484 8 0.433 8 0.381 8 0.332 8 0.285 8 0.243
9 0.482 9 0.431 9 0.380 9 0.330 9 0.284 9 0.242
0.10 0.481 0.40 0.430 0.70 0.378 1.00 0.329 1.30 0.283 1.60 0.241
1 0.480 1 0.428 1 0.377 1 0.327 1 0.282 1 0.240
2 0.478 2 0.426 2 0.375 2 0.325 2 0.280 2 0.239
3 0.476 3 0.424 3 0.373 3 0.324 3 0.278 3 0.237
4 0.474 4 0.423 4 0.371 6 0.322 4 0.277 4 0.236
5 0.472 5 0.421 5 0.370 5 0.321 5 0.275 5 0.235
6 0.470 6 0.419 6 0.369 6 0.319 6 0.273 6 0.234
7 0.469 7 0.417 7 0.367 7 0.317 7 0.272 7 0.233
8 0.467 8 0.416 8 0.365 8 0.316 8 0.271 8 0.231
9 0.465 9 0.414 9 0.363 9 0.315 9 0.269 9 0.230
0.20 0.464 0.50 0.412 0.80 0.362 1.10 0.313 1.40 0.268 1.70 0.229
1 0.462 1 0.410 1 0.360 1 0.311 1 0.267 1 0.228
2 0.460 2 0.408 2 0.358 2 0.310 2 0.265 2 0.226
3 0.458 3 0.407 3 0.357 3 0.308 3 0.264 3 0.225
4 0.457 4 0.405 4 0.355 4 0.307 4 0.262 4 0.224
5 0.455 5 0.403 5 0.353 5 0.305 5 0.261 5 0.223
6 0.453 6 0.402 6 0.352 6 0.304 6 0.259 6 0.221
7 0.452 7 0.400 7 0.350 7 0.302 7 0.258 7 0.220
8 0.450 8 0.398 8 0.349 8 0.301 8 0.257 8 0.219
9 0.449 9 0.397 9 0.347 9 0.299 9 0.255 9 0.218
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Table 9 (cont.)

zfr I zfr I zfr I zfr I zfr I zfr I
1.80 0.217 1.90 0.206 2.00 0.195 40 0.158 95 0.123 90 0.080
1 0.216 1 0.204 2 0.193 45 0.154
2 0.214 2 0.203 4 0.191 50 0.150 3.00 0.119 4.00 0.077
3 0.213 3 0.202 6 0.189 55 0.147 10 0.114 20 0.071
4 0.212 4 0.201 8 0.187 60 0.143 20 0.109 40 0.065
5 0.211 5 0.200 10 0.185 65 0.140 30 0.105 60 0.060
6 0.210 6 0.199 15 0.180 70 0.137 40 0.100 80 0.056
7 0.209 7 0.198 20 0.176 75 0.134 50 0.096
8 0.208 8 0.197 25 0.171 80 0.131 60 0.092 5.00 0.052
9 0.207 9 0.196 30 0.167 85 0.128 70 0.088
35 0.163 90 0.125 80 0.084
Table 10. Influence factors of vertical stresses helow the corner of a uniformly loaded rectangle
afz
blz e ————— e —
0.1 | 0.2 | 0.3 | 0 05 | 06 0.7 ( 0.8 ] 0.9 i 1.0 1.2
0.1 0.00470 0.009171 0.01323 0.01678 0.01978 | 0.02223 0.02420 0.02576 0.02698 0.02794 | 0.02926
0.2 0.00917 0.01790 0.02585 0.03280 | 0.03866 0.04348 0.04735 0.05042 0.05283 0.05471 0.05733
0.3 0.01323 0.02585 0.03735 0.04742 ‘ 0.05593 0.06294 | 0.06858 0.07308 0.07661 0.07938 | 0.08323
0.4 0.01678 0.03280 0.04742 0.06024 ' 0.07111 0.08009 0.08734 0.09314 0.09770 0.10129 0.10631
0.5 0.01978 0.03866 0.05593 0.07111 0.08403 0.09473 0.10340 0.11035 0.11584 | 0.12018 0.12626
0.6 0.02223 0.04348 0.06294 0.08009 0.09473 0.10688 0.11679 0.12474 0.13105 0.13605 0.14309
0.7 0.024.20 0.04735 0.06858 0.08734 | 0.10340 0.11679 0.12772 0.13653 0.14356 0.14914 0.15703
0.8 0.02576 0.05042 0.07308 0.09314 0.11035 0.12474 0.13653 0.14607 0.15371 0.15978 0.16843
0.9 0.02698 0.05284 0.07661 0.09770 | 0.11584 0.13105 0.14356 0.15371 0.16185 0.16835 0.17766
1.0 0.02794 0.05471 0.07938 0.10129 | 0.12018 0.13605 0.14914 0.15978 0.16835 0.17522 0.18508
1.2 0.02926 0.05733 0.08323 0.10631 0.12626 0.14309 0.15703 0.16843 0.17766 0.18508 0.19584
1.4 0.03007 0.05894 0.08561 0.10941 0.13003 0.14749 0.16199 0.17389 0.18357 0.19139 0.20278
1.6 0.03058 0.05994 0.08709 0.11135 0.13241 0.15028 | 0.16515 0.17739 0.18737 0.19546 0.20731
1.8 0.03090 0.06058 0.08804 0.11260 | 0.13395 0.15207 0.16720 0.17967 0.18976 0.19814 0.21032
2.0 0.03111 0.06100 0.08867 0.11342 0.13496 0.15326 0.16856 0.18119 0.19152 0.19994 | 0.21335
2.5 0.03138 0.06155 0.08948 0.11450 | 0.13628 0.15483 0.17036 0.18321 0.19375 0.20236 0.21512
3.0 0.03150 0.06178 0.08982 0.11495 0.13684 0.15550 0.17113 0.18407 0.19470 | 0.20341 0.21633
4.0 0.03158 0.06194 0.09007 0.11527 ' 0.13724 0.15598 0.17168 0.18469 0.19540 | 0.20417 0.21722
5.0 0.03160 0.06199 0.09014 0.11537 0.13737 0.15612 | 0.17185 0.18488 0.19561 0.20440 | 0.21749
10.0 0.03162 0.06202 0.09019 0.11544 0.13745 0.15622 0.17196 0.18502 0.19576 0.20457 0.21769
oo 0.03162 0.06202 0.09019 0.11544 | 0.13745 0.15623 0.17197 0.18502 0.19577 0.10458 | 0.21770
14 | 1.6 1.8 2.0 | 2.5 ! 3.0 4.0 5.0 6.0 10.0 .
|
0.1 0.03007 0.03058 0.03091 0.03111 0.03138 0.03150 0.03158 0.03160 | 0.03161 0.03162 0.03162
0.2 0.05894 0.05994 0.06058 0.06100 | 0.06155 | 0.06178 | 0.06194 | 0.06199 | 0.06201 0.06202 | 0.06202
0.3 0.08561 0.08709 0.08804 0.08867 | 0.08948 0.08982 0.09007 0.09014 0.09017 0.09019 0.09019
0.4 0.10941 0.11135 0.11250 0.11342 | 0.11450 0 11495 0.11527 0.11537 0.11541 0.11544 0.11544
0.5 0.13003 0.13241 0.13395 0.13496 0.13628 0.13684 0.13724 0.13737 | 0.13741 0.13745 0.13745
0.6 0.14749 0.15028 0.15207 0.15326 | 0.15483 | 0.15550 0.15598 0.15612 0.15617 0.15622 0.15623
0.7 0.16199 0.16515 0.16720 0.16856 0.17036 0.17113 0.17168 0.17185 0.17191 017196 0.17197
0.8 0.17389 0.17739 0.17967 0.18119 0.18321 0.18407 0.18469 0.18488 0.18496 0.18502 0.18502
0.9 0.18357 0.18737 0.18986 0.19152 | 0.19375 0.19470 0.19540 | 0.19561 0.19569 0.19576 0.19577
1.0 0.19139 0.19546 0.19814 0.19994 | 0.20236 0.20341 0.20417 0.20440 0.20449 0.20457 0.20458
1.2 0.20278 0.20731 0.20132 0.21512 0.21633 0.21722 0.21749 0.21760 0.21760 0.21769 0.21770
1.4 0.21020 0.21510 0.21836 0.22058 | 0.22364 | 0.22499 | 0.22600 | 0.22623 | 0.21644 | 0.22654 | 0.22656
1.6 0.21510 0.22025 0.22372 0.22610 0.22940 0.23088 0.23200 | 0.23236 0.23249 0.23261 0.23263
1.8 0.21836 0.22372 0.22736 0.22986 | 0.23334 | 0.23495 | 0.23617 | 0.23656 | 0.23671 0.23684 | 0.23686
2.0 0.22058 0.22610 0.22986 0.23247 | 0.23614 | 0.23782 | 0.23912 | 0.23954 | 0.23970 | 0.23985 | 0.23987
2.5 0.22364 0.22940 0.23334 0.23614 0.24010 | 0.24196 0.24344 | 0.24392 0.24412 0.24429 0.24432
3.0 0.22499 0.23088 0.23495 0.23782 0.24196 0.24394 0.24554 0.24608 0.24630 0.24650 | 0.24654
4.0 0.22600 0.23200 0.23617 0.23912 0.24344 0.24554 0.24729 0.24791 0.24817 0.24842 | 0.24846
5.0 0.22632 0.23236 0.23656 0.23954 | 0.24392 | 0.24608 | 0.24791 0.24857 | 0.24885 | 0.24914 | 0.24919
10.0 0.22654 0.23261 0.23684 0.23985 | 0.24429 | 0.24650 | 0.24842 | 0.24914 | 0.24946 | 0.24981 0.24989
oo 0.22656 0.23263 0.23686 0.23987 | 0.24432 | 0.24654 | 0.24846 | 0.24919 | 0.24952 | 0.24989 | 0.25000




under consideration is illustrated in Fig. 195. It
is desired to find the stress at point P on the ver-
tical through point P’. For this purpose the full
rectangle is divided by straight lines through
point P’ and parallel to the sides into four similar
rectangular areas. The full stress at point P is
obtained as the sum of the stresses induced by the
part-loads acting on each of the four rectangles
thus formed. The formula mentioned above yields
the magnitude of stress produced in the vertical
through the corner point of a loaded rectangular
area. The stress due to the load I is, e.g.

_q 2lnYBP+n2+1 B2+ n242

Z_Z;[l2+n2+1+lzn2 2 n?i1
zlnym] (228)
B4-n2+ 1+ 2n? ’

where I = a/z and n = b/z are the ratios of the
length of the sides of the rectangle to the depth of
the point P under consideration, while ¢ is the in-
tensity of the uniformly distributed load. The
formula is too complicated for direct computations
and, therefore, a number of tables and charts have
been published in the relevant literature for rapid
stress estimations. The table compiled by New-
MARK (1935) is reproduced here as Table 10 from
which the stress influence cocflicients o,/p are found
in terms of the ratios a/z and b/z.

The stress in the vertical through a point outside
the rectangle is found by composing the loaded
area of rectangles, the corners of which are above
the point examined. For example, if it is desired
to compute the stress under point 4 shown in
Fig. 196, induced by the rectangular load BCDE,
the rectangles used for computations are

AHBF — AHEG + AJDG — AJFC.

The common corner point of the above rectangles
is A and so the stresses can be obtained from Eq.
(228), or from the corresponding tables. The full
stress is then found by summing the values ob-
tained, with due regard to their sign.

-+ are sin

According to BrincH HANSEN (1955), the vertical stresses
below the centre of a rectangular footing are well approximat-
ed by using the equation:

_ P
- A+)(B+3)

o (229)
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|
|
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Fig. 196. Determination of stresses below an outstanding
point of the loaded area
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0z

Fig. 197. Uniformly distributed pressure on a circular plate
founded at depth ¢

Horizontal stresses parallel to B and 4, respectively, can
be estimated from the following formulas, in which B and 4
mean the width and length of the footing:

77777 P4 (230)

and
P4z

A= AT (B @31)

To take the effect of embedment into account
in the case of loads acting over a finite area, an
expression is available for the stress induced in the
center line of a uniformly loaded circular plate
only. This is obtained by integrating Eq. (223).
With the notations of Fig. 197,

ry 27

0, = X X do'z-)

r=0 y=0

whence, after integration and simplification (K£z-

p1, 1958)

m 3g [m—2 1 1 1
0, = =4 5 [ - ——+
m—1 2 6m Ry, Ry 2y
1 1 23 3m —4 m— 2
— 4= — z, — t
+z1J+6 6R31+[ 2m 2 m ]
2 2
[ 1 = ]—tz(z—t) |
3z, 3R, RS, R},
(232)

For loads acting on the surface of the infinite
half-space the expression is greatly simplified, since

t=0, 2z, =2z, =z, Ryy = Ryy = R,,
B, =B, =6. (233)



%o

%o

ny —
. // o
[

132

oz /p
0 02 04 06

| |

Fig. 198. Diagram for tha calculation of vertical stresses in
the axis of a uniformly loaded circular plate founded at
depth ¢

and thus in agreement with Eq. (225) the stress
becomes

o, =q(l1 —cos?h).

The charts in Fig 198 have been plotted in order
to facilitate practical computations by Eq. (232).
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Fig. 199. Comparison of settlements calculated with or
without respect to depth of foundation (EwEerr, 1969)
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The influence coefficients have been computed by
assuming a Poisson’s number m = 3. Detailed
computations have shown the magnitude of stres-
ses to change by no more than 89 if m is varied
between 3 and 6. The use of m = 3 is thus justified
in the majority of cases.

In Fig. 198 curves have also been plotted for
loads acting on the surface of the infinite half
space, as well as for the case of the infinite space
(the curves t/b = 0 and t/b = oo).

The vertical stresses will be seen to diminish rap-
idly as the footing is embedded, and at the depth
corresponding to about 2.5 times the diameter of
the dise, the difference related to the stresses in the
infinite space is no more than 29%,.

Ewert (1969) proposed a solution for the cal-
culation of stresses below the corners of a quad-
rangle flexible footing. The expression is composed
of two parts: the first term refers to the values of
the STEINBRENNER (1934) formula for surface load;
the second term reckons with the depth of the
footing. Poisson’s ratio is also includedin the sec-
ond term, but it has a slight influence on the value
of o,. EWERT pointed out that, according to his
calculations, the result deviated by max. 109
between the assumptions of m = 2 and m = 5.
A significant difference resulted, however, in settle-
ment forecast, when the calculation took account
of, or dismissed, the influence of foundation depth,
as it can be seen from Fig. 199.

2.25 Stresses below the characteristic point

When the compression of a sqil slice, bounded
by horizontal parallel planes in the underground,
is calculated, it will be found that its value varies
from point to point in compliance with the ver-
tical stress which also varies from point to point
over the slice. It is obvious that the maximum
vertical stress develops in the centerline of the
load, but this does not evoke the same compres-
sion to which the base as a whole would be sub-
jected. For the calculation of settlements, it is
not the maximal, but the average stress inside the
proper lines of the foundation that should be taken
as effective. It is rather complicated to calculate its
actual value, especially below surfaces of limited
size. Making use of the advantageous situation
that for a given load distribution the particular
point of the footing under which (at any depth)
just the desired average vertical stress can be
known beforehand, the elaboration of influence
diagrams is possible. The location of the character-
istic point is at a distance 0.7 b from the central
axis of a strip foundation, and at 0.7 b from the
longitudinal and 0.74 a from the perpendicular
axis of a quadrangle footing (b is the half-width,
a is the half-length of the footing).

The stresses in the verticalline of the character-
istic point of a quadrangle footing are shown in

Table 11 after Kany (1959).



Table 11. Stresses helow the characteristic point of rectangular
footings: a — half-length of the footing; b — half-width of the
footing; z — depth

afb
zfb
1] 15 [ 2 3 | 5 { 10 oo
0.1 0.98 | 098 | 099 ] 0.99 | 0.99 | 0.99 0.99
0.2 0.90 | 0.93 0.94 0.94 | 0.94 | 0.94 0.94
0.3 0.79 | 0.84 | 0.86 | 0.88 | 0.88 | 0.88 0.88
0.4 0.69 | 0.76 | 0.79 | 0.81 0.82 | 0.83 0.83
0.6 0.56 0.62 0.66 i 0.71 0.73 0.74 0.74
1.0 0.41 0.46 | 0.50 0.56 | 0.60 0.63 0.63
1.4 0.32 0.37 0.40 | 0.45 0.51 0.55 0.56
2.0 0.23 | 0.28 | 0.31 0.35 | 0.40 | 0.45 0.47
3.0 0.14 | 0.18 | 0.21 0.24 | 0.28 [ 0.30 0.36
4.0 0.09 { 013 | 0.15 | 0.17 | 0.21 | 0.25 0.29
6.0 0.05 0.07 0.08 | 0.10 | 0.13 | 0.16 0.20
10.0 0.02 0.03 | 0.03 0.05 0.06 0.08 0.13
14.0 0.01 0.01 0.02 0.03 0.04 | 0.05 0.09
20.0 0 0.01 0.01 0.01 0.02 0.03 0.06
40.0 0 0 0 0 0.01 0.01 0.03

2.2.6 Location of the depth limit

Stresses are principally calculated with the aim
of enabling the forecasting of settlements in the
underground. As a consequence of the structure
of the formulas for the calculation of stresses a
minute additional increment with depth will in-
crease the calculated settlement even at very
large depths. (Not to speak of the fact that the
settlement, when calculated for a strip foundation
according to Section 2.2.3.3 would have an infi-
nitely huge value.) Surveys carried out on actual
buildings have shown, however, that the yielding
of a compressed earth mass is vertically restricted
to a depth, say, of 2 or 3 times the width of the
footing. This can be easily understood because:

— in saturated soils only a gradient above some
threshold value i, would be able to initiate
the movement of the pore water;

— the skeleton structure of the soil (whether
saturated or not) may undergo a deforma-
tion only when the applied stress exceeds a
critical value of p,.

The latter statement has been interpreted by FEpa et al.
(1977) in the following manner. The position of contact forces
between the grains of an undisturbed soil is quite random
(Fig. 200). With increasing load, these contact forces grad-
ually reach their limit position A, inclined to the normal
of the contact plane at the angle of the intergranular fric-
tion @,. (An additional increment of contact strength may
arise between the particles by cementation.) The soil will be
considerably fdeformed only if a statistically significant
number of particles start to slide (i.e. K — 4). Beneath the
footing, the vertical stress decreases with depth, and so does
the number of contact forces that have reached their limit
position. This is manifested by the non-linear behaviour of the
mass. At the same time, owing to the increase of the geostatic
pressure, the number of contacts in a volumetric soil unit
increases, and therefore the soil becomes more and more
deformation resistant with depth.

The aforesaid considerations find their solution
In practice by taking the underground as compres-
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sible to a depth limit of m, only. Most countries
have decided to allow a depth limit z in their Codes
of Practice where

o, = f o, (234)

i.e. that particular depth where the stress from
external forces equals B times the overburden
pressure, o,, with an assigned value of 0.1 or 0.2
for B.

In Hungary, the formula proposed by JAKY is
still in use for estimating the settlement. It states
that

ab

a—i—b7

where a and b are the half-width and -length of the
footing, respectively.

There are two suitable ways to select the appro-
priate value for the depth limit:

my =4

(235)

— measured settlements of existing buildings
are back-analyzed, and when sufficient data
have been obtained a regression analysis is
performed; or

— gauges are incorporated in the soil and the
deformation of each slice is determined.

Avtes (1976) chosed the first method for analyz-
ing the measured settlements of 132 buildings. With
the data a multiple regression analysis was then
performed to find the relationship my/B =
= {(p, F, E, BJL).

These calculations produced the following for-
mula:

m 1 —17.7
—% —5.04 B10° ¢*¥ |1 + — .
B 14+ 5 F-005
—40.8 10.2
-10.333 4 S 8 R — )
1+0.075 E; 01 14+0.02 B/L
(236)
where

B = width of the base, m,
L = length of the base, m,

L,

Fig. 200. Contact forces between soil particles:

K — initial random position; 4 — limit position; N — normal position (FEDA
et al., 1977)
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F = surface area of the base, m2,
p = contact pressure, kp/cm?,
E; = modulus of compressibility, kp/cm?

(The correlation index was I = 0.82 for his cal-
culation.)

Based on this formula, Fig. 201 has been com-
posed for three diflerent F, and two different E;
values each.The following conclusions can be drawn
therefrom:

— the depth limit decreases when E increases;

— the ratio my/B decreases when B increases;

— the depth limit as calculated by the supposi-
tion ¢, = 0.2 ty will deviate more and more
from the result of the above formula when
the footing is elongated, and/or the surface
area becomes larger.

A study performed by FEDA et al. (1977) present-
ed another possibility. Four loading tests were
carried out using a 138 cm diameter plate on three
different soils (silty sand, loess, and dense clayey
sand). The relationship between s and z for one of
the trial tests is shown in Fig. 202. The following
values were obtained for the relative depth of the
compressible zone my/D as a function of the load:

Load
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Fig.%201. Determination of the depth limit (m,) after ALTES
(1976)
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Fig. 202. Depth limit as determined by model tests (FEDA
et al., 1977)

The authors proposed accepting the depth over
which 959, of the settlement occurs as m,,.

The observation of these authors that m, does not depend
on Ej contradicts the observations made by ArrEs (1976),
JEGoroV and Poprova (1971) and others, and this might be
attributed to the small number of tests.

2.2.7 Stresses in layered systems

Throughout the foregoing considerations, the
medium in which the stresses are induced has been
assumed to be uniform and to extend to infinity.
However, cases are often encountered in practice
where alayer — solid rock, dense sand, or gravel —
is situated at a certain depth below the footing
which is virtually incompressible and completely
rigid for all practical purposes. At the interface of
the two layers shear stresses will ensue which will
modify the whole stress pattern. A solution to this
problem was presented by MARGUERRE (1931),
the results being reproduced after JELINEK (1951)
in Fig. 203. As will be noted the eflect of the rigid
layer is to concentrate the stresses around the
centerline of the load.

Another case of practical interest is that where
the layer closer to the surface is relatively stiff and
is underlain by weaker layers of considerable
thickness. This situation is often created artifically,
when the poor subsoil is excavated and replaced
by a desirable material, e.g. to support the foot-
ing on a well compacted base of sand or gravel.
The compressibility of the upper soil layer is then
considerably lower than that of the underlying
layer, so that owing to the higher resistance to de-
formation, the stresses are concentrated in the up-
per layer, only a lower stress being transmitted to
the soft layer.
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Fig. 203. Vertical stresses in the elastic layer resting on a stiff subbase material

For estimating the stresses in two-layer systems,
with special regard to pavement design, a method
has been suggested by Burmister (1945).

The stresses induced in a lower layer of re-
duced strength may be found by using the method
developed by the senior author (Kg&zpi, 1958).
In essence, this approximate approach consists of
introducing an equivalent layer thickness.

The principle underlying the determination of
the equivalent layer thickness A’ is that the unit
load p acting on the surface of this layer should
induce the same vertical stress, at the bottom of
the layer in the case of a homogeneous soil, as the
original load at the same depth (Fig. 204). The
value of A’ is found with the help of the curves in
Fig. 205. It should be emphasized that the appli-
cability of this method is restricted to cases where
the upper layer is cohesive and thus has a certain
tensile strength, since according to the theory, the
radial stresses developed at the interface of the
two layers cause tension which granular soils are
incapable of withstanding.

e ——
—T_-_nﬂmmn(_p.)_—r——” g

T /b
=V :f
v %
5% 35
SRR ‘ %’

Fig. 204. Concept of the equivalent layer thickness

The method is thus also unsuited for estimating
the settlement of foundations on imported fill.
Such problems will yield to the theory advanced
by Pokrovskii (1937). The assumption underlying
this theory is that the extent to which a material
is capable of resisting stresses is dependent upon
the value of its modulus of elasticity. The velocity
at which vibrations are propagated also depends
on the modulus of elasticity. Let us now denote
the velocities in the upper and lower layers by v,
and wv,, respectively. If E; > E,, then v; > v,.
A beam of energy emanating from a center of vib-
ration will retain its direction in the upper layer,
but will be refracted (Fig. 206) at the boundary
between the two layers. The radial distance which
the wave has attained at the bottom of the lower
layer is

T=~htan o, + H tan a, ~ h oy + Ha, (237)

3 r——
| fo_‘fo I 1
_ e
—_ TTITT
| W ZE 7<)
H Lyt
e E? | 05 T
00" "
£ 2 n 21 " —
T hlco IJ//
T _—Thlro"]
-
/; |
A
7
0 1 5 10 5

Fig. 205. Determination of the equivalent layer thickness
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Fig. 206. Pokrovskir’s method (1937) for the investigation
of the two layer system

Introducing the imaginary layer of thickness A’
and postulating that in the uniform layer of thick-
ness (b’ + H) the wave should attain the same
point as in the original layer of thickness (h + H),
we have

T o (b + H)a, (238)
or
B —p2L, (239)
%y .

Now according to the theory of vibrations

v
1
oy == o,y — , so that

Uy

B = hL,

Uy

NewtonN found the velocity of propagation in
uniform media to be

—
y=A L’ % , (240)

where E = Young’s modulus of elasticity of the
medium,

the density of the medium,

a constant whose magnitude de-
pends on the lateral elasticity of the
medium and on the direction of
propagation.

Combining Eqs (238) and (239):

['E,d,

b —h L/ . (241)
E,d,

Consequently, the stresses induced in the lower
layer of a two-layer system by a concentrated force
P acting on the surface of the upper layer may be
computed by the formulae of BoussiNESQ, but the
depth is to be measured from the surface of the
equivalent layer of thickness h’, as if the load acted
at point Oy, rather than at point O (Fig. 206).

Accordingly, in the centerline of the load

3P
E, 2
z-+h V—l]
E,
Another well-known solution is connected with
the name of ODEMARK (1949). Making use of the
slab theory it is possible to deduce the substitutive
thickness (H,) of the upper layer which gives the
same bending strength in both the upper and the
lower layer. It can namely be written that
E
i_H3 = E, n3H3, (243)
1 — 3 1 —uf

Oz

= (242)
27

where E; and E, = modulus of elasticity in the
upper and the lower layer,
respectively,
¢, and g, = Poisson’s ratio relating to the
upper and the lower layer,
respectively.

Using Burmister’s theory, we can take the n
factor as 0.9, and supposing that g, is equal to y,,
the substitutive layer thickness will be found as:

3
H, =09 H, V—E-l- (244)
E,

Another possibility of finding H, is offered by
using optical analogy (BrRANDL, 1970). The veloe-
ity v of a light beam depends on E and y. When
the beam reaches the interface with a material of
lower modulus of elasticity it breaks toward the
normal of the plane (Fig. 207), complying with
the law

sin oy vy

sin o, v,y

Fig. 207. Calculation of stresses in the two layer system by
using optical analogy (BRANDL, 1970)



where in reference to the figure tan «; == s/H, and
tan «, = s/H,, and so:
tan o
H,— H, 220 (245)

tan o,

As here the angles and angle diflerences are small,
it can be said that:
H, oo H,S2% o 2

Sin &gy Uy

Newton’s law postulates that
v=A 1 E ,
)

where 0 is the density of the material, 4 is a con-
stant depending on Poisson’s ratio, and so, by
changing ¢ to y:

H,— H, V Eiye (246)

which is congruent with the formula proposed by
Pokrovskil.

Indications can be found in the literature that
Eq. (244) is closer to reality.

Problems related to the distribution of stresses
in two-layer and multi-layer systems will be dealt
with in Chapter 4.

2.2.8 Stresses in anisotropic media

The stresses dealt with in the foregoing sections
were invariably based on the assumption of uni-
form, isotropic soils with identical elastic proper-
ties in all directions. In the case of sedimentary
soils, this assumption is, in general, not valid.
Thus in typical marine clay deposits thin coarse-
grained layers are usually interbedded. On the
surface thereof a higher shear may be developed
and thus the resistance to lateral displacement
may be appreciably greater than in uniform soils.
Loess soils also display anisotropic properties, in
that owing to the minute vertical, lime-encrusted
canals, the soil is of a columnar structure with
widely differing compressibilities in the vertical
and horizontal directions. On the other hand, the
modulus of compressibility will usually be observ-
ed to increase with depth in sands. The distribu-
tion of stresses is necessarily influenced by such
anisotropy, prompting a number of researchers to
find a solution to this problem. Some of the rele-
vant theories are described below.

The method suggested by BaBkov and Bu-
KOWSKI (1950) for anisotropic soils provides a fair
degree of approximation and is supported by
experimental evidence. In the case of a line load
acting on an anisotropic infinite half-space, the
Young’s moduli of elasticity will be denoted by
E, and E, in the horizontal and vertical directions,
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Fig. 208. Stresses in the anisotropic half-space generated by
a vertical line load on the surface

respectively, and the stresses are given approxi-
mately by the following expressions:

2p K& )
z T T .
T T
2
o= K22 2p 2%z ’ (247)
x
_KZP x2? .
T

The notations are explained in Fig. 208 while K
denotes the ratio
_ ]"E
E,

Under a concentrated force the stresses are
given as
z3 14+ K C + | K: )

o= — 2T : (248)
n RK(@1 + K)

With K = 1 the expressions reduce to the form
given for uniform soils. Applying the foregoing
expressions to frozen soils, TsyTovicH has shown
the stresses under concentrated loads to exceed
those after thawing by as much as 70%,.

The problem of stress distribution has been
solved by WESTERGAARD (1938) for clay soils with
interstratified thin horizontal layers. These have
been assumed to be present in great numbers,
closely spaced and of negligible thickness, but of
infinite rigidity, thereby preventing the soil mass
from undergoing lateral strain. For a concentrated
vertical load on the surface of the half-space, the
vertical stresses are given as

A m=2
’, — 2a ¥ 2m — 2 - (249)
2| m T2 +[L.)2 52
2m — 2 z
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Regarding the Poisson’s number to be infinitely

large — in agreement with the starting assump-
tion:
pl
o, = —- T . (250)

: 2713/2
221 — 2 (—r—
z
The notations are the same as those in Fig. 191,
Under a rectangular footing with sides a and b

the stresses are found by integrating Eq. (249)
thus

Oy =

q T {m-—-2 (1 1) (m—2 2 1
= —arc cot — —_— —_—.
7 i ‘/(2m~2J l2+ n? * 2m — 2| IPn?

(251)

For m =

q 1 1 1
¢, = —arccot || — |+ —— -+ . (252
R V212 ot a0

The stresses obtained by Westergaard’s equa-
tions and for the isotropic half-space are compared
in Fig. 191.

In cases where the load is concentrated and r/z <
< 0.8 and further for surface loads with both [ and
n smaller than about unity, Westergaard’s formulae
give lower values, viz. about two-thirds of those
computed with Boussinesq’s equation.

There is not enough evidence available to in-
dicate positively which of the two formulae gives
the more reliable results in general practice. In
sedimentary soils the assumptions underlying
Westergaards’s solution seem to be more realistic.
This appears to be supported by the fact that the
settlements estimated using the formulae apply-
ing to isotropic soils were generally found to be
smaller than those actually observed, although
this may be due to a variety of other factors as
well.

In the case of anisotropy considered by Frohlich,
the compressibility, i.e. compression-, or elastic
modulus of the soil, varies according to a certain
relationship with depth. The reduction of compres-
sibility with depth is observable, particularly in
sands.

The reason for this is that the criterion of su-
perposition does not hold true for soils, as can
be readily demonstrated by the triaxial compres-
sion tests described in Part 1. In the case of per-
fectly elastic bodies acted upon by an initial hyd-
rostatic pressure, the vertical deformation would be
found to be independent of the magnitude of the
initial pressure. The same test performed with sand
would yield deformations which are the smaller,
the greater the initial pressure may be. In a nat-
ural sand deposit subject to geostatic pressure, the
vertical and horizontal stresses increase with
depth, so that the strains induced by a given exter-
nal stress will decrease correspondingly.

An exact theoretical solution for the conditions
described above was given by Borowiczka (1943)
in the form of slowly converging infinite series,
which is thus of but little practical interest.

For the case of a Young’s modulus of elasticity
increasing in linear proportion with depth, the
following formulae have been derived by Fron-
ricH (1934):

3 1 1 ;
o, = —4qisin 0, — sinf, — — sin®), + —sin30, |,
4 9{ 2 1 3 2 3 1

Oy = %q [sin%0, — sin®f,],

Tyr= %q [cos®0, — cos30,].
(253)

(for the notations cf. Fig. 175).

In the example shown in Fig. 209, the stresses
computed by assuming E = constant and E =
= a z are compared. The latter will be seen to be
more concentrated in the centerline of the load.

Concerning the propagation of stresses in an-
isotropic soils, the name of JELINEK (1948) should
be mentioned; rigorously observing the laws of the
mathematical theory of elasticity, he has suc-
ceeded in developing relationships for the case of
media having different moduli of elasticity in the
horizontal and vertical directions. The computa-
tion formulae for concentrated and line loads are
rather simple, especially for the case of m = .
Since the stresses obtained in the case that k2 —
=E,/E, > 1 are concentrated about the center-
line, he has suggested making allowance for the
effect of shear stresses in the contact plane, as well
as of the increase of the compression modulus with

_2b
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Fig. 209. Vertical stresses in the elastic half-space:

a — constant modulus of elasticity (v = 3, E = constant); b — modulus of elastic-
ity increases linearly with depth (v=4, E=a3)



depth by the appropriate choice of the value k?,
the effects of these factors on the stress distribu-
tion being of the same sense.

2.3 Settlement of foundations

Total settlement of a footing is, in general,
composed of three parts. The first of these is the
instantaneous, or initial settlement. This is not
accompanied by a volume change and is due prin-
cipally to the effect of shear stresses. This settle-
ment frequently remains unobserved during the
construction of a building as it occurs within a
very short time and is small relatively to the two
other parts. It assumes significance in the analysis
of deformations produced by transient loads, or
when processing and evaluating the results of
loading tests of short duration. This initial settle-
ment will be dealt with in Section 2.3.2.1.

The second part comprises the settlement due to
consolidation, caused by the displacement of air,
or water from the soil under the load. Consequent-
Iy, this part of settlement is accompanied by a
change in volume. The process is delayed over a
certain period of time, the length of which is con-
trolled by the air- and water permeability of the
soil, while its magnitude may be estimated from
the compression curve, or another load-deforma-
tion diagram.

The third part is called the secondary settle-
ment and is due to secondary compression. The
shear stresses cause plastic flow in the soil skeleton,
the particles being slowly displaced relative to
each other. This part of the settlement becomes
great enough to be of importance in specific soil
types only, namely fat clays, peat and other orga-
nic soils.

The settlements under a particular structure,
and even more so the differential settlements under
the diverse parts thereof depend, however, not
on the compressibility of the soil alone, or of the
individual soil layers, but also — to a considerable
extent — on the structure itself. The individual
supports of statically determinate structures may
settle to a certain extent independently from each
other without affecting the distribution of forces
in the entire structure, whereas differential settle-
ment will produce internal forces in statically in-
determinate structures. These, in turn, will bring
about changes in the bearing loads responsible for
the settlements, the resulting interaction, as a rule,
being very difficult to investigate analytically.
This is the reason for the common practice in
settlement computations of regarding the footings
— spread and continuous alike — as independent
elements and of estimating, more or less in the
light of past experience, the probable behaviour
of the structure from the differential settlement
thus computed. In some cases, more accurate com-
putations are also possible, as will be shown in

Section 2.3.7.
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The application of the theory of elasticity to
settlement computation problems will first be dem-
onstrated and then followed by a description of
conventional settlement computation. These prob-
lems are commonly encountered with foundations
on clay soils, while footings on sand are usually
dimensioned for the load-bearing capacity of the
soil. Once the margin of safety with respect to soil
failure is wide enough, the settlements — on sand
soils — are usually small enough to be neglected.
Nevertheless, settlements must be examined as
well in such cases.

2.3.1 Settlement computations by the theory of elasticity

The theory of elasticity is used in soil mechanics
exclusively for the determination of stresses. In
general, this is actually the case and explicit for-
mulae for particular problems are available, which
can be used to advantage. The literature in this
field has grown in volume considerably over the
past years. The fundamental problem encountered
when trying to apply the formulae derived in the
theory of elasticity is concerned with the numeri-
cal value to be introduced for the modulus of
elasticity. According to one approach, the modulus
value corresponding to the total stress is used for
computing the initial settlement, whereas that de-
termined on the basis of effective stresses is adopt-
ed for estimating the final value of consolidation
settlement.

Let us first consider two fundamental cases,
namely those of the circular plate and of the rigid
strip footing, both loaded at their centerline
(FiscHER, 1957).

Under a concentrated vertical load acting in its
centerline, the infinitely rigid circular plate will
settle uniformly. In such cases, the bearing pres-
sures in the contact plane are not distributed even-
ly but according to the expression (BoussinNEesg,
1885):

1 1
g=— T - 4 (25
2 Yrr—ar 2)1—p2

(cf. Fig. 210).

The distribution of the vertical and horizontal
principal stresses in the centerline is found by in-
tegration, whence the compression along z of a
cylindrical element in the centerline can be com-
puted, thus

0= [az oy ) ] — [ — 2u0,] (255)

and the compression of a layer extending from
z = 0 to z = z becomes

z
y= % J (0, — 2u0,)dz. (256)
0
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Fig. 210. Contact pressure distribution () below a rigid
circular plate loaded by a vertical singular force (Q) at the
centre

Since in the case of a rigid, circular plate

g, — 2uc, = % (1 + u)g sin®e(l — 2u -+ 2 cos?a)

and
3 =rcot a,

dz = — r do/sin? a,
whence
nf2

1 gqr
=-—(1 — 1 (1 —2u—2 cos?x) da =
y= +M)EJ< u )

a

— (1;@29_;[2(14 ) (izt——oc) —sinacosa]:

Q (257)
== f(a) .

rE
For z — oocalso « — 0, the total settlement

becomes
Ivq
2E
With the help of Eq. (257) the settlement can be
found for layered soils as well. To this end, the
settlements y are computed for each layer, al-
ways using the appropriate value of the E modulus.
Values of the function f(«) can be found from
Eq. (257) or from Fig. 211. The component settle-

ments are thus

I'E,'

Yo = (1 —4?) (258)

Ay[ -

[fi() — fi1(2)] (259)

producing the total settlement
y = 2dy.

If the load on the circular disc is distributed
uniformly, implying a flexible plate, the settlement
in the centerline is given by the expression

y = (1 —MZ)—zé—’ — 1.28 y,. (260)

Problems related to the settlement of strip
footings will yield to a similar approach. The dis-
tribution of the contact pressure is described here
by the expression

2 b
S :ETQ— (261a)
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Fig. 211. Diagram for the calculation of partial settlements

(¥):

a — for arigid circular plate loaded by a vertical singular force in the centre; b —
for a rigid centrally loaded beam



(cf. Fig. 212), the resulting compression of the
layer down to depth z being

1w 2 [omeot £
y—(1—2) E[zl -

T

T cos ﬂ] =
0 (261Db)
=516

The values of f(8) are plotted in Fig. 211. The
partial settlements resulting from compression of
single layers are computed from Eq. (259). It
should be noted that for z — oo again y -» oo,
so that the anomaly described before is again en-
countered.

2.3.2 Calculation of the three phases of settlement

The procedures for calculating the settlement
have been elaborated for cohesive soils (Sections
2.3.2.1-2.3.2.3) because present laboratory testing
technology can only cover the deformation ana-
lysis of these types of soils. Problems relating to
granalar soils will be dealt with, therefore, in
Section 2.3.2.4.

2.3.2.1 Initial settlement

When a load is applied rapidly to a saturated
clay, the soil deforms at constant volume (v =
= 0.5) to accomodate the imposed shear stresses.
The settlement associated with these deformations,
that occurs without significant dissipation of
excess pore pressures, is called the initial (or un-
drained, or shear) settlement.

Appraising the initial settlement separately is
important for the following reasons.

1. Inijtial settlement may constitute a large por-
tion of the total settlement, depending on the na-
ture of the soil, the geometry of loading, and the
thickness of the compressible layer.

2. Analysis of the initial settlement is an integral
part of the analysis of the overall time vs. settle-
ment behaviour of foundations (cf. Section 2.3.2.2).

3. Initial settlement is closely related to the
undrained stability of foundations of both build-
ings and dams (cf. Section 2.4). Excessive initial
settlement may be a warning of impending
failure.

Commonly used methods for computing the
initial settlement employ various integrations of
Boussinesq’s solution for the settlement under a
point load on the surface of a homogeneous,
isotropic, linearly-elastic half-space. Thus

1—92

si=pB 1, (262)
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N
T

Fig. 212. Contact pressure distribution (0) below a rigid
beam

where s; — initial settlement,
p = average contact pressure,
B = characteristic dimension of the
loaded area,
E = Young’s modulus,
I = influence factor that is dependent

upon the problem geometry.

If Poisson’s ratio is incorporated in the in-
fluence factor, expression (262) can be re-written as

:ﬁI,

u

$;

(263)

Where E, means the undrained modulus of elastic-
ty.
D’AproroNIA et al. (1971) proposed taking the
initial in situ shear stress also into account and
to modifying the value gained from expression
(263) as a function thereof. Three characteristic
sections can be identified on the idealized ¢ vs. s;

curve (Fig. 213):

1. a linear segment 0A where s; is proportional
to load (elastic settlement);

Failure stress B C
qGypr—r———————=

Range of contained
plastic flow

A
Gy m—p=—First local yield -

Elastic range

Applied foundation stress, q

0 Initial settlement, s;

Fig. 213. Tdealized load-initial settlement curve (D’Appo-
LoNIA et al., 1971)
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2. a non-linear segment 4B commencing when
the shear stress becomes equal to the shear strength
at some point in the soil mass (local yield);

3. a horizontal segment BC, representing the
failure of the foundation at the ultimate bearing
stress, ¢,.

The linear portion of the curve can be obtained
from an elastic analysis, requiring only the E,
modulus and the problem geometry to be known.
The point A at which the first yield occurs can be
estimated by determining the applied foundation
stress required to induce failure at some point
within the soil mass. To evaluate the segment A B,
an analytical method is required that considers the
plastic flow in the soil mass. Finally, the ultimate
bearing stress ¢, can be obtained from a stability
analysis using the average undrained shear
strength. For simple problem geometries and soil
conditions, an explicit expression is available for
q,- The safety factor f beyond which local yield
first occurs below a strip footing is plotted in
Fig. 214 as a function of an initial in situ shear
stress before any external load is applied and of
the undrained shear strength s,.

Opo —0 1-K
f: 20 ho . [4] . (264)

28, 28

&00
where G,, = the initial vertical effective stress,
0, — the initial horizontal effective stress,
K, = the coefficient of lateral earth stress

at rest.

Further on the authors suggested to use an Sp
settlement ratio which has been validated for
various q/q, and H/B ratios (H being the thickness
of the layer) by means of the finite element method
(Fig. 215). In this sense the calculation will pro-
ceed in the following steps:

1. Estimate the value E, and f from laboratory
or field tests.

2. Perform an undrained stability analysis to
obtain the ultimate bearing capacity and hence
the applied stress ratio ¢/q, at the working load.

3. Estimate the elastic initial settlement s; from
conventional elasticity theories.

4. For the computed values of g/q, and f, use
Fig. 215 to obtain the settlement ratio Sy,

The initial settlement is then computed as:

Qi = Si/SR . (265)

The validity of Eqs (262) and (263) has also been comment-
ed by other researchers. The influence of the safety factor on
the initial settlement of an embankment on clay has been
recognized by Pusch, who suggested the introduction of a
correcting factor equal to

1

1+ (266)

10

] | l
qy=n(1-f)s, for O<f<]
q=m(1-f%)s, for ~1<f<0
8 b

e [ T -
Strip foundation on homo-
geneous isotropic clay

Pl B -

Safety factor at first local yield
SN
i

0
-10 -05 0 05 10
Initial shear stress ratio, f

Fig. 214. Safety factors at which local yield first occurs
under strip foundations (D’ApPoLoNIA et al., 1971)

and by MENARD, who suggested a factor in the form of

2 F
R (267)
which implies that the computed elastic settlement has to be
increased when the safety factor is less than 3.0.

Some authors point it out that observed initial settlement
was beyond that calculated and infer that the cause was
probably the pore water which had already begun to dissipate
in this phase.
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Fig. 215. Relationship between settlement ratio and applied
stress ratio for strip foundations on homogeneous isotropic
elastic layer (D’APPOLONIA et al., 1971)



Tavenas and LERoOUEIL (1980) call attention to overcon-
solidated clays which — beyond a certain load — begin to
behave like normally consolidated clays, whereby the process
of consolidation is not “homogeneous”.

Davis and Pouros (1968) — similarly to the
calculation of the primary settlement, cf. Section
2.3.2.2 — suggest involving o, and o, stresses in
the calculation. In this way the initial settlement
might be calculated from the formula:

o+ 0500+ ) 1. (968)

Si:Z Eu

Several authors express the opinion that s; is
identical to the settlement which occurs during
construction. SiMons and Som (1970) analyzed
12 case records of settlement of major structures
on over-consolidated clays and quote a range of
values for the ratio of settlements at the end of
construction to the total settlements as 0.32 to
0.74, with an average of 0.58. MoRTON and AU
(1974) have studied eight case records of buildings
on London clay and quoted a range of 0.4 to 0.82
with an average of 0.63. BRETH and AMANN (1974)
reported similar results for Frankfurt clays. Fig.
216 shows the results of settlement surveys on
Hungarian buildings; the diagram is plotted as a
function of g/t., where ¢, means the time period of
the construction.

A quick loading may introduce serious problems
in the case of silos, as it has demonstrated the anal-
y$is of measured settlements of 19 Hungarian
sitos (RETHATI, 1977). These objects were founded
on slabs of 300 to 670 m? surface area (four of them
on 1200 to 4160 m?). The average contact pressure
was 127 kN/m? for dead load rising to 311 kIN/m?
when the silos were fully loaded (the ratio is
1:2.45). Registered average settlement under the
dead load was 3.48 em, and it rose 21.14 cm when
the live load was effective. Here the ratiois 1 : 6.07,
indicating an extremely great deviation from the
previous ratio of contact pressures. This cannot be
attributed to the sole fact that in higher ranges of
pressures the relation between ¢ and s ceases to be
linear. The cause of this phenomenon should be
clear when the ratio of total load (s;) to dead load
(s.) is grouped by soil types:

Seil type n 3 St (st/scav

Granular (and mixed) 6 1.32 4.53 3.88
Transitional 4 1.95 16.03 7.79
Cohesive 9 5.61 34.30 6.97

The different behaviour of granular and cohesive
soils can be recognized also from the curves s and
tin Fig. 217. In every case when the subsoil con-
sisted of cohesive layers the settlement wvs. time
curve shows a characteristic break not far behind
the instant when the transfer of loads begins. A sim-
ilar event appears in the case of transitional
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Fig. 216. Degree of consolidation up to the end of construc-
tion (K,), according to surveys made in Hungary

soils as well, but none of these features is mani-
fested on granular soils. (These surveys call atten-
tion to the need of keeping the rate of loading at an
acceptable level, and of arranging a schedule of
loading in advance and adhering to it.)

2.3.2.2 Primary compression

Primary compression (consolidation) is under-
stood to be a process in which the pore-water
dissipates from the soil mass continuously under
the effect of the loading pressure until equilibrium
— governed by hydraulic boundary conditions —
is restored. During the process the effective stress
(0) increases uninterruptedly at the expense of
the neutral stress (u),so that at every minute and
at every point of the compressed mass the equality
¢ = 0 + u prevails,

The problem of one-dimensional compres-
sion (consolidation) has been solved by TEr-
zAGHI (1923). The settlement in this case can be
found from the equation:

2
s = (m,Audz,
0

where /u = the excess pore-water pressure, iden-
tical with the effective vertical pres-
sure, on the layer.

m, = the coefficient of volumetric com-
pressibility (the invert of the modu-
lus of compressibility E;). It can be
determined by an oedometer, i.e. in
a device in which sideward displace-
ment of the sample is restricted.

The settlement for a given situation can be de-
termined by dividing the stress diagram (¢,) into
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n parts, and computing the sum given by:
n
Doy my - Az, (269)
=1

where Az =— means the thickness of the i-th slice,
¢, = the vertical stress at the centerline
of the ith slice,
my =: the coeflicient of volume compres-
sibility in that point.
(As the relation between ¢ and ¢ is not linear m,
varies according to the stress applied — increasing
with the stress — because the sideward movement

Fig. 217. Time-settlement curves as measured at
Silo No. 1 silos on various soils (RETHATI, 1977)

Soil: granular

Silo No. 10
Soil: granular

Silo No. 13
Soil: transitional

Silo No. 14
Soil: transitional

| Silo No. 2

Soil: cohesive

Silo No. 6
Soil: cohesive

is obstructed.) The wvertical stress — i.e. its
influence — should be counted up to the level of
the stiff layer, or to the depth limit mentioned in
Section 2.2.6.

Terzaghi’s procedure gives acceptable results
only when

— the thickness of the compressible layer is
small in relation to the size of the footing,
and/or it is at a great depth; and

— a reliable sample can be tested in the oedo-
meter, or the test can be substituted by some
other suitable method.



Since the 1950’s many authors have remarked
that the use of one-dimensional methods for thick
beds of compressible soils is inaccurate since
substantial lateral displacement can occur. SKEM-
pTON, PEck and MacDonaip (1955) recognized
that the undrained settlement s,(=s;) can be
significant and by accepting that the total settle-
ment s; is equal to s,; they suggested that the con-
solidation settlement was given by

S¢ = Soq — Sy (270)

SkemproN and ByerrUM (1957) proposed a new
method for estimating s, by applying a correction
factor g to s,; to take account of the magnitude
of the pore pressure set up beneath the founda-
tion during undrained loading and which is dis-
sipated during consolidation. The total settlement
is therefore given by

S =8, + HSod - (271)
The authors suggested to introduce
= [A + I(1—4)], (272)

where A is the pore-water parameter as suggested
by SkempTON, and I is a function of L/B in the
following sequence:

L/B 0

0.25 0.5 I 1 ' 2 ’ 4 ’ 10 ' oo

!

I |10 |0.75 0.531 0.37 0.26' 0.20 | 0.14

§

SkeEmMPTON (1957) suggested that in due course
settlement analysis would probably be carried out
by means of triaxial tests in which appropriate
principal stresses are applied first under un-
drained conditions and then allowing for drainage.
This is the basis of the stress path method of
LamBE (cf. Section 2.3.3) and a variation of this
method has been proposed by Davis and Pouros
(1968) with similar approach to that by K£riseL
and QUATRE (1968).

Following the procedure suggested by the lat-
ter authors, the first step to be taken is to let the
sample reconsolidate, this means that the stresses
0; = 0, and o, = K, - ¢, should be applied to
imitate the original (in situ) condition of the
sample. The next step is to apply the deviator
stress ¢; — 05 to the sample (which correlates with
the external load) and record the relative defor-
mation, the volume of expelled water, and the
pore-water pressure. When these data are known,
the three phases of settlement can be separated
from each other. As can be observed in Fig. 218
the rate of settlement and that of the squeezing
water are not congruent, which is a consequence of
the initial settlement. In the case of a rectangular
footing, two tests are needed (as o, =< 03), one
with the deviator stress ¢, — 0,, and the other
with ¢; — ;. The true relative deformation might
be expected between the two values.

10 A. Kézdi and L. Réthati: Handbook
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Fig. 218. Distinction between settlements relating to ini-
tial and primary consolidations during the evaluation of
triaxial test results (KERISEL and QUATRE, 1968):

I — settlement; 2 — dispelled water

By using the formula below the Poisson ratio
is also predictable from the Kérisel-Quatre theory

g3 Aoy — & Aoy

Y= s (273)
2 g5 Aoz — &(doy + Aoy)
where Ao, and Ao, = are the increments of prin-
cipal stresses,
g; and ¢ = deformations as activated

by the above (the value of
g5 can be calculated from
g; and the volume of water

expelled).

The problem can only be solved by using sequential itera-
tion. An initial value should be assumed for v — the authors
suggested taking » = (.25 at the beginning — to enable the
calculation of ¢; from ¢,. Should the v assumed deviate sub-
stantially from that which can be calculated from Eq. (273),
the test should be repeated using the stress o, calculated
from latter y-value.

Davis and Pourus (1968) proposed for the
three-dimensional situation, calculating the total
settlement s = s;p from the formula:

Sr = 2% [00/(0x + )] ds (274)

where E” and »’ relate to the soil skeleton. As the
calculation of the one-dimensional settlement s,4
corresponds to the case of » = 0, and the relation
of E — the modulus of compressibility which was
used for its calculation — to E’ can be described as
gLl _Ed=7) g

me (L4 9)(1—20)

it can be seen that the ratio s, /sy depends pri-
marly on the Poisson ratio. This proportionality is
represented on Fig. 219 (insert a) for a uniformly
loaded circular footing which rests on an elastic
underground. Thus, the one-dimensional approach




146 Load-bearing capacity and settlement of shallow foundations

1.0 ] W 0 2
~—— a2p 0.45
08 \\\ O 08p———1— %
I NI N2 S
L 0 ~ k% 020~
st \ V. < // / >O
& 04— =0 ‘045\ G 04 // YLD
Qg Soil layer // //
02 i — 02 //// .
0 0
0 h/: ! 0
(a) a a’h () 0 h/a ) alh 0

Fig.. 219. Error incurred (a) by estimating the settlement from the one-dimensional approximation (s,), (b) the ratio of
the initial (s,) to [the total (s;r) settlement as a function of Po1ssoN’s ratio (Davis and Pouros, 1968)

is allowable when »” <{ 0.25 but begins to diminish
essentially thereafter, and the more so as the
thickness of the layer becomes greater in relation
to the diameter of the circular footing.

Davis and Pouros (1968) analyzed the initial
settlement as well (cf. Section 2.3.2.1). The value
s, will be defined by using the elastic displacement
theory by putting

B
2(1 + )

The ratio s,/s;r is plotted in Fig. 219b for the
same conditions as in Fig.21%a. Two expected
trends are apparent: the initial settlement contrib-
utes to the total final settlement to a much higher
proportion when » is high, and the initial settle-
ment is relatively small for shallow layers. The
authors’ original article also describes a procedure
for the determination of E .

E=E,=3F and »y =9, =0.5.

2.3.2.3 Secondary settlement

Secondary compression (consolidation) due to
viscous deformations can be described according to
experimental result by the logarithmic function:

Ssec = H C,log T , (276)
1 + €y ti

where C,= coefficient of secondary consolida-

tion,

thickness of the layer,

time when the secondary consolida-

tion begins.

H
t;

It has not yet been made clear when the second-
ary consolidation begins: should it be at the
instant at which the primary compression settle-
ment terminated, or should it be placed before
that time?

ZeEVAERT and VoceL (1953) combined Eq.
(276) with the primary settlement in the form:

s = [mm 1 m, log i]. HAp, (277)
[4

a

where m,, - H - lp = s, represents the primary
compression settlement which occured up to time
t;. As the curves describing the two sections of
consolidation have to share a common tangent at
their meeting point, i.e.

Osy _ Osy (278)

ot P

the process of secondary compression settlement
has to begin before the primary process has ended
(i.e. while » < 1009%,).

After having scrutinized the data from several
settlement surveys, JEGorov and Bupin (1981)
suggested propagating the use of the relationship:

s=s,+ A1In (1 + Br), (279)

where s, means the settlement measured at the
end of construction.

The reality implied in Eqs (276) and (279) is fur-
ther supported by two other circumstances:

(a) the one-dimensional consolidation can be
described, in the realm of » = 0.526 to 1 by the

expression

E=1—10"%; (280)

(b) according to experimental observations, the
measured settlement might be successfully extrap-
olated by using exponential functions (cf. Sec-
tion 2.3.4.3).

The coefficient C, can be determined from long-term oedo-
metric laboratory tests. It is also customary to accept C, as a
given portion of C,. Cox (1981), for example, made the sug-
gestion to take C, == 0.045 C, for virgin consolidation and

C, = 0.015 C, in the overconsolidation range.



2.3.2.4 Settlement of bases on granular
underground

Deformation of granular soils cannot be prop-
erly determined on the basis of laboratory tests.
Investigation and testing procedures made in situ
can provide some information, first of all the Plate
Loading Test, the Standard Penetration Test and
the Static Cone Test, but useful information can
also be acquired from settlement survey data of
nearby buildings as well. Forecasting methods are
described in Section 2.3.4. but it can be empha-
sized already at this point that really reliable
methods have as yet not been developed.

2.3.3 Allowance for the state of stress

Vertical deformations of the soil and consequent
settlements of the structures supported by it de-
pend not only on the magnitude of the stresses
transmitted, but also on the method by which these
areimposed. As a means of visualizing this method,
“stress-paths” have been advanced by LamBE
(1964) and the stress-path curves permit this
effect to be studied (ef. Vol. 1, Section 7.6.3). The
stress-path curve is understood as a sequence of
Mohr circles describing the variation of the state
of stress. Any Mohr’s circle of stress is defined by
two coordinates (Fig. 220), namely

o,+o0; _ o©,+o0
p= 12 3;P: 12 3
(281)
:0'1_0'3.—-:
q 9 39=9

As can be seen, total and effective stresses may
equally well be used. An example is given in Fig.
220a. The soil sample was first under hydrostatic
pressure (point 1), then the first principal stress
was increased (line I-2-3) and finally the third
principal stress was reduced (line 3-4). The stress-
path I1-2-3-4 is a single-line substitute for the
number of circles and presents a clear picture of
the changes.

Let us now trace the stress-path for an oedome-
ter test (LAMBE, 1964). The stress circles are shown
in Fig. 221a. The initial condition is represented by
point A4, where the neutral stresses are zero.
Increasing the load, the total stress will alsoincrease
and as long as there is no volume change, the shear
stress will remain unchanged. For this reason, the
line 4B is horizontal and the diameter of the circle
remains the same. The total stress increment Ao, is
thus reflected in the neutral stress.

After the load is applied (compression) consoli-
dation starts and the diameter of the Mohr’s circles
of total stress increases (points C and D). The total
vertical stress remains constant. The line A-B-C-D
is thus the stress-path traced on the basis of total
stresses. The line AFD is the path of effective
stresses, as will be readily perceived. The line OD

10*
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a — Drawing the Mohr’s circle of principal siresses for two values p and g¢;
b — stress—path of an experiment

is that of static pressure. The angle § is given by
the expression

= 282
e (282)

The deformations can be plotted on the same
(0, 7) diagram. A series of triaxial tests of the
consolidated, undrained type will yield compres-
sion curves resembling those shown in Fig. 222. If
the coeflicient of static pressure is available from
other tests, the lines pertaining to identical defor-
mations can be traced from the curves and used
in settlement calculations. Before describing the
process involved, attention is called to Fig. 223,
in which the deformations produced by different
loads have been plotted, assuming that the in-
crement of the first principal stress was the same
in each case. In the case where the hydrostatic
pressure was the initial condition (point E), the

Fig. 221. Stress-path from an oedometer test
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a — Deformations; b — representation of equal deformations in the coordinate
system p, ¢
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Fig. 223. Deformation patterns for various compressive
testing methods
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Fig. 224. Procedure for settlement calculations:
& — assumption of di ional lidation; b — calculation using triaxial
test results following the stress-path (LamsE , 1964; 1967)

increase in hydrostatic pressure will cause uniform
compression (E-F). A soil sample consolidated in
the oedometer (or an element of a normally consol-
idated clay layer) is in the state of static pressure
(point A). A stress-path following the line of static
pressure produces compression (line 4-C) in the
vertical direction. In the case of the stress-path
A-D, the lateral displacement is compression,
while in that of AB it is expansion.

The question arises as to how these graphs can
be used in settlement calculations. Two methods
will be demonstrated (Fig. 224), the first of which
is substantially already known. Settlement is as-
sumed here to result from one-dimensional con-
solidation and the initial value of excess pore-wa-
ter pressure to equal the increment vertical stress.
The initial settlement is then zero, whereas the
consolidation settlement is found from the defor-
mation curves (see Fig. 222b) along the line K,
from the section [ F (Fig. 224a). The initial value
of excess pore-water pressure is given by the sec-
tion IG. This is thus the simple, familiar approxi-
mate method.

Before the second method can be applied (Fig.
224b), a triaxial test is performed in the labora-
tory, according to the stress-path IBF, where BF
represents the excess pore-water pressure. The ini-
tial settlement depends on I B, while its consolida-
tion counterpart depends on BF.

The total settlement is found by multiplying the
corresponding total strain obtained on the sample
by the thickness of the clay layer.

Allowance for the actual spatial stress distri-
bution around a foundation can also be made in a
settlement computation using the method sug-
gested by SkemproN and BJERRUM (1957), in which
the pore-water pressure coeflicients of SkEMPTON
are involved (cf. Vol. 1, Section 5.3, Eq. (5.3)).

A load placed on the surface of a soil layer will
produce excess pore-water pressure at various
points within the soil. The total principal stresses
will be increased by Aoy, 40, and Ao,. Assume the
soil to be saturated, i.e. B equals unity. The state
of plain strain will be considered first, followed by
the axial-symmetrical strain, i.e. the settlement of
the centerline of a strip footing and of the center of
a circular plate will be determined.

The effective vertical stress is increased due to

the load by

Aoy = doy — u.
The effective stress acting in the vertical plane of
symmetry is

Ay = Aoyy — u.

At the center, the consolidation settlement due
to the gradual decrease of pore-water pressure is
given as

¥4
as
o= | u—0—ds. 283
Y J 1+ e ( )
0



The pore-water pressure is found with the help
of the pore-water pressure coefficients. The soil
being saturated, B = 1 and thus for the case of a
circular plate, where 4o, = Ado,, we have

u = Ao, + A(do; — Aog) = A Ao, + (1 — A) Ao,
(284)

In the case of a strip of infinite length, in plain

strain, o, = -2—(0‘1 -+ o), so that

3
= Ndo; + (1 — N)4o,,

['3 1 1
u:Ao‘s—l—[L(A )—{———(0‘1—0‘3):
2 2
(285)
where
V3 1 1
NP3 Y 08664+ 0211, (286
2( J+2 + (286)

If the settlement is calculated from the results
of a compression test (from the compression curve),
then assuming one-dimensional consolidation, the
settlement becomes

dz.

, 2z
Ye=§ Ao,

u 287
0 1+ 280

€p

The value of u is introduced from Eqs {284) or
(285) into Eq. (283) to obtain y,. The ratio of yy
to y; is u, so that
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p is a dimensionless number, a function of 4 and
of the basic dimension related to the thickness of
the compressible layer. For a circular plate

[ [Ado, + (1 — A)do][ay(l + eq)]ds
Heircle = .

fMMMmeM

(289)

The value of pgyi, is found from the above
expression if A is replaced in Eq. (289) by N, cf.
Eq. (286).

In the cases where the compressibility of the soil
and the coefficient 4 are constant, from Eq. (289)

Heire = A+ o (1 - A) (290)
or
HUstrip = N + o« (1 - N)o (291)
where
Eé]o‘sdz
0
o = .
z
j"Ao‘ldz
0

The magnitude of « is thus seen to be dependent
on the geometrical dimensions alone. Once the
stresses have been calculated with the help of the
theory of elasticity, « can be determined and the
correction factor can be plotted against A. The

Yie = k- (288) resulting diagram is shown in Fig. 225. The settle-
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Fig. 225. Correction factor for consolidation settlement as a function of the pore-water

pressure coefficient
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Fig. 226. Stresses associated with lowering and raising
the water table (LAMBE, 1967)
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ments of strip- and circular footings transmitting a
uniformly distributed pressure to the soil, which
thus cause two- and three-dimensionally stressed
states, can thus also be found on the basis of the
compression curve of an oedometer test. To do this,
the values obtained by assuming unconfined con-
ditions must merely be multiplied by the correction
factor y found from Fig. 225. Of course, y cannot
be found unless the value of 4 is known.

This correction should, however, be applied with
care, since A4 is difficult to determine and the esti-
mate of preconsolidation may be very inaccurate.
In unsaturated soils the significance of the correc-
tion is but imperfectly understood.

The principle and the advantage connected
with the use of the “stress-path” method are well
demonstrated on an example given by LAMBE
(1967).

Figures 226 and 227 show the stresses and strains
associated first with the lowering and then the
raising of the water table in the profile shown.
Initially, the phreatic surface is at —9.5 ft. It is
then lowered over a large lateral area to —19.5 ft
and kept at that depth until vertical steady-
state flow exists. Pumping is then stopped and
groundwater conditions gradually returned to
static. The distributions of pore pressures for these
two equilibrium conditions are shown in Fig. 226.

Mid-depth of the clay has been taken as the
“average” point. Actually this is slightly above
mid-depth since the stress versus strain curve of
the clay is not a straight line. In other words,
slightly larger strains occur in the upper part of
the clay for a given stress increment than would

~

in€
Ko lﬁ//’
-
//

g (kips/ft2)

occur in the lower part, because the initial effective
stress in the upper part is less.

The distribution of pore pressures shown in
Fig. 226 is based on the following conditions:

1. no total head is lost in the silt above the clay
or the sand below the clay,

2. the permeability of the clay is constant with
depth, thereby giving a constant gradient and
straight line distribution of pore pressure at the
equilibrium condition.

The dewatering causes a reduction in pore pres-
sure and, therefore, an equal increase in effective
stress, because the total vertical stress remains
constant. Since the dewatering occurs over a large
lateral area, the horizontal strains must be equal
to zero, i.e. a K, condition exists. As shown in
Fig. 227, the effective stress-path lies along the
loading K, line going from A4 to B for the dewater-
ing, and along the unloading K, line from B to F
when groundwater conditions again become static.
The total stress path lies along a line of constant
vertical stress, going from C to D with the dewater-
ing and from D to E when groundwater conditions
return to static. As can be seen from Fig. 227 the
vertical total stress remains constant and the later-
al total stress drops during the dewatering. The
horizontal distance AC equals FE, which equals
the static pore pressure at the centre of the clay,
and BD is equal to the pore pressure under steady-
state vertical flow.

At the right in Fig. 227, the results are shown of
a stress—strain test along the stress-path for the
field conditions. Since the loading and unloading

B
A 'p/ DC G
//
T R
0 ] 1 I
0 2 3 0 1

7
0 & p b (kips/ft?

& (%)

4 Fig. 227, Effective stress-path and strain for low-
ering then raising the water table (LAMBE, 1967)



is K,, the oedometer test is appropriate for this
problem. The vertical strain during groundwater
* lowering is from G to H, i.e. 3.5%, and HJ for the
return to static conditions, i.e. —19%,. Multiplying
the compressive strain of 3.5%, by the thickness
of the clay of 14 ft gives a component of settlement
from compression in the clay equal to 0.49 ft. The
clay expands 14 X 19, equal to 0.14 ft.

2.34 Prediction of settlement on the basis of field
observations and surveys

2.3.4.1 Settlement analysis on the basis of loading
tests

Some version of model rule or the modulus of
compressibility as calculated from the deformation
curve can be used to determine anticipated settle-
ment from the results of loading tests.

U.S. Standard Load Bearing Tests are performed
on a square plate of 30 cm sides. TERZAGHI
and PEck presented the following empirical rela-
tionship for use in the case of sands:

2
s =S5, —2B———) s (292)
B +.0.3
where B = length of the footing, m,
s = expected settlement of the footing,
cm,
s, = registered settlement during the load-

ing test under the design pressure,
cm.

In recent years the validity of this formula has
been criticized by scientists. BJERRUM and EGGE-
STAD (1963) after the detailed examination of test
results of 46 loading tests described in the litera-
ture — which were supported by settlement sur-
veys — reduced each loading surface to 0.1 m?
and concluded that the points representing dense
sands fell well below the boundary line in the
diagram with the coordinates s/s, and B/B, (as
defined in Eq. (292)), but that the plots of loose
sands were above that line.

According to Barata (1973) Eq. (292) gives

uncertain results because the variation with E; is

. 03
gg |
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25 | 3e S~ D/B-10
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£¢ 07158 .
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Width of the footing B (ft)

Fig. 228. Settlement of footings in sand as a function of
width (B) and depth of the foundation (D’Aproronia and
BRriSETTE, 1968) (1 ft = 0.3048 m, 1 in = 25.4 - 103 m)
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neglected. To give way to this concept, namely
that generally E; varies according to depth, the
use of the HouseL (1929) and BurmisTER (1947)
formula would be amenable

s B E,+CB,

s, B, E, +CB
where E,, = modulus of compressibility at the
foundation level,
C = depth increment of the above mod-

ulus per cm.

Should the soil be homogeneous, i.e. C = 0, the
formula becomes:

22 (294)

and so the settlement will increase linearly accord-
ing to the side length of the footing which is natu-
rally in full coincidence with the expression de-
ducted on the basis of the theory of elasticity
which states:
s — M"_D_, (295)
4 E

where D is the diameter of the circular footing.

D’ApporoniA and BRISETTE (1968) presented
the relation illustrated in Fig. 228, which has been
conceived on the basis of settlement surveys on
about 300 buildings. The main conclusions to be
drawn therefrom, are:

(a) if B > 4.5 m, an increase of the width of
the footing will not increase the settlement;

(b) increasing the depth of the foundation (i.e.
the ratio D/B) a slight decrease in s would result;
for example, when B = 4.5 m, the ratio of the
settlement relating to D = 0 and D = B attains
1:0.75;

(c) the increase of soil compressibility with B
is greater between B = 3 to 6 m, as was supposed
by TErzAGHI and PEck (1948).

Rupnickir (1968) measured the settlements of
strip foundations of 20 and 30 cm width lying on
sand and deduced the following correlation:

p 1.62
for D=0 s=0013B (_) . (296)
By

p 1.44
for D— B s— 0.008B [—) . @97
By

2.3.4.2 Settlement analysis on the basis of penetra-
tion tests

Both static and dynamic probing (penetration)
procedures are suitable for the prediction of
expectable settlements.
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Using static probes, the settlement can be esti-
mated from the expression:

s zzilogﬁi_"i_ (298)

C g
The coefficient of compressibility C can be taken
from the experimental formula:
Cia

Og

C=15 (299)

where C,, represents the cone-resistance (in kp/cm?
= 100 kN/m?).

From among the dynamic penetration methods,
empirical formulas have been deduced for the
calculation of the expectable settlement when the
Standard Penetration Method is used. That given
by TErzAGHI and Peck (1948) is written as:
3P ( 2B )2

s = CCy—r B (300)

N

where N = number of blows,

B width of the footing

C,, = depends on the depth of the ground-
water below the footing (D)) and its
value is
C, = 1 when D,, > 2B, or
C, = 2 when D, < B,

C; = coeflicient of depth, obtained from
the formula:

I

D
Ci=1—-—. 301
a 1B (301)

Field observations have revealed that Eq. (300)
gives overestimated values for s. Therefore,
MeveRHOF suggested that 2 should be written in
the nominator, instead of 3, and C,, = 1 should be
applied uniquely, because, as the author empha-
sizes, the result of the penetration test (the number
of blows) includes in itself the influence of the
groundwater.

Peck and Bazaraa further refined the proce-
dure, mainly by suggesting affixing modifying
factors to the number of blows (V) and to put
these modified values in the formula.

Scaurrze and SeERIF (1973) compared the
measured settlement of 48 buildings (all founded
on sand) with those predicted on the basis of
Standard Penetration Test results. Multiple regres-
sion analysis (where the multiple correlation coef-
ficient of 0.938 was achieved!) resulted in the fol-
lowing expression for the prediction of the settle-
ment s:

1
s = f . B, (302)
1.71 N*# - VB/B, (1 4 0.4¢/B)
where p = contact pressure, kp/cm? (but do not

deduct ty),

f
Bl
t

influence factor of the settlement,
1 cm,
depth of foundation level.

[

The interesting feature in this expression is the linear
relation between s and p which means that given identical
underground conditions and footing geometry the modulus of
subgrade reaction (k) does not vary with the load.

Measured settlements compared to those calculat-
ed by using Eq. (302) have shown a 409, standard
deviation, which is a fair agreement. The authors
pointed out that according to their calculation the
settlement as calculated by the Terzaghi—Peck for-
mula is overestimated.

2.3.4.3 Settlement analysis using the pressiometer
method

By using Ménard’s pressiometer, the total settle-
ment is calculated as the sum of two partial defor-
mations:

1 2
s akr 4 + v ro (AZL) . (303)
P 4.5 E, 3 E, o
where p = contact pressure,
r == radius of the footing,

ro = reference radius (30 cm)
E, = modulus of deformation to the
depth r,
E, = modulus of deformation in the realm
of deviator stresses,
A,and 2, = shape factors,
» = Poisson’s ratio.

This evaluation method is based on the supposition that
the settlement is composed of two components: (a) volumetric
change in the half sphere corresponding to the diameter of
the footing; (b) shear displacement without volumetric change
outside the half sphere.

The coeflicient « is the indicator representing the influence
of the width of the footing on the settlement:

O

For sands « = 0.25, and for clays « = 0.67 (accord-
ing to the theory of elasticity it would be « = 1.0).

MtLLEr (1972) evaluated the settlement of
11 buildings and experienced 4209, deviation
between measured and pressiometer-predicted
settlements.

2.3.4.4 Back-analysis of E; from measured

settlements

The method of calculation should be selected by
taking the soil conditions and the method of
measurement of the settlement into account. This
latter may be realized by: (a) continuous instru-
mental measurements, or (b) a single levelling of



an originally horizontal structural part. In the
following a few examples are shown to demonstrate
the methodology of the calculations (RETHATI,
1981).

(a) Homogeneous stratification.

In the case when the load and the surface area
of the foundations are identical, the procedure is
the following, as described in this example. The
mean settlement measured on 21 pillars of a hall
was s = 27.0 mm and the standard deviation
¢ = 4.22 mm. Therefore, the confidence limits for
the settlement were (at a probability level of
o = 0.05)

s =27 + 2.0864—72__E = 27 4 1.92 (mm)

/20

and for the modulus of compressibility:

F F

wherein F is the area of the stress diagram. By
replacing F, the probability by which the value of
E, falls between 10.3 and 11.9 MN/m?is 959,.

In the case of footings of different loadings
and/or surfaces, one may proceed according to one
of the following two methods.

1. The values of E should be calculated for each
footing, and their mean value characterized by the
standard deviation.

2. A correlation should be established between
F and s (see later).

(b) Presence of one highly compressible layer.

In this case, the settlement should be brought
into relation with the stresses aroused in the layer
in question, and the deformation of the other
layers should be neglected. The calculation will
depend on how many equations to exhibit E;
can be written.

The strip foundation of the damaged building
represented in Fig. 229 is 0.45 m wide and transfers
a load of 146 kN/m. The strips rest on sand in the
section along the cellars, and on a peaty clay
(w=53%, w, = 38%) in the other sections.
Levelling has shown 4s = 2.7 c¢m, and so:

p_ F_F 00848
Ss T ds 0.027

— 3.14 MN/m2.

In Fig. 230 the schematic borehole profiles
around a building which suffered a significant
settlement (As = 15 cm) are illustrated. The loca-
tion was on an abandoned bed section of the Da-
nube which has been filled up with fine grained
sand but veins of peat were merged with it. By
having levelled the footings a relative settlement
of As has been determined for each bore profile,
and to them an F-value is assigned obtained from
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Fig. 229. Example on back analyzing the Egvalue from
measured relative settlements; one of the layers is of high
compressibility (RETHATI, 1981)

the summation of the areas in the stress diagram
which were associated with the organic layers:

Borehole E;=

No. F(kN/mm) As(mm) =F|4s
1 135.4 60 2.26
2 184.1 150 1.23
5 109.7 120 0.91
6 105.6 60 1.76

The equation of the regression line obtained for
the two variables was:

As =0.7192 F — 84 (r = 0.64).

L7 [ 215 [ 6 ]BoreholeNo. o, (kN/m?)

VBRI L
5N 1
7 B
3 . '
SN 2N 7 ]
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= 4 |
2 3 i
5 4 l
5 s ’ D/norgan/c
~_6~J__6_ L—G_ 1 l U2 organic

Es< | 226] 123091 [176 | MN/m?

Fig. 230. Example on back analyzing the Eg-value from meas-
ured relative settlements; one of the layers is of high com-
pressibility; four boreholes (RETHATI, 1981)
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Fig. 231. Example on back analysing the Eg-value
from measured relative settlements; two compressible
layers (RETHATI, 1981)
O s e =T =
- ok ]f- Plane of foundation (-0.55 m) EFill
\E_ 4+
gL
-~ or
£
s 5r ~
10 - \;L /
Nos of the pillar 1 2 3 4 5 6 7 8 9 10
As ~ s (mm) 107 98 103 82 42 41 49 56 41 30
v, (m) 1.3 1.35 1.35 1.35 1.4 1.4 1.45 1.5 1.55 1.6
v, (m) 3.1 2.85 2.6 2.4 1.95 1.7 1.45 1.15 0.9 0.8
F, (kN/mm) 58.7 59.7 59.7 59.7 60.7 60.7 61.7 62.7 63.7 64.7
F, (kN/mm) 37.2 34.7 32.8 31.1 26.6 23.6 20.6 16.7 .13.4 11.9

From the intercept (—8.4) it can be stated with
a probability of 909, that it does not differ signif-
icantly from zero, wherefore As ~ s, i.e. the ratios
F/As may be considered to represent the E values
of the organiclayers. The average value and stan-
dard deviation for the four boreholes were ob-
tained as:

E; = 1.54 MN/m? and ¢z = 0.59 MN/m2.

The reciprocal of the slope of the regression line
is 1.26, which is identical with the E, defined with
the aid of the least-square method.

(¢) Two or more compressible layers

In this case there are two questions to be an-
swered:

— which layer produces the decisive effect on
the settlement (damage)?

— what is the characteristic modulus of com-
pressibility of these layers ?

Two examples will be shown to demonstrate
how the model of the calculation can be sclected.

The strip foundation supporting 12 pillars and
the floor beams of a hall failed in about a year after
construction, and rather wide cracks appeared in
the partition walls. The foundation (B = 0.50 m,
g = 100 kN/m?) had been connected at one end to
an old pile head, but the further sections of the
foundation rested on a sandy brick back-fill of
1.2 to 1.8 m thickness which was underlain by an
organic clay 0.8 to 3.8 m thick (Fig. 231 explains).
The properties of the latter layer have shown: w =
= 76%, w, = 429,, I, = 119%,.

The relative settlements of the pillars, the thick-
ness of the fill and the organic layer, as well as the

areas of the corresponding parts on the stress
diagram are represented in the following table.
(The equality As =~ s is intended to express that
the pile head supporting pillar No. 1 is assumed to
be motionless.)

The behaviour of the two compressible layers
might be investigated by utilizing regression anal-
ysis where s (or 4s) is the dependent and F the
independent variable. The following equation has
been obtained for the regression line of the fill

As = —12.1 F, + 806 (r = —0.80).

The negative sign of the correlation coefficient
(r) shows that the differential settlement was not
generated by deformation of the fill. (Note that
As and F change their values in an opposite sense.)

The equation of the regression line for the organ-
ic material was found to be

As =285 F, — 59  (r=0.88)

which indicates a rather close agreement. (Re-
member that the heterogeneity of the layer, the
restricted accuracy of the measurement, and the
marking of the boundaries of the layers all consti-
tuted a source of error). For the intercept (b =
= —35.9) it can be proved that this does not differ
significantly from zero, thus, the assumption
As =« s was real.

The relation between v, and s has also been found to be as
close as the above one (r = 0.90); here v, means the thickness
of the organic layer.

The modulus of compressibility of the organic
layer might be calculated by using three different
methods.



1. As the inverse of the slope:

1
E = — 0.35 MN m2.
2 285 /

2. As the average of the quotients E;, = F,//s
calculated separately for each pillar:

E,, = 0.40 £ 0.112 MN/m?.

3. By analysing the standard deviation in the
following way. By definitely assuming the quotient
of the moduli of compressibility in the two layers
a« = Ey/E,,, at each measuring point a value of
E,, may be calculated. The mean of the 10 values
(E;;) and their standard deviation (¢g) should
then be determined and the coefficient of variation

(o2
C,=-2E

Es2

to the given « should be coordinated. By varying
the value of a the parameters investigated ob-
tain the following values:

a Es: OF Gy Ey

2 0.98 0.30 0.309 1.97
3 0.79 0.23 0.294 2.37
4 0.69 0.19 0.280 2.77
5 0.63 0.17 0.273 3.17

10 0.52 0.13 0.258 5.20

oo 0.41 0.11 0.265 oo

It is a justifiable assumption that the real value
of E,, will be approximated most closely by E,
where C, is minimum. According to the table this
extreme value exists, and it falls between « = 10
and « — oo. This means that

041 < E, << 0.52  (MN/m?).

The second example deals with a case where the
building tilted as a stiff body.

In the second month after finishing the panel-
mounting of a 10-storey building, it was discov-
ered that the elevator shaft has tilted 12 cm to the
lead line. Borings made at the four corners of the
building revealed that under the raft foundation
there was a fill, 0.15 to 1.35 m thick which was
underlain by a layer of sandy silt 2.5 to 3.0 m
thick (Fig. 232). The fill consisted of fine sand,
slack and rubble of a very loose structure. The
void ratio of the silt was e = 0.80 to 0.92 which
is also an indication of loose layers.

From the angles of inclination determined at
the edges of the building, the relative settlements
(4s,mm) have been calculated. From the borehole
profiles, the thicknesses v, and v, of the fill and the
sandy silt, respectively, as well as the partial
areas F, and F, (in kN/mm) on the vertical
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Fig. 232. Example of back analyzing the Es-value from tilt;
two compressible layers (RETHATI, 1981)

stress diagram were established. The values ac-
quired are summarized in the table below:

e & o o F, F,
3 0 1.35 0.00 | 2241 0
4 243 | 015 175 209 | 2005
9 8719 | 030 9.85 198 | 4131
1 1248 | 0.90 320 | 1494 | 5312

The influence of the two loose layers on the de-
velopment of the tilt may be determined by a
regression analysis. The equation of the regression
line obtained for the fill was:

As = —0.115 F, + 72.2

and the correlation coefficient r = —0.19. The neg-
ative sign cannot be defined from a physical point
of view; consequently, the fill did not play any part
in the development of the tilt.

The equation of the regression line for the silt
was

As = 0.233 F, — 13.0

and the correlation coeflicient r = 0.93.This extraor-
dinarily high value unequivocally proves that
the grade of damage caused by the tilt was the
consequence of the uneven thickness of the silt.
Thereafter the question arises as to with what
accuracy the main direction of the tilt can be
predicted on the basis of the variation in the
thickness of the silt. This investigation can be
carried out with the aid of a tervariable correla-
tion. In plotting the coordinates x and y according
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to Fig. 232, the following equation will be obtained
for the regression plane:

v, = 0.1169 x + 0.0611 y 4 0.348.
Ifv, =0,
then y = —1915x — 5.704

which is the equation of the intersecting line be-
tween the plane fitted to the values v, and the
plane x, y. The negative inverse of the slope of the
straight line is m” = 0.5223, therefore, the angle of
inclination of the plane v, is: »

o« = arc tan 0.5223 = 27.6°.

Since according to surveys the principal direc-
tion of the inclination subtends an angle 23.3°
with the x-axis, it can be stated that the change in
the thickness of the layer defines the angle of
inclination of the building very accurately.

This example shows that the direction and
degree of the tilt to be expected may be calculated
with a good approximation even in the design
phase. Mathematical statistics not only give the
expected value of these parameters, but also the
standard deviation, i.e. the accuracy of the pre-
diction.

2.3.4.5 Extrapolation of measured settlements

The gradual reduction of safety makes it neces-
sary to know, in many cases, the final values of
the components of the motion in order to take the
appropriate measure in due time.

The two methods to be described hereafter, and
especially the first one (RETHATI, 1981), might be
used, strictly speaking, only in a case when one-
dimensional consolidation predominates.

By proceeding according to the first method,
the final value of the settlement s, should be esti-
mated on the basis of the survey, then the quo-

tients associated with the different moments ¢; are
calculated:

Si
M — — .
sLl

The T; time factors corresponding to the bound-
ary conditions should be read from Fig. 233 and
then the quotients established:

The reliability of the settlement s, may be charac-
terized by the coefficient of variation of «;, i.e. by
the ratio €, = o,/a. In varying s, those values will
be considered as the most probable at which C,
is minimum.

Assume that the distribution of the vertical stresses cor-
responds to case No. 5 in Fig. 233 and & = ps/p, = 2, that is

& — 2 1

£+1("1 ”2)‘3”1+3”2-
Let us assume further that the time series s; measured at
moments ¢; (in months) since the beginning of the construc-
tion is as shown in Table 12. In the lines 3 to 7 of the table
the o;values are related to s, = 6.6 to 7.2 cm; their standard
deviations and coefficients of variation are also readable in
the table. Accordingly, s, = 6.8 cm might be considered as
the most probable value.

Hi == ¥,

The second method is based on the fact that in
one-dimensional case the second stretch of the
curve may be approximated by an exponential
function. Thus, it might be rightly expected that
the settlements are well described by the expres-
sion:

s =s, (1 —eA). (305)

Since this function cannot be linearized, the pro-
cedure is again to estimate the value of s, and
calculate the A; values belonging to the pairs of
valves t; and s; with the help of the formula:

g o —sjs)
t

(306)
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14  Fig. 233. Correlation between % and T; for one-di-
mensional consolidation
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Table 12. Determination of the final settlements (numerical example)

; (month): 3 4. 75 9.5 12

(cmy 1 'l.gi(cm')'):l) 18 ‘ 57 40 a4 48 x4 Coar Coa
s _ _ _ _
6.0 o= 24.0 | 214 17.6 18.6 19.0 2.58 0.128
6.6 27.3 | 25.4 22.1 22.4 23.5 2.20 0.091
6.8 213 26.1 22.1 23.8 25.5 2.05 0.082
7.0 30.0 i 27.6 24.2 24.7 26.7 2.34 0.088
7.2 31.6 | 21.7 25.0 26.8 28.2 2.42 0.087
6.0 A= 0.1189 0.1272 0.1465 0.1391 0.1341 0.0106 | 0.0799
6.8 0.1025 0.1076 0.1183 0.1096 0.1020 0.0066 0.0614
7.0 0.0991 0.1037 0.1130 0.1043 0.0965 0.0063 ! 0.0611
7.2 0.0959 0.1000 0.1081 0.0994 0.0916 0.0061 0.0618
Then, on the basis of the corresponding coefficients 235 Settlement due to water absorption

of variation associated with the different s,’s, that
settlement should be accepted at which C, is mini-
mum.

According to the data entered in lines 8 to 11 of Table 12
the most probable value is s, = 7.0 cm in fair agreement with
the value obtained by the first method.

Knowing s, and A, the settlement at any op-
tional time ¢, or that time at which a certain
degree of consolidation (») ensues might be deter-
mined. Using these, the reliability of the calcula-
tion might also be characterized; thus, for example,
in the case of the second method the measured
settlements (s,) and those calculated (s) can be
arranged in the following order:

sm| 180  2.70 400 4.40  4.80

s. | 186 268 376 4.36 496

Accordingly, the correlation coefficient is r =
= 0.993, and the residual standard deviation only
¢, = 0.15 cm.

SHERrIF (1970) approximated the consolidation
curve with a hyperbola and attempted also to
trace the variation of loading patterns (contact
pressure). The procedure can be seen in Fig. 234.
Choosing the time (t) as the abscissa, and the
product

L Pt (307)
s p

as ordinata, the final settlement to be expected is:
s, =cot 3.

An advantage of this procedure is that a prob-
lem can be solved by using the linear regression.

A comparative study between the exponential
and the hyperbolic approximation of the consolida-
tion curve showed that the correlation indices
of the two methods are similar (near to 1.0), the
total settlement differs, however, by 15 to 209,.
(In most cases the hyperbolic approach gives the
higher value.)

It often occurs that the moisture content of the
soil below the foundation increases compared to
the conditions experienced during the investiga-
tion period. The cause might be attributed to an
increasing groundwater table or to the infiltra-
tion of surface water, eventually to the seepage
from a broken conduit. Whatever the reason, it
might be seriously perilous for the building. The
variation of the groundwater level and its con-
sequences can well be forecasted (RETHATI, 1983),
but it is rather difficult to exclude the impact of
seepage and it requires installation of a number of
preventive measures (prevention of run-off water,
arrangement for intermittent inspection and over-
haul of facilities, etc.). Recollection of statistical
data will reveal the magnitude of the danger,
because 64.29%, of damage on buildings was caused
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Fig. 234. Extrapolation of measured settlements by using
SHER1F’s method (1970)
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Fig. 235.

Specific subsidence (p) resulting from absorption of capillary water

/T:i as a function of the void ratio (a); the degree of saturation (b); the

grain size (c); and lead (d); (RErm&T1, 1963; 1965)

6 3
fal {(b)

S5 & 2
O \(;) > 2 //
[y @
2 § ,\/o
3 B A
7] €D o
] g1
v v
< &

10 082 094 096 098
’ Degree of saturation,

1
Sr

200

6 1.5
I | Yt
8 . b d=0.217-0.29 mm
§ / 5 10 e=0.75
3 3 g
3 SN
- 2 205
g 3
x 7 g L A
§ @ i
0 0
05 04 _03 02 01 0 50 100 150
d (mm) p (kN/m?)

by water seeping bzlow the foundation, while only
14.29, was caused by static compression (by dif-
ferential settlement) (RETuATI, 1977).

How severely the building is exposed to harm
by water infiltrating below the foundation depends
on the physical and chemical properties of both
the water and the soil. The character of the im-
pact is mainly determined by flow velocity; some
phenomena may only appear where the velocity is
relatively high while others do not have this req-
uisite.

Effects in the first group might be characterized
as to whether compaction or loosening in the soil
has been involved therefore in both cases, the
rearrangement of soil particles, is essential. Com-
paction may be caused, for example, by the seepage
pressure, by subsidence (due to the effect of sur-
face tension, or by silting due to gravitational
flow). Loosening, on the other hand, may be caused
by leaching of fine grains and subsequent internal
erosion or development of cavities in the soil.

Effects in the second group may include reduced
consistency and swelling due to water uptake,
harmful influence of chemical substance either on
the soil or on the foundation material.

In respect of the stability of the building it is
important to know which of the phenomena
(physical or chemical) was caused by water in
initiating the damage because they not only differ
in the character and magnitude of deformation
but also in the mathematical sign (heave or
shrinkage) and its rate. Immediate or sudden dis-
placements are mostly perilous for the structure
itself {(cf. Section 2.3.8) while the mathematical
sign of the deformation plays a role in a gradual
rearrangement of internal stresses or moments.

By all means the most perilous events include the
subsidence of the soil or the leaching of fine par-
ticles; these can be exceptionally devastating
when they occur suddenly, say as a consequence
of a breakage of a water main.

Subsidence may occur principally in two types
of soils: macroporus loess, and loose granular soils.
As the subsidence of loess has been dealt with in
detail in Vol. 1, only the deformation of granular
soil materials — under the influence of water —
will be treated here.

ErLEnBacH and later JAxY (1948b) were the
first scientists to point out how serious subsidence
might be in loose granular materials under the
influence of gravitational water flow. Soaking
tests, carried out on sands, have proved (RETHATI,
1963, 1965) that subsidence might also be provoked
by absorption of capillary water. Pertinent
test results are briefly summarized below (Fig. 235).

1. Displacement — due to water uptake — en-
sues immediately; this indicates that subsidence
is the ““in statu nascendi” result of surface stresses
{capillary pressure) contrary to shrinkage which is
caused by the lasting effect of surface stresses.

2. So called ““specific subsidence” (g) — the strain
expressed in percentage of the height of the sample
— increases rapidly with the porosity of the soil.

3. Fine grained soils show swelling beyond a
critical density when the access of capillary water
is allowed.

4. Keeping the porosity constant, the subsidence
varies sensibly according to the degree of satura-
tion in the course of water uptake.

5. Specific subsidence increases gradually when
d decreases. A measured g, = 2.659%, was for a



soil of grain size d = 0.4 mm, and Q. = 5.7%
for d = 0.1 mm.

6. Specific subsidence has a maximum value
when there is no surcharge on the soil mass, and it
diminishes rapidly when the smallest overburden

is applied.

There is a substantial difference between characteristic
subsidence curves of granular soils and loess. The p\ o curve
of the latter has a pronounced maximum at ~ 300 kN/m? and
the subsidence is practically zero when p = 0, i.e. where the
subsidence of a granular soil is maximum. The reason for
this feature probably lies in the special physical and chemical
properties of loess (macroporosity, inhomogeneous structure,
cementation caused by calcareous films around the grains),
while the behaviour of granular soils is governed by the
mechanical properties of the mass. The load imposed on
granular soils simultaneously increases the magnitude of
inter-granular forces which press the particles together and
obstructs their free movement (the reason for this phenom-
enon can be attributed to the homogeneous structure of the
material). Thus by increasing the load beyond a critical limit,
the water can — in a statistical sense — only produce a ran-
dom displacement among the particles, which is practically
independent from density of the soil.

The findings of these tests can mostly be utilized
when foundations on fill or indoor earth fill are
made or designed. Selecting the suitable material
and compacting it properly brings the risk of
subsidence to a minimum or even to zero (Fig.
235b). In the figure, attention is called to the
slightly loaded floor slabs and partition walls
which are the most exposed elements because
their statical rigidity is by itself of a low grade.

2.3.6 Settlement in regional extension

There are certain human activities which may
cause substantial displacement over huge areas
(up to 10 or even 100 km?). Such activities most
frequently include among others: mining opera-
tions, landscaping, and permanent pumping of the
groundwater.

Two branches of mining activities are mostly
susceptible to cause displacement on the ground
surface: stope facing and subsequent caving, or
permanent pumping of groundwater. (Tunnelling
of urban subways might also be classified in this
range.)

Large, horizontally extended and high embank-
ments or dumping areas may be perilous if (a) there
are shallow or pile foundations in or on them, (b)
the underlying subsoil consists of thick soft layers.
In respect of both alternatives it makes an im-
portant difference whether the works are 1 or 2
years old, or older.

Permanent pumping of the groundwater may have
two consequences: (a) it increases the effective
stress over the soft layer, (b) it increases the
‘“layer pressure’ in the aquifer.

Though the magnitude of motion on the terrain
due to mining largely depends also on the physical
properties of the overburden; soil mechanics and
its methodology are mainly applied to investigat-
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ing the influence of large embankments and of per-
manent pumping.

An embankment, even if it is not high but is
extensive, may cause considerable displacement in
its surrounding. Lacy (1981) gives an account, for
example, of a fill 1.5 to 4.5 m deep in the vicinity
of the Omondoga Lake which caused 1 m of con-
solidation settlement in the soft underground.
INoUE et al. (1977) investigated the impact of an
embankment construction of 2.5 m height over a
loose sand; here the case was worsened due to the
water uptake by the regional water works which
resulted in a yearly 10 cm displacement on the ter-
rain. :
Permanent pumping of aquifers and grgund-
water reservoirs frequently causes unevitable
problems in town areas. The St. Paul’s cathedral
is said to have settled 1 em between 1920 and 1970
due to the gradual loss of the water level. The
cathedral in Milan has settled 1.5 cm between
1961 and 1969 because the groundwater level had
sunk from 16 m to 40 m below ground surface
(KEr1seL, 1975).

At Long Beach a bowl shaped depression with a
20 mile diameter and 7.8 m maximal depth has de-
veloped up to the end of 1959 (FELD, 1968). This
movement was caused partly by dredging and
landscaping operations in the region, but a major
role can be attributed to the uptake of industrial
and drinking water and the lowering of the water
table for construction sites, and partly to oil
pumping.

At present, the case of Mexico City is reckoned
among the classical examples in this field. In the
extremely porous clay which developed from the
voleanic tuff (void ratios up to e = 7.0 have been
measured in the upper strata) the deep pumping
of the groundwater has caused settlements in the
range of 7 to 8 m at some locations. Downtown
Tokyo also suffers a considerable (6 to 12 cm)
settlement per year.

Regional settlements may evoke the following
damage to constructions:

(a) Absolute and relative (differential) settle-
ment of buildings. For example, according to
Lacy’s article a large number of edifices suffered
damage around Lake Onondoga, not to speak
about that experienced in Mexico City.

(b) Settlement of road and railway embank-
ments. Cox (1981) reports on the 150 cm settle-
ment of the roads in the neighbourhood of Bang-
kok in the last 12 years (partly under the dead
load of embankments but mostly because of the
yearly 10 to 15 em general settlement of the ter-
rain caused by the pumping of the groundwater).
As a consequence of the movement, rice irrigation
ponds flood the settled pavements, locally and
temporarily.

(¢) Negative skin friction on pile foundations
(cf. Chapter 3). In Tokyo, for example, due to the

general settlement of the ground surface, piles were
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Fig. 236. Variation of supporting forces in the case of differ-
ential settlements

dragged downwards through the grip of the subsoil
on them (negative skin friction). Because of the
difference between the two movements, gaps de-

veloped between the ground level and pile head
which very often caused the failure of utility con-
duits (KisaIDA and TakANO, 1976).

(d) Decay and rotting of wooden piles. Such dam-
ages have been experienced, for example, in the
Grand Palais in Paris and in the museum at Gre-
noble (LoeEa1s, 1971). Similarly the same type of
damage has been found on an 11 storey building
in New York City and in the town of Kearny
(McKinLEY, 1964).

2.3.7 Soil - structure interaction

In settlement computations the individual
footings are assumed to settle as if the others did
not exist. In some cases, where the footings are
close to each other, allowance is made also for the
superposition of stresses. The same attitude is
adopted in estimating the load-bearing capacity
of foundations. However, actual structures are as
a rule redundant, namely continuous beams, fixed
arches, frame structures, ete. For this reason, any
differential settlement within the structure will
affect the overall stress pattern. Structures made
of timber, brick, or stone may often suffer differ-
ential settlement of considerable magnitude
without any major change in the support reactions,
whereas in structures of steel, or reinforced con-
crete designed for monolithic behaviour, differential
settlement results in a rearrangement of forces.
The change in support reactions is illustrated by
the example in Fig. 236 showing the case of a
beam continuous over two spans. In case (c) the
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Fig. 237. Reactive forces in a frame structure:

a — dimensions of the structure; b — changes in the supporting forces when differential settlement occurs



three supports are in the same plane. Under the
load the central support suffers a greater settle-
ment as a consequence of which the reaction under
the central support decreases, whereas that under
the lateral supports increases. The support reae-
tions are found from the differences in settlement,
by Clapeyron’s theorem as

3pl  3EI
A, = A, = —— As
0 27 16 T B
and
5pl  6EI
A, = 2P As
! 8 + I3

The change in support reactions for a specific
case is shown in Fig. 237.

In reality, however, the process takes a much
more complicated course. Once the three columns
are completed and loaded, the soil starts to con-
solidate. The central column will again settle at a
faster rate and the process is repeated. The bearing
pressures will continue to change as long as an
ultimate state is not reached.

An analytical solution is also available for the
case of a frame on three supports (RETaATI, 1955).
Using the symbols in Fig. 238, it has been dem-
onstrated that the differential settlement at the
end of the consolidation (7,) can be calculated
from the expression

P

m=—(1 — U), 308
=g ( ) (308)
where
P_ hG  pl (10 Fy&, — 3 F &) . (309)
1.234 E, 8F, - F,
R— kG EI (6 F0§1—{—3F1§£)_, (310)
1.234 E, BF.F,
G —2.468 ——, (311)
H?
_ CXP(—DVE)_. (312)

—Gth

exp (5— e
G

The key for the symbols above is the following:

Fy, = contact area of the footings on the sides,
F, = contact area of the central footing,
&, = the ratio ¢,/0,, where o, is the vertical

pressure at depth z ({; is the same in
respect to o),
c = coefficient of consolidation,
= time relating to » = 0.526.

The variation of reaction forces 4, and A, ie.

the relative difference between the initial stage

(A, and A,) referring to % = 0, and the final stage

11 4. Xézdi and L. Réthéti: Handbook
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Fig. 238. Calculation of differential settlements for a frame
structure on three supports — in brackets the numerical
values from the example (RETHATI, 1955)

(A, and A4,) referring to = 7,,, can be determined
from the following expressions:

A, — A, 5
g — 020 2 o1 U) =
0 a, 3 @( )
1 gy OF —3FE,  OF)
6 Fof, + 9 Fi,
and
Al _ A’i1
T - = —¢(l — U) =
1 4, o )
314
— 1 O FE 3 F (314)

10 Fo&, + 5 Fitg

The terms U, ¢, ay and «; refer to the case when
the compressible layer of h = constant is equally
present below the three supports. Other cases can
be solved by using the expression given in Fig. 239,

Position of the compressible layer

B l _IL l N7
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Fig. 239. Reactive forces and differential settlement at time
t = oo for the three support frames (RETHATI, 1955)
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Fig. 240. Effect of parameters t, h/E; and o, on 7, and 7,/4s (REtHATI, 1955)

Using the numerical values in Fig. 238, and loading all
supports with a pressure of 220 kN/m? the differential
settlement 4 s = 13.3 cm will be found if the calculation is
related to independent foundations (without being coupled
into a frame). When Eq. (308) is used, a valae only of 7, =
= 2.8 cm will be obtained (x, = +42% and o = —25.2%).
Interesting results would be obtained if the influence of each
term were investigated separately on 7, and o,.

From Fig. 240 the following conclasions can be drawn.

() 77 will progressively decrease when t is increased; it is
therefore questionable whether it is economical to place the
foundation level at a high elevation, remote from the com-
pressible layer.

(b) The relative settlement increases with the ratio h/E;
and approaches the limit at 7, = P/R = 2.9 ¢m. An in-
teresting consequence of this statement is that e.g. in the
case b = 200 cm the differential settlement of a given girder
will only by 0.7 mm be greater when the assumption Eg =
1 MN/m? is changed to 0.3 MN/m?.

(¢c) Varying the contact pressure of the central support
(G, = 80 N/m?) 5, = 8 can be achieved; but this would — asa
consequence — increase the size of the footing enormously
(F; = 15.64 m?). This fact implies therfore that there neces-
sarily exists a relation with an economic optimum between the
designed differential settlement and the material requirement
of the structure.

An important conclusion may be arrived at from
the foregoing. From Clapeyron’s theorem it fol-
lows that the rearrangement of stresses and the
equalization of settlements are the more pro-
nounced, the greater the rigidity of the structure;
i.e. the greater the product EI. If the compres-
sibility of the soil is greater under some supports
of a conventional structure than under the others,
differential settlements will occur. If, however, the
structure is a very rigid one, the reactions are mod-
ified in magnitude and rearranged already in the
early stages of the consolidation process and, as a
consequence of this, the differential settlements are
reduced. For this reason, on highly compressible
soils, either a rigid structure should be built for
reduced differential settlement, or a flexible
structure should be envisaged, which is capable of
withstanding even major differences in settlement
without suffering damage.

A visual demonstration of the foregoing is pre-
sented, after Terzaghi, in Fig. 241, showing the
foundation of a structure involving a tower and
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Fig. 241. Methods to avoid harmful effects of differential settlement:
a - rigid raft; b —flexible raft; ¢ — different foundation depths in relation to the height of the building



two wings. Three potential alternative designs to
avoid differential settlement from occurring are
illustrated. Since the groundwater table is below
the base of the foundation, no hydrostatic uplift
force will act and the total load is transmitted to
the soil. Settlement will, however, be caused only
by the load remaining after the weight of the soil
excavated for the basement is deducted. In case (a),
the structure is founded on a completely rigid raft
which, being incapable of deformation, will pre-
vent differential settlements from developing. The
loads are concentrated under the tower and to
make the slab truly rigid it must be made strong
enough to withstand the very severe bending mo-
ments developed. Consequently, this design would
be rather expensive. In case (b), on the other hand,
the structure is completely flexible and the soil
reaction acting on every part of the foundation
base is roughly equal to the load acting on it.
Owing to the high load at the center, the tower will
suffer greater settlement than the two wings and
the structure will deflect. To accomodate this
deflection without injury to the building construc-
tion joints must be provided to resolve the strue-
ture into several parts. The design and execution
thereof all along the foundation is again rather
expensive. In case(c), finally, almost uniform settle-
ment has been attained by founding the compo-
nent parts of the building at different levels, i.e.
by removing soil masses of different weights from
the subgrade. This method should, however, be
applied with caution. It should be ascertained that
the excavation is not extended to the vicinity of an
underlying soft layer, since this would induce
greater settlements.

The effect of rigidity has been illustrated clearly
by WinDGATE (1938), who determined the column
loads and the settlements for the columns of the
building shown in Fig. 242 for three cases, namely:
1. a reinforced concrete frame designed in the con-
ventional manner, 2. a completely rigid structure
(a grid of heavy beams encasingthe column heads),
and 3. a completely flexible structure. The results
obtained are shown in Table 13. The great change
in the load carried by the columns Nos 1 and 3 is
especially conspicuous.

The magnitude of the total settlement is of in-
terest insofar as it affects the design of connections
and the destination of the building only, but it is

Table 13. Reactive forces and settlements for a reinforced
concrete structure (WINDGATE, 1938)

Designed Very stiff Flexible
No. of structure structure structure

columns — -
P(Mp) s (em) P (Mp) 8 (cm) P (Mp) s (em)

1 133 4.8 237 5.3 85 4.5
2 125 6.9 1 5.3 161 6.6
3 261 7.4 127 5.3 296 8.1
4 144 6.1 131 5.3 154 6.3
Means 6.4 5.3 6.4

11+
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Fig. 242. Structure and underground conditions for the
case in the example to interpret the interaction between them

not influenced by the rigidity of the structure.
Thus, it is but rarely involved in dimensioning
design problems. The magnitude of differential
settlements depends not only on the factors influ-
encing total settlement, but also on the arrange-
ment and rigidity of the structure, as well as on
differences in the compressibility of the soil under
the building. The value thereof 1s, therefore, much
more difficult and yet at the same time much more
important to estimate; the differential settlements
affect even the behaviour of the structure under
normal operating conditions.

The load intensities commonly adopted for the
differential settlement under framed structures
built on clay roughly equals one-half of the total
movement, but the eurvature of the deflection line
is very mild, so that the relative settlement be-
tween two adjacent columns is only a fraction of
the total differential settlement within the whole
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Fig. 243. Factors influencing settlement and differential
settlement for a rectangular raft on an elastic half-space
(FrasEr and WARDLE, 1976)
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Fig. 244. Deflection lines on a multistorey frame building

structure. The differential settlement under uni-
formly loaded strip footings and column footings
of largely identical size and carrying the same load
rarely exceeds three-quarters of the greatest settle-
ment. In the case of frames built on sand the rela-
tive settlement between two adjacent columns
may attain as much as the entire difference over
the frame, i.e. about 409, of the total movement.

Once the total probable settlement has been
estimated, the practical experience mentioned be-
fore may be relied upon in estimating the differen-
tial settlement under structures on raft founda-
tions. No such rule of general validity is believed
to be acceptable concerning the allowable relative
displacements. In cases of major importance, the
magnitude thereof should be determined by struc-

tural analysis, in the course of which the super-
and substructure, together with the supporting
soil, should be treated as an integral system, as a
statically indeterminate structure, allowing for the
stiffness of each component.

An important factor is the stiffness of the raft
(or strip) in relation to the stiffness of the ground
(this ratio is generally denoted as K,). It can be
shown that for a simple rectangular raft with the
length L and the width B, standing on a homog-
eneous elastic half space,

2
o Bl — %)

K, —
E B

(315)
or E 4y 2
. E) (1 — ) (316)

is valid. Here the subscripts r and s refer to the
raft and the soil, respectively, I, is the inertia of
the raft per unit length, and ¢ is the thickness of
the raft. The two expressions for K, differ in the
choice of the proportionality constant. In general,
B might be thought of as a characteristic dimen-
sion.

Fraser and WarpLE (1976) examined the be-
haviour of smooth uniformily loaded rafts resting
on a homogeneous elastic layer underlain by a
rough rigid base. Graphical solutions were present-
ed for the vertical displacement in the centre,
mid-edge and corner points of the raft and for the
maximum bending moment in the raft. Some typi-
cal results on the relative deflections are repro-
duced in Fig. 243 for a raft of L/B = 2. The stiff-
ness factor is defined by:

2 3
K, — 4 EQ—w) . (317)
3 11—+ B

K, =«

The settlement is given by
1 -— 2 7
E,

where I is an influence factor (Fig. 243). 4, B, C
and D are associated with s of the point, A B, AC,
etc., with the differential settlement between the
related two points.

It can be seen from Fig. 243 that the most rapid
change in performance is in the range of 0.05 <
< K, <1 for I,g5, and 0.1 << K, <10 for I,¢
and I,,. Charts were also included in the article
by these authors to allow for the depth of the
elastic layer.

The stiffness of the superstructure can also be
included in this type of simple analysis using the
approximative method outlined by MEYERHOF
(1953) to estimate the equivalent flexural rigidity
of a frame containing panels and shear walls. (This
method was later endorsed by the American Con-
crete Institute in the report “Suggested procedures
for combined footings and mats”.) The Meyerhof-
method is the following.

s =4qB



Consider an open, multistorey frame structure
with approximately uniform spans, in which the
greatest relative vertical displacement between
adjacent legs is uniformly Ay overeachstorey (Fig.
244). Since the beams and slabs may be considered
stiff relative to the columns, the points of counter-
flexure in the latter may be assumed, as a first
approximation, to be situated at mid-height be-
tween the individual stories. The first step consists
of determining the magnitude of the product EJ
which is representative for the rigidity of the over-
all structure. Let us sever from the structure the
part shown in Fig. 245 and denote the moment of
inertia of the horizontal beam by I, that of the
upper column by I; and that of the lower one by I,.
The corresponding stiffnesses are

I I,
K==t Ko=-25 K=l

The differential settlement between adjacent
frame legs will produce — as will be recalled from
structural analysis — the fixed-end moment at
the end of the beam

M,=6E Kg,,,flg‘?;*:lg[,,,,* Al
Kg + K, + K, 1

where E is the actual Young’s modulus of elas-
ticity.

A beam of length I and stiffness EI,, subject to
the pair of moments + M, and — M, suffers the
deflection at mid-span

Aymax = /]0 - Ago
where
M
° 8EI

is the deflection caused by the moment M,

A, = M [12 ELL

is the deflection caused by the moment 2M, at
all joints. °

Introducing these values and Mg into the expres-
sion for Ay .., we have

. M8 EI, ) M2
Fmax 1+( K, + K, )12 8EI,’
K,+K,+K; |}
where I is the actual bending stiffness of the beam:
2
EI, = Elg[l 4 [-IK‘? +Kf4) l_z :
K, + K, + K} &2

This is thus the contribution of the frame structure
to the rigidity of the foundation. The ratio K,
should now be introduced to characterize the rel-
ative stiffnesses of the soil and the structure as

K, = EI/Eb%l, where E, is the Young’s modulus
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Fig. 245. Details on a frame structure bailding when differ-
ential settlement occurs
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Fig. 246. Relation of max. differential settlement to max.
settlement as a function of rigidity in the structure (after
Meyerhof)

of elasticity of the soil, while h and [ are the width
and length of the foundation, respectively. The ra-
tio of the greatest differential settlement — de-
flection — along the full length of the continuous
or strip footing to the greatest settlement can here-
after be determined in terms of K,.The results of
such computations have been plotted in Fig. 246.
The greatest deflection has been shown to decrease
rapidly at the increasing value of K, and to increase
slightly at a constant K, value as the ration I/b is
increased.

Once the resulting differential settlements have
been determined, the forces induced thereby in the
structure can be computed. In the case of a uni-
form load intensity the bending moments in the
base slab can be related directly to the relative
stiffness K,, by the analysis described before. This
rzlationship is illustrated in Fig. 247, demonstrat-
ing the greatest bending moments to increase rap-
idly from the value, K, = 0, corresponding to a
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Fig. 247 Bending moments as functions of relative rigid-
ity (MEYERHOF, 1953)

perfectly flexible structure, as K, is increased, and
to increase together with the ratio /b, i.e. it tends
to be greater for long and narrow footings.

Comparing the bending strength of the foun-
dation system and the overstructure, KrsmaNo-
vi¢ (1955) distinguishes four basic situation (Fig.
248), and proposes the following methods for their
calculation.

In the first case, the inertia can be taken as
I = I, 4+ I, and the moment should be divided in
proportion I,/I,. First the reactive forces of the

superstructure should be determined — assuming
1 L=l and L L L A Exly
both are
small
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Fig. 248. Bending strength of the foundation system related
to that of the overstructure (four fundamental cases men-
tioned by Krsmanovig, 1955)

motionless conditions — then solving this condi-
tion, the diff.rential settlements are found. The
modification of the reactive forces follows with the
calculated settlement differences; earlier and new
reactive forces are distributed in the ratio of I,/I,
between the foundation and the superstructure and
generate additive moments. (Kany, 1959, pub-
lished a more accurate method for this case.) The
situation is slightly more complicated when I, is so
small that secondary effects due to the pressure
distribution have to be taken into account.

In the second case, the initial assumption is to
take the overstructure as flexible and to calculate
the reactive forces as for motionless supports.
After having found the deflection line of the base
slab, the reactive forces should be newly deter-
mined from the differential settlements. Relating
the new forces to the previous ones, calculated dif-
ferences should be split between the two systems,
and the additive moments calculated accordingly.
In the second step, the overstructure is really
considered as stiff, and the contact pressure distri-
bution should be calculated as such; the difference
between this and the calculated contact pressure
results an addition to the moment, so the load of
the difference between the original and the latter
reactive forces has to be charged to the over-
structure.

In the third case — if I, is rather large — the
footing is conceived as a stiff slab and the influence
of the overstructure can be neglected.

In the fourth case, the reactive forces are cal-
culated both downwards, and — on the basis of
Boussinesq’s contact pressure distribution — up-
wards. The difference should be split up in propor-
tion of the two inertiae, and moments calculated
accordingly.

It is easy to conceive that a unanimous relation
has to exist among the compression of the soil,
the distribution of the contact pressures, and the
stiffness of the foundation and the overstructure.
Several methods have been elaborated which take
account of these interactions and solve the prob-
lem with all these parameters in a single run of
calculations, without using iterations. These pro-
cedures can be divided into two main groups:

(a) the so-called ““C-methods’ which make use
of the modulus of subgrade reaction, and

(b) the so-called “E-methods™ which calculate
on the basis of the elastic half-space theory.

The well-known procedures which apply the
“C-method” are, among others, connected with
the names KOGLER and ScuEeIipic (1938), HETENYI
(1946). The “E-method” has been used by: OHEDE
(1942), Grassumor (1951, 1955), Kany (1959)
DenNiNGER (1965), GorBUNov-Posapov (1953),
and more recently by Suerir and Konic (1975).
The combination of the two theories has been
attempted by RepNikov (1967) and by ScruLrrzE
(1969).



2.3.8 Settlement criteria

Procedures have been elaborated during the
past decades which are suited to take account of the
interactions among the underground, the founda-
tion system and the overstructure (cf. Section
2.3.7). These are alike in their characteristic of the
tiresome calculations required, even in the simplest
case, not to mention the complexity of the mathe-
matical apparatus which a practical engineer has
to face when any of the initial conditions have to
be changed.

It is also questionable how close the calculated
stresses and deformations will approach the actual
ones. Measured stresses and strains indicate that
the reaction of the overstructures is almost always
more favourable than could have been supposed.
MEYERHOF, for example, pointed out, after in-
vestigation of a five-storey reinforced concrete
frame building, that the 75 m-long girders which
suffered a differential settlement of As = 8 cm,
and therefore were exposed to an additional 759,
moment-increment, were able to carry this extra
load without showing any sign of deformation
(SkempTON and MacDonaLp (1956)). Only 50 to
759, of the anticipated (calculated) stresses in the
steel frame of two warehouse built in America, and
only 309%, in the elements of an other steel struc-
ture was detected. SKEMPTON and MacDonNALD
(1956) disclosed this discrepancy with the com-
ments that: (a) the designer is extremely cautious
in the assumption of live loads, (b) calculation
methods are not suitable for taking into considera-
tion the statical cooperation of the skeleton (of the
load-bearing elements) and the other elements
(partition walls, floors, ete.).

Essentially, the pressing conditions listed moti-
vated the researchers to find the limiting values of
allowable movements in the overstructure, mostly
on a statistical basis, acquired by surveys and ob-
servations on actually existing buildings. The data
referring to the allowable deformation limits in
different structures have been condensed in the
form of settlement criteria. The purpose was to
characterize clearly in a relatively simple manner,
the line of deformation causing additional stresses
in the structure. The procedure is similar to that
which was followed in the case of the consistency
limits: the condition (property) is first defined,
then a numerical value is ordered to it (these are
the limiting values).

2.3.8.1 Settlement criteria for buildings

After BURLAND and WRoTH (1974), the criteria
usually applied for buildings can be summarized

as follows (Fig. 249).

1. Settlement (s) and differential (or relative)
settlement (s).

2. Rotation () as the change in gradient of a
line joining two reference points.

Settlement of foundations 167

Fig. 249. Settlement criteria (BURLAND and WroTH, 1974)

3. Angular strain, denoted by a, and given
(at B) by
ap = Aspa 4 »Asﬁ_ (318)
Lag Lpc

It is positive if it produces ‘“‘sag” or upward con-
cavity, and mnegative if it produces ‘hog” or
downward concavity. Angular strain is particu-
larly useful for predicticg crack widths in buildings
in which movement occurs at existing cracks or at
lines of weakness.

4. Relative deflection (relative sag or hog) A is
the displacement relative to the line connecting
two reference points a distance L apart. The sign
convention is the same as in case 3.

5. Deflection ratio (sagging ratio or hogging ra-
tio) is denoted by A/L. When a smooth profile is
drawn between a number of reference points,
considerable judgement is often needed in estimat-
ing the maximum value of 4/L.

6. When the deformed profile is approximately

circular, the curvature radius is given by
12
R = .
84

(319)

7. Tilt is denoted by w and describes the rigid
body rotation of the structure or a well-defined
part of it. Figure 249 shows how the tilt might be

estimated if the points were located on a raft



168 Load-bearing capacity and settlement of shallow foundations

foundation. (This might be quite inappropriate for
a frame building on separate footings.)

8. Angular distortion (relative rotation) g is the
rotation of the line joining two reference points
relative to the tilt. The term was defined by
SxkempTON and MacDonNaALp (1956) and is now
widely used.

9. Horizontal displacement u can be of impor-
tance. A change of length 4 L over a length L gives
rise to an average strain ¢ = A L/L.

The last item in Fig. 249 defines the average
settlement in the case of separate footings, for
strip or slab foundations.

There are basically three criteria concerning lim-
iting movements which have to be satisfied:
(a) visual appearance, (b) serviceability or func-
tion, (c) stability.

Several authors have made propositions in re-
spect of limiting values. TErzacHI (1938) observed
that conventionally built buildings 20 to 50 m long
always suffered harm when the differential settle-
ment exceeded 2.5 ¢cm, but houses 12 to 30 m long
did not show the sign of deformation when /s was
less than 1.9 em.

TsHEBOTARIOFF (1951) remarked that most
buildings preserve their intact condition when
$ << 5.0 to 7.5 ¢cm and 4s is below 2.5 em. Bozozuk
(1962) surveyed 574 two and a half-storey houses
and experienced that a relative rotation of 1 : 180
did not cause damage, 1 : 120 caused slight, 1 : 80
medium, and 1 :50 serious damages. MEYERHOF
(1953) recommended limiting relative rotations of
1 : 300 for open frames, 1 : 1000 for infilled frames
and 4/L = 1 : 2000 for load-bearing walls or con-
tinuous brick cladding.

Following Terzacui and Peck (1948), founda-
tions on sand should be treated differently from
those on clayey soils because of the following:

(a) In sands, settlement develops rapidly under
the load. Hence, for frame buildings, where often
a significant proportion of the load is applied prior
to the application of the cladding and finishes,
some guides may be conservative.

(b) Constructions can bear greater differential
settlement (or any other type of movement) when
it occurs over an extended time period.

According to the literature, hardly any problem
arises in respect of buildings founded on sand.
TerzacHi (1956) stated that he did not know of a
building which settled more than 75 mm. Of the
settlement survey of 37 buildings reported on by
BierrumM (1963) only one exceeded 75 mm and the
majority were below 40 mm. None of the cases
reported by MevyerHOF (1965), or ScHuLTZE and
SueriF (1973) exceeded 35 mm. Difficulties occur
only when vibration takes place due to machinery,
traffic or nearby construction work.

One of the best known selection of criteria is
connected with the names of SKEMPTON and

MacDonaLp (1956). These limiting values are re-
printed in Table 14. The authors appended the
following remarks to the table:

Table 14. Settlement critcria of SKkEMPTON and MacDoNALD
(1956)

Solitaire l V 7 f;aft
" foundation B
Angular distortion (f) 1/300
Max. differential clay 4.5 cm
settlement (4s;,¢)  sand 3.2 ecm
Max. settlement clay 7.6 cm 7.6-12.7 em
(Smax) sand 5.1 cm 5.1- 7.6 cm

— the criteria refer to customary structures
(like houses with load-bearing structural
walls, or buildings with habitual steel or
reinforced concrete frames);

— damage to structural parts might be antici-
pated when the angular distortion exceeds
the ratiio 1 : 150;

— the second and the third criteria have been

deduced from the first one, and are less reli-
able.

Combining the above criteria with the statistical data
published by LEUSSINK (cf. Section 2.4.2), also critical values
for the average settlement (5) can be defined (RETHATI, 1969).
If the distribution of settlements is supposed to be symmetric,
and the values suggested by SkEMPTON and MACDONALD are
used (for clays: spzy = 7.6 cm and 4 sp= 4.5 cm);

A smax

= 7.6 — 4.5/2 = 5.35 cm

$ = Smax —
and
A smay

= 4.50/5.35 = 0.84..

In the case of sands of quick consolidation — on the ground
of similar considerations — the result is 0.92. As all buildings
surveyed by SkeEmproN and MacDonNALD (1956) rested
immediately on a compressible layer, and LEUSSINK (1955),
determined a ratio 0.9 for this case, the agreement is rather
favourable.

On the basis of the two sets of statistical data the critical
value of s can be determined. In the case, for example, of
singular footings on clay:

LEUssINK gives the value: A sy, = 0.9 53

SkEMPTON and MAcDoONALD give the value sy =
= 4.5 cm and therefore the desired criterion can be found as:

s =15.2 cm,

Extending these considerations to the case of sand, it can
be said that a foundation system emplaced immediately on a
compressible layer — on which the calculations predict-
ed a uniform settlement — should not be trusted to accept
more than 5.0 to 5.2 cm settlement when the consolidation
process is slow, or not more than 3.5 to 3.6 cm when the con-
solidation is rapid. When the compressible layer is lying at a
greater depth, these values can be increased.

Porscuin and Tokar (1957) take account also
of the ratio of length to height L/H. Depending on
it, the allowable 4/L deflection ratio — as expe-
rience has proved — is:

AJL = 0.0003
AJL = 0.0010

when L/H < 2 and
when L/H = 8.



The Soviet Code of Practice allows the following
values:

for sand for clay
(a) for multi-storey
buildings and civil
dwellings
when L/H < 3 0.0003 0.0004;
L/H>5 0.0005 0.0007;
(b) for one storey mills 0.0010 0.0010.

Statistical data reveal that the critical limiting
values depend also on the stiffness of the building,
which in first approximation can be characterized
by the number of storeys. Figure 250 shows (RET-
HATI, 1969) that for conventional buildings the
critical angular strain is 1:350 for one-storey,
1 : 285 for three”, and 1 : 180 for six-storey build-

ings.

2.3.8.2 Limiting tensile strain

With these limitations in mind, BURLAND and
WrotH (1974) suggested that a more fundamental
criterion for damage was required and they put
forward the idea that a criterion related to visible
cracking would be useful since tensile cracking is
often associated with settlement damage. Fol-
lowing the work of PousHIN and Toxar (1957),
they assumed the onset of visible cracking at alim-
iting tensile strain of £;;,(= e.4)-

BurLAND and WrotH (1974) pursued the fol-
lowing idea. If the bottom plane of a girder of
rectangular cross-section becomes bent under the
influence of a moment the radius can be calculated
from Eq. (319). The maximal specific deflection
will be ¢ = H/2R at a distance of H/2 from the
neutral line (H is the height of the girder). Making

the two expressions equal:

A = i— £. (320)
L 4H
Reckoning with the actual deformation line of
the girder the following expressions can be ob-
tained (Fig. 251, insert a):
for uniformly distributed load:

A4 L

— = (321)
L 4.8H
and for a singular force acting in the center:
A L
—=——c.
L 6H

In a case of pure shear, the diagonal deflection
is ¢ = a/A/L, where « can be taken, with good ap-
proximation, as unity (independently from the
type of load). (see Fig. 251 insert b).

For the case of combined shear and bending, the
relations can be deduced from the TimosHENKO
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Fig. 250. Relationship between number of stories in a build-
ing and the critical angular strain (RETHATI, 1969)

formulas (1957). These are illustrated graphically
in Fig. 251 insert ¢, and the following conclusions
can be drawn therefrom:

— the value 4A/L ¢ is almost independent of the
type of loading;

— deformation due to bending in comparison
to shear, is always determinant when L/H
exceeds 6.

When a reinforced concrete structure is designed
the neutral line must not be taken in the symmet-
rical axis but near to the bottom. Thus, the fol-
lowing expressions should be applied: (see insert d,

Fig. 251).

for deformation from moment
| L H)
— =10.083 — +13—}¢ 322
5 ( 13 J (322)

and for diagonal elongation due to shear
A L2
— =0.064{— +1}e. 323
2 [ = ) (323)

Equation (322) is only valid for the case of hogging
(the curve of deformation is convex when seen
from above), because in the case of sagging ¢ = 0.

Up to this point, it was supposed that the ratio
of the elastic to the shear modulus — in line with
the isotropic case in the theory of elasticity — is
2 (1 -+ »). This assumption is rarely valid in reality.
There are constructions which are rigid in longi-
tudinal direction but they are much less rigid
against shear forces (walls with several doors or
windows, for example), or the reverse. The in-
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Fig. 251. The quotient /L& as a function of L/H for the case of uniform loading pressure p and a singular force P:

a — moment; b — shear; ¢ — strain caused by moment and shear; d — as in ¢, but the neutral line is ‘close to the bottom of the beam; e —effect of E/G on g;n;
f—— I — diagonal strain is determinant; 2-—bending strain is determinant (neutrallinein the middle, sagging); 3-—same as 2, but neutral line is at the bottom, hog-
ging; 4 — the PorsHiN—ToKar criterion (1957); 5 — the SKEMPTON-MaCDONALD criterion (1956) (BurLAND and WROTH, 1974)

fluence of E/G can be found in Fig. 251¢, and from
this it appears that:

— to keep the specific strain at a minimum, a
construction is advantageous in which the
ratio E/G is large (curve 3);

if the construction is rigid against shear
(curve I) the strain due to bending will pre-
dominate, therefore the relation can be
approximated by the straight line in Fig.
251a.

The critical value of the specific strain (namely,
that which will be visible by the naked eye in the
form of fissures) is in the range of 0.05 to 0.10. If
€5m = 0.075 is accepted as the average, the rela-
tions I to 3 illustrated in Fig. 251f can be derived
as allowable values for A/L. Curve I (compare with
insert d) relates to the case when diagonal strain
predominates, i.e. when the rigidity against shear
is small in relation to the longitudinal rigidity, or
when the resistance against tension stress is fairly
large (frame, reinforced concrete load-bearing
walls). Curve 2 refers to the case when — due to
small resistance against tension — bending defor-
mation is prevalent (customary brick walls),
assuming that the neutral line coincides with the
central axis. Curve 3 applies to similar structures
to those above, with the restriction that hogging is

i

presumed (according to the assumptions E/G is
small, and the neutral line lies close to the lower
part of the structure). Curve 4 corresponds to the
criterion described by PoLsain and Toxar (1957),
and Curve 5 to that of Skempron and MacDo-
NALD (1956), when = 1 : 150 is postulated. (The
latter had to be transformed to fit the coordinates
chosen.)

Having analysed the relationships in Fig. 251,
and the observations published in the literature
BurLanp and Wgrord (1974) announced their
findings as follows.

(a) The Skempton-MacDonald criterion (f =
= 1 :500) is convenient for conventional and mod-
ern frame structures, but a stricter requirement
is needed in respect of buildings with load-bearing
walls.

(b) The Polshin—Tokar criterion gives values
which are fairly close to reality in the case of
buildings with load-bearing walls and of reinforced
concrete panel buildings, with the exception of
when hogging ensues, because in this case the
authors recommend using the half of the critical

ratio 4/L, suggested by PorLsuin and Tokar (1957).

The authors lay stress on the fact thatin the case
of identical A/L ratios the hogging causes substan-
tially greater harm than does sagging, because noth-
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Table 15. Classification of visible damage to walls with particular reference to case of repair of plaster and brickwork

or masonry

Degree of damage

Description of typical damage™®

1. Very slight

2. Slight

3. Moderate

4. Severe

5. Very severe

Hairline cracks of less then about 0.1 mm are classed as negligible.
Fine cracks which can easily be treated during normal decoration. Perhaps isolated
slight fracture in building. Cracks in external brickwork visible on close inspection.

Cracks easily filled, re-decoration probably required. Several slight fractures showing
inside of building. Cracks are visible externally and some re-pointing may be required
externally to ensure weathertightness. Doors and windows may stick slightly.

The cracks require some opening up and can be patched by a mason. Recurrent cracks
can be mashed by suitable linings. Repointing of external brickwork and possibly a
small amount of brickwork to be replaced. Doors and windows sticking. Service pipes
may fracture. Weathertightness often impaired.

Extensive repair work involving breaking-out and replacing sections of walls, especially

over doors and windows. Windows and door frames distorted, floor sloping noticeably.

Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes
disrupted.

This requires a major repair job involving partial or complete re-building. Beams lose
bearing, walls lean badly and require shoring. Windows broken with distortion.

Approximate
crack width
(mm)

max. 1*

max. 5*

5 to 15*
or a number of
cracks > 3

15 to 25*
but also depends on the
number of cracks

usually 25*
but depends on the
number of cracks

Danger of instability.

+ In assessing the degree of damage account must be taken of its location in the building or structure.
* Crack width is only one aspect of damage and should not be used on its own as a direct measure of it.

ing can resist cracking of the wall down to the foun-
dation. Hogging has to be assumed in any of the fol-
lowing cases: swelling or shrinking of the soil, min-
ing beneath the foundation, settlement of the
terrain due to tunneling, displacement of the sup-
port due to undercutting, deep foundation next to
the existing one, permanent pumping of the ground-
water in the neighbourhood.

In appreciating the damage an important role
should be attributed to the width of the crack.
MacLeop and LirTLEJonnN (1974) proposed a
classification which is based on the U.K. National
Coal Board’s recommendations reprinted in Table
15. Approximate crack widths are listed and are
intended merely as an additional indicator rather
than as a direct measure of the degree of damage.

2.3.8.3 Critical movement components at oil tanks

An ever-increasing number of reservoir tanks has
been constructed during the past decades for fluids,
mostly for the storage of oil. In respect to the sta-
bility of these structures there are some character-
istic features to be taken into account such as:

-— substantial dead load and large dimensions
(40 to 50 m diameters are not rare);

-- alternating fill and discharge which gives a
cyclic character to the live load;

— great flexibility (which can lead to errors
when deformations are considered);

— eventually considerable operating tempera-
ture (70 to 80 °C);

— preloading tests by using water.

Tanks are expensive projects and any failure may
cause enormous harm. A tank which was built in
1974 in the vicinity of Mizushima, Japan, failed 7
months after its installation and discharged 50
thousand m3?® of hot oil into the nearby fishing
lake, causing a loss of 150 million dollars in property
{BeELL and Iwaxkiri, 1980).

A storage tank consists of four main structural
elements: shell, bottom plate, connection of shell
to bottom plate and roof. Each settlement pattern
may influence any of these components. Figure 252
describes detrimental settlement patterns that may
develop at the foundation of a tank. Each of these
patterns may produce one or more modes of failure.
Failures of most concern include: 1. distortion of
the shell to such extent that the floating roof mal-
functions, 2. rupture of the shell or the bottom
plate or shell-bottom plate connection.

Figure 252 summarizes the principal criteria for
unequal settlements. After MARR et al. (1982) the
criteria in respect of storage tanks can be sum-
marized as follows.

(a) Criteria for shell

Uniform settlement would not cause harm in
the tank but may damage adjoining ducts.

Using statistics and geometrical considerations,
the maximum tilt which a tank can sustain without
overstressing the shell equals

5 < 404t — CA)
— FS-y,-GD
where H =

Aby =
8 =

— 2H — dhy, (324)

tank height,
design freeboard,
rupture stress of the steelin the shell,
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Settlement criteria and recommendations
¢ .
Lambe et al. | Langeveld |Hayashi (1973} Greenwood | oth Japanese Fire
(1961) (1974) Gruber (1974)|  (1974) ers Defense Ag.
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« _%_ (S/d)<1/30  |water test |d/90 to d/50 S=0/100
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Non-planar Use prepared Not con~ Not considered Use prepared
% S} settlement foundation pad sidered foundation pad
| . ..
3 5% Original | to prevent /50 to d/30 to prevent
558 S%';f"' S<D0/100
LS 1 'Deformed
Fig. 252. Differential settlement criteria for tanks (MARR et al., 1982)
Lnax = thickness of the shell, where n = the number of reference points,
CA = corrosion allowance on shell thick- Simax = the max. deviation beyond the
ness, average.
FS = safety factor against rupture of
shell, In respect of overstresses MARR et al. (1982)
D = diameter of tank. suggested using the following criterion

Non-planar settlement may radially distort or
overstress the shell. Radial distortion, called oval-
ity, may cause malfunction of the floating roof.
Overstresses may produce rupture and conse-
quently the spillage of the content of the tank. In
respect to ovality the criterion proposed by Ma-
LiK ef al. (1977) can be accepted, it states that

2
A4S < ———— ARy, ,
H-D

where A4S = S; — 0.5 (S;4; + S;—,), and [ is the
distance between two reference points. This

expression has been modified by MARR et al. (1982)
as:

(325)

forn =8 S, < 0.154TDI_ ARyo1 s

and (326)

for n = 16 S,pu < 0.132 -% ARy

KI?
A8; < ——oy, 327
<HE " (327)
where AS; = the differential settlement between

two points,

the rupture stress of the shell,

K = a constant that covers the non-
elastic behaviour of the shell ma-
terial, secondary effects of the tank
geometry, and other factors (eval-
uation of failed tanks has shown
the max. value of K to be of 12).

Q
[

(b) Criteria for the bottom plate

Uniform settlement and tilt would not cause a
problem, but a non-planar settlement does. Two
important modes of deformation may occur: disk-
shaped settlement, and local depressions. For the
former MARR et al. (1977) suggested the following



criterion
037 o 0.5
W< (W2 Lop?| o, (328)
=1"" FS E
where W = the max. deflection,
W, = the initial maximum camber of the
bottom plate,
o; = the ultimate stress of the particular
weld used to construct the bottom
plate. '

The camber which has to be maintained is de-
fined in U.K. regulations as a grade of 0.839,
toward the centre. A tank is able to sustain a sub-
stantial deflection when s_,, develops at its mid-
point, but major deflections mostly ensue around
the rim, so damage and impairment occur quite

frequently (PENMAN, 1978).

(c) Criteria for shell-bottom plate connections.

Uniform settlement would not cause a problem,
and the criterion to limit planar tilt of the shell
seems sufficient to ensure that additional stresses
in the connection are kept within allowable limit.
Concerning non-planar settlement, no criterion
is yet available to evaluate the condition of the
connection.

2.3.8.4  Settlement criteria for miscellaneous
engineering structures

The composition of the previous paragraphs in-
dicates that both criteria and assigned limiting
values are dependent on the type of the structure
and on the character of the event which evoked the
damage.

Crane tracks are exposed to a perilous effect, not
so much when the track settles unequally but when
it tilts; the Hungarian Code of Practice allows a
grade of max. 0.004 for longitudinal displacement
of the rails, and max. 0.03 for tilt.

Agricultural buildings resting on column piles
are discussed by ZHUKOV et al. (1979). Allowed tilt
is {x)

x=sh,2L, (329)
where s = settlement at the supports,
h, = height of the panel,
L, = length of the panel.

Unequal settlement is the more dangerous when
the link between the panels is stiff, and the gap
(d) between them is narrow. Usually d is 20 to
50 mm, and so, for the case of h, = 1.2 m and
L, =6 m the allowable differential settlement
would be As = 6 cm. Experience on model tests
suggests taking As/L == 0.01, and for the gap be-
tween the panels d = 40 to 50 mm.

In mining areas relative expansion or contrac-
tion (e, mm/m) of the ground surface is also moni-
tored (as the depression bowl exhibits tension in
some regions, and compression in others). It is also
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usual in Hungarian practice to calculate the radius
of the depression bowl (R, km), and the relative
differential settlement {/Is/l, mm/m) which are then
taken as design values in relation to the sensitivity
of the buildings. Four categories were chosen:

3

R 20 | 12 6 2
Asfl 3 7 | 10 | 20
€ 1 2 3 6

During construction of underground (metro)
tunnels, it has heen observed that various buildings
are differently sensitive for given movement com-
ponents, and so it can be stated that quite unlike
movement components are determinant for various
types of constructions. For example, single build-
ings are more sensitive to deflection; roads, rail-
ways and utility ducts are sensitive to deflection
and relative elongation, but block buildings react
severely when the radius of the depression is small
or the elongation on the terrain is great.

2.4 Reliability of calculations and the safety
factor

2.4.1 Bearing capacity of foundations

Similarly to the case of the stability analysis of
slopes, the reliability of calculations can also be
treated on the basis of deterministic or stochastic
methods.

2.4.1.1 Deterministic methods

We must face the fact that our investigations,
the data used, the conslusions drawn, etc., may be
incorrect. For example, when computing the ulti-
mate bearing capacity of a footing we are aware
that both the design loads and the shear-strength
parameters can be inaccurate. In order to rectify
the situation, we have to introduce safety factors.
This can be done in three different ways.

In the first method the ultimate bearing capacity
is divided by an assumed or prescribed safety fac-

—
tan §

Fig. 253. Establishment of failure safety factors for a strip
foundation
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tor and thus an “allowable bearing pressure” is
obtained. A footing is then said to be designed cor-
rectly if the “actual™ pressure on its base, which
itself is computed from more or less uncertain de-
sign loads does not exceed the “allowable’ value.
Formerly, this concept was in general use. Using
Eq. (119), the allowable bearing pressure of a
footing can be written in the following from

1
Py _ — (eNe + tyN, + byN,).

(330)

Hence the required area 4 of the base of the foot-
ing is

Paitowable =

p

A=——L£
DPaitowable

(331)

where p is the total load on the footing. To obtain
the required width of a continuous or a rectangular
footing calls for the solution of an equation of sec-
ond or third order, respectively. A value of » =
= 2 to 3 for the safety factor is usually chosen.

This method is now regarded as obsolete since it
makes no allowance for uncertainties other than
those resulting from the soil conditions not having
been adequately investigated.

Nevertheless, in a modified form this method
can still be very useful since it permits variations
in both shear strength and design loads and their
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effect on bearing capacity to be assessed by means
of a graphical representation.

The basic idea of the method is the same as that
used in the stability analysis of slopes (see Section
1.6.1). Since the fundamental factor in a limit state
analysis is shear strength, it is appropriate to
express the safety factor in terms of this. To this
end, for a given load we determine a set of those
simultaneous values of @ and ¢ for which the safety
factor against failure is » = 1. We then plot these
¢ values against tan @ as shown in Fig. 253, and
compute the safety factor in the same way asin the
case of slopes

orP
04

It is of interest to compare the safety factor de-
fined by Eq. (332) with that used in Eq. (330),
Yp = Pp/Pallowable-

Numerical examples to show the difference be-
tween the two sets of values, are given in Fig. 254.
The safety factors referred to bearing pressures
are vy = 4, vf, = 8.2 and %}, = 11.8.

If we perform the computation for the smallest
and greatest probable values of ¢, the condition
v = 1 will be represented by a strip instead of a
single curve in the ¢ versus tan @ plot (Fig. 255).
If we again plot the measured shear strength pa-
rameters in this graph, the margin of safety against
failure can be judged by simple visual inspection.

v (332)

T T
3 Eff c260kN/m?
60 - s N It R ey (e
o)Z Eff c=50 kN/m? % n=0F.507 |
50 —n:%:l.%—— = N2 |64 - '

QN A J / \é; Ve i
PPTIEANCY / W // 720kN/m  E
E ’F/I/l // N
x < &
~ 30 S p————

o 7 5=300kN/m? >
20 //A 2pb=0.6m |
/ & / |2b:7.60m |
4 1 _A
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Fig. 254. Examples of how to estimate safety factors



Fig. 255. Exploration of the spreading zone of safety
factors

The v = 1 curves can be determined by various
theories and thus the differences in the results can
be studied.

In the second method, the dead and live loads
on the structure are multiplied by a factor f which
is greater than 1. In this way we can allow for the
uncertainties in the estimation of design loads. The
footing is then said to be correctly designed if the
ultimate bearing pressure is greater than or just
equal to, the bearing pressure computed from the
increased loads on the base:

Py >0 = L"f%@ . (333)

The subscripts d and [ refer to dead loads and live
loads, respectively.

The shortcoming of this method is that it makes
no allowance for possible variations in soil charac-
teristics (especially in @ and c).

The third method consists in using partial coeffi-
cients. The method was proposed by Brincu
HanseN and LuNDGREN (1960). According to this
method we reckon with a nominal state of failure.
The loads acting on a footing are multiplied by a
set of partial coefficients greater than 1, while
the strength parameters of both the material of the
footing and the soil are divided by another set of
partial coefficients. The structure is said to be cor-
rectly designed if the conditions of equilibrium are
just satisfied in the nominal state of failure. More-
over, the critical nominal stress in the structure it-
self must not exceed the nominal compressive
strength of the material. In mathematical terms:

AP+ foPo+ oo oo+ fuPy < tan® ¢

o <ol g
(334)
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A choice of the partial coefficients is based on the
following principles:

— the greater the uncertainty in the determina-
tion of the quantity considered, the greater
should be the numerical value of the relevant
partial coeflicients;

— the coefficients should be so chosen that the
resulting dimensions of the footing do hot
differ too much from those obtained by for-
merly used conventional methods.

The numerical values proposed by BriNcm
HanseN and LUNDGREN are the following

Dead weight fa 1.00 to 1.05,
Water pressure fw 1.0,
Water pressure if water

level changes unpredict-

[

ably fo = 1.2,
Live load fi =15,
Live load, special cases

(silos, etc.) i =12,
Wind thrust fg = 1.5,
Earth pressure at rest i = 13.

The computed, or assumed loads must be multi-
plied by the relevant coeflicients. On the other hand,
the shear strength parameters @ and ¢ must be di-
vided by the following numbers:

. Bearing capacity Earth pressure and
Coefficient of footings stability computations
\
Cohesion f, ‘. 2,0 1.5
Friction fg, | 1.2 1.2
i

These values are valid for the case where the shear
strength parameters are determined by the best
possible method.
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2.4.1.2 Stochastic methods

An up-to-date design procedure views every
term in Eq. (119), so also the ultimate bearing
capacity itself, as a random variable. Basic prin-
ciples are the same as in Section 1.6.2 and their
methodics similar to that applied in the case of
slope stability analyses.

The terms b and ¢ on the right hand side in Eq.
(119) can be taken as constants, and the standard
deviation of y; and y, can be neglected. Just the
opposite has to be said about the cohesion and the
argument of the bearing capacity factors, the in-
ternal friction of the soil.

As the statistical parameters of cohesion are
given, we have to deal principally with the vari-
ability of the IV, factors. The standard deviation of
the bearing capacity factors can be determined by
using one of two methods: the Monte Carlo simu-
lation or by the help of Eq. (163) which expresses
the law of propagation of errors.

Choosing the first alternative, Sincm (1971)
examined the variability of the factors

N, = tan*(45° + @/2) exp (7 tan @)  (335)

and

N, = (N, — 1) cot®. (336)

The results of this consideration are condensed in

Table 16 from which the following can be deduced:

(a) the variance of N, exceeds that of N,;

(b) with increased internal friction, also the
coefficient of variation of the bearing capacity fac-
tors increases gradually;

(c) the relationship between the coefficients of
variation for the bearing capacity factors and that
of the angle of internal friction is not linear; the
ratio of the two terms decreases when the coeffi-

cient of variation of @ (C @) increases.

Singh’s data revealed that the variability of ¢
is rather significant. Similar observations originate
from other researchers as well, for example, Lums
(1966) and ScuurrzE (1975, 1977).

Using the law of error propagation, and assum-
ing that the variance of b, t and v is negligible in
relation to that of @ and ¢, the variance of ¢ can be
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written as

sg = [b?’l

2

+
(337)

ON 2 oN,
—8—5 S@’ + {t?’z )

N 2
+ [ o sq,) + (Nes?
when @ and ¢ are assumed to be independent vari-
ables.

The calculi of the bearing capacity factors de-
fined by the expressions Eq. (335) and (336), and
of that given by CaQuor and K£RISeL (1953) as

N, = 2N, — 1)tan @, (338)
are (Harr, 1977):
ONg _ Nemw , tan (45° + @2) v (339
oD cos?2®  cos?(45° -+ @)2)
ONe Ny v Na=1 34
0D 0P sin? @

ON, _2Net D) g van 0 PNe . (341

0D cos’D oD

Example. The allowable load Qp (kN/m?) should be found for a
building on which an additional storey is desired. The exist-
ing strip foundation is 2b = 1.2 m wide, made at —1.3 m
(= t) depth below ground level. The desired probability of
failure is py = 0.005. Assume y, =y, = 19 kN/m?, ¢ = 25
kN/m? cohesion with s, = 5.2 kN/m? and ¢ = 20° with
sp = 2.2° (= 0.0384).

Using Eqs (335), (336) and (338), the expected value of the
failure stress would be:

g =10.6-19-5.39 4 1.3:19 - 6.40 + 25-14.93 = 590 kN/m?.

Substituting the values calculated from Eqs (339) to (341)
in Eq. (337), the variance of ¢ is:

s§ = (0.6 - 19 - 43.3 - 0.0384)2 + (1.3 - 19 - 36.4 - 0.0384)*+
+ (25 - 53.8 - 0.0384) |- (14.83 - 5.2)z = 10 166,

and so s; = 100.8 kN/m?>.
From the table of normal distribution function we can find
A = 2.57 to pf = 1 —P(A) = 0.005, and so the desired value
of the allowable stress is:

g—As; = 590.3 — 2.57 - 100.8 = 331.2 kN/m?
and the allowed load on the strip:
Qn = 1.2 - 331.2 = 397 kN/m .
The conventional safety factor is

FS = 590.3/331.2 = 1.78.

Table 16. Coefficients of variation for the bearing capacity factors defined
in Eqs (335) and (336) as the functions of @ and 0,4 (S1NcH, 1971)

¢ = 15° ¢ = 25° @ = 35°

Cop E— T = -

b N e | R ew | M| G
0.10 3.983 0.143 11.081 0.268 37.242 0.474

Nq 0.20 4.037 0.216 11.645 0.419 43.439 0.820
0.30 4.115 0.291 12.515 0.590 55.763 1.380

0.10 11.029 0.086 21.147 0.180 49.357 0.342

N, 0.20 11.096 0.130 21.712 0.278 54.197 0.575
0.30 11.192 i 0.175 22.563 0.388 63.123 0.940



2.4.2 Reliability of predicted settlement

It is not habitual to require a safety factor for the
calculated settlement, despite the fact that sever-
al errors may aggravate the calculations.

Concluding the treatment on settlement calcula-
tions, analytical- and observational data for some
structures will be compared. Unfortunately, these
data are of but limited value for a number of
reasons. One of them is that such reports are, as a
rule, published after an extended period of obser-
vation only,and in some instance even the “ana-
lytical” results are only subsequently obtained,
using the “best” method available. The results of
soil explorations and laboratory tests are almost
invariably incomplete. Moreover, often different
methods of computation are applied; for this rea-
son only a few reports will be mentioned.

The results of settlement observations published
in the relevant literature and observed by himself
for 103 structures have been compiled and eval-
uated by Leussink (1953). The observations are
summarized in Fig. 256 where the values of *“re-
stricted validity” are shown in diagram (a), while
those considered *“perfect” are given indiagram (b).
In the first case, the settlement values processed
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Fig. 256.

a — Relation between measured and calculated settlements plotted in Beckgl’b
frequency system; all 103 values with restricted validity; b — the same, of which
40 data are unanimously valid

12 A. Kézdi and L. Réthéti: Handbook
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are not the ultimate-, but intermediate settle-
ments, or were such where the magnitude of settle-
ment was influenced by lateral yielding as well. The
number of “perfect” values was 40.

The arithmetic mean of the ratio of the settle-
ments observed (y) to those computed (y’) was
yly’ = 85.29, with all data included, whereas it
was 93.39, using the perfect data only. The fre-
quency curve in Fig. 256 does not reveal a normal
distribution, but rather one of a complex type.
The presumable partial normal distributions have
also been plotted on the diagram. This distinction
has been attributed by Leussink to differences
between the soil types, in that for silt soils, where
sampling is more liable to cause disturbances, the
computed settlements are excessive, whereas in
clay soils the agreement is, in general, closer.

The distribution curves of the “perfect’ values
are steep, the settlements observed ranging from
75 to 1259, of the theoretical values. In the case
of slightly cohesive and granular soils, the distri-
bution curve is much flatter, indicative of reduced
accuracies.

Various settlement calculation models have been
compared in a study made by ScRULTZE and
SiEVERING (1977), evaluating the settlement of
148 buildings. There were 112 buildings on slab,
29 on single footings and 7 on strip foundations on
the list. The size of the foundations ranged be-
tween 1 -1 m and 60 - 100 m, and their contact
pressure between 20 and 1263 kN/m? The E; was
based on the Standard Penetration Test and
Static Penetration Test results, or on the basis of
oedometric tests, depending on which of these was
mentioned in the literature as the pertinent case.
The depth limit of the compressible zone was taken
as the width of the slab or as double the width
of a rectangular footing. Settlements were calcu-
lated using ten different methods. In the first three
cases E was assumed to be constant and the settle-
ment influence factor was taken in the following
combinations of Frohlich’s concentration factor
(v) and the Poisson ratio (u): p =0, v = 3; 4 =0,
y = 5;u = 0.3, » = 3. In the next three cases the
procedure was the same, but E; was assumed to
increase with depth. The last four cases (Nos 7
to 10) were calculated by the following expres-
sions:

s—35PRn (342)
N §
s——LBp (343)
E(L + B)
s—23 N jep 2BAE Ly
SE(L—B) °2E,+z B
_06pB a5
E

§



178

Load-bearing capacity and settlement of shallow foundations

Table 17. Ratio of calculated (with methods 1 to 10) and measured settlements (ScHULTZE and SIEVERING, 1977)

All values (148) Raft foundation (112) Single footing (29) Strip footing (7)
Calcu- .

lation standard coefficient standard coefficient standard coefficient standard coefficient
mean deviation | of variation | ™Mean deviation | of variation | mean deviation | of variation | ™Mean deviation | of variation

1 1.82 1.43 0.79 1.99 1.54 0.78 1.51 0.79 0.52 0.52 0.35 0.67

2 2.16 1.66 0.77 2.28 1.78 0.78 2.07 1.05 0.51 0.57 0.38 0.67

3 1.49 1.15 0.77 1.60 1.24 0.78 1.31 0.69 0.52 0.40 0.27 0.67

4 1.41 1.12 0.79 1.56 1.21 0.77 1.05 0.52 0.50 0.40 0.27 0.67

5 1.63 1.27 0.78 1.78 1.37 0.77 1.36 0.66 0.49 0.44 0.29 0.67

6 1.13 0.89 0.78 1.24 0.96 0.77 0.89 0.44 0.50 0.31 0.20 0.67

7 3.71 3.37 0.91 4.30 3.64 0.85 2.05 1.05 0.51 1.26 0.82 0.66

8 1.70 1.45 0.85 1.52 1.58 0.82 1.06 0.49 0.46 0.72 0.47 0.66

9 0.55 0.49 0.90 0.64 0.53 0.82 0.35 0.16 0.46 0.005 0.006 1.19

10 2.02 1.75 0.87 2.31 1.90 0.82 1.27 0.59 0.46 0.47 0.31 0.67

The means of the ratios between differently
calculated and measured settlements ranged be-
tween p = 0.55 and y = 3.71. The coeflicient of
variation of these y-values decreased when the
foundations were classed by type (Table 17). For
the linear relationships established between cal-
culated and measured settlements the correlation
coeflicients were 0.81 to 0.87. As the intercept of
the regression lines was close to zero, it was pos-
sible to order a corrective factor to any one of the
methods used (Table 17).

Experience has confirmed that differential settle-
ment may also develop among footings which
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Fig. 257. Movement components of a silo, synoptic drawing

rest on an underground qualified as homogeneous.
LeussINK (1955) studied the settlements of found-
ations rested on soils which were classified as ho-
mogeneous in the laboratory and were equally
loaded. He found that the measured max. differ-
ential settlement of the footings under the same
building attained 30 or 909, of thg average settle-
ment, depending on the position of the compres-
sible layer. 309, refers to the case when the com-
pressible layer was at a depth of more than half
the width of the strip, or in the case of singular
footings, at a depth B/2 or L/4, whichever was less.

The study allows to draw the following con-
clusions.

(a) It is wise to confine also the average settle-
ment, to avoid unwanted differential settlement
among the footings (see Section 2.3.8).

(b) The assumption — made on the basis of
probability theories — that a random differential
settlement or tilt may ensue due to the variability
of E, and other parameters seems to be really ac-
ceptable (REsEnDIZ and HERRERA, 1969).

(c) There exists definite relationship among the
components of movement. Let give an example
here to prove the validity of this statement. Figure
257 reflects the variation of some components of
movement in a reinforced concrete silo as a fune-
tion of time (loading). Shown are:

the angle of the chute to the axle a;

the mean s of the settlements (s;) measured
at the valves;

the tilt, 6.

The figure reveals the very close relation between s
and é, namely, with increasing load, not only the
average settlement but also the tilt increases grad-
ually. After evaluating the case of 14 silos the
average correlation coeffcient for the relationship
s, 6 has been found as r = 0.73 (four values were
above 0.90). The figure indicates also the phenom-
enon that the dead load generally causes the silos
to tilt toward the elevator (machine shop), which
is the result of an initial excentricity.



Reliability of calculations and the safety factor 179

Time (months)

Settlement, s;, $p (cm)

5

2 3 4 5 6
7 T —~ ]
VP,=700kN ¥ P=45kN S £ .
2200 kN/m?\ &2 NI
1 Ny
& |
9 !
!
<3
Y
o
>
S0 %0 200
O {kN/m2)
-,

Fig. 258. Maximum settlements deduced from the consolidation process when
the width of one footing is varied (RETHATI, 1955)

The case of the frame mentioned in Section 2.3.7
indicates that it is convenient to examine the de-
velopment of movement components as a function
of time. Even if the stratification is not uniform,
the soil is inhomogeneous and/or the loads on the
footings are different, it can be achieved that the
calculated settlement attain the same value at each
footing, but this will be valid at one single instant
only. Let us examine, for example, the differ-
ential settlement of the two footings in Fig. 258 as
a function of time (RErHATI, 1955). Even if the
final settlements at time ¢t — oo are identical, there
are appreciable differences during the consolida-
tion period. The time-settlement curve for footing
I is drawn using numerical values (see figure). If
the width of footing 2 is widened, various final
settlements and different time—curves are pro-

duced. Take for example ¢, = 140 kN/m? and

B = 1/700/140 = 2.23 m, then the pressure in the
center of the compressible layer will be 103 kIN/m?,
and the settlement (at ¢t — oo) is s, = 4.10 cm
{the time-settlement curve has been derived from
the consolidation curve s, by reducing it at the
rate of (1.2/0.8)% = 2.25]. Takmg the largest differ-
ences between the ordinatae of time-curves s; and
s, the relationship between stress ¢, and maximal
differential settlements 4s,, = s, — s, is obtained
(the As changes its sign, so most of the o,-s have
both a positive and a negative maximal value). The
calculation shows (see the right upper corner of
the figure):

As,, = 1.4 cm when 6, = 0,
Asy, = 1.1 em when s,, = s,

As, = 0.64 cm when 6, = 127 kN/m?2.

In a practical case, that particular contact pres-
sure has to be found by which 4s,, is minimal; but
no combination exists which could reduce the dif-
ferential settlement to absolute zero.

The reliability of predicted settlements can be
calculated on the basis of the probability theory,
similarly to the case of slope stability analysis

12+

(Section 1.6.2) or for the ultimate bearing capacity
(Section 2.4.1.2).

Should we suppose for example that the follow-
ing set of F values has been established — at dis-
tance d from each other — in the axis of a loaded
strip foundation:

14.2 — 13.8 — 163 —14.9 — 9.5 — 11.3 — 12.4 —
— 8.1. Then the regression line defined for the s;
value will have the following equation

s = 0.346 d L 3.01

and the value of the correlation coeflicient is r =
= 0.73.

According to the equation above, the settlement
to be expected at point 1 is s, = 3.36 cm, and at
point 8, s; = 5.78 cm; thus the expected value of
the differential settlement will be As = 2.42 cm.

The standard deviation of the regression coeffi-
cient is:

2
_V 0.792 0122
(n — l)ad (8 —1)2.452

considering that the residual standard deviation
g, 18;
=g, 1 —r2= 1159 )1 — 0.732 = 0.792.

Accordmgly, it may be stated with 909, prob-
ability that the regression coefficient cannot be
greater than

0.346 + 1.28 - 0.122 = 0.502

and As is not more than

(8 — 1) 0.502 = 3.52 cm.
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Chapter 3.

Bearing capacity and settlement of pile foundations

3.1 General remarks

Foundation types outlined in Chapter 2 are not
necessarily and under all conditions appropriate
to transfer the loads from superstructures to the
soil. If the shear resistance is small and/or the
compressibility is large in the upper strata, the
load has to be transmitted to more radiable strata
at greater depths. A compound word for founda-
tions complying with this aim is deep foundation.
Their widespread application may have several
reasons:

— 1increasingly heavily loaded structures (high
buildings, silos, ete.);

— structures sensitive to settlements are re-
quired nowadays;

— deep foundation methods are fairly simple
to mechanize (to economize in time and
labour);

— tiresome work is eliminated (for example
dewatering and supporting of foundation
pits) when deep foundation is applied.

In respect to soil mechanics, there are two major
features which constitute the difference between
the two foundation methods:

(a) The side walls of a deep foundation do pro-
vide a considerable friction to the bearing capacity
(which in some cases may practically attain its
totality).

{b) There is a profound difference in the failure
mechanism with the two types of foundation
methods.

Several deep foundation methods are known
(well foundations, caisson, diaphragm walls, ete.)
but piling has always been the most widely applied
version. This may partly explain why the litera-
ture deals predominantly with this type of deep
foundation method, but a contributive factor
might also be that the other types do not raise
so serious problems.

The main differences between pile and shallow
foundation can be condensed in the points below.

(a) In a different form — and generally more
intensively — the difference between granular
and cohesive soils appears.

{b) Bearing capacity and settlement are affected
not only by the soil below but also by the soil
around the foundation, with the latter sometimes
being the determinant.

(c¢) Construction technology (driving, boring,
pressing, prefabrication, casting, etec.) and also
the shape of the pile (extended foot, taper, tube,
ete.) have an important weight in considerations.

(d) Group action (superposition) has a signif-
icant influence on both the bearing capacity and
the settlement of the foundation.

(e) The construction technology may cause dif-
ficulties not only in the existing buildings but also
in the neighbouring piles.

{f) Both in respect to statics and to soil mechan-
ics there are sharp differences between axially
and laterally loaded piles.

{g) In searching for the best technical and
economical solution very often a loading test is
performed which differs basically from that made
for shallow foundations, including its evaluation.

(h) Piles are usually not designed for limiting
stability conditions (slide, tilt, buoyancy) and very
seldom for buckling.

3.2 Performance of single piles

Two major problems arise during the design of
individual (single) piles: what will be the bearing
capacity of a pile (Section 3.2.3) and what will be
the settlement of the pile (Section 3.2.4)? These
two questions are closely interrelated, partly
because in restricting the settlement a means is
simultaneously introduced against failure, and
partly because the bearing capacity of a pile is
very often decided upon its settlement.

A strong influence is exercised on the perfor-
mance of a pile by the processes which develop
in the surrounding soil (Section 3.2.1) and by the
type of the pile which will be defined — among
others — by its stiffness (Section 3.2.2).

In respect to the surrounding soil the main
factor is the density when it is a case of sand,
or the degree of overconsolidation when it is
a clay, but homogeneity has an influence in both
cases.
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3.2.1 The properties of the soil around a pile

The changes in the strength and deformation
properties that occur during the excavation for
bored piles and the driving of prefabricated piles
can have a pronounced effect on both the ultimate
bearing capacity and the settlement of piles.

For bored piles it is mainly the soil in a narrow
zone just around the shaft that is affected. MeYER-
HOF (1976) estimates the disturbed zone around
a pile as not more than 25 mm. The disturbance
can be large if a casing with oversized shoe is
used.

The process of installing a displacement pile
into clay is not easily modelled analytically.
Figure 259 shows schematically the main move-
ments which occur in the soil. Their most common
idealisation has been attempted by assuming the
expansion of a cylindrical cavity (e.g. SODEBERG,
1962). This idea neglects, however, such local effects
as heave of the ground surface around the pile
and does not attempt to model the precise detail
of the soil movement near the advancing pile
tip. It has been shown, however (RaANDOLPH et al.,
1979a) that over most of the pile length, the
radial soil displacement due to the installation of
a displacement pile is well described when the
installation is considered as the expansion of a
cylindrical cavity under the conditions of plane
strain.

In investigating the impact of a driven pile on
the surrounding soil mass, two questions require
an answer:

— to what extent with the stress condition and
the strength of the surrounding soil be
affected, and

— how large displacement has to be presumed,
and at what distance from the pile will this
deformation diminish to zero?

Pile .
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. Surface heave
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remoulded soil Radial move-
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Fig. 259. Soil movements due to installation of pile (RaN-
DOLPH, 1983)

The first question depends on the excess pore
pressure (Au) to be anticipated. STEENFELT et al.
(1981) stated, on the basis of model tests on
jacked piles, that the relation between Au and the
distance from the axis of the pile (r) is well de-
scribed by the formula:

d(Au)

d(ln v) = — 2¢,, (346)

where ¢, is the undrained shear strength of the
soil.

Discussing the same problem in general, RAN-
poreH and WrorH (1982) came to the fol-
lowing conclusion. The excess pore pressure arises
partly from the increase in the mean total
stress that accompanies cavity expansion, and
partly as a result of changes in the mean effective
stress as the soil is sheared and remoulded. For
normally or lightly overconsolidated clay the mean
effective stress will decrease during undrained
shearing to failure, while for heavily overconsoli-
dated clay there will be an increase in the mean
effective stress (as the soil attempts to dilate).
It may therefore be expected that higher excess
pore pressure will be generated in a lightly over-
consolidated clay than in a heavily overconsoli-
dated clay. RANpDoLPH et al. (1979b) suggest an
approximate expression for estimating the excess
pore pressure generated adjacent to a driven pile:

Au = 4¢,, — Ap’, (347)

where Ap’ is the change in mean effective stress
due to shearing the soil to a critical state condi-
tion. For normally consolidated soil Ap” will be
negative and will typically be in the range of one
to one and half c¢,,. At increasing values of the
overconsolidation ratio (OCR) Ap’ will increase,
becoming positive for values of OCR greater
than 2-3.

This trend of decreasing excess pore pressure
with increasing OCR has been found in model pile
tests reported on by Francescon (1982). Figure
260 shows some of his experimental results where
the excess pore pressure generated at the pile
shaft during installation has been plotted against
OCR. (The value Au has been normalised by the
initial undrained shear strength, ¢,,, and also by
the effective overburden pressure, a,,.)

The excess pore-water pressure can locally be
so high that the soil fractures radially around the
pile (hydraulic fracturing). These radial cracks
impede the subsequent reconsolidation of the soil
(Browms, 1981).

STeENFELT ef al. (1981) after having analysed
the displacement of the soil around a driven pile,
produced the formula

£ ]/ {_’_r . (348)

Ty Ty Ty
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Fig. 260. Excess pore pressures generated close to a model
jacked pile during installation (FRANCESCON, 1982)

for the calculation of the radial displacement & of
an elementary soil particle, on the basis of the
model of undrained cylindrical cavity expansion.

Here
&)2
Qo
is the so-called displacement ratio, r is the distance

from the central axis of the pile, r; is the internal
and r; the external radius of the pile.

e=1-—

In evaluating their model tests, carried out on jacked
piles, the authors found that an assumption of ¢ = 0.8 would
have given a better fit of the test results to the curve cal-
culated by using Eq. (348), despite the fact that the actually
applied closed ended pile required the substitution of ¢ = 1.
In the wake of thisdiscrepancy the authors inferred thatabout
209, of soil particles did not move laterally but took a ver-
tical direction.

Ranpovpu (1977) proposed finding the influence

radius (r,,) around a driven pile from the formula

r, = 2.5pl(1 — »), (349)
in which

G1/2 .

G,

G/, and G, are the values of the shear modulus
at pile mid and pile base depths, respectively.

A group of piles is going to have a more exten-
sive zone of influence than a single pile of the
same length. It has been found (Ranporrn, 1977)
that r,, should be increased by an amount of rg
related to the dimension of the pile group. Thus

rm = 2.5l(1 — 9) + r,. (350)

For rectangular groups of pile r, may be taken as
the radius of the circle of area equivalent to that

covered by the pile group.

3.2.2 Definition of pile stiffness

Similarly to shallow foundations, there exists
a measure for piles also which characterizes the
interrelation between the pile and the surrounding
soil (eventually deterministic for the performance
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of the pile). Thus, the flexibility of the pile can
be described by the expression

Ko Lelo (351)

E Lt

which is the so-called “relative pile flexibility
ratio”. E, denotes the modulus of elasticity of the
pile, I, is the moment of inertia, and L is the
length of the pile.

BANERJEE and Davies (1978) define a pile as
very stiff (rigid) when Ky < 0.1, and Kp = 10~
corresponds to piles commonly encountered in
practice (flexible piles). Pouvros (1971a) considers
a pile as perfectly stiff when Ky > 1.0, and abso-
lutely flexible when Ky <C 10 -5, (The case K, = 0
corresponds to an infinitely long pile.)

The stiffness of piles has a significant effect on
the soil-pile structure interaction. Laterally loaded
piles are classified according to their stiffness into

the following groups (Browms, 1972):

1. rigid or short piles;
2. semi-rigid or intermediate piles;

3. flexible or long piles.

The long pile is defined as one whose lateral
deflection at the ground surface is independent
of the pile length when a lateral load is applied
to the pile head. In other words, a structure
supported on long piles has natural periods of
translational modes that are not affected by the
pile length, L. From the same point of view
FLores-BErrRONEs (1977) has classified the long
pile by 2 > 0.5 where

A = (BL)* (352)

and

(12"

4E,I,

where kj, is the subgrade reaction.
The performance of a pile can also be related
to the so-called ‘‘relative pile compressibility

ratio” (see for example BANERJEE and DAviEs,
1978):

(353)

Kp=—2, (354)

When K 4 > 104 the pile is stiff but when K 4, <7 102
the pile is exposed to strain (compressible).

3.2.3 Load-bearing capacity of single piles

The ultimate bearing capacity at failure Q, is
composed of the point resistance (), (Section 3.2.3.2)
and the side resistance @ (Section 3.2.3.1), i.e.
it is:

Qu=0Qp + 0s- (355)

This does not mean, however, that the two com-
ponents can be summarized without any condi-
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tion, because both @, and @, reach their maximal
value only after having attained a critical settle-
ment (displacement) which is not the same for
the two terms. Thus, the ratio Q,/Q; depends on
several factors: the type of the pile and of the soil,
the magnitude of the load, and also on time
(Section 3.2.3.3). Time is predominant in cohesive
soils (Section 3.2.3.4) and may have a determin-
istic influence not only on the ratio mentioned
but on the ultimate bearing capacity as well.

3.2.3.1 Load-bearing capacity due to skin friction

The vertical displacement of an axially loaded
pile gradually mobilizes the friction between the
side of the pile and the surrounding soil. Its
specific unit is usually denoted by f; (or ¢,) and
is given in kIN/m? The bearing capacity from side
friction on a pile is defined, therefore, by the for-
mula

n
Qs = UstsiAziv (356)
=1

where U is the perimeter of the pile and 4z is
the height of that section. If we use f; as the mean
of specific side frictions, then

Qs = f;Asv (357)

in which 4; means the surface area of the pile.

Two main models are available for the estima-
tion of the specific skin friction for design pur-
poses: one reckons with the total stresses and the
other calculates effective stresses.

The total stress method defines ¢, as a function
of the undrained shear strength (c,). Experience
has shown that

Cq = acy, , (358)

where « is the so-called adhesion factor, which
depends on

— the nature (e.g. the plasticity index) and
strength of the soil;

— the dimensions and the method of instal-
lation of the pile and

— on time.

The values of « vary within wide limits (0.3-1.0)
and decrease rapidly as shear strength increases.
For driven piles, the values of « range from unity
for soft clay to one and half or less for stiff clay,
while for bored piles « is around 0.5 in stiff clay
(TomLinsON, 1957 and 1971; WoopwARD and Bo1-
TANO 1961).

Some source claim that for piles of various
types or shapes the formula

f, = Sac, (359)

takes hold, where S is the shape factor.

BALASUBRAMANIAM et al. (1981) assume, for
example, S = 1 for vertical plain shafts and S =
= 1.2 for tapered shafts.

VEsi¢ (1967) suggested calculating ¢, from the
following formula (instead of Eq. (358)):

cq = 50(1 — 17 0.01c,). (360)

The effective stress method, proposed by Bur-
LAND (1973), relates the shaft resistance to the
effective stress produced by the overburden pres-
sure g, through the equation

fs= Ko, tan @, (361)
where the coefficient
K tan @, = 8 (362)

takes care of the coefficient of the shaft pressure
K, and the roughness of the pile surface (@} is
the angle of friction along the pile shaft).

The coeflicient K is affected by the coefficient
of lateral earth pressure at rest

Ky=1-—5sin®’, (363)

the type (displacement or non-displacement pile)
and shape of the pile (straight sides or tapered).
For bored piles and for piles driven into saturated
soft clay the coeflicient K; may be expected to
be close to that of the earth pressure at rest K,
(BUrRLAND, 1973 and others), as has been found in
loose sand too. Analysis of piles driven into soft
and medium clays shows that the factor 8 de-
creases with the length of the pile in a range of
about 0.25 to 0.50 for short piles to abou!t 0.1 to
0.25 for very long (25-30 m) piles. This ‘may be
explained by the progressive mobilization of the
maximum skin friction due to the compression of
long piles (MEYERHOF, 1976).

The specific skin friction varies substantially
with the density in sands. MEYERHOF (1976) has
found, for example, K, ~~ K, for bored piles or
piles jacked into loose sand, and K, > 4K, for
piles driven into dense sand — due to dilatancy
effects and other factors. K£&riser et al. (1965)
conducted trial tests and disclosed the following
relation between f; and the dry bulk density of
the sand:

ye (KN/m3) | 1.58 1.685 1.75
f. (kN/m2) | 5-10 30 70
Suggestions in respect to  have been made by
several other authors as well.
VisaveErciva and Focut (1972) included the
undrained shear strength in their expression:
Js = Ap, + 2s,) , (364)

where 1 is a function of length.
JANBU (1976) proposed to use

fs = Sopo + @), (365)

where a = ¢ - cot D is the attraction, and S, is
a function of the friction angle and length.
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Fig. 261. Changes in frictional resistance with settlement
(JELINEK et al., 1977)

ZEEVAERT (1973) presented the formula:

1 — sin2®
I

g, tan @.
14 sin2@

(366)

BieErrUM’s (1973) suggestion was:

fo=p.[(0.3 — 0.0011,) Y Ryp; + 0.008 Ic,], (367)

where y; is a function of the pile length, R, is
the overconsolidation ratio (OCR).

Meveruor (1976) would prefer to involve the
OCR in the factor K, and so, instead of Eq. (362),

he writes:
K, = (1 — sin®) /R, tan @, . (368)

Surveys made in situ revealed that K  depends
also on the depth. Trial tests conducted in sand
prompted MEYERHOF (1976) to propose that the
local coeflicient K, decreases with depth along the
pile from a maximum near the top, where K; may
approach the passive earth pressure coeflicient,
to a minimum near the pile point where K, may
be less than K, the average ultimate value of K,
being denoted by K.

A great practical importance can be attributed
to the question: what is the displacement (settle-
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ment) of the pile which produces the maximal skin
friction ? Figure 261 illustrates (after JELINEK et al.,
1977) measured f; values as a function of s for
five large diameter piles in clay. Thus, for piles
without enlarged bases (Nos 1, 3, 5), full mobili-
zation of frictional resistance is reached at a
settlement of approximately 20 mm and for piles
with enlarged bases (Nos 2, 4) at 50 mm or more.
As the settlement increases beyond the point of
full mobilization, the friction resistance either
remains constant or decreases. Similar results have
also been reported by other authors; for small
diameter piles the critical displacement was found
around 8 to 10 mm.

The so-called transfer curve f, s (or 7, s) can
be approximated with an exponential expression
or with a hyperbola.

In the theory of elasticity the relationship
between stress and strain is assumed to be linear.
This assumption is invalid here, the aim being to
investigate the ultimate condition as well. For
this reason, allowing also for the results of experi-
ments performed for determining the angle of
surface friction, the following formula has been
developed (K£zpi1, 1957):

1=o‘tan@|:l——-exp[—k s ”.(369)

Sg— S

In the formula

7 = otan®, the equation describing Cou-
lomb’s line in the ultimate condition
(shear failure at the pile surface),

s = the relative displacement between the pile
and the soil,

k = a constant,

s, = shear deformation at which the full shear

resistance is mobilized.

The magnitude of s, was found during the experi-
ments to depend only little on the normal stress.

The result of surface friction test (shear of sand
on a concrete surface) is shown in Fig. 262.
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Fig. 262. Determination of friction coefficients between concrete and sand
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All boundary conditions are satisfied by Egq.
(369) in that

1. 7=20 at 0= 0;
2. 1=20 for s =0;
3. t=o0tan® for s= s, (Coulombs’ line);
4. 01/0s =0  for s = so.

The constants involved in the equation are
simple to determine. The magnitude of ¢ is obtained
as the slope of Coulomb’s line at failure, s, is found
reliably from the diagram of the load—penetration
curves, while k is computed from the slope of
the tangent to the curve t/o = tan @ f(s) at the
origin. In fact (see Fig. 263):

(31/BS)S: 0

o7 _ =ctan® [ke“" s Tsoﬂ_]

ds

tan o, =

so that

tan ay = kfs,
whence

k= sytan «,.

An approximation with hyperbola has been
presented by SaBINI and Sapio (1981) in the
form;

s

a+bs.

Plotting the experimental points in the plane s,
s/t, a straight line can be fitted to them:

T —

(370)

i-:a—%—bs
T

thus allowing the determination of the parameters
a and b of the hyperbola as the intercept and
slope of the straight line. The asymptotic value of
T is given by

7 = lim = fb_ (371)

§—+o00

During the last 10-15 years, some authors have
called the attention to the finding that the skin
friction increases only to a critical depth (D,) and

4
tlo max(t/o)=tan §

r= crtansﬁ[l exp- (k /]‘

k= SofGl? 2%}

horizontal displacement
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Fig. 264. Relationship between taper (w) and K, (LinD-
QuisT and PETAJA, 1981)

remains constant below this depth. MEYERHOF
(1976) states that the depth can be taken as
identical with the critical depth given for the
point resistance (Section 3.2.3.2).

It was mentioned before that f; depends also
on the shape of the pile. Figure 264 (after Nor-
LUND, 1963) represents the factor K, = K, relat-
ing to conical piles as a function of the angle w.
Trial tests and experimentation conducted by
LinpQuist and PETaJa (1981) on such piles
revealed how important it was to find and apply
the proper value of @.

3.2.3.2 Load-bearing capacity due to point

resistance

The point resistance of piles implies the same
concept as the ultimate load-bearing capacity
with shallow foundations. The so-called static
formulas assume that below the pile tip and
around the shaft sliding surfaces develop, and the
point resistance is provided by the shear strength
in acting against failure. Thus the formula pre-
sented for its calculation resembles the one used
to design a shallow foundation:

0, = gqp4, = Ay(peNg + N, (372)

where p, is the overburden pressure at the eleva-
tion of the pile-point, and A4, is the cross-section
area of the pile. .

Several authors made proposals for the cal-
culation of the point resistance. As an example,
the following one is re-called here.

BerezanTsEV (1952, 1960) assumed failure to
occur under the pile tip only and a compacted
zone to develop around the pile (BEREZANTSEV
et al., 1961). This zone settles together with the
pile as the latter is loaded (Fig. 265). The develop-
ment of failure surfaces under the pile tip is pre-
vented by the soil mass bcda — b; ¢, d; a;, the
weight of which is reduced, however, by fric-
tional forces induced along the cylindrical surface.
These frictional forces are found in terms of the
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Table 18. Values of o,
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Fig. 265. Failure mechanism in the Berezantsev theory

normal stresses acting on the cylindrical surface
b ¢, or b, c,. The normal stresses, in turn, are
found by solving the axial-symmetrical problem of
limit equilibrium with the help of Berezantsev’s
earth pressure theory (1952). The magnitude of
the horizontal pressure intensity at depth z is
accordingly

~ tan (45° — @,/2)

_,A__ 1;
1 A—1
. 1— z viloo
1+ 1— tan(45° — (131/2)

0

e,

where @, and p, are characteristics of the soil
layer around the pile tip and

A= 2tan @, tan (45° -+ %) .

H
t

The failure surface under the pile tip is, accord-
ing to the theory of Prandtl-Caquot

9 axy (45°— D) tan B2
Iy — r[1 4 V2% :

sin (45 — , j
2

ds‘ 0 i} i 0
yor 26 30 34 37 40
5 0.75 | 0.77 | 0.81 | 0.83 | 0.85
10 062 | 067 | 073 | 0.76 | 0.79
15 0,55 | 0.61 | 068 | 073 | 0.77
20 049 | 057 | 065 | 071 | 0.75
25 0.44 | 053 | 063 | 0.70 | 0.74

where @, is the angle of internal friction in the
soil under the pile tip.

The vertical stress ¢, acting in the plane of the
pile tip is computed hereafter. The sum of fric-
tional resistance obtained from the expression
e, tan @, is deduced from the weight of the soil
mass cb — b;c; and the residual is divided by the
base area of the cylinder. The result is written
into the form

q = uyd.

The coeflicient «, is a function of the ratio
t/2r and of the friction angle @. For numerical
values see Table 18.
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Fig. 266. Factors for calculating the bearing capacity
of a pile, after Berezantsev
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The vertical stress ¢, bringing about the failure
condition depicted in Fig. 265 is found on the
basis of the limit equilibrium theory of the axisym-
metrical state of stress from the expression

q; = 2Ay,r 4 Bay,t.

The constants 4 and B are obtained from
Fig. 266. The end-bearing resistance of the pile is
thus

PS: Tzﬂqf.

No side friction is commonly assumed to act
in combination with this mechanism of failure.

Starting from different failure mechanisms,
other authors have suggested different load-
bearing coeflicients. A review thereof is presented
in Fig. 267 (Vesié, 1967), indicating also the
essential features of the failure pattern assumed.
The theoretical formulae have the general form

9p = eN&e + 4N &



where N, and N, are the bearing capacity factors,
while £, and &, are the shape coefficients. The
following expressions are derived:

N, = (N, — 1) cot &,

_EGN_l
N1

The values of N*, = N, §, are shown in Fig. 267.
ecently carried out research has proved that
Eq. (372) can only be used with some restrictions.
One of the most important results of pertinent
investigations disclosed, namely, that the ultimate
unit point pressure remains constant beyond a
certain depth (and so does not depend on the
overburden pressure). One of the first such obser-
vations will be presented here after KERISEL et al.
(1965), in Fig. 268. The authors concluded there-
from that

£

(a) the g, — independently from the density of
the sand — remains constant beneath a certain
depth;

(b) in loose sand, g, is significantly smaller than
had been calculated from the Prandtl-theory
(for 2 MN/m? the real value of N, = 18 has been
found as correct instead of the value of formula

33.3).

The authors also deduced that in loose sand g,
does not depend on the diameter of the pile. In
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Fig. 269. Bearing capacity factors and critical depth ratios
for driven piles (MEYERHOF, 1976)

medium dense and dense sand the critical depth
does depend on this diameter, and so, in this case
there exists a definitive ratio of

D
B
due to effects of soil compressibility, crushing,
arching, and other factors.
Making use of the previously mentioned find-
ings, MEYERHOF (1976) proposed calculating Q, in

the following manner.
In sand the presumption has to be true that

dp = PONq < 4> (374)

where ¢; is the limiting value of unit point resis-
tance for D/B > (D/B).,. The semi-empirical rela-
tionship between N, for driven circular or square
piles with various depth ratios D,/B in the bearing
stratum and the angle of internal friction @ of the
soil before pile driving is shown in Fig. 269. It
has been found (CaQuor and Kg£riser, 1966;
MevernOF, 1963) that the factor N, increases
roughly linearly with D,/B and reaches its maxi-
mum value at a depth ratio of roughly one-half
of the critical depth ratio (D/B). beyond which
conventional bearing capacity theory no longer
applies. The approximate depth ratio (D/B),, after
De Beer (1971) is also shown in Fig. 269, and at
full sized piles it depends mainly on the friction
angle, the compressibility of the soil, and ground-
water conditions. The relation of ¢, to @ can be
approximated by using the formula:

g, [100 kN/m?] — 0.5N, tan ®@.  (375a)

So, its range is between 25 and 50 kN/m?, in loose
sand and dense sand, respectively.

The values of N, and g, are also influenced by
the compressibility of the soil, the method of pile

(373)

cr
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Fig. 270. Bearing capacity factors for driven piles in sand
(MEYERHOF, 1976)

installation, and other factors. Thus, for a given
initial @, bored piles have a unit point resistance
of only about one-third to one-half of that of
driven piles (DE BEeEr, 1964; KEgriser, 1961;
VEsié, 1967), and bulbous piles driven with great
impact energy have up to about twice the unit
point resistance of driven piles of constant A4,
(MEYERHOF, 1959).

If piles are driven into homogeneous soil to
more than the critical depth, or if they penetrate
through compressible material into a thick bearing
stratum which is located below the critical depth
of the stratum, the unit point resistance cannot be
estimated by conventional bearing capacity theory
in terms of N, The corresponding value of ¢,
becomes practically independent of p, at the pile
point and it depends on the value of ¢, This is
shown by an analysis of the results of pile load
tests (MEYERHOF, 1976) which roughly support the
semi-empirical bearing capacity factors, N, for
short piles in sand above the critical depth but
not for piles longer than about15to 20 pile diam-
eters (Fig. 270).

In clay Eq. (374) can be written in the following

form:

@ = PNy + N <y (375b)
where ¢, is the limiting value of the point resis-
tance below the critical depth. The semi-empirical
factor IV, can be read from Fig. 269.

In saturated homogeneous clay under undrained
conditions both theory and observation show that
the value of N, below the critical depth varies

Base resistance (MN/m?)
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Fig. 271. Base resistance of straight piles and piles with
enlarged base (JELINEK et al., 1977)

with the sensitivity and deformation character-
istics of the clay, from about 5 for very sensitive
brittle normally consolidated clay (LADANYI, 1973;
Roy et al., 1974) to about 10 for insensitive stiff
overconsolidated clay (MEYERHOF, 1951; SkEmP-
TON, 1951)," although a value of 9 is frequently
used for driven and bored piles. Any disturbance
of the clay by pile installation mainly affects the
initial point resistance and subsequent consolida-
tion will normally lead to a bearing capacity
exceeding the undrained value at the end of the
construction of the foundation.

Large diameter bored piles have shown during
tests (JELINEK et al., 1977) that the ¢, of piles
without enlarged base (1, 3, 5) is considerably
greater than for these with enlarged base (2, 4),
particularly when the settlement exceeds 20 mm
(see Fig. 271).

The displacement needed to produce the maxi-
mal point resistance depends on the type of the
soil and the pile. The literature gives this dis-
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Fig. 272. Development of shaft and point resistance with
settlement (PROMBOON and BRENNER, 1981)



placement as 0.1D to 0.3D, but in loose sand it may
reach over 1D. All authors agree in assuming that
s has to be greater for point resistance than for
skin friction. Figure 272 tries to interpret this
feature for the case of a 1.2 m diam. pile, bored
in clay (ProMBoON and BRENNER, 1981).

3.2.3.3 The ratio of point resistance to skin friction

Figure 272 indicates that the ratio Q,/Q; changes
its value continuously during settlement. This is
a generally valid phenomenon and is the result of
two causes:

(a) various displacements are needed to mobi-
lize either Q, or Q.

(b) Q, attains a constant value (or even de-
creases slightly) well before it reaches the Q, (see
Fig. 261).

Thus, because s is a function of Q, for the same
pile the ratio Q,/Q, is also a function of load Q.

For large diameter (D = 0.88 m) bored pile in
clay JELINEK et al. (1977) obtained the following
relationship:

s (mm) 10 ’ 30 ‘ 50 ' 100 ‘ 150

Q, (kN) 220 630 990 | 1625 | 1925
Qs (kN) 590 630 550 365 375
X 073 | 050 | 036 | 0.8 | 0.16

BALASUBRAMANIAM et al. (1981) examined the
ratio Q,/Q, for driven piles and summarized their

finding as:

— the end bearing capacity contributed approx-
imately 159, to the total bearing capacity
in the case of concrete piles in stiff clay, with
the exception of one pile of large cross-
section area (0.45x0.45 m?) where the
contribution was nearly 309%;

— for driven steel piles embedded in stiff clay
the contribution from end bearing was
nearly 259%,;

— the end bearing contributed approximately
459, to the total bearing capacity when the
concrete piles were bearing in the sand layer.

Also from these experiments it appears that the
ratio Q,/Q, depends on both the material and the
sizes of the pile (including its shape), and on the
characteristics of the soil.

There is a wide difference whether the pile is
of a displacement or a non-displacement type: the
ratio Q/Q, is much larger for the former type
than for the latter.

The ratio varies also with time as the two
components (mostly the Q) also change in time.

13 A. Kézdi and L. Réthati: Handbook
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3.2.3.4 Changes of the bearing capacity with time

The bearing capacity of piles passing through
clay changes to a considerable extent after instal-
lation. The ratio of the initial to the ultimate
bearing capacity is largely influenced by the
width of the disturbed zone. It follows therefore
that this phenomenon is markedly experienced
in the case of driven piles (see Section 3.2.1).

Figure 273 reflects an example (after FLAATE
and SELNEs, 1977) showing the variation of the
bearing capacity of friction piles in clay. It appears
that 1 to 3 months (at pile even 3 more) are needed
to achieve the final value. Similar findings were
reported by BURLAND et al. (1977) with the addi-
tion that (a) reconsolidation is faster in an over-
consolidated clay than in normal clays and (b)
the time is around one month for timber piles.

BarTOLOMEY et al. (1981) mention 40 to 50 days
as being sufficient for the development of the final
bearing capacity. According to the T versus P
curves in Fig. 274 there is no difference in this
respect between single piles and pile groups, but
other researchers (e.g. FLAATE and SeLNES, 1977)
claim that pile groups need a longer time for
reconsolidation. The figure reveals that a rather sub-
stantial ratio (2.5 to 2.6) develops between initial
and final bearing capacities.

The undrained shear strength of the clay
around driven piles increases gradually with time
as the water content gradually decreases. Piles
in soft, normally consolidated clay will with time
be surrounded by a shell of medium to stiff clay.
This strength increase can be traced in the cal-
culation by the application of the effective stresses
when the final skin friction is determined.

Equation (361) also illustrates that the earth-
pressure parameter K is higher than the earth
pressure at rest, K,, by about 509, (see Section
3.2.3.1).

The phenomenon of reconsolidation draws atten-
tion to the fact that it is wise to note that any
loading test — which is intended to acquire infor-
mation on the bearing capacity of piles as found-
ations of a building — may only provide reason-
able results if the test is carried out about two-
three months later than the installation of the

100

bearing capacity
O
S

Percentage of ultimate

Time (months)

Fig. 273. Variation of bearing capacity of piles in clay with
time after driving (FLAATE and SELNES, 1977)
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piles. The influence of reconsolidation should also
be accounted for when the design uses other param-
eters for the determination of the bearing capac-
ity of piles (for example, skin resistance or cone
resistance of penetration or probing tests).

3.2.3.5 Bearing capacity of piles in the case of
cyclic loading

This problem is rarely treated in the literature,
despite the fact of how important it is to detect
the influence of cyclic loading from both theoret-
ical and practical view points.

STEENFELT et al. (1981) carried out model tests
on piles jacked into clay. The overconsolidation
ratio in the clay was OCR = 1 in test runs Nos 01
and 02, but OCR = 8 has been used in run No. 03.
In test No. 01, two-way cycling of the pile was
arranged to attain failure. This led to a dramatic
reduction in shaft adhesion, over 18 cycles, by
a factor of ~10 e¢m compression and ~6.3 em
in tension, giving a final shaft adhesion of 7, ~ 10
kN/m2,

Calculated values of « = 0.24 according to Eq.
(358), and f = 0.05 according to Eq. (362) have
been attained in these tests. A comparison with
Fig. 275 would reveal — this figure represents
the values of « and g for static load— how small
indeed the value of § was.

The drop in shaft adhesion was accompanied
by a gradual rise in excess pore-water pressure

at the pile shaft of between 30 and 35 kN/m?2

In test runs Nos 02 and 03 the pile was two-way
cycled between limits of 1/2 to 1/3 of the failure
loads in compression and tension, respectively.
In over 50 cycles no significant pore-water pressure
change was noted, and load tests performed
directly after the cyclic loading showed no evi-
dence of a reduction in shaft capacity.

3.2.4 Settlement of single piles
3.2.4.1 Prediction of settlement

Three methods are available to predict the
expected settlement of piles:

1. loading tests;

2. in situ investigations (penetration tests,
probing, pressiometer test, etc.)

3. analytical calculation.

.
k4

Item 1 is discussed in Sections 3.6.1 to 3.6.3 and
item 2 is treated in Section 3.6.4.

In respect to item 3, presented analytical
methods are all based on the principles of elasticity
theories. A pile is considered as a point load in the
infinite half-space which generates stresses in its
surrounding. There is a difference, however, in
comparison to the classical case, inasmuch as load
transfer occurs in the soil mass at both the peak
and the shaft, instead of at the ground surface.
This is why the settlement calculated from the
Boussinesq formula

2
s = pBlE—” I, (376)

s

generally gives larger values than would occur in
reality (e.g. KOoERNER and Parros, 1974). (I, is
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an influence factor reflecting the shape and stiff-
ness of the pile.)

GeEDDES (1966) evaluate in detail the difference
between the two types of load transfer. Three
basic situations were assumed:

— a point load P, at depth D;

— a total load of P, applied along a vertical
axis in uniform increments from the surface
to depth D (the case of uniform skin fric-
tion);

— a total load of P, applied along a vertical
axis in uniform increments varying linearly
with depth, from zero at the surface to a
maximum at depth D (the case of linear
variation of the skin friction).

The first situation was investigated by MINDLIN

(1936) who produced a set of equations giving the
stresses due to a vertical point load. The second
and third items were solved by GEDpDEs (1966)
who gave the influence factors in a tabular form
in functions of », r/D and z/D. In respect to items
2 and 3, the pile load is assumed to be delivered
as a shear, but according to St. Venant’s principle
a small error will occur in the estimated stresses
at some distance from the pile shaft as a con-
sequence of the assumption of a series of incre-
mental point loads. According to the calculations
completed by GEDDEs the Boussinesq equation
leads to an overestimation of the vertical stresses
in the vicinity of the line of action of the load and
an underestimation of the stresses at greater
radial distances.

The methods based on the theory of elasticity
can be categorized into the following four groups.

1. In the elastic methods based on Mindlin’s
equations it is assumed that the soil behaves as
an ideal elastic material with constant E, and a
high tensile strength. This approach has been used
by D’AproronNia and Romuarpi (1963), Pouros
and Davis (1968), MarTEs and Pouros (1969).
These methods normally do not take into account
the slip that can ensue along the shaft even at
relatively low load levels, or the low tensile
strength of the soil.

2. The step integration method (or “boundary
element method’’) introduced by SEED and REESE
(1957) and by CoyLE and REEse (1966) is based
on the assumption that the movement of a point
at the surface of the pile depends only on the
shear stress at that particular point, and that the
stresses elsewhere do not affect the movement.

3. In the finite element method (FEM), non-
linear and time-dependent stress—strain relation-
ships are considered.

4. Analytical methods considering the load-
deformation characteristics of the pile shaft sepa-
rately from those of the pile base (RanpoLrpH,
1977; RaxnporpH and WroTH, 1978, 1979).

13*
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The Pouros and Davis (1968) method in the
first category gives the settlement of the pile
head for an incompressible pile L < 50d long, as:

PI,
§ = ”
Ed
in which P is the total applied load on the pile,
E; is Young’s modulus of the soil, and d is the
diameter of the pile. The influence factor I, can
be read from Fig. 276.

The influence of pile compressibility on the
behaviour of a floating pile has been investigated
by MatTES and Pouros (1969). The compressibil-
ity of the pile relative to the soil (see Section

3.2.2) is conveniently expressed in terms of a pile
stiffness factor, K:

(377)

K:E”

R4, (378)

S

in which R, is the area ratio, i.e. the area of a
pile section per gross area of the pile (R, = 1.0 for
solid piles). The lower the value of K, the more
compressible is the pile relative to the soil. The
influence factor of K on pile head displacement
is plotted in Fig. 277 in terms of a correction factor
Ry, where

R, — settlement of the compressible pile

settlement of an incompressible pile

(It has been found that R, does not vary greatly
with dy/d and might therefore be used for both

uniform piles and for piles with an enlarged base.)

The “step integration method” is discussed in Section
3.2.4.2.

To introduce the FEM method, an applied
example is presented here as the solution given
by Ranporpn and WortH (1979). The program
used by the authors was based on six-noded iso-
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Fig. 276. Displacement influence factor I; for incompres-
sible piles (PouLos and Davis, 1968)
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parametric triangular elements in an axi-sym-
metric mode, which allows a linear variation of
strain across each element. The method of solution
was the Gaussian elimination of a bonded matrix,
the bandwidth being restricted to 100. The pile
and surrounding soil were divided into 267 ele-
ments (580 nodes) with a rigid horizontal boundary
imposed at a depth h, where h = 2.5]. (This is
close enough to affect the solution for a pile in an
elastic half-space, but only by less than 59; see
BANERJEE, 1970.) The outer vertical boundary
was at a radius of 50r, (= d/2) and care had to
be taken to ensure that this did not effect the
solution. For piles longer than I = 40r;, it was
found that the method of fixing these boundary
nodes affected the pile settlement. Fixing the
nodes in the radial direction only, produced a
good compromise, but for very long piles (I > 80r)
the mean of the settlements for totally fixed and
totally free vertical boundary nodes gave the best
agreement with equivalent analyses supplied by
integral equations. Ideally, the outer vertical
boundary should be at a radius of a least twice
the length of the pile.

The substance of the solution of category 4 was
presented by RanporLrr and Wrors (1978, 1979).
The analysis is based on an elastic soil character-
ized by the shear modulus G, which may vary
with depth, and the Poisson’s ratio, ». (Using the
shear modulus is preferred to Young’s modulus E,
since soil deformation is produced primarly by
shear, and because the shear modulus is usually
assumed to be unaffected whether the loading is
drained or undrained.) The soil surrounding the
pile is divided into two layers by a line 4B
drawn at the level of the pile base (Fig. 278).
Initially it is assumed that the soil above 4B
will be deformed solely by the stresses at the pile
base. Some modification of this assumption is
necessary in order to take account of the inter-
action between the upper and lower layers of
soil; the interaction will serve to limit the defor-

mation of the upper layer, reducing the defor-
mations to a negligible size at some radius r,,.

From considerations of vertical equilibrium,
it may be shown (e.g. CookE, 1974) that the shear
stress in the soil around the pile shaft decreases
inversely with the radial distance from the pile.
This leads to a logarithmic variation of the defor-
mation w with radius 7. The deformation may
then be:

w(r) = —%9~ln L:L re<<r<rp, (379)

wir)=0 r>r,.

7, here means the shear stress at the pile shaft;
ro is the radius of the pile, and r,, is the limiting
radius of influence of the pile, in correspondence
with Eq. (350).

The deformation of the pile shaft can be written:

Tol'o

w, = & ~G— , (380)
where
£=1InIm
Ty

The pile base acts as a rigid punch on the
surface of the lower layer. The deformation of the
pile base (Boussinesq) is:

_ Pl — )
4r G '

At some distance from the pile base, the load
will appear as a point load. The settlement around

w, (381)
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Fig. 278. Decoupling of effects due to pile shaft and base:

a — upper and lower soil layers; b — separate deformation patterns of upper and
lower layers (RanpoLpu and WroTH, 1979)



a point load decreases inversely with the radial
distance and is given by:

P(1 — v)
2arG
The ratio of settlements in Eqs (381) and (382)

for a given load is:

(382)

w(r) =

wr) 271 (383)
w0y, T

Following St. Venant’s principle, the settlement
caused by the pile base should, at large distances,
equal that of a point load. Thus the settlement
profile at the top of the lower layer of soil in
Fig. 278 may be approximated by

w(r) = 10, 2 0. (384)
T r

For a rigid pile, the shaft settlement is constant
down the pile and equals the settlement of the
pile base. Assuming that the shear strain in the
soil next to the pile shaft is constant with depth,
the shear stress 7, will be proportional to G at
that depth. The total load transferred to the
soil from the pile shaft may be written using
Eq. (380)

PS - 2ﬂrol(10)av == 2nl%61/2 -

(385)
- —?lwsea,

where p is the homogeneity index (see Eq. (349)).

Thus, the overall load vs. settlement ratio for
a rigid pile might be written in a dimensionless
form

Pt o Pb Ps
Grow; Grow,  Grow,
4 2mo 1 (386)

1 —w E rg

The authors emphasized that the settlement as
calculated from their method was in good agree-
ment with that of method 1 and 3. The authors
provided a solution also for the case when the
compressibility of the pile was not negligible
(RanporpH and WRoTH, 1978).

The reliability of any solution based on the
theory of elasticity depends primarily on the
accurate estimation of E, (method 4 partly avoids
the difficulties arising from this fact).

The disadvantage of these methods is that
it is, in general, not possible to take into account
the difference in the elastic modulus on loading
and unloading, the effect of the loading rate and
the creep at different load levels, the disturbance
of the soil caused by the pile driving, or the
reconsolidation of the soil after the driving and
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installation of the piles (Broms, 1981). These con-
sequences are also implied in the findings of
Pouros (1972) who concluded that

— for soft to medium clays (¢, << 117 kN/m?)
the E; for driven piles is greater than that
for bored piles, but for stiff clays the E;
becomes greater with bored piles;

— for stiff clays it seemed that E; reached a
limiting value which was about 40 MN/m?
for driven piles, and about 80 MN/m? for
bored piles.

The shape of a pile affects its settlement.
A bored pile with an enlarged base will settle more,
under the same relative load (Q/Qy;:) than a pile
without enlarged base (WITHAKER and COOKE,
1966). The settlement for bored piles with enlarged
bases can be estimated from the following semi-
empirical relationship:

,_ 0.02,D,
Quit

where g, is the contact pressure at the base, and
D, is the base diameter (BURLAND and CookE,

(387)

1974).
Some observations indicate that — similarly to
shallow foundations — a secondary consolidation

(creep) also takes place with pile foundations.
Surveys made by BARTOLOMEY et al. (1981) have
disclosed, for example, that about 15%, of the
total settlement occurred later than one year
after the completion of the construction.

3.2.4.2 The load—settlement curve

A method to establish the relationship between
load and settlement has been provided by REESE
based on the following considerations (COYLE and
Reesk, 1966).

Figure 279 shows an axially loaded pile divided
into four segments with the forces acting on each
segment. It is desired to compute the load, Q,,
at the top of the pile and the settlement, §, at
the top of the pile. The procedure has to begin
at the bottom by assuming a small tip movement,
computing the forces and movement at each
segment upwards on the pile. For differently
assumed tip movements, different values will be
obtained at the top for ), and J, and a load—settle-
ment curve can be plotted. The steps involved.
in this procedure proceed in the following manner

1. Assume a small tip movement, y.

2. Compute the tip load, T, corresponding to
the movement y;. This can be done by making
use of a method such as that proposed by Skeme-
TonN (1951).

3. Divide the pile into several segments (e.g.
into four segments, as can be seen in Fig. 279).
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Fig. 279. Axially loaded pile showing forces acting on seg-
ments (COYLE and REESE, 1966)

4. Estimate a midpoint movement of the seg-
ment at the bottom. For the first trial, the mid-
point movement is assumed equal the movement
at the tip.

5. Using the estimated midpoint movement,
refer to a curve showing the ratio of load transfer
to soil shear strength versus pile movement.
Figure 280 is a curve developed by Skep and
ReEesE (1957) based on measured load transfer in
an instrumented pile and vane shear test. (For
example, with asimulated pile movement of 7.5 mm,
the ratio is 1.0; therefore, the full shearing
resistance is assumed to be developed.)

6. Using the ratio determined in step 5, refer
to a curve of soil shear strength versus depth.
A load transfer is the product of the value read
from this curve and the ratio obtained in step 5.
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Load transfer/shear strength

0 05 1.0 15
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Fig. 280. Ratio of load transfer to soil shear strength vs. pile
movement (1 in = 25.4 - 10-3 m)

7. Using the value of load transfer computed
in step 6, compute the load Q, at the top of the
bottom segment as

Q3 = qT + S;7, (388)
Sar = $37CLgr (389)

in which

and Q; is the load at the top of the segment, T is
the load at the tip from step 2, s, is the load
transfer in the bottom segment from steps 4, 5
and 6, Cis the circumferential area of the segment,
7D, and Ly is the length of the bottom segment
(= L/4).

8. Compute the elastic deformation in the lower
half of the bottom segment by

Omia+ T Ly

2 2
=— = 390
Yar 1E (390)

Assuming a linear variation on the load distri-
bution for small segments

0+ T

Qmid = 9

(391)

9. Compute the new midpoint movement of the
bottom segment by

Yar = Aysr + yr. (392)

10. Compare the computed midpoint movement
from step 9 with the estimated midpoint move-
ment from step 4.

11. If the computed movement does not agree
with the assumed movement within a specified
tolerance, repeat steps 2 through 10 and compute
a new midpoint movement.

12. When convergence is achieved, go to the
next segment above the bottom segment and
work up the pile to compute a value of Q, and 6
at the top.

The procedure is then repeated using a different
assumed tip movement, until a series of Q, and
0 values is obtained. These values can then be
used to plot a computed load—settlement curve.
For the calculations used in their paper, the
authors assumed that the tip load was equal to
zero, but any tip load can be included in the cal-
culation, if desired. For carrying out the study in
this manner, an assumed tip movement is required,
but then step 2 can be omitted.

3.3 Performance of pile groups
3.3.1 Load-bearing capacity of pile groups

Due to superposition of stresses transferred into
the soil, there is a substantital difference between
the performance of a single pile and a pile group.
This difference appears also in respect of bearing



capacity, namely the interaction influences the
ultimate shaft load and the ultimate point resis-
tance to a different extent and in various manners.
The interaction of piles depends mainly on

— the distance between the piles;
— the properties of the soil;
— the type of the piles and the technology.

Problems arising can be usually condensed to
the question: what will be the relationship be-
tween the bearing capacity of a pile group (ng) to
the summarized bearing capac1t1es Q,; of the single
piles in the group or — since each pile in the group
is assumed to have the same load-bearing capac-
ity — to the sum nQ,?

Since several difficulties had to be faced in
using the theoretical approach, at present we have
mostly to rely on experience acquired by in situ
surveys or investigations. An important role is
also attributed in this field to model tests, since
loading tests of pile groups would be extremely
tiresome and expensive due to the enormous load
involved.

MeyEeruOF (1976) stated, on the basis of exper-
imental results, that for piles driven into sand,

ng > ZQui

if the distance between the piles is not more than
4d. The greater group capacity is due to the over-
lap of the individual soil compaction zones near
the piles, increasing mainly the skin resistance,
which may produce equivalent pier shear failure
at small pile spacings, while the point resistance
is practically unaffected by the group action, even
at small pile spacings (VEs1¢, 1967).

The senior author conducted a series of trial
tests with 2 m long 4 = 10 - 10 cm? piles (K£zp1,
1957). Four piles were driven in a row and at
the corners of a square, and loading diagrams
were made at different pile spacings. The relation
between ultimate load of the group and the pile
centres is shown in Fig. 281; the horizontal line
denotes the fourfold bearing capacity of a single
pile. Both in the case of piles driven in a row and
at the corners of a square, the group capacity is
substantially higher than that; only at d = 6D
does the group capacity diminish to the value of
the single piles. At d = 2D the increase is more
than 1009%,.

According to VEsié (1981) in the case_of piles
driven into soft clay the ultimate shaft load of
the group is less than ngQ,.

The ultimate load of a pile group with the
piles being bored in sand is smaller than the sum
of the single bored pile capacities, due to the
overlap of the individual shear zones in the soil
near the piles without soil compaction (MEYERHOF,
1976). Interference of the individual pile-point
shear zones would theoretically lead to a reduction
of the individual ultimate point loads by roughly
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Fig. 281. Ultimate load of pile groups (K£zp1, 1957)

one-half for a pile spacing of about 3 pile diameters,
and some reduction of the skin resistance must also
be expected. It may, therefore, be suggested that
the ultimate group capacity of bored pile groups
in sand, not underlain by a weak deposit, should
be taken as about two-third of the sum of the
single pile capacities at customary pile spacings.

The ultimate load of pile groups in clay can be
estimated from the smaller value from either a
block failure of an equivalent pier consisting of
the piles and enclosed soil mass, or from the
ultimate bearing capacities of the individual piles
(MEYERHOF, 1976).

The ultimate group load for block failure of an
equivalent pier of driven or bored piles in saturated
clay should be based on the initial undrained shear
strength of the clay for both side and base resis-
tance. If the pile caps are not resting on the ground,
the group capacity will usually be governed by
the sum of the ultimate loads of the single piles,
with some reduction due to the overlapping zones
of shear deformation in the surrounding soil
(MEYERHOF, 1976). This has been confirmed by
full-scale load tests of friction piles driven into
soft and medium eclays (e.g. ScuriTT, 1951} and
by similar model tests (WITHAKER, 1957) which
have shown that at customary pile spacings of 3
to 4 pile diameters the ultimate group capacity
may be only about two-thirds of the sum of the
single pile capacities, using the drained remolded
shear strength of the clay for the skin friction.
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In making a comparison between the effective
load Q to be carried by the piles and the ultimate
load capacity, Q,, it should be also considered
that the stiff raft on the pile heads may transfer
various loads on to the individual piles (see
Section 3.2.2).

The process of reconsolidation goes on more
slowly in the case of pile groups than with single
piles (VEs1¢, 1981). This may be partly the result
of the differences in the influence zone, as can
also be seen from Eqs (349) and (350) (Section
3.2.1).

3.3.2 Settlement of pile groups
3.3.2.1 Rules derived from surveys and observations

Figure 274 indicates that pile groups settle
substantially more than individual piles do under
the same load. The figure refers to piles driven
into cohesive soil but the results might be general -
ized for whatever type of soil or pile (VEsi¢, 1981).

BEREZANTSEV et al. (1961) explained that pile
foundations with an equal load transmitting area
at the level of the pile ends, but with a different
number of piles, have practically equal settlements
under equal loads (Fig. 282).

If the distance between piles driven into sand
is reduced, the influence of compaction gains
more and more space, as has been proved by the
model tests carried out by the senior author
(K£zpr, 1957). Figure 283 shows the magnitude
of loads causing given pile settlements. The less
the distance between pile centres, the smaller will
be the settlement under a given load: at d = 6D
the loading diagram approaches the line giving
the four-fold loading capacity of an individual
pile as a function of its settlement. The groups
thus behaved very favourably from' the point of
view of settlement, most probably due to soil
compaction caused by driving.
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Fig. 282. The relationship between loading and settlement
of piles and the role of the number of piles (BEREZANTSEV
et al., 1961)
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Fig. 283. Settlement of pile groups (K€zp1, 1957)

The pertinent soil strain parameters being
known, the settlement of a pile group is usually
calculated after TErzAGHI and PEcK as if it were
a shallow foundation of the area 4 = B. L.
(B is the width and L is the length of the external
contour line of piles, respectively.) The level of
load transfer can be taken to the tips of the piles
for end-bearing piles, or to two-thirds of the
length of friction piles. Tonc et al. (1981) sug-
gested assuming the level of load transfer to be
at the tips of the piles when the surrounding soil
is a soft clay and the load acting on the pile
group is greater than the load-bearing capacity
of the multiple individual piles. In this case the
difference Q — nQ,, will be carried by the soil
through totally mobilizing both the peak resis-
tance and the skin friction. BURLAND et al. (1977)
also considered this solution as an appropriate
means of lessening settlement.

There are several semi-empirical methods avail-
able to calculate the settlement of a pile group.

BEREZANTSEV e al. (1961) suggest that the
settlement of the group increases in proportion
to the square root of the area enclosed by the piles.

VEsi¢ (1968) holds that the settlement is in
proportion to VB/D, where B is the width of the
pile group and D is the diameter of the pile.

SkEMPTON (1953) offered a formula for the
calculation of the settlement of a pile group in
sand (relative to that of an individual pile, sg):

2
S B + 4

where B is the width of the pile group in metres.



- m (394)

where s is the ratio of spacing to diameter; r is
the number of rows for a square group.

MEevERHOF (1959) produced the formula:
5_—
1

3l
S —
Sgr 3

= S

3.3.2.2 Setilement analysis on the basis of elastic
theories for piles of unrestricted settlement

Similarly to single piles the settlement of pile
groups can also be determined by using the prin-
ciples of the theory of elasticity. At present there
are three such solutions known: one was elaborated
by Pouros, Davis and MATTEs, the second by
Ranporpra and WrotH, and the third by CooxE.

PouLros et al. (PouLros and Davis, 1968; PouLos,
1968) based the solution on the Mindlin theory,
as was done in the case of single piles. The behav-
iour of each pile may be examined by dividing it
into a number of cylindrical elements, each loaded
by a uniform load acting around the periphery
of the element and a circular uniformly loaded
base. Referring to Fig. 284, the displacement g;
of the soil adjacent to the centre of the periphery
of an element ¢ on pile I due to pile 1 itself and
the adjacent pile 2, is

e = 3 PfiLij + o1y) + polalin + o1is) » (395)
=1

where ,I;; = is the displacement influence factor

at element ¢ due to a uniform ring
load on element j on pile 1,

ol;; = 1is the displacement influence factor
at element ¢ due to a uniform ring
load on element j on pile 2,

I = 1s the displacement influence factor
at element 7 due to a uniform load
on the base of pile I,

ol;y = similarly as above, for pile 2.

A similar expression may be obtained for the
displacement g, of the soil directly beneath the
base of the pile

0o = > Piidyi + 21y)) + Polilos + 21y), (396)
=t

where ,I,; = is the displacement factor for the
pile base due to a uniform ring
load on element j on pile I, and
similarly for ,I,,,
1Ip, = is the displacement factor for the
pile base due to a uniform load on
the base of pile 1, and similarly
for ,1.
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Fig. 284. Analysis of a group of two piles (PouLos and Davis,
1968)

The displaeement factors ,I,; and ,I;; may be
obtained by integration of the Mindlin equation
for vertical displacement,over the cylindrical ring
elements j on piles 1 and 2, respectively, for the
appropriate points ¢ on pile 1. The factors ,I;
and ,I;, may similarly be obtained by integrations
of the Mindlin equation over the circular base of
pile 1 and 2 (Pouros and Davis, 1968). For all
the elements on pile I, the vertical displacement
of the soil adjacent to the pile may be expressed
in a matrix as

[el = (L] + [1D) [P] + polads] + [21])- (397)

(Since the two piles are identical, this equation
applies to pile 2 as well.)

The soil displacement at each element may now
be equated to the displacement of each element
of the pile. If this displacement is assumed to be
unity, then for the pile elements

[e] = [1]. (398)

Equating Eqs (397) and (398) the new equation
may be solved to obtain the distribution of shear
stresses along each pile and the stress on the base
for unit displacement of the pile, whence the
displacement of each pile for a unit load may be
calculated. In this manner the influence of an
adjacent pile on the displacement of a pile may
be determined for various spacings between the
piles. The additional displacement of a pile in
a semi-infinite mass due to an equally loaded
identical adjacent pile is expressed in terms of
an interaction factor o where:

additional settlement due to adjacent pile

settlement of pile under its own load

For two piles « ranges between 1 for a zero spacing
between the piles, and zero for an infinite spacing.
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In Fig. 285a « is plotted against the centre to
centre spacing between the piles for various values
of L;d for the case v == 0.5. We can see that

— the values of a at large spacings are sur-
prisingly large;

— the relative length L/d has an important
influence with any given spacing (this effect
becomes more pronounced as the spacing
between the piles increases);

— the role of v is negligible.

The effect of an underlying rigid base is shown
in Fig. 285b. The effect of the rigid base is to
“damp” the interaction, particularly at large
spacings where the value of « for a finite layer is
considerably less than that for a semi-infinite
mass.

The analysis applied for two piles can be extend-
ed to any symmetric pile groups and a matrix
similar to Eq. (397) can be written.

For the case L/d = 25 and v = 0.5, solutions
have been established for groups of three and four
piles. In Fig. 286 the interaction factor « is
plotted against the spacing s/d for the above
groups and also for a group of two piles. This
figure shows that the additional settlement of
each pile in the group due to the adjacent piles is
almost exactly equal to the sum of the displace-
ment increases due to each of the adjacent piles
in turn. Thus, for a group of three piles the value
of « is twice the value for a group of two piles
with the same spacing, while for a group of four

Fig. 285.

a -— Settlement interaction between two piles in a semi-infinite mass; and
b— ina finite layer (Pouros, 1968)

piles the value of « is
o= 20, + &y, (399)

where a, is the value of « of two piles at & spacing
of s diameters, «, is the value of o for two piles
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Fig. 286. Settlement interaction—symmetrical pile groups
(PouLos, 1968)



at a spacing of s /2 diameters. The corresponding
displacement of each pile in the group due to
equal loads Q; in each pile is thus

0= Q10:(1 + 2a; + a,), (400)

where g, is the displacement of a single pile under
unit load.

Ranporer and WrorH (1979) extended their
method presented in Section 3.2.4.1 to cover the
case of pile groups as well.

The authors assumed that Eq. (379) gives the
settlement profile at the pile mid-depth and Eq.
(383) that at the pile base. Considering two rigid
piles, the overall settlement of one pile may be
written as the sum of the settlement due to its
own load plus that due to the displacement field
of neighbouring piles. Thus

w=w, + w,. (401)
At the mid-depth of the pile:

Tolo

Wg = Wy + w, =

[111 LT '_m] (402)
r s
where s is the pile spacing. Thus s is the average

radius of one pile as seen from the other pile. The
load-settlement ratio for each pile shaft is now:

2
__ e 1 (403)
Glrows £+ In (rm/s) To

Similarly, the settlement of the pile base is

— {
wp = w1+w2:ﬂ1—-—1})(1+—ﬂ) , (404)
4r G s
whence
P
b 4 2 (405)
Grow, 1—» erg+s

(¢ is equal to 2/x).
Thus, the overall load-settlement ratio for each
of two similarly loaded piles is

( P, }* 4 s 270
2

1—9v ery+s !j—}—ln(rm/s).
1 (406)

Ty

Grow,

The expression for piles in a group of three
(at the corners of an equilateral triangle of side s)
and a group of four piles (at the corners of a
square of side s) are respectively:

( P, )_ 4 s 2mp 1
3 1 —v2rpec+s

Graw, To

£ 2 ln[%]
(407)
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and

( P, ) 4 s 4
Girow; ), 1—v 2707rc + s

2n )
+“-Q——-

E4ln_tm_To

(408)

rm

)2
It is possible to use Eq. (406) to obtain the

interaction factors between two piles, in the

manner of Povros (1968). Thus the increased
settlement for a given load may be written as

Grrgw:

{M ., (409)

P,

where «, is the interaction factor.

)2:<1+ %)

t 1

Included in their presentation Ranporpa and WrorH
also treated the case when the compressibility of the pile was
not negligible, i.e. wy = wy,.

In one of their articles, PouLos and Raxporru
(1983) compared the results of their methods and
concluded that the agreement was very close,
the maximal deviation being not more than 15
to 189%,.

CookE et al. (1980) performed trial tests using
17 ¢m diam. piles jacked in clay, and proved
that the interference between the piles can be
calculated on the basis of superposition principles.
Beside the factor « from the Poulos theory, they
introduced the ratio:

the induced settlement of a pile 1 due

o_ __to the loading of another pile 2

the settlement of the loaded pile

Beside this, another useful term was presented
by the authors, namely the settlement ratio (R,)
which is defined as the ratio of the mean settle-
ment of the pile group to the settlement of a
single pile carrying a load equal to the meanload
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Fig. 287. The load-settlement curve for piles 4 and B
loaded together compared with the load-settlement curve
for pile 4 before B was installed (COOKE et al., 1980)
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Fig. 288. Comparison of the load-settlement curve
for pile 4 when piles 4 and B were loaded together
with the sum of the components of movement of pile
A when the piles were loaded separately (COOKE et al.,
1980)
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carried by the piles in the group. In the case of
two similar, equally loaded piles in the same soil,
the displacement or additional settlement of both
piles due to interaction are equal. Thus, Ry =
=1+ 2, where £, is the value of the interaction
factor at a given spacing s.

The results of differently performed test runs
were as follow.

Test 1. A load-settlement curve for piles A4
and B loaded together is presented in Fig. 287
and compared with the curve obtained in the
final test of pile A before pile B was installed.

When the two piles were loaded together, their
settlements were approximately equal at all loads
and both were 259 greater than the settlement
of pile 4 loaded alone. The value 2 for a spacing
of three pile diameters was therefore 0.25 and R,
was 1.25.

Test 2. Here the two piles were loaded separately.
A tiny settlement was experienced only on the
unloaded pile. Figure 288 illustrates four various
patterns of movement on piles 4 and B. The
figure shows how the settlement of pile 4 — when
both piles were loaded together (curve 4) — could
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be predicted with considerable accuracy from the
sum of the movements observed when it was
loaded alone (curve 3), and when only pile B was
loaded. The factor £, is 0.24, almost the same
as that observed for both piles in Test 1.

This survey confirmed also that the idea of
superposition prevails also in respect of both the
skin friction and of the settlement of the ground
surface around the piles.

Test 4 and 5 (piles in three rows). Figure 28%a
presents the load-settlement curve for pile A
loaded alone together with curves showing the
movement of this pile when pile B and C were
loaded alone under similar load increments. The
figure shows that the sum of the three components
of movement of pile 4, due to loading the piles
separately is in good agreement with the move-
ment of this pile when all the piles were loaded.
The movement of the centre pile, due to the
separate loading of piles B and C, the three pile
diameters are shown to be very similar. As expected,
the separate loadings of piles 4 and B did not
have equal effects on the movement of pile C
situated at one end of the row. Figure 289b
shows how the sum of the components of the
movement of pile C compares with its movement
when the three piles were loaded together.

3.3.2.3 Settlement analysis on the basis of elastic
theories for pile groups with a rigid cap

When the piles are clamped together with a
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ratio, R,, is defined as the ratio of the settlement
of the pile group to the settlement of a single pile
carrying the same average load as a pile in the
group. The reduction factor, R, is the ratio of
the settlement of the group to the settlement of
a single pile carrying the same total load as the
group. For a group of m piles the settlement ratio,
R, is related to the reduction factor, R, as

R, = R/m. (410)

The value of R; represents the reduction in
settlement which results from using a pile group
instead of a single pile to carry a given load.

The actual settlement of the group is given by

SG = Rssl = RGmSI, (4‘].].)

where S, is the settlement of a single pile carrying

the same average load as a pile in the group. From

the analysis of a single pile carried out by Pouros

and Davis (1968) S, may be expressed by applying

Eq. (377). Since the total load on the group
¢ = mP, the settlement of the group is:

P
S =%
°  Ed
Values of the single pile influence factor I, ob-

tained by Pouros and Davis (1968) are shown
in Fig. 276 and in Table 19 for a range of values

R.I,. (412)

Table 19. Settlement influence factors I, for single pile
(PouLos and Davis, 1968)

. . . Lid T -
perfectly rigid cap, two questions arise: / v=105 ! v=10
) . ) BL | 10 25 j 100 | 10 i 25 | 100
— what will be the settlement of the foundation; —_— e
— what load will be carried by each of the oo 1.41 | 1.86 | 2.54 { 1.16 | 1.47 | 1.95
piles? 5 191 | 176 | 2.44 | 1.07 | 1.37 | 1.86
2.5 1.20 | 1.64 | 2.31 ] 096 | 1.27 | 1.75
To render the solution more easy, PouLros 13 ggg | %‘ig %éé 82(2) (l)éi 122
(1968) introduced two factors. The settlement : B : : : )
Table 20. Values of R, pile group with rigid cap; L[d 25, v = 0.5 (PouLos, 1968)
22 32
N o ' 5 2.5 \ L5 1 1.2 oo 5 2.5 1.2 1.2
1 0.839 | 0.819 | 0.815 | 0.745 | 0.621 | 0.715 | 0.677 | 0.670 | 0.593 | 0.464
2.5 0.672 | 0.638 | 0.629 | 0.550 | 0.443 | 0.541 | 0.495 | 0.479 | 0.387 | 0.283
5 0.547 | 0.519 | 0.501 | 0.422 | 0.348 | 0.415 | 0.363 | 0.339 | 0.256 | 0.195
10 0.425 | 0.408 | 0.385 | 0.323 | 0.291 | 0.303 | 0.245 | 0.220 | 0.165 | 0.141
20 0.366 | 0.317 | 0.297 | 0.267 | 0.258 | 0.214 | 0.157 | 0.142 | 0.122 ; 0.116
40 0.307 | 0.260 | 0.254 | 0.250 | 0.250 | 0.159 | 0.117 | 0.114 } 0.111 | 0.111
42 52
:/;\\ﬂlj o 5 2.5 15 1.2 . 5 2.5 ’ 15 ‘ 1.24
1 0.643 | 0.599 | 0.590 { 0.500 | 0.371 | 0.584 | 0.538 | 0.525 | 0.432 | 0.309
2.5 0.460 | 0.409 | 0.388 | 0.296 | 0.206 | 0.403 | 0.349 | 0.325 | 0.235 | 0.160
5 0.334 | 0.277 | 0.250 { 0.176 { 0.128 | 0.281 | 0.220 | 0.194 | 0.129 ' 0.091
10 0.227 | 0.166 | 0.143 | 0.100 | 0.083 | 0.180 | 0.119 | 0.100 | 0.067 | 0.055
20 0.148 | 0.093 | 0.083 | 0.069 | 0.066 | 0.112 | 0.062 | 0.054 | 0.045 | 0.042
40 0.105 | 0.066 | 0.064 | 0.063 | 0.063 | 0.070 | 0.041 | 0.041 | 0.040 | 0.040
i
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Fig. 290. Effect of L/d on settlement — 32 group with rigid
cap (PouLos, 1968)

of B/L and L/d. For 2%, 32, 4% and 5% groups, values
of the group reduction factor R; are tabulated in
Table 20 for the case L/d = 25 and » = 0.5.

From Table 20 it can be seen that as h/L
decreases, the value of R; decreases at any given
spacing because of the damping effect of the rigid
base. The smaller the value of h/L, the closer the
spacing at which the limiting value of R; for no
interaction of 1/m (corresponding to a settlement
ratio Rg of 1) is reached.

The effect of the value of L/d is shown in Fig.
290, where Ry is plotted against s/d for a 32 group
in a semi-infinite mass. As L/d increases, the settle-
ment for any given spacing increases. The effect
of the number of piles in the group on the value
of R is shown in Fig. 291, The reduction in settle-
ment with an increasing number of piles in the
group, for a given spacing, is clearly shown in this
figure. However, at relatively close spacings
(s/d << 5) the use of an increased number of piles
to reduce settlement becomes increasingly in-
effective if the same spacing is maintained. For
example, the settlement of a 52 group of piles at
a spacing of 5d is only about 209, less than that
of a 4% group of piles at the same spacing. It is
interesting to note that for the group of 5 piles,
S is identical with that of a 2% group for spacings
up to about 10d, j.e. the additional centre pile
has no effect in reducing the settlement.

For a given size of pile cap the pile spacing
will vary with m. The variation of R; with founda-
tion breadth (centre-to-centre spacing between the
outermost piles) is shown in Fig. 292. For the
groups 32, 4%. .. the value of R; for all groups is
identical up to a breadth of about 16d. Beyond
this breadth, R; tends to decrease as the number
of piles increases. Figure 292 therefore suggests

that over a considerable range of breadths S; is
primarily dependent on the breadth rather than
the number of piles. The results of full-scale field
tests carried out by BERezANTSEV et al. (1961),
and data collected by Skempron (1953) confirm
this conclusion. Thus in the design, the use of
a small m at a relatively large spacing is generally
to be preferred to a larger number of piles at
a closer spacing on the grounds of economy.

1.0
: \‘;\ S/'nlgle pi/LJ r l
0.9 AN L/d=25 ——
. 08 ‘&““\\ N s ——
Q@ 07 \ \ \\\\ \\GI‘OUP
o L\ \ T~ 2
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E 05 \\\\\\ ~ \92\\
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§ 04 BN i'\ RO \\
[
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00 12 3 4 5 ar 0
s/d d/s

Fig. 291. Influence of type of group on settlement — groups
with rigid cap (Pouros, 1968)
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Fig. 292. Settlement against breadth of group — rigid pile
cap (Pouros, 1968)
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Table 21. Values of P[P,,; group with rigid cap; L|d = 25, v = 0.5, h|L = oo (PouLos, 19568)

. - | -
Group —~— -
Pile Pile Pile
sla 1 2 3 1 f 2 | 3 IR EE 4 _{M>s r 6
1 2311 033 | —1.57 | 2.99 ‘ 0.75 | —0.49 | 4.12 | 0.75 | 1.87 | —1.56 | 0.03 | 1.16
2.5 1.52 | 0.74 | —0.05 | 2.02 | 0.96 0.05 | 2.58 | 1.18 | 1.16 0.01 | 0.10 | 0.19
5 1.32 | 0.84 0.34 | 1.71 | 0.99 0.31 | 2.11 | 1.20 | 1.08 0.35 | 0.27 | 0.22
10 1.22 } 0.89 0.55 | 1.49 | 1.00 0.50 | 1.74 | 1.16 | 1.07 0.56 | 047 | 0.37
20 1.13 | 0.94 0.72 | 1.26 | 1.00 0.43 | 1.40 | 1.09 | 1.05 0.75 | 0.71 | 0867
40 1.06 | 0.98 0.88 | 1.03 | 0.99 098 | 1.27 | 1.07 | 1.02 0.84 | 0.80 l 0.75
{
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w » 3 w| 2 4 5 4 2
oo o 1% 333 o 0 o o o
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w7 2 1 w2 2 1
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s e s e B 20 ,/
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32 group 42 group 5% group H [ 1 3
o 25 7
Fig. 293. Identification of piles in square groups (Key to é 4 ‘»//
Table 21) £ |
As the settlement of each pile in the group is & | //
identical — due to the rigid cap — the influence 15
of superposition will be transferred to another
aspect, namely having different portions of the 1.0
total load carried by each of the piles. The ratio ol g /il
P/P,, of the load to the average pile load in the pre 5_pacmg pie
. . iameter
group for 32, 42 and 5% groups is tabulated in l
Table 21 for the cases L/d = 25 and h/L — oo. 0 L
074 9 16 25 36 49 64

(The key for the identification of the piles is given
in Fig. 293.) For close spacings, the load in the
outer piles of each group is considerably more
than P,,, while the load in the centre piles is less
than P,,, and may even theoretically be negative.
As the pile spacing increases the load distribution
becomes more uniform. From Table 21 it will be
seen that the load distribution is considerably
influenced by the number of piles in the group,
the major influence being that the load on the
outer piles increases as the number of piles in-
creases.

Number of piles in square groups

Fig. 294. The variation of settlement ratio with the number
of piles in square groups for a range of common pile spacings
(CoOKE et al., 1980)

Confirming the validity and making use of the
principle of superposition (Section 3.3.2.2), CookE
et al. (1980) presented a method also for the case
when the piles are clamped with a rigid cap or
raft. The results obtained for some cases are shown

in Figs 294 and 295.
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,i \e’ (O%
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o 2oF 1 {250 i
s o e row ;
o 20 /DO/Uf"e POW ftd 20 cindSm ;
c | i
S — . / ;
g 75 4 5!!’1919 row B N L,W 75 L. _“_f = l
Fig. 295. The variation of settlement ratio with % 10 i i i |L o i i
?ésvxslf??;feosfp}:igxslénosf‘-ngle’ double and treble T0 46 12 76 20 24 26 320 4 6 12 16 20 24 28 32
a— 3 pile diameters; b — 2 pill diameters (Cooxx et al., 1980) (a) Number of piles (b) Number of piles
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3.3.3 Pile groups in heterogeneous soil

The most intensive study in this respect has
been made by BANERJEE and Davies (1977). The
authors applied the “boundary element” method
in their calculations. They investigated the so-
called Gibson-type soils. The particularity of this
soil is that its Young’s modulus varies with depth
according to the formula

E(z) — K(0) + maz. (413)

Investigating cases with single piles the authors
found that the ratio (,/Q, is hardly greater than
in homogeneous soils. This condition changes,
however, in the case of pile groups. Figure 296
shows the interaction factors («) for various
spacing to diameter ratios and pile compressibility
ratios (E,/mL). It can be seen that

— for pile groups with spacing to diameter
ratios greater than 3, the interaction factors
are much smaller than those reported by
Pouros (1968);

— for short piles (I/D < 20) the presence of
another pile beyond spacing to diameter
ratios of about 8 to 10 may help to reduce
the settlement of the pile under considera-
tion.

Figure 297 shows the plots of the settlement
ratios (defined as the ratio of the settlement of
a group under a load of nP to that of a single pile
under a load P) for various pile groups with rigid
caps. It can be seen that these ratios are con-
siderably smaller for groups with S/D >3 than
those predicted by Pouros (1968).

The authors have also determined the loads to
be carried by each pile in the group under a rigid
cap and the distribution of these loads. They
found that with spacing of 6D to 8D the distri-

bution becomes uniform. (Note that this condition

07 T ; T 1
N 1 E(0)=0
06 —~\_/|Ep/mL:70(}700 RSP
KA i V=05
3 051 M0 T L/D=20T
5 N\ 100, === L/D:=40
S 04N, <
8 \ \\
. W 3
§ 03 N <
3 N N
e p2 N \\
g N
g ~ N
07 >~\
’ NN
S=F
7 2 § 6 8012 20

Spacing to diameter ratio (s/D)

Fig. 296. Interaction factors for pile groups in Gibson soil
(BANERJEE and DaviEs, 1977)
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Fig. 297. Settlement ratios for pile groups in Gibson soil
(BANERJEE and Davies, 1977)

arises only with greater distances in the case of
homogeneous soils, as was demonstrated in Section

3.3.2.3)

3.4 Piles under horizontal load
3.4.1 Horizontally loaded single piles

VEsié¢ (1975) considered that a distinction has
to be made between the following two branches:

— piles which are expected to transmit lateral
loads to the soil (“active piles’), and

— piles which are subjected to lateral loading
along their shafts by horizontal movements
of the surrounding soil (‘““passive piles”).

The designer is mostly interested in finding out
the lateral displacement of the pile, and the
maximal moment developing in the pile. Compar-
ison is then made versus the allowed limiting
movement of the superstructure, and the allowable
bending moment in the pile, respectively, and
finally the design has to comply with both con-
ditions.

3.4.1.1 Conclusions derived from observations

In respect to the design parameters mentioned
above the following generalization can be accepted
(Broms, 1981). The lateral displacement and the
ultimate resistance of a laterally loaded pile is
primarily governed by the properties of the soil
close to the ground surface down to a depth of
three to four pile diameters. The installation pro-
cedure (driving or drilling) thus has a large effect
as well as the loading conditions (cyclic and
sustained). Generally, the lateral displacement of
a pile is much more affected than the maximum
bending moment or the ultimate lateral resistance.



Time also plays an important role, inasmuch as
the total ultimate horizontal displacement does
not — especially not in clays — take place instan-
taneously.

Several lessons can be learned from experience
gained during in situ investigations and model
tests, but only three cases will be mentioned here.

Lu (1981) monitored the performance of bored,
1.04 m diameter reinforced concrete piles. Six
piles, including two vertical (Nos I and 6) two
inward battered (Nos 2 and 4), and two outward
battered (Nos 3 and 5) piles were tested. The soil
consisted of sandy clay. The following findings

were recorded.

(a) Measured earth-pressure distribution along
the three different piles is illustrated in Fig. 298.

(b) It can be conceived from the figure that it
is most probable that the maximum bending
moment would be less in inward battered piles
than in the outward battered ones under the same
loading condition.

(¢) Failure occurred after 40 to 50 mm of
lateral displacement, the end of the proportional-
ity limit was at 3 mm. (Note that up to this
point only 3 to 79, of the ultimate failure load,
or 0.16 to 0.289, of the diameter pertain.)

(d) The maximum stress (and so the bending
moment) in the steel bars fixed along the circum-
ference of the piles developed at a depth of
z=2.0 m.

Summarizing his findings, the author concluded
that a laterally loaded pile might be designed only
to a force H which can be read at the breaking
point on the graph plotted with log H and logy
coordinates.

Reese and WELcr (1975) investigated piles
standing in stiff clay. Their findings are summarized
below.

(a) Displacement is not a linear function of the
lateral force.

P (kN/m?)

0 20 40 60 8 100

AL

? l |
O ;
1- out battered

~2- in battered pile ___ ]

3- vertical 5
. -

! i | |

Fic. 298. Earth pressure vs. distance (Lu, 1981)
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Fig. 300. Reduction factor of the maximum bending mo-
ment (OTE0 and VALERIO, 1981)

(b) The depth to the point of maximum moment
increases with load.

(¢) The magnitude of the maximum moment
is a non-linear function of the load (Fig. 299).

The maximum bending moment can be found
from the semi-empirical formula:

M. = mHLY, (414)
where m = correction factor,
H = lateral force,

T ! + L’, in which ! means the free
length of the pile (not confined in
the soil), and L’ can be estimated
in the case of a homogeneous soil
from the formula:

4

L’=12L,= 1.2]/% , (415)

I

where G is the *“‘transversal modulus’.
The reduction factor m can be found in Fig. 300,
where the “recommended relationship” complies
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Fig. 301. Variation of maximum bending moment with pile
length (OTEO and VALERIO, 1981)

with the suggestion of OTE0 and VaLERr1O (1981).
When the whole length L of the pile is surrounded
with earth (i.e. I = 0), the maximum bending mo-
ment is given in Fig. 301.

3.4.1.2 Design of laterally loaded piles on the basis
of elasticity theories

The differential equation for the problem of
the laterally loaded deep foundation is:

dy d3y
EI—-— 1P —p=20, 416
1 x 2 P (416)
p=—Ey,
where P, = the axial load,
y = the deflection,
x = the length along the foundation,
EI = the flexural stiffness of the founda-
tion and
p = the soil reaction.

For the problem solution of a laterally loaded
pile, it is necessary to predict a set of p—y curves.
The procedure to obtain experimental p—y curves
involves field tests. From sets of experimental
bending-moment curves (Section 3.6.3) the values
of p and y at points along the pile can be obtained

by solving
= 417
Y J f EI (417)
and
d2M(x)
_ —, 4‘18
p 12 (418)

When it is not possible to acquire local data,
we have to turn to other — not so reliable —
sources.

Pouros (1971a) suggested calculating the dis-
placement of the pile by using the Mindlin equa-
tion. The pile is divided into n | 1 segments of

the length 0§, except at the top and bottom seg-
ments where the length is §/2. Displacement is
related to the midpoints of the segments, except
at the top and bottom, where the reference points
are the two ends of the pile.

Two types are differentiated during the dis-
cussion: (1) a pile, the head of which is free to
turn, and (2) a pile with fixed head.

For pile (1) the horizontal displacement at
gound level is given by:

H M
I )
EL oM EL?

e = IgH (419)

where H and M are the horizontal force acting
on the pile, and the moment, respectively, L is
the length of the pile.

Influence factors I ;; and I,y can be read from
Figs 302 and 303, as functions of K, and L/d,
respectively. K, is the flexibility ratio defined in
Eq. (351) and d is the diameter of the pile.

For pile (2):

H
=I——; 420
e eF EL (420)

the influence factor I,z can be found in Fig. 304.
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The rotation of pile (1) at the ground level is
given by:

H M

0= Igy—— + Igy——. 421

gl (2

From the reciprocal theorem Igy should be iden-

tical with the values of I,) in Fig. 303. The
influence factor is given in Fig. 305.

For a free-head pile subjected to load H at

distance e above the surface, the displacement at

the point of application of the load, is given by:

_H ., He , _ He, _ Ho
e=grle T pp e T e T ip
(422)

The maximum moment in a free-head pile
subjected to a horizontal load is shown in Fig. 306
as a function of K, and L/d. This moment typically
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Fig. 304. Influence factors I,r — free-head pile (PouULos,
1971a)
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Fig. 305. Influence factors Igy — free-head pile (PouLos,
1971a)
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Fig. 307. The distribution of moments along a free-head pile
due to lateral loads (BANERJEE and Davies, 1978)

occurs at a depth of between 0.1L and 0.4L below
the surface, the lower depth being associated
with stiffer piles.

3.4.1.3 Performance of laterally loaded piles in
heterogeneous soils

BanerJEE and Davies (1978) discuss the con-
ditions in the so-called Gibson-type soil for
which the formula Eq. (413) applies. The authors

introduce the term ‘“non-homogeneity index™ as:
x = E(0)/E(L). (423)

The most interesting finding among their test
results relates to maximum bending moments.
Figure 307 illustrates the pronounced influence of
the pile stiffness on the distribution of the dimen-
sionless bending moment parameter M(z)/HL
referring to lateral loads and, most importantly,
the considerable increase of the moment in non-
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homogeneous cases in comparison to homogeneous
underground conditions. The maximum bending
moment develops between 0.1L to 0.3L, where
the higher value refers to piles of elevated stiff-
ness. If the pile is submitted to a moment load
instead of a horizontal force, the two conditions
% =1 and » = 0 will only differ from each other
slightly.

OtEO0 and VaLerio (1981) pointed out that the
calculation can also follow the method shown in
Section 3.4.1.1. The lenght L’ indicated in Eq.
(415) has to be written in this case as:

4

L - 1.2fV I,E, (424)
E(L)/3
in which for % =0, f= 170,
w— 05, f=1.25,
% — 1.0, f=1.00.

3.4.2 Horizontally loaded pile groups

ScumIpT (1981) indicated that distinction should
be made between two situations in respect of the
pile—soil interaction in the case oflaterally loaded

pile groups.

(1) Long piles penetrating through a very soft
layer and keying into a very hard rock. The pile
tips are then rigidly fixed in the rock and the
contact pressure is far below the strength of the
material; load transfer in the upper layer is neg-
ligible. In this case any individual pile in the group
will behave as a single pile.

(2) Short piles that rotate rather than deflect
under horizontal loads, embedded in a uniform
soil. Interference will be the greatest in this case
and it is likely to depend on the pile length, on
the pile spacing, on the type and strength of the
subsoil, and on the amount of the lateral load.

Appraisal of any individual pile in the group
should start with calculating the horizontal dis-
placement of a single pile at the ground level and
assuming the same for a pile in the group. The
group efficiency, E,,, is then defined as the allow-
able load of the pile group divided by the number
of piles, and related to the corresponding load of
the single pile.

Figure 308 shows the results of a trial test which
has been carried.out on two pairs of bored piles
(ScamipT, 1981). As is seen, in spite of small
interspaces between the piles, the group efficiency
is about 0.8 and apparently nearly independent of
the amount of load in either case. Nevertheless,
ScHMIDT remarked that the group action was not
so drastic as it is usually supposed to be.

Ote0 and VaiLerio (1981) applied the semi-
empirical approach for this case again (refer to
Sections 3.4.1.1 and 3.4.1.3) and conceived that
the pile behaved as if the equivalent fictitious
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Fig. 308. Efficiency of two 1.2 m diameter piles:

a — 28 m long piles in weathered gneiss, clear distance 1.7 m; b — 16 m long piles
in silt and marle, clear distanee 0.4 m (ScamroT, 1981)
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fixed point were at a greater depth than the esti-
mated for a single pile, that is:

L, = oL/, (425)

where L; denotes the depth of the equivalent fixed
point for a pile group, and « is the factor of the
group effect. Considering average characteristics
for a problem [L/L, of 2.5 to 5, and D/L, =< 0.3]
the parameter (S/L,) has been determined accord-
ing to the type of group and the relative spacing
between pile centres. This parameter is represented
in Fig. 309. This way it will be easy to determine
the displacement, Y, of a pile group:

H(l + L )
3E,I,
where [ is the free length of the pile. The max.
bending moment for a pile group can be taken

as 109, more than that of a single pile, with equal
loads at the head (OTEO and VaLERIO, 1981).

Yy, = (hinged head), (426)
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Fig. 310. Interaction factors %o for free-head piles sub-
jected to horizontal load:
a — for Kp = 10-5% b — for Kp = 0.1 (PouLos, 1971)

PouLros (1971b) treats the case of a pile group
as the generalization of a single pile (see Section
3.4.1.2). Beside the influence factor, @,, introduced
by the author, another such factor is defined for
this case as:

__additional rotation due to the adjacent pile

or)

rotation of the pile due to its own loading

Both factors are dependent also on the mode of
loading, be it either a horizontal force H, or a
moment M.
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Piles under horizontal load

The interaction factors for free-head piles, %oH
and a,y, are given as functions of s/d and L/d
for two different K,-s in Fig. 310 and Fig. 311
(the same relations can be found in the article
cited for the case of fixed-head piles as well).

Pouros (1971b) emphasizes the following as-

pects from among his test results.

1. All « values decreases with increasing spacing
and are greater for § = 0 than for § = 90° (f is
the departure angle between the piles).

2. All « values increase with increasing L/d.

3. All « values increase with increasing pile
stiffness (i.e. increasing K,).

4. For a free-head pile, the interaction factors
for moment loading, %,p> ATe less than the cor-
responding values for horizontal loading, .

5. The displacement interaction factors for
fixed head piles are greater than those for a free-
head pile.

6. The interaction factors for deflection, Ayt
and oy, are greater than those for rotation Loy
and ogpy.

Pouros (1971b) established that for practical
purposes the distributions of pressure and moment
obtained for a single pile can be used for the case
of two interacting piles. The article cited deals
also with cases of generally arranged and unlim-
ited number of piles.

3.4.3 Piles submitted to horizontal cyelic loading

Section 3.2.3.5 has demonstrated to what
extent the axially loaded piles are sensitive to
cyclic loading. The same can be stated in respect
to horizontal loading as well.

Reese and WeLcH (1975), after investigating
the influence of repeated loading on piles embedded
in stiff clay, produced the following conclusions.
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1. The rotation of a pile will be increasingly
greater under repeated loading; 20 repetitions
produce a 20 to 259%, increase.

2. The maximum moment increases with each
application of the load (10-209, increase over 20
cycles) but the depth to the point of maximum
moment increases very little.

When a soil is judged sensitive to liquefaction,
a great reduction of lateral resistance must be
considered in the design of piles. Although lique-
fied soil is often considered as air, or a heavy
liquid, such an assumption would result in pro-
hibitively expensive design. However, once lique-
fied, the soil cannot transfer shear waves and
consequently shows quite reduced motions. Hence,
it is probable that the soil and pile might reach
their maximum amplitude of motion prior to
liquefaction rather than after its onset (TaAJImI,
1977).

Many reports have been presented on model
tests, full-scale field tests and seismic observations
of pile foundations, although they are restricted
to small vibrations. Some already confirmed
findings may be summarized as follows (TAJimI,

1977).

1. Tt is difficult to get a significant increase in
horizontal stiffness of foundations by applying
vertical piles.

2. For small size piles, the increase of damping
is produced more effectively by making backfill
around the pile cap, because the soil-pile inter-
action may produce only a slight damping effect
during horizontal vibration.

3. When the bottom surface of a pile cap (or
raft} is only in loose contact with the soil, as in
the case of end-bearing piles, the horizontal stiff-
ness and the damping of a pile foundation decrease
considerably with increased lateral loads, because
the contribution of the pile cap in the total
resistance is reduced. This condition alters also
the dynamic behaviour of a building on end-
bearing piles, depending on the intensity of the
earthquake.

4. Piles contribute to increasing the rocking
stiffness characteristics of foundations. They result
in reducing the earthquake response in the upper
stories of buildings.

5. Usually, horizontal motions of piles are
controlled by the surrounding soil. However, large
diameter piles filter out the high-frequency com-
ponents of earthquake motions.

3.5 Negative skin friction

The friction along a pile shaft that acts down-
ward, i.e. increasing the load and the settlement
of the pile, is called negative skin friction.

This phenomenon is always provoked by some
vertical deformation in the surrounding soil. The
reason for such compression may include:

— the consolidation of a recently made loose
fill around the pile;

— the compressive action of a substantial fill
being brought on the ground;

— regional water uptake from the underground
on which the piles are standing.

Though the load may approach or even reach
the ultimate bearing capacity of the pile (OkaBE,
1977), the harmful effect of negative skin friction
mostly appears in the following forms:

— settlements and/or differential settlements
beyond the acceptable level;

— overstresses beyond the allowable level in
the material of the pile (HorvAT and vAN
DER VEEN, 1977).

InovuE et al. (1977) gave an account about a
building founded on steel piles which failed
completely four years after construction due to
differential settlement evoked by negative skin
friction. (The surrounding area had been filled up
with an embankment 2.5 m high, and beside that
the regional water uptake caused a deflection of
the ground surface at the rate of 10 cm/year.)
Reproducing this case schematically in Fig. 312
an example can be seen of how dangerous an
uneven stratification can be: the line of the
differential settlement is in good agreement with
the top line of the load-bearing layer.

3.5.1 Development and amount of negative skin friction

To enable observation of the phenomenon,
many researchers conducted full-scale experiments
which may shed light on the nature of this occur-
rence.

OxkABE (1977) investigated the performance of
three driven steel piles of 60 ¢m diameter in the
vicinity of Tokyo. The subsoil consisted of very
loose sands and silts down to 40 m depth below
ground surface. The region was submitted to deep
pumping for water uptake and suffered a yearly
10 e¢m subsidence. This unwanted situation was
further aggravated by the construction of an
embankment in the neighbourhood of the piles.
(This action lasted for 150 days after the instal-
lation of the piles.) During the tests, the axial
forces in the piles, the earth- and pore-water
pressure in the subsoil, and the elevation of the
ground level were measured (refer to Section 3.7).

The time-dependent pattern of axial force and
friction distribution is shown in Fig. 313. Maximum
axial forces at each stage were 4.4 MN at the end
of embankment work, 5.3 MN 460 days after pile
driving, and 1660 days after driving the force
attained 7.0 MN. The negative skin friction at
depths of 29 to 35 m was derived from the measure-
ments as 200 kN/m?. The pile head settled 7 cm,
of which compression of the pile itself accounted
for 1 cm.
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A neutral point, defined as the transition point
between negative and positive friction zones, is
supposed here to exist at the depth where the
settlement of the pile equals that of the surround-
ing soil, at about 8 m distant from the pile. The
neutral point of pile I developed near its lower
end, or at the point 0.9 times the pile length.

Pile 2 was loaded somewhat later. It was ob-
served that the neutral point developed at depth
0.8L when the load was 0.7 MN; when the
load was increased to 1.7 MN, this point was
elevated in the beginning but later sunk again
to a greater depth.

Fig. 313. Axial force and friction of Pile No. 1 (OKABE,
1977)

Elevation (m)
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Negative skin friction

Specific negative skin friction (F;) has been
calculated by using three different methods:

Fl = qu/zv .
F, = in situ vane shear resistance,
F; = Ko tan @ (@ was taken from a CU test).

Comparison of calculated to measured values
showed a fair agreement for all three alternatives
when very loose condition existed in the soil
(z=0—15 m, N <5), but at greater depths
q,/2 supplied a much lower value than would
have been reasonably estimated on the basis of
the measurements.

AuviNeT and Hangrn (1981) monitored the
performance of 30.5 and 32.0 m long piles driven
in the subsoil in the Mexico Valley during four
years. Due to deep-water uptake, the extremely
porous (e = 6 to 10) clay suffered a sompression
of 21 ¢m during the first two years. Two months
later, when pumping was stopped in all but four
wells (out of 140), the process of consolidation
ceased and, moreover, a small expansion ensued.

Figure 314 shows the variation of axial load
in a point-bearing pile as a function of time.
The vertical load generated by the negative skin
friction achieved 0.32 MN at the maximum.
A periodic behaviour was observed as the down-
drag loads increased during the dry seasons and
decreased during the rainy seasons. After pumping
stopped, the downdrag loads disappeared progres-
sively or turned to temsion as the clay layer
expanded. (The behaviour of a friction pile was
rather similar; the measured max. vertical load
attained 0.21 MN.)

Defining as the neutral point the elevation at
which there is no relative movement between soil
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Fig. 314. Downdrag load of point-bearing piles (Auviner and HaNELL, 1981)

and pile, it may be concluded that for the point-
bearing pile this point was located at 23 m (for
the friction pile it was slightly higher). It was
observed that during the rainy season the soil
moved upward in relation to the upper part of
the piles. A second neutral point may then develop
and affect the negative skin friction distribution.
Two different friction distributions, such as those
shown in Fig. 315 may then be expected — depend-
ing on the period of the year.

AuviNeT and HaNErLn (1981) concluded after
the evaluation of measured and calculated data
from these tests that the formula presented by
KeriseL (1976)

s(z) = 1.5¢, tan @

is the most reliable one for the calculation of the
specific skin friction, but a good approach is also
achieved by using the value 0.8¢c,.

HorvaT and vAN DER VEEN (1977) observed
that already a few mm of settlement is able to
provoke a substantial skin friction. The authors
observed also that the vertical force produced on
the pile grows at a higher rate at the beginning
than later; they related this fact to the reconsoli-
dation process.

3.5.2 Elimination of negative skin friction

Bitumen is used in Scandinavia and Canada to
reduce the negative skin friction on piles in clay.
The bitumen is either brushed on, or the piles are
dipped into it. CLEMENTE (1981) described a case
in Hawaii where bitumen coating reduced the
negative skin friction by 60 to 809,; the effect
increased with the thickness and with decreasing
softness of the bitumen layer. VELLOSO et al. (1981)
reported that a bituminous coating of 3 mm
thickness decreased the skin friction by 759%,.

HorvAT and vAN DER VEEN (1977) investigated
three piles next to each other. One was surface
treated with bitumen, the other with bentonite,

and the third was the control. Measured reduction
in vertical forces was between 30 to 609, for the
treated piles, respectively.

OxaBE (1977) proposed protecting the load-
bearing pile by putting it in a steel tube. The outer
pipe can then easily slide on the inner pile owing
to the steel spacers installed. An elastic epoxy
resin is additionally poured into the circular space
between the pile and the tube on the upper 5 m
section of the pile to prevent soil from entering
into the gap.

3.6 Pile heave due to driving of neighbouring
piles

Pile driving generates substantial stresses in
the surrounding soil mass which may then give
rise to various vertical and horizontal forces on
neighbouring objects under the ground level. In a
given case it may then happen that the upward
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Fig. 315. Skin friction distribution( 1) in dry season and (2)
in rainy season (AUVINET and HANELL, 1981)



vertical component of the force attains a critical
value that is sufficient to lift up a mass in the
vicinity of driving, including a previously embed-
ded pile. This phenomenon may be especially dan-
gerous — according to observed situations — in
cases of:

— point-bearing piles which are not sufficiently
keyed into the load-bearing stratum (Kour-
soFTAS, 1982), or

— piles with enlarged footings (CrARk, 1981).

It might be interesting to note, in respect of
the extent of heave, that Tong et al. (1981)
measured 12 cm of heave and 5 c¢m of lateral
displacement on 30.7 m long piles which were
driven in at 1.9 m distances from each other.

A very intensive investigation has been com-
pleted in this respect by Koursorras (1982).
H-profile piles were driven in a cluster of 5x8,
with 1.07 m centre-to-centre distance. The piles
in the cluster were driven row by row, starting
at the south end of each row and proceeding north-
ward until all the piles in each row were driven
(see Fig. 316).

29 piles (out of 40) heaved 10.2 to 17.8 mm,
3 piles heaved more than 20 mm, and one pile
suffered 25.4 mm upward movemeut. Each pile
underwent a small but distinct heave when an
additional pile was driven. Levelling during the
9 days after completion of driving showed that
the heave remained constant after the driving
operation stopped. (The lateral distribution of the
vertical displacements can be seen in Fig. 316.)

Figure 317 shows the heave of piles keyed with
lengths of 1.5 to 6.1 m into the load-bearing layer
as a function of distances from later driven piles.
The incremental heave appears to decrease expo-
nentially with increasing distance from the driven
piles. The data indicate a radius of influence
between 4.6 and 9.1 m. Similar behaviour for other
types of piles was reported by CoLe (1972). OLko
(1963) found an influence radius of 12.2 m when
he investigated friction piles; he experienced that
the impact of driving one row of piles extended
to a distance of 10.7 m.
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The range of heave depends also on the number
of piles being driven later. In the example referred
above (Koursorras, 1982), the heave at the end
of driving was about twice that recorded after
the first four rows of piles were driven. This
effect is demonstrated in Fig. 318 which is a plot
of max. and average recorded heave within the
cluster versus the number of driven piles. (A further
extension of the cluster would cause the straight
line to transform into a curve with horizontal
asymptote.)

e«—1.[ast driven
pile

Fig. 316. Distribution of heave within test cluster, in
inches (KouTtsorras, 1982) (1in = 25.4 - 10-3 m)
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Fig. 319. Load test results for piles with different heaves
(CLARK et al., 1981)

Orko (1963) reported the heave of some 244HP
piles driven within an area of approximately
15.2x17.3 m at a spacing of 1.02 m. Heave as
large as 280 mm was recorded, while the arith-
metic average of all recorded heaves was 116 mm.
This further demonstrates that under certain cir-
cumstances, H-piles may experience large heaves.

Pile driving may cause a heave that tears off
the enlarged base from the pile, or may harmfully
influence the quality of the newly cast concrete.
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Fig. 320. Load test results of piles with heaves of 0 and
100 mm, respectively (CLARK et al., 1981)

This relates mostly to piles cast in situ without
casing, as can be shown from the three case-
studies of CLARK et al. (1981).

In the middle of a cluster of 132 piles (at the
centre of a building being built) 810 mm of heave
has been measured (as the maximum), while the
eight piles at the contours heaved by 250 mm.
In this case the investigation proved that 200 piles
out of the 292 driven, turned out to be useless,
on the ground of two types of deteriorations:

— if the neighbouring pile was driven on the
same day, the shaft declined in quality,
because — as ultrasonic testing proved — the
bond had not yet matured in the concrete, or

— if driving occurred some days later, the
enlarged foot separeted from the trunk of
the pile.

No harmful effect has been experienced — even
if the piles were driven on the same day — when
the distance between the piles exceeded 9D.

In the second case measured heave was 25 to
75 mm, 90 mm as the maximum, the distance
between the piles was 3D. Figure 319 shows the
results of loading tests completed of three dif-
ferently heaved piles. According to the figure the
piles with less than 25 mm of heave behaved as
normal piles, while the others showed the features
of friction piles.

The third example deals with two cement con-
tainer silos. Here, it was previously agreed that
piles with distances less than ¢t = 9D should not
be driven on the same day. Heave measurements
started only after the installation of 30 piles and,
surprisingly, heaves of 70 to 250 mm were expe-
rienced. A load test was carried out on one of the
last piles driven (with no recorded uplift) and on a
pile which heaved by at least 100 mm. The results
are shown in Fig. 320. It can be seen that the pile
which heaved 100 mm failed in friction before
being jacked to where the shaft returned to
contact with the base. These heaved piles were
later excavated down to base level and clearly
showed the signs of rupture between the base and
the shaft, with separations of 250 and 125 mm,
corresponding very closely to the heave recorded.

Both data and theory indicate that the effect
of uplift decreases when the depth of driving
increases. For the 500 to 600 mm shaft diameters
commonly used in Canada, the critical depth has
been determined by observation, and has been
found in the range of 8 to 12 pile diameters. This
corresponds to the critical depth as described by
MEeYERHOF (1976) for maximum pile shaft resis-
tance. It can be said, as a first approximation, that
if the critical depth is less than twice the length
of the shaft there will be no significant separation
of the pile shaft from the base.

CLARK et al. (1981) also pointed out that the
rehabilitation costs in the first example mentioned
before equalled the cost of construction. This is



why great respect should be attributed to the
methodology of investigation and rehabilitation as
it was stipulated earlier by CLark (1978).

3.7 Prediction of pile performance on the basis
of in situ measurements

3.71 Loading tests under axial loads

Loading tests are primarly carried out to find
out the following characteristics:

— the (—s (load—settlement) curve;

— the ultimate bearing capacity, Q,;

— the value of the skin friction;

— the displacement necessary to mobilize skin
friction and point resistance;

— the ratio of skin friction capacity to point-
resistance capacity;

— the amount of negative skin friction and
the depth to the neutral point.

In some cases even the simplest measurements,
the determination of the load-settlement curve
may provide valuable information. So, for example,
having made tests with micro-piles, it has been
found that the (—s curves of friction and of point
bearing piles, acquired at the same working site,
were identical. From this result it was easy to
deduce that the bearing capacity of the point-
bearing piles originated also from the skin friction
alone (SaBINI and Sario, 1981).

An investigation can be either a static or a
dynamic loading test, depending on the character
of loading and type of measurement.

With respect to static loading tests, two dif-
ferent loading procedures are used (Broms, 1981):
maintained loading (ML) and constant rate of
penetration (CRP). In maintained loading the
load is applied in increments. Up to the estimated
allowable load, the increments are normally 259,
of this load. Thereafter the increments are reduced.
At the allowable load, the load is normally main-
tained for 24 hours. The time can be reduced by
keeping the time for each load increment constant
(20 to 30 minutes). In the CRP-method, the
penetration rate of the pile is kept constant,
normally 0.5 mm/min, and the applied load is
measured. A relatively large total penetration is
normally required to reach failure with a friction
pile. A load test on a point-bearing pile is normally
stopped when the ultimate bearing capacity has
been reached, or when the applied load is two to
three times the design load.

In the case of pile groups or large-diameter single piles it
often occurs that the size of the loading frame restricts the
application of sufficient load to attain the ultimate bearing
capacity of the pile. The hyperbolic approach can be used in
such cases to find the estimate of the Q, value (CHin, 1970).
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Fig. 321. Determination of settlement from pile load test
— evaluation of final settlement in a load increment (ProM-
BoON and BRENNER, 1981)

The load-settlement relationship is approximated here by a
hyperbolic curve. In a plot of the settlement ratio, s/Q, versus
settlement, s, the inverse slope, 1/b, of the fitted straight line
would then correspond to the ultimate load of the pile, i.e.:

-Z—=a+bsand Q:%. (427)
The settlement, s;, which corresponds to a load
step, (J,;, can be evaluated by a procedure proposed
by RoLLBERG (1977). This is illustrated in Fig. 321.
The end settlement, s,.,, is obtained from the
inverse slope of the fitted straight line in a /s
versus ¢ plot.

The methodology of loading tests has been per-
ceptibly improved in the last 20 to 25 years.
Instrumentation incorporated in the piles may
shed light on several questions:

— what is the elastic compression of the pile
material;

— what type of axial forces appear in the pile
material, and what is their distribution;

— what is the value of the skin friction at dif-
ferent sections of the pile (vertical distribu-
tion of f);

— what is the earth pressure on the pile shaft
(vertical distribution of the earth-pressure);

— what kind of pore-water distribution devel-
ops in the vicinity of the pile owing to the
installation of the pile?

The instruments being installed in respect of
the above questions include: electric strain gages,
strain rods (tell-tales), load cells, earth pressure
cells and pore-water pressure cells.

The elastic compression of the pile material
will be established from the vertical displacements
measured at the head and at the point of the pile.
(Note that this displacement causes some skin
friction even if the displacement is zero at the

point of the pile.)
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a — Axially loaded pile divided into three segments; b — typical curves showing load distribution vs. depth;
¢ — typical curves showing load transfer vs. pile movement (CoyLE and REEsE, 1966)

By measuring the axial forces in the pile it

will be possible to establish

— the variation of forces with depth (for
example, the load produced by negative skin
friction, as has been mentioned in Section
3.5.1);

— the distribution of the skin friction along
the shaft.

For the calculation of the latter item, we can
use the procedure proposed by CoyLe and REESE
{1966).

In their example the authors divide the pile
into three segments (Fig. 322a). Each segment is
then divided into two equal parts and the value
of load transfer and pile movement can be obtained
at the midpoint of each segment. The settlement,
d, at the top is obtained from a load-settlement
curve. The Q values for different depths are oh-
tained from a load distribution curve (Fig. 322b).
The procedure for computing the load transfer is
to subtract the load at the bottom of the segment
from the load at the top and divide by the circum-
ferential area. This gives the load transfer in
kN/m?. For the top segment in Fig. 322a the load

transfer is

L= &’:_Q?. (428)
aDL/3

The load transfer s; and s; can be computed in
a similar manner.

The procedure for computing the pile movement
at the midpoint of a segment is to subtract the
elastic deformation in the pile, first from the
settlement at the top, and then from midpoint
to midpoint at each segment. The pile movement
y; is:

Qo+ LL
2
Y =0 — 2 32 (429)
AE, + AE,
2

and the pile movement y; is:

Qi +0s L
2 3
AE, + AE;,
2

Ys=Y1— (430)

In a similar manner y; can also be established.
After the load transfer and pile movement have
been computed at different depths along the pile
for different loads at the top, the results can be
plotted as a family of curves. A typical family of
curves of load transfer versus pile movement is
shown in Fig. 322¢.

Asloading tests are rather expensive manoeuvres
it is highly desirable to make use of earlier per-
formed loading test results. One such method
comprises the application of the Bayes-theorem
(KayY, 1976, 1977). Using this method any param-
eter can be determined which is in correlation
with the bearing capacity of the pile (Q,, f;, etc.).
The idea is that (by preferably using data from
earlier nearby loading test results) the a prior:
distribution is first determined. Having completed
the loading test, the parameters of the a posteriori
distribution are determined by help of the Bayes-
theorem. The same procedure is then followed after
the 2nd, 3rd,..., loading test. Eventually the
expected value and standard deviation of the
desired parameter can be produced, and so, their
value to any desired probability level can also be
established. This procedure is also useful when
a decision is needed about the optimal number of
necessary loading tests (Kay, 1976, 1977).

Dynamic methods might also be applied to
determine the allowable bearing capacity of piles.
The simplest method is “trial ramming” where
the penetration is measured as a function of the
number of blows (n). Though during the past 40
to 50 years several researchers attempted to make
this procedure more reliable, its accuracy is still
rather limited.

Another dynamic testing method is the “case
method” which measures the acceleration of the



pile (SaNToyo and GosLe, 1981). The method
uses electronic measurements made during pile
driving to predict pile bearing capacity. Pile top
acceleration, a, and pile top force, F, are measured.
The pile is originally assumed to be a rigid body
of mass, m. The resistance force of the soil, using
Newton’s law, is calculated as

R = F(t) — maf(t), (431)

where F and a are functions of time.

Studies including longer piles (L >18 m)
showed that their elasticity could not, in general,
be neglected. Assuming a uniform pile and ideal
soil behaviour the following equation was derived

(GoBLE et al., 1970).
R=05umo—an+§%wmrwmmmw)

where t, = t; + 2L/c and ¢ is a selected time
during blow; L is the pile length, v is the velocity
of the pile top, and ¢ is the wave propagation
velocity through the pile. The soil resistance, R,
can be considered to be the sum of the static, S,
and a dynamic component, D; so,

R = Rg + D. (433)

The ‘“damping force”, D, is obtained approxi-
mately:

D = Joge (434)

where J is a damping constant dependent on soil
type. It can be shown from wave theory (GOBLE
et al., 1975) that the pile toe velocity can be cal-
culated as

L
Vige =™ 2vt0p — —"; R B (435)

where vy, is the velocity at time ;.

Equation 435 is approximately correct for the
first 2L/c seconds, after the initial arrival of the
stress wave at the toe. The static soil resistance,
Ry is then obtained by subtracting the calculated
damping force, D, from the total driving resis-
tance. Thus, the final expression becomes:

Rs— R —j.[2F(t) —R],  (436)

where j, is the dimensionless form of J (after
dividing it by mc/L). In Eq. (436) all quantities

except J. can be derived from measurements.

3.7.2 Loading tests under horizontal loads

The simplest method consists of measuring the
lateral displacement of the pile under the influence
of gradually increased horizontal force increments.
Correlating coherent P, and y values, the resulting
graph may reveal one of the desired design values.
(The crushing force (Pj,) can also be determined if
the load really reaches the amount required to
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Fig. 323. Lay-out of measuring devices for a bored pile
laterally loaded (Lu, 1981):

& — strain gages; b — displacement transducers and pressure cells

cause failure.) The other important design infor-
mation, namely the distribution of soil resistance
(p), will not be provided by this test, and so the
maximum bending moment in the pile cannot
be determined in this way. This testing method
can therefore only be accepted as satisfactory
when it proves that a given pile does not break
under the influence of the design load and/or the
horizontal displacement remains within the allow-
able range.

Substantially more information on the presumed
performance of piles can be gained when various
instruments are installed in the set up. Such a
situation is illustrated in Fig. 323 after Lu (1981).
These devices were mounted manually after the
completion of boreholes made for bored piles.
During the test, carried out by Regse and WeLcH
(1975) the quantities measured were: applied load,
top deflection, top slope, and bending strains
along the length of the shaft. The load applied to
the shaft was measured with a strain gage load
cell in the loading system, and by a pressure
transducer connected to the hydraulic jack. A dial
indicator and a linear potentiometer were used
to measure the deflection of the top of the shaft.
The slope of the top was measured by a specially
constructed slope measuring device (pivot, micro-
meter screw on a rigid horizontal beam). For
measuring the bending strain (and hence the
bending moment), an instrument column was
used.

Evaluation of loading tests carried out with
applied instrumentation can be made by using
Eqs (417) and (428); when the variation of the
bending moment according to depth is known,
y and p, i.e. the p versus y curve can be plotted.
This calculation can make use of a graphic integra-
tion and differentiation, but can also be solved by
analytical methods. AK6z et al. (1981) proposed
the following procedure.

Figure 324 shows a section through a pile which
has been driven into the soil and loaded with
a horizontal load P, with excentricity e above the
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Fig. 324. Generalized pile-soil system (AK6z ez al., 1981)

soil surface, producing a soil reaction distribution
p = p(x) along the embedded length of the pile, L.
At a depth x below the ground surface, the fol-
lowing equation can be written between measured
bending moment and soil reactions:

M(x) = Ple + %) — fp(sxx —g)de. (437)

Writing this in the form
F(x) = P(e + x) — M(x) (437a)

the value of F(x) will be known from measured
pile moments; p(£) is the soil reaction to be deter-
mined. F(x) is a Volterra-type integral equation;
the soil reaction function p(x) can be expressed
in a series formjg

p:S‘anx": a+ ax +a?+ ... (438)
n="0

which it is wise to transform to a non-dimensional
form (p = pL/P, x = x/L). The solution can be
found by using Galerkin’s method (Axdz et al.,
1981).

3.7.3 Forecast of pile behaviour from results of explora-
tory probings

The static cone penetrometer is a model pile
and, when pushed into the soil, its penetration
resistance can be correlated with a similarly
installed full-size pile. When the pile point is
above the critical depth in the bearing stratum
(see Section 3.2.3.2), the unit point resistance has
to be reduced from the limiting static cone resis-
tance, g, in proportion to the embedment ratio,
D,/B, in this stratum. For sands it was suggested
(MEYERHOF, 1956) that the approximate equation

q.Dy

=22 439
9 10B <aq (439)
should be used.

Using standard penetration tests, the ultimate
unit point resistance, in t/ft2 (= 108 kN/m?),
might be taken approximately as

0 — L‘g Dy 4N, (440)

The average ultimate skin friction of driven
displacement piles in sand, in t/ft%, is roughly:

Jfo=—=> (441)

Z|=

in which NV is the average standard penetration
resistance in blows per 0.3 m; one-half of this
value may conservatively be used for piles with
small soil displacement, such as H-piles. From the
analysis of pile load tests it is found that the
observed unit point resistance is generally in fair
agreement with Eq. (440), except with greater
overburden pressure at the point when the ratio
of q,/N decreases (Fig. 325).

There is no universally accepted formula in
respect of clays. Some progress might be achieved
by compiling relationships between loading test
results and characteristic soil properties on extend-
ed regions. This approach has been used e.g. by
TonG et al. (1981) who provided f{q.) functions
for the clays encountered in the Eastern Provinces
of China. Accordingly, for normally consolidated
or lightly overconsolidated clays at depths of not
less than 6-8 m below ground level, and for
overconsolidated soils of medium to stiff con-
sistency not less than 20 m below ground level,
the authors established the following expressions:

f. = 0.05q (for g, < 1000 kN/m?),
f. = 25 + 0.025q, (for 1000 < g, < 3000 kN/m?),
f, = 100 kN/m? (for g, > 3000 kN/m?).

From empirical correlations between standard
penetration resistance and settlement observations
on structures on spread foundations, MEYERHOF
(1974) derived the following conservative expres-
sion, in inches (= 25 mm), for the total settlement,
s, of shallow foundation on saturated sand and
gravel:

—
s = M , (442)
N
in which B is the width of the pile group, in feet
(0.3 m), p is the net foundation pressure, in t/ft?
(= 108 kN/m?). For silty sand a factor of 2 should
be used at the right-hand side of Eq. (442).

It has also been proposed to use Eq. (442) with
a 509, reduction for estimating the settlement of
deep spread foundations, which may be taken
at an effective depth in a bearing stratum of
more than about four times the width of the pile
group. In other cases, s can be interpolated roughly
in direct proportion to the ratio of the effective
depth to D’/B of the pile group. Accordingly,



Fig. 323. Empirical relation between ultimate point
resistance of piles and SPT resistance in cohesionless
soil (MEYERHOF, 1976)

95.8 kN/m?)

(tsf=

Uftimate point resistance, gp

Eq. (442) can be rewritten, in inches (= 25 mm),

as: .
N

in which I is an influence factor relating to the
effective group embedment, approximately given

by

=1 —LZ 0.5. (444)
8B
Using static cone penetration tests,
_ PBI (445)
2q,

in which ¢, is the average static cone resistance
within the seat of settlement (MEYERHOF, 1974).

3.7.4 Quality control of piles

For checking the integrity of locally made
concrete deep foundations, a frequently used pos-
sibility is to incorporate tubes in their interior
through which the whole depth can later be
monitored by the use of isotopic probing devices.

RavuscHe and GosLE (1979) elaborated a dynam-
ic testing method for the investigation of the
soundness of piles. This procedure has been applied
by Lacy (1981) to the investigation of piles
driven to depth of 62to 70 m. Tests were performed
several weeks after the piles were initially driven

223

Prediction of pile performance

300 l ‘ ‘ |
Driven piles in 5 ‘ ¢
. agravel b i
250 e sand !
x silt : Qe PL
o Bored piles in sand 0}4/\/)/
i . %
200t %>70 unless shown - ’0—9\\35\\/_{ T
1 ! <\“e h‘\\/ |
| | IS e
i t . %, ’
150
| ‘ : A
| e |
i 2e rd | | 5
; ; A" Lo L e
100 p———m et g T g
A P '{1'5 Je
| ile
A e o]
ol 3l ~ e
.A'lo. x //"’}'3’/”1—,’-”2’?
PN POt MR
3 A=l L ‘! ‘
[ = 1 I |
0 10 20 30 40 50

60
Standard penetration resistance, N (blows per 03 m)

using a pile hammer for redriving. The testing
procedure consisted of attaching two accelero-
meters and two strain transducers at opposite
sides near the top of the pile. These gauges were
connected to a pile-driving analyzer for immediate
evaluation, with signals recorded on an analog
magnetic tape for further processing. This equip-
ment records strain and acceleration waves as
they pass through the pile following the impact
of a pile hammer, plus returning waves that
rebound from the pile tip. The strain and accel-
eration waves are usually integrated and presented
as force and velocity waves. These waves pass
through the concrete at a known constant speed.
Completely broken piles reflect downward velocity
waves in a much shorter time than longer unbroken
piles. A broken pile within a clay layer reflects
a markedly reduced return force wave or even
a tension wave, as there is little tip resistance to
pile penetration and a high reflected positive or
downward velocity. Figure 326 shows a pile broken
at 22 m depth; this depth has been established
on the basis of measuring the distance between
positive peaks and a force wave that drops to
Z€ro.

22m
4.45 MN I._
3.05m/s

/Ve/ocity

Time

Fig. 326. Record from completely broken pile (Lacy, 1981)
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3.8 Economy and safety

In the course of design decisions are needed
about the type of the piles to be used, their length
and diameter, and the reasonable spacing between
them. Several aspects have to be weighed in this
process: stratification of the subsoil, properties of
the layers encountered, location and aggres-
siveness of the groundwater, the senmsitivity to
movements of the building to be constructed, the
condition and distance of nearby structures, etc.
Any mature decision naturally has to comply with
economic and safety requirements.

Interesting conclusions have been drawn by
RanporpH (1983) in respect of the length L, and
the slenderness ratio L/r, (r, being the radius of
the pile). Ideally, the cost of installing the pile
(inclusive of material costs) should be minimized
for a given required capacity. As an approximate
guide, the embedded volume of a pile will be taken
as an indication of cost. The problem is then to
optimize the ratio L/r, in order to maximize the
pile capacity for a given volume of pile. The ulti-
mate capacity of the pile may be written as

Q = ring, + 27ry7s, (446)

where ¢, and 7 represent the bearing pressure at
the pile base and the average skin friction, respec-
tively. For a gross volume of V = ariL, the
capacity per volume is then:

% — [m]” [q,, 42 71“; fs]. (447)

For a relatively homogeneous soil deposit, where
g, and T, are not significantly affected by L, the
above expression has a minimum at

L _ o

ro Ts

and maxima as L/r, approaches either zero or
infinity. This indicates that the longer and thinner
the pile is, the more efficient it will be in terms of
capacity per embedded volume. In cases where
the strength of the soil increases with depth, the
advantage to be gained from a long slender pile
is perhaps more obvious, since both 7 and g, will
increase with its length.

In practice, of course, there are physical limita-
tions in respect of length or slenderness.

For bored piles, the length may be limited by
the drilling rig, while for driven piles, the direc-
tional stability of the advancing pile tip becomes
a problem. Another factor to be considered is the
effect of pile compressibility on shaft capacity:

— long piles have a proportionally smaller shaft
capacity;

— the skin friction is reduced to a residual
value in the upper part of the pile, before
the lower part has reached its limiting
resistance (MEYERHOF, 1976).

In respect of pile spacing, aspects of techniques
and economy are more than often congruent. For
example, assessing horizontally loaded piles Pou-
Los (1971b) mentioned that in regard to displace-
ments, considerable economy can be achieved by
using a relatively small number of piles at rela-
tively large spacings.

Another problem to be considered is the number
of loading tests which ought to be performed.
These are very expensive manoeuvres, thus
attempt should be made to depress the number of
tests as far as possible. The following guidelines
might be useful in this context:

— earlier loading test results should be utilized;

— relationships should be established between
penetration test results and anticipated pile
performance (see Section 3.7.3);

— it is reasonable to calculate the bearing
capacity on the basis of the Bayes-theorem
using earlier data (see Section 3.7.1);

— it will be useful to determine the bearing
capacity of large diameter piles from results
of loading test conducted on small diameter
piles (FrankE, 1981);

— the economic ratio of implementation costs
should be weighed against the number of
desired loading test results (JAEGER and
Baxnt, 1983).

(Remark: to provide an economic design, it is
a prerequisite to perform the trial tests after the
development of reconsolidation processes.)
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Fig. 327. Comparison of single pile predictions made by
11 specialists (VESIC, 1981)



In relation to safety the same principles apply
as in the case of shallow foundations. Some “un-
certainty’ may, however, arise in the complexity
of several contributive factors. Among them:

— differences peculiar to the applied tech-
nologies;

— inhomogeneity of the soil;

— eventual slanting position or excentricity of
the pile (Vesié, 1981);

— gap between the pile-head and the soil,
mostly in cases of vibrated piles in stiff
clays (CovyLE and REEsE, 1966).

Such and similar factors may cause the bearing
capacity not to be the same for individual piles,
even in the same surrounding. The literature does
not at present provide confirmatory data to
determine how wide the scatter may be. Kay
(1977) concluded, partly from loading test results
evaluated by him, and partly from the variance
of shear strength values, that an acceptable
coefficient of variation for @, might be assumed
to be 0.2, or even higher.

The reliability of predictions is further sub-
stantially influenced by the uncertainties inherent
in various theories (“scattering of the model™).
An interesting experiment has been reported by
Vesi¢ (1981) in this respect. Eleven individual
experts were invited to calculate and forecast
the performance of a single pile and of a pile
group. All pertinent data were duly provided.
The summary of predicted single pile capacities
is shown in Fig. 327, where the measured capaci-
ties are also given. It can be seen that, in spite of
great scatter of predictions, the average of the
predictions, i.e. the average of all predicted capac-
ities agrees quite well with the measured values.
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Chapter 4.

Soil mechanics in road construction

4.1 Introduction

The tremendous growth in road transportation
and especially the advent and widespread use of
motor vehicles in the present century has led to
requirements regarding the lay-out and especially
the surfacing of roads; requirements which the earth
and stone pavements which had slowly developed
over the centuries could no longer satisfy. Smooth,
durable pavements of high load-bearing capacity
and insensitive to atmospheric influences became
necessary to make full use of the vast possibilities
offered by the motor vehicle and to permit the
safe movement of heavy vehicles at speeds which
were previously unimaginable. At the same time,
allowance alsoc had to be made for new require-
ments in road plauning. The ancient traces closely
following the slopes and gradients of the terrain and
frequently adhering to historical traditions had to
be abandoned; principles of planning developed by
scientific research became necessary and roads had
to be designed and constructed according to the
same engineering principles as were earlier applied
only to the railways. The results of this work have,
in turn, given added impetus to the develop-
ment of vehicles, and the successive stages of this
mutual interrelationship are reflected in the rapid
evolution of road transport, as well as in increasing
standards of living.

In early road building, which was an art rather
than a science, little care was devoted to the soil
forming the foundation of the roads.

In constructing the new types of pavement to
meet the aforementioned requirements, the im-
portance of the subsoil was soon realized, in that
the durability and soundness of the road depended
fundamentally on the quality of the subsoil of the
foundation, as well as on the extent to which the
soil properties had been allowed for in the course of
design. The early attempts to solve these problems
followed a purely empirical approach, but this was
soon replaced by research giving birth as almost
the first special branch thereof, to the science of
the soil mechanics of road construction.

In more recent times, further evolution has been
prompted by the requirements of air transpor-
tation. High-capacity transport places have in-
creased the need for long runways with pavements
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capable of resisting severe static and dynamic
effects equally. A special branch of soil mechanics
devoted to airport runways has evolved; extensive
theoretical, research and observational work was
started and this has already resulted in consider-
able achievements.

The need for distinguishing a special branch of
soil mechanics for road construction may be ques-
tioned, since the physical properties, load-bearing
capacity, ete., of the soil are here just as important
as in other domains; this question can, however, be
answered most pertinently by reference to Fig.
328 (cf. Vol. 1, Fig. 3). The foundations of build-
ings and other civil engineering structures are al-
most invariably extended to depths unaffected by
frost, desiccation in summer and penetration by the
roots of plants. The foundations are supported by a
soil the properties of which change but very slight-
ly with temperature. On the other hand, there is no
other structure which is exposed as strongly, and at
the same time alternately, to such a wide variety
of mechanical and climatic influences as the nar-
row, thinand expensiveband of roadpavements and
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Fig. 328. Relationship between foundation and superstruec-
ture in buildings and roads .
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in combinationtherewith,the foundation, the earth-
works and the subsoil which are exposed to the
same effects.

Among the mechanical effects, the vertical static
loads, horizontal forces and the impacts and vibra-
tions caused by vehicles must be taken into con-
sideration. The climatic effects are often closely
associated with changes in stress conditions; they
cause the water content and thus the structure of
the soil to change. Most important in this respect
is drying accompanied by shrinkage and cracking
saturation resulting in a loss of strength, swelling
and reduction in load bearing, frost giving rise to
heaving by ice and loosening of the soil structure,
and finally melting by which the soil is softened
and rendered plastic.

In examining the relationship between the sub-
soil and the road pavement, three principal groups
of problems can be distinguished:

1. The combined load-bearing capacity of the
pavement and the subsoil, the determination of the
ultimate load causing failure, and further dimen-
sioning of the pavement and foundation with regard
to the properties of the subsoil.

2. Volume changes of the subsoil and methods
to control the detrimental effects thereof.

3. The effect of frost and other atmospheric
conditions on the pavement and the subsoil.

The subsequent discussions will be centered
around these three groups of problems.

4.2 Soil investigations for line struetures

4.2.1 Objectives

The method and extent of soil investigations are
governed by the objectives thereof. In our case, the
objective is to detect the potentially detrimental
and destructive effects of the subsoil and to furnish
the designer with all the data on soil and ground-
water conditions which he may find necessary for
arriving at a rational and economic design. In soil
exploration, this objective is realized if the data
obtained are sufficient for resolving the require-
ments listed below correctly.

1. Assessing the correctness of the track en-
visaged in the horizontal and vertical sense alike.

2. The choice of soils suited to embankment
construction. ,

3. Designing the cross-sections — slopes — of
embankments and cuts.

4. Providing data for calculation and distribu-
tion of mass, the determination of loosening or
densification, estimation of rockwork volumes.

5. The solution of surface and underground drain-
age problems.

6. Determination of the pavement thickness.

7. Decision on the advisability of soil stabiliza-
tion method.

8. Testing the local materials for their suitability
for stabilization and pavement construction.

The domain of soil exploration for road and rail-
way construction purposes includes the excavation
of pits,the sinking of boreholes and the collection of
samples. Parallel therewith, the samples must be
classified, qualified, and identified visually and by
hand. For these reasons, such investigations must
always be performed under the supervision of an
engineer trained in soil mechanics who is perfectly
aware of the objectives, who can appreciate the
importance of slight indications which may appear
insignificant to the untrained eye, and who can
form a picture of the subsoil conditions. Develop-
ment in this domain tend toward the establishment
of small field laboratories for performing the basic
soil-physical tests on major construction jobs, only
the samples on which special tests are considered
necessary being forwarded to a permanent labo-
ratory.

4.2.2 The location and depth of soil exploration

Soil explorations related to road and railway
building in Hungary are subject to standard specifi-
cations. The main provisions thereof are as follows.

“In locating the exploration sites, attempts
should be made to obtain a clear picture of the
stratification of soils and of the position of occasion-
al rock layers along the track and in the borrow
areas to be investigated. At the sites of major
embankments or cuts, where settlement or heave,
base failure or sliding are liable to occur in the
subsoil, explorations must be extended laterally to
obtain information on the position of any soil layer
at at least three points. In the case of roads to be
constructed over rolling terrain, soil explorations
are essential in major fills and cuts at the inter-
sections of the grade and the terrain.

Where earthwork of major extent and signif-
icance is contemplated and the individual layers
are difficult to trace, the number of explorations
must be increased along the profile and in the cross-
sections alike.

For roads and railways involving fills and cuts
of moderate height, the exploration sites should be
spaced at 200 to 250 m on the average. Along sec-
tions where the stratification of the subsoil is
found to change, or the groundwater table to
fluctuate over a wide range, additional explorations
should be envisaged at 50 to 100 m distances within
the spacings specified above. This applies in partic-
ular to cases where the difference between two
adjacent explorations is great enough to warrant
changes in pavement thickness, filter drains, sub-
grade, etc. In the case of major differences, an even
closer spacing of 30 to 35 m may also be justified.”

s5- - - the depth of exploration is controlled by
the soil stratification observed and}by the dimen-
sions and type of the structure. The exploration



should be extended to a depth yielding reliable
information on the soil layers below the grade
which may effect the stability of the structure.
Under embankments representing a load less than
60 kN/m? and in cuts not deeper than 3.0 m, explo-
rations should be extended to 3 m depth below the
terrain or the grade line, but in any case at least to
the groundwater table. Under embankments trans-
mitting loads greater than 60 kN/m? — where con-
solidation of the subsoil must be anticipated — the
exploration should be deep enough to permit a re-
liable estimate of the ensuing stress pattern and the
magnitude of settlements resulting therefrom. Al-
ternatively, the exploration depth should equal the
base width of the cut. Deeper soil layers need not be
explored, unless the load-bearing capacity of those
perforated is poor. In such cases, the strata should
be explored down to the load-bearing layer.

Special care should be exercised in exploring
soil layers including peat, marsh and other soils
of high organic content. In such cases, exploration
must be extended beyond the peat, marsh and
organic layers to determine the quality, position
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and depth of the load-bearing layers underlying
them.

The sites of major cuts should be explored to a
depth considered necessary for obtaining informa-
tion on the hazard of heave, soil failure or sliding,
and on the depth and direction of groundwater
seepage, as well as on the stratification of the sub-
soil, for determining reliably the boundaries and
inclination of the individual soil layers.”

As a practical rule, it should be noted that for
examining the problem of volume changes, ex-
plorations extending to about 1.5-2.0 m below the
crest of the earthwork are adequate, while as
regards frost heave the exploration should be
extended at least down to the groundwater table.
However, instead of adhering to strict rules, the
sites and depths of exploration should be deter-
mined individually in each particular case, keep-
ing in mind the objectives mentioned before, the
soil conditions encountered and the type of soil.

Prior to field work, all information on local
geology and soil conditions should be obtained,
geological, pedological and topographic maps of
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the area should be studied, together with the results
of earlier soil explorations along the first tentative
trace indicated on a 1 : 25 000 scale map. The ap-
proximate pattern of boreholes should emerge
from these studies. In the field, a general inspec-
tion trip should first be made. The general topog-
raphy of the terrain will already convey indica-
tions as to whether the soil conditions are highly
variable or not. In the light of observations made
during the inspection trip, the exploration pattern
should be revised and the boreholes definitely
located. The exploration itself is performed by the
excavation of pits or by sinking boreholes, as a rule
using an auger.

Detailed records of the exploration work must
be kept, indicating also the land uses in the area
(crops, forest, meadow, etc.).

The exploration records should be compiled into
a soil profile in the field. Following the practice
evolved in the Soviet Union, this should preferably
indicate, besides the road profile, the general layout
of the trace as well, and it should be accompanied
by a compilation of all the data observed in the
course of exploration. The quality of surface soils,
the outcropping layers, the type of vegetation, the
land uses, occasional springs, gorges, the results of
geological observations, etc., may also be entered
into the layout sketch, along with the technical
particulars, such as slopes, standard cross-sections,
etc., of the track contemplated. Following such a
procedure, this sheet may become virtually a
reconnaissance report and may be found highly
valuable in determining the laboratory tests need-
ed, in composing the soil mechanical report and in
planning. An example of such a reconnaissance
report sheet is shown in Fig. 329.

4.3 Structural analysis of pavements
43.1 Principles. Structural classification of pavements

Analyses into the load-bearing capacity of pave-
ments differ appreciably from those related to the
foundation of buildings. In the latter case, rather
large foundations carrying mainly static loads are
placed directly on the subsoil, the load is trans-
mitted below the terrain surface along a plane at
greater depth and even large foundations display
only a slight flexibility. Road pavements, on the
other hand, are thin crusts on the surface of the soil,
loaded by the vertical and horizontal forces trans-
mitted by the vehicles and interacting with the
subsoil in the course of deformations. Their be-
haviour depends on the relative abilities of the sub-
soil and the pavement to withstand deformation.
This last-mentioned property is used as the crite-
rion for classifying the different types of pavement.

Consider for the time being a pavement of in-
finite extension (Fig. 330) subject to the concen-
frated wheel load P. Greaterloads are accompanied
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Fig. 330. Deformation of a flexible elastically supported slab
of infinite dimensions

by greater deflection of the pavement,as a conse-
quence of which the foundation soil is compressed,
evoking a soil reaction which prevents the deflection
from increasing further. The ultimate load, i.e.
failure, is conceivable in two different ways.

(a) The deflection of the pavement attains a
critical value, and the resulting stress in the mate-
rial of the lower tensioned zone exceeds the tensile
strength thereof.

(b) The great deflections cause the foundation to
fail, although the pavement itself could still
withstand the deflections.

The two factors governingtheload-bearing capac-
ity are thus the tensile strength of the pavement
material and the ability of the subsoil to deform
under vertical loads. The type of pavement depends
hereafter on which of the two factors is of critical
influence on strength. In case (a), the pavement is
termed rigid, and in case (b) flexible. The first group
includes the pavements of concrete and similar
materials while the second includes macadam, the
diverse black pavements, etc. In addition to these
two groups consideration must also be given to the
case where the surface consists of earth or gravel
and where the wheels may cut into the pavement,
giving rise to wheel tracks.

The pavements, however, usually consist of sev-
eral courses each having a specific function. The
problem in structural analysis is to determine the
thickness and occasionally the strength required
for the individual courses. A number of dimen-
sioning methods has been developed for this pur-
pose. The principles underlying these are manifold
and involve a wide variety of factors. In the course
of evolution the number of factors included has
increased gradually and the constants representing
the material properties of the subsoil and the pave-
ment have been perfected as observational data and
experience became available. The reliability of a
particular method depends on the measurement



and empirical data on which it is based and on
whether the basic assumption is verified by ex-
perimental evidence. No method must be applied
without sound judgement and the method suited
to a particular case should be selected only after
careful consideration.

The behaviour and sevice life of road pavement
structure depend on the following factors.

1. The type and density of traffic and the changes
thereof during the service life of the road.

2. The design and the properties of the mate-
rials used in the pavement.

3. The physical properties of the subsoil, the
scatter of numerical values in space and their varia-
tions in time, groundwater conditions.

4. Atmospheric influence, the climate and the
environment of the road.

In the pavement structure stresses and defor-
mations are generated by

{(a) static and dynamic loads;

(b) the movements inherent to the pavement;

{c) the movements and deformations of the
subsoil.

The stresses and deformations must not exceed a
certain limit. It will thus be perceived that here
again two main problems need to be solved,
namely the pavement mustbe designed to resist
failure and harmful deformation with an ample
margin of safety.

The problems of dimensioning will be treated
subsequently, adopting an approach differing from
that followed in the earlier Hungarian editions of
the present book. Rather than classifying the
methods into groups, the aforementioned four fac-
tors will first be analysed, followed by an examina-
tion of the stresses and deformations.

In reviewing the historical development of pa-
vement design methods, some interesting features
can be detected. We are virtually witnesses of the
evolution of a branch of science which, starting
from purely empirical foundations, has become
increasingly rational. The conventional pavement
60 to 70 years ago was the waterbound macadam,
for which a rock base was placed first by hand,
using crushed stone for the surface course. At that
time no dimensioning was attempted, the thick-
ness of the pavement was controlled by traditions
and the level of technology (Fig. 331). Higher traflic
loads have subsequently demonstrated that defor-
mations of the subsoil affect both the load-bearing
capacity and the durability of the pavement great-
ly. In order to allow for the deformations, empirical
methods have been developed, of which the CBR
method is unquestionably most advanced ({cf.
Section 4.5.2). Investigations have simultaneously
been started with the objective of determining the
stresses generated in rigid pavements made of
concrete numerically. The basic principles of var-
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ious dimensioning methods were already available
in the nineteen-thirties and as far as the essential
features are concerned, the methods developed
then are still in general use, although revolutionary
changes have occurred meanwhile in road-building
materials. In response to the more exacting require-
ments, pavement systems consisting of several
courses have been devised in which the deforma-
tion of the subsoil is not the exclusive factor, the
subsoil being only an element of the pavement
structure.

Once the importance of deformations was rec-
ognized, research was started to develop analytical
methods for determining the stresses induced in the
pavement and in the subsoil. Formulae have been
developed for two-layer and multi-layer systems,
while the advent of computers has made the de-
velopment of detailed tables possible. The results
of these efforts are, however, of limited practical
interest only, since the basic criteria underlying the
computations, the Young’s moduli of elasticity, the
Poisson numbers, the fatigue behaviour, etc., of the
diverse materials are not known with the accuracy
needed. As a consequence thereof, the role of ex-
perience is still very important in the design of
pavements.
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4.3.2 Traffic data

Before any structural analysis of a pavement is
attempted, information must be acquired on the
following traffic data:

(a) wheel load;

(b) the arrangement of axles and wheels;

(¢) tyre pressure;

(d) the frequency of load repetition;

(e) vehicle speed;

(f) the pattern of traffic over the width of the
road.

The highest permissible wheel loads are specified
in the regulations of the various countries. In Hun-
gary the data given in Table 22 apply.

Mention should be made here of the recommen-
dations of the U. N. Economic Commission con-
cerning the heaviest vehicles participating in road
traffic (Table 23). Other specifications apply to
airport runways; an example from the U.S. is given
in Table 24.

Owing to the multitude of wheel and axle ar-
rangements, it is difficult to select the critical one.

Table 22. Permissible load for various vehicles —
Hungarian Standard

Load per axle 80 kN
Max. totalload 160 kN

Two axles

145 kN
200 kN

Load per double axle
Max. total load

Three axles

Table 23. Maximum allowable load on vehicles as proposed
by the U. N. Economic Commission

For the first For future
stage construc- | performance
tion (kN) (kN)
Maximally loaded axle 100 130
Vehicles on two axles 150 190
Vehicles on three axles 200 260
Vehicles on four or more axles 220 260
Semi-trailer 200 350
Truck-train 320 400

Table 24. Design parameters for airports (Civil Aeronautics
Administration, Technical Standard order, N6b, 1958)

R.unway for Equivalent
Runway Slgh,t land- | (heel load
Classification ing
Lengt i Lengt!
RS
Local connections 1300 30 120 136
Regional connections 1800 | 45 150 272
Continental
connections 2300 45 150 340
Intercontinental
connections 3200 45 150 454

P=50 kN

(a) A=z120 crm? (b) A= 5
P=450 kN/m? P=150 kN/m

Fig. 332. Contact area below a tyre on the road surface

For this reason the concept of the Equivalent Single
Wheel Load (ESWL) has been introduced in the
U.S. This is understood as the load acting on a
single wheel which gives rise to the same deflection
as the entire wheel system considered.

Vehicle loads are transmitted to the pavement
through the contact area of the wheel. The contact
surface of pneumatic tyres in new condition, at the
correct operating pressure and highest allowable
load specified by the manufacturer, is an ellipse
with 1 : 1.5 axis ratio. In this case the contact sur-
face equals the ratio of the load to the tyre pres-
sure. According to the measurements by TELLER
(1954), the actual surface may range from 0.99 to
1.15 times this value. Worn or overloaded tyres
produce greater contact areas than new or nor-
mally loaded ones. Some experimental results on
rigid pavements are given in Table 25.

The results of tests performed with normal auto-
mobile tyres of 6.0”” (15 cm) width and 22’7 (56 cm)
diameter on a smooth soil-cement pavement are
shown in Fig. 332. The wheel mass was 500 kg. At
higher tyre pressures the print was a regular ellipse
with 1 : 1.5 axis ratio. At lower tyre pressures the
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Table 25. Characteristics for pneumatic tyres

Case 1: worn tyre

Tyre Half-diameters of the )
Identification Wheel road ressure $
tificat: (kN) }()k 1:7m2) m max p Coﬂx;;:ct ellipse
(kN/m?) (kN/m?) (cm?®) —T b

(em) (em)
7-24 AS 30 84 140 140 214 11.6 5.9
9-24 AS 50 84 140 140 357 14.9 7.6
11-28 AS 75 84 140 140 536 18.3 9.3
13-30 AS 100 84 140 140 714 21.1 10.8
170-20 AW 75 300 330 330 227 11.9 6.1
10-20 AW 150 400 440 440 341 14.6 7.4

Case 2: overloaded tyre

Tyre | Half-diameters of the
entil ion Wheel road ure :
Jdentificatios (kN)oa ({1,:7; 5 o max p c:,:::m ellipse
(kN/m?) (kN/m2) (em?) a b

(cm) (cm)
7-24 AS 30 84 75 113 400 15.8 8.1
9-24 AS 50 84 75 113 667 20.4 10.4
11-28 AS 75 84 75 113 1000 25.0 12.7
13-30 AS 100 84 75 113 1333 28.8 14.7
170-20 AW 75 300 160 240 469 17.1 8.7
10-20 AW 150 400 230 345 653 20.2 10.3

Case 3: new tyre

Tyre
Identification Wheel road preZsure
(kN) {kN/m?) Pm max p F a b
(NJm?) (kN/m?) (cm?) (cm) (cm)
7-24 AS 30 84 65 130 462 17.9 8.7
9-24 AS 50 84 65 130 769 21.9 11.2
11-28 AS 75 84 65 130 1155 26.3 13.7
13-30 AS 100 84 65 130 1539 31.0 15.8
170-20 AW 75 300 135 270 556 18.6 9.5
10-20 AW 150 400 190 380 789 22.2 11.3
ellipse was elongated, with a section bounded by soil. This observation has lead to the more recent
straight lines at the middle. The area was deter- conclusion that in dimensioning pavements, al-
mined under different axle loads and plotted against lowance must be made not only for the heaviest
the pressure (Fig. 333). From the diagram it will
readily be seen that the pressure transmitted to the 900

pavement is not identical with the tyre pressure.
Computing and plotting the average contact pres-
sure, an almost linear relationship has been ob-
tained.

MonismiTH (1965) has suggested that this rela-
tionship probably follows the diagram in Fig. 334.
The distribution of wheel load over the contact
surface was studied by TELLER and BucHANAN
(1937). Under balloon tires the distribution was
virtually uniform (Fig. 335) and can thus be adopt-
ed as the basis of computation. Under metal cart-
wheels and solid-rubber tyres (b, ¢) the differences

100 1
are greater, /\/450 | J |

The first loads were usually observed to cause no 01| '
damage to the pavements, the damage being the 0 700 200 300 400 500 600 700 800
result of repeated loadings only. Under repeated Tyre pressure, p (kPa)

loads, the pavement may fail either by fatigue, or Fig. 334. Relationship between tyre pressure and contact
by the gradually increasing settlement of the sub- pressure, after MoNisMITH (1965)

800 i
700 - — 1 —”Z"ﬁ’f"—-—«—-——/é
600 /)

500 /
0 Y/
300 4 /

7/

200
Probable
relationship
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(a)

{b)

{c)

Fig. 335. Contact pressure distribution on the pavement
surface:
a — pneumatic tyre; b — full rubber wheel; ¢ — steel rim

wheel load, but also for the density and volume of
traffic, by increasing the design wheel load for
roads carrying large traffic volumes. The increment
wheel load will be controlled by the number of load
repetitions, their distribution on the road surface,
as well as wheels carrying different loads.

Efforts to take repeated loads into account have
resulted in the introduction of the equivalent
wheel load. For example, in California the expres-
sion

Pén
P.. =
‘7 3125

(448)

is commonly used. The traffic index is also applied
widely according to the formula

P (05
T,=13|——| nom, (449)
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Here P is the wheel loadin Mp (= 10 kN) units,
while n is the number of repetitions anticipated.
In some empirical dimensioning methods the nec-
essary pavement thickness is determined on the
basis of the T; value. According to SHERMAN, the
equivalent wheel load is related to the magnitude

of T; by the expression
T; = 1.35 (Pg)1!. (450)

The influence of vehicle speed is reflected pri-
marily in the magnitude of the deflections pro-
duced. At higher speeds the deflections will be
smaller, but this must not be understood to mean
that the stresses will also become lower. This effect
is, in general, taken into account by introducing a
higher modulus of elasticity into the computation.
Thus, e.g. for an asphaltic concrete pavement the
values obtained for E were 8.0 and 60.0 kN/cm?
under static and rapid, transient loads, respec-
tively. These limits are especially wide in bitumi-
nous pavements.

Attention has recently been concentrated on the
distribution of traffic on the pavement surface.
This is illustrated visually by the runways at air-
ports, where eachlanding leaves black marks on the
concrete slab. These have been used for construct-
ing distribution curves. It was concluded, however,
that for arriving at a safe design, the possibility
of the full load acting on each 0.1 m? area of the
surface cannot be excluded.

4.3.3 Stresses produced by traffic loads in the pavement
and in the subsoil

4.3.3.1 Introductory remarks

Stress computations can be based on a variety
of assumptions, e.g. by considering the pavement to
be elastically bedded on the subgrade (Fig. 336) the
compressibility of which is characterized by a single
numerical value, namely the bedding coefficient. In
other methods the subsoil and the diverse courses of
the pavement, as well as the base, are treated as a
multi-layer system, the individual layers of which
have different moduli of elasticity, but suffer the
same deformation. These methods will be dealt
with separately.

4.3.3.2 Stresses in pavements on an elastic subgrade

The investigation is based on the plate theory of
classical mechanics, in which plates are understood
to be load-bearing structures, where the surface
in undeformed state, halving the thickness at
all points, is plane; the thickness is negligible rela-
tive to the other dimensions and no component of
the load acts parallel to the middle surface men-
tioned before. An element of a plate thus defined is
shown — in cartesian coordinates — in Fig. 337.The
stresses gy, Ty, 0y, and 7,, acting on the side sur-
faces of the area hdx and hdy may be combined
with the bending moments related to unit length

+hf2 +h2
M,=— | oczdz; M= j oy zdz.
—-h/2 —h/2
+hj2 (451)
M= M,,=— j Tyy 2dz .
—h/2

The vertical shear stresses may similarly be
combined into shear forces:

+hj2 +h/2
Qx — Y 'L’xz dz; Qy —_ — ( ‘L'y ZdZ. (452)
—hj2 —hj2

The forces and bending moments written above
are required to meet the conditions of equilibrium.
Thus for the projection of the vertical forces

90«

0Q,
—2 =0.
ox + oy TP



Here p = the uniformly distributed load acting
on the elementary surface, dx - dy of the plate. For
the moments in the x—z plane

M, M,
I g, = 0.
0x + oy ¢

while for the moments in the y—z plane

oM, oM.,
2 Ty g —0.
oy ox 0

Expressing Q, and (, from the two moment
equations and introducing the resulting expres-
sions into the first, we have

M
#M,

9 *M,, . M
0x? 0x0y oy

> = —p. (453)

For determining the three bending moments and
the two shear forces, the equilibrium conditions (3
equations) are inadequate and the deformations
must also be introduced. Just as in the bending
theory of beams, simplifying assumptions are in-
evitable. Thus the following assumptions are made:

1. The compression of the plate in the direc-
tion of the z axis is small enough to be neglected.

L, / / , /'/ / - l,,/' 'l// g /,,'/
(c)

Fig. 336. Models for the mathematical treatment of the
system composed of the pavement structure and the sub-
soil:

a — elastically supported plate within own-strength; b — as before, but having

own-strength; ¢ — multi-layered elastic system with substantial friction at the
interfaces
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Fig. 337. Forces acting on the elements of a plate

2. The perpendiculars to the middle surface of
the plate remain straight after deformation and
normal to the deformed middle surface.

3. The normal stress in the direction of the plate
thickness is negligible.

With these assumptions, the deformations ac-
cording to Fig. 338 become

ow ow
u— —3 s V= — 2
ox oy
and the unit strains are
ou 0%w ov 0w
£y =—— = — ;oey=—— = —2 ,
ox 0x? oy oy*?
ou ov 02w
Yo = o = - 25O
. oy oy 0xdy
Introducing Hooke’s law
E, {0w 32w) )
Ox = — w—>
1—p2 | 92 9y?
Ez 02w Pw
Oy = — ——— ( + Au'—') » (454)
1—u2| oy o2
E:  dw
Ty = — .
144 oxdy

If the stresses expressed by Eqs (454) are in-
troduced into Eqs (451), integration with respect to

Fig. 338. Calculation of deformations
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z becomes possible:

2, 2,
MX:_K aw Maw]o
ox? oy? |
*w w
M, = — K 455
) o wis] b s
M,=—K[l—yp 0w .
0xdy

The expression K = E h%/12 (1—p4?) is called the
stiffness number of the plate and is the two-dimen-
sional counterpart of the quantity EI involved
in the bending theory of beams.

Combining the moments in Eqs (455) with Eq
(453), the fundamental differential equation of
plate theory is obtained:

4 1 4
ow L o'w n do'w :_1_’_. (456)
oxt 0x%0y* oyt K

In the case of circular plates, or such plates of
infinite extension, the use of polar coordinates is

found more expedient. For an axial symmetrical
load, the differential equation takes the form

VVw =

p
=, 457
VVw K (457)
where
dz 1 d
= ( )

Changing from the general theory of plates to
that applying to plates on an elastic, continuous
support, an additional assumption must be intro-
duced. Asin the theory of continuously supported
beams, WINKLER’s assumption is again resorted to,
considering the soil reaction on the base of the plate
to be proportionate at any point to the deflection
at the same point. Thus

p=Cw, (458)

where C is called the modulus of subgrade reaction.
This assumption is rigorously valid in the case of

Section

o Slab

Fig. 339. Stress distribution in the underground below a
plate loaded with a singular force

plates supported by a fluid, e.g. ice floes floating
on water. In the case of plates resting on soil, the
approximation is rather a crude one and some crit-
ical remarks will be devoted thereto below.

By introducing the hypothesis expressed by Eq.
(458) into Eq. (457), the obstacle to integration
is removed. The solution is obtained in terms of the
Bessel function involving, for the case of an infi-
nite plate loaded by a concentrated force, the fol-
lowing boundary conditions: the stress is zero at
infinity and assumes a finite value under the load,
the force P is balanced by the sum of vertical
stresses. The corresponding solution given by
ScHLEICHER (1926) is

P r
— Z, |, 459
T e 3(1) (459)

where C is the modulus of subgrade reaction,

S ES gy

is the representative length (radius of relative

plate stiffness) and the term Z; (%) is the real part

of the value pertaining to the argument (—;— V?)

of the zero-order, cylindrical Hankel function-
Under load Z; = I/2 and the greatest deflection is

P
8CI2’

with the peak subgrade stress

Wmax =

P
Pmax - Cwmax = _g'i'z_ . (4‘61)

The stress distribution is depicted in Fig. 339.
The reaction p becomes zero at the distance R =
= 3.92 | from the load.

Replacing the part of the stress distribution
diagram extending to this distance by a triangle of
identical area, the stress in the plate can be estimat-
ed approximately. Considering a strip of width s the
resulting moment becomes

M:;—poR’s—;—R’ = 0.213 Ps,

whence the stress induced in the plate having a sec-

. 1 .
tion modulus — sh? is

o—128 L. (462)
hZ

The introduction of multiple approximations
and simplifying assumptions has lead to the elimina-
tion of both plate and subgrade stiffnesses from
the formula of stresses acting in the plate. For this
reason both Eq. (462) and the formally similar



expressions modified on practical, empirical bases
yield only crudely approximative results. For more
detailed computations the formulae of WESTER-
GAARD (1947) are considered applicable, because of
the smaller number of factors neglected in them,
although the difficulties related to the subgrade
modulus exist here as well.

The critical situation in a plate of finite exten-
sion arises if one of the corners is loaded (Fig. 340).
In the simplest method of analysis, the plate is
assumed to be perfectly rigid and unsupported in
the region around the corner. If the length of the
cantilevered part is x, a bending moment M = Px
is produced and since the section modulus of the

1
cross-section subjected to bending is K = " 2xh?,

the resulting flexural stress is

o= -M- =3 —P— . (463)
K h?

The expression is formally identical to the fore-
going, the difference between the factors of the
term P/h* involved in the aforementioned semi-
empirical stress formulae ranging, in fact, from
1.28 to 3.0.

Starting from the theoretical considerations ex-
pounded before, WESTERGAARD (1947) has devel-
oped a method of slab dimensioning, in which the
pavement thickness required is determined on the
basis of the stresses occurring in rigid plates.

The assumption underlying the theory are as
follows:

1. The pavement is elastic, the material having
a constant Young’s modulus of elasticity E and
Poisson’s number u.

2. The pavement is of uniform thickness.

Z

Fig. 340. Load at the corner of a sla.

Structural analysis of pavements 237

(e

S} (S B I A |

ey | |

A e E
{

Fig. 341. Load patterns

3. Winkler’s assumption, commonly used in the
theory of beams supported on an elastic subgrade,
applies, i.e. the reactions are directly proportionate
to the deflections as expressed by Eq.(458), p = Cz.

The loading surface is further assumed to be wider
and longer than the thickness of the pavement,
implying the validity of the plate-bending theory.

Corresponding to the case of large aircraft, the
tyre contact area is assumed to be elliptical in
shape, and the load is distributed uniformly over it.
The formulae of stresses in the pavement and of the
deflections corresponding thereto apply to the
loading conditions shown in Fig. 341. Allowance is
further made for the ability of certain types of
joint to transferloads. Inaccordance with the theor
of plates on an elastic subgrade (cf. Eq. (460)) the

radius of relative plate stiffness is introduced as
Eh3
12 C(1 — )

A compilation of the formulae for the most
important load patterns is presented below.

14

(A) Load acting remote from any corner or edge

The load acting on the slab is distributed uni-
formly over the elliptic area described by the
equation

2 2
M AR, B (464)

a? b2

The principal tensile stresses ¢, and o, in the bottom
fibre of the slab under the center of the tyre contact
area are:

oy 3p Er*  __
= 1 In ——
O'v} 87h? [( e a+b4jL
: Cl——
( 2 )
B a—b (465)
F2(1— —|.
+2(1—pw atb




238 Soil mechanics in road construction
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Fig. 342. Contour lines on the deformed surface of a loaded
slab

The deflection at any point within, or outside of,
the contact area is:

P @ttty ER
8cl? 16 a2 a - bt
|
a1 dab 4+ B (a—b)(x2—y2)7 (400)
 16ak 2nl%(a - b) ]

In order to visualize the deformation of an
infinitely large slab, the contourlines of the de-
formed surface for an actual case are shown in Fig,

342.

(B) Load at the edge of the pavement, or in the
vicinity of a joint

The load is next to an edge, or to a joint. The full
load is distributed uniformly over an elliptical area,
the equation of which is

« (y—b?
=1 (467)

The tensile stress in the bottom fibre of the pave-
ment along the edge, at the tangential point of the
ellipse, is

3
30+ wP[ Eh
100C

4 1.84
w3+ P (@t b))
2]
4 a—b ab
_tuta o1 — ) —2
3u+(+u)a+b+( u)(a+b)2+
1+ 118 (1 + 2p) il} (468)

The deflection at any point on the axis of sym-
metry perpendicular to the edge, at a small dis-
tance y from, or on the edge itself, is found from the
approximate formula

P2 +1.2u b
g= 11— (0.76 0.4 -1
TERC [ (0.76 =+ 0.4 p)
(469)
.[1 — (0.76 + 0.4 yll-]

(C) The axis of the contact ellipse is over the
edge

P is one-half of the wheel load.

The stress in the bottom fibre under the center
of the ellipse is

_ 31 +wP ER?
A3k e a;uwi
3(1 + ) P 4 a—b
PETAE 2 (1=
n(3+ﬂ)h2[ w ‘u)a—§—b+
(470)

+ 0.5 (1 +u)—H-

The deflection under the center of the ellipse is
approximately

s P2 +12p [ 1 — (0323 + 0.17n) %]

VERC
y (471)
-[1 —(0.76 + 0.4 u) TJ .
For circular tyre contact areas — a case ap-

proximated rather by road vehicles — over which
the load is uniformly distributed, the stresses due to
loads in the interior, on the edge and on the corner
of a concrete slab are found from the following
formulae.

(a) Load in the interior of the slab, the great-
est tensile stress on the bottom face of the slab:

0.275 P Eh?
% = (1 4 p) log T (472)

(b) Load on the edge of the slab, the stress on
the bottom face of the slab:

0.529 P Eh3
0 == —hz—— (1 “{" 0.54 ‘U/) (log Cht

— 0.71) .

(473)

(c) Load on the corner of the slab (case D, Fig.
341), the greatest tensile stress in the top plane:

_ 3P [120 = pPCMT e
o = {1 [ — ] (al/3) } (474)



In the above expressions

a = radius of the contact area (circle),
b = |1.6a% + h* — 0.675 h, for a < 1.724 h,
b = a,fora >1.724 h,

TeLLER and SUTHERLAND (1943) have arrived at
the conslusion that under edge and corner loads,
the actual stress in the pavement is greater than
that computed from Eqs (473) and (474). For this
reason, they have suggested the following formulae,
which incorporate empirical modifications:

0529 P 3
- 2

Eh
. 1+ 0.54 )|l
o a+ uﬁ%w+
b (475)
+ log ke 1.079]
3P 12(1 —AC T3, oy
0, = 72—[ 1— [¥Tl (a Vz)w} . (476)

The stresses due to loads in the interior of the
slab surface are, in contrast to the foregoing, smaller
than those computed with Westergaard’s theo-
ry. Starting from the consideration that the sub-
grade reaction is more concentrated under the load
than the deflections (implying that the magnitude
of the subgrade reaction decreases with distance
fom the load center), it was WESTERGAARD himself
who suggested modifications. The modified for-

mula is
0.275 P Eh? 12
GZ*__“+MP4aJ_hj4
(477)

h2

Here L is the radius of the range in which the reac-
tions are rearranged, related to the centerline of the
tyre contact area (L ~ 5l) and Z is the reduction
coeflicient (Z ~ 0.2).

Starting from the same theoretical foundations,
a number of other semi-empirical stress formulae
have been suggested. For instance, for a wheel load
next to a joint, the stress in the bottom fibre of a
concrete slab is, according to the formula of the
Portland Cement Association,

_crPr Vaji
k2 0.925 + 0.22a/l

[

] . (478)

In the absence of load transfer, the coefficient
Cis 4.2, whereas in cases where the joint is capable
of transferring load C = 3.36.

A method will be demonstrated subsequently for
ostimating stresses if load is transferred by the
joints between adjacent slabs. Joints of this type
are applied mainly in airport runways, examples
for such joint designs being shown in Fig. 343. The
efficiency of load transfer will be taken into con-
sideration by the coefficient j, with 0 < j <{ 1. For
j =1, the deflections of two adjacent slabs are
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Fig. 343. Devices to promote load transfer at joints

identical along the joint, while for j = 0 there is
no load transfer and Eqs (465) to (476) apply. The
deflections of adjacent slabs should be denoted by
z;and z; for the case of load transfer and by z and 2’
in the absence thereof. The approximate formula

z—zj = (1 —j))z — ) (479)

will yield a fair estimate.

The tensile stress in the bottom fibre along the
joint is

1 1
o, =|1——jlo+—jo’ 480
j ( 2] +21 (480)
1 1
o, =—jo+ |1 ——j] o' 481
(e [ 21) (481)

The deflections of the two slabs along the joint
are given as

1 1
2 = 1————‘z ——"Z, 4‘82
; [ 21] + 5 (482)
1 1
2;=—jz + |1 — —jl] z. 483
j 2] ( 2]] (483)

Equations (482) and (483) satisty Eq. (479).

Concerning the dimensioning of rigid pavements
the following conclusions may be arrived at from
Westergaard’s theory.

1. The highest tensile stress in the pavement is
directly proportionate to the full load acting.

2. The stresses decrease substantially as the
tyre contact area is increased.

3. Edge loads are critical in the majority of
practical cases.

4. The stresses depend greatly on pavement
thickness.

5. The magnitude of stresses is only moderately
influenced by changes in the modulus of subgrade
reaction.
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Fig. 344. Diagram toestablish the stresses in a slab exposed
to circular load

In connection with the theory it should be noted
further that the warping stresses due to tempera-
ture differentials are neglected, although these may
substantially exceed those induced by wheel loads,
especially in thick pavements. Neither is any
allowance made for the stresses resulting in the
subgrade.

A simple diagram is presented in Fig. 344 for
estimating the stresses in the pavement under a
circular wheel contact area.The influence coeflicient
¢ of stresses is obtained therefrom for the three load
arrangements indicated, in terms of the ratio I/b.
For computing the influence coefficients applying

Single wheel

O
()

Twin wheels

to the gencral load pattern, a method was devel-
oped by PickerT and Ray (1951)(cf. YoDER, 1959).

Once the stress formulae are available, the prob-
lem of pavement dimensioning is greatly simpli-
fied. If information is available on the magnitude
of the allowable stress in the pavement material,
on the elastic constants thereof, as well as on the
modulus of subgrade reaction, the thickness of the
pavement is readily computed. In the majority
of cases, the problem consists of checking the pave-
ment thickness assumed empirically for the result-
ing stresses.

For direct pavement dimensioning, charts are
available indicating the pavement thickness in
terms of the wheel load, the tyre inflation pressure,
the modulus of subgrade reaction and of the al-
lowable stresses. The charts of major significance
have been compiled in Fig. 345 (JELINEK, 1959).
These are simple to use, as is demonstrated by the
two examples illustrated in Fig. 346.

The modulus of subgrade reaction C is involved
in all formulae. This has been defined as the bear-
ing pressure causing unit deflection and it is ex-
pressed in kp/cm? units. This concept is widely used
in the theory of load-bearing structures on an
elastic support, although research has provided
ample evidence (e.g. TERZAGHI, 1955) indicating
that its magnitude must not be regarded as con-
stant, howeversmall the acting load, and besides the
load it also depends on the dimensions. According
to the theory of elasticity, the deflection under the
center of a circular disc loaded by a uniformly dis-
tributed force is:

2r
o= —w) L,
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Fig. 345. Designdiagramsfor concrete slabs (JELINEK, 1959):

E — 28000 MN/m? u — 0.15; C — modulus of subgrade reaction; p — tyre pressure; P — load transmitted by the carriage (half side); R — distance between twin
tyres (1 kp/em? = 100 kN/m? 1 Mp = 10 kN; 1 kp/cm® = 10 MN/m3)



while the settlement of the rigid plate is

y=(1—) =,
2FE

vhence, remembering that ¢ = Cy, and assuming
a value p = 1/2

or C=———.  (484)

The discs used in plate bearing tests may be regard-
ed as rigid rather than flexible.

In the elastic range, the magnitude of the mod-
ulus of subgrade reaction will thus be seen to be
inversely proportionate to the diameter of the
plate. This conclusion is supported by ample ex-
perimental evidence. In many cases, however, the
elastic range may already be surpassed at deflection
as low as 1 mm, which may be offered as an ex-
planation for the fact that beyond a plate diameter
of 60 to 80 cm, the modulus of subrade reaction var-
ies only little with the size of the plate. This is
the reason why steel plates of 75 cm diameter are
used in field tests. The settlement curve of the load-
ed plate is observed and plotted against the stress,
whereafter the modulus of subgrade reaction C is
found from the angle of the secant pertaining to
y = 1.3 mm (= 0.05""), as shown in Fig. 347.

Twin wheels on carriage

Single wheel

t
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©

X

Fig. 346. Scheme to illustrate the use of the diagrams
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Fig. 347. Determination of the modulus of subgrade reaction

16 A. Kézdi and L. Réthati: Handbook
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Fig. 348. Modulus of subgrade reaction as a function of the
diameter of the plate

The use of plates having a diameter of 75 cm
is justified also by Fig. 348, in which the experi-
mental data of several institutions have been com-
piled. The values of C have been expressed as per-
centages of the value obtained with 75 cm diameter
plates and the theoretical curve has also been en-
tered. For diameters smaller than 75 cm, the depar-
ture from the theoretical curve is slight, whereas for
larger plates an approximately horizontal straight
line is obtained instead of the gradually decreasing
theoretical curve.This isbecause of the development
of plastic deformations, which prevent the value
of C from decreasing further. The C values deter-
mined from field tests with plates smaller than
75 cm diameter should be corrected according to
Fig. 348.

4.3.3.3 Stresses and strains in two-layer systems

The three-dimensional problem of stress distri-
bution in a two-layered system (Fig. 349) is ac-
cessible to a solution on the basis of the theory of
elasticity, if the surface layer — the pavement —
and the lower layer of infinite depth — the sub-
grade — are assumed to be elastic and to have
constant moduli of elasticity and Poisson’s num-
bers. Up to certain wheel loads this assumption is
likely to hold true, all the more so, since under the
rapid transient and frequently repeated loads due
to vehicles, the subgrade and the pavement ac-

T

lxl_LLinJ'“?

Fig. 349. The two-layer system
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Table 26. Influence factors for stresses in the two-layer system —rough interface

E,/E, = 0.05 E,/E, = 0.1 EJE, =03
hla —

/ o, [ (=3 l o1 o, Op2 ’ [ o, ‘ (=) | 51
1.0 +0.2045 -+0.0857 —2.173 +0.2916 +0.105 —1.597 +0.4629 -+0.1227 —0.6710
1.111 0.1744 0.0695 —1.924 0.2523 0.0847 —1.424 0.4108 0.0985 —0.6300
1.25 0.1451 0.0544 —1.664 0.2129 0.0667 —1.249 0.3554 0.0764 —0.5743
1.429 0.1170 0.0414 —1.394 0.1741 0.0506 —1.061 0.2976 0.0567 —0.5053
1.667 0.0904 0.0303 —1.117 0.1364 0.0366 —0.862 0.2384 0.0398 —0.4240
2.0 0.0659 0.0206 —0.8424 0.1006 0.0148 —0.657 0.1796 0.0258 —0.3327
2.5 0.0441 0.0128 —0.5809 0.0681 0.0155 —0.458 0.1236 0.0154 —0.2370
3.333 0.0258 0.0071 —0.3481 0.0401 0.0085 —0.276 0.0739 0.0081 —0.1453
5.0 0.0188 0.0031 —0.1623 0.0185 0.0037 —0.130 0.0344 0.0033 —0.0693

10.0 0.0031 0.0008 —0.0418 0.0047 0.0009 —0.030 0.0088 0.0008 —0.0180
E,/E =05 E,E =1 E,/E, = 0.0005 -
hja —
Oy ’ o2 | Op1 Oz | o2 Grl oz ’ T2 Oyl
0.5 +0.0437 -+-0.0355 —16.40
1.0 +0.5469 +0.1230 —0.3010 —0.646 +0.116 0.0121 0.0092 — 5.718
1.111 0.4905 0.1979 —0.2949 0.589 0.097 0.0099 0.0075 — 4.834
1.25 0.4298 0.0747 —0.2802 0.524 0.067 0.0079 0.0059 — 3.991
1.429 0.3638 0.0642 —0.2554 0.450 0.046 0.0610 0.0045 — 3.195
1.667 0.2948 0.0368 —0.2212 0.369 0.028 0.0046 0.0034 — 2.456
2.0 0.2240 0.0230 —0.1780 0.284 0.016 0.0032 0.0023 — 1.782
2.5 0.1557 0.0129 —0.1298 0.200 0.008 0.0021 0.0015 — 1.188
3.333 0.0936 0.0062 —0.0812 0.121 0.003 0.0012 0.0009 — 0.6928
5.0 0.0439 0.0024 —0.0392 0.057 0.001 0.0005 0.0003 — 0.3164
10.0 0.0112 0.0006 —0.0100 0.015 0.000 0.0001 0.0001 — 0.0805
h E,/E, = 0.0025 E,/E, = 0.005 I E,/E; = 0.01
a _
/ Ty | T2 O Oy | T2 | Oyl Oy l 02 Tl
0.5 -+0.1147 +0.0833 —12.45 +0.1696 +0.1184 —10.08 +0.0809 +0.0449 —3.52
1.0 0.0341 0.0222 — 4.706 0.0529 0.0323 — 4.069 0.0676 0.0365 —3.04
1.111 0.0282 0.0181 — 4,010 0.0438 0.0261 — 3.493 0.0552 0.0289 —2.57
1.25 0.0227 0.0143 — 3.337 0.0355 0.0208 — 2.929 0.0436 0.0222 —2.10
1.429 0.0178 0.0110 — 2.694 0.0278 0.0158 — 2.380 0.0330 0.0163 —1.64
1.667 0.0133 0.0080 — 2.087 0.0213 0.0116 — 1.850 0.0237 0.0113 —1.22
2.0 0.0094 0.0056 — 1.526 0.0150 0.0080 — 1.358 0.0156 0.0072 —0.82
2.5 0.0062 0.0036 — 1.023 0.0098 0.0054 — 0.9133 0.0090 0.0040 —0.49
3.333 0.0035 0.0020 — 0.6000 0.0056 0.0028 — 0.5343 0.0041 0.0018 —0.23
5.0 0.0016 0.0009 — 0.2754 0.0023 0.0011 — 0.2459 0.0010 0.0004 —0.06
10.0 0.0004 0.0002 — 0.0703 0.0006 0.00002 | — 0.0627 —
Table 27. Influence factors for stresses in the two-layer system —frictionless interface
E,/E, = 0.1 E,/E, = 0.3 E,/E, = 0.5
hja
Oz ==0p2 Or1 Gp==0¢2 ory Oy == 0p2 | Oyl
1.0 0.3050 —1.8625 0.5030 —1.1068 0.5979 —0.8122
1.111 0.2633 —1.6689 0.4444 —1.0222 0.5345 —0.7630
1.25 0.2221 —1.4598 0.3833 —0.9202 0.4662 —0.6980
1.429 0.1813 —1.2352 0.3198 —0.7993 0.3933 —0.6159
1.667 0.1420 —1.0006 0.2554 —0.6640 0.3172 —0.5181
2.0 0.1046 —0.7610 0.1916 —0.5156 0.2403 —0.4074
2.5 0.0710 —0.5290 0.1314 —0.3650 0.1663 —0.2913
3.333 0.0416 —0.3184 0.0782 —0.2228 0.0998 —0.1793
5.0 0.0149 —0.0563 0.0363 —0.1056 0.0467 —0.0873
10.0 0.0049 —0.0381 0.0092 —0.0271 0.0119 —0.0220




tually display an elastic behaviour. The theory of
elasticity will thus yield the stresses induced in
the component layers for which the pavement is
then designed.

The two-layer system is shown schematically in
Fig. 349. A surface layer of thickness h, Young’s
modulus of elasticity E; and Poisson’s number u,,
is supported on a subgrade of infinite depth,Young’s
modulus of elasticity E, and Poisson’s number u,.
A uniformly distributed load p is transmitted to the
system by a circular disc of diameter 2a. The prob-
lem consists of determining the stresses in the
surface layer and in the subgrade. No more is
usually required than to find the stresses in the
center line of the load, since these will yield the
design value.

Two cases are distinguished:

1. The stresses are perfectly continuous at the
interface of the two layers.
2. Thereis no friction developed at the interface.

The starting basis of the theoretical solution is
here again theequation of compatibility. Four stress
components other than zero are involved which can
be found with the help of the stress function.
BurMister (1943, 1945, 1956), who was the first
to apply the theory of elasticity to the treatment
of the two-layer problem, has adopted the following
stress function:

D = Jmr [Ae™ + Be—™ 4 Cze™ + Dze—™].
(485)
With due regard to the boundary conditions, the

following stress formulae are obtained therefrom.
For the case of perfect continuity:

__PRA—N) [,
Orp = - jL(M

3

[(2 — m)e™ — N(2 — Sm)e~"™" dm
" —2N(1+ 2m?) + N2%e-2m |~
%z—wu—mjmmm

[ (1 + m)e™ — N(1 — m)e—" ]dm,

(486)

2" — 2N(1 + 2m2)+ N2e-2m

E
0y =)0, — 1_ﬂgz .
E2 El

For the case of a friction-free interface:

& [ SR + F)m + (1—2F)en —
J Fem 4+ [22F—1) m— (1+2m?)] +

—[@— Fym + (1 —2F)e]} ,
+ (1 — F)e-2m ’

CGp =

(487)

16*

Structural analysis of pavements 243

0 a7

or/p

0y /p

-35 I I } i 0
> 0 02 04 06 08 10
52/57

Fig. 350. Vertical and radial stresses at the interface of
two layers in the central axis of a uniformly loaded circular
plate

(mR)[(1 + m)e™ —
oy [2Q2F—1) m—

(488)

6,9=06,——pRQ2F— 1)J 7
e
0

— (1 —m)e—™ —dm
— (0t 2m)] + (1= P

These stresses are induced in the vertical center
line of the symmetrically loaded circular plate and
are thus simultaneously principal stresses.

The symbols and terms involved in the foregoing
expressions are as follows:

E, = Young’s modulus of elasticity of the sur-
face layer,

E, = Young’s modulus of elasticity of the sub-
grade,

E —E,
BB
— |14+ =2,
)
a/h,

a parameter,

J; mr = first-order Bessel-function.

I m Z
I I

Integration is possible numerically, by succes-
sive approximation.

The stresses induced in two-layer systems are
found from Tables 26 and 27, or approximately
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Fig. 351. Stresses in the two-layer system:

a — vertical stresses in the line of the load; b — vertical stresses at the interface
of the two layers

from the chart in Fig. 350. The considerable in-
fluence of the firmer, surface layer is clearly visible
from the charts in Fig. 351. The differences rela-
tive to the uniform half-space are considerable,
especially in the vicinity of the pavement.

It should be noted that in his original paper
Burmister dealt with deflections, rather than
stresses. He computed the deflection of the surface

in the centerline of the load for the case of a rough
interface. The results of these computations are
reproduced graphically in Fig 352, indicating the
values of the settlement coeflicient § involved in
the expression

15pa
E,

for different values of the ratios h/a and E /E,.

Yo = & (489)

4.3.3.4 Stresses in three-layer systems

The widespread use of electronic computers has
opened new vistas to the solution of engineering
problems. Numerical computations have become
feasible which were formerly too cumbersome to be
practicable. Computers have also been used for the
computation of stresses and deflections in layered
systems, permitting the compilation of tables and
charts. Starting from the foundations laid by
Acum and Fox (1951), WairFIN and LisTER (1963)
have succeded in arriving at pertinent conclusions
and thus in substantially simplifying the computa-
tion of stresses. The results thereof will be deseribed
in brief below.

The three-layer system is illustrated in Fig 353.
The conclusions are as follows.

1. The ratioof subgrade stresses under twodiffer-
ent pavement structures placed on a subgrade with
a given Young’s modulus of elasticity remains
unchanged if the same pavements are constructed
on another subgrade with a different modulus of
elasticity. The validity of this statement holds true
even if the courses of which the two pavements are
composed differ in thickness and E-modulus.

2. If a pavement of given thickness, design and
modulus of elasticity is placed on different sub-
grades, the following relationship will be found to

1.00 1
080 = T
oo T — E1/Ep=T
050 PRI
el \W\ A\ B
«~ 030 \ \\‘ i~ 5. Hizkz 205 —
= 0
A \ N NN NN A e e "
= 0710 N
R e N S e 2
s 3 N N TN N e P —
£ 006 X\‘ \\ — ~ = —
¢ 005 P — 2
%) 00
0.04 ™
T — 500
B -75 a /00 T~ '\
0.03 yo-—&lEz F % 550\. 2000 — 000 | ——]
0.02 P
0 1 2 y 4 d 6
h/a

Fig. 352. Influence factors for determining the deflections in the two-layer system
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Key for use of the Table:
k,
o = afh, = hyfh, -
— — Oa Oz2
k= E\JE, k,= E,[E; ky |6, 0, Ozo— 0y
021 ~Trg | Oz~ Ory
ﬁ = 2, oy = 1
ky T o
k 10 20 50 100 500
9.51 3.64 6.00 2.59 3.66 1.79 1.87 1.05 1.11 0.690 0.349 | 0.261
5 72.70 | 15.30 93.90 | 10.20 113.00 6.44 136.00 3.30 151.00 1.90 187.00 0.513
14.50 3.06 9.38 2.04 5.66 1.29 2.73 0.66 1.51 0.380 0.374 | 0.101
8.24 2.38 5.06 1.69 3.01 1.16 1.47 0.684 0.852 0.451 0.252 | 0.169
10 79.30 ; 18.70 103.00 ¢ 12.30 124.00 7.68 148.00 3.85 164.00 2.21 203.00 0.586
15.80 1.86 10.30 1.23 6.21 0.77 2.96 0.385 1.64 0.221 0.405 | 0.059
6.74 0.860 3.97 0.612 2.23 0.424 1.01 0.252 0.554 0.166
50 95.20 | 26.00 124.00 | 16.90 149.00 | 10.40 178.00 5.12 198.00 2.94
19.00 0.519 12.40 0.339 7.44 0.208 3.55 0.103 1.98 0.059
6.43 0.552 3.75 0.397 2.08 0.277 0.921 0.163
100 102.00 | 29.00 133.00 | 18.90 161.00 | 11.60 193.00 5.75
20.40 0.290 13.30 0.189 8.04 0.118 3.85 0.058
ﬁ =1, oy =
kg T
10 20 50 100 500
kZ
30.30 9.22 20.80 7.14 13.50 5.33 7.26 3.44 4.43 2.36 1.38 0.921
5 162.00 | 37.80 229.00 | 28.10 300.00 | 19.70 390.00 11.40 457.00 7.10 594.00 2.11
32.30 7.56 22.90 5.63 15.00 3.96 7.84 2.29 4.57 1.42 1.19 0.420
27.90 6.11 18.70 4.73 11.80 3.53 6.13 2.26 3.60 1.55 1.04 0.599
10 173.00 ; 47.10 250.00 ; 35.00 330.00 | 24.40 431.00 13.90 502.00 8.55 645.00 2.46
34.70 4.70 25.00 3.50 16.50 2.44 8.66 1.39 5.02 0.86 1.29 0.245
25.00 2.23 16.10 1.74 9.76 1.30 4.68 0.833 2.60 0.572
50 201.00 | 68.20 298.00 | 50.90 399.00 ;| 35.30 523.00 19.50 606.00 11.80
40.40 1.37 29.80 1.02 20.00 0.70 10.50 0.392 6.05 0.236
24.30 1.42 15.60 1.11 9.35 0.839 4.40 0.540
100 213.00 | 75.10 319.00 | 57.80 428.00 | 39.80 563.00 22.00
42.60 0.76 31.80 0.57 21.40 0.400 11.30 0.22
F=1/2, a;=1
ky T T
10 20 50 100 500
k2
66.40 | 18.10 53.40 | 15.60 39.90 | 12.90 24.70 9.42 16.20 7.06 5.48 3.13
5 215.00 | 72.80 366.00 | 62.00 561.00 | 49.80 868.00 34.00 116.00 23.80 11687.00 8.60
43.00 | 14.60 36.70 | 12.40 28.10 | 10.00 17.40 6.81 11.20 4.717 3.37 1.72
63.40 | 12.10 50.40 | 10.40 37.00 8.59 22.20 6.29 14.20 4.72 4.43 2.09
10 223.00 | 91.70 | 396.00 i 78.00 615.00 | 62.80 963.00 42.90 |1244.00 29.80 |1866.00 [10.50
44.60 9.20 39.40 7.81 30.70 6.28 19.30 4.29 12.40 2.98 3.73 1.05
59.80 4.36 46.70 3.74 33.50 3.14 10.10 2.34 11.60 17.70
50 239.00 |134.00 449.00 |115.00 730.00 | 93.30 |1180.00 63.90 |1541.00 44.20
47.80 2.69 44.90 2.30 36.50 1.87 23.60 1.28 15.40 0.88
59.10 2.7 46.00 2.37 32.80 2.00 18.50 1.51
100 244.00 {152.00 469.00 [130.00 776.00 {106.00 |1270.00 73.10
48.80 1.52 46.90 1.30 38.70 1.06 25.40 0.73
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f=1/4 o =1
k]
10 20 50 100 500
kZ
94.70 26.50 90.70 24.90 82.10 22.80 64.20 19.40 49.00 16.30 20.80 9.19
5 127.00 |104.00 301.00 99.00 614.00 | 90.70 1273.00 75.20 1966.00 61.20 |3991.00 |30.10
25.40 | 20.90 30.20 | 19.80 30.70 18.20 25.50 15.00 19.70 12.20 8.00 6.03
92.80 | 18.00 88.30 | 16.60 79.60 | 15.20 61.20 12.90 45.90 10.90 18.30 6.19
10 112.00 {134.00 308.00 ;125.00 657.00 {115.00 1404.00 95.60 2195.00 77.90 [4500.00 ;38.00
22.60 | 13.40 30.60 | 12.50 33.00 | 11.50 28.10 9.56 21.90 1.77 9.00 3.82
90.20 6.52 85.50 5.91 76.40 5.38 57.60 4.63 42.20 3.97
50 70.80 |197.00 303.00 | 185.00 725.00 | 169.00 1657.00 142.00 2668.00 117.00
14.20 3.94 30.20 3.69 36.40 3.40 33.10 2.85 26.60 2.33
89.70 4.13 84.90 3.71 75.80 3.37 57.00 2.92
100 50.80 | 223.00 295.00 |208.00 745.00 {191.00 1745.00 161.00
10.20 2.23 29.40 2.08 37.40 1.91 34.90 1.61
B=2 a =12
I’l . -
. 10 20 50 100 500
2.85 0.950 1.76 0.670 1.06 0.459 0.522 0.268 0.307 0.175 0.093 | 0.066
5 21.50 4.09 27.20 2.70 32.40 1.69 38.20 0.853 42.10 0.482 50.80 0.131
4.30 0.817 2.72 0.540 1.62 0.338 0.765 0.170 0.421 0.088 0.101 0.026
2.51 0.621 1.52 0.435 0.884 0.297 0.422 0.174 0.241 0.114 0.068 | 0.042
10 23.10 4.96 29.40 3.24 35.00 2.01 41.20 0.999 45.20 0.570 54.90 0.149
4.62 0.495 2.94 0.323 1.75 0.201 0.825 0.100 0.454 0.057 0.110 | 0.015
2.12 0.220 1.23 0.155 0.692 0.108 0.305 0.064 0.165 0.042
50 27.10 6.80 34.60 4.40 41.20 2.69 48.50 1.32 53.70 0.753
5.42 0.136 3.47 0.088 2.06 0.054 0.971 0.026 0.537 0.015
2.02 0.140 1.17 0.101 0.644 0.070 0.281 0.041
10J 28.70 7.56 37.00 4.90 44.10 2.99 52.30 1.47
5.64 0.076 3.70 0.049 2.21 0.030 1.05 0.015
B=1, a,=1/2
ky S
10 20 50 100 500
kl
12.00 2.55 7.72 1.93 4.74 1.42 2.39 0.899 1.40 0.610 0.404 | 0.235
5 66.10 10.90 87.10 7.89 107.00 5.43 132.00 3.07 149.00 1.89 184.00 0.550
13.20 2.18 8.69 1.58 5.36 1.09 2.64 0.616 1.49 0.376 0.368 { 0.111
11.30 1.66 7.13 1.26 4.29 0.929 2.08 0.586 1.18 0.400 0.318 | 1.52
10 69.10 {13.30 92.30 9.68 115.00 6.64 142.00 3.71 160.00 2.26 197.00 0.637
13.80 1.33 9.22 0.969 5.74 0.664 2.84 0.371 1.60 0.227 0.394 | 0.064
10.50 0.586 6.46 0.453 3.74 .0336 1.71 0.213 0.927 0.145
50 76.10 |18.70 104.00 [13.70 132.00 9.39 165.00 5.14 186.00 3.08
15.20 0.374 10.40 0.275 6.61 0.189 3.30 0.103 1.86 0.062
10.30 0.370 6.32 0.287 3.64 0.215 1.64 0.137
100 79.00 21.10 109.00 15.40 140.00 10.60 175.00 5.75
15.80 0.210 10.90 0.154 6.99 0.106 3.50 0.057
B=1/2, a,=1/2
k, o
. 10 20 50 100 500
36.20 5.41 25.60 4.52 17.10 3.64 9.41 2.58 5.76 1.89 1.73 0.815
5 144.00 {23.20 204.00 {19.00 270.00 14.70 363.00 9.69 433.00 6.63 583.00 2.31
28.80 4.64 20.40 3.81 13.50 2.94 7.26 1.94 4.32 1.32 1.16 0.462
35.40 3.52 24.70 2.94 16.30 2.39 8.71 1.69 5.20 1.25 1.46 0.538
10 147.00 28.40 211.00 23.30 284.00 18.20 388.00 12.00 465.00 8.18 627.00 2.79
29.40 2.84 21.10 2.34 | 14.20 1.83 1.76 1.20 4.65 0.818 1.26 0.279
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=112, a,=1/2

kl
. 5 10 20 50 100 500
34.20 I 1.20 23.60 1.01 15.30 ‘ 0.835 7.88 0.612 4.51 0.457
50 151.00 |39.60 226.00 | 33.00 314.00 26.10 443.00 17.40 540.00 11.80
30.10 0.794 22.50 0.659 15.70 0.522 8.87 0.348 5.40 0.237
33.90 0.748 23.40 0.633 15.10 0.526 7.72 0.390
100 152.00 |44.10 230.00 |36.80 325.00 29.40 466.00 19.70
30.30 0.441 23.00 0.369 16.30 0.294 9.32 0.197
B=1/4 o =12
kl
. 5 10 20 50 100 500
74.10 8.79 61.40 8.03 47.50 7.15 30 80 5.80 20.90 4.72 7.30 2.50
5 189.00 38.00 312.00 34.70 476.00 30.50 747.00 23.80 984.00 18.60 | 1582.00 8.52
37.90 7.61 31.30 6.95 23.80 6.10 15.00 4.77 9.87 3.72 3.17 1.71
73.40 5.70 60.60 5.17 46.60 4.60 29.80 3.76 10.90 3.08 6.61 1.65
10 186.00 ;46.50 315.00 :42.50 489.00 37.40 783.00 29.50 1045.00 23.10 ;1713.00 |10.60
37.10 4.65 31.50 4.25 24.50 3.74 15.60 2.95 10.50 2.31 3.43 1.06
72.40 1.90 59.60 1.71 45.60 1.52 28.70 1.28 18.80 1.07
50 175.00 | 63.90 314.00 |58.40 508.00 51.90 850.00 41.70 1167.00 33.30
34.80 1.28 31.30 1.17 25.40 1.04 17.00 0.836 11.67 0.665
72.40 1.17 59.40 1.04 45.40 0.934 28.50 0.791
100 170.00 |70.70 311.00 |64.50 513.00 57.50 872.00 46.60
34.00 0.707 31.20 0.645 25.70 0.575 17.40 0.466
exist between the vertical stress o,, in the pave- follows:
ment-subgrade interface and the modulus E;: h, = const E; %%, (491)

6,, = const. EJ%, (490)
3. The absolute value of the stresses induced
in the subgrade decreases if

(a) the thickness of the surface course;

(b) the dynamic modulus of elasticity of the
surface course;

(c) the thickness of the second course;

(d) the dynamic modulus of elasticity of the
second course are increased.

4. The ratio of stresses induced in the subgrade
under two different pavements by a particular
wheel load distributed over a given contact area
remains unchanged under a different wheel load
and another contact area acting on the pavements.

5. The absolute magnitude of subgrade stresses
is a simple function of the radius of the wheel con-
tact area. It is proportionate to g if the unit load
p is identical.

6. Under the same wheel contact area, the stress
induced in the subgrade will be proportionate to p.

7.The absolute magnitude of the stresses induced
in the subgrade is approximately proportionate
to the wheel load.

8. For fixed values of h;, E, and E; (cf. Fig. 353)
the thickness h, at which a given constant stress is
induced in the subgrade-base course interface is
related to the modulus of elasticity of the base as

From conclusions 5 to 7 it follows that
oz - CP,/na%a}?® . P, )0'1
CP,/na3a?® P,

For normal vehicles the value (ay/a;)%! hardly
differs from unity, so that

ay

(_

ay

(492)

@
oz

{1

622 P 1
(2

o p,

The influence factors of stress (the values of 100
o/p) have been compiled for a number of cases of
practical interest in Table 28. A visual represen-

a a p
i : E}p:z}?

i
@ Ory ‘0’21 Enpr &
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ot ‘0’22
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Fig. 353. The three-layer system
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tation is given in Figs 354 to 356, the charts provid-
ing assistance in estimating the influence of differ-
ent alternative designs. The charts apply to a par-
ticular load and contact surface, but observing the
foregoing remarks, they can be extended to other
cases as well.

Numerical example. The stresses under the pavement
shown in Fig. 357, are to be determined. On the chart in Fig.
356 values are given for the pavement thickness k; = 10 cm.
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Fig. 354. Influence factors for vertical stresses in the subsoil
as functions of soil deformation moduli and subbase
quality
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Fig. 355. Influence factors for vertical stresses in the subsoil
as functions of the deformation modulus of the slab and the
thickness of the subbase
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Fig. 356. Influence factors for vertical stresses in the subsoil

as functions of deformation modulus and thickness of the
subbase
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Fig. 357. Data for the numerical example

In this particular case the ratio § = h,/h, = 19/32.5 = 0.58.
The value corresponding to h; = 10 cm is h, = 10/0.58 =
= 17.2 cm. For this value of h, a series of o, values are
determined by varying the value of K,. The ¢ values obtained
are plotted in a diagram (Fig. 357) and the correct ¢, is found

at K = 13. The actual stress is computed from Eq. (492),
thus

1.
0, = 2.1 (g‘—:g) ? 1.5 Njeme.

From Figs 354 to 356 o,, will be seen to increase
rapidly with E,, particularly for small values of E,.
On the other hand, it decreases strongly at in-
creasing h, values (Fig. 355). As mentioned before,
the values here obtained can be converted to other
E; values by multiplication with (FE,/420)°%, In
Fig. 356 the value of 0,, has been plotted against



10003 /052 (%)

i
100

=

|

i
0

E1/E;

Fig. 358. Varying stress conditions at the top of the sub-
grade as functions of subbase thickness and the ratio E,/E,

the thickness of the base course in terms of the
parameter E,. The influence of a stronger base (a
greater value of h,) on the stress ¢,, is the more
pronounced, the lower the value of E,.

The horizontal stresses are also of interest to the
pavement designer for obtaining a picture of the
complete state of stress and thus for performing
triaxial compression test with the aim of repro-
ducing the conditions of the pavement. In Fig. 358
the 0,4/0,, ratio has been plotted against the ratio
E,/E,, while the horizontal stresses induced at the
bottom plane of the base are shown for two differ-
ent E, values of the surface course in Fig. 359 (the
determination of the E value will be discussed
later). As isclearly to be seen from the diagrams,
the load distributing effect of the base course in-
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creases together with the E, modulus thereof, but
this is accompanied by the development of higher
horizontal stresses. These tensile stresses may be-
come especially detrimental in base courses made
of a weak concrete (macadam bonded with cement
grout, lean concrete). The results of tests performed
on beams of lean concrete are shown in Fig. 360, in-
dicating the flexural stress as a function of the
modulus of elasticity. In this case, the E value was
determined by a dynamic method, by the measure-
ment of resonant frequencies. The horizontal stress-
es induced in the base course and the flexural
strength are compared in Fig. 360. Up to the value
E, = 14 000 MN/m?, the strength will be seen to be
lower than the stress computed, so that cracks are
liable to develop in the lower side of the base.

The stresses at the interface of the surface and
base courses are shown in Fig. 361. In diagram (a)
the stress has been plotted against the ratio E,/E,
with E,/E, held constant. The diagram indicates
thus the increase of the stress ¢,, if the E, of the
base is increased. The curves in Fig. 361b have also
been plotted against the ratio E,/E,, but here the
ratio E,/E, is constant. Consequently, these charts
offer guidance on how to vary the E values in order
to control the vertical stresses at the first interface.

Finally, the horizontal stresses at the interface
of the first and second layers are plotted in Fig. 362
against the modulus of elasticity of the second
layer, for the pavement thickness A = 10 cm. In
this particular case, compressive stresses will be
induced if the modulus of elasticity of the second
layer is of the order of around 1000 kN/cm?2. The
stresses decrease hereafter together with E, and
become zero at E; ~ E,. Atlow E,values veryhigh
tensile stresses are induced. The effect of the base
thickness h, is much inferior to that of the surface
course h;.

Deformations present hazards for the stability
and durability, especially of flexible pavements.
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Fig. 359. Relationship between tension stress and modulus of elasticity at the bottom of the subbase
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Fig. 360. Comparison of strength and stress in the
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The deformations of two-layer systems are given
) 1 — >
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Fig. 363. Influence of layer thickness on deformation

Kirk (1961). This is reproduced in Table 29.
Concluding the discussion of stresses and deflec-
tions in three-layer systems, it may be of interest to
quote a few sentences from the book mentioned
above. According to JEUFFroY (1967) ... These
investigations are still in an initial stage. Any
reliance on a purely theoretical method of pave-
ment design would be a grave mistake. The atten-
tion of the reader should be directed much rather
to the “wide gap” still existing between the theory
and the actual facts. This gap will take a long time
to close. Nevertheless, the theoretical results have
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Table 29. Deflections in the three-layer system after Kirx
(1961); values of &, for the equation y == 1.5 % &,
3

kl
H ay k,
5 10 | 20 50
1 0.4160 0.3050 0.2298 0.1613
5 1097 1515 1204 0885
2 1 10 1431 1160 0934 0694
20 1092 0898 0730 0546
50 0718 0648 0531 0399
1 5940 4832 3909 29317
5 2597 2531 2129 1651
1 1 10 2256 1957 1664 1301
20 1738 1523 1306 1028
50 1245 1102 0952 0755
1 8301 7405 6429 5139
5 4176 3823 3423 2860
0.5 1 10 3166 2925 2651 2241
20 2430 2253 2058 1759
50 1727 1607 1479 1280
1 9478 9518 9009 8008
5 5105 4943 4716 4271
0.25 1 10 3909 3759 3577 3267
20 2975 2845 2710 2506
50 2099 1995 1906 1782
1 3109 2049 1413 9014
5 1163 0864 0656 0465
2 0.5 | 10 0821 0634 0494 0358
20 0600 04717 0379 0279
50 0410 0335 0271 0203
1 4160 3057 2298 1613
5 1730 1403 1140 0858
1 05110 1258 1050 0871 0668
20 0936 0799 0673 0524
50 0650 0567 0485 0381
1 5940 4832 3909 2927
5 2492 2179 1884 1519
0.5 0.5 110 1802 1606 1417 1169
20 1330 1203 1078 0906
50 0912 0836 0761 0652
1 8301 7405 6429 5139
5 3296 3052 2778 2420
0.25 0.5 | 10 2339 2191 2030 1800
20 1683 1581 1480 1336
50 1162 1091 1025 0937
_ b e . E, . E,
H C al_hz, hl_Ez, kz—EJ

contributed to the better understanding of some
of the processes and phenomena involved. Any
approach to the complex phenomena taking place
in the individual courses of a pavement based on
the theory of elasticity would be as futile as an
explanation thereof on the basis of experience
alone.”

The foregoing statements are supported also by
the investigations of Vesi¢ (1964), who arrived at
the conclusion that a limited tensile strength is
only available in the individual courses of a compos-
ite system. Consequently, the behaviour of the
system will resemble that of a plate much less than
would follow from theoretical considerations. An-
other fact to be born in mind is that the modulus of
elasticity in tension is usually lower.

4.4 Bearing capacity and deformation of pave-
ments and subseil

441 Properties of the subsoil

The bearing value is understood as the load
causing a 30.5 mm diameter disc to deflect 5 mm.
On the basis of the results of diverse statistical
analyses, the measurement data will yield informa-
tion on the load-bearing capacity to be expected
in autumn and spring. This, in turn, will indicate
the road sections where the capacity specified is
not attained and where, e.g. traffic restrictions
must be introduced.

The compression modulus is found, in accordance
with Swiss standard specifications (SVN 40.315),

from the formula

Mp=P2"PL g, (493)

Sg — 8

where p; and p, are two pressure values, s; and s,
the deflections corresponding thereto, while d is the
diameter of the loading plate. From tests performed
on the surface of the subgrade, the base and the
pavement, the diameters and pressures to be used
are given in Table 30, which also shows the lowest
required values of M.

The equivalent deformation modulus of the
pavement structure is

T p 9
¢ 2 i ( )

with A = y/d denoting the relative deformation
coefficient.

The modulus of elasticity is found from the ex-
pressions

P (1—p?)orE= 2P
2 ay way

E= (1 —u2). (495)

The value of 0.5 is usually adopted for u.

To obtain information on the relative bearing
capacity of the subgrade and the individual courses
of pavement, the California Bearing Ratio CBR
was developed by PorTER (1949) and was used as
the basis of a general design method for flexible
pavements.The CBR method has since beenreplaced
by more sophisticated procedures, but the CBR
value is still found convenient for characterizing
the relative strength of the subgrade and the

Table 30. Data for the determination of the modulus of
compressibility

2a Py } P2 ! Mg
(cm) (kN/m?) (kN/m?) ! (kN/m?)
Subgrade ' 16 50 150 15 000
Subbase 16 150 250 40 000
Pavement 30 250 350 100 000



Bearing capacity and deformation of pavements and subsoil 253

diverse pavement courses by a single figure, ob-
tained from a simple test.

A compaction test is first performed on the soil
sample to furnish the optimum moisture on compac-
tion, as well as the density attainable on the site
by the method and equipment used for compaction
work. A sample of this density is then prepared in a
mould and loaded — through a perforated disc —
with a surcharge roughly corresponding to the
weight of the actual pavement. The sample is
subsequently soaked under water in the mould for
4 days, the expansion during this period being
measured continuously. A penetration test is
then made, in which a circular piston is forced into
the sample at a rate of about 1.3 mm/min and the
loads required for 0.6, 1.27, 1.90, 2.54, 5.08, 7.62,
10.16 and 12.7 mm of penetration are recorded.
To obtain a clear picture of the penetration process
and of the forces required to produce the penetra-
tion depths specified, the load—penetration curve is
plotted. The resulting penetration resistance is
compared with a standard value for crushed stone
and expressed as a percentage of the latter. This
percentage is termed the CBR value. Thus

CBR — 100 —tstload 04
standard load

The CBR test can be performed on undisturbed
samples taken in the field, on samples compacted
in the laboratory, and on samples soaked as de-
scribed above.

For computing the CBR values, the following
standard loads (CBR = 1009,) are needed:

Penetration Load
(mm) {kN/cm?)
2.54 0.70
5.08 1.06
7.62 1.34
10.16 1.62
12.70 1.83

50
750 40 30 20 0 oN
-+—— a (%)
Fig. 366. CBR values depending on phase-conditions:
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Coefficient of subgrade reaction, C (MN/m®)
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Fig. 367. Relationship between modulus of subgrade reac-
tion and CBR value

30 405060 80 100

Typical test results are shown in Fig. 365, in
which the CBR values for 2.54 mm of penetration
have also been plotted.

Evidently, the CBR value obtained depends on
the condition of the sample tested. In the triangu-
lar chart (Fig. 366), the influence of phase compo-
sition is illustrated for a silt soil having a plasticity
index I, = 89, (LazANyI1, 1958). The CBR value
was found to display a peak in a certain critical
condition and to decrease again as the density was
further increased. The peak is obtained at satura-
tions S, = 0.75 to 0.80, owing to the fact that at
low moisture contents the pores in the soil com-
municate with each other, so that noneutral stresses
are induced by the penetrating piston. However,
once the critical condition is attained only closed
air voids remain in the soil, from which the air
cannot escape immediately as the load is applied;
neutral stresses are developed, as a consequence of
which the shear strength and, in turn, the resistance
to prenetration are reduced.
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Fig. 369. Results of monitored deformations

With the aim of minimizing the scatter of ex-
perimental results, it is preferable not to soak the
samples before testing. Instead, they should be
tested at different moistures and densities, per-
mitting the phase composition vs. CBR value re-
lationship to be studied.

Road subgrades are required to conform to
certain specifications concerned mostly with the
density to be attained on a particular job. The den-
sity required can be attained, however, only within
a certain range of moisture contents, so that the
phase composition of a subgrade in the condition
meeting the specifications can be allowed to vary
within a rather narrow range. It will be realized
therefrom that the strength of such soils depends
substantially on the type of the soil. Thus, consid-
ering, exclusively the soil condition meeting the
specifications related to placement, an empiric
relationship can be established between the soil
type and the strength properties, such as the CBR
value, modulus of subgrade reaction, etc. One of
these relationships is illustrated in Fig. 367 which
can be used to advantage in preliminary estima-
tions.

The tests described in the foregoing, namely the plate
bearing and the CBR test, are rather time consuming and
cumbersome and thus expensive. This is the reason for the
great demand for methods permitting the bearing capacity
of a road, or of individual pavement courses to be checked and
occasional weak sections rapidly detected. For such purposes,
a modified version of the Benkelman rod test was introduced
in Hungary (BoroMissza and GASPAR, 1956; 1968). From the
results of detailed investigations, they arrived at the con-
clusion that under normal traffic loads, the permanent defor-
mations suffered by a pavement remain small enough to be
neglected; the behaviour of the pavement is perfectly elastic
and the deflections are proportionate to the load in the greater
part of the year. Once these assumptions are accepted as
valid, no more than the elastic rebound of the pavement upon
relieving the load becomes necessary.

The measurement procedure involves the stationing of a
loaded truck, with dual wheels, on the pavement to be tested

\ .
\ Twin tyres /

section beam <
C 1

7/%2 é;‘y l | Wedge

Supporting wedge ’ §£0_,L_¥472_0Q___._.

with load equalizer

Indicator hand

Fig. 368. Modified Benkelmann-rod (Boromissza and GAsPAR, 1956; 1968)



and positioning the cantilever arm of the device between the
dual wheels (Fig. 368). A reading is taken on the dial gage,
whereafter the truck is driven forward. A second reading is
taken and the elastic deflection of the pavement is computed
from the difference between the two readings. The results of
measurements performed at successive points along the
pavement are plotted in a profile (Fig. 369) which provides
a clear picture about its load-bearing capacity.

4.4.2 Properties of road-building materiais

Unfortunately, the information available at
present on the strength and deformation proper-
ties of the materials used for the diverse courses of
pavements is rather incomplete. The determination

Table 31.f Modulus of elasticity for diflerent road
constructing materials (MN/m?)

Material E

Asphaltic concrete 280-300
Concrete slab, paving stone 250-280
Sand asphalt 220-240
Macadam 200-220
Coated macadam 150-200
Crushed stone course 140-180
Stone sett, monolithic paving 150-170
Surface treated macadam 120-140
Water bounded aggregate 80-120
Stony bedding course 80-115
Gravelly subbase 80-100
Cement stabilized well graded earth

material 60— 90
Bitumen stabilized well graded soil 55— 80
Well graded soil-aggregate 40- 65
Gravelly sand 40— 60
Cement stabilization 40- 60
Bitumen stabilization 35— 50
Silty coarse sand 35- 40
Coarse sand 30— 40

of the conventional strength properties, namely
compessive, or tensile strength, is insufficient,
since in these tests the state of stress of the sample
differs from that in an actual pavement. Moreover,
the actual loads are dynamic in character, so
that the behaviour under transient load will be
decisive. For general information, the mnormal
ranges of deformation characteristics are compiled
in Table 31, while for strength properties reference
is made to appropriate manuals. The behaviour of
road pavements under dynamic loads will be dealt
with in Chapter 6.

4.5 Pavement design
4.5.1 Pavement design on the basis of deflection

The most important characteristic of a flexible
pavement is its deflection which determines its
performance. A simple pavement design procedure,
based on deflections, has been proposed by Bur-
MiSTER (1943). In it, the surface course, base
course, and subbase (AASHO Highway Definitions)
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Fig. 370. Design diagrams from BurmisTer (1943)

are compiled into and treated as one layer, and the
subgrade is the other layer. Design thickness will
be determined on the basis of an allowed maximum
5 mm of deflection. Design charts have been pro-
duced using influence factors referring to expected
deformations. These graphs are reproduced in Fig.
370a and b.

For the design of rigid pavements, the procedure
above has been improved to take the performance
of three layers into account — pavement, subbase
and subgrade. The necessary thickness of the con-
crete slab is determined by using partly empirical
methods based on allowable stresses caused by the
wheel load and additional influences. The thick-
ness of the subbase is determined in order to re-
strict the deflection of the slab to a maximum of
1 mm. Design curves can be seen in Figs 370 a—d.
The set of curves a and ¢ refer to subbases made of
gravels, and b and d to crushed aggregates. Indica-
tions B-1, B-2, etc. refer to quality, B-1 being
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the best, extremely well-compacted aggregate of
E, = 700 kN/m?; B-2 a well-compacted good ma-
terial of E, = 350 kN/m?; B-3 a well-graded gravel
after careful compaction of E, = 200 kN/m?; and
curves B—4 represent a well-compacted interme-
diate material of E, = 100 kN/m?. The modulus of
elasticity has been calculated with E; = 21 MN/m?.

The above described procedure is oversimplified,
however, because:

(a) neither the pavement nor the subbase is
fully elastic;

(b) arbitrary deflection limits were assigned and
the actual stresses ensuing remain unknown;

(c) no representation is given for the repetition
and dynamic character of the load.

Another design procedure — which is in use in
the U.S.A. and is called the *“Navy” procedure —
applies also the stress and deflection principles
established by BURMISTER.

We have seen earlier that the settlement of a
circular rigid plate on homogeneous, isotropic
ground surfaces is given as: y = 1.18 pr/E,, and
that of a flexible plate as: y = 1.5 pr/E,. To render
these formulas applicable in a two-layer system, a
coefficient has to be introduced (called the settle-
ment ratio):

- 1.18 pr

E, 5

This coefficient, as we have seen, is a function of
E,/E, and r/h. E,will always be determined on the
field by using the plate bearing test (plate diam-
eter d =75 cm). The plate should be made
absolutely rigid by using insert plates. A similar
plate loading test has to be performed on the sur-
face of a previously made pavement of known
thickness that has been constructed from the same
(oridentical) materials as the designed one. E| canbe
calculated from the above formula. When both E;
and E, are known, the way is open to calculating
stresses and deformations.

An example will be inserted here to make the procedure
more familiar. A pavement is to be designed for accommodat-
ing a wheel load p = 23 Mp (= 230 kN). Assumed tire pres-
sure is 10 kp/em® (= 1 MN/m?), and so the imprint area is
F = 2300 cm? with the radius of the substitutive circle of
r =27 em.

Having carried out the plate test on the formation level,
we obtain say, y = 0.5 cm depression at p = 1.6 kp/cm? pres-

75 cm

p=320 kN/m?

75 cm o 1
3 7%%% ly=05cm,/ /31203

y=05cm

p=160 kN/m? | E, pp=05
£

I pp=05

Fig. 371. Plate loading tests for pavement design

sure. The modulus of elasticity of the soil will then be:

E 3 prn 3 16-375-=x
P8 y 8 0.5

= 142 kp/em?,
= 14.2 MI\I/H'I2

A similar experiment should be made on the surface of a
pavement of known thickness and of similar material to the
designed one and restingon a subgrade with similar attributes
(see Fig. 371). From these results we can find the coeffi-
cient §:

E,y 142 - 0.5
1.18 pr 118 - 3.2 - 37.5 °

& =

To proceed further we now have to plot the Burmister-
diagram in the function of r/h asit is in Fig. 372. In our case
r/h = 37.5/15 = 2.5, and at § = 0.5 we can find the corre-
sponding value E,/E, ~ 100, i.e.:

E, = 100 E, = 14 200 kp/em? = 1420 MN/m?.

Now we know E, and E,, and go on to calculate the
settlement ratio for the given loading area:

Ey _ 142005
1.5pr = 1.5-10-27
With & = 0.175 and E,/E, = 1/100, from Fig. 372 we can

read r/h, = 0.7. The desired pavement thickness is therefore:
hy = /0.7 = 27/0.7 = 38.5 cm.

r
= 1.5;;—2 5 § = 0.175.

In extremely important cases nine trial sections
should be constructed, each 5 m long, with pave-
ment thicknesses of 0.66 h,, h;, and 1.5 h,. Three
sections should be situated in cuts, three on em-
bankments and three on sections where the longi-
tudinal alignment is close to the ground surface
and whereonly grubbingand scrapingare envisaged.
The plate for the loading test should have a diam-
eter as close to that of the imprint area of the
loaded wheel as possible. A load is then applied
on the plate corresponding to the effective tire
pressure, which was p = 1 MN/m? in our example
above, and deflections measured. Such results are
summarized in the table below:

i i Reduced
Thickness Deflection Reduction deflection
by Yy factor Ym
{em) {em) (cm)
Fill 1 25.6 0.59 0.84
2 38.5 0.42 1.43 0.60
3 57.6 0.30 0.43
Cut 1 25.6 0.685 0.80
2 38.5 0.482 1.16 0.56
3 57.6 0.325 0.38
Ground 1 25.6 0.507 0.75
surface 2 38.5 0.338 1.48 0.50
3 57.6 0.210 0.31

The last column in the table shows reduced deflec-
tions. This modification is to allow for the possibili-
ty of moisture uptake in the subsoil and it will be
established in the following manner. Compaction
tests are carried out and optimum water content
and maximum dry bulk density determined for
the soils to be tested. Samples 5 e¢m in diameter
and 10 em high then be prepared from the compact-
ed soil at w,,; and at wyy; plus 29, water contents,
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Fig. 372. Influence factors for deformations (after BuUr-
MISTER, 1943) as functions of r/h

all compacted to densities of T,, = 0.95. The ratio
of relevant compressive strengths will represent the
reduction factor. The reduced deflection values are
then plotted according to Fig. 373; pertinent pa-
vement thicknesses can be read as functions of
allowed deformations. In our case h; = 36 cm,
and R = 45 cm.

A comprehensive description of McLeod’s method
must be given to illustrate the progress made in
ideas concerning pavement design. This procedure
is also based on the plate-loading test, and makes
use of the following experience. If a pavement
is repeatedly loaded by various weights then a sep-
arate deflection curve can be drawn through each
load repetition (Fig. 374a). Experience has shown
that for any arbitrarily chosen deflection, with
various load repetition numbers the ratio of perti-
nent loads will be a constant value. The ratios given
in the figure relate to a certain range of loads only.

The graph in Fig. 374b represents another ex-
perience, namely that the ratio of the loads causing
y =088 cm and y = 1.25 cm deflection with
N = 10 repetitions, is constant.

Harmonizing these two experiences, the diagram

in Fig. 374c has been derived. Using this diagram,
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Fig. 373. Definition of final pavement thickness with the help
of experimental sections
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a — Deflection as a function of load repetition; b — experimental loading

diagram; ¢ — design diagram

a quantity can be determined which will charac-
terize the bearing capacity of the ground. Total
structure thickness is then found from the expres-
sion:

h=K log%. (497)

K depends on the diameter of the plate used for
the test (if d = 75 em, K = 65; if d = 30 cm,
K = 35). P is the equivalent wheel load (in kp =
= 10 N), and S is the load which causes a specified
deflection with a number of repetitions of N = 10
(its value can be read from Fig. 374).

4.5.2 Pavement design on the basis of the CBR-value

In the past there were different sets of curves in
use to design pavements on the basis of the CBR-
value. The experimental formula to describe the
curves was written as:

h:1.33V p___P (498)
CBRY% 552 P

where h is in the necessary thickness of the load
bearing layer (cm); P is the wheel load (in Mp =
= 10 kN); and p is the tire pressure (in kp/cm? =
= 100 kN/m?). The formula is valid up to CBR =

_ . o
= maximum 129,.
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Fig. 375. Elaboration of design curves

Table 32. Constants for the calculation of the CBR-curves
(1 psi = 6.89 kPa, 1 1b = 0.45 kg)

1. log h = koo + kg, log P + k; log CBR

p=100(psi); P (Ib)

p = 200 (psi); P (1b)

Taxiway | Runway Runway
h (cm) | h (in) } h(em) | h (in) h (cm) | h (in)
kg +0.085 | —0.320 | +0.039 | —0.366 | —0.046 | —0.451
kg, +0.477 +0.477 | +0477 | 40477 | +0.500 | +0.500
k, —0.566 | —0.566 I —0.566 | —0.566 | —0.538 | —0.538
2. logh = (ko + ko1 log p) + (k1 + Ky log p)log (CBR + 1) + 0.5log P
P (1b) p (psi)
h (cm) h (in) h(em) 1t i h(in)
Ego +0.403 —0.002 |k —0.138 —0.138
" —1.202 —1.202 n +0.244 +0.244

The following relations are now available: for
identical tire pressures

A newer expression has been proposed by Novais
FERreIrRA and CampinNos (1961):

logh = ko + ky log P 4+ k, log CBR

and

(499)

b — b P, log h = (koo + ko log p) + (kyo + ki log p)-
LI T)l— - log (CBR -+ 1) + 0.5 log P.
and when the wheel load and the CBR are identical The values of the constants k are given in Table 32.
Figure 375 offers an insight into the way in
11 = h2 — h} which the design curves mentioned have been
Py P2 elaborated. The relation between the wheel load
100
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Fig. 376. Design diagram for determination of equivalent thickness



and the thickness of the base plus the subbase are
plotted to different CBR-values; the plot shows
straight lines when double-logarithmic paper is
used. Methods have also been elaborated which
enabled drawing the design curves for arbitrarily
arranged wheel systems.

Later progressive design methods also took
account of traffic distribution patterns along the
road with, and the volume of traffic. PELTIER (1955),
for example, proposed the following expression:

j0

100 + 150 [/ P l/ T
TO

h= . (500)
CBR + 5

In this expression, T, is a base value 100 000
Mp/year (= 1000 MN/year) for a 1 m-wide strip on
the pavement surface, and T is the actual value.

Smock and Finn (1963) elaborated another ex-
pression for asphaltic pavements. First an equiv-
alent thickness is defined as:

h, = 2 h, + h, + 0.75 hy,

where h, represents the thickness of the asphaltic
concrete, h, that of the load-bearing layer, and h,
that of the subbase. This value can be obtained for
CBR = 2.5%, from the following equation:

h, = —20.5 -+ 5.35log n + 0.669 P -+ 0.0932 Pp,
(501)

where n is the number of load repetitions, P is the
load (in 1000 pounds = 4.5 kN), p = 1 for single
wheels and p = 0 for twin wheels.

For the same pavement structure under two
different single loads (one of P =18 kip = 81 kN,
and the other of wheel load P) an equation can
be written, using Eq. (501):

5.53 log nyg + 0.669 - 18 = 5.53 n, + 0.669 P

and so
5.53 log & = 0.669 (P — 18)
np
and
f= l‘n_ls_ = 100121 (P — 18). (502)
P

This expression can then be used for design pur-
poses. Figure 376 illustrates the relevant diagram.
The second upper line refers to CBR = 2.5; for
other CBR-values the pertinent pavement thick-
ness can be found from:

h = [—20.5 + 5.53 logn + 0.691 P +

2.5 |04 503)
0.0932 Pp]|—=2—1 . (
+ Pl ( CBR ]

As can be seen, the influence of load repetitions
plays a considerable role in these — fairly compli-
cated — experimental expressions.

17*
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The following section aims to shed some infor-
mation (after YODER, 1959) on the performance of
some constituent parts of the pavement structure.

Concrete definitely has the property of showing
fatigue. Generally, it is supposed that only half
of the failure strength might be considered as a long
lasting strength of the conerete. Up to this value the
concrete can, however, be exposed to load repe-
titions to an unlimited number.The failure strength
of the concrete is normally proportional to the
logarithm of the number of repetitions.

Of fatigue in concrete finds, however, its real
importance when it is correlated with the fatigue
of the subsoil. If the subsoil is a plastic one, its
gradually increasing deformation may bring the
repeatedly loaded concretic pavement to failure
even before the normally assumed fatigue limit
ensues.The fatigue of concrete may gain importance
in the case of an elastic subsoil where residual de-
formations are negligible.

The subbase is also exposed to harmful effects
under the influence of repeated loading. Some par-
ticles of lesser strength may crumble and depreciate
this way the grain distribution curve, and conse-
quently also the bearing capacity of the layer. The
increasingly greater compression may also evoke
the pumping effect.

Repeatedly loaded soils undergo an increased
compression, the magnitude of which is proportion-
al to the logarithm of the repetition number
(Fig. 377). Flexible pavements mostly fail in
spring (tawing !), and hardly in summer, when they
are exposed to repeated loads. One interesting
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Fig. 377. Compression of clay under repeated loading
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Fig. 379. Development of fissures in rigid pavements as the
result of repeated loading

result of the Washo-experimental test is shown
in Fig. 378.

Rigid pavements supported immediately by
plastic subsoils show almost always the pumping
effect when they are submitted to heavy traffic.
Granular subsoil or subbase shows a similar effect
when the compaction was not made satisfactorily.
Fissures and cracks start to develop and advance in
number (Fig. 379). Obviously, drainage, tempera-
ture, and the condition of the pavement surface
have also an important role in this respect.

4.6 Drainage, swelling and shrinkage of the
subsoil

The soil layer supporting the pavement is often
directly exposed to atmospheric influences. Owing
to a variety of effects, the water content may vary
between rather wide limits, giving rise to swelling
and shrinkage in soils susceptible to volume changes.
Moreover, since this change in volume is non-
uniform, owing to the heterogeneity of the soil and
to other reasons, the bedding of the pavement will
also become non-uniform and the external forces
acting, e.g. on unsupported parts of the pavement
will cause failure and damage. The situation is ag-
gravated by the fact that even slight changes in mois-
ture may cause substantial changes in the bearing
capacity of some soils and thus local changes in
soil moisture conditions under road pavements
may be of considerable influence on road traffic.

The stabilization and control of the condition of
road foundations should be considered taking
account of all factors affecting moisture movement
in the soil. For this reason, the ways must be con-
sidered through which water can find access to the
soil layer under the pavement. Water may enter
from the sides and from below. The possibilities are
illustrated in Fig. 380.

Althongh the penetration of water from above
may well be regarded as the most important of
these possibilities, it can the most readily be con-
trolled and prevented.

Although the importance of drainage is clearly appreciated
by road building engineers — it is proverbial that the three
secrets of sound road construction are 1.drainage, 2.drainage,
and 3. drainage — it may be well to recall the experience of
McApam: *. .. The roads can never be rendered thus per-
fectly secure, until the following principles be fully under-
stood, admitted upon: namely, that it is the native soil
which really supports the weight of the traffic; that whilst it
is preserved in dry state it will carry any weight without
sinking... that if water pass through a road and fill the native
soil, the road, whatever may be its thickness, looses support
and goes to pieces.” (McApam, I: “Remarks on the present
system of road making” London, 1820, 3rd edition, p. 51.)

The penetration of water from the sides presents
a more difficult problem. The side ditches that are
called upon to collect and remove the surface
runoff without damage, may themselves become
damaging when blocked or silted up whereby stag-
nant water can infiltrate into the subsoil, and cause
the pavement to deteriorate. It should be realized,
however, that a significant portion of the runoff
water will anyway find access to the subsoil, before
reaching the culvert, even if the ditehes are main-
tained in perfect condition.

From the foregoing the conclusion may be ar-
rived at that preventative measures against the
detrimental effects of volume changes are needed
even when the water table is located at greater
depth.

In the case of roads during rainy weather the
top layer of the subsoil becomes saturated and
unless controlled, a soft clayey layer of a few cm
thick may cause serious damage to the pavement.
Rain water seeping across pervious pavements may,
logically, have similar consequences.

Careless or poor maintenance may often be
responsible for the complete saturation of the
subsoil.

A special phenomenon particular to concrete
pavements has only recently come to the attention
of road-building engineers. The passing vehicles
cause the concrete slabs to suffer elastic deforma-
tions resulting in a deflection under the load and a
slight upwarping at some distance therefrom. The
suction exerted by this vertical reciprocating move-
ment tends to lift water from the deeper soil
layers as if pumped, towards the pavement. This
water then accumulates in the top layer of the
subsoil, the soil is remoulded with water by the
pumping and the liquid soil is forced to the surface
through joints and cracks. The load-bearing capac-
ity is thereby rapidly reduced. In some instances
this phenomenon has been observed a few years

Fig. 380. Water infiltrating in the subgrade:

I — at joints; 2 — from the inner slope; 3 — via capillarity; 4 — rising flow due to
increased head pressure



after a road was completed, especially if, during a
certain period, it was called upon to carry traffic of
greater weight and volume thannormal. Pavements
constructed on readily saturating soils are espe-
cially susceptible to this effect. The plasticity index
(Ip) of such soils ranges from 5 to 109, they con-
tain low percentages of silt and clay fractions and
the influence of their mineral composition is also
conceivable as a contributory factor. Another
important cause of pumping is insufficient pave-
ment thickness, resulting in great deflections. The
provision of a perfect, well-compacted subbase and
careful dimensioning are suggested as preventive
measures.

Once entered into the soil, the water will contin-
ue to move owing to a variety of factors, until a
state of equilibrium is reached. Reference is made
here not only to the seepage of water proper, but
also to the movement of vapour, due to evapora-
tion within the soil which condenses and precipi-
tates under some parts of the pavement. Regular
moisture observations in the subsoil of cohesive
soils have invariably revealed much higher mois-
ture contents at the centerline under the crown
than towards the sides where drying is much more
effective. Under pavements constructed on sand
where the effect of capillarity is insignificant, this
phenomenon was much less pronounced (Fig. 381).
This may be offered as an explanation for cracks
parallel to the centerline in concrete pavements
constructed without soil treatment.

Concerning the movement of water under pave-
ments, mention must be made of the investigations
by CronEY (1952), who has succeeded in clarifying
some fundamental problems associated with the
migration of “bonded” water. The experimental
results were processed in terms of the capillary
force pF introduced by ScHOFIELD which is the
logarithm of the suction force — that is to say,
negative hydraulic pressure — expressed in cm of
water column. This value is thus a measure of the
force at which water is absorbed by a particular
soil. At the saturation limit this value is zero, while
in the perfectly dry state it is very high.

In the case of moisture differences in a uniform
soil, a suction gradient is created, which tends to
re-establish equilibrium conditions. Even at equi-
librium moisture contents the actual water content
of different soils may differ appreciably. Differences
in vapour pressure give rise to similar effects, but
these are functions of temperature differences. The
p F value is also dependent on temperature and as a
resultant effect of these factors, the migration of
moisture in the soil will eventually lead to the
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Fig. 381. Moisture distribution below the pavement

Drainage, swelling and shrinkage of the subsoil 261

_h"™Bbh=h

bLh=hv/k

-]

(b)) n il T Sand d) e

Fig. 382. Stresses in a clay layer:

a — and b — free evaporation at the surface; ¢ — and d — evaporation extruded
through the covering courses

distribution shown in Fig. 381. Daily and annual
changes in temperature induce a vapour pressure
gradient causing the upward movement of wa-
ter, usually in the form of vapour. Cases have
been observed where the pavement has failed as a
consequence of the high moisture content in the
subgrade, although the climate was very dry with
very little annual rainfall. This phenomenon can
be attributed to the sole fact that the water was
raised in the form of vapour and by condensing
under the pavement it has saturated the soil.

Another factor is the heat of hydration generated
in the soil upon wetting. Water migration in the
soil may be influenced finally by consolidation due
to the stresses induced by the traffic.

In cohesive soils the suction effect may be large
enough to make the removal of water from the
subgrade by gravity alone impossible, since the
gravitational drawdown which can be created by
means of drain pipes located at small depths|barely
attains 10 to 20 kN/m?. Therefore, the primary
objective should be to prevent water from entering
into the soil, since the removal of water which has
already entered may often be found impossible.

In cohesive soils any change in moisture is nec-
essarily accompanied by a change in volume. Let
us consider the mechanism involved in this pro-
cess. The starting assumption is that any volume
change must be produced by a change in the effec-
tive stresses.

A vertical section through the pavement and the
subgrade is shown in Fig. 382. Assume the ground-
water table to coincide with the bottom of the clay
layer. In the original condition prior to the con-
struction of the pavement — Fig. 382a — wateris
evaporated at the surface at the rate of v (cm3/day/
cm? = em/s). Water is supplied to the clay layer
from below and in the case of v = const. — steady
evaporation — upward seepage will be induced
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Fig. 383. Determination of swell with the help of the test
curve

thereby at the rate v. Any water movement is
accompanied by seepage pressures (cf. Vol. 1, Section
5.2). From Darcy’s law, the velocity of flow is

v=~Fki;i= A4 hlh;

Ah =h 2.
k

The effective stress due to seepage is + A hy,,.
With the datum plane at thegroundwater table, the
potential energy is given as hy,,. The pressure con-
ditions are indicated in Fig. 382a.

The upward seepage is interrupted by the place-
ment of the pavement. The differential head in the
entire layer then necessarily becomes zero (Fig.
382b). If the neutral stresses are known, the effec-
tive stresses can be computed, in that the neutral
stresses are subtracted from the total stress with
due allowance for their sign. The total stress is due
to the dead weight. The state of stress has thus been
clarified, and it will be realized therefrom that the

effective stress has decreased by Ao, so that swel-
ling is bound to occur. The extent thereof can be
determined from the expansion curve (Fig. 383).
The effective stress is reduced by preventing evap-
oration, i.e. by the construction of the pavement,
and this will lead to swelling without any further
external effect. The time history of the process
resembles that of consolidation.

Actual conditions are much more complicated.
Nevertheless, we have succeded in demonstrating
that swelling may be induced by covering a clayey
layer. The actual conditions are represented in
Fig. 384, where the stress diagrams have been
constructed for dry weather, for conditions fol-
lowing a storm, during the process of swelling, in
saturated conditions, and finally in the state pre-
vailing with swelling has terminated.

Owing to the number of factors involved, the
liability of volume changes is usually assessed by
empirical methods. The criterion for the need of
control measures is the linear shrinkage of the soil;
once this exceeds 59, the soil is considered ex-
pansive and control measures must be envisaged.
This empirical rule of thumb has been found appli-
cable to the majority of cases.

The main principle in controlling the undesirable
effects of volume changes is to avoid the presence
of expansive soils directly under the pavement and
further to design the road cross-section in such a
way as to confine moisture changes in the subgrade
to a narrow range.

As regards fills, care should be taken to avoid the
placement of expansive soils around the top of the
embankment. Where no appropriate soils are
available from cuts or borrow pits, the expansive
soil must be mixed with a suitable, granular mate-
rial. The mixing ratio should be determined by
laboratory tests. Where no mixing is practicable,
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which contingency is liable to occur mainly in cuts,
a subbase will become necessary under the pave-
ment. The function thereof is to maintain the
moisture content of the underlying expansive soil
at a constant value. For this reason, the subbase
must consist of pervious soil, expediently of sand,
with a silt content not exceeding 39,. The subbase
is called upon to provide rapid drainage of the
water infiltrating from above, thereby preventing
non-uniform saturation of the subgrade; likewise,
in the case of moisture migration from below, it
should provide uniform support to the pavement by
eliminating or distributing minor volume changes.
The surface of an expansive subgrade should be
finished with slopes of 2 to 49/ in both directions,
compacted carefully by means of a smooth roller,
to facilitate the rapid drainage of infiltrating water.
The correct design of shoulders isalso of importance.
These should be made of impervious, but non-ex-
pansive, lean silt. The bottom depth of the side
ditches is also an essential factor. Great care should
be devoted to preventing the entrance of water
under the pavement from a side ditch even if some
silt is deposited in the ditch.

The arrangement of the filter layer applied to
control volume changes in the cross-section is
exemplified in Fig. 385a. Concerning the design of
the cross-section, it should be noted further that
the edges of the filter layer should be supported by
a gravel strip to prevent it from scouring. Another
arrangement, suggested by JAray, is shown in
Fig. 385b.

For the filter layers to be effective, the perme-
ability of the filter medium must be higher than
the rate of infiltration, otherwise the filter layer
will become saturated, drastically reducing the
bearing capacity of the pavement structure under
high impact loads. In a saturated condition the
filter layer, which at the same time serves as the
subbase, will fail to distribute the load, neutral
stresses will be induced and wheel loads will be
transmitted directly to the subgrade (Fig. 386).

The water which has entered the filter layer is
drained laterally and a drawdown curve is devel-
oped. The drainage volume is computed as follows:
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Fig. 387. Sideward movement of water in a filter layer
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Fig. 388. Flow net diagram in the filter layer; finding the
shape factor

The section through the filter layer is shown in
Fig. 387. Water enters from above at the rate g, the
subgrade is impervious. Under steady conditions,
the volume Q = ¢b must be drained in unit time.
According to Darcy, Q = kiF. Here i is assumed
to be proportionate to the ratio h/b, while the actual
cross-sectional area is 1 - k. Consequently

h h%
~k—h=k—.
¢ b b

The rate of infiltration being ¢ = Q/b,

h2
! (b]

9 (k)

k b)’

The above qualitative statement can be specified
in quantitative terms as well, by constructing flow
patterns for different h/b values and plotting the

shape factors obtained against h/b. Two such flow
patterns are illustrated in Fig. 388.The upper curve

(504)
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isnot a streamline, but the limit of saturation, where
u = 0.

Using the familiar formula, the discharge con-
veyed is obtained as

Q = ki 22, q:_Q_: ﬁﬂ,

n, b b n,
or
4 _mh
E  n b
In the case of thin filter layers ny/n, ~ h/b (Fig.
388), so that
q _ ( h 2
k bJ ’

which means to say that Eq. (504) is suited to
quantitive estimates as well. For particular values
of h/b and k it is thus possible to determine the
critical intensity ¢, or, if q is known, the filter layer
can be dimensioned to provide the necessary
drainage.

Consider for example the problem of draining
a 1200 m long airport runway. Down to a depth of
2 m the subsoil consists of clean sand, underlain
by impervious soil. The permeability of the sand is
k=2-10-2 ecm/s. No drainage will be provided,
unless ¢ <7 k(h/b)2 = 2 - 10-2 (2/600)2 = 1.3 - 108
cm/s.

For the practical details and design alternatives
of drainage, reference is made to the book by K£zp1
and Marké (1969).

4.7 Frost susceptibility of the subsoil
4.7.1 Introduction

Owing to the critical role of frost damage in
road construction, it is deemed necessary to deal
with the general problem of frost susceptibility
in the subsoilin the context of highway soil mechan-
ics, including also a brief description of the frost
phenomena encountered with other structures as
well.

In the case of roads, frost action is controlled
by four factors, namely

1. meteorological conditions, climate;
2. soil and groundwater conditions;
3. traffic conditions;

4. quality of the pavement.

In general, significance is attributed to the first
two factors only, although essentially frost damage
becomes observable almost without exception as a
consequence of traffic, its magnitude and extent
depending on the type and quality of the pavement.
This is the reason why the inclusion of such factors
is also justified.

Intheliterature on soil mechanics two approaches
have thus far been adopted for treating the

problem of frost damage. One avenue of approach
is a purely empirical one, involving investigations
into the frost damage observed. From the statis-
tical processing and regular observations of frost
damage, certain rules are evolved which serve as
criteria for frost susceptibility. In the other
approach, theoretical researchand advanced mathe-
matical methods are applied to explore the laws
governing frost penetration in soils and the control
measures are adjusted to the theoretical results
obtained. In view of the semi-empirical approach
particular to soil mechanics, each of the above
methods is bound to remain ineffective if applied
separately.

4.7.2 Meteorology

The meteorological characteristics of frost are
duration of the freezing season and frost intensity.
The former is understood to be the period of time
between the first and last days with freezing tem-
peratures within a season, during which periods
of thaw may also occur. On freezing days the lowest
daily temperature is below the freezing point,
whereas on frost days the soil is frozen for the whole
day, i.e. the highest daily temperature remains
below freezing point. A freezing season may con-
sist of several freezing periods, the latter being
understood as an uninterrupted sequence of freezing
days. Day with an average temperature below freez-
ing point are termed cold and an uninterrupted
sequence of cold days is referred to as a cold
period. Frost intensity means the lowest tempera-
ture attained, while the average temperature in a
cold period is the average intensity thereof.

These characteristics are influenced by the geo-
graphical situation and elevation above sea level of
the location considered, further by the topography
and the vegetation of the terrain.

For comparing freezing periods and freezing
seasons, the total heat deficiency has been intro-
duced as the product of the number of days within
a freezing period and of the mean temperature and
expressed in hours, or °C-days.

The variations in air and soil temperatures dur-
ing the winter of 1939-40in Budapest areshown in
Fig. 389. The daily average temperature has been
plotted in the upper part of the diagram, while the
isotherms plotted against depth and time are
shown in the lower part. The soil temperature is
seen to follow the variations in air temperature
with a certain time lag. At the end of the lower
diagram thawing from above and from below is
observable.

The average and extreme values of soil tempera-
ture have been plotted, on the basis of data for 20
years in Fig. 390.

Concerning frost susceptibility the total heat
deficiency is of paramount significance. This is
determined for a freezing period by plotting the
days on the horizontal axis of a coordinate system,
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Fig. 389. Ambient air and soil temperature in Budapest during the winter 1939-49

while the daily average temperatures are plotted
on the vertical axis.

The average value thereof at Budapestis 150°C-
days, but the fluctuation about this average may
attain considerable amplitudes in both directions.

Other important factors involved in soil frost
studied are the volumetric heat ¢ of the soil, def-
ined as the amount of heat needed for raising the
temperature of a 1 kg soil mass by 1°C. The magni-
tude thereof depends, in general, on temperature.
The thermal conductivity 4 is understood to be
the amount of heat transferred across a soil layer
1 cm thick at a differential temperature of 1°C
during one hour. The product c2 is called the volu-
metric heat capacity of the soil and is the amount
of heat by which the temperature of one volume
unit is raised by 1 °C.

It is also usually found expedient to trace the
integral curve of temperatures. From this diagram
the freezing and thawing indices can be determined
according to Fig. 391. Their magnitude is cal-
culated either on the basis of the air-temperature
(measured at a height of 1.35 m above the surface)
or on that of the soil surface.

A problem of paramount importance in road-
building is associated with the rate of frost pene-
tration. Theoretical studies (e.g. Jumikrs, 1955;
ScHAIBLE, 1957; KLENGEL, 1968) have shown the
soil temperature to vary according to the curves in
Fig. 392 if the variation of the surface temperature
follows a sine curve.

The results of practical interest derived from the
theoretical studies is that the total heat deficiency
and the depth of frost penetration are related by a
power function, which plots as a straight line in a
log-log system of coordinates. This conclusion has
been verified by the statistical processing of mea-
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surement data. The depth of frost penetration has
further been found to depend on the freezing index,
on the moisture content and the dry unit weight of
the soil. From the observation data detailed charts
have been constructed (cf. Fig. 393, U.S. Army,
Eng. Div.).

Measurement data from Hungary and other
countries were collected and processed by GAspAr
(1959) and plotted in the diagram shown in Fig.
394, without taking the properties of the subgrade
into consideration. The diagram represents the
relationship between the depth of the 0 and — 2 °C
isotherms and the total heat deficiency.

4.7.3 Forms of ice segregation in the soil

Depending on the hydrological and meteorolo-
gical conditions prevailing, as well as on the type of
soil, the water on the surface or within the soil
may freeze in a variety of forms.

Cold accumulation °C-days

The case of mass freezing is the most simple of
these. In this case the entire mass of the saturated
soil freezes, the individual particles being surround-
ed by ice crystals. This form of freezing is observ-
able in sands and gravels whereas in cohesive soil
it occurs only under circumstances when the cool-
ing rate is high enough to provide no opportunity
for water migration in the soil. Virtually the entire
water volume present in the pores of such soils is
freely draining, the freezing thereof controlled by
the laws applying to normal, Newtonian water.
Freezing is thus not accompanied by changes in
the soil structure and the original bearing capac-
ity is retained, even in the case of thawing, con-
sequently no hazards are caused to the pavement
or to other structures.

In so far as the volume changes associated with
mass freezing are concerned, a distinction must be
made, according to BEskKow, between saturated
and three-phase soils. No volume change occurs in
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Fig. 393. Frost penetration as a function of accumulated cold hours (heat deficiency) for various soil conditions



the first case if the soil affected by frost penetra-
tion communicates with the unconfined ground-
water, since the water volume which has become
excessive in the soil on account of expansion due to
freezing is displaced towards the groundwater. In
three-phase soils the interestitial water is situated
around the contact points of the soil particles.
As long as the pressure acting on the soil is low, this
water will freeze in the form of ice crystals, ac-
companied by a slight expansion.

In the course of mass freezing the water content
in the soil remains unchanged.

The frost action most critical to road building
is the formation of ice lenses. Exploring and inves-
tigating the soil at the site of actual frostdamage, the
soil will be found to be penetrated by more or
less horizontal ice sheets with thicknesses ranging
from 1-2 mm to several cm and spaced closely to
each other. In fine sandy and silt soils the sheets
are, as a rule, thin but closely spaced, whereas in
clayey soils ice lenses of greater thickness will be
observable at greater distances. The soil between
the ice lenses is loose, appearing almost dry. A reg-
ularity of considerable interest and of ecritical
importance to the frost problem will be recognized
if the moisture content of such soils is determined
before freezing and after the formation of ice lenses.
The result will resemble that shown in Fig. 395. The
moisture content in the vicinity of the ice lenses
will be observed to have increased substantially
over the original condition. Consequently, some
soils have the ability of absorbing water from the
surrounding, still unfrozen zone, which is then ac-
cumulated in the form of ice lenses.

The water accumulated in the ice lenses may be
attributed to two sources. In moist soils which are,
however, prevented from communicating with the
unconfined groundwater, and thus from receiving
additional supplies, no more water than that al-
ready present in the soil is concentrated in lentic-
ular form. The volume of this water being insig-
nificant only a few thin lenses will be formed and
the process is terminated within a short time. Sys-
tems of this type are called closed and no more
water than the moisture content of the soil is dis-
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Fig. 394. Depth of frost penetration after GAspARr (1959)
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Fig. 395. Moisture dispersion before and after frost

tributed in a different pattern by freezing. No heave
of the surface is experienced, probably on account
of the fact that the expansion corresponding to the
thicknessof the lenses is compensatedby theshrink-
age of the parts of the soil from which water is
withdrawn.

The situation will be different where the zone of
frost penetration is continually supplied from the
groundwater by capillary rise. In the groundwater
below the freezing depth the water is free to move.
In such cases the water volume used for the for-
mation of ice lenses is continually supplied by
capillarity. Systems of this type are referred to as
open. In particular cases supply may be secured
by surface waters which have infiltrated into the
soil and accumulated at certain locations.

The ice lenses are in general situated parallel to
the soil surface, in a direction perpendicular to the
temperature gradient. Since the lenses invariably
grow in the direction of the least resistance, the
terrain surface is raised in the process, the total
heave being equal to the aggregate thickness of the
ice lenses.

Open and closed systems are illustrated diag-
rammatically in Fig. 396, with Fig. 397 showing
the progress of frost penetration and the develop-
ment of frost heave. The data in Fig. 398 are also
of interest. Here the extent of frost heave is shown
according to the investigations by Dcker (1956,
1964) for media composed of uniform grains, and
plotted against the characteristic particle diam-
eter.

This value will be seen to increase rapidly in the
finer fractions. The rate of frost penetration is
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Fig. 396. Idea of open or closed systems for ice-lense forma-
tion:

a — closed system when water supply is excluded; b — open system with water
supply allowed

plotted in the same diagram. The two data, namely
the extent of frost heave and the rate of frost
penetration are used by DUCKER as the criterion of
frost susceptibility of a particular soil. The degree
of frost depth is accordingly

%=

frost heave (E, mm)

-100.

thickness of frozen layer (H, mm)

The magnitude of this factor is also plotted for
the individual particle fractions in Fig. 398. Ac-
cording to DUCKER, assuming an average poros-
ity] of n = 209, a degree of frost susceptibility
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Fig. 397. Frost penetration and frost heave with the pas-
sage of time

greater than f = 39, is indicative of ice lens for-
mation, of lenticular ice segregation.

Hazards to buildings and structures supported
by the soil are presented only by lenticular freez-
ing and, as will be perceived from the foregoing,
this liability prevails in fine-grained soils only.
Frost action in coarse-grained media takes the
form of mass freezing. The rate of cooling is another
factor in frost action. As indicated by both labora-
tory freezing tests and observations in the field slow
cooling rates are more conducive to ice lens for-
mation than rapid rates. At very high cooling
rates, mass freezing will occur even in fine-grained
soils.

Finally, the development of frost heave is in-
fluenced also by the load acting on the soil. From
the theory of consolidation it will be recalled that
an increase of stress at a point within the soil will
displace some of the water from the soil. The
thickness of the water films is reduced thereby,
affording less opportunity of water supply towards
the frozen areas. In other words this implies that
the extent of frost heave is reduced by the pres-
sure due to an external load acting on the surface
of a freezing soil mass.
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The following physical explanation may be of-
fered for the formation of ice lenses. The freezing
point of the adsorbed water in the vicinity of the
particle surface is below 0 °C. Adsorption forces,
chemical effects and free ions are responsible for
this effect. This reduction is the more pronounced,
the smaller the pores within the soil. Consequently,
in a cohesive soil, in the undisturbed state, the
freezing point of water tends to vary from point to
point. In the vicinity of particle surfaces, the water
molecules are subjected to high electric forces and
the freezing point is thus well below 0 °C. On the
other hand, in the pore water filling the particle
interstices, normal properties prevail, and the
freezing point is at 0 °C. Once the temperature
decreases to below 0 °C individual ice crystal nuclei
are formed in these larger pores. Freezing is ac-
companied by the expansion of the water volume,
the ice exerting a wedging pressure on the sur-
rounding soil.

The crystallisation force of the growing ice crys-
tal attracts the water molecules from the surround-
ing soil and water is thereby removed from the
adsorption films as well. The balance of the water
film is thus upset, the free potential tends to com-
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plete the film and as a consequence water is raised
from the deeper layers. The process of freezing is
thus accompanied by two types of water migra-
tion, namely (a) suction of water from the lower
layers in a manner resembling capillary movement,
and (b) displacement of local interstitial water
towards the freezing soil masses. The water suction
under (a) must not be mistaken for capillary action,
since in this case no meniscus-effect is present.
Capillary tension will be recalled as developing
exclusively at interfaces between solid, liquid and
gaseous media, as a consequence of surface ten-
sion. Experiments have shown, however, the afore-
mentioned suction force and the capillary rise to
represent forces of identical orders of magnitude.
The water volume which is potentially transported
by capillarity in a particular soil, under particular
conditions upward, is termed for brevity the “capil-
lary capacity”. This capillary capacity may be
assumed to represent the upper limit of the water
volume which can be raised by the suction exerted
by the growing ice crystals. The atmosphere in the
soil interstices is saturated with water vapour and
if the pressure prevailing in the vicinity of the
growing ice crystal is lower than in the deeper
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Fig. 399. Frost and thaw processes in the underground
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layers, the vapour will migrate upward,to precipi-
tate and freeze subsequently as a consequence of
the temperature difference.

From the foregoing it can be concluded that ice
lenses will not form unless the following three
conditions are satisfied simultaneously:

— the temperature decreases to below 0 °C;
— the subsoil is susceptible to frost;
— the supply of water is secured.

4.74 Frost and thaw damage

Frost damage takes, on the one hand, the form
of unequal pavement heave, and on the other, and
this is the greater liability, of increasing the mois-
ture content in the subgrade under the pavement,
thereby saturating the surrounding soil and redue-
ing its bearing capacity upon thawing. Repeated
cycles of freezing and thawing will completely
change the structure of the soil, virtually eliminat-
ing its bearing capacity, so that the pavement is
deteriorated by the traffic it is bound to carry in
such periods. The typical damages observable in
the diverse pavement structures will be described
as follows.

Water-bound macadam pavements already suf-
fer deterioration during the freezing period. Ice
lenses tend to raise the stones and longitudinal
cracks develop with frost heave in an irregular pat-
tern. If the snow is removed, the opportunity for
frost penetration is increased, resulting in more
extensive heave. A sudden rise in temperature will
cause the pavement and a relatively thin layer of
the subgrade to thaw, leaving some of the subgrade
in a frozen condition. The frozen layer is imper-
vious, leading to the development of a saturated,
loosened layer with no bearing capacity. Traffic
loads acting on a pavement in this condition result
in the rapid deterioration thereof. The process de-
scribed is illustrated in Fig. 399.

A hand-placed rock base on frost-susceptible
soil will suffer frost deterioration by the mechanism
shown in Fig. 400 (ScuaiBLE, 1957). The rocks of
the base penetrate increasingly deeper into the
softening subgrade.

Flexible, asphaltic pavements assume an undulat-
ing surface under frost action, subsequently de-
veloping a network of cracks. The cracks provide

{a)

Fig. 400. Harmful effect of frost in a porous pavement
structure:

a — original structure; b —— softened earth rises high; ¢ — crushed stone base
merges into the soil

access for infiltrating water into the subgrade, the
soil is remoulded by the pumping action of traffic,
the bearing capacity is minimized and deterioration
proceeds at a high rate.

The slabs of concrete pavements are raised by
frost heave, the joint sealing is damaged, opening
a path for water infiltration from above. The sup-
port of the concrete slab becomes non-uniform, so
that the edges, or corners thereof will break under
load. Properly dimensioned rigid pavements be-
have better than flexible structures in withstand-
ing frost heave, non-uniform deflection and settle-
ment upon thawing, since the wheel load is distri-
buted over a larger surface.

4.7.5 Frost criteria

In assessing the potential damagesby frostaction
and thawing the following questions must be an-
swered:

1. What is the depth of frost penetration during
the freezing season?

2. What form ofice segregation is liable to occur,
and is the formation of ice lenses to be anticipated ?

3. Is the supply of water ensured ?

1. The depth of frost penetration is always as-
sociated with the depth of the 0 °C isotherm. This
depth can be found from Figs 393 and 394. The
total heat deficiency is determined most expedient-
ly by consulting a meteorologist. The variations in
temperature for the past thirty years should be
studied, the total heat deficiency computed and,
omitting a few extreme values, the design value
adopted. As far as applicable, allowance should be
made for the microclimate of the track envisaged,
comparing the environments and soil conditions at
the observing station and at the proposed construc-
tion site. According to current Hungarian practice,
in locations where the total heat deficiency remains
below 500 °C-days, a depth of 80 ¢m is commonly
adopted as the design value for frost penetration
and when this value is higher, a depth of 100 cm
may be used. These figures are to a certain extent
on the conservative side. A margin of safety must
be included, since frost damage is extremely ex-
pensive to repair (in Hungary attaining an order of
magnitude of a a hundred million forints annually),
whereas appreciably smaller expenditures are
needed for preventive measures. The experience
gained in the recent past during several long and
severe winters with subsequent sudden thawing,
have further revealed that the ““ageing’ of a road
is accompanied by a higher frost susceptibility
which can probably be attributed to changes in the
water regime of the subgrade and the environment
brought about by the construction of the road.
Owing to the foregoing considerations, the depth of
frost penetration to be used as design criterion
should be adopted carefully, preferably using a
pessimistic approach.



2. Attempts to find an answer to this question
have resulted in the development of several frost-
susceptibility criteria, of which the one originated
by CASAGRANDE (1934) has been commonly used.
According to this criterion,in a uniformly graded
soil (U = 5) ice lenses will develop if the total silt
fraction (d = 0.02 mm) is greater than 109%,. Soils
having a mixed granulometry (U = 15) and con-
taining 39, or more of silt should already be regard-
ed as frost susceptible. The corresponding granulo-
metric ranges are shown in Fig. 401 and the appli-
cation of the criterion is facilitated by the diagram
in Fig. 402. CASAGRANDE’s criterion is rather con-
servative and not supported in all respects by
more recent research. A further objection is that
the granulometric curve is taken as the only cri-
terion of frost susceptibility. This has since been

Mass percentage, S (%)

Gravel Sand Mo Sitt Clay
;2/7 v T
4 Frost-risk
80 < >
Q NA S
0 Uf\/\ . \PO (:\O A
6 55
40 A 6/@ 4
20 —*—Flrost safe o
oL 1| 3%
2 o7 002 0002

Grain-size diameter, d (mm)

Fig. 401. Frost criterion after CASAGRANDE (1934): grain-
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Fig. 402, Diagram for speedy decision as to frost risk
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recognized as one of the most important factors,
but one which alone is not decisive.

On the basis of detailed investigations, three
degrees of frost susceptibility have been suggested
by ScraiBLE (1957). Adopting several particle
diameters, he has distinguished non-susceptible,
frost sensitive and frost susceptible soils. The eri-
teria have been compiled in Table 33 and represent-
ed graphically in Fig. 403.

Special care should be exercised with soils con-
taining weathered rock debris. Physical and chem-
ical weathering due to traffic loads and atmos-
pheric influences tend to increase the amount of
fine grains, as a consequence of which the frost
susceptibility of the soil is increased.

In Hungary a criterion was suggested by GAspARr
(1958) and this is indicated in Table 34, with the

corresponding granulometric curves in Fig 404.

Table 33. Determination of frost-susceptibility after ScuaiBLE (1957)

Proportion of fines (%) Judgement of risk about frost or thaw damage
Grade Cla Clayandsilt | Clayandsilt + Mo |
(d< 0.};)02) (s y<ax(;‘0;1) &y ?; <510.1;h ° Theoretically In practice

I 0 0....5 So.... 10 No harm Frost safe

1I 1 5....10 10..... 20 Slight damage
111 2 10....15 20..... 30 Moderate singular Frost-susceptible
v 4 15....20 30..... 40 damage

A% 6 20 40 Serious damage Exposed to damage
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Table 34. Determination of frost-susceptibility after GAspir (1958)

. Particle size distribution (%) Judgement of risk about
Grade Soil type S(d — 0.02 mm) I $(d = 0.1 mm) frost-susceptibility
a Gravel 6 < 15
Coarse sand 5 < 20 Frost-safe
Fine sand 4 < 25
b Gravel 6...15 15 ... 20
Coarse sand 5...10 20 ... 30 Frost-susceptible
Fine sand 4 ... 8 25 ... 35
c Gravel 15 > 25
Coarse sand 10 > 30 Susceptible in
Fine sand 8 > 35 greater degree
Cohesive soils
I, >0.12
d Mo I, < 0.12 Highly frost-
Silt i susceptible

The aforementioned frost-susceptibility criteria
are compared in Fig. 405. In the criteria of Casa-
GRANDE, GAsPAR and SCHAIBLE, one, two and three
particle diameters are involved, respectively, and
the corresponding percentages by weight are spec-
ified for theindividual ranges. The above sequence
at the same time implies the severity of the
criteria. For practical purposes the observation
of GAsPAR’s criterion is generally recommended in
Central Europe. For assessing the subgrades of
highways of primary importance, as well as of
airport runways, the criterion of CASAGRANDE
should be applied, whereas for roads of lesser signif-
icance that of SCHAIBLE should suffice.

The information compiled inTable 35 willprovide
assistance in rapidly assessing the degree of frost
susceptibility in the field.
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Fig. 405. Comparison of different frost eriteria

Some authors find it appropriate to classify the
frost action on the basis of frost heave. The fol-
lowing relation exists between the suction force (Pp)
attached to a given suction pressure (P), the per-
meability of the soil (kp), and frost heave:

P, h

b —— = ———— 505
P 1.09 AT (509)
where 1 = distance between the lowest ice
lens and the water table,
v = velocity of water seepage,
AT = passing time,
1.09 = the coefficient of expansion by

freezing.

Several researches attached great importance to
crystallization forces in the process of ice lens
building, but, according to their investigations,
these were in the range and magnitude of the cap-
illary forces. A similar opinion has been expressed
by KOGLER et al. (1936) who found it appropriate
to put the capillary force in Eq. (505), which they
calculate from the capillary uplift (H) reduced by

the resistance suffered in the course of rising:

q= kﬂl_—l, (506)

where k is the coefficient of permeability at 10 °C.

The authors classify frost susceptibility on the
basis of Eq. (506), but regard frost heaves of up to
2 c¢m as generally acceptable. The principles of this
so-called Freiberg-criterion can be seen in Fig. 406.
The three zones in the figure are characterized as:

a = harmless,

b = frost susceptible for long duration of frost,
or non-homogeneous soils,

¢ = very dangerous.

It is claimed that the validity of these criteria has
been confirmed by field tests.
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Table 35. In situ determination of frost-susceptibility
Identifi- L. Grade of
cation Description of soil frost-suscep-
tibility
A Organic soils I
B Soils abundant in stone and gravel
1. No bounding agent present, crumbles easily I
2. Bounding agents present, forms clods II
C The water saturated soil becomes gleaming when shaken in
the hand: water recedes into the pores when pressed
between the fingers III
D The soil consists of a fine-grained mass
1. forms sandy clumps; fine grains are I
not visible by the naked eye; 2. forms hard clods
(a) canbe rolled I
(b) can not be rolled; pulverized III

Equation (506) and some conclusions drawn
therefrom need some correction however (RETHATI,
1960) because

(a) the equation is valid only in the lower capil-
lary zone where the soil is saturated (here: H = h);

(b) above this zone not only the path—time curve
but also the degree of saturation changes (diminishes
as it becomes farther away from the water table).

Departing from Jaky’s experiments which de-
scribe the capillary rise (h) in time (t) — with the
exception of the initial rising phase — by the ex-
pression

h=at, (507)

the quantity of water delivered by capillarity can
be written as

g= S,nbh , (508)
[ 4

where S, is the degree of saturation at the desired
elevation, and n is the porosity of the soil. The
function S,(k) can be determined in the laboratory
(RETHATI, 1960).

3. A detailed hydrogeological study must be
performed before an answer to this question can be
given. The height to which groundwater table rises
in the winter season should be found in order to
determine whether the suction force acting is
sufficient or not to provide the supply of water
under the particular geometrical conditions.

4.7.6 Frost control methods

As mentioned in the introduction to the present
chapter, pavement damage due to frost action is
liable to occecur where three conditions are satisfied
simultaneously, namely a frost-susceptible soil, a
source of water supply and freezing temperature of
sufficient duration. The third of these factors is
particular to a given site and thus beyond control.
For this reason, any control measure must be
directed towards the elimination of one of the first
two factors.

18 4. Kézdi and L. Réthéti: Handbook

The first factor can be eliminated by modifying
the properties of the soil. This may be accomplished
by mixing an imported soil with the original so
that the resulting soil mix should no longer satisfy
the criterion of frost susceptibility. On occasion
certain chemicals may be used for this purpose.

These methods are cumbersome and expensive to
realize in practice and therefore, also because of the
heterogeneity of the soils encountered in Hungary,
they have never been generally adopted in that
country.

For preventing water from being supplied, one of
the following methods may be adopted.

A granular layer of sufficient depth to intercept
the capillary rise may be placed under the pave-
ment. Gravel, crushed stone or even slag may be
used as the material for this subbase. It is essential
to envisage a sand layer of moderate thickness
between the coarse-grained subbase and the frost-
susceptible subgrade, otherwise the pores between
the coarse particles would be plugged.

The most widely used method consists of re-
moving the frost-susceptible soil and of construct-
ing a base course of sufficient thickness. An example
for the design thereof is illustrated in Fig. 407.
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Fig. 406. The Freiberg-criterion



274 Soil mechanics in road construction

-~
Q
=

S
D
N
S
\ g < e 3.'-"Zi
S >><\ o
Frost-risk in the subgrade l 3
Plain surface, Well compacted S
S &
D D
N )
S S
E A
|

(b)

Fig. 407. Sites of the preventive layer in the cross-section

The base course serves at the same time to in-
crease the load-bearing capacity, sometimes per-
mitting reduced pavement thicknesses. In Hun-
garian practice, the thickness of this layer is
commonly determined according to the criteria
compiled in Table 36. Similar criteria, suggested

Table 36. Required thickness of frost-preventive layers
(Hungarian Standard)

Subsoil Depth of the water table Depth between the bottom
according below formation level in of the preventive layer and
to Table 34 December that of the load-bearing

course
a down to F (—2) According to bear-
ing capacity
b 2F(—2) According to bear-
mg capacity
F(—2)...2F(-2) 0.8 I (—2)
c 2F(—2)...3F(—2) 08 F (—2)
F(—-2)...2F (—2) 0.9 F ((—2)
d 3F(—2)...4F (-2 09 F (-2)
F(—2)...3F(—2) F(-2)

F (—2) = frost penetration depth of the isotherm —2 °C

by the highway research institute in the Federal
Republic of Germany (SiEDEK and Voss, 1956),
are given in Table 37.

Other potential methods include drainage of the
subgrade under the pavement, or lowering the
groundwater table by longitudinal drains. These

methods only prove successful, however, in excep-
tional cases, since it is precisely the frost-suscep-
tible soils which can only be slightly drained by
gravity.

Filter drains of this type are entirely ineffective
where the capillary rise is greater (h>1.50 m). No
improvement can be expected from the provision
of deep side ditches and on occasion this may even
result in increased frost action.

Another alternative consists of raising the grade,
thus increasing the distance between the ground-
water table and the depth of frost penetration.
According to another solution an isolating layer
of dried peat, straw, brushwood, ete., is applied. In
recent times plastic foils have been used experi-
mentally but these attempts appear to have re-
mained unsuccessful, mainly due to the fact that
the foil prevents evaporation and the moisture con-
tent is likely to increase beneath it.

The detailed description of the design parameters
of the foregoing methods belongs to the domain of
highway engineering and will therefore be omitted
here.
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Chapter 5.

Improvement of the physical properties of soils

5.1 Introduction

The physical properties of natural soils and of
man-made earth structures are often poorer than
may be required for a particular project, in that
their shear strength may be too low, their compres-
sibility, water content or permeability too high,
etc. The solution to a particular engineering
problem may basically be approached from three
different directions:

(a) The soil layers of inferior quality are relieved
from bearing loads, or from withstanding water
pressure, etc. This method is adopted for instance
when the load of a building is transferred to a
sound layer situated at greater depths by means
of piles or caissons, or when a highly pervious soil
is confined by a sheet pile cutoff extended into
a lower impermeable layer.

(b) The poor soil layer is removed from under
the structure and replaced by a soil having the
required properties. This method is applicable in
the case of tall buildings, but even more so in
earthwork foundations, where e.g. a highly com-
pressible peat mass is removed by excavation or
blasting. Removal may be complete or partial,
in the latter case the poor soil being excavated
to a certain depth only, or in the form of vertical
columns, i.e. a distributing layer, or alternatively
sand or gravel columns are adopted.

(¢) The third method consists essentially of
changing and improving the properties of a partic-
ular natural soil by some kind of treatment to
make it better suited for the purpose envisaged.

5.2 Compaction of soils

The most ancient soil improving method is
compaction. With the advance of technology two
main branches have developed in this field:
compaction at the surface and deep compaction.
When compacting effort is exercised at the sur-
face, its impact embraces the upper top 20 to
50 cm layer below the surface. (“Heavy tamping”
does not belong to this category despite the fact
that the energy is transmitted at the ground
surface.) Due to significant differences between

them, the two branches have to be dealt with
separately, though some regularities are relevant
to each procedure.

5.2.1 Compaction at the surface
5.2.1.1 The significance of compacting

Depending on their purpose, earth structures
are required to conform to desired characteristics.
These are most often associated with stability,
durability, low permeability and resistance to
deformation.

In planning compaction operations, the engineer
is usually faced with three problems.

1. Determination of the required soil density.
Any decision in this respect should take into con-
sideration the purpose for which the earth struc-
ture is to be constructed. In some earth structures
adequate strength, in others a specified degree of
permeability, may be the dominant requirement.
Once the desired values of the coefficient of per-
meability, shear strength, or modulus of compress-
ibility are established, the density to be attained
during construction can be found from laboratory
and/or field tests.

2. The second problem is related to the selec-
tion of compaction equipment and methods by
which the required density can most economically
be attained.

3. Compaction operations at the site must be
supervised and the results thereof checked con-
tinuously by a method yielding data in the shortest
possible time, to see whether the values specified
have actually been attained or not.

The importance of proper compaction has only
been recognized in the last few decades. In the
past, e.g. in carrying out the large railway pro-
jects of the 19th century, it was generally believed
that adequate compaction of the loosely spread
soil could be attained solely under the influence
of the traffic of the earth-hauling vehicles. The
importance of consolidation that is believed to
occur during a winter period during which con-
struction work is suspended, has generally been
‘overestimated.
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Fig. 408. Equipment used for normal and modified Proctor compaction tests

5.2.1.2 Factors affecting the compaction effort

In the first volume of the present book, a test
is described by which the optimum water content
and the maximum dry density attainable with
a given compaction effort can be deteimined. In
this test a soil sample is placed into a cylinder
in loose layers and each layer is compacted by
a prescribed number of blows with a standard
weight. The device is shown in Fig. 408. The major
data of tests used for determining the ‘“‘normal”
and the “modified’” Proctor densities are compiled
in Table 38. The test is repeated at several different
water contents and the water content and dry
bulk' density are determined for each. The rela-
tionship thereof is then plotted in a diagram.

The curves obtained (cf. Vol. 1, Section 2.3.6,
Figs 63-64) — called Proctor curves after their
originator — display a typical shape, from which
the optimal water content of compaction and

Table 38. Testing methods to find Proctor densities

Volume of | Number Mass of Number
Description the sample of the tamper Drop of
(cm?®) layers (kg) (mm) drops
Standard 2080 3 2.5 305 25
Modified 2080 5 4.5 460 55
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Fig. 409. Characteristic shape of a compaction curve



further the “normal” or “modified” Proctor den-
sities are obtained (Fig. 409). The w — vy, relation-
ship for saturated conditions or for a given satura-
tion S, may also be plotted in the diagram, accord-
ing to the expression

Y
Yo = >

Wys .
14—
Sryw

The Proctor curve will always remain below the
saturation line S, == 1, since the air can never be
completely removed by tamping. The shape of
the Proctor curve is in agreement with practical
experience, according to which neither completely
saturated nor desiccated soils can be effectively
compacted. In the first case, the soil will yield
laterally under the weight, or transient neutral
stresses will be generated, whereas in the second
case most of the compaction effort will be con-
sumed in breaking up hard lumps.

There are cases where the Proctor curve assumes
a shape differring from those shown before. For
some clays, in addition to the peak, it may also
display a minimum, in the range of smaller water
contents, implying that dry soil is again more
readily compacted. A Proctor curve of this type
is illustrated in Fig. 410.

This shape may also be encountered in sandy
gravels. The probable reason thereof is that owing
to the menisci a certain cohesion is introduced by
surface tension, increasing the resistance to the
compaction effort.

The peak of the Proctor curve is usually asso-
ciated with a certain degree of saturation. This
value remains unchanged if the test is repeated

200
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Fig. 410. Compaction curve with two prominent peaks
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with a different, e.g. higher, compacting effort.
This implies, on the other hand, that the peak,
the optimum moisture, will necessarily be shifted
to the left. Proctor curves for successively in-
creasing compaction efforts are shown in Fig. 411.

In a lecture delivered in 1964, the senior author
attempted a physical explanation for the shape
of the Proctor curve. For this purpose the curve
has been plotted as illustrated in Fig. 412, indi-
cating the change in the whole volume as a func-
tion of saturation. The relationship thus obtained
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Fig. 412. Representation of the compaction curve as a
function of saturation

consisted of two different sections. The section
S, = 0 to 0.85 was found to be linear in the great
majority of the cases examined so far; moreover,
having repeated the test on the same soil sample
with different compaction efforts, the results
plotted to parallel straight lines in the first sec-
tion. The second section assumed the shape of
a rapidly rising curve more or less asymptotically
approaching the S, = 1 axis.

A reasonable physical explanation can be
offered for this shape of the curve. At the satura-
tion values corresponding to the left-hand branch,
water is present in the soil — mostly in the form
of a film adsorbed on the particle surfaces. The
“mobility” of the particles and, in turn, the
effectiveness of compaction will increase together
with the thickness of the water film, since the
viscosity thereof decreases rapidly with the
distance from the solid surface (Fig. 413). Below
certain values of S, relative movement of the
particles is made possible by the air present in
the soil. If the specific surface of the soil is f

Viscosity

Fig. 413. Effect of molecular forces in thegrain—water system:
oosing toughness with increased distance

(cm?/g) and the particles are assumed to be spher-
ical in shape, then the average particle diam-
eter is

and at the water content w the thickness of the
water film around the particle becomes
wy.d w
§— Lt W
vw  Jrw

Assuming e.g. a particle diameter of d = 0.001 cm
the specific surface is

PR

9310 om?
0.001 - 2.6 om’lg

and the water content corresponding to a water
film of 6 = 0.5 um is w = 100 3fy, = 159%,.

Thus it will be readily understandable that at
similar and smaller moisture contents, the viscos-
ity of the water film will present an obstacle to
compaction. Considering the law of viscosity, it
can be demonstrated that e = bS,, so that the
reduction in the void ratio is directly proportional
to saturation. This linear relationship can hold
true up to certain degrees of saturation only, since
it is impossible to squeeze water from the soil
even by static compaction. Assuming, however,
that air can be removed during the short time
available — compaction being the consequence
thereof — the density attainable should, in prin-
ciple, be inversely proportional to saturation.

In other words, at S, = 0 it should be possible
to compact the soil up to the density e = 0 (or to
the e — ey, value). At S, = 1, on the other hand,
no compaction occurs at the given water content.
Consequently

€min

e =——,
1— 8,

It should be evident that of the two equations,
namely e == e, — bS, and e = e ,/(1 — S,), the
one yielding the higher e value, i.e. the lower
density, will be applicable. The point of inter-
section of the two curves (Fig. 412) will represent
the optimal water of compaction.

5.2.1.3 Pores in soil mixtures

In soil mechanics, but mainly in connection
with concrete technology, considerable efforts
have been devoted to the determination of the
granulometry conducive to the smallest pore
volume. In the domain of concrete technology
these investigations have failed to produce explicit
results. It was found that the strength of a concrete
made with the “best” aggregate may even be
smaller than that of a concrete mixed with
another aggregate, since other factors, e.g. con-
sistency, were often predominant. Concerning soil



mechanics it may be concluded in general that
soils graded uniformly, i.e. having a higher uni-
formity coefficient U, are compacted more readily,
with a smaller compaction effort, since then the
voids between the coarse particles are filled by the
finer fractions. The theoretical arrangement shown
in Fig. 414a will, however, never occur in practice,
the corresponding grain-size distribution curve
(Fig. 414b) representing a purely theoretical,
unrealistic case.

The greatest density of a soil consisting of two
or three components, i.e. size fractions, will be
obtained at a specific mixing ratio. An explanation
for this phenomenon has already been presented
in Vol. 1, Section 3.2, where several examples
have also been quoted. The size distribation of
pores in granular media has also been discussed
there, together with the changes in this distri-
bution as a consequence of compaction. Studies
of this type will play an important role in compac-
tion problems.

In the interpretation of experimental results
the analogy to be demonstrated subsequently will
present a highly visual picture.

If a substance is dissolved in the molten product
of another, the interaction between the molecular
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components will produce a uniform solution. In
the course of this process the mutual attractive
forces between molecules of the same kind, as well
as the dispersive forces — which depend on tem-
perature — tend to decrease, so that the melting
point, which is a function of temperature, is
lowered (Fig. 415). The lowest value is named the
eutectic point (point @ in Fig. 415). Considering
that soils consist of discrete components, which
occur in variable proportions by weight in the
granular medium, and further that temperature
is a measure of the free energy of a system com-
prising several components and a quantity posi-
tively related to the volume of the system at
constant pressure, the analogy between molecular
and macromeritic fluids will become apparent.
The free energy of the system is the greater, the
higher its porosity; the latter also controls the
volume of the system. Porosity in macromeritic
systems thus assumes the role of temperature and
conversely, the temperature of fluids may be
regarded a measure of their “porosity’’.
Numerous investigations aimed at the deter-
mination of the density of two-component systems
have been reported on in the literature (e.g.
RobpE, 1952). A mixture of spheres having two
different diameters, d; and d,, was found to
display, in the loosest arrangement, a porosity
invariably lower than that of a mass containing
uniform spheres only. The phenomenon observed
here is the same as in the phase diagram of
Fig. 415. Experimental results supporting this
conclusion are compiled in Fig. 416 (FUrnas,
1931). The normal porosity was n = 509, the

diverse curves apply to two-component granular
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Fig. 417. Dry densities of two-component mixtures (LEUS-
sINK and KuTzNER, 1962)

media with different d,/d, values. The greatest
density was invariably obtained at a particular
mixing ratio. The ratio d/d, applies to the case
where the voids of a coarse component (sand,
gravel) are filled with fine clay. Similar results
have been attained by Lrussink and KurzNER
(1962) and further, at the laboratory of the
Technical University of Budapest (Kézdi). Some
of the results are reproduced in Fig. 417.

A system of three components has two degrees
of freedom (FinpLaY, 1951). The condition of the
system depends on the relative concentration of

the three components and on porosity. Mixtures
of three-size fractions compacted with the same
effort will display porosities similar to those shown
in Fig. 418, in a diagram of the three components.
The character of the diagram is again identical
with the phase diagram of different fluid mixtures.
Point K (the eutectic point) is situated on one
side of the triangle, since the three components
can be mixed in any proportion.

A result of considerable interest is shown in
Fig. 419. The loosest and densest porosities of
different sand mixtures are plotted in a triangular
diagram. Figure 419 shows the difference between
the two values.

An experimental approach is suggested for
determining the composition of a soil mixture
which is readily and economically compacted for
a specific purpose.

The behaviour of granular media is governed,
besides their porosity, also by the size of the
pores. These pores have been studied by the
senior author (K£zp1, 1979). The pores of a partic-
ular sample were filled with gelatine, after the
solidifaction of which the pore umits could be
measured and their volume computed. The volu-
metric distribution curves have been determined
from a sufficiently large number of measurement
data and plotted for both the solid particles and
the pores. Two examples are shown in Fig. 420
where the distribution of pore sizes was deter-
mined for dense and loose conditions. By plotting
the difference between the two curves, it will be
observed that the reduction is most pronounced
at a certain pore size.

Tendencies experienced in the capillary rise of
water let us conclude that the moisture distri-
bution in the upper capillary zone is in conformity
with the distribution of the pores (RETHATI, 1960).
Thus in most cases we will be close to reality
when we describe the pore-distribution curve by
the lognormal distribution function.

10050 d (mm)ﬁ

A 1474227
B | 124058
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Fig. 418. Porosity in a three-component mixture as the
function of the loosest arrangement
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Fig. 419. Porosity values of three-component mixtures in their loosest and densest arrangements showing the ranges of
the three components: 4 = 0.58... 0.29 mm; B = 0.29... 0.22 mm; C = 1.24...0.58 mm;

a — porosity in the loosest stage; b — poresity in the densest stage; ¢ — porosity ranges as functions of composition

5.2.1.4 The effect of compaction on the physical
properties of soils

The main factors affecting the behaviour of a
compacted soil mass are the density (T, or e),
degree of saturation (S,), and the microstructure.
Each of these factors is in turn determined by
the compaction water content, compaction energy
and compaction method.

Microstructure can be defined in the first
approximation as the degree of preferred orien-
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tation of clay particles (REsEnDIZ, 1977). Two
main factors determine the microstructure: 1. the
magnitude of interparticle repulsive forces, and
2. the angular deformations induced by compaction
(kneading effect).

A general representation of the structure of
compacted soils is shown in Fig. 421 (McRaE,
1959): the drawings on the left-hand side illustrate
the structure of soils compacted on the “dry side”,
i.e. at moisture contents lower than the optimum
determined by the Proctor test. The right-hand
side shows the results of compaction on the wet
side. The structure of sand and gravel is unaffected,
only the void ratio is reduced by compaction.
With cohesive soils the situation is different, since
compaction on the wet side tends, in general,
to produce a much more oriented structure. At
higher moisture contents the individual particles
are surrounded by a water film of greater thickness
and this lends increased mobility to the flat flaky
particles, thus enabling them to assume positions
perpendicular to the compacting force. In dry
condition, on the other hand, an irregular, un-
oriented structure results. These differences have
important consequences for the behaviour of the
compacted soil.

The effects of changes in the clay structure
are illustrated in Fig. 422 for a greater and a
smaller compaction effort (LAMBE, 1960).

In the condition corresponding to point 4, the
water content is so low that the repulsive forces
between the particles are smaller than the attrac-
tive forces, the resultant force being attraction.
The particles are consequently coagulated without
any regular pattern. The repulsive forces increase
together with the moisture content and the
particles are dispersed. In this condition they
tend more readily to assume a regular pattern.
The higher degree of orientation is accompanied
by higher densities, so that the dry density
increases up to point B. Although the degree of
orientation continues to increase at even higher
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Fig. 421. Structure of different soils after compaction:

I — initial stage on the dry side from optimum; IT — initial stage on the wet side
from optimum; a — sand and gravel; b — silty and clayey sand and gravel; e —
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Fig. 422. Variation of the soil structure during compaction

moisture contents, the unit weight will decrease
owing to water occupying a growing volume.
Greater compaction efforts will always result in
a higher degree of orientation and thus in a higher
density (Fig. 422).

The degree of particle orientation can be mea-
sured quantitatively by the optical methods
developed by MircrELL (1956). The results shown
in Fig. 423 have been published, among others,
by Pacey (1956). These correspond to the draw-
ings shown in Fig. 422 and provide the corre-
sponding numerical values. The influence of struc-
ture on some of the important soil properties has
been studied by SEED and CuAN (1959).

The influence on shrinkage is illustrated in
Fig. 424. The shrinkage of samples compacted on
the dry side is seen to be considerably smaller.
The influence of structure is demonstrated even
more clearly if soil samples are prepared with
the same moisture content and compacted to the
same density, but with different structures. This
is realized by allowing the samples compacted on
the dry side to absorb water. Comparing the
linear shrinkage of the samples compacted on the
wet side, i.e. of dispersed structure with that of
samples compacted on the dry side but sub-
sequently moistened, the results shown in Fig. 425
will be obtained, indicating a much smaller
shrinkage for the samples compacted on the dry
side. On the other hand, when absorbing water,
these samples will display a much greater shrink-
age, since the soil is much farther from the equilib-
rium moisture and the particles are much less
oriented.
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Fig. 423. Influence of moulding water content on the struc-
ture of compacted soils for different compacting efforts



When two samples of the same water content
are compacted under different compaction ener-
gies, the expansivity will be higher in the sample
compacted with the higher compaction energy
(Fig. 426) (MarsaL and REsENDIZ, 1975).

As will be demonstrated subsequently, the
strength and deformation characteristics of soils
are also influenced by the structure. However,
before embarking upon this important problem,
the influence of structure will be examined in the
case of granular soils. Evidently, these have no
structure proper, only the solid and fluid phases
are arranged in different patterns (cf. Vol. 1,
p- 119, Fig. 88). At the optimum moisture level,
the structure b changes to ¢. Here the air-filled
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Fig. 424. Influence of the soil structure on shrinkage:

a — shrinkage as a function of moulding water content; b — order of dispesition;
¢ — compaction curve

Compaction of soils 285

5
s 4 o
: /
g 3 1 E
$ / 1k
= R
C o
5 2 / A
2 < (.
3 T
g < N, :l i
3 - ——
It
o
0 R
24 s s 20 | 22 24 26
i H oy
0
o 180 | ;[ il
E [} 1y
E --»-'"& ;,
X NN
= 775 % _____ - T}
4 TN
2| A e N i
g 170 \
S
§ o & After compaction
R 165~ a After water uptake
g
16.0

2 4 16 8 20 22 24 26
Water content, w (%)
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pores are still communicating, so that it is mainly
air that is expelled by compaction. On the other
hand, the majority of the solid particles is enve-
loped by a water layer, enabling them to become
rearranged more readily into a denser packing.

Extending the concept of structure also to the
arrangement of coarse and fine particles raises
the question, in which way is the density attain-
able influenced by the uniformity of grain-size
distribution. This question has been examined in
detail in experiments at the laboratory of the Geo-
technical Department of the Technical University of
Budapest (KaBai, 1968). The granulometric curves
of soils produced artifically by mixing are shown
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Fig. 426. Expansivity of two clay samples at the same water
content under two different compacting efforts (MARSAL and
REsSENDIZ, 1975)
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in Fig. 427. The curve of each soil belonging
to Group I passes through the point d,, = 0.145
mm, S = 109%,, the uniformity coeflicient ranges
from U =1 to 30. In Group 2 the greatest size is
identical (d,, = 4.74 mm), but the grading is
different with U =1 to 8. The optimum water
content was found to depend on the uniformity
coefficient, in that w,, decreased as U was
increased. The relationship is indicated in Fig. 428
for two different compactive efforts, namely
A; = 20 and 4, = 3500 kNm/m3, the first repre-
senting manual, the second mechanical compaction.
As is to be seen, the decrease of w,p at higher U
values is considerable. This is probably due to the
fact that soils having higher U values produce
higher densities, so that less water is needed for
developing the water films ensuring the optimum
moisture.

The effect of compaction on the dry density of
soils belonging to Group 1 is displayed in Fig. 429,

where the variation in dry density is plotted
against the compactive effort per unit volume.
The curves originate at the 4 = 0 value from y,
values the magnitude of which increases with the
uniformity coefficient. In other words, the void
ratio in the loosest condition is the lower, the
higher the value of U. It is interesting to note
that the shape of the curves is virtually identical,
thus the inerement dry density y, produced by
a particular compactive effort 4 shows but slight
differences at different U values, as will be per-
ceived from Fig. 430, where the y, values are
plotted against A. The higher density attained by
compaction is thus primarily the consequence of
the lower void ratio already pertaining in the less
uniformly graded soil under uncompacted con-
ditions, the compactive effort producing a largely
identical reduction of the pore volume.

The influence of uniformity in response to
compaction, viz. on the y, value attainable for



a given compactive effort, is illustrated in Fig. 431.
The diagram definitely reflects the fact that uni-
form grain-size distribution is an important factor
in compactibility; the effect of grain size itself
being slight in the case of sands.

The results of the foregoing study may be sum-
marized as follows:

— the density of a loosely dumped granular
material is the greater, the higher the uni-
formity coefficient;

— the optimum moisture of compaction is the
smaller, the wider the range of grain sizes
in the soil;

— a given compactive effort applied to the
sands used in the experiments has largely
produced the same increase in density, the
influence of the void ratio in the loosest
state being negligible;

-— the density v, attained depends primarily on
the granulometry of the soil and increases
together with the uniformity coeflicient.

The last of these statements has long been
known, the results presented have provided addi-
tional numerical evidence.

From the results of these experiments the fol-
lowing conclusion of major interest has been
arrived at. The numerical value of the degree of
compaction T,, is hardly affected by the unifor-
mity of the granular medium, i.e. sand. This fact
is pOSlthCly demonstrated by the curves in Fig.
432, in which the compaction curve, viz. the
increase in density y,, Is plotted against the
compaction energy for two mixtures having dif-
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ferent U values. From these curves the value of
T,, can be computed (Fig. 432b). Once the desired
vaiue of T,, has been specified for a particular
earth structure (e.g. T,, = 909, in the figure)
the specific compactive effort needed for attaining
that value can be found from the curves computed.
Although the effort needed for compacting the
soil with the higher U value is undeniably smaller,
the difference is practically insignificant (169,).

This, however, should not be misunderstood to
imply that the uniformity of gradation is unim-
portant in granular soils. In the final count,
what we are interested in is the strength, durabil-
ity and low compressibility of the soil and these
are guaranteed by a high angle of internal fric-
tion and a high compression modulus, rather than
by a high T,, value. These factors, in turn, depend
on the absolute magnitude of the density attained,
and not ou T,,. A particular value is attained
in the morez uniformly graded soil with a smaller
effort, thus at lower cost.

It should be pointed out also that besides the
position, the shape of the Proctor curve is also
determined by the type and texture of the soil.
The coarser the grains, the closer to each other
the two limbs of the curve are situated. The same
trend will be observed for the U value as well.
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Consequently, the soils which are coarser, or have
a higher U value, are thus more susceptible to
changes in moisture. A change as small as 2 to 39
may already cause an appreciable reduction in
dry density. This susceptibility will become even
more conspicuous, if the compaction curves are
plotted in the manner shown in Fig, 433, i.e. by
plotting the w,,, values on the vertical axis. The
coarser the soil, the higher the dry density attain-
able and the more readily it responds to changes
1n moisture.

The compactive effort required also depends on
temperature. In warm weather higher densities
are attainable at lower wg,y values. The logical
explanation of this phenomenon is that the viscos-
ity of the pore water decreases as the temperature
increases, lending greater mobility to the par-
ticles.

5.2.1.5 Density, moisture and strength

In cohesionless granular soils the problem is a
fairly simple one, in that a virtually positive rela-
tion exists between the void ratio and the shear
strength.

In cohesive soils the situation is much more
complicated, since the shear strength depends on
the condition of the soil and on the method of
compaction. Compacted soils are almost in-
variably unsaturated and structured, the aniso-
tropy being caused by compaction itself.

For this reason the familiar fundamental equa-
tion becomes

T, = (6 — u)tan P’ 4 ¢’

and the concept of effective stress is inapplicable
to compacted cohesive soils.

In unsaturated soils the pores are filled with
water and air, the pressures in the two are not
necessarily equal. The air is dissolved in the pore
water to an extent depending on pressure, it may
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form closed bubbles in the water, or it may com-
Z municate with the atmosphere. The compress-
= Is ibility of such soils will consequently differ from
Air ;iy%rfgg that of saturated ones. The state of stress is
> further influenced by additional stresses prevailing
N between the particles due to the surface tension
N of water (Fig. 434).
With the foregoing considerations in mind, the
effective stresses in unsaturated soils are described
according to BisHop (1955) by the expression

Fig. 434. Active surface stresses between two soil particles

1.0
F—o—p+ap—w, (509
08 ' 7 T where G is the effective stress directly related to
/ 5 strength and volume changes, ¢ is the total stress,
% 06 /] p, is the pressure in the pore water and u is the
i y neutral stress prevailing in the water, while y is
S / / an empirical factor whose magnitude varies
L§ 04 3 between 0 and 1, depending on the degree of
4 / saturation. The y = f(S,) relationship has been
7 7 5 reproduced (after Bisaor and DonaLp) in Fig. 435.
02 » The term (p, — u) is thus a positive additive to
// the effective stress enabling the soil to absorb
/ / water. At the same time it is indicative of the
0 4 actual condition relative to the equilibrium

0 02 04 06 08 10

moisture content.
The condition immediately after compaction is
illustrated by an example after SEED and CHAN
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Fig. 435. Variation of the parameter y with the degree of

saturation for different cohesive soils I to 5 (1959). Three compaction curves are shown in
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Fig. 437. Expansivity (a — swelling under access of water)
and compressibility (b — void ratio vs. pressure) of two clay
samples compacted to the same dry density below and above
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Fig. 438. Strength of compacted sampls of the same den-
sity but of different structures

Fig. 436. The clay has been compacted by knead-
ing at three different stresses.

Compression tests have been performed on the
compacted specimens, the deformation curves
yielding the stresses causing 5 and 209, deforma-
tion. These have been plotted for each Proctor
curve in Fig. 436 and ¢ as a function of water
content. The stress pertaining to small compres-

sion values (59%,) is seen to decrease beyond a cer-
tain p, value. Greater densities are thus, para-
doxically, accompanied by lower strength. Con-
sidering the compact curves, this phenomenon
will be observed to appear at a high degree of
saturation, i.e., in the case of compaction on the
wet side, where the texture is composed of dis-
persed particles and compaction gives rise to the
development of pore-water pressure. It seems thus
safe to conclude that strength increases with
density as long as the texture remains unchanged.

If two samples are compacted to the same dry
density at water contents below and above the
optimum, their relative compressibility will be
like that shown in Fig. 437. As is seen, under
increasing load, the void ratio versus load curve for
the sample compacted on the wet side of optimum
shows a steadily decreasing slope (curve 2). That
of the sample compacted on the dry side of
optimum has two portions, each similar to a
curve, linked by a transition with a rapidly
increasing slope (curve I).

Compacted clays may exhibit appreciable thixo-
tropic effects, i.e. the ability to gain strength with
time at rest after compaction at constant water
content and density (SEep and Cman, 1959;
MircHELL, 1961). MitcHELL has suggested that
compacting a thixotropic clay creates a somewhat
dispersed structure that is compatible with the
compacting energy. The natural tendency may be
for the clay to flocculate, however, so that on
completion of compaction, the clay structure may
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undergo a small but significant, time-dependent
transition to a more flocculated state. At the same
time, changes in adsorbed water structure prob-
ablytake place,because the measurementhas shown
water pressure to decrease with time after com-
paction (BisHoP et al., 1960). Both of these effects
tend to create a stronger material.

The soil placed in an embankment, a dam, or
in the subgrade of a pavement may absorb water
during the service life of the structure. This will
cause loss of strength, with adverse consequence
on stability or load-bearing capacity. This is the
reason prompting a study into the effect of mois-
ture uptake on compacted soils. Two samples of
the same soil are compacted to the same dry
density, one on the dry side (I), the second on
the wet (2) and the first is then saturated without
allowing it to swell (Fig. 438). The first sample
will, in general, display greater strength. This dif-
ference is also due to structure. Compaction has
imparted a coagulated structure to sample I,
which it has retained even after saturation. This
is the reason for the greater strength.

The effect of some compaction methods on
strength is demonstrated in Fig. 439. The relative
strength, versus the ratio of the strength observed
to that displayed by a sample compacted to
about the same density by kneading, is plotted
on the vertical axis. Two diagrams have been
plotted, the first showing the strength pertaining
to 5, the second that to 259, deformation. The
method of compaction will be clearly observed to
have hardly any effect on strength, as long as
compaction is performed on the dry side, whereas
on the wet side the differences are wide. Strength
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silty clay (MITCHELL et al., 1965)

is seen to increase in the sequence kneading,
tamping, vibration, static pressure. The unifor-
mity of orientation and pore-water pressure appead
to decrease in this order and the most coagulater
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Fig. 443. Effect of aging on the permeability of a compact-
ed silty clay:

1 — samples tested 21 days after compaction; 2 — samples tested immediately
after compaction (MrTCHELL et al., 1965)

structure to yield the greatest strength. The plot
of strengths pertaining to 259, compression will,
however, reveal no differences those between
structuring, and thus strength, being obliterated
by the great deformations.

The aforementioned differences are shown for
several soil types in Fig. 440, where the effects
of static pressure and kneading are compared.

5.2.1.6 The effect of compaction on permeability

In cohesive soils, permeability also depends on
structure, as exemplified by Fig. 441. The com-
pacted samples have been tested at constant
volume and permeability determined at equilib-
rium. On the dry side, k& was found to decrease
rapidly with increasing moisture and to reach
a lowest value at w = w,,, increasing again

slightly beyond this point.

Table 39. Characteristic compaction parameters for typical
after GAspAr (1964)

In Fig. 442 the effects of both compaction
method and compaction water content are included
(MITCHELL et al., 1965).

If a tranmsition to a more flocculent structure
takes place to cause thixotropic hardening, it
would be expected that the permeability should
increase as well, because the more flocculent
structure should have a larger effective pore size.
In order to investigate the effect of aging, two sets
of specimens were compacted by MiTcHELL et al.
(1965). One set was tested immediately after
compaction, and the other was aged at constant
water content and density for 21 days and then
tested. The results are shown in Fig. 443. This is
one of the risks involved in extrapolation of labo-
ratory measurements to field conditions.

The response of compacted soils to water is
of particular interest in the case of dams and
flood levees. The effect of repeated cycles of wetting
and drying has been studied by Porrrr (1955),
who found that compacted clays will not dis-
integrate, only swell and shrink, if the uptake
and loss of water occurs at a slow rate. Density
has suffered no change even after several cycles of
wetting and drying. Fast rates of changes in
moisture will, on the other hand, cause the soil
to crack and disintegrate.

5.2.1.7 Relationship between the index properties
and compaction characteristics of soils

Table 39 has been compiled by GAspAr (1964)
and it indicates the modified Proctor density for
different types of soil. Experience in Hungary has
demonstrated the validity of these data. Empirical
formulae have also been given by GAspAR for
finding the optimum water content. The diagrams
plotted from these are shown in Fig. 444. The
value of »§* is from tables. The relationship
between the Atterberg limits and w,, has also
been plotted in Fig. 444.

Results from the U.S. A, are shown asillustrative
examples of the great number of tables and diag-
rams. The chart of Fig. 445 (AASHO T 99-49),

compiled on the basis of 972 experiments, is most

Hungarian soils,

Yomax (KN/m®)

Soil type Wopt
Silty gravel, silty broken stone 5...10
Sandy gravel, gravelly coarse sand 4... 1
Silty sand U>5 8...12
U=25...5.0 6...11
Fine sand U=13...25 5..9
Sand from the shore of
Lake Balaton U=13...117 4...8
Silty Mo I, = 5...10% 9...13
Silt I,=10...15% 10...14
Clay I, =15...25%, 11...17
Heavy clay I, =25...45% 14...20

20.0...
19.5...
19.0..
18.2...
17.0. ..
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simple to use. Further studies were conducted in
1961 from the results of which the following for-

mulae were derived (RiNG and SALLBERG, 1962):

In wop, = 0.784 In w0, + 1.378(f, -+ 100) — 6.586

(510)

and
In Yo max = 3-127 — 0.567 In (wp + 20) — 0.1101nf, .
(511)

The formulae are represented graphically in
Fig. 446, indicating at the same time the range
used for compiling the formula. In these expres-
sions f, is the mean of the ordinates pertaining to
the values d = 2.0, 0.42, 0.047, 0.02, 0.005 and

0.001 mm on the grain-size distribution curve.

5.2.2 Deep compaction
5.2.2.1 Blasting

Deep compaction by detonation of buried
explosives can provide a rapid, low cost means
for soil improvement. The general procedure con-
sists of (MITCHELL, 1981):

1. installation of a pipe by jetting, vibration,
or other means to the desired depth of charge
placement;

2. placement of the charge in the pipe;

3. backfilling the hole;

4. detonation of charges according to a pre-
established pattern.
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Fig. 445. Diagram to find compaction parameters
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The explosives used include dynamit, TNT, and
ammonite. Detailed descriptions of blasing are
given by Ivawov (1967); MircaerL (1970); Lit-
vinov (1973, 1976); DoncHEV (1980) and others.

Saturated clean sands are well suited for den-
sification by blasting. Success in any case depends
on the ability of the shock wave generated by
the blast to break down the initial structure, and
create a liquefaction (see Chapter 6) for a suf-
ficient period to enable particles to rearrange
themselves in a denser packing.

There are no generally accepted theoretical
design procedures for densification by blasting,
field trials are therefore usually used prior to
execution.
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Table 40. Parameters for estimating blast pressures and
impulse values (Ivanov, 1967)

Soil type co(li::ﬂt ky oy k, [
(%)
Sand below water
table 0 600 | 1.05 | 0.080 | 1.05
0.05 | 450 ; 1.5 0.075 | 1.10
1 250 | 2.0 0.045 | 1.25
. 4 45 | 2.5 0.040 | 1.40
Moist sand
(8-10%, water) — 7.5 3.0 0.035 | 1.50
(2-49, water) — 3.5 | 3.3 0.032 | 1.50

The required disruptive stress will increase
with depth, and the effective radius of influence
will decrease. The magnitudes of the shock wave
pressure, P (in kp/em? = 100 kN/m?), and the
impulse per unit area, I (in kp — s/cm? = 100

kN — s/m?), are given by Ivanov (1967) as follows:

[ —

Proo — klﬂ/%)“ (512)

—k,|/C 13/—%' (513)

in which C is the size of charge (kg of TNT), R is
the distance from centre of charge (m), u, and p,
are empirical coeflicients to be taken from Table 40.

A hydro-blasting technique has been used very
successfully and economically for compaction of
collapsible loess deposits (Lrrvinov 1973, 1976;
Doncuev, 1980). Although collapse of the loess
can often be accomplished by flooding alone, it has
been found that more uniform results can be
achieved more quickly and economically by this
method.

and

5.2.2.2 Vibrocompaction

The process of vibrocompaction is thoroughly
reviewed in the presentation by MrrcueLL (1981).
The procedures are characterized by the insertion
“of a cylindrical or torpedo-shaped probe into the
ground, followed by vibration during withdrawal.
In a number of these methods a granular backfill
is added, so that a compacted sand or gravel
column is left behind within the mass of sand
compacted. Sinking of the probe to the desired
treatment depth is usually accomplished using
vibratory methods, often supplemented by water
jets at the tip. Injection of air at the same time
has been found to facilitate penetration to large
depths. Upward directed water jets along the
sides have also been found helpful in some cases.
Soil gradations suitable for densification by vibro-
compaction are indicated in Fig. 447. Such
methods used at present include:

(a) Terraprobe method. This method (ANDER-
soN, 1974) uses a Foster Vibrodriver pile hammer
on top of a 0.76 m diameter open tubular probe
(pipe pile) that is 3 to 5 m longer than the desired
penetration depth. The unit operates at a fre-
quency of 15 Hz and a vertical amplitude of
10-25 mm. It exercises marginal effectiveness in
the upper 3 to 4 m of the zone to be densified.

(b) Vibroflotation. The equipment consists of
three main parts: the vibrator, extension tubes,
and a supporting crane. The vibrator is a hollow
steel tube containing an eccentric mass mounted
on a vertical axis in the lower part, so as to
transmit horizontal vibration. Vibroflot sinking
rates of 1 to 2 m/min and withdrawal/compaction
rates of about 0.3 m/min are typical. Water pres-
sures of up to 0.8 MPa and flow rates up to 3000
l/min may be used to facilitate penetration. Sand
backfill is consumed at a rate of up to 1.5 m3m
during the compaction process.

(¢) Vibrocomposer method (MUravama, 1958).
The apparatus and procedure used in this system
are shown in Fig. 448. A casing pipe is driven to
the desired depth by a vibrator at the top. A sand
charge is then introduced into the pipe, the plpe
is withdrawn part way while compressed air is
blown down inside the casing to hold the sand in
place. The pipe is vibrated down to compact the
sand pile and enlarge its diameter. The process
is repeated until the pipe reaches the ground
surface.

(d) Soil vibratory stabilizing method (SVS or
Toyomenka method). This type of compaction
combines the vertical vibration of a vibratory
driving hammer and the horizontal vibration of
a Vilot depth compactor. The Vilot is a special
probe of about the same size as the Vibroflot units.
Sand backfill is used, but water is not jetted for
either the sinking or the compacting process.

Brown (1977) has defined a suitability number
for vibroflotation backfills that is given by:

3 1 1
SN = 1.7 514
V dso)? (dzo) i (d;o)? 1

in which d; are the 50, 20 and 109, grain-size
diameters in mm. Corresponding suitability num-
bers and backfill ratings are

0-10 excellent,
10-20 good,
20-30 fair,
30-50 poor,
> 50 unsuitable.

The lower the suitability number, the faster
the vibroflot can be withdrawn while still achieving
acceptable compaction.

(e) The Vibro—Wing method (Broms and Hans-
soN, 1984). It consists in principle of a 15 m-long
steel rod with a number of wings welded to it.
The unit is driven down into the fill using a high



capacity vibratory hammer and then slowly pulled
out during continued vibration. The time needed
for driving and withdrawal of the unit is about
one and five minutes, respectively, the sand being
compacted both during the driving and when the
unit is being retrieved. When the pore-water pres-
sure corresponds to the total overburden pressure
the effective stress is reduced to zero and the soil
becomes liquified. Liquefaction occurs first locally
around the vibrating wings and it spreads grad-
ually as the pore-water pressure increases around
the vibrating unit. If the soil contains layers with
low permeability, which is often the case in
hydraulic fills, the effectiveness of the method is
increased if the sand is relatively coarse, since
a longer time will be required for the dissipation
of the excess pore-water pressure. The efficiency
of the Vibro-Wing method is affected by the size
and location of the wings (e.g. in coarse sand the
wings should be relatively short and be placed
relatively far apart).

5.2.2.3 Heavy tamping

Soil compaction by heavy tamping involves
repeated dropping of heavy masses onto the ground
surface. The method is also termed dynamie
compaction (consolidation), or pounding. When
applied to partly saturated soils, the densification
process is essentially the same as that for impact
compaction (Proctor) in the laboratory (MITCHELL,
1981). In the case of saturated cohesionless soils
liquefaction can be induced, and the densification
process is similar to that accompanying blasting
and vibro-compaction. The effectiveness of the
method in saturated, fine-grained soils is uncer-
tain; both success and failure have been reported.

The pounders used for heavy tamping may be
concrete blocks, steel plates, or thick steel shells
filled with concrete or sand, and may range from
one or two up to 200 tons in mass. Drop heights
of up to 40 m have been used.
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Fig, 448. Construction of compaction piles by the Composer
system (MURAYAMA, 1958)

Two or three coverages of an area may be
required, separated by time intervals dependent
on the rate of dissipation of excess pore water
pressure and regain of strength. The general
response of the ground as a function of time after
coverage is shown in Fig. 449.

The degree of soil improvement depends on soil
type, water conditions, and input energy per unit
area. Finer grained soils cannot be strengthened
to the same level as can coarser materials. Soft
layers of clay and peat inhibit high degrees of
compaction of adjacent cohesionless material
because of their flexibility (MiTrcHELL, 1981).

Of particular interest is the depth of influence.
M&~NarD and Broise {1975) proposed using

D=)VW-H, (515)

where D is the maximum depth to be influenced
(m), W is the falling weight (in metric tons) and
H is the height of drop (m).

LEONARDS et al. (1980) analysed seven cases and
concluded that

D=05VW-H (516)

was more appropriate, and Luxkas (1980) sug-
gested that

D = (0.65 to 0.80) W - H (517)
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Fig. 447. Range of particle-size distributions suitable for densification by vibrocompaction (MiTcHELL, 1981)
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Fig. 449. Ground response with time after successive cov-
erages of dynamic consolidation (MENARD and BROISE,
1975):

I — applied energy (tm/m*); 2 — volume change with time; 3 — ratio of pore
pressure to initial effective stress; 4 — variation of bearing capacity

was the best suited formula for the eight cases
that he studied.

The depth of influence depends on other factors
as well in addition to the impact energy. Soil type
may be expected to be the most important.
A crane drop is less efficient than a free drop.
The presence of soft layers induces a damping
effect on dynamic forces (MiTcHELL, 1981).

JESSBERGER and BEINE (1981) explain the
principle of the compaction by heavy tamping
within the framework of fundamental laws of soil
mechanics. For this purpose laboratory tests were
carried out — with DYNO-class equipment, and
with a fine sand and a silt — to measure the
basic parameters and to find a correlation between
stress conditions and compaction effects. The
experiments carried out on dry sand proved that

¢dyn = ¢stat .

When water-saturated silt was tested, the total
vertical stress remained constant, whereas the
total horizontal stress increased to a limiting

d7(kPa)
37°
Before
-~ treatment
After last After.. drop
drop
6 4 3 2 7
19 nrvm okl
0 05 10 15 20

Fig. 450. Effective stresses in water saturated silt under
impact loading (JESSBERGER and BEINE, 1981)

value. The effective vertical and horizontal stresses
can be calculated from the measurements. The
results of a typical trial run are shown in Fig. 450.
The state of stress before treatment and after
various number of drops are drawn in the form
of Mohr’s circle using effective stresses. Before
treatment the effective vertical stress has a value
of o, = 2.0 kPa, the effective horizontal stress
o, = 0.48 kPa. (The state before treatment is
characterized as a state of failure.)

During treatment the stress o, decreases imme-
diately after the first single drop because of
increase in pore-water pressure. After the first
two drops o, increases with increase of @, but
with further drops it decreases too. After the eight
drops ¢, has a larger value than o,. After the last
drop the Mohr circle again touches the failure
envelope. At this state the pore-water pressure
has reached its maximum, given by the specific
weight of the soil. Further drops would damage
the soil structure, so that the number of drops
until this state is reached is a limiting value for
treatment. During the following consolidation the
effective stresses increase, ¢, reaching a larger
value than before treatment. The increase of
effective stresses is accompanied by settlements
at the soil surface.

Amount and type of the dynamic loading can
be estimated by measuring the retardation a of
the falling weight. By use of Newton’s law the
stress at the soil surface (0 4yn in kN/m?) is cal-
culated from the equation:

m
Co.dyn = aZ? (518)

in which m is the mass of the pounder (kg), A4 is
the base area of the pounder (m?).

According to the trials of JESSBERGER and
Beine (1981):

a—=al2gH, (519)

where o (1/s) is a constant of proportionality.

The fact that the maximum retardation is
independent of m/4 means that heavy tamping
in the field can be simulated by laboratory tests.
The stress at the soil surface, necessary for com-
paction down to the required depth z,, is depen-
dent on this depth. For estimating the stress
distribution under dynamic loading the methods
of Frourica (1934) and Ko6cLeEr and ScHEIDIG
(1948) are used. The equations are:

Onayn _q _ ( ) (520)
0'0 dyn L 2 + r?
and
-2
m:[1+itaneo) , (521)
o'0, dyn r

respectively. In the equations z is the depth, r is
the radius of the loaded area, 6, is the angle of



A Base area of
the weight
A>A,>A3> A,
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Maximum possible
impact energy given
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the lifting unit

Height-of fall, H

1]

Mass of the weight, m

Fig. 451. Design chart for heavy tamping for z = const.
(JESSBERGER and BEINE, 1981)

load distribution, » is the factor of concentration,
and 0y gyn can be calculated from Eqs (518) and
(519).

The required stress 0, qyn and the parameters «
and 6, {or v) have to be determined before the
design charts are drawn. As the equations contain
four variables (m, H, A, z,), it is necessary to set
one parameter constant to get the dependencies
of the three others. The depth z, is given by
ground conditions, and the working parameters
have to be chosen in the design procedure. The
laboratory test results are used to prepare a design
chiart similar to that in Fig. 451. For a constant A
various combinations of mass and height can be
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Mechanical stabilization

used. The possible values are given by the capacity
of the lifting unit used, indicated by the hatched
zone in Fig. 451.

5.3 Mechanical stabilization

The purely mechanical process of attaining and
conserving higher strength of any earth structure
by mixing certain soils and compacting the mix
carefully, is referred to as mechanical stabilization.
This implies that no other additives are used.

Practical experience has shown that for effective
mechanical stabilization, the grain-size distribu-
tion of a soil should remain between certain
limits. These limits are shown in Fig. 452 for a
variety of purposes. Attempts have been made to
develop formulae for ideal gradation. One of these
formulae, suggested by TALBOT, is

m
S — (L (522)
dmax
Another, according to Rorurucus (1935) is
m __ gm
§= " d (523)
dméx - d(r)n

In this formula, m is an empirical coefficient
usually entered with values of 0.4 to 0.5. The
specifications of the AASHO (1958) are reproduced
in Table 41, while those on the Atterberg limits
are given in Table 42,

Table 41. Grading for mechanically stabilized soil-aggregate roads (Aasno*, 1958)

Percentage by mass passing sieves
Sieve designation e
A | B | c | D
Classification I
(coarsely grained) 76.2 mm 100
50.8 mm — 100
37.6 mm — — 100
25.4 mm 35... 65 50... 80 — 100
4 4.76 mm 10... 30 15... 35 20... 40 25... 45
200 0.076 mm — — 10 10
flassification I1
(mediately grained) 76.2 mm 100
50.8 mm — 100
37.6 mm — — 100
25.4 mm 45... 15 50... 80 — 100
4 4.26 mm 15... 45 20... 50 25. 55 30... 60
10 2.00 mm — — — 20... 50
200 0.076 mm 10 12 12 12
Classification I11
(stabilized) 76.2 mm 100
50.8 mm 65...100 100
37.6 mm — 70...100 100
25.4 mm 45... 15 55... 85 70...100 100
18.8 mm — 50... 80 60... 90 70...100
9.4 mm 30... 60 40... 70 45... 15 50... 80
4 4.76 mm 25... 50 40... 60 30... 60 35... 65
10 2.00 mm 20... 40 20... 50 20... 50 25... 50
40 0.42 mm 10... 25 10... 30 10... 30 15... 30
200 0.076 mm 3... 10 5... 10 5. 15 5... 15

* AASHO — American Association of State Highway Officials
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Fig. 452. Grading bands of mixtures suitable for stabilization:

A — optimal for base and surfacing courses; B — still useful mixtures; C — band range for wearing courses

Table 42. Requirements in respect of consistency limits

Classificatiion Layer I, wy,
II Load-bearing course <6 < 25
Wearing course <6 < 25
I Load-bearing course < 6 < 25
Wearing course 4...9 < 35

Soils meeting the above requirements.are but
rarely encountered in the field. The material
having the desired properties must usually be
produced by blending; the corresponding methods
have been described in Vol. 1, Section 2.1.7. It
should be further noted that blending ratios
giving the highest possible uniformity coeflicient
will prove the most satisfactory.

The strength of the stabilized soil depends on the
strength of adhesion and — disregarding the prop-
erties of the binding agent — on the density and
moisture of the blend. An increasing degree of
moisture will cause a pronounced loss in strength.
The effect of saturation by capillary rise was found
to be the greater, the lower the density of the soil
in the original condition.

5.3.1 Cement stabilization

In cement stabilization, a mix consisting of
pulverized soil, portland cement and water is
produced, resulting in a new material known as
soil cement. Owing to its superior strength and
durability, low compressibility, and its resistance
to water, hot weather and frost, this material is
suited for pavements, base courses, canal linings,
foundations, ete.

The mechanism by which the stabilizing action
of cement is realized differs in fine- and coarse-
grained soils (the latter term applying to fine- and
medium-grained sands). In fine-grained silts and

clays the hydrating cement develops strong bonds
between the mineral particles, resulting in a
cemented matrix which encases the unbonded soil
grains. The honeycomb structure of the matrix is
responsible for the strength of the final produect,
the strength of the clay particles within the matrix
heing rather low. The bonds prevent the particles
from moving relative to each other, thereby mini-
mizing plasticity and increasing shear resistance.
The clay particles are coagulated by the lime
liberated in the course of hydration, reducing
their affinity to water and thus the swelling and
shrinking properties of the soil.

The cementing action in the more granular
soils is due to a mechanism resembling that in
concrete, with the difference, however, that the
voids in the aggregate are not completely filled by
the cement paste. Firm bonds are developed only
at the points of contact of the aggregate grains
(“point weld”). No continuous matrix is created.
The strength of the cementing action will increase
directly with the density of grading and with the
number of contact areas and inversely with the
size of the pores.

For a detailed treatment of the chemical pro-
cesses in soil cement, reference is made to the
book “Soil Stabilization” by the senior author
(1967).

A wealth of data has been published in the
literature concerning the strength of soil cement.
The diagram in Fig. 453 has been plotted on the
basis of experimental results. The compressive
strength of compacted cylindrical samples con-
taining 89, by weight of Class 500 cement and
cured for 7 days has been plotted into the trian-
gular diagram. The sides of the triangle indicate
the sand content (d > 0.1 mm), the silt 4 clay
content (d < 0.1 mm), as well as the air- and
water content in %, by volume. This manner of
presentation is convenient, on the one hand, for
demarcating the range in which a cement treat-
ment of a soil is at all feasible and in which



strength can be tested. Also, a clear picture is
obtained of the influence of density and moisture
content. Further information of interest may be
found in Fig. 454, showing, again for a particular
cement content of the mix, the strength thereof
as a function of the percentages by volume of the
solids, water and air. This diagram also indicates
the range of optimal mix composition. The
influence of density will be seen to be especially
pronounced, in that an increase in the unit weight
of 109%, results in a gain in strength of 30 up
to 409%,.

A result of particular interest is indicated in
Fig. 455, where the compressive strength of a
silt-sand mixture has been plotted against the mix
ratio while the cement content being maintained
constant. The dry unit weights and uniformity
coefficients have also been entered. All three curves
attain a peak value at the same mix ratio. The
greatest strength and density are found where U
assumes its highest value. A positive relationship
was found to exist between U and the compressive
strength (Fig. 455b). For different mix ratios of
the same U value, identical strengths were
obtained.

Most soils to be stabilized by cement treatment
must be pulverized before adding the cement and
mixing with water. The mix must be subsequently
compacted. Strength is also influenced by these
processes.

100 A O

ompresswe strengfh /
after. 7 days cur/ng v 4
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Fig. 454. Strength of field road construction materials
represented in the phase-diagram

In a number of applications, the tensile, or
flexural strength of the cement-treated soil is
also of interest. The corresponding investigations
have revealed that the improvement of these
properties, attainable primarily by increasing the
cement content, is in general slight. Increased
cement contents of the mix have, on the other
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F ig. 453. Strength of soil-aggregate road construction materials with 8%, (by volume) cement added
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hand, a marked influence on the Atterberg limits
and on volume changes, as shown by the example
in Fig. 456. The granulometric curves of soils
suited for cement treatment are shown in Fig. 457.

5.3.2 Lime stabilization

Cohesive soils mixed with lime, in the form of
pulverized quicklime, slaked (hydrated) lime, or
lime slurry, and subsequently compacted will pro-
duce a stabilized soil. The reaction between the
lime and the clay minerals present in the soil
invariably results in changing the plastic proper-
ties and structure of the soil and thereby in a higher
bearing capacity. The physical and chemical pro-
cesses involved have largely been clarified (cf. eg.
JESSBERGER, 1967; K£zp1, 1967). The most impor-
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tant changes in soil properties include (JEss-
BERGER, 1967):

— coagulation, aggregation;
— reduced aflinity to water;
— improved compactibility;
— higher strength.

These changes are related primarily to the
change taking place in the soil structure. The
change in the Proctor curve is illustrated in Fig.
458, showing the increase in w,; and the decrease
in maximum dry density. A major advantage of
lime treatment is that the compaction properties
of a wet soil can be materially improved thereby.
Changes in structure are offered as an explanation
for the lowering of the dry density obtainable
with a given compactive effort, in that water is
needed for hydration restricting the mobility of
the coagulated particles.

Another important effect is that cohesive soils
treated with lime display virtually no swelling and
shrinkage is also greatly diminished.

The most important effect of lime treatment is
the gain in strength, the extent of which depends
on several factors. According to Fig. 459 the
influence of aging time is insignificant, as long as
the lime content is small, but it increases together
with the lime percentage. The cementation process
takes place at a rather slow rate and even tests
performed after 28 days do not yield the eventual
strength values.
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Fig. 458. Effect of lime addition on compaction curves
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As regards response to lime treatment, soils are
classified according to the grain-size distribution
curves into the groups shown in Fig. 460. Soils
belonging to Group A are too coarse to be pro-
cessed and are thus unsuited to lime stabilization.
In Group B — sands — lime treatment remains
similarly ineffective, the soils still being too coarse.
The addition of lime results in no gain in strength,
since the carbon dioxide of the air finds no access to
the stabilized layer. The group in which lime
treatment can be applied effectively has been
denoted by C. Rather than the grain-size distri-
bution, it is the mineralogical-chemical effect of
the fine components which is decisive in such
soils. The soils belonging to Group D are again
unsuited to lime treatment, since these are too
heavy and thus uneconomical to process.

The improvements in the engineering character
of lime-soil mixtures are attributed to four basic
reactions. These, based on currently available
literature, and on THOMPSON’s (1966) reference,
include the followings.

1. Cation exchange. The general order of replace-
ability of the common cations associated with
soils is given by the lyotropic series, Na* <
< K+ < Cat+ < Mg*+. Any cation will tend to
replace the cations to the left of it, and mono-
valent cations are usually replaceable by multi-
valent cations. In some cases, the exchange
complex is practically Ca++ saturated before the
lime addition and cation exchange does not oceur,
or is minimized.

2. Flocculation and agglomeration. These reac-
tions result in apparent change of the texture and
— together with the cation exchange — are pri-
marily responsible for the changes in plasticity,
shrinkage, and workability characteristics, but not
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for strength increase of lime-soil mixtures (THOMP-
son, 1966).

3. Lime carbonation. Lime reacts with carbon-
dioxide to form the relatively weak cementing
agents Ca and Mg carbonate.

4. Puzzolanic reaction. This is a reaction be-
tween soil silica and/or alumina and lime to form
various types of cementing agents. These latters
are generally regarded as the major source of
strength increases.

According to THOMPSON’s experiments (1966),
optimal lime addition is in the range of 3 to 79,
by weight. The strength increase can be character-
ized by the so-called “lime reactivity” which is
the result of a subtraction:

LR = qux — ¢n, (524)
where ¢, means the unconfined compression
strength of the natural soil, and ¢,, the maximal
unconfined compression strength of the lime-
treated soil (independently of the quantity of lime
added). The values for Eq. (524) were established
by the author on samples compacted at their
optimum water content and cured for 28 days.
It was found that the “lime reactivity” increased
with the pH of the mixture, but decreased con-
siderably when the mass contained organic carbon;
with over 19, organic content, lime addition was
practically ineffective. The author expressed his
opinion that lime treatment would have the best
efficiency with soils of substantial Si or Al con-
tent.

QuEtroz (1981) demonstrated, on the basis of
his experiments, that the correlation between LR
and the SiO, or Al,O, content of the soil was not
too close (r = 0.46 and r = 0.43 for the soils
tested). When, on the other hand, the regression
analysis was based on the amorphous constituents
of these compounds, the correlation coefficient
improved substantially (r = 0.79 and r = 0.69).
The less crystalline the clay mineral, the more
easily the Si/Al will be available for reaction; if

there are amorphous constituents present, the
lime will immediately react with them. These
experiments have further confirmed that all other
geotechnical properties of the clay (w;, wp, D,,
etc.) were almost irrelevant in respect to the LR-
value.

5.3.3 Bitumenous soil stabilization

The combination of soils with water and bitumen
is accompanied by complicated physical and chem-
ical processes. The objective of such treatment
is to coat the individual particles with a bituminous
film, which is, on the one hand, thin enough not to
reduce radically the frictional resistance to the
relative movement of the particles and, on the
other hand, thick enough to cement the discrete
solids. To produce this condition, the steady load
must be high enough to squeeze the bitumen from
the area surrounding the point of contact. The
bitumen film will then coat several particles (Fig.
461), which are more or less in direct contact with
each other. Shear stresses in a similar system will
cause the coating film to rupture at several points

Fig. 461. Bitumen-bounded sand:

I — solid soil particle; 2 — air bubble; 3 — pore water; 4 — bitumen film; a —
contact points between soil particles



and induce frictional resistances of considerable
magnitude. The coat is reformed as soon as there
is no movement. The surroundings of the contact
points are protected from water by the bitumen,
preventing the water from entering re-establishing
the bonding effect.

Practical experience has shown air-dry and very
wet soils not to mix readily with bitumen, while
soils with moistures from w = 4 to 129, present
no difficulty. Surface tension between the indi-
vidual components and the magnitude of the
energy of wetting have been suggested as explana-
tions for this phenomenon. No material can be
coated with another, unless the adhesion between
the two materials is superior to the bond strength
of one of them. Adhesion conditions at 20 °C are
shown in Fig. 462, from which it will be perceived
that the grains in a dry mass are surrounded pri-
marily by air, the little water present being con-
fined to the corners between the particles. The
bitumen added will thus displace the bonded air

Fig. 462. Specific adhesion between components of bitumen-
boun ded materials
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Fig. 463. Strength in a bitumen-bounded soil mass
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Fig. 464. Influence on strength of aging below water

layer and no coating film will be formed. Converse-
ly, too much water will be present not only in
the corners but also in the large pores, forming
a thin envelop around the particles. A bitumen-
to-solid bond could only be realized by displacing
the pore water and by removing the water film.
This, however, is impossible because of differences
in adhesive forces. There is consequently an op-
timal water content at which the bonding force and
thus strength are greatest.

As is seen in Fig. 463, the strength of the com-
pacted mix depends on the amount of bitumen
added, the optimal value being obtained at around
49,. This is due to the structure of soils stabilized
by bitumen, as well as to the fact that the dry
density attainable with a particular compactive
effort decreases as the bitumen content is increased.
Low bitumen contents may lead to swelling,
loosening and deterioration of the structure, espe-
cially in cohesive soils which the small amount of
bitumen fails to render impervious. The samples
are, therefore, cured for four days in a humid
atmosphere and are then submerged in water for
another four days. The strength loss caused by
such curing provides the clues needed for deter-
mining the optimum bitumen content. The results
of similar tests are shown in Fig. 464.

According to practical experiments, the soil
types suited to successful bituminous stabilization
should have the following properties.

1. The diameter of the coarsest particle should
not exceed one-third of the thickness of the
treated soil layer.
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2. The grain-size distribution curve should lie
in the shaded area in Fig. 465.

3. The liquid and plastic limits should be lower
than 40 and 189, respectively.

The compaction characteristics (Wopts Vo, max) Of
the soil vary with the bitumen content mostly
as indicated by Fig. 466, viz. the optimum mois-
ture increases as the maximum dry density is
reduced.

The amount of bitumen needed is found simply,
in terms of the granulometry, from the formula

(Jounson, 1957):
p = 0.015a + 0.02b -~ 0.03¢ 4 0.09d. (525
Here p is the percentage of bitumen without

solvent, based on dry weight of the soil, while
the quantities a, b, ¢ and d are found from Fig. 467.
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Fig. 466. Influence of bitumen addition on compaction param-
eters
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Fig. 467. Determination of design parameters for Eq. (525)

The magnitude of the fine fraction (< 0.076 mm)
is considered decisive. The results obtained by
Eq. (525) plotted as p = f(d), fit a straight line
which is described by the expression

rl%] = 2.75 + 0.064d.

5.3.4 Miscellaneous soil improvement methods

Promising stabilizing results have been achieved
in Japan by using multivalent cations. MATsvuo
and Kamon (1981) used poly-aluminium chlorite
(PAC) and pulverized iron (Fe***) for this pur-
pose. The former disperses the clay particles by
its cation exchange capacity, while the latter
enhances a cementation effect through oxidation
and provides a stronger bound through adsorption
in the inter-clay particles and intra-aggregates.

WAGENER et al. (1981) applied chemical stabi-
lization for a reconstruction job at a reservoir
and its surrounding dam. The soil was a dispersive
clay of high Na content and of high ESP-value
(ESP — exchangeable sodium percentage). Gypsum
was used as the stabilizing agent. 3.8 kg/m3
gypsum was needed to lower the original ESP =
= 259, to 5%, which was sufficient to restore
stable conditions to the site.

5.3.5 Deep mixing methods

The in situ mixing of admixtures with soft, fine
grained soils to form columns, piers, and walls
has been studied and applied extensively in prac-
tice during the last several years (BrRoms and
BowmaN, 1976, 1979; Pirot, 1977; TERASHI et al.,
1979). Columns are produced by feeding a metered
quantity of stabilizing agent into a soft clay mass
through a rotary drill equipped with a special
auger bit both to advance to the desired depth
and to mix the soil and the admixture during
withdrawal. Figure 468 is a schematic diagram
of the process as used for the construction of a
lime column in Sweden. When quicklime (CaO) is
used the heat of hydration can be substantial,
and the drying of the surrounding soil due to this
and to the consumption of water by hydratation
can be significant, BrRoms and Bowman (1979)



Unslaked lime

Kelly

~Rotary table

d
=
7 777, —] Z 777,

S =

=~ 5m -

2 —]

S =

[~ Mixing tool
/ A ("egg beater”)

Finished lime column

Fig. 468. Manufacture of a lime column using the Swedish
system (MITCHELL, 1981)

note that typically the clay in lime columns is 100
to 1000 times more permeable than in the untreated
state. As a consequence the columns can act as
vertical drains, thus accelerating settlements.

5.4 Seil improvement by precompression

Any substantial load placed on the ground
before construction begins decreases the porosity
and the water content of the subsoil, and so contrib-
utes to improving the shear strength and to
lessening the compressibility. Thus, precompres-
sion is particularly well suited to use with soils
that undergo large volume decrease and strength
increase under sustained static loads and when
there is sufficient time available for the required
compression to develop. The soil types best suited
to this method are saturated soft clays, compress-
ible silts, organic clays and peats.

If the available time is short the consolidation
can be enhanced by the installation of drains
(Section 5.4.2). Also electro-osmotic procedures
may be advantageous in such cases (Section 5.4.3).

The following types of surcharge loads may be
considered (MircHELL, 1981):

(a) earth fill as the most commonly used type;

(b) water in tanks used for small areas, and
water in lined ponds for larger areas;

(¢) vacuum preloading by pumping from be-
neath an impervious membrane placed over the
ground surface; this can produce surcharge loads
of up to 60 to 80 kPa (Hortz and WAGER, 1975);

(d) anchor and jack systems can be devised for
special cases;

(e) groundwater lowering provides an increase
in consolidation pressure equal to the unit weight
of water times the drawdown distance.

20 A. Xézdi and L. Réthati: Handbook
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Preloading by vacuum, water table lowering,
and electro-osmosis offer the advantage that no
stability problems will arise.

Precompression has been used successfully to
improve the soils for buildings, embankments,
highways, runways, tanks and bridges.

5.4.1 Precompression without drains

Precompression is normally accomplished by
providing a preloading procedure which involves
the placement (and later removal) of an earth fill
(or some other equivalent dead load), to compress
the soil below the proposed foundation prior to
construction. If the intensity of the load from the
dead weight is greater than the pressure under the
final load, this is called overloading or surcharging.
The excess load intensity above the final load (py)
will be called the surcharge (p,), and p/p; will be
defined as the surcharge ratio (ALDRICH, 1965).

Design may have two main goals:

— to determine that surcharge (ps) that will
produce the desired settlement (compres-
sion) in the time available, or

— to determine the consolidation time belong-

ing to p,.

As extended areas are usually involved, the
relevant calculations may follow the one-dimen-
sional consolidation theory proposed by TErRzAcHI.
Reality is not so simple, however, because the
following problems may arise in the course of the
design:

— the rate of consolidation may vary among
the strata;

— there may be some considerable secondary
consolidation in some soils;

— modifications might be required when the
soil reveals non-homogeneous properties, or

— the subsoil contain various layers.

If there is no expected secondary consolidation,
the time-dependent-settlement will develop accord-
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Fig. 469. Compensation for primary compression using sur-
charge loading (M1TCHELL, 1981)
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ing to the scheme given in Fig. 469 (ALDRICH,
1965, in MiTcHELL, 1981). If the surcharge were
left in place until time f,, then the layer would
have settled as much as under the permanent
load alone, i.e. s;p = s;. At this time the layer
would have reached an average degree of consol-
idation U, given by

— s
UsR = ! .
Sits

(526)

By the time the average percentage consolida-
tion has reached the required value, the centre
of the compressible layer might yet be far from
having been consolidated to the required stress
corresponding to the final load (Fig. 470). To
eliminate any primary consolidation after the
construction, all segments of the stratum must be
consolidated to an intergranular pressure equal to
or greater than the stress experienced under the
final load (ALprIicH, 1965). Although the process
of unloading the overconsolidated zones near the
drainage boundaries will generally not lead to
significant heave (Jornson, 1970), the additional
consolidation in the central portion may be impor-
tant. Thus, the surcharge should be left in place
until the pore pressure at the most critical point
(i.e. where the consolidation will occur at the
latest, generally at the midplane) attains the con-
solidation ratio U, given by

Ps
(U)pps = ——.
Pr+ ps

Time periods ¢t required to reach U,z and U, can
be found by using the Terzaghi theory and the
consolidation coeflicient ¢, according to
TH?
t = . (528)

Cy

(527)

A solution for the secondary consolidation has
been presented by MitcHELL (1970). This problem
emerges mostly where organic clays or peats are
present. The idea is to estimate the total settle-
ment under p; as the sum of that due to primary
and secondary (s,) compressions anticipated to
occur in the life span of the structure. The second-
ary compression, s;, can be determined from

s = C,H,log— where t >1,,  (529)
t

P

in which C, is the vertical strain per log cycle
increase in time subsequent to the end of the
primary consolidation at ¢,, and H, is the layer
thickness at time ¢,. The analogous equation to
(527) for the critical point is:

s; + C,H, log (i)
t
(Udpes = =

St+s

(530)

The nature of secondary compression is such that
some time after the removal of the surcharge p,,
the secondary compression will reappear under py.
This effect is, however, small and can be neglected
(Jounson, 1970a).

If preloading is carried out in a manner such
that all, or part of the surcharge material is pre-
sumably displaced before the construction begins
(e.g. in the case of reservoire tanks) a recompres-
sion process in the underground has to be reckoned
with (ALDRICH, 1965; Jounson, 1970a).

Column footings may cause hardly any stress
increase at the centre of the compressible stratum
but the increase near the top of the stratum may
be considerable. It is desirable therefore to use low
contact pressures, thereby minimizing the amount
of the surcharge load required (Jounson, 1970a).
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StamaTorouros and Korzias (1983) observed
that the shape of s vs T, curves may differ widely.
Mostly the three types illustrated in Fig. 471 are
prevalent. The shapes in cases 4 to C can be repro-
duced theoretically by assuming the stratification
shown in the figure. The overall clay layer, sur-
rounded by a free draining material, is divided
into horizontal sublayers separated by seams of
free draining sand or silt. It is further assumed
that these sublayers have equal compressibility
and may have equal or different ¢, values. The
authors provided calculation methods to cope
with all these problems.

The time rate and the magnitude of settlement
of large scale preloading can be reliably predicted
from a test fill (StamaTorouros and Korzias,
1983). The settlement vs. time curves in Fig. 472
afford a comparison between the behaviour of the
large scale preloading and that of the test fill.
The two curves in the figure are similar in shape
and the one corresponding to the full scale loading
gives about 3.5 times the settlement due to the
test fill, i.e. the settlements are nearly proportional
to the heights of fill, 11 m : 3.4 m.
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Fig. 472. The Ratio of settlement during preloading to
settlement of test fill is about the same as the ratio of
heights of fill (STaMaTOPOULOS and Kotz1as, 1983)

1 —fill crest 100 m - 43 m, height 11 m; 2— fill crest 60 m - 40 m, height 3.4 m
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5.4.2 Precompression with vertical drains

Initially, engineering practice applied only sand
drains generally using 200 to 500 mm diameter
holes with 1.5 to 6.0 m spacing distances. Pre-
fabricated drains were introduced in 1937, soon
after the application of sand drains. First on the
market was the KJELMANN cardboard drain which
is a 3.5 mm by 100 mm band made up of two
cardboard strips with ten longitudinal grooves.
Features (width, thickness, grooves) of the newly
produced prefabricated drains imitate very closely
that of the prototype, the cardboard wick (such
as: Geodrain, Castle Board, Bidim, Alidrain,
etc.). The drains usually have a core of plastic
material with a filter sleeve of paper or some other
fibrous material, usually of plastic.

KijeLMaNN (1948) stated that ‘“‘the draining
effect of a drain depends to a great extent upon
the circumference of its cross-section, but very
little upon its cross-sectional area’” and that
‘“certain considerations show that the cardboard
which is as effective as a circular drain with a 1 in
radius”. This statement has since been proved by
several observations, for example, by the test run
represented in Fig. 473 (HaNsBo and TORSTENSSON,
1977).

Since the first use of vertical sand drains, the
drains have been installed by the following meth-
ods (Jounson, 1970b): I — closed mandrel — driv-
en, 2 — closed mandrel — jetted, 3 — open man-
drel — driven, 4 — open mandrel — jetted, 5 — rot-
ary drill, 6 — rotary jet,7 — continuous auger —
solid stem, 8 — continuous auger-hollow stem,
9 — bucket auger, and 10 — vibratory driving,

Another aspect is to classify displacement and
non-displacement drains. The influence of the
technology used is principally weighted according
to the degree of soil disturbance caused; this may
have the consequence of decreasing the c, value
or arranging a narrowed spacing. Displacement
drains additionally — at least tranmsitionally —
lessen the shear strength of the soil, which may
cause stability problems. This fact, as well as the
short installation period would in many cases
give preference to the use of prefabricated drains
{(HansBo and TorTENSSoON, 1977).
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The theory of consolidation for the design of
vertical sand drains considers combined radial and
vertical pore-water flow to the drains; it has been
elaborated by CariLro (1942), and in detail by
Barron (1948), as an extension of TERZAGHI's
work. Combined vertical and radial flow can be
treated analitically as separate vertical and radial
flow problems. The excess pore-water pressure
ratios at any time for these separate types can
be multiplied together to determine their combined
effect, i.e.:
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Fig. 474. Consolidation solution for radial flow 100
and equal vertical strain at the ground surface
(BARRON, 1948)

Degree of consolidation, uy and up (%)

The time of consolidation is

2
= Lo e Gew (53
Co—n kv(l - eo)
for vertical consolidation, and
2
,— TnH? _ T, Hz —Jo=vlw (533)
Co—n kn(1 — eo)

for radial (horizontal) consolidation.

Relations, T, U, and T}, U, are illustrated in
Fig. 474. These include also the distance between
the drains (s) because d, means the diameter of
the influence zone around the drain. In case of
a rectangular drain arrangement d, = 1.13 s, for
triangular locations d, = 1.05 s are appropriate.
Thus Eqs (531) to (533) and Fig. 474 supply all
necessary design data. As can be seen, the process
is far more influenced by the spacing of the drains
than by the diameter of the drain.

Assuming that

— the permeability of the drain is infinite in
comparison with that of the clay;

— Darey’s law is valid;

— consolidation due to vertical flow is negligible
compared to that due to radial flow, the
time of consolidation ¢ can be determined
according to:

2
LR (534)
8Ch 1— Uh

where

n? 1 1
= ——Alnn — 075 + —{1— o
# n? —1 [ + n? 4n? J
e lnn—075—n-2]  (535)
n? -1
and

n = d,/d,

(where d,, is the diameter of the drain).
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The equivalent diameter of a band-shaped drain
of width b and thickness ¢ can be expressed as

b+ )

d, -, (536)

T

In practice, drain spacing is seldom below
0.8 m. For prefab drains we thus find n > 12
(or n > 8 for the Colbond drain). This justifies
a further simplification of x in Eq. (535), which
might be taken as:

p=1Inn — 0.75 (HansBo, 1979). (537)

Some modifications have been proposed recently
in respect of these design formulas. A drain with
infinite permeability in the longitudinal direction
does not exist (among other things the drain has
a certain well resistance). If it is assumed that
the discharge capacity of the drain is ¢, and that
the permeability of the soil is k., (Darcy’s law is
assumed to be valid), then p in Eq. (535) should
be replaced after HansBo (1979) by

petlnn — 0.75 + wz(2l — 2) ke , (538)
9w

where [ is the length of the drain when it is open
at one end only (half length of the drain when
open at both ends), z is the distance from the open
end of the drain (0 <z < 21).

Darcy’s law is not valid, however, for slow flow
velocities. It is generally accepted in such cases
to use the expression:

v = Ki". (539)

A new solution to the *“equal strain” consolidation
theory based on this exponential law was pre-
sented by Hansso (1960). For example, when
n = 1.5, the new theory gives:

o _— 1
t=—d?}d, - Auy | —

A e V e ))W/ 0 ( V'l — Uh
where Au, is the average excess pore pressure at
t=0, « is a function of d,/d, (= n) (Fig. 475),
A is the coefficient of consolidation in horizontal

— 1] , (540)
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Fig. 475. Parameter « vs. d,/d,, (HaNsBo, 1979)
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non-Darcian pore-water flow:
KE,
Yw

Experience and observation confirm that a pre-
loading procedure combined with subsoil drainage
is almost inefficient if the pressure on the layer
is less than the preconsolidation pressure (Fig.

476).

A= (541)

5.4.3 Precompression by electro-osmosis

Electro-osmotic treatment might be efficient
and economical with certain soils and in a restricted
volume. Its mechanism has been explored recently
by Gray and MircHELL (1967), and the relevant
consolidation theory has been elaborated by
Esric (1968), WaAN and MrrcHELL (1976) and by
MircaeLt and Wan (1977).

The water flow rate, g, in the one-dimensional
direct current field is initially

g = koioA = kI (m3)s) (542)

where k, is the electro-osmotic coeffiecint of per-
meability (1 - 10-? to 7 - 10~° m/s per V/m), i, is
the electrical potential gradient (V/m), A4 is the
cross-sectional area (m?), k; is the water flow per
unit time per ampere (m3/s/A), and I is the cur-
rent (A).

The time t for a given degree of consolidation is:

TL*
t =

(543)

Cy

where T is a time factor, L is the electrode spacing,
and ¢, is the coefficient of consolidation. Values
of T for different degrees of consolidation for the
case of parallel plate electrodes with a linear
variation in voltage between them are given in

Table 43 (MircHELL, 1981). Measurements of
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Table 43. Time factor for various degrees of consolidation
(MiTcHELL, 1981)

Time factor, T'
Degree of
consgé:;/ix;uon Linear Infinite initial
° V variation gradient
0 0 0
10 0.05 0.001
20 0.10 0.007
30 0.16 0.017
40 0.22 0.02
50 0.29 0.05
60 0.38 0.07
70 0.50 0.10
80 0.66 0.14
90 0.95 0.20

JornsTON and BUTTERFIELD (1977) indicate that
rather than a linear variation in voltage between
electrodes, an instantaneously infinite electrical
gradient develops initially at the anode, which
decreases in a consistent manner to a uniform
gradient at the completion of consolidation. Values
of T for these conditions are also listed in Table 43.
(It can be seen that consolidation occurs more
rapidly for the latter case.)

Electro-osmosis may be effective and econom-
ical under the following conditions (MITCHELL,

1981):

1. saturated silts or silty clay soils;
2. normally consolidated conditions;
3. low pore-water electrolyte concentration.

Barvry (1984) introduced a parameter ¢, which
when used, the product g - k, - ¢, gives a dimen-
sionless quantity, where p (£2/cm) is the electrical
resistivity, k, (cm?/s V) the electro-osmotic coef-
ficient of permeability, ¢ (mA —h/cm3) the “specific
consumption of electricity’’.

4000 — 6
3500 \l\\ E 9=fle] 1y,
_—
3000 Z 7 ke=fle) | gy
= s
. 2500 0
g o~
3 g
d 2000 8=
AN
1500 >\ 6 o
N )
1000 \; \\ 4
< A
500 < q 2
0

0 2 4 6 8 10 12 0
¢ (mA hlem?)

Fig. 477. Ranges suitable for electro-osmotic and electro-
kinetic soil treatment (BALLY, 1984)

Putting these three parameters in a single
diagram (as in Fig. 477), two characteristic regions
can be distinguished:

— the area on the left which is favourable for
electro-osmotic treatment due to the great
permeability and low specific consumption
of electricity;

— the area on the right with high ¢ and low
k, values, thus reflecting a small suitability
of the soil to electro-osmotic filtration, but
a favourable behaviour concerning electro-
chemical processes.

5.5 Grouting of soils

Though the technology of the grouting was
well developed by a number of researchers (Joos-
TEN, JORGENSEN and others) more than half
a century ago, its elevated cost has prevented
a frequent application thereof. Generally, it might
be economical in cases where the mass or volume
to be stabilized is small, or when this method is
simpler than any other method would be (for
example, in the case of a damaged duct).

Four alternatives to this soil improvement
method are distinguished:

(a) Permeation grouting in which the grout
fills up the voids and pores in the soil without
provoking changes in the volume or structure of
the original ground. This has two alternatives:
(1) the particulate grouts or injections, and (2) the
chemical grouts.

(b) Electro-chemical grouting as a special case
of electro-osmotic treatment (3).

(c) Displacement (compaction) grouting in which
a stiff mixture fills the voids and compresses the
surrounding soil.

A short summary of the four mentioned methods
is given in the following sections, but a detailed
discussion of the problem will be omitted here.

5.5.1 Particulate grouts (injections)

Particulate grouts are generally made of ce-
ment, soil, or clay and mixtures of these. Chemical
additives are sometimes used to facilitate penetra-
tion, to prevent cement flocculation and to control
setting times. A part of the cement might be
substituted by appropriate industrial waste mate-
rials e.g. furnace slag.

Clay or bentonite suspensions are non-hardening
materials, so, in themselves — without the addi-
tion of cement — these are only good for sealing
or waterproofing.

Acceleration of setting (when it is necessary,
for instance due to speedy groundwater movement)
can be enhanced by adding CaCl,, water-glass,
or NaCl.



Particulate grouts cannot be injected as per-
meation grouts into soils finer than medium to
coarse sands. Two groutability ratios that have
proved useful, are:

(a) N — (dls)soil

(dss)grout
N > 24: grouting consistently possible,
N < 11: grouting not possible;

(b) Nc: M

(dos)grout

N. > 11: grouting consistently possible,
N, < 6: grouting not possible.

2

5.5.2 Chemical grouts

Two methods are distinguished in this category:
one-shot and two-shot procedures. The latter
might be subdivided as to whether the second
shot is also a fluid or a gas.

Commonly used agents and attained strengths
are listed in Fig. 478. The figure reveals that
chemical grouting would be successful for fine
grained soils as well (contrary to particulate
grouts) due to the low viscosity of the fluid.

Water-glass (Na,O - nSiO, - mH,0) was the
first agent to be used in practice, and it is fre-
quently used. Coming in contact with reagents
the amount of NaO, decreases and flint-molecules
form aggregates. The higher the concentration of
the water-glass and the shorter the setting time
the higher the gel-strength will be. The gel under-
goes further alterations as time passes (synere-
sis = aging) which adds to its strength, but in the
meantime the permeability of the produet will
also increase. The grade of the syneresis depends
on grain size (see Fig. 479) and on the bounding
force between the grains and the gel.
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Fig. 479. Variation of syneresis with grain size:

1 — pure gel; 2 — gravel (d = 1.6 to 8 mm); 3 — pebbles (d = 1.0 to 3.2 mm);
4 — sand {d = 0.06 to 1.25 mm)

The reagent of the water-glass is usually CaCl,
or MgCl,, but gases were also applied in recent
years (CO,, fluoride-gas, ammonium-gas). For the
reagent CO, (JoosTEN, 1931; JorGENSEN, 1935),
the reaction is

Na,O - nSi0, + mH,0 + €O, —~
— nSi0, - mH,0 + Na,CO,.

More recently organic reagents are also being used

(Nobel-Bozel, Pecler, Solétanche-procedure).

5.5.3 Electro-chemical grouting

Electro-osmosis is most efficient in soils that
contain predominantly bound water, compared to
free water. This feature is, however, characteristic
just for those soils that are not prone to receive
fluid using classic grouting methods. Because the
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Fig. 478. Soil-particle sizes for different grout types and grouted soil properties (MiTcHELL, 1981)
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coefficient of electro-osmotic permeability, k,, is
insensitive to particle size and generally falls
within a narrow range of about1 to 7 times 10-°
cm/s per V/jem, a unit electrical gradient (one
V/em) can be more effective than a unit hydraulic
gradient for moving fluids through finer grained
soils.

Chemical stabilizers are introduced at the anode
and carried toward the cathode by means of
electrical gradients of the order of 50 to 100 V/m.

Two alternatives are known for this method.
One is to convey appropriate compounds (CaCl,,
AICL) to the soil which alter the composition of
the adsorptive complex, decrease the affinity
toward moisture and thus the capability for
volume change as well, and improve compres-
sibility properties. The other procedure aims to
achieve a considerable strength increase in the
soil normally by using two fluids, mostly water-
glass and one kind of reagent.

The stabilization of a potentially liquefiable
sand has been investigated by YamanNoucH1 and
MAtsUDA (1975). The concept was to fill the voids
with a gel or colloidal material. Silicate solutions,
bentonite, and aluminium hydroxide were investi-
gated as injection materials. The results demon-
strated a marked increase in resistance to lique-
faction after treatment.

KATTI et al. (1981) produced very convincing
results in salty soft marine clays. Laboratory
experiments indicated that

(a) unconfined compression strength changed
considerably, both according to depth and the
distance from the anode;

(b) efficiency could be enhanced by changing
the polarity.

5.5.4 Displacement grouting

A highly viscous soil, cement, and water displace-
ment grout acts as a radical hydraulic jack that
compresses the surrounding soil. This type of soil

’@WWWWW?WWWW

kﬂ
' \Grout bulbs

Tunnel and
advancing shield

Fig. 480. Compaction grouting during tunnelling to prevent
settlement

improvement can be used in partly saturated
soils and loose materials containing void spaces
(GraF, 1969; WARNER, 1978). An interesting
actual application is illustrated in Fig. 480: settle-
ment of the ground surface was eliminated by
producing “grout bulbs” at the construction site
of the underground railway in Baltimore (Hayward
Baker Co., 1980). Pumping pressures averaged
about 2 MPa, injection depths were about 12 m,
and work was carried out at a distance of about

2 m behind the shield.

5.6 Thermal stabilization

5.6.1 Stabilization by heating

The basic conception of this procedure can be
retraced to very ancient times (brick baking),
but its application as a soil improving method
goes only back to the nineteen-thirties.

The effect of heat appears in two forms: moisture
is evaporated and minerals or compounds are sub-
mitted to an irreversible chemical transformation.
In the range of 130 to 250°C, free and adsorptive
water is dispelled from the soil; between 500 and
600 °C the intercrystallic water also is dissipated
from the clay minerals. Between 700 and 800°C
the carbonates start to decompose, and above
1200 °C the heat melts the silicates, but colloidal
particles begin to bake together sooner.

Under the influence of heat:

(a) compressive and shear strengths increase;
(b) compressibility diminishes;

(c) tendency toward subsidence;

(d) volume change ceases.

To produce the effects under ¢ and d, 500°C and
700 to 800 °C are needed, respectively.

Most successful applications have been expe-
rienced in partly saturated fine grained soils such
as collapsible loess. A significant gas permeability
is desirable to permit both the removal of water
vapor and the exhaustion of stabilizing compounds
which are sometimes used. Solutions are also
known where special chimneys have been provided
70 to 90 cm distant from the burning hole to carry
off the exhaustion gases (BELEs and Srtancu-
LEscU, 1958).

Results from several sites, summarized by
Lrrvinov (1960), indicated an approximate doubl-
ing of the friction angle, an order of magnitude
increase in cohesion intercept, and a five-fold
decrease in compressibility.

5.6.2 Stabilization by freezing
Artificial freezing increases the soil strength

intermittently and provides protection against
groundwater flow. It can be extremely well



(h/m?)

2
o

T/

’
’

10

10%

Time required to freeze to radius R

107

100
Relative size of zone to be frozen,
R’—No, of units

Fig. 481. Determination of required freezing time (Schus-
TER, 1972)

applied in loose soils when cuttings 6 to 8 m deep
or foundation pits are excavated, or tunnels are
constructed. Due to the high cost and consump-
tion of time its use was for a long time neglected;
a recent revival of this method is probably ex-
plained by the development technologies using
liquid nitrogen for this purpose. This gain in
prestige can be appreciated from the fact that
even symposia have been organized recently on
the topic of “Ground Freezing”, held at the Ruhr
Univ., Bochum.

The thermal energy and time required to
complete freezing may be approximately cal-
culated using two-dimensional heat conduction
theory for heterogeneous profiles finite element or
finite difference procedures. The most important
factors governing cost are the size and spacing of
the freezing pipes (SCHUSTER, 1972). Figure 481
can be used for estimation of the time required to
freeze to a radius R using freeze pipes of radius r,,.

The volumetric expansion of frozen water
attains 9%, and the building of ice lenses is a
common phenomenon; this may be harmful in the
presence of silts and clays (Takaci, 1978; JonEs
and Brown, 1978).

5.7 Soil reinforcement

The term “soil reinforcement” is not yet used
uniformly in the literature. All authors agree that
reinforced earth (terre armée) and soil nailing
belong to this group; but there are authors (e.g.
Barros, 1979; MircueLL, 1981) who also include
micro-piles (root piles) in this category. It is
therefore probably convenient to count any pro-
cedure as reinforcement which
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— favourably influences the compressive-, ten-
sile-, and shear strength and compressibility
in the soil;

— is not listed in Sections 5.2 to 5.6.

5.7.1 Reinforced earth

This is a construction developed and patented
by French engineer, VipaL (1966). It consists of
a facing wall and compacted soil backfill rein-
forced with thin metallic strips. The strips, usually
galvanized steel, absorb tensile stresses within the
backfill by strip/soil skin friction. This holds the
soil together as an integral mass, known as the
“reinforced earth volume”. The reinforcing strip
lengths are usually about 0.7 to 0.8 times the
height of the wall.

The facing elements, normally interlocking
concrete panels, are not structural members; these
serve only to retain the soil between strips near
the outer edge of the backfill and to make the
structure more appealing to the eye. The panels
are bolted to the reinforcing strips to keep the
facing in place, and the entire structure (facing,
backfill, reinforcement) behaves as a single unit.
Reinforced earth structures possess flexibility too
and can tolerate some deformation without
distress.

The steel strips convey some apparent cohesion
to the soil. Linear tensile reinforcements exert
their greatest strengthening effort when they are
oriented in the direction of the principal strain
extension (Basserr and Last, 1978; JEwEeLL,
1980).

The measurement of the apparent friction coef-
ficient, f*, between soil and reinforcements has
been made using several test types as shown in

] eSS Reinforcing

—————— material

f*:__7_._
oy -area

Fig. 482. Types of test for measurement of soil-reinforce-
ment friction (MITCHELL, 1981):

1 — direct shear test; 2 — pull out test in shear box;3 — pull out test on wall;
4 — pull out test by rotation
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Fig. 483. Effect of overburden pressure on the apparent
friction coefficient f* (ALMI et al., 1977)

Fig. 482 (MrrcuELL, 1981). The values of f* have
been shown (e.g. McKiTTRICK, 1979) to vary with
type of reinforcement, type and density of back-
fill (compaction), and confining pressure. The
influence of overburden pressure of f* for smooth
and ribbed strip reinforcement is shown in Fig. 483
(Avmr ez al., 1977). It has also been observed that
the heavier the overburden, the more displace-
ment is needed to fully mobilize the maximum
friction. These tests have shown that f* increases
with length and decreases with width of the rein-
forcement. :

One current specification requires that the I, of
backfill be less than 69,, @ be greater than 34°,
and that there be less than 159, by weight of
particles finer than 15 ym (MrrcHELL, 1981).

A safety factor of at least 1.5 against strip pull-out
is usually required, and the maximum tensile
stress in the reinforcement must be less than that
allowable for the material. The requirement for
strip pull-out conditions is:

2bf*lec,
_f_lﬁz 1.5, (544)
o, SV

facing segment

\|

-]
1
B TDirecrion of shear stress
j along fabric
a Fabric reinforcement
=3 T
Z Rupture surface
[ .

45°+ /2
2 T

Fig. 484. Decreasing the earth pressure by means of synthe-
tic fabrics (after Broms: BarTos, 1979)

in which b is the strip width, o, = yh, S is the
horizontal spacing of reinforcements, and V is
their vertical spacing. The maximum tensile
stress, f;, in the reinforcement can be found from:

oS-V
ﬁ:___hAs , (545)

where A4, is the cross-sectional area of the rein-
forcement.

Geotextiles are going to be used more frequently
for the reinforcement of soil masses. With the
advent of second and even third generation tex-
tiles for use in ground engineering the term
“fabrics’” has largely been replaced by “geo-
textiles” (after GIROUD) and ‘“‘geogrids™ (after
INncorp, 1984).

Geotextiles can serve several functions, includ-
ing repair, reinforcement, drainage, erosion con-
trol, forms and impermeable membranes, and can
be used for retaining walls to lessen the earth
pressure {Fig. 484). An important field for using
geotextiles has been found in the construction of
temporary roads over marshes, peat soils, and
compressible clays. The textile sheet between the
surface of the soft soil and the gravel base serves
both to separate the materials and prevent their
mixing, and to spread vertical vehicle loads over
the foundation base, thus reducing the induced
shear stresses (KoERNER and WELsH, 1980).

5.7.2 Soil nailing

The nails used for this purpose are usually steel
rods, 20 to 30 mm in diameter, that are grouted
into predrilled holes or driven using a percussion
drilling device. The aim of soil nailing is mostly
to stabilize hill sides and outer cut slopes. (Their
effect is similar to that of root piles.) Their length
may be of the order 509, of the height of the
excavation to be supported.

Design principles are the same as in reinforced
earths, inasmuch the nails are provided to absorb
tension stresses and also here the bar yield strength
and the pull-out resistance are the two determinant
design parameters.

There are also solutions that combine the char-
acteristic features of nailing and reinforced earth

(BANG et al., 1980).

5.7.3 Soil and stone columns

Compacted stone (gravel, sand) columns provide
vertical support for overlying structures or em-
bankments and function as drains for soft soil.
They can be used also to resist shear in horizontal
and inclined directions. They can also be used to
prevent liquefaction (SEEDp and Booker, 1977).
Column diameter are generally 0.6 to 1.0 m, and
length may attain up to 20 m.



Fig. 485. Effect of stone columns on anticipated
foundation settlement (GREENWOOD, 1970)

Settlement of treated ground—
% of untreated ground settlement

“Vibrocompaction” produces similar soil columns, there-
fore some of the methods described in Section 5.2.2.2 could
have been categorized under this group.

Square or triangular grid patterns are used with
centre to centre column spacings of 1.5 to 3.5 m.
The entire foundation area may be covered with
an additional coverage around the perimeter to
include stresses spread with depth (MiTcHELL,
1981).

The load capacity of the column is controlled
by the passive resistance of the soft soil that can
be mobilized to withstand radial bulging and by
the friction angle of the compacted material of
the column. Design values of 20 to 30 tons (= 200 —
300 kN) per column are typical for columns in
soft to medium stiff clays. Both limit analyses
(Hucues and WiITHERS, 1974) and experience
(THORNBURN, 1975) indicate that the allowable
vertical stress, ¢,, on a single column can be

expressed by
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where 7; is the undrained shear strength of the
soft ground, and FS is the factor of safety (abt.
o 3).

The settlement of a stone column foundation

= 257, , (546) depends on the column spacing. The settlement of
FS a single column is in the range of 5 to 10 mm under
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the design load, but the settlement of a large
loaded area supported by stone columns, will be
about 5 to 10 times greater than this. Estimated
settlement of treated ground as a function of soil
strength, and column spacing is shown in Fig. 485.
The ratio n of original settlement to that lessened
by the soil column is considered by PriesE (1976).
He suggests calculating it according to Fig. 486.

5.8 Choosing the appropriate method for soil
improvement

The decision to select the most appropriate
method among those described in Sections 5.2 to
5.7 must depend on weighing up several aspects,
such as: the properties of the soil to be treated;
available time; improvement costs in relation to
overall investment costs; available equipment and
materials; environmental issues; local experience,
and so on.

Figure 487 illustrates improvement methods
relating each one to the range of soil grain sizes
for which it is most applicable (MircaeLL, 1981).
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Chapter 6.

Soil dynamics

6.1 Introduction

If an elastic, or elastically supported structure
is disturbed by the sudden application or release
of a force, the static equilibrium of the reactions
at the supports and of the forces acting within
the individual elements is also disturbed and the
system will start vibrating. The response of a
structure to a transient disturbance, viz. the
magnitude, mode and variation with time of the
resulting vibrations, will depend on the material,
dimensions, support, etc., of the structure itself,
as well as on the actual disturbance. The free
response of a structure to an initial displacement
or velocity will take the form of free vibrations.
The complexity of a dynamic system is indicated
by the number of degree of freedom the system
possesses. This equals the number of independent
coordinates in terms of which the displacement of
the system can be completely described. A three-
dimensional rigid body subject to no restriction
requires six coordinates to specify its position
completely, namely three linear displacements and
three angular rotations, thus it has six degrees
of freedom.

A body subject to a rapidly varying, repeated
disturbing force will also start vibrating. The mode
of vibration will depend on the magnitude, direc-
tion and point of application of the disturbing
forces, but also on the properties of the body and
on the support conditions. The disturbing force
is harmonic in the majority of cases and the
response of the structure takes the form of forced
vibrations.

In structures supported on soil, both types of
vibration are liable to occur. A blast, a single-
acting pile driver, etc., will generate free vibrations
in the structure and thus in the subsoil as well.
The soil particles are displaced from their original
position and will start vibrating owing to their
inertia. The amplitude and propagation velocity
of the waves induced in the soil will vary with
the kind and magnitude of the disturbing force,
and will depend also on the type and condition
of the soil. Conversely, any periodically acting
machine, such as continuously operating pile

drivers, rail or road traffic, will induce forced
vibrations. The foundation and, in turn, the subsoil
will suffer continuous impacts generating vibra-
tions.

If the source of the periodic disturbance is
located outside the structure considered, the pulses
will be transmitted to it by the soil. The vibrations
in the latter propagate in a manner similar to
sound. The velocity of propagation is controlled
by the soil characteristics, this offers the possi-
bility of non-destructive soil exploration.

The conventional static methods and soil phys-
ical characteristics discussed in the foregoing
sections are insufficient to describe the dynamic
behaviour of soils. Special methods of investi-
gation are therefore needed; the response of soil
masses to vibrations and the propagation of waves
have had to be studied, along with the effect of
dynamic forces on the soil physical properties.
Advances in industrialisation have raised problems
related to machine foundations, and the growing
dynamic loads on road and runway pavements
present problems of growing importance and
complexity; thus the soil engineer is compelled
to devote greater attention to the problems of soil
dynamics.

Even more formidable problems have recently
been encountered. For example, space research
calls for very special foundations for launching
pads and the size of hydroelectric generators and
other machines continues to grow. The devastating
earthquakes that have occurred during the past
few decades (e.g. Valdivia, Skopje, Tashkent,
Anchorage, Niigata, etc.) have also contributed to
directing attention to the dynamic behaviour of
soils. The influence of vibrations in changing soil
physical properties has indeed been utilised in
the construction industry in solving a number of
technological problems encountered in practice,
e.g. vibratory compaction or the vibratory driving
of piles and sheet piles, to mention only a few.
Blasting is also likely to find even more widespread
application in the future.

In view of the foregoing considerations, the
present chapter will be devoted to some problems
in soil dynamics.
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6.2 Theory of vibrations

Consider a rigid footing supported on a uniform
soil. The footing should be assumed to be acted
upon by concentric, vertical forces alone and to
perform vertical movement only (Fig. 488). The
forces acting on the footing are the external
periodic disturbing force P — P(t) and the force
due to the dead weight (mass) of the footing, the
latter being excited to move. This force is con-
sequently an inertial force and its magnitude is
obtained as the product of mass and acceleration,
namely md?z/di?. The third force is the similarly
vertical, periodic restoring force, namely reaction
and one of the major aims of dynamic analysis
is its determination. The forces are in dynamic
equilibrium at any instant

m 2 4 P(t) = Q). (547)
de?

The disturbing force P(t) is, in the majority of
cases, a periodic function of time, viz. harmonic.
According to the generating effect, the peak mag-
nitude thereof may or may not depend on fre-
quency. In practice, two kinds of disturbance are
encountered, namely constant, where P = P, and
quadratic, where P = myrow?.

The magnitude of the force ) depends on the
displacement z, viz. on the depth and rate of
penetration of the footing into the soil. In general

Q1) = ( %‘{J . (548)

Solutions of the differential equation (547) are
available for a few simple Q(t) functions only.
This function of two variables is commonly
assumed to be composed of two terms

Q = 01(2) + Qy(dz/d). (549)

The first term represents the dynamic load —
settlement diagram of the soil, viz. the load-settle-
ment relationship. This diagram is usually called
the response curve of vibration and may be sub-
linear,linear or supralinear, i.e. it may deviate from
the straight line upward or downward (Fig. 489).
In the case a (sublinear), the system becomes softer
with increasing displacement, whereas in case ¢
(supralinear) it becomes stiffer.

The second term in Eq. (549) represents damp-
ing, which is termed linear if the force causing the
vibration to diminish is proportionate to the

lP

Fig. 488. Forces acting on the footing

Reactive force

Displacement

Fig. 489. Guide lines of vibration

Fig. 490. Practically experienced attenuations:

a — viscous damping; b — friction in dry stage; ¢ — air-, or water resistance

velocity of movement. The expression “viscous
damping” is also common.

Other kinds of damping, due to dry friction
(Coulomb), or air or hydraulic resistance are also
frequently encountered in practice. The former is
unrelated to velocity and always acts in a direction
opposite thereto, whereas the latter are propor-
tionate to the square of velocity (Fig. 490).

Equation (547) should be written for the simplest
conceivable case, where the function Q(t) is of the
form in Eq. (549) with @, and Q, being linear
functions of the corresponding variables. Thus
Q, = Kz and Q, = cdz/dt. In this way the simplest

basic equation in vibration theory is obtained
d2z
di?

+ c%ju Kz = P(t).  (550)
4

The constants involved in the equation are

m = the mass of the vibrating body,
¢ = the damping factor,
K = the spring constant.

6.3 Solutions of the basic equation
6.3.1 General case

Assume a harmonic, sinusoidal disturbing force
acting on the footing. Then

P(t) = P, sin wt (551)
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Fig. 491. Time-path curve of swinging
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Fig. 492, Illustration of the equation describing enforced
attenuated swinging

and a particular solution z = f(t) of Eq. (550) is
written simply as*

z = acos (wt — ). (552)

The time-displacement curve is thus a cosine
function with maximum amplitude a and phase
angle ¢ (cf. Fig. 491).

Upon substitution into Eq. (550),

(K — m w?) cos ¢ + cow sintp:—P—o. (553)
a

The relationship is represented according to
Fig. 492, by a right-angled triangle (Runge).
A change in frequency will cause point 4 on the
hypotenuse to describe a parabola, the angle at
the origin O denoting the phase angle. From this
diagram the expressions for amplitude a and phase
angle ¢ are written directly as

— PO
V(K — mo?? + 2

a (554a)

cw

tanp = ———.
K — mow?

(554b)

* For the detailed mathematical treatment of the problem,
reference is made to the literature at the end of this chapter.

21 A. Kézdi and L. Réthati: Handbook
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The physical interpretation of the notation

2 YmK = ¢, introduced here will be explained
subsequently. The solution z = f(t), namely the
time—displacement curve of vibration, is given
therewith as

P,
K
== 212 2
{1 _ &) i (2 L
w} Ck g (555)
g ]
.sin| wt — are tan — <20
w?
1—“
wg
The widest amplitude is
a
Ay = Njay = L 5 (556)

Do)
V[l_ _w_] N [2L_“’_)
w§ Ci Wy
where a; = Py/k, viz. the compression of the
system under the static load Py, and w, =} K/m.

6.3.2 Special cases

Before embarking upon analysis of the general
solution, the special cases will first be considered.
Setting both P(t) and ¢ in Eq. (550) equal to zero,
viz. in the absence of an external disturbing force
and of damping, the expression reduces to

2
m L= ka0 (557)
di?

the familiar solution of which is

z = C sin tl/E + C, cos tl/E . (558)
m m

C, and C, are constants of integration. Assume
the mass to be displaced from its original position
by the distance z, and subsequently to be released.
Counting time from this instant, the initial con-
ditions become

for t =0, z = zy and dz/dt = 0.

Upon substitution we have

Z = 2, COS tl/£ . (559)
m

Equation (559) is the expression of undamped
vibration, the period T of which is the time
required for one complete cycle, during which the

quantity ¢ |/ K/m varies from 0 to 2z (Fig. 493).

us o o
TVl{—:%z or T=2nl/_’". (560)
m K
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Fig. 493. Graphical illustration of undamped free swing

The quantity [/K/m is the circular natural
frequency of vibration with the dimension s-!
(measured in radians per second) and is substan-
tially the angular velocity

wy = V% (561)

of the rotating vector characterizing vibration.

The inverse of the period T is called the natural
frequency in cycles (the number of revolutions by
the vector) per second

LA LYK_ 1y
foaT_2n m  2x

denoted as cps or Hz (Hertz).
Ths spring is compressed under the static load
G by the distance
do = G/K

Kg _ oo (562)
G 27

or

£ — & and Wy = ]/—~ (563)

m 0

With §, specified in e¢m units, the frequency
becomes

f—gLnLVi_s _1_ 300
0 2@

Vs, V5,
(564)

Substitution of w, from Eq. (562) into Eq. (559)
yields
z = z4 cos (wgl) -

The position of the revolving vector of length z
(Fig. 494) is described by the function

B = B(t) = o,

a%x
at?
ax
dt
«
3
8 oo
/S
—

Fig. 494. Position of vector z,

where
48
dt

Wy =

is the angular velocity. The velocity and accelera-
tion of motion are
dx d2x

—— = —zw, 8in (wyt); ——

de ds2

= —z,w3 cos (wgt) .
(565)

The only Pphysical parameter involved in these
expression is the spring constant (stlffness) K,
with the physical interpretation given in Eq. (563)
and defined in the foregoing for a single spring,
or for a single set of springs. The behaviour of
the composite system will depend on whether the

(b) fa)

Fig. 495. Spring assemblies coupled in parallel (a, b, ¢) and
in series (d)

springs are connected in parallel or in series. For
instance, in cases (a) and (b) in Fig. 495, unit
vertical displacement of the mass will induce the
spring force (strain energy) K; 4+ K,. The natural
frequency of the system is thus

%ZV&:&

In the case ¢ the total elongation due to unit
force is the sum of the elongations of the two
springs loaded by the same force: 1/K, 4 1/K,.
Thus the spring constant of the system is

Keg—T
-
K, K,

For several parallel-connected springs

n
K= ¥ K; > K (566a)
=1
for springs connected in series
1 L | .
—— 3 — KK (566Db)

K =1 K,

Actually, all free vibrations are attenuated
because of the frictional (etc.), forces induced;
the amplitude diminishes gradually and all vibra-



tions are eventually damped out. With regard to
this fact, the equation applying to the second
special case is derived from Eq. (550)
dzz dz
m —+c—+ Kz=0. 567
e + dr + (567)

The differential equation is solved by substitut-
ing z = e%

st (sz—i— L —i—£ =0 (568)

m m

and if z = e is actually a solution, the term in
brackets must become zero, i.e.

2
s=sy = — & LJ—ﬁ (569)
2m 2m m

and the general solution is
z = Cie¥ + Cye%t. (570)

Where the square root in Eq. (569) is a real
number, two negative roots are obtained and the
solution is the algebraic sum of two exponential
curves. The dashed line in Fig. 496 shows the
solution for the case C; = 1 and C, = —2. It will
be observed therefrom that no ‘“vibration” occurs
in this case, the mass displaced returning to the
equilibrium position with gradually diminishing
velocity (creeping motion). In this case, viz. for
[(¢/2m? > K/m)], damping is too heavy and no
vibration will occur as long as

e =2 mK = 2mo, (571)

reaches the value of critical damping. Conversely,
for ¢ < ¢, Eq. (569) yields complex roots. With
the substitutions

2 K
V = — v and ——c—=g,

4m? m 2m

the general solution becomes

z = e~% (Ae!*! + Be—ivt),

Sl

Fig. 496. Motion of a system characterized by one degree of
freedom when damping exceeds the critical value

21*
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Fig. 497. Damped swinging when damping effect is below
the critical value

Introducing Euler’s relation

etV = cosy + isiny;
so that

z=e"%{(4 4 B)cos wt + i(4d — B)sin wt}.
The arbitrary constants are written as
(A — By=C(,

and
A+ B—=C,
thus
z = e™%c, cos wt + ¢, sin wt)

with the solution

<
—Lt
z=-e *" [C,cos wt + Cysin wt], (572)

K c?
w = V—— — . (573)
m 4m?

Equation (572) will plot as a sine curve with
successively diminishing amplitudes between the
exponential curve and the reflected image thereof
(Fig. 497).

For ¢#/4m? = K/m, viz. ¢ = ¢, the character-
istic equation (568) has two identical real roots
and the two constants give no solution. Sub-

stituting into Eq. (550) will show the solution to
be obtained by the function

where

[4
~om’
z = Bte .

At greater ¢t value, z tends to zero, i.e. the motion
is again aperiodic.

The extent of damping is found by considering
two successive maxima of the curve. During the
time 27/q the amplitude decreases from

4 4
—t — (452
Cie ™ to Cye o .
The ratio of the two is the logarithmic decre-
ment
7c
In § = — = comnst.
mq
i.e. the amplitude decreases according to a geo-
metric series.
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Fig. 498. Natural frequency of a system with one degree of
freedom as a function of damping

The ratio of the frequency of free damped vibra-
tion to that of free undamped vibration is from
Eq. (572) with regard to Eq. (571),

q _ Vl _ Lr

(2 Cy '
This relationship is plotted in Fig. 498. The
resulting curve is a circle; for ¢ = ¢, we have
= 0. Since the tangent to the curve at the point
¢ = 0 is horizontal, under the damping conditions

commonly encountered in practice (c/c, < 0.2) the
natural frequencies hardly differ from the natural

frequencies of the undamped system (| K/m) and
may for all practical purposes be considered
constant.

The last special case, namely that of forced,
undamped vibrations will be considered in connec-
tion with the general solution.

6.3.3 Determination of the relevant dynamic quantities

Returning to the solution of Eq. (550), given
by Eqs (554) and (555), the results are clearly
illustrated by the graphical representation. From
the treatment of the special cases it will be seen
directly that w, in Eq. (561) is the natural fre-
quency of the free vibrations of the system, ¢ is
the damping coeflicient and ¢, the ecritical value
thereof. IV, is the ratio of the widest amplitude to
the displacement under a static force and is there-
fore called the (dynamic) magnification factor,

or gain.
The solution is written in the form
z = a;N; sin (0t — ¢), (574)
where
9 ¢ @®
c W, co
tanp = —— 2 — . 575
P @ K- ma (575)
wp

@ is the phase angle. The vibration is a harmonic
one, and has a frequency equal to that of the
disturbing force, but lags behind the latter by the
phase angle ¢.

The magnification factor IV, and the phase angle
@ are plotted against the frequency of the disturb-
ing force and the natural frequency in Figs 499
and 500. The parameter of the curves is ¢/c,. The
curve pertaining to the parameter value ¢/c, = 0
in Fig. 499 applies to undamped vibrations.
Damping will be seen to reduce the amplitude of
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Fig. 499. Magnification factors for enforced damped swing-
ing motions
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Fig. 500. Phase-angles between force and displacement as
functions of frequency and damping
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Fig. 501. Time-path curve of an enforced undamped swinging system for w/w, = 0.5

forced vibrations. The solution for the case
cley, = 0 is

z=———sin ot . (576)

This is the particular solution of the inhomog-
eneous differential equation. The general solution
is found by adding the general solution Eq. (558)
of the homogeneous equation. Thus

a;

z = C; sin wg -+ C, cos vt 4 sin wt .
o2
12
w}
(577)
For C, = 0, transformation yields
a . [
1= —2_lsinwt — —sinwt|. (578)
1— ﬁi @o
2
@4

Vibration accordingly consists of two parts,
namely the first part where

a .
3y = ———1—2—sm wt

1— %

2
Wy

(578a)

is the forced vibration with the circular frequency
® and the amplitude

a
@’ = ——1—= Nya,.

+Na 7 =%

..Nal b

N, = 0}/(w3 — »?) is the magnification factor in
the case ¢ = 0 (cf. Fig. 499).
The second part of the solution
» a, w |,
= " ——8In Wt =
1 — 0wl w,
0 . (578b)
= a,N;——sin wt
Do

is a free vibration with the circular frequency w,
and the amplitude

a" = a,N; 2.
Wo

The resultant vibration is thus the sum of two
vibrations and is no longer harmonic. For the case
w/w, = 0.5, the time-displacement curve of vibra-
tion is shown in Fig. 501. The variavion of the
disturbing force with time is indicated by the
dashed line. The force is seen to have increased due
to the dynamic effect. The magnification factor
N, =1/(1 — 1/4) = 1.33, so that the amplitude
of the forced vibration is ¢’ = 1.33a@;, and that
of the free vibration is ¢’” = 1.33 - 1/2a;, = 0.67a,.

The resultant time—displacement curve of free
and forced vibrations assumes an interesting shape
if the vibrations differ from each other but little.
The widest amplitude will vary periodically, the
phenomenon being known as beating. The fre-
quency thereof is wy, — @ and the circular fre-
quency 2x/(wy — ). The time-displacement curve
of beating is shown in Fig. 502.

For w = wy and ¢ = 0 the magnification factor
N tends to infinity. This is the case of resonance

Compound swing

Fig. 502. Time-path curve for compound swinging
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Fig. 503. Time-path curve for resonance

at undamped vibration. The disturbing force
always acts on the vibrating body at a time and
in a direction such as to increase the amplitude
thereof, so that the maxima of the force increase
to infinity as alinear function of time (Fig. 503).

Damped vibrations invariably have smaller
amplitudes than undamped ones. Moreover, the
greatest value of IV, is a finite one and resonance
occurs at a frequency slightly lower than that
corresponding to w/w, = 1, at

o, = w0V1 1L (3)2 (579)

2 | w,

In practical systems, however, the ratio w,/w,
differs but slightly from unity and thus the ap-
proximation w; ~ w, is acceptable. At resonance
the amplitude is

Zg = P . (580)
2%k =
Ck
6.4 Rocking vibrations

The vibrations considered in the foregoing were
caused by a vertical disturbing force, the line of
action and point of attack of which remained
unchanged during vibration, the magnitude being
the only variable. The vibration of a body acted
upon by a moment varying periodically with
time will be examined subsequently after BARKAN
(1962). Assume the moment to vary according to
the function M = M, sin wt and to act in one of
the principal planes of inertia of the body (Fig.
(504).

In cases where the resistance to sliding on the
base is large enough, the moment will cause the
body to rotate through the angle a. The equation
of motion is then

—Jo + XM, =0, (581)

d2«
ds?

where J; is the moment of inertia of the mass
about the axis of rotation and 2'M; is the moment
of all external forces about the same axis. Moments
are due to the dead weight of the body and to
soil reaction. The magnitude of the former is ha(Q,
while for computing the latter the soil reaction
must first be found. The soil resistance acting on
the elementary area dF situated at the distance
& from the axis of rotation is

dR = Cba dF,

whence the elementary moment
dM, = —8dR = —C,Ba cdF,
and the total reacting moment becomes
M, = —C,a | &2dF = —C,al,

with J denoting the moment of inertia of the base
about the axis of rotation.

Together with the disturbing moment, the
equation of motion is

d2x
0

de?

The case M, = 0 yields the equation of free
rocking vibrations

d2a

J + (C,J — Qh) « = Mysin wt. (582)

Jo—— +(C,J—0Qh)a =10 (583)
di?
the solution of which 1s
o = Csin (vt + o), (584)
wherein
0 = CJ —Qh (585)
Jo

is the natural frequency of rocking vibrations,
while C and «, are constants, whose magnitude
depends on the initial conditions. The solution of
Eq. (582) is formally identical with the expression
of vertical forced vibrations, with P, m and o,

Ww:m sin wt

7 R
Turning axle\*“' dR=CyfadF
-M

Fig. 504. Elastically supported mass under the influence of
periodic movement :



being replaced by M, J, and w,. The amplitude of
forced vibrations is thus

o — M (586)
Jo(wi — o?)

The problem of rocking vibrations arises mainly
in the case of tall machine foundations, which are
acted upon by a disturbing moment or a disturbing
horizontal force. In such cases the natural fre-
quency is found from Eq. (585).

Before any practical application of the theoret-
ical results in Sections 6.3 and 6.4 can be attempt-
ed, numerical values must be assigned to the
constants involved in Eq. (550). The question
arises, how far are we justified in regarding these
quantities as constant within the system consisting
of the structure and the subsoil? The quantities
in question are:

— the spring constant (stiffness) K;
— the mass of the system m;

— the damping coeflicient c;

— the disturbing force P(t).

Before embarking upon this subject, the effect
of vibrations on the soils and on the physical prop-
erties thereof must be examined.

6.5 Non-linear vibrations

In deriving the basic equation in Section 6.2,
it was pointed out that the terms involved therein
are in general non-linear, in contrast with the
assumption made there. The response curve has
also been defined as representing the relationship
between displacement and the restoring force.
A non-linear response curve implies that the
natural frequency of the system is not constant.
Thus a sublinear response curve means that the
natural frequency decreases with increasing ampli-
tude, since the restoring force diminishes (Fig.
505).

Consider now the case of non-linear vibrations
starting with the conditions of free vibrations.
The differential equation of motion is

(587)

where Q = (;(z) is the non-linear restoring force
[ef. Eqs (547) and (549)]. Equation (587) can also

be written in the form

d2z dv dv dz dv
m = —_—m— = U——:—f(z)’
di? de dz dt dz

whence, upon integration with respect to z,

— J — f(z)dz. (588)
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Fig. 505. Natural frequency as a function of displacement

The limits of integration are the maximum
amplitude z,,,, where v = 0, and an arbitrary
intermediate value z. From Eq. (588)

and the time during which the mass point moves
from z,,, to z is

The second integration between z = z.,, and
z = z, = 0 yields the natural frequency as

J ]/ [ —fora:

Zmax

l._ 2n_T V8m

. (589)
fo Wo

Theoretically, Eq. (589) can be used to find
the natural frequency for any response curve.
Exact integration is, however, possible only in
a few cases of practical interest, but a solution
can always be found by adopting a numerical,
or graphical approach.

In the case of non-linear damping, the natural
frequency retains the value ~ K/m. The attenu-
ation of amplitudes can be determined by itera-
tive, numerical or graphical integration, but
the step-by-step procedure is somewhat lengthy.
A fair approximation is obtained by equating the
energy consumed by friction to the decrement
kinetic energy of the system. The loss in energy
is computed knowing the character of movement.
Assume the movement to be harmoniec, z =
= 24 sin wi. The damping force is Q, = f(dz/dt)
and the work performed during one cycle is

= frlale- ol e
- Jits

cos wt d(wt) .
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Fig. 506. Friction as a damping force

The decrement kinetic energy is

— mao?zt — % ma¥(zy — Az)2 =

= maoPz,dz — %mwz(dz)2 ~ maPzyds.

Equating the two expressions, the change in
amplitude during one cycle is

Az =

o ] o

As an example, the case of friction is first
examined where f(dz/dt) = £+ F. The velocity is
shown as a function of the damping force in
Fig. 506. The integral in Eq. (590) consists of four
identical parts:

72
4 j F cos wt d(wt) = 4T
0

and the amplitude decreases in a single cycle by

AF :4f_£i:4% (591)

me? K m o?

Az =

and thus four times as much as the compression
of the spring under the static force F. The ampli-
tudes thus decrease arithmetically, whereas in the
case of viscous friction they decrease according
to a geometric sequence.

The next case considered is that of forced vi-
bration in combination with a non-linear restoring
force. The relevant differential equation of mo-
tion is

dz
m Ty + f(2) = Pycos wt. (592)
t

Assume the solution to consist of an expression
of the form z = z, cos wt. The mass force is
md?z/dt? = mzyw? cos ¢, the maximum of which is
—ma?z, and this occurs simultaneously with the
maxima of the disturbing force P, and the restor-
ing force f(z,). Equation (592) applies to any

instant of motion, thus also to the position
z = z, Here

—ma’z, +f(zo) = P,,
so that

flzo) = Py + maz,. (593)

At z = 0 the three forces simultaneously become
zero and are thus in equilibrium. In the case of
f(2) = Kz each of the three terms in Eq. (592) is
proportionate to sin wt and division thereby yields
Eq. (593); f(z) = kz, and the condition of equi-
librium is satisfied for all intermediate values
between z = 0 and z = z,, but not for f(z) = Kz.
An approximate solution is therefore sought, in
which equilibrium is established at least in the
points z = § and z = z,. The amplitude of forced
vibrations is thus obtained from Eq. (593).

Preferably, a graphical approach is adopted, in
which the forces are plotted on the vertical and the
displacement z, on the horizontal axis. The left-hand
side of Eq. (593) is the equation of the non-linear
spring characteristic curve, while the quantity on
the right-hand side — the sum of the disturbing
force and the maximum value of the inertia
force — can be represented by a straight line
intersecting the vertical axis at the point P, and
inclined at arc tan (m«?) (ef. Fig. 507).

The z, value pertaining to an assumed w value
can thus be determined in this manner. In other
words, one point on the resonance curve of non-
linear vibration is obtained.

In the case of low frequencies, only a single
point of intersection (e.g. 4;) is obtained whereas

Force

bo
N
\
N\

Displacemnent
Bz, C3

/

Co

Fig. 507. Approximative determination of the resonance
curve for non-linear swinging



at higher frequencies three points (4,, B, and C,)
will result and thus three solutions exist. The plot
of the z, values against o thus constructed defines
a non-linear resonance curve as illustrated in
Fig. 508, which corresponds to the curve in Fig.
499.

Resonance curves for the three types can be
seen in Fig. 509 and for these, the always present
attenuation should be reckoned with. Own-fre-
quencies are not stable values. Increasing the
frequency in the supra-linearity stage causes the
amplitude — after reaching point B — to fall
suddenly to point C, from where it decreases
gradually as o is further increased. When the
investigation begins at a high w-value, the section

Zo{

{a) w
ZOA ]
|
|
]
|
- ]
|
& 1 -
(b} @
Zo‘
|
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§

< —

{c) w

Fig. 509. Resonance curves for:
a — super linear; b — lineur; and ¢ — sub-linear vibratious
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Fig. 510. Drawing the dynamic characteristic curve from
known resonance curves

DCE develops, and at point E the amplitude will
suddenly reach the value marked as point F.
Lorenz (1950) concluded that the character-
istic can be determined by means of experimen-
tally established resonance curves by using the
method proposed by DEN Hartoc (1947). Assume
that they are known for three eccentricity levels
of the rotor. These curves can be seen in Fig. 510;
their pattern is typically sublinear. In order to
draw the characteristic curve a pair of points
and z have to be chosen on the amplitude curve.
Then a coordinate system should be selected and
the amplitudes plotted on the abscissa and the
dynamic stresses induced in the soil as the ordi-
nates. The coeflicient of eccentricity ¢ = myr/m
(in which m, is the mass of the rotor, r is the



330 Soil dynamics

diameter, m is the vibrating mass and product
mgr is the generating momentum) should be plotted
on the negative side of the amplitude curve
(Fig. 510b). A straight line should be drawn from
this point with the inclination mw?/F; the inter-
section of this line with the amplitude z will supply
one point of the characteristic curve. Repeating
this procedure, the whole curve can be produced.

The following expression has been suggested
by Lorenz (1950) to deseribe the characteristic
curve:

6= az —2 (594)

where the soil stress o is composed of a dynamic
and a static component

o = o4(l + 0.04¢n?), (595)
where
Oy = T is the static soil stress;
e = € he eccentricity factor;
n = the frequency.

The three constants involved in Eq. (594) are
found from the resonance values obtained by
dynamic soil tests performed at three different
eccentricities. These being known, the amplitudes

are computed from Eq. (594) as

. a—b _i+1/[a—b
2a 2 2a
and the bedding coefficient is the slope of the
tangent

a

dE od
_?] 2% (596

cme(o) =3 M (s
dz (z + d)?

The bedding coefficient determined in this man-
ner is then used in dimensioning machine founda-
tions.

For further detailed treatment of the problem
reference is made to the books by Lorenz and
KieIN (1966), Kauperer (1958), Novaxk (1957)
and DEn HarTtoc (1947).

The stress deformation relationship in soils has
been found to be non-linear in practice, regard-
less of whether the load is static or dynamic. The
deformation curves obtained by applying and

Zstat

20 Zstat

Fig. 511. Time-path curve of a damped swing

removing different loads producing the same stress
will display a hysteresis loop. The greater the
absorbing capacity of a particular material, the
greater the area of the hysteresis loop will be; in
other words, the less elastic its behaviour, the
greater its capacity for absorbing mechanical
work which is irreversibly converted into heat.
This part 44 of the work performed equals the
area of the hysteresis loop. Denoting the total
work performed by loading up to the greatest
deformation by A, the ratio

44
A

may be termed the absorbtion coefficient, which
represents the energy related to the total work 4
absorbed by the material during a single loading
cycle.

A block supported on a soil and acted upon by
a single transient force will perform free vibra-
tions, the time-displacement curve of which is
shown in Fig. 511. In a linear system the restoring
force (the soil reaction) at the maximum amplitude
is Q = Ka,, the energy of vibration being

A, = Kali:—;{—a%.

) (598)

At the second peak
4= a

2
and the energy absorbed

A4 = K ( —ﬁ],
2

ay

so that the absorbtion coeflicient becomes

o ff

a;

It can be demonstrated that in vibrating systems
having a single degree of freedom, the maxima of
two sueccessive amplitudes are

a, = aexp (— c¢T/4); and a, = aexp (5cT/4).

Here c is the damping coefficient, T is the period
of vibration and e the amplitude of undamped
vibration.

Upon substitution

p=1—exp(—2cT). (599)

Experience has shown p to depend on the rate
of load application, on frequency and on the soil
stress to a limited extent only; the influence of
soil conditions and granulometry being more pro-
nounced. For instance at d = 0.1 to 0.25 mm we
have 9 = 0.04, while at d = 1 to 2 mm it is 0.79.

The magnitude of 9 and of the damping coeffi-
cient can be computed from time-displacement
curves determined by measurement.



6.6 Dynamic soil characteristics

6.6.1 Shear strength

It should be made clear at the outset that the
changes caused by dynamic effects in the physical
parameters of soils are up to now but imperfectly
understood. There is ample empirical evidence
available to indicate that shear strength (the
values of @ and c), permeability, pore-water pres-
sure and the Young’s modulus of elasticity are
among the properties substantially affected by
vibrations.

The effect on the angle of internal friction in’

sand was studied by BArkaAN (1962) by means of
a special direct shear apparatus which enabled
him to subject soil samples to the effect of different
frequencies. Coulomb’s friction law was found also
to apply to sands acted upon by dynamic forces:
7, = ¢ tan @ (Fig. 512); but it was also found that
the angle of friction depends also on frequency
and amplitude. In the initial period of vibration,
first slight consolidation and then loosening were
observed.

The variation of the friction coeflicient with the
amplitude and frequency of vibration is shown in
Fig. 513. The influence of amplitude is unmistak-
able in that @ decrease as a is increased. The
influence of frequency is more complex, in that
a sudden drop in the value of tan @ occurs as the
frequency is increased beyond a certain critical
value. An interesting and rather unambiguous
relationship is obtained by plotting the coefficient
of friction against the ratio n = bjg (Fig. 514),
where b and g are the accelerations of vibration
and of gravity, respectively. To describe this
relationship BARKAN has suggested the empirical
formula

tan @y, — tan O,

= exp (—fn), (600)

tan @y, — tan P,
where tan @, is the coefficient of friction deter-
mined by a static test, tan @, is the asymptote of
the curve in Fig. 514, while § is a constant whose
value for dry, medium sand is § = 0.23.
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Fig. 512. Coulomb’s friction law for dynamically operated
probes
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Fig. 514. Angle of internal friction in sand depending on
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Vibration affects the coefficient of friction by
temporarily reducing the number of contact
points between vibrating particles. The result of
the shear test is expressed as

7
tan® = —.
I

To determine the quantities 7 and o, the T and
N forces are divided by the total cross-sectional
area resisting shear. In contrast to this simplified
situation, actual contact between particles is con-
fined to minute, discrete areas and it is in these
latter where the frictional resistances are devel-
oped. The formula should thus be rewritten into
the form

T T/xA

tangp = — = ———,

N T/pA
where « and B are the ratios of the sums of the
elementary areas perpendicular to the direction
of shearing and the normal force, respectively, to
the total area. The effect of vertical vibrations
probably consists in reducing « to a smaller extent
than B, as a consequence of which tan @ is reduced.
The effect of vibration is thus to decrease, at a
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Fig. 515. Coefficient of friction as a function of phase com-
position

given instant, the size of the contact areas in the
cross-section, the probability of reduction increas-
ing with amplitude and frequency.

Understanding the influence of density and
moisture on the dynamic behaviour of soils would
be of considerable interest. Owing to experimental
difficulties, the problem has not been satisfactorily
clarified thus far, but this influence is not expected
to be a simple one.

Consider first the role of moisture. The investiga-
tions by BARKAN (1962) have revealed a water
content at which the reduction of the angle of
internal friction is minimal. This effect is related
to the structure of granular soils. In such soils
two critical water contents have been shown to
exist (cf. Vol. 1, Fig. 170) concerning resistance to
forces and further air- and water permeability
(cf. Vol. 1, Section 6.2.5). At saturation values
below the lower limit, water is only present in the
corners between the particles, the communicating
passages being filled with air. The air permeability
of the soil is thus great, while the relative water
permeability is zero. Above the upper critical
value, on the other hand, air is present in the soil,
in the form of bubbles, which are displaced to-
gether with the water. Consequently, the air per-
meability is zero at this moisture. Below the cri-
tical lower and above the critical upper moisture
contents, the effect of vibration is necessarily
greater than in the range enclosed, since the con-
tinuous air and water matrix, respectively, guaran-
tees a greater mobility to the particles. Owing to
this increased mobility, the extent of reduction is
more pronounced in the lower and upper ranges.

BARKAN’s experimental results plotted in a
triangular diagram, are shown in Fig. 515, indi-
cating the values of tan @ at two different fre-
quencies in terms of the phase composition. In the

ranges I and III, friction between the particles
may even disappear completely, the material
behaving like a dense, viscous fluid. Objects placed
on the surface of such sands will sink if their
specific gravity is greater than the unit weight
of the water—solid particle mixture and will float
on the surface in the opposite case.

Imar (1977) proposed determining the dynamic
shear modulus from standard penetration test
results. Having evaluated 950 tests he has found
with good approximation the formula

Gy = 120N07? (601)

(with the correlation coeffcient r = 0.888).

Investigating the relationship between dynamic
and static shear moduli, ImA1 (1977) established
(from 218 pairs of values) the formula

G, = 510 Gy ™1, (602)
SeED and SILVER (1972) produced the formula
G;=1000K - o (603)

in which ¢, is the applied vertical confining pres-
sure, m is the exponent, K, is a coefficient whose
value varies with the shear strain. Figure 516
presents the relationship between shear modulus
and shear strain, and damping factor and shear
strain at low confining pressures. These relations
have been obtained from simple shear tests; the
simple shear apparatus was suitably modified for
cyclic strain applications. The material tested was
the Crystal Silica No. 20 sand (d;, = 0.5 mm;
U= 1.5).

6.6.2 Compressibility

The density of granular soils subject to dynamic
effects is controlled mainly by the acceleration
ratio 7 = b/g. In addition thereto, the hydrostatic
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Fig. 516. Shear moduli and damping characteristics of silica
sand at very low confining pressures (SEED and SILVER, 1972)



compression stresses acting simultaneously are
also of interest, in that consolidation increases as
this stress is reduced. Experiments performed at
several amplitudes and frequencies have yielded
the average dynamic compression curve shown in
Fig. 517. The curves for other types of soil are
identical in shape and yield to the equation

de

—d;_ —a(e_emin)v

(604)

whence

e = egn + Cexp(—an).
For 7 = 0, e = ¢, and thus C = ey, — ey, so that

e = enin + €9 — emin exp (—an). (605)

The magnitude of the coefficient « depends on
the water content, as indicated in Fig. 518. The
role of sand structure, reflected by a lower and
an upper critical condition will again be observed.
Dynamic compaction of sands is thus effective
either in the dry or in the saturated condition.

Since the void ratio is reduced by vibration, it
would be logical to conclude that the permeability
coefficient is also reduced. This, however, is not
the case, in that kincreases together with n = b/g.
This effect is more pronounced in fine sands (Fig.
519). This phenomenon can again be explained
by the fact that the number of contact points at
any instant is reduced by vibration, enabling a
greater number of passages to develop.
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Fig. 517. Dynamically compressed sand — compressive curve
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Though the fully saturated state might be the
most perilous one for cohesionless soils (see Sec-
tion 6.6.5) even dry and partly wet sands are
exposed to substantial deformations. During the
San Fernando earthquake of 1971, for example,
compaction of a 12 m deep sand fill resulted in
settlements of 10 to 15 ¢m at a building constructed
on spread footings near the surface. In the Skopje
earthquake of 1963, severe damage to major
structures was attributed to differential settle-
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layer in shaking table test (SEED and SiLVER, 1972)

ments resulting from the compaction of pockets of
loose sand underlying the foundations.

Recently it has been discovered and observed
that a fundamental differentiation is needed
between vertical displacements induced by the
vertical and the horizontal components of ground
shaking.

D’Aproronia (1968) describes tests in which
samples of fine sand were placed in containers at
very low density and then subjected to vertical

Cyclic shear strain, >y, (%)

vibrations. It was found that even under no sur-
charge very little densification occured until the
acceleration reached about 1 g. WrITMAN and
OrTticosa (1969) concluded that: (a) when the
dynamic stresses are small, no noticeable densi-
fication occurs for @ <'1g; (b) when the dynamic
stresses are small compared to the initial over-
burden stresses, there is no noticeable densifica-
tion, (c) vertical acceleration during earthquakes
can cause very little densification.

It may be concluded from these studies that the
settlement of sand during earthquakes is produced
mainly by the horizontal components of ground
shaking. Impressive experiments have been con-
ducted in this respect (SEED and SILVER, 1972)
with the help of a shaking table. Accordingly, the

vertical displacement is influenced by:

relative density of the soil (D,);
base acceleration (a;);

number of cycles;

surcharge.

The experimental results described in Section
6.6.1 are reproduced in Figs 520 to 522. By their

use, diagrams can be constructed which give the

Cyclic shear strain, =g, (%)
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Fig. 524. Settlement of dry sand under unidirectional and
multidirectional shaking (SEED et al., 1978)

vertical strain, &, as a function of D,, g,, yyy, and
n (Fig. 523).

Though the vertical component would normally
not induce, in itself, a considerable displacement,
experiments have confirmed that it can be a
contributive factor in enhancing the effect of the
horizontal component. PYKE et al. (1975) have
shown that the settlement of d. y sands is relatively
greater under multidirectional shaking than under
unidirectional shaking of similar magnitude. This
is illustrated in Fig. 524, where the settlement in
10 cycles of loading is shown as a function of the
cyelic stress ratio, 7,/0,, in which 7, is the hori-
zontal shear stress, and o, is the applied vertical
stress (SEED et al., 1978). For a given value of the
stress ratio it may be seen that the settlement
caused by the combined motion is approximately
equal to the sum of the settlement caused by the
X and Y components separately. However,
because the stress—settlement relationship is non-
linear, the stress-ratio causing a given settlement
for the combined motions is typically only about
209, less than the stress ratio that causes the same
settlement under a single component.

6.6.3 Natural frequency and spring constant

As mentioned above, the behaviour of a vibrat-
ing system comprising a mass point and the soil
is governed by the constants involved in the basic
equation.

In the present paragraph these constants will
be examined in greater detail.

From the very beginning, research has been
concerned with the determination of the natural
frequency, rather than with the spring constant K.
From Eq. (564)

K — 1232, (606)
8
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so that the spring constant is found from measured
values of the natural frequency. The ratio
b — K _ A
F

fgpstat

is called the dynamic bedding coefficient and is
defined as the dynamic load causing a settlement
of 1 em, while pg,; is the static bearing pres-
sure G/ F.

The natural frequency is found from a model
test performed on site, using a vibrator (Fig. 525)
as the source of the disturbing force of controlled
frequency and amplitude (ScrurrzE and Muss,
1967). A vibration transducer is mounted on the
vibrator, the rate of which is then accelerated to
a preset value. The phase and amplitude of the
vibrations performed by the vibrator are measured
at constant frequency. The test is repeated at
several frequencies and by plotting the amplitudes
measured against the disturbing force, a resonance
curve (Fig. 526) is obtained. The resonant fre-
quency is found by drawing a tangent to this
curve through the origin of the coordinate system,
the point of tangency indicating the natural
frequency.

The method is applicable to cases where the
disturbing force increases as the square of fre-
quency, this being the situation with the vibrator.

@ @

b L

Fig. 526. Design of the resonance curve in the case of a force
which acts at the square of the frequency
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0 1L ]
wj; @w

Fig. 527. Resonance curve originated by a constantly acting
force

The disturbing force is the centrifugal force of the
rotating masses, so that

—_ 2
Py = mygo?

where m is the rotating mass and risthe excentric-
ity thereof. From Eq. (554)

- myro?
V(K — mo?)? + Eo?

Reducing the fraction by «?, the transition
@ — oo will reveal the asymptote of the curve

mgyr

a, =

(607)
m

Since m, and r are known, the magnitude of the
vibrating mass can be computed. Resonance
occurs, if w = wy(f=f,). The equation of the
tangent to this point is

mgr

= a),

c

showing that the tangent actually passes through
the origin. The spring constant is found from w,
as

— me?
K = mol;

the slope of the foregoing tangent yields the
damping coefficient

¢ =22 6, (608)
)

where a, is the amplitude measured at resonance.

The constants involved in the basic equation
can thus be determined with the help of the
resonance curve obtained by direct measurement.

Tests performed with a constant disturbing
force, the magnitude of which is unaffected by
frequency, commonly yield a curve resembling
that shown in Fig. 527. The analytical expression
of the curve is given by Eq. (574), revealing the
case of forced, damped vibrations.

At o = 0 the amplitude is
P

Go = O ——
K
and thus, a, being known, the spring constant
becomes

k=20

Qo

The damping coeflicient cannot be determined
unless the values of a.,, and w; are known. The
term under the square root sign in Eq. (554) is
differentiated with respect to w:

[—2m(K — mw?) + 2] w = 0. (609)
The two solutions are

(a) o =0
(b) w? = (2Km — ¢%)/2m>.

For ¢ > 2Km the maximum occurs at @ = 0
(c is greater than c¢;), for ¢ << 2Km, at the fre-

quency

. 2Km — 2
W — ———————
2 m?

and has the magnitude

Py 2Kmjc?
The pair of values w; and a,, yields the damp-

ing coeflicient

(610)

Amax ==

c=mVL£—mﬁ:mﬁVW%wﬂ(ﬂh
m

Where the mass is unknown, the following
approximate formulae can be used
P
c~——2_ and m~
Amax®q

(612)

8| =

The accuracy of approximation will be the
better, the smaller the ratio ¢/c;.

In analysing the model experiments described
above, a difficulty has been encountered on account
of the fact that the subsoil is involved in the
dynamic process not only as an elastic support,
and as a damping medium, but also as a mass
affected. The magnitude of the resonant mass
depends on the data concerning the vibrator.
Equation (562) must therefore be written in the
following form:

fo L LI [
7 2n 2n | G, +G,’
(613a)

where the spring constant is written in the form
= kF, F is the area in plan, G, is the weight
of the vibrator and G, that of thé resonant soil



mass. For determining the natural frequency, the
“reduced natural frequency” was suggested by
TcHEBOTARIOFF and WARD (1948). This is found
by rearranging Eq. (562) as follows:

LV e

The experimental data published have been com-
piled by these authors and the natural frequency
entered in a log-log plot against the contact area.
Depending on whether the subsoil was cohesive clay
or granular sand, the points fitted two parallel
straight lines as illustrated in Fig. 528. This can
be used for finding the reduced natural frequency
and, in turn, the natural frequency itself. Accord-
ing to Novak (1957) the weight of the resonant
soil mass is found from the expression

G, = fFu,

where fis an empirical coefficient.
For estimating the magnitude of the spring
constant, Barkan (1962) has put forward the

formula
ky =k, |/ —F—'l—,
F,

where k; and k, are the bedding coefficients per-
taining to the areas F, and F, respectively.

The corresponding pair of values being known,
the bedding coeflicient can thus be found for any
area.

It should be noted that the foregoing two empir-
ical relationships are in complete agreement,
since the reduced natural frequency can also be
written in the form

(613b)

(614)

=% __EE_:CV;
1+ ¢
G,
thus
Son _ Fy
ore ko
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Fig. 528. Relationship between contact area and reduced
natural frequency

On the other hand, according to BARKAN

ﬁ__VE
k, F,
Jore _ Fy

Jorn Ty

hence

and

Flfgn =F

of &, = const.

Table 44. Dynamic bedding coefficient of subgrade reaction for a 10 m? contact

area, after BARKAN (1962)

Allowable bear-
ing capacity Coefficient of
Class Soil type under static | subgrade reaction
load k (MN/m?)
T (kN/m?) '
I | Moderate bearing capacity (plastic cohesive
soils) mediately loose silty fine sand; soils
from class I and I11 with interlaced mud
or peat 15 30
II | Mediately hard cohesive soils (plasticity
limit) mediately dense sand 15....35 30....50
III | Hard cohesive soils: dense sand or gravel 35....50 50....100
IV | Rock >50 | > 100

22 A. Kézdi and L. Réthati: Handbook
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Fig. 529. Dependence of the function myw? cos g/a on w?
(after HEUKELOM, 1957)

so that
const.

F="""
Jér
thus
log F' = log (const) — 4 log f,, ,

the equation describing the parallel straight lines
of TCHEBOTARIOFF.

Numerical values of the dynamic bedding
coeflicient are compiled for information in Table 44,
in which the values of k are given after BARKAN
for a block of 10 m? plan area. For other areas
these values can be transformed using Eq. (614).

Another method for finding the dynamic con-
stants, suggested by Heukerom (1957), consists
of plotting the quantities

2
T o5 p = K — mo?
a

(615)

myro

sing = ¢
a

against w?® These result directly from Eqs (554).
At low frequencies a straight line is obtained, the
spring constant K is read at @? = 0 and the slope
is found as m,, the resonant soil mass (Fig. 529).
According to HeukeLom, if o < wy, then my, =
= const. = m, and if w >w, then m,=m,
(wo/w) , so that a radically different line is obtained
for higher frequencies. The two lines intersect at
the frequency w,.

The vibrator is designed to transmit periodic
pulses also as horizontal force to the soil. With
this arrangement the dynamic shear modulus can
be determined. The natural frequency is found

from Eq. (585), neglecting the term Qh

w, |/ C.J
f“- N 23'[ 1 JO
whence
C, = 4a® —:I—I&fg (616)

6.6.4 Propagation of waves in the soil

The intensity of any pulse transmitted to the
soil will diminish in the course of spreading with
the distance from the point of disturbance. For
practical considerations information is needed as
to whether the vibrations at a particular point are
detrimental or not to the human organism, to the
source of vibration itself or to any other structure.

The type of vibration induced by a transient
force, and further the velocity of propagation,
depend on the elastic properties of the soil and
on the configuration of the surface. A particle
will start vibrating during the passage of the
wave front. During a cycle of period T, the wave
front travels the distance I = Ty, where [ is the
wave length.

The waves may be classified into several types.
In seismology distinction is made between mass
waves propagated within the interior of the mass
and surface waves. The mass waves may be
compression or longitudinal waves also referred
to as P-waves or undae primae, and transverse
or shear waves, also known as S-waves or undae
secundae. The concepts of wavelength, frequency
and period are assumed to be familiar to the
reader. The two different wave types are illus-
trated in Fig. 530. Assuming the medium to be
uniform and isotropic, the propagation velocity
of the compression wave is

v _V Eg(l — (617)

1—p— 2’
where E = the Young’s modulus of elasticity,

¢ = Poisson’s number,
y = the bulk density,
g = gravitational acceleration.

Shear waves are substantially transverse waves,
where the particles are displaced in a direction

22 ,{/7/ 7

\
§§?
N\
% N
Source
{a)
7/ 7’
AE xpansion
Movement
Source A
{b)

Fig. 530. Wave types in the subground:

a — P-waves (longitudinal waves); b — S-waves (transversal waves)



perpendicular to that of wave propagation, the
velocity of the latter being

v, = V—Eg—. (618)
2y(1 + w)

The value of v, is always lower than v, the varia-
tion thereof with the Poisson’s number of the
medium being illustrated in Fig. 531. At a Pois-
son’s number y = 0.5, the veloeity v; -+ oo, while
v, has the finite value | Eg/3y.

Velocities actually measured in different types
of soil are compiled in Table 45.

Table 45. Propagation of transversal wave velocities
during dynamic soil investigation

Seil type (n:]/s)
Sand, according to conditions 100 ... 250
Sand and gravel 180 ... 550
Silt 150 ... 200
Clay, according to water content 120 ... 700
Weathered limestone 250
Sound sandstone 1100

Surface waves having their origin in the semi-
infinite uniform or stratified medium and propa-
gating along the surface, or along the interface

2
Longitudinal 1
wave -
gl
~
I\
Transverse
wave
0
0 025 050

Fig. 531. Relationship between Poisson’s number and wave
velocity

Motion of
particle a

Fig. 532. Development of the Rayleigh-type wave

22*
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Distance x (m)

=

Fig. 533. Determination of the absorption coefficient

between two layers, are termed Rayleigh waves
and have the propagation velocity

v, = fo,, (619)

where
0919 < 8 < 0.955 for 0.25 < u < 0.5.

Rayleigh waves resemble water waves but the
direction of movement is different. The individual
particles describe elliptical paths as shown in
Fig. 532. Love waves are also surface waves
resembling the S-waves, with the surface particles
moving perpendicular to the direction of wave
propagation. The influence of these waves is
limited to a rather thin layer below the surface.

The amplitude of these waves diminishes expo-
nentially with the distance x from the point of
disturbance according to the formula

a=a, V% exp [— k'(x — x)/A], (620)

where a and a, are the amplitude at the distances
x and x,, respectively, k' is the wave absorption

. v .
coeflicient and A = — is the wave length.
n

For disturbances other than sinusoidal, the fol-
lowing expression has been suggested

a—= ao—x;o—exp [— E(x — x5) 4], (621)

According to FortscH (1954, 1956) the energy
is absorbed owing to Coulomb friction within the
soil structure, whereas in saturated soils this is
due to the viscosity of pore water.

In order to determine the magnitude of the
absorption coeflicient, the amplitudes are measured
at different distances from the disturbance and

the quantities In (a/a, |} x,/x) are then plotted
against x (Fig. 533). In uniform soils, since

In (ao/a Vxg/x) = k'(x — %),

a straight line is obtained, the slope thereof
yielding the magnitude of k’. This value is un-
related to frequency and may, therefore, be
regarded a physical property of the soil and a

measure of the difference between the behaviour
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Fig. 534. Field test procedures to evaluate vg:
a — uphole; b — down-hole; ¢ — cross-hole method (Yosumr, 1977)

of the soil and of an elastic medium.The expression

a = a, [[x,/x applies to the elastic half-space
rather than Eq. (620).

Numerical values of k' are given in Table 46
after ¥Oortscu (1940). Once k£’ is known, the
amplitude at any distance from the disturbance
can be computed, provided that the amplitude
and the frequency of the disturbance are known.
From the amplitude and frequency, the accelera-
tion is found as

b = 4 7% %a. (622)

Seismic measurements can establish values of
the shear wave velocity, v, within a rock or soil

Table 46. Coefficient of absorption for
different soils, after Forrscu (1940)

Soil type k'
Loess, silty loess 0.215
Diluvian clay 0.146
Lias clay 0.350
Silty sand 0.425
Silty gravel 0.105
Medium sand 0.620
Fine sand 0.5...0.6

mass. Then the low amplitude shear modulus can
be calculated from

Gy = pvi, (623)

in which p is the mass density.

For detailed information on the wave velocity
and on the variation of vy with depth, surface
refraction, steady-state vibration and borehole
techniques can be used. Up-hole and down-hole
tests can be performed with one borehole, while
cross-hole tests require two or more boreholes.

In the up-hole method, the excitation is pro-
vided at various depths within the borehole and
the sensor is placed at the surface (Fig. 534), while
for the dowun-hole method the excitation is
applied at the surface and one or more sensors
are placed at different depths within the hole
{Fig. 534b).

In the cross-hole method (STOKOE and Woobs,
1972; Woops, 1978; Hoar and StokoE, 1981, etc.)
at least two boreholes are needed, one for the
impulse and the other for the sensors. As shown
in Fig. 534c the impulse rod is struck at the top
end and an impulse travels down the rod and is
transmitted to the soil at the bottom. This shear
impulse creates shear waves which travel horizon-
tally through the soil to the vertical motion sensor
located in the second hole, and the time required
for the shear wave to traverse this known distance
1s recorded.

vs (m/s) vs (m/s)
0200400 600 800 0 200 400 600800
@ ' ‘g
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Fig. 535. Typical shear wave velocities from cross-hole test (RODRIGUES, 1981)



Travel velocity can be measured in the following manner.
(HoAr and SToKoE, 1981). Typical seismic-wave travel time
records are analyzed by identifying initial wave arrivals.
Then either the direct travel time from the source to the
receiver, or the interval travel time between two receivers for
the same impulse are determined. Interval travel times may
also be determined by using points on the waveform other
than the initial wave arrival, such as the first through, first
cross-over point, or first peak after the initial arrival. Using
points on the wave-form other than the initial arrival tends
to produce longer interval travel times and therefore slower
velocities, due to wave spreading. Interval travel times gen-
erally produce more consistent and reliable velocity pro-
files.

Figure 535 is inserted here to provide two
examples on the variation of v, according to depth
(stratification). These profiles have been deter-
mined by Ropricues (1981) by using the cross-
hole method.

In the case of the P-wave velocity (v,) a clear
contrast is often found between above and below
groundwater level. On the other hand, in the case
of S-wave velocity (v,) there is a good correlation
with the mechanical properties of the soil layers.
These facts support the general explanation that
— though v, depends on the bulk modulus of
the soil skeleton and the pore water — v, depends
on the structural elasticity of the soil skeleton
(Ima1, 1977). This is a good interpretation of
Japanese statistics which proves that the distri-
bution of v, is more regular than that of v, if the
investigated soils are grouped according to their
geological age and origin. This is also the reason
for v, having a closer correlation with SPT results
and g¢,-s, than v, has.

Imar (1977) proposed two formulas as being
valid for the entirety of Japanese soils investigated:

v, = 91N®337  (r = 0.889) (624)

and
v, = 13442443, (625)

where v, is in m/s, and ¢, has to be substituted
in kp/em? (= 100 kN/m?). Closer correlations can
be found, however, if the classification of data
follows the geological subdivision.

Knowing v, and v, also Poisson’s ratio can be
established from the formula:

2
2_2(_'3
'Up-

6.6.5 Liquefaction of soils

A qualitative understanding of liquefaction and
its effects was first presented by CASAGRANDE in
1936. Since then it has been recognized that when
alternating loads are applied to saturated cohesion-
less soils from which drainage is restricted, the
pore-water pressure may even rise to a value
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equal to the total confining pressure. In the latter
case, the effective confining pressure on the soil
becomes zero, and the soil loses its ability to resist
shear deformation. The soil is then said to have
liquefied.

6.6.5.1 Mechanism and definition of liquefaction

In a narrow sense of the word, liquefaction
means a complete loss of shear strength which can
occur when a loose cohesionless soil is subjected
to shear stress, either monotonic or cyclic. In a
broader sense, this term has also been used to
denote a partial loss of shear strength due to
build-up of pore-water pressure, e.g. ‘“‘partial
liquefaction”, by Tavior (1948), “initial lique-
faction with limited shear strain potential”, by
SEED et al. (1975), or “cyclic liquefaction” by
CasAGRANDE (1976). The “incipient failure state”
or “limit equilibrium” of a saturated sand under
cyclic loading defined by Wane (1981) is the state
at which the shear stress is just balanced by the
shear resistance.

The sudden collapse of a soil structure is pre-
ceded by a gradual buildup of pore-water pressure
with negligible shear strain (Fig. 536). The ten-
dency of the soil to contract due to cyclic shear is
counteracted by a rebound due to the reduction
in the effective stress to satisfy the conditions of
constant volume and constant total stress (YAcI,
1972; MARTIN et al., 1975).

The results shown in Fig. 536 can be summarized
as in Fig. 537. The solid curve in insert (a) shows
the shear stress amplitude 7, plotted against the
number of cycles to initial liquefaction IN;, which
denotes ‘‘a condition where . .. the residual pore-
water pressure on completition of any full stress
cycle becomes equal to the applied confining pres-
sure” (SEED et al., 1975). The dashed line in Fig.
537a can be obtained by plotting the number of
cycles to failure, IN;, corresponding to a failure

N
T T T T T
Shear 0
Stress

Ns Ny
Shear 0 ‘v/\+[\f\ L
sy TV

strain

Y
Excess 1 1
pore 0 —
pressure N N

Fig. 536. An example of undrained cyclic simple shear
test on loose saturated sand (Yosuimi, 1977)



342 Soil dynamics

(d):4
b —_—,—

’“T o Shear strain
2 envelopes

Pore-
pressure

N (a) (b)
N

increment

N ’\\T\\‘-
! . per cycle
W

N (log scale)

Fig. 537. Typical result of undrained cyclic shear test on
loose saturated sand (Yosuimi, 1977)

strain, y;. The difference between NN, and N, is
small because the strain increases rapidly after
the pore pressure becomes equal to the applied
confining pressure, ¢, Itisevident from Fig. 537
that there is a threshold shear stress amplitude,
7.;» below which the pore pressure does not build
up at all (Yosuimi, 1977).

Pore-water pressure increases in dense sand as
well, because this is contractive during shear at
small strains, but the condition of zero effective
stress occurs only momentarily when the shear
stress is zero, and the soil retains considerable
shear modulus even after the initial liquefaction.
In fact, a dense soil cannot be strained beyond
a certain limit regardless of the level of shear
stress amplitude, provided it stays below the static
shear strength. This phenomenon has been called
“cyelic mobility” by Castro (1975), “initial lique-
faction with limited shear strain potential” by
DE AiBa et al. (1976), or ‘“cyclic liquefaction”™
by CasacraNDE (1976).

Depth

Fig. 538. Determination of maximum shear stress
(SEED and IDRIss, 1971) —~

The coarser granular soils exhibit great stability
because their high permeability would either pre-
clude a full development of pore-water pressure,
or reduce the duration of the fully liquified con-
dition (Wong et al., 1975; Skep and BOOKER,
1976).

Laboratory tests by numerous investigators
(e.g., FLORIN and Ivanov, 1961; Lk and SkED,
1967; Peacock and SkED, 1968) have shown that
for a given initial density, the stress required to
initiate liquefaction increases with the initial
confining pressure. The effect was also shown in
the field during the Niigata earthquake where the
soil under a 2.7 m deep fill remained stable, but
similar soils surrounding the fill liquefied exten-
sively (SEED and Ipriss, 1967). This phenomenon
can be interpreted in the following way (SEED and
Ipriss, 1971).

If the soil column above a soil element at depth
h behaved as a rigid body and the maximum
ground surface acceleration were a,,,, (Fig. 538),
the maximum shear stress on the soil element

would be:

-h
(tmax)r = r= Amax « (627)

Because the soil column behaves as a deformable
body, the actual shear stress at depth h, (7.4
will be less than (7,,,y),» and might be expressed by

(Tmax)d = T¢(Tmax)r - (628)

Computations of the value r; for a wide variety
of earthquake motions and soil conditions having
sand in the upper 15 m have shown that r, falls
within the range of values shown in Fig. 539.
Referring to these facts and other observations
FerritTo and Forrest (1977) concluded that
liquefaction is practically excluded from depths
below 15 m.

The vulnerability to liquefaction during an
earthquake depends on the magnitude of the
stresses or strains induced in it. SEED and IDRIss
(1971) mention as an example the earthquakes
experienced at Niigata in Japan during the last
370 years. Based on contemporary records the
authors discovered that severe damages (owing to
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Fig. 539. Range of values of ry for different soil profiles
(SEED and IDriss, 1971) (1 ft = 0.3048 m)

liquefaction) were only caused in three instances
when the ground acceleration exceeded 0.13g.
A contributive factor is naturally, also the dura-
tion of shaking (see Section 6.6.5.2).

For a given magnitude of earthquake, M, there
appears to be a limiting epicentral distance, R,
beyond which liquefaction is unlikely to occur.
The limiting distance, R in km, for M > 6 may
be expressed as (KuriBAvasuI and TATsuoka,
1975):

log R = 0.77TM — 3.6. (629)

6.6.5.2 Laboratory testing of liquefaction

Appropriate laboratory testing methods in-
clude:

— the shaking table test;
— triaxial compression;
— the simple shear test.

Because for undrained testing conditions the

sample must be enclosed in a constant volume
system, the simple shear device developed by

Tirne Time

Shear load

fa) (b) (c)

Fig. 540. Alternative wave forms of shear loading (FINN et
al., 1971)
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Fig. 541. Cyeclic loading triaxial test (SEED and PEacock,
1971)

Roscoe (1953) or a torsional shear device with
lateral confinement appear to be the only equip-
ment available to produce these test conditions
(SEED and PEAcock, 1971). The device developed
by Roscoe and fellow investigators is a purpose-
oriented suitable instrument (““UBC machine’’)
which has the additional capacity of applying
alternating shear loads (47) so soil samples.
Tests are normally carried out under frequencies
of 1-2 Hz. The wave forms of shear loading (de-
viator stresses) are shown in Fig. 540. Variant (c)
is justified by the fact that a more meaningful
insight into the liquefaction process might be
obtained if the loading cycle contains a short
period of zero load which might allow full equali-
zation of the pore pressure and allow the shear
load being measured in the absence of inertia
effects (SEED and PEAcock, 1971).

Most researchers prefer, however, the triaxial
testing method, due to its simplicity. In this type
of test, a sample is initially consolidated under an
ambient pressure g,, producing a stress condition
as shown by Condition I in Fig. 541. The sample
is then subjected to an increase in axial stress of
an 64/2 and a simultaneous reduction in lateral
stress of equal amount. The normal stress on a 45°
plane remains unchanged, but a shear stress of
04/2 develops on the plane. The stress changes
are then reversed so that the direction of applica-
tion of shear stress on the 45° plane is reversed;
thus, on this plane the normal stress remains
constant. The conditions on the 45° plane are thus
similar to those on the horizontal plane for the
field loading condition (SEep and LEE, 1966).
In dealing with saturated samples, the same
effective stress conditions can be produced more
conveniently by keeping the lateral stress constant
and cyecling the axial stress by oy, but the general
principles are more correctly illustrated by the
changes shown in Fig. 541 (SEED and PEAcOCK,
1971).

PEacock and SeEp (1968) summarized the
disadvantageous aspects of the triaxial testing
method in four points.
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Fig. 542. Comparison of liquefaction resistance of a sand
in simple shear and triaxial compression (FINN et al., 1971)

1. In the field there is a reorientation of the
principal stress directions: the major one is
initially vertical and rotates through some angle
6 = 0 — 40°, to the right and left of its initial
position. (In the triaxial test this angle is 90°.)

2. In the field the soil element is initially con-
solidated under K, conditions (o, = K,0.); the
triaxial test requires the adaptation of a value of
K, equal to unity.

3. In the field, deformations are presumed to
occur under plane-strain conditions, whereas they
occur in all three principal stress directions in the
triaxial compression test.

4. Under the idealized field loading condition
(or in the simple shear test) the intermediate prin-
cipal stress has a value corresponding to plane-
strain conditions; in the triaxial compression test,
however, the intermediate principal stress has a
value equal to the major principal stress during
one half of the loading cycle and equal to the
minor principal stress during the other half of
the cycle.

As the shear test with a saturated sand is far
more complicated than a triaxial test, some
researcher attempted to compare the results of
the two testing methods, or to produce a formula
by which it would be possible to recalculate one
from the other. FINN et al. (1971) proposed taking
the “initial effective stress ratio” for the triaxial
test as

— do (630)
2(00)o
and for the simple shear test as
O (631)

(0} + Koo)o

In these: (07), is the initial vertical effective stress,
(0.)¢ is the initial hydrostatic effective stress. If
these ratios are used as parameters, the results of
the two testing methods are well comparable as
Fig. 542 demonstrates.

SEED and Pracock (1971) suggested that the
stress ratio 7,/o}, causing initial liquefaction under
cyclic simple shear condition might be related to
the stress ratio 0,/20; causing initial liquefaction
in a cyclic triaxial test by a correction factor, ¢,
in which

= . (632)
Ore 207,

It has been mentioned previously that there is
a difference in respect of liquefaction between
isotropic and anisotropic consolidation. The in-
fluence of K, can well be observed in Fig. 543 in
which is plotted the relationship between the cyclic
shear stress and the number of stress cycles
required to cause liquefaction for samples having
the same void ratio and the same vertical stress,
but different initial value of K, {SEEDand PEAcocK,
1971). The values of K, were obtained by over-
consolidating the samples, and the values of K,
shown were determined from the test data relating
K, to OCR obtained by Henbron (1963). It is
apparent that the stress required to cause failure
increases with increasing values of K.

This phenomenon has been deseribed by Isui-
HARA et al. (1977) in the following manner. Ini-
tially a soil element is subjected to a vertical
effective stress o, and a horizontal stress Ko;.
If the deposit becomes liquified, the soil element
will be subjected to a hydrostatic pressure equal
to oy, both vertically and horizontally. Thus, there
is an increase or decrease in total stress by an
amount of (1 — K) o, in the horizontal direction.
Since the change in total stress occurs under an
undrained condition, an accompanying change in
pore pressure by an amount of

Aug= %(1 — K,) Boy, (633)
must occur where B is the pore-pressure coeffi-
cient. It is possible to define the stress ratio

causing liquefaction in isotropically consolidated

04 R A
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Fig. 543. Influence of initial principal stress ratio on stresses
causing liquefaction in simple shear tests (SEED and
Peacock, 1971)



specimens with a certain number of cycles by the
the term (7,/0;);. In this case the total pressure
o, will be transformed into pore pressure. How-
ever, when K, 5«1, and the sample is subjected
to the same number of cycles the portion of the
initial stress that is transformed into pore pressure
should be equal to
oy, — Aug.

This concept is based on the assumption that the
pore pressure, Aug, is not induced by the cyclic
stress but is produced through a gradual shift in
the geostatic stress system from an initial K j-state
to a liquified state under isotropic compression.
Therefore, if the stress ratio inducing liquefaction
in an anisotropically consolidated sample isdenoted
as (7,/06) 4, the following relationship results:

i - (lh_ . (634)
o —2(1 — Kg) Boy/3 | A 0y 11
Rearranging Eq. (634) gives:
( W) 1+ 2K, jh_J (635)
o, )a 3 oy )1

which compares cyclic strength under isotropic and
anisotropic states.

If we really want to simulate reality, it should
be based on the assumption of selecting A7 and N,
(the number of cycles). SEED and Ipriss (1971)
proposed taking At as the 659, of the value cal-
culated from Eq. (627). As for N,, their suggestion

was to take it in function of the magnitude:

for M=17 N,=10,
M=15 N, =20,
M—=8 N,=30.

As several studies have shown that for any test
condition the cyclic shear stress causing liquefac-
tion is approximately directly proportional to the
initial effective normal stress (g; or o7), the test
results can usually be expressed in terms of the
ratio 7./, which will lead to liquefaction or any
given soil and test condition (SEED and PEAcocCK,
1971) (See Fig. 524).

There is a still wider difference between unidirectional and
multidirectional shaking in the case of a saturated sand than
in the case of a dry sand; this is illustrated in Fig. 544
(SEED et al., 1978).

6.6.5.3 Local measurements and observations

For the determination of the possibility of peril-
ous liquefaction probes are at present preferred in
practice. The aim of these investigations is to pro-
duce reliable relationships between probing param-
eters and the probability of liquefaction.

The most part of the observations recorded are
related to actual earthquakes. By comparing the
standard penetration blow counts (N) before and
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Fig. 545. Empirical criteria of liquefaction for the Niigata
earthquake of 1964 (Koizumi, 1966; KisHiDA, 1966)

after the Niigata earthquake of 1964 (M = 7.5),
Koizumi (1966) proposed a “critical blow count,
N”, as shown in the solid line in Fig. 545, on the
basis of the hypothesis that the soil that had liq-
uefied should have experienced an increase in its
blow count. Thus, the blow count before the earth-
quake, that had fallen on the left side on the N,-
curve, increased as a result of the earthquake, and
those on the right side decreased. Kisuipa (1966)
plotted the blow count and showed that the data
points could be separated into two groups by the
dashed lines as shown in Fig. 545, i.e. those on
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the left side suif:red heavy damage, and those
on the right, lighter damage.

SeEDp and Ipriss (1971) conceived the following
categories for cases where the groundwater table
was at 1.5 m depth below the surface, by using data
from the literature:

. Liquefaction poten- . A
M“"‘m“’;‘ ground | Liquefaction tial depends on soil L’Tf::’c"o“
surface i
acceleration very likely type :;ladg:;?::ggu ake unlik}elly
B _
0.10g | D, <33 33 < D, < 54 D, > 54
0.15g | D, <48 48 < D, <13 D, >13
0.20g D, <60 | 60<D,<85 D, > 85
0.30 g D,<7 | 70<D,< 92 D, > 92

These values can also be correlated with the
SPT-values if the relationships developed by

GiBBs and Howrrz (1957) between N, D, and the
effective overburden pressure are used. The results
of such recalculations are shown in Fig. 546 (SEED
and Ipriss, 1971).

Another data processing method is to relate the
number of blows to the ratio of t/¢;. Figure 547 is
a reproduction of such calculations made by SEED

et al. (1983). The corrected value IN; of IV is:
N, = CyN,

where Cy can be extracted from the N -curves in
the insert (b). Note that SeED et al. (1983) have
used a previous relationship, but MARcUSON and
Biecanousky (1976) made another proposition
and in recent times the curves shown in the figure
are applied.

SeED et al. (1983) further presented an approxi-
mate relationship for the case of Static Cone
Penetration Test explorations. For any sand, the

Standard penetration resistance (N)
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Fig. 546. Liquefaction potential evaluation charts for sands with water table at depth of about 1.5 m (a) and 3.0 m (b)
I — liquefaction very likely; 2 — liquefaction potential depends on soil type and earthquake maguitude; 3 —liquefaction very unlikely (SEED and Ipriss, 1971}
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value of ¢, can be determined from the value of
g, measured at any depth:

9 — chNv

for which Cy-values are read-off from the curve
shown in Fig. 547. The probability of liquefaction
can then be determined from Fig. 548,

After the Chinese Building Code (valid from
1974), the critical value of the standard penetra-
tion resistance, [N, separating liquefiable from
non-liquefiable conditions to a depth of approxima-
tely 15 m, can be determined by

N, = N[l + 0.125(d, — 3) — 0.05 (d,, — 2)],

in which d; is the depth to the sand layer under
consideration (in m), d,, is the depth of water be-
low ground surface (in m), and IV is a function of
the shaking intensity as follows:

Modified Mer- N in blows
calli intensity per0.3m
VII 6
VIII 10
IX 16

Equation (636) reflects among other things, also
the fact that the risk of liquefaction decreases when

(636) the water table is deeper.
05 05
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Fig. 548. Proposed correlation between liquefaction 0 | 0 .
resistance of sands for level ground conditions and 0 5 0 B 20 0 5 10 5

cone penetration resistance (SEED et al., 1983)
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6.6.5.4 Damage caused by liquefaction and
appropriate preventive measures

Since the phenomenon of liquefaction has be-
come recognized, damages caused by several an-
cient and recent earthquakes could have been
attributed to the presence of saturated sand layers.

Extensive liquefaction occurred, for example,
in the level sandy ground in Niigata, Japan, dur-
ing the earthquake of 1964 (M = 7.5; epicentral
distance 55 km). In the most heavily damaged
area, 40 out of 63 buildings on shallow foundations
and 49 out of 75 buildings on short piles settled
more than 50 cm and/or tilted more than 1.0 degree
(Yosuimi, 1977). Similar damages were recorded
during the earthquake in Alaska in 1964.

Major landslides, lateral movements of bridge
supports and failure of waterfront retaining struc-
tures have all been observed in recent years as a
result of liquefaction.

SeEED (1968) presented a comprehensive review
of landslides due to soil liquefaction during 37
earthquakes. The slope failures observed during
these and more recent earthquakes have been
classified into the following types (YosHimi, 1977):

— flow slides due to liquefaction of cohesion-
less soils comprising the slopes;

— slope failures due to liquefaction of thin
layers of sand;

— slope failures of predominantly cohesive
soils due to liquefaction of sand lenses;

— slumping of embankments on firm founda-
tion due to cyclic deformation.

In addition, many failures of earth retaining
structures have been reported as due to liquefac-

tion of the backfill.

Recent research (e.g. NATARAJA and GlLL, 1983) reveals
that high ocean waves are also prone to produce considerable
liquefaction on the shores.

When a proposed site is judged susceptible to
liquefaction, it is wise to reconsider the relocation
of the site, to apply some kind of stabilization, or
to use pile foundations. Densification of soils by
vibroflotation and a variety of deep compaction
techniques (see Chapter 5) have been employed in
places to prevent damage. The beneficial effects of
coarse backfill in preventing pore pressure build-up
or in reducing the duration of liquefaction were
pointed out by YosHIMI and KuwaBara (1973),
and confirmed by YamawovcHr et al. (1976).
Lowering the groundwater table tends to reduce
the potential damage due to liquefaction for the
following two reasons (YosHIMI, 1977):

— it increases the liquefaction resistance of the
saturated part of the soil by increasing the
effective stress;

— it increases the thickness of the unsaturated
part of the soil.

When piles are recommended, the loss of lateral
resistance and frictional resistance should be taken
in account in assessing their bearing capacity and
deformation.

6.7 Dynamic problems of structures
6.7.1 Machine foundations
6.7.1.1 Theoretical aspects
Foundation engineering for machines causing
vibration has gradually developed into a special

discipline. There is an ample literature available
on the problem in which all aspects are treated in

,detail (e.g. Rausch, 1959; Barkan, 1962; Krot-

TER, 1951). For this reason, the present considera-
tion will be confined to the essential features of
the problem in order to illustrate the practical
application of the theoretical considerations dealt
with in the foregoing sections. The extent to which
such applications to problems in soil dynamics are
justified will be examined first in the light of the
results of recent large-scale experiments. In the
United States, detailed experiments were carried out
between 1960 and 1963 by the U.S. Army Water-
ways Experimental Station on foundations sub-
ject to dynamic loads. The foundations supported
on loess and sandy soils had diameters from 1.5 to
5.0 m. The results of major interest are reproduced
in Fig. 549, in which the ratio of amplitudes com-
puted on the basis of the elastic half space to those
actually observed are plotted against the ratio of
the greatest acceleration by gravity. The first con-
clusion of general interest was that the results
obtained by assuming the elastic half-space are
satisfactory for practical purposes, a difference of
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100%, being considered acceptable at the present
state of knowledge. Moreover, the influence of soil
type was found to be insignificant.

The agreement between theoretical and experi-
mental results was likewise found satisfactory in
experiments made at the University of Michigan
with Ottawa sand. One of the results is shown in
Fig. 550. The variation of acceleration with time
was derived from the latter, while the variations
of the force were used to compute the same curve
in a computer by the theoretical relationships
applying to the elastic half space. The agreement
between the two curves was satisfactory.

In designing machine foundations, the following
dynamic problems are encountered:

— check for resonance;
-— determination of the dynamic reactions;
— estimation of the soil stresses.

The first problem is solved by computing the
natural frequency. The formulae involved have
been given in the earlier sections under Eqs (562a)
and (562b). The extent to which the system is out
of tune with respect to resonance, is clearly indi-
cated by the expression

N=——.

The allowable values of the ratio w/w,, or of N are
mentioned in the standard specifications of the
various countries.

The disturbing force is determined as a function
of machine type. For example, in the case of piston
engines the overturning moment M depends on the
torque on the cross head: M = Pr. The forces are
induced by the gas pressure acting on the piston,
further by the inertia of the reciprocating parts of
the crank mechanism. The variations in pressure
are obtained from the indicator diagram of the
engine and the magnitude thereof is unrelated to
the machine speed. (Disturbance unrelated to
frequency.) The inertia forces are proportionate to
the square of the angular velocity. (Quadratic
disturbance.) The forces proper are found from the
indicator diagram (cf. KLOTTER, 1951). The centrif-
ugal forces in rotating machines cause quadratic
disturbance, the disturbing force being

- 2
Py, = myw?,

where m, is the revolving mass, r the excentricity
which occasionally results from deflection of the
shaft.

Let us now estimate the force transmitted by
the vibrating system to the foundation and to the
soil. The magnification factor has been defined as
the ratio of the widest amplitude of forced vibra-
tion to the static compression. The magnitude
thereof is plotted against the ratio w/w, This
factor has been shown to apply also to the case of
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damped vibrations. The static compression is
zg = P,/K, so that the magnification factor is

Z, E Kz,

zy  PJK P,

max. restoring force transmitted force

max. disturbing force disturbing force

= transmittance.
The greatest reaction is obtained as
den = NPpy - (637)

Foundations of vibrating systems are designed
to minimize the force transmitted to the soil, when
the foundation is perfectly rigid. In this case the
natural frequency is infinitely large and w/w, — 0,
corresponding to point A in Fig. 499. The force
transmitted in this case equals the disturbing
force. The magnification factor increases with the
ratio w/w, and becomes infinitely large as this ratio
attains unity (resonance). Beyond this value, it
decreases again and to attain a natural frequency
much lower than the disturbing frequency, the

support should be soft enough to have w/w, > vz,
otherwise N > 1.

Vibrating systems on foundations supported by
means of steel springs should be regarded as un-
damped. On the other hand, the damping effect of
foundations resting directly on the soil, or on a
layer of cork or rubber is no longer negligible.
Resonance will occur according to one of the
curves in Fig. 499. The force transmitted to the
foundation consists of two parts, namely the restor-
ing force Kz, and the damping force, the phase
angle between the two being 90°. The resultant,
or the total transmitted force is

Pyyn = 2, K2+ (cw)?. (638)

The magnitude of the ordinate z, is given by Eq.
(555), so that the force transmitted becomes

Pyyn = Py — — x (639)
w c w
[l
w3 .
P, being the greatest disturbing force, the magni-
fication is

1+ (ﬁir

- o (640)
[l

w§ Ck Wy

This relationship is plotted in Fig. 551 for some
values of ¢/c;,. Damping will be seen to be effective

only for wjw, < |/2.
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Fig. 551. Values of transferred dynamic forces

Concerning the foundation of vibrating systems,
an examination of this diagram will lead to the
following important conclusions.

— The application of a stiff support is advisable
in cases where the ratio w/w, is close to zero.
In such cases the load is virtually static.

— In the case of a soft support (high values of
w/w,), only a fraction of the disturbing force
is transmitted to the foundation. Thus for
effective elimination of vibration, such
foundations should be adopted.

— In cases where w/w, < /2, the force trans-
mitted is effectively reduced by damping.
Consequently, absorbing devices are applied
to advantage in this range only.

— In cases where w/w,> )2, no damping is
advisable, as this would impair transmission.
In this range the provision of damping is
justified where the machine is liable to pass
the resonance band during acceleration or
slowing down, since damping is highly effec-
tive in this band.

6.7.1.2 Numerical examples

1. The weight of a machine is G = 25.00 kN,
that of the rotor 1.50 kN and the excentricity of
the latter is r = 2 cm. The machine is supported
on springs the stiffness of which is K = 18.00
kN/cm. The frequency of the disturbing force is
f = 600 cycles/min = 10 cycles/s. Find the force
transmitted by the machine to the foundation.

The disturbance force is due to the centrifugal
force of the revolving mass and has the magnitude

P = mr o?,

G 1500V
m — —

== ﬁ = 1.55 N ¢2 Cm_l,
8 cm s

w=2nf=628-10 = 62.8s"1,
Py,=1.55-2-62.82= 12090 N = 12.09 kN.

The natural frequency is

o l/ Kg Vw.oo ENem~1- 981 cms—2
° G 25.00 kN

= 26.6 s—!

or
Do

fo= = 4.24 s~1 = 254 ¢/min.

27

The support is thus soft, since w/w,= f/f, =
= 600/254 = 2.36.

Since forced vibrations without damping are
considered, the magnification factor equals the
transmission factor

1
1 — 2.362
The force transmitted is thus P = 12.09 -
- 0.223 = 2.69 kN.

2. Examine for the same foundation the change
in the transmission factor in the presence of damp-
ing. The damping coefficient is ¢ = 73.5 N s/cm.
The critical damping is

¢ = 2)/mk = 2}/1.55 Njem/s? - 18000 Njem =

= 334 N s/cm

= 0.223.

and

cfex = 73.5/334 = 0.22.
The transmission factor is thus

V 1+ (2022 -236)2
(1 — 2.362)2 + (2 - 0.22 - 2.36)2

and the force transmitted P = 3.71 kN and is thus
greater than in the first example.

The force transmitted depends on frequency and
since the machine operated beyond the resonance
range w/w, =< 1, during acceleration it is bound
to pass the resonant frequency. For this reason,
the variation of the force transmitted during
acceleration should be examined. The result ob-
tained is shown in Fig. 552, indicating (a) the vari-
ation of the transmission factor and (b) the vari-
ation of the magnitude of the force transmitted
on the base of the bedding. Evidently, allow-
ance had to be made in the computation for the
variation of the disturbing force with frequency,
the particular case being that of quadratic excita-
tion. The curves representing the case without
damping have also been plotted and are valuable
for estimating the forces induced. If the rate of
acceleration is known, the variation of the forces
with time can also be plotted.

3. A machine supported on a concrete block of
dimensions 2 by 4 by 1.60 m transmits only a
vertical periodic disturbing force to the soil, which
is wet, silty fine sand.

= 0.307




The weight of the machine is 180.00 kN, that
of the revolving part 1.10 kN. The eccentricity is
r = 12 cm. The frequency of the disturbing force
is n = 700 epm = 11.67 cps. The total weight is

G=(2-4-1.6) 2.2 4 180 = 462 kN.
The static bearing pressure is thus

o = M = 5.8 N/em?
200 - 400

First find the natural frequency. Using the
“clay” line of the diagram of TSHEBOTARIOFF, the
reduced natural frequency is obtained in terms of
the base area F' = 8 m? as

Ny = 445 cpm kp em—1,
The natural frequency is thus

ng = Tor — i = 584 cpm = 9.73 cps.
Yp /058

Then compute the dynamic bedding coefficient
using the natural frequency.

From the expression w, = |/ K/m the stiffness is

K = mow} = 4n? — n}

8
and the dynamic bedding coefficient
% _ K A7%Gn§
F Fg

_4-9.89 - 462000 N - 9.73% 2
400 - 200 cm? - 981 cm s 2

— 22 Njem?.

Assume damping to be slight, the damping
coefficient ¢ = 0.18 - 102 kN em—! s and the eriti-
cal damping coefficient, from the formula, is:

v = /2mK = 1.8 -102kN e¢m—! s,

so that cic, = 0.01.

The magnification factor is then

N = =

= 7002 | 7002 -
1
V[ ) + 158 J

The peak value of the disturbing force (w = 2z n)
1.1kN - 12 em
981 cm s—2

= 724 kN.

2

Py=mgo?=- -(6.28-11.67)% 2=
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Fig. 552. Numerical example

The maximum amplitude (K = kF) is

ag — —Iio—Nl _ 72400 N 913
K 22 N/em3 - 200 - 400 cm?
= 0.0875 c¢m.

This is thus the amplitude with which the whole
foundation vibrates, its magnitude being in gener-
al beyond the allowable value.

4. Find the vibrations at 10 m distance from the
center of the foundation block if the propagation
velocity of the waves is v = 1200 m/s and the
absorbtion coefficient k” = 0.215.

The wave length is thus

-1
A:iz 1200 ms

f 1167s-!

=945m.
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P

Time t

i
Zmax
z

Fig. 553. Force pattern and deflection in the case of a pave-
ment

At distance x, = 2 m the amplitude from the
foregoing example is a; = 0.0875 cm so thatat10 m
distance the amplitude from Eq. (621) is

—0.215-(10—-2)m

a = 0.0875 cm Vﬂl— e (S5m =
10.0 m

= 0.0875 - 0.447 - 0.98 = 0.0384 cm.

These amplitudes are too wide, the foundation is
unacceptable and the design must be modified.

6.7.2 The dynamic behaviour of road pavements

The dimensioning of road pavements has been
dealt with in detail in Chapter 4. The pavement was
assumed to be acted upon by a single wheel load,
or by some equivalent traffic, emphasizing, how-
ever, that the load is actually a dynamic one and
that vibrations are induced in the pavement and
in the subgrade which result in dynamic effects.
In the majority of dimensioning procedures this
circumstance has been allowed for by introducing
a safety factor. In recent years the dynamic be-
haviour of road pavements has been studied in-
tensively (NIJBOER, 1956, 1957, VAN DER POEL,
1953, HeukerLom and FosTeR). Research into
these problems has been prompted by the con-
tinuous increase in the weight and velocity of ve-
.hicles whence an increasing magnitude of the dy-
namic effects. Much important knowledge has been
gained from these studies, but it would still be
premature to consider the introduction of new
“dynamic” methods of dimensioning. On the other
hand, the dynamic studies made in the field have
contributed to our understanding of actual pave-
ment behaviour. The tests are non-destructive and
no sampling is involved. They can be applied to the
checking of longer road sections as well.

HeEUKELOM has demonstrated (1961) that, at
constant frequency, the road pavement can be
treated as a linear system. For these tests in Great
Britain, light vibrators were initially used (JonEs,
1962), but heavier equipment was subsequently
found to produce more relevant results. The meth-
od adopted for testing depended on whether a

relative comparison of different pavement struc-
tures, or the behaviour of a particular pavement
under traffic was the objective of the study. In the
first case, steady vibrations are induced by a
vibrator and the conventional dynamic quantities
are measured, whereas in the second the impacts
imparted to the pavement by the traffic must be
simulated.

The concept of “dynamic stiffness” has been
introduced by Van pEr PoeL (1951). If P = P,
sin wt is the disturbing force and z = z, sin (wt —
— ¢) is the amplitude, then the dynamic stiffness is

S==0°, (641)

%0

or in combination with Eq. (554)

S =}k — mw?) + o (642)

Experiments have shown S to depend on fre-
quency.

A wheel rolling along the pavement will induce a
different kind of disturbance. Plotting the force
transmitted and the deflection in a particular cros-
section against time, the curves shown in Fig. 553
will be obtained. The maximum deflection will be
seen therefrom to occur somewhat later than P, ..
The stiffness under traffic is thus

Pmax

T = .
Zmax

(643)

S and T are usually of unequal magnitude and
the time-lag between the maxima is the phase
difference according to Eq. (579).

A simplified model of a system consisting of
subgrade and pavement is illustrated in Fig. 554.

|

”

z=0
T 7

Fig. 554. Model for investigating the dynamic performance
of pavement structures



The dynamic constants
Scosp =K —m o?

(644)
S sin ¢ = co,

measured at different frequencies, are plotted
against w? or w. From the second plot the value of
¢ 1s obtained directly at w = 0. S cos ¢ is plotted
against ©® and the value of K is obtained at w = 0.
At low frequencies the points plot on straight lines,
the slope of the first yielding the value of m (Fig.
555). The value of K may be regarded a measure
of the dynamic behaviour of the pavement struc-
ture.

As mentioned before, K is a function of frequen-
cy. At low frequencies the linear extension accord-
ing to Fig. 555 is acceptable, but at high frequen-

cies the following empirical expression applies

const.

S cos ¢p = K—

(645)

In this range, K is found from the relationship
S cos ¢ = F (1/w) (Fig. 555). The two diagrams are
preferably combined in a single figure as shown in
Fig. 555.

The dynamic characteristics suited to assessing
pavement behaviour and to comparing different
designs are obtained in the manner described
above. However, the displacements under traffic dif-
fer from these (see Fig. 553), so that the dynamic
stiffness of the pavement under traffic must also
be examined. For small phase angles one solution
of the basic equation is

z — _& sin wt — o L/—ni e—€tl2m gin VE— t] .(646)
S K m

Values computed by the above equation for
some loads are shown in Fig. 556, where the full
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Fig. 555. Determination of dynamically determinant values
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Amplitude

Fig. 556. Swinging of pavement structures

line applies to the whole vibrating mass, while the
dashed lines indicate the “elastic’ stiffness for the
elastic medium at the same K values. The time—
displacement curve I applies to steady vibrations.
The amplitudes increase successively, the system
attaining the peak value after several cycles. The
curves II-IV indicate the deflections under pass-
ing vehicles for impacts represented by the half-
period of a sinusoidal curve at different frequencies.
The frequency is assumed to correspond to normal
traffic condition. The theoretical curves were found
to be in fair agreement with the experimental
results.

It will be seen from the curve that the greatest
deflection of the structure agrees closely with the
theoretical deformation of the elastic medium.
Consequently, the value of T virtually equals that
of K. Further studies have shown the traffic
stiffness to be

T = K (4 20%).

The frequency of vibrations is of the same order
of magnitude as the vehicle speed in km/h units.
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6.7.3 The effect of vibrations on slope stability

The stability and structural integrity of struc-
tures is endangered in a variety of ways by the
vibrations, either artifically induced or due to
earthquakes. Of this wide spectrum of problems,
only a small detail, the stability of slopes, will be
treated here. The examination of other structures
is associated with problems which would exceed
the scope of the present book by far and extend to
the domain of seismology and they will, therefore,
not be considered here.

The stability of a slope bounding a vibrating
earth mass will now be examined (SEED and
GoopMaN, 1963; SEeEp, 1966). It is desired to
find the critical acceleration at which the slope
becomes unstable. Consider for this purpose the
equilibrium of a block — an elementary soil mass
— situated in the slope surface (Fig. 557). A given
acceleration will produce a force of magnitude
bG/g = 1G, sliding being caused by the components
parallel to the slope of this force and of that due to
gravity. Sliding is resisted by the shear t=o¢tan®
mobilised on the base area of the block. Sliding
will occur if the resultant of G and 7nG and
the force Q includes the angle @ with the perpendic-
ular to the sliding surface, as indicated in the
vector diagram. The acceleration producing this
condition will be the critical, the ‘“failure” accel-
eration. The magnitude thereof is b,, the dynamie
force being 1,G, where 1, = b;/g.

From the vector triangle

’l’]kG G
sin (®— f) sin [90° — (® — B — B)]

and -
e = ;%% . (647)
For # = 0 (horizontal acceleration)
My = tan (D — f) . (648)

The variation of #;, for different values of ®—f§
is shown in Fig. 558. Denoting the static safety fac-
tor of the slope by », the acceleration ratio at
failure will become

e = s‘“—f(_”;l—-z% ) (649)
”Vl + tan
,,}2

(b)

Fig. 557. Effect of earthquake acceleration:

a — forces acting on the soil element; b — vector triangle in the limiting stage
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Fig. 558. Diagram for calculating the critical acceleration

A slope inclined at f = 25° with @ = 36° re-
sists sliding with a safety factor » = tan 359/
tan 25° =~ 1.5. The condition of limit equilibrium
occurs at the acceleration ratio 7, = by /g = 0.1.

Pseudostatic methods are often employed for
the investigation of dams and embankments. In
this approach, the stability of a potential sliding
mass is determined as for static loading conditions
and the effects of an earthquake are taken into
account by includingjan equivalent horizontal
force, acting on the potential sliding mass, in the
computations (SEED ef al., 1975). The horizontal
force representing earthquake effects is expressed
as the product of the weight of the sliding mass
under consideration and a seismic coeflicient, k.
The value of this coefficient is normally selected
on the basis of the seismicity of the region (e.g.
values in California range from a lower limit of

0.05 to an upper limit of about 0.15).

6.7.4 Behaviour of retaining walls

The design of retaining walls for dynamic (seis-
mic) effects has first been dealt by MoNoNOBE
(1929), MononoBE and MaTsuo (1929) and OkaBE
(1926); Coulomb’s sliding wedge theory has been
extrapolated for this case. According to the authors

Eap = 0.5pHY1 — k) K A, (650)

where

K —
AE cos 0 cos? 3 cos (6—|—ﬁ—|—9

[1+l/ sin (@ + a)sin(®+e—i)]

cos?(® — 0 — p)

cos (0 + f + 0) cos i—p)
(651)

In the equations 0 = tan-! k,/(1—k,), 6 = angle
of friction between the wall and soil, § = slope of
the wall to the vertical, i = slope of the ground
surface, kj, = horizontal acceleration per g.
Ricuarps and Erms (1979) proved after the
evaluation of this equation that this theory may



in many cases lead to absurd conclusions. The
authors pointed out that it was completely inac-
curate to neglect the inertia of the wall and that
this assumption was unconservative, since it was
actually the weight of the wall which provided
most if not all of the resistance against movement.
They deduced the following relation from the
equilibrium of acting forces:

0.5pH?[cos (6 + B) — sin(d + B) tan@b]

Wy =
tan @, — tan 6

(652)

where W, is the weight of the wall, @, is the angle
of the reactive force at the base with the vertical.
The same expression can be transformed into

[cos (6 + B) — sin (6 + f) tan D] Eap
(1 — k,) (tan @, — tan 6)

(653)

Equations (652) and (653) can be evaluated in a
straightforward manner to provide the weight of
the wall required. Essentially, this weight is the
dynamic thrust, as computed by the MONONOBE~
OkABE analysis, multiplied by a wall inertia factor
C,g, that is

W, = CigEap = C;5 0.5 yH2 (1 — k,)Kap. (654)
in which

cos (6 + B) — sin (6 + B) tan @,
(1 — k) (tan @, — tan 0)

IE = . (655)

The relative importance of the two dynamic
effects (i.e. the increased thrust on the wall due to
inertia forces on the sliding wedge and the increase
in driving force due to the inertia of the wall itself)
can be seen by normalizing them with regard to
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Fig. 559. Variation of soil thrust factor Fy, wall inertia factor
F; and combined dynamic factor F, with horizontal accelera-
tion (Ricuarps and ErLms, 1979)
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the static values. Thus we may define a soil thrust

factor
Kag(l — k)
F.—= 28" " 656
T K. (656)
and a wall inertia factor
FI — CIE
C;
in which
K cos? (P — B)
a sin(6 + D) sin(P — i)
cos?fBcos (4 4 p) [ +V }
08(8 + f)cos(f —'7)
(657)
and
C, = cos (6 + f) — sin (6 4+ f) tan @ . (658)

tan ¢b

The product F,, of the thrust and inertia factors
is a safety factor applied to the weight of the wall
to allow for the effects of soil pressure and wall
inertia:

(659)

in which W is the weight of the wall required for
equilibrium in the static case.

For a static design safety factor of some value
F,, on the weight of the wall, the critical horizontal
acceleration can be read directly from Fig. 559. If,
for example, a wall were designed for F,, = 1.5,
then for the parametric values specified in Fig. 559,
motion would occur at k, = 0.105. Neglecting
wall inertia, this value would be k, = 0.18.
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6.7.5 Effect of vibrations on buildings

ZeLLER suggested using the following formula
to discern the harmfulness of vibrations
2
y = » — 16
n

-7t - n® - @? (in cm?/s%), (660)

where n is the frequency, and a is the amplitude.

Human sensitivity to vibrations — on the basis
of observations — 1is represented in Fig. 560.
Buildings may suffer damage from vibrations when
the value of y attains 25 to 100 cm?/s3.
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Fig. 561. A—r relationship from a case study (Lo, 1977)
(lin = 25.4 - 10-3m)

Wiss (1968) recommended the “peak particle
velocity” as the best parameter to assess the dam-
age potential of ground vibration. The author
concluded that 5 cm/s was a good criterion for
residential structures and 10 cm/s for commercial
and engineered structures to avoid damage due to
vibrations.

The effect of pile driving can be computed on the
basis of the formula suggested by Lo (1977). The
results of a survey made on site are represented in
Fig. 561.

In Switzerland a Code has been constructed on
the basis of over 200 vibration measurements to
detect those limiting values which may cause light
damage in buildings (appearance of fissures, peel-
ing, etc.) (STUDER and SUEssTRUNK 1981). The
knowledge of four characteristics is needed to
assess the degree of peril

— the parameters of the vibrating source;
— the properties of the structure;

— the condition of the building;

— geological situation.

The decisive design term will be the peak particle
velocity.
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