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2 Solutions Manual 
 Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand 
 

 

An Introductory Note 
 
 Some of the problems in the text are brief exercises leading to single numerical or 
algebraic results, but the great majority are much more extensive investigations, some 
approaching the magnitude of term projects.  In the latter cases, there is usually no simple 
answer.  Student initiative is encouraged and this leads to results that may differ 
numerically or may involve results not asked for in the problem statement.  In any case, 
the authors place more value on a written discussion at the end of the student's papers, 
and on the development of the analysis, than on numerical results. 
 
 It is not practicable to provide a "solutions manual" containing examples of 
complete papers for assignments of this kind.  The authors have chosen rather to provide, 
in a somewhat abbreviated form, some of the key results for these problems.  In some 
cases rather than give numerical results, a brief discussion of how to attack the problem is 
provided.  Only a small fraction of the problems can be used in any one course, and it is 
hoped that instructors will find a sufficient number of problems to satisfy a variety of 
needs, including differing tastes and interests, and differing teaching styles. 
 
 



Solutions Manual - Chapter 4 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

4-1 

Consider steady flow of a constant-property fluid in a long duct formed by two parallel planes. 
Consider a point sufficiently far removed from the duct entrance that the y component of velocity is 
zero and the flow is entirely in the x direction. Write the Navier–Stokes equations for both the x and 
y directions. What can you deduce about the pressure gradients? 

Let x
1
 = x, x

2
 = y, u

1
 = u, and u

2
 = v in Eq. (4-17), and the x-direction equation becomes 

 
2

2

P u
x x

∂ ∂
=

∂ ∂
 

Similarly, the y - direction equation becomes 

 
0P

y
∂

=
∂  

Thus, P = P(x) and   P dP
x dx

∂
=

∂
 . The final form of the x-direction equation becomes 

 

2

2

dP ud
dx d y

µ=
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4-2 

 Consider flow in the eccentric annulus of a journal bearing in which there is no axial flow. 
Deduce the applicable laminar boundary-layer equations (continuity, momentum, energy) for 
a constant-density fluid, with uniform composition, in an appropriate coordinate system. 

Consider the continuity equation (4-5) in cylindrical coordinates with  V∇⋅ defined in Appendix D, 

 1 1( ) x
r

V V
rV

r r r x
φ

φ
∂ ∂∂

⋅ = + + =
∂ ∂ ∂

V∇ 0

u=

 

where V V . Let r = R + y and x = Rφ, where R is the radius of the inner surface. 
Note that 

; ; andr r xVφ φ= =v v

0x∂ ∂ =  (no axial flow). Thus 

 0r r
rR y v R

y y x
φ∂∂ ∂

+ + + =
∂ ∂ ∂

vv v  

For vr small and y R , the middle two terms in the equation are negligible compared to the first and last 
terms. Thus the equation becomes identical to (4-7) in Cartesian coordinates. (Actually these are 
curvilinear coordinates with ). Using similar arguments, the applicable momentum equation is (4-
11), with the convective acceleration terms neglected. The applicable energy equation is (4-38). 

y R
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4-3 

 Deduce a set of boundary-layer differential equations (continuity, momentum, energy) for 
steady flow of a constant-property fluid without body forces, and with negligible viscous 
dissipation, in a coordinate system suitable for analysis of the boundary layer on the surface of 
a rotating disk. 

The appropriate set of coordinates is the fixed, non-rotating cylindrical system with r, the radial direction; 
φ, the circumferential direction; and x, the axial direction above the disk. In the governing equations, all 
three velocity components will appear, but derivatives with respect to φ will be zero due to rotational 
symmetry.  

The flow over a rotating disk is boundary layer in character, but the complete Navier-Stokes equations can 
be solved in exact form (see Schlichting, ref. 2, page 93). The applicable energy equation is (4-35) with the 
conduction gradient in the r-direction neglected. (See Schlichting, page 296, for references to heat transfer 
solutions.) 

 
5
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4-4 

Starting with the general viscous energy equation, show by a succession of steps how and why it 
reduces to the classic heat-conduction equation for a solid, and finally to the Laplace equation. 

The applicable energy equation is (4-31). Assume no mass diffusion. Use the definition of enthalpy, i = e + 
P/ρ,  and let ρ  be constant, yielding 

 

De k T S
Dt

ρ −∇ ⋅ ∇ =
 

For no fluid motion, the substantial derivative reduces to 

 

e k T S
t

ρ ∂
−∇⋅ ∇ =

∂  

This is the classic heat conduction equation for a solid where the thermal equation of state is . 
For steady conduction and constant properties, the Poisson form of the conduction equation is obtained, 
and when S is equal to zero, the Laplace equation is obtained. 

de cdT=

 2 ST
k

=∇  
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4-5 

Derive Eq. (4-18) using Eq. (4-1) and the definitions from the Fick’s law section of Chap. 3. 

Eq. (4-1) can be considered a continuity equation for the j - component of a mixture, but the creation term 
must be added, resulting in 

 

, , , ,tot j x tot j y
j

G G m
x y

∂ ∂
′′′+ =

∂ ∂  

Now substitute , where, ,tot j diff j conv jG G G= + , ,conv j jm GG =  and  G ,diff j j mjγ= − ∇  . (Recall that G is the 
total mass flux vector.)  Ignore Gdiff,j,x as a boundary layer approximation and substitute into the continuity 
equation. 

 yx
j

GGm
x y

∂ ∂
+ ∂ ∂ 

j j j
x y jj

m m m mG G
x y y y

∂
γ

∂
∂ ∂ ∂  ′′′+ + − = ∂ ∂ ∂ 
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4-6 

Derive the conservation laws for axisymmetric flow in a pipe using control volume principles similar 
to that developed in the text for Cartesian coordinate flow. Assume steady flow, steady state, and 
constant properties. For the momentum equation neglect body forces. For the energy equation 
neglect body force work and the energy source. Also, for the energy equation use the thermal 
equation of state for ideal gases or incompressible liquids, and assume the Mach number is small for 
the case of the ideal gas, but do not neglect viscous dissipation. Assume boundary-layer flow, but do 
not neglect axial conduction. 

For conservation of mass, the terms for mass flow rates (inflow on the radial face and the axial face) are 

 
;
;

r r r r r r

x x x x x

m G A G v A r d d
m G A G u A r d dr

xρ φ
ρ φ

= = =
= = =

 

Application of the procedure leading up to equation (4-2), assuming steady flow, yields 

 ( ) 1 ( )r
u r
x r r
ρ ρ∂ ∂ 0+ =

∂ ∂
v  

Note the appearance of r comes from dividing through the equation by the differential volume, ( r d dxφ ). 
For constant properties, Eq. (4-9) is found. 

 1 ( ) 0r
u r
x r r
∂ ∂

+ =
∂ ∂

v  

For x-momentum , the x-momentum flow rates, inflow on the radial face and the axial face, and the x-
forces are 

 
( )
( )

r r r r

x x x x

M um u G A

M um u G A

= =

= =
 

and 

 x x x rx r x rx
uF A A P
y

σ τ σ τ µ ∂
= − − ≈ − =

∂
 

Application of the procedure leading up to Eqs. (4-10) and (4-11), assuming steady flow and constant 
properties yields 

 1
r

u u dPu v r u
x r dx r r r

ρ ρ µ∂ ∂ ∂ ∂ + = − +  ∂ ∂ ∂ ∂ 
 

 For energy , the energy flow rates, inflow on the radial face and on the axial face, and the 
corresponding heat and work rates are 

 

2 2

2 2

1 1
2 2
1 1
2 2

r r r r

x x x

E i u m i u G A

E i u m i u G

   = + = +   
   
   = + = +   
   

xA
 

and 
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 ,r r x x shear r rx
T Tq kA q kA W u
r x

τ∂ ∂
= − = − =

∂ ∂ rA  

Application of the procedure leading up to Eqs. (4-27) and (4-28), assuming steady flow, no mass 
diffusion, and constant properties yields 

 
21 0r

i i T u dPu kr
x r r r r r dx

ρ ρ µ∂ ∂ ∂ ∂ ∂   + − − −   ∂ ∂ ∂ ∂ ∂   
v u =  

and for ideal gases and incompressible liquids, using the approximations similar to the development 
leading to Eq. (4-38), but retaining the pressure gradient term the enthalpy equation reduces to  

 
21 Pr 1 0r

T T T u dPu r
x y r r r c r c dx

α
ρ

∂ ∂  ∂ ∂  ∂   + − − − =    ∂ ∂ ∂ ∂ ∂    
v  
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4-7 

Derive the constant-property energy equation (4-39) starting with Eq. (4-26). Be sure to state all 
assumptions made. 

These steps are basically the redevelopment of the formulation leading up to Eq. (4-39). 
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5-1 

Develop a momentum integral equation for steady flow without blowing or suction for use in the 
entry region of a circular tube. Note that Eq. (5-4) is not applicable for this case because it has been 
assumed that the boundary-layer thickness is small relative to the body radius R; in the present case 
the boundary layer ultimately grows to the centerline of the tube. 

Let r = R be the wall and r = y be the edge of the control volume where the velocity becomes the inviscid 
core velocity of the developing flow. Typical terms would be 

  22 and ( )2
R

y yyx yR y
u rdr R y xv uM M ρπ ρ πδ

−
= = −∫

 Normal stress =  2
R

R y
P rπ

−∫ dr

 Shear stress :  2 ; 2 ( )s yR x R y xτ π δ τ π δ−  

Now follow the procedure on pages 42-43, 

 ( )21 1
2

R Rcore core
s coreR y R y

u dd du rdr urdr u y
R dx R dx R dx

τ ρ ρ ρ
− −

    − = − − −         ∫ ∫
uy  

11
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5-2 

Develop the corresponding energy integral equation for Prob. 5-1. 

Let r = R be the wall and r = y be the edge of the control volume where the enthalpy is the core enthalpy. 
Neglect the kinetic energy term, and note that there is no wall transpiration. Typical terms would be 

  

( ), 2

2

R

conv x coreR y

s s

E u i i

q R xq

π ρ

π δ

−
= −

′′=

∫ rdr

Now follow the procedure on pages 47-48, 

 
( )1 R

s cR y

dq i i
R dx −

′′− = −∫ ore rdr
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5-3 

Develop a boundary-layer integral equation for the diffusion of component j in a multicomponent 
mixture. 

Assume: Fick's Law holds; steady flow; concentration boundary layer ≥ momentum boundary layer 
thickness; y-direction gradients >> x-direction gradients; G at y = 0 is in y-direction. Let  mj,s be the mass 
concentration of j at the wall. For the j-component, typical terms are 

 Inflow of j =  , ,
0

y
j

j y s j s j

s

dmG m dy G m x x
dy

x δ γ δ+ −
 
 
 

∫  

 Rate of creation of  j =   
0

y

jm xdyδ′′′∫
The conservation principle that Outflow - Inflow + Increase in Storage = Rate of Creation for specie j is 
used to obtain the integral equation. Continuity Eq. (5-1) is used and , ,j y jm m ∞= . Then, 

 ( ) ( ) ( ), , ,0 0

y yj
j j j s j s js

s

dm u m m dy v m m m dy
dxy

∂γ ρ ρ
∂

∞ ∞
 − − j′′′− = − −  ∫ ∫  
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5-4 

Derive the momentum integral equation (5-8) and the energy integral equation (5-21). 

These steps are essentially a repeat of the formulation leading up to Eq. (5-8) and Eq. (5-21). 

 

14
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6-1 

Using appropriate assumptions, reduce Eq. (6-9) to compare it with Eq. (4-17). 

Note that Eqs. (6-9) and (4-17) are both unsteady forms of the Navier-Stokes equations written in index 
notation, although (6-9) is for compressible flow with variable viscosity, whereas (4-17) is for constant 
density flow with constant viscosity. Their forms differ in the convection term and in the stress (or 
diffusion) term. The form of the convective term in (6-9) is called the conservative form. Chain-rule 
differentiate the convective term of (6-9) and subtract from it (6-8) to modify the convection term, then 
assume constant density for the time term.  This recovers the left hand side of (4-17). Now, substitute the 
stress tensor, (6-6) into (6-9) and substitute (6-3) for the strain-rate tensor. Assume constant viscosity and 
constant density. For constant density flow, the second coefficient of viscosity (the dilatation term) is 
eliminated. The second term in the strain rate tensor also disappears from the conservation of mass 
(assuming constant density), and the result is the right hand side of (4-17). 

15
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6-2 

Convert Eq. (6-11) to Eq. (4-32) using the definition of the substantial (or total) derivative. 

Note that Eq. (6-11) is a stagnation enthalpy equation, whereas (4-32) is a static enthalpy equation. 
Multiply Eq. (6-10) by u and subtract it from (6-11). Note that you will first have to chain-rule the viscous 
work term in (6-11) to obtain the unsteady static enthalpy equation. Now, substitute (6-6) along with the 
strain-rate tensor (6-3) into the static enthalpy equation. The result is (4-32). 

16
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6-3 

Carry out the necessary algebra to show that Eqs. (6-16) represent the appropriate decompositions 
for the stagnation enthalpy. 

We combine the definition of stagnation enthalpy following Eq. (6-11), 

 1 1
2 2* i i i i

Pi e u u i u u
ρ

= + + = +  

and the two Reynolds decompositions given by Eq. (6-15) 

 * * * ,i i i i i i′ ′= + = +  

Combining these, along with the Reynolds decomposition for ui yields 

 ( )( )1 1
2 2* i i i i i ii i u u i i u u u u′ ′ ′= + = + + + +  

Now, expand the velocity term 

 ( ) ( ) ( )1 1
2 2* i ii i i u u u u u u′ ′ ′= + + + + ′  

and collect the time-averaged terms and the fluctuating terms. The result is (6-16), similar to what is found 
in Ref. 1. 

17
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6-4 

Using the averaging rules, develop the conservation-of-mass equation (6-21), including all the 
intermediate steps. 

These steps are essentially a repeat of the formulation leading up to Eq. (6-21). 

18
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6-5 

Reduce Eq. (6-26) to the boundary-layer equation (6-28) using appropriate assumptions. 

The first step is to chain-rule the conservative form of the convective term that appears in Eq. (6-26) and 
apply the conservation of mass equation (6-22). Then apply the index notation rule that repeated subscripts 
sum, j = 1, 2. Note there will not be third term (j = 3 ) because of the two-dimensional boundary layer 
assumption (w = 0). The pressure gradient becomes an ordinary derivative.  The diffusion operator changes 
under the boundary layer assumptions to 

 
( ) ( )

jx y
∂ ∂

→
∂ ∂

 

In the viscous stress tensor, τji , only one term will be present, due to the boundary layer approximation 
and the constant density assumption. This also applies to the Reynolds stress term. The result is: 

 ( ) ( )ji j i yxu u uτ ρ τ ρ′ ′ ′− → − v ′  

This stress is τ (= τyx ) in Eq. (6-27). Now divide through by the density, and the constant density 
assumption allows the density to be moved into the diffusion term; µ becomes ν, and the density is 
removed from the Reynolds stress. Note Eq. (6-28) remains valid for variable viscosity, but not for variable 
density. 

19
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6-6 

Derive the stagnation enthalpy equation (6-31), and reduce it to its low-velocity, constant-property 
boundary-layer form given by Eq. (6-34). 

These steps are essentially a repeat of the formulation leading up to Eq. (6-31), followed by the 
formulation leading to Eq. (6-34).   Eq. (6-34) is valid for either an ideal gas or an incompressible liquid 
(both obeying de = c dT), and it is valid for variable thermal conductivity, but not for variable density. 

20
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6-7 

Carry out the derivation of the turbulence kinetic energy equation (6-38). 

These steps are essentially a repeat of the formulation leading up to Eq. (6-38). 

21
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6-8 

The construction of the boundary-layer equations for momentum and energy can be considered 
using the formulation of Eq. (6-39). Recast the laminar boundary-layer equations for momentum, 
Eq. (4-10), and energy Eq. (4-39), and their turbulent counterparts. Eqs. (6-28) and (6-34), into the 
form given by Eq. (6-39) to identify the convection, diffusion, and source terms for each equation. 

The structure of the equations follow the format of Eq. (6-39) 

 convection ( ) diffusion ( ) ource ( )sφ φ φ= ±  

where φ is the dependent variable. Rewriting momentum equation (4-10) in this form yields 

 u u uu dP
x y y y d

ρ ρ µ
 ∂ ∂ ∂ ∂

+ = − ∂ ∂ ∂ ∂ 
v

x
 

The energy equation (4-39) needs to first be rewritten in variable-property form similar to Eq. (4-37), and 
then formulated like the momentum equation. 

 T T Tu
x y y y

α
 ∂ ∂ ∂ ∂

+ =  ∂ ∂ ∂ ∂ 
v  

Then, a form similar to Eq. (6-28) results by including the Reynolds stress term, 

 1u u u du u P
x y y y d

ν
ρ

 ∂ ∂ ∂ ∂ ′ ′+ = − − ∂ ∂ ∂ ∂ 
v v

x
 

A similar form to Eq. (6-34) results by including the Reynolds heat flux term. 

 T T Tu T
x y y y

α
 ∂ ∂ ∂ ∂ ′ ′+ = − ∂ ∂ ∂ ∂ 

v v  

Note that both the momentum equation and energy equations have a convective term and a diffusive term, 
but only the momentum equation has a source term. An equivalent energy source term would be a viscous 
dissipation term, which could be added. 
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7-1 

Consider steady, laminar, constant-property flow in a duct formed by two parallel planes. Let the 
velocity be uniform at the duct entrance. Calculate the development of the velocity profile in the 
entry length, using the momentum integral equation (6-4), and an assumption that the velocity 
profile may be approximated by a constant-velocity segment across the center portion of the duct 
and by simple parabolas in the growing boundary layer adjacent to the surfaces. Note that the mean 
velocity, Eq. (7-3), must be a constant, and thus Eq. (7-4) must be satisfied. [Some help in this 
problem may be obtained from an examination of the development of the momentum integral 
equation, Eq. (5-8).] Evaluate the hydrodynamic entry length and compare with Eq. 7-23). 

Let the plate spacing of the channel be a and measure y from the plate surface  Reformulate the integral 
equation (5-4) for a non-axisymmetric geometry (eliminate R) and no transpiration into the boundary layer 
at the surface (v ), 0s =

 ( ) ( )2

0 0 0

y y y core
s core core

dud du dy u u dy u dy
dx dx dx

τ ρ ρ ρ − = − + − 
 ∫ ∫ ∫  

where “core” symbol replaces the “∞” symbol. For a velocity profile, consider first the parabola, 
2

core

u ya b c
u

y
δ δ
   = + +   
   

y

. Three boundary conditions are needed to determine a, b, c. The first will be the 

boundary condition of no-slip, . The other two come by applying boundary conditions at the 
edge of the developing boundary layer within the channel, i.e. the flow between the surface ( ) and 
the core flow (

( 0)u y = = 0
0y =

δ= ). Thus, u y( ) coreuδ= =  and at ( ) 0du dy y δ= = . The resulting profile is 

 
2

2
core

u y y
u δ δ

   = −   
   

 

The velocity profile is substituted into the integrals of the integral equation. The wall shear stress must also 
be evaluated, following the idea of Eq. (7-9), and using Eq. (3-1). The resulting momentum integral 
equation becomes 

 23 22
5 15

core core
core core

u du du u
dx dx

δν δ
δ

     = +     
    

 

Now, conservation of mass (continuity) must be applied to the channel, assuming constant density, 

 ( )
0

constant 2 2
2core

c

m aVa a udy u x
A

δ
δ

ρ
   = = = +   

  
∫ −  

and, by substituting the parabolic profile into the integral, 

 2and
2 3 21 13 2 3

core
core

duV Vu
dx dx

aa a

dδ
δ δ

= =
   − −      

 

This provides the relationship between the mass-averaged velocity of the channel, V, and the local core 
velocity. Note that this equation shows how the effect of the no-slip condition (leading to the velocity 
profile) causes the core velocity to increase, eventually becoming centerline velocity 

( 2) 1.5coreu u y a= = = V for laminar, constant-density flow in a parallel-planes channel. 
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Now comes lots of algebra and plenty of chances to make mistakes. Substituting for the core velocity (and 
its derivative into the momentum integral equation leads to 

 
2

2

3 3 730
2 3

2

a daV
dx

a

δ δ δν
δ

 
 +   =       −     

 

Note, here one can separate variables and integrate. Hint: the integrand can be split into two integrals of the 
form 

 
( )

( )1 2 20
0

1 lnI d
η

η η αη α βη
α βηβα βη

 
= = + + ++  
∫  

 
( )

( ) ( )
2 2

2 2 30
0

1 2 lnI d
η

η η αη α βη α α βη
α βηβα βη

 
= = + − + − ++  
∫  

The lower limit of integration will be ( )0xδ 0= = and the upper limit will be ( ) 2fdx x aδ = = , and the 
result is 

 ( )
2

0.10376748 2fdx
a

aV
ν

=  

Now reformulate the expression in terms of the hydraulic diameter Reynolds number (Eq. 7-17), where 
, leading to 2 platespacing 2hD a= × =

 ( )
Re

16 0.10376748 Re
154

h

h

Dfd
D

h

x
D

= =  

This result, ( ) Re 0.0065
hh Dx D = , is quite small compared to the published solution for a circular pipe, 

Eq. (7-23), ( ) Re 0.05
hh Dx D =  

Note, had we assumed a sinusoidal shape for the velocity profile (often considered in viscous fluid 
mechanics texts, along with the parabolic-profile boundary conditions, 

 sin
2core

u y
u

π
δ

 =  
 

 

and the result would be similar (within 5%). 

24



Solutions Manual - Chapter 7 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

7-2 

Starting with the momentum theorem, develop Eq. (7-19) for the pressure drop in steady flow of a 
constant-property fluid in a tube of constant cross-sectional shape as a function of the friction 
coefficient, mean velocity, and tube length. Start with a control volume that is of infinitesimal 
dimension in the flow direction but that extends across the entire flow section. Then reconsider the 
problem when fluid density varies in some known manner along the tube but can be considered as 
effectively constant over the flow cross section. Discuss the implications of the latter assumption. 

This problem can be solved two ways. The first method involves partially integrating the differential 
momentum equation over the flow cross-section. Reformulate Eq. (4-11) into its conservative form by 
combining it with the continuity equation (4-8), and by recasting the shear stress term back into its stress 
form 

 
( ) ( ) ( )1

rx

uu u dP r
x r dx r r
ρ ρ

τ
∂ ∂ ∂

+ = − +
∂ ∂ ∂

rv  

Then, integrate the momentum equation in a manner similar to how we formulate an integral equation in 
Chapter 5, namely differential in the flow direction (x) and integrally in the cross-flow direction, from the 
surface to the centerline of the channel (or over the flow cross-section. 

 
( ) ( ) ( )1

c c c rx

uu u dPdA dx dA dx dA dx r dA dx
x r dx r r
ρ ρ

τ
∂ ∂    ∂   + = − +       ∂ ∂ ∂      

∫ ∫ ∫ ∫
v

c

)

rx

 

where dAc would be ( for a circular pipe. Now recognize that the cross-stream convective term is 
zero at the surface and at the channel (or pipe) centerline, reducing the equation to 

2 rdrπ

  ( ) ( ) ( )2 2

1 1
2 1

x x

c cx x
uu dA P x P x A dxρ τ= − +  ∫ ∫

The second method is the control volume formulation, similar to that used in Chapter 5 for the momentum 
integral equation (pp 41-43), 

 ( ) ( ) ( )x x x s s c cx x x
M M dA PA PAδ δ

τ+ +
− = − + −  

or 

 ( ) ( ) ( )2
x c s sdM d udm d u dA dA d PAρ τ= = = − −∫ ∫ c  

where for a circular pipe sdA Ddxπ=  and Ac is the flow cross-sectional area. Note the similarity to Eq. (7-
10) when the flow is assumed to be fully-developed flow, and dMx=0.  

Now redefine τs in terms of the definition of cf  from Eq. (7-13) and integrate between two flow locations 
“1” and “2” representing the flow distance from x1 =0 (the entry location) to some arbitrary x-location, x2, 

 
( ) ( )

( ) ( )

2 22
2 11 1

22 2 2
2 11

1
2

c s c c

c c f c c

u dA Ddx PA PA

u dA V A c V Ddx PA PA

ρ τ π

ρ ρ ρ π

 = − − − 

   − = − − −    

∫ ∫

∫ ∫
 

where the wall shear stress has been replaced by the local friction coefficient from Eq. (7-13). Rearranging, 
assuming constant density, and dividing through by the dynamic pressure term yields Eq. (7-19), 
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( )

( )

2
2 1

,
2 2

2 2
1 1 4
2 2

f m c
h c

P P P x uc d
D A VV Vρ ρ

− ∆  = = +  
 ∫ A −

)

 

where Dh is the hydraulic diameter (Dh=D for a circular pipe). Note the introduction of the mean friction 
coefficient from Eq. (7-20). 

For the case where x1 and x2 are both beyond the fully-developed location, the momentum equation can be 
written as 

 ( ) (
2 2 2

1 1 1s s cd mV dA d PAτ= − −∫ ∫ ∫  

Integration, use of the continuity equation (7-3) and rearranging leads to 

 ( )
2

2
, 22

2 1

1 1 1
2

s
f m c

c c c

Amm c P
A A Aρ ρ ρ

  
− = − − − 1P A     

   
 

where 1
s

s

dA
A

ρ ρ= ∫ is the average density over the flow distance from x1 to x2. Further rearrangement 

leads to 

 ( )
2

2 1 ,2
2 1

1 12
2

s
f m

cc

AmP P P c
AA ρ ρ ρ

1  
− = ∆ = + −  

  
 

Here one can see the effect of density variation on the flow, while neglecting the extra pressure drop in the 
entry region due to acceleration. Note that a change in density will lead to a change in Reynolds number. 

26



Solutions Manual - Chapter 7 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

7-3 

Consider fully developed laminar flow of a constant-property fluid in a circular tube. At a particular 
flow cross section, calculate the total axial momentum flux by integration over the entire cross 
section. Compare this with the momentum flux evaluated by multiplying the mass flow rate times the 
mean velocity. Explain the difference, then discuss the implications for the last part of Prob. 7-2. 

For fully-developed flow in a circular tube, the velocity profile is given by Eq. (7-8), where the mean 
velocity is given by Eq. (7-7). The momentum flow through a flow area is defined by the product of the 
mass flow rate through the cross-sectional area and the velocity component normal to that area,  

 
22

2 2

0 0
2

42 2 1 2
3

s sr r 2
x s

s

rM udm u rdr V rdr V r
r

ρ π ρ π ρ π
  

= = = − =  
   

∫ ∫ ∫  

and the mass flow rate is given by 

 
2

2

0 0
2

2 2 1 2s sr r

s
s

rm dm u rdr V rdr V r
r

ρ π ρ π ρ
  

= = = − =  
   

∫ ∫ ∫ π  

When we talk about 1-dimensional flow, such as in the subjects of thermodynamics or compressible flow, 
we assume there is a characteristic velocity that represents the flow cross-sectional area, defined from the 
continuity equation, 

 
c

mV
Aρ

=  

where the density is assumed constant over the cross-section. If the velocity is uniform over the cross-
sectional area, , then ( )u r V=

 2 2 2
x s sM udm Vm V V r V rρ π ρ π= = = =∫  

Comparing these two results, we find that the actual momentum flow rate differs from the one-dimensional 
flow rate by a factor of 4/3. Or, when u(r) exists, then at a given x-location 

 2
x c xM udm u dA M Vmρ= = ≠∫ ∫  

Therefore, if we assumed a 1-dimensional flow approach we could not obtain the last term of Eq. (7-19), 
which represents the contribution to the pressure drop due to flow acceleration (kinetic energy change) as 
the profile changes shape from x1 to x2. 
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7-4 

Two air tanks are connected by two parallel circular tubes, one having an inside diameter of 1 cm 
and the other an inside diameter of 0.5 cm. The tubes are 2 m long. One of the tanks has a higher 
pressure than the other, and air flows through the two tubes at a combined rate of 0.00013 kg/s. The 
air is initially at 1 atm pressure and 16°C. Assuming that fluid properties remain constant and that 
the entrance and exit pressure losses are negligible, calculate the pressure differences between the 
two tanks. 

For the 2 tubes in parallel between the two tanks, the theory will be 

 

( )

1 2

2
2

1 2 , ,2

0.00013 /

4 41
2 2

4Re

f app f app
c

c
D

m m kg s

x m xP P V c c
D DA

m DAVD m
D

ρ
ρ

ρ
µ µ πµ

+ =

  ∆ = ∆ = =   
   

= = =

 

The procedural steps will be: 

 (a) arbitrarily select a mass flow rate for the larger tube 

 (b) compute the Re for each tube 

 (c) compute the parameter ( ) Rex x D+ =  for each tube 

 (d) using Figure 7-7, find the value of c  for each tube ,f app

 (e) compute the pressure drop for each tube 

 (f) iterate the mass flow of the larger tube until the pressure drops balance 

Answers: 

 (a) mass flow rate for the larger tube is about 89% of the total mass flow 

 (b) Re for the larger and smaller tubes will be about 820 and 200 respectively 

 (c) pressure drop is about 15.2 Pa (for each tube) 

 note: for both flows ( )Re  so the flow is fully-developed 6 0.17x D or x+< >

 therefore, Figure 7-7 is not needed, and c , Re 17.5f app ⋅ =  is ok to use 
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7-5 

A particular heat exchanger is built of parallel plates, which serve to separate the two fluids, and 
parallel continuous fins, which extend between the plates so as to form rectangular flow passages. 
For one of the fluids the plate separation is 1 cm and the nominal fin separation is 2 mm. However, 
manufacturing tolerance uncertainties lead to the possibility of a 10 percent variation in the fin 
separation. Consider the extreme case where a 10 percent oversize passage is adjacent to a 10 
percent undersize passage. Let the flow be laminar and the passages sufficiently long that an 
assumption of fully developed flow throughout is reasonable. For a fixed pressure drop, how does the 
flow rate differ for these two passages and how does it compare to what it would be if the tolerance 
were zero? 

Note, this problem requires D to be replaced by Dh, the hydraulic diameter. Note also, we can use Eq. (7-
21) for the pressure drop. For this problem, the assumption of fully-developed flow is made, and Figure 7-
4 can be used to determine  for these rectangular heat exchanger passages. ( Refc )

 

( )
( )

( ) ( )
( )

*
*

1 cm 15 0.2 Re
0.2 cm

44 4 1.67
perimeter 2 2 2 2

1.67 1.67Re
h

f

c
h

h
ch

D

b c
a

abA aD a
aa b
b

m D m aAVD m
a b b

α
α

ρ
µ µ µ µ

∞
= = = = =

= = = =
+ +

= = = =
⋅

19.1

 

The pressure-drop for a passage becomes 

 ( ) ( ) ( )

2
2

, ,2

22

2 3

4 41
2 2

Re Re 0.7174
Re2

h h

h

f app f app
c

f D f D

D hc

x m xP V c c
D DA

c m cm x
DA a

ρ
ρ

ρ ρ
∞ ∞

  ∆ = =   
   

    = = 
    

x

b

 

Thus, for two parallel passages having the same pressure drop, 

 
( ) ( ) ( ) ( )2 2

1 2
3 3
1 2

Re 0.717 Re 0.717
h hf D f Dc x cm mP

b ba aρ ρ
∞ ∞

   
   ∆ = =
      

x
 

or 

 
3 32 2

2 2

1 1

1.1 1.35
0.9

m a a
m a a

   = = =   
  

 

A 10 percent oversize of one partition and a 10 percent undersize of an adjacent partition results in a 35 
percent difference in the mass flow rates, the higher flow rate in the larger passage. 
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7-6 

Develop the analysis that leads to the linear shear stress distribution described by Eq. (7-12). 

These steps are essentially a repeat of the formulation leading up to Eq. (7-12). Define a control volume, 
such as in Fig. 7-2, assuming fully-developed flow. Identify all of the forces on the control volume surface 
(pressure and axial shear stress, rxτ ). Note that there will be no momentum flux difference into and out of 
the control volume because of the fully-developed assumption. Applying the momentum theorem Eq. (2-4) 
leads to the Eq. (7-10). Applying this for r=rs gives Eq. (7-11). Forming the ratio of Eq. (7-10) to Eq. (7-
11) gives Eq. (7-12). This is a very important result for internal flows, because it applies to both laminar 
and turbulent pipe flow. An alternative solution is to derive the velocity profile for pipe flow, Eq. (7-8) and 
then form the shear stress for an arbitrary r location and at r=rs, Eq. (7-9). Then forming the ratio of  these 
shear stresses yields Eq. (7-12). 
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7-7 

Using the methodology developed in the text for a circular pipe, develop the fully developed mean 
velocity profile and fully developed friction coefficient for the flow between parallel planes. Compare 
your friction result with Fig. 7-4 and Fig. 7-5. 

For the parallel-planes geometry y is measured from the centerline and the channel is of width a. Assume 
fully-developed laminar flow with constant properties. The appropriate boundary layer equation is (4-10), 

 u u dPu u
x y dx y y

ρ ρ µ
 ∂ ∂ ∂

+ = − +  
∂

∂ ∂ ∂  
v

∂
 

and for fully-developed flow, 0u x∂ ∂ =  and v=0, reducing the momentum equation to an ordinary 
differential equation and boundary conditions 

 dP d du
dx dy dy

µ
 

=  
 

 

with boundary conditions of velocity profile symmetry at the channel centerline, and no-slip at the channel 
surfaces. 

 
2

0

0 and
y a

y

du u
dy =±

=

0= =  

Because the pressure gradient is a constant in the axial flow direction, we can separate variables and 
integrate, and apply the boundary conditions, leading to the parallel-planes channel velocity profile, 

 
2 2

21 4
2
h y du

dxaµ
  = − −  

  

P  

Note the similarity to Eq. (7-2) for the circular pipe, namely a parabolic profile shape. Next, we create the 
mean velocity, following Eq. (7-5) for constant density, 

 
( )

22

2

1 1
1 12c

a

cA a
c

a dPV u dA udy
A a dµ

+

−

 = = = − ⋅  ∫ ∫ x
 

where the cross-sectional area is per unit depth. Again, note the similarity to Eq. (7-7) for the circular pipe. 
Creating the ratio of the velocity profile to the mean velocity yields 

 
2

2

3 1 4
2

u y
V a

 
= − 

 
 

Now evaluate the surface friction, following Eq. (7-9), 

 6
sy h

V
a
µτ τ

=

−
= =  

Compare this result to Eq. (7-9) for the circular pipe. Now follow the procedure of Eq. (7-13) to form the 
friction coefficient, considering the absolute value of the shear stress to preserve the fact that the surface 
shear is in the direction opposite of the flow. 
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26 1or

2 R
h

s f f
2 24

eD

V Vc c
a V
µ ρ µτ

ρ
= = = =

a
 

where the hydraulic diameter in the Reynolds number is twice the plate spacing. Comparing the result to 
Fig. 7-4 for * b aα = →∞ a (the parallel plate case where , shows b ( )Re 24fc

∞
= . Note that the 

“infinity” symbol” in Fig. 7-4 implies hydrodynamically fully developed flow. In Fig. 7-5, the radius ratio 
 is the limiting geometry of the annulus when the inner and outer radii are almost the same, creating 

a parallel-planes geometry. Note this is the geometry of journal bearings. 

* 1r →
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7-8 

Repeat Prob. 7-7 for an annulus with radius ratio r*. Compare your velocity-profile result with Eq. 
(8-26) and your friction result with Fig. 7-5 and Shah and London.3 

For the annulus geometry r is measured from the centerline of the inner pipe, ri is the radius of the inner 
pipe, ro is the radius of the outer pipe, and r* is the radius ratio, *

i or r r= . Assume fully-developed 
laminar flow with constant properties. The appropriate boundary layer equation is (4-11), 

 1
r

u u dPu r u
x r dx r r r

ρ ρ µ∂ ∂ ∂ ∂ + = − +  ∂ ∂ ∂ ∂ 
v  

and for fully-developed flow, 0u x∂ ∂ =  and vr=0, reducing the momentum equation to an ordinary 
differential equation and boundary conditions 

 1dP d dur
dx r dr dr

µ =  
 

 

with boundary conditions of  no-slip at the channel surfaces. 

 0 and 0
i or r r r

u u
= =

= =  

Because the pressure gradient is a constant in the axial flow direction, we can separate variables and 
integrate, and apply the boundary conditions, leading to the annular channel velocity profile, 

 
22

1 Bln
4

o

o o

r r ru
r rµ

       = − + −     
      

dP
dx

 

where 

 
( )

( )

2*

*

1
B

ln

r

r

−
=  

Note the approximate similarity to Eq. (7-2) for the circular pipe  However, it is somewhat parabolic but it 
has an extra logarithmic term. For flow in the annular space between two concentric pipes, there will be a 
peak in the velocity profile, and it is located at rm (compared to the centerline for the pipe and parallel-
planes channel). Next, we create the mean velocity, following Eq. (7-5) for constant density, 

 
( )

2

2 2

1 1 2 M
8

o

c i

r o
cA r

c o i

r dPV u dA u rdr
A dxr

π
µπ

 = = = − −  ∫ ∫  

where M 1 . Again, note the approximate similarity to Eq. (7-7) for the circular pipe. ( 2* Br= + − )
Creating the ratio of the velocity profile to the mean velocity yields an equation similar in form to Eq. (8-
26), 

 
2

2 1 Bln
o o

u r
V M r r

r    
 = − +   
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We can also derive the maximum velocity for the profile by setting 

 0
mr r

u
r =

∂
=

∂
 

where 
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leading to 

 
( )( )

( )

2 2

2 2

* * *
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Now evaluate the surface friction for each surface, following Eq. (7-9), but with sign convention that 
reflects the profile behavior for annular flow. 

 

*2 2 B
M

2 2 B
M

i

o

i
r r o i

o
r r o o

u V r
r r

u V
r r

µτ µ
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=
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 ∂ −
= + = + ∂  

r
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and formulate an area-weighted average of the friction coefficient, based on the inner surface, Ai, and the 
outer surface, Ao, described on p. 71 

 
( )

( )
( )
( )

2*

2 22 2

2 B 2 B4
M

i i o o

i i o oi o
f

i o i o

A A
rr rA A Vc

V r r V r r V

τ τ
τ τ µ

ρ ρ

+
− − +++

= = =
+ + 2ρ

 

Define the hydraulic diameter for the annulus, following Eq. (7-17), ( )2h oD r ir= − , and transform the 
friction coefficient,  

 
( )2*16 112
Re

h

f
D

r
Mc

Vh
µ

ρ

−
= =  

The result can be directly compared to Fig. 7-5. 
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7-9 

TEXSTAN analysis of laminar entry flow in a circular pipe: Let the Reynolds number be 1000, and 
pick fluid properties that are appropriate to the Prandtl number of air or water. You can choose 
how to set up the TEXSTAN problem in terms of values for the geometrical dimensions and mean 
velocity for the pipe to provide the required Reynolds number and a pipe length equivalent to 
( ) Re 0.3x D = . Note that ( ) Rex D  is the inverse of the Langhaar variable, used in Fig. 7-7. Use 
constant fluid properties, and note that the energy equation does not have to be solved. For initial 
conditions let the velocity profile be flat at a value equal to the mean velocity. Use Eq. (7-20) to 
obtain the mean friction coefficient and use Eq. (7-21) along with the pressure drop data to obtain 
the apparent friction coefficient, then plot the local, mean, and apparent friction coefficient versus 
( ) Re

h
h Dx D  to show how the data approach the hydrodynamic fully developed values that are 

shown on Fig. 7-7 and in Shaw and London.3 Confirm the hydrodynamic entrance length, and 
compare to Eq. (7-23). Plot the nondimensional velocity profiles at various ( ) Re

h
h Dx D  locations 

and compare to Fig. 7-6 to demonstrate the concept of how the profiles evolve from a flat profile into 
hydrodynamically fully developed profile. Plot the absolute value of the pressure gradient versus 
( ) Re

h
h Dx D  to show how the gradient becomes constant beyond the hydrodynamic entrance region. 

Evaluate the ratio of centerline velocity to mean velocity and plot it versus ( ) Re
h

h D
x D  to show how 

the ratio becomes a constant (2.0) beyond the hydrodynamic entrance region. 

Note a small correction to the problem write-up. The variable x+ has been replaced by ( ) Re
h

h Dx D to 

avoid confusion with the use of ( ) ( )2 Re
hh Dx x D+ = Pr  as a heat transfer variable in Chapter 8. The 

( ) Re
h

h D
x D  variable is the reciprocal of the Langhaar variable. Also, change the pipe length to 

( ) Re
hh Dx D 0.1= . 

The data file for this problem is 7.9.dat.txt The data set construction is based on the s30.dat.txt file for 
combined entry length flow in a pipe with a specified surface temperature (initial profiles: flat velocity and 
flat temperature). Only the momentum results will be discussed. Note that kout has been changed to =4. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
7.9.dat.txt): 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 2.500E-02 7.323E-01 0.000E+00 6.898E-02  0.000E+00  5.815E+01 

   50 2.500E-01 2.170E-01 0.000E+00 2.790E-02  0.000E+00  2.035E+01 

  100 5.000E-01 1.533E-01 0.000E+00 2.171E-02  0.000E+00  1.491E+01 

  150 9.229E-01 1.140E-01 0.000E+00 1.767E-02  0.000E+00  1.142E+01 

  200 2.061E+00 7.797E-02 0.000E+00 1.388E-02  0.000E+00  8.195E+00 

  250 5.096E+00 5.180E-02 0.000E+00 1.105E-02  0.000E+00  5.840E+00 

  300 1.240E+01 3.570E-02 0.000E+00 9.314E-03  0.000E+00  4.454E+00 

  350 2.392E+01 2.797E-02 0.000E+00 8.530E-03  0.000E+00  3.903E+00 

  400 4.137E+01 2.353E-02 0.000E+00 8.163E-03  0.000E+00  3.709E+00 

  450 6.550E+01 2.090E-02 0.000E+00 8.034E-03  0.000E+00  3.665E+00 

  500 9.050E+01 1.956E-02 0.000E+00 8.006E-03  0.000E+00  3.659E+00 

  519 1.000E+02 1.923E-02 0.000E+00 8.003E-03  0.000E+00  3.658E+00 
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You can also run the data set with kout changed from =4 to =8 to see more of the nondimensional variable 
behavior. Here is an abbreviated listing of the output file (it will be called out.txt when you execute 
TEXSTAN using 7.9b.dat.txt): 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00003  137.95 1.037  .00007   58.149 1.018  .968 3.100E+02  2.137E+02 

   50  .00025   55.81 1.104  .00070   20.347 1.057  .969 3.100E+02  7.203E+01 

  100  .00050   43.41 1.144  .00141   14.911 1.083  .970 3.100E+02  5.153E+01 

  150  .00092   35.35 1.192  .00260   11.424 1.117  .971 3.100E+02  3.828E+01 

  200  .00206   27.77 1.280  .00580    8.195 1.186  .973 3.100E+02  2.585E+01 

  250  .00510   22.11 1.429  .01433    5.840 1.331  .976 3.100E+02  1.642E+01 

  300  .01240   18.63 1.652  .03488    4.454 1.580  .980 3.100E+02  1.021E+01 

  350  .02392   17.06 1.839  .06729    3.903 1.742  .985 3.100E+02  6.857E+00 

  400  .04137   16.33 1.947  .11636    3.709 1.793  .990 3.100E+02  4.503E+00 

  450  .06550   16.07 1.986  .18425    3.665 1.799  .994 3.100E+02  2.706E+00 

  500  .09050   16.01 1.995  .25457    3.659 1.799  .996 3.100E+02  1.619E+00 

  519  .10000   16.01 1.996  .28129    3.658 1.798  .997 3.100E+02  1.332E+00 

To compare the three friction factors in the entry region you will need to first calculate  by 
integration of the local friction factor data with respect to x following Eq. (7-20). The file ftn85.txt contains 
the friction and pressure drop information to construct 

( )mfc x

( )mf xc  and ( )appfc x .  For a more accurate 
integration of the local friction coefficient to obtain its mean value, you will want to increase the number of 
data points in ftn85.txt  by decreasing the k5 variable in the input data set. If you work with the friction 
coefficient rather than the wall shear stress, be careful, because cf2 is the friction coefficient divided by 
two. The accepted standard formulation for nondimensional friction in laminar internal flow is cf (hydraulic 
engineers are usually the only people that use the Moody friction factor) and for turbulent internal flow it is 
cf /2. TEXSTAN mostly uses the cf2 formulation. The following graph is the reduced data for the 3 friction 
coefficients, plotted versus ( ) Re

h
h Dx D  rather than using the Langhaar variable. Because you have the 

pressure drop data versus x you can easily construct the pressure gradient variation with x and plot its 
absolute value logarithmically versus ( ) Re

h
h Dx D  (a ln-ln plot) to see where the gradient becomes 

constant. This is a measure of the entry region. To obtain the developing velocity profiles in the 
hydrodynamic entry region set k11=10 in 7.9.dat.txt. The output profile will then contain velocity profiles 
at each x(m) station. The profiles will have a set of shapes matching Fig. 7-6.Plotting the ratio ucl/V shows 
a continual acceleration of the centerline velocity as the velocity profile changes shape over the limits 1 ≤ 
ucl/V ≤ 2. This ratio is also a measure of fully-developed flow.  
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7-10 

TEXSTAN analysis of laminar entry flow between parallel planes: Follow the instructions for Prob. 7-
9 to set up TEXSTAN, but use the geometry option that permits the centerline of the parallel planes 
channel to be a symmetry line. Use Eq. (7-20) to obtain the mean friction coefficient and use Eq. (7-
21) along with the pressure drop data to obtain the apparent friction coefficient, then plot the local, 
mean, and apparent friction coefficient versus ( ) Re

h
h Dx D  to show how the data approach the 

hydrodynamic fully developed values that are given in Shaw and London.3 Confirm the 
hydrodynamic entrance length using data in Shaw and London.3  Plot the nondimensional velocity 
profiles at various ( ) Re

h
h Dx D  locations using the ideas in Fig. 7-6 to demonstrate the concept of 

how the profiles evolve from a flat profile into hydrodynamically fully developed profile, and 
compare the fully developed profile with that given in Shaw and London.3 Plot the absolute value of 
the pressure gradient versus ( ) Re

h
h Dx D  to show how the gradient becomes constant beyond the 

hydrodynamic entrance region. Evaluate the centerline velocity to mean velocity ratio and plot it 
versus ( ) Re

h
h D

x D  to show how the ratio becomes a constant (=1.5) beyond the hydrodynamic 

entrance region. 

Note a small correction to the problem write-up. The variable x+ has been replaced by ( ) Re
h

h D
x D to 

avoid confusion with the use of ( ) ( )2 Re
hh Dx x D+ = Pr  as a heat transfer variable in Chapter 8. The 

( ) Re
h

h D
x D  variable is the reciprocal of the Langhaar variable. 

The data file for this problem is 7.10.dat.txt The data set construction is based on the s50.dat.txt file for 
combined entry length flow between parallel planes with a specified surface temperature and thermal 
symmetry (initial profiles: flat velocity and flat temperature). Note, for the parallel-planes geometry the 
variable rw(m) is the half-width of the channel. Only the momentum results will be discussed. Note that 
kout has been changed to =4. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
7.10.dat.txt): 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 1.037E+00 0.000E+00 9.607E-02  0.000E+00  8.279E+01 

  100 2.500E-01 2.171E-01 0.000E+00 2.953E-02  0.000E+00  2.182E+01 

  200 5.000E-01 1.541E-01 0.000E+00 2.334E-02  0.000E+00  1.641E+01 

  300 1.018E+00 1.097E-01 0.000E+00 1.884E-02  0.000E+00  1.255E+01 

  400 2.964E+00 6.706E-02 0.000E+00 1.456E-02  0.000E+00  9.004E+00 

  500 9.012E+00 4.213E-02 0.000E+00 1.237E-02  0.000E+00  7.609E+00 

  600 1.881E+01 3.308E-02 0.000E+00 1.202E-02  0.000E+00  7.537E+00 

  700 3.367E+01 2.912E-02 0.000E+00 1.200E-02  0.000E+00  7.538E+00 

  800 5.575E+01 2.712E-02 0.000E+00 1.200E-02  0.000E+00  7.538E+00 

  900 8.075E+01 2.615E-02 0.000E+00 1.200E-02  0.000E+00  7.538E+00 

  977 1.000E+02 2.574E-02 0.000E+00 1.200E-02  0.000E+00  7.538E+00 

You can also run the data set with kout changed from =4 to =8 to see more of the nondimensional variable 
behavior. Here is an abbreviated listing of the output file (it will be called out.txt when you execute 
TEXSTAN using 7.10b.dat.txt): 
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 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00001  192.13 1.026  .00004   82.792 1.013  .968 3.100E+02  3.059E+02 

  100  .00025   59.05 1.104  .00070   21.822 1.059  .970 3.100E+02  7.711E+01 

  200  .00050   46.68 1.144  .00141   16.414 1.087  .970 3.100E+02  5.650E+01 

  300  .00102   37.69 1.202  .00286   12.547 1.133  .972 3.100E+02  4.145E+01 

  400  .00296   29.12 1.335  .00834    9.004 1.249  .975 3.100E+02  2.658E+01 

  500  .00901   24.75 1.473  .02535    7.609 1.321  .981 3.100E+02  1.712E+01 

  600  .01881   24.03 1.498  .05292    7.537 1.319  .987 3.100E+02  1.119E+01 

  700  .03367   23.99 1.499  .09471    7.538 1.319  .993 3.100E+02  5.973E+00 

  800  .05575   23.99 1.500  .15682    7.538 1.319  .997 3.100E+02  2.352E+00 

  900  .08075   23.99 1.500  .22715    7.538 1.319  .999 3.100E+02  8.193E-01 

  977  .10000   23.99 1.500  .28129    7.538 1.319 1.000 3.100E+02  3.637E-01 

To compare the three friction factors in the entry region you will need to first calculate  by 
integration of the local friction factor data with respect to x following Eq. (7-20). The file ftn85.txt contains 
the friction and pressure drop information to construct 

( )mfc x

( )mf xc  and ( )appfc x .  For a more accurate 
integration of the local friction coefficient to obtain its mean value, you will want to increase the number of 
data points in ftn85.txt  by decreasing the k5 variable in the input data set. If you work with the friction 
coefficient rather than the wall shear stress, be careful, because cf2 is the friction coefficient divided by 
two. The accepted standard formulation for nondimensional friction in laminar internal flow is cf (hydraulic 
engineers are usually the only people that use the Moody friction factor) and for turbulent internal flow it is 
cf /2. TEXSTAN mostly uses the cf2 formulation. The following graph is the reduced data for the 3 friction 
coefficients, plotted versus ( ) Re

h
h D

x D  rather than using the Langhaar variable. 

The cf value is local nondimensional wall shear stress, and it approaches its asymptotic value for the 
smallest value of ( ) Re

h
h D

x D  (largest value of the abscissa variable in Fig. 7-7). The cfapp value requires 

nearly four times more length for its asymptotic state to be reached. This difference can be seen in the 
references by Shah and London3 and Shah.9 For example, here are equations for parallel planes from the 
Shah and London reference, 

 ( )
( ) ( )

( )
, 2

24 0.674 / 4 Re 3.44 / Re3.44Re
Re 1 0.000029 Re

0.315 0.011Re
0.0175Re 1

h

h

h

f app D

hy
D

h D

x D x D
C

x D x D

L
D

−

+ −  ⋅ = +
+   

= +
+

 

For ReDh = 1000, 11hy hL D = . To obtain the same result based on cf *Re 24app =  (within 5%), 

( ) Re
h

h D
x D  needs to be between 0.05 and 0.10. For example, a value of 0.05 (similar to what is used for 

circular pipe estimates) gives 50hy hL D = , almost a factor of five longer entry length. This is reflective of 
the viscous transport mechanism in laminar flows where the core flow adjustment is not in sync with the 
wall shear flow region. This can be tested in TEXSTAN by using kout=4 to produce output that includes 
the pressure drop, and convert this to cfapp using Eq. (7-21) to confirm the Shah and London equation for 
cfapp*Re. The result shows ( ) Re

h
h Dx D 0.06≈ . At the same time, cf becomes within 5% of its 

asymptotic value at ( ) Re 0.008
hD
≈hx D . 
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103

10-4 10-3 10-2 10-1

Problem 7-10

cf,app*Re (Shah&London)
cf,app*Re (TEXSTAN)

cf
,a

pp
*R

e

(x/Dh)/Re

 

Because you have the pressure drop data versus x you can easily construct the pressure gradient variation 
with x and plot its absolute value logarithmically versus ( ) Re

h
h D

x D  (a ln-ln plot) to see where the 

gradient becomes constant. This is a measure of the entry region. To obtain the developing velocity profiles 
in the hydrodynamic entry region set k10=11 in 7.10.dat.txt. The output profile will then contain velocity 
profiles at each x(m) station. The profiles will have a set of shapes similar to that for a pipe in Fig. 7-
6.Plotting the ratio ucl/V shows a continual acceleration of the centerline velocity as the velocity profile 
changes shape over the limits 1 ≤ ucl/V ≤ 1.5. This ratio is also a measure of fully-developed flow.  
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7-11 

TEXSTAN analysis of laminar entry flow in a circular-tube annulus with r* = 0.5: Follow the 
instructions for Prob. 7-9 to set up TEXSTAN, but use the geometry option that permits the annulus. 
Use Eq. (7-20) to obtain the mean friction coefficient and use Eq. (7-21) along with the pressure drop 
data to obtain the apparent friction coefficient, then plot the local, mean, and apparent friction 
coefficient versus ( ) Re

h
h Dx D  to show how the data approach the hydrodynamic fully-developed 

values that are given in Shaw and London.3 Confirm the hydrodynamic entrance length using data 
in Shaw and London.3 Plot the nondimensional velocity profiles at various ( ) Re

h
h D

x D  locations 

using the ideas in Fig. 7-6 to demonstrate the concept of how the profiles evolve from a flat profile 
into hydrodynamically fully developed profile, and compare the fully developed profile with that 
given in Eq. (8-26). Plot the absolute value of the pressure gradient versus ( ) Re

h
h D

x D  to show how 

the gradient becomes constant beyond the hydrodynamic entrance region. Evaluate the ratio of 
centerline velocity to mean velocity and plot it versus ( ) Re

h
h D

x D  to show how the ratio becomes a 

constant beyond the hydrodynamic entrance region. 

Note several small corrections to the problem write-up. The variable x+ has been replaced by 
( ) Re

h
h D

x D to avoid confusion with the use of ( ) ( )2 Re
hDhx x D+ = Pr  as a heat transfer variable in 

Chapter 8. The ( ) Re
h

h Dx D  variable is the reciprocal of the Langhaar variable. Plot the entry-region 

distributions of the local friction coefficients for inner and outer radius, the area-weighted average friction 
coefficient, and the apparent friction coefficients. The idea of evaluating the centerline velocity is not 
meaningful for an annulus.  Instead, examine the maximum velocity and the location of the maximum. The 
analysis leading to these formulations is given as a part of problem 7-8 and it can be found in Shah and 
London.3 

The data file for this problem is 8.21.dat.txt The data set construction is based on the s60.dat.txt file for 
combined entry length flow in a r*=0.5 annulus with a specified surface temperature on each surface 
(initial profiles: flat velocity and flat temperature). Note, for the annulus geometry the variable rw(m) is the 
inner radius and aux2(m) is the annular separation (the outer radius will be the sum of rw(m) and aux2(m), 
leading to ( )* 0.035 0.035 0.035 0.5o ir r r= = + = ). Only the momentum results will be discussed. Note 
that kout has been changed to =4. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
7.11.dat.txt): 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 1.037E+00 9.753E-02 9.533E-02  8.417E+01  8.210E+01 

  100 2.500E-01 2.172E-01 3.093E-02 2.880E-02  2.313E+01  2.114E+01 

  200 5.000E-01 1.541E-01 2.476E-02 2.260E-02  1.773E+01  1.572E+01 

  300 1.018E+00 1.097E-01 2.030E-02 1.808E-02  1.389E+01  1.183E+01 

  400 2.964E+00 6.712E-02 1.612E-02 1.373E-02  1.044E+01  8.213E+00 

  500 9.012E+00 4.216E-02 1.413E-02 1.141E-02  9.328E+00  6.606E+00 

  600 1.881E+01 3.305E-02 1.386E-02 1.096E-02  9.412E+00  6.416E+00 

  700 3.367E+01 2.903E-02 1.385E-02 1.093E-02  9.436E+00  6.400E+00 

  800 5.575E+01 2.699E-02 1.385E-02 1.093E-02  9.437E+00  6.399E+00 

  900 8.075E+01 2.600E-02 1.385E-02 1.093E-02  9.437E+00  6.399E+00 

  977 1.000E+02 2.558E-02 1.385E-02 1.093E-02  9.437E+00  6.399E+00 
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The friction factors for comparison include the local ( )f xc for the inner and outer radii, c  for 

pressure-drop calculations, and the area-averaged local friction coefficient for 

( )appf x

( ) Rex D →∞ , relating to 
Fig. 7-5. The  value is not generally used for the annulus. The file ftn85.txt contains the friction 
and pressure drop information to construct and 

( )mfc x
( )x

appfc . For a more accurate pressure gradient, you will 
want to increase the number of data points in ftn85.txt  by decreasing the k5 variable in the input data set. 
Note also that cf2 is the friction coefficient divided by two. The accepted standard formulation for 
nondimensional friction in laminar internal flow is cf (hydraulic engineers are usually the only people that 
use the Moody friction factor) and for turbulent internal flow it is cf /2. TEXSTAN mostly uses the cf2 
formulation. Because you have the pressure drop data versus x you can easily construct the pressure 
gradient variation with x and plot its absolute value logarithmically versus ( ) Re

h
h D

x D  (a ln-ln plot) to 

see where the gradient becomes constant. This is a measure of the entry region. To obtain the developing 
velocity profiles in the hydrodynamic entry region set k10=11 in 7.11.dat.txt. The output profile will then 
contain velocity profiles at each x(m) station. As noted in the correction to this problem statement, the 
request to plot the ratio ucl/V is not very meaningful for an annular geometry. The student can find the 
maximum velocity within the annulus and plot this ratio as a measure of fully-developed flow. See the 
solution to problem 7-8 for the theoretical value for this maximum velocity and it’s location 

 
( )( )

( )

2 2

2 2

1 2* * * 2
*

max *
** *

2 1 2 ln 1
2ln(1/ )1 2

m m m m
m

om

r r ru r rat r
V rr r

− +

r

 −
= = =  

+ −   
 

For this problem,  and * 0.7355mr = max 1.5078u V =  which is confirmed by TEXSTAN. The plot below 
shows this profile at the last x-location, x/Dh=100, which is hydrodynamically fully-developed. The 
maximum-velocity location is ( ) ( ) 0.4711=m i o ir r r r− − , which shows a slight bias towards the inner 
radius for this  r*=0.5 annulus. However, for this radius ratio the profile shape and maximum is very 
similar to that for the parallel planes. 
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8-1 

Starting from the appropriate momentum and energy differential equations, evaluate the Nusselt 
number for both surfaces of a parallel-plane channel in which there is fully developed laminar flow 
(both velocity and temperature developed) and in which there is heating from both surfaces but the 
heat flux from one surface is twice the flux from the other surface, and again when the heat flux 
from one surface is 5 times the flux from the other surface. The heat-transfer rate per unit of duct 
length is constant. Compare your results with those given in the text (Table 8-1). TEXSTAN can be 
used to confirm the results of this problem. 

Let the plate spacing be a. This solution is derived based on the origin y = 0 located on the channel 
centerline. Let the heat flux into the lower surface (1) be 1q′′

2q
 and it’s corresponding surface temperature be 

Ts,1, and let the heat flux into the upper surface (2) be ′′ . and it’s corresponding surface temperature be 
Ts,2. Note that we have implied a sign convention such that a positive heat flux is in the +y direction (into 
the fluid from surface 1 or out of the fluid from surface 2) and a negative heat flux is in the –y direction 
(out of the fluid from surface 1 or into the fluid from surface 2). 

Assume steady laminar flow with constant properties. For this coordinate system, the velocity profile has 
been derived in problem 7-7. The appropriate boundary layer equation is (4-10), 

 u u dPu u
x y dx y y

ρ ρ µ
 ∂ ∂ ∂

+ = − +  
∂

∂ ∂ ∂  
v

∂
 

and for fully-developed flow, 0u x∂ ∂ =  and v=0, reducing the momentum equation to an ordinary 
differential equation and boundary conditions 

 dP d du
dx dy dy

µ
 

=  
 

 

with boundary conditions of velocity profile symmetry at the channel centerline, and no-slip at the channel 
surfaces. 

 
2

0

0 and
y a

y

du u
dy =±

=

0= =  

Because the pressure gradient is a constant in the axial flow direction, we can separate variables and 
integrate, and apply the boundary conditions, leading to the parallel-planes channel velocity profile, 

 
2 2

21 4
2
h y du

dxaµ
  = − −  

  

P  

Note the similarity to Eq. (7-2) for the circular pipe, namely a parabolic profile shape. Next, we create the 
mean velocity, following Eq. (7-5) for constant density, 

 
( )

22

2

1 1
1 12c

a

cA a
c

a dPV u dA udy
A a dµ

+

−

 = = = − ⋅  ∫ ∫ x
 

where the cross-sectional area is per unit depth. Again, note the similarity to Eq. (7-7) for the circular pipe. 

Creating the ratio of the velocity profile to the mean velocity yields 
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2

2

3 1 4
2

u y
V a

 
= − 

 
 

Now consider the energy equation, neglecting viscous dissipation, and assuming constant properties for an 
ideal gas and steady state. Equation (4-39 is 

 
2

2

T Tu
x y y

α T∂ ∂ ∂
+ =

∂ ∂ ∂
v  

For thermally fully-developed flow, v=0 and from Eq. (8-7) mT x dT dx∂ ∂ =  and the energy equation 
becomes 

 
2 2

2 2

3 1 4
2

m mdT dTT u V y
dx dxy aα α

 ∂
= = − ∂  

 

which integrates to yield 

 ( )
2 4

1 22

3
2 2 3

mdTV y yT y C y C
dx aα

 
= − + + 

 
 

Now, carry out an energy balance on a control volume for an element of the flow, similar to that depicted 
in Fig. 8-3 for a curricular pipe, 

 

1 2mdT q q
dx a Vcρ

′′ ′′+  = 
   

To obtain a solution for the Nusselt numbers on each surface, the solution, the most straightforward 
approach is to apply a superposition idea because the two boundary conditions are both Neumann or Type 
2 from a differential equation point of view. That is, only C1 can be resolved. Split the solution into the 
linear sum of two problems, 

  1 2 ,1 ,m m mT t t and T t t= + = + 2

where 

 

1
1 ,2

2

2
2 ,2

2

0 and

0 and

sy a
y a

1

2sy a
y a

dt t t
dx

dt t t
dx

=−
=+

=+
=−

= =

= =
 

Now solve for t1 and t2, 

 

2 4
,1 2

1 1, 2

2 4
,2 2

2 2, 2

3 1
2 2 3 483

3 1
2 2 3 483

m
s

m
s

dtV y yt t ay a
dx a

dtV y yt t ay a
dx a

α

α

 
= + − − − 

 
 

= + − + − 
 

13

13
 

Now compute the mass-averaged fluid temperatures for these two solutions following Eq. (8-5), 
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 ( ) ( )
2 2 42 ,1 2

,1 1,2 22

,1 2
1,

1 3 3 1 131 4 1
1 2 2 2 3 483

52
140

a m
m sa

m
s

dty V y yt V t ay a
V a dxa a

dtVt a
dx

α

α

+

−

    
= − + − − −    ⋅     

= −

∫ dy ⋅
 

Now, carry out an energy balance on a control volume for an element of the flow, with heating only on 
surface 1, 

 ,1 1mdt q
dx a Vcρ

′′ 
= 

 
 

Substitution of this into the formulation for tm,1 yields 

 1
,1 1,

26
70m s

q at t
k
′′

= −  

Carrying out the same procedure for tm,2 yields 

 2
,2 2,

26
70m s

q at t
k
′′

= −  

and thus the superposition formulations become 

 
( ) ( )

( )

2 4
2

1, 2, 1 2 1 22

1, 2, 1 2

3 13
2 2 483

26
70

s s

m s s

y yT t t q q a q q ay
ka a

aT t t q q
k

1
3

  
′′ ′′ ′′ ′′= + + + − − − −  

  

′′ ′′= + − +

 

Now evaluate the surface temperatures in terms of the superposition temperatures, 

 
,1 ,1 ,2 22

,2 ,1 ,2 12

2

2

s s sy a

s s sy a

aT T t t q
k
aT T t t q
k

=−

=+

′′= = + −

′′= = + −
 

Finally, we formulate the Nusselt numbers for each surface. For surface 1, 

 

( )
1 1 1

1
2,1

1 2
1

2

1

42 1Nu
26 9 13 9
35 35 70 140

5.385

1 0.346

h

s m

h D q qa
qk kT T q q
q

q
q

′′ ′′
= = = = ′′− ′′ ′′− −

′′

= ′′
−

′′

 

and for surface 2, following the same idea 

 2
2

1

2

5.385Nu
1 0.346

hh D
qk
q

= = ′′
−

′′
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For this problem, where the heating on surface 2 is two times (2x) the heating on surface 1, 

 1 2Nu 17.5 and Nu 6.51= =  

and for the case where the heating on surface 2 is five times (5x) the heating on surface 1, 

 1 2Nu 7.37 and Nu 5.79= − =  

Compare this analysis to the development on page 94, and Table 8-1. For parallel planes,  and both 
influence coefficients are 0.346. When the heat flux ratio 

* 1r =
2 1 26 9 2.9q q′′ ′′ = ≈ , Nu1 becomes infinite, 

indicating that (Ts,1-Tm) has become zero, and for larger heat flux ratios the mean temperature exceeds the 
surface-1 temperature. Note that a flux-flux boundary condition problem does not have a unique 
temperature level, but rather it is set by a thermal boundary condition on the “other side of one of the 
surfaces”. Note, the solution for this problem can also be carried out without strictly considering linear 
superposition. 

To verify the analysis the TEXSTAN data file for this problem choose the data set 8.1.dat.txt. The data set 
construction is based on the s556.dat.txt file for thermal entry length flow between parallel planes with a 
specified surface heat flux on each surface (initial profiles: hydrodynamically fully-developed velocity and 
flat temperature). Note this is not the correct thermal initial condition for this problem but the solution will 
converge to a thermally fully-developed solution. 

For this problem set we arbitrarily chose +20 W/m2 for the heat flux at the inner surface (I-surface). For 2x 
heating, the outer surface (E-surface) will be +40 W/m2m. Note a slight change in the problem statement. 
the channel length should be 100 hydraulic diameters. 

Here is an abbreviated listing of the  8.1-two.out.txt output file: 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

  750 4.376E+01 2.410E-02 1.199E-02 1.199E-02  1.662E+01  6.572E+00 

  800 5.575E+01 2.408E-02 1.199E-02 1.199E-02  1.712E+01  6.534E+00 

  850 6.825E+01 2.406E-02 1.199E-02 1.199E-02  1.733E+01  6.519E+00 

  900 8.075E+01 2.405E-02 1.199E-02 1.199E-02  1.741E+01  6.513E+00 

  950 9.325E+01 2.404E-02 1.199E-02 1.199E-02  1.745E+01  6.511E+00 

  977 1.000E+02 2.404E-02 1.199E-02 1.199E-02  1.745E+01  6.510E+00 

Because the initial conditions were for a thermal entry length calculation, only the thermal boundary layer 
develops on the channel surfaces, and the flow becomes thermally fully developed within about 95% at 
about , 4x D h ≈ 4 , which converts to ( ) ( )2 Re Pr 0hx x D+ = .12=  . Table 8-13 shows a similar x+ range 
for thermally fully-developed flow to be in the range 0.1 to 0.2. For this problem Nu = 17.47 in 8.1-
two.out.txt agrees with our derived solution for the I surface (17.5) and 2E surface I surfaceq q− −′′ ′′= × , and Nu = 
6.511 agrees with our derived solution for the E-surface(6.51). 

The files ftn83.txt and ftn83.txt and can be used to confirm h, Ts, Tm, for the I-surface and E-surface. For 
the I-surface we found that the Nusselt number is positive, so we will expect Ts>Tm. For the E-surface we 
found that the Nusselt number is also positive, so we will expect Ts>Tm. Here is an abbreviated output from 
ftn83.txt (for the I-surface),  

        intg  x/dh           htc         qflux       tm          ts 

         750  4.3761544E+01  6.2177E+00  2.0000E+01  3.1974E+02  3.2295E+02 

         800  5.5750000E+01  6.4041E+00  2.0000E+01  3.2514E+02  3.2826E+02 

         850  6.8249961E+01  6.4841E+00  2.0000E+01  3.3078E+02  3.3386E+02 
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         900  8.0749945E+01  6.5156E+00  2.0000E+01  3.3642E+02  3.3949E+02 

         950  9.3250004E+01  6.5279E+00  2.0000E+01  3.4205E+02  3.4512E+02 

         977  9.9999920E+01  6.5310E+00  2.0000E+01  3.4510E+02  3.4816E+02 

and here is an abbreviated output from ftn84.txt (for the E-surface),  

        intg  x/dh           htc         qflux       tm          ts 

         750  4.3761544E+01  2.4591E+00  4.0000E+01  3.1974E+02  3.3600E+02 

         800  5.5750000E+01  2.4450E+00  4.0000E+01  3.2514E+02  3.4150E+02 

         850  6.8249961E+01  2.4392E+00  4.0000E+01  3.3078E+02  3.4718E+02 

         900  8.0749945E+01  2.4370E+00  4.0000E+01  3.3642E+02  3.5283E+02 

         950  9.3250004E+01  2.4362E+00  4.0000E+01  3.4205E+02  3.5847E+02 

         977  9.9999920E+01  2.4359E+00  4.0000E+01  3.4510E+02  3.6152E+02 

For the I-surface, from the ftn83.txt output we see Ts>Tm and with the positive heat flux we expect a 
positive Nu. For the E-surface, from the ftn84.txt output we also see Ts>Tm. and with the positive heat flux 
we again expect a positive Nu. 

Here is an abbreviated listing of the  8.1-five.out.txt output file: 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

  750 4.376E+01 2.410E-02 1.199E-02 1.199E-02 -8.078E+00  5.863E+00 

  800 5.575E+01 2.408E-02 1.199E-02 1.199E-02 -7.646E+00  5.815E+00 

  850 6.825E+01 2.406E-02 1.199E-02 1.199E-02 -7.481E+00  5.796E+00 

  900 8.075E+01 2.405E-02 1.199E-02 1.199E-02 -7.419E+00  5.788E+00 

  950 9.325E+01 2.404E-02 1.199E-02 1.199E-02 -7.395E+00  5.785E+00 

  977 1.000E+02 2.404E-02 1.199E-02 1.199E-02 -7.389E+00  5.785E+00 

For 5E surface I surfaceq q−′′ ′′= × − the Nu = -7.383 in 8.1-five.out.txt agrees with our derived solution for the I 
surface (-7.37) and , and Nu = +5.786 agrees with our derived solution for the E-surface(5.79). 

The files ftn83.txt and ftn83.txt and can be used to explain the Nusselt number behavior. For the I-surface 
we find that the Nusselt number is negative, so we will expect Tm>Ts, even though the heat flux is positive 
For the E-surface we find that the Nusselt number is positive, so we will expect Ts>Tm. Here is an 
abbreviated output from ftn83.txt (for the I-surface),  

        intg  x/dh           htc         qflux       tmean       twall 

         750  4.3761544E+01 -3.0228E+00  2.0000E+01  3.3947E+02  3.3285E+02 

         800  5.5750000E+01 -2.8608E+00  2.0000E+01  3.5028E+02  3.4329E+02 

         850  6.8249961E+01 -2.7991E+00  2.0000E+01  3.6156E+02  3.5441E+02 

         900  8.0749945E+01 -2.7759E+00  2.0000E+01  3.7283E+02  3.6563E+02 

         950  9.3250004E+01 -2.7670E+00  2.0000E+01  3.8411E+02  3.7688E+02 

         977  9.9999920E+01 -2.7648E+00  2.0000E+01  3.9019E+02  3.8296E+02 

and here is an abbreviated output from ftn84.txt (for the E-surface),  

        intg  x/dh           htc         qflux       tmean       twall 
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         750  4.3761544E+01  2.1938E+00  1.0000E+02  3.3947E+02  3.8505E+02 

         800  5.5750000E+01  2.1759E+00  1.0000E+02  3.5028E+02  3.9624E+02 

         850  6.8249961E+01  2.1687E+00  1.0000E+02  3.6156E+02  4.0767E+02 

         900  8.0749945E+01  2.1659E+00  1.0000E+02  3.7283E+02  4.1900E+02 

         950  9.3250004E+01  2.1648E+00  1.0000E+02  3.8411E+02  4.3030E+02 

         977  9.9999920E+01  2.1645E+00  1.0000E+02  3.9019E+02  4.3639E+02 

For the I-surface, from the ftn83.txt output we see Tm>Ts and with the positive heat flux we verify why the 
Nusselt number is negative. For the E-surface, from the ftn84.txt output we see Ts>Tm. and with the positive 
heat flux we again expect a positive Nu. 

To better understand any negative Nusselt number, the temperature profiles need to be examined. By 
resetting k10 =11 in five.dat.txt the output file will also contain profiles of T(y) at each of the 5 x(m) 
locations. The following plot compares the profiles for both heating ratios. 

We can see both heat fluxes are into the fluid, but for the higher heating level, the mean temperature 
becomes greater than the wall temperature, creating a discrepancy between the local wall temperature 
gradient and for that wall. ( s mT T− )

In summary, it is important to emphasize that the heat transfer coefficient and it’s non-dimensional 
equivalent, Nu, reflect the definition based on ( )s mT T− in Newton’s law of cooling, whereas the heat flux 
at the surface is governed by the local temperature gradient and how Fourier’s law is defined. We saw that 
Fourier’s law for the E-surface has had a sign change to make it agree with the thermodynamic-like sign 
convention in TEXSTAN (heat transfer into the fluid is positive). Of equal importance is the examination 
of the temperature profiles. 
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8-2 

With a low-Prandtl-number fluid, the temperature profile in a tube develops more rapidly than the 
velocity profile. Thus, as the Prandtl number approaches zero, the temperature profile can approach 
a fully developed form before the velocity profile has even started to develop (although this is a 
situation of purely academic interest). Convection solutions based on a uniform velocity over the 
cross section, as described, are called slug-flow solutions. Develop an expression for the slug-flow, 
fully developed temperature-profile Nusselt number for constant heat rate per unit of tube length for 
a concentric circular-tube annulus with a radius ratio of 0.60 for the case where the inner tube is 
heated and the outer tube is insulated. Compare with the results in Table 8-1 and discuss. 

For the annulus geometry r is measured from the centerline of the inner pipe, ri is the radius of the inner 
pipe, ro is the radius of the outer pipe, and r* is the radius ratio, *

i or r r= . Now consider the energy 
equation (8-1). This equation assumes no viscous dissipation, and it assumes constant properties for an 
ideal gas and steady state. Let the temperature profile vary with x and r only. The equation becomes 

 r
T T kcu c r T
x r r r r

ρ ρ∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
v  

With the assumption of a slug flow, u=V and vr=0, and with the assumption of a thermally fully-developed 
temperature profile with constant heat rate, Eq. (8-8), the energy equation becomes 

 1 mdTT Vr
r r r dxα

∂ ∂    =   ∂ ∂   
 

The boundary conditions for the annulus are a constant heat rate at ri and an adiabatic surface at ro. These 
two boundary conditions are very much similar to those for a circular pipe (zero heat flux at the pipe 
centerline and a uniform heat flux at the surface). Thus the boundary conditions are to that following Eq. 
(8-10) 

 ,0 and
ii

o

s rr r
r r

T T T
r =

=

∂
= =

∂
 

Note that any time we have a Neumann-Neumann boundary (adiabatic surface and heat-flux surface for 
this problem or a pipe with a heat-flux surface), we can not find the two constants of integration when we 
separate variables and integrate. So, we substitute for one of the Neumann conditions with it’s Dirichlet 
counterpart (in this case the surface temperature) and we bring in the heat flux through the energy balance 
when we determine m dxdT .  

Separate variables and integrate the 2nd-order ordinary differential equation, and apply the boundary 
conditions, 

 
2

2 2
*

, 2 2 ln
4i

o m
s r

io

Vr dT r rT T r
dx rrα

  
= − − −  

  
 

where *
i or=r r . Now compute the mean temperature using Eq. (8-5) 
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Now formulate the convective rate equation for the ri surface, 
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The next step can be carried out one of two ways. The first way is form an energy balance similar to Eq. 
(8-15), and then equate the surface heat flux to the convective rate equation and form a Nusselt number. 
The second approach is to independently formulate the surface heat flux using Fourier’s law, equate the 
two forms of heat flux and form a Nusselt number. Using the first approach 
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and form a Nusselt number and evaluate it at r*=0.6, 
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Note, compare this solution with Table 8-1 for the Nusselt number solution for the inner wall heated and 
the outer wall adiabatic, Nuii(r*), and you will find a very close agreement for small r* between the plug-
flow solution and the solution with hydrodynamically fully-developed profiles. The profile shapes are not 
that dissimilar. 

Compare this solution with Table 8-1 for the Nusselt number solution for the inner wall heated and the 
outer wall adiabatic, Nuii(r*). For r*=0.6 Nuii = 5.912, showing the slug-flow analysis (relating to x-
convection) leads to an error of about 4.5%. 
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8-3 

Consider a 0.6 cm inside-diameter circular tube that is of sufficient length that the flow is 
hydrodynamically fully developed. At some point beyond the fully developed location, a 1.2-m length 
of the tube is wound by an electric resistance heating element to heat the fluid, an organic fuel, from 
its entrance temperature of 10°C to a final value of 65°C. Let the mass flow rate of the fuel be 1.26 × 
10–3 kg/s. The following average properties may be treated as constant: 

 

3

Pr 10
753 kg/m
2.092 kJ/(kg K)

0.137 W/(m K)

=
=

c =
k =

ρ
⋅

⋅
0.00065 Pa s=µ ⋅

 

Note, there is a small correction to the problem statement. If you fix the values of Pr, µ, and c, the 
thermal conductivity calculates to be 0.136 W/m-K. Calculate and plot both tube surface 
temperature and fluid mean temperature as functions of tube length. What is the highest 
temperature experienced by any of the fluid?. TEXSTAN can be used to confirm the results of this 
problem. 

To begin this problem, first compute the thermal entry length for laminar heat transfer as suggested by 
Table 8-6 for a uniform heat flux boundary condition, , or x = 2.47 m, showing the entire heat 
transfer occurs in the developing region, which violates the assumption of constant h (or constant Nu). 

0.10x+ =

The solution for the variation of mean temperature with x is a straightforward application of an energy 
balance for a uniform heat flux boundary condition, 
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and for this problem, the uniform heat flux is computed to be 
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To obtain the surface temperature, apply the local convective rate equation, 
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To evaluate hx, we need to use the Nux solution for an unheated starting length and a uniform heat flux, Eq. 
(8-42), 
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∑  

For the infinite series, let m=5 , as this can reproduce Table 8-6 to within about 1%. The solution to this 
problem requires calculation of the infinite series to obtain Nux, then calculating hx, and then calculating 
and plotting the mean and surface temperature 0 x L≤ ≤ .  
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To verify the analysis the TEXSTAN data file for this problem choose the data set 8.3.dat.txt The data set 
construction is based on the s35.dat.txt file for thermal entry length flow in a pipe with a specified surface 
heat flux (initial profiles: hydrodynamically fully-developed velocity and flat temperature). Note that kout 
has been changed to =4. 

To set up the input data file, the hydraulic diameter Reynolds number needs to be computed, 
( ) ( )Re 4 411D m Dπµ= = , because it is an input file variable. The variables that were changed in 

s35.dat.txt to create 8.3.dat.txt include rhoc, viscoc, gam/cp, prc(1), the set of six x(m) and aux1(m) values, 
the six fj(E,1,m) values, xend, reyn, tref and twall. Note: feel free to adjust the selected x(m) values. The 
x(m) values in the data set are intended to create more integration points in the initial part of the developing 
thermal boundary layer region based on the logarithmic behavior of the x+ variable. 

Here is an abbreviated listing of the  8.3.out.txt output file: 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 2.500E-02 3.889E-02 0.000E+00 1.945E-02  0.000E+00  7.194E+01 

  100 5.000E-01 3.888E-02 0.000E+00 1.944E-02  0.000E+00  2.554E+01 

  200 1.000E+00 3.888E-02 0.000E+00 1.944E-02  0.000E+00  2.017E+01 

  300 1.500E+00 3.888E-02 0.000E+00 1.945E-02  0.000E+00  1.758E+01 

  400 2.000E+00 3.888E-02 0.000E+00 1.945E-02  0.000E+00  1.596E+01 

  500 2.500E+00 3.888E-02 0.000E+00 1.944E-02  0.000E+00  1.480E+01 

  600 3.000E+00 3.888E-02 0.000E+00 1.945E-02  0.000E+00  1.392E+01 

  700 3.500E+00 3.888E-02 0.000E+00 1.945E-02  0.000E+00  1.322E+01 

  800 4.000E+00 3.888E-02 0.000E+00 1.945E-02  0.000E+00  1.265E+01 

  900 4.840E+00 3.899E-02 0.000E+00 1.945E-02  0.000E+00  1.187E+01 

 1000 1.061E+01 3.936E-02 0.000E+00 1.945E-02  0.000E+00  9.202E+00 

 1100 4.556E+01 3.932E-02 0.000E+00 1.945E-02  0.000E+00  5.987E+00 

 1200 9.556E+01 3.910E-02 0.000E+00 1.945E-02  0.000E+00  5.044E+00 

 1300 1.456E+02 3.903E-02 0.000E+00 1.945E-02  0.000E+00  4.698E+00 

 1400 1.953E+02 3.900E-02 0.000E+00 1.945E-02  0.000E+00  4.537E+00 

 1410 2.000E+02 3.900E-02 0.000E+00 1.945E-02  0.000E+00  4.527E+00 

To confirm the fact that h will significantly vary through the tube, we examine output from ftn84.txt (for 
the E-surface),  

        intg  x/dh           htc         qflux       tm          ts 

           5  2.4999999E-02  1.6304E+03  6.4093E+03  1.0007E+01  1.3938E+01 

         100  5.0000003E-01  5.7874E+02  6.4093E+03  1.0138E+01  2.1212E+01 

         200  9.9999969E-01  4.5721E+02  6.4093E+03  1.0275E+01  2.4293E+01 

         300  1.5000006E+00  3.9851E+02  6.4093E+03  1.0413E+01  2.6496E+01 

         400  2.0000000E+00  3.6161E+02  6.4093E+03  1.0550E+01  2.8275E+01 

         500  2.4999997E+00  3.3545E+02  6.4093E+03  1.0688E+01  2.9795E+01 

         600  3.0000008E+00  3.1555E+02  6.4093E+03  1.0825E+01  3.1137E+01 

         700  3.4999986E+00  2.9970E+02  6.4093E+03  1.0963E+01  3.2349E+01 
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         800  4.0000000E+00  2.8666E+02  6.4093E+03  1.1100E+01  3.3459E+01 

         900  4.8404098E+00  2.6910E+02  6.4093E+03  1.1332E+01  3.5149E+01 

        1000  1.0610173E+01  2.0855E+02  6.4093E+03  1.2919E+01  4.3652E+01 

        1100  4.5564888E+01  1.3569E+02  6.4093E+03  2.2535E+01  6.9770E+01 

        1200  9.5564843E+01  1.1432E+02  6.4093E+03  3.6290E+01  9.2355E+01 

        1300  1.4556492E+02  1.0647E+02  6.4093E+03  5.0045E+01  1.1024E+02 

        1400  1.9533328E+02  1.0283E+02  6.4093E+03  6.3736E+01  1.2607E+02 

        1410  1.9999993E+02  1.0260E+02  6.4093E+03  6.5020E+01  1.2749E+02 

Here is the results from evaluating the infinite series and from the TEXSTAN calculations. 

x+ 0.00098 0.0025 0.01484 0.03916 0.06348 0.09728 

x/Dh 2.00 5.12 30.5 80.5 131 200 

Nux 14.01 11.34 6.67 5.22 4.77 4.52 

TEXSTAN 15.96 11.65 6.68 5.23 4.78 4.53 
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8-4 

Consider fully developed, constant-property laminar flow between parallel planes with constant heat 
rate per unit of length and a fully developed temperature profile. Suppose heat is transferred to the 
fluid on one side and out of the fluid on the other at the same rate. What is the Nusselt number on 
each side of the passage? Sketch the temperature profile. Suppose the fluid is an oil for which the 
viscosity varies greatly with temperature, but all the other properties are relatively unaffected by 
temperature. Is the velocity profile affected? Is the temperature profile affected? Is the Nusselt 
number affected? Explain. TEXSTAN can be used to confirm the Nusselt number result of this 
problem. 

Note that the Nusselt number functions for this problem have been derived as a part of problem 8-1. Let the 
plate spacing be a. Let the heat flux into the lower surface (1) be 1q′′

2q
 and it’s corresponding surface 

temperature be Ts,1, and let the heat flux into the upper surface (2) be ′′ . and it’s corresponding surface 
temperature be Ts,2. The sign convention is such that a positive heat flux is in the +y direction (into the fluid 
from surface 1 or out of the fluid from surface 2) and a negative heat flux is in the –y direction (out of the 
fluid from surface 1 or into the fluid from surface 2). 

The Nusselt number for the lower surface is Eq. (8-28) and for the upper surface Eq. (8-29), along with 
Table 8-1, and r*=1.00 (parallel planes) 
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For this problem statement, , and this leads to Nu1q q′′ ′′= − 2 1=4.00 and Nu2=4.00. To show that the 
temperature profile is linear we start with Eq. (8-7) for thermally fully-developed flow, 
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We then do an energy balance on a control volume similar to Fig. 8-3, which yields 0mdT dx = , and the 
energy equation becomes 2 2 0d T dy = , leading to a linear temperature profile, regardless of the shape of 
the velocity profile. Let the origin y = 0 located on the channel centerline (same as used in problem 8-1), 
and the solution becomes 

 ( ) ,1 ,2 ,2 ,1

2 2
s s s sT T T T

T y y
a

+ − 
= +  

 
 

If viscosity is a function of temperature the velocity profile will be affected, but it may or may not have an 
influence on temperature profile (and) Nusselt number. It will not have an affect if the µ(T) does not alter 
the assumption of hydrodynamically fully-developed. If the flow continues to accelerate, then the full 
energy equation (4-38) with or without viscous dissipation has to be solved because v . 0≠

To verify the analysis the TEXSTAN data file for this problem choose the data set 8.1.dat.txt. The data set 
construction is based on the s556.dat.txt file for thermal entry length flow between parallel planes with a 
specified surface heat flux on each surface (initial profiles: hydrodynamically fully-developed velocity and 
flat temperature). Note this is not the correct thermal initial condition but it will converge to a thermally 
fully-developed solution. 
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To verify the analysis the TEXSTAN data file for this problem is 8.4.dat.txt The data set construction is 
based on the s536.dat.txt file. This data set is for thermally fully-developed flow between parallel planes 
with a constant heat flux surface. For this problem make the channel length about 100 hydraulic diameters 
(the problem statement says 20-40).  

Here is an abbreviated listing of the  8.4.out.txt output file: 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 2.403E-02 1.199E-02 1.199E-02  8.234E+00 -1.149E+01 

   50 7.500E-01 2.793E-02 1.199E-02 1.199E-02  7.957E+00  7.692E+01 

  100 7.000E+00 2.440E-02 1.199E-02 1.199E-02  6.216E+00  6.926E+00 

  150 1.325E+01 2.420E-02 1.199E-02 1.199E-02  5.220E+00  5.303E+00 

  200 1.950E+01 2.413E-02 1.199E-02 1.199E-02  4.690E+00  4.702E+00 

  250 2.575E+01 2.409E-02 1.199E-02 1.199E-02  4.403E+00  4.405E+00 

  300 3.200E+01 2.407E-02 1.199E-02 1.199E-02  4.240E+00  4.241E+00 

  350 3.825E+01 2.406E-02 1.199E-02 1.199E-02  4.145E+00  4.145E+00 

  400 4.450E+01 2.404E-02 1.199E-02 1.199E-02  4.089E+00  4.089E+00 

  450 5.075E+01 2.404E-02 1.199E-02 1.199E-02  4.054E+00  4.054E+00 

  500 5.700E+01 2.403E-02 1.199E-02 1.199E-02  4.033E+00  4.033E+00 

  550 6.325E+01 2.402E-02 1.199E-02 1.199E-02  4.021E+00  4.021E+00 

  600 6.950E+01 2.402E-02 1.199E-02 1.199E-02  4.013E+00  4.013E+00 

  650 7.575E+01 2.402E-02 1.199E-02 1.199E-02  4.008E+00  4.008E+00 

  700 8.200E+01 2.401E-02 1.199E-02 1.199E-02  4.005E+00  4.005E+00 

  730 8.571E+01 2.401E-02 1.199E-02 1.199E-02  4.004E+00  4.004E+00 

In the output we see the confirmation of Nu(I)=Nu(E) for q1 q2′′ ′′= − . However, we see it takes quite a long 
time to reach this thermally fully-developed  flow. This is because TEXSTAN does not have a correct 
thermally fully-developed temperature profile for a flux-flux thermal boundary condition, and the incorrect 
initial profile takes time to damp out (in the output you will see it will take about 30-40 hydraulic diameters 
for the solution to converge towards a thermally fully-developed solution, whereas the velocity solution is 
correct from the xstart location). 
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8-5 

Consider a concentric circular-tube annulus, with outer diameter 2.5 cm and inner diameter 1.25 
cm, in which air is flowing under fully developed, constant-heat-rate conditions. Heat is supplied to 
the inner tube, and the outer tube is externally insulated. The radiation emissivity of both tube 
surfaces is 0.8. The mixed mean temperature of the air at a particular point in question is 260°C. The 
inner-tube surface temperature at this point is 300°C. What is total heat flux from the inner-tube 
surface at this point? What is the outer-tube surface temperature at this point? What percentage of 
the heat supplied to the inner tube is transferred directly to the air, and what percentage indirectly 
from the outer surface?  Assume that the Reynolds number is sufficiently low that the flow is 
laminar. Assume that the air is transparent to the thermal radiation. Make use of any of the material 
in the text as needed. 

First formulate the thermal radiation exchange using a radiative thermal circuit for exchange between two 
diffuse-gray surfaces with a non-participating medium between the surfaces.  This formulation can be 
found in most undergraduate heat transfer texts. 
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− −−
= = =

− − − −  − −+ + + + + + 
 

= −  

where the radiation view factor Fio =1 for concentric circular cylinders. This problem will be analyzed on a 
flux basis, so convert the radiative heat transfer rate to a flux, 

 
( )

( )

4 4
, ,

, ,
1 11

i orad net i
rad net i

i i o

i io o i o

T Tq
q

A
F r r

σ

ε ε
ε ε

−
′′ = =

 − −
+ + 

 

 

and 
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, , , , , ,
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o o o

q q A
q q

A A A
−  
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r q  

where ( ) *
i o i oA A r r r= = .  

Now we consider the convective heat transfer for the two surfaces. The overall energy balance for the 
adiabatic outer surface is 

 ( ), , , ,0o conv o rad net o o o m rad net oq q q h T T q′′ ′′ ′′ ′′= = + = − + ,  

and ho comes from the Nusselt number equation (8-29) for the outer surface of an annulus with fully-
developed velocity and temperature profiles. 

 
( ) ( )

,
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, ,

NuNu
1

conv o hoo o h
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q Dh D
k k T Tq q θ

′′
= = =
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where the hydraulic diameter for the annulus is Dh=2(ro-ri). For the inner surface the overall energy 
balance  is 

 ( ), , , ,i conv i rad net i i i m rad net iq q q h T T q′′ ′′ ′′ ′′= + = − + ,  
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and hi comes from the Nusselt number equation (8-28) for the inner surface of an annulus with fully-
developed velocity and temperature profiles. 
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At this point, the two Nusselt number equations can be combined to eliminate ,conv iq′′  
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Now, eliminate  using the energy balance for the outer surface, ,conv oq′′
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For the problem statement all terms in this equation are known except To. 

Iteration on this equation gives To = 551K=278ºC. Note, this value can vary depending on how closely you 
converge the solution and on the property of air (which was selected at 550K). With this To value, the net 
radiative heat flux from the inner surface can be computed, , and thus the outer-surface 

convective heat flux is computed to be . With the outer-surface temperature and heat 
flux now known, the inner surface total heat flux can be computed by rearranging the Nusselt number 
equation for the inner surface, 

2
, , 644 W/mrad net iq′′ =

2
, 322 W/mconv oq′′ =

 
( ) * 2
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1

Nu

i m
conv i i conv o

h
ii

k T T
q q

D
θ

−
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and thus the total heat flux for the inner surface becomes 

  2
, , , , 1669 W/mtotal i conv i rad net iq q q′′ ′′ ′′= + =

Based on these numbers, 61 percent of the total heat flux to the inner surface is transferred directly into the 
fluid by convection and the remainder is transferred to the outer surface via thermal radiation through the 
non-participating air medium and then into the fluid from the outer surface by convection because the outer 
surface is overall adiabatic.  
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The heat flux along a flat cooling tube in a typical nuclear power reactor may often be approximated 
by 

 sins
xq a b

L
π′′ = +  

 where L is the length of the flat tube and x is the distance along the flat tube. A particular 
air-cooled reactor is to be constructed of a stack of fuel plates with a 3-mm air space between them. 
The length of the flow passage will be 1.22 m, and the heat flux at the plate surfaces will vary 
according to the above equation with a = 900 W/m2 and b = 2500 W/m2. The air mass velocity is to be 
7.5 kg/(s-m2). The air enters the reactor at 700 kPa and 100°C. The properties of air at 250°C may be 
used in the analysis and treated as constant. Prepare a scale plot of heat flux, air mean temperature, 
and plate surface temperature as a function of distance along the flow passage. Although the heat 
flux is not constant along the passage, the passage length-to-gap ratio is sufficiently large that the 
constant-heat-rate heat-transfer solution for the conductance h is not a bad approximation. 
Therefore assume h is a constant. We are most interested here in the peak surface temperature; if 
this occurs in a region where the heat flux is varying only slowly, the approximation is still better. 
This is a point for discussion. TEXSTAN can be used to help understand the results of this problem.  

The solution begins by performing an energy balance on a control volume for an element of the parallel-
planes channel, similar to that depicted in Fig. 8-3 for a curricular pipe.  Let H be the channel height and L 
be the channel length. 

 2 4m s

h

dT q q
dx H Vc D m cρ

s′′ ′  = = 
′
′′ 

 

Substitute the heat flux function and integrate from the channel entrance where the inlet temperature is 
Tm,x=0 
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To obtain the surface temperature, apply the local convective rate equation, 
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For this problem statement thermally fully-developed flow is assumed, and h is obtained from Table 8-2 
for flow between parallel plates with a constant heat on both surfaces, Nu=8.235.  The computing equation 
for the surface temperature becomes 

 ( ) , 0
4 11 cos sin

Nu
h

s m x
h

DbL x xT x T ax a b
D m c L k L

π π
π=

      = + + − + +     


 ′′        
 

Evaluation of these two temperature equations at selected x-locations are shown in the table below 

 

x x/Dh q"(x) Ts(x) Tm(x) 
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(m)  (W/m2) (deg C) (deg C) 

0 0.0 900.0 116.0 100.0

0.01 1.7 964.4 117.9 100.8

0.02 3.3 1028.7 119.9 101.7

0.05 8.3 1221.0 126.2 104.6

0.1 16.7 1536.7 137.8 110.5

0.2 33.3 2131.4 164.1 126.3

0.3 50.0 2644.9 193.8 146.9

0.4 66.7 3043.3 225.5 171.4

0.5 83.3 3300.4 257.4 198.8

0.6 100.0 3399.2 288.1 227.7

0.7 116.7 3333.2 315.9 256.8

0.8 133.3 3106.7 339.7 284.6

0.9 150.0 2734.7 358.3 309.8

1 166.7 2241.7 371.0 331.3

1.1 183.3 1660.3 377.5 348.1

1.22 203.3 900.0 377.3 361.3

 

Note there are several small x-values, which will be required as a part of the TEXSTAN data set 
construction. 

To verify the analysis the TEXSTAN data file for this problem choose the data set 8.6.dat.txt. The data set 
construction is based on the s51.dat.txt file for combined entry length flow between parallel planes with a 
specified surface heat flux and thermal symmetry (initial profiles: flat velocity and flat temperature). Note 
that kout has been changed to =4. A slight correction to the problem statement - do not use the specified 
Re=1000, but calculate the actual value.  

 ( )
( ) ( )

, ,

, ,

Re 1624

Re 0.05 0.05 Re 0.49 m

Re Pr 0.05 0.05 Re Pr 0.34 m

D h

fd hydro h fd hydro h

fd thermal h fd thermal h

m D

x D x D

x D x D

µ′′= =

= → = =

= → = =

 

Note, the choice of 0.05 is a very simple estimate for parallel-planes channel. We see that the 
approximation of a thermally fully-developed entry region may not be a good assumption, but it can be 
verified by TEXSTAN. Use properties of air at 250º ~ 525K, and be careful to modify the density for the 
much higher pressure. You must construct the boundary condition table in the input data set to reflect the 
sine-function surface heat flux distribution.  You can use the table entries given above, but you need to add 
3 more data points near x=0 because you are using kstart=1. For internal flows, the numerical mesh is 
required to extend from surface to centerline (or surface to surface). For entry flows, the developing shear 
layer (boundary layer) is a very small part of this mesh, and therefore TEXSTAN must take very small 
flow-direction integration steps. Making the stepsize proportional to the boundary layer thickness is not 
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convenient. Therefore, internal entry flows require a different stepsize mechanism. Instead of using deltax, 
we set the flag kdx=1, and input “deltax” using the array aux1(m). The definition of both deltax and aux1 is 
∆x rw . For this problem I suggest adding three points at x=0.01, 0.02, and 0.05m. Note the integration 
stepsize control starts extremely small and then increases, as reflected in aux1(m) starting at 0.01 and 
finally becoming 1.00. 

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0000000    0.0015    0.0100    0.0000    0.0000 

      0.0100000    0.0015    0.0100    0.0000    0.0000 

      0.0200000    0.0015    0.2500    0.0000    0.0000 

      0.0500000    0.0015    1.0000    0.0000    0.0000 

      0.1000000    0.0015    1.0000    0.0000    0.0000 

      0.2000000    0.0015    1.0000    0.0000    0.0000 

      0.3000000    0.0015    1.0000    0.0000    0.0000 

      0.4000000    0.0015    1.0000    0.0000    0.0000 

      0.5000000    0.0015    1.0000    0.0000    0.0000 

      0.6000000    0.0015    1.0000    0.0000    0.0000 

      0.7000000    0.0015    1.0000    0.0000    0.0000 

      0.8000000    0.0015    1.0000    0.0000    0.0000 

      0.9000000    0.0015    1.0000    0.0000    0.0000 

      1.0000000    0.0015    1.0000    0.0000    0.0000 

      1.1000000    0.0015    1.0000    0.0000    0.0000 

      1.2200000    0.0015    1.0000    0.0000    0.0000 

The variables that were changed in s51.dat.txt to create 8.6.dat.txt include po, rhoc, viscoc, gam/cp, prc(1), 
the two nxbc variables (16 total), the set of x(m). rw(m), and aux1(m) values, the set of fj(E,1,m) values, 
xend, reyn, tref and twall. Note: feel free to adjust the selected x(m) values.  

Here is an abbreviated listing of the  8.6.out.txt output file: 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 8.156E-01 0.000E+00 7.414E-02  0.000E+00  1.547E+02 

  100 2.500E-01 1.703E-01 0.000E+00 2.176E-02  0.000E+00  3.635E+01 

  200 5.000E-01 1.205E-01 0.000E+00 1.692E-02  0.000E+00  2.676E+01 

  300 7.500E-01 9.864E-02 0.000E+00 1.476E-02  0.000E+00  2.253E+01 

  400 1.000E+00 8.570E-02 0.000E+00 1.346E-02  0.000E+00  2.003E+01 

  500 1.250E+00 7.691E-02 0.000E+00 1.258E-02  0.000E+00  1.833E+01 

  600 1.500E+00 7.045E-02 0.000E+00 1.193E-02  0.000E+00  1.709E+01 

  700 1.782E+00 6.493E-02 0.000E+00 1.137E-02  0.000E+00  1.602E+01 

  800 3.282E+00 4.903E-02 0.000E+00 9.739E-03  0.000E+00  1.297E+01 

  900 1.412E+01 2.645E-02 0.000E+00 7.643E-03  0.000E+00  9.246E+00 

 1000 3.908E+01 1.918E-02 0.000E+00 7.389E-03  0.000E+00  8.596E+00 
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 1100 6.400E+01 1.747E-02 0.000E+00 7.387E-03  0.000E+00  8.440E+00 

 1200 8.883E+01 1.672E-02 0.000E+00 7.387E-03  0.000E+00  8.303E+00 

 1300 1.138E+02 1.629E-02 0.000E+00 7.387E-03  0.000E+00  8.210E+00 

 1400 1.386E+02 1.602E-02 0.000E+00 7.387E-03  0.000E+00  8.081E+00 

 1500 1.635E+02 1.583E-02 0.000E+00 7.387E-03  0.000E+00  7.940E+00 

 1600 1.883E+02 1.569E-02 0.000E+00 7.387E-03  0.000E+00  7.663E+00 

 1660 2.033E+02 1.562E-02 0.000E+00 7.387E-03  0.000E+00  7.315E+00 

In the output we see the local friction coefficient cf2(E) approaching a constant value when x/Dh is about 
15. If we were using cf,app as a measure of hydrodynamically fully developed flow, this number would be 
about four times larger. We also see nu(E) becomes nearly constant for x/Dh of about 15. 

The figure below is a comparison of the calculated values for Ts(x) and Tm(x) with TEXSTAN to further 
verify the assumption of Nu=constant. 
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8-7 

A lubricating oil flows through a long 0.6-cm (inner-diameter) tube at a mean velocity of 6 m/s. If the 
tube is effectively insulated, calculate and plot the temperature distribution, resulting from frictional 
heating, in terms of the pertinent parameters. Let the fluid properties be those of a typical engine oil 
at 100°C. Start with Eq. (4-28). 

For this problem we will assume the properties are constant. This may not be a good assumption, 
depending on the heat rise due to the viscous dissipation. The Reynolds number for this flow is 1758.  We 
will assume the flow is hydrodynamically fully developed, because the difference between 
hydrodynamically and thermally fully developed flow is proportional to the Pr and for oil at 100°C the 
Pr=280. Neglect mass transfer and pressure work in Eq, (4-28) and it reduces to 

 
21i Tu rk u

x r r r r
ρ µ∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂  





 

For oil, di=cdT, and the equation reduces to 

 
21T Tuc rk u

x r r r r
ρ µ∂ ∂ ∂ ∂  = − +  ∂ ∂ ∂ ∂  





 

The boundary conditions on this problem are a zero temperature gradient at the pipe centerline and a 
specified temperature gradient (in this case zero, adiabatic) at the pipe surface. This is a special case of the 
constant heat rate problem, and from Eq. (8-9) mT x dT dx∂ ∂ = , and the differential equation for constant 
properties reduces to 

 
21 PrmdTu Tr

dx r r r c rα
∂ ∂ ∂  = − +  ∂ ∂ ∂  
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The boundary conditions for the adiabatic pipe are a constant (zero) heat rate at rs and symmetry at the 
centerline, leading to a Neumann-Neumann boundary problem (specified temperature gradients at both the 
centerline and at the surface). Therefore, we can not find the two constants of integration when we separate 
variables and integrate. So, we substitute for one of the Neumann conditions with it’s Dirichlet counterpart 
(in this case the surface temperature) and we bring in the surface heat flux (in this case there is no surface 
heat flux, but rather the fluid heating comes from the viscous dissipation) through the energy balance when 
we determine mdT dx . Thus the boundary conditions are the same as those following Eq. (8-10) 
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For the circular pipe with the hydrodynamically fully developed velocity profile is Eq. (7-8). Substitute this 
into the differential equation (including the viscous dissipation term), separate variables, integrate, and 
apply the boundary conditions to obtain the temperature profile  
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Now solve for Tm using Eq. (8-12), 
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Compare this temperature profile to Eq. (8-13) for the circular pipe with constant heat rate, but without 
viscous dissipation. Now develop an equation for the mean temperature gradient by performing an energy 
balance similar to Fig. 8-3. There will be no surface heat transfer, but rather a volumetric heating due to the 
viscous dissipation 
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and the mean temperature gradient becomes 
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And from the mean temperature equation 
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For the temperature profile 
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The profile is a fourth-order inflecting curve with zero gradients at r=0 and r=rs, and the magnitude grows 
with x because Ts=Ts(x). The wall will be  hotter than the core. As the viscous heating increases the overall 
temperature field, the strong variation of the thermal properties will affect the solution. 
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8-8 

Consider a journal bearing using the oil of Prob. 8-7. Let the journal diameter be 7.6 cm, the 
clearance be 0.025 cm, and the rpm be 3600. Neglecting end effects, and assuming no flow of oil into 
or out of the system, calculate the temperature distribution in the oil film on the assumption that 
there is no heat transfer into the journal (the inner surface) but that the bearing (the outer surface) 
is maintained at 80°C. Calculate the rate of heat transfer per square meter of bearing surface. 
Assume no eccentricity, that is, no load on the bearing. How much power is needed to rotate the 
journal if the bearing is 10 cm long? 

This analysis can be carried out in either axisymmetric coordinates or in Cartesian coordinates, and the 
answers will be the same, because the journal clearance is such that radial effects on mass flow rate are 
negligible.  For simplicity we choose the Cartesian analysis.  The journal forms the inner surface, and it is 
modeled as an adiabatic surface that rotates at an angular velocity ω such that its velocity is V irω= .  The 
bearing forms the outer surface, and it has a constant surface temperature. Define the coordinate y to 
originate from the inner journal surface, and the clearance distance is H. This problem reduces to a couette-
flow problem, and for constant properties, the velocity profile will be linear.  The governing equation is 
Eq. (4-10) 

 u u dPu u
x y dx y y

ρ ρ µ∂ ∂ ∂  + = − +  
∂

∂ ∂ ∂  
v

∂
 

Based on the couette-flow model (no x-convection, no radial velocity component, and no pressure gradient) 
the governing equation and boundary conditions are 
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which integrates to give a velocity profile which is linear 

 yu V
H

=  

where V r 14.326 m/siω= = . The governing energy equation for constant properties is Eq. (4-38) 
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Based on the couette-flow model the governing equation and boundary conditions are 
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Solving the energy equation gives the fluid temperature profile 
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From this profile the film temperature can be determined 
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To evaluate the properties at the film temperature, there needs to be an interpolation of the properties and it 
is iterative. Hint: the lowest temperature will be on the bearing surface, specified as 80ºC, and the journal 
surface (which is adiabatic) will be hotter.  So linearly interpolate the entries in Table A-14 for oil between 
75ºC and 100ºC and the film temperature converges to be 89.8ºC (363K). Now compute the heat flux at the 
bearing surface using Fourier’s law, 
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Now, carry out a First-Law energy balance on the control volume of the fluid in the clearance. The shaft 
work does work on the fluid, which causes viscous dissipation to overcome friction, which in turn 
generates heat, and that heat must be removed at the outer surface to maintain steady state couette flow (no 
heat rise in the x-direction, where x is the direction of rotation). 
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Note, as a check, the power input to the fluid can also be computed as 
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8-9 

Consider uniform-temperature laminar flow in a circular tube with a fully developed velocity 
profile. At some point x+ = 0 the surface temperature is raised above the fluid temperature by an 
amount a. It remains constant at this value until a point 1x x+ +=  is reached, where the surface 
temperature is again raised an amount b, remaining constant thereafter. Develop a general 
expression for the surface heat flux, and for the mean fluid temperature θm, in the part of the tube 
following the second step in surface temperature. Use variable-surface-temperature theory. 

This problem concerns the section in the chapter about the effect of axial variation of the surface 
temperature with hydrodynamically fully developed flow using linear superposition theory. The surface 
heat flux is given by Eq. (8-44) 
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where the theta function is Eq. (8-45) 
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  Because this problem only has the two steps, which are the discontinuities, Eq. (8-44) reduces to 
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To find the mixed mean temperature carry out an energy balance on a control volume similar to that 
described following Eq. (8-46) 
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Now, insert the heat flux equation and integrate, 

 ( ) 2 2
12 2 2

0 0 0

8 exp ( ) 8 8 exp ( ) 8n n n
m e n n

n n nn n n

G G GT x T a x a b x x bλ λ 2
0

n

n n

G
λ λ λ

∞ ∞ ∞
+ + + +

= = =

 − = − − + − − − + ∑ ∑ ∑ λ

∞

=
∑  

We now focus on the second and fourth terms of this equation. For a step temperature change, the 
nondimensional temperature profile for the mean temperature is given by Eq. (8-38), 
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We use this relationship to reduce the second and fourth terms, and the equation for the mean temperature 
reduces to 
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Finally, formulate the nondimensional temperature profile 
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We also note that the Nusselt number can be easily formed from its definition. 

 
( )

( ) ( )
Nu h sh

x
s e m

D q xhD
k k T T xθ

+

+

′′−
= =

−
 

68



Solutions Manual - Chapter 8 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

8-10 

Consider laminar flow in a circular tube with a fully developed velocity profile. Let heat be added at 
a constant rate along the tube from x+ = 0 to x+ = 0.10. Thereafter let the tube surface be adiabatic. 
Calculate and plot the tube surface temperature as a function of x+. TEXSTAN can be used to 
confirm this analysis. 

This problem concerns the section in the chapter about the effect of axial variation of the surface heat flux 
with hydrodynamically fully developed flow using linear superposition theory. The surface temperature is 
given by Eq. (8-50) along with Eq. (8-51) and Table 8-5 for the infinite-series coefficients. 

For the equation for the surface temperature becomes 0 x+≤ ≤ 0.1
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To carry out the integration, use the transformation ( ) andu x du dξ ξ+= − = − , along with limit 

transformations 0 and 0x u uξ ξ+ += → = = → = x , 
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For x+>0.1, and the equation for the surface temperature becomes 0sq′′ =
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To obtain the mean temperature along the tube, use Eq. (8-52), 
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Note the mean temperature is fixed for x+>0.1. To evaluate the series you must use at least 20 terms. Table 
8-5 contains the first 5 terms, so use the algorithm at the bottom of the table to generate the 6th through the 
20th terms.  The reason for the large number of terms is the series is simulating a step heat flux (similar to 
a square wave), rather than a slowly-changing heat flux. 

To verify the analysis the TEXSTAN data file for this problem choose the data set 8.10.dat.txt The data set 
construction is based on the s35.dat.txt file for thermal entry length flow in a pipe with a specified surface 
heat flux (initial profiles: hydrodynamically fully-developed velocity and flat temperature). Note that kout 
has been changed to =4. 

To set up the input data file, you will need to compute the region of heating  followed by the 
adiabatic region of the tube,  The variables that were changed in s35.dat.txt to create 8.10.dat.txt 
include rhoc, viscoc, gam/cp, prc(1), the set of six x(m) and aux1(m) values, the six fj(E,1,m) values, xend, 
reyn, tref and twall. Note: feel free to adjust the selected x(m) values. The x(m) values in the data set are 
intended to create more integration points in the initial part of the developing thermal boundary layer 
region based on the logarithmic behavior of the parameter

0 x+≤ ≤ 0.1
0.3x+ =

( ) Rehx D . 

Here is an abbreviated listing of the  8.10.ftn84.txt output file using k5=20 print spacing 

        intg  x/dh           htc         qflux       tm          ts 

           5  2.5000001E-02  1.4875E+01  4.0000E+01  3.0002E+02  3.0270E+02 

          20  1.0000002E-01  9.1371E+00  4.0000E+01  3.0006E+02  3.0444E+02 

          40  2.0000005E-01  7.2029E+00  4.0000E+01  3.0012E+02  3.0567E+02 

          60  3.0000006E-01  6.2744E+00  4.0000E+01  3.0018E+02  3.0656E+02 

          80  3.9999983E-01  5.6923E+00  4.0000E+01  3.0024E+02  3.0727E+02 

         100  5.0000000E-01  5.2801E+00  4.0000E+01  3.0030E+02  3.0788E+02 

         120  6.2148713E-01  4.9091E+00  4.0000E+01  3.0037E+02  3.0852E+02 

         140  8.0200949E-01  4.5099E+00  4.0000E+01  3.0048E+02  3.0935E+02 

         160  1.0702576E+00  4.1010E+00  4.0000E+01  3.0064E+02  3.1040E+02 

         180  1.4688589E+00  3.6996E+00  4.0000E+01  3.0088E+02  3.1169E+02 

         200  2.0611587E+00  3.3201E+00  4.0000E+01  3.0124E+02  3.1329E+02 

         220  2.9412879E+00  2.9721E+00  4.0000E+01  3.0177E+02  3.1523E+02 

         240  4.2491096E+00  2.6613E+00  4.0000E+01  3.0255E+02  3.1758E+02 

         260  6.1631569E+00  2.3937E+00  4.0000E+01  3.0370E+02  3.2042E+02 
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         280  9.0503060E+00  2.1628E+00  4.0000E+01  3.0544E+02  3.2393E+02 

         300  1.2982654E+01  1.9859E+00  4.0000E+01  3.0780E+02  3.2795E+02 

         320  1.8000862E+01  1.8581E+00  4.0000E+01  3.1082E+02  3.3235E+02 

         340  2.4404760E+01  1.7668E+00  4.0000E+01  3.1467E+02  3.3731E+02 

         360  3.2577007E+01  1.7049E+00  4.0000E+01  3.1958E+02  3.4304E+02 

         380  3.5781336E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3964E+02 

         400  3.5935409E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3835E+02 

         420  3.6164353E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3711E+02 

         440  3.6504570E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3580E+02 

         460  3.7010076E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3440E+02 

         480  3.7766605E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3289E+02 

         500  3.8882826E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.3127E+02 

         520  4.0541463E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2957E+02 

         540  4.3006092E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2781E+02 

         560  4.6291759E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2622E+02 

         580  4.9962469E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2498E+02 

         600  5.4049830E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2402E+02 

         620  5.8601126E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2327E+02 

         640  6.3669020E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2269E+02 

         660  6.9312113E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2225E+02 

         680  7.5595761E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2194E+02 

         700  8.2592630E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2172E+02 

         720  9.0383681E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2158E+02 

         740  9.9059068E+01  0.0000E+00  0.0000E+00  3.2138E+02  3.2149E+02 

         756  1.0671433E+02  0.0000E+00  0.0000E+00  3.2138E+02  3.2144E+02 

The figure below is a comparison of the calculated values for Ts(x) and Tm(x) with TEXSTAN to further 
verify the assumption of Nu=constant. 
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In the figure we see the slight underprediction of the surface temperature with the analytical method using 
20 terms in the series. Note that with 5 terms it is quite underpredicted, and perhaps with more terms it 
would come closer to the TEXSTAN calculations. We expect complete agreement between TEXSTAN and 
analysis for the mean temperature because this both procedures incorporate the First Law energy balance 
into their respective formulations. 
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8-11 

Consider laminar flow in a circular tube with a fully developed velocity profile. Let the tube surface 
be alternately heated at a constant rate per unit of length and adiabatic, with each change taking 
place after intervals of x+ of 0.020. How large must x+ be for the effects of the original entry length to 
damp out? How does the Nusselt number vary along the heated segments after the effects of the 
original entry length have damped out? TEXSTAN can be used to confirm this analysis. 

The analytic solution to this problem involves the same procedure as 8-10 except that the procedure is 
repeated at x+ intervals of 0.02. For the mean temperature, the equation for 3 intervals, 2x ξ+ > , will be 
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and the surface temperature for the same 3 intervals, 2x ξ+ > , 
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Carrying out the integrations yields 
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Derivation of the terms for the additional heating intervals is straightforward, and the extra terms look 
similar to those for the 3-term (heating-adiabatic-heating) interval. A local Nusselt number is readily 
evaluated from its definition 
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To verify the analysis the TEXSTAN data file for this problem choose the data set 8.11.dat.txt The data set 
construction is based on the s35.dat.txt file for thermal entry length flow in a pipe with a specified surface 
heat flux (initial profiles: hydrodynamically fully-developed velocity and flat temperature). Note that kout 
has been changed to =4. 

Note a slight change to the input instructions. Let the Reynolds number be 100, and choose the fluid to be 
water at an inlet temperature of 20 ºC and a heat flux of 2000 W/m2 (recall this is water which can take a 
high heat flux). For the geometry, choose a tube radius of 1 cm. The tube heating is periodic, beginning at 
x=0 for a distance ∆ = , followed by an adiabatic wall for the next ∆ = , and then heating, 
and so forth. The distance  translates into a heating length of 

0.02x+

x
0.02x+

0.14x0.02+∆ =  m∆ = .  The problem 
statement suggests the tube be a length equal to , providing 15 segments, with 8 of these segments 
heating, and an overall tube length of 2.1 m. 

0.3x+ =

Setting up the boundary conditions for a variable heat flux problem is described in the user’s manual for all 
internal laminar flows, s30.man, which should be helpful to the new user. Because of the variable heating, 
it is easiest to set all aux1(m) values to a uniform integration stepsize of 0.05, which makes TEXSTAN 
integrate in the flow direction at intervals of 5% of the tube radius.  For a tube radius of 1 cm, this will 
cause TEXSTAN to have about 280 integration steps over each ∆ = . Here is a partial listing of 
how the variable heat flux boundary condition has been set up in the 8.11.dat.txt data set. 

0.02x+

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0000000    0.0100    0.0500    0.0000    0.0000 

      0.1400000    0.0100    0.0500    0.0000    0.0000 

      0.1410000    0.0100    0.0500    0.0000    0.0000 

      0.2800000    0.0100    0.0500    0.0000    0.0000 

      0.2810000    0.0100    0.0500    0.0000    0.0000 

and the listing of the boundary condition table that go with these x(m) locations is 

###      ubI(m)   am(I,m) fj(I,1,m) fj(I,2,m) fj(I,3,m) fj(I,4,m) fj(I,5,m) 

###      ubE(m)   am(E,m) fj(E,1,m) fj(E,2,m) fj(E,3,m) fj(E,4,m) fj(E,5,m) 

           0.00       0.0     0.000 

           0.00     0.000    2000.0 

           0.00       0.0     0.000 

           0.00     0.000    2000.0 

           0.00       0.0     0.000 

           0.00     0.000       0.0 

           0.00       0.0     0.000 

           0.00     0.000       0.0 

           0.00       0.0     0.000 

           0.00     0.000    2000.0 

From these listings you can see the heat flux (2000 W/m2) is applied over the interval , and 
at x=0.141 m the heat flux is reduced to zero over the interval 0.14

0 0.14x≤ ≤  m
1 0.28 mx≤ ≤ , and the periodic heating 

is resumed at x=0.281 m. Supplying TEXSTAN with a variable boundary condition is quite easy.  

The figures below show the TEXSTAN-calculated values for Ts(x), Tm(x) and Nu(x) for this periodic 
heating condition. 
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We see from the Nu(x) graph that the periodic heating seems to become “steady-periodic” by about the 3rd 
or 4th heating segment. A value of x/Dh=50 translates into an x+ = 0.14, and the heat transfer designer 
could take an average Nu number for this interval, about 7, compared to 4.36 for a continuously heated 
tube. Periodic heating can be a very effective means of achieving a high heat transfer coefficient. However, 
the overall temperature rise is still governed by the energy balance. 

The graph shown below compares the mean and surface temperatures predicted by TEXSTAN with the 
analysis for 3 intervals using 20 terms in the series (note more terms will considerably improve the 
comparison). 
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8-12 

Evaluate and plot both local and mean Nusselt numbers for fully developed laminar flow in a square 
tube. At what value of x+ does the local Nusselt number come within two percent of the asymptotic 
value? 

Note the problem statement should include the requirement of a constant surface temperature boundary 
condition.  The analysis uses Eq. (8-39) for Nux and Eq. (8-40) for Num along with Table 8-8. 

x+ Nux Num 

0.01 4.55 9.00

0.02 4.10 6.66

0.05 3.42 4.88

0.1 3.08 4.05

0.2 2.99 3.53

5 2.98 3.00

Nux comes within 2% of its asymptotic value at about x+ = 0.12. 
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8-13 

Consider the problem posed by Eq. (8-53). Let β = 6 and let the tube be circular. Evaluate and plot 
the local Nusselt number as a function of x/L. Explain physically the reasons for the behavior noted. 

Equation (8-53) describes the sinusoidal axial variation in surface heat flux over a tube of length L, 

 
,max

sins

s

q x
q L

π′′
=

′′
 

Eq. (8-54) is the equation for the mean temperature, 

 ,max4
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m e
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T T x
k

β
β

+′′
− = −  

Combining this equation with Eq. (8-55) for the surface temperature gives 
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where 
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The variation of Nux is given by formulating its definition, 

 ( ) ( ) ( )
( )

( ) ( )
,max2 sin2Nu s ss s

s m s m

r k q xr q kx
T x T x T x T x

β +
+

+ + + +

′′′′
= =

− −
 

To plot the profiles for this analysis choose some physical variables. Let the Reynolds number be 100, and 
choose the fluid to be water at an inlet temperature of 20 ºC with a maximum heat flux of 2000 W/m2 . For 
the geometry, choose a tube radius of 1 cm. The tube heating is sinusoidal as described in the problem 
statement , beginning at x=0, with an overall tube length of 2.1 m. Beta is 6. The temperature and Nusselt 
number plots are 
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In the plot of Nu we see a mostly constant value, suggesting Nu=4.36 would be ok for most of the tube, but 
it would significantly underestimate the surface temperature at the end of the tube. 
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8-14 

Consider fully developed laminar flow in a circular tube in which the heat flux varies axially 
according to the relation 

 sins
xq a b

L
π′′ = +  

where L is the total length of the tube, and a and b are constants (this is an approximation for a 
nuclear reactor cooling tube). Derive a general expression for the mean fluid temperature Tm as a 
function of x+ and the tube surface temperature Ts as a function of x, using variable-heat-flux theory 
[that is, an expression corresponding to Eq. (8-55) for the simple sinusoidal variation of heat flux]. 

For this problem the surface temperature is given by Eq. (8-50) along with Eq. (8-51) 
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The equation can be broken into four terms 
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Before we evaluate this equation, consider the equation for the mean temperature,  
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So the first integral of the surface temperature equation is related to the mean temperature, and it can be 
substituted directly. For the second integral you can use the transformation ( ) andu x du dξ ξ+= − = − , 

along with limit transformations 0 and 0x u uξ ξ+ += → = = → = x ,  
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The third integral reduces to 
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Integral 4 can be found in standard integration tables: ( ) ( ) ( )2
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exp sin sin cos
1
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cx xdx c x x

c
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Evaluation of integral 4 gives 
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Evaluation of I4 and substitution into I3 gives 
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Finally, the surface temperature expression becomes 
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This equation compares with Eq. (8-55) in the textbook when a=0 and when the Tm expression is replaced 
using the mean temperature equation. 
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8-15 

Consider fully developed laminar flow in a circular-tube annulus with r* = 0.50. Let there be heat 
transfer from the inner tube only (outer tube insulated), and let the heat flux on the inner tube vary 
as in Prob. 8-14. Describe in detail a computing procedure for evaluating both the inner- and outer-
tube surface temperatures as functions of length along the tube. 

The heat flux distribution is based on the sine-function variation of problem 8-14, 

 sins
xq a b

L
π′′ = +  

where 
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For this problem the inner-surface heat flux becomes 

 ( ) siniq x a b xβ+ +′′ = +  

Eqs.(8-56) and (8-57) provide the basis for the procedure, and 0oq′′ = in both equations. 
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and for the mean temperature, use an energy balance, 

 ( )
0

1( )
x

m e i oT x T q q dA
AVcρ

′′ ′′− = +∫ s  

and convert x to ( ) ( ) ( ) ( )22 Re Pr 2
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The integrations must be carried out numerically, using the basic data from Table 8-11. Note that at each 
station x+, integration must be carried out from ξ = 0 to ξ = x+. Note that, for example, if you are evaluating 
the surface temperatures at x

+
 = 1.0 and in the numerical integration scheme ξ = 0.8, then Nuii(x+ - ξ) = 

Nuii(0.2) = 6.19 for r* = 0.5 at that value of ξ. 
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8-16 

Helium flows through a thin-walled 1.25-cm-diameter circular tube at a mean velocity of 6 m/s under 
the following conditions at a particular point along the tube: 

345 kPa, 200 CmP T= = °  

The tube is exposed on one side to an infinite plane that emits black-body radiation at 1100°C, while 
the remainder of the surrounding space is effectively nonradiating. Assuming that (1) the tube wall is 
sufficiently thin that peripheral conduction in the wall is negligible and (2) the outer surface is a 
black body, and evaluating radiation from the tube as if the entire tube were at a uniform 
temperature of 300°C (re-radiation will be relatively small and an exact solution would require 
iteration), calculate the net heat flux to the tube and estimate the temperature distribution in the 
wall around the tube. Assume that the heat-transfer resistance of the wall is negligible in the radial 
direction and that fluid properties are constant. 

This problem is designed as an application of Eq. (8-23) and Fig. 8-5 when tube-surface heating has a 
cosine variation of the form 

 ( ) ( )1 coss aq q bφ φ′′ ′′= +  

where  is the average heating value and b represents the maximum variation. To show that plane 
radiation incident on a circular tube is a cosine function, compute the radiation view factor (or shape factor 
or configuration factor) between the plane and the cylinder, and you will show it contains a cosine. 

aq′′

For reference, http://www.me.utexas.edu/~howell/tablecon.html. 

The Nusselt number variation is given by Eq. (8-23) 

 11 1
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b
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+
 

The source of plane radiation will produce a heat flux into the tube that varies around the periphery. The 
re-radiation will produce a heat flux from the tube that subtracts slightly from the inflow on one side, and 
results in net radiation from the tube on the other. The tube-wall temperature is evaluated from 
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8-17 

Consider steady flow in a tube with a fully developed velocity profile at the tube entrance. Let the 
fluid temperature at the tube entrance be uniform at Te. Then let the tube surface temperature vary 
axially according to the relation 

 [exp ( ) 1]s e
aT T bx
b

+− = −  

where a and b are arbitrary constants. Derive an expression for the local Nusselt number as a 
function of x+. Show that all members of this family of solutions lead to Nusselt numbers that are 
independent of x+ at sufficiently large values of x+. What are the implications of this result? Discuss 
how the constant b affects the asymptotic Nusselt number. 

This problem is solved by substituting the proposed expression for Ts into Eq.(8-44) and carrying out the 
indicated integration (the summation term in (8-44) is not used because there are no step-temperature 
changes). The (r x )θ ξ+

+ −   is given by Eq. (8-45). 
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Equation (8-52) is the energy balance for the mean temperature, and and substitution of the heat flux 
expression gives 
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Now formulate the Nusselt number 
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and substitute for the surface heat flux, Ts and Tm to give 
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As , the Nusselt number expression reduces to x+ → ∞
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A value of removes the x( ) 5bx+ > + dependency. Let b 2
nλ  for all n, then 
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8n nG λ =∑ , and the final approximation for small b is 
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8-18 

Consider fully developed laminar flow with constant properties in a circular tube. Let there be heat 
transfer to or from the fluid at a constant rate per unit of tube length. Determine the Nusselt number 
if the effect of frictional heating (viscous mechanical energy dissipation) is included in the analysis. 
How does frictional heating affect the Nusselt number? What are the significant new parameters? 
Consider some numerical examples and discuss the results. 

For the tube geometry r is measured from the centerline of the inner pipe and rs is the radius of the tube. 
Now consider the energy equation (8-1). This equation assumes no viscous dissipation, and it assumes 
constant properties for an ideal gas and steady state. Add in a viscous dissipation term similar to Eq. (4-
32). Let the temperature profile vary with x and r only. The equation becomes 

 r
T T k Tcu c r
x r r r r

ρ ρ µ∂ ∂ ∂ ∂ + = + ∂ ∂ ∂ ∂ 
v φ  

With the assumption of a hydrodynamically fully-developed flow, vr=0 and Eq. (7-8) is the velocity profile 
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22 1
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ru V
r

 
= −  

 
 

and with the assumption of a thermally fully-developed temperature profile with constant heat rate, Eq. (8-
8), the energy equation becomes 

 
21 PmdTT V ur

r r r dx c rα
∂ ∂ ∂   = −   ∂ ∂ ∂   

r 



 

The boundary conditions for the pipe are a constant heat rate at rs and thermal profile symmetry (zero 
temperature gradient) at the pipe centerline. Thus the boundary conditions are to that following Eq. (8-10) 
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=
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Note that any time we have a Neumann-Neumann boundary (temperature gradients specified at both 
boundaries), we can not find the two constants of integration when we separate variables and integrate. So, 
we substitute for one of the Neumann conditions with it’s Dirichlet counterpart (in this case the surface 
temperature) and we bring in the heat flux through the energy balance when we determine mdT dx .  

Separate variables and integrate the 2nd-order ordinary differential equation, and apply the boundary 
conditions, 
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Formulate the mean temperature using Eq. (8-5) 
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Now, evaluate the mean temperature gradient by carrying out an energy balance similar to what is depicted 
in Fig. 8-3, including the volumetric heating term, 
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2 8m s s
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dT q r V
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′′ +
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and the mean temperature equation becomes 
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Inserting this into the Nusselt number formulation gives 
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which compares with Eq. (8-25). The variable 64Brλ ′= , where ( ) ( )2
sBr V q Dµ′ ′′= , the Brinkman 

number, a nondimensional parameter for viscous dissipation in surface heat flux problems. 
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8-19 

Consider fully developed laminar flow with constant properties in a circular tube. Let there be heat 
transfer to or from the fluid at a constant rate per unit of tube length. Additionally, let there be heat 
generation within the fluid (perhaps by nuclear reaction) at a rate S, W/m3, that is everywhere the 
same. Determine an expression for the Nusselt number as a function of the pertinent parameters. 
(What are they?) Evaluate the convection conductance in the usual manner, on the basis of heat flux 
through the surface, surface temperature, and fluid mixed mean temperature. 

For the tube geometry r is measured from the centerline of the inner pipe and rs is the radius of the tube. 
Now consider the energy equation (8-1). This equation assumes no viscous dissipation, and it assumes 
constant properties for an ideal gas and steady state. Add in a volumetric source term similar to Eq. (4-32). 
Let the temperature profile vary with x and r only. The equation becomes 

 r
T T k Tcu c r S
x r r r r

ρ ρ∂ ∂ ∂ ∂ + = + ∂ ∂ ∂ ∂ 
v  

With the assumption of a hydrodynamically fully-developed flow, vr=0 and Eq. (7-8) is the velocity profile 
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and with the assumption of a thermally fully-developed temperature profile with constant heat rate, Eq. (8-
8), the energy equation becomes 

 1 mdTT Vr
r r r dx kα
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The boundary conditions for the pipe are a constant heat rate at rs and thermal profile symmetry (zero 
temperature gradient) at the pipe centerline. Thus the boundary conditions are to that following Eq. (8-10) 
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Note that any time we have a Neumann-Neumann boundary (temperature gradients specified at both 
boundaries), we can not find the two constants of integration when we separate variables and integrate. So, 
we substitute for one of the Neumann conditions with it’s Dirichlet counterpart (in this case the surface 
temperature) and we bring in the heat flux through the energy balance when we determine mdT dx .  

Separate variables and integrate the 2nd-order ordinary differential equation, and apply the boundary 
conditions, 
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Formulate the mean temperature using Eq. (8-5) 
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Now, evaluate the mean temperature gradient by carrying out an energy balance similar to what is depicted 
in Fig. 8-3, including the volumetric heating term, 

 2m s s

s

dT q r S
dx cVrρ

′′ +
=  

and the mean temperature equation becomes 
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Inserting this into the Nusselt number formulation gives 
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which compares with Eq. (8-25). 
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8-20 

Consider fully developed laminar flow with constant properties in a circular tube. Let the surface be 
insulated, but let there be heat generation within the fluid at a rate S, W/m3, that is everywhere the 
same. From an examination of the applicable energy differential equation alone, deduce the 
approximate shape of the temperature profile within the fluid, and determine whether the highest 
temperature of the fluid at any axial position occurs at the tube surface or at the tube centerline. 
Explain the reasons for the result. 

This solution is a variation on problem 8-19.  From that solution 
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We can see several trends. The mean temperature continues to increase with x. The lowest temperature is at 
the centerline, and the maximum is at the wall. 
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8-21 

TEXSTAN analysis of laminar thermal entry flow in a circular pipe with constant surface temperature: 
Calculate the flow and construct a plot similar to Fig. 8-10 to show development of the Nusselt 
number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7. Compare 
the results with Table 8-4. Feel free to evaluate the non-dimensional temperature profiles at various 
x+ locations to demonstrate the concept of how the profiles evolve from a flat profile into thermally 
fully developed profile, and to investigate any other attribute of the entry region or thermally fully 
developed region of the flow. Let the Reynolds number be 1000, and pick fluid properties that are 
appropriate to the chosen Prandtl number.  You can choose how to set up the TEXSTAN problem in 
terms of values for the thermal boundary and initial conditions, and for geometrical dimensions and 
mass flow rate for the pipe to provide the required Reynolds number and a pipe length equivalent to 
x+ = 0.3.  Use constant fluid properties and do not consider viscous dissipation. For initial conditions 
let the velocity profile be hydrodynamically fully developed and the temperature profile be flat at 
some value Te. 

The data file for this problem is 8.21.dat.txt The data set construction is based on the s34.dat.txt file for 
thermal entry length flow in a pipe with a specified surface temperature (initial profiles: hydrodynamically 
fully-developed velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.21.dat.txt): 

 
 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00002   15.99 1.997  .00007   33.266 1.007  .968 3.100E+02  1.256E+02 

   50  .00025   15.99 1.997  .00071   14.454 1.032  .969 3.100E+02  5.325E+01 

  100  .00050   15.99 1.997  .00143   11.379 1.050  .969 3.100E+02  4.117E+01 

  150  .00092   15.99 1.996  .00264    9.244 1.076  .970 3.100E+02  3.264E+01 

  200  .00206   15.99 1.996  .00589    7.098 1.134  .972 3.100E+02  2.380E+01 

  250  .00509   15.99 1.995  .01455    5.381 1.258  .974 3.100E+02  1.625E+01 

  300  .01239   15.99 1.995  .03541    4.288 1.502  .979 3.100E+02  1.065E+01 

  350  .02391   15.99 1.995  .06831    3.838 1.701  .984 3.100E+02  7.325E+00 

  400  .04135   16.00 1.994  .11813    3.688 1.779  .989 3.100E+02  4.857E+00 

  450  .06547   16.00 1.994  .18705    3.662 1.794  .993 3.100E+02  2.915E+00 

  500  .09045   16.00 1.994  .25844    3.659 1.795  .996 3.100E+02  1.732E+00 

  529  .10495   16.00 1.994  .29985    3.659 1.795  .997 3.100E+02  1.281E+00 

To compare to Fig. 8-10, plot the Nux data from output file ftn82.dat.txt. 
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8-22 

TEXSTAN analysis of the effects of Prandtl number on laminar thermal entry flow in a circular pipe 
with constant surface temperature:  This is a variation of Prob. 8-21 to show the independence of Pr 
as the thermally fully developed flow condition is met.  For this problem, choose Pr values of 0.01, 
1.0, and 10, and compare the results to Table 8-2.  Follow the TEXSTAN setup described in Prob. 8-
21, but adjust the pipe length such that a thermally fully developed Nusselt number is achieved for 
the selected Pr. 

There are three data files for this, one for each Prandtl number. Each data set is labeled 8.22.dat.txt and “a” 
is for Pr=0.01, “b” is for Pr=1, and “c” is for Pr=10. The data set construction is based on the s34.dat.txt 
file for thermal entry length flow in a pipe with a specified surface temperature (initial profiles: 
hydrodynamically fully-developed velocity and flat temperature). 

The x(m) array has to be adjusted for each Pr value. The thermal entry region correlates logarithmically 
with ( ) ( )2 Re

hh Dx D Pr , so this becomes an easy way of estimating how to create a distribution of x-

locations for varying aux1. Choose the set of points to be ( ) ( )2 Re Pr 0,0.0005, 0.005,0.05
hh Dx D = and 

start aux1(m) at a very low value (=0.01) and in the region 0-0.0005-0.005 increase the nondimensional 
stepsize aux1 to 0.25 and then further increase it to a larger value (=1.0) in the region 0.005-0.05, and then 
aux1 can remain constant out to x+=0.3. 

With the Pr set =1, the x(m) array becomes 

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0000000    0.0350    0.0100    0.0000    0.0000 

      0.0175000    0.0350    0.0100    0.0000    0.0000 

      0.1750000    0.0350    0.2500    0.0000    0.0000 

      1.7500000    0.0350    1.0000    0.0000    0.0000 

     10.5000000    0.0350    1.0000    0.0000    0.0000 

and an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.22b.dat.txt) for Pr=1 is 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00002   15.99 1.997  .00005   37.568 1.005  .968 3.100E+02  9.942E+01 

   50  .00025   15.99 1.997  .00050   16.335 1.025  .969 3.100E+02  4.240E+01 

  100  .00067   15.99 1.997  .00135   11.615 1.048  .969 3.100E+02  2.947E+01 

  150  .00181   15.99 1.996  .00362    8.322 1.095  .971 3.100E+02  2.022E+01 

  200  .00484   15.99 1.996  .00967    6.076 1.191  .973 3.100E+02  1.357E+01 

  250  .01308   15.99 1.995  .02616    4.600 1.404  .977 3.100E+02  8.676E+00 

  300  .03348   15.99 1.994  .06697    3.849 1.696  .984 3.100E+02  5.198E+00 

  350  .05847   16.00 1.994  .11694    3.690 1.778  .989 3.100E+02  3.432E+00 

  400  .08346   16.00 1.994  .16692    3.664 1.792  .992 3.100E+02  2.364E+00 

  450  .10845   16.00 1.994  .21689    3.660 1.794  .995 3.100E+02  1.640E+00 

  500  .13343   16.00 1.994  .26687    3.659 1.795  .996 3.100E+02  1.139E+00 

  533  .14993   16.00 1.994  .29985    3.659 1.795  .997 3.100E+02  8.953E-01 
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We obtain the expected Nu=3.66 and the thermally-fully developed x+ value is within 5% at about x+=0.07. 

With the Pr set =0.01, the x(m) array becomes 

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0000000    0.0350    0.0100    0.0000    0.0000 

      0.0001750    0.0350    0.0100    0.0000    0.0000 

      0.0017500    0.0350    0.2500    0.0000    0.0000 

      0.0175000    0.0350    1.0000    0.0000    0.0000 

      0.1050000    0.0350    1.0000    0.0000    0.0000 

and an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.22a.dat.txt) for Pr=0.01 (note the kspace interval significantly reduced from the Pr=1 case) is 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00002   15.99 1.997  .00450    8.166 1.108  .971 3.100E+02  1.962E+03 

   10  .00004   15.99 1.997  .00900    6.369 1.178  .973 3.100E+02  1.438E+03 

   20  .00009   15.99 1.997  .01899    5.051 1.314  .975 3.100E+02  1.022E+03 

   30  .00014   15.99 1.997  .02899    4.515 1.432  .978 3.100E+02  8.315E+02 

   40  .00019   15.99 1.997  .03898    4.221 1.529  .980 3.100E+02  7.129E+02 

   50  .00025   15.99 1.997  .04998    4.025 1.611  .981 3.100E+02  6.214E+02 

   60  .00032   15.99 1.997  .06332    3.882 1.679  .983 3.100E+02  5.398E+02 

   70  .00040   15.99 1.997  .07958    3.783 1.729  .985 3.100E+02  4.649E+02 

   80  .00050   15.99 1.997  .09940    3.720 1.762  .987 3.100E+02  3.945E+02 

   90  .00062   15.99 1.997  .12357    3.685 1.781  .989 3.100E+02  3.273E+02 

  100  .00077   15.99 1.997  .15303    3.668 1.790  .991 3.100E+02  2.630E+02 

  110  .00094   15.99 1.996  .18893    3.661 1.793  .993 3.100E+02  2.025E+02 

  120  .00116   15.99 1.996  .23271    3.659 1.795  .995 3.100E+02  1.476E+02 

  130  .00143   15.99 1.996  .28606    3.659 1.795  .997 3.100E+02  1.007E+02 

  133  .00150   15.99 1.996  .29985    3.658 1.795  .997 3.100E+02  9.117E+01 

We again obtain the expected Nu=3.66 and the thermally-fully developed x+ value is within 5% at about 
x+=0.07. 

With the Pr set =10, the x(m) array becomes 

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0000000    0.0350    0.0100    0.0000    0.0000 

      0.1750000    0.0350    0.0100    0.0000    0.0000 

      1.7500000    0.0350    0.2500    0.0000    0.0000 

     17.5000000    0.0350    1.0000    0.0000    0.0000 

    105.0000000    0.0350    1.0000    0.0000    0.0000 

and an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.22c.dat.txt) for Pr=10 (note the kspace interval significantly increased from the Pr=1 case) is 
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 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00002   15.99 1.997  .00000   82.001 1.001  .968 3.100E+02  2.179E+01 

  400  .00200   15.99 1.996  .00040   17.563 1.022  .968 3.100E+02  4.574E+00 

  800  .00618   15.99 1.995  .00124   11.926 1.046  .969 3.100E+02  3.034E+00 

 1200  .03784   16.00 1.994  .00757    6.544 1.160  .972 3.100E+02  1.501E+00 

 1600  .12096   16.00 1.994  .02419    4.680 1.382  .977 3.100E+02  8.985E-01 

 2000  .28086   16.00 1.994  .05617    3.934 1.653  .982 3.100E+02  5.769E-01 

 2400  .48076   16.00 1.994  .09615    3.721 1.762  .987 3.100E+02  4.027E-01 

 2800  .68066   16.00 1.994  .13613    3.673 1.787  .990 3.100E+02  2.960E-01 

 3200  .88056   16.00 1.994  .17611    3.662 1.793  .993 3.100E+02  2.201E-01 

 3600 1.08046   16.00 1.994  .21609    3.660 1.794  .995 3.100E+02  1.642E-01 

 4000 1.28036   16.00 1.994  .25607    3.659 1.795  .996 3.100E+02  1.225E-01 

 4400 1.48026   16.00 1.994  .29605     .000 1.795  .997 3.100E+02  9.145E-02 

 4438 1.49925   16.00 1.994  .29985     .000 1.795  .997 3.100E+02  8.894E-02 

We again obtain the expected Nu=3.66 and the thermally-fully developed x+ value is within 5% at about 
x+=0.07. Note the Nu values are not calculated as the heat transfer approaches zero. The fluid temperature 
has reached the surface temperature, equivalent to a 100% effectiveness heat exchanger. 

The three results are plotted to show how x+ correlates the thermal entry length, independent of Pr, for the 
same ReDh. Note only the data to x+=0.12 has been plotted to show  thermally-fully developed x+ value is 
within 5% at about x+=0.07, and within 2% at about x+=0.10 matching the discussion in the textbook on p. 
103,  
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8-23 

TEXSTAN analysis of laminar thermal entry flow in a circular pipe with constant surface heat flux, 
heating case: Calculate the flow and construct a plot to show development of the Nusselt number 
with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7.  Compare the 
results with Table 8-6.  Follow the TEXSTAN setup described in Prob. 8-21. 

The data file for this problem is 8.23.dat.txt The data set construction is based on the s35.dat.txt file for 
thermal entry length flow in a pipe with a specified surface heat flux (initial profiles: hydrodynamically 
fully-developed velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.23.dat.txt): 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00002   15.99 1.997  .00007   39.544 1.006  .998 3.007E+02  1.000E+01 

   50  .00025   15.99 1.997  .00071   17.747 1.025  .995 3.015E+02  1.000E+01 

  100  .00050   15.99 1.997  .00143   14.038 1.040  .994 3.019E+02  1.000E+01 

  150  .00092   15.99 1.996  .00264   11.448 1.060  .992 3.024E+02  1.000E+01 

  200  .00206   15.99 1.996  .00589    8.830 1.104  .990 3.033E+02  1.000E+01 

  250  .00509   15.99 1.995  .01455    6.718 1.195  .987 3.047E+02  1.000E+01 

  300  .01239   15.99 1.995  .03541    5.343 1.366  .984 3.068E+02  1.000E+01 

  350  .02391   15.99 1.995  .06831    4.724 1.520  .982 3.092E+02  1.000E+01 

  400  .04135   16.00 1.994  .11813    4.460 1.601  .981 3.121E+02  1.000E+01 

  450  .06547   16.00 1.994  .18705    4.381 1.626  .981 3.158E+02  1.000E+01 

  500  .09045   16.00 1.994  .25844    4.368 1.630  .981 3.196E+02  1.000E+01 

  529  .10495   16.00 1.994  .29985    4.366 1.631  .981 3.218E+02  1.000E+01 

Here is the comparison with Table 8-6, using Nux data from output file out.txt with kspace=1 to obtain 
enough entries to avoid interpolation. 

x+ Nux (Table 8-6) Nux (TEXSTAN) 

0 ∞  

0.002 12.00 12.52 

0.004 9.93 10.0 

0.010 7.49 7.50 

0.020 6.14 6.14 

0.040 5.19 5.20 

0.100 4.51 4.52 

∞ 4.36 4.37 
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8-24 

TEXSTAN analysis of laminar thermal entry flow in a parallel planes channel with constant surface 
temperature for both planes:  Calculate the flow and construct a plot to show development of the 
Nusselt number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7.  
Compare the results with the entries for b/a = ∞ in Table 8-9. Feel free to evaluate the 
nondimensional temperature profiles at various x+ locations to demonstrate the concept of how the 
profiles evolve from a flat profile into a thermally fully developed profile, and to investigate any 
other attribute of the entry region or thermally fully developed region of the flow. Let the Reynolds 
number be 1000, and pick fluid properties that are appropriate to the chosen Prandtl number.  You 
can choose how to set up the TEXSTAN problem in terms of values for the thermal boundary and 
initial conditions, and for geometrical dimensions and mass flow rate for the channel to provide the 
required Reynolds number and a channel length equivalent to x+ = 0.3.  Use constant fluid properties 
and do not consider viscous dissipation. For initial conditions let the velocity profile be 
hydrodynamically fully developed and the temperature profile be flat at some value Te.  Because this 
problem has symmetrical thermal boundary conditions, choose the option in TEXSTAN that permits 
the centerline of the parallel planes channel to be a symmetry line. 

The data file for this problem is 8.24.dat.txt The data set construction is based on the s54.dat.txt file for 
thermal entry length flow between parallel planes with a specified surface temperature and thermal 
symmetry (initial profiles: hydrodynamically fully-developed velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.24.dat.txt): 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00001   24.00 1.499  .00004   49.495 1.005  .968 3.100E+02  1.843E+02 

   50  .00012   23.99 1.499  .00035   22.180 1.023  .968 3.100E+02  8.110E+01 

  100  .00025   23.99 1.499  .00070   17.713 1.038  .969 3.100E+02  6.388E+01 

  150  .00037   23.99 1.499  .00105   15.584 1.050  .969 3.100E+02  5.555E+01 

  200  .00050   23.99 1.499  .00141   14.258 1.061  .970 3.100E+02  5.030E+01 

  250  .00068   23.99 1.499  .00190   13.018 1.075  .970 3.100E+02  4.531E+01 

  300  .00102   23.99 1.499  .00286   11.563 1.101  .971 3.100E+02  3.931E+01 

  350  .00168   23.99 1.499  .00472   10.099 1.145  .972 3.100E+02  3.299E+01 

  400  .00296   23.98 1.499  .00834    8.837 1.212  .974 3.100E+02  2.698E+01 

  450  .00544   23.98 1.499  .01531    7.962 1.280  .977 3.100E+02  2.166E+01 

  500  .00901   23.98 1.499  .02534    7.627 1.310  .980 3.100E+02  1.776E+01 

  550  .01340   23.98 1.499  .03770    7.550 1.317  .983 3.100E+02  1.458E+01 

  600  .01881   23.98 1.499  .05291    7.537 1.318  .987 3.100E+02  1.158E+01 

  650  .02547   23.98 1.499  .07164    7.536 1.318  .990 3.100E+02  8.738E+00 

  700  .03366   23.98 1.499  .09469    7.536 1.318  .993 3.100E+02  6.180E+00 

  750  .04375   23.98 1.499  .12308    7.536 1.318  .995 3.100E+02  4.037E+00 

  800  .05574   23.98 1.499  .15679    7.536 1.318  .997 3.100E+02  2.435E+00 

  850  .06824   23.98 1.499  .19195    7.536 1.318  .998 3.100E+02  1.437E+00 

  900  .08073   23.98 1.499  .22710    7.536 1.318  .999 3.100E+02  8.486E-01 

  950  .09323   23.98 1.499  .26226    7.536 1.318  .999 3.100E+02  5.010E-01 
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  977  .09998   23.98 1.499  .28124    7.536 1.318 1.000 3.100E+02  3.769E-01 

Here is the comparison with the b a = ∞ table entry (parallel planes) in Table 8-9, using Nux data from 
output file out.txt with kspace=1 to obtain enough entries to avoid interpolation.. 

x+ Nux (Table 8-9) Nux (TEXSTAN) 

0 ∞  

0.01 8.52 8.51 

0.02 7.75 7.74 

0.05 7.55 7.54 

0.1 7.55 7.54 

0.2 7.55 7.54 

∞ 7.55 7.54 

 

The results are plotted to show how x+ correlates the thermal entry length, Note only the data to x+=0.05 
has been plotted to show  thermally-fully developed x+ value is within 5% at about x+=0.017, and within 
2% at about x+=0.03 matching the discussion in the textbook on p. 103, This value is about one-third of 
what it is for the pipe.  This matches the conclusion in problem 7-10 for the hydrodynamic entry region. As 
with the hydrodynamic problem, it is important to remember that there are two contributions to the total 
pressure drop, surface friction and flow acceleration. The combined effect leads to a longer entry length 
than is measured by the wall friction. 
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8-25 

TEXSTAN analysis of laminar thermal entry flow in a parallel planes channel with constant surface 
heat flux, heating case, for both planes:  Calculate the flow and construct a plot to show development 
of the Nusselt number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 
0.7. Compare the results with the entries for b/a = ∞ in Tables 8-10. Feel free to evaluate the 
nondimensional temperature profiles at various x+ locations to demonstrate the concept of how the 
profiles evolve from a flat profile into thermally fully developed profile, and to investigate any other 
attribute of the entry region or thermally fully developed region of the flow. Follow the TEXSTAN 
setup described in Prob. 8-24. 

The data file for this problem is 8.25.dat.txt The data set construction is based on the s55.dat.txt file for 
thermal entry length flow between parallel planes with a specified surface heat flux and thermal symmetry 
(initial profiles: hydrodynamically fully-developed velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.25.dat.txt): 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00001   24.00 1.499  .00004   58.460 1.004  .998 3.005E+02  1.000E+01 

   50  .00012   23.99 1.499  .00035   26.780 1.019  .997 3.010E+02  1.000E+01 

  100  .00025   23.99 1.499  .00070   21.385 1.030  .996 3.013E+02  1.000E+01 

  150  .00037   23.99 1.499  .00105   18.798 1.040  .995 3.015E+02  1.000E+01 

  200  .00050   23.99 1.499  .00141   17.181 1.048  .995 3.016E+02  1.000E+01 

  250  .00068   23.99 1.499  .00190   15.662 1.060  .994 3.018E+02  1.000E+01 

  300  .00102   23.99 1.499  .00286   13.867 1.079  .994 3.021E+02  1.000E+01 

  350  .00168   23.99 1.499  .00472   12.038 1.113  .993 3.025E+02  1.000E+01 

  400  .00296   23.98 1.499  .00834   10.413 1.167  .992 3.030E+02  1.000E+01 

  450  .00544   23.98 1.499  .01531    9.178 1.229  .990 3.037E+02  1.000E+01 

  500  .00901   23.98 1.499  .02534    8.562 1.266  .990 3.045E+02  1.000E+01 

  550  .01340   23.98 1.499  .03770    8.327 1.280  .989 3.052E+02  1.000E+01 

  600  .01881   23.98 1.499  .05291    8.252 1.284  .989 3.061E+02  1.000E+01 

  650  .02547   23.98 1.499  .07164    8.233 1.285  .989 3.071E+02  1.000E+01 

  700  .03366   23.98 1.499  .09469    8.230 1.286  .989 3.083E+02  1.000E+01 

  750  .04375   23.98 1.499  .12308    8.230 1.286  .990 3.098E+02  1.000E+01 

  800  .05574   23.98 1.499  .15679    8.230 1.286  .990 3.116E+02  1.000E+01 

  850  .06824   23.98 1.499  .19195    8.230 1.286  .990 3.135E+02  1.000E+01 

  900  .08073   23.98 1.499  .22710    8.230 1.286  .990 3.154E+02  1.000E+01 

  950  .09323   23.98 1.499  .26226    8.230 1.286  .990 3.173E+02  1.000E+01 

  977  .09998   23.98 1.499  .28124    8.230 1.286  .990 3.183E+02  1.000E+01 

Here is the comparison with the table entry (parallel planes) in Table 8-10, using Nu* 1r = x data from 
output file out.txt with kspace=1 to obtain enough entries to avoid interpolation. 
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x+ Nux (Table 8-10) Nux (TEXSTAN) 

0 ∞  

0.01   9.99 

0.02 8.80 8.80 

0.05   8.26 

0.1 8.25 8.23 

0.2   8.23 

∞ 8.235 8.23 
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8-26 

TEXSTAN analysis of laminar thermal entry flow in a parallel-plane channel with asymmetrical 
heat flux in which one plane has a constant surface heat flux, heating case, and the other plane has 
an adiabatic surface: Calculate the flow and construct a plot to show development of the Nusselt 
number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7.  Compare 
the results with the Nu = Nuii oo  values for r* = 1.00 in Table 8-11 (note the influence coefficients are 
not used for this problem). Feel free to evaluate the nondimensional temperature profiles at various 
x+ locations to demonstrate the concept of how the profiles evolve from a flat profile into thermally 
fully developed profile, and to investigate any other attribute of the entry region or thermally fully 
developed region of the flow. Let the Reynolds number be 1000, and pick fluid properties that are 
appropriate to the chosen Prandtl number.  You can choose how to set up the TEXSTAN problem in 
terms of values for the thermal boundary and initial conditions, and for geometrical dimensions and 
mass flow rate for the channel to provide the required Reynolds number and a channel length 
equivalent to x+ = 0.3.  Use constant fluid properties and do not consider viscous dissipation. For 
initial conditions let the velocity profile be hydrodynamically fully developed and the temperature 
profile be flat at some value Te.  Because this problem has asymmetrical thermal boundary 
conditions, choose the option in TEXSTAN that permits the calculation from surface to surface of 
the parallel-plane channel. 

The data file for this problem is 8.26.dat.txt The data set construction is based on the s556.dat.txt file for 
thermal entry length flow between parallel planes with a specified surface heat flux on each surface (initial 
profiles: hydrodynamically fully-developed velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.26.dat.txt): 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 2.403E-02 1.199E-02 1.199E-02  5.834E+01  0.000E+00 

   50 1.250E-01 2.402E-02 1.199E-02 1.199E-02  2.653E+01  0.000E+00 

  100 2.500E-01 2.402E-02 1.199E-02 1.199E-02  2.107E+01  0.000E+00 

  150 3.750E-01 2.402E-02 1.199E-02 1.199E-02  1.843E+01  0.000E+00 

  200 5.000E-01 2.401E-02 1.199E-02 1.199E-02  1.678E+01  0.000E+00 

  250 6.761E-01 2.409E-02 1.199E-02 1.199E-02  1.521E+01  0.000E+00 

  300 1.018E+00 2.417E-02 1.199E-02 1.199E-02  1.334E+01  0.000E+00 

  350 1.680E+00 2.423E-02 1.199E-02 1.199E-02  1.139E+01  0.000E+00 

  400 2.964E+00 2.426E-02 1.199E-02 1.199E-02  9.581E+00  0.000E+00 

  450 5.443E+00 2.426E-02 1.199E-02 1.199E-02  8.048E+00  0.000E+00 

  500 9.012E+00 2.419E-02 1.199E-02 1.199E-02  7.055E+00  0.000E+00 

  550 1.341E+01 2.415E-02 1.199E-02 1.199E-02  6.438E+00  0.000E+00 

  600 1.881E+01 2.413E-02 1.199E-02 1.199E-02  6.026E+00  0.000E+00 

  650 2.547E+01 2.412E-02 1.199E-02 1.199E-02  5.750E+00  0.000E+00 

  700 3.367E+01 2.411E-02 1.199E-02 1.199E-02  5.573E+00  0.000E+00 

  750 4.376E+01 2.410E-02 1.199E-02 1.199E-02  5.470E+00  0.000E+00 

  800 5.575E+01 2.408E-02 1.199E-02 1.199E-02  5.418E+00  0.000E+00 

  850 6.825E+01 2.406E-02 1.199E-02 1.199E-02  5.397E+00  0.000E+00 

  900 8.075E+01 2.405E-02 1.199E-02 1.199E-02  5.389E+00  0.000E+00 
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  950 9.325E+01 2.404E-02 1.199E-02 1.199E-02  5.386E+00  0.000E+00 

  977 1.000E+02 2.404E-02 1.199E-02 1.199E-02  5.385E+00  0.000E+00 

Here is the comparison with the * 1r = table entry (parallel planes) in Table 8-11, using Nux data from 
output file ftn81.txt with kspace=1 to obtain enough entries to avoid interpolation. Note you will have to 

x+ Nuii (Table 8-11) Nux (TEXSTAN) 

convert x/Dh to x+ in that output file

 

.  

0 ∞  

2

0.005 11.2 11.2 

0.02 7.49 7.50 

0.1 5.55 5.55 

0.25 5.39 5.39 

∞ 8.385 5.38 

0.0005 23.5 3.5 
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8-27 

TEXSTAN analysis of laminar combined entry flow in a circular pipe with constant surface 
temperature: Calculate the flow and construct a plot similar to Fig. 8-10 to show development of the 
Nusselt number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7.  
Compare the results with Table 8-12. Feel free to evaluate the non-dimensional temperature profiles 
at various x+ locations to demonstrate the concept of how the profiles evolve from a flat profile into 
thermally fully developed profile, and to investigate any other attribute of the entry region or 
thermally fully developed region of the flow. Let the Reynolds number be 1000, and pick fluid 
properties that are appropriate to the chosen Prandtl number.  You can choose how to set up the 
TEXSTAN problem in terms of values for the thermal boundary and initial conditions, and for 
geometrical dimensions and mean velocity for the pipe to provide the required Reynolds number and 
a pipe length equivalent to x+ = 0.3.  Use constant fluid properties and do not consider viscous 
dissipation. For initial conditions let the velocity profile be flat at a value equal to the mean velocity 
and the temperature profile be flat at some value Te. 

The data file for this problem is 8.27.dat.txt The data set construction is based on the s30.dat.txt file for 
combined entry length flow in a pipe with a specified surface temperature (initial profiles: flat velocity and 
flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.27.dat.txt) and Pr=0.7: 

 intg  x/dh/re  cf*re  uclr  xplus     nu    th,cl tm/ts  ts         qflux 

    5  .00003  137.95 1.037  .00007   57.858 1.018  .968 3.100E+02  2.160E+02 

   50  .00025   55.81 1.104  .00071   20.239 1.058  .969 3.100E+02  7.273E+01 

  100  .00050   43.41 1.144  .00143   14.833 1.084  .970 3.100E+02  5.202E+01 

  150  .00092   35.35 1.192  .00264   11.365 1.118  .971 3.100E+02  3.864E+01 

  200  .00206   27.77 1.280  .00589    8.155 1.188  .973 3.100E+02  2.608E+01 

  250  .00510   22.11 1.429  .01456    5.815 1.335  .976 3.100E+02  1.655E+01 

  300  .01240   18.63 1.652  .03543    4.441 1.585  .980 3.100E+02  1.028E+01 

  350  .02392   17.06 1.839  .06835    3.897 1.746  .985 3.100E+02  6.891E+00 

  400  .04137   16.33 1.947  .11819    3.708 1.794  .990 3.100E+02  4.506E+00 

  450  .06550   16.07 1.986  .18714    3.665 1.799  .994 3.100E+02  2.688E+00 

  500  .09050   16.01 1.995  .25857    3.659 1.799  .996 3.100E+02  1.595E+00 

  519  .10000   16.01 1.996  .28571    3.658 1.798  .997 3.100E+02  1.309E+00 

Here is the comparison with the Pr=0.7 entries in Table 8-12, using Nux data from output file out.txt with 
kspace=1 to obtain enough entries to avoid interpolation.. 

 

x+ Nux (Table 8-12) Nux (TEXSTAN) 

0 ∞  

0.001 16.8 17.4 

0.002 12.6 12.8 

0.004 9.6 9.55 
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0.006 8.25 8.07 

0.01 6.8 6.63 

0.02 5.3 5.23 

0.05 4.2 4.11 

∞ 3.66 3.66 
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8-28 

TEXSTAN analysis of laminar combined entry flow in a parallel planes channel with asymmetrical 
heat flux in which one plane has a constant surface heat flux, heating case, and the other plane has 
an adiabatic surface: Calculate the flow and construct a plot to show development of the Nusselt 
number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7.  Compare 
the results with the 11Nu  values for parallel planes in Table 8-13 (note the influence coefficient is not 
used for this problem). Feel free to evaluate the nondimensional temperature profiles at various x+ 
locations to demonstrate the concept of how the profiles evolve from a flat profile into thermally 
fully developed profile, and to investigate any other attribute of the entry region or thermally fully 
developed region of the flow. Let the Reynolds number be 1000, and pick fluid properties that are 
appropriate to the chosen Prandtl number.  You can choose how to set up the TEXSTAN problem in 
terms of values for the thermal boundary and initial conditions, and for geometrical dimensions and 
mass flow rate for the channel to provide the required Reynolds number and a channel length 
equivalent to x+ = 0.3.  Use constant fluid properties and do not consider viscous dissipation. For 
initial conditions let the velocity profile be flat at a value equal to the mean velocity and the 
temperature profile be flat at some value te.  Because this problem has asymmetrical thermal 
boundary conditions, choose the option in TEXSTAN that permits the calculation from surface to 
surface. 

The data file for this problem is 8.28.dat.txt The data set construction is based on the s596.dat.txt file for 
combined entry length flow between parallel planes with a specified surface heat flux on each surface 
(initial profiles: flat velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.28.dat.txt) and Pr=0.7 (note the use of kout=4 because kgeom=6) 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 1.037E+00 9.607E-02 9.607E-02  1.212E+02  0.000E+00 

   50 1.250E-01 3.076E-01 3.816E-02 3.816E-02  3.935E+01  0.000E+00 

  100 2.500E-01 2.171E-01 2.953E-02 2.953E-02  2.859E+01  0.000E+00 

  150 3.750E-01 1.775E-01 2.566E-02 2.566E-02  2.383E+01  0.000E+00 

  200 5.000E-01 1.541E-01 2.334E-02 2.334E-02  2.099E+01  0.000E+00 

  250 6.761E-01 1.332E-01 2.123E-02 2.123E-02  1.842E+01  0.000E+00 

  300 1.018E+00 1.097E-01 1.884E-02 1.884E-02  1.550E+01  0.000E+00 

  350 1.680E+00 8.674E-02 1.653E-02 1.653E-02  1.265E+01  0.000E+00 

  400 2.964E+00 6.706E-02 1.456E-02 1.456E-02  1.018E+01  0.000E+00 

  450 5.443E+00 5.159E-02 1.311E-02 1.311E-02  8.252E+00  0.000E+00 

  500 9.012E+00 4.213E-02 1.237E-02 1.237E-02  7.096E+00  0.000E+00 

  550 1.341E+01 3.659E-02 1.210E-02 1.210E-02  6.432E+00  0.000E+00 

  600 1.881E+01 3.308E-02 1.202E-02 1.202E-02  6.012E+00  0.000E+00 

  650 2.547E+01 3.074E-02 1.200E-02 1.200E-02  5.738E+00  0.000E+00 

  700 3.367E+01 2.912E-02 1.200E-02 1.200E-02  5.565E+00  0.000E+00 

  750 4.376E+01 2.796E-02 1.200E-02 1.200E-02  5.466E+00  0.000E+00 

  800 5.575E+01 2.712E-02 1.200E-02 1.200E-02  5.416E+00  0.000E+00 

  850 6.825E+01 2.655E-02 1.200E-02 1.200E-02  5.396E+00  0.000E+00 

  900 8.075E+01 2.615E-02 1.200E-02 1.200E-02  5.389E+00  0.000E+00 
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  950 9.325E+01 2.586E-02 1.200E-02 1.200E-02  5.386E+00  0.000E+00 

  977 1.000E+02 2.574E-02 1.200E-02 1.200E-02  5.385E+00  0.000E+00 

Here is the comparison with the Pr=0.7 parallel planes entries in Table 8-13, using Nux data from output 
file ftn81.txt with kspace=1 to obtain enough entries to avoid interpolation. Note you will have to convert 

x+ Nux (Table 8-13) Nux (TEXSTAN) 

x/Dh to x+ in that output file. 

 

0 ∞  

0.002 18.5 8.1 1

0.010 9.62 9.59 

0.020 7.68 7.63 

0.10 5.55 5.55 

0.20 5.40 5.39 

∞ 5.39 5.39 
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8-29 

TEXSTAN analysis of laminar combined entry flow in a circular-tube annulus with r* = 0.5 and 
asymmetrical surface heat flux in which one surface has a constant heat flux, heating case, and the 
other surface is adiabatic: Calculate the flow and construct a plot to show development of the 
Nusselt number with x+ = 2(x/Dh)/Re Pr over the range x+ = 0–0.3. Let the Prandtl number be 0.7. 
Test two cases: constant heat flux on the inside surface and the outside surface adiabatic, and then 
the opposite case.  Compare the results with the Nu and Nuii oo entries for r* = 0.5 in Table 8-13 (note 
the influence coefficients are not used for this problem). Feel free to evaluate the nondimensional 
temperature profiles at various x+ locations to demonstrate the concept of how the profiles evolve 
from a flat profile into thermally fully developed profile, and to investigate any other attribute of the 
entry region or thermally fully developed region of the flow. Let the Reynolds number be 1000, and 
pick fluid properties that are appropriate to the chosen Prandtl number.  You can choose how to set 
up the TEXSTAN problem in terms of values for the thermal boundary and initial conditions, and 
for geometrical dimensions and mass flow rate for the channel to provide the required Reynolds 
number, a value of r* = 0.5, and a channel length equivalent to x+ = 0.3.  Use constant fluid 
properties and do not consider viscous dissipation. For initial conditions let the velocity profile be 
flat at a value equal to the mean velocity and the temperature profile be flat at some value Te.  
Because this problem has asymmetrical thermal boundary conditions, choose the option in 
TEXSTAN that permits the calculation from surface to surface. 

The data file for this problem is 8.29.dat.txt The data set construction is based on the s61.dat.txt file for 
combined entry length flow in a r*=0.5 annulus with a specified surface heat flux on each surface (initial 
profiles: flat velocity and flat temperature). 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
8.29.dat.txt) and Pr=0.7 (note the use of kout=4 because kgeom=7) 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 1.037E+00 9.753E-02 9.533E-02  1.223E+02  0.000E+00 

   50 1.250E-01 3.077E-01 3.956E-02 3.745E-02  4.034E+01  0.000E+00 

  100 2.500E-01 2.172E-01 3.093E-02 2.880E-02  2.956E+01  0.000E+00 

  150 3.750E-01 1.776E-01 2.707E-02 2.493E-02  2.478E+01  0.000E+00 

  200 5.000E-01 1.541E-01 2.476E-02 2.260E-02  2.193E+01  0.000E+00 

  250 6.761E-01 1.333E-01 2.267E-02 2.049E-02  1.935E+01  0.000E+00 

  300 1.018E+00 1.097E-01 2.030E-02 1.808E-02  1.642E+01  0.000E+00 

  350 1.680E+00 8.680E-02 1.802E-02 1.574E-02  1.355E+01  0.000E+00 

  400 2.964E+00 6.712E-02 1.612E-02 1.373E-02  1.107E+01  0.000E+00 

  450 5.443E+00 5.165E-02 1.476E-02 1.221E-02  9.119E+00  0.000E+00 

  500 9.012E+00 4.216E-02 1.413E-02 1.141E-02  7.952E+00  0.000E+00 

  550 1.341E+01 3.660E-02 1.391E-02 1.108E-02  7.275E+00  0.000E+00 

  600 1.881E+01 3.305E-02 1.386E-02 1.096E-02  6.841E+00  0.000E+00 

  650 2.547E+01 3.068E-02 1.385E-02 1.093E-02  6.554E+00  0.000E+00 

  700 3.367E+01 2.903E-02 1.385E-02 1.093E-02  6.371E+00  0.000E+00 

  750 4.376E+01 2.785E-02 1.385E-02 1.093E-02  6.266E+00  0.000E+00 

  800 5.575E+01 2.699E-02 1.385E-02 1.093E-02  6.213E+00  0.000E+00 

  850 6.825E+01 2.641E-02 1.385E-02 1.093E-02  6.193E+00  0.000E+00 
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  900 8.075E+01 2.600E-02 1.385E-02 1.093E-02  6.185E+00  0.000E+00 

  950 9.325E+01 2.571E-02 1.385E-02 1.093E-02  6.182E+00  0.000E+00 

  977 1.000E+02 2.558E-02 1.385E-02 1.093E-02  6.181E+00  0.000E+00 

Here is the comparison with the Pr=0.7 annulus with r*=0.5 entries in Table 8-13, using Nux data from 
output file ftn81.txt with kspace=1 to obtain enough entries to avoid interpolation. Note you will have to 
convert x/Dh to x+ in that output file. 

 

x+ Nux (Table 8-13) Nux (TEXSTAN) 

0 ∞  

0.002 19.22 19.1 

0.010 10.48 10.5 

0.020 8.52 8.49 

0.10 6.35 6.35 

0.20 6.19 6.19 

∞ 6.18 6.18 
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8-30 

TEXSTAN analysis of laminar thermal-entry flow in a circular pipe with the effect of axial variation 
of surface temperature, Ts = f(x) from Fig. 8-14 over the distance 0.0 : Let the Reynolds 
number be 1000, and pick fluid properties that are appropriate to an air Prandtl number of 0.7. You 
can choose how to set up the TEXSTAN problem in terms of values for the thermal boundary and 
initial conditions, and for geometrical dimensions and mass flow rate for the pipe to provide the 
required Reynolds number and a pipe length equivalent to x

0.2x+≤ ≤

+ = 0.2.  Use constant fluid properties 
and do not consider viscous dissipation. For initial conditions let the velocity profile be 
hydrodynamically fully developed and the temperature profile be flat at some value Te. Calculate the 
flow and compare the results Fig. 8-14. Discuss the behavior of the various variables in terms of the 
temperature profiles obtained as a part of the computer analysis. 

The data file for this problem is 8.30.dat.txt The data set construction is based on the s34.dat.txt file for 
thermal entry length flow in a pipe with a specified surface temperature (initial profiles: hydrodynamically 
fully-developed velocity and flat temperature). 

The Ts(x) distribution is linear over the interval 0.0  as seen in Fig. 8-14, so a set of 21 x(m) 
points were used at equal intervals of x

0.2x+≤ ≤
+=0.05. The deltax control was handled similarly to problem 8-11,. 

Instead of using deltax in the aux1(m) array, kdx was set =0 and deltax=0.05. A smaller value would 
generate more points. 

Here is an abbreviated listing of the output file ftn84.txt that contains physical heat transfer data. This data 
has been generated using k5=200 to reduce the number of data points for printing here. You will want to 
use a very small number (say k5=5) to generate enough data points to resolve the temperature changes.  

        intg  x/dh           htc         qflux       tm          ts 

           5  2.5000001E-02  1.2641E+01  1.2552E+02  3.0007E+02  3.1000E+02 

         100  7.7025698E-01  3.7150E+00  3.4406E+01  3.0063E+02  3.0989E+02 

         200  3.1681002E+00  2.2932E+00  1.8465E+01  3.0150E+02  3.0955E+02 

         300  5.6500000E+00  1.8854E+00  1.3415E+01  3.0208E+02  3.0919E+02 

         400  8.1499961E+00  1.6622E+00  1.0494E+01  3.0252E+02  3.0884E+02 

         500  1.0650005E+01  1.5096E+00  8.4574E+00  3.0288E+02  3.0848E+02 

         600  1.3149994E+01  1.3905E+00  6.8947E+00  3.0316E+02  3.0812E+02 

         700  1.5650006E+01  1.2881E+00  5.6252E+00  3.0340E+02  3.0776E+02 

         800  1.8149993E+01  1.1925E+00  4.5544E+00  3.0359E+02  3.0741E+02 

         900  2.0650008E+01  1.0960E+00  3.6268E+00  3.0374E+02  3.0705E+02 

        1000  2.3149992E+01  9.9140E-01  2.8071E+00  3.0386E+02  3.0669E+02 

        1100  2.5650008E+01  8.6935E-01  2.0717E+00  3.0395E+02  3.0634E+02 

        1200  2.8149991E+01  7.1593E-01  1.4039E+00  3.0402E+02  3.0598E+02 

        1300  3.0650009E+01  5.0660E-01  7.9171E-01  3.0406E+02  3.0562E+02 

        1400  3.3149991E+01  1.9069E-01  2.2631E-01  3.0408E+02  3.0526E+02 

        1500  3.5650009E+01 -3.5974E-01 -2.9902E-01  3.0408E+02  3.0491E+02 

        1600  3.8149995E+01 -1.5957E+00 -7.8942E-01  3.0406E+02  3.0455E+02 

        1700  4.0650005E+01 -7.0946E+00 -1.2489E+00  3.0402E+02  3.0419E+02 

        1800  4.3149995E+01  1.3348E+01 -1.6807E+00  3.0396E+02  3.0384E+02 
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        1900  4.5650005E+01  5.0650E+00 -2.0874E+00  3.0389E+02  3.0348E+02 

        2000  4.8149995E+01  3.6153E+00 -2.4710E+00  3.0380E+02  3.0312E+02 

        2100  5.0650005E+01  3.0117E+00 -2.8335E+00  3.0371E+02  3.0276E+02 

        2200  5.3150000E+01  2.6805E+00 -3.1763E+00  3.0359E+02  3.0241E+02 

        2300  5.5650000E+01  2.4714E+00 -3.5009E+00  3.0347E+02  3.0205E+02 

        2400  5.8150000E+01  2.3273E+00 -3.8082E+00  3.0333E+02  3.0169E+02 

        2500  6.0650000E+01  2.2222E+00 -4.0995E+00  3.0318E+02  3.0134E+02 

        2600  6.3150000E+01  2.1421E+00 -4.3755E+00  3.0302E+02  3.0098E+02 

        2700  6.5650000E+01  2.0791E+00 -4.6373E+00  3.0285E+02  3.0062E+02 

        2800  6.8150033E+01  2.0284E+00 -4.8856E+00  3.0267E+02  3.0026E+02 

        2874  6.9999967E+01  1.9968E+00 -5.0610E+00  3.0253E+02  3.0000E+02 

In this abbreviated output we can see the trends of Fig. 8-14. A more detailed distribution is shown in the 
figure below. 
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We see that x+ 0.12 is the approximate location where ( ) 0s mT T− →  which will create an infinite Nusselt 
number.  The heat transfer information are plotted in the figure below. 
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In this figure we again see the shapes match those of Fig. 8-14. We see the x+ =0.12 is the approximate 
location where (  which creates the infinite Nusselt number. Recall the definitions of the heat 
flux and heat transfer coefficient for the pipe surface is 

) 0s mT T− →

 ( ) E-surface
E-surface

s s
Tq k h T T
y

∂′′ = + = −
∂ m

)

 

where . At x( sy r r= − + =0.097 the surface heat flux passes through zero and becomes negative, 
reflecting the decreasing wall temperature. This is also the location where 0m dx =dT  in the temperature 
figure, and for larger x+  the Tm must decrease because heat is being removed from the fluid. Note it takes 
an x+ distance of about (0.12-0.097) before the removal of heat from the fluid at the wall will cause the 

 and the strange behavior of the Nusselt number. Past x(T T
(T T

) 0s m− →
) 0s m− <

+ =0.12 the heat flux is negative and 
, and once again the Nusselt number is positive. 

To fully understand the variable surface temperature behavior it is important that you plot the temperature 
profiles. This data is easily generated by rerunning the data set with k10 set =10 or =11 (only for pipe flows 
can you generate nondimensional profiles using k10=10).  
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9-1 

Air at 26°C and 1 atm pressure flows normally to a 5 cm diameter circular cylinder at a velocity of 9 
m/s. It can be shown from potential flow theory that in the vicinity of the forward stagnation point 
for flow normal to a cylinder the velocity along the surface, u∞  (which is the velocity just outside of 
any boundary layer), is given by 

 4Vxu
D∞ =  

where V is the oncoming normal velocity, x is the distance along the surface measured from the 
stagnation point, and D is the diameter of cylinder. Calculate the displacement thickness of the 
boundary layer at the stagnation point, and discuss the significance of the result. 

The stagnation point flow is part of the family of flows called the Falkner-Skan similarity flows where the 
local free stream velocity is given by the potential flow solution for inviscid flow over a wedge, mxu C∞ = . 
The m parameter is depicted in Fig. 9-2, where ( ) ( )[ ]2m β π β π= −  and for stagnation point flow, 
β=π, yielding m=1. Inviscid flow over a cylinder of radius R has a potential flow solution 

(app 2sinu V x R∞ = ) where Vapp is the velocity of the flow field approaching the cylinder. The first term 

of the Taylor-series approximation for the sine function for ( ) 1x R is ( ) ( ) 1x R Cx= =app2u x V∞  

where ( ) ( )app app2 4C V R V= = D . Thus, the region for is the so-called stagnation point 
flow, where 

15 15φ− ≤ ≤

( )x Rφ = . 

For this problem we will assume a constant density, i.e. no density variation through the boundary layer 
which forms over the wedge. Density variation throughout the boundary layer is caused either by an 
imposed thermal boundary condition (wall temperature or wall heat flux) which leads to a large wall-to-
free stream temperature difference, or when viscous heating associated with viscous work cause local 
temperature variation in the region near the surface. For gases, we find experimentally that we can ignore 
variable properties (including density) when 0.95 1.05sT T∞≤ ≤ and when M ≤ 0.4. For this problem we 
have no information about the thermal boundary condition. The Mach number for an ideal gas can be 
computed to be 

 
R

VM
Tγ

=  

where γ  is the ratio of specific heats, R is the gas constant (R=R/M where R is the universal gas constant, 
and M is the fluid molecular weight). For this problem, M≈0.03, and the assumption of constant density is 
justified in the absence of thermal boundary condition information. Thus,  displacement thickness Eq. (5-5) 
reduces to 

 1 0
1 u dy

u
δ

∞

∞

 
= − 

 
∫  

and this equation transforms using 

 and ( )
/ /

y y
ux u C

η ζ
ν ν

uη
∞∞

′= = =  

into 
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 ( )( ) ( )1 00
1 d

C C
ν νδ ζ η η η ζ

∞
η

∞
′= − = −  ∫  

Note: the function ( )η ζ η−  is zero at the lower limit and becomes a constant value at the upper limit. 

Table 9-1 contains information only for m=0, and so another source must be used to obtain ( )ζ η . One 
source is tabulated in Schlichting1. 

The other source is to solve Eq. (9-24) with the indicated boundary conditions and m=1 using traditional 
numerical methods such as Runge-Kutta and a “shooting method”. Here 

 

( )

1 1 2

2 2 3

2
3 3 2 1 3

1
2

Y Y Y
Y Y Y

m
Y Y mY Y Y m

ζ
ζ

ζ

′= =
′ ′= =

+
′′ ′= = − −

 

along with ( ) ( ) ( )1 2 20 0, 0 0, and Y= = ∞ 1=Y Y  (recall for the shooting method we will require 
Y3(0)=guessed value). The results are as follows: 

η ζ(η) ζ’(η) ζ”(η) 

0 0 0 1.233 

0.1 0.0060 0.1183 1.1328 

0.2 0.0233 0.2266 1.0345 

0.3 0.0510 0.3252 0.9386 

0.4 0.0881 0.4145 0.8463 

0.5 0.1336 0.4946 0.7583 

0.6 0.1867 0.5663 0.6752 

0.7 0.2466 0.6299 0.5974 

0.8 0.3124 0.6859 0.5251 

0.9 0.3835 0.7351 0.4587 

1.0 0.4592 0.7779 0.3980 

1.2 0.6220 0.8467 0.2938 

1.4 0.7967 0.8968 0.2110 

1.6 0.9798 0.9323 0.1474 

1.8 1.1689 0.9568 0.1000 

2.0 1.3620 0.9732 0.0658 

2.2 1.5578 0.9839 0.0420 

2.4 1.7553 0.9906 0.0260 

2.6 1.9538 0.9946 0.0156 

2.8 2.1530 0.9970 0.0091 
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3.0 2.3526 0.9984 0.0051 

3.5 2.8522 0.9997 0.0010 

4.0 3.3521 1.000 0.0002 

4.5 3.8521 1.000 0.0000 

 

Evaluation of this table shows . Note that one can also obtain this value by carrying 

out the integration of the displacement equation using Simpson’s rule. The final answer is δ
( ) 0.4379η ζ η− →  

1 = 0.096 mm. 

An alternative solution for this problem is to use Eq. (9-44) with R removed (recall R is the transverse 
radius of curvature, not the curvature in the flow direction). 

 ( )0.5 0.5
4.68

2 2.84 0

0.664 x
u dx

u
νδ ∞

∞

= ∫  

Substituting 4Vxu
D∞ =  into the integral and carrying out the integration yields 

 
4.68 0.52.84 5.6820.5

2
40.664

4 5
D V x
Vx D

δ ν
    =     

     .68
 

At this point, one sees that x removes itself from the equation, which is characteristic of the stagnation 
point flows, namely that d, d1, and d2 are all constant values over the stagnation region. Evaluation yields a 
value of d2 of about 0.041 mm. This permits the parameter defined by Eq. (9-39) to be evaluated, l=0.078. 
From Table 9-4, we find the shape factor H = 2.34, and from Eq. (9-37) d1 = 0.096 mm (the same answer 
obtained from the numerical solution). 
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9-2 

Derive Eq. (9-21) from potential flow theory. 

This solution proceeds from the ideas of the velocity potential and the stream function, 

 u and
x y y x
φ ψ φ ψ∂ ∂ ∂ ∂

= = = −
∂ ∂ ∂ ∂

v=  

and the fact that both functions satisfy their respective Laplace equation formulations. In complex variable 
theory, potential flow solutions are greatly simplified if the flow domain can be transformed into a semi-
infinite domain. A complex potential is constructed as ( ) ( ) ( ),F z x y i x yφ ψ= + , where F(z) is an 
analytical function such that 

 dF i u i
dz x x

φ ψ∂ ∂ w= + = − ≡
∂ ∂

v  

and where . For uniform parallel flow the complex potential function is w u i= + v ( ) oF z V z= . The 

domain is now transformed to the upper-half of the w-plane. Then if the transformation ( )zw w=  is 

conformal and , then z = ∞ w⇒ = ∞ ( ) ( )F z Aw z=  where A is determined such that . ou V∞ =

Applied for the wedge geometry, the transformation is ( )w z Azπ γ=   to map the “wedge” domain of 

opening g into the semi-infinite domain. Then, if ( ) ( )F z Aw z= ,  

 
1dFw A A z

dz

π
γπ

γ

−

= =  

From wedge-flow geometry 2γ π β= − , then 

 
2

2

2
mAw z

β
π βπ

π β
−= =

−
Cz

i

 

Here, e eiz r xφ γ= = . Thus, 

 em i m mw u Cx Cxγ
∞= = =  
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9-3 

Solve the laminar boundary layer for constant free-stream velocity, using the momentum integral 
equation and an assumption that the velocity profile may be approximated by 

 sin
2

u y
u

π
δ∞

=  

Evaluate the momentum thickness, displacement thickness, and friction coefficient, and compare 
with the exact solution. 

The applicable momentum integral equation is (5-9), rewritten as Eq. (9-31) by substituting for the surface 
shear stress, 

 2
2 22

f s

s

c du
y du u

τ
x

δν
ρ∞ ∞ ∞

 ∂
= = = ∂ 

 

This requires evaluation of the momentum thickness for the sine-function velocity profile. From Eq. (5-6), 
assuming constant properties, substituting for the profile, and integrating from the surface to the edge of 
the boundary layer (replacing ∞ by δ in the upper limit. 

 2 0 0

2 11 1
2

u u u udy dy
u u u u

ρδ δ
ρ π

∞ ∞

∞ ∞ ∞ ∞ ∞

     = − = − =     
    

∫ ∫ −  

Substitute the velocity profile into the wall-gradient term on the left-hand side (LHS) of the momentum 
integral equation and the momentum thickness function into the right-hand side (RHS) of the equation, 
separate variable and integrate, assuming δ(x=0)=0, to obtain  

 
1 2

1 24.80 or 4.80 Rex
x

u x
ν δδ −

∞

 
= = 

 
 

Substitute the solution for δ into the momentum thickness, and the result is 

 1 22 0.655Rexx
δ −=  

Following the same procedure for evaluation of the displacement thickness from Eq. (5-5) gives 

 1 21 1.74Rexx
δ −=  

For the friction coefficient, the definition is combined with the velocity profile and the solution for δ to 
give 

 1 2
2

2

2 0.655Res
f x

s

uc
yuu

τ ν

ρ

−

∞
∞ ∞

 ∂
= = = ∂ 1
2

 

Comparing these results with the similarity solution shows errors of +0.6% for δ1, -1.4% for δ2  and for cf. 
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9-4 

Redevelop Eq. (9-42) for the case where density and dynamic viscosity are functions of x. 

From momentum integral equation (5-7), 

 2 1
22

2

1 1 12s s sv d du d dR
u dx u dx dx R dxu

τ ρ δ δ ρ
δ

ρ δ ρρ
∞ ∞

∞ ∞ ∞ ∞∞ ∞

  
+ = + + + +  

  
  

we can see that the density term is similar in form to the transverse-radius term. Thus, it is easily added to 
Eq. (9-38), 

 
2 2 2
2 2 22 2 2 (2 )u d u d dudR T H

dx R dx dx dx
δ δ ρ δ

ν ν ρ ν
∞ ∞ ∞

∞

∞  
+ + = − +  

   
 

Rearranging this equation using the ideas used in Eq. (9-40) and Eq. (9-41), 

 ( )
2 2 2
2 2 22 2u d u d dudR a b a b

dx R dx dx dx
δ δ ρ δ

λ
ν ν ρ ν

∞ ∞ ∞

∞

  
+ + = − = −   

  
∞


 

At this point the development follows that on page 144 of the 4th Edition. We need to use the following 
derivative ideas, 

 ( ) ( ) ( )1 2 22 2b bd u bu and d R RdR and d dρ ρ ρ−
∞ ∞ ∞ ∞= = = ∞  

Move the b-term to the LHS, multiply and then multiply and divide each of the four LHS terms with the 
appropriate variables to obtain terms with the same denominator, 

 
2 2 2 2 2 2 2 2 2 2 22

2 2 2 2
1 2 2 1 2 2 1 2 2 1 2 2

b b b b

b b b b

u R d R du u u R ddR a
dx dx dx dxu R u R u R u R

ρ δ δ ρ δ ρ δ ρ
ν ρ ν ρ ν ρ ν ρ

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
− − − −

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

+ + + =  

Now, recognize this as an exact differential of four terms, and multiply through the denominator and 
separate variables, 

 ( )2 2 2 1 2 2
2

b bd R u a u R dxρ δ ν ρ−
∞ ∞=  

From this point the integration of this equation is exactly like the procedure leading to Eq. (9-42). 
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9-5 

Air emerges from the axisymmetric nozzle shown in Fig. 9-3 at a centerline velocity of 10 m/s at 1 
atm pressure and 21°C. Assuming an essentially constant-density and constant-temperature process 
(and this is ensured by the low velocity), calculate the displacement thickness of the boundary layer 
at the nozzle throat, assuming that the free-stream velocity along the inner surface of the nozzle 
varies linearly with distance, starting with 0u∞ =  at the sharp corner. Calculate the air mass flow 
rate through the nozzle and the overall pressure drop through the nozzle. On the basis of these 
results, discuss the concept of a nozzle “discharge coefficient.” What would be the discharge 
coefficient of this nozzle? If you were to define a Reynolds number based on throat diameter and 
mean velocity, how would the discharge coefficient vary with Reynolds number? 

The analysis procedure for this problem is: to calculate d2 using Eq. (9-42); formulate l from Eq. (9-39); 
use Table 9-4 to find H, and the from its definition, Eq. (9-37), determine d1; calculate the mass flow rate 
using Eq. (7-3);calculate a pressure drop using a Bernoulli equation; and finally calculate a discharge 
coefficient, the ratio of actual to theoretical mass flow through the nozzle. The problem requires 
assumptions of steady flow and constant properties.  

There are several geometric variables to be defined. The nozzle radius of curvature is rnoz =0.0375 m. The 
nozzle transverse radius at the throat, Rb =0.0125 m, and nozzle transverse radius at the start of the nozzle 
(xa=0) is Ra =0.05 m. From geometry, 2 0.058905mb nozx r π= = . Using this geometry, the function for the 
transverse radius of the nozzle wall becomes 

 ( ) ( )sin sina noz a c
noz

xR x R r R r
r

θ
 

= − = −  
 

 

and Eq. (9-42) becomes 

 ( ) ( )
1 221 2

4.86
2 2.84

,

0.664 sinb

a

x

b a nozx
nozb b

xx u x R r dx
rR u

νδ ∞
∞

  
 = −       
∫  

The free stream velocity just outside the boundary layer of the nozzle wall really needs to be developed 
from an inviscid or Euler analysis of the incompressible flow in a converging nozzle. 

The first approximation for this axisymmetric nozzle is to assume the free stream velocity at the nozzle 
wall varies linearly along the nozzle surface from the sharp corner to the throat, a bx x x≤ ≤ , with 

 , ,0 and 10 m/sa bu u∞ ∞= =

 ( ) ,au x u∞ ∞= ( ), , 169.8 m/sb a
a

b a

u u
x x x

x x
∞ ∞− 

+ − = − 
 

Note that the requirement of u  is a requirement of the problem statement and is not really needed.  , 0a∞ =

Equation (9-42) can be evaluated using standard methods for the integral. We use a Simpson’s rule with 12 
intervals and evaluating the properties at 20ºC to obtain the momentum thickness. Compute the pressure 
gradient parameter λ using Eq. (9-39) with the velocity gradient coming from the linear velocity profile. 
Interpolate Table 9-4 for the shape factor H, and then compute the displacement thickness. 
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2

1

1.1602E-04 m
=0.1515

H=2.174
2.5226E-04 m

δ
λ

δ

=

=

 

The actual mass flow rate in the nozzle will be based on the flow cross-sectional area, corrected for the 
displacement thickness, 

  ( ) ( )2 3
1, 5.68 10 kg/sactual b b block b b bm V A A V rρ ρ π δ −= − = − = ×

and the discharge coefficient becomes 

 
( )

0.96b b blockactual

theo b b

V A Am
C

m V A
ρ

ρ
−

= = =  

The pressure drop through the nozzle, based on the Bernoulli equation, is 

 ( ) ( )2 21 60.2Pa
2b a b aP P P V Vρ∆ = − = − = −  

Based on laminar boundary layer behavior, as Re increases, the displacement thicknesses decreases, as 
shown in Eq. (9-19), leading to a reduced flow blockage and a nozzle discharge coefficient that approaches 
unity. 

The second approximation for this axisymmetric nozzle is to assume the free stream velocity at the nozzle 
wall is defined by the 1-D mass flow rate equation along the nozzle surface from the sharp corner to the 
throat, a bx x x≤ ≤ , with  , ,0 and 10 m/sa bu u∞ ∞= =

 ( )
( ) 2

c

m mu x
A R xρ ρπ

∞ = =
  

 

Equation (9-42) is re-evaluated using standard methods for the integral.  

 

2

1

1.0205E-04 m
=0.04276

H=2.458
2.5083E-04 m

δ
λ

δ

=

=

 

We note the two approximations for the boundary layer edge velocity give about the same solution. 

This problem is appropriate for TEXSTAN. The data file for this problem is 9.5.dat.txt. The data set 
construction is based on the s9010.dat.txt file for flow inside an axisymmetric nozzle with variable free 
stream velocity and specified surface temperature (initial profiles: Falkner-Skan m=1 velocity and Falkner-
Skan m=1 temperature). This geometry is kgeom=3, which is flow inside a surface of revolution. Because it 
is axisymmetric flow, the geometry transverse radius variable of the nozzle wall, R(x) in this analysis, is 
used to create the array rw(m) at x(m) locations. For this data set, the x-locations were the same used in the 
Simpson’s Rule quadrature for integration of the integral, 20 evenly-spaced locations along the nozzle 
surface from x=0 at the start of the nozzle to the x-value at the throat. Note this makes the data input 
variable nxbc=21. Because TEXSTAN linearly interpolates the rw(m) array, this should be sufficient. Note 
that this same x(m) array is used to generate the velocity distribution for the free stream boundary 
condition, , which is linear, because of the problem specification. The initial profiles for this 
axisymmetric nozzle problem (kstart=6) are the same profiles that are used with a cylinder in crossflow. 

( )u x∞
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It is very important that the free stream velocity array, ubI(m), which is the ( )x∞u function evaluated at 
each x(m) location, be such that the array is mathematically very smooth, because it is used to create the 
pressure gradient for the momentum equation using Bernoulli’s equation. TEXSTAN uses cubic spline 
interpolation of the free stream velocity to help with the smoothness. When in doubt, you can use a special 
flag in TEXSTAN, k8=36, to print files of how TEXSTAN converts the array, ubI(m) into a pressure-
gradient distribution. Plotting this pressure-gradient distribution will help the user be sure their free stream 
velocity array, ubI(m), is differentially smooth. 

Here is an abbreviated listing of the file ftn84.dat.txt, which contains the momentum thickness (del2) and 
shape factor (h12) distribution between the start of integration and the nozzle throat. The free stream 
velocity distribution for this problem is the first approximation (linear free stream velocity profile): 

   x/s            yl        uinf      del2      h12       del3 

    2.9807465E-03 7.103E-04 5.060E-01 8.715E-05 2.217E+00 0.000E+00 

    3.7674002E-03 7.203E-04 6.396E-01 8.816E-05 2.212E+00 0.000E+00 

    6.9530356E-03 7.349E-04 1.180E+00 8.966E-05 2.206E+00 0.000E+00 

    1.0626524E-02 7.500E-04 1.804E+00 9.105E-05 2.198E+00 0.000E+00 

    1.4368821E-02 7.674E-04 2.439E+00 9.268E-05 2.189E+00 0.000E+00 

    1.8222421E-02 7.888E-04 3.094E+00 9.458E-05 2.180E+00 0.000E+00 

    2.2233437E-02 8.136E-04 3.774E+00 9.680E-05 2.169E+00 0.000E+00 

    2.6392100E-02 8.428E-04 4.480E+00 9.941E-05 2.156E+00 0.000E+00 

    3.0585223E-02 8.758E-04 5.192E+00 1.021E-04 2.144E+00 0.000E+00 

    3.5011648E-02 9.125E-04 5.944E+00 1.051E-04 2.130E+00 0.000E+00 

    3.9610990E-02 9.497E-04 6.725E+00 1.078E-04 2.118E+00 0.000E+00 

    4.4375136E-02 9.828E-04 7.533E+00 1.100E-04 2.108E+00 0.000E+00 

    4.9312901E-02 9.963E-04 8.372E+00 1.102E-04 2.105E+00 0.000E+00 

    5.4198382E-02 9.819E-04 9.201E+00 1.079E-04 2.111E+00 0.000E+00 

    5.8904861E-02 9.375E-04 1.000E+01 1.033E-04 2.127E+00 0.000E+00 

From the output we find a predicted value 2 1.033E-04 mδ = and 12 2.127H = , which compares to our 
analysis values of 2 1.16E-04 mδ =  and H=2.174. This is reasonable agreement between TEXSTAN and 
the analysis.  
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9-6 

Derive Eq. (9-24) in a manner similar to that used in the development of Eq. (9-8) for zero pressure 
gradient. 

Start with Eq. (9-23), and transform the dependent variables u and v using Eq. (9-9), 

 
22 3

2 3

u m
y x y x xy y
ψ ψ ψ ψ ν∞  ∂ ∂ ∂ ∂ ∂ ∂

− = +  ∂ ∂ ∂ ∂
ψ

∂ ∂   
 

Now, transform the independent variables, x and y using the Blasius variable Eq. (9-11) for y, and define 
the stream function using Eq. (9-10): 

 ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2,

m

m

x

u Cy y x
x

G xu C x

ξ

η
ν ν

ψ ξ η ξ ζ η ν ζ η ν ζ η

−∞

+
∞

=

= =

= = =

 

Transform the various derivatives using the chain rule: 

 

( ) ( ) ( )

( ) ( ) ( )
x x x

y y y

ξ η
ξ η

ξ η
ξ η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

 

At this point, you can do one of two procedures: the first is to transform the y equation differential 
operators, keeping y as the independent variable, and then introduce its definition to obtain an equation in 
G and z.  Upon introducing the functional form of G, the equation separates and Eq. (9-24) is obtained. A 
second procedure is to transform the differential operators and y simultaneously. Either works. 
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9-7 

TEXSTAN analysis of the laminar momentum boundary layer over a flat plate with zero pressure 
gradient: Choose a starting x-Reynolds number of about 1000 and pick fluid properties that are 
appropriate to air, evaluated at a free stream temperature of 300 K. Use constant fluid properties, 
and note that the energy equation does not have to be solved. The geometrical dimensions of the 
plate are 1 m wide (a unit width) by 0.2 m long in the flow direction, corresponding to an ending Rex 
of about 2x105. Let the velocity boundary condition at the free stream be 15 m/s.  The initial velocity 
profile appropriate to the starting x-Reynolds number (a Blasius profile) can be supplied by using 
the kstart=4 choice in TEXSTAN. Calculate the boundary layer flow and compare the results with 
the similarity solution for development in the streamwise direction of such quantities as the 
boundary-layer thickness (see Table 9-1), displacement thickness (see Eq. 9-17), and momentum 
thickness (see Eq. 9-18). Evaluate the concept of boundary-layer similarity by comparing non-
dimensional velocity profiles at several x-locations to themselves and to Table 9-1. Compare the 
friction coefficient results based on x-Reynolds number with Eq. (9-13) and momentum-thickness 
Reynolds number with Eq. (9-16).  Calculate the friction coefficient distribution using momentum 
integral Eq. (5-11) and compare with the TEXSTAN calculations. Feel free to investigate any other 
attribute of the boundary-layer flow. 

The data file for this problem is 9.7.dat.txt. The data set construction is based on the s10.dat.txt file for 
flow over a flat plate with constant free stream velocity and specified surface temperature (initial profiles: 
Blasius velocity and Blasius temperature). Note that kout has been changed to =2. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
9.7.dat.txt): 

  intg x         rem       cf2       h12       reh        st 

     5 1.049E-03 2.100E+01 1.050E-02 2.590E+00 2.578E+01  1.313E-02 

   100 2.276E-03 3.094E+01 7.131E-03 2.590E+00 3.822E+01  8.914E-03 

   200 5.307E-03 4.726E+01 4.667E-03 2.590E+00 5.862E+01  5.831E-03 

   300 9.605E-03 6.358E+01 3.469E-03 2.590E+00 7.900E+01  4.332E-03 

   400 1.517E-02 7.990E+01 2.760E-03 2.590E+00 9.937E+01  3.445E-03 

   500 2.201E-02 9.622E+01 2.292E-03 2.590E+00 1.197E+02  2.860E-03 

   600 3.011E-02 1.125E+02 1.960E-03 2.590E+00 1.401E+02  2.445E-03 

   700 3.948E-02 1.289E+02 1.712E-03 2.590E+00 1.605E+02  2.135E-03 

   800 5.011E-02 1.452E+02 1.519E-03 2.590E+00 1.808E+02  1.895E-03 

   900 6.202E-02 1.615E+02 1.366E-03 2.590E+00 2.012E+02  1.703E-03 

  1000 7.519E-02 1.778E+02 1.240E-03 2.590E+00 2.215E+02  1.547E-03 

  1100 8.964E-02 1.941E+02 1.136E-03 2.590E+00 2.419E+02  1.417E-03 

  1200 1.053E-01 2.104E+02 1.048E-03 2.590E+00 2.622E+02  1.307E-03 

  1300 1.223E-01 2.268E+02 9.727E-04 2.590E+00 2.825E+02  1.213E-03 

  1400 1.405E-01 2.431E+02 9.073E-04 2.590E+00 3.029E+02  1.131E-03 

  1500 1.599E-01 2.593E+02 8.507E-04 2.590E+00 3.231E+02  1.061E-03 

  1600 1.807E-01 2.756E+02 8.003E-04 2.590E+00 3.434E+02  9.978E-04 

  1688 2.000E-01 2.899E+02 7.607E-04 2.590E+00 3.613E+02  9.484E-04 

The two ftn files that contain momentum results are ftn84.txt and ftn85.txt.  Here are abbreviated listings of 
these files. 
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ftn84.txt 

   x/s            yl        uinf      del2      h12       del3 

    1.0491386E-03 1.631E-04 1.500E+01 2.204E-05 2.590E+00 2.707E-05 

    1.2356458E-03 1.770E-04 1.500E+01 2.392E-05 2.590E+00 2.942E-05 

    2.2758737E-03 2.404E-04 1.500E+01 3.249E-05 2.590E+00 4.012E-05 

    ... 

    2.0000000E-01 2.253E-03 1.500E+01 3.044E-04 2.590E+00 3.794E-04 

ftn85.txt 

 x/s           rex           rem        cf/2      reh       st        htc 

 1.0491386E-03 9.9925781E+02 2.0995E+01 1.050E-02 2.578E+01 1.313E-02 2.329E+02 

 1.2356458E-03 1.1768977E+03 2.2785E+01 9.678E-03 2.802E+01 1.210E-02 2.146E+02 

 2.2758737E-03 2.1676684E+03 3.0941E+01 7.131E-03 3.822E+01 8.914E-03 1.581E+02 

... 

 2.0000000E-01 1.9049110E+05 2.8995E+02 7.607E-04 3.613E+02 9.484E-04 1.682E+01 

Here is the abbreviated out.txt with kout=8. 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 9.993E+02 2.100E+01 1.050E-02   9.3 1.000  .995 2.590 2.578E+01 

   100 2.168E+03 3.094E+01 7.131E-03  13.7 1.000  .995 2.590 3.822E+01 

   200 5.054E+03 4.726E+01 4.667E-03  21.0  .999  .994 2.590 5.862E+01 

   300 9.149E+03 6.358E+01 3.469E-03  28.2  .999  .993 2.590 7.900E+01 

   400 1.445E+04 7.990E+01 2.760E-03  35.4  .999  .993 2.590 9.937E+01 

   500 2.096E+04 9.622E+01 2.292E-03  42.6 1.000  .992 2.590 1.197E+02 

   600 2.868E+04 1.125E+02 1.960E-03  49.9 1.000  .992 2.590 1.401E+02 

   700 3.761E+04 1.289E+02 1.712E-03  57.1 1.000  .992 2.590 1.605E+02 

   800 4.773E+04 1.452E+02 1.519E-03  64.3 1.000  .992 2.590 1.808E+02 

   900 5.907E+04 1.615E+02 1.366E-03  71.5 1.000  .992 2.590 2.012E+02 

  1000 7.162E+04 1.778E+02 1.240E-03  78.8 1.000  .992 2.590 2.215E+02 

  1100 8.537E+04 1.941E+02 1.136E-03  86.0 1.000  .992 2.590 2.419E+02 

  1200 1.003E+05 2.104E+02 1.048E-03  93.2 1.000  .992 2.590 2.622E+02 

  1300 1.165E+05 2.268E+02 9.727E-04 100.4 1.000  .992 2.590 2.825E+02 

  1400 1.339E+05 2.431E+02 9.073E-04 107.7 1.000  .992 2.590 3.029E+02 

  1500 1.523E+05 2.593E+02 8.507E-04 114.9 1.000  .992 2.590 3.231E+02 

  1600 1.721E+05 2.756E+02 8.003E-04 122.1 1.000  .992 2.590 3.434E+02 

  1688 1.905E+05 2.899E+02 7.607E-04 128.5 1.000  .992 2.590 3.613E+02 

We can see from the various files that there is duplication, and which to choose depends on the plotting 
data needs. In the benchmark output (kout=8) we see the cfrat and nurat, which present a ratio of 
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TEXSTAN-calculated values for cf and Nu to Blasius-solution values at the same x-Reynolds number, Eq. 
(9-13) form momentum and Eq. (10-13) for heat transfer. We can use these ratios to help determine if a 
data set construction is correct.  At the present time only some of the “s” data sets in Appendix H can be 
used with kout=8. 

To plot the developing velocity profiles, choose either k10=10 for nondimensional profiles (Blasius 
variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file out.txt. You 
can choose where to print the profiles by adding x locations to the x(m). Be sure to change the two nxbc 
variables and add the appropriate sets of two lines of boundary condition information for each new x-
location. This is explained in detail in the s10.man user manual. The plot shown below confirms the 
Blasius similarity for the flat-plate laminar boundary layer with u c∞ = . 
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9-8 

TEXSTAN analysis of the laminar momentum boundary layer stagnation flow (the Falkner-Skan m = 1 
case): Choose a starting x-Reynolds number of about 200 and pick fluid properties that are 
appropriate to air, evaluated at a free-stream temperature of 300 K. Use constant fluid properties, 
and note that the energy equation does not have to be solved. The geometrical dimensions of the 
plate are 1 m wide (a unit width) by 0.12 m long in the flow direction, corresponding to an ending 
Rex of about 4 × 105.  The initial velocity profile appropriate to the starting x-Reynolds number (a 
Falkner-Skan m = 1 profile) can be supplied by using the kstart=5 choice in TEXSTAN. Note that the 
profile comes from solving Eq. (9-24). Because this is a variable free-stream-velocity flow, there are 
two choices within TEXSTAN: either the user provides a table of u , computed from the 
function , or the user lets TEXSTAN supply the distribution for m = 1  by using the k4=4.  
With the latter choice, TEXSTAN builds the table using 

x∞ versus

( ) mu x x∞ ∝

 ( )
m

m x Cu x x A
B C∞

− ∝ =  − 
 

 The user will supply the values for A, B, C (called axx, bxx, and cxx in TEXSTAN), where C is 
a virtual origin for the flow, which for stagnation flow corresponds to C = 0, and A and B are 
linked to make sure that whatever starting x-value is chosen gives a free-stream velocity such 
that the starting x-Reynolds number is correct.  Typically we can set B = 1, and then for a 
given choice of starting Rex, the corresponding  u∞ value permits calculation of A. 

 Calculate the boundary layer flow and compare the friction coefficient results based on x-
Reynolds number with the results in the text.  Evaluate the concept of boundary-layer 
similarity by comparing nondimensional velocity profiles at several x-locations with each 
other. Calculate the friction coefficient distribution using momentum integral Eq. (5-8) and 
compare with the TEXSTAN calculations. Feel free to investigate any other attribute of the 
boundary-layer flow and to compare your results with other open-literature solutions. 

The data file for this problem is 9.10.dat.txt. The data set construction is based on the s15.dat.txt file for 
flow over a flat plate with variable free stream velocity and specified surface temperature (initial profiles: 
Falkner-Skan m=1 velocity and temperature). Note that kout has been changed to =2. 

There needs to be a slight modification to the instructions in the problem statement regarding the 
calculations of xstart and axx. For the given starting x-Reynolds number =200, there are not unique 
numbers for xstart and axx, so choose xstart (=0.00195 m) which uniquely determines the value of free 
stream velocity at that location (=1.615 m/s), and then calculate A (which is the variable axx) to match this 
velocity, u A for B=1, C=0 and m=1.  xstar∞ = ⋅ t

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
9.8.dat.txt): 

  intg x         rem       cf2       h12       reh        st 

     5 1.966E-03 4.169E+00 8.640E-02 2.216E+00 1.001E+01  4.920E-02 

   200 7.172E-03 1.523E+01 2.364E-02 2.216E+00 3.648E+01  1.349E-02 

   400 1.374E-02 2.916E+01 1.235E-02 2.216E+00 6.993E+01  7.040E-03 

   600 2.030E-02 4.305E+01 8.366E-03 2.216E+00 1.033E+02  4.768E-03 

   800 2.687E-02 5.698E+01 6.321E-03 2.216E+00 1.367E+02  3.602E-03 

  1000 3.343E-02 7.090E+01 5.080E-03 2.216E+00 1.701E+02  2.894E-03 

  1200 4.000E-02 8.482E+01 4.246E-03 2.216E+00 2.036E+02  2.419E-03 

  1400 4.657E-02 9.874E+01 3.648E-03 2.216E+00 2.370E+02  2.078E-03 
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  1600 5.314E-02 1.127E+02 3.197E-03 2.216E+00 2.704E+02  1.821E-03 

  1800 5.970E-02 1.266E+02 2.845E-03 2.216E+00 3.038E+02  1.621E-03 

  2000 6.627E-02 1.405E+02 2.563E-03 2.216E+00 3.373E+02  1.460E-03 

  2200 7.284E-02 1.544E+02 2.332E-03 2.216E+00 3.707E+02  1.329E-03 

  2400 7.941E-02 1.684E+02 2.139E-03 2.216E+00 4.041E+02  1.219E-03 

  2600 8.597E-02 1.823E+02 1.976E-03 2.216E+00 4.375E+02  1.126E-03 

  2638 8.721E-02 1.849E+02 1.948E-03 2.216E+00 4.438E+02  1.110E-03 

Here is the abbreviated out.txt with kout=8. 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 2.034E+02 4.169E+00 8.640E-02   7.1  .999  .997 2.216 1.001E+01 

   200 2.705E+03 1.523E+01 2.364E-02  25.9  .997  .997 2.216 3.648E+01 

   400 9.936E+03 2.916E+01 1.235E-02  49.7  .998  .997 2.216 6.993E+01 

   600 2.166E+04 4.305E+01 8.366E-03  73.4  .999  .997 2.216 1.033E+02 

   800 3.796E+04 5.698E+01 6.321E-03  97.2  .999  .997 2.216 1.367E+02 

  1000 5.879E+04 7.090E+01 5.080E-03 121.0  .999  .997 2.216 1.701E+02 

  1200 8.415E+04 8.482E+01 4.246E-03 144.7  .999  .997 2.216 2.036E+02 

  1400 1.141E+05 9.874E+01 3.648E-03 168.5  .999  .997 2.216 2.370E+02 

  1600 1.485E+05 1.127E+02 3.197E-03 192.3  .999  .997 2.216 2.704E+02 

  1800 1.875E+05 1.266E+02 2.845E-03 216.0  .999  .997 2.216 3.038E+02 

  2000 2.310E+05 1.405E+02 2.563E-03 239.8  .999  .997 2.216 3.373E+02 

  2200 2.790E+05 1.544E+02 2.332E-03 263.6  .999  .997 2.216 3.707E+02 

  2400 3.316E+05 1.684E+02 2.139E-03 287.3  .999  .997 2.216 4.041E+02 

  2600 3.888E+05 1.823E+02 1.976E-03 311.1  .999  .997 2.216 4.375E+02 

  2638 4.000E+05 1.849E+02 1.948E-03 315.6  .999  .997 2.216 4.438E+02 

We can see from the various files that there is duplication, and which to choose depends on the plotting 
data needs. In the benchmark output (kout=8) we see the cfrat and nurat, which present a ratio of 
TEXSTAN-calculated values for cf and Nu to Falkner-Skan m=1 solution values at the same x-Reynolds 
number, Eq. (9-25) and Table 9-2 for momentum and Table 10-2 for heat transfer. We can use these ratios 
to help determine if a data set construction is correct.  At the present time only some of the “s” data sets in 
Appendix H can be used with kout=8. 

To plot the developing velocity profiles, choose either k10=10 for nondimensional profiles (Blasius 
variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file out.txt. You 
can choose where to print the profiles by adding x locations to the x(m). Be sure to change the two nxbc 
variables and add the appropriate sets of two lines of boundary condition information for each new x-
location. This is explained in detail in the s10.man user manual. The plot shown below confirms the 
Falkner-Skan  similarity for the flat-plate laminar boundary layer with u . Note the much thinner 
boundary layer thickness. 

mCx∞ =
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10-1 

Derive Eqs. (10-11), and (10-12) in the text. (See App. C for tables of error and gamma functions.) 

This problem is the Blasius solution to the flat plate boundary layer with constant free stream velocity and 
constant surface temperature. The governing equation is Eq. (4-39) with T transformed into a 
nondimensional form,  

 
2

2u v
x y y
θ θ θα∂ ∂ ∂

+ =
∂ ∂ ∂

 

where the form of θ and its boundary conditions are 

 0 at 0
1 at
1 at 0

s

s

T T
T T

y
y
x

θ

θ
θ
θ

∞

−
=

−
= =
= → ∞
= =

 

To develop the Blasius similarity solution, follow the textbook on pp. 150-151 to obtain Eq. (10-4) 

 Pr 0
2

θ ζθ′′ ′+ =  

The low-Pr solution follows the development on p. 153 where Eq. (10-4) is differentiated with respect to η, 
which changes the ζ term into ζ ′ . 

 ( / ) Pr 0
2

d
d
θ θ ζ

η
′′′

′+ =  

For low Pr flows the thermal boundary layer is assumed to develop much faster than the momentum 
boundary layer, leading to the approximation /u u 1ζ ∞′ = =  and the partial differential equation simplifies. 
Integrating three times yields and applying boundary conditions ( )0 0θ ′′ =  and ( )0 0θ = , gives 

 

2
1 0

Prexp
4

C d
η

θ ηη = − 
 ∫

 

Applying the boundary condition ( ) 1θ ∞ = leads to 

 

2
0

2
0

Prexp
4
Prexp
4

d

d

η
ηη

θ
ηη

∞

 − 
 =
 − 
 

∫

∫
 

Now formulate the Nusselt number 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0
s

ys
x x

s s

k T T x
yhx q x xu

k T T k T T k

θ

θ θ
ν

∞
= ∞

∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
0 Re  
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and obtain ( )0θ ′ from the ( )θ η solution 

 

( )
2

0

10
Prexp
4

d
θ

ηη
∞

′ =
 − 
 ∫

 

 

We recognize the integral as being error function, as given in Table C-4 of Appendix C, so we can 

transform this integral by letting Pr
2

α η= , leading to 

 

( ) ( )
1 2

Pr 2 10
2 erf

0.564Pr

θ
π

′ =
∞

=  

and the solution becomes 

 1 2 1 2Nu 0.564Pr Rex x=  

The procedure for developing the solution for high Pr follows that on p. 153 for an approximation to 
( )ζ η . This assumption is justified because the thermal boundary layer is so much smaller than the 

momentum boundary layer, it resides in the region where ( )ζ η is linear.  Substituting the linear 
representation into Eq. (10-4) and integrating two times yields and applying boundary condition ( )0 0θ = , 
gives 

 

3
1 0

0.3321exp Pr
12

C d
η

θ ηη = − 
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Applying the boundary condition ( ) 1θ ∞ = leads to 

 

3
0

3
0

0.3321exp Pr
12
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d
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η
ηη

θ
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∫
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Now formulate the Nusselt number 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0
s
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k T T x
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θ θ
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∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
0 Re  

and obtain ( )0θ ′ from the ( )θ η solution 

 

( )
3

0

10
0.3321exp Pr

12
d

θ
ηη

∞
′ =

 − 
 ∫
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We recognize the integral as being related to the Gamma function, as given in Table C-1 of Appendix C, so 

we can transform this integral by letting 0.3321Pr
4

C =  and 3
3
Cα η= , leading to 

 

( )
( )

1 3 1 3
2 3 2 3

2
0

1 3

1 3

0.3321 0.33213 Pr 3 Pr
4 40

1 4exp 3
3 3

0.3321Pr
12

4
3

0.339Pr

C

d
ηθ
η α α−

    
   


        ′ = = =

   − Γ Γ   
   

  
    =

 Γ 
 

=

∫


 

and the solution becomes 

 1 3 1 2Nu 0.339Pr Rex x=  
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10-2 

For flow along a plate with constant free-stream velocity and constant fluid properties develop a 
similarity solution for a constant-temperature plate for a fluid with Pr = 0.01. Compare with the 
approximate results of Prob. 10-1. Note that numerical integration is required. 

This problem is the Blasius solution to the flat plate boundary layer with constant free stream velocity and 
constant surface temperature. The governing equation is Eq. (4-39) with T transformed into a 
nondimensional form,  

 
2

2u v
x y y
θ θ θα∂ ∂ ∂

+ =
∂ ∂ ∂

 

where the form of θ and its boundary conditions are 

 0 at 0
1 at
1 at 0

s

s

T T
T T

y
y
x

θ

θ
θ
θ

∞

−
=

−
= =
= → ∞
= =

 

Transform the various derivatives using the chain rule: 

 

( ) ( ) ( )

( ) ( ) ( )
x x x

y y y

ξ η
ξ η

ξ η
ξ η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

 

To develop the Blasius similarity solution, follow the textbook on pp. 150-151 to obtain Eq. (10-4) 

 Pr 0
2

θ ζθ′′ ′+ =  

with boundary condition s  

 (0) 0 and ( ) 1θ θ= ∞ =  

This equation is similar in form to the Blasius momentum equation  

 1
2 0ζ ζζ′′′ ′′+ =  

with boundary condition s 

 (0) 0, (0) 0, and ( ) 1ζ ζ ζ′ ′= = ∞ =  

There are two methods for solving this problem. The first method is to solve this set of coupled equations 
by traditional numerical methods such as a Runge-Kutta numerical algorithm and a “shooting technique” 
for the boundary-value problem (. (0)θ ′  is unknown, just as (0) 0ζ ′′ =  would be unknown if we were 
solving only the momentum Blasius problem). Here is the formulation necessary for the Runge-Kutta 
method. 

For the Blasius momentum equation 
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1 1 2

2 2 3

3 3
1
2

Y Y Y
Y Y Y

Y Y 1 3Y Y

ζ
ζ

ζ

′= =
′ ′= =

′′ ′= = −

 

along with ( ) ( ) ( )1 2 20 0, 0 0, and 0 specifiedY Y Y= = = . Note this last boundary condition has become an 
initial condition, which would have to be iteratively determined until ( )2 1Y ∞ = . We will use 

 from the Blasius momentum solution. ( )2 0Y ζ ′′(0) 0.332= =

For the Blasius energy equation 

 
4 4 5

5 5
1 Pr
2

Y Y Y

Y Y

θ

θ

′= =

′ ′= = − 1 5Y Y
 

along with . Note this last boundary condition has become an initial 

condition, iteratively determined using the shooting method until 
( ) ( )4 50 0 and 0 specifiedY Y= =

( )4 1Y ∞ = .  

This solution is a bit difficult because we need to estimate the infinite value for  η. For the momentum 
solution, Table 9-1 shows 5η∞ > , and from Eq. (10-27) we have an approximation that the ratio of the 

thermal boundary layer to momentum boundary layer can be estimated as ( )1 31/ 1.026Pr 4.5r δ= ∆ = ≈ . 

So our first estimate is ( )tum 6momenη∞ ≈  and ( )energy 27η∞ ≈ . However, we really need to use much 
larger infinite-state values to insure the boundary value problem is correct, and nothing is lost by using a 
much larger number. Using a 4th-order Runge-Kutta numerical method and 50η∞ ≈ , we find the answer 
that converges to (0) 0.052θ ′ = . We formulate the Nusselt number as 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0
s

ys
x x

s s

k T T x
yhx q x xu

k T T k T T k

θ

θ θ
ν

∞
= ∞

∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
0 Re  

and obtain ( )0θ ′ from numerical solution, and the result is 

 1 2Nu 0.052Rex x=  

which compares with Table 10-1 (the coefficient in the table is 0.0516 for Pr=0.01). This can be compared 
to Eq. (10-11), where 1 2 1 2Nu 0.565Pr Rex = x  evaluated at Pr=0.01 gives a coefficient of 0.0565. 

The second method for solution of this problem is to use the similarity analysis on p. 151, and 
differentiation of Eq. (10-8) leads to the expression for (0)θ ′  

 0 0

1(0)
Prexp
2

d d
η

θ
ζ η η

∞
′ =

   −     ∫ ∫
 

To numerically evaluate this integral, you will need to curve-fit Table 9-1 for ( )ζ η An approximate curve 

fit is ( ) 20.060252 0.16613 0.10320ζ η η= − + + η .for the range 0 5η≤ ≤ . Make use of the recursion 
relation ( ) 1.72ζ η η= −  for higher values of ( )ζ η . Evaluation of this expression with Pr=0.01 should 
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compare with the numerical solution (0) 0.052θ ′ = .As with the Runge-Kutta solution we need to estimate 
η∞ . 
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10-3 

Develop an approximate solution of the energy equation for flow at a two-dimensional stagnation 
point for a fluid with very low Prandtl number, using the assumption that the thermal boundary 
layer is very much thicker than the momentum boundary layer. From this, develop an equation for 
heat transfer at the stagnation point of a circular cylinder in cross flow, in terms of the oncoming 
velocity and the diameter of the tube. 

The stagnation point flow is part of the family of flows called the Falkner-Skan similarity flows where the 
local free stream velocity is given by the potential flow solution for inviscid flow over a wedge, mxu C∞ = . 
The m parameter is depicted in Fig. 9-2, where ( ) ( )[ ]2m β π β π= −  and for stagnation point flow, 
β=π, yielding m=1. Inviscid flow over a cylinder of radius R has a potential flow solution 

(app 2sinu V x R∞ = ) where Vapp is the velocity of the flow field approaching the cylinder. The first term 

of the Taylor-series approximation for the sine function for ( ) 1x R is ( ) ( ) 1x R Cx= =app2u x V∞  

where ( ) ( )app app2 4C V R V= = D . Thus, the region for is the so-called stagnation point 
flow, where 

15 15φ− ≤ ≤

( )x Rφ = . 

The governing equation for momentum with the Falkner-Skan free-stream velocity distribution is given by 
Eq. (9-24) 

 21
2 ( 1) (1 )m mζ ζζ ζ′′′ ′′ ′ 0+ + + − =  

with boundary conditions given by 

 (0) 0, (0) 0, ( ) 1ζ ζ ζ′ ′= = ∞ =  

To develop a similar energy equation, the stream-function transformations Eqs. (9-9) and (9-10) are used, 
along with the Blasius transformation, Eq. (9-11), and using mxu in all the transformations. Equation 
(10-2) transforms into 

C∞ =

 Pr ( 1)
2

mθ ζ′′ ′ 0θ+ + =  

with boundary conditions given by 

 (0) 0, ( ) 1θ θ= ∞ =  

Separating variables and integration of the energy equation gives a form similar to Eq. (10-8) with the 
added term that represents the Falkner-Skan similarity behavior, 

 
0 0

0 0

1exp Pr
2( )

1exp Pr
2

m d d

m d d

η η

η

ζ η η
θ η

ζ η η
∞

+   −     =
+   −     

∫ ∫

∫ ∫
 

Now, for the Pr 1 ( ) 1u uζ η ∞′ = ≈ and the solution reduces to 

 

( )

2
0

2
0

1exp Pr
4

1exp Pr
4

m d

m d

η
ηη

θ η
ηη

∞

+ − 
 =

+ − 
 

∫

∫
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Now formulate the Nusselt number 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0 0 Re
s

ys
x x

s s

k T T x
yhx q x xu

k T T k T T k

θ

θ θ
ν

∞
= ∞

∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
 

and differentiate the expression for ( )θ η  to obtain the expression for (0)θ ′  

 

( )
2

0

10
1exp Pr

4
m d

θ
ηη

∞
′ =

+ − 
 ∫

 

We recognize the integral as being similar to an error function, as given in Table C-4 of Appendix C, so we 

can transform this integral by letting ( )1 Pr
2

m
α η

+
= , leading to 

 

( ) ( )
( )

( ) 1 2

1 Pr 2 10
2 erf

1
Pr

m

m

θ
π

π

+′ =
∞

+
=

 

and the solution for m=1 becomes 

 
( ) 1 2 1 2

1 2 1 2

1
Nu Pr

0.798Pr Re

x x

x

m
π
+

=

=

Re  

We now need to convert the local x-Reynolds number into a cylinder Reynolds number using the approach 
velocity and the cylinder diameter, where ( ) ( )app2u x V x R∞ =  

 1 21 2Nu 1.596Pr ReD D=  
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10-4 

Repeat Prob. 10-2 for a two-dimensional stagnation point and compare with the results of Prob. 10-
3. The following results from the momentum equation solution for the stagnation point are needed: 

η ζ (η) 

0 0 
0.5 0.12 
1.0 0.46 
1.5 0.87 
2.0 1.36 
3.0 2.35 

η > 3.0 ζ = η – 0.65 

 

To develop a similar energy equation, the stream-function transformations Eqs. (9-9) and (9-10) are used, 
along with the Blasius transformation, Eq. (9-11), and using mxu C∞ = in all the transformations. Equation 
(10-2) transforms into 

 Pr ( 1)
2

mθ ζ′′ ′ 0θ+ + =  

with boundary conditions given by 

 (0) 0, ( ) 1θ θ= ∞ =  

Separating variables and integration of the energy equation gives a form similar to Eq. (10-8) with the 
added term that represents the Falkner-Skan similarity behavior, 

 
0 0

0 0

1exp Pr
2( )

1exp Pr
2

m d d

m d d

η η

η

ζ η η
θ η

ζ η η
∞

+   −     =
+   −     

∫ ∫

∫ ∫
 

The Nusselt number is formulated as 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0
s

ys
x x

s s

k T T x
yhx q x xu

k T T k T T k

θ

θ θ
ν

∞
= ∞

∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
0 Re  

and differentiate the expression for ( )θ η  to obtain the expression for (0)θ ′  

 0 0

1(0)
1exp Pr

2
m d d

η
θ

ζ η η
∞

′ =
+   −     ∫ ∫

 

To numerically evaluate this integral, we use the ( )ζ η

686

table that accompanies the problem statement. An 

approximate curve fit is ( ) 20.00045 0.40 0.13381ζ η η= − + η 3+ .for the range 0 η≤ ≤ . Make use of 
the recursion relation ( ) 0.65ζ η η= −  for higher values of ( )ζ η

0) 0.052
. Evaluation of this expression with 

Pr=0.01 should compare with the numerical solution (θ ′ = . This solution is a bit difficult because 
we need to estimate the infinite value for  η. For the momentum solution, Table 9-1 is for m=0, and it 
shows 5η∞ > , and from Eq. (10-27) we have an approximation that the ratio of the thermal boundary 
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layer to momentum boundary layer can be estimated as ( )1 31/ 1.026Pr 4.5r δ= ∆ = ≈ . We also know 

that for m>0, infinite value for  η  decreases for momentum. If we use a conservative estimate for 
( )momentum 4η∞ ≈  then ( )energy 20η∞ ≈ . Using a 4th-order Runge-Kutta numerical method, we find 

(0) 0.077θ ′ =  for Pr=0.01. If we continue to increase η∞ we get a slightly lower answer that converges to 
0.076 when ( energy ) 30η∞ ≈ and the solution for m=1 becomes 

1 2PrNu

( (appV∞

1 2N 52PrD

 1 20.76 Rex x=  

We now need to convert the local x-Reynolds number into a cylinder Reynolds number using the approach 
velocity and the cylinder diameter, where ) )2u x x R=  

 1 2u 1. ReD=  

Comparison of this stagnation-point similarity solution for Pr=0.01 with the approximate solution in 
problem 10-3 shows an agreement within 5%. 
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10-5 

Consider constant-property flow along a surface with constant free-stream velocity. Let the 
temperature difference between the surface and the fluid, Ts T∞− , vary as xm, where m is a constant. 
Show that a similarity solution to the energy equation is obtainable under these conditions. Carry 
out the necessary calculations to obtain the Nusselt number as a function of Reynolds number for Pr 
= 0.7 and m = 1. 

This problem is a Blasius type solution to the flat plate boundary layer with constant free stream velocity 
and variable surface temperature. The governing equation is Eq. (4-39) 

 
2

2
T Tu
x y y

α T∂ ∂ ∂
+ =

∂ ∂ ∂
v  

with boundary conditions 

 
( )
( )
( )

0,

,0

,
s

T y T

T x T

T x T

∞

∞

=

=

∞ =

 

Introduce this nondimensional temperature 

 
( ) m

s

T T T T T T
T T x Cx

τ
φ

∞ ∞ ∞

∞

− − −
= = =

−
 

and the governing equation becomes 

 
2

2
mu

x x y y
τ τ ττ α∂ ∂ ∂ + + = ∂ ∂  ∂

v  

with boundary conditions 

 
( )
( )
( )

0, 0

,0 1

, 0

y

x

x

τ

τ

τ

=

=

∞ =

 

Now introduce the momentum transformation variables, Eqns. (9-9) and (9-10) 

 u x
y x
ψ ψ uψ ν ζ∞

∂ ∂
= = − =

∂ ∂
v  

and the governing equation becomes 

 
2

2
m

y x x x y y
ψ τ ψ τ ττ α∂ ∂ ∂ ∂ ∂    + − =    ∂ ∂ ∂ ∂     ∂

 

Transform the various derivatives using the chain rule: 
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( ) ( ) ( )

( ) ( ) ( )
x x x

y y y

ξ η
ξ η

ξ η
ξ η

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂

 

where the Blasius variables (see Eq. 9-11) are 

 yx
x u

ξ η
ν ∞

= =  

Thus 

 ( ) ( )
y y
ψ ψ ξ

ξ
∂ ∂ ∂

=
∂ ∂ ∂

1
/

xu u
x u

ν ζ ζ
ν∞ ∞

∞

 ′ ′+ = 
 

 

 
( ) ( ) ( ) ( )1 1 1

2 2 2
u u u

x x x x x x
ψ ψ ψ ν ν νξ η ζ ζ η ζ ζ η

ξ η
∞ ∞ ∞∂ ∂ ∂∂ ∂ ′ ′= + = + = +

∂ ∂ ∂ ∂ ∂
 

 
( ) ( ) ( )

3

1
2

m y
x x x x x u

τ τ τξ η τ τ
ξ η ν ∞

 ∂ ∂ ∂∂ ∂  ′= + = + −
 ∂ ∂ ∂ ∂ ∂  

 

 
( ) ( )
y y
τ τ ξ

ξ
∂ ∂ ∂

=
∂ ∂ ∂

( ) 1
y x u

τ η τ
η ν ∞

 ∂ ∂ ′+ =   ∂ ∂  
 

 
y y y y

τ τ ξ
ξ

   ∂ ∂ ∂ ∂ ∂
=   ∂ ∂ ∂ ∂ ∂   

1
y y x u
τ η τ

η ν ∞

  ∂ ∂ ∂ ′′+ =     ∂ ∂ ∂   
 

Now, assemble all the terms and the result is 

 Pr Pr 0
2

mτ ζτ ζ τ′′ ′ ′+ = =  

and the boundary conditions (it is customary to use x in place of ξ) 

 
( )
( )
( )

0, 0

,0 1

, 0

x

x

τ η

τ

τ

=

=

∞ =

 

To solve this set of coupled equations by traditional numerical methods such as a Runge-Kutta numerical 
algorithm and a “shooting technique” for the boundary-value problem (. (0)θ ′  is unknown, just as 

(0) 0ζ ′′ =  would be unknown if we were solving only the momentum Blasius problem). Here is the 
formulation necessary for the Runge-Kutta method. 

For the Blasius momentum equation 
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1 1 2

2 2 3

3 3
1
2

Y Y Y
Y Y Y

Y Y 1 3Y Y

ζ
ζ

ζ

′= =
′ ′= =

′′ ′= = −

 

along with ( ) ( ) ( )1 2 20 0, 0 0, and 0 specifiedY Y Y= = = . Note this last boundary condition has become an 
initial condition, which would have to be iteratively determined until ( )2 1Y ∞ = . We will use 

 from the Blasius momentum solution. ( )2 0Y ζ ′′(0) 0.332= =

For the Blasius energy equation 

 
4 4 5

5 5 1 5
1 Pr Pr
2

Y Y Y

Y Y Y Y m Y

τ

τ

′= =

′ ′= = − + 2 4Y
 

along with . Note this last boundary condition has become an initial 

condition, iteratively determined using the shooting method until 
( ) ( )4 50 0 and 0 specifiedY Y= =

( )4 1Y ∞ = .  

This solution is a bit difficult because we need to estimate the infinite value for  η. For the momentum 
solution, Table 9-1 shows 5η∞ > , and from Eq. (10-27) we have an approximation that the ratio of the 

thermal boundary layer to momentum boundary layer can be estimated as ( )1 31/ 1.026Pr 1.1r δ= ∆ = ≈ . 

So our first estimate is ( )tum 6momenη∞ ≈  and ( )energy 8η∞ ≈ . However, we really need to use much 
larger infinite-state values to insure the boundary value problem is correct, and nothing is lost by using a 
much larger number. Using a 4th-order Runge-Kutta numerical methodand 50η∞ ≈ , we find the answer 
for Pr=0.01 and m=1 converges to (0) 0.48τ ′ = . We formulate the Nusselt number as 

 
( )

( )

( ) ( ) ( )0 1 2Nu 0
s

ys
x x

s s

k T T x
yhx q x xu

k T T k T T k

θ

θ θ
ν

∞
= ∞

∞ ∞

∂
− −

∂′′
′ ′= = = = =

− −
0 Re  

and obtain ( )0τ ′ from numerical solution, and the result for Pr=0.7 and m=1 is 

 1 2Nu 0.48Rex x=  

A solution can be found in NACA TN3151 and TN3588 by Livingood and Donoughe. 
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10-6 

Using the approximate solution developed in the text for a laminar boundary layer with constant 
free-stream velocity and a simple step in surface temperature at some arbitrary point, develop a 
solution for Pr = 0.7 and  varying directly with x, using superposition theory. Compare with 
the exact result from Prob. 10-5. 

sT T∞−

The solution procedure is to evaluate the surface heat flux for the given surface temperature distribution 
and then formulate the Nusselt number. Combine Eqs. (10-31) and (10-32) to give 

 
1/ 33/ 4

1/3 1/2
,

1

0.332 Pr Re 1 ( , )
k

s
s x i

i

dTkq d
x x d

ξ ξ ξ
ξ

−

=

    ′′ = − +   
     

∑ s ih x T∆
0

x

∫  

For the given (  and m=1, ) m
sT T Cx∞− = sdT d Cξ = , and the surface heat flux becomes 

 

( )

1/ 33 / 4

1/3 1/2

0

1/3 1/2

0.332 CPr Re 1

0.332 CPr Re ;

x

s x

x

kq d
x x

k I x
x

ξ ξ

ξ

−
  ′′ = −  

   

=

∫
 

Transform the integrand by letting 

 

( ) ( )

3 4

4 3 1 3

1

41 1
3

u
x

x u d x u

ξ

ξ ξ

 = −  
 

= − = − − du
 

and the integral becomes 

 ( ) ( ) ( ) ( )2

1

0 11/ 3 1/ 3 1/ 31/ 3 1/ 3 1/ 3

1 0

4 4 4; 1 1 1
3 3 3

u

u

x x xI x u u du u u du u u dξ − − −= − − = − − = −∫ ∫ ∫ u  

If instead we use the transformation 

 

3 4

4 3 1 34
3

u
x

xu d xu

ξ

ξ ξ

 =  
 

= = du
 

the integral becomes 

 ( ) ( ) ( )2

1

11/ 3 1/ 31/ 3 1/ 3

0

4 4; 1 1
3 3

u

u

x xI x u u du u u dξ − −= − = −∫ ∫ u  

From Appendix C, 

 ( ) ( )( ) ( ) ( ) ( )
( ) ( )

1 11

0
1 ,nm m n

u u du m n n
m n

β β−− Γ Γ
− = = =

Γ +∫ ,m  
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Thus, the Beta function is symmetrical. With the first transformation, m=2/3 and n=4/3, and with the 
second transformation they are reversed, n=2/3 and m=4/3. In either case 

 ( ) ( ) ( )
( )( )

( )

1 5 42 4
1.353 0.8932 3 3 34 4 43 3; 1.611

3 2 3 2 3 1
I x x x xξ

         Γ ΓΓ Γ                  = = = =
Γ Γ

x  

and the surface heat flux becomes 

 ( )1/3 1/2 1/3 1/20.332 CPr Re 1.611 0.535 Pr Res x x
kq x

x
′′ = = Ck  

Now formulate the Nusselt number 

 ( ) ( )

1 3 1 2
x

1 3 1 2
x

0.535 Pr ReNu

0.535Pr Re

s
x

s

hx q x Ck
k T T k Cx k∞

′′
= = =

−

=

 

For Pr=0.7, 1 2
xNu 0.475 Rex = , which compares with the similarity solution 1 2Nu 0.48Rex x= . 

 

142



Solutions Manual - Chapter 10 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

10-7 

Consider liquid sodium at 200°C flowing normal to a 2.5-cm-diameter tube at a velocity of 0.6 m/s. 
Using the results of Prob. 10-3, calculate the “conduction” thickness of the thermal boundary layer 
at the stagnation point. Calculate the corresponding “shear” thickness of the momentum boundary 
layer at the stagnation point and discuss the significance of the results. 

The analysis in Prob. 10-3 was for and the similarity solution required Pr 1 ( ) 1u uζ η ∞′ = ≈ . For this 
approximation, the similarity solution becomes (for m=1) became 

 
( ) 1 2 1 2

1 2 1 2

1
Nu Pr

0.798Pr Re

x x

x

m
π
+

=

=

Re  

which, converted from the local x-Reynolds number into a cylinder Reynolds number using the approach 
velocity and the cylinder diameter, where ( ) ( )app2u x V x R∞ = , was 

 1 21 2Nu 1.596Pr ReD D=  

The conduction thickness is defined for use with Eq. (10-45) 

 4 1 21 2Nu 1.596Pr ReD D

k D D
h

∆ = = =  

For this problem, ReD=30,200 based on properties of Na at 200°C, and for Pr=0.0074, . 4 1.05E-03m∆ =

For the shear thickness, combine Eq. (9-12) for the friction coefficient with Eq. (9-36) for the shear 
thickness, and substitute Eq. (9-25) for the Falkner-Skan wedge-flow formulation of the friction 
coefficient, 

 
( ) ( )

1 2

4
1 R

02
x

s f

u
u uc

µ µ νδ
τ ρ ζ

∞

∞ ∞
= = =

′′
e  

and for the stagnation point of a cylinder, ( ) ( )app2u x V x R∞ =  

 
( )

1 24 1 Re
2 0 DD

δ
ζ

− =  ′′ 
 

from which 4 5.84E-05mδ = . Thus, we find 4 4δ ∆ for and this further supports our assumption 
that the momentum boundary layer can be approximated by the free stream velocity at that location, 

Pr 1

/ 1u uζ ∞′ = = . 
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10-8 

Let air at 540°C and 1 atm pressure flow at a velocity of 6 m/s normal to a 2.5-cm-diameter cylinder. 
Let the cylinder be of a thin-walled porous material so that air can be pumped inside the cylinder 
and out through the pores in order to cool the walls. Let the cooling air be at 40°C where it actually 
enters the porous material. The objective of the problem is to calculate the cylinder surface 
temperature in the region of the stagnation point for various cooling-air flow rates, expressed as the 
mass rate of cooling air per square meter of cylinder surface. The problem is to be worked first for 
no radiation and then assuming that the cylinder surface is a black body radiating to a large 
surrounding (say a large duct) at 540°C. The same cooling air could be used to cool the surface 
internally by convection without passing through the surface out into the main stream. Assuming 
that the cooling air is again available at 40°C and is ducted away from the surface at surface 
temperature, calculate the surface temperature as a function of cooling-air rate per square meter of 
cylinder surface area for this case and compare with the results above. 

The first task is to perform an energy balance on a unit of surface area in the stagnation region. Let Ts be 
the wall, Ti be the injection or internal coolant temperature. 

Case I: Blowing, no radiation effect, 

 ( ) ( ) 0s s i sm c T T h T T∞− −′′ − =  

Case II: Blowing plus surface radiation for large surroundings, 

 
( ) ( ) ( )4 4 0s s i s sm c T T T T h T Tσ ∞ ∞− − −′′ − − =

 

Case III: Internal convective cooling, 

 ( ) ( ) 0s s i sm c T T h T T∞− −′′ − =  

For all cases and , the Nusselt number will be that for a circular cylinder, Eq. (10-22) 0sm′′ =

 1/ 2 0.4 1/ 2 0.4Nu 0.81 Re Pr 0.573 Re PrR R D= =  

For Case I and Case II and , the Nusselt number will come from Table 10-4 with m=1 for the 2-
dimensional stagnation point (the stagnation region of the circular cylinder) and 

0sm′′ >

( ) ( )app2u x V x R C∞ = = x  where app4C V= D . In Table 10-4 the blowing parameter for m=1 converts to 

 
1/ 2 1/ 2

1/ 2 1/ 22 2Re Re
1 1

s s
x x

v m
u m u m Cρ

sm
ρ ν∞ ∞ ∞ ∞

′′ ′   = =   + +   
′

 

and 

 1 2Nu Rex x
h
k C

ν− =  
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For Case III, sm  varies while h is a constant .  Carry out calculations for ′′ 0 0sm .13′′≤ ≤  kg/(m2). 

The results have been generated with all properties of air evaluated at 800K: 

sm′′  

kg/(m2·s) 

h 

W/(m2·K) 

Ts(I) 

Κ 

Ts(II) 

Κ 

Ts(III) 

Κ 

0 96.5 813 813 813 

0.0644 57.0 536 650 602 

0.129 28.3 396 518 516 
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10-9 

Let air at a constant velocity of 7.6 m/s, a temperature of 90°C, and 1 atm pressure flow along a 
smooth, flat surface. Let the plate be divided into three sections, each 10 cm in flow length. The first 
10 cm section is maintained at 40°C, the second at 80°C, and the third at 40°C. Evaluate and plot the 
heat flux at all points along the 30 cm of plate length, and find the local heat-transfer coefficient. 
TEXSTAN can be used to confirm the results of this variable surface-temperature problem. Choose 
a starting x-location near the leading edge, say 0.1 cm, and pick fluid properties that are appropriate 
to air, evaluated at the free stream temperature. Use constant fluid properties and do not consider 
viscous dissipation. The piecewise surface temperature boundary condition is modeled easily in 
TEXSTAN by providing temperatures at two x locations for each segment, e.g., at x = 0, x = 0.10, 
x = 0.101, x = 0.2, x = 0.201, and x = 0.3 m. Because TEXSTAN linearly interpolates the surface 
thermal boundary condition between consecutive x locations, a total of six boundary condition 
locations is sufficient to describe the surface temperature variation. The initial velocity and 
temperature profiles (Blasius similarity profiles) can be supplied by using the kstart=4 choice in 
TEXSTAN.   

The solution procedure is to evaluate the surface heat flux for the given surface temperature distribution 
and then formulate the Nusselt number. Combine Eqs. (10-31) and (10-32) to give 
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( , )
x s
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For this problem, there are 3 piecewise-continuous wall temperature changes, 
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For the first segment, 0 0  .1x≤ ≤
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For the second segment, 0.  1m 0.2 mx< ≤
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And for the third segment,  0.2m 0.3mx< ≤
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The TEXSTAN data file for this problem is 10.9.dat.txt. The data set construction is based on the 
s10.dat.txt file for flow over a flat plate with constant free stream velocity and specified surface 
temperature (initial profiles: Blasius velocity and Blasius temperature). Note that kout has been changed to 
=2. 

Here is an abbreviated listing of the file ftn86.txt which contains surface heat flux and heat transfer 
coefficient distributions. Note the stepsize in the input data file was reduced to deltax=0.05 to help resolve 
the thermal boundary layer behavior after the step-temperature changes. 

        intg  x/s            htc         qflux       ts          tinf 

           5  1.0545108E-03  1.6303E+02 -8.1517E+03  3.1300E+02  3.6300E+02 

         100  2.1247649E-03  1.1485E+02 -5.7424E+03  3.1300E+02  3.6300E+02 

         200  4.4815527E-03  7.9004E+01 -3.9502E+03  3.1300E+02  3.6300E+02 

         300  7.7104196E-03  6.0194E+01 -3.0097E+03  3.1300E+02  3.6300E+02 

         400  1.1811678E-02  4.8614E+01 -2.4307E+03  3.1300E+02  3.6300E+02 

         500  1.6785027E-02  4.0771E+01 -2.0385E+03  3.1300E+02  3.6300E+02 

         600  2.2630397E-02  3.5107E+01 -1.7553E+03  3.1300E+02  3.6300E+02 

         700  2.9347767E-02  3.0825E+01 -1.5412E+03  3.1300E+02  3.6300E+02 

         800  3.6937127E-02  2.7474E+01 -1.3737E+03  3.1300E+02  3.6300E+02 

         900  4.5398475E-02  2.4780E+01 -1.2390E+03  3.1300E+02  3.6300E+02 

        1000  5.4731807E-02  2.2567E+01 -1.1284E+03  3.1300E+02  3.6300E+02 

        1100  6.4937123E-02  2.0718E+01 -1.0359E+03  3.1300E+02  3.6300E+02 

        1200  7.6014422E-02  1.9148E+01 -9.5741E+02  3.1300E+02  3.6300E+02 

        1300  8.7963703E-02  1.7800E+01 -8.8999E+02  3.1300E+02  3.6300E+02 

        1400  1.0079390E-01 -1.9641E+02  3.5832E+03  3.4476E+02  3.6300E+02 

        1500  1.1442299E-01 -6.3292E+01  6.3292E+02  3.5300E+02  3.6300E+02 

        1600  1.2897423E-01 -3.4873E+01  3.4873E+02  3.5300E+02  3.6300E+02 

        1700  1.4440159E-01 -2.2033E+01  2.2033E+02  3.5300E+02  3.6300E+02 

        1800  1.6070594E-01 -1.4607E+01  1.4607E+02  3.5300E+02  3.6300E+02 

        1900  1.7788490E-01 -9.8016E+00  9.8016E+01  3.5300E+02  3.6300E+02 

        2000  1.9593702E-01 -6.4844E+00  6.4844E+01  3.5300E+02  3.6300E+02 

        2100  2.1470582E-01  2.4559E+01 -1.2280E+03  3.1300E+02  3.6300E+02 

        2200  2.3447915E-01  1.8128E+01 -9.0642E+02  3.1300E+02  3.6300E+02 
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        2300  2.5513199E-01  1.5378E+01 -7.6891E+02  3.1300E+02  3.6300E+02 

        2400  2.7666042E-01  1.3706E+01 -6.8528E+02  3.1300E+02  3.6300E+02 

        2500  2.9906192E-01  1.2527E+01 -6.2635E+02  3.1300E+02  3.6300E+02 

        2504  3.0000000E-01  1.2485E+01 -6.2427E+02  3.1300E+02  3.6300E+02 

The following plots compare TEXSTAN’s predictions of surface heat flux and heat transfer coefficient 
with the analysis 
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If you plot the temperature profiles in the region 0.1 0.2x≤ ≤  ( or ) 0.2 0.3x≤ ≤  you can see the effect of 
the change in surface temperature and how, in effect, there is a new thermal boundary layer that begins to 
grow from the step-change. To plot the profiles, you will need to add several x(m) points to the file 
10.9.dat.txt and then reset the flag k10=11 to obtain dimensional profiles of velocity and temperature at 
each x(m) location. You will observe the inflection in the profile near the wall, and the corresponding 
negative surface temperature gradient which gives a positive heat flux (Fourier’s law) but , ( ) 0sT T∞− <
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which leads to a negative heat transfer coefficient. If the surface temperature were not changing, the 
thermal boundary layer near the wall will eventually grow outward and the heat flux will become negative. 
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10-10 

Repeat Prob. 10-9 but let the surface temperature vary sinusoidally from 40°C at the leading and 
trailing edges to 80°C at the centerline. TEXSTAN can be used to confirm the results of this variable 
surface-temperature problem. For the surface temperature distribution, break up the length of the 
plate into 10 to 20 segments and evaluate the surface temperature at these x locations.  These values 
then become the variable surface temperature boundary condition.  Note that a larger number of 
points will more closely model the sine function. 

The solution analysis involves evaluation of the surface heat flux for the given surface temperature 
distribution and then formulate the Nusselt number. Combine Eqs. (10-31) and (10-32) to give 
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This problem starts with a discontinuous step, where  

  ( ) ( ),1 ,1 140°C 90°C 50°C and 0s sT T T ξ∞∆ = − = − = − =

followed by a continuously varying surface temperature 
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where for this problem =40ºC, and the expression for the surface heat flux becomes maxT∆
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The integral in the heat flux can be evaluated either analytically or numerically. For the analytical 
approach, convert the integral using the ideas of Appendix C and a Taylor-series approximation for the 
cosine function. 
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1/ 33 / 4

0
; 1 cos

x
I x d

x L
ξ πξξ ξ

−
    = −    

     
∫  

Transform the step-function kernel part of the integrand by letting 
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and the integral becomes 
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From Appendix C, 
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formulation because the Beta function is symmetrical. Now, for the cosine function 
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And the integral becomes 
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Comparing to the form of the Beta function, 
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The final form of the surface heat flux becomes 
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where 
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and the heat transfer coefficient follows from its definition 
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Because the surface temperature distribution for this problem is a sine function, 
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examine the sine Taylor series expansion 
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and compare this to the power-series surface temperature distribution associated with Eq. (10-37) 
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This suggests our analysis is similar to the textbook’s analysis for a surface temperature expressed as a 
power-series, Eq. (10-37) 
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The solutions compare. Note also that the textbook solution relating to Eq. (10-33) is the first term in the 
sine-series expansion. 
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The TEXSTAN data file for this problem is 10.10.dat.txt. The data set construction is based on the 
s10.dat.txt file for flow over a flat plate with constant free stream velocity and specified surface 
temperature (initial profiles: Blasius velocity and Blasius temperature). Note that kout has been changed to 
=2. 

Here is an abbreviated listing of the file ftn86.txt which contains surface heat flux and heat transfer 
coefficient distributions. Note the stepsize in the input data file was reduced to deltax=0.05 to help resolve 
the thermal boundary layer behavior after the step-temperature changes. 

        intg  x/s            htc         qflux       ts          tinf 

           5  1.0545108E-03  1.6292E+02 -8.0744E+03  3.1344E+02  3.6300E+02 

         100  2.1247659E-03  1.1371E+02 -5.5846E+03  3.1389E+02  3.6300E+02 

         200  4.4815757E-03  7.7113E+01 -3.7114E+03  3.1487E+02  3.6300E+02 

         300  7.7106651E-03  5.7588E+01 -2.6941E+03  3.1622E+02  3.6300E+02 

         400  1.1812232E-02  4.5243E+01 -2.0391E+03  3.1793E+02  3.6300E+02 

         500  1.6789076E-02  3.6588E+01 -1.5737E+03  3.1999E+02  3.6300E+02 

         600  2.2635270E-02  3.0002E+01 -1.2191E+03  3.2237E+02  3.6300E+02 

         700  2.9353246E-02  2.4606E+01 -9.3265E+02  3.2510E+02  3.6300E+02 

         800  3.6941989E-02  2.0128E+01 -7.0360E+02  3.2804E+02  3.6300E+02 

         900  4.5354936E-02  1.5966E+01 -5.0634E+02  3.3129E+02  3.6300E+02 

        1000  5.4680583E-02  1.2190E+01 -3.4603E+02  3.3461E+02  3.6300E+02 

        1100  6.4900384E-02  8.5112E+00 -2.1220E+02  3.3807E+02  3.6300E+02 

        1200  7.5916995E-02  4.6169E+00 -9.9127E+01  3.4153E+02  3.6300E+02 

        1300  8.7852042E-02  7.2654E-01 -1.3241E+01  3.4478E+02  3.6300E+02 

        1400  1.0056377E-01 -2.7133E+00  4.1595E+01  3.4767E+02  3.6300E+02 

        1500  1.1426216E-01 -5.5479E+00  7.1447E+01  3.5012E+02  3.6300E+02 

        1600  1.2883776E-01 -6.7064E+00  7.4401E+01  3.5191E+02  3.6300E+02 

        1700  1.4420596E-01 -4.8127E+00  4.9038E+01  3.5281E+02  3.6300E+02 

        1800  1.6053112E-01  4.2812E-01 -4.4285E+00  3.5266E+02  3.6300E+02 

        1900  1.7761681E-01  7.2425E+00 -8.4929E+01  3.5127E+02  3.6300E+02 

        2000  1.9555370E-01  1.3408E+01 -1.9416E+02  3.4852E+02  3.6300E+02 

        2100  2.1442505E-01  1.7668E+01 -3.3292E+02  3.4416E+02  3.6300E+02 

        2200  2.3420351E-01  1.9623E+01 -4.8363E+02  3.3835E+02  3.6300E+02 

        2300  2.5473851E-01  2.0220E+01 -6.4191E+02  3.3125E+02  3.6300E+02 

        2400  2.7632502E-01  2.0174E+01 -8.1242E+02  3.2273E+02  3.6300E+02 

        2500  2.9875782E-01  1.9571E+01 -9.6839E+02  3.1352E+02  3.6300E+02 

        2506  3.0000000E-01  1.9529E+01 -9.7646E+02  3.1300E+02  3.6300E+02 

The following plots compare TEXSTAN’s predictions of surface heat flux and heat transfer coefficient 
with the analysis using 10 terms in the series 
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If you plot the temperature profiles in the region where the heat flux changes sign you can see you can see 
how it correlates with the change in surface temperature. To plot the profiles, reset the flag k10=11 to 
obtain dimensional profiles of velocity and temperature at each x(m) location. You will observe the 
inflection in the profile near the wall, and the corresponding negative surface temperature gradient which 
gives a positive heat flux (Fourier’s law) but ( ) 0sT T∞− < , which leads to a negative heat transfer 
coefficient.  
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10-11 

The potential flow solution for the velocity along the surface of a cylinder with flow normal at a 
velocity V is 

 2 sinu V θ∞ =  

where θ is measured from the stagnation point. Assuming that this is a reasonable approximation for 
a real flow on the upstream side of the cylinder, calculate the local Nusselt number as a function of θ 
for 1

20 θ< < π  for a fluid with Pr = 0.7 and prepare a plot. Compare these results with the 
experimental data for the average Nusselt number around a cylinder. What can you conclude about 
the heat-transfer behavior in the wake region on the rear surface of the cylinder? TEXSTAN can be 
used to confirm the results of this variable free-stream velocity problem. For the velocity 
distribution, break up the surface length of the cylinder over which the boundary layer flows into at 
least 20 segments and evaluate the velocity at these x-locations.  These values then become the 
variable velocity boundary condition.  A larger number of points will more closely model the 
distribution, which is especially important because this distribution is differentiated to formulate the 
pressure gradient, as described by Eq. (5-3).  Note that TEXSTAN spline-fits these velocity 
boundary condition values to try to provide a smooth a velocity gradient in construction of the 
pressure gradient, but it is the user’s responsibility to have the velocity distribution as smooth as 
possible.  The initial velocity and temperature profiles (Falkner-Skan m = 1 similarity profiles, 
applicable to a cylinder in crossflow) can be supplied by using the kstart=6 choice in TEXSTAN. 

The solution follows the analysis for flow over a constant-temperature body of arbitrary shape that 
incorporates the assumption of local flow similarity. This solution is based on the Falkner-Skan wedge-
flow solutions, and it is carried out in detail in the textbook for Pr = 0.7.  The final result is Eq. (10-48) for 
the conduction thickness (Pr=0.7), 
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where x is in the boundary layer flow direction over the cylinder, and x=0 is the stagnation point. For the 
cylinder in crossflow, x Rθ=  , where R is the cylinder radius. Using this transformation along with the 

2 sinu V θ∞ = free stream velocity distribution, the conduction-thickness formulation based on cylinder 
diameter D becomes 
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The integral must be numerically evaluated. However before we integrate, examine the limiting case for 
small θ.  
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It can be compared to the classic stagnation heat transfer solution for a cylinder in crossflow, Eq. (10-22), 
after converting the Nusselt and Reynolds numbers in that equation from radius to diameter, and evaluating 
the equation for Pr=0.7, 

 0.4
1 2

Nu 0.812 Pr 0.9932
2Re

D

D

 = =  
 

The two solutions compare for the stagnation region. 

Numerical evaluation of the integral gives the following table of results 

 

θ 1 2Nu ReD D
−  

0 0.9914 
9 0.9876 
18 0.9768 
36 0.9342 
54 0.8644 
72 0.7692 
90 0.6520 

 

The TEXSTAN data file for this problem is 10.11.dat.txt. The data set construction is based on the 
s16.dat.txt file for flow over a circular cylinder with variable free stream velocity [unif=2Vsin(x/R)] and 
specified surface temperature (initial profiles:  Falkner-Skan m=1 velocity and temperature). 

There is a simplification to the TEXSTAN setup for the cylinder in crossflow. We can have TEXSTAN 
provide an analytic free stream velocity distribution by setting kstart=6. With this option TEXSTAN 
computes ( ) (2 sinu x axx x bxx∞ = ) ,where axx and bxx are user-supplied inputs for the approach velocity 
and cylinder radius. Using kstart=6 means you do not have to input the free stream velocity distribution 
like the problem statement suggests. For this problem, the approach velocity is axx=1 m/s and cylinder 
radius is bxx=1.1504 m, and all properties were evaluated at T=373K. This gives a cylinder-diameter 
Reynolds number of 100,000. 

There are several output files that are useful for the cylinder. The most useful is a specially created output 
file called ftn83_cyl.txt that presents data normalized by the  

Here is an abbreviated listing of ftn83_cyl.txt. In this fle theta is θ, nu/sqrt(red) is the ratio of the computed 
Nusselt number to the cylinder-diameter Reynolds number. Ignore the temperature-corrected column of 
data, because for this problem is constant property (kfluid=1), the ratio of surface to free stream 
temperature is close to unity, and the flow is not compressible. 

          intg   theta          nu/sqrt(red)   temp ratio corrected 
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              5  .17856678E+01  .99306009E+00  .99306009E+00 

            100  .36672133E+01  .99210651E+00  .99210651E+00 

            200  .79397891E+01  .99031516E+00  .99031516E+00 

            300  .12282510E+02  .98645998E+00  .98645998E+00 

            400  .16647203E+02  .98075506E+00  .98075506E+00 

            500  .21043674E+02  .97321990E+00  .97321990E+00 

            600  .25481910E+02  .96380518E+00  .96380518E+00 

            700  .29972551E+02  .95242965E+00  .95242965E+00 

            800  .34527253E+02  .93898351E+00  .93898351E+00 

            900  .39159058E+02  .92332437E+00  .92332437E+00 

           1000  .43882859E+02  .90526908E+00  .90526908E+00 

           1100  .48716004E+02  .88458089E+00  .88458089E+00 

           1200  .53680965E+02  .86094029E+00  .86094029E+00 

           1300  .58804766E+02  .83391822E+00  .83391822E+00 

           1400  .64119621E+02  .80292822E+00  .80292822E+00 

           1500  .69667076E+02  .76712261E+00  .76712261E+00 

           1600  .75502857E+02  .72519641E+00  .72519641E+00 

           1700  .81710276E+02  .67490325E+00  .67490325E+00 

           1800  .88416550E+02  .61180075E+00  .61180075E+00 

           1828  .90365157E+02  .59114156E+00  .59114156E+00 

 From our analytical solution we see nu/sqrt(red) should be about 0.993 for small θ, and we see the 
TEXSTAN ratio matches this solution to within 5% out to θ = 30º, and to within 2% to θ = 15º. We also 
see the movement towards laminar separation around θ = 90º. Theoretically we would expect separation 
just before θ = 90º, and the reason we do not predict it with TEXSTAN is that the potential flow free 
stream velocity distribution, u V2 sin θ∞ =

( )x∞

, is not correct for θ > 45-60º. If we would have used an 
experimentally determined u , or its Mach-number equivalent, we would have predicted separated 
flow before θ = 90º.  
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10-12 

The potential flow solution for the velocity along the surface of a sphere with flow normal at a 
velocity V is 

 3
2 sinu V θ∞ =  

Do the same problem as the preceding one for the sphere. 

The solution follows the analysis for flow over a constant-temperature body of arbitrary shape that 
incorporates the assumption of local flow similarity. This solution is based on the Falkner-Skan wedge-
flow solutions, and it is carried out in detail in the textbook for Pr = 0.7.  The final result for the case where 
flow occurs over a body of revolution is the conduction thickness (Pr=0.7) equation just above its Stanton-
number formulation, Eq. (10-52) , 
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∫  

where x is in the boundary layer flow direction over the sphere, and x=0 is the stagnation point. The 
variable R is the radius of revolution, or transverse radius of curvature of the sphere, as shown in Fig. 5-1 
of the integral equation chapter. For the sphere in crossflow, sx R θ= , where Rs is the sphere radius. From 
geometrical considerations, ( ) ( )sinsR x R θ= . Using these transformations along with the 

3
2 sinu V θ∞ = free stream velocity distribution, the conduction-thickness formulation becomes 
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The integral must be numerically evaluated. However before we integrate, examine the limiting case for 
small θ.  
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It can be compared to the classic stagnation heat transfer solution for a cylinder in crossflow, Eq. (10-23), 
after converting the Nusselt and Reynolds numbers in that equation from radius to diameter, and evaluating 
the equation for Pr=0.7, 

 0.4
1 2

Nu 0.932 Pr 1.140
2Re

D

D

 = =  
3  

The two solutions compare for the stagnation region. 

Numerical evaluation of the integral gives the following table of results 

 

θ 1 2Nu ReD D
−  

0 1.1184 
9 1.1073 
18 1.0920 
36 1.0086 
54 0.9349 
72 0.7692 
90 0.6557 

 

The TEXSTAN data file for this problem is 10.12.dat.txt. The data set construction is based on the 
s17.dat.txt file for flow over a sphere with variable free stream velocity [unif=1.5Vsin(x/Rs)] and specified 
surface temperature (initial profiles:  approximate similarity velocity and temperature) For this input file 
kgeom=2 for flow over an axisymmetric body of revolution, and the radius of revolution is input using the 
rw(m) variable, where ( ) ( )sinsR x R θ=  where sx R θ= , and Rs is the sphere radius. Here is the table, 
constructed using 15 values at theta angles of 0.01, 1, 2, 3, 5, 10, 18, 27, 36, 45, 54, 63, 72, 81, and 90 
degrees. Note you can not choose a theta angle of 0 degrees, as this presents a radius singularity  

###        x(m)     rw(m)   aux1(m)   aux2(m)   aux3(m) 

      0.0020000    0.0020    0.0000    0.0000    0.0000 

      0.0201000    0.02008    0.0000    0.0000    0.0000 

      0.0402000    0.04015    0.0000    0.0000    0.0000 

      0.0602000    0.06021    0.0000    0.0000    0.0000 

      0.1004000    0.10026    0.0000    0.0000    0.0000 

      0.2008000    0.19976    0.0000    0.0000    0.0000 

      0.3614000    0.35549    0.0000    0.0000    0.0000 
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      0.5421000    0.52227    0.0000    0.0000    0.0000 

      0.7228000    0.67619    0.0000    0.0000    0.0000 

      0.9035000    0.81346    0.0000    0.0000    0.0000 

      1.0842000    0.93069    0.0000    0.0000    0.0000 

      1.2649000    1.02501    0.0000    0.0000    0.0000 

      1.4456000    1.09410    0.0000    0.0000    0.0000 

      1.6263000    1.13624    0.0000    0.0000    0.0000 

      1.8070000    1.15040    0.0000    0.0000    0.0000 

There is a simplification to the TEXSTAN setup for the sphere in crossflow. We can have TEXSTAN 
provide an analytic free stream velocity distribution by setting kstart=6. With this option TEXSTAN 
computes ( ) (1.5 sinu x axx x bxx∞ = ) ,where axx and bxx are user-supplied inputs for the approach 
velocity (V) and sphere radius (Rs). Using kstart=6 means you do not have to input the free stream velocity 
distribution like problem statement 10-11 suggests. For this problem, the approach velocity is axx=1 m/s 
and sphere radius is bxx=1.1504 m, and all properties were evaluated at T=373K. This gives a sphere-
diameter Reynolds number of 100,000. 

There are several output files that are useful for the cylinder. The most useful is a specially created output 
file called ftn83_sphere.txt that presents data normalized by the  

Here is an abbreviated listing of ftn83_sphere.txt. In this fle theta is θ, nu/sqrt(red) is the ratio of the 
computed Nusselt number to the cylinder-diameter Reynolds number. Ignore the temperature-corrected 
column of data, because for this problem is constant property (kfluid=1), the ratio of surface to free stream 
temperature is close to unity, and the flow is not compressible. 

          intg   theta          nu/sqrt(red)   temp ratio corrected 

              5  .10053950E+01  .12655893E+01  .12655893E+01 

            100  .19450630E+01  .11988785E+01  .11988785E+01 

            200  .35902178E+01  .11559551E+01  .11559551E+01 

            300  .59712800E+01  .11550118E+01  .11550118E+01 

            400  .97477592E+01  .11514877E+01  .11514877E+01 

            500  .13858879E+02  .11453340E+01  .11453340E+01 

            600  .17988653E+02  .11380971E+01  .11380971E+01 

            700  .22122285E+02  .11260944E+01  .11260944E+01 

            800  .26334032E+02  .11147015E+01  .11147015E+01 

            900  .30586896E+02  .10977712E+01  .10977712E+01 

           1000  .34924323E+02  .10811442E+01  .10811442E+01 

           1100  .39318151E+02  .10590670E+01  .10590670E+01 

           1200  .43833358E+02  .10365953E+01  .10365953E+01 

           1300  .48434526E+02  .10082867E+01  .10082867E+01 

           1400  .53204787E+02  .97914426E+00  .97914426E+00 

           1500  .58107202E+02  .94272106E+00  .94272106E+00 

           1600  .63207863E+02  .90542010E+00  .90542010E+00 
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           1700  .68598481E+02  .85783335E+00  .85783335E+00 

           1800  .74263750E+02  .80562934E+00  .80562934E+00 

           1900  .80385911E+02  .74423324E+00  .74423324E+00 

           2000  .87045547E+02  .66656614E+00  .66656614E+00 

           2041  .89997596E+02  .63079697E+00  .63079697E+00 

 From our analytical solution we see nu/sqrt(red) should be about 1.140 for small θ, and we see the 
TEXSTAN ratio matches this solution to within 5% out to θ = 30º, and to within 2% to θ = 15º. Note that 
the initial condition profiles currently programmed into TEXSTAN for a sphere are approximate profiles, 
and this is the source of error for small theta. For large theta, we see the movement towards laminar 
separation around θ = 90º. Theoretically we would expect separation around θ = 90º, and the reason we do 
not predict it with TEXSTAN is that the potential flow free stream velocity distribution, 1.5 sinu V θ∞ =

( )x
, 

is not correct for θ > 45-60º. If we would have used an experimentally determined , or its Mach-
number equivalent, we would have predicted separated flow before θ = 90º.  
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This comparison shows the correct trend, but not nearly as accurate as with the cylinder in crossflow. This 
will be partly related to not having correct initial conditions. For the cylinder we have the Falkner-Skan 
m=1 profiles. 
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10-13 

Let air at a constant velocity of 7.6 m/s, a temperature of –7°C, and 1 atm pressure flow along a 
smooth, flat surface. The plate is 15 cm long (in the flow direction). The entire surface of the plate is 
adiabatic except for a 2.5 cm wide strip, located between 5 and 7.5 cm from the leading edge, which 
is electrically heated so that the heat-transfer rate per unit of area on this strip is uniform. What 
must be the heat flux from this strip such that the temperature of the surface at the trailing edge of 
the plate is above 0°C? Plot the temperature distribution along the entire plate surface. Discuss the 
significance of this problem with respect to wing deicing. (A tabulation of incomplete beta functions, 
necessary for this solution, is found in App. C). TEXSTAN can be used to confirm the results of this 
variable surface heat flux problem. Choose a starting x-location near the leading edge, say 0.1 cm, 
and pick fluid properties that are appropriate to air, evaluated at the free stream temperature. Use 
constant fluid properties and do not consider viscous dissipation. The piecewise surface heat flux 
boundary condition is modeled easily in TEXSTAN by providing heat flux values at two x-locations 
for each segment, e.g. at x = 0, x = 0.05, x = 0.0501, x = 0.075, x = 0.0751, and x = 0.15 m. Because 
TEXSTAN linearly interpolates the surface thermal boundary condition between consecutive x-
locations, a total of 6 boundary condition locations is sufficient to describe the surface heat flux 
variation. The initial velocity and temperature profiles (Blasius similarity profiles) can be supplied 
by using the kstart=4 choice in TEXSTAN. 

The solution procedure is to evaluate the surface temperature distribution for the given surface heat flux 
distribution. Equation (10-41) gives the computing equation, 
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For this problem statement, we know Ts(x=L)=0ºC, and the distribution of surface heat flux is piecewise, 
being adiabatic everywhere except 0.05 m 0.075 mx≤ ≤  and the surface heat flux is constant in that 
interval, so 
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Transform the integrand by letting 
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and the integral becomes 
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From Appendix C, we recognize this as an integral in the Beta function family with m=1/3 and n=4/3 in 
Table C-3. 
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For our problem, we want to evaluate the integral at x=0.15m where Ts(x=L)=0ºC to solve for the required 
heat flux to achieve this temperature. Therefore 
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and m=1/3 and n=4/3 for all evaluations of the Beta functions.. The integral becomes. 
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and 
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With the properties for air evaluated at 263 K, the required heat flux is . 21829 W/msq′′ =

The TEXSTAN data file for this problem is 10.13.dat.txt. The data set construction is based on the 
s11.dat.txt file for flow over a flat plate with constant free stream velocity and specified surface heat flux 
(initial profiles: Blasius velocity and Blasius temperature). 

Here is an abbreviated listing of the file ftn86.txt which contains the surface temperature distribution. Note 
the stepsize in the input data file was reduced to deltax=0.05 to help resolve the thermal boundary layer 
behavior after the step heat flux changes. 

        intg  x/s            htc         qflux       ts          tinf 

           5  1.0511671E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

          50  1.2137448E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         100  1.8219660E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         150  2.5535141E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         200  3.4086695E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         250  4.3873001E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 
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         300  5.4894155E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         350  6.7150241E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         400  8.0641306E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         450  9.5367375E-03  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         500  1.1132846E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         550  1.2852458E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         600  1.4695574E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         650  1.6662194E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         700  1.8752319E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         750  2.0965948E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         800  2.3303082E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         850  2.5763722E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         900  2.8347866E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

         950  3.1055516E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1000  3.3886671E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1050  3.6841332E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1100  3.9919498E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1150  4.3121170E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1200  4.6446347E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1250  4.9895030E-02  0.0000E+00  0.0000E+00  2.6600E+02  2.6600E+02 

        1300  5.3388496E-02  8.0094E+01  1.8610E+03  2.8924E+02  2.6600E+02 

        1350  5.7081513E-02  6.1854E+01  1.8610E+03  2.9609E+02  2.6600E+02 

        1400  6.0898035E-02  5.2997E+01  1.8610E+03  3.0112E+02  2.6600E+02 

        1450  6.4838063E-02  4.7332E+01  1.8610E+03  3.0532E+02  2.6600E+02 

        1500  6.8901597E-02  4.3239E+01  1.8610E+03  3.0904E+02  2.6600E+02 

        1550  7.3088637E-02  4.0069E+01  1.8610E+03  3.1244E+02  2.6600E+02 

        1600  7.7356267E-02  0.0000E+00  0.0000E+00  2.9368E+02  2.6600E+02 

        1650  8.1789105E-02  0.0000E+00  0.0000E+00  2.8707E+02  2.6600E+02 

        1700  8.6345449E-02  0.0000E+00  0.0000E+00  2.8372E+02  2.6600E+02 

        1750  9.1025299E-02  0.0000E+00  0.0000E+00  2.8153E+02  2.6600E+02 

        1800  9.5828654E-02  0.0000E+00  0.0000E+00  2.7993E+02  2.6600E+02 

        1850  1.0075552E-01  0.0000E+00  0.0000E+00  2.7870E+02  2.6600E+02 

        1900  1.0580588E-01  0.0000E+00  0.0000E+00  2.7771E+02  2.6600E+02 

        1950  1.1097975E-01  0.0000E+00  0.0000E+00  2.7689E+02  2.6600E+02 

        2000  1.1627713E-01  0.0000E+00  0.0000E+00  2.7620E+02  2.6600E+02 

        2050  1.2169802E-01  0.0000E+00  0.0000E+00  2.7561E+02  2.6600E+02 

        2100  1.2724241E-01  0.0000E+00  0.0000E+00  2.7509E+02  2.6600E+02 
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        2150  1.3291030E-01  0.0000E+00  0.0000E+00  2.7464E+02  2.6600E+02 

        2200  1.3870170E-01  0.0000E+00  0.0000E+00  2.7423E+02  2.6600E+02 

        2250  1.4461661E-01  0.0000E+00  0.0000E+00  2.7387E+02  2.6600E+02 

        2295  1.5000000E-01  0.0000E+00  0.0000E+00  2.7358E+02  2.6600E+02 

Based on the analytical solution for the required heat flux, we see the TEXSTAN prediction of the surface 
temperature at x=0.15m is 273.6K, which matches the required Ts(x=L)=0ºC. Here is a plot of the 
TEXSTAN surface temperature distribution. 
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10-14 

Let air at a constant velocity of 15 m/s, a temperature of 300°C, and 1 atm pressure flow along a 
smooth, flat surface. Let the first 15 cm of the surface be cooled by some internal means to a uniform 
temperature of 90°C. How does the surface temperature vary for the next 45 cm? Hint: Note that the 
first 15 cm must be treated as a surface-temperature-specified problem, while the last 45 cm must be 
treated as a surface-heat-flux-specified problem.  Because this problem requires two different types 
of thermal boundary condition, TEXSTAN is not suitable for this problem. 

The surface heat flux for is the constant surface temperature solution using Eq. (10-29 0 0.15mx≤ ≤

 ( ) ( ) ( ) ( )( )1 3 1 2Nu 0.332Pr Rex
s x s s x s

k kq x h T T T T T T
x x∞ ∞′′ = − = − = − ∞  

and for . The solution procedure is to evaluate the surface temperature 
distribution for the variable surface heat flux distribution using Eq. (10-41), where the integral contribution 
for x>0.15m is zero, 

0.15m<x 0.60m≤ ( ) 0sq x′′ =

 
( )( )

( )

2 / 33/ 4
0.151/3 1/2 1 3 1 2

,10

2 / 33 / 41 2
0.151/2

,1 0

0.623( ) Pr Re 1 0.332Pr Re

10.623Re 0.332 1
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s x
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x s
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k x

u T T d
x

ξ
ξ

s ξ
ξ

ξ ξ
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−

− −
∞ ∞

−

− ∞
∞

    − = − −         

      = − −     
        

∫

∫

 

or 

 ( ) ( ) ( ) ( )
1 2

1/2
,1( ) 0.623 0.332 Re ;s s

uT x T T T I xξ
ν

−∞
∞ ∞

  − = −  
   

x  

Transform the integrand by letting 

 ( ) ( )

( )

3 4

4 3 1 3

2 31 2 1 2

1

41 1
3

1

u
x

x u d x u

x u

ξ

ξ ξ

ξ −− −

 = −  
 

= − = − −

= −

du  

For our problem, we want to evaluate the integral for x>0.15m. Therefore 

 

3 4

2

1

0.151

1

u
x

u

 = −  
 

=
 

and the integral becomes 
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From Appendix C, we recognize this as an integral in the Beta function family with m=1/3 and n=2/3 in 
Table C-3. 
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The integral becomes. 

 ( )
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Note, the alternative for numerical integration would be 

 ( ) ( ) ( )2 1/ 31 2 2 / 3
1 0

4; , 1
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I x x m n u uξ β −−  du = + − −      ∫  

The surface temperature formulation becomes 
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where 
3 4

2
0.151r u

x
 = = −  
 

and with m=1/3 and n=2/3. A table of results for this analysis is shown in the 

table below. 

x (m) r β(r)/β(m,n) β(r) Ts(x) (ºC) 

0.16 0.047 0.293 1.063 151.42 

0.2 0.194 0.486 1.762 191.92 

0.25 0.318 0.576 2.090 210.87 

0.3 0.405 0.638 2.314 223.88 

0.4 0.521 0.701 2.543 237.16 

0.5 0.595 0.742 2.692 245.78 
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0.6 0.646 0.769 2.791 251.53 

 

The problem statement indicates this problem is not suitable for TEXSTAN. This is not completely correct. 
TEXSTAN is programmed so that the thermal boundary condition is either Dirichlet (temperature) or 
Neumann (heat flux) for all x(m) values. What can be done is to convert the boundary condition over the 
range  from T0 0.15x≤ ≤ m s=90ºC to its heat flux equivalent using  

 ( ) ( ) ( ) ( )( )1 3 1 2Nu 0.332Pr Rex
s x s s x s

k kq x h T T T T T T
x x∞ ∞′′ = − = − = − ∞  

The problem then is truly a variable heat flux problem, ( ) 0sq x′′ =  for 0.15m<x 0.60m≤ . 

The TEXSTAN data file for this problem is 10.14.dat.txt. The data set construction is based on the 
s11.dat.txt file for flow over a flat plate with constant free stream velocity and specified surface heat flux 
(initial profiles: Blasius velocity and Blasius temperature). The heat flux formula given above was used to 
set the heat flux boundary condition, and 8 x(m) locations were used. This is a minimum number because 
TEXSTAN linearly interpolates between boundary condition points for heat flux, and the flux is rapidly 
changing with x. 

Here is an abbreviated listing of the file ftn86.txt which contains the surface temperature distribution. Note 
the stepsize in the input data file was reduced to deltax=0.05 to help resolve the thermal boundary layer 
behavior after the step heat flux changes. 

        intg  x/s            htc         qflux       ts          tinf 

           5  3.2248679E-03  1.6600E+02 -2.6883E+04  1.3805E+02  3.0000E+02 

         100  5.0621646E-03  1.1552E+02 -2.1487E+04  1.1400E+02  3.0000E+02 

         200  8.6609354E-03  8.5591E+01 -1.6941E+04  1.0207E+02  3.0000E+02 

         300  1.3203350E-02  6.9107E+01 -1.4052E+04  9.6659E+01  3.0000E+02 

         400  1.8720567E-02  5.7192E+01 -1.1991E+04  9.0341E+01  3.0000E+02 

         500  2.5208464E-02  4.6437E+01 -9.6209E+03  9.2817E+01  3.0000E+02 

         600  3.2653331E-02  4.1909E+01 -8.7797E+03  9.0505E+01  3.0000E+02 

         700  4.1061222E-02  3.7080E+01 -7.8297E+03  8.8845E+01  3.0000E+02 

         800  5.0393175E-02  3.2492E+01 -6.8040E+03  9.0593E+01  3.0000E+02 

         900  6.0723345E-02  3.0287E+01 -6.3913E+03  8.8977E+01  3.0000E+02 

        1000  7.2016505E-02  2.7910E+01 -5.9402E+03  8.7169E+01  3.0000E+02 

        1100  8.4272619E-02  2.5547E+01 -5.4506E+03  8.6649E+01  3.0000E+02 

        1200  9.7491744E-02  2.3219E+01 -4.9225E+03  8.7999E+01  3.0000E+02 

        1300  1.1170201E-01  2.1820E+01 -4.6152E+03  8.8490E+01  3.0000E+02 

        1400  1.2684915E-01  2.0520E+01 -4.3471E+03  8.8157E+01  3.0000E+02 

        1500  1.4295934E-01  1.9200E+01 -4.0620E+03  8.8434E+01  3.0000E+02 

        1600  1.5994744E-01  0.0000E+00  0.0000E+00  1.5071E+02  3.0000E+02 

        1700  1.7797949E-01  0.0000E+00  0.0000E+00  1.7430E+02  3.0000E+02 

        1800  1.9697111E-01  0.0000E+00  0.0000E+00  1.8815E+02  3.0000E+02 

        1900  2.1691975E-01  0.0000E+00  0.0000E+00  1.9814E+02  3.0000E+02 
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        2000  2.3782359E-01  0.0000E+00  0.0000E+00  2.0597E+02  3.0000E+02 

        2100  2.5968880E-01  0.0000E+00  0.0000E+00  2.1239E+02  3.0000E+02 

        2200  2.8252108E-01  0.0000E+00  0.0000E+00  2.1780E+02  3.0000E+02 

        2300  3.0631980E-01  0.0000E+00  0.0000E+00  2.2246E+02  3.0000E+02 

        2400  3.3108446E-01  0.0000E+00  0.0000E+00  2.2654E+02  3.0000E+02 

        2500  3.5681461E-01  0.0000E+00  0.0000E+00  2.3016E+02  3.0000E+02 

        2600  3.8350986E-01  0.0000E+00  0.0000E+00  2.3338E+02  3.0000E+02 

        2700  4.1116988E-01  0.0000E+00  0.0000E+00  2.3629E+02  3.0000E+02 

        2800  4.3979433E-01  0.0000E+00  0.0000E+00  2.3893E+02  3.0000E+02 

        2900  4.6938289E-01  0.0000E+00  0.0000E+00  2.4134E+02  3.0000E+02 

        3000  4.9993528E-01  0.0000E+00  0.0000E+00  2.4355E+02  3.0000E+02 

        3100  5.3145120E-01  0.0000E+00  0.0000E+00  2.4559E+02  3.0000E+02 

        3200  5.6393038E-01  0.0000E+00  0.0000E+00  2.4747E+02  3.0000E+02 

        3300  5.9737253E-01  0.0000E+00  0.0000E+00  2.4922E+02  3.0000E+02 

        3308  6.0000000E-01  0.0000E+00  0.0000E+00  2.4935E+02  3.0000E+02 

Based on the analytical solution for the required surface temperature followed by an adiabatic wall, we see 
the TEXSTAN prediction of the surface temperature 0 0.15x m≤ ≤  matches Ts=90ºC within about 2ºC 
over most of the interval. This could be easily improved by increasing the number of x(m) locations, which 
matches the required Ts(x=L)=0ºC. Here is a plot of the TEXSTAN surface temperature distribution 
compared with the values from the analysis. 
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10-15 

Water at 10°C flows from a reservoir through the convergent nozzle shown in Fig. 10-7 into a 
circular tube. The mass flow rate of the water is 9 g/s. Making a plausible assumption as to the origin 
of the boundary layer in the nozzle and assuming that the nozzle surface is at a uniform temperature 
different from 10°C, calculate the heat-transfer coefficient at the throat of the nozzle. How does this 
compare with the coefficient far downstream in the tube if the tube surface is at a uniform 
temperature? 

The solution to this problem follows that for problem 9-5 to some degree. The solution involves calculating 
the Stanton number for a given Pr using Eq. (10-54). 

There are several geometric variables to be defined. The nozzle radius of curvature is rnoz =0.012 m. The 
nozzle transverse radius at the throat, Rb =0.003 m, and nozzle transverse radius at the start of the nozzle 
(xa=0) is Ra =0.0135 m. From geometry, 2 0.018849mb nozx r π= = . Using this geometry, the function for 
the transverse radius of the nozzle wall becomes 

 ( ) ( )sin sina noz a noz
noz

xR x R r R r
r

θ
 

= − = −  
 

 

Assuming constant density, the Stanton number equation Eq. (10-52) at the throat becomes 

 ( )
( )[ ]

( )[ ]

2

3

1/ 2
1

1/ 22

0

St
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b

b

C
x b

b
x C

a c
c

C R G x x
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xG x R r dx
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µ ∞

∞

=
= =

  −  
  

∫ 

 

where G uρ∞ ∞= ∞ . 

The free stream velocity just outside the boundary layer of the nozzle wall really needs to be developed 
from an inviscid or Euler analysis of the incompressible flow in a converging nozzle. 

The first approximation for this axisymmetric nozzle is to use the model defined by problem 9-5. The free 
stream velocity at the nozzle wall is assumed to vary linearly along the nozzle surface from the sharp 
corner to the throat, a bx x x≤ ≤ , and with a mass flow rate of 0.009 kg/s, the throat velocity is 

. , 0.318m/sbu∞ =

 ( ) ,au x u∞ ∞= ( ), , 16.89 m/sb a
a

b a

u u
x x x

x x
∞ ∞− 

+ − = − 
 

Note that the requirement of u  is a requirement of the problem statement and is not really needed.  , 0a∞ =

The integral can be evaluated using standard methods. The properties are for water at 20ºC. From Table 
10-6 for Pr=9.42, the coefficients in the solution are C1=0.0781, C2=0.675, and C3=2.35. The results using 
the linear free stream velocity approximation are 

 ( )2

St 0.001402

1871 W/ m Kh

=

= ⋅
 

The second approximation for this axisymmetric nozzle is to assume the free stream velocity at the nozzle 
wall is defined by the 1-D mass flow rate equation along the nozzle surface from the sharp corner to the 
throat, a bx x x≤ ≤ , 
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 ( )
( ) 2

c

m mu x
A R xρ ρπ

∞ = =
  

 

The results using this approximation for the free stream velocity approximation are 

 ( )2

St 0.002148

2867 W/ m Kh

=

= ⋅
 

We see the two approximations are significantly different and are strongly dependent on the boundary 
layer edge velocity approximation. Because acceleration strongly suppresses the momentum and 
displacement thicknesses, we did not see this effect in problem 9-7. There is no acceleration term in the 
corresponding energy equation and the convective transport is changed by the free stream velocity 
distribution. 

For comparison, the thermally fully-developed flow for this problem gives 

 

( )2

Re 1460
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D

D
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=

= =
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10-16 

TEXSTAN analysis of the laminar thermal boundary layer over a flat plate with constant surface 
temperature and zero pressure gradient: Choose a starting x-Reynolds number of about 1000 (a 
momentum Re of about 20) and pick fluid properties that are appropriate to fluids with a Prandtl 
number = 0.7, 1.0, and 5.0, evaluated at the free stream temperature. Use constant fluid properties 
and do not consider viscous dissipation. The geometrical dimensions of the plate are 1 m wide (a unit 
width) by 0.2 m long in the flow direction, corresponding to an ending Rex of about 2 × 105 (a 
momentum Re of about 300). Let the velocity boundary condition at the free stream be 15 m/s and 
let the energy boundary conditions be a free stream temperature of 300 K and a constant surface 
temperature of 295 K.  The initial velocity and temperature profiles appropriate to the starting x-
Reynolds number (Blasius similarity profiles) can be supplied by using the kstart=4 choice in 
TEXSTAN. For each Prandtl number calculate the boundary layer flow and evaluate the concept of 
boundary-layer similarity by comparing nondimensional temperature profiles at several x locations 
to themselves for independence of x. Compare the Nusselt number results based on x-Reynolds 
number with Eq. (10-10).  Convert the Nusselt number to Stanton number and compare the Stanton 
number results based on x-Reynolds number with Eq. (10-13) and based on enthalpy-thickness 
Reynolds number with Eq. (10-16).  Calculate the Stanton number distribution using energy integral 
Eq. (5-24) and compare with the TEXSTAN calculations. Feel free to investigate any other attribute 
of the boundary-layer flow. 

The data file for this problem is 10.16a.dat.txt. The data set construction is based on the s10.dat.txt file for 
flow over a flat plate with constant free stream velocity and specified surface temperature (initial profiles: 
Blasius velocity and Blasius temperature). Note that kout has been changed to =2. 

For this problem statement, the output file ftn85.txt presents most of the nondimensional variables need ed 
for comparison. The print variable k5 was changed to reduce the lines of output for this example, but it 
would typically much lower to obtain a high resolution for plotting. Here is the output file for Pr=0.7 

 x/s           rex           rem        cf/2      reh       st        nu 

 1.0491386E-03 9.9925781E+02 2.0995E+01 1.050E-02 2.602E+01 1.327E-02 9.280E+00 

 2.2759022E-03 2.1676955E+03 3.0941E+01 7.130E-03 3.858E+01 9.006E-03 1.366E+01 

 5.3070683E-03 5.0547463E+03 4.7265E+01 4.667E-03 5.920E+01 5.890E-03 2.084E+01 

 9.6072666E-03 9.1504937E+03 6.3589E+01 3.469E-03 7.979E+01 4.375E-03 2.802E+01 

 1.5175948E-02 1.4454415E+04 7.9912E+01 2.760E-03 1.004E+02 3.480E-03 3.521E+01 

 2.2012902E-02 2.0966309E+04 9.6234E+01 2.292E-03 1.210E+02 2.889E-03 4.240E+01 

 3.0118088E-02 2.8686138E+04 1.1256E+02 1.959E-03 1.415E+02 2.469E-03 4.958E+01 

 3.9491493E-02 3.7613889E+04 1.2888E+02 1.711E-03 1.621E+02 2.156E-03 5.677E+01 

 5.0112671E-02 4.7730088E+04 1.4517E+02 1.519E-03 1.826E+02 1.914E-03 6.395E+01 

 6.2020205E-02 5.9071484E+04 1.6149E+02 1.366E-03 2.032E+02 1.720E-03 7.114E+01 

 7.5195952E-02 7.1620796E+04 1.7782E+02 1.240E-03 2.237E+02 1.562E-03 7.833E+01 

 8.9639910E-02 8.5378024E+04 1.9414E+02 1.136E-03 2.443E+02 1.431E-03 8.552E+01 

 1.0532451E-01 1.0031691E+05 2.1043E+02 1.048E-03 2.648E+02 1.320E-03 9.270E+01 

 1.2230275E-01 1.1648793E+05 2.2675E+02 9.726E-04 2.854E+02 1.225E-03 9.989E+01 

 1.4054921E-01 1.3386686E+05 2.4308E+02 9.073E-04 3.059E+02 1.143E-03 1.071E+02 

 1.6011250E-01 1.5250003E+05 2.5944E+02 8.501E-04 3.265E+02 1.071E-03 1.143E+02 

 1.8089844E-01 1.7229771E+05 2.7576E+02 7.998E-04 3.471E+02 1.007E-03 1.215E+02 
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The corresponding ftn85.txt file for Pr=1.0 (the Pr value in the file for Pr=0.7 was all that was changed) 

 x/s           rex           rem        cf/2      reh       st        nu 

 1.0473838E-03 9.9758644E+02 2.0978E+01 1.052E-02 2.098E+01 1.052E-02 1.049E+01 

 2.2750415E-03 2.1668757E+03 3.0934E+01 7.132E-03 3.094E+01 7.131E-03 1.545E+01 

 5.3054060E-03 5.0531630E+03 4.7244E+01 4.669E-03 4.725E+01 4.669E-03 2.359E+01 

 9.6028167E-03 9.1462553E+03 6.3562E+01 3.470E-03 6.357E+01 3.470E-03 3.174E+01 

 1.5167316E-02 1.4446193E+04 7.9880E+01 2.761E-03 7.988E+01 2.761E-03 3.989E+01 

 2.1998918E-02 2.0952990E+04 9.6196E+01 2.293E-03 9.620E+01 2.293E-03 4.804E+01 

 3.0097678E-02 2.8666699E+04 1.1251E+02 1.960E-03 1.125E+02 1.960E-03 5.619E+01 

 3.9463617E-02 3.7587338E+04 1.2883E+02 1.712E-03 1.288E+02 1.712E-03 6.435E+01 

 5.0112622E-02 4.7730041E+04 1.4517E+02 1.519E-03 1.452E+02 1.519E-03 7.252E+01 

 6.2014725E-02 5.9066264E+04 1.6148E+02 1.366E-03 1.615E+02 1.366E-03 8.067E+01 

 7.5184021E-02 7.1609433E+04 1.7780E+02 1.240E-03 1.778E+02 1.240E-03 8.883E+01 

 8.9620513E-02 8.5359548E+04 1.9411E+02 1.136E-03 1.941E+02 1.136E-03 9.699E+01 

 1.0532226E-01 1.0031476E+05 2.1043E+02 1.048E-03 2.104E+02 1.048E-03 1.051E+02 

 1.2229299E-01 1.1647863E+05 2.2674E+02 9.727E-04 2.267E+02 9.727E-04 1.133E+02 

 1.4053092E-01 1.3384944E+05 2.4306E+02 9.074E-04 2.431E+02 9.074E-04 1.215E+02 

 1.5990690E-01 1.5230420E+05 2.5927E+02 8.507E-04 2.593E+02 8.507E-04 1.296E+02 

 1.8067109E-01 1.7208117E+05 2.7558E+02 8.003E-04 2.756E+02 8.003E-04 1.377E+02 

 2.0000000E-01 1.9049110E+05 2.8995E+02 7.607E-04 2.900E+02 7.607E-04 1.449E+02 

Before we compute the flow for Pr=5.0, we need to change some of the input variables because Pr=5 
corresponds to water at about 34ºC. Using properties at about this temperature, the output file (ftn85.txt) 

 x/s           rex           rem        cf/2      reh       st        nu 

 5.4503707E-05 1.0962853E+03 2.1991E+01 1.003E-02 7.470E+00 3.496E-03 1.916E+01 

 1.1482879E-04 2.3096615E+03 3.1928E+01 6.910E-03 1.093E+01 2.408E-03 2.781E+01 

 2.6200392E-04 5.2699358E+03 4.8249E+01 4.572E-03 1.662E+01 1.593E-03 4.197E+01 

 4.6917584E-04 9.4369833E+03 6.4566E+01 3.416E-03 2.230E+01 1.189E-03 5.611E+01 

 7.3635037E-04 1.4810921E+04 8.0883E+01 2.727E-03 2.798E+01 9.488E-04 7.026E+01 

 1.0635293E-03 2.1391785E+04 9.7199E+01 2.269E-03 3.366E+01 7.892E-04 8.441E+01 

 1.4507133E-03 2.9179588E+04 1.1351E+02 1.943E-03 3.933E+01 6.756E-04 9.857E+01 

 1.8979026E-03 3.8174334E+04 1.2983E+02 1.699E-03 4.500E+01 5.906E-04 1.127E+02 

 2.4050973E-03 4.8376027E+04 1.4615E+02 1.509E-03 5.068E+01 5.246E-04 1.269E+02 

 2.9722974E-03 5.9784666E+04 1.6246E+02 1.358E-03 5.635E+01 4.718E-04 1.410E+02 

 3.5995030E-03 7.2400254E+04 1.7878E+02 1.234E-03 6.202E+01 4.287E-04 1.552E+02 

 4.2867142E-03 8.6222790E+04 1.9509E+02 1.131E-03 6.769E+01 3.929E-04 1.694E+02 

 5.0339308E-03 1.0125227E+05 2.1141E+02 1.043E-03 7.336E+01 3.625E-04 1.835E+02 

 5.8411530E-03 1.1748871E+05 2.2772E+02 9.685E-04 7.903E+01 3.365E-04 1.977E+02 
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 6.7083807E-03 1.3493209E+05 2.4404E+02 9.038E-04 8.470E+01 3.140E-04 2.119E+02 

 7.6356140E-03 1.5358242E+05 2.6035E+02 8.471E-04 9.036E+01 2.943E-04 2.260E+02 

 8.6228528E-03 1.7343970E+05 2.7667E+02 7.972E-04 9.603E+01 2.770E-04 2.402E+02 

 9.6700972E-03 1.9450393E+05 2.9299E+02 7.528E-04 1.017E+02 2.615E-04 2.543E+02 

 1.0777347E-02 2.1677511E+05 3.0930E+02 7.131E-04 1.074E+02 2.477E-04 2.685E+02 

 1.1000000E-02 2.2125354E+05 3.1248E+02 7.058E-04 1.085E+02 2.452E-04 2.713E+02 

Comparing the three data sets is best done by plotting. Also, in the Pr=1 output we clearly see the Reynolds 
analogy where 2 Stfc =  
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The data can be easily compared with the Blasius solution, Eq. (10-10) by changing the input file print 
variable to kout=8, which prints ratios of the TEXSTAN-computed friction coefficient and Nusselt number 
to the Blasius solution. Here is an abbreviated listing of the output file for Pr=5 (it will be called out.txt 
when you execute TEXSTAN using an input data set) 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 1.096E+03 2.199E+01 1.003E-02  19.2 1.000 1.025 2.590 7.470E+00 

   100 2.310E+03 3.193E+01 6.910E-03  27.8 1.000 1.025 2.590 1.093E+01 

   200 5.270E+03 4.825E+01 4.572E-03  42.0 1.000 1.024 2.590 1.662E+01 

   300 9.437E+03 6.457E+01 3.416E-03  56.1 1.000 1.023 2.590 2.230E+01 

   400 1.481E+04 8.088E+01 2.727E-03  70.3 1.000 1.022 2.590 2.798E+01 

   500 2.139E+04 9.720E+01 2.269E-03  84.4 1.000 1.022 2.590 3.366E+01 

   600 2.918E+04 1.135E+02 1.943E-03  98.6 1.000 1.022 2.590 3.933E+01 

   700 3.817E+04 1.298E+02 1.699E-03 112.7 1.000 1.022 2.590 4.500E+01 

   800 4.838E+04 1.461E+02 1.509E-03 126.9 1.000 1.022 2.590 5.068E+01 

   900 5.978E+04 1.625E+02 1.358E-03 141.0 1.000 1.022 2.590 5.635E+01 

  1000 7.240E+04 1.788E+02 1.234E-03 155.2 1.000 1.021 2.590 6.202E+01 
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  1100 8.622E+04 1.951E+02 1.131E-03 169.4 1.000 1.021 2.590 6.769E+01 

  1200 1.013E+05 2.114E+02 1.043E-03 183.5 1.000 1.021 2.590 7.336E+01 

  1300 1.175E+05 2.277E+02 9.685E-04 197.7 1.000 1.021 2.590 7.903E+01 

  1400 1.349E+05 2.440E+02 9.038E-04 211.9 1.000 1.021 2.590 8.470E+01 

  1500 1.536E+05 2.604E+02 8.471E-04 226.0 1.000 1.021 2.590 9.036E+01 

  1600 1.734E+05 2.767E+02 7.972E-04 240.2 1.000 1.021 2.590 9.603E+01 

  1700 1.945E+05 2.930E+02 7.528E-04 254.3 1.000 1.021 2.590 1.017E+02 

  1800 2.168E+05 3.093E+02 7.131E-04 268.5 1.000 1.021 2.590 1.074E+02 

  1820 2.213E+05 3.125E+02 7.058E-04 271.3 1.000 1.021 2.590 1.085E+02 

In this output we see the cfrat value is 1.000 for all Rex, and the corresponding nurat is within 2%. This 
2% error will not be there for Pr =0.7 or Pr=1. Recall the Blasius theory is  

 ( ) 1 2Nu 0 Rex xθ η′= =  

and ( ) 1 30 0.332 Prθ η′ = =  is merely a curve-fit for gases and light liquids ( (0.7 Pr 10 20 )≤ ≤ − . Here is 
the Stanton number data for comparison with Eq. (10-13) 
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To confirm the correlation between Stanton number and the enthalpy-thickness Reynolds number, we can 
use Eq. (10-16). The plot below compares 4 3PrSt  and the slope will be 0.2204 on this ln-ln graph. 
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To plot the developing temperature profiles for a given Pr or to plot profiles for different Pr, choose either 
k10=10 for nondimensional profiles (Blasius variables) or k10=11 for dimensional variables. The profiles 
will be printed as a part of the file out.txt. You can choose where to print the profiles by adding x locations 
to the x(m). Be sure to change the two nxbc variables and add the appropriate sets of two lines of boundary 
condition information for each new x-location. This is explained in detail in the s10.man user manual. The 
plot shown below shows the Blasius similarity for the flat-plate laminar boundary layer with u  and 
the three Prandtl numbers at an arbitrary x-location. We can compare this plot with Fig. 10-2. 
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To confirm the energy integral equation for computing Stanton number, Eq. (5-24), use the enthalpy 
thickness data in ftn84.txt. Note that this equation requires constant surface temperature and constant free 
stream velocity and flow over a flat surface. The enthalpy thickness distribution is contained in the output 
file ftn84.txt. You will want to set k5=1 to obtain enough points for numerically approximating 2d dx∆ , 
and use of a higher-order first-derivative approximation is useful. In the world of experimental heat 
transfer, this can be a good estimation of the Stanton number. 
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10-17 

TEXSTAN analysis of the laminar thermal boundary layer stagnation flow (the Falkner-Skan m = 1 
case) and constant surface temperature: Refer to Prob. 9-8 for the plate geometry and the setup of 
the velocity boundary condition.  Pick fluid properties that are appropriate to fluids with a Prandtl 
number = 0.7, 1.0, and 5.0, evaluated at the free stream temperature. Use constant fluid properties 
and do not consider viscous dissipation. The energy boundary conditions are a free stream 
temperature of 300 K and a constant surface temperature of 295 K. For each Prandtl number 
calculate the boundary layer flow and evaluate the concept of boundary-layer similarity by 
comparing nondimensional temperature profiles at several x locations to themselves for 
independence of x. Compare the Nusselt number results based on x-Reynolds number with Table 10-
2. Evaluate the concepts of thermal and velocity profile similarity for Pr = 1.0, examine the 
development of the momentum and thermal boundary layers, and discuss the validity of h = const 
for this case.  Convert the Nusselt number to Stanton number calculate the Stanton number 
distribution using energy integral Eq. (5-24) and compare with the TEXSTAN calculations. Also, 
evaluate the validity of the approximate integral solution, Eq. (10-52). Feel free to investigate any 
other attribute of the boundary-layer flow. 

 

The data file for this problem is 10.17.dat.txt. The data set construction is based on the s15.dat.txt file for 
flow over a flat plate with variable free stream velocity and specified surface temperature (initial profiles: 
Falkner-Skan m=1 velocity and temperature). Note that kout has been changed to =2. 

There needs to be a slight modification to the instructions in the problem statement regarding the 
calculations of xstart and axx. For the given starting x-Reynolds number =200, there are not unique 
numbers for xstart and axx, so choose xstart (=0.00195 m) which uniquely determines the value of free 
stream velocity at that location (=1.615 m/s), and then calculate A (which is the variable axx) to match this 
velocity, u A for B=1, C=0 and m=1.  xstar∞ = ⋅ t

For this problem statement, the output file ftn85.txt presents most of the nondimensional variables need ed 
for comparison. The print variable k5 was changed to reduce the lines of output for this example, but it 
would typically much lower to obtain a high resolution for plotting. Here is the output file for Pr=0.7 

 x/s           rex           rem        cf/2      reh       st        nu 

 1.9664195E-03 2.0337307E+02 4.1689E+00 8.640E-02 1.009E+01 4.968E-02 7.072E+00 

 7.1044387E-03 2.6546094E+03 1.5086E+01 2.387E-02 3.647E+01 1.375E-02 2.555E+01 

 1.3677744E-02 9.8394315E+03 2.9020E+01 1.241E-02 7.024E+01 7.142E-03 4.919E+01 

 2.0229941E-02 2.1524365E+04 4.2910E+01 8.393E-03 1.039E+02 4.829E-03 7.275E+01 

 2.6799205E-02 3.7773298E+04 5.6836E+01 6.337E-03 1.377E+02 3.645E-03 9.638E+01 

 3.3367786E-02 5.8559299E+04 7.0760E+01 5.090E-03 1.714E+02 2.927E-03 1.200E+02 

 3.9935931E-02 8.3881988E+04 8.4683E+01 4.253E-03 2.051E+02 2.446E-03 1.436E+02 

 4.6502162E-02 1.1373323E+05 9.8603E+01 3.653E-03 2.389E+02 2.101E-03 1.672E+02 

 5.3069782E-02 1.4812750E+05 1.1253E+02 3.201E-03 2.726E+02 1.841E-03 1.909E+02 

 5.9637231E-02 1.8705789E+05 1.2645E+02 2.848E-03 3.064E+02 1.638E-03 2.145E+02 

 6.6206109E-02 2.3053518E+05 1.4037E+02 2.566E-03 3.401E+02 1.475E-03 2.381E+02 

 7.2773314E-02 2.7853860E+05 1.5429E+02 2.334E-03 3.738E+02 1.342E-03 2.617E+02 

 7.9340428E-02 3.3107788E+05 1.6821E+02 2.141E-03 4.076E+02 1.231E-03 2.853E+02 

 8.5907466E-02 3.8815296E+05 1.8214E+02 1.978E-03 4.413E+02 1.137E-03 3.090E+02 
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 8.7207000E-02 3.9998507E+05 1.8489E+02 1.948E-03 4.480E+02 1.120E-03 3.136E+02 

The data can be easily compared with the Falkner-Skan solution, Table 10-2,  by changing the input file 
print variable to kout=8, which prints ratios of the TEXSTAN-computed friction coefficient and Nusselt 
number to the Blasius solution. Here is an abbreviated listing of the output file for Pr=0.7 (it will be called 
out.txt when you execute TEXSTAN using an input data set) 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 2.034E+02 4.169E+00 8.640E-02   7.1  .999  .997 2.216 1.009E+01 

   200 2.655E+03 1.509E+01 2.387E-02  25.5  .997  .997 2.216 3.647E+01 

   400 9.839E+03 2.902E+01 1.241E-02  49.2  .998  .997 2.216 7.024E+01 

   600 2.152E+04 4.291E+01 8.393E-03  72.8  .999  .997 2.216 1.039E+02 

   800 3.777E+04 5.684E+01 6.337E-03  96.4  .999  .997 2.216 1.377E+02 

  1000 5.856E+04 7.076E+01 5.090E-03 120.0  .999  .997 2.216 1.714E+02 

  1200 8.388E+04 8.468E+01 4.253E-03 143.6  .999  .997 2.216 2.051E+02 

  1400 1.137E+05 9.860E+01 3.653E-03 167.2  .999  .997 2.216 2.389E+02 

  1600 1.481E+05 1.125E+02 3.201E-03 190.9  .999  .997 2.216 2.726E+02 

  1800 1.871E+05 1.264E+02 2.848E-03 214.5  .999  .997 2.216 3.064E+02 

  2000 2.305E+05 1.404E+02 2.566E-03 238.1  .999  .997 2.216 3.401E+02 

  2200 2.785E+05 1.543E+02 2.334E-03 261.7  .999  .997 2.216 3.738E+02 

  2400 3.311E+05 1.682E+02 2.141E-03 285.3  .999  .997 2.216 4.076E+02 

  2600 3.882E+05 1.821E+02 1.978E-03 309.0  .999  .997 2.216 4.413E+02 

  2640 4.000E+05 1.849E+02 1.948E-03 313.6  .999  .997 2.216 4.480E+02 

We can see from the various files that there is duplication, and which to choose depends on the plotting 
data needs. In the benchmark output (kout=8) we see the cfrat and nurat, which present a ratio of 
TEXSTAN-calculated values for cf and Nu to Falkner-Skan m=1 solution values at the same x-Reynolds 
number,  Table 9-2 for momentum and Table 10-2 for heat transfer. We can use these ratios to help 
determine if a data set construction is correct.  At the present time only some of the “s” data sets in 
Appendix H can be used with kout=8. 

Here is an abbreviated listing of the output file for Pr=1.0 (it will be called out.txt when you execute 
TEXSTAN using an input data set) 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 2.007E+02 4.141E+00 8.700E-02   8.1 1.000 1.003 2.213 8.154E+00 

   200 2.725E+03 1.528E+01 2.357E-02  29.8  .998 1.003 2.216 2.980E+01 

   400 9.970E+03 2.921E+01 1.233E-02  56.9  .998 1.003 2.216 5.697E+01 

   600 2.173E+04 4.312E+01 8.353E-03  84.1  .999 1.003 2.216 8.411E+01 

   800 3.805E+04 5.704E+01 6.314E-03 111.3  .999 1.003 2.216 1.113E+02 

  1000 5.889E+04 7.097E+01 5.076E-03 138.4  .999 1.003 2.216 1.384E+02 

  1200 8.429E+04 8.489E+01 4.243E-03 165.6  .999 1.003 2.216 1.656E+02 

  1400 1.142E+05 9.881E+01 3.645E-03 192.8  .999 1.003 2.216 1.928E+02 

  1600 1.487E+05 1.127E+02 3.195E-03 220.0  .999 1.003 2.216 2.200E+02 
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  1800 1.876E+05 1.267E+02 2.844E-03 247.1  .999 1.003 2.216 2.471E+02 

  2000 2.312E+05 1.406E+02 2.562E-03 274.3  .999 1.003 2.216 2.743E+02 

  2200 2.793E+05 1.545E+02 2.331E-03 301.5  .999 1.003 2.216 3.015E+02 

  2400 3.319E+05 1.684E+02 2.139E-03 328.6  .999 1.003 2.216 3.286E+02 

  2600 3.890E+05 1.823E+02 1.976E-03 355.8  .999 1.003 2.216 3.558E+02 

  2637 4.000E+05 1.849E+02 1.948E-03 360.8  .999 1.003 2.216 3.608E+02 

Once again we see the cfrat and nurat show agreement between the theoretical Falkner-Skan solution and 
the TEXSTAN-computed solution. It is interesting to examine the output file f85.txt to compare the cf/2 
value with the st value to see the Reynolds analogy for Pr=1 will not hold if there is a pressure gradient. 

 x/s           rex           rem        cf/2      reh       st        nu 

 1.9664195E-03 2.0337307E+02 4.1689E+00 8.640E-02 1.009E+01 4.968E-02 7.072E+00 

 7.1044387E-03 2.6546094E+03 1.5086E+01 2.387E-02 3.647E+01 1.375E-02 2.555E+01 

 1.3677744E-02 9.8394315E+03 2.9020E+01 1.241E-02 7.024E+01 7.142E-03 4.919E+01 

 2.0229941E-02 2.1524365E+04 4.2910E+01 8.393E-03 1.039E+02 4.829E-03 7.275E+01 

 2.6799205E-02 3.7773298E+04 5.6836E+01 6.337E-03 1.377E+02 3.645E-03 9.638E+01 

 3.3367786E-02 5.8559299E+04 7.0760E+01 5.090E-03 1.714E+02 2.927E-03 1.200E+02 

 3.9935931E-02 8.3881988E+04 8.4683E+01 4.253E-03 2.051E+02 2.446E-03 1.436E+02 

 4.6502162E-02 1.1373323E+05 9.8603E+01 3.653E-03 2.389E+02 2.101E-03 1.672E+02 

 5.3069782E-02 1.4812750E+05 1.1253E+02 3.201E-03 2.726E+02 1.841E-03 1.909E+02 

 5.9637231E-02 1.8705789E+05 1.2645E+02 2.848E-03 3.064E+02 1.638E-03 2.145E+02 

 6.6206109E-02 2.3053518E+05 1.4037E+02 2.566E-03 3.401E+02 1.475E-03 2.381E+02 

 7.2773314E-02 2.7853860E+05 1.5429E+02 2.334E-03 3.738E+02 1.342E-03 2.617E+02 

 7.9340428E-02 3.3107788E+05 1.6821E+02 2.141E-03 4.076E+02 1.231E-03 2.853E+02 

 8.5907466E-02 3.8815296E+05 1.8214E+02 1.978E-03 4.413E+02 1.137E-03 3.090E+02 

 8.7207000E-02 3.9998507E+05 1.8489E+02 1.948E-03 4.480E+02 1.120E-03 3.136E+02 

Here is an abbreviated listing of the output file for Pr=5.0 (it will be called out.txt when you execute 
TEXSTAN using an input data set). Note this accelerating flow causes a fairly strong pressure gradient, 
and the initial pressure needs to be large enough so the pressure does not go negative. For this data set it 
was increased to 4 atmospheres. The negative pressure-checking in TEXSTAN is only a preventative 
measure for when variable properties are used. 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 2.789E+02 4.882E+00 7.377E-02  17.4  .999 1.004 2.215 3.530E+00 

   200 3.034E+03 1.613E+01 2.233E-02  57.4  .998 1.003 2.216 1.152E+01 

   400 1.055E+04 3.006E+01 1.198E-02 107.1  .998 1.003 2.216 2.146E+01 

   600 2.261E+04 4.398E+01 8.190E-03 156.8  .999 1.003 2.216 3.140E+01 

   800 3.914E+04 5.786E+01 6.226E-03 206.4  .999 1.004 2.216 4.130E+01 

  1000 6.024E+04 7.178E+01 5.019E-03 256.0  .999 1.004 2.216 5.124E+01 

  1200 8.588E+04 8.570E+01 4.204E-03 305.7  .999 1.004 2.216 6.117E+01 
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  1400 1.160E+05 9.961E+01 3.616E-03 355.4  .999 1.004 2.216 7.110E+01 

  1600 1.507E+05 1.135E+02 3.173E-03 405.1  .999 1.004 2.216 8.104E+01 

  1800 1.900E+05 1.274E+02 2.827E-03 454.8  .999 1.004 2.216 9.097E+01 

  2000 2.338E+05 1.414E+02 2.548E-03 504.4  .999 1.004 2.216 1.009E+02 

  2200 2.821E+05 1.553E+02 2.320E-03 554.1  .999 1.004 2.216 1.108E+02 

  2400 3.349E+05 1.692E+02 2.129E-03 603.8  .999 1.004 2.216 1.208E+02 

  2600 3.923E+05 1.831E+02 1.967E-03 653.5  .999 1.004 2.216 1.307E+02 

  2769 4.443E+05 1.949E+02 1.849E-03 695.5  .999 1.004 2.216 1.391E+02 

Once again we see the cfrat and nurat show agreement between the theoretical Falkner-Skan solution and 
the TEXSTAN-computed solution for this higher Pr value. 

To plot the developing velocity profiles, choose either k10=10 for nondimensional profiles (Blasius 
variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file out.txt. You 
can choose where to print the profiles by adding x locations to the x(m). Be sure to change the two nxbc 
variables and add the appropriate sets of two lines of boundary condition information for each new x-
location. This is explained in detail in the s10.man user manual.  

To confirm the energy integral equation for computing Stanton number, we use the ideas in Chapter 5. Be 
careful, you can not use Eq. (5-24), because this equation requires a constant free stream velocity , along 
with a constant surface temperature and flow over a flat surface. Instead, use Eq. (5-18) to compute the 
surface heat flux in terms of the enthalpy thickness variation and free stream velocity variation and then 
formulate the Stanton number. The enthalpy thickness distribution is contained in the output file ftn84.txt. 
You will want to set k5=1 to obtain enough points for numerically approximating 2d d∆ x , and use of a 
higher-order first-derivative approximation is useful. In the world of experimental heat transfer, this can be 
a good estimation of the Stanton number. 
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Using the Van Driest equation for the mixing length in the sublayer, determine u+ as a function of y+ 
for p+ = 0 and v  by numerical integration of the momentum equation in the region where the 
Couette flow approximation is valid, for A

0s
+ =

+ = 22, 25, and 27, and compare with the experimental 
data in Fig. 11-3. (It is presumed that a programmable computer is used for this problem. 

The equation which must be numerically integrated is : 

 
22 2

2

1 1 4

du
dy y Dκ

+

+ +
=

+ +  

where 1 y AD e
+ +−= −  

The following table lists some values of u+(y+) which will be obtained using various value of A+ 

 

y+ A+=22 A+=25 A+=27 Eq. (11-16) 

59.59 14.41 15.01 15.40 14.97 

79.32 15.13 15.75 16.14 15.67 

95.97 15.60 16.22 16.62 16.14 
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Develop a law of the wall for a transpired turbulent boundary layer (that is, ) based on the 
Prandtl mixing-length theory and a two-layer model of the Couette flow region near the wall. Note 
that you need to develop a new relation for both the viscous sublayer and the fully turbulent region, 
and the apparent thickness of the sublayer will be a constant to be determined from experiments. 
The table at the top of the next page shows two sets of experimental points for turbulent velocity 
profiles for  but  Plot these profiles on semi-logarithmic paper and superimpose the 
equation you have derived for the fully turbulent region, determining the apparent sublayer 
thickness from the best fit to the data. Note that there is a “wake” or outer region for which your 
analysis does not apply. Finally, plot the apparent sublayer thickness  as a function of 

0s
+ ≠v

0p+ = 0.s
+ ≠v

+
crity s

+v  and 
discuss the significance of the results. 

 

0.1773s
+ =v   0.065s

+ = −v  

y+ u+  y+ u+ 

  30.6 16.84   35.6 12.33 

  50.3 19.37   48.7 13.02 

  99.6 23.41   81.7 13.59 

 148.9 25,72  150.8 14.24 

 247.6 29.99  249.6 14.80 

 362.6 34.11  364.8 15.34 

 510.6 39.36  496.5 15.87 

 724.3 45.13  628.2 16.20 

 921.5 47.29  792.8 16.31 

1053.0 47.32  990.4 16.31 

 

For  

 

1 1, exp
2

s crit
crit

s s
y y u

yv
++

+ + +
+ +

 
 ≤ = −  
 

v v
 

For 

 
( )2

2
1 1, exp ln expln 2 24

s crit s crits
crit

1
sscrit crit

y y yyy y u
y y vκκ

+ ++ + + ++
+ + +

+ + + +

   
> = + +   

   

v vv
v

+

≈

 

 

for v v  0.1773, 4.4 and 0.065, 35s scrit crity y+ ++ += ≈ = −
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Repeat Prob. 11-2 using the Van Driest equation for the sublayer mixing length and numerical 
integration of the momentum equation. Determine the values of A+ that best fit the experimental 
data, and plot these as a function of .sv+  (It is presumed that a programmable computer is used for 
this problem.) 

The equation which must be numerically integrated is: 

 

( )
( )222 2

2 1

1 1 4 1

s

s

udu
d y y uDκ

+++

+ + ++

+
=

+ + +

v

v
 

where ( )1 expD y+ += − − A

≈

 

For  0.1773, 10.2 and 0.065, 80s sA Av v+ ++ += ≈ = −

Eq. (11-26 ) gives close to the same result for the first case, but gives 60 for the second.  This is simply the 
result of fairly large experimental uncertainty for the experiments with strong suction. 
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Consider constant-property flow along a flat plate with constant u .∞  Let the boundary layer starting 
at the origin of the plate be laminar, but assume that a transition to a turbulent boundary layer 
takes place abruptly at some prescribed critical Reynolds number. Assuming that at the point of 
transition the momentum thickness of the turbulent boundary layer is the same as the laminar 
boundary layer (and this is a point for discussion), calculate the development of the turbulent 
boundary layer and the friction coefficient for the turbulent boundary layer. Plot the friction 
coefficient as a function of Reynolds number on log–log paper for transition Reynolds numbers 
(based on distance from the leading edge) of 300,000 and 1,000,000, and compare with the turbulent 
flow friction coefficient that would obtain were the boundary layer turbulent from the plate origin. 
On the basis of these results, determine a “virtual origin” of a turbulent boundary layer preceded by 
a laminar boundary layer; that is, the turbulent boundary layer will behave as if the boundary layer 
had been entirely a turbulent one starting at the virtual origin. 

In the turbulent region: 

 ( )[ ] 0.20.6252 0.0287 Re 37Re Ref x t tc −
= −+

 

where Ret is the transition Reynolds number. The virtual origin of the turbulent boundary layer will be at: 

 
[ ]0.62537Re Ret tx

u
ν

∞
= −
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Redevelop Eq. (11–21) for the case where density and viscosity are functions of x. 

Following the steps for this equation leads to 

 

0.8

.25 3.861.25
2 3.29

0.036

0

x
u dxR

Ru
µδ ρ

ρ
∞

∞
=

 
∫    
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A nuclear rocket nozzle of circular cross section has the geometry shown in Fig. 11-18. The working 
fluid is helium, and the stagnation pressure and temperature are 2100 kPa and 2475 K, respectively. 
Assuming one-dimensional isentropic flow, constant specific heats, and a specific heat ratio of 1.67, 
calculate the mass flow rate and the gas pressure, temperature, and density as functions of distance 
along the axis. Then, assuming that a laminar boundary layer originates at the corner where the 
convergence starts, calculate the momentum thickness of the boundary layer and the momentum 
thickness Reynolds number as functions ofdistance along the surface. Assume that a transition to a 
turbulent boundary layer takes place if and when the momentum thickness Reynolds number 
exceeds 162. An approximate analysis may be carried out on the assumption of constant fluid 
properties, in which case let the properties be those obtaining at the throat. Alternatively, a better 
approximation can be based on the results of Prob. 11-5. In either case it may be assumed that the 
viscosity varies approximately linearly from µ = 5.9 × 10–5 Ns/m2 at 1400 K to µ = 8.3 × 10–5 Ns/m2 at 
2500 K. 

 

z, cm 
(axial) 

x, cm P, kPa T, K δ2, m 
2

Reδ  

0 0 2089.5 2473 0 0 

1 1.38 2087.4 2471 6.77E-5 70.5 

2 2.75 2085.2 2468 7.84E-5 94.8 

3 4.13 2079.0 2466 7.81E-5 111 

4 5.50 2072.7 2463 7.29E-5 123 

5 6.88 2062.2 2457 6.54E-5 134 

6 8.25 2051.7 2450 5.68E-5 144 

8 

transition 

11.0 1932.0 2401 3.87E-5 164 

10 13.7 1627.5 2232 5.13E-5 369 

12 

throat 

15.7 1022.1 1854 5.16E-5 504 

14 17.5 449.40 1332 7.50E-5 745 

16 19.8 189.40 943 1.56E-4 1362 

18 22.1 95.970 718 2.90E-4 2200 

22 26.7 36.120 485 6.59E-4 3854 

 

The resulting mass flow rate is  kg/s 5.28m =
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Work Prob. 11-6 but let the fluid be air and the stagnation pressure and temperature be 2100 kPa 
and 1275 K, respectively. Calculate the displacement thickness of the boundary layer at the throat of 
the nozzle. Is any correction to the mass flow rate warranted on the basis of this latter calculation? 

 

z, cm 
(axial) 

x, cm P, kPa T, K δ2, m 
2

Reδ  

0 

transition 

0 2100.0 1275 0 0 

1.56 2.15 2090.6 1273 3.13E-5 209 

2.36 3.22 2088.1 1273 5.00E-5 375 

3 4.13 2085.1 1272 5.87E-5 489 

4 5.5 2079.0 1271 6.26E-5 627 

6 8.25 2053.1 1267 5.99E-5 906 

8 11 1964.6 1251 4.60E-5 1153 

10 13.7 1672.0 1195 3.77E-5 1577 

12 

throat 

15.7 1109.4 1063 3.65E-5 2014 

14 17.5 531.85 861 5.19E-5 2683 

18 22.1 139.23 587 3.01E-4 10075 

22 26.7 58.901 459 6.19E-4 14158 

28 33.6 23.90 355 1.47E-3 22418 

34 40.5 12.12 292 2.88E-3 32082 

 

The resulting mass flow rate is  kg/s 18.7m =
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A gas turbine blade, as illustrated in Fig. 11-19, has the following operating conditions: 

 Fluid: air 

 Stagnation conditions: P T515.7 kPa, 1139 Ks s= =  

 Conditions just upstream of the blade: 

     2

473.7 kPa, 1111 K
253 m/s, 376 kg/(s m )

P T
V G

= =

= = ⋅

 Free-stream conditions along blade surface (see Fig. 11-19): 

Point 
Distance from 
leading edge, cm G∞, kg/(s · m2) ρ, kg/m3 T, K 

a 0.38 537 1.36 1072 

b 1.40 586 1.31 1052 

c 2.41 635 1.10  988 

d 3.18 620 1.23 1031 

e 4.19 576 1.31 1056 

f 5.21 547 1.34 1068 

g 6.22 537 1.36 1972 

h 0.25 293 1.52 1122 

i 1.27 317 1.51 1121 

j 2.29 327 1.51 1118 

k 3.30 352 1.50 1116 

l 4.32 430 1.45 1100 

m 5.33 537 1.36 1072 

 

Calculate the momentum thickness and the momentum thickness Reynolds number along both 
surfaces of the blade. Assume that a transition to a turbulent boundary layer takes place when the 
momentum thickness Reynolds number exceeds 162. Describe how the forces acting on the blade 
could be analyzed from the given data. 

This problem is a direct application of Eq.(9-42) for the laminar parts, and Eq.(11-21) for the turbulent 
parts.  (The R cancels out in both cases.) Problems 9-4 and 11-5 should be solved first to get equation 
forms applicable to varying free-stream density.  The laminar stagnation region near the leading edge is 
probably best handled by using Eq.(10-20) to evaluate the local velocity tangential to the surface, but just 
outside of the boundary layer.  (Note that 0u∞ =  at x = 0.)  The momentum thickness at the stagnation 
point will be finite, not zero.  Because there is a laminar boundary layer preceding the turbulent boundary 
layer, Eq.(11-21) should be modified by using the value of δ2 from the laminar analysis as the lower limit 
on δ2 when integrating the equation preceding (11-21). 
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x, cm 

from 
stagnation 

point 

2
Reδ  

upper surface 

2
Reδ  

lower surface 

0.2 82 59 

0.5 140 105 

1.0 200 152 

2.0 430 260 

3.0 820 420 

5.0 1900 450 

6.0 2200 - 
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The following table is an actual velocity profile measured through a turbulent boundary layer on a 
rough surface made up of 1.27 mm balls packed in a dense, regular pattern. There is no pressure 
gradient 

y, cm u, m/s y, cm u, m/s 

0.020 12.94 0.660 27.38 

0.030 14.08 1.10 31.10 

0.051 15.67 1.61 34.15 

0.081 17.31 2.12 37.21 

0.127 19.24 2.82 39.37 

0.191 20.87 3.58 39.68 

0.279 22.68   

0.406 24.54   

or transpiration. The fluid is air at 1 atm and 19°C; and u∞ = 39.7 m/s, δ2 = 0.376 cm,  
c

2
Re 9974,δ =

f/2 = 0.00243. The distance y is measured from the plane of the tops of the balls. The objective of this 
problem is to analyze these data in the framework of the rough-surface theory developed in the text. 
What is the apparent value of ks? Of Rek? What is the roughness regime? What is the apparent value 
of κ? How does the wake compare with that of a smooth surface? Do the data support the theory? 
The use of the plane of the tops of the balls as the origin for y is purely arbitrary. Feel free to move 
the origin if this will provide a more coherent theory. 

The apparent roughness is  and 0.05 cmsk = Re 124k = . The surface is fully rough. To fit the theory the 
origin for y should be shifted a distance of 0.018 cm into the wall. The data then fit Eq. (11-56) very well, 
although of course there is a distinct "wake" region, virtually identical to that for a smooth surface.  cf/2 
corresponds closely to Eq. (11-57). 
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TEXSTAN analysis of the turbulent momentum boundary layer over a flat plate with zero pressure 
gradient: Choose a starting x-Reynolds number of about 2 × 105 (corresponding to a momentum 
Reynolds number of about 700) and pick fluid properties that are appropriate to air, evaluated at a 
free stream temperature of 300 K. Use constant fluid properties, and note that the energy equation 
does not have to be solved. The geometrical dimensions of the plate are 1 m wide (a unit width) by 
3.0 m long in the flow direction, corresponding to an ending Rex of about 2.9 × 106.(a momentum 
Reynolds number of about 5400). Let the velocity boundary condition at the free stream be 15 m/s.  
The initial velocity profile appropriate to the starting x-Reynolds number (a fully turbulent 
boundary layer profile) can be supplied by using the kstart=3 choice in TEXSTAN. For a turbulence 
model, choose the mixing-length turbulence model with the Van Driest damping function (ktmu=5). 
Calculate the boundary layer flow and compare the friction coefficient results based on x Reynolds 
number and momentum thickness Reynolds number with the results in the text, Eqs. (11-20) and 
(11-23). Evaluate the virtual origin concept as described in Prob. 11-4, and observe whether this 
affects your ability to compare with Eq. (11-23). Calculate the friction coefficient distribution using 
momentum integral Eq. (5-11) and compare with the TEXSTAN calculations. Feel free to investigate 
any other attribute of the boundary-layer flow. For example, you can investigate the mixing length 
distribution, comparing to Fig. 11-2 and the law of the wall, comparing to Fig. 11-5. 

The data file for this problem is 11.10.dat.txt. The data set construction is based on the 200_5.dat.txt file 
for flow over a flat plate with constant free stream velocity and specified surface temperature (initial 
profiles: fully turbulent velocity and temperature profiles). The turbulence model is the van-Driest mixing 
length model, along with a variable turbulent Prandtl number model for liquid metals and gases, and a 
constant turbulent Prandtl number for liquids. Note that the turbulent data set manual s200.man.doc is very 
helpful in understanding this data set construction. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) 

 intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.020E+05 6.963E+02 2.496E-03 3.149E-03 1.026 1.043 1.469 5.877E+02 

   250 2.753E+05 8.744E+02 2.345E-03 2.891E-03 1.020 1.037 1.454 8.100E+02 

   500 3.804E+05 1.112E+03 2.181E-03 2.636E-03 1.008 1.021 1.437 1.099E+03 

   750 5.113E+05 1.388E+03 2.054E-03 2.450E-03 1.003 1.014 1.422 1.431E+03 

  1000 6.729E+05 1.711E+03 1.946E-03 2.301E-03 1.001 1.010 1.408 1.814E+03 

  1250 8.704E+05 2.086E+03 1.852E-03 2.175E-03 1.001 1.008 1.397 2.256E+03 

  1500 1.109E+06 2.518E+03 1.769E-03 2.067E-03 1.002 1.008 1.387 2.762E+03 

  1750 1.396E+06 3.015E+03 1.694E-03 1.972E-03 1.004 1.009 1.380 3.341E+03 

  2000 1.738E+06 3.581E+03 1.626E-03 1.888E-03 1.006 1.010 1.373 4.000E+03 

  2250 2.141E+06 4.224E+03 1.565E-03 1.813E-03 1.009 1.012 1.367 4.746E+03 

  2500 2.614E+06 4.951E+03 1.508E-03 1.744E-03 1.012 1.014 1.363 5.587E+03 

  2630 2.891E+06 5.365E+03 1.480E-03 1.711E-03 1.014 1.015 1.361 6.065E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (11-20) at the same momentum-thickness Reynolds number and for St to Eq. (12-19) at 
the same enthalpy-thickness Reynolds number. We can use these ratios to help determine if a data set 
construction is correct.  At the present time only some of the “s” data sets in Appendix H can be used with 
kout=8. We see the cfrat and strat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. 

193



Solutions Manual - Chapter 11 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

The output file ftn85.txt presents most of the dimensionless variables needed for comparison, including the 
x Reynolds number, the momentum thickness Reynolds number, and the enthalpy thickness Reynolds 
number, along with the friction coefficient, Stanton number, and Nusselt number. Note that by reducing the 
print variable k5 to a small number we can obtain enough data points for high-resolution plotting. The 
output file ftn85.txt presents most of the momentum boundary layer variables, including the boundary layer 
99% thickness, the momentum thickness, shape factor, and enthalpy thickness. The files ftn86.txt and 
ftn87.txt contain heat transfer variables. 

To plot the developing velocity profiles, set kout=2 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s10.man user manual.  

Here is an abbreviated listing from the out.txt file  that contains profiles when kout=2 and k10=10. 

  intg x         rem       cf2       h12       reh        st 

  2630 3.000E+00 5.365E+03 1.480E-03 1.361E+00 6.065E+03  1.711E-03 

 

    i    y(i)      u(i)      ypl       upl       hpl       kpl       epl 

     1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00  0.000E+00  0.000E+00 

     2 5.091E-06 1.086E-01 1.881E-01 1.881E-01 1.330E-01  0.000E+00  0.000E+00 

     3 1.393E-05 2.972E-01 5.150E-01 5.150E-01 3.641E-01  0.000E+00  0.000E+00 

     4 2.178E-05 4.645E-01 8.049E-01 8.049E-01 5.690E-01  0.000E+00  0.000E+00 

   ... 

    81 5.201E-02 1.499E+01 1.922E+03 2.598E+01 2.247E+01  0.000E+00  0.000E+00 

    82 5.376E-02 1.500E+01 1.987E+03 2.599E+01 2.249E+01  0.000E+00  0.000E+00 

    83 5.482E-02 1.500E+01 2.026E+03 2.599E+01 2.249E+01  0.000E+00  0.000E+00 

We see profile data for momentum , ( )u y+ + or (upl and ypl),  as well as data for heat transfer. ( )T y+ +  

or (hpl and ypl) and for k-ε turbulence  variables, when higher-order turbulence models are used. 

This same data can be displayed in dimensional form by resetting k10=11. For turbulent flows, the user can 
also set output variables and flags to print profiles at specific locations. This is described in detail in the 
users manual. 

To confirm the momentum integral equation for computing friction coefficient divided by two, we use the 
ideas in Chapter 5. The momentum thickness distribution is contained in the output file ftn84.txt. You will 
want to set k5=1 to obtain enough points for numerically approximating 2 dd xδ , and use of a higher-order 
first-derivative approximation is useful. In the world of experimental fluid mechanics , this can be a good 
estimation of the friction coefficient. 
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TEXSTAN analysis of the turbulent momentum boundary layer over a flat plate with zero pressure 
gradient: This problem is essentially a repeat of the previous problem, but choosing other turbulence 
models available in TEXSTAN.  There exists a 1-equation model (ktmu=11) and four 2-equation (k-ε) 
models (ktmu=21,22,23,24). The initial velocity profile appropriate to the starting x-Reynolds 
number (a fully turbulent boundary layer profile), along with turbulence profiles for k (and ε) can be 
supplied by using the kstart=3 choice in TEXSTAN.  Chose an initial free stream turbulence of 2%.  
Note that by setting the corresponding initial free stream dissipation (for the 2-equation model) 
equal to zero, TEXSTAN will compute an appropriate value. Calculate the boundary layer flow and 
compare the friction coefficient results based on x Reynolds number and momentum thickness 
Reynolds number with the results in the text, Eqs. (11-20) and (11-23). Calculate the friction 
coefficient distribution using momentum integral Eq. (5-11) and compare with the TEXSTAN 
calculations. Feel free to investigate any other attribute of the boundary-layer flow. For example, 
you can calculate the mixing length model results from the previous problem and compare in a 
manner similar to Fig. 11-7.  Likewise you can investigate the law of the wall, comparing to Fig. 11-6. 

The data files for this problem are 11.11a.dat.txt. and 11.11b.dat.txt files. Their data set construction is 
based on the based on the s200_11.dat.txt file and s200_22.dat.txt files for flow over a flat plate with 
constant free stream velocity and specified surface temperature (initial profiles: fully turbulent velocity and 
temperature profiles, and for the turbulence variables, the profile construction is described in the 
TEXSTAN input manual). The one-equation turbulence model (ktmu=11) is an improved model over what 
is described in Chapter 11, and the two-equation model (ktmu=22) is based on the K-Y Chien model. These 
models are described in Appendix F. A variable turbulent Prandtl number model is used for liquid metals 
and gases, and a constant turbulent Prandtl number for liquids. 

Conversion of this data set to permit other turbulence models requires only the variable ktmu to be 
changed. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) for the one-equation turbulence model using a mixing length and solution to the k-
equation for the velocity scale. (11.11a.dat.txt) 

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.020E+05 6.963E+02 2.467E-03 3.117E-03 1.014 1.032 1.470 5.877E+02 

   250 2.746E+05 8.739E+02 2.343E-03 2.885E-03 1.019 1.035 1.463 8.092E+02 

   500 3.779E+05 1.106E+03 2.163E-03 2.613E-03  .998 1.010 1.453 1.092E+03 

   750 5.053E+05 1.373E+03 2.040E-03 2.433E-03  .993 1.003 1.437 1.412E+03 

  1000 6.618E+05 1.684E+03 1.939E-03 2.292E-03  .994 1.002 1.422 1.781E+03 

  1250 8.526E+05 2.045E+03 1.852E-03 2.175E-03  .996 1.003 1.409 2.207E+03 

  1500 1.083E+06 2.463E+03 1.774E-03 2.073E-03 1.000 1.005 1.398 2.697E+03 

  1750 1.360E+06 2.944E+03 1.702E-03 1.982E-03 1.003 1.007 1.388 3.257E+03 

  2000 1.690E+06 3.495E+03 1.637E-03 1.900E-03 1.007 1.010 1.381 3.897E+03 

  2250 2.080E+06 4.121E+03 1.576E-03 1.826E-03 1.010 1.013 1.374 4.624E+03 

  2500 2.539E+06 4.831E+03 1.520E-03 1.758E-03 1.014 1.016 1.369 5.445E+03 

  2669 2.891E+06 5.361E+03 1.485E-03 1.715E-03 1.017 1.018 1.366 6.057E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (11-20) at the same momentum-thickness Reynolds number and for St to Eq. (12-19) at 
the same enthalpy-thickness Reynolds number. We can use these ratios to help determine if a data set 
construction is correct.  At the present time only some of the “s” data sets in Appendix H can be used with 
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kout=8. We see the cfrat and strat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) for the two-equation KY Chien turbulence model using solutions to the k- and ε- 
equations. (11.11b.dat.txt). 

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.018E+05 6.958E+02 2.490E-03 3.142E-03 1.023 1.040 1.469 5.871E+02 

   250 2.666E+05 8.507E+02 2.267E-03 2.782E-03  .980  .989 1.427 7.797E+02 

   500 3.952E+05 1.124E+03 2.026E-03 2.423E-03  .939  .941 1.413 1.110E+03 

   750 5.580E+05 1.444E+03 1.911E-03 2.260E-03  .943  .944 1.397 1.490E+03 

  1000 7.582E+05 1.818E+03 1.831E-03 2.151E-03  .957  .959 1.380 1.930E+03 

  1250 1.006E+06 2.262E+03 1.763E-03 2.061E-03  .972  .975 1.363 2.451E+03 

  1500 1.311E+06 2.791E+03 1.699E-03 1.981E-03  .988  .992 1.348 3.069E+03 

  1750 1.687E+06 3.419E+03 1.640E-03 1.907E-03 1.003 1.007 1.335 3.799E+03 

  2000 2.149E+06 4.162E+03 1.584E-03 1.839E-03 1.018 1.022 1.323 4.663E+03 

  2250 2.715E+06 5.044E+03 1.532E-03 1.776E-03 1.033 1.038 1.313 5.686E+03 

  2319 2.891E+06 5.313E+03 1.518E-03 1.760E-03 1.037 1.042 1.311 5.998E+03 

Once again we see the cfrat and strat show agreement between the turbulent correlations and the 
TEXSTAN-computed solution. Similar comparisons can be made using the other turbulence models by 
changing ktmu in the input data set. 
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11-12 

TEXSTAN analysis of the transitional momentum boundary layer over a flat plate with zero pressure 
gradient: Choose a starting x-Reynolds number of about 1000 (corresponding to a momentum 
Reynolds number of about 20) and pick fluid properties that are appropriate to air, evaluated at a 
free stream temperature of 300 K. Use constant fluid properties, and note that the energy equation 
does not have to be solved. The geometrical dimensions of the plate are 1 m wide (a unit width) by 
3.0 m long in the flow direction, corresponding to an ending Rex of about 2.9 × 106.(a momentum 
Reynolds number of about 5400). Let the velocity boundary condition at the free stream be 15 m/s.  
The initial velocity profile appropriate to the starting x-Reynolds number (a laminar Blasius 
boundary layer profile) can be supplied by using the kstart=4 choice in TEXSTAN. For a turbulence 
model, choose the mixing-length turbulence model with the Van Driest damping function (ktmu=5), 
along with the abrupt transition model, corresponding to ktmtr=1 and an appropriate momentum 
Reynolds number for transition, specified by the variable gxx, using the minimal value suggested by 
Eq. (11-1) or a larger value, say 200.  Note that this value typically depends on the free stream 
turbulence level. Calculate the boundary layer flow and compare the friction coefficient results 
based on x Reynolds number and momentum thickness Reynolds number with the laminar 
equations (9-13) and (9-16) and the turbulent equations (11-20) and (11-23). Note that once again, 
you can evaluate the friction coefficient distribution using momentum integral Eq. (5-11) and 
compare it with the TEXSTAN calculations. Feel free to investigate any other attribute of the 
boundary-layer flow.  

The data file for this problem is 11.12.dat.txt. The data set construction is based on the s800_5a.dat.txt file 
for flow over a flat plate with constant free stream velocity and specified surface temperature (initial 
profiles: Blasius profiles for both velocity and temperature). The turbulence model is the van-Driest mixing 
length model, along with a variable turbulent Prandtl number model for liquid metals and gases, and a 
constant turbulent Prandtl number for liquids, with abrupt transition specified as a function of the 
momentum Reynolds number. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set), starting the calculations with laminar flow, and then switching to the mixing-length 
turbulence model at the abrupt transition location. 

  intg rex       rem       cf2       st        cfrat strat h12   apl 

     5 1.008E+03 2.108E+01 1.046E-02 1.313E-02 1.000  .974 2.590 2.50E+01 

   500 7.899E+03 5.905E+01 3.735E-03 4.682E-03 1.000  .984 2.590 2.50E+01 

  1000 2.259E+04 9.986E+01 2.209E-03 2.766E-03 1.000  .986 2.590 2.50E+01 

  1500 4.483E+04 1.407E+02 1.568E-03 1.963E-03 1.000  .986 2.590 2.50E+01 

  2000 7.462E+04 1.815E+02 1.215E-03 1.521E-03 1.000  .986 2.590 2.50E+01 

  Flow switched abruptly to turbulent 

  /// nintg = 2228  rex =  9.0711E+04  rem = 200.1 

   ********** cf/cf,lam,theo > 1.100  ********** 

  2234 9.115E+04 2.006E+02 1.235E-03 1.565E-03 1.123 1.121 2.424 2.50E+01 

  2250 9.231E+04 2.024E+02 1.882E-03 2.430E-03 1.727 1.757 2.115 2.50E+01 

   ********** cf/cf,turb,theo > 0.900  ********* 

  2302 9.621E+04 2.124E+02 2.951E-03 3.673E-03  .901  .997 1.830 2.50E+01 

  2500 1.149E+05 2.720E+02 3.192E-03 3.859E-03 1.037 1.113 1.661 2.50E+01 

  3000 1.937E+05 5.018E+02 2.699E-03 3.236E-03 1.022 1.084 1.534 2.50E+01 

  3500 3.330E+05 8.488E+02 2.332E-03 2.782E-03 1.007 1.060 1.467 2.50E+01 
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  4000 5.594E+05 1.343E+03 2.068E-03 2.456E-03 1.002 1.048 1.425 2.50E+01 

  4500 9.069E+05 2.024E+03 1.867E-03 2.208E-03 1.002 1.042 1.399 2.50E+01 

  5000 1.417E+06 2.932E+03 1.706E-03 2.010E-03 1.004 1.040 1.381 2.50E+01 

  5500 2.142E+06 4.117E+03 1.575E-03 1.850E-03 1.009 1.041 1.368 2.50E+01 

  5884 2.882E+06 5.248E+03 1.488E-03 1.745E-03 1.013 1.042 1.361 2.50E+01 

 

  intg= 2229  rem =  200.1  cf/2,min  = 1.102E-03  rex = 9.071E+04 

  intg= 2415  rem =  243.7  cf/2,max  = 3.234E-03  rex = 1.061E+05 

 

In the benchmark output (kout=8) we see cfrat and strat. For the laminar part of the calculations, these 
ratios are TEXSTAN-calculated values for cf  to Eq. (9-16) at the same momentum-thickness Reynolds 
number and for St to Eq. (10-16) at the same enthalpy-thickness Reynolds number. Once transition is 
forced, the ratios are TEXSTAN-calculated values for cf  to Eq. (11-20) at the same momentum-thickness 
Reynolds number and for St to Eq. (12-19) at the same enthalpy-thickness Reynolds number. The last two 
lines of data show the minimum and maximum surface shear stress locations, corresponding to the start and 
end of transition (which will be nominally the same for this abrupt transition model). 

We see the cfrat and strat show agreement from the onset for the laminar portion of the flow. We see the 
forced transition at  and that the friction coefficient is a minimum at that location. Note this 
location corresponds to . Once transition begins, we expect a sharp rise in c

2
Re 200δ =

Rex =

2
Reδ

9.07E+04
244, Re

f, and it 
becomes a maximum at a . and then for larger x-Reynolds numbers, the c1.06E+05x= = f 
value begins to fall, as transition to fully turbulent flow is completed. Because we have used an abrupt 
transition model, these two locations are nominally the same, as we would expect. For more advanced 
transition models we would expect a larger transition range. Note how fast the turbulent boundary layer is 
established once the transition has occurred. We can use the output file ftn85.dat.txt along with k5 set to a 
small value to see the detailed behavior of the cf/2.  
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12-1 

The development leading to Eq. (12-17) was not expected to be applicable to a high-Prandtl-number 
fluid. The objective of this problem is to develop a heat-transfer solution for the turbulent boundary 
layer for no pressure gradient or transpiration, applicable at Pr = 100. Use the Van Driest mixing-
length equation and Prt = 0.9, and integrate Eq. (12-12) out to about y+ = 100 numerically. (It is 
desirable to use a programmable computer or calculator.) Then for y+ > 100 neglect the 1/Pr term 
and integrate as in the text. Compare the results with Eqs. (12-15) and (12-17). 

Follow the procedure leading up to the development of Eqs (12-12) through (12-15), and the result is 

 278.3 2.195lnT y++ = +  

applicable for Pr > 100. Then follow the procedure described relating to E. (12-17) to obtain the heat 
transfer results 

 

0.2

0.1
0.0287ReSt

46.4 0.9Re
x

x

−

−=
+  

These results are very insensitive to whether the numerical part of the integration is terminated at y+ = 100, 
or at other such values as 80, or 150.  It is of further interest to investigate the value of "a" that would 
result if an equation of the following type is used to correlate the results:  

  
0.2RePrSt 0.0287a

x
−=
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12-2 

Consider heat transfer to a turbulent boundary layer with no pressure gradient or transpiration but 
with a vanishingly small-Prandtl-number fluid. Why is this problem simpler than for the turbulent 
boundary layer at moderate and high Prandtl numbers? What closed-form solution already in hand 
should be a good approximation? Why?  

At vanishing small Prandtl number the thermal boundary layer becomes very much thicker than the 
momentum boundary layer.  In that case the velocity through the entire thermal boundary layer becomes 
essentially constant, the eddy diffusivity is zero, and the applicable solution is Eq. (10-11). 
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12-3 

The approximate solution in the text for the development of a thermal boundary layer under an 
already existing momentum boundary layer, Eq. (12-29), is not valid very close to the step in surface 
temperature. An alternative possibility in this region may be based on the fact that for a short 
distance from the step the thermal boundary layer is entirely within the almost completely laminar 
part of the sublayer, say out to y+ = 5. A heat-transfer solution for this region can then be obtained in 
much the same manner as for a laminar boundary layer, but with the local turbulent boundary-layer 
surface shear stress used to establish the velocity profile. Develop a heat-transfer solution for this 
region, assuming that the shear stress is a constant throughout, and compare the results with Eq. 
(12-29). What is the range of validity of the result? What is the influence of the Prandtl number? 
This problem can be solved exactly using similarity methods or integral methods (see Chaps 9 and 
10). 

Follow the development on p. 253 and obtain a solution based on  the energy integral equation and a cubic 
parabola temperature profile for ξ/x near 1. 

 [ ] 1 30.4 2 3 1St 0.165Re Prx xξ −− −=  

A virtually identical result can be obtained by solution of the energy differential equation using laminar 
boundary layer similarity methods. 
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12-4 

Starting with Eq. (12-34), determine the Stanton number as a function of the Prandtl number and 
enthalpy thickness Reynolds number for the case of constant heat flux along a surface. Compare with 
Eq. (12-19). 

The result is 

 

2

2
2

5 360.4
0.5 0.25 Pr Re

St Pr 0.0125Re
Reδ

∆−
∆

 
=  

   

and 

  2

0.5 0.25St Pr 0.0142Re−
∆=
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12-5 

Using Eq. (12-29) and making any mathematical approximations that seem appropriate, determine 
the Stanton number as a function of the Prandtl number, enthalpy thickness Reynolds number, and 
momentum thickness Reynolds number. Note that Eq. (12-29) provides for the possibility of the ratio 
∆2/δ2 varying from 0 to 1. 

 

1 9
20.44 0.2

2
St Pr 0.0287 Rex δ

−
− ∆ =  
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Consider the development of a turbulent boundary layer in a convergent axisymmetric nozzle. Let 
both the free-stream and surface temperatures be constant. As an approximation, treat the flow as 
one-dimensional, so that the mass velocity G may be calculated as the mass flow rate divided by the 
cross-sectional area of the duct, πR2. Assume that the thermal boundary layer originates at the start 
of the convergence of the nozzle. Then take the case where the nozzle throat diameter is one-fifth the 
duct diameter at the start of convergence, x is a linear function of R, and the convergence angle is 
45°. Derive an expression for the Stanton number at the nozzle throat as a function of the Prandtl 
number and a Reynolds number based on throat diameter and throat mass velocity. How sensitive is 
this expression to convergence angle? Would shapes other than the straight wall of this example 
yield significantly different results? Compare your results with the corresponding expression for 
fully developed turbulent flow in a circular pipe (see Chap. 14). 

At the throat: 

  ( )0.2 0.20.4St 0.287 sin RePr throatθ −−=

where θ is the angle between the wall and the axis of symmetry.  Rethroat is a Reynolds number based on 
throat diameter. 
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12-7 

Air at a temperature of –7°C and 1 atm pressure flows along a flat surface (an idealized airfoil) at a 
constant velocity of 46 m/s. For the first 0.6m the surface is heated at a constant rate per unit of 
surface area; thereafter, the surface is adiabatic. If the total length of the plate is 1.8 m, what must 
be the heat flux on the heated section so that the surface temperature at the trailing edge is not below 
0°C? Plot the surface temperature along the entire plate. Discuss the significance of this problem 
with respect to wing de-icing. (A tabulation of incomplete beta functions, necessary for this problem, 
is found in App. C.) TEXSTAN can be used to confirm the results of this variable surface-heat flux 
problem. Choose a starting x-location near the leading edge, say 0.05 cm, and pick fluid properties 
that are appropriate to air, evaluated at the free stream temperature. Use constant fluid properties 
and do not consider viscous dissipation. The piecewise surface heat flux boundary condition is 
modeled easily in TEXSTAN by providing heat flux values at four x-locations, two for each segment, 
e.g. at x=0, x=0.60 m (over which there will be a heat flux), and at x=0.601 m, x=1.8 m (over which 
there will be a zero heat flux, adiabatic condition). Because TEXSTAN linearly interpolates the 
surface thermal boundary condition between consecutive x-locations, a total of 4 boundary condition 
locations is sufficient to describe the surface temperature variation. The initial velocity and 
temperature profiles appropriate to the starting x-location (fully turbulent boundary layer profiles) 
can be supplied by using the kstart=3 choice in TEXSTAN. For a turbulence model, choose the 
mixing-length turbulence model with the Van Driest damping function (ktmu=5) and choose the 
variable turbulent Prandtl number model (ktme=3). 
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Transform the integral using  u  =  1-η0.9, then,  

 
( ) ( )1 98 910, 1

9
b

a
I a b u duη−= −∫  

This integral is of the form of an incomplete Beta Function, see Appendix C. The solution can be carried 
out either numerically or using the Beta functions. The peak temperature at x = 0.6 is about 59ºC and the 
heat flux predicted by the analysis is about 8600 W/m2 . 

The data file for this problem is 12.7.dat.txt. The data set construction is based on the s210_5.dat.txt file 
for flow over a flat plate with constant free stream velocity and specified surface heat flux (initial profiles: 
fully turbulent velocity and temperature profiles). The turbulence model is the van-Driest mixing length 
model, along with a variable turbulent Prandtl number model for liquid metals and gases, and a constant 
turbulent Prandtl number for liquids. 

The data set was constructed using the results of the analysis for the surface heat flux. Because we are 
interested in surface temperature variation, the best output file is ftn86.txt. Here is an abbreviated listing of 
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the output file. Note, to see the complete surface temperature behavior, you need to make k5 much lower 
than the value selected. 

       intg  x/s            htc         qflux       ts          tinf 

           5  5.0089538E-02  1.8887E+02  8.6000E+03  3.1153E+02  2.6600E+02 

         150  6.0992672E-02  1.8523E+02  8.6000E+03  3.1243E+02  2.6600E+02 

         300  7.6973245E-02  1.7611E+02  8.6000E+03  3.1483E+02  2.6600E+02 

         450  9.5218541E-02  1.6821E+02  8.6000E+03  3.1713E+02  2.6600E+02 

         600  1.1601020E-01  1.6139E+02  8.6000E+03  3.1929E+02  2.6600E+02 

         750  1.3963852E-01  1.5538E+02  8.6000E+03  3.2135E+02  2.6600E+02 

         900  1.6639556E-01  1.4998E+02  8.6000E+03  3.2334E+02  2.6600E+02 

        1050  1.9658700E-01  1.4508E+02  8.6000E+03  3.2528E+02  2.6600E+02 

        1200  2.3053448E-01  1.4059E+02  8.6000E+03  3.2717E+02  2.6600E+02 

        1350  2.6857745E-01  1.3644E+02  8.6000E+03  3.2903E+02  2.6600E+02 

        1500  3.1107460E-01  1.3259E+02  8.6000E+03  3.3086E+02  2.6600E+02 

        1650  3.5840502E-01  1.2899E+02  8.6000E+03  3.3267E+02  2.6600E+02 

        1800  4.1096877E-01  1.2562E+02  8.6000E+03  3.3446E+02  2.6600E+02 

        1950  4.6918786E-01  1.2247E+02  8.6000E+03  3.3622E+02  2.6600E+02 

        2100  5.3350729E-01  1.1950E+02  8.6000E+03  3.3797E+02  2.6600E+02 

        2250  6.0446178E-01  0.0000E+00  0.0000E+00  3.0687E+02  2.6600E+02 

        2400  6.8244919E-01  0.0000E+00  0.0000E+00  2.8597E+02  2.6600E+02 

        2550  7.6802463E-01  0.0000E+00  0.0000E+00  2.8220E+02  2.6600E+02 

        2700  8.6174588E-01  0.0000E+00  0.0000E+00  2.7995E+02  2.6600E+02 

        2850  9.6428667E-01  0.0000E+00  0.0000E+00  2.7830E+02  2.6600E+02 

        3000  1.0764266E+00  0.0000E+00  0.0000E+00  2.7698E+02  2.6600E+02 

        3150  1.1989989E+00  0.0000E+00  0.0000E+00  2.7588E+02  2.6600E+02 

        3300  1.3328881E+00  0.0000E+00  0.0000E+00  2.7493E+02  2.6600E+02 

        3450  1.4790343E+00  0.0000E+00  0.0000E+00  2.7411E+02  2.6600E+02 

        3600  1.6384378E+00  0.0000E+00  0.0000E+00  2.7338E+02  2.6600E+02 

        3740  1.8000000E+00  0.0000E+00  0.0000E+00  2.7278E+02  2.6600E+02 

We see from the analysis that the surface temperature has returned to 273K, and the TEXSTAN predictions 
match the theory. The peak temperature of 64ºC is close to the theoretical value of 59ºC. 
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12-8 

Work Prob. 12-7 but divide the heater section into two 0.3 m strips, with one at the leading edge and 
the other 0.9 m from the leading edge. What heat flux is required such that the plate surface is 
nowhere less than 0°C? TEXSTAN can be used to confirm the results of this variable surface-heat 
flux problem. Follow the general set-up described in Prob. 12-7. The piecewise surface heat flux 
boundary condition will require a total of eight x-locations, two for each segment, e.g. at x=0, x=0.30 
m (over which there will be a heat flux) , x=0.301 m, x=0.90 m, (over which there will be a zero heat 
flux, adiabatic condition), x=0.901 m, x=1.20 m (over which there will again be a heat flux) , and the 
pair x=1.201 m, x=1.8 m, (over which there will be a zero heat flux, adiabatic condition). 

The procedure for this problem is the same as for 13-7, an application of Eq. (13-33).  This time the 
integral must be broken into four parts, corresponding to the four surface segments.  The solution for the 
first two is the same as for the previous problem with the integration limits suitably modified. 

The same TEXSTAN data set can be used and modified as suggested by the problem statement. 
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In film cooling the primary effect is believed to be due to the energy put into or taken out of the 
boundary layer, rather than the mass of fluid injected. If this is the case, it should be possible to 
approximate the effect of slot injection by simulating the slot with a strip heater in which the total 
heat rate is set equal to the product of the injection mass flow rate and the enthalpy of the injected 
fluid. Using the methods of the preceding two problems, carry out an investigation of the case 
represented by Eq. (12-45). 
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where x is measured from the leading edge and ξ is the distance to beginning of strip heater. 
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Air at a temperature of –7°C and 1 atm pressure flows along a flat surface (an idealized airfoil) at a 
Consider a film-cooling application of the type described in Prob. 12-9 (Fig. 12-25). The objective of 
this problem is to investigate methods of calculating heat transfer to or from the surface downstream 
of the injection slot (that is, the heater or heat extractor, if the above analogy is employed) when the 
surface temperature is maintained at some temperature different from the “adiabatic wall 
temperature.” Since heat transfer is zero when the surface temperature is equal to Taw, it would seem 
reasonable to define a heat-transfer coefficient based on Taw – Ts. Such a coefficient would be useful 
if it turned out that it did not differ substantially from that given by, for example, Eq. (12-18). The 
investigation can be carried out by simulating the injection slot as in Prob. 12-9 and then specifying a 
constant but substantially smaller heat flux along the remainder of the plate. 

This is an extension to the previous problem.  A meaningful result can be obtained if the heat flux in the 
region downstream from the heater is set at about 10% of the heater value, and then at 5%.  The question is 
whether or not a heat transfer coefficient based on (Taw – Ts.) is at least approximately independent of that 
temperature difference. 
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An aircraft oil cooler is to be constructed using the skin of the wing as the cooling surface. The wing 
may be idealized as a flat plate over which air at 71 kPa and - 4°C flows at 61 m/s. The leading edge 
of the cooler may be located 0.9 m from the leading edge of the wing. The oil temperature and oil-
side heat-transfer resistance are such that the surface can be at approximately 54°C, uniform over 
the surface. How much heat can be dissipated if the cooler surface measures 60 cm by 60 cm? Would 
there be any substantial advantage in changing the shape to a rectangle 1.2 m wide by 0.3 m in flow 
length? 

For the 60 cm wide by 60 cm in the flow direction cooler, q ≈ 2500 W, and for the 1.2 cm wide by 30 cm 
in the flow direction cooler,  q ≈ 2700 W. 
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Consider a constant free-stream velocity flow of air over a constant-surface-temperature plate. Let 
the boundary layer be initially a laminar one, but let a transition to a turbulent boundary layer take 
place in one case at Rex = 300,000 and in another at Rex = 106. Evaluate and plot (on log–log paper) 
the Stanton number as a function of Rex out to Rex = 3 × 106. Assume that the transition is abrupt 
(which is not actually very realistic). Evaluate the Stanton number for the turbulent part using the 
energy integral equation and an analysis similar to that used to develop Eq. (12-36), matching the 
enthalpy thicknesses of the laminar and turbulent boundary layers at the transition point. Also plot 
the Stanton number for a turbulent boundary layer originating at the leading edge of the plate. 
Where is the “virtual origin” of the turbulent boundary layer when there is a preceding laminar 
boundary layer? What is the effect of changing the transition point? How high must the Reynolds 
number be in order for turbulent heat-transfer coefficients to be calculated with 2 percent accuracy 
without considering the influence of the initial laminar portion of the boundary layer? TEXSTAN 
can be used to confirm the results of this problem. Choose a starting x-Reynolds number of about 
1000 (corresponding to a momentum Reynolds number of about 20) and pick fluid properties that 
are appropriate to air, evaluated at a free stream temperature of 300 K. Use constant fluid 
properties, and note that the energy equation does not have to be solved. The geometrical dimensions 
of the plate are 1 m wide (a unit width) by 3.0 m long in the flow direction, corresponding to an 
ending Rex of about 3 × 106.(a momentum Reynolds number of about 5500). Let the velocity 
boundary condition at the free stream be 15 m/s. The initial velocity and temperature profiles 
appropriate to the starting x-Reynolds number (laminar Blasius boundary layer profiles) can be 
supplied by using the kstart=4 choice in TEXSTAN. For a turbulence model, choose the mixing-
length turbulence model with the Van Driest damping function (ktmu=5), along with the abrupt 
transition model, corresponding to ktmtr=1 and an appropriate momentum Reynolds number for 
transition, specified by the variable gxx. You will have to iterate on your gxx choice, using the ideas 
leading up to Eq. (11-1) to create the correct transition x-Reynolds numbers. Also, choose the 
variable turbulent Prandtl number model (ktme=3). 

For Rex < Rex,t  we have S  0.5t 0.471Rex
−=

and for Rex > Rex,t  we have 
0.20.625

, ,St 0.033 Re Re 41.7 Rex x tr x tr
−− = − +    

The data file for this problem is exactly the same data set used in problem 11.12. It has been renamed 
12.12.dat.txt. The data set construction is based on the s800_5a.dat.txt file for flow over a flat plate with 
constant free stream velocity and specified surface temperature (initial profiles: Blasius profiles for both 
velocity and temperature). The turbulence model is the van-Driest mixing length model, along with a 
constant turbulent Prandtl number model for transitional flows. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set), starting the calculations with laminar flow, and then switching to the mixing-length 
turbulence model at the abrupt transition location. 

  intg rex       rem       cf2       st        cfrat strat h12   apl 

     5 1.008E+03 2.108E+01 1.046E-02 1.313E-02 1.000  .974 2.590 2.50E+01 

   500 7.899E+03 5.905E+01 3.735E-03 4.682E-03 1.000  .984 2.590 2.50E+01 

  1000 2.259E+04 9.986E+01 2.209E-03 2.766E-03 1.000  .986 2.590 2.50E+01 

  1500 4.483E+04 1.407E+02 1.568E-03 1.963E-03 1.000  .986 2.590 2.50E+01 

  2000 7.462E+04 1.815E+02 1.215E-03 1.521E-03 1.000  .986 2.590 2.50E+01 

  Flow switched abruptly to turbulent 

  /// nintg = 2228  rex =  9.0711E+04  rem = 200.1 

   ********** cf/cf,lam,theo > 1.100  ********** 
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  2234 9.115E+04 2.006E+02 1.235E-03 1.565E-03 1.123 1.121 2.424 2.50E+01 

  2250 9.231E+04 2.024E+02 1.882E-03 2.430E-03 1.727 1.757 2.115 2.50E+01 

   ********** cf/cf,turb,theo > 0.900  ********* 

  2302 9.621E+04 2.124E+02 2.951E-03 3.673E-03  .901  .997 1.830 2.50E+01 

  2500 1.149E+05 2.720E+02 3.192E-03 3.859E-03 1.037 1.113 1.661 2.50E+01 

  3000 1.937E+05 5.018E+02 2.699E-03 3.236E-03 1.022 1.084 1.534 2.50E+01 

  3500 3.330E+05 8.488E+02 2.332E-03 2.782E-03 1.007 1.060 1.467 2.50E+01 

  4000 5.594E+05 1.343E+03 2.068E-03 2.456E-03 1.002 1.048 1.425 2.50E+01 

  4500 9.069E+05 2.024E+03 1.867E-03 2.208E-03 1.002 1.042 1.399 2.50E+01 

  5000 1.417E+06 2.932E+03 1.706E-03 2.010E-03 1.004 1.040 1.381 2.50E+01 

  5500 2.142E+06 4.117E+03 1.575E-03 1.850E-03 1.009 1.041 1.368 2.50E+01 

  5884 2.882E+06 5.248E+03 1.488E-03 1.745E-03 1.013 1.042 1.361 2.50E+01 

 

  intg= 2229  rem =  200.1  cf/2,min  = 1.102E-03  rex = 9.071E+04 

  intg= 2415  rem =  243.7  cf/2,max  = 3.234E-03  rex = 1.061E+05 

 

In the benchmark output (kout=8) we see cfrat and strat. For the laminar part of the calculations, these 
ratios are TEXSTAN-calculated values for cf  to Eq. (9-16) at the same momentum-thickness Reynolds 
number and for St to Eq. (10-16) at the same enthalpy-thickness Reynolds number. Once transition is 
forced, the ratios are TEXSTAN-calculated values for cf  to Eq. (11-20) at the same momentum-thickness 
Reynolds number and for St to Eq. (12-19) at the same enthalpy-thickness Reynolds number. The last two 
lines of data show the minimum and maximum surface shear stress locations, corresponding to the start and 
end of transition (which will be nominally the same for this abrupt transition model). 

We see the cfrat and strat show agreement from the onset for the laminar portion of the flow. We see the 
forced transition at  and that the friction coefficient is a minimum at that location. Note this 
location corresponds to . Once transition begins, we expect a sharp rise in both St and c

2
Re 200δ =

Re 9.x = 07E+04

2
Reδ

f, 
and it becomes a maximum at a 244, Re 1.06E+05x= = . and then for larger x-Reynolds numbers, 
the cf value begins to fall, as transition to fully turbulent flow is completed. Because we have used an 
abrupt transition model, these two locations are nominally the same, as we would expect. For more 
advanced transition models we would expect a larger transition range. Note how fast the turbulent 
boundary layer is established once the transition has occurred. We can use the output file ftn85.dat.txt 
along with k5 set to a small value to see the detailed behavior of the St with x. 
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12-13 

A 12m diameter balloon is rising vertically upward in otherwise still air at a velocity of 3 m/s. When 
it is at 1500m elevation, calculate the heat-transfer coefficient over the entire upper hemispherical 
surface, making any assumptions that seem appropriate regarding the free-stream velocity 
distribution and the transition from a laminar to a turbulent boundary layer. 

If  it is assumed that transition occurs at 
2

Re 300δ = , the following results are obtained: 

 

θ   degrees from 

stagnation point 

h 

W/(m2·K) 

0 3.44 

10 3.42 

20 3.37 

30 3.27 

40 3.15 

50 2.98 

60 

transition 

11.6 

70 10.99 

80 10.58 

90 10.07 
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12-14 

A round cylindrical body 1.2 m in diameter has a hemispherical cap over one end. Air flows axially 
along the body, with a stagnation point at the center of the end cap. The air has an upstream state of 
1 atm pressure, 21°C, and 60 m/s. Under these conditions, evaluate the local heat-transfer coefficient 
along the cylindrical part of the surface to a point 4 m from the beginning of the cylindrical surface, 
assuming a constant-temperature surface. Make any assumptions that seem appropriate about an 
initial laminar boundary layer and about the free-stream velocity distribution around the nose. It 
may be assumed that the free-stream velocity along the cylindrical portion of the body is essentially 
constant at 60 m/s, although this is not strictly correct in the region near the nose. Then calculate the 
heat-transfer coefficient along the same surface by idealizing the entire system as a flat plate with 
constant free-stream velocity from the stagnation point. On the basis of the results, discuss the 
influence of the nose on the boundary layer at points along the cylindrical section and the general 
applicability of the constant free-stream velocity idealization. 

A reasonable way to handle the nose region is to use the potential flow solution for flow over a sphere: 

 1.5 sinapp
s

xu V
r∞

 =  
 

 

Then at the point where , let the free stream velocity remain at that value over the remainder of 
the nose and along the cylindrical body. If it is assumed that transition to a turbulent boundary layer takes 
place when , transition will occur at x = 0.4 m  (38.2º). The following table lists the heat 
transfer coefficients calculated as a function of distance from the stagnation point.  Also listed are the 
values of h which would be calculated if it were assumed that the system were a simple flat plate with 
constant free-stream velocity, and that the turbulent boundary layer originated at the stagnation point: 

appu V∞ =

2
Re 300δ ≈

 

x m h W/(m2·K) hflat plate 

0 53.0  

0.1 52.8  

0.2 52.0  

0.3 50.7  

0.4 48.9 (transition) 

0.438 227.0 (u∞ = 60) 

0.5 185.7  

0.6 163.8  

0.7 152.1  

0.8 143.7  

0.9425 134.0 116.34 

1.943 106.6 100.7 

2.943 96.1 92.6 

3.943 89.7 87.4 

4.943 85.3 83.5 
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12-15 

Problem 11-9 is concerned with the momentum boundary layer on a rough surface, and it involves 
analyzing some experimental data. The corresponding measured temperature profile is given in the 
following table. The surface temperature is 35.22°C, constant along the surface, and the free-stream 
temperature is 19.16ºC. St = 0.00233. How do the results compare with the theory developed in the 
text? 

y, cm T, °C y, cm T,°C 

0.020 29.02 0.660 24.17 

0.030 28.64 1.10 22.84 

0.051 28.14 1.61 21.62 

0.081 27.57 2.12 20.36 

0.127 26.97 2.82 19.46 

0.191 26.36 3.58 19.16 

0.279 25.76   

0.406 25.13   

 

The temperature and velocity profile origin should be shifted about 0.018 cm below the nominal origin.  
Then, we find . This should then be compared with Eq.(13-46) using Re0.165ln 0.348T y+ += = k = 124, k 
= 0.41, and Prt = 0.9, and the result should be  quite good fit . 
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12-16 

Consider a flat surface that is 30 cm square. Hot air at 800 K is flowing across this surface at a 
velocity of 50 m/s. The hot-air density is 0.435 kg/m3. The boundary layer on the plate is turbulent, 
and at the leading edge of the section of interest the momentum thickness Reynolds number is 1100. 
There is no thermal boundary layer in the region preceding the 30 cm section of interest; i.e., the 
surface on which the momentum boundary layer has developed is adiabatic and thus at 800 K. 
Cooling air is available at 290 K, at a rate of 0.0037 kg/s. The density of the coolant is 1.2 kg/m3. 
Investigate what can be done with three methods of cooling the 30 cm section: (1) convection from 
the rear surface of the plate; (2) transpiration; and (3) film cooling. In the first assume that the 
surface is sufficiently thin that the conduction resistance is negligible, that the effective heat-transfer 
coefficient on the rear surface is 25 W/(m2 · K), and that the effective coolant temperature is 290 K 
over the whole surface. For the second case let m′′  be uniform everywhere. Although the surface 
temperature varies in the direction of flow for each of the cooling methods used, ignore this effect on 
the heat-transfer coefficient, i.e., use constant-surface-temperature theory to determine h. 

Note: measure x from the leading edge 

 

x, m Ts, K Ts, K Ts, K 

 convective transpiration film 

0 800 800 - 

0.04 682 586 290 

0.08 674 572 533 

0.12 669 564 623 

0.16 666 557 664 

0.20 663 552 689 

0.24 600 548 706 

0.28 658 544 717 

0.30 657 543 726 
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12-17 

TEXSTAN analysis of the turbulent thermal boundary layer over a flat plate with constant surface 
temperature and with zero pressure gradient: Choose a starting x-Reynolds number of about 2 × 105 
(corresponding to a momentum Reynolds number of about 700) and pick fluid properties that are 
appropriate to air, evaluated at a free stream temperature of 300 K. Use constant fluid properties 
and do not consider viscous dissipation. The geometrical dimensions of the plate are 1 m wide (a unit 
width) by 3.0 m long in the flow direction, corresponding to an ending Rex of about 2.9 × 106.(a 
momentum Reynolds number of about 5400). Let the velocity boundary condition at the free stream 
be 15 m/s and let the energy boundary conditions be a free stream temperature of 300K and a 
constant surface temperature of 295 K. The initial velocity and temperature profiles appropriate to 
the starting x-Reynolds number (fully turbulent boundary layer profiles) can be supplied by using 
the kstart=3 choice in TEXSTAN. For a turbulence model, choose the mixing-length turbulence 
model with the Van Driest damping function (ktmu=5) and choose the variable turbulent Prandtl 
number model (ktme=3) corresponding to Eq. (12-7). Calculate the boundary layer flow and 
compare the Stanton number results based on x Reynolds number and enthalpy thickness Reynolds 
number with the results in the text, Eqs. (13-18) and (13-19). Calculate the Stanton number 
distribution using energy integral Eq. (5-24) and compare with the TEXSTAN calculations. Feel free 
to investigate any other attribute of the boundary-layer flow. For example, you can investigate the 
thermal law of the wall, comparing to Fig. 13-9 

The data file for this problem is exactly the same data set used in problem 11.10. It has been renamed 
12.17.dat.txt. The data set construction is based on the s200_5.dat.txt file for flow over a flat plate with 
constant free stream velocity and specified surface temperature (initial profiles: fully turbulent velocity and 
temperature profiles)The turbulence model is the van-Driest mixing length model, along with a variable 
turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for 
liquids.  

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) 

 intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.020E+05 6.963E+02 2.496E-03 3.149E-03 1.026 1.043 1.469 5.877E+02 

   250 2.753E+05 8.744E+02 2.345E-03 2.891E-03 1.020 1.037 1.454 8.100E+02 

   500 3.804E+05 1.112E+03 2.181E-03 2.636E-03 1.008 1.021 1.437 1.099E+03 

   750 5.113E+05 1.388E+03 2.054E-03 2.450E-03 1.003 1.014 1.422 1.431E+03 

  1000 6.729E+05 1.711E+03 1.946E-03 2.301E-03 1.001 1.010 1.408 1.814E+03 

  1250 8.704E+05 2.086E+03 1.852E-03 2.175E-03 1.001 1.008 1.397 2.256E+03 

  1500 1.109E+06 2.518E+03 1.769E-03 2.067E-03 1.002 1.008 1.387 2.762E+03 

  1750 1.396E+06 3.015E+03 1.694E-03 1.972E-03 1.004 1.009 1.380 3.341E+03 

  2000 1.738E+06 3.581E+03 1.626E-03 1.888E-03 1.006 1.010 1.373 4.000E+03 

  2250 2.141E+06 4.224E+03 1.565E-03 1.813E-03 1.009 1.012 1.367 4.746E+03 

  2500 2.614E+06 4.951E+03 1.508E-03 1.744E-03 1.012 1.014 1.363 5.587E+03 

  2630 2.891E+06 5.365E+03 1.480E-03 1.711E-03 1.014 1.015 1.361 6.065E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (11-20) at the same momentum-thickness Reynolds number and for St to Eq. (12-19) at 
the same enthalpy-thickness Reynolds number. We can use these ratios to help determine if a data set 
construction is correct.  At the present time only some of the “s” data sets in Appendix H can be used with 
kout=8. We see the cfrat and strat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. 
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The output file ftn85.txt presents most of the dimensionless variables needed for comparison, including the 
x Reynolds number, the momentum thickness Reynolds number, and the enthalpy thickness Reynolds 
number, along with the friction coefficient, Stanton number, and Nusselt number. Note that by reducing the 
print variable k5 to a small number we can obtain enough data points for high-resolution plotting. The 
output file ftn85.txt presents most of the momentum boundary layer variables, including the boundary layer 
99% thickness, the momentum thickness, shape factor, and enthalpy thickness. The files ftn86.txt and 
ftn87.txt contain heat transfer variables, including the surface heat flux, heat transfer coefficient, and 
surface temperature. 

To plot the developing velocity profiles, set kout=2 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s10.man user manual.  

Here is an abbreviated listing from the out.txt file  that contains profiles when kout=2 and k10=10. 

  intg x         rem       cf2       h12       reh        st 

  2630 3.000E+00 5.365E+03 1.480E-03 1.361E+00 6.065E+03  1.711E-03 

 

    i    y(i)      u(i)      ypl       upl       hpl       kpl       epl 

     1 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00  0.000E+00  0.000E+00 

     2 5.091E-06 1.086E-01 1.881E-01 1.881E-01 1.330E-01  0.000E+00  0.000E+00 

     3 1.393E-05 2.972E-01 5.150E-01 5.150E-01 3.641E-01  0.000E+00  0.000E+00 

     4 2.178E-05 4.645E-01 8.049E-01 8.049E-01 5.690E-01  0.000E+00  0.000E+00 

   ... 

    81 5.201E-02 1.499E+01 1.922E+03 2.598E+01 2.247E+01  0.000E+00  0.000E+00 

    82 5.376E-02 1.500E+01 1.987E+03 2.599E+01 2.249E+01  0.000E+00  0.000E+00 

    83 5.482E-02 1.500E+01 2.026E+03 2.599E+01 2.249E+01  0.000E+00  0.000E+00 

We see profile data for momentum , ( )u y+ + or (upl and ypl),  as well as data for heat transfer. ( )T y+ +  

or (hpl and ypl) and for k-ε turbulence  variables, when higher-order turbulence models are used. 

This same data can be displayed in dimensional form by resetting k10=11. For turbulent flows, the user can 
also set output variables and flags to print profiles at specific locations. This is described in detail in the 
users manual. 

To confirm the energy integral equation for computing Stanton number, we use the ideas in Chapter 5. The 
enthalpy thickness distribution is contained in the output file ftn84.txt. You will want to set k5=1 to obtain 
enough points for numerically approximating 2d dx∆ , and use of a higher-order first-derivative 
approximation is useful. In the world of experimental heat transfer , this can be a good estimation of the 
Stanton number. 
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12-18 

TEXSTAN analysis of the turbulent thermal boundary layer over a flat plate with constant surface 
temperature and with zero pressure gradient: This is an extension to problem 12-17 to investigate 
the effect of Prandtl number on heat transfer. Examine fluids ranging from gases to light liquids and 
compare to Fig. 13-13. Compare Eqs. (13-17) through (13-21) with the TEXSTAN results. 

This problem setup is based on the TEXSTAN setup for problem 12-17. The only important idea is to 
make sure the pipe length is long enough for thermally fully developed flow when Pr>1. Note: use variable 
turbulent Prandtl number for  and constant turbulent Prandtl number for . Pr 1≤ Pr 1>
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12-19 

TEXSTAN analysis of the turbulent thermal boundary layer over a flat plate with constant surface 
temperature and with zero pressure gradient: This problem is essentially a repeat of problem (12-
17), but choosing higher-order turbulence models available in TEXSTAN. There exists a 1-equation 
model (ktmu=11) and four 2-equation (k-ε) models (ktmu=21,22,23,24). The initial velocity and 
temperature profiles appropriate to the starting x-Reynolds number (fully turbulent boundary layer 
profiles), along with turbulence profiles for k (and ε) can be supplied by using the kstart=3 choice in 
TEXSTAN. Chose an initial free stream turbulence of 2%.  Note that by setting the corresponding 
initial free stream dissipation (for the 2-equation model) equal to zero, TEXSTAN will compute an 
appropriate value.  For the 1- and 2-equation turbulence models it is best to choose a constant 
turbulent Prandtl number model (ktme=2), along with a choice for the turbulent Prandtl number, 
0.9 is suggested, by setting fxx=0.9. Calculate the boundary layer flow and compare the Stanton 
number results based on x Reynolds number and enthalpy thickness Reynolds number with the 
results in the text, Eqs. (13-18) and (13-19). Calculate the Stanton number distribution using energy 
integral Eq. (5-24) and compare with the TEXSTAN calculations. Feel free to investigate any other 
attribute of the boundary-layer flow. For example, you can investigate the thermal  law of the wall, 
comparing to Fig. 13-9. 

The data files for this problem are 12.19a.dat.txt. and 12.19b.dat.txt files. Their data set construction is 
based on the based on the s200_11.dat.txt file and s200_22.dat.txt files for flow over a flat plate with 
constant free stream velocity and specified surface temperature (initial profiles: fully turbulent velocity and 
temperature profiles, and for the turbulence variables, the profile construction is described in the 
TEXSTAN input manual). The one-equation turbulence model (ktmu=11) is an improved model over what 
is described in Chapter 11, and the two-equation model (ktmu=22) is based on the K-Y Chien model. These 
models are described in Appendix F. A variable turbulent Prandtl number model is used for liquid metals 
and gases, and a constant turbulent Prandtl number for liquids. 

Conversion of this data set to permit other turbulence models requires only the variable ktmu to be 
changed. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) for the one-equation turbulence model using a mixing length and solution to the k-
equation for the velocity scale. (12.19a.dat.txt) 

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.020E+05 6.963E+02 2.467E-03 3.117E-03 1.014 1.032 1.470 5.877E+02 

   250 2.746E+05 8.739E+02 2.343E-03 2.885E-03 1.019 1.035 1.463 8.092E+02 

   500 3.779E+05 1.106E+03 2.163E-03 2.613E-03  .998 1.010 1.453 1.092E+03 

   750 5.053E+05 1.373E+03 2.040E-03 2.433E-03  .993 1.003 1.437 1.412E+03 

  1000 6.618E+05 1.684E+03 1.939E-03 2.292E-03  .994 1.002 1.422 1.781E+03 

  1250 8.526E+05 2.045E+03 1.852E-03 2.175E-03  .996 1.003 1.409 2.207E+03 

  1500 1.083E+06 2.463E+03 1.774E-03 2.073E-03 1.000 1.005 1.398 2.697E+03 

  1750 1.360E+06 2.944E+03 1.702E-03 1.982E-03 1.003 1.007 1.388 3.257E+03 

  2000 1.690E+06 3.495E+03 1.637E-03 1.900E-03 1.007 1.010 1.381 3.897E+03 

  2250 2.080E+06 4.121E+03 1.576E-03 1.826E-03 1.010 1.013 1.374 4.624E+03 

  2500 2.539E+06 4.831E+03 1.520E-03 1.758E-03 1.014 1.016 1.369 5.445E+03 

  2669 2.891E+06 5.361E+03 1.485E-03 1.715E-03 1.017 1.018 1.366 6.057E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (11-20) at the same momentum-thickness Reynolds number and for St to Eq. (12-19) at 
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the same enthalpy-thickness Reynolds number. We can use these ratios to help determine if a data set 
construction is correct. We see the cfrat and strat show agreement between the turbulent correlations and 
the TEXSTAN-computed solution. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
an input data set) for the two-equation KY Chien turbulence model using solutions to the k- and ε- 
equations. (12.19b.dat.txt). 

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 2.018E+05 6.958E+02 2.490E-03 3.142E-03 1.023 1.040 1.469 5.871E+02 

   250 2.666E+05 8.507E+02 2.267E-03 2.782E-03  .980  .989 1.427 7.797E+02 

   500 3.952E+05 1.124E+03 2.026E-03 2.423E-03  .939  .941 1.413 1.110E+03 

   750 5.580E+05 1.444E+03 1.911E-03 2.260E-03  .943  .944 1.397 1.490E+03 

  1000 7.582E+05 1.818E+03 1.831E-03 2.151E-03  .957  .959 1.380 1.930E+03 

  1250 1.006E+06 2.262E+03 1.763E-03 2.061E-03  .972  .975 1.363 2.451E+03 

  1500 1.311E+06 2.791E+03 1.699E-03 1.981E-03  .988  .992 1.348 3.069E+03 

  1750 1.687E+06 3.419E+03 1.640E-03 1.907E-03 1.003 1.007 1.335 3.799E+03 

  2000 2.149E+06 4.162E+03 1.584E-03 1.839E-03 1.018 1.022 1.323 4.663E+03 

  2250 2.715E+06 5.044E+03 1.532E-03 1.776E-03 1.033 1.038 1.313 5.686E+03 

  2319 2.891E+06 5.313E+03 1.518E-03 1.760E-03 1.037 1.042 1.311 5.998E+03 

Once again we see the cfrat and strat show agreement between the turbulent correlations and the 
TEXSTAN-computed solution. Similar comparisons can be made using the other turbulence models by 
changing ktmu in the input data set. 
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13-1 

Develop an equation for the friction coefficient for fully developed turbulent flow between parallel 
planes, assuming that Eq. (13-7) is a reasonable approximation for the velocity profile. 

The solution follows that on p 286 for Eq. (13-11). Assume 0.875cV u =  and the friction coefficient 
becomes 

  0.25/2 0.041Re
hf Dc −=

where the Re
hD is the hydraulic diameter Reynolds number based on the channel height, h,  

 
2Re

hD
hV
ν

=
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13-2 

Employing numerical integration to determine the ratio of mean velocity to centerline velocity, and 
Eq. (13-6) for the velocity profile, evaluate the friction coefficient for fully developed turbulent flow 
in a circular tube for two different Reynolds numbers: 30,000 and 150,000. Compare results with 
other relations for the friction coefficient given in the text. (It is presumed that a programmable 
computer is used for this problem.) 

A numerical calculation using Eq. (13-6), but using the Van Driest mixing-length for y+ < 100, A+ = 26, 
and κ = 0.40, yields the following: 

 Re = 29,100  cf = 0.00302 

 Re = 102,307  cf = 0.00220 
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13-3 

Develop a solution for the friction coefficient and velocity profile in the entry region of a flat duct, 
assuming that the velocity is uniform over the flow cross section at the entrance, that the boundary 
layer that develops on the two surfaces is turbulent from its very beginning, and that Eq. (13-7) is an 
adequate approximation for the velocity profile both in the entry region and in the fully developed 
region. Employ the momentum integral equation, and assume that the velocity profile in the entry 
region can be divided into two parts: a uniform-velocity core region and a boundary layer that 
ultimately engulfs the entire core. Note that the uniform velocity in the core region accelerates 
because of the displacement of the boundary layer, and that part of the pressure drop in the entry 
region is due to this acceleration. Determine the length of the entry region. 

A solution can be obtained based on a slight modification of Eq.(11-21) to account for the difference 
between Eqs. (11-17) and (13-7).  If the integral is evaluated numerically the following is a sample of the 
results for 

 2Re 25,000
hD

hV
ν

= =  

where the Re is the hydraulic diameter Reynolds number based on the channel height, h, 

  0.25/2 0.041Refc −=

 

x/2h 2fc  cV u  

1 .00409 .976 

2 .00370 .959 

3 .00352 .944 

4 .00342 .931 

5 .00337 .919 

6 .00333 .908 

7 .00331 .898 

8 .00329 .888 

9 .00329 .879 

(entry length)  9.4 .00329 .875 

 

and the total pressure drop is 

 ( )2 0.155P
Vρ

∆
=
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13-4 

Develop Eq. (13-17) by the indicated procedures. 

The velocity profile is Eq. (11-56). This is substituted into Eq. (7-6).  After integration is carried out to 
obtain a relation between the mean and center-line velocities, Eq. (13-17) is obtained from Eq. (11-56) 
when it is applied at the centerline. 
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13-5 

Employing Eq. (13-6), numerical integration, and a programmable computer, determine the ratio of 
mean velocity to centerline velocity for fully developed flow in a circular tube for a number of 
different Reynolds numbers, and compare with Eq. (12–10), which was developed assuming a 1

7 -
power profile. Determine whether it is valid to neglect the contribution of the sublayer in these 
calculations. 

Using Eq. (13-6) but employing the Van Driest mixing-length y+ < 100, A+ = 26, and κ = 0.40, yields the 
following: 

Re cV u  

10,103 0.789 

29,100 0.814 

102,307 0.837 

311,152 0.853 

1,013,370 0.866 
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13-6 

The viscous sublayer behaves as if it were almost completely laminar out to a value of y+ of about 5.0. 
With this idea in mind, calculate the ratio of such a sublayer thickness to pipe diameter for fully 
developed turbulent flow in a smooth-walled pipe. Using these results, discuss the significance of the 
data in Fig. 13-2. 

At  5y+ =

 
2

5fDV cy
D ν

  = 
 

 

or 

 5 1
Re2f

y
D c

  = 
 

 

Now, 0.22 0.023Refc −=  

so 

 
0.833Rey

D
−  = 

   

 

It will be found that the line on Fig. 13-2 labeled "limit of fully rough region" is a similar function of 
(ks/D), but with a larger coefficient. 
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13-7 

Two water tanks, open to the atmosphere, are connected by a pair of parallel pipes each having an 
inside diameter of 2.5 cm. The pipes are 20 m long. One is a “smooth” tube, but the other is a 
galvanized iron pipe. What must be the elevation difference for the two tanks in order for the total 
flow rate for the two pipes to be 1.00 kg/s? (Neglect entrance and exit pressure-drop effects.) 

The necessary elevation difference is 1.21 m.  The rough tube flow rate will be 0.45 kg/s, and the smooth 
tube rate 0.55 kg/s. 
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13-8 

TEXSTAN analysis of the turbulent momentum entry flow in a circular tube: Investigate the entry 
length region through the hydrodynamically fully-developed region of flow in a circular tube with 
diameter Reynolds numbers of 30,000 and 150,000. Pick fluid properties that are appropriate to air, 
evaluated at a temperature of 300 K. Use constant fluid properties, and note that the energy 
equation does not have to be solved. Let the pipe diameter be 3.5 cm and the pipe length be 12.0 m. 
Let the velocity profile at the inlet to the tube be flat, which can be supplied by using the kstart=1 
choice in TEXSTAN. For a turbulence model, choose the hybrid turbulence model comprised of a 
constant eddy viscosity in the outer part of the flow (εm/ν=aReb with a = 0.005 and b = 0.9) and a 
mixing-length turbulence model with the Van Driest damping function (κ=0.40 and A+=26) in the 
near-wall region (ktmu=7).  This hybrid model tends to more closely fit Fig. (13-1), and thus better 
predict the fully-developed friction coefficient for a given Reynolds number. Compare the friction 
coefficient with the set of Eqs. (13-11) through (13-14). Feel free to investigate any other attribute of 
the boundary-layer flow. For example, you can examine a velocity profile at the hydrodynamically 
fully developed state to evaluate the law of the wall and the ratio of mean velocity to centerline 
velocity, and compare with Eqs. (13-6) and (13-10) respectively. 

The data file for this problem is 13.8.dat.txt. The data set construction is based on the s410_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface temperature (initial profiles: flat velocity 
and flat temperature). The turbulence model is a composite model that uses the van-Driest mixing length 
model in the near-wall region and a constant eddy viscosity in the outer region. Note that the turbulent data 
set manual s400.man is very helpful in understanding this data set construction. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 13.8.dat.txt). Only the momentum results 
will be discussed. The Reynolds number is 30,000. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 2.037E-02   546.4   6.904   7.747   .949 2.950E+02  3.049E+03 

  400 2.000E+00 3.783E-03    89.5   1.282   1.269   .951 2.950E+02  4.789E+02 

  800 4.000E+00 3.460E-03    81.2   1.173   1.152   .953 2.950E+02  4.211E+02 

 1200 6.106E+00 3.326E-03    77.7   1.127   1.102   .954 2.950E+02  3.904E+02 

 1600 9.108E+00 3.222E-03    74.9   1.092   1.062   .956 2.950E+02  3.601E+02 

 2000 1.358E+01 3.139E-03    72.5   1.064   1.028   .959 2.950E+02  3.276E+02 

 2400 2.026E+01 3.081E-03    70.8   1.044   1.003   .962 2.950E+02  2.923E+02 

 2800 3.022E+01 3.049E-03    69.9   1.034    .990   .967 2.950E+02  2.529E+02 

 3200 4.508E+01 3.038E-03    69.5   1.030    .986   .973 2.950E+02  2.072E+02 

 3600 6.721E+01 3.036E-03    69.5   1.029    .985   .980 2.950E+02  1.549E+02 

 3998 1.000E+02 3.035E-03    69.5   1.029    .985   .987 2.950E+02  1.008E+02 

Here is a same abbreviated output for the Re=150,000 data set. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 6.503E-03   822.5   3.151   3.332   .949 2.950E+02  4.598E+03 

  400 2.000E+00 2.626E-03   319.1   1.272   1.293   .951 2.950E+02  1.734E+03 

  800 4.000E+00 2.405E-03   290.7   1.165   1.178   .952 2.950E+02  1.544E+03 

 1200 6.106E+00 2.308E-03   278.2   1.118   1.127   .953 2.950E+02  1.444E+03 

 1600 9.108E+00 2.239E-03   269.1   1.085   1.090   .954 2.950E+02  1.354E+03 
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 2000 1.358E+01 2.182E-03   261.2   1.057   1.058   .956 2.950E+02  1.257E+03 

 2400 2.026E+01 2.140E-03   255.1   1.037   1.033   .959 2.950E+02  1.151E+03 

 2800 3.022E+01 2.113E-03   251.3   1.024   1.018   .963 2.950E+02  1.031E+03 

 3200 4.508E+01 2.101E-03   249.7   1.018   1.012   .968 2.950E+02  8.903E+02 

 3600 6.721E+01 2.098E-03   249.3   1.017   1.010   .974 2.950E+02  7.218E+02 

 3998 1.000E+02 2.098E-03   249.3   1.016   1.010   .981 2.950E+02  5.303E+02 

In these benchmark outputs (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the 
Gnielinski Eq. (14-8) . We can use these ratios to help determine if a data set construction is correct.  At 
the present time only some of the “s” data sets in Appendix H can be used with kout=8. We see the cfrat 
and strat show agreement between the turbulent correlations and the TEXSTAN-computed solution. From 
the output we can also see the hydrodynamic developing region is complete to within 5% by x/Dh of about 
12-15 for both Reynolds numbers. The output file ftn85.txt presents most of the momentum flow variables, 
including the surface shear stress and pressure drop. The files ftn82.txt and ftn84.txt contain heat transfer 
variables for the E-surface (the pipe wall). 

To plot the developing velocity profiles, set kout=4 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s400.man.doc user manual.  

Here is an abbreviated listing from the out.txt file for Re=30,000 that contains profiles when kout=4 and 
k10=10. 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

 3998 1.000E+02 6.416E-03 0.000E+00 3.035E-03  0.000E+00  6.948E+01 

 

    i    y(i)      u(i)      ypl       upl       hpl       kpl       epl 

     1 0.000E+00 8.292E+00 8.264E+02 2.249E+01 2.112E+01 0.000E+00 0.000E+00 

     2 1.154E-03 8.292E+00 7.992E+02 2.249E+01 2.112E+01 0.000E+00 0.000E+00 

     3 2.393E-03 8.282E+00 7.699E+02 2.246E+01 2.108E+01 0.000E+00 0.000E+00 

     4 3.834E-03 8.263E+00 7.359E+02 2.241E+01 2.101E+01 0.000E+00 0.000E+00 

..... 

    81 3.499E-02 9.428E-02 2.557E-01 2.557E-01 1.808E-01 0.000E+00 0.000E+00 

    82 3.500E-02 4.024E-02 1.091E-01 1.091E-01 7.715E-02 0.000E+00 0.000E+00 

    83 3.500E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

We see profile data for momentum , ( )u y+ + or (upl and ypl),  as well as data for heat transfer. ( )T y+ +  

or (hpl and ypl) and for k-ε turbulence  variables, when higher-order turbulence models are used. 

This same data can be displayed in dimensional form by resetting k10=11. For turbulent flows, the user can 
also set output variables and flags to print profiles at specific locations. This is described in detail in the 
users manual. 
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13-9 

TEXSTAN analysis of the turbulent momentum entry flow between parallel plates: Investigate the 
entry length region through the hydrodynamically fully-developed region of flow in between parallel 
plates with hydraulic diameter Reynolds numbers of 30,000 and 150,000. Pick fluid properties that 
are appropriate to air, evaluated at a temperature of 300 K. Use constant fluid properties, and note 
that the energy equation does not have to be solved. Let the plate spacing be 7.0 cm and the plate 
length be 7.0 m. Let the velocity entry profile at the inlet to the plates be flat, which can be supplied 
by using the kstart=1 choice in TEXSTAN. For a turbulence model, choose the hybrid turbulence 
model comprised of a constant eddy viscosity in the outer part of the flow (εm/ν=aReb with a = 0.0022 
and b = 0.9) and a mixing-length turbulence model with the Van Driest damping function (κ=0.40 
and A+=26) in the near-wall region (ktmu=7). This hybrid model follows the circular pipe idea 
described in Prob. 13-8, and thus better predict the fully-developed friction coefficient for a given 
Reynolds number. Compare the friction coefficient with the set of Eqs. (13-11) through (13-14), 
being careful to use the hydraulic diameter, Eq. (13-16). Feel free to investigate any other attribute 
of the boundary-layer flow. For example you can compare the profile shape with that described as a 
part of Prob. 13-1. 

The data file for this problem is 13.9.dat.txt. The data set construction is based on the s510_7.dat.txt file 
for combined entry length flow between parallel planes with a specified surface temperature (initial 
profiles: flat velocity and flat temperature). The turbulence model is a composite model that uses the van-
Driest mixing length model in the near-wall region and a constant eddy viscosity in the outer region.  

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
13.9.dat.txt). Only the momentum results will be discussed. The hydraulic diameter Reynolds number is 
30,000. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 1.250E-02 2.175E-02   581.5   7.373   8.245   .949 2.950E+02  1.624E+03 

  500 1.250E+00 4.173E-03    99.5   1.415   1.411   .951 2.950E+02  2.696E+02 

 1000 2.500E+00 3.764E-03    89.1   1.276   1.263   .952 2.950E+02  2.362E+02 

 1500 3.750E+00 3.562E-03    83.7   1.208   1.187   .953 2.950E+02  2.173E+02 

 2000 5.000E+00 3.432E-03    80.1   1.163   1.136   .954 2.950E+02  2.041E+02 

 2500 6.420E+00 3.331E-03    77.3   1.129   1.096   .955 2.950E+02  1.929E+02 

 3000 8.243E+00 3.243E-03    74.9   1.099   1.062   .956 2.950E+02  1.820E+02 

 3500 1.058E+01 3.170E-03    72.9   1.075   1.034   .957 2.950E+02  1.715E+02 

 4000 1.359E+01 3.115E-03    71.4   1.056   1.013   .959 2.950E+02  1.613E+02 

 4500 1.745E+01 3.078E-03    70.5   1.043    .999   .961 2.950E+02  1.511E+02 

 5000 2.240E+01 3.056E-03    70.0   1.036    .992   .964 2.950E+02  1.405E+02 

 5500 2.876E+01 3.046E-03    69.8   1.033    .989   .966 2.950E+02  1.289E+02 

 6000 3.693E+01 3.043E-03    69.7   1.032    .988   .970 2.950E+02  1.156E+02 

 6500 4.741E+01 3.042E-03    69.7   1.031    .988   .974 2.950E+02  1.007E+02 

 7000 6.085E+01 3.042E-03    69.7   1.031    .988   .978 2.950E+02  8.442E+01 

 7500 7.813E+01 3.042E-03    69.7   1.031    .988   .982 2.950E+02  6.728E+01 

 7994 1.000E+02 3.042E-03    69.7   1.031    .988   .987 2.950E+02  5.048E+01 

Here is a same abbreviated output for the Re 150,000
hD =  data set. 
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 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 1.250E-02 7.902E-03  1012.7   3.828   4.102   .949 2.950E+02  2.832E+03 

  500 1.250E+00 2.851E-03   348.0   1.381   1.410   .950 2.950E+02  9.539E+02 

 1000 2.500E+00 2.592E-03   315.1   1.256   1.276   .951 2.950E+02  8.505E+02 

 1500 3.750E+00 2.468E-03   299.1   1.196   1.211   .952 2.950E+02  7.956E+02 

 2000 5.000E+00 2.386E-03   288.1   1.156   1.167   .952 2.950E+02  7.558E+02 

 2500 6.420E+00 2.319E-03   279.0   1.124   1.130   .953 2.950E+02  7.211E+02 

 3000 8.243E+00 2.258E-03   270.7   1.094   1.097   .954 2.950E+02  6.865E+02 

 3500 1.058E+01 2.205E-03   263.4   1.068   1.067   .955 2.950E+02  6.524E+02 

 4000 1.359E+01 2.161E-03   257.4   1.047   1.043   .956 2.950E+02  6.190E+02 

 4500 1.745E+01 2.128E-03   253.0   1.031   1.025   .958 2.950E+02  5.862E+02 

 5000 2.240E+01 2.105E-03   250.1   1.020   1.013   .960 2.950E+02  5.530E+02 

 5500 2.876E+01 2.092E-03   248.6   1.014   1.007   .962 2.950E+02  5.178E+02 

 6000 3.693E+01 2.086E-03   248.0   1.011   1.005   .965 2.950E+02  4.785E+02 

 6500 4.741E+01 2.084E-03   247.8   1.010   1.004   .968 2.950E+02  4.335E+02 

 7000 6.085E+01 2.084E-03   247.8   1.010   1.004   .972 2.950E+02  3.823E+02 

 7500 7.813E+01 2.084E-03   247.8   1.010   1.004   .976 2.950E+02  3.253E+02 

 7994 1.000E+02 2.084E-03   247.8   1.010   1.004   .981 2.950E+02  2.652E+02 

In these benchmark outputs (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the 
Gnielinski Eq. (14-8). We can use these ratios to help determine if a data set construction is correct.  At the 
present time only some of the “s” data sets in Appendix H can be used with kout=8. We see the cfrat and 
strat show agreement between the turbulent correlations and the TEXSTAN-computed solution. This helps 
confirm that for turbulent internal flows, the hydraulic diameter Reynolds number is successful in 
correlating data in noncircular cross sections, as discussed on p. 287. From the output we can also see the 
hydrodynamic developing region is complete to within 5% by x/Dh of about 12-15 for both Reynolds 
numbers. The output file ftn85.txt presents most of the momentum flow variables, including the surface 
shear stress and pressure drop. The files ftn82.txt and ftn84.txt contain heat transfer variables for the E-
surface (the pipe wall). 

To plot the developing velocity profiles, set kout=4 and choose k10=11 for k10=11 for dimensional 
variables (the k10=10 does not work for this geometry). The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s400.man user manual.  You can then convert the profiles 
to dimensionless plus variables. 
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14-1 

Consider fully developed turbulent flow between parallel planes. Let the Reynolds number (based on 
hydraulic diameter) be 50,000 and let the Prandtl number of the fluid be 3. The heat flux on one 
plate, into the fluid, is constant everywhere. The heat flux on the other plate is out of the fluid, is also 
constant everywhere, and is the same in magnitude as the heat flux on the first plate. The problem is 
to calculate and plot the temperature distribution across the fluid from plate to plate. Use any 
equations for velocity distribution and or eddy diffusivity that you feel are reasonable. For 
simplicity, it is sufficiently precise to assume that the eddy diffusivity is constant across the center 
region of the duct at the value given at r = 0 by Eq. (13-5), and that Eq. (13-4) is valid over the 
remainder of the flow area, excepting the sublayer, which can be treated as in the development 
leading to Eq. ( 11-16). Explain the shape of the temperature profile by referring to the basic 
mechanisms involved. How would this profile change with Prandtl number? What would the profile 
be if the flow were laminar? 

Let h = plate spacing.  Then 2 2sh h hV cτ ρ ν+ = = f . Use a three-layer model with a laminar 
sublayer extending to y+ = 13.2. Under the assumptions mε ν  becomes constant at y+ = 0.394h+.  Then the 
temperature profile in the three regions is: 

 Sublayer    T+ = Pr y+ 

 Log profile region - 
( )

13.2 13.2 2
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2

y

y
T T dy

h y

+
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∫ +  

where b+ is determined from the results of Prob. 13-1, 

  0.25/2 0.041Refc −=

where the Re is the hydraulic diameter Reynolds number based on the channel height, h. For this problem, 

  
0.25/2 0.041Re 0.00274

1309
hf Dc

b

−

+

= =

=

The centerline is at y+ = b+/2 = 665, and the value of T+ at the centerline is 54.16. 
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14-2 

Consider fully developed turbulent flow in a circular tube with heat transfer to or from the fluid at a 
constant rate per unit of tube length. Let there also be internal heat generation (perhaps from 
nuclear reaction) at a rate S, W /m3, which is everywhere constant. If the Reynolds number is 50,000 
and the Prandtl number is 4, evaluate the Nusselt number as a function of the pertinent parameters. 
The heat-transfer coefficient in the Nusselt number should be defined in the usual manner on the 
basis of the heat flux at the surface, the surface temperature, and the mixed mean fluid temperature. 
Use a two-layer model to handle the sublayer [see Chap. 11 and the development leading to Eq. (11-
16)] and evaluate the eddy diffusivity as described for Prob. 14-1. 
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If a 2 - layer model is used, for 0 < y+ < 13.2 (laminar sublayer), u+ = y+, and 
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For  13.2 < y+ < sr+  a closed form solution is obtainable if we assume ( )1 7
8.6u y+ += . Numerical 

integration using mixing-length theory, Eq. (11-25), ( )M 0.4 6srε ν += in the central region, and Eq.(12-7) 
for Prt, leads to the following results:  
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Nu 

4 50000 0 255.1 

4 50000 -1 259.3 

4 50000 +1 251.1 
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14-3 

Consider turbulent flow between parallel planes with Reynolds number equal to 100,000. For a fluid 
with Pr = 10, and then for a fluid with Pr = 0.01, evaluate the Nusselt number for fully developed 
constant heat rate for only one side heated and then for both sides equally heated, using the solutions 
given in the text. Discuss the differences between the cases of one side heated and both sides heated, 
in terms of the heat-transfer mechanisms and the temperature profiles. How is the Nusselt number 
related to the “shape” of the temperature profile? 

For one side heated: 

  Pr = 10  Nu = 680 

  Pr = 0.01 Nu = 6.70 

For both sides heated: 

  Pr = 10  Nu = 712 

  Pr = 0.01 Nu = 11.96 

At Pr = 10 the heat transfer resistance is concentrated very near the walls, while at Pr = 0.01 it is 
distributed over the entire flow cross-section. 
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14-4 

Consider fully developed flow in a circular tube with constant heat rate per unit of tube length. Let 
the mean flow velocity be 8 m /s. Evaluate the heat-transfer coefficient h for the following cases, and 
discuss the reasons for the differences: (a) air, 90°C, 1 atm pressure, 2.5 cm diameter tube; (b) same 
with 0.6 cm diameter tube; (c) hydrogen gas, 90°C, 1 atm pressure, 2.5 cm diameter tube; (d) liquid 
oxygen, –200°C, 2.5 cm diameter tube; (e) liquid water, 38°C, 2.5 cm diameter tube; (f) liquid 
sodium, 200°C, 2.5 cm diameter tube; (g) aircraft engine oil, 90°C, 2.5 cm diameter tube; (h) air, 
90°C, 1000 kPa pressure, 2.5 cm diameter tube. 

 (a) 33.2 W/(m2 K) 

 (b) 44.2 (if laminar, then 22.2)  

 (c)  35.5 (laminar) 

 (d) 15,732 

 (e) 29,605 

 (f) 54,188 

 (g) 13,74 

 (h) 13,74 
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14-5 

Consider a 1.20 cm inside-diameter, 1.8 m long tube wound by an electric resistance heating element. 
Let the function of the tube be to heat an organic fuel from 10 to 65°C. Let the mass-flow rate of the 
fuel be 0.126 kg /s, and let the following average properties be treated as constant: 

 ( ) ( )3Pr 10, 753kg/m , 2.10kJ/ kg K , 0.137W/ m Kc kρ= = = ⋅ = ⋅  

Calculate and plot both tube surface temperature and fluid mean temperature as functions of tube 
length. TEXSTAN can be used to confirm this analysis. Use constant fluid properties and do not 
consider viscous dissipation. Let the velocity and thermal entry profiles at the inlet to the tube be 
flat, which can be supplied by using the kstart=1 choice in TEXSTAN. Let the energy boundary 
condition be a constant surface heat flux equal to the value from the analysis. For a turbulence 
model, choose the model described in Prob. 14-13. 

For this problem, with the given properties, ( ) ( )Re 4 20,490D m Dπµ= = . The cf /2 from the Kármán-
Nikuradse Eq. (13-14) for this problem is 0.00324 and for Nu from the corresponding Gnielinski Eq. (14-
8) is 174. Note that 150hL D =  for this problem, so the hydrodynamic and thermal entry region should be 
towards the entry region for the pipe. From a First-Law energy balance, the total heat transfer to the fluid is 
14.553 kW, corresponding to a constant surface heat flux of 214.461 kW/m2. From the Nu definition, h = 
1986 W/m2·K, and based on this value, the surface temperature at the exit should be 173ºC. 

  

x/L, m TmºC TsºC TEXSTA
N 

0 10 118  

25 19.2 127 119 

50 28.3 136 130 

100 46.7 155 148 

150 65 173 166 

 

The data file for this problem is 14.5.dat.txt. The data set construction is based on the s420_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface heat flux (initial profiles: flat velocity and 
flat temperature). The turbulence model is a composite model that uses the van-Driest mixing length model 
in the near-wall region and a constant eddy viscosity in the outer region, along with a variable turbulent 
Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for liquids. The 
turbulent data set manual s400.man.doc is very helpful in understanding this data set construction. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.5.dat.txt). 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.631E+00  -279.5 502.818  -1.608  1.311 2.158E+02  2.145E+05 

  400 2.000E+00 4.187E-03   223.7   1.291   1.287   .772 3.677E+02  2.145E+05 

  800 4.000E+00 3.826E-03   206.8   1.180   1.190   .758 3.753E+02  2.145E+05 

 1200 6.106E+00 3.677E-03   200.0   1.134   1.150   .752 3.792E+02  2.145E+05 

 1600 9.108E+00 3.561E-03   194.9   1.098   1.121   .748 3.827E+02  2.145E+05 
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 2000 1.358E+01 3.468E-03   190.8   1.069   1.098   .745 3.864E+02  2.145E+05 

 2400 2.026E+01 3.405E-03   188.0   1.050   1.082   .744 3.903E+02  2.145E+05 

 2800 3.022E+01 3.372E-03   186.5   1.040   1.073   .745 3.948E+02  2.145E+05 

 3200 4.508E+01 3.361E-03   185.9   1.036   1.069   .748 4.006E+02  2.145E+05 

 3600 6.721E+01 3.359E-03   185.8   1.036   1.069   .753 4.088E+02  2.145E+05 

 4000 1.002E+02 3.359E-03   185.8   1.036   1.069   .760 4.209E+02  2.145E+05 

 4400 1.402E+02 3.359E-03   185.8   1.036   1.069   .768 4.355E+02  2.145E+05 

 4498 1.500E+02 3.359E-03   185.8   1.036   1.069   .770 4.391E+02  2.145E+05 

In these benchmark outputs (kout=8) we see cfrat and nurat, which present ratios of TEXSTAN-calculated 
values for cf  to the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the 
Gnielinski Eq. (14-8) . We can use these ratios to help determine if a data set construction is correct.  At 
the present time only some of the “s” data sets in Appendix H can be used with kout=8. We see the cfrat 
and nurat show agreement between the turbulent correlations and the TEXSTAN-computed solution. From 
the output we can also see both the hydrodynamic and thermal developing regions are complete to within 
5% by x/Dh of about 9-14. The output file ftn85.txt presents most of the momentum flow variables, 
including the surface shear stress and pressure drop. The files ftn82.txt and ftn84.txt contain heat transfer 
variables for the E-surface (the pipe wall).  Comparing TEXSTAN with the analysis, we see the thermally 
fully flow gives a friction coefficient that is 3.6% higher than the Kármán-Nikuradse correlation and a 
Nusselt number that is 6.9% higher than the Gnielinski correlation and the corresponding surface 
temperatures. This answer is somewhat affected by the choice of turbulence model. 
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14-6 

Liquid potassium flows in a 2.5 cm diameter tube at a mean velocity of 2.4 m/s and a mean 
temperature of 550°C. Suppose the tube is heated at a constant rate per unit of length but the heat 
flux varies around the periphery of the tube in a sinusoidal manner, with the maximum heat flux 
twice the minimum heat flux. If the maximum surface temperature is 700°C, evaluate the axial mean 
temperature gradient, °C/m, and prepare a plot of temperature around the periphery of the tube. 

 

φ Ts
oC 

0 700 

π/2 633 

π 566 

3π/2 633 

2π 700 
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14-7 

Consider the flow of first air (Pr = 0.7) and then mercury (Pr = 0.01) at a Reynolds number of 
100,000 in a 2 cm diameter circular tube with constant heat rate per unit of length. At a distance of 
1.2 m from the tube entrance the heating stops, and the tube is insulated from then on. Using relative 
units of temperature, calculate and plot the decay of surface temperature as it approaches the mean 
fluid temperature in the insulated region. Discuss the difference in behavior of the two fluids in 
terms of the basic mechanisms involved. TEXSTAN can be used to confirm this analysis. Use 
constant fluid properties and do not consider viscous dissipation. Let the velocity and thermal entry 
profiles at the inlet to the tube be flat, which can be supplied by using the kstart=1 choice in 
TEXSTAN. Let the energy boundary condition be a constant surface heat flux (you can arbitrarily 
choose 250 W/m2). For a turbulence model, choose the model described in Prob. 14-13. The piecewise 
surface heat flux boundary condition is modeled easily in TEXSTAN by providing heat flux values at 
four x-locations, two for each segment, e.g. at x=0, x=1.2 m (over which there will be a heat flux), and 
at x=1.201 m, x=2.4 m (arbitrary final tube length, over which there will be a zero heat flux, 
adiabatic condition). Because TEXSTAN linearly interpolates the surface thermal boundary 
condition between consecutive x-locations, a total of 4 boundary condition locations is sufficient to 
describe the surface heat flux variation. 

The analytical results have not been calculated because there are not enough eigenvalues in Table 14-7, but 
in principal they could using the ideas relating of Prob. 8-10  with the coefficients in the series changed. 
The problem has been solved using TEXSTAN. Change this problem to a TEXSTAN problem statement 
and use surface heat flux of 10,000 W/m2 for air and 100,000 W/m2 for mercury. 

The data file for this problem is 14.7.dat.txt. The data set construction is based on the s420_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface heat flux (initial profiles: flat velocity and 
flat temperature). The turbulence model is a composite model that uses the van-Driest mixing length model 
in the near-wall region and a constant eddy viscosity in the outer region, along with a variable turbulent 
Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for liquids. 

Here is an abbreviated listing of the 14.7.ftn84.txt output file using k5=200 print spacing to show the mean 
and surface temperature variations. 

        intg  x/dh           htc         qflux       tm          ts 

           5  2.4999990E-02  1.2462E+03  1.0000E+04  3.0001E+02  3.0804E+02 

         200  9.9999970E-01  3.6470E+02  1.0000E+04  3.0043E+02  3.2785E+02 

         400  2.0000000E+00  3.1961E+02  1.0000E+04  3.0087E+02  3.3215E+02 

         ... 

        2600  2.1505046E+01  2.4644E+02  1.0000E+04  3.0931E+02  3.4989E+02 

        2800  2.5524091E+01  2.4459E+02  1.0000E+04  3.1105E+02  3.5194E+02 

        3000  3.0257357E+01  2.4320E+02  1.0000E+04  3.1310E+02  3.5422E+02 

        3200  3.5831759E+01  2.4222E+02  1.0000E+04  3.1552E+02  3.5680E+02 

        3400  4.2396784E+01  2.4159E+02  1.0000E+04  3.1836E+02  3.5975E+02 

        3600  5.0128433E+01  2.4122E+02  1.0000E+04  3.2171E+02  3.6317E+02 

        3800  5.9234066E+01  2.4104E+02  1.0000E+04  3.2565E+02  3.6714E+02 

=========================================================================== 

        4000  6.9199981E+01  0.0000E+00  0.0000E+00  3.2599E+02  3.2841E+02 

        4200  7.9200000E+01  0.0000E+00  0.0000E+00  3.2599E+02  3.2680E+02 

        4400  8.9200000E+01  0.0000E+00  0.0000E+00  3.2599E+02  3.2628E+02 
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        4600  9.9200000E+01  0.0000E+00  0.0000E+00  3.2599E+02  3.2609E+02 

        4800  1.0920004E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2602E+02 

        5000  1.1920004E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2600E+02 

        5200  1.2920003E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2599E+02 

        5400  1.3920000E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2599E+02 

        5600  1.4920000E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2599E+02 

        5616  1.4999996E+02  0.0000E+00  0.0000E+00  3.2599E+02  3.2599E+02 

We see that at the step change in surface heat flux, there is a rapid drop in surface temperature, especially 
compared to what we would see in laminar flow. The step occurs at 60hL D =  and by 10 to 15 hydraulic 
diameters the surface temperature has dropped to near the mean temperature. This is comparable to what 
we see in the entry region where the Nusselt number becomes thermally fully developed in this same 
interval for Pr=0.7 (see the output below). Note to resolve the temperature distribution, you would want to 
significantly reduce the k5 print variable. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
14.7.dat.txt) and Pr=0.7 and Re=100,000. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   944.5   3.459   5.297   .974 3.080E+02  1.000E+04 

  400 2.000E+00 2.858E-03   242.2   1.273   1.358   .906 3.322E+02  1.000E+04 

  800 4.000E+00 2.617E-03   217.5   1.165   1.220   .896 3.366E+02  1.000E+04 

 1200 6.086E+00 2.513E-03   206.8   1.119   1.160   .892 3.393E+02  1.000E+04 

 1600 8.871E+00 2.442E-03   199.2   1.088   1.117   .889 3.419E+02  1.000E+04 

 2000 1.273E+01 2.384E-03   193.2   1.062   1.083   .886 3.447E+02  1.000E+04 

 2400 1.809E+01 2.341E-03   188.5   1.042   1.057   .885 3.480E+02  1.000E+04 

 2800 2.552E+01 2.311E-03   185.4   1.029   1.040   .884 3.519E+02  1.000E+04 

 3200 3.583E+01 2.295E-03   183.6   1.022   1.030   .884 3.568E+02  1.000E+04 

 3600 5.013E+01 2.289E-03   182.8   1.019   1.025   .886 3.632E+02  1.000E+04 

 4000 6.920E+01 2.287E-03      .0   1.019    .000   .993 3.284E+02  0.000E+00 

 4400 8.920E+01 2.287E-03      .0   1.019    .000   .999 3.263E+02  0.000E+00 

 4800 1.092E+02 2.287E-03      .0   1.019    .000  1.000 3.260E+02  0.000E+00 

 5200 1.292E+02 2.287E-03      .0   1.019    .000  1.000 3.260E+02  0.000E+00 

 5600 1.492E+02 2.287E-03      .0   1.019    .000  1.000 3.260E+02  0.000E+00 

 5616 1.500E+02 2.287E-03      .0   1.018    .000  1.000 3.260E+02  0.000E+00 

From this output we confirm the combined entry length is 10-15 hydraulic diameters for Pr=0.7. The 
approximate trend of this data for the heating region can be compared with Fig. 14-7. 

For mercury, we take the properties at about 200K to match the Pr=0.01. Because this is a constant 
property solution, it really does not matter greatly. Here is an abbreviated listing of the  14.7.ftn84.txt 
output file using k5=200 print spacing to show the mean and surface temperature variations. 

        intg  x/dh           htc         qflux       tm          ts 

           5  2.4999990E-02  1.1248E+05  1.0000E+05  3.0001E+02  3.0090E+02 
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         200  1.0000000E+00  1.9572E+04  1.0000E+05  3.0058E+02  3.0569E+02 

         400  1.9999992E+00  1.4814E+04  1.0000E+05  3.0116E+02  3.0791E+02 

         600  3.0000000E+00  1.2791E+04  1.0000E+05  3.0175E+02  3.0957E+02 

         ... 

        2800  2.5524091E+01  7.9311E+03  1.0000E+05  3.1487E+02  3.2747E+02 

        3000  3.0257372E+01  7.8325E+03  1.0000E+05  3.1762E+02  3.3039E+02 

        3200  3.5831759E+01  7.7655E+03  1.0000E+05  3.2087E+02  3.3375E+02 

        3400  4.2396761E+01  7.7239E+03  1.0000E+05  3.2469E+02  3.3764E+02 

        3600  5.0128433E+01  7.7006E+03  1.0000E+05  3.2920E+02  3.4218E+02 

        3800  5.9234088E+01  7.6891E+03  1.0000E+05  3.3450E+02  3.4750E+02 

============================================================================ 

        4000  6.9199974E+01  0.0000E+00  0.0000E+00  3.3494E+02  3.3711E+02 

        4200  7.9199977E+01  0.0000E+00  0.0000E+00  3.3494E+02  3.3563E+02 

        4400  8.9200000E+01  0.0000E+00  0.0000E+00  3.3494E+02  3.3517E+02 

        4600  9.9200000E+01  0.0000E+00  0.0000E+00  3.3494E+02  3.3502E+02 

        4800  1.0920000E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3497E+02 

        5000  1.1920005E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3495E+02 

        5200  1.2920004E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3495E+02 

        5400  1.3920003E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3495E+02 

        5600  1.4920000E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3494E+02 

        5616  1.4999994E+02  0.0000E+00  0.0000E+00  3.3494E+02  3.3494E+02 

Once again we see that at the step change in surface heat flux, there is a rapid drop in surface temperature, 
especially compared to what we would see in laminar flow. However, for Pr << 1, we see the change occur 
even faster. The step occurs at 60hL D =  and by 5 to 10hydraulic diameters the surface temperature has 
dropped to near the mean temperature. This is comparable to what we see in the entry region where the 
Nusselt number becomes thermally fully developed in this same interval for Pr=0.01 (see the output 
below). Note to resolve the temperature distribution, you would want to significantly reduce the k5 print 
variable. 

Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
14.7.dat.txt) and Pr=0.01 and Re=100,000. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   163.8   3.459  15.749   .997 3.009E+02  1.000E+05 

  400 2.000E+00 2.858E-03    21.6   1.273   2.074   .978 3.079E+02  1.000E+05 

  800 4.000E+00 2.617E-03    16.9   1.165   1.629   .972 3.109E+02  1.000E+05 

 1200 6.086E+00 2.514E-03    15.0   1.120   1.447   .969 3.132E+02  1.000E+05 

 1600 8.871E+00 2.442E-03    13.7   1.088   1.321   .966 3.158E+02  1.000E+05 

 2000 1.273E+01 2.385E-03    12.7   1.062   1.224   .964 3.189E+02  1.000E+05 

 2400 1.809E+01 2.341E-03    12.0   1.042   1.155   .962 3.227E+02  1.000E+05 

 2800 2.552E+01 2.311E-03    11.5   1.029   1.110   .961 3.275E+02  1.000E+05 
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 3200 3.583E+01 2.295E-03    11.3   1.022   1.087   .961 3.337E+02  1.000E+05 

 3600 5.013E+01 2.289E-03    11.2   1.019   1.078   .962 3.422E+02  1.000E+05 

 ============================================================================ 

 4000 6.920E+01 2.287E-03      .0   1.019    .000   .994 3.371E+02  0.000E+00 

 4400 8.920E+01 2.287E-03      .0   1.018    .000   .999 3.352E+02  0.000E+00 

 4800 1.092E+02 2.287E-03      .0   1.018    .000  1.000 3.350E+02  0.000E+00 

 5200 1.292E+02 2.287E-03      .0   1.019    .000  1.000 3.349E+02  0.000E+00 

 5600 1.492E+02 2.287E-03      .0   1.019    .000  1.000 3.349E+02  0.000E+00 

 5616 1.500E+02 2.287E-03      .0   1.018    .000  1.000 3.349E+02  0.000E+00 

Note in this output the thermal boundary layer leads the momentum boundary layer development as would 
be expected for Pr<<1, but because this is turbulent flow, the development differences are minimized. The 
approximate trend of this data for the heating region can be compared with Fig. 14-7. 
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14-8 

Let air at 21°C and 1 atm pressure flow at a Reynolds number of 50,000 in a 2.5 cm diameter 
circular tube. The tube wall is insulated for the first 75 cm, but for the next 125 cm the tube surface 
temperature is constant at 40°C. Then it abruptly increases to 50°C and remains constant for 
another 125 cm. Plot the local heat-transfer coefficient h as a function of an axial distance. Does the 
abrupt increase in surface temperature to 50°C cause a significant change in the average heat-
transfer coefficient over the entire 325 cm of heated length? In simple heat-exchanger theory a mean 
heat-transfer coefficient with respect to tube length is generally employed. In this case how much 
does the mean differ from the asymptotic value of h? TEXSTAN can be used to confirm this 
analysis. Use constant fluid properties and do not consider viscous dissipation. Let the velocity and 
thermal entry profiles at the inlet to the tube be flat, which can be supplied by using the kstart=1 
choice in TEXSTAN. Let the energy boundary condition be a surface temperature for this problem. 
For a turbulence model, choose the model described in Prob. 14-13. The piecewise surface 
temperature boundary condition is modeled easily in TEXSTAN by providing surface temperature 
values at six x-locations. For the first interval from x=0 to x=0.75 m, set the surface temperature 
equal to the inlet temperature, effectively creating a zero heat flux boundary condition; over the 
interval x=1.7501 m to x=2.0 m set the surface temperature to be 40°C, and for the third interval 
x=2.001 m to x=3.25 m set the surface temperature to be 50°C. 

The analytical results have not been calculated because there are not enough eigenvalues in Table 14-7. 
The problem has been solved using TEXSTAN. Change this problem to a TEXSTAN problem statement  

The data file for this problem is 14.8.dat.txt. The data set construction is based on the s410_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface temperature (initial profiles: flat velocity 
and flat temperature). The turbulence model is a composite model that uses the van-Driest mixing length 
model in the near-wall region and a constant eddy viscosity in the outer region, along with a variable 
turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for 
liquids.  

Note that the first section of the pipe is adiabatic, and the rest of the pipe is a variable wall temperature 
problem. TEXSTAN is not set up to handle a combination of Dirichlet and Neumann boundary conditions, 
but for this problem, we can specify the surface temperature equal to the entry temperature over the first 75 
cm, and this will become an adiabatic condition (no heat transfer) for the first section. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.8.dat.txt) for Pr=0.7 and Re=50,000 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.180E-02      .0   4.511    .000  1.000 2.100E+01  0.000E+00 

  100 5.000E-01 4.282E-03      .0   1.637    .000  1.000 2.100E+01  0.000E+00 

  200 1.000E+00 3.737E-03      .0   1.429    .000  1.000 2.100E+01  0.000E+00 

  300 1.500E+00 3.488E-03      .0   1.334    .000  1.000 2.100E+01  0.000E+00 

  400 2.000E+00 3.337E-03      .0   1.276    .000  1.000 2.100E+01  0.000E+00 

  ... 

 1800 1.393E+01 2.769E-03      .0   1.059    .000  1.000 2.100E+01  0.000E+00 

 1900 1.624E+01 2.747E-03      .0   1.050    .000  1.000 2.100E+01  0.000E+00 

 2000 1.900E+01 2.728E-03      .0   1.043    .000  1.000 2.100E+01  0.000E+00 

 2100 2.231E+01 2.711E-03      .0   1.037    .000  1.000 2.100E+01  0.000E+00 

 2200 2.626E+01 2.699E-03      .0   1.032    .000  1.000 2.100E+01  0.000E+00 

============================================================================= 
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 2300 3.094E+01 2.690E-03   137.8   1.028   1.325   .534 4.000E+01  2.713E+03 

 2400 3.594E+01 2.684E-03   113.1   1.026   1.087   .565 4.000E+01  2.079E+03 

 2500 4.094E+01 2.681E-03   108.2   1.025   1.040   .591 4.000E+01  1.867E+03 

 2600 4.594E+01 2.679E-03   105.9   1.024   1.018   .615 4.000E+01  1.719E+03 

 2700 5.094E+01 2.678E-03   104.7   1.024   1.006   .638 4.000E+01  1.600E+03 

 2800 5.594E+01 2.677E-03   104.0   1.024   1.000   .659 4.000E+01  1.498E+03 

 2900 6.094E+01 2.677E-03   103.6   1.023    .996   .678 4.000E+01  1.407E+03 

 3000 6.594E+01 2.677E-03   103.4   1.023    .994   .697 4.000E+01  1.324E+03 

 3100 7.094E+01 2.676E-03   103.3   1.023    .993   .714 4.000E+01  1.246E+03 

 3200 7.594E+01 2.676E-03   103.2   1.023    .993   .731 4.000E+01  1.174E+03 

============================================================================= 

 3300 8.094E+01 2.676E-03   120.1   1.023   1.154   .600 5.000E+01  2.532E+03 

 3400 8.594E+01 2.676E-03   108.0   1.023   1.038   .625 5.000E+01  2.136E+03 

 3500 9.094E+01 2.676E-03   105.6   1.023   1.015   .647 5.000E+01  1.966E+03 

 3600 9.594E+01 2.676E-03   104.5   1.023   1.004   .668 5.000E+01  1.832E+03 

 3700 1.009E+02 2.676E-03   103.9   1.023    .999   .687 5.000E+01  1.716E+03 

 3800 1.059E+02 2.676E-03   103.6   1.023    .996   .705 5.000E+01  1.613E+03 

 3900 1.109E+02 2.676E-03   103.4   1.023    .994   .722 5.000E+01  1.517E+03 

 4000 1.159E+02 2.676E-03   103.3   1.023    .993   .738 5.000E+01  1.429E+03 

 4100 1.209E+02 2.676E-03   103.2   1.023    .993   .753 5.000E+01  1.347E+03 

 4200 1.259E+02 2.676E-03   103.2   1.023    .992   .767 5.000E+01  1.269E+03 

 4281 1.300E+02 2.676E-03   103.2   1.023    .992   .778 5.000E+01  1.210E+03 

In these benchmark outputs (kout=8) we see cfrat and nurat, which present ratios of TEXSTAN-calculated 
values for cf  to the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the 
Gnielinski Eq. (14-8). We see the cfrat and nurat show agreement between the turbulent correlations and 
the TEXSTAN-computed solution. We see the three distinct heating regions. For the first region, by x/Dh = 
26, the friction coefficient is close to being hydrodynamically fully developed. For the second and third 
sections where the heating is occurring, we see the Nu takes about 10 x/Dh for most of the thermal 
boundary layer change to reduce. For this problem each heating section is about 50 x/Dh so the 
approximation of a constant Nu is not too bad. 

 

 

 

245



Solutions Manual - Chapter 14 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

14-9 

Starting with the constant-surface-temperature, thermal-entry-length solutions for a circular tube, 
calculate and compare the Nusselt numbers for constant surface temperature and for a linearly 
varying surface temperature, for very long tubes for a Reynolds number of 50,000 and a Prandtl 
number of 0.01. Repeat for a Prandtl number of 0.7 and discuss the reasons for the differences 
noted. 

The analytical results have not been calculated because there are not enough eigenvalues in Table 14-7. 
The problem has been solved using TEXSTAN. Change this problem to a TEXSTAN problem statement  

This solution is similar to problem 14-8, but the flow for this problem is supposed to be hydrodynamically 
fully-developed. However, TEXSTAN is not set up for this set of initial conditions (as is it is for laminar 
pipe flow). The intent of this problem is to demonstrate the linear surface temperature variation is a 
constant heat flux problem, so we would be comparing Nusselt numbers for these two cases. We will use 
the geometric setup for this problem. a 2.5 cm diameter tube, and we will let the pipe length be 100 
hydraulic diameters. We will let the fluid enter the pipe at Te=20ºC.For the constant surface temperature we 
will let Ts=40ºC. 

The data file for this problem is 14.9.dat.txt. The data set construction is based on the s410_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface temperature (initial profiles: flat velocity 
and flat temperature). The turbulence model is a composite model that uses the van-Driest mixing length 
model in the near-wall region and a constant eddy viscosity in the outer region, along with a variable 
turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for 
liquids.  

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.9.dat.txt) for Pr=0.7 and Re=50,000 
and a constant surface temperature boundary condition. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.180E-02   511.8   4.511   4.920   .501 4.000E+01  1.078E+04 

  500 2.500E+00 3.233E-03   128.1   1.236   1.232   .523 4.000E+01  2.580E+03 

 1000 5.000E+00 2.987E-03   117.6   1.142   1.130   .539 4.000E+01  2.287E+03 

 1500 8.242E+00 2.867E-03   112.2   1.096   1.079   .558 4.000E+01  2.092E+03 

 2000 1.358E+01 2.773E-03   107.8   1.060   1.036   .587 4.000E+01  1.879E+03 

 2500 2.239E+01 2.711E-03   104.8   1.037   1.007   .629 4.000E+01  1.642E+03 

 3000 3.691E+01 2.683E-03   103.5   1.026    .995   .688 4.000E+01  1.365E+03 

 3500 5.980E+01 2.677E-03   103.2   1.023    .992   .762 4.000E+01  1.039E+03 

 4000 8.480E+01 2.676E-03   103.2   1.023    .992   .822 4.000E+01  7.735E+02 

 4304 1.000E+02 2.676E-03   103.2   1.023    .992   .852 4.000E+01  6.467E+02 

In these benchmark outputs (kout=8) we see cfrat and nurat, which present ratios of TEXSTAN-calculated 
values for cf  to the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the 
Gnielinski Eq. (14-8). We see the cfrat and nurat show agreement between the turbulent correlations and 
the TEXSTAN-computed solution, and that the entry lengths for both momentum and energy are about 
equal. 

Now we change the thermal boundary condition to a linear temperature variation. We can either simulate 
heating by requiring the surface temperature to increase in the flow direction, or we can simulate cooling 
by requiring the surface temperature to decrease in the flow direction. We will continue with the same 
geometry. Here is the output for Pr=0.7 and Re=50,000 and the linear wall temperature variation. 
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 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.180E-02   511.8   4.511   4.921   .501 4.001E+01  1.078E+04 

  500 2.500E+00 3.233E-03   128.8   1.236   1.238   .517 4.050E+01  2.660E+03 

 1000 5.000E+00 2.987E-03   118.5   1.142   1.139   .527 4.100E+01  2.425E+03 

 1500 8.242E+00 2.867E-03   113.4   1.096   1.090   .539 4.165E+01  2.299E+03 

 2000 1.358E+01 2.773E-03   109.3   1.060   1.051   .556 4.272E+01  2.190E+03 

 2500 2.239E+01 2.711E-03   106.7   1.037   1.026   .580 4.448E+01  2.106E+03 

 3000 3.691E+01 2.683E-03   105.6   1.026   1.016   .613 4.738E+01  2.046E+03 

 3500 5.980E+01 2.677E-03   105.5   1.023   1.014   .655 5.196E+01  1.995E+03 

 4000 8.480E+01 2.676E-03   105.5   1.023   1.014   .691 5.696E+01  1.957E+03 

 4500 1.098E+02 2.676E-03   105.5   1.023   1.015   .721 6.196E+01  1.929E+03 

 5000 1.348E+02 2.676E-03   105.6   1.023   1.015   .744 6.696E+01  1.908E+03 

 5500 1.598E+02 2.676E-03   105.6   1.023   1.015   .764 7.195E+01  1.892E+03 

 6000 1.848E+02 2.676E-03   105.6   1.023   1.015   .781 7.695E+01  1.881E+03 

 6304 2.000E+02 2.676E-03   105.6   1.023   1.015   .790 7.999E+01  1.875E+03 

Comparing this linear surface temperature heating case to the constant surface temperature case shows the 
approximation of the heat flux boundary condition beyond the developing region , and comparison of this 
Nusselt number with the one for a constant wall temperature shows 105.6/103.2 = 1.023, which compares 
with Fig. 14-5 for Pr=0.7 and Re=50,000, and it shows that for gases (and light liquids) the difference in 
heat transfer coefficient for the two boundary conditions is about a 2% effect. 

We now repeat this exercise for Pr=0.01 and the same Re. Execution of the input data set generates several 
output files. Here is an abbreviated listing of the output file (it will be called out.txt when you execute 
TEXSTAN using 14.9.dat.txt) for Pr=0.01 and Re=50,000 and a constant surface temperature boundary 
condition. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.180E-02    89.8   4.511  12.967   .514 4.000E+01  9.591E+05 

  500 2.500E+00 3.233E-03     9.9   1.236   1.425   .643 4.000E+01  7.742E+04 

 1000 5.000E+00 2.987E-03     8.2   1.142   1.187   .701 4.000E+01  5.402E+04 

 1500 8.242E+00 2.867E-03     7.4   1.096   1.071   .756 4.000E+01  3.984E+04 

 2000 1.358E+01 2.773E-03     6.9   1.060    .999   .820 4.000E+01  2.742E+04 

 2500 2.239E+01 2.711E-03     6.7   1.037    .971   .888 4.000E+01  1.652E+04 

 3000 3.691E+01 2.683E-03     6.7   1.026    .964   .949 4.000E+01  7.543E+03 

 3500 5.980E+01 2.677E-03     6.7   1.024    .963   .985 4.000E+01  2.224E+03 

 4000 8.480E+01 2.676E-03     6.7   1.023    .963   .996 4.000E+01  5.873E+02 

 4500 1.098E+02 2.676E-03     6.7   1.023    .963   .999 4.000E+01  1.550E+02 

 5000 1.348E+02 2.676E-03     6.7   1.023    .963  1.000 4.000E+01  4.094E+01 

 5500 1.598E+02 2.676E-03     6.7   1.023    .963  1.000 4.000E+01  1.081E+01 

 6000 1.848E+02 2.676E-03     6.7   1.023    .963  1.000 4.000E+01  2.854E+00 
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 6304 2.000E+02 2.676E-03     6.7   1.023    .963  1.000 4.000E+01  1.270E+00 

We now change the thermal boundary condition to a linear temperature variation. Here is the output for 
Pr=0.7 and Re=50,000 and the linear wall temperature variation. 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 1.180E-02    89.8   4.511  12.969   .514 4.001E+01  9.595E+05 

  500 2.500E+00 3.233E-03    10.1   1.236   1.454   .637 4.050E+01  8.127E+04 

 1000 5.000E+00 2.987E-03     8.5   1.142   1.232   .690 4.100E+01  5.950E+04 

 1500 8.242E+00 2.867E-03     7.8   1.096   1.132   .739 4.165E+01  4.681E+04 

 2000 1.358E+01 2.773E-03     7.5   1.060   1.084   .795 4.272E+01  3.612E+04 

 2500 2.239E+01 2.711E-03     7.5   1.037   1.090   .853 4.448E+01  2.708E+04 

 3000 3.691E+01 2.683E-03     7.9   1.026   1.135   .903 4.738E+01  1.980E+04 

 3500 5.980E+01 2.677E-03     8.3   1.024   1.192   .934 5.196E+01  1.552E+04 

 4000 8.480E+01 2.676E-03     8.4   1.023   1.219   .946 5.696E+01  1.420E+04 

 4500 1.098E+02 2.676E-03     8.5   1.023   1.227   .952 6.196E+01  1.386E+04 

 5000 1.348E+02 2.676E-03     8.5   1.023   1.229   .956 6.696E+01  1.376E+04 

 5500 1.598E+02 2.676E-03     8.5   1.023   1.230   .959 7.195E+01  1.374E+04 

 6000 1.848E+02 2.676E-03     8.5   1.023   1.230   .962 7.695E+01  1.373E+04 

 6304 2.000E+02 2.676E-03     8.5   1.023   1.230   .963 7.999E+01  1.373E+04 

Comparing this linear surface temperature heating case to the constant surface temperature case shows the 
approximation of the heat flux boundary condition beyond the developing region , and comparison of this 
Nusselt number with the one for a constant wall temperature shows 8.5/6.7 = 1.27, which compares with 
Fig. 14-5 for Pr=0.01 and Re=50,000. For both of these linear surface temperature data sets, if we would 
have had a hydrodynamically fully-developed velocity profile to make this a thermal entry problem, we 
would see a constant surface heat flux from the entry onward, rather than after the hydrodynamic entry 
region was completed. 
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14-10 

The following are the proposed specifications for the cooling tubes in a pressurized-water nuclear 
power reactor: 

Tube configuration Concentric circular-tube annulus, with heating from 
the inner tube (containing the uranium fuel), and the 
outer tube surface having no heat flux 

Tube dimensions Inner-tube diameter, 2.5 cm 

 Outer-tube diameter, 5.0 cm 

 Tube length, 5 m 

Water temperature Inlet, 275°C 

Water mean velocity 1 m/s 

Axial heat-flux distribution 1
max 3/ [1 2 sin ( /q q x Lπ′′ ′′ = + )]  

Assume that the water properties may be treated as constant at 287°C. Calculate and plot heat flux, 
mean water temperature, and inner and outer tube surface temperatures as functions of x. Assume 
that the conductance h is independent of x and that the value for fully developed constant heat rate is 
a reasonable approximation. (Can you justify these assumptions?) How high must the water 
pressure be to avoid boiling? Or is it possible to avoid boiling with the se specifications? What do 
you think would be the effect of local boiling at the highest-temperature parts of the system? 

For this problem, the Nusselt numbers of Table 14-4 apply, 

 

x, m sq′′ , W/m2 TmºC TiºC TsºC 

0 80452 275 286 274 

0.5 130174 276 293 274 

1.0 175029 279 301 277 

1.5 210626 281 309 278 

2.0 233481 284 315 281 

2.5 241356 288 319 285 

3.0 233481 291 321 288 

3.5 210626 294 321 291 

4.0 175028 296 319 293 

4.5 130173 299 316 298 

5.0 80452 300 311 299 
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14-11 

Helium flows in a thin-walled circular tube of 2.5 cm inside diameter. Down the center of the tube is 
inserted a 5 mm diameter circular electric heater. The Reynolds number of the flow, based on the 
hydraulic diameter of the resulting passage, is 30,000. Heat is generated and transferred through the 
heater surface at a rate of 30 kW/m2. The outer surface of the outer tube is bare, exposed to an 
atmospheric environment at 21°C. Heat is transferred from the outer surface to the surroundings by 
both free convection and radiation. For the free convection, assume a heat-transfer coefficient h of 
10 W/(m2 · K). For the radiation, let the surface emissivity be 0.8. At a particular point along the 
tube the mixed mean fluid temperature is 200°C. Assuming that the gas is transparent to thermal 
radiation and that the radiation emissivity of the two inner surfaces is 0.8, calculate the surface 
temperature of the heater and the temperature of the outer tube. Determine the fractions of the 
original heat generated in the core tube that are ultimately transferred to the helium and to the 
surroundings. Is radiation a major factor? It may be assumed that the tube is sufficiently long that 
fully developed conditions are closely approached. 

The entry-length functions necessary to solve this problems precisely, taking into consideration axial 
variation of surface heat flux, are not available.  If it is solved the same way as Prob. 14-10, the following 
results are obtained: 

 

x, m sq′′ , W/m2 TmºC TiºC TsºC 

0 23285 330 332 332 

0.5 37676 331 335 334 

1.0 50658 334 339 337 

1.5 60961 336 342 340 

2.0 67576 339 346 344 

2.5 69855 343 350 347 

3.0 67576 346 353 350 

4.0 50658 351 357 355 

4.5 37676 354 357 356 

5.0 23285 355 357 357 

 

The effects of axial heat flux variation can be estimated by analyzing flow in an "equivalent" circular tube, 
which might be defined as having the same flow area and velocity. 
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14-12 

Develop an equation for the friction coefficient for fully developed turbulent flow between parallel 
planes, assuming that Eq. (13-7) is a reasonable approximation for the velocity profile. 

The solution in this problem is based on the data in Table 14-3, 

  Nuii = 79.8  * 0.338iθ =

  Nuoo =64.3  * 0.055oθ =

together with Eqs. (8-28) and (8-29).  However, since neither surface temperature is initially known, the 
heat transfer rate from the outer tube to the helium cannot be immediately calculated. Thus an iterative 
procedure is required. To start, assume that all the heat is transferred to the helium from the inner surface.  
This leads to an inner surface temperature of 235.5 ºC and an outer surface temperature of 197.6 ºC.  A first 
estimate of the radiation exchange, and the outer surface convection, can now be made using these 
temperatures, and this leads to a second estimate of the heat fluxes and surface temperatures. 
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14-13 

TEXSTAN analysis of the turbulent thermal entry flow in a circular tube with constant surface heat 
flux: Investigate the entry length region through the thermally fully-developed region of flow in a 
circular tube with diameter Reynolds numbers of 50,000 and 100,000 and fluids corresponding to Pr 
= 0.01, 0.7, and 10. Evaluate the properties at a fluid entry temperature of 280 K, use constant fluid 
properties, and do not consider viscous dissipation. Let the pipe diameter be 3.5 cm and the pipe 
length be 12.0 m. Let the velocity and thermal entry profiles at the inlet to the tube be flat, which can 
be supplied by using the kstart=1 choice in TEXSTAN. Let the energy boundary condition be a 
constant surface heat flux of 250 W/m2. For a turbulence model, choose the hybrid turbulence model 
comprised of a constant eddy viscosity in the outer part of the flow (εm/ν=aReb with a = 0.005 and b = 
0.9) and a mixing-length turbulence model with the Van Driest damping function (κ=0.40 and 
A+=26) in the near-wall region (ktmu=7). This hybrid model tends to more closely fit Fig. (13-1), and 
thus better predict the fully-developed friction coefficient and Nusselt number for a given Reynolds 
number. Choose the constant turbulent Prandtl number model (ktme=2) along with a choice for the 
turbulent Prandtl number, 0.9 is suggested, by setting fxx=0.9. Compare the thermally fully-
developed Nusselt numbers for Pr=0.7 with the results from set of Eqs. (14-5) through (14-9). For 
Pr=0.01, compare with Eq. (14-10), and for Pr=100, compare with Eq. (14-8).  Feel free to investigate 
any other attribute of the tube flow. For example, at Pr=0.7 you can examine a temperature profile 
at the thermally fully developed state to evaluate the thermal law of the wall and compare with Eq. 
(14-4). Compare your results for how Nusselt number varies in the thermal entry region, as 
appropriate, with Figs. 14-6, 14-7, and 14.8. 

Problem modifications for 14-13   (this problem is similar to the first half of problem 14-7) 

properties: Do not evaluate the properties at the entrance temperature. For convenience in obtaining 
properties from Appendix A, for Pr=0.01 use Hg at 200ºC, but set Pr=0.01; for Pr=0.7 use air at 300K but 
set Pr=0.7, and for Pr=10, use water at 10ºC, but set Pr=10. Because the calculations are constant property 
without viscous dissipation, only the values of Re and Pr for the problem set are important. 

surface heat flux: for each Pr select a surface heat flux value that provides a reasonable temperature change 
in the fluid. Again, the actual value does not matter because this is a constant property solution without 
viscous dissipation. 

turbulence model: use a variable turbulent Prandtl number model for Hg and air, but you must use the 
constant Prt model for water 

pipe length. The solution needs to be carried out only to 150hL D = , giving a pipe length of 5.25 m. This 
insures complete hydrodynamic and thermal flow development for the Pr=10 fluid. Using the ideas for 
turbulent internal flows choose a set of x location s that include ( ) 0, 5, 50, 100hx D =  and vary the 
integration stepsize: for ( )0 hx D≤ 5≤  the stepsize (aux1 value) should be 0.01 (an integration stepsize 
of 1% of the pipe radius), for the interval ( )5 hx D 50≤ ≤  the stepsize is increased from 0.01 to 0.1 (an 
integration stepsize of 10% of the pipe radius), and for the interval ( )50 100hx D≤ ≤  it will further 
increase to 0.20, and then remain constant beyond this value if the pipe length is longer. 

The data file for this problem is 14.13.dat.txt. The data set construction is based on the s420_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface heat flux (initial profiles: flat velocity and 
flat temperature) and composite turbulence model, using the van-Driest mixing length turbulence model in 
the near-wall region and a constant eddy viscosity in the outer region, along with a variable turbulent 
Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for liquids. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.13.dat.txt). The surface heat flux value 
was q  for the air to obtain a reasonable temperature rise in the air. 21000 W/ms′′ =
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   re,dh = 1.0000E+05   prm =   .700 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   944.5   3.459   5.297   .995 2.814E+02  1.000E+03 

  400 2.000E+00 2.858E-03   242.2   1.273   1.358   .981 2.856E+02  1.000E+03 

  800 4.000E+00 2.617E-03   217.5   1.165   1.220   .979 2.863E+02  1.000E+03 

 1200 6.106E+00 2.513E-03   206.7   1.119   1.159   .978 2.868E+02  1.000E+03 

 1600 9.108E+00 2.438E-03   198.8   1.086   1.115   .977 2.873E+02  1.000E+03 

 2000 1.358E+01 2.375E-03   192.2   1.058   1.078   .976 2.879E+02  1.000E+03 

 2400 2.026E+01 2.330E-03   187.3   1.038   1.051   .976 2.885E+02  1.000E+03 

 2800 3.022E+01 2.302E-03   184.3   1.025   1.034   .975 2.894E+02  1.000E+03 

 3200 4.508E+01 2.290E-03   183.0   1.020   1.026   .975 2.906E+02  1.000E+03 

 3600 6.721E+01 2.287E-03   182.6   1.019   1.024   .975 2.923E+02  1.000E+03 

 4000 1.002E+02 2.287E-03   182.6   1.018   1.024   .976 2.947E+02  1.000E+03 

 4400 1.402E+02 2.287E-03   182.6   1.019   1.024   .976 2.977E+02  1.000E+03 

 4498 1.500E+02 2.287E-03   182.6   1.019   1.024   .976 2.985E+02  1.000E+03 

In the Pr=0.7 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution, and that the entry lengths for both momentum and energy are about the same at 

15 20hx D ≈ − . In this output, if we take the ratio of nurat at x/dh=20.26 to its value at x/dh=150 we get 
1.026, which compares favorably with Figure 14-7 for Re=100,000 and Pr=0.7 (we can do the same for 
x/dh=9.108 and we get 1.089, which again compares favorably). 

The problem statement asks you to compare the TEXSTAN results to several choices for the Nusselt 
number.  

Equation (14-5) for the Nusselt number comes from using the law-of-the wall theories of Eq. (13-4) and 
Eq. (14-4), valid for gases and light liquids, Pr 10≤  (note: its Re range comes from your choice of cf/2) 

 2 /3

Re Pr /2
Nu = 

0.88 13.39(Pr 0.78) /2
f

f

c
c+ −

 

Because this equation requires the friction coefficient, there becomes several choices: 

(a) Eq. (13-11) the friction coefficient developed from the power-law model:, for 10  4 4Re 5 10≤ ≤ ×

  0.25/2 0.039 Refc −=

(b) Eq. (13-12), the friction coefficient developed from the law-of-the wall theories of Eq. (13-4):, called 
the “classical” Kármán–Nikuradse equation, 

 1 2.46ln( Re /2 ) 0.30
/2 f

f
c

c
= +  

(c) Eq. (13-13), the reduced form of the “classical” Kármán–Nikuradse equation, for 3 1  4 60 Re 10× ≤ ≤
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  0.2/2 0.023Refc −=

(d) Eq. (13-14), the Petukhov form of the “classical” Kármán–Nikuradse equation, for 10  4 6Re 5 10≤ ≤ ×

 –2/2 (2.236 ln Re 4.639)fc = −  

When Eq. (14-4) is combined with Eq. (13-13) we have Eq. (14-6), which makes it valid for 
 and for gases and light liquids, 43 10 Re 10× ≤ ≤ 6 Pr 10≤  

 
0.8

2/3 0.1
0.023 Re  PrNu = 

0.88 2.03(Pr 0.78) Re −+ −
 

When this equation is restricted to gases only, we have Eq. (14-7), which becomes valid for 
 and  4 63 10 Re 10× ≤ ≤ Pr 1≤

  0.5 0.8Nu = 0.022 Pr  Re

A much less restrictive Nusselt number formulation is the Gnielinski correlation, tested for the ranges 
 and  62300 Re 5 10≤ ≤ × 0.5 Pr 2000≤ ≤

 
2 / 3

(Re 1000) Pr /2
Nu = 

1.0 12.7 /2(Pr 1.0)
f

f

c

c

−

+ −
 

which compares favorably with Eq. (14-5) 

The last two equations for Nusselt number is the Sleicher and Rouse correlation, Eq. (14-9), and the classic 
undergraduate-text-quoted (and often misinterpreted) Dittus-Boelter correlations. 

Now, compute the same data set, changing the properties to mercury, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the mercury. 220,000 W/msq′′ =

   re,dh = 1.0000E+05   prm =   .010 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   163.8   3.459  15.749   .999 2.803E+02  2.000E+04 

  400 2.000E+00 2.858E-03    21.6   1.273   2.074   .992 2.828E+02  2.000E+04 

  800 4.000E+00 2.617E-03    16.9   1.165   1.629   .989 2.838E+02  2.000E+04 

 1200 6.106E+00 2.513E-03    15.0   1.119   1.446   .988 2.846E+02  2.000E+04 

 1600 9.108E+00 2.438E-03    13.7   1.086   1.313   .987 2.856E+02  2.000E+04 

 2000 1.358E+01 2.375E-03    12.6   1.058   1.209   .986 2.868E+02  2.000E+04 

 2400 2.026E+01 2.330E-03    11.8   1.038   1.138   .985 2.884E+02  2.000E+04 

 2800 3.022E+01 2.302E-03    11.4   1.025   1.097   .985 2.906E+02  2.000E+04 

 3200 4.508E+01 2.290E-03    11.2   1.020   1.080   .985 2.937E+02  2.000E+04 

 3600 6.721E+01 2.287E-03    11.2   1.019   1.076   .985 2.983E+02  2.000E+04 

 4000 1.002E+02 2.287E-03    11.2   1.019   1.076   .985 3.050E+02  2.000E+04 
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 4400 1.402E+02 2.287E-03    11.2   1.019   1.076   .985 3.131E+02  2.000E+04 

 4498 1.500E+02 2.287E-03    11.2   1.019   1.076   .986 3.151E+02  2.000E+04 

In the Pr=0.01 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Sleicher and Rouse Eq. 
(14-10) for constant surface heat flux. We see the cfrat shows agreement between the turbulent correlation 
and the TEXSTAN-computed solution and nurat shows reasonable agreement. The entry length for 
momentum remains 15 20hx D ≈ −  because the Re has not changed. and thermal entry length is 
somewhat longer than the momentum entry length. This is in contrast to what we would expect for laminar 
flows where the thermal entry length would be much shorter than the momentum length. In this output, if 
we take the ratio of nurat at x/dh=20.26 to its value at x/dh=150 we get 1.058, which somewhat lower than 
in Figure 14-7 for Re=100,000 and Pr=0.01 (we can do the same for x/dh=9.108 and we get 1.220, which 
is a more favorable comparison). 

Now, compute the same data set, changing the properties to water, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the water.  2100,000 W/msq′′ =

   re,dh = 1.0000E+05   prm = 10.000 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03  2422.1   3.459   3.480   .991 2.826E+02  1.000E+05 

  400 2.000E+00 2.858E-03   847.2   1.273   1.217   .974 2.876E+02  1.000E+05 

  800 4.000E+00 2.617E-03   794.9   1.165   1.142   .972 2.881E+02  1.000E+05 

 1200 6.106E+00 2.513E-03   771.5   1.119   1.108   .971 2.884E+02  1.000E+05 

 1600 9.108E+00 2.438E-03   754.3   1.086   1.084   .971 2.887E+02  1.000E+05 

 2000 1.358E+01 2.375E-03   739.9   1.058   1.063   .970 2.890E+02  1.000E+05 

 2400 2.026E+01 2.330E-03   729.0   1.038   1.047   .970 2.893E+02  1.000E+05 

 2800 3.022E+01 2.302E-03   722.2   1.025   1.038   .970 2.896E+02  1.000E+05 

 3200 4.508E+01 2.290E-03   719.2   1.020   1.033   .969 2.900E+02  1.000E+05 

 3600 6.721E+01 2.287E-03   718.4   1.019   1.032   .969 2.906E+02  1.000E+05 

 4000 1.002E+02 2.287E-03   718.3   1.019   1.032   .970 2.914E+02  1.000E+05 

 4400 1.402E+02 2.287E-03   718.3   1.019   1.032   .970 2.924E+02  1.000E+05 

 4498 1.500E+02 2.287E-03   718.3   1.018   1.032   .970 2.927E+02  1.000E+05 

In the Pr=10 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. The entry length for momentum remains 15 20hx D ≈ −  because the Re has not 
changed. and thermal entry length matches the momentum entry length. This is in contrast to what we 
would expect for laminar flows where the thermal entry length would be much longer than the momentum 
length. In this output, if we take the ratio of nurat at x/dh=20.26 to its value at x/dh=150 we get 1.015, 
which matches Figure 14-7 for Re=100,000 and Pr=10 (we can do the same for x/dh=9.108 and we get 
1.05, which is a slightly larger than in the figure). 

For Re=50,000 the data sets are easily changed by only changing the reyn value. 

To plot the developing velocity profiles, set kout=4 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
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out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s400.man.doc user manual.  
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14-14 

TEXSTAN analysis of the turbulent thermal entry flow in a circular tube with constant surface 
temperature: Investigate the entry length region through the thermally fully-developed region of flow 
in a circular tube with diameter Reynolds numbers of 50,000 and 100,000 and fluids corresponding 
to Pr = 0.01 and 0.7. Let the energy boundary condition be a constant surface temperature of 295 K.  
Follow the set-up instructions of Prob. 14-13. Compare the thermally fully-developed Nusselt 
number results with Eq. (14-12) for Pr=0.7 and Eq. (14-13) for Pr=0.01, and compare with Fig. 14-5. 
It is suggested you use TEXSTAN to compute the corresponding Nusselt number with a constant 
heat flux boundary condition to create the Nusselt number ratio in making the comparison in Fig. 
14-5. 

Problem modifications for 14-14   (identical to problem 14-13 with the thermal boundary condition 
changed to a constant surface temperature) 

properties: Do not evaluate the properties at the entrance temperature. For convenience in obtaining 
properties from Appendix A, for Pr=0.01 use Hg at 200ºC, but set Pr=0.01; for Pr=0.7 use air at 300K but 
set Pr=0.7, and for Pr=10, use water at 10ºC, but set Pr=10. Because the calculations are constant property 
without viscous dissipation, only the values of Re and Pr for the problem set are important. 

turbulence model: use a variable turbulent Prandtl number model for Hg and air, but you must use the 
constant Prt model for water 

pipe length. The solution needs to be carried out only to 150hL D = , giving a pipe length of 5.25 m. This 
insures complete hydrodynamic and thermal flow development for the Pr=10 fluid. Using the ideas for 
turbulent internal flows choose a set of x location s that include ( ) 0, 5, 50, 100hx D =  and vary the 
integration stepsize: for ( )0 hx D≤ 5≤  the stepsize (aux1 value) should be 0.01 (an integration stepsize 
of 1% of the pipe radius), for the interval ( )5 hx D 50≤ ≤  the stepsize is increased from 0.01 to 0.1 (an 
integration stepsize of 10% of the pipe radius), and for the interval ( )50 100hx D≤ ≤  it will further 
increase to 0.20, and then remain constant beyond this value if the pipe length is longer. 

The data file for this problem is 14.14.dat.txt. The data set construction is based on the s410_7.dat.txt file 
for combined entry length flow in a pipe with a specified surface temperature(initial profiles: flat velocity 
and flat temperature) and composite turbulence model, using the van-Driest mixing length turbulence 
model in the near-wall region and a constant eddy viscosity in the outer region, along with a variable 
turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl number for 
liquids. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.14.dat.txt).  

   re,dh = 1.0000E+05   prm =   .700 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   659.0   3.459   3.696   .949 2.950E+02  7.499E+03 

  400 2.000E+00 2.858E-03   229.3   1.273   1.286   .951 2.950E+02  2.529E+03 

  800 4.000E+00 2.617E-03   208.7   1.165   1.171   .952 2.950E+02  2.246E+03 

 1200 6.106E+00 2.513E-03   199.8   1.119   1.121   .953 2.950E+02  2.098E+03 

 1600 9.108E+00 2.438E-03   193.1   1.086   1.083   .955 2.950E+02  1.960E+03 

 2000 1.358E+01 2.375E-03   187.3   1.058   1.050   .957 2.950E+02  1.811E+03 
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 2400 2.026E+01 2.330E-03   182.9   1.038   1.026   .960 2.950E+02  1.648E+03 

 2800 3.022E+01 2.302E-03   180.3   1.025   1.011   .964 2.950E+02  1.465E+03 

 3200 4.508E+01 2.290E-03   179.2   1.020   1.005   .969 2.950E+02  1.251E+03 

 3600 6.721E+01 2.287E-03   179.0   1.019   1.004   .975 2.950E+02  9.958E+02 

 4000 1.002E+02 2.287E-03   178.9   1.018   1.004   .982 2.950E+02  7.107E+02 

 4400 1.402E+02 2.287E-03   178.9   1.019   1.004   .988 2.950E+02  4.722E+02 

 4498 1.500E+02 2.287E-03   178.9   1.019   1.004   .989 2.950E+02  4.272E+02 

In the Pr=0.7 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We note that the Gnielinski equation was developed for a constant surface heat flux boundary condition. 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. 

The entry lengths for both momentum and energy are about the same at 15 20hx D ≈ − . In this output, if 
we take the ratio of nurat at x/dh=20.26 to its value at x/dh=150 we get 1.022 (we can do the same for 
x/dh=9.108 and we get 1.079). If we compare these results with problem 14-13 for the same Re and Pr the 
constant heat flux results were 1.026, and 1.089, showing a very slight shift in thermal development length, 
but no where near what would be found for laminar flow. 

The problem statement asks for a comparison of the Nu∞ value with Eq. (14-12) for gases (presumably the 
Re range for this equation is similar to Eq. 14-7, 3 1 ). These two equations are 40 Re 10× ≤ ≤ 6

 
0.5 0.8

0.5 0.8

Nu = 0.022 Pr  Re constant Eq. (14-7)

Nu = 0.021 Pr  Re constant Eq. (14-12)
s

s

q

T

′′ =

=
 

The file out.txt uses the Gnielinski Eq. (14-8) for nurat, but if we replace it with Eq. (14-12) we find nurat 
= 1.018, or the TEXSTAN-generated Nu is 1.8% higher than Eq. (14-12), whereas it is only 0.4% higher 
using Eq. (4-12). 

Now compare the TEXSTAN-calculated Nu∞ = 182.6 for a constant surface heat flux (problem 14-13) and 
Re=100,000 and Pr=0.7 to the TEXSTAN-calculated Nu∞ = 178.9 for a constant surface temperature (for 
this problem, 14-14) and the same Re and Pr. This ratio is 1.021. 

Now take the ratio of Eq. (14-7) with Eq. (14.12) at the same Re and Pr, 0.022/0.021=1.048, which is 
significantly higher than the TEXSTAN-calculated ratio of 1.021. The 1.048 ratio may be attributed to 
either roundoff or uncertainty errors in the two-digit coefficients of these equations. 

It is interesting to evaluate Eq. (14-13) and Eq. (14.12) at Re=100,000 and Pr=0.7, and we get Nu∞ = 178 
and we get Nu∞ = 175.7, and this ratio is 1.013, which is similar to the TEXSTAN-calculated ratio. 

With any of these ratios, the number is quite small compared to the laminar-predicted ratio 4.36/3.66=1.19 
(Table 8-2) for pipe flow. The turbulent surface heat flux to surface temperature ratio of 1.02 helps confirm 
why we rarely need to consider thermal boundary conditions for turbulent flow of gases. 

Now, compute the same data set, changing the properties to mercury. 

   re,dh = 1.0000E+05   prm =   .010 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03   104.2   3.459  12.076   .950 2.950E+02  6.013E+05 
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  400 2.000E+00 2.858E-03    15.1   1.273   1.750   .959 2.950E+02  7.214E+04 

  800 4.000E+00 2.617E-03    12.3   1.165   1.429   .963 2.950E+02  5.290E+04 

 1200 6.106E+00 2.513E-03    11.3   1.119   1.308   .966 2.950E+02  4.386E+04 

 1600 9.108E+00 2.438E-03    10.4   1.086   1.208   .971 2.950E+02  3.557E+04 

 2000 1.358E+01 2.375E-03     9.7   1.058   1.126   .975 2.950E+02  2.769E+04 

 2400 2.026E+01 2.330E-03     9.3   1.038   1.075   .981 2.950E+02  2.055E+04 

 2800 3.022E+01 2.302E-03     9.1   1.025   1.054   .987 2.950E+02  1.398E+04 

 3200 4.508E+01 2.290E-03     9.0   1.020   1.048   .992 2.950E+02  8.118E+03 

 3600 6.721E+01 2.287E-03     9.0   1.019   1.047   .997 2.950E+02  3.647E+03 

 4000 1.002E+02 2.287E-03     9.0   1.019   1.047   .999 2.950E+02  1.110E+03 

 4400 1.402E+02 2.287E-03     9.0   1.019   1.047  1.000 2.950E+02  2.622E+02 

 4498 1.500E+02 2.287E-03     9.0   1.019   1.047  1.000 2.950E+02  1.842E+02 

In the Pr=0.01 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Sleicher and Rouse Eq. 
(14-13) for constant surface temperature. We see the cfrat shows agreement with the turbulent correlation, 
but the and nurat is about 5% high. 

I am not so sure about the limit of validity of Eq. (14-13). If we repeat this experiment with Pr=0.001 and 
both Re=100,000 and =50,000, the nurat is about 1. This suggests a problem with the correlation Eq. (14-
13). 

If we compare the TEXSTAN-predicted Nu∞=9.0 for the constant surface temperature and Re=100,000 and 
Pr=0.01 with the TEXSTAN-predicted Nu∞=11.2  for the constant surface heat flux (problem 14-13), we 
find the ratio is 1.24. We can compare this to the laminar ratio for a pipe, 4.36/3.66=1.19 (Table 8-2), and 
we see a similar effect strong effect of thermal boundary condition for turbulent flow of low Pr fluids. The 
molecular transport contribution to the total thermal diffusivity is very important for liquid metal flows, 
and they have somewhat of a laminar-like behavior. Recall also that the Peclet number, Pe=Re·Pr must be 
>100 for the assumption of neglecting axial conduction to hold. This is ok for our test cases. 

Now, compute the same data set, changing the properties to water. 

  re,dh = 1.0000E+05   prm = 10.000 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 7.767E-03  1661.3   3.459   2.387   .949 2.950E+02  3.909E+05 

  400 2.000E+00 2.858E-03   837.3   1.273   1.203   .950 2.950E+02  1.955E+05 

  800 4.000E+00 2.617E-03   788.7   1.165   1.133   .950 2.950E+02  1.830E+05 

 1200 6.106E+00 2.513E-03   767.1   1.119   1.102   .950 2.950E+02  1.768E+05 

 1600 9.108E+00 2.438E-03   750.9   1.086   1.079   .951 2.950E+02  1.715E+05 

 2000 1.358E+01 2.375E-03   737.2   1.058   1.059   .951 2.950E+02  1.662E+05 

 2400 2.026E+01 2.330E-03   726.9   1.038   1.044   .952 2.950E+02  1.607E+05 

 2800 3.022E+01 2.302E-03   720.5   1.025   1.035   .954 2.950E+02  1.548E+05 

 3200 4.508E+01 2.290E-03   717.7   1.020   1.031   .956 2.950E+02  1.477E+05 

 3600 6.721E+01 2.287E-03   717.0   1.019   1.030   .958 2.950E+02  1.385E+05 
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 4000 1.002E+02 2.287E-03   717.0   1.019   1.030   .962 2.950E+02  1.260E+05 

 4400 1.402E+02 2.287E-03   716.9   1.019   1.030   .966 2.950E+02  1.123E+05 

 4498 1.500E+02 2.287E-03   716.9   1.018   1.030   .967 2.950E+02  1.092E+05 

In the Pr=10 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution, and that the entry lengths for both momentum and energy are about the same at 

15 20hx D ≈ − . 

For Re=50,000 the data sets are easily changed by only changing the reyn value. 

To plot the developing velocity profiles, set kout=4 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s400.man.doc user manual.  
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14-15 

TEXSTAN analysis of the turbulent thermal entry flow in a circular tube with constant surface heat 
flux: This problem is essentially a repeat of problem (14-13), but choosing higher-order turbulence 
models available in TEXSTAN. For this problem there exists four 2-equation (k-ε) models 
(ktmu=21,22,23,24). The initial velocity and temperature profiles remain the flat profiles along with 
flat entry turbulence profiles for k and ε, all supplied by using the kstart=1 choice in TEXSTAN. 
Chose an entry turbulence of 10%. Note that by setting the corresponding entry dissipation equal to 
zero, TEXSTAN will compute an appropriate value.  For the 2-equation turbulence models it is best 
to choose a constant turbulent Prandtl number model (ktme=2), along with a choice for the turbulent 
Prandtl number, 0.9 is suggested, by setting fxx=0.9. 

Problem modifications for 14-15   (identical to the modifications for problem 14-13) 

properties: Do not evaluate the properties at the entrance temperature. For convenience in obtaining 
properties from Appendix A, for Pr=0.01 use Hg at 200ºC, but set Pr=0.01; for Pr=0.7 use air at 300K but 
set Pr=0.7, and for Pr=10, use water at 10ºC, but set Pr=10. Because the calculations are constant property 
without viscous dissipation, only the values of Re and Pr for the problem set are important. 

surface heat flux: for each Pr select a surface heat flux value that provides a reasonable temperature change 
in the fluid. Again, the actual value does not matter because this is a constant property solution without 
viscous dissipation. 

turbulence model: use a variable turbulent Prandtl number model for Hg and air, but you must use the 
constant Prt model for water 

pipe length. The solution needs to be carried out only to 150hL D = , giving a pipe length of 5.25 m. This 
insures complete hydrodynamic and thermal flow development for the Pr=10 fluid. Using the ideas for 
turbulent internal flows choose a set of x location s that include ( ) 0, 5, 50, 100hx D =  and vary the 
integration stepsize: for ( )0 hx D≤ 5≤  the stepsize (aux1 value) should be 0.01 (an integration stepsize 
of 1% of the pipe radius), for the interval ( )5 hx D 50≤ ≤  the stepsize is increased from 0.01 to 0.1 (an 
integration stepsize of 10% of the pipe radius), and for the interval ( )50 100hx D≤ ≤  it will further 
increase to 0.20, and then remain constant beyond this value if the pipe length is longer. 

The data file for this problem is 14.15.dat.txt for the ktmu=22 turbulence model of K-Y Chien. The data set 
construction is based on the s420_22.dat.txt file for combined entry length flow in a pipe with a specified 
surface heat flux (initial profiles: fully turbulent velocity and temperature profiles, and for the turbulence 
variables, the profile construction is described in the TEXSTAN input manual). The four choices for 
turbulence models are described in Appendix F. A variable turbulent Prandtl number model is used for 
liquid metals and gases, and a constant turbulent Prandtl number for liquids. 

Conversion of this data set to permit other turbulence models requires only the variable ktmu to be 
changed. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.13.dat.txt). The surface heat flux value 
is  for air to obtain a reasonable temperature rise in the air. 21000 W/msq′′ =

   re,dh = 1.0000E+05   prm =   .700 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 2.489E-02  2381.3  11.087  13.354   .998 2.806E+02  1.000E+03 

  400 2.000E+00 2.558E-03   224.5   1.139   1.259   .980 2.860E+02  1.000E+03 

  800 4.000E+00 2.341E-03   197.3   1.042   1.106   .977 2.870E+02  1.000E+03 
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 1200 6.106E+00 2.253E-03   186.1   1.003   1.043   .975 2.875E+02  1.000E+03 

 1600 9.108E+00 2.200E-03   178.6    .980   1.002   .974 2.880E+02  1.000E+03 

 2000 1.358E+01 2.179E-03   174.4    .971    .978   .974 2.886E+02  1.000E+03 

 2400 2.026E+01 2.194E-03   174.0    .977    .976   .974 2.891E+02  1.000E+03 

 2800 3.022E+01 2.236E-03   177.2    .996    .994   .974 2.897E+02  1.000E+03 

 3200 4.508E+01 2.250E-03   179.1   1.002   1.004   .975 2.907E+02  1.000E+03 

 3600 6.721E+01 2.243E-03   178.4    .999   1.001   .975 2.924E+02  1.000E+03 

 4000 1.002E+02 2.243E-03   178.5    .999   1.001   .975 2.949E+02  1.000E+03 

 4400 1.402E+02 2.243E-03   178.5    .999   1.001   .975 2.979E+02  1.000E+03 

 4498 1.500E+02 2.243E-03   178.5    .999   1.001   .975 2.986E+02  1.000E+03 

In the Pr=0.7 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution, and that the entry lengths for both momentum and energy are about the same at 

15 20hx D ≈ − . We can compare this solution with problem 14-13 where the thermally fully developed 
values were 2 2.287E-03 and Nu=182.6fc = , showing a favorable comparison between the mixing 
length model and the KYC two-equation model for this Re and Pr. 

The entry length behavior will be expected to be different between using a mixing-length model and using 
a two-equation model. Experimental data shows that the behavior of both the friction and heat transfer in 
the entry region (and the centerline velocity - or momentum) is to undershoot its asymptotic value and then 
converge to their thermally fully-developed values. This physical behavior is captured by the two-equation 
models, and we can see some evidence of this around x/Dh 10-15, and the entry region appears to be 
somewhat longer. However, within experimental (and numerical uncertainty) we typically design using 
x/Dh about 10-15 for gases. 

Now, compute the same data set, changing the properties to mercury, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the mercury. 220,000 W/msq′′ =

   re,dh = 1.0000E+05   prm =   .010 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 2.489E-02   166.3  11.087  15.990   .999 2.803E+02  2.000E+04 

  400 2.000E+00 2.558E-03    21.7   1.139   2.089   .992 2.828E+02  2.000E+04 

  800 4.000E+00 2.341E-03    16.4   1.042   1.582   .989 2.839E+02  2.000E+04 

 1200 6.106E+00 2.253E-03    14.1   1.003   1.358   .987 2.849E+02  2.000E+04 

 1600 9.108E+00 2.200E-03    12.5    .980   1.202   .986 2.859E+02  2.000E+04 

 2000 1.358E+01 2.179E-03    11.4    .971   1.098   .984 2.872E+02  2.000E+04 

 2400 2.026E+01 2.194E-03    10.9    .977   1.050   .984 2.888E+02  2.000E+04 

 2800 3.022E+01 2.236E-03    11.0    .996   1.062   .984 2.908E+02  2.000E+04 

 3200 4.508E+01 2.250E-03    11.3   1.002   1.087   .985 2.937E+02  2.000E+04 

 3600 6.721E+01 2.243E-03    11.3    .999   1.082   .985 2.982E+02  2.000E+04 

 4000 1.002E+02 2.243E-03    11.3    .999   1.082   .985 3.050E+02  2.000E+04 
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 4400 1.402E+02 2.243E-03    11.3    .999   1.082   .986 3.131E+02  2.000E+04 

 4498 1.500E+02 2.243E-03    11.3    .999   1.082   .986 3.151E+02  2.000E+04 

In the Pr=0.01 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Sleicher and Rouse Eq. 
(14-10) for constant surface heat flux. We see the cfrat shows agreement between the turbulent correlation 
and the TEXSTAN-computed solution and nurat seems high compared to the correlation.  We can compare 
this solution with problem 14-13 where the thermally fully developed values 
were 2 2.287E-03 and Nu=11.2fc = , showing a favorable comparison between the mixing length model 
and the KYC two-equation model for this Re and Pr. 

Now, compute the same data set, changing the properties to water, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the water. For this data set, the  2100,000 W/msq′′ =

   re,dh = 1.0000E+05   prm = 10.000 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 2.500E-02 2.489E-02  9166.5  11.087  13.170   .998 2.807E+02  1.000E+05 

  400 2.000E+00 2.558E-03   818.6   1.139   1.176   .973 2.878E+02  1.000E+05 

  800 4.000E+00 2.341E-03   769.1   1.042   1.105   .971 2.884E+02  1.000E+05 

 1200 6.106E+00 2.253E-03   749.1   1.003   1.076   .971 2.887E+02  1.000E+05 

 1600 9.108E+00 2.200E-03   736.2    .980   1.058   .970 2.889E+02  1.000E+05 

 2000 1.358E+01 2.179E-03   730.1    .971   1.049   .970 2.891E+02  1.000E+05 

 2400 2.026E+01 2.194E-03   732.2    .977   1.052   .970 2.892E+02  1.000E+05 

 2800 3.022E+01 2.236E-03   741.3    .996   1.065   .970 2.894E+02  1.000E+05 

 3200 4.508E+01 2.250E-03   744.5   1.002   1.070   .970 2.897E+02  1.000E+05 

 3600 6.721E+01 2.243E-03   742.8    .999   1.067   .970 2.903E+02  1.000E+05 

 4000 1.002E+02 2.243E-03   743.0    .999   1.067   .971 2.911E+02  1.000E+05 

 4400 1.402E+02 2.243E-03   743.0    .999   1.067   .971 2.921E+02  1.000E+05 

 4498 1.500E+02 2.243E-03   743.0    .999   1.067   .971 2.924E+02  1.000E+05 

In the Pr=10 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat shows agreement between the turbulent correlation and the TEXSTAN-computed solution 
and nurat seems low compared to the correlation. We can compare this solution with problem 14-13 where 
the thermally fully developed values were 2 2.287E-03 and Nu=718.3fc = , showing a favorable 
comparison between the mixing length model and the KYC two-equation model at this Re and Pr. 

For Re=50,000 the data sets are easily changed by only changing the reyn value. 

To plot the developing velocity profiles, set kout=4 and choose either k10=10 for nondimensional profiles 
(plus variables) or k10=11 for dimensional variables. The profiles will be printed as a part of the file 
out.txt. You can choose where to print the profiles by adding x locations to the x(m). Be sure to change the 
two nxbc variables and add the appropriate sets of two lines of boundary condition information for each 
new x-location. This is explained in detail in the s400.man.doc user manual.  
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14-16 

TEXSTAN analysis of the turbulent thermal entry flow between parallel plates with constant surface 
heat flux: Investigate the entry length region through the thermally fully-developed region of flow 
between parallel plates with hydraulic diameter Reynolds numbers of 30,000 and 100,000 and fluids 
corresponding to Pr = 0.01, 0.7, and 10. Evaluate the properties at a fluid entry temperature of 280 
K, use constant fluid properties, and do not consider viscous dissipation. Let the plate spacing be 7.0 
cm and the plate length be 7.0 m. Let the velocity and thermal entry profiles at the inlet to the plates 
be flat, which can be supplied by using the kstart=1 choice in TEXSTAN. Let the energy boundary 
condition be a constant surface heat flux of 250 W/m2. For a turbulence model, choose the hybrid 
turbulence model comprised of a constant eddy viscosity in the outer part of the flow (εm/ν=aReb 
with a = 0.0022 and b = 0.9) and a mixing-length turbulence model with the Van Driest damping 
function (κ=0.40 and A+=26) in the near-wall region (ktmu=7). This hybrid model follows the circular 
pipe idea described in Prob. 14-13, and thus better predict the fully-developed friction coefficient 
and Nusselt number for a given Reynolds number. Choose the constant turbulent Prandtl number 
model (ktme=2) along with a choice for the turbulent Prandtl number, 0.9 is suggested, by setting 
fxx=0.9.. Compare the thermally fully-developed Nusselt numbers for Pr=0.7 with the results from 
set of Eqs. (14-5) through (14-9). For Pr=-.01, compare with Eq. (14-10), and for Pr=100, compare 
with Eq. (14-8). Be careful to use the hydraulic diameter, Eq. (14-18).Feel free to investigate any 
other attribute of the tube flow. 

Problem modifications for 14-16   (they are similar to the modifications for problem 14-13) 

properties: Do not evaluate the properties at the entrance temperature. For convenience in obtaining 
properties from Appendix A, for Pr=0.01 use Hg at 200ºC, but set Pr=0.01; for Pr=0.7 use air at 300K but 
set Pr=0.7, and for Pr=10, use water at 10ºC, but set Pr=10. Because the calculations are constant property 
without viscous dissipation, only the values of Re and Pr for the problem set are important. 

surface heat flux: for each Pr select a surface heat flux value that provides a reasonable temperature change 
in the fluid. Again, the actual value does not matter because this is a constant property solution without 
viscous dissipation. 

turbulence model: use a variable turbulent Prandtl number model for Hg and air, but you must use the 
constant Prt model for water 

channel length. The solution needs to be carried out only to 150hL D = , giving a channel length of 21 m. 
This insures complete hydrodynamic and thermal flow development for the Pr=10 fluid. Using the ideas 
for turbulent internal flows choose a set of x locations that include ( ) 0, 5, 50, 100hx D =  and vary the 
integration stepsize: for ( )0 hx D≤ 5≤  the stepsize (aux1 value) should be 0.01 (an integration stepsize 
of 1% of the channel half-height), for the interval ( )hx D5 50≤ ≤  the stepsize is increased from 0.01 to 
0.1 (an integration stepsize of 10% of the channel half-height), and for the interval ( ) 100hx D≤ ≤50  it 
will further increase to 0.20, and then remain constant beyond this value if the channel length is longer. 

The data file for this problem is 14.16.dat.txt. The data set construction is based on the s520_7.dat.txt file 
for combined entry length flow between parallel planes with a specified surface heat flux (initial profiles: 
flat velocity and flat temperature). The turbulence model is a composite model that uses the van-Driest 
mixing length model in the near-wall region and a constant eddy viscosity in the outer region, along with a 
variable turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl 
number for liquids. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file (it will be called out.txt when you execute TEXSTAN using 14.16.dat.txt). The surface heat flux value 
was q  for the air to obtain a reasonable temperature rise in the air. 2500 W/ms′′ =
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   re,dh = 1.0000E+05   prm =   .700 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 1.250E-02 9.439E-03  1301.8   4.204   7.301   .993 2.820E+02  5.000E+02 

  800 2.000E+00 2.907E-03   246.0   1.295   1.380   .963 2.910E+02  5.000E+02 

 1600 4.000E+00 2.666E-03   221.6   1.187   1.242   .959 2.925E+02  5.000E+02 

 2400 6.107E+00 2.536E-03   208.7   1.129   1.171   .957 2.935E+02  5.000E+02 

 3200 9.109E+00 2.431E-03   198.3   1.083   1.112   .955 2.946E+02  5.000E+02 

 4000 1.359E+01 2.350E-03   190.1   1.047   1.066   .953 2.959E+02  5.000E+02 

 4800 2.027E+01 2.300E-03   184.7   1.025   1.036   .952 2.973E+02  5.000E+02 

 5600 3.023E+01 2.279E-03   182.2   1.015   1.022   .952 2.990E+02  5.000E+02 

 6400 4.510E+01 2.274E-03   181.5   1.013   1.018   .952 3.013E+02  5.000E+02 

 7200 6.725E+01 2.273E-03   181.4   1.013   1.017   .952 3.046E+02  5.000E+02 

 8000 1.003E+02 2.273E-03   181.4   1.012   1.017   .953 3.096E+02  5.000E+02 

 8800 1.403E+02 2.273E-03   181.4   1.012   1.017   .954 3.156E+02  5.000E+02 

 8994 1.500E+02 2.273E-03   181.4   1.012   1.017   .954 3.171E+02  5.000E+02 

In the Pr=0.7 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same hydraulic diameter Reynolds number and for Nu to the 
Gnielinski Eq. (14-8). We see the cfrat and nurat show agreement between the circular pipe turbulent 
correlations and the TEXSTAN-computed solution, replacing the pipe-diameter Re with the hydraulic-
diameter Re. We can also compare directly with Table 14-5 and use Eq. (8-28) or (8-29) because this is 
symmetrical heating from both walls. From the table, at Re=100,000 and Pr=0.7, Nuii=155 and θ*=0.170, 
giving Nui (=Nuo)=186.7. 

We see that the entry lengths for both momentum and energy are about the same at 15 20hx D ≈ − . 

Now, compute the same data set, changing the properties to mercury, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the mercury. We also have to change to 

kout=4 because we do not have analytical Nu values to compare with the TEXSTAN-calculated values.  
Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
14.16.dat.txt). 

25,000 W/msq′′ =

   Reynolds number= 1.0000E+05    Prandtl number=     .010 

  ==================================================== 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 1.019E-01 0.000E+00 9.439E-03  0.000E+00  2.313E+02 

  800 2.000E+00 9.663E-03 0.000E+00 2.907E-03  0.000E+00  2.288E+01 

 1600 4.000E+00 7.997E-03 0.000E+00 2.666E-03  0.000E+00  1.831E+01 

 2400 6.107E+00 7.241E-03 0.000E+00 2.536E-03  0.000E+00  1.629E+01 

 3200 9.109E+00 6.640E-03 0.000E+00 2.431E-03  0.000E+00  1.495E+01 

 4000 1.359E+01 6.118E-03 0.000E+00 2.350E-03  0.000E+00  1.415E+01 

 4800 2.027E+01 5.677E-03 0.000E+00 2.300E-03  0.000E+00  1.378E+01 
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 5600 3.023E+01 5.327E-03 0.000E+00 2.279E-03  0.000E+00  1.366E+01 

 6400 4.510E+01 5.075E-03 0.000E+00 2.274E-03  0.000E+00  1.365E+01 

 7200 6.725E+01 4.902E-03 0.000E+00 2.273E-03  0.000E+00  1.364E+01 

 8000 1.003E+02 4.785E-03 0.000E+00 2.273E-03  0.000E+00  1.364E+01 

 8800 1.403E+02 4.717E-03 0.000E+00 2.273E-03  0.000E+00  1.364E+01 

 8994 1.500E+02 4.706E-03 0.000E+00 2.273E-03  0.000E+00  1.364E+01 

Because we are using kgeom=5, which computes the parallel-planes channel which assumes symmetrical 
thermal boundary conditions, we will have no output for the I-surface. The cf/2 result must be the same for 
all Pr because the Re is the same and we are not using variable properties. The Nu value is in the 
magnitude range that we would expect for the turbulent flow of a low Pr fluid. To see the surface and mean 
temperatures examine the output file ftn84.txt. We can also compare directly with Table 14-5 and use Eq. 
(8-28) or (8-29) because this is symmetrical heating from both walls. From the table, at Re=100,000 and 
Pr=0.01, Nuii=6.70 and θ*=0.440, giving Nui (=Nuo)= 12.0, showing an agreement with TEXSTAN of 
14%. 

Now, compute the same data set, changing the properties to water, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the water. For this data set, we can switch 

back to kout=8. 

250,000 W/msq′′ =

   re,dh = 1.0000E+05   prm = 10.000 

  ==================================================== 

 intg  x/dh      cf2         nu     cfrat   nurat  tm/ts  ts         qflux 

    5 1.250E-02 9.439E-03  3307.5   4.204   4.752   .986 2.839E+02  5.000E+04 

  800 2.000E+00 2.907E-03   856.0   1.295   1.230   .950 2.950E+02  5.000E+04 

 1600 4.000E+00 2.666E-03   804.5   1.187   1.156   .946 2.960E+02  5.000E+04 

 2400 6.107E+00 2.536E-03   776.7   1.129   1.116   .945 2.967E+02  5.000E+04 

 3200 9.109E+00 2.431E-03   753.5   1.083   1.083   .943 2.974E+02  5.000E+04 

 4000 1.359E+01 2.350E-03   735.1   1.047   1.056   .942 2.980E+02  5.000E+04 

 4800 2.027E+01 2.300E-03   723.1   1.025   1.039   .941 2.987E+02  5.000E+04 

 5600 3.023E+01 2.279E-03   717.5   1.015   1.031   .941 2.993E+02  5.000E+04 

 6400 4.510E+01 2.274E-03   715.9   1.013   1.029   .941 3.001E+02  5.000E+04 

 7200 6.725E+01 2.273E-03   715.6   1.013   1.028   .941 3.012E+02  5.000E+04 

 8000 1.003E+02 2.273E-03   715.6   1.012   1.028   .941 3.029E+02  5.000E+04 

 8800 1.403E+02 2.273E-03   715.6   1.012   1.028   .942 3.050E+02  5.000E+04 

 8994 1.500E+02 2.273E-03   715.6   1.012   1.028   .942 3.055E+02  5.000E+04 

In the Pr=10 output we see cfrat and nurat, which present ratios of TEXSTAN-calculated values for cf  to 
the Kármán-Nikuradse Eq. (13-14) at the same Reynolds number and for Nu to the Gnielinski Eq. (14-8). 
We see the cfrat and nurat show agreement between the turbulent correlations and the TEXSTAN-
computed solution. We can also compare directly with Table 14-5 and use Eq. (8-28) or (8-29) because this 
is symmetrical heating from both walls. From the table, at Re=100,000 and Pr=10, Nuii=680 and θ*=0.045, 
giving Nui (=Nuo)= 712, showing a good agreement with TEXSTAN. 

The entry length for momentum remains 15 20hx D ≈ −  because the Re has not changed. and thermal 
entry length matches the momentum entry length. This is in contrast to what we would expect for laminar 
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flows where the thermal entry length would be much longer than the momentum length. In this output, if 
we take the ratio of nurat at x/dh=20.27 to its value at x/dh=150 we get 1.011, which matches the circular 
pipe result in Figure 14-7 for Re=100,000 and Pr=10. 

For Re=30,000 the data sets are easily changed by only changing the reyn value. 

To plot the developing velocity profiles, set kout=4 and choose k10=11 for dimensional variables. The 
profiles will be printed as a part of the file out.txt. You can choose where to print the profiles by adding x 
locations to the x(m). Be sure to change the two nxbc variables and add the appropriate sets of two lines of 
boundary condition information for each new x-location. This is explained in detail in the s400.man.doc 
user manual.  
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14-17 

TEXSTAN analysis of the turbulent thermally fully developed flow between parallel plates with 
asymmetrical surface heat flux: Investigate the thermally fully-developed Nusselt numbers of flow 
between parallel plates with hydraulic diameter Reynolds numbers of 30,000 and 100,000 and fluids 
corresponding to Pr = 0.01, 0.7, and 10. Evaluate the properties at a fluid entry temperature of 280 
K, use constant fluid properties, and do not consider viscous dissipation. Let the plate spacing be 7.0 
cm and the plate length be 7.0 m. Start the flow at x=0, as if it were entry flow. Let the velocity and 
thermal entry profiles at the inlet to the plates be flat, which can be supplied by using the kstart=1 
choice in TEXSTAN. Let the energy boundary condition be a constant surface heat flux of 250 W/m2 
on one surface and a zero heat flux on the other surface. Note that in TEXSTAN this geometry will 
be kgeom=6 (it will be kgeom=5, corresponding to symmetric thermal boundary conditions for Prob. 
14-16).  Compare the thermally fully-developed Nusselt numbers with the results shown in Table 14-
5. 

Problem modifications for 14-17   (almost identical to problem 14-16 with the heat flux boundary 
condition changed and kgeom=6 because of the asymmetrical boundary conditions). Note the rw(m) 
definition changes from channel half-height for kgeom=5 to channel height for kgeom=6. 

properties: Do not evaluate the properties at the entrance temperature. For convenience in obtaining 
properties from Appendix A, for Pr=0.01 use Hg at 200ºC, but set Pr=0.01; for Pr=0.7 use air at 300K but 
set Pr=0.7, and for Pr=10, use water at 10ºC, but set Pr=10. Because the calculations are constant property 
without viscous dissipation, only the values of Re and Pr for the problem set are important. 

surface heat flux: for each Pr select a surface heat flux value that provides a reasonable temperature change 
in the fluid. Again, the actual value does not matter because this is a constant property solution without 
viscous dissipation. 

turbulence model: DO NOT USE mixing length at this time. Use only two-equation models. Use a variable 
turbulent Prandtl number model for Hg and air, but you must use the constant Prt model for water.  

channel length. The solution needs to be carried out only to 150hL D = , giving a channel length of 21 m. 
This insures complete hydrodynamic and thermal flow development for the Pr=10 fluid. Using the ideas 
for turbulent internal flows choose a set of x locations that include ( ) 0, 5, 50, 100hx D =  and vary the 
integration stepsize: for ( )0 hx D≤ 5≤  the stepsize (aux1 value) should be 0.01 (an integration stepsize 
of 1% of the channel half-height), for the interval ( )hx D5 50≤ ≤  the stepsize is increased from 0.01 to 
0.1 (an integration stepsize of 10% of the channel half-height), and for the interval ( ) 100hx D≤ ≤50  it 
will further increase to 0.20, and then remain constant beyond this value if the channel length is longer. 

The data file for this problem is 14.17.dat.txt for the ktmu=22 turbulence model of K-Y Chien. The data set 
construction is based on the s526_22.dat.txt file for flow over a flat plate with constant free stream velocity 
and specified surface heat flux (initial profiles: fully turbulent velocity and temperature profiles, and for the 
turbulence variables, the profile construction is described in the TEXSTAN input manual). The four 
choices for turbulence models are described in Appendix F. A variable turbulent Prandtl number model is 
used for liquid metals and gases, and a constant turbulent Prandtl number for liquids. 

The data files for this problem is 14.17.dat.txt. The data set construction is based on the s526_22.dat.txtfile 
for combined entry length flow between parallel planes with a specified surface heat flux (initial profiles: 
flat velocity and flat temperature). The turbulence model is a composite model that uses the van-Driest 
mixing length model in the near-wall region and a constant eddy viscosity in the outer region, along with a 
variable turbulent Prandtl number model for liquid metals and gases, and a constant turbulent Prandtl 
number for liquids. 

Execution of the input data set generates several output files. Here is an abbreviated listing of the output 
file for kout=4 (it will be called out.txt when you execute TEXSTAN using 14.17.dat.txt). The surface heat 
flux value was q  for the air to obtain a reasonable temperature rise in the air. 2500 W/ms′′ =
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   Reynolds number= 1.0000E+05    Prandtl number=     .700 

  ==================================================== 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 3.160E-01 8.598E-03 8.598E-03  1.261E+03  0.000E+00 

  800 2.000E+00 1.036E-02 2.497E-03 2.497E-03  2.118E+02  0.000E+00 

 1600 4.000E+00 8.039E-03 2.329E-03 2.329E-03  1.891E+02  0.000E+00 

 2400 6.107E+00 7.061E-03 2.266E-03 2.266E-03  1.792E+02  0.000E+00 

 3200 9.109E+00 6.340E-03 2.240E-03 2.240E-03  1.724E+02  0.000E+00 

 4000 1.359E+01 5.768E-03 2.253E-03 2.253E-03  1.682E+02  0.000E+00 

 4800 2.027E+01 5.342E-03 2.300E-03 2.300E-03  1.663E+02  0.000E+00 

 5600 3.023E+01 5.092E-03 2.314E-03 2.314E-03  1.631E+02  0.000E+00 

 6400 4.510E+01 4.939E-03 2.309E-03 2.309E-03  1.598E+02  0.000E+00 

 7200 6.725E+01 4.834E-03 2.309E-03 2.309E-03  1.582E+02  0.000E+00 

 8000 1.003E+02 4.763E-03 2.309E-03 2.309E-03  1.576E+02  0.000E+00 

 8800 1.403E+02 4.722E-03 2.309E-03 2.309E-03  1.575E+02  0.000E+00 

 8994 1.500E+02 4.715E-03 2.309E-03 2.309E-03  1.575E+02  0.000E+00 

We can compare the friction solution with the mixing-length solution in problem 14-16 for the 
hydrodynamically fully developed value where 2 2.273E-03fc = , showing a favorable comparison 
between the mixing length model and the KYC two-equation model for this Re and Pr. For the Nusselt 
number we compare with Table 14-5 for Re=100,000 and Pr=0.7 and this asymmetrical heating (constant 
heat flux on the I-surface and zero heat flux on the E-surface), where Nu=155. We see complete agreement 
between the two-equation result and the table. 

Now, compute the same data set, changing the properties to mercury, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the mercury. We also have to change to 

kout=4 because we do not have analytical Nu values to compare with the TEXSTAN-calculated values.  
Here is an abbreviated listing of the output file (it will be called out.txt when you execute TEXSTAN using 
14.16.dat.txt). 

210,000 W/msq′′ =

   Reynolds number= 1.0000E+05    Prandtl number=     .010 

  ==================================================== 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 3.160E-01 8.598E-03 8.598E-03  1.991E+02  0.000E+00 

  800 2.000E+00 1.036E-02 2.497E-03 2.497E-03  2.049E+01  0.000E+00 

 1600 4.000E+00 8.039E-03 2.329E-03 2.329E-03  1.530E+01  0.000E+00 

 2400 6.107E+00 7.061E-03 2.267E-03 2.267E-03  1.302E+01  0.000E+00 

 3200 9.109E+00 6.340E-03 2.240E-03 2.240E-03  1.139E+01  0.000E+00 

 4000 1.359E+01 5.768E-03 2.253E-03 2.253E-03  1.023E+01  0.000E+00 

 4800 2.027E+01 5.342E-03 2.300E-03 2.300E-03  9.511E+00  0.000E+00 

 5600 3.023E+01 5.092E-03 2.314E-03 2.314E-03  9.047E+00  0.000E+00 

 6400 4.510E+01 4.939E-03 2.309E-03 2.309E-03  8.729E+00  0.000E+00 
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 7200 6.725E+01 4.834E-03 2.309E-03 2.309E-03  8.603E+00  0.000E+00 

 8000 1.003E+02 4.763E-03 2.309E-03 2.309E-03  8.573E+00  0.000E+00 

 8800 1.403E+02 4.722E-03 2.309E-03 2.309E-03  8.570E+00  0.000E+00 

 8994 1.500E+02 4.715E-03 2.309E-03 2.309E-03  8.570E+00  0.000E+00 

The friction solution will be the same because the Reynolds number has not changed and the flow is 
constant properties. For the Nusselt number we compare with Table 14-5 for Re=100,000 and Pr=0.01 and 
this asymmetrical heating (constant heat flux on the I-surface and zero heat flux on the E-surface), where 
Nu=6.70. We see the TEXSTAN result is 28% high. 

Now, compute the same data set, changing the properties to water, and use a surface heat flux value of 
 to obtain a reasonable temperature rise in the water. 2100,000 W/msq′′ =

   Reynolds number= 1.0000E+05    Prandtl number=   10.000 

  ==================================================== 

 intg  x/dh      cfapp     cf2(I)    cf2(E)     nu(I)      nu(E) 

    5 1.250E-02 3.160E-01 8.598E-03 8.598E-03  3.509E+03  0.000E+00 

  800 2.000E+00 1.036E-02 2.497E-03 2.497E-03  7.901E+02  0.000E+00 

 1600 4.000E+00 8.039E-03 2.329E-03 2.329E-03  7.550E+02  0.000E+00 

 2400 6.107E+00 7.061E-03 2.267E-03 2.267E-03  7.397E+02  0.000E+00 

 3200 9.109E+00 6.340E-03 2.240E-03 2.240E-03  7.304E+02  0.000E+00 

 4000 1.359E+01 5.768E-03 2.252E-03 2.252E-03  7.277E+02  0.000E+00 

 4800 2.027E+01 5.342E-03 2.300E-03 2.300E-03  7.307E+02  0.000E+00 

 5600 3.023E+01 5.092E-03 2.314E-03 2.314E-03  7.264E+02  0.000E+00 

 6400 4.510E+01 4.939E-03 2.309E-03 2.309E-03  7.205E+02  0.000E+00 

 7200 6.725E+01 4.834E-03 2.309E-03 2.309E-03  7.177E+02  0.000E+00 

 8000 1.003E+02 4.763E-03 2.309E-03 2.309E-03  7.166E+02  0.000E+00 

 8800 1.403E+02 4.722E-03 2.309E-03 2.309E-03  7.164E+02  0.000E+00 

 8994 1.500E+02 4.715E-03 2.309E-03 2.309E-03  7.164E+02  0.000E+00 

The friction solution will be the same because the Reynolds number has not changed and the flow is 
constant properties. For the Nusselt number we compare with Table 14-5 for Re=100,000 and Pr=10 and 
this asymmetrical heating (constant heat flux on the I-surface and zero heat flux on the E-surface), where 
Nu=680. We see the TEXSTAN result is 5% high.. 

For Re=30,000 the data sets are easily changed by only changing the reyn value. 
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15-1 

Consider fully developed laminar flow between symmetrically heated parallel plates with constant 
heat rate per unit of duct length. The plate spacing is 1 cm, the fluid is an aircraft engine oil, and the 
heat flux is 1.4 kW/m2. The mass velocity G is 600 kg/(s · m2). At a particular point in question the 
surface temperature is 110°C. Assuming that the viscosity is the only temperature-dependent 
property of significance, carry out the necessary calculations (numerical integration is necessary) to 
evaluate the friction coefficient and the heat-transfer conductance. Compare the results with the 
recommended procedures given in the text. 

 h = 56 W/(m2K) 

 cf = 0.027 

Referring to Eqs. (15-3) and (15-4), n = -0.34 and m = 0.48. 
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15-2 

For air as a working substance and using the actual tabulated properties, compare the recommended 
temperature ratio and reference property schemes for evaluating heat-transfer coefficients and 
friction coefficients for a laminar boundary layer with constant free-stream velocity for both heating 
and cooling 

For this problem select some suitable values for pressure, free-stream temperature, free-stream velocity, 
and distance x along the surface.  Then Ts and h should be evaluated for several values of surface 
temperature, both above and below free-stream temperature, using Eqs (9-13) and (10-13), first by 
evaluating all properties at free-stream temperature and then using the exponents from Table 15-1, and 
second by evaluating all properties according to Eq. (15-15). The result should be quite comparable 
although not necessarily identical. 

You can also easily investigate the temperature-ratio part of this problem with TEXSTAN using a problem 
description similar to problem 10-16 to analyze the laminar thermal boundary layer over a flat plate with 
constant surface temperature and zero pressure gradient: Choose a starting x-Reynolds number of about 
500 to 1000 (a momentum Re of about 10 to 20). The initial velocity and temperature profiles appropriate 
to this starting x-Reynolds number (Blasius similarity profiles) can be supplied by using the kstart=4 
choice in TEXSTAN. The geometrical dimensions of the plate are 1 m wide (a unit width) by 0.2 m long in 
the flow direction, corresponding to an ending Rex of about 1 to 2 × 105 (a momentum Re of about 150-
200). Note these are approximate values due to our variable property effects. 

Let the velocity boundary condition at the free stream be 15 m/s and assume the free stream stagnation 
pressure is one atmosphere. Note that TEXSTAN interprets the input pressure variable, po, as stagnation 
pressure. To evaluate the density, we will need the free stream static pressure, which can be computed 
using 

 1211 M
2

static

stag

P
P

γ
γγ −− = + 

 
 

For the energy boundary condition choose the wall temperature to be 295 K and investigate two free 
stream values, ( ) 0.7sT T∞ =  and ( ) 1.4sT T∞ = . This provides the two free stream temperature values, 
T∞.=421.4K (the surface cooling case, Ts T∞< ) and T∞.=210.7K (the surface heating case, T ). s T∞>

For the variable properties, we have several choices, as described in Appendix F. Choose the variable fluid 
property routine kfluid=2 because it realistically varies all of the thermophysical properties and matches the 
property table for air in Appendix A fairly close. We could choose the variable fluid property routine 
kfluid=14 for air because this is also used in the various analytical results of this chapter and the high-speed 
chapter 16. The kfluid=14 model assumes the Sutherland law for dynamic viscosity, and it uses a constant 
specific heat and constant Prandtl number.  

Note that we could not be sure if this is heating or cooling if the Mach number were large, because of near-
wall viscous heating effects. However, for a free stream velocity of 15 m/s and this level of free stream 
temperature , we will expect the Mach number to be near zero. We can compute the Mach number using 
Eq. (16-32), assuming the ratio of specific heats for air is γ=1.4, 

 ( ) ( ) ( )( ) ( )M 15 / 1.4 8314 28.97 295 0.7 0.036u RTγ∞ ∞= = =  

Note that for the larger temperature ratio the mach number will be smaller. This confirms our assumption 
that viscous dissipation effects are not important. Therefore we keep input viscous work variable  
jsor(1)=1. 

TEXSTAN requires stagnation temperature for the input variable, tstag. Based on the kfluid=14 model, we 
can use the compressible gas flow calculation, 
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 211 M 1.0003
2

stag

static

T
T

γ − = + = 
 

 

So for this problem we can use the free stream static temperature, T∞., as the stagnation temperature for 
both cases, and because of the low Mach number we can use 1 atm for P∞. 

There are four data files for this problem file 15.2a.dat.txt is for the variable-property flow of air at a 
temperature ratio of 0.7, and 15.2b.dat.txt is the same data set with kfluid=1 to permit comparison of a 
variable property calculation to a constant property calculation. For 15.2b.dat.txt the properties of air were 
400 K (about the same free stream temperature as the variable-property calculation). File 15.2c.dat.txt is 
for the variable-property flow of air at a temperature ratio of 1.4, and 15.2d.dat.txt is the same data set with 
kfluid=1 to permit comparison of a variable property calculation to a constant property calculation. For 
15.2d.dat.txt the properties of air were 200 K (about the same free stream temperature as the variable-
property calculation). 

For 15.2a.dat.txt here is an abbreviated listing of the output file (it will be called out.txt when you execute 
TEXSTAN using an input data set) for kout=8, ( ) 0.7sT T∞ =  

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 5.547E+02 1.571E+01 1.517E-02   7.6 1.076 1.090 1.716 1.913E+01 

   200 3.451E+03 3.990E+01 5.795E-03  17.6 1.025 1.014 1.724 4.964E+01 

   400 1.054E+04 6.981E+01 3.312E-03  30.6 1.024 1.011 1.723 8.715E+01 

   600 2.149E+04 9.971E+01 2.319E-03  43.7 1.024 1.010 1.722 1.246E+02 

   800 3.631E+04 1.296E+02 1.784E-03  56.8 1.024 1.010 1.722 1.621E+02 

  1000 5.500E+04 1.595E+02 1.449E-03  69.9 1.024 1.010 1.722 1.995E+02 

  1200 7.755E+04 1.894E+02 1.221E-03  83.0 1.024 1.010 1.722 2.370E+02 

  1400 1.040E+05 2.193E+02 1.054E-03  96.1 1.024 1.010 1.722 2.744E+02 

  1412 1.056E+05 2.210E+02 1.046E-03  96.8 1.024 1.010 1.722 2.765E+02 

In the benchmark output (kout=8) we see cfrat and nurat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (9-13) and for Nu to Eq. (10-13), both at the same x-Reynolds number. From Table 15-
1, for cooling and constant free stream velocity, m=-0.05 and n=0 to be used with 

 ( ) 0.05s

CP
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 = = = 
 

 

 ( )0.0
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 = = = 
 

 

Comparison of the output with these models show about what we would expect. 

A better validation is to run the same data set with constant properties, 15.2b.dat.txt (properties at 400K) 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 6.067E+02 1.636E+01 1.348E-02   7.2 1.000  .995 2.590 2.023E+01 

   200 4.110E+03 4.263E+01 5.174E-03  18.8  .999  .993 2.590 5.330E+01 

   400 1.282E+04 7.528E+01 2.930E-03  33.2  .999  .992 2.590 9.436E+01 

   600 2.637E+04 1.079E+02 2.044E-03  47.6 1.000  .992 2.590 1.354E+02 
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   800 4.475E+04 1.406E+02 1.569E-03  62.0 1.000  .992 2.590 1.764E+02 

  1000 6.796E+04 1.732E+02 1.273E-03  76.4 1.000  .992 2.590 2.174E+02 

  1200 9.600E+04 2.059E+02 1.071E-03  90.8 1.000  .992 2.590 2.584E+02 

  1322 1.154E+05 2.257E+02 9.772E-04  99.6 1.000  .992 2.590 2.833E+02 

If we now take the ratio of the cfrat for variable properties to constant properties at the same Rex, we find 
the ratio to be 1.024, in line with the model. For the heat transfer we find the ratio to be 1.018, which is 
within 2% of the property-ratio model. 

To examine ( ) 1.4sT T∞ = , we use 15.2c.dat.txt. Here is an abbreviated listing of the output file (it will be 
called out.txt  for kout=8, 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 1.891E+03 2.874E+01 7.213E-03  12.7  .945  .977 3.743 3.455E+01 

   400 2.092E+04 9.448E+01 2.251E-03  43.3  .981  .999 3.724 1.165E+02 

   800 6.586E+04 1.675E+02 1.270E-03  76.8  .982  .998 3.726 2.072E+02 

  1200 1.359E+05 2.405E+02 8.842E-04 110.3  .982  .998 3.727 2.978E+02 

  1600 2.310E+05 3.136E+02 6.783E-04 143.8  .982  .998 3.727 3.884E+02 

  2000 3.512E+05 3.866E+02 5.501E-04 177.4  .982  .998 3.727 4.789E+02 

  2029 3.609E+05 3.919E+02 5.427E-04 179.8  .982  .998 3.727 4.855E+02 

In the benchmark output (kout=8) we see cfrat and nurat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. (9-13) and for Nu to Eq. (10-13), both at the same x-Reynolds number. From Table 15-
1, for heating and constant free stream velocity, m=-0.10 and n=-0.01 to be used with 

 ( ) 0.10s
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Comparison of the output with these models show about what we would expect for the friction, but the heat 
transfer seems to be more affected than the model predicts. 

A better validation is to run the same data set with constant properties ,15.2d.dat.txt (properties at 200K) 

  intg rex       rem       cf2        nu   cfrat nurat h12   reh 

     5 2.079E+03 3.028E+01 7.283E-03  13.9 1.000  .996 2.590 3.538E+01 

   400 1.801E+04 8.919E+01 2.473E-03  40.7 1.000  .995 2.590 1.051E+02 

   800 5.404E+04 1.545E+02 1.428E-03  70.5 1.000  .994 2.590 1.823E+02 

  1200 1.094E+05 2.197E+02 1.004E-03 100.3 1.000  .994 2.590 2.594E+02 

  1600 1.841E+05 2.850E+02 7.738E-04 130.1 1.000  .994 2.590 3.365E+02 

  2000 2.781E+05 3.503E+02 6.296E-04 159.9 1.000  .994 2.590 4.137E+02 

  2400 3.914E+05 4.156E+02 5.307E-04 189.7 1.000  .994 2.590 4.908E+02 

  2419 3.972E+05 4.187E+02 5.268E-04 191.1 1.000  .994 2.590 4.944E+02 
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If we now take the ratio of the cfrat for variable properties to constant properties at the same Rex, we find 
the ratio to be 0.98, in line with the model. For the heat transfer we find the ratio to be 1.00, which is much 
closer to the model. By taking these numerical-predicted ratios, we remove the calculation bias. 
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15-3 

Repeat Prob. 15-2 but for a turbulent boundary layer with constant free-stream velocity. 

This problem is the same as problem 15-2 except that the  equations under investigation are (11-23) and 
(12-18), and the temperature ratio exponents suggested are -0.4 for ( ) 1sT T∞ <  and 0.0 for ( ) 1sT T∞ > .  
For this problem the comparison of methods may not be so favorable but there exists virtually no 
experimental data upon which to base a judgment. 

Change to the problem statement: use Eq. (11-20) which permits comparison at the same momentum-
thickness Reynolds number, and use Eq. (12-19) which permits comparison at the same enthalpy thickness 
Reynolds number. 

You can also easily investigate the temperature-ratio part of this problem with TEXSTAN using a problem 
description similar to problem 12-17 to analyze the turbulent thermal boundary layer over a flat plate with 
constant surface temperature and zero pressure gradient: Choose a starting x-Reynolds number of about 1-2 
× 105 (a momentum Re of about 500-700). The initial turbulent velocity and temperature profiles 
appropriate to this starting x-Reynolds number can be supplied by using the kstart=3 choice in TEXSTAN. 
The geometrical dimensions of the plate are 1 m wide (a unit width) by 3 m long in the flow direction, 
corresponding to an ending Rex of about 3 × 106 (a momentum Re of about 3000-4000). Note these are 
approximate values due to our variable property effects. 

Let the velocity boundary condition at the free stream be 15 m/s and assume the free stream stagnation 
pressure is one atmosphere. Note that TEXSTAN interprets the input pressure variable, po, as stagnation 
pressure. To evaluate the density, we will need the free stream static pressure, which can be computed 
using 
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For the energy boundary condition choose the wall temperature to be 295 K and investigate two free 
stream values, ( ) 0.7sT T∞ =  and ( ) 1.4sT T∞ = . This provides the two free stream temperature values, 
T∞.=421.4K (the surface cooling case, Ts T∞< ) and T∞.=210.7K (the surface heating case, T ). s T∞>

For the variable properties, we have several choices, as described in Appendix F. Choose the variable fluid 
property routine kfluid=2 because it realistically varies all of the thermophysical properties and matches the 
property table for air in Appendix A fairly close. We could choose the variable fluid property routine 
kfluid=14 for air because this is also used in the various analytical results of this chapter and the high-speed 
chapter 16. The kfluid=14 model assumes the Sutherland law for dynamic viscosity, and it uses a constant 
specific heat and constant Prandtl number.  

Note that we could not be sure if this is heating or cooling if the Mach number were large, because of near-
wall viscous heating effects. However, for a free stream velocity of 15 m/s and this level of free stream 
temperature , we will expect the Mach number to be near zero. We can compute the Mach number using 
Eq. (16-32), assuming the ratio of specific heats for air is γ=1.4, 

 ( ) ( ) ( )( ) ( )M 15 / 1.4 8314 28.97 295 0.7 0.036u RTγ∞ ∞= = =  

Note that for the larger temperature ratio the mach number will be smaller. This confirms our assumption 
that viscous dissipation effects are not important. Therefore we keep input viscous work variable  
jsor(1)=1. 

TEXSTAN requires stagnation temperature for the input variable, tstag. Based on the kfluid=14 model, we 
can use the compressible gas flow calculation, 
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 211 M 1.0003
2

stag

static

T
T

γ − = + = 
 

 

So for this problem we can use the free stream static temperature, T∞., as the stagnation temperature for 
both cases, and because of the low Mach number we can use 1 atm for P∞. 

There are four data files for this problem file 15.3a.dat.txt is for the variable-property flow of air at a 
temperature ratio of 0.7, and 15.3b.dat.txt is the same data set with kfluid=1 to permit comparison of a 
variable property calculation to a constant property calculation. For 15.3b.dat.txt the properties of air were 
400 K (about the same free stream temperature as the variable-property calculation). File 15.3c.dat.txt is 
for the variable-property flow of air at a temperature ratio of 1.4, and 15.3d.dat.txt is the same data set with 
kfluid=1 to permit comparison of a variable property calculation to a constant property calculation. For 
15.2d.dat.txt the properties of air were 200 K (about the same free stream temperature as the variable-
property calculation). 

For 15.3a.dat.txt here is an abbreviated listing of the output file (it will be called out.txt when you execute 
TEXSTAN using an input data set) for kout=8, ( ) 0.7sT T∞ =  

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 1.110E+05 4.757E+02 2.322E-03 2.903E-03  .867  .875 1.160 4.107E+02 

   250 1.568E+05 5.957E+02 2.569E-03 3.149E-03 1.015 1.025 1.086 5.593E+02 

   500 2.234E+05 7.615E+02 2.421E-03 2.908E-03 1.017 1.022 1.041 7.602E+02 

   750 3.073E+05 9.591E+02 2.294E-03 2.721E-03 1.021 1.023 1.007 9.956E+02 

  1000 4.117E+05 1.193E+03 2.183E-03 2.566E-03 1.026 1.025  .982 1.271E+03 

  1250 5.403E+05 1.467E+03 2.084E-03 2.434E-03 1.032 1.029  .962 1.592E+03 

  1500 6.971E+05 1.786E+03 1.995E-03 2.319E-03 1.037 1.033  .947 1.964E+03 

  1750 8.866E+05 2.156E+03 1.914E-03 2.218E-03 1.043 1.038  .935 2.393E+03 

  2000 1.114E+06 2.583E+03 1.840E-03 2.127E-03 1.050 1.043  .926 2.886E+03 

  2250 1.384E+06 3.071E+03 1.773E-03 2.045E-03 1.056 1.049  .918 3.449E+03 

  2415 1.589E+06 3.430E+03 1.731E-03 1.995E-03 1.060 1.052  .914 3.862E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for cf  to Eq. 11-20) at the same momentum thickness Reynolds number and for St to Eq. (12-18), 
both at the same enthalpy thickness Reynolds number. From p. 341, for cooling and constant free stream 
velocity, m=-0.22 and n=-0.14 to be used with 

 ( ) 0.22s

CP
0.7 1.082

m
f

f

c T
c T

−

∞

 = = = 
 

 

 ( ) 0.14

CP

St 0.7 1.051
St

n
sT

T
−

∞

 = = = 
 

 

Comparison of the output with these models show about what we would expect. 

A better validation is to run the same data set with constant properties, 15.3b.dat.txt (properties at 400K) 

  intg rex       rem       cf2       st        cfrat strat h12   reh 

     5 1.214E+05 4.716E+02 2.764E-03 3.499E-03 1.030 1.051 1.529 4.019E+02 

   250 1.710E+05 6.048E+02 2.582E-03 3.189E-03 1.024 1.045 1.500 5.687E+02 

278



Solutions Manual - Chapter 15 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

   500 2.444E+05 7.864E+02 2.386E-03 2.884E-03 1.011 1.026 1.473 7.904E+02 

   750 3.380E+05 1.002E+03 2.232E-03 2.662E-03 1.005 1.016 1.450 1.049E+03 

  1000 4.559E+05 1.258E+03 2.103E-03 2.486E-03 1.002 1.011 1.430 1.352E+03 

  1250 6.026E+05 1.557E+03 1.992E-03 2.339E-03 1.001 1.008 1.415 1.705E+03 

  1500 7.828E+05 1.907E+03 1.894E-03 2.213E-03 1.001 1.007 1.402 2.115E+03 

  1750 1.002E+06 2.312E+03 1.806E-03 2.104E-03 1.002 1.006 1.392 2.588E+03 

  2000 1.266E+06 2.779E+03 1.728E-03 2.007E-03 1.004 1.007 1.383 3.130E+03 

  2250 1.581E+06 3.312E+03 1.657E-03 1.921E-03 1.006 1.008 1.376 3.749E+03 

  2359 1.737E+06 3.568E+03 1.628E-03 1.886E-03 1.007 1.009 1.373 4.045E+03 

If we now take the ratio of the cfrat for variable properties to constant properties at the same 
2

Reδ , we find 
the ratio to be 1.052, within about 3%  the model and with the right trend. For the heat transfer we find the 
ratio to be 1.042, which is within 1% of the property-ratio model. 

To examine ( ) 1.4sT T∞ = , we use 15.3c.dat.txt. Here is an abbreviated listing of the output file (it will be 

    cf2       st        cfrat strat h12   reh 

called out.txt  for 

  intg rex       rem   

kout=8, 

     5 1.084E+05 3.983E+02 3.405E-03 4.354E-03 1.217 1.285 2.036 3.421E+02 

   250 1.549E+05 5.296E+02 2.660E-03 3.279E-03 1.021 1.067 2.082 5.056E+02 

   500 2.258E+05 7.083E+02 2.402E-03 2.898E-03  .991 1.031 2.073 7.219E+02 

   750 3.190E+05 9.225E+02 2.210E-03 2.634E-03  .975 1.010 2.057 9.770E+02 

  1000 4.389E+05 1.178E+03 2.056E-03 2.430E-03  .964  .997 2.041 1.278E+03 

  1250 5.904E+05 1.479E+03 1.927E-03 2.265E-03  .956  .988 2.026 1.631E+03 

  1500 7.794E+05 1.832E+03 1.817E-03 2.127E-03  .951  .981 2.013 2.042E+03 

  1750 1.012E+06 2.243E+03 1.721E-03 2.009E-03  .947  .976 2.002 2.519E+03 

  2000 1.294E+06 2.717E+03 1.636E-03 1.905E-03  .945  .973 1.992 3.068E+03 

  2129 1.461E+06 2.987E+03 1.596E-03 1.857E-03  .944  .972 1.988 3.381E+03 

In the benchmark output (kout=8) we see cfrat and strat, which present ratios of TEXSTAN-calculated 
values for c   to Eq. 11-20) at the same momentum thickness Reynolds number and for St to Eq. (12-18), f
both at the same enthalpy thickness Reynolds number. From p. 341, for heating and constant free stream 
velocity, m=-0.33 and n=-0.30 to be used with 

c T ( ) 0.33s
m

f − 

 

CP
1.4 0.895

fc T∞
= = = 
 

 

( )
CP

1.4 0.904
St T∞

= = = 
 

 

ese models show about a 5-10% di

0.30St n
sT − 

Comparison of the output with th screpancy. 

t.txt (properties at 200K) A better validation is to run the same data set with constant properties ,15.2d.da

  intg rex       rem       cf2       st        cfrat strat h12   reh 
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     5 1.194E+05 4.657E+02 2.773E-03 3.295E-03 1.031 1.038 1.531 4.032E+02 

   250 1.684E+05 5.977E+02 2.590E-03 3.025E-03 1.025 1.034 1.502 5.588E+02 

   500 2.409E+05 7.777E+02 2.393E-03 2.753E-03 1.011 1.019 1.474 7.673E+02 

   750 3.335E+05 9.918E+02 2.238E-03 2.551E-03 1.005 1.012 1.451 1.012E+03 

  1000 4.502E+05 1.245E+03 2.109E-03 2.388E-03 1.002 1.009 1.431 1.300E+03 

  1250 5.955E+05 1.543E+03 1.997E-03 2.252E-03 1.001 1.007 1.415 1.637E+03 

  1500 7.741E+05 1.891E+03 1.898E-03 2.134E-03 1.001 1.007 1.403 2.028E+03 

  1750 9.914E+05 2.293E+03 1.810E-03 2.031E-03 1.002 1.008 1.392 2.480E+03 

  2000 1.253E+06 2.756E+03 1.731E-03 1.940E-03 1.004 1.010 1.383 3.000E+03 

  2250 1.566E+06 3.286E+03 1.660E-03 1.859E-03 1.006 1.012 1.376 3.593E+03 

  2281 1.609E+06 3.357E+03 1.652E-03 1.849E-03 1.006 1.013 1.375 3.673E+03 

If we now take the ratio of the cfrat for variable properties to constant properties at the same momentum 
thickness Re we find the ratio to be 0.94, or 4% higher than the model. For the heat transfer we find the 
ratio to be 0.96, or 6% higher than the model. By taking these numerical-predicted ratios, we remove the 
calculation bias, but there is still discrepancy.  Furthermore, there will be a strong Reynolds number 
dependence. 
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16-1 

Consider an aircraft flying at Mach 3 at an altitude of 17,500 m. Suppose the aircraft has a 
hemispherical nose with a radius of 30 cm. If it is desired to maintain the nose at 80°C, what heat 
flux must be removed at the stagnation point by internal cooling? As a fair approximation, assume 
that the air passes through a normal detached shock wave and then decelerates isentropically to zero 
at the stagnation point; then the flow near the stagnation point is approximated by low-velocity flow 
about a sphere. 

231 kW/msq′′ =  
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16-2 

In Prob. 16-1 it is desired to cool a particular rectangular section of the aircraft body to 65°C. The 
section is to be 60 cm wide by 90 cm long (in the flow direction) and is located 3 m from the nose. 
Estimate the total heat-transfer rate necessary to maintain the desired surface temperature. As an 
approximation, the boundary layer may be treated as if the free-stream velocity were constant along 
a flat surface for the preceding 3 m. It may also be assumed that the preceding 3 m of surface is 
adiabatic. To obtain the state of the air just outside the boundary layer, it is customary to assume 
that the air accelerates from behind the normal shock wave at the nose, isentropically to the free-
stream static pressure. In this case the local Mach number then becomes 2.27, and the ratio of local 
absolute static temperature to free-stream stagnation temperature is 0.49. The local static pressure is 
the same as the free-stream, that is, the pressure at 17,500 m altitude. 

211 kW/msq′′ =  
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16-3 

Consider a laminar constant-property boundary layer on a flat plate with constant free-stream 
velocity. Evaluate the recovery factor for a fluid with Pr = 100, using Eq. (16-20). The correct answer 
is 7.63. Why is it difficult to obtain accuracy in solving this problem numerically? 

Numerical integration is required.  At the large values of h considerable error is introduced unless care is 
taken and a fairly sophisticated integration scheme is employed. 
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16-4 

Listed below, as functions of axial distance, are the radius, mass velocity, temperature, and pressure 
inside a supersonic nozzle. The fluid is air. It is desired to maintain the nozzle surface uniformly at 
200°C. Calculate the necessary heat flux along the nozzle surface. Assume that a turbulent boundary 
layer originates at the start of the nozzle. 

 

Axial 
distance 

cm 
Radius 

cm 

Mass 
velocity 

kg/(s ⋅ m2) 
Pressure

kPa 
T 
K 

0 9.70 0 2068 893 

1.94 8.59 98 2068 893 

6.07 6.15 366 2068 891 

8.14 4.95 561 2048 890 

10.20 3.81 879 2013 886 

12.26 2.62 1733 1841 856 

13.50 2.13 2734 1262 806 

14.33 2.06 2710 931 669 

15.15 2.29 1855 331 518 

16.39 2.84 1318 172 446 

18.45 3.76 928 96.5 380 

20.51 4.57 698 62.1 334 

22.58 5.28 586 48.3 308 

24.64 5.92 464 34.5 287 

26.72 6.48 391 27.6 265 

28.75 6.99 352 20.7 250 

30.81 7.44 322 17.3 237 

34.95 8.20 249 13.8 219 

The results: 

x, axial distance 

cm 

sq′′  

kW/m2 

1.94 119 

6.07 141 

8.14 774 

10.2 889 

12.26 1282 
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13.5 1872 

14.33 1246 

15.15 802 

16.39 637 

18.45 434 

20.51 302 

22.58 217 

24.64 185 

26.72 128 

28.75 164 

30.81 159 

34.95 77 

 The following is a set of experimental data points obtained for the nozzle under study.  
Experimental uncertainty is about  ± 15 percent. 

z (axial distance) 

cm 

h 

W/(m2 K) 

6.71 1143 

12.27 3169 

12.97 4470 

13.51 3820 

14.54 3492 

14.74 2707 

15.24 2375 

15.65 2069 

18.16 1241 

20.72 901 

23.39 808 

28.34 478 

31.02 384 

33.49 333 
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16-5 

In Prob. 16-4 the nozzle is to be constructed of 0.5 cm thick stainless-steel walls. The entire nozzle is 
to be surrounded by a bath of water, maintained at 27°C by constant changing. The heat-transfer 
coefficient on the water side of the nozzle walls is estimated to be 1100 W/(m2 · K) uniformly. 
Calculate the temperature along the inner surface of the nozzle wall and the local heat flux. Assume 
that heat conduction in the nozzle wall is significant in the radial direction only. 

The following results have been obtained assuming an initial laminar boundary layer with transition at a 
momentum thickness Reynolds number of 300. Note that at the throat it makes little difference whether an 
initial laminar boundary layer is assumed, or not.)  The assumed wall conductivity is 17.3 W/(m·K). 

z (axial distance) 

cm 

h 

W/(m2 K) 

Ts 

K 

0 - - 

1.94 284 455 

6.07 337 475 

8.14 1848 713 

10.2 2126 729 

12.26 3162 761 

13.5 4278 812 

14.33 3821 713 

15.15 2401 687 

16.39 1704 684 

18.45 1188 636 

20.51 877 585 

22.58 689 545 

24.64 569 520 

26.72 466  

28.75 414 508 

30.81 368 505 

34.95 272 425 
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16-6 

Repeat Prob. 16-4 but assume that the nozzle is constructed with a uniformly porous wall so that 
transpiration cooling may by used. Air is available as a coolant at 30°C. Determine the transpiration 
air rate, as a function of position along the surface, to maintain the surface of 200°C. 

 

z (axial distance) 

cm 

h 

W/(m2K) 

m′′  

kg/(s m2) 

0 - - 

1.94 234 0.535 

6.07 526 1.198 

8.14 688 1.568 

10.2 935 2.128 

12.26 1573 3.484 

13.5 2195 5.272 

14.33 2147 3.975 

15.15 1377 2.775 

16.39 950 2.216 

18.45 678 1.583 

20.51 515 1.157 

22.58 440 0.914 

24.64 345 0.747 

26.72 298 0.556 

28.75 246 0.655 

30.81 218 0.631 

34.95 182 0.353 

 

Total transpiration flow rate = 0.13 kg/s. 
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16-7 

A particular rocket ascends vertically with a velocity that increases approximately linearly with 
altitude, reaching 3000 m/s at 60,000 m. Consider a point on the cylindrical shell of the rocket 5 m 
from the nose. Calculate and plot, as functions of altitude, the adiabatic wall temperature, the local 
convection conductance, and the internal heat flux necessary to prevent the skin temperature from 
exceeding 50°C (see Prob. 16-2 for remarks about the state of the air just outside the boundary layer 
in such a situation). 

 

Altitude Rex Taw h sq′′  

m  K W/(m2K) kW/m2 

0 0 288 0 0 

1000 10e06 283 66.6 -2.68 

4500 53e06 287 164 -5.92 

10000 63e06 336 172 2.22 

20000 12.9e06 678 65.0 23.09 

30000 2.0e06 1245 20.4 18.82 

40000 0.6e06 2006 10.4 17.5 

transition to 
laminar 

    

50000 97900 2867 1.41 3.59 

60000 17800 3729 0.71 2.42 
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16-8 

Consider again Prob. 16-7, but let the skin be of 3 mm thick stainless steel, insulated on the inner 
side. Treating the skin as a single element of capacitance, calculate the skin temperature as a 
function of altitude. [The specific heat of stainless steel is 0.46 kJ/(kg·K).] 

To fit the specifications of the problem an initial velocity must be assumed.  Using V = 10 m/s as the 
velocity at zero altitude, and a density of 7849 kg/m3 for the metal skin, the following results are obtained: 

 

Altitude 

m 

Flight time, 

s 

Ts 

K 

0 0 288 

1000 35.8 288 

4500 63.1 288 

10000 78.6 293 

20000 92.3 323 

30000 100.3 354 

40000 106.1 367 

50000 110.5 373 

60000 114.1 374 
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16-9 

Consider the gas turbine blade on which Prob. 11-8 is based (see Fig. 11-19). It is desired to maintain 
the blade surface uniformly at 650°C by internal cooling. Calculate the necessary heat flux around 
the periphery of the blade. 

 

location 

cm 

sq′′  

kW/m2 

upper 
surface 

sq′′  

kW/m2 

lower 
surface 

stagnation 
point 

1016 1016 

0.2 431 295 

0.5 250 255 

1.0 193 125 

transition   

2.0 352 250 

3.0 420 241 

5.0 346 204 

6.0 306 - 
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16-10 

In Prob. 16-9 the turbine blade is 15 cm long, and for present purposes it may be assumed that blade 
dimensions and operating conditions are the same along the entire blade length. It appears feasible 
to allocate up to 0.03 kg/s of air at 200°C to cool the blade. Assuming a hollow blade of mild-steel 
construction, a minimum wall thickness of 0.75 mm, and any kind of internal inserts as desired (a 
solid core leaving a narrow passage just inside the outer wall could be used, for example), make a 
study of the feasibility of internally cooling this blade. Assume that the cooling air can be introduced 
at the blade root and discharged through the tip. Treat the blade as a simple heat exchanger. 

There is no "correct" answer for this problem.  The results of Prob. 16-9 are to be used for a design study, 
but the types of internal flow passages that could be used are quite varied.  The problem is to get a high 
enough heat transfer coefficient on the inside surface so as to pull the surface temperature down.  Internal 
fins are a possible answer. 
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16-11 

The gas turbine blade of Prob. 11-8 is to be cooled to a uniform surface temperature of 650°C by 
transpiration of air through a porous surface. If the cooling air is available at 200°C, calculate the 
necessary cooling-air mass-transfer rate per unit of surface area as a function of position along the 
blade surface. Discuss the probable surface temperature distribution if it is only mechanically 
feasible to provide a transpiration rate that is uniform along the surface. 

 

location 

cm 

m′′  

kg/(s m2) 

stagnation 
point 

2.1 

0.2 1.66 

0.5 1.56 

1.0 1.67 

2.0 1.88 

3.0 1.75 

5.0 1.54 

6.0 1.48 
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16-12 

Consider the rocket nozzle described in Prob. 11-6 (Fig. 11-18). Calculate the heat flux along the 
nozzle surface necessary to maintain the surface at 1100°C. If the convergent part of the nozzle is 
exposed to black-body radiation at 2200°C (the reactor core) and the nozzle surface itself is a black 
body, will thermal radiation contribute significantly to the heat flux through the nozzle walls? 

 

z (axial distance) 

cm 

h 

W/(m2K) 

sq′′  

W/m2 

2
Re∆  

0 ∞ ∞ 0 

1 1604 1.77e06 105 

2 1263 1.39e06 161 

3 1156 1.27e06 216 

4 1134 1.25e06 274 

5 1161 1.27e06 341 

6 1232 1.35e06 420 

8 1500 1.63e06 654 

transition    

10 7233 7.78e06 1187 

12 (throat) 7742 8.03e06 1938 

14 5849 5.70e06 2777 

16 3767 3.56e06 3752 

18 2509 2.31e06 4858 

22 1372 1.23e06 6712 
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16-13 

Suppose the nozzle of Prob. 16-12 is constructed of 6 mm thick molybdenum. Copper cooling tubes 
are then to be wrapped around the nozzle and bonded to the surface. Room-temperature water is 
available as a coolant. Make a study of the feasibility of water cooling in this manner, after first 
choosing a tubing size, flow arrangement, and reasonable water velocity 

The results of this problem depend almost completely on the ingenuity of the student in devising a suitable 
cooling system.  It will be found to be extremely difficult to hold the surface uniformly at 100ºC, but the 
objective of the problem is to see what can be done.  Local boiling may have to be accepted.  Although 
surface temperature will probably not be constant, it will be sufficiently accurate to use values of h from 
Prob. 16-12. 
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16-14 

The helium rocket nozzle of Probs. 11-6 and 16-12 is to be cooled to a uniform surface temperature 
of 800°C by transpiration of additional helium that is available at 38°C. Calculate the necessary local 
transpiration rates if this turns out to be a feasible scheme. What is the total necessary coolant rate? 
How does this compare with the total hot-helium rate passing through the nozzle? 

 

x 

(along surface) 

m 

h 

W/m2K 

m′′  

kg/(s m2) 

B 

0.0138 1458 0.380 1.35 

0.0275 1412 0.368 1.35 

0.0413 1480 0.386 1.35 

0.055 1612 0.420 1.35 

0.0688 1805 0.470 1.35 

0.0825 2075 0.540 1.35 

0.110 2970 0.771 1.35 

0.137 4196 1.07 1.33 

0.157 4620 1.15 1.29 

0.175 3582 0.849 1.23 

0.198 2352 0.545 1.20 

0.221 1591 0.461 1.18 

0.267 886 0.197 1.15 

 

Up to this point the total coolant required is 0.037 kg/s, less than one percent of the thru-flow, which is 
5.28 kg/s.  A turbulent boundary layer has been assumed from x = 0. 
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16-15 

Consider again Prob. 13-11, but let the aircraft speed be 300 m/s. At what airspeed does direct 
cooling become impossible? 

For the 60 cm by 60 cm cooler, q . For the 1.2 by 30 cm cooler, 3600 W≈ 3900 Wq ≈ .  No cooling is 
possible when V reaches 360 m/s (800 MPH). 
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17-1 

Investigate Eq. (17-29) for very large values of Pr. Compare your result to Eq. (17-33). What is your 
conclusion? What result do you obtain by using Eq. (17-42) instead of Eq. (17-29)? 

Equation (17-29) is given by 

 
1/ 4

1/ 4
1/ 2

3 2 PrNu (
4 5(1 2 Pr 2 Pr)x x
 

=  + + 
Gr Pr)  

For very large values of the Prandtl number ( )Pr → ∞ , this equation results in 

 
1/ 4

1/ 4 1/ 43 1Pr : Nu (Gr Pr) 0.5016 (Gr Pr)
4 5x x
 → ∞ = =  

x  

From Eq. (17-33) we have 

  1/ 4Pr : Nu 0.503 (Gr Pr)x x→ ∞ =

The relative difference between these two equations is about 0.3%. From Eq. (17-42) one obtains for very 
large Prandtl numbers 

  1/ 4Pr : Nu 0.508 (Gr Pr)x x→∞ =

Comparing this result to Eq. (17-33) one sees that both equations differ by about 1%. 
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17-2 

Investigate Eq. (17-29) for very small values of Pr. Compare your result to Eq. (17-32). What is your 
conclusion? What result do you obtain by using Eq. (17-42) instead of Eq. (17-29)? 

For very small values of the Prandtl number the terms containing the Prandtl number explicitly in the 
denominator of Eq. (17-29) can be neglected compared to one. This results for Eq. (17-29) in: 

 
1/ 4 1/ 4

1/ 4 2 1/ 4 2 1/ 43 2 Pr 3 2Pr 0: Nu (Gr Pr) (Gr Pr ) 0.5965(Gr Pr )
4 5 4 5x x x
   → = = =      

x  

Comparing this expression with Eq. (17-32) one sees that there is only a 0.6% difference between both 
Equations.  

From Eq. (17-42) one obtains for very small values of the Prandtl number 

  
2 1/ 4Pr 0: Nu 0.514(Gr Pr )x x→ =

This expression shows a relative difference of about 14% compared to Eq. (17-32).  
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17-3 

Show that the volumetric coefficient of thermal expansion 1/ ( / )PTβ ρ ρ= − ∂ ∂  is equal to 1/T for an 
ideal gas. 

The definition of the volumetric coefficient of thermal expansion is given by 

 1
PT

ρβ
ρ

∂ = −  ∂ 
 

The law for an ideal gas is given by /( )p RTρ = , where R is the specific gas constant. Performing the 
partial derivative ( / )PTρ∂ ∂  one obtains 

 
2

P

p
T R
ρ∂  = − ∂  T  

From this, we obtain for the volumetric coefficient of thermal expansion 

 
2

1 1

P

p RT
T pRT
ρβ

ρ
∂ 

T
= − = ∂ 

=
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17-4 

Consider a flat plate surrounded by a fluid at rest (at rest outside the boundary layer) and oriented 
vertically to a gravity field of strength g. If the plate is heated to a temperature above that of the 
fluid, the fluid immediately adjacent to the plate will be heated, its density will decrease below that of 
the surrounding fluid, the resulting buoyancy force will put the fluid in motion, and a free-
convection boundary layer will form. If the thermal expansion coefficient for the fluid is defined as 

 1
PT

ρβ
ρ

∂ = −  ∂ 
 

develop the applicable momentum integral equation of the boundary layer under conditions where 
the density variation through the boundary layer is small relative to the free-fluid density. 

The development parallels that on pages 41-43, except that u 0∞ =  and a body force acts in the x - 
direction. In addition there is no mass transfer through the wall and the radius of curvature R tends to 
infinity in the here considered case. One obtains from Eq. (5-2): 

 ( )2
0 0

0

Y
Y Y

s
d dPu dy dy gdy
dx dx

τ ρ− = + + ρ∫ ∫ ∫  

Carrying out the integration for the second integral results in 

 ( )2
0

0

Y
Y

s
d dPu dy Y gdy
dx dx

τ ρ− = + + ρ∫ ∫  

 

Now, from hydrostatics /dP dx gρ∞= − , and according to Eq. (17-5) (T T )ρ ρ ρβ∞ ∞− = −  . Thus, one 
obtains 

 
( ) ( )

( )

2 2
0 0

0 0

2
0

0

( )

( )

Y Y
Y Y

s

Y
Y

d du dy g Y gdy u dy gdy
dx dx

d u dy g T T dy
dx

τ ρ ρ ρ ρ ρ ρ

ρ β ρ

∞ ∞

∞

− = − + = + −

= − −

∫ ∫ ∫ ∫

∫ ∫
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17-5 

For laminar flow over a constant-heat-flux surface develop two expressions for the mean Nusselt 
number. In the first case base the heat-transfer coefficient on the temperature difference between the 
average surface temperature and the ambient; in the second case let the temperature difference be 
the surface minus the ambient at 1

2 L . Compare the two mean Nusselt numbers with those for a 
constant-wall-temperature surface, Eq. (17-34), at Prandtl numbers of 0.1, 0.72, 1.0, and 100.0, and 
discuss. 

If  varies as xsT T∞− 1/5, a constant-heat-flux boundary condition sq constant′′= is obtained (see page 379). 
Now let us define a mean temperature difference between surface and free-stream for the first case by 

 ( ) ( ) ( )1/5 1/5
1 1

0 0

1 1 5 5 5
6 6 6

L L

s s s x LT T T T dx C x dx C L T T T T
L L∞ ∞ ∞ =− = − = = = − = ∆ = ∆∫ ∫ L L

x

 

From the definition  at x = L we obtain 1/ 4Nu x C Gr=

 
1/ 4

3
2

s
L

L

q L gC T L
T k

β
ν

 = ∆ ∆  
 

Substituting 6 / 5LT ∆ LT∆ =  from the definition of the mean temperature for the first case, one obtains 

 

1/ 4
3

2

5/ 4
1/ 4 1/ 4

6
56 / 5

6Nu 1.256
5

s
L

L

L L

q L gC T L
T k

C Gr C Gr

β
ν

 = ∆ 
 ∆

 = = 
 

L

)L

 

For the second case ( )  (recall that ( ) (1/5
/ 2 1/ 2s sLT T T T∞ ∞− = − sT T∞−  varies as x1/5). Substituting 

this expression into the definition of the Nusselt number results in 

 ( )5/ 41/ 5 1/ 4 1/ 4Nu 2 1.181L LC Gr C Gr= = L  

Use Table 17-2 for C and compare with Table 17-1, modified by Eq. (17-34). One obtains: 

 

Pr 0.1 0.72 1.0 10 100 

1/ 4Nu GrL L
−   ( ) .q const= 0.237 0.51 0.574 1.17 2.185 

1/ 4Nu GrL L
−   ( ) .q const= 0.223 0.479 0.540 1.10 2.055 

1/ 4Nu GrL L
−   ( T c ) .s onst= 0.219 0.476 0.535 1.10 2.067 

 

Table 17-2 shows nicely that the Nusselt numbers based on the mean temperature of case 2 are very close 
to the mean Nusselt numbers for constant wall temperature. 
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17-6 

Develop an analytic solution for the laminar temperature profile and Nusselt number for the case of 
large wall suction. Start with Eq. (17-36). The final expression will contain n, F(0), and Pr as 
parameters. Compare this asymptotic expression for Nusselt number with the results in Table 17-3. 

For the case of very large wall suction ( )v u , we can assume that F = constant = F (0). This means also 
that . With these assumptions we obtain from Eq. (17-36) 0F ′ =

 Pr [( 3) ] 0n Fθ θ′′ ′+ + =  

This equation has to be solved together with the boundary conditions 

 
(0) 1
( ) 0
θ
θ

=
∞ =

 

Because the unknown function θ does not appear explicitly in the above differential equation, this equation 
can be solved easily by setting Z θ ′= . This results in 

 
( )

Pr [( 3) (0)] 0

Pr [( 3) (0)] , exp Pr [( 3) (0)]

Z n F Z
dZ n F d Z D n F
Z

η η

′ + + =

= − + = − +
 

From this equation, we finally obtain the solution for the temperature field 

 ( )exp Pr ( 3) (0)n Fθ η= − +  

The Nusselt number can be obtained from this equation as described in Chap. 17 (after Eq. 17-38) 

 1/ 4 1/ 4(0) (0)Nu Gr ( 3) Pr Gr
2 2x x x

Fnθ ′−
= = +  

Comparison with Table 17-3, Ts = constant (n = 0, Pr = 0.73) results in: 

 

 Suction 

F(0) + 1.0 + 0.8 + 0.4 

1/ 4Nu Grx x
−  

(Table 17-3) 

1.55 1.27 0.758 

1/ 4Nu Grx x
−  

(large suction) 

1.549 1.239 0.619 

 

It can be seen that the here obtained solution for large suction is in good agreement with the data reported 
in Table 17-3 for . (0) 0.8F ≥
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17-7 

A flat ribbon heat strip is oriented vertically on an insulating substrate. Let the ribbon be 1 m wide 
by 3 m long. Its energy dissipation is 0.5 W/cm2 to air at 25°C. What are the average heat-transfer 
coefficient and surface temperature of the ribbon? Where will transition to turbulent flow occur? 
Would you be justified in neglecting the laminar contribution to the heat transfer? 

Modify the problem statement: Let the ribbon be 1 m wide and 3 m high. Its energy dissipation is 0.5 
W/cm2 to air at 25°C. 

The solution must be iterated, because Ts is unknown. First guess for ( )sT T∞−  would be based on 

 (order of magnitude for free convection). After 3 – 4 iterations one finds 28 /(h W m K≈ )

 * 4
2 3 10L s

gGr q L
k
β
ν

′′ 13= ≈ ⋅  

Thus the ribbon is mostly in turbulent flow. Find 2Nu Nu 380, 6.2 /( ), 820L sh W m K T C= ≈ = = ° . 
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17-8 

Using the approximate integral solution method for turbulent free convection over a vertical and 
constant-temperature surface, develop an equation for / .xδ  Compare and discuss how the 
boundary-layer thickness varies with x for laminar and turbulent free and forced convection. 

This problem is developed in some detail in Ref. 16 and in the text (pp. 383-386). Substitute the profiles 
and expressions for u and δ into the integral equations (17-39, 17-40) to obtain two algebraic equations, 
each of which contains x to the exponential powers m and n. The algebraic equations must be valid for all 
x; hence equate the exponents. Find m = ½ and n = 7/10. Substitute these back into the algebraic equations 
and solve for C  and u Cδ : 

  5 8 /0.0689 PruC Cδν − −= 3

 
( ) ( )

2
2 / 3 16 / 30.00338 1 0.494Pr Pr

s

C
g T Tδ

ν
β

−

∞

= +
−

 

Introduce the Grashof number definition, which results in: 

 
1/101/10 2 / 3 8 /150.0565 1 0.494Pr PrxGr

x
δ − − = +   
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17-9 

Consider the free-convection cooling of a thick, square plate of copper with one surface exposed to 
air and the other surfaces insulated. Let the air temperature be 25°C and the copper temperature be 
45°C. The copper is 10 cm on a side. Compare the average heat-transfer coefficients for three 
exposed face orientations: vertical, inclined 45° to the vertical, and horizontal. 

For this problem Gr . For horizontal upward facing surfaces, Eq. (17-50) gives Nu = 19.4. For 
inclined surfaces, the +45° orientation is out of the recommended range for using 

62.3 10L = ⋅
cosg γ , but for this low 

GrL, it is probably OK. Find Nu 17.1= from a correlation based on the entries on Table 17-1 for Pr=0.72 

with the mean value of the Nusselt number according to Eq. (17-34). For a vertical surface, Nu 18.6= . 
Note all values within 12%. 
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17-10 

Consider the wire on a constant-temperature hot-wire anemometer sensor. The wire diameter is 
0.00038 cm and its length is 580 diameters. Let the wire temperature be 260°C and the air 
temperature be 25°C. Compare the heat-transfer coefficients for the wire placed in the horizontal 
and vertical positions. Note that the effects of the wire support prongs are neglected. 

For the horizontal case, . Using Eq. (17-51) (laminar) and Eq. (17-52) for correction, find 
Nu = 0.37. For the vertical orientation, Eq. (17-53) is not satisfied. Thus Eq. (17-29), for the local values, 
must be corrected by Eq. (17-52). Find 

74.1 10DGr −= ⋅

Nu 2.3= . Note that Eq. (17-29) must be multiplied by 4/3 before 
using Eq. (17-52). 
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18-1 

Consider a binary mixture gas mass-transfer system in which the considered phase is a mixture of 
gases 1 and 2. Let gas 2 be injected into the mixture at the interface; that is, gas 2 is the only 
transferred substance. Show that if there is no phase change from the L state to the S state then 

s Lq q′′ ′′= , regardless of the mass-transfer aspects of the problem (start with Eq. (18-27)). 

For solving this problem, we will need the following equations: 

 
( ) ( ) ( ), ,/ / /j j j s j j j sss sj j

s T s T

m y i c T y m y i q
m

i i i i

γ γ    ′′∂ ∂ + Γ ∂ ∂ ∂ ∂ +     
′′= =

− −

∑ ∑ s

 

 
0L L T

L
T L

m i q m i
qi i
m

′′ ′′ ′′− − =
′′

= −
′′

 

For the binary mixture of gases one obtains: 

 
( ) ( ) ( ), 1 1 1, 2 2/ / / 2,j j j s ss ssj

m y i m y i m y iγ γ γ ∂ ∂ = ∂ ∂ + ∂ ∂     ∑ s
 

 1 2 1m m+ =  

 1 2 0m m
y y

∂ ∂
+ =

∂ ∂
 

 ( ) ( )1 1 2 2s s s
i m i m i= +  

 1 2γ γ=  

Gas 2 is the only transferred substance in this problem. This means that  

  2, 1, 2,1, 0,T Tm m= = L si i=

 

1
1

, , 1,

j
j

s s

j s j T s

m m
y y

m
m m m

γ γ
∂   ∂

   ∂ ∂   ′′ = =
−

 

Inserting Eq. (18-25) and the above expressions into Eq. (18-27) results in 

 

1 2 1
1 1, 2 2, 1 1, 2,

2, 2,

( )

/ /

s s s s s s

s s L s s L

m m mi i q i i
y y y

m
i i q m i i q m

γ γ γ
     ∂ ∂ ∂ q′′ ′′+ + −     ∂ ∂ ∂     ′′ = =

′′ ′′ ′′ ′′− + − +

+
 

Replacing on the left hand side of the equation results in m′′

 
307



Solutions Manual - Chapter 18 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

 

1 1 1
1 1 1, 2, 1 1, 2,

1 2, 1 1 2 2 2,

( ) ( )

/ ( ) ( )

s s s s s s
s s s

s s L s s s L

m m mi i q i i q
y y y

m i i q m m i m i i q

γ γ γ     ∂ ∂ ∂

/ m

′′ ′− + − +     ∂ ∂ ∂     = =

′

′′ ′′ ′′ ′− + + − + ′
 

Rearranging gives 

 

1
1

1
1 1 2 2 2, 1 1, 2,

1

( ) ( ) ( )s
s s s L s s

s

m
y mm i m i i q i i q

m y

γ
γ

 ∂
 ∂  ∂ 

s′′ ′  ′+ − + = − +   ∂ 
 

From this equation one finds the result that s Lq q′′ ′′= . 
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18-2 

Consider the same problem as in Prob. 18-1. In addition to no phase change at the interface, let the 
Lewis number be everywhere 1. At the outer edge of the boundary layer let the mixture by 
exclusively component 1. Show that under these conditions, 

 ( )1, 1,L s sq q g i i∞′′ ′′= = −  

If the specific heat of component 1 may be considered as constant, what is the implied relationship 
between St and g/G∞ ? 

If the Lewis number is equal to one, the enthalpy is a conserved property of the second kind and we can 
write  

 /
s s

s T s L L

i i i im g g
i i i i q m
∞ ∞− −′′ = =

′′ ′− − + ′  

Furthermore, for Le = 1, the mass concentration m2 is also a conserved property and one can write 

 

2, 2, 2,

2, 2, 2, 1
s s

s T s

m m m
m g g

m m m
∞ − −

′′ = =
− −  

In Problem 18-1 it has already been shown that s Lq q′′ ′′= . Now we want to show that ( )1, 1,L s sq q g i i∞′′ ′′= = − . 
For this, we start with the first equation from above. Rearranging, results in 

  1, 2,( ) ( )L s si i m i i∞ sq g′′ ′′= − − −  

Now we introduce the enthalpy expressions from Problem 8-1. This results in 

 1, 2, 1, 1, 2, 1, 1, 2,

1, 2, 1, 1, 2,

( ( )) (
( ) ( )( )

)L s s s s s s s

L s s s s

q g i i m i i m m i i
q g i i m i i g m

∞

∞

′′ ′′= − − − − −

′′ ′′= − − − +
 

Now, from the second equation above we get 

 2,
1, 1,

2,

; 1 ;
1

s
s s

s

m m gm g m m
m m g
− ′′ −′′ = − = − =

′′ ′′m g− + +
 

Introducing this expression into the equation for Lq′′  results in 

 1, 2, 1, 2, 1, 1,( ) ( )( ) ( )L s s s s
gq g i i i i g m g i i q

g m∞ ∞′′ ′′ ′′= − + − + = − =
′′+ s  

If the specific heat, c1, is constant, then it follows that 

 1( )s sq gc T T∞′′ = −  

from which we obtain 

 gSt
G∞

=  
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18-3 

Show that for the case  the heat flux at the interface is proportional to the enthalpy differences 
between the s and ∞ states, for any case for which enthalpy is a conserved property. 

0m′′=

If the enthalpy i is a conserved quantity it follows 

 
/

s s

s T s L L

i i i im g g
i i i i q m
∞ ∞− −′′ = =

′′ ′− − + ′

)

 

Which can be rewritten according to 

 ( ) (s L L sm i i q g i i∞′′ ′′− + = −  

For the case m  it follows 0′′ =

 ( )L sq g i i∞′′ = −  

Furthermore, from Problem 18-1 it is known that for the case under consideration L sqq′′ = ′′  and we obtain 

 ( )s sq g i i∞′′ = −  
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18-4 

Demonstrate, with the aid of a suitable model, that in a turbulent flow, under the assumption of the 
Reynolds analogy, the “turbulent” Lewis number is equal to one. 

Refer to pages 231-232 in the text. Let there be a concentration gradient for some component “j”. Then the 
rate of that component in the direction of the gradient would be: 

 2
,diff j jG C v mρ δ′=  

The procedure then follows in complete analogy with that for turbulent heat transfer. Let diffε  be the eddy 
diffusivity for mass diffusion. Then, 

 , ,; ;j y diff j j
j diff diff M

d m G d m
m

dy dy
δ ε ε

ρ
≈ = ε=  

Hence, it follows 

 1M
t

diff

Sc ε
ε

= =  

Because the turbulent Prandtl number is equal to one, it follows, that also the turbulent Lewis number is 
equal to one. 
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18-5 

Starting with the energy equation of the boundary layer in the form of Eq. (4-26), show that for the   
case of a fluid with Pr = 1 the stagnation enthalpy is a conserved property of the second kind. 

See the development in Chapter 16 starting on page 346. This leads to Eq. (16-5) for a laminar boundary 
layer, or Eq. (16-7) for a turbulent boundary layer. Let Pr = 1 or Preff = 1.  In either case, the resulting 
equation is the same as Eq. (18-15). Therefore, the stagnation enthalpy is a conserved property of the 
second kind. 
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18-6 

Prove the theorem for the conserved property of the second kind, given after Eq. (18-18), by 
introducing a linear combination of two conserved properties of the second kind ( ,I IIP P ) into Eq. 
(18-15). 

The theorem after Eq. (18-18) states: If , in any steady flow, there are two conserved properties of the 
second kind, PI and PII, and at each point ΦI = ΦII, then a linear combination of  PI and PII  is a conserved 
property of the second kind.  

We want to prove this theorem by introducing a linear combination of two conserved properties of the 
second kind into Eq. (18-15) 

 0x yG G
x y y y

 ∂ ∂ ∂ ∂
+ − Φ = ∂ ∂ ∂ ∂ 

P P P  

Assume that andI IIP satisfy Eq. (18-15). Introducing now a linear combination of these quantities  P

 I IIa= +P P P  

into Eq. (18-5) results in ( )  I IIΦ = Φ = Φ

 0I I I II II II
x y x yG G a G G

x y y y x y y y
    ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ + − Φ + + − Φ    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

P P P P P P
=  

Because we assumed above that andI IIP satisfy Eq. (18-15) separately, it can be seen that also P  must 
be a conserved property of the second kind. 

P
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18-7 

Consider a chemical reaction of C2H5OH with O2. It is assumed that the fuel combines with the 
oxidant and forms a product consisting of CO2 and H2O. Write down the reaction equation in kmol 
and in kg of the reactants. What value has the stoichiometric ratio r ? 

The general reaction equation is 

 1 kg fuel  +  r kg oxidant  →←   (1 + r) kg product 

For the special case considered here, it follows: 

  2 5 2 2 21 C H OH + 3 O 2 CO + 3 H O

  2 5 2 2 21 kmol C H OH + 3 kmol O 2 kmol CO + 3 kmol H O

  2 5 2 2 246kg C H OH + 96kg O 88kg CO + 54kg H O

and r  =  96/46 = 48/23 = 2.087  
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19-1 

Consider a laminar Couette flow with mass transfer through the s surface. Let the transferred 
substance be CO2 alone (this means that mT = 1), and let the considered phase be a binary mixture of 
CO2 and air, all at 1.013 bar pressure and 16°C. Let the thickness of the layer be such that the 
concentration of CO2 at the ∞ state is always effectively zero. Using actual properties that vary with 
concentration, evaluate g/g* as a function of B. Compare with the results given in Fig. 19-3. 

The reader is referred to the text, pp. 418 – 420. The problem is sketched in Fig. 19-2. However, for 
Problem 19-1 the properties vary with concentration. We can start by using the Eqs. (19-14, 19-15). 

 ( ) constansm v tρ′′= =  

 1
1 1 0dmm m m

dy
γ′′ ′′− − =  

Eq. (19-14) simply states the fact that the net mass transfer rate is constant. The only transferred substance, 
1 is CO2. Therefore, Eq. (19-5) might also be written as 

 2

2 2
0CO

CO CO

dm
m m m

dy
γ′′ ′′− − =  

Rearranging gives 

 2

2

2
( 1)

CO
CO

CO

m dy dm
m
γ

′′ =
−

 

In this equation, m can be replaced by using Eq. (18-33). In addition, the left hand side of the above 
equation can be integrated between the surface and the thickness of the layer (

′′
y δ= ), where the 

concentration of CO2 is zero. One obtains: 

 2 2 2

2

2 22,

0
, , ,

, ,

,
( 1) 1 1

CO s

CO CO s CO CO s
CO

CO CO s CO sm

m m m
g B dm B

m m
γ

δ ∞−
= =

− −∫ 2

2
m

=
−

 

The mass transfer conductance g* for the case of negligible mass transferred from the interface to the flow 
is given by Eq. (19-20). Hence, we obtain the following equation, which must be solved: 

 
2,

2

2

2 2 20

1
* ( ) (1 )

CO s

CO

m
CO

CO
CO m CO

g dm
g B m

γ
γ

→∞

=
−∫  

Using data from Table A-19, and integrating numerically: 

2 ,CO sm  B / *g g  

0 0.00 1.0 

0.2 0.25 0.925 

0.5 1.00 0.769 

0.8 4.00 0.488 
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19-2 

Consider again Prob. 19-1, but let mT << 1 so that γ can be treated as constant. Let the remainder of 
the transferred substance be air. Compare the results of both problems. Can you suggest an 
empirical correlation of the variable-property results with the constant property results? 

 
2,

2

2

2 2 20

1
* ( ) (1 )

CO s

CO

m
CO

CO
CO m CO

g dm
g B m

γ
γ

→∞

=
−∫  

If 
2COγ can be treated as constant, the above given equation can easily been integrated and one obtains 

  
2,

2 2

2

2 2 2

,
0

1 1ln(1 ) ln(1 )
* ( ) (1 )

CO s

CO

m
CO CO

CO s
CO m CO

dm
m B

g B m B B
γ

γ
→∞

−
−∫

g
= =  = +

This is (of course) the same result, we obtained in Eq. (19-21). 

The following modification of this result fits the results of Problem 19-1 reasonably well: 

 ln(1 )
a

s

g B
Bg

∞
∗

  +
= 

 

M

M
 

where M is the molecular weight and the exponent a = 0.6. 
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19-3 

Consider mass transfer from a fuel droplet, which can be approximated as a sphere. Let there be no 
effects of transverse flow; that is, the mass flows out symmetrically in all directions. Solve the P 
equation under the assumption of constant fluid properties to obtain an expression for g. What is the 
result for g/g* ? 

The P-Equation in three-dimensional space is given by Eq. (18-18) 

 0G ⋅ − ⋅Φ =P P∇ ∇ ∇  

Referring to Appendix D of the text, in spherical coordinates we have 

 
2

2 2 2 2

sin

sin 0
sin sin

r

GG
G

r r r

r
r rr r r

φθ

θ θ φ

θ
θ θ φ φθ φ

∂ ∂ ∂
+ + +

∂ ∂ ∂

 −Φ ∂ ∂ Φ ∂ ∂ Φ ∂ ∂   − −     ∂ ∂ ∂ ∂ ∂ ∂     

P P P

P P
=

P
 

With symmetrical flow, this equation reduces to 

 2
2 0rG r

r r rr
∂ Φ ∂ ∂ − = ∂ ∂ ∂ 

P P  

where Φ is constant and only variations of P in the radial direction are considered. This means also, that we 
might replace the partial differentials by total differentials. Hence, 

 2
2 0r

d d dG r
dr dr drr

Φ  − = 
 

P P  

At the surface of the sphere we have 

  2, (
sr sG m m m rπ′′ ′′= = 4 )

By continuity at a radius r, we can write 

 
2

2 2 2
2(4 ), (4 ) (4 ), s

r s r r
rm G r r m G r G m
r

π π π′′ ′= = ′=  

Inserting this expression for  into the differential equation for P results in the following equation rG

 
2

2
2 2 0sr d d dm r

dr dr drr r
Φ  ′′ − = 

 

P P  

This equation has to be solved with the following boundary conditions 

 
: , ( )

:

s s s T
s

dr r m
dr

r r∞ ∞

 ′′= = − = Φ 
 

= =

P
P P P P

P P
 

The above ordinary differential equation can be integrated easily. One obtains 
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2 1 1 lns T

s s

m r
r r

∞

∞

′′    −
− =  Φ −  

P P
P PT





)

 

Now ( ) (/s s TB ∞= − −P P P P  and we can write 

 ( )1 lns sm r r
B

r∞

′′  
1− = + Φ  

 

Finally, we consider that  sr∞ r  and that m gB′′ =  and obtain 

 
( )ln 1

s

B
g

r B
Φ +

=  

From this equation g* can be obtained easily by looking for the limit where B → 0. This results in  

 *
s

g
r
Φ

=  

Hence, 

 
( )ln 1

*
Bg

g B
+

=  

 
318



Solutions Manual - Chapter 19 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

19-4 

Let the transferred substance of Prob. 19-3 be benzene and the surrounding fluid be air. Using the 
concentration of the benzene as the conserved property, calculate g/g* as a function of B using the 
actual variable properties, assuming that the system is isothermal. Let the temperature be 150°C 
(Note that the Schmidt number for the dilute mixture is relatively independent of temperature and 
pressure, that Dj is relatively independent of composition, and that γj is relatively independent of 
pressure. On this basis, γj can be estimated as a function of composition). Compare the results with 
those of Prob. 19-3. 

 

6 6 ,C H sm  B / *g g  

0 0.00 1.0 

0.2 0.25 0.959 

0.5 1.00 0.7850 

0.8 4.00 0.607 

 

Again, these results correlate well with the constant property results using the following equation: 

  
( )ln 1

*

a B
g B

∞g + 
= 

 s

M

M
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19-5 

Prepare a plot of g/g* as a function of B for a laminar constant-property boundary layer at an 
axisymmetric stagnation point, and at a two-dimensional stagnation point, for Sc = 0.5. Compare 
with the similar results on the flat plate, m = 0.  

Axisymmetric Stagnation Point: 

We will first develop an expression for g* by analogy with the heat transfer solution. In Chap. 10 a 
correlation has been given for the heat transfer at a three-dimensional axisymmetric stagnation point: 

 1/ 2 0.4
xNu 0.76Re Prx=  

With the knowledge of Chap. 19 (pp. 414-416), we can obtain an equation for the Sherwood number and 
therefore for g* 

 1/ 2 0.4*Sh 0.76Re Scx x
g x

= =
Φ

 

If the Lewis number is assumed to be one, one gets 

 0.4
1/ 2

* 0.76 0.7 0.66
Rex

g x
= ⋅ =

Φ
 

Now, after finding g*, we need to relate this value to the value of the mass transfer conductance with 
blowing. Howe J.T. and Mersman W.A. (Ref. 5 in Chap. 10) solved the laminar boundary layer equations 
for transpiration at the stagnation regions of blunt bodies. The applicable portion of their work is 
summarized in Table 10-5 of the text. Following the text on pp. 420-422, the following table can be 
constructed out of Table 10-5 

 

Res
x

v
u∞

 /
Rex

gx Φ  
B 

0 0.664 0.0 

0.567 0.419 0.950 

1.154 0.227 3.560 

 

For g* we obtained above the relationship , whereas the values in the above table 
show a value of 0.664 for this case. Because both values deviate by only 0.6%, we take the value from the 
above table. With this, we can obtain g/g*. One obtains 

1/ 2* /( Re ) 0.66xg x Φ =

 

B g/g* 

0 0.664/0.664 = 1 

0.950 0.663 

3.560 0.342 
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Two – dimensional Stagnation Point: 

We following here the same procedure as outlined in the previous paragraph. An equation for g* can be 
obtained from Eq. (10-18). For Lewis equal to one, one finds 

 1/ 2

* 0.495
Rex

g x
=

Φ
 

Using Table 10-4, one obtains  

 

Res
x

v
u∞

 /
Rex

gx Φ  
B 

0 0.496 0.0 

0.5 0.293 1.195 

1.0 0.146 4.9700 

 

and finally for g/g* 

 

B g/g* 

1.0 0.496/0.496 = 1 

1.195 0.592 

4.970 0.294 

 

The higher the value of g/g* the better the mass transfer. The above tables show that large values of 
blowing lead to large values of B and therefore to small mass transfer rates, because the boundary layer 
tends to been blown away from the surface. The highest value of g/g* is obtained for the two-dimensional 
stagnation point. The axisymmetric case yields slightly lower results. The flat plate (Chap. 19) gives 
considerably lower values. 

 
321



Solutions Manual - Chapter 19 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

 

19-6 

It is required to estimate the average mass-transfer rate per unit area of benzene evaporating from 
the outer surface of a circular cylinder across which air is flowing at 6 m/s. The driving force B has 
been evaluated to be 0.9. It is found that if a cylinder of the same diameter is placed in the same air 
stream, the heat-transfer coefficient is h = 85 W/(m2⋅K). Estimate the mass-transfer rate explaining 
in detail the reasons for any assumptions that you build into the analysis. Evaluate the 
concentrations of benzene in the s state, assuming no chemical reaction. 

Following the same procedure as in Problem 19-5, we might first obtain the mass transfer conductance for 
B → 0 , g*, from the heat transfer correlations. This results in 

 
0.6 0.6St

, *
St Pr Pr

m

h p

Sc h Scg
c

− −
   = =   
   

 

The ratio g/g* might now been obtained from Fig. 19-3,  which gives a value of g/g* = 0.6. Alternatively, 
this ratio could also been obtained from Eq. (19-21)  

 
( )ln 1

*
Bg

g B
+

=  

resulting in g/g* = 0.713. If we use the value given by Eq. (19-21), one obtains 

 
0.6 0.6

285 W /(mK) 1.710.6 0.713 0.0353kg /(sm )
Pr 1004 J /(kgK) 0.7p

h Scg
c

− −
   = = =   
   

 

This gives an average rate of mass transferred per unit area of 

  20.0318 kg/(sm )m gB′′ = =

The mass transfer driving force is given for the present problem by the equation 

 6 6 6 6

6 6 6 6

, ,

, ,

C H C H s

C H s C H T

m m
B

m m
∞ −=
−

 

Because the benzene is the only quantity which is transferred, 
6 6 , 1C H Tm = . Furthermore, we can assume 

that . With this, we obtain finally 
6 6 , 0C Hm ∞ ≈

 6 6

6 6

6 6

,
,

,

, 0
1 1

C H s
C H s

C H s

m BB m
m B
−

= =
− +

.47=  
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20-1 

Consider the burning of a droplet of ethyl alcohol (or a wet wick) in an atmosphere of pure oxygen. 
How does the burning rate compare with the same droplet in atmospheric air, assuming that the 
logarithmic equation for g/g* is applicable, other things being equal? 

The solution of this problem will follow closely the example for the “burning of a volatile fuel in air” in the 
text (pp. 442-444). Making the same assumptions as in the text, we obtain for the enthalpy 

 ( )
2

0
0O

Hi m c T T
r

= + −  

with the quantities (see page 443) 

 H0 = 28,145 kJ / (kg fuel vapor),  heat of combustion of fuel  

 ifg,0 = 854 kJ / (kg fuel),   latent heat of vaporization of fuel  

 c = 1.005 kJ / (kg ⋅ K)  (same as air) 

For convenience, let us set the s state as the datum for enthalpy, so that 0 sT T= . Then 

 2 2

0 0
, ,

,0

0 kJ/kg

( )

(since 0 by theconditions of this problem)
854 kJ/kg

s

O s O

T L L

fg

i
H H

i m c T T m
r r

i i q
i

∞ ∞ ∞ ∞

=

= + −

′′= =
=− = −

 

where the term ( )sc T T∞ − has been neglected compared to  in the equation for the enthalpy. 
2 , 0 /Om H∞ r

This results now in the following values for the driving force B: 

Burning in pure oxygen: 

 
2

0
,

28,145 kJ kJ1 14,072.5
2.09 kg kgO

Hi m
r∞ ∞= = ⋅ =  

 
2

14,072.5 16.5
854

s
O

s T

i iB
i i
∞ −= = =
−

 

Burning in air: 

 
2

0
,

28,145 kJ kJ0, 232 3124.2
2.09 kg kgO

Hi m
r∞ ∞= = ⋅ =  

 3124.2 3.66
854

s
air

s T

i iB
i i
∞ −= = =
−

 

The burning rate is given by , where the logarithmic equation for g/g* is assumed to be 
applicable. Hence . Since g* is equal for burning in air or in pure oxygen, one obtains  

 

m g′′ =
)B+

B
*ln(1m g′′ =

2 2
(1 )

1.86
(1 )

O O

air

m B
m B

+
= =

+

ln
lnair

′′

′′
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20-2 

Suppose you dip the wick of a wet-bulb thermometer in ethyl ether and expose it to atmospheric air 
at 20 °C. What equilibrium temperature will the thermometer record under the unit-Lewis-number 
assumption? 

 Ts = -29°C (based on data from Handbook of Chemistry and Physics) 
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20-3 

Dry air at 315 °C flows along a flat wet surface (water) at 9 m/s. The pressure is 1.013 bar. If the 
surface is insulated (except for exposure to the air) and radiation is neglected, what equilibrium 
temperature will the surface assume? If the boundary layer is turbulent what is the mass-transfer 
rate per unit area at a point 1.5 m from the virtual origin of the boundary layer? 

We assume that the Lewis number is one. Then 
2H Om  and i are both conserved properties of the second 

kind. Thus, 

 m g B′′=  

 2 2

2 2

, ,

, ,

H O H O s

H O s H O T

m m
B

m m
∞ −=
−

 

 s

s T

i iB
i i
∞ −=
−

 

For the air – vapor mixture, we can assume thermodynamic equilibrium at the interface. Hence, 

 

2

2

2
1.61 0.61

H O
H O

H O

P
m

P P
=

−  

where 
2H OP  is the vapor pressure of H2O at Tsat = Ts = TL. The enthalpies can be predicted as shown in 

Chap. 20 (page 433), where  is fixed at 0°C for simplicity. This gives for a air-water-vapor 
mixture  

,0 0airi =

 
( )2 2 2 2 2
1j j air air H O H O H O air H O H O

j
i m i m i m i m i m i= = + = − +∑

 

Combining Eq. (20-13) with the enthalpy models for air and water yields 

  ( ) ( )
2 2

1.005 0.875 2503 , kJ/kg mixtureH O H Oi m T C m= + ° +

Note that for the pure liquid phase, the water enthalpy is given by 

  ( )liquid liquidi c T= °C

=

where c .  4.2 kJ/(kg K)liquid = ⋅

Now the driving force can be evaluated (recall that from the problem specifications it follows that 
). Hence, 

2 2, ,0, 0H O H O Tm m∞ =

 

2 2 2 2

2 2 2 2

, , ,

, , ,

0
1 1

H O H O s H O s H O s,

,H O s H O T H O s H O s

m m m m
B

m m m m
∞ − −

= = =
− − −  

As stated above, the driving force B can also been evaluated from the enthalpy differences. Here we note, 
that 

 
, insulated bodyL

T L L
qi i i
m
′′

= − =
′′  
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and T . Because of the thermal equilibrium  T T= L L sTT = . Thus, 

 

s

s T

i iB
i i
∞ −=
−  

 
( ) ( )

2 2
1.005 0.875 2503

kJ kJ1.005 315 316.6
kg K kg

H O Hi m T C∞ = + ° +

= =

Om
 

 ( ) ( )
2 2, ,1.005 0.875 2503s H O s s H O si m T C= + ° + m

g

 

  ( )T liquid si c T C= °

After inserting the above given expressions for the enthalpies into the definition of the driving force B, 
both expressions for B can be equated. Now from Appendix A (see also Fig. 20-1) we obtain 

  ( )
2 2, , ,H O s H O s sm m T P=

and one obtains after iteration: T .  54 C, = 0.111s B= °

The mass transfer rate is given by 0.111m′′ = . Therefore, we have to obtain an expression for g. 
Assuming that the logarithmic relation for g/g*, given by Eq. (19-21), can be used, be need to obtain an 
expression for g* (mass transfer without blowing).  

The Reynolds number is 

 5
6

0.60114 9 1.5Re 2.72 10
29.9 10x

V xρ
µ −

⋅ ⋅
= = = ⋅

⋅
 

which shows that the flow is turbulent. For turbulent flow over a flat plate we derived an equation for heat 
transfer in Chap. 12 (Eq. (12-18) 

 0.4 0.2*St 0.0287 Pr Rex
g
G

− −

∞

= =  

Because Le = 1, Pr = Sc and we obtain for g finally 

 

0.4 0.2

0.4 5 0.2

2

ln(1 )0.0287 Sc Re

ln(1.111)0.0287 0.60114 9 0.6 (2.72 10 )
0.111

0.01479kg/(s m )

x
Bg V

B

g

g

ρ − −
∞ ∞

− −

+
=

= ⋅ ⋅ ⋅ ⋅ ⋅

=

 

This results in a mass transfer rate   20.111 0.01479 0.0016kg/(s m )m′′ = ⋅ =
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20-4 

Consider flow of air normal to a cylinder as described in Prob. 19-4. Let the air be at 20 °C, 1.013 
bar pressure, and 60 percent relative humidity. Inside the cylinder there is water at 90 °C. The 
surface is porous so that the water can be forced out at a rate sufficient to keep the outer surface 
moist. What is the average surface temperature and the average mass-transfer rate per unit of 
surface area? 

 Ts = 15.2 °C 

  20.00019kg/(s m )m′′ =

(It is difficult to evaluate B and precisely for this problem). m′′
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20-5 

A thin plate of solid salt (NaCl), 0.15 m by 0.15 m, is to be dragged through seawater (edgewise) at 20 
°C at a velocity of 5 m/s. Seawater has a salt concentration of about 3 percent by weight. Saturated 
NaCl-H2O at 20 °C has a concentration of 0.036 kg NaCl/0.1 kg H2O. Estimate the total rate at which 
salt goes into solution. 

 (total from both sides) 0.047 kg/sm =

Boundary layer assumed turbulent over entire surface. 

 Rex = 750,000 

 B = 0.32,    g = 3.24 
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20-6 

Consider an axisymmetric stagnation point on a missile traveling through the atmosphere at 5500 
m/s where the static air temperature is near zero degrees absolute. It is desired to maintain the 
surface at 1200 °C by transpiration of hydrogen through the wall. The hydrogen is available from a 
reservoir at 38 °C. If the "heat of combustion" of hydrogen is approximately 116,000 kJ/kg at 1200 
°C and the mean specific heats of hydrogen and air are, respectively, 15 kJ/(kg.K) and 1.1 kJ/(kg.K), 
evaluate the driving force B from the energy equation under the unit-Lewis-number assumption for 
the conditions of (1) reaction of H2 with O2, and (2) no reaction. 

Suggestion: Use the surface temperature as the temperature datum for enthalpy. Note that the free-stream 
enthalpy must include the very large contribution of the stagnation enthalpy. 

With reaction,   B = 0.98,   
2 , 0.48H sm =  

With no reaction,  B = 0.79,   
2 , 0.44H sm =  

For the first case a “simple” chemical reaction is assumed, together with the assumption that Le = 1. It is 
assumed that the “flame” is detached, so that 

2 , 0O sm = . There will be inert substances at the surface (N2 
and combustion products), since  H2 is only 0.48. Note also that 

2 , 0.232Om ∞ = (atmospheric air). In the 
second case B is computed from the energy equation alone, but the combustion case requires both the 
energy and the simple chemical reaction mass diffusion equation. In both cases, i 13,805,000J/kg∞ = . 
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20-7 

In Prob. 16-9 the cooling of a gas turbine blade is considered. Considering only the stagnation point 
at the leading edge of the blade, evaluate the surface temperature and the necessary water rate per 
square foot of stagnation area to cool by water injection through a porous surface. Assume that the 
water is available at 38 °C and that the mass concentration of water vapor in the products of 
combustion is 0.01. 

From Prob. 16-9, h = 4700 W/(m2 K). Then , T2* / 4.05kg/(sm )g h c= = s = 124.5°C, B = 0.3, 
, . Note that Eq. (20-10) must be used to determine 2* 3.54kg/(sm )g = 21.06kg/(sm )m′′ =

2 ,H O sm  because 
the local pressure is the stagnation pressure, 51600 Pa. Table A-20 only goes to 100°C, so vapor pressure 
data must be obtained from other sources. 
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20-8 

Continue Prob. 20-7 to include the entire blade surface, using what you feel to be the best available 
approximations for various parts of the surface. 

Because of the extensive calculations involved, it is suggested that this problem be solved on a computer. 
Pressure must first be determined along the blade surface using the tabulated values, Prob. 11-8, then at 
each point 

2H Om  as a function of T must be calculated from vapor pressure data, after which local values of 
Ts and B can be computed as in Prob. 20-7. Values of g* can be determined from values of h calculated for 
Prob. 16-9. 
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20-9 

A rocket nozzle is to be constructed with dimensions as shown in Fig. 11-18. The following table gives 
the composition of the exhaust products: 

 

Compound mj, kg/(kg mixture) 

CO2  0.278 

CO  0.279 

H2O  0.209 

H2  0.022 

N2  0.212 

 

The stagnation pressure is 3400 kPa and the stagnation temperature is 3000 °C. The nozzle is to be 
constructed of graphite. The objective of the problem is to estimate the rate of erosion (ablation) of 
the graphite at the throat, and particularly to estimate the time elapsed for a 10 percent increase in 
throat diameter. 

 

Molecular weight of mixture:              = 21.5 kg/kmol M

Specific heat of mixture:                       cp = 1546 J/(kg K) 

Ratio of specific heats:                          γ  = 1.33 

Mass velocity at throat:                         G = 2030 kg/(sm2) 

Viscosity of mixture at throat:  µ = 7.67 10-5 Pa s 

Pressure and temperature at throat:  P = 1836000 Pa,     T = 2807 K 
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20-10 

Consider an axisymmetric blunt-nosed vehicle entering the Earth's atmosphere. At 60,000 m altitude 
the velocity is 6100 m/s. The radius of curvature of the nose is 1.8 m. Calculate the convective heat 
flux to the vehicle at the stagnation point. (Note that this calculation neglects radiation from the very 
high-temperature dissociated gases behind the shock wave). If the surface is insulated, calculate the 
equilibrium surface temperature assuming that the surface radiates as a black body to the 
surroundings. Suppose the surface is a graphite heat shield; calculate the rate of ablation of the 
graphite in millimeters per minute. 

  2657 kW/m , 1850Ks sq T′′ = =

For graphite density (2200 kg/m3), the rate of ablation is 0.015 cm/min.  
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20-11 

Let a piece of ice uniformly at 0 °C be immersed in water at 27 °C. Evaluate the rate at which 
melting occurs in terms of the conductance g. How would you evaluate g? 

In the present problem, we have a single species (H2O). Because of this, there is no mass diffusion, only 
energy transfer by natural convection or/and conduction. This means that the enthalpy is a conserved 
property of the second kind and that we can write 

 m g B′′=  

where the driving force B is given by  

 

s

s T

i iB
i i
∞ −=
−  

Choosing the datum point for the enthalpy at 0°C, we obtain for the liquid and the ice at 0°C  

  
,0

0
333.3kJ/kg

liquid

solid fg

i
i i

=

=− = −

Note that the value i is called the latent heat of fusion. With this, the enthalpy values can be calculated. 
One obtains: 

,0fg

  
4.2 kJ/(kg K) 27 C 113.4kJ/kg

0
333.3kJ/kg

liquid

s

L

i c T
i
i

∞ ∞= = ⋅ ° =

=
= −

Hence 

 113.4 0 0.34
0 333.3

s

s T

i iB
i i
∞ − −

= = =
− +

 

In order to find the rate of melting, we can consider a spherical control volume with diameter D. The mass 
within this sphere is . Because the sphere will loose solid ice, there will be an outflow over 
the surface of the sphere . Following the conservation law of mass, we must have 

3 / 6Lm Dρ π=
2m Dπ′′

 
2 0dm m D

dt
π′′+ =

 

Inserting the expression for the mass gives 

 

3
2( / 6) 20, 0L

L

d D dD mm D
dt dt

ρ π
π

ρ
′′

′′+ = + =
 

Replacing the mass transfer rate by Eq. (18-33) gives finally 

 

2

L

dD g B
dt ρ

= −
 

This ordinary differential equation has to be integrated with the boundary conditions 
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  10 :
: 0M

t D
t t D
= =
= =

D

Now we need an expression for the mass transfer conductance g. Assuming that the logarithmic expression 
for g/g* (Eq. 19-21) can be used, we need to search for an expression for g*. For the pure conduction of a 
sphere in an infinite stagnant medium, one can set (Rohsenow and Choi) 

 

*2, ,h D g D kNu Nu
k c

= = = Γ =
Γ   

where the fluid properties have to be taken at 0.5( )sT T∞+ . Inserting this expression and Eq. (19-21) into 
the differential equation for D results in 

 

4 ln(1 ) 1 4 ln(1 )
L L

dD B B B
dt B D Dρ ρ

+ Γ Γ
= − = − +

 

This equation can be integrated between the given boundaries. Hence 

 1

0

0

4 ln(1 )
Mt

LD

dD B dt
D ρ

Γ
= − +∫ ∫

 

From this equation one obtains an expression for the time, after which the sphere is molten: 

 

2
1

8 ln(1 )
L

M
Dt

B
ρ

=
Γ +  

 
335



Solutions Manual - Chapter 20 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

20-12 

Consider a 1.2 m square wet towel hanging from a clothes line. Let sunlight fall on one side at an 
angle of 45 °C. The normal solar flux is 946 W/m2, and the absorptivity and emissivity of the towel 
are 1. The surrounding air is at 21°C, with a relative humidity of 65 percent. At the equilibrium 
temperature of the system it is determined that an equivalent system with no mass transfer would 
have a free-convection coefficient of 8.5 W/(m2.K). What is the drying rate during the period when 
the towel is sufficiently wet that the surface can be idealized as a liquid surface? (Note that, in 
addition to the high-frequency solar flux, the 21°C surroundings radiate to both sides of the towel, 
and the towel radiates to the surroundings. Assume that the towel is at a uniform temperature 
throughout its thickness). 

  

2

4

,

2.74 10 kg/s
26

0.0113
0.00125

s L

H O s

m
T T C
B
m

−= ⋅
= = °
=

=

 
336



Solutions Manual - Chapter 20 
Convective Heat and Mass Transfer, 4th Ed., Kays, Crawford, and Weigand rev 092004 

20-13 

In a diesel engine the fuel is injected as small droplets, and, after an initial ignition delay, during 
which time part of the fuel vaporizes and then burns rather abruptly, the remainder of the fuel 
burns as fast as the fuel vaporizes from each individual droplet. The objective of this problem is to 
estimate the time required for complete consumption of a spherical droplet 5 µm in diameter. 
During this period, let it be assumed that the combustion chamber pressure is 6200 kPa and the air 
temperature is 800 °C. The fuel may be idealized as C12H26, with "heat of combustion" of 44,000 
kJ/kg and latent heat of vaporization 358 kJ/kg. It may be assumed that these values are relatively 
independent of temperature. The boiling point of the fuel is approximately 427°C at this pressure. 

The mass of a spherical droplet of radius sr  is simply 

 34
3 sm rρπ=  

If is the mass flux of evaporation from the surface, then the rate of change of mass of the droplet is 
given by 

m′′

 
24s s

dm m A m r
dt

π′′ ′′= − = −
 

Combining the two equations above, we have 

 
sdr

m
dt

ρ ′′= −
 

From Prob. 19-3 we found 

 

ln( 1)

s

Bm
r
+′′ = Φ

 

Then 

 ln( 1)s

s

dr B
dt r

ρ +
= −Φ  

By using the method of separation of variables, this ordinary differential equation can be solved easily. 
This equation has to be integrated in accordance with the boundary conditions 

  00 :
: 0

s

s

t r
t rτ
= =
= =

R

This results in 

 0

0 2
0

0

ln( 1) ,
2 ln( 1)s s

R

Rr dr B dt
B

τ ρ
ρ τ= −Φ + =

Φ +∫ ∫
 

We now need to evaluate  and B. As suggested in the statement of the problem, the combustion process 
is controlled by the rate of evaporation. With this condition, there can be no oxygen at the s-state and no 
fuel at the ∞-state.  

Φ
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Assuming that we have a simple chemical reaction and equal specific heats, then the conserved property is 
enthalpy with . Φ = Γ

The following determination of the driving force B will follow that of the text. For burning of a volatile 
fuel in air, a chemical balance yields 

 

 2 C12H26  +  37 O2              →     24 CO2     +    26   H2O 

 2 kmol C12H26  +  37 kmol O2     →     24 kmol CO2    +    26 kmol H2O 

 340 kg C12H26  +  1184 kg O2     →     1056 kg CO2    +   468 kg H2O 

 

From these equations we find r = 1184/340 = 3.48. The other various constants are: 

2 , 0 ,00.232, 800 C, 44,000kJ/kg, 358kJ/kg, 1.16kJ/(kg K)O fgm T H i c∞ ∞= = ° = = =  

It will be assumed that T T . 427s L C= = °

From Eq. (F-17) we have 

 
0

0 0
0( )

T

o o
T

H Hi m cdT m c T T
r r

= + ≈ + −∫   

Now, we will use the s-state for the datum for enthalpy. With the assumption of instantaneous reaction, 
then 

  
2 , 0O sm =

and 

 

,0

0
0.232 44,000 1.16(800 427) 3366kJ/kg

3.48
358kJ/kg

s

T L fg

i

i

i i i

∞

=
⋅

= + − =

= = − = −

 

From these quantities we obtain for the driving force B 

 3366 0 9.4
0 358

s

s T

i iB
i i
∞ − −

= = =
− +

 

Now, . The density of the fuel is about 881 kg/m5/ 0.0732 /1160 6.3 10 kg/(ms)k c −Γ = = = ⋅ 3. With this we 
get 

 
2 6 2

50
5

881 (2.5 10 ) 1.86 10 s
2 ln( 1) 2 6.3 10 ln(10.4)

R
B

ρ
τ

−
−

−

⋅ ⋅
= = = ⋅

Φ + ⋅ ⋅
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20-14 

Calculate the evaporation (sublimation) rate from a snow bank if the ambient air temperature is –23 
°C, solar energy is falling on the bank at a rate per unit area of 600 W/m2, the underside of the bank 
is effectively insulated, and  the heat-transfer coefficient for free convection from an equivalent 
surface with no mass transfer is 6 W/(m2.K). The absorptivity and emissivity of snow may be 
assumed to be 1. The absolute humidity of the air is 0.0003 kg H2O/kg dry air. 

The equations on page 433 may be used for enthalpy. It is only necessary to reduce the T-state enthalpy by 
333 kJ/kg, the latent heat of fusion. Assuming that the bulk of the snow is at - 23°C,  

  
s

4.2 ( 23) 333 430kJ/kg
5

T

L

i
T T C
= − − = −
= = °

The snow is evidently melting before evaporating… 

  
2

5 2
, 0.0051, 0.0048, 2.88 10 kg/(sm )H O sm B m −′′= = = ⋅

If the specific heat of the snow is about 0.1, the snow is evaporating at a rate of 1mm/hr. 
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20-15 

At a particular region in a steam condenser the fluid is a mixture of 80 percent steam (by mass) and 
20 percent air. The total pressure is 6.75 kPa, and the temperature is that of saturated steam at that 
pressure. What is the necessary condition at the surface of the tubes for condensation to take place? 
In simple condensation the resistance to heat transfer is usually considered to be entirely that of the 
liquid film that forms on the surface. How does the present problem differ? Suppose the liquid film 
has an average thickness of 0.1 mm; investigate the effect of the air on the overall resistance to heat 
transfer between the tube metal surfaces and the free-stream mixture. 

The mixture temperature is 38 °C. With 20% air present (the air ejector is provided to hold this percentage 
low), condensation at this point in the condenser can only occur if B < 0. This requires that 

. The cooling water and the tube surface must then be less than 35.6 °C. One can then 
write 

35.6 Cs LT T= < °

 s wall
L

T Tq
R
−′′ =   

A 0.1 mm liquid film would give R = 1.63 E-04. If there were no air in the system this would be essentially 
the only resistance. With the Lewis number Le = 1 assumption, the effective additional resistance can now 
be investigated by assuming various values of Twall and evaluating m′′ . Then compare with the 
condensation would be were T R , and 38 C, =1.63e-04s = ° /m q L′′ ′′= , where L = 2409 kJ/kg, the latent 
heat of vaporization. 
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20-16 

A wet surface is to be dried by blowing dry air at 32 °C over it, while at the same time electrically 
heating it from the rear with a fixed heat flux of 25,000 W/m2. Investigate the variation of the drying 
rate per unit area m as the conductance g is varied (presumably by varying the air velocity). ′′

 

g 

kg/(s·m2) 

m′′  

kg/(s·m2) 

B Ts 

0.0188 0.01040 0.5520 80 

0.0362 0.01010 0.2790 70 

0.1109 0.00963 0.0868 50 

0.1978 0.00971 0.0490 40 

0.2720 0.00998 0.0367 35 

0.5900 0.01190 0.0202 25 

2.6700 0.02860 0.0107 15 
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20-17 

In Prob. 20-16 the heat is to be supplied from the rear by condensing steam. Let the steam be 
available at 110 °C, and let it be assumed that the overall conductance for heat transfer from the 
steam to the L surface (including the condensing resistance, the wall resistance, and the resistance of 
the material being dried) is 280 W/(m2.K). Investigate the influence of the mass-transfer conductance 
g on the drying rate. 

 

g 

kg/(s·m2) 

m′′  

kg/(s·m2) 

B Ts 

0.0063 0.00349 0.5520 80 

0.0162 0.00452 0.2790 70 

0.0745 0.00647 0.0868 50 

0.1550 0.00761 0.0490 40 

0.2290 0.00837 0.0367 35 

0.5620 0.01140 0.0202 25 

2.8400 0.03040 0.0107 15 
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20-18 

Consider a laundry convective clothes dryer for which there is available dry air at 20 °C and 1.013 
bar pressure. There is also available superheated steam at 1.013 bar pressure and 260 °C. 
Considering only the "constant-drying-rate" period during which the cloth surface is totally wet, 
investigate whether it is possible to increase the drying rate by mixing some of the steam with the air. 
That is, how does drying rate vary with steam-air ratio? 

 

/steam airm m  Ts B m′′  

0 6.0 0.00578 0.00577 g* 

0.01 17.8 0.00275 0.00275 g* 

0.02 25.9 0.00142 0.00142 g* 

These results suggest that mixing steam at this temperature with the dry air will reduce drying rate despite 
higher system temperatures. 
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20-19 

In a part of a solar-operated seawater desalting plant, air saturated with water vapor at 1.013 bar 
and 55 °C passes into a condenser where the fresh water is recovered. The condenser is built up of a 
bank of circular tubes with cooling seawater flowing inside the tubes and the saturated air flowing 
normally. The heat-transfer coefficient on the inside of the tubes is estimated to be 1400 W/(m2.K). 
The tube wall is 0.75 mm thick and has a thermal conductivity of 100 W/(m.K). On the outside of the 
tubes, it is estimated that if there were no mass transfer, the average heat-transfer coefficient would 
be 70 W/(m2.K). If the cooling-water temperature in the first row of tubes (the tubes over which the 
55 °C saturated air is flowing) is 46 °C, calculate the rate of condensation per unit of surface area 
and the rate of heat transfer to the coolant. Neglect the resistance of the condensate film on the 
tubes. (Would it be significant if the film thickness was, say, 0.1mm?) 

 

  

2

2

0.00193kg/(sm )
4.85kW/m
49.5°C, 0.0274

L

s

m
q
T B

′′ = −

′′ =
= = −

A condensate film of 0.01 mm would increase resistance by 22 percent. 
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20-20 

Air, saturated with water vapor, at 1.013 bar and 77°C, flows downward along a flat, smooth plate 
at a velocity of 3 m/s. The plate is 30 cm high (flow direction) and 1.8 m wide. It is cooled by 
circulating water on its back side. The cooling water is circulates so that its average temperature is 
effectively 18 °C over the entire back surfaces. The heat-transfer coefficient between the coolant and 
the back surface is estimated to be 1100 W/(m2.K). The wall is 1.3 mm thick and has a thermal 
conductivity of 26 W/(m.K). Estimate the total rate of condensation of water and the total heat-
transfer rate to the coolant, assuming that the condensate on the plate surface runs off fast enough 
that its heat-transfer resistance may be neglected. Is B a constant along the surface? What are the 
necessary conditions for B to be a constant? Describe how you would propose to analyze the 
problem, taking into consideration the liquid condensate film on the plate surface. 

  

2

2

4.17 kg/(sm ) (condensation rate)
11.58kW/m
0.29

* 0.0122
29.1 C

Re 43626 (laminar boundary layer)

L

s L

x

m
q
B
g
T T

′′ = −

′′ =
= −
=
= = °
=
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20-21 

Air at 1100 °C and 1013 kPa pressure flows along a flat surface at a uniform velocity of 30 m/s. 
Investigate the problem of cooling this surface by transpiration cooling. At a point 1 m from the 
leading edge of the surface, consider the use of first air, then helium, as coolants, both of which are 
assumed to be available at 20 °C. Prepare a plot of surface temperature as a function of coolant 
mass-flow rate per unit of surface area. Also calculate the surface temperature as a function of 
coolant mass-flow rate if the coolant were used merely to absorb heat rather than to pass into the 
boundary layer, assuming that the coolant leaves the system at surface temperature. 

This problem can be approached at least in two ways. In the first the Lewis number Le = 1 approximation 
can be used and constant properties assumed. In the second the variable properties shown on Fig. 20-9 can 
be used. In the first, Eq. (12-18) together with Eq. (19-21) can be used for g. The differences provide a 
good way to assess the accuracy of the more approximate procedure. 

  Re 1,509,393 (turbulent) * 0.148x g= =

Air injection: 

 

Ts m′′  

kg/(s·m2) 

constant properties 

m′′  

kg/(s·m2) 

variable properties 

B 

800 0.0526 0.0549 0.426 

600 0.0992 0.106 0.954 

400 0.164 0.180 2.039 

 

Helium injection: 

 

Ts m′′  

kg/(s·m2) 

constant properties 

m′′  

kg/(s·m2) 

variable properties 

B 

800 0.0121 0.130 0.085 

600 0.0259 0.0283 0.191 

400 0.0507 0.0477 0.408 
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