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Chapter 9. Kinematics of the rigid body 

   9.1.Introduction 
   In this chapter we shall deal with the study of the motion of 

the non deformable bodies, namely of the rigid bodies. We have seen in the 

previously chapters that in the study of the motion we have to answer to two 

questions (which will remain the same for the bodies) namely: which is the 

position of the body in any instant of the motion and how is performed its 

motion? 

   The rigid body may be considered (we have seen this 

propriety in the first part of this mechanics) as a non deformable and continuous 

system of particles. At the limit the number of these particles tends to infinity. 

This fact makes as the study of the motion of a body to solve in two ways: 

   -In the first case are considered the points of the body and 

are studied the motion of them using the relations find in the previously chapters 

(in the kinematics of the particle). This way makes as the study of the motion of 

a body to reduce to the study of the motions of a very large number of points 

(particles). This way will be used when we want to find the motion of some 

points from the body. 

   -The second way to study the motion of a rigid body 

considers the propriety of the body that to be a continuous and non deformable 

system. In this case we shall determine the elements of the motion (trajectory, 

law of motion, velocity, acceleration) for a few points from the body (one point 

eventually) and we shall find laws of variation of these elements function of the 

positions of the points from the body. 

   We specify that due to the finality of the civil engineer’s 

works we are more interested to the way of the motion of the bodies and less to 

the positions of them. This result from the fact that a well- designed structure 

acted by the dynamic loads has displacements with small amplitudes in the 

neighborhood of the static equilibrium position. This will be the reason for 
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which we shall study the velocities and accelerations and not the position of the 

body. 

   Because we shall use two kinds of variations: one in time and 

one function of the positions of the points in the rigid body, these last variations 

will be named as distributions. Therefore we will have distribution of the 

velocities representing the law of variation of the velocities in the body 

function of the positions of the points and distribution of the accelerations 

representing the law of variation of the accelerations in the body function of 

the positions of the points. 

   In the study of the motion we shall use two reference systems: 

one fixed system with respect to which is performed the motion of the body, 

marked O1x1y1z1, and the other a moving system, joined to the body (and 

performing the same motion as it) with respect to which we shall define the 

positions of the points from the body, marked Oxyz. 

 

     
 

   Because the motion of this last system the unit vectors of the 

axes are functions of time: 
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   In the study of the velocities and accelerations we shall use 

the derivatives of these unit vectors, consequently in the next section we shall 

calculate the derivatives with respect to time of these vectors. 

 

   9.2. Derivatives of the unit vectors of the 

    moving axes. 
 

   For to find the expressions of the derivatives of the moving 

unit vectors we shall start from the following six well known relations: 

 

    
 

where the first three relations express the co linearity and the last three the 

orthogonality of them. 

   We know that the projection of a vector on an axis is the 

scalar product of that vector and the unit vector of the axis, so we can write: 

 

    
 

   Calculating the derivatives of the first six relations we have: 

 

    
 

where we marked the last derivatives (of the scalar products), that are scalar 

quantities, with the ωx, ωy and ωz (the index corresponds to the missing 

direction in the scalar product). 

   Replacing in the expression of the derivatives of the unit 

vectors we have: 
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   We can see easy that these relations may we written in the 

following way: 

 

    
 

where we have marked with ω the vector having the projections on the axes: 

 

    
 

   This vector is called angular velocity and their significance 

will be seen in the future sections. But we can see this vector is the same no 

matter where is the origin of the moving system of reference in the body, 

consequently it is a free vector for the body in motion. 

 

   9.3. Distribution of velocities 

 

   By definition, the distribution of velocities is the law of 

variation of the velocities in the body function of the positions of the points from 

the body. 

   It is enough to obtain a relation between the velocities of two 

any points from the body for to find the distribution of the velocities. 

Consequently we shall consider one any point P from the body and the origin O 

of the moving system of reference. Between the two points we can write the 

vector relation: 

 

 
 

in which r1 and rO are the position vectors, with respect to the origin of the fixed 

system, of the two points P and O, and r is the position vector of the point P with 

respect to the point O: 
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   In this relation x, y and z are functions of time (the body 

being non deformable the distance between the two points is unchangeable and 

the moving system Oxyz is joined to the body).  

   We derivate the relation: 

 

    
 

in which: 

 

    
 

namely they are the absolute velocities of the two points P and O (being the first 

derivatives with respect to time of the position vectors with respect to a fixed 

point). 

   The derivative of the position vector of the point P with 

respect to the origin of the moving reference system will be: 

 



 

12 

 

    
 

   We remark that the derivative with respect to time of the 

vector r has the same expression as the derivatives of the unit vectors because it 

has constant magnitude. 

   Removing in the previous relations we shall find finally: 

 

    
 

that represents the distribution of velocities (or the law of changing of the 

velocities of the body’s  points function of the mutual positions of them). 

   We note that the distribution of the velocities in a rigid body 

is defined by two vectors: vO and ω namely the velocity of an any point and the 

angular velocity (or by the six scalar parameters: the projections on the axes of 

an any reference system of these two vectors). 

 

   9.4. Distribution of the accelerations 

 

   By definition the distribution of the accelerations is the law of 

changing of the accelerations of the points from a body function to their mutual 

positions. 

   For to find this distribution we shall start from the relation 

between the velocities of two points of the body (namely from the distribution of 

the velocities) and we shall derivate, with respect to time, the relation: 

 

    
 

   In this relation the first two terms are the accelerations of the 

two points: 
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   The first derivative with respect to time of the angular 

velocity is marked ε and is called angular acceleration: 

 

    
 

   The derivative of the position vector r is known: 

 

    
 

   Replacing in the relation we obtain finally: 

 

    
 

that represents the distribution of the accelerations in a rigid body. 

   We remark also in this case that if we know the two vectors 

vO and ω we know in fact the distribution of the accelerations in the body, 

namely we know the way of motion of the rigid body. 

 

   9.5. Particular motions of a rigid body 

 

   We have seen that the way of motion of a body is complete 

defined if we know two vectors: vO and ω. It is obviously that the particular 

values of these two vectors will generate the particular motions of the body. 

   We distinguish the following particular motions: 

 1) vO = 0, ω = 0. In this case using the two laws 

(distribution of the velocity and accelerations) results that all the points of the 

body will have the same velocity (and acceleration): 

 

 
 

Results that: the body is not in motion so it is in REST. 

 2) vO = 0, ω = 0. We shall say that the body is in 

TRANSLATION motion. If the velocity vO has constant direction the motion is 

called rectilinear translation motion, and if it has variable direction then the 

motion is called curvilinear translation motion. 
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 3) vO = 0, ω = 0. In this case the motion is called 

ROTATION motion. If the angular velocity ω has constant direction then the 

motion is called rotation motion about a fixed axis, and if it has variable 

direction then it is called rotation motion about a fixed point. 

 4) vO = 0, ω = 0. In this case function of the mutual 

directions of the two vectors we distinguish three motions: 

 vO . ω = 0 namely the two vectors are 

perpendicular (vO ┴ ω). If the direction of the angular velocity is constant then 

the motion is called PLANE motion. 

 vO x ω = 0 namely the two vectors are collinear 

(vO ǁ  ω). The motion in this case is called HELICAL motion. 

 Finally if the directions of the two vectors are 

arbitrary then the motion is the GENERAL motion of the body. 

   Systematizing in the table T1 we have the particular motions 

of a rigid body. 

 

T1 

 vO ω Characteristics Motion 

1 = 0 = 0 - Rest 

 

2 

 

= 0 

 

= 0 

vO has constant 

direction 

 

Translation 

Rectilinear 

translation  

vO has variable 

direction 

Curvilinear 

translation 

 

 

3 

 

 

= 0 

 

 

= 0 

ω has constant 

direction 

 

 

Rotation 

Rotation 

about a 

fixed axis 

ω has variable 

direction 

Rotation 

about a 

fixed point 

 

 

4 

 

 

= 0 

 

 

= 0 

vO ┴ ω and ω with 

constant direction 

Plan motion 

vO  ǁ  ω Helical motion 

vO  and ω with any 

directions 

General motion 
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   We remark that there is an analogy between the particular 

motions of the rigid body (subjected to the relationship vP = vO + ω x r) and the 

cases of reduction of the systems of forces (subjected to the relationship MP = 

MO + OP x R). 

   From educational reasons in this chapter we shall study only 

the motions that can be performed in plane (in two dimensions) namely: the 

translation motion, rotation motion about a fixed axis and the plane motion. 

Also we shall treat the proprieties of the distribution of velocities and 

accelerations in general motion of a body. 

   We make the remark that for each motion we give two 

definitions: one geometric and one kinematic. The kinematic definition is in fact 

given in the table T1, namely uses the kinematic elements of the motion. The 

geometric definition describes the geometric proprieties of the motion (we 

remind that kinematics is in fact the geometry of the motion). But we shall see 

that the two definitions are equivalent. 

 

   9.6. Translation motion 

 

   Kinematic definition: the translation motion of a rigid body 

is that motion in which the angular velocity is equal to zero and the velocity of 

one any point is different to zero: 

 

    
 

   Geometric definition: the translation motion is that motion of 

a rigid body in which any straight line belonging to the body remains parallel to 

itself in the time of motion. 

   We shall consider the body in translation with respect to the 

fixed system of reference O1x1y1z1 for to study the motion. 

    We shall choose the moving reference system (Oxyz) with the 

origin in one any point of the body and in the instant when we take this system 

with the axes parallel to the axes of the fixed system. From the geometric 

definition results that these axes remain parallel with the fixed axes in the time 

of motion. Conclusion is that the unit vectors of the moving axes are not 

functions of time, namely the derivatives with respect to time of them are equal 

to zero and we have: 
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   Because the body is in motion at least one point has velocity 

different to zero. If this point is the point O then we have: 

 

    
 

that represents the kinematic definition of the translation motion. 

   Between the position vectors of the point P we have the 

relation: 

 

    
 

in which the last vector (the position vector of the point P with respect to the 

point O) is a constant vector in magnitude (the distance between two points of a 

rigid body) and in direction (in translation motion the direction of a straight line 

remains unchangeable). Results that the position vectors of the two points, O 

and P, differ by a constant, namely the trajectories of the two points are 

identical but they are translated with the constant vector r ( in the case of the 

rectilinear translation motion the trajectories are parallel lines). Exemplify this 

fact through the motion of the car body and the motion of the cab of a giant 

wheel from a park. 
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 trajectory of point B       trajectory of point A                  trajectory of point B                        trajectory of point C 

 
 

   The distribution of the velocities will be governed by the 

relation (obtained replacing ω = 0 in the expression of the distribution of the 

velocities): 

 

    
    

meaning that all points of the body have the same velocity. 

   Removing in the expression of the distribution of 

accelerations we obtain: 

 

    
 

namely all points will have the same acceleration. 

   Finally we may state the following propriety: in the absence 

of other conditions, in translation motion it is enough to study the motion of 

one point from the body. This propriety make that one body in translation 

motion will be considered as a particle. 
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   9.7. Sample problems 

 

   Problem 1. A wheel performs a rolling motion on a horizontal surface. By the 

center of the wheel is hinged a rectilinear rod CA. The end A of the rod is moving on the horizontal 

surface. Knowing that the velocity of the center of wheel has the expression: 

 

    
 

and the radius of the wheel is R = 50 cm represent the distribution of velocities and accelerations on 

the rod AC at the instant t1 = 3s from the start of the motion. 

 

 
 Distribution of the velocities   distribution of the accelerations 

      Fig.5. 

 

   Solution. The rod AC performs a translation motion because being a straight 

line it remains parallel to itself in the time of motion. For this we can see that the triangle AIC 

remains unchangeable in the time of motion (IC is the radius of the wheel and it is the side of the 

triangle and AC is the hypotenuse o0f the right angle triangle). This translation is rectilinear because 

the center C of the disc (and the end A of the rod) performs o rectilinear motion on a horizontal 

straight line parallel with the surface on which the disc rolls.  

   The instantaneous velocity of the center C, at the instant t1, is: 

 

    
 

   The velocities of all points of the rod AC will have the same magnitudes, 

directions and results the distribution represented in the figure 5. 

   The instantaneous acceleration of the point C, at the same instant, will be: 

 

     
 

having the same direction and sense as the velocity of the point C. All points of the rod will have the 

same acceleration and the distribution of the accelerations will be uniformly as in the figure 5. 

 

   Problem 2. A rectangular plane plate ABCD with the dimensions lAB = 3l and 

lBC = 30 cm = l is joined to two fixed points O1 and O2 with two straight rods hinged at their ends. 

Knowing that the point E performs an uniformly circular motion with the velocity vE = 0,6m/s and that 

at the initial instant the rods are vertically, determine and represent the velocities and accelerations of 

the points A,B,C, and D at the instant t1 = 0,5s from the beginning of the motion and also represent 
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the distributions of the velocities and accelerations on the BC side of the rectangle at the same instant. 

Are known: O1O2 = EF = 2l, O1E = O2F = l. 

 

    
 

   Solution. For the beginning we shall define the kind of motion of the 

rectangle. For this we remark that O1O2FE is a parallelogram indifferent to the instant of the motion, 

so the side AB of the rectangle is all the time parallel to the horizontal direction O1O2, namely it 

remains parallel to itself. Results that the rectangle performs a translation motion and because the 

point E describes a circular motion the translation is a circular translation motion (all the points of 

the rectangle will perform circular motions on circles having the same radii). Being a translation 

motion it is enough to study the motion of one point of the plate and move the elements of the motion 

in the other points of the rectangle. 

   First we shall determine the position of the rectangle at the given instant t1. 

For this it is enough to determine the position of the point E on the circle that represents its trajectory. 

In the circular motion the point E has the angular velocity: 

 

    
 

and because the circular motion is uniformly we have the law of variation of the angle in the center in 

the circular motion (with respect to the vertical position of the rod O1E that is the initial position): 

 

    
 

   At the instant t1 the angle made by the rod O1E with the vertical direction is: 

 

    
 

   The velocities of all points are equal (in magnitudes, directions and senses) to 

the velocity of the point E: 
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   Distribution of the velocities on the side BC is uniformly and it is represented 

in the figure 7. 

   The acceleration of the point E (in circular motion) has two components: 

 

    
 

where: 

 

    
 

   
 

   The normal component has the direction of the radius of the circle with the 

sense toward to the center of the circle. All the points of the rectangle will have the same accelerations 

and the distribution of the accelerations on the side BC is uniformly as in the figure 8: 
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   Problem 3. A right angle triangular prism glides on a horizontal surface as in 

the figure 9. Knowing that the point A has constant acceleration aA = 30 cm/s
2
 calculate and represent 

the velocities and accelerations of the three points A, B and C at the instant t1 = 1 s from the 

beginning of the motion (at the initial instant the prism is in rest). Represent at the same instant the 

distributions of the velocities and accelerations at the given instant. 

 

    
 

   Problem 4. The cabin of a rope way moves on the supporting cable by the 

shape of a parabola. Knowing the suspension points of the cable A and B, the vertical distance in the 

middle of the distance between the two points and the fact that in the time of motion the cable keeps its 

shape calculate and represent the velocities and accelerations of the four points of the cabin: C, D, F 

and E at the instant t1= 3 s from the beginning of the motion. The cabin starts the motion in the point 

A and has the horizontal velocity constant: vh = 1 m/s. 

 

   
 

   9.8. Rotation motion about a fixed axis 

 

   Kinematic definition: the rotation motion about a fixed axis 

is that motion of a rigid body in which one point has zero velocity and the 

angular velocity is different to zero but has constant direction. 

   Geometric definition: The rotation motion about a fixed axis 

is the motion of a rigid body in which two points of the body are fixed. 
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   For the study of this motion we shall suppose that the body is 

in rotation motion about a fixed axis, namely it has two fixed points O and A. 

We shall choose the fixed reference system having the origin O1 in the point O 

and the axis O1z1 to pass through the other fixed point. The moving system, 

joined to the body, is taken with the origin in one any point of the body, for 

example in point O and with the Oz axis passing through the point A, namely is 

the same as the axis O1z1. The other two axes are moving axes, they move in the 

fixed plane O1x1y1. 

   The positions of the moving axes with respect to the fixed 

axes will be defined by the parameter: 

 

    
 

   The axis O1z1 that is the same as the axis Oz is called 

rotation axis. 

   The position vectors of one any point P with respect to the 

both reference systems are the same and we may write: 
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   Expressing the equality of the magnitudes of these two 

vectors we may write: 

 

    
 

   But as the two axes O1z1 and Oz are the same we have also 

the equality: 

 

   z1 = z 

 

   Simplifying the previously relation with these coordinates, 

and knowing that the magnitude of the vector from the right part is constant 

(definition of the rigid body) and finally marking: 

 

    
 

results: 

 

    
 

that is the equation of a circle. Results that the trajectories of the points of a 

body in rotation motion about a fixed axis are circles with the centers on the 

rotation axis and located in perpendicular plan on that axis. 

   The main characteristic of the moving reference system is 

that the unit vectors of Ox and Oy axes are functions of time, namely: 

 

    
 

and the unit vector of Oz axis is constant: 

 

    
 

   From this last relation results (using the relations obtained 

for the derivatives of the unit vectors): 
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namely: 

 

    
 

   For to determine the magnitude of the angular velocity we 

shall express the variable unit vectors using the projections on the fixed axes 

(like in the case of the cylindrical reference system) and we obtain: 

 

    
 

from which results finally: 

 

    
 

   This relation justifies the name of this vector as angular 

velocity.  

   With this the distribution of the velocities will be: 

 

    
 

   The magnitude of the velocity of any point will be: 

 

    
 

   From the last relations result that: the velocities are linear 

functions by the distance from the points to the rotation axis. 

   Suppose now a straight line belonging to the body that passes 

through the point P and parallel with the rotation axis. All the points of this line, 

located at the same distances to the rotation axis, will perform circular motions 
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on identical circles with the same velocities. This means that the considered line 

performs a circular translation motion about the rotation axis. Consequently for 

this line it is enough to study one point. We shall choose this point as the 

intersection point of this line with the Oxy plane and results that it is enough to 

study the rotation motion only in the fixed plane O1x1y1. The intersection point 

between the rotation axis and this plane (the fixed point O=O1) is called 

rotation center. In this way we shall study the rotation motion as a plane 

motion. 

   Consider a body in plane having a fixed point (the rotation 

center) performing a rotation motion about this point with the angular velocity 

ω. Representation of this angular velocity is made using only the rotation sense 

(as in the case of the moment of a couple in statics). 

   The velocity of one any point P can be obtained determining 

a time the three characteristics of the velocity: 

 magnitude: 

 

    
 

namely the magnitude of the velocity is equal to the product between the 

distance from the rotation center to the point and the angular velocity; 

 direction is perpendicular on the radius OP from the 

rotation center to the point: 

 

 
 

 the sense of the velocity is in the sense of rotation (in 

the sense of motion) or in the sense of rotation of the angular velocity: 

    

    
 

   We shall state two proprieties of the distribution of velocities 

on straight lines in a body in rotation motion: 

 On a straight line passing through the rotation center 

the distribution of velocities is linear, the velocities being perpendicular on the 

line; 
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 On an arbitrary straight line belonging to a body in 

rotation motion the ends of the velocities of points are collinear. 

   Using these proprieties results that for to represent the 

distribution of velocities on a straight line passing through the rotation center it 

is enough to calculate and represent one velocity of one any point from the line 

and on an arbitrary straight line is necessary to calculate and represent two 

velocities. 

   For the distribution of the accelerations we remark first that: 

 

    

    
 

with which we shall find: 

 

    
 

   The magnitude of the acceleration of the point P will be: 

 

    
 

   We remark that because the point P performs a circular 

motion we have obviously the equalities: 
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   Using these relations we can determine the acceleration of a 

point in two ways: or we calculate directly the magnitude direction of the 

acceleration, or we calculate the two components of it. 

 

     
 

   The direct calculation of the acceleration of a point means 

that to calculate 

 Magnitude that is: 

 

    
 

 Direction makes the angle φ with the radius from the 

rotation center to the point: 

 

    
 

 The sense of the acceleration is in the same sense of 

rotation as the sense of the angular acceleration about the rotation center. 
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   Calculation of the components of the acceleration on the two 

directions: 

 The magnitudes are: 

 

    
 

 The direction of the tangent component is 

perpendicular on the radius from the rotation center to the point and the normal 

component is collinear with the radius: 

 

    
 

 The sense of the tangent component is in the rotation 

sense of the of the angular acceleration about the rotation center and the sense 

of the normal component is directed to the rotation center: 

 

     
 

   Finally the magnitude and direction of the acceleration will 

be: 

 

    
 

   9.9. Sample problems 

 

   Problem 1. One disc having the radius R = 40 cm performs a rotation motion 

about its fixed center with constant angular velocity ω = 0,5 s
-1

. Determine and represent, at a given 

instant, the velocities and accelerations of ends of two perpendicular diameters and finally represent 

the distribution of the velocities on the two diameters. 

 

   Solution. Because the disc performs a rotation motion about its center O 

(fixed point) the magnitudes of the velocities of points will be calculated with the relations: 
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   As we can see all points will have velocities with the same magnitudes because 

they are at the same distances about the rotation center. 

 

  
 

   The directions of these velocities are perpendicular on the radii from point O 

to the given points: 

 

    
 

and the senses are in the same sense of rotation, about the rotation center, as the sense of the angular 

velocity, namely in trigonometric sense. 

   Distribution of velocities on the two perpendicular diameters is linear having 

zero value in the rotation center O. 

   The acceleration of a point in the rotation motion may be determined 

calculating two components: one tangent and the other normal. For the point A the tangent 

component has the magnitude: 

 

    
 

because the angular velocity is constant. The second component, normal component, of the 

acceleration will be: 

 

    
 

   This component has the direction of the radius of the circle with the sense 

directed to the center O. Because all the points from the periphery of the circle are at the same 

distance from the center of the disc (the center of rotation) we will have the equality of the magnitudes 

of the accelerations of the points from the periphery: 
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   As we have seen the accelerations may be computed directly, calculating the 

magnitude and directions of them: 

 

    
 

   Problem 6. The rectangular plate OABC from the figure 15 performs a 

rotation motion about the point O in the plane of the plate. Knowing that the angle θ has the law of 

variation : θ(t) = sin t (rad) and the sides of the rectangle are: OA = 40 cm, AB = 30 cm, calculate 

and represent the velocities and accelerations of the points A, B, and C and represent the distribution 

of the velocities on the OA and AB sides of the rectangle at the instant t1 = 1s from the beginning of 

the motion. 

 

     
 

   Solution. First we shall determine the position of the rectangle at the given 

instant: 

 

    
 

   For to calculate the velocities we shall calculate first the angular velocity at 

the instant t1: 

 

    
 

   The sense of rotation of the angular velocity will be the sense of the increasing 

sense of the angle θ (because through derivation we have not changed the sign of it). 
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   The velocity of the point A has the magnitude: 

 

    
 

with the direction perpendicular on the radius OA from the rotation center to the point A and the 

sense, with respect to the center of rotation, the same sense of rotation as of the angular velocity. 

   For the point B we have: 

 

    
 

with perpendicular direction on the radius OB and the same rotation sense about the rotation center 

O as the rotation sense of the angular velocity. 

   In the same way we shall mare for the point C: 

 

    
 

   This velocity will have perpendicular direction on the radius OC. 

   The distribution of velocities on the OA side of the rectangle is linear because 

this side is a straight line passing through the rotation center O. For the distribution of velocities on 

the AB side we shall make in the following way: First we need to find two velocities from this side (but 

we have the velocities in the two points A and B), next we join the tops of them and we obtain one 

straight line on that will be located all the tops of the velocities of the points from then side of the 

rectangle. If we want to represent the distribution of the velocities we choose a few points from the 

line AB (for example points 1 and 2). Now we draw the radii O1 and O2 and the perpendicular lines 

on them the intersections of these lines with the line of the tops give us the representation of the 

velocities of the points 1 and 2. 
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   For to determine the accelerations we shall calculate the acceleration of the 

point AA using the components and for the other two points we shall calculate directly the 

accelerations as magnitudes and directions. 

   Firs we shall calculate the angular acceleration: 

 

    
 

   The sign minus shows us that the instantaneous angular acceleration, in this 

instant, has opposite sense as the angular velocity, so it will have clockwise sense. 

   The tangent component of the acceleration of the point A will be: 

 

    
 

being perpendicular on the radius OA from the rotation center to the point A and with the sense of 

rotation the same sense as the rotation sense of the angular acceleration about the rotation center.  

   The normal component is: 

 

    
 

being collinear with the radius OA and directed to the rotation center O. 

   Now having these two components we can calculate the magnitude and 

direction of the acceleration of the point A: 

 

    
 

   For the point B we shall calculate directly the magnitude of the acceleration: 

 

             
 

   The direction is given by the relation: 

 

    
 

   We remark that for all points of this body this angle (between the radius from 

the rotation center to the point of the body and the direction of the acceleration of the point) is the 

same. Here the angle is measured from the radius OB, around the point B, in the opposite sense of the 

rotation sense of the angular acceleration. The sense of the acceleration of the point is in the rotation 

sense of the angular acceleration about the rotation center O. 

   For the point C we have the magnitude of the acceleration: 
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and with the same sense of rotation about the rotation center as the angular acceleration or as the 

same rotation sense as the other accelerations. 

 

   Problem 7. A square having the side l = 0.5 m rotates, in the plane of the 

square, around of a corner with the constant angular acceleration ε = 1 rad/s
2
. Knowing that at the 

instant to = 0 the plate has the side OA horizontal and that the velocity of the point B is, in this instant, 

vBo = 1 m/s, calculate and represent the velocities and accelerations of the tops of the square and 

represent distribution of velocities on the two diagonals of the square at the instant t1 = 1s from the 

start of the motion. 

 

      
 

   9.10. The plane motion 

 

   Kinematic definition. The plane motion is that motion of the 

rigid body in which the direction of the angular velocity is constant and 

perpendicular on the direction of the velocity of one any point of the body. 

   Geometric definition. The plane motion of a rigid body is 

that motion in which three points of the body move in the same fixed plane. 

   For the study of the motion we shall choose the plane Oxy of 

the body moving in the fixed plane O1x1y1. 

   The axis Oz, perpendicular on the plane Oxy is 

perpendicular, all the time of the motion, on the fixed plane O1x1y1, so it will 

have constant direction and we shall have: 
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   Because any straight line, belonging to the body, parallel 

with Oz remains parallel to itself in the time of motion means that this straight 

line performs a translation motion. Namely it is enough to study the motion of 

one single point from this line. Considering the point of intersection of this line 

and the fixed plane results that for the study of the motion it is enough to study 

the motion in the considered fixed plane. 

   Consider, consequently, the fixed plane O1x1y1 and we shall 

study the motion of a plane body in this plane. We shall mark the angle between 

the axis Ox and O1x1 with θ(t). The unit vectors of the moving axes, expressed 

with respect to the fixed axes, have the expressions: 

 

       
 

     These relations are the same as those for the rotation motion 

about a fixed axis. In conclusion we have: 

 

    
 

     For the distribution of velocities we know that the point O 

has a motion in the fixed plane and results: 
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   We remove in the expression of the distribution of velocities 

and we shall find: 

 

    
 

   Results that the projections on the moving axes, of the 

velocity of one any point, are: 

 

    
 

   We shall investigate, now, if there are points with zero 

velocity. Supposing that there are these kind of points we shall mark their 

coordinates, with respect to the moving reference system, with ξ and η. 

Removing these coordinates in the projections of the velocity of one any point 

and considering the condition these to be equal to zero we have: 

 

    
 

   From the analysis of the equations results that at an instant 

there is one single point with this propriety (the velocity to be zero). This point 
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is called instantaneous center of rotation (ICR) and it is marked with I. 

Because the velocity of the point O and the angular velocity are functions of 

time results that the two coordinates of the ICR are also functions of time, 

namely the ICR changes its position with respect to moving reference system 

and obviously with respect to the fixed reference system. 

   The locus of the positions of the ICR with respect to the 

moving reference system is a plane, moving, curved line called moving 

centrode, and the locus of this center with respect to the fixed reference system 

is a plane fixed curved line called fixed centrode. We shall state (without to 

prove) one propriety of these two curved lines: the moving centrode performs a 

rolling motion without sliding on the fixed centrode. 

   The instantaneous center of rotation has an important 

propriety used for to find the distribution of velocities on a body in plane 

motion, that is: the instantaneous distribution of velocities in plane motion is 

the same as in a rotation motion about the instantaneous center of rotation. 

For to prove this propriety we shall consider that:  in the instant when we make 

the distribution of velocities we choose the origin of the moving reference 

system in the point I (ICR). This means that: 

 

    
 

from which results: 

 

    
 

that is the distribution of velocities in rotation motion about the point I. 

   In this way, if we know the position of the instantaneous 

center of rotation all the proprieties of the distribution of velocities in rotation 

motion are used. For to find the position of ICR we have two ways: one 

analytical and one geometric way. 

   In the analytical way we shall use the two coordinates of this 

center. If the origin of the moving reference system is taken in the point with 

known velocity and the direction of the Ox axis is taken collinear with the known 

velocity the coordinates of the ICR are: 
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namely the ICR is located on the Oy axis (perpendicular on the direction of the 

known velocity). 

   In geometric way the determination of the position of ICR is 

based on the proprieties of the distribution of velocities in rotation motion 

namely on the fact that the velocities are perpendicular on the radii from the 

rotation center to the points of the body and that the distribution is linear with 

respect to the rotation center. 

   In the figure 21 are represented a few cases of geometric 

determination of the instantaneous center of rotation (ICR) namely: 

 If are known two velocities then will be intersected the 

perpendicular straight lines on the support lines of the two velocities; 

 If the two velocities are parallel then the perpendicular 

lines in the points are collinear, and the ICR is find at the intersection between 

the common perpendicular line and the straight line that joins the tops of the 

two velocities; 

 If are known two simple supports of the  body then 

knowing that the directions of the velocities in the support points are tangent to 

the continuous line representing the edges of the bodies in contact, the ICR will 

be located at the intersection point of the two perpendicular lines on the two 

tangent lines. 

   Obviously can be combinations of these few situations when 

we shall use the proprieties of the distribution of the velocities from the rotation 

motion. 
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     For the distribution of the accelerations defined by the 

following relation: 
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we shall remove the particular values of the angular velocity and acceleration 

and the acceleration of the point O: 
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   Finally results: 

 

    
 

   Can show that in the case of the distribution of the 

accelerations there is one point, and only one, called instantaneous center of 

the accelerations, having the proprieties that with respect to this point the 

instantaneous distribution of the acceleration is as in a rotation motion about 

this point and in this point the acceleration is zero. This center is not the same 

as the ICR and it is also a point that changes its position with respect to the two 

reference systems. If the two points: instantaneous center of rotation and of 

accelerations, match then this point is fixed and the motion is a rotation about 

the fixed point. 

   In the following, we shall use this instantaneous center of the 

accelerations only if this point is given or it can be obtained easy (from the 

determination of the point with zero acceleration). In the other situations we 

shall use the methods resulted from the proprieties of the distribution of 

accelerations in general motion which will be studied in the following section. 

 

   9.11. Sample problems 

 

   Problem 8. One straight rod having its length lAB = 50 cm performs a motion 

in vertical plane so that the two ends A and B move on the two perpendicular straight lines, one 

horizontal and one vertical. Knowing that the point A moves on the horizontal line with the constant 

velocity vA = vo = 0.8 m/s and that at the initial instant the rod was in rest in vertical position 

determine: a) distribution of velocities on the rod at the instant t1 =0.2 s from the start of the motion; 

b) accelerations of the points A and B at the same instant of the motion. 

 

   Solution. a) The motion of the rod is a plane motion because it has not a fixed 

point (so it is not rotation) and in the time of motion the direction of the rod does not remains parallel 

with itself (so it is not a translation). 

   First we shall determine the position of the body at the given instant. This is 

made remarking that the point A performs a rectilinear motion with given constant velocity. Using the 

relations from the kinematics of the particle and we work in Cartesian coordinates we can write: 

 

    
 

   Integrating the first relation results: 
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where the integration constant C is obtained from the condition that at  the initial instant of the 

motion the point A to be located in the point O. From this condition we find: 

 

    
 

   For the instant t1 the position of the point A will be: 

 

    
 

   From the right angle triangle OAB is obtained the angle made by the rod with 

the vertical direction in that instant: 

 

    
 

   For the distribution of the velocities we shall determine first the position of the 

instantaneous center of rotation. Because the rod has two simple supports (in the points A and B) we 

shall raise perpendicular lines in the two points on the tangent lines to the continuous lines 

(horizontal in point A and vertical in point B) representing the directions of the velocities in these 

points. This means that in point A we raise a perpendicular on the horizontal direction and in point B 

on vertical direction. At the intersection of these two perpendicular lines is located ICR corresponding 

to the instant t1. We mark this point with I. The distribution of the velocities will be realized like the 

body is in rotation motion about the point I. 

   We shall calculate the angular velocity in the given instant knowing the 

velocity of the point A and the distance IA = AB . cos θ1 ,from the ICR to the point A: 
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   This velocity has the same sense of rotation about the ICR as the rotation 

sense of the velocity vA about the same point. 

   The velocity of the point B will be in magnitude: 

 

    
 

with the direction perpendicular on the radius IB (namely vertical direction, this direction being the 

trajectory of the point B) and with  trigonometric sense of rotation about the point I. 

   Distribution of velocities will result join the tops of the two velocities and 

drawing other few velocities. For example we draw the perpendicular line from I on the AB. This point 

is with minimum velocity from the rod AB because it is at the minimum distance from ICR. This 

velocity is collinear with the direction of the rod AB. For the other points, as the points 1 and 2 we 

shall make in the same way, namely we draw the radii from the point I to the points of the rod and 

then perpendiculars on these radii. The tops of the velocities are collinear, namely they are located on 

the line joining the tops of the velocities from A and B. 

   b)For to calculate the accelerations we shall remark that the point A performs 

a rectilinear motion with constant velocity, so the acceleration of this point is zero: 

 

   aA = 0 

 

   Consequently the point A is the instantaneous center of the accelerations and 

the accelerations of the other points (distribution of the accelerations) can be calculated as the body 

should perform a rotation motion about this point. We shall mark this point A with Q (dedicated 

notation for the instantaneous center of the accelerations). The accelerations can be calculated only is 

known the angular acceleration. So we shall calculate first this acceleration. By definition the angular 

acceleration is the derivative of the angular velocity, but this velocity has to be calculated for an any 

instant, namely it has to be function of time. 

   We shall consider the rod making the angle θ(t) and we have the relation: 

 

    
 

from which results the angular acceleration at the given instant: 

 

    
 

   This angular acceleration has the same rotation sense as the angular velocity 

because through the derivation does not change the sign. 
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   Now we shall calculate the acceleration of the point B in two ways. Firs we 

shall calculate this acceleration directly as magnitude: 

 

    
 

with the direction defined by the angle φ1 resulting from the relation: 

 

    
 

and having the sense of rotation the same as the sense of the angular acceleration ε1 around the 

instantaneous center of the accelerations Q. 

   Second time we shall calculate the acceleration of the point B determining the 

components of it, namely: 

   -the tangent component with the magnitude: 

 

    
 

and having the direction perpendicular on the AB and with the same sense of rotation about the point 

A as the angular acceleration ε1. 

   -the normal component will have the magnitude: 

 

    
 

and it is collinear with AB and with the sense directed to the point A. 

   The acceleration of the point B will be calculated in magnitude with the 

relation: 
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with the direction making the angle φ1 with the direction of AB: 

 

    
 

   We remark that the two methods of determination of the accelerations of the 

points in a rigid body are equivalent. More, here the acceleration of the point B could be calculated 

from the rectilinear motion of the point using the knowledge from the motion in Cartesian system 

writing the coordinate yB and deriving it twice. 

 

   Problem 9. The bar AB performs a plane motion in vertical plane so that the 

extremity A describe with constant velocity vA = vo = 0,5 m/s the horizontal, fixed straight line, and it 

resting in the fixed point C. Calculate and represent the velocity and acceleration of the point B, the 

minimum velocity on the rod AB at the instant t1 = 1s from the start of the motion and represent the 

distribution of velocities on the rod at the same instant. It is known that in the initial instant the rod is 

in rest in vertical position and has the length lAB = 1,5m. 

 

     
 

   9.12. Proprieties of the distribution of 

     velocities and accelerations in  

    general motion of a rigid body 

 

   We will show a few proprieties of the distribution of 

velocities and accelerations in the general motion of the rigid body highlighting 



 

44 

 

those proprieties which can be used in the plane motion of the body (the general 

motion ob the body in two dimensions). 

   The proprieties of the distribution of velocities result from the 

relation: 

 

    
 

   These proprieties are: 

 1)The projections of the velocities of the points from a 

straight line belonging to a body, on that line, are equal. 

  

 
   The demonstration of this propriety is made calculating the 

scalar product of the relation representing the distribution of velocities with the 

unit vector of the direction of the straight line: 

 

    
 

   The third term of the relation is a mixed product of two 

collinear vectors (OP and uΔ) and consequently it is equal to zero and the first 

two terms represent even the projections of the two velocities on the straight line 

passing through the two points. 

 2) The projections of the velocities of all points of a 

rigid body on the direction of the angular velocity are equal. This propriety is 

proved as the previous one namely calculating the scalar product between the 

relation representing the distribution of velocities and the unit vector of the 

direction of the angular velocity. This propriety is automatically checked in two 
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dimensions because the direction of the angular velocity is perpendicular on the 

plane containing the velocities of the points. 

 3) The difference of the velocities of two any points 

from a body is a perpendicular vector on the straight line passing through the 

two points and it represents the velocity of one point, from the two, in rotation 

about the other point. 

 

 
   This propriety is proved bringing in the left side of the 

relation representing the distribution of velocities the first term from the right 

part of the relation. In the right part remains one vector product perpendicular 

on OP and representing the velocity of the point P in rotation about the point O. 

 4) The distribution of velocities can considered as a 

sum of two distributions: the first from one translation motion with the velocity 

of a point from the body and the second from a rotation motion about the point 

considered in the first distribution. 

    This propriety results remarking that the relation 

representing the distribution of velocities has two terms corresponding to the 

two distributions. If we mark: 

 

    
 

then we have obviously: 
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that is even the stated propriety. We have to remark that the rotation motion is 

made as the point considered in the translation motion is a fixed point. 

 5) On an arbitrary straight line from the body the tops 

of the velocities of the points of the line are collinear. This propriety is the 

consequently of the previous propriety in which we remark that if we make the 

vector addition of the two distribution from which one is uniformly and the 

second is linear. 

 6) In the general motion, in space, no points with zero 

velocity. 

 7) The distribution of velocities has always two 

invariants: ω the angular velocity and ω.vO the scalar product of the angular 

velocity with the velocity of one any point from the body. 

 8) In general motion, in space, the distribution of 

velocities is identical with a distribution from a helical motion with respect to an 

instantaneous axis of the helical motion. 

   For the distribution of the acceleration we shall state the 

following proprieties, resulted from the relation defining the distribution of the 

acceleration: 

    

    
 

 1) The distribution of the accelerations can be 

considered as a sum of two distributions: one from a translation motion with the 



 

47 

 

acceleration of a point from the body and the second from a rotation motion 

about the point considered at the first distribution. 

    This propriety results directly if we mark: 

 

    
 

with that the distribution of the acceleration is expressed: 

 

    
 

 
 

 2) On an arbitrary straight line from the body the tops 

of the accelerations of the points of the line are collinear. This propriety is the 

consequently of the previous propriety in which we remark that if we make the 

vector addition of the two distribution from which one is uniformly and the 

second is linear. 

 3) In general motion there is always one point, and 

only one, in which the acceleration is equal to zero. This point is called 

instantaneous center of the accelerations. 

 4) In general motion the distribution of the 

accelerations is identical with a distribution from a rotation about the 

instantaneous center of the accelerations. 
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   9.13. Sample problems  

 

   Problem 10. A rod AB by the length lAB = 1,2 m performs a motion so that the 

extremity A describes, uniformly, one circle with the center in O and the radius R = 0,5 m and rests in 

the fixed point C (the extremity of the horizontal diameter). Knowing the velocity of the point A, vA = 1 

m/s calculate, using the proprieties of the distribution of the velocities and accelerations in general 

motion, the velocities of the points C and B and the accelerations of the points A and B in the instant 

when the extremity A is located on the vertical line passing through the center O of the circle. 

 

 
 

   Solution. We shall represent the rod AB in the required position and we 

remark that it makes an 45
o
 angle with the horizontal (or vertical) direction. for to calculate the 

velocities we shall use the first propriety of the distribution of velocities, namely that the projections 

of the velocities of the points of the rod on the direction of the rod are equal. But for to know the 

directions of the velocities we need to know the position of the instantaneous center of rotation. This 

center will be found at the intersection of the perpendicular direction on the velocity vA in the point A 

(Straight line that passes through the point O) with the perpendicular direction on the rod AB in point 

C (that is inclined with 45
o
 about the horizontal direction). 

   We know that the projections of the velocities of the points of the rod AB on 

the direction AB are equals and equal with: 

 

    
 

   The point C is the point in which is coming the perpendicular line from point I 

to the direction AB, results that the velocity of the point C is collinear with the direction AB, namely it 

is the point with minimum velocity on the rod AB and it is equal in magnitude with the projections of 

all velocities on that direction: 
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   For the point B the velocity is perpendicular on the radius from I to B we 

have: 

    
 

where the direction results from the triangle I1CB: 

 

    
 

   Results the magnitude of the velocity in point B: 

 

    
 

   An other way for to determine  the velocities is that in which knowing that the 

velocity of the point C is collinear with the direction of the rod AB we can write: 

 

    
 

where the magnitudes of the two components are: 

 

    
 because the first component the component of the velocity vA on the direction of the rod AB and the 

second component is the component of the velocity vA perpendicular on the direction of the rod AB. 

The sense of the angular velocity is clockwise. 

   Now, using the same relation we shall have for the point B: 

 

    
 

where we have the following components: 

 

    
 

with the same direction and sense as in the point A, and: 
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   This component is perpendicular on the rod AB and with the same sense of 

rotation about the point A as the angular velocity ω1. 

   The angle between the two components is 135
o
 and consequently results the 

magnitude: 

 

    
 

    
 

and the direction: 

 

    
 

   For the calculation of the acceleration of the point A we know that this point 

performs a circular motion (on the circle with the center in O and the radius R) with constant 

velocity. Results the two components of the acceleration of this point: 
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   This last component has the direction of AO and the sense directed to the 

center of the circle O. 

   For to determine the acceleration of the point B we have need to determine, 

first, the angular velocity at an any instant of the motion. For this we shall consider the rod in an any 

position (making the angle θ(t) with the horizontal direction) and after that we obtain the position of 

the instantaneous center of rotation I we calculate the angular velocity. We remark that the distance 

IA is constant because the right angle C is with its tip on the circle so IA is the diameter of the circle. 

Because the velocity of the point A is constant too results that the angular velocity is also constant: 

 

 
 

    
 

   Results, obviously that the angular acceleration is equal to zero: 

 

    
 

   Having the angular acceleration of the rod and knowing the relation: 

 

    
 

where the first component is equal in magnitude, direction  and sense with the acceleration of the 

point A: 

 

    
 

we can determine the acceleration of the point B without to known the position of the instantaneous 

center of the accelerations. 

   The component corresponding to the rotation about the point A hat also two 

components, from which the firs is the tangent component with the magnitude: 
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   The second component is the normal one and has the magnitude: 

 

    
 

with the direction of the rod and the sense directed to the point A (the center of rotation 

corresponding to this component). 

   The magnitude of the acceleration of the point B will be (the composition of 

two components): 

 

    
 

   Its direction with respect to the vertical direction will be obtained with the 

relation: 

              

                 
 

   Problem 11. A plate having square shape with the side l = 0,8 m moves in the 

plane of the plate. Knowing the velocities of two tops and the accelerations of two tops (as in the 

figure 32) at an instant of the motion calculate and represent the velocities and accelerations of the 

other tops of the plate and also the velocity and acceleration of the center of the square in the same 

instant. Are known: vA = vC = 2 m/s, aB = aC . Represent the distribution of velocities on the four sides 

of the square in the given instant. 
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Chapter 10. Relative motion of the particle 

 

   10.1. Introduction 

 

   In the previously two chapters we have studied the absolute 

motions of the particle and the rigid body, namely the motions performed with 

respect to a fixed reference system. But as we know, in nature, there are not 

fixed reference systems. In most of the engineering works the reference systems 

joined to the Earth are considered as fixed systems. But there are problems in 

which this simplification does not satisfy the requirements of those problems 

and we need to consider the motions with respect to the reference systems in 

motion too. 

   In this chapter we shall deal with the relative motion of the 

particle considering that the knowledge from this chapter are enough for to 

explain all those engineering problems in which are these motions. 

   We shall use two reference systems and namely: one moving 

system marked Oxyz, about which is performed the relative motion of the 

particle, and a fixed system marked O1x1y1z1, about which is performed the 

motion of the moving reference system. 

   In the time of the relative motion we shall distinguish three 

kinds of motions: 

   -relative motion of the particle that is the motion of the 

particle about the moving reference system; 

   -absolute motion of the particle that is the motion of the 

particle about the fixed reference system; 

   -transport motion that is the motion of the moving reference 

system about the fixed system. 
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   In the following we shall use the derivatives with respect to 

time in the process of the calculation of the velocities and accelerations. A part 

of these time functions are expressed with respect to moving reference system so 

is necessary, first, to define the derivatives of the vectors function of time 

expressed about the moving reference system. 

 

   10.2. Absolute and relative derivatives. 
 

   We shall name absolute derivative the derivative with respect 

to time that will consider the variation in time of the derivative quantities and 

also of the reference system about it is expressed. We shall name relative 

derivative that derivative which will consider only the variation in time of the 

vector without to consider the motion of the moving reference system. This 

derivative is called also local derivative. 

   Let be a vector, function of time and expressed function a 

moving reference system: 

 

    
 

   The derivative with respect to time will be: 

 

    
 

   The first parenthesis is the derivative of the vector without to 

consider the motion of the moving reference system, namely it is the local 

derivative of the vector and it is marked: 

 

    
 

   We remark that this derivative is obtained considering the 

moving reference system as a fixed one, or as the moving system is stopped from 

its motion in the time of this derivative. 



 

55 

 

   The second parenthesis contains only the derivatives of the 

unit vectors of the moving axes, derivatives which were solved in the previous 

chapter and we have: 

 

    
 

   Here we remark that this derivative is obtained as the vector 

would have constant magnitude and direction with respect to the moving 

reference system or as this vector is joined to the moving system. 

   Finally we may write: 

 

    
 

   From this relation results that generally the absolute 

derivative does not coincide with the relative derivative. However we remark 

that the absolute derivative of the angular velocity of the moving reference 

system is always equal to the relative derivative of it. 

 

   10.3. Composition of the velocities in the 

     relative motion of the particle. 
 

   Consider a particle P in motion about a reference system 

Oxyz, system in motion too about a fixed reference system O1x1y1z1. 

   Among the position vectors we have the relation: 

 

    
 

   If we calculate the derivative of this results: 

 

    
 

where the first two terms are the absolute velocities of the two points P and O: 

 



 

56 

 

    
 

    
 

   The derivative of the position vector of the point P with 

respect to the origin of the moving reference system is made as we have seen 

before and we have: 

 

    
 

   Replacing in the initial relation we will have: 

 

    
 

   The last term is a velocity being the first derivative with 

respect to time but it considers the motion of the particle about the moving 

reference system only, namely it consider only the relative motion of the 

particle. We shall name this as relative velocity and we shall mark: 
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   As we have presented before this velocity is calculated as the 

moving reference system is a fixed one. 

   If we consider now only the first two terms of the right part of 

the relation these represent the velocity of the particle P as this point moves 

together with the moving reference system (as it is joined to the moving system). 

But this system performs the transport motion consequently it will be named 

transport motion of the particle: 

 

    
 

   We can write finally: 

 

    
 

namely the absolute velocity is the sum of the transport and relative velocities of 

the particle. 

   This relation can be used to determine one velocity if we 

know the other two. 

 

   10.4. Composition of the acceleration in 

     relative motion of the particle. 
 

   Let to calculate the derivative of the expression of the 

absolute velocity: 

 

     
 

   The first two terms are the absolute derivatives of the 

absolute velocities of two any points, so they represent the absolute 

accelerations of the two points: 
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   The derivative of the angular velocity is the angular 

acceleration. As we have seen the absolute derivative of the angular velocity is 

equal to the relative (local) derivative of it: 

 

    
 

   The derivative of the position vector with respect to the origin 

of the moving reference system is as we have find: 

 

    
 

   The absolute derivative of the relative derivative (that is a 

function of time expressed with respect to the moving reference system) is made 

as the derivative of the position vector r: 

 

    
 

   Removing in the first relation we have: 

 

    
 

   We remark that the fourth term is the local derivative by the 

second order with respect to time of the position vector (this derivative 

considers only the variations about the moving reference system without to 

consider the motion of this reference system), consequently it is the relative 

acceleration of the particle and we shall mark: 
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   The first three terms represent the acceleration of the particle 

as the particle is connected to the moving reference system performing the 

motion together with this system, namely the particle performs the transport 

motion. We shall name this acceleration as the transport acceleration of the 

particle: 

 

    
 

   The last term does not belong to the relative motion and the 

transport motion, or better, it has one component from the transport motion (the 

angular velocity) and one component from the relative motion (the relative 

velocity). This component of the acceleration is called Coriolis acceleration ant 

it keep in mind that the two motions (transport and relative motions) are in 

interaction: 

 

    
 

   With these we may write: 

 

    
 

   10.5. Method of the stopped motions 
 

   If we consider the two relations corresponding to the 

composition of the velocities and accelerations: 

 

    
 

results that we can determine the absolute velocity and acceleration of a 

particle in a composite motion using a method that allows to calculate the 

velocities and accelerations separately in the two motions: transport and 

relative motions. This method is called method of the stopped motions and it is 

used in the following way: 
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   1) Firs we shall define the two motions: the transport motion 

and the relative motion. Generally these motions are obtained from the fact that 

the particle is in motion about a body that it is in motion too. In this case the 

body performs the transport motion and the particle the relative motion about 

the body. 

   2) We consider the transport motion stopped. In the case 

when the transport motion is performed by a body we shall stop the motion of it. 

We shall consider only the motion of the particle about the body in rest, namely 

the relative motion of the particle. Studying this motion we determine the 

relative velocity and the relative acceleration: 

 

    
 

   3) This time we shall stop the particle on the body (we stop 

the relative motion) and we study the motion of the particle together with the 

body that performs the transport motion. For the particle results the transport 

velocity and transport acceleration: 

 

    
 

   4) Having the relative velocity and the angular velocity of the 

transport motion we calculate the Coriolis acceleration. In two dimensions for 

to calculate can be considered a reference system with the origin in the particle 

and the Px axis on the direction and sense of the relative velocity. In this case 

we have: 

 

    
 

   The axis Py is taken so that the system to be an right hand 

system. Results for the angular velocity of the transport motion: 

 

    
 

   The (+) sign corresponds to the counterclockwise sense of 

rotation of the angular velocity. The Coriolis acceleration will result: 
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namely this acceleration has the direction of the axis Py (perpendicular on the 

direction of the relative velocity).  We may remark that if the angular velocity is 

positive then the Coriolis acceleration results also positive. 

   5) Using the two relations we add in vector way the velocities 

and accelerations resulting the absolute velocity and absolute acceleration of 

the particle. If for the velocities, because we have only two components, we may 

use the rule of the parallelogram, for the accelerations the simplest way to 

calculate is that to choose a reference system and projecting all the components 

on the aces we may use the theorem of projections to calculate the projections 

on the two axes of the absolute acceleration. 

 

   10.6. Sample problems. 
 

   Problem 1.  One triangular prism performs a horizontal rectilinear 

translation motion. In the same time on the slope side of the prism slides a particle P. Knowing that at 

an instant the velocity and acceleration of the translation motion of the prism are vA = 2m/s and aA = 

1 m/s
2
 and also that in the same instant the particle is located in the position B and has the relative 

velocity and acceleration (about the prism) vP = 2 m/s and aP = 2 m/s
2
 determine the absolute velocity 

and acceleration of the particle in the same instant. 

 

   Solution. The slipping motion of the prism on the horizontal surface is the 

transport motion, and the sliding motion of the particle on the inclined surface AB of the prism is the 

relative motion of the particle. 

 

                               
 

   We shall consider the transport motion stopped, namely we shall stop the 

slipping motion of the prism on the horizontal surface. It remains only the slipping motion of the 

particle on the sloped surface of the prism that is a rectilinear motion. Results that the relative 
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velocity and acceleration of the particle at the given instant are known and they have the direction of 

the straight line on which is performed the motion: 

 

    
 

   This velocity and acceleration are represented in the figure 3. 

   The transport motion is the rectilinear translation motion of the prism and 

consequently the transport velocity and acceleration of the particle P are even the velocity and 

acceleration of the point A (moved in the point P) because in translation motion all the points of the 

body (the point P is considered belonging to the prism) have the same velocity and acceleration: 

 

    
 

 
 

      Fig.3. 

 

   Because the transport motion is a translation we have obviously: 

 

    
 

and consequently the Coriolis acceleration is equal to zero: 

 

    
 

   The absolute velocity results summing the two velocities and it has the 

magnitude: 

    

         
 

and the direction defined, with respect to the horizontal direction, by the angle αv : 
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   Because the Coriolis acceleration is equal to zero we have only two 

components of accelerations and we shall use for summing the parallelogram rule. The magnitude of 

the absolute acceleration will be: 

 

          
 

with the direction defined about the horizontal direction: 

 

              
 

   Problem 2. A bar having the length l = 1 m performs a rotation motion about 

a fixed point O with the angular velocity ω = πt/3 (s
-1

). In the same time on the bar slides a small 

collar P with the law of motion (about the bar) s(t) = OP = 12,5 t
2
 (cm). Knowing that the motion of 

the bar stars from horizontal determine the absolute velocity and acceleration of the collar when it 

arrives in the middle of the bar. 

 

     
 

   Solution. The rotation motion of the bar is the transport motion, and for the 

particle (that is considered stopped from its sliding motion on the bar) P results a circular motion 

with the center O and the radius OP and having as law of motion the rotation motion of the bar, 

namely with the angular velocity ω. If we stop the bar in an any position, the collar P slides along the 

bar, consequently the relative motion is a rectilinear motion on the bar OA with the law of motion s(t). 

   Now we shall determine the position of the bar when the collar arrives in the 

middle of the bar. For that we shall suppose that this position is obtained at the instant t1 and results: 

 

   s(t1) = l/2 

 

or: 

 

   12,5 . t1
2
 = 50                    t1 = 2 s 
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   In this instant the angle made by the bar with the horizontal (the initial 

position) is θ(t1), where the angle θ results from the definition of the angular velocity: 

 

    
 

but because the initial position is the horizontal the constant C is equal to zero and the position of the 

bar at the given instant results: 

 

    
 

 
 

   We shall consider the bar stopped in this position and from the rectilinear 

motion of the particle P along the bar result the relative velocity and acceleration: 

 

    
 

having the direction of the straight line OA along that is made the sliding motion of the collar P. 

   The transport motion of the particle results if the collar is stopped on the bar 

OA (in the given position, namely at the half of the bar) and performs the motion considering joined 

to the bar (like it is a point of the bar). In this way the transport velocity will have the magnitude: 
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the direction being perpendicular on the OP and with the sense so that to be in the rotation sense of 

the angular velocity about the rotation center O. 

   The transport acceleration resulted from the circular motion of the point P 

will have two components. The tangent component has the magnitude: 

 

    
 

the direction being perpendicular on the OP and the sense in the rotation sense of the angular 

acceleration about the rotation center. 

   The normal component has the magnitude: 

 

    
 

being collinear with OP and directed toward the rotation center O. 

   For the calculation of Coriolis acceleration we shall choose a reference 

system (used only for the vector computation) with the origin in point P, with the Px axis on the 

direction and the sense of the relative velocity ( here on the direction OA directed toward the end A of 

the bar) and with the Py axis perpendicular on the bar (on the relative velocity) and with the sense so 

that to form a right hand system. With respect to this system we have: 

 

    
 

   With this The Coriolis acceleration will be: 

 

    
 

   The absolute velocity of the particle will be obtained with the rule of the 

parallelogram: 

 

    
 

   The direction with respect to the direction of the bar will be defined by the 

angle: 
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   For the absolute acceleration, that is the resultant vector of minimum three 

components: 

 

    
 

the rule of the parallelogram is difficult to use. In this way we shall determine this acceleration using 

the theorem of projections. Consequently we need a system of reference and here we shall use the 

same reference system as the calculation of the Coriolis acceleration. The projections of the 

components on the two axes will be: 

 

    
 

   We obtain the magnitude of the absolute acceleration: 

 

     
 

having the direction defined with respect to the Px axis: 

 

     
 

   Problem 3. One disc performs a translation motion along its horizontal 

diameter, on a horizontal fixed bar, with the law of motion OA = at
2
. On the periphery of the disc a 

particle moves with the law of motion BP = s(t) = Rπt
2
/12. Knowing that a = 10 cm/s

2
  and R = 25 

cm, determine the absolute velocity and acceleration of the particle P at the instant t1 = 2s from the 

start of the motion. 
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   Problem 4. One circular frame by the radius R = 30 cm rotates in its plane 

around the fixed point O with the constant angular velocity ωo = 1 rad/s. In the same time on the 

frame moves, starting from point O, with constant velocity vo = 25 cm/s with respect to the frame, one 

small ring P. Calculate the absolute velocity and acceleration of the particle P when the diameter of 

the frame becomes horizontal and knowing that at the initial instant it is vertical. 
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Chapter 11. Plane mechanism with one degree of 

   freedom 

 

   11.1. Introduction 
 

   This chapter will have as object the study of the distribution 

of velocities for the systems of bodies named simple mechanism. 

   One mechanism is a system of bodies that has possibilities 

of motion, namely having degrees of freedom. If the system is made from plane 

bodies, located in the same plane and performing motion in the same plane then 

we say that it is a plane mechanism. If the motion of the system may be 

expressed function of one kinematic parameter then it said that the mechanism 

has one degree of freedom. For this kind of mechanism we have the relation: 

 

   Ndf = 3Nb – (3Nfs + 2Nsh + Nss) = 1 

 

where we have marked: Ndf the number of the degrees of freedom, Nb the 

number of the bodies, Nfs the number of the fixed supports, Nsh the number of the 

simple hinges and Nss the number of the simple supports. 

 

   11.2. Centers of rotation 
 

   As we have shown, in this chapter we shall study only the 

distribution of velocities for plane mechanisms. For to develop an efficient 

method, to obtain the distribution of velocities we shall make some remarks 

about characteristic elements of the distribution of velocities. 
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   In plane motions a body may perform only three kinds of 

motions namely: translation motion, rotation motion and plane motion. If we 

consider only the distribution of velocities then we can remark the following: 

 -In rotation motion there is one point (the fixed point 

called rotation center), and only one, that has zero velocity and with respect it 

the distribution of velocities is linear; 

 -Because we study the instantaneous distribution of 

velocities in plane motion there is a point, and only one (the instantaneous 

center of rotation), that has zero velocity and with respect to it the instantaneous 

distribution of velocities is linear; 

 In translation motion there are not points with zero 

velocity, but we can think in the following way: the plane motion in two 

dimensions is the general motion, so it contains the particular motions namely 

the translation motion too. Therefore the translation motion is a particular 

plane motion and the instantaneous center of rotation will be located at the 

intersection of the perpendicular lines on the velocities of two points. 

 

            ICR∞  

    
 

   But the velocities are the same (in magnitude, direction and 

sense) in the two points resulting that the two perpendiculars intersect at infinity 

distance. We can say the in translation motion there is an instantaneous center 

of rotation but it is located at infinity. 

   Finally we can remark that: all the three motions, no matter 

the kind of them, have each a rotation center with zero velocity and about that 

the instantaneous distribution of velocities is linear. These centers will be 

named absolute centers of rotation. 
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   Results obviously that the number of the absolute centers of 

rotation is equal to the number of bodies from the mechanism: 

 

   NACR = NB 

 

   Let to consider now two bodies of the mechanism. There is 

always one point in which the velocities determined on the two bodies are 

equal. For example if the two bodies have one internal hinge, indifferent to the 

kind of motions performed by the two bodies, the point representing the internal 

hinge has only one velocity indifferent on which body is considered this point. 

 

    
 

   We can remark in this example that if the two bodies should 

have two points in which the velocities are equal, the two bodies should perform 

the same motion and we can consider one body made from the two. Results 

consequently that for each pair of two bodies there is one this kind of point. 

These points are called relative centers of rotation. The name of these centers 

are coming from the fact that if one body (from two) stops then this point 

becomes the rotation center of the other body, namely this point is the rotation 

center of the relative rotation motion of one body with respect to the other. 

   The number of this kind of centers is equal: 

 

   NRRC = C
2

Nb = Nb(Nb – 1)/2 

 

where C
2

Nb is the number of combinations from the number of bodies taken two 

by two. 

   The importance of the two kinds of center is that: the 

instantaneous distribution of velocities is made in relation to the absolute center 
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of rotation of each body, and the relative centers of rotation make the 

connections between the distributions on the bodies of the mechanism. 

   The centers of rotation are determined or using the 

constraints and connections of the mechanism or using the proprieties of the 

distribution of velocities. 

   If do not consider the fixed support (because if a body has 

this kind of constraint it is fixed so it has not motion and we can eliminate this 

kind of body from the mechanism) the other constraints and connections 

highlight the following proprieties: 

 One hinged support (fixed hinge) is always the 

absolute rotation center of the body on which it is located. This is because the 

hinged support fixes a point of the body. 

 

  ARC      dARC           RRC 

    
 

 

 

 

 

 

 

 

 

 

 

 

         dRRC 

 

 

 

 

 

 

 One simple support defines a straight line, the 

direction of the simple support, on which is the absolute rotation center of the 

body. This propriety results from the fact that this constraint allows the sliding 

motion of the body on the boundary surface, consequently the velocity of the 

contact point is tangent to this surface and the instantaneous rotation center is 

located on the perpendicular line to the surface in this point, namely on the 
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direction of the simple support. We shall mark this line with dARC, namely the 

line on which is located the absolute rotation center. 

 One internal hinge is always the relative rotation 

center of the two bodies joined by the hinge. 

 If two bodies are connected among them with one 

simple internal connection then the relative rotation center is located on de 

direction of this connection. This propriety results from the fact that this 

connection refers to the relative motions of the bodies and consequently if we 

stop one body (from two) then the rotation center of the other is located on the 

direction of the simple connection. We shall mark the line of this direction with 

dRRC. 

     For to know all the rotation centers of a mechanism we have 

to use the proprieties of the distribution of velocities in motion in plane also (in 

two dimensions). This is made with two collinearity theorems. 

 

   11.3. Collinearity theorems 
 

   We shall study two colliniarity theorems of the rotation 

centers, theorems with which we can determine the positions of all rotation 

centers of a plane mechanism with one degree of freedom.  

   I
st
 theorem. In a plane mechanism with one degree of 

freedom the absolute rotation centers of two any bodies and the relative rotation 

center of the two bodies are collinear. 

     
 

   Consider two any bodies from a plane mechanism with one 

degree of freedom marked (I) and (J). The absolute rotation centers of the two 
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bodies will be marked (0i) and (0j) and the relative rotation center 

corresponding to the two bodies will be marked (ij). The theorem says that the 

three centers of rotation (0i), (0j) and (ij) are located on the same straight line. 

   For to demonstrate this theorem it is enough to consider the 

velocity of the relative rotation center calculated from the body (I) and from the 

body (J). Because the velocity of the point (ij) is only one it has to be 

perpendicular on the radius from the absolute rotation center (0i) to (ij) and 

also on the radius from (0j) to (ij) resulting that the two radii have to be 

collinear. 

   II
nd

 theorem. The relative rotation centers of three bodies, 

taken two by two, from a plane mechanism with one degree of freedom are 

collinear. 

     
 

   We shall mark the three bodies (I), (J) and (K) and the 

relative rotation centers corresponding to them (ij), (ik) and (jk). The theorem 

says that the three relative rotation centers are located on the same straight line.

     Being relative rotation centers we shall consider that one 

body from the three performs transport motion and the other two relative 

motions about the first. Consequently if we stop the body (K) will remain only 

the relative motions of the two bodies (I) and (J) and the two relative rotation 

centers (ik) and (jk) will become the two absolute rotation centers of the two 

bodies (I) and (J). But corresponding to first theorem the two absolute rotation 

centers have to be collinear with the relative rotation center (ij). We can see that 

in this demonstration we have not changed the position of the three points but 

only their nature.  
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   For to use efficiently these two theorems I propose to use 

them as a rule with the name rule of the indexes. 

   Rule of the indexes. If two centers have one common index 

then on the straight line passing through the two centers is located the center of 

rotation corresponding to the non-common indexes of the two centers. 

   We may remark that this rule contains the two theorems 

(reason for which we have marked the absolute centers of rotation with two 

indexes from which one is 0). 

 

   11.4. Sample problems 
 
   Problem 1. For the plane mechanism from the figure 6 determine all rotation 

centers. 

 

 
 

   Solution. The given mechanism has two bodies: ABC and CDE which we note 

(I) and (II). The hinged support from the body (I) is the absolute rotation center of this body and we 

shall mark (01). The internal hinge from the point C is the relative rotation center of the two bodies 

and it will be marked (12). The vertical simple support from E defines a straight line (the vertical line 

passing through point E) on which is located the absolute rotation center of the body (II), namely this 

line is d02. 

   Remains to determine the absolute rotation center of the body (II). This is 

made in the following way: we know that a center (one point) can be determined at the intersection of 

two straight lines. But we know one line d02 on which is located the search center so it is enough to 

determine one other line d02. For this we shall use the collinearity theorems (or the rule of the 

indexes). Here the rule of the indexes shows us: the two known centers (01) and (12) have one 

common index (figure 1), so on the straight line passing through the two centers is located the rotation 

center corresponding to the non-common indexes (02). In this way we have the second line d02 that 
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intersected with the first (the vertical line through point E) give us the position of the absolute rotation 

center (02). 

   The position of the absolute rotation center (02) is determined with respect to 

the known points in the following way: if one line is vertically then we have to determine the position 

only in vertical direction from a known point to that center. Let to note this distance with y2. Starting 

from the center the find center (02) on the inclined straight line to the first known center (here the 

relative rotation center (12)0 we make one right angle triangle (here (02)(12)D). From the known 

center where we have arrived (here (12)) we go on the inclined straight line until the second known 

center (here the absolute rotation center (01)) and we make another right angle triangle (here the 

triangle (12)(01)B). The two triangles are like and we can write the likeness relation: 

 

    
 

from which results the position of the absolute rotation center (02): 

 

    
 

   Problem 2. Determine the rotation center for the mechanism from the figure 7. 

 

    
 

   11.5. Method of the diagrams of  

    velocities’ projections  
 

   For to determine the distribution of velocities on a 

mechanism there are a lot of methods. The most of them solve this problem on 

straight lines from the body. The best method to obtain the distribution of 

velocities in a plane mechanism with one degree of freedom is the method of 

the diagrams of velocities’ projections. 
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   For to obtain this method we shall consider one body of the 

mechanism and we shall suppose known: the position of the absolute rotation 

center and the instantaneous angular velocity of the body. Because we want to 

achieve the instantaneous distribution of velocities we can consider the 

mechanism stopped at that instant in the considered instantaneous position. 

   For to study the motion of the body we shall consider a 

reference system with its origin in the absolute rotation center and the two axes 

in the convenient directions namely the horizontal and vertical directions. 

   The relation that defines the distribution of velocities of the 

considered body is: 

 

    
 

where AP is the position vector of the any point P with respect to the absolute 

rotation center. 

 

 
 

 

   

 

 

ARC           ARC 

 

 

 

 

 

 

 

 

 

ARC 

 

 

 

 

                       

   The projections of the velocity of the point P on the two axes 

are: 
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   From these last two relations result the following proprieties: 

 With respect to the absolute rotation center the 

variation of the projections of velocities is linear being zero in the right of the 

absolute rotation center. 

 All the points of the body which have the same x 

coordinate will have the same projection of the velocities on the axis Oy, and all 

points with the same y coordinate will have the same projection of the velocities 

on the axis Ox. 

   If we consider two reference lines parallel to the two axes 

and we represent perpendicular on them the two projections and we join the top 

of the represented projections with the absolute rotation center (projected on the 

reference lines) then we obtain straight lines which represent the variations of 

the velocities’ projections on the direction of the corresponding axes. These 

straight lines are called diagrams of velocities’ projections. Results that: 

 The diagrams of velocities projections are straight 

lines passing through the absolute rotation centers (projected on the reference 

lines). 

 The slope of the diagram is the angular velocity of the 

body: 

 

    
   

 The diagrams in two orthogonal projections are 

perpendicular. 

   Knowing these we can draw the diagrams of the velocities’ 

projections for a mechanism with one degree of freedom in two dimensions. 
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   11.6. The steps of the determining of 

    velocities using the method of the 

    diagrams of velocities’    

    projections. 
 

   In the following we shall give the steps which we have to pass 

for to calculate the angular velocities and velocities of points of a plane 

mechanism with one degree of freedom. These steps are: 

 1) First we check that the mechanism to have one 

degree of freedom. After we determine the fixed bodies and they are removed 

from the mechanism. We remind that the fixed bodies are in the following four 

cases (or in the cases which can be reduced to these four cases): one body with 

one fixed support, one body with a fixed hinge (an internal hinge can be a fixed 

hinge having the same behavior as a hinged support if it is in contact with a 

fixed body) and a simple support (the direction of the simple support does not 

pass through the hinge), one body with three simple supports (the directions of 

the supports are not all the three parallel or concurrent in the same point) and 

finally two bodies each of them with a fixed hinge and an internal hinge between 

them (the three hinges are not collinear). We denote (number) the bodies of the 

mechanism. 

 2) We determine the centers of rotation and the 

directions on which they are resulted from the constraints and connections of 

the mechanism. 

 3) We determine all the absolute rotation centers using 

the theorems of collinearity. An absolute rotation center will be determined at 

the intersection of two straight lines. These lines are obtained or from the 

constraints, or using the collinearity theorems. For to determine an absolute 

rotation center we shall start from another known absolute rotation center. 

 4) We draw the diagrams of the velocities’ projections 

starting from the body that has given motion. The successions of the following 

operations are: we draw the two reference lines, we project on these lines the 

absolute rotation centers of all bodies. It is drawn the diagram of the first body 

(the body with given motion) that is a straight line that passes through the 

absolute rotation center of the body projected on the reference line, diagram 
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that is rotated in the rotation sense of the angular velocity. It is projected on the 

find diagram the relative rotation center with the following body and is drawn 

the diagram of the following body as a straight line passing through this relative 

rotation center and the absolute rotation center of this body. Step by step we 

draw the diagrams of all bodies from the mechanism, 

 5) We calculate the angular velocities of the bodies 

and then the projections of the velocities of points from the bodies of the 

mechanism. 

 

   11.7. Sample problems 
 

   Problem 3. For the mechanism from the figure 9. calculate the velocities of 

the marked points using the method of diagrams of velocities’ projections. 

 

    
 

   Solution. The mechanism has one degree of freedom because we have: 

 

   Ndf = 3 . 3 – (2 . 3 + 2) = 1 

 

namely it is made from three bodies and has three simple hinges and two simple supports. 

   In this mechanism we have not fixed bodies and consequently we shall solve 

this mechanism with three bodies. We shall mark these bodies as: (I), (II) and (III). 

   The fixed hinge from the point O (the hinged support) is the absolute rotation 

center of the first body and it is marked (01), the internal simple hinges from A and B are the relative 

rotation centers of the bodies joined by them namely (12) and (23). The two vertical simple supports 

located on the third body (III) define each of them one vertical straight line (the directions of the 

simple supports) on which is located the absolute rotation center (03). We shall mark these lines with 

d03. 

   Because we have two lines d03 at the intersection point of them have to by 

located the absolute rotation center (03). But because the two lines are parallel their intersection is 
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located at infinity on the vertical direction. This means that any vertical straight line will passes 

through this absolute rotation center (03). 

   For the distribution of velocities of a plane mechanism with one degree of 

freedom generally is enough to determine all the absolute rotation centers because the existing 

relative rotation centers generally are enough for the distribution. This thing is because the 

transmission of the motion can be made from a body to the other for the neighbor bodies, generally is 

not necessary to transmit the motion from example from the first body to the last. 

   Taking in consideration all of these, for the distribution of velocities in this 

problem is necessary to determine the absolute rotation center (02). For this center we have need to 

know two straight line on which is located this center. In this problem we have not any this kind of 

lines, but we can determine them using the collinearity theorems (or the rule of indexes). Because we 

have only relative rotation center between neighbor bodies and the first theorem uses for to determine 

one absolute rotation center also relative rotation centers, it is obviously that we have to start always 

from a neighbor body (of the body for which we determine the absolute rotation center) with known 

absolute rotation center. Here we shall start from the body (I) that has the known absolute rotation 

center and it is neighbor body to the body (II) so we know also the relative rotation center between 

them. Consequently remarking that the two centers (01) and (12) have a common index results that on 

the straight line passing through these two points is located the absolute rotation center (02). In this 

way we have find the first line d02. But we have need to find another line d02. Another neighbor body to 

the body (II) with known absolute rotation center is the body (III). We remark that the absolute 

rotation center (03) and the relative rotation center (23) have the common index 3 and in this way on 

the line passing through the two centers id located the absolute rotation center (02) corresponding to 

the non-common indexes. But the absolute rotation center (03) is located at infinity distance on 

vertical direction, this d02 is also vertical. Intersecting the two lines d02 results the center (02). The 

position of this center will be obtained if we determine the distance y2 on vertical direction. As we 

have seen in the previous problem we obtain two like triangles in which we can write the likeness 

relation: 

 

 
 

   In this problem is not necessary for the solution to find the relative rotation 

center (13) but we shall determine also this center for to show how we find a relative rotation center 

in a mechanism. 

   One relative rotation center is find, as all the other rotation center, at the 

intersection of two straight lines. These lines can be obtained or from the first theorem when we know 

the absolute rotation centers of the corresponding two bodies (as in this problem), or using the second 

theorem when in the combination enter only relative rotation centers. In this case the first line is found 

considering the absolute rotation centers of the two bodies (I) and (III) and we remark that for these 

two centers the index 0 is common. It is obtained the d13 line in vertical direction. Because we have 

only the two relative rotation centers :(12) and (23) with the common index 2 results passing through 

these two points another straight line d13. Intersecting the two lines we obtain the position of the 

relative rotation center (13). 

   Having all the rotation centers we can draw the diagrams of the velocities’ 

projections. We shall draw firs the two reference lines on orthogonal directions (vx) and (vy) and we 

project on these two lines the absolute rotation centers of the mechanism. If at the first two centers we 
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have not any problem to project on the reference lines at the absolute rotation center (03) we make the 

remark that on the vertical reference line this center is located at the infinity, and on the horizontal 

reference line any point of the reference line should be the projection of this center because any 

vertical straight line passes through this center. 

 

           ∞ 03 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

    

 

   We begin to draw the diagrams of velocities with the body (I) at which we 

know the angular velocity. The diagram of this body is a straight line passing through the absolute 

rotation center (01) from the reference line and it is rotated, with respect to the reference line, in the 

rotation sense of the angular velocity of the body. In the both projections we shall have the same 

rotation of the diagrams of the body (I) and in this way the two diagrams of the same body (I) are 

perpendicular. From the line representing the diagram of the body we shall cut the portion 

corresponding to the body (in the picture we marked with bolded line this portion).  
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   On the line representing the diagram of the first body we shall project the 

relative rotation center with the following body, here the center (12). We join this center with the 

absolute rotation center (02), from the reference line, and we obtain the diagram if the body (II). We 

project on these diagrams the relative rotation center with the next body, here the body (III), namely 

the center (23) and joining with the absolute rotation center of the body (III) is obtained the diagrams 

of this body. In this way we have obtained, in two perpendicular projections, the diagrams of the 

velocities’ projections. 

   We shall begin now to calculate the velocities. First we determine the angular 

velocities of the bodies starting from the known angular velocity: 

 

    
 

   The angular velocity of the next body is obtained from the propriety of the 

relative rotation center that in this point the velocities from the two bodies are equal. We can write, 

for example from the vy diagram the following relation: 

 

    
 

namely the velocity vy12 is equal to the angular velocity multiplied with the distance from the absolute 

center of the body to that point (12) on the both bodies. Results for the second body: 

 

    
 

   The body (III) having the absolute rotation center at infinity has a translation 

motion and consequently it has zero angular velocity: 

 

    
 

   Now, for to calculate the velocities of the points it is enough to determine the 

projections of the velocities on the two directions. For each projection we have to calculate the 

product between the angular velocity of the body and the distance from the absolute rotation center of 

the body to the point. We have for the marked points: 

 

    
 

   The points B, C, D and E are points on a body in translation motion so they 

will have equal velocities. 

   In this way we have solved the problem entirely. 
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   Problem 4. For the plane mechanism represented in the figure 11 determine 

the angular velocities of the bodies and the velocities of the marked points using the method of the 

diagrams of the velocities’ projections. We know that the velocity of the point D is vertically and has 

the magnitude v = 10 m/s. 

 

   Solution.  The mechanism has one degree of freedom because it has three 

bodies, one simple fixed hinge (hinged support), one internal double hinge that is equivalent to two 

simple hinges and two simple supports: 

 

   Ndf = 3 . 3 – (2 . 3 + 2) = 1 

 

   As we can see the mechanism has not fixed bodies. We shall mark the bodies: 

the body AB with (I), the body BCD with (II) and the body BEF as (III). 

   The fixed hinge from A is the absolute rotation center (01) of the body (I), the 

internal double hinge from B is in the same time the relative rotation centers (12), (13) and (23). We 

remark that the number of the relative rotation centers from a multiple internal hinge is not equal to 

the number of the equivalent simple hinges. On the horizontal straight line passing through the 

horizontal simple support from D is located the absolute rotation center (02) so this line is d02, and on 

the vertical straight line that passes through the point F is located the absolute rotation center (03) so 

this line is d03 . 

    

    
 

   The absolute rotation centers (02) and (03) will be obtained on the straight 

line passing through the centers (01) and (12) – the common index is 1 – line that is the same as the 

line passing through (01) and (13) – common index 1 - , consequently this straight line is in the same 

time the line d02 and d03. Intersecting with the two lines corresponding to the directions of the simple 

supports we obtain the absolute rotation centers (02) and (03).  For to determine the positions of these 
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centers we shall write the likeness relations in the triangles (02)CB and ABG and also (03)EB and 

ABG: 

 

    
 

 
 

   To draw the diagrams of the velocities’ projections we shall start from the 

vertical projection vy of the body (II) because is known the vertical velocity of the point D. 
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   The angular velocity of the body (II) is obtained from the given velocity of the 

point D with the relation: 

 

    
 

   The angular velocities of the other bodies of the mechanism result from the 

equalities: 

 

    
 

   The velocities’ projections of the marked points will be: 

 

    

    

    
 

   Problem 5,6. Using the method of the diagrams of velocities’ projections 

determine the angular velocities of the bodies and the velocities of the marked points for the 

mechanisms from the figures 13 and 14. 
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DYNAMICS 

 

Chapter 12. Introduction. 
 

   As we have presented in the introduction in the mechanics, 

dynamics is the part of the theoretical mechanics that deals with the study of the 

mechanical motion of the bodies considering the masses of them and the forces 

which act about them. Therefore in dynamics we shall use all the notions from 

statics and kinematics. 

   As the other parts of the mechanics, in dynamics we use some 

basic notions specific to this part of the mechanics. These notions are: linear 

momentum, angular momentum, kinetic energy, work, potential energy, 

mechanical energy, power and also other notions but without importance in this 

course. The first three notions are notions of the state named in this way 

because they define the mechanical state at an instant of the motion for the 

bodies. The other notions are called derived notions because they are derived or 

from the first three notions or from the other notions from statics and 

kinematics. 

   Besides of these two kinds of notions in the dynamics we shall 

use additional notions which are used for to define some of the previous 

notions. These additional notions are moments of inertia. 

   In this part we shall make in the following way: first we shall 

define all the specific basic notions of the dynamics, after we shall state three 

theorems called general theorems, and finally we shall study the motions of the 

particle, rigid body and systems of particles and rigid bodies. 

   We make the remark that the principal problem of the 

dynamics is to determine the join (the relations) between the cause and effect, 
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namely between the forces and the motion produced by them or vice versa 

between the motion and the forces induced by it in the mechanical system. 

   We shall start to study the notions from the additional notions 

namely from the moment of inertia because these will be used in the definitions 

of the other specific basic notions. 

   We will make in the following way (as for all the other 

notions in dynamics): first we define the notion for a particle, after for a system 

of particles and finally for the rigid body.  
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Chapter 13. Moments of inertia. 

 

   13.1. Definitions. 
 

   We can remark , from a simple experience, that the inertia of 

the bodies in rotation motion does not depend only by their masses but also the 

distribution of the masses with respect to the rotation axis or rotation point. This 

kind of inertia is emphasized by the notion called moment of inertia. 

   Suppose a particle P by mess m and a fixed reference system, 

for example one axis (Δ). 

 

 
    

   By definition we call moments of inertia of the particle P 

with respect to the axis (Δ), marked JΔ, the scalar quantity equal to the product 

between the mass of the particle and the distance from the particle to the axis 

at the power two: 
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   For a system of particles Pi having the masses mi, by 

definition the moment of inertia of the system with respect to the axis (Δ) is the 

scalar quantity equal to the sum of the moments of inertia of the particles with 

respect to the axis (Δ). This moment of inertia is marked also JΔ and it is: 

 

    
 

   If we have a rigid body, then we can consider it as a 

continuous and non deformable system of particles by the elementary masses 

dm. In this way results the definition of the moment of inertia of a rigid body 

about the axis (Δ): 

 

    
 

where we have marked dJΔ the moment of inertia of the elementary mass dm 

about the same axis. 

   In the following we shall use only the moments of inertia of 

the bodies therefore we shall give the following definitions only for the rigid 

body. 
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   Consider a rigid body by mass M and a Cartesian reference 

system. 

   With respect to the axes, reference planes and the origin of 

the system we define the following moments of inertia: 

 Moment of inertia about a plane (planar moment of 

inertia). In the reference system we have: 

   

    
 

 Moment of inertia about an axis (axial moment of 

inertia): 

 

    
 

 Moment of inertia about a point (polar moment of 

inertia): 

 

    
 

   We make the remark that these moments of inertia can be 

calculated about any plane, axis or point from space. 

   In technical problems we have also a scalar quantity having 

the same dimension as the moment of inertia called inertia product. These kinds 

of moments of inertia are defined about a Cartesian reference system in space in 

the following way: 
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   13.2. Proprieties of the moments of 

     inertia. 
    

   From the definition relations of the moments of inertia result 

some proprieties: 

 The moment of inertia about an axis is equal to the sum 

of the moments of inertia about two perpendicular planes having as intersection 

line the given axis: 

 

    
 

 The moment of inertia about a point is equal to the sum 

of the moments of inertia about three perpendicular axes, two by two, axes 

which pass through the given point: 

 

    
 

 The moment of inertia about a point is equal to the 

semi sum of the moments of inertia about three perpendicular planes two by two 

which pass through the given point: 

 

    
 

 The moments of inertia about axes, planes and points 

can by only positive or equal to zero, but the inertia products can be positive, 

negative or zero. 

 The planar moments of inertia are zero for plane plates 

about the plane of the plate. 

 The axial moments of inertia are zero for rectilinear 

bars about the axes of the bars. 

 The polar moments of inertia are zero for the particle 

about itself. 
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 The inertia product is zero if one reference plane, from 

the two, about which is calculated, is symmetry plane. 

 

   13.3. Moment of inertia’s variation 

    with respect to parallel axes. 
 

   To consider a rigid body by mass M and two reference 

systems with parallel axes marked Oxyz and O1x1y1z1. We shall mark with a, b 

and c the coordinates of the point O1 with respect to the system Oxyz. We 

consider also one any point P of the body having the coordinates x,y,z with 

respect to the system Oxyz and the coordinates x1, y1 and z1 with respect to the 

system O1x1y1z1. We have obviously the relations between the coordinates: 

 

    
 

    
 

   We shall find a relation between the moments of inertia about 

the two reference systems. The demonstration is made for only one moment of 

inertia, for all the other the relations will be obtained in the same way. 

   We consider the moment of inertia about the reference plane 

xOy and we replace in the definition relation the expression of the coordinate 

with respect to the system Oxyz function of the corresponding coordinate with 

respect to the other reference system: 
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   We remark that the first integral is the moment of inertia of 

the body about the plane O1x1y1, the second integral is the statically moment of 

the body about the same plane and the last integral is the mass of the body. 

Using the corresponding notation we find the relation: 

 

    
 

   In the particular case when the origin of the O1x1y1z1  

reference system is the center of gravity (center of mass) of the body, the 

distance c is the coordinate zC  of the mass center and the statically moment 

about the reference plane that passes through the mass center is equal to zero. 

In this case the relation is transformed in: 

 

    
 

where          is the central planar moment of  inertia (moment of inertia about 

the plane passing through the mass center). 

   Making in the same way for all the other moments of inertia 

we shall find the relations: 
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   For the planar, axial and polar moments of inertia we can 

state the law of variation called parallel axes theorem: the moment of inertia 

of a body about a plane, or an axis, or a point is equal to the sum between the 

moment corresponding central moment of inertia (about the plane, or axis 

passing through the center of mass, or about the center of mass) having 

parallel axes to the given reference system and the product of the entire mass 

of the body and the squared distance from the center of mass and the plane, 

axis or the given point. It is obviously that for the inertia products we can state 

the same law of variation with respect to parallel reference systems. This 

theorem is known as the Steiner’s theorem also. 

 

   13.4. Moment of inertia’s variation 

    about the rotation of the axes. 
 

   We have seen that if we change the reference system but we 

keep the directions of the axes the moments of inertia change. It is obviously that 

if we change the directions of the axes we shall obtain variations of moments of 

inertia. In this section we shall determine the way in which is modified the 

moments of inertia when we rotate the axes of the reference system. Because in 

problems is important to know the variation of the axial moments of inertia in 

this section we shall study only the variation of the axial moment of inertia 

about a rotated axis. 

   Suppose one body and a reference system about which we 

know all the moments of inertia, namely the moments of inertia about the three 

axes and the three inertia products, and also an any axis (Δ) passing through 

the origin of the system and making with the three axes the angles α, β and γ, 

namely the axis (Δ) is rotated with respect to the three axes with these three 

angles. 

   By definition the moment of inertia of the body about the axis   

(Δ) is: 
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where δ is the distance from the any point P by the elementary mass dm to the 

axis (Δ). This distance can be expressed from the right angle triangle OPP’ in 

the following way: 

 

    

     
 

distance that can be expressed also using the vector product: 

 

       

 

where the expressions of the two vectors are: 

 

         

  

 

   Performing the vector product and calculating the second 

power results: 

 

    
 

   Replacing in the expression of the moment of inertia and 

calculating the second power results finally: 
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   As we can see this moment of inertia is a function of the 

angles with respect to the three axes: 

 

    
 

namely when are modified these angles is modified the moment of inertia also. 

The extreme values of this function are called principal moments of inertia and 

the axes with respect to which are obtained these moments of inertia are called 

principal axes of inertia. Without to prove these statements we shall set out the 

followings: 

 The principal axes of inertia form a three orthogonal 

reference system resulting three principal moments of inertia. 

 With respect to this principal reference system the 

inertia products are equal to zero. results that if with respect to a system of 

reference the inertia products are zero that system is a principal system of 

reference in that point. We remark that the symmetry axes are principal axes of 

inertia. 

 

   13.5. Moments of inertia in two  

    dimensions. 
 

   Supposing that the body is a plane body (plane plate) and the 

study of the motion is made in the same plane the moments of inertia are 

interested only in that plane namely in two dimensions. In this way considering 

a plane body and the corresponding reference system Oxy in plane are the 

following kinds of moments of inertia: 

 Axial moments of inertia: 
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 Polar moment of inertia: 

 

    
 

 Inertia product: 

 

    
 

   Between the axial moments of inertia and the polar moment 

of inertia we can write the relation: 

 

    
 

   The relations of variations of the moments of inertia with 

respect to parallel axes will be: 

 

     

 

 

 

where the moments of inertia marked with the index C are central moments of 

inertia. 

   With respect to one any axis but that passes through the 

origin of the reference system the moment of inertia will have the following 

expression: 

 

    
 

   13.6. Moments of inertia for simple 

    usual homogeneous bodies. 
 

   In this section we shall calculate the central moments of 

inertia for a few bodies often used in problems in two dimensions. For each 
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body we shall calculate the four central moments of inertia: two axial moments, 

one polar moment of inertia and one inertia product. We shall see that having 

these four moments of inertia in fact we have the moments of inertia about any 

other reference system. 

 Rectilinear bar. Consider a rectilinear bar by the mass 

M and length l and a reference system with the origin in the mass center and 

having the axes: one collinear to the axis of the bar and the other perpendicular 

on it. 

 

 

     
 

   Because the axis Cx is the axis of the bar the moment of 

inertia with respect to this axis is equal to zero: 

 

   Jx = 0 

 

   We shall calculate only the central moment of inertia about 

the axis perpendicular to the bar. For calculation we shall choose, in one any 

point P by coordinate x, one infinitesimal element of mass dm and length dx. 

The bar being homogeneous we have the relation that expresses this propriety: 

 

    
 

   With this the moment of inertia about the Cy axis is: 
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   Because the central polar moment of inertia is the sum of the 

axial moments of inertia results obviously: 

 

    
 

   Because this shape is symmetrical about the both axes the 

central inertia product is equal to zero: 

 

   Jxy = 0 

 

 Rectangular plate. Consider now a rectangular plane 

plate by the sides b and h and the mass M. Also we shall consider a reference 

system with its origin in the mass center and with the axes parallel to the sides 

of the rectangle. 
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   Also in this case we shall calculate one central axial moment 

of inertia because the rectangle has the same position about the both axes (one 

side is parallel to one axis and the other side is perpendicular to that axis) and 

finally we shall change the index x with y and b with h resulting the other 

central axial moment of inertia about the other axis. 

   At the other hand knowing that the central polar moment of 

inertia is the sum of the two central axial moments of inertia and also the shape 

is symmetrical therefore the inertia product is equal to zero: 

 

   Jxy = 0; 

 

 so it is enough to calculate that single central axial moment of inertia. 

   We shall choose an infinitesimal element of mass for to 

calculate the moment of inertia about the axis Cx in the any point P (having the 

coordinate y). Here, in this case, we can make an artifice for to make the 

calculation easier. We know that the element of mass has to be a punctual 

element. The conditions for to be a punctual element are: to be with infinitesimal 

mass (but this condition can be obtained by one element with one infinitesimal 

dimension) and to have the central axial moment of inertia about its central axis 

parallel to the given axis (about which we calculate the moment of inertia of the 

body) equal to zero. This last condition can be obtained also for an element 

having the shape as a bar parallel to the given axis. Results that we may choose 

the mass element as a rectangle with infinitesimal thickness dy. 

   The orthogonality condition of the plate will be: 

    

    
 

where the element of the area is: 

 

     
 

   The moment of inertia with respect to the Cx axis will be: 
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   With respect to the Cy axis we will have: 

 

    
 

   Finally we have also the central polar moment of inertia: 

 

    
 

 Right-angle triangular plate. We shall consider a 

right-angle triangular homogeneous plate having the two perpendicular sides b 

and h and the mass equal to M and also a central reference system with the axes 

parallel to the two perpendicular sides. For to make easier the calculation of 

the moments of inertia we shall calculate first the moments of inertia about 

another reference system namely a reference system with the axis collinear with 

the two perpendicular sides of the triangle. After using the relations of variation 

with respect to parallel axes we will obtain the central moments of inertia. 

Consequently we shall choose O1x1y1 as reference system. 
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   The element of mass is taken in the point P by coordinate y1 

and having the shape of a bar (small rectangle as for the previous plate). The 

area of this element is: 

 

    
 

where b1 will be obtained from the similarity relation of two triangles (one the 

given triangle and the other the triangle with the base b1 and the height (h-y)). 

The similarity relation is: 

 

    
 

   The moment of inertia of the triangle with respect to the O1x1 

axis is: 

 

    
 

and with respect to the O1y1 axis is equal (because the triangle has the same 

position about the both axes – one side is collinear and the other is 

perpendicular to the axis O1x1 or O1y1 – so we change x1 with y1 and h with b): 

 

    
 

   This time the inertia product is not equal to zero. it will be 

calculated with the relation: 

 

    
 

in which x1 and y1 are the coordinates of the centroid of the infinitesimal 

element of mass considered so that to comply with the conditions of the particle. 

Because the infinitesimal element having the shape of a bar meets these 
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conditions we shall use the same element of mass for this inertia product where 

we will have: 

 

    
 

   With all these we calculate: 

 

    
 

   Now we shall use the theorems of variation of the moments of 

inertia with respect to parallel axes and we obtain: 

 

    

    
 

   In the calculation of the inertia product we remark that 

function of the position of the triangle with respect to the reference system we 

obtain different signs. In the figure 8 we present the way in which results the 

sign function of the position of the triangle with respect to the reference system. 

The rule may be expressed in the following way: if the right angle is situated in 

an odd frame then the sign of the inertia product is negative and is it is situated 

in an even frame then the sign is positive. 
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   The central polar moment of inertia results summing the two 

central axial moments of inertia: 

 

    
 

 Circular disc. Suppose a circular plate by radius R and 

mass M and the reference system with the origin in the center of the circle that is 

in the same time the center of mass of it. Because this shape is symmetrical with 

respect to any diameter we have the proprieties: the inertia product is equal to 

zero: 

 

    
 

and the two axial moments of inertia are equal and equal to half from the 

central polar moment of inertia: 

 

    
 

    
 

   This means that will be enough to calculate the central polar 

moment of inertia. 

   The homogeneous propriety will be expressed with the 

relation: 
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   For to calculate the central polar moment of inertia we shall 

consider, in the any point P, the elementary mass in polar coordinates (r,θ) and 

we shall have: 

 

    
 

   The polar moment of inertia will be: 

 

    
 

and the central axial moments of inertia will result 

 

    
 

   13.7. Sample problems 
 

   Problem 1. Calculate the polar moment of inertia about the point O for the 

body represented in the figure 10. Are known: Mbar = 10 kg, Mplate = 69 kg and r = a = 10 cm. 

 

   Solution. The body may be divided in three simple bodies namely: one 

rectilinear bar (1), one rectangular plate (2) and a circular plate (3) that will be subtracted from the 

sum of the first two. The relation: 

 

   the given body = (1) + (2) – (3) 

 

is kept also for the moments of inertia, which by definition is a sum. 

   The masses of the three bodies are: 
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where μ is the specific mass of the plate: 

 

    
 

   We have: 

 

   M2 = 72 kg ; M3 = 3 kg. 

 

   The polar moment of inertia with respect to the point O will be: 

 

                                

   

  

  

 

 

or replacing with the corresponding values we obtain the polar moment of inertia about the point O: 

 

    
 

   Problem 2.  Calculate the moment of inertia about the axis (Δ) for the 

homogeneous plane plate from the figure 11. Are known: M = 87 kg, r = a = 0,2 m. 
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   Solution.  The homogeneous plate is divided in three simple plates: one 

rectangle, one triangle and one circular plate that is subtracted from the sum of the first two. The 

specific mass of the body (considering π = 3) will be: 

 

    
 

with which are calculated the masses of the three simple bodies: 

 

    
 

   We shall choose one reference system that has to be with its origin on the axis 

about which is calculated the moment of inertia, here the point O (fig. 11.). 

   The three moments of inertia about this system will be calculated with the 

relations: 

 

    
 

where Jxi ,Jyi and Jxyi  are the central moments of inertia of the component simple bodies, and xi 

and yi are the coordinates of the centers of mass of these simple bodies. We shall have: 
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   The moment of inertia about the (Δ) axis will be calculated with the 

relation: 

 

    
 

where the angle α results from the right angle triangle ABO. We have: 

 

    
 

   Replacing the previous relation the calculated moments of inertia and 

the cosines and sinus of the direction of the axis (Δ) we have finally: 
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   Problem 3.  Calculate the polar moment of inertia about the point O for 

the body represented in the figure 12. 

 

   
 

   Problem 4. Calculate the moment of inertia with respect to the axis (Δ) for the 

homogeneous plane plate from the figure 13. 
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Chapter 14. Fundamental notions in dynamics. 

 

   14.1. Linear momentum. 
 

   We consider a particle P by mass m that has, at one any 

instant of the motion the instantaneous velocity v. By definition the linear 

momentum of a particle is the vector quantity, marked H, and equal to the 

product between the mass and the instantaneous velocity of the particle: 

 

    
 

      
 

   Finding through a multiplication with one positive scalar 

quantity (the mass m of the particle), the linear momentum has the same 

direction and sense as the instantaneous velocity of the particle. 

   For a system of particles Pi by messes mi and instantaneous 

velocities vi (Fig.2.), by definition the linear momentum of the system of 

particles is the vector quantity, marked also H and equal to the sum of the 

linear momentums of the particles from the system: 
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      Fig.2. 

 

   The magnitude, direction and sense of this linear momentum 

are known because they are determined using the rule of parallelogram, or 

other way to calculate a vector sum, but the point of application have to be 

determined. 

   If we consider now a rigid body by mass M in motion having 

an instantaneous distribution of velocities (Fig.3.), then the body may be 

considered as a continuous and non deformable system of particles P by 

elementary masses dm and velocity v. Using the previously relations we can 

obtain the linear momentum of the rigid body: 

 

      
      Fig.3. 
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where we have marked dH the linear momentum of the elementary mass dm. 

   Knowing that the velocity of one any point can be expressed 

using the first derivative with respect to time of the point position vector: 

 

    
 

and after removing in the definition relation and also remarking that the mass 

does not depend by time and the integral is made function of a parameter that 

does not function of time we write: 

 

    
 

   This result is obtained because the parenthesis is the 

statically moment of the body with respect to the fixed point, and using the 

theorem of the statically moments it is equal to the statically moment of the mass 

center where is considered concentrated entire mass of the body. This relation 

shows as that the linear momentum of a body (or of a mechanical system) is 

equal to the linear momentum of the mass center where is considered 

concentrated entire mass of the body. 

   This result is true for the system of particles or other kind of 

mechanical systems. 

   With this we have defined the point of application of the 

linear momentum of a system or a body, namely it is the mass center of the 

system of body. 

   We remark also that the linear momentum of a rigid body 

does not depend by the distribution of the velocities in the body, but only by the 

velocity of the mass center. 

 

   14.2. Angular momentum. 
 

   Consider a particle P by mess m in motion with the 

instantaneous velocity v and a fixed point O. 
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     Fig.4. 

 

   By definition is called angular momentum of the particle P 

with respect to the point O the vector quantity marked KO and equal to the 

moment of the linear momentum of the particle about the point O: 

 

    
 

   Being one vector product the angular moment is a 

perpendicular vector on the two vectors: r and H or r and v. Results that it is 

perpendicular on the plane generated by the point O and the tangent to the 

trajectory in point P. 

   For a system of particles Pi by masses mi and instantaneous 

velocities vi we define as angular momentum of the system with respect to the 

fixed point O, and it is marked KO, the sum of the angular momentums of the 

particles from the system calculated about the same point O (this is the 

resultant angular momentum): 

 

     
 

   For a rigid body considered as a continuous and non 

deformable system of particles by elementary masses dm the angular momentum 

of it with respect to the fixed point O will be: 
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where we have marked dKO the angular momentum of the elementary mass dm 

with respect to the point O. 

    
 

      Fig.5. 

 

   Express now the position of the any point P of the rigid body 

using the position of the mass center C: 

 

    
 

and calculate de derivative of this last relation 

 

    
 

   The three terms from this last relation are: the (absolute) 

velocity of the point P, the (absolute) velocity of the point C and the velocity of 

the point P from the relative motion about the point C: 

 

    
 

   If we shall replace in the expression of the angular 

momentum with respect to the point O then we shall obtain: 
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   The second and the third terms of the development of the 

integral are equal to zero because in their expressions results the statically 

moment of the body with respect to the mass center, that it is zero from the 

theorem of the statically moments: 

 

    
 

   The integral from the first term is the entire mass of the body 

and the forth term of the development is the angular momentum of the body 

calculated about the mass center considering only the motion of the body about 

the mass center (that can be considered as a fixed point as in relative motion). 

Marking these terms we have: 

 

    
 

   This relation is called Koenig’s theorem for the angular 

momentum and it state the following propriety: the angular momentum of a 

body (or mechanical system) with respect to an any  fixed point is equal to the 

sum between the angular momentum of the body about the mass center 

considering the motion of the body about this point (as the mass center is a 

fixed point) and the angular momentum of the mass center where is 

considered concentrated the entire mass of the body calculated about the 

given fixed point.  

   We can remark that if the mass center is considered as a 

fixed point then the motion of the body about this point is a rotation motion 

about the mass center. 

 

   14.3. Kinetic energy. 
 

   Consider again a particle P by mass m and having the 

instantaneous velocity v. We define the kinetic energy of the particle the scalar 
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quantity equal to the semi product of the mass and its velocity at the power 

two: 

 

    
 

   We remark that the kinetic energy is a positive scalar 

quantity and also that in its expression the velocity can be considered or scalar 

or vector quantity. 

   For a system of particles Pi by messes mi  and instantaneous 

velocities vi the kinetic energy of the system is the scalar quantity marked also 

E and equal to the sum of the kinetic energies of the particles from the system: 

 

    
 

   For a rigid body making in the same way as for the angular 

momentum we have: 

 

    
 

   Expressing the velocity of one any point of the body function 

the velocity of the mass center we obtain: 

 

    
 

that removing in the expression of the kinetic energy we may write: 

 

    
 

   The first integral is the entire mass of the body the second is 

equal to zero because it can be expressed function the statically moment with 
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respect to the mass center and the third integral is the kinetic energy of the body 

considering only the motion about the mess center (as it is a fixed point). We 

have finally: 

 

    
 

relation that represents the Koenig’s theorem for the kinetic energy that states: 

the kinetic energy of a rigid body (or a mechanical system) is equal to the sum 

between the kinetic energy of the mass center where is considered 

concentrated the entire mass of the body and the kinetic energy of the body 

from the motion about the mass center (considered as a fixed point). 

 

   14.4. Work (mechanical work). 
 

   Consider a force F that acts about the particle P. Under the 

action of this force the particle will has a certain displacement. If the interval of 

time is very small, dt, then the displacement of the particle (in fact of the point 

of application of the force) will be very small, infinitesimal. This displacement 

marked dr and that changes the point of application of the force from P in P1 is 

called elementary displacement and from mathematically point of view it is the 

differential of the position vector of the particle P. We can say that at limit the 

direction of the elementary displacement is tangent to the trajectory in point P.  

     
      Fig.6. 
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   The scalar quantity, marked dL, called elementary 

mechanical work by definition is equal to the scalar product between the force 

and elementary displacement of the point of application of the force in the dt 

interval of time: 

 

    
 

   From the definition of the scalar product is obtained: 

 

    
 

where we have marked Fτ the  projection of the force F on the direction of the 

tangent to the trajectory in point P and drF the projection of the elementary 

displacement dr on the direction of the force. 

   Also we remark that if the angle α is less then 90
o
 the 

elementary work is positive and we shall say that it is active work, and if the 

angle α is bigger than 90
o
 the elementary work is negative and we shall say it is 

resistant work. 

   If the force and the displacement are expressed with respect 

to a fixed reference system then the expression of the elementary work becomes: 

 

    
 

   Resulted from a scalar product the elementary work will have 

all the proprieties of this kind of product namely: 

 If the force is the resultant of a system of concurrent 

forces then we have: 

 

     
 

meaning that the elementary work is equal to the sum of the elementary works of 

the force components passing the same elementary displacement. 

 If the elementary displacement is the resultant of a set 

of elementary displacements then we have: 

 



 

120 

 

    
 

meaning that the elementary work is equal to the sum of the works of the force 

passing all the component displacements. 

   Now to consider the force acting about the particle P in the 

interval of time corresponding to pass from point A to point B on the trajectory. 

The work produced by the force F in this interval of time will be the sum of the 

works produced by the force F on a lot of elementary displacements which 

summed will give us the work from A to B. This sum at limit is the curvilinear 

integral and it is the total work: 

 

    
    

   Generally the force is a function of the position, velocity of 

the particle about it acts and time: 

 

    
 

consequently the work depends by the trajectory, velocity and time resulting that 

the integral is curvilinear. 

   If the forces act about a rigid body the total work of these 

forces is the sum of the works produced by all forces acting about the body. If 

about the body act also concentrated moments (concentrated couple) the work 

will be calculated with the relation: 

 

    
 

where Fi represent the two forces of the couple which have the sum equal to 

zero: 

 

    
 

   Expressing the elementary displacement using the 

distribution of velocities we have: 
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and the expression of the work becomes: 

 

    
 

where dθ is the elementary rotation of the body. 

   Finally for the actions about a body the elementary work will 

be calculated with: 

 

    
 

   14.5. Conservative forces, force  

    function. 
 

   If the projections of the force F meet property: 

 

    
 

meaning that they meet the Cauchy’s conditions then there is a scalar function 

depending only by the position of the point of application of the force: 

 

   U = U(x,y,z) 

 

so that the projections of the force will be: 
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   In this case the force is called conservative force and the 

scalar function U is called force function. Because this propriety the expression 

of the force will be: 

 

    
 

namely it is an exactly total differential. 

   From this propriety results a very important propriety of 

these kinds of forces namely the total work produced by a conservative force 

does not depends by the trajectory of the point of application of the force 

between the two positions: 

 

    
 

where we have marked : 

 

    
 

    
 

      Fig.7. 

 

   If about a particle (or a body) act a system of conservative 

forces coming from the same number of scalar force functions: 
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then the resultant force of the system: 

 

    
 

is also a conservative force that comes from a force function equal to the sum of 

the force functions of the components of the system: 

 

    
 

   14.6. Potential energy. 
 

   Consider a particle acted by conservative forces. We call 

potential energy the capacity of the particle, acted by conservative forces, to 

produce mechanical work because of its position with respect to a certain 

reference system. 

   We know that the total work produced by the conservative 

forces between two positions is: 

 

    
 

   By definition the potential energy marked is: 

 

    
 

that if the point A is taken so that the force function to be zero in this point and 

the point B is an any point with the coordinates x, y, z results finally for the 

potential energy: 
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   14.7. Mechanical energy. 
 

   We consider a mechanical system (particle, rigid body or a 

system of particles of bodies) acted by a system of conservative forces. At an 

instant of the motion of the system we define as mechanical energy of the 

system the sum between the kinetic energy corresponding to that instant and the 

potential energy corresponding to that position of the system: 

 

   Em = E + V 
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Chapter 15. General theorems 

 

   15.1. Introduction. 
 

   In the previous chapters we have presented the fundamental 

notions in dynamics, notions with which we shall express the characteristics of 

the motions of the mechanical systems. In this chapter we shall state three 

theorems called general theorems which make the join between the fundamental 

notions and the forces acting about the mechanical system, or between the cause 

and effect. 

 

   
       Fig.1. 

 

   The motion of a particle can be studied (as we will sown in 

the following chapter) using only the principle of the independent action of the 

force. For a system of particles we can use the same way to study the motion but 

because in this case we have also a very large number of unknown internal 

forces this way is difficult to use. Using the general theorems in different cases 
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we can eliminate the internal forces from the study (from the equations) so the 

number of the unknowns is less. 

   The general theorems are: theorem of the linear momentum, 

theorem of the angular momentum and theorem of the kinetic energy. the first 

two theorems are vector theorems using vector notions therefore they can be 

projected on the axes of a reference system, but the third theorem is a scalar 

theorem giving us only one equation. 

   In the next sections we will show that the first two theorems 

applied to the state of rest of the mechanical system are transformed in 

conditions of equilibrium. Also we shall express conditions in which the 

fundamental notions are preserved. 

   The theorems will be enounced for an any mechanical system 

(meaning or a particle, or a system of particles, or a rigid body , or a system of 

rigid bodies) but they will be proved only for a system of particles. For a 

particle in demonstration we eliminate the index and for the rigid body the finite 

sum is transformed in integral (continuous and infinity sum). 

 

   15.2. Theorem of the linear   

    momentum. 
 

   The first derivative with respect to time of the linear 

momentum of a mechanical system is equal to the resultant force of all forces 

acting about the system: 

 

    
 

   For to prove his theorem we shall start from the definition of 

the linear momentum for a system of particles: 

 

    
 

   Deriving, with respect to time, the linear momentum of the 

system and considering the second principle of the mechanics results finally: 
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   We note that for a particle this theorem is the same with the 

second principle of the mechanics. 

   Because the linear momentum of a system or a body is in fact 

the linear momentum of the mass center where we consider concentrated the 

entire mass of the system or body, the derivative of this linear momentum: 

 

    
 

that if is removed in the expression of the theorem we shall obtain a new form of 

this theorem called theorem of the mass center motion: 

 

    
 

and that say: the mass center moves as in this point is concentrated the entire 

mass of the system or of the body and about it are acting all the forces. 

   Generally this theorem is used in scalar form projecting on 

the axis of a reference system:  

   -Cartesian reference system: 

 

    
 

   -Cylindrical reference system: 

 

     
 

   -Frenet’s system: 
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   If the mechanical system (particle, system of particles or 

rigid body) is in rest then the velocities and accelerations are zero and this 

theorem becomes condition of equilibrium (in particular for a system of 

concurrent forces). 

   This theorem highlights one propriety of the linear 

momentum: for an isolated mechanical system or acted by a system of forces in 

equilibrium, the linear momentum is preserved. 

   Replacing in the theorem the condition of equilibrium (or the 

nonexistence of the forces for an isolated system): 

 

    
 

results: 

 

    
 

where C is a vector constant that can be obtained from the initial conditions of 

the motion. We remark also that the linear momentum can be preserved only on 

a certain directions: 

 

    
 

   15.3. Theorem of the angular   

    momentum. 
    

   We suppose one system of particles Pi by masses mi and one 

fixed point O. The angular momentum of the system with respect to this point is: 

 

    
 

   Deriving with respect to time we obtain: 

 

    

 



 

129 

 

     

 

namely: 

 

    
 

and represents the theorem of the angular momentum: the first derivative of 

the angular momentum of a mechanical system (particle, system of particles 

or rigid body) calculated about a fixed point is equal to the resultant moment 

of all forces which act about the mechanical system calculated about the same 

fixed point. 

   Using the Koenig’s theorem for the angular momentum: 

 

    
 expressing the resultant moment function of the moment about the mass center: 

 

     
 

and removing in the expression of the theorem we obtain: 

 

    
 

   In this last relation the first term is equal to zero being a 

vector product of two collinear terms and the second term is reduced with the 

last term of the relation being the same using the theorem of the motion of the 

mass center. Finally we have: 

 

    
 

representing the theorem of the angular momentum about the mass center of 

the mechanical system. We remark that in this form the mass center is 
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considered as a fixed point and also that this is the single moving point about 

that the theorem keeps its shape. 

   If the mechanical system is in rest, the velocities and the 

accelerations are zero and the theorem becomes a condition of equilibrium for a 

system of any forces. 

   Also this theorem gives us an important propriety of 

preservation of the angular momentum: if the mechanical system is isolated or 

is acted by a system of forces in equilibrium the angular momentum of the 

system is preserved about any point from space. 

 

    
 

   Also in the case of a mechanical system acted by central 

forces (the supports of these forces are passing through the same point) the 

angular momentum of the system about the center of the forces is preserved 

(because the resultant moment about this point is equal to zero). 

   Remarking also that the derivative of the angular momentum 

is in fact the moment of the derivative of the linear momentum about the same 

point the two theorems (of the linear momentum and of the angular momentum) 

can be enounced under one form namely under the form of the theorem of the 

force couple system: the first derivative with respect to time of the force couple 

system in an any fixed point of the linear momentum is equal to the force 

couple system of all forces acting about the mechanical system about the same 

point: 

 

    
 

   15.4. Theorem of the kinetic energy. 
 

   Suppose a mechanical system Pi of masses mi which move 

with the velocities vi. The kinetic energy of the system is: 
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   To calculate the variation of the kinetic energy in an 

infinitesimal interval of time: 

 

    

      

             

 

namely: 

 

   dE = dL 

 

that represents the theorem of the kinetic energy (the differential form of the 

theorem): the variation of the kinetic energy in an interval of time is equal to 

the work produced by all forces which act about the mechanical system going 

through the displacements corresponding to the same interval of time. 

   We remark that in this theorem the work is of the external but 

also internal forces (this is different to the first two theorems in which the 

internal forces are not considered because they are pares, equals in magnitude 

and with opposite senses): 

 

   dL = dLext + dLint 

 

   This is because the internal forces (equals in magnitudes and 

with opposite senses) have different displacements of their points of application. 

But if the mechanical system is no-deformable then the relative displacements of 

the points are zero and the work of the internal forces is equal to zero. This 

means that for a rigid body we have: 

 

   dL = dLext  

 

   Integrating this theorem (the differential form) between two 

any positions A and B we obtain: 

 

    
 

or: 
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   EB – EA = LAB  

 

representing the theorem of the kinetic energy under finite form. The statement 

of the theorem remains unchangeable but it is changed the interval of time. 

   If the forces which are acting about the mechanical system 

(internal and external forces) are conservative forces then we can highlight the 

property of preservation of the mechanical energy (from this property comes the 

name of conservative forces). In this way for the conservative forces the 

elementary work is equal: 

 

   dL = dU 

 

and the total work is: 

 

   LAB = UB - UA 

 

where U is the resultant force function (the sum of the force functions of all 

forces acting about the mechanical system). Removing in the expression of the 

theorem of the kinetic energy (the finite form) results: 

 

   EB – EA = UB - UA 

 

and knowing that we have the equality: 

 

   V = -U 

 

results: 

 

   EB + VB = EA + VA 

 

or finally: 

 

  EmB = EmA 
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   This last relation is the propriety of preservation of the 

mechanical energy: in a conservative mechanical system (acted only by 

conservative forces) the mechanical energy is preserved. 
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Chapter 16. Dynamics of the particle. 

 

   16.1. Introduction. 
 

   In this chapter we shall study the motion of the particle 

considering its mass and the actions of the forces. First we shall study the 

motion of the free particle, and after the constrained particle. We shall see that 

for to study the motion of the particle it is enough to us only the second principle 

of mechanics or the theorem of the linear momentum. The other two theorems 

will be used only in the cases in which they bring some simplifications of the 

study of motion. 

   As we have presented before the general theorems make the 

join between the actions about the particle, generally these are the systems of 

forces (here concurrent systems of forces) and the motion of the particle. 

   If we know the forces and is asked to determine the motion 

then we shall say that we have the direct problem of the dynamics of particle, 

and if the we know the motion and is asked to determine the system of forces 

that produces the motion then we say we have the reverse problem of the 

dynamics of particle. 

  
 

      Fig.1. 
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   There are also mixed problems in which we have to solve the 

problem in the both senses. 

 

   16.2. Dynamics of the free particle. 
 

   Suppose a free particle P by mass m acted by a system of 

concurrent forces with the resultant force F. Generally the forces are functions 

by the position, velocity of the particle and time: 

 

    
 

   We want to determine the motion of this particle supposing 

that we know all the forces acting about it. 

   We know that a free particle in space has three degrees of 

freedom that means the motion of the particle is defined by three scalar, 

independent kinematic position parameters (position parameters function of 

time), parameters which can be, for example, the three coordinates of the 

particle with respect to an arbitrary reference system. This means that for to 

determine these three parameters we need to use or three scalar equations or 

one vector equation. This kind of vector equation (or three scalar equations if 

we project on the three axes of the reference system) can be obtained using the 

theorem of the linear momentum (or the second principle of mechanics). This 

means that the theorem of the linear momentum solves entirely the problem of 

dynamics of a particle. The vector equation resulted using this theorem will be: 

 

    
 

that represents a differential vector equation by second order in r(t). The 

general solution of this equation will be: 
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where C1 and C2  are two vector integration constants which will be determined 

from the initial conditions referring to the initial position and initial velocity of 

the particle: 

 

    
 

   These initial conditions removed in the general solution and 

its derivative will allows to determine the two integration constants which will 

be resulted function of these initial conditions: 

 

    
 

   Now if we replace these constants in the general solution is 

obtained the solution of the problem (of the motion) in the given initial 

conditions: 

 

    
 

that represents the law of motion of the particle. 

   The scheme of solving the direct problem of the dynamics of 

free particle is represented in the figure 2. In this figure is given the solution in 

vector way but generally in problems we shall use a convenient reference system 

and we project the equations on the axes of the system. In this case each vector 

constant will be replaced with three scalar constants in space and with two 

scalar constants in plane (in two dimensions).  

   The integration of the differential equation of the motion (or 

of the system of differential scalar equations) is generally difficult to make and 

from this reason the integration is made numerical.  

   For the reverse problem of the dynamics of the free particle 

the solution is find easier because it will be obtained through derivation of the 

given law of motion and replacing in the differential equation results the 

resultant force acting about the particle. We can remark that in this case we 

may have a lot of solutions because we have a lot of systems of forces with the 

same resultant force. 
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      Fig.2. 

 

   16.3. Sample problems. 
 

   Problem 1. One bullet P by mass m is launched from the height H with the 

horizontal initial velocity in the gravitational field. Determine the position in which the bullet arrives 

on the surface of the ground and its velocity in the same instant knowing that the motion is performed 

without the resistance of the air. 
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   Solution. 1) As we remark we have in this problem a motion in the vertical 

plane, so having a plane motion we shall choose a convenient reference system. The reference system 

is taken so that to highlight the main proprieties of the motion. For example if the motion or the forces 

are joined to a fixed point then we shall choose a polar reference system with the origin in that point, 

or if we know the trajectory of the motion then we choose the Frenet’s system and if the forces have 

constant directions then the best choice is the Cartesian fixed system. In this problem the single force 

acting about the particle (the bullet) in the time of motion is its weight that has constant direction for 

motion of the particle with small displacement (with respect to the radius of the earth). So in this 

problem we shall choose the Cartesian fixed system. This system will have the directions: horizontal 

and vertical directions and with the origin in point O taken so that the initial position of the particle to 

be on the axis Oy. 

   2) Now we shall choose the method of study. We can choose between the three 

general theorems but because we study a motion of a free particle in two dimensions (in vertical 

plane, so we shall have two scalar independent kinematic parameters) we choose, as we have seen, the 

theorem of the linear momentum: 

 

    
 

   3) Because we took a Cartesian reference system the two scalar independent 

kinematic parameters will be the two coordinates of the particle. The expression of the acceleration in 

Cartesian coordinates is known.  

   The single force acting about the particle is the weight that has the magnitude, 

direction and sense known consequently we can determine its projections on the two axes. 

   4) We project the resulted equation from the theorem of the linear momentum 

on the two axes of the reference system: 
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   Replacing the expressions of the acceleration in Cartesian coordinates 

function to the chosen kinematic parameters and the projections of the weight on the two axes we 

obtain: 

 

    
 

that represent the system of the differential equations of the particle’s motion (after that we have 

simplified with the mass of the particle). This system is made from two differential equations by second 

order function of x and y, the two chosen kinematic parameters. 

   5) Now we shall integrate the differential equations. Because the two 

equations are independent their integration will be made separately and because the equations are 

with separable variables we shall integrate step by step: 

 

    
 

   This final result is the general solution of the system if differential equations 

which depends by four scalar integration constants. 

   6) For to find the four integration constants we shall consider the initial 

conditions referring to the position and velocity of the particle. These conditions will be projected on 

the two axes of the reference system and we have: 

 

    
 

   Replacing in the previous four relations are obtained (four algebraic 

equations) the four integration constants: 

 

    
 

   7) We shall remove these integration constants in the general solution and we 

have: 

 



 

140 

 

    
 

that represents the solution of the motion in the given initial conditions, namely these are the laws of 

motion of the particle. 

   8) Now having the laws of motion, we can determine any element of the 

particle’s motion. In this way if we consider the condition that the particle to arrive on the surface of 

the earth we can determine the instant of this fact: 

 

     
 

namely: 

 

    
 

and this replaced in the x(t) will give us the searched distance: 

 

    
   

   For to calculate the velocity in point B we replace tB in the expressions of the 

two projections of velocity: 

 

    
 

   With these we obtain the magnitude of the velocity in this point: 

 

    
 

   Problem 2. One missile P by mass m is launched from the surface of the earth 

with the initial velocity vo on a direction making the angle α with the horizontal. If the resistance of the 

air is considered proportional to the velocity of the missile (the proportionality factor is k1 = km) and 

the motion of the missile is made in vertical plane determine the height at which it will arrives, the 

position in which it will touches the ground and its velocity in the same instant. Is considered as the 

motion is made in the gravitational field and it has small scale. (Fig.4). 
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   Problem 3. One missile P by mass m is launched from the surface of the earth 

with the initial velocity vo on a direction making the angle α with the horizontal. Knowing that the 

motion is performed in gravitational field without the resistance of the air and it has large scale (it is 

considered the curvature of the earth) to determine the height that rises the missile with respect to the 

surface of the earth. It will be considered the radius of the earth equal to R (Fig.5.) 

 

 

     

 
 

 

   16.4. Dynamics of the constrained  

    particle. 
 

   Suppose a particle P by mass m having some ideal 

constraints, but keeping at least one degree of freedom (to have possibilities of 

motion). We know that the constraints eliminate degrees of freedom 

consequently the particle will have the following number of degrees of freedom: 

 

   Ndf = 3 – l 

 

where l is the number of the simple ideal constraints. The number of the scalar 

kinematic parameters which define the motion of the particle is the same as the 

number of the degrees of freedom. 
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   Using the axiom of the constraints the simple ideal 

constraints can be removed with the same number of unknown reaction forces, 

functions of time, and because this fact they are called dynamic reaction forces. 

Consequently the number of the scalar unknown introduces by the reactions is 

equal to l, so the number of the unknowns (unknown kinematic parameters and 

unknown reactions) is the same as for the free particle. 

   At the other hand after which we have removed the 

constraints with the reaction forces the particle becomes a free particle and we 

can study its motion using the theorem of the linear momentum. The difference 

by a free particle is that the unknowns are kinematic parameters and forces as 

for a mixed problem of the free particle. 

   The scalar differential equations resulted from the theorem of 

the linear momentum, projected on the axes of a convenient reference system 

contain kinematic parameters (which have to be determined for to know the 

motion of the particle) and also dynamic reactions equivalent to the constraints 

of the particle. These equations form a system of scalar differential equations 

with the same number of unknowns. 

   This system of equations is decomposed in two subsystems 

(making the corresponding substitutions):  

   - one subsystem having the same number of equations as the 

number of the degrees of freedom or the number of the kinematic parameters 

containing only the kinematic parameters as unknowns (and their derivatives 

obviously). This is the subsystem of the differential equations of the motion; 

   - one subsystem having the same number of equations as the 

number of the scalar unknown reactions from the constraints and containing 

besides of the kinematic parameters the unknown scalar reaction forces. 

   The solving of the differential equations of the motion is 

made as for the free particle but we have less number of equations and we have 

in this way the motion of the particle. After which we know the motion of the 

particle, from the second subsystem of equations we determine the dynamic 

reactions. 

   In plane problem (in two dimensions) the constrained 

particle has always one degree of freedom and one simple constraint. 

   Besides the theorem of the linear momentum in some cases 

we can use the theorem of the angular momentum or the theorem of the kinetic 

energy. In space the theorem of the angular momentum can replace the theorem 

of the linear momentum for to study entirely the motion of the particle but in two 
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dimensions (in plane motion) this theorem (theorem of the angular momentum) 

give us only one scalar differential equation so this theorem can’t be used for to 

study entirely the motion of the particle, but the equation obtained from this 

theorem may be used for to determine a part of the elements of motion.  

          
 

         Study of the motion  

       

      Fig.6. 

The theorem of the kinetic energy is a scalar theorem so it will give us only one 

scalar differential equation.  Consequently it will be used if the particle has only 

one degree of freedom and the constraints of the particle are ideal because in 
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this case it is obtained directly the differential equation of the motion. The 

advantage of to use the theorem of the kinetic energy is that we can obtain the 

first integral of the differential equation of the motion (the finite form of the 

theorem). The scheme of solving this kind of problem is represented in the figure 

number 6. 

 

  16.5. Sample problems 
 

   Problem 4.  A particle P by mass m is linked with an ideal wire without mass 

and having its length l by a fixed point O. The particle is in rest when the wire is vertically and at the 

initial instant it will have an initial horizontal velocity vo. Knowing that the motion of the particle is 

performed in vertical plane under the action of its weight without any frictions determine the 

differential equation of the motion of the particle, its velocity and the tension from the wire when this 

makes with the vertical direction an angle by 60
o
. After determine the value of the initial velocity vo as 

the particle to describe an entire circle. 

 

    

 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

              W = mg 

 

      Fig.7. 

 

   Solution. 1) The particle has one simple ideal constraint therefore it has one 

degree of freedom and we shall choose, for to study the motion one single kinematic parameter and 

this will be the angle θ. 

   2) We shall eliminate the constraint of the particle (the ideal wire by length l) 

and we shall replace with one corresponding reaction force the tension T from the wire. In this way 

the particle becomes a free particle acted by two forces: the weight W known in magnitude, direction 
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and sense and the unknown reaction force T corresponding to the removed wire. The position of this 

free particle is defined by the kinematic parameter θ(t). 

   3) For to study the motion of the particle we shall choose as reference system 

the Frenet’s system because we know the trajectory of the particle (the circle with the center in point 

O and radius l). This system has the Pτ axis tangent to the circle representing the trajectory of the 

particle and the positive sense in the increasing sense of the kinematic parameter and the axis Pν on 

the direction of the wire (the radius of the circle) and with the sense directed toward the fixed point O. 

   4) For the study we shall use the theorem of the linear momentum: 

 

    
 

or projecting on the two axes we have: 

 

    
 

   Replacing the expression of the acceleration function of the chosen parameter 

and also the projections of the forces on the two axes we obtain the differential equations: 

 

    

    

          T 

 

   5) The first equation is the differential equation of the motion of the particle 

because it does not contain the dynamic reaction force, equation that can be written also in the 

following form: 

 

    
 

   The first integral of this differential equation is: 

 

    
 

where C is one integration constant that can be determined from the initial conditions: 

 

    
 

   Replacing these conditions in the previously relation is obtained the 

integration constant: 
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   In this instant we have the angular acceleration of the particle and the 

angular velocity function of the position of the particle on the circle: 

 

    
 

   6) The second equation resulted from the theorem of the linear momentum is 

the equation that allows to determine the dynamic reaction. If we replace the expressions of the 

kinematic parameter’s derivatives is obtained for the dynamic reaction force the expression: 

 

    
 

   7) For to determine the elements of the motion in any instants of the motion we 

shall make particularly the kinematic parameter corresponding to those instants. In this way if we 

want the velocity of the particle in the instant when the wire makes the angle θ1 = 60
o
 with the vertical 

direction we shall make: 

 

    
 

   The tension in the same instant will be: 

 

    
 

   Finally for to determine the initial velocity corresponding to the complete 

circular motion of the particle we shall consider the condition as the wire to remain tensioned in the 

entire time of motion, namely the tension from the wire to remain positive for all values of the angle θ: 

 

    
 

   The magnitude of the tension being a function by the cosines it is obviously 

that the most unfavorable situation corresponds for: 

 

    
 

whence results that the minimum value of the initial velocity have to be: 
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   As we have seen if the particle has one degree of freedom the elements of the 

motion can be determined using the theorem of the kinetic energy and sometimes the theorem of the 

angular momentum. In this case the differential equation of the motion can be obtained writing under 

differential form the theorem of the kinetic energy: 

 

   dE = dL 

 

where the kinetic energy at an instant is: 

 

    
 

   The elementary work is produced by the weight only because the reaction 

forces from ideal constraints are perpendicular on the elementary displacement of the particle (that is 

tangent to the trajectory as the velocity of the particle). The elementary work of the weight is 

calculated projecting the force on the direction of the elementary displacement (on the direction of the 

tangent to the trajectory) and it will be: 

 

    
 

   The sign minus is because the elementary displacement is performed in the 

sense of the parameter θ increasing  namely in the positive sense of the axis Pτ and the projection of 

the weight is in the opposite sense. 

   Differentiating the kinetic energy and removing in the expression of the 

theorem of kinetic energy is obtained the differential equation of the motion: 

 

    
 

or dividing by dt we have the same differential equation. 

   For to calculate the velocity of the particle at the instant t1 (for θ1 = 60
o
) we 

shall use the theorem of the kinetic energy under finite form: 

 

    
    

where the two kinetic energies have the expressions: 

 

    
 

   The work of the weight (that is a conservative force) is: 
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relation in which the sign (+) corresponds to the displacement of the particle in the sense of action 

(down) of the weight and the sign (-) corresponds to the opposite sense. The Δz  is the difference of the 

quota of the two positions. We obtain: 

 

    
 

  Replacing in the expression of the theorem of kinetic energy we obtain the same value 

for the velocity of the particle as in the previously calculation. 

   For to determine the differential equation of the motion we can use also the 

theorem of the angular momentum about the fixed point O: 

 

    
 

or knowing that the angular momentum of a particle is the moment of the linear momentum with 

respect to the point O (the linear momentum has the direction and sense of the velocity of the particle 

namely tangent to the  circle representing the trajectory of the particle or perpendicular to the radius 

of this circle): 

 

    
 

   The sign (-) from the right side of the relation is due to the fact that we have 

considered the trigonometrically sense of rotation as the positive sense. Finally after derivation and 

simplifying this relation we obtain the same differential equation of the motion. 

 

   Problem 5. The particle p by mass m is launched from the point A on an 

inclined surface with the initial velocity vo. knowing that the motion on the inclined surface and also 

on the circular surface is performed without friction determine the velocities of the particle in the 

positions B, C and D and the reaction forces in the same positions. The motion of the particle is 

performed due to its weight in vertical plane. Are given: AB = 5 m, R = 1 m , vo = 4 m/s. 

    
 

       Fig.8. 
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   16.6. Dynamics of the constrained  

    particle with friction. 
 

   If the constraints of the particle are with friction the problem 

of the study of its motion is made in the same way as the problems of particles 

with ideal constraints but are added to the differential equations resulted from 

the use of the general theorems the relations corresponding to the friction on the 

supporting surface: 

 

    
 

   Because the particle is in motion the friction force has the 

maximum value. In fact if are made all the substitutions the problem is solved in 

the same way as in the previously section (constrained particle with ideal 

constraints). 

   Generally in this case we can’t use the theorem of the kinetic 

energy. 

 

   16.7. Sample problems 
 

   Problem 6. One particle P by mass m is launched from the point A with initial 

velocity vo on an inclined plane with the angle α = 30
o
 with respect to the horizontal direction. 

Knowing that the surface is rough and it has the friction coefficient with the particle μ = 0,1 determine 

the position in which the particle stops on the rough inclined surface. 

 

 
      Fig.9. 
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   Solution. 1) We have here a particle with a real constraint namely a 

constraint with friction and it has one degree of freedom. For to study the motion we shall choose as 

kinematic parameter the displacement x(t) on the direction of the inclined surface from the initial 

position to an any position on the surface. 

   2) We eliminate the constraint and it is replaced with the normal reaction 

force N and the friction force Ff having the opposite sense as the sense of motion. 

   3) For to study the motion we shall choose as reference system the Cartesian 

system with the Ax axis on the direction and the sense of motion of the particle. 

   4) We shall use the theorem of the linear momentum at which we ad the 

condition of the friction: 

 

    
 

   Projecting on the axes of the reference system we have the differential 

equations: 

 

    
 

but because the motion is performed only on the direction of the axis Ax and the only one kinematic 

parameter is x(t) we shall have: 

 

    
 

   5) Substituting is obtained the differential equation of the motion: 

 

    
 

or replacing the values results: 

 

       
 

   We shall integrate twice this equation and we obtain: 
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where C1 and C2 are two integration constants which will be determined from the initial conditions: 

 

    
 

   Removing the last two relations are obtained the constants: 

 

    
 

   Finally we have the law of motion on the inclined surface: 

 

    
 

   6) For to determine the position in which the particle stops from its motion we 

shall consider the condition that its velocity to become zero in that instant: 

 

    
 

   Removing in the law of motion we shall determine the stop position of the 

particle in its upward movement: 

 

    
 

   The particle stops in its upward movement but now we have to check if it 

remains in this position or it will slide down on the inclined surface. For this it is enough to compare  

the friction force (with opposite sense) with the component, on the direction of the inclined surface, of 

the weight, component that will pull the particle down. 

 

     
      Fig.10. 

 

   The friction force has the maximum magnitude: 
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and the component of the weight on the direction of the inclined surface will be: 

 

    
 

   Comparing the two forces and results that the particle does not stop in this 

position the particle will start to slide down. The study of this motion will be made in the same way as 

in the upward motion of the particle, but for to show an example we shall use now the Frenet’s system 

and for the kinematic parameter the space performed by the particle from the stop point on the 

direction of the inclined surface. 

   The differential equations resulted from the theorem of the linear momentum 

and the condition of friction will be: 

 

    
 

where considering the corresponding relations in this reference system and the fact that the motion is 

rectilinear (the radius of curvature is infinity) we will have: 

 

    
 

   Making the substitutions we have the differential equation of the motion: 

 

     
 

that shows us that the motion is uniformly accelerated and consequently the particle does not stop  if 

we don’t introduce other conditions (change of the trajectory, introduction of other constraints or 

forces, etc.). 

 

   Problem 7. We consider the problem 5 in which the inclined surface AB is 

rough with the friction coefficient μ = 0,15. Considering all the other elements of the motion 

unchanged determine the same elements of the problem. 
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Chapter 17. Dynamics of the rigid body. 

 

   17.1. Introduction. 
 

   This chapter will be devoted to the study of motion of a rigid 

body under the action of forces and also considering the mass of it and the 

distribution of its mass in the body. As for the particle we shall study first the 

motion of the free rigid body and after the constrained body. 

   In this chapter we shall study mainly the plane motions of the 

body. 

   We have also in the previously chapter three kinds of 

problems: direct problem in which are known the forces acting about the body 

and is asked to determine its motion, the reverse problem in which we know the 

motion and is asked to determine the forces which produce that motion, and 

obviously the mixed problem. 

 

   17.2. Dynamics of the free rigid body. 
 

   One free rigid body has six degrees of freedom in space (and 

only three degrees of freedom in plane). Consequently the motion of the body 

will be defined by six scalar independent kinematic parameters (only three in 

plane. So if are known the forces which act about the body are necessary six 

scalar independent equations for to define the six parameters of the motion. The 

six relations can be obtained from the two vector general theorems: the theorem 

of the linear momentum and the theorem of the angular momentum.  
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   Projecting these two theorems on the axes of a convenient 

reference system we obtain the six scalar equations (or three in plan).  

   Being a free body it is more advantageous to use the two 

theorems considering the motion about the mass center of the body, namely to 

use the theorem of the motion of the mass center and the theorem of the angular 

momentum about the mass center: 

 

    
 

   Because the angular momentum with respect to the mass 

center is calculated as the mass center is a fixed point results that this angular 

momentum will be calculated for a rotation motion about the mass center. 

   To consider a plane body performing a motion in its plane 

about its mass center, so performing a rotation motion about that point 

considered as a fixed point. The angular momentum is a vector perpendicular 

on the plan containing the velocities and the fixed point (so perpendicular on 

plane of the motion). From the definition of the angular momentum about a 

point we have: 

 

    
 

   We remark the fact that if the angular momentum is 

calculated for a body in rotation motion about a fixed point O then we have 

obviously: 

 

    
 

   In this way for a free rigid body performing a motion in plane 

the differential equations will be in Cartesian reference system: 
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where θ is the angular parameter of the motion of the body. 

 

   
     

      Fig.1. 

 

   Integrating these differential equations is obtained the 

general solution function of six scalar integration constants which will be 
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calculated from the initial conditions. These constants replaced in the general 

solution we find the solution in the initial conditions so we have the laws of 

motion of the free rigid body.  

   As we can remark the scheme of solving is identical to the 

scheme for the free particle and the two vector general theorems solve entirely 

the dynamics of the free rigid body. 

   Sometimes one of the scalar differential equations of the 

motion resulted from these two vector theorems can be removed with the 

equation resulted from the theorem of the kinetic energy. In plane problems the 

removed equation is that from the theorem of the angular momentum. The 

advantage of to use the theorem of the kinetic energy is that we can write this 

theorem under the finite form so we obtain the differential equation integrated 

once. 

   In the theorem of the kinetic energy we use the expression of 

the kinetic energy in the three particular motions (in plane) so we give here the 

expressions of them. We start from the theorem of Koenig for kinetic energy: 

 

    
 

where E’ is the kinetic energy of the body as it perform a rotation motion about 

its mass center considered as a fixed point. Consequently we shall calculate first 

the expression of the kinetic energy in rotation about the mass center: 

 

                

 

 

 

   Now we can give the expressions of the kinetic energy in the 

three particular motions: 

 In translation motion (ω = 0) we have: 
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 In rotation motion about a fixed point O the expression 

is obtained removing the mass center as fixed point with the point O: 

 

    
 

 In plane motion we shall have: 

 

     
 

    17.3. Sample problems 
 

   Problem 1. One disc having the mass M and the radius R is launched in 

vertical plane with the initial velocity of the mass center vo on the direction inclined with the angle α 

with respect to the horizontal direction and is produced an angular velocity ωo in the clockwise sense. 

Knowing that the motion is performed in vertical plane in the gravitational field without the resistance 

of the air study the motion of the disc. 

 

   

 

 

 

 

 

 

        W = Mg 

 

 

 

 

 

 

 

 

       Fig.2. 

 

   Solution. 1) In the time of motion the disc does not come in contact with any 

other bodies so it is a free body. Being a motion in vertical plane the body has three degrees of 

freedom. We choose for to study the motion a Cartesian reference system with one horizontal axis and 

one vertically and with the origin in the contact point between the disc and the ground in the initial 

instant. We shall choose as kinematic parameters the two coordinates of the mass center with respect 
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to the chosen reference system and the rotation of the disc, rotation measured between the rotated 

diameter AB and the vertical direction (its initial position AoBo). 

   2) About the body acts only one force in the time of motion namely its weight 

W having as point of application the center of the disc. 

   3) For to study the motion we shall use the two theorems: theorem of the 

linear momentum under the form of the theorem of motion of the mass center and the theorem of the 

angular momentum about the mass center projected on the axes of the chosen reference system: 

 

    
 

or removing with the elements of the problem we have: 

 

    
 

   After the simplification the three differential equations of the motion are: 

 

    
 

   4) Integrate twice each differential equation and we obtain the general 

solution depending by six scalar constants: 

 

    
 

   5) The six integration constants will be determined from the initial conditions 

corresponding to the initial position and initial velocities: 

 

    

   

 

 

   Removing in the previously relations we have the six constants: 
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   7) We remove these six constants in the general solution and we have the laws 

of motion in the initial conditions: 

 

    
 

   8) From the first two equations we remark that the mass center moves on a 

parabola by the equation: 

 

    
 

   In the same time the disc rotates, in clockwise sense, with the constant angular 

velocity ωo. 

 

   Problem 2. O rod AB by length 2l that in the initial instant was horizontally is 

thrown in vertical plane giving to its ends the initial velocities vAo = 14 m/s  and vBo = 10 m/s on the 

directions represented in the figure 3. Knowing that the motion is made in the gravitational field 

without the resistance of the air and also that l = 0,5 m determine the velocity of the end B at 2 s from 

the beginning of the motion. 

 

  
 

      Fig.3. 
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   17.4. Dynamics of the constrained  

    rigid body. 
 

   If the rigid body has constraints (which suppress degrees of 

freedom) the number of the degrees of freedom and also the number of the 

scalar independent kinematic parameters will be: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Study of the motion 

 

      Fig.4. 
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   Ndf = 6 - Nsc 

in space and: 

 

   Ndf = 3 – Nsc  

 

in plane and where we have marked Nsc the number of the simple constraints 

equivalent to the constraints of the body. 

   Because the constraints can be removed, using the axiom of 

constraints, with reaction forces which introduce in computation the same 

number of the scalar unknown as the number of the degrees of freedom 

eliminated by them, the total number of the unknown remains the same as for a 

free rigid body. This means that after which we used the axiom of the constraints 

the body can be studied in the same way as a free body namely using the two 

vector theorems. The scheme of solving is the same as for the constrained 

particle but now the difference is that we have more equations. 

   The theorem of the kinetic energy, in plane problems, is used 

efficiently when the body has one degree of freedom the constraints are 

frictionless or are with friction but the body performs rolling motion without 

sliding. In these cases the differential equation resulted from this theorem give 

us the differential equation of the motion and the advantage is that this can be 

obtained in differential form or in integrated form. 

   We make a remark that if from the system of differential 

equations of the motion we can solve independently one or more equations then 

their solutions can be considered as constraints and in this way the number of 

the degrees of freedom will be less the problem should be solved in another way. 

 

   17.5. Sample problems. 
 

   Problem 3. One rectilinear bar AB by length l and mass M has a hinged 

support in the point O. The motion of the bar is due to its weight and its horizontal initial position. 

Knowing that the motion is performed in vertical plane without the resistance of the air and the 

motion starts from rest determine the differential equation of the motion and after calculate the 

velocity of the point A and the reaction forces from the point O in the instant when the bar is 

vertically. 

 

   Solution. 1) The body has one degree of freedom (one hinged support 

eliminate two degrees of freedom) consequently for the study of the motion we shall choose as angular 

parameter θ(t) measured between the direction of the bar at one any instant and its initial position. 
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                    W = Mg 

 

       Fig.5. 

 

   2) We remove the hinged support from the point O with two components of 

reaction forces on the directions of the axes of a convenient reference system. The choice of the 

reference system is made function of the characteristics of the motion. Here the best choice is to take a 

polar reference system with the origin in the fixed point O, the radial axis Oρ on the direction of the 

bar and passing through the mass center and the second axis perpendicular on the bar. (If we choose 

a Cartesian fixed reference system with horizontal and vertical axes then the components of the 

reactions in point O will be taken on these two directions. Also we can consider a Frenet’s system with 

the origin in point C – the mass center – because we know the trajectory of this point). 

   3) For to study the motion and to determine the dynamic reaction forces we 

shall use the two theorems: theorem of linear momentum under the form of the theorem of motion of 

the mass center and the theorem of the angular momentum about the fixed point O. We prefer the 

theorem of the angular momentum about the fixed point O because the two unknown reaction forces 

are passing through this point and in this way they have not moment about this point resulting 

therefore the directly the differential equation of the motion. 

 

    
 

   4) Projecting on the two axes we have: 

 

    
 

or in polar coordinates and knowing that moment of inertia of the bar with respect to the point O is 

equal to: 
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we obtain the equations: 

 

    
 

   The sign (-) in front of the second and the third equation is because the 

parameter θ is considered with negative variation (in an right hand system the clockwise rotation 

sense is considered negative). Removing the position of the mass center (that is constant) and 

performing the projections on the two axes we have the differential equations: 

 

    
 

   5) The last equation is the differential equation of the motion of the body: 

 

    
 

   Integrating this equation results: 

 

    
 

   The integration constant results from the initial conditions namely: 
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   We can’t integrate analytical this differential equation but as we can see it is  

enough to know the angular acceleration and velocity function of the position of the bar. With these 

two quantities we can determine all the elements of the motion for different positions of the bar. 

   6) For to calculate the velocity of the point A in the vertical position of the bar 

we can write: 

 

    
 

   7) The two reaction forces are found from the first two differential equations: 

 

    
 

   The using of the theorem of kinetic energy in this case is optimal in place of 

the theorem of angular momentum because the body has one degree of freedom and the hinge is 

frictionless. If is used the theorem under differential form we obtain the differential equation of the 

motion by second order and under finite form we obtain the integral of this equation. 

   Theorem of the kinetic energy under differential form is: 

 

   dE = dL 

 

where the kinetic energy is corresponding to the body in rotation: 

 

    
 

   The elementary work can be calculated from one of the ways: for example 

projecting the force on the direction of the elementary displacement and knowing that only the active 

forces will have work (the reaction forces from ideal constraints does not produce work because these 

reaction forces are perpendicular on the elementary displacements or they are acting in fixed points 

as in a hinged support): 

 

    
 

   Differentiating the kinetic energy and replacing in the expression of the 

theorem  we shall obtain the same differential equation of the motion of the bar. 

   For to calculate the velocity of the point AA in vertical position of the bar we 

shall use the same theorem in finite form: 
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   E1 - Eo = Lo1 

 

where the kinetic energy in the initial instant is zero because the body starts its motion from rest and 

the kinetic energy in the vertical position of the bar can be expressed function of the velocity of the 

point A in that position: 

 

    
 

   The work of the weight between the two positions of the body is calculated 

knowing that the weight is a conservative force and the corresponding force function is: 

        

        W  

 

relation in which the sign (+) corresponds to the displacement in the sense of the weight of the point of 

application of the weight and Δy is the difference  of the quota between the two positions. 

Consequently we have: 

 

    
 

   Removing in the expression of the theorem we obtain the value of the velocity 

of the point A. 

 

   Problem 4. The bar AB by length lAB = 2l and mass M is in the initial instant 

in vertical position in rest (non stable equilibrium position) with the end A on a horizontal frictionless 

surface. At an instant (the initial instant of the motion) the bar becomes unbalanced and it begins to 

move in vertical plane under the action of its weight. Determine the velocity of the point A when the 

bar makes  45
o 

  with the vertical direction and also the reaction force in the same point in the same 

instant. 

 

   Solution. 1) The bar has two degrees of freedom because it has only a simple 

support in point A that removes one degree of freedom. We shall choose two scalar kinematic 

parameters for to study the motion. Considering the bar in one any position, the bar has obviously o 

rotation and because the end A slides on the horizontal surface we shall consider also a displacement 

in one side of the mass center. In this way the two kinematic parameters will be: the angel θ with 

which the bar rotates with respect to its initial position and the coordinate xC of the mass center with 

respect to a fixed Cartesian reference system with its Oy axis collinear with the initial position of the 

bar. We remark that the coordinate yC of the mass center is not an independent parameter, because it 

can be expressed function of the angular parameter: 

 

   yC = l . cosθ 
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      Fig.6. 

 

   2) We remove the support from the point A and we replaced with a normal 

reaction force NA and representing the weight of the bar is obtained the scheme of the free body for an 

any position of the bar. 

   3) We shall use for to study of motion the theorem of linear momentum (under 

the form of the theorem of motion of the mass center) and the theorem of the angular momentum 

(about the mass center): 

 

    
 

or projecting on the two axes: 

 

    
 

   Replacing now function of the kinematic parameters and projecting the forces 

we have: 
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   4) Substituting the reaction force we separate the two equations as the 

subsystem of the differential equations of the motion (corresponding to the two degrees of freedom): 

 

    
 

   5) We remark that these two differential equations are independent and the 

first equation can be integrated resulting the general solution of this equation: 

 

   xC(t) = C1 t + C2 

 

   The integration constants will be determined from the initial conditions which 

are: 

 

    
 

because the motion starts from vertical position and rest (there are not initial impulse), the bar being 

in an unstable equilibrium position any unbalancing state will goes to the motion of the bar. 

   Results finally the solution of the first differential equation in the initial 

conditions: 

 

   xC(t) = 0 

 

   This solution shows us that the bar moves so that its mass center of mass falls 

down on the vertical line. At the other hand this fact can be remarked considering the preservation 

property of the linear momentum. Remaking that the bar is acted by only two vertical forces, their 

projections on the horizontal direction are zero so the linear momentum on this direction preserves. 

But the linear momentum of the body is the linear momentum of the mass center that at initial instant 

is equal to zero results that the horizontal velocity of the mass center preserves. The initial velocity of 

the mass center is zero so the mass center will have all the time of motion the same horizontal velocity. 

The mass center has vertical velocity and the velocity is tangent to the trajectory of the point results 

that the mass center moves on vertically.  

    The second differential equation is difficult to integrate because we can’t 

remark the way in which we can integrate. But we may use the following artifice: because from the 

two differential equations one is integrated and we have its solution that is the law of motion of the 

mass center this result can be used as a constraint in the motion of the body. Using the fact that the 

mass center moves on vertical direction (the real state of the body) the bar can be considered in 

motion with one degree of freedom and the constraints are frictionless, so we can use the theorem of 

the kinetic energy in finite form resulting the integral of the second differential equation. 

   The expression of the theorem is: 

 

   E(θ) – Eo = Lot 

 



 

168 

 

   The kinetic energy of the bar at the initial instant is equal to zero (the bar 

starts from rest) and at an instant of the motion it has the expression: 

 

    
 

because the bar performs a plane motion. In this relation the elements are: 

 

    
 

 

   The work calculated for the weight of the bar (the normal reaction force being 

perpendicular on the direction of the displacement in the point of the support has not work) is: 

 

    
 

   Now if we replace in the expression of the theorem and if we perform the 

necessary calculations then we obtain: 

 

    
 

   6) Having the expression of the angular velocity of the bar we can determine 

the velocity of the point A: 

 

    
 

or removing for the given position we shall obtain: 

 

    
 

   7) The reaction force from the point A is found from the second differential 

equation: 
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and after we replace the angular velocity corresponding to the given position we have: 

 

    
 

   Problem 5. The bar AB moves so that its ends describe frictionless two 

straight lines (fig.7.): one horizontal and the other vertical. Knowing that the bar has the length lAB = 

2l, its mass MAB = 3M and also that the motion starts from vertical position and from rest determine 

the position in which the bar loses its vertical support. 

 

   Problem 6. The bar AB by length 2l and mass 2M is joined with two ideal 

cables by lengths l by two fixed points (Fig.8.). If the bar falls from the horizontal position from rest 

determine the velocity of the point A when the cables are vertically and the tensions from the cables  in 

the same instant. 

 

 
 

  Fig.7.       Fig.8. 
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Chapter 18. Dynamics of the systems 

 

   18.1. Introduction. 
 

   In this chapter we propose to study the motion of the 

mechanical systems (of particles or of bodies). As we know a system is an 

ensemble of particles or rigid bodies between which there are interactions. 

Namely the motion of a particle or of a body from the system is influenced by the 

motions of the other particles or bodies from the system. 

   This propriety of the systems, namely to have always internal 

connections,  makes as the number of the degrees of freedom to be less than the 

number of the degrees of freedom of the particles or bodies from the system 

taken separate. 

   We know that the number of the degrees of freedom is equal 

to the number of the scalar independent kinematic parameters which define the 

motion of the system. For a plane system the number of the degrees of freedom 

will be: 

 

   Ndf = 3Nb + Np  - (3Nfs + Nsh + Nss + Nr) 

 

where Nb is the number of bodies, Np is the number of particles, Nfs is the 

number of fixed supports, Nsh is the number of the simple hinges (internal and 

external), Nss is the number of the simple supports and the internal simple 

connections and Nr is the number of the restrictions. 

   We know also that the internal forces from the internal 

connections are pares, equals and with opposite senses (the principle of the 

action and the reaction): 
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   This propriety of the internal forces makes that the sum of all 

these forces to be equal to zero and also the resultant moment of these forces 

about an any point is equal to zero (the equivalent force - couple system of all 

internal forces is equal to zero): 

 

    
 

   Because of this propriety of the internal forces the two vector 

general theorems (theorem of the linear momentum and the theorem of the 

angular momentum) if they are used for the entire system then will have the 

expressions: 

 

    
 

namely are considered only the external forces (given and reactions). 

   Using the propriety of the linear momentum to be a sum of 

the linear momentums of the components of the system and the theorem of 

Koenig for the angular momentum we can write these two theorems under the 

following form: 
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   ΣMkaCk = ΣFiext 

    

            k 

 

where we have marked Ck the mass centers of the body K from the system. 

   In motions in two dimensions (in plane) the derivative with 

respect to time of the angular momentum calculated about the mass center of the 

body is (as we have seen in the previous section): 

 

    
 

   At the other hand the theorem of the kinetic energy has the 

expression: 

 

   dE = dLext + dLint 

 

where dLint is the elementary work of the internal forces: 

 

    
 

and dri represent the elementary displacements of the points of application of 

the internal forces. 

   But if the internal connections of the system are “rigid” 

connections (namely the relative displacements of the bodies or the particles do 

not produce), or the connections are ideals (frictionless), or are with friction but 

the bodies can perform only rolling motions without sliding (in this case the 

instantaneous relative displacement in the connection point is zero) then the 

work of the internal forces is zero: 

 

   dLint = 0 

 

   18.2. Dynamics of the systems 
 

   For the study of the motion of a system of bodies of particles, 

generally, the use of the two vector theorems considering the entire system (for 



 

173 

 

to eliminate from the computation of the internal forces) is not enough. This fact 

results easy from a simple example. Considering a plane system with two bodies 

with one simple internal connection and without external constraints results that 

the system will have five degrees of freedom (3 x 2 bodies – 1) but the two 

theorems in two dimensions for the entire system give us only three scalar 

independent equations. 

   This fact makes that: for to study the motion of a system, 

generally, we have to divide the system in the component bodies or particles. In 

this way the solving of the problem of a system will passes the following steps: 

 1) We determine the number of the degrees of freedom 

and corresponding we choose the independent scalar kinematic parameters. 

Here we remark that: we shall consider only the active degrees of freedom. The 

number of the degrees of freedom can be determined or using the previous 

relation, or considering the simple motions (which are produced with one 

degree of freedom) and blocking these motions until the entire system is blocked 

we number of the introduced blockages. Finally the number of the blockages 

introduced for to stop the motion of the entire system is equal to the number of 

the degrees of freedom. 

   Now we shall choose the reference system that will highlights 

the main proprieties of the system or of the forces acting about it. 

 2) We make a kinematic study of the system expressing 

function of the kinematic parameters the accelerations of the particles , the 

accelerations of the mass centers of the bodies and the angular accelerations of 

them. 

 3) The system is divided in the component particles and 

bodies and all the constraints and internal connections are removed with the 

equivalent reaction forces and internal forces. Also we evaluate and represent 

the active (given) forces. Are obtained the free body diagrams (as in statics). 

 4) For each body or particle we write the differential 

equations resulted from the two general theorems projected on the axes of the 

reference system. We remark that for each body or each particle we can choose 

another convenient reference system. Results a system of scalar differential 

equations. 

 5) Using substitutions we divide the system of the 

differential equations in two subsystems: the first subsystem having the same 

number of equations as the number of the degrees of freedom and containing 
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only the kinematic parameters as unknowns (and obviously their derivatives) 

and the second subsystem having the same number of equations as the number 

of the scalar unknown reaction or internal forces containing besides the 

kinematic parameters also the scalar unknown reaction and internal forces. The 

first subsystem is the subsystem of the differential equations of the motion. 

 6) We solve the subsystem of the differential equations 

of the motion integrating these equations, results the general solution, 

determining the integration constants from the initial conditions and finally 

resulting the laws of motion of the system. 

 7) We study the motion of the system determining the 

elements of the motion (velocities, accelerations, displacements, trajectories). 

 8) We determine the dynamic reaction forces and 

internal forces corresponding to the external constraints and internal 

connections.  

   For the systems which have one degree of freedom and the 

constraints and connections are frictionless (ideal connections) the motion can 

be studied with the theorem of the kinetic energy. 

   As we can see the scheme of solving these kinds of problems 

is the same as for a constrained rigid body or particle. 

 

   18.3. Sample problems. 
 

   Problem 1. Two weights P and Q by the masses 2m and MM are joined 

between them with an ideal wire (without mass) that passes over a pulley with the center in the fixed 

point O and mass 6M and radius R. Knowing that at the initial instant the two weights are in rest 

hanging at the ends of the vertical wires and also the wire does not slides on the pulley determine the 

acceleration, velocity and displacement of the weight P after two seconds from the beginning of the 

motion of the system. We shall consider that in the time of the motion the wires remain vertically. 

Determine also the tensions from the wires and the reaction forces from the hinge O. 

 

   Solution. 1) The system has one degree of freedom because it is made from 

one body (the pulley) and two particles (the two weights P and Q), has one hinged support in O, two 

ideal wires (two simple internal connections) and two restrictions (the two wires remain vertically in 

the time of motion so the two particles P and Q have not horizontal displacements): 

 

   Ndf = 3 x 1 + 2 x 2 – (2 x 1 + 2 + 2) = 1 

 

   The number of the degrees of freedom can be determined also in the following 

way: we know that the rotation motion of a body in plane is made with one degree of freedom 

consequently if we block this motion then is blocked only one degree of freedom. So if we have 
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blocked the rotation motion of the pulley and knowing that the two weights can move only on vertical 

direction then in fact we have blocked the entire motion of the system, therefore the system has only 

one degree of freedom. 

 

 

 
 

   We choose as kinematic parameter of the system’s motion the angle θ(t) with 

which rotates the pulley (the angle between one diameter of the disc and one fixed direction for 

example the horizontal). 

   Because we have not any important propriety requiring to choose a certain 

reference system we shall consider the Cartesian system with the Ox axis horizontal and Oy vertical. 

   2) We shall make the kinematic analysis using the velocities because we know 

very well haw to obtain the distribution of velocities in a system with one degree of freedom. We start 

from the body with known motion namely from the pulley that has rotation motion about its center at 

which we have defined the kinematic parameter. 

   The disc performing a rotation motion with the kinematic parameter θ(t) will 

have the following angular velocity: 
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having the same rotation sense as the sense of variation of the considered parameter. The first 

derivative with respect to time of the angular velocity is the angular acceleration: 

 

    
 

with the same sense of rotation as the angular velocity (because the derivative does not changed the 

sign) 

   The fixed point O being the mass center of the pulley has obviously zero 

acceleration: 

 

   aO = 0 

 

   The motion is transmitted to the two particles through the connections (here 

the two vertical wires). The ideal wire has the propriety that transmits the velocity with the same 

intensity direction and sense from one end to the other end. This means that: 

 

     
 

   But these velocities can be calculated from the rotation motion of the disc: 

 

    
 

perpendicular to the OA, or OB and with the same rotation sense  about the center O as the angular 

velocity of the disc. 

   We take these velocities and we represent them in the two particles P and Q. 

Because these particles perform rectilinear motions their accelerations will be: 

 

    
 

keeping the directions and the senses of the velocities from which they are coming. 

   3) We shall consider the system divided in the component bodies. Each body 

will be loaded with the two kinds of forces: given forces (here the weights, vertically and directed 

down), the reaction forces from the external constraints (here the hinged support from O that is 

replaced with the two components) and the internal forces from the internal connections (here the 

wires AP and BQ which are replaced with pares of tensions equals and with opposite senses). The 

scheme of the free body diagrams is the same as in statics and it is represented in the figure 2.c. 

   4) The solving will be made using the two theorems: for all particles we shall 

use only the theorem of the linear momentum and for all bodies we shall use the theorem of the 

motion of mass center and the theorem of angular momentum about the mass center. We shall project 

these theorems on the directions of the two axes and we find: 

   -for the particle P: 
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   -for the particle Q: 

 

    
 

   -for the pulley: 

 

    
 

or removing the accelerations with the expressions function of the kinematic parameter and 

calculating the projections of the forces and the moments of the forces we shall obtain: 

 

    
 

that represents one system of  five differential equations. 

   5) From these five equations we shall separate one equation representing the 

differential equation of the motion containing only the kinematic parameter and its derivatives.  Also 

we have other four equations used for to determine the reaction forces and internal forces (VO, HO, 

T1, T2). 

   From the first equation of the system we express the tension T1: 

 

    
 

from the second equation the tension T2: 

 

    
 

and we shall introduce in the last equation (where first we have simplified with R): 
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or after which we reduce and simplify the terms: 

 

    
 

that is the differential equation of the motion of the system. 

   6) Integrating this equation we obtain: 

 

    
 

   The two integration constants will be obtained from the initial conditions: 

 

    
 

and results: 

 

   C1 = C2 = 0 

 

meaning that the law of motion of the system will be: 

 

    
 

   7) Knowing the law of motion now it is easy to determine the instantaneous 

velocity of the particle P at the given instant: 

 

    
 

   The displacement of the particle in two seconds from the beginning of the 

motion will be: 

 

    
 

   8) The internal forces (the tensions from wires) and the reaction forces  will 

be resulted from the remained four equations: 
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   Remark 1. As we have seen before in any situations we can use the two 

theorems for the entire system. Here because the particularities of the system this is possible (Obvious 

without to determine the tensions from the wires, which will be determined after what we remove them 

with the tensions). First we use the theorem of the linear momentum: 

 

    
 

and after the theorem of the angular momentum about the fixed point O: 

 

    
 

   Projecting on the two axes and calculating the moments we have: 

 

    
 

   If we remove the accelerations function of the kinematic parameters the last 

equation is the differential equation of the motion and from the first two equations we can determine 

the reaction forces from the hinge O. 

   Remark 2. Because the system has only one degree of freedom and the 

connections and constraints are frictionless the differential equation of the motion can be obtained 

using the theorem of the kinetic energy. In this case the kinematic analysis uses only the velocities, not 

the accelerations. 

   If we want the differential equation by second order we use the theorem under 

the differential form: 

 

   dE = dL 

 

where: 

 

    
    

   For the elementary work of the active forces (given forces) we have: 

 

    
 

in which the calculation of the displacements is made knowing that: 
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   Replacing in the theorem function of the kinematic parameter we obtain the 

same differential equation of the motion. 

 

   Problem 2. Calculate the velocity of the piston B when it arrives at the half of 

the distance between the point O and its initial position corresponding to instant when the rod and the 

crank are horizontal. Are known: lOA = lAB = 2l, MOA = MAB = 3M, MB = 2M, P = 4Mg. 

 

   
 

   Problem 3.  Calculate the acceleration of the particle P and the tensions from 

the wires for the system from the figure 4. In the time of motion the wires remain vertically. 

 

     
 

   Problem 4. Determine the differential equations of the motion for the system 

represented in the figure 5. Are known:  the mass of the collar mP = 2M, the mass of the bar MPA = 

6M, the length of the bar lPA = 2l, the elastic constant of the spring k and the initial length of the 
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spring lo. The collar moves on the horizontal surface without friction and the bar oscillates in vertical 

plane. 

 

     
 

   Problem 5. Calculate the velocity of the point A when the bar O1A ia vertically 

knowing that the motion of the system is performed in vertical plane. The motion starts from the 

horizontal position of the bar O1A and from rest. 
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ANALYTICAL MECHANICS 

 

Chapter 19. Generalities. 

 

   19.1. Introduction. 
 

   The theoretical mechanics studies the motion of a mechanical 

system (in particular the equilibrium) starting from the fundamental principles 

of Newton. Based on these principles in theoretical mechanics we develop the 

general theorems (in particular the conditions of equilibrium) which are used 

for to study the motions of the mechanical systems. 

   The major deficiency of the using of these theorems is that the 

reaction forces or the internal forces corresponding to the external constraints 

and the internal connections are unknowns (sometimes the internal forces can 

be eliminated by the general theorems) and make difficult to solve the problems 

of the motion from the differential equations. 

   Another deficiency of the using of the general theorems is 

that the differential equations are very different one to other (we can use three 

different theorems the equations are projections of forces, or moments about 

different points, etc.).   

   These two deficiencies will be eliminated in this chapter in 

the analytical mechanics. Therefore this part of the mechanics will have as 

purpose to eliminate the reaction forces and internal forces from the equations 

of motion and to obtain the same kinds of equations (the equations to have the 

same form with the same number of terms and the term to obtain in the same 

way). 
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   The analytical mechanics for to achieves these purposes will 

develop its methods starting from the other principles as from the theoretical 

mechanics (but using these principles for to define the state of the mechanical 

system). Because these principles are mathematical principles this mechanics is 

called analytical mechanics. In fact in this part we will change the order of the 

study. In theoretical mechanics first we have defined the state of the system 

using the fundamental principles and in the second step we have used the 

mathematical tools for to obtain the motion of the mechanical system. In the 

analytical mechanics first we will define analytical principles and in the second 

step we shall use the fundamental principles for to find the motion of the 

mechanical system. 

   The analytical principles used in this part are divided in two 

categories: differential principles which study the mechanical motion at an 

instant of the motion in an infinitesimal interval of time, and integral principles 

which study the motion in a finite interval of time. 

   The differential principles are: D’Alembert’s principle, the 

principle of virtual work and principle of Gauss. 

   The integral principles are: Hamilton’s principle and 

Maupertui’s principle. 

   From these five principles we shall study in this part of the 

mechanics only two principles: D’Alambert’s principle and principle of the 

virtual work.  

   Because these two principles are differential principles and 

because in this part we shall use a few new notions we have to make some 

specifications about the constraints, about the positions and the state of the 

mechanical system and about the displacements in the conditions of  the 

differential principles. 

 

   19.2. Constraints. 
 

   In the vector mechanics (the theoretical mechanics) the 

constraints were classified about more criteria. We remind that the constraints 

in theoretical mechanics are: simple constraints (removing one degree of 

freedom) or multiple (removing more degrees of freedom), unilateral 

(eliminating the displacement in one sense of a direction) or bilateral 

(eliminating the possibilities of displacements in the both senses of a direction) 
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and also they can be ideal constraints (punctual and frictionless) or real (with 

friction). 

   In the analytical mechanics all the constraints will be 

considered simple, bilateral and ideal constraints. We can see that the 

generality of the problem is not affected because: the multiple constraints can 

be considered as combinations of the simple constraints, then one unilateral 

constraint how long is working can be considered as a bilateral constraint so it 

or is working as a bilateral constraint or does not exist, and finally if the 

constraint is real (has friction force) the friction force can be considered as a 

given force and in this way the constraint can be considered as an ideal 

constraint.  

   Results that in the analytical mechanics we have to make 

another classification of the constraints. This classification will be made 

function of the analytical behavior of them.  

   Thus one simple, bilateral and ideal constraint can be 

expressed under finite form (in Cartesian reference system) as a relation 

between the coordinates of the connection point (as in statics) and represents 

the condition that the point of connection to be located on a surface (the 

equation of the constraint): 

 

   f(x,y,z) = 0 

 

   Under differential form the constraint will have the following 

expression: 

 

    
 

representing the differential of the previous relation and the condition as the 

infinitesimal displacement on the direction of the normal direction to the surface 

that is the simple constraint. 

   Without going into details we shall give a new classification 

of the constraints in analytical mechanics giving examples with the finite form of 

the constraint. 

   Besides the coordinates of the connection point in the 

expression of a constraint may interfere the projections of the velocities and 
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also the parameter time. This is because the constraint can be deformable and 

in motion. We remark that in statics we have used fixed and “rigid” constraints. 

   Considering all these the constraint can be: holonomy 

constraint if the expression does not depend directly by time: 

 

           or 

 

 and non-holonomy constraint if the expression depends directly to the time: 

 

           or  

 

   The constraints also can be classified in: scleronomy 

constraint if the expression of it does not contain the components of the velocity: 

 

         or     

 

and reonomy constraint if the expression depends by the components of the 

velocity: 

 

        or  

 

   In this part of the mechanics we shall use only holonomy and 

scleronomy constraints namely the “rigid” constraints, therefore the same 

constraints as in statics. 

 

   19.3. Generalized coordinates,   

    generalized velocities. 
 

   For to explain these new notions we shall consider a system 

of n particles Pi (I = 1,…,n). If the system is made from free particles then the 

position of the system, with respect to a reference system, for example the 

Cartesian system, will be defined by the coordinates: 
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   Consequently the position of the system in any instant of the 

motion is defined by 3n independent coordinates, generally by 3n scalar 

independent parameters (because we can use other system of reference or other 

position parameters). In the same time the number of the degrees of freedom is 

also 3n. 

   Suppose now that the system has l simple ideal constraints or 

connections. As we know each simple connection or constraint eliminates one 

degree of freedom consequently eliminates one independent scalar position 

parameter from the definition of the position of the system (through the relation 

that we write between the coordinates). This means that the number of the 

scalar independent position parameters which define the position of the system 

(as the number of the degrees of freedom) will be: 

 

   s = 3n – l 

 

   The s independent position parameters will be renamed and 

renumbered and we can write: 

 

    
 

   These s scalar independent position parameters are called 

generalized coordinates. These coordinates can have different natures (length 

or angle). 

   Remark. If we imagine a fictional space with s dimensions, then the s 

generalized coordinates can be considered as defining the position of one fictional free 

particle in this space. We remark that if we can define the proprieties of this free particle then 

we have eliminated from the study the reaction forces from the constraints and the internal 

forces from the connections. This space is called configurations space. 

   With this marks the position of any particle from the 

mechanical system will be defined in the following way: 

 

    
 

   By analogy with the knowledge from kinematics the first 

derivatives with respect to time of the generalized coordinates are called 

generalized velocities: 
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   Using these velocities the velocity of a particle from the 

system will be: 

 

    
 

   19.4. Displacements 
 

   Here we shall show a few elements joined to the 

displacements considered in analytical mechanics. We make the remark that due 

to we shall study only the first two differential principles in this part of the 

mechanics we shall refer only about the infinitesimal displacements. Also we 

shall consider only holonomy and scleronomy constraints. 

   The displacements will be explained for a particle but after 

will be extended for the rigid body and the systems of particles and bodies. 

   In the analytical mechanics we shall use three kinds of 

displacements: possible displacements, real displacements and virtual 

displacements. 

 

    
 

   The possible displacement is a change of the position of the 

particle that might produce in any conditions. For example if about a particle 

should act one any force in a short interval of time then the particle modifies its 

position. This change depends by the force, or the system of forces, and the 
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interval of time. It is obviously that we have an infinity possibilities to produce 

the displacement of the particle. The common characteristics of all possible 

displacements are that they are infinitesimal and compatibles with the 

constraints of the particle. This last propriety means that all the possible 

displacements are situated in the tangent plan to the surface representing the 

simple constraint. 

   The real displacement is the displacement (here 

infinitesimal) performed by the particle in an interval of time dt under the action 

of a given force (or system of forces). 

   This displacement is one of the possible displacements and it 

has the following proprieties: 

- it is infinitesimal; 

- it is compatible with the constraints; 

- it is produced by forces; 

- it is produced in time. 

   The real displacement is marked dr and it is a variation of 

the position vector of the particle in the interval of time dt. From mathematical 

point of view this displacement is the differential of the position vector. 

In Cartesian reference system this displacement has the expression: 

 

    
 

   If the position vector is expressed function of the generalized 

coordinates (for holonomy and scleronomy constraints) then the expression of 

the real displacement of any particle from a mechanical system will be: 

 

    
    

    The virtual displacement is an imaginary displacement. 

This displacement is considered with the following proprieties: 

- it is infinitesimal; 

- it is compatible with the constraints and connections; 

- it is instantaneous that is not produced in time; 

- it is not produced by forces, it is imaginary; 
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- it has arbitrary magnitude, direction and sense. 

    From these proprieties results that the virtual displacement is 

one of the possible displacements, and because it is imaginary when it is 

convenient we can take it equal to the real displacement. 

   The virtual displacement is marked δr where δ is a 

differential operator that consider the parameter time as a constant. 

   In Cartesian reference system the virtual displacement of an 

any point of the mechanical system will be: 

 

    
 

where δxi, δyi, δzi  are the virtual variations of the coordinates of that point. 

   If we use the generalized coordinates then we have: 
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Chapter 20. D’Alembert’s principle. 

 

   20.1. The inertia force. 
 

   For the beginning suppose a free particle P by mass m acted 

by the force F and performing a motion with the instantaneous acceleration a. 

Based on the second principle of mechanics (or the theorem of the linear 

momentum) we may write: 

 

   F = ma 

 

   
      Fig.1. 

 

   In accordance with the third principle of mechanics 

(principle of action and the reaction) the particle, about which is acting the 

force F, will act about the system that has produced this force with a force equal 

in magnitude but with opposite sense. This force marked: 
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is called inertia force and represents the answer of the particle to the action of 

the force F about the particle P by mass m. 

   Remark: as we can see this inertia force does not act about 

the particle P, this acts about the mechanical system that have produced the 

force F. 

 

   20.2. D’Alembert’s principle 
 

   Suppose a particle P by mass m acted by a system of active 

forces) given forces) having the resultant force F, having a set of simple ideal 

constraints and performing a motion with the instantaneous acceleration a. 

According to the axiom of constraints the particle can be considered as a free 

particle if the constraints are replaced with reaction forces. We mark the 

resultant of the reaction forces with R. 

    The Newton’s second principle will give us the relation: 

 

     
 

or binging all the terms in the left part: 

 

     
 

and marking the inertia force we obtain finally: 

 

     
 

    This last relation expresses the D’Alembert’s principle: The 

active forces, the reaction forces and the inertia forces form a system in 

equilibrium. 

    Here we have to make an important remark: the inertia force 

is not a real force for the particle P because as we have seen in the previous 

section this force acts about the system (or the body) that have produced the 

active forces and not about the particle. In conclusion the inertia force for the 

particle is a fictional force for the particle. This means that the equilibrium 
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expressed by the previous relation (D’Alembert’s principle) is also a fictional 

equilibrium called dynamic equilibrium. 

   If we suppose now a system of particles Pj , for each particle 

we may write the same kind of relation expressing the dynamic equilibrium: 

    

    
 

   Summing all these relations and computing the resultant 

moment about one any fixed point we shall find the relations: 

 

    
 

that expresses the dynamic equilibrium of the three kinds of forces acting about 

the system of particles. 

   Any rigid body can be considered as a continuous and rigid 

(non-deformable) system of particles by elementary masses dm so the dynamic 

equilibrium will be expressed by the same kinds of relations but the inertia 

forces are acting in each points of the body and consequently we have to 

determine the force - couple system of the inertia forces acting about a rigid 

body. 

 

   20.3. The force - couple system of the 

    inertia forces. 
 

   The dynamic equilibrium in the case of a rigid body will have 

the expression: 

 

    
 

where the last terms form the force – couple system of the inertia forces in the 

fixed point O. 
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   If we express the motion of the body using the two vector 

theorems (theorem of the linear momentum and the theorem of the angular 

momentum) we shall obtain the following two vector equations: 

 

    
 

   Comparing the two pairs of vector equations (those resulted 

from D’Alembert’s principle and those from the two general theorems) we 

obtain the two vectors of the force – couple system of the inertia forces: 

 

    
 

   Expressing function of the motion of the mass center of the 

body we may write: 

 

    
 

   The second term of the resultant moment of the inertia forces 

is called inertia couple in the mass center: 

 

    
 

   In the plane problems this couple has the expression: 
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   Now we cam remark that the D’Alembert’s principle 

represents in fact the use of the two theorems bringing the right terms in the left 

part, renaming them and in this way transforming the differential equations in 

equilibrium equations. 

 

    
      Fig. 2. 

    

   20.4. Kineto – static method. 
 

   Using the principle of D’Alembert we can obtain a method of 

study the motion of the mechanical systems through equilibrium equations. We 

shall make in the following way (as we can see the steps to solve does not 

essentially differ by the steps in the case of using the general theorems): 

   -1) We determine, first, the number of the degrees of freedom 

and we choose the kinematic parameters corresponding to those. 

   -2) We make the kinematic study of the system expressing the 

accelerations of the particles, the accelerations of the mass centers of the bodies 

and the angular accelerations of the bodies function of the chosen kinematic 

parameters We shall represent these accelerations. 

   -3) We decompose the system in the component bodies and 

each particle and body will be loaded with the three kinds of forces: active 

forces (given forces), reaction and connection forces and the force couple 

system of the inertia forces having the senses opposite as the senses of the 

accelerations. 

   -4) We choose a reference system for each particle and each 

body and we write the equilibrium equations (for each particle two projection 

equations on the two axes of the reference system and for each body three 

equations: two projections and a moment equation about a fixed point or about 
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the mass center of the body). we remark that the moment equations are only 

about the fixed points or about the mass center of the corresponding body. 

   -5) The resulted differential equations are divided in two 

subsystems: one subsystem is of the differential equations of the motion 

(containing the same number of equations as the number of the degrees of 

freedom and having as unknowns only the kinematic parameters) and one 

subsystem of differential equations used for to determine the reaction forces 

corresponding to the external constraints and the internal connections. 

   -6) We integrate the differential equations of the motion 

obtaining finally the laws of motion of the system (function of the initial 

conditions). 

   -7) Having the laws of motion we study the motion of the 

system. 

   -8) From the second subsystem we determine the reaction 

forces. 

 

   20.5. Sample problems. 
 

   Problem 1. One disc by mass M and radius R has wrapped on its periphery 

one ideal wire and its and is fixed in the point A. Knowing that at the initial instant the wire is 

vertically and the disc is in rest calculate the acceleration of the mass center of the disc, the tension in 

the wire at an any instant of the motion. We know also that in the time of motion the wire remains 

vertically. 

 

 
 

      Fig.3. 
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   Solution. 1) We have one single body that has only one degree of freedom 

because the wire removes one degree of freedom and the restriction as the body does not oscillate (the 

wire remains vertically) eliminates another degree of freedom. 

   For the study of the motion we shall choose as kinematic parameter the 

rotation of one any diameter of the disc with respect to its initial position (which will be considered 

horizontally). 

   2) We shall determine now the acceleration of the mass center of the disc and 

its angular acceleration function of the kinematic parameter. Because the vertical wire is fixed in the 

fixed point A this means that the other end of this wire (point I the tangent point between the wire and 

the disc) will has the same velocity as the point A: 

 

   vI = vA = 0 

 

consequently the point I is the instantaneous center of rotation of the disc. 

   The angular velocity of the disc will result (from the definition of the angular 

velocity): 

 

    
 

and will have the same sense of rotation as the sense of rotation of the disc, namely the clockwise 

sense. 

   Deriving again the angular velocity is obtained the angular acceleration of 

the disc: 

 

    
 

that will keep the sense of the angular velocity (because through derivation the sense does not 

changed. 

   The velocity of the mass center will be: 

 

    
 

having vertical direction  and with the sense directed down (this the sense of rotation of the angular 

velocity about the instantaneous center of rotation). Because the center C performs a rectilinear 

motion the acceleration of this point will have the magnitude: 

 

    
 

with the same direction and sense as its velocity. 

   3) We remove the constraint (here the wire) and load the disc with: the weight 

of the disc (vertical and acting in the mass center C) the tension from the wire (vertical and directed 

up in the tangent point between the wire and the disc) and the force-couple system of the inertia forces 

made from the inertia force with the magnitude: 
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having the direction of the acceleration of the mass center but with opposite sense and the inertia 

couple in the mass center having the magnitude: 

 

    
 

 with opposite sense as the angular acceleration of the disc. 

   4) The dynamic equilibrium equations will be: 

 

    
 

   5) Removing the magnitudes of the inertia force and inertia couple and 

eliminating the tension from the two equations results the differential equation of the motion (also 

simplifying the resulted equation): 

 

    
 

   6) We remark that for to determine the acceleration of the mass center is not 

necessary to integrate the differential equation of the motion but only to remove the angular 

acceleration: 

 

    
 

   7) The tension from the wire will result the angular acceleration in the second 

equation: 

 

    
 

   Problem 2.  The system from the figure 4. is made from three rods hinged 

among them and the environment in the two hinged supports O and C. The system performs motions in 

vertical plane under the action of the weights of the bodies. Knowing that the motion begins from the 

horizontal position of the rod OA and from rest calculate the velocity of the point A when the bar Oa 

becomes vertically and also the reaction forces from the two external hinges in the same instant. Are 

known MOA = MBC = 3M, MAB = 4M, lOA = lBC = 2l, lAB = 3l = AC. 

 

   Solution. 1) The system of bodies has one degree of freedom because: 
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   Ndf = 3 . 3 – (2 . 4) = 1 

 

   Also we remark that the bars OA and BC perform rotation motions (the 

rotation motion is performed always in plane with one degree of freedom). If we block the motion of 

one bar4 , from two, then the entire motion of the system is blocked consequently the system has one 

degree of freedom. 

   We shall choose as kinematic parameter of the motion the angle between the 

horizontal direction (the initial direction of the bar OA) and the direction of the bar OA at an any 

instant. 

   2) The system being made from three bodies we shall determine function of the 

chosen parameter the angular accelerations of the bodies and the accelerations of the centers of them. 

In this way the angular accelerations will be:  

 

 
 

      Fig.4. 
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because for the bars OA and BC (parallel in the time of motion), by definition, the angular 

acceleration is the second derivative with respect to time of the angle between an any line from the 

body and a fixed straight line from the plane, and the bar AB performs a translation motion. The 

senses of the two angular accelerations are the same with the supposed sense of the motion of the bars 

(because we have not changed the sign through the derivation). 

  The mass centers C1 and C3 of the bars OA and BC perform circular motions and 

consequently their accelerations will have two components, one tangent component with the 

magnitude: 

 

    
 

having the directions perpendicular on OC1  and CC3 and with the same sense of rotation about the 

points O and C as the angular accelerations. 

   The normal components of the accelerations of the mass centers will have the 

magnitudes: 

 

    
 

having the directions of the two bars and with the senses directed toward the rotation centers O and 

C. 

   The bar AB performs a translation motion (it remains parallel to itself in the 

time of motion) and consequently the acceleration of the center C2 is equal to the acceleration of any 

point from the bar. So we shall calculate for example the acceleration of the point A and after will 

transfer this acceleration in the point C2. In this way the acceleration of the point A (performing a 

circular motion) has two components: 

 

    
 

having the same directions and senses as the components of the accelerations of the mass centers of 

the two bars OA and BC. 

   3) We undo the system in three bodies and we shall load each body with the 

three kinds of loads: given forces (active forces, here the weights acting in the mass centers of the bars 

having vertical directions and directed down), reaction forces corresponding to the removed 

constraints and connections (in the two hinged supports O and C two components an two convenient 

directions, here the directions of the bars  and on perpendicular directions on the bars, and in internal 

hinges two pairs of two unknown internal force having the same directions but opposite senses and an 

the same directions as in the hinges O and C) and the force – couple systems of the inertia forces. For 

the two bars in rotation motion the force – couple system of the inertia forces is made from the inertia 

force with two components with the magnitudes: 
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with the same directions as the corresponding components of the accelerations but with opposite 

senses , and the inertia couples in the mass centers with the magnitudes: 

 

    
 

and having opposite senses as the corresponding angular accelerations. 

   For the bar AB the force – couple system of the inertia forces contains only 

the inertia force (the angular acceleration is equal to zero) having two components with the 

magnitudes: 

 

    
 

with the directions of the corresponding accelerations and with opposite senses. 

   4) For each body we shall write three equilibrium equations: two projections 

on the axes of a convenient reference system, here the Frenet’s system with the origin in the mass 

center of the body and a moment equation about the mass center for the body AB and about the fixed 

points O and C for the other two bodies. We choose the fixed points for the bodies OA and BC because 

about these points we have moment for a single reaction force and the removal operations will be 

simplified. 

   We have for the body OA the following dynamic equilibrium equations: 

 

    
 

   For the body AB the equations will be: 

 

                      

 

 

 

 

 

   And finally for the body BC the equations are: 
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   5) In this way we have obtained a system of nine differential equations which 

contain the eight reaction forces from the constraints and connections and the kinematic parameter. 

The differential equation of the motion of the system of bodies will be obtained through substitutions. 

From the third equation is removed R6, from the last equation the reaction force R8 function of the 

kinematic parameter and they are introduced in the fourth equation from that results the differential 

equation of the motion: 

 

    
 

   6) Integrating once this equation we have: 

 

    
 

where the integration constant is find from the initial conditions: 

 

    
 

   7) The velocity of point A at the given instant will be: 

 

    
 

   8) The reaction forces in the same instant from the hinged supports are R1, R2 

R3 and R4. These reaction forces will be determined in the following way: after which we remove from 

the third and the last equations the two reaction forces R6 and R8, these are introduced in the first and 

the seventh equations from which we take out the reactions R2 and R4. After this the two reactions R6 

and R8 are introduced in the sixth and fifth equations from which result the reaction forces R5 and R7. 

The reaction force R5 introduced in the second equation will give us the reaction R1 and R7 introduced 

in the eighth equation results the reaction R3. The solving becomes easier if we remove first the value 

of the parameter for the given instant. Finally we have: 

 

    
 

   Problem 3. The system from the figure 5. moves so that the wires remain 

vertically. Knowing the masses of the bodies and the radii of the pulleys calculate the distance covered 
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by the particle P in an interval by the two seconds from the beginning of the motion if the motion 

starts from rest. 

 

   Solution. 1) The system of pulleys is made from one fixed pulley with the 

center in the fixed point O, a mowing pulley and a particle and it has two degrees of freedom because 

has a hinged support, two wires and two restrictions (the wires remain vertically in the time of motion 

and so the horizontal displacements of the particle and the moving pulley are removed): 

 

   Ndf = 3 . 2 + 2 . 1 – (2 . 1 + 2 + 2) = 2 

 

 
Fig.5. 
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   In other way we remark that the fixed pulley performs a rotation motion that if 

it is blocked is stopped the vertical motion of the particle and also the motion of the wire that join the 

moving pulley. But now the moving pulley has one other possibility of motion: the rolling motion 

without sliding on vertical direction, motion that has also one degree of freedom. If we block this 

rolling motion then the entire system is stopped, so the system has two degrees of freedom. This last 

way for to determine the number of the degrees of freedom allows us to determine easier the 

independent kinematic parameters of the motion because the two blocked motions are independents. 

Consequently we shall choose the following two kinematic parameters: the first parameter will be the 

angle θ between one diameter of the fixed pulley and the horizontal direction describing the rotation 

motion of this disc and the second parameter will be the angle φ between one diameter of the moving 

pulley and the horizontal direction describing the rolling motion of this pulley. The senses of rotation 

of the two pulleys are arbitrary however if we see the real senses then is better to take those senses. 

Here we have taken the trigonometric sense for θ and the clockwise sense for φ. 

   2) The kinematic study of the system have to obtain the acceleration of the 

particle P, the accelerations of the centers of the two pulleys and the angular accelerations of these 

pulleys function of the kinematic parameters. 

   The calculation starts from the fixed pulley (has fixed center in O) that has a 

rotation motion that is defined by the parameter θ. The angular velocity and acceleration of this disc 

will be: 

 

    
 

with the same sense of rotation as the parameter from which are coming because they do not changed 

the signs after the derivation. 

   For transmission of the motion to the particle P with the wire AP we shall 

calculate first the velocity of the point A that results: 

 

    
 

having the sense directed down (that is in the sense of rotation of the angular velocity about the 

rotation center O). This velocity is transmitted to the point P with the entire intensity, direction and 

sense: 

 

    
 

   Because the particle P performs a rectilinear motion we have the magnitude 

of its acceleration: 

 

    
 

keeping the direction and sense of the velocity because through the derivation we have not changed 

the sign. 

   Now let to transmit the motion to the moving pulley. We shall calculate first 

the velocity of the point B: 
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With the sense directed up. This velocity is transmitted with the entire intensity, direction and sense in 

the point D: 

 

    
 

   The moving pulley is a body that performs a plane motion. Because we have 

taken the angular parameter that defines the motion results the angular velocity and acceleration of 

this disc: 

 

    
 

with the same sense of rotation as the sense of rotation of the angular parameter (the clockwise 

sense). 

   We shall use the propriety of the instantaneous center of rotation for to 

determine the velocity of the point C (that performs a vertical rectilinear motion). But we have to 

determine the position of this center. Knowing one velocity of a point of the body (here the point D) 

and the angular velocity of the body we can write: 

 

        =    

 

relation from which is obtained the position of the instantaneous center of rotation: 

 

    
 

   The instantaneous center of rotation is located in the right part of the point D 

because only from this position the sense of rotation of the angular velocity and of the point D are the 

same about this point. Having the position of the instantaneous center of rotation we shall calculate 

the velocity of the point C that has the magnitude: 

 

    
 

Vertical direction and with the sense directed up (the sense of rotation about the instantaneous center 

of rotation is the same as the sense of rotation of the angular velocity). 

   Through derivation we have the acceleration of the point C. 

 

    

         =   =        
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with the same sense and direction as the velocity of the point. 

   3) Having all the accelerations of the centers and the angular accelerations of 

the bodies defined function of the kinematic parameters we shall calculate the force - couple system of 

the inertia forces for all bodies from the system. For the particle P we have only the inertia force: 

 

    
 

with vertical direction and with the sense directed up (opposite as the sense of the acceleration of the 

particle). 

   The fixed pulley will be loaded with the inertia couple only: 

 

    
 

having opposite sense as the angular acceleration ε1 because the center of the disc is fixed and the 

acceleration in this point is zero so we have not inertia force. 

   The moving pulley will be loaded with inertia force: 

 

    
 

with the sense directed down (opposite as the sense of the acceleration of its mass center C) and 

acting in the mass center and also with the inertia couple:  

 

    
 

with its sense opposite as the sense of the angular acceleration of this pulley. 

   4) We divide the system of bodies in the tree independent bodies: two pulleys 

and the particle P removing the constraint from O with the corresponding two components of reaction 

(here because the body is not acted by horizontal forces the horizontal component of the reaction is 

also equal to zero) and the connections (here the two wires) with the internal forces (pare tensions 

with the same intensities and opposite senses). Also we shall load each body with their weights and the 

calculated inertia force – couples systems. 

   5) We shall write the following dynamic equilibrium equations: 

   -for the particle P: 

 

    
 

   -For the fixed pulley: 
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   -For the moving pulley: 

 

    
 

   In this way we have obtained a system of five differential equations in which 

two equations are the differential equations of the motion corresponding to the two kinematic 

parameters and three are used for to determine the three unknown reaction forces. 

   6) If we take out from the first equation the tension T1 and from the last 

equation the tension T2 and if we remove in the third and fourth equations we have the subsystem of 

the differential equations of the motion: 

 

    
 

   7) As we can see first we solve the system as an algebraic system of equations 

and we have the angular accelerations of the two pulleys: 

 

    
 

   The acceleration of the particle P will be: 

 

    
 

   Knowing that the particle performs a rectilinear motion and its acceleration is 

constant we obtain through integration: 

 

    
 

where the integration constants are determined from the initial conditions: 

 

   C1 = C2 = 0 
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   The distance passed by the particle in the two seconds from the start of the 

motion will be: 

 

   D = yP(2) = 1,4 m 

 

   Problem 4. The system from the figure 6 is made from a disc with its center in 

the fixed point O having the radius R and its mass 4M, a bar AB hinged by the disc in point A located 

on the periphery of the disc having the length R and mass 3M and a slider B by its mass M hinged at 

the end of the bar AB and performing a motion on a horizontal fixed straight line passing through the 

point O. Knowing that the motion is made in vertical plane under the action of the weights and is start 

from rest when the bar AB is vertically determine the differential equation of the motion of this system 

the velocity of the slider B and the reactions from the external constraints when the bar AB becomes 

horizontal. 

 

   Problem 5. The system of pulleys from the figure 7. moves so that in the time 

of motion the wires remain vertically. Determine the acceleration of the particle P the tensions from 

the wires at one any instant of the motion. The motion is performed in vertical plane under the actions 

of the weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Fig.6. 

 

 

 

 

 

 

      Fig.7. 

 

   Problem 6. The system from the figure 8. is made from the slider P by mass M 

that slide without friction on a vertical rod and the bar PA by the length 2l and mass 6M hinged by the 

slider P. Knowing that the motion of the system is performed under the action of the weights in 

vertical plane write the differential equations of the motion of the system. 
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     Fig.8. 
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Chapter 21. Principle of virtual work 

 

   21.1. Introduction. 
 

   The principle of virtual work is the most used principle in the 

analytical mechanics for to study the systems of bodies. This principle is used in 

the solving of all problems involving conditions of equilibrium. This principle 

can be used in two ways: the principle of virtual work with virtual 

displacements (and real forces) and the principle of virtual work with virtual 

forces (and real displacements). 

   In this chapter we shall study only the principle of virtual 

work with virtual displacements called in the following the principle of virtual 

work. We make the remark that in this chapter we shall study only the 

equilibrium in the state of rest of the systems. The state of motion will be studied 

in the following chapter using the same principle. 

   We shall call virtual work and will be marked δL the scalar 

quantity equal to the scalar product between the force and the virtual 

displacement of the point of application of the force: 

 

    
 

21.2. Principle of the virtual work for       

the state of rest. 
 

   Consider a particle P, in equilibrium, acted by a system of 

forces with the resultant F and having a simple ideal and bilateral constraint. 
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Using the axiom of the constraints the simple constraint of the particle can be 

removed with one normal reaction force N with which we can express the 

equilibrium of the particle: 

 

    
 

    
 

where: 

 

    
 

   Let be one virtual displacement of the particle P. This 

displacement being compatible with the constraint will be performed in the 

tangent plane to the surface representing the simple constraint therefore it will 

be perpendicular on the normal reaction force corresponding to the constraint. 

In this way we have: 

 

    
 

meaning that: the virtual work of the reaction forces of the ideal constraints is 

always equal to zero. This statement and relation represents the first form of the 

principle of virtual work. 

   To consider now that we multiply of the particle with the 

virtual displacement the vector equation of equilibrium: 
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from which we obtain, if we make zero the term containing the reaction force, 

the second form of the principle of the virtual work: 

 

    
 

namely: the necessary and sufficient condition as a particle having ideal 

constraints to be in equilibrium is that the virtual work of the active forces 

(given forces) to be equal to zero. 

   We remark that from the condition of equilibrium we have 

eliminated the reaction forces, the condition containing only the active forces. 

This is an important step in our study: to eliminate from the equations the 

reaction forces. 

   If we have a system of particles in equilibrium then for each 

particle (after which we use the axiom of the constraints) we can express the 

equilibrium condition with this kind of equation. Summing for all particles of the 

system is obtained the condition of equilibrium of the entire system under the 

form: 

 

    
 

where Fi are the active forces which act about the system and δri represents the 

virtual displacements of the points of application of the active forces. 

   For rigid body, where the forces can be reduced in a few 

points, through elementary transformations is obtained the equilibrium 

conditions under the form: 

 

    
 

Relation in which Mj represents the concentrated couples and δθ is the virtual 

rotation of the body. 

   Finally, for one any mechanic system (system of particles or 

rigid bodies) the equilibrium condition will have the form: 
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And we can sets out the final form of the principle of virtual work: the necessary 

and sufficient condition as a mechanical system having ideal constraints to be 

in equilibrium is that as the virtual work of the active forces (and couples) to 

be equal to zero. 

   In the following section we shall shout the way in which the 

principle of virtual work can be used for to determine the reaction forces from 

the constraints of a statically determined and stable mechanical system. 

 

    21.3. Calculation of the reaction 

      forces from the constraints of a 

          Gerber beam. 
 

   A Gerber beam is a system of rigid bodies made from straight 

bars having their axes on the same straight line. Because the Gerber beam is a 

particular system of bodies it has some particularities which simplify the 

determination of the reactions. We shall show how we can determine the 

reactions using the principle of the virtual work. 

   At the first sight looks like the determination of the reaction 

forces cannot be calculated using this principle because the Gerber beam is a 

statically determined and stable system namely it is fixed and consequently the 

possible displacements are all equal to zero. So we have not virtual 

displacements because they are compatibles with the constraints of the system. 

   For to calculate one reaction force we can make in the 

following way: the system is transformed in a mechanism with one degree of 

freedom removing one simple constraint with the corresponding reaction force 

(or moment). In this way the system that initial was a statically determined and 

stable system becomes a mechanism. The unknown reaction force corresponding 

to the removed constraint will be considered unknown active force and because 

the system is in equilibrium we can write the condition of equilibrium using the 

principle of the virtual work. From the resulted equation results the reaction 

force. 
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   The main characteristic of the system called Gerber beam is 

that the vertical displacements do not produce horizontal displacements and 

reverse the horizontal displacements do not produce vertical displacements. 

This is the propriety that separates this system to the other systems (frames and 

trusses). 

   In the following we shall present the way to use the principle 

of virtual work for to determine the reaction forces for a Gerber beam loaded 

with vertical forces only. 

        1)First we check if the system is or not a statically 

determined and stable system. 

   2)We transform the beam in a mechanism with one degree of 

freedom removing the simple constraint corresponding to the searched reaction. 

This is made in the way shown in the table T1, table obtained for the situation in 

which the beam is loaded with vertical forces only. 

 

 Table T1 

 

 

   Constraint            Searched reaction         Transformation 

 

         Simple support 

            Vertical reaction force 

 

        Hinged support 

            Vertical reaction force 

 

          Fixed support       vertical gliding 

           Vertical reaction force 

               support 

 

           The reaction moment 

 

 

 

   We can remark that because we have not horizontal action 

the simple support and the hinged support will have the same behavior. 
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   3)We eliminate from the mechanism the fixed bodies. The 

cases when a body is fixed are: body with one fixed support, body with one 

hinged support (or fixed hinge) and a vertical simple support, body with two 

vertical simple supports and body with two fixed hinges. 

   We remind that the fixed hinges have the same behavior as 

the vertical simple supports and opposite the simple supports will have the same 

behavior as the fixed hinges and also that an internal hinge becomes a fixed 

hinge if it is in contact with a fixed body. 

   4)The remained bodies can perform only two kinds of 

motions: or a vertical translation motion if the body has one vertical gliding 

support or a rotation motion when the body has one simple support or a fixed 

hinge. We make the remark that the internal mobile hinges do not impose the 

way of motion of the body they make the contact between the bodies transmitting 

the motion from a body to another. 

   Now we draw the diagrams of the virtual displacements of 

the mechanism. His is made in the following way: we start from one arbitrary 

body for which we consider the corresponding motion (translation motion or 

rotation motion) in one any sense. Knowing the kinds of motion of all bodies and 

that the bodies are connected with internal hinges we draw the diagram of the 

virtual displacements for the entire mechanism. 

   5)We mark the rotations of the bodies and the vertical 

displacements corresponding to the vertical concentrated forces (the distributed 

forces are concentrated on each body separately). 

   We choose one kinematic parameter (for example the first 

rotation) and we express all the rotations of the bodies and all displacements 

function of this parameter. The rotations and displacements will be considered 

with senses. For to express the rotations and the displacements it is considered 

that the virtual displacements are infinitesimal and consequently the rotation of 

the body is the slope of the diagram of the virtual displacement of it. In this way 

for to calculate the rotation of a body we shall use the relation: 

 

   dleft . δθleft = dright . δθright 

 

   These kinds of relations are written in the internal hinges 

where dleft and dright are the distances from the rotation centers of the bodies (the 

simple supports or the fixed hinges) to the internal hinges (common to the two 
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neighbor bodies) and the δθleft and δθright are the rotations of the two bodies 

joined by that internal hinge. 

   The relation expresses the equality of the displacements on 

the two bodies in the internal hinge. 

   The virtual displacement of the point of application of a force 

will be determined with the relation: 

 

          δθleft         δθright  

 

                       

 

      dleft     dright   

 

           Fig.1. 

 

   δyi = di . δθbody 

 

where di is the distance from the rotation center of the body to the point of 

application of the force and δθbody is the virtual rotation of the body on that is 

acting the force. 

   

     

 

    δθbody 

 

 

 

 

 

 

 

     Fig.2. 

 

   6)It is calculated the virtual work with the relation: 
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   The sign of the virtual work of a force is determined 

comparing the sense of the force with the sense of the displacement and if they 

have the same senses then the virtual work is positive and if the senses are 

opposite then the virtual work is negative. For the virtual work of a 

concentrated moment is compared the sense of rotation of the virtual rotation of 

the body with the sense of rotation of the concentrated moment and if they are in 

the same sense then the sign of the work is positive and in opposite senses the 

work is negative. 

 
  Positive         Negative        Positive         Negative 

   work             work          work           work   

 

     Fig.3. 

 

   7)We shall consider the condition of equilibrium: 

 

   δL = 0 

 

and because the virtual displacement is arbitrary as magnitude, therefore we 

can consider it different to zero we can simplify the equation with the kinematic 

parameter and solving the equation results the searched reaction force. 

   Remark: because the kinematic parameter is simplified in the 

finally equation, namely it is divided by itself, we can choose for the beginning 

this parameter equal to the unit. 

   Also we make the remark that for a system of bodies each 

reaction will be determined using another mechanism, therefore the calculation 

of the reactions are independent and each calculation represents another 

problem. 

   21.4. Sample problems 
 

   Problem 1. Calculate the reactions from the constraints of the Gerber beam 

from the figure 4 using the principle of the virtual work. 
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         Fixed hinge 

 

 

                Fixed body 

 

 

 

 

 

 

              Fixed hinge 

 

 

                 Fixed body 

 

 

 

 

 

    Fixed hinge 

 

   Fixed body 

 

 

 

 

 

    Fixed hinge 

 

 

   Fixed body 

 

 

 

 

     Fig.4. 

 

   Solution.  As we have presented each reaction will be determined 

independently by the other reactions, for each reaction will correspond another mechanism. 
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   Reaction VA: 1)As we can see the Gerber beam is statically determined and 

stable because it is made from three bodies, one fixed support, two hinges and two simple supports. At 

the other hand it is fixed by its constraints. 

   2)The reaction force VA is the mechanical equivalent of the simple support 

from the point A so we shall remove this support with the vertical unknown reaction force resulting the  

mechanism with one degree of freedom from the figure 4.b. All the other constraints remain 

unchanged. 

   3)The bodies from the mechanism will be in the following states: 

   -the third body (DE) having a fixed support is a fixed body. The internal hinge 

from D becomes a fixed hinge; 

   -the second body (CD) having only a fixed hinge (in D) will perform a rotation 

motion about this fixed hinge; 

   -the first body (ABC) having only a simple support in point B performs a 

rotation motion about this support. 

   4)The diagram of virtual displacements for the resulted mechanism is started 

from one arbitrary body (but first we have eliminated the fixed body, here the body DE). We shall start 

with the first body and we shall imagine a virtual rotation of this body about the simple support from 

the point B in an arbitrary sense here in clockwise sense. We mark the rotation of the body with 

δθ1.The second body (CD) has a common point with the first in the internal hinge C, hinge that moves 

on vertical direction when the first body rotates. Knowing that the second body rotates about the fixed 

hinge D and has a common point with the first in C is obtained the diagram of the second body. We 

shall mark the rotation of the second body (in counterclockwise sense) with δθ2. 

   5)The uniformly distributed force is concentrated on each body separately 

(here the first and the second body) and we mark the vertical displacements of the forces. 

   We shall choose as kinematic parameter, function that we shall express the 

entire motion (the system has one degree of freedom) the rotation of the first body. As we have 

presented this parameter can be taken equal to one: 

 

   δθ1 = 1 

 

   The rotation of the second body will be determined from the condition as the 

vertical displacement in the internal hinge C to be the same indifferent from which body is calculated: 

 

    
 

or: 

 

    
 

   Replacing the kinematic parameter results the magnitude of the rotation of the 

second body: 

 

   δθ2 = 1 

 

   Now we shall calculate, function of the same parameter, the virtual 

displacements of the points of application of the forces: 
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   6)We shall calculate now the virtual work: 

 

                  

      

 

 

   We shall solve the equation: 

 

   δL = 0 

 

that represents the equilibrium condition of the Gerber beam. Results the searched reaction force: 

 

       
 

   Reaction force VB. We shall start the calculation from the initial system, 

statically determined and stable, where we shall remove the simple support from B with the vertical 

reaction force VB. In this way we have the mechanism with one degree of freedom from the figure 4.c. 

where we may remark that the third body is a fixed one. The internal hinge from D becomes a fixed 

hinge. The first two bodies are in rotation motion, the first about its simple support from the point A 

and the second about the fixed hinge from D. 

   We start with the first body for which we consider a counterclockwise rotation 

δθ1. Results the rotation δθ2 for the second body and in this way we have the diagram of the virtual 

displacements represented in the figure 4.c. 

   After what we concentrate the distributed force on the two bodies we mark the 

vertical displacements of the forces and we choose as kinematic parameter the rotation of the first 

body: 

 

   δθ1 = 1 

 

   The rotation of the second body results from the equality of the displacements 

in point C: 

 

    
 

   The displacements of the points of application of the concentrated forces are: 

 

    
 

   We shall calculate the virtual work in the same way as for the previous 

reaction force and we shall consider the condition of equilibrium: 
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   Results: 

 

   VB = 18 pa 

 

   Reaction force VE. For this reaction force we shall remove the fixed support 

from E with one gliding support and the vertical reaction force VE (Fig.4.d.). 

   Because the first body has two vertical simple supports (that at the Gerber 

beams loaded with vertically forces behavior as hinged supports) it is a fixed body and consequently 

the internal hinge from C becomes one fixed hinge. The second body (CD) having one fixed hinge will 

perform a rotation motion and the third body (DE) having one gliding support will perform a vertical 

translation motion. Considering the virtual rotation of the body (CD) as δθ1 is obtained the diagram of 

the displacements for the resulted mechanism. 

   The rotation of the body (CD) will be considered as the kinematic parameter 

of the motion: 

 

    δθ1 = 1 

 

   The virtual displacements of the points of application of the concentrated 

forces will be: 

 

    
 

with which the virtual work will be: 

 

          

 

 

from which results finally: 

 

   VE = 7 pa. 

 

   The reaction ME . In this case we shall remove the fixed support from E with 

one fixed hinge and a unknown concentrated moment (Fig.4.e.).  The first body is a fixed one and the 

internal hinge from C is fixed. The next two bodies having each of them one fixed hinge will perform 

rotation motions and considering for one from them one any rotation will results for the other the 

corresponding rotation ad finally the diagram of the virtual displacements. 

   The kinematic parameter will be: 

 

    
 

and for the following body writing the equality of the displacements in point D we have: 

 

    
 

   The virtual displacements of the forces will be: 
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displacements with which we have the virtual work: 

 

      

 

    

   From this equation results: 

 

   ME = 20 pa
2
. 

 

   Problem 2. Using the principle of virtual work determine the vertical reaction 

forces for the Gerber beam from the figure 5. 

 

 
 

      Fig.5. 

 

   21.5. Calculation of the reaction 

 forces in the constraints of the  

frames. 
 

   The calculation of the reaction forces using the principle of 

virtual work for the frames is based, as for the Gerber beam, on the 

transformation of the statically determined and stable system of bodies in a 

mechanism with one degree of freedom. The transformations for to obtain a 

mechanism with one degree of freedom are represented in the table T2. 

   The determination of the virtual displacements for an 

arbitrary system of rigid bodies is based on the fact that: the laws of variations 

of the elementary displacements are the same with the laws of the variations of 

the distributions of velocities: 
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or for the virtual displacements if we shall consider the interval of time δt as a 

constant quantity we have: 

 

    
Table T2     

 

 

        Constraint  The searched reaction          Transformation 

 

    Vertical simple 

        support  Vertical reaction force  

 

 

   Horizontal simple   

      support   Horizontal reaction force 

 

 

 

    Vertical reaction force 

 

   Hinged support 

    Horizontal reaction force 

 

 

 

    Vertical reaction force 

 

 

   Fixed support 

    Horizontal reaction force 

 

 

                 Reaction moment 
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   We make the remark that the gliding support allows to 

perform only translation motion of the body consequently the absolute rotation 

center of the body having this kind of constraint is located at infinity distance on 

the normal direction on the possible displacement. Because the displacement is 

on the direction of the searched reaction force this absolute rotation center will 

be on the normal direction on the reaction force. 

 

 

         ARC 

 

 

       ARC 

 

 

 

      Fig.6. 

 

   We give the steps for solving the problem of calculation of a 

reaction of a frame using the principle of virtual work: 

   1)Is cheeked if the system of bodies is or not statically 

determined and stable; 

   2)The system is transformed in a mechanism with one degree 

of freedom removing the simple constraint corresponding to the searched 

reaction; 

   3)Are eliminated the fixed bodies. We remind that: there are 

four simple cases in which the bodies are fixed. These cases are: one body with 

one fixed support, one body with one hinged support (fixed hinge) and one 

simple support, one body with three simple supports (not parallel all the three, 

not concurrent in the same point all the three) and finally two bodies each of 

them with one fixed hinge and one internal hinge between them (the three hinges 

are not collinear). 

   4)For the remained bodies in the mechanism we determine 

the rotation centers. The knowledge of all absolute rotation centers is necessary 

but the given relative rotation centers generally are enough for to find the 

virtual displacements. 
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   5)Are drawn the diagrams of the virtual displacements on 

two convenient directions: on horizontal and on vertical directions. The 

diagrams are started from an arbitrary body and the virtual displacement of this 

body is also arbitrary. The diagrams are obtained in the same way as the 

diagrams of velocities; 

   6)We concentrate the distributed forces on each body 

separately and the inclined forces are removed with two components on the 

directions of the displacements (horizontal and vertical); 

   7)We mark the rotations of all bodies from the mechanism 

and represent and mark all the displacements of the forces on the corresponding 

directions; 

   8)We choose a kinematic parameter and we express all the 

rotations and all the displacements function of this parameter. As in the 

previous section we can take this parameter equal to one. 

   9)Is calculated the virtual work of all forces and couples and 

we express the condition of equilibrium; 

   10)Solving the resulted equation we have the searched 

reaction. 

 

   21.6. Sample problems. 
 

   Problem 3. Using the principle of virtual work calculate the reactions from 

the constraints for the system of rigid bodies from the figure 7. 

 

  
 

     Fig.7. 
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   Solution. As we have seen each reaction will be solved from an independent 

calculation. Therefore we have to solve in fact five independent problems. 

   The reaction force VA. 1) The system is statically determined and stable being 

made from three bodies and having a fixed support, one hinged support and two internal hinges: 

 

   3 . 3 = 3 . 1 + 3 . 2  

 

and also the bodies are fixed (the third body has one fixed support, and the first two bodies have three 

non- collinear hinges from which two are fixed hinges. 

   2)For to determine the vertical reaction force from the hinged support from A 

we shall remove this hinged support with the vertical reaction force and horizontal simple support 

(Fig.8.). In this way we obtain a mechanism with one degree of freedom. 

   

  

 

 

             
fixed body

 

 

 

 

             
fixed hinge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig.8. 

 

   3)We remark that the third body is fixed having one fixed support and in this 

way the internal hinge from D becomes a fixed hinge. The mechanism will have only two bodies. 

   4)For the mechanism having two bodies we shall determine the rotation 

centers (as in kinematics). First we number the bodies and we see that: the simple support from A 

shows us that on the horizontal straight line passing through the point A is located the absolute 

rotation center of the first body, the internal hinge from C is the relative rotation center (12) and the 

fixed hinge from D is the absolute rotation center of the body (II). 



 

226 

 

   For to determine the absolute rotation center (01) we shall use the theorem off 

co linearity of the rotation centers (or the rule of the indexes) and we see that on the line passing 

through the centers (12) and (02) is located the absolute rotation center (01). It results the absolute 

rotation center (01) at infinity distance on the horizontal direction. 

   5)Having all the absolute rotation centers we can draw the diagrams of the 

displacements on the two directions (horizontal and vertical). But remarking that the forces acting 

about the mechanism are only vertically we shall draw only the diagram of the vertical displacements 

(δy). 

   First we project on the horizontal reference line  the two absolute rotation 

centers and we start from the body (II) for which we consider a virtual rotation (here in clockwise 

sense) δθ2. Projecting the relative rotation center (12) on the diagram of the body (II) results the 

diagram of the body (I) as o horizontal straight line (parallel with the reference line because the 

absolute rotation center (01) is located at infinity distance on horizontal direction). 

   6)For the three vertical forces which act about the mechanism we mark the 

displacements:δy1, δy2, δy3. 

   We shall choose as kinematic parameter the rotation of the body (II): 

 

   δθ2 = 1 

 

with that we calculate the virtual displacements of the points of application of the forces: 

 

    
 

   7)The virtual work is calculated with the relation: 

 

 
 

where in this case we have: 

 

    
 

   Removing we find the searched reaction force: 

 

   VA = 7 pa. 

 

   The reaction force HA. We shall remove this time the hinged support from A 

with one vertical simple support and the horizontal reaction force (Fig.9). 

   The body DB is fixed because it has a fixed support and in this way the 

internal hinge from D becomes a fixed hinge. 

   Making as for the previous reaction force we obtain the rotation centers (the 

absolute rotation center (02) is in point D, the relative rotation center (12) is located in point C and 

the absolute rotation center (01) is find at the intersection of the vertical line passing through the 

point A (the direction of the simple support) and the horizontal line passing through the centers (02) 

and (12)). 



 

227 

 

   The two diagrams of the virtual displacements are obtained considering first a 

virtual rotation for one arbitrary body (here the counterclockwise rotation δθ1 of the body (I)0. 

   We choose as kinematic parameter: 

 

   δθ1 = 1 

 

  

 

        fixed body   

 

 

 

         
fixed hinge  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Fig.9. 

 

   The rotation of the second body will be calculated from the equality in the 

relative rotation center (12): 

 

    
 

from which results: 

 

     
 

   The virtual displacements of the forces will be: 

 

    
 

   The virtual work results: 
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from which we have the reaction force: 

 

   HA = 5,33 pa. 

 

   The reaction force VB. In the point B in place of the fixed support we shall 

consider one vertical gliding support and the reaction force VB. 

 

 
 

      Fig.10. 

 

   First we remark that in this case we have not fixed bodies consequently we 

have a mechanism with three bodies. 

   We shall have the following rotation centers: the absolute rotation center (01) 

in the hinged support from the point A, the relative rotation center (12) in the internal hinge C, the 

relative rotation center (23) is located in the internal hinge from D, and the body DB will have the 

absolute rotation center (03) at infinity distance on horizontal direction (because this body has one 

vertical gliding support it will perform only a vertical translation motion so the instantaneous center 

of rotation is located at infinity distance on horizontal direction). 

   We have to find the absolute rotation center (02). For this we shall use the 

theorems of co linearity  (or the rule of indexes) finding first one straight line d02  that passes through 

the centers (01) and (12) and after another straight line passing through the centers (03) and (23) 
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namely a horizontal line passing through the center (23). The intersection of these two lines is located 

in the point representing the relative center (12) so in this point is located the absolute rotation center 

(02) also. This position shows us the following situation: we know that the relative rotation center (12) 

is the point in which the velocities (or the displacements) from the two bodies are the same but the 

body (II) has here zero velocity (or displacement) because here is located its absolute rotation center. 

This means that the body (I) has here the same velocity namely zero velocity so it has the absolute 

rotation center (01) also. We can state the following propriety: if one absolute rotation center is 

located in one relative rotation center with one common index then in the same point is located the 

absolute rotation center corresponding to the non common index. 

   But the first body (I) has its absolute rotation center in another position and a 

body can have only one absolute rotation center. It results also another  propriety: if a body has two 

or more absolute rotation centers then the body immobilized. So the body (I) can be considered fixed 

and eliminated from the mechanism. 

   In conclusion the mechanism has only two bodies: (II) and (III). 

   We draw the diagrams of the virtual displacements and we choose as 

kinematic parameter the rotation: 

 

   δθ2 = 1 

 

   The virtual displacements of the points of application of the forces will be: 

 

    
 

with which we have the virtual work: 

 

    
 

   The searched reaction force will be: 

 

   VB = 7 pa. 

 

   The reaction force HB. For this reaction force we remove the fixed support 

from B with the horizontal gliding support and the horizontal reaction force HB and we obtain a 

mechanism with three bodies (Fig. 11). 

   The position of the absolute rotation center (02) results writing one likeness 

relation between the triangles (02)(12)(23)  and (12)(01)E: 

 

    
 

   After which we draw the diagrams of displacements we choose as kinematic 

parameter the rotation of the body (I): 

 

   δθ1 = 1 
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and then we write the equality in the relative rotation center (12): 

 

    
 

from which we have: 

 

 
      Fig.11. 

 

    
 

   With these values we have the virtual displacements of the forces: 
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   The virtual work will be: 

 

    
 

equation from which results the reaction force: 

 

   HB = - 2,67 pa. 

 

   The reaction moment MB. We remove the fixed support from B with a hinged 

support and the unknown concentrated moment MB. The mechanism has one degree of freedom and 

three bodies (Fig.12.). 

 
 

      Fig.12. 
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   The position of the absolute rotation center (02) that is find at the intersection 

of two straight lines d02 is determined writing two likeness relations (each of them for one inclined 

line). From the system of two equations we have: 

 

    
 

   We draw the diagrams of the virtual displacements and we choose as 

kinematic parameter the rotation of the body (I) (equal to the rotation of the body (III)): 

 

    
 

   For the body (III) we write the equality in the relative rotation center (12) (or 

in (23)): 

 

    
 

   With these rotations we shall calculate the virtual displacements in the points 

of application of the forces: 

 

    
 

   The condition of equilibrium will be: 

 

    
from which we have: 

 

   MB = 20 pa
2 

 

   Problem 4. Using the principle of the virtual work calculate the reaction 

forces from the constraints of the system from the figure 13. 

 
 

      Fig.13. 
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    21.7. Calculation of the internal  

    forces from the members of a    

    truss. 
    

   The calculation of the internal forces in the members of a 

truss using the principle of the virtual work is made in the same way as for the 

reaction forces for the systems of rigid bodies. The differences in the 

calculations are coming from the fact that now we calculate a internal forces 

and also that the members can be considered or bodies or simple internal 

connections. 

   When we want to determine the internal force from a member 

for to transform the truss in a mechanism with one degree of freedom we shall 

remove the corresponding member with a pair of unknown internal forces on the 

direction of the member having opposite senses acting about the two joints 

corresponding to that member. As we know the internal forces will be 

considered as tensions because in this way the sign of the result corresponds to 

the sign of the convention for the axial internal forces. 

 

 
 

     Fig.14. 

 

  We shall consider that the independent members which are 

unloaded will be considered as simple internal connections. Also the members of 

the truss which make non-deformable geometric configurations will be 

considered parts of the bodies represented by those non-deformable parts. One 
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independent member will be considered as body if it cannot be considered 

unloaded by external forces or internal forces. 

   We make also the remark that if the internal force has other 

direction as the horizontal or vertical directions then it will be decomposed in 

two directions corresponding to the directions of the virtual displacements, 

namely on the horizontal and vertical directions. 

    

   21.8. Sample problems 
 

   Problem 5. Using the principle of virtual work determine the internal forces 

from the marked members for the simple truss from the figure 15. 

 

 
 

    Fig.15. 

 

   Solution. First we shall number in one any order the joints of the truss. 

   The internal force N79. We remove the marked member with a pair of 

unknown tensions with opposite senses on the direction of that member. it is obtained one mechanism 

with one degree of freedom in which we can consider the parts 1-6-7 and 6-8-12-13-9 as the two 

component bodies because these parts being made from triangles side by side they are non-deformable 

parts. 

   In conclusion we have one mechanism made from two bodies. We make the 

remark that the joints (which are internal hinges) have behaviors of internal hinges if they allow 

rotations (relative or absolute rotations) namely only the joints between the resulted bodies will be 

considered as  internal hinges (here the joint (6)). 

   After the determination of the rotation centers we draw the diagrams of the 

virtual displacements and we shall choose as kinematic parameter the rotation of the first body: 
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   We calculate the rotations of the bodies and the displacements of the forces as 

for any other system of bodies and we have: 

 

 
 

     Fig.16. 

                        

 

 

 

 

with which we calculate the virtual work of the all the forces from the mechanism: 

 

    
 

that is the condition of equilibrium and from which results the internal force: 

 

   N79 = 25P 

 

   The internal force N69. We remove the member with the pair of the unknown 

internal forces N69. 

   The mechanism has two bodies: the non-deformable part 1-6-7 and 8-12-13-9 

and two independent members 6-8 and 7-9 which can be considered unloaded (the vertical force 12P 

and the internal force N69 from the joint (9) are considered acting about the body (II) and the internal 

force N69 from the joint (6) as the force 6P are acting about the body (I). We shall consider only the 

joints (6), (7), (8) and (9) as internal hinges. Consequently the two members will be considered as 

simple internal connections and on their directions will be find the relative rotation center (12). 
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   We remark that the absolute rotation center (01) is located in the relative 

rotation center (12) that means that in this point is located also the absolute rotation center (02). But 

the body (II) has another absolute rotation center, so this body may be considered “fixed body” and it 

will be eliminated from the mechanism remaining only one body in motion. 

   For the single body in motion (I) we draw the diagrams of the virtual 

displacements and we have:         

 

 

 

             
fixed body 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig.17. 

 

   

 

 

  

   For to calculate the virtual work we shall decompose the internal forces N69 in 

two components with which we shall calculate the condition of equilibrium: 

 

    
 

from which we have: 

 

   N69 = -7,78 P. 

 

   The internal force N89. We remove (we eliminate) the member 8-9 and we 

replace with the pair of tensions N89 in the two joints (Fig.18). 
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   The mechanism that resulted will contain three bodies: The non-deformable 

part 1-6-9, the part 10-12-13-9 and one of the two independent members 6-8 and 8-10. We can see the 

two forces (the forces 12P and N89) which are acting in the joint (8) have to considered acting or on 

the member 6-8 or on the member 8-10. In this problem we shall consider these forces acting on the 

body 6-8, consequently the member 8-10 will be considered as a simple internal connection. 

   After which we determine the rotation centers for the resulted mechanism from 

three bodies we draw the diagrams of the virtual displacements. 

   The kinematic parameter will be: 

 
 

     Fig.18. 

 

    
 

   Function of this we shall calculate the other rotations and the virtual 

displacements of the forces which are acting about the mechanism: 
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   With these we shall calculate the virtual work and we shall consider the 

condition of equilibrium: 

 

    

                

 

   From this equation results: 

 

   N89 = -6,5 P. 

 

   The internal force N910. It is eliminated the member 9-10 and it is removed by 

the pair of the unknown tensions N9910 (Fig.19). 

 

 
 

     Fig.19. 

 

   The resulted mechanism is made from two bodies joined among them with two 

pendulums (the internal simple connections). As we can see the relative rotation center of the two 

bodies results at infinity distance (on the horizontal direction). This means that the two bodies will 

have equal displacements at infinity distance. Consequently the diagrams of the two bodies are 

parallel (or collinear) the bodies having the same rotations. 
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   After which we have the diagrams of the virtual displacements result the 

displacements of the forces: 

 

    
 

   The equilibrium condition is written under the form: 

 

    
 

condition from which results the internal force: 

 

   N910 = 13,75 P. 

 

   Problem 6. Using the principle of virtual work calculate the internal forces 

from the marked members of the simple truss represented in the figure 20. 

 

  
 

     Fig.20. 

 

   21.9. The principle of virtual work in 

    generalized coordinates. 
 

   The drawback of the principle of virtual work presented in 

the previous sections is that it offers us one single scalar equation for to express 

the condition of equilibrium of a mechanical system. This drawback is a big 

problem in the case of a system with more degrees of freedom. In these cases the 

number of the scalar independent position parameters is equal to the number of 



 

240 

 

the degrees of freedom, namely one single equation cannot solve these kinds of 

problems. 

   This drawback can be eliminated if we express the virtual 

displacement function of the generalized coordinates (in fact function of the 

independent position parameters). 

   We know that the position vector of one any point of the 

mechanical system can be expressed function of the generalized coordinates in 

the following way: 

 

    
 

where s is the number of the degrees of freedom of the mechanical system. 

   Because the virtual displacement is a virtual variation of the 

position vector (δ is a differential operator that consider the time as a constant) 

we can write: 

 

    
 

where δqk is the virtual variation of the generalized coordinate qk. 

   Let to remove this expression of the virtual displacement in 

the virtual work produced by the active forces for a system of particles: 

 

    
 

   In this last relation we shall change the order of the 

summarization: 

 

    
 

   We shall mark the parenthesis that is a scalar quantity: 
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   This expression represents the generalized force 

corresponding to the k degree of freedom (or corresponding to the generalized 

coordinate qk). We see that the generalized force has the dimension of force if 

the generalized coordinate has the dimension of length and has the dimension of 

moment if the generalized coordinate is an angle. 

   We can remark that also the generalized force can be 

calculated in the following way: 

 

    
 

where   is the elementary work of the active forces. 

   The equilibrium condition of the mechanical system: 

 

    
 

   Because the virtual variations are arbitrary as magnitudes 

and the generalized coordinates are independent we can give different values 

for these variations. In this way if we consider the following values for these 

variations: 

 

    
 

then results that the equation (the condition of equilibrium) is verified for the 

following value of the generalized force: 

 

   Q1 = 0 

 

   Making in the same way with all the generalized coordinates 

(their variations) is obtained the following system of equations: 
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   This system of equations expresses the equilibrium of a 

mechanical system with s degrees of freedom. We can state also: the enough 

and necessary condition as a mechanical system with ideal constraints to be in 

equilibrium is that all the generalize forces to be equal to zero. 
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Chapter 22. Lagrange equations 

 

   22.1. Principle of virtual work for the  

      state of motion. 
 

   Suppose a system of particles Pj by masses mj in motion. We 

shall suppose the system having ideal constraints and acted by a system of 

forces Fj (Fj is the resultant of the system of concurrent forces acting about the 

particle Pj). 

   Using the D’Alembert’s principle, after which the reaction 

forces have replaced the corresponding constraints, we can express the dynamic 

equilibrium of the system. For the particle Pj we have: 

 

    
 

where Rj represents the resultant force of the reaction forces acting about the 

particle and Finj is the inertia force corresponding to the particle Pj: 

 

    
 

   We calculate the scalar product of the equilibrium equation 

with one virtual displacement and we add for all particles from the system. We 

shall find considering also that the virtual work of the reaction forces is equal to 

zero for the ideal constraint the dynamic equilibrium condition for the system of 

particles: 
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   This condition can be state: for a mechanical system with 

ideal constraints the virtual work of the active forces and inertia forces is 

equal to zero. 

 

   22.2. Lagrange equations by first kind 
 

   Removing, in the condition of dynamic equilibrium, the 

inertia force with its expression we obtain: 

 

    
 

   If the system of particles has more degrees of freedom it is 

convenient to express the motion and the virtual displacements function of the 

generalized coordinates. It is obtained the equation: 

 

    
 

   For to disconnect the dynamic condition of equilibrium in 

equations corresponding to the degrees of freedom (or corresponding to the 

generalized coordinates) we shall make as for the condition of equilibrium in the 

state of rest, namely first we change the order of the summarization: 

 

    
 

  We mark the straight parenthesis: 
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representing the generalized force for the state of motion and the previous 

equation becomes: 

 

    
 

   Considering all the virtual variations equal to zero excepting 

one (as we have made in the state of rest) is obtained the system of differential 

equations: 

 

    
 

   Removing function of the active forces and the accelerations 

of the particles we have: 

 

    
 

   This system of equations represents the system of the 

differential equations of the motion of the system of particles in which the 

equations are called Lagrange equations by first kind. 

   If we integrate these equations are obtained the independent 

kinematic parameters (the laws of motion) of the mechanical system: 
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   We can see that we have obtained the differential equations 

directly without to intervene the reaction forces from the constraints and 

connections and the equations are the same form. 

   It is more convenient in problems as in place of the 

accelerations to use the velocities of the points. This fact can be obtained 

through a few transformations of these equations. 

 

   22.3. Lagrange equations by second 

       kind. 
 

   Because all the equations are identically as form we shall 

work only with one equation. First we rewrite the equations undoing the 

parenthesis from the left side and bringing one term in the right side: 

 

      
 

   The term from the left side can be developed in the following 

way: 

 

    
 

   Because the velocity of an arbitrary particle can be expressed 

function of the generalized coordinates and the generalized velocities: 
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and because the generalized velocities and the generalized coordinates are 

independent we have the equality: 

 

    
 

   And because the constraints are holonomy and scleronomy 

we can write: 

 

    
 

   Removing in the equations we have: 

 

    
 

   We can see that in the first term from the right part the 

parenthesis can be arranged under the form: 

 

    
 

and the second term can be considered under the form: 
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   If we see that the right member of the differential equation is 

the generalized force for the state of rest: 

 

    
 

then removing in the initial equations we shall obtain the following form of the 

differential equations: 

 

    
 

   These equations are the Lagrange equations by second kind 

and they represent in the same time the system of the differential equations of 

the motion of the mechanical system. 

   Suppose that the mechanical system is acted by a system of 

conservative forces. This means that the forces are coming from the force 

functions and the elementary work of these forces are: 

 

   dL = dU 

 

where: 

 

    
 

is the resultant force function and depends only by the position of the 

mechanical system. This means that we have obviously: 
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   Considering these proprieties and marking the scalar 

quantity: 

 

    
 

called function of Lagrange or kinetic potential and the Lagrange equations by 

second kind can be written under the form: 

 

    
 

   22.4. Steps to solve problems using  

    Lagrange equations by second  

       kind. 
 

1)We determine the number of the degrees of freedom of the 

mechanical system and function of this we choose the independent kinematic 

parameters which define the motion. 

2)After which we define the motions of the bodies we 

calculate function of the kinematic parameters the velocities of the particles, the 

velocity of one any point of the body in translation motion, the angular velocities 

of the bodies in rotation motions and the velocity of the mass center and the 

angular velocity of the body in plane motion. 

3)It is calculated the kinetic energy of the mechanical system. 

4)After which we represent the active forces we calculate the 

elementary work of these forces. 

5)We calculate the derivatives of the kinetic energy for each 

equation and each degree of freedom (three derivatives for each kinematic 

parameter) and we obtain the terms from the left part of the differential 

equations (Lagrange equations). 

6)We calculate the generalized forces. We make the remark 

that: it is enough to group the mechanical work after the differentials of the 

kinematic parameters and the coefficients which multiply these differentials are 

the corresponding generalized forces. 
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7)We remove the terms in the Lagrange equations and we 

obtain the system of the differential equations of the motion of the system. 

8)Integrating the system of the differential equations of the 

motion are obtained the laws of motion of the mechanical system. 

 

22.5. Sample problems. 
 

Problem 1. The system made from a disc by radius R and mass 2M and a 

rectilinear bar by length lAB = 3R and mass 4M moves so that the disc performs a rolling motion 

without sliding on a straight horizontal line and the extremity A of the bar describes a vertical fixed 

straight line. Determine the differential equation of the motion of the system. 

 

         
 

   Solution.1)The system has one degree of freedom: 

 

   Ndf = 3 . 2 – (2 . 1 + 2 + 1) = 1 

 

because it is made from two bodies it has one internal hinge (in B) and two simple supports (in A and 

the support of the disc on the horizontal straight line) and one restriction (rolling motion without 

sliding). 

   We choose as kinematic parameter the angle θ(t) made between the bar AB 

and the fixed vertical straight line. 

   2)The two bodies make plane motions (they have not fixed points and one 

straight line from the body modify its direction in the time of motion). Consequently we shall calculate 

the angular velocities of the bodies and the velocities of the mass centers function of the kinematic 

parameter. 
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   We shall start with the bar AB at which the angular velocity is: 

 

    
 

because by definition the angular velocity is the first derivative with respect to time of the angle made 

by a line from the body with a fixed line from space (here from plane). 

   For the calculation of the velocity of the mass center C we shall choose the 

simplest way namely we shall choose a fixed reference system (here xOy) we express the coordinates 

of the point with respect this system of reference and deriving the coordinates we obtain the 

projections of the point velocity. Now squared the coordinates and adding we obtain the square of the 

velocity of the mass center. We have: 

 

    
 

   For the disc we shall make in the following way: first we determine the 

velocity of the center B using the same way as in the previous calculation: 

 

    
 

   For the calculation of the angular velocity we know that in the rolling motion 

without sliding the instantaneous center of rotation is in the contact point between the disc and the 

surface on which is made the rolling motion. Having the velocity of the point B we can write: 

 

    
 

from which results: 

 

    
 

   3)The kinetic energy of the system will be calculated with the relation: 

 

   E = E
bar

 + E
disc
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where: 

    

     
          

 

 

 

 

 

   Finally we have the kinetic energy of the system: 

 

    
 

   4)The active forces that act about the system are the two weights of the two 

bodies. Being vertical forces they have the projections only on the Oy axis: 

 

    
 

   The elementary work will be calculated with the relation: 

 

    
  

where dyi represents the differential of the coordinate of the point of application of the corresponding 

force. We have: 

 

    
 

whence will result: 

 

    
 

   Removing in the previous formula results the elementary work of the active 

forces: 

 

    
 

   5)The Lagrange equation has the form: 
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in which we have three derivatives: 

 

    
 

   6)As we know the work in generalized coordinates has the expression: 

 

    
 

so the generalized force will be: 

 

    
 

   7)Removing the find terms in the Lagrange equation results the differential 

equation of the motion of the given system of bodies: 

 

    
 

that after simplification becomes: 

 

    
    

   Problem 2. One bar OA having the length 2l and mass 3M rotates in vertical 

plane about the fixed point O. In the same time on the bar slides a collar P by mass 2M without 

friction. Knowing that the motion is made under the action of the weights determine the differential 

equations of the motion of the system. 

 

   Solution. The system has two degrees of freedom because is made from a body 

and a particle (the collar) and it has one hinge and one simple support (the bar is the support of the 

collar): 
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   Ndf = 3 . 1 + 2 . 1 – (2 . 1 + 1) = 2 

 

   Or in the other way: we remark that the bar performs a rotation motion so it 

has one degree of freedom. If we block this motion then remains only the sliding rectilinear motion of 

the collar along the bar that has also one degree of freedom. If we block this motion also then the 

entire system is stopped from the motion consequently the system has two degrees of freedom. 

 

             
 

   We choose as kinematic parameters of the system the angle θ(t) made by the 

bar with the horizontal direction and r(t) the displacement of the collar on the bar. 

   The kinetic energy of the system will be: 

 

    
 

where: 

 

    
 

   We shall calculate each element of these energies. First we calculate the 

moment of inertia of the bar with respect to the end O: 

 

    
 

   The angular velocity of the bar will be: 
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   For the calculation of the velocity of the particle P we shall choose one fixed 

reference system and we shall express the coordinates of the particle with respect to this system. 

Deriving the coordinates we obtain finally the velocity of the particle: 

 

    

    
 

   The kinetic energy of the system will be: 

 

    
 

   After which we represent the two weights we project them and we have: 

 

    
 

and the coordinates of the points of application and their differentials are: 

 

    
 

   With these we calculate the elementary work and putting in order after the 

differentials of the two kinematic parameters we obtain the generalized forces: 

 

                    

 

 

 

 

 

   The two Lagrange equations have the expressions: 
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   The six derivatives corresponding to the two equations will be (three 

derivatives for each equation): 

 

    
 

   Removing in the expressions of the two Lagrange equations we obtain the 

differential equations of the motion (after which we simplify the equations): 

 

    
 

   Problem 3. Determine the differential equations of the small oscillations of the 

system made from two straight bars hinged in the fixed points O1 and O2 and joined among them with 

two springs by known elastic constants. Is known also that when the bars are vertically the springs are 

not loaded (are not tensioned). Are given: O1B = 3a, AB – O2D = 2a, M1 = 4M, M2 = 3M, k1 = k, k2 = 

2k. 

 

   Solution. Because we shall study the small oscillations of the system we shall 

consider that in the time of motion the two springs remain horizontally. 

   The system has two degrees of freedom because the springs are not 

connections or constraints (they will be removed with active forces). 

   We shall choose as kinematic parameters the angles made by the two bars 

with the vertical direction. 

   The bars perform rotation motions and consequently they will have the 

angular velocities: 

 

    
 

and the kinetic energy of the system will be: 
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   The moments of inertia of the two bars about their ends will be: 

 

    
 

   With these the kinetic energy of the system results: 

 

    
 

   Because the active forces which act about the system (the weights and the 

elastic forces from the springs) are conservative forces we shall calculate the elementary work using 

the force functions of these forces: 

 

   dL = dU 

 

where: 
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   For the weights we have: 

 

    
 

namely: 

 

    
 

   For the elastic forces we have: 

 

    
 

   Finally after which we differential and arrange after the differentials of the 

two kinematic parameters we have the elementary work of the active forces: 

 

    
 

   For the small oscillations of the system we shall consider the approximations: 

 

    
 

with which the generalized forces are: 

 

    
 

   The Lagrange equations of second kind for the system with two degrees of 

freedom will be: 
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   The corresponding derivatives for the two equations are: 

 

    
 

   Removing in the Lagrange equations we shall find the differential equations of 

the small oscillations of the system of bodies (after simplifications): 

 

    
 

 

   As we can see these equations are homogeneous and linear differential 

equations. 

 

   Problem 4. Determine using the Lagrange equations by second kind the 

velocity of the particle P knowing that the motion is made in vertical plane under the action of the 

weights and also that the strings remain vertically in the time of motion (Fig.4.). In the initial position 

the system will be considered in rest. 

 

   Problem 5. Determine the differential equations of the motion of the system 

from the figure 5. Knowing that the disc by mass 2M and radius R performs a rolling motion without 

sliding on a horizontal fixed straight line and the bar AB by length lAB = 4R and mass 3M is hinged in 

the center of the disc. The motion is performed in vertical plane under the action of the weights. 

 

   Problem 6. Determine the differential equations of the motion of the small 

oscillations of the bar AB that has two vertical springs (Fig.6.). The bar by length 2l and mass 6M in 

the horizontal initial position is in rest and the horizontal displacements are neglected with respect to 

the vertical displacements. Are known: k1 = 2k, k2 – 3k. 
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