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15 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15-1
Bernard Friedland

SECTION III Design Methods for MIMO LTI Systems

16 Eigenstructure Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16-1
Kenneth M. Sobel, Eliezer Y. Shapiro, and Albert N. Andry, Jr.

17 Linear Quadratic Regulator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17-1
Leonard Lublin and Michael Athans

18 H2 (LQG) and H∞ Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1
Leonard Lublin, Simon Grocott, and Michael Athans

19 �1 Robust Control: Theory, Computation, and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19-1
Munther A. Dahleh

20 The Structured Singular Value (μ) Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20-1
Gary J. Balas and Andy Packard

21 Algebraic Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21-1
Vladimír Kučera
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54 Intelligent Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54-1
Kevin M. Passino

55 Fuzzy Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55-1
Kevin M. Passino and Stephen Yurkovich

56 Neural Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56-1
Marios M. Polycarpou and Jay A. Farrell

SECTION IX System Identification

57 System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57-1
Lennart Ljung



�

�

�

�

� �

Contents xi

SECTION X Stochastic Control

58 Discrete Time Markov Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58-1
Adam Shwartz

59 Stochastic Differential Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59-1
John A. Gubner

60 Linear Stochastic Input–Output Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60-1
Torsten Söderström

61 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61-1
P.R. Kumar

62 Approximate Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62-1
Draguna Vrabie and Frank L. Lewis

63 Stability of Stochastic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63-1
Kenneth A. Loparo

64 Stochastic Adaptive Control for Continuous-Time Linear Systems. . . . . . . . . . . . . . . . .64-1
T.E. Duncan and B. Pasik-Duncan

65 Probabilistic and Randomized Tools for Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . .65-1
Fabrizio Dabbene and Roberto Tempo

66 Stabilization of Stochastic Nonlinear Continuous-Time Systems . . . . . . . . . . . . . . . . . . .66-1
Miroslav Krstić and Shu-Jun Liu

SECTION XI Control of Distributed Parameter Systems

67 Control of Systems Governed by Partial Differential Equations . . . . . . . . . . . . . . . . . . . . .67-1
Kirsten Morris

68 Controllability of Thin Elastic Beams and Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68-1
J.E. Lagnese and G. Leugering

69 Control of the Heat Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69-1
Thomas I. Seidman

70 Observability of Linear Distributed-Parameter Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-1
David L. Russell

71 Boundary Control of PDEs: The Backstepping Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-1
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Preface to the
Second Edition

As you may know, the first edition of The Control Handbook was very well received. Many copies were
sold and a gratifying number of people took the time to tell me that they found it useful. To the publisher,
these are all reasons to do a second edition. To the editor of the first edition, these same facts are a modest
disincentive. The risk that a second edition will not be as good as the first one is real and worrisome. I
have tried very hard to insure that the second edition is at least as good as the first one was. I hope you
agree that I have succeeded.

I have made two major changes in the second edition. The first is that all the Applications chapters
are new. It is simply a fact of life in engineering that once a problem is solved, people are no longer as
interested in it as they were when it was unsolved. I have tried to find especially inspiring and exciting
applications for this second edition.

Secondly, it has become clear to me that organizing the Applications book by academic discipline is
no longer sensible. Most control applications are interdisciplinary. For example, an automotive control
system that involves sensors to convert mechanical signals into electrical ones, actuators that convert
electrical signals into mechanical ones, several computers and a communication network to link sensors
and actuators to the computers does not belong solely to any specific academic area. You will notice that
the applications are now organized broadly by application areas, such as automotive and aerospace.

One aspect of this new organization has created a minor and, I think, amusing problem. Several
wonderful applications did not fit into my new taxonomy. I originally grouped them under the title
Miscellaneous. Several authors objected to the slightly pejorative nature of the term “miscellaneous.”
I agreed with them and, after some thinking, consulting with literate friends and with some of the
library resources, I have renamed that section “Special Applications.” Regardless of the name, they are
all interesting and important and I hope you will read those articles as well as the ones that did fit my
organizational scheme.

There has also been considerable progress in the areas covered in the Advanced Methods book. This
is reflected in the roughly two dozen articles in this second edition that are completely new. Some of
these are in two new sections, “Analysis and Design of Hybrid Systems” and “Networks and Networked
Controls.”

There have even been a few changes in the Fundamentals. Primarily, there is greater emphasis on
sampling and discretization. This is because most control systems are now implemented digitally.

I have enjoyed editing this second edition and learned a great deal while I was doing it. I hope that you
will enjoy reading it and learn a great deal from doing so.

William S. Levine

xiii



�

�

�

�

� �

xiv Preface to the Second Edition

MATLAB� and Simulink� are registered trademarks of The MathWorks, Inc. For
product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com



�

�

�

�

� �

Acknowledgments

The people who were most crucial to the second edition were the authors of the articles. It took a great
deal of work to write each of these articles and I doubt that I will ever be able to repay the authors for
their efforts. I do thank them very much.

The members of the advisory/editorial board for the second edition were a very great help in choosing
topics and finding authors. I thank them all. Two of them were especially helpful. Davor Hrovat took
responsibility for the automotive applications and Richard Braatz was crucial in selecting the applications
to industrial process control.

It is a great pleasure to be able to provide some recognition and to thank the people who helped
bring this second edition of The Control Handbook into being. Nora Konopka, publisher of engineering
and environmental sciences for Taylor & Francis/CRC Press, began encouraging me to create a second
edition quite some time ago. Although it was not easy, she finally convinced me. Jessica Vakili and Kari
Budyk, the project coordinators, were an enormous help in keeping track of potential authors as well
as those who had committed to write an article. Syed Mohamad Shajahan, senior project executive at
Techset, very capably handled all phases of production, while Richard Tressider, project editor for Taylor
& Francis/CRC Press, provided direction, oversight, and quality control. Without all of them and their
assistants, the second edition would probably never have appeared and, if it had, it would have been far
inferior to what it is.

Most importantly, I thank my wife Shirley Johannesen Levine for everything she has done for me over
the many years we have been married. It would not be possible to enumerate all the ways in which she
has contributed to each and everything I have done, not just editing this second edition.

William S. Levine

xv





�

�

�

�

� �

Editorial Board

Frank Allgöwer
Institute for Systems Theory and

Automatic Control
University of Stuttgart
Stuttgart, Germany

Tamer Başar
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1.1 Introduction

This chapter provides a survey of various aspects of the numerical solution of selected problems in linear
systems, control, and estimation theory. Space limitations preclude an exhaustive survey and extensive list
of references. The interested reader is referred to [1,4,10,14] for sources of additional detailed information.

∗ This material is based on a paper written by the same authors and published in Patel, R.V., Laub, A.J., and Van Dooren,
P.M., Eds., Numerical Linear Algebra Techniques for Systems and Control, Selected Reprint Series, IEEE Press, New York,
pp. 1–29 1994, copyright 1994 IEEE.
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1-2 Control System Advanced Methods

Many of the problems considered in this chapter arise in the study of the “standard” linear model

ẋ(t)= Ax(t)+Bu(t), (1.1)

y(t)= Cx(t)+Du(t). (1.2)

Here, x(t) is an n-vector of states, u(t) is an m-vector of controls or inputs, and y(t) is a p-vector of
outputs. The standard discrete-time analog of Equations 1.1 and 1.2 takes the form

xk+1 = Axk +Buk , (1.3)

yk = Cxk +Duk . (1.4)

Of course, considerably more elaborate models are also studied, including time-varying, stochastic, and
nonlinear versions of the above, but these are not discussed in this chapter. In fact, the above linear models
are usually derived from linearizations of nonlinear models regarding selected nominal points.

The matrices considered here are, for the most part, assumed to have real coefficients and to be
small (of order a few hundred or less) and dense, with no particular exploitable structure. Calculations
for most problems in classical single-input, single-output control fall into this category. Large sparse
matrices or matrices with special exploitable structures may significantly involve different concerns and
methodologies than those discussed here.

The systems, control, and estimation literature is replete with ad hoc algorithms to solve the compu-
tational problems that arise in the various methodologies. Many of these algorithms work quite well on
some problems (e.g., “small-order” matrices) but encounter numerical difficulties, often severe, when
“pushed” (e.g., on larger order matrices). The reason for this is that little or no attention has been paid to
the way algorithms perform in “finite arithmetic,” that is, on a finite word length digital computer.

A simple example by Moler and Van Loan [14, p. 649]∗ illustrates a typical pitfall. Suppose it is desired
to compute the matrix eA in single precision arithmetic on a computer which gives six decimal places of
precision in the fractional part of floating-point numbers. Consider the case

A=
[−49 24
−64 31

]

and suppose the computation is attempted with the Taylor series formula

eA =
+∞∑
k=0

1

k!A
k . (1.5)

This is easily coded and it is determined that the first 60 terms in the series suffice for the computation, in
the sense that the terms for k ≥ 60 of the order 10−7 no longer add anything significant to the sum. The
resulting answer is [−22.2588 −1.43277

−61.4993 −3.47428

]
.

Surprisingly, the true answer is (correctly rounded)

[−0.735759 0.551819
−1.47152 1.10364

]
.

What happened here was that the intermediate terms in the series became very large before the factorial
began to dominate. The 17th and 18th terms, for example, are of the order of 107 but of opposite signs so

∗ The page number indicates the location of the appropriate reprint in [14].
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that the less significant parts of these numbers, while significant for the final answer, are “lost” because of
the finiteness of the arithmetic.

For this particular example, various fixes and remedies are available. However, in more realistic exam-
ples, one seldom has the luxury of having the “true answer” available so that it is not always easy to simply
inspect or test a computed solution and determine that it is erroneous. Mathematical analysis (truncation
of the series, in the example above) alone is simply not sufficient when a problem is analyzed or solved in
finite arithmetic (truncation of the arithmetic). Clearly, a great deal of care must be taken.

The finiteness inherent in representing real or complex numbers as floating-point numbers on a digital
computer manifests itself in two important ways: floating-point numbers have only finite precision
and finite range. The degree of attention paid to these two considerations distinguishes many reliable
algorithms from more unreliable counterparts.

The development in systems, control, and estimation theory of stable, efficient, and reliable algorithms
that respect the constraints of finite arithmetic began in the 1970s and still continues. Much of the research
in numerical analysis has been directly applicable, but there are many computational issues in control
(e.g., the presence of hard or structural zeros) where numerical analysis does not provide a ready answer
or guide. A symbiotic relationship has developed, especially between numerical linear algebra and linear
system and control theory, which is sure to provide a continuing source of challenging research areas.

The abundance of numerically fragile algorithms is partly explained by the following observation:

If an algorithm is amenable to “easy” manual calculation, it is probably a poor method if imple-
mented in the finite floating-point arithmetic of a digital computer.

For example, when confronted with finding the eigenvalues of a 2× 2 matrix, most people would
find the characteristic polynomial and solve the resulting quadratic equation. But when extrapolated
as a general method for computing eigenvalues and implemented on a digital computer, this is a very
poor procedure for reasons such as roundoff and overflow/underflow. The preferred method now would
generally be the double Francis QR algorithm (see [17] for details) but few would attempt that manually,
even for very small-order problems.

Many algorithms, now considered fairly reliable in the context of finite arithmetic, are not amenable
to manual calculations (e.g., various classes of orthogonal similarities). This is a kind of converse to
the observation quoted above. Especially in linear system and control theory, we have been too easily
tempted by the ready availability of closed-form solutions and numerically naive methods to implement
those solutions. For example, in solving the initial value problem

ẋ(t)= Ax(t); x(0)= x0, (1.6)

it is not at all clear that one should explicitly compute the intermediate quantity etA. Rather, it is the vector
etAx0 that is desired, a quantity that may be computed by treating Equation 1.6 as a system of (possibly
stiff) differential equations and using an implicit method for numerically integrating the differential
equation. But such techniques are definitely not attractive for manual computation.

The awareness of such numerical issues in the mathematics and engineering community has increased
significantly in the last few decades. In fact, some of the background material well known to numer-
ical analysts has already filtered down to undergraduate and graduate curricula in these disciplines.
This awareness and education has affected system and control theory, especially linear system theory.
A number of numerical analysts were attracted by the wealth of interesting numerical linear algebra
problems in linear system theory. At the same time, several researchers in linear system theory turned to
various methods and concepts from numerical linear algebra and attempted to modify them in develop-
ing reliable algorithms and software for specific problems in linear system theory. This cross-fertilization
has been greatly enhanced by the widespread use of software packages and by developments over the last
couple of decades in numerical linear algebra. This process has already begun to have a significant impact
on the future directions and development of system and control theory, and on applications, as evident
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1-4 Control System Advanced Methods

from the growth of computer-aided control system design (CACSD) as an intrinsic tool. Algorithms
implemented as mathematical software are a critical “inner” component of a CACSD system.

In the remainder of this chapter, we survey some results and trends in this interdisciplinary research
area. We emphasize numerical aspects of the problems/algorithms, which is why we also spend time
discussing appropriate numerical tools and techniques. We discuss a number of control and filtering
problems that are of widespread interest in control.

Before proceeding further, we list here some notations to be used:

F
n×m the set of all n×m matrices with coefficients in the field F (F is generally R or C )

AT the transpose of A ∈ R
n×m

AH the complex-conjugate transpose of A ∈ C
n×m

A+ the Moore–Penrose pseudoinverse of A
‖A‖ the spectral norm of A (i.e., the matrix norm subordinate to the Euclidean vector

norm: ‖A‖ =max‖x‖2=1 ‖Ax‖2)

diag (a1, . . . , an) the diagonal matrix

⎡
⎢⎣

a1 0
. . .

0 an

⎤
⎥⎦

Λ(A) the set of eigenvalues λ1, . . . ,λn (not necessarily distinct) of A ∈ F
n×n

λi(A) the ith eigenvalue of A
Σ(A) the set of singular values σ1, . . . , σm (not necessarily distinct) of A ∈ F

n×m

σi(A) the ith singular value of A

Finally, let us define a particular number to which we make frequent reference in the following. The
machine epsilon or relative machine precision is defined, roughly speaking, as the smallest positive number
ε that, when added to 1 on our computing machine, gives a number greater than 1. In other words, any
machine representable number δ less than ε gets “ rounded off” when (floating-point) added to 1 to give
exactly 1 again as the rounded sum. The number ε, of course, varies depending on the kind of computer
being used and the precision of the computations (single precision, double precision, etc.). But the fact
that such a positive number ε exists is entirely a consequence of finite word length.

1.2 Numerical Background

In this section, we give a very brief discussion of two concepts fundamentally important in numerical
analysis: numerical stability and conditioning. Although this material is standard in textbooks such as [8],
it is presented here for completeness and because the two concepts are frequently confused in the systems,
control, and estimation literature.

Suppose we have a mathematically defined problem represented by f which acts on data d belonging to
some set of data D, to produce a solution f (d) in a solution set S. These notions are kept deliberately vague
for expository purposes. Given d ∈D, we desire to compute f (d). Suppose d∗ is some approximation to d.
If f (d∗) is “near” f (d), the problem is said to be well conditioned. If f (d∗) may potentially differ greatly
from f (d) even when d∗ is near d, the problem is said to be ill-conditioned. The concept of “near” can be
made precise by introducing norms in the appropriate spaces. We can then define the condition of the
problem f with respect to these norms as

κ[f (d)] = lim
δ→0

sup
d2(d,d∗)=δ

[
d1(f (d), f (d∗))

δ

]
, (1.7)
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where di (· , ·) are distance functions in the appropriate spaces. When κ[f (d)] is infinite, the problem of
determining f (d) from d is ill-posed (as opposed to well-posed). When κ[f (d)] is finite and relatively large
(or relatively small), the problem is said to be ill-conditioned (or well-conditioned).

A simple example of an ill-conditioned problem is the following. Consider the n× n matrix

A=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
· · · · · · ·
· · · · · ·
· · · · 0
· · · 1
0 · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with n eigenvalues at 0. Now, consider a small perturbation of the data (the n2 elements of A) consisting
of adding the number 2−n to the first element in the last (nth) row of A. This perturbed matrix then
has n distinct eigenvalues λ1, . . . ,λn with λk = 1/2 exp(2kπj/n), where j := √−1. Thus, we see that this
small perturbation in the data has been magnified by a factor on the order of 2n resulting in a rather
large perturbation in solving the problem of computing the eigenvalues of A. Further details and related
examples can be found in [9,17].

Thus far, we have not mentioned how the problem f above (computing the eigenvalues of A in the
example) was to be solved. Conditioning is a function solely of the problem itself. To solve a problem
numerically, we must implement some numerical procedures or algorithms which we denote by f ∗. Thus,
given d, f ∗(d) is the result of applying the algorithm to d (for simplicity, we assume d is “representable”; a
more general definition can be given when some approximation d∗∗ to d must be used). The algorithm f ∗
is said to be numerically (backward) stable if, for all d ∈D, there exists d∗ ∈D near d so that f ∗(d) is near
f (d∗), (f (d∗) = the exact solution of a nearby problem). If the problem is well-conditioned, then f (d∗)
is near f (d) so that f ∗(d) is near f (d) if f ∗ is numerically stable. In other words, f ∗ does not introduce
any more sensitivity to perturbation than is inherent in the problem. Example 1.1 further illuminates this
definition of stability which, on a first reading, can seem somewhat confusing.

Of course, one cannot expect a stable algorithm to solve an ill-conditioned problem any more accurately
than the data warrant, but an unstable algorithm can produce poor solutions even to well-conditioned
problems. Example 1.2, illustrates this phenomenon. There are thus two separate factors to consider in
determining the accuracy of a computed solution f ∗(d). First, if the algorithm is stable, f ∗(d) is near f (d∗),
for some d∗, and second, if the problem is well conditioned, then, as above, f (d∗) is near f (d). Thus, f ∗(d)
is near f (d) and we have an “accurate” solution.

Rounding errors can cause unstable algorithms to give disastrous results. However, it would be virtually
impossible to account for every rounding error made at every arithmetic operation in a complex series of
calculations. This would constitute a forward error analysis. The concept of backward error analysis based
on the definition of numerical stability given above provides a more practical alternative. To illustrate this,
let us consider the singular value decomposition (SVD) of an arbitrary m× n matrix A with coefficients
in R or C [8] (see also Section 1.3.3),

A= UΣV H . (1.8)

Here U and V are m×m and n× n unitary matrices, respectively, andΣ is an m× n matrix of the form

Σ=
[
Σr 0
0 0

]
; Σr = diag{σ1, . . . , σr} (1.9)

with the singular values σi positive and satisfying σ1 ≥ σ2 · · · ≥ σr > 0. The computation of this decom-
position is, of course, subject to rounding errors. Denoting computed quantities by an overbar, for some
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error matrix EA,

A= A+EA = UΣV
H

. (1.10)

The computed decomposition thus corresponds exactly to a perturbed matrix A. When using the SVD
algorithm available in the literature [8], this perturbation can be bounded by

‖ EA ‖≤ πε ‖ A ‖, (1.11)

where ε is the machine precision and π is some quantity depending on the dimensions m and n, but
reasonably close to 1 (see also [14, p. 74]). Thus, the backward error EA induced by this algorithm has
roughly the same norm as the input error Ei resulting, for example, when reading the data A into the
computer. Then, according to the definition of numerical stability given above, when a bound such as
that in Equation 1.11 exists for the error induced by a numerical algorithm, the algorithm is said to be
backward stable [17]. Note that backward stability does not guarantee any bounds on the errors in the
result U ,Σ, and V . In fact, this depends on how perturbations in the data (namely, EA = A−A) affect
the resulting decomposition (namely, EU = U −U , EΣ =Σ−Σ, and EV = V −V ). This is commonly
measured by the condition κ[f (A)].

Backward stability is a property of an algorithm, and the condition is associated with a problem and
the specific data for that problem. The errors in the result depend on the stability of the algorithm
used and the condition of the problem solved. A good algorithm should, therefore, be backward stable
because the size of the errors in the result is then mainly due to the condition of the problem, not to the
algorithm. An unstable algorithm, on the other hand, may yield a large error even when the problem is
well conditioned.

Bounds of the type Equation 1.11 are obtained by an error analysis of the algorithm used, and the
condition of the problem is obtained by a sensitivity analysis; for example, see [9,17].

We close this section with two simple examples to illustrate some of the concepts introduced.

Example 1.1:

Let x and y be two floating-point computer numbers and let fl(x ∗ y) denote the result of multiplying
them in floating-point computer arithmetic. In general, the product x ∗ y requires more precision to
be represented exactly than was used to represent x or y. But for most computers

fl(x ∗ y)= x ∗ y(1+ δ), (1.12)

where |δ|< ε (= relative machine precision). In other words, fl(x ∗ y) is x ∗ y correct to within a unit in
the last place. Another way to write Equation 1.12 is as follows:

fl(x ∗ y)= x(1+ δ)1/2 ∗ y(1+ δ)1/2, (1.13)

where |δ|< ε. This can be interpreted as follows: the computed result fl(x ∗ y) is the exact prod-
uct of the two slightly perturbed numbers x(1+ δ)1/2 and y(1+ δ)1/2. The slightly perturbed data
(not unique) may not even be representable as floating-point numbers. The representation of
Equation 1.13 is simply a way of accounting for the roundoff incurred in the algorithm by an ini-
tial (small) perturbation in the data.
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Example 1.2:

Gaussian elimination with no pivoting for solving the linear system of equations

Ax = b (1.14)

is known to be numerically unstable; see for example [8] and Section 1.3. The following data
illustrate this phenomenon. Let

A=
[

0.0001 1.000
1.000 −1.000

]
, b=

[
1.000
0.000

]
.

All computations are carried out in four-significant-figure decimal arithmetic. The “true answer”
x = A−1b is [

0.9999
0.9999

]
.

Using row 1 as the “pivot row” (i.e., subtracting 10,000× row 1 from row 2) we arrive at the equivalent
triangular system [

0.0001 1.000
0 −1.000× 104

] [
x1
x2

]
=
[

1.000
−1.000× 104

]
.

The coefficient multiplying x2 in the second equation should be−10, 001, but because of roundoff,
becomes −10, 000. Thus, we compute x2 = 1.000 (a good approximation), but back substitution in
the equation

0.0001x1 = 1.000− fl(1.000 ∗ 1.000)

yields x1 = 0.000. This extremely bad approximation to x1 is the result of numerical instability. The
problem, it can be shown, is quite well conditioned.

1.3 Fundamental Problems in Numerical Linear Algebra

In this section, we give a brief overview of some of the fundamental problems in numerical linear algebra
that serve as building blocks or “tools” for the solution of problems in systems, control, and estimation.

1.3.1 Linear Algebraic Equations and Linear Least-Squares Problems

Probably the most fundamental problem in numerical computing is the calculation of a vector x which
satisfies the linear system

Ax = b, (1.15)

where A ∈ R
n×n(or C

n×n) and has rank n. A great deal is now known about solving Equation 1.15 in finite
arithmetic both for the general case and for a large number of special situations, for example, see [8,9].

The most commonly used algorithm for solving Equation 1.15 with general A and small n (say n≤ 1000)
is Gaussian elimination with some sort of pivoting strategy, usually “partial pivoting.” This amounts to
factoring some permutation of the rows of A into the product of a unit lower triangular matrix L and an
upper triangular matrix U . The algorithm is effectively stable, that is, it can be proved that the computed
solution is near the exact solution of the system

(A+E)x = b (1.16)

with |eij| ≤ φ(n) γ β ε, where φ(n) is a modest function of n depending on details of the arithmetic used, γ
is a “growth factor” (which is a function of the pivoting strategy and is usually—but not always—small),
β behaves essentially like ‖A‖, and ε is the machine precision. In other words, except for moderately
pathological situations, E is “small”—on the order of ε ‖A‖.
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The following question then arises. If, because of rounding errors, we are effectively solving Equa-
tion 1.16 rather than Equation 1.15, what is the relationship between (A+E)−1b and A−1b? To answer
this question, we need some elementary perturbation theory and this is where the notion of condition
number arises. A condition number for Equation 1.15 is given by

κ(A) : = ‖A‖ ‖A−1‖. (1.17)

Simple perturbation results can show that perturbation in A and/or b can be magnified by as much as
κ(A) in the computed solution. Estimating κ(A) (since, of course, A−1 is unknown) is thus a crucial
aspect of assessing solutions of Equation 1.15 and the particular estimating procedure used is usually the
principal difference between competing linear equation software packages. One of the more sophisticated
and reliable condition estimators presently available is implemented in LINPACK [5] and its successor
LAPACK [2]. LINPACK and LAPACK also feature many codes for solving Equation 1.14 in case A has
certain special structures (e.g., banded, symmetric, or positive definite).

Another important class of linear algebra problems, and one for which codes are available in LINPACK
and LAPACK, is the linear least-squares problem

min ‖Ax− b‖2, (1.18)

where A ∈ R
m×n and has rank k, with (in the simplest case) k = n≤m, for example, see [8]. The solution

of Equation 1.18 can be written formally as x = A+b. The method of choice is generally based on the QR
factorization of A (for simplicity, let rank(A)= n)

A= QR, (1.19)

where R ∈ R
n×n is upper triangular and Q ∈ R

m×n has orthonormal columns, that is, QT Q = I . With
special care and analysis, the case k < n can also be handled similarly. The factorization is effected through
a sequence of Householder transformations Hi applied to A. Each Hi is symmetric and orthogonal and
of the form I − 2uuT/uT u, where u ∈ R

m is specially chosen so that zeros are introduced at appropriate
places in A when it is premultiplied by Hi . After n such transformations,

HnHn−1 . . . H1A=
[

R
0

]
,

from which the factorization Equation 1.19 follows. Defining c and d by

[
c
d

]
:= HnHn−1 . . . H1b,

where c ∈ R
n, it is easily shown that the least-squares solution x of Equation 1.18 is given by the solution

of the linear system of equations

Rx = c . (1.20)

The above algorithm is numerically stable and, again, a well-developed perturbation theory exists from
which condition numbers can be obtained, this time in terms of

κ(A) : = ‖A‖ ‖A+‖.

Least-squares perturbation theory is fairly straightforward when rank(A)= n, but is considerably more
complicated when A is rank deficient. The reason for this is that, although the inverse is a continuous
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function of the data (i.e., the inverse is a continuous function in a neighborhood of a nonsingular matrix),
the pseudoinverse is discontinuous. For example, consider

A=
[

1 0
0 0

]
= A+

and perturbations

E1 =
[

0 0
δ 0

]
and E2 =

[
0 0
0 δ

]

with δ being small. Then

(A+E1)+ =
⎡
⎣ 1

1+ δ2

δ

1+ δ2

0 0

⎤
⎦ ,

which is close to A+ but

(A+E2)+ =
⎡
⎣1 0

0
1

δ

⎤
⎦ ,

which gets arbitrarily far from A+ as δ is decreased toward 0.
In lieu of Householder transformations, Givens transformations (elementary rotations or reflections)

may also be used to solve the linear least-squares problem [8]. Givens transformations have received
considerable attention for solving linear least-squares problems and systems of linear equations in a
parallel computing environment. The capability of introducing zero elements selectively and the need for
only local interprocessor communication make the technique ideal for “parallelization.”

1.3.2 Eigenvalue and Generalized Eigenvalue Problems

In the algebraic eigenvalue/eigenvector problem for A ∈ R
n×n, one seeks nonzero solutions x ∈ C

n and
λ ∈ C, which satisfy

Ax = λx. (1.21)

The classic reference on the numerical aspects of this problem is Wilkinson [17]. A briefer textbook
introduction is given in [8].

Quality mathematical software for eigenvalues and eigenvectors is available; the EISPACK [7,15]
collection of subroutines represents a pivotal point in the history of mathematical software. The suc-
cessor to EISPACK (and LINPACK) is LAPACK [2], in which the algorithms and software have been
restructured to provide high efficiency on vector processors, high-performance workstations, and shared
memory multiprocessors.

The most common algorithm now used to solve Equation 1.21 for general A is the QR algorithm
of Francis [17]. A shifting procedure enhances convergence and the usual implementation is called the
double-Francis-QR algorithm. Before the QR process is applied, A is initially reduced to upper Hessenberg
form AH (aij = 0 if i− j ≥ 2). This is accomplished by a finite sequence of similarities of the Householder
form discussed above. The QR process then yields a sequence of matrices orthogonally similar to A and
converging (in some sense) to a so-called quasi-upper triangular matrix S also called the real Schur form
(RSF) of A. The matrix S is block upper triangular with 1× 1 diagonal blocks corresponding to real
eigenvalues of A and 2× 2 diagonal blocks corresponding to complex-conjugate pairs of eigenvalues. The
quasi-upper triangular form permits all arithmetic to be real rather than complex as would be necessary
for convergence to an upper triangular matrix. The orthogonal transformations from both the Hessenberg
reduction and the QR process may be accumulated in a single orthogonal transformation U so that

UT AU = R (1.22)

compactly represents the entire algorithm. An analogous process can be applied in the case of symmetric
A, and considerable simplifications and specializations result.



�

�

�

�

� �

1-10 Control System Advanced Methods

Closely related to the QR algorithm is the QZ algorithm for the generalized eigenvalue problem

Ax = λMx, (1.23)

where A, M ∈ R
n×n. Again, a Hessenberg-like reduction, followed by an iterative process, is implemented

with orthogonal transformations to reduce Equation 1.23 to the form

QAZy = λQMZy, (1.24)

where QAZ is quasi-upper triangular and QMZ is upper triangular. For a review and references to results
on stability, conditioning, and software related to Equation 1.23 and the QZ algorithm, see [8]. The
generalized eigenvalue problem is both theoretically and numerically more difficult to handle than the
ordinary eigenvalue problem, but it finds numerous applications in control and system theory [14, p. 109].

1.3.3 The Singular Value Decomposition and Some Applications

One of the basic and most important tools of modern numerical analysis, especially numerical linear
algebra, is the SVD. Here we make a few comments about its properties and computation as well as its
significance in various numerical problems.

Singular values and the SVD have a long history, especially in statistics and numerical linear algebra.
These ideas have found applications in the control and signal processing literature, although their use
there has been overstated somewhat in certain applications. For a survey of the SVD, its history, numerical
details, and some applications in systems and control theory, see [14, p. 74].

The fundamental result was stated in Section 1.2 (for the complex case). The result for the real case is
similar and is stated below.

Theorem 1.1:

Let A ∈ R
m×n with rank(A)= r. Then there exist orthogonal matrices U ∈ R

m×m and V ∈ R
n×n so that

A= UΣV T , (1.25)

where

Σ=
[
Σr 0
0 0

]

and Σr = diag {σ1, . . . , σr} with σ1 ≥ · · · ≥ σr > 0.

The proof of Theorem 1.1 is straightforward and can be found, for example, in [8]. Geometrically, the
theorem says that bases can be found (separately) in the domain and codomain spaces of a linear map
with respect to which the matrix representation of the linear map is diagonal. The numbers σ1, . . . , σr ,
together with σr+1 = 0, . . . , σn = 0, are called the singular values of A, and they are the positive square
roots of the eigenvalues of AT A. The columns {uk , k = 1, . . . , m} of U are called the left singular vectors
of A (the orthonormal eigenvectors of AAT ), while the columns {vk , k = 1, . . . , n} of V are called the right
singular vectors of A (the orthonormal eigenvectors of AT A). The matrix A can then be written (as a
dyadic expansion) also in terms of the singular vectors as follows:

A=
r∑

k=1

σkukvT
k .

The matrix AT has m singular values, the positive square roots of the eigenvalues of AAT . The r
[= rank(A)] nonzero singular values of A and AT are, of course, the same. The choice of AT A rather than
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AAT in the definition of singular values is arbitrary. Only the nonzero singular values are usually of any
real interest and their number, given the SVD, is the rank of the matrix. Naturally, the question of how to
distinguish nonzero from zero singular values in the presence of rounding error is a nontrivial task.

It is not generally advisable to compute the singular values of A by first finding the eigenvalues of AT A,
tempting as that is. Consider the following example, where μ is a real number with |μ|<√ε (so that
fl(1+μ2)= 1, where fl(·) denotes floating-point computation). Let

A=
⎡
⎣1 1
μ 0
0 μ

⎤
⎦ .

Then

fl(AT A)=
[

1 1
1 1

]
.

So we compute σ̂1 =
√

2, σ̂2 = 0 leading to the (erroneous) conclusion that the rank of A is 1. Of course,
if we could compute in infinite precision, we would find

AT A=
[

1+μ2 1
1 1+μ2

]

with σ1 =
√

2+μ2, σ2 = |μ| and thus rank(A)= 2. The point is that by working with AT A we have
unnecessarily introduced μ2 into the computations. The above example illustrates a potential pitfall in
attempting to form and solve the normal equations in a linear least-squares problem and is at the heart
of what makes square root filtering so attractive numerically. Very simplistically, square root filtering
involves working directly on an “A-matrix,” for example, updating it, as opposed to updating an “AT A-
matrix.”

Square root filtering is usually implemented with the QR factorization (or some closely related algo-
rithm) as described previously rather than SVD. Moreover, critical information may be lost irrecoverably
by simply forming AT A.

Returning now to the SVD, two features of this matrix factorization make it attractive in finite arith-
metic: first, it can be computed in a numerically stable way, and second, singular values are well con-
ditioned. Specifically, there is an efficient and numerically stable algorithm by Golub and Reinsch [8]
which works directly on A to give the SVD. This algorithm has two phases. In the first phase, it computes
orthogonal matrices U1 and V1 so that B= U1

T AV1 is in bidiagonal form, that is, only the elements on
its diagonal and first superdiagonal are nonzero. In the second phase, the algorithm uses an iterative
procedure to compute orthogonal matrices U2 and V2 so that U2

T BV2 is diagonal and nonnegative. The
SVD defined in Equation 1.25 is then Σ= UT BV , where U = U1U2 and V = V1V2. The computed U
and V are orthogonal approximately to the working precision, and the computed singular values are the
exact σi ’s for A+E, where ‖E‖/‖A‖ is a modest multiple of ε. Fairly sophisticated implementations of
this algorithm can be found in [5,7]. The well-conditioned nature of the singular values follows from the
fact that if A is perturbed to A+E, then it can be proved that

‖σi(A+E)− σi(A)‖ ≤ ‖E‖.

Thus, the singular values are computed with small absolute error although the relative error of sufficiently
small singular values is not guaranteed to be small.

It is now acknowledged that the singular value decomposition is the most generally reliable method of
determining rank numerically (see [14, p. 589] for a more elaborate discussion). However, it is consider-
ably more expensive to compute than, for example, the QR factorization which, with column pivoting [5],
can usually give equivalent information with less computation. Thus, while the SVD is a useful theoretical
tool, its use for actual computations should be weighed carefully against other approaches.
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The problem of numerical determination of rank is now well understood. The essential idea is to try
to determine a “gap” between “zero” and the “smallest nonzero singular value” of a matrix A. Since the
computed values are exact for a matrix near A, it makes sense to consider the ranks of all matrices in
some δ-ball (with respect to the spectral norm ‖ · ‖, say) around A. The choice of δ may also be based
on measurement errors incurred in estimating the coefficients of A, or the coefficients may be uncertain
because of rounding errors incurred in a previous computation. However, even with SVD, numerical
determination of rank in finite arithmetic is a difficult problem.

That other methods of rank determination are potentially unreliable is demonstrated by the following
example. Consider the Ostrowski matrix A ∈ R

n×n whose diagonal elements are all −1, whose upper
triangle elements are all+1, and whose lower triangle elements are all 0. This matrix is clearly of rank n,
that is, is invertible. It has a good “solid” upper triangular shape. All of its eigenvalues (−1) are well away
from zero. Its determinant (−1)n is definitely not close to zero. But this matrix is, in fact, very nearly
singular and becomes more nearly so as n increases. Note, for example, that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 +1 · · · · · · +1

0
. . .

. . .
...

...
. . .

. . .
. . .
. . .

. . .
...

...
. . .

. . . +1
0 · · · · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
2−1

...
2−n+1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣
−2−n+1

−2−n+1

...
−2−n+1

⎤
⎥⎥⎥⎦→

⎡
⎢⎢⎢⎣

0
0
...
0

⎤
⎥⎥⎥⎦ (n→+∞).

Moreover, adding 2−n+1 to every element in the first column of A gives an exactly singular matrix.
Arriving at such a matrix by, say, Gaussian elimination would give no hint as to the near singularity.
However, it is easy to check that σn(A) behaves as 2−n+1. A corollary for control theory is that eigenvalues
do not necessarily give a reliable measure of “stability margin.” It is useful to note that in this example
of an invertible matrix, the crucial quantity, σn(A), which measures nearness to singularity, is simply
1/‖A−1‖, and the result is familiar from standard operator theory. There is nothing intrinsic about
singular values in this example and, in fact, ‖A−1‖ might be more cheaply computed or estimated in
other matrix norms.

Because rank determination, in the presence of rounding error, is a nontrivial problem, the same diffi-
culties naturally arise in any problem equivalent to, or involving, rank determination, such as determining
the independence of vectors, finding the dimensions of certain subspaces, etc. Such problems arise as basic
calculations throughout systems, control, and estimation theory. Selected applications are discussed in
more detail in [14, p. 74] and in [1,4,10].

Finally, let us close this section with a brief example illustrating a totally inappropriate use of SVD. The
rank condition

rank [B, AB, . . . , An−1B] = n (1.26)

for the controllability of Equation 1.1 is too well known. Suppose

A=
[

1 μ

0 1

]
, B=

[
1
μ

]

with |μ|<√ε. Then

fl[B, AB] =
[

1 1
μ μ

]
,

and now even applying SVD, the erroneous conclusion of uncontrollability is reached. Again the problem
is in just forming AB; not even SVD can come to the rescue after that numerical faux pas.
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1.4 Applications to Systems and Control

A reasonable approach to developing numerically reliable algorithms for computational problems in
linear system theory would be to reformulate the problems as concatenations of subproblems for which
numerically stable algorithms are available. Unfortunately, one cannot ensure that the stability of algo-
rithms for the subproblems results in the stability of the overall algorithm. This requires separate analysis
that may rely on the sensitivity or condition of the subproblems. In the next section, we show that delicate
(i.e., badly conditioned) subproblems should be avoided whenever possible; a few examples are given
where a possibly badly conditioned step is circumvented by carefully modifying or completing existing
algorithms; see, for example, [14, p. 109].

A second difficulty is the ill-posedness of some of the problems occurring in linear system theory. Two
approaches can be adopted. One can develop an acceptable perturbation theory for such problems, using
a concept such as restricted condition, which is, the condition under perturbations for which a certain
property holds, for example, fixed rank [14, p. 109]. One then looks for restricting assumptions that make
the problem well posed. Another approach is to delay any such restricting choices to the end and leave
it to the user to decide which choice to make by looking at the results. The algorithm then provides
quantitative measures that help the user make this choice; see, for example, [14, p. 171, 529]. By this
approach, one may avoid artificial restrictions of the first approach that sometimes do not respect the
practical significance of the problem.

A third possible pitfall is that many users almost always prefer fast algorithms to slower ones. However,
slower algorithms are often more reliable.

In the subsections that follow, we survey a representative selection of numerical linear algebra problems
arising in linear systems, control, and estimation theory, which have been examined with some of the
techniques described in the preceding sections. Many of these topics are discussed briefly in survey papers
such as [11] and [16] and in considerably more detail in the papers included or referenced in [14] and
in [1,4,10]. Some of the scalar algorithms discussed here do not extend trivially to the matrix case. When
they do, we mention only the matrix case. Moreover, we discuss only the numerical aspects here; for the
system-theoretical background, we refer the reader to the control and systems literature.

1.4.1 Some Typical Techniques

Most of the reliable techniques in numerical linear algebra are based on the use of orthogonal trans-
formations. Typical examples of this are the QR decomposition for least-squares problems, the Schur
decomposition for eigenvalue and generalized eigenvalue problems, and the SVD for rank determina-
tions and generalized inverses. Orthogonal transformations also appear in most of the reliable linear
algebra techniques for control theory. This is partly due to the direct application of existing linear algebra
decompositions to problems in control. Obvious examples of this are the Schur approach for solving alge-
braic Riccati equations, both continuous- and discrete-time [14, p. 529, 562, 573], for solving Lyapunov
equations [14, p. 430] and for performing pole placement [14, p. 415]. New orthogonal decompositions
have also been introduced that rely heavily on the same principles but were specifically developed for
problems encountered in control. Orthogonal state-space transformations on a system {A, B, C} result in
a new state-space representation {UH AU , UH B, CU}, where U performs some kind of decomposition on
the matrices A, B, and C. These special forms, termed “condensed forms,” include

• The state Schur form [14, p. 415]
• The state Hessenberg form [14, p. 287]
• The observer Hessenberg form [14, p. 289, 392]
• The controller Hessenberg form [14, p. 128, 357].

Staircase forms or block Hessenberg forms are other variants of these condensed forms that have
proven useful in dealing with MIMO systems [14, p. 109, 186, 195].
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There are two main reasons for using these orthogonal state-space transformations:

• The numerical sensitivity of the control problem being solved is not affected by these transforma-
tions because sensitivity is measured by norms or angles of certain spaces and these are unaltered
by orthogonal transformations.

• Orthogonal transformations have minimum condition number, essential in proving bounded error
propagation and establishing numerical stability of the algorithm that uses such transformations.

More details on this are given in [14, p. 128] and in subsequent sections where some of these condensed
forms are used for particular applications.

1.4.2 Transfer Functions, Poles, and Zeros

In this section, we discuss important structural properties of linear systems and the numerical techniques
available for determining them. The transfer function R(λ) of a linear system is given by a polynomial
representation V (λ)T−1(λ)U(λ)+W(λ) or by a state-space model C(λI −A)−1B+D. The results in
this subsection hold for both the discrete-time case (where λ stands for the shift operator z) and the
continuous-time case (where λ stands for the differentiation operator D).

1.4.2.1 The Polynomial Approach

One is interested in a number of structural properties of the transfer function R(λ), such as poles,
transmission zeros, decoupling zeros, etc. In the scalar case, where {T(λ), U(λ), V (λ), W(λ)} are scalar
polynomials, all of this can be found with a greatest common divisor (GCD) extraction routine and a
rootfinder, for which reliable methods exist. In the matrix case, the problem becomes much more complex
and the basic method for GCD extraction, the Euclidean algorithm, becomes unstable (see [14, p. 109]).
Moreover, other structural elements (null spaces, etc.) come into the picture, making the polynomial
approach less attractive than the state-space approach [14, p. 109, and references therein].

1.4.2.2 The State-Space Approach

The structural properties of interest are poles and zeros of R(λ), decoupling zeros, controllable and
unobservable subspaces, supremal (A, B)-invariant and controllability subspaces, factorizability of R(λ),
left and right null spaces of R(λ), etc. These concepts are fundamental in several design problems and
have received considerable attention over the last few decades; see, for example, [14, p. 74, 109, 174,
186, 529]. In [14, p. 109], it is shown that all the concepts mentioned above can be considered gener-
alized eigenstructure problems and that they can be computed via the Kronecker canonical form of the
pencils

[λI −A] [λI −A | B]
[
λI −A
−C

] [
λI −A B
−C D

] (1.27)

or from other pencils derived from these. Backward stable software is also available for computing the
Kronecker structure of an arbitrary pencil. A remaining problem here is that determining several of the
structural properties listed above may be ill-posed in some cases in which one has to develop the notion
of restricted condition (see [14, p. 109]). A completely different approach is to reformulate the problem as
an approximation or optimization problem for which quantitative measures are derived, leaving the final
choice to the user. Results in this vein are obtained for controllability, observability [14, p. 171, 186, 195]
(almost) (A, B)-invariant, and controllability subspaces.
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1.4.3 Controllability and Other “Abilities”

The various “abilities” such as controllability, observability, reachability, reconstructibility, stabilizability,
and detectability are basic to the study of linear control and system theory. These concepts can also be
viewed in terms of decoupling zeros, controllable and unobservable subspaces, controllability subspaces,
etc. mentioned in the previous section. Our remarks here are confined, but not limited, to the notion of
controllability.

A large number of algebraic and dynamic characterizations of controllability have been given; see [11]
for a sample. But each one of these has difficulties when implemented in finite arithmetic. For a survey
of this topic and numerous examples, see [14, p. 186]. Part of the difficulty in dealing with controllability
numerically lies in the intimate relationship with the invariant subspace problem [14, p. 589]. The
controllable subspace associated with Equation 1.1 is the smallest A-invariant subspace (subspace spanned
by eigenvectors or principal vectors) containing the range of B. Since the A-invariant subspaces can be
extremely sensitive to perturbation, it follows that, so too, is the controllable subspace. Similar remarks
apply to the computation of the so-called controllability indices. The example discussed in the third
paragraph of Section 1.2 dramatically illustrates these remarks. The matrix A has but one eigenvector
(associated with 0), whereas the slightly perturbed A has n eigenvectors associated with the n distinct
eigenvalues.

Attempts have been made to provide numerically stable algorithms for the pole placement problem
discussed in a later section. It suffices to mention here that the problem of pole placement by state feedback
is closely related to controllability. Work on developing numerically stable algorithms for pole placement
is based on the reduction of A to a Hessenberg form; see, for example, [14, p. 357, 371, 380]. In the
single-input case, a good approach is the controller Hessenberg form mentioned above where the state
matrix A is upper Hessenberg and the input vector B is a multiple of (1, 0, . . . , 0)T . The pair (A, B) is then
controllable if, and only if, all (n− 1) subdiagonal elements of A are nonzero. If a subdiagonal element is 0,
the system is uncontrollable, and a basis for the uncontrollable subspace is easily constructed. The transfer
function gain or first nonzero Markov parameter is also easily constructed from this “canonical form.”
In fact, the numerically more robust system Hessenberg form, playing an ever-increasing role in system
theory, is replacing the numerically more fragile special case of the companion or rational canonical or
Luenberger canonical form.

A more important aspect of controllability is a topological notion such as “near uncontrollability.” But
there are numerical difficulties here also, and we refer to Parts 3 and 4 of [14] for further details. Related to
this is an interesting system-theoretic concept called “balancing” discussed in Moore’s paper [14, p. 171].
The computation of “balancing transformations” is discussed in [14, p. 642].

There are at least two distinct notions of near uncontrollability [11] in the parametric sense and in
the energy sense. In the parametric sense, a controllable pair (A, B) is said to be near uncontrollable
if the parameters of (A, B) need be perturbed by only a relatively small amount for (A, B) to become
uncontrollable. In the energy sense, a controllable pair is near-uncontrollable if large amounts of control
energy (

∫
uT u) are required for a state transfer. The pair

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 0
...

. . .
. . .

...

...
. . . 1

0 · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, B=

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

is very near-uncontrollable in the energy sense but not as badly as in the parametric sense. Of course,
both measures are coordinate dependent and “balancing” is one attempt to remove this coordinate bias.
The pair (A, B) above is in “controllable canonical form.” It is now known that matrices in this form
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(specifically, the A matrix in rational canonical form) almost always exhibit poor numerical behavior and
are “close to” uncontrollable (unstable, etc.) as the size n increases. For details, see [14, p. 59].

1.4.4 Computation of Objects Arising in the Geometric Theory
of Linear Multivariable Control

A great many numerical problems arise in the geometric approach to control of systems modeled as
Equations 1.1 and 1.2. Some of these are discussed in the paper by Klema and Laub [14, p. 74]. The power
of the geometric approach derives in large part from the fact that it is independent of specific coordinate
systems or matrix representations. Numerical issues are a separate concern.

A very thorough numerical treatment of numerical problems in linear system theory has been given
by Van Dooren [14, p. 109]. This work has applications for most calculations with linear state-space
models. For example, one by-product is an extremely reliable algorithm (similar to an orthogonal version
of Silverman’s structure algorithm) for the computation of multivariable system zeros [14, p. 271]. This
method involves a generalized eigenvalue problem (the Rosenbrock pencil), but the “infinite zeros” are
first removed by deflating the given matrix pencil.

1.4.5 Frequency Response Calculations

Many properties of a linear system such as Equations 1.1 and 1.2 are known in terms of its frequency
response matrix

G( jω) : = C( jωI −A)−1B+D; (ω≥ 0) (1.28)

(or G(ejθ); θ ∈ [0, 2π] for Equations 1.3 and 1.4). In fact, various norms of the return difference matrix
I +G( jω) and related quantities have been investigated in control and system theory to providing robust
linear systems with respect to stability, noise response, disturbance attenuation, sensitivity, etc.

Thus it is important to compute G( jω) efficiently, given A, B, and C for a (possibly) large number
of values of ω (for convenience we take D to be 0, because if it is nonzero it is trivial to add to G). An
efficient and generally applicable algorithm for this problem is presented in [14, p. 287]. Rather than
solving the linear equation ( jωI −A)X = B with dense unstructured A, which would require O(n3) oper-
ations for each successive value of ω, the new method initially reduces A to upper Hessenberg form
H . The orthogonal state-space coordinate transformations used to obtain the Hessenberg form of A
are incorporated into B and C giving B̃ and C̃. As ω varies, the coefficient matrix in the linear equa-
tion ( jωI −H)X = B̃ remains in upper Hessenberg form. The advantage is that X can now be found
in O(n2) operations rather than O(n3) as before, a substantial saving. Moreover, the method is numeri-
cally very stable (via either LU or QR factorization) and has the advantage of being independent of the
eigenstructure (possibly ill-conditioned) of A. Another efficient and reliable algorithm for frequency
response computation [14, p. 289] uses the observer Hessenberg form mentioned in Section 1.4.1
together with a determinant identity and a property of the LU decomposition of a Hessenberg matrix.

The methods above can also be extended to state-space models in implicit form, that is, where Equa-
tion 1.1 is replaced by

Eẋ = Ax+Bu. (1.29)

Then Equation 1.28 is replaced with

G( jω)= C( jωE−A)−1B+D, (1.30)

and the initial triangular/Hessenberg reduction [8] can be employed again to reduce the problem to
updating the diagonal of a Hessenberg matrix and consequently an O(n2) problem.

An improvement for the frequency response evaluation problem is using matrix interpolation methods
to achieve even greater computational efficiency.
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1.4.6 Numerical Solution of Linear Ordinary Differential Equations
and Matrix Exponentials

The “simulation” or numerical solution of linear systems of ordinary differential equations (ODEs) of
the form

ẋ(t)= Ax(t)+ f (t), x(0)= x0, (1.31)

is a standard problem that arises in finding the time response of a system in state-space form. However,
there is still debate as to the most effective numerical algorithm, particularly when A is defective (i.e.,
when A is n× n and has fewer than n linearly independent eigenvectors) or nearly defective. The most
common approach involves computing the matrix exponential etA, because the solution of Equation 1.31
can be written simply as

x(t)= etAx0+
∫ t

0
e(t−s)Af (s) ds.

A delightful survey of computational techniques for matrix exponentials is given in [14, p. 649]. Nine-
teen “dubious” ways are explored (there are many more ways not discussed) but no clearly superior
algorithm is singled out. Methods based on Padé approximation or reduction of A to RSF are generally
attractive while methods based on Taylor series or the characteristic polynomial of A are generally found
unattractive. An interesting open problem is the design of a special algorithm for the matrix exponential
when the matrix is known a priori to be stable (Λ(A) in the left half of the complex plane).

The reason for the adjective “dubious” in the title of [14, p. 649] is that in many (maybe even most)
circumstances, it is better to treat Equation 1.31 as a system of differential equations, typically stiff, and to
apply various ODE techniques, specially tailored to the linear case. ODE techniques are preferred when
A is large and sparse for, in general, etA is unmanageably large and dense.

1.4.7 Lyapunov, Sylvester, and Riccati Equations

Certain matrix equations arise naturally in linear control and system theory. Among those frequently
encountered in the analysis and design of continuous-time systems are the Lyapunov equation

AX +XAT +Q = 0, (1.32)

and the Sylvester equation
AX +XF+Q = 0. (1.33)

The appropriate discrete-time analogs are

AXAT −X +Q = 0 (1.34)

and
AXF−X +Q = 0. (1.35)

Various hypotheses are posed for the coefficient matrices A, F, and Q to ensure certain properties of
the solution X.

The literature in control and system theory on these equations is voluminous, but most of it is ad hoc, at
best, from a numerical point of view, with little attention to questions of numerical stability, conditioning,
machine implementation, and the like.

For the Lyapunov equation, the best overall algorithm in terms of efficiency, accuracy, reliability,
availability, and ease of use is that of Bartels and Stewart [14, p. 430]. The basic idea is to reduce A to
quasi-upper triangular form (or RSF) and to perform a back substitution for the elements of X.

An attractive algorithm for solving Lyapunov equations has been proposed by Hammarling [14, p. 500].
This algorithm is a variant of the Bartels–Stewart algorithm but instead solves directly for the Cholesky
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factor Y of X: Y T Y = X and Y is upper triangular. Clearly, given Y , X is easily recovered if necessary.
But in many applications, for example, [14, p. 642] only the Cholesky factor is required.

For the Lyapunov equation, when A is stable, the solutions of the equations above are also equal to
the reachability and observability Grammians Pr(T) and Po(T), respectively, for T =+∞ for the system
{A, B, C}:

Pr(T)=
∫ T

0
etABBT etAT

dt; Po(T)=
∫ T

0
etAT

CT CetAdt

Pr(T)=
T∑

k=0

AkBBT (AT )k ; Po(T)=
T∑

k=0

(AT )kCT CAk .

(1.36)

These can be used along with some additional transformations (see [14, p. 171, 642]) to compute the
so-called balanced realizations {Ã, B̃, C̃}. For these realizations, both Po and Pr are equal and diagonal.
These realizations have some nice sensitivity properties with respect to poles, zeros, truncation errors in
digital filter implementations, etc. [14, p. 171]. They are, therefore, recommended whenever the choice
of a realization is left to the user. When A is not stable, one can still use the finite range Grammians
Equation 1.36, for T <+∞, for balancing [14, p. 171]. A reliable method for computing integrals and
sums of the type Equation 1.36 can be found in [14, p. 681]. It is also shown in [14, p. 171] that the
reachable subspace and the unobservable subspace are the image and the kernel of Pr(T) and Po(T),
respectively. From these relationships, sensitivity properties of the spaces under perturbations of Pr(T)
and Po(T) can be derived.

For the Sylvester equation, the Bartels–Stewart algorithm reduces both A and F to RSF and then a back
substitution is done. It has been demonstrated in [14, p. 495] that some improvement in this procedure
is possible by only reducing the larger of A and F to upper Hessenberg form. The stability of this method
has been analyzed in [14, p. 495]. Although only weak stability is obtained, this is satisfactory in most
cases.

Algorithms are also available in the numerical linear algebra literature for the more general Sylvester
equation

A1XF1
T +A2XF2

T +Q = 0

and its symmetric Lyapunov counterpart

AXFT + FXAT +Q = 0.

Questions remain about estimating the condition of Lyapunov and Sylvester equations efficiently and
reliably in terms of the coefficient matrices. A deeper analysis of the Lyapunov and Sylvester equations is
probably a prerequisite to at least a better understanding of condition of the Riccati equation for which,
again, there is considerable theoretical literature but not as much known from a purely numerical point
of view. The symmetric n× n algebraic Riccati equation takes the form

Q+AX +XAT −XGX = 0 (1.37)

for continuous-time systems and

AT XA−X −AT XG1(G2+GT
1 XG1)−1GT

1 XA+Q = 0 (1.38)

for discrete-time systems. These equations appear in several design/analysis problems, such as optimal
control, optimal filtering, spectral factorization, for example, see the papers in Part 7 of [14] and references
therein. Again, appropriate assumptions are made on the coefficient matrices to guarantee the existence
and/or uniqueness of certain kinds of solutions X. Nonsymmetric Riccati equations of the form

Q+A1X +XA2−XGX = 0 (1.39)

for the continuous-time case (along with an analog for the discrete-time case) are also studied and can be
solved numerically by the techniques discussed below.
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Several algorithms have been proposed based on different approaches. One of the more reliable general-
purpose methods for solving Riccati equations is the Schur method [14, p. 529]. For the case of Equa-
tion 1.37, for example, this method is based on reducing the associated 2n× 2n Hamiltonian matrix

[
A −G

−Q −AT

]
(1.40)

to RSF. If the RSF is ordered so that its stable eigenvalues (there are exactly n of them under certain
standard assumptions) are in the upper left corner, the corresponding first n vectors of the orthogonal
matrix, which effects the reduction, forms a basis for the stable eigenspace from which the nonnegative
definite solution X is then easily found.

Extensions to the basic Schur method have been made [14, p. 562, 573], which were prompted by the
following situations:

• G in Equation 1.37 is of the form BR−1BT , where R may be nearly singular, or G2 in Equation 1.38
may be exactly or nearly singular.

• A in Equation 1.38 is singular (A−1 is required in the classical approach involving a symplectic
matrix that plays a role analogous to Equation 1.40).

This resulted in the generalized eigenvalue approach requiring the computation of a basis for the
deflating subspace corresponding to the stable generalized eigenvalues. For the solution of Equation 1.37,
the generalized eigenvalue problem is given by

λ

⎡
⎣I 0 0

0 I 0
0 0 0

⎤
⎦−

⎡
⎣ A 0 B
−Q −AT 0

0 BT R

⎤
⎦ ; (1.41)

for Equation 1.38, the corresponding problem is

λ

⎡
⎣ I 0 0

0 AT 0
0 G1

T 0

⎤
⎦−

⎡
⎣ A 0 −G1

−Q I 0
0 0 G2

⎤
⎦ . (1.42)

The extensions above can be generalized even further, as the following problem illustrates. Consider
the optimal control problem

min
1

2

∫ +∞

0
[xT Qx+ 2xT Su+ uT Ru] dt (1.43)

subject to
Eẋ = Ax+Bu. (1.44)

The Riccati equation associated with Equations 1.43 and 1.44 then takes the form

ET XBR−1BT XE− (A−BR−1ST )T XE−ET X(A−BR−1ST )−Q+ SR−1ST = 0 (1.45)

or
(ET XB+ S)R−1(BT XE+ ST )−AT XE−ET XA−Q = 0. (1.46)

This so-called “generalized” Riccati equation can be solved by considering the associated matrix pencil
⎡
⎣ A 0 B
−Q −AT −S

ST BT R

⎤
⎦−λ

⎡
⎣E 0 0

0 ET 0
0 0 0

⎤
⎦. (1.47)

Note that S in Equation 1.43 and E in Equation 1.44 are handled directly and no inverses appear. The
presence of a nonsingular E in state-space models of the form Equation 1.44 adds no particular difficulty
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to the solution process and is numerically the preferred form if E is, for example, near singular or even
sparse. Similar remarks apply to the frequency response problem in Equations 1.29 and 1.30 and, indeed,
throughout all of linear control and system theory. The stability and conditioning of these approaches are
discussed in [14, p. 529, 573]. Other methods, including Newton’s method and iterative refinement, have
been analyzed in, for example, [14, p. 517]. Numerical algorithms for handling Equations 1.41, 1.42, and
1.47 and a large variety of related problems are described in [14, p. 421, 573]. A thorough survey of the
Schur method, generalized eigenvalue/eigenvector extensions, and the underlying algebraic structure in
terms of “Hamiltonian pencils” and “symplectic pencils” is included in [3,12].

Schur techniques can also be applied to Riccati differential and difference equations and to nonsym-
metric Riccati equations that arise, for example, in invariant imbedding methods for solving linear two-
point boundary value problems.

As with the linear Lyapunov and Sylvester equations, satisfactory results have been obtained concerning
condition of Riccati equations, a topic of great interest independent of the solution method used, be it a
Schur-type method or one of numerous alternatives. We refer to [1] for a further discussion on this.

A very interesting class of invariant-subspace-based algorithms for solving the Riccati equation and
related problems uses the so-called matrix sign function. These methods, which are particularly attractive
for very large-order problems, are described in detail in [14, p. 486] and the references therein. These
algorithms are based on Newton’s method applied to a certain matrix equation. A new family of iterative
algorithms of arbitrary order convergence has been developed in [14, p. 624]. This family of algorithms
can be parallelized easily and yields a viable method of solution for very high-order Riccati equations.

1.4.8 Pole Assignment and Observer Design

Designing state or output feedback for a linear system, so that the resulting closed-loop system has a
desired set of poles, can be considered an inverse eigenvalue problem. The state feedback pole assignment
problem is as follows: Given a pair (A, B), one looks for a matrix F so that the eigenvalues of the matrix

AF = A+BF

lie at specified locations or in specified regions. Many approaches have been developed for solving this
problem. However, the emphasis is on numerically reliable methods and consideration of the numerical
sensitivity of the problem, for example, see the papers in Part 6 of [14]. Special cases of the pole assignment
problem arise in observer design [14, p. 407], and in deadbeat control for discrete-time systems (where
A+BF is required to be nilpotent) [14, p. 392]. The numerically reliable methods for pole assignment
are based on reducing A to either an RSF, [14, p. 415], or to a Hessenberg or block Hessenberg (staircase)
form [14, p. 357, 380]. The latter may be regarded a numerically robust alternative to the controllable
or Luenberger canonical form whose computation is known to be numerically unreliable [14, p. 59].
For multi-input systems, the additional freedom available in the state-feedback matrix can be used for
eigenvector assignment and sensitivity minimization for the closed-loop poles [14, p. 333]. There the
resulting matrix AF is not computed directly, but instead the matricesΛ and X of the decomposition

AF = XΛX−1

are computed via an iterative technique. The iteration aims to minimize the sensitivity of the placed
eigenvalues λi or to maximize the orthogonality of the eigenvectors xi .

Pole assignment by output feedback is more difficult, theoretically as well as computationally. Con-
sequently, there are a few numerically reliable algorithms available [14, p. 371]. Other works on pole
assignment have been concerned with generalized state-space or descriptor systems.

The problem of observer design for a given state-space system {A, B, C} is finding matrices T , AK , and
K so that

TAK −AT = KC (1.48)
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whereby the spectrum of AK is specified. Because this is an underdetermined (and nonlinear) problem in
the unknown parameters of T , AK , and K , one typically sets T = I and Equation 1.48 then becomes

AK = A+KC,

which is a transposed pole placement problem. In this case, the above techniques of pole placement
automatically apply here. In reduced order design, T is nonsquare and thus cannot be equated to the
identity matrix. One can still solve Equation 1.48 via a recurrence relationship when assuming AK in
Schur form [14, p. 407].

1.4.9 Robust Control

In the last decade, there has been significant growth in the theory and techniques of robust control;
see, for example, [6] and the references therein. However, the area of robust control is still evolving
and its numerical aspects have just begun to be addressed [13]. Consequently, it is premature to survey
reliable numerical algorithms in the area. To suggest the flavor of the numerical and computational issues
involved, in this section we consider a development in robust control that has attracted a great deal
of attention, the so-called H∞ approach. H∞ and the related structured singular value approach have
provided a powerful framework for synthesizing robust controllers for linear systems. The controllers are
robust, because they achieve desired system performance despite a significant amount of uncertainty in
the system.

In this section, we denote by R(s)n×m the set of proper real rational matrices of dimension n×m. The
H∞ norm of a stable matrix G(s) ∈ R(s)n×m is defined as

‖G(s)‖∞ := sup
ω∈R

σmax[G( jω)], (1.49)

where σmax[·] denotes the largest singular value of a (complex) matrix. Several iterative methods are
available for computing this norm. In one approach, a relationship is established between the singular
values of G(jw) and the imaginary eigenvalues of a Hamiltonian matrix obtained from a state-space
realization of G(s). This result is then used to develop an efficient bisection algorithm for computing the
H∞ norm of G(s).

To describe the basic H∞ approach, consider a linear, time-invariant system described by the state-
space equations

ẋ(t)= Ax(t)+B1w(t)+B2u(t),

z(t)= C1x(t)+D11w(t)+D12u(t), (1.50)

y(t)= C2x(t)+D21w(t)+D22u(t),

where x(t) ∈ R
n denotes the state vector; w(t) ∈ R

m1 is the vector of disturbance inputs; u(t) ∈ R
m2 is the

vector of control inputs; z(t) ∈ R
p1 is the vector of error signals; and y(t) ∈ R

p2 is the vector of measured

variables. The transfer function relating the inputs

[
w
u

]
to the outputs

[
z
y

]
is

G(s) :=
[

G11(s) G12(s)
G21(s) G22(s)

]
(1.51)

=
[

D11 D12

D21 D22

]
+
[

C1

C2

]
(sI −A)−1 [B1 B2

]
. (1.52)

Implementing a feedback controller defined by

u= K(s)y (1.53)
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where K(s) ∈ R(s)m2×p2 , we obtain the closed-loop transfer matrix Tzw(s) ∈ R(s)p1×m1 from the distur-
bance w to the regulated output z

Tzw := G11+G12K(I −G22K)−1G21. (1.54)

Next, define the set K of all internally stabilizing feedback controllers for the system in Equation 1.50,
that is,

K := {K(s) ∈ R(s)m2×p2 : Tzw(s) is internally stable}.
Now let K(s) ∈K, and define

γ := ‖Tzw(s)‖∞. (1.55)

Then the H∞ control problem is to find a controller K(s) ∈ K that minimizes γ. The optimal value of γ
is defined as

γopt := inf
K∈K

‖Tzw(s)‖∞. (1.56)

The original formulation of this problem was in an input–output setting, and the early methods for
computing γopt used either an iterative search involving spectral factorization and solving the resulting
Nehari problem or computed the spectral norm of the associated Hankel plus Toeplitz operator. In a
state-space formulation for computing γopt, promising from the viewpoint of numerical computation,
the problem is formulated in terms of two algebraic Riccati equations that depend on a gain parameter
γ. Then, under certain assumptions [13], it can be shown that for a controller K(s) ∈ K to exist so
that ‖Tzw‖∞ < γ, three conditions have to be satisfied, namely, stabilizing solutions exist for the two
Riccati equations, and the spectral radius of the product of the solutions is bounded by γ2. If these
conditions are satisfied for a particular value of γ, the corresponding controller K(s) can be obtained
from the solutions of the Riccati equations. The optimal gain, γopt, is the infimum over all suboptimal
values of γ such that the three conditions are satisfied.

The approach above immediately suggests a bisection-type algorithm for computing γopt. However,
such an algorithm can be very slow in the neighborhood of the optimal value. To obtain speedup near
the solution, a gradient approach is proposed in [13]. The behavior of the Riccati solution as a function
of γ is used to derive an algorithm that couples a gradient method with bisection. It has been pointed
out in [13] that the Riccati equation can become ill-conditioned as the optimal value of γ is approached.
It is therefore recommended in [13] that, instead of computing the Riccati solutions explicitly, invariant
subspaces of the associated Hamiltonian matrices should be used.

1.5 Mathematical Software

1.5.1 General Remarks

The previous sections have highlighted some topics from numerical linear algebra and their application
to numerical problems arising in systems, control, and estimation theory. These problems represent only
a very small subset of numerical problems of interest in these fields but, even for problems apparently
“simple” from a mathematical viewpoint, the myriad of details that constitute a sophisticated implemen-
tation become so overwhelming that the only effective means of communicating an algorithm is through
mathematical software. Mathematical or numerical software is an implementation on a computer of an
algorithm for solving a mathematical problem. Ideally, such software would be reliable, portable, and
unaffected by the machine or system environment.

The prototypical work on reliable, portable mathematical software for the standard eigenproblem
began in 1968. EISPACK, Editions I and II [7,15], were an outgrowth of that work. Subsequent efforts of
interest to control engineers include LINPACK [5] for linear equations and linear least-squares problems,
FUNPACK (Argonne) for certain function evaluations, MINPACK (Argonne) for certain optimization
problems, and various ODE and PDE codes. High-quality algorithms are published regularly in the
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ACM Transactions on Mathematical Software. LAPACK, the successor to LINPACK and EISPACK, is
designed to run efficiently on a wide range of machines, including vector processors, shared-memory
multiprocessors, and high-performance workstations.

Technology to aid in developing mathematical software in Fortran has been assembled as a package
called TOOLPACK. Mechanized code development offers other advantages with respect to modifications,
updates, versions, and maintenance.

Inevitably, numerical algorithms are strengthened when their mathematical software is portable,
because they can be used widely. Furthermore, such a software is markedly faster, by factors of 10 to 50,
than earlier and less reliable codes.

Many other features besides portability, reliability, and efficiency characterize “good” mathematical
software, for example,

• High standards of documentation and style so as to be easily understood and used
• Ease of use; ability of the user to interact with the algorithm
• Consistency/compatibility/modularity in the context of a larger package or more complex problem
• Error control, exception handling
• Robustness in unusual situations
• Graceful performance degradation as problem domain boundaries are approached
• Appropriate program size (a function of intended use, e.g., low accuracy, real-time applications)
• Availability and maintenance
• “Tricks” such as underflow-/overflow-proofing, if necessary, and the implementation of column-

wise or rowwise linear algebra

Clearly, the list can go on.
What becomes apparent from these considerations is that evaluating mathematical software is a

challenging task. The quality of software is largely a function of its operational specifications. It must
also reflect the numerical aspects of the algorithm being implemented. The language used and the com-
piler (e.g., optimizing or not) for that language have an enormous impact on quality, perceived and real,
as does the underlying hardware and arithmetic. Different implementations of the same algorithm can
have markedly different properties and behavior.

One of the most important and useful developments in mathematical software for most control engi-
neers has been very high-level systems such as MATLAB� and Scilab. These systems spare the engineer
the drudgery of working at a detailed level with languages such as Fortran and C, and they provide a large
number of powerful computational “tools” (frequently through the availability of formal “toolboxes”).
For many problems, the engineer must still have some knowledge of the algorithmic details embodied in
such a system.

1.5.2 Mathematical Software in Control

Many aspects of systems, control, and estimation theory are at the stage from which one can start the
research and design necessary to produce reliable, portable mathematical software. Certainly, many of the
underlying linear algebra tools (e.g., in EISPACK, LINPACK, and LAPACK) are considered sufficiently
reliable to be used as black, or at least gray, boxes by control engineers. An important development in this
area is the SLICOT library, which is described in [1, p. 60]. Much of that theory and methodology can and
has been carried over to control problems, but this applies only to a few basic control problems. Typical
examples are Riccati equations, Lyapunov equations, and certain basic state-space transformations and
operations. Much of the work in control, particularly design and synthesis, is simply not amenable to nice,
“clean” algorithms. The ultimate software must be capable of enabling a dialogue between the computer
and the control engineer, but with the latter probably still making the final engineering decisions.
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1.6 Concluding Remarks

Several numerical issues and techniques from numerical linear algebra together with a number of impor-
tant applications of these ideas have been outlined. A key question in these and other problems in systems,
control, and estimation theory is what can be computed reliably and used in the presence of parameter
uncertainty or structural constraints (e.g., certain “hard zeros”) in the original model, and rounding errors
in the calculations. However, because the ultimate goal is to solve real problems, reliable tools (mathemat-
ical software) and experience must be available to effect real solutions or strategies. The interdisciplinary
effort during the last few decades has significantly improved our understanding of the issues involved in
reaching this goal and has resulted in some high-quality control software based on numerically reliable and
well-tested algorithms. This provides clear evidence of the fruitful symbiosis between numerical analysis
and numerical problems from control. We expect this symbiotic relationship to flourish, as control engi-
neering realizes the full potential of the computing power becoming more widely available in multiprocess-
ing systems and high-performance workstations. However, as in other applications areas, software contin-
ues to act as a constraint and a vehicle for progress. Unfortunately, high-quality software is very expensive.

In this chapter, we have focused only on dense numerical linear algebra problems in systems and
control. Several related topics that have not been covered here are, for example, parallel algorithms,
algorithms for sparse or structured matrices, optimization algorithms, ODE algorithms, algorithms for
differential-algebraic systems, and approximation algorithms. These areas are well established in their
own right, but for control applications a lot of groundwork remains undone. The main reason we have
confined ourselves to dense numerical linear algebra problems in systems and control is that, in our
opinion, this area has reached a mature level where definitive statements and recommendations can be
made about various algorithms and other developments.
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2.1 Introduction

In this chapter we will introduce the basic building blocks necessary to understand linear time-invariant,
multivariable systems. We will examine solutions of linear systems in both the time domain and frequency
domain. An important issue is our ability to change the system’s response by applying different inputs. We
will thus introduce the concept of controllability. Similarly, we will introduce the concept of observability
to quantify how well we can determine what is happening internally in our model when we can observe
only the outputs of the system. An important issue in controllability and observability is the role of zeros.
We will define them for multivariable systems and show their role in these concepts. Throughout, we will
introduce the linear algebra tools necessary for multivariable systems.

2.2 Unforced Linear Systems

2.2.1 Eigenvectors and Eigenvalues

Given a matrix A ∈Rn×n, the eigenstructure of A is defined by n complex numbers λi . When the λi are
all different, each λi has corresponding vectors vi ∈ Cn and wi ∈ Cn so that

Avi = λivi ; wH
i A= λiw

H
i ; i = 1 . . . n (2.1)

2-1
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where wH is the complex conjugate transpose of w. The complex numbers λi are called the eigenvalues
of A. The vectors vi are called the right eigenvectors, and the vectors wi are called the left eigenvectors.
Notice that any multiple of an eigenvector is also an eigenvector.

The left and right eigenvectors are mutually orthogonal, that is, they satisfy the property

wH
i vj = δij


=
{

1 if i = j
0 if i �= j

(2.2)

We assume throughout that the eigenvalues are distinct; that is, they are all different. The case where eigen-
values repeat is much more complicated, both theoretically and computationally. The case of repeated
eigenvalues is covered in Kailath [1].

One other formula useful for describing linear systems is the dyadic formula. This formula shows how
the matrix A can be formed from its eigenvalues and eigenvectors. It is given by

A=
n∑

i=1

λiviw
H
i (2.3)

2.2.2 The Matrix Exponential

The matrix exponential, eA, is defined by

eA = I +A+ 1

2
A2+ 1

6
A3+ · · · (2.4)

=
∞∑

k=0

1

k!A
k (2.5)

The matrix exponential solves the following matrix differential equation

ẋ(t)= Ax(t), x(0)= ξ (2.6)

The solution is

x(t)= eAtξ (2.7)

The matrix exponential can be calculated from the eigenstructure of the matrix A. If A has the
eigenstructure as in Equation 2.1, then

eA =
n∑

i=1

eλi viw
H
i and eAt =

n∑
i=1

eλi t viw
H
i (2.8)

This can be seen by writing the matrix exponential using the infinite sum, substituting in the dyadic
formula (Equation 2.3), and using Equation 2.2.

Taking the Laplace transform of Equation 2.6,

sx(s)− ξ= Ax(s) (2.9)

where we have used the initial condition x(0)= ξ. Thus, the solution is

x(s)= (sI −A)−1ξ (2.10)

Therefore, (sI −A)−1 is the Laplace transform of eAt .
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2.2.3 Definition of Modes

The solution to the unforced system Equation 2.6 can be written in terms of the eigenstructure of A as

x(t)= eAtξ=
n∑

i=1

eλi t vi(wH
i ξ) (2.11)

The ith mode is eλi t vi , defined by the direction of the right eigenvector vi , and the exponential associated
with the eigenvalue λi . wH

i ξ is a scalar, specifying the degree to which the initial condition ξ excites the
ith mode.

Taking Laplace transforms,

x(s)=
n∑

i=1

1

s−λi
viw

H
i ξ (2.12)

From this equation,

x(s)= (sI −A)−1ξ=
n∑

i=1

1

s−λi
viw

H
i ξ (2.13)

When the initial condition is equal to one of the right eigenvectors, only the mode associated with that
eigenvector is excited. To see this, let ξ= vj. Then, using Equation 2.2,

x(t)=
n∑

i=1

eλi t vi(wH
i vj)= eλj t vj (2.14)

A mode is called stable if the dynamics of the modal response tend to zero asymptotically. This is,
therefore, equivalent to

Re(λi) < 0 (2.15)

A system is said to be stable if all of its modes are stable. Thus, for any initial condition, x(t)→ 0 if the
system is stable.

2.2.4 Multivariable Poles

Consider the system

ẋ(t)= Ax(t)+Bu(t) (2.16)

y(t)= Cx(t)+Du(t) (2.17)

The multivariable poles are defined as the eigenvalues of A. Thus, the system is stable if all of its poles
are strictly in the left half of the s-plane. The poles are therefore the roots of the equation

det(sI −A)= 0 (2.18)



�

�

�

�

� �

2-4 Control System Advanced Methods

2.3 Forced Linear Time-Invariant Systems

2.3.1 Solution to Forced Systems

We consider the dynamical system

ẋ(t)= Ax(t)+Bu(t), x(0)= ξ (2.19)

y(t)= Cx(t)+Du(t) (2.20)

The solution x(t) to this equation is

x(t)= eAtξ+
∫ t

0
eA(t−τ)Bu(τ) dτ (2.21)

This can be seen by differentiating the solution, and substituting in Equation 2.19. The output y(t) is thus

y(t)= Cx(t)+Du(t)= CeAtξ+
∫ t

0
CeA(t−τ)Bu(τ) dτ+Du(t) (2.22)

Using the eigenstructure of A, we can write

y(t)=
n∑

i=1

eλi t(Cvi)(wH
i ξ) (2.23)

+
n∑

i=1

eλi t(Cvi)(wH
i B)

∫ t

0
e−λiτu(τ) dτ+Du(t) (2.24)

Applying the Laplace Transform to the system Equations 2.19 and 2.20,

y(s)= C(sI −A)−1Bu(s)+Du(s) (2.25)

Using the eigenstructure of A, we can substitute for (sI −A)−1 to get the Laplace Transform equation

y(s)=
n∑

i=1

CviwH
i B

s−λi
u(s)+Du(s) (2.26)

The matrix
CviwH

i B
(s−λi)

is called the residue matrix at the pole s = λi .

We can see that wH
i B is an indication of how much the ith mode is exited by the inputs, and Cvi indicates

how much the ith mode is observed in the outputs. This is the basis for the concepts of controllability and
observability, respectively.

2.3.2 Controllability and Observability

Controllability is concerned with how much an input affects the states of a system. The definition is
general enough to handle nonlinear systems and time-varying systems.

Definition 2.1:

The nonlinear time-invariant (LTI) system

ẋ(t)= f [x(t), u(t)], x(0)= ξ, (2.27)

is called completely controllable if, for any initial state ξ and any final state θ, we can find a piecewise,
continuous bounded function u(t) for 0≤ t ≤ T, T <∞, so that x(T)= θ. A system which is not completely
controllable is called uncontrollable.

Observability is defined similarly.
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Definition 2.2:

The nonlinear time-invariant system

ẋ(t)= f [x(t), u(t)], x(0)= ξ (2.28)

y(t)= g[x(t), u(t)] (2.29)

is observable if one can calculate the initial state ξ based upon measurements of the input u(t) and output
y(t) for 0≤ t ≤ T, T <∞. A system which is not observable is called unobservable.

For LTI systems, there are simple tests to determine if a system is controllable and observable. The ith
mode is uncontrollable if, and only if,

wH
i B= 0 (2.30)

Thus a mode is called uncontrollable if none of the inputs can excite the mode. The system is uncontrollable
if it is uncontrollable from any mode. Thus, a system is controllable if

wH
i B �= 0 i = 1, . . . , n (2.31)

Similarly, the ith mode is unobservable if, and only if,

Cvi = 0 (2.32)

Thus a mode is called unobservable if we can not see its effects in any of the outputs. The system is
unobservable if it is unobservable from any mode. Thus, a system is unobservable if

Cvi �= 0, i = 1, . . . , n (2.33)

2.3.3 Other Tests for Controllability and Observability

There is a simple algebraic test for controllability and observability. Let us define the controllability matrix
Mc as

Mc =
[
B AB A2B · · · An−1B

]
(2.34)

The system is controllable if, and only if, rank(Mc)= n. Note that if the rank of Mc is less than n, we do
not know anything about the controllability of individual modes. We only know that at least one mode is
uncontrollable.

There is a similar test to determine the observability of the system. We form the observability matrix
Mo as

Mo =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦

. (2.35)

The system is observable if, and only if, rank(Mo)= n. Again, this test provides no insight into the
observability of the modes of the system. It only determines whether or not the whole system is observable.

We now have tests for controllability and observability. We will now relate the loss of controllability
and observability to pole-zero cancellations. First, we need to define the concept of a zero for a multi-input
multioutput system.
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2.4 Multivariable Transmission Zeros

There are several ways in which zeros can be defined for multivariable systems. The one we will examine
is based on a generalized eigenvalue problem and has an interesting physical interpretation. Another
approach to defining and calculating the zeros of MIMO systems can be found in Kailath [1].

2.4.1 Definition of MIMO Transmission Zeros

To define the multi-input, multi-output (MIMO) transmission zeros, we will first assume that we have a
system with the same number of inputs and outputs. This is referred to as a square system. We will later
extend the definition to nonsquare systems. For square systems, we can represent the system in the time
domain as

ẋ(t)= Ax(t)+Bu(t) (2.36)

y(t)= Cx(t)+Du(t) (2.37)

where x(t) ∈Rn, u(t) ∈Rm, and y(t) ∈Rm. We can also write the transfer function matrix as

G(s)= C(sI −A)−1B+D (2.38)

where G(s) ∈ Cm×m. Given this system, we have the following definition:

Definition 2.3:

The plant has a zero at the (complex) value zk if vectors ξk ∈ Cn and uk ∈ Cm exist which are not both zero,
so that the solution to the equations

ẋ(t)= Ax(t)+Bukezkt , x(0)= ξk (2.39)

y(t)= Cx(t)+Du(t) (2.40)

has the property that

y(t)≡ 0 ∀t > 0 (2.41)

This property of transmission zeros is sometimes called transmission blocking. When zeros repeat, this
definition still holds but a more complicated transmission blocking property also holds [2].

As an example, let us show that this definition is consistent with the standard definition of zeros for
single-input, single-output systems.

Example 2.1:

Let us consider the following plant:

g(s)= s+ 1
s(s− 1)

(2.42)

Then a state-space representation of this is

ẋ1(t)= x2(t) (2.43)

ẋ2(t)= x2(t)+ u(t) (2.44)

y(t)= x1(t)+ x2(t) (2.45)
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Let us define u(t)= 2e−t , so that uk = 2 and zk =−1. Let us also define the vector ξk as

ξk =
[

1
−1

]
(2.46)

Then

ẋ2(t)= x2(t)+ 2e−t , x2(0)=−1 (2.47)

⇒ x2(t)=−et + et
∫ t

0
e−τ2e−τ∂τ=−e−t (2.48)

ẋ1(t)= x2(t), x1(0)= 1 (2.49)

⇒ x1(t)= 1+ e−t − 1= e−t (2.50)

Thus,

y(t)= x1(t)+ x2(t)= 0 (2.51)

So we have confirmed that z =−1 is a transmission zero of the system.

From the definition, we can see how transmission zeros got their name. If an input is applied at the
frequency of the transmission zero in the correct direction (uk), and the initial condition is in the correct
direction ξk , then nothing is transmitted through the system.

2.4.2 Calculation of Transmission Zeros

To calculate the transmission zero, we can rewrite the definition of the transmission zero in matrix form as
[

zkI −A −B
−C −D

] [
ξk

uk

]
=
[

0
0

]
(2.52)

This is in the form of a generalized eigenvalue problem, typically written as

Gvi = ziMvi (2.53)

wH
i G = ziw

H
i M (2.54)

where zi is a generalized eigenvalue, with right and left generalized eigenvectors vi and wi , respectively.
The generalized eigenvalues are the roots of the equation

det(zM−G)= 0 (2.55)

Note that if M is invertible, there are n generalized eigenvalues. Otherwise, there are less than n.
Equation 2.52 is a generalized eigenvalue problem with

G =
[

A B
C D

]
M =

[
I 0
0 0

]
(2.56)

Let us look at the implication of the generalized eigenvalue problem. Let zk be a transmission zero.
Then it must be true that

0= det

[
zkI −A −B
−C −D

]
(2.57)

If there are no common poles and zeros, then zkI −A is invertible, and we can write

0= det(zkI −A) det[C(zkI −A)−1B+D] (2.58)

= det(zkI −A) det[G(zk)] (2.59)
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Since we assume there are no common poles and zeros in the system, then det(zkI −A) �= 0, and so it
must be true that

det(G(zk))= 0 (2.60)

Thus, in the case that there are no common poles and zeros, the MIMO transmission zeros are the roots
of Equation 2.60. To check for transmission zeros at the same frequencies as the poles, we must use the
generalized eigenvalue problem.

Let us now give a multivariable example.

Example 2.2:

Consider the system given by Equations 2.36 and 2.37, with the matrices given by

A=
⎡
⎣−2 0 0

0 −3 0
0 0 −4

⎤
⎦ B =

⎡
⎣−1 0
−1 0
0 1

⎤
⎦ (2.61)

C =
[

1 0 0
0 1 1

]
D =

[
1 0
1 0

]
(2.62)

Solving the generalized eigenvalue problem Equation 2 52, we find that there are two zeros, given by

z1 =−1 z2 =−3 (2.63)

ξ1 =
⎡
⎣2

1
1

⎤
⎦ ξ2 =

⎡
⎣ 0

1
−1

⎤
⎦ (2.64)

u1 =
[−2

3

]
u2 =

[
0
−1

]
(2.65)

Let us also check the transfer function calculation. The transfer function matrix for this system is
given by

G(s)=

⎡
⎢⎢⎢⎣

s+ 1
s+ 2

0

s+ 2
s+ 3

1
s+ 4

⎤
⎥⎥⎥⎦ (2.66)

To find transmission zeros at locations other than the poles of the system, we take the determinant
and set it equal to zero to find

0= det(G(z))= s+ 1
(s+ 2)(s+ 4)

(2.67)

Thus we find a transmission zero at z =−1. Notice that we have correctly found the transmission
zero which is not at the pole frequency, but in this case we did not find the transmission zero at the
same frequency as the pole at s=−3. It is also important to realize that, although one of the SISO
transfer functions has a zero at s=−2, this is not a transmission zero of the MIMO system.

Also notice that this frequency domain method does not give us the directions of the zeros. We
need to use the generalized eigenvalue problem to determine the directions.

2.4.3 Transmission Zeros for Nonsquare Systems

When we have a nonsquare system, we differentiate between right zeros and left zeros. In the following,
we will assume we have a system with n states, m inputs, and p outputs.
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Definition 2.4:

zk is a right zero of the system,

ẋ(t)= Ax(t)+Bu(t) (2.68)

y(t)= Cx(t)+Du(t) (2.69)

if vectors ξk ∈ Cn and uk ∈ Cm exist, both not zero, so that

[
zkI −A −B
−C −D

] [
ξk

uk

]
=
[

0
0

]
(2.70)

Definition 2.5:

zk is a left zero of the system,

ẋ(t)= Ax(t)+Bu(t) (2.71)

y(t)= Cx(t)+Du(t) (2.72)

if it is a right zero of the system,

ẋ(t)= AT x(t)+CT u(t) (2.73)

y(t)= BT x(t)+DT u(t) (2.74)

In other words, zk is a left zero of our system if vectors ηk ∈ Cn and γk ∈ Cp exist, both not zero, so that

[
ηk γk

] [zkI −A −B
−C −D

]
= [0 0

]
(2.75)

For square systems, the left and right zeros coincide; any frequency which is a right zero is also a
left zero.

2.5 Multivariable Pole-Zero Cancellations

Now that we have defined the zeros of a multivariable system, we are in a position to describe pole-zero
cancellations and what they imply in terms of controllability and observability.

First, we give a SISO example, which shows that a pole-zero cancellation implies loss of controllability
or observability.

Example 2.3:

Consider the system given by the equations

[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
1 0

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (2.76)

y(t)= [1 −1
] [x1(t)

x2(t)

]
(2.77)
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The transfer function for this system is given by

g(s)= −s+ 1

s2− 1
=− s− 1

(s+ 1)(s− 1)
(2.78)

Thus, there is a pole-zero cancellation at s= 1. To check for loss of controllability and observability,
we will perform an eigenvalue decomposition of the system. The eigenvalues and associated left
and right eigenvalues are given by

λ1 =−1 v1 =
[

1
−1

]
w1 =

[
0.5 −0.5

]
(2.79)

λ2 = 1 v2 =
[

1
1

]
w2 =

[
0.5 0.5

]
(2.80)

It is easy to verify that the dyadic decomposition Equation 2.3 holds. We now can use the modal tests
for controllability and observability. We can see that

Cv1 = 2 wT
1 B =−0.5 (2.81)

This tells us that the first mode is both controllable and observable, as expected. For the second
mode,

Cv2 = 0 wT
2 B = 0.5 (2.82)

We see that the second mode is controllable, but unobservable. The conclusion is that this particular
state-space realization has an unobservable mode, but is controllable.

Now let us examine what happens when we lose observability in more detail. We will assume we have
the system described by Equations 2.36 through 2.38. Let us assume a pole with frequencyλk and direction
vk , that is, A has an eigenvalue λk with associated eigenvalue vk . Thus

(λkI −A)vk = 0 (2.83)

Let us also assume a (right) zero at frequency zk with direction given by
[
ξT

k uT
k

]T
, that is,

(zkI −A)ξk −Buk = 0 (2.84)

Cξk +Duk = 0 (2.85)

If it is true that λk = zk and ξk = βvk with β any scalar, then

Buk = 0 (2.86)

If we assume that the columns of B are linearly independent (which says we don’t have redundant
controls), then it must be true that uk = 0. However, with uk = 0,

Cvk = 0 ⇒ kth mode is unobservable (2.87)

On the other hand, let us assume that the kth mode is unobservable. Then we know that

Cvk = 0 (2.88)

where vk is the eigenvector associated with the kth mode. We will show that there must be a pole-zero
cancellation. Let us choose uk = 0. If λk is the eigenvalue associated with the kth mode, then we know

(λkI −A)vk = 0 ⇒ (λkI −A)vk −Buk = 0 (2.89)

Cvk +Duk = 0 (2.90)

Thus, λk is also a zero with direction [
vk

0

]
(2.91)



�

�

�

�

� �

Multivariable Poles, Zeros, and Pole-Zero Cancellations 2-11

We have now proven the following theorem:

Theorem 2.1:

The kth mode, with eigenvalueλk and eigenvector vk, is unobservable if, and only if,λk is a right transmission
zero with direction given by Equation 2.91.

Following the exact same steps, we show that loss of controllability implies a pole-zero cancellation.
Using the same steps as before, we can prove the following theorem.

Theorem 2.2:

Let the kth mode have eigenvalue λk and left eigenvector wk. Then the kth mode is uncontrollable if, and
only if, λk is a left transmission zero with direction given by

[
wT

k 0
]

(2.92)

We conclude with an example.

Example 2.4:

Consider the system Equations 2.19 and 2.20, with matrices

A=
⎡
⎣−2 5 −0 5 0 5

0 5 −1 5 0 5
1 1 −2

⎤
⎦ B =

⎡
⎣ 1

1
−2

⎤
⎦ (2.93)

C =
[

0 0 1
0 1 0

]
D =

[
0
0

]
(2.94)

A has the following eigenstructure:

λ1 =−1 v1 =
⎡
⎣0

1
1

⎤
⎦ wT

1 =
[

1
2

1
2

1
2

]
(2.95)

λ2 =−2 v2 =
⎡
⎣ 1
−1

0

⎤
⎦ wT

2 =
[

1
2

−1
2

1
2

]
(2.96)

λ3 =−3 v1 =
⎡
⎣ 1

0
−1

⎤
⎦ wT

1 =
[

1
2

1
2

−1
2

]
(2.97)

Let us check for controllability and observability.
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Cv1 =
[

1
1

]
wT

1 B = 0 (2.98)

Cv2 =
[

0
−1

]
wT

2 B =−1 (2.99)

and Cv3 =
[−1

0

]
wT

3 B = 2. (2.100)

The conclusion is, therefore, that all modes are observable and that the first mode is uncontrollable,
but the second and third modes are controllable. It is easy to verify that z =−1 is a left zero of this
system, with direction [

ηT γT ]=
[

1
2

1
2

1
2

0 0

]
. (2.101)

Thus there is a pole-zero cancellation at z =−1, which makes the system uncontrollable.
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3.1 Introduction

In this chapter, various fundamental elements of the theory of linear time-varying systems are studied
in both the continuous-time and discrete-time cases. The chapter is a revised and updated version of
Chapter 25 that appeared in the first edition of The Control Handbook. The revision includes material on
the existence of coordinate transformations that transform time-varying system matrices into diagonal
forms, and the connection to the concept of “dynamic” eigenvalues and eigenvectors. Also included in
the revision is the use of a simplified expression derived in [11] for the feedback gain in the design of a
state feedback controller in the single-input case based on the control canonical form. Generalizations
to the multi-input multi-output case can be carried out using the results in [12]. The theory begins in
Section 3.2 after the following comments.

The distinguishing characteristic of a time-varying system is that the values of the output response
depend on when the input is applied to the system. Time variation is often a result of system parameters
changing as a function of time, such as aerodynamic coefficients in high-speed aircraft, circuit parameters
in electronic circuits, mechanical parameters in machinery, and diffusion coefficients in chemical
processes. Time variation may also be a result of linearizing a nonlinear system about a family of operating
points and/or about a time-varying operating point.

3-1
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The values of the time-varying parameters in a system are often not known a priori, that is, before the
system is put into operation, but can be measured or estimated during system operation. Systems whose
parameters are not known a priori are often referred to as parameter varying systems, and the control
of such systems is referred to as gain scheduling. Parameter varying systems and gain scheduling are
considered in another chapter of this handbook, and are not pursued here. In some applications, time
variations in the coefficients of the system model are known a priori. For example, this may be the case if
the system model is a linearization of a nonlinear system about a known time-varying nominal trajectory.
In such cases, the theory developed in this chapter can be directly applied.

In this chapter, the study of linear time-varying systems is carried out in terms of input/output
equations and the state model. The focus is on the relationships between input/output and state models,
the construction of canonical forms, the study of the system properties of stability, controllability, and
observability, and the design of controllers. Both the continuous-time and the discrete-time cases are
considered. In the last part of the chapter, an example is given on the application to state observers and
state feedback control, and examples are given on checking for stability. Additional references on the
theory of linear time-varying systems are given in Further Reading.

3.2 Analysis of Continuous-Time Causal Linear
Time-Varying Systems

Consider the single-input single-output continuous-time system given the input/output relationship

y(t)=
∫ t

−∞
h(t, τ)u(τ) dτ (3.1)

where t is the continuous-time variable, y(t) is the output response resulting from input u(t), and h(t, τ)
is a real-valued continuous function of t and τ. It is assumed that there are conditions on h(t, τ) and/or
u(t), which insure that the integral in Equation 3.1 exists. The system given by Equation 3.1 is causal
since the output y(t) at time t depends only on the input u(τ) for τ≤ t. The system is also linear since
integration is a linear operation. Linearity means that if y1(t) is the output response resulting from input
u1(t), and y2(t) is the output response resulting from input u2(t), then for any real numbers a and b, the
output response resulting from input au1(t)+ bu2(t) is equal to ay1(t)+ by2(t).

Let δ(t) denote the unit impulse defined by δ(t)= 0, t �= 0 and
∫ ε
−ε δ(λ) dλ= 1 for any real number

ε> 0. For any real number t1, the time-shifted impulse δ(t− t1) is the unit impulse located at time t = t1.
Then from Equation 3.1 and the sifting property of the impulse, the output response y(t) resulting from
input u(t)= δ(t− t1) is given by

y(t)=
∫ t

−∞
h(t, τ)u(τ) dτ=

∫ t

−∞
h(t, τ)δ(τ− t1) dτ= h(t, t1)

Hence, the function h(t, τ) in Equation 3.1 is the impulse response function of the system, that is, h(t, τ) is
the output response resulting from the impulse δ(t− τ) applied to the system at time τ.

The linear system given by Equation 3.1 is time invariant (or constant) if and only if

h(t+ γ, τ+ γ)= h(t, τ), for all real numbers t, τ, γ (3.2)

Time invariance means that if y(t) is the response to u(t), then for any real number t1, the time-shifted
output y(t− t1) is the response to the time-shifted input u(t− t1). Setting γ=−τ in Equation 3.2 gives

h(t− τ, 0)= h(t, τ), for all real numbers t, τ (3.3)

Hence, the system defined by Equation 3.1 is time invariant if and only if the impulse response function
h(t, τ) is a function only of the difference t− τ. In the time-invariant case, Equation 3.1 reduces to the
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convolution relationship

y(t)= h(t) ∗ u(t)=
∫ t

−∞
h(t− τ)u(τ) dτ (3.4)

where h(t)= h(t, 0) is the impulse response (i.e., the output response resulting from the impulse δ(t)
applied to the system at time 0).

The linear system defined by Equation 3.1 is finite-dimensional or lumped if the input u(t) and the
output y(t) are related by the nth-order input/output differential equation

y(n)(t)+
n−1∑
i=0

ai(t)y(i)(t)=
m∑

i=0

bi(t)u(i)(t) (3.5)

where y(i)(t) is the ith derivative of y(t), u(i)(t) is the ith derivative of u(t), and ai(t) and bi(t) are real-valued
functions of t. In Equation 3.5, it is assumed that m≤ n. The linear system given by Equation 3.5 is time
invariant if and only if all coefficients in Equation 3.5 are constants, that is, ai(t)= ai and bi(t)= bi for
all i, where ai and bi are real constants.

3.2.1 State Model Realizations

A state model for the system given by Equation 3.5 can be constructed as follows. First, suppose that
m= 0 so that Equation 3.5 becomes

y(n)(t)+
n−1∑
i=0

ai(t)y(i)(t)= b0(t)u(t). (3.6)

Then defining the state variables

xi(t)= y(i−1)(t), i = 1, 2, . . . , n, (3.7)

the system defined by Equation 3.6 has the state model

ẋ(t)= A(t)x(t)+B(t)u(t) (3.8)

y(t)= Cx(t) (3.9)

where the coefficient matrices A(t), B(t), and C are given by

A(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
... · · · ...
0 0 0 · · · 0 1

−a0(t) −a1(t) −a2(t) · · · −an−2(t) −an−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.10)

B(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0

b0(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

C = [1 0 0 · · · 0 0
]

(3.12)
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and x(t) is the n-dimensional state vector given by

x(t)=

⎡
⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)

...
xn−1(t)

xn(t)

⎤
⎥⎥⎥⎥⎥⎦

When m≥ 1 in Equation 3.5, the definition in Equation 3.7 of the state variables will not yield a state
model of the form given in Equations 3.8 and 3.9. If m < n, a state model can be generated by first
rewriting Equation 3.5 in the form

Dny(t)+
n−1∑
i=0

Di [αi(t)y(t)
]=

m∑
i=0

Di [βi(t)u(t)] (3.13)

where D is the derivative operator and αi(t) and βi(t) are real-valued functions of t. The form of the
input/output differential equation given by Equation 3.13 exists if ai(t) and bi(t) are differentiable a
suitable number of times. If ai(t) are constants so that ai(t)= ai for all t, then αi(t) are constants and
αi(t)= ai , i = 0, 1, . . . , n− 1. If bi(t) are constants so that bi(t)= bi for all t, then βi(t) are constants and
βi(t)= bi , i = 0, 1, . . . , m.

When ai(t) and bi(t) are not constants, αi(t) is a linear combination of ai(t) and the derivatives of aj(t)
for j = n− i− 1, n− i− 2, . . . 1, and βi(t) is a linear combination of bi(t) and the derivatives of bj(t) for
j =m− i− 1, m− i− 2, . . . 1. For example, when n= 2, α0(t) and α1(t) are given by

α0(t)= a0(t)− ȧ1(t) (3.14)

α1(t)= a1(t) (3.15)

When n= 3, αi(t) are given by

α0(t)= a0(t)− ȧ1(t)+ ä2(t) (3.16)

α1(t)= a1(t)− 2ȧ2(t) (3.17)

α2(t)= a2(t) (3.18)

In the general case (n arbitrary), there is a one-to-one and onto correspondence between the coefficients
ai(t) in the left-hand side of Equation 3.5 and the coefficients αi(t) in the left-hand side of Equation 3.13.
Similarly, there is a one-to-one and onto correspondence between the coefficients in the right-hand side
of Equation 3.5 and the right-hand side of Equation 3.13.

Now given the system defined by Equation 3.5 written in the form of Equation 3.13, define the state
variables

xn(t)= y(t)

xn−1(t)= Dxn(t)+ αn−1(t)xn(t)− βn−1(t)u(t)

xn−2(t)= Dxn−1(t)+ αn−2(t)xn(t)− βn−2(t)u(t)

...

x1(t)= Dx2(t)+ α1(t)xn(t)− β1(t)u(t)

(3.19)

where βi(t)= 0 for i > m. Then with the state variables defined by Equations 3.19, the system given by
Equation 3.5 has the state model

ẋ(t)= A(t)x(t)+B(t)u(t) (3.20)

y(t)= Cx(t) (3.21)



�

�

�

�

� �

Fundamentals of Linear Time-Varying Systems 3-5

where the coefficient matrices A(t), B(t), and C are given by

A(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −α0(t)
1 0 0 · · · 0 −α1(t)
0 1 0 · · · 0 −α2(t)
... · · · ...
0 0 0 · · · 0 −αn−2(t)
0 0 0 · · · 1 −αn−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)

B(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0(t)
β1(t)
β2(t)

...
βn−2(t)
βn−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.23)

and
C = [0 0 · · · 0 1

]
(3.24)

The state model with A(t) and C specified by Equations 3.22 and 3.24 is said to be in observer canonical
form, which is observable as discussed below. Note that for this particular state realization, the row vector
C is constant (independent of t).

In addition to the state model defined by Equations 3.22 through 3.24, there are other possible state
models for the system given by Equation 3.5. For example, another state model can be constructed in the
case when the left-hand side of Equation 3.5 can be expressed in a Floquet factorization form (see [1]), so
that Equation 3.5 becomes

(D− p1(t))(D− p2(t)) . . . (D− pn(t))y(t)=
m∑

i=0

bi(t)u(i)(t) (3.25)

where again D is the derivative operator and the pi(t) are real-valued or complex-valued functions of the
time variable t. For example, consider the n= 2 case for which

(D− p1(t))(D− p2(t))y(t)= (D− p1(t))[ẏ(t)− p2(t)y(t)]
(D− p1(t))(D− p2(t))y(t)= ÿ(t)−[p1(t)+ p2(t)]ẏ(t)+[p1(t)p2(t)− ṗ2(t)]y(t)

(3.26)

With n= 2 and m= 1, the state variables may be defined by

x1(t)= ẏ(t)− p2(t)y(t)− b1(t)u(t) (3.27)

x2(t)= y(t) (3.28)

which results in the state model given by Equations 3.20 and 3.21 with

A(t)=
[

p1(t) 0
1 p2(t)

]
(3.29)

B(t)=
[

b0(t)− ḃ1(t)+ p1(t)b1(t)
b1(t)

]
(3.30)

and
C = [0 1

]
(3.31)
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In the general case given by Equation 3.25, there is a state model in the form of Equations 3.20 and 3.21
with A(t) and C given by

A(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p1(t) 0 0 0 · · · 0 0
1 p2(t) 0 0 · · · 0 0
0 1 p3(t) 0 · · · 0 0
...

...
...

0 0 0 0 · · · pn−1(t) 0
0 0 0 0 · · · 1 pn(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.32)

C = [0 0 0 · · · 1
]

(3.33)

A very useful feature of the state model with A(t) given by Equation 3.32 is the lower triangular form of
A(t). In particular, as discussed below, stability conditions can be specified in terms of pi(t), which can be
viewed as “time-varying poles” of the system. However, in the time-varying case the computation of pi(t)
based on the Floquet factorization given in the left-hand side of Equation 3.25 requires that nonlinear
Riccati-type differential equations must be solved (see, e.g., [2,13]). The focus of [2] is on the computation
of poles and zeros and the application to stability and transmission blocking, with the emphasis on time-
varying difference equations. In [4], the authors generate a Floquet factorization given by the left-hand
side of Equation 3.25 by utilizing successive Riccati transformations in a state-space setting.

A significant complicating factor in the theory of factoring polynomial operators with time-varying
coefficients is that in general there are an infinite number of different “pole sets”{p1(t), p2(t), . . . , pn(t)}.
This raises the question as to whether one pole set may be “better” in some sense than another pole set.
In the case of linear difference equations with time-varying coefficients, it is shown in [2] that poles can
be computed using a nonlinear recursion and that uniqueness of pole sets can be achieved by specifying
initial values for the poles. For recent work on the factorization of time-varying differential equations
by using ground field extensions, see [6]. As discussed below, in [7] the definition and computation of
time-varying poles is pursued by using Lyapunov coordinate transformations in a state-space setting.

3.2.2 The State Model

For an m-input p-output linear n-dimensional time-varying continuous-time system, the general form of
the state model is

ẋ(t)= A(t)x(t)+B(t)u(t) (3.34)

y(t)= C(t)x(t)+D(t)u(t) (3.35)

where Equation 3.34 is the state equation and Equation 3.35 is the output equation. In Equations 3.34
and 3.35, A(t) is the n× n system matrix, B(t) is the n×m input matrix, C(t) is the p× n output matrix,
D(t) is the p×m direct feed matrix, u(t) is the m-dimensional input vector, x(t) is the n-dimensional
state vector, and y(t) is the p-dimensional output vector. The term D(t)u(t) in Equation 3.35 is of little
significance in the theory, and thus D(t)u(t) is usually omitted from Equation 3.35, which will be done
here.

To solve Equation 3.34, first consider the homogeneous equation

ẋ(t)= A(t)x(t), t > t0 (3.36)

with the initial condition x(t0) at initial time t0. For any A(t) whose entries are continuous functions
of t, it is well known (see, e.g., [8]) that for any initial condition x(t0), there is a unique continuously
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differentiable solution of Equation 3.36 given by

x(t)=Φ(t, t0)x(t0), t > t0 (3.37)

whereΦ(t, t0) is an n× n matrix function of t and t0, called the state-transition matrix. The state-transition
matrix has the following fundamental properties:

Φ(t, t)= I = n× n identity matrix, for all t (3.38)

Φ(t, τ)=Φ(t, t1)Φ(t1, τ), for all t1, t, τ (3.39)

Φ−1(t, τ)=Φ(τ, t), for all t, τ (3.40)

∂

∂t
Φ(t, τ)= A(t)Φ(t, τ), for all t, τ (3.41)

∂

∂τ
Φ(t, τ)=−Φ(t, τ)A(τ), for all t, τ (3.42)

detΦ(t, τ)= exp

[∫ t

τ

tr[A(σ)] dσ

]
(3.43)

In Equation 3.43, “det” denotes the determinant and “tr” denotes the trace. Equation 3.39 is called the
composition property. It follows from this property thatΦ(t, τ) can be written in the factored form

Φ(t, τ)=Φ(t, 0)Φ(0, τ), for all t, τ (3.44)

Another important property of the state-transition matrixΦ(τ, t) is that it is a continuously differentiable
matrix function of t and τ.

It follows from Equation 3.42 that the adjoint equation

γ̇(t)=−AT (t)γ(t) (3.45)

has state-transition matrix equal to ΦT (τ, t), where again Φ(t, τ) is the state-transition matrix for
Equation 3.36 and superscript “T” denotes the transpose operation.

If the system matrix A(t) is constant over the interval [t1, t2], that is, A(t)= A, for all t ∈ [t1, t2], then
the state-transition matrix is equal to the matrix exponential over [t1, t2]:

Φ(t, τ)= eA(t−τ) for all t, τ ∈ [t1, t2] (3.46)

If A(t) is time varying and A(t) commutes with its integral over the interval [t1, t2], that is,

A(t)

[∫ t

τ

A(σ) dσ

]
=
[∫ t

τ

A(σ) dσ

]
A(t), for all t, τ ∈ [t1, t2] (3.47)

thenΦ(t, τ) is given by

Φ(t, τ)= exp

[∫ t

τ

A(τ) dτ

]
, for all t, τ ∈ [t1, t2] (3.48)

Note that the commutativity condition in Equation 3.47 is always satisfied in the time-invariant case.
It is also always satisfied in the one-dimensional (n= 1) time-varying case since scalars commute. Thus,
Φ(t, τ) is given by the exponential form in Equation 3.48 when n= 1. Unfortunately, the exponential
form forΦ(t, τ) does not hold for an arbitrary time-varying matrix A(t) when n > 1, and, in general, there
is no known closed-form expression forΦ(t, τ) when n > 1. However, approximations toΦ(t, τ) can be
readily computed from A(t) by numerical techniques, such as the method of successive approximations
(see, e.g., [8]). Approximations to Φ(t, τ) can also be determined by discretizing the time variable t as
shown next.
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Let k be an integer-valued variable, let T be a positive number, and let aij(t) denote the i, j entry of the
matrix A(t). Suppose that by choosing T to be sufficiently small, the absolute values |aij(t)− aij(kT)| can
be made as small as desired over the interval t ∈ [kT , kT +T] and for all integer values of k. Then for a
suitably small T , A(t) is approximately equal to A(kT) for t ∈ [kT , kT +T], and from Equation 3.46 the
state-transition matrixΦ(t, kT) is given approximately by

Φ(t, kT)= eA(kT)(t−kT) for all t ∈ [kT , kT +T] and all k (3.49)

Setting t = kT +T in Equation 3.49 yields

Φ(kT +T , kT)= eA(kT)T for all k (3.50)

The state-transition matrixΦ(kT +T , kT) given by Equation 3.50 can be computed by using a param-
eterized Laplace transform. To show this, first define the n× n matrix

q(k, t)= eA(kT)t (3.51)

Then q(k, t) is equal to the inverse Laplace transform of

Q(k, s)= [sI −A(kT)]−1 (3.52)

Note that the transform Q(k, s) is parameterized by the integer-valued variable k. A closed-form expression
for q(k, t) as a function of t can be obtained by expanding the entries of Q(k, s) into partial fraction
expansions and then using standard Laplace transform pairs to determine the inverse transform of
the terms in the partial faction expansions. Then from Equation 3.51, setting t = T in q(k, t) yields
q(k, T)=Φ(kT +T , kT).

Again consider the general case with the state equation given by Equation 3.34. Given the state-
transition matrix Φ(t, τ), for any given initial state x(t0) and input u(t) applied for t ≥ t0, the complete
solution to Equation 3.34 is

x(t)=Φ(t, t0)x(t0)+
∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ, t > t0 (3.53)

Then, when y(t)= C(t)x(t), the output response y(t) is given by

y(t)= C(t)Φ(t, t0)x(t0)+
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ, t > t0 (3.54)

If the initial time t0 is taken to be−∞ and the initial state is zero, Equation 3.54 becomes

y(t)=
∫ t

−∞
C(t)Φ(t, τ)B(τ)u(τ) dτ (3.55)

Comparing Equation 3.55 with the m-input, p-output version of Equation 3.1 reveals that

H(t, τ)=
{

C(t)Φ(t, τ)B(τ) for t ≥ τ
0 for t < τ

(3.56)

where H(t, τ) is the p×m impulse response function matrix. Inserting Equation 3.44 into Equation 3.56
reveals that H(t, τ) can be expressed in the factored form,

H(t, τ)=H1(t)H2(τ), t ≥ τ (3.57)

where
H1(t)= C(t)Φ(t, 0) and H2(τ)=Φ(0, τ)B(τ) (3.58)

It turns out [8] that a linear time-varying system with impulse response matrix H(t, τ) has a state realiza-
tion given by Equations 3.34 and 3.35 with D(t)= 0 if and only if H(t, τ) can be expressed in the factored
form given in Equation 3.57.
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3.2.3 Change of State Variables

Suppose that the system under study has the n-dimensional state model

ẋ(t)= A(t)x(t)+B(t)u(t) (3.59)

y(t)= C(t)x(t) (3.60)

In the following development, the system given by Equations 3.59 and 3.60 will be denoted by the triple
[A(t), B(t), C(t)].

Given any n× n invertible continuously differentiable matrix P(t), which is real or complex valued,
another state model can be generated by defining the new state vector z(t)= P−1(t)x(t), where P−1(t)
is the inverse of P(t). The matrix P−1(t) (or the matrix P(t)) is called the transformation matrix and the
process of going from x(t) to z(t) is referred to as a coordinate transformation. The state variables for
the new state model (i.e., the zi(t)) are linear combinations with time-varying coefficients of the state
variables of the given state model. To determine the state equations for the new state model, first note
that P(t)z(t)= x(t). Then taking the derivative of both sides of P(t)z(t)= x(t) gives

P(t)ż(t)+ Ṗ(t)z(t)= ẋ(t) (3.61)

Inserting the expression for ẋ(t) given by Equation 3.59 yields

P(t)ż(t)+ Ṗ(t)z(t)= A(t)x(t)+B(t)u(t) (3.62)

and replacing x(t) by P(t)z(t) in Equation 3.62 and rearranging terms results in

P(t)ż(t)= [A(t)P(t)− Ṗ(t)]z(t)+B(t)u(t) (3.63)

Finally, multiplying both sides of Equation 3.63 on the left by P−1(t) gives

ż(t)= [P−1(t)A(t)P(t)− P−1(t)Ṗ(t)]z(t)+ P−1(t)B(t)u(t) (3.64)

and replacing x(t) by P(t)z(t) in Equation 3.60 yields

y(t)= C(t)P(t)z(t) (3.65)

The state equations for the new state model are given by Equations 3.64 and 3.65. This new model will
be denoted by the triple [Ā(t), B̄(t), C̄(t)] where

Ā(t)= P−1(t)A(t)P(t)− P−1(t)Ṗ(t) (3.66)

B̄(t)= P−1(t)B(t) (3.67)

C̄(t)= C(t)P(t) (3.68)

Multiplying both sides of Equation 3.66 on the left by P(t) and rearranging the terms yield the result that
the transformation matrix P(t) satisfies the differential equation

Ṗ(t)= A(t)P(t)− P(t)Ā(t) (3.69)

The state models [A(t), B(t), C(t)] and [A(t), B(t), C(t)] with Ā(t), B̄(t), C̄(t) given by Equations 3.66
through 3.68 are said to be algebraically equivalent. The state-transition matrix Φ̄(t, τ) for [Ā(t), B̄(t), C̄(t)]
is given by

Φ̄(t, τ)= P−1(t)Φ(t, τ)P(τ) (3.70)

whereΦ(t, τ) is the state-transition matrix for [A(t), B(t), C(t)].



�

�

�

�

� �

3-10 Control System Advanced Methods

Given an n-dimensional state model [A(t), B(t), C(t)] and any n× n continuous matrix function Γ(t),
there is a transformation matrix P(t) that transforms A(t) into Γ(t), that is, Ā(t)= Γ(t). To show this,
define P(t) by

P(t)=Φ(t, 0)Φ̄(0, t) (3.71)

where Φ̄(t, τ) is the state-transition matrix for ż(t)= Γ(t)z(t). Note that P(t) is continuously differen-
tiable sinceΦ(t, 0) and Φ̄(0, t) are continuously differentiable, and P(t) is invertible since state-transition
matrices are invertible. Then taking the derivative of both sides of Equation 3.71 gives

Ṗ(t)=Φ(t, 0) ˙̄Φ(0, t)+ Φ̇(t, 0)Φ̄(0, t) (3.72)

Using Equations 3.41 and 3.42 in Equation 3.72 yields

Ṗ(t)=−Φ(t, 0)Φ̄(0, t)Γ(t)+A(t)Φ(t, 0)Φ̄(0, t) (3.73)

Finally, inserting Equation 3.71 into Equation 3.73 results in Equation 3.69 with Ā(t)= Γ(t), and thus,
P(t) transforms A(t) into Γ(t).

This result shows that via a change of state, A(t) can be transformed to any desired continuous matrix
Γ(t). The fact that any continuous system matrix A(t) can be transformed to any other continuous matrix
raises some interesting issues. For example, suppose that the transformation z(t)= P−1(t)x(t) is defined
so that the new system matrix Ā(t) is equal to a diagonal matrixΛ(t) with real or complex-valued functions
λ1(t),λ2(t), . . . ,λn(t) on the diagonal. Then from Equation 3.66,

Λ(t)= P−1(t)A(t)P(t)− P−1(t)Ṗ(t) (3.74)

and multiplying both sides of Equation 3.74 on the left by P(t) gives

P(t)Λ(t)= A(t)P(t)− Ṗ(t) (3.75)

Now for i = 1, 2, . . . , n, let γi(t) denote the ith column of the transformation matrix P(t). Then from
Equation 3.75, it follows that

λi(t)γi(t)= A(t)γi(t)− γ̇i(t), i = 1, 2, . . . , n (3.76)

Rearranging terms in Equation 3.76 gives

[A(t)−λi(t)I]γi(t)= γ̇i(t), i = 1, 2, . . . , n (3.77)

where I is the n× n identity matrix.
Equation 3.77 has appeared in the literature on linear time-varying systems, and has sometimes been

used as the justification for referring to theλi(t) as “dynamic” eigenvalues or poles, and the corresponding
γi(t) as eigenvectors, of the time-varying system having system matrix A(t). But since Equation 3.77 holds
for any continuous scalar-valued functions λ1(t),λ2(t), . . . ,λn(t), or for any constants λ1,λ2, . . . ,λn, the
existence of λi(t) and γi(t) satisfying Equation 3.77 is not useful unless further conditions are placed on
the transformation matrix P(t). For example, one can consider stronger notions of equivalence such as
topological equivalence. This means that, in addition to being algebraically equivalent, the transformation
matrix P(t) has the properties

|det P(t)| ≥ c0 for all t (3.78)∣∣pij(t)
∣∣≤ c1 for all t and i, j = 1, 2, . . . , n (3.79)

where pij(t) is the i, j entry of P(t), and c0 and c1 are finite positive constants. The conditions given
in Equations 3.78 and 3.79 are equivalent to requiring that P(t) and its inverse P−1(t) be bounded
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matrix functions of t. A transformation z(t)= P−1(t)x(t) with P(t) satisfying Equations 3.78 and 3.79
is called a Lyapunov transformation. As noted in Section 3.2.4, stability is preserved under a Lyapunov
transformation.

If the transformation z(t)= P−1(t)x(t) is a Lyapunov transformation and puts the system matrix
A(t) into the diagonal form Λ(t)= diag(λ1(t),λ2(t), . . . ,λn(t)), then the λi(t) are of interest since they
determine the stability of the system. However, in the general linear time-varying case, the existence of
a Lyapunov transformation that puts A(t) into a diagonal form is a strong condition. A much weaker
condition is the existence of a Lyapunov transformation that puts A(t) into an upper or lower triangular
form (see, e.g., [7]). This is briefly discussed in Section 3.2.4.

3.2.4 Stability

Given a system with n-dimensional state model [A(t), B(t), C(t)], again consider the homogeneous
equation

ẋ(t)= A(t)x(t), t > t0 (3.80)

with solution

x(t)=Φ(t, t0)x(t0), t > t0 (3.81)

The system is said to be asymptotically stable if for some initial time t0, the solution x(t) satisfies the
condition ‖x(t)‖→ 0 as t →∞ for any initial state x(t0) at initial time t0. Here ‖x(t)‖ denotes the
Euclidean norm of the state x(t) given by

‖x(t)‖ =
√

xT (t)x(t)=
√

x2
1(t)+ x2

2(t)+ · · ·+ x2
n(t) (3.82)

where x(t)= [x1(t) x2(t) . . . xn(t)]T . A system is asymptotically stable if and only if

‖Φ(t, t0)‖→ 0 as t →∞ (3.83)

where ‖Φ(t, t0)‖ is the matrix norm equal to the square root of the largest eigenvalue ofΦT (t, t0)Φ(t, t0),
where t is viewed as a parameter.

A stronger notion of stability is exponential stability, which requires that for some initial time t0, there
exist finite positive constants c and λ such that for any x(t0), the solution x(t) to Equation 3.80 satisfies

‖x(t)‖ ≤ ce−λ(t−t0) ‖x(t0)‖ , t ≥ t0 (3.84)

If the condition in Equation 3.84 holds for all t0 with the constants c and λ fixed, the system is said to
be uniformly exponential stable. Uniform exponential stability is equivalent to requiring that there exists
finite positive constants γ and λ such that

‖Φ(t, τ)‖ ≤ γe−λ(t−τ) for all t, τ such that t ≥ τ (3.85)

Uniform exponential stability is also equivalent to requiring that, given any positive constant δ, there
exists a positive constant T such that for any t0 and x(t0), the solution x(t) to Equation 3.80 satisfies

‖x(t)‖ ≤ δ ‖x(t0)‖ for t ≥ t0+T (3.86)

It follows from Equation 3.85 that uniform exponential stability is preserved under a Lyapunov trans-
formation z(t)= P−1(t)x(t). To see this, let Φ̄(t, τ) denote the state-transition matrix for ż(t)= Ā(t)z(t),
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where
Ā(t)= P−1(t)A(t)P(t)− P−1(t)Ṗ(t) (3.87)

Then using Equation 3.70 gives

∥∥Φ̄(t, τ)
∥∥≤ ∥∥P−1(t)

∥∥ ‖Φ(t, τ)‖ ‖P(τ)‖ (3.88)

But Equations 3.78 and 3.79 imply that

‖P(τ)‖ ≤M1 and
∥∥P−1(t)

∥∥≤M2 (3.89)

for some finite constants M1 and M2. Then inserting Equations 3.85 and 3.89 into Equation 3.88 yields

∥∥Φ̄(t, τ)
∥∥≤ γM1M2e−λ(t−τ) for all t, τ such that t ≥ τ (3.90)

which verifies that ż(t)= Ā(t)z(t) is uniformly exponentially stable.
If P(t) and P−1(t) are bounded only for t ≥ t1 for some finite t1, the coordinate transformation z(t)=

P−1(t)x(t) preserves exponential stability of the given system. This can be proved using constructions
similar to those given above. The details are omitted.

When n= 1 so that A(t)= a(t) is a scalar-valued function of t, as seen from Equation 3.48,

Φ(t, t0)= exp

[∫ t

t0

a(τ) dτ

]
. (3.91)

It follows that the system is asymptotically stable if and only if

∫ t

t0

a(σ) dσ→−∞ as t →∞ (3.92)

and the system is uniformly exponentially stable if a positive constant λ exists so that

∫ t

τ

a(σ) dσ ≤−λ(t− τ) for all t, τ such that t ≥ τ (3.93)

When n > 1, if A(t) commutes with its integral for t > t1 for some t1 ≥ t0 (see Equation 3.47), then

Φ(t, t1)= exp

[∫ t

t1

A(σ) dσ

]
, t > t1 (3.94)

and a sufficient condition for exponential stability (not uniform in general) is that the matrix function

1

t

∫ t

t2

A(σ) dσ (3.95)

be a bounded function of t and its pointwise eigenvalues have real parts ≤−β for t > t2 for some t2 ≥ t1,
where β is a positive constant. The pointwise eigenvalues of a time-varying matrix M(t) are the eigenvalues
of the constant matrix M(τ) for each fixed value of τ viewed as a time-independent parameter. If A(t)
is upper or lower triangular with p1(t), p2(t), . . . , pn(t) on the diagonal, then a sufficient condition for
uniform exponential stability is that the off-diagonal entries of A(t) be bounded and the scalar systems

ẋi(t)= pi(t)xi(t) (3.96)

be uniformly exponentially stable for i = 1, 2, . . . , n. Note that the system matrix A(t) given by Equa-
tion 3.32 is lower triangular, and thus, in this case, the system with this particular system matrix is
uniformly exponentially stable if the poles pi(t) in the Floquet factorization given in the left-hand side of
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Equation 3.25 are stable in the sense that the scalar systems in Equation 3.96 are uniformly exponentially
stable.

If there exists a Lyapunov transformation z(t)= P−1(t)x(t) that puts the system matrix A(t) into an
upper or lower triangular form with p1(t), p2(t), . . . , pn(t) on the diagonal, then sufficient conditions for
uniform exponential stability are that the off-diagonal entries of the triangular form be bounded and
the scalar systems defined by Equation 3.96 be uniformly exponentially stable. The construction of a
Lyapunov transformation that puts A(t) into an upper triangular form is given in [7]. In that paper, the
authors define the set {p1(t), p2(t), . . . , pn(t)} of elements on the diagonal of the upper triangular form to
be a pole set of the linear time-varying system with system matrix A(t).

Another condition for uniform exponential stability is that a symmetric positive-definite matrix Q(t)
exists with c1I ≤ Q(t)≤ c2I for some positive constants c1, c2, such that

AT (t)Q(t)+Q(t)A(t)+ Q̇(t)≤−c3I (3.97)

for some positive constant c3. Here F ≤ G means that F and G are symmetric matrices and G− F is
positive semidefinite (all pointwise eigenvalues are ≥ 0). This stability test is referred to as the Lyapunov
criterion. For more details, see [8].

Finally, it is noted that if the entries of B(t) and C(t) are bounded, then uniform exponential stability
implies that the system is bounded-input, bounded-output (BIBO) stable, that is, a bounded input u(t)
always results in a bounded output response y(t).

3.2.5 Controllability and Observability

Given a system with the n-dimensional state model [A(t), B(t), C(t)], it is now assumed that the entries
of A(t), B(t), and C(t) are at least continuous functions of t. The system is said to be controllable on the
interval [t0, t1], where t1 > t0, if for any states x0 and x1, a continuous input u(t) exists that drives the
system to the state x(t1)= x1 at time t = t1 starting from the state x(t0)= x0 at time t = t0.

Define the controllability Gramian which is the n× n matrix given by

W(t0, t1)=
∫ t1

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t) dt (3.98)

The controllability Gramian W(t0, t1) is symmetric positive semidefinite and is the solution to the matrix
differential equation

d

dt
W(t, t1)= A(t)W(t, t1)+W(t, t1)AT (t)−B(t)BT (t),

W(t1, t1)= 0
(3.99)

Then the system is controllable on [t0, t1] if and only if W(t0, t1) is invertible, in which case a continuous
input u(t) that drives the system from x(t0)= x0 to x(t1)= x1 is

u(t)=−BT (t)ΦT (t0, t)W−1(t0, t1) [x0−Φ(t0, t1)x1] , t0 ≤ t ≤ t1 (3.100)

There is a sufficient condition for controllability that does not require that the controllability Gramian
be computed: Given a positive integer q, suppose that the entries of B(t) are q− 1 times continuously
differentiable and the entries of A(t) are q− 2 times continuously differentiable, and define the n×m
matrices

K0(t)= B(t) (3.101)

Ki(t)=−A(t)Ki−1(t)+ K̇i−1(t), i = 1, 2, . . . , q− 1 (3.102)
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Finally, let K(t) denotes the n×mq matrix whose ith block column is equal to Ki−1(t), that is

K(t)= [K0(t) K1(t) . . . Kq−1(t)] (3.103)

Then a sufficient condition for the system [A(t), B(t), C(t)] to be controllable on the interval [t0, t1] is
that the n×mq matrix K(t) defined by Equation 3.103 has rank n for at least one value of t ∈ [t0, t1]. This
condition was first derived in [9].

The rank condition on the matrix K(t) is preserved under a change of state variables. To show this,
suppose the coordinate transformation z(t)= P−1(t)x(t) results in the state model [A(t), B(t), C(t)]. For
this model, define

K̄(t)= [K̄0(t) K̄1(t) . . . K̄q−1(t)] (3.104)

where the K̄i(t) are given by Equations 3.101 and 3.102 with A(t) and B(t) replaced by Ā(t) and B̄(t),
respectively. It is assumed that Ā(t) and B̄(t) satisfy the same differentiability requirements as given above
for A(t) and B(t) so that K̄(t) is well defined. Then it follows that

P−1(t)K(t)= K(t) (3.105)

Now since P−1(t) is invertible for all t, P−1(t) has rank n for all t ∈ [t0, t1], and thus K̄(t) has rank n
for some tc ∈ [t0, t1] if and only if K(tc) has rank n. Therefore, the system defined by [A(t), B(t), C(t)] is
controllable on the interval [t0, t1] if and only if the transformed system [A(t), B(t), C(t)] is controllable
on [t0, t1].

If the matrix K(t) has rank n for all t, the n× n matrix K(t)KT (t) is invertible for all t, and in this case
Equation 3.105 can be solved for P−1(t). This gives

P−1(t)= K(t)KT (t)
[

K(t)KT (t)
]−1

(3.106)

Note that Equation 3.106 can be used to compute the transformation matrix P−1(t) directly from the
coefficient matrices of the state models [A(t), B(t), C(t)] and [A(t), B(t), C(t)].

Now suppose that the system input u(t) is zero, so that the state model is given by

ẋ(t)= A(t)x(t) (3.107)

y(t)= C(t)x(t) (3.108)

Inserting Equation 3.108 into the solution of Equation 3.107 results in the output response y(t) resulting
from initial state x(t0):

y(t)= C(t)Φ(t, t0)x(t0), t > t0 (3.109)

The system is said to be observable on the interval [t0, t1] if any initial state x(t0) can be determined from
the output response y(t) given by Equation 3.109 for t ∈ [t0, t1]. Define the observability Gramian which
is the n× n matrix given by

M(t0, t1)=
∫ t1

t0

ΦT (t, t0)CT (t)C(t)Φ(t, t0) dt (3.110)

The observability Gramian M(t0, t1) is symmetric positive semidefinite and is the solution to the matrix
differential equation

d

dt
M(t, t1)=−AT (t)M(t, t1)−M(t, t1)A(t)−CT (t)C(t),

M(t1, t1)= 0
(3.111)
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Then the system is observable on [t0, t1] if and only if M(t0, t1) is invertible, in which case the initial state
x(t0) is given by

x(t0)=M−1(t0, t1)
∫ t1

t0

ΦT (t, t0)CT (t)y(t) dt (3.112)

Again given an m-input p-output n-dimensional system with state model [A(t), B(t), C(t)], the adjoint
system is the p-input m-output n-dimensional system with state model [−AT (t), CT (t), BT (t)]. The adjoint
system is given by the state equations

γ̇(t)=−AT (t)γ(t)+CT (t)v(t) (3.113)

η(t)= BT (t)γ(t) (3.114)

where γ(t), ν(t), and η(t) are the state, input, and output, respectively, of the adjoint system. As noted
above in Section 3.2.2, the state-transition matrix of the adjoint system [−AT (t), CT (t), BT (t)] is equal
to ΦT (τ, t), where Φ(t, τ) is the state-transition matrix for the given system [A(t), B(t), C(t)]. Using
this fact and the definition of the input and output coefficient matrices of the adjoint system given by
Equations 3.113 and 3.114, it is clear that the controllability Gramiam of the adjoint system is identical
to the observability Gramiam of the given system. Thus, the given system is observable on [t0, t1] if
and only if the adjoint system is controllable on [t0, t1]. In addition, the observability Gramiam of the
adjoint system is identical to the controllability Gramiam of the given system. Hence, the given system is
controllable on [t0, t1] if and only if the adjoint system is observable on [t0, t1].

A sufficient condition for observability is given next in terms of the system matrix A(t) and the output
matrix C(t): Consider the system with state model [A(t), B(t), C(t)], and define the p× n matrices

L0(t)= C(t) (3.115)

Li(t)= Li−1(t)A(t)+ L̇i−1(t), i = 1, 2, . . . , q− 1 (3.116)

where q is a positive integer. Consider the pq× n matrix L(t) whose ith block row is equal to Li−1(t),
that is,

L(t)=

⎡
⎢⎢⎢⎣

L0(t)
L1(t)

...
Lq−1(t)

⎤
⎥⎥⎥⎦ (3.117)

It is assumed that the entries of C(t) are q− 1 times differentiable and the entries of A(t) are q− 2 times
differentiable, so that L(t) is well defined. Then as first shown in [9], the system is observable on [t0, t1]
if the pq× n matrix L(t) defined by Equations 3.115 through 3.117 has rank n for at least one value of
t ∈ [t0, t1].

Now consider the n× pq matrix U(t)= [U0(t) U1(t) . . . Uq−1(t)] generated from the adjoint system
[−AT (t), CT (t), BT (t)], where

U0(t)= CT (t) (3.118)

Ui(t)= AT (t)Ui−1(t)+ U̇i−1(t), i = 1, 2, . . . , q− 1 (3.119)

Then from Equations 3.115 through 3.119, it is seen that the transpose UT (t) of the n× pq matrix U(t)
is equal to the pq× n matrix L(t) of the given system with state model [A(t), B(t), C(t)]. Since the transpose
operation does not affect the rank of a matrix, the sufficient condition rank L(t)= n for observability
of the system [A(t), B(t), C(t)] implies that the adjoint system [−AT (t), CT (t), BT (t)] is controllable.
In addition, the rank condition for observability of the adjoint system implies that the given system is
controllable. It also follows from the above constructions that the rank condition for observabiliy of the
system [A(t), B(t), C(t)] is preserved under a coordinate transformation.
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3.2.6 Control Canonical Form and Controller Design

Now suppose that the system with state model [A(t), B(t), C(t)] has a single input (m= 1) so that the
input matrix B(t) is an n-element column vector. Assuming that B(t) and A(t) can be differentiated an
appropriate number of times, let R(t) denote the n× n matrix whose columns ri(t) are defined by

r1(t)= B(t) (3.120)

ri+1(t)= A(t)ri(t)− ṙi(t), i = 1, 2, . . . , n− 1 (3.121)

Note that R(t) is a minor variation of the n× n matrix K(t) defined by Equations 3.101 through 3.103
with q= n. In fact, since R(t) is equal to K(t) with a sign change in the columns, R(t) has rank n for all t
if and only if K(t) has rank n for all t. Thus, R(t) is invertible for all t if and only if the matrix K(t) has
rank n for all t.

In some textbooks, such as [1], the matrix R(t) is called the controllability matrix of the system with
state model [A(t), B(t), C(t)].

Assuming that R(t) is invertible for all t, define the n-element column vector

η(t)=−R−1(t)rn+1(t) (3.122)

where rn+1(t) is defined by Equation 3.121 with i = n. The vector η(t) is invariant under any change of
state z(t)= P−1(t)x(t). In other words, if Equations 3.120 through 3.122 are evaluated for the new state
model [A(t), B(t), C(t)] resulting from the transformation z(t)= P−1(t)x(t), Equation 3.122 will yield
the same result for η(t). In addition, if A(t)= A and B(t)= B where A and B are constant matrices, the
vector η is constant and is given by

η= [a0 a1 . . . an−1]T (3.123)

where ai are the coefficients of the characteristic polynomial of A, that is,

det(sI −A)= sn+
n−1∑
i=0

ais
i (3.124)

Given the analogy with the time-invariant case, the vector η(t) given by Equation 3.122 can be viewed as
a time-varying version of the characteristic vector of the system.

If the n× n matrix R(t) with columns defined by Equations 3.120 and 3.121 is invertible for all t,
there is a coordinate transformation z(t)= P−1(t)x(t), which converts [A(t), B(t), C(t)] into the control
canonical form [Ā(t), B̄, C̄(t)] with Ā(t) and B̄ given by

Ā(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
... · · · ...
0 0 0 · · · 0 1

−ψ0(t) −ψ1(t) −ψ2(t) · · · −ψn−2(t) −ψn−1(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.125)

B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.126)

This form was first derived in [10].
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A recursive procedure for computing the rows ci(t) of the matrix P−1(t) in the transformation z(t)=
P−1(t)x(t) to the control canonical form was derived in [11], and is given by

c1(t)= (en)T R−1(t) (3.127)

ci+1(t)= ci(t)A(t)+ ċi(t), i = 1, 2, . . . , n− 1 (3.128)

where
(en)T = [0 0 0 · · · 0 1

]
(3.129)

As shown in [11], the entries ψi(t) in the bottom row of Ā(t) are given by

ψ(t)= [ψ0(t) ψ1(t) . . . ψn−1(t)] = −(cn(t)A(t)+ ċn(t))P(t) (3.130)

Now consider the system in the control canonical form given by the state equation

ż(t)= Ā(t)z(t)+ B̄u(t) (3.131)

where Ā(t) and B̄ are defined by Equations 3.125 and 3.126. Then with the state feedback control u(t)=
−ḡ(t)z(t), where ḡ(t) is an n-element row vector, from Equation 3.131 the state equation for the resulting
closed-loop system is

ż(t)= [Ā(t)− B̄ḡ(t)]z(t) (3.132)

Let d = [d0 d1 . . . dn−1] be an n-element row vector with any desired constants d0, d1, . . . , dn−1. Then
from the form of Ā(t) and B̄, it is clear that if ḡ(t) is taken to be ḡ(t)= d−ψ(t), then the resulting
closed-loop system matrix Ā(t)− B̄ḡ(t) is equal to the matrix in the right-hand side of Equation 3.125
with the elements−d0,−d1, . . . ,−dn−1 in the bottom row. Thus, the matrix Ā(t)− B̄ḡ(t) is constant and
its characteristic polynomial is equal to sn+ dn−1sn−1+ · · · d1s+ d0. The coefficients of the characteristic
polynomial can be assigned to have any desired values d0, d1, . . . , dn−1.

The state feedback u(t)=−ḡ(t)z(t) in the control canonical form can be expressed in terms of the
state x(t) of the given system [A(t), B(t), C(t)] by using the coordinate transformation z(t)= P−1(t)x(t).
This results in

u(t)=−ḡ(t)z(t)=−ḡ(t)P−1(t)x(t)=−[d−ψ(t)]P−1(t)x(t) (3.133)

Inserting the feedback u(t) given by Equation 3.133 into the state equation ẋ(t)= A(t)x(t)+B(t)u(t) for
the system [A(t), B(t), C(t)] yields the following equation for the resulting closed-loop system:

ẋ(t)= (A(t)−B(t)g(t))x(t) (3.134)

where the feedback gain vector g(t) is given by

g(t)= ḡ(t)P−1(t)= [d−ψ(t)]P−1(t) (3.135)

By the above constructions, the coordinate transformation z(t)= P−1(t)x(t) transforms the system matrix
A(t)−B(t)g(t) of the closed-loop system defined by Equation 3.134 into the system matrix Ā(t)− B̄ḡ(t)
of the closed-loop system given by Equation 3.132.

As shown in [11], the gain vector g(t) defined by Equation 3.135 can be computed without having to
determine Ā(t) by using the following formula:

g(t)=−
[

cn+1(t)+
n−1∑
i=0

dici+1

]
(3.136)

where the ci(t) are given by Equations 3.127 and 3.128 with i = 1, 2, . . . , n. If the zeros of the characteristic
polynomial of Ā(t)− B̄ḡ(t) are chosen so that they are located in the open left half of the complex plane
and if the coordinate transformation z(t)= P−1(t)x(t) is a Lyapunov transformation, then the closed-
loop system given by Equation 3.134 is uniformly exponentially stable. If P(t) and P−1(t) are bounded
only for t ≥ t1 for some finite t1, then the closed-loop system is exponentially stable. In Section 3.4, an
example is given which illustrates the computation of the feedback gain g(t).
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3.3 Discrete-Time Linear Time-Varying Systems

A discrete-time causal linear time-varying system with single-input u(k) and single-output y(k) can be
modeled by the input/output relationship

y(k)=
k∑

j=−∞
h(k, j)u( j) (3.137)

where k is an integer-valued variable (the discrete-time index) and h(k, j) is the output response resulting
from the unit pulse δ(k− j) (where δ(k− j)= 1 for k = j and= 0 for k �= j) applied at time j. It is assumed
that u(k) and/or h(k, j) is constrained so that the summation in Equation 3.137 is well defined. The system
defined by Equation 3.137 is time invariant if and only if h(k, j) is a function of only the difference k− j,
in which case Equation 3.137 reduces to the convolution relationship

y(k)= h(k) ∗ u(k)=
k∑

j=−∞
h(k− j)u( j) (3.138)

where h(k− j)= h(k− j, 0).
The system defined by Equation 3.138 is finite dimensional if the input u(k) and the output y(k) are

related by the nth-order difference equation

y(k+ n)+
n−1∑
i=0

ai(k)y(k+ i)=
m∑

i=0

bi(k)u(k+ i) (3.139)

where m≤ n and the ai(k) and the bi(k) are real-valued functions of the discrete-time variable k. The
system given by Equation 3.139 is time invariant if and only if all coefficients in Equation 3.139 are
constants, that is, ai(k)= ai and bi(k)= bi for all i, where ai and bi are constants.

When m < n the system defined by Equation 3.139 has the n-dimensional state model

x(k+ 1)= A(k)x(k)+B(k)u(k) (3.140)

y(k)= Cx(k) (3.141)

where

A(k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 −a0(k)
1 0 0 · · · 0 −a1(k− 1)
0 1 0 · · · 0 −a2(k− 2)
... · · · ...
0 0 0 · · · 0 −an−2(k− n+ 2)
0 0 0 · · · 1 −an−1(k− n+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.142)

B(k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

b0(k)
b1(k− 1)
b2(k− 2)

...
bn−2(k− n+ 2)
bn−1(k− n+ 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.143)

and
C = [0 0 · · · 0 1

]
where bi(k)= 0 for i > m. This particular state model is referred to as the observer canonical form. As in
the continuous-time case, there are other possible state realizations of Equation 3.139, but these will not
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be considered here. It is interesting to note that the entries of A(k) and B(k) in the observer canonical
form are simply time shifts of the coefficients of the input/output difference Equation 3.139, whereas as
shown above, in the continuous-time case this relationship is rather complicated.

3.3.1 State Model in the General Case

For an m-input p-output linear n-dimensional time-varying discrete-time system, the general form of the
state model is

x(k+ 1)= A(k)x(k)+B(k)u(k) (3.144)

y(k)= C(k)x(k)+D(k)u(k) (3.145)

where the system matrix A(k) is n× n, the input matrix B(k) is n×m, the output matrix C(k) is p× n,
and the direct feed matrix D(k) is p×m. The state model given by Equations 3.144 and 3.145 may arise
as a result of sampling a continuous-time system given by the state model

ẋ(t)= A(t)x(t)+B(t)u(t) (3.146)

y(t)= C(t)x(t)+D(t)u(t) (3.147)

If the sampling interval is equal to T , then setting t = kT in Equation 3.147 yields an output equation of the
form in Equation 3.145, where C(k)= C(t)|t=kT and D(k)= D(t)|t=kT . To “discretize” Equation 3.146,
first recall (see Equation 3.53) that the solution to Equation 3.146 is

x(t)=Φ(t, t0)x(t0)+
∫ t

t0

φ(t, τ)B(τ)u(τ) dτ, t > t0 (3.148)

Then setting t = kT +T and t0 = kT in Equation 3.148 yields

x(kT +T)=Φ(kT +T , kT)x(kT)+
∫ kT+T

kT
Φ(kT +T , τ)B(τ)u(τ) dτ (3.149)

The second term on the right-hand side of Equation 3.149 can be approximated by

[∫ kT+T

kT
Φ(kT +T , τ)B(τ) dτ

]
u(kT)

and thus Equation 3.149 is in the form of Equation 3.144 with

A(k)=Φ(kT +T , kT) (3.150)

B(k)=
∫ kT+T

kT
Φ(kT +T , τ)B(τ) dτ (3.151)

Note that the matrix A(k) given by Equation 3.150 is always invertible since Φ(kT +T , kT) is always
invertible (see the property given by Equation 3.40). As discussed below, this implies that discretized or
sampled data systems are “reversible.”

From Equations 3.150 and 3.151 it is seen that the computation of A(k) and B(k) requires knowledge
of the state-transition matrix Φ(t, τ) for t = kT+T and τ ∈ [kT , kT +T). As discussed in Section 3.3,
if A(t) in Equation 3.146 is a continuous function of t and the variation of A(t) over the intervals
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[kT, kT+T] is sufficiently small for all k, thenΦ(kT +T , τ) can be approximated by

Φ(kT +T , τ)= eA(kT)(kT+T−τ) for τ ∈ [kT , kT +T) (3.152)

and hence, A(k) and B(k) can be determined using

A(k)= eA(kT)T (3.153)

B(k)=
∫ kT+T

kT
eA(kT)(kT+T−τ)B(τ) dτ (3.154)

Given the discrete-time system defined by Equations 3.144 and 3.145, the solution to Equation 3.144 is

x(k)=Φ(k, k0)x(k0)+
k−1∑
j=k0

Φ(k, j+ 1)B( j)u( j), k > k0 (3.155)

where the n× n state-transition matrixΦ(k, j) is given by

Φ(k, k0)=

⎧⎪⎨
⎪⎩

not defined for k < k0

I , k = k0

A(k− 1)A(k− 2) . . . A(k0), k > k0

(3.156)

It follows directly from Equation 3.156 that Φ(k, k0) is invertible for k > k0 only if A(k) is invert-
ible for k ≥ k0. Thus, in general, the initial state x(k0) cannot be determined from the relationship
x(k)=Φ(k, k0)x(k0). In other words, a discrete-time system is not necessarily reversible, although any
continuous-time system given by Equations 3.146 and 3.147 is reversible sinceΦ(t, t0) is always invertible.
However, as noted above, any sampled data system is reversible.

The state-transition matrixΦ(k, k0) satisfies the composition property:

Φ(k, k0)=Φ(k, k1)Φ(k1, k0), where k0 ≤ k1 ≤ k (3.157)

and in addition,
Φ(k+ 1, k0)= A(k)Φ(k, k0), k ≥ k0 (3.158)

If A(k) is invertible for all k,Φ(k, k0) can be written in the factored form

Φ(k, k0)=Φ1(k)Φ2(k0), k ≥ k0 (3.159)

where

Φ1(k)=

⎧⎪⎨
⎪⎩

A(k− 1)A(k− 2) . . . A(0), k ≥ 1

I , k = 0

A−1(k− 2)A−1(k− 3) . . . A−1(−1), k < 0

(3.160)

Φ2(k0)=

⎧⎪⎨
⎪⎩

A−1(0)A−1(1) . . . A−1(k0− 1), k0 > 0

I , k0 = 0

A(−1)A(−2) . . . A(k0), k0 < 0

(3.161)

When the direct feed matrix D(k) in Equation 3.145 is zero, so that y(k)= C(k)x(k), the output response
y(k) is given by

y(k)= C(k)Φ(k, k0)x(k0)+
k−1∑
j=k0

C(k)Φ(k, j+ 1)B( j)u( j), k > k0 (3.162)
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If the initial time k0 is set equal to−∞ and the initial state is zero, Equation 3.162 becomes

y(k)=
k−1∑

j=−∞
C(k)Φ(k, j+ 1)B( j)u( j) (3.163)

Comparing Equation 3.163 with the m-input p-output version of the input/output Equation 3.137 reveals
that

H(k, j)=
{

C(k)Φ(k, j+ 1)B(j), k > j

0, k ≤ j
(3.164)

where H(k, j) is the p×m unit-pulse response function matrix. Note that if A(k) is invertible so that
Φ(k, k0) has the factorization given in Equation 3.159, then H(k, j) can be expressed in the factored
form as

H(k, j)= [C(k)Φ1(k)][Φ2( j+ 1)B( j)] for k > j. (3.165)

As in the continuous-time case, this factorization is a fundamental property of unit-pulse response
matrices H(k, j) that are realizable by a state model (with invertible A(k)).

3.3.2 Stability

Given an n-dimensional discrete-time system defined by Equations 3.144 and 3.145, consider the homo-
geneous equation

x(k+ 1)= A(k)x(k), k ≥ k0. (3.166)

The solution is
x(k)=Φ(k, k0)x(k0), k > k0 (3.167)

whereΦ(k, k0) is the state-transition matrix defined by Equation 3.156.
The system is said to be asymptotically stable if for some initial time k0, the solution x(k) satisfies the

condition ‖x(k)‖→ 0 as k→ 0 for any initial state x(k0) at time k0. This is equivalent to requiring that

‖Φ(k, k0)‖→ 0, as k→∞ (3.168)

The system is exponentially stable if for some initial time k0, there exist finite positive constants c and ρ
with ρ< 1, such that for any x(k0) the solution x(k) satisfies

‖x(k)‖ ≤ cρk−k0 ‖x(k0)‖ , k > k0 (3.169)

If Equation 3.169 holds for all k0 with the constants c and ρ fixed, the system is said to be uniformly
exponentially stable. This is equivalent to requiring that there exist a finite positive constant γ and a
nonnegative constant ρ with ρ< 1 such that∥∥Φ(k, j)

∥∥≤ γρk−j, for all k, j such that k ≥ j (3.170)

Uniform exponential stability is also equivalent to requiring that given any positive constant δ, there
exists a positive integer q such that for any k0 and x(k0), the solution to Equation 3.166 satisfies

‖x(k)‖ ≤ δ ‖x(k0)‖ , k ≥ k0+ q (3.171)

Uniform exponential stability is also equivalent to the existence of a finite positive constant β such that

k∑
i=j+1

‖Φ(k, i)‖ ≤ β for all k, j such that k ≥ j+ 1 (3.172)

Another necessary and sufficient condition for uniform exponential stability is that a symmetric positive-
definite matrix Q(k) exists with c1I ≤ Q(k)≤ c2I for some positive constants c1 and c2 so that

AT (k)Q(k+ 1)A(k)−Q(k)≤−c3I (3.173)

for some positive constant c3.
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3.3.3 Controllability and Observability

The discrete-time system defined by Equations 3.144 and 3.145 with D(k)= 0 will be denoted by the
triple [A(k), B(k), C(k)]. The system is said to be controllable on the interval [k0, k1] with k1 > k0 if, for
any states x0 and x1, an input u(k) exists that drives the system to the state x(k1)= x1 at time k = k1

starting from the state x(k0)= x0 at time k = k0. To determine a necessary and sufficient condition for
controllability, first solve Equation 3.144 to find the state x(k1) at time k = k1 resulting from state x(k0)
at time k = k0 and the input sequence u(k0), u(k0+ 1), . . ., u(k1−1). The solution is

x(k1)=Φ(k1, k0)x(k0)+Φ(k1, k0+ 1)B(k0)u(k0)+Φ(k1, k0+ 2)B(k0+ 1)u(k0+ 1)

+ · · ·Φ(k1, k1− 1)B(k1− 2)u(k1− 2)+B(k1− 1)u(k1− 1) (3.174)

Let R(k1, k0) be the controllability (or reachability) matrix with n rows and (k1− k0)m columns defined by

R(k0, k1)= [B(k1− 1)Φ(k1, k1− 1)B(k1− 2) . . .Φ(k1, k0+ 2)B(k0+ 1)Φ(k1, k0+ 1)B(k0)] (3.175)

Then Equation 3.174 can be written the form

x(k1)=Φ(k1, k0)x(k0)+R(k0, k1)U(k0, k1) (3.176)

where U(k0, k1) is the (k1− k0)m-element column vector of inputs given by

U(k0, k1)=
[

uT (k1− 1) uT (k1− 2) · · · uT (k0+ 1) uT (k0)
]T

(3.177)

Now for any states x(k0)= x0 and x(k1)= x1, from Equation 3.176, there is a sequence of inputs given by
U(k0, k1) that drives the system from x0 to x1 if and only if the matrix R(k0, k1) has rank n. If this is the
case, Equation 3.176 can be solved for U(k0, k1), giving

U(k0, k1)= RT (k0, k1)
[

R(k0, k1)RT (k0, k1)
]−1

[x1−Φ(k1, k0)x0] (3.178)

Hence, rank R(k0, k1)= n is a necessary and sufficient condition for controllability over the interval [k0,
k1].

Given a fixed positive integer N , set k0 = k−N + 1 and k1 = k+ 1 in R(k0, k1), which results in the
matrix R(k−N + 1, k+ 1). Note that R(k−N + 1, k+ 1) is a function of only the integer variable k and
that the size of the matrix R(k−N + 1, k+ 1) is equal to n×Nm since k1− k0 = N . The n×Nm matrix
R(k−N + 1, k+ 1) will be denoted by R(k). By definition of the state-transition matrix Φ(k, k0), R(k)
can be written in the form

R(k)= [R0(k) R1(k) . . . RN−1(k)] (3.179)

where the block columns Ri(k) of R(k) are given by

R0(k)= B(k) (3.180)

Ri(k)= A(k)Ri−1(k− 1), i = 1, 2, . . . , N − 1 (3.181)

The system is said to be uniformly N-step controllable if rank R(k)= n for all k. Uniformly N-step
controllable means that the system is controllable on the interval [k−N + 1, k+ 1] for all k.

Now suppose that the system input u(k) is zero, so that the state model is given by

x(k+ 1)= A(k)x(k) (3.182)

y(k)= C(k)x(k) (3.183)

From Equations 3.182 and 3.183, the output response y(k) resulting from initial state x(k0) is given by

y(k)= C(k)Φ(k, k0)x(k0), k ≥ k0 (3.184)

Then the system is said to be observable on the interval [k0, k1] if any initial state x(k0)= x0 can be
determined from the output response y(k) given by Equation 3.184 for k = k0, k0+ 1, . . ., k1− 1. Using



�

�

�

�

� �

Fundamentals of Linear Time-Varying Systems 3-23

Equation 3.184 for k = k0 to k = k1−1 yields

⎡
⎢⎢⎢⎢⎢⎣

y(k0)
y(k0+ 1)

...
y(k1− 2)
y(k1− 1)

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

C(k0)x0

C(k0+ 1)Φ(k0+ 1, k0)x0
...

C(k1− 2)Φ(k1− 2, k0)x0

C(k1− 1)Φ(k1− 1, k0)x0

⎤
⎥⎥⎥⎥⎥⎦

(3.185)

The right-hand side of Equation 3.185 can be written in the form O(k0, k1)x0 where O(k0, k1) is the
(k1− k0)p× n observability matrix defined by

O(k0, k1)=

⎡
⎢⎢⎢⎢⎢⎣

C(k0)
C(k0+ 1)Φ(k0+ 1, k0)

...
C(k1− 2)Φ(k1− 2, k0)
C(k1− 1)Φ(k1− 1, k0)

⎤
⎥⎥⎥⎥⎥⎦

(3.186)

Equation 3.185 can be solved for any initial state x0 if and only if rank O(k0, k1)= n, which is a nec-
essary and sufficient condition for observability on [k0, k1]. If the rank condition holds, the solution of
Equation 3.185 for x0 is

x0 =
[

OT (k0, k1)O(k0, k1)
]−1

OT (k0, k1)Y (k0, k1) (3.187)

where Y (k0, k1) is the (k1− k0)p-element column vector of outputs given by

Y (k0, k1)=
[

yT (k0) yT (k0+ 1) · · · yT (k1− 2) yT (k1− 1)
]T

(3.188)

Given a positive integer N , setting k0 = k and k1 = k+N in O(k0, k1) yields the Np× n matrix
O(k, k+N), which will be denoted by O(k). By definition of the state-transition matrix Φ(k, k0), O(k)
can be written in the form

O(k)=

⎡
⎢⎢⎢⎣

O0(k)
O1(k)

...
ON−1(k)

⎤
⎥⎥⎥⎦ (3.189)

where the block rows Oi(k) of O(k) are given by

O0(k)= C(k) (3.190)

Oi(k)= Oi−1(k+ 1)A(k), i = 1, 2, . . . , N − 1 (3.191)

The system is said to be uniformly N-step observable if rank O(k)= n for all k. Uniformly N-step observable
means that the system is observable on the interval [k, k+N] for all k.

3.3.4 Change of State Variables and Canonical Forms

Again, consider the discrete-time system with state model [A(k), B(k), C(k)]. For any n× n invertible
matrix P(k), another state model can be generated by defining the new state vector z(k)= P−1(k)x(k).
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The new state model is given by

z(k+ 1)= Ā(k)z(k)+ B̄(k)u(k) (3.192)

y(k)= C̄(k)z(k) (3.193)

where

Ā(k)= P−1(k+ 1)A(k)P(k) (3.194)

B̄(k)= P−1(k+ 1)B(k) (3.195)

C̄(k)= C(k)P(k) (3.196)

The state-transition matrix Φ̄(k, k0) for the new state model is given by

Φ̄(k, k0)= P−1(k)Φ(k, k0)P(k0) (3.197)

where Φ(k, k0) is the state-transition matrix for [A(k), B(k), C(k)]. The new state model, which will be
denoted by [Ā(k), B̄(k), C̄(k)], and the given state model [A(k), B(k), C(k)] are said to be algebraically
equivalent.

Given an n-dimensional state model [A(k), B(k), C(k)] and any n× n invertible matrix function Γ(k),
if A(k) is invertible, there is an invertible coordinate transformation matrix P(k) for k ≥ k0, which trans-
forms A(k) into Γ(k) for k ≥ k0, that is, Ā(k)= Γ(k), k ≥ k0. To show this, define P(k) by the matrix
difference equation

P(k+ 1)= A(k)P(k)Γ−1(k), k ≥ k0 (3.198)

with initial condition P(k0)= I = n× n identity matrix. Then multiplying both sides of Equation 3.198
on the right byΓ(k) and multiplying the resulting equation on the left by P−1(k+ 1) yields Equation 3.194
with Ā(k)= Γ(k) for k ≥ k0. This result shows that an invertible matrix A(k) can be put into a diagonal
form via a coordinate transformation with any desired nonzero functions or constants on the diagonal.
Thus, as in the continuous-time case, there is no useful generalization of the notion of eigenvalues
and eigenvectors in the time-varying case, unless additional conditions are placed on the coordinate
transformation. For example, one can require that the transformation be a Lyapunov transformation,
which means that both P(k) and its inverse P−1(k) are bounded matrix functions of the integer variable
k. It follows from Equation 3.197 that uniform exponential stability is preserved under a Lyapunov
transformation.

Suppose that the systems [A(k), B(k), C(k)] and [Ā(k), B̄(k), C̄(k)] are algebraically equivalent and let
R(k) denote the n×Nm controllability matrix for the system [A(k), B(k), C(k)], where R(k) is defined by
Equations 3.179 through 3.181. Similarly, for the system given by [Ā(k), B̄(k), C̄(k)] define

R(k)= [R̄0(k) R̄1(k) . . . R̄n−1(k)] (3.199)

where the R̄i(k) are given by Equations 3.180 and 3.181 with A(k) and B(k) replaced by Ā(k) and B̄(k),
respectively. Then the coordinate transformation P−1(k) is given by

P−1(k+ 1)R(k)= R̄(k) (3.200)

If the system [A(k), B(k), C(k)] is uniformly N-step controllable, R(k) has rank n for all k, and the n× n
matrix R(k)RT (k) is invertible. Thus, Equation 3.200 can be solved for P−1(k+ 1), which gives

P−1(k+ 1)= R̄(k)RT (k)[R(k)RT (k)]−1 (3.201)

It follows from Equation 3.200 that uniform N-step controllability is preserved under a change of state
variables.
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Now suppose that the n-dimensional system with state model [A(k), B(k), C(k)] is uniformly N-step
controllable with N = n and that the system has a single input (m= 1) so that B(k) is an n-element
column vector and R(k) is a n× n invertible matrix. Define

Rn(k)= A(k)Rn−1(k− 1) (3.202)

η(k)=−R−1(k)Rn(k) (3.203)

where Rn−1(k) is the column vector defined by Equation 3.181 with i = n−1. The n-element column
vector η(k) defined by Equation 3.203 is invariant under any change of state z(k)= P−1(k)x(k), and in
the time-invariant case, η is constant and is given by

η= [a0 a1 · · · an−1
]T

(3.204)

where the ai are the coefficients of the characteristic polynomial of A.
Given η(k) defined by Equation 3.203, write η(k) in the form

η(k)= [η0(k) η1(k) · · · ηn−1(k)
]

(3.205)

Then as proved in [3], there is a transformation P(k) which converts [A(k), B(k), C(k)] into the control
canonical form [Ā(k), B̄, C̄(k)], with Ā(k) and B̄ given by

Ā(k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
... · · · ...
0 0 0 · · · 0 1

−η0(k) −η1(k+ 1) −η2(k+ 2) · · · −ηn−2(k+ n− 2) −ηn−1(k+ n− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.206)

B̄=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

(3.207)

The transformation matrix P−1(k) that yields the control canonical form can be determined using Equa-
tion 3.201. As in the continuous-time case, the control canonical form can be used to design a state
feedback control which results in a uniformly exponentially stable closed-loop system if the coordinate
transformation defined by P−1(k) is a Lyapunov transformation. If P(k) and P−1(k) are bounded only
for k ≥ k1 for some finite k1, the resulting closed-loop system is exponentially stable. The details are a
straightforward modification of the continuous-time case, and thus are not pursued here.

3.4 Applications and Examples

In Section 3.4.1, an example is given on the construction of canonical forms and the design of observers
and controllers.
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3.4.1 Observer and Controller Design

Consider the single-input single-output linear time-varying continuous-time system given by the
input/output differential equation

ÿ(t)+ e−t ẏ(t)+ y(t)= u̇(t) (3.208)

To determine the state model, which is in observer canonical form, write Equation 3.208 in the form

ÿ(t)+D[α1(t)y(t)]+ α0(t)y(t)= u̇(t) (3.209)

In this case,
α1(t)= e−t and α0(t)= 1+ e−t (3.210)

Then from Equations 3.22 through 3.24, the observer canonical form of the state model is[
ẋ1(t)
ẋ2(t)

]
=
[

0 −1− e−t

1 −e−t

] [
x1(t)
x2(t)

]
+
[

0
1

]
u(t) (3.211)

y(t)= [0 1
] [x1(t)

x2(t)

]
(3.212)

The state variables x1(t) and x2(t) in this state model are given by

x1(t)= ẏ(t)+ e−ty(t)− u(t) (3.213)

x2(t)= y(t) (3.214)

If the output y(t) of the system can be differentiated, then x1(t) and x2(t) can be directly determined
from the input u(t) and the output y(t) by using Equations 3.213 and 3.214. In practice, however,
differentiation of signals should be avoided, and thus directly determining x1(t) using Equation 3.213 is
usually not viable. As discussed next, by using a state observer, the state x(t) can be estimated without
having to differentiate signals. Actually, in this particular example it is necessary to estimate only x1(t)
since the output y(t)= x2(t) is known, and thus a reduced-order observer could be used, but this is not
considered here.

An observer for the state x(t) is given by

d

dt
x̂(t)= A(t)x̂(t)+H(t)[y(t)−C(t)x̂(t)]+B(t)u(t) (3.215)

where H(t) is the n-element observer gain vector and x̂(t) is the estimate of x(t). With the estimation
error e(t) defined by e(t)= x(t)− x̂(t), the error is given by the differential equation

ė(t)= [A(t)−H(t)C(t)] e(t), t > t0 (3.216)

with initial error e(t0) at initial time t0. The objective is to choose the gain vector H(t) so that, for any
initial error e(t0), ‖e(t)‖→ 0 as t →∞, with some desired rate of convergence.

For the system given by Equations 3.211 and 3.212, the error Equation 3.216 is

ė(t)=
[

0 −1− e−t − h1(t)
1 −e−t − h2(t)

]
e(t) (3.217)

where H(t)= [h1(t) h2(t)]T . From Equation 3.217, it is obvious that by setting

h1(t)=m0− 1− e−t (3.218)

h2(t)=m1− e−t (3.219)

where m0 and m1 are constants, the coefficient matrix on the right-hand side of Equation 3.217 is constant,
and its eigenvalues can be assigned by choosing m0 and m1. Hence, any desired rate of convergence to
zero can be achieved for the error e(t).
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The estimate x̂(t) of x(t) can then be used to realize a feedback control law of the form

u(t)=−g(t)x̂(t) (3.220)

where g(t) is the feedback gain vector. The first step in pursuing this is to consider the extent to which the
system can be controlled by state feedback of the form given in Equation 3.220 with x̂(t) replaced by x(t);
in other words, the true system state x(t) is assumed to be available. In particular, we can ask whether or
not there is a gain vector g(t) so that with u(t)=−g(t)x(t), the state of the resulting closed-loop system
decays to zero exponentially with some desired rate of convergence. This can be answered by attempting
to transform the state model given by Equations 3.211 and 3.212 to control canonical form. Following
the procedure given in Section 3.2, the steps are as follows.

Let R(t) denote the 2×2 matrix whose columns ri(t) are defined by Equations 3.120 and 3.121 with
n= 2. This yields

r1(t)= B(t)=
[

0
1

]
(3.221)

r2(t)= A(t)r1(t)+ ṙ1(t)=
[−1− e−t

−e−t

]
(3.222)

Then

R(t)= [r1(t) r2(t)]=
[

0 −1− e−t

1 −e−t

]
(3.223)

and
det[R(t)] = 1+ e−t for all t (3.224)

where “det” denotes the determinant. Since det[R(t)] �= 0 for all t, R(t) has rank 2 for all t, and thus the
control canonical form exists for the system given by Equations 3.211 and 3.212.

The rows ci(t) of the matrix P−1(t) in the transformation z(t)= P−1(t)x(t) to the control canonical
form are computed using Equations 3.127 and 3.128. This yields

c1(t)= [−(1+ e−t)−1 0] and c2(t)= [−e−t(1+ e−t)−2 1] (3.225)

and thus

P−1(t)=
[ −(1+ e−t)−1 0
−e−t(1+ e−t)−2 1

]
and P(t)=

[ −(1+ e−t) 0
−e−t(1+ e−t)−1 1

]
(3.226)

Now choose the coefficients of the characteristic polynomial of the closed-loop system matrix in the
control canonical form to be d0 and d1. Then from Equation 3.136, the feedback gain vector g(t) back in
the original state coordinates is given by

g(t)=− (c3(t)+ d0c1(t)+ d1c2(t)
)

(3.227)

where

c3(t)= c2(t)A(t)+ ċ2(t) (3.228)

c3(t)= [1− 2e−2t(1+ e−t)−3+ e−t(1+ e−t)−2 e−t(1+ e−t)−1− e−t] (3.229)

Inserting the expressions for c1(t), c2(t), and c3(t) given by Equations 3.225 and 3.229 into Equation 3.227
results in the feedback gain vector g(t).

Since P(t) and P−1(t) given by Equation 3.226 are bounded for t ≥ t1 for any finite t1, by choosing
appropriate values for d0 and d1 it follows that via the state feedback control given by u(t)=−g(t)x(t),
the resulting closed-loop system is exponentially stable with any desired rate λ of convergence to zero. It
also follows that with the state feedback control u(t)=−g(t)x̂(t), where x̂(t) is the estimated state, the
resulting closed-loop system is also exponentially stable with any desired rate of convergence to zero.
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3.4.2 Exponential Systems

A system with n-dimensional state model [A(t), B(t), C(t)] is said to be an exponential system if its state-
transition matrixΦ(t, τ) can be written in the matrix exponential form

Φ(t, τ)= eΓ(t,τ) (3.230)

where Γ(t, τ) is a n× n matrix function of t and τ. The form given in Equation 3.230 is valid (at least
locally, that is, when t is close to τ) for a large class of time-varying systems. In fact, as noted above, for
t ∈ [τ, τ+T],Φ(t, τ) can be approximated by the matrix exponential eA(kT)(t−τ) if A(t) is approximately
equal to A(τ) for t ∈ [τ, τ+T]. For a mathematical development of the matrix exponential form, see [5].

As noted previously, the exponential form in Equation 3.230 is valid for any system where A(t)
commutes with its integral (see Equation 3.47), in which case

Γ(t, τ)=
∫ t

τ

A(σ) dσ (3.231)

The class of systems for which A(t) commutes with its integral is actually fairly large; in particular, this is
the case for any A(t) given by

A(t)=
r∑

i=1

fi(t)Ai (3.232)

where fi(t) are arbitrary real-valued functions of t and the Ai are arbitrary constant n× n matrices that
satisfy the commutativity conditions

AiAj = AjAi , for all integers 1≤ i, j ≤ r (3.233)

For example, suppose that

A(t)=
[

f1(t) c1f2(t)
c2f2(t) f1(t)

]
(3.234)

where f1(t) and f2(t) are arbitrary real-valued functions of t and c1 and c2 are arbitrary constants. Then

A(t)= f1(t)A1+ f2(t)A2 (3.235)

where A1 = I and

A2 =
[

0 c1

c2 0

]
(3.236)

Obviously, A1 and A2 commute, and thus Φ(t, τ) is given by Equations 3.230 and 3.231. In this case,
Φ(t, τ) can be written in the form

Φ(t, τ)= exp

[(∫ t

τ

f1(σ) dσ

)
I

]
exp

[(∫ t

τ

f2(σ) dσ

)
A2

]
(3.237)

Given an n-dimensional system with exponential state-transition matrix Φ(t, τ)= eΓ(t,τ),Φ(t, τ) can
be expressed in terms of scalar functions using the Laplace transform as in the time-invariant case.
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In particular, let
Φ(t, β, τ)= inverse transform of [sI − (1/β)Γ(β, τ)]−1 (3.238)

where Γ(β, τ)= Γ(t, τ)|t=β and β is viewed as a parameter. Then

Φ(t, τ)= Φ(t, β, τ)|β=t (3.239)

For example, suppose that

A(t)=
[

f1(t) f2(t)
−f2(t) f1(t)

]
(3.240)

where f1(t) and f2(t) are arbitrary functions of t with the constraint that f2(t)≥ 0 for all t. Then

Γ(t, τ)=
∫ t

τ

A(σ) dσ (3.241)

andΦ(t, β, τ) is equal to the inverse transform of

Φ(s, β, τ)=
[

s− γ1(β, τ) −γ2(β, τ)
γ2(β, τ) s− γ1(β, τ)

]−1

(3.242)

where

γ1(β, τ)= (1/β)
∫ β

τ

f1(σ) dσ (3.243)

γ2(β, τ)= (1/β)
∫ β

τ

f2(σ) dσ (3.244)

Computing the inverse Laplace transform ofΦ(s, β, τ) and using Equation 3.239 give (for t > 0)

Φ(t, τ)=
[

eγ1(t,τ)tcos[γ2(t, τ)t] eγ1(t,τ)tsin[γ2(t, τ)t]
−eγ1(t,τ)tsin[γ2(t, τ)t] eγ1(t,τ)tcos[γ2(t, τ)t]

]
(3.245)

3.4.3 Stability

Again consider an n-dimensional exponential system [A(t), B(t), C(t)] with state-transition matrix
Φ(t, τ)= eΓ(t,τ). A sufficient condition for exponential stability of the differential equation ẋ(t)=
A(t)x(t)is that the n× n matrix (1/t)Γ(t, τ) be bounded as a function of t and its pointwise eigen-
values have real parts≤−v for some v > 0 and all t > τ for some finite τ. For example, suppose that A(t)
is given by Equation 3.234 so that

(1/t)Γ(t, τ)=
[
γ1(t, τ) c1γ2(t, τ)

c2γ2(t, τ) γ1(t, τ)

]
(3.246)

where γ1(t, τ) and γ2(t, τ) are given by Equations 3.243 and 3.244 with β= t. Then

det[sI − (1/t)Γ(t, τ)] = s2− 2γ1(t, τ)s+ γ2
1(t, τ)− c1c2γ

2
2(t, τ) (3.247)

and the pointwise eigenvalues of (1/t)Γ(t, τ) have real parts ≤−v for all t > τ for some v > 0 and τ if

γ1(t, τ)≤ ν1, for all t > τ and some ν1 < 0, (3.248)

γ2
1(t, τ)− c1c2γ

2
2(t, τ)≥ ν2 for all t > τ and some ν2 > 0 (3.249)

Therefore, if Equations 3.248 and 3.249 are satisfied and γ1(t, τ) and γ2(t, τ) are bounded functions of t,
the solutions to ẋ(t)= A(t)x(t) with A(t) given by Equation 3.234 decay to zero exponentially.
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It is well known that in general there is no pointwise eigenvalue condition on the system matrix A(t)
that insures exponential stability, or even asymptotic stability. For an example (taken from [8]), suppose
that

A(t)=
[ −1+ α(cos2t) 1− α(sin t)(cos t)
−1− α(sin t)(cos t) −1+ α(sin2t)

]
(3.250)

where α is a real parameter. The pointwise eigenvalues of A(t) are equal to

α− 2±√α2− 4

2
(3.251)

which are strictly negative if 0 < α< 2. But

Φ(t, 0)=
[

e(α−1)t(cos t) e−t(sin t)
−e(α−1)t(sin t) e−t(cos t)

]
(3.252)

and thus, the system is obviously not asymptotically stable if α> 1.

3.4.4 The Lyapunov Criterion

By using the Lyapunov criterion (see Equation 3.97), it is possible to derive sufficient conditions for
uniform exponential stability without computing the state-transition matrix. For example, suppose that

A(t)=
[

0 1
−1 −a(t)

]
(3.253)

where a(t) is a real-valued function of t with a(t)≥ c for all t > t1, for some t1 and some constant c > 0.
Now in Equation 3.97, choose

Q(t)=
⎡
⎢⎣

a(t)+ 2

a(t)
1

1
2

a(t)

⎤
⎥⎦ (3.254)

Then, c1I ≤ Q(t)≤ c2, for all t > t1 for some constants c1 > 0 and c2 > 0. Now

Q(t)A(t)+AT (t)Q(t)+ Q̇(t)=
⎡
⎢⎣
−2+ ȧ(t)− ȧ(t)

a2(t)
0

0 −1− ȧ(t)

a2(t)

⎤
⎥⎦ (3.255)

Hence, if

−2+ ȧ(t)− ȧ(t)

a2(t)
≤−c3 for t > t1 for some c3 > 0 (3.256)

and

−1− ȧ(t)

a2(t)
≤−c4 for t > t1 for some c4 > 0 (3.257)

the system is uniformly exponentially stable. For instance, if a(t)= b− cos t, then Equations 3.256 and
3.257 are satisfied if b > 2, in which case the system is uniformly exponentially stable.

Now suppose that

A(t)=
[

0 1
−a1(t) −a2(t)

]
(3.258)

As suggested in [8, p. 109], sufficient conditions for uniform exponential stability can be derived by
taking

Q(t)=
⎡
⎢⎣a1(t)+ a2(t)+ a1(t)

a2(t)
1

1 1+ 1

a2(t)

⎤
⎥⎦ (3.259)
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3.5 Defining Terms

State model: For linear time-varying systems, this is a mathematical representation of the system in terms
of state equations of the form ẋ(t)= A(t)x(t)+B(t)u(t), y(t)= C(t)x(t)+D(t)u(t).

State-transition matrix: The matrix Φ(t, t0) where Φ(t, t0)x(t0) is the state at time t starting with state
x(t0) at time t0 and with no input applied for t ≥ t0.

Exponential system: A system whose state-transition matrix Φ(t, τ) can be written in the exponential
form eΓ(t,τ) for some n× n matrix function Γ(t, τ).

Reversible system: A system whose state-transition matrix is invertible.
Sampled data system: A discrete-time system generated by sampling the inputs and outputs of a

continuous-time system.
Change of state: A transformation z(t)= P−1(t)x(t) from the state vector x(t) to the new state vector

z(t).
Algebraic equivalence: Refers to two state models of the same system related by a change of state.
Lyapunov transformation: A change of state z(t)= P−1(t)x(t) where P(t) and its inverse P−1(t) are both

bounded functions of t.
Canonical form: A state model [A(t), B(t), C(t)] with one or more of the coefficient matrices

A(t), B(t), C(t) in a special form.
Control canonical form: In the single-input case, a canonical form for A(t) and B(t) that facilitates the

study of state feedback control.
Observer canonical form: In the single-output case, a canonical form for A(t) and C(t) that facilitates

the design of a state observer.
Characteristic vector: A time-varying generalization corresponding to the vector of coefficients of the

characteristic polynomial in the time-invariant case.
Asymptotic stability: Convergence of the solutions of ẋ(t)= A(t)x(t) to zero for any initial state x(t0).
Exponential stability: Convergence of the solutions of ẋ(t)= A(t)x(t) to zero at an exponential rate.
Uniform exponential stability: Convergence of the solutions of ẋ(t)= A(t)x(t) to zero at an exponential

rate uniformly with respect to the initial time.
Pointwise eigenvalues: The eigenvalues of a n× n time-varying matrix M(t) with t replaced by τ, where

τ is viewed as a time-independent parameter.
Controllability: The existence of inputs that drive a system from any initial state to any desired state.
Observability: The ability to compute the initial state x(t0) from knowledge of the output response y(t)

for t ≥ t0.
State feedback control: A control signal of the form u(t)=−F(t)x(t) where F(t) is the feedback gain

matrix and x(t) is the system state.
Observer: A system which provides an estimate x̂(t) of the state x(t) of a system.
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4.1 Introduction

In many engineering applications, processes are described by increasingly complex models that are
difficult to analyze and difficult to control. Reduction of the order of the model may overcome some
of these difficulties, but it is quite possible that model reduction incurs a significant loss of accuracy.
Therefore, the system has to be analyzed in a manner that is useful for the application purpose. Sim-
plification of the model based on this analysis usually results in a model of lower complexity which is
easier to handle, and in a corresponding simplification of synthesis procedures for control and filtering
problems. Furthermore, the simplification decreases the computational effort. Every application has its
own demands, and different model reduction methods have different properties.

In [1] two types of approximation methods for large-scale linear systems are discussed, namely
singular-value decomposition (SVD) and Krylov methods. The Krylov methods are based on match-
ing the moments of the impulse response of the linear system up to a certain level. This can be interpreted
in terms of the series expansions of the transfer function; see, for example, [1] and the references therein.
The key to the success of these methods is that they can be implemented iteratively and are able to handle
much higher-order systems than the SVD methods. Nevertheless, they are not always resulting in models
that are useful for control, for example, stability may not be preserved, and no a priori error bounds for
the reduced order system can be given. Furthermore, an extension of these methods to nonlinear systems
is still largely unexplored. Only recently, the first steps toward such extension is presented by [2]. The

4-1
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SVD methods based on balanced realizations, on the other hand, offer a clear structure for analysis of the
system based on controllability and observability properties, and model reduction by balanced truncation
does preserve stability and other properties and does have an a priori error bound for the reduced order
system. Furthermore, the extension of balancing to nonlinear systems has been studied in the past two
decades as well.

Kalman’s minimal realization theory (e.g., [27]) offers a clear picture of the structure of linear systems.
However, the accompanying algorithms are not very satisfactory, since they are only textbook algorithms,
which are numerically deficient. Moore [32] showed that there are very useful tools that may be used to
cope with this problem. He used the principal component analysis which was introduced in statistics in
the 1930s to analyze a linear system, and specifically to apply it to model reduction. The most important
contribution of [32] is the introduction of balancing for stable minimal linear systems. The balancing
method offers a tool to measure the contribution of the different state components to the past input and
future output energy of the system, which are measures of controllability and observability. The algo-
rithmic methods corresponding to the balancing theory nowadays are standard toolboxes in simulation
packages like MATLAB�.

In the theory of continuous-time linear systems, the system Hankel operator plays an important role
in a number of realization problems. For example, when viewed as a mapping from past inputs to future
outputs, it plays a direct role in the abstract definition of state. It also plays a central role in minimality
theory, in model reduction problems, and related to these, in linear identification methods. Specifically,
the Hankel operator supplies a set of similarity invariants, the so-called Hankel singular values, which can
be used to quantify the importance of each state in the corresponding input–output system. The Hankel
operator can also be factored into the composition of an observability and controllability operator, from
which Gramian matrices can be defined and the notion of a balanced realization follows. The Hankel
singular values are most easily computed in a state-space setting using the product of the Gramian
matrices, though intrinsically they depend only on the given input–output mapping. For linear systems,
the Hankel operator offers an immediate relation with the frequency domain setting of balancing for
linear systems, for example, [63].

Furthermore, these methods have proved to be very useful for application purposes. To mention a
few older applications, we refer to [16,62]. Reference [62] successfully applies methods based on bal-
anced realizations on the controller design of the Philips CD player. In [16], several balanced controller
designs and algorithms for sensor and actuator placement based on balanced realizations are given and
demonstrated for the NASA Deep Space Network Antenna.

For nonlinear systems, the first step toward extension of the linear balancing methods has been set
in [45], where a balancing formalism is developed for stable nonlinear continuous-time state-space sys-
tems based on the idea that state components that correspond to low control costs and high output energy
generation (in the sense of L2 energy in a signal) are important for the description of the dynamics of
the input–output behavior of the system, while state components with high control costs and low out-
put energy generation can be left out of the description. Since then, many results on state-space balancing,
modifications based on sliding time windows, and modifications based on proper orthogonal decompo-
sition (POD), and computational issues for model reduction and related minimality considerations for
nonlinear systems have appeared in the literature; for example, [18,20,28,37,38,58,59,64]. The relations
of the original nonlinear balancing method of [45] with minimality are later explored in [47], and a
more constructive approach that includes a strong relation with the nonlinear input–output operators,
the nonlinear Hankel operator, and the Hankel norm of the system is presented in [10,12,48]. Model
reduction based on these studies is recently treated in [13,14].

Here we first review the Hankel operator, balancing and balanced truncation for stable linear systems.
Then unstable systems and closed-loop balancing are reviewed for linear systems. Finally, the extension
of the linear theory to nonlinear systems is treated, based on balancing procedures in a neighborhood
(possibly large, almost global) of an equilibrium point.
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4.2 Linear Systems

In this section, we briefly review the well-known linear system definitions of the system Hankel matrix;
the Hankel operator; the controllability and observability operators, Gramians and functions; and the
balanced realization and the corresponding model reduction procedure.

4.2.1 The Hankel, Controllability, and Observability Operator

Consider a continuous-time, causal linear input–output system Σ : u→ y, with m-dimensional input
space u ∈ U and p-dimensional output space y ∈ Y , and with impulse response H(t). Let

H(t)=
∞∑

k=0

Hk+1
tk

k! , t ≥ 0 (4.1)

denote its Taylor series expansion about t = 0, where Hk ∈R
p×m

for each k. The system Hankel matrix
is defined as Ĥ= [Ĥi j], where Ĥi,j =Hi+j−1 for i, j ≥ 1. If Σ is also (bounded input bounded output)
BIBO stable, then the system Hankel operator is the well-defined mapping

H : Lm
2 [0,+∞)→ L

p
2[0,+∞),

: û→ ŷ(t)=
∫ ∞

0
H(t+ τ)û(τ) dτ. (4.2)

mapping the past inputs to the future outputs. If we define the time flipping operator as

F̃ : Lm
2 [0,+∞)→ Lm

2 (−∞, 0]

: û→ u(t)=
{

û(−t) : t < 0

0 : t ≥ 0,

then clearly H(û)= (Σ◦F̃ )(û); see the illustration in Figure 4.1. The lower side of the figure depicts the
input–output behavior of the original operator Σ. The upper side depicts the input–output behavior of
the Hankel operator of Σ, where the signal in the upper left side is the time-flipped signal of the lower
left side signal. The flipping operator F is defined by F (u(t)) := u(−t). The upper right side signal is
the truncated signal (to the space L2[0,∞)) of the lower left side signal. The corresponding truncation
operator is given by

T (y(t)) :=
{

0 (t < 0)
y(t) (t ≥ 0)

,

and F̃ = T ◦F . The definition of a Hankel operator implies that it describes the mapping from the input
to the output generated by the state at t = 0. Hence, we can analyze the relationship between the state and
the input–output behavior of the original operatorΣ by investigating its Hankel operator.

When H is known to be a compact operator, then its (Hilbert) adjoint operator, H∗, is also compact,
and the composition H∗H, is a self-adjoint compact operator with a well-defined spectral decomposition:

H∗H=
∞∑

i=1

σ2
i 〈·,ψi〉L2 ψi , σi ≥ 0, (4.3)

〈ψi ,ψj〉L2 = δij, 〈ψi , (H∗H)(ψi)〉L2 = σ2
i , (4.4)

where σ2
i is an eigenvalue of H∗H with the corresponding eigenvector ψi , ordered as σ1 ≥ · · · ≥ σn >

σn+1 = σn+2 = 0, and called the Hankel singular values for the input–output systemΣ.
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Σ

FIGURE 4.1 Hankel operator H ofΣ.

Let (A, B, C) be a state-space realization ofΣ with dimension n, that is, consider a linear system:

ẋ = Ax+Bu, (4.5)

y = Cx,

where u ∈R
m

, x ∈R
n

, and y ∈R
p
. We assume that Equation 4.5 is stable and minimal, that is, control-

lable and observable. Any such realization induces a factorization of the system Hankel matrix into the
form Ĥ= Ô Ĉ, where Ô and Ĉ are the (extended) observability and controllability matrices. If the real-
ization is asymptotically stable, then the Hankel operator can be written as the composition of uniquely
determined observability and controllability operators; that is, H=O C, where the controllability and
observability operators are defined as

C : Lm
2 [0,+∞)→R

n : û→
∫ ∞

0
eAtBû(t) dt,

O :Rn → L
p
2[0,+∞) : x → ŷ(t)= CeAtx.

Since C and O have a finite dimensional range and domain, respectively, they are compact operators; and
the composition O C is also a compact operator. From the definition of the (Hilbert) adjoint operator, it
is easily shown that C and O have corresponding adjoints

C∗ :Rn → Lm
2 [0,+∞) : x → BT eAT tx,

O∗ : L
p
2[0,+∞)→R

n : y →
∫ ∞

0
eAT tCT y(t) dt.
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4.2.2 Balanced State-Space Realizations

The above input–output setting can be related with the well-known Gramians that are related to the state-
space realization. In order to do so, we consider the energy functions given in the following definition.

Definition 4.1:

The controllability and observability functions of a smooth state-space system are defined as

Lc(x0)= min
u∈L2(−∞,0)

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
‖ u(t) ‖2 dt (4.6)

and

Lo(x0)= 1

2

∫ ∞

0
‖ y(t) ‖2 dt, x(0)= x0, u(t)≡ 0, 0≤ t <∞, (4.7)

respectively.

The value of the controllability function at x0 is the minimum amount of input energy required to
reach the state x0 from the zero state, and the value of the observability function at x0 is the amount of
output energy generated by the state x0. The following results are well known:

Theorem 4.1:

Consider the system (Equation 4.5). Then Lc(x0)= 1
2 xT

0 P−1x0 and Lo(x0)= 1
2 xT

0 Qx0, where P =∫∞
0 eAtBBT eAT tdt is the controllability Gramian and Q = ∫∞0 eAT tCT CeAtdt is the observability Gramian.

Furthermore, P and Q are symmetric and positive definite, and are unique solutions of the Lyapunov
equations

AP+ PAT =−BBT (4.8)

and
AT Q+QA=−CT C, (4.9)

respectively.

From the form of the Gramians in this theorem, it follows immediately that for any x1, x2 ∈R
n

,

< x1, CC∗x2 >= xT
1

∫ ∞

0
eAtBBT eAT tdt x2,

= xT
1 Px2 (4.10)

< x1, O∗Ox2 >= xT
1

∫ ∞

0
eAT tCT CeAtdt x2,

= xT
1 Qx2 (4.11)

and the relation with the energy functions is given as

Lc(x)= 1

2
xT P−1x = 1

2
〈x, (CC∗)−1x〉, (4.12)

Lo(x)= 1

2
xT Qx = 1

2
〈x, (O∗O)x〉. (4.13)

The following (balancing) theorem is originally due to [32].
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Theorem 4.2: [32]

The eigenvalues of QP are similarity invariants, that is, they do not depend on the choice of the sate-space
coordinates. There exists a state-space representation where

Σ := Q = P =
⎛
⎜⎝
σ1 0

. . .
0 σn

⎞
⎟⎠ , (4.14)

with σ1 ≥ σ2 ≥ · · · ≥ σn > 0 the square roots of the eigenvalues of QP. Such representations are called
balanced, and the system is in balanced form. Furthermore, the σi ’s, i = 1, . . . , n, equal the Hankel singular
values, that is, the singular values of the Hankel operator (Equation 4.2).

Two other representations that may be obtained from Equation 4.14 by coordinate transformations

x =Σ− 1
2 x̄ and x =Σ 1

2 x̃, respectively, follow easily from the above theorem.

Definition 4.2: [32]

A state-space representation is an input-normal/output-diagonal representation if P = I and Q =Σ2,
where Σ is given by Equation 4.14. Furthermore, it is an output-normal/input-diagonal representation if
P =Σ2 and Q = I.

The largest Hankel singular value is equal to the Hankel norm of the system, that is,

‖ G ‖2
H = max

x∈Rn

x �=0

Lo(x)

Lc(x)
= max

x∈Rn

x �=0

xT Qx

xT P−1x
= max

x∈Rn

x �=0

x̄TΣ2x̄

x̄T x̄
= σ2

1, (4.15)

where G = C(sI −A)−1B is the transfer matrix of the system. This gives a characterization of the largest
Hankel singular value. The other Hankel singular values may be characterized inductively in a similar
way; we refer to [6,15].

So far, we have assumed the state-space representation to be minimal. However, if we consider non-
minimal state-space realizations, that is, the system is not controllable and/or observable, then we obtain
σ′is that are zero, corresponding to the noncontrollable or nonobservable part of the system, and thus, to
the nonminimal part of the system. Related to this observation, we have that the minimal realization of
a linear input–output system has a dimension n that is equal to the Hankel rank, or in other words, it
equals the rank of the Hankel matrix. A well-known result related to the latter is the following theorem
for example, [63].

Theorem 4.3:

If (A, B, C) is asymptotically stable, then the realization is minimal if and only if P > 0 and Q > 0.

4.2.3 Model Reduction

Once the state-space system is in balanced form, an order reduction procedure based on this form may be
applied. Thus, in order to proceed, we assume that the system (Equation 4.5) is in balanced form. Then
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the controllability and observability function are L̄c(x̄0)= 1
2 x̄T

0 Σ
−1x̄0 and L̄c(x̄0)= 1

2 x̄T
0 Σx̄0, respectively.

For small σi , the amount of control energy required to reach the state x̃ = (0, . . . , 0, xi , 0, . . . , 0) is large
while the output energy generated by this state x̃ is small. Hence, if σk � σk+1, the state components xk+1

to xn are far less important from this energy point of view and may be removed to reduce the number of
state components of the model. We partition the system (Equation 4.5) in a corresponding way as follows:

A=
(

A11 A12

A21 A22

)
, B=

(
B1

B2

)
, C = (C1 C2

)
, (4.16)

x1 = (x1, . . . , xk)T , x2 = (xk+1, . . . , xn)T , Σ=
(
Σ1 0
0 Σ2

)
,

whereΣ1 = diag(σ1, . . . , σk) andΣ2 = diag(σk+1, . . . , σn).

Theorem 4.4:

Both subsystems (Aii , Bi , Ci), i = 1, 2, are again in balanced form, and their controllability and observability
Gramians are equal to Σi , i = 1, 2.

The following result has been proved by [43].

Theorem 4.5:

Assume that σk > σk+1. Then both subsystems (Aii , Bi , Ci), i = 1, 2, are asymptotically stable.

The subsystem (A11, B1, C1) may be used as an approximation of the full order system (Equation 4.5).
The optimality of this approximation in the Hankel and H∞-norm has been studied by [17], and an upper
bound for the error is given. The H∞-norm of G(s)= C(sI −A)−1B is defined as

‖G‖∞ = sup
ω∈R

λ
1
2
max(G(−jω)T G(jω)),

where λ
1
2
max(G(−jω)T G(jω)) is the square root of the maximum eigenvalue of G(−jω)T G(jω). Denote

the transfer matrix of the reduced order system (A11, B1, C1) by G̃(s)= C1(sI −A11)−1B1. The following
error bound was originally proved in [17]. A number of proofs can be found in [63].

Theorem 4.6: [17]

‖G− G̃‖H ≤ ‖G− G̃‖∞ ≤ 2(σk+1+ · · ·+ σn).

Hence, if we remove the state components xk+1, . . . , xn that correspond to small Hankel singular values
σk+1, . . . , σn (small compared to the rest of the singular values, that is, σk � σk+1), then the error is small,
and the reduced order system (A11, B1, C1) constitutes a good approximation in terms of the Hankel norm
to the full order system.

The model reduction method that we gave above consists of simply truncating the model. It is
also possible to reduce the model in a different way see, for example, [8,21]. Instead of setting
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x2 = (xk+1, . . . , xn)= 0 we approximate the system by setting ẋ2 = 0 (thus interpreting x2 as a very
fast stable state, which may be approximated by a constant function of x1 and u). The resulting algebraic
equation can be solved for x2 as (note that A−1

22 exists by Theorem 4.5)

x2 =−A−1
22

(
A21x1+B2u

)
.

Substitution in Equation 4.5 leads to a reduced order model (Â, B̂, Ĉ) defined as

Â := A11−A12A−1
22 A21,

B̂ := B1−A12A−1
22 B2,

Ĉ := C1−C2A−1
22 A21,

The system (Â, B̂, Ĉ) also gives an approximation to the full order system (Equation 4.5). Theorems 4.4
through 4.6 also hold if we replace the system (A11, B1, C1) by (Â, B̂, Ĉ).

4.2.4 Unstable Systems, Closed-Loop Balancing

4.2.4.1 Linear Quadratic Gaussian Balancing

A major drawback of the original balancing method as described in Section 4.2.2 is that it only applies
to stable systems. Furthermore, the method emphasizes the (open-loop) input–output characteristics of
the system, while it is a priori not clear if it yields good approximations in closed-loop configurations. In
this section, we treat (linear quadratic Gaussian) LQG balancing for linear systems, which was introduced
by [25,26] (see also [57]). In [41], this concept is further developed. LQG balancing was introduced
with the aim of finding a model reduction method for a system (not necessarily stable) together with its
corresponding LQG compensator. LQG balancing has been treated from another point of view in [61].
First, we give a review of the formulation of [26,41].

LQG compensation is formulated for a minimal state-space system

ẋ = Ax+Bu+Bd, (4.17)

y = Cx+ v,

where u ∈R
m

, x ∈R
n

, y ∈R
p
, and d and v are independent Gaussian white-noise processes with

covariance functions Iδ(t− τ). The criterion

J(x0, u(·))= E lim
T→∞

1

T

∫ T

0
[xT (t)CT Cx(t)+ uT (t)u(t)] dt (4.18)

is required to be minimized. The resulting optimal compensator is given by

ż = Az+Bu+ SCT (y−Cz), (4.19)

u=−BT Pz.

Here S is the stabilizing solution (i.e., σ(A− SCT C)⊂C
−

) to the filter algebraic Riccati equation
(FARE)

AS+ SAT +BBT − SCT CS = 0, (4.20)

and P is the stabilizing solution (i.e., σ(A−BBT P)⊂C
−

) to the control algebraic Riccati equation
(CARE)

AT P+ PA+CT C− PBBT P = 0. (4.21)



�

�

�

�

� �

Balanced Realizations 4-9

Theorem 4.7: [26,41]

The eigenvalues of PS are similarity invariants and there exists a state-space representation where

M := P = S =
⎛
⎜⎝
μ1 0

. . .
0 μn

⎞
⎟⎠ , (4.22)

with μ1 ≥ μ2 ≥ · · · ≥ μn > 0. This is called an LQG balanced representation or LQG balanced form.

Jonckheere and Silverman [26] and Opdenacker and Jonckheere [41] argue that if μk � μk+1 then
the state components x1 up to xk are more difficult both to control and to filter than xk+1 up to xn and
a synthesis based only on the state components x1 up to xk probably retains the essential properties of
the system in a closed-loop configuration. Corresponding to the partitioning of the state in the first k
components and the last n− k components, the partitioning of the matrices is done as in (4.16), and the
reduced order system is

ẋ = A11x+B1u+B1d, (4.23)

y = C1x+ v.

Theorem 4.8: [26,41]

Assume μk > μk+1. Then (A11, B1, C1) is minimal, the reduced order system (Equation 4.23) is again LQG
balanced and the optimal compensator for system (Equation 4.23) is the reduced order optimal compensator
of the full order system (Equation 4.17).

As explained in Section 4.2.2, the original idea of balancing stable linear systems, as introduced by [32],
considers the Hankel singular values σi , i = 1, . . . , n, which are a measure for the importance of a state
component in a balanced representation. This balancing technique is based on the input energy which is
necessary to reach this state component and the output energy which is generated by this state component.
A similar kind of reasoning, using a different pair of energy functions, may be used to achieve the similarity
invariants μi , i = 1, . . . , n, as above; see [61]. To follow this reasoning, we consider the minimal system
(Equation 4.17) without noise, that is,

ẋ = Ax+Bu, (4.24)

y = Cx,

where u ∈R
m

, x ∈R
n

, and y ∈R
p
. We define the energy functions

K−(x0) := min
u∈L2(−∞,0)

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
(‖ y(t) ‖2 + ‖ u(t) ‖2) dt,

K+(x0) := min
u∈L2(0,∞)

x(∞)=0,x(0)=x0

1

2

∫ ∞

0
(‖ y(t) ‖2 + ‖ u(t) ‖2) dt.

K−(x0) is called the past energy and K+(x0) the future energy of the system in the state x0.
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Theorem 4.9: [61]

K−(x0)= 1
2 xT

0 S−1x0 and K+(x0)= 1
2 xT

0 Px0, where S and P are the stabilizing solutions of the FARE and
the CARE, Equations 4.20 and 4.21, respectively.

For the LQG balanced representation of Theorem 4.7, the past and future energy function are K−(x0)=
1
2 xT

0 M−1x0 and K+(x0)= 1
2 xT

0 Mx0, respectively, where M is diagonal. The importance of the state x̃ =
(0, . . . , 0, xi , 0, . . . , 0) in terms of past and future energy may be measured by the similarity invariant μi .
For largeμi the influence of the state x̃ on the future energy is large while the influence on the past energy
is small. Hence, if μk � μk+1, the state components xk+1 to xn are “not important” from this energy
point of view and may be removed to reduce the number of state components of the model.

4.2.4.2 Balancing of the Normalized Coprime Representation

In [29,39], balancing of the normalized coprime representation of a linear system is treated. Balancing of
the normalized coprime representation was introduced with the aim of finding a model reduction method
for unstable linear systems. In [29], balancing of the normalized right coprime factorization is treated,
while in [39], balancing of the normalized left coprime factorization is treated. Here we provide a brief
review on this subject.

We consider the system (Equation 4.24) and its transfer function G(s)= C(sI −A)−1B. Furthermore,
we consider the stabilizing solution P to the CARE (Equation 4.21) and the stabilizing solution S to the
FARE (Equation 4.20), leading to the stable matrices Â := A−BBT P and Ã := A− SCT C. First we treat
normalized right coprime factorizations and then normalized left coprime factorizations.

We may write any transfer matrix G(s)= C(sI −A)−1B as a right fraction G(s)= N(s)D(s)−1 of stable
transfer matrices N(s) and D(s). If we choose (e.g., [36]),

N(s) := C(sI − Â)−1B,

D(s) := I −BT P(sI − Â)−1B,

then the factorization is right coprime, that is, N(s) and D(s) have no common zeros at the same place in
the closed right half plane. A state-space realization of the transfer matrix (the so-called graph operator)

(
N(s)
D(s)

)

is

ẋ = (A−BBT P)x+Bw,(
y
u

)
=
(

C
−BT P

)
x+

(
0
I

)
w,

(4.25)

with w a (fictitious) input variable. Furthermore, we are able to find stable transfer matrices U(s) and
V (s), such that the Bezout identity

U(s)N(s)+V (s)D(s)= I . (4.26)

is fulfilled. Indeed, take U(s)= BT P(sI − Ã)−1SCT and V (s)= I +BT P(sI − Ã)−1B (see, e.g., [36,60]).
The fact that we are able to find a stable left inverse of the graph operator, that is, we can find the solutions
U(s) and V (s) to the Bezout identity (Equation 4.26), is equivalent to the factorization being right coprime.
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Furthermore, the graph operator is inner, that is,

‖
(

N
D

)
w‖2 = ‖w‖2

or
N(−s)T N(s)+D(−s)T D(s)= I .

Therefore, the factorization is called normalized. It is easily checked that the observability Gramian of the
system (Equation 4.25) is P. Denote its controllability Gramian by R.

In a similar way, we may write the transfer matrix G(s) as a left fraction G(s)= D̃(s)−1Ñ(s) of stable
transfer matrices D̃(s) and Ñ(s). If we choose (e.g., [36])

Ñ(s) := C(sI − Ã)−1B,

D̃(s)= C(sI − Ã)−1SCT − I ,

then this is a left factorization. Obviously, ŷ(s)= G(s)û(s) is equivalent with 0= Ñ(s)û(s)− D̃(s)ŷ(s).
Moreover, a state-space realization of the transfer matrix

(
Ñ(s) D̃(s)

)

is

ẋ = (A− SCT C)x+ (B SCT
)

w̃,

z = Cx+ (0 −I
)

w̃.
(4.27)

If we take

w̃ =
(

u
y

)

as the input variable, then the dynamics resulting from setting z = 0 in Equation 4.27 is a state-space
representation of G(s). We are able to find stable transfer matrices such that the Bezout Identity is
fulfilled, that is, there exist stable transfer matrices Ũ(s) and Ṽ (s), such that

Ñ(s)Ũ(s)+ D̃(s)Ṽ (s)= I . (4.28)

Indeed, we may take Ũ(s)= BT P(sI − Â)−1SCT and Ṽ (s)= I +C(sI − Â)−1SCT (see, e.g., Vid,Ne). This
proves that the factorization is left coprime. Furthermore

(
Ñ(s) D̃(s)

)
is co-inner, that is,

Ñ(s)Ñ(−s)T + D̃(s)D̃(−s)T = I ,

which means that the factorization is normalized. Hence
(
Ñ(s) D̃(s)

)
represents the normalized left

coprime factorization of system (Equation 4.24). The system (Equation 4.27) has as controllability
Gramian the positive-definite matrix S and we denote its observability Gramian by the matrix Q. Note
that the right factorization (

N(s)
D(s)

)

can be seen as an image representation of G(s), while the left factorization

(
Ñ(s) D̃(s)

)

can be regarded as a kernel representation of G(s).
The following result follows rather straightforwardly.
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Theorem 4.10:

The Hankel singular values of the right and left factorization (Equations 4.25 and 4.27), respectively, are
the same.

Proof. It follows from the Lyapunov Equations 4.8 and 4.9 for the systems (Equations 4.25 and 4.27),
that R = (I + SP)−1S and Q = (I + PS)−1P. Now, it is easily obtained that PR and SQ have the same
eigenvalues.

The Hankel singular values of Equation 4.25 (and, hence, of Equation 4.27) are called the graph Hankel
singular values of the original system (Equation 4.24). These singular values have the following property:

Theorem 4.11: [29,39]

The graph Hankel singular values of system (Equation 4.24) are strictly less than one.

Denote the graph Hankel singular values by τi , i = 1, . . . , n, and assume τ1 ≥ · · · ≥ τn. The relation
between τi , i = 1, . . . , n, and the similarity invariants μi , i = 1, . . . , n, of Theorem 4.7 is given by the
following theorem:

Theorem 4.12: [39,61]

μi = τi(1− τ2
i )−

1
2 for i = 1, . . . , n.

This implies that the reduced model that is obtained by model reduction based on balancing the (left or
right) normalized coprime factorization is the same as the reduced model that is obtained by model reduc-
tion based on LQG balancing. Consider the normalized right coprime representation (Equation 4.25) and
assume that it is in balanced form with

Λ := P = R =
⎛
⎜⎝
τ1 0

. . .
0 τn

⎞
⎟⎠ .

Furthermore, assume that τk > τk+1 and define correspondinglyΛ=: diag{Λ1,Λ2}. It follows, [29], that
reducing the order of Equation 4.25 by truncating the system to the first k state components (the parti-
tioning is done corresponding to Equation 4.16) again gives a normalized right coprime representation.

Theorem 4.13: [29]

The reduced order system of Equation 4.25 is of the form((
A11−B1BT

1 D1

)
, B1,

(
C1

−BT
1 D1

)
,

(
0
I

))
,

with controllability and observability Gramian Λ1. This system is the normalized right coprime represen-
tation of the system

(
A11, B1, C1

)
, which is minimal.



�

�

�

�

� �

Balanced Realizations 4-13

4.2.4.3 Extensions to Other Types of Balancing

The methods described above can be put in a more general setting, and extended to the H∞ case. H∞
balancing for linear systems is introduced in [33–35]. For details, we refer to the latter references. In the
H∞ case, balancing is performed on Q−γ and Q+γ , [46], which are defined as

Q−γ (x0)= min
u∈L2(−∞,0)

1

2

∫ 0

−∞
(1− γ−2)||y(t)||2+ ||u(t)||2 dt, x(−∞)= 0, x(0)= x0, ∀γ

and

Q+γ (x0)= min
u∈L2(0,∞)

1

2

∫ ∞

0
||y(t)||2+ 1

1− γ−2 ||u(t)||2 dt, x(∞)= 0, x(0)= x0, for γ> 1,

while if γ < 1, then

Q+γ (x0)= max
u∈L2(0,∞)

1

2

∫ ∞

0
||y(t)||2+ 1

1− γ−2 ||u(t)||2 dt, x(∞)= 0, x(0)= x0.

There is an immediate relation with the solutions to the H∞ Filter and Control Algebraic Riccati equations,
see, for example, [46].

Positive real and bounded real balancing can be done by considering dissipativity with respect to a
quadratic supply rate that depends on the input and the output of the system:

s(u, y)= 1

2
[uT yT ]J

[
u
y

]
, (4.29)

with u ∈R
m

, y ∈R
p
, and J ∈R

(m+p)×(m+p)
, such that J = JT ; see, for example, [23,52]. The bounded

real balancing case , that is, J =
[

I 0
0 −I

]
is treated in [1,22,39,42]. The positive real balancing case,

that is balancing of strictly passive, asymptotically stable, minimal systems, that is J =
[

0 I
I 0

]
, is treated

in [1,7,19]. For all these methods it holds that truncation preserves the original balanced structure, and
thus truncation based on bounded real or positive real balancing preserves bounded and positive realness,
respectively. Furthermore, error bounds for model reduction based on several of the above mentioned
methods are available; see, for example, [52].

Additionally, model reduction methods based on balancing methods that preserve some internal
structure of the system currently receive a lot of interest due to applications that require this, such as
electrical circuit simulators. For some results on Hamiltonian structure preservation, and second-order
system structure preservation; see, for example, [30,54,55].

4.3 Balancing for Nonlinear Systems

Balanced realizations and the related model order reduction technique rely on singular-value analysis.
The analysis is important since it extracts the gain structure of the operator, that is, it characterizes the
largest input–output ratio and the corresponding input [51]. Since linear singular values are defined as
eigenvalues of the composition of the given operator and its adjoint, it is natural to introduce a nonlinear
version of adjoint operators to obtain a nonlinear counterpart of a singular value. There has been done
quite some research on the nonlinear extension of adjoint operators, for example, [3,10,48], and the
references therein. Here we do not explicitly use these definitions of nonlinear adjoint operators. We rely
on a characterization of singular values for nonlinear operators based on the gain structure as studied
in [9]. The balanced realization based on this analysis yields a realization that is based on the singular
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values of the corresponding Hankel operator, and results in a method which can be viewed as a complete
extension of the linear methods, both from an input–output and a state-space point of view [12].

The related model order reduction technique, nonlinear balanced truncation, preserves several impor-
tant properties of the original system and the corresponding input–output operator, such as stability,
controllability, observability, and the gain structure [11,14].

This section gives a very brief overview of the series of research on balanced realization and the related
model order reduction method based on nonlinear singular-value analysis. We refer to [13] for more
details.

4.3.1 Basics of Nonlinear Balanced Realizations

This section gives a nonlinear extension of balanced realization introduced in the Section 4.2. Let us
consider the following asymptotically stable input-affine nonlinear system

Σ :
{

ẋ = f (x)+ g(x)u x(0)= x0,

y = h(x),
(4.30)

where x(t) ∈R
n

, u(t) ∈R
m

, and y(t) ∈R
p
. The controllability operator C : U → X with X =R

n
and

U = Lm
2 [0,∞), and the observability operator O : X → Y with Y = L

p
2[0,∞) for this system are defined

by

C : u �→ x0 :
{

ẋ =−f (x)− g(x)u x(∞)= 0

x0 = x(0)

O : x0 �→ y :
{

ẋ = f (x) x(0)= x0

y = h(x)

This definition implies that the observability operator O is a map from the initial condition x(0)= x0 to
the output L2 signal when no input is applied. To interpret the meaning of C, let us consider a time-reversal
behavior of the C operator as

C : u �→ x0 :
{

ẋ = f (x)+ g(x)u(−t) x(−∞)= 0

x0 = x(0)

Then the controllability operator C can be regarded as a mapping from the input L2 signal to the terminal
state x(0)= x0 when the initial state is x(−∞)= 0. Therefore, as in the linear case, C and O represent the
input-to-state behavior and the state-to-output behavior, respectively, and the Hankel operator for the
nonlinear systemΣ in Equation 4.30 is given by the composition of C and O

H :=O ◦ C. (4.31)

To relate the Hankel, controllability and observability operator with the observability and controllability
functions defined in Equations 4.6 and 4.7, we first introduce a norm-minimizing inverse C† : X → U of
C.

C† : x0 �→ u := arg min
C(u)=x0

‖u‖

The operators C† and O yield the definitions of the controllability function Lc(x) and the observability
function Lo(x) that are generalizations of the controllability and observability Gramians, respectively
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that is,

Lc(x0) := 1

2
‖ C†(x0) ‖2= min

u∈L2(−∞,0]
x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
‖ u(t) ‖2 dt, (4.32)

Lo(x0) := 1

2
‖O(x0) ‖2= 1

2

∫ ∞

0
‖ y(t) ‖2 dt, x(0)= x0, u(t)≡ 0, 0≤ t <∞. (4.33)

For linear systems, the relation with the Gramians is given in Theorem 4.1. Here the inverse of P appears
in the equation for Lc because C† appears in the definition (Equation 4.32), whereas C can be used in the
linear case. In order to obtain functions Lc(x) and Lo(x), we need to solve a Hamilton–Jacobi equation
and a Lyapunov equation.

Theorem 4.14: [45]

Consider the system of Equation 4.30. Suppose that 0 is an asymptotically stable equilibrium point and that
a smooth observability function Lo(x) exists. Then Lo(x) is the unique smooth solution of

∂Lo(x)

∂x
f (x)+ 1

2
h(x)Th(x)= 0,

with Lo(0)= 0. Furthermore, assume that a smooth controllability function Lc(x) exists. Then Lc(x) is the
unique smooth solution of

∂Lc(x)

∂x
f (x)+ 1

2

∂Lc(x)

∂x
g(x)g(x)T ∂Lc(x)

∂x

T

= 0,

with Lc(0)= 0 such that 0 is an asymptotically stable equilibrium point of ẋ =−f (x)− g(x)g(x)T

(∂Lc(x)/∂x)T.

Similar to the linear case, the positive definiteness of the controllability and observability functions
implies strong reachability and zero-state observability of the system Σ in Equation 4.30, respectively.
Combining these two properties, we can obtain the following result on the minimality of the system.

Theorem 4.15: [47]

Consider the system of Equation 4.30, and assume it is analytic. Suppose that

0 < Lc(x) <∞,

0 < Lo(x) <∞,

hold for all x �= 0. Then the system is a minimal realization as defined in and under the conditions from, [24].

Lc(x) and Lo(x) can be used to “measure the minimality” of a nonlinear dynamical system. Furthermore,
a basis for nonlinear balanced realizations is obtained as a nonlinear generalization of Definition 4.2 in
the linear case. For that, a factorization of Lo(x) into a semiquadratic form needs to be done, that is, in a
convex neighborhood of the equilibrium point 0, we can write

Lo(x)= 1

2
xTM(x)x, with M(0)= ∂2Lo

∂x2 (0).

Now, an input-normal/output-diagonal form can be obtained.
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Theorem 4.16: [45]

Consider the system of Equation 4.30 on a neighborhood W of 0. Suppose that 0 is an asymptotically stable
equilibrium point, that it is zero-state observable, that smooth controllability and observability functions
Lc(x) and Lo(x) exist on W, and that (∂2Lc/∂x2)(0) > 0 and (∂2Lo/∂x2)(0) > 0 hold. Furthermore, assume
that the number of distinct eigenvalues of M(x) is constant on W. Then there exists coordinates such that
the controllability and observability functions Lc(x) and Lo(x) satisfy

Lc(x)= 1

2

n∑
i=1

x2
i , (4.34)

Lo(x)= 1

2

n∑
i=1

x2
i τi(x), (4.35)

where τ1(x)≥ τ2(x)≥ · · · ≥ τn(x).

A state-space realization satisfying the conditions (Equations 4.34 and 4.35) is called an input-normal
form, and the functions τi(x), i = 1, 2, . . . , n are called singular-value functions. We refer to [45] for the
construction of the coordinate transformation that brings the system in the form of Theorem 4.16. If
a singular value function τi(x) is larger than τj(x), then the coordinate axis xi plays a more important
role than the coordinate axis xj does. Thus this realization is similar to the linear input-normal/output-
diagonal realization of Definition 4.2, and it directly yields a tool for model order reduction of a nonlinear
systems. However, a drawback of the above realization is that the the singular-value functions τi(x)’s
and consequently, the corresponding realization are not unique, for example, [18]. For example, if the
observability function is given by

Lo(x)= 1

2
(x2

1τ1(x)+ x2
2τ2(x))= 1

2
(2x2

1 + x2
2 + x2

1x2
2),

with the state-space x = (x1, x2), then the corresponding singular-value functions are

τ1(x)= 2+ kx2
2 ,

τ2(x)= 1+ (1− k)x2
1 ,

with an arbitrary scalar constant k. This example reveals that the singular value function are not uniquely
determined by this characterization. To overcome these problems, balanced realizations based on non-
linear singular value analysis is presented in the following section.

4.3.2 Balanced Realizations Based on Singular-Value Analysis
of Hankel Operators

In this section, application of singular-value analysis to nonlinear Hankel operators determines a balanced
realization with a direct input–output interpretation, whereas the balanced realization of Theorem 4.16
is completely determined based on state-space considerations only. To this end, we consider the Hankel
operator H : U → Y as defined in Equation 4.31 with U = Lm

2 [0,∞) and Y = L
p
2[0,∞). Then a singular-

value analysis based on the differential form, [12], is given by

(dH(v))∗ H(v)= λ v, λ ∈R, v ∈ U , (4.36)

with λ and v the eigenvalues and corresponding eigenvectors, respectively. Since we consider a singular-
value analysis problem on L2 spaces, we need to find state trajectories of certain Hamiltonian dynamics;
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see, for example, [12]. In the linear case, we only need to solve an eigenvalue problem on a finite
dimensional space X =R

n
to obtain the singular values and singular vectors of the Hankel operator H.

Here we provide the nonlinear counterpart as follows.

Theorem 4.17: [12]

Consider the Hankel operator defined by Equation 4.31. Suppose that the operators C† and O exist and are
smooth. Moreover, suppose that λ ∈R and ξ ∈ X satisfy the following equation:

∂Lo(ξ)

∂ξ
= λ ∂Lc(ξ)

∂ξ
, λ ∈R, ξ ∈ X. (4.37)

Then λ is an eigenvalue of (dH(u)∗H(u), and

v := C†(ξ). (4.38)

That is, v defined above is a singular vector of H.

Although the singular-value analysis problem, [13], is a nonlinear problem on an infinite dimensional
signal space U = Lm

2 [0,∞), the problem to be solved in the above theorem is a nonlinear algebraic
equation on a finite dimensional space X =R

n
which is also related to a nonlinear eigenvalue problem

on X; see [9].
In the linear case, Equation 4.37 reduces to

ξTQ = λ ξTP−1

where P and Q are the controllability and observability Gramians, and λ and ξ are an eigenvalue and an
eigenvector of PQ. Furthermore, Equation 4.38 characterizes the relationship between a singular vector
v of H and an eigenvector ξ of PQ. Also, in the linear case, there always exist n independent pairs of
eigenvalues and eigenvectors of PQ. What happens in the nonlinear case? The answer is provided in the
following theorem.

Theorem 4.18: [12]

Consider the systemΣ in Equation 4.30 and the Hankel operator H in Equation 4.31 with X =R
n
. Suppose

that the Jacobian linearization of the system has n distinct Hankel singular values. Then Equation 4.37 has
n independent solution curves ξ= ξi(s), s ∈R, i = 1, 2, . . . , n intersecting to each other at the origin and
satisfying the condition

‖ξi(s)‖ = |s|.

For linear systems, the solutions of Equation 4.37 are lines (orthogonally) intersecting at the origin.
The above theorem shows that instead of these lines, in the nonlinear case n independent curves x = ξi(s),
i = 1, 2, . . . , n exist. For instance, if the dimension of the state is n= 2, the solution of Equation 4.37 is
illustrated in Figure 4.2.

We can relate the solutions ξi(s) to the singular values of the Hankel operator H. Let vi(s) and
σi(s) denote the singular vector and the singular-value parameterized by s corresponding to ξi(s). Then
we have

vi(s) := C†(ξi(s)),
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x1

x2

0 r

θ
ξ1

ξ2

FIGURE 4.2 Configuration of ξ1(s) and ξ2(s) in the case n= 2.

σi(s) := ‖H(vi(s))‖L2

‖vi(s)‖L2

= ‖O(ξi(s))‖L2

‖C†(ξi(s))‖L2

=
√

Lo(ξi(s))

Lc(ξi(s))
.

This expression yields an explicit expression of the singular values σi(s)’s of the Hankel operator H. These
functions σi(s)’s are called Hankel singular values. Without loss of generality we assume that the following
equation holds for i = 1, 2, . . . , n in a neighborhood of the origin

min{σi(s), σi(−s)}> max{σi+1(s), σi+1(−s)}. (4.39)

As in the linear case, the solution curves ξi(s) play the role of the coordinate axes of a balanced
realization. By applying an isometric coordinate transformation which maps the solution curves ξi(s)’s
into the coordinate axes, we obtain a realization whose (new) coordinate axes xi are the solution of
Equation 4.37, that is,

∂Lo(x)

∂x

∣∣∣∣
x=(0,...,0,xi ,0,...,0)

= λ ∂Lc(x)

∂x

∣∣∣∣
x=(0,...,0,xi ,0,...,0),

(4.40)

σi(xi)=
√

Lo(0, . . . , 0, xi , 0, . . . , 0)

Lc(0, . . . , 0, xi , 0, . . . , 0)
. (4.41)

Equation 4.41 implies that the new coordinate axes xi , i = 1, . . . , n are the solutions of Equation 4.37 for
Hankel singular-value analysis. Therefore, the Hankel norm can be obtained by

‖Σ‖H = sup
u �=0

‖H(u)‖L2

‖u‖L2

= sup
s∈R

max
i
σi(s)

= sup
x1∈R

√
Lo(x1, 0, . . . , 0)

Lc(x1, 0, . . . , 0)
,

provided the ordering condition (Equation 4.39) holds for all s ∈R. Furthermore, apply this coordinate
transformation recursively to all lower dimensional subspaces such as (x1, x2, . . . , xk , 0, . . . , 0), then we
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obtain a state-space realization satisfying Equation 4.41 and

xi = 0 ⇐⇒ ∂Lo(x)

∂xi
= 0 ⇐⇒ ∂Lc(x)

∂xi
= 0. (4.42)

This property is crucial for balanced realization and model order reduction. Using tools from differential
topology, for example, [31], we can prove that the obtained realization is diffeomorphic to the following
precise input-normal/output-diagonal realization.

Theorem 4.19: [11,14]

Consider the system Σ in Equation 4.30. Suppose that the assumptions in Theorem 4.18 hold. Then there
exists coordinates in a neighborhood of the origin such that the system is in input-normal/output-diagonal
form satisfying

Lc(x)= 1

2

n∑
i=1

x2
i ,

Lo(x)= 1

2

n∑
i=1

x2
i σi(xi)

2.

This realization is more precise than the realization in Theorem 4.16 in the following sense: (a) The
solutions of Equation 4.37 coincide with the coordinate axes, that is, Equation 4.40 holds. (b) The ratio
of the observability function Lo to the controllability function Lc equals the singular values σi(xi)’s on
the coordinate axes, that is, Equation 4.41 holds. (c) An exact balanced realization can be obtained by a
coordinate transformation

zi = φi(xi) := xi

√
σi(xi), (4.43)

which is well-defined in a neighborhood of the origin.

Corollary 4.1: [11,14]

The coordinate change (Equation 4.43) transforms the input-normal realization in Theorem 4.19 into the
following balanced form:

Lc(z)= 1

2

n∑
i=1

z2
i

σi(zi)
,

Lo(z)= 1

2

n∑
i=1

z2
i σi(zi).

Since we only use the coordinate transformation (Equation 4.43) preserving the coordinate axes, the
realization obtained here also satisfies the properties (a) and (b) explained above. The controllability and
observability functions can be written as

Lc(z)= 1

2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

P(z)

−1
z,

Lo(z)= 1

2
zT diag(σ1(z1), . . . , σn(zn))︸ ︷︷ ︸

Q(z)

z.
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Here P(z) and Q(z) can be regarded as nonlinear counterparts of the balanced controllability and observ-
ability Gramians, since

P(z)= Q(z)= diag(σ1(z1), σ2(z2), . . . , σn(zn)).

The axes of this realization are uniquely determined. We call this state-space realization a balanced
realization of the nonlinear systemΣ in Equation 4.30. As in the linear case, both the relationship between
the input-to-state and state-to-output behavior and that among the coordinate axes are balanced.

4.3.3 Model Order Reduction

An important application of balanced realizations is that it is a tool for model order reduction called
balanced truncation. Here, a model order reduction method preserving the Hankel norm of the original
system is proposed. Suppose that the system of Equation 4.30 is balanced in the sense that it satisfies
Equations 4.41 and 4.42. Note that the realizations in Theorem 4.19 and Corollary 4.1 satisfy these
conditions. Suppose, that

min{σk(s), σk(−s)} �max{σk+1(s), σk+1(−s)}

holds with a certain k (1≤ k < n). Divide the state into two vectors x = (xa, xb)

xa := (x1, . . . , xk) ∈R
k
,

xb := (xk+1, . . . , xn) ∈R
n−k

,

and the vector field into two vector fields accordingly

f (x)=
(

f a(x)
f b(x)

)
,

g(x)=
(

ga(x)
gb(x)

)
,

and truncate the state by substituting xb = 0. Then we obtain a k-dimensional state-space modelΣa with
the state xa (with a (n− k)-dimensional residual modelΣb with the state xb).

Σa :
{

ẋa = f a(xa, 0)+ ga(xa, 0)ua

ya = h(xa, 0)
(4.44)

Σb :
{

ẋb = f b(0, xb)+ gb(0, xb)ub

yb = h(0, xb)
(4.45)

This procedure is called balanced truncation. The obtained reduced order models have preserved the
following properties.

Theorem 4.20: [13,14]

Suppose that the system Σ satisfies Equations 4.41 and 4.42 and apply the balanced truncation procedure
explained above. Then the controllability and observability functions of the reduced order models Σa and
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Σb denoted by La
c , Lb

c , La
o, and Lb

o, respectively, satisfy the following equations:

La
c (xa)= Lc(xa, 0), La

o(xa)= Lo(xa, 0),

Lb
c (xb)= Lc(0, xb), Lb

o(xb)= Lo(0, xb),

which implies

σa
i (xa

i )= σi(xa
i ), i = 1, 2, . . . , k,

σb
i (xb

i )= σi+k(xb
i ), i = 1, 2, . . . , n− k,

with the singular values σa’s of the system Σa and the singular values σb of the system Σb. In particular, if
σ1 is defined globally, then

‖Σa‖H = ‖Σ‖H .

Theorem 4.20 states that the important characteristics of the original system such as represented by
the controllability and observability functions and Hankel singular values are preserved. Moreover, by
Theorem 4.15, this implies that the controllability, observability, minimality, and the gain property is
preserved under the model reduction. These preservation properties hold for truncation of any realiza-
tion satisfying the conditions (Equations 4.41 and 4.42), such as the realizations in Theorem 4.19 and
Corollary 4.1 [13,14]. Furthermore, concerning the stability, (global) Lyapunov stability and local asymp-
totic stability are preserved with this procedure as well. Note that this theorem is a natural nonlinear
counterpart of the linear theory. However, a nonlinear counterpart of the error bound of the reduced
order model has not been found yet.

4.3.4 Other Types of Balancing for Nonlinear Systems

As for linear systems, there exist extensions of LQG, and coprime balancing [49], H∞ or L2-gain balancing
[46], and positive/bounded real and dissipativity-based balancing [23]. In fact, in [23] a direct relation is
obtained with Hankel operator analysis for augmented systems.

The presented work treats balanced realizations for nonlinear systems based on balancing in a (possibly
large) region around an equilibrium point, where a relation with the Hankel operator, observability and
controllability operators and functions, and minimality of the nonlinear system is obtained. A drawback
of these methods is the computational effort that is needed to compute the balanced realization. As
mentioned in the introduction, other extensions of the linear notion of balancing can be found in for
example, [20,28,58,59].

4.4 Concluding Remarks

In this Chapter, balanced realizations for linear and nonlinear systems and model reduction based on
these realizations are treated. There exists a vast amount of literature on this topic, and the reference list
in this paper is certainly not complete. For example, some of the basics for linear balanced realizations
can be found in [40], and we did not pay any attention to the balancing methods treating uncertain, and
time- and parameter-varying linear systems; for example, [4,44], behavioral balancing, for example, [53],
or the numerical side of balancing, for example, [5].

Recently, a lot of interest is taken in structure preserving order techniques for both linear and nonlinear
systems, where the additional structure to be preserved is a physical structure, such as port-Hamiltonian
structure, [56], and other physical structures, as mentioned in our linear systems section. For example,
for circuit simulators with continuously growing orders of the models, a need for interpreting a reduced
order model as a circuit is important, such as, [50]. Due to the explicit interconnection (input/output
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like) structure of the circuits, order reduction methods based on balancing are attractive to apply to these
circuits. However, structure preservation and circuit interpretation of the corresponding reduced order
models is not possible yet, and is one of the motivators for further research to both linear and nonlinear
structure preserving order reduction methods.
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5.1 Introduction

In the late 1960s, Basile and Marro (1969) (and later Wonham and Morse, 1970) discovered that the
behavior of time-invariant linear control systems can be seen as a manifestation of the subspaces similar
to the invariant subspaces characterized by the system matrices. As a result, the system behavior can
be predicted and the solvability of many control problems can be tested by examining the properties of
such subspaces. In many instances, one can understand essential issues intuitively in geometric terms.
Moreover, thanks to good algorithms and software available in the literature (see Basile and Marro,
1992), the above subspaces can be generated and the properties can be readily examined by using per-
sonal computers. Thus, a large class of problems involving feedback control laws and observability of
linear systems can be solved effectively by this geometric method, for example, problems of disturbance
localization, decoupling, unknown input observability and system inversion, observer design, regulation

∗ This chapter is dedicated to Professors G. Basile and G. Marro for their pioneering contributions in the development of
geometric methods for linear systems.
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and tracking, model following, robust control, and so on. Comprehensive treatments of the basic theory
and many applications, including the ones mentioned above, can be found in the excellent books by
Wonham (1985), Basile and Marro (1992), and Trentelman et al. (2002), with additional later results
found in the newer books, for example, controlled and conditioned invariant subspaces and duality
are treated in an organized fashion in the 2nd book and, in addition to the duality, an extension of
the theory to include distributions as inputs and the relation between disturbance localization and H2

optimal control problem are also given in the 3rd book. The method is also useful in the analysis and
design of decentralized control systems (Hamano and Furuta, 1975), perfect and near-perfect signal
decoupling (and its applications to other control problems) for nonminimum-phase systems (Marro
and Zattoni, 2006), and failure/fault detection (Massoumnia et al., 1989). This chapter serves as an
introduction to the subject. Regrettably, citations in this chapter are rather limited due to editorial
restrictions. Extensive references can be found in the above-mentioned books as well as in the chapter
by Marro (2008). To prepare the present chapter, the book by Basile and Marro (1992) has been used
as the primary reference, and the majority of the proofs omitted in this chapter can be found in this
reference.

Section 5.2 gives a review of elementary notions including invariant subspaces, reachability, control-
lability, observability, and detectability. It also provides convenient formulae for subspace calculations.
Sections 5.3 through 5.7 describe the basic ingredients of the geometric theory (or approach). More
specifically, Section 5.3 introduces the fundamental notions of (A, im B)-controlled and (A, ker C)-
conditioned invariants (which are subspaces of the state space), and Section 5.4 provides some algebraic
properties of these invariants. In Section 5.5, “largest” controlled and “smallest” conditioned invariants
are presented with respect to certain subspaces and Section 5.6 discusses well-structured special classes of
controlled and conditioned invariants. Section 5.7 analyzes the above invariants in relation to stabiliza-
tion. Sections 5.8 through 5.10 describe applications to demonstrate the use of the basic tools developed
in the previous sections. For this goal, the disturbance localization problem is chosen and it is discussed
in three different situations with varying degrees of sophistication. The disturbance localization prob-
lems are chosen since the methods used to solve the problems can be used or extended to solve other
more involved problems. It also has historical significance as one of the first problems for which the
geometric method was used. Section 5.11 provides the conclusion and brief statements about practi-
cal applications and about extensions of geometric notions and approach to more general or different
systems.

Notation: Capital letters A, B, and so on denote the matrices (or linear maps) with I and In reserved,
respectively, for an identity matrix (of appropriate dimension) and an n× n identity matrix. The transpose
of a matrix A is denoted by A′. Capital script letters such as V , W represent vector spaces or subspaces.
Small letters x, y, and so on are column vectors. Scalars are also denoted by small letters. The letter 0 is
used for a zero matrix, vector, or scalar depending on the context. Notation “:=” means “(the left-hand
side, i.e., ‘:’ side) is defined by (the right-hand side, i.e., ‘=’ side).” Similarly for “=:” where the roles of
the left- and right-hand sides are reversed. The image (or range) and the kernel (or null space) of M are
denoted by im M and ker M, respectively. The expression V +W represents the sum of two subspaces
V and W , that is, V +W := {v+w : v ∈ V and w ∈W}. If V is a subspace of W , we write V ⊂W .
If V ⊂ X , we use A−1V := {x ∈ X : Ax ∈ V}, that is, the set of all x ∈ X satisfying Ax ∈ V . Similarly,
A−kV := {x ∈ X : Akx ∈ V

}
, k = 1, 2, . . ..

5.2 Review of Elementary Notions

In this section we will review invariant subspaces and some of their basic roles in the context of the linear
systems.



�

�

�

�

� �

Geometric Theory of Linear Systems 5-3

Definition 5.1:

A subspace V of X := Rn is said to be A-invariant if

AV ⊂ V , (5.1)

that is, x ∈ V ⇒ Ax ∈ V .

An A-invariant subspace plays the following obvious but important role for an autonomous linear
system. Consider the autonomous linear system described by

ẋ(t)= Ax(t), x(0)= xo, (5.2)

where the column vectors x(t) ∈ X := Rn and xo ∈ X are, respectively, the state of the system at time t ≥ 0
and the initial state, and A is an n× n real matrix. Now, suppose a subspace V is A-invariant. Clearly,
if x(t) ∈ V , then the rate of change ẋ(t) ∈ V , which implies that the state remains in V . More strongly,
we have

Lemma 5.1:

Let V ⊂ X . For the autonomous linear system described by Equation 5.2, xo ∈ V implies x(t) ∈ V for all
t ≥ 0 if and only if V is A-invariant.

Let V be A-invariant, and introduce a new basis {e1, . . . , en}, such that

span{e1, . . . , eν} = V , ν≤ n. (5.3)

Define a coordinate transformation by

x = [e1 . . . en]

[
x̃1

x̃2

]
, x ∈ Rn, x̃1 ∈ Rν, x̃2 ∈ Rn−ν. (5.4)

Then, it is easy to see that, with respect to the new basis, the state Equation 5.2 can be rewritten as

[ ˙̃x1(t)
˙̃x2(t)

]
=
[

Ã11 Ã12

0 Ã22

] [
x̃1(t)
x̃2(t)

]
, (5.5)

x̃1(0)= x̃10, x̃2(0)= x̃20. (5.6)

Clearly, if x̃20 = 0, then x̃2(t)= 0 for all t ≥ 0, that is, xo ∈ V implies x(t) ∈ V for all t ≥ 0 (which has
been stated in Lemma 5.1).

Let V be an A-invariant subspace in X . The restriction A|V of a linear map A : X → X (or an n× n
real matrix A) to a subspace V is a linear map from V to V , mapping v �→ Av for all v ∈ V . For x ∈ X ,
we write x+V := {x+ v : v ∈ V} called the coset of x modulo V , which represents a hyperplane passing
through a point x. The set of cosets modulo V is a vector space called the factor space (or quotient space)
and it is denoted by X/V . An induced map A|X/V is a linear map defined by x+V �→ Ax+V , x ∈ X .

An A-invariant subspace V is said to be internally stable if Ã11 in Equation 5.5 is stable, that is, all the
eigenvalues have negative real parts, or equivalently, if A|V is stable. Therefore, x(t) converges to the
zero state as t →∞ whenever xo ∈ V if and only if V is internally stable. Also, an A-invariant subspace V
is said to be externally stable if Ã22 is stable, that is, if A|X/V is stable. Clearly, x̃2(t) converges to zero as
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t →∞, that is, x(t) converges to V as t →∞ if and only if V is externally stable. Note that the eigenvalues
of Ã11and Ã22 do not depend on a particular choice of coordinates (as long as Equation 5.3 is satisfied).

Let us now consider a continuous time, time-invariant linear control system Σ := [A,B,C] described
by

ẋ(t)= Ax(t)+Bu(t), x(0)= xo, (5.7)

y(t)= Cx(t), (5.8)

where the column vectors x(t) ∈ X := Rn, u(t) ∈ Rm, and t(t) ∈ Rp are, respectively, the state, input,
and output of the system at time t ≥ 0, xo ∈ Rn is the initial state, and A, B, and C are real matrices
with consistent dimensions. We assume that u(t) is piecewise continuous. We are also interested in the
closed-loop system, namely, we apply a linear state-feedback law of the form

u(t)= Fx(t), (5.9)

then Equation 5.7 becomes
ẋ(t)= (A+BF)x(t), x(0)= xo, (5.10)

where F is an m× n real matrix.
Some invariant subspaces are associated with reachability (controllability) and observability. A state x̃

is said to be reachable (or controllable) if there is a control which drives the zero state to x̃ (or, respectively,
x̃ to the zero state) in finite time, that is, if there is u(t), 0≤ t ≤ tf such that x(0)= 0 (or, respectively,
x̃) and x(tf )= x̃ (or, respectively 0) for some 0 < tf <∞ (see Kalman et al., 1969, Chapter 2). The set
of reachable (or controllable) states forms a subspace and it is called the reachable (or, respectively,
controllable) subspace, which will be denoted as Vreach (or, respectively, Vcontr). For an n× n matrix M
and a subspace I ⊂ X , define

R(M, I ) := I +MI + · · ·+Mn−1I .

The reachable and controllable subspaces are characterized by the following.

Theorem 5.1:

For the continuous-time system Σ := [A, B, C],
Vreach =R(A, im B)= im

[
B AB . . . An−1B

]
,

=R(A+BF, im B)= im
[
B (A+BF)B . . . (A+BF)n−1B

]
(5.11)

for any m× n real matrix F. Furthermore,

Vreach = Vcontr . (5.12)

Remark

The subspace Vreach =R(A, im B) is the minimum A-invariant subspace containing im B. It is also (A+
BF)-invariant for any m× n real matrix F. (For a discrete-time system, Equation 5.12 does not hold;
instead we have Vreach ⊂ Vcontr .)

The pair (A, B) or system Σ := [A, B, C] is said to be reachable (or controllable) if Vreach = X (or,
respectively, Vcontr = X ). The set Λ := {λ1, . . . ,λn} of complex numbers is called a symmetric set if,
whenever λi is not a real number, λj = λ∗i for some j = 1, . . . , n where λ∗i is the complex conjugate of λi .
Denote by σ(A+BF) the spectrum (or the eigenvalues) of A+BF. Then, we have
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Theorem 5.2:

For any symmetric set Λ := {λ1, . . . ,λn} of complex numbers λ1, . . . ,λn there is an m× n real matrix F,
such that σ(A+BF)=Λ if and only if the pair (A, B) is reachable (or controllable).

Proof. See Wonham (1985); Basile and Marro (1992); and Heymann (1968).

Remark

Let dim Vreach = r ≤ n. For any symmetric set Λr := {λ1, . . . ,λr} of complex numbers λ1, . . . ,λr , there
is an m× n real matrix F, such that σ( A+BF|Vreach)=Λr . In fact, since Vreach is A-invariant, using
the same state coordinate transformation given by Equations 5.3 and 5.4 with V = Vreach and ν= r, we
obtain, from Equation 5.7,

[ ˙̃x1(t)
˙̃x2(t)

]
=
[

Ã11 Ã12

0 Ã22

] [
x̃1(t)
x̃2(t)

]
+
[

B̃1

0

]
u(t).

It is easy to show dim im
[

B̃1 Ã11B̃1 . . . Ãr−1
11 B̃1

]
= r, that is, the pair (Ã11, B̃1) of the r-dimensional

subsystem is reachable. The eigenvalue assignment for Vreach follows by applying Theorem 5.2.
The pair (A, B) is said to be stabilizable if there is a real matrix F, such that the eigenvalues of A+BF

have negative real parts. We have (see Basile and Marro, 1992).

Corollary 5.1:

Pair (A, B) is stabilizable if and only if Vreach is externally stable.

The state x̃ of the system Σ is said to be unobservable if it produces zero output when the input is not
applied, that is, if x(0)= x̃ and u(t)= 0 for all t ≥ 0 implies y(t)= 0 for all t ≥ 0. The set of unobservable
states forms a subspace which is called the unobservable subspace. This will be denoted by Sunobs.

Theorem 5.3:

Sunobs = ker

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦= ker

⎡
⎢⎢⎢⎣

C
C(A+GC)

...
C(A+GC)n−1

⎤
⎥⎥⎥⎦

= ker C ∩A−1 ker C ∩ · · · ∩A−(n−1) ker C

= ker C ∩ (A+GC)−1 ker C ∩ · · · ∩ (A+GC)−(n−1) ker C (5.13)

for any n× p real matrix G.

Remark

The subspace Sunobs is A-invariant. It is also (A+GC)-invariant for any n× p real matrix G.
The pair (A, C) or system Σ is said to be observable if Sunobs = {0}, and the pair (A, C) is said to be

detectable if A+GC is stable for some real matrix G. For observability and detectability we have the
following facts.
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Theorem 5.4:

For any symmetric set Λ := {λ1, . . . ,λn} of complex numbers λ1, . . . ,λn, there is an n× p real matrix G
such that σ(A+GC)=Λ if and only if the pair (A, C) is observable.

Corollary 5.2:

The pair (A, C) is detectable if and only if Sunobs is internally stable.

The following formulae are useful for subspace calculations.

Lemma 5.2:

Let V , V1, V2, V3 ⊂ X . Then, letting V⊥ := {x ∈ X : x′v = 0 for all v ∈ V
}

,

(V⊥)⊥ = V ,

(V1+V2)⊥ = V⊥1 ∩V⊥2 ,

(V1 ∩V2)⊥ = V⊥1 +V⊥2 ,

A(V1+V2)= AV1+AV2,

A(V1 ∩V2)⊂ AV1 ∩AV2,

(A1+A2)V = A1V +A2V , where A1 and A2 are n× n matrices,

(AV)⊥ = A′−1V⊥,

V1+ (V2 ∩V3)⊂ (V1+V2)∩ (V1+V3),

V1 ∩ (V2+V3)⊃ (V1 ∩V2)+ (V1 ∩V3),

V1 ∩ (V2+V3)= V2+ (V1 ∩V3), provided V1 ⊃ V2.

5.3 (A, im B)-Controlled and (A, ker C)-Conditioned Invariant
Subspaces and Duality

In this section, we introduce important subspaces associated with system Σ := [A, B, C] described by
Equation 5.7 (or Equation 5.10) and Equation 5.8 with a state feedback law (Equation 5.9). According
to Lemma 5.1, for an autonomous linear system described by Equation 5.2, an A-invariant subspace is a
subspace having the property that any state trajectory starting in the subspace remains in it. However, for
a linear systemΣ := [A, B, C]with input, A-invariance is not necessary in order for a subspace to have the
above trajectory confinement property. In fact, let V ⊂ X . A state trajectory can be confined in V if and
only if ẋ(t) ∈ V , and to produce ẋ(t) ∈ V whenever x(t) ∈ V , we need ẋ(t)= Ax(t)+Bu(t)= v(t) ∈ V ,
that is, Ax(t)= v(t)−Bu(t) for some u(t) and v(t), which implies AV ⊂ V + im B. The converse also
holds. Summarizing, we have
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Lemma 5.3:

Consider the system described by Equation 5.7. For each initial state xo ∈ V , there is an (admissible) input
u(t), t ≥ 0 such that the corresponding x(t) ∈ V for all t ≥ 0 if and only if

AV ⊂ V + im B. (5.14)

Subspaces satisfying Equation 5.14 play a fundamental role in the geometric approach, and we introduce

Definition 5.2:

A subspace V is said to be an (A, im B)-controlled invariant (subspace) (Basile and Marro, 1969, 1992) or
an (A, B)-invariant subspace (Wonham and Morse, 1970; Wonham, 1985) if it is A-invariant modulo imB,
that is, if Equation 5.14 holds.

An important property of the above subspace is described by

Theorem 5.5:

Let V ⊂ X . Then, there exists an m× n real matrix F, such that

(A+BF)V ⊂ V , (5.15)

if and only if V is an (A, im B)-controlled invariant.

Remark

If the state feedback control law (Equation 5.9) is applied to the systemΣ := [A, B, C], the corresponding
state equation is described by Equation 5.10. Therefore, recalling Lemma 5.1, if V is an (A, im B)-controlled
invariant, then there is an F for Equation 5.10 such that x(t) ∈ V for all t ≥ 0, provided xo ∈ V .

Another class of important subspaces is now introduced (Basile and Marro 1969, 1992).

Definition 5.3:

A subspace S of X is said to be an (A, ker C)-conditioned invariant (subspace), if

A
(
S ∩ ker C

)⊂ S. (5.16)

There is a duality between controlled invariants and conditioned invariants in the following sense. By
taking the orthogonal complements of the quantities on both sides of Equation 5.16, we see that Equation
5.16 is equivalent to {A (S ∩ ker C

)}⊥ ⊃ S⊥, which, in turn, is equivalent to A′−1
(
S⊥ + im C′

)⊃ S⊥,
that is, A′S⊥ ⊂ S⊥ + im C′. Similarly, Equation 5.14 holds if and only if A′(V⊥ ∩ ker B′)⊂ V⊥. Thus,
we have
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Lemma 5.4:

A subspace S is an (A, ker C)-conditioned invariant if and only if S⊥ is an (A′, im C′)-controlled invariant.
Also, a subspace V is an (A, im B)-controlled invariant if and only if V⊥ is an (A′, ker B′)-conditioned
invariant.

Due to the above lemma, the previous theorem can be translated easily into the following property
(Basile and Marro, 1969, 1992).

Theorem 5.6:

Let S ⊂ X . Then, there exists an n× p real matrix G satisfying

(A+GC)S ⊂ S, (5.17)

if and only if S is an (A, ker C)-conditioned invariant.

The conditioned invariants are naturally associated with dynamic observers (not necessarily asymp-
totic). The following Lemma 5.5 summarizes the meaning of the invariants in this context.

Consider the systemΣ := [A, B, C]described by Equations 5.7 and 5.8. To focus on the state observation
aspect of the system, we assume that u(t)= 0 for all t ≥ 0. (It is straightforward to extend the result to
include the nonzero measurable input.) We define the full-order and reduced order observers Σobs and
Σobs,red , respectively, as follows:

Σobs : ˙̂x(t)= (A+GC
)

x̂(t)−Gy(t)= (A+GC
)

x̂(t)−GCx(t),

Σobs,red : ż(t)= Nz(t)−My(t)= Nz(t)−MCx(t).

Here, x̂(t) and z(t) are column vectors with dimensions n and nz (to be determined), respectively, and
N and M are, respectively, nz × nz and nz × p real matrices. Then, we have

Lemma 5.5:

Let S ⊂ X := Rn. The following statements are equivalent:

i. S is (A, ker C)-conditioned invariant, that is, Equation 5.16 holds.
ii. There exists a real matrix G with an appropriate dimension and an observer Σobs such that

x̂(0)= x(0)(mod S), that is x̂(0)− x(0) ∈ S

implies
x̂(t)= x(t)(mod S), that is x̂(t)− x(t) ∈ S, for all t > 0.

iii. There exist real matrices M, N, and H, satisfying ker H = S, with suitable dimensions and an observer
Σobs,red such that

z(0)=Hx(0)⇒ z(t)=Hx(t), for all t > 0.

Remark

The statement (iii) in the above lemma is used by Willems (1981) as the definition of the conditioned
invariant. Also, see Trentelman et al. (2001, Section 5.1).
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Proof of Lemma 5.5. (i)⇒ (ii) : Suppose Equation 5.16 holds. In view of Theorem 5.6 choose G, so that
Equation 5.17 holds. Define the observer error by err(t) := x̂(t)− x(t). The equations for Σ and Σobs

lead to ėrr(t)= (A+GC)err(t). Since S is (A+GC)-invariant, err(0) ∈ S ⇒ err(t) ∈ S for all t > 0.
(ii)⇒ (iii): Basically, a modulo S version of Σobs in (ii) is a reduced order observer Σobs,red . To be
explicit, choose a new basis

{
e1, . . . , enS , . . . , en

}
for X := Rn so that

{
e1, . . . , enS

}
is a basis of subspace

S ⊂ X := Rn, where nS := dim S. Define T := [e1 . . . enS . . . en
]

and apply the state coordinate trans-
formation x(t)= Tx̃(t) to Σ (with zero inputs) to obtain Σ̃ : ˙̃x(t)= T−1ATx̃(t), y(t)= CTx̃(t), where
x̃(t)= [x̃′1(t) x̃′2(t)

]′
, x̃1(t) ∈ RnS , and x̃2(t) ∈ Rn−nS . We apply the same coordinate transformation to

Σobs, that is, x̂(t)= T ˜̂x(t), to obtain Σ̃obs : ˙̂̃x(t)= T−1(A+GC)T ˜̂x(t)−T−1Gy(t), which has the follow-
ing structure:

Σ̃obs :
[ ˙̂̃x1(t)
˙̂̃x2(t)

]
=
[

ÃG11 ÃG12

0 ÃG22

][ ˜̂x1(t)
˜̂x2(t)

]
−
[

G̃1

G̃2

]
y(t),

where ˜̂x1(t) ∈ RnS , ˜̂x2(t) ∈ Rn−nS , ÃG22 ∈ R(n−nS)×(n−nS), G̃2 ∈ R(n−nS)×p, and ÃG11, ÃG12, and G̃1

with consistent dimensions. Note that the 0 block in matrix T−1(A+GC)T is due to (A+GC)−
invariance of S. The corresponding observer error

[
ẽ′rr1(t) ẽ′rr2(t)

]′ := [ ˜̂x′1(t) ˜̂x′2(t)
]′ − [x̃′1(t) x̃′2(t)

]′
satisfies [˙̃err1(t)

˙̃err2(t)

]
=
[

ÃG11 ÃG12

0 ÃG22

] [
ẽrr1(t)
ẽrr2(t)

]
.

The reduced order observerΣobs,red can be chosen as follows:

Σobs,red : ˙̂̃x2(t)= ÃG22
˜̂x2(t)− G̃2y(t).

Define H by H := [0 In−nS
]

T−1. Then,

˜̂x2(0)−Hx(0)= ˜̂x2(0)− x̃2(0)= ẽrr2(0)= 0

implies
˜̂x2(t)−Hx(t)= ˜̂x2(t)− x̃2(t)= ẽrr2(t)= eÃG22t ẽrr2(0)= 0.

(iii)⇒ (i) :Let x(0)= xo ∈ S ∩ ker C and choose z(0)=Hxo = 0. Then, we have ż(0)= Nz(0)−My(0)=
Nz(0)−MCx(0)= 0. Since z(t)=Hx(t) this implies Hẋ(0)=HAx(0)=HAxo = 0, that is, Axo ∈
ker H = S (for every xo ∈ S ∩ ker C). QED

A subspace may be both controlled and conditioned invariant. In such a case, we have the following
(Basile and Marro, 1992; Hamano and Furuta, 1975):

Lemma 5.6:

There exists an m× p real matrix K , such that

(A+BKC)V ⊂ V , (5.18)

if and only if V is both an (A, im B)-controlled invariant and an (A, ker C)-conditioned invariant.

Proof. [Only if part]. The controlled invariance and conditioned invariance follow trivially by Theorems
5.5 and 5.6, respectively.

[If part]. For C = 0 or ker C = 0 or V = 0, the statement of the lemma trivially holds. So we prove the
lemma assuming such trivialities do not occur. Since by assumption V is an (A, im B)-controlled invariant,
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there is an m× n real matrix F̄ satisfying (A+BF̄)V ⊂ V . Assuming V ∩ ker C �= {0}, let
{

v1 . . . vμ
}

be a
basis of V ∩ ker C. Complete the basis

{
v1 . . . vμ . . . vν . . . vn

}
of X in such a way that

{
v1 . . . vμ . . . vν

}
is

a basis of V where 1≤ μ≤ ν≤ n. Define an m× n real matrix F̃ by

F̃vi =
⎧⎨
⎩

F̄vi , i = μ+ 1, . . . , ν
0, i = 1, . . . ,μ
arbitrary, otherwise

(5.19)

Choose K so that F̃ = KC, that is, F̃
[
vμ+1 . . . vν

]= K
[
Cvμ+1 . . . Cvν

]
. Note that due to the particular

choice of basis, the columns of
[
Cvμ+1 . . . Cvν

]
are linearly independent, and so the above K certainly

exists. To show that Equation 5.18 holds, let v ∈ V . Then, v =∑μ
i=1 αivi +∑ν

i=μ+1 αivi for some numbers
α′is. Therefore, by the above choice of K ,

(A+BKC)v = A
μ∑

i=1

αivi + (A+BF̄)
ν∑

i=μ+1

αivi .

But, the first sum belongs to V by Equation 5.16 (where S = V) and the second sum is an element of V by
the choice of F̄. Thus, (A+BKC)v ∈ V .

If V ∩ ker C = {0}, the basis for V ∩ ker C is empty and Equation 5.19 can be modified by dropping the
second row and setting μ= 0. Equation 5.18 follows similarly to the above. QED

5.4 Algebraic Properties of Controlled and Conditioned Invariants

An (A, im B)-controlled invariant has the following properties in addition to the ones discussed in the
previous section. The proofs are omitted. They can be found in Basile and Marro (1992, Chapter 4).

Lemma 5.7:

If V1 and V2 are (A, im B)-controlled invariants, so is V1+V2.

Remark

But, the intersection of two (A, im B)-controlled invariants is not in general an (A, im B)-controlled
invariant.

Lemma 5.8:

Let V1 and V2 be (A, im B)-controlled invariants. Then, there is an m× n real matrix F satisfying

(A+BF)Vi ⊂ Vi , i = 1, 2, (5.20)

if and only if V1 ∩V2 is an (A, im B)-controlled invariant.

By duality, we have

Lemma 5.9:

If S1 and S2 are (A, ker C)-conditioned invariants, so is S1 ∩S2.
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Remark

S1+S2 is not necessarily an (A, ker C)-conditioned invariant.

Lemma 5.10:

Let S1 and S2 be (A, ker C)-conditioned invariants. Then, there is an n× p real matrix G satisfying

(A+GC)Si ⊂ Si , i = 1, 2, (5.21)

if and only if S1+S2 is an (A, ker C)-conditioned invariant.

5.5 Maximum-Controlled and Minimum-Conditioned Invariants

Let K⊂ X , and consider the set of (A, im B)-controlled invariants contained in K (by subspace inclusion).
Lemma 5.7 states that the set of (A, im B)-controlled invariants is closed under subspace addition. As
a result, the set of (A, im B)-controlled invariants contained in K has a largest element or supremum.
This element is a unique subspace that contains (by subspace inclusion) any other (A, im B)-controlled
invariants contained in K, and is called the maximum (or supremum) (A, im B)-controlled invariant
contained in K. This is denoted in the sequel as Vmax(A, im B, K). Similarly, let I ⊂ X . Then, owing
to Lemma 5.9, it can be shown that the set of (A, ker C)-conditioned invariants containing I has a
smallest element or infimum. This is a unique (A, ker C)-conditioned invariant contained in all other
(A, ker C)-conditioned invariants containing I , and is called the minimum (or infimum) (A, ker C)-
conditioned invariant containing I . This subspace will be denoted as Smin(A, ker C, I ). The subspaces
Vmax(A, im B, K) and Smin(A, ker C, I ) are important because they can be computed in a finite num-
ber of steps (in at most n iterations) and because testing the solvability of control problems typically
reduces to checking the conditions involving these subspaces. The geometric algorithms to compute
Vmax(A, im B, K) and Smin(A, ker C, I ) are given below.

Algorithm to compute Vmax(A, im B, K):

Vmax(A, im B, K)= Vdim K, (5.22a)

where

Vo =K, (5.22b)

Vi =K∩A−1(Vi−1+ im B), i = 1, . . . , dim K. (5.22c)

Proof of Equation 5.22a. See Basile and Marro (1992) or Wonham (1985).

Remark

The algorithm defined by Equations 5.22 has the following properties:

i. V1 ⊃ V2 ⊃ · · · ⊃ Vdim K.
ii. If V� = V�+1, then V� = V�+1 = · · · = Vdim K.

Remark

For an algorithm to compute F such that (A+BF)Vmax(A, im B, K)⊂ Vmax(A, im B, K), see Basile and
Marro (1992).

The following is the dual of the above algorithm (see Basile and Marro, 1992).
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Algorithm to calculate Smin(A, ker C, I ):

Smin(A, ker C, I )= Sn−dim I , (5.23a)

where

So = I , (5.23b)

Si = I +A(Si−1 ∩ ker C), i = 1, . . . , n− dim I . (5.23c)

Remark

The algorithm generates a monotonically nondecreasing sequence:

(i) S1 ⊂ S2 ⊂ · · · ⊂ Sn−dim I .
(ii) If S� = S�+1, then S� = S�+1 = · · · = Sn−dim I .

5.6 Self-Bounded-Controlled and Self-Hidden-Conditioned
Invariants and Constrained Reachability and Observability

Let Vo be an (A, im B)-controlled invariant contained in K, and consider all possible state trajectories
(with different controls) starting at xo in Vo and confined in K. We know that there is at least one control
for which the state trajectory remains in Vo, but that there may be another control for which the state
trajectory goes out of Vo while remaining in K. However, some (A, im B)-controlled invariant contained
in K, say V , has a stronger property that, for any initial state in V, there is no control which drives the
state (initially in V) out of V while maintaining the state trajectory in K, that is, the state trajectory must
go out of K if it ever goes out of V ⊂K. The subspace Vmax(A, im B, K) is one of those since it contains
all states that can be controlled to remain in K. Such an (A, im B)-controlled invariant V contained in K
is in general characterized by

Vmax(A, im B, K)∩ im B⊂ V , (5.24)

and we have (Basile and Marro, 1982, 1992)

Definition 5.4:

An (A, im B)-controlled invariant V contained in K is said to be self-bounded with respect to K if Equation
5.24 holds.

Remark

The left-hand side of inclusion 5.24 represents the set of all possible influences of control on the state
velocity at each instant of time that do not pull the state out of K.

Self-bounded (A, im B)-controlled invariants have the following properties.
For each K we can choose a single state-feedback control law, which works for all the self-bounded

(A, im B)-controlled invariants with respect to K. More precisely,

Lemma 5.11:

Let F be an m× n real matrix satisfying

(A+BF)Vmax(A, im B, K)⊂ Vmax(A, im B, K). (5.25)
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Then, every self-bounded (A, im B)-controlled invariant V with respect to K satisfies

(A+BF)V ⊂ V . (5.26)

Proof. See Basile and Marro (1992).

It can be shown that the set of self-bounded (A, im B)-controlled invariants in K is closed under
subspace intersection, that is, if V1 and V2 are self-bounded (A, im B)-controlled invariants with respect
to K, so is V1 ∩V2. Therefore, the above set has a minimum element which is called the minimum self-
bounded (A, im B)-controlled invariant with respect to K (Basile and Marro, 1982, 1992), denoted in
this chapter by Vsb,min(A, im B, K). The subspace Vsb,min(A, im B, K) is related to Vmax(A, im B, K) and
Smin(A, K, im B) as follows.

Theorem 5.7:

Vsb,min(A, im B, K)= Vmax(A, im B, K)∩Smin(A, K, im B). (5.27)

Proof. See Basile and Marro (1992, Chapter 4) and Morse (1973).
The minimum self-bounded (A, im B)-controlled invariant is closely related to constrained reachability.

The set of all states that can be reached from the zero state through state trajectories constrained in K in
finite time is called the reachable set (or reachable subspace, since the set forms a subspace) in K (Basile
and Marro, 1992). It is also called the supremal (A, B)-controllability subspace contained in K (Wonham,
1985). This set will be denoted by Vreach(K). Clearly, it has the following properties.

Lemma 5.12:

Vreach(K)⊂ Vmax(A, im B, K)⊂ K, (5.28)

Vreach(Vmax(A, im B, K))= Vreach(K). (5.29)

To examine Vreach(K) further, let F be a matrix satisfying Equation 5.25. It is easy to observe that the set
of ẋ(t) (and so the trajectories) in Vmax(A, im B, K) (or in K) that can be generated by the state Equation
5.7, when x(t) ∈ Vmax(A, im B, K), is identical to those generated by ẋ(t)= (A+BF)x(t)+BLũ(t) for a
matrix L satisfying im BL= im B∩Vmax(A, im B, K) and the admissible inputs ũ(t). Then, by Equation
5.11, Vreach(K)=R(A+BF, im B∩Vmax(K)), where Vmax(K) := Vmax(A, im B, K). Clearly, Vreach(K)⊃
im B∩Vmax(K) and the subspace Vreach(K) is the minimum (A+BF)-invariant satisfying this inclusion
(see the remark immediately after Theorem 5.1), that is, it is the minimum (A, im B)-controlled invariant
self-bounded with respect to K. Thus, we have

Theorem 5.8:

Let F be a real matrix satisfying (A+BF)Vmax(K)⊂ Vmax(K), where Vmax(K) := Vmax(A, im B, K). Then,

Vreach(K)=R(A+BF, im B∩Vmax(K))= Vsb,min(A, im B, K). (5.30)

Dual to the above results we have



�

�

�

�

� �

5-14 Control System Advanced Methods

Definition 5.5:

An (A, ker C)-conditioned invariant S containing I is said to be self-hidden with respect to I if

S ⊂ Smin(A, ker C, I )+ ker C. (5.31)

Lemma 5.13:

Let G be an n× p real matrix satisfying

(A+GC)Smin(A, ker C, I )⊂ Smin(A, ker C, I ). (5.32)

Then, every (A, ker C)-conditioned invariant S (containing I ) self-hidden with respect to I satisfies

(A+GC)S ⊂ S. (5.33)

If (A, ker C)-conditioned invariants S1 and S2 containing I are self-hidden with respect to I , so is S1+
S2. Therefore, the above set has a maximum element which is called the maximum self-hidden (A, ker C)-
conditioned invariant with respect to I denoted by Ssh,max(A, ker C, I ). The subspace Ssh,max(A, ker C, I )
is related to Vmax(A, I , ker C) and Smin(A, ker C, I ) as follows.

Theorem 5.9:

Ssh,max(A, ker C, I )= Smin(A, ker C, I )+Vmax(A, I , ker C). (5.34)

Furthermore, we have

Theorem 5.10:

Ssh,max(A, ker C, I )= (ker C+Smin(I ))∩ (A+GC)−1(ker C+Smin(I ))

∩ · · · ∩ (A+GC)−(n−1)(ker C+Smin(I )), (5.35)

where Smin(I ) := Smin(A, ker C, I ) and the matrix G satisfies Equation 5.32, that is, (A+GC)Smin(I )⊂
Smin(I ).

Remark

The right-hand side of Equation 5.35 represents the largest A+GC invariant subspace contained in
ker C+Smin(I ).

Remark

Equation 5.35 indicates that Ssh,max(A, ker C, I ) represents the set of unobservable states through a
dynamic observer when unknown disturbances are present if I represents the disturbance channel. See
Basile and Marro (1992, Section 4.1.3) for details on the topic.

5.7 Internal, External Stabilizability

We now introduce the notions of stability associated with controlled and conditioned invariants.
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Definition 5.6:

An (A, im B)-controlled invariant V is said to be internally stabilizable if, for any initial state xo ∈ V ,
there is a control u(t) such that x(t) ∈ V for all t ≥ 0 and x(t) converges to the zero state as t →∞, or,
alternatively (and, in fact, equivalently), if there exists an m× n real matrix F satisfying (A+BF)V ⊂ V
and (A+BF)|V is stable.

Definition 5.7:

An (A, im B)-controlled invariant V is said to be externally stabilizable if, for any initial state xo ∈ X , there
is a control u(t) such that x(t) converges to V as t →∞, or, alternatively (and, equivalently), if there exists
an m× n real matrix F satisfying (A+BF)V ⊂ V and (A+BF)|X/V is stable.

Internal and external stabilizabilities can be easily examined by applying appropriate coordinate trans-
formations (consisting of new sets of basis vectors) for the state and input spaces. For this, let V be an (A,
im B)-controlled invariant. Also, let nr := dim Vreach(V), nV := dim V , and nS := dim Smin(A, V , im B).
Define n× n and m×m nonsingular matrices T = [T1 T2 T3 T4] and U = [U1 U2], respectively, as
follows: Choose U1, T1, and T2, so that im BU1 = V ∩ im B, im T1 = Vreach(V), and im

[
T1 T2

]= V .
Also, choose U2, so that im B [U1 U2]= im B. Noting that Vreach(V)= V ∩Smin(A, V , im B) (see Equa-
tions 5.27 and 5.30; let K= V), select T3 satisfying im [T1 T3]= Smin(A, V , im B) with im BU2 ⊂ im T3.
Then, we have

Ã := T−1AT =

⎡
⎢⎢⎣

Ã11 Ã12 Ã13 Ã14

0 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34

0 0 Ã43 Ã44

⎤
⎥⎥⎦, (5.36)

B̃ := T−1BU =

⎡
⎢⎢⎣

B̃11 0
0 0
0 B̃32

0 0

⎤
⎥⎥⎦. (5.37)

Here, Ã is divided into blocks in accordance with the ranks of T1, T2, T3, T4, that is, Ã11, Ã12, . . . , Ã44

respectively have dimensions n1× n1, n1× n2, . . . , n4× n4, where n1 := rankT1 = nr , n2 := rankT2 =
nV − nr , . . . , and B̃ is divided similarly, for example, B̃11 and B̃32 have dimensions n1×m1 and n3×m2,
where m1 and m2 are, respectively, the numbers of columns of U1 and U2. Note that the zero matrix in the
second block row of Ã is due to the following facts: Vreach(V) is (A+BF)-invariant for every F satisfying
(A+BF)V ⊂ V , but the second block row of B̃ is zero (which makes F ineffective in the block). The fourth
block row of Ã has zero blocks since V is (A+BF)-invariant for any F defined above, but the fourth block
row of B̃ is zero. Now, using F satisfying (A+BF)V ⊂ V , consider A+BF with respect to the new bases.
Noting that Ã31+ B̃32F̃21 = 0 and Ã32+ B̃32F̃22 = 0 by construction, we obtain

Ã+ B̃F̃ = T−1(A+BF)T =

⎡
⎢⎢⎣

Ã11+ B̃11F̃11 Ã12+ B̃11F̃12 Ã13+ B̃11F̃13 Ã14+ B̃11F̃14

0 Ã22 Ã23 Ã24

0 0 Ã33+ B̃32F̃23 Ã34+ B̃32F̃24

0 0 Ã43 Ã44

⎤
⎥⎥⎦ (5.38)

where

F̃ =
[

F̃11 F̃12 F̃13 F̃14

F̃21 F̃22 F̃23 F̃24

]
, Ã := T−1AT , B̃ := T−1BU , and F̃ := U−1FT .
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Note that Ã22 cannot be altered by any linear state feedback satisfying (A+BF)V ⊂ V , that is, the
(2,2)-block of Ã+ B̃F̃ remains Ã22 for any real F̃ satisfying

(Ã+ B̃F̃)im

⎡
⎢⎢⎣

In1 0
0 In2

0 0
0 0

⎤
⎥⎥⎦⊂ im

⎡
⎢⎢⎣

In1 0
0 In2

0 0
0 0

⎤
⎥⎥⎦, (5.39)

where 0’s are zero matrices with suitable dimensions. Thus,

Lemma 5.14:

σ((A+BF)|V/Vreach(V))= σ(Ã22) (5.40)

(i.e., fixed) for all F satisfying (A+BF)V ⊂ V . Here, (A+BF)|V/Vreach(V) is the induced map of A+BF
restricted to V/Vreach(V).

Note also that by construction the pair (A11, B11) is reachable. Hence, by Theorem 5.2, we have

Lemma 5.15:

σ( (A+BF)|Vreach(V))= σ(Ã11+ B̃11F̃11) can be freely assigned by an appropriate choice of F satisfying
(A+BF)V ⊂ V (or F̃ satisfying Equation 5.39).

The eigenvalues of (A+BF)|V/Vreach(V) are called the internal unassignable eigenvalues of V .
The internal unassignable eigenvalues of Vmax(A, im B, ker C) are called invariant zero’s of the system
Σ:=[A, B, C] (or triple (A, B, C)), which are equal to the transmission zero’s of C(sI−A)−1B if (A, B) is
reachable and (A, C) is observable. Table 5.1 shows how freely the eigenvalues can be assigned for A+BF
by choosing F satisfying (A+BF)V ⊂ V given an (A, im B)-controlled invariant. Theorems 5.11 and 5.12
given below easily follow from the above lemmas and Table 5.1.

Theorem 5.11:

An (A, im B)-controlled invariant V is internally stabilizable if and only if all its internal unassignable
eigenvalues have negative real parts.

TABLE 5.1 Spectral Assignability of (A+BF) |W , Given an (A, im B)-Controlled Invariant V

W X/(V +Vreach) (V +Vreach)/V V/Vreach(V) Vreach(V)

Assignability Fixed Free Fixed Free

Note: The table indicates that σ((A+BF) |X/(V +Vreach)) is fixed for all F satisfying (A+BF)V ⊂
V , σ((A+BF) | (V +Vreach)/V) is freely assignable (up to a symmetric set) by choosing an
appropriate F satisfying (A+BF)V ⊂ V , and so on.
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Theorem 5.12:

An (A, im B)-controlled invariant V is externally stabilizable if and only if V +Vreach is externally stable.

Remark

V +Vreach is A-invariant since A(V +Vreach)= AV +AVreach = V + im B+Vreach = V +Vreach.

Lemma 5.16:

If the pair (A, B) is stabilizable, then all (A, im B)-controlled invariants are externally stabilizable.

Remark

The matrix F can be defined independently on V and on X/V .
Dual to the above internal and external stabilizabilities for a controlled invariant are, respectively,

external and internal stabilizabilities for a conditioned invariant which will be defined below.

Definition 5.8:

An (A, ker C)-conditioned invariant S is said to be externally stabilizable if there exists an n× p real matrix
G satisfying (A+GC)S ⊂ S and (A+GC)|X/S is stable.

Definition 5.9:

An (A, ker C)-conditioned invariant S is said to be internally stabilizable if there exists an n× p real matrix
G satisfying (A+GC)S ⊂ S and (A+GC)|S is stable.

How freely the eigenvalues can be chosen for A+GC by means of G is given in Table 5.2, from which
necessary and sufficient conditions of the stabilizabilities follow easily. (See Basile and Marro (1992) for
further discussions on the topic of the internal and external stabilizabilities.)

5.8 Disturbance Localization (or Decoupling) Problem

One of the first problems to which the geometric notions were applied is the problem of disturbance
localization (or disturbance decoupling). As we see below, the solution to the problem is remarkably
simple in geometric terms. The solution and analysis of this problem can also be used to solve other

TABLE 5.2 Spectral Assignability of (A+GC) |W , Given an (A, ker C)-Conditioned Invariant S

W X/Ssh,max(A, ker C, S) Ssh,max(A, ker C, S)/S S/S ∩Sunobs S ∩Sunobs

Assignability Free Fixed Free Fixed

Note: The table indicates that σ((A+BF)|X/Ssh,max(A, ker C, S)) is freely assignable (up to a symmetric set) by choosing
an appropriate G satisfying (A+GC)S ⊂ S, σ((A+BF)|Ssh,max(A, ker C, S)/S) is fixed for all G satisfying (A+
GC)S ⊂ S, and so on.
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more involved problems (e.g., model following, decoupling, and disturbance decoupling in decentralized
systems).

We will be concerned with a time-invariant linear control systemΣd :=[A, B, D, C] described by

ẋ(t)= Ax(t)+Bu(t)+Dw(t), x(0)= xo, (5.41)

y(t)= Cx(t), (5.42)

where the column vectors x(t) ∈ X := Rn, u(t) ∈ Rm, y(t) ∈ Rp, and w(t) ∈ Rmd are, respectively, the state,
input, output, and unknown disturbance of the system at time t ≥ 0, the vector xo ∈ Rn is the initial state
and the real matrices A, B, C, and D have consistent dimensions. We assume that u(t) and w(t) are
piecewise continuous. Here, w(t) is called a “disturbance” and it can neither be measured nor controlled.
The above notation will be standard in the sequel. If we apply the linear state feedback control law

u(t)= Fx(t) (5.43)

to the above system, we obtain the state equation

ẋ(t)= (A+BF)x(t)+Dw(t), x(0)= xo, (5.44)

where F is an m× n real matrix. Our problem is to choose the control law (Equation 5.43) so that
the disturbance doses not affect the output in the resulting closed-loop system given by Equations 5.44
and 5.42, that is, so that y(t)= 0 for all t ≥ 0 for any w(t), t ≥ 0, provided x(0)= xo = 0. By virtue of
Theorem 5.1, note that at any time t ≥ 0 all the possible states due to all the admissible w(τ), 0≤ τ< t
are characterized by

R(A+BF, im D) := im D+ (A+BF) im D+ · · ·+ (A+BF)n−1 im D. (5.45)

Therefore, in algebraic terms, the above problem can be restated as

Problem 5.1: Disturbance Localization (or Disturbance Decoupling) Problem

Given n× n, n×m, n×md, and p× n real matrices A, B, D, and C, find an m× n real matrix F satisfying

R(A+BF, im D)⊂ ker C. (5.46)

It is not always possible to find F satisfying Inclusion 5.46. The following theorem gives the necessary
and sufficient condition for the existence of such an F in terms of given matrices. (See Basile and Marro
(1992, Section 4.2) and Wonham (1985, Section 4.3).)

Theorem 5.13:

There exists an m× n real matrix F satisfying Inclusion 5.46 if and only if

im D ⊂ Vmax(A, im B, ker C) (5.47)

Proof. [Only if part.] Trivially, im D ⊂R(A+BF, im D). Since R(A+BF, im D) is an (A+BF)-
invariant, it is an (A, im B)-controlled invariant in view of Theorem 5.5, and, by assumption, is contained
in ker C. Therefore, R(A+BF, im D)⊂ Vmax(A, im B, ker C). Thus, Equation 5.47 holds.
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[If part] Let F be such that

(A+BF)Vmax(A, im B, ker C)⊂ Vmax(A, im B, ker C). (5.48)

Inclusion 5.47 implies, consecutively, (A+BF)im D ⊂ Vmax(A, im B, ker C), . . . , (A+BF)n−1im D ⊂
Vmax(A, im B, ker C). Therefore, R(A+BF, im D)⊂ Vmax(A, im B, ker C)⊂ ker C. QED

Remark

Let n∗ := dim Vmax(A, im B, ker C), and let T be a real nonsingular matrix for which the first n* columns
form a basis of Vmax(A, im B, ker C). Then, Inclusion 5.47 means that, with an m× n real matrix F
satisfying Inclusion 5.48, the coordinate transformation x(t)= Tx̃(t) transforms Equations 5.44 and 5.42
to [ ˙̃x1(t)

˙̃x2(t)

]
=
[

Ã11+ B̃1F̃1 Ã12+ B̃1F̃2

0 Ã22+ B̃2F̃2

] [
x̃1(t)
x̃2(t)

]
+
[

D̃1

0

]
w(t) (5.49)

and

y(t)= [0 C̃2
] [x̃1(t)

x̃2(t)

]
, (5.50)

where
[
F̃1 F̃2

]= FT . Clearly, w(t) does not affect x̃2(t); hence, no effect on y(t).

5.9 Disturbance Localization with Stability

In the previous section, the disturbance localization problem without additional constraints was solved.
In this section, the problem is examined with an important constraint of stability. For the system
Σd :=[A,B,D,C] described by Equations 5.44 and 5.42, or for the matrices A, B, D, and C, we have the
following.

Problem 5.2: Disturbance Localization Problem with Stability

Find (if possible) an m× n real matrix F, such that (1) Inclusion 5.46 holds and (2) A+BF is stable, that is,
the eigenvalues of A+BF have negative real parts.

Trivially, for condition (2) to be true, it is necessary that the pair (A, B) is stabilizable. We have (see
Basile and Marro, 1992, Section 4.2)

Theorem 5.14:

Let A, B, D, and C be as before, and assume that the pair (A, B) is stabilizable. Then, the distur-
bance localization problem with stability has a solution if and only if (1) Inclusion 5.47 holds and (2)
Vsb,min(A, im B+ im D, ker C) is an internally stabilizable (A, im B)-controlled invariant.

Remark

An alternative condition can be found in Wonham (1985, Theorem 5.8).
We will first prove that the above two conditions are sufficient. This part of the proof leads to a

constructive procedure to find a matrix F which solves the problem.
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Sufficiency proof of Theorem 5.14. Thecondition(2)meansthat there isarealmatrixF, suchthat (A+BF)
Vsb,min(A, im B+ im D, ker C)⊂ Vsb,min(A, im B+ im D, ker C) and Vsb,min(A, im B+ im D, ker C) is
internally stable. Since the pair (A, B) is stabilizable, Vsb,min(A, im B+ im D, ker C) is externally stabi-
lizable by virtue of Lemma 5.16. Since the internal stability of Vsb,min(A, im B+ im D, ker C) (with respect
to A+BF) is determined by F|Vsb,min(A, im B+ im D, ker C) and since the external stability depends only
on F|X/Vsb,min(A, im B+ im D, ker C), the matrix F can be chosen so that the controlled invariant is
both internally and externally stable, hence, A+BF is stable. It remains to show that Equation 5.46 holds.
Since Vsb,min(A, im B+ im D, ker C) is self-bounded with respect to ker C, and since Equation 5.47 holds,
we have

Vsb,min(A, im B+ im D, ker C)⊃ (im B+ im D)∩Vmax(A, im B+ im D, ker C)

⊃ (im B+ im D)∩Vmax(A, im B, ker C)

= (im B∩Vmax(A, im B, ker C))+ im D ⊃ im D.

This inclusion and the (A+BF)-invariance of Vsb,min(A, im B+ im D, ker C) imply R(A+BF, im D)⊂
Vsb,min(A, im B+ im D, ker C)⊂ ker C. QED

Remark

In the remark after Theorem 5.13, redefine n∗ := dim Vsb,min(A, im B+ im D, ker C). Then, σ(A+
BF|Vsb,min(A, im B+ im D, ker C))= σ (Ã11+ B̃1F̃1

)
and σ(A+BF|X/Vsb,min(A, im B+ im D, ker C))=

σ
(
Ã22+ B̃2F̃2

)
. Therefore, we choose F̃1 and F̃2 so that Ã11+ B̃1F̃1 and Ã22+ B̃2F̃2 are stable and

Ã21+ B̃2F̃1 = 0. Then, the desired F is given by F = [F̃1 F̃2
]

T−1.
To prove the necessity we use the following

Lemma 5.17:

If there exists an internally stabilizable (A, im B)-controlled invariant V satisfying V ⊂ ker C and im D ⊂ V ,
then Vsb,min(A, im B+ im D, ker C) is an internally stabilizable (A, im B)-controlled invariant, that is, it is
(A+BF)-invariant and A+BF|Vsb,min(A, im B+ im D, ker C) is stable for some real matrix F.

Proof. The lemma follows from Schumacher (1983, Propositions 3.1 and 4.1). It is also an immediate
consequence of Lemma 4.2.1 in Basile and Marro (1992).

Necessity proof of Theorem 5.14. Suppose that the problem has a solution, that is, there is a real matrix F
such that A+BF is stable and V :=R(A+BF, im D)⊂ ker C. Clearly, im D ⊂ V . Also, V is an (A+BF)-
invariant contained in ker C. Hence, V ⊂ Vmax(A, im B, ker C). Therefore, condition (i) holds. To show
condition (ii), note that V is internally (and externally) stable with respect to A+BF, V ⊂ ker C, and
im D ⊂ V . Condition (ii) follows by Lemma 5.17. QED

5.10 Disturbance Localization by Dynamic Compensator

In the previous section, we used the (static) state-feedback control law u(t)= Fx(t) to achieve disturbance
rejection and stability. In this section, we use measurement output feedback with a dynamic compensator
Σc placed in the feedback loop to achieve the same objectives.

More specifically, we are concerned with the systemΣdm := [A, B, D, C, Cmeas] described by

ẋ(t)= Ax(t)+Bu(t)+Dw(t), x(0)= xo (5.41)



�

�

�

�

� �

Geometric Theory of Linear Systems 5-21

y(t)= Cx(t), (5.42)

ymeas(t)= Cmeasx(t), (5.51)

where ymeas(t) ∈ Ymeas := Rpm stands for a measurement output and Cmeas is a pm× n real matrix. Define
the dynamic compensatorΣc := [Ac , Bc , Cc , Kc] by

ẋc(t)= Acxc(t)+Bcymeas(t), xc(0)= xco, (5.52)

u(t)= Ccxc(t)+Kcymeas(t), (5.53)

where xc(t), xco ∈ Xc := Rnc , and Ac , Bc , Cc , and Kc are, respectively, nc × nc , nc × pm, m× nc , m× pm real
matrices. We wish to determine Ac , Bc , Cc , and Kc such that (1) y(t)= 0 for all t ≥0 for any (admissible)
w(t), t ≥ 0 provided xo = 0 and xco = 0, and (2) x(t) and xc(t) converges to zero as t →+∞ for all xo ∈ X
and xco ∈ Xc . For this, it is convenient to introduce the extended state defined by

x̂ :=
[

x
xc

]
∈ X̂ := X ×Xc = Rn+nc ,

where x ∈ X and xc ∈ Xc . Then, the overall system (includingΣdm andΣc) can be rewritten as

˙̂x(t)= Âx̂(t)+ D̂w(t), x̂(0)= x̂o, (5.54)

y(t)= Ĉx̂(t), (5.55)

where x̂o :=
[
x′o x′co

]′
and the matrices are defined by

Â :=
[

A+BKcCmeas BCc

BcCmeas Ac

]
, D̂ :=

[
D
0

]
, Ĉ := [C 0

]
. (5.56)

Remark

Define

Âo : =
[

A 0
0 0

]
, B̂o :=

[
B 0
0 Inc

]
, Ĉmeas :=

[
Cmeas 0

0 Inc

]
,

K̂c :=
[

Kc Cc

Bc Ac

]
. (5.57)

Then, it is easy to verify that

Â= Âo+ B̂oK̂cĈmeas. (5.58)

(See Basile and Marro (1992, Section 5.1) and Willems and Commault (1981).)

Remark

An important special case ofΣc is a state estimate feedback through an observer. More specifically, let L1

and L2satisfy

L1Cmeas+ L2 = In, (5.59)

and consider an asymptotic observer (or state estimator) described by

ẋc(t)= Axc(t)+Bu(t)+G{Cmeasxc(t)− ymeas(t)}, xc(0)= xco, (5.60)

xest(t)= L2xc(t)+ L1ymeas(t), (5.61)
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where xest(t) ∈ Rn is an “estimate” of x(t) (under proper conditions) and G, L1, and L2 are real matrices
with appropriate dimensions. If we use a state estimate feedback law

u(t)= Fxest(t) (5.62)

with an m× n real matrix F, then the overall system reduces to Equations 5.54 and 5.55, where Â, D̂, and
Ĉ are given, instead of Equation 5.56, by

Â :=
[

A+BFL1Cmeas BFL2

(BFL1−G)Cmeas A+BFL2+GCmeas

]
, D̂ :=

[
D
0

]
, Ĉ := [C 0

]
. (5.63)

It should also be noted that, if we apply the coordinate transformation

x̂ =
[

In 0
In −In

]
x̄,

Equations 5.54 and 5.63 can be rewritten as

˙̄x(t)= Āx̄(t)+ D̄w(t), x̄(0)= x̄o, (5.64)

where

Ā :=
[

A+BF −BFL2

0 A+GCmeas

]
, D̄ :=

[
D
D

]
, (5.65)

from which it is apparent that F and G can be selected independently (based on Theorem 5.2 and its dual)
to make Ā stable, that is, the separation property holds. (See Basile and Marro (1992, Sections 3.4.2, 5.1.2)
for further discussions.)

With the above notation the problem can be restated in geometric terms as:

Problem 5.3: Disturbance Localization Problem with Stability
by Dynamic Compensator

Find (if possible) a number nc(= dim Xc) and real matrices Ac , Bc , Cc , and Kc of dimensions nc × nc , nc ×
pm, m× nc, and m× pm, respectively, such that

(i) R(Â, im D̂)⊂ ker Ĉ, (5.66)

and
(ii) Â is stable. (5.67)

Remark

Noting that R(Â, im D̂) is the minimum Â-invariant containing im D̂, it is easy to see that condition (i)
is equivalent to the following condition:

(i)′ there is an Â-invariant V̂ satisfying

im D̂ ⊂ V̂ ⊂ ker Ĉ. (5.68)

The conditions under which the above problem is solvable are given by the following theorems.

Theorem 5.15:

Let (A, B) be stabilizable, and also let (A, Cmeas) be detectable. Then, the disturbance localization problem
with stability by dynamic compensator has a solution if and only if there exists an internally stabilizable
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(A, im B)-controlled invariant V and an externally stabilizable (A, ker Cmeas)-conditioned invariant S
satisfying the condition

im D ⊂ S ⊂ V ⊂ ker C. (5.69)

Proof. See Basile and Marro (1992, Section 5.2) and Willems and Commault (1981). QED

The above condition is an existence condition and it is not convenient for testing. The following
theorem (see Theorem 5.2–2 in Basile and Marro, 1992) gives constructive conditions and they can be
readily tested.

Theorem 5.16:

Assume that (A, B) is stabilizable and (A, Cmeas) is detectable. The disturbance localization problem with
stability by dynamic compensator has a solution if and only if the following conditions hold:

i.

Smin(A, ker Cmeas, im D)⊂ Vmax(A, im B, ker C), (5.70)

ii. Smin(A, ker Cmeas, im D)+Vmax(A, im D, ker C ∩ ker Cmeas) is an externally stabilizable
(A, ker Cmeas)-conditioned invariant

iii. Vsb,min(A, im B+ im D, ker C)+Vmax(A, im D, ker C ∩ ker Cmeas) is an internally stabilizable
(A, im B)-controlled invariant.

Remark

The subspaces Smin(A, ker Cmeas, im D)+Vmax(A, im D, ker C ∩ ker Cmeas) and Vsb,min(A, im B+
im D, ker C)+Vmax(A, im D, ker C ∩ ker Cmeas) defined above are, respectively, an (A, ker Cmeas)-
conditioned invariant and an (A, im B)-controlled invariant. (See Lemma 5.18 at the end of this section
for the proof the above remark.)

Proof of Necessity of Theorem 5.16. See Basile and Marro (1992, Section 5.2) and Basile et al. (1986).
QED

Proof of Sufficiency for Theorem 5.16. Let

S := Smin(A, ker Cmeas, im D)+Vmax(A, im D, ker C ∩ ker Cmeas), (5.71)

V := Vsb,min(A, im B+ im D, ker C)+Vmax(A, im D, ker C ∩ ker Cmeas). (5.72)

We will show that the above S and V satisfy the conditions of Theorem 5.15. By assumptions (ii)
and (iii), S is externally stabilizable and V is internally stabilizable. By Inclusion 5.70 and Equation 5.71,
trivially im D ⊂ S. By Equation 5.72, V ⊂ ker C trivially also. To see the validity of the middle inclu-
sion of Inclusion 5.69, that is, S ⊂ V , it suffices to show Smin(A, ker Cmeas, im D)⊂ Vsb,min(A, im B+
im D, ker C). For this, first observe that, by Inclusion 5.70, we have im D ⊂ Vmax(A, im B, ker C), which
implies Vmax(A, im B+ im D, ker C)= Vmax(A, im B, ker C) since trivially Vmax(A, im B+ im D, ker C)⊃
Vmax(A, im B, ker C) and AVmax(A, im B+ im D, ker C) ⊂ Vmax(A, im B+ im D, ker C)+ im B+ im D =
Vmax(A, im B+ im D, ker C)+ im B. In addition, Inclusion 5.70 implies Smin(A, ker Cmeas, im D)⊂ ker C,
which leads to Smin(A, ker Cmeas, im D)= Smin(A, ker Cmeas ∩ ker C, im D)⊂ Smin(A, ker C, im D)⊂
Smin(A, ker C, im B+ im D).
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By using Inclusion 5.70, the above facts, and Theorem 5.7, we have

Smin(A, ker Cmeas, im D)⊂ Vmax(A, im B, ker C)∩Smin(A, ker C, im B+ im D)

= Vmax(A, im B+ im D, ker C)∩Smin(A, ker C, im B+ im D)

= Vsb,min(A, im B+ im D, ker C).

(5.73)

Thus, Inclusion 5.69 holds. QED

Procedure for Finding Ac, Bc, Cc, and Kc

Define S and V by Equations 5.71 and 5.72. Let L be a subspace of Rn satisfying

L⊕ (S ∩ ker Cmeas)= S. (5.74)

Clearly,

L∩ ker Cmeas = {0}. (5.75)

Now let Lcomp be a subspace satisfying L⊕Lcomp = Rn and Lcomp ⊃ ker Cmeas, and define the projec-
tion L2 on Lcomp along L. Select L1 such that

L1Cmeas = In− L2. (5.76)

Such an L1 exists since ker(In− L2)= Lcomp ⊃ ker Cmeas.
Choose real matrices F and G so that

(A+BF)V ⊂ V , (5.77)

(A+GCmeas)S ⊂ S, (5.78)

and A+BF and A+GCmeas are stable. Then, use Equations 5.60 through 5.62 as a dynamic compensator,
or equivalently, set Ac := A+BFL2+GCmeas, Bc := BFL1−G, Cc :=FL2 and Kc :=FL1 in Equations 5.52
and 5.53. From Equation 5.65, the overall system is clearly stable (and so is Â). It can also be shown (see
Basile and Marro, 1992; Lemmas 5.1.1 and 5.1.2, and Section 5.2.1) that

V̂ :=
{[

v
v− s

]
: v ∈ V , s ∈ S

}

is Â-invariant and satisfies Equation 5.68.

Lemma 5.18:

The subspaces S defined by Equations 5.71 is an (A, ker Cmeas)-conditioned invariant; and, if Inclusion 5.70
holds, then V defined by Equation 5.72 is an (A, im B)-controlled invariant.

Proof. Since Vmax(A, im D, ker C ∩ ker Cmeas)⊂ ker Cmeas, by the last equality of Lemma 5.2 we have
S ∩ ker Cmeas = Smin(A, ker Cmeas, im D)∩ ker Cmeas+Vmax(A, im D, ker C ∩ ker Cmeas). Then, it is easy
to see A(S ∩ ker Cmeas)⊂ S+ im D. But, im D ⊂ Smin(A, ker Cmeas, im D)⊂ S. Thus, A(S ∩ ker Cmeas)⊂
S. To prove that V is an (A, im B)-controlled invariant, first it is easy to show AV ⊂ V + im B+ im D.
But, by Inclusion 5.73, im D ⊂ Vsb,min(A, im B+ im D, ker C)⊂ V . Thus, AV ⊂ V + im B. QED
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5.11 Conclusion

An introduction to the geometric method (often called geometric approach) has been provided. The basic
tools have been described and applied to the disturbance localization (also called disturbance decouping)
problems to demonstrate the use of the tools. Numerous research articles were published on the subject
for the last 40 years. Some are included in the list of references in this chapter and a great many others can
be found in the books and articles already referenced in this chapter. Reports for practical applications
can also be found in the literature, for example, Takamatsu et al. (1979); Massoumnia et al. (1989);
Prattichizzott et al. (1997); Barbagli et al. (1998); and Marro and Zattoni (2004). This chapter has dealt
with continuous-time systems. Many articles in the literature treat discrete-time systems, for example,
Akashi and Imai (1979), Hamano and Basile (1983), and Marro and Zattoni (2006).

The notion of controlled invariant subspaces has been extended to “almost” controlled invariant
subspaces, to which the state trajectory can stay arbitrary close by a suitable choice of inputs, possibly
with high-gain feedback (Willems, 1981). The theory involves use of distributions for inputs. The dual
notion of “almost” conditionally invariant subspaces has also been introduced (Willems, 1982). The
geometric approach has also been extended to more general or different classes of linear systems, for
example, 2D systems (Conte and Perdon, 1988), systems over a ring including delay differential systems
(Conte and Perdon, 1998), and periodic systems (Longhi and Monteriù, 2007). The geometric notions for
linear systems have been extended to nonlinear systems (controlled invariant distributions, in particular)
using differential geometric tools and problems such as disturbance localization and output decoupling
have been studied in the literature (see Nijmeijer and van der Schaft (1990), Isidori (1995), and Mattone
and De Luca (2006), for instance). A 40-year historical perspective of the development of geometric
methods for linear and nonlinear systems with an insight into the future can be found in Marro (2008).
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6.1 Introduction

For control system design, it is useful to characterize multi-input, multi-output, time-invariant linear
systems in terms of their transfer function matrices. The transfer function matrix of a real m-input,
p-output continuous-time system is a (p×m) matrix-valued function G(s), where s is the Laplace trans-
form variable; the corresponding object in discrete time is a (p×m) matrix-valued function G(z), where
z is the z-transform variable. Things are particularly interesting when G(s) or G(z) is a proper rational
matrix function of s or z, that is, when every entry in G(s) or G(z) is a ratio of two real polynomials in s
or z whose denominator’s degree is at least as large as its numerator’s degree. In this case, the system has
state space realizations of the form

ẋ(t)= Ax(t)+Bu(t)

y(t)= Cx(t)+Du(t)

or

x(k+ 1)= Ax(k)+Bu(k)

y(k)= Cx(k)+Du(k),

where the state vector x takes values in Rn. Any such realization defines a decomposition G(s)=
C(sIn−A)−1B+D or G(z)= C(zIn−A)−1B+D for the system’s transfer function matrix. A realiza-
tion is minimal when the state vector dimension n is as small as it can be; the MacMillan degree δM (G(s))
or δM (G(z)) is the value of n in a minimal realization. A system’s MacMillan degree is a natural candidate
for the “order of the system.”

It is not easy to construct minimal realizations for a multi-input, multi-output system with an arbitrary
proper rational transfer function matrix; even determining such a system’s MacMillan degree requires
some effort. Circumstances are simpler for single-input, single-output (SISO) systems. Consider, for
example, a real SISO continuous-time system with proper rational transfer function g(s). We can express

6-1
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g(s) as a ratio

g(s)= p(s)

q(s)
, (6.1)

where q(s) is a polynomial of degree n, p(s) is a polynomial of degree at most n, and p(s) and q(s) are
coprime, which is to say that their only common factors are nonzero real numbers. The coprimeness of
p(s) and q(s) endows the fractional representation Equation 6.1 with a kind of irreducibility; furthermore,
Equation 6.1 is “minimal” in the sense that any other factorization g(s)= p̂(s)/q̂(s) features a denominator
polynomial q̂(s) whose degree is at least n.

The MacMillan degree δM (g(s)) is precisely n, the degree of q(s) in Equation 6.1. To see that n≤
δM (g(s)), suppose (A, B, C, D) are the matrices in a minimal realization for g(s). Set n̂= δM (g(s)), so A
is (n̂× n̂). The matrix (sIn̂−A)−1 has rational entries whose denominator polynomials have degrees at
most n̂. Multiplying on the left by Ĉ and on the right by B̂ and finally adding D̂ results in a rational
function whose denominator degree in lowest terms is at most n̂. This rational function, however, is g(s),
whose lowest-terms denominator degree is n, whence it follows that n≤ n̂.

To finish showing that δM (g(s))= n, it suffices to construct a realization whose A-matrix is (n× n).
There are many ways to do this; here is one. Begin by setting d = lim|s|→∞ g(s); d is well-defined because
g(s) is proper. Then

g(s)= p̃(s)

q(s)
+ d,

where the degree of p̃(s) is at most n− 1. Cancel the coefficient of sn from q(s) and p̃(s) so that

q(s)= sn+ q1sn−1+ · · ·+ qn−1s+ qn

and

p̃(s)= γ1sn−1+ γ2sn−2+ · · ·+ γn−1s+ γn.

It is not hard to verify that g(s)= C(sIn−A)−1B+D when

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 0 . . 0
0 0 0 1 . . 0
. . . . . . .
. . . . . 1 0
0 0 . . . 0 1
−qn −qn−1 . . . −q2 −q1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
.
.
.
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.2)

and

C = [γn γn−1 . . . γ1
]

, D = d. (6.3)

To summarize the foregoing discussion, if g(s) is the transfer function of a real time-invariant
continuous-time SISO linear system, and g(s) is proper rational, then g(s) possesses a fractional
representation Equation 6.1 that

• is irreducible because p(s) and q(s) are coprime, or, equivalently.
• is minimal because the degree of q(s) is as small as it can be in such a representation.

Moreover,

• the degree of q(s) in any minimal and irreducible representation Equation 6.1 is equal to the
MacMillan degree of g(s).
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Replacing s with z results in identical assertions about discrete-time SISO systems.
Our goal in what follows will be to generalize these results to cover continuous-time, multi-input, multi-

output (MIMO) systems with (p×m) proper rational transfer function matrices G(s). The development
is purely algebraic and applies equally well to discrete-time MIMO systems with proper rational transfer
function matrices G(z); simply replace s with z throughout. In Section 6.2, we present MIMO versions of
the fractional representation Equation 6.1, complete with appropriate matrix analogues of irreducibility
and minimality. In Section 6.3, we relate the results of Section 6.2 to the MacMillan degree of G(s). We
obtain as a bonus a minimal realization of G(s) that turns out to be the MIMO analogue of the realization
in Equations 6.2 and 6.3. In Section 6.4 we prove a well-known formula for the MacMillan degree of
G(s) and discuss briefly some connections between the material in Section 6.2 and the theory of ARMA
models for MIMO systems, with a nod toward some modern results about stable coprime factorization
and robust control. The algebra we will be employing throughout, while tedious at times, is never terribly
abstract, and much of it is interesting in its own right.

6.2 Polynomial Matrix Fraction Descriptions

We begin by establishing some basic terminology. A real polynomial matrix is a matrix each of whose
entries is a polynomial in s with real coefficients. We often omit the adjective “real” but assume, unless
stated otherwise, that all polynomial matrices are real. One can perform elementary operations on poly-
nomial matrices such as addition and multiplication using the rules of polynomial algebra along with
the standard formulas that apply to matrices of numbers. Likewise, one can compute the determinant
det F(s) of a square polynomial matrix F(s) by any of the usual formulas or procedures. All the familiar
properties of the determinant hold for polynomial matrices, for example, the product rule

det[F1(s)F2(s)] = [det F1(s)][det F2(s)], (6.4)

which applies when F1(s) and F2(s) are the same size.
There are two shades of invertibility for square polynomial matrices.

Definition 6.1:

A square polynomial matrix F(s) is said to be nonsingular if, and only if, det F(s) is a nonzero polynomial
and unimodular if, and only if, det F(s) is a nonzero real number.

Thus if F(s) is nonsingular, we are free to compute F−1(s) using the adjugate-determinant formula for
the inverse [12], namely,

F−1(s)= 1

det F(s)
adjF(s).

The (i, j) entry of adjF(s) is (−1)i+j times the determinant of the matrix obtained from F(s) by elim-
inating its jth row and ith column. F−1(s) is in general a rational matrix function of s. If F(s) is not
just nonsingular but also unimodular, then F−1(s) is actually a polynomial matrix; thus unimodular
polynomial matrices are “polynomially invertible.”

From Definition 6.1 along with the product rule Equation 6.4, the product of two nonsingular poly-
nomial matrices is nonsingular and the product of two unimodular polynomial matrices is unimodular.
Furthermore, we have the following “pointwise” characterization of unimodularity: a square polynomial
matrix F(s) is unimodular precisely when F(so) is an invertible matrix of complex numbers for every
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complex number so. This statement follows from the fundamental theorem of algebra, which implies that
if det F(s) is a polynomial of nonzero degree, then det F(so)= 0 for at least one complex number so.

As an example, consider the two polynomial matrices

F1(s)=
[

s+ 2 s+ 2
s+ 1 s+ 2

]
and F2(s)=

[
s+ 2 s+ 4

s s+ 2

]
.

F2(s) is unimodular and F1(s) is merely nonsingular; in fact,

F−1
1 (s)=

⎡
⎣ 1 −1

− s+ 1

s+ 2
1

⎤
⎦ and F−1

2 (s)= 1

4

[
s+ 2 −s− 2
−s s+ 2

]
.

We are ready to define the matrix generalization(s) of the fractional representation Equation 6.1.

Definition 6.2:

Let G(s) be a real (p×m) proper rational matrix function of s.

• A right matrix fraction description, or right MFD, of G(s) is a factorization of the form G(s)=
P(s)Q−1(s), where P(s) is a real (p×m) polynomial matrix and Q(s) is a real (m×m) nonsingular
polynomial matrix.

• A left matrix fraction description, or left MFD, of G(s) is a factorization of the form G(s)=
Q−1

L (s)PL(s), where PL(s) is a real (p×m) polynomial matrix and QL(s) is a real (p× p) nonsingular
polynomial matrix.

It is easy to construct left and right matrix fraction descriptions for a given (p×m) proper rational
matrix G(s). For instance, let q(s) be the lowest common denominator of the entries in G(s). Set P(s)=
q(s)G(s); then P(s) is a polynomial matrix. Setting Q(s)= q(s)Im makes P(s)Q−1(s) a right MFD for G(s);
setting QL(s)= q(s)Ip makes Q−1

L (s)P(s) a left MFD of G(s).
Next we introduce matrix versions of the notions of irreducibility and minimality associated with the

fractional representation Equation 6.1. First consider minimality. Associated with each right (or left)
MFD of G(s) is the “denominator matrix” Q(s) (or QL(s)); the degree of the nonzero polynomial det Q(s)
(or det QL(s)) plays a role analogous to that of the degree of the polynomial q(s) in Equation 6.1.

Definition 6.3:

Let G(s) be a real (p×m) proper rational matrix.

• A right MFD P(s)Q−1(s) of G(s) is minimal if, and only if, the degree of det Q̂(s) in any other right
MFD P̂(s)Q̂−1(s) of G(s) is at least as large as the degree of det Q(s).

• A left MFD Q−1
L (s)PL(s) of G(s) is minimal if, and only if, the degree of det Q̂L(s) in any other left

MFD Q̂−1
L (s)P̂L(s) of G(s) is at least as large as the degree of det QL(s).

To formulate the matrix version of irreducibility, we require the following analogues of the coprimeness
condition on the polynomials p(s) and q(s) appearing in Equation 6.1.
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Definition 6.4:

• Two polynomial matrices P(s) and Q(s) possessing m columns are said to be right coprime if, and only
if, the following condition holds: If F(s) is an (m×m) polynomial matrix so that for some polynomial
matrices P̂(s) and Q̂(s), P(s)= P̂(s)F(s) and Q(s)= Q̂(s)F(s), then F(s) is unimodular.

• Two polynomial matrices PL(s) and QL(s) possessing p rows are said to be left coprime if, and only
if, the following condition holds: If F(s) is a (p× p) polynomial matrix so that for some polynomial
matrices P̂L(s) and Q̂L(s), P(s)= F(s)P̂L(s) and QL(s)= F(s)Q̂L(s), then F(s) is unimodular.

Saying that two polynomial matrices are right (or left) coprime is the same as saying that they have no
right (or left) common square polynomial matrix factors other than unimodular matrices. In this way,
unimodular matrices play a role similar to that of nonzero real numbers in the definition of coprimeness
for scalar polynomials. Any two unimodular matrices of the same size are trivially right and left coprime.
Similarly, any (r× r) unimodular matrix is right coprime with any polynomial matrix that has r columns
and left coprime with any polynomial matrix that has r rows. Equipped with Definition 6.4, we can explain
what it means for a right or left MFD to be irreducible.

Definition 6.5:

Let G(s) be a real (p×m) proper rational matrix.

• A right MFD P(s)Q−1(s) of G(s) is irreducible if, and only if, P(s) and Q(s) are right coprime.
• A left MFD Q−1

L (s)PL(s) of G(s) is irreducible if, and only if, PL(s) and QL(s) are left coprime.

It is time to begin reconciling Definition 6.3, Definition 6.5, and the scalar intuition surrounding irre-
ducibility and minimality of the fractional representation Equation 6.1. The proof of the following central
result will occupy most of the remainder of this section; the finishing touches appear after Lemmas 6.1
and 6.2 below.

Theorem 6.1:

Let G(s) be a real (p×m) proper rational matrix.

• A right MFD P(s)Q−1(s) of G(s) is minimal if, and only if, it is irreducible. Furthermore, if P(s)Q−1(s)
and P̂(s)Q̂−1(s) are two minimal right MFDs of G(s), then an (m×m) unimodular matrix V (s) exists
so that P̂(s)= P(s)V (s) and Q̂(s)= Q(s)V (s).

• A left MFD Q−1
L (s)PL(s) of G(s) is minimal if, and only if, it is irreducible. Furthermore, if Q−1

L (s)PL(s)
and Q̂−1

L (s)P̂L(s) are two minimal left MFDs of G(s), then a (p× p) unimodular matrix V (s) exists
so that P̂L(s)= V (s)P(s) and Q̂L(s)= V (s)Q(s).

Some parts of Theorem 6.1 are easier to prove than others. In particular, it is straightforward to show
that a minimal right or left MFD is irreducible. To see this, suppose G(s)= P(s)Q−1(s) is a right MFD
that is not irreducible. Since P(s) and Q(s) are not right coprime, factorizations P(s)= P̂(s)F(s) and
Q(s)= Q̂(s)F(s) exist with F(s) not unimodular. F(s) and Q̂(s) are evidently nonsingular because Q(s) is.
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Furthermore,

G(s)= P(s)Q−1(s)= P̂(s)F(s)F−1(s)Q̂−1(s)= P̂(s)Q̂−1(s),

which shows how to “reduce” the original MFD P(s)Q−1(s) by “canceling” the right common polynomial
matrix factor F(s) from P(s) and Q(s). Because F(s) is not unimodular, det F(s) is a polynomial of positive
degree, and the degree of det Q̂(s) is therefore strictly less than the degree of det Q(s). Consequently, the
original right MFD P(s)Q−1(s) is not minimal. The argument demonstrating that minimality implies
irreducibility for left MFDs is essentially identical.

Proving the converse parts of the assertions in Theorem 6.1 is substantially more difficult. The approach
we adopt, based on the so-called Smith form for polynomial matrices, is by no means the only one.
Rugh [10] follows a quite different route, as does Vidyasagar [13]. We have elected to center our discussion
on the Smith form partly because the manipulations we will be performing are similar to the things one
does to obtain LDU decompositions [12] for matrices of numbers via Gauss elimination.

We will be employing a famous result from algebra known as the Euclidean algorithm. It says that if
f (s) is a real polynomial and g(s) is another real polynomial of lower degree, then unique real polynomials
κ(s) and ρ(s) exist, where ρ(s) has lower degree than g(s), for which

f (s)= g(s)κ(s)+ ρ(s).

It is customary to regard the zero polynomial as having degree−∞ and nonzero constant polynomials
as having degree zero. If g(s) divides f (s), then ρ(s)= 0; otherwise, one can interpret κ(s) and ρ(s)
respectively as the quotient and remainder obtained from dividing f (s) by g(s).

The Smith form of a real (k× r) polynomial matrix F(s) is a matrix obtained by performing elementary
row and column operations on F(s). The row and column operations are of three kinds:

• Interchanging the ith and jth rows (or the ith and jth columns).
• Replacing row i with the difference (row i)−κ(s)× (row j), where κ(s) is a polynomial (or replacing

column j with the difference (column j)−κ(s)× (column i)).
• Replacing row (or column) i with its multiple by a nonzero real number γ.

One can view each of these operations as the result of multiplying F(s) on the left or the right by a
unimodular matrix. To interchange the ith and jth rows of F(s), multiply on the left by the permutation
matrixΠij;Πij is a (k× k) identity matrix with the ith and jth rows interchanged. To replace row i with
itself minus κ(s) times row j, multiply on the left by the matrix Eij[−κ(s)], a (k× k) identity matrix except
with−κ(s) in the ij position. Because detΠij =−1 and det Eij[−κ(s)] = 1, both matrices are unimodular.
To multiply row i by γ, multiply F(s) on the left by the (k× k) diagonal matrix with γ in the ith diagonal
position and ones in all the others; this matrix is also unimodular, because its determinant is γ. The
column operations listed above result from multiplying on the right by (r× r) unimodular matrices of
the types just described.

The following result defines the Smith form of a polynomial matrix. It is a special case of a more general
theorem [6, pp. 175–180].

Theorem 6.2: Smith Form

Let F(s) be a real (k× r) polynomial matrix with k ≥ r. A (k× k) unimodular matrix U(s) and an (r× r)
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unimodular matrix R(s) exist so that U(s)F(s)R(s) takes the form

Λ(s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1(s) 0 0 . . 0
0 d2(s) 0 . . 0
0 0 d3(s) 0 . 0
. . . . . .
. . . . . 0
0 . . . 0 dr(s)
0 . . . . 0
. . . . . .
. . . . . .
0 . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.5)

Furthermore, each nonzero dj(s) is monic, and dj(s) divides dj+1(s) for all j, 1≤ j ≤ r− 1.

Proof 6.1. Let δmin be the smallest of the degrees of the nonzero polynomials in F(s). Now invoke the
following procedure:

Reduction Step

Pick an entry in F(s) whose degree is δmin and use row and column exchanges to bring it to the (1, 1)
position; denote the resulting matrix by G(s). For each i, 2≤ i ≤ k, use the Euclidean algorithm to find
κi(s) so that ρi(s)= [G(s)]i1− κi(s)[G(s)]11 has strictly lower degree than [G(s)]11, which has degree δmin.
Observe that ρi(s)= 0 if [G(s)]11 divides [G(s)]i1. Multiply G(s) on the left by the sequence of matrices
Ei1[−κi(s)]; this has the effect of replacing each [G(s)]i1 with ρi(s). Multiplying on the right by a similar
sequence of E1j-matrices replaces each [G(s)]1j with a polynomial whose degree is lower than δmin.

The net result is a new matrix whose δmin is lower than the δmin of F(s). Repeating the reduction step
on this new matrix results in a matrix whose δmin is still lower. Because we cannot continue reducing δmin

forever, iterating the reduction step on the successor matrices of F(s) leads eventually to a matrix of the
form

F1(s)=

⎡
⎢⎢⎢⎢⎢⎢⎣

d1(s) 0 0 . . 0
0 π π . . π

0 π π . . π

. . . . . .

. . . . . .
0 π . . . π

⎤
⎥⎥⎥⎥⎥⎥⎦

, (6.6)

where each of the πs is a polynomial.

Divisibility Check

If d1(s) does not divide all the πs in Equation 6.6, find a π that d1(s) does not divide and multiply F1(s)
on the left by an Ei1-matrix so as to add the row containing the offending π to the first row of F1(s). Now
repeat the reduction step on this new matrix. What results is a matrix of the form Equation 6.6 with a
lower δmin.

Repeat the divisibility check on this new matrix. The process terminates eventually in a matrix of the
form Equation 6.6 whose d1(s) divides all the polynomialsπ. Note that this newest F1(s) can be written in
the form U1(s)F(s)R1(s) for some unimodular matrices U1(s) and R1(s). The next phase of the Smith form
computation entails performing the reduction step and divisibility check on the (k− 1× r− 1) matrix of
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πs in F1(s). What results is a matrix

F2(s)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1(s) 0 0 . . 0
0 d2(s) 0 . . 0
0 0 π . . π

0 0 π . . π

. . . . . .

. . . . . .
0 0 π . . π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which d2(s) divides all of the πs. Moreover, d1(s) divides d2(s) because d2(s) is a polynomial linear
combination of the πs in F1(s). Furthermore, there are unimodular matrices U2(s) and R2(s) so that
F2(s)= U2(s)F1(s)R2(s), whereby F2(s)= U2(s)U1(s)F(s)R1(s)R2(s).

Continuing in this fashion leads successively to F3(s), . . . , and finally Fr(s), which has the same form
asΛ(s). To getΛ(s), modify Fr(s) by scaling all of the rows of Fr(s) so that the nonzero dj(s)-polynomials
are monic. It is evident that there are unimodular matrices U(s) and R(s) so thatΛ(s)= U(s)F(s)R(s).

A few comments are in order. First, if F(s) is a real (k× r) polynomial matrix with k ≤ r, then applying
Theorem 6.2 to FT (s) and transposing the result yields unimodular matrices U(s) and R(s) so that
U(s)F(s)R(s) takes the form

Λ(s)=

⎡
⎢⎢⎢⎢⎢⎢⎣

d1(s) 0 0 . . 0 0 . 0
0 d2(s) 0 . . . . . 0
0 0 d3(s) 0 . . . . 0
. . . . . . . . .
. . . . . . . . 0
0 . . . 0 dk(s) 0 . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

; (6.7)

this is the Smith form of an F(s) with more columns than rows. Next, consider the polynomials {dj(s)}
in Equation 6.5; these are called the elementary divisors of F(s). It might not appear prima facie as if
the proof of Theorem 6.2 specified them uniquely, but it does. In fact, we have the following explicit
characterization.

Fact 6.1:

For each j, 1≤ j ≤min(k, r), the product d1(s) . . . dj(s) is the monic greatest common divisor of all of the
(j× j) minors in F(s).

Proof 6.2. The divisibility conditions on the {dj(s)} make it obvious that d1(s) · · · dj(s) is the monic
greatest common divisor of the ( j× j) minors inΛ(s). Fact 6.1 follows immediately from the observation
that the reduction procedure leading from F(s) toΛ(s) is such that for each i, the set of ( j× j) minors of
Fi(s) has the same family of common divisors as the set of ( j× j) minors of Fi+1(s). (See also the proof
of Corollary 6.1 below.) As a result, the monic greatest common divisor of the ( j× j) minors does not
change over the course of the procedure.

One final comment: the sequence of elementary divisors, in general, might start out with one or more
1s and terminate with one or more 0s. In fact, because every nonzero elementary divisor is a monic
polynomial, each constant elementary divisor is either a 1 or a 0. If F(s) is a square matrix, then det F(s)
is a nonzero real multiple of the product of its elementary divisors; this follows from the unimodularity
of U(s) and R(s) in Theorem 6.2. Hence if F(s) is nonsingular, none of its elementary divisors is zero.
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If F(s) is unimodular, then all of its elementary divisors are equal to 1. In other words, the Smith form of
a (k× k) unimodular matrix is simply the (k× k) identity matrix Ik .

The Smith form is the key to finishing the proof of Theorem 6.1. The following lemma, which offers
useful alternative characterizations of coprimeness, is the first step in that direction.

Lemma 6.1:

Let P(s) and Q(s) be real polynomial matrices having respective sizes (p×m) and (m×m). The following
three conditions are equivalent:

1. P(s) and Q(s) are right coprime.
2. There exist real polynomial matrices X(s) and Y (s) with respective sizes (m×m) and (m× p) so that

X(s)Q(s)+Y (s)P(s)= Im.
3. The (m+ p×m) matrix [

Q(so)
P(so)

]

has full rank m for every complex number so.

Proof 6.3. We show that (1)=⇒ (2)=⇒ (3)=⇒ (1). Set

F(s)=
[

Q(s)
P(s)

]

and, using the notation of Theorem 6.2, letΛ(s)= U(s)F(s)R(s) be the Smith form of F(s). Denote byΔ(s)
the (m×m) matrix comprising the first m rows ofΛ(s); the diagonal elements ofΔ(s) are the elementary
divisors of F(s).

If (1) holds, we needΔ(s)= Im. To see this, partition U−1(s) as

U−1(s)=W(s)=
[

W1(s) W2(s)
W3(s) W4(s)

]
;

then

F(s)=
[

Q(s)
P(s)

]
=
[

W1(s)
W3(s)

]
Δ(s)R−1(s),

so that P(s) and Q(s) haveΔ(s)R−1(s) is an (m×m) as a right common polynomial matrix factor. For (1)
to hold, this last matrix must be unimodular, and that happens whenΔ(s)= Im.

Hence, right coprimeness of P(s) and Q(s) implies that Δ(s)= Im. It follows immediately in this case
that if we partition the first m rows of U(s) as

[
U1(s) U2(s)

]
, then (2) holds with X(s)= R(s)U1(s) and

Y (s)= R(s)U2(s). (3) is a straightforward consequence of (2) because, if F(so) were rank-deficient for
some so, then X(so)Q(so)+Y (so)P(so) could not be Im. Finally, (3) implies (1) because, if (3) holds and

F(s)=
[

P̂(s)
Q̂(s)

]
R̂(s)

is a factorization with R̂(s) (m×m) but not unimodular, then det R̂(so)= 0 for at least one complex
number so, which contradicts (3).

Not surprisingly, Lemma 6.1 has the following left-handed analogue.
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Lemma 6.2:

Let PL(s) and QL(s) be real polynomial matrices with respective sizes (p×m) and (p× p). The following
three conditions are equivalent:

1. PL(s) and QL(s) are left coprime.
2. Real polynomial matrices X(s) and Y (s) exist with respective sizes (p× p) and (m× p) so that

QL(s)X(s)+ PL(s)Y (s)= Ip.
3. The (p× p+m) matrix [

QL(so) PL(so)
]

has full rank p for every complex number so.

We are ready now to finish proving Theorem 6.1.

Proof of Theorem 6.1: We prove only the assertions about right MFDs. We have shown already that a
minimal right MFD of G(s) is irreducible. As for the converse, suppose G(s)= P(s)Q−1 is an irreducible
right MFD and that G(s)= P̂(s)Q̂−1(s) is a minimal (hence irreducible) right MFD. By Lemma 6.1, there
exist X(s), Y (s), X̂(s), and Ŷ (s) of appropriate sizes satisfying

X(s)Q(s)+Y (s)P(s)= Im

X̂(s)Q̂(s)+ Ŷ (s)P̂(s)= Im.

Invoke the fact that P(s)Q−1(s)= P̂(s)Q̂−1(s); a straightforward manipulation yields

X(s)Q̂(s)+Y (s)P̂(s)= Q−1(s)Q̂(s),

X̂(s)Q(s)+ Ŷ (s)P(s)= Q̂−1(s)Q(s).

The matrices on the right-hand sides are inverses of each other and are polynomial matrices; hence
they must be unimodular. This implies, in particular, that the degrees of the determinants of Q(s) and
Q̂(s) are the same, and P(s)Q−1(s) is, therefore, also a minimal right MFD.

Finally, setting V (s)= Q−1(s)Q̂(s) reveals that P̂(s)= P(s)V (s) and Q̂(s)= Q(s)V (s), proving that the
two minimal right MFDs are related as in the theorem statement.

Theorem 6.1 establishes the equivalence of minimality and irreducibility for MFDs. It is worth remark-
ing that its proof furnishes a means for reducing a nonminimal MFD to a minimal one. The argument
supporting Lemma 6.1 provides the key. Let G(s)= P(s)Q−1(s) be a nonminimal right MFD. Employing
the same notation as in the proof of Lemma 6.1,

F(s)=
[

Q(s)
P(s)

]
=
[

W1(s)
W3(s)

]
×Δ(s)R−1(s)

def= F̂(s)Δ(s)R−1(s).

Setting Q̂(s)=W1(s) and P̂(s)=W2(s) makes P̂(s)Q̂−1(s) a right MFD of G(s). By definition of W(s) and
U(s),

U(s)F̂(s)=
[

Im

0

]
;

taken in conjunction with Theorem 6.2, this implies that F̂(s) has ones as its elementary divisors. As in
the proof of Lemma 6.1, we conclude that P̂(s)Q̂−1(s) is an irreducible (hence minimal) right MFD.
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Theorem 6.1 also makes an important assertion about the “denominator matrices” appearing in min-
imal MFDs. The theorem states that if Q(s) and Q̂(s) are denominator matrices in two minimal right
MFDs of a proper rational G(s), then Q(s) and Q̂(s) differ by a right unimodular matrix factor. It follows
that the determinants of Q(s) and Q̂(s) are identical up to a nonzero real multiple; in particular, det Q(s)
and det Q̂(s) have the same roots including multiplicities. The same is true about the determinants of the
denominator matrices QL(s) and Q̂L(s) from two minimal left MFDs. It is clear that the poles of G(s) must
lie among the roots of det Q(s) and det QL(s). What is not so obvious is the fact, whose proof we postpone
until the next section, that these last two polynomials are actually nonzero real multiples of each other.

6.3 Fractional Degree and MacMillan Degree

Conspicuously absent from Section 6.2 is any substantive discussion of relationships between right and
left MFDs for a proper rational matrix G(s). The most important connection enables us to close the circle
of ideas encompassing the minimal MFDs of Section 6.2 and the irreducible fractional representation
Equation 6.1 for a scalar rational function. A crucial feature of Equation 6.1 is that the degree of q(s) is the
same as the MacMillan degree of g(s). Our principal goal in what follows is to prove a similar assertion
about the MacMillan degree of G(s) and the degrees of the determinants of the denominator matrices
appearing in minimal right and left MFDs of G(s).

Our first task is to demonstrate that, when P(s)Q−1(s) and Q−1
L (s)PL(s) are right and left MFDs of a

proper rational matrix G(s), the degrees of the polynomials det Q(s) and det QL(s) are the same. To that
end, we need the following technical lemma.

Lemma 6.3:

Suppose that the (m+ p×m+ p) polynomial matrix W(s) is nonsingular and that the (m×m) submatrix
W1(s) is also nonsingular, where

W(s)=
[

W1(s) W2(s)
W3(s) W4(s)

]
.

Then,

1. H(s)=W4(s)−W3(s)W−1
1 (s)W2(s) is also nonsingular

2. det W(s)= det W1(s) det H(s)
3. W−1(s) is given by

[
W−1

1 (s)+W−1
1 (s)W2(s)H−1(s)W3(s)W−1

1 (s)
−H−1(s)W3(s)W−1

1 (s)
−W−1

1 (s)W2(s)H−1(s)
H−1(s)

]

Proof 6.4. Statements (1) and (2) follow from the identity

[
Im 0

−W3(s)W−1
1 (s) Ip

]
W(s)=

[
W1(s) W2(s)

0 H(s)

]
,

because the matrix multiplying W(s) has determinant 1. Multiplying the last equation on the left by

[
W−1

1 (s) 0
0 H−1(s)

] [
Im −W2(s)H−1(s)
0 Ip

]

yields statement (3).
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A direct consequence of Lemma 6.3 is the advertised relationship between determinants of the denom-
inator matrices in right and left MFDs.

Theorem 6.3:

Let P(s)Q−1(s) and Q−1
L (s)PL(s), respectively, be minimal right and left MFDs of a real (p×m) proper

rational matrix G(s). Then det QL(s) is a nonzero real multiple of det Q(s); in particular, the two polynomials
have the same degree and the same roots.

Proof 6.5. We learned in the proof of Lemma 6.1 that unimodular matrices U(s) and R(s) exist so that

U(s)

[
Q(s)
P(s)

]
R(s)=

[
Im

0

]
.

Set

M(s)=
[

R(s) 0
0 Ip

]
U(s)

and define W(s)=M−1(s); observe that M(s) and W(s) are unimodular. Partition M(s) and W(s) con-
formably as follows:

M(s)=
[

M1(s) M2(s)
M3(s) M4(s)

]
; W(s)=

[
W1(s) W2(s)
W3(s) W4(s)

]
.

It follows that W1(s)= Q(s) and W3(s)= P(s). In particular, W1(s) is nonsingular. By Lemma 6.3, M4(s) is
nonsingular and equals H−1(s), where H(s)=W4(s)−W3(s)W−1

1 (s)W2(s). Because M(s)W(s)= Im+p,

M3(s)W2(s)+M4(s)W4(s)= Ip;

hence M3(s) and M4(s) are left coprime by Lemma 6.1. Furthermore,

M3(s)W1(s)+M4(s)W3(s)= 0;

the fact that G(s)= P(s)Q−1(s)=W3(s)W−1
1 (s) makes

G(s)=M−1
4 (s)[−M3(s)]

a minimal left MFD of G(s). By Theorem 6.1, det M4(s) is a nonzero real multiple of the determinant of
the matrix QL(s) appearing in any minimal left MFD Q−1

L (s)PL(s) of G(s).
By item (2) in Lemma 6.3, det W(s)= det W1(s) det H(s). Because W1(s)= Q(s) and M4(s)=H−1(s),

det Q(s)= det W(s) det M4(s).

Unimodularity of W(s) implies that det Q(s) and det M4(s) differ by a nonzero real multiple.

Theorem 6.3 makes possible the following definition.

Definition 6.6:

The fractional degree δF [G(s)] of a real (p×m) proper rational matrix G(s) is the degree of det Q(s) (or of
det QL(s)), where Q(s) (or QL(s)) comes from a minimal right (or left) MFD P(s)Q−1(s) (or Q−1

L (s)PL(s))
of G(s).
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As promised, we will demonstrate below that the fractional degree of a proper rational matrix G(s) is
the same as its MacMillan degree δM [G(s)]. Our approach will be first to show that δF ≤ δM and then to
construct a state space realization for G(s) with state vector dimension δF [G(s)]. The existence of such a
realization guarantees that δF ≥ δM , from which it follows that the two degrees are equal.

Accordingly, let G(s) be a given real (p×m) proper rational matrix. Let D = lims→∞ G(s); set Z(s)=
G(s)−D. If P(s)Q−1(s) is a minimal right MFD of G(s), then P̃(s)Q−1(s) is a minimal right MFD for Z(s),
where P̃(s)= P(s)−DQ(s). To see why P̃(s)Q−1(s) is minimal, note that the two matrices

F(so)=
[

Q(so)
P(so)

]
, F̃(so)=

[
Q(so)

P(so)−DQ(so)

]

have the same nullspace (and hence the same rank) for every complex number so. It follows from item
3 in Lemma 6.1 that P̃(s)Q−1(s) is irreducible and hence minimal. In addition, we can conclude that the
fractional degrees of G(s) and Z(s) are the same.

Suppose that n= δM (G(s)) and that (A, B, C, D) is a minimal realization of G(s). The Popov-Belevitch-
Hautus test for reachability [11] implies that the (n× n+m) matrix,

K(so)= [ (soIn−A) B
]

has full rank n for every complex number so. By Lemma 6.1, (sIn−A)−1B is an irreducible (hence minimal)
left MFD of K(s). Thus K(s) has fractional degree n. Now,

Z(s)= C(sIn−A)−1B= CF(s) ;

it follows that the fractional degree of Z(s) is at most equal to n. To see this, suppose K(s)= P(s)Q−1(s) is
a minimal right MFD of K(s); then Z(s)= [CP(s)]Q−1(s) is a right MFD of Z(s), and this MFD need not
be minimal. Hence δF (Z)≤ δF (K)= n. The upshot is that the fractional degree of G(s), which is the same
as the fractional degree of Z(s), is bounded from above by the MacMillan degree of G(s). In other words,

δF [G(s)] ≤ δM [G(s)].

Proving the reverse inequality requires a bit more effort. Suppose we have a minimal right MFD
G(s)= P(s)Q−1(s) and corresponding right MFD Z(s)= P̃(s)Q−1(s). The fractional degree of G(s) is the
same as the degree of det Q(s). To show how the entries in Q(s) combine to determine the degree of
det Q(s), we need the following definition.

Definition 6.7:

Let Q(s) be a real nonsingular (m×m) polynomial matrix. The jth column degree of Q(s), δj[Q(s)], is the
highest of the degrees of the polynomials in the jth column of Q(s), 1≤ j ≤m. The high-order coefficient
matrix of Q(s), QH , is the real (m×m) matrix whose (i, j) entry is the coefficient of sδj[Q(s)] in [Q(s)]ij .

The nonsingularity of Q(s) guarantees that all of the column degrees are nonnegative integers. The
classic expansion for the determinant [12, page 157] reveals det Q(s) as the sum of m-fold products each
of which contains precisely one element from each column of Q(s). It follows that the degree of det Q(s)
is bounded from above by the sum of all the column degrees of Q(s). In fact, if δ1, … , δm are the column
degrees of Q(s), then the coefficient of the s(δ1+···+δm) in the expansion for det Q(s) is exactly det QH , the
determinant of the high-order coefficient matrix. In other words, det Q(s) has degree equal to the sum of
the column degrees when det QH �= 0, which is the same as saying that the high-order coefficient matrix
is invertible.
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Our method for constructing for G(s) a realization whose state dimension is δF [G(s)] hinges crucially
on having a minimal right MFD P(s)Q−1(s) of G(s) whose Q(s) has an invertible high-order coefficient
matrix. It turns out that such an MFD always exists. The idea is to start with an arbitrary minimal right
MFD P̂(s)Q̂−1(s) and “operate on it” with a unimodular V (s) via

P(s)= P̂(s)V (s), Q(s)= Q̂(s)V (s)

to get another minimal right MFD P(s)Q−1(s) with an invertible QH . We construct V (s) by looking at
Q̂(s) only. Specifically, we prove the following assertion.

Lemma 6.4:

If Q̂(s) is a real nonsingular (m×m) polynomial matrix, a unimodular matrix V (s) exists so that

• Q(s)= Q̂(s)V (s) has an invertible high-order coefficient matrix QH

• The column degrees {δj(Q(s))} are in decreasing order, i.e.,

δ1(Q(s))≥ δ2(Q(s)) · · · ≥ δm(Q(s)). (6.8)

Proof 6.6. If Q̂H is already invertible, let V (s) be a permutation matrix Π so that the columns of Q̂(s)Π
are lined up in decreasing order of column degree. If Q̂H is not invertible, after findingΠ as above, choose
a nonzero w ∈ Rm satisfying Q̂HΠw = 0. Assume without loss of generality that the first nonzero element
in w is a 1 and occurs in the kth position. Let E(s) be the (m×m) polynomial matrix all of whose columns
except the kth are the same as those in the (m×m) identity matrix Im; as for the the kth column, let
[E(s)]ik be 0 when i < k and wisδk−δi when i > k, where δj denotes the jth column degree of Q̂(s)Π. E(s)
has determinant 1 and is therefore unimodular; furthermore, Q̂(s)ΠE(s) has the same columns as Q̂(s)Π
except for the kth column, and the choice of E(s) guarantees that the kth column degree of Q̂(s)ΠE(s) is
lower than the kth column degree of Q̂(s)Π.

The preceding paragraph describes a technique for taking a Q̂(s) with singular Q̂H and finding a
unimodular matrixΠE(s) so that Q̂(s)ΠE(s) has a set of column degrees whose sum is less than the sum
of the column degrees of Q̂(s). If Q(s)= Q̂(s)ΠE(s) still fails to have an invertible high-order coefficient
matrix, we can repeat the column-permutation-and-reduction procedure on Q̂(s)ΠE(s), and so on. This
iteration must terminate after a finite number of steps because we cannot reduce the sum of the column
degrees forever. When all is said and done, we will have a unimodular matrix V (s) so that Q(s)= Q̂(s)V (s)
has an invertible high-order coefficient matrix QH with columns arrayed in decreasing order of column
degree, so that the column degrees of Q(s) satisfy Equation 6.8.

Thus we can take an arbitrary minimal right MFD G(s)= P̂(s)Q̂−1(s) and form a new minimal right
MFD P(s)Q−1(s) using P(s)= P̂(s)V (s) and Q(s)= Q̂(s)V (s); choosing V (s) appropriately, using Lemma
6.4, makes QH invertible, ensuring in turn that

δF [G(s)] = degree[det Q(s)] = δ1[Q(s)]+ · · · + δm[Q(s)].
Furthermore, we can assume that the column degrees of Q(s) satisfy the ordering of Equation 6.8.

Our final step is to produce a realization (A, B, C, D) of G(s) where A is (δF × δF ). This will confirm
that δF (G(s))≥ δM (G(s)) and, hence, that the two degrees are equal. First define D and Z(s)= G(s)−D
as before, and let Z(s)= P̃(s)Q−1(s) be the corresponding minimal right MFD for Z(s). Because

[P̃(s)]ij =
m∑

k=1

[Z(s)]ik[Q(s)]kj,

and because Z(s) is strictly proper, the degree of [P̃(s)]ij is strictly less than δj for all i and j. In particular,
if δj = 0, then [P̃(s)]ij = 0 for all i, 1≤ i ≤ p (as usual, the zero polynomial has degree−∞).
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Next define, for each k > 0, the polynomial k-vector sk by

sk =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
s
s2

.

.
sk−1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We now form a matrix S that has m columns and number of rows equal to δF , which is equal in turn to
the sum of the column degrees {δj}. The jth column of S has δ1+ · · ·+ δj−1 0s at the top, the vector sδj

in the next δj positions, and 0s in the remaining positions. For example, if m= 3 and δ1 = 3, δ2 = 2, and
δ3 = 0, then

S=

⎡
⎢⎢⎢⎢⎣

1 0 0
s 0 0
s2 0 0
0 1 0
0 s 0

⎤
⎥⎥⎥⎥⎦ .

Our observation above concerning the degrees of the entries in P̃(s) ensures that a real (p× δF ) matrix
C exists so that P̃(s)= CS. This C will be the C-matrix in our realization of G(s). Since we want

Z(s)= P̃(s)Q−1(s)= CSQ−1(s)B= C(sIδF −A)−1B,

we will construct A and B so that

SQ−1(s)= (sIδF −A)−1B,

or, equivalently,

sS= AS+BQ(s). (6.9)

Recall first that QH , the high-order coefficient matrix of Q(s), is invertible; by definition of QH and the
column degrees {δj},

Q(s)= QH

⎡
⎢⎢⎢⎢⎢⎢⎣

sδ1 0 . . . 0
0 sδ2 0 . . .
. 0 . . . .
. . . . 0 .
. . . 0 sδm−1 0
. . . . 0 sδm

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Q̃(s), (6.10)

where Q̃(s) satisfies the same constraints as P̃(s) on the degrees of its entries. We may write Q̃(s)= GS for
some real (m× δF ) matrix G. Denote byΣ(s) the diagonal matrix on the right-hand side of Equation 6.10.
Then A and B satisfy Equation 6.9 when

sS= (A+BQH G)S+BQHΣ(s). (6.11)

Define B as follows: B= B̃Q−1
H , where B̃ is the real (δF ×m) matrix whose jth column is zero when

δj = 0 and contains a single 1 at the δ1+ · · ·+ δj position if δj �= 0. Observe that if i = δ1+ · · ·+ δj for
some j, then the ith row of BQH G is the same as the jth row of G; for all other values of i, the ith row of
BQH G is zero.
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Finally, define A. If i = δ1+ · · ·+ δj for some j, then the ith row of A is the negative of the ith row of
BQH G. For other values of i, the ith row of A contains a 1 in the (i, i+ 1) position (just above the diagonal)
and 0s elsewhere.

Verifying that A and B so defined satisfy the required relationship Equation 6.11 is straightforward.
The important consequence of the construction is that Z(s)= C(sIδF −A)−1B, so that (A, B, C, D) is a
realization of G(s) whose A-matrix has size (δF × δF ). The following theorem summarizes the results of
this section so far.

Theorem 6.4:

If G(s) is a real (p×m) proper rational matrix, then the MacMillan degree of G(s) is the same as the
fractional degree of G(s). The procedure outlined above yields a minimal realization (A, B, C, D) of G(s).

The central role of Lemma 6.4 in the proof of Theorem 6.4 merits a closer look. In essence, Lemma 6.4
guarantees the existence of a minimal right MFD G(s)= P(s)Q−1(s) wherein the column degrees of Q(s)
sum to the degree of the determinant of Q(s). The crucial enabling feature of Q(s) is the invertibility of its
high-order coefficient matrix QH . We will see presently that any minimal right MFD whose denominator
matrix possesses this last property will have the same column degrees as Q(s) up to a reordering. As a
result, these special column degrees are a feature of certain right MFDs and of the transfer function matrix
G(s) itself.

Definition 6.8:

The ordered column indices l1[Q(s)], . . . , lm[Q(s)] of a real nonsingular (m×m) polynomial matrix Q(s)
are the column degrees of Q(s) arranged in decreasing order.

Theorem 6.5:

Let Q(s) and Q̂(s) be real nonsingular (m×m) polynomial matrices appearing in minimal right MFDs
P(s)Q−1(s) and P̂(s)Q̂−1(s) of a real (p×m) proper rational matrix G(s). If the high-order coefficient
matrices QH and Q̂H are both invertible, then the ordered column indices of Q(s) and Q̂(s) are identical.

Proof 6.7. Assume first that Q(s) and Q̂(s) satisfy the second item in Lemma 6.4, i.e., have respective
column degrees {δj} and {δ̂j} that are decreasing in j. Write Equation 6.10 along with a similar equation
for Q̂(s) as follows:

Q(s)= QHΣ(s)+ Q̃(s)

Q̂(s)= Q̂HΣ̂(s)+ ˜̂Q(s).

By construction,

lim|s|→∞ Q̃(s)Σ−1(s)
def= lim|s|→∞Δ(s)= 0,

lim|s|→∞
˜̂Q(s)Σ̂−1(s)

def= lim|s|→∞ Δ̂(s)= 0.
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Because Q(s) and Q̂(s) both come from minimal right MFDs of G(s), by Theorem 6.1 an (m×m)
unimodular matrix V (s) exists so that Q̂(s)= Q(s)V (s). Manipulation yields

Σ(s)U(s)Σ̂−1(s)= [Im+Δ(s)]−1Q−1
H Q̂H [Im+ Δ̂(s)]. (6.12)

The right-hand side of Equation 6.12 approaches a constant limit as |s| →∞; note, in particular, that
Im+Δ(s) is nonsingular for |s| large enough. Meanwhile, the (i, j) entry of the matrix on the left-hand

side of Equation 6.12 is simply sδi−δ̂j [U(s)]ij. Hence we need [U(s)]ij = 0 whenever δi > δj. One by one

we will show that δj ≤ δ̂j. If δ1 > δ̂1, then, by the ordering on the δ̂s, δ1 > δ̂j for all j, and the entire first
row of U(s) must be zero, contradicting nonsingularity and, a fortiori, unimodularity of U(s). Assume
inductively that δj ≤ δ̂j for j < k but that δk > δ̂k . In this case, the orderings on the δs and δ̂s imply that

δi > δ̂k ≥ δ̂j for all i ≤ k and all j ≥ k; hence the entire upper right-hand (k×m− k) corner of U(s) must
be zero, which contradicts unimodularity of U(s) once again.

Thus δj ≤ δ̂j for all j, 1≤ j ≤m. It follows that δj = δ̂j for every j because the sum of the δs and the sum

of the δ̂s must both equal the fractional degree of G(s), which is the common degree of the determinants
of Q(s) and Q̂(s). Our initial assumption that the columns of Q(s) and Q̂(s) were arrayed in decreasing
order of column degree means, in terms of Definition 6.8, that Q(s) and Q̂(s) have the same ordered
column indices. Finally, it is easy to eliminate this initial assumption; simply precede the argument with
right multiplications by permutation matricesΠ and Π̂ that reorder the matrices’ columns appropriately.
In any event, the ordered column indices of Q(s) and Q̂(s) are identical.

The principal consequence of Theorem 6.5 is that any two Q(s)-matrices with invertible QH s appearing
in minimal right MFDs of G(s) have the same set of ordered column indices. These special ordered column
indices are sometimes called the Kronecker controllability indices of G(s). They have other names, as well;
Forney [4], for example, calls them invariant dynamical indices. They relate to controllability because
the realization (A, B, C, D) we constructed en route to Theorem 6.4 is precisely the MIMO analogue to
the SISO realization given in Equations 6.2 and 6.3. The realizations are called controllable canonical
forms [2,7,10]. Interested readers can verify that applying the realization procedure following Lemma 6.4
to a scalar irreducible fractional representation Equation 6.1 leads exactly to Equations 6.2 and 6.3.

It is worth making one final observation. Our proof of Theorem 6.4 relied on constructing a minimal
realization of a proper rational transfer matrix G(s) starting from a minimal right MFD P(s)Q−1(s) of
G(s). We could have worked instead with a minimal left MFD G(s)= Q−1

L (s)PL(s), in which case we
would have considered the row degrees and high-order coefficient matrix of QL(s). Perhaps the simplest
way to view this is to realize GT (s) by following the route we have already laid out beginning with the
right MFD PT

L (s)(QT
L (s))−1 of GT (s) and subsequently transposing the end result.

6.4 Smith--MacMillan Form, ARMA Models, and Stable
Coprime Factorization

The aim of this section is to tie up some loose ends and to point the reader toward some important
modern control theoretic developments that rest heavily on the theory of polynomial MFDs described in
the foregoing sections. First we discuss the so-called Smith–MacMillan form for proper rational matrices;
many of the results detailed in Sections 6.2 and 6.3 have alternative derivations based on the Smith–
MacMillan form. Next, we describe briefly the connection between MFDs and ARMA models for MIMO
linear systems. We close with a quick introduction to stable coprime factorization and mention briefly its
generalizations and applications in robust control theory.

The Smith–MacMillan form of a real (p×m) proper rational matrix G(s) is basically a rational ver-
sion of the Smith form of a polynomial matrix F(s). It was introduced originally by MacMillan [9] and
later exploited by Kalman in an important paper [8] that demonstrated correspondences between several
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notions of rational matrix degree. Given G(s), begin by letting q(s) be the monic lowest common denom-
inator of its entries. Set F(s)= q(s)G(s); by Theorem 6.2, we can find unimodular matrices U(s) and R(s)
of respective sizes (p× p) and (m×m) so that Λ(s)= U(s)F(s)R(s) has the form of Equation 6.5 or 6.7
depending on whether p≥m or p≤m, respectively.

Assuming temporarily that p≥m, the matrix U(s)G(s)R(s)= 1
q(s) F(s)

def= ΛSM (s) takes the form
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1(s)/φ1(s) 0 0 . . 0
0 γ2(s)/φ2(s) 0 . . 0
0 0 γ3(s)/φ3(s) 0 . 0
. . . . . .
. . . . . 0
0 . . . 0 γm(s)/φm(s)
0 . . . . 0
. . . . . .
. . . . . .
0 . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.13)

where γk(s)/φk(s) is the fraction dk(s)/q(s) expressed in lowest terms. If dk(s)= 0, set φk(s)= 1. The
divisibility conditions on {dk(s)} guaranteed by Theorem 6.2 ensure that γk(s) divides γk+1(s) andφk+1(s)
divides φk(s) for all k, 1≤ k < m.

Furthermore, if we set

P(s)= U−1(s)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1(s) 0 0 . . 0
0 γ2(s) 0 . . 0
0 0 γ3(s) 0 . 0
. . . . . .
. . . . . 0
0 . . . 0 γm(s)
0 . . . . 0
. . . . . .
. . . . . .
0 . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

def= U−1(s)Γ(s)

and

Q(s)= R(s)

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1(s) 0 0 . . 0
0 φ2(s) 0 . . 0
0 0 φ3(s) 0 . 0
. . . . . .
. . . . . 0
0 . . . 0 φm(s)

⎤
⎥⎥⎥⎥⎥⎥⎦

def= R(s)Φ(s),

then P(s)Q−1(s) is a right MFD of G(s).
P(s)Q−1(s) is minimal because of the divisibility conditions on the {γj} and {φj}. The easiest way to see

this is by checking that the (m+ p×m) matrix[
Q(so)
P(so)

]
=
[

R(so) 0
0 U−1(so)

] [
Φ(so)
Γ(so)

]

has full rank m for every complex number so. The idea is that if, for example, γk(so)= 0 for some smallest
value of k, then γj(so)= 0 for all j ≥ k; hence φj(so) �= 0 for j ≥ k which, coupled with γj(so) �= 0 for j < k,



�

�

�

�

� �

Polynomial and Matrix Fraction Descriptions 6-19

means that m of the {γj(so)} and {φj(so)} are nonzero. Because P(s)Q−1(s) is a minimal right MFD of
G(s), it follows from Theorem 6.4 that the MacMillan degree of G(s) is the degree of det Q(s), which is
the sum of the degrees of the polynomials {φj(s)}.

The same sort of analysis works when p≤m; in that case,ΛSM (s)= U(s)G(s)R(s) looks like a rational
version of the matrix in Equation 6.7. In either case,ΛSM (s) is called the Smith–MacMillan form of G(s).
To summarize,

Theorem 6.6: Smith–MacMillan Form

Let G(s) be a real (p×m) proper rational matrix and let m∧ p be the minimum of m and p. Unimodular
matrices U(s) and R(s) exist so thatΛSM (s)= U(s)G(s)R(s), where

• [ΛSM (s)]ij = 0, except when i = j and [ΛSM (s)]jj(s) = γj(s)/φj(s), 1≤ j ≤m∧ p, where the
{γj(s)/φj(s)} are ratios of coprime monic polynomials,

• γj(s) divides γj+1(s) and φj+1(s) divides φj(s), 1≤ j < m∧ p,
• The MacMillan degree of G(s) is the sum of the degrees of the {φj(s)}.

An interesting consequence of Theorem 6.6 is the following characterization of MacMillan degree [9].

Corollary 6.1:

The MacMillan degree of a real (p×m) proper rational matrix G(s) is the degree of the lowest common
denominator of all of the minor subdeterminants of G(s).

Proof 6.8. Assume p≥m; the argument is similar when p≤m. A glance atΛSM (s) in Equation 6.13 and
the divisibility conditions on the {φj(s)} in Theorem 6.6 reveals that for each k, 1≤ k ≤m, the product
φ1(s) · · ·φk(s) is the monic lowest common denominator of all of the (j× j) minors in ΛSM (s) of order
j ≤ k. Hence the product of all of the φj(s) is the monic lowest common denominator of all of the minors
of ΛSM (s). Now, G(s) and ΛSM (s) are related via pre- and postmultiplication by unimodular matrices;
hence the (j× j) minor determinants of each matrix are polynomial linear combinations of the (j× j)
minors of the other matrix. It follows that any common denominator for one set of minors is a common
denominator for the other set, and the proof is complete.

Observe that we could have generated many of the results in Sections 6.2 and 6.4 by appealing to the
Smith–MacMillan form. A disadvantage of this approach is that Theorem 6.6 produces only right MFDs
for (p×m) rational matrices when p > m and only left MFDs when p < m.

We consider next some relationships between MFDs and some well-known time-domain representa-
tions of input–output linear systems. Let G(s) be a real (p×m) proper rational matrix that is the transfer
function of a real m-input, p-output, time-invariant linear system with input u : R → Rm and output
y : R → Rp. Let L{y}(s) and L{u}(s) be the Laplace transforms of y and u, so L{y}(s)= G(s)L{u}(s). If
G(s)= Q−1

L (s)PL(s) is a left MFD of G(s), then

QL(s)L{y}(s)= PL(s)L{u}(s) ;

in the time domain, this last equation corresponds with the vector differential equation

QL(D)y(t)= PL(D)u(t), (6.14)

where D is the differential operator d
dt . Equation 6.14 is an ARMA (autoregressive moving-average)

representation for the system’s input–output relationship.
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Similarly, if G(s)= P(s)Q−1(s) is a right MFD of G(s), we can define w : R → Rm by means of the
autoregressive (AR) differential equation

Q(D)w(t)= u(t) (6.15)

and use w as the input to a moving-average (MA) specification of y, namely,

y(t)= P(D)w(t). (6.16)

Because

L{y}(s)= P(s)L{w}(s) and L{w}(s)= Q−1(s)L{u}(s),

L{y}(s)= P(s)Q−1(s)L{u}(s)= G(s)L{u}(s),

so Equations 6.15 and 6.16 together constitute another time-domain description of the input–output
behavior of the system. Whereas Equation 6.14 gives an ARMA description for the system, Equations 6.15
and 6.16 split the input–output relation into autoregressive and moving-average parts. For a SISO system,
any fractional representation of the form Equation 6.1 acts as a left and right “MFD,” so that the two
time-domain characterizations are identical.

We close by presenting a very brief introduction to some of the ideas underlying stable coprime
factorization, which is the single most important off-shoot of the theory of MFDs for input–output
systems. We call a rational matrix H(s) stable if, and only if, the poles of the entries in H(s) lie in the
open left half-plane Re{s}< 0. As usual, let G(s) be a real (p×m) proper rational matrix. It turns out to
be possible to write G(s) in the form G(s)=H1(s)H−1

2 (s), where

• H1(s) and H2(s) are stable proper rational matrices of respective sizes (p×m) and (m×m),
• H1(s) and H2(s) are right coprime over the ring of stable rational functions, that is, the only common

right stable (m×m) proper rational matrix factors of H1(s) and H2(s) have inverses that are also
stable and proper.

Any such representation G(s)=H1(s)H−1
2 (s) is called a stable right coprime factorization of G(s). One

can define stable left coprime factorizations similarly.
It is not difficult to show that stable coprime factorizations exist. One approach, patterned after a

technique due originally to Vidyasagar [14], goes as follows. Given G(s), choose α> 0 so that −α is not
a pole of any entry in G(s). Let σ= 1/(s+ α), so that s = (1− ασ)/σ. Define G̃(σ)= G((1− ασ)/σ). It
follows that G̃(σ) is a proper rational matrix function of σ. To see why it is proper, observe that the
condition σ→∞ is the same as s→−α, and−α is not a pole of G(s).

Now invoke the theory of Section 6.2 and find a minimal right MFD G̃(σ)= P(σ)Q−1(σ) of G̃(σ).
Finally, set H1(s)= P[1/(s+ α)] and H2(s)= Q[1/(s+ α)]. Then

G(s)= G̃

(
1

s+ α
)
=H1(s)H−1

2 (s).

Because P(σ) and Q(σ) are polynomial in σ, H1(s) and H2(s) are proper rational matrix functions of s.
Moreover, all of the poles of H1(s) and H1(s) are at −α, which means that H1(s) and H2(s) are stable.
Furthermore, any stable (m×m) proper rational right common factor H(s) of H1(s) and H2(s) defines,
via V (s)=H((1− ασ)/σ), a polynomial right common factor of P(σ) and Q(σ), which must have a
polynomial inverse by minimality of P(σ)Q−1(σ). It follows that H−1(s)= V−1[1/(s+ α)] is stable and
proper, implying that H1(s) and H2(s) are right coprime over the ring of stable proper rational functions.

The principal application of stable coprime factorizations is to robust control system design. At the
heart of such applications is the notion of the H∞ norm of a stable proper rational matrix H(s). Given such
an H(s), the H∞ norm of H(s) is the supremum over ω ∈ R of the largest singular value of H(iω). Given
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two possibly unstable (p×m) transfer function matrices Ga(s) and Gb(s), one can define the distance
between Ga(s) and Gb(s) in terms of the H∞ norm of the stable rational matrix

[
Ha1(s)
Ha2(s)

]
−
[

Hb1(s)
Hb2(s)

]
,

where Ga(s)=Ha1(s)H−1
a2 (s) and Gb(s)=Hb1(s)H−1

b2 (s) are stable coprime factorizations of Ga(s) and
Gb(s).

Interested readers can consult [1,3,5,13], and the references therein for a through development of the
ideas underlying robust control system design and their dependence on the theory of stable coprime
factorization. A by-product of Vidyasagar’s approach [13] is a framework for understanding MFDs and
stable coprime factorizations in terms of more general themes from abstract algebra, notably ring theory.
This framework reveals that many of our results possess natural generalizations that apply in contexts
broader than those considered here.

6.5 Defining Terms

Proper rational matrix: A matrix whose entries are proper rational functions, i.e., ratios of polynomials
each of whose numerator degrees is less than or equal to its denominator degree.

MacMillan degree: The dimension of the state in a minimal realization of a proper rational transfer
function matrix.

Real polynomial matrix: A matrix whose entries are polynomials with real coefficients.
Nonsingular: A real square polynomial matrix is nonsingular if its determinant is a nonzero polynomial.
Unimodular: A real square polynomial matrix is unimodular if its determinant is a nonzero real number.
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7.1 Motivations and Preliminaries

Over the last decades, stability and performance of control systems affected by bounded perturbations
have been studied in depth. The attention of researchers and control engineers concentrated on robustness
tools in the areas H∞, Kharitonov (or real parametric uncertainty), L1, Lyapunov, μ, and quantitative
feedback control (QFT). For further discussions on these topics and on the exposition of the main
technical results, the reader may consult different sections of this volume and the special issue on robust
control of Automatica (1993).

One of the key features of this chapter is the concept of robustness. To explain, instead of a single
(nominal) system, we study a family of systems and we say that a certain property (e.g., stability or perfor-
mance) is robustly satisfied if it is satisfied for all members of the family. In particular, we focus on linear,
time-invariant, single-input, single-output systems affected by real parametric uncertainty. Stability of

7-1
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interval polynomials (i.e., polynomials whose coefficients lie within given intervals) and the well-known
Theorem of Kharitonov (Kharitonov, 1978) are at the core of this research area. This theorem states that
an interval polynomial has all its roots in the open left half-plane if and only if four specially constructed
polynomials have roots in the open left half-plane. Subsequently, the Edge Theorem (Bartlett et al., 1988)
studied the problem of affine dependence between coefficients and uncertain parameters, and more gen-
eral regions than the open left half-plane. This result provides an elegant solution proving that it suffices to
check stability of the so-called one-dimensional exposed edges. We refer to the books (Ackermann, 1993;
Barmish, 1994; Bhattacharyya et al., 1995; Djaferis, 1995; Kogan, 1995) for a discussion of the extensive
literature on this subject.

To explain robustness analysis more precisely with real parametric uncertainty, we consider a family of
polynomials p(s, q) of degree n whose real coefficients ai(q) are continuous functions of an �-dimensional
vector of real uncertain parameters q, each bounded in the interval [q−i , q+i ]. More formally, we define

p(s, q)
.= a0(q)+ a1(q)s+ a2(q)s2+ · · ·+ an(q)sn,

q
.= [q1, q2, . . . , q�],

and the set
Q

.= {q : q−i ≤ qi ≤ q+i , i = 1, 2, . . . , �}.
We assume that p(s, q) is of degree n for all q ∈ Q—that is, we assume that an(q) �= 0 for all q ∈ Q.

Whenever the relations between the polynomial coefficients ai(q) and the vector q are specified, we study
the root location of p(s, q) for all q ∈ Q. Within this framework, the basic property we need to guarantee
is robust stability. In particular, we say that p(s, q) is robustly stable if p(s, q) has roots in the open left
half-plane for all q ∈ Q.

The real parametric approach can be also formulated for control systems. In this case, we deal with a
family of plants denoted by P(s, q). More precisely, we concentrate on robust stability or performance of
a proper plant

P(s, q)
.= NP(s, q)

DP(s, q)
,

where NP(s, q) and DP(s, q) are the numerator and denominator polynomials whose real coefficients are
continuous functions of q. We assume that DP(s, q) has invariant degree for all q ∈ Q. We also assume
that there is no unstable pole–zero cancellation for all q ∈ Q; the reader may refer to Chockalingam and
Dasgupta (1993) for further discussions.

Robustness analysis is clearly of interest when the plant requires compensation. In practice, if the
compensator is designed on the basis of the nominal plant, then, robustness analysis can be performed
by means of the closed-loop polynomial. That is, given a compensator transfer function

C(s)
.= NC(s)

DC(s)

connected in a feedback loop with P(s, q), we immediately write the closed-loop polynomial

p(s, q)= NP(s, q)NC(s)+DP(s, q)DC(s)

whose root location determines closed-loop stability.
To conclude this preliminary discussion, we remark that one of the main technical tools described here

is the so-called value set (or template in the QFT jargon, see Horowitz, 1991; see Barmish, 1994 for a
detailed exposition of its properties). In particular, we show that if the polynomial or plant coefficients are
affine functions of q, the value set can be easily constructed with 2D graphics. Consequently, robustness
tests in the frequency domain can be readily performed. Finally, in this chapter, since the main goal is to
introduce the basic concepts and tools available for robustness analysis with real parametric uncertainty,
we do not provide formal proofs but we make reference to the specific literature on the subject.
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7.1.1 Motivating Example: DC Electric Motor with Uncertain Parameters

For the sake of illustrative purposes, an example of a DC electric motor is formulated and carried
out throughout this chapter in various forms. Consider the system represented in Figure 7.1 of an
armature-controlled DC electric motor with independent excitation. The voltage to angle transfer function
P(s)=Θ(s)/V (s) is given by

P(s)= K

LJs3+ (RJ +BL)s2+ (K2+RB)s
,

where L is the armature inductance, R the armature resistance, K the motor electromotive force-speed
constant, J the moment of inertia, and B the mechanical friction. Clearly, the values of some of these
parameters may be uncertain. For example, the moment of inertia and the mechanical friction are func-
tions of the load. Therefore, depending on the specific application, if the load is not fixed, the values of J
and B are not precisely known. Similarly, the armature resistence R is a parameter that can be measured
very accurately but is subject to temperature variations, and the motor constant K is a function of the
field magnetic flow which may vary.

To summarize, it is reasonable to say that the motor parameters, or a subset of them, may be unknown
but bounded within given intervals. More precisely, we can identify

q1 = L; q2 = R; q3 = K ; q4 = J ; q5 = B

and specify a given interval [q−i , q+i ] for each qi , i = 1, 2, . . . , 5. Then, instead of P(s), we write

P(s, q)= q3

q1q4s3+ (q2q4+ q1q5)s2+ (q2
3+ q2q5)s

.

7.2 Description of the Uncertainty Structures

As discussed in the preliminaries in Section 7.1, we consider a proper plant P(s, q) whose coefficients
are continuous functions of the uncertainty q which is confined to the set Q. Depending on the specific
problem under consideration, the coefficients of NP(s, q) and DP(s, q) may be linear or nonlinear functions
of q. To explain more precisely, we consider the example of Section 7.1.1. Assume that the armature

i = Armature current

Cm = Motor torque

Cr = Load torque

V = Armature voltage
ω = Angular speed

θ = Angle

FIGURE 7.1 DC electric motor.
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inductance L, the armature resistance R, and the constant K are fixed while the moment of inertia J and
the mechanical friction B are unknown. Then, we take q1 = J and q2 = B as uncertain parameters; the
resulting set Q is a two-dimensional rectangle. In this case, the plant coefficients are affine∗ functions of
q1 and q2

NP(s, q)= K ;

DP(s, q)= Lq1s3+ (Rq1+ Lq2)s2+ (K2+Rq2)s

and we say that the plant has an affine uncertainty structure. This situation arises in practice whenever, for
example, the load conditions are not known. Other cases, however, may be quite different from the point
of view of the uncertainty description. For example, if L, K , and B are fixed and R and J are uncertain, we
identify q1 and q2 with R and J , respectively. We observe that the denominator coefficient of s2 contains
the product of the two uncertain parameters q1 and q2

NP(s, q)= K ;

DP(s, q)= Lq2s3+ (q1q2+BL)s2+ (K2+Bq1)s.

In this case, the plant coefficients are no longer affine functions of the uncertainties but they are multiaffine
functions† of q. This discussion can be further generalized. It is well known that the motor constant K
is proportional to the magnetic flow. In an ideal machine with independent excitation, such a flow is
constant, but in a real machine, the armature reaction phenomenon causes magnetic saturation with the
consequence that the constant K drops when the armature current exceeds a certain value. Hence, we
consider K as an uncertain parameter and we set q1 = K . In turn, this implies that the plant coefficients are
polynomial functions of the uncertainties. In addition, since q1 enters in NP(s, q) and DP(s, q), we observe
that there is coupling between numerator and denominator coefficients. In different situations when
this coupling is not present, we say that the numerator and denominator uncertainties are independent.
An important class of independent uncertainties, in which all the coefficients of the numerator and
denominator change independently within given intervals, is the so-called interval plant; for example,
see Barmish et al. (1992). In other words, an interval plant is the ratio of two independent interval
polynomials; recall that an interval polynomial

p(s, q)= q0+ q1s+ q2s2+ · · ·+ qnsn

has independent coefficients bounded in given intervals q−i ≤ qi ≤ q+i for i = 0, 1, 2, . . . , n.
The choice of the uncertain parameters for a control system is a modeling problem, but robustness

analysis is of increasing difficulty for more general uncertainty structures. In the following sections, we
show that this analysis can be easily performed if the structure is affine and we demonstrate that a “tight”
approximate solution can be readily computed in the multiaffine case.

7.3 Uncertainty Structure Preservation with Feedback

In the previous sections, we described the classes of uncertainty structures entering into the open-loop
plant. From the control system point of view, an important and closely related question arises: what
are the conditions under which a certain uncertainty structure is preserved with feedback? To answer
this question, we consider a plant P(s, q) and a compensator C(s) connected with the feedback structure
shown in Figure 7.2.

∗ An affine function f : Q→ R is the sum of a linear function and a constant. For example, f (q)= 3q1+ 2q2− 4 is affine.
† A function f : Q→ R is said to be multiaffine if the following condition holds: If all components q1, . . . , q� except for

one are fixed, then f is affine. For example, f (q)= 3q1q2q3− 6q1q3+ 4q2q3+ 2q1− 2q2+ q3− 1 is multiaffine.
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C(s) P(s, q)
r e

−

y

d

FIGURE 7.2 Closed-loop system.

Depending on the specific problem under consideration (e.g., disturbance attenuation or tracking),
we study sensitivity, complementary sensitivity, and output-disturbance transfer functions (e.g., see
Doyle et al., 1992)

S(s, q)
.= 1

1+ P(s, q)C(s)
; T(s, q)

.= P(s, q)C(s)

1+ P(s, q)C(s)
; R(s, q)

.= P(s, q)

1+ P(s, q)C(s)
.

For example, it is immediate to show that the sensitivity function S(s, q) takes the form

S(s, q)= DP(s, q)DC(s)

NP(s, q)NC(s)+DP(s, q)DC(s)
.

If the uncertainty q enters affinely into the plant numerator and denominator, q also enters affinely
into S(s, q). We conclude that the affine structure is preserved with feedback. The same fact also holds
for T(s, q) and R(s, q). Next, we consider the interval plant structure; recall that an interval plant has
independent coefficients bounded in given intervals. It is easy to see that, in general, this structure is not
preserved with compensation. Moreover, if the plant is affected by uncertainty entering independently
into numerator and denominator coefficients, this decoupling is destroyed for all transfer functions
S(s, q), T(s, q), and R(s, q). Finally, it is important to note that the multiaffine and polynomial uncertainty
structures are preserved with feedback. Table 7.1 summarizes this discussion. In each entry of the first row
of the table we specify the structure of the uncertain plant P(s, q) and in the entry below the corresponding
structure of S(s, q), T(s, q), and R(s, q).

7.4 Overbounding with Affine Uncertainty: The Issue
of Conservatism

As briefly mentioned at the end of Section 7.3, the affine structure is very convenient for performing
robustness analysis. However, in several real applications, the plant does not have this form; for example,
see Abate et al. (1994). In such cases, the nonlinear uncertainty structure can always be embedded into
an affine structure by replacing the original family by a “larger” one. Even though this process has the
advantage that it handles much more general robustness problems, it has the obvious drawback that it gives
only an approximate but guaranteed solution. Clearly, the goodness of the approximation depends on the

TABLE 7.1 Uncertainty Structure with Feedback

P(s, q) Independent Interval Affine Multiaffine Polynomial

S(s, q), T(s, q), R(s, q) Dependent Affine Affine Multiaffine Polynomial
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specific problem under consideration. To illustrate this simple overbounding methodology, we consider
the DC-electric motor transfer function with two uncertain parameters and take q1 = R and q2 = J . As
previously discussed, with this specific choice, the plant has a multiaffine uncertainty structure. That is,

P(s, q)= K

Lq2s3+ (q1q2+BL)s2+ (K2+Bq1)s
.

To overbound P(s, q) with an affine structure, we set q3 = q1q2. Given bounds [q−1 , q+1 ] and [q−2 , q+2 ] for
q1 and q2, the range of variation [q−3 , q+3 ] for q3 can be easily computed:

q−3 =min{q−1 q−2 , q−1 q+2 , q+1 q−2 , q+1 q+2 };
q+3 =max{q−1 q−2 , q−1 q+2 , q+1 q−2 , q+1 q+2 }.

Clearly, the new uncertain plant

P(s, q̃)= K

Lq2s3+ (q3+BL)s2+ (K2+Bq1)s

has three uncertain parameters q̃= (q1, q2, q3) entering affinely into P(s, q̃). This new parameter is not
independent, because q3 = q1q2 and not all values of [q−3 , q+3 ] are physically realizable. However, since we
assume that the coefficients qi are independent, this technique leads to an affine overbounding of P(s, q)
with P(s, q̃). We conclude that if a certain property is guaranteed for P(s, q̃), then, this same property is
also guaranteed for P(s, q). Unfortunately, the converse is not true. The control systems interpretation
of this fact is immediate: Suppose that a certain compensator C(s) does not stabilize P(s, q̃). It may turn
out that this same compensator does stabilize the family P(s, q). Figure 7.3 illustrates the overbounding
procedure for q−1 = 1.2, q+1 = 1.7, q−2 = 1.7, q+2 = 2.2, q−3 = 2.04 and q+3 = 3.74.

To generalize this discussion, we restate the overbounding problem as follows: Given a plant P(s, q)
having nonlinear uncertainty structure and a set Q, find a new uncertain plant P(s, q̃) with affine uncer-
tainty structure and a new set Q̃. In general, there is no unique solution and there is no systematic
procedure to construct an “optimal” overbounding. In practice, however, the control engineer may find
via heuristic considerations a reasonably good method to perform it. The most natural way to obtain
this bound may be to compute an interval overbounding for each coefficient of the numerator and
denominator coefficients—that is, an interval plant overbounding. To illustrate, letting ai(q) and bi(q)

1.2
1.4

1.6

1.6

1.8

2

2.2
2

2.5

3

3.5

4

q1

q2

q3

FIGURE 7.3 Overbounding procedure.
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denote the numerator and denominator coefficients of P(s, q), lower and upper bounds are given by

a−i =min
q∈Q

ai(q); a+i =max
q∈Q

ai(q)

and

b−i =min
q∈Q

bi(q); b+i =max
q∈Q

bi(q).

If ai(q) and bi(q) are affine or multiaffine functions and q lies in a rectangular set Q, these minimizations

and maximizations can be easily performed. That is, if we denote by q1, q2, . . . , qL .= q2�
the vertices of

Q, then

a−i =min
q∈Q

ai(q)= min
k=1,2,...,L

ai(qk); a+i =max
q∈Q

ai(q)= max
k=1,2,...,L

ai(qk)

and

b−i =min
q∈Q

bi(q)= min
k=1,2,...,L

bi(qk); b+i =max
q∈Q

bi(q)= max
k=1,2,...,L

bi(qk).

To conclude this section, we remark that for more general uncertainty structures than multiaffine, a
tight interval plant overbounding may be difficult to construct.

7.5 Robustness Analysis for Affine Plants

In this section, we study robustness analysis of a plant P(s, q) affected by affine uncertainty q ∈ Q. The
approach taken here is an extension of the classical Nyquist criterion and requires the notion of value set.

For fixed frequency s = jω, we define the value set P( jω, Q)⊂ C as

P( jω, Q)
.= {P( jω, q) : DP( jω, q) �= 0, q ∈ Q}.

Roughly speaking, P( jω, Q) is a set in the complex plane which graphically represents the uncertain
plant. Without uncertainty, P( jω) is a singleton and its plot for a range of frequencies is the Nyquist
diagram. The nice feature is that this set is two-dimensional even if the number of uncertain parameters
is large. Besides the issue of the value set construction (which is relegated to the next subsection for the
specific case of affine plants), we now formally state a robustness criterion. This is an extension of the
classical Nyquist criterion and holds for more general uncertainty structures than affine—continuity of
the plant coefficients with respect to the uncertain parameters suffices. However, for more general classes
of plants than affine, the construction of the value set is a hard problem.

Criterion 7.1: Robustness Criterion for Uncertain Plants

The plant P(s, q) is robustly stable for all q ∈ Q if and only if the Nyquist stability criterion is satisfied for
some q ∈ Q and−1+ j0 �∈ P( jω, Q) for all ω ∈ R.

This criterion can be proved using continuity arguments; see Fu (1990). To detect robustness, one
should check if the Nyquist stability criterion holds for some q ∈ Q; without loss of generality, this check
can be performed for the nominal plant. Second, it should be verified that the value set does not go through
the point−1+ j0 for all ω ∈ R. In practice, however, one can discretize a bounded intervalΩ⊂ R with a
“sufficiently” large number of samples—continuity considerations guarantee that the intersampling is not
a critical issue. Finally, by drawing the value set, the gain and phase margins can be graphically evaluated;
similarly, the resonance peak of the closed-loop system can be computed using the well-known constant
M-circles.
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7.5.1 Value Set Construction for Affine Plants

In this section, we discuss the generation of the value set P( jω, Q) in the case of affine plants. The reader
familiar with Nyquist-type analysis and design is aware of the fact that a certain range of frequencies,
generally close to the crossover frequencies, can be specified a priori. That is, a rangeΩ= [ω−,ω+]may
be imposed by design specifications or estimated by performing a frequency analysis of the nominal
system under consideration. In this section, we assume that DP( jω, q) �= 0 for all q ∈ Q and ω ∈Ω. We
remark that if the frequency ω= 0 lies in the interval Ω, this assumption is not satisfied for type 1 or
2 systems—however, these systems can be easily handled with contour indentation techniques as in the
classical Nyquist analysis. We also observe that the assumption that P(s, q) does not have poles in the
interval [ω−,ω+] simply implies that P( jω, Q) is bounded.

To proceed with the value set construction, we first need a preliminary definition. The one-dimensional
exposed edge eik is a convex combination of the adjacent vertices∗ qi and qk of Q

eik .= λqi + (1−λ)qk

for λ ∈ [0, 1]. Denote by E the set of all q ∈ eik for some i, k, and λ ∈ [0, 1]. This set is the collection of all
one-dimensional exposed edges of Q.

Under our assumption ∂P( jω, Q) �= 0, for q ∈ Q and allω, the set P( jω, Q) is compact. Then, for fixed
ω ∈Ω, it can be shown (see Fu, 1990) that

∂P( jω, Q)⊆ P( jω, E)
.= {P( jω, q) : q ∈ E}

where ∂P( jω, Q) denotes the boundary of the value set and P( jω, E) is the image in the complex plane
of the exposed edges (remember that we assumed ∂P( jω, Q) �= 0, for q ∈ Q and all ω). This says that the
construction of the value set only requires computations involving the one-dimensional exposed edges.
The second important fact observed in Fu (1990) is that the image of the edge eik in the complex plane is
an arc of a circle or a line segment. To explain this claim, in view of the affine dependence of both N(s, q)
and D(s, q) versus q, we write the uncertain plant corresponding to the edge eik in the form

P(s, eik)= NP(s,λqi + (1−λ)qk)

DP(s,λqi + (1−λ)qk)
= NP(s, qk)+λNP(s, (qi − qk))

DP(s, qk)+λNP(s, (qi − qk))

for λ ∈ [0, 1]. For fixed s = jω, it follows that the mapping from the edge eik to the complex plane is
bilinear. Then, it is immediate to conclude that the image of each edge is an arc of a circle or a line
segment; the center and the radius of the circle and the extreme points of the segment can be also
computed. Even though the number of one-dimensional exposed edges of the set Q is �2�−1, the set E is
one dimensional. Therefore, a fast computation of P( jω, E) can be easily performed and the boundary of
the value set P( jω, Q) can be efficiently generated.

Finally, an important extension of this approach is robustness analysis of systems with time delay. That
is, instead of P(s, q), we consider

Pτ(s, q)
.= N(s, q)

D(s, q)
e−τs

where τ≥ 0 is a delay. It is immediate to see that the value set of Pτ(s, q) at frequency s = jω is given
by the value set of the plant N(s, q)/D(s, q) rotated with respect to the origin of the complex plane of
an angle τω in clockwise direction. Therefore, Criterion 7.1 still applies; see Barmish and Shi (1990) for
further details.

∗ Two vertices are adjacent if they differ for only one component. For example, in Figure 7.3 the vertices q1 = (1.2, 2.2, 2.04)
and q2 = (1.2, 2.2, 3.74) are adjacent.
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7.5.2 The DC-Electric Motor Example Revisited

To illustrate the concepts discussed in this section, we revisit the DC-electric motor example. We take
two uncertain parameters

q1 = J ; q2 = B,

where q1 ∈ [0.03, 0.15] and q2 ∈ [0.001, 0.03] with nominal values J = 0.042 kg m2 and B=
0.01625 N m/rps. The remaining parameters take values K = 0.9 V/rps, L= 0.025 H, and R = 5Ω. The
voltage to angle uncertain plant is

P(s, q)= 0.9

0.025q1s3+ (5q1+ 0.025q2)s2+ (0.81+ 5q2)s
.

To proceed with robustness analysis, we first estimate the critical range of frequencies obtaining Ω=
[10, 100]. We note that the denominator of P(s, q) is nonvanishing for all q ∈ Q in this range. Then, we
study robust stability of the plant connected in a feedback loop with a PID compensator

C(s)= KP + KI

s
+KDs.

For closed-loop stability, we recall that the Nyquist criterion requires that the Nyquist plot of the
open-loop system does not go through the point−1+ j0 and that it does encircle this point (in counter-
clockwise direction) a number of times equal to the number of unstable poles; for example, see Horowitz
(1963). In this specific case, setting KP = 200, KI = 5120, and KD = 20, we see that the closed-loop nomi-
nal system is stable with a phase marginφ≈ 63.7◦ and a crossover frequencyωc ≈ 78.8 rad/s. As a result of
the analysis carried out by sweeping the frequency, it turns out that the closed-loop system is not robustly
stable, since at the frequency ω≈ 16 rad/s the value set includes the point −1+ j0. Figure 7.4 shows the
Nyquist plot of the nominal plant and the value set for 12 equispaced frequencies in the range (12,34).
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FIGURE 7.4 Nyquist plot and value set.
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FIGURE 7.5 Nyquist plot and value set.

To robustly stabilize P(s, q), we take KI = 2000 and the same values of KP and KD as before. The
reasons for choosing this value of KI can be explained as follows: The compensator transfer function has
phase zero at the frequency ω=√KI/KD. Thus, reducing KI from 5120 to 2000 causes a drop of ω from
16 to 10 rad/s. This implies that the phase lead effect begins at lower frequencies “pushing” the value set
out of the critical point −1+ j0. Since the nominal system is stable with a phase margin φ≈ 63.7◦ and a
crossover frequency ωc ≈ 80.8 rad/s, this new control system has nominal performance very close to the
previous one. However, with this new PID compensator, the system becomes robustly stable. To see this,
we generated the value sets for the same frequencies as before; see Figure 7.5.

From this figure, we observe that P( jω, q) does not include the point −1+ j0. We conclude that the
closed-loop system is now robustly stable; the worst-case phase margin is φ≈ 57.9◦.

7.6 Robustness Analysis for Affine Polynomials

In this section, we study robustness analysis of the closed-loop polynomial

p(s, q)= NP(s, q)NC(s)+DP(s, q)DC(s)

when the coefficients of NP(s, q) and DP(s, q) are affine functions of q. The main goal is to provide an
alternative criterion for polynomials instead of plants. With this approach, we do not need the nonva-
nishing condition about DP(s, q); furthermore, unstable pole–zero cancellations are not an issue. In this
case, however, we lose the crucial insight given by the Nyquist plot. For fixed frequency s = jω, we define
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the value set p( jω, Q)⊂ C as
p( jω, Q)

.= {p( jω, q) : q ∈ Q}.
As in the plant case, p( jω, Q) is a set in the complex plane which moves with frequency and which
graphically represents the uncertain polynomial.

Criterion 7.2: Zero-Exclusion Condition for Uncertain Polynomials

The polynomial p(s, q) is robustly stable for all q ∈ Q if and only if p(s, q) is stable for some q ∈ Q and
0 �∈ p( jω, Q) for all ω ∈ R.

The proof of this criterion requires elementary facts and, in particular, continuity of the roots of p(s, q)
versus its coefficients; see Frazer and Duncan (1929). Similar to the discussion in Section 7.5, we note that
Criterion 7.2 is easily implementable—at least whenever the value set can be efficiently generated. That is,
given an affine polynomial family, we take any element in this family and we check its stability. This step
is straightforward using the Routh table or any root finding routine. Then, we sweep the frequencyω over
a selected range of critical frequencies Ω= [ω−,ω+]. This interval can be estimated, for example, using
some a priori information on the specific problem or by means of one of the bounds given in Marden
(1966). If there is no intersection of p( jω, Q) with the origin of the complex plane for all ω ∈Ω, then
p(s, q) is robustly stable.

Remark 7.1

A very similar zero exclusion condition can be stated for more general regions D than the open left
half-plane. Meaningful examples of D regions are the open unit disk, a shifted left half-plane and a
damping cone∗. In this case, instead of sweeping the imaginary axis, we need to discretize the boundary
of D.

7.6.1 Value Set Construction for Affine Polynomials

In this section, we discuss the generation of the value set p( jω, Q). Whenever the polynomial coefficients
are affine functions of the uncertain parameters, the value set can be easily constructed. To this end,
two key facts are very useful. First, for fixed frequency, we note that p( jω, Q) is a two-dimensional
convex polygon. Second, letting q1, q2, . . . , qL denote the vertices of Q as in Section 7.4, we note that the
vertices of the value set are a subset of the complex numbers p( jω, q1), p( jω, q2), . . . , p( jω, qL). These two
observations follow from the fact that, for fixed frequency, real and imaginary parts of p(s, q) are both
affine functions of q. Then, the value set is a two-dimensional affine mapping of the set Q and its vertices
are generated by vertices of Q. Thus, for fixed ω, it follows that

p( jω, Q)= conv {p( jω, q1), p( jω, q2), . . . , p( jω, qL)}
where conv denotes the convex hull†. The conclusion is then immediate: For fixed frequency, one can
generate the points p( jω, q1), p( jω, q2), . . . , p( jω, qL) in the complex plane. The value set can be con-
structed by taking the convex hull of these points—this can be readily done with 2D graphics. From the
computational point of view, we observe that the number of edges of the polygon is at most 2� at each
frequency. This follows from the observations that any edge of the value set is the image of an exposed
edge of Q. In addition, parallel edges of Q are mapped into parallel edges in the complex plane and the
edges of Q have only � distinct directions. These facts can be used to efficiently compute p( jω, Q). We
now provide an example which illustrates the value set generation.

∗ A damping cone is a subset of the complex plane defined as {s : Re(s)≤−α|Im(s)|} for α> 0.
† The convex hull conv S of a set S is the smallest convex set containing S.
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7.6.2 Example of Value Set Generation

Using the same data as in the example of Section 7.5.2 and a PID controller with gains KP = 200,
KI = 5120, and KD = 20, we study the closed-loop polynomial

p(s, q)= 0.025q1s4+ s3(5q1+ 0.025q2)+ s2(5q2+ 18.81)+ 180s+ 4608.

Robustness analysis is performed for 29 equispaced frequencies in the range (2,30). Figure 7.6 shows the
polygonality of the value set and zero inclusion for ω≈ 16 rad/s which demonstrates instability. This
conclusion is in agreement with that previously obtained in Section 7.5.2.

7.6.3 Interval Polynomials: Kharitonov’s Theorem and Value Set Geometry

In the special case of interval polynomials, robustness analysis can be greatly facilitated via Kharitonov’s
Theorem (Kharitonov, 1978). We now recall this result. Given an interval polynomial

p(s, q)= q0+ q1s+ q2s2+ · · ·+ qnsn

of order n (i.e., qn �= 0) and bounds [q−i , q+i ] for each coefficient qi , define the following four polynomials:

p1(s)
.= q+0 + q+1 s+ q−2 s2+ q−3 s3+ q+4 s4+ q+5 s5+ q−6 s6+ q−7 s7+ · · · ;

p2(s)
.= q−0 + q−1 s+ q+2 s2+ q+3 s3+ q−4 s4+ q−5 s5+ q+6 s6+ q+7 s7+ · · · ;

p3(s)
.= q+0 + q−1 s+ q−2 s2+ q+3 s3+ q+4 s4+ q−5 s5+ q−6 s6+ q+7 s7+ · · · ;

p4(s)
.= q−0 + q+1 s+ q+2 s2+ q−3 s3+ q−4 s4+ q+5 s5+ q+6 s6+ q−7 s7+ · · · .
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FIGURE 7.6 Value set plot.
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Then, p(s, q) is stable for all q ∈ Q if and only if the four Kharitonov polynomials p1(s), p2(s), p3(s) and
p4(s) are stable. To provide a geometrical interpretation of this result, we observe that the value set for
fixed frequency s = jω is a rectangle with level edges parallel to real and imaginary axis. The four vertices
of this set are the complex numbers p1( jω), p2( jω), p3( jω), and p4( jω); see Dasgupta (1988). If the four
Kharitonov polynomials are stable, due to the classical Mikhailov’s criterion (Mikhailov, 1938), their
phase is strictly increasing forω increasing. In turn, this implies that the level rectangular value set moves
in a counterclockwise direction around the origin of the complex plane. Next, we argue that the strictly
increasing phase of the vertices and the parallelism of the four edges of the value set with real or imaginary
axis guarantee that the origin does not lie on the boundary of the value set. By continuity, we conclude that
the origin is outside the value set and the zero exclusion condition is satisfied; see Minnichelli et al. (1989).

7.6.4 From Robust Stability to Robust Performance

In this section, we point out the important fact that the polynomial approach discussed in this chapter can
be also used for robust performance. To explain, we take an uncertain plant with affine uncertainty and
we show how to compute the largest peak of the Bode plot magnitude for all q ∈ Q—that is, the worst-case
H∞ norm. Formally, for a stable strictly proper plant P(s, q), we define

max
q∈Q

||P(s, q)||∞ .=max
q∈Q

sup
ω
|P( jω, q)|.

Given a performance level γ> 0, then

max
q∈Q

||P(s, q)||∞ < γ

if and only if ∣∣∣∣NP( jω, q)

DP( jω, q)

∣∣∣∣< γ
for all ω≥ 0 and q ∈ Q. Since P( jω, q)→ 0 for ω→∞, this is equivalent to check if the zero-exclusion
condition

NP( jω, q)− γDP( jω, q)ejφ �= 0

is satisfied for all ω ∈ R, q ∈ Q and φ ∈ [0, 2π]. In turn, this implies that the polynomial with complex
coefficients

pφ(s, q)= NP(s, q)− γDP(s, q)ejφ

has roots in the open left half-plane for all q ∈ Q andφ ∈ [0, 2π]. Clearly, for fixedφ ∈ [0, 2π], Criterion 7.2
can be readily used; however, since pφ(s, q) has complex coefficients, it should be necessarily checked for
all ω ∈ R, including negative frequencies.

7.6.5 Algebraic Criteria for Robust Stability

If the uncertain polynomial under consideration is affine, the well-known Edge Theorem applies (Bartlett
et al., 1988). This algebraic criterion is alternative to the frequency domain approach studied in this
section. Roughly speaking, this result says that an affine polynomial family is robustly stable if and only
if all the polynomials associated with the one-dimensional exposed edges of the set Q are stable. Even
though this result is of algebraic nature, it can be explained by means of value set arguments. For affine
polynomials and for fixed ω, we have already observed in Section 7.6.3 that the boundary of the value set
p( jω, Q) is the image of the one-dimensional exposed edges of Q. Thus, to guarantee the zero-exclusion
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condition, we need to guarantee that all edge polynomials are nonvanishing for all ω ∈ R—otherwise an
instability occurs. We conclude that stability detection for affine polynomials requires the solution of a
number of one-dimensional stability problems. Each of these problems can be stated as follows: Given
polynomials p0(s) and p1(s) of order n and m < n, respectively, we need to study the stability of

p(s,λ)= p0(s)+λp1(s)

for all λ ∈ [0, 1]. A problem of great interest is to ascertain when the robust stability of p(s,λ) can be
deduced from the stability of the extreme polynomials p(s, 0) and p(s, 1). This problem can be formulated
in more general terms: To construct classes of uncertain polynomials for which the stability of the vertex
polynomials (or a subset of them) implies stability of the family. Clearly, the edges associated with an
interval polynomial is one such class. Another important example is given by the edges of the closed-loop
polynomial of a control system consisting of a first-order compensator and an interval plant; see Barmish
et al. (1992). Finally, see Rantzer (1992) for generalizations and for the concept of convex directions
polynomials.

7.6.6 Further Extensions: The Spectral Set

In some cases, it is of interest to generate the entire root location of a family of polynomials. This leads
to the concept of spectral set; see Barmish and Tempo (1991). Given a polynomial p(s, q), we define the
spectral set as

σ
.= {s ∈ C : p(s, q)= 0 for some q ∈ Q}.

The construction of this set is quite easy for affine polynomials. Basically, the key idea can be explained
as follows: For fixed s ∈ C, checking if s is a member of the spectral set can be accomplished by means of the
zero-exclusion condition; see also Remark 7.6.2. Next, it is easy to compute a bounded root confinement
region σ⊇ σ; for example, see Marden (1966). Then, the construction of the spectral set σ amounts to a
two-dimensional gridding of σ and, for each grid point, checking zero exclusion.

The spectral set concept can be further extended to control systems consisting of a plant P(s, q) with a
feedback gain KP which needs tuning. In this case, we deal with the so-called robust root locus (Barmish
and Tempo, 1990)—that is, the generation of all the roots of the closed-loop polynomial when KP ranges
in a given interval. To illustrate, we consider the same data as in Section 7.6.3 and a feedback gain KP ,
thus obtaining the closed loop polynomial

p(s, q)= 0.025q1s3+ (5q1+ 0.025q2)s2+ (0.81+ 5q2)s+ 0.9KP ,

where q1 ∈ [0.03, 0.15] and q2 ∈ [0.001, 0.03]. In Figure 7.7, we show the spectral set for KP = 200. Actu-
ally, only the portion associated with the dominant roots is visible since the spectral set, obviously, includes
a real root in the interval [−200.58,−200.12] which is out of the plot.

7.7 Multiaffine Uncertainty Structures

In this section, we discuss the generation of the value set for polynomials with more general uncertainty
structures than affine. In particular, we study the case when the polynomial coefficients are multiaffine
functions of the uncertain parameters. Besides the motivations provided in Section 7.3, we recall that
this uncertainty structure is quite important for a number of reasons. For example, consider a linear
state-space system of the form ẋ(t)= A(q)x(t) where each entry of the matrix A(q) ∈ Rm×m lies in a
bounded interval, that is, it is an interval matrix. Then, the characteristic polynomial required for stability
considerations has a multiaffine uncertainty structure.

In the case of multiaffine uncertainty, the value set is generally not convex and its construction cannot
be easily performed. However, we can easily generate a “tight” convex approximation of p( jω, Q)—this
approximation being its convex hull conv p( jω, Q). More precisely, the following fact, called the Mapping
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FIGURE 7.7 Spectral set.

Theorem, holds: The convex hull of the value set conv p( jω, Q) is given by the convex hull of the vertex
polynomials p( jω, q1), p( jω, q2), . . . , p( jω, qL). In other words, the parts of the boundary of p( jω, Q)
which are not line segments are always contained inside this convex hull. Clearly, if conv p( jω, Q) is used
instead of p( jω, Q) for robustness analysis through zero exclusion, only a sufficient condition is obtained.
That is, if the origin of the complex plane lies inside the convex hull, we do not know if it is also inside
the value set. We now formally state the Mapping Theorem; see Zadeh and Desoer (1963).

Theorem 7.1: Mapping Theorem

For fixed frequency ω ∈ R,

conv p( jω, Q)= conv {p( jω, q1), p( jω, q2), . . . , p( jω, qL)}.

With regard to applicability and usefulness of this result, comments very similar to those made in
Section 7.7 about the construction of the value set for affine polynomials can be stated. Figure 7.8
illustrates the Mapping Theorem for the polynomial

p(s, q)= s3+ (q2+ 4q3+ 2q1q2)s2+ (4q2q3+ q1q2q4)s+ q3+ 2q1q3− q1q2(q4− 0.5)

with four uncertain parameters q1, q2, q3, and q4 each bounded in the interval [0, 1] and frequency ω= 1
rad/s. The “true” value set shown in this figure is obtained via random generation of 10,000 samples
uniformly distributed in the set Q.
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FIGURE 7.8 Value set and its convex hull.

7.8 General Uncertainty Structures and Controller Synthesis

For general uncertainty structures there is no analytical tool that enables us to construct the value set. For
systems with a very limited number of uncertain parameters, a brute force approach, as in the example
of Theorem 7.1, can be taken by simply gridding the set Q with a sufficient number of points. With
this procedure, one can easily obtain a “cloud” in the complex plane which approximates the value set.
Obviously, this method is not practical for a large number of uncertain parameters and provides no
guarantee that robustness is satisfied outside the grid points.

Several attempts in the literature aimed at solving this general problem. Among the pioneering
contributions along this line we recall the parameter space approach (Ackermann, 1980), techniques
for the multivariable gain margin computation (de Gaston and Safonov, 1988) and (Sideris and Sanchez
Pena, 1989) and the geometric programming approach (Vicino et al., 1990).

As far as the robust synthesis problem is concerned, it is worth mentioning that the methods described
in this chapter are suitable for synthesis in a trial-and-error fashion. A practical use of the techniques can
be summarized in the following two steps (as illustrated in Section 7.5.2):

• Synthesize a controller for the nominal plant with any proper technique.
• Perform robustness analysis taking into account the uncertainties and go back to the previous step

if necessary.

In the special case of low complexity compensators, the two steps can be combined. This is the case of
PID synthesis for which efficient robust design tools have been proposed (Ho et al., 2000).

To facilitate robustness analysis for general parametric uncertainty structures and for nonparametric
uncertainty, different approaches have been proposed in the literature. Among the others, we recall the
μ approach (Zhou et al., 1996; Sanchez Pena and Sznaier, 1998) and the probabilistic methods (Tempo
et al., 2005). These approaches can be also used for designing a controller, but μ-synthesis is based on a

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-9&iName=master.img-000.jpg&w=212&h=160
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procedure which is not guaranteed to converge to a global solution and probabilistic methods provide a
controller which satisfies the required specification only with a given probability. However, both methods
are useful tools for many robust control problems.

As a final remark, we emphasize that in this chapter we considered only uncertainties which are constant
in time. It is known that parameter variations or, even worse, switching, may have a destabilizing effect.
There are, indeed, examples of very simple systems that are (Hurwitz) stable for any fixed value of the
parameters but can be destabilized by parameter variations. A class of systems which has been investigated
is that of Linear Parameter-Varying (LPV) systems. For these systems, it has been established that the
Lyapunov approach is crucial. For an overview of the problem of robustness of LPV systems and the link
with switching systems, the reader is referred to Blanchini and Miani (2008).
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8.1 Modeling MIMO Linear Time-Invariant Systems
in Terms of Transfer Function Matrices

Any multivariable linear time invariant (LTI) system is uniquely described by its impulse response
matrix. The Laplace transform of this matrix function of time gives rise to the system’s transfer function
matrix (TFM). We assume that all systems in the sequel have TFM representations; frequency response
analysis is always applied to TFM descriptions of systems. For the case of finite dimensional LTI systems,
when we have a state-space description of the system, closed-form evaluation of the TFM is particularly
easy. This is discussed in Example 8.1. More generally, infinite-dimensional LTI systems also have TFM
representations, although closed-form evaluation of the TFM of these systems is less straightforward.
Stability (in whatever sense) is presumed; without stability we cannot talk about the steady-state response
of a system to sinusoidal inputs. For such systems, the TFM can be measured by means of sinusoidal
inputs. We will not discuss the use of frequency-domain techniques in robustness analysis.

8-1
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Example 8.1: Finite-Dimensional LTI Systems

Suppose that we have a finite-dimensional LTI system G, with the following state equations

ẋ(t)= Ax(t)+ Bu(t),

y(t)= Cx(t)+Du(t).

Taking the Laplace transform of the state equation, we see that,

x(s)= (sI−A)−1Bu(s)

where we have abused notation slightly with x(s) and u(s) representing the Laplace transforms of
x(t) and u(t), respectively. Similarly,

y(s)= [C(sI−A)−1B+D]u(s)≡ G(s)u(s).

The matrix quantity G(s) is the transfer function matrix associated with the system G.

As a matter of convention, we will refer to the input of the system generically as u. The more specific
notation u(t) and u(s) will be used in reference to u represented as time-domain and frequency-domain
(Laplace-transform) signals, respectively. A similar convention applies to the output, y. We will assume
that u is a vector with m components and that the output y is a vector with p components. This makes the
TFM a p×m matrix. To make this explicit,

G(s)=

⎡
⎢⎢⎣

g11(s) · · · g1m(s)
...

...
gp1(s) · · · gpm(s)

⎤
⎥⎥⎦ (8.1)

u(s)= [u1(s), · · · , um(s)]T (8.2)

y(s)= [y1(s), · · · , yp(s)]T (8.3)

Componentwise,

yk(s)=
m∑

j=1

gkj(s)uj(s), k = 1, . . . , p. (8.4)

As Laplace transforms, u(s), y(s), and G(s) are generally complex-valued quantities. In more formal
mathematical notation, u(s) ∈ Cm, y(s) ∈ Cp, and G(s) ∈ Cp×m.

8.2 Frequency Response for MIMO Plants

In discussing the frequency response of LTI systems, we focus our attention on systems which are strictly
stable. This allows us to envision applying sinusoidal inputs to the system and measuring steady-state
output signals which are appropriately scaled and phase-shifted sinusoids of the same frequency. Because
we are dealing with MIMO systems, there are now additional factors which affect the nature of the
frequency response, particularly the relative magnitude and phase of each of the components of the input
vector u. These considerations will be discussed in detail below.

Suppose that we have in mind a complex exponential input, as below,

u(t)= ũe jωt (8.5)

where ũ= (ũ1, . . . , ũm)T is a fixed (complex) vector in Cm. Note that by allowing ũ to be complex, the
individual components of u(t) can have different phases relative to one another.
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Example 8.2:

Suppose that m= 2 and that ũ= ((1+ j1), (1− j1))T , then,

u(t)=
(

(1+ j1)
(1− j1)

)
e jωt =

( √
2e jπ/4√

2e−jπ/4

)
e jωt =

(√
2e j(ωt+π/4)√
2e j(ωt−π/4)

)

Thus, the two components of u(t) are phase shifted by π/2 radians (or 90 degrees).

Suppose that this input is applied to our stable LTI system G (of compatible dimension). We know from
elementary linear systems theory that each component of the output of G can be expressed in terms of
G’s frequency response G( jω). (We obtain the frequency response from G(s), literally, by setting s = jω.)
Thus, at steady state,

yk(t)=
m∑

j=1

gkj( jω)ũje
jωt ; k = 1, . . . , p. (8.6)

We may now express the vector output y(t) at steady state as follows:

y(t)= ỹe jωt , ỹ = (ỹ1, . . . , ỹp)T ∈ Cp, (8.7)

where

ỹk =
m∑

j=1

gkj( jω)ũj, k = 1, . . . , p. (8.8)

Putting all of this together,

ỹ = G( jω)ũ. (8.9)

Just as in the SISO case, the MIMO frequency response G( jω) provides a convenient means of
computing the output of an LTI system driven by a complex exponential input. Analysis of the fre-
quency response, however, is now complicated by the fact that G( jω) is a matrix quantity. A simple way
is needed to characterize the “size” of the frequency response as a function of ω. The effect of G( jω) on
complex exponential input signals depends on the direction of ũ ∈ Cm, including the relative phase of the
components. In fact, a whole range of “sizes” of G( jω) exists, depending on the directional nature of ũ.
Our characterization of size should thus provide both upper and lower bounds on the magnitude gain of
the frequency response matrix. The mathematical tool we need here is the Singular Value Decomposition
(SVD) discussed briefly in the following section.

8.3 Mathematical Detour

We present here some mathematical definitions and basic results from linear algebra germane to our
discussion of MIMO frequency response analysis. An excellent reference for this material can be found
in [5].
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8.3.1 Introduction to Complex Vectors and Complex Matrices

Given a complex-valued column vector x ∈ Cn, we may express x in terms of its real and imaginary
components,

x =
⎛
⎜⎝

x1
...

xn

⎞
⎟⎠=

⎛
⎜⎝

a1+ jb1
...

an+ jbn

⎞
⎟⎠= a+ jb

where a and b are both purely real-valued vectors in Cn. We define the row vector xH as the complex-
conjugate transpose of x, i.e.,

xH = (x∗1 , . . . , x∗n)= aT − jbT .

The superscript asterix above denotes the complex-conjugate operation.
If we have two vectors x and y, both elements of Cn, then the inner product of x and y is given by the

(complex) scalar xH y. Two vectors x and y in Cn, which satisfy xH y = 0, are said to be orthogonal.
The Euclidean norm of x, denoted by ‖x‖2, is given by the square root of the inner product of x with

itself,

‖x‖2 =
√

xH x =
√

aT a+ bT b=
√√√√ n∑

i=1

(ai
2+ bi

2).

It is important to note that ‖ · ‖2 is a real scalar function chosen arbitrarily to reflect the “size” of vectors in
Cn. (It is true that, as a norm, ‖ · ‖2 has to satisfy certain mathematical requirements, particularly positivity,
scaling, and the triangle inequality. Aside from this, our definition of ‖ · ‖2 is arbitrary.) Because all of
the components of x are taken into account simultaneously, the value (and interpretation) of ‖x‖2 will
depend on the units in which the components of x are expressed.

Example 8.3:

Suppose that we are dealing with a high-power (AC) electronic device and that the state of the device
is determined by a vector x ∈ C2 made up of phased voltages at two distinct points in the circuitry.
Suppose first that both quantities are expressed in terms of kilovolts (kV). For example,

x = (1+ j2, 2− j3)T kV

then,

‖x‖2
2 = [(1− j2), (2+ j3)][(1+ j2), (2− j3)]T
= (1+ 4)+ (4+ 9)

= 18

If, however, the first component is expressed in terms of Volts (V), then

‖x‖2
2 = [(1000− j2000), (2+ j3)][(1000+ j2000), (2− j3)]T ,

= (106+ 4× 106)+ (4+ 9)

= 5000013,

which is a far cry from what we had before! Note that this is not an entirely unreasonable example.
In general, the components of x can consist of entirely different types of physical quantities, such
as voltage, current, pressure, concentration, etc. The choice of units is arbitrary and will have an
important impact on the “size” of x when measured in terms of the Euclidean norm.
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A complex-valued matrix M ∈ Cp×m is a matrix whose individual components are complex valued.
Since M is complex valued, we can express it as the sum of its real and imaginary matrix parts, i.e.,
M = A+ jB, where A and B are both purely real-valued matrices in Cp×m.

We define the Hermitian of a complex matrix M as the complex-conjugate transpose of M, that is, MH

is computed by taking the complex conjugate of the transpose of M. Mathematically,

MH = AT − jBT (8.10)

The following will play an important role in the next subsection.

8.3.1.1 Important Fact

Both MH M and MMH have eigenvalues that are purely real valued and nonnegative. Moreover, their
nonzero eigenvalues are identical even though MH M �=MMH .

Example 8.4:

Let

M=
[

1 1+ j
−j 2+ j

]

Then,

MH =
[

1 j
1− j 2− j

]

MH M=
[

2 j3
−j3 7

]

and

MMH =
[

3 3+ j2
3− j2 6

]

Although MH M and MMH are clearly not equal, a simple calculation easily reveals that both products
have the same characteristic polynomial,

det(λI−MH M)= det(λI−MMH )= λ2− 9λ+ 5

This implies that MH M and MMH share the same eigenvalues.

A complex-valued matrix M is called Hermitian if M =MH . A nonsingular, complex-valued matrix
is called unitary if M−1 =MH . Stated another way, a complex-valued matrix M is unitary if its column-
vectors are mutually orthonormal.

The spectral norm of a matrix M ∈ Cp×m, denoted ‖M‖2, is defined by

‖M‖2 = max‖x‖2=1
‖Mx‖2 (8.11)

The best way to interpret this definition is to imagine the vector x rotating on the surface of the unit
hypersphere in Cm, generating the vector Mx in Cp. The size of Mx, i.e., its Euclidean norm, will depend
on the direction of x. For some direction of x, the vector Mx will attain its maximum value. This value is
equal to the spectral norm of M.

8.3.2 The Singular Value Decomposition

In this subsection we give a quick introduction to the singular value decomposition. This will be an
essential tool in analyzing MIMO frequency response. For more details, the reader is referred to [5].
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8.3.2.1 The Singular Values of a Matrix

Suppose that M is a p×m matrix, real or complex. Assume that the rank of M is k. We associate with M
a total of k positive constants, denoted σi(M), or simply σi , i = 1, . . . , k. These are the singular values of
M, computed as the positive square roots of the nonzero eigenvalues of either MH M or MMH , that is,

σi(M)=
√
λi(MH M)=

√
λi(MMH ) > 0, i = 1, . . . , k (8.12)

where λi(·) is a shorthand notation for “the ith nonzero eigenvalue of ”. Note that the matrices MH M
and MMH may have one or more zero valued eigenvalues in addition to the ones used to compute the
singular values of M. It is common to index and rank the singular values as follows:

σ1(M)≥ σ2(M)≥ · · · ≥ σk(M) > 0 (8.13)

The largest singular value of M, denoted σmax(M), is thus equal to σi(M). Similarly, σmin(M)= σk(M).
While it is tricky, in general, to compute the eigenvalues of a matrix numerically, reliable and effi-

cient techniques for computing singular values are available in commercial software packages, such as
MATLAB�.

8.3.2.2 The Singular Value Decomposition

The SVD is analogous to matrix diagonalization. It allows one to write the matrix M in terms of its singular
values and involves the definition of special directions in both the range and domain spaces of M.

To begin the definition of the SVD, we use the k nonzero singular values σi of M, computed above. First
form a square matrix with the k singular values along the main diagonal. Next, add rows and columns of
zeros until the resulting matrixΣ is p×m. Thus,

Σ=

⎡
⎢⎢⎢⎢⎣

σ1 0 · · · 0
0 σ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · σk

0k×(m−k)

0(p−k)×k 0(p−k)×(m−k)

⎤
⎥⎥⎥⎥⎦ (8.14)

By convention, assume that
σ1 ≥ σ2 ≥ · · · ≥ σk

Theorem 8.1: Singular Value Decomposition

A p× p unitary matrix U (with U = UH ) and an m×m unitary matrix V (with V = V H ) exist so that

M = UΣV H Σ= UH MV (8.15)

The p-dimensional column vectors ui , i = 1, . . . , p, of the unitary matrix U are called the left singular
vectors of M. The m-dimensional column vectors vi , i = 1, . . . , m of V are called the right singular vectors
of M. Thus, we can visualize,

U = [u1 u2 . . . up], V = [v1 v2 . . . vm]
Since U and V are each unitary,

uH
i uk = δik , i, k = 1, . . . , p

vH
i vk = δik , i, k = 1, . . . , m

where δik is the Kronecker delta. Because the left and right singular vectors are linearly independent,
they can serve as basis vectors for Cp and Cm, respectively. Moreover, the left and right singular vectors
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associated with the (nonzero) singular values of M span the range and left-null spaces of the matrix M,
respectively. Finally, a simple calculation shows that the left singular vectors of M are the normalized
right eigenvectors of the p× p matrix MMH . Similarly, the right singular vectors of M are the normalized
left eigenvectors of the p× p matrix MH M.

8.3.2.3 Some Properties of Singular Values

We list here some important properties of singular values. We leave the proofs to the reader. Some of the
properties require that the matrix be square and nonsingular.

1. σmax(M)=max‖x‖2=1 ‖Mx‖2 = ‖M‖2 = 1
σmin(M−1)

.

2. σmin(M)=min‖x‖2=1 ‖Mx‖2 = 1
‖M−1‖2

= 1
σmax(M−1)

.

3. σi(M)− 1≤ σi(I +M)≤ σi(M)+ 1, i = 1, . . . , k.
4. σi(αM)= |α|σi(M) for all α ∈ C, i = 1, . . . , k.
5. σmax(M1+M2)≤ σmax(M1)+ σmax(M2).
6. σmax(M1M2)≤ σmax(M1) · σmax(M2).

Property 1 indicates that maximum singular value σmax(M) is identical to the spectral norm of M. Thus,
Properties 5 and 6 are restatements of the triangle inequality and submultiplicative property, respectively.

8.3.2.4 The SVD and Finite Dimensional Linear Transformations

We shall now present some geometric interpretations of the SVD result. Consider the linear
transformation

y =Mu, u ∈ Cm, y ∈ Cp. (8.16)

Let M have the singular value decomposition discussed above, that is, M = UΣV H . It may help the reader
to think of u as the input to a static system M with output y. From the SVD of M,

y =Mu= UΣV H u.

Suppose we choose u to be one of the right singular vectors, say vi , of M. Let yi denote the resulting
“output” vector. Then,

yi =Mvi = UΣV H vi .

Because the right singular vectors of M are orthonormal,

V H vi =
(
0, . . . , 0, 1, 0, . . . , 0

)T
,

where the ith component only takes on the value of 1. In view of the special structure of the matrix of
singular valuesΣ,

ΣV H vi =
(
0, . . . , 0, σi , 0, . . . , 0

)T

where, again, only the ith component is potentially nonzero. Thus, finally,

yi = UΣV H vi = σiui . (8.17)

Equation 8.17 interprets the unique relationship between singular values and singular vectors. In the
context of M as a “static” system, when the input u is equal to a right singular vector vi , the output
direction is fixed by the corresponding left singular vector ui . Keeping in mind that both ui and vi have
unit magnitudes (in the Euclidean sense), the amplification (or attenuation) of the input is measured by
the associated singular value σi . If we choose u= vi , where i > k, then the corresponding output vector is
zero because the matrix is not full rank and there are no more (nonzero) singular values.

Because Equation 8.17 holds for i = 1, . . . , k, it is true in particular for the maximum and minimum
singular values and associated singular vectors. By abuse of notation, we shall refer to these left and right
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FIGURE 8.1 Visualization of SVD quantities.

singular vectors as maximum and minimum singular vectors, respectively, and use the subscripts “max”
and “min” to distinguish them. Within the context of “static” systems, inputs along the maximum right
singular vector generate the largest output along the direction of the maximum left singular vector. Similar
comments apply to the case where inputs are in the direction of the minimum left singular vector.

Example 8.5: The Case Where M Is Real and 2 × 2

Let us suppose that M is a real-valued, nonsingular matrix mapping u ∈ R2 to y =Mu ∈ R2. Let us
suppose further that u rotates on the circumference of the unit circle. The image of u under the
transformation of M will then trace an ellipse in the (output) plane, as illustrated in Figure 8.1.

Because M is a real, nonsingular, 2× 2 matrix, the SVD analysis will give

Σ=
[
σmax 0

0 σmin

]
U = [umax umin] V = [vmax vmin]

whereΣ, U, and V are all real valued.

Suppose that when u equals the vector OA, the output y is the vector OA’. Suppose further that,
y = ymax ≡ σmaxumax . Thus, the maximum right singular vector vmax equals the (unit length) vector OA,
and the maximum left singular vector umax equals the (unit length) vector OA”. Moreover, the maximum
singular value, σmax equals the length of the vector OA’.

Similarly, suppose that when u equals the vector OB, the output y is the vector OB’. Suppose further that,
y = ymin ≡ σminumin. Thus, the minimum right singular vector vmin equals the (unit length) vector OB,
and the minimum left singular vector umin equals the (unit length) vector OB”. Moreover, the minimum
singular value, σmin equals the length of the vector OB’.

Notice in Figure 8.1 that the left singular vectors are normal to each other, as are the right singular
vectors.

As the minimum singular value decreases, so does the semiminor axis of the ellipse. As this happens,
the ellipse becomes more and more elongated. In the limit, as σmin → 0, the ellipse degenerates into a
straight line segment, and the matrix M becomes singular. In this limiting case, there are directions in the
output space that we cannot achieve.

If the matrix M were a 3× 3 real nonsingular matrix, then we could draw a similar diagram, illus-
trating the unit sphere mapping into a three-dimensional ellipsoid. Unfortunately, diagrams for higher
dimensional matrices are impossible. Similarly, diagrams for complex matrices (even 2× 2 matrices) are
impossible, because we need a plane to represent each complex number.
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Using these geometric interpretations of SVD quantities, it is possible to be precise about the meaning
of the “size” of a real or complex matrix. From an intuitive point of view, if we consider the “system”
y =Mu, and if we restrict the input vector u to have unit length, then

1. The matrix M is “large” if ‖y‖2 � 1, independent of the direction of the unit input vector u.
2. The matrix M is “small” if ‖y‖2 $ 1, independent of the direction of the unit input vector u.

If we accept these definitions, then we can quantify size as follows:

1. The matrix M is “large” if its minimum singular value is large, i.e., σmin(M)� 1.
2. The matrix M is “small” if its maximum singular value is small, i.e., σmax(M)$ 1.

8.3.2.5 More Analytical Insights

Once we have computed an SVD for a matrix M, in y =Mu, then we can compute many other important
quantities. In particular, suppose that M is m×m and nonsingular. It follows that M has m nonzero
singular values. We saw earlier (in Equation 8.17) that

yi = σiui

when u= vi , i = 1, . . . , m. Because the left singular vectors are orthonormal, they form a basis for the
m-dimensional input space, so that we can write any (input) vector in Cm as a linear combination of the
vis. For example, let u be given as follows:

u= γ1v1+ γ2v2+ · · ·+ γmvm

where the γi are real or complex scalars. From the linearity of the transformation M,

y =Mu= γ1σ1u1+ γ2σ2u2+ · · ·+ γmσmvm.

Using the SVD, we can also gain insight on the inverse transformation u=M−1y. From the SVD
theorem, we know that M = UΣV H . Using the fact that U and V are unitary, M−1 = VΣ−1UH . Notice
that

Σ−1 = diag

{
1

σ1
,

1

σ2
, · · · ,

1

σm

}

Thus, if
y = δ1u1+ δ2u2+ · · ·+ δmum

then

u=M−1y = δ1
1

σ1
v1+ δ2

1

σ2
v2+ · · ·+ δm

1

σm
vm

This implies that the information in the SVD of M can be used to solve systems of linear equations without
computing the inverse of M.

8.4 The SVD and MIMO Frequency Response Analysis

We now return to our discussion of MIMO frequency response with the full power of the SVD at our
disposal. Once again, we shall focus our attention on the transfer function matrix (TFM) description of
the strictly stable LTI system G(s). As before, we will assume that G has m inputs and p outputs, making
G(s) a p×m matrix. In general we shall assume that p≥m, so that, unless the rank k of G(s) becomes
less than m, the response of the system to a non-zero input is always non-zero.

Recall that if the input vector signal u(t) is a complex exponential of the form u(t)= ũe jωt , with ũ
fixed in Cm, then at steady state, the output vector y(t) will also be a complex exponential function,
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y(t)= ỹe jωt , for some ỹ ∈ Cp. Recall, also, that the complex vectors ũ and ỹ are related by G(s) evaluated
at s = jω, that is,

ỹ = G( jω)ũ.

It is important to note that G( jω) is a complex matrix that changes with frequency ω. For any given
fixed frequency, we can calculate the SVD of G( jω):

G( jω)= U( jω)Σ(ω)V H ( jω)

Note that, in general, all of the factors in the SVD of G( jω) are explicitly dependent on omega:

1. The matrix Σ(ω) is a p×m matrix whose main diagonal is composed of the singular values of
G( jω),

σmax(ω)= σ1(ω), σ2(ω), . . . , σkω (ω)= σmin(ω)

where kω is the rank of G( jω).
2. The matrix U( jω) is an m×m complex-valued matrix whose column vectors {uj( jω)} are the left

singular vectors of G( jω).
3. The matrix V ( jω) is a p× p complex-valued matrix whose column vectors {vj( jω)} are the right

singular vectors of G( jω).

8.4.1 Singular Value Plots (SV Plots)

Once we calculate the maximum and minimum singular values of G( jω) for a range of frequencies ω,
we can plot them together on a Bode plot (decibels versus rad/sec in log-log scale). Figure 8.2 shows a
hypothetical SV plot.

With the proper interpretation, the SV plot can provide valuable information about the properties
of the MIMO system G. In particular, it quantifies the “gain-band” of the plant at each frequency, and
shows how this changes with frequency. It is a natural generalization of the information contained in the
classical Bode magnitude plot for SISO plants. One main difference here is that, in the multivariable case,
this “gain-band” is described by two curves, not one.

It is crucial to interpret the information contained in the SV plot correctly. At each frequency ω we
assume that the input is a unit complex exponential, u(t)= ũe jωt . Then, assuming that we have reached
steady state, we know that the output is also a complex exponential with the same frequency, y(t)= ỹe jωt ,

dB

0 dB

w(rad/s)

σmaxG( j w)

σminG( j w)

FIGURE 8.2 A hypothetical SV plot.
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where ỹ = G( jω)ũ. The magnitude ‖ỹ‖2 of the output complex exponential thus depends on the direction
of the input as well as on the frequency ω. Now, by looking at an SV plot, we can say that, at a given
frequency:

1. The largest output size is ‖ỹ‖2,max = σmaxG( jω), for ‖ũ‖2 = 1.
2. The smallest output size is ‖ỹ‖2,min = σminG( jω), for ‖ũ‖2 = 1.

This allows us to discuss qualitatively the size of the plant gain as a function of frequency:

1. The plant has large gain at ω if σminG( jω)� 1.
2. The plant has small gain at ω if σmaxG( jω)$ 1.

8.4.2 Computing Directional Information

In addition to computing system gain as a function of frequency, we can also use the SVD to compute
“directional information” about the system. In particular, we can compute the direction of maximum
and minimum amplification of the unit, real-valued sinusoidal input. In the following, we present a step-
by-step methodology for maximum amplification direction analysis. Minimum amplification direction
analysis is completely analogous, and will therefore not be presented explicitly.

8.4.2.1 Maximum Amplification Direction Analysis

1. Select a specific frequency ω.
2. Compute the SVD of G( jω), i.e., find Σ(ω), U( jω), and V ( jω) such that G( jω)=

U( jω)Σ(ω)V H ( jω) where U and V are unitary andΣ is the matrix of singular values.
3. In particular, find the maximum singular value σmax(ω) of G( jω).
4. Find the maximum right singular vector vmax(ω). This is the first column of the matrix V ( jω)

found in the SVD. Note that vmax(ω) is a complex vector with m elements. Write the elements of
vmax(ω) in polar form, i.e.,

[vmax(ω)]i = |ai|e jψi , i = 1, 2, . . . , m.

Notice that ai andψi are really functions of ω; we suppress this frequency dependence for clarity.
5. Find the maximum left singular vector umax(ω). This is the first column of the matrix U( jω) found

in the SVD. Note that umax(ω) is a complex vector with p elements. Write the elements of umax(ω)
in polar form, i.e.,

[umax(ω)]i = |bi|e jφi , i = 1, 2, . . . , p.

Notice that bi and φi are functions of ω; we suppress this frequency dependence for clarity.
6. We are now in a position to construct the real sinusoidal input signals that correspond to the

direction of maximum amplification and to predict the output sinusoids that are expected at
steady state. The input vector u(t) is defined componentwise by

ui(t)= |ai| sin (ωt+ψi), i = 1, 2, . . . , m

where the parameters ai and ψi are those determined above. Note that the amplitude and phase
of each component sinusoid is distinct. We can utilize the implications of the SVD to predict the
steady-state output sinusoids as

yi(t)= σmax(ω)|bi| sin(ωt+φi), i = 1, 2, . . . , p.

Notice that all parameters needed to specify the output sinusoids are already available from
the SVD.
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When we talk about the “directions of maximum amplification,” we mean input sinusoids of the form
described above with very precise magnitude and phase relations to one another. The resulting output
sinusoids also have very precise magnitude and phase relations, all as given in the SVD of G( jω). Once
again, a completely analogous approach can be taken to compute the minimum amplification direction
associated with G( jω).

It is important to remember that the columns of U( jω) and V ( jω) are orthonormal. This means we
can express any sinusoidal input vector as a linear combination of the right singular vectors of G( jω) at a
particular value of ω. The corresponding output sinusoidal vector will be a linear combination of the left
singular vectors, after being scaled by the appropriate singular values.

Finally, because we measure system “size” in terms of the ratio of output Euclidean norm to input
Euclidean norm, the “size” of the system is heavily dependent on the units of the input and output
variables.

8.5 Frequency Response Analysis of MIMO Feedback Systems

In this section, we look at frequency domain-analysis for various control system configurations. We will
pay particular attention to the classical unity-feedback configuration, where the variables to be controlled
are used as feedback. Next we will look at a broader class of control system configurations relevant for
some of the more modern controller design methodologies such as H∞ and l1 synthesis, as well as in
robustness analysis and synthesis. MIMO frequency-domain analysis as discussed above will be pivotal
throughout.

8.5.1 Classical Unity-Feedback Systems

Consider the unity-feedback system in the block diagram of Figure 8.3. Recall that the loop transfer
function matrix is defined as

T(s)= G(s)K(s)

The sensitivity S(s) and complementary-sensitivity C(s) transfer function matrices are, respectively,
defined as

S(s)= [I +T(s)]−1

C(s)= [I +T(s)]−1G(s)K(s)= S(s)T(s)

With these definitions,
e(s)= S(s)[r(s)− d(s)]+C(s)n(s) (8.18)

The objective in control system design is to keep the error signal e “small”. This means the transfer
from the various disturbances to e must be small. Because it is always true that S(s)+C(s)= I , there is a

–

–

+ +

+

d(s)n(s)

y(s)G(s)K(s)e(s)r(s)

+

FIGURE 8.3 The unity feedback control system configuration.
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trade-off involved. From Equation 8.18, we would like both S(s) and C(s) to be “small” for all s; but this is
impossible because S(s)+C(s)= I . SVD analysis of the MIMO frequency response can be important in
quantifying these issues.

8.5.1.1 Command Following

Suppose that the reference (command) signal r(t) is sinusoidal, r(t)= r̃e jωt . Then, as long as d(s)= 0
and n(s)= 0,

e(t)= ẽe jωt

where ẽ = S( jω)r̃. Thus,

‖ẽ‖2 ≤ σmax[S( jω)] · ‖r̃‖2

Now suppose that r(t) is the superposition of more than one sinusoid. LetΩr be the range of frequencies
at which the input r(t) has its energy. Then, in order to have good command following, we want

σmax[S( jω)] $ 1 ∀ω ∈Ωr (8.19)

Our objective now is to express this prescription for command following in terms of the loop-transfer
function T(s)= G(s)K(s). From our earlier discussion

σmax[S( jω)] = σmax{[I +T( jω)]−1}
= 1

σmin[I +T( jω)]

This implies that, for good command following, we must have σmin[I +T( jω)] � 1 for all ω ∈Ωr .
However, as we saw earlier,

σmin[I +T( jω)] ≥ σmin[T( jω)]− 1

so it is sufficient that, for all ω ∈Ωr , σmin[T( jω)] � 1 for good command following.

8.5.1.2 Disturbance Rejection

Suppose that the disturbance signal d(t) is sinusoidal, d(t)= d̃e jωt . Then, as long as r(s)= 0 and n(s)= 0,

e(t)= ẽe jωt

where ẽ =−S( jω)d̃. Thus,

‖ẽ‖2 ≤ σmax[S( jω)] · ‖d̃‖2

Now suppose that d(t) is the superposition of more than one sinusoid. LetΩd be the range of frequencies
at which the input d(t) has its energy. Then, just as with command following, for good disturbance
rejection, we want

σmax[S( jω)] $ 1 ∀ω ∈Ωd (8.20)

Using the same argument given earlier, this prescription for disturbance rejection makes it sufficient that,
for all ω ∈Ωd , σmin[T( jω)] � 1.
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8.5.1.3 Relationships to C(s)

Here we wish to determine in a precise quantitative way the consequences of obtaining command fol-
lowing and disturbance rejection. As we shall see, a price is paid in constraints on the complementary-
sensitivity function C(s).

Theorem 8.2:

LetΩp =Ωr
⋃
Ωd. (Here “p” refers to “performance”.) Consider δ so that 0 < δ$ 1. If

σmax[S( jω)] ≤ δ$ 1

for all ω ∈Ωp, then

1$ 1− δ
δ

≤ σmin[T( jω)]
and

1− δ≤ σmin[C( jω)] ≤ σmax[C( jω)] ≤ 1+ δ
for all ω ∈Ωp.

Thus, in obtaining a performance level of δ, it is necessary that all of the singular values of C( jω) are
within δ of 1. In fact, because S(s)+C(s)= I , we must have C( jω)≈ I . (We shall discuss below why this
can be a problem.)

Proof 8.1. We start by using the definition of S(s),

σmax[S( jω)] = σmax[(I +T( jω))−1]
= 1

σmin[I +T( jω)]
≥ 1

1+ σmin[T( jω)]
Using the hypothesis that σmax[S( jω)] ≤ δ,

1

1+ σmin[T( jω)] ≤ δ

which by solving for σmin[T( jω)] yields the first inequality. By cross-multiplying, we obtain the following
useful expression:

1

σmin[T( jω)] ≤
δ

1− δ $ 1 (8.21)

Now consider the complementary-sensitivity function C(s). C(s)= [I +T(s)]−1T(s). By taking the
inverse of both sides, C−1(s)= T−1(s)[I +T(s)] = I +T−1(s). Thus

1

σmin[C( jω)] = σmax[C−1( jω)] = σmax[I +T−1( jω)]

which implies

1

σmin[C( jω)] ≤ 1+ σmax[T−1( jω)]

= 1+ 1

σmin[T( jω)]
≤ 1+ δ

1− δ =
1

1− δ
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(Notice that the second inequality follows from Equation 8.21.) Now,

1− δ≤ σmin[C( jω)] ≤ σmax[C( jω)]
= σmax[I − S( jω)] ≤ 1+ σmax[S( jω)] ≤ 1+ δ

which is the second desired inequality.

8.5.1.4 Measurement Noise Insensitivity: A Conflict!

Suppose that the measurement noise n(t) is sinusoidal, n(t)= ñe jωt . Then, as long as r(s)= 0 and d(s)= 0,

e(t)= ẽe jωt

where ẽ = C( jω)d̃. Thus,
‖ẽ‖2 ≤ σmax[C( jω)] · ‖ñ‖2

Now suppose that n(t) is the superposition of more than one sinusoid. LetΩn be the range of frequencies
at which the input n(t) has its energy. Then, in order to be insensitive to measurement noise, we want

σmax[C( jω)] $ 1 ∀ω ∈Ωn (8.22)

Theorem 8.3:

Let γ be such that 0 < γ$ 1. If
σmax[C( jω)] ≤ γ

for all ω ∈Ωn, then

σmin[T( jω)] ≤ σmax[T( jω)] ≤ γ

1− γ ≈ γ$ 1

and
1≈ 1− γ ≤ σmin[S( jω)] ≤ σmax[S( jω)]

for all ω ∈Ωn.

Thus, if the complementary-sensitivity function C( jω) has low gain on Ωn, then so does the loop-
transfer function T( jω). This in turn implies that the sensitivity transfer function S( jω) has nearly unity
gain on Ωn. In other words, wherever (in frequency) we are insensitive to measurement noise we are
necessarily prone to poor command following and disturbance rejection. This is primarily a consequence
of the fact that C(s)+ S(s)= I .

Proof 8.2. To prove the first relationship we use the fact that C(s)= [I +T(s)]−1T(s)= [T−1(s)+ I]−1

(proved using a few algebraic manipulations). This gives

σmax[C( jω)] = 1

σmin[T−1( jω)+ I]
≥ 1

σmin[T−1( jω)]+ 1

= σmax[T( jω)]
1+ σmax[T( jω)]

Thus,

σmax[T( jω)] ≤ σmax[C( jω)]+ σmax[C( jω)]σmax[T( jω)]
≤ γ+ γσmax[T( jω)]

which yields the desired inequality.
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To prove the second relationship, observe that

σmax[S( jω)] ≥ σmin[S( jω)]
= σmin[(I +T( jω))−1]
= 1

σmax[I +T( jω)]
≥ 1

σmax[T( jω)]+ 1

≥ 1− γ

where the last inequality comes from the first relationship proved above.

8.5.1.5 Design Implications

Achievable control design specifications must have a wide separation (in frequency) between the sets
Ωp =Ωr

⋃
Ωd andΩn. We cannot obtain good command following and disturbance rejection when we

have sensors that are noisy on Ωp. Figure 8.4 illustrates a problem that is well-posed in terms of these
constraints.

1–γ

1–δ

(1–δ)/δ

γ/(1–γ)

1+δ

γ

δ

0

0

w

w

0 w

σmax S( jw)

σmax C( jw)

σmax T( jw)

σmin T( jw)

σmax C( jw)

σmin S( jw)

Ωn

Ωn

Ωn

Ωp

Ωp

Ωp

FIGURE 8.4 A well-posed problem: the singular value traces fall within the regions defined by Ωp and δ (for
performance) andΩn and γ (for noise insensitivity).
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y(s)

z(s)

u(s)

w(s)

P(s)

FIGURE 8.5 A generalized plant.

8.5.2 A More General Setting

Recent control design methodologies are convenient for more generalized problem descriptions. Consider
the LTI system P shown in Figure 8.5, where u denotes the control vector input to the plant, y represents the
measurement vector, w is a generalized disturbance vector, and z is a generalized performance vector.
The assignment of physical variables to w and z here is arbitrary and is left to the control system analyst.
One illustration is given in Example 8.6. We see that the transfer function matrix for this system can be
partitioned as follows:

P(s)=
[

P11(s) P12(s)
P21(s) P22(s)

]

From this partition,

z(s)= P11(s)w(s)+ P12(s)u(s)

y(s)= P21(s)w(s)+ P22(s)u(s)

Let K be a feedback controller for the system so that u(s)= K(s)y(s). This feedback interconnection is
shown in Figure 8.6. It is simple to verify that

y(s)= [I − P22(s)K(s)]−1P21(s)w(s),

z(s)= {P11(s)+ P12(s)K(s)[I − P22(s)K(s)]−1P21(s)}w(s),

≡ F(P, K)(s)w(s).

y(s)

z(s)

u(s)

w(s)

P(s)

K(s)

FIGURE 8.6 A feedback interconnection.
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+ +

–

–

+++

+

+

+ y

u
e z

do

n

r

di

u

w

G(s)

K(s)

FIGURE 8.7 Unity feedback example.

The closed-loop transfer function from w(s) to z(s), denoted F(P, K)(s), is called the (lower) linear
fractional transformation (of the plant P and K). This type of mathematical object is often very useful in
describing feedback interconnections.

Example 8.6: Relationships

In this example we show how the classical unity-feedback setup can be mapped into the general
formulation of this section. Consider the block diagram shown in Figure 8.7. With four generalized
disturbance inputs, a command input r, a sensor noise input n, a system-output disturbance do, and
a system-input disturbance di . (These variables are lumped into the generalized disturbance vector
w.) There are two generalized performance variables, control (effort) u and tracking error e. (These
are lumped into the generalized performance vector z.) The variables u and y are the control inputs
and sensor outputs of the generalized plant P.

8.5.2.1 Frequency Weights

In control design or analysis it is often necessary to incorporate extra information about the plant
and its environment into the generalized description P. For example, we may know that system-input
disturbances are always low-frequency in nature, and/or we may only care about noise rejection at certain
high frequencies. This kind of information can be incorporated as “frequency weights” augmenting the
generalized inputs and outputs of the plant P. Such weighting functions Wd(s) and Wp(s) are included in
the block diagram of Figure 8.8. Examples are given below.

z1(s)z(s)

P(s)

Wp(S)Wd(s)w1(s)

u(s)

w(s)

y(s)

FIGURE 8.8 Weighting functions and the generalized plant.
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With frequency-dependent weightings we can define a new generalized plant Pw . Referring to Figure 8.8
and using the block partition of P discussed earlier,

Pw(s)=
[

Wp(s)P11(s)Wd(s) Wp(s)P12(s)
P21(s)Wd(s) P22(s)

]
.

With the weighting functions augmenting the plant description, Pw is ready (at least conceptually) for
control design or analysis. If state-space techniques are being employed, the dynamics (i.e., the state vari-
ables) for Wd and Wp must be included in the state-space representation of Pw . This can be accomplished
by state augmentation.

Typically, weights Wd on the generalized disturbance vector emphasize the frequency regions of most
significant disturbance strength. Here w(s)=Wd(s)w1(s). We choose Wd so that a complete description
of the generalized disturbance is obtained with ‖w1( jω)‖ = 1 for all ω. Thus, we may think of Wd

as an active filter which emphasizes (or de-emphasizes) certain variables in specific frequency domains
consistent with our understanding of the system’s environment. Reference inputs and system disturbances
are most often low frequency, so these parts of Wd are usually low-pass filters. On the other hand, certain
noise inputs are notched (like 60 Hz electrical hum) or high frequency. These parts of Wd(s) should be
band-pass or high-pass filters, respectively.

Weights Wp on the generalized performance vector emphasize the importance of good performance in
different frequency regions. For example, we may be very interested in good tracking at low frequencies
(but not at high frequencies), so that the weighting on this part of Wp(s) should be a low-pass filter. On
the other hand, we may not want to use control energy at high frequencies, so we would choose this part
of Wp(s) as high-pass. The various components of Wp(s) must be consistent with one another in gain.
The relative weights on variables in z should make sense as a whole.

It is important to note that we must still operate within constraints to mutually achieve various types
of performance, as was the case with the classical unity-feedback formulation. Because we are no longer
constrained to that rigid type of feedback interconnection, general results are difficult to state. The
basic idea, however, remains that there is an essential conflict between noise-rejection and command-
following/disturbance-rejection. In general there must be a separation in frequency between the regions
in which the respective types of performance are important.

8.5.2.2 Weighted Sensitivity

We consider here the case of only one generalized input variable, d, a system-output disturbance. We are
also interested in only one performance variable y, the disturbed output of the plant. Specifically, we have
in mind a weighting function Wp which reflects our specifications for y. The feedback configuration is
shown in Figure 8.9.

–

+

+
G(s)

u(s)e(s)

d(s)

y (s)

z (s)
Wp (s)

K(s)

FIGURE 8.9 Feedback interconnection for weighted sensitivity.
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–

++

G(s)
u(s)e(s)

n(s)

y (s)

z (s)
Wp (s)

K(s)

FIGURE 8.10 Feedback interconnection for weighted complementary sensitivity.

It is not hard to see that y(s)= S(s)d(s). Thus, z(s)=Wp(s)S(s)d(s). We refer to Wp(s)S(s) as the
“weighted” sensitivity transfer function for the feedback system. If σmax[Wp( jω) S( jω)]< 1 for all ω,
then,

σmax[S( jω)] = σmax[W−1
p ( jω)Wp( jω)S( jω)]

≤ σmax[W−1
p ( jω)]σmax[Wp( jω)S( jω)]

< σmax[W−1
p ( jω)]

To interpret this, when σmax[Wp( jω)S( jω)]< 1 for allω, then the largest singular value of the sensitivity
transfer function is strictly less than the largest singular value of the inverse of the weighting function.

8.5.2.3 Weighted Complementary Sensitivity

We consider here the case of only one generalized input variable, n, a sensor noise input. We are also
only interested in one performance variable y, the output of the plant. Once again, we have in mind a
weighting function Wp which reflects our specifications for y. The feedback configuration is shown in
Figure 8.10.

It is not hard to see that y(s)= C(s)d(s). Thus, z(s)=Wp(s)C(s)d(s). We refer to Wp(s)C(s) as
the “weighted” complementary-sensitivity transfer function for the feedback system. Notice that if
σmax[Wp( jω)C( jω)]< 1 for all ω then,

σmax[C( jω)] = σmax[W−1
p ( jω)Wp( jω)C( jω)]

≤ σmax[W−1
p ( jω)]σmax[Wp( jω)C( jω)]

< σmax[W−1
p ( jω)]

To interpret this, when σmax[Wp( jω)C( jω)]< 1 for all ω, then the largest singular value of the
complementary-sensitivity transfer function is strictly less than the largest singular value of the inverse
of the weighting function.
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9.1 Introduction

In designing feedback control systems, the stability of the resulting closed-loop system is a primary
objective. Given a finite dimensional, linear time-invariant (FDLTI) model of the plant, G(s), the stability
of the nominal closed-loop system based on this model, Figure 9.1, can be guaranteed through proper
design: in the Nyquist plane for single-input, single-output (SISO) systems or by using well-known
design methodologies such as LQG and H∞ for multi-input, multi-output (MIMO) systems. In any case,
since the mathematical model is FDLTI, this nominal stability can be analyzed by explicitly calculating the
closed-loop poles of the system. It is clear, however, that nominal stability is never enough since the model
is never a true representation of the actual plant. That is, there are always modeling errors or uncertainty.
As a result, the control engineer must ultimately ensure the stability of the actual closed-loop system,
Figure 9.2. In other words, the designed controller, K(s), must be robust to the model uncertainty. In this
article, we address this topic of stability robustness. We present a methodology to analyze the stability of
the actual closed-loop system under nominal stability to a given model and a certain representation of
the uncertainty.

9-1
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r

–

K(s)

Controller Plant model

G(s) y

FIGURE 9.1 Block diagram of nominal feedback loop.

The outline of the chapter is as follows. We first establish a representation of the uncertainty on which
we will base our analysis. We then proceed to derive conditions that guarantee the stability of the actual
closed-loop system. First, we concentrate on SISO systems where we use the familiar Nyquist stability
criterion to derive the stability robustness condition. We then derive this same condition using the small
gain theorem. The purpose of this is to provide a simple extension of our analysis to MIMO systems,
which we present next. We then interpret the stability robustness conditions and examine their impact
on attainable closed-loop performance, such as disturbance rejection and command following. Finally,
we present a discussion on other possible representations of uncertainty and their respective stability
robustness conditions. Examples are presented throughout the discussion.

9.2 Representation of Model Uncertainty

9.2.1 Sources of Uncertainty

Before we can analyze the stability of a closed-loop system under uncertainty, we must first understand the
causes of uncertainty in the model so as to find a proper mathematical representation for it. Throughout
the discussion we will assume that the actual plant, Ga(s), is linear time-invariant (LTI) and that we
have a nominal LTI model, G(s). Although this assumption may seem unreasonable since actual physical
systems are invariably nonlinear and since a cause of uncertainty is that we model them as LTI systems,
we need this assumption to obtain simple, practical results. In practice, these results work remarkably
well for a large class of engineering problems, because many systems are designed to be as close to linear
time-invariant as possible.

The sources of modeling errors are both intentional and unintentional. Unintentional model errors
arise from the underlying complexity of the physical process, the possible lack of laws for dynamic cause
and effect relations, and the limited opportunity for physical experimentation. Simply put, many physical
processes are so complex that approximations are inevitable in deriving a mathematical model. On the
other hand, many modeling errors are intentionally induced. In the interest of reducing the complexity
and cost of the control design process, the engineer will often neglect “fast” dynamics in an effort to
reduce the order or the dimension of the state-space representation of the model. For example, one may

r

–

K(s)

Controller Actual plant

Ga(s) y

FIGURE 9.2 Block diagram of actual feedback loop.
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neglect “fast” actuator and sensor dynamics, “fast” bending and/or torsional modes, and “small” time
delays. In addition, the engineer will often use nominal values for the parameters of his model, such as
time constants and damping ratios, even though he knows that the actual values will be different because
of environmental and other external effects.

9.2.2 Types of Uncertainty

The resulting modeling errors can be separated into two types. The first type is known as parametric
uncertainty. Parametric uncertainty refers to modeling errors, under the assumption that the actual plant
is of the same order as the model, where the numerical values of the coefficients to the differential
equation, which are related to the physical parameters of the system, between the actual plant and the
model are different. The second type of uncertainty is known as unstructured uncertainty. In this case,
the modeling errors refer to the difference in the dynamics between the finite dimensional model and the
unknown and possibly infinite dimensional actual process.

In this chapter, we limit ourselves to addressing stability robustness with respect to unstructured
uncertainty. We do this for two main reasons. First, we can capture the parametric errors in terms of
the more general definition of unstructured uncertainty. Second and more importantly, unstructured
uncertainty allows us to capture the effects of unmodeled dynamics. From our discussion above, we
admit that we often purposely neglect “fast” dynamics in an effort to simplify the model. Furthermore, it
can be argued that all physical processes are inherently distributed systems and that the modeling process
acts to lump the dynamics of the physical process into a system that can be defined in a finite dimensional
state-space. Therefore, unmodeled dynamics are always present and need to be accounted for in terms of
stability robustness.

9.2.3 Multiplicative Representation of Unstructured Uncertainty

What we need now is a mathematical representation of unstructured uncertainty. The difficulty is that
since the actual plant is never exactly known, we cannot hope to model the uncertainty to obtain this
representation, for otherwise, it would not be uncertain. On the other hand, in practice, the engineer
is never totally ignorant of the nature and magnitude of the modeling error. For example, from our
arguments above, it is clear that unstructured uncertainty cannot be captured by a state-space represen-
tation, since the order of the actual plant is unknown, and thus we are forced to find a representation in
terms of input–output relationships. In addition, if we choose to neglect “fast” dynamics, then we would
expect that the magnitude of the uncertainty will be large at high frequencies in the frequency domain. In
any case, the key here is to define a representation that employs the minimal information regarding the
modeling errors and that is, in turn, sufficient to address stability robustness.

9.2.3.1 Set Membership Representation for Uncertainty

In this article we adopt a set membership representation of unstructured uncertainty. The idea is to define
a bounded set of transfer function matrices, G, which contains Ga(s). Therefore, if G is properly defined
such that we can show stability for all elements of G, then we would have shown stability robustness.
Towards this end, we define G as

G = {G̃(s) | G̃(s)= (I +w(s)Δ(s))G(s), ‖Δ( jω)‖H∞ ≤ 1} (9.1)

where

1. w(s) is a fixed, proper, and strictly stable scalar transfer function
2. Δ(s) is a strictly stable transfer function matrix (TFM)
3. No unstable or imaginary axis poles of G(s) are cancelled in forming G̃(s)
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This is known as the multiplicative representation for unstructured uncertainty. Since it is clear that
the nominal model G(s) is contained in G, we view G as a set of TFMs perturbed from G(s) that covers
the actual plant. Our requirements that w(s)Δ(s) is strictly stable and that there are no unstable or
imaginary axis pole-zero cancellations mean that the unstable and imaginary axis poles of our model and
any G̃(s) ∈ G coincide. This assumes that the modeling effort is at least adequate enough to capture the
unstable dynamics of Ga(s).

In Equation 9.1, the term w(s)Δ(s) is known as the multiplicative error. We note that since the H∞
norm of Δ( jω) varies between 0 and 1 and since the phase and direction of Δ( jω) are allowed to vary
arbitrarily, the multiplicative error for any G̃(s) ∈ G is contained in a bounded hypersphere of radius
|w( jω)| at each frequency. Therefore, our representation of unstructured uncertainty is one in which we
admit total lack of knowledge of the phase and direction of the actual plant with respect to the model, but
that we have a bound on the magnitude of this multiplicative error. This magnitude-bound information
is frequency dependent and is reflected in the fixed transfer function w(s), which we will refer to as the
weight. We note that we could have used a TFM W(s) instead of a scalar w(s) in our representation.
However, in that case, the multiplicative error will reflect directional information of W(s). Since we have
presumed total lack of knowledge regarding directional information of the actual plant relative to the
model, it is common in practice to choose W(s) to be scalar.

9.2.3.2 SISO Interpretations for G
To get a better feel for G and our representation for unstructured uncertainty, we first specialize to the
SISO case in which our definition for G gives

g̃(s)= (1+w(s)Δ(s))g(s) (9.2)

where
‖Δ( jω)‖H∞ = sup

ω
|Δ( jω)| ≤ 1 (9.3)

Since the phase ofΔ( jω) is allowed to vary arbitrarily and its magnitude varies from 0 to 1 at all frequen-
cies, the set G is the set of transfer functions whose magnitude bode plot lies in an envelope surrounding
the magnitude plot of g(s), as shown in Figure 9.3. Therefore, the size of the unstructured uncertainty

Frequency

Envelope for actual plant

M
ag

ni
tu

de (1–|w( jω)|)|g( jω)|

(1+|w( jω)|)|g( jω)|

|g ( jω)|

FIGURE 9.3 Bode plot interpretation of multiplicative uncertainty.
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is represented by the size of this envelope. From the figure, the upper edge of the envelope corresponds
to the plot of (1+ |w( jω)|)|g( jω)| while the lower edge corresponds to the plot of (1− |w( jω)|)|g( jω)|.
Therefore, |w( jω)| is seen as a frequency-dependent magnitude bound on the uncertainty. As mentioned
beforehand, the size of the unstructured uncertainty typically increases with increasing frequency. There-
fore, we would typically expect the size of the envelope containing G to increase with increasing frequency
and also |w( jω)| to increase with increasing frequency, as shown in Figure 9.3. Furthermore, we want
to stress that since the phase of Δ( jω) is allowed to vary arbitrarily, the phase difference between any
g̃( jω) ∈ G and g( jω) can be arbitrarily large at any frequency.

For another interpretation, we can look at the multiplicative error w(s)Δ(s) in the SISO case. Solving
for w(s)Δ(s) in Equation 9.2 gives

g̃(s)− g(s)

g(s)
= w(s)Δ(s) (9.4)

which shows that w(s)Δ(s) is the normalized error in the transfer function of the perturbed system with
respect to the nominal model. Using Equation 9.3 and noting that everything is scalar, we take magnitudes
on both sides of (Equation 9.4) for s = jω to get

|g̃( jω)− g( jω)| ≤ |w( jω)||Δ( jω)||g( jω)| ≤ |w( jω)||g( jω)| ∀ ω (9.5)

As shown in Figure 9.4, for each ω, this inequality describes a closed disk in the complex plane of radius
|w( jω)||g( jω)| centered at g( jω) which contains g̃( jω). Since Equation 9.5 is valid for any g̃(s) ∈ G, the
set G is contained in that closed disk for each ω. In this interpretation, the unstructured uncertainty is
represented by the closed disk, and therefore, we see that the direction and phase of the uncertainty is left
arbitrary. However, we note that the radius of the closed disk does not necessarily increase with increasing
frequency because it depends also on |g( jω)|, which typically decreases with increasing frequency at high
frequencies due to roll-off.

9.2.3.3 Choosing w(s)

From our discussion, it is clear that our representation of the uncertainty only requires a nominal
model, G(s), and a scalar weight, w(s), which reflects our knowledge on the magnitude bound of the
uncertainty. The next logical question is how to choose w(s) in the modeling process. From the definition

|w( jω)||g( jω)|

|g( jω)|

Re

Im

FIGURE 9.4 Interpretation of multiplicative uncertainty in the complex plane.
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in Equation 9.1, we know that we must choose w(s) so that the actual plant is contained in G. In the course
of modeling, whether through experimentation, such as frequency response, and/or model reduction, we
will arrive at a set of transfer function matrices. It is assumed that our modeling effort is thorough enough
to adequately capture the actual process so that this set will cover the TFM of the actual plant. From
this set we will choose a nominal model, G(s). We assume that G(s) is square, same number of inputs as
outputs, and nonsingular along the jω-axis in the s-plane. With this assumption, we can calculate, at each
frequency, the multiplicative error for each TFM Gi(s) in our set using

w( jω)Δ( jω)= Gi( jω)G−1( jω)− I (9.6)

Taking maximum singular values on both sides of the above equation gives

σmax[w( jω)Δ( jω)] = σmax[Gi( jω)G−1( jω)− I] (9.7)

Since ‖Δ( jω)‖H∞ ≤ 1 and w( jω) is a scalar, it is clear that we must choose

|w( jω)| ≥ σmax[Gi( jω)G−1( jω)− I] ∀ ω≥ 0 (9.8)

to include the TFM Gi(s) in G. Therefore, we must choose a stable, proper w(s) such that

|w( jω)| ≥max
i
σmax[Gi( jω)G−1( jω)− I] ∀ ω≥ 0 (9.9)

to ensure that we include all Gi(s) and, thus, the actual plant in G. This process is illustrated in the
following example.

Example 9.1: Integrator with Time Delay

Consider the set of SISO plants

gτ(s)= 1
s

exp−sτ, 0≤ τ≤ 0.2 (9.10)

which is the result of our modeling process on the actual plant. Since we cannot fully incorporate
the delay in a state-space model, we choose to ignore it. As a result, our model of the plant is

g(s)= 1
s

(9.11)

To choose the appropriate w(s) to cover all gτ(s) in G, we have to satisfy Equation 9.9, which in the
SISO case is

|w( jω)| ≥max
τ

∣∣∣∣gτ( jω)
g( jω)

− 1

∣∣∣∣ ∀ ω≥ 0 (9.12)

Therefore, we need to choose w(s) such that

|w( jω)| ≥max
τ

∣∣∣e−jωτ− 1
∣∣∣ ∀ ω≥ 0 (9.13)

Using e−jωτ = cos(ωτ)− j sin(ωτ) and a few trigonometry identities, the above inequality can be
simplified as

|w( jω)| ≥max
τ

∣∣∣2 sin
(ωτ

2

)∣∣∣ ∀ ω≥ 0 (9.14)
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FIGURE 9.5 w(s) for time delay uncertainty.

A simple w(s) that will satisfy Equation 9.14 is

w(s)= 0.21s

0.05s+ 1
(9.15)

This is shown in Figure 9.5, where |w( jω)| and 2
∣∣sin(ωτ2 )

∣∣ are plotted together on a magnitude bode
plot for τ= 0.2, which is the worst-case value. We note that w(s) is proper and strictly stable as required.

Now, let us suppose that we seek a better model by approximating the delay with a first-order Pade
approximation

e−sτ ≈
1− sτ

2

1+ sτ

2

(9.16)

Our model becomes

g(s)= 1

s

⎛
⎜⎝

1− 0.1s

2

1+ 0.1s

2

⎞
⎟⎠ (9.17)

where we approximate the delay at its midpoint value of 0.1 s. To choose w(s) in this case, we again need
to satisfy Equation 9.12 which becomes

|w( jω)| ≥max
τ

∣∣∣∣− e−jωτ( jω+ 20)

( jω− 20)
− 1

∣∣∣∣ ∀ ω≥ 0 (9.18)

A simple w(s) that will satisfy Equation 9.18 is

w(s)= 0.11s

0.025s+ 1
(9.19)

This is shown in Figure 9.6. We again note that w(s) is proper and strictly stable as required.
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FIGURE 9.6 w(s) for time delay uncertainty with Pade approximation.

Comparing the magnitudes of w(s) for the two models in Figure 9.7, we note that, for the model with
the Pade approximation, |w( jω)| is less than that for the original model for ω≤ 100 rad/s. Since |w( jω)|
is the magnitude bound on the uncertainty, Figure 9.7 shows that the uncertainty for the model with the
Pade approximation is smaller than that for the original model in this frequency range. Physically, this is
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FIGURE 9.7 Comparing w(s) for the two models.
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because the model with the Pade approximation is a better model of the actual plant for ω≤ 100 rad/s.
As a result, its uncertainty is smaller.

We note that our choice of representing the uncertainty as being bounded in magnitude but arbitrary
in phase and direction is, in general, an overbound on the set of TFMs that we obtained from the modeling
process. That is, the set of TFMs from the modeling process may only be a small subset of G. The benefit of
using this uncertainty representation is that it allows for simple analysis of the stability robustness problem
using minimal information regarding the modeling errors. However, the cost of such a representation
is that the stability robustness results obtained may be conservative. This is because these results are
obtained by showing stability with respect to the larger set G instead of the smaller set from our modeling
process. Another way of looking at it is that the resulting set of stabilizing controllers for the larger set G
will be smaller. As a result, the achievable performance may be worse. This conservatism will be discussed
throughout as we develop our analysis for stability robustness, and the impact of stability robustness and
this conservatism on closed-loop performance will be discussed in Section 9.4.

9.2.3.4 Reflecting Modeling Errors to the Input of the Plant

Finally, we note that in our representation of multiplicative unstructured uncertainty, we choose to
lump the uncertainty at the plant output. In other words, we assume that the actual plant is of the form
(I +w(s)Δ(s))G(s) where the uncertainty, (I +w(s)Δ(s)) multiplying the model is at the plant output.
To be more precise notationally, we should rewrite our definition for G as

G = {G̃(s) | G̃(s)= (I +wo(s)Δ(s))G(s), ‖Δ( jω)‖H∞ ≤ 1} (9.20)

where we have added the subscript “o” to w(s) to distinguish it as the weight corresponding to uncertainty
at the plant output. Alternatively, we can instead choose to lump the uncertainty at the plant input. In this
case, we assume that the actual plant is of the form G(s)(I +wi(s)Δ(s)) where the uncertainty multiplying
the model is at the plant input. As a result, the definition for G in this case is

G = {G̃(s) | G̃(s)= G(s)(I +wi(s)Δ(s)), ‖Δ( jω)‖H∞ ≤ 1} (9.21)

where wi(s) is the weight corresponding to the uncertainty at the plant input. Comparing the two rep-
resentations reveals that, in general, the two sets defined by Equations 9.20 and 9.21 are not the same
because matrix multiplication does not commute. SinceΔ(s) is constrained similarly and we must choose
the weight so that G covers the actual plant in both cases, we note that, in general, wo(s) is not the same
as wi(s).

Of course, we do not physically lump the modeling errors to the plant input or output. Instead, in the
course of modeling, we lump the model so that the modeling errors are reflected either to the input of the
model or to the output. To be sure, modeling errors associated with the plant actuators and sensors, such
as neglected actuator and sensor dynamics, are reflected more naturally to the model’s input and output,
respectively. However, modeling errors associated with internal plant dynamics, such as neglected flexible
modes, are not naturally reflected to either the model’s input or output. In this case, we have a choice as
to where we wish to reflect these errors. As a final note, for the SISO case, the two representations are
equivalent since scalar multiplication does commute. As a result, we can choose wo(s)= wi(s)= w(s) so
that it does not make a difference where we reflect our modeling errors.

9.3 Conditions for Stability Robustness

Having established a multiplicative representation for unstructured uncertainty, we proceed to use it
to analyze the stability robustness problem. As mentioned beforehand, since the actual modeling error
and, thus, the actual plant is never known, we cannot hope to simply evaluate the stability of the actual
closed-loop system by using the Nyquist stability criterion or by calculating closed-loop poles. Instead, we
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must rely on our representation of the uncertainty to arrive at conditions or tests in the frequency domain
that guarantee stability robustness. Throughout the discussion, we assume that we have a controller, K(s),
that gives us nominal stability for the feedback loop in Figure 9.1 and that we use this controller in the
actual feedback loop, Figure 9.2. In addition, since we are interested in internal stability of the feedback
loop, we assume throughout that for SISO systems, the transfer function k(s)g(s) is stabilizable and
detectable; that is, there are no unstable pole-zero cancellations in forming k(s)g(s). For MIMO systems,
the corresponding conditions are that both K(s)G(s) and G(s)K(s) are stabilizable and detectable.

9.3.1 Stability Robustness for SISO Systems

In this section we analyze the stability robustness of SISO feedback systems to multiplicative unstructured
uncertainty. We first derive a sufficient condition for stability robustness using the familiar Nyquist
stability criterion. We then derive the same condition using another method: the small gain theorem. The
goal here is not only to show that one can arrive at the same answer but also to present the small gain
approach to analyzing stability robustness, which can be easily extended to MIMO systems. Finally, we
compare our notion of stability robustness to more traditional notions of robustness such as gain and
phase margins.

9.3.1.1 Stability Robustness Using the Nyquist Stability Criterion

We begin the analysis of stability robustness to unstructured uncertainty for SISO systems with the Nyquist
stability criterion. We recall from classical control theory that the Nyquist stability criterion is a graphical
representation of the relationship between the number of unstable poles of an open-loop transfer function,
l(s), and the unstable zeros of the return difference transfer function, 1+ l(s). Since the zeros of 1+ l(s)
correspond to the closed-loop poles of l(s) under negative unity feedback, the Nyquist stability criterion
is used to relate the number of unstable poles of l(s) to the stability of the resulting closed-loop system.
Specifically, the Nyquist stability criterion states that the corresponding closed-loop system is stable if and
only if the number of positive clockwise encirclements (or negative counterclockwise encirclements) of
the point (−1, 0) in the complex plane by the Nyquist plot of l(s) is equal to−P, where P is the number of
unstable poles of l(s). Here, the Nyquist plot is simply the plot in the complex plane of l(s) evaluated along
the closed Nyquist contour Dr , which is defined in the usual way with counterclockwise indentations
around the imaginary axis poles of l(s) so that they are excluded from the interior of Dr . Notationally, we
express the Nyquist stability criterion as

ℵ(−1, l(s), Dr)=−P (9.22)

In our analysis we are interested in the stability of the two feedback loops given in Figures 9.1 and 9.2.
For the nominal feedback loop, we define the nominal loop transfer function as

l(s)= g(s)k(s) (9.23)

Since we assume that the nominal closed loop is stable, we have that

ℵ(−1, g(s)k(s), Dr)=−P (9.24)

where P is the number of unstable poles of g(s)k(s). For the actual feedback loop, we define the actual
loop transfer function as

la(s)= ga(s)k(s)= (1+w(s)Δ(s))g(s)k(s) (9.25)

where the second equality holds for some ‖Δ( jω)‖H∞ ≤ 1 since we assumed that ga(s) ∈ G in our
representation of the unstructured uncertainty. In addition, since we assumed that the unstable poles of
g(s) and ga(s) coincide and since the same k(s) appears in both loop transfer functions, the number of
unstable poles of ga(s)k(s) and thus la(s) is also P. Similarly, since we assumed that the imaginary axis
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poles of g(s) and ga(s) coincide, the same Nyquist contour Dr can be used to evaluate the Nyquist plot of
la(s). Therefore, by the Nyquist stability criterion, the actual closed-loop system is stable if and only if

ℵ(−1, ga(s)k(s), Dr)= ℵ(−1, (1+w(s)Δ(s))g(s)k(s), Dr)

=−P (9.26)

Since we do not know ga(s), we can never hope to use Equation 9.26 to evaluate or show the stability
of the actual system. However, we note that Equation 9.26 implies that the actual closed-loop system is
stable if and only if the number of counterclockwise encirclements of the critical point, (−1, 0), is the
same for the Nyquist plot of la(s) as that for l(s). Therefore, if we can show that for the actual loop transfer
function, we do not change the number of counterclockwise encirclements from that of the nominal
loop transfer function, then we can guarantee that the actual closed-loop system is stable. The idea is to
utilize our set membership representation of the uncertainty to ensure that it is impossible to change the
number of encirclements of the critical point for any loop transfer function g̃(s)k(s) with g̃(s) ∈ G. This
will guarantee that the actual closed-loop system is stable, since our representation is such that ga(s) ∈ G.
This is the type of sufficient condition for stability robustness that we seek.

To obtain this condition, we need a relationship between the Nyquist plots of l(s) and la(s) using our
representation of the unstructured uncertainty. To start, we separate the Nyquist plot into three parts
corresponding to the following three parts of the Nyqust contour Dr :

1. The nonnegative jω axis
2. The negative jω axis
3. The part of Dr that encircles the right half s-plane where |s| →∞

For the first part, we note from Equations 9.23 and 9.25 that la(s) can be expressed as

la(s)= (1+w(s)Δ(s))l(s) (9.27)

for some ‖Δ‖H∞ ≤ 1. Therefore, the multiplicative uncertainty representation developed earlier holds
equally for l(s)= g(s)k(s) as for g(s). Extending the SISO interpretation of this uncertainty representation
in Figure 9.4 through Figure 9.8, we note that for any nonnegative ω, the Nyquist plot of la(s) is a point
contained in the disk of radius |w( jω)||l( jω)| centered at the point l( jω), which is the Nyquist plot

|w( jω )||l( jω)|

|l( jω)|

Re

Im

–1

1+|l( jω)|

FIGURE 9.8 Multiplicative uncertainty in the Nyquist plot.
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of l(s) at that ω. Figure 9.8, then, gives a relationship between the Nyquist plot of l(s) and la(s) at a
particular frequency for the part of the Nyquist contour along the positive jω axis. For the second part
of the Nyquist contour, we note that the Nyquist plot is simply a mirror image, with respect to the real
axis, of the Nyquist plot for the first part, and thus this relationship will be identical. For the third part of
the Nyquist contour, we note that since the model g(s) represents a physical system, it should be strictly
proper, and therefore, |g(s)| → 0 as |s| →∞. In addition, the same holds for ga(s) since it is a physical
system. Since the controller k(s) is proper, it follows that the both the Nyquist plots for l(s) and la(s) are
at the origin for the part of the Nyquist contour that encircles the right half s-plane.

For stability robustness, we only need to consider the relationship between l(s) and la(s) for the first
part of the Nyquist contour. This is because for the second part the relationship is identical and thus the
conclusions for stability robustness will be identical. Finally, for the third part, since the Nyquist plots
for both l(s) and la(s) are at the origin, they are identical and cannot impact stability robustness. As a
result, we only need to consider the relationship between l(s) and la(s) that is presented in Figure 9.8. We
illustrate this relationship along a typical Nyquist plot of the nominal l(s), for ω≥ 0, in Figure 9.9 where,
for clarity, we only illustrate the uncertainty disk at a few frequencies. Here, we note that the radius of the
uncertainty disk changes as a function of frequency since both w( jω) and l( jω) varies with frequency.

From Figure 9.9, we note that it is impossible for the Nyquist plot of la(s) to change the number of
encirclements of the critical point (−1, 0) if the disks representing the uncertainty in l(s) do not intersect
the critical point for all ω≥ 0. To show this, let us prove the contrapositive. That is, if the Nyquist plot
of la(s) does change the number of encirclements of the critical point, then by continuity there exists a
frequency ω∗ where the line connecting l( jω∗) and la( jω∗) must intersect the critical point. Since the
uncertainty disk at that frequency is convex, this uncertainty disk must also intersect the critical point.

|w( jω2)||l( jω2)|

|w( jω1)||l( jω1)|

|w( jω3)||l( jω2)|

ω3

ω2

Nyquist plot of l(s)

Im

Re

–1

ω1

FIGURE 9.9 Stability robustness using the Nyquist stability criterion.
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Graphically, then, we can guarantee stability robustness if the distance between the critical point and the
Nyquist plot of l(s) is strictly greater than the radius of the uncertainty disk for allω≥ 0. From Figure 9.8,
the distance between the critical point and the Nyquist plot of the nominal loop transfer function, l(s),
is simply |1+ l( jω)|, which is the magnitude of the return difference. Therefore, a condition for stability
robustness is

|w( jω)||l( jω)|< |1+ l( jω)| ∀ ω≥ 0 (9.28)

or equivalently,

|w( jω)||g( jω)k( jω)|< |1+ g( jω)k( jω)| ∀ ω≥ 0 (9.29)

We note that although the Nyquist stability criterion is both a necessary and sufficient condition for
stability, the above condition for stability robustness is clearly only sufficient. That is, even if we violate
this condition at a particular frequency or at a range of frequencies, the Nyquist plot of the actual system
may not change the number of encirclements of the critical point and thus the actual closed-loop system
may be stable. This is illustrated in Figure 9.10, where we note that if the Nyquist plot of la(s) follows la2(s),
then the actual system is stable. The key here is that since we do not know la(s), we cannot say whether
or not the actual system is stable when the condition is violated. Therefore, to guarantee actual stability,
we need to ensure a safe distance or margin, which may not be necessary, between the nominal Nyquist
plot and the critical point. This margin is in terms of the uncertainty disk. We see that this conservatism
stems from the fact that we admit total lack of knowledge concerning the phase of the actual plant, which
led to the representation of the uncertainty as a disk in the complex plane.

Nyquist plot of l(s)

Nyquist plot
of la2(s)
Stable

Nyquist plot
of la1(s)
Unstable

Im

Re

–1

FIGURE 9.10 Sufficiency of the stability robustness condition.
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u1

u1

e1

e2

+

+G2(s)

G1(s)

FIGURE 9.11 Standard feedback form.

9.3.1.2 Stability Robustness Using Small Gain Theorem

We now seek to derive an equivalent condition for stability robustness for SISO systems using the
small gain theorem, see for example Dahleh and Diaz-Bobillo [1]. The goal here is to introduce another
methodology whereby conditions for stability robustness can be derived. As we will see in the sequel,
this methodology can be easily extended to MIMO systems. We begin with a statement of the small gain
theorem, specialized to LTI systems, which addresses the stability of a closed-loop system in the standard
feedback form given in Figure 9.11.

Theorem 9.1: Small Gain Theorem

Under the assumption that G1(s) and G2(s) are stable in the feedback system in Figure 9.11, the closed-loop
transfer function matrix from (u1, u2) to (e1, e2) is stable if the small gain condition

‖G1( jω)‖H∞‖G2( jω)‖H∞ < 1 (9.30)

is satisfied.

Proof. We first show that the sensitivity transfer function matrix, S(s)= (I −G1(s)G2(s))−1 is stable.
For this, we need to show that if the small gain condition Equation 9.30 is satisfied, then S(s)= (I −
G1(s)G2(s))−1 is analytic in the closed right-half s-plane. An equivalent statement is that the return
difference, D(s)= I −G1(s)G2(s) is nonsingular for all s in the closed right-half plane.

For arbitrary input u and for all complex s,

‖D(s)u‖ = ‖(I −G1(s)G2(s))u‖ = ‖u−G1(s)G2(s)u‖ (9.31)

where ‖ · ‖ represents the standard Euclidean norm. From the triangle inequality,

‖u−G1(s)G2(s)u‖ ≥ ‖u‖−‖G1(s)G2(s)u‖ (9.32)

from the definition of the maximum singular value,

‖G1(s)G2(s)u‖ ≤ σmax[G1(s)G2(s)]‖u‖ (9.33)

and from the submultiplicative property of induced norms,

σmax[G1(S)G2(s)] ≤ σmax[G1(s)]σmax[G2(s)] (9.34)
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Substituting Equations 9.32 through 9.34 into Equation 9.31 gives for all complex s,

‖D(s)u‖ = ‖u−G1(s)G2(s)u‖
≥ ‖u‖−‖G1(s)G2(s)u‖
≥ ‖u‖− σmax[G1(s)G2(s)]‖u‖
≥ ‖u‖− σmax[G1(s)]σmax[G2(s)]‖u‖
= (1− σmax[G1(s)]σmax[G2(s)])‖u‖ (9.35)

Since G1 and G2 are stable, they are analytic in the closed right-half plane. Therefore, by the maximum
modulus theorem [2],

σmax[G1(s)] ≤ sup
ω
σmax[G1( jω)] = ‖G1( jω)‖H∞

σmax[G2(s)] ≤ sup
ω
σmax[G2( jω)] = ‖G2( jω)‖H∞

(9.36)

for all s in the closed right-half plane. Substituting Equation 9.36 into Equation 9.35 gives

‖D(s)u‖ ≥ (1−‖G1( jω)‖H∞‖G2( jω)‖H∞ )‖u‖ (9.37)

for all s in the closed right-half plane. From the small gain condition, there exists an ε> 0 such that

‖G1( jω)‖H∞‖G2( jω)‖H∞ < 1− ε (9.38)

Therefore, for all s in the closed right-half plane,

‖D(s)u‖ ≥ ε‖u‖> 0 (9.39)

for any arbitrary u, which implies that D(s) is nonsingular in the closed right-half s-plane.
From a similar argument, we can show that (I −G2(s)G1(s)) is also stable. Therefore, the transfer

function matrix relating (u1, u2) to (e1, e2), which is given by

[
(I −G2(s)G1(s))−1 −(I −G2(s)G1(s))−1G2(s)

(I −G1(s)G2(s)−1G1(s) (I −G1(s)G2(s))−1

]
(9.40)

is stable.
We note that the small gain theorem is only a sufficient condition for stability. For example, in the

SISO case, the small gain condition (Equation 9.30) can be expressed as

|g1( jω)g2( jω)|< 1 ∀ ω≥ 0 (9.41)

which implies that the Nyquist plot of the loop transfer function g1(s)g2(s) lies strictly inside the unit circle
centered at the origin, as shown in Figure 9.12. This is sufficient for stability because g1(s) and g2(s) are
stable; however, we note that it is clearly not necessary. In addition, we note that the small gain theorem
applies equally well to MIMO systems, since the proof was actually done for the MIMO case. In fact, the
general form of the small gain theorem applies to nonlinear, time-varying operators over any normed
signal space. For a treatment of the general small gain theorem and its proof, the reader is referred to [3].

For stability robustness, we are, as before, interested in the stability of the two feedback loops given
in Figures 9.1 and 9.2. From our representation of unstructured uncertainty, we can express the actual
plant as

ga(s)= (1+w(s)Δ(s))g(s) (9.42)

for some ‖Δ( jω)‖H∞ ≤ 1. Therefore, the actual feedback loop can also be represented by the block
diagram in Figure 9.13. In the figure, we note that we choose, merely by convention, to reflect the
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|g1( jω)g2( jω)| < 1

Re
–1

Im

FIGURE 9.12 Sufficiency of SISO small gain theorem.

unstructured uncertainty to the output of the plant instead of to the input since for the SISO case the two
are equivalent. In addition, we note that Figure 9.13 can also be interpreted as being the feedback loop for
all perturbed plants, g̃(s), belonging to the set G. The key for stability robustness, then, is to show stability
for this feedback loop using the small gain theorem for all ‖Δ( jω)‖H∞ ≤ 1 and, therefore, for all g̃(s) ∈ G.

To apply the small gain theorem, we first reduce the feedback loop in Figure 9.13 to the standard
feedback form in Figure 9.11. To do this, we isolate Δ(s) and calculate the transfer function from the
output ofΔ, v, to its input, z. From Figure 9.13,

z(s)=−w(s)g(s)k(s)y(s)

y(s)= v(s)− g(s)k(s)y(s) (9.43)

–

+

+

z v

y
k(s) g(s)

w(s)

Actual plant ga(s)

Δ(s)

FIGURE 9.13 Actual feedback loop with uncertainty representation.
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Δ(s)

–w(s)g(s)k(s)

Z V

1 + g(s)k(s)

FIGURE 9.14 Actual feedback loop in standard form.

As a result, the transfer function seen byΔ is given by m(s) where

m(s)= −w(s)g(s)k(s)

1+ g(s)k(s)
(9.44)

and the reduced block diagram is given in Figure 9.14. We note that m(s) is simply the product of the
complementary sensitivity transfer function for the nominal feedback loop and the weight w(s). Since we
assumed that the nominal closed loop is stable and w(s) is stable, m(s) is stable. Furthermore, since we
also assumed thatΔ(s) is stable, the assumption for the small gain theorem is satisfied for the closed-loop
system in Figure 9.14. Applying the small gain theorem, this closed-loop system is stable if the small gain
condition ∥∥∥∥−w( jω)g( jω)k( jω)

1+ g( jω)k( jω)

∥∥∥∥
H∞

∥∥Δ( jω)
∥∥< 1 (9.45)

is satisfied. Since
∥∥Δ( jω)

∥∥
H∞ ≤ 1, an equivalent condition for stability to all

∥∥Δ( jω)
∥∥

H∞ ≤ 1 is

∥∥∥∥w( jω)g( jω)k( jω)

1+ g( jω)k( jω)

∥∥∥∥
H∞

< 1 (9.46)

which is a sufficient condition for the stability of the feedback loop in Figure 9.13 for all g̃(s) ∈ G. Since
ga(s) ∈ G, this is a sufficient condition for stability robustness.

We now proceed to show that the stability robustness condition in Equation 9.46 is equivalent to that
derived using the Nyquist stability criterion. From the definition of the H∞ norm, an equivalent condition
to Equation 9.46 is given by ∣∣∣∣w( jω)g( jω)k( jω)

1+ g( jω)k( jω)

∣∣∣∣< 1 ∀ ω≥ 0 (9.47)

Since everything is scalar, this condition is equivalent to

|w( jω)||g( jω)k( jω)|< |1+ g( jω)k( jω)| ∀ ω≥ 0 (9.48)

which is exactly the condition for stability robustness derived using the Nyquist stability criterion. This
equivalence is not due to the equivalence of the Nyquist stability criterion and the small gain theorem,
since the former is a necessary and sufficient condition for stability while the latter is only sufficient.
Rather, this equivalence is due to our particular approach in applying the small gain theorem and to our
representation of the uncertainty. What this equivalence gives us is an alternative to the more familiar
Nyquist stability criterion in analyzing the stability robustness problem. Unlike the Nyquist stability
criterion, the small gain theorem applies equally well to MIMO systems. Therefore, our analysis is easily
extended to the MIMO case, as we will do in Section 9.3.2.
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Nyquist plot with good
gain and phase margins

FIGURE 9.15 Insufficiency of gain and phase margins.

9.3.1.3 Comparison to Gain and Phase Margins

In closing this section on stability robustness for SISO systems, we would like to compare our notion
of robustness to more traditional notions such as gain and phase margins. As we recall, gain margin is
the amount of additional gain that the SISO open-loop transfer function can withstand before the closed
loop goes unstable, and phase margin is the amount of additional phase shift or pure delay that the loop
transfer function can withstand before the closed loop goes unstable. To be sure, gain and phase margins
are measures of robustness for SISO systems, but they are, in general, insufficient in guaranteeing stability
in the face of dynamic uncertainty such as those due to unmodeled dynamics. This is because gain and
phase margins only deal with uncertainty in terms of pure gain variations or pure phase variations but
not a combination of both. That is, the open loop can exhibit large gain and phase margins and yet be
close to instability as shown in the Nyquist plot in Figure 9.15. In the figure, we note that for frequencies
between ω1 and ω2 the Nyquist plot is close to the critical point so that a combination of gain and phase
variation along these frequencies such as that in the perturbed Nyquist plot will destabilize the closed
loop. This combination of gain and phase variations can be the result of unmodeled dynamics. In such a
case, gain and phase margins will give a false sense of stability robustness. In contrast, we could get a true
sense of stability robustness by explicitly accounting for the dynamic uncertainty in terms of unstructured
uncertainty.

In addition, gain and phase margins are largely SISO measures of stability robustness since they are
inadequate in capturing the cross coupling between inputs and outputs of the dynamics of MIMO systems.
For MIMO systems, we usually think of gain and phase margins as being independent gain and phase
variations that are allowed at each input channel. These variations clearly cannot cover the combined
gain, phase, and directional variations due to MIMO dynamic uncertainty. As a result, the utility of our
notion of stability robustness over traditional gain and phase margin concepts becomes even more clear
in the MIMO case.

9.3.2 Stability Robustness for MIMO Systems

In this section, we analyze the stability robustness of MIMO feedback systems to multiplicative unstruc-
tured uncertainty. As mentioned beforehand, we will use the small gain theorem since it offers a natural
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extension from the SISO case to the MIMO case. As shown in the SISO case, the general procedure for
analyzing stability robustness using the small gain theorem is as follows:

1. Start with the block diagram of the actual feedback loop with the actual plant represented by the
nominal model perturbed by the uncertainty. Note that this block diagram also represents the
feedback loop for all perturbed plants belonging to the set G, which contains the actual plant.

2. Reduce the feedback loop to the standard feedback form by isolating theΔ(s) block and calculating
the TFM from the output ofΔ to the input ofΔ. Denote this TFM as M(s).

3. Apply the small gain theorem. In particular, since
∥∥Δ( jω)

∥∥
H∞ ≤ 1, the small gain theorem guar-

antees stability for the feedback loop for all perturbed plants in the set G and therefore guarantees
robust stability if

∥∥M( jω)
∥∥

H∞ < 1.

We will follow this procedure in our analysis of MIMO stability robustness. For MIMO systems, as shown
in Section 9.2.3, there is a difference between reflecting the modeling errors to the input and the output of
the plant. As a consequence, we separate the two cases and derive a different stability robustness condition
for each case. In the end, we will relate these two stability robustness tests and discuss their differences.

9.3.2.1 Uncertainty at Plant Output

We start with the case where the modeling errors are reflected to the plant output. In this case, the actual
plant is of the form

Ga(s)= (I +wo(s)Δ(s))G(s) (9.49)

for some
∥∥Δ( jω)

∥∥
H∞ ≤ 1. Following step 1 of the procedure, the block diagram of the actual feedback

loop given this representation of the uncertainty is depicted in Figure 9.16a. For step 2, we calculate the
TFM from the output ofΔ, v, to its input, z. From Figure 9.16a,

z(s)=−wo(s)G(s)K(s)y(s)

y(s)= v(s)−G(s)K(s)y(s) (9.50)

As a result, M(s), the TFM seen byΔ(s), is

M(s)=−wo(s)G(s)K(s)(I +G(s)K(s))−1 (9.51)

and the reduced block diagram is given in Figure 9.16b. We note that M(s) is simply the product of the
complementary sensitivity TFM, C(s)= G(s)K(s)(I +G(s)K(s))−1, for the nominal feedback loop and
the scalar weight wo(s). Since we assumed that the nominal closed loop and wo(s) are both stable, M(s) is
stable. Furthermore, since we also assumed thatΔ(s) is stable, the assumption for the small gain theorem
is satisfied for the closed loop system in Figure 9.16b. For step 3, we apply the small gain theorem, which
gives ∥∥wo( jω)G( jω)K( jω)(I +G( jω)K( jω))−1

∥∥
H∞ < 1 (9.52)

as a sufficient condition for stability robustness. Using the definition of the H∞ norm, an equivalent
condition for stability robustness is

σmax[wo( jω)G( jω)K( jω)(I +G( jω)K( jω))−1]< 1 ∀ ω≥ 0 (9.53)

Since wo(s) is scalar, another sufficient condition for stability robustness to multiplicative uncertainty at
the plant output is

σmax[G( jω)K( jω)(I +G( jω)K( jω))−1]< 1

|wo( jω)| ∀ ω≥ 0 (9.54)
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–wo(s)G(s)K(s)(1+G(s)K(s))–1

Z V

FIGURE 9.16 Stability robustness for multiplicative uncertainty at plant output.

9.3.2.2 Uncertainty at Plant Input

In the case where the modeling errors are reflected to the plant input, the actual plant is of the form

Ga(s)= G(s)(I +wi(s)Δ(s)) (9.55)

for some
∥∥Δ( jω)

∥∥
H∞ ≤ 1. Following the procedure in Section 9.3.2, a sufficient condition for stability

robustness is given by

∥∥wi( jω)(I +K( jω)G( jω))−1K( jω)G( jω)
∥∥

H∞ < 1 (9.56)

Using the definition of the H∞ norm and the fact that wi(s) is scalar, an equivalent condition for stability
robustness is

σmax[(I +K( jω)G( jω))−1K( jω)G( jω)]< 1

|wi( jω)| ∀ ω≥ 0 (9.57)

Comparison between the sufficient conditions Equations 9.54 and 9.57 reveals that, although the two
conditions both address the same stability robustness problem, they are indeed different. When we reflect
the modeling errors to the plant output, our stability robustness condition is based on the nominal
complementary sensitivity TFM, C(s). This TFM is the closed loop TFM formed from the loop TFM with
the loop broken at the plant output. On the other hand, when we reflect the modeling errors to the plant
input, our stability robustness condition is based on the nominal input complementary sensitivity TFM,
Ci(s). In general, Ci(s) is different from C(s). As mentioned in Section 9.2.3, this difference stems from
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the fact that, although the sets G for the two cases both contain the actual plant, they are different because
matrix multiplication does not commute. As a result, the two different conditions can give different
results. Since the two conditions are both only sufficient, only one of them needs to be satisfied in order
to conclude stability robustness. The fact that we only need to satisfy one of the conditions to achieve
stability robustness means that one condition is less conservative than the other. This is indeed true since
the sets G are different, and thus, invariably, one is larger than the other, resulting in a more conservative
measure of modeling error. Finally, we note that if G(s) and K(s) are both SISO, then both Equations 9.54
and 9.57 reduce to the sufficient condition derived for the SISO case.

9.4 Impact of Stability Robustness on Closed-Loop Performance

In the previous section, we have established, for both the SISO and MIMO cases, sufficient conditions
for stability robustness under the multiplicative representation for unstructured uncertainty. To the
control engineer, these conditions will have to be satisfied by design in order to ensure the stability
of the actual closed-loop system. These conditions, then, become additional constraints on the design
that will invariably impact the performance of the closed-loop system, such as command following and
disturbance rejection. As shown in the chapter on MIMO frequency response analysis in this handbook,
these performance specifications can be defined in the frequency domain in terms of the maximum
singular value of the sensitivity TFM, S(s)= (I +G(s)K(s))−1. In particular, we require σmax[S( jω)] to
be small in the frequency range of the command and/or disturbance signals. In this section, we seek
an interpretation of our stability robustness conditions in the frequency domain in order to discuss its
impact on command following and disturbance rejection.

We start with the SISO case and the stability robustness condition given in Equation 9.48. Since
everything is scalar and positive, this condition is equivalent to

∣∣∣∣ g( jω)k( jω)

1+ g( jω)k( jω)

∣∣∣∣< 1

|w( jω)| ∀ ω≥ 0 (9.58)

where the left side is the magnitude of the closed-loop or complementary sensitivity transfer function,
c( jω), of the nominal design. This condition is illustrated in the frequency domain in Figure 9.17.
Interpreting from the figure, the stability robustness condition states that the magnitude plot of the
nominal closed-loop transfer function must lie strictly below the plot of the inverse of |w( jω)|. As is
typically the case, the inverse of the magnitude of w( jω) will be large at low frequencies and small at high
frequencies, since modeling errors increase with increasing frequency. Specifically, the modeling errors
become significant near and above the frequency ωm defined by

|w( jωm)| = 0 dB (9.59)

Therefore, the stability robustness condition limits the bandwidth of the nominal closed-loop design. That
is, the bandwidth of the nominal closed-loop design, ωb, is constrained to be less than ωm, as shown in
the figure. Indeed, as indicated in Figure 9.17, the presence of significant modeling errors at frequencies
beyond ωm forces the rapid roll-off of the designed closed-loop transfer function at high frequencies.
Physically, this roll-off prevents energy at these frequencies from exciting the unmodeled dynamics and,
therefore, prevents the possible loss of stability. In terms of closed-loop performance, we recall from the
chapter on MIMO frequency response analysis that a necessary condition for σmax[S( jω)] to be small
at a certain frequency is that the singular values of the closed-loop or complementary sensitivity TFM,
C(s)= G(s)K(s)(I +G(s)K(s))−1, must be close to unity (0 dB) at that frequency. For SISO systems, this
simply translates to requiring that the magnitude of the closed-loop transfer function be close to unity
(0 dB). From Figure 9.17, it is clear that the stability robustness condition limits the range of frequencies
over which we can expect to achieve good command following and/or output disturbance rejection
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FIGURE 9.17 Interpretation of stability robustness for SISO systems.

to below ωm. In other words, we should not expect good performance at frequencies where there are
significant modeling errors.

For the MIMO case where the modeling errors are reflected to the plant output, the stability robustness
condition given in Equation 9.54 can be illustrated in terms of singular value plots, as shown in Figure 9.18.
This figure gives a similar interpretation concerning the impact of stability robustness on the nominal
closed-loop performance as that for the SISO case. From the figure, the output bandwidth of the nominal
closed-loop design, ωbo, is constrained by the stability robustness condition to be less than ωmo, where
ωmo is defined as the frequency at and beyond which the modeling error reflected to the plant output

1
|wo( jω)|

ωbo ωmo
ω

σmax[C( jω)]

σmin[C( jω)]
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FIGURE 9.18 Interpretation of stability robustness for MIMO systems with uncertainty reflected to plant output.
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FIGURE 9.19 Interpretation of stability robustness for MIMO systems with uncertainty reflected to plant input.

becomes significant. In other words, ωmo is defined as

|wo( jωmo)| = 0 dB (9.60)

Therefore, as in the SISO case, the stability robustness condition limits the range of frequencies over which
we can expect to achieve good command following and/or output disturbance rejection to below ωmo.
On the other hand, for the MIMO case where the modeling errors are reflected to the plant input, we do
not get a similar interpretation. In this case, the stability robustness condition given in Equation 9.57 can
be illustrated in terms of singular value plots, as shown in Figure 9.19. The difference lies in the fact that
this condition depends on the input complementary sensitivity TFM, Ci(s)= (I +K(s)G(s))−1K(s)G(s),
instead of C(s). Under this stability robustness condition, the input bandwidth of the nominal closed-loop
design,ωbi , is constrained to be less thanωmi , whereωmi is defined as the frequency at and beyond which
the modeling error reflected to the plant input becomes significant. Here, ωmi is defined as

|wi( jωmi)| = 0 dB (9.61)

which may be different thanωmo since wi(s) is, in general, not the same as wo(s). Since command following
and output disturbance rejection depends on the sensitivity TFM, S(s)= (I +G(s)K(s))−1, instead of the
input sensitivity TFM, Si(s)= (I +K(s)G(s))−1, we cannot directly ascertain the impact of the stability
robustness condition in Equation 9.57 on these performance measures. However, we can obtain insight
on the impact of this stability robustness condition on input disturbance rejection because the TFM from
the disturbance at the plant input to the plant output is equal to G(s)(I +K(s)G(s))−1. Therefore, if the
input sensitivity TFM is small then we have good input disturbance rejection. As before, a necessary
condition for σmax[Si( jω)] to be small at a certain frequency is that the singular values of Ci( jω) are close
to unity (0 dB). From Figure 9.19, this stability robustness condition clearly limits the range of frequencies
at which we can expect to achieve good input disturbance rejection to belowωmi . This is because we must
roll-off Ci( jω) above ωmi to satisfy the stability robustness condition.

To illustrate the concept of stability robustness to multiplicative unstructured uncertainty and its
impact on closed-loop performance, we present the following example.



�

�

�

�

� �

9-24 Control System Advanced Methods

Example 9.2: Integrator with Time Delay

Suppose that we wish to control the plant from Example 1 using a simple proportional controller.
Our objective is to push the bandwidth of the nominal closed-loop system as high as possible. We
use the simple integrator model

g(s)= 1
s

(9.62)

for our design. In this case, the nominal loop transfer function is simply g(s)k where k is the propor-
tional gain of our controller, and the nominal closed loop transfer function is simply

c(s)= k

s+ k
(9.63)

Since we require stability of the actual closed loop, we need to satisfy the stability robustness
condition given in Equation 9 58 where, from Example 1, the weight w(s) of the uncertainty for this
model is

w(s)= 0.21s

0.05s+ 1
(9.64)

As shown in Figure 9.20, the maximum value for k at which the stability robustness condition is
satisfied is k = 5.9. With this value of k, the bandwidth achieved for the nominal system based on
this model is 5.9 rad/s.

Now, consider the case where the time delay can vary up to 0.4 s instead of 0.2 s. In this case, we use the
same model as above, but our uncertainty representation must change in order to cover this additional
uncertainty. Specifically, we must choose a new weight w(s). As in Example 1, we need to choose w(s)
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FIGURE 9.20 Stability robustness condition for 0.2 s maximum delay uncertainty.
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such that
|w( jω)| ≥max

τ

∣∣∣2 sin
(ωτ

2

)∣∣∣ ∀ ω≥ 0 (9.65)

where τ now ranges from 0 to 0.4 s. A simple w(s) that will satisfy Equation 9.65 is

w(s)= 0.41s

0.1s+ 1
(9.66)

This is shown in Figure 9.21, where |w( jω)| and 2
∣∣sin(ωτ2 )

∣∣ are plotted together on a magnitude Bode plot
for τ= 0.4, which is now the worst case value. We note that w(s) is proper and strictly stable as required.

Since we require stability of the actual closed loop, we again need to satisfy the stability robustness
condition given in Equation 9.58. As shown in Figure 9.22, the maximum value for k at which the stability
robustness condition is satisfied is now k = 2.9. With this value of k, the bandwidth achieved for the
nominal system based on this model is 2.9 rad/s.

Comparing the two cases, it is clear that the uncertainty set for the second case is larger because the
variation in the unknown time delay is larger. Physically, the larger time delay means larger unmodeled
dynamics that we must cover in our uncertainty representation. This results in a larger magnitude for
w(s) at low frequencies, as shown in Figure 9.23. In particular, the frequency at which the modeling errors
become significant, ωm, is lower for the second case than the first, and therefore, further limiting the
achievable bandwidth of the nominal closed loop. As a result, we are able to push the bandwidth higher
for the first case. This results in better achievable performance, such as command following and output
disturbance rejection, as shown by the sensitivity bode plots in Figure 9.24.

In summary, the requirement of stability robustness has a definite impact on the achievable nominal
performance of the closed loop. This impact is typically a limitation on the nominal closed-loop bandwidth
which, in turn, constrains the frequency range at which good command following and output disturbance
rejection is achievable. As is evident in the above example, there is a trade-off between stability robustness
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FIGURE 9.22 Stability robustness condition for 0.4 s maximum delay uncertainty.
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and performance. That is, a controller that is designed to be robust to a larger uncertainty set will
result in poorer performance due to the fact that its bandwidth will be further limited. In addition,
there is a connection between this trade-off and the conservatism of our stability robustness conditions.
In particular, our representation of the uncertainty is one of overbounding the set of TFMs from our
modeling process with a larger set. If we choose w(s) where the overbounding is not tight, then this will
further limit the amount of achievable performance that we can obtain for the closed loop. Therefore, we
see that both the concept of unstructured uncertainty and the way we represent this uncertainty in the
stability robustness problem have an impact on achievable nominal performance. As a result, to improve
performance we may have to reduce the level of uncertainty by having a better model and/or by obtaining
a better representation for the uncertainty. Finally, we wish to point out that only nominal performance or
the closed-loop performance of the model without the uncertainty is discussed. The actual performance
of the loop will be different. However, for low frequencies where we care about command following
and output disturbance rejection, the modeling errors will be typically small. Therefore, the difference
between actual performance and nominal performance at these frequencies will be small.

9.5 Other Representations for Model Uncertainty

In this section, we present some alternative set membership representations for unstructured uncertainty.
For each representation, we will start with the definition of the set G. In defining G, we assume throughout
that

1. The weight is a fixed, proper, and strictly stable scalar transfer function
2. Δ(s) is a strictly stable TFM
3. No unstable or imaginary axis poles of G(s) are cancelled in forming any element G̃(s) of the set G

With this definition, the appropriate stability robustness condition is obtained using the procedure
outlined in Section 9.3.2. Like those derived for the multiplicative uncertainty representation, these
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conditions are all conservative since they are derived using the small gain theorem. The focus here will
be primarily on the presentation of results rather than detailed treatments of their derivation. MIMO
systems are treated as SISO systems that are simply special cases. Comments on the usefulness of these
representations and interpretations of their results are given as appropriate.

9.5.1 Additive Uncertainty

An alternative representation for unstructured uncertainty is additive uncertainty. In this case, the set G
is defined as

G = {G̃(s) | G̃(s)= G(s)+wa(s)Δ(s), ‖Δ( jω)‖H∞ ≤ 1} (9.67)

Following the procedure in Section 9.3.2, the stability robustness condition for additive uncertainty is

σmax[(I +K( jω)G( jω))−1K( jω)]< 1

|wa( jω)| ∀ ω≥ 0 (9.68)

From Equation 9.67, the additive error is defined as

Ea(s)= wa(s)Δ(s)= G̃(s)−G(s) (9.69)

which is simply the difference between the perturbed plant and the model. As a result, the additive
representation is a more natural representation for differences in the internal dynamics between the actual
plant and the model. In particular, it is no longer necessary to reflect these modeling errors to the plant
input or output. However, we note that the resulting stability robustness condition is explicitly dependent
on the controller TFM, K(s), and the loop TFM, K(s)G(s), instead of simply on K(s)G(s). This is because,
unlike multiplicative uncertainty, the uncertainty representation here does not apply equally to the loop
TFM as to the model, G(s). The result is that there will be added complexity in designing a K(s) that will
satisfy the condition because shaping the TFM, (I +K( jω)G( jω))−1K( jω), to satisfy Equation 9.68 will
require shaping both K( jω) and K( jω)G( jω). Due to this complication, the multiplicative uncertainty
or another form of cascaded uncertainty representation, where the representation applies equally to G(s)
as to K(s)G(s), is often used instead in practice.

9.5.2 Division Uncertainty

Another representation for unstructured uncertainty is the division uncertainty. Like the multiplicative
uncertainty representation, the division uncertainty represents the modeling error in a cascade form, and
therefore, the modeling error can be reflected either to the plant output or the plant input. In the case
where the modeling errors are reflected to the plant output, the set G is defined as

G = {G̃(s) | G̃(s)= (I +wdo(s)Δ(s))−1G(s), ‖Δ( jω)‖H∞ ≤ 1} (9.70)

Following the procedure in Section 9.3.2, the stability robustness condition for division uncertainty at the
plant output is given by

σmax[(I +G( jω)K( jω))−1]< 1

|wdo( jω)| ∀ ω≥ 0 (9.71)

Similarly, for the case where the modeling errors are reflected to the plant input, the set G is defined as

G = {G̃(s) | G̃(s)= G(s)(I +wdi(s)Δ(s))−1, ‖Δ( jω)‖H∞ ≤ 1} (9.72)

and the resulting stability robustness condition is given by

σmax[(I +K( jω)G( jω))−1]< 1

|wdi( jω)| ∀ ω≥ 0 (9.73)
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FIGURE 9.25 Interpretation of stability robustness for division uncertainty at plant output.

As shown in Figure 9.25, the stability robustness condition for division uncertainty at the plant output
requires the maximum singular value plot for the sensitivity TFM of the nominal system,σmax[S( jω)], to lie
strictly below the plot of the inverse of |wdo( jω)|. Similarly, for division uncertainty at the plant input, the
stability robustness condition requires that the maximum singular value plot for the input sensitivity TFM
of the nominal system,σmax[Si( jω)], must lie strictly below the plot of the inverse of |wdi( jω)|. As shown in
the figure, the inverse of the magnitude of wdo(s) is typically large at low frequencies and approaches unity
(0 dB) at high frequencies where the modeling errors become significant. Since the stability robustness
condition for division uncertainty at the plant output depends on the nominal sensitivity TFM, its impact
on command following and output disturbance rejection is clear from Figure 9.25. In particular, if the
modeling error becomes significant at a particular frequency, ωmo such that the plot of the inverse
of |wdo( jω)| is close to 0 dB at that frequency and beyond, the control must be designed such that
σmax[S( jω)] is below this barrier. That is, σmax[S( jω)] is not allowed to be much greater than 0 dB
for ω≥ ωmo. However, we know from the Bode integral theorem [4] that if we suppress the sensitivity
at high frequencies then we cannot also suppress it at low frequencies. Therefore, we again see how
modeling errors can place a limitation on the range of frequencies over which we can expect to achieve
good command following and output disturbance rejection. The same can be said for input disturbance
rejection with respect to the stability robustness condition for division uncertainty at the plant input.

9.5.3 Representation for Parametric Uncertainty

Finally, we can also define the set G as

G = {G̃(s) | G̃(s)= (I +wp(s)G(s)Δ(s))−1G(s), ‖Δ( jω)‖H∞ ≤ 1} (9.74)

In this case, the stability robustness condition is given by

σmax[(I +G( jω)K( jω))−1G( jω)]< 1

|wp( jω)| ∀ ω≥ 0 (9.75)

As shown in the following example, we can use this representation to handle parametric uncertainty in
the A matrix of the nominal model G(s).
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FIGURE 9.26 Representation for parametric uncertainty in the A matrix.

Example 9.3: Parametric Uncertainty in the A Matrix

Consider the dynamics of the actual plant in state-space form

ẋ = Ax+ Bu

y = Cx
(9.76)

where the parameters of the A matrix are uncertain but are known to be constant and contained in
a certain interval. In particular, consider the case where the A matrix is given as

A= Ā+ δA (9.77)

where the elements of Ā contain the midpoint values for each corresponding element in A and each
element of δA is known to exist in the interval

−1≤ δAij ≤ 1 (9.78)

We note that since
‖δA‖ ≤ n (9.79)

for all possible δA satisfying Equation 9.78 where n is the dimension of A, it is clear that the set of
possible δA is contained in the set {wp(s)Δ(s)| ‖Δ( jω)‖H∞ ≤ 1, wp(s)= n}. Therefore, we can express
the A matrix as

A= Ā+wp(s)Δ(s) (9.80)

for wp(s)= n and for some ‖Δ( jω)‖H∞ ≤ 1. In block diagram form, the state-space equations in
Equation 9.76 can then be represented as in Figure 9.26, where the model G(s) is taken to be
(sI− Ā)−1. We note that this is equivalent to the uncertainty representation given in Equation 9.74.

We note that the above representation for parametric uncertainty is, in general, very conservative. This
is because the representation allows for complex perturbations of the matrix A since Δ(s) is complex.
Since the parameters are real, the perturbed set of plants is much larger than the set that will actually be
realized by the plant, which results in the conservatism.

Notes

The majority of the material in this article is adopted from Doyle and Stein [5], Dahleh and Diaz-
Bobillo [1], Maciejowski [6], and Doyle et al. [7]. Other excellent references include Green and Lime-
beer [8] and Morari and Zafiriou [9].
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10.1 Introduction and Motivation

It is well known that feedback may be used in a control design to obtain desirable properties that are
not achievable with open-loop control. Among these are the ability to stabilize an unstable system and

10-1
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to reduce the effects of plant disturbances and modeling errors upon the system output. On the other
hand, use of feedback control can also have undesirable consequences: feedback may destabilize a system,
introduce measurement noise, amplify the effects of disturbances and modeling errors, and generate large
control signals. A satisfactory control design will, if possible, achieve the potential benefits of feedback
without incurring excessive costs.

Unfortunately, feedback systems possess limitations that manifest themselves as design trade-offs
between the benefits and costs of feedback. For example, there exists a well-known trade-off between
the response of a feedback system to plant disturbances and to measurement noise. This trade-off is an
inherent consequence of feedback system topology; indeed, a plant disturbance cannot be attenuated
without a measurement of its effect upon the system output. Other design trade-offs are a consequence
of system properties such as unstable poles, nonminimum phase zeros, time delays, and bandwidth
limitations.

The study of feedback design limitations and trade-offs dates back at least to the seminal work of
Bode [7]. In his classic work, Bode stated the famous gain-phase relation and analyzed its implications for
the classical loop-shaping problem. He also derived the Bode sensitivity integral. The importance of the
sensitivity integral to feedback control design was emphasized by Horowitz [36]. Connections between
the classical loop-shaping problem, including the gain-phase relation, and modern control techniques
were developed by Doyle and Stein [22]. Further results pertaining to design limitations were derived
by Freudenberg and Looze [28,31], who studied inherent design limitations present when the system to
be controlled has unstable poles, nonminimum phase zeros, time delays, and/or bandwidth constraints.
A result dual to the Bode sensitivity integral, and applicable to the complementary sensitivity function,
was obtained by Middleton and Goodwin [43,45]. In all these works, emphasis is placed upon frequency
response properties and, in particular, the insight into feedback design that may be obtained from a Bode
plot.

In this chapter, we describe several trade-offs that are present in feedback system design due to the
structure of a feedback loop, bandwidth limitations, and plant properties such as unstable poles, nonmini-
mum phase zeros, and time delays. We focus primarily on linear time-invariant single input single output
systems (SISOs) and later give a brief description and references to a number of extensions of these
results. In Section 10.2, we show how the closed-loop transfer functions of a feedback system may be
used to describe signal response, differential sensitivity, and stability robustness properties of the system.
In Section 10.3, we describe design trade-offs imposed by the topology of a feedback loop and the relation
between feedback properties and open-loop gain and phase. Next, in Section 10.4, we describe design
limitations imposed by the Bode gain-phase relation, Bode sensitivity integral, and the dual complemen-
tary sensitivity integral. These trade-offs are present due to the fact that the closed-loop system is stable,
linear, and time invariant. When the plant has nonminimum phase zeros, unstable poles, and/or time
delays, additional design trade-offs are present. As discussed in Section 10.5, these may be described using
the Poisson integral. An alternate view of some of the performance limitations using time responses is
described in Section 10.6. In Section 10.7, we give a brief summary and references to various extensions
of the theory of feedback performance limitations, including discrete-time systems, systems with feed-
back over a communication channel, limits on optimal cheap control and H2 performance, multivariable
systems, and nonlinear and time-varying systems. We conclude the section with a brief discussion of
cases in which performance limitations may be alleviated in tracking problems. A general summary and
suggestions for further reading are presented in Section 10.8.

10.2 Quantification of Performance for Feedback Systems

10.2.1 Overview

Throughout this chapter, we consider the single-degree-of-freedom unity feedback system depicted in
Figure 10.1. In this figure, P(s) and C(s) denote the transfer functions of the plant and the compensator,
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FIGURE 10.1 Linear time-invariant feedback system.

respectively. The system output is denoted y(t), the control signal by u(t), and the command input by
r(t). An important goal in many feedback control problems is that of forcing y(t) to track r(t) despite the
presence of input and output disturbances di(t) and do(t). To do so, a measurement of the system output
is compared to the command input to form an error signal e(t), and used as an input to the controller.
The effects of measurement noise are denoted n(t).

Other feedback architectures are possible, including a two-degree-of-freedom architecture, in which
the command input and measured output are processed separately. For example, the command input
may be shaped by a precompensator before the error signal is formed. Similarly, any disturbances that
are measurable may also be processed separately. Throughout this chapter, we discuss the feedback
architecture in Figure 10.1, and assume that any precompensation is absorbed into the definition of the
command input r(t).

The ability of the plant output to follow the command input is referred to as tracking. In order that
tracking be feasible, the closed-loop system must, at a minimum, be stable. As Figure 10.1 illustrates,
exogenous signals can act at various points in the feedback loop to affect the response of the system.
Signals that enter the loop between the control action and the output to be controlled are referred to as
disturbance signals. The ability of the control system to eliminate the effects of the disturbances is referred
to as disturbance rejection. Signals that enter the loop between the system output and the comparison of
the measurement with the command input are referred to as measurement noise signals. Measurement
noise only affects the output through the action of the compensator.

In addition to the uncertainty caused by the disturbance signals and measurement noise, the behavior
of the plant as described by the model will differ from that of the true plant. A feedback system that is
stable for the plant model is called nominally stable. A feedback loop that maintains stability when subject
to variations in the plant model is robustly stable. Nominal performance is achieved when tracking
and disturbance rejection objectives are met for the plant model. Robust performance is achieved if the
feedback loop maintains performance (tracking or disturbance rejection) when subject to variations in
the plant model.

To proceed with our analysis, we define closed-loop transfer functions from the exogenous input
signals in Figure 10.1 to the system output, measured error, and the control signal, and shall quantify
performance in terms of the peak in a Bode gain plot of each transfer function. We shall also see that these
closed-loop transfer functions describe the sensitivity and robustness properties of a feedback system.

10.2.2 Nominal Signal Response

Consider the linear time-invariant feedback system shown in Figure 10.1. Three transfer functions are
essential in studying properties of this system. Define the open-loop transfer function

L(s)= P(s)C(s), (10.1)

the sensitivity function

S(s)= 1

1+ L(s)
, (10.2)
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and the complementary sensitivity function

T(s)= L(s)

1+ L(s)
. (10.3)

The response of the system of Figure 10.1 to the exogenous inputs (i.e., the command input, the
input disturbance, the output disturbance, and the sensor noise) is governed by the closed-loop transfer
functions (Equations 10.2 and 10.3). The output of the system is given by

Y (s)= S(s)
(
Do(s)+ P(s)Di(s)

)+T(s)
(
R(s)−N(s)

)
. (10.4)

The feedback loop error between the measured output and the command input is given by

E(s)= S(s)
(
R(s)−Do(s)− P(s)Di(s)−N(s)

)
. (10.5)

The performance error between the output and the command input is given by

Ep(s)= R(s)−Y (s)= S(s)
(
R(s)−Do(s)− P(s)Di(s)

)−T(s)N(s). (10.6)

The control input generated by the compensator is given by

U(s)=−T(s)Di(s)+ S(s)C(s)
(
R(s)−N(s)−Do(s)

)
. (10.7)

Because the principal objective for control system performance is to have the plant output track
the command input without using too much control energy, it is desirable that the performance error
(Equation 10.6) and the plant input (Equation 10.7) be small. It is apparent from Equations 10.6 and 10.7
that each of these signals can be made small by making the sensitivity and complementary sensitivity
transfer functions small. In particular, the performance error (Equation 10.6) can be made small at
any frequency s = jω by making the sensitivity function small relative to the command response and
disturbances, and by making the complementary sensitivity small relative to the measurement noise. The
plant input can also be kept within a desired range by bounding the magnitude of the complementary
sensitivity function relative to the external signals. The presence of the plant transfer function in the
denominator of the second term in Equation 10.7 implies that the magnitude of the control signal will
increase as the plant magnitude decreases, unless there is a corresponding decrease in the magnitudes of
either the complementary sensitivity function or the external command, measurement noise, and output
disturbance signals. The presence of high-frequency measurement noise, or disturbances together with a
bound on the desired control magnitude thus imposes a bandwidth constraint on the closed-loop system.

10.2.3 Differential Sensitivity

Because the true plant behavior will be somewhat different from the behavior described by the plant model
P(s), it is important that performance be maintained for variations in the plant model that correspond to
possible differences with reality. Although the precise characterization of robust performance is beyond
the scope of this chapter (see [23]), incremental changes in the system response due to model variations
can be characterized by the sensitivity function. Assume that the true plant model is given by

P′(s)= P(s)+ΔP(s), (10.8)

whereΔP(s) represents the difference between the true and nominal values of the plant transfer function.
Assuming that the disturbance and measurement noise signals are zero, the nominal closed-loop response
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(i.e., the response to the command reference for the plant model P(s)) is

Y (s)= T(s)R(s). (10.9)

The response for the feedback system using the true plant is

Y ′(s)= T ′(s)R(s), (10.10)

where

Y ′(s)= Y (s)+ΔY (s), (10.11)

T ′(s)= T(s)+ΔT(s). (10.12)

Thus the variation in the command response is proportional to the variation in the true complementary
sensitivity function.

Let S′(s) denote the sensitivity function for the feedback system using the true plant transfer function.
Then, it can be shown that [20]

ΔT(s)

T(s)
= S′(s)

ΔP(s)

P(s)
. (10.13)

Equation 10.13 shows that the true sensitivity function determines the relative deviation in the command
response due to a relative deviation in the plant transfer function. If the true sensitivity function is small,
the variation in command response will be small relative to the variation in the plant model.

Although Equation 10.13 provides insight into how the command response varies, it is not useful as a
practical analysis and design tool because the relationship is expressed in terms of the unknown true plant
transfer function. However, as the plant variationΔP(s) becomes small, the true sensitivity function S′(s)
approaches the nominal sensitivity function S(s). Thus, forΔP(s)= dP(s), Equation 10.13 becomes

dT(s)

T(s)
= S(s)

dP(s)

P(s)
. (10.14)

Equation 10.14 shows that the sensitivity function S(s) governs the sensitivity of the system output
to small variations in the plant transfer function. Hence, the variation in the command response will be
small if the sensitivity function is small relative to the plant variation.

10.2.4 Robust Stability

The feedback system in Figure 10.1 will be internally stable if each transfer function S(s), T(s), S(s)P(s),
and C(s)S(s) is proper and have no poles in the closed right half-plane (CRHP) [34]. If there are no
CRHP pole–zero cancellations between the plant and the controller, then the feedback system will be
stable if the sensitivity function is proper and has no CRHP poles. A number of techniques, such as the
Routh–Hurwitz and Nyquist criteria [21,27], are available for evaluating whether the system is stable for
the nominal plant model. A more challenging problem is to determine whether the feedback system will
be robustly stable for the true but unknown plant.

The sensitivity and complementary sensitivity functions each characterize stability robustness of the
system against particular classes of plant variations (e.g., see [70], Table 9.1). One of the most significant
types of plant modeling error is the high-frequency uncertainty that is present in any model of a physical
system. All finite-order transfer function models of physical systems deteriorate at high-frequencies
due to neglected dynamics (such as actuator and measurement lags, and flexible modes), the effects of
approximating distributed systems with lumped models, and time delays. The result of these neglected
physical phenomena is that the uncertainty in the gain of the true plant increases (eventually differing
from the assumed plant model by more than 100%) and the phase of the true plant becomes completely
uncorrelated with that of the model (i.e., there is±180◦ uncertainty in the phase).



�

�

�

�

� �

10-6 Control System Advanced Methods

This type of uncertainty can be represented as a relative deviation from the nominal plant. The true
plant transfer function is represented by a multiplicative error model

P′(s)= P(s)(1+Δ(s)). (10.15)

Given a true plant P′(s), the multiplicative errorΔ(s) is the relative plant error

Δ(s)= P′(s)− P(s)

P(s)
. (10.16)

It will be assumed that the multiplicative error is stable. From Equation 10.16, it is apparent that this
assumption will be satisfied if the number and location of any unstable poles of the true plant are the
same as those of the plant model.

The characteristics of increasing gain and phase uncertainty can be represented by assuming that the
multiplicative error is unknown except for an increasing upper bound on its magnitude. That is, it will be
assumed thatΔ(s) is any stable transfer function that satisfies

|Δ( jω)|< MΔ(ω), (10.17)

where (typically) MΔ(ω)→∞ as ω→∞.
If the only information available about the uncertainty is Equation 10.17, then Δ(s) is referred to as

unstructured uncertainty. In that case, a necessary and sufficient condition for the feedback system to be
stable for all plants described by Equations 10.15 through 10.17 is that the system be stable whenΔ(s)= 0
and that the complementary sensitivity function satisfy the bound [22]

|T( jω)|< 1

MΔ(ω)
, ∀ω. (10.18)

Equation 10.18 demonstrates that the presence of high-frequency uncertainty forces the complementary
sensitivity function to become small to insure that the system is robustly stable. This in turn implies that
an upper limit on bandwidth is imposed on the closed-loop system.

10.2.5 Summary of Feedback System Performance Specification

In the previous section we saw that the sensitivity and complementary sensitivity functions each charac-
terize important properties of a feedback system. This fact motivates stating design specifications directly
as frequency-dependent bounds upon the magnitudes of these functions. Hence, we typically require that

|S( jω)| ≤MS(ω), ∀ω, (10.19)

and

|T( jω)| ≤MT (ω), ∀ω. (10.20)

The bounds MS(ω) and MT (ω) will generally depend on the size of the disturbance and noise signals, the
level of plant uncertainty, and the extent to which the effect of these phenomena upon the system output
must be diminished (see Equations 10.6, 10.7, 10.14, and 10.18).

It is interesting to note that the two design specifications represent two different aspects of control
system design. The bound (Equation 10.19) on the sensitivity function typically represents the potential
benefits of feedback, such as disturbance rejection, tracking and robust performance. The bound (Equa-
tion 10.20) on the complementary sensitivity function represents desired limits on the cost of feedback:
amplification of measurement noise, increased control signal requirements, and possible introduction of
instability into the feedback loop.
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10.3 Design Trade-Offs at a Single Frequency

10.3.1 Introduction

Often the requirements imposed by various design objectives are mutually incompatible. It is therefore
important to understand when a given design specification is achievable and when it must be relaxed
by making trade-offs between conflicting design goals. The objective of this section is to explore the
limitations that are imposed by the structure of the feedback loop in Figure 10.1.

The structural trade-offs presented in this section express the limitation that there is only one degree
of design freedom in the feedback loop. This degree-of-freedom can be exercised by specifying any one
of the associated transfer functions. Because the sensitivity and complementary sensitivity functions are
both uniquely determined by the loop transfer function, these transfer functions cannot be specified
independently. Hence, the properties of the feedback loop are completely determined once any one of
L(s), S(s), or T(s) are specified, and these properties can be analyzed in terms of the chosen transfer
function. In particular, the performance bounds (Equations 10.19 and 10.20) are not independent, and
may lead to conflicts.

This section presents explicit relationships between the sensitivity function, the complementary sensi-
tivity function, and the loop transfer function of the feedback system of Figure 10.1. These relationships
can be used to explore whether design specifications in the form of (Equation 10.19 and 10.20) are
consistent, and if not, how the specifications might be modified to be achievable.

10.3.2 Relationship between Closed-Loop Transfer Functions
and Design Specifications

One important design trade-off may be quantified by noting that the sensitivity and complementary
sensitivity functions satisfy the identity

S( jω)+T( jω)= 1. (10.21)

Equation 10.21 is a structural identity in the sense that it is a consequence of the topology of the feedback
loop.

It follows from Equation 10.21 that |S( jω)| and |T( jω)| both cannot be very small at the same fre-
quency. Hence, at each frequency, there exists a trade-off between those feedback properties such as
sensitivity reduction and disturbance response that are quantified by |S( jω)| and those properties such as
measurement noise response and robustness to high-frequency uncertainty that are quantified by |T( jω)|.

In applications it often happens that levels of uncertainty and sensor noise become significant at
high frequencies, while disturbance rejection and sensitivity reduction are generally desired over a lower
frequency range. Hence, the trade-off imposed by Equation 10.21 is generally performed by requiring
MS(ω) to be small at low frequencies, MT (ω) to be small at high frequencies, and neither MS(ω) nor
MT (ω) to be excessively large at any frequency.

This situation is illustrated in Figure 10.2. The bound MS(ω) is small at low frequencies, representing
the frequencies over which disturbance rejection and tracking are important. It increases with increasing
frequency until it becomes greater than one at high frequencies. Conversely, the bound MT (ω) begins
somewhat greater than one at low frequencies, and rolls off (decreases in magnitude) at higher frequencies
where the plant model error and measurement noise become significant. The sensitivity and complemen-
tary sensitivity functions shown in Figure 10.2 satisfy the design objectives (Equations 10.19 and 10.20).

Equation 10.21 can be used to derive conditions that the design objective functions MS(ω) and MT (ω)
must satisfy. Taking the absolute value of the right-hand side of Equation 10.21, using the triangle inequal-
ity and applying the bounds on the sensitivity and complementary sensitivity functions (Equations 10.19
and 10.20), the following inequality is obtained:

MS(ω)+MT (ω)≥ 1. (10.22)
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FIGURE 10.2 Typical sensitivity function, complementary sensitivity function, and specification bounds.

Equation 10.22 reinforces the observations made previously: the design objectives cannot be specified to
require both the sensitivity function and the complementary sensitivity function to be small at the same
frequency.

The structural identity can also be used to explore limits on more detailed specifications of control
system objectives. For example, suppose that at a given frequencyω the dominant objective that specifies
the weighting on the complementary sensitivity function is that the control signal should remain bounded
when subject to an output disturbance which is unknown but bounded:

|U( jω)|< Mu(ω), ∀ |Do( jω)| ≤Mdo (ω). (10.23)

Then, combining Equations 10.7 and 10.23, the design specification on the complementary sensitivity
Equation 10.20 becomes

|T( jω)| ≤ |P( jω)| Mu(ω)

Mdo (ω)
=MT (ω). (10.24)

Substituting this value for the design specification bound on the complementary sensitivity into the
inequality (Equation 10.22) yields

MS(ω)+ |P( jω)| Mu(ω)

Mdo (ω)
≥ 1. (10.25)

Inequality (Equation 10.25) requires the design specification on the sensitivity function to increase as the
plant magnitude decreases relative to the available control authority for a given disturbance. Thus, the
desire to reject disturbances (reflected by smaller MS(ω)) is limited. The trade-off between disturbance
rejection and control amplitude is quantified by Equation 10.25.

10.3.3 Relation between Open and Closed-Loop Specifications

Because specifying one of the transfer functions S(s), T(s), or L(s) completely determines the others, any
one of them can be used as a basis for analysis and design. Classical “loop-shaping” design methods
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proceeded by directly manipulating the loop transfer function L(s) (using, e.g., lead and lag filters) to alter
the feedback properties of the system. As is well known, these methods are quite effective in coping with
the type of design problems for which they were developed. One reason for the success of these methods
is that, for a scalar system, open-loop gain and phase can be readily related to feedback properties. Indeed,
the following relations are well known (e.g., [22,36]) and can readily be deduced from Equations 10.2 and
10.3:

|L( jω)| � 1 ⇔ |S( jω)| $ 1 and T( jω)≈ 1 (10.26)

and

|L( jω)| $ 1 ⇔ S( jω)≈ 1 and |T( jω)| $ 1. (10.27)

At frequencies for which open-loop gain is approximately unity, feedback properties depend critically
upon the value of open-loop phase:

|L( jω)| ≈ 1 and ∠L( jω)≈±180◦ ⇔ |S( jω)| � 1 and |T( jω)| � 1. (10.28)

These approximations (Equations 10.26 through 10.28) yield the following rules of thumb useful in
design. First, large loop gain yields small sensitivity and good disturbance rejection properties, although
noise appears directly in the system output. Second, small loop gain is required for small noise response
and for robustness against large multiplicative uncertainty. Finally, at frequencies near gain crossover
(|L( jω)| ≈ 1), the phase of the system must remain bounded sufficiently far away from±180◦ to provide
an adequate stability margin and to prevent amplifying disturbances and noise.

It is also possible to relate open-loop gain to the magnitude of the plant input. From Equations 10.26
and 10.2, it follows that

|L( jω)| � 1 ⇔ |S( jω)C( jω)| ≈ |P−1( jω)|. (10.29)

Hence, requiring loop gain to be large at frequencies for which the plant gain is small may lead to
unacceptably large response of the plant input to noise and disturbances (see also Equation 10.25).

Recall the discussion of the requirements imposed on the magnitudes of the sensitivity and comple-
mentary sensitivity by the performance objectives (Equations 10.19 and 10.20) (see Figure 10.2). From that
discussion and the approximations (Equations 10.26 through 10.28), it follows (cf., [22]) that correspond-
ing specifications upon open-loop gain and phase might appear as in Figure 10.3. These specifications
reflect the fact that loop gains must be large at low frequencies for disturbance rejection and sensitivity
reduction and must be small at high frequencies to provide stability robustness. At intermediate frequen-
cies the phase of the system must remain bounded away from ±180◦ to prevent excessively large values
of |S( jω)| and |T( jω)|. To obtain the benefits of feedback over as large a frequency range as possible,
it is also desirable that ωL be close to ωH . Of course, gain and phase must also satisfy the encirclement
condition dictated by the Nyquist stability criterion.

∠L( jω)

ω
Allowable

phase functions

|L( jω)|

ω

Allowable
gain

functions

−π/2

π/2

ωL ωH

FIGURE 10.3 Gain and phase specifications.
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10.4 Constraints Imposed by Stability

10.4.1 Introduction

Implicit in our construction of design specifications such as those illustrated by Figures 10.2 and 10.3 is
the assumption that the transfer functions can be prescribed independently in different frequency regions
or that open-loop gain and phase can be independently manipulated. However, the requirement that the
closed-loop system be stable imposes additional constraints on the transfer functions that relate the values
of the functions in different frequency regions. These constraints will be referred to as analytic constraints
because they result from the requirement that the transfer functions have certain analytic properties.

As has been noted in Section 10.3, any of the transfer functions S(s), T(s), or L(s) can be used to char-
acterize the performance and properties of the feedback system. This section will present the constraints
imposed by stability for each of these transfer functions.

10.4.2 Bode Gain-Phase Relation and Interpretations

We have shown in the previous section how classical control approaches view design specifications in
terms of limits on the gain and the phase of the open loop transfer function. However, the gain and phase
are not mutually independent: the value of one is generally determined once the other is specified. There
are many ways to state this relationship precisely; the one most useful for our purposes was derived by
Bode [7]. This relation has been used by many authors (cf. [22,36]) to analyze the implications that the
gain-phase relation has upon feedback design.

Theorem 10.1: Bode Gain-Phase Relation

Assume that L(s) is a rational function with real coefficients and with no poles or zeros in the CRHP. Then,
at each frequency s = jω0, the phase of L(s) must satisfy the integral relation∗

∠L( jω0)−∠L(0)= 1

π

∫ ∞

−∞
d log |L|

dν
log coth

|ν|
2

dν, (10.30)

where

ν= log

(
ω

ω0

)
. (10.31)

Theorem 10.1 states conditions (i.e., L(s) rational, stable, and minimum phase) under which knowledge
of open-loop gain along the jω-axis suffices to determine open-loop phase to within a factor of ±π.
Constraints analogous to Equation 10.30 hold for unstable or nonminimum phase systems. Hence, gain
and phase cannot be manipulated independently in design.

Equation 10.30 shows that the phase of a transfer function is related to the slope (on a log–log scale)
of the magnitude of the transfer function. The presence of the weighting function log coth(|ν|/2)=
log |(ω+ω0)/(ω−ω0)| shows that the dependence of ∠L( jω0) upon the rate of gain decrease at frequency
ω diminishes rapidly as the distance between ω and ω0 increases (see Figure 10.4). Hence this integral
supports a rule of thumb stating that a 20N dB/decade rate of gain decrease in the vicinity of frequency
ω0 implies that ∠L( jω0)≈−90N◦. In many practical situations, the open loop transfer function is
sufficiently well behaved that the value of phase at a frequency is largely determined by that of the gain
over a decade-wide interval centered at the frequency of interest [7].

The Bode gain-phase relation may be used to assess whether a design specification of the type shown in
Figure 10.3 is achievable. Since a 20N dB/decade rate of gain decrease in the vicinity of crossover implies

∗ Throughout this article, the notation log(·) will be used to denote the natural logarithm.
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FIGURE 10.4 Weighting function in gain-phase integral.

that phase at crossover is roughly−90N◦, it follows that the rate of gain decrease cannot be much greater
than 20 dB/decade if the Nyquist stability criterion is to be satisfied and if an acceptable phase margin is
to be maintained. One implication of this fact is that the frequency ωL in Figure 10.3 cannot be too close
to the frequency ωH . Hence, the frequency range over which loop gain can be large to obtain sensitivity
reduction is limited by the need to ensure stability robustness against uncertainty at higher frequencies,
and to maintain reasonable feedback properties near crossover. As discussed in [22,36], relaxing the
assumption that L(s) has no right-half-plane poles or zeros does not lessen the severity of this trade-off.
Indeed, the trade-off only becomes more difficult to accomplish.

10.4.3 The Bode Sensitivity Integral

The purpose of this section is to present and discuss the constraint imposed by stability on the sensitivity
function. This constraint was first developed in the context of feedback systems in [7]. This integral
quantifies a trade-off between sensitivity reduction and sensitivity increase that must be performed
whenever the open-loop transfer function has at least two more poles than zeros.

The magnitude of the sensitivity function of a scalar feedback system can be obtained easily using a
Nyquist plot of L( jω). Indeed, since S( jω)= 1/(1+ L( jω)), the magnitude of the sensitivity function is
equal to the reciprocal of the distance from the Nyquist plot to the critical point. In particular, sensitivity
is less than one at frequencies for which L( jω) is outside the unit circle centered at the critical point.
Sensitivity is greater than one at frequencies for which L( jω) is inside this unit circle.

To motivate existence of the integral constraint, consider the open-loop transfer function L(s)=
2/(s+ 1)2. As shown in Figure 10.5, there exists a frequency range over which the Nyquist plot of L( jω)
penetrates the unit circle centered at−1+ j0 and sensitivity is thus greater than one. In practice, the open-
loop transfer function will generally have at least two more poles than zeros [36]. If L(s) is stable, then,
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FIGURE 10.5 Effect of a two-pole rolloff upon the Nyquist plot of L(s)= 2/(s+ 1)2.

using the gain-phase relation (Equation 10.30), it is straightforward to show that L( jω) will asymptotically
have a phase lag of at least −180◦. Hence there will always exist a frequency range over which sensitivity
is greater than one. This behavior may be quantified using a classical theorem due to Bode [7], which was
extended in [31] to allow unstable poles in the open-loop transfer function. An excellent discussion of the
implications that the Bode sensitivity integral has for open-loop unstable systems can be found in [62].

Theorem 10.2: Bode Sensitivity Integral

Suppose that the open-loop transfer function L(s) is rational and has right-half-plane poles{
pi : i = 1, . . . , Np

}
, with multiple poles included according to their multiplicity. If L(s) has at least two

more poles than zeros, and if the associated feedback system is stable, then the sensitivity function must
satisfy ∫ ∞

0
log |S( jω)|dω= π

Np∑
i=1

Re(pi). (10.32)

It is possible to extend Theorem 10.2 to systems for which L(s) has relative degree one and a possible
time delay. For details, see [56, Theorem 3.1.4].

Theorem 10.2 shows that a trade-off exists between sensitivity properties in different frequency ranges.
Indeed, for stable open-loop systems, the area of sensitivity reduction must equal the area of sensitivity
increase on a plot of the logarithm of the sensitivity versus linear frequency (see Figure 10.6). In this
respect, the benefits and costs of feedback are balanced exactly.

The extension of Bode’s theorem to open-loop unstable systems shows that the area of sensitivity
increase exceeds that of sensitivity reduction by an amount proportional to the distance from the unstable
poles to the left half-plane. A little reflection reveals that this additional sensitivity increase is plausible for
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the following reason. When the system is open-loop unstable, then it is obviously necessary to use feedback
to achieve closed-loop stability, as well as to obtain sensitivity reduction. One might expect that this
additional benefit of feedback would be accompanied by a certain cost, and the integral (Equation 10.32)
substantiates that hypothesis.

By itself, the trade-off quantified by Equation 10.32 does not impose a meaningful design limitation.
It is true that requiring a large area of sensitivity reduction over a low-frequency interval implies that an
equally large area of sensitivity increase must be present at higher frequencies. However, it is possible to
achieve an arbitrary large area of sensitivity increase by requiring |S( jω)| = 1+ δ, ∀ω ∈ (ω1,ω2), where
δ can be chosen arbitrarily small and the interval (ω1,ω2) is adjusted to be sufficiently large.

The analysis in the preceding paragraph ignores the effect of limitations upon system bandwidth that
are always present in a practical design. For example, it is almost always necessary to decrease open-loop
gain at high frequencies to maintain stability robustness against large modeling errors due to unmodeled
dynamics. Small open-loop gain is also required to prevent sensor noise from appearing at the system
output. Finally, requiring open-loop gain to be large at a frequency for which plant gain is small may lead
to unacceptably large response of the plant input to noise and disturbances. Hence the natural bandwidth
of the plant also imposes a limitation upon open-loop bandwidth.

One or more of the bandwidth constraints just cited is usually present in any practical design. It is
reasonable, therefore, to assume that open-loop gain must satisfy a frequency-dependent bound of the
form

|L( jω)| ≤ ε
(ωc

ω

)1+k
, ∀ω≥ ωc , (10.33)

where ε< 1/2 and k > 0. This bound imposes a constraint upon the rate at which loop gain rolls off, as
well as the frequency at which rolloff commences and the level of gain at that frequency.
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When a bandwidth constraint such as Equation 10.33 is imposed, it is obviously not possible to require
the sensitivity function to exceed one over an arbitrarily large frequency interval. When Equation 10.33
is satisfied, there is an upper bound on the area of sensitivity increase which can be present at frequencies
greater than ωc . The corresponding limitation imposed by the sensitivity integral (Equation 10.32) and
the rolloff constraint (Equation 10.33) is expressed by the following result [28].

Corollary 10.1:

Suppose, in addition to the assumptions of Theorem 10.2, that L(s) satisfies the bandwidth constraint given
by Equation 10.33. Then the tail of the sensitivity integral must satisfy∣∣∣∣

∫ ∞

ωc

log |S( jω)|dω
∣∣∣∣≤ 3εωc

2k
. (10.34)

The bound in Equation 10.34 implies that the sensitivity trade-off imposed by the integral constraint
in Equation 10.32 must be accomplished primarily over a finite frequency interval. As a consequence,
the amount by which |S( jω)| must exceed one cannot be arbitrarily small. Suppose that the sensitivity
function is required to satisfy the upper bound

|S( jω)| ≤ α< 1, ∀ω≤ ω� < ωc . (10.35)

If the bandwidth constraint (Equation 10.33) and the sensitivity bound (Equation 10.35) are both satisfied,
then the integral constraint (Equation 10.32) may be manipulated to show that [28]

sup
ω∈(ω� ,ωc)

log |S( jω)| ≥ 1

ωc −ω�

⎛
⎝π

Np∑
i=1

Re(pi)+ω� log

(
1

α

)
− 3εωc

2k

⎞
⎠ . (10.36)

The bound in Equation 10.36 shows that increasing the area of low-frequency sensitivity reduction by
requiring α to be very small or ω� to be very close to ωc , will necessarily cause a large peak in sensitivity
at frequencies between ω� and ωc . Hence, the integral constraint (Equation 10.32) together with the
bandwidth constraint (Equation 10.33) imposes a trade-off between sensitivity reduction and sensitivity
increase which must be accounted for in design.

It may be desirable to impose a bandwidth constraint such as Equation 10.33 directly on the comple-
mentary sensitivity function T(s) since T(s) directly expresses the feedback properties of sensor noise
response and stability robustness, while L(s) does so only indirectly. Analogous results to those stated in
Corollary 10.1 can be obtained in this case.

10.4.4 Complementary Sensitivity Integral

The complementary sensitivity function is constrained by the stability requirement for the closed-loop
system in a manner analogous to the sensitivity function. The following result is due to Middleton and
Goodwin [45]. One difference between the two results is that the trade-off described by the Bode sensitivity
integral (Equation 10.32) is worsened if the system is open-loop unstable. As we shall see, the analogous
trade-off described by the complementary sensitivity integral becomes worse if the open-loop transfer
function contains a time delay and/or zeros in the right half-plane.

Theorem 10.3: Complementary Sensitivity Integral

Suppose that the open loop transfer function L(s) is given by the product of a rational transfer function and
a delay element,

L(s)= L̃(s)e−sτ, (10.37)
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where L̃(s) is assumed to be rational with right-half-plane zeros {zi : i = 1, . . . , Nz} (with multiple zeros
included according to their multiplicity). If L(s) has at least one pole at the origin (i.e., one integrator), and
if the associated feedback system is stable, then the complementary sensitivity function must satisfy

∫ ∞

0
log |T( jω)|dω

ω2 = π
Nz∑
i=1

Re

(
1

zi

)
+ π

2
τ− π

2
K−1

v , (10.38)

where Kv is the velocity constant of the system,

Kv = lim
s→0

sL(s). (10.39)

The complementary sensitivity integral (Equation 10.38) has a similar interpretation to the Bode
sensitivity integral. Recall that the complementary sensitivity function characterizes the response of the
system to sensor noise and the robustness of the system to high-frequency model errors. Theorem 10.3
states that if the open-loop transfer function is minimum phase (i.e., it has no right-half-plane zeros, and
no delay) and is a Type II system, then the area of amplified sensor noise response must equal the area
of attenuated sensor noise response. In the case of the complementary sensitivity function, the areas are
computed with respect to an inverse frequency scale (see Figure 10.7). The presence of nonminimum
phase zeros or delays worsens the trade-off (i.e., increases the required area of noise amplification). For
Type I systems, the trade-off is improved by the term involving the velocity constant on the right-hand
side of Equation 10.39.

As for the sensitivity integral, the complementary sensitivity integral does not imply that the peak
in the complementary sensitivity transfer function must be large. It is possible to accommodate the
required increase in the magnitude of the complementary sensitivity function by allowing it to be only
slightly greater than one for frequencies close to zero (since the area is computed with respect to inverse
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frequency). However, when combined with tracking requirements imposed at low frequencies (analogous
to the rolloff requirement in Equation 10.33), the integral constraint in Equation 10.38 can be used to
develop a lower bound on the peak of the complementary sensitivity function.

Assume that the open-loop transfer function satisfies

|L( jω)| ≥ δ
(ωp

ω

)1+k
, ∀ω≤ ωp, (10.40)

where δ> 2 and k > 0. This bound imposes a constraint upon the tracking performance of the system.
When a performance constraint such as Equation 10.40 is imposed, it is obviously not possible to require

the complementary sensitivity function to exceed one over an arbitrarily large inverse frequency interval.
When Equation 10.40 is satisfied, there is an upper bound on the area of complementary sensitivity
increase which can be present at frequencies less than ωp. The corresponding limitation imposed by
the complementary sensitivity integral (Equation 10.38) and the rolloff constraint (Equation 10.40) is
expressed by the following result.

Corollary 10.2:

Suppose, in addition to the assumptions of Theorem 10.3, that L(s) satisfies the performance constraint
given by Equation 10.40. Then the low-frequency tail of the complementary sensitivity integral must satisfy

∣∣∣∣
∫ ωp

0
log |T( jω)|dω

ω2

∣∣∣∣≤ 3

2kδωp
. (10.41)

The bound in Equation 10.41 implies that the complementary sensitivity trade-off imposed by the integral
constraint in Equation 10.38 must be accomplished primarily over a finite inverse frequency interval. As
a consequence, the amount by which |T( jω)|must exceed one cannot be arbitrarily small.

Suppose that the complementary sensitivity function is required to satisfy the upper bound

|T( jω)| ≤ α< 1, ∀ω≥ ωh > ωp. (10.42)

If the performance constraint given by Equation 10.40 and the complementary sensitivity bound in
Equation 10.42 are both satisfied, then the integral constraint (Equation 10.38) may be manipulated to
show that

sup
ω∈(ωp ,ωh)

log |T( jω)| ≥ 1
1

ωp
− 1

ωh

{
π

Nz∑
i=1

Re

(
1

zi

)
+ log 1

α

ωh
− 3

2kδωp
+ π

2
τ− π

2
K−1

v

}
. (10.43)

The bound in Equation 10.43 shows that increasing the area of high-frequency complementary sensi-
tivity reduction by requiring α to be very small or ωh to be very close to ωp will necessarily cause a large
peak in sensitivity at frequencies between ωp and ωh. Hence, the integral constraint (Equation 10.38)
together with the performance constraint (Equation 10.40) imposes a trade-off between complementary
sensitivity reduction and complementary sensitivity increase which must be accounted for in design.

10.5 Limitations Imposed by Right-Half-Plane Poles and Zeros

10.5.1 Introduction

As discussed in Section 10.2, design specifications are often stated in terms of frequency-dependent
bounds on the magnitude of closed-loop transfer functions. It has long been known that control system
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design is more difficult for nonminimum phase or unstable systems. The sensitivity and complementary
sensitivity integrals presented in Section 10.4 indicated that nonminimum phase zeros and unstable poles
could worsen the individual design trade-offs. In fact, right-half-plane poles and zeros impose additional
constraints upon the control system design. This section examines these limitations in detail.

10.5.2 Limitations for Nonminimum Phase Systems

Suppose that the plant possesses zeros in the open right-half-plane. Examples of such systems abound,
including the inverted pendulum and cart [56], rear steering bicycle [4], fuel cells [63], acoustic ducts [54],
and continuously variable transmission [41]. Then the internal stability requirement dictates that these
zeros also appear, with at least the same multiplicity, in the open-loop transfer function L(s)= P(s)C(s).
Let the set of all open right-half-plane zeros of L(s) (including any present in the compensator) be
denoted by

{zi : i = 1, . . . , Nz} . (10.44)

Defining the Blaschke product (all-pass filter)

Bz(s)=
Nz∏
i=1

zi − s

z̄i + s
, (10.45)

we can factor the open-loop transfer function into the form

L(s)= Lm(s)Bz(s), (10.46)

where Lm(s) has no zeros in the open right-half-plane. Note that

|L( jω)| = |Lm( jω)|, ∀ω, (10.47)

and, in the limit as ω→∞,

∠
(

zi − jω

z̄i + jω

)
→−180◦. (10.48)

These facts show that open right-half-plane zeros contribute additional phase lag without changing the
gain of the system (hence the term “nonminimum phase zero”). The effect that this additional lag has
upon feedback properties can best be illustrated using a simple example.

Consider the nonminimum phase plant P(s)= 1
(s+1)

(1−s)
(1+s) and its minimum phase counterpart Pm(s)=

1/s+ 1. Figure 10.8 shows that the additional phase lag contributed by the zero at s = 1 causes the
Nyquist plot to penetrate the unit circle and the sensitivity to be larger than one. Experiments with
various compensation schemes reveal that using large loop gain over some frequency range to obtain
small sensitivity in that range tends to cause sensitivity to be large at other frequencies.

Assume that the open-loop transfer function can be factored as

L(s)= L0(s)Bz(s)B−1
p (s)e−sτ, (10.49)

where τ≥ 0 represents a possible time delay, L0(s) is a proper rational function with no poles or zeros in the
open right plane, and Bz(s) is the Blaschke product (Equation 10.45) containing the open right-half-plane
zeros of the plant plus those of the compensator. The Blaschke product

Bp(s)=
Np∏
i=1

pi − s

p̄i + s
(10.50)

contains all the poles of both plant and compensator in the open right-half-plane, again counted
according to multiplicity. We emphasize once more that internal stability requirements dictate that
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FIGURE 10.8 Additional phase lag contributed by a nonminimum phase zero.

all right-half-plane poles and zeros of the plant must appear with at least the same multiplicity in L(s) and
hence cannot be canceled by right-half-plane zeros and poles of the compensator.

One constraint that right-half-plane zeros impose upon the sensitivity function is immediately obvious
from the definition S( jω)= 1/(1+ L( jω)). Suppose that L(s) has a zero at s = z. It follows that

S(z)= 1. (10.51)

Poles of L(s) also constrain the sensitivity function. If L(s) has a pole at s = p, then

S(p)= 0. (10.52)

From Equations 10.51 and 10.52, it is clear that if the plant (and thus L(s)) has zeros or poles at points
of the open right-half-plane, then the value of the sensitivity function is constrained at those points.
Naturally, the value of sensitivity along the jω-axis, where the design specifications are imposed and the
conjectured trade-off must take place, is of more concern.

Theorem 10.4:

Suppose that the open-loop transfer function L(s) has a zero, z = x+ jy, with x > 0. Assume that the
associated feedback system is stable. Then the sensitivity function must satisfy∫ ∞

0
log |S( jω)|W(z,ω)dω= π log

∣∣∣B−1
p (z)

∣∣∣ , (10.53)
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where W(z,ω) is a weighting function. For a real zero, z = x,

W(x,ω)= 2x

x2+ω2 (10.54)

and, for a complex zero, z = x+ jy,

W(z,ω)= x

x2+ (y−ω)2 +
x

x2+ (y+ω)2 . (10.55)

A number of remarks about this theorem are in order. First, as discussed in [28], the integral relations
are valid even if S(s) has zeros (or poles) on the jω-axis. Second, a zero z with multiplicity m > 1 imposes
additional interpolation constraints on the first m− 1 derivatives of log S(s) evaluated at the zero. These
interpolation constraints also have equivalent statements as integral relations [28].

We now show that Equation 10.53 imposes a sensitivity trade-off. To see this, note first that the
weighting function satisfies W(z,ω) > 0, ∀ω, and that the Blaschke product satisfies log |B−1

p (z)| ≥ 0.
Using these facts, it follows easily from Equation 10.53 that requiring sensitivity reduction (log |S( jω)|<
0) over some frequency range implies that there must be sensitivity amplification (log |S( jω)|> 0) at other
frequencies. Hence, if the plant is nonminimum phase, one cannot use feedback to obtain the benefits of
sensitivity reduction over one frequency range unless one is willing to pay the attendant price in terms of
increased sensitivity elsewhere.

Theorem 10.4 verifies the conjecture that a sensitivity trade-off is present whenever a system is non-
minimum phase. Recall it was also conjectured that the severity of the trade-off is a function of the phase
lag contributed by the zero at frequencies for which sensitivity reduction is desired. This conjecture can
be verified by using the form of the weighting function W(z,ω) defined in Equations 10.54 and 10.55.

Consider first the case of a real zero z = x. Equation 10.46 shows that, as a function of frequency, the
additional phase lag contributed by this zero is

θ(x,ω)= ∠x− jω

x+ jω
. (10.56)

Noting that

dθ(x,ω)

dω
= −2x

x2+ω2 , (10.57)

it follows that the weighting function in Equation 10.54 satisfies

W(x,ω)=−dθ(x,ω)

dω
. (10.58)

Hence the weighting function appearing in the sensitivity constraint is equal to (minus) the rate at which
the phase lag due to the zero increases with frequency.

One can use the weighting function (Equation 10.58) to compute the weighted length of a frequency
interval. Note that sensitivity reduction is typically required over a low-frequency interval Ω= (0,ω1)
and that the weighted length of such an interval equals

W(x,Ω)=
∫ ω1

0
W(x,ω)dω

=−θ(x,ω1). (10.59)

Hence, the weighted length of the interval is equal to (minus) the phase lag contributed by the zero at the
upper endpoint of the interval. It follows that, as ω1 →∞, the weighted length of the jω-axis equals π.
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For a complex zero, the weighting function (Equation 10.55) is equal to minus the average of the
additional phase lag contributed by the zero and by its complex conjugate:

W(z,ω)=−1

2

(
dθ(z,ω)

dω
+ dθ(z̄,ω)

dω

)
. (10.60)

Hence, the weighted length of the frequency intervalΩ= (0,ω1) is

W(x,ω)=−1

2

(
θ(z,ω1)+ θ(z̄,ω1)

)
. (10.61)

As we have already remarked, the integral constraint in Equation 10.53 implies that a trade-off exists
between sensitivity reduction and sensitivity increase in different frequency ranges. An interesting inter-
pretation of this trade-off is available using the weighting function. Suppose first that L(s) has no poles in
the open right-half-plane. Then the integral constraint is

∫ ∞

0
log |S( jω)|W(x,ω) dω= 0. (10.62)

Equation 10.62 states that the weighted area of sensitivity increase must equal the weighted area of
sensitivity reduction. Since the weighted length of the jω-axis is finite, it follows that the amount by which
sensitivity must exceed one at higher frequencies cannot be made arbitrarily small.

If the open-loop system has poles in the open-right-half-plane, then the weighted area of sensitivity
increase must exceed that of sensitivity reduction. In particular,

log
∣∣∣B−1

p (z)
∣∣∣=

Np∑
i=1

log

∣∣∣∣ p̄i + z

pi − z

∣∣∣∣ . (10.63)

The right-hand side of Equation 10.63 is always greater than zero, and becomes large whenever the zero
z approaches the value of one of the unstable poles pi . It follows (unsurprisingly) that systems with
approximate pole–zero cancellations in the open right half-plane will necessarily have poor sensitivity
properties.

We can use the integral constraint in Equation 10.53 to obtain some simple lower bounds on the size of
the peak in sensitivity accompanying a given level of sensitivity reduction over a low-frequency interval.
Bounds of this type were first discussed by Francis and Zames [26, Theorem 3]. The results presented
here will show how the relative location of the zero to the interval of sensitivity reduction influences the
size of the peak in sensitivity outside that interval.

Suppose that the sensitivity function is required to satisfy the upper bound

|S( jω)| ≤ α< 1, (10.64)

where Ω= (0,ω1) is a low-frequency interval of interest. Define the infinity norm of the sensitivity
function:

‖S‖∞ = sup
ω≥0

|S( jω)|. (10.65)

Assuming that the upper bound in Equation 10.64 is satisfied, the integral constraint in Equation 10.53
can be used to compute a lower bound on ‖S‖∞ for each nonminimum phase zero of L(s).

Corollary 10.3:

Suppose that the conditions in Theorem 10.4 are satisfied and that the sensitivity function is bounded
as in Equation 10.64. Then the following lower bound must be satisfied at each nonminimum phase
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zero of L(s):

‖S‖∞ ≥
(

1

α

) W(z,Ω)
π−W(z,Ω) ∣∣∣B−1

p (z)
∣∣∣

π
π−W(z,Ω)

. (10.66)

The bound in Equation 10.66 shows that if sensitivity is required to be very small over the interval
(0,ω1), then there necessarily exists a large peak in sensitivity outside this interval. Furthermore, the
smallest possible size of this peak will become larger if the open-loop system has unstable poles near any
zero.

The size of the sensitivity peak also depends upon the location of the interval (0,ω1) relative to the
zero. Assume for simplicity that the system is open-loop unstable and the zero is real. Then

‖S‖∞ ≥
(

1

α

) W(x,Ω)
π−W(x,Ω)

. (10.67)

Recall that the weighted length of the intervalΩ= (0,ω1) is equal to (minus) the phase lag contributed
by the zero at the upper endpoint of that interval. Since the zero eventually contributes 180◦ phase lag, it
follows that as ω1 →∞, W(x,Ω)→ π. Thus the exponent in Equation 10.67 becomes unbounded and,
since α< 1, so does the peak in sensitivity. To summarize, requiring sensitivity to be small throughout a
frequency range extending into the region where the nonminimum phase zero contributes a significant
amount of phase lag implies that there will necessarily exist a large peak in sensitivity at higher frequencies.
On the other hand, if the zero is located so that it contributes only a negligible amount of phase lag at
frequencies for which sensitivity reduction is desired, then it does not impose a serious limitation upon
sensitivity properties of the system. Analogous results hold, with appropriate modifications, for a complex
zero.

Suppose now that the open-loop system has poles in the open right-half-plane. It is interesting to note
that, in this case, the bound (Equation 10.66) implies the existence of a peak in sensitivity even if no
sensitivity reduction is present!

Recall next the approximation in Equation 10.26 which shows that small sensitivity can be obtained
only by requiring open-loop gain to be large. It is easy to show that |S( jω)| ≤ α< 1 implies that |L( jω)| ≥
(1/α)− 1. The inequality in Equation 10.67 implies that, to prevent poor feedback properties, open-loop
gain should not be large over a frequency interval extending into the region for which a nonminimum
phase zero contributes significant phase lag. This observation substantiates a classical design rule of
thumb: loop gain must be rolled off before the phase lag contributed by the zero becomes significant.
However, if one is willing and able to adopt some nonstandard design strategies (such as having multiple
gain crossover frequencies) then [37] it is possible to manipulate the design trade-off imposed by a
nonminimum phase zero to obtain some benefits of large loop gain at higher frequencies. One drawback
of these strategies is that loop gain must be small, and hence the benefits of feedback must be lost over an
intermediate frequency range.

10.5.3 Limitations for Unstable Systems

We shall show in this section that unstable poles impose constraints upon the complementary sensitivity
function which, loosely speaking, are dual to those imposed upon the sensitivity function by nonminimum
phase zeros. That such constraints exist might be conjectured from the existence of the interpolation
constraint in Equation 10.52 and the algebraic identity in Equation 10.21. Together, these equations show
that if L(s) has a pole s = p, then the complementary sensitivity function satisfies

T(p)= 1. (10.68)

Furthermore, if L(s) has a zero at s = z, then

T(z)= 0. (10.69)
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The previous results for the sensitivity function, together with the fact that T(s) is constrained to equal
one at open right-half-plane poles of L(s), suggests that similar constraints might exist for |T( jω)| due to
the presence of such poles. It is also possible to motivate the presence of the integral constraint on |T( jω)|
using an argument based upon the inverse Nyquist plot [53] and the fact that |T( jω)|> 1 whenever
L−1( jω) is inside the unit circle centered at the critical point.

As in Section 10.5.2, it is assumed that L(s) has the form given in Equation 10.49. The following theorem
states the integral constraint on the complementary sensitivity function due to unstable poles.

Theorem 10.5:

Suppose that the open-loop transfer function has a pole, p= x+ jy, with x > 0. Assume that the associated
feedback system is stable. Then the complementary sensitivity function must satisfy

∫ ∞

0
log |T( jω)|W(x,ω)dω= π log

∣∣B−1
z (p)

∣∣+πxτ, (10.70)

where W(p,ω) is a weighting function. For a real pole, p= x,

W(x,ω)= 2x

x2+ω2 , (10.71)

and, for a complex pole, p= x+ jy,

W(p,ω)= x

x2+ (y−ω)2 +
x

x2+ (y+ω)2 . (10.72)

Remarks analogous to those following Theorem 10.4 apply to this result also. The integral relations
are valid even if T(s) has zeros on the jω-axis, and there are additional constraints on the derivative of
log T(s) at poles with multiplicity greater than one.

The integral constraint in Equation 10.70 shows that there exists a trade-off between sensor noise
response properties in different frequency ranges whenever the system is open-loop unstable. Since
|T( jω)| is the reciprocal of the stability margin against multiplicative uncertainty, it follows that a trade-off
between stability robustness properties in different frequency ranges also exists. Using analysis methods
similar to those in the preceding section, one can derive a lower bound on the peak in the complementary
sensitivity function present whenever |T( jω)| is required to be small over some frequency interval. One
difference is that |T( jω)| is generally required to be small over a high, rather than a low, frequency
range.

It is interesting that time delays worsen the trade-off upon sensor noise reduction imposed by unstable
poles. This is plausible for the following reason. Use of feedback around an open-loop unstable system is
necessary to achieve stability. Time delays, as well as nonminimum phase zeros, impede the processing of
information around a feedback loop. Hence, it is reasonable to expect that design trade-offs due to unstable
poles are exacerbated when time delays or nonminimum phase zeros are present. This interpretation
is substantiated by the fact that the term due to the time delay in Equation 10.70 is proportional to
the product of the length of the time delay and the distance from the unstable pole to the left half-
plane.

10.5.4 Summary

Nonminimum phase or unstable systems impose additional trade-offs for control system design. Non-
minimum phase zeros limit the frequency range over which control system performance can be achieved,
while unstable poles require active control over certain frequency ranges and reduce the overall per-
formance that can be achieved. Quantitative expressions of these trade-offs are given by the integral
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constraints of Theorems 10.4 and 10.5. These constraints can be used together with bounds on the
desired performance to compute approximations that provide useful insight into the design trade-offs.

10.6 Time-Domain Integral Constraints

10.6.1 Introduction

One class of limitations on feedback system performance can be described as time domain integral
constraints. These date back at least as far as classical works such as [68], which analyze various error
constants and their effects on performance. Such constraints, for single-degree-of-freedom unity feed-
back systems, can be described in a straightforward manner using classical control techniques and
have been explored for example in [43,45]. They are based on the unity feedback system depicted in
Figure 10.1.

10.6.2 Double Integrators

As an initial case, suppose that we have a feedback loop that incorporates two integrators. For example,
this may arise from a situation where the plant includes an integrator and we also specify a controller that
incorporates integral action. In this case, it follows that the open-loop transfer function can be written as
L(s)= 1

s2 L̄(s), where L̄(0) �= 0. Then consider the error response to a unit step change in the reference,

R(s)= 1
s ,

E(s)= S(s)R(s)=
(

1

1+ L(s)

)
1

s
=
(

s2

s2+ L̄(s)

)
1

s
. (10.73)

Assuming closed-loop stability, it follows that s = 0 is in the region of convergence of E(s) and E(0)=
S(0)R(0)= 0, that is,

E(0)=
∞∫

0

e(t) dt = 0. (10.74)

Equation 10.74 can be viewed as an equal area criterion on the step response. This in turn implies that
either the error signal is zero for all time, or it must alternate signs. Therefore, since the error must be
negative for some times, there must be overshoot in the step response, since y(t)= 1− e(t) will exceed
1 whenever e(t) is negative. Figure 10.9 illustrates an example response for a system containing a double
integrator.

We conclude from this motivating example that a stable unity feedback system with a double integrator
displays unavoidable overshoot in the step response. More general versions of the integral constraint
(Equation 10.74) can be derived to quantify the effect of open-loop CRHP poles and zeros on the closed-
loop step response, as we discuss next.

10.6.3 Right-Half-Plane Poles and Zeros

We have seen in Section 10.5 that open-loop right-half-plane poles and zeros impose interpolation
constraints on the sensitivity and complementary sensitivity functions. Namely, if L(s) has a CRHP
zero at s = z, then for any internally stable closed-loop system the interpolation constraints given in
Equations 10.51 and 10.69 hold. On the other hand, if L(s) has a CRHP pole at s = p, then Equations 10.52
and 10.68 hold.

Recall that S(s) and T(s) govern the output and error response of the system to exogenous inputs
through Equations 10.4 and 10.5. Closed-loop stability implies that CRHP poles and zeros are in the region
of convergence of the Laplace transform, and it thus follows from Equation 10.52 that E(p)= S(p)R(p)= 0,
and from Equation 10.69 that Y (z)= T(z)R(z)= 0. These constraints are expressed in integral form in
the following theorem.
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FIGURE 10.9 Example closed loop error step response for a double integrator open loop transfer function.

Theorem 10.6:

Consider any closed-loop stable linear time-invariant SISO system as illustrated in Figure 10.1 with zero
initial conditions and a step reference signal. Then, for any CRHP pole p of P(s), the error signal e(t) satisfies

∞∫
0

e−pte(t) dt = 0. (10.75)

Furthermore, for any CRHP zero z of P(s), the output signal y(t) satisfies

∞∫
0

e−zty(t) dt = 0. (10.76)

The integral constraints in Equations 10.75 and 10.76 are weighted equal area criteria on the step
responses e(t) and y(t). Some direct consequences of these results follow as trade-offs in the step response
specifications (see Figure 10.10) in the case of real CRHP poles and zeros (see [43,45] for further details):

• The closed-loop unity feedback step response of a plant with a real RHP pole must overshoot, that
is, the error signal, e(t), must change sign. If we take a slightly unusual definition of rise time

tr =max{tr : y(t) < t/tr ∀t ≤ tr},

and if we define the overshoot as the maximum amount by which the output exceeds the reference,
yos =maxt≥0{y(t)− 1}, then for a real open-loop pole at s = p > 0, the overshoot must satisfy the
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lower bound

yos ≥ ptr

2
. (10.77)

• The closed-loop step response of a plant with a real RHP zero must undershoot, that is, there must
exist times for which the output is negative. If we take the non standard definition of settling time

ts =min
ts≥0
{ts : y(t)≥ 0.9 ∀t ≥ ts},

then for any system with a real open-loop zero at s = z > 0, the undershoot must satisfy the lower
bound

yus =−min
t
{−y(t)} ≥ 0.9

ezts − 1
. (10.78)

The above time domain integrals provide a number of insights into fundamental limits on the behavior
of stable closed-loop systems with real RHP open-loop poles or zeros. The effects of slow OLHP open-
loop poles on transient performance have been examined in [46]. Trade-offs in the step response due to
jω-axis zeros have been studied in [33]. Extensions to multivariable systems has been pursued in [40], in
which directional properties of multivariable systems may permit step response trade-offs that include
possible transients in other loops.

10.7 Further Extensions and Comments

A range of extensions to the basic trade-offs and limitations discussed previously are available. In this
section, we briefly review some of the main points and key references for a selection of these results. We
conclude the section with a brief discussion of cases in which tracking performance limitations may be
alleviated.

10.7.1 Limitations in Discrete-Time and Sampled-Data Control

Integral constraints imposed by feedback stability on the sensitivity and complementary sensitivity func-
tions also apply to discrete-time systems. The first discrete-time extensions of the Bode integral for the
sensitivity and complementary sensitivity functions were obtained by Sung and Hara [64,65]. A unified
formulation of continuous and discrete-time results appeared in [43] and [45]. These results show that
the design trade-offs arising from these integral constraints in continuous-time systems carry over to
discrete-time systems with analogous interpretations.
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FIGURE 10.11 Linear time-invariant discrete-time feedback system.

We present here the discrete-time Bode sensitivity integral as given in [64]. Consider the discrete-
time feedback system shown in Figure 10.11, where all signals are now functions of the discrete-time
variable k = 0, 1, 2, . . . , and the plant and controller are represented by the discrete-time rational transfer
functions Pd(z) and Cd(z).

The discrete-time open-loop, sensitivity, and complementary sensitivity functions are defined analo-
gously to their continuous-time counterparts:

Ld(z)= Pd(z) Cd(z), Sd(z)= 1

1+ Ld(z)
, Td(z)= Ld(z)

1+ Ld(z)
.

Suppose that the open-loop transfer function Ld(s) has no pole–zero cancellations in D̄
c = {z : |z| ≥ 1}.

Then the discrete-time closed-loop system is stable if Sd(z) and Td(z) have no poles in the open unit disk
D= {z : |z|< 1}.

Theorem 10.7: Bode Discrete-Time Sensitivity Integral

If the loop transfer function Ld(z) is strictly proper and the closed-loop system shown in Figure 10.11 is
stable, then

1

π

∫ π

0
log |Sd(ejθ)| dθ=

Np∑
i=1

log |φi|, (10.79)

where {φi ∈ D̄c , i = 1, . . . , Np} are the unstable poles of Ld(z).

As in the continuous-time case, the Bode discrete-time sensitivity integral (Equation 10.79) shows that
there also exists a balance of areas of sensitivity reduction and amplification for discrete-time systems. A
significant difference with the continuous-time case is that in the Bode discrete-time sensitivity integral
(Equation 10.79) integration is performed over a finite interval, and thus the balance of areas of sensitivity
reduction and amplification directly implies design trade-offs, even if no bandwidth constraints are
imposed on the discrete-time system.

One should note that if the discrete plant corresponds to the linear time-invariant discretization of an
analog plant to be controlled digitally through periodic sampling and hold devices, the analysis of design
trade-offs and limitations based on the study of discrete-time sensitivity functions may not capture the real
(continuous-time) behavior. Indeed, it is known, for example, that the sampled zeros of a discretized plant
can be manipulated by appropriate choice of the hold device [24, Chapter 10]. Hence, the discretization
of a nonminimum phase analog plant may be rendered minimum phase, consequently relaxing design
limitations in the sampled response. However, design limitations and design trade-offs remain in the
intersample response independently of the type of hold device used, as shown in [29]. Intersample
behavior must thus be taken into account to detect potential difficulties in the continuous-time response.
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FIGURE 10.12 Feedback control over a communication channel.

10.7.2 Limitations in Control with Communication Constraints

The increased application of communications and networking technology in the new generation of control
systems has prompted many recent studies of limitations in control schemes in which the feedback loop
is closed over a communication channel (see, e.g., the papers in [2] and the references therein). While a
comprehensive theory of limitations in control over communication channels is yet unavailable, several
important questions have been answered for simplified channel models (see, e.g., [11,50]).

A simple scheme of a (discrete-time) control system with feedback over a communication channel is
illustrated in Figure 10.12. Here, the block Cs encapsulates processes such as encoding, sensor filtering, and
control computations to generate the signal vk sent over the communication channel. The communication
channel may include quantization effects, delay, noise, data loss, and data-rate contraints. The block Cr

encapsulates processes such as decoding and actuator signal processing based on the received signal wk .
This section presents a generalization of the discrete-time Bode Sensitivity Integral seen in

Section 10.7.1 to systems with feedback over a noisy communication channel with limited capacity.
This result links a fundamental limitation to feedback performance to a fundamental limitation in com-
munications by using the information theoretic concepts developed by Shannon [60].

For an additive white Gaussian noise channnel (AWGN) model, the received signal wk in Figure 10.12
is given as

wk = vk + nk , (10.80)

where nk is a white Gaussian signal with variance N independent of the transmitted signal vk . The
transmitted signal vk is subject to a channel input power constraint E{v2

k}< P. The (information) capacity
C of the channel is given by the famous Shannon formula [60]

C = 1

2
log2

(
1+ P

N

)
bits/sample. (10.81)

Given a source that produces information at rate R, Shannon showed that it is possible to communicate
this information reliably (i.e., with arbitrarily small probability of error) over a channel with capacity
C ≥R. On the other hand, if R > C, then reliable communication is not possible.

Suppose that a feedback system uses information transmitted over a communication channel in the
feedback loop, as depicted in Figure 10.12. Then it is natural to ask how the capacity of the channel
limits properties of the feedback system. For example, it is of interest to determine the minimum channel
capacity required to stabilize an unstable discrete-time plant. The authors of [50,66] show that stabilization

is possible if and only if the data rate of the channel is greater than
∑Np

i=1 log |φi|, where the φi are
the unstable plant eigenvalues. Similarly, it is shown in [11] that an unstable discrete-time plant with
relative degree equal to one and no zeros outside the open unit disk may be stabilized over a Gaussian
communication channel if and only if the channel capacity (Equation 10.81) satisfies the same lower
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bound identified in [50]:

C ≥
Np∑
i=1

log |φi|. (10.82)

In addition to stabilization, feedback may also be used in a control design for the purpose of disturbance
attenuation. We have seen that the Bode sensitivity integral limits the ability to attenuate disturbances for
the discrete-time feedback system of Figure 10.11. A generalized version of the Bode sensitivity integral
derived by Martins and Dahleh [42] shows that the disturbance attenuation properties of a feedback
system with a communication channel in the feedback loop, as depicted in Figure 10.12, are limited
by the capacity of the channel. To state this result, assume in Figure 10.12 that the blocks Cs and Cr

are (possibly nonlinear and time-varying) causal operators, and let the exogenous disturbance dk be a
stationary Gaussian moving average process with a nontrivial power spectral densityΦd(ω). Assume also
that the feedback system is mean-square stable, and that the control input sequence uk is asymptotically
stationary and has a well-defined power spectral densityΦu(ω). Then a sensitivity function can be defined
as [42, Definition 3.2]

Si(ω)=√Φu(ω)/Φd(ω). (10.83)

The following result is found in [42, Theorem 6.3].

Theorem 10.8:

If the transfer function Pd(z) is strictly proper and the closed-loop system shown in Figure 10.12 is stable,
then

1

π

∫ π

0
min{0, log Si(ω)} dω≥

Np∑
k=1

log |φi| − C, (10.84)

where {φi ∈ D̄
c , i = 1, . . . , Np} are the unstable poles of Pd(z).

Theorem 10.8 shows that if the capacity of the Gaussian channel is equal to the minimum required for
stabilization, then it is not possible to achieve Si(ω) < 1 at any frequency, and thus disturbance attenuation
is not possible. If disturbance attenuation is required in a feedback design, it is thus necessary that the
channel capacity exceed that required for stabilization.

Although we have presented Theorem 10.8 in the context of a Gaussian channel, in fact, the result
holds for any channel, and the reader is referred to Martins and Dahleh [42] for further discussion.

10.7.3 Cheap Control and Achievable H2 Performance

An alternate approach to considering some performance limitations has been to consider so-called cheap
control problems, wherein an output performance is optimized, while (for the sake of analysis) ignoring
any cost associated with the control signal. For example, it was shown in [52] that for the system as shown
in Figure 10.1, and with a unit step reference, the minimum achievable quadratic error performance for
any stabilizing control, even given full state measurement and a nonlinear controller, must satisfy the
so-called cheap control performance limitation:

∫ ∞

0
e2(t)dt ≥ 2

∑
zi∈ORHP

z−1
i . (10.85)

A series of works such as [17] considered a similar problem, but in an output feedback situation where
it was shown that in the case of linear time-invariant control, the inequality in Equation 10.85 is strict if
and only if the plant includes both ORHP poles and zeros.
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The quantification of performance limitations via cheap control (time domain) has been linked to the
Bode sensitivity and complementary sensitivity integrals (frequency domain) by Seron et al. [57] and
Middleton and Braslavsky [44], the former of which also extends the analysis to nonlinear systems. A key
observation in that paper is that the best achievable performance, as the cost associated with the control
signal tends to zero, is determined by the least amount of “energy” (in the L2 sense) required to stabilize
the unstable zero dynamics of the plant, which is nonzero if the plant is nonminimum phase.

Limitations to optimal cheap control performance have been studied also in linear filtering problems
[9,39], and decoupling problems in multivariable systems [12].

10.7.4 MIMO Systems

Multivariable feedback systems incorporate a number of extra challenges compared to SISO loops. In
particular, directional properties of transfer functions may play an important role. In addition, the range
of transfer functions that are important to overall performance is larger, since the relevant open-loop
transfer function matrices, Lo(s)= P(s)C(s) and Li(s)= C(s)P(s), are identical only in special cases. In the
multiple input multiple output (MIMO) case, the output sensitivity, So(s), and complementary sensitivity,
To(s), (both of which take values in C

m×m where m is the number of outputs) are defined as

So(s)= (I + Lo(s))−1,

To(s)= (I + Lo(s))−1Lo(s).
(10.86)

Several classes of results have been obtained for multivariable systems, and we briefly review some of
the key points below. For simplicity of exposition, we restrict attention to (1) loops referred to the output;
(2) cases where the loop transfer function and its inverse are generically full rank; and (3) cases where the
open-loop poles and zeros are disjoint. In particular, we assume:

det(Lo(s))= 0 only for isolated values of s ∈ C

det(L−1
o (s))= 0 only for isolated values of s ∈ C (10.87)

{det(Lo(z))= 0} ⇒ {
det(L−1

o (z)) �= 0
}

for any z ∈ C.

10.7.4.1 “Average” Sensitivity Integral

Consider the output sensitivity and output complementary sensitivity functions defined in Equation 10.86.
There are various measures of interest for a transfer function matrix, but one that is particularly amenable
to performance limitations analysis is the determinant. In particular, as shown in [28],

∫ ∞

0
log

∣∣det(So( jω))
∣∣ dω= π

Np∑
i=1

Re(pi). (10.88)

If we let σi(·) denote the ith singular value of a matrix, Equation 10.88 can be rewritten as

∫ ∞

0

m∑
j=1

log
(
σi(So( jω))

)
dω= π

Np∑
i=1

Re(pi).

Therefore, this generalization of the Bode Sensitivity Integral (Equation 10.32) gives a measure of the
overall performance. However, it lacks detail about the worst-case or individual loop performances and
therefore several extensions of this analysis have been considered.
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10.7.4.2 Sensitivity Integral Inequalities

One form of generalizations that provides some alternate information to the “Average” performance
results of Section 10.7.4.1 examines the behavior of the maximum singular value (i.e., the induced 2-norm)
of the output sensitivity matrix. Indeed, it can be shown (see, e.g., [8,15]) that

∫ ∞

0
log

∥∥So( jω)
∥∥ dω≥ π max

i=1...Np
Re(pi). (10.89)

Inequality in Equation 10.89 arises from the directional properties of the multivariable system (see,
e.g., Definition 10.1), which we now turn to study in more detail.

10.7.4.3 Direction-Based Analysis

Directional properties of vector signals and matrix transfer functions play an important role in multi-
variable systems. The appropriate MIMO generalization of a zero∗ of the loop transfer function matrix,
Lo(s), is as an isolated value of s for which Lo(s) drops rank. Under Equation 10.87 this is equivalent
to isolated values of s for which det(Lo(s))= 0. Similarly, a pole of Lo(s) is an isolated value of s for
which det(L−1

o (s))= 0. This leads to the following definition of MIMO zeros and poles and their input
directions†.

Definition 10.1: Multivariable Poles and Zeros

1. Subject to Equation 10.87, we say Lo(s) has a zero at s = z with input direction dz if

Lo(z)dz = 0.

2. Subject to Equation 10.87, we say Lo(s) has a pole at s = p with input direction dp if

L−1
o (p)dp = 0.

It then follows that we have interpolation constraints on the output sensitivity and complementary
sensitivity functions as follows.

Lemma 10.1: Multivariable Interpolation Constraints

Subject to Equation 10.87, we have the following:

1. If s = z is a zero of Lo(s) with input direction dz, then

So(z)dz = dz ,

To(z)dz = 0.

∗ Note that in fact there are a number of different definitions of MIMO zeros. In this case, we are considering MIMO
transmission zeros.

† Similar definitions and results apply to output directions, which we omit for brevity.
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2. If s = p is a pole of Lo(s) with input direction dp, then

So(p)dp = 0,

To(p)dp = dp.

Using Lemma 10.1 we can generalize earlier SISO results such as Theorems 10.4 and 10.5 as follows:

Theorem 10.9:

Take any appropriately dimensioned vector d.

1. If s = z is a zero of Lo(s) with input direction dz, then

∫ ∞

0
log

∣∣∣dT So( jω)dz

∣∣∣W(z,ω)dω≥ π log |dT dz |.

2. If s = p is a pole of Lo(s) with input direction dp, then

∫ ∞

0
log

∣∣∣dT To( jω)dp

∣∣∣W(p,ω)dω≥ π log |dT dp|.

Note that the results in Theorem 10.9 are inequalities, since in general the expression for the relevant
Blaschke products are much more complex in this case than in the SISO case (Equation 10.50). We also
note that by taking d aligned with dz or dp as appropriate, and using unit length vectors, we can make the
right-hand sides of the bounds in Theorem 10.9 equal to zero.

10.7.4.4 Other MIMO Results

There are a wide range of multivariable feedback results available, and this section has concentrated on a
few specific forms of these results. A summary and analysis of many of the available results is contained
in [56]. The results of [17] considered achievable H2 performance of multivariable systems for example.
The authors of [30] consider systems in which the performance variable is not identical to the measured
variable and the disturbance and actuator affect the system through different dynamics. A range of other
results are included in the special issue [16].

10.7.5 Time-Varying and Nonlinear Systems

The theory of fundamental feedback limitations for general time-varying and nonlinear systems is much
less developed than that for linear time-invariant systems. One of the main challenges in extending notions
such as the Bode integral is that, in contrast to the linear time-invariant case, it is in general impossible
to obtain a complete characterization of the system action as an operator via a simple transformation to
the frequency domain. A number of significant results, however, have been obtained in the last couple of
decades showing that some fundamental feedback limitations remain in more general classes of systems.

One way of extending notions associated with transfer functions to nonlinear systems is to apply the
theory of input/output (I/O) nonlinear operators on linear spaces. Using this approach, Shamma [59]
shows that nonminimum phase dynamics impose an “area balance” constraint to the nonlinear sensitivity
I/O operator analogous to that captured by the Bode integral for linear systems. The result shows that if
the nonlinear plant is nonminimum phase (defined by conditions on the domain and range of the plant
I/O operator [56, §12]), an arbitrarily small value of frequency-weighted sensitivity necessarily implies
an arbitrarily large response to some admissible disturbance. A dual “area balance” constraint exists for
the nonlinear complementary sensitivity I/O operator when the plant is open-loop unstable [56, §13.4].
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Nonlinear equivalents of the interpolation constraints (Equations 10.51 and 10.69) can also be developed,
and applied to quantify control design trade-offs [56, §13] and [58].

Another approach to characterize fundamental limitations in classes of nonlinear systems arises from
the study of cheap control problems, as in Section 10.7.3. This idea has been applied to study limitations
in nonminimum phase, and nonright invertible strict-feedback nonlinear systems [10,57].

An information theoretic approach has been pursued in Iglesias [38,69] to obtain a time-domain
interpretation of the Bode sensitivity integral and extend fundamental sensitivity limitations results
to classes of time-varying, and nonlinear systems. Following a similar approach, Martins and Dahleh
[42] extended the Bode sensitivity integral to control systems with feedback over capacity-constrained
communication channels (see Section 10.7.2) that may include arbitrary time-varying and nonlinear
components in the loop, with the only restriction of being causal.

10.7.6 Alleviation of Tracking Performance Limitations

From the previous discussions, it can be seen that there are a number of inherent limitations on feedback
system performance, including tracking performance. For plants with CRHP zeros, we have seen a number
of fundamental limitations on achievable performance. For example, the time-domain integrals based on
CRHP zeros in Theorem 10.6 constrain the output behavior, for any reference signal, for any stabilizing
control. In particular, a simple generalization of the time-domain integral in Theorem 10.6 shows that
with a nonminimum phase zero at s = z and a given reference signal with Laplace transform, R(s), then

∫ ∞

0
e−zte(t) dt = R(z). (10.90)

Frequency-domain integrals such as the complementary sensitivity integral (see Section 10.4.4) and
the Poisson sensitivity integral (Theorem 10.4) apply for any stabilizing linear time-invariant control
scheme. In addition, there are various extensions of the cheap control results of Equation 10.85 to
alternate reference signals. Here we wish to consider various problem settings in which it may be possible
to alleviate the limitations on tracking performance imposed by plant CRHP zeros.

10.7.6.1 Preview Control

Preview control refers to a scenario wherein the reference trajectory, r(t), may be prespecified, and
therefore, at time t, the control may use advance knowledge of future or impending reference changes,
r(τ):τ ∈ [t, t+Tpre]. In the case of infinite preview (Tpre →+∞), references such as [14] showed how
nonlinear system inversion (and therefore perfect tracking) may be performed. A more detailed analysis
of such systems from a performance limitations perspective is discussed in [18,47]. In particular, it is
shown from a time-domain integral perspective; from a Poisson sensitivity integral perspective; and,
from an achievable H∞ performance perspective, that use of preview Tpre with Re{zTpre} sufficiently
large almost eliminates the tracking performance limitations due to a CRHP plant zero z. Of course, such
preview alters only reference tracking performance and does not alter feedback properties such as noise
performance, disturbance response, and stability robustness.

10.7.6.2 Path Tracking

Path tracking (see, e.g., [1,48]) is an alternate control paradigm in which a reference trajectory, r(t), is not
given as a prespecified function of time. Instead, the primary tracking objective may be to ensure that at
all times, the output is close to a prespecified path (r(θ(t))), that is, that ‖y(t)− r(θ(t))‖ is small for all
time where θ(t) is, at least partially, free for the control designer to choose. This allows some additional
degrees-of-freedom, and may be helpful in removing some of the limitations on tracking performance
imposed by nonminimum phase zeros.
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For example, if we have some freedom in the selection of r(t), it may be possible to select θ(t) in
such a way that R(z) is small or even zero. In this case, the constraint (Equation 10.90) on the time-
domain performance does not necessarily demand poor tracking performance. Clearly, the feedback
noise, disturbance and robustness properties will still be affected by the usual performance trade-offs.

10.7.6.3 Reset Controllers and Other Hybrid Structures

Reset controllers have been shown to overcome some of the limitations inherent to linear time-invariant
control, alleviating design trade-offs in the system time response, such as that between overshoot and rise
time discussed in Section 10.6 [6,25]. A reset controller is a linear time-invariant system with states that
reset to zero when the controller input is zero. This idea was first introduced by Clegg [19], who studied
the effect of a reset integrator in a feedback loop. A reset control system may be viewed as a hybrid system,
which incorporates both continuous dynamics and discrete events. It is possible that hybrid systems
present a different set of performance limitations, and advantages in some problems as those discussed
in [6,25]. However, a general theory of performance limitations for hybrid control systems remains to be
developed.

10.8 Summary and Further Reading

In this chapter, we have discussed design limitations and trade-offs present in feedback design problems.
Beginning with the pioneering work of Bode on fundamental feedback relationships, and their implica-
tions for feedback amplifier design, a rather complete theory has been developed for linear time-invariant
feedback systems. The core of this chapter presented the main results of this theory, as quantified by funda-
mental relationships in the frequency domain for the sensitivity and complementary sensitivity functions.
As discussed, these relationships arise from the basic structure of the feedback loop and the requirement
of feedback stability, and are parameterized by the right-half-plane poles and zeros, and time delays of
the open-loop system. These relationships have direct implications on the achievable performance and
robustness properties of the feedback loop, and thus help a control engineer to achieve informed design
trade-offs.

There have been many extensions to the theory of fundamental limitations since the first version of this
article was published. We have included a brief account of several of these topics: alternative developments
in the time-domain, extensions to multivariable systems, time-varying and nonlinear systems, and control
systems with feedback over a communication channel. Finally, we have also included a section discussing
the alleviation of performance limitations in some tracking problems.

Diverse applications of the theory of fundamental design limitations also abound. A few examples
to illustrate the scope of applications include combustion [5], platooning [55], magnetic bearings [67],
haptics [35], ship roll stabilization [51], and autocatalysis [13].

The study of performance limitations in feedback systems is at the core of feedback design, and can
provide helpful knowledege in practical control engineering problems. On the one hand, the knowledge
of these limitations and their associated trade-offs provides benchmarks against which different control
structures and designs may be compared, and guides the deliberate selection of a design solution that
achieves a reasonable compromise between conflicting design goals. On the other hand, if a reasonable
compromise cannot be achieved for a particular system, then knowledge of design trade-offs may be used
to modify the plant, to improve sensors and actuators, and to develop better models so that a tractable
design problem is obtained.

The reader who wants to know more can find material in many places. Several textbooks include
chapters on the theory of fundamental design limitations, including Franklin et al. [27], Doyle et al. [23]
Zhou et al. [70], Goodwin et al. [34], Skogestad and Postlethwaite [61], Aström and Murray [3], and Glad
and Ljung [32]. A comprehensive treatment of the theory up through 1997 is given by Seron et al. [56].
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Bode’s original book [7] is still instructive, and a recent monograph describes the context in which the
limitations described by the gain-phase relation arose [49]. An excellent perspective on the importance
of the theory of fundamental design limitations was given by Gunter Stein in the inaugural Bode Lecture
in 1989, reprinted in [62].
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11.1 Introduction

At first glance, the notion of deterministic uncertainty may seem to be a contradiction in terms—after all,
the word “deterministic” is often used to signify the absence of any form of uncertainty. We will explain
later on that, properly interpreted, this choice of words does indeed make sense. For the moment, we
concentrate on the notion of uncertainty.

Uncertainty in the control context comes in two basic versions—uncertain signals and uncertainty in
the way the plant maps input signals into output signals (“plant uncertainty”).

Most processes we wish to control are subject to influences from their environment—some of them
known (measured disturbances, reference inputs), others uncertain signals (unmeasured disturbances,
and noise corrupting measurements). All these signals are labeled “external,” because they originate in
the “outside world.”∗

A plant model, by definition, is a simplified representation of a real system, and is usually geared toward
a specific purpose. Models that are meant to be used for feedback controller design tend to be especially
crude. This is because (1) most popular design techniques can handle only very restricted classes of models
and (2) in a feedback configuration, one can potentially get away with more inaccurate models than in
applications that are based on a pure feedforward structure.

Meaningful analysis and design, however, are possible only if signal and plant uncertainty is, in some
sense, “limited.” In other words, we have to assume that there exists some, however incomplete, knowledge
about signal and plant uncertainty—we need an uncertainty model. Such an uncertainty model defines an
admissible set of plant models, G, and an admissible set of uncertain external input signals, W (Figure 11.1).
The adjective in “deterministic uncertainty model” points to the fact that we do not attempt to assign
probabilities (or probability densities) to the elements of the sets G and W—every element is considered
to be as likely as any other one. Based on this, one can ask the key (robustness) questions in control

∗ Control inputs, on the other hand, are generated within the control loop, and are called “internal input signals.”

11-1
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G ∈ G

Known external inputs wk

Uncertain external inputs wu ∈W

Control inputs u
Output signals

FIGURE 11.1 Signal and plant uncertainty models.

systems analysis: Is closed-loop stability guaranteed for every plant model in G? Do desired closed-loop
performance properties hold for every external input in W and every G ∈ G?

One has to keep in mind, however, that no class of mathematical models is able to describe every detail
of reality, that is, the physical plant is not a mathematical model and therefore cannot be an element in G.
Robustness of a desired closed-loop property with respect to any specific plant uncertainty model does
not therefore guarantee that the real control system will also have this property. If the uncertainty model
is chosen in a sensible way (that’s what this chapter is about), it will, however, increase the likelihood for
the real system to “function properly.”

We will first discuss signal uncertainty. Then, we will summarize the most common plant uncertainty
models. Finally, we will briefly mention the topic of model validation, that is, whether a given set of
experimental data is compatible with given uncertainty models G and W . We will work in a continuous-
time framework, and all signals will be real and (except for some of the examples) vector valued.

11.2 Characterization of Uncertain Signals

Formulating a signal uncertainty model almost always involves a trade-off between conflicting principles:
One wants the model to be “tight,” that is, contain only signals that make physical sense; tightening
uncertainty, however, typically implies imposing additional restrictions on the model—it gets unwieldy
and more difficult to use for analysis and design purposes.

The following two widely used uncertainty models are on the extreme (simple) end of the spectrum.
The first is

W2(c) := {wu(t) | ‖wu‖2 ≤ c } , (11.1)

where the norm is

‖wu‖2 :=
(∫ ∞

−∞
wu(t)T wu(t) dt

)1/2

,

that is, the admissible input set consists of all signals with L2-norm (energy) less than or equal to a given
constant c; the second is

W∞(c) := {wu(t) | ‖wu‖∞ ≤ c } , (11.2)

where the norm is
‖wu‖∞ := sup

t
max

i
|wui (t)|,

that is, the admissible input set consists of all signals with L∞-norm (maximum magnitude) less than or
equal to a given constant c. If necessary, these models can be refined by introducing suitable weights or
filters: In this case, admissible input signals are

w̄u(t) :=
∫ t

−∞
W(t− τ)wu(τ) dτ, (11.3)

where wu(t) ranges over the sets (Equation 11.1 or 11.2). Even such a modified uncertainty description
remains pretty crude. Whether it is adequate depends on the control problem at hand. If the answer turns
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out to be “no,” one has to cut back the “size” of the admissible signal classes by bringing in additional a
priori information. This is illustrated in the following example.

Example 11.1:

Suppose we want to control room temperature. Clearly, outdoor temperature, To, is a disturbance
signal for our control problem. Assume that, for one reason or another, we cannot measure To. In
Toronto, To can go up to +30◦C in summer and down to −30◦C in winter. In this case, a simple
uncertainty model is given by

To(t) ∈W∞(30◦)= {wu(t) | ‖wu‖∞ ≤ 30◦C}.
Clearly, this set contains many signals that do not make physical sense; it admits, for example,
temperatures of +30◦ during a winter night and −30◦ at noon in summer. A tighter uncertainty
set is obtained if we write To(t)= Ta(t)+ TΔ(t), where Ta(t) represents the average seasonal and
daily variation of temperature, and TΔ(t) is a deviation term. The signal Ta(t) could, for example,
be modeled as the output of an autonomous dynamic system (a so-called exosystem) with a pair of
poles at s=±j(365 days)−1 (accounting for seasonal variations) and s=±j(24 h)−1 (accounting for
daily variations). For the deviation term, we can now assume a much stricter L∞-norm bound, for
example, 10◦. Furthermore, it makes sense to restrict the maximal rate of change of TΔ(t) to, say,
5◦/h. This is achieved if we define the admissible set of deviations via

TΔ(t)=
∫ t

−∞
W (t− τ)wu(τ) dτ,

where the weighting function W (t) is given by

W (t)=
{

5e−t/2, t ≥ 0
0, t < 0

(with t in hours) and wu(t) lives in the set W∞(1◦).

11.3 Characterization of Uncertain Plant Models

Sometimes the plant can be modeled by a finite set, say by linearizing at a finite number of operating
points. Then a controller can be designed for each plant in the set. Implementation involves a table lookup
for which controller to apply, together with a way of smoothly transitioning when a switch is required.

More commonly in robust control design, one tries to characterize the plant family G by specifying a
nominal plant model together with a family of perturbations, denoted D, away from the nominal. As for
the set of admissible input signals, we have two requirements for D:

1. D should be tight (i.e., contain only perturbations that somehow “mirror” the difference between
our nominal model and the real system). If we include perturbations that make no physical sense,
we will end up with a controller that tries to accommodate “too many” models and might therefore
be “too conservative.”

2. D should be easy to use for analysis and design purposes.

Again, both requirements rarely go together. By imposing structure on a perturbation model, we will in
general be able to capture uncertainty more precisely; unstructured perturbation models, on the other
hand, are in general easier to use in design procedures.

For the lack of space, we can only present the most common plant uncertainty models—the ones that are
widely used for controller design and synthesis purposes. It is not surprising that, in a sense, this purpose
reflects back onto the model itself: Some models we will be dealing with involve restrictive assumptions
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that can only be justified through a utilitarian argument—without these assumptions it would be a lot
harder (or even impossible) to give robustness tests. We will look at unstructured perturbation models
first. Such models are typically specified by giving, at every frequency, an upper bound on the maximum
singular value of the transfer function matrix, this being a matrix generalization of the magnitude of a
complex number. Then, we will deal with a specific class of structured perturbations that can be graphically
characterized by Nyquist arrays. Finally, we will discuss a fairly general class of structured perturbations
that includes the others.

11.3.1 Unstructured Plant Uncertainty Models

In what follows, G(s) will denote the nominal plant model, Gr(s) the transfer function matrix of a perturbed
plant model, and Δ(s) the transfer function matrix of a perturbation. The dimensions of G(s) are p× q.
It is assumed that the elements of G(s), Gr(s), and Δ(s) are proper real-rational transfer functions. The
number of unstable poles of G and Gr , that is, those in the closed right half-plane, are denoted mG and mGr .

11.3.1.1 Additive Modeling Perturbations

Additive perturbations are defined by (see Figure 11.2)

Gr(s) := G(s)+ΔA(s). (11.4)

The class of unstructured additive perturbations we will be looking at is given by

DA :=
{
ΔA

∣∣ σ̄[ΔA( jω)]< lA(ω); mGr =mG
}

. (11.5)

Thus, the set of admissibleΔA is characterized by two assumptions: (1) for each frequency ω, we know a
(finite) upper bound lA(ω) for the size ofΔA (in the sense of the maximal singular value); (2)ΔA cannot
change the number of unstable poles of the model. Thus lA is an envelope function on the size of the
perturbation. The regularity of the function lA is not too important; it can be assumed to be, for example,
piecewise continuous. The second assumption seems pretty artificial, but is needed if we want to give
simple robustness tests.∗ It trivially holds for all stable perturbation matrices. Obviously, lA(ω) being finite
for every ω implies thatΔA does not have any poles on the imaginary axis. A typical perturbation bound
lA(ω) is shown in Figure 11.3: The DC gain is usually known precisely (ΔA(0)= 0); at high frequencies,
we often have Gr → 0, G→ 0 (Gr and G are strictly proper), and thereforeΔA → 0.

The following example illustrates how an additive perturbation model typically can be obtained from
frequency-response data.

G(s)

ΔA(s)

Gr (s)

FIGURE 11.2 Additive model perturbation.

∗ A stability robustness test was first reported in Cruz et al. (1981).
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FIGURE 11.3 Typical bound for additive modeling perturbation.

Example 11.2:

For simplicity, assume the plant is single-input/single-output (SISO). Suppose that the plant is stable
and its transfer function is arrived at by means of frequency-response experiments: Magnitude and
phase are measured at a number of frequencies, ωi , i = 1, . . . , M, and this experiment is repeated
several, say N, times. Let the magnitude-phase measurement for frequency ωi and experiment k
be denoted (Gik ,φik ). Based on these data, select nominal magnitude-phase pairs (Gi ,φi ) for each
frequency ωi , and fit a nominal transfer function G(s) to these data. Then fit a weighting function
lA(s) so that ∣∣∣Gik ejφik −Gie

jφi
∣∣∣< |lA(ωi )|, i = 1, . . . , M; k = 1, . . . , N.

The next example shows how to “cover” a parameter-uncertainty model by an additive perturbation
model.

Example 11.3:

Consider the plant model
k

s+ 1
, 5 < k < 10.

Thus, the gain k is uncertain. Let us take the midpoint for the nominal plant:

G(s)= 7.5
s+ 1

.

Then the envelope function is determined via∣∣∣∣ k

jω+ 1
−G( jω)

∣∣∣∣< lA(ω), 5 < k < 10,

that is, lA(ω)= |2.5/( jω+ 1)|.

11.3.1.2 Multiplicative Perturbations

Multiplicative (or proportional) perturbations at the plant output are defined by the following relation
between G and Gr (see Figure 11.4):

Gr(s) := (Ip+ΔM (s))G(s). (11.6)

Such proportional perturbations are invariant with respect to multiplication (from the right) by a known
transfer function matrix (e.g., a compensator).
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G(s)

ΔM(s)

Gr (s)

FIGURE 11.4 Multiplicative (proportional) model perturbation.

We consider the following class of (proportional perturbation) models:

DM :=DM1 ∪ DM2, (11.7)

DM1 :=
{
ΔM

∣∣ σ̄[ΔM ( jω)]< lM (ω); ΔM stable
}

, (11.8)

DM2 :=
{
ΔM

∣∣ σ̄[ΔM ( jω)]< lM (ω); mGr =mG
}

. (11.9)

Hence, admissible perturbations are either stable or do not change the number of unstable poles of
the plant model. Again, in both cases, we assume that we know an upper bound for the perturbation
frequency responseΔM ( jω). A typical perturbation bound lM is shown in Figure 11.5: Exact knowledge
of DC gain implies ΔM (0)= 0; neglecting high-order dynamics often causes ΔM to be greater than 1 at
high frequency.

The perturbation class DA is of a simpler form than Equations 11.7 through 11.9, because an additive
stable perturbation transfer function matrix does not affect the number of unstable poles. As the following
example shows, this is not always true for multiplicative perturbations: A stable proportional perturbation
can cancel unstable model poles. For example,

G(s)= −4

s− 1
, ΔM (s)= −2

s+ 1
,

Gr(s)= [1+ΔM (s)]G(s)= −4

s+ 1
.

Stability robustness results for this class of pertubations have been given in Doyle and Stein (1981).

11.3.1.3 Coprime Factor Perturbations

For this uncertainty description, we need the concept of a left coprime factorization over RH∞∗
(Vidyasagar, 1985). Here, we will give only a very brief introduction to this subject. Details can be
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FIGURE 11.5 Typical bound for multiplicative model perturbation.

∗ RH∞ denotes the set of proper stable real-rational transfer functions.
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found elsewhere in this book. Consider a finite-dimensional linear time-invariant (FDLTI) SISO system.
Clearly, its transfer function, G(s), can be represented by a pair of polynomials with real coefficients—
NP(s), a numerator, and MP(s), a denominator polynomial: G(s)= NP(s)/MP(s). Furthermore, NP(s)
and MP(s) can always be chosen to be coprime, meaning that all common divisors of NP(s), MP(s) are
invertible in the set of polynomials (i.e., are real constants). Thus, there is no pole–zero cancellation when
forming NP(s)/MP(s).

For several reasons, it proves to be an advantage to use a straightforward generalization, and to
replace polynomials by proper stable transfer functions (i.e., elements from the set RH∞): We write
G(s)= N(s)/M(s), where N(s), M(s) ∈RH∞ can always be chosen to be coprime. This is called a coprime
factorization over RH∞. Coprimeness in the RH∞-context means that all common divisors are invertible
in RH∞ (i.e., stable, minimum-phase, biproper transfer functions). Hence, when forming N(s)/M(s), no
cancellation of poles and zeros in the closed right half-plane can occur. Obviously, such a factorization is
nonunique. However, it can be made unique up to sign by requiring |N( jω)|2+ |M( jω)|2 = 1, that is, the
1× 2 matrix

[
N(s) M(s)

]
is allpass. This is called a normalized coprime factorization (Vidyasagar, 1988).

These concepts can be easily extended to the multivariable case. However, as matrix multiplication is
not commutative, we have to distinguish between left and right coprime factorizations: A pair Ñ(s), M̃(s)
of stable transfer function matrices with appropriate dimensions is called a left coprime factorization of
G(s) if G(s)= M̃−1(s)Ñ(s), and all common left divisors of Ñ(s) and M̃(s) are invertible in RH∞. Similar
for the concept of right coprime factorization.

Now we are in a position to define coprime factor perturbations. These are additive stable pertur-
bation terms in both the numerator and the denominator of a left (or right) coprime factorization (see
Figure 11.6):

G = M̃−1Ñ ; M̃, Ñ . . . left coprime

Gr = (M̃+ΔM )−1︸ ︷︷ ︸
M̃−1

r

(Ñ +ΔN )︸ ︷︷ ︸
Ñr

; M̃r , Ñr . . . left coprime. (11.10)

Specifically, we will consider the following class of unstructured coprime factor perturbations:

DMN :=
{[
ΔM ΔN

] | σ̄[ΔM ( jω)ΔN ( jω)]< lMN (ω); ΔM ,ΔN stable
}

. (11.11)

A typical perturbation bound lMN (ω) may look as shown in Figure 11.3. Restricting the class DMN to stable
transfer function matrices does not imply any loss of generality, as both M̃, Ñ (denominator, numerator of
the nominal model) and M̃+ΔM , Ñ +ΔN (denominator, numerator of any perturbed model) are stable
by definition. Note that we do not have any restrictive assumptions regarding the number of unstable
poles of admissible models Gr(s): Perturbations from the set DMN can both increase or decrease the

ΔN (s) ΔM (s)

M–1(s)
∼

Mr
–1(s)

∼
Nr(s)
∼

N(s)
∼ –

FIGURE 11.6 Coprime factor perturbation.
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number of unstable model poles. For example,

G(s)= 1

s+ ε =
[

s+ ε
s+ 1

]−1

︸ ︷︷ ︸
M̃(s)−1

[
1

s+ 1

]
︸ ︷︷ ︸

Ñ(s)

,

ΔN = 0, ΔM (s)= −2ε

s+ 1
,

Gr(s)= 1

s− ε =
[

s− ε
s+ 1

]−1

︸ ︷︷ ︸
M̃r (s)−1

[
1

s+ 1

]
︸ ︷︷ ︸

Ñr (s)

.

Coprime factor perturbations are especially useful for describing uncertainty in flexible structures.
They allow covering a family of transfer function matrices with slightly damped uncertain pole-pairs by
a (relatively speaking) small perturbation set.

Example 11.4:

Consider a nominal transfer function

G(s)= 10
(s+ 0.05− 5j)(s+ 0.05+ 5j)

.

Suppose a perturbed model has a slightly different pair of poles:

Gr (s)= 10
(s+ 0.05− 6j)(s+ 0.05+ 6j)

.

We first determine the magnitude of the smallest additive perturbation that, centered around G(s),
covers Gr (s), and scale it (at each frequency) by 1/|G( jω)| (this is of course equivalent to computing
the magnitude of the multiplicative perturbation connecting G(s) and Gr (s)). The result is shown in
the left part of Figure 11.7.

We now compute normalized coprime factorizations, {N(s), M(s)} and {Nr (s), Mr (s)}, for G(s) and
Gr (s), and plot the size (maximal singular value) of the perturbation matrix

[
Nr ( jω)−N( jω) Mr ( jω)−M( jω)

]

over frequency. This gives a relative (scaled) measure of perturbation size, as both
[

N(s) M(s)
]

and[
Nr (s) Mr (s)

]
are allpass. It is shown in the right half of Figure 11.7.

Clearly, there is an order of magnitude difference between the peak values of both perturbations.
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FIGURE 11.7 Perturbation sizes (normalized coprime factorization case shown on the right).
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wΔzΔ

uy

Gr(s)

Θ(s)

Δ(s)

FIGURE 11.8 Generalized unstructured perturbation.

(Normalized) coprime factor perturbations and their use in H∞-design methods have been extensively
investigated in McFarlane and Glover (1989).

11.3.1.4 Generalized Unstructured Perturbations

Additive, multiplicative, and coprime factor uncertainty can be conveniently represented in a unified
way—via generalized unstructured perturbations (McFarlane and Glover, 1989). For this purpose, we
introduce a “new” (proper) transfer function matrix

Θ(s)=
[
Θ11(s) Θ12(s)
Θ21(s) Θ22(s)

]
. (11.12)

Its partitioning implies a partitioning of its input and output vector. The lower parts of both vectors
represent the “usual” plant input and output signals. The upper part of the output signal, zΔ, is fed back
into the upper part of the input signal, wΔ, via a perturbation Δ(s) (Figure 11.8). Denote the number of
rows and columns ofΔ by mΔ and lΔ, respectively. Then, the transfer function matrix Gr of the perturbed
model is given as an Upper Linear Fractional Transformation ofΔ with respect toΘ:

Gr =Θ22+Θ21Δ(IlΔ −Θ11Δ)−1Θ12 (11.13)

=Θ22+Θ21(ImΔ −ΔΘ11)−1ΔΘ12. (11.14)

For Δ= 0 (zero perturbation), we expect to recover the nominal plant model as the transfer function
matrix between the plant input and the output vector. Hence, we must haveΘ22 = G. For Equations 11.13
and 11.14 to make sense, we also have to assume that

1. (IlΔ −Θ11(∞)Δ(∞)) (or, equivalently, (ImΔ −Δ(∞)Θ11(∞))) is nonsingular (i.e., Gr is uniquely
defined and proper) for all admissible perturbations.

2. The transfer function matrixΘ(s) is stabilizable from the plant input and detectable from the plant
output.

Specifically, we consider the following class of perturbations:

D :=D1 ∪ D2, (11.15)

D1 :=
{
Δ | σ̄[Δ( jω)]< l(ω), Δ stable

}
, (11.16)

D2 :=
{
Δ | σ̄[Δ( jω)]< l(ω), mGr =mG

}
(11.17)

We admit all bounded (on s = jω) perturbation transfer function matrices that are either stable or do not
change the number of unstable poles of the plant model.

We have not specified yet how to chooseΘ if we want to translate additive, multiplicative, and coprime
factor uncertainty into this general framework. By substituting into Equation 11.13, it is easy to check that
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• for additive perturbations,

Θ=
[

0 Iq

Ip G

]
, Δ=ΔA, (11.18)

• for multiplicative perturbations,

Θ=
[

0 G
Ip G

]
, Δ=ΔM , (11.19)

• and for coprime factor perturbations,

Θ=
⎡
⎣
[−M̃−1

0

] [−G
Iq

]

M̃−1 G

⎤
⎦ , Δ= [ΔM ΔN

]
. (11.20)

For additive uncertainty, D1 ⊂D2 (stable perturbations do not change the number of unstable model
poles). Hence, in this case, D and DA are the same. In the case of coprime factor uncertainty, all pertur-
bation terms are stable by definition. We can therefore write D =DMN without restricting generality.

This framework is especially useful for theoretical investigations. Instead of proving, say, robust stability
for the three sets of perturbations DA, DM , and DMN , it suffices to establish this result for the class D of
generalized perturbations.

11.3.1.5 Which Unstructured Perturbation Model?

All of the above perturbation models are reasonably simple and easy to use in design procedures. Hence,
the decision on which model to choose hinges primarily on their potential to cover a given set G without
including too many “physically impossible” plant models. In other words: we want the least conservative
perturbation set that “does the job.” Whether this is a set of additive, multiplicative, or coprime factor
perturbations depends on the problem at hand. A useful rule of thumb is: Whenever one deals with
low-damped mechanical systems, it is a good idea to try coprime factor uncertainty first (compare the
example in Section 11.3.1.3). For stable nonoscillatory processes, one might try an additive perturbation
model first—it is more intuitive, and, if the nominal model is stable, excludes any unstable Gr(s).

11.3.2 Structured Plant Uncertainty

11.3.2.1 Uncertain Parameters

Physical (or theoretical), as opposed to experimental, model building usually results in a state model,
and model uncertainty is often in the form of parameter uncertainty: The (real-valued) parameters of the
state model have physical meaning and are assumed to lie within given intervals. When converting to a
transfer function matrix, however, one usually gets a fairly complicated set of admissible parameters. This
is due to the fact that, in general, each parameter of the resulting transfer function matrix depends on
several parameters of the underlying state model. Only in exceptionally simple cases (as in the following
example) can we expect the set of admissible parameters to form a parallelepiped.

Example 11.5:

Consider the spring–damper system in Figure 11.9. Force is denoted by u, position by y. Newton’s
law gives the transfer function

G(s)= 1

ms2+ ds+ c
.
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d y

u
m

c

FIGURE 11.9 Spring–damper system.

In most cases, one cannot expect to know the precise values of mass, damping, and spring
constant. Hence, it makes sense to define a class of models by stating admissible parameter intervals:

Δm ∈[mu−m, mo−m] := Dm

Δd ∈[du− d, do− d] := Dd

Δc ∈[cu− c, co− c] := Dc

Gmdc :=
{

1

(m+Δm)s2+ (d+Δd )s+ (c+Δc )

∣∣∣∣Δm ∈Dm, Δd ∈Dd , Δc ∈Dc

}
.

11.3.2.2 Independent Additive Perturbations in the Elements
of a Transfer Function Matrix

Another straightforward (and often very useful) structured uncertainty description is the following:
Consider an additive perturbation matrix ΔA(s)= Gr(s)−G(s) and give frequency-dependent bounds
lik(ω) for the magnitude of each of its elements:

⎡
⎢⎣
|ΔA11 ( jω)| . . . |ΔA1q ( jω)|

...
. . .

...
|ΔAp1 ( jω)| . . . |ΔApq ( jω)|

⎤
⎥⎦

︸ ︷︷ ︸
:=|ΔA|e

≤e

⎡
⎢⎣

l11(ω) . . . l1q(ω)
...

. . .
...

lp1(ω) . . . lpq(ω)

⎤
⎥⎦

︸ ︷︷ ︸
:=L(ω)

(11.21)

(≤e denotes “elementwise less or equal”; |ΔA|e is a matrix with entries |ΔAik |). Again, we make the
additional assumption that no admissible perturbation shall change the number of unstable poles. Hence,
we get the following classes of perturbations and plant models:

DAe :=
{
ΔA | |ΔA( jω)|e ≤e L(ω); mGr =mG

}
(11.22)

GAe := {G+ΔA |ΔA ∈DAe} . (11.23)

Such a set of models can be easily represented in a graphical way (Figure 11.10): Consider first the
Nyquist plots of each element gik( jω) of the nominal model (“Nyquist array”). For each frequency, draw
a circle with radius lik(ω) around gik( jω). This gives a set of bands covering the nominal Nyquist plots.
Then, a transfer function matrix Gr is a member of the model set (Equation 11.23) if and only if the Nyquist
plot of each element grik ( jω) is contained in the appropriate band, and Gr and G have the same number
of unstable poles. The usefulness of this uncertainty model for controller design purposes stems mainly
from the fact that it fits “naturally” into the framework of Nyquist-array methods. Stability robustness
results can be found in Owens and Chotai (1984) and Lunze (1984).

11.3.2.3 Generalized Structured Plant Uncertainty

A more general structured perturbation model has become very popular, as the so-calledμ-theory (Doyle,
1982, 1985) provides analysis and synthesis tools to deal with such uncertainty sets. As a motivation for
this general perturbation model, consider the following example from Maciejowski (1989).
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FIGURE 11.10 Graphical representation of the model class GAe .

Example 11.6:

Let G(s) be a 2× 2 plant model with additive unstructured uncertainty ΔA(s) and independent
multiplicative perturbations δ̃1(s), δ̃2(s) in each input channel (Figure 11.11). Assume thatΔA(s), δ̃1(s),
and δ̃2(s) are stable, proper, and bounded by

|̃δ1( jω)|< l1(ω),

|̃δ2( jω)|< l2(ω),

σ̄[ΔA( jω)]< l3(ω).

It is easy to see that we could subsume all three uncertainty terms in a single (additive) perturbation
matrixΔA(s):

Gr = (G+ΔA)
(

I2+
[
δ̃1 0
0 δ̃2

])

= G+
(
ΔA

[
1+ δ̃1 0

0 1+ δ̃2

]
+G

[
δ̃1 0
0 δ̃2

])
︸ ︷︷ ︸

:=ΔA

.

G(s)

ΔA(s)

y1

y2

u1

u2

δ2(s)
∼

δ1(s)∼

FIGURE 11.11 Example for a model with independent perturbations.
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∼δ1 0∼δ2
0 0
0 00

0 0
0 0 ΔA

G(s) uy

zΔ
~

wΔ
~

FIGURE 11.12 Generalized structured perturbation model.

Using the properties of singular values, we can derive both structured and unstructured bounds for
the overall perturbationΔA:

σ̄[ΔA( jω)] ≤ σ̄[ΔA( jω)] σ̄
[

1+ δ̃1( jω) 0
0 1+ δ̃2( jω)

]
+ σ̄[G( jω)] σ̄

[
δ̃1( jω) 0

0 δ̃2( jω)

]

< l3(ω)
(
1+max(l1(ω), l2(ω))

)+ σ̄[G( jω)]max(l1(ω), l2(ω))

or

∣∣ΔAik ( jω)
∣∣< l3(ω)(1+ lk (ω))+ |gik ( jω)|lk (ω).

In both cases, the perturbation bounds will probably be very conservative, that is, the resulting
uncertainty class will cover more than the perturbations ΔA(s), δ̃1(s), and δ̃2(s) we started off with.
It is therefore a good idea to preserve perturbation structure when combining different “sources”
of model uncertainty. This can be accomplished in the following way: As in Section 11.3.1.4, we
define a “new” transfer function matrixΘ(s) that—apart from the plant input and output—contains
another pair of input and output vectors, w̃Δ and z̃Δ. z̃Δ is fed back into w̃Δ via a blockdiagonal
perturbation matrix. Graphically, this corresponds to “pulling out” all perturbations from Figure 11.11
and rearranging them in a blockdiagonal structure (Figure 11.12).

Note that Figure 11.12 looks like Figure 11.8—the only difference being the blockdiagonal struc-
ture of the perturbation matrix in the feedback loop—that mirrors the structure of the underlying
perturbation model.

In the general case, one proceeds in exactly the same way: The class of admissible models is represented
by an Upper Linear Fractional Transformation of a blockdiagonal perturbation transfer function matrix
Δs(s) with respect to a suitably defined transfer function matrixΘ(s):

Gr = FU (Θ,Δs). (11.24)

Structure and dimension ofΔs depend of course on the number of independent perturbation terms and
their dimensions. Without loss of generality, we can assume that scalar uncertainty is always listed first
inΔs. In this general framework, we can also restrictΔs to be stable: If unstable perturbations have to be
considered, we can always circumvent this problem by introducing a coprime factorization with stable
perturbations. Often, notation is simplified by normalizing the size of the perturbation blocks. This can
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be easily done, if each perturbation bound li(ω) can be written as magnitude of a frequency response
wi( jω): In this case, we just have to multiplyΘ11 andΘ12 from the left (orΘ11 andΘ21 from the right)
by a suitably dimensioned diagonal matrix containing the wi(s). As only magnitude is important, we can
always choose the transfer functions wi(s) to be stable and minimum-phase. Hence, we get the following
class of perturbations:

Ds :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Δs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1Il1 0 . . . 0

0
. . .

...

... δkIlk

Δk+1

. . . 0

0 . . . 0 Δv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Δs stable, σ̄[Δs( jω)]< 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (11.25)

Example 11.7:

Let us look at the previous example again: Suppose w1(s), w2(s), and w3(s) are stable minimum-phase
transfer functions with

|w1( jω)| = l1(ω),

|w2( jω)| = l2(ω),

|w3( jω)| = l3(ω).

Then we get

Θ(s)=
⎡
⎢⎣
[

0 0
w3I2 0

] [
diag{w1, w2}

w3I2

]

[
G I2

]
G

⎤
⎥⎦

Δs =

⎡
⎢⎢⎣
δ1 0
0 δ2

0 0
0 0

0 0
0 0

Δ3

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

δ̃1
w1

0

0 δ̃2
w2

0 0
0 0

0 0
0 0

1
w3
ΔA

⎤
⎥⎥⎥⎦

and—as expected –

Gr = FU
(
Θ,Δs

)

= G+
(
ΔA

[
1+ δ̃1 0

0 1+ δ̃2

]
+G

[̃
δ1 0
0 δ̃2

])
.

All structured perturbation models in this section can be written as in Equations 11.24 and 11.25.
However, when “translating” parameter perturbations into this framework, one has to take into account
that Ds admits complex perturbations, whereas parameters (and therefore parameter perturbations) in a
state or transfer function model are real.
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11.4 Model Validation

Model validation is understood to be the procedure of establishing whether a set of experimental data is
compatible with given signal and plant uncertainty models, W and G. It is not the (futile) attempt to show
that an uncertainty model can always explain the true plant’s input/output behavior—future experiments
might well provide data that are inconsistent with W and G.

Model validation is a rapidly expanding area, and—for the lack of space—we can only hope to give a
flavor of the subject by looking at a comparatively simple version of the problem: We assume that

1. W is a singleton (i.e., there is no signal uncertainty).
2. Plant uncertainty is in the form of stable generalized unstructured perturbation (i.e., Gr(s)=

FU (Θ(s),Δ(s)), whereΔ(s) ∈D1—see Section 11.3.1.4), andΘ21(s) is invertible.
3. Experimental data are given in the form of M frequency-response measurements Gr( jω1), . . . ,

Gr( jωM ).

The plant uncertainty model of item 2 contains the cases of coprime factor perturbations and of stable
additive and multiplicative perturbations.

With the invertibility condition forΘ21 in force, we can rewrite the perturbed plant model as follows:

Gr = FU (Θ,Δ) (11.26)

=Θ22+Θ21(ImΔ −ΔΘ11)−1ΔΘ12 (11.27)

= (ΔΓ12+Γ22
)−1 (

ΔΓ11+Γ21
)

, (11.28)

where [
Γ11 Γ12

Γ21 Γ22

]
:=
[
Θ12−Θ11Θ

−1
21 Θ22 −Θ11Θ

−1
21

Θ−1
21 Θ22 Θ−1

21

]
. (11.29)

This can be easily checked by substituting Equation 11.29 into Equation 11.28. Multiplying Equation 11.28
by (ΔΓ12+Γ22) from the left gives

Δ (Γ12Gr −Γ11)︸ ︷︷ ︸
:=W

= Γ21−Γ22Gr︸ ︷︷ ︸
:=U

. (11.30)

Consistency of experimental data Gr( jω1), . . . , Gr( jωM ) and uncertainty model is equivalent to the
existence of a transfer function matrix Δ(s) ∈D1 that solves Equation 11.30 for ω1, . . . ,ωM . Clearly, a
necessary condition for this is that the system of linear equations over C

ΔiW( jωi)= U( jωi) (11.31)

has a solutionΔi with σ̄[Δi]< l(ωi) for each i ∈ {1, . . . , M}. Using interpolation theory, it has been shown
in Boulet and Francis (1994) that this condition is also sufficient∗. If suitableΔi exist, one can always find
a stable transfer function matrix Δ(s) such that Δ( jωi)=Δi , i = 1, . . . , M, and σ̄[Δ( jω)]< l(ω) for all
ω ∈ IR.

11.5 Further Reading

Any book on robust control contains information on plant model uncertainty. We especially recommend
Vidyasagar (1985), McFarlane and Glover (1989), Lunze (1989), Glad and Ljung (2000), and Skogestad
and Postlethwaite (2005). Parts of this chapter are based on Raisch (1994). See also Doyle et al. (1992).

∗ Their proof is for coprime factor perturbations. It carries over to the slightly more general case considered here.
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On the problem of fitting a model to frequency-response data, see Hindi et al. (2002) and Balas et al.
(2009), and from time-domain data see Volker and Engell (2005).

Several papers related to model validation can be found in a special issue of the IEEE Transactions on
Automatic Control dealing with “System identification for robust control design” (IEEE, 1992).
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12.1 Introduction

A linear system with white noise added to the input and, often but not always, white noise added to the
output is the most common model for randomness in control systems. It is the basis for Kalman filtering
and the linear quadratic Gaussian (LQG) or H2 optimal regulator. This chapter presents the basic facts
about linear systems and white noise and the intuition and ideas underlying them. Results are emphasized,
not mathematically rigorous proofs. It is assumed that the reader is familiar with the elementary aspects
of probability at, for example, the level of Leon-Garcia [1].

There are many reasons why people so commonly use a linear system driven by white noise as a model
of randomness despite the fact that no system is truly linear and no noise is truly white. One of the
reasons is that such a model is both elementary and tractable. The calculations are easy. The results can
be understood without a deep knowledge of the mathematics of stochastic processes.

A second reason is that a large class of stochastic processes can be represented as the output of a linear
system driven by white noise. The precise result can be found later in this chapter. The generality and
tractability of this model can be quite dangerous because they often lead people to use it inappropriately.
Some of the limitations of the model will also be discussed.

Scalar discrete-time stochastic processes are described first, because this is the simplest case. This is
followed by a discussion of the ways single-input single-output (SISO) discrete-time linear systems operate

12-1
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on scalar discrete-time stochastic processes. Vector discrete-time stochastic processes and multiple-input
multiple-output (MIMO) linear systems, a notationally more difficult but conceptually identical situation,
are then briefly covered.

The second half of this chapter describes continuous-time stochastic processes and linear systems in
the same order as was used for discrete time.

12.2 Discrete Time

The only difference between an n-dimensional vector random variable and a scalar discrete-time stochastic
process over n time steps is in how they are interpreted. Mathematically, they are identical. As an aid to
understanding discrete-time stochastic processes, this equivalence will be emphasized in the following.

12.2.1 Basics

The usual precise mathematical definition of a random variable [2,3,9] is unnecessary here. It is sufficient
to define an n-dimensional random variable by means of its probability density function.

Definition 12.1:

An n-dimensional random variable, denoted x = [x1 x2 . . . xn]′, takes values x ∈ Rn according to a proba-
bility that can be determined from the probability density function (pdf) px(x).

Unfortunately, the notation needed to describe stochastic processes precisely is very complicated.
Thus, it is important to recognize that bold letters always denote random variables while the values
that may be taken by a random variable are denoted by standard letters. For example, x is a random
variable that may take values x. Underlined lower case letters will always denote vectors or discrete-time
stochastic processes. Underlined capital letters will denote matrices. A list of all the notation used in this
chapter appears at the end of the chapter. The reader is assumed to know the basic properties of pdfs.

Definition 12.2:

A scalar discrete-time stochastic process over n time steps, x(1), x(2), . . . , x(n), denoted x, takes values
x(k) ∈ R, where R denotes the real numbers and k = 1, 2, . . . , n, according to a probability that can be
determined from the pdf px(x).

The equivalence of the two definitions is obvious once x(1), x(2), . . . , x(n) is written as a vector
[x(1) x(2) . . . x(n)]′ = [x1 x2 . . . xn]′, where ′ denotes the transpose. The equivalence is emphasized by
using the same notation for both. The context will make it clear which is meant whenever it matters.

It is important to be able to specify the relationships among a collection of random variables. A simple
special case is that they are completely unrelated.

Definition 12.3:

The n-vector random variable (equivalently, discrete-time stochastic process) x, is composed of n independent
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random variables x1, x2, . . . , xn if and only if their joint pdf has the form

px(x)=
n∏

k=1

pxk (xk)= px1 (x1)px2 (x2) . . . pxn (xn). (12.1)

Independence is an extreme case. More typically, and more interestingly, the individual elements of a
vector random variable or a scalar discrete-time stochastic process are related. One way to characterize
these relationships is by means of the conditional pdf, px1|x2

(x1|x2). When px2
(x2) �= 0, the conditional

pdf is given by

px1|x2
(x1|x2)= px(x)

px2
(x2)

, (12.2)

where x1 is the m− vector [x1 x2 . . . xm]′; x2 is the (n−m)− vector [xm+1 xm+2 . . . xn]′; x is the n−
vector [x1 x2 . . . xn]′; and the xis have the same dimensions as the corresponding xis. It is often possible to
avoid working directly with pdfs, especially in the study of linear systems. Instead, one uses expectations.

12.2.2 Expectation

Definition 12.4:

The expected value, expectation, or mean, of a scalar random variable, x, is denoted by E(x) or m and
given by

m
Δ= E(x)

Δ=
∫ ∞

−∞
xpx(x) dx. (12.3)

Applying Definition 12.4 to the scalar random variable x(k), the kth element of the scalar discrete-time
stochastic process, x, gives

m(k)
Δ= E(x(k))=

∫ ∞

−∞
· · ·
∫ ∞

−∞
x(k)px(x)dx1dx2 . . . dxn. (12.4)

Note that the integrations over x�, � �= k, simply give the necessary marginal density px(k)(x(k)).
The computation in Equation 12.4 can be repeated for all k = 1, 2, . . . , n and the result is organized as

an n-vector
E(x)= [E(x(1)) E(x(2)) . . . E(x(n))]′. (12.5)

One can also take the expectation with respect to functions of x. Two of these are particularly important.

Definition 12.5:

The covariance of the scalar random variables, xk and x�, is denoted by rk�, and given by

rk�
Δ= E((xk −m(k))(x�−m(�)))=

∫ ∞

−∞

∫ ∞

−∞
(xk −m(k))(x�−m(�))pxkx� (xk , x�)dxkdx�. (12.6)

Definition 12.5 can be applied to each pair x(k)x(�), k, �= 1, 2, . . . , n of elements of the discrete-time
scalar stochastic process x. The result is a collection of n2 elements rk�, k, �= 1, 2 . . . n. It is conventional
to emphasize the time dependence by defining

r(k, �)
Δ= rk�. (12.7)
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It should be obvious from Equation 12.6 that

r(k, �)= r(�, k) for all k, � (12.8)

and that (because px(x)≥ 0 for all x),

r(k, k)≥ 0 for all k. (12.9)

In the context of discrete-time stochastic processes, r(k, �) is known as the autocovariance function of
the stochastic process x. It can be helpful, in trying to understand the properties of the autocovariance
function, to write it as a matrix.

R =

⎡
⎢⎢⎢⎣

r(1, 1) r(1, 2) . . . r(1, n)
r(2, 1) r(2, 2)

...
. . .

...
r(n, 1) . . . r(n, n)

⎤
⎥⎥⎥⎦ . (12.10)

In the context of n-vector random variables, the matrix R is known as the covariance matrix. The
autocovariance will be discussed further subsequently. Another important expectation will be defined
first.

Definition 12.6:

The characteristic function of a scalar random variable, x, is denoted by fx(ω) and given by

fx(ω)
Δ= E(e jωx)=

∫ ∞

−∞
e jωxpx(x) dx, (12.11)

where
j
Δ=√−1.

Note that fx(ω) is a deterministic function of ω, not a random variable. Note also that fx(−ω) is the
Fourier transform of px(x) and is thus equivalent to px(x) in the same way that Fourier transform pairs
are usually equivalent; there is a unique correspondence between a function and its transform.

The generalization to the case of n-vector random variables or discrete-time stochastic processes over
n time steps is as follows.

Definition 12.7:

The characteristic function of an n-vector random variable (or discrete-time stochastic process), x, is denoted
fx(ω) and given by

fx(ω)= E

⎛
⎝e

j
n∑

k=1
xkωk

⎞
⎠= E(e jx′ω). (12.12)

The characteristic function is particularly useful for studying the effect of linear mappings on a stochas-
tic process. As an example, consider the operation of an m× n real matrix L on the n-vector random
variable x.

Let y = Lx;

fy(ω)= E(e jω′y)= E(e jω′Lx)= E(e j(L′ω)′x)= fx(L′ω). (12.13)
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12.2.3 Example: Discrete-Time Gaussian Stochastic Processes

Definition 12.8:

An n-vector random variable (or discrete-time stochastic process), x, is a Gaussian (normal) random variable
(discrete-time stochastic process) if and only if it has the n-dimensional Gaussian (normal) pdf

px(x)= 1

(2π)n/2(detR)1/2
e−

1
2 (x−m)′R−1(x−m), (12.14)

where

m= E(x),

R = E((x−m)(x−m)′), the covariance matrix of x.

The definition implies that R is symmetric (R = R′, see Equations 12.8 and 12.10 and that R must be
positive definite (y′Ry > 0 for all n-vectors y �= 0 and often indicated by R > 0).

It is easy to demonstrate that the characteristic function of the n-vector Gaussian random variable, x,
with mean m and covariance matrix R is

fx(ω)= e jω′m− 1
2ω

′Rω. (12.15)

Any n-vector random variable or stochastic process that has a characteristic function in the form
of Equation 12.15 is Gaussian. In fact, some authors [2] define a scalar Gaussian random variable by
Equation 12.15 with m and R scalars, rather than by Equation 12.14. The reason is that Equation 12.15
is well defined when R = 0, whereas Equation 12.14 blows up. A scalar Gaussian random variable x with
variance R = 0 and mean m makes perfectly good sense. It is the deterministic equality x =m.

One other special case of the n-vector Gaussian random variable is particularly important. When
rk� = 0 for all k �= �, R is a diagonal matrix. The pdf becomes

px(x)= 1

(2π)n/2r1/2
11 r1/2

22 . . . r1/2
nn

e
− 1

2

(
(x1−m1)2

r11
+ (x2−m2)2

r22
+···+ (xn−mn)2

rnn

)

=
(

1√
2πr1/2

11

e−
1
2

(x1−m1)2

r11

)(
1√

2πr1/2
22

e−
1
2

(x2−m2)2

r22

)
. . .

(
1√

2πr1/2
nn

e
1
2

(xn−mn)2
rnn

)

= px1 (x1)px2 (x2) . . . pxn (xn).

(12.16)

In other words, the xk are independent random variables. It is an important property of Gaussian
random variables that they are independent if and only if their covariance matrix is diagonal, as has just
been proven.

Finally, the characteristic function will be used to prove that if y = Lx, where L is an m× n real matrix
and x is an n-vector Gaussian random variable with mean m and covariance R, then y is an m-vector
Gaussian random vector with mean Lm and covariance LRL′. The proof is as follows:

y = Lx,

fy(ω)= fx(L′ω)

by Equation 12.15

= ej(L′ω)′m− 1
2 (L′ω)′R(Lω) = e jω′Lm− 1

2ω
′LRL′ω = e jω′(Lm)− 1

2ω
′(LRL′)ω. (12.17)

Finally, the uniqueness of Fourier transforms (characteristic functions), and the fact that Equation 12.17
is the characteristic function of an m-vector Gaussian random variable with mean Lm and covariance
matrix LRL′, completes the proof.
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12.2.4 Stationarity, Ergodicity, and White Noise

Several important properties of a discrete-time stochastic process are, strictly speaking, properly defined
only for processes for which k = · · ·−2,−1, 0, 1, 2, . . . (i.e.,−∞< k <∞).

Let

x = [. . . x−2 x−1 x0 x1 x2 . . .]′ � x(−∞,∞) (12.18)

denote either the scalar discrete-time stochastic process on the interval −∞< k <∞ or the equiva-
lent infinite-dimensional vector random variable. It is difficult to visualize and write explicitly the pdf
for an infinite-dimensional random variable, but that is not necessary. The pdfs for all possible finite-
dimensional subsets of the elements of x completely characterize the pdf of x. Similarly, E(x)=m is
computable term by term from the xi taken one at a time and E((x−m)(x−m)′)= R is computable
from all pairs xi , xj taken two at a time.

Example 12.1:

Let x be a Gaussian scalar discrete-time stochastic process with mean E(xk )=mk = 0 for all k,−∞<
k <∞ and covariance

E(xk x�)= r(k, �)=

⎧⎪⎨
⎪⎩

1 k = �

1/2 |k− �| = 1

0 otherwise.

Note that this completely describes the pdf of x even though x is infinite-dimensional.

This apparatus makes it possible to define two forms of time-invariance for discrete-time stochastic
processes.

Definition 12.9:

A scalar discrete-time stochastic process x, defined on−∞< k <∞ is stationary if and only if

Pxk1 , xk2 , ..., xkn
(xk1 , xk2 , . . . , xkn )

= Pxk1+kp , xk2+kp , ..., xkn+kp
(xk1+kp , xk2+kp , . . . , xkn+kp )

(12.19)

for all possible choices−∞< k�, kp <∞, �= 1, 2, . . . , n and all finite n.

The region of definition of stochastic processes defined on (−∞,∞) will be emphasized by using the
notation x(−∞,∞) to denote such processes.

It can be difficult to verify Definition 12.9. There is a weaker-and-easier-to-use form of stationarity. It
requires a preliminary definition.

Definition 12.10:

A scalar discrete-time stochastic process, x, is a second-order process if, and only if, E(x2
k ) <∞ for all

k,−∞< k <∞.
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Definition 12.11:

A second-order scalar discrete-time stochastic process, x(−∞,∞) is wide-sense stationary if, and only if, its
mean m and autocovariance r(k, �) satisfy

m(k)=m, a constant for all k, −∞< k <∞, (12.20)

r(k, �)= r(k+ i, �+ i) for all k, �, i, −∞< k, �, i <∞. (12.21)

It is customary to define

r(k)
Δ= r(k+ �, �) for all k, �, −∞< k, � <∞. (12.22)

It is obvious that a stationary discrete-time stochastic process is also wide-sense stationary because the
invariance of the pdfs implies invariance of the expectations. Because the pdf of an n-vector Gaussian
random variable is completely defined by its mean, m, and covariance, R, a scalar wide-sense Gaussian
stationary discrete-time stochastic process is also stationary.

The apparatus needed to define discrete-time white noise is now in place.

Definition 12.12:

A scalar second-order discrete-time stochastic process, x(−∞,∞), is a white noise process if and only if

m(k)= E(xk)= 0 for all k, −∞< k <∞, (12.23)

r(k)= E(x�+kx�)= rδ(k) for all −∞< k, � <∞, (12.24)

where

r ≥ 0

and

δ(k)=
{

1 k = 0

0 otherwise.
(12.25)

If, in addition, xk is Gaussian for all k, the process is Gaussian white noise. An explanation of the term
“white noise” requires an explanation of transforms of stochastic processes. This will be forthcoming
shortly. First, the question of estimating the pdf will be introduced.

In the real world of engineering, someone has to determine the pdf of a given random variable or
stochastic process. The typical situation is that one has some observations of the process and some prior
knowledge about the process. For example, the physics often indicates that a discrete-time stochastic
process, x,−∞< k <∞, is wide-sense stationary—at least as an adequate approximation to reality. If
one is content with second-order properties of the process, this reduces the problem to determining m
and r(k),−∞< k <∞, from observations of the process. The discussion here will be limited to this
important, but greatly simplified, version of the general problem.

In order to have a precisely specified problem with a well-defined solution, assume that the data available
are one observation (sample) of the stochastic process over the complete time interval−∞< k <∞. This
is certainly impossible for individuals having a finite lifespan, but the idealized mathematical result based
on this assumption clarifies the practical situation.
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Define

m� = 1

2�

�∑
k=−�

xk , (12.26)

r�(k)= 1

2�

�∑
i=−�

xi+kxi . (12.27)

Note that m� and r�(k) are denoted by bold letters in Equations 12.26 and 12.27. This indicates that
they are random variables, unlike the expectations m and r(k), which are deterministic quantities. It can
then be proved that

lim
�→∞E[(m�−m)2] = 0, (12.28)

provided
lim
|k|→∞

r(k)= 0. (12.29)

A similar result holds for r�(k) (see [2, pp. 77–80]).
In order to apply this result to a real problem one must know, a priori, that Equation 12.29 holds.

Again, this is often known from the physics.
The convergence result in Equation 12.28 is fairly weak. It would be preferable to prove that m�

converges to m almost surely (with probability 1). It is possible to prove this stronger result if the process
is ergodic as well as stationary. This subject is both complicated and technical. See [2,4] for engineering-
oriented discussions and [3] for a more mathematical introduction.

12.2.5 Transforms

In principle, one can apply any transform that is useful in the analysis of discrete-time signals to discrete-
time stochastic processes. The two obvious candidates are the Z-transform and the discrete Fourier
transform [5]. There is a slight theoretical complication. To see this, consider the discrete Fourier trans-
form of the discrete-time stochastic process x(−∞,∞)

xf (Ω)
Δ=

∞∑
k=−∞

x(k)e−jΩk . (12.30)

Note that xf (Ω) is an infinite-dimensional random vector for each fixed value ofΩ (it is a function of the
random variables x(k); so it is a random variable) and xf (Ω) is defined for allΩ,−∞<Ω<∞, not just
integer values ofΩ. In other words, xf (Ω) is a stochastic process in the continuous variableΩ. As is usual
with the discrete Fourier transform, xf (Ω) is periodic inΩ with period 2π.

A very important use of transforms in the study of discrete-time stochastic processes is the spectral
density function.

Definition 12.13:

Let x(−∞,∞) be a wide-sense stationary scalar discrete-time stochastic process with mean m and autocovari-
ance function r(k). Assume

∑∞
k=−∞ |r(k)|<∞. Then the discrete Fourier transform of the autocovariance

function r(k),

s(Ω)
Δ=

∞∑
k=−∞

r(k)e−jΩk , (12.31)

is well defined and known as the spectral density function of x(−∞,∞).
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u
S

System

Input Output

y

FIGURE 12.1 A symbolic representation of a discrete-time linear system, S, with input u= [. . . u−2 u−1 u0 u1 . . .]′
and output y = [. . . y−1 y0 y1 . . .]′.

Note, as the notation emphasizes, that no part of Equation 12.31 is random. Both the spectral density
and the autocovariance are deterministic descriptors of the stochastic process, x(−∞,∞).

The inverse of Equation 12.31 is the usual inverse of the discrete Fourier transform. That is,

r(k)= 1

2π

∫
2π

s(Ω)e jΩkdΩ, (12.32)

where
∫

2π means the integral is taken over any interval of duration 2π.
When m= 0,

r(0)= E(x2
k )=

∫
2π

s(Ω)
dΩ

2π
. (12.33)

If x(−∞,∞) is a voltage, current, or velocity, then r(0) can be interpreted as average power, at least to within
a constant of proportionality. With this interpretation of r(0), s(Ω0) (where Ω0 is any fixed frequency)
must be the average power per unit frequency in x(−∞,∞) at frequencyΩ0 [2]. This is why it is called the
spectral density.

Example 12.2:

Suppose x(−∞,∞) is a white-noise process (see Definition 12.12) with r(k)= δ(k). The spectral density
function for this process is

s(Ω)=
∞∑

k=−∞
δ(k)e−jΩk = 1. (12 34)

Hence it is called “white noise.” Like white light, all frequencies are equally present in a white noise
process. A reasonable conjecture is that it is called “noise" because, in the early days of radio and
telephone, such a stochastic process was heard as a recognizable and unwanted sound.

12.2.6 Single-Input Single-Output Discrete-Time Linear Systems

It is convenient, both pedagogically and notationally, to begin with SISO discrete-time linear systems
described by their impulse response, h(k, �). The notation is shown in Figure 12.1.

Definition 12.14:

The impulse response of a SISO discrete-time linear system is denoted by h(k, �), were h(k, �) is the value of
the output at instant k, when the input is a unit impulse at instant �.

The response of a linear system S to an arbitrary input, u(−∞,∞), is then given by a convolution sum

y(k)=
∞∑

�=−∞
h(k, �)u(�); −∞< k <∞. (12.35)



�

�

�

�

� �

12-10 Control System Advanced Methods

The crucial point is that S is a linear map, as is easily proved from Equation 12.35. Linear maps take
Gaussian stochastic processes (random variables) into Gaussian stochastic processes. A special case of
this, when S can be written as an n×m matrix, was proved earlier (Equation 12.17).

Example 12.3:

Consider a SISO discrete-time linear system, S, with input, u(−∞,∞), a discrete-time Gaussian stochas-
tic process having mean mu(k), and autocovariance ru(k, �). Knowing that the system is linear and
that the input is Gaussian, the output, y(−∞,∞), must be a Gaussian stochastic process; what are its
mean and autocovariance? They can be calculated element by element:

my (k)= E(y(k))= E

⎛
⎝ ∞∑

�=−∞
h(k, �)u(�)

⎞
⎠=

∞∑
�=−∞

h(k, �)E(u(�))

=
∞∑

�=−∞
h(k, �)mu(�); −∞< k <∞, (12.36)

ry (k, �)= E((y(k)−mu(k))(y(�)−mu(�)))

= E

⎛
⎝
⎛
⎝ ∞∑

i=−∞
h(k, i)(u(i)−mu(i))

⎞
⎠
⎛
⎝ ∞∑

j=−∞
h(�, j)(u( j)−mu( j))

⎞
⎠
⎞
⎠

=
∞∑

i=−∞

∞∑
j=−∞

h(k, i)h(�, j)E
((

u(i)−mu(i)
) (

u( j)−mu( j)
))

=
∞∑

i=−∞

∞∑
j=−∞

h(k, i)h(�, j)ru(i, j). (12.37)

Of course, not every stochastic process is Gaussian. However, careful review of the previous example
shows that Equations 12.36 and 12.37 are valid formulas for the mean and autocovariance of y(−∞,∞)

whenever u(−∞,∞) is a second-order scalar discrete-time stochastic process with mean mu(k) and autoco-
variance ru(i, j) and the system S is asymptotically stable. This is a very important point. The second-order
properties of a stochastic process are easily computed. The calculations are even simpler if the input pro-
cess is wide-sense stationary and the linear system is time-invariant.

Example 12.4:

Consider a SISO discrete-time linear time-invariant (LTI) system, S, with input, u(−∞,∞), a wide-sense
stationary second-order discrete-time stochastic process having mean mu and autocovariance ru(k).

Denote the impulse response of S by h(k), where h(k)
Δ= h(k+ �, �) and assume that S is asymptotically

stable.

my (k)= E(y(k))= E

⎛
⎝ ∞∑

�=−∞
h(k− �)u(�)

⎞
⎠=

∞∑
�=−∞

h(k− �)E(u(�))

=
∞∑

�̂=−∞
h(�̂)E(u(k− �̂))= αmu,

(12.38)

where

α=
∞∑

�̂=−∞
h(�̂).
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Similarly, using Equation 12.37, and defining �̂= k− i and k̂ = �− j

ry (k, �)=
∞∑

i=−∞

∞∑
j=−∞

h(k− i)h(�− j)ru(i− j)=
∞∑

�̂=−∞

∞∑
k̂=−∞

h(�̂)h(k̂)ru(k− �− �̂+ k̂). (12.39)

Note that the convolution sum in Equation 12 39 depends only on the difference k− �. Thus, Equa-
tions 12 38 and 12.39 prove that my (k)=my , a constant, and that ry (k, �)= ry (k− �)= ry (k̄), where

k̄
Δ= k− �. This proves that y(−∞,∞) is also wide-sense stationary.

Although the computations in Equation 12.39 still appear to be difficult, they clearly involve determin-
istic convolution. It is well known that the Fourier transform can be used to simplify such calculations. The
impulse responses of many discrete-time LTI systems, h(k),−∞< k <∞, have discrete Fourier trans-
forms, hf (Ω), 0≤Ω< 2π. The exceptions include unstable systems. Assume hf (Ω) exists in the preceding
example and that u(−∞,∞) is wide-sense stationary with mean mu and spectral density function s(Ω).
From the definition of the discrete Fourier transform

hf (Ω)=
∞∑

k=−∞
h(k)e−jΩk , (12.40)

it is evident that Equation 12.38 becomes

my = hf (0)mu. (12.41)

Using the inversion formula (Equation 12.32) in Equation 12.39 gives

ry(k)=
∞∑

�=−∞

∞∑
i=−∞

h(�)h(i)

(
1

2π

∫
2π

su(Ω)e jΩ(k−�+i)dΩ

)

=
∫

2π

∞∑
i=−∞

h(i)su(Ω)e jΩ(k+i)

( ∞∑
�=−∞

h(�)e−jΩ�

)
dΩ

2π

=
∫

2π

( ∞∑
i=−∞

h(i)e jΩi

)
hf (Ω)su(Ω)e jΩk dΩ

2π

=
∫

2π
hf (−Ω)hf (Ω)su(Ω)e jΩk dΩ

2π

=
∫

2π
|hf (Ω)|2su(Ω)e jΩk dΩ

2π
.

(12.42)

By the uniqueness of Fourier transforms, Equation 12.42 implies

sy(Ω)= |hf (Ω)|2su(Ω). (12.43)

SISO linear systems in state-space form generally have an n-vector state. When either the initial state
is random or the input is a stochastic process, this state is a vector stochastic process. The ideas and
notation for such processes are described in the following section. This is followed by a description of
linear systems in state-space form.

12.2.7 Vector Discrete-Time Stochastic Processes and LTI Systems

The vector case involves much more complicated notation but no new concepts.



�

�

�

�

� �

12-12 Control System Advanced Methods

Definition 12.15:

An m-vector discrete-time stochastic process over n time steps, denoted X
Δ= {[x1(k) x2(k) . . . xm(k)]′; k =

1, 2, . . . n}, takes values X= {[x1(h) x2(k) . . . xm(k)]′; k = 1, 2, . . . , n} according to a probability that can
be determined from the pdf pX(X).

It can be helpful to visualize such a process as an m× n matrix

X =

⎡
⎢⎢⎢⎣

x1(1) x1(2) . . . x1(n)
x2(1) x2(2) . . . x2(n)

...
...

. . .
...

xm(1) xm(2) . . . xm(n)

⎤
⎥⎥⎥⎦ . (12.44)

The notation is that bold capital underlined letters denote vector stochastic processes.
All of the scalar results apply, with obvious modifications, to the vector case. For example, E(X) can be

computed element by element from Definition 12.4.

E(x�(k))=
∫ ∞

−∞
xpx�(k)(x) dx (12.45)

for all �= 1, 2, . . . , m, k = 1, 2, . . . n (see Equation 12.4).
Then, the nm results of Equation 12.45 can be organized as an m-vector over n time steps, m(k)=

[m1(k) m2(k) . . . mm(k)]′, where
m�(k)= E(x�(k)). (12.46)

Similarly, the autocovariance of X in Equation 12.44 can be computed element by element using
Definition 12.5 and Equation 12.7. The results are conventionally organized as an autocovariance matrix
at each pair of times. That is

R(k, �)=

⎡
⎢⎢⎢⎣

r11(k, �) r12(k, �) . . . r1m(k, �)
r21(k, �) r22(l, �) . . . r2m(k, �)

...
...

. . .
...

rm1(k, �) rm2(k, �) . . . rmm(k, �)

⎤
⎥⎥⎥⎦ , (12.47)

where
rij(k, �)

Δ= E((xi(k)−mi(k))(xj(�)−mj(�))).

Example 12.5:

Discrete-time m-vector white noise: Any white noise must be wide-sense stationary and have zero
mean. Thus, letting ξ(k) denote an m-vector white noise at the instant k,

mξ(k)= E(ξ(k))= 0 for all k,−∞< k <∞,

Rξ(k, �)= E(ξ(k)ξ′(�))= 0 for all k �= �,−∞< k, � <∞,
(12.48)

because white noise must have autocovariance equal to zero except when k = �. When k = �, the
autocovariance can be any positive-semidefinite matrix. Thus,

Rξ(k, �)= Rξδ(k− �), (12.49)

where Rξ can be any positive-semidefinite matrix (y′Rξy ≥ 0 for all m-vectors y).
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Finally, as is customary with stationary processes,

Rξ(k)
Δ= Rξ(k+ �, �)= Rξδ(k). (12.50)

Reading vector versions of all the previous results would be awfully tedious. Thus, the vector versions
will not be written out here. Instead, an example of the way linear systems operate on vector discrete-time
stochastic processes will be presented.

The previous discussion of linear systems dealt only with impulse responses and, under the added
assumption of time invariance, Fourier transforms. Initial conditions were assumed to be zero. The
following example includes nonzero initial conditions and a state-space description of the linear system.
The system is assumed to be LTI. The time-varying case is not harder, but the notation is messy.

Example 12.6:

Let x0 be an n-dimensional second-order random variable with mean mx0
and covariance Rx0

. Let
ξ and θ be, respectively, m-dimensional and p-dimensional second-order discrete-time stochastic
processes on 0≤ k ≤ kf . Let E(ξ)= 0, E(θ)= 0, E(ξ(k)ξ′(�))=Ξδ(k− �), E(θ(k)θ′(�))=Θδ(k− �), and
E(ξ(k)θ′(�))= 0 for all 0≤ k, �≤ kf . Strictly speaking,Ξ andΘ are not white-noise processes because
they are defined only on a finite interval. However, in the context of state-space analysis it is standard
to call them white noise processes. Finally, assume E((x0−mx0

)ξ′(k))= 0 and E((x0−mx0
)θ′(k))= 0

for all 0≤ k ≤ kf .
Suppose now that the n-vector random variable x(k+ 1) and the p-vector random variable y(t)

are defined recursively for k = 0, 1, 2, . . . , kf by

x(k+ 1)= Ax(k)+ Lξ(k); x(0)= x0, (12.51)

y(k)= Cx(k)+ θ(k), (12.52)

where A is a deterministic n× n matrix, L is a deterministic n×m matrix, and C is a deterministic p× n
matrix. What can be said about the stochastic processes X = {x(k); k = 0, 1, 2, . . . , kf + 1} and Y =
{y(k); k = 0, 1, 2, . . . , kf }?

The means and autocovariances of X and Y are easily computed. For example,

E(x(k+ 1))= E(Ax(k)+ Lξ(k))= AE(x(k))+ LE(ξ(k))= AE(x(k)). (12.53)

Similarly,
E(y(k))= CE(x(k)). (12 54)

Note that Equation 12 53 is a simple deterministic recursion for E(x(k+ 1)) starting from E(x(0))=
mx0

. Thus,

E(x(k))=mx (k)= Ak mx0
, (12.55)

E(y(k))= CAk mx0
. (12.56)

Similarly, recursive equations for the autocovariances of X and Y can be derived. Because the
expressions for Y are just deterministic algebraic transformations of those for X, only those for X are
given here.

Rx (k+ 1, k+ 1) � E((x(k+ 1)−mx (k+ 1))(x(k+ 1)−mx (k+ 1))′)
= E((A(x(k)−mx (k))+ Lξ(k))(A(x(k)−mx (k))+ Lξ(k))′)
= AE((x(k)−mx (k))(x(k)−m(k))′) A′ + LΞL′ (12.57)

= ARx (k, k)A′ + LΞL′,
Rx (k+ 1, k) � E((x(k+ 1)−mx (k+ 1))(x(k)−mx (k))′)= ARx (k, k). (12.58)
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Note that Equations 12.57 and 12.58 use the assumption that E((x(k)−mx (k))ξ(�))= 0 for all 0≤
k, �≤ kf . Furthermore, the recursion in Equation 12.57 begins with Rx (0, 0)= Rx0

.

12.3 Continuous Time

Continuous-time stochastic processes are technically much more complicated than discrete-time stochas-
tic processes. Fortunately, most of the complications can be avoided by the restriction to second-order
processes and linear systems. This is what will be done in this article because linear systems and second-
order processes are by far the most common analytical basis for the design of control systems involving
randomness.

A good understanding of the discrete-time case is helpful because the continuous-time results are often
analogous to those in discrete time.

12.3.1 Basics

It is very difficult to give a definition of continuous-time stochastic process that is both elementary and
mathematically correct. For discrete-time stochastic processes every question involving probability can
be answered in terms of the finite-dimensional pdfs. For continuous-time stochastic processes the finite-
dimensional pdfs are not sufficient to answer every question involving probability. See [2, pp. 59–62] for
a readable discussion of the difficulty.

In the interest of simplicity and because the questions of interest here are all answerable in terms of the
finite-dimensional pdfs, the working definition of a continuous-time stochastic process will be as follows.

Definition 12.16:

A scalar continuous-time stochastic process, denoted by x[ts ,tf ], takes values x(t) ∈ R for all real t, ts ≤
t ≤ tf , according to a probability that can be determined from the family of finite-dimensional pdfs.
px(t1),x(t2),...,x(tn)(x(t1), x(t2), . . . , x(tn)) for all finite collections of tk , tk real and all possible positive integers
n, ts ≤ tk ≤ tf k = 1, 2, . . . , n.

The essential feature of this definition is the idea of a signal that is a function of the continuous time, t,
and also random. The definition itself will not be used directly. Its main purpose is to allow the definitions
of expectation and second-order process.

12.3.2 Expectations

As for discrete-time stochastic processes, the expectation, expected value, or mean of a scalar continuous-
time stochastic process follows directly from Definitions 12.16 and 12.4.

m(t)
Δ= E(x(t))=

∫ ∞

−∞
xpx(t)(x)dx. (12.59)

Note that m(t) is defined where x[ts ,tf ] is, that is, on the interval ts ≤ t ≤ tf .
The covariance function is defined and computed for continuous-time stochastic processes in exactly

the same way as for discrete-time stochastic processes. See Equations 12.6 and 12.7.
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Definition 12.17:

The covariance function of a scalar continuous-time stochastic process x[ts ,tf ] is denoted r(t, τ) and is given by

r(t, τ)= E((x(t)−m(t))(x(τ)−m(τ))

=
∫ ∞

−∞

∫ ∞

−∞
(x−m(t))(y−m(τ))px(t),x(τ)(x, y) dx dy.

(12.60)

As in the discrete-time case, it should be obvious from Equation 12.60 that

r(t, τ)= r(τ, t) for all t, τ, ts ≤ t, τ≤ tf (12.61)

and
r(t, t)≥ 0 for all t, ts ≤ t ≤ ts. (12.62)

Because r(t, τ) is a function of two variables and not a matrix, it is necessary to extend the idea of
nonnegative definiteness to such functions in order to define and demonstrate this aspect of the “shape”
of the covariance function. The idea behind the following definition is to form every possible symmetric
matrix from time samples of r(t, τ) and then to require that all those matrices be positive semidefinite in
the usual sense.

Definition 12.18:

A real-valued function g(t, τ); t, τ ∈ R, ts ≤ t, τ≤ tf ; is positive semidefinite if, for every finite collection
t1, t2, . . . , tn; ts ≤ ti ≤ tf for i = 1, 2, . . . , n and every real n-vector α= [α1, α2, . . . , αn]′

n∑
k−1

n∑
�−1

αkα�g(tk , t�)≥ 0. (12.63)

The function g(t, τ) is positive definite if strict inequality holds in Equation 12.63 whenever t1, t2, . . . , tn

are distinct and α �= 0.
It is easy to prove that an autocovariance function, r(t, τ), must be positive semidefinite. First,

E

(
n∑

k=1

αk(x(tk)−m(tk))

)2
≥ 0 (12.64)

because the expectation of a perfect square must be ≥ 0. Then,

0≤ E

(
n∑

k=1

αk(x(tk)−m(tk))

)2

= E

(
n∑

k=1

n∑
�=1

αkα�(x(tk)−m(tk))(x(t�)−m(t�))

)

=
n∑

k=1

n∑
�=1

αkα�E((x(tk)−m(tk))(x(t�)−m(t�)))

=
n∑

k=1

n∑
�=1

αkα�r(tk , t�).
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The definition of the characteristic function in the case of a continuous-time stochastic process is
obvious from Equations 12.11, 12.59, and 12.60. Because it is generally a function of time as well as ω it
is not as useful in the continuous-time case. For this reason, it is not given here.

12.3.3 Example: Continuous-Time Gaussian Stochastic Processes

Definition 12.19:

A scalar continuous-time stochastic process x[ts ,tf ] is a Gaussian process if the collection of random variables
{x(t1), x(t2), . . . , x(tn)} is an n-vector Gaussian random variable for every finite set {t1, t2, . . . , tn; ts ≤ ti ≤
tf , i = 1, 2, . . . , n}.

It follows from Definition 12.8 in Section 12.2.3 that a Gaussian process is completely specified by its
mean

m(t)= E(x(t)) (12.65)

and autocovariance
r(t, τ)= E((x(t)−m(t))(x(τ)−m(τ))). (12.66)

Example 12.7:

Wiener process (also known as Brownian motion): Let x[0,∞) be a Gaussian process with

m(t)= 0,

r(t, τ)=min(t, τ). (12.67)

Note that the interval of definition is infinite and open at the right. This is a very minor expansion
of Definition 12.16.

The Wiener process plays a fundamental role in the theory of stochastic differential equations (see
Chapter 59); so it is worthwhile to derive one of its properties. Consider any ordered set of times
t0 < t1 < t2 < · · ·< tn.

Define
yk = xtk − xtk−1 k = 1, 2, . . . , n.

Then yk is an increment in the process x[0,∞). Consider the collection of increments

y= {yk , k = 1, 2, . . . , n}.
Because x[0,∞) is a Wiener process, each of the xtk is a Gaussian random variable (see Defini-

tion 12.19). Therefore yk , the difference of Gaussian random variables, is also a Gaussian random
variable for every k and y is an n-vector Gaussian random variable. Therefore, y is completely char-
acterized by its mean and covariance. The mean is zero. The covariance is diagonal, as can be seen
from the following calculation.

Consider, for j ≤ k− 1 (the means are zero),

E(yk yj )= E((xtk − xtk−1 )(xtj − xtj−1 ))

= E(xtk xtj )− E(xtk−1 xtj )− E(xtk xtj−1 )+ E(xtk−1 xtj−1 )

= tj − tj − tj−1+ tj−1 = 0.

A similar calculation for j ≥ k+ 1 completes the demonstration that the covariance of y is diagonal.
Because y is Gaussian, the fact that its covariance is diagonal proves that the y

k
k = 1, 2, . . . , n are

independent. This is a very important property of the Wiener process. It is usually described thus: the
Wiener process has independent increments.
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12.3.4 Stationarity, Ergodicity, and White Noise

The concepts of stationarity and wide-sense stationarity for continuous-time stochastic processes are
virtually identical to those for discrete-time stochastic processes. All that is needed is to define the
continuous-time stochastic process on the infinite interval

x(−∞,∞)
Δ= x(t) for all t,−∞< t <∞

and adjust the notation in Definitions 12.9 and 12.11. Only the latter is included here so as to emphasize
the focus on second-order processes.

Definition 12.20:

A scalar continuous-time stochastic process, x(−∞,∞), is a second-order process if and only if E(x2(t)) <∞
for all t,−∞< t <∞.

Definition 12.21:

A second-order, continuous-time stochastic process x(−∞,∞) is wide-sense stationary if and only if its mean
m(t) and covariance function r(t, τ) satisfy

m(t)=m, a constant for all t, −∞< t <∞, (12.68)

r(t, τ)= r(t+ σ, τ+ σ) for all t, τ, σ, −∞< t, τ, σ <∞. (12.69)

It is customary to define

r(t)= r(t+ τ, τ) for all t, τ, −∞< t <∞. (12.70)

The apparatus necessary to define continuous-time white noise is now in place.

Definition 12.22:

A scalar second-order continuous-time stochastic process, x(−∞,∞) is a white-noise process if and only if

m(t)= E(x(t))= 0 for all t, −∞< t <∞, (12.71)

r(t)= rδ(t), r > 0, −∞< t <∞, (12.72)

where δ(t) is the unit impulse (equivalently, the Dirac delta) function [5]. As in discrete time, the process is
Gaussian white noise if, in addition, x(t) is Gaussian for all t.

As in discrete time, it is often necessary to determine the properties of a stochastic process from
a combination of prior knowledge and observations of one sample function. In order for this to be
possible it is necessary that the process be stationary and that, in some form, averages over time of
x(t),−∞< t <∞, converge to expectations. Mathematically, this can be expressed as follows. Given a



�

�

�

�

� �

12-18 Control System Advanced Methods

stationary continuous-time stochastic process x(−∞<t<∞), one wants

lim
t→∞

1

2t

∫ t

−t
f (x(t))dt = E(f (x(0))) (12.73)

to hold for any reasonable function f (·). This is true, with some minor technical conditions for processes
that are stationary and ergodic. See [4] for an introduction to this important but difficult subject.

12.3.5 Transforms

Again, in parallel to the discrete-time case, any transform that is useful in the analysis of continuous-
time signals can be applied to continuous-time stochastic processes. The two obvious candidates are
the Laplace and Fourier transforms [5]. The most important application is the completely deterministic
Fourier transform of the autocovariance of a wide-sense stationary continuous-time stochastic process.

Definition 12.23:

Let x(−∞,∞) be a wide-sense stationary scalar continuous-time stochastic process with mean m and auto-
covariance r(t). Assume

∫∞
−∞ |r(t)|dt <∞. Then the Fourier transform of the autocovariance function

r(t),

s(ω)=
∫ ∞

−∞
r(t)e−jωt dt (12.74)

is well defined and known as the spectral density of x(−∞,∞).

The inverse of Equation 12.74 is the usual inverse of the Fourier transform.

r(t)= 1

2π

∫ ∞

−∞
s(ω)e jωtdω. (12.75)

When m= 0,

r(0)= E(x2(t))=
∫ ∞

−∞
s(ω)

dω

2π
. (12.76)

If x(−∞,∞) is a voltage, current, or velocity, then r(0) can be interpreted as average power, at least to within
a constant of proportionality. Then s(ω0), where ω0 is any fixed frequency, must be the average power
per unit frequency in x(−∞,∞) at the frequency ω0 [2]. This is why s(ω) is called the spectral density.

Example 12.8:

Suppose x(−∞,∞) is a white noise process (see Definition 12.24) with r = 1. The spectral density for
this process is

s(ω)=
∫ ∞
−∞

δ(t)e−jωt dt = 1.

Because all frequencies are equally present, as in white light, a process having s(ω)= 1 is called a
white-noise process.

12.3.6 SISO Continuous-Time Linear Systems

It is convenient to begin with linear systems described by their impulse response, h(t, τ). The notation is
shown in Figure 12.2.
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Definition 12.24:

The impulse response of a SISO continuous-time system is denoted by h(t, τ), where h(t, τ) is the value of
the output at instant t when the input is a unit impulse, δ(t− τ), at instant τ.

The response of linear system, S, to an arbitrary input, u(−∞,∞), is given by

y(t)=
∫ ∞

−∞
h(t, τ)u(τ)dτ, −∞< t <∞. (12.77)

Because the second-order properties of y(−∞,∞) are completely described by its mean and autocovari-
ance, it is worthwhile to know how to compute them from h(t, τ) and the second-order properties of
u(−∞,∞). The trick is to compute them at each time, t. That is,

my(t)
Δ= E(y(t))= E

(∫ ∞

−∞
h(t, τ)u(τ)dτ

)
.

By the linearity of integration

=
∫ ∞

−∞
E(h(t, τ)u(τ))dτ.

Because h(t, τ) is deterministic,

=
∫ ∞

−∞
h(t, τ)E(u(τ))dτ.

That is,

my(t)=
∫ ∞

−∞
h(t, τ)mu(τ)dτ, (12.78)

where
mu(t)

Δ= E(u(t)).

Similarly,

ry(t, τ)= E((y(t)−my(t))(y(τ)−my(τ)))

= E

(∫ ∞

−∞
h(t, σ1)(u(σ1)−mu(σ1))dσ1

∫ ∞

−∞
h(τ, σ2)(u(σ2)−mu(σ2))dσ2

)

= E

(∫ ∞

−∞

∫ ∞

−∞
h(t, σ1)h(τ, σ2)(u(σ1)−mu(σ1))(u(σ2)−mu(σ2))dσ1dσ2

)

=
∫ ∞

−∞

∫ ∞

−∞
h(t, σ1)h(τ, σ2)E((u(σ1)−mu(σ1))u(σ2)−mu(σ2)))dσ1dσ2

=
∫ ∞

−∞

∫ ∞

−∞
h(t, σ1, σ2)ru(σ1, σ2)dσ1dσ2,

(12.79)

u(–∞, ∞)
S

System

Input Output

y(–∞, ∞)

FIGURE 12.2 Representation of a system with input u(−∞,∞) and output y(−∞,∞).
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where

ru(t, τ)
Δ= E((u(t)−mu(t))(u(τ)−mu(τ))).

As in the discrete-time case, the Fourier transform can be used to simplify the calculations when the
linear system is also time-invariant and u(−∞,∞) is wide-sense stationary. Denote the impulse response
by h(t), where h(t)= h(t+ τ, τ). Let mu = E(u(t)), and ru(t)= E((u(t+ τ)−mu)(u(τ)−mu)). It is then
easy to show, by paralleling the argument leading to Equation 12.41, that

my = hf (0)mu, (12.80)

where

hf (ω)=
∫ ∞

−∞
h(t)e−jωtdt, the Fourier transform of h(t).

Similarly,

ry(t)=
∫ ∞

−∞
|hf (ω)|2su(ω)e jωt dω

2π
, (12.81)

where su(ω) denotes the spectral density of u(−∞,∞) (see Equation 12.74). This follows from virtually the
same argument as Equation 12.42. By the uniqueness of Fourier transforms, Equation 12.81 implies

sy(ω)= |hf (ω)|2su(ω). (12.82)

It is necessary to define the notation for n-vector continuous-time stochastic processes before describing
continuous-time systems in state-space form. Both of these are done in the following section.

12.3.7 Vector Continuous-Time Stochastic Process and LTI Systems

The vector case involves no new concepts but requires a more complicated notation. Because only second-
order stochastic processes are discussed here all that is needed is a notation for the process, its mean, and
its autocovariance.

An n-vector continuous-time stochastic process, x[t1,t2], is an n-vector random variable, x(t)=
[x1(t) x2(t) . . . xn(t)]′ at each instant of time t, t1 ≤ t ≤ t2. As throughout this chapter, vectors are denoted
by lower-case underlined letters. Random variables and stochastic processes are bold letters.

The mean of a vector stochastic process is defined at each instant of time; the autocovariance is defined
for paired times. Thus, when x(t) is an n-vector random variable defined for all t, t1 ≤ t ≤ t2 (i.e., x[t1,t2]
is an n-vector stochastic process)

mx(t)= E(x(t)) t1 ≤ t ≤ t2 (12.83)

will denote its mean and

Rx(t, τ)= E((x(t)−mx(t))(x(τ)−mx(τ))′) t1 ≤ t, τ≤ t2 (12.84)

will denote its autocovariance. Note the transpose in Equation 12.84 and the capital Rx . This empha-
sizes that the autocovariance is an n× n matrix for each pair t and τ. As in the discrete-time case,
Equations 12.83 and 12.84 are evaluated element by element. Thus,

mxi (t)= E(xi(t)) i = 1, 2, . . . , n, (12.85)

rxij (t, τ)= E((xi(t)−mxi (t))(xj(τ)−mxj (τ))). (12.86)
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Example 12.9:

Continuous-time n-vector white noise: Any white noise must be wide-sense stationary and have zero
mean. Letting ξ(t) denote an n-vector continuous-time white noise at the instant t,

mξ(t)= E(ξ(t))= 0 for all t, −∞< t <∞, (12.87)

Rξ(t, τ)= E(ξ(t)ξ′(τ))= 0 for all t �= τ −∞< t, τ<∞ (12.88)

because the autocovariance of white noise must be equal to 0 except when t = τ. At t = τ, the
autocovariance reduces to a covariance matrix (denoted by Ξ, which must be positive semidefinite
because it is a covariance matrix) times a unit impulse. A rigorous derivation of this is hard but the
analogy to Equation 12.49 should be convincing. Thus, for all−∞< t, τ<∞

Rξ(t, τ)=Ξδ(t− τ), (12.89)

whereΞ is any positive semidefinite matrix.
Now that vector continuous-time stochastic processes and vector white noise have been intro-

duced it is possible to develop the state-space description of linear continuous-time systems driven
by continuous-time stochastic processes. For convenience, only the case of LTI systems is described.

Example 12.10:

LTI system and white noise: Let x0 be an n-dimensional second-order random variable with mean
mx0

and covariance Rx0
. Let ξ[0,∞) and θ[0,∞) be q- and p-dimensional wide-sense stationary second-

order continuous-time stochastic processes satisfying, for all t ∈ [0,∞)

E(ξ(t))= 0 and E(θ(t))= 0, (12.90)

Rξ(t)= E(ξ(t+ τ)ξ′(τ))=Ξδ(t), (12.91)

Rθ(t)= E(θ(t+ τ)θ′(τ))=Θδ(t), (12.92)

whereΞ andΘ are symmetric positive semidefinite matrices of appropriate dimension.

Strictly speaking ξ[0,∞)
and θ[0,∞) are not white noise processes because they are defined only in [0,∞).

However, in the context of state-space analysis it is standard to call them white-noise processes. Obviously,
what matters is not the name, but Equations 12.90 through 12.92.

For convenience, assume that

E((x0−mx0
)ξ′(t))= 0, (12.93)

E((x0−mx0
)θ′(t))= 0, (12.94)

and
E(ξ(t)θ′(τ))= 0 for all t, τ ∈ [0,∞). (12.95)

The assumptions in Equations 12.93 through 12.95 remove some terms from the subsequent expres-
sions, thereby saving space and the effort to compute them, but are otherwise inessential.

Define the n- and p-vector random variables x(t) and y(t) by

dx

dt
(t)= Ax(t)+Bu(t)+ Lξ(t); x(0)= x0, (12.96)

y(t)= Cx(t)+ θ(t), (12.97)

where u(t) is a deterministic m-vector, the control, and all the matrices are real, deterministic, and have
the appropriate dimensions (that is, A is n× n, B is n×m, C is p× n, and L is n× q). The structure of
this system is shown in Figure 12.3.
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It follows from Equations 12.96 and 12.97 that x[0,∞) and y[0,∞)
are vector continuous-time stochastic

processes. Assuming that u(t) is bounded for all t guarantees that x[0,tf ) and y[0,tf )
are second-order for

all finite tf . What are their second-order statistics?
To compute the mean of x(t) take the expected value of both sides of Equation 12.96. That is,

E(ẋ(t))= E(Ax(t)+Bu(t)+ Lξ(t)).

Interchanging the order of expectation and d/dt (both are linear; so their order can be reversed) and
using linearity on the right-hand side of the equation gives

d

dt
E(x(t))= AE(x(t))+Bu(t); E(x(0))=mx0

(12.98)

or
ṁx(t)= Amx(t)+Bu(t); mx(0)=mx0

.

This is just a deterministic ordinary differential equation in state-space form for E(x(t)). Once E(x(t))
has been computed, taking expectation of both sides of Equation 12.97 gives

E(y(t))= CE(x(t)). (12.99)

This is a deterministic algebraic equation.
A derivation of the autocovariance of x[0,tf ) is beyond the scope of this chapter. A derivation can be

found in [6, pp. 111–113].
The result is that

Rx(t, t)= E((x(t)−mx(t))(x(t)−mx(t))′)

satisfies the differential equation

Ṙx(t, t)= ARx(t, t)+Rx(t, t)A′ + LΞL′ (12.100)

with initial condition Rx(0, 0)= Rx0
and Rx(t, τ), with t ≥ τ, satisfies the differential equation

∂Rx(t, τ)

∂t
= ARx(t, τ) (12.101)

u(t)
State
x(t)x(t) y(t)

Control

ξ(t) Process noise

Measured
output

Sensor noise
θ(t)

+

+ +
+

.

+

+ +B

A

C

L

∫

FIGURE 12.3 Block diagram of the LTI system described by Equations 12.96 and 12.97.
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while Rx(τ, t), again with t ≥ τ, satisfies

∂Rx(τ, t)

∂t
= Rx(τ, t)A′. (12.102)

The initial condition for both Equations 12.102 and 12.103 is Rx(τ, τ), computed from Equation 12.100.

12.4 Conclusions

The second-order properties of many zero-mean stochastic processes can be reproduced by an LTI system
with white-noise input. The precise result for scalar continuous-time systems is the following [2]. Let s(ω)
be a real nonnegative absolutely integrable function such that

∫ ∞

−∞
|ln s(ω)|
1+ω2 dω<∞. (12.103)

Then there exists a square integrable function hf (ω),−∞< ω<∞, such that

|hf (ω)|2 = s(ω), (12.104)

h(t)=
∫ ∞

−∞
hf (ω)e jωt dω

2π
= 0 for t < 0, (12.105)

hf (σ+ jω)=
∫ ∞

−∞
e j(σ+jω)th(t)dt �= 0, ω> 0, (12.106)

Because the spectral density of white noise is one for all ω, Equation 12.104 means that the spectral
density, s(ω), is identical to the spectral density of the output of an LTI system with impulse response
h(t) driven by a white-noise input. Equation 12.105 means that h(t) is causal. Equation 12.106 means
that the transfer function hf (ω) is minimum phase. Similar results hold in discrete time and for vector
signals [7,8].

The restriction to second-order processes with zero mean is unimportant because the mean is deter-
ministic. Thus, the only significant limitation on the use of a linear system driven by white noise as a
model for second-order stochastic processes is Equation 12.103. The major limitation of the model is that
the second-order statistics are not always a good description of a stochastic process. The second-order
statistics are most useful when the process is approximately Gaussian. Processes that are very different
from Gaussian, especially in the vicinity of the mean, are not usually well modeled by their second-order
statistics.

12.5 Notation

Lower case letters such as x, y, and r denote real, deterministic scalars. The same letters when underlined
denote vectors.

Lower case letters i, j, k, �, m, and n denote integers ( j is also used to indicate
√−1 and m for mean—the

meaning should be evident from the context).
Upper case, underlined, capital letters such as A, B, C, L,Θ, andΞ denote real deterministic matrices.
Lower case, bold letters such as x and y denote scalar random variables. The same letters when

underlined denote vector random variables (or discrete-time stochastic processes).
Upper case, underlined bold letters such as X, Y,Θ, and Ξ denote vector discrete-time stochastic

processes.
Lower case, bold letters with interval subscripts such as x(−∞,∞) denote stochastic processes.
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13.1 Introduction

The purpose of this chapter is to provide an overview of Kalman filtering concepts. We cover only a
small portion of the material associated with Kalman filters. Our choice of material is primarily motivated
by the material needed in the design and analysis of multivariable feedback control systems for linear
time-invariant (LTI) systems and, more specifically, by the design philosophy commonly called the linear
quadratic Gaussian (LQG) method. Thus, from a technical perspective, we cover, without proofs, the
so-called steady-state, constant-gain LTI Kalman filters.

More details regarding different formulations and solutions of Kalman filtering problems (continuous-
time linear time-varying, discrete-time linear time-varying, and time-invariant) can be found in several
classic and standard textbooks on the subject of estimation theory. Please see Further Reading at the end
of this chapter.

The steady-state constant-gain Kalman filter is an algorithm that is used to estimate the state variables
of a continuous-time LTI system, subject to stochastic disturbances, on the basis of noisy measurements
of certain output variables. Thus, the Kalman filtering algorithm combines the information regarding
the plant dynamics, the probabilistic information regarding the stochastic disturbances that influence the
plant state variables, as well as that regarding the measurement noise that corrupts the sensor measure-
ments, and the deterministic controls.

Credit for “inventing” this algorithm is usually given to Dr. Rudolph E. Kalman, who presented the key
ideas in the late 1950s and early 1960s. Although the Kalman filter is an alternative representation of the
Wiener filter [1], Kalman’s contribution was to tie the state estimation problem to the state-space models,
and the (then new) concepts of controllability and observability [2–5]. Thousands of papers have been

13-1
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written about the Kalman filter and its numerous applications to navigation, tracking, and estimator and
controller design in defense and industrial applications.

13.2 Problem Definition

In this section we present the definition of the basic stochastic estimation problem for which the Kalman
filter (KF) yields an “optimal” solution. First we present the plant state dynamics. We deal with a finite-
dimensional LTI system whose state vector x(t), x(t) ∈ Rn (a real n-vector), obeys the stochastic differen-
tial equation

ẋ(t)= Ax(t)+Bu(t)+ Lξ(t) (13.1)

where u(t), u(t) ∈ Rm is the deterministic control vector (assumed known), ξ(t), ξ(t) ∈ Rq is a vector-
valued stochastic process, often called the process noise, that acts as a disturbance to the plant dynamics.
Vectors are underlined, lower case letters and matrices are underlined, upper case letters. The process
noise ξ(t) is assumed to have certain statistical properties, corresponding to a stationary (time-invariant)
continuous-time white Gaussian noise with zero mean, i.e.,

E{ξ(t)} = 0, for all t (13.2)

and its covariance matrix is defined by

cov [ξ(t); ξ(τ)] = E{ξ(t)ξ′(τ)} =Ξδ(t− τ) (13.3)

with δ(t− τ) being the Dirac delta function (impulse at t = τ). The matrixΞ is called the intensity matrix
of ξ(t) and it is a symmetric positive definite matrix, i.e.,

Ξ=Ξ′ > 0 (13.4)

Remark 13.1

Continuous-time white noise does not exist in nature; it is the limit of a broadband stochastic process.
In the frequency domain, continuous-time white noise corresponds to a stochastic process with constant
power spectral density as a function of frequency. This implies that continuous-time white noise has con-
stant power at all frequencies, and therefore has infinite energy! White noise is completely unpredictable,
as can be seen from Equation 13.3 because it is uncorrelated for any t �= τ, while it has finite variance
and standard deviation at t = τ. This is obviously an approximation to reality. As with the Dirac delta
function, δ(t), white noise creates some subtle mathematical issues, but is nonetheless extremely useful in
engineering.

Remark 13.2

The state x(t), the solution of Equation 13.1, is a well-defined physical stochastic process, a so-called
colored Gaussian random process, and it has finite energy. Its power spectral density rolls off at high
frequencies.

Next, we turn our attention to the measurement equation. We assume that our sensors cannot directly
measure all of the physical state variables, the components of the vector x(t) of the plant given in
Equation 13.1. Rather, in the classical Kalman filter formulation we assume that we can measure only
certain output variables (linear combinations of the state variables) in the presence of additive continuous-
time white noise.
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The mathematical model of the measurement process is as follows:

y(t)= Cx(t)+ θ(t) (13.5)

The vector y(t) ∈ Rp represents the sensor measurement. The measurement or sensor noise θ(t) ∈ Rp

is assumed to be a continuous-time white Gaussian random process, independent of ξ(t), with zero
mean, i.e.,

E{θ(t)} = 0, for all t (13.6)

and covariance matrix

cov [θ(t); θ(τ)] = E{θ(t)θ′(τ)} =Θδ(t− τ) (13.7)

where the sensor noise intensity matrix is symmetric and positive definite, i.e.,

Θ=Θ′ > 0 (13.8)

Figure 13.1 shows a visualization, in block diagram form, of Equations 13.1 and 13.5.

13.2.1 The State Estimation Problem

Imagine that we have been observing the control u(τ) and the output y(τ) over the infinite past up to the
present time t. Let

U(t)= {u(τ);−∞< τ≤ t} (13.9)

Y (t)= {y(τ);−∞< τ≤ t} (13.10)

denote the past histories of the control and output, respectively.
The state estimation problem is as follows: given U(t) and Y (t), find a vector x̂(t), at time t, which is

an “optimal” estimate of the present state x(t) of the system defined by Equation 13.1.
Under the stated assumptions regarding the Gaussian nature of ξ(t) and θ(t) the “optimal” state

estimate is the same for an extremely large class of optimality criteria [6]. This generally optimal estimate

u(t)
State
x(t)x(t) y(t)

Control

ξ(t) Process noise

Sensor noise
θ(t) 

Measured
output

+

+ +
+

.

+

+ +B

A

C

L

∫

FIGURE 13.1 A stochastic linear dynamic system.
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is the conditional mean of the state, i.e.,

x̂(t)
Δ= E{x(t)|U(t), Y (t)} (13.11)

One can relax the Gaussian assumption and define the optimality of the state estimate x̂(t) in different
ways. One popular way is to demand that x̂(t) be generated by a linear transformation on the past “data”
U(t) and Y (t), such that the state estimation error x̃(t)

x̃
Δ= x(t)− x̂(t) (13.12)

has zero mean, i.e.,
E{x̃(t)} = 0 (13.13)

and the cost functional

J = E

{
n∑

i=1

x̃2
i (t)

}
= E

{
x̃′(t)x̃(t)

}= tr[E{x̃(t)x̃′(t)}] (13.14)

is minimized.
The cost functional J has the physical interpretation that it is the sum of the error variances E{x̃2

i (t)}
for each state variable. If we letΣ denote the covariance matrix (stationary) of the state estimation error

Σ
Δ= E{x̃(t)x̃′(t)} (13.15)

then the cost, J , of Equation 13.14 can also be written as

J = tr[Σ] (13.16)

Bottom Line: We need an algorithm that translates the signals we can observe, u(t) and y(t), into a state
estimate x̂(t), such that the state estimation error x̃ is “small” in some well-defined sense. The KF is the
algorithm that does just that!

13.3 Summary of the Kalman Filter Equations

13.3.1 Additional Assumptions

In this section we summarize the on-line and off-line equations that define the Kalman filter. Before we
do that we make two additional “mild” assumptions

[A, L] is stabilizable (or controllable) (13.17)

[A, C] is detectable (or observable) (13.18)

[A, L] is controllable, means that the process noise ξ(t) excites all modes of the system defined by
Equation 13.1; [A, C] is observable means that the “noiseless” output y(t)= Cx(t) contains information
about all state variables. If [A, L] is stabilizable, the modes of the system that are not excited by ξ(t) are
asymptotically stable; if [A, C] is detectable, the unobserved modes are asymptotically stable.

13.3.2 The Kalman Filter Dynamics

The function of the KF is to generate in real time the state estimate x̂(t) of the state x(t). The KF is
actually an LTI dynamic system, of identical order (n) to the plant Equation 13.1, and is driven by (1) the
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deterministic control input u(t), and (2) the measured output vector y(t). The Kalman filter dynamics
are given as follows:

dx̂(t)

dt
= Ax̂(t)+Bu(t)+H[y(t)−Cx̂(t)] (13.19)

A block diagram visualization of Equation 13.19 is shown in Figure 13.2. Note that in Equation 13.19
all variables have been defined previously, except for the KF gain matrix H , whose calculation is carried
out off-line and is discussed shortly.

The filter gain matrix H multiplies the so-called residual or innovations vector

r(t)
Δ= y(t)−Cx̂(t) (13.20)

and updates the time rate of change, dx̂(t)/dt, of the state estimate x̂(t). The residual r(t) is like an “error”
between the measured output y(t), and the predicted output Cx̂(t).

Remark 13.3

From an intuitive point of view the KF, defined by Equation 13.19 and illustrated in Figure 13.2, can
be thought as a model-based observer or state reconstructor. The reader should carefully compare the
structures depicted in Figures 13.1 and 13.2. The plant/sensor properties, reflected by the matrices A, B,
and C, are duplicated in the KF∗. The state estimate x̂(t) is continuously updated by the actual sensor
measurements, through the formation of the residual r(t) and the “closing” of the loop with the filter gain
matrix H .

The KF dynamics of Equation 13.19 can also be written in the form

dx̂(t)

dt
= [A−HC]x̂(t)+Bu(t)+Hy(t) (13.21)

From the structure of Equation 13.21 we can immediately see that the stability of the KF is governed by
the matrix A−HC. At this point of our development we remark that the assumption in Equation 13.18,

u(t)

State estimate
x(t)x(t)r(t)

Control

+
+

+
+ ++

Residual
Filter gain

Measured
output

B

H

A

C∫y(t) y(t)z

FIGURE 13.2 The structure of the Kalman Filter. The control, u(t), and measured output, y(t), are those associated
with the stochastic system of Figure 13.1. The filter gains matrix H is computed in a special way.

∗ No signal corresponding to Lξ(t) shows up in Figure 13.2. This is because we assumed that ξ(t) had zero-mean and was
completely unpredictable. Thus, the best estimate for ξ(t) given data up to time t is 0.
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i.e., the detectability of [A, C], guarantees the existence of at least one filter gain matrix H such that the
KF is stable, i.e.,

Reλi[A−HC]< 0; i = 1, 2, . . . , n (13.22)

where λi is the ith eigenvalue of [A−HC].

13.3.3 Properties of Model-Based Observers

We have remarked that the KF gain matrix H is calculated in a very special way. However, it is extremely
useful to examine the structure of Equations 13.19 or 13.21 and Figure 13.2 with a filter gain matrix H
that is arbitrary except for the requirement that Equation 13.22 holds. Thus, for the development that
follows in this subsection think of H as being a fixed matrix.

As before let x̃(t) denote the state estimation error vector

x̃(t)
Δ= x(t)− x̂(t) (13.23)

It follows that

dx̃(t)

dt
= dx(t)

dt
− dx̂(t)

dt
(13.24)

Next, we substitute Equations 13.1, 13.5, and 13.21 into Equation 13.24 and use Equation 13.23 as
appropriate. After some easy algebraic manipulations we obtain the following stochastic vector differential
equation for the state estimation error x̃(t):

dx̃(t)

dt
= [A−HC]x̃(t)+ Lξ(t)−Hθ(t) (13.25)

Note that, in view of Equation 13.22, the estimation error dynamic system is stable. Also note that the
deterministic signal Bu(t) does not appear in the error Equation 13.25.

Under our assumptions that the system is stable and was started at the indefinite past (t0 →−∞), it is
easy to verify that

E{x̃(t)} = 0 (13.26)

This implies that any stable model-based estimator of the form shown in Figure 13.2, with any filter gain
matrix H , gives us unbiased (that is, E(x̂(t))= E(x(t)) estimates.

Using next elementary facts from stochastic linear system theory one can calculate the error covariance
matrixΣ of the state estimation error x̃(t)

Σ
Δ= cov[x̃(t); x̃(t)] = E{x̃(t)x̃′(t)} (13.27)

The matrixΣ is the solution of the so-called Lyapunov matrix equation (linear inΣ)

[A−HC]Σ+Σ(A−HC)′ + LΞL′ +HΘH ′ = 0 (13.28)

with
Σ=Σ′ ≥ 0 (13.29)

Thus, for any given filter gain matrix H we can calculate∗ the associated error covariance matrix Σ
from Equation 13.28. Recalling Equation 13.16, we can evaluate, for a given H , the quality of the estimator
by calculating

J = tr[Σ] (13.30)

The specific way that the KF gain is calculated is by solving a constrained static deterministic optimiza-
tion problem. Minimize Equation 13.30 with respect to the elements hij of the matrix H subject to the
algebraic constraints given in Equations 13.28 and 13.29.

∗ The MATLAB� and MATRIXxTM software packages can solve Lyapunov equations.
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13.3.4 The Kalman Filter Gain and Associated Filter Algebraic Riccati
Equation (FARE)

We now summarize the off-line calculations that define fully the Kalman filter (Equation 13.19 or 13.21).
The KF gain matrix H is computed by

H =ΣC′Θ−1 (13.31)

whereΣ is the unique, symmetric, and at least positive semidefinite solution matrix of the so-called filter
algebraic Riccati equation (FARE)

0= AΣ+ΣA′ + LΞL′ −ΣC′Θ−1CΣ (13.32)

with

Σ=Σ′ ≥ 0 (13.33)

Remark 13.4

The formula for the KF gain can be obtained by setting

∂

∂hij
tr[Σ] = 0 (13.34)

where Σ is given by Equation 13.28. The result is Equation 13.31. Substituting Equation 13.31 into
Equation 13.28 one deduces the FARE (Equation 13.32).

13.3.5 Duality between the KF and LQ Problems

The mathematical problems associated with the solution of the LQ and KF are dual. This duality was
recognized by R.E. Kalman as early as 1960 [2].

The duality can be used to deduce several properties of the KF simply by “dualizing” the results of the
LQ problem. A summary of the KF properties is given in Section 13.4.

13.4 Kalman Filter Properties

13.4.1 Introduction

In this section we summarize the key properties of the Kalman filter. These properties are the “dual” of
those for the LQ controller.

13.4.2 Guaranteed Stability

Recall that the KF algorithm is

dx̂(t)

dt
= [A−HC]x̂(t)+Bu(t)+Hy(t) (13.35)

Then, under the assumptions of Section 35.3, the matrix [A−HC] is strictly stable, i.e.,

Reλi[A−HC]< 0; i = 1, 2, . . . , n (13.36)
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13.4.3 Frequency Domain Equality

One can readily derive a frequency domain equality for the KF. In the development that follows, let

Ξ= I (13.37)

Let us make the following definitions: let GKF (s) denote the KF loop-transfer matrix

GKF (s)
Δ= C(sI −A)−1H (13.38)

GH
KF (s)

Δ=H ′(−sI −A′)−1C′ (13.39)

where [A]H denotes the complex conjugate of the transpose of an arbitrary complex matrix A. Let GFOL(s)
denote the filter open-loop transfer matrix (from ξ(t) to y(t))

GFOL(s)
Δ= C(sI −A)−1L (13.40)

GH
FOL(s)

Δ= L′(−sI −A′)−1C′ (13.41)

Then the following equality holds

[I +GKF (s)]Θ[I +GKF (s)]H =Θ+GFOL(s)GH
FOL(s) (13.42)

If
Θ= μI μ> 0 (13.43)

then Equation 13.42 reduces to

[I +GKF (s)][I +GKF (s)]H = I + 1

μ
GFOL(s)GH

FOL(s) (13.44)

13.4.4 Guaranteed Robust Properties

The KF enjoys the same type of robustness properties as the LQ regulator. The following properties are
valid if

Θ= diagonal matrix (13.45)

From the frequency domain equality (Equation 13.42) we deduce the inequality

[I +GKF (s)][I +GKF (s)]H ≥ I (13.46)

From the definition of singular values we then deduce that

σmin[I +GKF (s)] ≥ 1 or σmax[I +GKF (s)]−1 ≤ 1 (13.47)

σmin[I +G−1
KF (s)] ≥ 1

2
or σmax[I +GKF (s)]−1GKF ≤ 2 (13.48)

13.5 The Accurate Measurement Kalman Filter

We summarize the properties of the Kalman Filter (KF) problem when the intensity of the sensor noise
approaches zero. In a mathematical sense this is the “dual” of the so-called “cheap-control” LQR problem.
The results are fundamental to the loop transfer recovery (LTR) method applied at the plant input.
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13.5.1 Problem Definition

Consider as before, the stochastic LTI system

ẋ(t)= Ax(t)+ Lξ(t) (13.49)

y(t)= Cx(t)+ θ(t) (13.50)

We assume that the process noise ξ(t) is white, zero-mean, and with unit intensity, i.e.,

E{ξ(t)ξ′(τ)= Iδ(t− τ) (13.51)

We also assume that the measurement noise θ(t) is white, zero-mean, and with intensity indexed by μ,
that is,

E{θ(t)θ′(τ)= μIδ(t− τ) (13.52)

Definition 13.1:

The accurate measurement KF problem is defined by the limiting case

μ→ 0 (13.53)

corresponding to essentially noiseless measurements.

Under the assumptions that [A, L] is stabilizable and that [A, C] is detectable we know that the KF is a
stable system and generates the state estimates x̂(t) by

dx̂(t)

dt
= [A−HμC]x̂(t)+Hμy(t) (13.54)

where we use the subscript μ to stress the dependence of the KF gain matrix Hμ upon the parameter μ.
We recall that Hμ is computed by

Hμ =
1

μ
ΣμC′ (13.55)

where the error covariance matrixΣμ, also dependent upon μ, is calculated by the solution of the FARE:

0= AΣμ+ΣμA′ + LL′ − 1

μ
ΣμC′CΣμ (13.56)

We seek insight about the limiting behavior of bothΣμ and Hμ as μ→ 0.

13.5.2 The Main Result

In this section we summarize the main result in terms of a theorem.

Theorem 13.1:

Suppose that the transfer function matrix from the white noise ξ(t) to the output y(t) for the system defined
by Equations 13.49 and 13.50, i.e., the transfer function matrix
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W(s)
Δ= C(sI −A)−1L (13.57)

is minimum phase. Then,
lim
μ→0

Σμ = 0 (13.58)

and
lim
μ→0

√
μHμ = LW ; W ′W = I (13.59)

Proof. This is theorem 4.14 in Kwakernaak and Sivan [7], pp. 370–371.

Remark 13.5

It can be shown that the requirement that W(s), given by Equation 13.57, be minimum phase is both a
necessary and sufficient condition for the limiting properties given by Equations 13.58 and 13.59.

Remark 13.6

The implication of Equation 13.58 is that, in the case of exact measurements upon a minimum phase
plant, the KF yields exact state estimates, since the error covariance matrix is zero. This assumes that
the KF has been operating upon the data for a sufficiently long time so that initial transient errors have
died out.

Remark 13.7

For a non-minimum phase plant
lim
μ→0

Σμ �= 0 (13.60)

Hence, perfect state estimation is impossible for non-minimum phase plants.

Remark 13.8

The limiting behavior (with L= B) of the Kalman Filter gain

lim
μ→0

√
μHμ = BW ; W ′W = I (13.61)

is the precise dual of the limiting behavior of the LQ control gain

lim
ρ→0

√
ρGρ =WC; W ′W = I (13.62)

for the minimum phase plant
G(s)= C(sI −A)−1B (13.63)

The relation (Equation 13.61) has been used by Doyle and Stein [8] to apply the LTR method at the plant
input, while Equation 13.62 has been used by Kwakernaak [9] to apply the LTR method at the plant
output (see also Kwakernaak and Sivan [7], pp. 419–427).
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14.1 Introduction

An ordinary differential equation of the form

ẋ(t)+ f (t)x(t)− b(t)x2(t)+ c(t)= 0 (14.1)

is known as a Riccati equation, deriving its name from Jacopo Francesco, Count Riccati (1676–1754)
[1,2], who studied a particular case of this equation from 1719 to 1724.

For several reasons, a differential equation of the form of Equation 14.1, and generalizations thereof
comprise a highly significant class of nonlinear ordinary differential equations. First, they are intimately
related to ordinary linear homogeneous differential equations of the second order. Second, the solutions
of Equation 14.1 possess a very particular structure in that the general solution is a fractional linear
function in the constant of integration. In applications, Riccati differential equations appear in the classical
problems of the calculus of variations and in the associated disciplines of optimal control and filtering.

The matrix Riccati differential equation refers to the equation [3–5]

Ẋ(t)+X(t)A(t)−D(t)X(t)−X(t)B(t)X(t)+C(t)= 0 (14.2)

defined on the vector space of real m× n matrices. Here, A, B, C, and D are real matrix functions of
the appropriate dimensions. Of particular interest are the matrix Riccati equations that arise in optimal
control and filtering problems and that enjoy certain symmetry properties. This chapter is concerned

14-1
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with these symmetric matrix Riccati differential equations and concentrates on the following four major
topics:

• Basic properties of the solutions
• Existence and properties of constant solutions
• Asymptotic behavior of the solutions
• Methods for the numerical solution of the Riccati equations

14.2 Optimal Control and Filtering: Motivation

The following problems of optimal control and filtering are of great engineering importance and serve to
motivate our study of the Riccati equations.

A linear-quadratic optimal control problem [6] consists of the following. Given a linear system

ẋ(t)= Fx(t)+Gu(t), x(t0)= c, y(t)=Hx(t), (14.3)

where x is the n-vector state, u is the q-vector control input, y is the p-vector of regulated variables, and
F, G, H are constant real matrices of the appropriate dimensions. One seeks to determine a control input
function u over some fixed time interval [t1, t2] such that a given quadratic cost functional of the form

η(t1, t2, T)=
∫ t2

t1

[y′(t)y(t)+ u′(t)u(t)] dt+ x′(t2)Tx(t2), (14.4)

with T being a constant real symmetric (T = T ′) and nonnegative definite (T ≥ 0) matrix, is afforded a
minimum in the class of all solutions of Equation 14.3, for any initial state c.

A unique optimal control exists for all finite t2− t1 > 0 and has the form

u(t)=−G′P(t, t2, T)x(t),

where P(t, t2, T) is the solution of the matrix Riccati differential equation

−Ṗ(t)= P(t)F+ F ′P(t)− P(t)GG′P(t)+H ′H (14.5)

subject to the terminal condition
P(t2)= T .

The optimal control is a linear state feedback, which gives rise to the closed-loop system

ẋ(t)= [F−GG′P(t, t2, T)]x(t)

and yields the minimum cost
η∗(t1, t2, T)= c′P(t1, t2, T)c. (14.6)

A Gaussian optimal filtering problem [7] consists of the following. Given the p-vector random process
z modeled by the equations

ẋ(t)= Fx(t)+Gv(t),

z(t)=Hx(t)+w(t),
(14.7)

where x is the n-vector state and v, w are independent Gaussian white random processes (respectively,
q-vector and p-vector) with zero means and identity covariance matrices. The matrices F, G, and H are
constant real ones of the appropriate dimensions.
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Given known values of z over some fixed time interval [t1, t2] and assuming that x(t1) is a Gaussian
random vector, independent of v and w, with zero mean and covariance matrix S, one seeks to determine
an estimate x̂(t2) of x(t2) such that the variance

σ(S, t1, t2)= Ef ′[x(t2)− x̂(t2)][x(t2)− x̂(t2)]′f (14.8)

of the error encountered in estimating any real-valued linear function f of x(t2) is minimized.
A unique optimal estimate exists for all finite t2− t1 > 0 and is generated by a linear system of the form

˙̂x(t)= Fx̂(t)+Q(S, t1, t)H ′e(t), x̂(t0)= 0, e(t)= z(t)−Hx̂(t),

where Q(S, t1, t) is the solution of the matrix Riccati differential equation

Q̇(t)= Q(t)F ′ + FQ(t)−Q(t)H ′HQ(t)+GG′ (14.9)

subject to the initial condition
Q(t1)= S.

The minimum error variance is given by

σ∗(S, t1, t2)= f ′Q(S, t1, t2)f . (14.10)

Equations 14.5 and 14.9 are special cases of the matrix Riccati differential equation 14.2 in that A, B, C,
and D are constant real n× n matrices such that

B= B′, C = C′, D =−A′.

Therefore, symmetric solutions X(t) are obtained in the optimal control and filtering problems.
We observe that the control Equation 14.5 is solved backward in time, while the filtering Equation 14.9

is solved forward in time. We also observe that the two equations are dual to each other in the sense that

P(t, t2, T)= Q(S, t1, t)

on replacing F, G, H , T , and t2− t in Equation 14.5 respectively, by F ′, H ′, G′, S, and t− t1 or, vice versa,
on replacing F, G, H , S, and t− t1 in Equation 14.9 respectively, by F ′, H ′, G′, T , and t2− t. This makes it
possible to dispense with both cases by considering only one prototype equation.

14.3 Riccati Differential Equation

This section is concerned with the basic properties of the prototype matrix Riccati differential equation

Ẋ(t)+X(t)A+A′X(t)−X(t)BX(t)+C = 0, (14.11)

where A, B, and C are constant real n× n matrices with B and C being symmetric and nonnegative
definite,

B= B′, B ≥ 0 and C = C′, C ≥ 0. (14.12)

By definition, a solution of Equation 14.11 is a real n× n matrix function X(t) that is absolutely
continuous and satisfies Equation 14.11 for t on an interval on the real line R.

Generally, solutions of Riccati differential equations exist only locally. There is a phenomenon called
finite escape time: the equation

ẋ(t)= x2(t)+ 1

has a solution x(t)= tan t in the interval (−π2 , 0) that cannot be extended to include the point t =−π2 .
However, Equation 14.11 with the sign-definite coefficients as shown in Equation14.12 does have global
solutions.
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Let X(t, t2, T) denote the solution of Equation 14.11 that passes through a constant real n× n matrix
T at time t2. We shall assume that

T = T ′ and T ≥ 0. (14.13)

Then the solution exists on every finite subinterval of R, is symmetric, nonnegative definite and enjoys
certain monotone properties.

Theorem 14.1:

Under the assumptions of Equations 14.12 and 14.13, Equation 14.11 has a unique solution X(t, t2, T)
satisfying

X(t, t2, T)= X ′(t, t2, T), X(t, t2, T)≥ 0

for every T and every finite t, t2, such that t ≥ t2.

This can most easily be seen by associating Equation 14.11 with the optimal control problem described
in Equations 14.3 through 14.6. Indeed, using Equation 14.12, one can write B= GG′ and C =H ′H for
some real matrices G and H . The quadratic cost functional η of Equation 14.4 exists and is nonnegative
for every T satisfying Equation 14.13 and for every finite t2− t. Using Equation 14.6, the quadratic form
c′X(t, t2, T)c can be interpreted as a particular value of η for every real vector c.

A further consequence of Equations 14.4 and 14.6 follows.

Theorem 14.2:

For every finite t1, t2 and τ1, τ2 such that t1 ≤ τ1 ≤ τ2 ≤ t2,

X(t1, τ1, 0)≤ X(t1, τ2, 0)

X(τ2, t2, 0)≤ X(τ1, t2, 0)

and for every T1 ≤ T2,
X(t1, t2, T1)≤ X(t1, t2, T2).

Thus, the solution of Equation 14.11 passing through T = 0 does not decrease as the length of the
interval increases, and the solution passing through a larger T dominates that passing through a smaller T .

The Riccati Equation 14.11 is related in a very particular manner with linear Hamiltonian systems of
differential equations.

Theorem 14.3:

Let

Φ(t, t2)=
[
Φ11 Φ12

Φ21 Φ22

]

be the fundamental matrix solution of the linear Hamiltonian matrix differential system

[
U̇(t)
V̇ (t)

]
=
[

A −B
−C −A′

] [
U(t)
V (t)

]
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that satisfies the transversality condition

V (t2)= TU(t2).

If the matrixΦ11+Φ12T is nonsingular on an interval [t, t2], then

X(t, t2, T)= (Φ21+Φ22T)(Φ11+Φ12T)−1 (14.14)

is a solution of the Riccati Equation 14.11.

Thus, if V (t2)= TU(t2), then V (t)= X(t, t2, T)U(t) and the formula of Equation 14.14 follows.
Let us illustrate this with a simple example. The Riccati equation

ẋ(t)= x2(t)− 1, x(0)= T

satisfies the hypotheses of Equations 14.12 and 14.13. The associated linear Hamiltonian system of
equations reads [

u̇(t)
v̇(t)

]
=
[

0 −1
−1 0

] [
u(t)
v(t)

]

and has the solution [
u(t)
v(t)

]
=
[

cosh t − sinh t
−sinh t cosh t

] [
u(0)
v(0)

]
,

where v(0)= Tu(0). Then the Riccati equation has the solution

x(t, 0, T)= −sinh t+T cosh t

cosh t−T sinh t

for all t ≤ 0. The monotone properties of the solution are best seen in Figure 14.1.

–5 –4 –3
t

x(
t)

–2 –1 0
0

0.5

1

1.5

2

FIGURE 14.1 Graph of solutions.
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14.4 Riccati Algebraic Equation

The constant solutions of Equation 14.11 are just the solutions of the quadratic equation

XA+A′X −XBX +C = 0, (14.15)

called the algebraic Riccati equation. This equation can have real n× n matrix solutions X that are
symmetric or nonsymmetric, sign definite or indefinite, and the set of solutions can be either finite or
infinite. These solutions will be studied under the standing assumption of Equation 14.12, namely

B= B′, B ≥ 0 and C = C′, C ≥ 0.

14.4.1 General Solutions

The solution set of Equation 14.15 corresponds to a certain class of n-dimensional invariant subspaces of
the associated 2n× 2n matrix

H =
[

A −B
−C −A′

]
. (14.16)

This matrix has the Hamiltonian property[
0 I
−I 0

]
H =−H ′

[
0 I
−I 0

]
.

It follows that H is similar to −H ′ and therefore, the spectrum of H is symmetrical with respect to the
imaginary axis.

Now suppose that X is a solution of Equation 14.15. Then

H

[
I
X

]
=
[

I
X

]
(A−BX).

Denote J = U−1(A−BX)U , the Jordan form of A−BX and put V = XU. Then

H

[
U
V

]
=
[

U
V

]
J ,

which shows that the columns of [
U
V

]

are Jordan chains for H , that is, sets of vectors x1, x2, . . . , xr such that x1 �= 0 and for some eigenvalue λ
of H

Hx1 = λx1

Hxj = λxj + xj+1, j = 2, 3, . . . , r.

In particular, x1 is an eigenvector of H . Thus, we have the following result.

Theorem 14.4:

Equation 14.15 has a solution X if and only if there is a set of vectors x1, x2, . . . , xn forming a set of Jordan
chains for H and if

xi =
[

ui

vi

]
,

where ui is an n-vector, then u1, u2, . . . , un are linearly independent.
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Furthermore, if

U = [u1 . . . un], V = [v1 . . . vn],
every solution of Equation 14.15 has the form X = VU−1 for some set of Jordan chains x1, x2, . . . , xn for H.

To illustrate, consider the scalar equation

X2+ pX + q= 0,

where p, q are real numbers and q ≤ 0. The Hamiltonian matrix

H =
⎡
⎣−

p

2
−1

q
p

2

⎤
⎦

has eigenvalues λ and−λ, where

λ2 =
(p

2

)2− q.

If λ �= 0 there are two eigenvectors of H , namely

x1 =
[

1

−p

2
+λ

]
, x2 =

[
1

−p

2
−λ

]
,

which correspond to the solutions

X1 =−p

2
+λ, X2 =−p

2
−λ.

If λ= 0 there exists one Jordan chain,

x1 =
[

1

−p

2

]
, x2 =

[
0
1

]
,

which yields the unique solution

X1 =−p

2
.

Theorem 14.4 suggests that, generically, the number of solutions of Equation 14.15 to be expected will

not exceed the binomial coefficient

(
2n
n

)
, the number of ways in which the vectors x1, x2, . . . , xn can be

chosen from a basis of 2n eigenvectors for H . The solution set is infinite if there is a continuous family of
Jordan chains. To illustrate this point consider Equation 14.15 with

A=
[

0 0
0 0

]
, B=

[
1 0
0 1

]
, C =

[
0 0
0 0

]
.

The Hamiltonian matrix

H =

⎡
⎢⎢⎣

0 0 −1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
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has the eigenvalue 0, associated with two Jordan chains

x1 =

⎡
⎢⎢⎣

a
b
0
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

c
d
−a
−b

⎤
⎥⎥⎦ , and x3 =

⎡
⎢⎢⎣

c
d
0
0

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

a
b
−c
−d

⎤
⎥⎥⎦ ,

where a, b and c, d are real numbers such that ad− bc = 1. The solution set of Equation 14.15 consists of
the matrix

X13 =
[

0 0
0 0

]

and two continuous families of matrices

X12(a, b)=
[

ab −a2

b2 −ab

]
and X34(c, d)=

[−cd c2

−d2 cd

]
.

Having in mind the applications in optimal control and filtering, we shall be concerned with the
solutions of Equation 14.15 that are symmetric and nonnegative definite.

14.4.2 Symmetric Solutions

In view of Theorem 14.4, each solution X of Equation 14.15 gives rise to a factorization of the characteristic
polynomial χH of H as

χH (s)= (−1)nq(s)q1(s),

where q= χA−BX . If the solution is symmetric, X = X ′, then q1(s)= q(−s). This follows from

[
I 0
X I

]−1 [
A −B
−C −A′

] [
I 0
X I

]
=
[

A−BX −B
0 −(A−BX)′

]
.

There are two symmetric solutions that are of particular importance. They correspond to a factorization

χH (s)= (−1)nq(s)q(−s)

in which q has all its roots with nonpositive real part; it follows that q(−s) has all its roots with nonnegative
real part. We shall designate these solutions X+ and X−.

One of the basic results concerns the existence of these particular solutions [8]. To state the result, we
recall some terminology. A pair of real n× n matrices (A, B) is said to be controllable (stabilizable) if the
n× 2n matrix [λI −A B] has linearly independent rows for every complex λ (respectively, for every
complex λ such that Re λ≥ 0). The numbers λ for which [λI −A B] loses rank are the eigenvalues
of A that are not controllable (stabilizable) from B. A pair of real n× n matrices (A, C) is said to be

observable (detectable) if the 2n× n matrix

[
λI −A

C

]
has linearly independent columns for every complex

λ (respectively, for every complex λ such that Re λ≥ 0). The numbers λ for which

[
λI −A

C

]
loses rank

are the eigenvalues of A that are not observable (detectable) in C. Finally, let dim V denote the dimension
of a linear space V and Im M, Ker M the image and the kernel of a matrix M, respectively.

Theorem 14.5:

There exists a unique symmetric solution X+ of Equation 14.15 such that all eigenvalues of A−BX+ have
nonpositive real part if and only if (A, B) is stabilizable.
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Theorem 14.6:

There exists a unique symmetric solution X− of Equation 14.15 such that all eigenvalues of A−BX− have
nonnegative real part if and only if (−A, B) is stabilizable.

We observe that both (A, B) and (−A, B) are stabilizable if and only if (A, B) is controllable. It follows
that both solutions X+ and X− exist if and only if (A, B) is controllable.

For two real symmetric matrices X1 and X2, the notation X1 ≥ X2 means that X1−X2 is nonnegative
definite. Since A−BX+ has no eigenvalues with positive real part, neither has X+ −X. Hence, X+ −X ≥
0. Similarly, one can show that X −X− ≥ 0, thus introducing a partial order among the set of symmetric
solutions of Equation 14.15.

Theorem 14.7:

Suppose that X+ and X− exist. If X is any symmetric solution of Equation 14.15, then

X+ ≥ X ≥ X−.

That is why X+ and X− are called the extreme solutions of Equation 14.15; X+ is the maximal symmetric
solution, while X− is the minimal symmetric solution. The set of all symmetric solutions of Equation 14.15
can be related to a certain subset of the set of invariant subspaces of the matrix A−BX+ or the matrix
A−BX−. Denote V0 and V+ the invariant subspaces of A−BX+ that correspond, respectively, to the
pure imaginary eigenvalues and to the eigenvalues having negative real part. Denote W0 and W− the
invariant subspaces of A−BX− that correspond, respectively, to the pure imaginary eigenvalues and to
the eigenvalues having positive real part. Then it can be shown that V0 =W0 is the kernel of X+ −X−
and the symmetric solution set corresponds to the set of all invariant subspaces of A−BX+ contained in
V+ or, equivalently, to the set of all invariant subspaces of A−BX− contained in W−.

Theorem 14.8:

Suppose that X+ and X− exist. Let X1, X2 be symmetric solutions of Equation 14.15 corresponding to the
invariant subspaces V1, V2 of V+ (or W1, W2 of W−). Then X1 ≥ X2 if and only if V1 ⊃ V2 (or if and only
if W1 ⊂W2).

This means that the symmetric solution set of Equation 14.15 is a complete lattice with respect to the
usual ordering of symmetric matrices. The maximal solution X+ corresponds to the invariant subspace
V+ of A−BX+ or to the invariant subspace W = 0 of A−BX−, whereas the minimal solution X−
corresponds to the invariant subspace V = 0 of A−BX+ or to the invariant subspace W− of A−BX−.

This result allows one to count the distinct symmetric solutions of Equation 14.15 in some cases. Thus,
let α be the number of distinct eigenvalues of A−BX+ having negative real part and let m1, m2, . . . , mα

be the multiplicities of these eigenvalues. Owing to the symmetries in H , the matrix A−BX− exhibits the
same structure of eigenvalues with positive real part.
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Theorem 14.9:

Suppose that X+ and X− exist. Then the symmetric solution set of Equation 14.15 has finite cardinality if
and only if A−BX+ is cyclic on V+ (or if and only if A−BX− is cyclic on W−). In this case, the set contains
exactly (m1+ 1) . . . (mα+ 1) solutions.

Simple examples are most illustrative. Consider Equation 14.15 with

A=
[

0 0
0 1

]
, B=

[
1 0
0 1

]
, C =

[
1 0
0 3

]

and determine the lattice of symmetric solutions. We have

χH (s)= s4− 5s2+ 4

and the following eigenvectors of H :

x1 =

⎡
⎢⎢⎣

1
0
−1
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , x3 =

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

0
1
0
3

⎤
⎥⎥⎦

are associated with the eigenvalues 1,−1, 2, and−2, respectively. Hence, the pair of solutions

X+ =
[

1 0
0 3

]
, X− =

[−1 0
0 −1

]

corresponds to the factorization

χH (s)= (s2− 3s+ 2)(s2+ 3s+ 2)

and the solutions

X2,3 =
[

1 0
0 −1

]
, X1,4 =

[−1 0
0 3

]

correspond to the factorization
χH (s)= (s2− s− 2)(s2+ s− 2).

There are four subspaces invariant under the matrices

A−BX+ =
[−1 0

0 −2

]
, A−BX− =

[
1 0
0 2

]

each corresponding to one of the four solutions above. The partial ordering

X+ ≥ X2,3 ≥ X−, X+ ≥ X1,4 ≥ X−

defines the lattice visualized in Figure 14.2.
As another example, we consider Equation 14.15 where

A=
[

0 0
0 0

]
, B=

[
1 0
0 1

]
, C =

[
1 0
0 1

]

and classify the symmetric solution set.
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X+

X1,4X2,3

X–

FIGURE 14.2 Lattice of solutions.

We have
χH (s)= (s− 1)2(s+ 1)2

and a choice of eigenvectors corresponding to the eigenvalues 1,−1 of H is

x1 =

⎡
⎢⎢⎣

1
0
−1
0

⎤
⎥⎥⎦ , x2 =

⎡
⎢⎢⎣

0
1
0
−1

⎤
⎥⎥⎦ , x3 =

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ , x4 =

⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦ .

Hence,

X+ =
[

1 0
0 1

]
, X− =

[−1 0
0 −1

]

are the extreme solutions.
We calculate

A−BX+ =
[−1 0

0 −1

]
, A−BX− =

[
1 0
0 1

]

and observe that the set of subspaces invariant under A−BX+ or A−BX− (other than the zero and the
whole space, which correspond to X+ and X−) is the family of one-dimensional subspaces parameterized
by their azimuth angle θ. These correspond to the solutions

Xϑ =
[

cosϑ sin ϑ
sin ϑ − cosϑ

]
.

Therefore, the solution set consists of X+, X− and the continuous family of solutions Xθ. It is a complete
lattice and X+ ≥ Xθ ≥ X− for every θ.

14.4.3 Definite Solutions

Under the standing assumption (Equation 14.12), namely

B= B′, B ≥ 0 and C = C′, C ≥ 0,

one can prove that X+ ≥ 0 and X− ≤ 0. The existence of X+, however, excludes the existence of X− and
vice versa, unless (A, B) is controllable.

If X+ does exist, any other solution X ≥ 0 of Equation 14.15 corresponds to a subspace W of W− that
is invariant under A−BX. From Equation 14.15,

X(A−BX)+ (A−BX)′X =−XBX −C.

The restriction of A−BX to W has eigenvalues with positive real part. Since−XBX −C ≤ 0, it follows
from the Lyapunov theory that X restricted to W is nonpositive definite and hence zero. We conclude
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that the solutions X ≥ 0 of Equation 14.15 correspond to those subspaces W of W− that are invariant
under A and contained in Ker C.

The set of symmetric nonnegative definite solutions of Equation 14.15 is a sublattice of the lattice of all
symmetric solutions [9,10]. Clearly X+ is the largest solution and it corresponds to the invariant subspace
W = 0 of A. The smallest nonnegative definite solution will be denoted by X∗ and it corresponds to W∗,
the largest invariant subspace of A contained in Ker C and associated with eigenvalues having positive
real part.

The nonnegative definite solution set of Equation 14.15 has finite cardinality if and only if A is cyclic
on W∗. In this case, the set contains exactly (p1+ 1) . . . (ρ+1) solutions, where ρ is the number of distinct
eigenvalues of A associated with W∗ and p1, p2, . . . , pρ are the multiplicities of these eigenvalues.

Analogous results hold for the set of symmetric solutions of Equation 14.15 that are nonpositive
definite. In particular, if X− exists, then any other solution X ≤ 0 of Equation 14.15 corresponds to a
subspace V of V+ that is invariant under A and contained in Ker C. Clearly X− is the smallest solution
and it corresponds to the invariant subspace V = 0 of A. The largest nonpositive definite solution is
denoted by X× and it corresponds to W×, the largest invariant subspace of A contained in Ker C and
associated with eigenvalues having negative real part.

Let us illustrate this with a simple example. Consider Equation 14.15 where

A=
[

1 1
0 1

]
, B=

[
0 0
0 1

]
, C =

[
0 0
0 0

]

and classify the two sign-definite solution sets. We have

X+ =
[

8 4
4 4

]
, X− =

[
0 0
0 0

]
.

The matrix A has one eigenvalue with positive real part, namely 1, and a basis for W∗ is

x1 =
[

1
0

]
, x2 =

[
0
−1

]
.

Thus, there are three invariant subspaces of W∗ corresponding to the three nonnegative definite
solutions of Equation 14.15

X+ =
[

8 4
4 4

]
, X1 =

[
0 0
0 2

]
, X∗ =

[
0 0
0 0

]
.

These solutions make a lattice and

X+ ≥ X1 ≥ X∗.

The matrix A has no eigenvalues with negative real part. Therefore, V∗ = 0 and X− is the only nonpos-
itive definite solution of Equation 14.15.

Another example for Equation 14.15 is provided by

A=
[

0 0
0 0

]
, B=

[
1 0
0 0

]
, C =

[
0 0
0 0

]
.
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It is seen that neither (A, B) nor (−A, B) is stabilizable; hence, neither X+ nor X− exists. The symmetric
solution set consists of one continuous family of solutions

Xα =
[

0 0
0 α

]

for any real α. Therefore, both sign-definite solution sets are infinite; the nonnegative solution set is
unbounded from above while the nonpositive solution set is unbounded from below.

14.5 Limiting Behavior of Solutions

The length of the time interval t2− t1 in the optimal control and filtering problems is rather artificial.
For this reason, an infinite time interval is often considered. This brings in the question of the limiting
behavior of the solution X(t, t2, T) for the Riccati differential equation 14.11.

In applications to optimal control, it is customary to fix t and let t2 approach +∞. Since the coefficient
matrices of Equation 14.11 are constant, the same result is obtained if t2 is held fixed and t approaches
−∞. The limiting behavior of X(t, t2, T) strongly depends on the terminal matrix T ≥ 0. For a suitable
choice of T , the solution of Equation 14.11 may converge to a constant matrix X ≥ 0, a solution of
Equation 14.15. For some matrices T , however, the solution of Equation 14.11 may fail to converge to a
constant matrix, but it may converge to a periodic matrix function.

Theorem 14.10:

Let (A, B) be stabilizable. If t and T are held fixed and t2 →∞, then the solution X(t, t2, T) of Equation 14.11
is bounded on the interval [t,∞).

This result can be proved by associating an optimal control problem with Equation 14.11. Then stabi-
lizability of (A, B) implies the existence of a stabilizing (not necessarily optimal) control. The consequent
cost functional of Equation 14.4 is finite and dominates the optimal one.

If (A, B) is stabilizable, then X+ exists and each real symmetric nonnegative definite solution X of
Equation 14.15 corresponds to a subset W of W∗, the set of A-invariant subspaces contained in Ker C
and associated with eigenvalues having positive real part. The convergence of the solution X(t, t2, T) of
Equation 14.11 to X depends on the properties of the image of W∗ under T , see [11].

For simplicity, it is assumed that the eigenvalues λ1, λ2, . . . ,λρ of A associated with W∗ are simple
and, except for pairs of complex conjugate eigenvalues, have different real parts. Let the corresponding
eigenvectors be ordered according to decreasing real parts of the eigenvalue

v1, v2, . . . , vρ,

and denote Wi the A-invariant subspace of W∗ spanned by v1, v2, . . . , vi .

Theorem 14.11:

Let (A, B) be stabilizable and the subspaces Wi of W∗ satisfy the above assumptions. Then, for all fixed t
and a given terminal condition T ≥ 0, the solution X(t, t2, T) of Equation 14.11 converges to a constant
solution of Equation 14.15 as t2 →∞ if and only if the subspace Wk+1 corresponding to any pair λk, λk+1

of complex conjugate eigenvalues is such that dim TWk+1 equals either dim TWk−1 or dim TWk−1+ 2.
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Here is a simple example. Let

A=
[

1 −1
1 1

]
, B=

[
1 0
0 1

]
, C =

[
0 0
0 0

]
.

The pair (A, B) is stabilizable and A has two eigenvalues 1 +j and 1−j. The corresponding eigenvectors

v1 =
[

j
1

]
, v2 =

[−j
1

]

span W∗. Now consider the terminal condition

T =
[

1 0
0 0

]
.

Then,

TW0 = 0, TW2 = Im

[
1
0

]
.

Theorem 14.11 shows that X(t, t2, T) does not converge to a constant matrix; in fact,

X(t, t2, T)= 1

1+ e2(t−t2)

[
2 cos2(t− t2) − sin 2(t− t2)
− sin 2(t− t2) 2 sin2(t− t2)

]

tends to a periodic solution if t2 →∞. On the other hand, if we select

T0 =
[

0 0
0 0

]

we have

T0W0 = 0, T0W2 = 0

and X(t, t2, T0) does converge. Also, if we take

T1 =
[

1 0
0 1

]

we have
T1W0 = 0, T1W2 = R2

and X(t, t2, T1) converges as well.
If the solution X(t, t2, T) of Equation 14.11 converges to a constant matrix XT as t2 →∞, then XT

is a real symmetric nonnegative definite solution of Equation 14.15. Which solution is attained for a
particular terminal condition?

Theorem 14.12:

Let (A, B) be stabilizable. Let
XT = lim

t2→∞
X(t, t2, T)

for a fixed T ≥0. Then XT ≥0 is the solution of Equation 14.15 corresponding to the subspace WT of W∗,
defined as the span of the real vectors vi such that TWi = TWi−1 and of the complex conjugate pairs vk,
vk+1 such that TWk+1 = TWk−1.
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The cases of special interest are the extreme solutions X+ and X∗. The solution X(t, t2, T) of Equa-
tion 14.12 tends to X+ if and only if the intersection of W∗ with Ker T is zero, and to X∗ if and only if W∗
is contained in Ker T .

This is best illustrated in the previous example, where

A=
[

1 −1
1 1

]
, B=

[
1 0
0 1

]
, C =

[
0 0
0 0

]

and W∗ = R2. Then X(t, t2, T) converges to X+ if and only if T is positive definite; for instance, the
identity matrix T yields the solution

X(t, t2, I)= 2

1+ e2(t−t2)

[
1 0
0 1

]
,

which tends to

X+ =
[

2 0
0 2

]
.

On the other hand, X(t, t2, T) converges to X∗ if and only if T=0; then

X(t, t2, 0)= 0

and X∗=0 is a fixed point of Equation 14.11.

14.6 Optimal Control and Filtering: Application

The problems of optimal control and filtering introduced in Section 14.2 are related to the matrix Riccati
differential equations 14.5 and 14.9, respectively. These problems are defined over a finite horizon t2− t1.
We now apply the convergence properties of the solutions to study the two optimal problems in case the
horizon becomes large.

To fix ideas, we concentrate on the optimal control problem. The results can easily be interpreted in
the filtering context owing to the duality between Equations 14.5 and 14.9.

We recall that the finite horizon optimal control problem is that of minimizing the cost functional of
Equation 14.4,

η(t2)=
∫ t2

t1

[y′(t)y(t)+ u′(t)u(t)] dt+ x′(t2)Tx(t2)

along the solutions of Equation 14.3,

ẋ(t)= Fx(t)+Gu(t)

y(t)=Hx(t).

The optimal control has the form

u0(t)=−G′X(t, t2, T)x(t),

where X(t, t2, T) is the solution of Equation 14.11,

Ẋ(t)+X(t)A+A′X(t)−X(t)BX(t)+C = 0

subject to the terminal condition X(t2)= T , and where

A= F, B= GG′, C =H ′H .

The optimal control can be implemented as a state feedback and the resulting closed-loop system is

ẋ(t)= [F−GG′X(t, t2, T)]x(t)

= [A−BX(t, t2, T)]x(t).

Hence, the relevance of the matrix A−BX, which plays a key role in the theory of the Riccati equation.
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The infinite horizon optimal control problem then amounts to finding

η∗ = inf
u(t)

lim
t2→∞

η(t2) (14.17)

and the corresponding optimal control u∗(t), t ≥ t1 achieving this minimum cost.
The receding horizon optimal control problem is that of finding

η∗∗ = lim
t2→∞

inf
u(t)
η(t2) (14.18)

and the limiting behavior u∗∗(t), t ≥ t1 of the optimal control uo(t).
The question is whether η∗ is equal to η∗∗ and whether u∗ coincides with u∗∗. If so, the optimal control

for the infinite horizon can be approximated by the optimal control of the finite horizon problem for a
sufficiently large time interval.

It turns out [12] that these two control problems have different solutions corresponding to different
solutions of the matrix Riccati algebraic Equation 14.15,

XA+A′X −XBX +C = 0.

Theorem 14.13:

Let (A, B) be stabilizable. Then the infinite horizon optimal control problem of Equation 14.17 has a solution

η∗ = x′(t1)Xox(t1), u∗(t)=−G′Xox(t)

where Xo ≥0 is the solution of Equation 14.15 corresponding to Wo, the largest A-invariant subspace
contained in W∗∩ Ker T.

Theorem 14.14:

Let (A, B) be stabilizable. Then the receding horizon optimal control problem of Equation 14.18 has a
solution if and only if the criterion of Theorem 14.5 is satisfied and, in this case,

η∗∗ = x′(t1)XT x(t1), u∗∗(t)=−G′XT x(t)

where XT ≥ 0 is the solution of Equation 14.16 corresponding to WT and defined in Theorem 14.5.

The equivalence result follows.

Theorem 14.15:

The solution of the infinite horizon optimal control problem is exactly the limiting case of the receding
horizon optimal control problem if and only if the subspace W∗ ∩KerT is invariant under A.
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A simple example illustrates these points. Consider the finite horizon problem defined by

ẋ1(t)= 2x1(t)+ u1(t),
ẋ2(t)= x2(t)+ u2(t)

and

η(t2)= [x1(t2)+ x2(t2)]2+
∫ ∫

t2

[u2
1(τ)+ u2

2(τ)] dτ,

which corresponds to the data

A=
[

2 0
0 1

]
, B=

[
1 0
0 1

]
, C =

[
0 0
0 0

]

and

T =
[

1 1
1 1

]
.

Clearly W∗ = R2 and the subspace

W∗ ∩Ker T = Im

[
1
−1

]

is not invariant under A. Hence, the infinite and receding horizon problems are not equivalent.
The lattice of symmetric nonnegative definite solutions of Equation 14.11 has the four elements

X+ =
[

4 0
0 2

]
, X1 =

[
0 0
0 2

]
, X2 =

[
4 0
0 0

]
, X∗ =

[
0 0
0 0

]

depicted in Figure 14.3.
Since the largest A-invariant subspace of W∗ ∩KerT is zero, the optimal solution Xo of Equation 14.11

is the maximal element X+. The infinite horizon optimal control reads

u1∗(t)=−4x1(t),

u2∗(t)=−2x2(t),

and affords the minimum cost
η∗ = 4x2

1(t1)+ 2x2
2(t1).

Now the eigenvectors of A spanning W∗ are

v1 =
[

1
0

]
, v2 =

[
0
1

]

X+

X2X1

X*

FIGURE 14.3 The four elements of the lattice of solutions.
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and their T-images

Tv1 =
[

1
1

]
, Tv2 =

[
1
1

]

are linearly dependent. Hence, WT is spanned by v2 only,

WT = Im

[
0
1

]

and the optimal limiting solution XT of Equation 14.11 equals X2. The receding horizon optimal control
reads

u1∗∗(t)=−4x1(t)
u2∗∗(t)= 0

and affords the minimum cost

η∗∗(t)= 4x2
1(t1).

The optimal control problems with large horizon are practically relevant if the optimal closed-loop
system

ẋ(t)= (A−BX)x(t)

is stable. A real symmetric nonnegative definite solution X of Equation 14.15 is said to be stabilizing if
the eigenvalues of A−BX all have negative real part. It is clear that the stabilizing solution, if it exists,
is the maximal solution X+. Thus, the existence of a stabilizing solution depends on A−BX+. having
eigenvalues with only negative real part.

Theorem 14.16:

Equation 14.15 has a stabilizing solution if and only if (A, B) is stabilizable and the Hamiltonian matrix H
of Equation 14.16 has no pure imaginary eigenvalue.

The optimal controls over large horizons have a certain stabilizing effect. Indeed, if X ≥0 is a solution of
Equation 14.15 that corresponds to an A-invariant subspace W of W∗, then the control u(t)=−G′Xx(t)
leaves unstable in A−BX just the eigenvalues of A associated with W ; all the remaining eigenvalues of
A with positive real part are stabilized. Of course, the pure imaginary eigenvalues of A, if any, cannot be
stabilized; they remain intact in A−BX for any solution X of Equation 14.15.

In particular, the infinite horizon optimal control problem leaves unstable the eigenvalues of A asso-
ciated with Wo, which are those not detectable either in C or in T , plus the pure imaginary eigenvalues.
It follows that the infinite horizon optimal control results in a stable system if and only if Xo is the stabi-
lizing solution of Equation 14.15. This is the case if and only if the hypotheses of Theorem 14.6 hold and
Wo, the largest A-invariant subspace contained in W∗ ∩KerT , is zero. Equivalently, this corresponds to
the pair ([

C
T

]
, A

)

being detectable.
The allocation of the closed-loop eigenvalues for the receding horizon optimal control problem is

different, however. This control leaves unstable all eigenvalues of A associated with WT , where WT is
a subspace of W∗ defined in Theorem 14.5. Therefore, the number of stabilized eigenvalues may be
lower, equal to the dimension of TW∗, whenever Ker T is not invariant under A. It follows that the
receding horizon optimal control results in a stable system if and only if XT is the stabilizing solution
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of Equation 14.15. This is the case if and only if the hypotheses of Theorem 14.6 hold and WT is zero.
Equivalently, this corresponds to W∗ ∩KerT = 0. Note that this case occurs in particular if T ≥ X+.

It further follows that under the standard assumption, namely that

(A, B) stabilizable
(A, C) detectable,

both infinite and receding horizon control problems have solutions; these solutions are equivalent for
any terminal condition T ; and the resulting optimal system is stable.

14.7 Numerical Solution

The matrix Riccati differential equation 14.11 admits an analytic solution only in rare cases. A numerical
integration is needed and the Runge–Kutta methods can be applied.

A number of techniques are available for the solution of the matrix Riccati algebraic Equation 14.15.
These include invariant subspace methods [13] and the matrix sign function iteration [14]. We briefly
outline these methods here with an eye on the calculation of the stabilizing solution to Equation 14.15.

14.7.1 Invariant Subspace Method

In view of Theorem 14.4, any solution X of Equation 14.15 can be computed from a Jordan form
reduction of the associated 2n× 2n Hamiltonian matrix

H =
[

A −B
−C −A′

]
.

Specifically, compute a matrix of eigenvectors V to perform the following reduction:

V−1HV =
[−J 0

0 J

]
,

where −J is composed of Jordan blocks corresponding to eigenvalues with negative real part only. If
the stabilizing solution X exists, then H has no eigenvalues on the imaginary axis and J is indeed n× n.
Writing

V =
[

V11 V12

V21 V22

]
,

where each Vij is n× n, the solution sought is found by solving a system of linear equations,

X = V21V−1
11 .

However, there are numerical difficulties with this approach when H has multiple or near-multiple
eigenvalues. To ameliorate these difficulties, a method has been proposed in which a nonsingular matrix
V of eigenvectors is replaced by an orthogonal matrix U of Schur vectors so that

U ′HU =
[

S11 S12

0 S22

]
,

where now S11 is a quasi-upper triangular matrix with eigenvalues having negative real part and S22 is a
quasi-upper triangular matrix with eigenvalues having positive real part. When

U =
[

U11 U12

U21 U22

]
,



�

�

�

�

� �

14-20 Control System Advanced Methods

we observe that [
V11

V21

]
,

[
U11

U21

]

span the same invariant subspace and X can again be computed from

X = U21U−1
11 .

14.7.2 Matrix Sign Function Iteration

Let M be a real n× n matrix with no pure imaginary eigenvalues. Let M have a Jordan decomposition
M = V J V−1 and let λ1, λ2, . . . ,λn be the diagonal entries of J (the eigenvalues of M repeated according
to their multiplicities). Then the matrix sign function of M is given by

sgn M = V

⎡
⎢⎣

sgn Reλ1

. . .
sgn Reλn

⎤
⎥⎦V−1

It follows that the matrix Z = sgn M is diagonalizable with eigenvalues ±1 and Z2 = I . The key
observation is that the image of Z+ I is the M-invariant subspace of Rn corresponding to the eigenvalues
of M with negative real part.

This property clearly provides the link to Riccati equations, and what we need is a reliable computation
of the matrix sign. Let Z0 =M be an n× n matrix whose sign is desired. For k = 0, 1, perform the iteration

Zk+1 = 1

2c
(Zk + c2Z−1

k ),

where c = |det Zk|1/n. Then
lim

k→∞
Zk = Z = sgn M.

The constant c is chosen to enhance convergence of this iterative process. If c = 1, the iteration amounts
to Newton’s method for solving the equation

Z2− I = 0.

Naturally, it can be shown that the iteration is ultimately quadratically convergent.
Thus, to obtain the stabilizing solution X of Equation 14.15, provided it exists, we compute Z = sgn

H , where H is the Hamiltonian matrix of Equation 14.16. The existence of X guarantees that H has no
eigenvalues on the imaginary axis.

Writing

Z =
[

Z11 Z12

Z21 Z22

]
,

where each Zij is n× n, the solution sought is found by solving a system of linear equations

[
Z12

Z22+ I

]
X =−

[
Z11+ I

Z21

]
.

14.7.3 Concluding Remarks

We have discussed two numerical methods for obtaining the stabilizing solution of the matrix Riccati
algebraic equation 14.15. They are both based on the intimate connection between the Riccati equation
solutions and invariant subspaces of the associated Hamiltonian matrix. The method based on Schur
vectors is a direct one, while the method based on the matrix sign function is iterative.
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The Schur method is now considered one of the more reliable for Riccati equations and has the virtues
of being simultaneously efficient and numerically robust. It is particularly suitable for Riccati equations
with relatively small dense coefficient matrices, say, of the order of a few hundreds or less. The matrix
sign function method is based on the Newton iteration and features global convergence, with ultimately
quadratic order. Iteration formulas can be chosen to be of arbitrary order convergence in exchange for,
naturally, an increased computational burden. The effect of this increased computation can, however, be
ameliorated by parallelization.

The two methods are not limited to computing the stabilizing solution only. The matrix sign iteration
can also be used to calculate X−, the antistabilizing solution of Equation 14.15, by considering the
matrix sgn H − I instead of sgn H + I . The Schur approach can be used to calculate any, not necessarily
symmetric, solution of Equation 14.15, by ordering the eigenvalues on the diagonal of S accordingly.
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9. Kučera, V., A contribution to matrix quadratic equations, IEEE Trans. Autom. Control, 17, 344–347,
1972.
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15.1 Introduction

An observer for a dynamic system S(x, y, u) with state x, output y, and input u is another dynamic system
Ŝ(x̂, y, u) having the property that the state x̂ of the observer Ŝ converges to the state x of the process S,
independent of the input u or the state x.

Among the various applications for observers, perhaps the most important is for the implementation of
closed-loop control algorithms designed by state-space methods. The control algorithm is designed in two
parts: a “full-state feedback” part based on the assumption that all the state variables can be measured; and
an observer to estimate the state of the process based on the observed output. The concept of separating
the feedback control design into these two parts is known as the separation principle, which has rigorous
validity in linear systems and in a limited class of nonlinear systems. Even when its validity cannot be
rigorously established, the separation principle is often a practical solution to many design problems.

The concept of an observer for a dynamic process was introduced in 1966 by Luenberger [1]. The
generic “Luenberger observer,” however, appeared several years after the Kalman filter, which is in fact
an important special case of a Luenberger observer—an observer optimized for the noise present in the
observations and in the input to the process.

15.2 Linear Full-Order Observers

15.2.1 Continuous-Time Systems

Consider a linear, continuous-time dynamic system

ẋ = Ax+Bu (15.1)

y = Cx (15.2)

15-1
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The more generic output
y = Cx+Du

can be treated by defining a modified output

ȳ = y−Du

and working with ȳ instead of y. The direct coupling Du from the input to the output is absent in most
physical plants.

A full-order observer for the linear process defined by Equations 15.1 and 15.2 has the generic form

˙̂x = Âx̂+Ky+Hu (15.3)

where the dimension of state x̂ of the observer is equal to the dimension of process state x.
The matrices Â, K , and H appearing in Equation 15.3 must be chosen to conform with the required

property of an observer: that the observer state must converge to the process state independent of the
state x and the input u. To determine these matrices, let

e := x− x̂ (15.4)

be the estimation error. From Equations 15.1 through 15.3

ė = Ax+Bu− Â(x− e)−GCx−Hu,

= Âe+ (−Â+A−KC)x+ (B−H)u, (15.5)

From Equation 15.5 it is seen that for the error to converge to zero, independent of x and u, the
following conditions must be satisfied:

Â= A−KC (15.6)

H = B (15.7)

When these conditions are satisfied, the estimation error is governed by

ė = Âe (15.8)

which converges to zero if Â is a “stability matrix.” When Â is constant, this means that its eigenvalues
must lie in the (open) left half-plane.

Since the matrices A, B, and C are defined by the plant, the only freedom in the design of the observer
is in the selection of the gain matrix K .

To emphasize the role of the observer gain matrix, and accounting for requirements of Equations 15.6
and 15.7, the observer can be written as

˙̂x = Ax̂+Bu+K(y−Cx̂) (15.9)

A block diagram representation of Equation 15.9, as given in Figure 15.1, aids in the interpretation of
the observer. Note that the observer comprises a model of the process with an added input:

K(y−Cx̂)= Kr

The quantity
r := y−Cx̂ = y− ŷ (15.10)

often called the residual, is the difference between the actual observation y and the “synthesized” obser-
vation

ŷ = Cx̂

produced by the observer. The observer can be viewed as a feedback system designed to drive the residual
to zero: as the residual is driven to zero, the input to Equation 15.9 due to the residual vanishes and the
state of Equation 15.9 looks like the state of the original process.
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y

–

K

B

A

C

Plant model

u Control input

Observation
∫ x(t)

y

FIGURE 15.1 Full-order observer for linear process.

The fundamental problem in the design of an observer is the determination of the observer gain matrix
K such that the closed-loop observer matrix

Â= A−KC (15.11)

is a stability matrix.
There is considerable flexibility in the selection of the observer gain matrix. Two methods are standard:

optimization and pole placement.

15.2.1.1 Optimization

Since the observer given by Equation 15.9 has the structure of a Kalman filter (see Chapter 13), its gain
matrix can be chosen as a Kalman filter gain matrix, that is,

K = PC′R−1 (15.12)

where P is the covariance matrix of the estimation error and satisfies the matrix Riccati equation

Ṗ = AP+ PA′ − PC′R−1CP+Q, (15.13)

where R is a positive-definite matrix and Q is a positive-semidefinite matrix.
In most applications the steady-state covariance matrix is used in Equation 15.12. This matrix is

given by setting Ṗ in Equation 15.13 to zero. The resulting equation is known as the algebraic Riccati
equation. Algorithms to solve the algebraic Riccati equation are included in popular control system
software packages such as MATLAB� or SciLab.

In order for the gain matrix given by Equations 15.12 and 15.13 to be genuinely optimum, the process
noise and the observation noise must be white with the matrices Q and R being their spectral densities.
It is rarely possible to determine these spectral density matrices in practical applications. Hence, the
matrices Q and R are best treated as design parameters that can be varied to achieve overall system design
objectives.
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If the observer is to be used as a state estimator in a closed-loop control system, an appropriate form
for the matrix Q is

Q = q2BB′ (15.14)

As has been shown by Doyle and Stein [2], as q→∞, this observer tends to “recover” the stability
margins assured by a full-state feedback control law obtained by quadratic optimization.

15.2.1.2 Pole Placement

An alternative to solving the algebraic Riccati equation to obtain the observer gain matrix is to select K
to place the poles of the observer, that is, the eigenvalues of Â in Equation 15.11.

When there is a single observation, K is a column vector with exactly as many elements as eigenvalues
of Â. Hence, specification of the eigenvalues of Â uniquely determines the gain matrix K . A number of
algorithms can be used to determine the gain matrix, some of which are incorporated into the popular
control system design software packages. Some of the algorithms have been found to be numerically
ill-conditioned; so caution should be exercised in using the results.

The present author has found the Bass–Gura [3] formula to be effective in most applications. This
formula gives the gain matrix as

K = (OW)′−1(â− a) (15.15)

where

a= [a1 a2 · · · an
]′

(15.16)

is the vector formed from the coefficients of the characteristic polynomial of the process matrix A

|sI −A| = sn+ a1sn−1+ · · ·+ an−1s+ an (15.17)

and â is the vector formed from the coefficients of the desired characteristic polynomial

|sI − Â| = sn+ â1sn−1+ · · ·+ ân−1s+ ân (15.18)

The other matrices in Equation 15.15 are given by

O = [C′ A′C′ · · · A′n−1C′
]

(15.19)

which is the observability matrix of the process, and

W =

⎡
⎢⎢⎢⎣

1 a1 · · · an

0 1 · · · an−1
...

...
...

...
0 0 · · · 1

⎤
⎥⎥⎥⎦ (15.20)

The determinant of W is 1; hence it is not singular. If the observability matrix O is not singular, the
inverse matrix required in Equation 15.15 exists. Hence, the gain matrix K can be found that places
the observer poles at arbitrary locations if (and only if) the process for which an observer is sought
is observable. Numerical problems occur, however, when the observability matrix is nearly singular.
Other numerical problems can arise in determination of the characteristic polynomial |sI −A| for high-
order systems and in the determination of sI − Â when the individual poles, and not the characteristic
polynomial, are specified. In such instances, it may be necessary to use an algorithm designed to handle
difficult numerical calculations.

When two or more quantities are observed, there are more elements in the gain matrix than eigenvalues
of Â; hence specification of the eigenvalues of Â does not uniquely specify the gain matrix K . In addition
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to placing the eigenvalues, more of the “eigenstructure” of Â can be specified. This method of selecting
the gain matrix is fraught with difficulty, however, and the use of the algebraic Riccati equation is usually
preferable.

The Matlab algorithm place can be used to place the poles of a system with multiple observations, and
uses the additional freedom to improve the robustness of the resulting observer.

15.2.2 Delayed Data

In some applications, the observation data may be delayed:

yd(t)= y(t−T), with y(t)= Cx(t) (15.21)

in which T is the known time delay.
If the observation vector y(t) has more than one component, then it is assumed that all the components

are delayed by the same amount of time T .
On recognizing that the process is time-invariant, that is,

ẋ(t−T)= Ax(t−T)+Bu(t−T) (15.22)

an observer for the delayed state is given by

˙̂x(t−T)= Ax̂(t−T)+Bu(t−T)+K(yd(t)−Cx̂(t−T)) (15.23)

where K is the observer gain matrix, which can be obtained by the methods discussed above.
Having thus obtained an estimate x̂(t−T) of the delayed state, we extrapolate the estimate to the

present time. Since there are no data in the interval [t−T , t], the extrapolation simply makes use of the
state transition matrix eAcT , with

Ac = A−BG

of the closed-loop system over the interval [t−T , T]. Thus the estimate of the state at time t is given by

x̂(t)= eAcT x̂(t−T) (15.24)

where x̂(t) is given by Equation 15.23.
The observer requires the delayed control signal u(t−T), which can be implemented by any of the

“standard” methods for implementing a delay line.

15.3 Linear Reduced-Order Observers

The observer described in the previous section has the same order as the plant, irrespective of the number
of independent observations. A reduced-order observer of the order n−m, where n is the dimension of the
state vector and m is the number of observations, can also be specified. When the number of observations is
comparable to the dimension of the state vector, the reduced-order observer may represent a considerable
simplification.

The description of the reduced-order observer is simplified if the state vector can be partitioned into
two substates:

x =
⎡
⎣x1

· · ·
x2

⎤
⎦ (15.25)

such that
x1 = y = Cx (15.26)

is the observation vector (of dimension m) and x2 (of dimension n−m) comprises the components of
the state vector that cannot be measured directly.
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In terms of x1, and x2, the plant dynamics are written as

ẋ1 = A11x1+A12x2+B1u (15.27)

ẋ2 = A21x1+A22x2+B2u (15.28)

Since x1 is directly measured, no observer is required for that substate, that is,

x̂1 = x1 = y (15.29)

For the remaining substate, we define the reduced-order observer by

x̂2 = Ky+ z (15.30)

where z is the state of a system of order n−m:

ż = Âz+ Ly+Hu (15.31)

A block-diagram representation of the reduced-order observer is given in Figure 15.2a.

y = x1

u

Control
input

Observation

(a)

L

A

K

zH ∫

x1

x2

y = x1

u

Control
input

Observation

(b)

L

A

K

zH ∫

x1

x2

FIGURE 15.2 Reduced-order observer for linear process. (a) Feedback from z and (b) feedback from x̂2.
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The matrices Â, L, H , and K are chosen, as in the case of the full-order observer, to ensure that the
error in the estimation of the state converges to zero, independent of x, y, and u.

Since there is no error in the estimation of x1, that is,

e1 = x1− x̂1 = 0 (15.32)

by virtue of Equation 15.29, it is necessary to ensure only the convergence of

e2 = x2− x̂2 (15.33)

to zero.
From Equations 15.28 through 15.31

ė2 = (A21−KA11+ ÂK − L)x1+ (A22−KA12− Â)x2+ Âe2+ (B2−KB1−H)u (15.34)

As in the case of the full-order observer, to make the coefficients of x1, x2, and u vanish it is necessary
that the matrices in Equations 15.29 and 15.31 satisfy

Â= A22−KA12, (15.35)

L= A21−KA11+ ÂK , (15.36)

H = B2−KB1 (15.37)

Two of these conditions (Equations 15.35 and 15.37) are analogous to Equations 15.6 and 15.7 for the
full-order observer; Equation 15.36 is a new requirement for the additional matrix L that is required by
the reduced-order observer.

When these conditions are satisfied, the error in estimation of x2 is given by

e2 = Âe2.

Hence, the gain matrix K must be chosen such that the eigenvalues of Â= A22−KA12 lie in the (open)
left half-plane; A22 and A12 in the reduced-order observer take the roles of A and C in the full-order
observer; once the gain matrix K is chosen, then there is no further freedom in the choice of L and H .

The specific form of the new matrix L in Equation 15.36 suggests another option for implementation
of the dynamics of the reduced-order observer, namely

ż = Âx̂2+ L̄y+Hu, (15.38)

where

L̄= A21−KA11 (15.39)

A block-diagram representation of this option is given in Figure 15.2b.
The selection of the gain matrix K of the reduced-order observer may be accomplished by any of the

methods that can be used to select the gains of the full-order observer. In particular, pole placement, using
any convenient algorithm, is feasible. Or the gain matrix can be obtained as the solution of a reduced-
order Kalman filtering problem. For this purpose, one can use Equations 15.12 and 15.13, with A and C
therein replaced by A22 and A12 of the reduced-order problem.
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A more rigorous solution, taking into account the cross-correlation between the observation noise and
the process noise [4], is available. Suppose the dynamic process is governed by

ẋ1 = A11x1+A12x2+B1u+ F1v, (15.40)

ẋ2 = A21x1+A22x2+B2u+ F2v, (15.41)

with the observation being noise free:
y = x1 (15.42)

In this case, the gain matrix is given by

K = (PA′12+ F2QF ′1)R−1, (15.43)

where
R = F1QF ′1,

and P is the covariance matrix of the estimation error e2, as given by

Ṗ = ÃP+ PÃ′ − PA12R−1A′12P+ Q̃, (15.44)

where

Ã= A22− F2QF ′1R−1A12, (15.45)

Q̃ = F2QF ′2− F2QF ′1R−1F1QF ′2 (15.46)

Note that Equation 15.44 becomes homogeneous when

Q̃ = 0 (15.47)

One of the solutions of Equation 15.44 could be

P = 0. (15.48)

which would imply that the error in estimating x2 converges to zero! We cannot expect to achieve anything
better than this. Unfortunately, P = 0 is not the only possible solution to Equation 15.47. To test whether
it is, it is necessary to check whether the resulting observer dynamics matrix

Â= A22− F2F−1
1 A12 (15.49)

is a stability matrix. If not, Equation 15.47 is not the correct solution to Equation 15.44.
The eigenvalues of the “zero steady-state variance” observer dynamics matrix Equation 15.49 have an

interesting interpretation: as shown in [4], these eigenvalues are the transmission zeros of the plant with
respect to the noise input to the process. Hence, the variance of the estimation error converges to zero if
the plant is “minimum phase” with respect to the noise input.

For purposes of robustness, as discussed in Section 4, suggest that the noise distribution matrix F
includes a term proportional to the control distribution matrix B, that is,

F = F̄+ q2BB′

In this case, the zero-variance observer gain would satisfy

H = B2−KB1 = 0, (15.50)

as q→∞.
If Equation 15.50 is satisfied, the observer poles are located at the transmission zeros of the plant. Thus,

in order to use the gain given by Equation 15.50, it is necessary for the plant to be minimum phase with
respect to the input. Rynaski [5] has defined observers meeting this requirement as robust observers.
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15.4 Discrete-Time Systems

Observers for discrete-time systems can be defined in a manner analogous to continuous-time systems.
Consider a discrete-time linear system

xn+1 =Φxn+Γun (15.51)

with observations defined by
yn = Cxn (15.52)

A full-order observer for Equation 15.51 is a dynamic system of the same order as the process whose
state is to be estimated, excited by the inputs and outputs of that process and having the property that the
estimation error (i.e., the difference between the state xn of the process and the state x̂n of the observer)
converges to zero as n→∞, independent of the state of the process or its inputs and outputs.

Let the observer be defined by the general linear difference equation

x̂n+1 = Φ̂x̂n+Kyn+Hun (15.53)

The goal is to find conditions on the matricesΦ, K , and H such that the requirements stated above are
met. To find these conditions subtract Equation 15.53 from Equation 15.51

xn+1− x̂n+1 =Φxn+Γun− Φ̂x̂n−Kyn−Hun (15.54)

Letting
en = xn− x̂n

and using Equation 15.52 we obtain from Equation 15.54

en+1 =Φen+ (Φ−KC− Φ̂)xn+ (Γ−H)un (15.55)

Thus, in order to meet the requirements stated above, the transition matrix Φ̂ of the observer must be
stable (i.e., the eigenvalues ofΦmust lie within the unit circle) and, moreover,

Φ̂=Φ−KC, (15.56)

H = Γ (15.57)

By virtue of these relations the observer can be expressed as

x̂n+1 =Φxn+Γun+K(yn−Cx̂n) (15.58)

It is seen from Equation 15.58 that the observer has the same dynamics as the underlying process,
except that it has an additional input

K(yn−Cx̂n),

that is, a gain matrix K multiplying the residual

rn = yn−Cx̂n

As in the continuous-time case, the observer can be interpreted as a feedback system, the role of which
is that of driving residual rn to zero.

The observer design thus reduces to the selection of the gain matrix K that makes the eigenvalues of
Φ̂=Φ−KC lie at suitable locations within the unit circle.

If the discrete-time system is observable, the eigenvalues ofΦc =Φ−KC can be put anywhere. For a
single-output plant, the Bass–Gura formula or other well-known algorithm can be used. For both single
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and multiple output processes, the observer gain matrix can be selected to make the observer a Kalman
filter (i.e., a minimum variance estimator).

The gain matrix of the discrete-time Kalman filter is given by

K =ΦPC′(PCP′ +R)−1, (15.59)

where P is the covariance matrix of the estimation error, given (in the steady state) by the discrete-time
algebraic Riccati equation

P =Φ[P− PC′(CPC′ +R)−1CP]Φ′ +Q (15.60)

The matrices Q and R are the covariance matrices of the excitation noise and the observation noise,
respectively. As in the case of continuous-time processes, it is rarely possible to determine these matrices
with any degree of accuracy. Hence, these matrices can be regarded as design parameters that can be
adjusted by the user to provide desirable observer characteristics.

15.4.1 Delayed Data

Consider the discrete-time system defined by Equation 15.51 and with delayed observations defined by

zn = Cxn,

yn = zn−N ,

where N is the time delay, assumed to be an integer. The method described in Section 15.2.2 can readily
be extended to this case. As an alternative the following method can be used. Define the metastate as the
ν+ kN dimensioned vector (where ν is the dimension of the state vector and k is the dimension of the
original observation vector)

xn =
[

xn

zn

]
with zn =

[
z1n z2n · · · zTn

]′

Then the metatstate evolves according to

xn+1 =Φxn+Γun,

where

Φ=

⎡
⎢⎢⎢⎢⎣

Φ 0 0 · · · 0 0
C 0 0 · · · 0 0
0 I 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · I 0

⎤
⎥⎥⎥⎥⎦

and
Γ= [Γ′ 0 · · · 0 0

]′
For all components of the observation vector concurrent, the observation equation is

yn = Cxn =
[
0 0 · · · 0 I

]
xn

For m time delays (each an integer multiple of the sampling time), the observation matrix is given by

C = [0 · · · U1 · · · U2 · · · Um
]

,

where Ui is a column vector with ones in the positions of the observation components present at the
ith observation and zeros otherwise. Applying the theory developed earlier to the metasystem gives the
observer the presence of delayed data.

It is noted that implementation of this method requires the storage of past observations, but permits
the treatment of multiple observations with different time delays.
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15.5 The Separation Principle

The predominant use of an observer is to estimate the state for purposes of feedback control. In particular,
in a linear system with a control designed on the assumption of full-state feedback

u=−Gx, (15.61)

when the state x is not directly measured, the state x̂ of the observer is used in place of the actual state x
in Equation 15.61. Thus, the control is implemented using

u=−Gx̂, (15.62)

where
x̂ = x− e (15.63)

Hence, when an observer is used, the closed-loop dynamics are given in part by

ẋ = Ax−BG(x− e)= (A−BG)x+BGe (15.64)

This equation, together with the equation for the propagation of the error, defines the complete
dynamics of the closed-loop system.

When a full-order observer is used

ė = Âe = (A−KC)e (15.65)

Thus, the complete closed-loop dynamics are

[
ẋ
ė

]
=
[

A−BG BG
0 A−KC

] [
x
e

]
(15.66)

The closed-loop dynamics are governed by the upper triangular matrix

A=
[

A−BG BG
0 A−KC

]
, (15.67)

the eigenvalues of which are given by

|sI −A| = |sI −A+BG||sI −A+KC| = 0, (15.68)

that is, the closed-loop eigenvalues are the eigenvalues of A−BG, the full-state feedback system; and
the eigenvalues of A−KC, the dynamics matrix of the observer. This is a statement of the well-known
separation principle, which permits one to design the observer and the full-state feedback control inde-
pendently, with the assurance that the poles of the closed-loop dynamic system will be the poles selected
for the full-state feedback system and those selected for the observer.

When a reduced-order observer is used, it is readily established that the closed-loop dynamics are
given by [

ẋ
ė2

]
=
[

A−BG BG2

0 A22−KA12

] [
x
e2

]
(15.69)

and hence that the eigenvalues of the closed-loop system are given by

|sI −A+BG||sI −A22+KA12| = 0 (15.70)

Thus, the separation principle also holds when a reduced-order observer is used.
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It is important to recognize, however, that the separation principle applies only when the model of
the process used in the observer agrees exactly with the actual dynamics of the physical process. It is not
possible to meet this requirement in practice and, hence, the separation principle is an approximation
at best. To assess the effect of a model discrepancy on the closed-loop dynamics, consider the following
possibilities:

Case 1: Error in dynamics matrix
A= Ā+ δA

Case 2: Error in control distribution matrix

B= B̄+ δB
Case 3: Error in observation matrix

C = C̄+ δC
Using the “metastate”

x =
[

x
e

]

it is readily determined [6] that the characteristic polynomial of the complete, closed-loop system for
cases 1 and 3 is given by

|sI −A| =
∣∣∣∣ sI −Ac −BG
δA+KδC sI − Â

∣∣∣∣ , (15.71)

where
Ac = Ā−BG, Â= Ā−KC̄

Similarly, using the metastate

x =
[

x̂
e

]
,

it is found that the characteristic polynomial for case 2 is given by

|sI −A| =
∣∣∣∣sI − Â −δBG

KC sI −Ac

∣∣∣∣ , (15.72)

where
Ac = A− B̄G, Â= A−KC

To assess the effect of perturbations of the dynamics matrices on the characteristic polynomial, the
following determinantal identity can be used:

∣∣∣∣A B
C D

∣∣∣∣= |D||A− CD−1B| (15.73)

Apply Equation 15.73 to Equation 15.72 to obtain

|sI −A| = |sI −Ac||sI − Â+ δBG(sI −Ac)−1KC|
= |sI −Ac||sI − Â||I + δBG(sI −Ac)−1KC(sI − Â)−1| (15.74)

upon use of
|AB| = |A||B|

The separation principle would continue to hold if the coefficient of δB in Equation 15.74 were to
vanish. It does vanish if observer matrix K satisfies the Doyle–Stein condition [2]

K(I +CΦK)−1 = B(CΦB)−1, (15.75)
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where
Φ= (sI −A)−1

is the plant resolvent.
To verify this, note that

(sI − Â)−1 = (sI −A+KC)−1 = (Φ−1+KC)−1

=Φ−ΦK(I +CΦK)−1CΦ
(15.76)

When the Doyle–Stein condition (Equation 15.75) holds, Equation 15.76 becomes

(sI − Â)−1 =Φ−ΦB(CΦB)−1CΦ,

and so
C(sI − Â)−1 = CΦ−CΦB(CΦB)−1CΦ= 0,

which ensures that the coefficient of δB in Equation 15.74 vanishes and, hence, that the separation
principle applies.

Regarding the Doyle–Stein condition the following remarks are in order:

• The Doyle–Stein condition can rarely be satisfied exactly. But, as shown [2], it can be satisfied
approximately by making the observer a Kalman filter with a noise matrix of the form given by
Equation 15.14.

• The Doyle–Stein condition is not the only way the coefficient of δB can vanish. However, the
Doyle–Stein condition ensures other robustness properties.

• An analogous condition for δA and δC can be specified.

In carrying out a similar analysis for a reduced-order observer it is found that the characteristic
polynomial for the closed-loop control system, when a reduced-order observer is used and the actual
control distribution matrix B= B̄+ δB differs from the nominal (design) value B̄, is given by

|sI −A| =
∣∣∣∣sI − F+ΔG2 ΔG

−BG2 sI −Ac

∣∣∣∣ , (15.77)

where
Δ= KδB1−B2 (15.78)

It is seen that the characteristic polynomial of the closed-loop system reduces to that of Equation 15.70
when

Δ= 0 (15.79)

It is noted that Equation 15.79 can hold in a single-input system in which the loop gain is the only
variable parameter. In this case

δB1 = ρB1, δB2 = ρB2 (15.80)

and thus
Δ= ρ(KB1−B2)=−ρH

Hence, if the observer is designed with

H = B2−KB1 = 0,

the separation principle holds for arbitrary changes in the loop gain.
If Equation 15.79 cannot be satisfied, then, as shown in [7], condition analogous to the Doyle–Stein

condition can be derived from Equation 15.77 in the case of a scalar control input (Equation 15.80):

[I −K(I +A12Φ22K)−1A12Φ22](B2−KB1)= 0, (15.81)

where
Φ22 = (sI −A22)−1
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15.6 Nonlinear Observers

The concept of an observer carries over to nonlinear systems. However, for a nonlinear system, the
structure of the observer is not nearly as obvious as it is for a linear system. The design of observers for
nonlinear systems has been addressed by several authors, such as Thau [8] and Kou et. al. [9].

An observer for a plant, consisting of a dynamic system

ẋ = f (x, u) (15.82)

with observations given by
y = g(x, u) (15.83)

is another dynamic system, the state of which is denoted by x̂, excited by the output y of the plant, having
the property that the error

e = x− x̂ (15.84)

converges to zero in the steady state.
One way of obtaining an observer is to imitate the procedure used in a linear system, namely to

construct a model of the original system (Equation 15.1) and force it with the “residual”:

r = y− ŷ = y− g(ŷ, u) (15.85)

The equation of the observer thus becomes

˙̂x = f (x̂, u)+ κ(y− g(x̂, u)), (15.86)

where κ( ) is a suitably chosen nonlinear function. (How to choose this function will be discussed later.)
A block diagram representation of a general nonlinear observer is shown in Figure 15.3.

The differential equation for the error e can be used to study its behavior. This equation is given by

ė = ẋ− ˙̂x
= f (x, u)− f (x̂, u)− κ( g(x, u)− g(x̂, u))

= f (x, u)− f (x− e, u)+ κ( g(x− e, u)− g(x, u))

(15.87)

Suppose that by the proper choice of κ( ) the error Equation 15.87 can be made asymptotically stable,
so that an equilibrium state is reached for which

ė = 0

y

Observation –
κ( )

f( )

g( )

∫

Plant model

u
Control input

x

y

FIGURE 15.3 Structure of the nonlinear observer.
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Then, in equilibrium, Equation 15.87 becomes

0= f (x, u)− f (x− e, u)+ κ( g(x− e, u)− g(x, u)) (15.88)

Since the right-hand side of Equation 15.88 becomes zero when e = 0, independent of x and u, it is
apparent that e = 0 is an equilibrium state of Equation 15.87. This implies that if κ( ) can be chosen to
achieve asymptotic stability, the estimation error e converges to zero.

It is very important to appreciate that the right-hand side of Equation 15.88 becomes zero independent
of x and u only when the nonlinear functions f (·, ·) and g(·, ·) used in the observer are exactly the same
as in Equations 15.82 and 15.83, which define the plant dynamics and observations, respectively. Any
discrepancy between the corresponding functions generally prevents the right-hand side of Equation 15.88
from vanishing and hence leads to a steady-state estimation error. Since the mathematical model of a
physical process is always an approximation, in practice the steady-state estimation error generally does
not tend to zero. But, by careful modeling, it is usually possible to minimize the discrepancies between the
f and g functions of the true plant and the model used in the observer. This usually keeps the steady-state
estimation error acceptably small.

For the same reason that the model of the plant and the observation that is used in the observer must
be accurate, it is important that the control u that goes into the plant is the very same control used in
the observer. If the control to the plant is subject to saturation, for example, then the nonlinear function
that models the saturation must be included in the observer. Failure to observe this precaution can cause
difficulties.

Including control saturation in the observer is particularly important as a means for avoiding the
phenomenon known as integrator windup: the compensator, which has a pole at the origin, provides
integral action. Imagine the transfer function of the compensator represented by an integrator in parallel
with a second-order subsystem. The control signal to the integrator is oblivious to the fact that the input
to the plant has saturated and hence keeps the integrator “winding up”; the error signal changes sign
when the desired output reaches the set point, but the control signal does not drop from its maximum
value. When the saturation is included in the observer, on the other hand, the control signal drops from
its maximum value even before the error changes sign, thus correctly taking the dynamics (i.e., the lag)
of the process into account.

The function κ( ) in the observer must be selected to ensure asymptotic stability of the origin (e = 0 in
Equation 15.88). By the theorem of Lyapunov’s first method (see Chapter 43), the origin is asymptotically
stable if the Jacobian matrix of the dynamics, evaluated at the equilibrium state, corresponds to an
asymptotically stable linear system. For the dynamics of the error Equation 15.87 the Jacobian matrix
with respect to the error e evaluated at e = 0 is given by

Ac(x)=
(

∂f

∂x

)
−K

(
∂g

∂x

)
. (15.89)

This is the nonlinear equivalent of the closed-loop observer equation of a linear system

Ac = A−KC,

where A and C are the plant dynamics and observation matrices, respectively. The problem of selecting
the gain matrix for a nonlinear observer is analogous to that of a linear observer, but somewhat more
complicated by the presence of the nonlinearities that make the Jacobian matrices in Equation 15.89
dependent on the state x of the plant. Nevertheless, the techniques used for selecting the gain for a linear
observer can typically be adapted for a nonlinear observer. Pole placement is one method and the other
is to make the observer an extended Kalman filter which, as explained later, entails online computation
of the gains via the linearized variance equation.

It should be noted that the observer closed-loop dynamics matrix depends on the actual state of the
system and hence is time varying. The stability of the observer thus cannot be rigorously determined by
the locations of the eigenvalues of Ac .
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The choice of κ( ) may be aided through the use of Lyapunov’s second method. Using this method,
Thau [8] considered a “mildly nonlinear” process

ẋ = f (x)= Ax+μφ(x), (15.90)

where μ is a small parameter, with linear observations

y = Cx

For this case, κ can be simply a gain matrix chosen to stabilize the linear portion of the system

κ(r)= Kr,

where K is chosen to stabilize

Â= A−KC

This choice of K ensures asymptotic stability of the observer if φ( ) satisfies a Lipschitz condition

||φ(u)−φ(v)|| ≤ k||u− v||

and when

PÂ+ Â′P =−Q ≤−c0I

In this case, asymptotic stability of the observer

x̂ = Ax̂+μφ(x̂)+K(y−Cx̂)

is assured for

μ<
c0

2k||P||
This analysis was substantially extended by Kou et al. [9].
Suggestions for the choice of the nonlinear function κ( ) have appeared in the technical literature. One

suggestion [10], for example, is to use

κ(r)=Ψ(x̂)−1Kr,

where K is a constant, possibly diagonal matrix, andΨ(x) is the Jacobian matrix defined by

Ψ(x)= ∂Φ(x)

∂x

with

Φ(x)=

⎡
⎢⎢⎢⎢⎢⎣

Lf g(x)

L2
f g(x)

...
Ln

f g(x)

⎤
⎥⎥⎥⎥⎥⎦

,

in which Ln
f g(x) is the nth Lie derivative of g(x) with respect to f (x). (See Chapter 38.) This approach

can possibly be viewed as a nonlinear generalization of the Bass–Gura formula given previously, since the
matrixΨ is akin to the observability matrix O defined earlier.
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15.6.1 Using Zero-Crossing or Quantized Observations

The ability of an observer to utilize nonlinear observations is not limited to observations that exhibit
only moderate nonlinearity; even highly nonlinear observations can be accommodated. Perhaps the most
nonlinear observation is that of a zero-crossing detector, in which

y = sgn(x)=
{

1, x > 0
−1, x < 0

This is the extreme special case of a quantizer, in which the output is quantized to only two levels.
Suppose, for example, that the only observation is of the zerocrossing of x1. The observer for this

process is then given by
˙̂x = f (x̂, u)− k[y− sgn(x̂1)], (15.91)

as illustrated in Figure 15.4.
Provided that a gain k, in this case a scalar parameter, can be found that stabilizes the observer at e = 0,

the estimation error will be reduced to zero. The partial derivative of the nonlinear function with respect
to the observation does not exist in this case because the observation is discontinuous with respect to
the state. The stability of the observer cannot be established by linearizing about the origin. You have to
use some other methods, such as Lyapunov’s second method, or determine the appropriate range of k by
simulation.

Some insight into how the observer operates can be gained by considering that both y and sgn(x1) are
signals that take on the values of±1; their difference, which is the residual that appears in Equation 15.91,
is either 0 or±2. Suppose the observer is working well; most of the time y and sgn(x1) will have the same
sign and the residual will be zero. The residual will be nonzero for the short time interval in which y and
sgn(x1) have different signs. The residual will thus consist of a train of narrow pulses, each of height ±2
and of width proportional to the phase difference between y and sgn(x1), as shown in Figure 15.5. The
effect of each pulse is to nudge the state of the observer to agree with the state of the plant.

The same idea extends to quantized observations, since a quantizer can be regarded as a multiple-level
crossing detector.

Of course, if there are other observations in addition to the zero-crossing observation, they can be
combined with the latter and, with an appropriate choice of gains, can provide enhanced performance.

15.6.2 Reduced-Order Observers

Nonlinear reduced-order observers can be developed by the same methods that one uses for linear,
reduced-order observers.

yx1

u

Sgn

–

K

f ( )

C

Sgn

∫ x

x1

y

FIGURE 15.4 Observer using zero-crossing data.
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x1

x1

r

t

FIGURE 15.5 Residual for zero-crossing observations consists of pulses.

Suppose that the state is partitioned into two substates as given by Equation 15.25 with the observation
given by

y = g(x1, u)

Provided that this expression can be solved for x1 as a function of y and u,

x1 =ψ(y, u)= ȳ,

we can use ȳ as the observation. The completely general case in which y contains more state variables than
its dimension can probably be handled in a manner similar to that used for linear systems, as discussed
by Friedland [6]. The derivation is very tortuous in linear systems and is likely to be even more so in
nonlinear systems and is, hence, omitted.

Corresponding to the partitioning of the state vector x as in Equation 15.25, the dynamic equations are
written as

ẋ1 = f1(x1, x2, u), (15.92)

ẋ2 = f2(x1, x2, u), (15.93)

The nonlinear reduced-order observer is assumed to have the same structure as the corresponding
linear observer. For the estimate of the substate x1, we use the observation itself:

x̂1 = y; (15.94)

while the substate x2 is estimated using an observer of the form

x̂2 = Ky+ z, (15.95)

where z is the state of a dynamic system of the same order as the dimension of the subvector x2 and is
given by

ż = φ(y, x̂2, u) (15.96)

A block-diagram representation of the observer having the structure of Equations 15.94 through 15.96
is given in Figure 15.6.
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y = x1

K

ϕ( ) ∫

x1

x2

FIGURE 15.6 Reduced-order nonlinear observer.

The object of the observer design is the determination of the gain matrix K and the nonlinear functionφ.
As for the full-order observer, these are to be selected such that

• The steady-state error in estimating x2 converges to zero, independent of x and u. (The error in
estimating x1 is already zero when x̂1 = y.)

• The observer is asymptotically stable.

As in the case of the full-order observer, we proceed by deriving the differential equation for the
estimation error

e = x2− x̂2 (15.97)

Using Equations 15.93, 15.95, and 15.92, we obtain

ė = ẋ2− ˙̂x2 = f2(y, x2, u)−Kf1(y, x2, u)−φ(y, x2− e, u) (15.98)

In order for the right-hand side of Equation 15.98 to vanish when e = 0, it is necessary that the function
φ(·, ·, ·) satisfy

φ(y, x2, u)= f2(y, x2, u)−Kf1(y, x2, u) (15.99)

for all values of y, x2, and u.
To achieve asymptotic stability, the linearized system

ė = A(x2)e (15.100)

with

A(x2)=
(

∂φ

∂x2

)
=
(

∂f2
∂x2

)
−K

(
∂f1
∂x2

)
(15.101)

must be asymptotically stable.
As in the case of the full-order observer, there are several techniques for selecting an appropriate gain

matrix.
The reduced-order nonlinear observer can be further generalized by replacing the linear function Ky

in Equation 15.95 by a nonlinear function κ(y).

15.6.3 Extended Separation Principle

When an observer having the structure described above is used to estimate the state of a linear system,
and the estimate is used in place of the actual state, the poles of the closed-loop system comprise the poles
of the observer and the poles that would be present if full-state feedback were implemented. This is the
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separation principle of linear systems. (But remember that this result holds only when the model of the
plant used in implementing the observer is a faithful model of the physical plant.)

The separation principle of linear systems can be extended to nonlinear systems. Consider, in particular,
the nonlinear system

ẋ = f (x, u), (15.102)

for which a control law

u= γ(x) (15.103)

has been designed. Use of Equation 15.103 in Equation 15.102 gives the closed-loop dynamics

ẋ = f (x, γ(x))= F(x) (15.104)

Assume that the closed-loop dynamics of the system with full-state feedback, as represented by F(x),
has been designed—by whatever method might be appropriate—to achieve satisfactory behavior. How
will the process behave when the state x̂ of an observer is used in place of the true process state x [i.e.,
when u= γ(x̂)] ? As earlier, let

x̂ = x− e,

where e is the error in estimating the state. Then Equation 15.103 becomes

u= γ(x̂)= γ(x− e)

Then Equation 15.104 becomes

ẋ = f (x, γ(x− e)), (15.105)

which together with Equation 15.87, becomes

ė = f (x, γ(x̂))− f (x− e, γ(x̂))+K[ g(x− e, γ(x̂))− g(x, γ(x̂))], (15.106)

which define the closed-loop dynamics.
There is not much that can be done with Equations 15.105 and 15.106 when f , g , and γ are general

functions. However suppose these functions are sufficiently smooth to permit the use of Taylor’s theorem,
that is,

f (x, γ(x− e))= f (x, γ(x̂))− (∂f /∂γ)(∂γ/∂e)e+O(e2), (15.107)

f (x− e, γ(x̂))= f (x, γ(x̂))− (∂f /∂x)e+O(e2), (15.108)

g(x− e, γ(x̂))= g(x, γ(x̂))− (∂g/∂x)e+O(e2), (15.109)

where O(e2) represents terms that go to zero as ‖e‖2. Then Equations 15.105 and 15.106 become

ẋ = F(x)− (∂f /∂γ)(∂γ/∂e)e+O(e2), (15.110)

ė = [∂f /∂x+K(∂g/∂x)]e+O(e2) (15.111)

With the terms of O(e2) omitted, a block-diagram representation of Equations 15.110 and 15.111 is
shown in Figure 15.7. Note that the equation for the error has no input from the state estimation. The
error thus converges asymptotically to zero as in the linear case. Since the error is the input to the full-state
feedback control system, if the latter is asymptotically stable, the effect of the estimation error vanishes.
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F( )

∫ ∫

K

∂f
∂x

∂f
∂e

∂g

e x

∂x

FIGURE 15.7 Illustration of the extended separation principle.

15.6.4 Extended Kalman Filter

Sometimes the nonlinear function κ( ) can simply be a constant gain. Often, however, there is no obvious
method of choosing this gain and a more systematic method is required. It is often appropriate to make
the observer an “extended Kalman filter,” that is, to calculate the gain matrix online from the solution of
the variance equation of the Kalman filter.

Few of the many applications for which Kalman filters have been used have met the linearity require-
ments of the theory. Nevertheless, the theory has been successfully, if not rigorously, applied. This is done
by using a nonlinear observer of the form of Equation 15.88, but with the gain matrix K therein being
computed, along with the state estimate, using Equations 15.12 and 15.13. The matrices A and C in these
equations are the Jacobian matrices of the dynamics and observations

A= [∂f /∂x]x=x̂ , (15.112)

C = [∂g/∂x]x=x̂ , (15.113)

for the nonlinear process defined by

ẋ = f (x, u), (15.114)

y = g(x, u) (15.115)

In the linear case, the error covariance matrix, and through it the gain matrix K , does not depend on the
estimated state. In principle, these matrices can be computed before the filter is implemented and stored
in the filter’s memory. In the nonlinear case, however, the matrices A and C that are used in computing P
and K depend on the state estimate. Hence, in the extended Kalman filter, the observer and the Kalman
filter gain matrix computation are coupled. This means that the equations for both the variance equation
and the observer must be implemented online as shown schematically in Figure 15.8.

The requirement for online computation of the extended Kalman filter gain matrix can be a compu-
tational burden. Even considering that the covariance equation P is symmetric, there still are k(k− 1)/2
scalar differential equations in Equation 15.13 that must be integrated numerically in addition to the k
scalar observer equations for a kth-order dynamic process. In a 10-order process, for example, a total
of 55 equations must be integrated. It does not take a process of much higher order to overwhelm even
a supercomputer. Moreover, the matrix Riccati equation (Equation 15.13) for P is notorious for being
poorly behaved. Unless special measures are taken, the numerical solution to Equation 15.13 is likely to
lose its positive-definite character as the theory requires. If this happens, the resulting state estimate x̂ will
probably be useless.
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y

–

×

R–1 f ( )

g( )

Matrix
Riccati

equation

∫

u
Control input

Covariance

x

y

P∂g
∂x

FIGURE 15.8 Schematic of the extended Kalman filter, showing coupling between state estimation and covariance
computation.

Fortunately, it is rarely necessary to be a stickler for accuracy in the implementation of Equation 15.13.
In the first place, the entire theory of the extended Kalman filter is only approximate. Moreover, the
spectral density matrices Q and R that appear in Equation 15.13 are hardly ever known to be better than
an order of magnitude. Hence, any computational method that gives a reasonable approximation to P
and K is usually acceptable. Some of the approximations that have been considered include the following:

• Regard P as being piecewise constant and compute it relatively infrequently, using the discrete-time
version of the Kalman filter.

• Simulate the observer and Equation 15.13 offline; examine the results and use appropriate approxi-
mations. It may be possible, for example, to approximate some of the gains by constants. The effect
of the approximations must be evaluated by further simulation.

• Use a simpler model to represent the process in Equation 15.13 than is used as the process model in
the observer; but be careful not to use an overly simple model in the implementation of the process
dynamics.
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16.1 Introduction

Eigenstructure assignment is a useful tool that allows the designer to satisfy damping, settling time, and
mode decoupling specifications directly by choosing eigenvalues and eigenvectors. Andry et al. [1] have
applied eigenstructure assignment to design a stability augmentation system for the lateral dynamics of
the L-1011 aircraft. Both constant gain output feedback and gain suppression designs are proposed. Sobel
and Shapiro [30] used eigenstructure assignment to design dynamic compensators for the L-1011 aircraft.
First- and second-order compensators were proposed for the case in which sideslip angle could not be
measured. Later, Sobel et al. [33] proposed a systematic method for choosing the elements of the feedback
gain matrix which can be suppressed to zero with minimal effect on the eigenvalue and eigenvector

∗ Reprinted from Sobel, K.M., Shapiro, E.Y., and Andry, A.N., Jr., Int. J. Control, 59(1), 13–37, 1994. With permission [27].

16-1
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assignment. A design of an eigenstructure assignment gain-suppression flight controller is shown for
F-18 High Angle of Attack Research Vehicle (HARV) aircraft.

Specialized task tailored modes for highly maneuverable fighter aircraft have been designed by using
eigenstructure assignment. Sobel and Shapiro [29] designed an eigenstructure assignment pitch pointing
and vertical translation controller for the AFTI F-16 aircraft. Pilot command tracking was achieved by
using a special case of O’Brien and Broussard’s [21] command generator tracker. Sobel and Shapiro [28]
designed a yaw pointing and lateral translation controller for the linearized lateral dynamics of the Flight
Propulsion Control Coupling (FPCC) aircraft. This conceptual control-configured vehicle has a vertical
canard in addition to the more conventional control surfaces.

This chapter is organized as follows. Section 16.2 describes eigenstructure assignment using constant
gain output feedback. Section 16.3 extends eigenstructure assignment to allow the designer to suppress
chosen elements of the feedback gain matrix to zero. A systematic method for choosing the entries to be
suppressed is discussed. Section 16.4 describes eigenstructure assignment using dynamic compensation.
Each section includes an application of eigenstructure assignment to the design of a stability augmentation
system for the linearized lateral dynamics of the F-18 HARV. Finally, in Section 16.5 we present a
robust, sampled data, eigenstructure assignment control law design for the yaw pointing/lateral trans-
lation maneuver of the FPCC aircraft.

16.2 Eigenstructure Assignment Using Output Feedback

Consider a system modeled by the linear time-invariant matrix differential equation described by

ẋ = Ax+Bu (16.1)

y = Cx (16.2)

where x is the state vector (n× 1), u is the control vector (m× 1), and y is the output vector (r× 1). It
is assumed that the m inputs and the r outputs are independent. Also, as is usually the case in aircraft
problems, it is assumed that m < r < n. If there are no exogenous inputs such as pilot commands, the
feedback control vector u equals a matrix times the output vector y :

u=−Fy (16.3)

The feedback problem can be stated as follows: Given a set of desired eigenvalues, (λd
i ), i = 1, 2, . . . , r and

a corresponding set of desired eigenvectors, (vd
i ), i = 1, 2, . . . , r, find the real m× r matrix F such that

the eigenvalues of A−BFC contain (λd
i ) as a subset, and the corresponding eigenvectors of A−BFC are

close to the respective members of the set (vd
i ).

Srinathkumar [34] has shown that if (A, B) is a controllable pair, then the feedback gain matrix F
will exactly assign r eigenvalues. It will also assign the corresponding eigenvectors, provided that vd

i is
chosen to be in the subspace spanned by the columns of (λiI −A)−1B for i = 1, 2, . . . , r. This subspace
is of dimension m, which is the number of independent control variables. In general, a chosen or desired
eigenvector vd

i will not reside in the prescribed subspace and, hence, cannot be achieved. Instead, a
“best possible” choice for an achievable eigenvector is made. Andry et al. [1] showed that the best
possible eigenvector is the projection of vd

i onto the subspace spanned by the columns of (λiI −A)−1B.
An alternative representation, described by Kautsky et al. [11], showed that the subspace in which the
eigenvector vi must reside is also given by the null space of UT

1 (λiI −A). The matrix U1 is obtained from
the singular-value decomposition of B, given by

B= [U0, U1]

[∑
V T

0

]
. (16.4)

The method of Kautsky et al. [11] for computing the subspaces is the preferred method for numerical
computation.
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Finally, the complete controllability assumption may be removed by using results derived by Liebst
and Garrard [14] and by Liebst et al. [15]. These results allow the designer to alter eigenvectors that
correspond to uncontrollable eigenvalues.

In many practical situations, complete specification of vd
i is neither required or known, but rather the

designer is interested only in certain elements of the eigenvector. Thus, assume that vd
i has the following

structure:
vd

i =
[
vi1, x, x, x, x, vij, x, x, vin

]T
,

where vij are designer-specified components and x is an unspecified component. Define, as shown by
Andry et al. [1], a reordering operation { }Ri so that

{
vd

i

}Ri =
[
�i

di

]
, (16.5)

where �i is a vector of specified components of vd
i and di is a vector of unspecified components of vd

i .
The rows of the matrix (λiI −A)−1B are also reordered to conform with the reordered components of
vd

i . Thus,

{
(λiI −A)−1B

}Ri =
[

L̃i

Di

]
. (16.6)

Then, as shown by Andry et al. [1], the achievable eigenvector va
i is given by

va
i = (λiI −A)−1BL̃†

i �i , (16.7)

where (·)† denotes the appropriate pseudoinverse of (·).
The output feedback gain matrix using eigenstructure assignment [1] is described by

F =−(Z−A1V )(CV )−1, (16.8)

where A1 is the first m rows of the matrix A in Equation 16.1, V is the matrix whose columns are the r
achievable eigenvectors, Z is a matrix whose columns areλizi , where the ith eigenvector vi is partitioned as

vi =
[

zi

wi

]
with zi an m× 1 vector, and C is the output matrix in Equation 16.2. The result of Equation 16.8

assumes that the system described by Equations 16.1 and 16.2 has been transformed into a system in which
the control distribution matrix B is a lead block identity matrix.

An alternative representation for the feedback gain matrix F developed by Sobel et al. [32] is

F =−VbΣ
−1
b UT

b0(VΛ−AV )VrΣ
−1
r UT

r0, (16.9)

where the singular-value decompositions of the matrices B and CV are given by

B= [Ub0Ub1]

[
ΣbV T

b
0

]
, (16.10)

CV = [Ur0Ur1]

[
ΣrV T

r
0

]
(16.11)

and where Λ is an r× r diagonal matrix with entries λi , i = 1, 2, . . . , r. The method described by Equa-
tion 16.9 is the preferred method for numerical computation.

We conclude the discussion with a comment about the closed-loop system stability. Unfortunately, it is
not yet possible to ensure that stable open-loop eigenvalues do not move into the right half of the complex
plane when an eigenstructure assignment output feedback controller is utilized. This is still an open area
for further research. However, for aircraft flight control systems, the closed-loop stability requirement
is neither necessary nor sufficient. For example, some modes, such as the dutch roll mode, are required
to meet minimum frequency and damping specifications, as described in MIL-F-8785C [18]. For these
modes, stability alone is not sufficient. Other modes, such as the spiral mode, may be unstable provided
that the time to double amplitude is sufficiently large. For these modes, stability may not be necessary.
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16.2.1 F-18 HARV Linearized Lateral Dynamics Design Example

Consider the lateral directional dynamics of the F-18 HARV aircraft linearized at a Mach number of
0.38, an altitude of 5000 ft, and an angle of attack of 5◦. The aerodynamic model is augmented with
first-order actuators and a yaw rate washout filter. The eight state variables are aileron deflection δa,
stabilator deflection δs, rudder deflection δr , sideslip angle β, roll rate p, yaw rate r, bank angle φ, and
washout filter state x8. The three control variables are aileron command δac , stabilator command δsc ,
and rudder command δrc . The four measurements are rwo, p, β, and φ, where rwo is the washed out yaw
rate. All quantities are in the body axis frame of reference with units of degrees or degrees/second. The
state-space matrices A, B, and C that completely describe the model are shown in the Appendix.

An output feedback gain matrix is now computed by using eigenstructure assignment. The desired
dutch roll eigenvalues are chosen with a damping ratio of 0.707 and a natural frequency in the vicinity of
3 rad/s. The roll subsidence and spiral modes are chosen to be merged into a complex mode, as suggested
by [1]. The desired eigenvalues are

Dutch roll mode:

λd
dr =−2± j2

Roll mode:

λd
roll =−3± j2

The desired eigenvectors are chosen to keep the quantity |φ/β| small. Therefore, the desired dutch roll
eigenvectors will have zero entries in the rows corresponding to bank angle and roll rate. The desired roll
mode eigenvectors will have zero entries in the rows corresponding to yaw rate, sideslip, and x8 (which is
filtered yaw rate). The desired eigenvectors are

vd
dr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
x
x
1
0
x
0
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
± j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
x
x
x
0
1
0
x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vd
roll =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
x
x
0
1
0
x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
± j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
x
x
0
x
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δa

δs

δr

β

p
r
φ

x8

.

The achievable eigenvectors are computed by taking the orthogonal projection onto the null space
of UT

1 (λiI −A). However, care must be taken when computing the pseudoinverse of L̃i because this
matrix is ill-conditioned. Press et al. [24] suggest computing the pseudoinverse by using a singular-value
decomposition in which the singular values, which are significantly smaller than the largest singular
value, are treated as zero. The achievable eigenvectors given in this chapter were computed by using
MATLAB� function PINV with TOL = 0.01. The achievable eigenvectors are shown in Table 16.1,
where the underlined numbers indicate the small couplings between p,φ, and the dutch roll mode and
between β, r, x8, and the roll mode. Hence, the ratio |φ/β| can be expected to be small.

The feedback gain matrix is computed by using Equation 16.9 and is shown in Table 16.2. From the
open-loop state responses to a 1◦ initial sideslip, shown in Figure 16.1, we conclude that the aircraft is
poorly damped with strong coupling between the dutch roll mode and the roll mode. The closed-loop
state response is shown in Figure 16.2. Observe that the maximum absolute values of the bank angle and
roll rate are 0.0532 and 0.2819◦/s., respectively.

Finally, we consider the multivariable gain and phase margins for our design. Suppose that the modeling
errors may be described by the matrix L given by

L= Diag
(
�1ejφ1 , �2ejφ2 , . . . , �mejφm

)
.

Then, as shown by Lehtomaki [13], multivariable gain and phase margins at the inputs may be defined.
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TABLE 16.1 Achievable Eigenvectors for Constant Gain Output Feedback

Dutch Roll Mode Roll Mode

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1781

−2.7860

10.1406

0.9777

−0.0559

5.7061

−0.0915

−0.5258

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

±j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2929

1.9039

−4.1580

1.7260

−0.0094

0.9932

−0.1302

−1.0322

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3212

0.3259

−0.1617

−0.0558

0.9983

−0.0016

−0.9938

−0.0022

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

±j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2785

0.2058

0.0693

0.0791

−4.9603

−0.0246

0.9916

0.0032

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δa

δs

δr

β

p

r

φ

x8

TABLE 16.2 Constant Gain Output Feedback Control Law

Feedback Gain Matrix (Degree/Degree)
Gain and Phase Margins max |φ|

rwo p β φ (at inputs δac , δsc , δrc) max |p|⎡
⎢⎣
−0.1704 0.1380 0.0277 0.4092

0.7164 0.1075 −1.7252 0.4867

−2.2741 0.0173 4.4961 −0.3877

⎤
⎥⎦ [−5.50 dB, 18.65 dB]

±52.41◦
0.0532◦
0.2819◦/s.

Let σmin[I + FG(s)]> α, where the plant transfer matrix is given by G(s)= C(sI −A)−1B. Then, the
upward gain margin is at least as large as 1/(1− γ) and the gain reduction margin is at least as small as
1/(1+ γ). The phase margins are at least ±SIN−1(γ/2). The multivariable gain and phase margins for
the constant gain output feedback design are shown in Table 16.2. We conclude that the margins are
acceptable, especially because these margins are considered conservative.
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FIGURE 16.1 F-18 open-loop state responses.
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FIGURE 16.2 F-18 closed-loop state responses for output feedback.

16.3 Eigenstructure Assignment Using Constrained
Output Feedback

The feedback gain matrix given by Equation 16.8 feeds back every output to every input. We now consider
the problem of constraining certain elements of F to be zero. By suppressing certain gains to zero, the
designer reduces controller complexity and increases reliability.

Using the development of [1], define

Ω= CV (16.12)

Ψ = Z−A1V (16.13)

Then the expression for the feedback gain matrix F is given by (see Equation 16.8)

F =−ΨΩ−1. (16.14)

By using the Kronecker product and the lead block identity structure of the matrix B, each row of the
feedback gain matrix can be computed independently of all the other rows [1]. Let ψi be the ith row of
the matrixΨ. Then the solution for fi , which is the ith row of the feedback gain matrix F, is given by

fi =−ψiΩ
−1. (16.15)

If fij is chosen to be constrained to zero, then Andry et al. [1] show that fij should be deleted from fi and

that the jth row of Ω should be deleted. Let Ω̃ be the matrix Ω with its jth row deleted and f̃i be the row
vector fi with its jth entry deleted. Then, by using a pseudoinverse, the solution for f̃i , whose entries are
the remaining active gains in the ith row of the matrix F, is given by

fi =−ψiΩ̃
†, (16.16)

where (·)† denotes the appropriate pseudoinverse of (·). If more than one gain in a row of F is to be set to
zero, the f̃i and Ω̃must be appropriately modified.
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16.3.1 Eigenvalue/Eigenvector Derivative Method for Choosing
Gain-Suppression Structure

Calvo-Ramon [5] has proposed a method for choosing a priori which gains should be set to zero based
on the sensitivities of the eigenvalues to changes in the feedback gains. The first-order sensitivity of the
hth eigenvalue to changes in the ijth entry of the matrix F is denoted by ∂λh/∂fij. The expected shift in
the eigenvalue λh when constraining feedback gain fij to zero is given by

Sh
ij = (fij)

∂λh

∂fij
. (16.17)

Next, combine all the eigenvalue shifts that are related to the same feedback gain fij to form a decision
matrix Dλ = {dij}, DλεRm×r , where

dλij =
1

n

[
n∑

h=1

(
S̄h

ij

) (
Sh

ij

)]1/2

(16.18)

and (·̄) denotes the complex conjugate of (·).
The decision matrix Dλ is used to determine which feedback gains fij should be set to zero. If dλij is

“small,” then setting fij to zero will have a small effect on the closed-loop eigenvalues. Conversely, if dλij
is “large,” then setting fij to zero will have a significant effect on the closed-loop eigenvalues. The control
system designer must determine which dλij are “small” and which are “large” for a particular problem. In
this regard, it is assumed that the states, inputs, and outputs are scaled so that these variables are expressed
in the same or equivalent units.

The decision matrix Dλ was used by Calvo-Ramon [5] to design a constrained output feedback con-
troller using eigenstructure assignment. However, the sensitivities of the eigenvectors with respect to the
gains were not considered when deciding which feedback gains should be set to zero. Recall that the
eigenvalues determine transient response characteristics such as overshoot and settling time, whereas
the eigenvectors determine mode decoupling. This mode decoupling is related, for example, to the |φ/β|
ratio in an aircraft lateral dynamics problem. This ratio must be small, as specified in [18], which implies
that the closed-loop aircraft should exhibit a significant degree of decoupling between the dutch roll mode
and the roll mode. The approach of Calvo-Ramon [5] may yield a constrained controller with acceptable
overshoot and settling time, but the mode decoupling may be unacceptable. Thus, consideration of both
eigenvalue and eigenvector sensitivities is important when choosing which feedback gains should be
constrained to zero.

Sobel et al. [33] extended the results of Calvo-Ramon [5] to include both eigenvalue and eigenvector
sensitivities to the feedback gains. The eigenvector derivatives are used to compute the expected shift in
eigenvector vh when constraining feedback gain fij to be zero. This expected shift in eigenvector vh is
given by

s̃h
ij = (fij)(∂vh/∂fij). (16.19)

Then, all the eigenvector shifts related to the same feedback gain fij are combined to form an eigenvector
decision matrix Dv ,

Dv = 1

n

[
n∑

h=1

(
s̃h
ij

)∗ (
s̃h
ij

)]1/2

, (16.20)

where (·)∗ denotes the complex-conjugate transpose of (·). The gains that should be set to zero are
determined by first eliminating those fij corresponding to entries of Dλ that are considered to be small.
Then, those entries of Dv corresponding to those fij that were chosen to be set to zero based on Dλ are
reviewed. In this way, the designer can determine whether some of the fij that may be set to zero based
on eigenvalue considerations should not be constrained based on eigenvector considerations.



�

�

�

�

� �

16-8 Control System Advanced Methods

16.3.2 F-18 HARV Linearized Lateral Dynamics Design Example

We return to the example which was first considered in Section 16.2.1 and now we seek a constrained-
output feedback controller. The eigenvalue decision matrix Dλ and the eigenvector decision matrix Dv

are shown in Table 16.3. The entries of Dλ considered large are underlined in Table 16.3. Observe
that only seven of the 12 feedback gains are needed when only eigenvalue sensitivities are considered.
The constrained-output feedback gain matrix based on using only the information available from the
eigenvalue decision matrix Dλ is shown in Table 16.4. The state responses to a 6◦ initial sideslip are
shown in Figure 16.3. Observe the significantly increased coupling between sideslip and bank angle as
compared to the unconstrained design of Section 16.2.1. The maximum absolute values of the bank
angle and roll rate are now 0.5102◦ and 1.7881◦/s compared with 0.0532◦ and 0.2819◦/s obtained with the
unconstrained feedback gain matrix. The increased coupling is due to ignoring the eigenvector sensitivities
and illustrates the importance of the eigenvectors in achieving adequate mode decoupling.

Next, consider the entries of Dv that correspond to those fij that were chosen to be set to zero based
on the eigenvalue decision matrix. The two largest dv

ij that belong to this class are dv
11 and dv

23. A new
constrained-output feedback gain matrix is computed in which f11 and f23 are not set to zero. Nine gains
are now needed to be unconstrained when using both eigenvalue and eigenvector information. The new
feedback gain matrix is given in Table 16.4 and the state responses for a 1◦ initial sideslip are shown in
Figure 16.4. Observe that these time responses are almost identical to the responses in Figure 16.2, which
were obtained by using all 12 feedback gains. Thus, a simpler controller is obtained with a negligible change
in the aircraft time responses. Finally, the multivariable gain and phase margins are shown in Table 16.4.
The values of these margins are considered acceptable because singular-value-based multivariable stability
margin computation is conservative.

TABLE 16.3 Eigenvalue and Eigenvector Decision Matrices

Eigenvalue Decision Dλ Eigenvector Decision Matrix Dv

rwo p β φ rwo p β φ⎡
⎢⎣

0.0710 0.5117 0.0019 0.2379

0.2286 0.3150 0.0843 0.3362

0.6754 0.0162 0.3347 0.0482

⎤
⎥⎦

⎡
⎢⎣

0.2379 0.4675 0.0107 0.1835

0.7927 0.2882 0.5270 0.1693

0.7780 0.0259 0.3194 0.0871

⎤
⎥⎦

δa

δs

δr

TABLE 16.4 Comparison of Constant Gain Control Laws

Feedback Gain Matrix Degree/Degree
Gain and Phase Margins max |φ|

rwo p β φ (at inputs δac , δsc , δrc) max |p|
Unconstrained⎡
⎢⎣
−0.1704 0.1380 0.0277 0.4092

0.7164 0.1075 −1.7252 0.4867

−2.2741 0.0173 4.4961 −0.3877

⎤
⎥⎦ [−5.50 dB, 18.65 dB]

±52.41◦
0.0532◦
0.2819◦/s

Constrained Dλ only⎡
⎢⎣

0.0 0.1926 0.0 0.6417

0.3371 0.2010 0.0 0.7554

−2.2648 0.0 4.4891 0.0

⎤
⎥⎦ [−5.38 dB, 16.90 dB]

±50.75◦
0.5102◦
1.7881◦/s

Constrained Dλ and Dv⎡
⎢⎣
−0.1643 0.1365 0.0 0.4049

0.7164 0.1075 −1.7252 0.4867

−2.2648 0.0 4.4891 0.0

⎤
⎥⎦ [−5.32 dB, 16.22 dB]

±50.01◦
0.0505◦
0.2662◦/s
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FIGURE 16.3 F-18 closed-loop state responses for constrained-output feedback (using only Dλ).
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FIGURE 16.4 F-18 closed-loop state responses for constrained-output feedback (using both Dλ and Dv).
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16.4 Eigenstructure Assignment Using Dynamic Compensation

We now generalize the eigenstructure assignment flight control design methodology to include the
design of low-order dynamic compensators of any given order �, 0≤ �≤ n− r. Recall that n and r are
the dimensions of the aircraft state and output vectors, respectively. Consider the linear time-invariant
aircraft described by Equations 16.1 and 16.2 with a linear time-invariant dynamic controller specified by

ż(t)= Dz(t)+Ey(t), (16.21)

u(t)= F(z)+Gy(t), (16.22)

where the controller state vector z(t) is of dimension �, 0≤ �≤ n− r.
It is convenient to model the aircraft and compensator by the composite system originally proposed

by Johnson and Athans [10]. Thus, define

˙̄x = Āx̄+ B̄ū, (16.23)

ȳ = C̄x̄, (16.24)

ū= F̄ȳ, (16.25)

where

x̄ =
[x

z

]
, Ā=

[
A|0
0|0

]
, B̄=

[
B|0
0|I

]
, C̄ =

[
C|0
0|I

]
, F̄ =

[
G|F
E|D

]
.

Furthermore, the eigenvectors of the composite system may be described by

vi =
[

vi(x)

vi(z)

]
, (16.26)

where vi(x) is the ith subeigenvector corresponding to the aircraft and vi(z) the ith subeigenvector
corresponding to the compensator. Once the compensator dimension is chosen, the problem is solved as
previously shown for the constant gain case.

The dynamic compensator design problem may be stated as follows. Given a set of desired aircraft
eigenvalues

{
λd

i

}
, i = 1, 2, . . . , r+ � and a corresponding set of desired aircraft subeigenvectors vd

i (x), i =
1, 2, . . . , r+ �, find real matrices D(�× �), E(�× r), F(m× �), and G(m× r) so that the eigenvalues of
A+BFC contain

{
λd

i

}
as a subset and corresponding subeigenvectors {vi(x)} are close to the respective

members of the set
{

vd
i (x)

}
.

16.4.1 F-18 HARV Linearized Lateral Dynamics Design Example

We again return to the example first considered in Section 16.2.1. If y = [rwo, p, β,φ]T , as was the case
in Sections 16.2.1 and 16.3.1, then the designer can specify both the dutch roll mode and roll mode
eigenvalues. The designer might also specify three entries in the real and imaginary parts of the dutch roll
eigenvectors and four entries in the real and imaginary parts of the roll mode eigenvectors as was done in
Section 16.2.1. Then achievable eigenvectors are computed.

Now suppose that the measurement is given by y = [rwo, p, φ]T, but the designer is still required
to assign both the dutch roll and roll mode eigenvalues. Using the results of Section 16.4, we might
utilize a first-order dynamic compensator with state z1. The composite system has state vector x̄ =
[δa, δs, δr , β, p, r,φ, x8, z1]T, and the measurement vector is given by ȳ = [rwo, p,φ, z1]T. Thus, as before,
the designer might choose to specify three or four entries of the real and imaginary parts of vi(x), i =1,2,3,4,
which are the entries of the dutch roll and roll mode eigenvectors corresponding to the original aircraft
state variables. Again, achievable eigenvectors will be computed.
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We might ask whether the eigenvalue/eigenvector specifications are identical for both proposed prob-
lems. Certainly, the eigenvalue specifications and the corresponding vd

i (x) subeigenvectors may be identi-
cal. However, the vd

i (z) subeigenvector specifications must now be properly chosen. Otherwise, the modal
matrix for the composite system may become numerically singular.

Finally, we remark that if the first-order compensator does not perform acceptably, then the designer
might try a higher-order compensator. In the case of a second-order compensator, the composite system
has state vector x̄ = [δa, δs, δr , β, p, r,φ, x8, z1, z2]T, and the measurement vector is given by ȳ = [rwo, p,φ,
z1, z2]T. In this case, the designer can also specify one of the compensator eigenvalues and some entries
of its corresponding eigenvector.

Now consider the case when only the washed-out yaw rate, roll rate, and bank angle are measured.
We form the composite system described by Equations 16.23 through 16.25 by appending a first-order
compensator to the aircraft dynamics. We specify that the roll mode and dutch roll mode eigenvalues
are the same as in the constant gain feedback problem in Section 16.2.1. The compensator pole is not
specified, but it is chosen by the eigenstructure assignment algorithm to obtain eigenvalue and eigenvector
assignment for the aircraft modes. Furthermore, because we have three sensors plus one compensator
state, the eigenstructure assignment algorithm will allow us to specify four closed-loop eigenvalues. We
specify that the desired aircraft subeigenvectors vd

i (x) are the same as the desired eigenvectors in the
constant gain output feedback problem. The desired compensator subeigenvectors are chosen so that the
dutch roll and roll modes participate in the compensator state solution. The control law is described by

⎡
⎣δa

δs

δr

⎤
⎦=

⎡
⎣ 0.1708 −0.1383 −0.4079
−0.2723 −0.3328 −0.2408

1.0897 0.5836 −1.5548

⎤
⎦
⎡
⎣rwo

p
φ

⎤
⎦+

⎡
⎣−0.0040
−1.4112

3.7731

⎤
⎦ z1, (16.27)

ż1 =−2.4784z1+ 0.5906rwo+ 0.9817p+ 3.0796φ. (16.28)

The desired eigenvalues, achievable eigenvalues, and desired eigenvectors are shown in Table 16.5.
The separation principle does not apply to the dynamic compensator described by Equations 16.21
and 16.22. Thus, the composite system has eigenvalues at −1.7646 and −0.7549 which are due to the
compensator and the yaw rate washout filter, respectively. The time responses of the aircraft states are
shown in Figure 16.5 from which we observe that the responses with the dynamic compensator are slower
than the responses with constant gain output feedback. However, the dynamic compensator controller
is implemented without the need for a sideslip sensor. In addition, the ratio |φ/β| ≈ 0.8 as compared to
|φ/β| ≈ 4 for the open-loop aircraft.

TABLE 16.5 Eigenvalues and Eigenvectors for Dynamic Compensator

Desired Eigenvectors

Dutch Roll Mode Roll Mode
Desired Achievable

Eigenvalues Eigenvalues Re Im Re Im

λdr =−2± j2

λroll =−3± j2

λdr =−2± j2

λroll =−3± j2

λact =−30.0000

λact =−27.6993

λact =−25.2634

λfilt =−0.7549

λcomp =−1.7646

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x

x

x

0

1

0

x

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x

x

1

0

x

0

x

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x

x

0

x

0

1

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

x

x

0

1

0

x

0

x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δa

δs

δr

β

p

r

φ

x8

z1
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FIGURE 16.5 F-18 closed-loop state responses for first-order dynamic compensator.

The multivariable stability margins are computed using σmin[I +KG(s)] where G(s)= C(sI −A)−1B
and K =−[F(sI −D)−1E+G]. The multivariable gain margins are GMε[−2.47 dB, 3.46 dB ] and the
multivariable phase margin is ±18.89◦. If the designer considers these margins inadequate, then an
optimization may be used to compute an eigenstructure assignment controller with a constraint on the
minimum of the smallest singular value of the return difference matrix. In the next section, we present a
robust, sampled data eigenstructure controller for the yaw pointing/lateral translation maneuver of the
FPCC aircraft.

16.5 Robust, Sampled Data Eigenstructure Assignment

Sobel and Shapiro [28] used eigenstructure assignment to design a continuous-time controller for the yaw
pointing/lateral translation maneuver of the FPCC aircraft. This conceptual control-configured aircraft
has a vertical canard and is difficult to control because the control distribution matrix has a minimum
singular value of 0.0546. The design of Sobel and Shapiro [28] is characterized by perfect decoupling,
but the minimum of the smallest singular value of the return difference matrix at the aircraft inputs was
only 0.18.

Sobel and Lallman [32] proposed a pseudocontrol strategy for reducing the dimension of the control
space by using the singular-value decomposition. The FPCC yaw pointing/lateral translation design of
Sobel and Lallman [32] yields a minimum of the smallest singular value of the return difference matrix at
the aircraft inputs of 0.9835, but the lateral translation transient response has significant coupling to the
heading angle.

Sobel and Shapiro [31] have proposed an extended pseudocontrol strategy. Piou and Sobel [22]
extended eigenstructure assignment to linear time-invariant plants which are represented by Middleton
and Goodwin’s [17] unified delta model which is valid both for continuous-time and sampled data opera-
tion of the plant. Piou et al. [23] have extended Yedavalli’s [35] Lyapunov approach for stability robustness



�

�

�

�

� �

Eigenstructure Assignment 16-13

of a linear time-invariant system to the unified delta system. In this section, we design a robust, sampled
data, extended pseudocontrol, eigenstructure assignment flight control law for the yaw pointing/lateral
translation maneuver of the FPCC aircraft. The main goal of this section is to describe a design methodol-
ogy which incorporates robustness into the eigenstructure assignment method. However, a sampled data
design is used for illustration.

16.5.1 Problem Formulation

Consider a nominal linear time-invariant system described by (A, B, C). The corresponding sampled data
system is described by (Aδ, Bδ, C) and the unified delta model is described by (Aρ, Bρ, C). Suppose that the
nominal delta system is subject to linear time-invariant uncertainties in the entries of Aρ, Bρ described by
dAρ and dBρ, respectively. Then, the delta system with uncertainty is given by (Aρ+ dAρ, Bρ+ dBρ, C).
Here dAρ = dA, dBρ = dB in continuous time and dAρ = dAδ, dBρ = dBδ in discrete time. Further-
more, suppose that bounds are available on the maximum absolute values of the elements of dA and
dB so that {dA : dA+ ≤ Amax} and {dB : dB+ ≤ Bmax} and where “≤” is applied element by element to
matrices.

Consider the constant gain output feedback control law described by u(t)= Fρy(t), where Fρ = F in
continuous time and Fρ = Fδ in discrete time. Then, the nominal closed-loop unified delta system is
given by ρx(t)= Aρcx(t), where Aρc = A+BFC in continuous time and Aδ+BδFδC in discrete time.
The uncertain closed-loop unified delta system is given by ρx(t)= Aρcx(t)+ dAρcx(t), where dAρc =
dA+ dB(FC) in continuous time and dAδ+ dBδ(FδC) in discrete time. The reader is referred to Middleton
and Goodwin [17] for a more detailed description.

16.5.2 Pseudocontrol and Robustness Results

The purpose of a pseudocontrol is to reduce the dimension of the control space. This reduction is needed
for systems whose control distribution matrix B has a minimum singular value that is very small. After
the eigenstructure assignment design is complete, the controller is mapped back into the original control
space. Consider the singular-value decomposition of the matrix Bρ given by

Bρ = [U1U2U0]

⎡
⎣Σ1

Σ2

0

⎤
⎦
⎡
⎣V T

1
V T

2
V T

0

⎤
⎦ , (16.29)

where Σ1 = diag [σ1, . . . , σa] and Σ2 = diag [σa+1, . . . , σb] and where σb ≤ σb−1 ≤ · · · ≤ σa+1 ≤ ε with
ε small.

Lemma 16.1:

Let the system with the pseudocontrol ũ(t) be described by

ρx(t)= Aρx(t)+ B̃ρũ(t), (16.30)

y(t)= Cx(t), (16.31)

where

B̃ρ = U1+U2[α1, α2]. (16.32)
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We design a feedback pseudocontrol for the system described by Equations 16.30 through 16.32. Then,
the true control u(t) for the system described by (Aρ, Bρ, C) is given by

u(t)=
[

V1Σ
−1
1 +V2Σ

−1
2 α

]
ũ(t). (16.33)

Furthermore, when α= [0, 0]T , the control law u(t) given by Equation 16.33 reduces to the control law
given by Equation 20 in Sobel and Lallman [32].

Theorem 16.1:

The system matrix Aρc + dAρc is stable if

σmax

(
ET

2 maxP+ρ E1 max

)
s
< 1, (16.34)

where

E1 max = Aρmax +Bρmax(FρC)+

and

E2 max =
{

In+Δ
[
Aρ+Bρ(FρC)

]}+ + (Δ/2)E1 max

and where Pρ satisfies the Lyapunov equation given by

AT
ρcPρ+ PρAρc +ΔAρcPρAT

ρc =−2In

and where P+ρ is the matrix formed by the modulus of the entries of the matrix Pρ, and (·)s denotes the
symmetric part of a matrix.

16.5.3 FPCC Yaw Pointing/Lateral Translation Controller Design Using
Robust, Sampled Data, Eigenstructure Assignment

We consider the FPCC aircraft linearized lateral dynamics which is described by Sobel and Lallman [32].
The state-space matrices A and B are shown in the Appendix. The state variables are sideslip angle β, bank
angle φ, roll rate p, and lateral directional flight path angle (γ=Ψ+ β), where Ψ is the heading angle.
The control variables are rudder δr , ailerons δa, and vertical canard δc . The angles and surface deflections
are in degrees, and the angular rates are in degrees/second. The five measurements are β,φ, p, r, and γ.

First, we design an eigenstructure assignment control law by using an orthogonal projection. The delta
state-space matrices Aδ and Bδ are computed by using the MATLAB Delta Toolbox. The sampling period
Δ is chosen to be 0.02 s for illustrative purposes. The desired dutch roll, roll mode, and flight path mode
eigenvalues are achieved exactly because five measurements are available for feedback. The achievable
eigenvectors are computed by using the orthogonal projection of the ith desired eigenvector onto the
subspace which is spanned by the columns of (γiI −Aδ)−1Bδ. The closed-loop delta eigenvalues γi , i =
1, . . . , n, and the feedback gain matrix Fδ are shown in Table 16.6. The desired closed-loop eigenvectors
are shown in Table 16.7.

The orthogonal projection solution is characterized by excellent decoupling with the minimum of the
smallest singular value of (I + FG) equal to 0.18. Here the transfer function matrix of the delta plant is
given by G([ejωΔ− 1]/Δ), where 0 < ω< π/T . Furthermore, the Lyapunov robust stability condition of
Equation 16.34 is not satisfied.

To improve the minimum singular value of (I + FG), we design a controller by using an orthogonal
projection with the pseudocontrol of Sobel and Lallman [32]. This pseudocontrol mapping is given
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TABLE 16.6 Comparison of FPCC Designs (Δ= 0.02 s)

Feedback Gain Matrix

Closed-Loop Eigenvalues β φ p r γ

Orthogonal γdr =−1.9990± j1.921 1.4688 −0.2866 −0.0022 0.3799 −1.5332 δr

projection design γroll =−2.95± j1.883 0.5652 −2.2990 −0.9044 −0.6691 −0.8890 δa

γfp = 0.4975 9.2964 −1.2143 −0.514 −1.4219 −15.57 δc

Orthogonal γdr =−1.999± j1.921 −0.4929 −0.0332 0.0076 0.6883 2.7584 δr

projection design γroll =−2.95± j1.883 0.9517 −2.353 −0.9093 −0.7565 −2.5147 δa

with pseudocontrol γfp =−0.4975 0.1203 −0.0530 −0.0245 −0.1535 −0.6023 δc

Robust γ1,2 =−3.37± j1.56 −0.2833 −0.0340 −0.0062 0.2377 0.5336 δr

pseudocontrol

design

γ3,4 =−3.16± j1.473 1.5501 −2.4760 −1.0370 −0.9812 −1.7788 δa

γfp =−0.4310 5.6151 −0.0012 −0.1486 −4.6301 −10.285 δc

Robust γ1,2 =−2.55± j1.19 −0.1658 −0.1967 −0.0808 0.4895 0.8616 δr

pseudocontrol γ3,4 =−2.60± j1.22 0.8390 −1.5479 −0.7663 −0.8565 −1.2679 δa

design with γfp =−0.3248 1.1525 −0.8794 −0.4764 −1.9712 −3.2578 δc

singular-value

constraint

Note: Eigenvalues are computed by using feedback gains with significant digits to machine precision.

by Equation 16.33 with α= [0, 0]. This design is characterized by a lateral translation response with
significant coupling between γ andΨ with the minimum of the smallest singular value of (I + FG) equal
to 0.9835. The Lyapunov sufficient robust stability condition of Equation 16.34 is not satisfied. We note
that the yaw pointing responses exhibit excellent decoupling for both orthogonal projection designs.

Next, to obtain a robust design with excellent decoupling, we design a robust pseudocontrol law by
using the design method proposed by Piou et al. [23]. This new design method minimizes an objective
function which weights the heading angle due to a lateral flight path angle command and the lateral flight
path angle due to a heading command. Constraints are placed on the time constants of the dutch roll,
roll, and flight path modes, the damping ratios of the dutch roll and roll modes, and the new sufficient
condition for robust stability. Mathematically, the objective function to be minimized is given by

J =
100∑
k=1

[
(1− α)

(
Ψ2

k

)
γc + α

(
γ2

k

)
Ψc

]
. (16.35)

The upper limit on the index k is chosen to include the time interval kΔε[0, 2] during which most of the
transient response occurs. Of course, computation of Equation 16.35 requires that two linear simulations
be performed during each function evaluation of the optimization. The constraints for continuous time
and the corresponding constraints for discrete time are shown in Table 16.8 where ζ is the damping ratio.

TABLE 16.7 FPCC Desired Closed-Loop Eigenvectors

Dutch Roll Mode Roll Mode Flight Path Mode⎡
⎢⎢⎢⎢⎢⎢⎣

x

0

0

1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
± j

⎡
⎢⎢⎢⎢⎢⎢⎣

1

0

0

x

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

0

x

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
± j

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

x

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦

β

φ

p

r

γ
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TABLE 16.8 Constraints for the FPCC Designs

Continuous Time Discrete Time

For Complex Eigenvalues:

Reλ ∈ [−4,−1.5] |1+Δγ| ∈
[

e−4Δ, e−1.5Δ
]

ζ ∈ [0.4, 0.9] |1+Δγ| ∈
[

exp

(
−0.9φ

[1−(0.9)2]1/2

)
, exp

(
−0.4φ

[1−(0.4)2]1/2

)
,

]
,

where φ= arg(1+Δγ)

For the Real Eigenvalue:

λ ∈ [−1,−0.05] |1+Δγ| ∈ [e−Δ, e−0.05Δ]
For Lyapunov Robustness:

σmax

(
ET

2 maxP+ρ E1 max

)
< 0.999

For Multivariable Stability Margins (Final Design only):

min σmin(I + FG)≥ 0.55; 0 < ω< π/T

For illustrative purposes we have chosen Amax = 0.085A+ and Bmax = 0. After many trials, we found that
a good value for the weight α in Equation 16.35 is α= 0.0075.

The parameter vector contains the quantities which may be varied by the optimization. This 17-
dimensional vector includes Re γdr , Im γdr , Re γroll , Im γroll , γfp, Re z1(1), Re z1(2), Im z1(1), Im z1(2),
Re z3(1), Re z3(2), Im z3(1), Im z3(2), z5(1), z5(2), and the two-dimensional pseudocontrol vector α of
Equation 16.32. Here, the two-dimensional complex vectors zi contain the free eigenvector parameters,
that is, the ith eigenvector vi may be written as

vi = Lizi , (16.36)

where the columns of Li = (γiI −Aδ)−1B̃δ are a basis for the subspace in which the ith eigenvector must
reside. Thus, the free parameters are the vectors zi rather than the eigenvectors vi . The vectors zi are two
dimensional because the optimization is performed in the two-dimensional pseudocontrol space.

The optimization uses subroutine constr from the MATLAB Optimization Toolbox and subroutine
delsim from the MATLAB Delta Toolbox. The optimization is initialized with the orthogonal projection
pseudocontrol design which yields an initial value of 20.6 for the objective function of Equation 16.35 and
a value of 1.66 for the right-hand-side (RHS) of the robustness condition of Equation 16.34. Unfortunately,
the minimum of the smallest singular value of (I + FG) is only 0.2607 which is less than desired.
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FIGURE 16.6 FPCC yaw pointing; robust pseudocontrol with singular-value constraint.



�

�

�

�

� �

Eigenstructure Assignment 16-17

0
0.2

0

0.2

0.4
D

eg
re

es

0.6

0.8

1

2 4 6
Time (s)

8 10

p

β

γ

Φ

Ψ

FIGURE 16.7 FPCC lateral translation; robust pseudocontrol with singular value constraint.

To achieve a design with excellent time responses, Lyapunov robustness, and an acceptable minimum
of the smallest singular value of (I + FG), we repeat the optimization with the additional constraint that
σmin(I + FG)≥ 0.55. Once again we initialize the optimization at the orthogonal projection pseudocontrol
design. The optimization yields an optimal objective function of 0.0556 and a value of 0.999 for the RHS
of the robustness condition. The time responses for yaw pointing and lateral translation are shown in
Figures 16.6 and 16.7, respectively. The lateral translation response is deemed excellent even though it has
some small increase in coupling compared to the design without the additional singular-value constraint.
Thus, we have obtained a controller which simultaneously achieves excellent time responses, Lyapunov
robustness, and an acceptable minimum of the smallest singular-value of the return difference matrix at
the aircraft inputs.

16.6 Defining Terms

Stability augmentation system: A feedback control designed to modify the inherent aerodynamic stabil-
ity of the airframe.

Gain suppression: A feedback control in which one or more entries of the gain matrix are constrained to
be zero.

Specialized task tailored modes: A feedback control system designed for a specific maneuver such as
bombing, strafing, air-to-air combat, and so on.

Mode decoupling: The elimination of interactions between modes, for example, in an aircraft mode
decoupling is important so that a sideslip angle disturbance will not cause rolling motion.

Eigenstructure assignment: A feedback control designed to modify both the system’s eigenvalues and
eigenvectors.
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Further Reading

Kautsky et al. [11] suggested that eigenstructure assignment can be used to obtain a design with eigen-
values, which are least sensitive to parameter variation, by reducing one of several sensitivity measures.
Among these measures are the quadratic norm condition number of the closed-loop modal matrix and
the sum of the squares of the quadratic norms of the left eigenvectors. Burrows et al. [4] have proposed a
stability augmentation system for a well-behaved light aircraft by using eigenstructure assignment with an
optimization which minimizes the condition number of the closed-loop modal matrix. Such an approach
may sometimes produce an acceptable controller. In contrast to eigensensitivity, Doyle and Stein [7]
have characterized the stability robustness of a multi-input, multi-output system by the minimum of the
smallest singular value of the return difference matrix at the plant input or output. Gavito and Collins [8]
have proposed an eigenstructure assignment design in which a constraint is placed on the minimum of
the smallest singular value of the return difference matrix at the inputs of both an L-1011 aircraft and
a CH-47 helicopter. Several authors have proposed different approaches to eigenstructure assignment.
Clarke et al. [6] present a method to trade exact closed-loop eigenvalue location against an improvement
in the associated eigenvector match. Bruyere et al. [3] use eigenstructure assignment in a polynomial
framework. Satoh and Sugimoto [25] present a regional eigenstructure assignment using a linear matrix
inequalities (LMI) approach. Nieto-Wire and Sobel [19] applied eigenstructure assignment to the design
of a flight control system for a tailless aircraft. Other applications of eigenstructure assignment include
air-to-air missiles [36], mechanical systems [26], and power systems [16]. Jiang [9], Konstantopoulos [12],
and Ashari et al. [2] have proposed methods for reconfiguration using eigenstructure assignment. Nieto-
Wire and Sobel [20] used eigenstructure assignment for the accomodation of symmetric lock in place
actuator failures for a tailless aircraft.

Appendix

Data for the F-18 HARV Lateral Directional Dynamics at M= 0.38, H= 5000 ft., and α= 5◦

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−30.0000 0 0 0 0 0 0 0
0 −30.0000 0 0 0 0 0 0
0 0 −30.0000 0 0 0 0 0
−0.0070 −0.0140 0.0412 −0.1727 0.0873 −0.9946 0.0760 0
15.3225 12.0601 2.2022 −11.0723 −2.1912 0.7096 0 0
−0.3264 0.2041 −1.3524 2.1137 −0.0086 −0.1399 0 0

0 0 0 0 1.0000 0.0875 0 0
0 0 0 0 0 0.5000 0 −0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

30.0000 0 0
0 30.0000 0
0 0 30.0000
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎣

0 0 0 0 0 1 0 −1
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

⎤
⎥⎥⎦ ,

Data for the FPCC Lateral Directional Dynamics

A=

⎡
⎢⎢⎢⎢⎣

−0.340 0.0517 0.001 −0.997 0
0 0 1 0 0
−2.69 0 −1.15 0.738 0

5.91 0 0.138 −0.506 0
−0.340 0.0517 0.001 0.0031 0

⎤
⎥⎥⎥⎥⎦, B=

⎡
⎢⎢⎢⎢⎣

0.0755 0 0.0246
0 0 0
4.48 5.22 −0.742

−5.03 0.0998 0.984
0.0755 0 0.0246

⎤
⎥⎥⎥⎥⎦.
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17.1 Introduction

The linear quadratic regulator problem, commonly abbreviated as LQR, plays a key role in many control
design methods. Not only is LQR a powerful design method, but in many respects it is also the mother of
many current, systematic control design procedures for linear multiple-input, multiple output (MIMO)
systems. Both the linear quadratic Gaussian, LQG or H2 , and H∞ controller design procedures have
a usage and philosophy that are similar to the LQR methodology. As such, studying the proper usage
and philosophy of LQR controllers is an excellent way to begin building an understanding of even more
powerful design procedures.

From the time of its conception in the 1960s, the LQR problem has been the subject of volumes of
research. Yet, as will be detailed, the LQR is nothing more than the solution to a convex, least squares
optimization problem that has some very attractive properties. Namely the optimal controller automati-
cally ensures a stable closed-loop system, achieves guaranteed levels of stability robustness, and is simple
to compute. To provide a control systems engineer with the knowledge needed to take advantage of
these attractive properties, this chapter is written in a tutorial fashion and from a user’s point of view,
without the complicated theoretical derivations of the results. A more in-depth reference that contains
the theory for much of the material presented here is the text by Anderson and Moore [1], while the text
by Kwakernaak and Sivan [2] is considered to be the classic text on the subject.

In addition to the standard LQR results, robustness properties and useful variations of the LQR are
also discussed. In particular, we describe how sensitivity weighted LQR (SWLQR) can be used to make

17-1
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high-gain LQR controllers robust to parametric modeling errors, as well as how to include frequency
domain specifications in the LQR framework through the use of frequency weighted cost functionals.
Since this chapter can be viewed as an introduction to optimal control for MIMO, linear, time-invariant
systems, we briefly discuss the full state feedback H∞ controller and its relation to a mini-max quadratic
optimal control problem for completeness.

17.2 The Time-Invariant LQR Problem

To begin, we simply state the LQR problem, its solution, and the assumptions used in obtaining the
solution. The rest of this chapter is devoted to discussing the properties of the controller, how the
mathematical optimization problem relates to the physics of control systems, and useful variations of
the standard LQR.

Theorem 17.1: Steady State LQR

Given the system dynamics
ẋ(t)= Ax(t)+Bu(t) ; x(t = 0)= x0 (17.1)

with x(t) ∈R
n and u(t) ∈R

m along with a linear combination of states to keep small

z(t)= Cx(t) (17.2)

with z(t) ∈R
p. We define a quadratic cost functional

J =
∫ ∞

0

[
zT (t)z(t)+ uT (t)Ru(t)

]
dt (17.3)

in which the size of the states of interest, z(t), is weighted relative to the amount of control action in u(t)
through the weighting matrix R.

If the following assumptions hold:

1. The entire state vector x(t) is available for feedback
2. [A B] is stabilizable and [A C] is detectable
3. R = RT > 0

Then

1. The linear quadratic controller is the unique, optimal, full state feedback control law

u(t)=−Kx(t) with K = R−1BT S (17.4)

that minimizes the cost, J , subject to the dynamic constraints imposed by the open-loop dynamics in
Equation 17.1.

2. S is the unique, symmetric, positive semidefinite solution to the algebraic Riccati equation

SA+AT S+CT C− SBR−1BT S = 0 (17.5)

3. The closed-loop dynamics arrived at by substituting Equation 17.4 into Equation 17.1

ẋ(t)= [A−BK]x(t) (17.6)

are guaranteed to be asymptotically stable.
4. The minimum value of the cost J in Equation 17.3 is J = xT

0 Sx0.
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While the theorem states the LQR result, it is still necessary to discuss how to take advantage of it.
Before doing so, note that the control gains, K from Equation 17.4, can be readily computed for large-order
systems using standard software packages such as MATLAB� and MATRIXxTM. Hence, the remainder
of this chapter is really about how the values of the design variables used in the optimization problem
influence the behavior of the controllers. Here the design variables are z, the states to keep small, and R,
the control weighting matrix. We begin the discussion by describing the physical motivation behind the
optimization problem.

17.2.1 Physical Motivation for the LQR

The LQR problem statement and cost can be motivated in the following manner. Suppose that the system
Equation 17.1 is initially excited, and that the net result of this excitation is reflected in the initial state
vector x0. This initial condition can be regarded as an undesirable deviation from the equilibrium position
of the system, x(t)= 0. Given these deviations, the objective of the control can essentially be viewed as
selecting a control vector u(t) that regulates the state vector x(t) back to its equilibrium position of
x(t)= 0 as quickly as possible.

If the system Equation 17.1 is controllable, then it is possible to drive x(t) to zero in an arbitrarily short
period of time. This would require very large control signals which, from an engineering point of view,
are unacceptable. Large control signals will saturate actuators and if implemented in a feedback form will
require high-bandwidth designs that may excite unmodeled dynamics. Hence, it is clear that there must
be a balance between the desire to regulate perturbations in the state to equilibrium and the size of the
control signals needed to do so.

Minimizing the quadratic cost functional from Equation 17.3 is one way to quantify our desire to
achieve this balance. Realize that the quadratic nature of both terms in the cost

uT (t)Ru(t) > 0 for u(t) �= 0 (17.7)

zT (t)z(t)= xT (t)CT Cx(t)≥ 0 for x(t) �= 0 (17.8)

ensures that they will be non-negative for all t. Further since the goal of the control law is to make the
value of the cost as small as possible, larger values of the terms (Equations 17.7 and 17.8) are penalized
more heavily than smaller ones. More specifically, the term (Equation 17.7) represents a penalty that helps
the designer keep the magnitude of u(t) “small.” Hence the matrix R, which is often called the control
weighting matrix, is the designer’s tool which influences how “small” u(t) will be. Selecting large values
of R leads to small values of u(t), which is also evident from the control gain K given in Equation 17.4.

The other term, Equation 17.8, generates a penalty in the cost when the states that are to be kept small,
z(t), are different from their desired equilibrium value of zero. The selection of which states to keep small,
that is the choice of C in Equation 17.2, is the means by which the control system designer communicates
to the mathematics the relative importance of individual state variable deviations. That is, which errors
are bothersome and to what degree they are so.

Example 17.1:

Consider the single degree of freedom, undamped, harmonic oscillator shown in Figure 17.1. Using
Newton’s laws, the equations of motion are

mq̈(t)+ kq(t)= u(t) (17.9)

Letting x1(t)= q(t) denote the position of the mass and x2(t)= q̇(t) its velocity, the dynamics
(Equation 17.9) can be expressed in the state space as

ẋ1(t)= x2(t) (17.10)

ẋ2(t)=−ω2x1(t)+ω2u(t)
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m
u(t)

q(t)

k = 1

FIGURE 17.1 Single degree of freedom oscillator with mass m, spring stiffness k = 1, and control force input u(t).

or
ẋ(t)= Ax(t)+ Bu(t)

with

x(t)=
[

x1(t)
x2(t)

]
A=

[
0 1
−ω2 0

]
B =

[
0
ω2

]

where ω2 = 1/m is the square of the natural frequency of the system with k = 1.
In the absence of control, initial conditions will produce a persistent sinusoidal motion of the mass

at a frequency ofω rad/sec. As such, we seek a control law that regulates the position of the mass to
its equilibrium value of q(t)= 0. Thus, we define the states of interest, z, as x1(t).

z(t)= Cx(t) with C = [1 0
]

(17.11)

Since the control is scalar, the cost (Equation 17.3) takes the form

J =
∫ ∞

0

[
z2(t)+ ρu2(t)

]
dt with ρ> 0

where ρ is the control weighting parameter.
The optimal LQR control law takes the form u(t)=−Kx(t) where the LQ gain K is a row vector

K = [k1 k2
]
. To determine the value of the gain, we must solve the algebraic Riccati equation 17.5.

Recalling that we want a symmetric solution to the Riccati equation, letting

S =
[

S11 S12
S12 S22

]
(17.12)

and using the values of A, B, and C given above, the Riccati equation 17.5 becomes

0=
[

S11 S12
S12 S22

] [
0 1
−ω2 0

]
+
[

0 −ω2

1 0

] [
S11 S12
S12 S22

]
+
[

1
0

] [
1 0

]

− 1
ρ

[
S11 S12
S12 S22

] [
0
ω2

] [
0 ω2] [S11 S12

S12 S22

]

Carrying out the matrix multiplications leads to the following three equations in the three unknown
Sij from Equation 17.12.

0= 2ω2S12− 1+ 1
ρ
ω4S2

12 (17.13)

0=−S11+ω2S22+ 1
ρ
ω4S12S22 (17.14)

0=−2S12+ 1
ρ
ω4S2

22 (17.15)

Solving Equation 17.13 for S12 and simplifying yields

S12 = −ρ± ρ
√

1+ 1/ρ

ω2

Both the positive and negative choices for S12 are valid solutions of the Riccati equation. While we
are only interested in the positive semidefinite solution, we still need more information to resolve
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which choice of S12 leads to the unique choice of S ≥ 0. Rewriting Equation 17.15 as

2S12 = 1
ρ
ω4S2

22 (17.16)

indicates that S12 must be positive to satisfy the equality of Equation 17.16, since the right-hand side
of the equation must always be positive. Equation 17.16 indicates that there will also be a ± sign
ambiguity in selecting the appropriate S22. To resolve the ambiguity we use Sylvester’s Test, which
says that for S ≥ 0 both

S11 ≥ 0 and S11S22− S2
12 ≥ 0 (17.17)

Solving Equation 17.15 and 17.13 using the relations in Equation 17.17, which clearly show that
S22 > 0, gives the remaining elements of S

S11 = ρ

ω

√
2(1+ 1/ρ)

(√
1+ 1/ρ− 1

)

S12 = −ρ+ ρ
√

1+ 1/ρ

ω2

S22 = ρ

ω3

√
2
(√

1+ 1/ρ− 1v
)

The final step in computing the controller is to evaluate the control gains K from Equation 17.4.
Doing so gives

k1 =
√

1+ 1/ρ− 1 k2 = 1
ω

√
2
(√

1+ 1/ρ− 1
)

Given the control gains as a function of the control weighting ρ it is useful to examine the locus of
the closed-loop poles for the system as ρ varies over 0 < ρ<∞. Evaluating the eigenvalues of the
closed-loop dynamics from Equation 17.6 leads to a pair of complex conjugate closed-loop poles

λ1,2 =−ω2
√

2
(√

1+ 1/ρ− 1
)
± j
ω

2

√
2
(√

1+ 1/ρ+ 1
)

.

A plot of the poles as ρ varies over 0 < ρ<∞ is shown in Figure 17 2. Notice that for large values
of ρ, the poles are near their open-loop values at±jω, and as ρ decreases the poles move farther out
into the left half-plane. This is consistent with how ρ influences the cost. Large values of ρ place a
heavy penalty on the control and lead to low gains with slow transients, while small values of ρ tell
the mathematics that large control gains with fast transients are acceptable.

17.2.2 Designing LQR Controllers

While the above section presents all the formulas needed to start designing MIMO LQR controllers, the
point of this section is to inform the potential user of the limitations of the methodology. The most
restrictive aspects of LQR controllers is that they are full-state feedback controllers. This means that every
state that appears in the model of the physical system Equation 17.1 must be measured by a sensor. In
fact, the notation of z(t)= Cx(t) for the linear combination of states that are to be regulated to zero is
deliberate. We do not call z(t) the outputs of the system because all the states x(t) must be measured in
real time to implement the control law Equation 17.4.

Full-state feedback is appropriate and can be applied to systems whose dynamics are described by a
finite set of differential equations and whose states can readily be measured. An aircraft in steady, level
flight is an example of a system whose entire state can be measured with sensors. In fact, LQR control has
been used to design flight control systems for modern aircraft.
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FIGURE 17.2 Locus of closed-loop pole locations for the single degree of freedom oscillator with ω= 1 as ρ varies
over 0 < ρ<∞.

On the other hand, full-state feedback is typically not appropriate for flexible systems. The dynamics
of flexible systems are described by partial differential equations that often require very high-order, if not
infinite-dimensional, state-space models. As such, it is not feasible to measure all the states of systems
that possess flexible dynamics. Returning to the aircraft example, one could not use a LQR controller to
regulate the aerodynamically induced vibrations of the aircraft’s wing. The number of sensors that would
be needed to measure the state of the vibrating wing prohibit this.

Having discussed the implications of full-state feedback, the next restrictive aspect of LQR to discuss
is the gap between what the LQR controller achieves and the desired control system performance. Recall
that the LQR is the control that minimizes the quadratic cost of Equation 17.3 subject to the constraints
imposed by the system dynamics. This optimization problem and the resulting optimal controller have
very little to do with more meaningful control system specifications like levels of disturbance rejection,
overshoot in tracking, and stability margins. This gap must always be kept in mind when using LQR to
design feedback controllers. The fact that LQR controllers are in some sense optimal is of no consequence
if they do not meet the performance goals. Further since control system specifications are not given in
terms of minimizing quadratic costs, it becomes the job of the designer to use the LQR tool wisely. To
do so it helps to adopt a means-to-an-end design philosophy where the LQR is viewed as a tool, or the
means, used to achieve the desired control system performance, or the end.

One last issue to point out is that LQR controller design is an iterative process even though the
methodology systematically produces optimal, stabilizing controllers. Since the LQR formulation does
not directly allow one to achieve standard control system specifications, trial and error iteration over the
values of the weights in the cost is necessary to arrive at satisfactory controllers. Typically LQR designs
are carried out by choosing values for the design weights, synthesizing the control law, evaluating how
well the control law achieves the desired robustness and performance, and iterating through this process
until a satisfactory controller is found. In the sequel, various properties and weight selection tools will
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be presented that provide good physical and mathematical guidance for selecting values for the LQR
design variables. Yet these are only guides, and as such they will not eliminate the iterative nature of LQR
controller design.

17.3 Properties of LQR

The LQR has several very important properties, which we summarize below. It is important to stress that
the properties of LQR designs hinge upon the fact that full-state feedback is used and the specific way that
the control gain matrix K is computed from the solution of the Riccati equation.

17.3.1 Robustness Properties

To visualize the robustness properties of LQR controllers, it is necessary to consider the loop transfer
function matrix that results when implementing the control law of Equation 17.4. The LQR loop transfer
function matrix, denoted by GLQ(s), induced by the control scheme of Equation 17.4 is given by

GLQ(s)= K(sI −A)−1B

and the closed-loop dynamics of Equation 17.6 using this representation are shown in Figure 17.3. An
interesting fact is that GLQ(s) is always square and minimum phase. Note that as a consequence of this
feedback architecture any unstructured modeling errors must be reflected to the inputs of the LQR loop,
location 1 in Figure 17.3.

Under the assumption that the control weight matrix R = RT > 0 is diagonal, the LQR loop transfer
matrix is guaranteed to satisfy both of the inequalities

σmin
[
I +GLQ(jω)

]≥ 1 ∀ω
σmin

[
I +GLQ(jω)−1]≥ 1

2
∀ω (17.18)

where σmin denotes the minimum singular value. Since the multivariable robustness properties of any
design depend on the size of σmin [I +G(jω)] and σmin

[
I +G(jω)−1

]
the following guaranteed multi-

variable gain and phase margins are inherent to LQR controllers as a result of Equation 17.18.

17.3.1.1 LQR Stability Robustness Properties

1. Upward gain margin is infinite
2. Downward gain margin is at least 1/2
3. Phase margin is at least±60◦

These gain and phase margins can occur independently and simultaneously in all m control channels. To
visualize this, consider Figure 17.4, where the fi(·) can be viewed as perturbations to the individual inputs,
ui = fi(·)μi . As a result of the gain margin properties (1) and (2), the LQR system shown in Figure 17.4

(sI–A)–1
x(s)

GLQ (s)

–u(s)u(s)

1–
+0 KB

FIGURE 17.3 The LQR loop transfer matrix, GLQ(s)= K(sI −A)−1B.



�

�

�

�

� �

17-8 Control System Advanced Methods
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μm

f1 (·)

f2(·)

…

fm (·)

FIGURE 17.4 LQR loop used to visualize the guaranteed robustness properties.

is guaranteed to be stable for any set of scalar gains βi with fi = βi where the βi lie anywhere in the
range 1/2 < βi <∞. The phase margin property (3) ensures the LQR system shown in Figure 17.4 is
guaranteed to be stable for any set of scalar phases φi with fi = ejφi where the φi can lie anywhere in the
range−60◦ < φi <+60◦.

These inherent robustness properties of LQR designs are useful in many applications. To further
appreciate what they mean, consider a single input system with a single variable we wish to keep small

ẋ(t)= Ax(t)+ bu(t) with z(t)= cT x(t)

and let the control weight be a positive scalar, R = ρ> 0. Then the resulting LQR loop transfer function
is scalar, and its robustness properties can be visualized by plotting the Nyquist diagram of GLQ(jω) for
all ω. Figure 17.5 contains a Nyquist plot for a scalar GLQ(jω) that illustrates why the LQR obtains good
gain and phase margins. Essentially, inequality Equation 17.18 guarantees that the Nyquist plot will not
penetrate the unit circle centered at the critical point at (−1, 0).

17.3.2 Asymptotic Properties of LQR Controllers

It is clear that the closed-loop poles of the LQR design will depend upon the values of the design parameters
z(t) and R. The exact numerical values of the closed-loop poles can only be determined using a digital
computer, since we have to solve the Riccati equation 17.5. However, it is possible to qualitatively predict
the asymptotic behavior of the closed-loop poles for the LQR as the size of the control gain is varied
without solving the Riccati equation, evaluating the control gains, and computing the closed-loop poles.

Imaginary

Real0–2 (–1,0)

Ι 1+ GLQ(jw) Ι

GLQ(jw)

FIGURE 17.5 A typical Nyquist plot for a single-input, single-output LQR controller.
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17.3.2.1 Assumptions for Asymptotic LQR Properties

1. The number of variables to keep small is equal to the number of controls. That is dim[z(t)] =
dim[u(t)] =m.

2. The control weight is chosen such that R = ρR̃ where ρ is a positive scalar and R̃ = R̃T > 0.
3. Gz(s) is defined to be the square transfer function matrix between the variables we wish to keep

small and the controls with the loop open, z(s)= Gz(s)u(s) where Gz(s)= C(sI −A)−1B, and q is
the number of transmission zeros of Gz(s).

Adjusting ρ directly influences the feedback control gain. When ρ→∞, we speak of the LQR controller
as having low gain since under Assumption (2)

u(t)=−1

ρ
R̃−1BT Sx(t)→ 0

as ρ→∞. Likewise, when ρ→ 0 we speak of the high gain controller since u(t) will clearly become large.
The asymptotic properties of the LQR closed-loop poles under the stated assumptions are as follows.

17.3.2.2 LQR Asymptotic Properties

1. Low Gain: As ρ→∞, the closed-loop poles start at
a. The stable open-loop poles of Gz(s)
b. The mirror image, about the jω-axis, of any unstable open-loop poles of Gz(s)
c. If any open-loop poles of Gz(s) lie exactly on the jω-axis, the closed-loop poles start just

to the left of them
2. High Gain: As ρ→ 0, the closed-loop poles will

a. Go to cancel any minimum phase zeros of Gz(s)
b. Go to the mirror image, about the jω-axis, of any non-minimum phase zeros of Gz(s)
c. The rest will go off to infinity along stable Butterworth patterns

Realize that these rules are not sufficient for constructing the entire closed-loop pole root locus.
However, they do provide good insight into the asymptotic behavior of LQR controllers. In particular, the
second rule highlights how the choice of z(t), which defines the zeros of Gz(s), influences the closed-loop
behavior of LQR controllers.

Extensions of these results exist for the case where Assumption (1) is not satisfied, that is when
dim[z(t)] �= dim[u(t)]. When dim[z(t)] �= dim[u(t)], the low gain asymptotic result will still hold, which
is to be expected. The difficulty for non-square Gz(s) arises in the high-gain case as ρ→ 0 because it is
not a simple manner to evaluate the zeros that the closed-loop poles will go toward. For details of how to
evaluate the zero locations that the closed-loop poles will go toward in the cheap control limit, one can
refer to [3] and [2, problem 3.14].

17.4 LQR Gain Selection Tools

In this section we present some variations on the standard LQR problem given in Theorem 17.1. It is best
to view the following variations on LQR as tools a designer can use to arrive at controllers that meet a set
of desired control system specifications. While the tools are quite useful, the choice of which tool to use
is very problem specific. Hence, we also present some physical motivation to highlight when the various
tools might be useful. Realize that these tools do not remove the iterative nature of LQR control design.
In fact, these tools are only helpful when used iteratively and when used with an understanding of the
underlying physics of the design problem and the limitations of the design model. The variations on LQR
presented here are by no means a complete list.
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17.4.1 Cross-Weighted Costs

Consider the linear time-invariant system with dynamics described by the state equation in Equation 17.1
and the following set of variables we wish to keep small

z(t)= Cx(t)+Du(t) (17.19)

Substituting Equation 17.19 into the quadratic cost from Equation 17.3 produces the cost function

J =
∫ ∞

0

{
xT (t)CT Cx(t)+ 2xT (t)CT Du(t)+ uT (t)

[
R+DT D

]
u(t)

}
dt (17.20)

which contains a cross penalty on the state and control, 2xT (t)CT Du(t). The solution to the LQR controller
that minimizes the cost of Equation 17.20 will be presented here, but first we give some motivation for
such a cost and choice of performance variables.

Cross-weighted cost functions and performance variables with control feed-through terms are com-
mon. The control feed-through term, Du(t) in Equation 17.19, arises physically when the variables we
wish to keep small are derivatives of the variables that appear in the state vector of the open-loop dynamics
Equation 17.1. To see this, consider the single degree of freedom oscillator from Example 17.1 where the
acceleration of the mass is the variable we wish to keep small, z(t)= q̈(t). Using the definitions from the
example and Equations 17.11, this can be expressed as

z(t)= q̈(t)= ẋ2(t)

=−ω2x1(t)+ω2u(t)= [−ω2 0]x(t)+ω2u(t)

Clearly, penalizing acceleration requires the control feed-through term in the definition of the variables
we wish to keep small. Control feed-through terms also arise when penalizing states of systems whose
models contain neglected or unknown, higher-order modes. Such models often contain control feed-
through terms to account for the low-frequency components of the dynamics of the modes that are not
present in the design model. Further, as will be seen below, cross-coupled costs such as Equation 17.20
arise when frequency-dependent weighting terms are used to synthesize LQR controllers.

Theorem 17.2: Cross-Weighted LQR

Consider the system dynamics

ẋ(t)= Ax(t)+Bu(t) x(t = 0)= x0 (17.21)

with x(t) ∈R
n and u(t) ∈R

m and the quadratic cost with a cross penalty on state and control

J =
∫ ∞

0

[
xT (t)Rxxx(t)+ 2xT (t)Rxuu(t)+ uT (t)Ruuu(t)

]
dt (17.22)

in which the size of the states is weighted relative to the amount of control action in u(t) through the state
weighting matrix Rxx, the control weighting matrix Ruu, and the cross weighting matrix Rxu.

If the following assumptions hold:

1. The entire state vector x(t) is available for feedback

2. Rxx = RT
xx ≥ 0, Ruu = RT

uu > 0, and

[
Rxx Rxu

RT
xu Ruu

]
≥ 0
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3. [A B] is stabilizable and [A R1/2
xx ] is detectable∗

Then

1. The linear quadratic controller is the unique, optimal, full-state feedback control law

u(t)=−Kx(t) with K = R−1
uu

(
RT

xu+BT S
)

(17.23)

that minimizes the cost, J of Equation 17.22, subject to the dynamic constraints imposed by the
open-loop dynamics in Equation 17.21.

2. Defining Ar =
(
A−BR−1

uu RT
xu

)
, S is the unique, symmetric, positive semi-definite solution to the

algebraic Riccati equation

SAr +AT
r S+

(
Rxx −RxuR−1

uu RT
xu

)
− SBR−1

uu BT S = 0 (17.24)

3. The closed-loop dynamics arrived at by substituting Equation 17.23 into Equation 17.21 are guaran-
teed to be asymptotically stable.

Note that when the cost is defined by Equation 17.3 and the variables to be kept small are defined
by Equation 17.19, Rxx = CT C, Rxu = CT D, and Ruu =

[
R+DT D

]
as can be seen from Equation 17.20.

Also, if Rxu = 0 this theorem reduces to the standard LQR result presented in Theorem 17.1.
The assumptions used in Theorem 17.2 are essentially those used in the standard LQR result. One

difference is that here we require Rxx = RT
xx ≥ 0, while in Theorem 17.1 this was automatically taken care

of by our definition of the state cost as xT (t)CT Cx(t) because CT C ≥ 0. Unfortunately, the guaranteed
robustness properties presented in the previous section are not necessarily true for the LQR controllers
that minimize the cost (Equation 17.22).

17.4.2 The Stochastic LQR Problem

In the stochastic LQR problem, we allow the inclusion of a white noise process in the state dynamics.
Namely, the state vector x(t) now satisfies the stochastic differential equation

ẋ(t)= Ax(t)+Bu(t)+ Lξ(t) (17.25)

where ξ(t) is a vector valued, zero-mean, white noise process. We still assume that all the state variables
can be measured exactly and used for feedback as necessary. Physically, the term Lξ(t) in Equation 17.25
should be viewed as the impact of a persistent set of disturbances on a system that corrupt the desired
equilibrium value of the state, x(t)= 0. The L matrix describes how the disturbances impact the system,
and the stochastic process ξ(t) captures the dynamics of how the disturbances evolve with time. In
particular, since the disturbances are a white noise process, they are completely unpredictable from
moment to moment.

As with the standard LQR problem, we would like to find the control law that minimizes some quadratic
cost functional which captures a trade off between state cost and control cost. However, the cost functional
for the standard LQR problem, Equation 17.3, cannot be used here as a result of the stochastic nature of
the states. The value of the cost functional would be infinity because of the continuing excitation from
ξ(t). To accommodate the stochastic nature of the state, we seek the optimal control that minimizes the

∗ R
1/2
xx is the matrix square root of Rxx which always exists for positive semidefinite matrices. For the cross-coupled cost in

Equation 17.20, Rxx = CT C and R
1/2
xx = C.
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expected value, or mean, of the standard LQR cost functional

J = E

{
lim
τ→∞

1

τ

∫ τ

0

[
zT (t)z(t)+ uT (t)Ru(t)

]
dt

}
(17.26)

where E is the expected value operator. The normalization by the integration time τ is necessary to ensure
that the cost functional is finite. Surprisingly, the optimal control for this stochastic version of the LQR
problem is identical to that of the corresponding deterministic LQR problem. In particular, Theorem 17.1
also describes the unique optimal full-state feedback control law that minimizes the cost Equation 17.26
subject to the constraints Equation 17.25. This is a result of the fact that ξ(t) is a white noise process. Since
the disturbances are completely unpredictable, the optimal thing to do is ignore them. As a consequence
of all this, the properties of the deterministic LQR problem from Theorem 17.1 discussed in Section 17.3
are also true for this stochastic LQR problem.

Unfortunately, these results do not make it any easier to design LQR controllers to specifically reject
disturbances that directly impact the state dynamics. This is because physical disturbances are typically
not white in nature, and the stochastic LQR result only applies for white noise disturbances. However,
these results do play a key role in synthesizing multivariable controllers when some of the states cannot
be measured and fed back for control.

17.4.3 Sensitivity Weighted LQR

Synthesizing LQR controllers requires an accurate model of the system dynamics. Not only are the control
gains, K , a function of the system matrices A and B, but in the high-gain limit we know that the closed-
loop poles will go to cancel the zeros of Gz(s). If the models upon which the control design is based are
inaccurate, the closed-loop system at a minimum will not achieve the predicted performance and will, in
the worst case, be unstable. This is particularly relevant for systems with lightly damped poles and zeros
near the jω axis. Hence, it is important to address the issue of stability robustness, since designers often
must work with models that do not capture the dynamical behavior of their systems exactly.

Modeling errors can be classified into two main groups: unmodeled dynamics and parametric errors.
Unmodeled dynamics are typically the result of unmodeled non-linear behavior and neglected high-
frequency dynamics which lie beyond the control bandwidth of interest. How one can design LQR
controllers that are robust to unmodeled dynamics will be discussed in the following section on frequency
weighted LQR. Parametric uncertainty arises when there are errors in the values of the system parameters
used to form the model. Sensitivity weighted LQR (SWLQR), is a variation on the standard LQR problem
that can be used to increase the stability robustness of LQR controllers to parametric modeling errors.
Before presenting the SWLQR results, we will discuss parametric modeling errors.

17.4.3.1 Parametric Modeling Errors

When parametric errors exist, the model will be able to capture the system’s nominal dynamics, but the
model cannot capture the exact behavior. Parametric errors occur often because it is difficult to know the
exact properties of the physical devices that make up a system and because the physical properties may
vary with time or the environment in which they are placed. For example, consider the single degree of
freedom oscillator from Example 17.1 as the model of a car tire. While we might have some knowledge
of the tire’s stiffness, it is unrealistic to expect to know its exact value, as the tire is a complex physical
device whose properties change with wear and temperature. Hence, the value of the spring stiffness k,
which models the tire’s elasticity, will be parametrically uncertain.

To deal with any sort of modeling error, one must formulate a model of the uncertainty in the nominal
design model. Parametrically uncertain variables may appear directly as the elements of, or be highly
nonlinear functions of, the elements of the A and B matrices. When the latter is the case, one often
reduces the uncertainty model to parametric uncertainty in more fundamental system quantities such
as the frequency and/or damping of the system’s poles and zeros. In either case one must decide which
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elements of the model, be they pole frequencies or elements of the A matrix, are uncertain and by how
much they are uncertain.

This digression on parametric modeling errors and the presentation of the SWLQR results that follows
is vital. To achieve high levels of performance, which means using high-gain control, LQR requires an
accurate plant model. If a model contains parametric modeling errors and high-gain LQR control (ρ→ 0)
is used, then the closed-loop poles will go to cancel zeros of Gz(s) which will be in different locations than
the true zeros. Such errors often lead to instability, and this is why we worry about parametric modeling
errors.

17.4.3.2 SWLQR

Designing feedback controllers that are robust to parametric uncertainty is a very difficult problem.
Research on this problem is ongoing, and a great deal of research has gone into this problem in the past,
see [4] for a survey on this topic. Here we present only one of the many methods, SWLQR, that can be
used to design LQR controllers that are robust to parametric modeling errors. While the treatment is
by no means complete, it should give one a sense of how to deal with parametric modeling errors when
designing LQR controllers.

The philosophy behind SWLQR is that it aims, as the title implies, to desensitize the LQR controller to
parametric uncertainty. The advantage of this philosophy is that it produces a technique that is nothing
more than a special way to choose the weighting matrices of the cross-weighted LQR problem presented
in Section 17.4.1. A shortcoming of the method is that it does not result in a controller that is guaranteed
to be robust to the parametric uncertainty in the model.

In presenting the SWLQR results, the vector of uncertain parameters to which you wish to desensitize
a standard LQR controller will be denoted by α, and αi will denote the ith element of α. To desensitize
LQR controllers to the uncertain variables in α, a quadratic penalty on the sensitivity of the state to each
of the uncertain variables αi ,

∂xT (t)

∂αi
Rααi

∂x(t)

∂αi
(17.27)

is added to the cross-weighted LQR cost functional (Equation 17.22). In this expression ∂x(t)
∂αi

is known as
the sensitivity state of the system and Rααi is the sensitivity state weighting matrix, which must be positive
semidefinite. Quadratic penalties for each αi (Equation 17.27) are included in the LQR cost functional to
tell the mathematics that we care not only about deviations in the state from its equilibrium position but
that we also care about how sensitive the value of the state is to the known uncertain parameters of the
system. The larger the value of Rααi , the more we tell the cost that we are uncertain about the influence of
parameter αi in our model on the trajectory of the state. In turn, the larger the uncertainty in the influence
of parameter αi on the state trajectory, the more robust the resulting SWLQR controller will be to the
uncertain parameter αi .

Making certain assumptions about the dynamics of the sensitivity states leads to the SWLQR result [6,7].
It is not necessary to understand or discuss these assumptions to design SWLQR controllers, and we thus
simply present the SWLQR result.

The SWLQR Result

Given a stable open-loop system (Equation 17.21), let α denote the vector of uncertain variables to which
you want to desensitize a LQR controller and define the sensitivity state weighting matrices Rααi such that

Rααi = RT
ααi
≥ 0 where Rααi ∈R

n×n
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Then the SWLQR controller results from synthesizing the cross-coupled cost LQR controller from
Theorem 17.2 with the following set of design weights

Rxx = R̃xx +
nα∑

i=1

∂AT

∂αi
A−T Rααi A

−1 ∂A

∂αi
(17.28)

Rxu = R̃xu+
nα∑

i=1

∂AT

∂αi
A−T Rααi A

−1 ∂B

∂αi
(17.29)

Ruu = R̃uu+
nα∑

i=1

∂BT

∂αi
A−T Rααi A

−1 ∂B

∂αi
(17.30)

In these expressions nα denotes the number of uncertain parameters in α, and R̃xx , R̃xu, and R̃uu are the
nominal values of the weights from a standard, unrobust LQR design. The matrix derivatives ∂A/∂αi and
∂B/∂αi are taken term by term. For example, ∂A/∂αi is a matrix of the same size as A whose elements are
the partial derivatives with respect to αi of the corresponding elements in the A matrix. For

A=

⎡
⎢⎢⎢⎣

A11 A12 · · · A1n

A21
...

. . .
An1 Ann

⎤
⎥⎥⎥⎦

∂A

∂αi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂A11

∂αi

∂A12

∂αi
· · · ∂A1n

∂αi

∂A21

∂αi
...

. . .

∂An1

∂αi

∂Ann

∂αi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

While it might not be obvious that the modified cost expressions (Equations 17.28 through 17.30) lead to
controllers that are more robust to the uncertain parameters in α, extensive empirical and experimental
results verify that they do [7]. To see this mathematically, consider the state cost, xT (t)Rxxx(t) from
Equation 17.28, when the variables we wish to keep small are defined by z(t)= Cx(t),

xT (t)Rxxx(t)= xT (t)CT Cx(t)+ xT (t)
∂AT

∂α1
A−T Rαα1 A−1 ∂A

∂α1
x(t)

+ · · ·+ xT (t)
∂AT

∂αnα
A−T Rααnα

A−1 ∂A

∂αnα
x(t)

This expression can also be expressed as zT (t)z(t) with z(t)= C̄x(t) where C̄T = [CT CT
α1

· · · CT
αnα
]

and Cαi is the minimal order matrix square root of

∂AT

∂αi
A−T Rααi A

−1 ∂A

∂αi
.

From this we see that the SWLQR cost modifications essentially add new variables to the vector of variables
we wish to keep small, z(t). In addition to the standard variables we wish to keep small for performance
defined by Cx(t), we tell the cost to keep the variables Cαi x(t) small, and these are related to the sensitivity
of the state to parametrically uncertain variables. Furthermore with this new z(t) vector, the zeros of Gz(s)



�

�

�

�

� �

Linear Quadratic Regulator Control 17-15

will change. As a result, in the high-gain limit as ρ→ 0 the closed-loop poles will not go to cancel the
uncertain zeros defined by the original vector of variables we wish to keep small, z(t)= Cx(t).

Selecting the values of the state sensitivity weights Rααi is, as to be expected, an iterative process.
Typically Rααi is chosen to be either βiI or βiR̃xx where βi is a positive scalar constant. Both these choices
simplify the selection of Rααi by reducing the choice to a scalar variable. When using Rααi = βiR̃xx , one
tends to directly trade off performance, reflected by the nominal state cost xT (t)R̃xxx(t) with robustness
to the parametric error now captured by the state cost

βix
T (t)

∂AT

∂αi
A−T R̃xxA−1 ∂A

∂αi
x(t)

On the other hand, selecting Rααi = βiI is a way of telling the cost that you care about both performance
and robustness since the various terms in the state cost are not directly related as when Rααi = βiR̃xx .

Example 17.2:

Consider the mass, spring, dashpot system shown in Figure 17.6. The four masses are coupled
together by dampers with identical coefficients, ci = 0.05 ∀i, and springs with identical stiffnesses,
ki = 1 ∀i. In this system, the mass m3 is uncertain, but known to lie within the interval 0.25≤
m3 ≤ 1.75 while the values of m1, m2, and m4 are all known to be 1. A unit intensity, zero-mean,
white noise disturbance force ξ(t) acts on m4, and the control u(t) is a force exerted on m2. The
performance variable of interest is the position of the tip mass m4, so z(t)= q4(t). The design goals
are to synthesize a controller which is robust to the uncertainty in m3 and that rejects the effect
of the disturbance source on the position of m4. A combination of SWLQR and the stochastic LQR
results from Section 17.4.2 will be used to meet these design goals.

Using Newton’s laws, the dynamics of this system can be expressed as

Mq̈(t)+ Cq̇(t)+Kq(t)= T1u(t)+ T2ξ(t) (17.31)

where qT (t)= [q1(t) q2(t) q3(t) q4(t)]T ,

M=

⎡
⎢⎢⎣

m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

⎤
⎥⎥⎦ T1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ T2 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

K=

⎡
⎢⎢⎣

k1+ k2 −k2 0 0
−k2 k2+ k3 −k3 0

0 −k3 k3+ k4 −k4
0 0 −k4 k4

⎤
⎥⎥⎦ C =

⎡
⎢⎢⎣

c1+ c2 −c2 0 0
−c2 c2+ c3 −c3 0

0 −c3 c3+ c4 −c4
0 0 −c4 c4

⎤
⎥⎥⎦

Then by defining the state vector as

x(t)=
[

q(t)
q̇(t)

]
(17.32)

m1

k1

c1

q1(t)

m2

k2

c2

q2(t)

m3

k3

c3

q3(t)

u(t)

m4

k4

c4

q4(t)

z(t) = q 4(t)

ξ(t)

FIGURE 17.6 Mass, spring, dashpot system from Example 17.2.
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the dynamics from Equation 17.31 can be represented in the state space as

ẋ(t)= Ax(t)+ Bu(t)+ Lξ(t)

with

A=
[

0 I
−M−1K −M−1C

]
B =

[
0

M−1T1

]
L=

[
0

M−1T2

]

With the states defined by Equation 17.32, the performance variables we wish to keep small are

z(t)= Cx(t) where C = [0 0 0 1 0 0 0 0
]

(17.33)

The first step in designing a SWLQR controller is to determine satisfactory values for the nominal
design weights R̃xx , R̃xu, and R̃uu. This can be done by ignoring the uncertainty and designing a LQR
controller that achieves the desired system performance. Given the single-input, single-output (SISO)
system with the desire to control the position of m4, we find a nominal LQR controller by minimizing the
stochastic LQR cost functional

J = E

{
lim
τ→∞

1

τ

∫ τ

0

[
zT (t)z(t)+ ρu(t)2

]
dt

}
ρ> 0 (17.34)

Substituting z(t) from Equation 17.33 into the cost brings the integrand into the form of that in the
cross-weighted cost from Equation 17.22 with R̃xx = CT C, R̃xu = 0, and R̃uu = ρ. Since m3 is uncertain,
we let it take on its median value of m3 = 1 to synthesize actual controllers. After some iteration over the
value of ρ, we decide that ρ= .01 leads to a nominal LQR controller that achieves good performance.

Figure 17.7 shows a set of transient responses for the mass spring system to an impulse applied to the
disturbance source of the system. Responses for various values of the uncertain mass m3 are shown, to
illustrate how well the controllers behave in the presence of the parametric uncertainty. Notice that the
LQR controller designed assuming m3 = 1 is not stable over the entire range of possible values for m3

and that even when the LQR controller is stable for values of m3 �= 1 the performance degrades. A better
way to view the performance robustness of this controller to the uncertain mass in the presence of a white
noise disturbance source is shown in Figure 17.8. This figure compares the root mean square (RMS) value
of the tip mass position, q4(t), normalized by its open-loop RMS value as a function of the value of the
uncertain mass m3. Such plots are often called cost “buckets,” for obvious reasons. When the closed-loop
system is unstable, the cost blows up so that the wider the cost “bucket” the more robust the system will
be to the parametric uncertainty. The cost bucket of Figure 17.8 clearly shows that the LQR controller
is not robust to the parametric modeling error in m3, since the cost “bucket” completely lies within the
bounds on m3.

Now to robustify this nominal LQR controller, we use the SWLQR modified costs from Equations 17.28
through 17.30. Here α=m3, ∂B

∂m3
= 0 and

∂A

∂m3
=
[

0 0

−∂(M−1)
∂m3

K −∂(M−1)
∂m3

C

]

where

∂M−1

∂m3
=

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 −m−2

3 0
0 0 0 0

⎤
⎥⎥⎦

Using Rαα = βI and m3 = 1, we found that β= 0.01 led to a design that was significantly more robust
than the LQR design. This can be seen in Figures 17.7 and 17.8 that compare the transient response
and cost “buckets” of the SWLQR controller to the LQR controller. Both figures demonstrate that the
SWLQR controller is stable over the entire range of possible values for m3. As to be expected though, we
do sacrifice some nominal performance to achieve the stability robustness.
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1.5
m3 = 0.25

Design value of m3 = 1

Open loop

LQR Closed loop

SWLQR Closed loop
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FIGURE 17.7 Transient response of the 4 mass, spring, dashpot system to an impulse applied at the disturbance
source ξ(t) for various values of m3. The open-loop transients are shown with dots, the LQR transients are shown
with a dashed line, and the SWLQR transients are shown with a solid line.

17.4.4 LQR with Frequency Weighted Cost Functionals

As discussed in Section 17.2, there is often a gap between what a LQR controller achieves and the desired
control system performance. This gap can essentially be viewed as the discrepancy between the time
domain optimization method, LQR, and the control system specifications. Often, both control system
performance and robustness specifications can be expressed and analyzed in the frequency domain, but
the time domain nature of the LQR problem makes it difficult to take advantage of these attributes. Using
frequency weighted cost functionals to synthesize LQR controllers leads to a useful and practical variation
on the standard LQR problem that narrows the gap between the time and frequency domains.

Recall that the quadratic cost functional is our means of communicating to the mathematics the desired
control system performance. We’ve discussed the physical interpretation of the cost in the time domain,
and now to understand it in the frequency domain we apply Parseval’s Theorem to it.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-21&iName=master.img-000.jpg&w=122&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-21&iName=master.img-001.jpg&w=123&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-21&iName=master.img-002.jpg&w=122&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-21&iName=master.img-004.jpg&w=122&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-21&iName=master.img-005.jpg&w=123&h=94
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SWLQR controller
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FIGURE 17.8 Comparison of cost “buckets” between the LQR and SWLQR controllers.

Theorem 17.3: Parseval’s

For a vector valued signal h(t) defined on−∞< t <+∞ with

∫ ∞

−∞
hT (t)h(t) dt <∞

if we denote the Fourier transform of h(t) by h(jω) then

∫ ∞

−∞
hT (t)h(t) dt = 1

2π

∫ ∞

−∞
h∗(jω)h(jω) dω

where h∗(jω)= hT (−jω) is the complex conjugate transpose of h(jω).

Applying this theorem to the quadratic cost functional from Equation 17.3 with R = ρI and perfor-
mance variables z(t)= Cx(t) produces the cost

J = 1

2π

∫ ∞

−∞
[
z∗(jω)z(jω)+ ρu∗(jω)u(jω)

]
dω

Notice that the time domain weight, ρ, remains constant in the frequency domain. This illustrates that
the standard LQR cost functional tells the mathematics to weight the control equally at all frequencies.
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To influence the desired control system performance on a frequency by frequency basis, we employ
the frequency weighted cost functional

J = 1

2π

∫ ∞

−∞
[
z∗(jω)W∗

1 (jω)W1(jω)z(jω)+ u∗(jω)W∗
2 (jω)W2(jω)u(jω)

]
dω (17.35)

in which both W1(jω) and W2(jω) are user-specified frequency weights [8]. Looking at the cost (Equa-
tion 17.35) for a SISO system in which the design weights will be scalar functions produces

J = 1

2π

∫ ∞

−∞
[|W1(jω)|2|z(jω)|2+ |W2(jω)|2|u(jω)|2] dω

and helps to illustrate the benefit of using frequency weighted cost functionals. The frequency weights
allow us to place distinct penalties on the state and control cost at various frequencies, which is not possible
to do when constant weights are used. Their main advantage is that they facilitate the incorporation of
known and desired control system behavior into the synthesis process. This is why frequency weighting
plays a key role in modern control design [9]. If one knows over what frequency range it is important
to achieve performance and where the control energy must be small, this knowledge can be reflected
into the frequency weights. Since we seek to minimize the quadratic cost (Equation 17.35), large terms
in the integrand incur greater penalties than small terms and more effort is exerted to make them small.
For example, if there is a rigorous bandwidth constraint set by a region of high-frequency unmodeled
dynamics and if the control weight W2(jω) is chosen to have a large magnitude over this region then
the resulting controller would not exert substantial energy in the region of unmodeled dynamics. This in
turn would limit the controller’s bandwidth. Similar arguments can be used to select W1(jω) to tell the
controller synthesis at what frequencies the size of the performance variables need to be small.

To synthesize LQR controllers that minimize the frequency weighted cost functional (Equation 17.35),
it is necessary to transform the cost functional back into the time domain. Doing so requires state space
realization of the frequency weights W1(jω) and W2(jω). Hence we let

z1(s)=W1(s)z(s) with W1(s)= C1(sI −A1)−1B1+D1 (17.36)

z2(s)=W2(s)u(s) with W2(s)= C2(sI −A2)−1B2+D2 (17.37)

Using these definitions and Parseval’s Theorem, the cost (Equation 17.35) becomes

J = 1

2π

∫ ∞

−∞
[
z∗1 (jω)z1(jω)+ z∗2 (jω)z2(jω)

]
dω=

∫ ∞

−∞

[
zT

1 (t)z1(t)+ zT
2 (t)z2(t)

]
dt (17.38)

This cost can be brought into the form of an LQR problem that we know how to solve by augmenting
the dynamics of the weights (Equations 17.36 and 17.37) to the open-loop dynamics (Equations 17.1
and 17.2). Using x1(t) and x2(t) to denote, respectively, the states of W1(s) and W2(s) to carry out the
augmentation produces the system

Ẋ (t)=AX (t)+Bu(t) (17.39)

Z(t)= CX (t)+Du(t)

with

A =
⎡
⎣ A 0 0

B1C A1 0
0 0 A2

⎤
⎦ B =

⎡
⎣ B

0
B2

⎤
⎦ C =

[
D1C C1 0

0 0 C2

]
D =

[
0

D2

]

where XT (t)= [xT (t) xT
1 (t) xT

2 (t)] and ZT (t)= [zT
1 (t) zT

2 (t)] contains the outputs of W1(s) and W2(s).
Notice that

ZT (t)Z(t)= zT
1 (t)z1(t)+ zT

2 (t)z2(t)

= XT (t)CTCX (t)+ 2XT (t)CTDu(t)+ uT (t)DTDu(t)
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and thus the frequency weighted cost (Equation 17.38) becomes

J =
∫ ∞

−∞

[
XT (t)CTCX (t)+ 2XT (t)CTDu(t)+ uT (t)DTDu(t)

]
dt

Realize that minimizing this cost subject to the dynamic constraints (Equation 17.39) is not only equivalent
to minimizing the frequency weighted cost functional (Equation 17.35), but it is also a simple manner to
carry out the optimization by using the cross-weighted LQR results from Theorem 17.2 with

Rxx = CTC Rxu = CTD Ruu =DTD (17.40)

Applying Theorem 17.2 produces the control law

u(t)=−KX (t)=−[Kx K1 K2]
⎡
⎣ x(t)

x1(t)
x2(t)

⎤
⎦ (17.41)

where K = R−1
uu

(
RT

xu+BT S
)
, S is the solution to the Riccati equation

S
(
A−BR−1

uu RT
xu

)
+
(
AT −RxuR−1

uu BT
)

S+
(

Rxx −RxuR−1
uu RT

xu

)
− SBR−1

uu BT S = 0,

and the control weights are defined by Equation 17.40.
Clearly the augmented state vector X (t) must be fed back to implement the control law (Equa-

tion 17.41). Since x1(t) and x2(t) are the fictitious states of the weights W1(s) and W2(s), it is necessary
to deliberately create them in real time to apply the feedback control law (Equation 17.41). That is, using
frequency weighted cost functionals to synthesize LQR controllers leads to dynamic compensators. The
control law is no longer a set of static gains multiplying the measurement of the state vector x(t). It is a
combination of the dynamics of the weighting matrices and the static gains K . A block diagram show-
ing the feedback architecture for the dynamic LQR controller arrived at by minimizing the frequency
weighted cost functional of Equation 17.35 is shown in Figure 17.9. Realize that having to implement a
dynamic compensator is the price we pay for using frequency weights to incorporate known frequency
domain information into the LQR controller synthesis. Though since the order of the compensator is
only equal to the combined order of the design weights, this fact should not be troublesome.

Dynamic compensator

B1

B2

B

(sI – A1)–1

(sI – A2)–1

(sI – A)–1

–k1
+

+

+

+
–k2

u

u

–kx

x1

x2

x2

x

x

x

z C

FIGURE 17.9 Block diagram for the LQR controller synthesized using the frequency weighted cost from
Equation 17.35.



�

�

�

�

� �

Linear Quadratic Regulator Control 17-21

17.4.4.1 Selecting the Frequency Weights

Although we do not present the results here, it is possible to use any combination of frequency weights
and constant weights when synthesizing LQR controllers with frequency weighted costs. For example,
one could use a constant state penalty, W1(s)= I , with a frequency weighted control. In any case, to
satisfy the underlying LQR assumptions one must use stable design weights and ensure that DT

2 D2 > 0
(so that R−1

uu exists).
When synthesizing LQR controllers with frequency weighted cost functionals, the iteration over the

values of the design weights involves selecting the dynamics of multivariable systems. Although it is not
necessary, choosing the weighting matrices to be scalar functions multiplying the identity matrix,

W1(s)= w1(s)I and W2(s)= w2(s)I

simplifies the process of selecting useful weights. Then the process of selecting the weights reduces to
selecting the transfer functions w1(s) and w2(s) so that their magnitudes have the desired effect on the cost.

To arrive at a useful set of weights, one must use one’s knowledge of the physics of the system and
the desired control system performance. Keeping this in mind, simply select the magnitude of w2(s) to
be large relative to |w2(0)| over the frequency range where you want the control energy to be small and
choose w1(s) to have a large magnitude relative to |w1(0)| over the frequency regions where you want
the performance variables to be small. It is important to note that here large is relative to the values of
the DC gains of the weights, |w1(0)| and |w2(0)|. The DC gains specify the nominal penalties on the state
and control cost in a manner similar to the constant weights of a standard LQR problem. As such, when
choosing the frequency weights, it is beneficial to break the process up into two steps. The first step is to
choose an appropriate DC gain to influence the overall characteristics of the controller, and the second
step is to choose the dynamics so that the magnitudes of the weights reflect the relative importance of the
variables over the various frequency ranges.

When choosing the frequency weights it is vital to keep in mind that the controls will have to be large
over the frequency ranges where the performance variables are to be small. Likewise, if the control energy
is specified to be small over a frequency range, it will not be possible to make the performance variables
small there. Even though we could tell the cost to make both the performance variables and the control
signals small in the same frequency range through the choice of the frequency weights, doing so will most
likely result in a meaningless controller since we are asking the mathematical optimization problem to
defy the underlying physics.

17.5 Mini-Max and H∞ Full-State Feedback Control

Consider the problem of rejecting the effect of the disturbances, d(t), on the performance variables of
interest, z(t), for the system

ẋ(t)= Ax(t)+Bu(t)+ Ld(t) (17.42)

z(t)= Cx(t)

LQR control is not well suited to handle this problem because the optimal control that minimizes the
quadratic cost (Equation 17.3) subject to the dynamic constraints (Equation 17.42) wants to know the
future values of the disturbances, which is not realistic. The stochastic version of the LQR problem is also
inappropriate unless d(t) is white noise, which is rarely the case. To deal optimally with the disturbances
using a full-state feedback controller, it is necessary to adopt a different philosophy than that of the LQR.
Rather than treating the disturbances as known or white noise signals, they are assumed to behave in a
“worst case” fashion. Treating the disturbances in this way leads to the so called H∞ full-state feedback
controller. H∞ controllers have become as popular as LQR controllers in recent years as a result of their
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own attractive properties [10]. We introduce H∞ controllers here using the quadratic cost functional
optimization point of view.

The “worst case” philosophy for dealing with the disturbances arises by including them in the quadratic
cost functional with their own weight, γ, much in the same way that the controls are included in the LQR
cost functional. That is we seek to optimize the quadratic cost

J(u, d)= 1

2

∫ ∞

0

[
zT (t)z(t)+ ρuT (t)u(t)− γ2dT (t)d(t)

]
dt γ, ρ> 0 (17.43)

subject to the dynamic constraints of Equation 17.42. In this optimization problem both the controls and
disturbances are the unknown quantities that the cost is optimized over. Note that since the disturbances
enter the cost functional as a negative quadratic, they will seek to maximize J(u, d). At the same time
the controls seek to minimize J(u, d) since they enter the cost functional as a positive quadratic. Hence,
by using the cost (Equation 17.43), we are playing a mini-max differential game in which nature tries
to maximize the cost through the choice of the disturbances, and we as control system designers seek to
minimize the cost through the choice of the control u(t). This mini-max optimization problem can be
compactly stated as

min
u

max
d

J(u, d). (17.44)

Since nature is allowed to pick the disturbances d(t) which maximize the cost, this optimization
problem deals with the disturbances by producing a control law that is capable of rejecting specific worst
case disturbances.

The solution to the mini-max optimization problem (Equation 17.44) is not guaranteed to exist for all
values of γ. When the solution does exist, it produces a full-state feedback control law similar in structure
to the LQR controller. The solution to the mini-max differential game is summarized in the following
theorem.

Theorem 17.4: Mini-Max Differential Game

Given the system dynamics
ẋ(t)= Ax(t)+Bu(t)+ Ld(t) (17.45)

with x(t) ∈R
n, u(t) ∈R

m, and d(t) ∈R
q along with the performance variables we wish to keep small

z(t)= Cx(t) with z(t) ∈R
p, we define the mini-max quadratic cost functional

J(u, d)= 1

2

∫ ∞

0

[
zT (t)z(t)+ ρuT (t)u(t)− γ2dT (t)d(t)

]
dt γ, ρ> 0

in which ρ and γ are user-specified design variables that weight the relative influence of the controls and
disturbances. Under the following assumptions

1. The entire state vector x(t) is available for feedback
2. d(t) is a deterministic, bounded energy signal with

∫∞
0 dT (t)d(t) dt <∞

3. Both [A B] and [A L] are stabilizable, and [A C] is detectable

If the optimum value of the cost J(u, d) constrained by the system dynamics (Equation 17.45) exists, it is a
unique saddle point of J(u, d) where

1. The optimal mini-max control law is

u(t)=−Kx(t) with K = 1

ρ
BT S (17.46)
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2. The optimal, worst case, disturbance is

d(t)= 1

γ2 LT Sx(t)

3. S is the unique, symmetric, positive semidefinite solution of the matrix Riccati equation

SA+AT S+CT C− S

(
1

ρ
BBT − 1

γ2 LLT
)

S = 0 (17.47)

4. The closed-loop dynamics for Equation 17.45 using Equation 17.46

ẋ(t)= (A−BK)x(t)+ Ld(t) (17.48)

are guaranteed to be asymptotically stable.

If the solution to this optimization problem exists, it produces a stabilizing full-state feedback controller
with the same structure as the LQR controller but with a different scheme for evaluating the feedback
gains. Since the L matrix of Equation 17.45 appears in the Riccati equation 17.47, the mini-max control
law directly incorporates the information of how the disturbances impact the system dynamics. The facts
that the min-max controller guarantees a stable closed-loop and takes into consideration the nature of
the disturbances make it an attractive alternative to LQR for synthesizing controllers.

17.5.1 Synthesizing Mini-Max Controllers

Mini-max controllers are not guaranteed to exist for arbitrary values of the design weightγ in the quadratic
cost functional J(u, d). Since γ influences the size of the− 1

γ2 LLT term in the Riccati equation 17.47, there

will exist values of γ> 0 for which there is either no solution to the Riccati equation or for which S will
not be positive semidefinite. It turns out that there is a minimum value of γ, γmin, for which the mini-max
optimization problem has a solution. Hence, useful values of γwill lie in the interval γmin ≤ γ <∞. Note
that as γ→∞, the Riccati equation 17.47 becomes identical to the LQR one from Equation 17.5, and we
recover the LQR controller. Likewise when γ= γmin, we have another special case which is known as the
full-state feedback H∞ controller∗. For any other value of γ in γmin ≤ γ <∞ we still have an admissible
stabilizing mini-max controller.

As with LQR, synthesizing mini-max controllers requires solving an algebraic Riccati equation. How-
ever, the presence of the − 1

γ2 LLT term in the mini-max Riccati equation 17.47 makes the process of

computing an S = ST ≥ 0 that satisfies Equation 17.47 more complicated than finding an S = ST ≥ 0 that
satisfies the LQR Riccati equation 17.5. The reasons for this are directly related to the issue of whether or
not a solution to the mini-max optimization problem exists.

To understand how one computes mini-max controllers, it is necessary to understand how current
algebraic Riccati equation solvers work. While there is a rich theory for the topic, we summarize the key
results in the following theorem.

Theorem 17.5: The Algebraic Riccati Equation

The Riccati equation

AT S+ SA+ SVS−Q = 0 (17.49)

∗ See Chapter 18 for details.
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is solved by carrying out a spectral factorization∗ of its associate Hamiltonian matrix

H =
[

A V
Q −AT

]

If V =−BBT , Q =−CT C, [A B] is stabilizable, and [A C] is detectable then the Riccati equation solvers
produce the unique, symmetric, positive semidefinite solution, S = ST ≥ 0, to the Riccati equation 17.49.
Otherwise, as long as H has no jω-axis eigenvalues, the spectral factorization can be performed and a
solution, S, which satisfies Equation 17.49 is produced.

The Hamiltonian matrix for the mini-max Riccati equation, Hγ, is

Hγ =
[

A 1
γ2 LLT − 1

ρ
BBT

−CT C −AT

]
(17.50)

The sign indefinite nature of the 1/γ2LLT − 1/ρBBT term in Hγ makes it quite difficult to numerically test
whether or not a solution to the mini-max optimization problem exists. Thus, a constructive algorithm
based on the existing algebraic Riccati equation solvers is used to synthesize mini-max controllers.

Theorem 17.6: Algorithm for Computing Mini-Max Controllers

Pick a value of γ and check to see if Hγ from Equation 17.50 has any jω-axis eigenvalues. If it does,
increase γ and start over. If it does not, use an algebraic Riccati equation solver to produce a solution S
to Equation 17.47. Test if S ≥ 0. If it is not, increase gamma and start over. If S ≥ 0, check to see if the
closed-loop dynamics from Equation 17.48 are stable. If they are not, increase gamma and start over. If they
are, you have constructed a mini-max controller, since you’ve found a S = ST ≥ 0 that satisfies the Riccati
equation 17.47.

Theoretically, the final step of the algorithm, which requires checking the closed-loop stability is not
necessary. However, we highly recommend it since the numerical stability of the solution to the Riccati
equations for values of γ near γmin can be questionable.

From the algorithm for computing mini-max controllers, it can be seen that evaluating H∞ controllers
for a fixed value of ρ will require a trial-and-error search over γ. To compute γmin it is best to use a
bisection search over γ in the algorithm to find the smallest value of γ for which S = ST ≥ 0 and the
closed-loop system (Equation 17.48) is stable. Current control system design packages such as MATLAB
and MATRIXx employ such algorithms for computing the H∞ controller that in turn determines γmin.

While the mini-max and H∞ controllers are quite distinct from LQR controllers all the advice given
for designing LQR controllers applies to mini-max controllers as well. Namely, it is necessary to iterate
over the values of the design weights and independently check the robustness and performance char-
acteristics for each design when synthesizing mini-max and H∞ controllers. It can be shown through
manipulating the Riccati equation 17.47 that the robustness properties of LQR controllers from Sec-
tion 17.3 apply to H∞ and mini-max controllers as well. Furthermore, modifications of the powerful
sensitivity and frequency weighted LQR design tools from Section 17.4 do exist and can be used to incor-
porate stability robustness and known design specifications into the controller synthesis of mini-max and
H∞ controllers.

∗ Spectral factorizations are essentially eigenvalue decompositions.
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18.1 Introduction

The fundamentals of output feedback H2 (linear quadratic Gaussian or LQG) and H∞ controllers, which
are the primary synthesis tools available for linear time-invariant systems, are presented in an analogous
and tutorial fashion without rigorous mathematics. Since H2 and H∞ syntheses are carried out in the
modern control design paradigm, a review of the paradigm is presented, along with the definitions of the
H2 and H∞ norms and the methods used to compute them. The state-space formulae for the optimal
controllers, under less restrictive assumptions than are usually found in the literature, are provided in an
analogous fashion to emphasize the similarities between them. Rather than emphasizing the derivation
of the controllers, we elaborate on the physical interpretation of the results and how one uses frequency
weights to design H∞ and H2 controllers. Finally, a simple disturbance rejection design for the longi-
tudinal motion of an aircraft is provided to illustrate the similarities and differences between H∞ and
H2 controller synthesis.

18.2 The Modern Paradigm

H2 and H∞ syntheses are carried out in the modern control paradigm. In this paradigm both performance
and robustness specifications can be incorporated in a common framework along with the controller
synthesis. In the modern paradigm, all of the information about a system is cast into the generalized
block diagram shown in Figure 18.1 [1–3]. The generalized plant, P, which is assumed to be linear and
time-invariant throughout this article contains all the information a designer would like to incorporate
into the synthesis of the controller, K . System dynamics, models of the uncertainty in the system’s
dynamics, frequency weights to influence the controller synthesis, actuator dynamics, sensor dynamics,
and implementation hardware dynamics from amplifiers, and analog-to-digital and digital-to-analog
converters are all included in P. The inputs and outputs of P are, in general, vector valued signals. The
sensor measurements that are used by the feedback controller are denoted y, and the inputs generated

18-1



�

�

�

�

� �

18-2 Control System Advanced Methods

P

K

w

u y

z

FIGURE 18.1 Generalized block diagram of the modern paradigm.

by the controller are denoted u. The components of w are all the exogenous inputs to the system.
Typically these consist of disturbances, sensor noise, reference commands, and fictitious signals that
drive frequency weights and models of the uncertainty in the dynamics of the system. The components
of z are all the variables we wish to control. These include the performance variables of interest, tracking
errors between reference signals and plant outputs, and the actuator signals which cannot be arbitrarily
large and fast.

The general control problem in this framework is to synthesize a controller that will keep the size of
the performance variables, z, small in the presence of the exogenous signals, w. For a classical disturbance
rejection problem, z would contain the performance variables we wish to keep small in the presence of the
disturbances contained in w that would tend to drive z away from zero. Hence, the disturbance rejection
performance would depend on the “size” of the closed-loop transfer function from w to z, which we shall
denote as Tzw(s). This is also true for a command following control problem in which z would contain
the tracking error that we would like to keep small in the presence of the commands in w that drive the
tracking error away from zero.

Clearly then, the “size” of Tzw(s) influences the effect that the exogenous signals in w have on z. Thus,
in this framework, we seek controllers that minimize the “size” of the closed-loop transfer function Tzw(s).
Given that Tzw(s) is a transfer function matrix, it is necessary to use appropriate norms to quantify its size.
The two most common and physically meaningful norms that are used to classify the “size” of Tzw(s) are
the H2 and H∞ norms. As such, we seek controllers that minimize either the H2 or H∞ norm of Tzw(s)
in the modern control paradigm.

18.2.1 System Norms

Here we define and discuss the H2 and H∞ norms of the linear, time-invariant, stable system with transfer
function matrix

G(s)= C(sI −A)−1B

This notation is meant to be general, and the reader should not think of G(s) as only the actuator
to sensor transfer function of a system. Realize that G(s) is a system and thus requires an appro-
priate norm to classify its size. By a norm, we mean a positive, scalar number that is a measure
of the size of G(s) over all points in the complex s-plane. This is quite different from, for exam-
ple, the maximum singular value of a matrix, σmax[A], which is a norm that classifies the size of the
matrix A.
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The H2 Norm

Definition 18.1: H2 Norm

The H2 norm of G(s), denoted ‖G‖2, is defined as

‖G‖2 =
(

1

2π

∫ ∞

−∞
trace

[
G(jω)G∗(jω)

]
dω

) 1
2 =

(
1

2π

∫ ∞

−∞

r∑
i=1

σ2
i [G(jω)]dω

) 1
2

where σi denotes the ith singular value, G∗(jω) is the complex conjugate transpose of G(jω), and r is the
rank of G(jω).

The H2 norm has an attractive, physically meaningful interpretation. If we consider G(s) to be the
transfer function matrix of a system driven by independent, zero mean, unit intensity white noise, u, then
the sum of the variances of the outputs y is exactly the square of the H2 norm of G(s). That is

E
[

yT (t)y(t)
]
= ‖G(s)‖2

2 (18.1)

The H2 norm of G(s) thus gives a precise measure of the “power” or signal strength of the output of a
system driven with unit intensity white noise. Note that in the scalar case

√
E[yT (t)y(t)] is the RMS or

root mean squared value for y(t) so the H2 norm specifies the RMS value of y(t). A well-known fact
for stochastic systems is that the mean squared value of the outputs can be computed by solving the
appropriate Lyapunov equation [4]. As such, a state space procedure for computing the H2 norm of G(s)
is as follows [2].

Computing the H2 Norm

If Lc denotes the controllability Gramian of (A, B) and Lo the observability Gramian of (A, C), then

ALc + LcAT +BBT = 0 AT Lo+ LoA+CT C = 0

and

‖G‖2 =
[

trace(CLcCT )
] 1

2 =
[

trace(BT LoB)
] 1

2

Note that this procedure for computing the H2 norm involves the solution of linear Lyapunov equations
and can be done without iteration.

The H∞ Norm

Definition 18.2: H∞ Norm

The H∞ norm of G(s), denoted ‖G‖∞, is defined as

‖G‖∞ = sup
ω
σmax[G(jω)]

In this definition “sup” denotes the supremum or least upper bound of the function σmax[G(jω)], and
thus the H∞ norm of G(s) is nothing more than the maximum value of σmax[G(jω)] over all frequencies
ω. The supremum must be used in the definition since, strictly speaking, the maximum of σmax[G(jω)]
may not exist even though σmax[G(jω)] is bounded from above.
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H∞ norms also have a physically meaningful interpretation when considering the system y(s)=
G(s)u(s). Recall that when the system is driven with a unit magnitude sinusoidal input at a specific
frequency, σmax[G(jω)] is the largest possible output size for the corresponding sinusoidal output. Thus,
the H∞ norm is the largest possible amplification over all frequencies of a unit sinusoidal input. That is,
it classifies the greatest increase in energy that can occur between the input and output of a given system.
A state space procedure for calculating the H∞ norm is as follows.

Computing the H∞ Norm

Let ‖G‖∞ = γmin. For the transfer function G(s)= C(sI −A)−1B with A stable and γ> 0, ‖G‖∞ < γ if
and only if the Hamiltonian matrix

H =
[

A 1
γ2 BBT

−CT C −AT

]

has no eigenvalues on the jω-axis. This fact lets us compute a bound, γ, on ‖G‖∞ such that ‖G‖∞ < γ.
So to find γmin, select a γ> 0 and test if H has eigenvalues on the jω-axis. If it does, increase γ. If it does
not, decrease γ and recompute the eigenvalues of H. Continue until γmin is calculated to within the desired
tolerance.

The iterative computation of the H∞ norm, which can be carried out efficiently using a bisection search
over γ, is to be expected given that by definition we must search for the largest value of σmax[G(jω)] over
all frequencies.

Note, the H2 norm is not an induced norm, whereas the H∞ norm is. Thus, the H2 norm does not
obey the submultiplicative property of induced norms. That is, the H∞ norm satisfies

‖G1G2‖∞ ≤ ‖G1‖∞‖G2‖∞
but the H2 norm does not have the analogous property. This fact makes synthesizing controllers that
minimize ‖Tzw(s)‖∞ attractive when one is interested in directly shaping loops to satisfy norm bounded
robustness tests∗. On the other hand, given the aforementioned properties of the H2 norm, synthe-
sizing controllers that minimize ‖Tzw(s)‖2 is attractive when the disturbances, w, are stochastic in
nature. In fact, H2 controllers are nothing more than linear quadratic Gaussian (LQG) controllers
so the vast amount of insight into the well-understood LQG problem can be readily applied to H2

synthesis.

Example 18.1:

In this example the H2 and H∞ norms are calculated for the simple four-spring, four-mass system
shown in Figure 18.2. The equations of motion for this system can be found in Example 17 2 in
Chapter 17. The system has force inputs on the second and fourth masses along with two sensors that
provide a measure of the displacement of these masses. The singular values of the transfer function
from the inputs to outputs, which we denote by G(s), are shown in Figure 18.3. The H∞ norm of
the system is equal to the peak of σ1 = 260.4, and the H2 norm of the system is equal to the square
root of the sum of the areas under the square of each of the singular values, 14.5. Note that when
considering the H2 norm, observing the log log plot of the transfer function can be very deceiving,
since the integral is of σi , not log(σi ), over ω, not logω.

As pointed out in the example, the differences between the H∞ and H2 norms for a system G(s) are best
viewed in the frequency domain from a plot of the singular values of G(jω). Specifically, the H∞ norm is
the peak value of σmax[G(jω)] while the H2 norm is related to the area underneath the singular values of
G(jω). For a more in-depth treatment of these norms the reader is referred to [1,2,5,6].

∗ See Chapter 20 for a detailed exposition of this concept.
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q1(t)

u1(t) u2(t)
k1 k2 k3 k4

c4c3c2c1

m1 m2 m3 m4

q3(t)q2(t) = y1(t) q4(t) = y2(t)

FIGURE 18.2 Mass, spring, dashpot system from Example 18.1. For the example ki =mi = 1 ∀i, and ci = 0.05 ∀i.

18.3 Output Feedback H∞ and H2 Controllers

Given that all the information a designer would like to include in the controller synthesis is incorporated
into the system P, the synthesis of H2 and H∞ controllers is quite straightforward. In this respect all of
the design effort is focused on defining P. Below, we discuss how to define P using frequency weights to
meet typical control system specifications. Here we simply present the formulas for the controllers.

All the formulas will be based on the following state-space realization of P,

P :=
⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦

Singular values of G(s)

Si
ng

ul
ar

 v
al

ue
s

103

102

101

100

10–1

10–2

10–3

10–4

10–2 10–1

Frequency (Hz)
100

max{σ1( jω)}

||G||∞ = 260.4
||G||2 = 14.5

σ1

σ2

FIGURE 18.3 Singular values of the transfer function between the inputs and outputs of the mass, spring system
shown in Figure 18.2.
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This notation is a shorthand representation for the system of equations

ẋ(t)= Ax(t)+B1w(t)+B2u(t) (18.2)

z(t)= C1x(t)+D11w(t)+D12u(t) (18.3)

y(t)= C2x(t)+D21w(t)+D22u(t) (18.4)

Additionally, the following assumptions concerning the allowable values for the elements of P are made.

Assumptions on P

1. D11 = 0 (A.1)

2. [A B2] is stabilizable (A.2)

3. [A C2] is detectable (A.3)

4. V =
[

B1

D21

] [
BT

1 DT
21

] :=
[

Vxx Vxy

V T
xy Vyy

]
≥ 0 with Vyy > 0 (A.4)

5. R =
[

CT
1

DT
12

] [
C1 D12

] :=
[

Rxx Rxu

RT
xu Ruu

]
≥ 0 with Ruu > 0 (A.5)

Assumption A.1 ensures that none of the disturbances feed through to the performance variables which
is necessary for H2 synthesis but may be removed for H∞ synthesis (see [7] for details.) Assumptions A.2
and A.3 are needed to guarantee the existence of a stabilizing controller while the remaining assumptions
are needed to guarantee the existence of positive semidefinite solutions to the Riccati equations associated
with the optimal controllers.

Theorem 18.1: H2 Output Feedback

Assuming that w(t) is a unit intensity white noise signal, E[w(t)wT (τ)] = Iδ(t− τ), the unique, stabilizing,
optimal controller which minimizes the H2 norm of Tzw(s) is

K2 :=
[

A+B2F2+ L2C2+ L2D22F2 −L2

F2 0

]
(18.5)

where

F2 =−R−1
uu

(
RT

xu+BT
2 X2

)

L2 =−
(

Y2CT
2 +Vxy

)
V−1

yy (18.6)

and X2 and Y2 are the unique, positive semidefinite solutions to the following Riccati equations

0= X2Ar +AT
r X2+Rxx −RxuR−1

uu RT
xu−X2B2R−1

uu BT
2 X2 (18.7)

0= AeY2+Y2AT
e +Vxx −VxyV−1

yy V T
xy −Y2CT

2 V−1
yy C2Y2 (18.8)

where

Ar =
(

A−B2R−1
uu RT

xu

)
and Ae =

(
A−VxyV−1

yy C2

)
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Theorem 18.2: H∞ Output Feedback [8]

Assuming that w(t) is a bounded L2 signal,
∫∞
−∞ wT (t)w(t) dt <∞, a stabilizing controller which satisfies

‖Tzw(jω)‖∞ < γ is

K∞ :=
[

A −Z∞L∞
F∞ 0

]
(18.9)

where

A∞ = A+ (B1+ L∞D21
)

W∞+B2F∞+Z∞L∞C2+Z∞L∞D22F∞

where

F∞ =−R−1
uu

(
RT

xu+BT
2 X∞

)
W∞ = 1

γ2 BT
1 X∞

L∞ =−
(

Y∞CT
2 +Vxy

)
V−1

yy Z∞ =
(

I − 1

γ2 Y∞X∞
)−1

and X∞ and Y∞ are the solutions to the following Riccati equations

0= X∞Ar +AT
r X∞+Rxx −RxuR−1

uu RT
xu−X∞

(
B2R−1

uu BT
2 −

1

γ2 B1BT
1

)
X∞ (18.10)

0= AeY∞+Y∞AT
e +Vxx −VxyV−1

yy V T
xy −Y∞

(
CT

2 V−1
yy C2− 1

γ2 CT
1 C1

)
Y∞ (18.11)

that satisfy the following conditions

1. X∞ ≥ 0
2. The Hamiltonian matrix for Equation 18.10,

⎡
⎣ A−B2R−1

uu RT
xu −B2R−1

uu BT
2 + 1

γ2 B1BT
1

−Rxx +RxuR−1
uu RT

xu − (A−B2R−1
uu RT

xu

)T

⎤
⎦

has no jω-axis eigenvalues, or equivalently A+B1W∞+B2F∞ is stable
3. Y∞ ≥ 0
4. The Hamiltonian matrix for Equation 18.11,

⎡
⎢⎣
(

A−VxyV−1
yy C2

)T −CT
2 V−1

yy C2+ 1
γ2 CT

1 C1

−Vxx +VxyV−1
yy V T

xy −A+VxyV−1
yy C2

⎤
⎥⎦

has no jω-axis eigenvalues, or equivalently A+ L∞C2+ 1
γ2 Y∞CT

1 C1 is stable

5. ρ(Y∞X∞) < γ2, where ρ(·)=maxi |λi(·)| is the spectral radius

The (sub)optimal central H∞ controller which minimizes ‖Tzw‖∞ to within the desired tolerance is K∞
with γ equal to the smallest value of γ > 0 that satisfies conditions 1 to 5.

Unlike the H2 controller, the H∞ controller presented here is not truly optimal. Since there is no
closed-form, state-space solution to the problem of minimizing the infinity norm of a multiple-input,
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multiple-output (MIMO) transfer function matrix Tzw(s), the connections between the mini-max opti-
mization problem

inf
u

sup
w

∫ ∞

0

[
zT (t)z(t)− γ2wT (t)w(t)

]
dt (18.12)

and H∞ optimization are used to arrive at the constructive approach for synthesizing suboptimal
H∞ controllers given in Theorem 18.2. In fact, satisfying the conditions 1 to 5 of Theorem 18.2 is
analogous to finding a saddle point of the optimization problem (Equation 18.12), and the search for
γmin is analogous to finding the global minimum over all the possible saddle points. As such, any value
of γ > γmin will also satisfy conditions 1 to 5 of Theorem 18.2, and thus produce a stabilizing controller.
Such controllers are neither H2 nor H∞ optimal. Since in the limit as γ→∞ the equations from The-
orem 18.2 reduce to the equations for the H2 optimal controller, controllers with values of γ between
γmin and infinity provide a trade off between H∞ and H2 performance. Along these lines, it is also worth
noting that there is a rich theory for mixed H2 /H∞ controllers that minimize the H2 norm of Tzw(s)
subject to additional H∞ constraints. See [9–11] for details.

The value of w(t) that maximizes the cost in Equation 18.12 is known as the worst case disturbance,
as it seeks to maximize the detrimental effect the disturbances have on the system. In this regard,
H∞ controllers provide optimal disturbance rejection to worst case disturbance, whereas the H2

controllers provide optimal disturbance rejection to stochastic disturbances.
Both H2 and H∞ controllers are observer-based compensators [2], which can be seen from their block

diagrams, shown in Figures 18.4 and 18.5. The regulator gains F2 and F∞ arise from synthesizing the
full-state feedback controller, which minimizes the appropriate size of zT (t)z(t) constrained by the system
dynamics Equation 18.2. Then the control law is formed by applying these regulator gains to an estimate
of the states x(t). The states, x(t), are estimated using the noisy measurements of y(t) from Equation 18.4,
and L2 and Z∞L∞ are the corresponding filter gains of the estimators.

In particular, F2 is the full-state feedback LQR gain that minimizes the quadratic cost

JLQ = E

{
lim
τ→∞

1

τ

∫ τ

0

[
zT (t)z(t)

]
dt

}

constrained by the dynamics of Equation 18.2, and L2 is the Kalman filter gain from estimating the states
x based on the measurements y(t). Under the assumption that z(t) is an ergodic process∗

JLQ = lim
τ→∞

1

τ

∫ τ

0
zT (t)z(t)dt = E

[
zT (t)z(t)

]
= ‖Tzw‖2

2 (18.13)

and this is exactly why H2 synthesis is nothing more than LQG control.

x2y –
+

+ +

+
+ u

+
x2

B2

F2L2

C2

D22

∫

A

FIGURE 18.4 Block diagram of K2 from Equation 18.9. Note, the Kalman Filter estimate of the states x(t) from
Equation 18.2, x̂2(t), are the states of K2.

∗ Assuming z(t) is ergodic implies that its mean can be computed from the time average of a measurement of z(t) as
t →∞ [4].
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x∞y –
+

+ +

+
+

+

u
+

+
+

+

w

x∞

B2

B1

W∞

L∞D21

F∞Z∞L∞

C2

D22

∫

A

FIGURE 18.5 Block diagram of K∞ from Equation 18.9. Note, the H∞ optimal estimate of the states x(t) from
Equation 18.2, x̂∞(t), are the states of K∞, and ŵ(t) is an estimate of the worst case disturbance.

Analogously, F∞ is the full-state feedback H∞ control gain that results from optimizing the mini-max
cost of Equation 18.12, and W∞ is the full-state feedback gain that produces the worst case distur-
bance which maximizes the cost of Equation 18.12∗. Unlike the Kalman filter in the H2 controller, the
H∞ optimal estimator must estimate the states of P in the presence of the worst case disturbance which
is evident from the block diagram of K∞ shown in Figure 18.5 [12]. This is why the filter gain of the
H∞ optimal estimator, Z∞L∞, is coupled to the regulator portion of the problem through X∞ from
Equation 18.10.

Since the H2 controller is an LQG controller, the closed-loop poles of Tzw(s) separate into the closed-
loop poles of the regulator, eig(A−B2F2), and estimator, eig(A− L2C2). A consequence of this separation
property is that the H2 Riccati equations (Equations 18.7 and 18.8) can be solved directly without iteration.
Since the worst case disturbance must be taken into consideration when synthesizing the H∞ optimal
estimator, the regulator and estimator problems in the H∞ synthesis are coupled. Thus, the H∞ controller
does not have a separation structure that is analogous to that of the H2 controller. In addition, the
H∞ Riccati equations (Equations 18.10 and 18.11) are further coupled through the γ parameter, and we
must iterate over the value of γ to find solutions of the H∞ Riccati equations that satisfy conditions 1 to
5 of Theorem 18.2.

Note that in the literature the following set of additional, simplifying assumptions on the values of
the elements of P are often made to arrive at less complicated sets of equations for the optimal H∞ and
H2 controllers [6,13,14].

Additional Assumptions on P

1. D22 = 0 (No control feed-through term)

2. CT
1 D12 = 0 (No cross penalty on control and state)

3. B1DT
21 = 0 (Uncorrelated process and sensor noise)

4. DT
12D12 = I (Unity penalty on every control)

5. DT
21D21 = I (Unit intensity sensor noise on every measurement)

∗ See the section on H∞ Full State Feedback in Chapter 17 for details.
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18.4 Designing H2 and H∞ Controllers

The results presented in the previous section are powerful because they provide the control system
designer with a systematic means of designing controllers for systems whose entire state cannot be fed
back. In order to take full advantage of these powerful tools, it is up to the designer to communicate
to the optimization problems the desired control system performance and robustness. In the modern
paradigm, this is done through the choice of the system matrix P. Since systems and their associated
desired performance are diverse, there is no systematic procedure for defining P. However, by exploiting
the rich mathematics of the H2 and H∞ optimization problems along with their physical interpretations,
it is possible to formulate guidelines for selecting appropriate systems P for a wide variety of problems.

Regardless of the synthesis employed, P will contain both the system model and the design weights used
to communicate to the optimization the desired control system performance. Any linear interconnection
of design weights and model can be selected so long as Assumptions A.1 through A.5 are satisfied. To
satisfy the assumption that Ruu > 0, all of the control signals must appear explicitly in z. This is to be
expected, since we cannot allow the synthesis to produce arbitrarily large control signals. Similarly, to
ensure Vyy > 0, every measurement y must be corrupted by some sensor noise so as to avoid singular
estimation problems.

Frequency-dependent weighting matrices are often included in P, since they provide greater freedom
in telling the synthesis the desired control system performance. The synthesis of H2 and H∞ controllers
with frequency weights is just as straightforward as classical LQG synthesis with constant weights. Once
the interconnection of the model with the defined performance variables, disturbances, and weights is
specified, it is just a simple matter of state augmentation and block diagram manipulation to realize the
state space form of P in Equations 18.2 through 18.4. Then given a state space representation of P, the
formulas for the optimal controllers found in Theorems 18.1 and 18.2 can be used. The ability to use any
admissible system interconnection with any combination of frequency weights is a direct consequence of
the fact that we build an estimator for the entire state of P into the controllers. As such, the dynamics of
any frequency weights will be reflected in the compensator whose order will be the same as that of P.

In either the H2 or H∞ framework, arriving at a satisfactory design will involve iteration over the
values of the frequency weights. Thus, it is vital to have an in-depth understanding of the dynamics of the
system when choosing the system interconnection and the values for the design variables.

18.4.1 H2 Design

Given that the H2 optimal controller is an LQG controller, it is useful to adopt a stochastic framework and
use the insights afforded by the well-known LQG problem when selecting P for H2 synthesis, see [13,15].
In this respect, w(t) must contain both the process and sensor noises, while z(t) must contain linear
combinations of both the states and controls. Furthermore, the system P must be comprised of the system
model and all the design weights such as the noise intensities and the state and control weighting matrices.
For example, Figure 18.6 illustrates a possible system interconnection for the classical LQG problem of
minimizing a weighted sum of state and control penalties given a system whose dynamics

ẋ(t)= Ax(t)+Bu(t)+ Ld(t) (18.14)

y(t)= Cx(t)+ v(t)

are driven by the uncorrelated stochastic disturbances, d(t), and sensor noise, v(t).
In the interconnection of Figure 18.6, Wi are weighting matrices, or design variables, that the designer

selects. For the classical LQG problem, all the Wi are constant matrices. Since wT (t)= [wT
1 (t) wT

2 (t)]
must be a unit intensity, white noise process, W1 and W2 are the matrix square roots of the intensity
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z1

w1 W1

W3

W4

W2

L
d

v
w2

u B

P(s)

C +
+

yn y
(sI – A)–1

z2

FIGURE 18.6 Block diagram interconnection for a typical P(s).

matrices for the process and sensor noises d and v such that

E

{[
d(t)
v(t)

] [
dT (τ) vT (τ)

]}=
[

W1WT
1 0

0 W2WT
2

]
δ(t− τ)

As for the performance variable weights, W3 is a weight on the outputs that produces a particular state
weighting, and W4 is the matrix square root of the control weighting matrix. These define the cost JLQ

from Equation 18.13 to be

JLQ = E

{
lim
τ→∞

1

τ

∫ τ

0

[
xT (t)CT WT

3 W3Cx(t)+ uT (t)WT
4 W4u(t)

]
dt

}

A drawback of classical LQG synthesis is that the weighting matrices are constant and thus limit our
ability to place distinct penalties on the disturbances and performance variables at various frequencies.
When synthesizing H2 controllers the weights Wi can, in general, be functions of frequency. Since per-
formance and robustness specifications are readily visualized in the frequency domain, using frequency
weights provides much more freedom in telling the optimization problem the desired control system
behavior.

When choosing the values of the frequency weights, one should use the fact that H2 synthesis is
equivalent to LQG synthesis. Any frequency weights that appear on the performance variables can be
chosen using the insights afforded by the LQR problem with frequency weighted cost functionals as a result
of Equation 18.13∗. In brief, one uses Parseval’s Theorem to arrive at a frequency domain representation
of JLQ from Equation 18.13. For the system interconnection shown in Figure 18.6 with scalar frequency
weights W3(s)= w3(s)I and W4(s)= w4(s)I

JLQ ≈ 1

2π

∫ ∞

−∞
[|w3(jω)|2y∗n(jω)yn(jω)+ |w4(jω)|2u∗(jω)u(jω)

]
dω

From this expression of the H2 cost, it is clear that the weights should be chosen to have a large magnitude
over the frequencies where we want the outputs, yn, and controls, u, to be small.

Frequency weights that appear on the disturbance signals should be viewed as shaping filters that
specify the spectral content of the process and sensor noises. The values of the weights can then be chosen

∗ Section 4.4 in Chapter 17 has a detailed exposition of this.
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to capture the true spectral content of the disturbances, as w(t) must be unit intensity white noise to apply
Theorem 18.2, or they can be chosen to influence the controller to produce some desired behavior. For
example, in the system shown in Figure 18.6 if W1(s)= w1(s)I , then the control will work hard to reject
the disturbances, d, over the frequencies where |w1(jω)| is large. Likewise, if W2(s)= w2(s)I and |w2(jω)|
is large over a particular frequency range, then the controller will not exert much effort there because we
are telling the synthesis that the sensor measurements are very noisy there.

18.4.2 H∞ Design

In the H∞ framework it is possible to use loop shaping, see [1], to achieve performance and robustness
specifications that can be expressed in the frequency domain. This is due to the fact that

‖Tzw‖∞ < γ ⇒ ‖ (Tzw
)

ij ‖∞ < γ ∀i, j (18.15)

where
(
Tzw

)
ij denotes the closed-loop transfer function matrix between exogenous disturbance wj and

performance variable zi . To take advantage of Equation 18.15, it is necessary to define P so that the
closed-loop transfer function matrices we wish to shape appear directly in Tzw(s) and are multiplied by
frequency-dependent design weights.

These concepts are best illustrated through an example. Consider the system Equation 18.14, which
can be represented in the frequency domain as

y(s)= G1(s)d(s)+G2(s)u(s)+ v(s)

G1(s)= C(sI −A)−1L

G2(s)= C(sI −A)−1B

where the disturbances are now considered to be unknown but bounded L2 signals. Suppose that we are
interested in designing a controller that rejects the effect of the disturbances d(t) on the outputs y(t) and
that is robust to an unstructured additive error in the input to output system model. Then it is necessary
to independently shape the closed-loop transfer function between d and y, S(s)G1(s), and the closed-loop
transfer function K(s)S(s). In particular, we require S(s)G1(s) to have a desirable shape, and we need to
satisfy the standard additive error stability robustness test

σmax[K(jω)S(jω)]< 1

|ea(jω)|
where S(s)= [I −G2(s)K(s)]−1 and ea(s) is a transfer function whose magnitude bounds the additive
error ∗. If W1 = I and W2 = I , then the system interconnection shown in Figure 18.6 is suitable for
designing H∞ controllers that achieve the loop-shaping objectives, because

Tzw(s)=
[

W3S(s)G1(s) W3C(s)
W4K(s)S(s)G1(s) W4K(s)S(s)

]
(18.16)

where C(s)= S(s)G2(s)K(s).
Notice that both of the loops of interest, S(s)G1(s) and K(s)S(s), appear directly in Equation 18.16

multiplied by the design weights. By selecting scalar frequency-dependent weights, W3 = w3(s)I and
W4 = w4(s)I , an H∞ controller that achieves a specific value of γ ensures that

σmax[S(jω)G1(jω)]< γ

|w3(jω)| ∀ω (18.17)

σmax[K(jω)S(jω)]< γ

|w4(jω)| ∀ω (18.18)

as a result of Equation 18.15. Similar bounds will also hold for the other
(
Tzw

)
ij in Equation 18.16. To

take advantage of Equations 18.17 and 18.18, set γ= 1 and select the values of w3(s) and w4(s) to provide

∗ See Chapter 9.
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desirable bounds on S(s)G1(s) and K(s)S(s). For example, let w4(s)= ea(s). Then if the H∞ controller
based on these values of the weights achieves ‖Tzw‖∞ ≈ 1, the desired loops will in fact be shaped to
satisfy Equations 18.17 and 18.18. This is how one should choose the values of the design variables to
shape the loops of interest in an H∞ design.

In using this method of weight selection there are a few issues the designer must keep in mind. First
of all, realize that the bounds implied by Equation 18.15 and exemplified by Equation 18.17 are not
necessarily tight over all frequencies. As a result it helps to graphically inspect all the constraints implicit
in the choice of Tzw(s) as one iterates through the values of the design variables. More importantly, simply
assuming γ= 1 when the values of the weights are chosen does not ensure an H∞ controller that achieves
‖Tzw‖∞ ≈ 1. In fact, when ‖Tzw‖∞ � 1 it is a strong indication that the values of the design variables
impose unrealistic constraints on the system’s dynamics. One cannot choose w3(s) and w4(s) arbitrarily.
They must complement each other. Another reason why the design variables cannot be chosen arbitrarily
involves the fact that ‖ (Tzw

)
ij ‖∞ < γ ∀i, j. Not only will w3(s) shape the weighted sensitivity transfer

function S(s)G1(s), it will also shape C(s). Since S(s)+C(s)= I , there will clearly be restrictions on the
choice of w3(s). While loops such as C(s) may not be of primary interest, they will influence the overall
performance of the controller and should be kept in mind when selecting the values of the weights.

The choice of P in Figure 18.6 with W1 =W2 = I could also have been made using structured singular
value concepts∗. In this context, the performance variables z2 and disturbances w2 can be viewed as the
inputs and outputs to an unknown but norm bounded unstructured uncertainty that captures the additive
error in the input to output model. Likewise, the performance variables z1 and disturbances w1 can be
viewed as the inputs and outputs to a fictitious, unknown, norm bounded unstructured uncertainty that
captures the desire to reject the disturbances d at the outputs yn. Then selecting the values of the design
weights is akin to scaling the system in the same way that the D-scales, used in the D-K iteration, scale
the system.

18.4.3 Additional Notes for Selecting Design Weights

To ensure that Assumptions A.1 through A.5 are satisfied once the dynamics of the frequency weights
are augmented to the system model, it is necessary to use proper, stable, minimum phase weights. For
example, in the system shown in Figure 18.6, W4(s) must contain an output feedthrough term to ensure
Ruu > 0.

An important issue to be aware of when using frequency weights is that it is possible to define a set
of weights with repetitive information. For example, in the system of Figure 18.6 with W2(s)= w2(s)I
and W4(s)= w4(s)I , specifying the magnitudes of w2(s) and w4(s) to be large over the same frequency
region tells both optimization problems the same information, make the controls small there. Not only
is such information redundant, it is also undesirable, since the order for the compensator is equal to the
order of P.

18.5 Aircraft Design Example

To illustrate more clearly how one uses frequency weights to design H2 and H∞ controllers, we shall
discuss the design of a wind gust disturbance rejection controller for a linearized model of an F-8 aircraft.
As you shall see, the modern paradigm allows us to incorporate frequency domain performance and
robustness specifications naturally and directly into the controller synthesis.

The F-8 is an “old-fashioned” aircraft that has been used by NASA as part of their digital fly-by-wire
research program. Assuming that the aircraft is flying at a constant altitude in equilibrium flight allows
us to linearize the nonlinear equations of motion. In doing so, the longitudinal dynamics decouple from

∗ See Chapter 20 for more details.
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the lateral dynamics. The variables needed to characterize the longitudinal motion, which are defined
in the schematic drawing of the F-8 shown in Figure 18.7, are the horizontal velocity, ν(t), pitch angle,
θ(t), pitch rate, q(t)= θ̇(t), angle of attack, α(t), and flight path angle, β(t)= θ(t)− α(t). To control the
longitudinal motion, elevators, δe(t), and flaperons, δf (t), which are just like the elevators except that they
move in the same direction, were used. While the thrust also influences the longitudinal motion of the
aircraft, it is considered to be constant in our designs. The measurements are the pitch and flight path
angles, yT (t)= [θ(t) β(t)].

The effect of wind gust disturbances, which primarily corrupt the angle of attack, is modeled as the
output of a shaping filter driven with unit intensity white noise, d(t). Using the state vector

xT (t)= [θ(t) β(t) q(t) ν(t) xd(t)]

in which xd(t) is the state of the first-order shaping filter of the wind gust disturbance model, the linearized,
longitudinal equations of the F-8 aircraft are

ẋ(t)= Ax(t)+Bu(t)+ Ld(t) (18.19)

y(t)= Cx(t)+ v(t)

with uT (t)= [δe(t) δf (t)] and

A=

⎡
⎢⎢⎢⎢⎣

0.0 0.0 1.0 0.0 0.0
1.50 −1.50 0.0 0.0057 1.50
−12.0 12.0 −0.60 −0.0344 −12.0
−0.8520 0.290 0.0 −0.0140 −0.290

0.0 0.0 0.0 0.0 −0.730

⎤
⎥⎥⎥⎥⎦ B=

⎡
⎢⎢⎢⎢⎢⎣

0.0 0.0
0.160 0.80
−19.0 −3.0
−0.0115 −0.0087

0.0 0.0

⎤
⎥⎥⎥⎥⎥⎦

LT = [0.0 0.0 0.0 0.0 1.1459
]

C =
[

1 0 0 0 0
0 1 0 0 0

]

The units for the angles and control signals are in degrees while the velocity has units of ft/s. The outputs
are modeled as a nominal signal with additive white noise v(t) that has an intensity of μ= 0.01 deg2/s,
E
{

vT (t)v(τ)
}= μIδ(t− τ), to capture the limited accuracy of the sensors.

The objective is to design controllers that reduce the effect of the wind disturbance on the system.
Specifically we would like the magnitude of each output to be less than 0.25 degrees up to 1.0 rad/s as
the aircraft passes through wind gusts. In addition, we require the control system to be robust to an
unstructured multiplicative error reflected to the output of the plant whose magnitude is bounded by the
function

em(s)= 0.1s2

F-8

u1 = δe u2 = δf
d(t)- Wind gust disturbance

Velocity, v

Horizontal
α β = y2

θ = y1

FIGURE 18.7 Definition of variables for the longitudinal dynamics of the F-8.
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This multiplicative error captures the unmodeled dynamics associated with the flexibility of the aircraft’s
airframe. It will essentially constrain the bandwidth of the design to prevent these unmodeled modes
from being excited.

Both of the design specifications can be represented in the frequency domain. To meet the performance
specification, we require the closed-loop transfer function from d to y, S(s)G1(s), to satisfy

σmax[S(jω)G1(jω)]< 0.25 for 0 < ω≤ 1.0 rad/s (18.20)

where

S(s)= [I −G2(s)K(s)]−1

G2(s)= C(sI −A)−1B

G1(s)= C(sI −A)−1L

To ensure stability robustness to the multiplicative error we require that

σmax[C(jω)]< 1

|em(jω)| ∀ω (18.21)

where C(s)= S(s)G2(s)K(s).
Given this representation of the design goals, we shall synthesize H2 and H∞ controllers that shape

the closed-loop transfer functions S(s)G1(s) and C(s) to meet these constraints. Using the system inter-
connection for P shown in Figure 18.8 makes good mathematical and physical sense for this problem.
Mathematically, P(s) shown in Figure 18.8 leads to the following closed-loop transfer function matrix,

Tzw(s)=
[

w1(s)S(s)G1(s)
√
μw2(s)C(s)

ρw1(s)K(s)S(s)G1(s) ρ
√
μw2(s)K(s)S(s)

]
(18.22)

Notice that the loops of interest, S(s)G1(s) and C(s), appear directly in Equation 18.22 and are directly
influenced by the scalar frequency weights w1(s) and w2(s). Realize that the coloring filter dynamics for
the wind gust disturbance are already included in the system dynamics Equation (18.19), so that w1(s)
should not be viewed as a shaping filter for d. Rather w1(s) is a design variable that overemphasizes the
frequency range in which the impact of d is most vital, and it is chosen to reflect in the optimization
problem our desire to appropriately shape S(s)G1(s). The scalar constant weight ρ, which is a penalty on
the control that must be included in the synthesis to satisfy Assumption A.5, was allowed to vary, whereas
μwas held fixed to capture the limited sensor accuracy. P(s) also makes good sense in terms of the physics
of the design objectives. It includes the effects of both the process and sensor noises, and its performance
variables, z, contain the outputs we wish to keep small in the presence of the disturbances.

To illustrate that there is a strong connection between the physical, stochastic motivation used to select
the values of the weights in the H2 framework and the more mathematical norm bound motivation used
in the H∞ framework, we compare the results of an H∞ and an H2 design that both use the same values
of the weights. The weights were chosen as described in the previous section. After some iteration we
found that with

ρ= 0.01, w1(s)= 0.1(s+ 100)

(s+ 1.25)
, and w2(s)= 5000(s+ 3.5)

3.5(s+ 1000)

both the H∞ and H2 designs met the desired performance and robustness specifications. Note that as a
result of using these frequency weights, the controllers had eight states.

Figures 18.9 and 18.10 show that the loops of interest have in fact been shaped in accordance with the
design goals. As seen in Figure 18.9, which compares the open and closed-loop disturbance to output
transfer functions, both designs meet the performance goal from Equation 18.20. In this figure, 1/|w1(jω)|
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z1

w1 W1(s)I

ρI

W2(s)I

L
d

v
μ√w2

u B

P(s)

C +
+

+
+

yn y
(sI – A)–1

z2

FIGURE 18.8 Generalized system P(s) used in the F-8 designs.

Comparison of OL and CL performance: d(t) to y(t)
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H2 closed loop αmax[S( jω)G1( jω)]

Design weight 1/|w1( jω)|
H∞ closed loop αmax[S( jω)G1( jω)]

FIGURE 18.9 Comparison of the open- and closed-loop disturbance to output transfer functions for the H∞ and
H2 designs. The frequency weight w1(s) used to shape S(s)G1(s) is also shown.

is also shown to illustrate how the value of w1(s) was chosen. From an H2 perspective, the |w1(jω)| is
large over 0 < ω≤ 1.0 rad/s and small elsewhere to tell the synthesis that the intensity of the disturbance
is large where we desire good disturbance rejection. In the context of the H∞ design, we assumed that
γ= 1 and selected 1/|w1(jω)| to appropriately bound σmax[S(jω)G1(jω)] in accordance with the fact that

σmax[S(jω)G1(jω)]< γ

|w1(jω)| ∀ω (18.23)
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Closed loop C(s) and stabillity robustness tests
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FIGURE 18.10 Comparison of σmax[C(jω)] for the H∞ and H2 designs. The bound on the multiplicative error,
1/|em(jω)|, and the frequency weight w2(s) used to shape C(s) are also shown.

for any H∞ design which achieves ‖Tzw‖∞ < γ. For the values of the weights given above, ‖Tzw‖∞ = 0.95
for the H∞ design, which ensures that Equation 18.23 was satisfied. A difference in the performance
achieved by both designs is expected since the same values of the weights are used to minimize different
measures of the size of Tzw(s).

Figure 18.10, which compares σmax[C(jω)] for the designs, illustrates that the stability robustness
criterion from Equation 18.21 is also satisfied. Again, 1/

√
μ|w2(jω)| is shown to illustrate the manner in

which the value of w2(s) was chosen. As seen in the figure, w2(s) forces the H∞ design to roll off below
the stability robustness bound, 1/|em(jω)|, in accordance with the fact that

σmax[C(jω)]< γ√
μ|w2(jω)| ∀ω. (18.24)

Since |w2(jω)| is large beyond 5.0 rad/s, it tells the H2 synthesis that the sensor noise is large there, which
in turn limits the control energy beyond 5.0 rad/s.

The value of ρ also played an important role in the designs. In the H2 design, adjusting ρ directly
influenced the amount of control effort used, just as a control weight would in LQG synthesis. For the
H∞ design, ρ minimized the constraints that the values of w1(s) and w2(s) placed on the closed-loop
transfer functions K(s)S(s)G1(s) and K(s)S(s) in Equation 18.22. Since these loops are not of primary
interest, choosing a small value of ρ ensured that w1(s) and w2(s) would not overly constrain these since,
for example,

σmax[K(jω)S(jω)G1(jω)]< γ

ρ|w1(jω)| ∀ω

for any H∞ design.
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The similarities in the achieved loop shapes are not coincidental. In fact, the dynamics of the H∞ and
H2 controllers presented here are quite similar. There is a clear reason why the similarity exists even
though the optimization problems used are distinct. Once all of the desired control system performance
is incorporated into P(s) via the design variables, the task of minimizing the H2 norm of Tzw(s) becomes
nearly identical to the task of minimizing the H∞ norm of Tzw(s). This can be seen in Figure 18.11,
which compares the values of σmax[Pzw(jω)] and σmax[Tzw(jω)] for the two designs. Here Pzw(s) denotes
the open-loop transfer function matrix between w and z of P(s). As such, σmax[Pzw(jω)] is an indication
of the nominal cost that the controllers seek to minimize. Specifically, to minimize the H∞ norm of
Tzw(s) the peak in σmax[Pzw(jω)] must be flattened out so that it looks like a low pass filter. Then the
DC gain of the filter must be reduced to further minimize the H∞ norm of Tzw(s). This is also the case
for minimizing the H2 norm of Tzw(s) which is dominated by the area under the spike in σmax[Pzw(jω)]
(recall that the area is evaluated linearly and that we are using a log log plot). While the optimization
problems are distinct, the manner in which the cost is minimized is similar.

Figure 18.11 also provides a clear indication of how the optimization problems differ. Notice that the
H2 design rolls off faster than the H∞ design. This is because the H2 design minimizes energy, or the
area under σmax[Tzw(jω)], at the expense of its peak value, whereas the H∞ design seeks to minimize the
peak of σmax[Pzw(jω)] at the expense of allowing there to be more energy at higher frequencies.

It would be improper to draw conclusions about which synthesis approach is better based on these
designs, especially since the same values for the weights in P(s) were used. Rather, our intent has been to
illustrate the connections between the H∞ and H2 frameworks and how one can go about synthesizing
H∞ and H2 controllers to meet frequency domain design specifications. We should also note that the
methodology used in this example has been applied to and experimentally verified on a much more
complex system [16].
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FIGURE 18.11 Comparison of the open-loop “cost,” σmax[Pzw(jω)], and the closed-loop “cost,” σmax[Tzw(jω)], for
the H∞ and H2 controllers.
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19.1 Introduction∗

Feedback controllers are designed to achieve certain performance specifications in the presence of both
plant and signal uncertainty. Typical controller design formulations consider quadratic cost functions
on the errors primarily for mathematical convenience. However, practical situations may dictate other
kinds of measures. In particular, the peak values of error signals are often more appropriate for describing
desired performance. This can be a consequence of uniform tracking problems, saturation constraints,
rate limits, or simply a disturbance rejection problem. In addition, disturbance and noise are in general
bounded and persistent because they continue to act on the system as long as the system is in operation.
Such signals are better described by giving information about both the signals’ frequency content and
time-domain bounds on peak values.

The above class of problems motivated a formulation that involves the Peak-to-Peak gain of a system,
which is mathematically given by the �1 norm of the pulse response. This formulation was first reported
in [13], and the problem was completely solved in several subsequent articles [5–8,11]. The extension
of the theory to incorporate plant uncertainty was reported in [3,4,9,10]. An extensive coverage of this
theory with detailed references can be found in [2].

The need for developing this problem was further intensified by the failure of the frequency-domain
techniques to address time-domain specifications. For instance, attempting to achieve an overshoot

∗ Research Supported by AFOSR under grant AFOSR-91-0368, by NSF under grant 9157306-ECS, and by Draper Laboratory
under grant DL-H-467128.
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constraint using H∞ or H2 by appropriately adjusting the weighting matrices can be a very frustrating
experience. On the other hand, solutions to such problems will no longer be in closed form due to
the complexity of the performance objectives. Exact or approximate solutions will be obtained from
solving equivalent yet simpler optimization problems. The derivation of such simpler problems and the
computational properties are essential components of this research direction.

19.1.1 A Design Tool

The motivation behind research in �1 theory is developing a design tool for MIMO uncertain systems. A
powerful design tool in general should have three ingredients:

1. Practicality: The ability to translate a large set of performance specifications into conditions or
constraints readily acceptable by the design tool. It is evident that not all design specifications can
be immediately translated into mathematical conditions. However, the mathematical formulation
should well approximate these objectives.

2. Computability: It is in general straightforward to formulate controller design problems as con-
strained optimization problems. What is not so straightforward is formulating problems that can
be solved efficiently and with acceptable complexity.

3. Flexibility: The ability to alter a design to achieve additional performance specifications with small
marginal cost.

It is evident that practicality and computability are conflicting ingredients. Computational com-
plexity grows as a function of several parameters, which include the dimension of the system, the
uncertainty description, and the performance specifications. Flexibility makes it possible to design
a controller in stages, i.e., by altering a nominally good design to achieve additional specifications.

19.1.2 Motivation

We give some reasons behind the development of such a design tool, by quoting from the book: Control
of Uncertain Systems: A Linear Programming Approach.

1. Complex systems: Many of today’s systems, ranging from space structures to high purity distillation
columns, are quite complex. The complexity comes from the very high order of the system as well
as the large number of inputs and outputs. Modeling such systems accurately is a difficult task and
may not be possible. A powerful methodology that deals systematically with multiple inputs and
outputs and with various classes of structured uncertainty is essential.

2. High performance requirement: Systems are built to perform specific jobs with high accuracy.
Robots are already used to perform accurate jobs such as placing components on integrated circuit
boards. Aircraft are built with high maneuverability and are designed specifically for such tasks.
Classical SISO design techniques cannot accommodate these problems resulting in designs that
are conservative and perform poorly.

3. Limits of performance: In complex systems, it is time-consuming to establish, by trial and error,
whether a system can meet certain performance objectives (even without uncertainty). Thus, it is
necessary to develop systematic methods to quantify the fundamental limitations of systems and
to highlight the trade-offs of a given design.

4. A systematic design process: It is inevitable that designing a controller for a system will involve
iterations. Unless this procedure is made systematic, the design process can become very cumber-
some and slow. The design procedure should not only exhibit a controller. It should also provide
the designer with indicators for the next iteration, by showing which of the constraints are the
limiting ones and which part of the uncertainty is causing the most difficulty. Note also that a
general procedure should be able to accommodate a variety of constraints, both in the time and in
the frequency domain.
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5. Computable methods: It is quite straightforward to formulate important control problems, but it
is not so easy to formulate solvable problems that can provide computable methods for analysis
and synthesis. Much of the current research invokes high level mathematics to provide simple
computable results. The computability of a methodology is the test of its success. By computability
we do not mean necessarily closed form solutions. Problems that give rise to such solutions
have limited applicability. However, computability means that we can synthesize controllers via
computable algorithms and simultaneously obtain qualitative information about the solution.

6. Technological advancement: Many aspects of technological development will affect the design of
control systems. The availability of “cheaper” sensors and actuators that are well-modeled allows
for designing control systems with a large number of inputs and outputs. The availability of fast
microprocessors, as well as memory, makes it possible to implement more complex feedback
systems with high order. The limiting factor in controller implementation is no longer the order
of the controller. Instead, it is the computational power and the memory availability.

7. Available methods: The available design techniques have concentrated on frequency-domain per-
formance specifications by considering errors in terms of energy rather than peak values. These
methods (such as H2 and H∞) have elegant solutions. However, this elegance is lost if additional
time-domain specifications (e.g., overshoot, undershoot, settling time ..) are added. This created
a need for a time-domain based computational methodology that can accommodate additional
frequency-domain constraints. This design tool aims at achieving this objective.

In the sequel we will summarize the �1 design tool by discussing the three ingredients, practicality,
computability, and flexibility.

19.2 Practicality

19.2.1 Examples

To motivate the formulation of the �1 problem, we begin with two examples.
The first is the control design for an Earth Observing System (EOS). EOS is a spacecraft that orbits the

earth and points in a specific location. It carries on its platform various sensory instruments, with the
objective of collecting data from earth. An example of such an instrument is an array of cameras intended
to provide images of various points and landscapes on earth. The spacecraft is subjected to various kinds
of disturbances: external pressures, noise generated from the instruments on board, and the spacecraft
itself. The objective of the control design is to point the spacecraft accurately in a specific direction,
otherwise known as attitude control.

The second example is the control design of an active suspension of an automobile. A simplified
one-dimensional problem is shown in Figure 19.1.

The objective of the controller design is to maximize ride comfort, while simultaneously maintaining
handling (road holding ability) in the presence of bad road conditions.

These examples have several common features:

1. The objectives in both problems are to keep the maximum deviations of signals from set points
bounded by some prescribed value to attain uniform tracking or disturbance rejection. In the EOS
example, performance is measured in terms of maximum deviations of the attitude angles from a
set point. In the active suspension problem, performance is measured in terms of the maximum
force acting on the system and the maximum deviation of the distance of the wheel from the
ground.

In mathematical terms, both performance specifications are stated in terms of peak values of
signals, i.e.,

‖w‖∞ = max
i=1,...n

sup
t
|w(t)|.
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FIGURE 19.1 Active suspension.

This is known as the �∞-norm of the signal (or its peak value). For the active suspension problem,
the performance can be stated as ∥∥∥∥

(
x1− d

u

)∥∥∥∥∞ ≤ γ,

for some performance bound γ. It is straightforward to incorporate additional scalings and weights
into the performance.

2. The disturbances in both examples are unknown, persistent in time, but, bounded in magnitude
(peak value). A good model for the disturbance in both cases is given by

d =Ww, ‖w‖∞ ≤ 1,

where W is a linear time-invariant filter that gives information about the frequency content of
the disturbance. This model of disturbance accommodates persistent disturbances that are not
necessarily periodic. It does not assume that the signal dies out asymptotically.

3. In both problems, saturation constraints are quite important and play a role in limiting the per-
formance. In the active suspension problem, the saturation constraint is given by the maximum
deflection of the hydraulic actuator, i.e.,

‖x1− x2‖∞ ≤ γsat .

These constraints combined with the performance objectives have to be satisfied for all distur-
bances w such that ‖w‖∞ ≤ 1.

4. Both examples are difficult to model precisely, and thus the control strategies have to accommodate
unmodelled dynamics. In this article, we will not discuss in detail the robust performance problems.
We refer the reader to [2] for details.
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It is evident from the above discussion that peak values of signals are natural quantities in stating design
specifications.

19.2.2 Formulation

Figure 19.2 shows a general setup for posing performance specifications. The variables as defined in the
figure are

u= control inputs

y =measured outputs

w = exogenous Inputs=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fixed commands
unknown commands
disturbances
noise
...

z = regulated outputs=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tracking Errors
control Inputs
measured Outputs
states
...

The operator G is a 2× 2 block matrix mapping the inputs w and u to the outputs z and y:

[
z
y

]
=
[

G11 G12

G21 G22

] [
w
u

]
.

The actual process or plant is the submatrix G22. Both the exogenous inputs and the regulated outputs are
auxiliary signals that need not be part of the closed loop system. The feedback controller is denoted by K .

From our discussion above, the set of exogenous inputs consists of unknown, persistent, but bounded,
disturbances,

D = {w ∈ �∞ | ‖w‖∞ ≤ 1} .

The performance measure (combined with constraints) is stated as

‖z‖∞ ≤ γ, ∀ w ∈D.

u y  

z

K 

G 

ω 

FIGURE 19.2 General setup.
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IfΦ is the linear time-invariant system mapping w to z, then

‖z‖∞ ≤ γ, for all w ∈D ⇐⇒ ‖Φ‖1 ≤ γ,

where

‖Φ‖1 = max
1≤i≤nz

nw∑
j=1

∞∑
k=0

|φij(k)|.

The latter is the expression for the �1 norm of the system. In conclusion, the �1 norm of a system is the
peak-to-peak gain of the system and can directly describe time-domain performance specifications. The
nominal performance problem can be stated as

inf
K stabilizing

(sup
w
‖Φ‖1).

19.2.3 Comparison to H∞
Suppose the exogenous inputs are such that ‖w‖2 ≤ 1 but are otherwise arbitrary (‖w‖2 is the energy
contained in the signal). If the objective is to minimize the energy of the regulated output, then the
nominal performance problem is defined as

inf
K stabilizing

(sup
w
‖Φw‖2)= inf

K stabilizing
sup
θ

σmax[Φ̂(eiθ)].

Both of these norm minimization problems fall under the same paradigm of minimax optimality. Mini-
mizing the H∞ norm results in attenuating the energy of the regulated signal but may still result in signals
that have large amplitudes. Minimizing the �1 norm results in attenuating the amplitude of the regulated
output, and overbounds the maximum energy due to bounded energy inputs because

‖Φ̂‖H∞ ≤
√

m‖Φ‖1,

where m is the number of rows inΦ. On the other hand, the following inequality holds:

‖Φ‖1 ≤ 2(N + 1)
√

n‖Φ̂‖H∞ ,

where N is the McMillan degree of the system, and n is the number of columns of Φ. The latter bound
is the tightest possible bound (i.e., equality holds for certain classes of systems) and it shows that the gap
between these measures can be large if the order of the system is high.

19.2.4 Prototypes

The following prototypes have been discussed in [2]. These are representative problems quite common
in applications. We will use these prototypes to illustrate the significance of the �1 design methodology.

19.2.4.1 Disturbance Rejection

In the context of �∞ signals, the disturbance rejection problem is defined as follows: Find a feedback
controller that minimizes the maximum amplitude of the regulated output over all possible disturbances
of bounded magnitude. The two-input two-output system shown in Figure 19.3 depicts the particular case
where the disturbance enters the system at the plant output. Its mathematical representation is given by

z = P0u+Ww,

y = P0u+Ww.

The disturbance rejection problem provides a general enough structure to represent a broad class of
interesting control problems.
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W

P0
u y = z

K

ω

FIGURE 19.3 A disturbance rejection problem.

19.2.4.2 Command Following with Saturation

The command following problem, equivalent to a disturbance rejection problem, is shown in Figure 19.4.
We will show how to pose this problem in the presence of saturation nonlinearities at the input of the
plant, as an �1-optimal control problem.

Define the function

Sat(u)=
{

u |u| ≤ Umax

Umaxsgn(u) |u| ≥ Umax

.

Let the plant be described as
Pu= P0Sat(u)

where P0 is LTI . Let the commands be modeled as

r =Ww where ‖w‖∞ ≤ 1.

The objective is to find a controller K so that y follows r uniformly in time. Keeping in mind the saturation
function, and in order to stay in the linear region of operation, the allowable control inputs must have
‖u‖∞ ≤ Umax. Let γ be the (tracking) performance level desired, and define

z =
[

(y− r)/γ

u/Umax

]

with
y = P0u.

W r P0
y 

K
–

ω u

FIGURE 19.4 Command following with input saturation.
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The problem is equivalent to finding a controller so that

sup
w
‖z‖∞ < 1,

which is an �1-optimal control problem.

The above closed loop system will remain stable even if the input saturates, as long as it does so infre-
quently. The solution to the above problem will determine the limits of performance when the system is
required to operate in the linear region. Also, the stability for such a system will mean the local stability
of the nonlinear system.

19.2.4.3 Saturation and Rate Limits

In the previous example, actuator limitations may require that the rate of change of the control input be
bounded. This is captured in the condition∣∣∣∣u(k)− u(k− 1)

Ts

∣∣∣∣≤ Uder

where Ts is the sampling period. Let

Wder = 1−λ
TsUder

.

This condition can be easily incorporated in the objective function by defining z as

z =
⎡
⎢⎣

(y− r)/γ

u/Umax

Wderu

⎤
⎥⎦ .

The result is a standard �1-optimal control problem.

19.2.5 Stability and Performance Robustness

The power of any design methodology is in its ability to accommodate plant uncertainty. The �1 norm
gives a good measure of performance. Because it is a gain over a class of signals, it will also provide a good
measure for robustness. This is a consequence of the small gain theorem which is stated below [2].

Let M be a linear time-invariant system andΔ be a strictly proper �∞-stable perturbation. The closed-loop
system shown in Figure 19.5 is �∞-stable for allΔ with ‖Δ‖�∞−ind ≤ 1 if and only if ‖M‖1 < 1.

The above result indicates that the �1 norm is the exact measure of robustness when the perturbations
are known to be BIBO stable, bounded gain, and possibly nonlinear or time-varying. The result can
be adapted to derive stability robustness conditions for a variety of plant uncertainty descriptions. We
describe one such situation below.

M 

Δ 

FIGURE 19.5 Stability robustness problem.
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19.2.5.1 Unstructured Multiplicative Perturbations

W2 W1

P0

K

Δ

FIGURE 19.6 Multiplicative perturbations.

Consider the case where the system has input uncertainty in a multiplicative form as in Figure 19.6,
i.e., let

Ω= {P | P = Po(I +W1ΔW2) and ‖Δ‖�∞−ind ≤ 1}.
If a controller is designed to stabilize P0, under what conditions will it stabilize every system in the setΩ?
By simple manipulations of the closed-loop system, the problem is equivalent to the stability robustness
of the feedback system in Figure 19.5, with M =W2(I −KPo)−1KPoW1. In general this manipulation is
done in a systematic way: Cut the loop at the inputs and outputs ofΔ, and then calculate the map from the
output ofΔ, w, to the input ofΔ, z. A sufficient condition for robust stability is then given by ‖M‖1 < 1.
The resulting two-input two-output description is given by

y = P0u+ P0W1w,

z =W2u.

This is a standard �1 minimization problem.

19.2.5.2 Structured Uncertainty

In many applications, uncertainty is described in a structured fashion where independent perturbations
are introduced in various locations of the closed loop system. It turns out that one can derive an exact
necessary and sufficient condition in terms of a scaled �1 norm of the system to guarantee stability
robustness in the presence of such structured perturbations. It can also be shown that the problem of
achieving robust performance (where performance is measured in terms of the �1 norm) is equivalent to
robustly stabilizing a plant with structured uncertainty. In this article, we will not discuss this problem.
Instead, we refer the reader to [2] for more details.

19.3 Computability

Since it is quite hard, in general, to obtain closed form solutions to general optimization problems, we
need to be precise about the meaning of a “solution.” A closed form solution has two important features:
the first is the ability to compute the optimal solution through efficient algorithms, and the second is to
provide a qualitative insight into the properties of the optimal solution. A numerical solution should offer
both of these ingredients. In particular, it should provide

1. The exact solution whenever it is possible
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2. Upper and lower approximations of the objective function when exact solutions cannot be obtained
and a methodology for synthesizing suboptimal controllers

3. Qualitative information about the controller, e.g., the order of the controller

Solutions based on general algorithms even for convex optimization problems offer only approximate
upper bounds on the solution. To obtain more information, one needs to invoke duality theory. Duality
theory provides a simple reformulation of the optimization problem from which lower bounds on the
objective function and, possibly, exact solutions can be found.

19.3.1 Summary of Results

To minimize the �1 norm, first the Youla parameterization of all stabilizing controllers is invoked.
The resulting optimization problem can be stated as an infinite-dimensional linear program in the free
parameter. Two cases occur:

1. The infinite dimensional LP is exactly equivalent to a finite-dimensional LP. This happens if the
dimension of the control input is at least as large as the dimension of the regulated variables and
the dimension of the measured output is at least as large as the exogenous inputs. This means that
the controller has a lot of degrees of freedom.

2. If any of the above conditions is violated, then the problem is inherently infinite-dimensional.
However, duality theory can be used to provide approximate solutions to this problem with
guaranteed performance levels.

The details of the computations for both of the above cases can be found in [2]. The most successful
algorithm for computing solutions for the second case is not based on straightforward approximation,
but rather on embedding the problem in another that falls under the first case. This procedure generates
approximate solutions with converging upper and lower bounds, and also provides information about the
order of the actual optimal controller. Other emerging techniques are based on dynamic programming
and viability theory and can be found in [1,12].

19.4 Flexibility

Flexibility is the ability to use the design tool to alter a given nominal design so that additional specifica-
tions are met with minimal expense. Examples of additional specifications include fixed input constraints
and frequency-domain constraints. The computational cost of alteration should be much less than the
incorporation of the specification directly in the problem. In addition, it is desirable to maintain the
qualitative information of the original solution.

Since the general synthesis problem is equivalent to an infinite dimensional LP, many additional
specifications (not directly addressed by �1 norms) can be incorporated as additional linear constraints.
Frequency-domain constraints can be well-approximated by linear constraints. Below we consider an
example of adding fixed input constraints to the �1 problem.

19.4.1 �1 Performance Objective with Fixed Input Constraints

Consider the case where the specifications given are such that the control signal resulting from a step
input must be constrained uniformly in time (e.g., to avoid actuator saturation). We want to bound the
controller response to a step input and at the same time minimize the �1 norm of the transfer functions
from the disturbance to both the control signal and plant output. In such a case we augment the basic �1
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FIGURE 19.7 A disturbance rejection problem.

problem in the following way:

inf
K stab.

∥∥∥∥K(I + PK)−1W
(I + PK)−1W

∥∥∥∥
1

subject to

‖K(I + PK)−1wf ‖∞ ≤ Umax

where wf is a unit step input disturbance and Umax is the specified bound. The above modification results
in adding infinitely many constraints on the sequence K(I + PK)−1 (i.e., convolution of a unit step with
K(I + PK)−1). However, since the peak is typically achieved in early samples, only a finite number of
constraints must be included (the rest being inactive). This is a particular case of nondecaying template
constraints which arise frequently in control system design.

19.4.1.1 Trade-Offs in Design

We take these specifications a step further by asking the following questions: What are the trade-offs in
the design? How does the bound on the control signal step response affect the overall performance? And,
how does it affect the structure of the optimal solution?

These questions can be readily answered with the �1 machinery. It amounts to solving a family of mixed
�1 problems parameterized in Umax. Solutions for a range of values of Umax are presented in Figures 19.8
and 19.9 by showing the performance degradation and the controller order growth as Umax decreases. The
numerical values are based on a model for the X29 aircraft (for details, see [2]). The following conclusions
can be drawn from this analysis:

1. The results present the trade-offs clearly. It is possible to reduce Umax by 50% without losing too
much performance in terms of the �1 norm of the system. This implies that the controller can be
altered to satisfy stricter conditions on the step response without losing the nominal performance.
The curve in Figure 19.8 also shows the smallest possible achievable Umax.

2. The trade-offs in the order of the controller are valuable. The trade-off curve in Figure 19.9 shows
that, by adding two additional states, Umax can be reduced to about 50% of its unconstrained value.

3. To compute such solutions, the unconstrained problem is solved first. The performance for a step
input is then checked, and constraints are added only at the time instants where the peak value of
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FIGURE 19.8 X29: Trade-offs in performance vs. control signal bound, Umax.

the input u is larger than Umax. This is a simpler problem than incorporating the infinite-horizon
constraints at all the time instants of the step response.

Finally, such constraints are hard to deal with by selecting weights and solving an �1 problem or an H∞
problem. The advantage that the �1 problem has over H∞ is that such constraints can be incorporated in
the problem, as described earlier, and then solved using the same solution techniques.
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FIGURE 19.9 X29: Trade-offs in controller order vs. control signal bound, Umax.
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19.5 Conclusions

In this chapter, we gave an overview of the �1 theory for robust control. The presentation was not detailed.
However, it was intended to serve as an introduction to a more detailed account of the theory that can
be found in the book, Control of Uncertain Systems: A Linear Programming Approach, and references
therein.

We highlighted three ingredients of the �1 design tool, practicality, computability and flexibility. These
properties allow for implementing a computer-aided-design environment based on �1 nominal designs,
in which the designer has the flexibility to incorporate frequency-domain and fixed-input constraints,
without losing the qualitative information about the structure of the controllers obtained from the nominal
designs. Such an environment has proven very powerful in designing controllers for real applications.
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20.1 Introduction

This chapter gives a brief overview of the structured singular value (μ). Theμ-based methods discussed are
useful for analyzing the performance and robustness properties of linear feedback systems. Computational
software for μ-based analysis and synthesis is available in commercial software products [2,4]. The
interested reader might also consult the tutorials in references [8,14], and application-oriented papers,
such as [1,6,13].

20.2 Shortcomings of Simple Robustness Analysis

Many of the theoretical robustness results for single-input, single-output (SISO) systems show that
if a single-loop system has good robust stability characteristics, and good nominal performance

20-1
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characteristics, then, necessarily, it has reasonably good robust performance characteristics. Unfortu-
nately, this “fact” is not, in general, true for multiloop systems. Also, for multiloop systems, checking the
robustness via individual loop-at-a-time calculations can be misleading, because the interactions between
the deviations are not accounted for in such an analysis. In this chapter, we illustrate these difficulties with
examples and introduce the structured singular value as an analytical tool for uncertain, multivariable
systems.

The first example concerns control of the angular velocity of a satellite spinning about one of its
principal axes. Its mathematical origins are due to Doyle, and are alluded to in [14]. The closed-loop
multivariable (MIMO) system is shown in Figure 20.1.

Set a := 10, and define

G := 1

s2+ a2

[
s− a2 a(s+ 1)
−a(s+ 1) s− a2

]
, K1 :=

[
1 0
0 1

]
, K2 := 1

1+ a2

[
1 −a
a 1

]
.

A minimal, state-space realization for the plant G is

G =
[

AG BG

CG DG

]
=

⎡
⎢⎢⎣

0 a 1 0
−a 0 0 1
1 a 0 0
−a 1 0 0

⎤
⎥⎥⎦ (20.1)

In order to assess the robustness margins to perturbations in the input channels into the plant, consider
the four-input, four-output system, denoted by M, in Figure 20.2. The lines from r1 and r2 which run
above K2 and G are included to define the tracking error, e1 and e2 explicitly.

Some important transfer functions are

Mry = 1

s+ 1
I2, Mw1,z1 =Mw2,z2 =−

1

s+ 1
.

These imply that the nominal closed-loop system has decoupled command response, with a bandwidth
of 1 rad/s, the crossover frequency in the first feedback loop is 1 rad/s, with phase margin of 90◦, the gain
margin in the first channel is infinite, the crossover frequency in the second loop is 1 rad/s, with phase
margin of 90◦, and the gain margin in the second channel is infinite. These suggest that the performance
of the closed-loop system is excellent and that it is quite robust to perturbations in each input channel.
Yet, consider a 5% variation in each channel at the input to the plant. Referring to Figure 20.3, let
δ1 = 0.05, and δ2 =−0.05. The output response y(t) to a unit-step reference input in channel 1 is shown
in Figure 20.4 (along with the nominal responses). Note that the ideal behavior of the nominal system
has degraded sharply despite the seemingly innocuous perturbations and excellent gain/phase margins in
the closed-loop system. In fact, for a slightly larger perturbation, δ1 = 0.11, δ2 =−0.11, the closed-loop

y1 

y2 – 

–r1 

r2 
K2 

K1

G 

FIGURE 20.1 Nominal multiloop feedback system.
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w2

e1

e2
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K1 

M

z2 

FIGURE 20.2 Closed-loop system with uncertainty model.

system is actually unstable. Why do these small perturbations cause such a significant degradation in
performance? To answer this, calculate the 4× 4 transfer matrix M represented in Figure 20.2, giving

⎡
⎢⎢⎣

w1

w2

e1

e2

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

s+ 1
− a

s+ 1

s− a2

s+ 1
−a

a

s+ 1
− 1

s+ 1
a

s− a2

s+ 1
1

s+ 1

a

s+ 1
− s

s+ 1
0

− a

s+ 1

1

s+ 1
0 − s

s+ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

z1

z2

r1

r2

⎤
⎥⎥⎦=:M

⎡
⎢⎢⎣

z1

z2

r1

r2

⎤
⎥⎥⎦

– – 

– 

– 

r1 

r2 
K2

K1

G 

y2 y1 

e1 

e2 

δ1 

δ2

FIGURE 20.3 Satellite: Closed-loop system with uncertain elements, δ1 and δ2.
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Note that the earlier calculations about the closed-loop system yielded information only about the (1, 1),
(2, 2), and (3 : 4, 3 : 4) entries. The notation (3 : 4, 3 : 4) denotes the 2× 2 matrix formed by rows 3 to 4
and columns 3 to 4 of M. In particular, these entries are all small, in some sense. The neglected entries,
(1, 2), (2, 1), (1 : 2, 3 : 4), (3 : 4, 1 : 2) are all quite large, because a= 10. It is these large off-diagonal
entries, and the manner in which they enter, that causes the extreme sensitivity of the closed-loop
system’s performance to the perturbations δ1 and δ2. For instance, with δ2 ≡ 0, the perturbation δ1

can only cause instability by making the transfer function (1−Mw1,z1δ1)−1 unstable. Similarly, with
δ1 ≡ 0, the perturbation δ2 can only cause instability by making the transfer function (1−Mw2,z2δ2)−1

unstable. Because both Mw1,z1 and Mw2,z2 are “small”, this requires large perturbations, and the single-
loop gain/phase margins reported earlier are accurate. However, acting together, the perturbations can
cause instability by making

⎡
⎢⎣
[

1 0
0 1

]
−
⎡
⎢⎣
− 1

s+ 1
− a

s+ 1
a

s+ 1
− 1

s+ 1

⎤
⎥⎦
[
δ1 0
0 δ2

]⎤⎥⎦
−1

unstable. The denominator of this multivariable transfer function is

s2+ (2+ δ1+ δ2
)

s+ [1+ δ1+ δ2+ (a2+ 1)δ1δ2
]

.

By choosing δ1 = 1√
a2+1

≈ 0.1, and δ2 =−δ1, the characteristic equation has a root at s = 0, indicating

marginal stability. For slightly larger perturbations, a root moves into the right half-plane. The simultane-
ous nature of the perturbations has resulted in a much smaller destabilizing perturbation than predicted
by the gain/phase margin calculations.

In terms of robust stability, the loop-at-a-time gain/phase margins only depended on the scalar transfer
functions Mw1,z1 and Mw2,z2, but the robust stability properties of the closed-loop system to simultaneous
perturbations actually depend on the 2× 2 transfer function matrix Mw,z . Similarly, assessing the robust
performance characteristics of the closed-loop system involves additional transfer functions ignored in
the simple-minded analysis. Consider the perturbed closed-loop system in Figure 20.3. In terms of the

0
–1

–0.5

0

0.5

y

1

1.5

1 2 3 4 5
Time (s)

Satellite: Nominal and 5% perturbations

6 7 8 9 10

FIGURE 20.4 Satellite: Nominal (solid) and 5% perturbation responses (dashed).



�

�

�

�

� �

The Structured Singular Value (μ) Framework 20-5

M 
e1 r1 

r2 e2 

δ1 

δ2 

FIGURE 20.5 Perturbed system.

transfer function matrix M, the perturbed r → e transfer function can be drawn as shown in Figure 20.5.
Partition the transfer function matrix M into four 2× 2 blocks, as

M =
[

M11 M12

M21 M22

]
.

Then the perturbed closed-loop transfer function from r to e can be written as

e =
[

M22+M21Δ
(
I −M11Δ

)−1 M12

]
d

where Δ is the structured matrix of perturbations, Δ= diag [δ1, δ2]. Our initial information about the
closed-loop system consisted of the diagonal entries of M11 and the entire matrix M22. We have seen that
the large off-diagonal entries of M11 created destabilizing interactions between the two perturbations. In
the robust performance problem, there are additional relevant transfer functions, M21 and M12, which
were not analyzed in the loop-at-a-time robustness tests, or in the r → y nominal command response,
though it is clear that these transfer functions may play a pivotal role in the robust performance charac-
teristics of the closed-loop system.

Hence, by calculating the two single loop-at-a-time robustness tests and a nominal performance test, 10
of the 16 elements of the relevant 4× 4 transfer function matrix are ignored. Any test which accounts for
simultaneous perturbations along with the subsequent degradation of performance must be performed
on the whole matrix. The point of this example is to show that there are some interesting issues in
multivariable system analysis and standard SISO ideas that cannot be made into useful analytical tools
simply by applying loop-at-a-time analysis. The structured singular value (μ), introduced in the next
section, is a linear algebra tool useful for these types of MIMO system analyses.

20.3 Complex Structured Singular Value

This section is devoted to defining the structured singular value, a matrix function denoted by μ
(·) [5].

The notation we use is standard from linear algebra and systems theory. R denotes the set of real numbers,
C denotes the set of complex numbers, | · | is the absolute value of elements in R or C, Rn is the set of
real n vectors, Cn is the set of complex n vectors, ‖v‖ is the Euclidean norm for v ∈ Cn, Rn×m is the
set of n×m real matrices, Cn×m is the set of n×m complex matrices, In is the n× n identity matrix,
and 0n×m is an entirely zero matrix. For M ∈ Cn×m, MT is the transpose of M, M∗ is the complex-
conjugate transpose of M, and σ̄

(
M
)

is the maximum singular value of M. For M ∈ Cn×n, λi
(
M
)

is an
eigenvalue of M, ρ

(
M
) :=max

i
|λi(M)| is the spectral radius of M, and ρR(M) is the real spectral radius
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of M, ρR(M) :=max
{|λ| : λ ∈ R, det

(
λI −M

)= 0
}

, with ρR(M) := 0 if M has no real eigenvalues. If

M ∈ Cn×n satisfies M =M∗, then M > 0 denotes that M is positive definite, and M
1
2 means the unique

positive definite Hermitian square root. For M =M∗, thenλmax(M) denotes the most positive eigenvalue.
We consider matrices M ∈ Cn×n. In the definition of μ

(
M
)
, there is an underlying structure Δ, (a

prescribed set of block diagonal matrices) on which everything following depends. This structure may be
defined differently for each problem depending on the uncertainty and performance objectives. Defining
the structure involves specifying three things: the total number of blocks, the type of each block, and their
dimensions.

20.3.1 Purely Complex μ

Two types of blocks—repeated scalar and full blocks are considered. Two nonnegative integers, S and
F, denote the number of repeated scalar blocks and the number of full blocks, respectively. To track the
block dimensions, we introduce positive integers r1, . . . , rS; m1, . . . , mF . The ith repeated scalar block is
ri × ri , while the jth full block is mj×mj. With those integers given, defineΔ⊂ Cn×n as

Δ := {diag
[
δ1Ir1 , . . . , δSIrS ,ΔS+1, . . . ,ΔS+F

] : δi ∈ C,ΔS+j ∈ Cmj×mj , 1≤ i ≤ S, 1≤ j ≤ F
}

. (20.2)

For consistency among all the dimensions,
∑S

i=1 ri +∑F
j=1 mj must equal n. Often, we will need

norm bounded subsets of Δ, and we introduce the notation BΔ :=
{
Δ ∈Δ : σ̄ (Δ)≤ 1

}
. Note that in

Equation 20.2 all of the repeated scalar blocks appear first, followed by the full blocks. This is done to
simplify the notation and can easily be relaxed. The full blocks are also assumed to be square, but again,
this is only to simplify notation.

Definition 20.1:

For M ∈ Cn×n,μΔ
(
M
)

is defined

μΔ
(
M
) := 1

min
{
σ̄
(
Δ
) :Δ ∈Δ, det

(
I −MΔ

)= 0
} (20.3)

unless noΔ ∈Δ makes I −MΔ singular, in which case μΔ
(
M
) := 0.

It is instructive to consider a “feedback” interpretation ofμΔ
(
M
)

at this point. Let M ∈ Cn×n be given,
and consider the loop shown in Figure 20.6. This picture represents the loop equations u=Mv, v =Δu.
As long as I −MΔ is nonsingular, the only solutions of u, v to the loop equations are u= v = 0. However,
if I −MΔ is singular, then there are infinitely many solutions to the equations, and the norms ‖u‖, ‖v‖
of the solutions can be arbitrarily large. Motivated by connections with stability of systems, we call this

u v 

M 

Δ

FIGURE 20.6 M−Δ interconnection.
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constant matrix feedback system “unstable”. Likewise, the term “stable” will describe the situation when
the only solutions are identically zero. In this context then, μΔ

(
M
)

provides a measure of the smallest
structured Δ that causes “instability” of the constant matrix feedback loop in Figure 20.6. The norm of
this “destabilizing”Δ is exactly 1/μΔ

(
M
)
.

Consider M ∈ C5×4,

M :=

⎡
⎢⎢⎢⎢⎣

0.100+ 0.070i −0.154+ 0.162i
0− 0.273i −0.300− 0.280i

0.100+ 0.175i 0.077− 0.108i
0+ 0.002i −0.004− 0.002i

0.024+ 0.028i 0+ 0.027i

0− 0.560i 0+ 42.000i
2.860+ 0.546i −26.000+ 72.800i
−0.400+ 0.210i 5.000+ 3.500i

0.006+ 0.011i 0.200+ 0.420i
−0.066+ 0.042i 0+ 0.700i

⎤
⎥⎥⎥⎥⎦ (20.4)

to show the dependence of μΔ
(
M
)

on the setΔ. Two different block structures compatible (in the sense
of dimensions) with M are

Δ1 =
{

diag [δ1, δ2,Δ3] : δ1, δ2 ∈ C,Δ3 ∈ C2×3}, and Δ2 =
{

diag [δ1, δ2, δ3,Δ4] : δi ∈ C,Δ4 ∈ C1×2} .

The definition yieldsμΔ1

(
M
)≈ 8.32, whileμΔ2

(
M
)≈ 2.42.

An alternative expression for μΔ
(
M
)

follows easily from the definition.

Lemma 20.1:

μΔ
(
M
)= max

Δ∈BΔ
ρ
(
ΔM

)

Continuity of the function μ:Cn×n→R is apparent from this lemma. In general, though, the function
μ:Cn×n→R is not a norm, because it doesn’t satisfy the triangle inequality. However, for any α ∈ C,
μ
(
αM

)= |α|μ (M)
, so it is related to how “big” the matrix is.

We can relate μΔ
(
M
)

to familiar linear algebra quantities whenΔ is one of two extreme sets:

• IfΔ= {δI : δ ∈ C} (S=1, F=0, r1=n), then μΔ
(
M
)= ρ (M)

.
Proof: The onlyΔ’s inΔwhich satisfy the det

(
I− MΔ

)= 0 constraint are reciprocals of nonzero
eigenvalues of M. The smallest one of these is associated with the largest (magnitude) eigen-
value, so, μΔ

(
M
)= ρ (M)

.
• IfΔ= Cn×n (S=0, F=1, m1=n), then μΔ

(
M
)= σ̄ (M)

.
Proof: If σ̄

(
Δ
)
< 1
σ̄
(
M
) , then σ̄

(
MΔ

)
< 1, so I −MΔ is nonsingular. Applying Equation 20.3

implies μΔ
(
M
)≤ σ̄ (M)

. On the other hand, let u and v be unit vectors satisfying Mv =
σ̄
(
M
)

u, and defineΔ := 1
σ̄
(
M
)vu∗. Then σ̄

(
Δ
)= 1/σ̄(M) and I −MΔ is obviously singular.

Hence, μΔ
(
M
)≥ σ̄ (M)

.

Obviously, for a generalΔ as in Equation 20.2, {δIn : δ ∈ C}must be included inΔ⊂ Cn×n. Hence directly
from the definition of μ, and the two special cases above, we conclude that

ρ
(
M
)≤ μΔ(M)≤ σ̄ (M)

. (20.5)

These bounds by themselves may provide little information about the value ofμ, because the gap between
ρ and σ̄ can be large. To see this, consider the matrix

M =
[

0 α

0 0

]

and two different block structures, Δ1 := {δI2 : δ ∈ C} and Δ2 :=
{
Δ ∈ C2×2

}
. μ with respect to Δ1,

which corresponds to ρ(M), is 0, independent of α. μ with respect toΔ2, which corresponds to σ̄(M), is
|α|.
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The bounds on μ can be refined with transformations on M that do not affect μΔ
(
M
)
, but do affect ρ

and σ̄. To do this, define two subsets, QΔ and DΔ of Cn×n,

QΔ =
{

Q ∈Δ : Q∗Q = In
}

(20.6)

DΔ = {diag
[
D1, . . . , DS , dS+1Im1 , . . . , dS+F ImF

] : Di ∈ Cri×ri , Di = D∗i > 0, dS+j ∈ R, dS+j > 0
}

(20.7)

For anyΔ ∈Δ, Q ∈QΔ, and D ∈DΔ,

Q∗ ∈QΔ, QΔ ∈Δ, ΔQ ∈Δ σ̄
(
QΔ

)= σ̄ (ΔQ
)= σ̄ (Δ) (20.8)

D
1
2Δ=ΔD

1
2 (20.9)

Theorem 20.1:

For all Q ∈QΔ and D ∈DΔ

μΔ
(
MQ

)=μΔ(QM
)= μΔ(M)=μΔ

(
D

1
2 MD− 1

2

)
(20.10)

Proof 20.1. For all D ∈DΔ andΔ ∈Δ,

det
(
I −MΔ

)= det
(

I −MD−
1
2 D

1
2Δ
)

= det
(

I −MD−
1
2ΔD

1
2

)

= det
(

D−
1
2 D

1
2 −D−

1
2 MD−

1
2Δ
)

= det
(

I −D
1
2 MD−

1
2Δ
)

because D commutes with Δ. Therefore μΔ
(
M
) = μΔ

(
D

1
2 MD− 1

2

)
. Also, for each Q ∈QΔ,

det
(
I −MΔ

)= 0 if and only if det
(
I −MQQ∗Δ

)= 0. Because Q∗Δ=Δ and σ̄
(
Q∗Δ

)= σ̄ (Δ),
μΔ

(
MQ

)= μΔ(M)
as desired. The argument for QM is the same.

Therefore, the bounds in Equation 20.5 can be tightened to

max
Q∈Q

ρ(QM)≤ max
Δ∈BΔ

ρ
(
ΔM

)

= μΔ
(
M
)≤ inf

D∈D
σ̄
(

D
1
2 MD−

1
2

) (20.11)

where the equality comes from Lemma 20.1.
The lower bound, maxQ∈Q ρ(QM), is always an equality [5]. Unfortunately, the quantity ρ

(
QM

)
can

have multiple local maxima which are not global. Thus local search cannot be guaranteed to obtainμ, but
can only yield a lower bound. The upper bound can be reformulated as a convex optimization problem,
so that the global minimum can, in principle, be found. Unfortunately, the upper bound is not always
equal to μ. For block structuresΔ satisfying 2S+ F ≤ 3, the upper bound is always equal to μΔ

(
M
)
, and

for block structures with 2S+ F > 3, matrices exist for which μ is less than the infimum [5,9].
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Convexity properties make the upper bound computationally attractive. The simplest convexity prop-

erty is given in the following theorem, which shows that the function σ̄
(

D
1
2 MD− 1

2

)
has convex level

sets.

Theorem 20.2:

Let M ∈ Cn×n be given, along with a scaling set DΔ, and β> 0. Then the set
{

D ∈DΔ : σ̄
(

D
1
2 MD− 1

2

)
< β

}
is convex.

Proof 20.2. The following chain of equivalences comprises the proof:

σ̄
(

D
1
2 MD−

1
2

)
< β ⇔ λmax

(
D−

1
2 M∗D

1
2 D

1
2 MD−

1
2

)
< β2

⇔ D−
1
2 M∗D

1
2 D

1
2 MD−

1
2 − β2I < 0

⇔ M∗DM− β2D < 0

(20.12)

The latter is clearly a convex condition in D because it is linear.

The final condition in Equation 20.12 is called a Linear Matrix Inequality (LMI) in the variable D.
In [3], a large number of control synthesis and analysis problems are cast as solutions of LMI’s.

20.3.2 Mixed μ: Real and Complex Uncertainty

Until this point, this section has dealt with complex-valued perturbation sets. In specific instances, it
may be more natural to describe modeling errors with real perturbations, for instance, when the real
coefficients of a linear differential equation are uncertain. Although these perturbations can be treated
simply as complex, proceeding with a complex μ analysis, the results may be conservative. Hence, theory
and algorithms to test for robustness and performance degradation with mixed (real blocks and complex
blocks) perturbation have been developed.

Definition 20.1 of μ can be used for more general sets Δ, such as those containing real and complex
blocks. There are 3 types of blocks, repeated real scalar, repeated complex scalar, and complex full blocks.
As before in Section 20.3, S and F, denote the number of repeated, complex scalar blocks and the number
of complex full blocks, respectively. V denotes the number of repeated, real scalar blocks. The block
dimensions of the real block are denoted by the positive integers t1, . . . , tV . With these integers given,
and ri and mj as defined in Section 20.3, defineΔ as

Δ=
{

diag
[
δr

1It1 , . . . , δr
V ItV , δc

V+1Ir1 , . . . , δc
V+SIrS ,ΔV+S+1, . . . ,ΔV+S+F

] :
δr

k ∈ R, δc
V+i ∈ C,ΔV+S+j ∈ Cmj×mj , 1≤ k ≤ V , 1≤ i ≤ S, 1≤ j ≤ F

}
.

(20.13)

For consistency among all the dimensions,
∑V

k=1 tk +∑S
i=1 ri +∑F

j=1 mj must equal= n.
The mixedμ function inherits many of the properties of the purely complexμ function, [5,7]. However,

in some aspects such as continuity, the mixedμ problem can be fundamentally different from the complex
μ problem. It is now well-known that real μ problems can be discontinuous in the problem data. Beside
adding computational difficulties to the problem, the utility of real μ is doubtful as a robustness measure
in such cases, the system model is always a mathematical abstraction from the real world, computed to
finite precision. It has been shown that, for many mixed μ problems, μ is continuous. The main idea is
that, if a mixed μ problem has complex uncertainty blocks that “count,” then the function is continuous.
From an engineering viewpoint, “count” implies that the complex uncertainty affects the value ofμ. This is
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the usual case because one is usually interested in robust performance problems (which therefore contain
at least one complex block – see Section 20.5.2), or robust stability problems with some unmodeled
dynamics, which are naturally covered with complex uncertainty. Purely real problems can be made
continuous by adding a small amount of complex uncertainty to each real uncertainty (see [1] for an
example). Consequently, a small amount of phase uncertainty is added to the gain uncertainty.

The theory for bounding (both lower and upper) mixed real/complex bounds is much more compli-
cated to describe than the bounding theory for complex μ. The lower bound for the mixed case is a real
eigenvalue maximization problem. Techniques to solve approximately for a mixed μ lower bound using
power algorithms have been derived, and are similar to those used for a lower bound for complex μ [15].
The mixedμupper bound takes the form of a more complicated version of the same problem, involving an
additional “G scaling matrix” which scales only the real uncertainty blocks. This minimization, involving
an LMI expression similar to Equation 20.12, is computed using convex optimization techniques similar
to those for the purely complex upper bound. See references [7,15] for more computational details.

20.3.3 Frequency Domain, Robust Stability Tests with μ

The best-known use of μ as a robustness analysis tool is in the frequency domain [5,14]. Suppose Ĝ(s) is
a stable, multi-input, multioutput transfer function of a linear system. For clarity, assume Ĝ has nz inputs
and nw outputs. LetΔ be a block structure, as in Equation 20.2, and assume that the dimensions are such
thatΔ⊂ Cnz×nw . We want to consider feedback perturbations to Ĝ, themselves dynamical systems, with
the block-diagonal structure of the setΔ, in Figure 20.7.

Let S denote the set of real-rational, proper, stable, transfer matrices (of appropriate dimensions, which
should be clear from context). Associated with any block structure Δ, let SΔ denote the set of all block
diagonal, stable rational transfer functions, with diagonal block structure as inΔ.

SΔ :=
{
Δ ∈ S :Δ(so) ∈Δ for all so ∈ C̄+

}
.

Theorem 20.3:

Let β> 0. The loop in Figure 20.7 is well-posed and internally stable for allΔ ∈ SΔ with ‖Δ‖∞ <
1

β
, where

‖Δ(s)‖∞ :=maxω∈R σ̄
(
Δ(jω)

)
if, and only if,

‖G‖Δ := sup
ω∈R
μΔ

(
Ĝ( jω)

)
≤ β

In summary, the peak value on the μ plot of the frequency response of the known linear system that
the perturbation “sees” determines the size of perturbations against which the loop is robustly stable.

Δ(s)

Ĝ(s)

FIGURE 20.7 Ĝ−Δ feedback loop block diagram.
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Remark 20.1

If the peak occurs at ω= 0, there are systems G where the theorem statement needs to be modified to be
correct. In particular, it may be impossible to do what the theorem statement implies, that is, construct

a real-rational perturbationΔ ∈ SΔ with ‖Δ‖∞ =
(‖G‖Δ

)−1
and

(
I −GΔ

)−1
unstable. Rather, for any

ε> 0, there will be a real-rational perturbation Δ ∈ SΔ with ‖Δ‖∞ =
(‖G‖Δ

)−1+ ε and
(
I −GΔ

)−1

unstable. These facts can be ascertained from results in [9,10].
The overall implication of this modification can be viewed in two opposite ways. If the theorem is used

for actual robustness analysis, the original viewpoint that
(‖G‖Δ

)−1
is the size of the smallest real-rational

perturbation causing instability is certainly the “right” mental model to use, because the small correction
that may be needed is arbitrarily small, and hence of little engineering relevance. On the other hand, if
Theorem 20.3 is being used to prove another theorem, then one needs to be very careful.

In the next section, the linear algebra results which extend μ from a robust stability tool to a robust
performance tool are covered. These linear algebra results are then applied to give a frequency-domain
robust performance test in Section 20.5.2.

20.4 Linear Fractional Transformations and μ

The use ofμ in control theory depends to a great extent on its intimate relationship with a class of general
linear feedback loops called Linear Fractional Transformations (LFTs) [11]. This section explores this
relationship with some simple theorems that can be obtained almost immediately from the definition
of μ. To introduce these, consider a complex matrix M partitioned as

M =
[

M11 M12

M21 M22

]
(20.14)

and suppose that there is a defined block structure Δ1 compatible in size with M11 (for any Δ1 ∈Δ1,
M11Δ1 is square). ForΔ1 ∈Δ1, consider the loop equations

z =M11w+M12d; e =M21w+M22d; w =Δ1z (20.15)

which correspond to the block diagram in Figure 20.8 (note the similarity to Figure 20.5 in Section 20.2).
The set of Equations 20.15 is called well posed if, for any vector d, unique vectors w, z, and e exist

satisfying the loop equations. The set of equations is well-posed if, and only if, the inverse of I −M11Δ1

exists. If not, then depending on d and M, there is either no solution to the loop equations, or there are an
infinite number of solutions. When the inverse does exist, the vectors e and d must satisfy e = Fu

(
M,Δ1

)
d,

where
Fu
(
M,Δ1

) :=M22+M21Δ1(I −M11Δ1)−1M12. (20.16)

Fu
(
M,Δ1

)
is called a Linear Fractional Transformation on M byΔ1 and, in a feedback diagram, appears

as in Figure 20.8. Fu
(
M,Δ1

)
denotes that the “upper” loop of M is closed byΔ1. An analogous formula

M
d

z

e

w

Δ1

FIGURE 20.8 Linear fractional transformation.
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describes Fl
(
M,Δ2

)
which is the resulting matrix obtained by closing the “lower” loop of M with a matrix

Δ2 ∈Δ2.
In this formulation, the matrix M22 is assumed to be something nominal, andΔ1 ∈ BΔ1 is viewed as a

norm-bounded perturbation from an allowable perturbation class, Δ1. The matrices M12, M21, and M22

and the formula Fu
(
M,Δ1

)
reflect prior knowledge showing how the unknown perturbation affects the

nominal map, M22. This type of uncertainty, called linear fractional, is natural for many control problems
and encompasses many other special cases considered by researchers.

20.4.1 Well-Posedness and Performance for Constant LFTs

Let M be a complex matrix partitioned as

M =
[

M11 M12

M21 M22

]
(20.17)

and suppose that there are two defined block structures,Δ1 andΔ2, compatible in size with M11 and M22

respectively. Define a third structureΔ as

Δ=
{[
Δ1 0
0 Δ2

]
:Δ1 ∈Δ1,Δ2 ∈Δ2

}
. (20.18)

Now there are three structures for which we may compute μ. The notation we use to keep track of this
is as follows: μ1

(·) is with respect to Δ1, μ2
(·) is with respect to Δ2, : μΔ

(·) is with respect to Δ. In
view of this, μ1

(
M11

)
, μ2

(
M22

)
and μΔ

(
M
)

all make sense, though, for instance, μ1
(
M
)

does not. For
notation, let B1 :=

{
Δ1 ∈Δ1 : σ̄

(
Δ1
)≤ 1

}
.

Clearly, the linear fractional transformation Fu
(
M,Δ1

)
is well-posed for all Δ1 ∈ BΔ1 if, and only if,

μ1
(
M11

)
< 1. As the “perturbation” Δ1 deviates from zero, the matrix Fu

(
M,Δ1

)
deviates from M22.

The range of values for μ2
(
Fu
(
M,Δ1

))
is intimately related to μΔ

(
M
)
, as follows:

Theorem 20.4: Main Loop Theorem

The following are equivalent:

μΔ
(
M
)
< 1 ⇐⇒

⎧⎨
⎩
μ1
(
M11

)
< 1, and

max
Δ1∈B1

μ2
(
Fu
(
M,Δ1

))
< 1

.

Proof 20.3. The proof of this theorem is based on the definition ofμ and Schur formulae for determinants
of block partitioned matrices as in [9]. The Main Loop Theorem forms the basis for all uses of μ in linear
system robustness analysis, whether from a state-space, frequency-domain, or Lyapunov approach.

20.5 Robust Performance Tests Using μ and Main Loop Theorem

Often, stability is not the only property of a closed-loop system that must be robust to perturbations.
Typically there are exogenous disturbances acting on the system (wind gusts, sensor noise) which result
in tracking and regulation errors. Under perturbation, the effect of these disturbances on error signals
can greatly increase. In most cases, long before the onset of instability, the closed-loop performance will
be unacceptably degraded. Hence the need for a “robust performance” test to indicate the worst-case level
of performance degradation for a given level of perturbations.
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20.5.1 Characterization of Performance in μ Setting

Within the structured singular value setting, the most natural (mathematical) way to characterize accept-
able performance is in terms of MIMO ‖·‖∞ (H∞) norms, discussed in detail in other Chapters (29 and
40) of this Handbook. In this section, we quickly review the H∞ norm, and interpretations.

Suppose T is a MIMO stable linear system, with transfer function matrix T(s). For a given driving
signal d̃(t), define ẽ as the output, as in the left-hand diagram of Figure 20.9.

Assume that the dimensions of T are ne× nd . Let β> 0 be defined as

β := ‖T‖∞ :=max
ω∈R

σ̄
[
T(jω)

]
. (20.19)

A time-domain, sinusoidal, steady-state interpretation of this quantity is as follows:

Fact: For any frequency ω̄ ∈ R, any vector of amplitudes a ∈ Rnd , and any vector of phases φ ∈ Rnd , with
‖a‖2 ≤ 1, define a time signal

d̃(t)=
⎡
⎢⎣

a1 sin
(
ω̄t+φ1

)
...

and sin
(
ω̄t+φnd

)

⎤
⎥⎦ .

Apply this input to the system T , resulting in a steady-state response ẽss of the form

ẽss(t)=
⎡
⎢⎣

b1 sin
(
ω̄t+ψ1

)
...

bne sin
(
ω̄t+ψne

)

⎤
⎥⎦ .

The vector b ∈ Rne will satisfy ‖b‖2 ≤ β. Moreover, β, as defined in Equation 20.19, is the smallest
number for which this fact is true for every ‖a‖2 ≤ 1, ω̄, and φ.

Multivariable performance objectives are represented by a single, MIMO ‖·‖∞ objective on a closed-loop
transfer function. Because many objectives are being lumped into one matrix and the associated cost is
the norm of the matrix, it is important to use frequency-dependent weighting functions, so that different
requirements can be meaningfully combined into a single cost function.

In the weighting function selection, diagonal weights are most easily interpreted. Consider the right-
hand diagram of Figure 20.9. Assume that WL and WR are diagonal, stable transfer function matrices,
with diagonal entries denoted Li and Ri . Bounds on the quantity ‖WLTWR‖∞ will imply bounds about
the sinusoidal steady-state behavior of the signals d̃ and ẽ(= Td̃). Specifically, for sinusoidal signal d̃,

WL
e d

~

d
~

T
d

WR

e~

e~

T

FIGURE 20.9 Unweighted and weighted MIMO systems.
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the steady-state relationship between ẽ(= Td̃), d̃ and ‖WLTWR‖∞ follows. The steady-state solution ẽss,
denoted as

ẽss(t)=
⎡
⎢⎣

ẽ1 sin
(
ω̄t+ψ1

)
...

ẽne sin
(
ω̄t+ψnd

)

⎤
⎥⎦ ,

satisfies
∑ne

i=1

∣∣Li(jω̄)ẽi
∣∣2 ≤ 1 for all sinusoidal input signals d̃ of the form,

d̃(t)=

⎡
⎢⎢⎣

d̃1 sin
(
ω̄t+φi

)
...

d̃nd sin
(
ω̄t+φnd

)

⎤
⎥⎥⎦ ,

satisfying

nd∑
i=1

∣∣∣d̃i

∣∣∣2∣∣Ri( jω̄)
∣∣2 ≤ 1

if, and only if, ‖WLTWR‖∞ ≤ 1.

20.5.2 Frequency-Domain Robust Performance Tests

Recall from Section 20.3.1, that if Δ is a single full complex block, then the function μΔ is simply the
maximum singular value function. We can use this fact, along with the Main Loop Theorem (Theorem
20.4) and the H∞ notion of performance, to obtain the central robust performance theorem for perturbed
transfer functions.

Assume G is a stable linear system, with real-rational, proper transfer function Ĝ. The dimension of G
is nz + nd inputs and nw + ne outputs. Partition G in the obvious manner, so that G11 has nz inputs and
nw outputs, and so on. Let Δ⊂ Cnw×nz be a block structure, as in Equation 20.2. For Δ ∈ SΔ, consider
the behavior of the perturbed system in Figure 20.10.

Define an augmented block structure

ΔP :=
{[
Δ 0
0 ΔF

]
:Δ ∈Δ,ΔF ∈ Cnd×ne

}
.

ΔF corresponds to theΔ2 block of the Main Loop Theorem. It is used to compute bounds on σ̄
(·) of the

perturbed transfer function Fu

(
Ĝ,Δ

)
asΔ takes on values in SΔ.

Ĝ(s)

Δ(s)

e d

FIGURE 20.10 Robust performance LFT.
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Theorem 20.5:

Let β> 0. For all Δ ∈ SΔ with ‖Δ‖∞ < 1
β

, the perturbed system in Figure 20.10 is well-posed, internally

stable, and
∥∥∥Fu

(
Ĝ,Δ

)∥∥∥∞ ≤ β if, and only if,

‖G‖ΔP
:= sup

ω∈R
μΔP

(
Ĝ( jω)

)
≤ β.

See [14] for details of the proof. The robust performance theorem provides a test to determine if the

performance of the system Fu

(
Ĝ,Δ

)
remains acceptable for all possible norm-bounded perturbations.

20.5.3 Robust Performance Example

It is instructive to carry out these steps on a simple example. Here, we analyze the robust stability of
a simple single-loop feedback regulation system with two uncertainties. The plant is a lightly-damped,
nominal two-state system with uncertainty in the (2, 1) entry of the A matrix (the frequency-squared
coefficient) and unmodeled dynamics (in the form of multiplicative uncertainty) at the control input. The
overall block diagram of the uncertain closed-loop system is shown in Figure 20.11.

The two-state system with uncertainty in the A matrix is represented as an upper linear fractional
transformation about a two-input, two-output, two-state system H , whose realization is

A=
[

0 1
−16 −0.16

]
, B=

[
0 0
1 1

]
, C =

[
6.4 0
16 0

]
, and D =

[
0 0
0 0

]

The resulting second order system takes the form

Fu
(
H , δ1

)= 16

s2+ 0.16s+ 16(1+ 0.4δ1)

If we assume that δ1 is unknown, but satisfies |δ1| ≤ 1, then we interpret the second-order system to have
40% uncertainty in the denominator entry of the natural frequency-squared coefficient.

The plant is also assumed to have unmodeled dynamics at the input. This could arise from an unmod-
eled, or unreliable, actuator, for instance. The uncertainty is assumed to be about 20% at low frequency,
rising to 100% at 6.5 rad/s. We model it using the multiplicative uncertainty model, using a first-order
weight, Wu = (6.5s+ 8)/(s+ 42). In the block diagram, this is represented with the simple linear frac-
tional transformation involving δ2.

K

H

Uncertain plant

d
+

+
++

w2

w1z1

z2

δ1

δ2

n
+

+
uy

1–
8

1–
5

e

wu

FIGURE 20.11 Robust stability/performance example.
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The closed-loop performance objective is ‖T‖∞ ≤ 1, where T is the transfer function from input
disturbance d and sensor noise n to the output error e,

e = T

[
d
n

]
= [T1 T2]

[
d
n

]

Note that the closed-loop T is a function of both δ1 and δ2. The scalar blocks which weight the error and
the noise are used to normalize the two transfer functions that make up T . Finally, for comparison, the
open-loop system has ‖T1‖∞ ≈ 6, and ‖T2‖∞ = 0.

For this example, the controller is chosen as

K = −12.56s2+ 17.32s+ 67.28

s3+ 20.37s2+ 136.74s+ 179.46
.

Finally, G(s) in Figure 20.12 denotes the closed-loop transfer function matrix from Figure 20.11. The
dimensions of G are two states, four inputs and three outputs.

In terms of G, we have

T = Fu

(
G,

[
δ1 0
0 δ2

])

Hence, using Theorems 20.3 and 20.5, the robust stability and robust performance of the closed-loop
system can be ascertained by appropriate structured singular value calculations on G (or particular
subblocks of G). In the next section, we analyze the robust stability and robust performance of the
closed-loop system for a variety of assumptions on the uncertain elements, δ1 and δ2.

20.5.3.1 Analysis

For notational purposes, partition G(s) into

G =
[

G11 G12

G21 G22

]
(20.20)

where G11(s) is 2× 2, and G22(s) is 2× 1. The first two inputs and outputs of G are associated with the
perturbation structure and the third and fourth inputs and third output correspond to an exogenous mul-
tivariable disturbance signal, and associated error. For robust stability calculations we are only interested
in the submatrix G11, and for robust performance calculations the entire matrix G.

Robust stability calculations are performed with respect to two different block structures:

Δ1 :=
{

diag [δ1, δ2] : δ1, δ2 ∈ C
}

,

Δ2 :=
{

diag [δ1, δ2] : δ1 ∈ R, δ2 ∈ C
}

For robust performance calculations, a 2× 1 full block is appended toΔi for the performance calculation,
yieldingΔP ⊂ C4×3. The two block structures used to evaluate robust performance are:

ΔP1 :=
{

diag [δ1, δ2,ΔF ] : δ1, δ2 ∈ C,ΔF ∈ C2×1} ,

ΔP2 :=
{

diag [δ1, δ2,ΔF ] : δ1 ∈ R, δ2 ∈ C,ΔF ∈ C2×1}

G

z1

z2

e

w1

w2

d

n

FIGURE 20.12 Closed-loop interconnection.
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All the upper and lower bounds μ calculations are performed using the μ Analysis and Synthesis
Toolbox [2].

20.5.3.2 Robust Stability

The robustness of the closed-loop system with respect to linear, complex time-invariant structured per-
turbations, Δ1, is a μ test on G11( jω). The complex, robust stability bounds from the μ calculation are
shown in Figure 20.13 (Note that the upper and lower bounds are identical.). The peak μ value is about
1.29, hence for anyΔ(s) ∈ SΔ1 stability is preserved as long as ‖Δ(s)‖∞ < 1

1.29 , and there is a perturbation
Δdest(s), of the correct structure, with ‖Δdest‖∞ = 1

1.29 that does cause instability.
The nominal performance of this system is defined by the H∞ norm of the transfer function G22 is

‖G22‖∞ = 0.22. The maximum singular value of G22 is plotted across frequency in Figure 20.14. The
robustness and performance measures were originally scaled to be less than 1 when they were achieved.
Therefore, the system is not robustly stabilized with respect to linear, time-invariant structured complex
perturbations of size 1, but it achieves the performance objective on the nominal system.

Recall that the first uncertainty, δ1, corresponds to uncertainty in the A(2, 1) coefficient and the second
uncertainty, δ2, corresponds to input multiplicative modeling error. The A(2, 1) coefficient uncertainty
can be treated as a real uncertainty. This would imply that the magnitude A(2, 1) varies between 9.6
and 22.4. In the initial robust stability analysis, both of these uncertainties were modeled as complex
perturbations, a potentially more conservative representation of the uncertainty. Let us re-analyze the
system with respect toΔ2 where δ1 is treated as a real perturbation.

We can analyze the robust stability of the system with respect to one of the uncertainties being real and
the other uncertainty complex. This is shown in the mixed robust stability plot shown in Figure 20.13.
Notice that when the A(2, 1) uncertainty is treated as a real perturbation, and the input multiplicative
uncertainty is complex, the mixed robust stability μ value is reduced from 1.29 to 0.84. Hence the

10–2 10–1 100 102101
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency (rad/s)

FIGURE 20.13 Complex robust stability (solid) and mixed robust stability (dashed) plots.
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10–2 10–1 100 102101
0

0.05

0.1

0.15

0.2

0.25

Frequency (rad/s)

FIGURE 20.14 Nominal performance plot.

system is robustly stabilized with respect to real uncertainty in the A(2,1) coefficient and complex input
multiplicative uncertainty. In this example, it is very conservative to treat the variation in the coefficient,
A(2, 1), as a complex uncertainty.

20.5.3.3 Robust Performance

The closed-loop system under perturbations becomes Fu
(
G,Δ

)
. To analyze the degradation of perfor-

mance due to the uncertainty, we use Theorem 20.5, and the augmented block structure ΔP1 . The plot
in Figure 20.15 of μΔP1

(
G( jω)

)
is shown. The peak is approximately at 1.41. Applying Theorem 20.5

implies that for any structuredΔ(s) ∈ SΔP1 with ‖Δ(s)‖∞ < 1
1.41 , the perturbed loop remains stable and,

the ‖ · ‖∞ norm of Fu
(
G,Δ

)
is guaranteed to be≤ 1.41. Also, the converse of the theorem shows that there

is a perturbation Δ, whose ‖·‖∞ is arbitrarily close to 1
1.41 that causes

∥∥∥Fu

(
Δ, Ĝ

)∥∥∥∞ > 1.41. Therefore

robust performance was not achieved.
Figure 20.15 also shows the results of a mixed μ analysis on G(jω) with respect toΔP2 . The peak value

of μ is 0.99. This implies that for a real perturbation δ1 and a finite dimensional, linear time-invariant
complex perturbation δ2(s), stability is preserved and the performance objective achieved. Therefore
the robust performance objective is achieved when the frequency-squared coefficient is treated as a real
perturbation and the input multiplicative uncertainty is treated as a complex perturbation.

20.6 Spinning Satellite: Robust Performance Analysis with μ

Consider the 4× 4 transfer function M shown (along with its with internal structure) in Figure 20.2. The
perturbations δ1 and δ2 enter as shown in Figure 20.3. The appropriate block structure for the robust
performance assessment of this example is

{
diag(δ1, δ2,ΔF ) : δi ∈ C,ΔF ∈ C2×2

}
. This implies that there
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FIGURE 20.15 Complex (solid) and mixed (dashed) robust performance plots.

is independent uncertainty in each of the actuators but that the rest of the model is accurate. Computing
the structured singular value of μΔ

(
M
)

across frequency yields a peak of about 11. This implies that a
diagonal perturbation diag [δ1, δ2] of size 1/11 exists so that the perturbed reference-to-error transfer
function has a singular value peak of approximately 11. This μ analysis clearly detects the poor robust
performance characteristics of the closed-loop system. In the next section, we turn our attention to design
techniques which use the structured singular value as a design objective.

20.7 Control Design via μ Synthesis

Consider the standard linear fractional description of the control problem shown in Figure 20.16. The
P block represents the open-loop interconnection and contains all of the known elements including the
nominal plant model, uncertainty structure, and performance and uncertainty weighting functions. The
Δpert block represents the structured set of norm-bounded uncertainty being considered and K represents
the controller.Δpert parameterizes all of the assumed model uncertainty in the problem. Three groups of
inputs enter P, perturbations z, disturbances d, and controls u, and three groups of outputs are generated,
perturbations w, errors e, and measurements y. The set of systems to be controlled is described by the LFT

{
Fu
(
Δpert , P

) : Δpert ∈ SΔpert

}
.

The design objective is to find a stabilizing controller K , so that, for all Δpert ∈ SΔpert , ‖Δpert‖∞ ≤ 1,
the closed-loop system is stable and satisfies

‖Fu
[
Fl
(
P, K

)
,Δpert

] ‖∞ ≤ 1.
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Δpert
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FIGURE 20.16 Linear fractional transformation description of control problem.

The performance objective involves a robust performance test on the linear fractional transformation
Fl
(
P, K

)
. To assess the robust performance of the closed-loop system, define an augmented perturbation

structure,Δ,

Δ=
{[
Δpert 0

0 ΔF

]
:Δpert ∈Δpert ,ΔF ∈ Cnd×ne

}
.

The goal of μ synthesis is to minimize overall stabilizing controllers K , the peak value ofμΔ
(·) of the

closed-loop transfer function Fl(P, K). More formally,

min
K

stabilizing

max
ω
μΔ[Fl(P, K)(jω)] (20.21)

For tractability of the μ synthesis problem, μΔ[·] is replaced by the upper bound for μ, σ̄
[
D(·)D−1

]
. The

scaling matrix D is a member of the appropriate set of scaling matrices D for the perturbation setΔ. One
can reformulate this optimization problem as follows:

min
K

stabilizing

max
ω

min
Dω∈D

σ̄
[
DωFl(P, K)(jω)D−1

ω

]
. (20.22)

Here, the D minimization is an approximation to the μΔ[Fl(P, K)(jω)]. Dω is chosen from the set of
scalings, D, independently at every ω. Hence,

min
K

stabilizing

min
D(·)

Dω∈D

max
ω

σ̄
[
DωFl(P, K)(jω)D−1

ω

]
. (20.23)

The expression max
ω
σ̄ [·] corresponds to ‖[·]‖∞, leaving

min
K

stabilizing

min
D(·)

Dω∈D

∥∥[D·Fl(P, K)(j·)D−1·
]∥∥∞ . (20.24)

Assume, for simplicity, that the uncertainty block Δpert has only full blocks. Then the set DΔ is of the
form

D= {diag [d1I , d2I , . . . , dF−1I , I] : di > 0
}

. (20.25)

For any complex matrix M, the elements of DΔ, which were originally defined as real and positive, can
take on any nonzero complex values and without changing the value of the upper bound, inf

D∈D
σ̄
(
DMD−1).
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Hence, we can restrict the scaling matrix to be a real-rational, stable, minimum-phase transfer function,
D̂(s). The optimization is now

min
K

stabilizing

min
D̂(s)∈D

stable,min−phase

‖D̂Fl(P, K)D̂−1‖∞. (20.26)

This approximation to μ synthesis, is currently “solved” by an iterative approach, referred to as “D−K
iteration.”

To solve Equation 20.26, first consider holding D̂(s) fixed. Given a stable, minimum-phase, real-rational
D̂(s), solve the optimization min K

stabilizing
‖D̂Fl(P, K)D̂−1‖∞. This equation is an H∞ optimization control

problem. The solution to the H∞ problem is well-known, consisting of solving algebraic Riccati equations
in terms of the state-space system.

Now suppose that a stabilizing controller, K(s), is given, we then solve the following minimization
corresponding to the upper bound for μ.

min
Dω∈D

σ̄
[
DωFl(P, K)(jω)D−1

ω

]

This minimization is done over the real, positive Dω from the set DΔ defined in Equation 20.25. Recall
that the addition of phase to each di does not affect the value of σ̄

[
DωFl(P, K)(jω)D−1

ω

]
. Hence, each

discrete function, di , of frequency is fit (in magnitude) by a proper, stable, minimum-phase transfer
function, d̂Ri (s). These are collected together in a diagonal transfer function matrix D̂(s),

D̂(s)= diag
[

d̂R1 (s)I , d̂R2 (s)I , . . . d̂RF−1 (s)I , I
]

,

and absorbed into the original open-loop generalized plant P. Iterating on these two steps comprises the
current approach to D−K iteration.

There are several problems with the D−K iteration control design procedure. The first is that we have
approximatedμΔ

(·) by its upper bound. This is not serious because the value of μ and its upper bound
are often close. The most serious problem, that the D−K iteration does not always converge to a global,
or even, local minimum, [14] is a more severe limitation of the design procedure. However, in practice
the D−K iteration control design technique has been successfully applied to many engineering problems
such as vibration suppression for flexible structures, flight control, chemical process control problems,
and acoustic reverberation suppression in enclosures.

20.8 F-14 Lateral-Directional Control System Design

Consider the design of a lateral-directional axis controller for the F-14 aircraft during powered approach
to landing. The linearized F-14 model is found at an angle-of-attack (α) of 10.5 degs and airspeed of
140 knots. The problem is posed as a robust performance problem with multiplicative plant uncertainty
at the plant input and minimization of weighted-output transfer functions as the performance criterion. A
diagram for the closed-loop system, which includes the feedback structure of the plant and controller and
elements associated with the uncertainty models and performance objectives, is shown in Figure 20.17.

The overall performance objective is to have the “true” airplane, represented by the dashed box in
Figure 20.17, respond effectively to the pilot’s lateral stick and rudder pedal inputs. The performance
objective includes

1. Decoupled response of the lateral stick, δlstk , to roll rate, p, and rudder pedals, δrudp, to side-slip
angle, β. The lateral stick and rudder pedals have a maximum deflection of ±1 inch. Therefore
they are represented as unweighted signals in Figure 20.17.
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FIGURE 20.17 F-14 control block diagram.

2. The aircraft handling quality (HQ) response from the lateral stick to roll rate should be a first-

order system, 5(2)/(s+ 2) degs/s
inch . The aircraft handling quality response from the rudder pedals to

side-slip angle should be−2.5 1.252

s2+2.5s+1.252
degs/s
inch .

3. The stabilizer actuators have ±20◦ and ±90◦/s deflection and deflection rate limits. The rudder
actuators have±30◦ and±125◦/s deflection and deflection rate limits.

4. The three measurement signals, roll rate, yaw rate and lateral acceleration, are passed through
second-order antialiasing filters prior to being fed to the controller. The natural frequency and
damping values for the yaw rate and lateral acceleration filters are 12.5Hz and 0.5, respectively and
4.1Hz and 0.7 for the roll rate filter. The antialiasing filters have unity gain at DC (see Figure 20.17).
These signals are also corrupted by noise.

The performance objectives are accounted for in this framework via minimizing weight transfer func-
tion norms. Weighting functions serve two purposes in the H∞ and μ framework: they allow the direct
comparison of different performance objectives with the same norm and they allow incorporating fre-
quency information into the analysis. The F-14 performance weighting functions include:

1. Limits on the actuator deflection magnitude and rates are included via the Wact weight. Wact is a
4× 4 constant, diagonal scaling matrix described by Wact = diag(1/90, 1/20, 1/125, 1/30). These
weights correspond to the stabilizer and rudder deflection rate and deflection limits.

2. Wn is a 3× 3 diagonal, frequency varying weight used to model the magnitude of the sensor noise.
Wn = diag(0.025, 0.025, 0.0125 s+1

s+100 ) which corresponds to the noise levels in the roll rate, yaw
rate and lateral acceleration channels.

3. The desired δlstk-to-p and δrudp-to-β responses of the aircraft are formulated as a model matching
problem in the μ framework. The difference between the ideal response of the transfer functions,
δlstk filtered through the roll rate HQ model and δrudp filtered through the side-slip angle HQ
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model, and the aircraft response, p and β, is used to generate an error that is to be minimized.
The Wp transfer function, see Figure 20.17, weights the difference between the idealized roll rate
response and the actual aircraft response, p.

Wp = 0.05s4+ 2.90s3+ 105.93s2+ 6.17s+ 0.16

s4+ 9.19s3+ 30.80s2+ 18.33s+ 3.95
.

The magnitude of Wp emphasizes the frequency range between 0.06 and 30 rad/s. The desired
performance frequency range is limited due to a right half-plane zero in the model at 0.002 rad/s,
therefore, accurate tracking of sinusoids below 0.002 rad/s isn’t required. Between 0.06 and 30
rad/s, a roll rate tracking error of less than 5% is desired. The performance weight on the β
tracking error, Wβ, is just 2×Wp. This also corresponds to a 5% tracking error objective.

All the weighted performance objectives are scaled for an H∞ less than 1 when they are achieved.
The performance of the closed-loop system is evaluated by calculating the maximum singular value of
the weighted transfer functions from the disturbance and command inputs to the error outputs, as in
Figure 20.18.

20.8.1 Nominal Model and Uncertainty Models

The pilot has the ability to command the lateral directional response of the aircraft with the lateral stick
(δlstk) and rudder pedals (δrped). The aircraft has two control inputs, differential stabilizer deflection
(δdstab, degs) and rudder deflection (δrud, degs), three measured outputs, roll rate (p, degs/s), yaw rate
(r, degs/s) and lateral acceleration (yac , g ’s), and a calculated output side-slip angle (β). Note that β is not
a measured variable but is used as a performance measure. The lateral directional F-14 model, F-14nom,
has four states, lateral velocity (v), yaw rate (r), roll rate (p) and roll angle (φ). These variables are related
by the state-space equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̇
ṙ
ṗ
φ̇

β

p
r

yac

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[

A B
C D

]
⎡
⎢⎢⎢⎢⎢⎢⎣

v
r
p
φ

δdstab
δdrud

⎤
⎥⎥⎥⎥⎥⎥⎦

A=

⎡
⎢⎢⎣
−1.16e− 1 −2.27e+ 2 4.30e+ 1 3.16e+ 1

2.65e− 3 −2.59e− 1 −1.45e− 1 0.00e+ 0
−2.11e− 2 6.70e− 1 −1.36e+ 0 0.00e+ 0

0.00e+ 0 1.85e− 1 1.00e+ 0 0.00e+ 0

⎤
⎥⎥⎦ , B=

⎡
⎢⎢⎣

6.22e− 02 1.01e− 1
−5.25e− 03 −1.12e− 2
−4.67e− 02 3.64e− 3

0.00e+ 00 0.00e+ 0

⎤
⎥⎥⎦ ,

C =

⎡
⎢⎢⎣

2.47e− 1 0.00e+ 0 0.00e+ 0 0.00e+ 0
0.00e+ 0 0.00e+ 0 5.73e+ 1 0.00e+ 0
0.00e+ 0 5.73e+ 1 0.00e+ 0 0.00e+ 0
−2.83e− 3 −7.88e− 3 5.11e− 2 0.00e+ 0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0.00e+ 00 0.00e+ 0
0.00e+ 00 0.00e+ 0
0.00e+ 00 0.00e+ 0
2.89e− 03 2.27e− 3

⎤
⎥⎥⎦ ,

Closed-loop
weighted

performance
transfer matrix

δstab error
δstab error
δrud error
δrud error

Weighted p error
Weighted β error

Lateral stick command
rudder pedal command
p sensor noise
r sensor noise
yac sensor noise

FIGURE 20.18 F-14 weighted performance objectives transfer matrix.
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The dashed box represents the “true” airplane, corresponding to a set of F-14 plant models define by
G. Inside the box is the nominal model of the airplane dynamics, F-14nom, models of the actuators, GS

and GR, and two elements, Win and ΔG , which parameterize the uncertainty in the model. This type of
uncertainty is called multiplicative plant input uncertainty. The transfer function Win is assumed known
and reflects the amount of uncertainty in the model. The transfer function ΔG is assumed stable and
unknown, except for the norm condition, ‖ΔG‖∞ ≤ 1.

A “first principles” set of uncertainties in the aircraft model would include

1. Uncertainty in the stabilizers and the rudder actuators. The electrical signals that command deflec-
tions in these surfaces must be converted to actual mechanical deflections by the electronics and
hydraulics of the actuators. Unlike the models, this is not done perfectly in the actual system.

2. Uncertainty in the forces and moments generated on the aircraft, due to specific deflections of
the stabilizers and rudder. As a first approximation, this arises from the uncertainties in the
aerodynamic coefficients, which vary with flight conditions, as well as uncertainty in the exact
geometry of the airplane.

3. Uncertainty in the linear and angular accelerations produced by the aerodynamically generated
forces and moments. This arises from the uncertainty in the various inertial parameters of the
airplane, in addition to neglected dynamics, such as fuel slosh and airframe flexibility.

4. Other forms of uncertainty that are less well understood.

In this example, we choose not to model the uncertainty in this detailed manner but rather to lump all
of these effects together into one, complex full-block, multiplicative uncertainty at the input of the rigid
body aircraft nominal model.

The stabilizer and rudder actuators, GS and GR, are modeled as first order transfer functions, 25/(s+
25). Given the actuator and aircraft nominal models (denoted by Gnom(s)), we also specify a stable, 2× 2
transfer function matrix Win(s) called the uncertainty weight. These transfer matrices parameterize an
entire set of plants, G, which must be suitably controlled by the robust controller K .

G := {Gnom
(
I +ΔGWdel

) :ΔG stable, ‖ΔG‖∞ ≤ 1
}

.

All of the uncertainty in modeling the airplane is captured in the normalized, unknown transfer function
ΔG . The unknown transfer functionΔG(s) is used to parameterize the potential differences between the
nominal model Gnom(s), and the actual behavior of the real airplane, denoted by G.

In this example, the uncertainty weight Win is of the form, Win(s) := diag(w1(s), w2(s))I2, for particular
scalar valued functions w1(s) and w2(s). The w1(s) weight associated with the differential stabilizer input
is selected to be w1(s)= 2(s+4)

s+160 . The w2(s) weight associated with the differential rudder input is selected

to be w2(s)= 1.5(s+20)
s+200 . Hence the set of plants that are represented by this uncertainty weight

G :=
{

F-14nom

[ 25
s+25 0

0 25
s+25

] (
I2+

[
2(s+4)
s+100 0

0 1.5(s+20)
s+200

]
ΔG(s)

)
:ΔG(s) stable, ‖ΔG‖∞ ≤ 1}

Note that the weighting functions are used to normalize the size of the unknown perturbation ΔG . At
any frequencyω, the value of

∣∣w1
(

jω
)∣∣ and

∣∣w2
(

jω
)∣∣ can be interpreted as the percentage of uncertainty

in the model at that frequency. The dependence of the uncertainty weight on frequency indicates that the
level of uncertainty in the airplane’s behavior depends on frequency.

The particular uncertainty weights chosen imply that, in the differential stabilizer channel at low
frequency, there is potentially a 5% modeling error, and at a frequency of 93 rad/s, the uncertainty in
channel 1 can be as much as 100%, and can get larger at higher frequencies. The rudder channel has more
uncertainty at low frequency, up to 15% modeling error, and at a frequency of 177 rad/s, the uncertainty
is at 100%. To illustrate the variety of plants represented by the set G, some step responses of different
systems from G are shown in Figure 20.19.
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FIGURE 20.19 Unit-step responses of the nominal model (+) and 15 perturbed models from G.

The control design objective is a stabilizing controller K so that for all stable perturbationsΔG(s), with
‖ΔG‖∞ ≤ 1, the perturbed closed-loop system remains stable, and the perturbed weighted performance
transfer functions has an H∞ norm less than 1 for all such perturbations. These mathematical objectives
fit exactly into the structured singular value framework.

20.8.2 Controller Design

The control design block diagram shown in Figure 20.17 is redrawn as P(s), shown in Figure 20.20. P(s),
the 25-state, six-input, six-output open-loop transfer matrix, corresponds to the P in the linear fractional
block diagram in Figure 20.16.

Lateral stick command
Rudder pedal command
Noise(3)

δdstab

w(2)z(2)

P(s)
Rudder pedal command

Lateral stick command
pmeas
rmeas

yacmeas

eact(4)

δrud

ep
eβ

FIGURE 20.20 F-14 generalized plant.
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TABLE 20.1 F-14 D−K iteration information

Iteration number 1 2 3 4

Total D-scale order 0 4 4 4

Controller order 25 29 29 29

H∞ norm achieved 1.562 1.079 1.025 1.017

Peak μ value 1.443 1.079 1.025 1.017

The first step in the D−K iteration control design procedure is to design an H∞ (sub)optimal con-
troller for the open-loop interconnection, P. In terms of the D−K iteration, this amounts to holding the
d variable fixed (at 1) and minimizing the ‖ · ‖∞ norm of Fl

(
P, K

)
over the controller variable K . The

resulting controller is labeled K1.
The second step in the D−K iteration involves solving a μ analysis problem corresponding to the

closed-loop system, Fl
(
P, K1

)
. This calculation produces a frequency dependent scaling variable dω, the

(1,1) entry in the scaling matrix. In a general problem (with more than two blocks), there would be
several d variables, and the overall matrix is referred to as “the D-scales.” The varying variables in the
D-scales are fit (in magnitude) with proper, stable, minimum-phase rational functions and absorbed into
the generalized plant for additional iterations. These scalings are used to “trick” the H∞ minimization to
concentrate more on minimizing μ rather than σ̄ across frequency. For the first iteration in this example,
the d scale data is fit with a first-order transfer function.

The new generalized plant used in the second iteration has 29 states, four more states than the orig-
inal 25-state generalized plant, P. These extra states are due to the D-scale data being fitted with a
rational function and absorbed into the generalized plant for the next iteration. Four D−K iterations
are performed until μ reaches a value of 1.02. Information about the D−K iterations is shown in
Table 20.1. All the analysis and synthesis results were obtained with TheμAnalysis and Synthesis Toolbox,
Version 2.0 [2].
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FIGURE 20.21 F-14 robust performance μ plots with K1 and K4 implemented.
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20.8.2.1 Analysis of the Controllers

The robust performance properties of the controllers can be analyzed using μ analysis. Robust perfor-
mance is achieved if, and only if, for every frequency, μΔ

(
Fl(P, K)(jω)

)
of the closed-loop frequency

response is less than 1. Plots of μ of the closed-loop system with K1 and K4 implemented are shown in
Figure 20.21.

The controlled system with K1 implemented does not achieve robust performance. This conclusion
follows from the μ plot, which peaks to a value of 1.44, at a frequency of 7 rad/s. Because μ is 1.44, there
is a perturbation matrix ΔG , so that ‖ΔG‖∞ = 1

1.44 , and the perturbed weighted performance transfer
functions gets “large.” After four D−K iterations the peak robust performanceμ value is reduced to 1.02
(Figure 20.21), thereby, nearly achieving all of our robust performance objectives.

Illustrating the robustness of the closed-loop system in the time domain, time responses of the ideal
model, the nominal closed-loop system and the “worst-case” closed-loop system from G (using perturba-
tions of size 1) are shown in Figure 20.22. Controller K4 is implemented in the closed-loop simulations.
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FIGURE 20.22 Time response plots of the F-14 lateral directional control system.
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A 1-inch lateral stick command is given at 9 s, held at 1 inch until 12 s, and then returns to zero. The
rudder is commanded at 1 s with a positive 1 inch pedal deflection and held at 1 inch until 4 s. At 4 s a
−1-inch pedal deflection is commanded, held to 7 s, and then returned to zero. One can see from the
time responses that the closed-loop response is nearly identical for the nominal closed-loop system and
the “worst-case” closed-loop system. The ideal time response for β and p are plot for reference.

20.9 Conclusion

This chapter outlined the usefulness of the structured singular value (μ) analysis and synthesis techniques
in designing and analyzing multiloop feedback control systems. Through examples, we have shown some
pitfalls with simple-minded analytical techniques, and illustrated the usefulness of the analytic framework
provided by the structured singular value. We outlined an approach to robust controller synthesis, the
D−K iteration. As an example, these techniques were applied to the design of a lateral directional control
system for the F-14 aircraft.
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21.1 Introduction

One of the features of modern control theory is the growing presence of algebra. Algebraic formalism
offers several useful tools for control system design, including the so-called “factorization” approach.

This approach is based on the input–output properties of linear systems. The central idea is that of
“factoring” the transfer matrix of a (not necessarily stable) system as the “ratio” of two stable transfer
matrices. This is a natural step for the linear systems whose transfer matrices are rational, that is, for the
lumped-parameter systems. Under certain conditions, however, this approach is productive also for the
distributed-parameter systems.

The starting point of the factorization approach is to obtain a simple parameterization of all controllers
that stabilize a given plant. One could then, in principle, choose the best controller for various applications.
The key point here is that the parameter appears in the closed-loop system transfer matrix in a linear
manner, thus making it easier to meet additional design specifications.

The actual design of control systems is an engineering task that cannot be reduced to algebra. Design
contains many additional aspects that have to be taken into account: sensor placement, computational
constraints, actuator constraints, redundancy, performance robustness, among many others. There is a
need for an understanding of the control process, a feeling for what kinds of performance objectives are
unrealistic, or even dangerous, to ask for. The algebraic approach to be presented, nevertheless, is an
elegant and useful tool for the mathematical part of the controller design.

21-1
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21.2 Systems and Signals

The fundamentals of the factorization approach will be explained for linear systems with rational transfer
functions whose input u and output y are scalar quantities. We suppose that u and y live in a space of
functions mapping a time set into a value set. The time set is a subset of real numbers bounded on the left,
say R+ (the nonnegative reals) in the case of continuous-time systems and Z+ (the nonnegative integers)
for discrete-time systems. The value set is taken to be the set of real numbers R.

Let the input and output spaces of a continuous-time system be the spaces of locally (Lebesgue)
integrable functions f from R+ into R, and define a p-norm

|| f ||Lp =
⎡
⎣
∞∫

0

| f (t)|p dt

⎤
⎦

1/p

if i = 1≤ p <∞,

|| f ||L∞ = ess sup
t≥0
| f (t)| if p=∞.

The corresponding normed space is denoted by Lp.
The systems having the desirable property of preserving these functional spaces are called stable. More

precisely, a system is said to be Lp stable if any input u ∈ Lp gives rise to an output y ∈ Lp. The systems
that are L∞ stable are also termed to be bounded-input bounded-output (BIBO) stable.

The transfer function of a continuous-time system is the Laplace transform of its impulse response g(t),

G(s)=
∞∫

0

g(t)e−st dt.

It is well known that a system with a rational transfer function G(s) is BIBO stable if and only if G(s) is
proper and Hurwitz stable, that is, bounded at infinity with all poles having negative real parts.

In the study of discrete-time systems, we let the input and output spaces be the spaces of infinite
sequences f = ( f0, f1, . . .) mapping Z+ into R and define a p-norm as follows:

‖ f ‖lp =
[ ∞∑

i=0

| fi|p
]1/p

if 1≤ p <∞,

|| f ||l∞ = sup
i≥0
| fi| if p=∞.

A discrete-time system is said to be lp stable if it transforms any input u ∈ lp to an output y ∈ lp. The
systems that are l∞ stable are also known as BIBO stable systems.

The transfer function of a discrete-time system is defined as the z-transform of its unit pulse response
(h0, h1, …),

H(z)=
∞∑

i=0

hiz
−i ,

and it is always proper. A system with a proper rational transfer function H(z) is BIBO stable if and only
if H(z) is Schur stable, that is, its all poles have modulus less than one.

Of particular interest are discrete-time systems that are finite-input finite-output (FIFO) stable. Such
a system transforms finite-input sequences into finite-output sequences, its unit pulse response is finite,
and its transfer function H(z) has no poles outside the origin z = 0, that is, H(z) is a polynomial in z−1.
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21.3 Fractional Descriptions

Consider a rational function G(s). By definition, it can be expressed as the ratio

G(s)= B(s)

A(s)

of two qualified rational functions A and B.
A well-known example is the polynomial description, in which case A and B are coprime polynomials,

that is, polynomials having no roots in common.
Another example is to take for A and B two coprime, proper and Hurwitz-stable rational functions.

When G(s) is, say,

G(s)= s+ 1

s2+ 1
,

then one can take

A(s)= s2+ 1

(s+λ)2 , B(s)= s+ 1

(s+λ)2 ,

whereλ> 0 is a real number. We recall that two proper and Hurwitz-stable rational functions are coprime
if they have no infinite nor unstable zeros in common. Therefore, in the example above, the denominator
of A and B can be any strictly Hurwitz polynomial of degree exactly 2; if its degree is lower, then A would
not be proper and if it is higher, then A and B would have a common zero at infinity. The set of proper
and Hurwitz-stable rational functions is denoted by RH (s).

The proper rational functions H(z) arising in discrete-time systems can be treated in a similar manner.
One can write

H(z)= B(z)

A(z)
,

where A and B are coprime, Schur-stable (hence proper) rational functions. Coprimeness means having
no unstable zeros (i.e., in the closed disc |z| ≥1) in common. For example, if

H(z)= 1

z− 1
,

then one can take

A(z)= z− 1

z−λ , B(z)= 1

z−λ
for any real number λ such that |λ|< 1. The set of Schur-stable rational functions is denoted by RS(z).

The particular choice of λ=0 in the example above leads to

A(z)= z− 1

z
= 1− z−1, B(z)= 1

z
= z−1.

In this case, A and B are in fact polynomials in z−1.

21.4 Feedback Systems

To control a system means to alter its dynamics so that a desired behavior is obtained. This can be done
by feedback. A typical feedback system consists of two subsystems, S1 and S2, connected, as shown in
Figure 21.1.

In most applications, it is desirable that the feedback system be BIBO stable in the sense that whenever
the exegenous inputs u1 and u2 are bounded in magnitude, so too are the output signals y1 and y2.
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+

+
y1S1

S2
y2 u2

u1

FIGURE 21.1 Feedback system.

In order to study this property, we express the transfer functions of S1 and S2 as ratios of proper stable
rational functions and seek for conditions under which the transfer function of the feedback system is
proper and stable.

To fix ideas, consider continuous-time systems and write

S1 = B(s)

A(s)
, S2 =−Y (s)

X(s)
,

where A, B and X, Y are two couples of coprime rational functions from RH (s). The transfer matrix of
the feedback system

[
y1

y2

]
=

⎡
⎢⎢⎣

S1

1− S1S2

S1S2

1− S1S2

S1S2

1− S1S2

S2

1− S1S2

⎤
⎥⎥⎦
[

u1

u2

]

is then given by [
y1

y2

]
= 1

AX +BY

[
BX −BY
−BY −AY

] [
u1

u2

]
.

We observe that the numerator matrix has all its elements in RH (s) and that no infinite or unstable
zeros of the denominator can be absorbed in all these elements. We therefore conclude that the transfer
functions belong to RH (s) if and only if the inverse of AX+BY is in RH (s).

We illustrate with the example where S1 is a differentiator and S2 is an invertor such that

S1(s)= s, S2(s)=−1.

We take

A(s)= 1

s+λ , B(s)= s

s+λ
for any real λ> 0 and

X(s)= 1, Y (s)= 1.

Then

(AX +BY )−1(s)= s+λ
s+ 1

resides in RH (s) and hence the feedback system is BIBO stable.
The above analysis applies also to discrete-time systems; the set RH (s) is just replaced by RS(z). However,

we note that any closed loop around a discrete-time system involves some information delay, no matter
how small. Indeed, a control action applied to S1 cannot affect the measurement from which it was
calculated in S2. Therefore, either S1(z) or S2(z) must be strictly proper; we shall assume that it is S1(z)
that has this property.



�

�

�

�

� �

Algebraic Design Methods 21-5

To illustrate the analysis of discrete-time systems, consider a summator S1 and an amplifier S2,

S1(z)= 1

z− 1
, S2(z)=−k.

Taking

A(z)= z− 1

z−λ , B(z)= 1

z−λ
for any real λ in magnitude less than 1 and

X(z)= 1, Y (z)= k,

one obtains

(AX +BY )−1(z)= z−λ
z− (1− k)

.

Therefore, the closed-loop system is BIBO stable if and only if |1− k|< 1.
To summarize, the fractional representation used should be matched with the goal of the analysis. The

denominators A, X and the numerators B, Y should be taken from the set of stable transfer functions,
either RH (s) or RS(z), depending on the type of the stability studied. This choice makes the analysis more
transparent and leads to a simple algebraic condition: the inverse of AX+BY is stable. Any other type of
stability can be handled in the same way, provided one can identify the set of the transfer functions that
these stable systems will have.

21.5 Parameterization of Stabilizing Controllers

The design of feedback control systems consists of the following: given one subsystem, say S1, we seek
to determine the other subsystem, S2, so that the resulting feedback system shown in Figure 21.1 meets
the design specifications. We call S1 the plant and S2 the controller. Our focus is first on achieving BIBO
stability. Any controller S2 that BIBO stabilizes the plant S1 is called a stabilizing controller for this plant.

Suppose S1 is a continuous-time plant that gives rise to the transfer function

S1(s)= B(s)

A(s)

for some coprime elements A and B of RH (s). It follows from the foregoing analysis that a stabilizing
controller exists and that all controllers that stabilize the given plant are generated by all solution pairs X,
Y with X �= 0 of the Bézout equation

AX +BY = 1

over RH (s). There is no loss of generality in setting AX+BY to the identity rather than to any rational
function whose inverse is in RH (s): this inverse is absorbed by X and Y and therefore cancels in forming

S2(s)=−Y (s)

X(s)
.

The solution set of the equation AX+BY= 1 with A and B coprimes in RH (s) can be parameterized as

X = X ′ +BW , Y = Y ′ −AW ,

where X ′, Y ′ represent a particular solution of the equation, and W is a free parameter, which is an
arbitrary function in RH (s).
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The parameterization of the family of all stabilizing controllers S2 for the plant S1 now falls out almost
routinely:

S2(s)=−Y ′(s)−A(s)W(s)

X ′(s)+B(s)W(s)
,

where the parameter W varies over RH (s) while satisfying X ′ +BW �= 0.

In order to determine the set of all controllers S2 that stabilize the plant S1, one needs to do two things:
(1) express S1(s) as a ratio of two coprime elements from RH (s) and (2) find a particular solution in RH (s)
of a Bézout equation, which is equivalent to finding one stabilizing controller for S1. Once these two steps
are completed, the formula above provides a parameterization of the set of all stabilizing controllers for
S1. The condition X ′ +BW �= 0 is not very restrictive, as X ′ +BW can identically vanish for at most one
choice of W .

As an example, we shall stabilize an integrator plant S1. Its transfer function can be expressed as

S1(s)= 1/s+ 1

s/s+ 1
,

where s+ 1 is an arbitrarily chosen Hurwitz polynomial of degree one. Suppose that using some design
procedure we have found a stabilizing controller for S1, namely

S2(s)=−1.

This corresponds to a particular solution X ′ = 1, Y ′ = 1 of the Bézout equation

s

s+ 1
X + 1

s+ 1
Y = 1.

The solution set in RH (s) of this equation is

X(s)= 1+ 1

s+ 1
W(s), Y (s)= 1− s

s+ 1
W(s).

Hence, all controllers S2 that BIBO stabilize S1 have the transfer function

S2(s)=− 1− (s/s+ 1)W(s)

1+ (1/s+ 1)W(s)
,

where W is any function in RH (s).
It is clear that the result is independent of the particular fraction taken to represent S1. Indeed, if s+ 1

is replaced by another Hurwitz polynomial s+λ in the above example, one obtains

S2(s)=−λ− (s/s+λ)W ′(s)

1+ (1/s+λ)W ′(s)
,

which is the same set when

W ′(s)=
(

s+λ
s+ 1

)2

W(s)+ s+λ
s+ 1

(λ− 1).

21.6 Parameterization of Closed-Loop Transfer Functions

The utility of the fractional approach derives not merely from the fact that it provides a parameterization
of all controllers that stabilize a given plant in terms of a free parameter W , but also from the simple
manner in which this parameter enters the resulting (stable) closed-loop transfer matrix.
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In fact, [
y1

y2

]
=
[

B(X ′ +BW) −B(Y ′ −AW)
−B(Y ′ −AW) −A(Y ′ −AW)

] [
u1

u2

]
,

and we observe that all four transfer functions are affine in the free parameter W .
This result serves to parameterize the performance specifications, and it is the starting point for the

selection of the best controller for the application at hand. The search for S2 is thus replaced by a search
for W . The crucial point is that the resulting selection/optimization problem is linear in W , whereas it is
nonlinear in S2.

21.7 Optimal Performance

The performance specifications often involve a norm minimization.
Let us consider the problem of disturbance attenuation. We are given, say, a continuous-time plant S1

having two inputs: the control input u and an unmeasurable disturbance d (see Figure 21.2). The objective
is to determine a BIBO stabilizing controller S2 for the plant S1 such that the effect of d on the plant output
y is minimized in some sense.

We describe the plant by two transfer functions

S1u(s)= B(s)

A(s)
, S1d(s)= C(s)

A(s)
,

where A, B, and C is a triple of coprime functions from RH (s). The set of stabilizing controllers for S1 is
given by the transfer function

S2(s)=−Y ′(s)−A′(s)W(s)

X ′(s)+B′(s)W(s)
,

where A′, B′ represent a coprime fraction over RH (s) for S1u,

B(s)

A(s)
= B′(s)

A′(s)

and X ′, Y ′ represent a particular solution over RH (s) of the equation

A′X +B′Y = 1,

such that X ′ +B′W �= 0.
The transfer function, G(s), between d and y in a stable feedback system is

G = S1d

1− S1uS2
= C(X ′ +B′W)

and it is affine in the proper and Hurwitz-stable rational parameter W .

y

d

S1

S2

u

FIGURE 21.2 Disturbance attenuation.
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Now suppose that the disturbance d is any function from L∞, that is, any essentially bounded real
function on R+. Then

||y||L∞ ≤ ||G||1||d||L∞ ,

where

||G||1 =
∞∫

0

|g(t)| dt

and g(t) is the impulse response corresponding to G(s). The parameter W can be used to minimize the
norm ||G||1 and hence the maximum output amplitude.

If d is a stationary white noise, the steady-state output variance equals

Ey2 = ||G||22Ed2,

where

||G||22 =
∞∫

0

|g(t)|2 dt= 1

2πj

∮
G(−s)G(s) ds.

The last integral is a contour integral up the imaginary axis and then around an infinite semicircle
in the left half-plane. Again, W can be selected so as to minimize the norm ||G||2, thus minimizing the
steady-state output variance.

Finally, suppose that d is any function from L2, that is, any finite-energy real function on R+. Then one
obtains

||y||L2 ≤ ||G||∞||d||L2 ,

where

||G||∞ = sup
Re s>0

|G(s)|.

Therefore, choosing W to make the norm ||G||∞ minimal, one minimizes the maximum output energy.
The above system norms provide several examples showing how the effect of the disturbance on the

plant output can be measured. The optimal attenuation is achieved by minimizing these norms.
Minimizing the 1-norm involves a linear program while minimizing the ∞-norm requires a search.

The 2-norm minimization has a closed-form solution, which will be now described.
We recall that

G(s)= P(s)+Q(s)W(s),

where P = CX′ and Q = CB′. The norm ||G||2 is finite if and only if G is strictly proper and has no poles
on the imaginary axis; hence we assume that Q has no zeros on the imaginary axis. We factorize

Q = QapQmp,

where Qap satisfies Qap(–s)Qap(s)= 1 (the so-called all-pass function) and Qmp is such that Q−1
mp is in

RH (s) (the so-called minimum-phase function); this factorization is unique up to the sign. Let Q∗ap denote
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the function Q∗ap(s)= Qap(–s). Then

‖G||22 = ||P+QW ||22
= ||Q∗apP+QmpW ||22.

Decompose Q∗apP as

Q∗apP = (Q∗apP)st + (Q∗apP)un

where (Q∗apP)st is in RH (s) and (Q∗apP)un is unstable but strictly proper; this decomposition is unique.
Then the cross-terms contribute nothing to the norm and

||G||22 = ||(Q∗apP)un||22+ ||(Q∗apP)st +QmpW ||22.

Since the first term is independent of W ,

min
W
||G||2 = ||(Q∗apP)un||2

and this minimum is attained by

W =− (Q∗apP)st

Qmp
.

Here is an illustrative example. The plant is given by

S1u(s)= s− 2

s+ 1
, S1d(s)= 1

and we seek to find a stabilizing controller S2 such that

G(s)= S1d(s)

1− S1u(s)S2(s)

has minimum 2-norm.
We write

A(s)= 1, B(s)= s− 2

s+ 1
, C(s)= 1

and find all stabilizing controllers first. Since the plant is already stable, these are given by

S2(s)=− −W(s)

1+ (s− 2)/(s+ 1)W(s)
,

where W is a free parameter in RH (s).
Then

G(s)= 1+ s− 2

s+ 1
W(s),

so that

P(s)= 1, Q(s)= s− 2

s+ 1
.

Clearly,

Qap(s)= s− 2

s+ 2
, Qmp(s)= s+ 2

s+ 1
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and

Q∗ap(s)P(s)= s+ 2

s− 2
= 1+ 4

s− 2
.

Therefore,

‖G‖2
2 = ‖

4

s− 2
‖2

2+‖1+ s+ 2

s+ 1
W‖2

2,

so that the least norm

min
W
‖G‖2 = ‖ 4

s− 2
‖2 = ‖ 4

s+ 2
‖2 = 2

is attained by

W(s)=− s+ 1

s+ 2
.

21.8 Robust Stabilization

The actual plant can differ from its nominal model. We suppose that a nominal plant description is
available together with a description of the plant uncertainty. The objective is to design a controller that
stabilizes all plants lying within the specified domain of uncertainty. Such a controller is said to robustly
stabilize the family of plants.

The plant uncertainty can be modeled conveniently in terms of its fractional description. To fix ideas,
we shall consider discrete-time plants factorized over RS(z) and endow RS(z) with the∞-norm: for any
function H(z) from RS(z),

‖H‖∞ = sup
|z|>1

|H(z)|.

For any two such functions, H1(z) and H2(z), we define

‖[H1H2]‖∞ = ‖
[

H1

H2

]
||∞

= sup
|z|>1

(|H1(z)|2+ |H2(z)|2)1/2.

Let S10 be a nominal plant giving rise to a strictly proper transfer function

S10(z)= B(z)

A(z)
,

where A and B are coprime functions from RS(z). We denote S1(A, B, μ) the family of plants having
strictly proper transfer functions

S1(z)= B(z)+ΔB(z)

A(z)+ΔA(z)
,

whereΔA andΔB are functions from RS(z) such that

‖[ΔAΔB]‖∞ < μ

for some nonnegative real number μ.
Now, let S2 be a BIBO stabilizing controller for S10. Therefore,

S2 =−Y ′ −AW

X ′ +BW
,
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where AX′ +BY′ = 1 and W is an element of RS(z). Then S2 will BIBO stabilize all plants from S1(A, B,
μ) if and only if the inverse of

(A+ΔA)(X ′ +BW)+ (B+ΔB)(Y ′ −AW)= 1+[ΔA ΔB]
[

X ′ +BW
Y ′ −AW

]

is in RS(z). This is the case whenever

‖[ΔAΔB]
[

X ′ +BW
Y ′ −AW

]
‖∞ < 1;

thus, we have the following condition of robust stability:

μ‖
[

X ′ +BW
Y ′ −AW

]
‖∞ ≤ 1.

The best controller that robustly stabilizes the plant corresponds to the parameter W that minimizes
the ∞-norm above. This requires a search; closed-form solutions exist only in special cases. One such
case is presented next.

Suppose the nominal model

S10(z)= 1

z− 1

has resulted from

S1(z)= z+ δ
(z− 1)(z− ε)

by neglecting the second-order dynamics, where δ≥ 0 and 0≤ ε< 1. Rearranging,

S1(z)= (1/z)+ (1/z) (δ+ ε/z− ε)
(z− 1/z)

and one identifies

ΔA= 0, ΔB= 1

z

δ+ ε
z− ε .

Hence,

‖[ΔAΔB]‖∞ = δ+ ε
1− ε

and the true plant belongs to the family

S1

(
z− 1

z
,

1

z
,
δ+ ε
1− ε

)
.

All controllers that BIBO stabilize the nominal plant S10 are given by

S2(z)=−1− (z− 1/z)W(z)

1+ (1/z)W(z)
,

where W is a free parameter in RS(z). Which controller yields the best stability margin against δ and ε?
The one that minimizes the∞-norm in

δ+ ε
1− ε‖

⎡
⎢⎢⎣

1+ 1

z
W

1− z− 1

z
W

⎤
⎥⎥⎦ ‖∞ < 1.
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Suppose we wish to obtain a controller of McMillan degree zero, S2(z)=−K . Then

W(z)= (1−K)
z

z− (1−K)

and |1−K |< 1. The norm

∥∥∥∥∥∥∥

⎡
⎢⎣

1+ 1

z
W

1− z− 1

z
W

⎤
⎥⎦
∥∥∥∥∥∥∥
∞

=
√

(1+K2)‖ z

z− (1−K)
‖∞

attains the least value of
√

2 by K = 1, which corresponds to W(z)= 0. It follows that the controller

S2(z)=−1

stabilizes all plants S1(z) for which
δ+ ε
1− ε <

1√
2

.

21.9 Robust Performance

The performance specifications often result in divisibility conditions. A typical example is the problem
of reference tracking.

Suppose we are given a discrete-time plant S1, with transfer function

S1(z)= B(z)

A(z)

in coprime fractional form over RS(z), together with a reference r whose z-transform is of the form

r = E(z)

D(z)
,

where only D is specified. We recall that S1(z) is strictly proper. The objective is to design a BIBO
stabilizing controller S2 such that the plant output y asymptotically tracks the reference r (see Figure 21.3).
The controller can operate on both r (feedforward) and y (feedback), so it is described by two transfer
functions

S2y(z)=−Y (z)

X(z)
, S2r(z)= Z(z)

X(z)
,

where X, Y , and Z are from RS(z).

yS1

S2

u

r

FIGURE 21.3 Reference tracking.
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The requirement of tracking imposes that the tracking error

e = r− y =
(

1− BZ

AX +BY

)
E

D

belong to RS(z). Since AX+BY has inverse in RS(z) for every stabilizing controller and E is unspecified,
D must divide 1−BZ in RS(z). Hence, there must exist a function V in RS(z) such that 1−BZ= DV.
Therefore, S2 exists if and only if B and D are coprime in RS(z), and the two controller transfer functions
evolve from solving the two Bézout equations

AX +BY = 1,
DV +BZ = 1,

where the function V serves to express the tracking error as

e = VE.

The reference tracking is said to be robust if the specifications are met even as the plant is slightly
perturbed. We call S10 the nominal plant and S1(A, B, μ) the neighborhood of S10 defined by

S1 = B+ΔB

A+ΔA
,

whereΔA andΔB are functions of RS(z), such that

‖[ΔAΔB]‖∞ < μ

for some nonnegative real number μ. We recall that all S1(z) are strictly proper.
Now A+ΔA and B+ΔB are not specified, but (A+ΔA)X + (B+ΔB)Y still has inverse in RS(z); call

it U . We have

e =
(

A+ΔA

U
X + B+ΔB

U
(Y −Z)

)
E

D
.

Hence, for robust tracking, D must divide both X and Y −Z in RS(z). But, it is sufficient that D divides
X; this condition already implies the other one as can be seen on subtracting the two Bézout equations
above.

We illustrate on a discrete-time plant S1 given by

S1(z)= 1

z− 2

whose output is to track every sinusoidal sequence of the form

r = az+ b

z2− z+ 1
,

where a, b are unspecified real numbers. Taking

A(z)= z− 2

z
, B(z)= 1

z
, D(z)= z2− z+ 1

z2

and solving the pair of Bézout equations

z− 2

z
X(z)+ 1

z
Y (z)= 1,

z− z+ 1

z2 V (z)+ 1

z
Z(z)= 1
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yields the tracking controllers in parametric form

S2y(z)=−2− (z− 2/z)W1(z)

1+ (1/z)W1(z)
,

S2r(z)= (z− 1/z)− (z2− z+ 1/z2)W2(z)

1+ (1/z)W1(z)

for any elements W1, W2 of RS(z). The resulting error is

e =
[

1+ 1

z
W2(z)

]
az+ b

z2 .

Not all of these controllers, however, achieve a robust tracking of the reference. The divisibility condi-
tion is fulfilled if and only if W1 is restricted to

W1(z)=− z− 1

z
+ z2− z+ 1

z2 W(z),

where W is free in RS(z).
It is to be noted that the requirement of asymptotic tracking leaves enough degrees of freedom to meet

additional design specifications.

21.10 Finite Impulse Response

Transients in discrete-time systems can settle in finite time. Systems having the property that any input
sequence with a finite number of nonzero elements produces an output sequence with a finite number
of nonzero elements have been called FIFO stable. We recall that a system with proper rational transfer
function H(z) is FIFO stable if and only if H(z) is a polynomial in z−1.

Let us consider the feedback system shown in Figure 21.1 and focus on achieving FIFO stability. To
this end, we write the transfer function of the plant as

S1(z)= B(z)

A(z)
,

where this time A and B are coprime polynomials in z−1. We recall that the plant incorporates the
necessary delay so that S1(z) is strictly proper. Repeating the arguments used to design a BIBO stable
system, we conclude that all controllers S2 that FIFO stabilize the plant S1 have the transfer function

S2(z)=−Y (z)

X(z)
,

where X, Y represent the solution class of the polynomial Bézout equation

AX +BY = 1.

In particular, if X ′ and Y ′ define any FIFO stabilizing controller for S1, the set of all such controllers can
be parameterized as

S2(z)=−Y ′ −AW

X ′ +BW
,

where W(z) is a free polynomial in z−1.
It is a noteworthy fact that the parametric expressions for the sets of BIBO stable and FIFO stable

controllers are the same; the only difference is that the free parameter of FIFO stabilizing controllers is
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permitted to range over only the smaller set of polynomials in z−1, whereas in BIBO stabilizing controllers
it is permitted to range over the larger set of Schur-stable rational functions in z. Indeed, FIFO stability is
more restrictive than BIBO stability.

The design options offered by FIFO stability are remarkable. The parameter W can be selected so as
to minimize the McMillan degree of S2, or to achieve the shortest impulse response of the closed-loop
system. Various norm minimizations can also be performed.

A well-known example is the deadbeat controller. We consider a double-summator plant with transfer
function

S1(z)= 1

(z− 1)2

and interpret the exogenous inputs u1 and u2 as accounting for the effect of the initial conditions of S1

and S2. The requirement of FIFO stability is then equivalent to achieving finite responses y1 and y2 for all
initial conditions. Since in this case

A(z)= (1− z−1)2, B(z)= z−2

and the Bézout equation
(1− z−1)2X(z)+ z−2Y (z)= 1

has a particular solution
X ′(z)= 1+ z−1, Y ′(z)= 3− 2z−1,

we obtain all deadbeat (or FIFO stabilizing) controllers as

S2(z)=−3− 2z−1− (1− z−1)2W(z)

1+ 2z−1+ z−2W(z)
.

The deadbeat controller of least McMillan degree (=1) is obtained for W(z)= 0. The choice W(z)=−3
leads to a deadbeat controller that rejects step disturbances u1 (hence, persistent) at the plant output y1 in
finite time. And when u1 is a stationary white noise, then W(z)= 2.5 minimizes the steady-state variance
of y1 among all deadbeat controllers of McMillan degree 2.

21.11 Multivariable Systems

Up until now we have considered only single-input single-output (SISO) plants and controllers. In the
case of multiple inputs and/or outputs, the input–output properties of linear systems are represented by
a matrix of transfer functions. The additional intricacies introduced by these systems stem mainly from
the fact that the matrix multiplication is not commutative.

Consider a rational transfer matrix G(s) whose dimensions are, say, m× n. Then it is always possible
to factorize G as follows:

G(s)= BR(s)A−1
R (s)

= A−1
L (s)BL(s),

where the factors BR, AR and AL, BL are, respectively, m× n, n× n and m×m, m× n matrices of qualified
rational functions, say from RH (s), such that

AR, BR are right coprime,

AL, BL are left coprime.

These “matrix fractions” are unique except for the possibility of multiplying the “numerator” and the
“denominator” matrices by a matrix whose determinant has inverse in RH (s). That is, if G(s) can also be
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expressed as

G(s)= B′R(s)A′−1
R (s)

= A
′−1
L (s)B′L(s),

where the factors are matrices of functions from RH (s), such that

A′R, B′R are right coprime,

A′L, B′L are left coprime,

then

A′R(s)= AR(s)UR(s), B′R(s)= BR(s)UR(s),

A′L(s)= UL(s)AL(s), B′L(s)= UL(s)BL(s)

for some matrices UR and UL over RH (s), whose determinants have stable inverses in RH (s).
Analogous results hold for discrete-time systems. To illustrate, consider the transfer matrix

G(z)=
⎡
⎢⎣

1

z− 1

2− z

z2− z
1

z− 1

1

z− 1

⎤
⎥⎦

and determine its left and right coprime factorizations over RS(z). One obtains, for instance,

G(z)=
⎡
⎢⎣

1

z

2− z

z2−λz

0
1

z−λ

⎤
⎥⎦
⎡
⎣ 1 0

−1
z− 1

z−λ

⎤
⎦
−1

=
⎡
⎢⎣

1 −1

0
z− 1

z−μ

⎤
⎥⎦
−1 ⎡
⎢⎣

0 −2

z
1

z−μ
1

z−μ

⎤
⎥⎦

for any real λ and μ with modulus less than one.
Let us now consider the feedback system shown in Figure 21.1 where S1 and S2 are multivariable

systems and analyze its BIBO stability. We therefore factorize the two transfer matrices over RH (s),

S1(s)= BR(s)A−1
R (s)= A−1

L (s)BL(s),

S2(s)=−X−1
L (s)YL(s)=−YR(s)X−1

R (s),

where the two pairs AR, BR and XR, YR are right coprimes while the two pairs AL, BL and XL, YL are left
coprimes. The transfer matrix of the feedback system[

y1

y2

]
=
[

S1(I − S2S1)−1 S1(I − S2S1)−1S2

S2(I − S1S2)−1S1 S2(I − S1S2)−1

] [
u1

u2

]

then reads [
y1

y2

]
=
[

BR(XLAR+YLBR)−1XL

I −AR(XLAR+YLBR)−1XL

−BR(XLAR+YLBR)−1YL

−AR(XLAR+YLBR)−1YL

] [
u1

u2

]

or alternatively[
y1

y2

]
=
[

XR(ALXR+BLYR)−1BL

−YR(ALXR+BLYR)−1BL

XR(ALXR+BLYR)−1AL− I
−YR(ALXR+BLYR)−1AL

] [
u1

u2

]
.

The feedback system is BIBO stable if and only if this transfer matrix has entries in RH (s). We therefore
conclude that the feedback system is BIBO stable if and only if the common denominator XLAR+YLBR,
or alternatively ALXR+BLYR, has inverse with entries in RH (s).
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A parameterization of all controllers S2 that BIBO stabilize the plant S1 is now at hand. Given left and
right coprime factorizations over RH (s) of the plant transfer matrix

S1 = BRA−1
R = A−1

L BL,

we select matrices X ′L, Y ′L and X ′R, Y ′R with entries in RH (s), such that

X ′LAR+Y ′LBR = I , AL X ′R+BLY ′R = I .

Then the family of all stabilizing controllers has the transfer matrix

S2 =−(X ′L+WLBL)−1(Y ′L−WLAL)

=−(Y ′R−ARWR)(X ′R+BRWR)−1,

where WL is a matrix parameter whose entries vary over RH (s) such that X ′L+WLBL is nonsingular, and
WR is a matrix parameter whose entries vary over RH (s) such that X ′R+BRWR is nonsingular.

As an example, determine all BIBO stabilizing controllers for the discrete-time plant considered earlier,
with the transfer matrix

S1(z)=
⎡
⎢⎣

1

z− 1

2− z

z2− z
1

z− 1

1

z− 1

⎤
⎥⎦ .

The left and right coprime factors over RS(z) can be taken as

AR(z)=
⎡
⎢⎣

1 0

−1
z− 1

z

⎤
⎥⎦ , BR(z)=

⎡
⎢⎣

1

z

2− z

z2

0
1

z

⎤
⎥⎦

and

AL(z)=
⎡
⎢⎣

1 −1

0
z− 1

z

⎤
⎥⎦ , BL(z)=

⎡
⎢⎣

0 −2

z
1

z

1

z

⎤
⎥⎦ .

The Bézout equations

X ′LAR+Y ′LBR = I , ALX ′R+BLY ′R = I

have particular solutions

X ′L(s)=
[

1 0
1 1

]
, Y ′L(s)

[
0 0
0 1

]

and

X ′R(s)=
[

1 1
0 1

]
, Y ′R(s)

[
0 1
0 0

]
.

The set of stabilizing controllers is given by

S2(s)=−
([

1 0
1 1

]
+WL

[
0 −2z−1

z−1 z−1

])−1 ([
0 0
0 1

]
−WL

[
1 −1
0 1− z−1

])
,
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where WL varies over RS(z), or by

S2(s)=−
([

0 1
0 0

]
−
[

1 0
−1 1− z−1

]
WR

) ([
1 1
0 1

]
+
[

z−1 −z−1+ 2z−2

0 z−1

]
WR

)−1

,

where WR varies over RS(z) as well.
It is clear that the two parameterizations of S2 are equivalent. To each controller S2 there is a unique

parameter WL such that S2 =−(X ′L+WLBL)−1(Y ′L−WLAL) as well as a unique parameter WR such that
S2 =−(Y ′R−ARWR)(X ′R+BRWR)−1, and these two are related by

WR−WL = X ′LY ′R−Y ′LX ′R.

It is easy to see that the transfer matrix of the closed-loop system is affine in the free parameter WL or
WR. Indeed, [

y1

y2

]
=
[

BR(X ′L+WLBL) −BR(Y ′L−WLAL)
I −AR(X ′L+WLBL) −AR(Y ′L−WLAL)

] [
u1

u2

]

or alternatively [
y1

y2

]
=
[

(X ′R+BRWR)BL (X ′R+BRWR)AL− I
−(Y ′R−ARWR)BL −(Y ′R−ARWR)AL

] [
u1

u2

]
.

Thus, control synthesis problems beyond stabilization can be handled by determining the parameters
WL or WR as described for SISO systems.

Let us consider the disturbance attenuation problem for the discrete-time plant

S1u(z)=
⎡
⎢⎣

1

z− 1

2− z

z2− z
1

z− 1

1

z− 1

⎤
⎥⎦ , S1d(z)=

⎡
⎢⎣

1

z− 1
1

z− 1

⎤
⎥⎦ ,

where the disturbance d is assumed to be an arbitrary l∞ sequence. We seek to find a BIBO stabilizing
controller that minimizes the maximum amplitude of the plant output y.

We write

S1u(z)= A−1
L (z)BL(z)= BR(z)A−1

R (z),

S1d(z)= A−1
L (z)CL(z),

where

AL(z)=
[

1 −1
0 1− z−1

]
, BL(z)=

[
1 −2z−1

z−1 z−1

]
, CL(z)=

[
0

z−1

]

AR(z)=
[

1 0
−1 1− z−1

]
, BR(z)=

[
z−1 −z−1+ 2z−1

0 z−1

]
.

The set of BIBO stabilizing controllers has been found to have the transfer matrix

S2(z)=−
([

0 1
0 0

]
−
[

1 0
−1 1− z−1

]
WR

) ([
1 1
0 1

]
+
[

z−1 −z−1+ 2z−2

0 z−1

]
WR

)−1

,

where WR varies over RS(z).
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The disturbance-output transfer matrix equals

G(z)= (I − S1uS2)−1S1d

= (X ′R+BRWR)−1CL.

When

WR =
[

W11 W12

W21 W22

]
,

one obtains the expression

G(z)=
[

z−1+ z−2W12− (z−2− 2z−3)W22

z−1+ z−2W22

]
.

The 1-norm of an m× n matrix G(z) with entries

Gij(z)=
∞∑

k=0

gij,k z−k

is defined by

‖G‖1 = max
i=1,..,m

n∑
j=1

‖Gij‖1,

where

‖Gij‖1 =
n∑

k=0

|gij,k|.

In our case

‖G‖1 =max
(‖z−1+ z−2W12− (z−2− 2z−3) W22‖1, ‖z−1+ z−2W22‖1

)
,

and it is clear by inspection that ‖G‖1 attains its minimum for W12(z)= 0, W22(z)= 0 and

min
WR
‖G‖1 =max(1, 1)= 1.

The corresponding optimal BIBO stabilizing controllers are

S2(z)=−
[ −W11 1

W11− (1− z−1)W21 0

] [
1+ z−1W11− (z−1− 2z−2)W22 1

z−1W21 1

]−1

for any functions W11 and W21 in RS(z). The one of least McMillan degree reads

S2(z)=
[

0 −1
0 0

]
.

21.12 Extensions

The factorization approach presented here for linear time-invariant systems with rational transfer matrices
can be generalized to extend the scope of the theory to include distributed-parameter systems, time-
varying systems, and even nonlinear systems.
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The transfer matrices of distributed-parameter systems are no longer rational and coprime factoriza-
tions cannot be assumed a priori to exist. The coefficients of time-varying systems are functions of time,
and the operations of multiplication and differentiation do not commute. In nonlinear systems, transfer
matrices are replaced by input–output maps. Suitable factorizations of these maps may not exist and, if
they do, they are not commutative in general.

For many systems of physical and engineering interest, these difficulties can be circumvented and the
algebraic factorization approach carries over with suitable modifications.
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19. Henrion, D., Tarbouriech, S., and Kučera, V., Control of linear systems subject to time-domain
constraints with polynomial pole placement and LMIs. IEEE Trans Autom Control, 50, 1360–1364,
2005.
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22.1 Introduction

22.1.1 Quantitative Feedback Theory

Quantitative feedback theory (QFT)∗ is a very powerful design technique for the achievement of assigned
performance tolerances over specified ranges of structured plant parameter uncertainties without and with

∗ The original version of this material was first published by the Advisory Group for Aerospace Research and Development,
North Atlantic Treaty Organization (AGARD/NATO) in Lecture Series LS-191 “on Linear Dynamics and Chaos” in
June 1993.
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control effector failures [9]. It is a frequency domain design technique utilizing the Nichols chart (NC)
to achieve a desired robust design over the specified region of plant parameter uncertainty. This chapter
presents an introduction to QFT analog and discrete design techniques for both multiple-input single-
output (MISO) [1,5,13] and multiple-input multiple-output (MIMO) [3,4,6,7,10–12] control systems.
QFT computer-aided design (CAD) packages are readily available to expedite the design process. The
purposes of this chapter are (1) to provide a basic understanding of QFT; (2) to provide the minimum
amount of mathematics necessary to achieve this understanding; (3) to discuss the basic design steps; and
(4) to present a practical example.

22.1.2 Why Feedback?

For the answer to the question of "Why do you need QFT?" consider the following system. The plant P
responds to the input r(t) with the output y(t) in the face of disturbances d1(t) and d2(t) (see Figure 22.1).
If it is desired to achieve a specified system transfer function T(s)[= Y (s)/R(s)], then it is necessary to
insert a prefilter whose transfer function is T(s)/P(s), as shown in Figure 22.2. This compensated system
produces the desired output as long as the plant does not change and there are no disturbances. This
type of system is sensitive to changes in the plant (or uncertainty in the plant), and the disturbances are
reflected directly into the output. Thus, it is necessary to feed back the information in the output in order
to reduce the output sensitivity to parameter variation and to attenuate the effect of disturbances on the
plant output.

In designing a feedback control system, it is desired to utilize a technique that:

• Addresses all known plant variations up front
• Incorporates information on the desired output tolerances
• Maintains reasonably low loop gain (reduce the “cost of feedback”)

This last item is important in order to avoid the problems associated with high loop gains such as sensor
noise amplification, saturation, and high-frequency uncertainties.

22.1.3 What Can QFT Do?

Assume that the characteristics of a plant that is to be controlled over a specified region of operation vary;
that is, a plant with structured parameter uncertainty. This plant parameter uncertainty may be described
by the Bode plots of Figure 22.3. This figure represents the range of variation of plant magnitude (dB) and
phase over a specified frequency range. The bounds of this variation, for this example, can be described
by six linear time-invariant (LTI) plant transfer functions. By the application of QFT for a MISO control
system containing this plant, a single compensator and a prefilter may be designed to achieve a specified
robust design.

D2

P

D1
yr

FIGURE 22.1 An open-loop system (basic plant).

D1 D2

P
yr T

P

FIGURE 22.2 A compensated open-loop system.
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FIGURE 22.3 The Bode plots of six LTI plants that represent the range of the plant’s parameter uncertainty.

22.1.4 Benefits of QFT

The benefits of QFT may be summarized as follows:

• The result is a robust design that is insensitive to plant variation
• There is one design for the full envelope (no need to verify plants inside templates)
• Any design limitations are apparent up front
• In comparison to other multivariable design techniques there is less development time for a full

envelope design
• One can determine what specifications are achievable early in the design process
• One can redesign quickly for changes in the specifications
• The structure of compensator (controller) is determined up front

22.2 The MISO Analog Control System [1]

22.2.1 Introduction

The mathematical proof that an m×m feedback control system can be represented by m2 equivalent MISO
feedback control systems is given in Section 22.4.2. A 3× 3 MIMO control system can be represented
by the m2 MISO equivalent loops shown in Figure 22.4. Thus, this and the next section present an
introduction to the QFT technique by considering only a MISO feedback control system.

22.2.2 MISO System

The overview of the MISO QFT design technique is presented in terms of the minimum-phase (m.p.) LTI
MISO system of Figure 22.5. The control ratios for tracking (D = 0) and for disturbance rejection (R = 0)
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FIGURE 22.4 m2 MISO equivalent of a 3× 3 MIMO feedback control system.

are, respectively,

TR = F(s)G(s)P(s)

1+G(s)P(s)
= F(s)L(s)

1+ L(s)
(22.1)

TD = P(s)

1+G(s)P(s)
= P(s)

1+ L(s)
(22.2)

The design objective is to design the prefilter F(s) and the compensator G(s) so the specified robust
design is achieved for the given region of plant parameter uncertainty. The design procedure to accomplish
this objective is as follows:

Step 1: Synthesize the desired tracking model.
Step 2: Synthesize the desired disturbance model.
Step 3: Specify the J LTI plant models that define the boundary of the region of plant parameter

uncertainty.
Step 4: Obtain plant templates, at specified frequencies, that pictorially describe the region of plant

parameter uncertainty on the NC.
Step 5: Select the nominal plant transfer function Po(s).
Step 6: Determine the stability contour (U-contour) on the NC.
Steps 7–9: Determine the disturbance, tracking, and optimal bounds on the NC.
Step 10: Synthesize the nominal loop transmission function Lo(s)= G(s)Po(s) that satisfies all the

bounds and the stability contour.
Step 11: Based upon Steps 1 to 10 synthesize the prefilter F(s).
Step 12: Simulate the system in order to obtain the time response data for each of the J plants.

The following sections illustrate this design procedure.

F C

D

+
+ – +R G P

FIGURE 22.5 A MISO plant.
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ω
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FIGURE 22.6 Desired response characteristic: (a) thumbprint specifications; (b) Bode plots of TR .

22.2.3 Synthesize Tracking Models

The tracking thumbprint specifications, based upon satisfying some or all of the step-forcing function
figures of merit for underdamped (Mp, tp, ts, tr , Km) and overdamped (ts, tr , Km) responses, respectively,
for a simple-second order system, are depicted in Figure 22.6a. The Bode plots corresponding to the time
responses y(t)U (Equation 22.3) and y(t)L (Equation 22.4) in Figure 22.6b represent the upper bound
BU and lower bound BL, respectively, of the thumbprint specifications; i.e., an acceptable response y(t)
must lie between these bounds. Note that for m.p. plants, only the tolerance on |TR( jωi)| need be satisfied
for a satisfactory design. For nonminimum-phase (n.m.p.) plants, tolerances on ∠TR( jωi) must also be
specified and satisfied in the design process [4,5]. It is desirable to synthesize the tracking control ratios

TRU =
(ω2

n/a)(s+ a)

s2+ 2ζωns+ω2
n

(22.3)

TRL =
K

(s− σ1)(s− σ2)(s− σ3)
(22.4)

corresponding to the upper and lower bounds TRU and TRL , respectively, so that δR( jωi)= BU −BL

increases as ωi increases above the 0-dB crossing frequency of TRU . This characteristic of δR simplifies
the process of synthesizing Lo(s)= G(s)Po(s). This synthesis process requires the determination of the
tracking bounds BR( jωi) that are obtained based upon δR( jωi). The achievement of the desired perfor-
mance specification is based upon the frequency bandwidth (BW), 0 < ω≤ ωh, which is determined by
the intersection of the−12-dB line and the BU curve in Figure 22.6b.

22.2.4 Disturbance Model

The simplest disturbance control ratio model specification is |TD( jω)| = |Y ( jω)/D( jω)| ≤ αp a constant
[the maximum magnitude of the output based upon a unit-step disturbance input (d1 of Figure 22.1)].
Thus, the frequency domain disturbance specification is log magnitude (Lm) TD( jω)≤ Lm αp over
the desired specified BW 0≤ ω≤ ωh as defined in Figure 22.6b. Thus, the disturbance specification is
represented by only an upper bound on the NC over the specified BW.

22.2.5 J LTI Plant Models

The simple plant

Pj(s)= Ka

s(s+ a)
(22.5)

where Kε{1, 10} and aε{1, 10}, is used to illustrate the MISO QFT design procedure. The region of plant
parameter uncertainty is illustrated by Figure 22.7. This region of uncertainty may be described by J LTI
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FIGURE 22.7 Region of plant uncertainty characterizing Equation 22.5.

plants, where j = 1, 2, . . . , J . These plants lie on the boundary of this region of uncertainty; that is, the
boundary points 1 to 6 are utilized to obtain six LTI plant models that adequately define the region of
plant parameter uncertainty.

22.2.6 Plant Templates of Pj(s), � P( jωi)

With L= GP, Equation 22.1 yields

LmTR = LmF− Lm

[
L

1+ L

]
(22.6)

The change in TR due to the uncertainty in P, since F is LTI , is

Δ(LmTR)= LmTR− LmF = Lm

[
L

1+ L

]
(22.7)

By the proper design of Lo = GPo and F, this change in TR is restricted so that the actual value of Lm TR

always lies between BU and BL of Figure 22.6b. The first step in synthesizing an Lo is to make NC templates
that characterize the variation of the plant uncertainty (see Figure 22.8), as described by j = 1, 2, . . . , J
plant transfer functions, for various values of ωi over a specified frequency range. The boundary of the
plant template can be obtained by mapping the boundary of the plant parameter uncertainty region, Lm
Pj( jωi) vs. ∠Pj( jωi), as shown on the NC in Figure 22.8. A curve is drawn through the points 1, 2, 3, 4, 5,
and 6 where the shaded area is labeled )P(j1), which can be represented by a plastic template. Templates
for other values ofωi are obtained in a similar manner. A characteristic of these templates is that, starting

K = 10

a = 10

K = 1
–0.04 dB

5 –90°
–135°

180°

1

a = 1

3 4
2

20

17

10

dB

0

–3
6

ℑP(j1)

FIGURE 22.8 The template )P(j1) characterizing Equation 22.5.
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from a “low value” of ωi , the templates widen (angular width becomes larger) for increasing values of ωi ,
then, asωi takes on larger values and approaches infinity, they become narrower and eventually approach
a straight line of height V dB (see Equation 22.9).

22.2.7 Nominal Plant

While any plant case can be chosen, select whenever possible a plant whose NC template point is always
at the lower left corner for all frequencies for which the templates are obtained.

22.2.8 U-Contour (Stability Bound)

The specifications on system performance in the frequency domain (see Figure 22.6b) identify a minimum
damping ratio ζ for the dominant roots of the closed-loop system, which becomes a bound on the value
Mp ≈Mm. On the NC this bound on Mm =ML (see Figures 22.6b and 22.9) establishes a region that must
not be penetrated by the templates and the loop transmission function L( jω) for all ω. The boundary
of this region is referred to as the universal high-frequency boundary (UHFB) or stability bound—the
U-contour, because this becomes the dominating constraint on L( jω). Therefore, in Figure 22.9 the top
portion, efa, of the ML contour becomes part of the U-contour. For a large problem class, as ω→∞, the
limiting value of the plant transfer function approaches

lim
ω→∞[P( jω)] = K

ωλ
(22.8)

where λ represents the excess of poles over zeros of P(s). The plant template for this problem class
approaches a vertical line of length equal to

Δ lim
(ω→∞)

[LmPmax− LmPmin]= LmKmax− LmKmin = VdB (22.9)

If the nominal plant is chosen at K = Kmin, then measuring VdB down from the bottom portion age of
the constraint ML gives the bcd portion of the U-contour abcdefa of Figure 22.9. The remaining portions,
ab and de, of the stability contour are determined during the process of determining the tracking bounds.

22.2.9 Optimal Bounds Bo( jωi) on Lo( jωi)

The determination of the tracking BR( jωi) and the disturbance BD( jωi) bounds are required in order to
yield the optimal bounds Bo( jωi) on Lo( jωi).

22.2.9.1 Tracking Bounds

The solution for BR( jωi) requires that the condition (actual)ΔTR( jωi)≤ δR( jωi) dB (see Figure 22.6b)
must be satisfied. Thus, it is necessary to determine the resulting constraint, or bound BR( jωi), on L( jωi).

Bh-boundary

M-contour (LmML)

U-contour

–180° 90°

+

–

0 a

g
e

d
c

b

dB

f

V
VV

FIGURE 22.9 U-contour construction.
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The procedure is to pick a nominal plant Po(s) and to derive tracking bounds on the NC, at specified
values of frequency, by use of templates or a CAD package. That is, along a phase angle grid line on the
NC, move the nominal point on the template )P( jωi) up or down, without rotating the template, until it
is tangent to two M-contours whose difference in M values is essentially equal to δR. When this condition
has been achieved, the location of the nominal point on the template becomes a point on the tracking
bound BR( jωi) on the NC. This procedure is repeated on sufficient angle grid lines on the NC to provide
sufficient points to draw BR( jωi) and for all values of frequency for which templates have been obtained.
In general, the templates are moved from right to left starting from a phase angle grid line to the right
of the ML contour. When the templates become tangent to the ML contour, the nominal point on the
templates yields points on the ab and de portions of the stability contour. For m.p. systems, the condition
ΔTR( jωi)≤ δR( jωi) requires that the synthesized loop transmission must satisfy the requirement that
Lm L( jωi) is on or above the corresponding tracking bound Lm BR( jωi).

22.2.9.2 Disturbance Bounds

The general procedure for determining disturbance bounds for the MISO control system of Figure 22.5
is outlined as follows, but more details are given in [1]. From Equation 22.2 the following equation is
obtained:

TD = Po

(Po/P)+ Lo
= Po

W
(22.10)

where W = (Po/P)+ Lo. From Equation 22.10, setting LmTD = δD = Lmαp, the following relationship
is obtained:

LmW = LmPo− δD (22.11)

For each value of frequency for which the NC templates are obtained, the magnitude of |W( jωi)|
is obtained from Equation 22.11. This magnitude, in conjunction with the equation W( jωi)=
[Po( jωi)/P( jωi)], is utilized to obtain a graphical solution for BD( jωi) as shown in Figure 22.10. Note
that in this figure the template is plotted in rectangular or polar coordinates.

22.2.9.3 Optimal Bounds

For the case shown in Figure 22.11, Bo( jωi) is composed of those portions of each respective bound
BR( jωi) and BD( jωi) that have the largest dB values. The synthesized Lo( jωi) must lie on or just above
the bound Bo( jωi) of Figure 22.11.

22.2.10 Synthesizing (or Loop-Shaping) Lo(s) and F(s)

The shaping of Lo( jω) is shown by the dashed curve in Figure 22.11. A point such as Lm Lo( j2) must be
on or above Bo( j2). Further, in order to satisfy the specifications, Lo( jω) cannot violate the U-contour. In
this example, a reasonable Lo( jω) closely follows the U-contour up to ω= 40 rad/s and must stay below
it above ω= 40, as shown in Figure 22.11. It also must be at least a Type 1 Lo(s) transfer function (one or

⎪W( jωi)⎪
⎪W( jωi)⎪

BD

Po( jωi)
P( jωi) 

ℑ

–180°

–160°
–150°

–140°–130°

–170°
Q-contour

AB
CD

ϕ

1 2

–BD(jωi)

FIGURE 22.10 Graphical evaluation of BD( jωi).
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FIGURE 22.11 Bounds Bo( jωi) and loop-shaping.

more poles at the origin) for tracking a step-forcing function with zero steady-state error [1]. Synthesizing
a rational function Lo(s) that satisfies the above specification involves building up the function

Lo( jω)= Lok( jω)= Po( jω)*w
k=0 [KkGk( jω)] (22.12)

where for k = 0, G0 = 1∠0◦ and K =∏w
k=0 Kk . In order to minimize the order of the compensator, a good

starting point for “building up” the loop transmission function is to assume initially that Lo0( jω)= Po( jω)
as indicated in Equation 22.13. Lo( jω) is built up term-by-term or by a CAD loop-shaping routine [8],
in order (1) that the point Lo( jωi) lies on or above the corresponding optimal bound Bo( jωi), (2) that it
passes close to the trough of the low frequency bounds, for achieving minimal gain, and (3) to stay just
outside the U-contour in the NC of Figure 22.11. The design of a proper Lo(s) guarantees only that the
variation in |TR( jωi)| is less than or equal to that allowed; i.e., δR( jωi). The purpose of the prefilter F(s)
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is to position Lm [T( jω)] within the frequency domain specifications; i.e., that it always lies between BU

and BL (see Figure 22.6b) for all J plants. The method for determining F(s) is discussed in the next section.
Once a satisfactory Lo(s) is achieved, then the compensator is given by G(s)= Lo(s)/Po(s). Note that for
this example Lo( jω) slightly intersects the U-contour at frequencies above ωh. Because of the inherent
overdesign feature of the QFT technique, as a first trial design no effort is made to fine-tune the synthesis
of Lo(s). If the simulation results are not satisfactory, then a fine tuning of the design can be made. The
available CAD packages simplify and expedite this fine tuning.

22.2.11 Prefilter Design [1,2,4,5]

Design of a proper Lo(s) guarantees only that the variation in |TR( jω)| is less than or equal to that allowed;
i.e., [LmTR( jω)] ≤ δR( jω) The purpose of the prefilter F(s) is to position

LmT( jω)= Lm
L( jω)

1+ L( jω)
(22.13)

within the frequency domain specifications. A method for determining the bounds on F(s) is as follows:

Step 1: Place the nominal point of the ωi plant template on the Lo( jωi) point on the Lo( jω) curve on
the NC (see Figure 22.12).

Step 2: Traversing the template, determine the M-contours that yield the maximum LmTmax and the
minimum LmTmin values of Equation 22.13.

Step 3: Based upon obtaining sufficient data points, by repeating Step 2 within the desired frequency
bandwidth for various values of ωi , and in conjunction with the data used to obtain Figure 22.6b
the plots of Figure 22.13 are obtained.

Step 4: Utilizing Figure 22.13, the straight-line Bode technique, and the condition

lim
s→0

F(s)= 1 (22.14)

for a step-forcing function, an F(s) is synthesized that lies within the upper and lower plots in
Figure 22.13.

LmTmin
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+
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FIGURE 22.12 Prefilter determination.
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FIGURE 22.13 Frequency bounds on F(s).

22.2.12 Simulation

The “goodness” of the synthesized Lo(s) and F(s) is determined by simulating the QFT-designed control
system for all J plants. MISO QFT CAD packages, as discussed in Section 22.2.4, are available to expedite
this simulation phase of the complete design process.

22.2.13 MISO QFT CAD Packages

The first usable MISO QFT CAD package was developed in 1986 for the analog design and in 1991 for the
discrete design at the Air Force Institute of Technology (AFIT). These CAD packages have been a catalyst
in assisting the newcomer to QFT to understand the fundamentals of this powerful design technique.
The QFT CAD package illustrated in Appendix B can be used for both MISO and MIMO control system
designs.

22.2.13.1 MISO QFT CAD

The flowchart of the MISO QFT CAD options in the AFIT package called TOTAL-P.C is shown in
Appendix A. Those desiring a copy of this package can contact Professor C. H. Houpis, AFIT/ENG,
Wright-Patterson AFB, OH 45433. This package has been designed as an educational tool. The QFT CAD
package of Appendix B can also be used for the design of a MISO control system.

22.2.13.2 MISO QFT PC CAD

Dr. Yossi Chait, University of Massachusetts, and Dr. Oded Yaniv, Tel-Aviv University, Israel, have devel-
oped a MISO QFT PC CAD package for both analog and discrete system design available in MATLAB�.

22.3 The MISO Discrete Control System [13]

22.3.1 Introduction

The bilinear transformation, z-domain to the w′-domain and vice-versa, is utilized in order to accomplish
the QFT design for both MISO and MIMO sampled-data (discrete) control system design in the w′-
domain. This transformation enables the MISO QFT analog design technique to be readily used, with
minor exceptions, to perform the QFT design for the controller G(w′). If the w′-domain simulations
satisfy the desired performance specification, then by use of the bilinear transformation the z-domain
controller G(z) is obtained. With this z-domain controller, a discrete-time domain simulation is obtained
to verify the “goodness” of the design. The QFT technique requires the determination of the minimum
sampling frequency (ωs)min BW that is needed for a satisfactory design [13,14]. The larger the plant
uncertainty and the narrower the system performance tolerances, the larger must be the value of (ωs)min.
Henceforth, the prime is omitted from w′; whenever the symbol w is used it is to be interpreted as w′.
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FIGURE 22.14 A MISO sampled-data control system.

22.3.2 The MISO Sampled-Data Control System

Figure 22.14 represents the MISO discrete control system, having plant uncertainty, that is to be designed
by the QFT technique. The equations that describe this system are as follows:

Pz(z)= GzoP(z)= (1− z−1)Z

[
P(s)

s

]
= (1− z−1)Pe(z) (22.15)

L(z)= GzoP(z)G1(z), Pe ≡ P(s)

s
, Pe(z)= Z

[
P(s)

s

]
= Z[Pe] (22.16)

D(s)= 1

s
Pe(s)= P(s)D(s)

Pe(z)= Z[P(s)D(s)] = PD(z) (22.17)

TR = F(z)L(z)

1+ L(z)
YD = PD(z)

1+ L(z)
(22.18)

Y (z)=
[

L(z)F(z)

1+ L(z)

]
R(z)+ PD(z)

1+ L(z)
= YR(z)+YD(z)

= TR(z)R(z)+YD(z) (22.19)

22.3.3 w-Domain

The pertinent s-, z-, and w-plane relationships are as follows:

α2 =
(
σT

2

)2

< 2,
ωT

2
≤ 0.297 (22.20)

s = σ+ jω, (a)

w = u+ jv =
(

2

T

)[
z− 1

z+ 1

]
(b) (22.21)

z = Tw+ 2

−Tw+ 2
, v = 2

T
tan

(
ωT

2

)
=
(
π

ωs

)
tan

(
ωπ

ωs

)
(22.22)

ωs = 2π/T , z = εσT∠ωT = |z|∠ωT (22.23)

22.3.4 Assumptions

For this chapter, the following assumptions are made:

• Minimum-phase (m.p.) stable plants
• The analog design models, Equations 22.3 and 22.4, yield the desired time response characteristics

for the discrete-time system
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• The sampling time T is small enough so that over the BW, 0 < ω< ωh, Equation 22.23 is valid
permit- ting the approximation s ≈ w and, in turn,

TR(w)≈ [TR(s)]s=w (22.24)

Both the upper and lower bound w-domain tracking models are obtained in this manner. The distur-
bance specification is the same as for the analog case.

22.3.5 Nonminimum Phase Lo(w)

It is important to note that in the w domain any practical L(w) is n.m.p. containing a zero at 2/T (the
sampling zero). This result is due to the fact that any practical L(z) has an excess of at least one pole over
zeros. Thus, the design technique for a stable uncertain plant is modified [14] to incorporate the allpass
filter (apf)

A(w)= w− (2/T)

w+ (2/T)
=−A′(w)=−

[
(2/T)−w

(2/T)+w

]
(22.25)

as follows. Let the nominal loop transmission be defined as

Lo ≡−Lmo(w)A(w)= Lmo(w)A′(w) (22.26)

From Equation 22.26 it is seen that

∠Lmo( jv)= ∠Lo( jv)−∠A′( jv) (22.27)

where

−∠A′( jv)= 2 tan−1 vT

2
> 0 (22.28)

An analysis of Equations 22.26 through 22.28 reveals that the bounds B′o(jvi) on Lo( jv) become the
bounds Bmo(jvi) on Lmo( jv) by shifting, over the desired BW , B′o(jvi) positively (to the right on the NC)
by the angle ∠A′(jvi), as shown in Figure 22.15. The U-contour (B′h) must also be shifted to the right by
the same amount, at the specified frequencies vi , to obtain the shifted U-contour Bh(jvi). The contour
B′h is shifted to the right until it reaches the vertical line ∠Lmo1 (jvK )= 0◦. The value of vK , which is a
function of ωs and the phase margin angle γ as shown in Figure 22.15, [13] is given by

2 tan−1
(

vkT

2

)
= 180◦ − γ (22.29)

It should be mentioned that loop-shaping or synthesizing Lo(w) can be done directly without the use
of an apf.

22.3.6 Plant Templates � P(jv1)

The plant templates in the w-domain have the same characteristic as those for the analog case (see
Section 22.2.4) for the frequency range 0 < ωi ≤ ωs/2 as shown in Figure 22.16a. In the frequency range
ωs/2 < ωi <∞, the w-domain templates widen once again, then eventually approach a vertical line as
shown in Figure 22.16b.

22.3.7 Synthesizing Lmo(w)

The frequency spectrum can be divided into four general regions for the purpose of synthesizing (loop-
shaping) an Lmo(w) that satisfies the desired system performance specifications for the plant having plant
parameter uncertainty. These four regions are
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Region 1: For the frequency range where Equation 22.20 is essentially satisfied, use the analog templates;
i.e., )P( jωi)≈ )P(jvi). The w-domain tracking, disturbance, and optimal bounds and the U-
contour are essentially the same as those for the analog system. The templates are used to obtain
these bounds on the NC in the same manner as for the analog system.

Region 2: For the frequency range v0.25 < vi ≤ vh, where ωi ≤ 0.25ωs, use the w-domain templates.
These templates are used to obtain all three types of bounds, in the same manner as for the analog
system, in this region; and the corresponding B′h(jvi) contours are also obtained. Depending on
the value of T , vh may be less than v0.25.

Region 3: For the frequency range vh < vi ≤ vK , for the specified value of ωs, only the B′h contours are
plotted.

Region 4: For the frequency range vh > vK , use the w-domain templates. Since the templates )Pe(jvi)
broaden out again for vi > vK , as shown in Figure 22.16, it is necessary to obtain the more stringent
(stability) bounds BS shown in Figure 22.17. The templates are used only to determine the stability
bounds BS.

The synthesis (or loop-shaping) of Lmo(w) involves the synthesis of the following function:

Lmo( jv)= Peo( jv)
∏w

k=0

[
KkGk( jv)

]
(22.30)

where the nominal plant Peo(w) is the plant from the J plants that has the smallest dB value and the largest
(most negative) phase lag characteristic. The final synthesized Lmo(w) function must be one that satisfies
the following conditions:

1. In Regions 1 and 2 the point on the NC that represents the dB value and phase angle of Lmo(jvi)
must be such that it lies on or above the corresponding Bmo(jvi) bound (see Figure 22.15).

2. The values of Equation 22.30 for the frequency range of region 3 must lie to the right of or just
below the corresponding B′h contour (see Figure 22.15).

3. The value of Equation 22.30 for the frequency range of region 4 must lie below the BS contour for
negative phase angles on the NC (see condition 4 next).

4. In utilizing the bilinear transformation of Equation 22.21, the w-domain transfer functions are all
equal order over equal order.

5. The Nyquist stability criterion dictates that the Lmo( jv) plot is on the “right side” or the “bottom
right side” of the Bh(jvi) contours for the frequency range of 0≤ vi ≤ vK . It has been shown that [3]
a. Lmo( jv) must reach the right-hand bottom of Bh(jvK ), (i.e., approximately point K in

Figure 22.17) at a value of v ≤ vK .
b. ∠Lmo(jvK ) < 0◦ in order that there exists a practical Lmo that satisfies the bounds B( jv)

and provides the required stability.
6. For the situation where one or more of the J LTI plants that represent the uncertain plant parameter

characteristics represent unstable plants and one of these unstable plants is selected as the nominal
plant, then the apf to be used in the QFT design must include all right half-plane (RHP) zeros of
Pzo. This situation is not discussed in this chapter. Note: For experienced QFT control system
designers, Lo(v) can be synthesized without the use of apf. This approach also is not covered in
this chapter.

The synthesized Lmo(w) obtained following the guidelines of this section is shown in Figure 22.17.

22.3.8 Prefilter Design

The procedure for synthesizing F(w) is the same as for the analog case (see Section 22.2.11) over the
frequency range 0 < vi ≤ vh. In order to satisfy condition 4 of Section 22.3.7, a nondominating zero or
zeros (“far left” in the w-plane) are inserted so that the final synthesized F(w) is equal order over equal
order.
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22.3.9 w-Domain Simulation

The “goodness” of the synthesized Lmo(w) [or Lo(w)] and F(w) is determined by first simulating the QFT
w-domain designed control system for all J plants in the w-domain (an “analog” time domain simulation).
See Section 22.2.13 for MISO QFT CAD packages that expedite this simulation.

22.3.10 z-Domain

The two tests of the “goodness” of the w-domain QFT-designed system is a discrete-time domain simula-
tion of the system shown in Figure 22.14. To accomplish this simulation, the w-domain transfer functions
G(w) and F(w) are transformed to the z-domain by use of the bilinear transformation of Equation 22.21.
This transformation is utilized since the degree of the numerator and denominator polynomials of these
functions are equal and the controller and prefilter do not contain a zero-order-hold device.

22.3.10.1 Comparison of the Controller’s w- and z-Domain Bode Plots

Depending on the value of the sampling time T , warping may be sufficient to alter the loop-shaping
characteristics of the controller when it is transformed from the w-domain into the z-domain. For the
warping effect to be minimal, the Bode plots (magnitude and angle) of the w- and z-domain controllers
must essentially lie on top of one another within the frequency range 0 < ω≤ [(2/3)(ωs/2)]. If the
warping is negligible, then a discrete-time simulation can proceed. If not, a smaller value of sampling time
needs to be selected.

22.3.10.2 Accuracy

The CAD packages that are available to the designer determines the degree of accuracy of the calculations
and simulations. The smaller the value of T , the greater the degree of accuracy that is required to be
maintained. The accuracy can be enhanced by implementing G(z) and F(z) as a set of g and f cascaded
transfer functions, respectively; that is,

G(z)= G1(z)G2(z) · · ·Gg (z),

F(z)= F1(z)F2(z) · · · Ff (z) (22.31)

22.3.10.3 Analysis of Characteristic Equation Qj(z)

Depending on the value of T and the plant parameter uncertainty, the pole-zero configuration in the
vicinity of the −1+ j0 point in the z-plane for one or more of the J LTI plants can result in an unstable
discrete-time response. Thus, before proceeding with a discrete-time domain simulation, an analysis of
the characteristic equation Qj(z) for all J LTI plants must be made. If an unstable system exists, an analysis
of Qj(z) and the corresponding root locus may reveal that a slight relocation of one or more controller
poles in the vicinity of the −1+ j0 point toward the origin may ensure a stable system for all J plants
without essentially affecting the desired loop-shaping characteristic of G(z).

22.3.10.4 Simulation and CAD Packages

With the “design checks” of Sections 22.3.10.1 through 22.3.10.3 satisfied, then a discrete-time simulation
is performed to verify that the desired performance specifications have been achieved. In order to enhance
the MISO QFT discrete control system design procedure that is presented in this chapter, the CAD flow
chart of Section 22.2.13.1 is shown in Appendix B.
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22.4 MIMO Systems

22.4.1 Introduction

Figure 22.18 represents an m×m MIMO closed-loop system in which F, G, and P are each m×m
matrices, and P = {P} is a set of J matrices due to plant parameter uncertainty. There are m2 closed-
loop system transfer functions (transmissions) tij contained within its system transmission matrix (i.e.,
T = {tij}) relating the outputs yi to the inputs rj (e.g., yi = tijrj). These relationships hold for both the
s- and w-domain analysis of a MIMO system. In a quantitative problem statement there are tolerance
bounds on each tij, giving a set of m2 acceptable regions τij that are to be specified in the design; thus,
tijετij and ) = {τij}. From Figure 22.18 the system control ratio relating r to y is:

T = [I + PG]−1PGF (22.32)

The tij expressions derived from this expression are very complex and not suitable for analysis. The QFT
design procedure systematizes and simplifies the manner of achieving a satisfactory system design for
the entire range of plant uncertainty. In order to readily apply the QFT technique, another mathematical
system description is presented in the next section. The material presented in this chapter pertains to
both the s- and w-domain analysis of MIMO systems [2,12,16,17].

22.4.2 Derivation of m2 MISO System Equivalents

The G, F, P and P−1 matrices are defined as follows:

G =

⎡
⎢⎢⎢⎣

g1 0 · · · 0
0 g2 · · · 0
...

...
...

...
0 0 · · · gm

⎤
⎥⎥⎥⎦ F =

⎡
⎢⎢⎢⎣

f11 f12 · · · f1m

f21 f22 · · · f2m
...

...
...

...
fm1 fm2 · · · fmm

⎤
⎥⎥⎥⎦ (22.33)

P =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm

⎤
⎥⎥⎥⎦ P−1 =

⎡
⎢⎢⎢⎣

p∗11 p∗12 · · · p∗1m
p∗21 p∗22 · · · p∗2m

...
...

...
...

p∗m1 p∗m2 · · · p∗mm

⎤
⎥⎥⎥⎦ (22.34)

Although only a diagonal G matrix is considered, the use of a nondiagonal G matrix may allow the
designer more design flexibility [2]. The m2 effective plant transfer functions are based upon defining:

qij ≡ 1

p∗ij
= detP

adjPij
(22.35)

F
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+
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+
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FIGURE 22.18 A 3× 3 MIMO feedback control system.
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There is a requirement that det.P be m.p. The Q matrix is then formed as:

Q =

⎡
⎢⎢⎢⎣

q11 q12 · · · q1m

q21 q22 · · · q2m
...

...
...

...
qm1 qm2 · · · qmm

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

p∗11

1

p∗12
· · · 1

p∗1m
1

p∗21

1

p∗22
· · · 1

p∗2m
...

...
...

...

1

p∗m1

1

p∗m2
· · · 1

p∗mm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22.36)

The matrix P−1 is partitioned to the form:

P−1 = [P∗ij] =
[

1

qij

]
=Λ+B (22.37)

where Λ is the diagonal part of P−1 and B is the balance of P−1; thus λij = 1/qii = p∗ii , bii = 0, and
bij = 1/qij = p∗ij for i �= j. Premultiplying Equation 22.32 by [I + PG] yields

[I + PG]T = PGF → [P−1+G]T = GF (22.38)

where P is nonsingular. Using Equation 22.37 with G diagonal, Equation 22.38 can be rearranged to the
form:

T = [Λ+G]−1[GF−BT] (22.39)

Equation 22.39 is used to define the desired fixed-point mapping where each of the m2 matrix elements
on the right-hand side of this equation can be interpreted mathematically as representing a MISO system.
Proof of the fact that design of each MISO system yields a satisfactory MIMO design is based on the
Schauder fixed-point theorem [7]. This theorem is described, based upon a unit impulse input, by defining
a mapping

Y (Ti)= [Λ+G]−1[GF−BTi] ≡ Tj (22.40)

where each member of T is from the acceptable set ). If this mapping has a fixed point [i.e., Tε) such that
Y (Ti)= Tj], then this T is a solution of Equation 22.39. The y11 output obtained from Equation 22.40,
for the 3× 3 case, is given by:

y11 = q11

1+ g1q11

[
g1f11−

(
t21

q12
+ t31

q13

)]
(22.41)

Based upon the derivation of all the yij expressions from Equation 22.40 yields the four effective MISO
loops (in the boxed area) in Figure 22.4, resulting from a 2× 2 system and the nine effective MISO loops
resulting from a 3× 3 system [4]. The control ratios for the desired tracking inputs ri by the corresponding
outputs yi for each feedback loop of Equation 22.40 have the form

yii = wij(vij + cij) (22.42)

where wii = qii/(1+ giqii) and vij = gifij. The interaction between the loops has the form

cij =−
∑

k �=i

[
tkj

qik

]
k = 1, 2, 3, . . . , m (22.43)

and appears as a “cross-coupling effect” input in each of the feedback loops. Thus, Equation 22.42
represents the control ratio of the ith MISO system. The transfer function wiivij relates the “desired” ith
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output to the jth input rj, and the transfer function wiicij relates the ith output to the jth cross-coupling
effect input cij. The outputs given in Equation 22.42 can thus be expressed as

yij = (yij)ri + (yij)cij = yri + ycij (22.44)

or, based on a unit impulse input,

tij = trij + tcij (22.45)

where

trij = yri = wiivij tcij = ycij = wiicij (22.46)

and where now the upper bound, in the low-frequency range (0 < ω≤ ωh), is expressed as b′ij. Thus,

τcij = bij − b′ij (22.47)

represents the maximum portion of bij allocated toward the cross-coupling effect rejection, and b′ij
represents the upper bound for the tracking portion, respectively, of tij. For each MISO system there is a
cross-coupling effect input that is a function of all the other loop outputs. The object of the design is to
have each loop track its desired input while minimizing the outputs due to the disturbance (cross-coupling
effects) inputs.

In each of the nine structures of Figure 22.4 it is necessary that the control ratio tij must be a member
of the acceptable tijετij. All the gi and fij must be chosen to ensure that this condition is satisfied, thus
constituting nine MISO design problems. If all of these MISO problems are solved, there exists a fixed
point; then yij on the left-hand side of Equation 22.40 may be replaced by tij, and all the elements of T on
the right-hand side by tkj. This means that there exist nine tij and tkj, each in its acceptable set, which is
a solution to Figure 22.18. If each element is 1:1, then this solution must be unique. A more formal and
detailed treatment is given in [7].

22.4.3 Tracking and Cross-Coupling Specifications

The presentation for the remaining portion of this chapter is based upon not only a diagonal G matrix but
also a diagonal F matrix. Thus, in Figure 22.4 the tij terms, for i �= j, represent disturbance responses due
to the cross-coupling effect whereas the tij terms, for i = j (see Equation 22.45) is composed of a desired
tracking term tr and of an unwanted cross-coupling term tc . Therefore, the desired tracking specifications
for the diagonal MISO systems of Figure 22.4 contain an upper-bound and a lower bound as shown in
Figure 22.6. The disturbance specification for all MISO loops is given by only an upper bound. These
performance specifications are shown in Figure 22.19 for a 2× 2 (in the boxed area) and for a 3× 3
MIMO feedback control system.

22.4.3.1 Tracking Specifications

Based upon the analysis of Equations 22.45 through 22.47, the specifications for the tii responses shown
in Figure 22.19 need to be modified as shown in Figure 22.20. As shown in this figure, a portion of δR( jωi)
(see Figure 22.6) has been allocated [2,7] for the disturbance (cross-coupling effect) specification. Thus,
based upon this modification and given an uncertain plant P = {Pj}(j = 1, 2, . . . , J) and the BWωh above
which output sensitivity is ignored, it is desired to synthesize G and F such that for all PεP

a′ii ≤
∣∣tii( jω)

∣∣≤ b′ii for ω≤ ωh (22.48)

A finite ωh is recommended because, in strictly proper systems, feedback is not effective in the high-
frequency range.
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FIGURE 22.19 Tracking and cross-coupling specifications for a 2× 2 (in boxed area) and for a 3× 3 MIMO system.

22.4.3.2 Disturbance Specification (Cross-Coupling Effect)

Based upon the previous discussion the disturbance specification, an upper bound, is expressed as

∣∣tcik

∣∣≤ ∣∣bij
∣∣ (22.49)

Thus, the synthesis of G must satisfy both Equations 22.48 and 22.49.

22.4.4 Determination of Tracking, Cross-Coupling, and Optimal Bounds

The remaining portion of the MIMO QFT approach is confined to a 2× 2 system. The reader can refer
to the references for higher-order systems (m > 2). From Equation 22.39 the following equations are
obtained:

t11 = L1f11+ c11q11

1+ L1

aii

ωi ω

bii

a′ii

1.0

0.8

0.6

b′ii 
δ′R( jωi)

δR( jωi)
τcii/2

τcii/2

FIGURE 22.20 Allocation for tracking and cross-coupling specifications for the tii responses.
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where

c11 =− t21

q12
, L1 = q11g1

t12 = c12q11

1+ L1
(22.50)

where

c12 =− t22

q12
, f12 = 0

t21 = c21q22

1+ L2
(22.51)

where

c21 =− t11

q21
, L2 = q22g2, f21 = 0,

t22 = L2f22+ c22q22

1+ L2
(22.52)

where

c22 =− t12

q21
(22.53)

Equations 22.50 and 22.51 correspond to the MISO systems for the first row of loops in Figure 22.4,
and Equations 22.52 and 22.53 correspond to the MISO loops for the second row.

22.4.4.1 Tracking Bounds

The tracking bounds for the ii MISO system is determined in the same manner as for the MISO system of
PART II (see Section 22.2.9.1). By use of the templates for the ii loop plant, the value of δR( jωi)′, shown
in Figure 22.20, is used to satisfy the constraint of Equation 22.48.

22.4.4.2 Cross-Coupling Bounds

From Equations 22.51 and 22.53, considering only the first row of MISO loops in Figure 22.4, the following
cross-coupling transfer functions are obtained (see Figures 22.20 and 22.19, respectively):

∣∣tc11

∣∣=
∣∣∣∣ c11q11

1+ L1

∣∣∣∣≤ τcij ≡ τc11 · · · (22.54)

∣∣tc12

∣∣=
∣∣∣∣ c12q11

1+ L1

∣∣∣∣≤ bij ≡ b12 · · · (22.55)

Substituting for c11 and c12 into Equations 22.54 and 22.55, respectively, and replacing t21 and t22 by
their respective upper bound values b21 and b22, and rearranging these equations yields:∣∣∣∣ 1

1+ L1

∣∣∣∣=≤
∣∣∣∣q12

q11

∣∣∣∣ τc11

b21
=Mm11 (22.56)

∣∣∣∣ 1

1+ L1

∣∣∣∣≤
∣∣∣∣q12

q11

∣∣∣∣ b12

b22
=Mm12 (22.57)

Substituting into these equations L1 = 1/l1 yields:∣∣∣∣ l1
1+ l1

∣∣∣∣≤Mm11 · · ·
∣∣∣∣ l1
1+ l1

∣∣∣∣≤Mm12 (22.58)

By analyzing these equations for each of the J plants over the desired BW, the maximum value Mm

that each of these equations can have, for each value of ωi(or vi), is readily determined by use of a
CAD package. Thus, since L1 = 1/l1, the reciprocals of these values yield the value of the corresponding
M-contours or cross-coupling bounds, for ω= ωi(or vi), on the NC.
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22.4.4.3 Optimal Bounds

The points on the optimal bound for a given value of frequency and for a given row of MISO loops of
Figure 22.4 are determined by selecting the largest dB value, for a given NC phase angle, from all the
tracking and cross-coupling bounds for these loops at this frequency. The MIMO QFT CAD package is
designed to perform this determination of the optimal bounds.

22.4.5 QFT Methods of Designing MIMO Systems

There are two methods of achieving a QFT MIMO design. Method 1 involves synthesizing the loop
transmission function Li and the prefilter fii independent of the previous synthesized loop transmission
functions and prefilters. Method 2 substitutes the synthesized gi and fii of the first (or prior) MISO loop(s)
that is (are) designed into the equations that describe the remaining loops to be designed. For Method 2,
it is necessary to make the decision as to the order that the Li functions are to be synthesized. Generally,
the loops are chosen on the basis of the phase margin frequencyωφ requirements. That is, the loop having
the smallest value of ωφ is chosen as the first loop to be designed; the loop having the next smallest value
of ωφ is selected as the second loop to be designed; etc. This is an important requirement for Method 2.

22.4.5.1 Method 1

This method involves overdesign (worst-case scenario), i.e., in getting the Mm values of Equations 22.56
and 22.57, for the 2× 2 case, the maximum magnitude that q12 and the minimum magnitude that q11 can
have, for each value ofωi , over the entire J LTI plants are utilized. This method requires that the diagonal
dominance condition [2,7] be satisfied. When this condition is not satisfied, then Method 2 needs to be
utilized.

22.4.5.2 Method 2

Once the order in which the loops are to be designed is designated accordingly (loop 1, loop 2, etc.),
then the compensator g1 and the prefilter f11 are synthsized. These are now known LTI functions, which
are utilized to define the loop 2 effective plant transfer function. That is, substitute Equation 22.51 into
Equation 22.53, then rearrange the result to obtain a new expression for t12 in terms of g1 and f11 as
follows:

t21 =−
[

f11L1q22e /q21(1+ L1)

1+ g2q22e

]
(22.59)

where the effective loop 2 transfer function is

q22e =
q22(1+ L1)

(1+ L1)− γ12
where γ12 = q11q22

q12q21
(22.60)

Repeating a similar procedure, the expression for t22 is

t22 = f22g2q22e

1+ g2q22e

(22.61)

Remember that a diagonal prefilter matrix has been specified. Note that Equations 22.59 through 22.61
involve the known f11 and g1, which reduces the overdesign of loop 2.

22.4.6 Synthesizing the Loop Transmission and Prefilter Functions

Once the optimal bound has been determined for each Li loop, then the synthesis procedures for deter-
mining the loop transmission and prefilter functions are the same as for the MISO analog and discrete
systems as discussed in Sections 22.2 and 22.3, respectively.
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22.4.7 Overview of the MIMO QFT CAD Package

The MIMO QFT CAD package [15], implemented using Mathematica, is capable of carrying an analog
or a discrete MISO or MIMO QFT design from problem setup through the design process to a frequency
domain analysis of the compensated system. For analog control problems, the design process is performed
in the s-plane. The design process is performed in either the w-plane or the s-plane using the pseudo-
continuous-time (PCT) representation of the sampled-data system. A flowchart of the CAD package is
given in Appendix B.

22.5 QFT Application

A MIMO QFT example, [18] a 2× 2 analog flight control system (see the boxed-in loops of Figure 22.4),
is presented to illustrate the power of this design technique. Also, this example illustrates the increased
accuracy and efficiency achieved by the MIMO QFT CAD package [15] and the straightforward method
for designing an analog MIMO control system. The specifications require a robust analog design for an
aircraft that provides stability and meets time domain performance requirements for the specified four
flight conditions (Table 22.1) and the six aircraft failure modes (Table 22.2). Table 22.3 lists the resulting
set of 24 plant cases that incorporate these flight conditions and failure modes. For stability, a 45◦ phase

TABLE 22.1 Flight Conditions

Aircraft Parameters

Flight Condition Mach Altitude

1 0.2 30

2 0.6 30,000

3 0.9 20,000

4 1.6 30,000

TABLE 22.2 Failure Modes

Failure Mode Failure Condition

1 Healthy aircraft

2 One horizontal tail fails

3 One flaperon fails

4 One horizontal tail and one flaperon fail, same side

5 One horizontal tail and one flaperon fail, opposite side

6 Both flaperons fail

TABLE 22.3 Plant Models

Flight Condition

Failure Mode 1 2 3 4

1 #1 #7 #13 #19

2 #2 #8 #14 #20

3 #3 #9 #15 #21

4 #4 #10 #16 #22

5 #5 #11 #17 #23

6 #6 #12 #18 #24
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FIGURE 22.21 Open-loop transmissions on NC.

margin is required for each of the two feedback loops. Frequency domain performance specifications,
when met, result in the desired closed-loop system performance in the time domain. The frequency
domain specifications are shown as dashed lines on the Bode plots of Figure 22.22.

The specifications, the plant models [18] for the 24 cases, and the weighting matrix are entered into the
QFT CAD package. The automated features accessed through the designer interface of the CAD package
result in synthesizing the compensators g1(s) and g2(s) in the manner described in Section 22.2.10. That is,
the nominal loop transmission functions L10 (s)= g1(s)q110 (s) and L20 (s)= g2(s)q220 (s) are synthesized
(or shaped) so that they satisfy their respective stability bounds and their respective optimal bounds
B10 ( jωi) and B20 ( jωi). Note that q110 and q220 are the nominal plant transfer functions. The first step in
a validation check is to plot the loop transmission functions L2ι (s), where ι= 1, . . . , 24, for all 24 cases on
the NC. This is accomplished by a CAD routine, as shown in Figure 22.21 for the purpose of a stability
check (m.p. plants). As is seen, none of the cases violate the ML stability contour (the dark ellipse). In this
design, when synthesizing L20 (s) a trade-off exists between performance and bandwidth. In this example,
the designer chooses to accept the consequences of violating the disturbance bound forω= 2 rad/s. With
L10 (s) and L20 (s) synthesized, the automated features of the CAD package expedite the design of the
prefilters f11(s) and f22(s).

For the second step in the design validation process, the 2× 2 array of Bode plots shown in Figure 22.22
is generated, showing on each plot the 24 possible closed-loop transmissions from an input to an output
of the completed system. The consequence of violating the channel 2 disturbance bound for ω= 2 rad/s
is seen where the closed-loop transmissions violate b21, denoted by dashed line, beginning atω= 2 rad/s.
Violation of performance bounds during loop-shaping may result in violation of the performance speci-
fications for the closed-loop system.

As seen in Figure 22.22, a robust design has been achieved for this 2× 2 MIMO analog flight control
system. The time domain results, although not drawn, meet all specifications.
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FIGURE 22.22 Closed-loop transmissions for an analog design system.
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22.6 Appendix A

CAD flowchart for MISO QFT design.
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22.7 Appendix B

MIMO QFT flowchart for analog and discrete control systems [15].
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23.1 Introduction

The so-called servomechanism problem is one of the most basic problems to occur in the field of automatic
control, and it arises in almost all application problems of the aerospace and process industries. In the ser-
vomechanism problem, it is desired to design a controller for a plant (or “system”) so that the outputs of the
plant are independent, as much as possible, from disturbances which may affect the system (i.e., regulation
occurs), and also such that the outputs asymptotically track any specified reference input signals applied to
the system (i.e., tracking occurs), subject to the requirements of maintaining closed-loop system stability.

This chapter examines some aspects of controller synthesis for the multivariable servomechanism
problem when the plant to be controlled is subject to uncertainty. In this case, a controller is to be designed
so that desired regulation and tracking takes place in spite of the fact that the plant dynamics or/and
parameters may vary by arbitrary, large amounts, subject only to the condition that the resultant closed-
loop perturbed system remains stable. This problem is called the robust servomechanism problem (RSP).

23.2 Preliminary Results
23.2.1 Plant Model

The plant to be controlled is assumed to be described by the following linear time-invariant (LTI) model:

ẋ = Ax+Bu+Eω

23-1
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y = Cx+Du+ Fω

ym = Cmx+Dmu+ Fmω (23.1)

e = y− yref

where x ∈ R
n is the state, u ∈ R

m are the inputs that can be manipulated, y ∈ R
r are the outputs that are

to be regulated and ym ∈ R
rm are the outputs which can be measured. Here ω ∈ R

Ω correspond to the
disturbances in the system, which in general cannot necessarily be measured, and e ∈ R

r is the error in
the system, which is the difference between the output y and the reference input signal yref , in which it is
desired that the outputs y should track.

23.2.2 Class of Tracking/Disturbance Signals

It is assumed that the disturbances ω arise from the following class of systems:

η̇1 =A1η1, ω= C1η1; η1 ∈ R
n1 (23.2)

and that the reference input signals yref arise from the following class of systems:

η̇2 =A2η2, ρ= C2η2, yref = Gρ; η2 ∈ R
n2 (23.3)

It is assumed for nontriviality that sp(A1)⊂ C
+, sp(A2)⊂ C

+, where sp(·) denotes the eigenvalues of
(·) and C

+ denotes the closed right complex half-plane. It is also assumed with no loss of generality that
(C1, A1), (C2, A2) are observable and that rank ( E

F )= rank C1 = dim(ω), rank G = rank C2 = dim(ρ).
This class of signals is quite broad and includes most classes of signals that occur in application

problems, e.g., constant, polynomial, sinusoidal, polynomial-sinusoidal, etc.
The following definitions will be used in the development to follow.

Definition 23.1:

Given the systems represented by Equations 23.2, and 23.3, let {λ1,λ2, . . . ,λp} be the zeros of the least
common multiple of the nominal polynomial of A1 and minimal polynomial of A2 (multiplicities repeated),
and call

Λ := {λ1,λ2, . . . ,λp} (23.4)

the disturbances/tracking poles of Equations 23.2 and 23.3.

Definition 23.2:

Given the model represented by Equation 23.1, consider the system

ẋ = Ax+Bu; u ∈ Rm, y ∈ Rr , x ∈ Rn

y = Cx+Du

Then λ ∈ C is said to be a transmission zero (TZ) [3] of (C, A, B, D) if

rank

[
A−λI B

C D

]
< n+min(r, m)

In particular, the transmission zeros are the zeros (multiplicities included) of the greatest common

divisor of all [n+min(r, m)]× [n+min(r, m)]minors of

[
A−λI B

C D

]
.
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Definition 23.3:

Given the system (C, A, B, D), assume that one or more of the transmission zeros of (C, A, B, D) are contained
in the closed right complex half-plane; then (C, A, B, D) is said to be a nonminimum-phase system. If
(C, A, B, D) is not nonminimum phase, then it is said to be a minimum-phase system.

23.2.3 Robust Servomechanism Problem

The robust servomechanism problem (RSP) for Equation 23.1 consists in finding an LTI controller that
has inputs ym, yref and outputs u for the plant so that:

1. The resultant closed-loop system is asymptotically stable.
2. Asymptotic tracking occurs; that is,

lim
t→∞ e(t)= 0, ∀x(0) ∈ R

n, ∀η1(0) ∈ R
n1 , ∀η2(0) ∈ R

n2

for all controller initial conditions.
3. Condition 2 holds for any arbitrary perturbations in the plant model Equation 23.1 (e.g., plant

parameters or plant dynamics, including changes in model order) that do not cause the resultant
closed-loop system to become unstable.

In this problem statement, there is no requirement made regarding the transient behavior of the
closed-loop system; thus, the following problem statement is now made.

Perfect RSP

Given the plant represented by Equation 23.1, it is desired to find a controller such that:

1. It solves the RSP for the class of disturbances/tracking signals given by Equations 23.2 and 23.3.
2. The controller gives perfect error regulation when applied to the nominal plant model Equa-

tion 23.1, i.e., given x(0), z1(0), z2(0), located on the unit sphere, with η(0)= 0, where η(0) is the
initial condition of the servo-compensator (see Equation 23.9), then∀ε> 0, there exists a controller
(parameterized by ε) that satisfies property 1 and has the property that

∫∞
0 e′(τ)e(τ) dτ< ε, with

no unbounded peaking occurring in the response of e; i.e., there exists a constant ρ, independent
of ε, such that sup

t≥0
|e(t)|< ρ.

Thus, in the perfect RSP, arbitrarily good transient error, with no unbounded peaking in the error response
of the system, can be obtained for any initial condition of the plant and for any disturbance/tracking signals
that belong to Equations 23.2 and 23.3.

23.3 Main Results

The following results are obtained concerning the existence of a solution to the RSP [5,6].

Theorem 23.1:

There exists a solution to the RSP for Equation 23.1, if and only if the following conditions are all satisfied:

1. (Cm, A, B) is stabilizable and detectable.
2. m≥ r.



�

�

�

�

� �

23-4 Control System Advanced Methods

3. The transmission zeros of (C, A, B, D) exclude the disturbance/tracking poles λi , i = 1, 2, . . . , p.
4. y ⊂ ym; i.e., the outputs y are measurable.

Remark 23.1

The conditions 2 and 3 are equivalent to the condition:

rank

[
A−λiI B

C D

]
= n+ r, i = 1, 2, . . . , p (23.5)

The following existence results are obtained concerning the existence of a solution to the perfect
RSP [12]:

Theorem 23.2:

There exists a solution to the perfect RSP for Equation 23.1, if and only if the following conditions are all
satisfied:

1. (Cm, A) is detectable
2. m≥ r
3. (C, A, B, D) is minimum phase
4. y ⊂ ym

Remark 23.2

If m= r, the above conditions simplify to just conditions 3 and 4.
The following definitions of a stabilizing compensator and servo-compensator are required in the

development to follow.

Definition 23.4:

Given the stabilizable, detectable system (Cm, A, B, D) obtained from Equation 23.1, an LTI stabilizing
compensator

ξ̇=Λ1ξ+Λ2ym

u= K1ξ+K2ym
(23.6)

is defined to be a controller that asymptotically stabilizes the resultant closed-loop system, such that “desired”
transient behavior occurs.

This compensator is not a unique device and may be designed by using a number of different techniques.

Definition 23.5:

Given the disturbance/reference input poles λi , i = 1, 2, . . . , p, the matrix C ∈ Rp×p and vector γ ∈ Rp are
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defined by

C :=

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
−δ1 −δ2 −δ3 . . . −δp

⎤
⎥⎥⎥⎦ , γ :=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

(23.7)

where the coefficients δi , i = 1, 2, . . . , p are given by the coefficients of the polynomial
p∏

i=1

(λ−λi); i.e.,

λp+ δpλ
p−1+ · · ·+ δ2λ+ δ1 :=

p∏
i=1

(λ−λi) (23.8)

The following compensator, called a servo-compensator, is of fundamental importance in the design of
controllers to solve the RSP [5].

Definition 23.6:

Consider the class of disturbance/tracking signals given by Equations 23.2 and 23.3, and consider the system
of Equation 23.1; then a servo-compensator for Equation 23.1 is a controller with input e ∈ Rr and output
η ∈ Rrp given by

η̇= C∗η+B∗e (23.9)

where

C∗ := block diag (C, C, . . . , C︸ ︷︷ ︸
r

) (23.10)

B∗ := block diag (γ, γ, . . . , γ︸ ︷︷ ︸
r

) (23.11)

where C, γ are given by Equation 23.7.

The servo-compensator is unique within the class of coordinate transformations and nonsingular input
transformations.

Given the servo-compensator of Equation 23.9, now let DεRr×rp be defined by

D := block diag (δ, δ, . . . , δ︸ ︷︷ ︸
r

) (23.12)

where δ ∈ R1×p is given by:
δ := (1 0 0 . . . 0) (23.13)

The servo-compensator has the following properties:

Lemma 23.1: [12]

Given the plant represented by Equation 23.1, assume that the existence conditions of Theorem 23.1 all
hold; then
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1. The system {(
Cm 0
0 D

)
,

(
A 0

B∗C C∗
)

,

(
B

BD

)}

is stabilizable and detectable and has centralized fixed modes [8] (i.e., those modes of the system
that are not both simultaneously controllable and observable) equal to the centralized fixed modes of
(Cm, A, B, Dm).

2. The transmission zeros of {
(0 D),

(
A 0

B∗C C∗
)

,

(
B

BD

)}

are equal to the transmission zeros of (C, A, B, D).

23.3.1 Robust Servomechanism Controller

Consider the system of Equation 23.1, and assume that the existence conditions of Theorem 23.1 hold;
then any LTI controller that solves the RSP for Equation 23.1 consists of the following structure [6] (see
Figure 23.1):

u= ξ+Kη (23.14)

where η ∈ Rrp is the output of the servo-compensator (Equation 23.9), and ξ is the output of a stabilizing
compensator S with inputs ym, yref , η, u, where S, K are found to stabilize and give “desired behavior” to
the following stabilizable and detectable system:

(
ẋ
η̇

)
=
[

A 0
B∗C C∗

](
x
η

)
+
(

B
B∗D

)
yref

ỹm =
⎡
⎣Cm 0

0 I
0 0

⎤
⎦(x

η

)
+
⎛
⎝Dm

0
I

⎞
⎠ yref

(23.15)

where, from Lemma 23.1, the centralized fixed modes (if any) of

{(
Cm 0
0 I

)
,

[
A 0

B∗C C∗
]

,

(
B

B∗D

)}

are equal to the centralized fixed modes of (Cm, A, B); i.e., there always exists a coordinate transformation
and nonsingular input transformation, by which any controller that solves the RSP for Equation 23.1 can
be described by Equation 23.14. It is to be noted that this controller always has order ≥ rp.

yref
ym

T yK1
u

Servo-compensator

Plant

Stabilizing compensator

+ +

+–

e
η = C∗η + B∗e

η

ξ

ω

FIGURE 23.1 General controller to solve robust servomechanism problem.
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Properties of Robust Servomechanism Controller

Some properties of the robust servomechanism controller (RSC) represented by Equation 23.14 are as
follows [5]:

1. In the above controller, it is required to know only the disturbance/reference input poles
{λ1,λ2, . . . ,λp}; i.e., it is not necessary to know E, F of Equation 23.1 nor A1, A2, C1, C2, G
of Equations 23.2 and 23.3.

2. A controller exists generically [2] for almost all plants described by Equation 23.1, provided that
(a) m≥ r, and (b) the outputs y can be measured; if either condition (a) or (b) fails to hold, there
is no solution to the RSP.

23.3.2 Various Classes of Stabilizing Compensators

Various special classes of stabilizing compensators S that can be used in the RSC (Equation 23.14) are as
follows. It is assumed that the existence conditions of Theorem 23.1 are all satisfied in order to implement
these proposed controllers.

Multivariable Three-Term Controller

(See Figure 23.2). In order to use this controller, it is assumed that:

1. The plant of Equation 23.1 is open loop asymptotically stable.
2. The disturbance/tracking poles {λ1,λ2, . . . ,λp} are of the polynomial-sinusoidal type; i.e., it is

assumed that Re(λi)= 0, i = 1, 2, . . . , p.

If these assumptions hold, then the following generalized three-term controller solves the RSP [9]:

u= (K0+K1s)e+K2η

η̇= C∗η+B∗e
(23.16)

An algorithm is given [7], that shows that a stabilizing K2, with K0 = 0, K1 = 0, can always be found for
this controller.

23.3.3 Complementary Controller

(See Figure 23.3) In order to use this controller, it is assumed that the plant of Equation 23.1 is open loop
asymptotically stable. If this assumption holds, then the following controller, called a complementary

yref
ym

T yK2

K0 + K1s

u Plant
+ +

+–

e
η = C∗η + B∗e η

ξ

ω

FIGURE 23.2 Generalized three term controller to solve the robust servomechanism problem.
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yref
ym

T yK1

K0
x x = Ax + Bu

u Plant
+ +

+–

e
η = C∗η + B∗e

η

ξ

ω

FIGURE 23.3 Complementary controller to solve the robust servomechanism problem.

controller, will solve the RSP [5]:

u= K0x̂+K1η

η̇= C∗η+B∗e

˙̂x = Ax̂+Bu

(23.17)

where (K0, K1) are found to stabilize the stabilizable system

˙̂x =
[

A 0
B∗C C∗

]
x̃+

(
B

B∗D

)
u (23.18)

using state feedback; i.e., u= (K0 K1)x̃.

23.3.4 Observer-Based Stabilizing Controller

(See Figure 23.4) No additional assumptions are required in order to implement this controller. The
controller is given as follows [9]:

u= K0x̂+K1η

η̇= C∗η+B∗e

˙̂x = {A+ (B−ΛDm)K0−ΛCm}x̂+ (B−ΛDm)K1η+Λym

(23.19)

where (K0, K1) are found to stabilize the system of Equation 23.18, andΛ is an observer gain matrix found
to stabilize the system matrix (A−ΛCm) where (Cm, A) is detectable. (A reduced-order observer could
also be used to replace the full-order observer in Equation 23.19.)

yref
ym

T yK1

K0

x ym = Cmx + Dmu

u Plant
+

Observer for

+

+–

e
η = C∗η + B∗e

η

ξ

ω

x = Ax + Bu

FIGURE 23.4 Observer-based stabilizing compensator to solve the robust servomechanism problem.
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23.4 Applications and Example Calculations

We initially demonstrate the theory by considering the design of a controller for a nonminimum-phase
plant (Example 23.1), and a minimum-phase plant (Example 23.2), and thence conclude with a case study
on the control of a nontrivial distillation column system.

Example 23.1: Nonminimum-Phase System

Consider the following system

ẋ =
(

2 −1
0 0

)
x+

(
1
1

)
u

y = (1 0)x+ω; ym = y

(23.20)

which is open loop unstable and nonminimum phase (with a transmission zero at 1), and in which it
is desired to design a controller to solve the RSP for the case of constant disturbances and constant
reference input signals. In this case, the disturbance/tracking poles= {0}, and it can be directly
verified that the existence conditions for a solution to the problem are satisfied from Theorem 23.1.
In the controller design, it is initially assumed that the control input should not be “excessively large.”

Controller Development

On applying the servo-compensator of Equation 23.9 for constant disturbances/reference input signals
to Equation 23.20, the following system is obtained:

(
ẋ
η̇

)
=
⎛
⎝2 −1 0

0 0 0
1 0 0

⎞
⎠(x

η

)
+
⎛
⎝1

1
0

⎞
⎠ω+

⎛
⎝ 0

0
−1

⎞
⎠ yref

y = (1 0 0)

(
x
η

)
+ 1ω (23.21)

and, on minimizing the performance index [12] for Equation 23.21

Jε =
∫ ∞

0
(e′e+ εu̇′u̇) dτ, ε= 1 (23.22)

the following controller is obtained:

u= (k1 k2)x̂+ k
∫ t

0
(y− yref ) (23.23)

where

k1 =−13.77, k2 = 8.721, k = 1.000

and where x̂ is the output of an observer for Equation 23.20. On using a reduced-order observer with
observer pole=−1, the following controller is thence obtained.
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Robust Servomechanism Controller

u=−22.498y+η+ 8.7214σ

η̇= y− yref

σ̇= 16.443σ+ 2η− 41.996y

(23.24)

which, when applied to Equation 23.20, gives the following closed-loop poles:

⎛
⎝−0.552 ± j0.456

−1.00
−1.95

⎞
⎠

Properties of Controller

On applying the controller of Equation 23.24 to the plant of Equation 23.20, the following closed-loop
system is obtained:

⎛
⎝ẋ
η̇

σ̇

⎞
⎠=

⎡
⎢⎢⎣
−20.498 −1 1 8.7214
−22.498 0 1 8.7214

1 0 0 0
−41.996 0 2 16.443

⎤
⎥⎥⎦
⎛
⎝x
η

σ

⎞
⎠+

⎛
⎜⎜⎝

0
0
−1
0

⎞
⎟⎟⎠ yref +

⎛
⎜⎜⎝
−22.49
−22.49

1
−41.99

⎞
⎟⎟⎠ω

y = [1 0 0 0]
⎛
⎝x
η

σ

⎞
⎠+ω

u= [−22.498 0 1 8.7214]
⎛
⎝x
η

σ

⎞
⎠+ (−22.498)ω

which gives the Bode magnitude response between e, u and input yref in Figure 23.5, e, u and input ω
in Figure 23.6, and unit-step responses in yref in Figure 23.7 and in ω in Figure 23.8, with zero initial
conditions. It is seen that satisfactory tracking/regulation occurs using the controller.

Response of Closed-Loop System to Unbounded Reference Input/Disturbance Signals

According to Theorem 3 in [12], the RSC of Equation 23.14 has the property of not only achieving
asymptotic tracking/regulation for the class of constant reference input/disturbance signals, but also
bringing about exact asymptotic tracking/regulation for unbounded signals that have the property that:

lim
t→∞ ˙yref (t)= 0

lim
t→∞ ω̇(t)= 0

(23.25)

To illustrate this result, Figure 23.9 gives the response of the closed-loop system for the case when the
tracking input signal is given by

yref (t)= t1/4, t ≥ 0 (23.26)

with zero initial conditions. It is seen that exact asymptotic tracking indeed does take place using this
controller.

Optimum Response of Nonminimum-Phase System

The RSC of Equation 23.24 was obtained so that the magnitude of the control input signal is constrained
by letting ε= 1 in the performance index of Equation 23.22. It is of interest to determine what type of
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Bode magnitude of closed loop system from yref to error

Bode magnitude of closed loop system from yref to input
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FIGURE 23.5 Bode plot magnitude of closed-loop system using robust servomechanism controller from reference
input signal: (a) to error; (b) to control input.
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FIGURE 23.6 Bode plot magnitude of closed-loop system using robust servomechanism controller from disturbance
signal: (a) to error; (b) to control input.
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Output response of closed loop system for step input in yref

Input response of closed loop system for step input in yref

1.5
(a)

(b)

1

0.5
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0.2

u

–0.2

0
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Time (s)
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y

0

0 1 2 3 4 5
Time (s)

6 7 8 9 10
–0.5

FIGURE 23.7 Response of closed-loop system using robust servomechanism controller for unit step in reference
input signal: (a) output; (b) input.

Output response of closed loop system for step input in ω
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–30
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0 1 2 3 4 5 6 7 8 9 10

0

Input response of closed loop system for step input in ω
Time (s)

y
u

Time (s)

(a)

(b)

FIGURE 23.8 Response of closed-loop system using robust servomechanism controller for unit step in disturbance
input signal: (a) output; (b) input.
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0
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1
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(a)

(b)

2
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y

Time (s)

0

–0.2

0.2

0.6

0.8

0.4

0 10 20 30 40 50 60 70 80 90 100

u

Time (s)

Output response of closed loop system to unbounded yref

Input response of closed loop system to unbounded yref

FIGURE 23.9 Response of closed-loop system using robust servomechanism controller for unbounded reference
input signal= t1/4 : (a) output; (b) input.

transient performance can be obtained for the system if the controller is designed without any regard
for the magnitude of the control input signal; i.e., by letting ε= 10−8, say, in the performance index
(Equation 23.22). According to Theorem 23.2, “perfect control” cannot be achieved for the system; in
particular, if the plant’s and controller’s initial conditions are equal to zero and ω= 0, then the limiting
performance that can be achieved is given by [13]

lim
ε→0

Jε = 2
l∑

i=1

1

λ∗i
y2

ref (23.27)

where {λ∗i , i = 1, 2, . . . , l} are the nonminimum TZ of the system, and Jε is given by Equation 23.22. In
this case, l = 1, λ∗1 = 1, so that the limiting performance index is given by lim

ε→0
Jε = 2y2

ref .

The following optimal controller is now obtained on putting ε= 10−8 in the performance index of
Equation 23.22:

u= (−2.043× 104 2.029× 104)x+ 104η

η̇= y− yref
(23.28)

This controller results in the following closed-loop system poles:
(−70.7± j70.7

−1.00

)

with the following optimal performance index, for x(0)= 0, ω= 0:

J = 2.014y2
ref (23.29)

which is “close” to the optimal limiting performance index of 2y2
ref .
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FIGURE 23.10 Response of closed-loop system using robust servomechanism controller with high gain for unit
step in reference input signal: (a) output; (b) input.

A response of the closed-loop system using the controller of Equation 23.28 for a unit step in yref , with
zero initial conditions for the plant, is given in Figure 23.10. It is seen that the response of the closed-loop
system is only about twice as fast as that obtained using the controller of Equation 23.24, in spite of the
fact that the control signal is now some 40 times larger than that obtained using Equation 23.24, which
confirms the fact that nonminimum-phase systems are fundamentally “difficult to control.”

High-Gain Servomechanism Control

The same example as considered in the previous sections will now be considered, except that a high-
gain servomechanism controller (HGSC) [12], which is simpler than an RSC, will now be applied and
compared with the RSC of Equation 23.24.

Plant Model

ẋ =
(

2 −1
0 0

)
x+

(
1
1

)
u

y = (1 0)x+ω
(23.30)

Controller Development

Given the cheap control performance index

J̃ε =
∫ ∞

0
(y′y+ εu′u) dτ (23.31)
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let ε= 1; in this case, the optimal control that minimizes J̃ε for the system of Equation 23.30 with ω= 0
is given by

u= kx, k = (−10.292 5.6458) (23.32)

which results in the closed-loop system of Equations 23.30 and 23.33 having poles given by (−0.457,
−2.19).

On letting K := −[c(A+Bk)−1B]−1 =−1, the HGSC is now given by [12]:

u= K(yref − y)+ (k+Kc)x̂ (23.33)

where x̂ is the output of an observer for Equation 23.30. On choosing a reduced-order observer with
observer gain =−1, and simplifying, the following controller is finally obtained:

High-Gain Servomechanism Controller

u=−yref − 15.94y− 5.646ξ

ξ̇= 10.29ξ+ 28.87y+ 2yref
(23.34)

Properties of HGSC

On applying Equation 23.34 to Equation 23.30, the following closed-loop system is obtained:

(
ẋ
ξ̇

)
=
⎡
⎣−13.94 −1 −5.646
−15.94 0 −5.646

28.87 0 10.29

⎤
⎦(x

ξ

)
+
⎛
⎝−1
−1
2

⎞
⎠ yref +

⎛
⎝ 0

0
28.87

⎞
⎠ω

e = [1 0 0]
(

x
ξ

)
− 1yref + 1ω

y = [1 0 0]
(

x
ξ

)
+ 1ω

u= [−15.94 0 −5.646]
(

x
ξ

)
− 1yref − 15.94ω

which has closed-loop poles given by (−0.457, −1.00, −2.19). The Bode magnitude response of this
system with respect to output e, u and input yref is given in Figure 23.11. The unit-step function response
of this system for an increase in yref with zero initial conditions is given in Figure 23.12. It is seen that
satisfactory tracking occurs using this controller.

Comparison of Robustness Properties of HGSC to RSP

Although the HGSC of Equation 23.34 is “simpler” than the RSC of Equation 23.24, the outstanding
advantage of the RSP is that it is robust; i.e., it provides exact asymptotic tracking/regulation for any
perturbations of the plant model, that do not destabilize the perturbed closed-loop system. As an example
of this behavior, consider the HGSC (Equation 23.34) and RSC (Equation 23.24) controlling the following
(slightly) perturbed model of Equation 23.20:

Perturbed Model

ẋ =
(

2 −1
0 −0.1

)
x+

(
1
1

)
u

y = (1 0)x+ω
(23.35)

In this case, the resultant perturbed closed-loop system remains stable for each of the controllers, but the
HGSC no longer provides tracking; e.g., lim

t→∞ y(t)= 0.3 when yref = 1. In contrast, it may be verified that

the RSC (Equation 23.24) still provides exact tracking when applied to Equation 23.35.
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FIGURE 23.11 Bode plot magnitude of closed-loop system using high-gain servomechanism controller from refer-
ence input signal: (a) to error; (b) to control input.
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FIGURE 23.12 Response of closed-loop system using high-gain servomechanism controller for unit step in reference
input signal: (a) output; (b) input.
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Example 23.2: Minimum-Phase System

Consider the following system, which is a model of a pressurized head box in paper manufacturing:

ẋ =
(

0.395 0.01145
−0.011 0

)
x+

(
0.03362 1.038
0.000966 0

)
u

y =
(

1 0
0 1

)
x ; ym = y (23.36)

which has open-loop eigenvalues = (−3.19× 10−4,−3.95× 10−1). In this case, the plant represented
by Equation 23.36 has no transmission zeros, which implies that it is minimum phase, and so there
exists a solution to the RSP for the class of constant disturbances/reference input signals such that
perfect control occurs (see Theorem 23.2).

The following development illustrates how “perfect control” in a minimum-phase system results in arbi-
trarily good approximate error regulation (AGAER) [12] occurring; i.e., although the servo-compensator
is designed to give exact asymptotic error regulation for constant disturbances/reference input signals,
AGAER will occur for other classes of disturbances/reference input signals, e.g., for the class of sinusoidal
signals yref = ȳ sin(ωt).

The following perfect controller is now obtained:

u= K0y+K
∫ t

0
(y− yref ) dτ (23.37)

which, on minimizing the performance index

Jε =
∫ ∞

0
(e′e+ εu̇′u̇) dτ (23.38)

gives

K0 =
( −4.33 −4549
−138.3 158.7

)
, K =

(−371.9 −104

−104 371.9

)
for ε= 10−8

K0 =
(−13.8 −1.439× 104

−438.2 477.3

)
, K =

(−338.8 −9.994× 104

−9.994× 104 3388

)
for ε= 10−10 (23.39)

It may now be demonstrated that AGAER occurs; e.g., when the reference input signal yref = ȳ sin(ωt),
ω= 0.1 is applied, we obtain the following error coefficient [12]:

0K0
t (jω)=

(
1.4× 10−3 1.0× 10−4

1.0× 10−4 4.6× 10−2

)
for ε= 10−8

=
(

4.4× 10−4 1.0× 10−5

1.0× 10−5 1.4× 10−2

)
for ε= 10−10 (23.40)

which implies that excellent (but approximate) tracking occurs as ε→ 0 for the tracking signal yref =
ȳ sin(ωt), ω= 0.1.

Stability Robustness Concerns

The previous example studies have ignored “stability robust concerns”; i.e., the recognition that any
plant model is really only an approximation to a model of the actual physical system, and hence that a
given physical system may become unstable under feedback if the model used is sufficiently inaccurate.
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The following shows that for some classes of systems, a system may be relatively insensitive to plant
perturbations, whereas for other classes of systems, a system may be highly sensitive to plant perturbations.
This implies that any controller that is designed to solve the RSP must always take into account stability
robustness considerations for the particular problem being studied.

Consider the head box example (Equation 23.36) and the controller

u= K0y+K
∫ t

0
(y− yref ) dτ (23.41)

which has been designed for the class of constant disturbances/reference input signals. It is now desired
to determine the optimal controller gain matrices K0, K that minimize the performance index

Jε =
∫ ∞

0
(e′e+ εu̇′u̇) dτ ε= 10−8 (23.42)

with and without a gain margin (GM) constraint [10] imposed on the system. This constraint can be
imposed by using the computer-aided design (CAD) approach of Davison and Ferguson [9]. LetΓ denote
the optimal cost matrix of Equation 23.44, and define Jopt = trace (Γ). The following results are now
obtained (see Table 23.1)

In this case, the optimal controller that minimizes Jε (Equation 23.44), subject to a fairly demanding
GM constraint of (0.2,2) is only about “two times slower” than the optimal controller, which does not
take gain margin into account; i.e., the system is relatively insensitive to plant perturbations.

Consider now, however, the following system:

ẋ =
(−1 0

0 −2

)
x+

(
7 8

12 14

)
u

y =
(

7 −8
−6 7

)
x; ym = y

(23.43)

and the controller of Equation 23.43. It is desired now to find optimal controller parameters K0, K so as to
minimize the performance index Jε (Equation 23.44) with and without a modest GM of (0.9,1.1) applied.
The following results are obtained from Davison and Copeland [10] (see Table 23.2).

In this case, it can be seen that a very modest demand that the controller should have a GM of only
10% has produced a dramatic effect in terms of the controller. The controller obtained with the 10% GM
constraint being imposed has a performance index that is some 105 times “worse” than the case when
no GM constraint is imposed; i.e., the system is extremely sensitive to plant perturbations. Thus, this
example emphasizes the need to always apply some type of stability robustness constraint when solving
“high-performance controller” problems.

TABLE 23.1 Optimal Controller Parameters Obtained

GM Constraint Jopt (K0, K) Closed-Loop Poles

None 0.469

[
−4.33 −4550 −371.9 −9993

−138 158.7 −9993 371.9

] (
−2.20 ± j2.20

−72.1 ± j72.1

)

(0.2,2) 0.700

[
2330 245 6700 281

−504 −820 −1960 −1580

] ⎛
⎜⎝
−1.43 ± j1.51

−5.31

−437

⎞
⎟⎠
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TABLE 23.2 Optimal Controller Parameters Obtained

GM Constraint Jopt (K0, K) Closed-Loop Poles

None 0.100

[
−58.1 −15.2 −326 −9995

220 −185 9995 −326

] (
−10.1± j10.1

−700± j700

)

(0.9,1.1) 24.4

[
−0.600 −0.962 −0.636 0.109

0.740 0.759 0.620 −0.380

] ⎛
⎜⎝

−0.0538

−0.350

−0.897± j4.21

⎞
⎟⎠

More Complex Tracking/Disturbance Signal Requirements

The following example illustrates the utilization of more complex servo-compensator construction. In
this case, the head box problem modeled by Equation 23.36 is to be controlled for the class of distur-
bance/reference input signals that have the structure:

yref = ȳ1 sin(ω1t)+ ȳ2 sin(ω2t)+ ȳ3 sin(ω3t) (23.44)

where ω1 = π, ω2 = 3π, ω3 = 5π, and ȳ1, ȳ2, ȳ3 are arbitrary real two-dimensional vectors.
From Theorem 23.1, there exists a solution to the problem, and the servo-compensator is now given

from Equation 23.9 by:

η̇= block diag

[(
0 I

−ω2
1I 0

)
,

(
0 I

−ω2
2I 0

)
,

(
0 I

−ω2
3I 0

)]
η+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
I
0
I
0
I

⎤
⎥⎥⎥⎥⎥⎥⎦

(y− yref ) (23.45)

and the following controller is now obtained:

u= K0y+ (K1 K2 K3)η (23.46)

In this case, the following performance index

J̄ε =
∫ ∞

0

{
(x′ η′)Q

(
x
η

)
+ εu′u

}
dτ (23.47)

where

Q := (0 I 0 I 0 I 0)′(0 I 0 I 0 I 0)

ε= 10−8
(23.48)

is to be minimized in order to determine the optimal controller parameters (K0, K1, K2, K3). As before,
let Γ denote the optimal cost matrix of Equation 23.47, corresponding to a minimization of J̄ε, and define
J̄opt = trace(Γ). The following results are now obtained:

J̄opt = 36.3

and the optimal K0, K1, K2, K3 are given in Table 23.3.
The eigenvalues of the resultant closed-loop system using this controller are given in Table 23.4.
In this case, the response of the resultant closed-loop system for a triangular tracking signal of period 4

seconds is given in Figure 23.13. It is seen that the tracking performance of the system is excellent; it is to
be noted that the dominant harmonics of this triangular wave are given by π, 3π, 5π rad/s, and thus the
servo-compensator is approximating the tracking of a triangular wave, in this case, by tracking/regulating
the main harmonic terms of the periodic signal.



�

�

�

�

� �

23-20 Control System Advanced Methods

TABLE 23.3 Optimal Value of K0, K1, K2, K3 Obtained

K0 = −1.8047e+00 −2.1315e+03

−5.8028e+01 8.0400e+01

K1 = −3.3062e+02 8.0559e+03 −4.0912e+01 −1.8825e+03

−9.7821e+03 −2.4767e+02 −6.5109e+02 8.0833e+01

K2 = −2.6297e+02 9.7588e+03 −2.1678e+01 −2.2892e+02

−8.2362e+03 −3.2042e+02 −6.0072e+02 9.6246e+00

K3 = −1.8240e+02 9.9091e+03 −1.7523e+01 −8.3041e+01

−5.7704e+03 −3.2592e+02 −5.1951e+02 3.3729e+00

23.4.1 CAD Approach

In designing controllers for actual physical systems, it is often important to impose on the controller
construction constraints that are related to the specific system being considered. Such constraints can be
incorporated directly using a CAD approach (e.g., see [9]). The following example illustrates the type of
results that may be obtained.

Consider the head box problem modeled by Equation 23.36, controlled by the controller

u= K0y+K
∫ t

0
(y− yref ) dτ (23.49)

and assume that it is desired to determine the controller gain matrices K0, K1, so as to minimize the
performance index:

Jε =
∫ ∞

0
(e′e+ εu̇′u̇) dτ, ε= 10−8 (23.50)

such that all elements of K0, K satisfy the constraint:

|kij| ≤ 100

This constraint could arise, for example, in terms of attempting to regulate the control signal magnitude
level for a system. The following results are obtained in this case [9] (see Table 23.5).

TABLE 23.4 Closed-Loop Eigenvalues

−1.5016e+01 +2.8300e+01i

−1.5016e+01 −2.8300e+01i

−3.0344e+01

−1.2005e−01 +1.3596e+01i

−1.2005e−01 −1.3596e+01i

−1.9565e−02 +1.5708e+01i

−1.9565e−02 −1.5708e+01i

−5.4357e−02 +9.4249e+00i

−5.4357e−02 −9.4249e+00i

−3.5863e−02 +6.7460e+00i

−3.5863e−02 −6.7460e+00i

−1.0298e+00

−4.4094e−01 +3.2555e+00i

−4.4094e−01 −3.2555e+00i
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FIGURE 23.13 Response of closed-loop system for head box example using robust servomechanism controller for
triangular reference input signal.
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TABLE 23.5 Results Obtained

Constraint Jopt (K0, K) Closed-Loop Poles

None 0.516

[
−4.33 −4550 −372 −9993

−138 159 −9993 372

] (
−2.20± j2.20

−72.1± j72.1

)

|kij| ≤ 100 22.2

[
−70 −100 −100 −100

−2.6 78 −29 22

] (
−0.157± j0.330

−2.61± j5.62

)

Consider now the following model, which approximately describes the behavior of a DC motor:

ẋ =
[−7.535× 10−2 5.163
−209.4 −198.1

]
x+

[
0

188.7

]
u+

[−4.651
0

]
ω

y = [1 0]x; ym = x

(23.51)

and consider the following controller:

u= K0ym+K
∫ t

0
(y− yref ) dτ (23.52)

where (K0, K) are to be obtained so as to minimize the performance index

Jε =
∫ ∞

0
(e′e+ u̇′u̇) dτ, ε= 10−8 (23.53)

subject to the constraint that the damping factor of the closed-loop system should have the property that
ζ≥ 1, in order to prevent an excessively oscillatory response, say. The following results are obtained [9]
(see Table 23.6).

Discrete Systems

The previous results have considered a continuous system. For discrete-time systems, equivalent condi-
tions for the existence of a solution to the RSP and the necessary controller structure can be obtained
(e.g., see [4]). The following example illustrates this point.

Consider the following discrete system:

xk+1 =
(

0.9512 0
0 0.09048

)
xk +

(
4.877 4.877
−1.1895 3.369

)
uk

yk =
(

1 0
0 1

)
xk ; ym = y

(23.54)

in which it is desired to solve the RSP for the class of constant disturbances/constant tracking signals. In
this case, the above system is controllable and observable and has no transmission zeros, so that there

TABLE 23.6 Results Obtained

Constraint Jopt (K0, K) Closed-Loop Poles

None 9.93−3
10 [−98.1 −1.49 −10000]

(
−116± j161

−249

)

ζ≥ 1 1.00−2
10 [−109 −1.62 −9480]

(
−153± j153

−197

)
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exists a solution to the RSP; the servomechanism controller becomes in this case:

uk = K0yk +Kηk

ηk+1 = ηk + yk − yref
(23.55)

and, on minimizing the performance index

J∗ε =
∞∑

k=1

[e′kek + ε(uk+1− uk)′(uk+1− uk)], ε= 10−8 (23.56)

the following controller gain matrices are obtained:

J∗opt = 6.00

(K0, K)opt =
[−0.296 0.239 −0.152 0.219
−0.104 −0.239 −0.0535 −0.219

] (23.57)

The closed-loop poles obtained by applying the above controller to the plant modeled by Equation 23.54
are, in this case, given by −8.4× 10−10± j1.6× 10−5, 7.2× 10−11± j8.1× 10−6); i.e., a “dead-beat”
closed-loop system time response is obtained.

23.4.2 Case Study Problem—Distillation Column

The following model of a binary distillation column with pressure variation is considered:

ẋ = Ax+Bu+Eω

y = Cx
(23.58)

where (C, A, B, E) are given in Table 23.7. Here y1 is the composition of the more volatile component in
the bottom of the column, y2 is the composition of the more volatile component in the top of the column,
and y3 is the pressure in the column; ω1 is the input feed disturbance in the column; and u1 the reheater
input, u2 the condensor input, and u3 the reflux in the system.

Eigenvalues and Transmission Zeros of Distillation Column

The open-loop eigenvalues and transmission zeros of the distillation column are given in Table 23.8,
which implies that the system is minimum phase.

It is desired now to find a controller that solves the RSP problem for this system for the case of constant
disturbances and constant reference input signals. In this case, the existence conditions of Theorem 23.1
hold, so that a solution to the problem exists; in particular, there exists a solution to the “perfect control
robust servomechanism” problem (see Theorem 23.2) for the system.

Perfect Robust Controller

The following controller is obtained from Zhang and Davison [14], and it can be shown to produce
“perfect control” (i.e., the transient error in the system can be made arbitrarily small) in the system as
ε→ 0:

u= 1

ε

(s+ 1)2

(ε2s+ 1)2

Θ

s
(y− yref ) (23.59)

where

Θ :=
⎡
⎣ 1.7599× 100 −3.4710× 106 −1.0869× 103

−1.7599× 100 3.4710× 106 −1.0870× 103

−3.9998× 102 −3.0545× 104 −7.8258× 100

⎤
⎦ (23.60)
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TABLE 23.7 Data Matrices for Distillation Column Model

A=
x1 x2 x3 x4 x5

x1 −0.01400 0.00430 0 0 0

x2 0.00950 −0.01380 0.00460 0 0

x3 0 0.00950 −0.01410 0.00630 0

x4 0 0 0.00950 −0.01580 0.01100

x5 0 0 0 0.00950 −0.03120

x6 0 0 0 0 0.02020

x7 0 0 0 0 0

x8 0 0 0 0 0

x9 0 0 0 0 0

x10 0 0 0 0 0

x11 0.02550 0 0 0 0

x6 x7 x8 x9 x10

x1 0 0 0 0 0

x2 0 0 0 0 0

x3 0 0 0 0 0

x4 0 0 0 0 0

x5 0.01500 0 0 0 0

x6 −0.03520 0.02200 0 0 0

x7 0.02020 −0.04220 0.02800 0 0

x8 0 0.02020 −0.04820 0.03700 0

x9 0 0 0.02020 −0.05720 0.04200

x10 0 0 0 0.02020 −0.04830

x11 0 0 0 0 0.02550

x11

x1 0

x2 0.00050

x3 0.00020

x4 0

x5 0

x6 0

x7 0

x8 0.00020

x9 0.00050

x10 0.00050

x11 −0.01850

B=
u1 u2 u3

x1 0 0 0

x2 5.00000e−06 −4.00000e−05 0.00250

x3 2.00000e−06 −2.00000e−05 0.00500

x4 1.00000e−06 −1.00000e−05 0.00500

x5 0 0 0.00500

x6 0 0 0.00500

x7 −5.00000e−06 1.00000e−05 0.00500

x8 −1.00000e−05 3.00000e−05 0.00500

x9 −4.00000e−05 5.00000e−06 0.00250

x10 −2.00000e−05 2.00000e−06 0.00250

x11 0.00046 0.00046 0
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TABLE 23.7 (continued) Data Matrices for Distillation Column

Model

C =
x1 x2 x3 x4 x5

y1 0 0 0 0 0

y2 1.00000 0 0 0 0

y3 0 0 0 0 0

x6 x7 x8 x9 x10

y1 0 0 0 0 1.00000

y2 0 0 0 0 0

y3 0 0 0 0 0

x11

y1 0

y2 0

y3 1.00000

E =
w1

x1 0

x2 0

x3 0

x4 0

x5 0.01

x6 0

x7 0

x8 0

x9 0

x10 0

x11 0

Properties of Closed-Loop System

In order to determine the potential “speed of response” that may be obtained by the controller modeled
by Equation 23.59, the following closed-loop eigenvalues of the system are obtained with ε= 0.1 (see
Table 23.9).

TABLE 23.8 Properties of Distillation Column Model

Open-Loop Eigenvalues Transmission Zeros

−9.6031e−02 −9.1024e−02

−7.0083e−02 −6.6830e−02

−5.0545e−02 −5.0627e−02

−1.2152e−04 −2.9083e−02

−3.2355e−03 −2.2078e−02

−3.3900e−02 −9.5168e−03

−7.7594e−03 −6.4089e−03

−1.9887e−02

−1.8154e−02

−2.4587e−02

−1.4196e−02
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FIGURE 23.14 Response of closed-loop system for distillation column example using perfect robust servomecha-
nism controller for unit step in yref given by yref (1)= (1 0 0)′, yref (2)= (0 1 0)′, yref (3)= (0 0 1)′.

Using the controller of Equation 23.59 with ε= 0.1, the response of Figure 23.14 is then obtained for
the case of a unit-step increase in yref = (1 0 0)′, (0 1 0)′, (0 0 1)′, respectively, with zero initial conditions.
It is seen that “perfect control” indeed does take place; i.e., all transients have died down in less than 1
second, the system displays “low interaction,” and no “excessive peaking occurs.” In real life, however,
this controller would not be used because the control inputs are excessively large (see Figure 23.14).

The following decentralized controller, obtained by the procedure given in [11], would be quite realistic
to implement, however, since the control input signals do not “peak” now as they did in the previous
controller.
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TABLE 23.9 Closed-Loop Eigenvalues

−9.9102e+01 +3.1595e+02i

−9.9102e+01 −3.1595e+02i

−9.9097e+01 +3.1594e+02i

−9.9097e+01 −3.1594e+02i

−1.2776e+02

−5.9778e+01

−1.0030e+01

−1.6633e+00

−7.8470e−01

−9.1245e−01 +2.8213e−01i

−9.1245e−01 −2.8213e−01i

−9.1207e−01 +2.8314e−01i

−9.1207e−01 −2.8314e−01i

−9.1027e−02

−6.6832e−02

−6.4090e−03

−9.5169e−03

−2.9083e−02

−5.0626e−02

−2.2078e−02

23.4.3 Decentralized Robust Controller

u= K1y+K2η+K3ρ

η̇= y− yref

ρ̇= K5ρ+K4y

(23.61)

where K1, K2, K3, K4, K5 are given in Table 23.10.

TABLE 23.10 Decentralized Controller Gains Obtained

K1 = 1.7409e+05 0 0

0 1.9140e+04 0

0 0 −7.7460e+03

K2 = 4.5284e+02 0 0

0 1.2143e+01 0

0 0 −3.7682e+00

K3 = 5.7841e+05 0 0

0 3.0466e+05 0

0 0 −1.0636e+07

K4 = 1.0000e+00 0 0

0 1.0000e+00 0

0 0 1.0000e+00

K5 = −1.1024e+05 0 0

0 −8.1558e+07 0

0 0 −1.3506e+04
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TABLE 23.11 Closed-Loop Eigenvalues

−8.1558e+07

−1.3506e+04

−1.1023e+03

−1.7595e+00 +4.1365e+01i

−1.7595e+00 −4.1365e+01i

−9.5681e−03 +7.5529e−02i

−9.5681e−03 −7.5529e−02i

−8.9273e−02

−6.5720e−02

−5.0556e−02

−2.9058e−02

−2.2081e−02

−9.5034e−03

−6.4076e−03

−2.5926e−03

−6.2808e−04

−4.4157e−04

Properties of Closed-Loop System

The following closed-loop eigenvalues are obtained by applying the controller of Equation 23.61 to
Equation 23.58 (see Table 23.11).

Using the controller of Equation 23.61, the response of Figure 23.15 is then obtained for the case of a
unit step in yref = (1 0 0)′, (0 1 0)′, (0 0 1)′, respectively, and for the case of a unit step in the disturbance
termωwith zero initial conditions. It is seen that excellent tracking/regulation takes place; i.e., the output
responses obtained show little interaction effects with no peaking occurring, and the control input signals
are now quite realistic to implement. In addition, the controller has the additional advantage of being
decentralized; i.e., the controller is particularly simple to implement. The time response of the closed-loop
system, however, is now much slower compared to the case when perfect control is applied.

23.5 Concluding Remarks

In this overview on the RSP, the emphasis has been placed on the control of LTI continuous systems,
and existence conditions and corresponding required controller construction to solve the RSP have been
reviewed. To demonstrate the principles involved, various simple nonminimum- and minimum-phase
examples were initially considered, and then a case study of a nontrivial system example was studied.

23.6 Defining Terms

Arbitrarily good approximate error regulation (AGAER): The property of a closed-loop system that
permits arbitrarily good regulation to occur for arbitrary disturbance/tracking signals of a spec-
ified class.

Centralized fixed modes: Those modes of an LTI system that are not both simultaneously controllable
and observable.

Decentralized control: Refers to a controller in which the information flow between the inputs and
outputs is constrained to be block diagonal.
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FIGURE 23.15 Response of closed-loop system for distillation column example using decentralized robust
servomechanism controller for unit-step in yref given by yref (1)= (1 0 0)′, yref (2)= (0 1 0)′, yref (3)= (0 0 1)′ and
for a unit-step disturbance.
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Error coefficient: The steady-state error coefficient matrix associated with a closed-loop system for a
given class of disturbance or reference input signals.

Gain margin (GM): Given a stable closed-loop system, the GM (θ, β) refers to the largest perturbation of
gain in the system’s transfer function matrix that may occur before instability occurs.

High-gain servomechanism controller (HGSC): A controller that gives perfect tracking for continuous
minimum-phase systems.

Minimum phase: A system whose transmission zeros are all contained in the open left complex half-
plane.

Nonminimum phase: A system that is not minimum phase.
Perfect control: The ability of a controller to provide arbitrarily good transient response in the system.
Perfect robust controller: A controller that solves the RSP such that perfect control occurs.
Robust servomechanism problem (RSP): The problem of finding a controller to solve the servomecha-

nism problem that has the property of providing exact asymptotic error regulation, independent
of any perturbations in the plant that do not destabilize the system.

Servomechanism problem: The problem of finding a controller to provide asymptotic error regulation
and tracking for a system, subject to a specified class of disturbances and tracking signals.

Servo-compensator: A compensator that is used in the construction of a controller to solve the RSP.
Stabilizing compensator: A controller that stabilizes a system.
Transmission zero: A generalization of the notion of a zero of a single-input/single-output system to

multivariable systems.

References

1. Davison, E.J., The feedforward control of linear time invariant multivariable systems, Automatica, 9(5),
561–573, 1973.

2. Davison, E.J. and Wang, S.H., Properties of linear time invariant multivariable systems subject to
arbitrary output and state feedback, IEEE Trans. Autom. Control, 18, 24–32, 1973.

3. Davison, E.J. and Wang, S.H., Properties and calculation of transmission zeros of linear multivariable
time-invariant systems, Automatica, 10, 643–658, 1974.

4. Goldenberg, A. and Davison, E.J., The feedforward and robust control of a general servomechanism
problem with time lag, 8th Annu. Princeton Conf. Inf. Sci. Syst., 80–84, 1974.

5. Davison, E.J. and Goldenberg, A., The robust control of a general servomechanism problem: The servo
compensator, Automatica, 11, 461–471, 1975.

6. Davison, E.J., The robust control of a servomechanism problem for linear time-invariant multivariable
systems, IEEE Trans. Autom. Control, 21, 25–34, 1976.

7. Davison, E.J., Multivariable tuning regulators: The feedforward and robust control of a general
servomechanism problem, IEEE Trans. Autom. Control, 21, 35–47, 1976.

8. Davison, E.J., The robust decentralized control of a general servomechanism problem, IEEE Trans.
Autom. Control, 21, 14–24, 1976.

9. Davison, E.J. and Ferguson, I.J., The design of controllers for the multivariable robust servomechanism
problem using parameter optimization methods, IEEE Trans. Autom. Control, 26, 93–110, 1981.

10. Davison, E.J. and Copeland, B., Gain margin and time lag tolerance constraints applied to the sta-
bilization problem and robust servomechanism problem, IEEE Trans. Autom. Control, 30, 229–239,
1985.

11. Davison, E.J. and Chang, T., Decentralized controller design using parameter optimization methods,
Control: Theor. Adv. Technol. 2, 131–154, 1986.

12. Davison, E.J. and Scherzinger, B., Perfect control of the robust servomechanism problem, IEEE Trans.
Autom. Control, 32(8), 689–702, 1987.

13. Qiu, Li and Davison, E.J., Performance limitations of non-minimum phase systems in the servomecha-
nism problem, Automatica, 29(2), 337–349, 1993.

14. Zhang, H. and Davison, E.J., A uniform high gain compensator for multivariable systems, 1994 IEEE
Control Decision Conf., 892–897, 1994.



�

�

�

�

� �

Robust Servomechanism Problem 23-31

Further Reading

There are a number of important issues that have not yet been considered in this chapter. For example,
when disturbances are measurable, so-called feedforward control [1,7] can be highly effective in minimiz-
ing the effects of disturbances in the servomechanismproblem.

In many classes of problems, the controller must often be constrained to be decentralized, e.g., in
process control systems, power system problems, transportation system problems. A treatment of the
so-called decentralized robust servomechanism problem, which arises in this case, is given in [8] and [11].

The effect of transportation delay in a system is often of critical importance in the design of controllers
to solve the servomechanism problem. A treatment of systems that have time lag is given in [4].

Finally, it is often the case that no mathematical model is actually available to describe the plant that
is to be controlled. In this case, if the plant is open-loop asymptotically stable, so-called tuning regulator
theory [7] can be applied to obtain existence conditions and to design a controller, which can then be
applied to the plant to solve the servomechanism problem.

The above treatment of the servomechanism problem has been carried out in a state-space setting;
alternative treatments may be found using other settings such as geometric methods, frequency-domain
methods, polynomial matrix representation methods, coprime matrix factorization methods, etc.
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24.1 Introduction

Optimization problems and control problems are highly intertwined. If a control configuration has been
decided upon, controller parameters or control input signals can be interpreted as decision variables of
an optimization problem that reflects the desired specifications and constraints of the controlled system.

In recent years, linear matrix inequalities (LMIs) have emerged as a powerful tool for approaching
control problems that appear difficult if not impossible to solve in an analytic fashion. Although the history
of LMIs goes back to the 1940s, with a major emphasis on their role in control in the 1960s through the
work of Kalman, Yakubovich, Popov, and Willems, only during the last decades have powerful numerical

24-1
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24-2 Control System Advanced Methods

interior point techniques been developed to solve LMIs in a practical and efficient manner (Nesterov,
Nemirovskii). Today, several commercial and noncommercial software packages are available that allow
for simple coding of general LMI problems. For example, Yalmip [12] is a very flexible and noncommercial
toolbox for defining and solving advanced optimization problems.

Boosted by the availability of fast LMI solvers, research in robust control theory has experienced a
significant paradigm shift. Instead of arriving at an analytical solution of an optimal control problem and
implementing such a solution in software so as to synthesize optimal controllers, today a substantial body
of research is devoted to reformulating a control problem to the question of whether a specific LMI is
solvable or, alternatively, to optimizing functionals over LMI constraints. It is the purpose of this chapter
to highlight the main role and use of LMIs in solving a large variety of control and estimation problems.

24.1.1 Notation

R and C denote the fields of real and complex numbers. Sets of real and complex matrices of dimension
m× n are denoted by R

m×n and C
m×n. A matrix A ∈ C

m×n is Hermitian if it is square (m= n) and if
A= A∗, where the star denotes taking complex conjugate transpose. For real matrices, this amounts to
saying that A= A, in which case A is said to be symmetric. The vector spaces of all n× n Hermitian
and symmetric matrices will be denoted by H

n and S
n, respectively, and we will omit superscript n if the

dimension is not relevant for the context. A Hermitian or symmetric matrix A is called negative definite,
negative semidefinite, positive definite, or positive semidefinite if x∗Ax < 0,≤ 0, > 0 or≥ 0 for all nonzero
complex vectors x ∈ C

n. We will denote this by A≺ 0, A � 0, A. 0, and A � 0, and extend this notation
to expressions A � B to mean that A−B � 0 for any A, B ∈ H

n. A congruence transformation of a square
matrix M is a mapping M �→ T,MT with some nonsingular T . The operator col(·) stacks its arguments
in a vector, as in col(a, b)= ( a

b

)
, where a and b are vectors or matrices with the same number of columns.

L2
n denotes the space of all signals x : [0,∞)→ R

n with finite energy ‖x‖L2 :=
√∫∞

0 ‖x(t)‖2 dt, where

‖.‖ is the Euclidean vector norm. We refer to the appendix for a brief summary on notions of convex sets
and convex functions.

24.2 LMIs and Convexity

An LMI is a constraint of the form

F(x) := F0+ x1F1+ · · ·+ xnFn ≺ 0, (24.1)

where F0, F1, . . . , Fn are given real symmetric matrices and where x = col(x1, . . . , xn) is a vector of
unknown real scalar decision variables.

The inequality F(x)≺ 0 means that x should render the symmetric matrix F(x) negative definite, that
is, the maximum eigenvalue of F(x) should be negative. The LMI (Equation 24.1) gives rise to two types
of questions:

1. The LMI feasibility problem amounts to testing whether there exist real variables x1, . . . , xn such
that Equation 24.1 holds.

2. The LMI optimization problem amounts to minimizing a cost function c(x)= c1x1+ · · ·+ cnxn

over all x1, . . . , xn that satisfy the constraint (Equation 24.1).

Classical linear programs easily fit in this formalism, but also quadratic programs and some instances of
convex quadratically constrained quadratic programs can be reformulated in this setting. In fact, the LMI
optimization problem is a natural generalization of a linear program in which inequalities are defined by
the cone of positive definite matrices.
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In most control applications, LMIs arise with matrix variables rather than vector variables. This means
that we consider inequalities of the more general form

F(X)≺ 0,

in which X is a matrix that belongs to an arbitrary finite-dimensional vector space X of matrices and
where F : X → S

m is an affine function. We recall that affine functions assume the form F(x)= F0+T(x),
where F0 is fixed and where T is a linear map. Affine functions are, therefore, linear mappings plus some
offset. For this reason, an LMI is actually better called an affine matrix inequality, but the world has
decided to accept this erroneous nomenclature.

Example 24.1

A simple example of an LMI in the matrix valued unknown X = X, is

F(X )= A,X + XA+Q ≺ 0,

where A and Q = Q, are given square real matrices. This is a special case of Equation 24.1 by
expanding X as X =∑n

k=1 xk Xk , where Xk = X,k , k = 1, . . . , n, is a basis of the set of symmetric

matrices X . Indeed, F is affine and F(X )= F(
∑n

k=1 xk Xk )= Q+∑n
k=1 xk (A,Xk + Xk A) which is of the

form as in Equation 24.1 with F0 = Q and Fk = A,Xk + Xk A.

Of course, one is led to wonder what the practical interest in studying constraints of the special form
as in Equation 24.1 might be. There are a number of answers to this question. First, Equation 24.1 defines
a convex constraint on the decision variable. This means that the solution set S := {x | F(x)≺ 0} of the
LMI F(x)≺ 0 is convex. We refer the reader to the appendix for a brief overview of notions and results
on convex sets and convex functions. Although the convex constraint F(x)≺ 0 on x may seem rather
special, many convex sets can be represented in this way and, in fact, have more attractive properties than
general convex sets. Second, the solution set of every finite set of LMIs

F1(x)≺ 0, . . . , Fk(x)≺ 0

can again be represented as one single LMI F(x)≺ 0 by setting F(x)= diag(F1(x), . . . , Fk(x)). Hence,
multiple LMI constraints on a decision variable x is again an LMI constraint. Third, and very importantly,
the partitioned LMI

F(x)=
(

F11(x) F12(x)
F21(x) F22(x)

)
≺ 0

is equivalent to {
F11(x)≺ 0

S22(x) := F22(x)− F21(x)F11(x)−1F12(x)≺ 0

and at the same time equivalent to{
S11(x) := F11(x)− F12(x)F22(x)−1F21(x)≺ 0.

F22(x)≺ 0

Since F is affine, this equivalence means that also specific types of quadratic and rational inequalities
can be reformulated as Equation 24.1. The expressions S11(x) and S22(x) are called Schur complements of
F22(x) and F11(x) in F(x). The above equivalences follow from the fact that congruence transformations
of symmetric matrices leave the number of positive and negative eigenvalues invariant. In particular,
M ≺ 0, if and only if T,MT ≺ 0 for any nonsingular matrix T . For example, the first follows by taking

M = F(x) and T =
(

I −F11(x)−1F12(x)
0 I

)
.
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24.3 Numerical Solutions of LMIs

Optimization problems over symmetric semidefinite matrix constraints belong to the realm of semidef-
inite programming or semidefinite optimization. Although we mainly focus on control problems here,
semidefinite programs occur in combinatorial optimization, polynomial optimization, topology opti-
mization, and so on. In the last few decades, this research field has witnessed incredible breakthroughs in
numerical tools, commercial and noncommercial software developments, and fast solution algorithms.
In particular, the introduction of powerful interior point methods allow us to effectively decide about the
feasibility of semidefinite programs and to determine their solutions.

This section aims to indicate briefly the main ideas behind interior point solvers of convex optimization
programs. Let the solution set S := {x ∈ R

n | F(x)≺ 0} of the LMI (Equation 24.1) be the domain of a
convex function f : S → R which we wish to minimize. That is, we consider the convex optimization
problem

vopt = inf
x∈S

f (x). (24.2)

The idea behind interior point methods is to solve this constrained optimization problem by a sequence
of unconstrained optimization problems. For this purpose, a barrier function φ is introduced. This is a
function φ : Rn → R which is required to

1. be strictly convex on the interior of S and
2. approach +∞ along any sequence of points {xn}∞n=1 in the interior of S that converges to a

boundary point of S.

Given a barrier function φ, the constraint optimization problem is replaced by the unconstrained opti-
mization problem to minimize the functional

ft(x) := f (x)+ tφ(x), (24.3)

where t > 0 is a penalty parameter. The main idea is to determine a curve t �→ x(t) that associates with
any t > 0 a minimizer x(t) of ft . The minimum of ft is attained in the interior of S. Subsequently, the
behavior of this mapping is considered as the penalty parameter t decreases to zero. In almost all interior
point methods, the unconstrained optimization problem is solved with the classical Newton–Raphson
iteration technique to approximately determine a local minimizer of ft . Since ft is strictly convex on R

n,
every local minimizer of ft is guaranteed to be the unique global minimizer. Under mild assumptions
and for a suitably defined sequence of penalty parameters tn, tn → 0 as n→∞, the sequence x(tn) will
converge to a point x∗. That is, the limit x∗ := limn→∞ x(tn) exists and vopt = f (x∗). If, in addition, x∗
belongs to the interior of S, then it is an optimal solution to Equation 24.2; otherwise an almost optimal
solution of Equation 24.2 can be deduced from the sequence x(tn).

Interior point methods can be applied to either of the two LMI problems defined in the previous
section. If we consider the feasibility problem associated with the LMI F(x)≺ 0, then (f does not play a
role and) one candidate barrier function is the logarithmic function

φ(x) :=
{

log det(−F(x)−1) if x ∈ S,

∞ otherwise.

If S is bounded and nonempty, φ will be strictly convex. This implies the existence of a unique xopt such
that φ(xopt) is the global minimum of φ. The point xopt belongs to S and is called the analytic center of
the feasibility set S.
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The LMI optimization problem to minimize c(x) subject to the LMI F(x)≺ 0 can be viewed as a
feasibility problem for the LMI

Gt(x) :=
(

c(x)− t 0
0 F(x)

)
≺ 0,

where t > t0 := inf x∈S c(x) is a penalty parameter. Using the same barrier function yields the uncon-
strained optimization problem to minimize

gt(x) := log det(−Gt(x)−1)= log
1

t− c(x)
+ log det(−F(x)−1)

for a sequence of decreasing positive values of t. Due to the strict convexity of gt the minimizer x(t) of gt

is unique for all t > t0. Since closed-form expressions for the gradient and Hessian of gt can be obtained,
a Newton iteration is an efficient numerical method to find minimizers of gt . Currently, much research
is devoted to further exploiting the structure of LMIs in order to tailor dedicated solvers for specific
semidefinite programs.

24.4 Stability Characterizations with LMIs

Around 1890, Aleksandr Mikhailovich Lyapunov made a systematic study of the local expansion and
contraction properties of motions of dynamical systems around an attractor. He worked out the idea that
an invariant set of a differential equation attracts all nearby solutions if one can find a function that is
bounded from below and decreases along all solutions outside the invariant set. Such functions are called
Lyapunov functions and they have been used to prove stability of equilibria of differential equations ever
since.

Consider the differential equation
ẋ(t)= f (x(t), t) (24.4)

with finite-dimensional state space X = R
n and where f : X×R→ X is assumed to be sufficiently smooth

so as to guarantee existence and uniqueness of the solution x(t, t0, x0) that satisfies the initial condition
x(t0, t0, x0)= x0 ∈ X. The differential equation (24.4) is time-invariant, if solutions satisfy

x(t+ τ, t0+ τ, x0)= x(t, t0, x0)

for any τ ∈ R with t and t+ τ in the interval of existence. A point x∗ ∈ X is called an equilibrium or fixed
point of the differential equation if x(t, t0, x∗)= x∗ satisfies Equation 24.4 (which implies that f (x∗, t)= 0
for all t ≥ t0). A wealth of stability concepts associated with fixed points of differential equations exists.
Here, we focus on just one.

The equilibrium point x∗ of Equation 24.4 is called exponentially stable if for all t0 ∈ R, positive numbers
α, β, and δ exist (all possibly depending on t0) such that

‖x0− x∗‖ ≤ δ =⇒ ‖x(t, t0, x0)− x∗‖ ≤ β‖x0− x∗‖e−α(t−t0) for all t ≥ t0. (24.5)

If α, β, and δ do not depend on t0, then x∗ is said to be uniformly exponentially stable. If δ is arbitrary,
x∗ is called globally exponentially stable.

Hence, a fixed point is exponentially stable if all solutions of the differential equation that initiate
nearby x∗ converge to x∗ with an exponential rate α> 0. The following result is standard and relates
exponential stability of linear time-invariant differential equations to LMI feasibility.

Theorem 24.1:

Let A ∈ R
n×n. The following statements are equivalent.
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1. The origin is an exponentially stable equilibrium point of ẋ = Ax.
2. All eigenvalues λ(A) of A belong to C

− := {s ∈ C | /(s) < 0} (i.e., A is Hurwitz).
3. The LMIs A,X +XA≺ 0 and X . 0 are feasible.

Any solution X of the LMIs in item (3) defines the quadratic function V (x) := x,Xx that serves as
a Lyapunov function for the equilibrium point x∗ = 0 of the differential equation ẋ = Ax. Indeed, V
achieves its minimum at x∗ = 0 and its derivative in the direction of the vector field Ax is

d

dt
x(t),Xx(t)= ẋ(t),Xx(t)+ x(t),Xẋ(t)= x(t),[A,X +XA]x(t),

and hence nonincreasing by item (3). Rather straightforward arguments lead to Equation 24.5, where δ is
arbitrary, β=√λmax(X)/λmin(X), and α> 0 is any number for which A,X +XA+ 2αX ≺ 0.

For many applications in control and engineering one may be interested in characterizing eigenvalue
locations of A in more general stability regions than C

−.
For a real symmetric matrix P ∈ S

2m, the set of complex numbers

LP :=
{

s ∈ C |
(

I
sI

)∗
P

(
I
sI

)
≺ 0

}

is called an LMI region.
Important stability regions such as half-planes Cstab 1 := {s | /(s) < α}, circles Cstab 2 := {s | |s|< r},

or conic sectors Cstab 3 := {s | /(s) tan(θ) < |)(s)|} can be represented by LMI regions LP1 , LP2 , and LP3 ,
respectively, by taking

P1 =
(−2α 1

1 0

)
, P2 =

(−r2 0
0 1

)
, P3 =

⎛
⎜⎜⎝

0 0 sin(θ) cos(θ)
0 0 − cos(θ) sin(θ)

sin(θ) − cos(θ) 0 0
cos(θ) sin(θ) 0 0

⎞
⎟⎟⎠ .

LMI regions include sets bounded by circles, ellipses, strips, parabolas, and hyperbolas. Since any finite
intersection of LMI regions is again an LMI region, one can virtually approximate any convex region in
C as long as it is symmetric with respect to the real axis.

To present the main result of this section, we recall the definition of the Kronecker product A⊗B of
two matrices A ∈ C

m×n, B ∈ C
k×�, which is the mk× n� matrix

A⊗B=
⎛
⎜⎝

A11B . . . A1nB
...

...
Am1B . . . AmnB

⎞
⎟⎠ .

The following result as originating from [4] is an interesting and elegant generalization of the stability
characterization in Theorem 24.1.

Theorem 24.2:

Let A ∈ R
n×n. The following statements are equivalent.

1. All eigenvalues of A are contained in the LMI region

{
s ∈ C |

(
I
sI

)∗ (
Q S
S, R

)(
I
sI

)
≺ 0

}
.
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2. There exists X = X, such that

X . 0 and

(
I

A⊗ I

)∗ (
X⊗Q X⊗ S
X⊗ S, X⊗R

)(
I

A⊗ I

)
≺ 0.

The condition in item (2) is an LMI in X. The result of Theorem 24.1 is recovered by taking Q = 0, S = 1,
and R = 0. With Q =−1, S = 0, and R = 1, the LMI region corresponds to the open unit disc; hence A
has all eigenvalues within the open unit disc iff there exists X . 0 such that A,XA−X ≺ 0. In turn, this
LMI test is equivalent to saying that the discrete-time system x(k+ 1)= Ax(k) is exponentially stable.

Example 24.2

Consider the problem to find a stabilizing feedback law u= Fx that simultaneously stabilizes the
systems ẋ = Ak x+ Bk u, where k = 1, . . . , 4 and

A1 =
(

1 0
1 1

)
, B1 =

(
1
0

)
, A2 =

(−1 2
1 2

)
, B2 =

(
1
1

)
,

A3 =
(

0 1
1 0

)
, B3 =

(
0
1

)
, A4 =

(
0 2
1 −1

)
, B4 =

(
2
1

)
.

By Theorem 24.1, the equivalent problem is to find Xk . 0 and F such that (Ak + Bk F),Xk + Xk (Ak +
Bk F)≺ 0 for k = 1, . . . , 4. Since both Xk and F are unknown, this is not an LMI constraint. However,
assuming X1 = · · · = X4 = X , a congruence transformation with the matrix Y := X−1 transforms the
five matrix inequalities to

Y . 0, Ak Y + YA,k + Bk M+M,Bk ≺ 0, k = 1, . . . , 4,

where we set M = FY . These are LMIs in Y and M. When implemented with the given matrices, this
set of LMIs turns out to be feasible and any solution defines a feedback F =MY−1 that solves the
stabilization problem. One of these feedbacks is computed to be F = (−4.3874 −10.6332

)
. An

analogous synthesis strategy can be applied for the simultaneous pole-placement problem which
amounts to finding F such that eigenvalues of Ak + Bk F belong to an LMI region LP for all k. Its
solution is then an application of Theorem 24.2.

24.5 Performance Characterizations with LMIs

In this section, we consider a linear system

ẋ = Ax+Bd, e = Cx+Dd, x(0)= 0, (24.6)

in which d is viewed as an undesired external disturbance and e is an error output. Many control synthesis
problems can be translated into a question of disturbance attenuation: the controller should reduce the
effect of the disturbance d onto the error e as much as possible. In this section we quantify or analyze the
effect of d onto e for the system (Equation 24.6) whose transfer function matrix is given by

T(s)= C(sI −A)−1B+D.

24.5.1 H2-Performance

Let us assume for Equation 24.6 that A is Hurwitz and D = 0. If the number of inputs is m then B=
(b1, . . . , bm) has m columns. If the system is excited with a unit impulse in the νth input, it responds with
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the output trajectory zν(t)= CeAtbν. The energy of this output trajectory equals
∫ ∞

0
[CeAtbν],[CeAtbν] dt = b,ν

(∫ ∞

0
eA,tC,CeAt dt

)
bν = b,νY0bν (24.7)

with Y0 being the observability Gramian, the unique solution of the Lyapunov equation

A,Y0+Y0A+C,C = 0. (24.8)

If we add the output energies for impulsive inputs in all input components we obtain

m∑
ν=1

∫ ∞

0
zν(t),zν(t) dt =

m∑
ν=1

Trace(bνb
,
νY0)= Trace(BB,Y0)= Trace(B,Y0B),

where Trace denotes the sum of the diagonal elements of any matrix. In view of the explicit formula
for the observability Gramian as used in Equation 24.7 combined with Parseval’s theorem, we infer that
Trace(B,Y0B) actually equals

‖T‖2
H2
:= 1

2π
Trace

∫ ∞

−∞
[C(iωI −A)−1B]∗[C(iωI −A)−1B] dω. (24.9)

Note that ‖T‖H2 is the so-called H2-norm of the transfer matrix T , the name of which is motivated by
the theory of Hardy-spaces in pure mathematics; this relation is not relevant for our purposes.

We have actually derived the impulse-response performance interpretation of the H2-norm. Moreover,
this interpretation also provides a concise link to classical linear quadratic control, since the impulse
response zν(·) is identical to the output response if the system’s state is initialized as x(0)= bν.

Let us briefly touch upon the stochastic interpretation of the H2-norm. If w is white noise with unity
covariance, the asymptotic variance of the output process of Equation 24.6 satisfies

lim
t→∞E[z(t),z(t)] = Trace

(
lim

t→∞CE[x(t)x(t),]C,
)
= Trace(CX0C,),

where X0 is the system’s controllability Gramian, the unique solution of

AX0+X0A,+BB,= 0. (24.10)

Since T(s),= B,(sI −A,)−1C,, we can conclude that the asymptotic output variance is equal to ‖T,‖H2 .
Due to Equation 24.9 this is the same as ‖T‖H2 , which leads to a dual version for computing ‖T‖H2 .
Let us summarize our findings as follows: If D = 0 and X0 and Y0 are the system’s controllability and
observability Gramians satisfying Equations 24.10 and 24.8, respectively, then ‖T‖2

H2
= Trace(CX0C,)=

Trace(B,Y0B) is the sum of the energies of the output of Equation 24.6 for impulsive inputs in each input
channel, and it also equals the asymptotic output variance if the input is white noise with unity covariance.

Note that H2-norms can be easily determined by solving linear equations and computing traces. Since
these explicit formulas are inadequate for applying the synthesis procedure as developed in the next
section, let us provide a genuine characterization of a bound on the H2-norm by LMIs. It is important to
stress that this formulation actually combines an LMI characterization of system stability with a bound
on system performance.

Theorem 24.3:

A is Hurwitz and ‖T‖H2 < γ iff D = 0 and there exist X = X,and W =W,with
(

A,X +XA XB
B,X −γI

)
≺ 0,

(
X C,
C W

)
. 0 and Trace(W) < γ. (24.11)
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Sketch of proof of “if ”

For the general manipulation of performance specifications it is an instructive illustration of how to show
that the feasibility of the system of LMIs (Equation 24.11) implies ‖T‖H2 < γ. Indeed, by taking Schur
complements we infer that Equation 24.11 leads to

A,X +XA+ 1

γ
XBB,X ≺ 0, X . 0, CX−1C,≺W , Trace(W) < γ.

The first inequality implies A,X +XA≺ 0. Together with X . 0 this implies (Theorem 24.1) that A is
Hurwitz. On the other hand, X̂0 = (γX)−1 satisfies

AX̂0+ X̂0A,+BB,≺ 0 and Trace(CX̂0C,) < Trace(γW) < γ2.

Combining the latter inequalities with Equation 24.10, we get A(X̂0−X0)+ (X̂0−X0)A,≺ 0, which
implies, using the stability of A, that X̂0−X0 . 0. Consequently, also Trace(CX0C,) < γ2, which yields
that ‖T‖H2 < γ.

24.5.2 H∞-Performance

A different way of quantifying the effect of the disturbance d on the output e in Equation 24.6 is in terms
of the so-called energy gain

‖T‖H∞ := sup
0<‖d‖L2 <∞

‖e‖L2

‖d‖L2

.

The norm reflects the worst amplification of disturbances on outputs if measuring the sizes of the input
and output signals in terms of their L2-norm or energy. Dissipativity theory [19] provides a direct path
toward an LMI characterization of an upper bound ‖T‖H∞ < γ.

Theorem 24.4:

A is Hurwitz and ‖T‖H∞ < γ iff there exists X . 0 with

(
I 0
A B

),(
0 X
X 0

)(
I 0
A B

)
+
(

0 I
C D

),(−γ2I 0
0 I

)(
0 I
C D

)
≺ 0. (24.12)

Sketch of proof of “if ”

Let us assume that Equation 24.12 holds. Then the left-upper block of Equation 24.12 just reads as
A,X +XA+C,C ≺ 0, which implies A,X +XA≺ 0. Therefore X . 0 guarantees that A is Hurwitz. Since
the inequality Equation 24.12 is strict, it continues to hold if we replace −γ2 by −(γ− ε)2 for some
suitably small ε> 0. Let us choose any d with 0 < ‖d‖L2 <∞ and let e be the output of Equation 24.6. If
we right-multiply the perturbed version of Equation 24.12 with col(x(t), d(t)) and left-multiply with its
transpose, and if we exploit the relations in Equation 24.6, we obtain

(
x(t)
ẋ(t)

),(
0 X
X 0

)(
x(t)
ẋ(t)

)
+
(

d(t)
e(t)

),(−(γ− ε)2I 0
0 I

)(
d(t)
e(t)

)

= d

dt
x(t),Xx(t)+ e(t),e(t)− (γ− ε)2d(t),d(t)≤ 0.

By integration on [0, T] and with x(0)= 0 we infer

x(T),Xx(T)+
∫ T

0
e(t),e(t) dt ≤ (γ− ε)2

∫ T

0
d(t),d(t) dt for all T ≥ 0.
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Since both x(·) and ẋ(·) are of finite energy, x(T)→ 0 for T →∞. After taking the limit T →∞ we
hence obtain ‖e‖2

L2
≤ (γ− ε)2‖d‖2

L2
or ‖e‖L2/‖d‖L2 ≤ γ− ε. Since this holds for all 0 < ‖d‖L2 <∞

we finally arrive at ‖T‖H∞ < γ.
We started from the formulation of the LMIs (Equation 24.12), which gives the most insight for a

dissipation-based proof of these results. In the literature, more common equivalent representations of the
LMI (Equation 24.12) are

(
A,X +XA+C,C XB+C,D

B,X +D,C D,D− γ2I

)
≺ 0 or (Schur)

⎛
⎝A,X +XA XB C,

B,X −γ2I D,
C D −I

⎞
⎠≺ 0. (24.13)

Equivalently, A,X +XA+C,C+ (XB+C,D)(γ2I −D,D)−1(B,X +D,C)≺ 0, and D,D− γ2I ≺ 0,
which touches upon the relation to Riccati inequalities and equations.

24.5.3 The Kalman–Yakubovich–Popov (KYP) Lemma

We have established the link of Equation 24.12 to the time-domain energy-gain by dissipation arguments.
The relation of this LMI to the frequency-domain is the subject of the celebrated KYP lemma. Algebraic
arguments proceed as follows. If Equation 24.12 holds with X = X,, then A,X +XA≺ 0 implies that A
has no eigenvalues on the imaginary axis. For ω ∈ R let us observe that

(
(iωI −A)−1B

I

)∗ (
I 0
A B

)(
0 X
X 0

)(
I 0
A B

)(
(iωI −A)−1B

I

)

= [(iωI −A)−1B]∗
(

I
iωI

)∗ (
0 X
X 0

)(
I

iωI

)
(iωI −A)−1B

= [(iωI −A)−1B]∗[iωX − iωX](iωI −A)−1B= 0.

Therefore, feasibility of Equation 24.12 implies the validity of the frequency-domain inequality
(

I
T(iω)

)∗ (−γ2I 0
0 I

)(
I

T(iω)

)
≺ 0 for all ω ∈ R∪ {∞},

which follows forω=∞ from the right-lower block of Equation 24.12. Note that this inequality translates
into T(iω)∗T(iω)− γ2I ≺ 0 or σmax(T(iω)) < γ for all ω ∈ R∪ {∞}. In turn, this reveals the relation of
the L2-gain bound to the peak of the largest singular value of the system’s frequency response, which is
simply the classical L∞-norm for transfer matrices without poles on the imaginary axis, or the H∞-norm
for transfer matrices whose poles are all contained in the open left-half-plane.

The following result captures a generalization of the strict version of the KYP lemma for an arbitrary
symmetric matrix P and without involving any sign-constraint on X.

Theorem 24.5:

In the case that A has no eigenvalues on the imaginary axis then
(

I
T(iω)

)∗
P

(
I

T(iω)

)
≺ 0 for all ω ∈ R∪ {∞}, (24.14)

iff there exists some X = X,with

(
I 0
A B

),(
0 X
X 0

)(
I 0
A B

)
+
(

0 I
C D

),
P

(
0 I
C D

)
≺ 0. (24.15)



�

�

�

�

� �

Linear Matrix Inequalities in Control 24-11

The survey article [10] provides a nice historical account of the development around the KYP lemma
with many references, also to the Russian literature, and discusses further versions of this result even
without any a priori hypotheses. In particular [2] is a rich source for the link of the KYP lemma to
semidefinite programming duality and the related control theoretic interpretations.

24.5.4 Variants

The books [3,7] contain a whole variety of concrete variations on the theme of formulating performance
specifications with LMIs. Let us provide a sample.

24.5.4.1 Generalized H2-Performance

If replacing Trace(W) < γ by W ≺ γI in Theorem 24.3, the formulated LMIs characterize that the system
gain from finite energy input signals to the peak value of the output signal is bounded by γ:

sup
0<‖d‖L2 <∞

‖e‖L∞
‖d‖L2

< γ with ‖e‖L∞ := sup
t≥0
‖e(t)‖.

This criterion allows to impose time-uniform bounds on the error variable under the assumption that the
disturbance has bounded energy.

24.5.4.2 Quadratic Performance

Our discussion of L2-gain performance opens the path toward the following generalization. With a
symmetric weighting matrix P, quadratic performance with index P is achieved if an ε> 0 exists, such
that the following integral quadratic constraint (IQC) on the performance channel d → e of the stable
system in Equation 24.6 is satisfied:

∫ ∞

0

(
d(t)
e(t)

),
P

(
d(t)
e(t)

)
dt ≤−ε‖d‖2

L2
for all d ∈L2.

This time-domain specification directly translates into the frequency-domain inequality in Equation 24.14
and, due to Theorem 24.5, into feasibility of the LMI in Equation 24.15. If the right-lower block of P is
positive semidefinite, it is elementary to see that stability of A is guaranteed by imposing the additional
positivity constraint X . 0.

24.5.4.3 Discrete-Time

All described results have counterparts for discrete-time systems

x(t+ 1)= Ax(t)+Bd(t), e(t)= Cx(t)+Dd(t), x(0)= 0, t = 0, 1, 2, . . . .

If A has all its eigenvalues in the unit disc (Schur stability), then quadratic performance holds, by definition,
if there exists some ε> 0 with

∞∑
t=0

(
d(t)
e(t)

),
P

(
d(t)
e(t)

)
≤−ε

∞∑
t=0

d(t),d(t).

This is equivalent to the frequency-domain inequality

(
I

T(z)

)∗
P

(
I

T(z)

)
≺ 0 for all z ∈ C, |z| = 1
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on the unit circle, which is, in turn, equivalent to the existence of X = X,satisfying the LMI

(
I 0
A B

),(−X 0
0 X

)(
I 0
A B

)
+
(

0 I
C D

),
P

(
0 I
C D

)
≺ 0.

If the right-lower block of P is positive semidefinite, Schur stability of A is once again guaranteed by X . 0.
We stress the pleasing parallel structure of continuous-time and discrete-time performance formulations,
which is even more striking for synthesis since the proposed general procedure applies to both domains
without the need for any adaptation.

24.6 Optimal Performance Synthesis

Let us now consider a system

ẋ = Ax+B0d+Bu,

e = C0x+D0d+Eu,

y = Cx+ Fd,

(24.16)

where, in addition to the disturbance d and the error e, the signal u is a control input and y is a measured
output. In feedback synthesis, the goal is to determine a controller

ẋc = Acxc +Bcy,

u= Ccxc +Dcy,
(24.17)

which feeds the measurements y back to u such that the controlled system, the interconnection of
Equations 24.16 and 24.17, is internally stable and satisfies a desired performance property (Figure 24.1).

Note that the controlled system with state ξ= col(x, xc) is easily seen to be described by

ξ̇=Aξ+Bd

e = Cξ+Dd
with

(
A B
C D

)
:=
⎛
⎝A+BDcC BCc

BcC Ac

B0+BDcF
BcF

C0+EDcC ECc D0+EDcF

⎞
⎠. (24.18)

In view of the generalized plant framework [18,20], it is essential to understand that this innocent
problem formulation comprises surprisingly many specific configurations as they are needed in one- or
two-degrees of freedom controller synthesis for reference tracking and disturbance attenuation. In this
section, emphasis is put on an H∞-norm bound as a measure of performance.

de

y

System

u

Controller

FIGURE 24.1 Generalized plant configuration.
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24.6.1 State-Feedback Synthesis

The simplest control law is state-feedback u= Dcx with a gain Dc , which leads to the controlled system

ẋ = (A+BDc)x+B0d,

e = (C0+EDc)x+D0d.
(24.19)

Using Theorem 24.4 and with the LMI expressed as in Equation 24.13, this controller stabilizes the system
in Equation 24.19 and renders the H∞-norm of the transfer matrix d → e smaller than γ iff there exists
some X with

X . 0 and

⎛
⎝(A+BDc),X +X(A+BDc) XB0 (C0+EDc),

B,0X −γ2I D,0
(C0+EDc) D0 −I

⎞
⎠≺ 0. (24.20)

Recall that the first inequality guarantees stability while the second captures performance. We observe that,
in synthesis, we need to search for both Dc and X in order to satisfy Equation 24.20. The performance
inequality is, with some abuse of notation, a so-called bilinear matrix inequality problem since the
left-hand side is affine in X (for fixed Dc) and affine in Dc (for fixed X). Actually, a large variety of design
problems in control can be easily seen to admit this structure. Unfortunately, however, bilinear matrix
inequalities are as hard to handle as general nonlinear programs. Fortunately, for the problem at hand
there is a surprisingly simple remedy.

There exists a celebrated procedure that actually turns the nonconvex bilinear matrix inequality
(Equation 24.20) into a convex problem of LMIs. This is achieved by applying a nonlinear change of
variables (Dc , X)→ (M, Y ) and a congruence transformation to Equation 24.20. Indeed if we transform
Equation 24.20 by congruence with X−1 and diag(X−1, I , I), respectively, and if we introduce the new
variables

Y := X−1 and M := DcX−1, (24.21)

we arrive at

Y . 0 and

⎛
⎝(AY +BM),+ (AY +BM) B0 (C0Y +EM),

B,0 −γ2I D,0
(C0Y +EM) D0 −I

⎞
⎠≺ 0. (24.22)

Obviously the constraints in Equation 24.22 constitute LMIs in (M, Y ) whose feasibility can be verified. If
(M, Y ) is a solution of Equation 24.22, we can solve Equation 24.21 for (Dc , X) as X = Y−1 and Dc =MY−1

and perform a congruence transformation of Equation 24.22 with Y−1 and diag(Y−1, I , I) which leads
back to Equation 24.20. This proves, with X being a certificate, that Dc is indeed stabilizing and achieves
the desired performance specification. On the other hand, if the inequalities in Equation 24.22 are not
feasible, it is assured that no state-feedback gain can exist for which both these properties are satisfied.

24.6.2 Output-Feedback Synthesis

A general output-feedback controller leads to the controlled system in Equation 24.18. It achieves stability
of A and ‖C(sI −A)−1B+D‖H∞ < γ iff there exists some X with

X . 0 and

⎛
⎝A,X +XA XB C,

B,X −γ2I D,
C D −I

⎞
⎠≺ 0. (24.23)

Due to the affine dependence of (A, B, C, D) on the controller matrices (Ac , Bc , Cc , Dc), this involves again
a bilinear matrix inequality.
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It is pleasing that one can identify, again, a convexifying controller parameter transformation [13,17].
If we partition

X =
(

X U
U, ∗

)
and X−1 =

(
Y V
V, ∗

)
(24.24)

according to A (where X and Y share their dimension with A and the ∗’s denote matrices that are
irrelevant for our purposes) it reads as(

K L
M N

)
=
(

XAY 0
0 0

)
+
(

U XB
0 I

)(
Ac Bc

Cc Dc

)(
V, 0
CY I

)
. (24.25)

We view this as a transformation (X , Ac , Bc , Cc , Dc)→ (X, Y , K , L, M, N)=: v. This definition is moti-
vated by the following easily verified relations:

with Y :=
(

Y I
V, 0

)
we have Y,XY =

(
Y I
I X

)
=: X(v) and (24.26)

(
Y,(XA)Y Y,(XB)

CY D

)
=
⎛
⎝AY +BM A+BNC B0+BNF

K XA+ LC XB0+ LF
C0Y +EM C0+ENC D0+ENF

⎞
⎠=:

(
A(v) B(v)
C(v) D(v)

)
. (24.27)

Although looking intricate, the key is the affine dependence of the blocks X(v), A(v), B(v), C(v), and
D(v) on the new variables v. If Y is nonsingular, a congruence transformation with Y and diag(Y , I , I) on
Equation 24.23 leads to

Y,XY . 0 and

⎛
⎝Y,(A,X)Y +Y,(XA)Y Y,(XB) Y,C,

(B,X )Y −γ2I D,
CY D −I

⎞
⎠≺ 0, (24.28)

which is, in turn, nothing but the following LMI in v:

X(v). 0 and

⎛
⎝A(v),+A(v) B(v) C(v),

B(v), −γ2I D(v),
C(v) D(v) −I

⎞
⎠≺ 0. (24.29)

This brings us to the following result which is true without any hypothesis on Y .

Theorem 24.6:

There exists a controller as in Equation 24.17 which stabilizes the system in Equation 24.18 and renders the
H∞-norm of the transfer matrix d → e smaller than γ iff the LMI’s in Equation 24.29 are feasible.

The actual design of a controller proceeds as follows. Find a solution of the LMIs in Equation 24.29;
due to the first inequality in Equation 24.29 the matrix I −XY is nonsingular (Schur); therefore, one can
find square and nonsingular matrices U and V with I −XY = UV,; then we can solve Equation 24.25
for (Ac , Bc , Cc , Dc). This controller does the job since we can define the nonsingular matrix Y and solve
for X in Equation 24.26, which implies that Equation 24.27 is valid; then Equation 24.29 is nothing but
Equation 24.28; since Y is nonsingular, this transforms into Equation 24.23 by congruence.

In summary, we have reduced the design problem to find a stabilizing controller that establishes a
bound on the H∞-norm of the closed-loop system to an equivalent problem that amounts to checking
the feasibility of the LMIs in Equation 24.29. Since γ2 enters these constraints in an affine fashion,
one can minimize γ2 subject to the feasibility of these LMIs in order to directly compute the optimal
H∞-attenuation level that is achievable by stabilizing controllers.
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24.6.3 General Synthesis Procedure

Although we discussed H∞-synthesis in quite some detail, we can extract the following generic procedure
for moving from analysis to synthesis inequalities for a whole variety of other performance specifications
that can be expressed by LMIs.

• Rewrite the analysis inequalities in terms of the blocks X , XA, XB, C, and D.
• Find a formal congruence transformation involving Y which leads to inequalities in terms of the

blocks Y,XY , Y,(XA)Y , Y,(XB), CY , and D.
• Then the synthesis inequalities are obtained by the substitution

Y,XY → X(v),

(
Y,(XA)Y Y,(XB)

C D

)
→
(

A(v) B(v)
C(v) D(v)

)

with Equation 24.27 for v := (X, Y , K , L, M, N).
• For state-feedback synthesis one can apply the very same procedure with the formulas X(v)=

Y , A(v)= AY +BM, B(v)= B0, C(v)= C0Y +EM, D(v)= D0 for v = (M, Y ).
• The controller construction is independent from the particular analysis inequalities and remains,

both for state-feedback and output-feedback synthesis, unaltered.

This procedure applies to H2-synthesis as well as to the variants of the LMI analysis specification
discussed in Section 24.5.4. As an illustration, the discrete-time system x(t+ 1)=Ax(t)+Bd(t), e(t)=
Cx(t)+Dd(t) is Schur-stable and its l2-gain is bounded by γ iff there exists some X with

X . 0,

(
I 0
A B

),(−X 0
0 X

)(
I 0
A B

)
+
(

0 I
C D

),(−γ2I 0
0 I

)(
0 I
C D

)
≺ 0.

Since these can also be expressed as

X . 0,

(
X 0
0 γ2I

)
−
(

A B
C D

),(X 0
0 I

)(
A B
C D

)
. 0,

a Schur complement argument reveals that these analysis inequalities can be written as⎛
⎜⎜⎝

X 0 A,X C,
0 γ2I B,X D,

XA XB X 0
C D 0 I

⎞
⎟⎟⎠. 0

and thus admit the precise format in order to apply the general synthesis procedure.
Based on the generic dualization and elimination results described in [16], it is often possible to

eliminate matrix variables that only appear in one of these synthesis inequalities, with the benefit of
reducing computational complexity. For example, one can eliminate all matrices K , L, M, and N from the
H∞-synthesis inequalities in order to arrive at the inequalities as proposed in [8,11].

Finally, in many practical problems the disturbance and error signals are partitioned as d =
col(d1, . . . , dp) and e = col(e1, . . . , eq) in order to impose multiple individual performance requirements
on some of the channels dν→ eμ, possibly with different norms. The general controller synthesis pro-
cedure described in this section is applicable for this kind of multiobjective control problems provided
that one is willing to allow some level of conservatism by expressing the combined desired specifications
with one and the same matrix X in the closed-loop system. This variant of multiobjective control, which
is addressed as a Lyapunov-shaping paradigm in [17] in more detail, even allows the incorporation of
pole-placement requirements on A in terms of general LMI regions. We refer to [17] for an instructive
controller design example. The introduction of slack-variables offers a possibility to reduce conservatism
as shown for discrete-time systems in [5], while an LMI solution of the general multiobjective control
problem based on the Youla–Kucera parameterization of all stabilizing controllers is discussed in [15]
and its references.
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24.6.4 Observer and Estimator Synthesis

Estimation problems are related to the configuration in Figure 24.2. Based on measurements y, the goal
is to determine an estimator whose output approximates the system output z (which can be equal to the
state or comprise components of d) as closely as possible, despite the corruption of the system by the
disturbance d. If d is white noise with unity covariance, minimization of the asymptotic variance of e
amounts to minimizing the H2-norm of d → e which results in the classical Kalman filter. Alternatively,
using the energy-gain of d → e as a performance indicator amounts to considering the H∞-estimation
problem. These and many other variants of estimation problems can be rephrased as an output-feedback
synthesis problem for a system as described by Equation 24.16 with B= 0 and E =−I (which means that
u does not excite the system dynamics). Let us stress that in this reformulation u admits the interpretation
of the estimator output and e is the estimation error.

If the estimator admits the structure of an observer with a to-be-designed gain Dc ,

ẋc = Axc +Dc(Cxc − y), u= C0xc , (24.30)

then the dynamics of the state-error ξ= x− xc is described by

ξ̇= (A+DcC)ξ+ (B0+DcF)d, e = C0ξ+D0d

and defines the transfer matrix d → e. This representation is dual (transposed) to what we considered
for state-feedback synthesis, and only slight modifications are required in order to determine the LMIs
for synthesizing observer gains Dc that stabilize the error dynamics and achieve, for example, an H∞- or
H2-norm bound γ on d → e.

Let us now assume that A in Equation 24.16 is stable. Instead of assuming a particular structure, we
can then try to find a general estimator Equation 24.17 with stable Ac such that a desired performance
level for d → e is achieved. In view of Equation 24.18 and the fact that B= 0, stability of Ac now boils
down to stability of A, and the very same output-feedback synthesis procedure can be followed in order
to design optimal estimators by LMIs.

However, it is interesting to observe that the structural property B= 0 allows a simplification of the
convexifying controller parameter transformation which will be essential for robust estimator synthesis
[9]. Indeed, starting from Equation 24.24 and with Z = Y−1 let us define(

K L
M N

)
:=
(

U 0
0 I

)(
Ac Bc

Cc Dc

)(
V,Z 0

0 I

)
and Y :=

(
I I

V,Z 0

)
. (24.31)

After a direct computation we obtain

Y,XY =
(

Z Z
Z X

)
=: X(v) and (24.32)

(
Y,(XA)Y Y,(XB)

CY D

)
=
⎛
⎝ ZA ZA ZB0

XA+ LC+K XA+ LC XB0+ LF
C0+ENC+EM C0+ENC D0+ENF

⎞
⎠=:

(
A(v) B(v)
C(v) D(v)

)

with an affine dependence on X, Z, K , L, M, and N . Therefore the general synthesis procedure in Section
24.6.3 does apply, with the only modification being the use of these new substitution formulas and by
recalling the relation Z = Y−1 for the actual design of the estimator.

System d
z

y

+e
−

Estimator
u

FIGURE 24.2 Estimator synthesis.
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24.7 Polytopic Uncertainties and Robustness Analysis

First principle models of physical systems are often represented by state-space descriptions in which the
various components of the state represent well-defined physical quantities. Variations, perturbations, or
uncertainties in physical parameters lead to uncertainty in the model. Often, this uncertainty is reflected
by variations in well-distinguished parameters or coefficients in the model, while, in addition, the nature
and/or range of the uncertain parameters may be known, or partially known. Since very small parameter
variations may have a major impact on the dynamics of a system, it is of evident importance to analyze
parametric uncertainties of dynamical systems. Suppose that δ= (δ1, . . . , δp) is the vector that expresses
the ensemble of all uncertain quantities in a given dynamical system. Then there are at least two distinct
cases that are of independent interest:

a. Time-invariant parametric uncertainties: the vector δ is a fixed but unknown element of an uncer-
tainty set δ⊆ R

p.
b. Time-varying parametric uncertainties: the vector δ is an unknown time-varying function δ : R→

R
p whose values δ(t) belong to an uncertainty set δ⊆ R

p, and possibly satisfy additional constraints.

24.7.1 Time-Invariant Parametric Uncertainty

Consider the uncertain time-invariant system defined by

ẋ = A(δ)x, (24.33)

where A(·) is a continuous function of the real-valued parameter vector δ= col(δ1, . . . , δp) which is
only known to be contained in an uncertainty set δ⊆ R

p. The problem of robust stability amounts to
characterizing whether the equilibrium point x∗ = 0 of Equation 24.33 is exponentially stable for all
parameters δ ∈ δ. With time-invariant uncertainties, Equation 24.33 is robustly stable iff A(δ) is Hurwitz
for all δ ∈ δ. Since δ generally consists of infinitely many points, the verification of this condition is rather
troublesome from a computational point of view.

The uncertain system (Equation 24.33) is called quadratically stable if there exists X = X,such that

X . 0, A(δ),X +XA(δ)≺ 0 for all δ ∈ δ. (24.34)

The importance of this definition becomes apparent after observing that V (x) := x,Xx is a quadratic
Lyapunov function for Equation 24.33 which, by Theorem 24.1, implies that A(δ) is Hurwitz for all δ ∈ δ.
Hence, quadratic stability implies the origin of Equation 24.33 to be robust exponentially stable against
time-invariant uncertainties δ ∈ δ. Unless δ has a finite number of points, Equation 24.34 cannot be
verified easily. Therefore, the following result is of considerable interest.

Theorem 24.7:

If A(δ) is affine in δ and δ= co{δ1, . . . , δN } then Equation 24.33 is quadratically stable if and only if there
exists some X such that

X . 0, A(δk),X +XA(δk)≺ 0, k = 1, . . . , N .

Hence, for polytopic uncertainty sets and affine parametric dependence in Equation 24.33, quadratic
stability can be numerically verified by a feasibility test for a finite number of LMIs only. The proof
is an illustrative example of the use of convexity. It requires showing that F(δ) := A(δ),X +XA(δ)≺ 0
for all δ ∈ δ if F(δk)≺ 0 for k = 1, . . . , N . To see this, first observe that F(·) is a convex function on δ

whenever A(·) is affine. Second, any δ ∈ δ can be written as a convex combination of the points δ1, . . . , δN ,
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say δ=∑N
k=1 αkδ

k with nonnegative coefficients αk that sum up to 1; hence F(δ)= F(
∑N

k=1 αkδ
k) �∑N

k=1 αkF(δk)≺ 0, which gives the result.

24.7.2 Time-Dependent Parametric Uncertainty

Robust stability against time-varying uncertainties is generally a more demanding requirement than
robust stability against time-invariant uncertainties. Consider the system

ẋ(t)= A(δ(t))x(t), (24.35)

which is affected by an uncertain parameter curve δ : R→ δ. Unlike the case with time-invariant uncer-
tainties, robust stability of the origin is now not implied by the condition that A(δ) is Hurwitz for all δ ∈ δ.
However, the uncertain system with time-varying parametric uncertainties is exponentially stable if there
exists X . 0 such that Equation 24.34 holds. Therefore, quadratic stability does, in fact, imply robust
stability against arbitrary fast time-varying parametric uncertainties. This is a nice, but in general conser-
vative, test if additional a priori information on the uncertainty is available. For example, the parameter
curves δ(·) are often known to be continuously differentiable and constrained in terms of their values and
their rate-of-variation as

δ(t) ∈ δ, δ̇(t) ∈ ρ for all t ∈ R. (24.36)

Less conservative robust stability tests can be inferred by postulating the existence of parameter-dependent
Lyapunov functions. A popular instance of such functions takes the form V (x, δ) := x,X(δ)x and requires
a search over matrix functions X(δ)= X(δ),with δ ∈ δ. For notational convenience, let us introduce, for
a continuously differentiable matrix function X(δ), the “derivative”

∂X(δ, ρ) :=
p∑

k=1

∂kX(δ)ρk , (δ, ρ) ∈ δ×ρ, (24.37)

where ∂kX(·) denotes the partial derivative of the function X(·) with respect to the kth entry of δ and
where ρk is the kth component of the vector ρ. (We stress that ∂X(δ, ρ) is purely a symbolic notation which
is not to be confused with the partial derivative of X(·) itself.) The following result provides a sufficient
condition for robust stability and actually covers many tests in the literature. The proof provides much
insight into the understanding of stability arguments based on parameter-dependent Lyapunov functions.

Theorem 24.8:

Suppose that δ and ρ are compact subsets of R
p and suppose that X(δ)= X(δ), is a continuously differen-

tiable matrix function that satisfies

X(δ). 0, ∂X(δ, ρ)+A(δ),X(δ)+X(δ)A(δ)≺ 0 (24.38)

for all δ ∈ δ and ρ ∈ ρ. Then the origin of Equation 24.35 is exponentially stable for all time-varying
parametric uncertainties that satisfy Equation 24.36.

Proof. Suppose that X(δ) satisfies Equation 24.38. Continuity of X(·) and compactness of δ and ρ

guarantee the existence of constants a, b, c > 0 such that, for all δ ∈ δ and ρ ∈ ρ,

aI � X(δ) � bI , ∂X(δ, ρ)+A(δ),X(δ)+X(δ)A(δ) �−cI . (24.39)
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Let δ(·) and x(·) be a parameter curve and a state trajectory that satisfy Equations 24.36 and 24.35,
respectively. With ξ(t) := x(t),X(δ(t))x(t) we clearly have

ξ̇(t)= x(t),
[ p∑

k=1

∂kX(δ(t))δ̇k(t)

]
x(t)+ x(t),[A(δ(t)),X(δ(t))+X(δ(t))A(δ(t))]x(t).

If we exploit Equation 24.39 we obtain a‖x(t)‖2 ≤ ξ(t)≤ b‖x(t)‖2 and ξ̇(t)≤−c‖x(t)‖2. This implies
that ξ̇(t)≤− c

bξ(t) and hence ξ(t)≤ ξ(t0) exp(− c
b (t− t0)) for all t ≥ t0. In turn, this leads to ‖x(t)‖2 ≤

b
a‖x(t0)‖2e−

c
b (t−t0), which is Equation 24.5 for α= c/(2b) and β=√b/a.

The constraints in Equation 24.38 on X(·) define a purely algebraic test that do not involve the system-
or parameter-trajectories. The test is not easy to apply directly because the matrix function X(·) needs to
satisfy a partial differential LMI. By considering specific classes of matrix functions X(·), Equation 24.38
can be converted and implemented with LMI solvers. One of these classes is the set of affine symmetric
matrix functions X : δ→ S

n.
A few special instances are worth mentioning. If the parameters are time-invariant, we have ρ= {0}

and Equation 24.38 simplifies to the conditions X(δ). 0 and A(δ),X(δ)+X(δ)A(δ)≺ 0. In that case,
Equation 24.38 is also necessary for robust stability. If parameters vary arbitrarily fast, ρ is unbounded
and Equation 24.38 is feasible only if the partial derivatives ∂kX(δ) vanish identically. This means that
X(δ)= X is not depending on δ and we recover the quadratic stability test.

24.7.3 Robust Performance

In the previous subsections we have shown how tests for robust stability against parametric uncertainties
can be inferred from characterizations of nominal stability. The same generalization applies in order to
obtain conditions for verifying robust performance. Consider the uncertain parameter depending system

ẋ(t)= A(δ(t))x(t)+B(δ(t))d(t),

e(t)= C(δ(t))x(t)+D(δ(t))d(t),
(24.40)

where δ(·) is a continuously differentiable rate-bounded uncertainty that satisfies Equation 24.36. In the
case of H∞-performance, we quantified the effect of d on e in terms of the L2 gain of the system. However,
the output e of Equation 24.40 not only depends on the input d but also on the uncertainty δ(·). Hence
we say that the robust L2-gain is smaller than γ if

• for d = 0 and for all parameter curves δ(·) satisfying Equation 24.36, x∗ = 0 is an exponentially
stable equilibrium of the system in Equation 24.40.

• for x(0)= 0 it holds that

sup
δ(·) satisfies Equation 24.36

sup
0<‖d‖L2 <∞

‖e‖L2

‖d‖L2

< γ.

With some abuse of terminology, robust L2-gain performance is often referred to as robust H∞-
performance, but it is important to realize that frequency-domain characterizations do not make sense
when considering time-dependent parametric uncertainties in Equation 24.40. Only with time-invariant
parameter uncertainties (ρ= {0}) does a robust L2-gain that is smaller than γ imply that ‖Tδ‖H∞ < γ for
all δ ∈ δ, where Tδ is the transfer function associated with Equation 24.40 for time-invariant parameters
δ(t)= δ. The following result generalizes Theorem 24.4 to robust L2-gain performance.
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Theorem 24.9:

Suppose there exists a continuously differentiable matrix function X(δ)= X(δ), such that X(δ). 0 and(
∂X(δ, ρ)+A(δ),X(δ)+X(δ)A(δ) X(δ)B(δ)

B(δ),X(δ) 0

)

+
(

0 I
C(δ) D(δ)

),(−γ2I 0
0 I

)(
0 I

C(δ) D(δ)

)
≺ 0

(24.41)

for all δ ∈ δ and ρ ∈ ρ. Then the uncertain system in Equation 24.40 has a robust L2-gain smaller than γ.

The proof of this result is analogous to that of Theorem 24.4. The main merit of Theorem 24.9 is that
it converts robust L2-gain performance to an algebraic property. As in Theorem 24.8, the condition in
Equation 24.41 requires the numerical search for a matrix function X(·) that needs to satisfy a partial
differential LMI. Moreover, the discussion about the extreme cases concerning time-invariant or arbitrary
fast time-varying parameters in Section 24.7.2 remains valid for Equation 24.41. Finally, let us remark
that Theorem 24.9 extends, mutatis mutandis, to all other performance specifications that have been
mentioned in Section 24.5.

24.8 Robust State-Feedback and Estimator Synthesis

Consider the system

ẋ(t)= A(δ(t))x(t)+B0(δ(t))d(t)+B(δ(t))u(t),

e(t)= C0(δ(t))x(t)+D0(δ(t))d(t)+E(δ(t))u(t),

y(t)= C(δ(t))x(t)+ F(δ(t))d(t),

(24.42)

whose describing matrices are affected by a time-dependent parametric uncertainty δ(t) ∈ R
p. Let us also

assume that the dependence of the system matrices is actually affine, and that δ(t) takes values that are,
for t ≥ 0, confined to the polytope

δ := co{δ1, . . . , δN } ⊂ R
p. (24.43)

Robust controller synthesis deals with the problem of determining a feedback controller that processes
measurements y to control inputs u, so as to guarantee robust stability and a desired robust performance
specification on the mapping from the disturbance d to the output e of the controlled system.

The robust state-feedback synthesis problem is a special case in which the whole state is assumed to be
measurable (y = x in Equation 24.42) and the controller is a static feedback law u= Dcx with some gain
Dc . In that case, the resulting closed-loop system is described by

ẋ(t)= [A(δ(t))+B(δ(t))Dc]x(t)+B0(δ(t))d(t),

e(t)= [C0(δ(t))+E(δ(t))Dc]x(t)+D0(δ(t))d(t).

If applying Theorem 24.9 for a parameter-independent X(δ)= X and exploiting affine parameter-
dependence as for Theorem 24.7, we infer that the robust L2-gain of the controlled system is smaller than
γ if there exists X = X,with

X. 0,

⎛
⎝[A(δk)+B(δk)Dc],X +X[A(δk)+B(δk)Dc] XB0(δk) [C0(δk)+E(δk)Dc],

B0(δk),X −γ2I D0(δk),
C0(δk)+E(δk)Dc D0(δk) −I

⎞
⎠≺ 0

for all k = 1, . . . , N . (24.44)
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Literally following the nominal synthesis procedure of Section 24.6.1 with the convexifying transformation
in Equation 24.21 we infer that there exist (Dc , X) satisfying Equation 24.44 iff there exist (M, Y ) satisfying

Y. 0,

⎛
⎝[A(δk)Y +B(δk)M],+ [A(δk)Y +B(δk)M] B0(δk) [C0(δk)Y +E(δk)M],

B0(δk), −γ2I D0(δk),
C0(δk)Y +E(δk)M D0(δk) −I

⎞
⎠≺ 0

for all k = 1, . . . , N .

This LMI feasibility problem in (M, Y ) can be readily solved. If (M, Y ) is a solution, the state-feedback
gain Dc =MY−1 guarantees a robust L2-gain that is smaller than γ for the closed-loop system.

This procedure works smoothly because the transformation (Equation 24.21) does not involve data
matrices that describe the open-loop system (Equation 24.42) and because X is assumed independent
of δ. The reduction of conservatism by employing parameter-dependent functions X(δ) is possible, to a
certain extent, by introducing slack variables as discussed in [5].

Unfortunately, robust output-feedback controllers cannot be designed by following the general syn-
thesis procedure of Section 24.6.2 for the parameter-dependent system (Equation 24.42). As the main
reason, the convexifying transformation (Equation 24.25) involves the system data while, in addition, the
matrix blocks in the corresponding synthesis inequalities are not affine in the parameter vector δ. Simi-
larly, robust observers with the structure appearing in Equation 24.30 cannot be designed, just because
the observer is defined in terms of open-loop system data.

In contrast, for the estimation problem we have considered the convexifying transformation in Equa-
tion 24.31 of the estimator parameters that does not involve system matrices. Therefore it is possible to
design robust estimators in complete analogy to what was discussed for state-feedback synthesis. Specifi-
cally, recall from Section 24.6.4 that estimator design involves a system description (Equation 24.42) with
B(δ)= 0 and E(δ)= E. Then there exists an estimator (Equation 24.17) that achieves for d → e a robust
L2-gain performance level smaller than γ (according to the definition in Section 24.7.3) if there exists
v = (X, Z, K , L, M, N) such that

X(v). 0,

⎛
⎝A(v, δk),+A(v, δk) B(v, δk) C(v, δk),

B(v, δk), −γ2I D(v, δk),
C(v, δk) D(v, δk) −I

⎞
⎠≺ 0 for all k = 1, . . . , N ,

where X(v) is given in Equation 24.32 and

(
A(v, δk) B(v, δk)
C(v, δk) D(v, δk)

)
=
⎛
⎝ ZA(δk) ZA(δk) ZB0(δk)

XA(δk)+ LC(δk)+K XA(δk)+ LC(δk) XB0(δk)+ LF(δk)
C0(δk)+ENC(δk)+EM C0(δk)+ENC(δk) D0(δk)+ENF(δk)

⎞
⎠

are affine in the design parameters v. This set of (N + 1) LMIs can be readily implemented. If v is a solution,
the desired robust estimator is then given by the state-space representation matrices (Ac , Bc , Cc , Dc) that
are resolved from Equation 24.31 with nonsingular U , V satisfying Z−X = UV T Z.

24.9 Gain-Scheduling Synthesis

An interesting generalization of the robust controller synthesis problem treated in the previous section
amounts to allowing the controller to be dependent on the parameter vector δ= col(δ1, . . . , δp). This
means that the controller has online access to the time-varying parameter δ(t) through an additional
measurement. Hence, the actual parameter value, although not known a priori, is used as extra information
to control the system.

The classical gain-scheduling approach towards control system design fits in this line of reasoning
and typically amounts to associating with δ(t) a specific operating condition of the plant. A (robust)
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controller is designed for each operating condition δ ∈ δ and these are scheduled by means of switching
or interpolation rules inferred from measurement information. This design methodology has found
widespread applications, but the assessment of guarantees on robust stability and robust performance in
view of time-dependent changes of δ is usually difficult if not impossible.

For the linear parameter-varying (LPV) system in Equation 24.42, an LPV controller is a system of the
form

ẋc(t)= Ac(δ(t))xc(t)+Bc(δ(t))y(t),

u(t)= Cc(δ(t))xc(t)+Dc(δ(t))y(t),
(24.45)

where δ(t) satisfies the bound and rate constraints in Equation 24.36. As before, the aim will be to design
an LPV controller (Equation 24.45) that renders the controlled system robustly stable and establishes a
desired robust performance specification. The controlled system is given by

ξ̇(t)=A(δ(t))ξ(t)+B(δ(t))d(t),

e(t)= C(δ(t))ξ(t)+D(δ(t))d(t),

where the closed-loop matrix functions are structured as in Equation 24.18.
The synthesis techniques for the construction of LPV controllers closely resemble those for nominal

controller design as we have investigated in Section 24.6.2. The LPV synthesis problem to achieve robust
stability and a robust L2-gain smaller than γ is then solved if one can find a controller and a smooth
function X (δ)= X (δ),such that for all (δ, ρ) ∈ δ×ρ

X (δ). 0 and

⎛
⎝∂X (δ, ρ)+A(δ),X (δ)+X (δ)A(δ) X (δ)B(δ) C(δ),

B(δ),X (δ) −γ2I D(δ),
C(δ) D(δ) −I

⎞
⎠≺ 0, (24.46)

where ∂X(δ, ρ) is defined in Equation 24.37. Mutatis mutandis, the convexifying controller transformation
(X , Ac , Bc , Cc , Dc)→ (X, Y , K , L, M, N)=: v from Section 24.6 still works to arrive at a synthesis proce-
dure for LPV output-feedback controllers. However, note that all matrices in the transformed variable v
have become functions of δ ∈ δ or of (δ, ρ) ∈ δ×ρ now. In fact, finding a controller and a continuously
differentiable X (·) satisfying Equation 24.46 on δ×ρ is equivalent to finding v(·) such that the synthesis
inequalities

X(v). 0,

⎛
⎝Z(v)+A(v),+A(v) B(v) C(v),

B(v), −γ2I D(v),
C(v) D(v) −I

⎞
⎠≺ 0 (24.47)

hold on all of δ×ρ, where Z(v(δ, ρ)) := diag(−∂Y (δ, ρ), ∂X(δ, ρ)). This turns the LPV controller synthesis
problem into a linear matrix-function inequality in the decision variable v(·). A description of the related
design algorithm can be found in [1].

Let us consider a particular popular scenario in more detail. Suppose that the matrices in Equa-
tion 24.42 are affine functions of δ and that B, E, C, and F are actually independent of δ. Also, suppose
that the time-varying parameters δ(t) assume their values in the polytope (Equation 24.43) without any
constraints on their rate-of-variation. We will search for an LPV controller in which the matrix functions
in Equation 24.45 are also affine in δ. Finally, we let X in Equation 24.46 be constant, which implies that
∂X (δ, ρ)= 0.

These assumptions immediately imply that the closed-loop system matrices become affine in δ. There-
fore, Equation 24.46 is satisfied for all δ ∈ δ if and only if Equation 24.46 is satisfied for the generators
δ= δk , k = 1, . . . , N , of the set δ. Hence we achieve a robust L2-gain smaller than γ for the controlled
system if there exists X with

X . 0 and

⎛
⎝A(δk),X +XA(δk) XB(δk) C(δk),

B(δk),X −γ2I D(δk),
C(δk) D(δk) −I

⎞
⎠≺ 0 for k = 1, . . . , N . (24.48)
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Under the present structural assumptions, the transformed variables (K , L, M, N) also become affine
functions in δ and Z(v)= 0. Now apply the general convexifying transformation

(X , Ac(δk), Bc(δk), Cc(δk), Dc(δk))→ (X, Y , Kk , Lk , Mk , Nk) := vk

with k = 1, . . . , N as in Section 24.6.2. This transforms Equation 24.48 into

(
Y I
I X

)
. 0,

⎛
⎝A(vk , δk),+A(vk , δk) B(vk , δk) C(vk , δk),

B(vk , δk), −γ2I D(vk , δk),
C(vk , δk) D(vk , δk) −I

⎞
⎠≺ 0 for k = 1, . . . , N . (24.49)

We end up with a system of genuine LMIs in the parameters v1, . . . , vN that can be readily solved. In
summary, this leads to the following LPV controller design procedure:

• Verify feasibility of (or minimize γ over) the synthesis inequalities (Equation 24.49) in the variables
vk = (X, Y , Kk , Lk , Mk , Nk) for k = 1, . . . , N .

• If a solution has been found, construct X as in the standard output-feedback synthesis procedure
in Section 24.6.2.

• For this fixed X , find controller parameters
(

Ac,k Bc,k
Cc,k Dc,k

)
that render Equation 24.48 satisfied for each

k = 1, . . . , N . These controller parameters can be obtained by solving Equation 24.25.
• If δ ∈ δ is represented by δ=∑N

k=1 αkδ
k with αk ≥ 0,

∑N
k=1 αk = 1, then Equation 24.46 holds for

(
Ac(δ) Bc(δ)
Cc(δ) Dc(δ)

)
=

N∑
k=1

αk

(
Ac,k Bc,k

Cc,k Dc,k

)

with X independent of δ and, consequently, ∂X (δ, ρ)= 0.

The actual LPV controller is now obtained by taking time-varying convex combinations of the N
controllers defined by the quadruples (Ac,k , Bc,k , Cc,k , Dc,k). It is given by Equation 24.45 with

(
Ac(δ(t)) Bc(δ(t))
Cc(δ(t)) Dc(δ(t))

)
=

N∑
k=1

αk(t)

(
Ac,k Bc,k

Cc,k Dc,k

)
,

where the parameter δ(t) at time t is represented as δ(t)=∑N
k=1 αk(t)δk with αk(t)≥ 0,

∑N
k=1 αk(t)= 1.

It achieves robust stability and a robust L2-gain performance smaller than γ.

24.10 Robustness Analysis and Synthesis with Multipliers

24.10.1 Robustness Analysis with IQCs

Uncertain systems are often described by a feedback interconnection with a stable LTI system in the
forward path and some uncertainty in the feedback path as depicted in Figure 24.3. Mathematically, this
amounts to

ẋ = Ax+B1w+B2d,

z = C1x+D1w+D12d interconnected with w =Δ(z),

e = C2x+D21w+D2d,

(24.50)

where A is Hurwitz andΔ denotes the uncertainty, a map that is supposed to be contained in some class
Δ. We do not intend to include the theory around general systems and their abstract properties as, for
example, developed in [6]. Instead we just assume that the interconnection is well-posed: For all Δ ∈Δ
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FIGURE 24.3 Uncertainty system.

and for all initial conditions x(0) as well as arbitrary external signals d that are of finite energy on [0, T]
for all T ≥ 0, the interconnection has unique responses x, z, w, and e that are of finite energy on finite
subintervals of [0,∞).

The interconnection is said to be robustly stable if, for any Δ ∈Δ, arbitrary finite energy disturbance
signals lead to responses of finite energy as well. The uncertain system has robust L2-gain smaller than γ
if the interconnection is robustly stable and if there exists some ε> 0 such that the L2-gain of d → e in
Equation 24.50 for zero initial condition is bounded by γ− ε for all uncertaintiesΔ ∈Δ.

In order to computationally verify robust performance, we need to suitably capture information about
the uncertainty set. Suppose, for example, that for allΔ ∈Δ and all z ∈L2 the signal w =Δ(z) satisfies

∫ T

0
w(t),w(t) dt ≤

∫ T

0
z(t),z(t) dt for all T ≥ 0.

This just means that all uncertainties have an L2-gain bounded by 1. If, in addition, we also know that all
uncertainties are passive, we have

∫ T

0
w(t),z(t) dt ≥ 0 for all T ≥ 0.

These properties of the uncertainties can be expressed as IQCs on their input and output signals with the
help of so-called multipliers P:

∫ T

0

(
w(t)
z(t)

),
P

(
w(t)
z(t)

)
dt ≥ 0 for all T ≥ 0 and P ∈ {Pgain, Ppassive},

where the multipliers for the gain and passivity constraints are defined, respectively, as

Pgain =
(−I 0

0 I

)
and Ppassive =

(
0 I
I 0

)
. (24.51)

With any set of such multipliers one can computationally verify robust performance on the basis of the
following result.

Theorem 24.10:

Let P be a family of symmetric matrices P which satisfy

∫ T

0

(
Δ(z)(t)

z(t)

),
P

(
Δ(z)(t)

z(t)

)
dt ≥ 0 for all z ∈L2[0, T], T ≥ 0 and all Δ ∈Δ. (24.52)
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Then Equation 24.50 is robustly stable and has robust L2-gain performance smaller than γ if there exists

X = X,and P =
(

Q S
S, R

)
∈ P that satisfy the LMIs

X . 0 and

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0
A B1 B2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2

⎞
⎟⎟⎟⎟⎟⎟⎠

,⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 X 0 0 0 0
X 0 0 0 0 0
0 0 Q S 0 0
0 0 S, R 0 0
0 0 0 0 Qp Sp

0 0 0 0 S,p Rp

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0
A B1 B2

0 I 0
C1 D1 D12

0 0 I
C2 D21 D2

⎞
⎟⎟⎟⎟⎟⎟⎠
≺ 0 (24.53)

for the performance index Pp =
(

Qp Sp

S,p Rp

)
=
(−γ2I 0

0 I

)
.

Proof. For some sufficiently small ε> 0 we can add εI to the left-hand side of Equation 24.53 while
keeping the inequality valid. Let us then choose any trajectory of the interconnection Equation 24.50 for
an arbitrary uncertainty. Then right-multiply Equation 24.53 with col(x(t), w(t), d(t)) and left-multiply
it with its transpose in order to obtain

(
x(t)
ẋ(t)

),(
0 X
X 0

)(
x(t)
ẋ(t)

)
+
(

w(t)
z(t)

),
P

(
w(t)
z(t)

)
+
(

d(t)
e(t)

),
Pp

(
d(t)
e(t)

)

+ ε (‖x(t)‖2+‖w(t)‖2+‖d(t)‖2)≤ 0.

This inequality continues to hold after integration on [0, T]. As the key observation, we can exploit
Equation 24.52 in order to conclude that one can drop the middle term in the first row without violating the
inequality. Since the integral of the left-most term is

∫ T
0 (d/dt)x(t)T Xx(t) dt = x(T),Xx(T)− x(0),Xx(0)

and since x(T),Xx(T)≥ 0, we obtain

ε

∫ T

0
‖x(t)‖2+‖w(t)‖2 dt+

∫ T

0
‖e(t)‖2− γ2‖d(t)‖2 dt ≤ x(0),Xx(0)− ε

∫ T

0
‖d(t)‖2 dt.

If d is of finite energy, we infer that
∫ T

0 ‖x(t)‖2 dt and
∫ T

0 ‖w(t)‖2 dt remain bounded for T →∞,
which implies that x, w, and hence also z and e (due to Equation 24.50) are of finite energy. This proves
stability. If x(0)= 0, we conclude that the L2-gain is strictly smaller than γ as for Theorem 24.4.

Clearly the very same result holds (with identical proof) for general robust quadratic performance
(Section 24.5.4) with index

Pp =
(

Qp Sp

S,p Rp

)
satisfying Rp � 0.

In order to verify robust stability and performance one only needs to check feasibility of the LMI in
Equation 24.53. This is certainly possible if P is described by computationally tractable LMI constraints
(such as in our example in which P just consists of two elements).

If Equation 24.52 holds for P, it persists to hold for all P in the larger convex conic hull

cc(P) :=
{

N∑
ν=1

τνPν : Pν ∈ P, τν ≥ 0, ν= 1, . . . , N , N ∈ N

}
,

which can lead to (sometimes substantially) improved computational results. Note that cc(P) is a convex
cone, since with any two of its elements P1, P2 it also contains their positive linear combination τ1P1+
τ2P2, τ1, τ2 ≥ 0. Therefore, in applications, the set P in Theorem 24.10 is typically assumed to be a convex
cone with an LMI representation.
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24.10.2 Examples and Extensions

Many classical results on robust performance can be obtained as special cases of Theorem 24.10. Its real
power, however, manifests itself in the flexibility to handle mixtures of structured uncertainties beyond
such classical cases with ease. Here is a highly nonexhaustive sample.

24.10.2.1 Small-Gain and Passivity Theorems

With P = {Pgain} and Pp = Pgain as defined in Equation 24.51, feasibility of Equation 24.53 just means
that the L2-gain of the LTI system in Equation 24.50 is strictly smaller than one, while Equation 24.52
translates into Δ ∈Δ having L2-gain smaller than one. This is simply the classical small-gain theorem.
Similarly, for P = {Ppassive} and Pp = Ppassive, we obtain a passivity theorem which says that a passive
interconnection in negative feedback with a passive system stays passive.

24.10.2.2 Sector Nonlinearities

As another variant let Δ(z)(t)= φ(z(t)) with any (Lipschitz-continuous) φ : R→ R whose graph is
located in the conic sector between the lines {(x, y) ∈ R

2 : y = αx} and {(x, y) ∈ R
2 : y = βx} for some

real α≤ β. For D1 = 0, standard results on the existence of solutions of differential equations imply that
Equation 24.50 is well-posed. Moreover, all these uncertainties satisfy the IQC in Equation 24.52 for all
P ∈ P with P being equal to

{( −2 α+ β
α+ β −2αβ

)}
or its conic hull

{
τ

( −2 α+ β
α+ β −2αβ

)
: τ≥ 0

}
. (24.54)

This holds for example, with α= 0 and β> 0 for the saturation nonlinearity

φ(x)=
⎧⎨
⎩

bx for |x| ≤ 1,

β sign(x) for |x|> 1.

For the interconnection e = z = Gw+Gd, w =Δ(z) with G(s)=−(12(s+ 1)(s+ 2)(s+ 3))−1, a plot of
the guaranteed L2-gain levels over the saturation slope β is shown in Figure 24.4. It indicates a well-known
fundamental trade-off for obtaining less conservative results for larger sets of multipliers at the expense
of higher computational complexity.

24.10.2.3 General Structured Uncertainties

Let w = col(w1, . . . , wq), z = col(z1, . . . , zq), and suppose that Δ is diagonally structured and defined by
wν =Δν(zν), ν= 1, . . . , q. If Δν satisfies an IQC with multiplier class Pν, then Δ satisfies an IQC for all
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FIGURE 24.4 Results for multipliers in Equation 24.54 with α= 0: Fixed (dotted); Cone (solid).
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P ∈ P with

P :=
{(

diag(Q1, ..., Qq) diag(S1, ..., Sq)
diag(S,1, ..., S,q) diag(R1, ..., Rq)

)
:
(

Qν Sν
S,ν Pν

)
∈ Pν, ν= 1, . . . , q

}
.

If the sets Pν, ν= 1, . . . , q, are represented by LMIs, the same is true for P. Similarly if Pν are convex
cones for ν= 1, . . . , q, so is the set P. This diagonal augmentation procedure allows the construction of
multipliers for diagonally structured uncertainties of an arbitrary nature. In this fashion, we can handle
uncertainties whose diagonals are combinations of L2-gain, passive, sector-bounded static nonlinear, or
time-varying parametric elements as discussed below.

24.10.2.4 Time-Varying Parametric Uncertainties

IfΔν(zν)(t)= δν(t)zν(t) for some δν(t) ∈ R with |δν(t)| ≤ 1 for all t ≥ 0, it is trivial to check that it satisfies
an IQC for the convex cone

Pν =
{(

Qν Sν
S,ν −Qν

)
: Qν � 0, Sν+ S,ν = 0

}
.

Diagonal augmentation leads to a set of diagonally structured multipliers for Δ(z)(t)=Δ(t)z(t) with
Δ(t)= diag(δ1(t)I , . . . , δq(t)I) as they are used in (frequency-by-frequency) structured singular value
upper bound computations [20].

24.10.2.5 Full Block Multipliers

If Δ(z)(t)=Δ(t)z(t) with some time-varying matrix Δ(t) which satisfies Δ(t) ∈ co{Δ1, . . . ,ΔN },
a simple convexity argument reveals that Equation 24.52 holds for

P ∈
{

P = P,:
(

I
0

),
P

(
I
0

)
� 0,

(
Δν
I

),
P

(
Δν
I

)
� 0, ν= 1, . . . , N

}
.

Clearly this set of unstructured multipliers has an LMI description and can be readily implemented. If
Δ(t) admits a diagonal structure as in the previous example, one can compare diagonally structured with
full multipliers; the latter often lead to less conservative analysis results at a higher computational cost.

For time-varying parametric uncertainties as considered in the latter two examples, it is remarkable to
note that the feasibility of the LMI in Equation 24.53 does actually imply nonsingularity of I −D1Δ(t) and
hence well-posedness of the interconnection (Equation 24.50); moreover one can even prove exponential
stability of Equation 24.50.

We have only hinted at the power of static IQCs, while the extension to allow for dynamics in the
multipliers even further expands the wealth of the applications and their computational power [14].

24.10.3 Robust Synthesis

For the purpose of synthesis, the system (Equation 24.50) is extended with a control channel as

ẋ = Ax+B1w+B2d+Bu

z = C1x+D1w+D12d+E1u

e = C2x+D2w+D22d+E2u

y = Cx+ F1w+ F2d

interconnected with w =Δ(z), Δ ∈Δ. (24.55)

The goal is to design a controller (Equation 24.17) which achieves robust performance for the closed-
loop system. With a set P of IQC multipliers satisfying Equation 24.52, we need to enforce the LMI in
Equation 24.53 for the closed-loop system description (after having verified well-posedness). This opens
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FIGURE 24.5 Robust estimator design.

up the opportunity to apply the general synthesis procedure from Section 24.6.3. Convex constraints result
if P just consists of one element P whose right-lower block is positive semidefinite, since the problem
then boils down to one of quadratic performance synthesis as discussed in Section 24.5.4. Unfortunately,
convexification is impossible if P consists of a whole family of multipliers. This has led to the suggestion
of various heuristic algorithms in order to approach the solution of the bilinear matrix inequalities for
robust performance synthesis.

A particularly lucky case is the robust estimator synthesis problem for a configuration as depicted in
Figure 24.5. Then Equation 24.55 specializes to B= 0, E1 = 0, and E2 =−I . After having checked well-
posedness (which does not involve the to-be-designed estimator), we can apply the convexifying estimator
parameter transformation from Section 24.6.4. The general procedure results in the synthesis inequalities

(
Z Z
Z X

)
. 0,

(�),

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 0 0 Q S 0 0
0 0 0 0 S, R 0 0
0 0 0 0 0 0 Qp Sp

0 0 0 0 0 0 S,p Rp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

ZA ZA ZB1 ZB2

XA+ LC+K XA+ LC XB1+ LF1 XB2+ LF2

0 0 I 0
C1 C1 D1 D12

0 0 0 I
C2−NC−M C2−NC D21−NF1 D2−NF2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≺ 0,

which are actually convex in X, Z and Q, S, R. Since Rp � 0 can be factorized as T,pTp with a full row-rank
matrix Tp, one can easily turn the second constraint into a genuine LMI by taking the Schur complement.

Finally, let us stress that dualization arguments allow a similar convexification procedure for the design
of robust state-feedback controller gains, as shown for parametric uncertainties in [16].

24.11 Conclusions

We have provided a selective overview on the application of semidefinite programming techniques in
control in order to cover the most basic but essential ideas in the analysis and synthesis of nominal and
robust controllers. During the last decades this field has grown dramatically and the scope of applications
of LMIs in solving complex control problems has widened considerably. Notable activities have been
devoted to broadening the LMI stability and performance specifications and to exploring their applica-
bility to time-varying, time-delay, fuzzy and nonlinear systems. Considerable advances have been made
in constructing systematic relaxation schemes for handling robust LMIs. Recently emerging applications
of convex optimization to the synthesis of distributed controllers for large-scale systems offer exiting new
avenues for progress.
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Appendix: Convex Sets and Convex Functions

A set S in a linear vector space is said to be convex if

x1, x2 ∈ S implies x = αx1+ (1− α)x2 ∈ S for all α ∈ (0, 1).

Geometrically, this states that the line segment connecting any two points of the set belongs to the set
as well. For all α ∈ (0, 1), the point x defined in the above expression is called a convex combination of
x1 and x2. More generally, the point x =∑n

k=1 αkxk is a convex combination of x1, . . . , xn ∈ S if αk ≥ 0
for all k and

∑n
k=1 αk = 1. Many operations preserve convexity of sets. As the most important one,

the intersection of an arbitrary collection of convex sets is convex. Simple examples of convex sets are
hyperplanes {x ∈ R

n | a,x = b} and half-spaces {x ∈ R
n | a,x ≤ b}, where a ∈ R

n, b ∈ R. A polyhedron is
the intersection of finitely many hyperplanes and half-spaces and is hence convex. A polytope is a compact
polyhedron. It is easy to see that the set of all convex combinations of n points x1, . . . , xn ∈ S is itself
convex. For any subset S of a linear vector space the convex hull co(S) is the set of all convex combinations
of the elements of S. The convex hull of a finite set of points is always a polytope and, conversely, any
polytope is the convex hull of a finite set.

A (Hermitian-valued) function F : S → H
m is convex if its domain S is convex and

F

(
n∑

k=1

αkxk

)
�

n∑
k=1

αkF(xk) for all x1, . . . , xn ∈ S and αk ≥ 0 with
n∑

k=1

αk = 1.

This is referred to as Jensen’s inequality. F is strictly convex if Jensen’s inequality holds with≺ in the case
that neither of the αk

′s equals one. If F is real valued, the inequalities are the same as the usual ≤ and
< for real numbers. Generally it is not easy to verify whether a function is convex. Twice continuously
differentiable functions F : S → R on convex sets S with interior points are convex iff their Hessian
satisfies ∂2F(x) � 0 for all x ∈ S. If F defined on S is convex, then the sublevel sets {x ∈ S | F(x)≺H} are
convex for any H ∈ H

m. The most important reason for considering convex functions in optimization is
the fact that local minimal points of convex functions are actually global minimal points. Precisely, x0 ∈ S
is a local minimal point of F if there exists an open neighborhood N (x0) of x0 such that F(x0) � F(x)
for all x ∈N (x0)∩S. If F is convex one can conclude that F(x0) � F(x) for all x ∈ S, showing that x0 is
a global minimal point of F. This property is of great interest in numerical optimization. Indeed, many
efficient algorithms exist for the numerical computation of local minima of real-valued functions. If these
are convex, such algorithms actually determine global minimal points.
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25.1 Introduction to Optimal Control Design

Many systems occurring naturally in fields such as biology and sociology use feedback control to achieve
homeostasis, or equilibrium conducive to existence. Because the bounds within which life can continue
are small (e.g., temperature changes of a few degrees can eliminate populations) and the resources available
are limited, it is remarkable yet not expected that most of these feedback control systems have evolved

25-1
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into optimal systems where performance objectives are achieved efficiently with a minimum of control
effort. Since naturally occurring systems are optimal, it makes sense to design man-made controllers from
the view point of optimality.

25.1.1 The Philosophy of Classical Control

Classical control theory, developed in the mid-1900s, imparts a great deal of engineering insight. It was
best developed for linear systems. Since computers were not available to solve complex design equations,
the design algorithms are heuristic in terms of Bode plots, Nyquist plots, the root locus, and other single-
input/single-output (SISO) graphical techniques that offer intuition and rely on the design engineer’s
expertise. Since most design was in the frequency domain, robustness to unknown disturbances, modeling
errors, and noise was automatically built in.

Complex modern systems have multiple inputs and outputs. Examples include aircraft, satellites, and
automobile engines, which, though nonlinear, can often be linearized about a desired operating point or
trajectory. In such applications, classical design relies on successive loop closures based on one-loop-at-a-
time SISO design. Unfortunately, using this approach, neither stability nor robustness of the overall system
can be guaranteed, since one loop closure can destroy what has been gained in the design of previous
loops.

25.1.2 The Philosophy of Optimal Control Design

About 1960, modern optimal control theory began developing for complex multivariable systems. It
developed coincidentally with the space age (Sputnik was launched in 1957), the computer age, and the
age of robotics. Optimal control is a branch of modern control theory that deals with designing controls
for dynamical systems by minimizing a performance index that depends on the system variables. The
performance index might include, for instance, a measure of operating error, a measure of control “effort,”
or any other characteristic important to the user of the control system. Under some mild assumptions,
making the performance index small also guarantees that the system variables will be small, thus insuring
closed-loop stability.

Classical design is concerned with directly selecting the feedback gains K in the inner real-time control
loops. On the other hand, modern control design offers standard algorithms for implementing an outer
design loop that automatically selects the inner loop feedback gains in such a fashion that closed-loop
stability and performance for MIMO systems is guaranteed. In contrast to classical one-loop-at-a-time
design, in modern control, all of the feedback loops are closed simultaneously by computing the feedback
gains by solving standard matrix design equations. Special purpose software [9,10] is commercially avail-
able to solve these equations, so that control design for complex systems is straightforward with a personal
computer (PC).

In this chapter, optimal control design is discussed for deterministic systems with a well-known math-
ematical model. The major emphasis is on linear systems in the state-space form. It will be assumed that
full state-variable feedback is available; in the event that only partial information is available on the system
states, the chapter on “Output Feedback” or the references should be consulted as well. The discussion
in this chapter will center around continuous-time systems, with a follow-up discussion on discrete-time
(DT) systems. Several design techniques will be covered, including the regulator problem, the tracker
problem, minimum-time control, and polynomial design. Robustness of the linear quadratic regulator
(LQR) will be discussed using multivariable frequency-domain design techniques, which allow one to
draw close connections with classical control theory. This is a condensed version of presentations avail-
able in [7,8,11] where derivations and computer software appear. Important key foundation references
are [1–6].

There are two basic approaches to optimal control. The Calculus of Variations leads to a formulation of
the optimal control solution in terms of partial derivatives of the Hamiltonian, which is an energy-based
construct that captures the prescribed optimality criteria in terms of motion along the system trajectories.
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This approach leads to optimal control solutions in terms of the state equation, costate equation, and
stationarity condition. Bellman’s Optimality Principle, on the other hand, leads to Dynamic Programming
(DP) solutions, which develop backwards in time. From this, one obtains minimizations with respect to
the Hamiltonian, which leads to the Hamilton–Jacobi–Bellman (HJB) equations. First we present the
Calculus of Variations results, then the DP results.

25.2 Optimal Control of Continuous-Time Systems

In this section nonlinear control design will be covered for general nonlinear systems. Then, the LQR will
be developed for linear systems. The LQR is a cornerstone of modern control theory design.

25.2.1 The General Continuous-Time Optimal Control Problem

A state-variable model for a nonlinear time-varying dynamical system is given by Equation 25.1 in
Table 25.1, where x(t) ∈Rn is the vector of internal states and u(t) ∈Rm is the vector of control inputs.
This is the plant to be controlled. A broad range of performance objectives may be achieved by selecting
the control u(t) to minimize a performance index (PI) or a cost given by Equation 25.2 with t0 the initial
time and T the final time of interest. The final-state weighting function φ(x(T), T) and weighting function
L(x, u, t) are selected depending on the performance objectives.

The optimal control problem is to determine a control input u(t) for the system that minimizes the PI
and also insures that the final state constraint (Equation 25.3) is satisfied for a given function ψ ∈Rp.
The roles of the final weighting function φ and the final constraintψ should not be confused. The former
is a function one would like to minimize, such as the final energy xT (T)S(T)x(T), with S(T) a specified
weighting matrix. On the other hand,ψ(x(T), T) must be exactly equal to zero. A sample problem might
be to find the control input u(t) that drives a satellite, with dynamics described by Equation 25.1, from
a given initial position x(t0) to an specified orbit, described by Equation 25.3, while minimizing the
expended energy, as described by the PI (Equation 25.2).

25.2.1.1 Solution of the Nonlinear Optimal Control Problem

Using the Calculus of Variations approach to solve the optimal control problem, Lagrange multipliers
are used to adjoin the constraints (Equations 25.1 and 25.3) to the performance index (Equation 25.2).
Since the system Equation 25.1 is an equality constraint which must hold at each time, an associated
multiplier λ(t) ∈Rn is required that is a function of time. Thus, the Hamiltonian function is defined as
Equation 25.4. Using the theory of Lagrange multipliers and the calculus of variations, the solution to the
optimal control problem given in Table 25.1 is determined. It is assumed that the initial time t0 and the
initial state x(t0) are both known and fixed. In the boundary conditions, partial derivatives are denoted
by subscripts (e.g., ψx represents ∂ψ

∂x ).
The equations in the table may be used as design equations for determining the control u(t) that

minimizes the PI. They are necessary conditions for the solution of the nonlinear optimal control problem.
Any control u(t) that results in a minimum value of the PI, when it is applied to the system, must satisfy
the equations given there. Conditions under which these equations are sufficient as well are addressed
in [3,7].

The structure of the equations is worth discussing. According to the table, the Lagrange multiplier λ(t)
is a dynamical variable that satisfies its own dynamical Equation 25.6; it is called the costate. The optimal
control u(t) is then generally determined in terms of x(t) and λ(t) by using the stationarity condition
(Equation 25.7) (so named because this is the condition that guarantees a minimum or stationary point
with respect to changes in u(t)). The value of λ(t) is usually of no concern ultimately, but it is an
intermediate variable which must be determined to solve for the optimal control u(t), that minimizes
the PI J(t0) while insuring that constraints (Equations 25.1 and 25.3) are satisfied. The appearance of
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TABLE 25.1 Continuous Nonlinear Optimal Controller

System model:

ẋ = f (x, u, t), t ≥ t0, t0 fixed. (25.1)

Performance index:

J(t0)= φ(x(T), T)+
∫ T

t0
L(x, u, t) dt. (25.2)

Final state constraint:

ψ(x(T), T)= 0. (25.3)

Optimal Controller:

Hamiltonian:

H(x, u, t)= L(x, u, t)+λT f (x, u, t). (25.4)

State equation:

ẋ = ∂H

∂λ
= f , t ≥ t0. (25.5)

Costate equation:

−λ̇= ∂H

∂x
= ∂f T

∂x
λ+ ∂L

∂x
, t ≤ T . (25.6)

Stationarity condition:

0= ∂H

∂u
= ∂L

∂u
+ ∂f T

∂u
λ. (25.7)

Boundary conditions:

x(t0) given, initial condition, (25.8)

(φx +ψT
x ν−λ)T |T dx(T)+ (φt +ψT

t ν+H) |T dT = 0, final condition. (25.9)

intermediate variables, that are required to solve for the variables of interest, is typical of optimal control
design.

The dynamical state and costate equations, along with the control specified by the stationarity condi-
tion, are called the Hamiltonian system. These equations may be used to derive Lagrange’s and Hamilton’s
equations of motion in physics (see Example 25.1). The costate equation and stationarity condition are
called Euler’s equations. In the time-invariant case, f and L are not explicit functions of t, so that neither
is H . In this situation

Ḣ = 0. (25.10)

Thus for time-invariant systems and cost functions, the Hamiltonian is a constant on the optimal trajec-
tory. This is a general statement of the principle of conservation of energy.

25.2.1.2 Two-Point Boundary-Value Problems

The solution for the optimal control u(t) in Table 25.1 depends on solving two coupled differential
equations, the state Equation 25.5 and the costate Equation 25.6, each of which is of order n. These
two dynamical equations comprise the Hamiltonian system once the stationarity condition has been
used to eliminate u(t). The costate equation develops backward in time (by defining a backward time
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variable τ= T − t, dτ=−dt), with the final condition λ(T) determined by Equation 25.9. The boundary
conditions consist of the initial conditions on the state

n conditions: x(t0) given (25.11)

and the final conditions on the costate

p conditions: ψ(x(T), T)= 0 (25.12)

n− p conditions: (φx +ψT
x ν−λ)T |T dx(T)= 0, (25.13)

where it has been assumed for simplicity that the final time T is specified and hence fixed, so that dT = 0
in condition (Equation 25.9).

Since n boundary conditions are specified at the initial time t0 and n conditions are specified at the final
time T , this is a two-point boundary-value problem. There are many methods available for solving such
problems, including the shooting point method and the unit solution method; good software is available
for this purpose. The solution of the optimal control problem for nonlinear systems is often difficult,
though, for some nonlinear plants, the design equations can be explicitly solved for the optimal control
u(t), yielding a great deal of insight. This includes the Thrust Angle Programming and Intercept and
Rendezvous problems. In the special case that the plant is linear and the PI is quadratic, a solution is
available, given subsequently.

Example 25.1: Hamilton’s Principle

Both Lagrange’s and Hamilton’s equations of motion may be derived from Table 25.1.

LAGRANGE’S EQUATIONS OF MOTION

Define the generalized coordinate state vector q and the “control input” as the generalized veloc-
ities u= q̇. Define the Lagrangian L(q, u)≡ T (q, u)−U(q) as the difference between the kinetic and
potential energies. Then the “plant” (Equation 25.1) is

q̇= u≡ f (q, u)

where the function f (·) is given by the physics of the problem.
To find the trajectories of the motion, Hamilton’s principle says we may minimize the performance

index

J =
∫ T

0
L(q, u) dt,

so that the Hamiltonian (Equation 25.4) is H = L+λT u. According to Table 25.1, for a minimum

−λ̇= ∂H

∂q
= ∂L

∂q

0= ∂H

∂u
= ∂L

∂u
+λ.

Combining these equations yields Lagrange’s equations of motion,

∂L

∂q
− d

dt

∂L

∂q̇
= 0.
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TABLE 25.2 Continuous-Time Linear Quadratic Regulator

System model:

ẋ = Ax+Bu, t ≥ t0, x(t0)= x0 given. (25.14)

Performance index:

J(t0)= 1

2
xT (T)S(T)x(T)+ 1

2

∫ T

t0
(xT Qx+ uT Ru) dt, (25.15)

with

S(T)≥ 0, Q ≥ 0, R > 0.

Optimal feedback control:

Riccati equation:

−Ṡ = AT S+ SA− SBR−1BT S+Q, t ≤ T , S(T) given. (25.16)

Optimal feedback gain:

K = R−1BT S. (25.17)

Time-varying feedback:

u=−K(t)x. (25.18)

Optimal cost:

J(t0)= 1

2
xT

0 S(t0)x0. (25.19)

HAMILTON’S EQUATIONS OF MOTION

Defining the generalized momentum vector by λ=−∂L/∂q̇, the equations of motion may be
expressed in Hamilton’s form as

q̇= ∂H

∂λ
,

and

−λ̇= ∂H

∂q
.

25.2.2 Continuous-Time Linear Quadratic Regulator

The nonlinear optimal control design equations in Table 25.1 are not easy to solve, and there is no design
algorithm for doing so. In this section the design of optimal controllers for linear systems with quadratic
performance indices will be discussed, the so-called LQR problem. The LQR is a cornerstone of modern
optimal control design consisting of explicit matrix design equations easily solved on a digital computer.
It has a wide range of relevance, because many systems are linear to begin with, and many nonlinear
systems may be considered linear when operating near an equilibrium point. The LQR solution is given
as a closed-loop feedback control.

Consider the multivariable linear system (Equation 25.14) in Table 25.2 with state x ∈Rn and control
input u ∈Rm. The plant matrices may be time-varying (e.g., A(t), B(t)), though for notational convenience
this dependence will not be shown explicitly.

Choose the control that minimizes the quadratic PI (Equation 25.15). The control weighting R, state
weighting Q, and final state weighting S(T) are symmetric matrices of design parameters chosen by the
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designer depending on the control objectives. For instance, if the elements of S(T) are selected larger, then
the control will force the final state x(T) to be smaller to keep the PI small. Weight matrices Q and S(T)
are assumed positive-semidefinite (Q ≥ 0, S(T)≥ 0). Thus Q and S(T) have nonnegative eigenvalues so
that xT Qx and xT (T)S(T)x(T) are nonnegative for all x(t). Likewise, it will be assumed that R is positive
definite (R > 0), that is, R has positive eigenvalues so that uT Ru > 0 for all u(t). In this case, J is always
bounded below by zero, so that a sensible minimization problem results. Since the squares of the states
and control inputs occur in Equation 25.15, the PI is a form of generalized energy (consider the case when
some of the state components are velocities, or currents and voltages) and minimizing it will keep the
states and controls small.

Using the equations in Table 25.1, the solution to the LQR optimal control problem may be derived,
as given in Table 25.2. The state and costate equations are

ẋ = Ax+Bu (25.20)

and

−λ̇= Qx+ATλ, (25.21)

where the negative sign indicates that the costate equation must be solved backward in time. The
stationarity condition gives the control in terms of the costate as u(t)=−R−1BTλ(t). To find the optimal
control, the two-point boundary-value problem associated with the state and costate dynamics is ana-
lytically solved using the sweep method [3] where it is assumed that λ(t)= S(t)x(t) for some unknown
auxiliary matrix S(t). The optimal control is given in terms of this intermediate matrix as follows. First,
it can be determined that the auxiliary matrix S(t) satisfies the bilinear matrix Riccati equation 25.16. In
terms of the Riccati solution S(t), the optimal control is given by u(t)=−R−1BT S(t)x(t). Thus, defining
the optimal feedback gain by Equation 25.17, one may write the optimal control as the state-feedback
control law (Equation 25.18).

A block diagram of the LQR is shown in Figure 25.1. It is a feedback control system with time-varying
feedback gains K(t), and a formal design outer loop. Even if the system (A, B) is time-invariant, the
optimal control u(t) is a time-varying state feedback. This is why the optimal LQ controller may not be
determined using classical frequency-domain techniques. If the system model (Equation 25.14) is not an
exact description of the plant, the LQR still performs well if it is fairly close. In fact, it will be seen in
Section 25.2.4.2 that the LQR has important guaranteed robustness properties.

A

B
u(t) x(t)

Online

Offline

1/s
–

k(t)

–S = ATS + SA – SBR–1BTS + Q
  K = R–1BTS

FIGURE 25.1 Linear quadratic regulator.
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25.2.2.1 LQR Design

To design the optimal LQR, the design engineer first selects the design parameter weight matrices Q, R,
S(T). Then, the Riccati equation (RE) is solved for the auxiliary matrix function S(t), which is used to
compute K(t). The RE is solved backward in time using, as a final condition, the value of the weighting
matrix S(T) selected for the PI. This equation may be solved off-line for S(t), and the optimal feedback gain
K(t) computed and stored. Next, a computer simulation is generally performed to verify the closed-loop
performance. If the performance is not suitable, new design matrices Q, R, S(T) are selected and the entire
procedure is repeated. With commercially available software, the entire process is fast and convenient.
Finally, during the implementation or control run, the states are measured and the feedback control
u(t)=−K(t)x applied to the plant.

Thus, by the sweep method, the LQR problem has been decomposed into two stages: offline compu-
tation of the optimal gains using a backward differential equation, followed by the actual control of the
plant using feedback. Such hierarchical control schemes, consisting of an inner linear feedback loop whose
gain is computed by an outer quadratic design equation, are typical of modern control schemes. Optimal
control is fundamentally a noncausal design algorithm requiring future information about the plant and
performance objectives.

The LQR design procedure is in stark contrast to classical control design, where the gain matrix K is
selected directly. In modern optimal control design, some parameter matrices Q, R, and S(T) are selected
by the engineer. Then, the feedback gain K is automatically given by matrix design equations. This has the
significant advantages of allowing all the control loops in a multiloop system to be closed simultaneously,
while guaranteeing closed-loop stability.

The optimal cost of using this controller is given in terms of the initial state by Equation 25.19. The
initial state of the plant is known. Therefore, this expression allows computation of the optimal cost
before the control is actually applied to the plant, or even before the optimal gain K(t) is computed and
it is simulated on a computer. If the cost is too high, the engineer can select different weighting matrices
Q, R, and S(T) in the performance index and try another design. This preview feature is typical of optimal
control design using state feedback.

Example 25.2: LQR for Armature-Controlled DC Motor

The system equations of an armature-controlled DC motor are

i̇ =−ai− k′ω+ bu

ω̇=−αω+ ki
(25.22)

with i(t) the armature current,ω(t) the motor speed, control input u(t) the armature voltage, 1/a the
electrical time constant, 1/α the mechanical time constant, and the remaining variables other motor
parameters.

Defining the state as x = [i ω]T ,

ẋ =
[−a −k′

k −α
]

x+
[

b
0

]
u≡ Ax+ Bu. (25.23)

It is required to determine u(t) to minimize the PI

J = 1

2
xT (T)

[
si 0
o sω

]
x(T)+ 1

2

∫ T

0

[
xT
[

qi 0
0 qω

]
x+ ru2

]
dt (25.24)

with si , sω the final state weights, qi , qω the (intermediate) state weights, and r the control weight. These are
design parameters that may be adjusted or tuned using computer simulations to yield suitable closed-loop
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behavior, as will be seen in this example. The minimization of J corresponds to the regulation objective
of driving the motor to a speed of zero from any initial speed, while keeping the control energy small.
If the model represents a linearization of a nonlinear motor about a set point, the control will regulate
the motor speed to that set point.

Since the RE solution S(t) is symmetric, one may assume that

S =
[

s1 s2

s2 s3

]
(25.25)

where the scalars si(t) are to be determined. Substituting A, B from the state equation and S(T), Q, R from
the PI in the RE in Table 25.2 yields the three nonlinear scalar coupled differential equations

−ṡ1 =−2as1+ 2ks2− βs2
1 + qi ,

−ṡ2 =−(a+ α)s2− k′s1+ ks3− βs1s2, (25.26)

−ṡ3 =−2αs3− 2k′s2− βs2
2 + qω,

where β≡ b2/r.
Writing the feedback gain as K(t)= [ki kω], the table shows that K = R−1BT S, so that

ki = b

r
s1, kω = b

r
s2. (25.27)

Then, the optimal control is given by the time-varying feedback u=−kii− kωω.
Although the equations for si(t) are difficult to solve analytically, it is easy to use computer soft-

ware to solve the RE. Using such software, the optimal state trajectories and control voltage are plot-
ted for r = 1 and several values of q= qi = qω. The results are displayed in Figure 25.2. Note that
the states go to zero more quickly as q increases, while the controls become larger. Final weights of
si = sω = 0 were used. Based on the simulation results, suitable values for the PI weights can be selected.
Then, the associated K(t) may be stored in memory and applied to the actual motor during the control
implementation run.
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FIGURE 25.2 Results of DC motor simulation. (a) Motor speed. (b) Optimal control voltage.
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25.2.3 Steady-State and Suboptimal Control

Even for time-invariant plants, the optimal LQ control is a time-varying state-variable feedback. Such
feedbacks are inconvenient to implement, because they require the storage in computer memory of time-
varying gains. An alternative control scheme will now be given in which the time-varying optimal gain
K(t) is replaced by its constant steady-state (e.g., t →∞) value. In most practical applications, this use
of the steady-state feedback gain is adequate.

The results of this section are important. Showing how to find multi-loop feedback gains for multi-
input systems that are guaranteed to stabilize the closed-loop system. The gains are determined simply
by solving a matrix design equation using computer routines available in standard software packages
such as MATLAB� and MATRIXxTM. This goes far beyond what can be achieved with classical design
techniques, which revolve around one-loop-at-a-time procedures offering no stability guarantees.

25.2.3.1 Steady-State Control—Guaranteed Stability of the LQR

Suppose the plant to be controlled has the linear description

ẋ = Ax+Bu, (25.28)

with x ∈Rn and control input u ∈Rm. For this section it will be necessary to assume that the plant is
time-invariant.

Now, the control should be selected to minimize the quadratic PI

J(t0)= 1

2

∫ ∞

0
(xT Qx+ uT Ru) dt, (25.29)

with Q ≥ 0 and R > 0. Since the integration interval is infinite, this is called an infinite horizon performance
index; the performance objectives are referred to an infinite control interval [0,∞).

The control law of Table 25.2 still applies; however, because the control horizon is infinite, the RE may
reach a steady-state solution where Ṡ = 0. In this case, the RE may be replaced by the algebraic Riccati
equation (ARE)

0= AT S+ SA− SBR−1BT S+Q. (25.30)

This is a symmetric matrix quadratic equation. S(T) no longer appears in this steady-state formulation.
The ARE can have multiple solutions. However, if certain mild assumptions on the system and PI

matrices hold, then there is a single positive definite solution S∞, namely, the limiting solution to the
time-varying RE for any S(T). Then, the optimal infinite-horizon gain is the constant matrix given by

K∞ = R−1BT S∞. (25.31)

Thus, the optimal steady-state control is the constant state-variable feedback

u(t)=−K∞x(t). (25.32)

Moreover, the optimal cost is given in terms of the initial state by

J = 1

2
xT (0)S∞x(0). (25.33)

Under the influence of the steady-state control the closed-loop plant has the time-invariant dynamics

ẋ = (A−BK∞)x ≡ Acx. (25.34)

The advantages of this simplified control that uses a constant feedback are clear. The next theorem
is vital to modern control theory, and shows that the steady-state LQR is guaranteed to stabilize the
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system, even if it has multiple inputs, as long as the plant satisfies some basic properties. The system
(Equation 25.28) is said to be stabilizable if the control input u(t) can be selected to stabilize all the modes
in the closed-loop. This is a weaker property than reachability, which requires that there is a u(t) that
drives any given initial state to any desired final state. These are both controllability properties of the
plant. The system is said to be observable through the output y = Cx if measurements of only y(t) can be
used to reconstruct the entire initial state x(0). This is a stronger condition than detectability of (A, C),
which says that if y(t)→ 0 then x(t)→ 0. These are both observability properties of the plant.

Reachability, stabilizability, observability, and detectability are basic open-loop properties that hold for
any well-behaved system. There are simple tests for reachability and observability. In fact, if n is equal to
the number of states, the system is reachable if, and only if, the reachability matrix

U = [B AB A2B . . . An−1B
]

(25.35)

has rank n. This implies stabilizability as well. The system is observable if, and only if, the observability
matrix

V =

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ (25.36)

has rank n. This implies detectability as well. Standard software packages such as MATLAB and MATRIXX

offer routines to compute these block matrices.
The next result is a cornerstone of LQR theory.

Theorem 25.1: Stability of Closed-Loop System

Let C be any square root of Q so that Q = CT C. Suppose (C, A) is detectable and (A, B) is stabilizable. Then:

1. There is a unique symmetric positive-semidefinite limiting solution S∞ to the Riccati equation 25.16
independent of the choice of S(T). Furthermore, S∞ is the unique positive-definite solution of the
ARE.

2. The closed-loop plant Ac is asymptotically stable.

This result means that, as long as the system and PI satisfy certain basic controllability and observability
requirements, the steady-state LQ regulator will yield gains that stabilize the system. Considering the diffi-
culty encountered by classical control techniques in stabilizing multi-input systems, this is a remarkable
property. Exactly as in classical control theory, the theorem predicts the closed-loop stability properties of
the system in terms of open-loop system properties that are easily tested using matrix rank techniques.

The detectability of (
√

Q, A) is needed for the stability result. This property plays out as follows. If
the infinite integral cost (Equation 25.29) has been minimized, then it has a finite value so that the

integrand goes to zero with time. Then xT Qx = ∥∥√Q x
∥∥2 → 0. Then detectability of (

√
Q, A) guarantees

that x(t)→ 0. Detectability means in fact that all the unstable plant modes should be weighted in the PI,
which imposes a design requirement on the engineer as he selects the weighting matrix Q.

The closed-loop poles will depend on the selection of the design matrices Q and R; however, the poles
will always be stable as long as the engineer selects R > 0 and Q ≥ 0 with (

√
Q, A) observable. Thus, the

elements of Q and R may be varied during an interactive computer-aided design procedure to obtain
suitable closed-loop performance. The optimal gain K is found for given values of Q and R, and the
closed-loop time responses are found by simulation. If these responses are unsuitable, new values for Q
and R are selected and the design is repeated. Given good software to solve for K , this procedure is quite
convenient. Such software is available, for instance, in MATLAB and MATRIXX .
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25.2.3.2 Suboptimal Control—Constant Feedback Gains

Even if the control interval [0, T] is not infinite, the engineer may decide to use the steady-state gain K∞
instead of the optimal time-varying gain K(t) given in Table 25.2. The theorems guarantee stability of
the closed-loop system using the steady-state LQR. On a finite interval [0, T], the constant gain K∞ is
suboptimal, but the convenience gained by not having to implement a time-varying gain can more than
compensate for the loss of optimality. Moreover, as T becomes large, the optimal gain K(t) tends to K∞
so that the decision to use the steady-state gain makes more and more sense. In addition to the ease of
implementation of constant feedback gains, this suboptimal controller has other important advantages:
(1) it guarantees stability even for complex multi-loop systems, and (2) there are efficient numerical routines
available for the solution of the ARE (e.g., MATLAB and MATRIXx).

Example 25.3: Inverted Pendulum

Figure 25 3 shows a rod attached to a cart through a pivot. A force u(t) is applied to the cart through
a motor attached to an axle. The control objective is to use u(t) to balance the pendulum upright
while simultaneously keeping the horizontal movement p(t) of the cart small. This is known as the
inverted pendulum problem.

The state is x = [θ θ̇ p ṗ]T . A force/moment balance approach or a Lagrangian approach may be
used to obtain the dynamics. Assuming that M= 5 kg, m= 0.5 kg, L= 1 m, we thus obtain the state
equations by linearizing the dynamics about θ= θ̇= p= ṗ= 0:

ẋ =

⎡
⎢⎢⎣

0 1 0 0
10.78 0 0 0

0 0 0 1
−0.98 0 0 0

⎤
⎥⎥⎦ x+

⎡
⎢⎢⎣

0
−0.2

0
0.2

⎤
⎥⎥⎦ u= Ax+ Bu. (25.37)

The open-loop poles are at s= 0, 0,±3.283, so that, with no control input, the rod will clearly fall over
due to the unstable pole at s= 3.283.

It is desired to select K in
u=−Kx =−(kθθ+ kθ̇θ̇+ kpp+ kṗṗ) (25.38)

to regulate the state x to zero. For this purpose, select the PI (Equation 25.29); then, K is determined
by using the matrix design Equations 25.30 and 25.31. Values of R = 1 and Q = diag{100, 100, 10, 10}
were selected. The motivation for choosing this Q was to place heavy emphasis on keeping the angle θ(t)
small; the cart position control does not matter if the rod falls over. Using MATLAB subroutines from the

p
M

u

L

mg
θ

FIGURE 25.3 Inverted pendulum on a cart.
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FIGURE 25.4 Inverted pendulum response. (a) Angle θ(t) and position p(t). (b) Control input u(t).

Control System Toolbox, the optimal gain was easily found to be K = [−156.16 − 49.21 − 3.16 − 8.72],
which yields closed-loop poles at s =−0.60± j0.45,−2.48,−4.41.

Using MATLAB routines, the closed-loop response was simulated and plotted. The angle θ(t) and
position p(t) in response to an initial condition offset of θ(0)= 0.1rad ≈ 6◦, p(0)= 0.1m are shown in
Figure 25.4a. The required control force u(t) is shown in Figure 25.4b. These plots are quite interesting
and bear discussion. Due to the initial offset of 6◦ in angle, a large control must be applied immediately
to push the cart under the rod to catch it so it does not fall. Subsequent smaller control motions begin to
move the cart slowly back to the desired horizontal position of p= 0 while balancing the rod. Thus, the
fast closed-loop poles correspond to the rod motion. The slow complex pole pair is associated with
the cart position. This two-time scale behavior was induced by the widely disparate weightings selected in
the design matrix Q.

In fact, the value for Q was selected by performing several design iterations with different Q until
computer simulation finally showed a good time response. Such design iterations, coupled with computer
simulation, are common in modern control and are very easy using software like MATLAB.

25.2.3.3 Eigenstructure LQR Design

In most computer software routines for solving for the LQR gains, the ARE solution is determined from
the eigenstructure of the Hamiltonian matrix H in the Hamiltonian system

[
ẋ
λ̇

]
=
[

A −BR−1BT

−Q −AT

] [
x
λ

]
≡H

[
x
λ

]
(25.39)

which consists of the state Equation 25.20 and the costate Equation 25.21, with u(t) replaced by
−R−1BTλ(t).

The Hamiltonian matrix H enjoys the special property of having n stable poles and n unstable poles
(their images in the jω axis), where n is the dimension of the state vector x. If (A, B) is stabilizable, and
(
√

Q, A) is observable, so that the conditions of Theorem 25.1 hold, then the stable eigenvalues of H are
also the poles of the optimal closed-loop system

ẋ = (A−BK∞)x ≡ Acx, (25.40)

with K∞ the steady-state feedback gain. This provides an alternative proof of the stability of the optimal
closed-loop system.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-29&iName=master.img-002.jpg&w=165&h=108
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-29&iName=master.img-003.jpg&w=163&h=106
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Select the eigenvectors of the stable eigenvalues of H , and partition them as [XT
i ΛT

i ]T . Let X be an
n× n matrix whose columns are Xi , andΛ be an n× n matrix whose columns areΛi . Then the solution
to the ARE is given in terms of the eigenstructure of H by

S∞ =ΛX−1, (25.41)

and the steady-state gain is given by

K∞ = R−1BTΛX−1. (25.42)

(If the eigenvalues are complex, then, in the definitions of X and Λ, it is necessary to use the real and
imaginary parts of the associated vectors Xi andΛi instead of the complex conjugate vectors themselves.)

25.2.4 Frequency-Domain Results and Robustness of the LQR

It is possible to discuss the LQR from the view point of the frequency domain. Classical frequency-domain
results are given in terms of scalar SISO systems and involve notions like the loop gain, return difference,
sensitivity, and so on. Such ideas are extended in modern optimal design using multivariable transfer
functions and the notions of the singular value and the multivariable Bode plot. For more details, see
Chapter 8 or the references. An important property of any closed-loop system is robustness to uncer-
tainties, including modeling errors, disturbances, and noise. The LQR has some important robustness
properties that are detailed here.

25.2.4.1 LQR Frequency-Domain Relationships

Suppose that the plant is time-invariant and, in Figure 25.1, K is the constant optimal LQ state-feedback
gain determined using the LQR ARE as in Section 25.2.3.1. Define the plant transfer function as G(s)≡
(sI −A)−1B. Then, the loop gain referred to the input is

KG(s)= K(sI −A)−1B= KG(s) (25.43)

and the closed-loop return difference is [I +K(sI −A)−1B] = I +KG(s).

25.2.4.1.1 Optimal Return Difference Relationship

Two key results are the following. The optimal characteristic polynomial relationship is

Δc(s)= |I +K(sI −A)−1B|Δ(s) (25.44)

where the open-loop characteristic polynomial isΔ(s)= |sI −A| and the closed-loop characteristic poly-
nomial isΔc(s)= |sI − (A−BK)|. The optimal return difference relationship is

[I +K(−sI −A)−1B]T R [I +K(sI −A)−1B] = R+BT (−sI −A)−T Q(sI −A)−1B. (25.45)

These are extremely important because, exactly as in classical control theory, they express closed-loop
properties in terms of open-loop properties that can be computed before the optimal controller is designed.
They allow, for instance, the development of the Chang-Letov design approach for LQR which is an
extension of root locus design to MIMO systems.

25.2.4.1.2 Optimal Singular Value Relationships

Select the control weighting matrix as R = ρI , with ρ a positive design parameter. Denoting the ith
singular value of a matrix M as σi(M), Equation 25.45 yields the optimal singular value relationship of
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the LQR

σi[I +KG( jω)] =
[

1+ 1

ρ
σ2

i [H( jω)]
] 1

2

(25.46)

with
H(s)≡ C(sI −A)−1B (25.47)

and matrix C defined by Q = CT C. This is important because the right-hand side is known in terms of
open-loop quantities before the optimal feedback gain is found by solution of the ARE, while the left-hand
side is the closed-loop return difference.

According to this relationship, for all ω, the minimum singular value, denoted σ, satisfies the LQ
optimal singular value constraint

σ[I +KG( jω)] ≥ 1. (25.48)

Thus, the LQ regulator always results in a decreased sensitivity.

25.2.4.2 Guaranteed Robustness of the Linear-Quadratic Regulator

The linear-quadratic regulator using full state feedback has many useful properties, including guaranteed
closed-loop stability and ease of design by solving matrix design equations. It will now be shown that
the steady-state LQR has certain guaranteed robustness properties that make it even more useful. These
conclusions may be discovered using the multivariable Nyquist criterion, which shall be referred to the
polar plot of the return difference I +KG(s), where the origin is the critical point. A typical polar plot
of σ[I +KG( jω)] is shown in Figure 25.5, where the optimal singular value constraint appears as the
condition that all the singular values remain outside the unit disc.

25.2.4.2.1 Guaranteed Stability

The multivariable Nyquist criterion says that (as long as the open-loop system G(s) is stable) the closed-
loop system is stable if none of the singular value plots of I +KG( jω) encircle the origin in the figure.
Due to the optimal singular value constraint, no encirclements are possible. This constitutes a proof of
the guaranteed stability of the LQR discussed in Section 25.2.3.1.

25.2.4.2.2 Gain Margin

Multiplying the optimal feedback K by any positive scalar gain k > 1 results in a loop gain of kKG(s),
which has a minimum singular value plot identical to the one in Figure 25.5 except that it is scaled
outward; that is, the ω→ 0 limit (i.e., the DC gain) will be larger, but the ω→∞ limit will still be 1.

Im

0 Re
ω = 0ω = ∞

σ[I + KG( jω)]

1

FIGURE 25.5 Typical polar plot for optimal LQ return difference.
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FIGURE 25.6 Definition of multivariable phase margin.

Thus, the closed-loop system will still be stable. In classical terms, the LQ regulator with full state feedback
has an infinite gain margin.

25.2.4.2.3 Phase Margin

For multivariable systems the phase margin may be defined as the angle marked “PM” in Figure 25.6. As
in the classical case, it is the angle through which the polar plot of σ[I +KG( jω)]must be rotated (about
the point 1) clockwise to make the plot go through the critical point. By combining Figure 25.5 with Fig-
ure 25.6, it can be determined that, due to the LQ singular value constraint, the plot of σ[I +KG( jω)]must
be rotated through at least 60◦ to make it pass through the origin. The LQR with full state feedback thus
has a guaranteed phase margin of at least 60◦. This means that a phase shift of up to 60◦ may be introduced
in any of the m paths in Figure 25.1, or in all paths simultaneously, as long as the paths are not coupled
to each other in the process. (Here, m is the number of control inputs, i.e., the number of control loops.)

This phase margin is excessive; it is higher than that normally required in classical control system
design. This overdesign means that, in other performance aspects, the LQ regulator may have some
deficiencies. One of these is that, at the crossover frequency (loop gain = 1), the slope of the multivariable
Bode plot is -20 dB/decade, a relatively slow attenuation rate. (By allowing a Q weighting matrix in the PI
that is not positive semidefinite, it is possible to obtain better LQ designs that have higher roll-off rates at
high frequencies.)

25.2.4.2.4 Stability with Multiplicative Uncertainty

It can be shown that Equation 25.48 implies that

σ[I + (KG( jω))−1] ≥ 1

2
. (25.49)

This corresponds to the fact that the LQR with state feedback remains stable for all multiplicative uncer-
tainties in the plant transfer function which satisfies m(ω) < 1

2 .

25.3 The Tracker Problem

The function of the LQ regulator is to hold the states near zero, that is, to guarantee closed-loop stability.
Another fundamental design problem in systems engineering is to control a system so that a specified
output follows a given nonzero reference trajectory r(t). An example is controlling an aircraft to follow a
desired step input command (e.g., change in altitude). This is called the tracking or servodesign problem.
For this purpose, the regulator control law must be modified. The fundamental issue here is that for
optimal tracking some additional feedforward terms must be added to the control input besides the basic
LQR feedback loop that gives closed-loop stability.
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Consider the linear system given by Equation 25.51, with z(t) in Equation 25.52 a performance output
that should track the given reference input r(t). In contrast to classical control, it is easy to include here
the case where both z(t) and r(t) are vectors, that is, the case of multivariable tracking. The control input
is given by

u=−Kx+ v, (25.50)

where v(t) is a feedforward signal required for good tracking performance. The feedback gain K and
feedforward signal v(t) are determined so as to keep the tracking error (Equation 25.53) small.

The solution to the tracking problem is significantly more involved than the regulator problem. It is
now discussed from three points of view. In this section, full state-variable feedback is assumed. In actual
applications, only output feedback is allowed. In that case refer to Chapter 5.1 or to [8,11], where these
techniques are extended.

25.3.1 Optimal LQ Tracker

The optimal LQ tracker can be derived along the same lines as the Hamiltonian approach in Section 25.2.2.
The result is given in Table 25.3. The feedback structure is basically the same as the LQ regulator in

TABLE 25.3 Optimal Continuous-Time Linear Quadratic Tracker

System model:

ẋ = Ax+Bu, t ≥ t0, x(t0)= x0 given. (25.51)

Performance output and tracking error:

z =Hx, (25.52)

e = r− z. (25.53)

Performance index:

J(t0)= 1

2
eT (T)Pe(T)+ 1

2

∫ T

t0
(eT Qe+ uT Ru) dt, (25.54)

with

P ≥ 0, Q ≥ 0, R > 0.

Optimal tracking controller:

Riccati equation:

−Ṡ = AT S+ SA− SBR−1BT S+HT QH , t ≤ T , S(T)=HT PH . (25.55)

Optimal feedback gain:

K = R−1BT S. (25.56)

Feedforward system:

−ẇ = (A−BK)T w+HT Qr, t ≤ T , w(T)=HT Pr(T). (25.57)

Feedback plus feedforward control:

u(t)=−K(t)x(t)+R−1BT w(t). (25.58)
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FIGURE 25.7 Optimal LQ tracker.

Table 25.2, but now the PI contains the tracking error, not the state, because e(t) is to be small in this
application. The presence of e(t) in the PI has the effect of adding a feedforward term v(t) to the control
signal. The tracker gain K and signal v(t) determined with the LQ optimal approach are given in the table.
The feedback gain K is found in the same manner as in the LQR case. The structure of the LQ optimal
tracker is given in Figure 25.7.

The feedforward signal is computed using the dynamical system (Equation 25.57), which is called the
adjoint system; like the RE, it is integrated backward in time. Thus, the RE and the adjoint system must
be integrated off-line before the control run. In fact, the optimal LQ tracker is noncausal, because future
values of the reference input r(t) are needed to compute w(t). The ramifications of this noncausal nature
of the optimal tracker are illustrated in Figure 25.8, which shows the optimal tracker response for a scalar
system using control weighting R = 1 and different values of the error weighting Q. The system output
begins to change before the reference r(t) does, so that the system anticipates the changes in r(t). This
anticipatory behavior is an important feature of the optimal tracker.

The noncausal nature of the optimal LQ tracker means that it cannot be implemented in practice when
r(t) is not predetermined. Therefore, two suboptimal strategies are now outlined that yield implementable
tracking systems.
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FIGURE 25.8 Anticipatory response of the optimal LQ tracker.
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–1(0)
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FIGURE 25.9 Tracker based on DC gain.

25.3.2 Conversion of an LQR to an LQ Tracker

As an alternative to the optimal tracking solution just presented, a causal tracker can be obtained as
follows. First, the LQ regulator is designed using Table 25.2. Then, it is converted to an LQ tracker by
adding a feedforward term. In the case where the reference signal r(t) is a constant (i.e., step function)
with magnitude r0, the tracking control with state feedback is given by

u=−Kx+H−1
c (0)r0, (25.59)

where the closed-loop transfer function is

Hc(s)=H(sI − (A−BK))−1B (25.60)

and Hc(0) is the DC gain of the closed-loop system (A−BK). The control gain K is found using the
LQR design equations in Table 25.2. The structure of this suboptimal tracker is shown in Figure 25.9.
Unfortunately, if the DC gain is not well known this tracker structure does not perform well, that is, this
tracker is not robust.

25.3.3 A Practical Suboptimal Tracker

This section shows how to design a suboptimal tracker that works well for practical applications and is
robust to uncertainties and disturbances. The key is in the use of engineering design insight and common
sense to formulate the problem. One uses a unity feedback gain outer loop, which has proven effective
in classical control approaches. This technique also relies on converting an LQR to a tracker, but differs
from the work in the previous section.

25.3.3.1 Problem Formulation

A general class of systems is described by the equations

ẋ = Ax+Bu+Er

z =Hx
(25.61)

which can contain both the plant plus some desirable compensator dynamics. The control input is allowed
to have the form

u=−Kx−KFr, (25.62)

which consists of state feedback plus a feedforward term of a special composition. Placing the control
into the system yields the closed-loop system

ẋ = (A−BK)x+ (E−BKF)r ≡ Acx+Bcr. (25.63)
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Matrices E and F are chosen to have a structure that is sensible from a design point of view. Specifically, it
is very desirable to incorporate a unity-gain outer tracking loop in the controller, as shown in Example 25.4.

25.3.3.2 Deviation System and LQR Design Step

Assume that the reference input is a unit step of magnitude r0. Then, the steady-state system is

0= Acx̄+Bcr0,

where overbars denote steady-state values, so that the steady-state value of the state is x̄ =−A−1
c Bcr0.

Though the reference input is assumed constant for design purposes, this is to allow good closed-loop
rise time and overshoot qualities. Then, the designed controller works for any reference input r(t), even
though time-varying.

Define the deviations
x̃ = x− x̄, z̃ = z− z̄,
ũ= u− ū, ẽ = e− ē.

(25.64)

Then, the deviations satisfy the dynamics of the deviation system

˙̃x = Ax̃+Bũ (25.65)

z̃ =Hx̃ (25.66)

ũ=−Kx̃. (25.67)

Because e = r− z, the tracking error deviation is ẽ =−z̃. To induce tracking behavior, define the perfor-
mance index

J(t0)= 1

2

∫ ∞

0
(x̃T Qx̃+ ũT Rũ) dt, (25.68)

which makes the entire deviation state, and therefore ẽ, small.

25.3.3.3 Tracker Design

The tracking problem may now be solved as follows. First, solve the LQ regulator problem for the deviation
system using Table 25.2. Then, the tracking control input is given by Equation 25.62. This tracker has a
much different structure than the DC-gain-based tracker in Figure 25.9. The next example shows that a
sensible choice for matrices E and F based on classical control notions gives a robust tracker with a unity
gain outer loop. Then, a sensible choice for the PI design matrices Q and R gives good control gains and
guaranteed stability, even for complex multiloop tracking systems.

Note that e = ẽ+ ē, where ē is the steady-state value of the tracking error. Because this technique only
guarantees that ẽ is small, special steps must be taken to guarantee that ē is also small. One way to do
this is to include integrators in all the feedforward loops, as in the next example. As an alternative, a term
involving ē can be added to the PI (Equation 25.68). This gives more involved design equations, which
are nevertheless still easily solved by digital computer. The details are in [8]. Finally, although the gain
determined in this fashion is optimal for the deviation system, it is not optimal for the tracking problem in
terms of the original dynamics (Equation 25.61). In practical applications, however, it is suitable provided
that the design matrices are sensibly selected.

Example 25.4: Aircraft Pitch-Rate Control System

This example illustrates the tracker design procedure just presented. Good tracker system design
relies on a sensible selection of the structure matrices E and F , and good feedback gains rely on a
sensible selection of the design weighting matrices Q, R. Compensator dynamics can be accounted
for using this procedure. Because this is an LQ-based approach, a reasonable formulation of the
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problem should result in guaranteed closed-loop stability. This is an important feature of modern
control design techniques, and is in complete contrast to classical techniques where stability in
multi-loop systems can be difficult to achieve.

AIRCRAFT AND CONTROL SYSTEM DYNAMICS

In a pitch-rate control system, the control input is elevator actuator voltage u(t) and r is a reference
step input corresponding to the desired pitch command. The performance output z(t) is the pitch
rate q. To ensure zero steady-state error, an integrator is added in the feedforward channel; this
corresponds to compensator dynamics, and is easily dealt with in this approach. The integrator
output is ε. It is assumed here that all states are available as measurements for feedback purposes; in
practice, the output-feedback design technique in [11] will be required.

The design is based on a short period approximation to the F-16 dynamics linearized about a
nominal flight condition of 502 ft/s, 0 ft altitude, level flight, with the center of gravity at 0.35. The
basic aircraft states of interest are q and angle of attack α. An additional state is introduced by the
elevator actuator, whose deflection is δe . The states of the plant plus compensator are x = [α q δe ε]T
and the system dynamics are described by Equation 25.61 with

A=

⎡
⎢⎢⎣
−1.01887 0.90506 −0.00215 0
0.82225 −1.07741 −0.17555 0

0 0 −20.2 0
0 −57.2958 0 0

⎤
⎥⎥⎦ , (25.69)

B =

⎡
⎢⎢⎣

0
0

20 2
0

⎤
⎥⎥⎦ , E =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ , (25.70)

and

H = [0 57 2958 0 0
]

(25.71)

The factor of 57.2958 is added to convert angles from radians to degrees. The last line of the state
equation using this A and E matrix describes the integrator, ε̇=−57.2958q+ r.

CONTROL DESIGN

Select the control input u(t) to yield good closed-loop response to a step input at r, which corresponds
to a SISO tracker design problem. Since the integrator makes the system Type I, the steady-state error
ē is equal to zero and e(t)= ẽ(t). Thus, the design method just described is appropriate.

The control input is

u=−Kx =− [kα kq kδe kI
]

x =−kαα− kqq− kδeδe − kIε. (25.72)

Therefore, referring to Equation 25.62 it is evident that F = 0; however, including the integrator
output as a state variable in the dynamics (1) adds the feedforward path required for tracking
behavior, that is, element kI of the feedback matrix K is actually a “feedforward” gain.

To determine the gain matrix K , select the PI (Equation 25.68), and try weighting matrices
R = 1, Q = diag{1, 10, 1, 1}. Now use the LQR routine from the MATLAB Control Systems Toolbox
to determine the optimal gain K = [−0.046 − 1.072 0 3.381]. Using MATLAB routines, the corre-
sponding closed-loop poles are s=−8.67± j9.72,−9.85,−4.07,−1.04. The resulting step response
is shown in Figure 25.10, which displays good performance.
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FIGURE 25.10 Pitch-rate step response.

25.4 Minimum-Time and Constrained-Input Design

An important class of control problems is concerned with achieving the performance objectives in
minimum time. A suitable performance index for these problems is

J =
∫ T

t0

1 dt = T − t0. (25.73)

Several sorts of minimum-time problems are now discussed.

25.4.1 Nonlinear Minimum-Time Problems

Suppose the objective is to drive the system

ẋ = f (x, u) (25.74)

from a given initial state x(t0) ∈Rn to a specified final state x(T) in minimum time. Then, from Table 25.1
the Hamiltonian is

H = 1+λT f (25.75)

and the Euler equations are the costate equation

−λ̇= ∂f T

∂x
λ (25.76)

plus the stationarity condition

0= ∂f T

∂u
λ. (25.77)

Since the final state is fixed (so that dx(T)= 0) but the final time is free, the final condition in Table 25.1
says that

0=H(T)= 1+λT (T)f [x(T), u(T)]. (25.78)

If f (x, u) is not an explicit function of time, then according to the conservation principle (Equation 25.10),
H(t) is zero for all time.

The stationarity condition (Equation 25.77) may often be used to solve for u(t) in terms of λ(t). Then,
u(t) may be eliminated in the state and costate equations to obtain the Hamiltonian system. To solve this,

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-29&iName=master.img-005.jpg&w=254&h=136
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we require n initial conditions (x(t0) given) and n final conditions (x(T) specified). However, the final
time T is now unknown. The function of Equation 25.78 is to provide one more equation so that T can
be solved for. Several nonlinear design problems can be explicitly solved, yielding great insight into the
minimum-time control structure. Examples include Zermelo’s Problem and the Brachistochrone Problem.

25.4.2 Linear Quadratic Minimum-Time Design

The general solution procedure given in the previous section for the nonlinear minimum-time problem
is difficult to apply. Moreover, a reasonable solution may not exist. A general class of practical problems
is covered by the case where it is required to find an optimal control for the linear system

ẋ = Ax+Bu (25.79)

that minimizes the performance index

J = 1

2
xT (T)ST x(T)+ 1

2

∫ T

t0

(1+ xT Qx+ uT Ru) dt (25.80)

with ST ≥ 0, Q ≥ 0, R > 0, and the final time T free. There is no constraint on the final state; thus, the
control objective is to make the final state sufficiently small. Due to the term 1

2 (T − t0) arising from the
integral, this must be accomplished in a short time period. This is a general sort of PI that allows for
a trade-off between the minimum-time objective and a desire to keep the states and the controls small.
Thus, if the engineer selects smaller Q and R, the term 1

2 (T − t0) in the PI dominates, and the control tries
to make the transit time smaller. This is called the LQ minimum-time problem.

The solution for this problem is the same as in Table 25.2. The control is a linear time-varying state
feedback given by

u=−K(t)x (25.81)

with optimal gain

K = R−1BT S (25.82)

and S(t) the solution determined by integrating the RE backward from time T . Unfortunately, there is a
problem in that the final time T is unknown.

To determine the value of T that minimizes the PI, an extra condition is needed, given by Equation 25.78,
which yields

xT (t0)Ṡx(t0)= 1, (25.83)

with x(t0) the specified initial condition of the plant. The solution procedure for the LQ minimum-time
problem is to integrate the RE

−Ṡ = AT S+ SA+Q− SBR−1BT S (25.84)

backward from some time τ using S(τ)= ST as the final condition. At each time t, the left-hand side of
Equation 25.83 is computed using the known initial state and Ṡ(t). Then, the minimum interval (T − t0)
is equal to (τ− t) where t is the time for which Equation 25.83 first holds. This specifies the minimum
final time T , and then allows the computation of the optimal feedback gain K(t) on the interval [t0, T].

The Riccati derivative Ṡ is used to determine the optimal time interval, while S is used to determine the
optimal feedback gain K(t).

More details on this control scheme may be found in [12]. It is important to note that condition
(Equation 25.83) may never hold. Then, the optimal solution is T − t0 = 0, that is, the PI is minimized by
using no control. Roughly speaking, if x(t0) and/or Q and S(T) are selected large enough, then it makes
sense to apply a nonzero control u(t) to make x(t) decrease. On the other hand, if Q and S(T) are selected
too small for the given initial state x(t0), then it is not worthwhile to apply any control to decrease x(t),
because a nonzero control and a nonzero time interval will increase the PI.
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25.4.3 Constrained-Input Design and Bang-Bang Control

Up to this point minimum-time control has been presented based on the conditions of Table 25.1, which
were derived using the calculus of variations. Under some smoothness assumptions on f (x, u, t) and
L(x, u, t), the resulting controls are also smooth. Here, a fundamentally different sort of control strategy
will be presented.

If the linear system
ẋ = Ax+Bu (25.85)

with x ∈Rn, u ∈Rm is prescribed, there are problems with using the pure minimum-time PI,

J(t0)=
∫ T

t0

1 dt, (25.86)

where T is free. The way to minimize the time is to use infinite control energy! Since this optimal strategy
is not acceptable, it is necessary to find a way to reformulate the minimum-time problem for linear
systems.

Therefore, the control input now must satisfy the magnitude constraint

‖u(t)‖ ≤ 1 (25.87)

for all t ∈ [t0, T]. This constraint means that each component of the m-vector u(t) must be no greater
than 1. Thus, the control is constrained to an admissible region (in fact, a hypercube) of Rm. If the
constraints on the components of u(t) have a value different from 1, then one may appropriately scale
the corresponding columns of the B matrix to obtain the constraints in the form of Equation 25.87. A
requirement like Equation 25.87 arises in many problems where the control magnitude is limited by
physical considerations; for instance, the thrust of a rocket certainly has a maximum possible value, as
has the armature voltage of a DC motor.

Referring to Table 25.1, the optimal control problem posed here is to find a control u(t) that drives
a given x(t0) to a final state x(T) satisfying the final state constraint, minimizes the PI, and satisfies
Equation 25.87 at all times. Intuitively, to minimize the time, the optimal control strategy appears to
be to apply maximum effort (i.e., plus or minus 1) over the entire time interval. This idea will now be
formalized. When a control component takes on a value at the boundary of its admissible region (i.e.,±1),
it is said to be saturated. Pontryagin and coworkers have shown that, in the case of constrained control,
Table 25.1 still applies if the stationarity condition is replaced by the more general condition, known as
Pontryagin’s Minimum Principle,

H(x∗, u∗,λ∗, t)≤H(x∗, u,λ∗, t), all admissible u. (25.88)

This is an extremely powerful result which can be employed to derive the following solution to the linear
constrained-input minimum-time problem.

Define the signum function for scalar w as

sgn(w)=

⎧⎪⎨
⎪⎩

1, w > 0

indeterminate, w = 0

−1, w < 0.

(25.89)

If w is a vector, define v = sgn(w) as vi = sgn(wi) for each i, where vi , wi are the components of v and w.
Then, in terms of the costate, the optimal control is given by

u∗(t)=−sgn[BTλ(t)]. (25.90)

This may be interpreted as follows. For each column bi of B, if λT (t)bi is positive, we should select
ui(t)=−1 to get the largest possible negative value of λT (t)biui(t). On the other hand, if λT (t)bi is
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FIGURE 25.11 Sample switching function and associated optimal control.

negative, we should select ui(t) as its maximum admissible value of 1 to make λT (t)biui(t) as negative as
possible. If λT (t)bi is zero at a single point t in time, then ui(t) can be assigned any value at that time,
because then λT (t)biui(t) is zero for all values of u(t).

The quantity BTλ(t) is called the switching function. A sample switching function and the optimal
control it determines are shown in Figure 25.11. When the switching function changes sign, the control
switches from one of its extreme values to another. The control in the figure switches four times. The
optimal linear minimum-time control is always saturated since it switches back and forth between its
extreme values, so it is called bang-bang control. In some problems, a component bT

i λ(t) of the switching
function BTλ(t) can be zero over a finite time interval. If this happens, component ui(t) of the optimal
control is not well-defined by Equation 25.90. This is called a singular condition. If this does not occur,
the time-optimal problem is called normal.

The time-invariant plant (Equation 25.85) is reachable if, and only if, the reachability matrix (Equa-
tion 25.35) has full rank n. If bi is the ith column of B ∈Rn×m, then the plant is normal if

Ui = [bi Abi . . . An−1bi] (25.91)

has full rank n for each i = 1, 2, . . . , m, that is, if the plant is reachable by each separate component ui of
u ∈Rm. Normality of the plant and normality of the minimum-time control problem are equivalent. Let
the plant be normal (and hence reachable), and suppose it is desired to drive a given x(t0) to a desired
fixed final state x(T) in minimum time with a control satisfying Equation 25.87. Then, the following
results have been achieved for time-invariant plants by Pontryagin and coworkers:

1. If the desired final state x(T) is equal to zero, then a minimum-time control exists if the plant has
no poles with positive real parts (i.e., no poles in the open right half plane).

2. For any fixed x(T), if a solution to the minimum-time problem exists, then it is unique.
3. Finally, if the n plant poles are all real and if the minimum-time control exists, then each component

ui(t) of the time-optimal control can switch at most n− 1 times.

In both its computation and its final appearance, bang-bang control is fundamentally different from
the smooth controls seen previously. The minimum principle leads to the expression (Equation 25.90) for
u∗(t), but it is difficult to solve explicitly for the optimal control. Instead, this condition specifies several
different control laws, and it is necessary to select which among these is the optimal control. Thus, the
minimum principle keeps one from having to examine all possible control laws for optimality, giving a
small subset of potentially optimal controls to be investigated. In many cases, it is still possible to express
u∗(t) as a state-feedback control law.
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Example 25.5: Bang-Bang Control

Any system obeying Newton’s laws for point-mass motion is described by

ẏ = v,

v̇ = u,
(25.92)

with y(t) the position, v(t) the velocity, and u(t) the input acceleration. The state is x = [ y v]T .

Let the acceleration input u be constrained in magnitude by

|u(t)| ≤ 1. (25.93)

The control objective is to bring the state from any initial point (y0, v0) to the origin in the minimum
time T . The final state must be fixed at

ψ(x(T), T)=
[

y(T)
v(T)

]
= 0. (25.94)

Using Equation 25.88 the minimum-time control takes on only values of u=±1. Moreover, there is
at most one control switching because the maximum number of switchings is n− 1 when the plant poles
are all real. The phase plane is a coordinate system whose axes are the state variables. Phase-plane plots
of the state trajectories of (1) for u= 1 and for u=−1 are parabolas in the phase plane as shown in
Figure 25.12. These parabolas represent minimum-time trajectories. The arrows indicate the direction
of increasing time. For example, if the initial state (y0, v0) is as shown in Figure 25.12, then, under the
influence of the control u=−1, the state will develop downward along the parabola, eventually passing
through the point (y = 0, v =−2). On the other hand, if a control of u= 1 is applied, the state will move
upward and to the right.

It will now be argued that this figure represents a state-feedback control law, which brings any state
to the origin in minimum time. Suppose the initial state is as shown in Figure 25.12. Then the only way
to arrive at the origin, while satisfying the Pontryagin conditions, is to apply u=−1 to move the state

4.000
y(t)

2.000

1

0.000–2.000

–2.000

0.000

2.000

v(t)

( y(0),
v(0))

u=1

u=1

u=–1

u=–1

FIGURE 25.12 Phase plane trajectories for u= 1 and u=−1.
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along a parabola to the dashed curve. At this point (labeled “a”), the control is switched to u= 1 to drive
the state into the origin. Hence, the resulting seemingly roundabout trajectory is in fact a minimum-time
path to the origin. The dashed curve is known as the switching curve. For initial states on this curve, a
control of u= 1 (if v0 < 0) or u=−1 (if v0 > 0) for the entire control interval will bring the state to
zero. For initial states off this curve, the state must first be driven onto the switching curve, and then the
control must be switched to its other extreme value to bring the final state to zero. The switching curve is
described by the equation y =− 1

2 v |v|.
Simply put, for initial states above the switching curve, the optimal control is u=−1, followed by

u= 1, with the switching occurring when y(t)= 1
2 v2(t). For initial states below the switching curve,

the optimal control is u= 1, followed by u=−1, with the switching occurring when y(t)=− 1
2 v2(t).

Because the control at each time t is completely determined by the state (i.e., by the phase plane location),
Figure 25.12 yields a feedback control law. This feedback law, represented graphically in the figure, can
be stated as

u=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1 if y >−1

2
v |v|

or if y =−1

2
v |v| and y < 0

1 if y <−1

2
v |v|

or if y =−1

2
v |v| and y > 0.

(25.95)

which makes it clear that the minimum-time control is indeed a state-feedback.

25.5 Optimal Control of Discrete-Time Systems

The discussion so far has applied to continuous-time (analog) systems. The discussion of the LQR problem
for DT systems

xk+1 = Axk +Buk , (25.96)

is identical in form, though more complicated in its details. The problem is to select the state-feedback
matrix K in

uk =−Kxk (25.97)

to minimize a performance index specified by the design engineer.

25.5.1 Discrete-Time LQR

In general the optimal DT linear quadratic regulator is a time-varying matrix gain sequence Kk . However,
the practically useful solution is the optimal steady-state feedback gain obtained by using the infinite
horizon PI (Equation 25.99). The design equations for the DT LQR are given in Table 25.4. The DT LQR
equations are more complicated than the continuous-time equivalents; however, commercially available
software (e.g., MATLAB) makes this irrelevant to the control designer. In practice, DT design is as
straightforward as continuous-time design.

All the results discussed for continuous-time systems in Section 25.2 have their DT counterparts (see
the references). Thus, as long as (A, B) is stabilizable and (A,

√
Q) observable, the discrete LQR has

guaranteed properties of stability and robustness. Discrete versions of the tracker design problem are also
given in the references.

25.5.2 Digital Control of Continuous-Time Systems

Using the DT LQR design equations in Table 25.4, optimal digital controllers may be designed for
continuous-time systems. In fact, standard techniques are available for determining a DT description
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TABLE 25.4 Discrete-Time Linear Quadratic Regulator.

System model:

xk+1 = Axk +Buk , x0 given. (25.98)

Performance index:

J = 1

2

∞∑
0

(xT
k Qxk + uT

k Ruk) (25.99)

with

Q ≥ 0, R > 0.

Optimal feedback control:

Discrete-time algebraic Riccati equation:

0= S−AT SA+AT SB(BT SB+R)−1BT SA−Q. (25.100)

Optimal feedback gain:

K = (BT SB+R)−1BT SA. (25.101)

Feedback control:

uk =−Kxk . (25.102)

Optimal cost:

J = 1

2
xT

0 Sx0. (25.103)

given the continuous-time dynamics ẋ = Ax+Bu and a specified sampling period T . Then, the table
allows the design of digital controllers, because the feedback gain Equation 25.102 is expressed in DT,
meaning that it can be directly programmed on a microprocessor or digital signal processor (DSP) and
applied every T seconds to the plant. The next example shows some of the issues involved in digital
control design, including selection of the sampling period and discretization of the plant.

Example 25.6: Digital Inverted Pendulum Controller

In Example 25.3 a continuous-time controller was designed for an inverted pendulum on a cart; it is
now desired to design a digital controller.

DISCRETE INVERTED PENDULUM DYNAMICS

The continuous-time inverted pendulum dynamics are given in Example 25.3. Standard techniques
for system discretization are covered in the chapter on Digital Control. The time histories and closed-
loop poles in Example 25.3 reveal that a sampling period of T = 0.1 sec is very small compared to
the speed of the plant response (e.g , about 1/10 of the smallest plant time constant). Therefore, this
sampling period is selected.

Using the MATLAB Control System Toolbox to compute the zero-order-hold/step-invariant sam-
pled dynamics yields the system

xk+1 =

⎡
⎢⎢⎣

1.054386 0.101806 0 0
1.097473 1.054386 0 0

−0.004944 −0.000164 1 0.1
−0.099770 −0.004944 0 1

⎤
⎥⎥⎦ xk +

⎡
⎢⎢⎣
−0.001009
−0.020361

0.001001
0.020033

⎤
⎥⎥⎦ uk = Axk + Buk (25.104)

where the state is xk = [θk θ̇k pk ṗk ]T .
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FIGURE 25.13 Response of inverted pendulum digital controller. (a) Rod angle θ(t) and cart position p(t). (b) Con-
trol input u(t).

The continuous system has poles at s= 0, 0, 3 28,−3 28. The discrete system has poles at z = 1, 1,
1.3886, 0.7201 which corresponds to the sampling transformation z = esT .

DIGITAL CONTROLLER DESIGN

To determine stabilizing control gains in

uk =−Kxk =−(kθθk + k
θ̇
θ̇k + kppk + kṗṗk ), (25.105)

we may use the DT LQR in Table 25.4. Note that this is a multiloop design problem, yet the LQR
approach easily deals with it. Trying weighting matrices of R = 1, Q = diag{10, 10, 1, 1} and using
the discrete ARE solver in MATLAB yields the gains K = [−1.294 − 10.02 3.648 16.94]T and
corresponding closed-loop poles at z = 0.37, 0.72, 0.82± j.029.

A simulation is easily performed to obtain the closed-loop response shown in Figure 25.13. It is very
instructive to compare this with the response obtained in Example 25.3. The advantage of DT design is
that the control input (2) may be computed every T = 0.1 s on a microprocessor and applied to the plant
for real time control. The continuous-time feedback law needs to be applied using analog techniques or
a very high sampling rate.

25.6 Optimal LQ Design for Polynomial Systems

The discussion thus far has focused on the state-space formulation. A dynamical system may be equally
well described in transfer function or polynomial form as

A(z−1)yk = z−dB(z−1)uk , (25.106)

with yk the output and uk the control input. The system delay is denoted d. This is a DT formula-
tion with z−1 denoting the unit delay. For simplicity we discuss the SISO case; these notions may be
extended to multivariable polynomial systems using the matrix fraction descriptions of the plant. The

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-29&iName=master.img-007.jpg&w=159&h=165
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-29&iName=master.img-008.jpg&w=162&h=167
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denominator polynomial
A(z−1)= 1+ a1z−1+ a2z−2+ · · ·+ anz−n (25.107)

has roots specifying the system poles, and the numerator

B(z−1)= b0+ b1z−1+ · · ·+ bmz−m (25.108)

has roots at the system zeros.
In contrast to the PI selected for state-space systems, which is a sum of squares, for polynomial systems,

it is more convenient to select the square of sums PI

Jk =
[ nP∑

i=0

piyk+d−i −
nQ∑
i=0

qiyk−i

]2

+
[ nR∑

i=0

riuk−i

]2

. (25.109)

The constants pi , qi , ri are weighting coefficients (design parameters) selected by the engineer and wk is a
reference or command signal. Defining the weighting polynomials

P(z−1)= 1+ p1z−1+ · · ·+ pnP z−nP ,

Q(z−1)= q0+ q1z−1+ · · ·+ qnQ z−nQ ,

R(z−1)= r0+ r1z−1+ · · ·+ rnR z−nR ,

(25.110)

the PI may be written in the streamlined form

Jk = (Pyk+d −Qwk)2+ (Ruk)2. (25.111)

This is a very general sort of PI. For instance, the tracking problem may be solved if we select P = Q = 1,
R = r0, for then

Jk = (yk+d −wk)2+ (r0uk)2 (25.112)

and a delayed version of the output yk tries to follow a reference input wk . The system delay d is explicitly
accounted for. Thus, the polynomial tracker is very easy to compute and implement. In fact, it is causal,
in contrast to the state-space LQR tracker where a noncausal feedforward signal was needed.

As another example, the regulator problem results if the weights are selected as P = 1, Q = 0, R = r0,
for then

Jk = (yk+d)2+ (r0uk)2 (25.113)

and the control tries to hold the output at zero without using too much energy.
The optimal control uk that minimizes the PI is straightforward to determine. In the minimum-phase

core (e.g., all roots of B(z−1) stable), one solves the Diophantine equation

1= AF+ z−dG (25.114)

for the intermediate polynomials F(z−1) and G(z−1). Well-known routines are available for this. In fact,
one may simply divide A(z−1) into 1 until the remainder has a multiplier of z−d . Then the quotient is
F(z−1) and the remainder yields G(z−1). In terms of the Diophantine equation solution, the optimal
control sequence is then given by the equation

(
PBF+ r0

b0
R

)
uk =−PGyk +Qwk . (25.115)

This is nothing but a difference equation that gives the current control uk in terms of yk , wk , and previous
values of the control; it is easily implemented using a digital computer or microprocessor. Figure 25.14
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FIGURE 25.14 Optimal polynomial LQ regulator drawn as a two-degrees-of-freedom regulator.

shows the structure of the optimal LQ polynomial controller. Because it has a feedback and a feedforward
component, it is called a two-degrees-of-freedom regulator. Such a controller can influence the closed-loop
poles as well as zeros. Note that this controller actually requires full state feedback because the complete
state is given by yk , yk−1, . . . , yk−n, uk−d , uk−d−1, . . . , uk−d−m.

Some fundamental points in polynomial LQ design, as contrasted to state-space design, are (1) the PI
is a square of sums, (2) the role of the RE in state-space design is played by the Diophantine equation in
polynomial design, and (3) the optimal tracker problem is easy to solve and implement since it is causal.

Example 25.7: Polynomial LQ Tracker

It is desired for the plant

yk − 2yk−1+
3
4

yk−2 = uk−1−
1
2

uk−2 (25.116)

to follow a given reference signal wk using a fairly smooth control signal uk . The control delay is
d = 1. To accomplish the design, select the PI

Jk = ( yk+1−wk )2+ r2(uk − uk−1)2. (25.117)

This PI is motivated by Equation 25.112, but the first difference of the control is weighted to keep
uk smooth, as per the specifications. The scalar r is a design parameter used to tune the closed-loop
performance at the end of the design (e.g , for suitable damping ratio, overshoot, etc.).

Inspecting the plant and PI, the polynomials defined in the discussion are

A(z−1)= 1− 2z−1+ 0.75z−2, B(z−1)= 1− 0.5z−1,

P(z−1)= Q(z−1)= 1, R(z−1)= r(1− z−1).
(25.118)

To find the required tracking controller, the Diophantine equation is easily solved (simply perform long
division of A(z−1) into 1 to obtain the quotient F(z−1) and remainder z−1G(z−1)), resulting in the
intermediate quantities

F(z−1)= 1,

G(z−1)= 2− 0.75z−1.
(25.119)

According to Equation 25.115, therefore, the control is given by

[(1+ r2)− z−1(0.5+ r2)]uk =−(2− 0.75z−1)yk +wk . (25.120)

The variable r is a design parameter that can be varied by the engineer as he performs computer
simulations of the closed-loop system (1), (5). Then, based on the simulations, the best value of r is
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selected and the resulting controller is applied to the actual plant. Selecting, for instance, r = 1
2 , yields the

difference equation

1.25uk = 0.75uk−1− 2yk + 0.75yk−1+wk , (25.121)

which is easily solved for the current control input uk in terms of uk−1, current and previous values of yk ,
and the current wk . The controller is of the form shown in Figure 25.14.

25.7 Dynamic Programming and the HJB Equation

The Calculus of Variations approach to optimal control design yields the state equation, costate equation,
and stationarity condition in Table 25.1. A second approach to optimal control is through Bellman’s
Optimality Principle. This principle is a cornerstone of optimal control theory and states:

“An optimal policy has the property that no matter what the previous decisions (i.e. controls)
have been, the remaining decisions must constitute an optimal policy with regard to the
state resulting from those previous decisions.”

We shall apply this to solve the optimal control problem, first for DT systems, then continuous-time
systems.

25.7.1 Dynamic Programming for DT Systems

Consider the nonlinear DT plant

xk+1 = f (xk)+ g(xk)uk (25.122)

with performance index over the time interval [k, N] given by

J(xk)= φ(xN , N)+
N−1∑
i=k

L(xi , ui) (25.123)

It is desired to find a state variable feedback policy

uk = h(xk) (25.124)

that minimizes the PI. The optimal cost is

J∗(xk)= min
ū(k:N−1)

(
φ(xN , N)+

N−1∑
i=k

L(xi , ui)

)
(25.125)

where ū(k : N − 1)= {uk , uk+1, · · · , uN−1}. The optimal control is

ū∗ = arg min
ū(k:N−1)

(
φ(xN , N)+

N−1∑
i=k

L(xi , ui)

)
(25.126)

These equations are very difficult to solve.
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One can write (Equation 25.123) as

J(xk)= L(xk , uk)+φ(xN , N)+
N−1∑

i=k+1

L(xi , ui) (25.127)

or

J(xk)= L(xk , uk) + J(xk+1) (25.128)

which is a difference equation equivalent to (Equation 25.123). That is, given a stabilizing policy uk =
h(xk), one can find its associated cost either by computing the infinite sum (Equation 25.123) or by solving
the difference equation 25.128. The latter is far easier.

Equation 25.128 is known as the Bellman Equation and is the basis for a host of reinforcement learning
methods that learn the optimal cost and feedback policy online in real-time by observing data along the
system trajectories. See the Chapter 6.

In terms of the Bellman equation, one can write the optimal cost as

J∗(xk)= min
ū(k:N−1)

(
L(xk , uk) + J(xk+1)

)
(25.129)

The importance of Bellman’s Optimality Principle is that one may write this is as

J∗(xk)=min
uk

(
L(xk , uk)+ J∗(xk+1)

)
(25.130)

with J∗(xk+1) the optimal cost from time k+ 1 on.
This is known as the Bellman optimality equation or the HJB equation. This equation yields the

optimal cost at time k in terms of the optimal cost at time k+ 1. Therefore, it leads to a backwards-in-
time solution procedure for the optimal control problem. This procedure leads to a host of methods for
solution collected under the general name of Dynamic Programming. DP leads to tractable solutions in
many situations, particularly if there are control constraints; See [7]. Since it proceeds backwards in time,
DP is an off-line planning method for solving the optimal control problem.

To solve the DT optimal control problem, one first solves the HJB, then finds the optimal control using

u∗k = arg min
uk

(
L(xk , uk)+ J∗(xk+1)

)
(25.131)

which is far simpler to effect that Equation 25.126.
Let us show what this boils down to in the DT LQR case. Consider the linear time-invariant DT system

(Equation 25.96) with associated cost (Equation 25.99). For the LQR, it is known that the cost for any
stabilizing state variable feedback (Equation 25.97) is quadratic in the state so that

J(xk)= 1

2

∞∑
i=k

xT
i Qxi + uT

i Rui =1

2

∞∑
i=k

xT
i (Q+KT RK)xi =1

2
xT

k Sxk (25.132)

For some matrix S = ST > 0 to be determined. The closed-loop system is

xk+1 = (A−BK)xk ≡ Acxk (25.133)

For the DT LQR, Bellman’s equation 25.128 is

xT
k Sxk = xT

k Qxk + uT
k Ruk + xT

k+1Sxk+1 (25.134)

or

xT
k Sxk = xT

k Qxk + uT
k Ruk + (Axk +Buk)T S(Axk +Buk) (25.135)
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whence the minimization (Equation 25.131) is easily performed by differentiating with respect to uk to
obtain

Ruk +BT S(Axk +Buk)= 0 (25.136)

or

uk =−(R+BT SB)−1BT SAxk (25.137)

so the optimal feedback gain is

K = (R+BT SB)−1BT SA. (25.138)

Substituting this into the Bellman equation 25.135 and simplifying yields the DT HJB equation

AT SA− S+Q−AT SB(R+BT SB)−1BT SA= 0. (25.139)

This is exactly the DT ARE in Equation 25.100!

25.7.2 Dynamic Programming for Continuous-Time Systems

Consider the nonlinear dynamical system

ẋ = f (x, u) (25.140)

with associated cost

J(x(t))=
∞∫

t

L(x(τ), u(τ)) dτ (25.141)

To apply Bellman’s optimality principle write this in the form

J(x(t))=
t+T∫
t

L(x(τ), u(τ))dτ+ J(x(t+T)) (25.142)

For any T > 0. This is exactly in the form of the DT Bellman equation. According to Bellman’s principle,
the optimal value is given in terms of this construction as

J∗(x(t))= min
ū(t:t+T)

⎛
⎝

t+T∫
t

L(x(τ), u(τ))dτ+ J∗(x(t+T))

⎞
⎠ (25.143)

where ū(t : t+T)= {u(τ) : t ≤ τ< t+T}. The optimal control is

u∗(x(t))= arg min
ū(t:t+T)

⎛
⎝

t+T∫
t

L(x(τ), u(τ))dτ+ J∗(x(t+T))

⎞
⎠ (25.144)

Let J∗(x(t+T), t+T)= J∗(x(t)+Δx, t+T)and perform a Taylor series expansion of Equation
25.143 and approximate the integral to obtain

J∗(x(t))= min
ū(t:t+T)

(
LT + J∗(x(t))+

(
∂J∗

∂x

)T

Δx+
(

∂J∗

∂t

)T

T

)
(25.145)
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However, from Equation 25.140 Δx = f (x, u)T so that, manipulating the terms that do not depend on
u(t) one has

−
(

∂J∗

∂t

)T

T = min
ū(t:t+T)

(
LT +

(
∂J∗

∂x

)T

f (x, u)T

)
(25.146)

whence, letting T → 0 one obtains

−
(

∂J∗

∂t

)T

=min
u(t)

(
L+

(
∂J∗

∂x

)T

f (x, u)

)
(25.147)

This is the CT HJB equation. In terms of the Hamiltonian function (Equation 25.4) one may write it as

−
(

∂J∗

∂t

)T

=min
u(t)

(
H(x, u,

∂J∗

∂x
, t)

)
(25.148)

It is easily shown that, in the CT LQR case, this is exactly the CT RE (Equation 25.16).
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26.1 Introduction

The complexity and high performance requirements of present-day industrial processes place increasing
demands on control technology. The orthodox concept of driving a large system by a central computer has
become unattractive for either economic or reliability reasons. New emerging notions are subsystems,
interconnections, distributed computing, parallel processing, and information constraints, to mention
a few. In complex systems, where databases are developed around the plants with distributed sources
of data, a need for fast control action in response to local inputs and perturbations dictates the use of
distributed (that is, decentralized) information and control structures.

The accumulated experience in controlling complex industrial processes suggests three basic reasons
for using decentralized control structures:

1. Dimensionality
2. Information structure constraints
3. Uncertainty

Because the amount of computation required to analyze and control a system of large dimension grows
faster than its size, it is beneficial to decompose the system into subsystems, and design controls for each
subsystem independently based on the local subsystem dynamics and its interconnections. In this way,
special structural features of a system can be used to devise feasible and efficient decentralized strategies
for solving large control problems previously impractical to solve by “one-shot” centralized methods.

A restriction on what and where the information is delivered in a system is a standard feature of
interconnected systems. For example, the standard automatic generation control in power systems is

26-1
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decentralized because of the cost of excessive information requirements imposed by a centralized control
strategy over distant geographic areas. The structural constraints on information make the centralized
methods for control and estimation design difficult to apply, even to systems with small dimensions.

It is a common assumption that neither the internal nor the external nature of complex systems
can be known precisely in deterministic or stochastic terms. The essential uncertainty resides in the
interconnections between different parts of the system (subsystems). The local characteristics of each
individual subsystem can be satisfactorily modeled in most practical situations. Decentralized control
strategies are inherently robust with respect to a wide variety of structured and unstructured perturbations
in the interconnections. The strategies can be made reliable to both interconnection and controller failures
involving individual subsystems.

In decentralized control design, it is customary to use a wide variety of disparate methods and tech-
niques that originated in system and control theory. Graph-theoretic methods have been devised to
identify the special structural features of the system, which may help us cope with dimensionality prob-
lems and formulate a suitable decentralized control strategy. The concept of vector Lyapunov functions,
each component of which determines the stability of a part of the system where others do not, is a powerful
method for the stability analysis of large interconnected systems. Stochastic modeling and decentralized
control have been used in a broad range of situations, involving LQG design, Kalman filtering, Markov
processes, and stability analysis and design. Robustness considerations of decentralized control have been
carried out since the early stages of its evolution, often preceding a similar development in the centralized
control theory. Especially popular have been the adaptive decentralized schemes because of their flexibil-
ity and ability to cope efficiently with perturbations in both the interactions and the subsystems of a large
system.

The objective of this chapter is to introduce the concept and methods of decentralized control. Due to a
large number of results and techniques available, only the basic theory and practice of decentralized control
will be reviewed. At the end of the chapter is a discussion of the larger background listing the books and
survey papers on the subject. References related to more sophisticated treatment of decentralized control
and the relevant applications are also discussed.

26.2 The Decentralized Control Problem

To introduce the decentralized control problem, consider two inverted penduli coupled by a spring as
shown in Figure 26.1. The control objective is to keep the penduli in the upright position by apply-
ing feedback control via the inputs u1 and u2. The linearized equations of motion in the vicinity of
θ1 = θ2 = 0 are

m�2θ̈1 =mg�θ1− ka2(θ1− θ2)+ u1,

m�2θ̈2 =mg�θ2− ka2(θ2− θ1)+ u2.
(26.1)

By choosing the state vector x = (θ1, θ̇1, θ2, θ̇2)T and the input vector u= (u1, u2)T , the state space repre-
sentation of the system is

S : ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
g

�
− ka2

m�2 0
ka2

m�2 0

0 0 0 1
ka2

m�2 0
g

�
− ka2

m�2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

x+

⎡
⎢⎢⎢⎢⎣

0 0
1

m�2 0

0 0
0 1

m�2

⎤
⎥⎥⎥⎥⎦ u . (26.2)

The fundamental restriction in choosing the feedback laws to control the system S is that each input u1

and u2 can depend only on the local states x1 = (θ1, θ̇1)T and x2 = (θ2, θ̇2)T of the corresponding penduli,
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u1

m

k

θ1

u2

m

θ2

a

l

FIGURE 26.1 Inverted penduli.

that is, u1 = u1(x1) and u2 = u2(x2). This restriction is called the decentralized information structure
constraint.

Since the system S is linear, a natural choice is the linear control laws

u1 = kT
1 x1 , u2 = kT

2 x2 (26.3)

where the feedback gain vectors k1 = (k11, k12)T and k2 = (k21, k22)T should be selected to stabilize the
system S, that is, hold the penduli in the upright position.

In control design, it is fruitful to recognize the structure of the system S as an interconnection

S : ẋ1 =
[

0 1
α 0

]
x1+

[
0
β

]
u1+ e

[
0 0
−γ 0

]
x1+ e

[
0 0
γ 0

]
x2,

ẋ2 =
[

0 1
α 0

]
x2+

[
0
β

]
u1+ e

[
0 0
γ 0

]
x1+ e

[
0 0
−γ 0

]
x2,

(26.4)

of two subsystems

S1 : ẋ1 =
[

0 1
α 0

]
x1+

[
0
β

]
u1,

S2 : ẋ2 =
[

0 1
α 0

]
x2+

[
0
β

]
u2,

(26.5)

where α= g/�, β= 1/m�2, γ= ā2k/m�2, and e = (a/ā)2. One reason is that, in designing control for
interconnected systems, the designer has to account for essential uncertainty in the interconnections
among the subsystems. Though models of the subsystems are commonly available with sufficient accuracy,
the shape and size of the interconnections cannot be predicted satisfactorily either for modeling or
operational reasons. In the example, the interconnection parameter e = a/ā is the uncertain height of the
spring which is normalized by its nominal value ā.

An equally important reason for decomposition is present when controlling large dynamic systems. In
complex systems with many variables, most of the variables are weakly coupled, if coupled at all, and the
behavior of the overall system is dominated by strongly connected variables. Considerable conceptual and
numerical simplification can be gained by controlling the strongly coupled variables with decentralized
control.
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26.3 Plant and Feedback Structures

Consider a linear constant system

S : ẋ = Ax+Bu,

y = Cx,
(26.6)

as an interconnected system

S : ẋi = Aixi +Biui +
∑
j∈N

(Aijxj +Bijuj),

yi = Cixi +
∑
j∈N

Cijxj, i ∈N ,
(26.7)

which is composed of N subsystems

Si : ẋi = Aixi +Biui ,

yi = Cixi , i ∈N ,
(26.8)

where xi(t) ∈ R
ni , ui(t) ∈ R

mi , yi(t) ∈ R
�i are the state, input, and output of the subsystem Si at a fixed

time t ∈ R. All matrices have proper dimensions, and N = {1, 2, . . . , N}. At present we are interested in
disjoint decompositions, that is,

x = (xT
1 , xT

2 , . . . , xT
N )T ,

u= (uT
1 , uT

2 , . . . , uT
N )T , (26.9)

y = (yT
1 , yT

2 , . . . , yT
N )T ,

and where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
� are the state, input, and output of the overall system S, so

that

R
n = R

n1 ×R
n2 × · · ·×R

nN ,

R
m = R

m1 ×R
m2 × · · ·×R

mN , (26.10)

R
� = R

�1 ×R
�2 × · · ·×R

�N .

A compact description of the interconnected system S is

S : ẋ = ADx+BDu+ACx+BCu

y = CDx+CCx,
(26.11)

where

AD = diag{A1, A2, . . . , AN },
BD = diag{B1, B2, . . . , BN }, (26.12)

CD = diag{C1, C2, . . . , CN },
and the coupling block matrices are

AC = (Aij), BC = (Bij), CC = (Cij). (26.13)

The collection of N decoupled subsystems is described by

SD : ẋ = ADx+BDu

y = CDx,
(26.14)

obtained from (Equation 26.11) by setting the coupling matrices to zero.
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Important special classes of interconnected systems are input (BC = 0) and output (CC = 0) decentral-
ized systems, where inputs and outputs are not shared among the subsystems. Input–output decentralized
systems are described as

S : ẋ = ADx+BDu+ACx

y = CDx,
(26.15)

where both BC and CC are zero. This structural feature helps to a great extent when decentralized
controllers and estimators are designed for large plants.

A static decentralized state feedback,
u=−KDx, (26.16)

is characterized by a block-diagonal gain matrix,

KD = diag{K1, K2, . . . , KN }, (26.17)

which implies that each subsystem Si has its individual control law,

ui =−Kixi , i ∈N , (26.18)

with a constant gain matrix Ki . The control law u of Equation 26.16, which is equivalent to the totality
of subsystem control laws (Equation 26.18), obeys the decentralized information structure constraint
requiring that each subsystem Si is controlled on the basis of its locally available state xi . The closed-loop
system is described as

Ŝ : ẋ = (AD−BDKDCD)x+ACx. (26.19)

When dynamic output feedback is used under decentralized constraints, then controllers of the following
type are considered:

Ci : żi = Fizi +Giyi ,

ui =−Hizi −Kiyi , i ∈N ,
(26.20)

which can be written in a compact form as a single decentralized controller defined as

CD : ż = FDz+GDy,

u=−HDz−KDy,
(26.21)

where

z = (zT
1 , zT

2 , . . . , zT
N )T , y = (yT

1 , yT
2 , . . . , yT

N )T ,

u= (uT
1 , uT

2 , . . . , uT
N )T ,

(26.22)

are the state z ∈ R
r , input y ∈ R

�, and output u ∈ R
m of the controller CD. By combining the system S

and the decentralized dynamic controller CD, we get the composite closed-loop system as

S&CD :
[

ẋ
ż

]
=
[

AD−BDKDCD+AC −BDHD

GDCD FD

] [
x
z

]
. (26.23)

26.4 Decentralized Stabilization

The fundamental problem in decentralized control theory and practice is choosing individual subsystem
inputs to stabilize the overall interconnected system. In the previous section, the plant structures have been
described, where the plant, inputs and outputs are all decomposed with each local controller responsible
for the corresponding subsystem. While this is the most common situation in practice, it is by no means
all inclusive. It is often advantageous, and sometime necessary, to decentralize the inputs and outputs
without decomposing the plant. This is the situation that we consider first.
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26.4.1 Decentralized Inputs and Outputs

Suppose that only the inputs and outputs, but not states, of system S in Equation 26.6 are partitioned as
in Equation 26.9, and S is described as

S : ẋ = Ax+
∑
i∈N

B̃iui ,

yi = C̃ix, i ∈N .

(26.24)

Then, the controllers Ci of Equation 26.20 still operate on local measurements yi to generate local controls
ui , but now they are collectively responsible for the whole system. In this case,

S&CD :
[

ẋ
ż

]
=
[

A−BKDC −BHD

GDC FD

] [
x
z

]
. (26.25)

It is well-known that without the decentralization constraint on the controller, the closed-loop sys-
tem of Equation 26.25 can be stabilized if, and only if, the uncontrollable or unobservable modes of
the open-loop system S are stable; or equivalently, the set of (centralized) fixed modes of S, which is
defined as

ΛC =
⋂
K

σ(A−BKC) (26.26)

is included in the open left half plane, where σ(.) denotes the set of eigenvalues of the indicated matrix.
This basic result has been extended in [34] to decentralized control of S, where it was shown that the
closed-loop system Equation 26.25 can be made stable with suitable choice of the decentralized controllers
Ci if, and only if, the set of decentralized fixed modes

ΛD =
⋂
KD

σ(A−BKDC)=
⋂

K1,...,KN

σ(A−
∑
i∈N

B̃iKiC̃i) (26.27)

is included in the open left half plane.
The result of [34] has been followed by extensive research on the following topics:

• State space and frequency domain characterization of decentralized fixed modes
• Development of various techniques for designing decentralized controllers (e.g., using static out-

put feedback in all but one channel, distributing the control effort among channels, sequential
stabilization, etc.)

• Generalization of the concept of decentralized fixed modes to arbitrary feedback structure con-
straints

• Formulation of the concept of structurally fixed modes, and their algebraic and graph-theoretical
characterization

A useful and simple characterization of decentralized fixed modes was provided in [1]. For any subset
I = {i1, . . . , iP} of the index set N , let IC = {j1, . . . , jN−P} denote the complement of I in N , and define

B̃I = [B̃i1 , B̃i2 , . . . , B̃iP ],

C̃IC =

⎡
⎢⎢⎢⎣

C̃j1
C̃j2

...
C̃jN−P

⎤
⎥⎥⎥⎦. (26.28)
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Then a complex number λ ∈ C is a decentralized fixed mode of S if, and only if,

rank

[
A−λI B̃I

C̃IC 0

]
< n (26.29)

for some I ⊂N . This result relates decentralized fixed modes to transmission zeros of the systems
(A, B̃I , C̃IC ), called the complementary subsystems. Thus, appearance of a fixed mode corresponds to a
special pole–zero cancellation, which can not be removed by constant decentralized feedback. However,
under mild conditions, such fixed modes can be eliminated by time-varying decentralized feedback.

The characterization of decentralized fixed modes above prompts a generalization of the concept to
arbitrary feedback structures. Let K̄ = (k̄ij) be an m× l binary matrix such that k̄ij = 1 if, and only if, a
feedback link from output yi to input ui is allowed. Thus K̄ specifies a constraint on the feedback structure,
a special case of which is decentralized feedback. In this case, permissible controllers have the structure

CK̄ : żi = Fizi +
∑
j∈Ji

gijyj

ui =−hT
i zi −

∑
j∈Ji

kijyi

(26.30)

where Ji = {j : k̄ij = 1}.
Let K denote any feedback matrix conforming to the structure of K̄ , that is, one with kij = 0 whenever

k̄ij = 0. Then, the set

ΛK̄ =
⋂
K

σ(A−BKC) (26.31)

can conveniently be defined as the set of fixed modes with respect to the decentralized feedback structure
constraint specified by K̄ . Then the closed-loop system consisting of S and the constrained controller CK̄
can be stabilized if, and only if,ΛK̄ is included in the open left half-plane. Finally, it remains to characterize
ΛK̄ as in Equation 26.29. This, however, is quite automatic; consider the index sets I ⊂M= {1, 2, . . . , M}
and replace IC by J = ∪i∈IC Ji , where now IC refers to the complement of I in M.

26.4.2 Structural Analysis

Structural analysis of large scale systems via graph-theoretic concepts and methods offers an appealing
alternative to quantitative analysis which often faces difficulties due to high dimensionality and lack of
exact knowledge of system parameters. Equipped with the powerful tools of graph theory, structural
analysis provides valuable information concerning certain qualitative properties of the system under
study by practical tests and algorithms [30].

One of the earliest problems of structural analysis is the graph-theoretic formulation of controllability
[20]. Consider an uncontrollable pair (A, B). Loss of controllability is either due to a perfect matching of
system parameters or due to an insufficient number of nonzero parameters, indicating a lack of sufficient
linkage among system variables. In the latter case, the pair (A, B) is structurally uncontrollable in the sense
that all pairs having the same structure as (A, B) are uncontrollable. Since the structure of (A, B) can be
described by a directed graph (as explained below for a more general case), structural controllability can
be checked by graph-theoretic means. Indeed, (A, B) is structurally controllable if, and only if, the system
graph is input reachable (that is, each state variable is affected directly or indirectly by at least one input
variable), and contains no dilations (that is, no subset of state variables exists whose number exceeds the
total number of all state and input variables directly affecting these variables). These two conditions are
equivalent to the spanning of the system graph by a minimal subgraph, called a cactus, which has a special
structure.

The idea of treating controllability in a structural framework has led to formulation and graph-
theoretic characterization of structurally fixed modes under constrained feedback [26]. Let D= (V , E)
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be a directed graph associated with the system S of Equation 26.6, where V = U ∪X ∪Y is a set of vertices
corresponding to inputs, states, and outputs of S, and E is a set of directed edges corresponding to nonzero
parameters of the system matrices A, B, and C. To every nonzero aij, there corresponds an edge from
vertex xj to vertex xi , to every nonzero bij, an edge from uj to xi , and to every nonzero cij, one from xj to
yi . Given a feedback pattern K̄ and adding to D a feedback edge from yj to ui for every k̄ij = 1, one gets
a digraph DK̄ = (V , E ∪ EK̄ ) completely describing the structure of both the system S and the feedback
constraint specified by K̄ .

Two systems are said to be structurally equivalent if they have the same system graphs. A system S is
said to have structurally fixed modes with respect to a given K̄ if every system structurally equivalent to
S has fixed modes with respect to K̄ . Having structurally fixed modes is a common property of a class of
systems described by the same system graph; if a system has no structurally fixed modes, then either it
has no fixed modes, or if it does, arbitrarily small perturbations of system parameters can eliminate the
fixed modes. As a result, if a system has no structurally fixed modes with respect to K̄ , then generically it
can be stabilized by a constrained controller of the form defined in Equation 26.30.

It was shown in [26] that a system S has no structurally fixed modes with respect to a feedback pattern
K̄ if, and only if

1. all state vertices of DK̄ are covered by vertex disjoint cycles, and
2. no strong component of DK̄ contains only state vertices, where a strong component is a maximal

subgraph whose vertices are reachable from each other.

This simple graph-theoretic criterion has been used in an algorithmic way in problems such as choosing
a minimum number of feedback links (or, if each feedback link is associated with a cost, choosing the
cheapest feedback pattern) that avoid structurally fixed modes. As an example, consider a system with a
system graph as in Figure 26.2. Let the costs of setting up feedback links (dotted lines) from each output
to each input be given by a matrix

[
6 2
3 7

]
.

2 3

6

7

y2

y1

x1

x2

u1

u2

FIGURE 26.2 System graph.
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It can easily be verified that any feedback pattern of the form[
1 ∗
∗ ∗

]
or

[∗ 1
1 ∗

]
,

where ∗ stands for either a 0 or a 1, avoids structurally fixed modes. Clearly, the feedback patterns which
contain the least number of links and which cost the least are, respectively,

K̄1 =
[

1 0
0 0

]
or K̄2 =

[
0 1
1 0

]
.

26.4.3 Decentrally Stabilizable Structures

Consider an interconnected system

S : ẋi = Aixi +Bi(ui +
∑
j∈N

Dijxj)

yi = xi i ∈N (26.32)

which is a special case of the system S in Equation 26.7 in that Aij = BiDij, Bij = 0, Ci = I , and Cij = 0.
Assuming that the decoupled subsystems described by the pairs (Ai , Bi) are controllable, it is easy to verify
that S has no decentralized fixed modes. Thus S can be stabilized using a decentralized dynamic feedback
controller of the form (Equation 26.21). However, because the subsystem outputs are the states, there
should be no need to use dynamic controllers.

Choose the decentralized constant state feedbacks in Equation 26.18 to place the subsystem poles at
−μilρ, i ∈N , l = 1, 2, . . . , ni , where −μil are distinct negative real numbers, and ρ is a parameter. Then
a suitable change of coordinate frame transforms the closed-loop system of Equation 26.19 into the form

Ŝ : ẋ = (−ρM+ ÂC)x, (26.33)

where M = diag{M1, M2, . . . , MN }, with Mi = diag{μ1,μ2, . . . ,μini }, and ÂC is independent of the
parameter ρ. Clearly, Ŝ is stable for a sufficiently large ρ.

The success of this high-gain decentralized stabilization technique results from the special structure
of the interconnections among the subsystems. The interconnections from other subsystems affect a
particular subsystem in the same way its local input does. This makes it possible to neutralize poten-
tially destabilizing effects of the interconnections by a local state feedback and provide a high degree of
stability to the decoupled subsystems. This special interconnection structure is termed the “matching
conditions” [18].

Decentralized stabilizability of interconnected systems satisfying the matching conditions has moti-
vated research in characterizing other decentrally stabilizable interconnection structures. Below,
another such interconnection structure is described, where single-input subsystems are considered for
convenience.

Let the interconnected system be described as

S : ẋi = Aixi + biui +
∑
j∈N

Aijxj, i ∈N (26.34)

where, without loss of generality, the subsystem pairs (Ai , bi) are assumed to be in controllable canonical
form. For each interconnection matrix Aij, define an integer mij as

mij =
{

max{q− p : a
ij
pq �= 0}, Aij �= 0,

−n, Aij = 0,
(26.35)

Thus, mij is the distance between the main diagonal and a line parallel to the main diagonal which
borders all nonzero elements of Aij.
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For an index set I ⊂N , let IP denote any permutation of I . Then, the system S in Equation 26.34 is
stabilizable by decentralized constant state feedback if

∑
i∈I

j∈IP

(mij − 1) < 0 (26.36)

for all I and all permutations IP [14,30]. In the case of matching interconnections, mij = nj − ni , so that
Equation 26.36 guarantees decentralized stabilizability even when the elements of the interconnection
matrices Aij are bounded nonlinear, time-varying functions of the state variables. Therefore, the condition
(Equation 26.36) and, thus, the matching conditions, are indeed structural conditions.

26.4.4 Vector Lyapunov Functions

A general way to establish the stability of nonlinear interconnected systems is to apply the Matrosov–
Bellman concept of vector Lyapunov functions [17]. The concept has been developed to provide an
efficient method of checking the stability of linear interconnected systems controlled by decentralized
feedback [30]. First, each subsystem is stabilized using local state or output feedback. Then, for each
stable closed-loop (but decoupled) subsystem, a Lyapunov function is chosen using standard methods.
These functions are stacked to form a vector of functions, which can then be used to form a single
scalar Lyapunov function for the overall system. The function establishes stability if we show positivity
of the leading principal minors of a constant aggregate matrix whose dimension equals the number of
subsystems.

Consider the linear interconnected system of Equation 26.7,

S : ẋi = Aixi +Biui +
∑
j∈N

eijAijxj, i ∈N , (26.37)

where the output yi is not included and Bij = 0. We inserted the elements of eij ∈ [0, 1] of the
N ×N interconnection matrix E = (eij) to capture the presence of uncertainty in coupling between the
subsystems

Si : ẋi = Aixi +Biui , (26.38)

as illustrated by the example of the two penduli above.
We assume that each pair (Ai , Bi) is controllable and assign the eigenvalues −σi

1± jωi
1, . . . ,−σi

pi
±

jωi
pi

, . . . ,−σi
2pi+1, . . . ,−σi

ni
to each closed-loop subsystem

Ŝi : ẋi = (Ai −BiKi)xi (26.39)

by applying decentralized feedback
ui =−Kixi . (26.40)

Using a nonsingular transformation,
xi = Tix̃i , (26.41)

we can obtain the closed-loop subsystems as

S̃i : ˙̃xi =Λi x̃i , (26.42)

where the matrixΛi = T−1
i (Ai −BiKi)Ti has the diagonal form

Λi = diag

{[−σi
1 ωi

1
−ωi

1 −σi
1

]
, . . . ,

[
−σi

pi
ωi

pi

−ωi
pi

−σi
pi

]
,−σ2pi+1, . . . ,−σni

}
. (26.43)
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For each transformed subsystem, there exists a suitable Lyapunov function v : Rni → R+ of the form

vi(x̃i)= (x̃iHix̃i)
1
2, (26.44)

where Hi = Ii is the solution of the Lyapunov matrix equation

ΛiHi +HiΛi =−Gi (26.45)

for Gi = diag{σi
1, σi

1, . . . , σi
pi

, σi
2pi+1. . . . , σi

ni
}.

To determine the stability of the overall interconnected closed-loop system

S̃ : ˙̃xi =Λi x̃i +
∑
j∈N

eijΔij x̃j (26.46)

from the stability of the decoupled closed-loop subsystems S̃i , we consider subsystem functions vi as
components of a vector Lyapunov function v = (v1, v2, . . . , vN )T , and form a candidate Lyapunov function
V : Rn → R+ for the overall system S̃ as

V (x̃)=
∑
i∈N

divi(x̃i), (26.47)

where the existence of positive numbers di for stability of S̃ has yet to be established, andΔij = T−1
i AijTj.

Taking the total time derivative of V (x̃) with respect to S̃, after lengthy but straightforward computa-
tions [30],

V̇ (x̃)≤−dT W̄z , (26.48)

with d = (d1, d2, . . . , dN )T , z = (‖x̃1‖, ‖x̃2‖, . . . , ‖x̃N‖)T , and W̄ = (w̄ij) is the N ×N aggregate matrix
defined as

w̄ij =
{

1
2σ

i
m− ēiiλ

1/2
M (ΔT

iiΔii), i = j

−ēijλ
1/2
M (ΔT

ijΔij), i �= j
(26.49)

where σi
m is the minimal value of all σi

k , and λM ( · ) is the maximal eigenvalue of the indicated matrix.
The elements ēij of the fundamental interconnection matrix Ē = (ēij) are binary numbers defined as

ēij =
{

1, Sj acts on Si

0, Sj does not act on Si .
(26.50)

In this way, the binary matrix describes the basic interconnection structure of the system S. In the case of
two penduli,

Ē =
[

1 1
1 1

]
. (26.51)

It has been shown in [30] that stability of −W̄ (all eigenvalues of −W̄ have negative real parts) implies
stability of the closed-loop system S̃ and, hence, Ŝ. To explain this fact, we note first that wii > 0, wij ≤
0 (i �= j), which makes W̄ an M-matrix (e.g., [30]) if, and only if, there exists a positive vector d (di >

0, i ∈N ), so that the vector

cT = dT W̄ (26.52)

is a positive vector as well. Positivity of c and d imply V (x̃) > 0 and V̇ (x̃) < 0 and, therefore, stability
of Ŝ by the standard Lyapunov argument. Finally, the M-matrix property of W̄ is equivalent to stability
of−W̄ .
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Several comments are in order. First, we note that the M-matrix property of W̄ can be tested by a
simple determinantal condition

∣∣∣∣∣∣∣∣

w̄11 w̄12 . . . w̄1k

w̄21 w̄22 . . . w̄2k
. . . . . . . . . . . . . . . . . . . . .
w̄k1 w̄k2 . . . w̄kk

∣∣∣∣∣∣∣∣
> 0, k ∈N . (26.53)

Another important feature of the concept of vector Lyapunov functions is the robustness information
about decentrally stabilized interconnected system Ŝ. The determinantal condition (Equation 26.53) is
equivalent to the quasidominant diagonal property of W̄ ,

w̄ii > d−1
i

N∑
j �=i

dj|w̄ij|, i ∈N . (26.54)

where the di ’s are positive numbers. From Equation 26.54, it is obvious that, if W̄ is an M-matrix, so is W
for any E ≤ Ē, where the inequality is taken element by element; the system Ŝ is connectively stable [30].
When a system is connectively stabilized by decentralized feedback, stability is robust and can tolerate
variations in coupling among the subsystems. When the two penduli are stabilized for any given position
ā of the spring, including the entire length � of the penduli, the penduli are stable for any position a ≤ ā.
In other words, if the penduli are stabilized for the fundamental interconnection matrix Ē of (51), they
are stabilized for any interconnection matrix

E =
[

e e
e e

]
, (26.55)

whenever e ∈ [0, 1].
Finally, the decentrally stabilized system can tolerate nonlinearities in the interconnections among the

subsystems. The nonlinear interconnections need not be known since only their size is required to be
limited. Once the closed-loop system Ŝ is shown to be stable, it follows [30] that a nonlinear time-varying
version

ŜN : ˙̃xi = (Ai −BiKi)x̃i + hi(t, x̃), i ∈N (26.56)

of Ŝ is connectively stable, provided the conical constraints

‖hi(t, x̃)‖ ≤
N∑

j=1

ēijξij‖x̃j‖, i ∈N (26.57)

on interconnection functions hi : R×R
n → R

ni hold, where the nonnegative numbers ξij do not exceed

λ
1/2
M (ΔT

ijΔij). This robustness result is useful in practice because, typically, interconnections are poorly
known, or they are changing during operation of the controlled system.

26.5 Optimization

There is no general method for designing optimal decentralized controls for interconnected systems,
even if they are linear and time invariant. For this reason, standard design practice is to optimize each
decoupled subsystem using linear quadratic (LQ) control laws. Then, suboptimality of the interconnected
closed–loop system, which is driven by the union of the locally optimal LQ control laws, is determined
with respect to the sum of the quadratic costs chosen for the subsystems. The suboptimal decentralized
control design is attractive because, under relatively mild conditions, suboptimality implies stability.
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Furthermore, the degree of suboptimality can serve as a measure of robustness with respect to a wide
spectrum of uncertainties residing in both the subsystems and their interactions.

Consider again the interconnected system

S : ẋi = Aixi +Biui +
∑
i∈N

Aijxj, i ∈N (26.58)

in the compact form
S : ẋ = ADx+BDu+ACx. (26.59)

We assume that the subsystems

Si : ẋi = Aixi +Biui (26.60)

or, equivalently, their union
S : ẋ = ADx+BDu, (26.61)

is controllable, that is, all pairs (Ai , Bi) are controllable.
With SD we associate a quadratic cost

JD(x0, u)=
∫ ∞

0
(xT QDx+ uT RDu) dt, (26.62)

where QD = diag{Q1, Q2, . . . , QN } is a symmetric nonnegative definite matrix, RD = diag{R1, R2, . . . , RN }
is a symmetric positive definite matrix, and the pair (AD, Q1/2

D ) is observable. The cost JD can be considered
as a sum of subsystem costs

Ji(xi0, ui)=
∫ ∞

0
(xT

i Qixi + uT
i Rui) dt. (26.63)

In order to satisfy the decentralized constraints on the control law, we solve the standard LQ optimal
control problem (SD, JD) to get

u1D =−KDx, (26.64)

where KD = diag{K1, K2, . . . , KN } is given as

KD = R−1
D BT

DPD,

and PD = diag{P1, P2, . . . , PN } is the unique symmetric positive definite solution of the algebraic Riccati
equation

AT
DPD+ PDAD− PDBDR−1

D BT
DPD+QD = 0. (26.65)

The control u1D , when applied to SD, results in the closed-loop system

Ŝ1D : ẋ = (AD−BDKD) x, (26.66)

which is optimal and produces the optimal cost

J1D (x0)= xT
0 PDx0. (26.67)

The important fact about the locally optimal control u1D is that it is decentralized. Each component

u1i =−Kixi (26.68)

of u1D uses only the local state xi . Generally, the proposed control strategy is not globally optimal, but we
can proceed to determine if the cost J⊕D (x0) corresponding to the closed-loop interconnected system

Ŝ⊕ : ẋ = (AD−BDKD+AC) x (26.69)

is finite. If it is, then S⊕ is suboptimal and a positive number μ exists such that

J⊕D (x0)≤ μ−1J1D (x0) (26.70)

for all x0 ∈ R
n. The number μ is called the degree of suboptimality of u1D .
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We can determine the index μ by first computing the performance index

J⊕D (x0)= xT
0 Hx0, (26.71)

where

H =
∫ ∞

0
exp(ÂT t)GD exp(Ât) dt,

GD = QD+ PDBDR−1
D BT

DPD, (26.72)

and the closed-loop matrix is
Â= AD−BDKD+AC . (26.73)

It is important to note that u1D is suboptimal if, and only if, the symmetric matrix H exists. The existence
of H is guaranteed by the stability of Ŝ, in which case we can compute H as the unique solution of the
Lyapunov matrix equation

ÂT H +HÂ=−GD. (26.74)

The degree of suboptimality, which is the largest we can obtain in this context, is given as

μ∗ = λ1/2
M (HP−1

D ). (26.75)

Details of this development, as well as the broad scope of suboptimality, were described in [30], where
special attention was devoted to the robustness implications of suboptimality. First, we can explicitly
characterize suboptimality in terms the of interconnection matrix AC . The system Ŝ⊕ is suboptimal with
degree μ if the matrix

F(μ)= AT
CPD+ PDAC − (1−μ)(QD+ PDBDR−1

D BT
DPD) (26.76)

is nonpositive definite. This is a sufficient condition for suboptimality, but one that implies stability if the

pair {AD+AC , Q1/2
D } is detectable.

Another important aspect of nonpositivity of F(μ) is that it implies stability even if each control u1i is
replaced by a nonlinearity φi(u1i ), which is contained in a sector, or by a linear time-invariant dynamic
element. Furthermore, if the subsystems are single-input systems, then each subsystem feedback loop has
infinite gain margin, at least± cos−1(1− 1

2μ) phase margin, and at least 50μ% gain reduction tolerance.
These are the standard robustness characteristics of an optimal LQ control law, which are modified by
the degree of suboptimality. It is interesting to note that the optimal robustness characteristics can be
recovered by solving the inverse problem of optimal decentralized control. The matching conditions are
one of the conditions that guarantee the solution of the problem.

The concept of suboptimality extends to the case of overlapping subsystems, when subsystems share
common parts, and control is required to conform with the overlapping information structure constraints.
By expanding the underlying state space, the subsystems become disjoint and decentralized control can
be designed for the expanded system by standard techniques. Finally, the control laws obtained are
contracted for implementation in the original system. This expansion–contraction framework is known
as the inclusion principle. For a comprehensive presentation of this principle, see [30].

26.6 Adaptive Decentralized Control

As mentioned in the section on decentrally stabilizable structures, many large scale interconnected sys-
tems with a good interconnection structure can be stabilized by a high-gain type decentralized control.
How high the gain should be depends on how strong the interconnections are. If a bound on the inter-
connections is known, then stability can be guaranteed by a fixed high-gain controller. However, if such a
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bound is not available, then one has to use an adaptive controller which adjusts the gain to a value needed
for overall stability.

Consider an interconnected system consisting of single-input subsystems

S : ẋi(t)= Aixi(t)+ bi[ui(t)+ hi(t, x(t))], i ∈N (26.77)

where, without loss of generality, the pairs (Ai , bi) are assumed to be in controllable canonical form, and
the nonlinear matching interconnections hi : R×R

n → R are assumed to satisfy

|hi(t, x)| ≤
∑
j∈N

αij‖xj‖ (26.78)

for some unknown constants αij ≥ 0. Let a decentralized state feedback

ui(t)=−ρ(t)kT
i Ri(ρ(t)), i ∈N (26.79)

be applied to S, where Ri(ρ)= diag{ρni−1, . . . , ρ, 1}, with ρ(t) being a time-varying gain, and kT
i are

such that the matrices Âi = Ai − bikT
i have distinct eigenvalues λil , i ∈N , l = 1, 2, . . . , ni . Let Ti denote

the modal matrices of Âi , i.e., TiÂiT
−1
i =Mi = diag{λi1,λi2, . . . ,λini }. Then a time-varying coordinate

transformation zi(t)= TiRi(ρ(t))xi(t) transforms the closed-loop system Ŝ into

Ŝ : żi(t)= ρ(t)Mizi(t)+ gi(t, z(t)), i ∈N , (26.80)

where, provided 0≤ ρ̇(t)≤ 1≤ ρ(t),

‖gi(t, z)‖ ≤
∑
j∈N

βij‖zj‖ (26.81)

for some unknown constants βij ≥ 0. From Equations 26.80 and 26.81 it follows that there exists a ρ∗ > 0
so that Ŝ is stable for all ρ(t) satisfying 0≤ ρ̇(t)≤ 1≤ ρ∗ ≤ ρ(t), as can be shown by the vector Lyapunov
approach. However, the crucial point is that ρ∗ depends on the unknown bounds βij. Fortunately, the
difficulty can be overcome by increasing ρ(t) adaptively until it is high enough to guarantee stability of Ŝ.
A simple adaptation rule that serves the purpose is

ρ̇(t)=min{1, γ‖x(t)‖} (26.82)

where γ > 0 is arbitrary. Although the control law is decentralized, ρ(t) is adjusted based on complete
state information.

The same idea can also be used in constructing adaptive decentralized dynamic output feedback con-
trollers for various classes of large scale systems with structured nonlinear, time-varying interconnections.
A typical example is a system described by

S : ẋi(t)= Aixi(t)+ biui(t)+ hi(t, x(t)),

yi(t)= cT
i xi(t) , i ∈N

(26.83)

where

1. The decoupled subsystems described by the triples (Ai , bi , cT
i ) are controllable and observable.

2. The transfer functions Gi(s)= cT
i (sI −Ai)−1bi of the decoupled systems are minimum phase, have

known relative degree qi and known high frequency gain κi = lims→∞ sqi Gi(s).
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3. The nonlinear interconnections hi : R×R
n → R

ni are of the form hi(t, x)= bifi(t, x)+ gi(t, y)
where fi : R×R

n → R and gi : R×R
n → R

ni satisfy

|fi(t, x)| ≤
∑
j∈N

α
f
ij‖xj‖

‖gi(t, x)‖ ≤
∑
j∈N

α
g
ij‖yj‖

(26.84)

for some unknown constants α
f
ij, α

g
ij where x(t)= [xT

1 (t), xT
2 (t), . . . xT

N (t)]T and y(t)= [y1(t),

yT
2 (t), . . . yN (t)]T are the state and the output of the overall system.

Finally, suitable adaptive decentralized control schemes can be developed by forcing an interconnected
system of the form (Equation 26.83) to track a decoupled stable linear reference model described as

SM : ẋMi(t)= AMixMi(t)+ bMiri(t),

yMi(t)= cT
MixMi(t), i ∈N ,

(26.85)

under reasonable assumptions on S and SM .

26.7 Discrete and Sampled-Data Systems

Most of the results concerning the stability and stabilization of continuous-time interconnected systems
can be carried over to the discrete case with suitable modifications. Yet, there is a distinct approach to the
stability analysis of discrete systems, which is to translate the problem in to that of a continuous system
for which abundant results are available. For an idea of this approach, consider a system

SSD : x(t+ 1)= (A0+
∑
k∈K

pkAk)x(t) (26.86)

where A0 is a stable matrix additively perturbed by pkAk , k ∈K= {1, 2, . . . , K} with pk standing for one
of K perturbation parameters. The purpose is to find the largest region in the parameter space within
which SSD remains stable. By choosing a Lyapunov function v(x)= xT Px, where P is the positive definite
solution of the discrete Lyapunov equation,

AT
0 PA0− P =−I , (26.87)

it can be shown that SSD is stable, provided I −W(p) is positive definite, where

W(p)=
∑
k∈K

pk(AT
k PA0+AT

0 PAk)+
∑

k,l∈K
pkplA

T
k PAl . (26.88)

Since the perturbation parameters appear nonlinearly in W(p), characterization of a stability region in
the parameter space is not easy. However, I −W(p) is positive definite if the continuous system

ξ̇(t)= (−I +
∑
k∈K

pkEk)ξ(t) (26.89)

is stable, where

Ek =
[

0 P1/2Ak

ET
k P1/2 AT

k PA0+AT
0 PAk

]
. (26.90)

An analysis of the stability of the perturbed continuous system in Equation 26.89 provides a sufficient
condition for the stability of the discrete system in Equation 26.86. This idea can be generalized to the
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stability analysis of discrete interconnected systems by treating the interconnections as perturbations to
nominal stable decoupled subsystems.

A major difference between discrete and continuous systems is that characterizing decentrally stabiliz-
able interconnections for discrete systems is not as easy as for continuous systems. For example, there is
no discrete counterpart to the matching conditions. On the other hand, most existing control schemes for
continuous systems seem applicable to sampled-data systems provided the sampling rate is sufficiently
high. To illustrate this observation, consider the decentralized control of an interconnected system,

S : ẋi(t)= Aixi(t)+ bi[ui(t)+
∑
j∈N

dT
ij xj(t)], i ∈N , (26.91)

using sampled-data feedback of the form

ui(t)=−kT
i (t− tm)xi(tm), tm ≤ t < tm+1, (26.92)

where tm are the sampling instants, and ki(t) are time-varying local feedback gains. With Tm = tm+1− tm

denoting the mth sampling period, it can be shown that the choice of

kT
i (t)= [δni (t) . . . δ′(t) δ(t)] (26.93)

or similar feedback gains having impulsive behavior, stabilize S provided Tm are sufficiently small. How
small the sampling periods should be requires knowledge of the bounds on the interconnections. If these
bounds are not available, then a simple centralized adaptation scheme, such as

T−1
m+1 = T−1

m +
∑
j∈N

γi‖xi(tm−mi )‖, (26.94)

with γi > 0, decreases Tm to the value needed for stability. Clearly, this is a high-gain stabilization scheme
coupled with fast sampling, owing its success to the matching structure of the interconnections [36].
Similar adaptive sampled-data control schemes are available for more general classes of interconnected
systems.

26.8 Graph-Theoretic Decompositions

Decomposition of large scale systems and their associated problems is often desirable for computational
reasons. In such cases, decentralization or any other structural constraints on the controllers, estimators,
or the design process itself, is preferred rather than necessary. Depending on the particular problem in
hand, one may be interested in obtaining lower block triangular (LBT) decompositions, input and/or
output reachable acyclic decompositions, ε-decompositions, overlapping decompositions, etc. [30]. In
all of these decomposition schemes, the problem is to find a suitable partitioning and reordering of the
input, state, or output variables so that the resulting decomposed system has some desirable structural
properties. As expected, the system graph plays the key role, with graph-theory providing the tools.

26.8.1 LBT Decompositions

LBT decompositions are used to reorder the states of system S in Equation 26.6, so that the subsystems
have a hierarchical interconnection pattern as

S : ẋi =
i∑

j=1

Aijxj +Biu, i ∈N ,

y =
∑
i∈N

Cixi . (26.95)
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Such a decomposition corresponds to transforming the A matrix into a Lower Block–Triangular form
by symmetric row and column permutations (hence the name LBT decomposition). In terms of system
graph, LBT decomposition is the almost trivial problem of identifying the strong components of the
truncated digraph Dx = (X , Ex), where Ex ⊂ E contains only the edges connecting state vertices.

LBT decompositions offer computational simplification in the standard state feedback or observer
design problems. For example, the problem of designing a state feedback

u=−Kx =−
∑
i∈N

Kixi (26.96)

for arbitrary pole placement, can be reduced to computation of the individual blocks Ki of K in a recursive
scheme involving the subsystems only.

26.8.2 Acyclic IO Reachable Decompositions

In acyclic input–output (IO) reachable decompositions, the purpose is to decompose S into the form

S : ẋi =
i∑

j=1

Aijxj +
i∑

j=1

Bijuj,

yi =
i∑

j=1

Cijxj, i ∈N .

(26.97)

That is, in addition to the A matrix, the B and C matrices must have LBT structure. In addition to the
desired structure of the system matrices, it is also necessary that the decoupled subsystems represented by
(Aii , Bii , Cii) are at least structurally controllable and observable, and that none is further decomposable.

Because the LBT structure is concerned with the reachability properties of the system, both this struc-
ture and input and/or output reachability requirements for the subsystems, which are necessary for
structural controllability and/or observability, can be taken care of by a suitable decomposition scheme
based on binary operations on the reachability matrix of the system digraph. The requirement that the
subsystems be dilation free, which is the second condition for structural controllability and/or observabil-
ity, is of a different nature, however, and should be checked separately after the input–output reachability
decomposition has been obtained.

When outputs are of no concern, it is easy to identify all possible acyclic, irreducible, input reachable
decompositions of a given system. If some of the resulting decoupled subsystems turn out to contain
dilations (destroying structural controllability), then they can suitably be combined with one or more
subsystems at a higher level of hierarchy to eliminate the dilations without destroying the LBT structure.
Provided that the overall system is structurally controllable, this process eventually gives an acyclic,
irreducible decomposition in which all subsystems are structurally controllable. Of course, dual statements
are valid for acyclic output reachable decompositions.

Once an acyclic decomposition into controllable subsystems is obtained, many design problems can be
decomposed accordingly. An obvious example is the state feedback structure in Equation 26.96. A more
complicated problem is the suboptimal state feedback design discussed in the section on optimization.
For the system in Equation 26.97, the test matrix F(μ), with the inclusion of the input coupling terms Bij,
becomes

F(MD)= FD(MD)+ FC(MD)+ FT
C (MD), (26.98)

where MD = diag{μ1,μ2, . . . ,μN }, allowing differentμi ’s for Si ’s, FD(MD)= [(1−μ−1
i )(Qi +KT

i RiKi)],
and FC(MD)= [Fij(μi)] with

Fij(μi)=
{
μ−1

i Pi(Aij −BijKj), i > j
0, i ≤ j.

(26.99)
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From the structure of F(MD) it is clear that the choice μi = εN+1−i , i ∈N , results in a negative definite
F(MD) for sufficiently small ε. This guarantees existence of a suboptimal state feedback control law with
the degree of suboptimality μ= εN . In practice, it is possible to achieve a much better μ by a careful
choice of the weight matrices Qi and Ri .

In a similar way, acyclic, structurally observable decompositions can be used to design suboptimal
state estimators, which are discussed below in the context of sequential optimization for acyclic IO
decompositions.

To illustrate the use of acyclic IO decompositions in a standard LQG optimization problem, it suffices
to consider decomposition of a discrete-time system into only two subsystems as

S1 : x1(t+ 1)= A11x1(t)+B11u1(t)+w1(t),

y1(t)= C11x1(t)+ v1(t),

S2 : x2(t+ 1)= A21x1(t)+A22x2(t)+B21u1(t)+B22u2(t)+w2(t),

y2(t)= C21x1(t)+C22x2(t)+ v2(t),

(26.100)

with the usual assumptions on the input and measurement noises ωi and vi , i = 1, 2. Let each subsystem
be associated with a performance criterion

EJi = E

{
lim

T→∞T−1
T−1∑
t=0

[
xT

i (t)Qixi(t)+ uT
i (t)Riui(t)

]}
, i = 1, 2 (26.101)

where E denotes expectation.
The sequential optimization procedure consists of minimizing EJ1 and EJ2 subject to the dynamic

equations for the systems S1 and (S1, S2), respectively. The first problem has the standard solution
u∗1(t)=−K1x̂1(t), where K1 is the optimal control gain found from the solution of the associated Riccati
equation, and x̂1(t) is the best estimate of x1(t) given the output information Y t−1

1 = {y1(0), . . . , y1(t− 1)}.
The estimate x̂1(t) is generated by the Kalman filter

x̂1(t+ 1)= A11x̂1(t)+B11u∗1(t)+ L1[y1(t)− c11x̂1(t)] (26.102)

where L1 is the steady-state estimator gain. With the control u∗1 applied to S1, the overall system becomes

S :
⎡
⎣x̂1(t+ 1)

x1(t+ 1)
x2(t+ 1)

⎤
⎦=

⎡
⎣A11−B11K1− L1C11 L1C11 0

−B11K1 A11 0
−B21K1 A21 A22

⎤
⎦
⎡
⎣x̂1(t)

x1(t)
x2(t)

⎤
⎦+

⎡
⎣ 0

0
B22

⎤
⎦ u2(t)+

⎡
⎣L1v1(t)

w1(t)
w2(t)

⎤
⎦

(26.103)

which preserves the LBT structure of the original system. Assuming that both Y t−1
1 and Y t−1

2 =
{y2(0), . . . , y2(t− 1)} are available for constructing the control u∗2 (which is consistent with the idea
of sequential optimization), the problem reduces to minimization of EJ2 subject to (103). An analysis of
the standard solution procedure reveals that the optimal control law can be expressed as

u∗2(t)=−K21x̂1(t)−K22ξ̂(t) (26.104)

where K = [K21 K22] is the optimal control gain, and ξ̂(t) is the optimal estimate of x(t)= [xT
1 (t) xT

2 (t)]T ,
given Y t−1

1 and Y t−1
2 . Furthermore, the 2n1+ n2–dimensional Riccati equation, from which K is con-

structed, can be decomposed into an n2-dimensional Riccati equation involving the parameters of the
second isolated subsystem and a Lyapunov equation corresponding to an n2× 2n1 dimensional matrix.
This results in considerably simplifying the solution of the optimal control gain. However, the Kalman
filter for ξ̂(t) still requires the solution of an (n1+ n2)-dimensional Riccati equation.

Other sequential optimization schemes based on various information structure constraints can be
analyzed similarly; for details, see [30].
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26.8.3 Nested Epsilon Decompositions

Epsilon decomposition of a square matrix M is concerned with transforming M by symmetric row and
column permutations into a form

PT MP =MD+ εMC (26.105)

where MD is block diagonal, and ε is a prescribed small number [27]. The problem is equivalent to
identifying the connected components of a subgraph Dε of the digraph D associated with M, which is
obtained by deleting all edges of D corresponding to those elements of M with magnitude smaller than ε.
All of the vertices of a connected component of Dε1 appear in the same connected component of Dε2 for
any ε2 < e1. Thus one can identify a number of distinct values ε1 > ε2 > · · ·> εK such that

PT MP = (. . . ((M0+ ε1M1)+ ε2M2)+ · · ·+ εK MK ), (26.106)

which is a nested epsilon decomposition of M as illustrated in Figure 26.3.
As seen from the figure, a large ε results in a finer decomposition than a small ε does. Thus the

choice of ε provides a compromise between the size and the number of components and the strength
of the interconnections among them. A nice property of nested epsilon decompositions is that once the
decomposition corresponding to some εk is obtained, the decomposition corresponding to εk+1 can be
found by working with a smaller digraph obtained by condensing Dεk with respect to its components.

An immediate application of the nested epsilon decompositions is the stability analysis of a large scale
system via vector Lyapunov functions, where the matrix M is identified with the matrix A of the system
in Equation 26.6. Provided the subsystems resulting from the decomposition are stable, the stability of
the overall system can easily be established by means of the aggregate matrix W in Equation 26.49, whose
off-diagonal elements are of the order of ε.

The nested epsilon decomposition algorithm can also be applied with some modifications to decompose
a system with inputs as

ẋi = Aiixi +Biiui + ε
N∑

j �=i

(Aijxj +Bijuj), i ∈N . (26.107)

If each decoupled subsystem identified by a pair (Aii , Bii) is stabilized by a local state feedback of the form
ui =−Kixi , i ∈N , with the local gains not excessively high, then the closed-loop system preserves the

M =

∋

k

∋

k

∋

k

∋

k

∋

k+1

∋

k+1

FIGURE 26.3 Nested epsilon decompositions.
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weak-coupling property of the open-loop system, providing an easy way to stabilize the overall system.
The same idea can also be employed in designing decentralized estimators [30] based on a suitable epsilon
decomposition of the pair (A, C).

26.8.4 Overlapping Decompositions

Consider a system

S̃ : ˙̃x(t)= Ãx̃(t) (26.108)

with an ñ-dimensional state vector x̃. Let columns of the matrix V ∈ R
ñ×n form a basis for an n-

dimensional A-invariant subspace of R
ñ, and let A be the restriction of Ã to ImV 2 R

n, that is, ÃV = VA.
Then the smaller order system

S : ẋ(t)= Ax(t) (26.109)

is called a restriction of S̃. Conversely, starting with the system S, one can obtain an expansion S̃ of S
by defining Ã= VAV L+M, where V L is any left inverse of V , and M is any complementary matrix
satisfying MV = 0. The very definition of a restriction implies that S is stable if S̃ is.

In many problems associated with large scale systems, it may be desirable to expand a system S to a
larger dimensional one which possess some nice structural properties. The increase in dimensionality of
the problem may very well be offset by the nice structure of the expansion. As an example, consider a
system S with

A=
⎡
⎣ A11 A12 εA13

εA21 A22 εA23

εA31 A32 A33

⎤
⎦ (26.110)

where ε is a small parameter. Letting

V =

⎡
⎢⎢⎣

I1 0 0
0 I2 0
0 I2 0
0 0 I3

⎤
⎥⎥⎦ (26.111)

where Ik denotes an identity matrix of order nk , one obtains an expansion S̃ with

Ã=

⎡
⎢⎢⎣

A11 A12 0 εA13

εA21 A22 0 εA23

εA21 0 A22 εA23

εA31 0 A32 A33

⎤
⎥⎥⎦ . (26.112)

Since S̃ has an obvious decomposition into two weakly coupled subsystems, one can take advantage of
this structural property in stability analysis, which is not available for the original system S.

One can easily notice from the structure of V in Equation 26.114 that the expansion S̃ of S is obtained
simply by repeating the equation for the middle part x2 of the state vector x = [xT

1 xT
2 xT

3 ]T . In some
sense, x2 is treated as common to two overlapping components x̃1 = [xT

1 xT
2 ]T and x̃2 = [xT

2 xT
3 ]T of x.

Thus the partitioning of the A matrix in Equation 26.113 is termed the overlapping decomposition.
Although the expansion matrix V can be any matrix with full column rank, if it is restricted to contain

one and only one unity element in each row (which corresponds, as in the case above, to repeating
some of the state equations in the expanded domain), then one can develop a suitable graph-theoretic
algorithm to find the smallest expansion which has a disjoint decomposition (into decoupled or ε-coupled
components) with the property that no component is further decomposable.
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The idea of overlapping decompositions via expansions can be extended to systems with inputs. A
system

S̃ : ˙̃x(t)= Ãx̃(t)+ B̃u(t) (26.113)

is said to be an expansion of
S : ẋ(t)= Ax(t)+Bu(t) (26.114)

if B̃= VB in addition to ÃV = VA. Consider the optimal control problems of minimizing the perfor-
mance criteria

J =
∫ ∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)] dt

J̃ =
∫ ∞

0
[x̃T (t)Q̃x̃(t)+ uT (t)Ru(t)] dt

(26.115)

associated with S and S̃. The optimal solutions are

u(t)=−Kx(t), and u(t)=−K̃ x̃(t), (26.116)

respectively, resulting in closed-loop systems

Ŝ : ẋ(t)= (A−BK)x(t),

ˆ̃S : ˙̃x(t)= (Ã− B̃K̃)x̃(t).
(26.117)

Thus, Ŝ is a restriction of ˆ̃S if (Ã− B̃K̃)V = V (A−BK), or equivalently, if K̃ = KV . The last condition
is satisfied if Q̃ and Q are related as Q = V T Q̃V , in which case the optimal cost matrices are also related
as P = V T P̃V . This analysis shows that, if the cost matrices Q̃ and R of the expanded system are chosen
to be block diagonal with diagonal blocks associated with the decoupled expanded subsystems, then its
optimal (in case of complete decoupling) or suboptimal (in case of weak decoupling) solution can be
contracted back to an optimal or suboptimal solution of the original system with respect to a suitably
chosen performance criterion.
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Further Reading

There is a number of survey papers on decentralized control and large scale systems [3,14,24]. The
books on the subject are [10,15,19,29,31]. For a comprehensive treatment of decentralized control theory,
methods, and applications, with a large number of references, see [30].

For further information on vector Lyapunov functions and stability analysis of large scale intercon-
nected systems, see the survey papers [22,33], and books [16,17].

Adaptive decentralized control has been of widespread recent interest, see [2,9,21,23,28,30,36].
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Robustness of decentralized control to both structured and unstructured perturbations has been one of
the central issues in the control of large scale systems. For the background of robustness issues in control,
which are relevant to decentralized control, see [18,30]. For new and interesting results on the subject,
see [4–6,8].

There is a number of papers devoted to design of decentralized control via parameter space optimiza-
tion, which rely on powerful convex optimization methods. For recent results and references, see [11].

Overlapping decentralized control and the inclusion principle are surveyed in [30]. Useful extensions
were presented in [13]. The concept of overlapping is basic to reliable control under controller failures
using multiple decentralized controllers [30]. For more information about this area, see [7,12,32,35].

In a recent development [25], it has been shown how optimal decentralized control of large scale inter-
connected systems can be obtained in the classical optimization framework of Lagrange. Both sufficient
and necessary conditions for optimality are derived in the context of Hamilton–Jacobi equations and
Pontryagin’s maximum principle.
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27.1 Introduction

Multi-input/multi-output systems are usually difficult for human operators to control directly, since
changing any one input generally affects many, if not all, outputs of the system. As an example, consider
the vertical landing of a vertical take off and landing jet or of a lunar landing rocket. Moving to a desired
landing point to the side of the current position requires tilting the thrust vector to the side; but this
reduces the vertical thrust component, which was balancing the weight of the craft. The aircraft therefore
starts to descend, which is not desired. To move to the side at a constant height thus requires smooth,
simultaneous use of both attitude control and throttle. It would be simpler for the pilot if a single control
existed to do this maneuver; hence the interest in control methods that make the original system behave in
a way that is easier to control manually. One example of such technique is when a compensator is sought
that makes the compensated system diagonally dominant. If this can be achieved, it is then possible to
regard the system as, to first order, a set of independent single-input/single-output systems, which is far
easier to control than the original plant. Another approach is that of decoupling, where the system transfer
matrix is made to be exactly diagonal. Each output variable is therefore affected by only one input signal,
and each input/output pair can then be controlled by an easier-to-design single-input/single-output
controller or manually by a human operator.

This chapter studies the problem of making the transfer function matrix of the system diagonal using
feedback control and, in particular, state feedback, state feedback with dynamic precompensation, and
constant output feedback control laws. This problem is referred to as the dynamical decoupling problem,
as it leads to a compensated system where the input actions are decoupled; it is also called a noninteracting
control problem for similar reasons. Stability is an important issue and it also is examined here. Conditions
for decoupling with stability and algorithms to determine such control laws are described. The problems
of block diagonal or triangular decoupling are also addressed. They are of interest when full diagonal
decoupling using a particular form of feedback control, typically state feedback, is not possible. Note
that the approach taken in this chapter follows the development in [14]. Static decoupling is also briefly
discussed; references for approximate diagonal decoupling are provided in “Further Reading.”

27-1
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27.1.1 Diagonal Decoupling

Diagonal decoupling of a system with equal numbers of inputs and outputs is the most straightforward
type of problem in the field of noninteracting control. The goal is to apply some form of control law to
the system so as to make the ith output of the closed-loop system independent of all but the ith closed-
loop input signal. Each output can then be controlled by a dedicated simpler single-input/single-output
controller, or by a human operator. The main questions to be answered when investigating diagonal
decoupling of a given system are

• Can it be decoupled at all?
• If so, what form of controller is required to achieve this?

Three classes of controllers that are customarily considered are

1. Constant output feedback u=Hy+Gr, where the output y of the system is simply multiplied by
a constant gain matrix H and this is fed back as the control signal u, with r the new external input
to the system and G a constant gain matrix

2. Linear state feedback u= Fx+Gr, where the control signal consists of a constant matrix F multi-
plying the internal state variable vector x of the system

3. State feedback plus precompensation, where a feedforward dynamic control system is added to
the state feedback controller

Note that the compensator in class 3 corresponds to dynamic output feedback, where the input and output
signal vectors r and y are multiplied by dynamic transfer function gain matrices rather than constant ones.

The problem of diagonally decoupling a square system was the first decoupling question to be studied,
and it can be answered in a fairly straightforward fashion. First of all, diagonal decoupling by state feedback
plus precompensation, or by dynamic output feedback, amounts to finding a transfer matrix that, when
the open-loop transfer matrix is multiplied by it, produces a diagonal closed-loop transfer matrix. This
problem is therefore closely related to the problem of finding an inverse for the open-loop plant. As a
result of this, any square plant that has a full rank transfer matrix can be diagonally decoupled by this
type of control. This result was proved by Rekasius [10]. A system that does not satisfy this condition
does not have linearly independent outputs, so it follows that it is impossible to decouple by any form
of controller. It is of great practical interest to establish whether a given plant can actually be decoupled
by a simpler type of controller than this. Falb and Wolovich [3] established the necessary and sufficient
condition under which diagonal decoupling by state feedback alone is possible. This condition, which
can be easily tested from either a state-space or a transfer matrix model of the plant, can be expressed as
follows.

A square system can be diagonalized by state feedback alone if and only if the constant matrix B� is
nonsingular, where this matrix is defined below first from the state-space and then from the transfer
matrix description of the system.

State-space representation. Let the given system be ẋ = Ax+Bu, y = Cx+Du in the continuous-time
case, or x(k+ 1)= Ax(k)+Bu(k), y(k)= Cx(k)+Du(k) in the discrete-time case; let A, B, C, D be n× n,
n× p, p× n, p× p real matrices, respectively; and assume for simplicity that the system is controllable and
observable. Then the p× p matrix B� is constructed as follows: If the ith row of the direct feedthrough
matrix D is nonzero, this becomes the ith row of the constant matrix B�. Otherwise, find the lowest
integer, fi , for which the ith row of CAfi−1B is nonzero. This then becomes the ith row of the constant
matrix B�.

Transfer matrix representation. Let T(s), with s the Laplace transform variable, be the p× p transfer
function matrix of the continuous-time system; or T(z), with z the Z-transform variable, be the transfer
function matrix of the discrete-time system. Let D(s) [or D(z)] be the diagonal matrix D(s)= diag(sfi )
where the nonnegative integers {fi} are so that all rows of lims→∞ D(s)T(s) are constant and nonzero.
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This limit matrix is B�; that is,
lim

s→∞D(s)T(s)= B� (27.1)

The integers {fi} are known as the decoupling indices of the system. They can be determined from either
the state-space or the transfer function descriptions as described above; note that fi = 0 corresponds to
the ith row of D being nonzero. In either case, of course, the resulting matrix B� is the same. It should
be noted that systems will generically satisfy the decoupling condition; that is, if all entries of the A, B, C
(and D) matrices are chosen at random, the resulting B� will have full rank. Diagonal decoupling by state
feedback is therefore likely to be feasible for a wide variety of systems.

Example 27.1:

A=
⎛
⎝ 0 1 0

0 0 1
−6 −11 −6

⎞
⎠ , B =

⎛
⎝ 0 0

0 0
−1 2

⎞
⎠ , C =

(
3 6 1
2 0 0

)
, D =

(
0 0
0 0

)

This gives f1 = 1, f2 = 3, and B� =
(−1 2
−2 4

)
. This matrix is clearly singular; therefore, the system

cannot be decoupled by state feedback.

Example 27.2:

T (s)=
⎛
⎜⎝

1
s

2
s+ 1

4
s+ 3

8s

s+ 4

⎞
⎟⎠

This gives B� =
(

1 2
0 8

)
, with decoupling indices f1 = 1, f2 = 0. This system can therefore be diago-

nally decoupled by state feedback.

Example 27.3:

T (s)=
⎛
⎜⎝

1
s

2
s+ 1

4
s+ 3

8
s+ 4

⎞
⎟⎠

The same as previously, but with the (2, 2) entry divided by s. We now obtain B� =
(

1 2
4 8

)
, with

decoupling indices f1 = 1, f2 = 1. B� is now singular, so this system cannot be diagonally decoupled
by state feedback alone.

27.1.2 Diagonal Decoupling with Internal Stability

A question of great practical interest is whether the closed-loop system that is obtained after decoupling
can be made stable. It can be shown constructively (for instance, by use of the algorithm given below)
that all of the poles that are evident from the diagonal closed-loop transfer matrix can be assigned any
desired values. The question therefore becomes: Can the closed-loop system be made internally stable,
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where there are no “hidden” cancellations between unstable poles and zeros? Such unstable modes are
particularly dangerous in practice, as they will not be revealed by an examination of the transfer matrix.
However, the hidden unstable state behavior they represent will very likely cause problems, such as
burnout of internal electronic components of the system. It was shown by Gilbert [5] that a given plant
may indeed have hidden fixed modes when it is diagonally decoupled by state feedback, with or without
precompensation. Wolovich and Falb [15] then showed that these modes are the same for both cases;
furthermore, they are a subset of the transmission zeros of the plant. In fact, they are those transmission
zeros zi that do not make any of the rows of the transfer matrix T(s) equal to zero when evaluating T(zi);
they are called diagonal coupling zeros. Thus, any plant with square, full-rank transfer matrix for which all
the diagonal coupling zeros are in the left half-plane can be diagonally decoupled with internal stability
by state feedback plus precompensation; or by state feedback alone if B� is nonsingular. Therefore, there
will never be any problems with internal stability when decoupling a minimum-phase system, as all of its
transmission zeros are in the left half-plane.

An algorithm to diagonally decouple a system, when B� has full rank, using state feedback is now
presented. This algorithm is based on a procedure to obtain a stable inverse of a system that is described
below. This procedure is applied to the system D(s)T(s)= T̂(s), where D(s)= diag(s fi ) as in Equation 27.1,
that can be shown to have a state-space realization {A, B, Ĉ, D̂}. In fact D̂ = B�, which is assumed to have
full rank p; and this implies that a proper right inverse of the system T̂(s) exists. Here it is assumed that
the system has the same number of inputs and outputs, and this simplifies the selection of F, G as in this
case they are unique; see the algorithm for the inverse below for the nonsquare case. In particular, if the
state feedback u= Fx+Gr with

F =−(B�)−1Ĉ, G = (B�)−1 (27.2)

is applied to the system ẋ = Ax+Bu, y = Ĉx+B�u, then it can be shown that T̂F,G(s)= D(s)TF,G(s)= Ip.
This implies that if the state feedback u= Fx+Gr with F, G as in Equation 27.2 is applied to the given
system ẋ = Ax+Bu, y = Cx+Du with transfer matrix T(s), then

TF,G(s)= D−1(s) (27.3)

which is diagonal with entries s−fi . Note that here the state feedback matrix F assigns all the n closed-
loop eigenvalues at the locations of the n zeros of T̂(s); that is, at the zeros of T(s) and of D(s). The
closed-loop eigenvectors are also appropriately assigned so the eigenvalues cancel all the zeros to give
D(s)TF,G(s)= Ip. This explains the control mechanism at work here and also makes quite apparent the
changes necessary to ensure internal stability. Simply instead of D(s) use D̂(s)= diag{pi(s)} with pi(s)
stable polynomials of degree s fi ; that is, pi(s)= s fi + lower-degree terms. Then it can be shown that
lims→∞ D̂(s)T(s)= B� and that {A, B, C̃, B�} is a realization of D̂(s)T(s)= T̃(s). State feedback with

F =−(B�)−1C̃, G = (B�)−1 (27.4)

gives

TF,G(s)= D̂−1(s)= diag{p−1
i (s)} (27.5)

which is stable. Note that in this case the closed-loop eigenvalues are at the assumed stable zeros of T(s)
and at the selected stable zeros of the polynomials pi(s), i = 1, . . . , p.
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Example 27.4:

Let T (s)=
⎛
⎜⎝

s+ 1

s2 0

1
s(s− 1)

−1
s− 1

⎞
⎟⎠ .

Here

lim
s→∞D(s)T (s)= lim

s→∞ diag(s, s)T (s)=
(

1 0
0 −1

)
= B�.

Since B� has full rank, the system can be decoupled using state feedback u= Fx+Gr. The system
has one transmission zero at −1 and there are no diagonal coupling zeros, so it can be decoupled

with internal stability. Let D̂(s)=
(

s+ 1 0
0 s+ 2

)
. A minimal (controllable and observable) realization

of T̃ (s)= D̂(s)T (s) is {A, B, C̃ , B�}where

A=
⎛
⎝ 0 1 0

0 0 0
−1 0 1

⎞
⎠ , B =

⎛
⎝0 0

1 0
0 1

⎞
⎠ , C̃ =

(
1 2 0
3 1 −3

)
.

In view now of Equations 27.4 and 27.5, for

F =−(B�)−1C̃ =
(−1 −2 0

3 1 −3

)

and

G = (B�)−1 =
(

1 0
0 −1

)
,

TF ,G(s)= D̂(s)−1 =
⎛
⎜⎝

1
s+ 1

0

0
1

s+ 2

⎞
⎟⎠ .

The closed-loop eigenvalues are in this case located at the transmission zero of the plant at−1 and
at the selected locations −1 and −2, the poles of D̂(s)−1. Note that it is not necessary to cancel the
transmission zero at−1 in order to decouple the system since it is not a coupling zero; it could appear
as a zero in the decoupled system instead. To illustrate this, consider Example 27.5 where T (s) is the
same except that the zero is now unstable at +1.

Example 27.5:

Let T (s)=
⎛
⎜⎝

s− 1

s2 0

1
s(s− 1)

−1
s− 1

⎞
⎟⎠where again

lim
s→∞D(s)T (s)= lim

s→∞ diag(s, s)T (s)=
(

1 0
0 −1

)
= B�.

Since B� has full rank, the system can be decoupled using state feedback. Since there are no diagonal

coupling zeros, the system can be decoupled with internal stability. Write T (s)=
(

s− 1 0
0 1

)
TN (s)
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and apply the algorithm to diagonally decouple TN (s). Now DN (s)=
(

s2 0
0 s

)
and take

D̂N (s)=
(

(s+ 2)(s+ 3) 0
0 s+ 1

)
.

A minimal (controllable and observable) realization of T̃N (s)= D̂N (s)TN (s) is {A, B, C̃N , B�
N}where

A=
⎛
⎝ 0 1 0

0 0 0
−1 0 1

⎞
⎠ , B =

⎛
⎝0 0

1 0
0 1

⎞
⎠ , C̃N =

(
6 5 0;
2 1 −2

)

and

B�
N =

(
1 0
0 −1

)
= B�.

In view now of Equations 27.4 and 27.5, for F =−(B�)−1C̃N =
(−6 −5 0

2 1 −2

)
and

G = (B�
N )−1 =

(
1 0
0 −1

)
,

(TN )F ,G(s)= D̂N (s)−1 =
⎛
⎜⎝

1
(s+ 2)(s+ 3)

0

0
1

s+ 1

⎞
⎟⎠ .

If now this state feeback is applied to the minimal realization {A, B, C} of T (s)—note that A, B are the

same as above—then TF ,G(s)=
(

s− 1 0
0 1

)
D̂−1

N =
⎛
⎜⎝

s− 1
(s+ 2)(s+ 3)

0

0
1

s+ 1

⎞
⎟⎠ . Note that the unstable

noncoupling transmission zero at +1 appears on the diagonal of the compensated system; the
closed-loop eigenvalues are at the arbitrarily chosen stable locations−1,−2 and−3.

Algorithm to Obtain a Proper Stable Right Inverse Using State Feedback

Let ẋ = Ax+Bu, y = Cx+Du with A, B, C, D n× n, n×m, p× n, p×m real matrices, respectively, and
assume that the system is controllable and observable. Let T(s) be its transfer function matrix. It is known
that there exists a proper right inverse TR(s), such that T(s)TR(s)= Ip, if and only if rankD = p. If, in
addition, all the zeros of T(s) (that is, the transmission zeros of the system) are stable, then a stable right
inverse of order n can be constructed with k(< n) of its poles equal to the k stable zeros of T(s) with the
remaining n− k poles arbitrarily assignable. This can be accomplished as follows:

Let Teq = F[sI − (A+BF)]−1BG+G where F, G are n×m, m× p, respectively, and note that

T(s)Teq(s)= [C(sI −A)−1B+D][F[sI − (A+BF)]−1BG+G]
= (C+DF)[sI − (A+BF)]−1BG+DG = TF,G(s)

(27.6)

which is the transfer matrix one obtains when the state feedback control law u= Fx+Gr is applied to
the given system. Note that the second line of Equation 27.6 results from application of a well-known
formula for the matrix inverse. If now F, G are such that

C+DF = 0, DG = Ip (27.7)

then TF,G(s)= Ip and Teq is a proper right inverse TR(s). The additional freedom in the choice of F when
p < m is now used to derive a stable inverse; when p=m, F, G are uniquely determined from F =−D−1C,
G = D−1.
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If the nonsingular m×m matrix M is such that DM = (Ip 0
)
, then C+DF = C+DMM−1F = C+

(Ip 0)

(
F̂1

F̂2

)
= 0 from which F =M

(−C
F̂2

)
with F̂2 arbitrary. Also, from DG = DMM−1G = Ip, G =

M

(
Ip

Ĝ2

)
with Ĝ2 arbitrary. The eigenvalues of A+BF = A+BM

(−C
F̂2

)
= A+ (B̂1 B̂2)

(−C
F̂2

)
= A−

B̂1C+ B̂2F̂2 are the poles of TR(s). It can be shown that the uncontrollable eigenvalues of (A− B̂1C B̂2)
are exactly the (k) zeros of the system; they cannot be changed via F̂2. The remaining n− k controllable
eigenvalues can be arbitrarily assigned using F̂2. In summary, the steps to derive a stable proper inverse
are

Step 1. Find nonsingular m×m matrix M such that DM = (Ip 0).
Step 2. Calculate (B̂1 B̂2)= BM, and A− B̂1C.
Step 3. Find F̂2 that assigns the controllable eigenvalues of (A− B̂1C B̂2) to the desired locations. The

remaining uncontrollable eigenvalues are the stable zeros of the system.
Step 4.

{
A+BM

(−C
F̂2

)
, BM

(
Ip

Ĝ2

)
, M

(−C
F̂2

)
, M

(
Ip

Ĝ2

)}
(27.8)

where Ĝ2, a (m− p)× p arbitrary real matrix, is a stable right inverse.

Teq(s) above is the open-loop equivalent to the state feedback control law. In view of Equations 27.6 and
27.7 the above algorithm selects F, G in a state feedback control law u= Fx+Gr so that the closed-loop
transfer matrix TF,G(s)= Ip and the closed-loop system is internally stable; that is, all the n eigenvalues
of A+BF are stable. Note that when p=m, then F, G are uniquely given by F =−D−1C, G = D−1; the
eigenvalues of A+BF are then the n zeros of the system. In this development of stable inverses via state
feedback, the approach in [1] was taken; see also [7,12].

In order to implement decoupling by state feedback in practice, it is often necessary to estimate the
internal state variables by means of an observer. Certain plants can be decoupled by constant output
feedback, avoiding the need for an observer. The necessary and sufficient conditions under which this is
possible were proved by Wolovich [18]: it is that B� not only be nonsingular, but also that the modified
inverse transfer matrix B�T−1(s) have only constant off-diagonal elements. This appears to be a very
stringent condition, so diagonal decoupling by means of constant output feedback is not likely to be
possible for any but a relatively small class of plants. This is in clear contrast with the state feedback case,
as mentioned previously. If diagonal decoupling by output feedback is possible, any gain matrix H that
achieves it must give all off-diagonal entries of B�H equal to those of B�T−1(s). It can therefore be seen
that any constant matrix of the form (B�)−1Z can be added to H , where Z is an arbitrary diagonal matrix,
and still give a gain matrix that satisfies the required condition. There is thus a small amount of controller
design freedom available, which can be used, for instance, to assign closed-loop poles to some extent.
However, it does not appear possible to quantify this pole-placement freedom in any straightforward
manner.

27.1.3 Block Decoupling

If diagonal decoupling by linear state feedback is not possible, an alternative to applying precompensation
may still exist. It may be possible to use state feedback, or perhaps even output feedback, to reduce the
system to a set of smaller subsystems that are independent; that is, decoupled. Controlling each of these
small systems can then be performed in isolation from all the others, thus reducing the original plant
control problem to several simpler ones. This is the idea behind block decoupling, where the goal is to
transform the plant transfer matrix to one that is block diagonal rather than strictly diagonal. For square
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plants, each of these k diagonal blocks will also be square: the ith will be taken to have pi inputs and pi

outputs, with
∑

pi = p.
One question associated with block decoupling can be answered immediately: namely, any plant with

nonsingular transfer matrix can be block decoupled by linear state feedback plus precompensation. This
follows from the fact that any such system can be diagonally decoupled by this form of compensation
and so is trivially of any desired block diagonal form. The two types of compensation that have to be
addressed here are therefore state feedback and constant output feedback.

If we are interested in block decoupling a given system by state feedback, this implies that it was not
fully diagonalizable by state feedback. Hence, the matrix B� must have been singular. As the inverse of
this matrix played a significant role in the development of diagonal decoupling compensators, it seems
likely that overcoming this singularity may lead toward designing block decoupling compensators for
systems that cannot be diagonalized by state feedback. An equivalent way of stating that B� is singular is
to note that, although all rows of lims→∞ D(s)T(s) are certainly finite and nonzero, some of these rows
must have been linearly dependent on the preceding ones. Suppose the ith row is one such. It is then
possible to add multiples of rows 1, . . . , i− 1 to row i in order to zero out the ith row in B�; that is, to make
what had been the leading coefficient vector of this row of D(s)T(s) zero. If the new leading term in this
row is now of order s−k , multiplying the row by sk yields a new finite and nonzero limit as s goes to infinity.
If this row vector is independent of the preceding ones, we have now increased the rank of the modified
B�-like matrix; if not, the same process can be repeated until successful. This basic procedure leads to the
following definition, which has proved to be very useful for studying block decoupling problems.

The interactor XT (s) of T(s) is the unique polynomial matrix of the form XT (s)=H(s)Δ(s), where

Δ(s)= diag(sf̂i ) and H(s) is a lower triangular polynomial matrix with 1s on the diagonal and the nonzero
off-diagonal elements divisible by s, for which

lim
s→∞XT (s)T(s)= KT (27.9)

is finite and full rank. The interactor can be found from the transfer matrix of the system [16]; from a
state-space representation [4]; or from a polynomial matrix fraction description for it [13]. The basic
procedure can be illustrated by applying it to two examples discussed previously.

Example 27.6:

T (s)=
⎛
⎜⎝

1
s

2
s+ 1

4
s+ 3

8s

s+ 4

⎞
⎟⎠ .

This gives B� =
(

1 2
0 8

)
, with decoupling indices f1 = 1, f2 = 0. B� is nonsingular, so it satisfies

the definition of the desired matrix KT . Thus, KT = B� =
(

1 2
0 8

)
here, and XT (s)= diag(sf1 , sf2 )=(

s 0
0 1

)
.

Example 27.7:

T (s)=
⎛
⎜⎝

1
s

2
s+ 1

4
s+ 3

8
s+ 4

⎞
⎟⎠
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B� =
(

1 2
4 8

)
, which is singular, with decoupling indices f1 = 1, f2 = 1. Subtracting 4 times row 1 of

diag(sfi )T (s) from row 2 eliminates the linearly dependent leading coefficient vector. The resulting
lower-degree polynomial row vector can then be multiplied by s, so as to again obtain a finite limit
as s goes to infinity. We then have

T̂1(s)=
(

1 0
0 s

)(
1 0
−4 1

)(
s 0
0 s

)

T (s)=

⎛
⎜⎜⎝

1
2s

s+ 1
−12s

s+ 3
−24s2

(s+ 1)(s+ 4)

⎞
⎟⎟⎠ .

Unfortunately, T̂1(s) has limit as s goes to infinity of

(
1 2
−12 −24

)
,

which is still singular. We therefore have to repeat the procedure, this time adding 12 times row 1 to
row 2 to eliminate the leading coefficients and multiplying the resulting row by s to give it a finite

limit. We then obtain
(

1 0
0 s

)(
1 0

12 1

)
T̂1(s)=

⎛
⎜⎝

1
2s

s+ 1
36s

s+ 3
96s2

(s+ 1)(s+ 4)

⎞
⎟⎠ , which has limit as s goes

to infinity of
(

1 2
36 96

)
. This is clearly nonsingular, so KT =

(
1 2

36 96

)
for this system. The interactor

is then

XT (s)=
(

1 0
0 s

)(
1 0

12 1

)(
1 0
0 s

)(
1 0
−4 1

)(
s 0
0 s

)

=
(

s 0
−4s3+ 12s2 s3

)

=
(

1 0
−4s2+ 12s 1

)(
s 0
0 s3

)

which is of the desired form H(s)Δ(s).

It can be seen that, if B� is nonsingular, no additional row operations are needed to modify it to give
the nonsingular KT . Thus, in this case B� = KT and D(s)= XT (s). But we already know that diagonal
decoupling by state feedback is possible in this case; that is, diagonalization by state feedback is possible
if and only if the interactor of the system is diagonal. This suggests the following general result.

A square system can be block decoupled by state feedback if and only if its interactor is of this same block
diagonal structure.

A proof of this result is based on the fact that state feedback matrices F, G can always be found that
make the closed-loop transfer matrix equal to the inverse of its interactor; see the algorithms discussed
previously and [2,6]. Thus, if this matrix is block diagonal, so is the closed-loop transfer matrix. The state
feedback that achieves this form can be found in an analogous manner to the state feedback matrices
determined above that diagonally decouple the system.

Note that the structure algorithm of Silverman [11] is quite closely related to the interactor. This method
determines a polynomial matrix X(s) such that lims→∞ X(s)T(s) is finite and nonsingular; however, X(s)
is not of any particular structure, unlike the interactor. This makes XT (s) better suited to obtaining clear
block decoupling results.
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Another question that generalizes naturally from the diagonal case is that of stability. The only fixed
modes when diagonalizing were the diagonal coupling zeros, which were all zeros of the original plant
that were not also zeros of any of the rows of the plant transfer matrix. In the case of block decoupling, the
only fixed poles are the block coupling zeros, which are all zeros of the plant that are not also zeros of one
of the (pi ×m) row blocks of T(s). As in the diagonal case, these zeros must be cancelled by closed-loop
poles in the decoupled transfer matrix, so creating unobservable modes; all other poles can be assigned
arbitrarily.

Finally, it may be possible to achieve block decoupling by the simpler constant output feedback com-
pensation. It can be shown that the interactor also allows a simple test for this question. In fact, block
decoupling by constant output feedback is possible if and only if the interactor of the system is block
diagonal and the modified inverse system KT T−1(s) has only constant entries outside the diagonal blocks.
The output feedback gain matrix H that achieves block decoupling is such that KT H is equal to the con-
stant term in KT T−1(s) outside the diagonal blocks. This is very similar to the diagonal decoupling result.
As there, a certain degree of flexibility exists in the design of H , due to the fact that the diagonal blocks
of KT T−1(s) are essentially arbitrary; this can be used to provide a small amount of pole assignment
flexibility when decoupling.

27.1.4 Decoupling Nonsquare Systems

The previous development has been primarily for plants with equal numbers of inputs and outputs.
Plants that are not square present additional complications when studying decoupling. For instance, if
there are more outputs than inputs, it is clearly impossible to assign a separate input to control each output
individually; diagonal decoupling in its standard form is therefore not feasible. Similarly, decoupling the
system into several independent square subsystems is also impossible. On the other hand, plants with
more inputs than outputs present the opposite difficulty: there are now more input variables than are
required to control each output individually.

Fortunately, the classical decoupling problem can be generalized in a straightforward fashion to cover
nonsquare plants as well as square ones. In view of the preceding remarks, it is clear that systems with
more outputs than inputs (p > m) must be analyzed separately from those with more inputs than outputs
(p < m). The former case leads to decoupling results that are barely more complicated than those for the
square case; the additional design freedom available in the latter case means that conditions that were
necessary and sufficient for p=m become only sufficient for p < m.

Taking the case of more inputs than outputs (p < m), the following results can be shown to hold for
diagonal decoupling. First, any such plant that is right-invertible (that is, for which the transfer matrix
is of full rank, p) can be decoupled by state feedback plus precompensation; this follows from the close
connections between this type of decoupling control law and finding a right inverse of the system. If we
restrict ourselves to state feedback, two sufficient conditions for diagonal decoupling can be stated. First,
the plant can be diagonalized by state feedback if its matrix B� is of full row rank, p. This is extremely
easy to test, but can be somewhat conservative. A tighter sufficient condition is as follows: The plant can
be diagonalized by state feedback if a constant (m× p) matrix G can be found for which the B� matrix of
the square-modified transfer matrix T(s)G is nonsingular.

It may be thought that these two sufficient conditions are identical. To see that they are not, con-

sider the following simple example: T(s)=
(

1/s 1/s2 1/s
(s+ 2)/s2 1/s2 1/s

)
has B� =

(
1 0 1
1 0 1

)
, which has

only rank 1. The first sufficient condition for diagonal decoupling is therefore violated. However, post-
multiplying T(s) by the matrix

G =
⎛
⎝ 1 0

0 1
−1 0

⎞
⎠
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gives

T(s)G = 1

s2

(
0 1
2 1

)
,

which clearly has nonsingular B� matrix of

(
0 1
2 1

)
. The role of the G matrix is basically to cancel those

higher-power terms in s in T(s) that give rise to linearly dependent rows in B�; in the example, the first
column of G, (1 0 − 1)T , can be seen to be orthogonal to the repeated row vector [1 0 1] in the original
B�. Lower-power terms in T(s) then become the leading terms, so their coefficients contribute to the
new B�; these terms may well be independent of the first ones. An algorithm that goes into the details of
constructing such a G, if it exists, for any right-invertible T(s) is given by Williams [13].

Very similar results apply to the problem of block decoupling a system with more inputs than outputs
(p < m) by means of state feedback. The more conservative sufficient condition states that the plant can
be block decoupled if its interactor matrix has the desired block diagonal structure. This can then be
tightened somewhat by proving that the plant T(s) can be block decoupled if there exists some (m× p)
constant matrix G that has interactor of the desired block diagonal form. Furthermore, the algorithm
described previously for block decoupling of square plants can be applied equally in this case, either to
T(s) or T(s)G. The only distinction of significance between the square case and p < m is that the algorithm
was proved to use decoupling precompensation of lowest possible order in the square case; for nonsquare
plants, minimality of this order cannot be proven.

In the case of plants with more outputs than inputs (p > m), the main complication is in modifying the
definition of a “decoupled” closed-loop structure. Once this is done, the actual technical results are rather
straightforward. As already noted, it is no longer possible to assign a single input to each individual output,
as is required in the classical diagonal decoupling problem. The closest analog to this problem is one where
the closed-loop system is decoupled into a set of m independent single-input/multi-output subsystems;
each closed-loop control input influences a set of outputs, but does not affect any of the others. Similarly,
it is not possible to assign equal numbers of independent inputs and outputs to each decoupled subsystem,
as holds for square block decoupling. What we must do instead is to define decoupled subsystems that
generally have more outputs than inputs; that is, they are of dimensions pi ×mi , where pi ≤mi ; of course,∑

pi = p≤∑mi =m.
It can be shown that a very simple rank condition on the plant transfer matrix determines whether or

not these decoupling problems have a solution. The simplest question to answer is whether the desired
decoupled structure is achievable by means of a combination of state feedback and precompensation. The
test is as follows:

Take the pi rows of the plant transfer function corresponding to the outputs that are to be assigned to
the ith decoupled subsystem. If this pi ×m transfer matrix has rank mi , and this holds for each i, then the
plant can be decoupled into pi ×mi subsystems by means of state feedback plus precompensation.

The significance of this result is easiest to see for the special case where mi = 1 for each i, the closest
analog to diagonal decoupling for systems with p > m. If decoupling is to be possible, we must have that
each pi ×m transfer matrix of the ith subsystem is of rank 1. This implies that the rows of this transfer
matrix are all polynomial multiples of some common factor row vector. In other words, the pi outputs of
this subsystem are all made up of combinations of derivatives of a single “underlying” output variable.
Similarly, decoupling into pi ×mi subsystems is possible if and only if the pi outputs making up the ith
subsystem are actually made up of some combinations of mi “underlying” output variables.

In practice, applying these rank conditions to the plant transfer matrix dictates what block dimensions
are possible as closed-loop block decoupled structure. They also show which outputs must be taken as
members of the same decoupled subsystem. For instance, if we wish to achieve pi × 1 decoupling and
two rows of the plant transfer matrix are linearly dependent, the corresponding outputs must clearly be
placed in the same subsystem.
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But this approach also has one further very important implication. Consider a system that satisfies these
submatrix rank conditions. If we take the mi “underlying” output variables for each of the r subsystems,
write down the corresponding mi ×m transfer matrix, and then concatenate these, we obtain a new
m×m transfer matrix, denoted by Tm(s). It can then be shown (see [13]) that a controller will decouple
T(s) into pi ×mi blocks if and only if it also decouples Tm(s) into square mi ×mi blocks. We can therefore
take all of the decoupling results derived previously for square plants and use them to solve the problem
of decoupling systems with more outputs than inputs. In particular, T(s) can be decoupled into pi ×mi

blocks by state feedback if and only if it satisfies the submatrix rank conditions and the interactor matrix
of Tm(s) is mi ×mi block diagonal. Also, it can be shown that Tm(s) has precisely the same zeros as T(s).
The two systems therefore clearly also have the same coupling zeros, so the fixed poles when decoupling
T(s) are the same as the fixed poles when decoupling Tm(s). Finally, decoupling by means of output
feedback can also be studied by applying the existing results for square systems to the associated Tm(s).

Example 27.8:

The state-space model

A=
⎛
⎝0 0 1

1 0 1
1 1 0

⎞
⎠ , B =

⎛
⎝1 0

1 0
1 1

⎞
⎠ , C = I3

has transfer matrix

T (s)= 1

(s+ 1)(s2− s− 1)

⎛
⎝s(s+ 1) s

(s+ 1)2 s+ 1
(s+ 1)2 s2

⎞
⎠ .

Clearly, the first two rows are linearly dependent, so this system can be decoupled into the block

diagonal form

⎛
⎝� 0

� 0
0 �

⎞
⎠ by state feedback plus precompensation. In fact, the associated invertible

transfer function for this system is

Tm(s)= 1

(s+ 1)(s2− s− 1)

(
s+ 1 1

(s+ 1)2 s2

)
,

which has interactor
(

s2 0
0 s

)
diagonal

[
with KT =

(
1 0
1 1

)]
. Thus, block decoupling is actually

possible for this system using state feedback alone.
As a final point on general block decoupling, note that this problem can also be studied using

the geometric approach; see [19]. This state-space technique is based on considering the supremal
(A, B)-invariant subspaces contained in the kernels of the various subsystems formed by deleting
the outputs corresponding to each desired block in turn. The ranges of these subspaces deter-
mine whether decoupling is possible by state feedback. If it is not, the related “efficient extension”
approach allows a precompensator of relatively low order to be found that will produce the desired
block diagonal structure. This approach is somewhat involved, and the interested reader is referred
to Morse and Wonham [8] for further details.

27.1.5 Triangular Decoupling

There is a form of “partially decoupled” system that can be of particular value for certain plants. This is
the triangularized form, where all entries of the closed-loop transfer matrix above its leading diagonal
are made zero. The first closed-loop output, y1, is therefore affected only by the first input r1; the second,
y2, is influenced only by inputs r1 and r2; etc. This type of transfer matrix can be used in the following
sequential control scheme. First, input r1 is adjusted until output y1 is as desired, and the control is then
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frozen. Output variable y2 is then affected only by r2 and the fixed r1, so r2 can be adjusted until this
output is also as desired. The third input, r3, can then be used to set output y3, etc. This scheme can be
seen to be less powerful than diagonal decoupling, as the outputs must be adjusted sequentially rather
than fully independently. However, it has one strong point in its favor: any right-invertible plant can be
triangularized by state feedback alone, regardless of whether additional precompensation is required to
make it diagonally decoupled. Proof of this follows directly from the fact that there always exists some
state feedback gains F, G for which TF,G(s)= X−1

T (s), and the interactor is, by definition, lower triangular.
Of course, similar results apply for generalized rather than standard interactors also. Therefore, it can
be shown, as originally proved by Morse and Wonham [9], that all closed-loop poles of the triangularly
decoupled system can be arbitrarily assigned.

Finally, it may also be possible to triangularize a system by means of the simpler constant output
feedback. If the original plant is square and strictly proper (D = 0), it can be shown that this is possible if
and only if all entries of the modified inverse transfer matrix KT T−1(s) that lie above the leading diagonal
are constant. This is quite a simple condition to test and is very similar to the test for diagonal decoupling
by output feedback. The required gain matrix H is given from the fact that the upper triangular part of
KT H is precisely the upper triangular constant part of KT T−1(s). It can be noted that there is therefore
some non-uniqueness in the choice of the gain H : in particular, we can add a term of the form K−1

T Z
to H , where Z is any lower triangular constant matrix, and still get a suitable output gain matrix. If it is
possible to triangularize a given system by output feedback, there is consequently some freedom to assign
closed-loop poles also. However, it is difficult to quantify this freedom in any concrete way.

27.1.6 Static Decoupling

Static decoupling, as opposed to dynamic decoupling already described, is much easier to achieve. A
system is statically decoupled if a step change in the (static) steady-state level of the ith input is reflected
by a change in the steady-state level of the ith output and only that output. To derive the conditions for
static decoupling, assume that the system is described by a p× p transfer matrix T(s) that is bounded-
input/bounded-output stable; that is, all of its poles are in the open left half of the s-plane and none is
on the imaginary axis. Note that stability is necessary for the steady-state values of the outputs to be
well defined. Assume now that the p inputs are step functions described by ui(s)= ki

s , i = 1, . . . , p. The
steady-state value of the output vector y, yss, can then be found using the final value theorem, as follows:

yss = lim
s→∞ y(t)= lim

s→0
sT(s)

1

s

⎛
⎜⎜⎜⎝

k1

k2
...

kp

⎞
⎟⎟⎟⎠= T(0)

⎛
⎜⎜⎜⎝

k1

k2
...

kp

⎞
⎟⎟⎟⎠ (27.10)

It is now clear that T(s) is statically decoupled if and only if T(0) is a diagonal nonsingular matrix;
that is, all the off-diagonal entries of T(s) must be divisible by s, while the entries on the diagonal should
not be divisible by s. It can be shown easily that a system described by a p× p transfer matrix T(s) that is
bounded-input/bounded-output stable can be statically decoupled, via u= Gr, if and only if

rank T(0)= p (27.11)

that is, if and only if there is no transmission zero at s = 0. Note that this condition, if a controllable and
observable state-space description is given, is

rank

(
A B
C D

)
= n+ p (27.12)
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If this is the case, any feedforward constant gain G, in u= Gr, such that T(0)G is a diagonal and
nonsingular matrix will statically decouple the system. To illustrate, consider the following example:

Example 27.9:

T (s)=

⎛
⎜⎜⎝

s+ 2
s+ 1

2
s+ 3

s(s+ 1)

(s+ 3)2
1

s+ 1

⎞
⎟⎟⎠

Here T (0)=
(

2 2/3
0 1

)
, which has full rank; therefore, it can be statically decoupled. Let T (0)G =(

2 0
0 1

)
; then G =

(
1 −1/3
0 1

)
. Note that

T (s)G =

⎛
⎜⎜⎝

s+ 2
s+ 1

−s(s− 1)
3(s+ 1)(s+ 3)

s(s+ 1)

(s+ 3)2
−s3+ s2+ 17s+ 27

3(s+ 1)(s+ 3)2

⎞
⎟⎟⎠

where all the off-diagonal entries of T (s) are divisible by s, while the entries on the diagonal are not

divisible by s. If now the input 1
s

(
k1
k2

)
is applied to T (s)G, the steady-state output is T (0)G

(
k1
k2

)
=(

2k1
k2

)
.

27.2 Defining Terms

Decoupling: Separating the system into a number of independent subsystems.
Non-interacting control: The control inputs and the outputs can be partitioned into disjoint subsets;

each subset of outputs is controlled by only one subset of inputs, and each subset of inputs
affects only one subset of outputs. From an input/output viewpoint, the system is split into
independent subsystems; it is called decoupled.
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be found in Wohnam, W.M. 1985. Linear Multivariable Control: A Geometric Approach, Springer-Verlag,
New York. The problem of disturbance decoupling or disturbance rejection, where a disturbance in the
state equations must become unobservable from the output, is also studied there using the geometric
approach.

A geometric approach has also been used to study non-interacting control in nonlinear systems; see, for
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28.1 Introduction

Model predictive control (MPC) refers to a class of control algorithms that compute a sequence of control
moves based on an explicit prediction of outputs within some future horizon. The computed control
moves are typically implemented in a receding horizon fashion, meaning only the moves for the current
time are implemented and the whole calculation is repeated at the next sample time. In essence, MPC is
a feedback control strategy based on repeated calculation of open-loop control trajectories.

It is difficult to attribute MPC to any single individual, since the idea of MPC has appeared in many
different forms and in the context of a variety of applications. In the process industries, serious applications
and research on the subject began in the late 1970s, fueled by seminal papers by several industrialists,
who outlined the basic algorithm and pointed out their potential for providing effective solutions to
difficult process control problems [1,6]. Owing to its unique ability to handle process interactions and

28-1
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28-2 Control System Advanced Methods

constraints in a unified manner, MPC progressed rapidly, establishing an impressive track record along
the way. The initial applications were mainly in the petrochemical industries, but it has been applied to
a variety of industries including chemicals, food, and pulp and paper. Now MPC has become a standard
tool for process control and there are several vendors that market general-purpose MPC software and
commissioning services.

The objective of this chapter is to introduce the linear MPC technique as viewed from the process
industries. After introducing a prototypical algorithm in Section 28.2, we discuss some implementation
issues in Section 28.3 and introduce several notable idiosyncratic features of various other commercial
MPC algorithms. Finally, we point out some future research needs.

28.2 Industrial MPC Algorithm

Dynamic matrix control (DMC) was one of the first commercial implementations of MPC. In this section,
we describe the basic ideas of the algorithm.

28.2.1 The Idea of Moving Horizon Control

Consider the diagram in Figure 28.1. At the present time k the behavior of the process over a horizon p is
considered. Using the model, the response of the process output to changes in the manipulated variable
(MV) is predicted. Current and future moves of the MVs are selected such that the predicted response has
certain desirable (or optimal) characteristics. For instance, a commonly used objective is to minimize the
sum of squares of the future errors, that is, the deviations of the controlled variable (CV) from a desired
target (setpoint). This minimization can also take into account constraints, that may be present on the
MVs and the outputs.

The idea is appealing but would not work very well in practice if the moves of the MV determined
at time k were applied blindly over the future horizon. Disturbances and modeling errors may lead to
deviations between the predicted behavior and the actual observed behavior, so that the computed MV
moves may not be appropriate any more. Therefore only the first one of the computed moves is actually
implemented. At the next time step k+ 1, a measurement is taken, the horizon is shifted forward by one

Past Future

Predicted outputs

Manipulated u(k + i)
inputs

k k + 1 k + p

k k + 1 k + p

FIGURE 28.1 Moving horizon control.
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step, and the optimization is done again over this shifted horizon based on the updated prediction of the
system behavior. Therefore, this control strategy is also referred to as moving horizon control.

A similar strategy is used in many other nontechnical situations. One example is computer chess where
the computer moves after evaluating all possible moves over a specified “depth” (the horizon). At the
next turn the evaluation is repeated based on the current board situation. Another example would be
investment planning. A five-year plan is established to maximize the return. Periodically, a new five-year
plan is put together over a shifted horizon to take into account changes that have occurred in the economy.

The DMC algorithm includes as one of its major components a technique to predict the future output
of the system as a function of the inputs and disturbances. This prediction capability is necessary to
determine the optimal future control inputs and will be discussed next. Afterward we will state the
objective function, and formulate the optimization problem.

28.2.2 Multistep Prediction

We consider the setup depicted in Figure 28.2 where we have three different types of external inputs: the
MV u, whose effect on the output, usually a CV, is described by Pu; the measured disturbance variable
(DV) d whose effect on the output is described by Pd ; and finally the unmeasured and unmodeled
disturbances wy , which add a bias to the system output. The overall system can be described by

y(k)= [Pu Pd
] [u(k)

d(k)

]
+wy(k). (28.1)

We assume that step response models Su, Sd are available for the system dynamics Pu and Pd , respec-
tively. We can define the overall multivariable step response model

S = [Su Sd
]

, (28.2)

which is driven by the known overall input

Δv(k)=
[
Δu(k)
Δd(k)

]
. (28.3)

Let us adopt as the system state

Ỹ (k)= [ỹT
0 (k), ỹT

1 (k), . . . , ỹT
n−1(k)

]T
, (28.4)

where n is the number of sample steps it takes for the system to settle down after a step change is made to
any of the inputs. The elements of the state represent the future system outputs

Ỹ (k)=

⎡
⎢⎢⎢⎣

y(k)
y(k+ 1)

...
y(k+ n− 1)

⎤
⎥⎥⎥⎦ (28.5)

u

d

Pu

Pd
wy

y

+

+

FIGURE 28.2 Basic problem setup.
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obtained under the assumption that the system inputs do not change from the previous values, that is,

Δu(k)=Δu(k+ 1)= · · · = 0,

Δd(k)=Δd(k+ 1)= · · · = 0.
(28.6)

Also, the state does not include any unmeasureed disturbance information and hence it is assumed in
the definition that

wy(k)= wy(k+ 1)= · · · = 0. (28.7)

The state is updated according to

Ỹ (k)=M · Ỹ (k− 1)+ SΔv(k− 1). (28.8)

where M is a shift operator expressed as

M =

⎡
⎢⎢⎢⎢⎢⎣

0 I 0 . . . . . . 0 0
0 0 I 0 . . . 0 0
...

...
0 0 . . . . . . . . . 0 I
0 0 . . . . . . . . . 0 I

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

n (28.9)

and

S =
⎡
⎢⎣

S1
...

Sn

⎤
⎥⎦ , (28.10)

where Si is the ith step response coefficient matrix. The equation reflects the effect of the input change
Δv(k− 1) on the future evolution of the system assuming that there are no further input changes. The
influence of the input change manifests itself through the step response matrix S. The effect of any future
input changes is described as well by the appropriate step response matrix. Let us consider the predicted
output over the next p time steps⎡

⎢⎢⎢⎢⎢⎢⎢⎣

y(k+ 1|k)
y(k+ 2|k)

...

...
y(k+ p|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ỹ1(k)
ỹ2(k)

...

...
ỹp(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Su
1

Su
2
...
...

Su
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Δu(k|k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
Su

1
Su

2
...

Su
p−1

⎤
⎥⎥⎥⎥⎥⎥⎦
Δu(k+ 1|k)+ · · ·+ · · ·

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

Su
1

⎤
⎥⎥⎥⎥⎥⎦
Δu(k+ p− 1|k)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Sd
1

Sd
2
...
...

Sd
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Δd(k)+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
Sd

1
Sd

2
...

Sd
p−1

⎤
⎥⎥⎥⎥⎥⎥⎦
Δd(k+ 1|k)+ · · ·

+

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

Sd
1

⎤
⎥⎥⎥⎥⎥⎦
Δd(k+ p− 1|k)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

wy(k+ 1|k)
wy(k+ 2|k)

...

...
wy(k+ p|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (28.11)

Here the first term on the right-hand side, the first p elements of the state, describes the future evolution
of the system when all the future input changes are zero. The remaining terms describe the effect of the
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present and future changes of the manipulated inputsΔu(k+ i|k), the measured disturbancesΔd(k+ i|k),
and the unmeasured and unmodeled disturbances wy(k+ i|k). The notation y(k+ i|k) represents the
prediction of y(k+ i) made based on the information available at time k. The same notation applies to
Δd and wy .

The values of most of these variables are not available at time k and have to be predicted in a rational
fashion. From the measurement at time k d(k) is known and therefore Δd(k)= d(k)− d(k− 1). Unless
some additional process information or “upstream” measurements are available to conclude about the
future disturbance behavior, the disturbances are assumed not to change in the future for the derivation
of the DMC algorithm.

Δd(k+ 1|k)=Δd(k+ 2|k)= · · · =Δd(k+ p− 1|k)= 0. (28.12)

This assumption is reasonable when the disturbances are varying only infrequently. Similarly, we will
assume that the future unmodeled disturbances wy(k+ i|k) do not change.

wy(k|k)= wy(k+ 1|k)= wy(k+ 2|k)= · · · = wy(k+ p|k). (28.13)

We can obtain an estimate of the present unmodeled disturbance from Equation 28.1

wy(k|k)≈ ym(k)− ỹ0(k), (28.14)

where ym(k) represents the value of the output as actually measured in the plant. Here ỹ0(k), the first
component of the state Ỹ (k), is the model prediction of the output at time k (assuming wy(k)= 0) based
on the information up to this time. The difference between this predicted output and the measurement
provides a good estimate of the unmodeled disturbance.

For generality, we want to consider the case where the manipulated inputs are not varied over the
whole horizon p but only over the next m steps (Δu(k|k),Δu(k+ 1|k), . . . ,Δu(k+m− 1|k)) and that
the input changes are set to zero after that.

Δu(k+m|k)=Δu(k+m+ 1|k)= · · · =Δu(k+ p− 1)|k)= 0. (28.15)

With these assumptions Equation 28.11 becomes

Y(k+ 1|k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ỹ1(k)
ỹ2(k)

...

...
ỹp(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
MỸ (k)

from the memory

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Sd
1

Sd
2
...
...

Sd
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
Δd(k)

︸ ︷︷ ︸
SdΔd(k)

feedforward term

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ym(k)− ỹ0(k)
ym(k)− ỹ0(k)

...

...
ym(k)− ỹ0(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ip(ym(k)− ỹ0(k))

feedback term

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Su
1 0 · · · · · · 0

Su
2 Su

1 0 · · · 0
...

...
. . .

. . .
...

Su
m Su

m−1 · · · · · · Su
1

...
. . .

. . .
. . .

...
Su

p Su
p−1 · · · · · · Su

p−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Su

dynamic matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Δu(k|k)
Δu(k+ 1|k)

...

...
Δu(k+m− 1|k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ΔU(k)

future input moves

. (28.16)



�

�

�

�

� �

28-6 Control System Advanced Methods

Here we have introduced the new symbols

Y(k+ 1|k)=

⎡
⎢⎢⎢⎣

y(k+ 1|k)
y(k+ 2|k)

...
y(k+ p|k)

⎤
⎥⎥⎥⎦, (28.17)

Su =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Su
1 0 . . . 0

Su
2 Su

1 . . . 0
...

...
...

Su
m Su

m−1 . . . Su
1

...
...

...
Su

p Su
p−1 . . . Su

p−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sd : =

⎡
⎢⎢⎢⎢⎣

Sd
1

Sd
2
...

Sd
p

⎤
⎥⎥⎥⎥⎦, (28.18)

Ip =

⎡
⎢⎢⎢⎣

I
I
...
I

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p, (28.19)

ΔU(k)=

⎡
⎢⎢⎢⎣

Δu(k|k)
Δu(k+ 1|k)

...
Δu(k+m− 1|k)

⎤
⎥⎥⎥⎦, (28.20)

M=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣k

0 I 0 . . . . . . . . . . . . 0
0 0 I 0 . . . . . . . . . 0
...

...
. . .

. . .
. . .

. . .
...

...
0 · · · · · · 0 I 0 · · · 0

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

p for p < n,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 I 0 . . . 0
0 0 I . . . 0
...

...
. . .

. . .
...

0 · · · · · · 0 I
...

...
...

0 · · · · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

p for p≥ n,

(28.21)

With this new notation the p-step ahead prediction becomes

Y(k+ 1|k)=MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k))+SuΔU(k), (28.22)

where the first three terms are completely defined by past control actions (Ỹ (k), ỹ0(k)) and present
measurements (ym(k),Δd(k)) and the last term describes the effect of future MV movesΔU(k).

This prediction equation can be easily adjusted if different assumptions are made on the future behavior
of the measured and unmeasured disturbances. For instance, if the disturbances are expected to evolve in
a ramp-like fashion then we would set

Δd(k)=Δd(k+ 1|k)= · · · =Δd(k+ p− 1|k) (28.23)
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and
wy(k+ �|k)= wy(k|k)+ �(wy(k|k)−wy(k− 1|k− 1)). (28.24)

28.2.3 State-Space Formulation

Although the first generation of industrial algorithms adopted a finite impulse response or a step response
model, given their intuitive appeal to the practitioners, its limitations were quickly pointed out by the
academics who went on to propose more general formulations based on state-space models. These formu-
lations were later adopted by the vendor companies to develop a second generation of commercial MPC
algorithms. These formulations also incorporated state estimation techniques into MPC for enhanced
disturbance estimation and noise filtering.

The state-space model form used was

x(k+ 1)= Ax(k)+Buu(k)+Bwwx(k)+Bdd(k),

y(k)= Cx(k)+wy(k).
(28.25)

Here wx and wy are state and output disturbances. Since these disturbances tend to be “persistent,"
integrating states are created to reflect their nature:

wx(k+ 1)= wx(k)+ ε1(k),

wy(k+ 1)= wy(k)+ ε2(k),
(28.26)

where ε1 and ε2 are white-noise sequences. The above can be expressed as⎡
⎣ x(k+ 1)

wx(k+ 1)
wy(k+ 1)

⎤
⎦=

⎡
⎣A Bw 0

0 I 0
0 0 I

⎤
⎦
⎡
⎣ x(k)

wx(k)
wy(k)

⎤
⎦+

⎡
⎣Bu

0
0

⎤
⎦ u(k)+

⎡
⎣Bd

0
0

⎤
⎦ dk +

⎡
⎣0 0

I 0
0 I

⎤
⎦[ε1(k)
ε2(k)

]
,

y(k)= [C 0 I
]⎡⎣ x(k)

wx(k)
wy(k)

⎤
⎦ ,

(28.27)

which will be denoted using the notation

z(k+ 1)=Φz(k)+Γuu(k)+Γddk +Γεε(k),

y(k)=Ξz(k).
(28.28)

The above is a standard state-space model with white state noise input and Kalman filtering can be
used to design a state estimator of the following form:

ẑ(k|k− 1)=Φẑ(k− 1|k− 1)+Γuu(k)+Γddk ,

ẑ(k|k)= ẑ(k− 1|k− 1)+K
(
y(k)−Ξẑ(k|k− 1)

)
,

(28.29)

where K is the Kalman filter gain.
One potential problem for using the above model is the lack of detectability: One cannot have more dis-

turbance states (wx and wy), which have integrating dynamics, than the number of outputs for detectability
to hold. Hence, to use the above model, one would have to choose between input and output disturbances.
Alternatively, it may be convenient to adopt the following differenced model form:[

Δx(k+ 1)
y(k+ 1)

]
=
[

A 0
CA I

] [
x(k)
y(k)

]
+
[

Bu

CBu

]
Δu(k)+

[
Bd

CBd

]
Δdk +

[
Bw 0

CBw I

] [
ε1(k)
ε2(k)

]
,

y(k)= [0 I
] [Δx(k)

y(k)

]
.

(28.30)

The above system is detectable as long as the original (C, A) was a detectable pair. Once again, the above
system is in the standard state-space form of Equation 28.28 and the Kalman filter of Equation 28.29 can
be designed for state estimation.
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The multistep prediction equation can be constructed and has the following structure:

Y(k+ 1|k)= Sz ẑ(k|k)+ SdΔd(k)+SuΔU(k). (28.31)

The readers are referred to [4] for a detailed derivation of the matrices in the above equation. The above
equation has the same linear structure of Y(k+ 1|k)= b(k)+SuΔU(k) as before and the subsequent
derivations presented hereafter hold for both the step response model-based formulation and the
state-space model-based formulation (with some obvious modifications).

28.2.4 Objective Function

Plant operation requirements determine the performance criteria of the control system. These criteria
must be expressed in mathematical terms so that a control law can be obtained in algorithmic form. In
DMC, a quadratic objective function is used, which can be stated in its simplest form as∗

min
Δu(k|k)...Δu(k+m−1|k)

p∑
�=1

‖y(k+ �|k)− r(k+ �)‖2
. (28.32)

This criterion minimizes the sum of squared deviations of the predicted CV values from a time–varying
reference trajectory or setpoint r(k+ �) over p future time steps. The quadratic criterion penalizes large
deviations proportionally more than smaller ones so that on the average the output remains close to its
reference trajectory and large excursions are avoided.

Note that the MVs are assumed to be constant after m intervals of time into the future, or equivalently,

Δu(k+m|k)=Δu(k+m+ 1|k)= · · · =Δu(k+ p− 1|k)= 0,

where m≤ p always. This means that DMC determines the next m moves, only. The choices of m and
p affect the closedly–loop behavior. Moreover, m, the number of degrees of freedom, has a dominant
influence on the computational effort. Also, it does not make sense to make the horizon longer than
m+ n (p≤m+ n), because for an FIR system of order n the system reaches a steady state after m+ n
steps. Increasing the horizon beyond m+ n would simply add identical constant terms to the objective
function (Equation 28.32).

Due to inherent process interactions, it is generally not possible to keep all outputs close to their
corresponding reference trajectories simultaneously. Therefore, in practice only a subset of the outputs
is controlled well at the expense of larger excursions in others. This can be influenced transparently by
including weights in the objective function as follows:

min
Δu(k|k)...Δu(k+m−1|k)

p∑
�=1

‖Γy
�[y(k+ �|k)− r(k+ �)]‖2

. (28.33)

For example, for a system with two outputs y1 and y2, and constant diagonal weight matrices of the form

Γ
y
� =

[
γ1 0
0 γ2

]
; ∀� (28.34)

the objective becomes

min
Δu(k|k)...Δu(k+m−1|k)

{
γ1

2
p∑

�=1

[y1(k+ �|k)− r1(k+ �)]2+ γ2
2

p∑
�=1

[y2(k+ �|k)− r2(k+ �)]2
}

. (28.35)

Thus, the larger the weight is for a particular output, the larger is the contribution of its sum of squared
deviations to the objective. This will make the controller bring the corresponding output closer to its
reference trajectory.

∗ ‖x‖ denotes the norm (xT x)1/2 of the vector x.
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Finally, the MV moves that make the output follow a given trajectory could be too severe to be
acceptable in practice. This can be corrected by adding a penalty term for the MV moves to the objective
as follows:

min
ΔU(k)

p∑
�=1

‖Γy
�[y(k+ �|k)− r(k+ �)]‖2+

m∑
�=1

‖Γu
� [Δu(k+ �− 1)]‖2. (28.36)

Note that the larger the elements of the matrix Γu
� , the smaller the resulting moves, and consequently,

the output trajectories will not be followed as closely. Thus, the relative magnitudes of Γ
y
� and Γu

� will
determine the trade-off between following the trajectory closely and reducing the action of the MVs.

Of course, not every practical performance criterion is faithfully represented by this quadratic objective.
However, many control problems can be formulated as trajectory tracking problems and therefore this
formulation is very useful. Most importantly this formulation leads to an optimization problem for which
there exist effective solution techniques.

28.2.5 Constraints

In many control applications the desired performance cannot be expressed solely as a trajectory following
the problem. Many practical requirements are more naturally expressed as constraints on process vari-
ables.

There are three types of process constraints:

MV constraints: these are hard limits on inputs u(k) to take care of, for example, valve saturation con-
straints.

MV rate constraints: these are hard limits on the size of the MV moves Δu(k) to directly influence the
rate of change of the MVs.

Output variable constraints: hard or soft limits on the outputs of the system are imposed to, for example,
avoid overshoots and undershoots. These can be of two kinds:
• CV: limits for these variables are specified even though deviations from their setpoints are

minimized in the objective function
• Associated variables: no setpoints exist for these output variables but they must be kept within

bounds (i.e., corresponding rows of Γ
y
� are zero for the projections of these variables in the

objective function given in Equation 28.36.

The three types of constraints in DMC are enforced by formulating them as linear inequalities. In the
following, we explicitly formulate these inequalities.

28.2.5.1 MV Constraints

The solution vector of DMC contains not only the current moves to be implemented but also the moves
for the future m intervals of time. Although violations can be avoided by constraining only the move
to be implemented, constraints on future moves can be used to allow the algorithm to anticipate and
prevent future violations, thus producing a better overall response. The MV value at a future time k+ �

is constrained to be

ulow(�)≤
�∑

j=0

Δu(k+ j|k)+ u(k− 1)≤ uhigh(�); �= 0, 1, . . . m− 1,

where u(k− 1) is the implemented previous value of the MV. For generality, we allowed the limits
ulow(�), uhigh(�) to vary over the horizon. These constraints are expressed in matrix form for all
projections as
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[−IL

IL

]
ΔU(k)≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k− 1)− uhigh(0)
...

u(k− 1)− uhigh(m− 1)
ulow(0)− u(k− 1)

...
ulow(m− 1)− u(k− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28.37)

where

IL =

⎡
⎢⎢⎢⎣

I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I

⎤
⎥⎥⎥⎦ . (28.38)

28.2.5.2 MV Rate Constraints

Often MPC is used in a supervisory mode where there are limitations on the rate at which lower-level
controller setpoints are moved. These are enforced by adding constraints on the MV move sizes:

[−I
I

]
ΔU(k)≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Δumax(0)
...

−Δumax(m− 1)
−Δumax(0)

...
−Δumax(m− 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28.39)

whereΔumax(�) > 0 is the possibly time-varying bound on the magnitude of the moves.

28.2.5.3 Output Variable Constraints

The algorithm can make use of the output predictions (Equation 28.22 or 28.31) to anticipate future
constraint violations:

Ylow ≤ Y(k+ 1|k)≤ Yhigh. (28.40)

Substituting from Equation 28.22, we obtain constraints onΔU(k):

[−Su

Su

]
ΔU(k)≥

[
MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k))−Yhigh

−(MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k)))+Ylow

]
. (28.41)

where

Ylow =

⎡
⎢⎢⎢⎣

ylow(1)
ylow(2)

...
ylow(p)

⎤
⎥⎥⎥⎦ ; Yhigh =

⎡
⎢⎢⎢⎣

yhigh(1)
yhigh(2)

...
yhigh(p)

⎤
⎥⎥⎥⎦

are vectors of output constraint trajectories ylow(�), yhigh(�) over the horizon length p.
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28.2.5.4 Combined Constraints

The MV constraints (Equation 28.37), MV rate constraints (Equation 28.39) and output variable con-
straints (Equation 28.41) can be combined into one convenient expression

CuΔU(k)≥ C(k+ 1|k), (28.42)

where Cu combines all the matrices on the left-hand side of the inequalities as follows:

Cu =

⎡
⎢⎢⎢⎢⎢⎢⎣

−IL

IL

−I
I
−Su

Su

⎤
⎥⎥⎥⎥⎥⎥⎦

. (28.43)

The vector C(k+ 1|k) on the right-hand side collects all the “error” vectors on the constraint equations
as follows:

C(k+ 1|k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k− 1)− uhigh(0)
...

u(k− 1)− uhigh(m− 1)
ulow(0)− u(k− 1)

...
ulow(m− 1)− u(k− 1)

−Δumax(0)
...

−Δumax(m− 1)
−Δumax(0)

...
−Δumax(m− 1)

MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k))−Yhigh

−(MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k)))+Ylow

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28.44)

28.2.6 Formulation of Control Problem as a Quadratic Program

We make use of the prediction equation 28.22 to rewrite the objective

min
ΔU(k)

p∑
�=1

‖Γy
�[y(k+ �|k)− r(k+ �)]‖2+

m∑
�=1

‖Γu
� [Δu(k+ �− 1)]‖2 (28.45)

and add the constraints (Equation 28.42) to obtain the optimization problem

min
ΔU(k)

{‖Γy [Y(k+ 1|k)−R(k+ 1)] ‖2+‖ΓuΔU(k)‖2}

s.t. Y(k+ 1|k)=MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k))+SuΔU(k)CuΔU(k)≥ C(k+ 1|k),
(28.46)

where
Γu = diag

{
Γu

1 , . . . ,Γu
m

}
(28.47)
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and

Γy = diag
{
Γ

y
1, · · · ,Γy

p
}

(28.48)

are the weight matrices in block diagonal form, and

R(k+ 1)=

⎡
⎢⎢⎢⎣

r(k+ 1)
r(k+ 2)

...
r(k+ p)

⎤
⎥⎥⎥⎦ (28.49)

is the vector of reference trajectories.
We can substitute the prediction equation into the objective function to obtain

‖Γy [Y(k+ 1|k)−R(k+ 1)] ‖2+‖ΓuΔU(k)‖2 (28.50)

= ‖Γy [SuΔU(k)−Ep(k+ 1|k)
] ‖2+‖ΓuΔU(k)‖2 (28.51)

=ΔUT (k)(SuT
ΓyT

ΓySu+ΓuT
Γu)ΔU(k) (28.52)

− 2Ep(k+ 1|k)TΓyT
ΓySuΔU(k)+ET

p (k+ 1|k)ΓyT
ΓyEp(k+ 1|k).

Here we have defined

Ep(k+ 1|k)=

⎡
⎢⎢⎢⎣

e(k+ 1|k)
e(k+ 2|k)

...
e(k+ p|k)

⎤
⎥⎥⎥⎦ (28.53)

Δ=R(k+ 1)−
[
MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k))

]
,

which is the measurement corrected vector of future output deviations from the reference trajectory
(i.e., errors), assuming that all future control moves are zero. Note that this vector includes the effect of
the measurable disturbances (SdΔd(k)) on the prediction. For the state-space model of Equation 28.31, Ep

changes to

Ep
Δ=R(k+ 1)−

(
Sz ẑ(k|k)+ SdΔd(k)

)
. (28.54)

The optimization problem with a quadratic objective and linear inequalities, which we have defined, is a
quadratic program (QP). By converting to the standard QP formulation the DMC problem becomes∗

min
ΔU(k)

1

2
ΔU(k)THuΔU(k)−G(k+ 1|k)TΔU(k)

s.t. CuΔU(k)≥ C(k+ 1|k), (28.55)

where the Hessian of the QP is

Hu = SuT
ΓyT

ΓySu+ΓuT
Γu (28.56)

∗ The term ET
p (k+ 1|k)Ep(k+ 1|k) is independent ofΔU(k) and can be removed from the objective function.
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and the gradient vector is

G(k+ 1|k)= SuT
ΓyT

ΓyEp(k+ 1|k). (28.57)

28.3 Implementation Issues

As explained in the introduction of this chapter the implementation of DMC is done in a moving horizon
fashion. This implies that the QP derived above will be solved at each controller execution time. Because
of this feature, the algorithm can be configured online as required to take care of unexpected situations.
For example, in case an actuator is lost during the implementation, the high and low constraint limits
on that particular MV can be set to be equal. Then the MPC problem with the remaining MVs is solved.
Similarly, the weight parameters in the objective function can also be adjusted online, giving the user the
ability to tune the control law. In this section we discuss the different implementation issues associated
with the DMC.

28.3.1 Moving Horizon Algorithm

The constrained MPC algorithm is implemented online as follows.

1. Preparation. Do not vary the MVs for at least n time intervals (Δu(−1)=Δu(−2)= · · · =
Δu(−n)= 0) and assume the measured disturbances are zero (Δd(−1)=Δd(−2)= · · · =
Δd(−n)= 0) during that time. Then the system will be at rest at k = 0.

2. Initialization (k = 0). Measure the output ym(0) and initialize the model prediction vector as∗

Ỹ (k)=
⎡
⎣ym(0)T , ym(0)T , . . . , ym(0)T︸ ︷︷ ︸

n

⎤
⎦

T

. (28.58)

3. State update: Set k = k+ 1. Then, update the state according to

Ỹ (k)=M · Ỹ (k− 1)+ SuΔu(k− 1)+ SdΔd(k− 1), (28.59)

where the first element of Ỹ (k), ỹ(k|k), is the model prediction of the output ym(k) at time k.
4. Obtain measurements: Obtain measurements (ym(k),Δd(k)).
5. Compute the reference trajectory error vector

Ep(k+ 1|k)=R(k+ 1)−MỸ (k)+ SdΔd(k)+ Ip(ym(k)− ỹ0(k)). (28.60)

6. Compute the QP gradient vector

G(k+ 1|k)= SuT (Γy)TΓyEp(k+ 1|k). (28.61)

∗ If Equation 28.58 is used for intialization and changes in the past n inputs did actually occur, then the initial operation
of the algorithm will not be smooth. The transfer from manual to automatic will introduce a disturbance; it will not be
“bumpless.”
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7. Compute the constraint equation’s right-hand side vector

C(k+ 1|k)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k− 1)− uhigh(0)
...

u(k− 1)− uhigh(m− 1)

ulow(0)− u(k− 1)
...

ulow(m− 1)− u(k− 1)

−Δumax(0)
...

−Δumax(m− 1)

−Δumax(0)
...

−Δumax(m− 1)

−Ep(k+ 1|k)+R(k+ 1)−Yhigh

Ep(k+ 1|k)−R(k+ 1)+Ylow

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28.62)

8. Solve the QP

minΔU(k)
1
2ΔU(k)THuΔU(k)− G(k+ 1|k)TΔU(k)

s.t. CuΔU(k)≥ C(k+ 1|k)
(28.63)

and implementΔu(k|k) asΔu(k) on the plant.
9. Go to 3.

Note that the sequence of moves produced by the moving horizon implementation of the QP will be
different from the sequence of movesΔU(k).

28.3.2 Solving the QP

In a moving horizon framework the QP in Equation 28.63 is solved at each controller execution time after
a new prediction is obtained. The only time-varying elements in this problem are the vectors Ep(k+ 1|k)
(or equivalently G(k+ 1|k)) and C(k+ 1|k). That is, the Hessian Hu of the QP remains constant for all
executions. In that case, as explained above, a parametric QP algorithm which employs the preinverted
Hessian in its computations, is preferable in order to reduce online computation effort. Of course, in
case either Γy or Γu (or the step response coefficients) need to be updated, or the model’s step response
coefficients have changed, the Hessian must be recomputed and inverted in background mode in order
not to increase the online computational requirements.

QP is a convex program and therefore, is fundamentally tractable, meaning a global optimal solution
within a specified tolerance can be assured. Although not as extensively as linear programs (LPs), QPs
have been well studied and reliable algorithms have been developed and coded. General-purpose QP
solvers like QPSOL are readily available but use of tailored algorithms that take advantage of specific
problem structures can offer significant computational savings.

The conventional approach for solving QPs is the so-called active set method. In this method, one
initiates the search by assuming a set of active constraints. For an assumed active set, one can easily
solve the resulting least-squares problem (where the active constraints are treated as equality constraints)
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through the use of Lagrange multiplier. In general, in the active set one starts out with that it will not be
the correct one. Through the use of the Karush–Kuhn–Tucker (KKT) condition,∗ one can modify the
active set iteratively until the correction is found. Most active set algorithms are feasible path algorithms,
in which the constraints must be met at all times. Hence, the number of constraints can have a significant
effect on the computational time.

More recently, a promising new approach called the interior point (IP) method has been getting a lot
of attention. The idea of the IP method is to “trap” the solution within the feasible region by including a
so-called “barrier” function in the objective function. With the modified objective function, the Newton
iteration is applied to find the solution. Though originally developed for LPs, the IP method can be
readily generalized to QPs and other more general constrained optimization problems. Even though not
formally proven, it has been observed empirically that the Newton iteration converges within 5–50 steps.
Significant work has been carried out in using this solution approach for solving QPs that arise in MPC,
but details are out of the scope of this chapter.

Computational properties of QPs vary with problems. As the number of constraints increases, more
iterations are generally required to find the QP solution, and therefore the solution time increases. This
may have an impact on the minimum control execution time possible. Also, note that the dimension of
the QP (i.e., the number of degrees of freedom m · nu) influences the execution time proportionately.

Storage requirements are also affected directly by the number of degrees of freedom and the number
of projections n · ny . For example, the Hessian size increases quadratically with the number of degrees
of freedom. Also, because of the prediction algorithm, Ỹ (k) must be stored for use in the next controller
execution (both Ep(k+ 1|k) and C(k+ 1|k) can be computed from Ỹ (k)).

28.3.3 Proper Constraint Formulation

Many engineering control objectives are stated in the form of constraints. Therefore, it is very tempting
to translate them into linear inequalities and to include them in the QP control problem formulation. In
this section we want to demonstrate that constraints make it very difficult to predict the behavior of the
control algorithm under real operating conditions. Therefore, they should be used only when necessary
and then only with great caution.

First of all constraints tend to greatly increase the time needed to solve the QP. Thus, we should
introduce them sparingly. For example, if we wish an output constraint to be satisfied over the whole
future horizon, we may want to state it as a linear inequality only at selected future sampling times rather
than at all future sampling times. Unless we are dealing with a highly oscillatory system, a few output
constraints at the beginning and one at the end of the horizon should keep the output more or less inside
the constraints throughout the horizon. Note that even when constraint violations occur in the prediction,
this does not imply constraint violations in the actual implementation because of the moving horizon
policy. The future constraints serve only to prevent the present control move from being short-sighted.

Output constraints can also lead to an “infeasibility.” A QP is infeasible if there does not exist any value
of the vector of independent variables (the future MV moveΔU(k)), which satisfies all the constraints —
regardless of the value of the objective function. Physically, this situation can arise when there are output
constraints to be met but the MVs are not sufficiently effective—either because they are constrained or
because there is deadtime in the system that delays their effect. Needless to say, provisions must be built
into the online algorithm such that an infeasibility never occurs.

Mathematically an infeasibility can only occur when the right-hand side of the output constraint
equations is positive. This implies that a nonzero move must be made in order to satisfy the constraint
equations. Otherwise, infeasibility is not an issue sinceΔU(k)= 0 is feasible.

A simple example of infeasibility arises in the case of deadtimes in the response. For illustration, assume
a single-input single-output (SISO) system with θ units of deadtime. The output constraint equations for

∗ The KKT condition is a necessary condition for the solution to a general constrained optimization problem. For QP, it is
a necessary and sufficient condition.
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this system will look like

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
...

...
0 0 · · · 0

−Su
θ+1 0 · · · 0

−Su
θ+2 −Su

θ+1 · · · 0
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ΔU(k)≥

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c(k+ 1|k)
...

c(k+ θ|k)
c(k+ θ+ 1|k)
c(k+ θ+ 2|k)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Positive elements c(k+ 1|k), . . . , c(k+ θ|k) indicate that a violation is projected unless the MVs are
changed (ΔU(k) �= 0). Since the corresponding coefficients in the left-hand side matrix are zero, the
inequalities cannot be satisfied and the QP is infeasible. Of course, this problem can be removed by
simply not including these initial θ inequalities in the QP.

Because inequalities are dealt with exactly by the QP, the corrective action against a projected violation
is equivalent to that generated by a very tightly tuned controller. As a result, the moves produced by the
QP to correct for violations may be undesirably severe (even when feasible). Both infeasibilities and severe
moves can be dealt with in various ways.

One way is to include a constraint window on the output constraints similar to what we suggested
above for computational savings. For each output a time k+Hc in the future is chosen at which constraint
violations will start to be checked (Figure 28.3).

For the above illustration, this time should be picked to be at least equal to θ+ 1. This allows the
algorithm to check for violations after the effects of deadtimes and inverse responses have passed. For
each situation there is a minimal value of Hc necessary for feasibility. If this minimal value is chosen large,
constraint violations may occur over a significant period of time. In many cases, if a larger value of Hc

is chosen, smaller constraint violations may occur over a longer time interval. Thus, there is a trade-off
between magnitude and duration of constraint violation.

In general, it is difficult to select a value of Hc for each constrained output such that the proper com-
promise is achieved. Furthermore, in multivariable cases, constraints may need to be relaxed according
to the priorities of the constrained variables. The selection of constraint windows is greatly complicated
by the fact that appropriate amount and location for relaxation are usually time dependent due to varying
disturbances and occurrences of actuator and sensor failures. Therefore, it is usually preferred to “soften"
the constraint by adding a slack variable ε and penalizing this violation through an additional term in the
objective function.

min
ε,ΔU(k)

[Usual Objective]+λε2

ymin− ε≤ y(k+ �|k)≤ ymax + ε
plus other constraints.

ymax

k k + Hc

Relax the constraints between
k + 1 and k + Hc–1

FIGURE 28.3 Relaxing the constraints.
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The optimization seeks a compromise between minimizing the original performance objective and
minimizing the constraint violations expressed by ε2. The parameterλ determines the relative importance
of the two terms. The degree of constraint violation can be fine-tuned arbitrarily by introducing a separate
slack variable ε for each output and time step, and associating with it a separate penalty parameter λ.

Finally, we must realize that while unconstrained MPC is a form of linear feedback control, constrained
MPC is a nonlinear control algorithm. Thus, its behavior for small deviations can be drastically different
from that for large deviations. This may be surprising and undesirable and is usually very difficult to
analyze a priori.

28.3.4 Choice of Horizon Length

On the one hand, the prediction horizon p and the control horizon m should be kept short to reduce
the computational effort; on the other hand, they should be made long to prevent short-sighted control
policies. Making m short is generally conservative because we are imposing constraints (forcing the
control to be constant after m steps) that do not exist in the actual implementation because of the moving
horizon policy. Therefore, a small m will tend to give rise to a cautious control action.

Choosing p small is “short-sighted” and will generally lead to an aggressive control action. If constraint
violations are checked only over a small control horizon p, this policy may lead the system into a “dead
alley” from which it can escape only with difficulty, that is, only with large constraint violations and/or
large MV moves.

When p and m are infinity and when there are no disturbance changes and unknown inputs, the
sequence of control moves determined at time k is the same sequence that is realized through the moving
horizon policy. In this sense our control actions are truly optimal. When the horizon lengths are shortened,
then the sequence of moves determined by the optimizer and the sequence of moves actually implemented
on the system will become increasingly different. Thus the short-time objective, which is optimized, will
have less and less to do with the actual value of the objective realized when the moving horizon control is
implemented. This may be undesirable.

In general, we should try to choose a small m to keep the computational effort manageable, but large
enough to give us a sufficient number of degrees of freedom. We should choose p as large as possible,
possibly∞, to completely capture the consequences of the control actions. This is possible in several ways.
Because an FIR system will settle after m+ n steps, choosing a horizon p=m+ n is a sensible choice used
in many commercial systems (Figure 28.4).

Instead or in addition we can impose a large output penalty at the end of the prediction horizon forcing
the system effectively to settle to zero at the end of the horizon. Then, with p=m+ n, the error after
m+ n is essentially zero and there is little difference between the finite and the infinite horizon objective.

k + m–1

k + m–1 k + m + n–1
N time steps

FIGURE 28.4 Choosing the horizon.
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28.3.5 Input Blocking

As said, use of a large control horizon is generally preferred from the viewpoint of performance, but
available computational resource may limit its size. One way to relax this limit is through a procedure
called blocking, which allows to the user to “block out" the input moves at selected locations from the
calculation by setting them to zero a priori. The result is a reduction in the number of input moves that
need to be computed through the optimization, hopefully without a significant sacrifice in the solution
quality. Obviously, judicious selection of blocking locations is critical for achieving the intended effect.
The selection is done mostly on an ad hoc basis, although there are some qualitative rules like blocking
less of the immediate moves and more of the distant ones.

At a more general level, blocking can be expressed as follows:

ΔU = BΔUb, (28.64)

where ΔUb represents the reduced input parameters to be calculated through the optimization. B is the
blocking matrix that needs to be designed for a good performance. Typically, the rows of B corresponding
to the blocked moves would contain all zeros. In general, columns of B can be designed to represent
different basis in the input space. Note that dimension of Ub, which is less than that of U , must also be
determined in the design.

28.3.6 Filtering of the Feedback Signal

In practice, feedback measurements can contain significant noise and other fast-varying disturbances.
Since in DMC the effect of unmeasured disturbances is projected as a constant bias in the prediction, the
high-frequency contents of a feedback signal must be filtered out in order to obtain a meaningful long-
term prediction. For this, one can pass the feedback signal through a low-pass filter of some sort, perhaps
a first- or second-order filter, before putting it into the prediction equation. Use of state estimation,
discussed in [3], for example, allows one to model the statistical characteristics of disturbances and noise
and perform the filtering in an optimal manner.

28.4 Features Found in Other MPC Algorithms

What we just covered is the basic form of a multivariable control algorithm called DMC, which was one
of the first MPC algorithms applied to industrial processes with success. The original DMC algorithm did
not use QP to handle constraints; instead, it added an extra output to the prediction to drive the input back
to the feasible region whenever a predicted future input came close to a constraint. This was somewhat
ad hoc and it was not until the 1980s that engineers at Shell Oil proposed the use of QP to handle input
and output constraints explicitly and rigorously. They called this modified version QDMC. Currently,
this basic form of DMC is still used in a commercial package called DMC-PLUS, which is marketed by
Aspen Technology.

Besides DMC and QDMC, there are several other MPC algorithms that have seen, and are still seeing,
extensive use in practice. These include model predictive heuristic control (MPHC), which led to popular
commercial algorithms such as IDCOM and SMC-IDCOM marketed by Setpoint (now Aspen Technol-
ogy) and Hierarchical Constraint Control (HIECON) and Predictive Functional Control (PFC) marketed
by Adersa; Predictive Control Technology (PCT), which was marketed by Profimatics (now Honeywell);
and more recent Robust Model Predictive Control Technology (RMPCT), which is currently being mar-
keted by Honeywell. These algorithms share same fundamentals but differ in details of implementation.
Rather than elaborating on the details of each algorithm, we will touch upon some popular features not
seen in the basic DMC/QDMC method.
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28.4.1 Reference Trajectories

In DMC, output deviation from the desired setpoint is penalized in the optimization. Other algorithms
such as IDCOM, HIECON, and PFC let the user specify not only where the output should go but also
how. For this, a reference trajectory is introduced for each CV, which is typically defined as a first-order
path from the current output value to the desired setpoint. The time constant of the path can be adjusted
according to the speed of the desired closed-loop response. This is displayed in Figure 28.5.

Reference trajectories provide an intuitive way to control the aggressiveness of control, which is adjusted
through the weighting matrix for the input move penalty term in DMC. One could argue that the
controller’s aggressiveness is more conveniently tuned by specifying the speed of output response rather
than through input weight parameters, whose effects on the speed of response is highly system dependent.

28.4.2 Coincidence Points

Some commercial algorithms such as IDCOM and PFC allowed the option of penalizing the output error
only at a few chosen points in the prediction horizon called coincidence points. This is motivated primarily
by reduction in computation it brings. When the number of input moves has to be kept small (in order
to keep the computational burden low), use of a large prediction horizon, which is sometimes necessary
due to large inverse responses, and long dynamics, results in a sluggish control behavior. This problem
can be obviated by penalizing output deviation only at a few carefully selected points. At the extreme, one
could ask the output to match the reference trajectory value at a single time point, which can be achieved
with a single control move. Such formulation was used, for example, in IDCOM-M, an offspring of the
original IDCOM algorithm, marketed by setpoint.

Clearly, the choice of coincidence points is critical for performance, especially when the number
of points used is small. Alhough some guidelines exist on choosing these points, there is no systematic
method for the selection. Because the response time of different outputs can vary significantly, coincidence
points are usually defined separately for each output.

28.4.3 The Funnel Approach

The RMPCT algorithm differs from other MPC algorithms in that it attempts to keep each controlled
output within a user-specified zone called funnel, rather than to keep it on a specific reference trajectory.
The typical shape of a funnel is displayed in Figure 28.5. The user sets the maximum and minimum limits
and also the slope of the funnel through a parameter called “performance ratio,” which is the desired time
to return to the limit zone divided by the open-loop response time. The gap between the maximum and
minimum can be closed for exact setpoint control, or left open for range control.

The algorithm solves the following QP at each time:

min
yr ,u

p∑
i=1

‖y(k+ i|k)− yr(k+ i|k)‖2
Q+

m−1∑
j=0

‖Δu(k+ j|k)‖2
R (28.65)

or

min
yr ,u

p∑
i=1

‖y(k+ i|k)− yr(k+ i|k)‖2
Q+

m−1∑
j=0

‖u(k+ j|k)− ur‖2
R (28.66)

subject to usual constraints plus the funnel constraint

y
f
min(k+ i|k)≤ yr(k+ i|k)≤ y

f
max(k+ i|k), 1≤ i ≤ p, (28.67)

where y
f
min(k+ i|k) and y

f
min(k+ i|k) represent the upper and lower limit values of the funnel for k+ i in

the prediction horizon as specified at time k. ur is the desired settling value for the input. Note that the
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Quadratic penalty

Quadratic penalty

Quadratic penalty
Funnel

Reference trajectory

Setpoint (in DMC)

k k + p

(a)

(b)

(c)

k k + p

k k + p

FIGURE 28.5 Output penalties used in various formulations.

reference trajectory yr is a free parameter, which is optimized to lie within the funnel. Typically, Q� R
in order to keep the outputs within the funnel as much as possible. Then one can think of the above as a
multiobjective optimization, in which the primary objective is to minimize the funnel constraint violation
by the output and the secondary objective is to minimize the size of input movement (or input deviation
from the desired settling value in the case of Equation 28.66). In this case, as long as there exists an
input trajectory that keeps the output within the funnel, the first penalty term will be made exactly zero.
Typically, there will be an infinite number of solutions that achieve this, leading to a “degenerate” QP.
The algorithm thus finds the minimum norm solution, which corresponds to the least amount of input
adjustment—hence the name “Robust” MPCT . However, if there is no input that can keep the output
within the funnel, the first term will be the primary factor that determines the input.

The use of funnel is motivated by the fact that, in multivariable systems, the shape of desirable tra-
jectories for outputs is not always clear due to system interaction. Thus, it is argued that an attractive
formulation is to let the user specify an acceptable dynamic zone for each output as a funnel and then
find the minimum size input moves (or inputs with minimum deviation from their desired values) that
keep the outputs within the zone—or, if not possible, minimize the extent of violation.

28.4.4 Use of Other Norms

In defining the objective function, use of norms other than 2-norm is certainly possible. For example, the
possibility of using 1-norm (sum of absolute values) has been explored to a great extent. Use of infinity
norm has also been investigated with the aim of minimizing worst-case deviation over time. In both cases,
one gets an LP, for which a plethora of theories and software exist due to its significance in economics.
However, one difficulty with these formulations is in tuning. This is because the solution of an LP lies
at the intersection of binding constraints and it can switch abruptly from one vertex to another as one
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varies tuning parameters (such as the input weight parameters). The solution behavior of a QP is much
smoother and therefore, it is a preferred formulation for control.

28.4.5 Input Parameterization

In some algorithms such as PFC, the input trajectory can be parameterized using continuous basis
functions like polynomials. This can be useful if the objective is to follow smooth setpoint trajectories
precisely, such as in mechanical servo applications, and the sampling time cannot be made sufficiently
small to allow this with piecewise constant inputs.

In other commercial algorithms such as HIECON and IDCOM-M, only a single control move is calcu-
lated,which would correspond to m= 1 in DMC. With this setting, the calculation is greatly simplified.
On the other hand, use of m= 1 in DMC would limit the closed-loop performance in general. These
algorithms get around this problem by using a single coincidence point, at which the output is asked to
match the reference value exactly.

28.4.6 Model Conditioning

In multivariable plants, two or more outputs can behave very similarly in response to all the inputs. This
phenomenon is referred to as “ill-conditioning” and is reflected by a gain matrix that is nearly singular. An
implication is that it can be very difficult to control these outputs independently with the inputs, as it will
require an excessive amount of input movement in order to move the outputs in certain directions. Using
an ill-conditioned process model for control calculation is not recommended as it can lead to numerical
problems (e.g., inversion of a nearly singular matrix) and also excessive input movements and/or even an
instability.

Even though one would check the conditioning of the model at the design stage, because control
structure can change due to constraints and failures of sensors and actuators, one must make sure at each
execution time that an ill-conditioned process model is not directly inverted in the input calculation.

In DMC, direct inversion of an ill-conditioned process model can be circumvented by including a
substantive input move penalty term, which effectively increases the magnitudes of the diagonal elements
of the dynamic matrix that is inverted during the least-squares calculation.

In other algorithms that do not include an input move penalty in the objective function, ill-conditioning
must be checked at each execution time. In RMPCT, this is done through a method called Singular Value
Threshholding, where a procedure called “singular value decomposition” is performed on the gain matrix
to determine those CV directions for which the gain is too low for any effective control at all. Those
directions with singular values lower than a threshhold value are given up for control and only the
remaining “high-gain” directions are controlled. SMC-IDCOM addresses this based on the user-defined
ranking of CVs. Here, whenever an ill-conditioning is detected, CVs are dropped from the control
calculation in the order of their ranks, starting from the one with the least assigned priority, until the
condition number improves to an acceptable level. When two CVs are seen to behave very similarly, the
user can rank the less important CV with a very low priority. Even though the control on the dropped
CV is given up, it is hoped that it would be controlled indirectly since it behaves similarly to the other
high-ranked CV.

28.4.7 Prioritization of CVs and MVs

In most practical control problems, it is not possible to satisfy all constraints and also drive all outputs
and inputs to their desired resting values. Hence, priorities need to be assigned to express their relative
importance. In DMC, these priorities are determined through weight parameters, which enter into the
various quadratic penalty terms in the objective function. For large, complex problems, determining
proper weights that lead to an intended behavior can be a daunting task. Even if a set of weights consistent
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with the control specification is found, the weights can differ vastly in magnitude from one to another,
causing a numerical conditioning problem.

Algorithms such as HIECON and SMC-IDCOM attempt to address this difficulty by letting the user
rank various objectives in the order of their importance. For example, constraint satisfaction may be the
most critical aspect, which must be taken care of before satisfying other objectives. Also driving the CVs
to their desired setpoints may be more important than driving the MVs to their most economic values.
In these algorithms, an optimization would be solved with the most important objective first and then
remaining degrees of freedom would be used to address the other objectives in the order of priority. These
algorithms also allow the user to rank each CV and MV according to its priority. Hence, for constraint
softening, one may specify the order in which constraints for various CVs must be relaxed. Also, in
setpoint tracking, one can prioritize the CVs so that CVs with higher ranks are driven to their setpoints
before those with lower ranks are considered.

28.4.8 Bi-Level Optimization

The MPC calculation can be split into two parts for an added flexibility. First, a local steady-state
optimization can be performed to obtain target values for each input and output. This can be followed by
a dynamic optimization to determine the most desirable dynamic trajectory to these target values. Even
though the local steady-state optimization can be based on an economic index, it does not replace the
more comprehensive nonlinear optimization that often runs above the MPC layer—at a much slower
rate—in order to provide an optimal range of inputs and outputs for the plant condition experienced
during a particular optimization cycle. The local optimization performed in MPC is based on a linear
steady-state model, which may be obtained by linearizing a nonlinear model or simply the steady-state
version of the step response model used in the dynamic optimization.

The reasons for running the local optimization may vary. For example, one may want to perform
an economic optimization at a higher frequency to account for local disturbances. Even if there is no
economic objective in the given control problem, the steady-state optimization can be helpful to determine
best feasible target values for CVs and the corresponding MV settling values.

The two-stage optimization can be formulated as below:

• Step 1: Steady-State Optimization The general form of a steady-state prediction equation is

y(∞|k)= Ks (u(∞|k)− u(k− 1))︸ ︷︷ ︸
Δus(k)

+b(k), (28.68)

where y(∞|k) and u(∞|k) are the steady-state values of the output and input projected at time k.
With only m input moves considered,

Δus(k)=Δu(k)+Δu(k+ 1)+ · · ·+Δu(k+m− 1). (28.69)

Note that, for the step response model,

y(∞|k)= y(k+m+ n− 1|k) (28.70)

and Ks = Sn. Also,

b(k)= ỹn−1(k)+ Sd
nΔd(k)+ (ym(k)− ỹ0(k)). (28.71)

This steady-state prediction model can be used to optimize a given economic objective function
subject to various input and output constraints:

min
Δus(k)

�(u(∞|k), y(∞|k)). (28.72)
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Since an economic objective function is typically linear and the prediction equation is also linear,
an LP results. Alternatively, one can also solve

min
Δus(k)

‖Δus(k)‖, (28.73)

min
Δus(k)

‖r− y(∞|k))‖Q. (28.74)

In the first case, we would be looking for a minimum input change such that all the constraints
are satisfied. In the second case, we would be seek a minimum deviation from the setpoint values
that are achievable within the given constraints. The solution sets the target settling values for the
inputs and outputs.

• Step 2: Dynamic Optimization The dynamic prediction equation is the same as before. A quadratic
regulation objective of the following is minimized subject to the given constraints through QP:

⎡
⎣m+n−2∑

i=1

(y(k+ i|k)− y∗(∞|k))T Q(y(k+ i|k)− y∗(∞|k))+
m−1∑
j=0

ΔuT (k+ j|k)RΔu(k+ j|k)

⎤
⎦ ,

(28.75)
where y∗(∞|k) is the solution from the steady-state optimization. An additional constraint may be
added to match the settling values of the optimized input trajectories to those computed from the
steady-state optimization:

Δu(k|k)+Δu(k+ 1|k)+ · · ·+Δu(k+m− 1|k)=Δu∗s (k). (28.76)

This also forces y(k+m+ n− 1|k) to be at the optimal steady-state value y∗(k+∞|k).

Note that, this steady-state optimization may be performed as often as at every sample time, that is
at the same execution rate as the dynamic optimization. However, it is critical to filter the noise and
other high-frequency variations from the feedback signal. Otherwise, the solution from the steady-state
solution can fluctuate wildly from sample time to sample time, especially in the case of an LP.

28.5 Future Needs

28.5.1 Better Identification

Conventionally, step response models used in DMC (or other industrial MPC algorithms) are identified
through a series of step tests. In some cases, pseudorandom binary sequence (PRBS) tests instead of step
tests are used and the step response coefficients are fitted through least squares. In almost all cases, input
channels are perturbed one at a time, leading to SISO identification. While this practice is simple and
easy to implement, it does not always yield a multivariable model of required accuracy. This is usually
dealt with in practice by detuning or dropping a part of control space, not a desirable remedy from a
performance standpoint.

Independent testing of input channels emphasizes the accuracy of individual transfer function ele-
ments, and can result in a poor fit of control-relevant multivariable system characteristics (e.g., the gain
directionality) [5]. For highly interactive processes, test signals for different input channels need to be
correlated in order to yield an accurate model for multivariable control. In general, this points to the
need for a systematic method to design identification experiments with control requirements directly
considered. In addition, a nonconservative way to quantify the model quality (e.g., uncertainty bounds)
would greatly aid the much needed integration between identification and control.

In terms of identification algorithms, development and use of multi-input multi-output (MIMO)
algorithms that are capable of capturing output correlations can be helpful. They will not only improve
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prediction in conventional control problems, but will also enable construction of a model useful for
inferential control. Traditional polynomial-model-based identification algorithms are poorly suited to
MIMO identification. Recently proposed subspace identification algorithms [8] may fill this need, but
they need to be tested further and perhaps tailored to suit the process control problems.

28.5.2 Robust MPC

Model uncertainty is an important aspect of every process control problem, as most processes are very
difficult and time consuming to model accurately. Hence, it is desirable to incorporate the model quality
information (e.g., uncertainty bounds, parameter probability distribution) directly into the control com-
putation, instead of achieving robustness margins indirectly through various tuning parameters. In terms
of the robust MPC controller synthesis, the most popular approach has been the so-called min–max
predictive control that aims at minimizing the worst-case error with respect to the model set. Other
methods include a stochastic approach where the expectation of the error is minimized, given a certain
probability distribution of model parameters [7]. None of these methods have been tested in real prob-
lems. See [2] for a review and references. In order for these methods to find practical applications, what is
most needed is a method that reliably computes the uncertainty bounds or probability distribution from
identification data.

28.5.3 Performance Monitoring, Diagnosis, and Adaptation

It has been reported that many MPCs perform well when commissioned, but their performances deteri-
orate over time and they eventually have to be taken offline. There are a wide variety of causes for this,
including instrumentation problems, process nonlinearity, and parameter variations. In order to sustain
the benefits of these controllers over a long period of time, a mechanism to detect and diagnose the cause
of significant performance deterioration is needed. The results can be communicated to engineers and
can also be used to adapt control parameters. Vigorous research has already begun in this area and some
vendors (such as Honeywell) have expressed interests in including such features in the next generation of
commercial software.

28.6 Conclusion

This chapter presented a brief review and outlook of MPC in the process industries. The original industrial
algorithms, albeit simple and restrictive, are continuing to be used quite successfully in process control
applications. Some generalizations and extensions introduced mostly by academics to enhance the original
industrial technology have found their way into the next generation of commercial algorithms being
marketed currently. This indicates a healthy synergism between academia and industry in this particular
area. This chapter also provided some needs (in both research and practice) to make MPC a more
appealing and broadly applicable technique in the future.
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29.1 Introduction

Traditional control theory is concerned with the design of linear feedback control with desirable
asymptotic behavior, such as stability and small steady-state and tracking errors, while properties of
transient behavior are expressed in terms of overshoot and speed of response. External disturbances can
be handled by modeling these as random processes, leading to the Linear Quadratic Gaussian (LQG)
problem formulation. This theory has some limitations.

Because the feedback law is specified to be linear, it is not possible for design methods to explicitly
incorporate hard bounds on the control values, for example, the requirement that the applied force should
not exceed a specified limit. Second, it is not possible to express finite time requirements, for example,
the requirement that the system state reach a prespecified value at a prespecified time. Third, it is not
possible to demand guaranteed performance in the face of disturbances, for example, the requirement
that a certain target state be reached, no matter what the disturbance. Thus control problems with hard
bounds on the control values, restrictions on the state trajectory over a finite time horizon, and guaranteed
behavior despite the disturbances, are difficult to solve using frequency-based design methods.

In order to address these problems one needs to study system evolution in the time domain. The central
concept that emerges in such studies is that of the reach set, which is the set of states that can be reached

29-1
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by using all possible controls. This chapter is devoted to the formulation and computation of the reach
set of a linear system with disturbances. The concept of reachability was introduced in [28]; [29] shows
the reach set can be computed by solving the forward Hamilton–Jacobi–Bellman–Isaacs (HJBI) partial
differential equation; and the notion of backward reachability with its application to aiming at a specified
target set is described in [20]. Reachability of hybrid systems is addressed in [30,35]. Over the last decade,
significant advances were made in the characterization of reach sets and their computation for linear
systems. These advances are described in this chapter.

Section 29.2 introduces the forward and backward reach sets, the classes of open- and closed-loop
controls, and different kinds of reach sets that are appropriate in dealing with disturbances. Although
some of the discussion applies to nonlinear systems, explicit formulas for reach sets are available only for
linear systems. These formulas lead to explicit algorithms for computing reach sets (of linear systems)
and Section 29.3 critically reviews the most promising algorithms. Section 29.4 is devoted to a set of
algorithms based on the ellipsoidal calculus. These algorithms have a lower computational complexity,
greater accuracy, and can work with systems of a larger size, compared with those reviewed in Section
29.3. Finally, Section 29.5 presents three examples to illustrate the ellipsoidal-based approach.

29.2 Basics of Reachability Analysis

29.2.1 Systems without Disturbances

Consider a general continuous-time
ẋ(t)= f (t, x, u), (29.1)

or discrete-time dynamical system
x(t+ 1)= f (t, x, u), (29.1d)

wherein t is time∗, x ∈ Rn is the state, u ∈ Rm is the control, and f is a measurable vector function taking
values in Rn.† The control values u(t, x(t)) are restricted to a closed compact control set U(t)⊂ Rm. An
open-loop control does not depend on the state, u= u(t); for a closed-loop control, u= u(t, x(t)).

Definition 29.1: Reach Set

The (forward) reach set X (t, t0, x0) at time t > t0 from the initial position (t0, x0) is the set of all states
x(t) reachable at time t by system (Equation 29.1, or 29.1d), with x(t0)= x0 through all possible controls
u(τ, x(τ)) ∈ U(τ), t0 ≤ τ< t. For a given set of initial states X0, the reach set X (t, t0, X0) is

X (t, t0, X0)=
⋃

x0∈X0

X (t, t0, x0).

Here are two facts about forward reach sets.

1. X (t, t0, X0) is the same for open-loop and closed-loop control.
2. X (t, t0, X0) satisfies the semigroup property,

X (t, t0, X0)= X (t, τ, X (τ, t0, X0)), t0 ≤ τ< t. (29.2)

∗ In discrete-time case, t assumes integer values.
† We are being general when giving the basic definitions. However, it is important to understand that for any specific

continuous-time dynamical system it must be determined whether the solution exists and is unique, and in which class of
solutions these conditions are met. we shall assume that function f is such that the solution of the differential equation
29.1 exists and is unique in Fillipov sense. This allows the right-hand side to be discontinuous. For discrete-time systems,
this problem does not exist.
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For linear systems
f (t, x, u)= A(t)x(t)+B(t)u, (29.3)

with matrices A(t) in Rn×n and B(t) in Rm×n. For a continuous-time linear system, the state transition
matrix is

Φ̇(t, t0)= A(t)Φ(t, t0), Φ(t, t)= I ,

which for constant A(t)≡ A simplifies as

Φ(t, t0)= eA(t−t0).

For a discrete-time linear system, the state transition matrix is

Φ(t+ 1, t0)= A(t)Φ(t, t0), Φ(t, t)= I ,

which for constant A(t)≡ A simplifies as

Φ(t, t0)= At−t0 .

If the state transition matrix is invertible, Φ−1(t, t0)=Φ(t0, t). The transition matrix is always invert-
ible for continuous-time and for sampled discrete-time systems. However, if for some τ, t0 ≤ τ< t, A(τ)
is degenerate (singular),Φ(t, t0)=∏t−1

τ=t0
A(τ) is also degenerate and cannot be inverted.

Following Cauchy’s formula, the reach set X (t, t0, X0) for a linear system can be expressed as

X (t, t0, X0)=Φ(t, t0)X0⊕
∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ (29.4)

in continuous-time, and as

X (t, t0, X0)=Φ(t, t0)X0⊕
t−1∑
τ=t0

Φ(t, τ+ 1)B(τ)U(τ) (29.4d)

in discrete-time case.
The operation “⊕” is the geometric sum, also known as Minkowski sum.∗ The geometric sum and

linear (or affine) transformations preserve compactness and convexity. Hence, if the initial set X0 and the
control sets U(τ), t0 ≤ τ< t, are compact and convex, so is the reach set X (t, t0, X0).

Definition 29.2: Backward Reach Set

The backward reach set Y(t1, t, y1) for the target position (t1, y1) is the set of all states y(t) for which there
exists some control u(τ, x(τ)) ∈ U(τ), t ≤ τ< t1, that steers system (Equation 29.1 or 29.1d) to the state y1

at time t1. For the target set Y1 at time t1, the backward reach set Y(t1, t, Y1) is

Y(t1, t, Y1)=
⋃

y1∈Y1

Y(t1, t, y1).

The backward reach set Y(t1, t, Y1) is the largest weakly invariant set with respect to the target set Y1

and time values t and t1.†

∗ Minkowski sum of sets W , Z ⊆ Rn is defined as W ⊕Z = {w+ z | w ∈W , z ∈Z}. Set W ⊕Z is nonempty if and only
if both W and Z are nonempty. If W and Z are convex, set W ⊕Z is convex.

† M is weakly invariant with respect to the target set Y1 and times t0 and t, if for every state x0 ∈M there exists a control
u(τ, x(τ)) ∈ U(τ), t0 ≤ τ< t, that steers the system from x0 at time t0 to some state in Y1 at time t. If all controls in
U(τ), t0 ≤ τ< t steer the system from every x0 ∈M at time t0 to Y1 at time t, set M is said to be strongly invariant with
respect to Y1, t0, and t.
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Remark 29.1

Backward reach set can be computed for continuous-time system only if the solution of Equation 29.1
exists for t < t1; and for discrete-time system only if the right-hand side of Equation 29.1d is invertible∗.

These two facts about the backward reach set Y are similar to those for forward reach sets.

1. Y(t1, t, Y1) is the same for open-loop and closed-loop control.
2. Y(t1, t, Y1) satisfies the semigroup property,

Y(t1, t, Y1)= Y(τ, t, Y(t1, τ, Y1)), t ≤ τ< t1. (29.5)

For the linear system (Equation 29.3) the backward reach set can be expressed as

Y(t1, t, Y1)=Φ(t, t1)Y1⊕
∫ t

t1

Φ(t, τ)B(τ)U(τ) dτ (29.6)

in the continuous-time case, and as

Y(t1, t, Y1)=Φ(t, t1)Y1⊕
t1−1∑
τ=t

−Φ(t, τ)B(τ)U(τ) (29.6d)

in the discrete-time case. The last formula makes sense only for discrete-time linear systems with invertible
state transition matrix. Degenerate discrete-time linear systems have unbounded backward reach sets and
such sets cannot be computed with available software tools.

Just as in the case of forward reach set, the backward reach set of a linear system Y(t1, t, Y1) is compact
and convex if the target set Y1 and the control sets U(τ), t ≤ τ< t1 are compact and convex.

Remark 29.2

In the computer science literature, the reach set is said to be the result of operator post, and the backward
reach set is the result of operator pre. In the control literature, the backward reach set is also called the
solvability set.

29.2.2 Systems with Disturbances

Consider the continuous-time dynamical system with disturbance

ẋ(t)= f (t, x, u, v), (29.7)

or the discrete-time dynamical system with disturbance

x(t+ 1)= f (t, x, u, v), (29.7d)

in which we also have the disturbance input v ∈ Rd with values v(t) restricted to a closed compact set
V(t)⊂ Rd .

In the presence of disturbances, the open-loop reach set (OLRS) is different from the closed-loop reach
set (CLRS).

Given the initial time t0, the set of initial states X0, and terminal time t, there are two types of OLRS.

Definition 29.3: OLRS of Maxmin Type

The maxmin open-loop reach set XOL(t, t0, X0) is the set of all states x, such that for any disturbance
v(τ) ∈ V(τ), there exists an initial state x0 ∈ X0 and a control u(τ) ∈ U(τ), t0 ≤ τ< t, that steers system
(Equation 29.7 or 29.7d) from x(t0)= x0 to x(t)= x.

∗ There exists f−1(t, x, u) such that x(t)= f−1(t, x(t+ 1), u, v).
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Definition 29.4: OLRS of Minmax Type

The minmax open-loop reach set XOL(t, t0, X0) is the set of all states x, such that there exists a control
u(τ) ∈ U(τ) that for all disturbances v(τ) ∈ V(τ), t0 ≤ τ< t, assigns an initial state x0 ∈ X0 and steers
system (Equation 29.7 or 29.7d), from x(t0)= x0 to x(t)= x.

In the maxmin case, the control is chosen after knowing the disturbance over the entire time interval
[t0, t], whereas in the minmax case, the control is chosen before any knowledge of the disturbance.
Consequently, the OLRS do not satisfy the semigroup property.

The terms “maxmin” and “minmax” come from the fact that XOL(t, t0, X0) is the subzero level set of
the value function

V (t, x)=max
v

min
u
{dist(x(t0), X0) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t0 ≤ τ< t}, (29.8)

that is., XOL(t, t0, X0)= {x | V (t, x)≤ 0}, and XOL(t, t0, X0) is the subzero level set of the value function

V (t, x)=min
u

max
v
{dist(x(t0), X0) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t0 ≤ τ< t}, (29.9)

in which dist(·, ·) denotes Hausdorff semidistance.∗ Since V(t, x)≤ V (t, x), XOL(t, t0, X0)⊆ XOL(t,
t0, X0).

Note that maxmin and minmax OLRS imply guarantees: these are states that can be reached no matter
what the disturbance is, whether it is known in advance (maxmin case) or not (minmax case). The OLRS
may be empty.

Fixing time instant τ1, t0 < τ1 < t, define the piecewise maxmin open-loop reach set with one correction,

X 1
OL(t, t0, X0)= XOL(t, τ1, XOL(τ1, t0, X0)), (29.10)

and the piecewise minmax open-loop reach set with one correction,

X 1
OL(t, t0, X0)= XOL(t, τ1, XOL(τ1, t0, X0)). (29.11)

The piecewise maxmin OLRS X 1
OL(t, t0, X0) is the subzero level set of the value function

V 1(t, x)=max
v

min
u
{V (τ1, x(τ1)) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), τ1 ≤ τ< t}, (29.12)

with V (τ1, x(τ1)) given by Equation 29.8, which yields

V 1(t, x)≥ V (t, x),

and thus,
X 1

OL(t, t0X0)⊆ XOL(t, t0, X0).

On the other hand, the piecewise minmax OLRS X 1
OL(t, t0, X0) is the subzero level set of the value

function

V
1
(t, x)=min

u
max

v
{V (τ1, x(τ1)) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), τ1 ≤ τ< t}, (29.13)

∗ Hausdorff semidistance between compact sets W , Z ⊆ Rn is defined as

dist(W , Z)=min{〈w− z, w− z〉1/2 | w ∈W , z ∈Z},
where 〈·, ·〉 denotes the inner product.
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with V (τ1, x(τ1)) given by Equation 29.9, which yields

V (t, x)≥ V
1
(t, x),

and thus,
XOL(t, t0X0)⊆ X 1

OL(t, t0, X0).

We can now recursively define piecewise maxmin and minmax OLRS with k corrections for t0 < τ1 < · · ·
< τk < t. The maxmin piecewise OLRS with k corrections is

X k
OL(t, t0, X0)= XOL(t, τk , X k−1

OL (τk , t0, X0)), (29.14)

which is the subzero level set of the corresponding value function

V k(t, x)=max
v

min
u
{V k−1(τk , x(τk)) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), τk ≤ τ< t}. (29.15)

The minmax piecewise OLRS with k corrections is

X k
OL(t, t0, X0)= XOL(t, τk , X k−1

OL (τk , t0, X0)), (29.16)

which is the subzero level set of the corresponding value function

V
k
(t, x)=min

u
max

v
{V k−1

(τk , x(τk)) | x(t)= x, u(τ) ∈ U(τ), v(τ) ∈ V(τ), τk ≤ τ< t}. (29.17)

From Equations 29.12, 29.13, 29.15, and 29.17 it follows that,

V (t, x)≤ V 1(t, x)≤ · · · ≤ V k(t, x)≤ V
k
(t, x)≤ · · · ≤ V

1
(t, x)≤ V (t, x).

Hence,

XOL(t, t0, X0)⊆ X 1
OL(t, t0, X0)⊆ · · · ⊆ X k

OL(t, t0, X0)

⊆ X k
OL(t, t0, X0)⊆ · · · ⊆ X 1

OL(t, t0, X0)⊆ XOL(t, t0, X0). (29.18)

We call

XCL(t, t0, X0)= X k
OL(t, t0, X0), k =

{∞ for continuous-time system,
t− t0− 1 for discrete-time system,

(29.19)

the maxmin closed-loop reach set of system (Equation 29.7 or 29.7d) at time t, and we call

XCL(t, t0, X0)= X k
OL(t, t0, X0), k =

{∞ for continuous-time system,
t− t0− 1 for discrete-time system,

(29.20)

the minmax closed-loop reach set of system (Equation 29.7 or 29.7d) at time t.

Definition 29.5: CLRS of Maxmin Type

Given initial time t0 and the set of initial states X0, the maxmin CLRS XCL(t, t0, X0) of system (Equation 29.7
or 29.7d) at time t > t0, is the set of all states x, for each of which and for every disturbance v(τ) ∈ V(τ), there
exist an initial state x0 ∈ X0 and a control u(τ, x(τ)) ∈ U(τ), such that the trajectory x(τ|v(τ), u(τ, x(τ)))
satisfying x(t0)= x0 and

ẋ(τ|v(τ), u(τ, x(τ))) ∈ f (τ, x(τ), u(τ, x(τ)), v(τ))

in the continuous-time case, or

x(τ+ 1|v(τ), u(τ, x(τ))) ∈ f (τ, x(τ), u(τ, x(τ)), v(τ))

in the discrete-time case, with t0 ≤ τ< t, is such that x(t)= x.
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Definition 29.6: CLRS of Minmax Type

Given initial time t0 and the set of initial states X0, the maxmin CLRS XCL(t, t0, X0) of system (Equation
29.7 or 29.7d), at time t > t0 is the set of all states x, for each of which there exists a control u(τ, x(τ)) ∈
U(τ), and for every disturbance v(τ) ∈ V(τ) there exists an initial state x0 ∈ X0, such that the trajectory
x(τ, v(τ)|u(τ, x(τ))) satisfying x(t0)= x0 and

ẋ(τ, v(τ)|u(τ, x(τ))) ∈ f (τ, x(τ), u(τ, x(τ)), v(τ))

in the continuous-time case, or

x(τ+ 1, v(τ)|u(τ, x(τ))) ∈ f (τ, x(τ), u(τ, x(τ)), v(τ))

in the discrete-time case, with t0 ≤ τ< t, is such that x(t)= x.

By construction, both maxmin and minmax CLRS satisfy the semigroup property (Equation 29.2).
For some classes of dynamical systems and some types of constraints on initial conditions, controls and

disturbances, the maxmin and minmax CLRS may coincide. This is the case for continuous-time linear
systems with convex compact bounds on the initial set, controls and disturbances under the condition
that the initial set X0 is large enough to ensure that X (t0+ ε, t0, X0) is nonempty for some small ε> 0.

Consider the linear system case,

f (t, x, u)= A(t)x(t)+B(t)u+G(t)v, (29.21)

where A(t) and B(t) are as in Equation 29.3, and G(t) takes its values in Rd .
The maxmin OLRS for the continuous-time linear system can be expressed through set valued integrals,

XOL(t, t0, X0)=
(
Φ(t, t0)X0⊕

∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ

)
−̇
∫ t

t0

Φ(t, τ)(−G(τ))V(τ) dτ, (29.22)

and for discrete-time linear system through set-valued sums,

XOL(t, t0, X0)=
(
Φ(t, t0)X0⊕

t−1∑
τ=t0

Φ(t, τ+ 1)B(τ)U(τ)

)
−̇

t−1∑
τ=t0

Φ(t, τ+ 1)(−G(τ))V(τ). (29.22d)

Similarly, the minmax OLRS for the continuous-time linear system is

XOL(t, t0, X0)=
(
Φ(t, t0)X0−̇

∫ t

t0

Φ(t, τ)(−G(τ))V(τ) dτ

)
⊕
∫ t

t0

Φ(t, τ)B(τ)U(τ) dτ, (29.23)

and for the discrete-time linear system, it is

XOL(t, t0, X0)=
(
Φ(t, t0)X0−̇

t−1∑
τ=t0

Φ(t, τ+ 1)(−G(τ))V(τ)

)
⊕

t−1∑
τ=t0

Φ(t, τ+ 1)B(τ)U(τ). (29.23d)

The operation ‘−̇’ is geometric difference, also known as Minkowski difference.∗

∗ The Minkowski difference of sets W , Z ∈ Rn is defined as W−̇Z = {ξ ∈ Rn | ξ⊕Z ⊆W
}

. If W and Z are convex,
W−̇Z is convex if it is nonempty.
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Now consider the piecewise OLRS with k corrections. Expression 29.14 translates into

X k
OL(t, t0, X0)=

(
Φ(t, τk)X k−1

OL (τk , t0, X0)⊕
∫ t

τk

Φ(t, τ)B(τ)U(τ) dτ

)
−̇
∫ t

τk

Φ(t, τ)(−G(τ))V(τ) dτ,

(29.24)
in the continuous-time case, and for the discrete-time case into

X k
OL(t, t0, X0)=

(
Φ(t, τk)X k−1

OL (τk , t0, X0)⊕
t−1∑
τ=τk

Φ(t, τ+ 1)B(τ)U(τ)

)
−̇

t−1∑
τ=τk

Φ(t, τ+ 1)(−G(τ))V(τ).

(29.24d)
Expression 29.16 translates into

X k
OL(t, t0, X0)=

(
Φ(t, τk)X k−1

OL (t, t0, X0) −̇
∫ t

τk

Φ(t, τ)(−G(τ))V(τ) dτ

)
⊕
∫ t

τk

Φ(t, τ)B(τ)U(τ) dτ,

(29.25)
in the continuous-time case, and for the discrete-time case into

X k
OL(t, t0, X0)=

(
Φ(t, τk)X k−1

OL (τk , t0, X0) −̇
t−1∑
τ=τk

Φ(t, τ+ 1)(−G(τ))V(τ)

)
⊕

t−1∑
τ=τk

Φ(t, τ+ 1)B(τ)U(τ).

(29.25d)
Since for any W1, W2, W3 ⊆ Rn it is true that

(W1−̇W2)⊕W3 = (W1⊕W3)−̇(W2⊕W3)⊆ (W1⊕W3)−̇W2,

from Equations 29.24 and 29.25 and from Equations 29.24d and 29.25d, it is clear that Equation 29.18 is
true.

For linear systems, if the initial set X0, control bounds U(τ) and disturbance bounds V(τ), t0 ≤ τ< t,
are compact and convex, the CLRS XCL(t, t0, X0) and XCL(t, t0, X0) are compact and convex, provided
they are nonempty. For continuous-time linear systems, XCL(t, t0, X0)= XCL(t, t0, X0)= XCL(t, t0, X0).

Just as for forward reachability case, the backward reach sets can be open-loop (OLBRS) or closed-loop
(CLBRS).

Definition 29.7: OLBRS of Maxmin Type

Given the terminal time t1 and target set Y1, the maxmin open-loop backward reach set YOL(t1, t, Y1) of
system (Equation 29.7 or 29.7d) at time t < t1 is the set of all y, such that for any disturbance v(τ) ∈ V(τ)
there exists a terminal state y1 ∈ Y1 and control u(τ) ∈ U(τ), t ≤ τ< t1, which steers the system from
y(t)= y to y(t1)= y1.

YOL(t1, t, Y1) is the subzero level set of the value function

V b(t, y)=max
v

min
u
{dist(y(t1), Y1) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< t1}, (29.26)

Definition 29.8: OLBRS of Minmax Type

Given the terminal time t1 and target set Y1, the minmax open-loop backward reach set YOL(t1, t, Y1) of
system (Equation 29.7 or 29.7d) at time t < t1 is the set of all y, such that there exists a control u(τ) ∈ U(τ)
that for all disturbances v(τ ∈ V(τ), t ≤ τ< t1, assigns a terminal state y1 ∈ Y1 and steers the system from
y(t)= y to y(t1)= y1.
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YOL(t1, t, Y1) is the subzero level set of the value function

V b(t, y)=min
u

max
v
{dist(y(t1), Y1) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< t1}, (29.27)

Remark 29.3

The backward reach set can be computed for a continuous-time system only if the solution of Equation
29.7 exists for t < t1, and for a discrete-time system, only if the right-hand side of Equation 29.7d is
invertible.

Similar to the forward reachability case, we construct piecewise OLBRS with one correction at time τ1,
t < τ1 < t1. The piecewise maxmin OLBRS with one correction is

Y1
OL(t1, t, Y1)= YOL(τ1, t, YOL(t1, τ1, Y1)), (29.28)

and it is the subzero level set of the function

V 1
b(t, y)=max

v
min

u
{V b(τ1, y(τ1)) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< τ1}. (29.29)

The piecewise minmax OLBRS with one correction is

Y1
OL(t1, t, Y1)= YOL(τ1, t, YOL(t1, τ1, Y1)), (29.30)

and it is the subzero level set of the function

V
1
b(t, y)=min

u
max

v
{V b(τ1, y(τ1)) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< τ1}, (29.31)

Recursively define maxmin and minmax OLBRS with k corrections for t < τk < · · ·< τ1 < t1. The
maxmin OLBRS with k corrections is

Yk
OL(t1, t, Y1)= YOL(τk , t, Yk−1

OL (t1, τk , Y1)), (29.32)

which is the subzero level set of function

V k
b(t, y)=max

v
min

u
{V k−1

b (τk , y(τk)) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< τk}. (29.33)

The minmax OLBRS with k corrections is

Yk
OL(t1, t, Y1)= YOL(τk , t, Yk−1

OL (t1, τk , Y1)), (29.34)

which is the subzero level set of the function

V
k
b(t, y)=min

u
max

v
{V k−1

b (τk , y(τk)) | y(t)= y, u(τ) ∈ U(τ), v(τ) ∈ V(τ), t ≤ τ< τk}, (29.35)

From Equations 29.29, 29.31, 29.33, and 29.35 it follows that

V b(t, y)≤ V 1
b(t, y)≤ · · · ≤ V k

b(t, y)≤ V
k
b(t, y)≤ · · · ≤ V

1
b(t, y)≤ V b(t, y).

Hence,

YOL(t1, t, Y1)⊆ Y1
OL(t1, t, Y1)⊆ · · · ⊆ Yk

OL(t1, t, Y1)

⊆ Yk
OL(t1, t, Y1)⊆ · · · ⊆ Y1

OL(t1, t, Y1)⊆ YOL(t1, t, Y1). (29.36)

We say that

YCL(t1, t, Y1)= Yk
OL(t1, t, Y1), k =

{∞ for continuous-time system
t1− t− 1 for discrete-time system

(29.37)

is the maxmin closed-loop backward reach set of system (Equation 29.7 or 29.7d) at time t. We say that

YCL(t1, t, Y1)= Yk
OL(t1, t, Y1), k =

{ ∞ for continuous-time system
t1− t− 1 for discrete-time system

(29.38)

is the minmax closed-loop backward reach set of system (Equation 29.7 or 29.7d) at time t.
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Definition 29.9: CLBRS of Maxmin Type

Given the terminal time t1 and target set Y1, the maxmin CLBRS YCL(t1, t, Y1) of system (Equation 29.7 or
29.7d) at time t < t1 is the set of all states y, for each of which for every disturbance v(τ) ∈ V(τ) there exists
terminal state y1 ∈ Y1 and control u(τ, y(τ)) ∈ U(τ) that assigns trajectory y(τ, |v(τ), u(τ, y(τ))) satisfying

ẏ(τ|v(τ), u(τ, y(τ))) ∈ f (τ, y(τ), u(τ, y(τ)), v(τ))

in continuous-time case, or

y(τ+ 1|v(τ), u(τ, y(τ))) ∈ f (τ, y(τ), u(τ, y(τ)), v(τ))

in discrete-time case, with t ≤ τ< t1, such that y(t)= y and y(t1)= y1.

Definition 29.10: CLBRS of Minmax Type

Given the terminal time t1 and target set Y1, the minmax CLBRS YCL(t1, t, Y1) of system (Equation 29.7 or
29.7d) at time t < t1 is the set of all states y, for each of which there exists control u(τ, y(τ)) ∈ U(τ) that for
every disturbance v(τ) ∈ V(τ) assigns terminal state y1 ∈ Y1 and trajectory y(τ, v(τ)|u(τ, y(τ))) satisfying

ẏ(τ, v(τ)|u(τ, y(τ))) ∈ f (τ, y(τ), u(τ, y(τ)), v(τ))

in the continuous-time case, or

y(τ+ 1, v(τ)|u(τ, y(τ))) ∈ f (τ, y(τ), u(τ, y(τ)), v(τ))

in the discrete-time case, with t ≤ τ< t1, such that y(t)= y and y(t1)= y1.

Both maxmin and minmax CLBRS satisfy the semigroup property (Equation 29.5).
The maxmin OLBRS for the continuous-time linear system can be expressed through set valued

integrals,

YOL(t1, t, Y1)=
(
Φ(t, t1)Y1⊕

∫ t

t1

Φ(t, τ)B(τ)U(τ) dτ

)
−̇
∫ t1

t
Φ(t, τ)G(τ)V(τ) dτ, (29.39)

and for the discrete-time linear system through set-valued sums,

YOL(t1, t, Y1)=
(
Φ(t, t1)Y1⊕

t1−1∑
τ=t

−Φ(t, τ+ 1)B(τ)U(τ)

)
−̇

t1−1∑
τ=t

Φ(t, τ+ 1)G(τ)V(τ). (29.39d)

Similarly, the minmax OLBRS for the continuous-time linear system is

YOL(t1, t, Y1)=
(
Φ(t, t1)Y1−̇

∫ t1

t
Φ(t, τ)G(τ)V(τ) dτ

)
⊕
∫ t

t1

Φ(t, τ)B(τ)U(τ) dτ, (29.40)

and for the discrete-time linear system it is

YOL(t1, t, Y1)=
(
Φ(t, t1)Y1−̇

t1−1∑
τ=t

Φ(t, τ+ 1)G(τ)V(τ)

)
⊕

t1−1∑
τ=t

−Φ(t, τ+ 1)B(τ)U(τ). (29.40d)
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Now consider piecewise OLBRS with k corrections. Expression 29.32 translates into

Yk
OL(t1, t, Y1)=

(
Φ(t, τk)Yk−1

OL (t1, τk , Y1)⊕
∫ t

τk

Φ(t, τ)B(τ)U(τ) dτ

)
−̇
∫ τk

t
Φ(t, τ)G(τ)V(τ) dτ,

(29.41)
in the continuous-time case, and for the discrete-time case into

Yk
OL(t1, t, Y1)=

⎛
⎝Φ(t, τk)Yk−1

OL (t1, τk , Y1)⊕
τk−1∑
τ=t

−Φ(t, τ+ 1)B(τ)U(τ)

⎞
⎠ −̇

τk−1∑
τ=t

Φ(t, τ+ 1)G(τ)V(τ).

(29.41d)
Expression 29.34 translates into

Yk
OL(t1, t, Y1)=

(
Φ(t, τk)Yk−1

OL (t1, τk , Y1)−̇
∫ τk

t
Φ(t, τ)G(τ)V(τ) dτ

)
⊕
∫ t

τk

Φ(t, τ)B(τ)U(τ) dτ,

(29.42)
in the continuous-time case, and for the discrete-time case into

Yk
OL(t1, t, Y1)=

⎛
⎝Φ(t, τk)Yk−1

OL (t1, τk , Y1)−̇
τk−1∑
τ=t

Φ(t, τ+ 1)G(τ)V(τ)

⎞
⎠⊕

τk−1∑
τ=t

−Φ(t, τ+ 1)B(τ)U(τ).

(25.42d)
For continuous-time linear systems YCL(t1, t, Y1)= YCL(t1, t, Y1)= YCL(t1, t, Y1) under the condition

that the target set Y1 is large enough to ensure that YCL(t1, t1− ε, Y1) is nonempty for some small ε> 0.
Computation of backward reach sets for discrete-time linear systems makes sense only if the state

transition matrixΦ(t1, t) is invertible.
If the target set Y1, control sets U(τ), and disturbance sets V(τ), t ≤ τ< t1, are compact and convex,

then CLBRS YCL(t1, t, Y1) and YCL(t1, t, Y1) are compact and convex, if they are nonempty.

29.2.3 Reachability Problem

Reachability analysis is concerned with the computation of the forward X (t, t0, X0) and backward
Y(t1, t, Y1) reach sets (the reach sets may be maxmin or minmax) in a way that can effectively meet
requests like the following:

1. For the given time interval [t0, t], determine whether the system can be steered into the given target
set Y1. In other words, is the set Y1 ∩⋃t0≤τ≤t X (τ, t0, X0) nonempty? And if the answer is “yes,”
find a control that steers the system to the target set (or avoids the target set).∗

2. If the target set Y1 is reachable from the given initial condition {t0, X0} in the time interval [t0, t],
find the shortest time to reach Y1,

arg min
τ
{X (τ, t0, X0)∩Y1 �= ∅ | t0 ≤ τ≤ t}.

3. Given the terminal time t1, target set Y1, and time t < t1, find the set of states starting at time t from
which the system can reach Y1 within time interval [t, t1]. In other words, find

⋃
t≤τ<t1

Y(t1, τ, Y1).
4. Find a closed-loop control that steers a system with disturbances to the given target set in given

time.
5. Graphically display the projection of the reach set along any specified two- or three-dimensional

subspace.

∗ So-called verification problems often consist in ensuring that the system is unable to reach an “unsafe” target set within a
given time interval.
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For linear systems, if the initial set X0, target set Y1, control bounds U(·), and disturbance bounds V(·)
are compact and convex, so are the forward X (t, t0, X0) and backward Y(t1, t, Y1) reach sets. Hence
reachability analysis requires the computationally effective manipulation of convex sets, and performing
the set-valued operations of unions, intersections, geometric sums, and differences.

Existing reach set computation tools can deal reliably only with linear systems with convex constraints.
A claim that a certain tool or method can be used effectively for nonlinear systems must be treated with
caution, and the first question to ask is for what class of nonlinear systems and with what limit on the
state space dimension does this tool work? Some “reachability methods for nonlinear systems” reduce to
the local linearization of a system followed by the use of well-tested techniques for linear system reach set
computation. Thus these approaches in fact use reachability methods for linear systems.

29.3 Overview of Computational Methods and Tools

Before choosing a method and a tool for reachability analysis, one should answer the following questions
to specify the requirements.

1. Do you really need to compute reach sets, or it is enough to perform a safety check, for example,
to ensure that trajectories of a system never enter a given target set, or never leave a given initial
set? Barrier functions or invariant sets, described in the end of this section, may be sufficient for
safety checking.

2. Do you need to compute reach sets exactly, or will approximations, external and internal, be
enough? Except for very specific classes of systems, exact reach set computation is not possible,
and approximation techniques are required. Unless a reach set has simple structure, its exact
representation is possible only for low state-space dimension. Hence, the next question.

3. What is the dimension of your system? The higher the system dimension, the rougher the reach
set approximation.

Another important quality of a computational method for reach sets is the preservation of the semi-
group property. It is highly desirable that the semigroup property is maintained by the algorithm as well
as by its software implementation.

29.3.1 Level Set Method

We start the overview of computational techniques for reach sets with the level set method as it points
out the essence of the reachability problem, and has been used in practice for specific nonlinear systems.
The idea is to solve the HJBI partial differential equation

∂V

∂t
+max

u

〈
∂V

∂x
, f (t, x, u)

〉
= 0,

with initial condition

V (t0, x)= dist(x, X0),

for t > t0, and then to find the reach set X (t, t0, X0) as the subzero level set of the solution V (t, x),

X (t, t0, X0)= {x ∈ Rn | V (t, x)≤ 0
}

.

This forward HJBI equation was introduced in [29]. For systems with disturbances, the HJBI equation is

∂V

∂t
+min

v
max

u

〈
∂V

∂x
, f (t, x, u, v)

〉
= 0
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in the maxmin case, and
∂V

∂t
+max

u
min

v

〈
∂V

∂x
, f (t, x, u, v)

〉
= 0

in the minmax case.
For backward reach sets, the HJBI equation is solved in backward time,

∂Vb

∂t
+min

u

〈
∂Vb

∂x
, f (t, x, u)

〉
,

with boundary condition
Vb(t1, x)= dist(x, Y1),

for t < t1. For systems with disturbances, the backward HJBI is

∂V b

∂t
+max

v
min

u

〈
∂V b

∂x
, f (t, x, u, v)

〉
= 0

in the maxmin case, and
∂V b

∂t
+min

u
max

v

〈
∂V b

∂x
, f (t, x, u, v)

〉
= 0

in the minmax case.
Computation of reach sets as level sets of HJBI solutions was introduced in [21,22,24] with special

emphasis on linear systems. In [31], the authors applied the level set method to reachability analysis of
hybrid systems. The level set method is implemented in the Level Set Toolbox [5], which uses numerical
algorithms for time-dependent HJBI equations and structured grids. Work is under way to implement
fast marching methods. These are effective numerical schemes that work for time-independent HJBI, but
whose major restriction is the need for the control to have the same dimension as the state. Level Set
Toolbox tries to compute the surface of the reach set exactly with accuracy dependent on the choice of the
grid. This plus the exponential growth of computational complexity with the system dimension makes
the level set method impractical for systems with dimension larger than three.

Level Set Toolbox deals with continuous-time systems. To use the level set method in discrete-time case,
one has to solve the Bellman equation under the condition that the right-hand side of system (Equation
29.1d) is invertible,

V (t+ 1, x)=min
u

(V (t, f −1(t, x, u)))

with initial condition
V (t0, x)= dist(x, X0)

for t > t0, and then find the forward reach set

X (t, t0, X0)= {x ∈ Rn | V (t, x)≤ 0}.

The backward reach set is the subzero level set of the value function Vb(t, x) obtained from the backward
Bellman equation,

Vb(t− 1, x)=min
u

(Vb(t, f (t− 1, x, u))),

with boundary condition
Vb(t1, x)= dist(x, Y1),

for t < t1. For systems with disturbances minu is substituted with maxv minu or with minu maxv in both
forward and backward Bellman equations, and the functions f and f −1, whose existence is required,
depend on an additional parameter v.
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Even though in the discrete-time case the computation of the value function does not involve solving
a partial differential equation (PDE), it is still very burdensome, especially for nonlinear systems whose
reach sets are nonconvex. Computing the distance function for such sets and minimizing it over u may
be difficult. Even more difficult it is to search for maxmin or minmax.

The conclusion is that although the level set method handles nonlinear systems, it is computationally
costly, and the need to maintain a grid with the value function values, which must be rather dense to
ensure proper accuracy, makes it practical only for low-dimensional dynamical systems.

29.3.2 Quantifier Elimination

For some classes of systems the reach sets can be computed symbolically using quantifier elimination.
Quantifier elimination is the removal of all quantifiers (the universal quantifier ∀ and the existential quan-
tifier ∃) from a quantified system. Each quantified formula is substituted with quantifier-free expression
with operations+,×,= and <. For example, consider the discrete-time linear system (Equations 29.1d,

29.3), with A(t)= A=
[

0 1
0 0

]
and B(t)= B=

[
0
1

]
. For initial conditions x0 ∈ {x ∈ R2 | ‖x‖∞ ≤ 1} and

controls u(t) ∈ {u ∈ R | − 1≤ u≤ 1}, the reach set for t ≥ 0 is given by the quantified formula{
x ∈ R2 | ∃x0, ∃t ≥ 0, ∃u(τ), 0≤ τ< t : x = Atx0+

t−1∑
τ=0

At−τ−1Bu(τ)

}
,

which is equivalent to the quantifier-free expression

−1≤ [1 0]x ≤ 1 ∧ − 1≤ [0 1]x ≤ 1.

It is proved in [27] that if A is constant and nilpotent or is diagonalizable with rational real or purely
imaginary eigenvalues, the quantifier elimination package returns a quantifier free formula describing
the reach set. This class of systems is evidently rather limited.

Requiem [10] is a Mathematica notebook which, given a linear system, the set of initial conditions and
control bounds, symbolically computes the exact reach set, using the experimental quantifier elimination
package.

29.3.3 Polytope Method

Definition 29.11: Hyperplane

The hyperplane H(c, γ) in Rn is the set

H = {x ∈ Rn | 〈c, x〉 = γ}
with fixed c ∈ Rn and γ ∈ R.

A hyperplane defines two (closed) halfspaces,

S1 = {x ∈ Rn | 〈c, x〉 ≤ γ}, and S2 = {x ∈ Rn | 〈c, x〉 ≥ γ}.

Definition 29.12: Polytope

The polytope P(C, g) is the intersection of a finite number of closed halfspaces:

P = {x ∈ Rn | Cx ≤ g},
with fixed C = [c1 · · · cm]T ∈ Rm×n and g = [γ1 · · · γm]T ∈ Rm.
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For linear discrete-time systems (Equations 29.7d and 29.21), with X0, U(t) and V(t), t ≥ t0, being
polytopes in Rn, Rm, and Rd respectively, the reach sets XCL(t, t0, X0) and XCL(t, t0, X0) are also polytopes,
because the polytope structure is closed under the operations of affine transformation, geometric sum,
and geometric difference. (For continuous-time systems the reach sets need not be polytopes.) Starting
with initial condition

XCL(t0, t0, X0)= XCL(t0, t0, X0)= X0,

for time step t > t0 these reach sets are computed exactly as

XCL(t, t0, X0)= A(t− 1)X (t− 1, t0, X0)⊕B(t− 1)U(t− 1)−̇G(t− 1)V(t− 1),

and
XCL(t, t0, X0)= A(t− 1)X (t− 1, t0, X0)−̇G(t− 1)V(t− 1)⊕B(t− 1)U(t− 1).

A similar procedure works for backward reach sets if the matrices A(t), t < t1 are nondegenerate.
As we see, the polytope method consists in sequential computation of affine transformations of poly-

topes, geometric sum of two polytopes, and geometric difference of two polytopes (or, geometric difference
first, then geometric sum for minmax CLRS). In the absence of disturbances the term G(t− 1)V(t− 1)
vanishes and no geometric difference operation is performed. Each operation of geometric sum or geo-
metric difference for two polytopes consists in finding the vertices of the resulting polytope and calculating
its convex hull.

This method is implemented in the MultiParametric Toolbox (MPT) for MATLAB� [7,26]. Among
its advantages are its simplicity, the fact that the reach sets are computed exactly, and that it is easy to
compute the distance between two polytopes and to check whether two or more polytopes intersect, or
whether a polytope intersects a hyperplane or a halfspace.

However, the polytope method has its limitations. The convex hull algorithm employed by MPT is
based on the Double description method [32] and implemented in the CDD/CDD+ package [1]. Its
complexity is Kn, where K is the number of vertices and n is the state-space dimension. Hence, the use of
MPT in general is practical only for low-dimensional systems, or for systems with very special structure
of matrices A, B, and G that ensure that the number of polytope vertices does not grow too much with
each time step. But even in low-dimensional systems the number of vertices in the reach set polytope
can grow very large with the number of time steps. For example, consider the discrete-time linear time-

invariant system with A(t)= A=
[

cos 1 − sin 1
sin 1 cos 1

]
, B(t)= I , G(t)= 0 uk ∈ {u ∈ R2 | ‖u‖∞ ≤ 1}, and

x0 ∈ {x ∈ R2 | ‖x‖∞ ≤ 1}. Starting with a rectangular initial set, the number of vertices of the reach set
polytope is 4t+ 4 at the tth step.

29.3.4 d/dt

In d/dt [3], the reach set of a discrete-time linear system is approximated by unions of rectangular
polytopes [13]. The algorithm works as follows. First, given the set of initial conditions X0 defined as a
polytope at time t0, the evolution in time of the polytope’s extreme points is computed X (τ1, t0, X0). Sec-
ond, the algorithm computes the convex hull of vertices of both, the initial polytope X0 and X (τ1, t0, X0).
The resulting polytope is then bloated (magnified) to include

⋃
t0≤τ≤τ1

X (τ, t0, X0). Finally, this overap-
proximating polytope is in its turn overapproximated by the union of rectangles. The same procedure is
repeated for the next time interval [τ1, τ2], and the union of both rectangular approximations is taken,
and so on.

Rectangular polytopes are easy to represent and the number of facets grows linearly with dimension,
but a large number of rectangles must be used to assure that the approximation is not overly conservative.
Besides, the important part of this method is again the convex hull calculation whose implementation
relies on the same CDD/CDD+ library. This limits the dimension of the system and time interval for
which it is feasible to calculate the reach set.

d/dt is implemented in C.
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29.3.5 Zonotope Method

Polytopes can give arbitrarily close approximations to any convex set, but the number of vertices can
grow prohibitively large and, as shown in [14], the computation of a polytope by its convex hull becomes
intractable for large number of vertices in high dimensions. Symmetric polytopes, called zonotopes [11],
could be a solution.

Definition 29.13: Zonotope

A zonotope is a special class of polytopes of the form

Z =
{

x ∈ Rn | x = c+
k∑

i=1

αigi , − 1≤ αi ≤ 1

}
,

wherein c and g1, . . . , gk are vectors in Rn.

Thus, a zonotope Z is compactly represented by its center c and generator vectors g1, . . . , gk . The value
k/n is called the order of the zonotope.

The zonotope method for external approximation of reach sets of discrete-time linear systems was
introduced in [17], implemented in the MATISSE package for MATLAB [6], and further discussed
in [18]. In [18], the authors introduce computational tricks that work only for time-invariant linear
systems. The advantage of zonotopes is that they are closed under the operations of affine transformation
and geometric sum, hence, the reach set of a discrete-time linear system (Equations 29.1d and 29.3), with
X0 and U(t), t ≥ t0, being zonotopes, is also an zonotope. Similar properties hold for the backward reach
set.

The problem with using zonotopes is that with every time step the order of the approximating zono-
tope increases by k/n. This difficulty can be averted by limiting the number of generator vectors, and
overapproximating zonotopes whose number of generator vectors exceeds this limit by lower-order zono-
topes. This may affect the accuracy of the reach set approximation and potentially destroy the semigroup
property that is inherently present in the zonotope method.

Further limitations of zonotopes are that geometric difference of two zonotopes, intersections of
zonotopes or zonotopes with hyperplanes or halfspaces, are not zonotopes. That presents a difficulty
for the computation of reach sets for systems with disturbances and hybrid systems. Effective zonotope
approximation algorithms for the geometric difference and intersections are needed. Currently, MATISSE
does not provide a zonotope library in which these operations are implemented.

29.3.6 CheckMate

CheckMate [2] is a MATLAB toolbox that can evaluate specifications for trajectories starting from the
set of initial (continuous) states corresponding to the parameter values at the vertices of the parameter
set. This provides preliminary insight into whether the specifications will be true for all parameter values.
The method of oriented rectangular polytopes for external approximation of reach sets is introduced
in [36]. The basic idea is to construct an oriented rectangular hull of the reach set for every time step,
whose orientation is determined by the singular value decomposition of the sample covariance matrix for
the states reachable from the vertices of the initial polytope. The limitation of CheckMate and the method
of oriented rectangles is that only autonomous (i.e., there is no control) systems are allowed, and only an
external approximation of the reach set is provided.

Currently, the development of CheckMate is discontinued. Therefore, we refer the reader to PHAVer
[8], the newly developed verification tool that uses Parma Polyhedra Library (PPL) [9] for its polyhedral
computations.
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29.3.7 Ellipsoidal Method

All the geometric methods for reach set computation described above, namely polytopes, zonotopes,
rectangular hulls, and oriented rectangles employ the notion of time step. At every time step a certain
algorithm runs producing a new reach set for that time step. This can work only for discrete-time
systems. The ellipsoidal method offers a different approach that works for continuous- and discrete-time
linear systems with disturbances, with ellipsoidal constraints on the initial or target set, controls, and
disturbances.

Definition 29.14: Ellipsoid

The ellipsoid E(q, Q) in Rn with center q and shape matrix Q is the set

E(q, Q)= {x ∈ Rn | 〈(x− q), Q−1(x− q)〉 ≤ 1
}

,

wherein Q is positive definite (Q = QT and 〈x, Qx〉> 0 for all nonzero x ∈ Rn).

Definition 29.15: Support Function

The support function of a set X ⊆ Rn is

ρ(l | X )= sup
x∈X

〈l, x〉.

In particular, the support function of an ellipsoid is

ρ(l | E(q, Q))= 〈l, q〉+ 〈l, Ql〉1/2. (29.43)

We say that the ellipsoid E tightly overapproximates a given convex set X if there exist l ∈ Rn such that

ρ(±l | E)= ρ(±l | X ) and X ⊆ E.

We say that ellipsoid E tightly underapproximates given convex set X if there exist l ∈ Rn such that

ρ(±l | E)= ρ(±l | X ) and E ⊆ X .

The equality ρ(±l | E)= ρ(±l | X ) means that the boundaries of E and X touch in directions l and−l.
In [23], the authors introduce parametrized families of external and internal ellipsoids that tightly

overapproximate and underapproximate the reach set and derive the differential equations that govern
the evolution in time of the center and the shape matrices of these ellipsoids. The reach set is represented as
the intersection of tight external and as the union of tight internal ellipsoids. In [25], this result is extended
to the discrete-time case with special emphasis on systems with degenerate matrices A(t). In the next
section we present the equations that describe ellipsoidal overapproximation and underapproximation
of reach sets.

The ellipsoidal method provides the following benefits:

• Approximating the reach set of an n-dimensional discrete-time linear system by L ellipsoids over
t time steps requires t[L(8n3+ 4n2+ 2n)+ 2n2] scalar multiplications. The computational com-
plexity grows polynomially with the system dimension, in contrast with the exponential growth of
the polytope method complexity.
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• It is possible to refine the reach set approximation as much as needed by adding more ellipsoids
to the parameterized family. Theoretically, it is possible to exactly represent the reach set of linear
system through both external and internal ellipsoids.

• It is possible to single out individual external and internal approximating ellipsoids that are optimal
for a given criterion (e.g., trace, volume, diameter), or a combination of such criteria.

• For systems with no disturbance, there are simple analytical expressions for control sequences that
steer the state to a desired target.

Ellipsoidal Toolbox (ET) for MATLAB [4] implements the reach set computations described here.

29.3.8 Parallelotope Method

The parallelotope∗ method [19] employs the idea of the ellipsoidal method to compute the reach sets of
linear systems. The reach set is represented as the intersection of a parametrized family of tight external,
and the union of a parametrized family of tight internal parallelotopes. The evolution equations for the
centers and orientation matrices of both external and internal parallelotopes are provided. This method
also finds controls that can drive the system to the boundary points of the reach set, similar to [23,37]. The
computation to solve the evolution equations for tight approximating parallelotopes, however, is more
involved than the one for ellipsoids, and in the case of discrete-time systems, this method does not deal
with singular state transition matrices.

29.3.9 Other Methods

As was mentioned above, for certain verification problems, computation of reach sets can be avoided. For
example, it may be enough to ensure that for given set of initial conditions X0, the trajectories of system
(Equation 29.1) never enter a given target set Y1. In this case, the method of barrier certificates [34] may
help. The idea as well as the main difficulty is to find a Lyapunov-like function C(x) such that

1. C(x) > 0 in Y1

2. C(x)≤ 0 in X0

3. 〈DxC(x), f (t, x, u)〉 ≤ 0 where C(x)= 0

If such a function exists, system (Equation 29.1) is “safe” with respect to the initial set X0 and the target
set Y1, that is, system trajectories emanating from X0 never reach Y1.

Another example for which reach sets need not be computed exactly occurs when it is possible to
ensure that for given initial set X0 there exist system trajectories that never leave X0. The set X0 is said to
be invariant with respect to those trajectories.

In [12], the authors show that for certain classes of discrete-time dynamical systems with disturbances
(Equation 29.7d) and certain initial sets X0, convex constraints on controls, and disturbances, for every
disturbance there exist closed-loop control strategies that keep the state of the system inside X0.

For more information about invariant sets, we refer the reader to the survey paper [15] and references
therein.

29.4 Ellipsoidal Method

Consider a continuous-time linear system

ẋ(t)= A(t)x(t)+B(t)u+G(t)v, (29.44)

in which x ∈ Rn is the state, u ∈ Rm is the control, and v ∈ Rd is the disturbance. A(t), B(t), and G(t)
are continuous and take their values in Rn×n, Rn×m, and Rn×d , respectively. Control u(t, x(t)) and

∗ Parallelotope is a zonotope with n generator vectors in Rn.
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disturbance v(t) are measurable functions restricted by ellipsoidal constraints: u(t, x(t)) ∈ E(p(t), P(t))
and v(t) ∈ E(q(t), Q(t)). The set of initial states at initial time t0 is assumed to be the ellipsoid E(x0, X0).

The reach sets for systems with disturbances computed by the ET are CLRS. Henceforth, when describ-
ing backward reachability, reach sets refer to CLRS or CLBRS. Recall that for continuous-time linear
systems maxmin and minmax CLRS coincide, and the same is true for maxmin and minmax CLBRS.

If the matrix Q(·)= 0, the system (Equation 29.44) becomes an ordinary affine system with known
v(·)= q(·). If G(·)= 0, the system becomes linear. For these two cases, (Q(·)= 0 or G(·)= 0), the
reach set is as given in Definition 29.1, and so the reach set will be denoted as XCL(t, t0, E(x0, X0))=
X (t, t0, E(x0, X0)).

The reach set X (t, t0, E(x0, X0)) is a symmetric compact convex set, whose center evolves in time
according to

ẋc(t)= A(t)xc(t)+B(t)p(t)+G(t)q(t), xc(t0)= x0. (29.45)

Fix a vector l0 ∈ Rn, and consider the solution l(t) of the adjoint equation

l̇(t)=−AT (t)l(t), l(t0)= l0, (29.46)

which is equivalent to

l(t)=ΦT (t0, t)l0.

If the reach set X (t, t0, E(x0, X0)) is nonempty, there exist tight external and tight internal approximat-
ing ellipsoids E(xc(t), X+l (t)) and E(xc(t), X−l (t)), respectively, such that

E(xc(t), X−l (t))⊆ X (t, t0, E(x0, X0))⊆ E(xc(t), X+l (t)), (29.47)

and

ρ(l(t) | E(xc(t), X−l (t)))= ρ(l(t) | X (t, t0, E(x0, X0)))= ρ(l(t) | E(xc(t), X+l (t))). (29.48)

The equation for the shape matrix of the external ellipsoid is

Ẋ+l (t)= A(t)X+l (t)+X+l (t)AT (t)+πl(t)X+l (t)+ 1

πl(t)
B(t)P(t)BT (t)

− (X+l (t))1/2Sl(t)(G(t)Q(t)GT (t))1/2− (G(t)Q(t)GT (t))1/2ST
l (t)(X+l (t))1/2, (29.49)

X+l (t0)= X0, (29.50)

in which

πl(t)= 〈l(t), B(t)P(t)BT (t)l(t)〉1/2

〈l(t), X+l (t)l(t)〉1/2
,

and the orthogonal matrix Sl(t) (Sl(t)ST
l (t)= I) is determined by the equation

Sl(t)(G(t)Q(t)GT (t))1/2l(t)= 〈l(t), G(t)Q(t)GT (t)l(t)〉1/2

〈l(t), X+l (t)l(t)〉1/2
(X+l (t))1/2l(t).

In the presence of disturbance, if the reach set is empty, the matrix X+l (t) becomes sign indefinite. For a
system without disturbance, the terms containing G(t) and Q(t) vanish from Equation 29.49.
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The equation for the shape matrix of the internal ellipsoid is

Ẋ−l (t)= A(t)X−l (t)+X−l (t)AT (t)+ (X−l (t))1/2Tl(t)(B(t)P(t)BT (t))1/2

+ (B(t)P(t)BT (t))1/2TT
l (t)(X−l (t))1/2−ηl(t)X−l (t)− 1

ηl(t)
G(t)Q(t)GT (t), (29.51)

X−l (t0)= X0, (29.52)

in which

ηl(t)= 〈l(t), G(t)Q(t)GT (t)l(t)〉1/2

〈l(t), X+l (t)l(t)〉1/2
,

and the orthogonal matrix Tl(t) is determined by the equation

Tl(t)(B(t)P(t)BT (t))1/2l(t)= 〈l(t), B(t)P(t)BT (t)l(t)〉1/2

〈l(t), X−l (t)l(t)〉1/2
(X−l (t))1/2l(t).

Similar to the external case, the terms containing G(t) and Q(t) vanish from Equation 29.51 for a system
without disturbance.

The point where the external and internal ellipsoids touch the boundary of the reach set is given by

x∗l (t)= xc(t)+ X+l (t)l(t)

〈l(t), X+l (t)l(t)〉1/2
.

The boundary points x∗l (t) form trajectories, which we call extremal trajectories. Due to the nonsingular
nature of the state transition matrixΦ(t, t0), every boundary point of the reach set belongs to an extremal
trajectory. To follow an extremal trajectory specified by parameter l0, the system has to start at time t0 at
initial state

x0
l = x0+ X0l0

〈l0, X0l0〉1/2
. (29.53)

In the absence of disturbances, the open-loop control

ul(t)= p(t)+ P(t)BT (t)l(t)

〈l(t), B(t)P(t)BT (t)l(t)〉1/2
. (29.54)

steers the system along the extremal trajectory defined by the vector l0. When a disturbance is present,
this control keeps the system on an extremal trajectory if and only if the disturbance plays against the
control always taking its extreme values.

Expressions 29.47 and 29.48 lead to the following fact:

⋃
〈l0,l0〉=1

E(xc(t), X−l (t))= X (t, t0, E(x0, X0))=
⋂

〈l0,l0〉=1

E(xc(t), X+l (t)).

In practice, this means that the more values of l0 we use to compute X+l (t) and X−l (t), the better will be
our approximation.
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Remark about Discrete-Time Systems

For discrete-time linear system

x(t+ 1)= A(t)x(t)+B(t)u(t, x(t))+G(t)v(t), (29.44d)

the equivalent of Equation 29.46 is

l(t+ 1)=
(

AT
)−1

(t)l(t), l(t0)= l0, (29.46d)

which implies nonsingular A(t).∗
For discrete-time systems, maxmin and minmax CLRS do not coincide and are computed separately.

For maxmin CLRS, the ellipsoidal approximation (external or internal) E(xc(t+ 1), Xl(t+ 1)) defined by
parameter l0 ∈ Rn is computed as tight external or internal approximating ellipsoid of

E(A(t)xc(t), A(t)Xl(t)AT (t))⊕ E(B(t)p(t), B(t)P(t)BT (t))−̇E(G(t)q(t), G(t)Q(t)GT (t)),

and for minmax CLRS, the ellipsoidal approximation E(xc(t+ 1), Xl(t+ 1)) is computed as tight external
or internal approximating ellipsoid of

E(A(t)xc(t), A(t)Xl(t)AT (t))−̇E(G(t)q(t), G(t)Q(t)GT (t))⊕ E(B(t)p(t), B(t)P(t)BT (t))

specified by direction l(t) that satisfies Equation 29.46d.
For details and equations related to the discrete-time case, we refer the reader to the manual of the

ET [4].
Analogous results hold for the backward reach set.
Given the terminal time t1 and ellipsoidal target set E(y1, Y1), the CLBRS YCL(t1, t, Y1)= Y(t1, t, Y1),

t < t1, if it is nonempty, is a symmetric compact convex set whose center is governed by

yc(t)= Ayc(t)+B(t)p(t)+G(t)q(t), yc(t1)= y1. (29.55)

Fix a vector l1 ∈ Rn, and consider
l(t)=Φ(t1, t)T l1. (29.56)

If the backward reach set Y(t1, t, E(y1, Y1)) is nonempty, there exist tight external and tight internal
approximating ellipsoids E(yc(t), Y+l (t)) and E(yc(t), Y−l (t)) respectively, such that

E(yc(t), Y−l (t))⊆ Y(t1, t, E(y1, Y1))⊆ E(yc(t), Y+l (t)), (29.57)

and
ρ(l(t) | E(yc(t), Y−l (t)))= ρ(l(t) | Y(t1, t, E(y0, Y0)))= ρ(l(t) | E(yc(t), Y+l (t))). (29.58)

The equation for the shape matrix of the external ellipsoid is

Ẏ+l (t)= A(t)Y+l (t)+Y+l (t)AT (t)−πl(t)Y+l (t)− 1

πl(t)
B(t)P(t)BT (t)

+ (Y+l (t))1/2Sl(t)(G(t)Q(t)GT (t))1/2+ (G(t)Q(t)GT (t))1/2ST
l (t)(Y+l (t))1/2, (29.59)

Y+l (t1)= Y1, (29.60)

∗ The case when A(t) is singular is described in [25]. The idea is to substitute A(t) with the nonsingular Aδ(t)= A(t)+
δU(t)W(t), in which U(t) and W(t) are obtained from the singular-value decomposition

A(t)= U(t)Σ(t)W(t).

The parameter δ can be chosen based on the number of time steps for which the reach set must be computed and the
required accuracy. The issue of inverting ill-conditioned matrices is also addressed in [25].
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in which

πl(t)= 〈l(t), B(t)P(t)BT (t)l(t)〉1/2

〈l(t), Y+l (t)l(t)〉1/2
,

and the orthogonal matrix Sl(t) satisfies the equation

Sl(t)(G(t)Q(t)GT (t))1/2l(t)= 〈l(t), G(t)Q(t)GT (t)l(t)〉1/2

〈l(t), Y+l (t)l(t)〉1/2
(Y+l (t))1/2l(t).

The equation for the shape matrix of the internal ellipsoid is

Ẏ−l (t)= A(t)Y−l (t)+Y−l (t)AT (t)− (Y−l (t))1/2Tl(t)(B(t)P(t)BT (t))1/2

− (B(t)P(t)BT (t))1/2TT
l (t)(Y−l (t))1/2+ηl(t)Y−l (t)+ 1

ηl(t)
G(t)Q(t)GT (t), (29.61)

Y−l (t1)= Y1, (29.62)

in which

ηl(t)= 〈l(t), G(t)Q(t)GT (t)l(t)〉1/2

〈l(t), Y+l (t)l(t)〉1/2
,

and the orthogonal matrix Tl(t) is determined by the equation

Tl(t)(B(t)P(t)BT (t))1/2l(t)= 〈l(t), B(t)P(t)BT (t)l(t)〉1/2

〈l(t), Y−l (t)l(t)〉1/2
(Y−l (t))1/2l(t).

Just as in the forward reachability case, the terms containing G(t) and Q(t) vanish from Equations 29.59
and 29.61 in the absence of disturbances. The boundary value problems (Equations 29.55, 29.59 and 29.61)
are converted to the initial value problems by the change of variables s =−t.

Owing to Equations 29.57 and 29.58,
⋃

〈l1,l1〉=1

E(yc(t), Y−l (t))= Y(t1, t, E(y1, Y1))=
⋂

〈l1,l1〉=1

E(yc(t), Y+l (t)).

Remark 29.3

In expressions 29.49, 29.51, 29.59, and 29.61, the terms 1/πl(t) and 1/ηl(t) may not be well defined for
some vectors l, because matrices B(t)P(t)BT (t) and G(t)Q(t)GT (t) may be singular. In such cases, we set
these entire expressions to zero.

29.5 Applications

We illustrate the ellipsoidal approach with three applications.

29.5.1 Steering the System to a Target

Given system Equation 29.44, target set defined by ellipsoid E(y1, Y1), and terminal time t1, we want to
find a closed-loop control that steers the system from some state y0 at time t0 < t1 to E(y1, Y1) at t1.

First we compute external and internal ellipsoidal approximations E(yc(t), Y+l (t)) using Equations
29.59 and 29.60, and E(yc(t), Y−l (t)) using Equations 29.61 and 29.62, t0 ≤ t < t1, for different values of
the parameter l1 ∈ Rn. If there exists an external ellipsoid E(yc(t0), Y+l (t0)) such that y0 �∈ E(yc(t0), Y+l (t0)),
there is no closed-loop control that can guarantee taking the system from y0 at t0 to a state within E(y1, Y1)
at t1. On the other hand, if there exists an internal ellipsoid E(yc(t0), Y−l (t0)) defined by the choice of l1,
such that y0 ∈ E(yc(t0), Y−l (t0)), such a control does exist.
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We build the closed-loop control u(t, y(t)) so as to keep the system state y(t) inside, if possible, or as
close as we can, if not, to the internal approximating ellipsoid E(yc(t), Y−l (t)) for t0 ≤ t < t1. The steps
below describe control synthesis at time t.

1. Compute

γ(t)= 〈y(t)− yc(t), (Y−l (t))−1(y(t)− yc(t))〉.
If γ(t)≤ 1, then y(t) ∈ E(yc(t), Y−l (t)), and the control u(t, y(t)) can be chosen arbitrarily in
E(p(t), P(t)). For example, set u(t, y(t))= p(t).

2. Otherwise, if γ(t) > 1, y(t) is a boundary point of ellipsoid E(yc(t), γ(t)Y−l (t)) corresponding to
the direction m(t) ∈ Rn,

m(t)= (Y−l (t))−1(y(t)− yc(t)).

In order to steer the system closer to the internal approximating ellipsoid, control u(t, y(t)) must
act in the direction−m(t).

3. Choose u(t, y(t)) so that the vector B(t)u(t, y(t)) is a boundary point of the ellipsoid
E(B(t)p(t), B(t)P(t)BT (t))⊂ Rn in the direction−m(t),

u(t, y(t))= p(t)− P(t)BT (t)m(t)

〈m(t), B(t)P(t)BT (t)m(t)〉1/2
.

To summarize,

u(t, y(t))=

⎧⎪⎨
⎪⎩

p(t), if 〈y(t)− yc(t), (Y−l (t))−1(y(t)− yc(t))〉 ≤ 1,

p(t)− P(t)BT (t)(Y−l (t))−1(y(t)− yc(t))

〈(Y−l (t))−1(y(t)− yc(t)), B(t)P(t)BT (t)(Y−l (t))−1(y(t)− yc(t))〉1/2
, otherwise.

(29.63)
The rigorous proof that this closed-loop control works can be found in [22]. In [16], the authors apply this
technique to stop a high-dimensional oscillating system using the ET for backward reach set computation.

Formula (Equation 29.63) holds for discrete-time linear systems, except that instead of Y−l (t), shape
matrices of internal approximating ellipsoids for maxmin or minmax CLBRS must be used.

29.5.2 Switching System

A switching system is a system whose dynamics changes at known times. Consider the RLC circuit shown
in Figure 29.1. It has two inputs, the voltage v and current i. Define

• x1, the voltage across capacitor C1, so C1ẋ1 is the corresponding current.
• x2, the voltage across capacitor C2, so the corresponding current is C2ẋ2.
• x3, the current through the inductor L, so the voltage across the inductor is Lẋ3.

v i

R1

R2

C1

C2

L
+

–

FIGURE 29.1 RLC circuit with two inputs.
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Applying Kirchoff’s laws we arrive at the linear system,

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1

R1C1
0 − 1

C1

0 0
1

C2

1

L
− 1

L
−R2

L

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣x1

x2

x3

⎤
⎦+

⎡
⎢⎢⎢⎣

1

R1C1

1

C1

0 0

0 0

⎤
⎥⎥⎥⎦
[

v
i

]
. (29.64)

The parameters R1, R2, C1, C2, and L, as well as the inputs, may depend on time. Suppose, for time
0≤ t < 2, R1 = 2Ω, R2 = 1Ω, C1 = 3 F, C2 = 7 F, L= 2 H, and both inputs, v and i, are present and
bounded by ellipsoid E(0, I); and for time t ≥ 2, R1 = R2 = 2Ω, C1 = C2 = 3 F, L= 6 H, the current
source is turned off, and |v| ≤ 1. Then, system (Equation 29.64) can be rewritten as

⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

−1

6
0 −1

3

0 0
1

7
1

2
−1

2
−1

2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣

1

6

1

3

0 0

0 0

⎤
⎥⎥⎥⎥⎦
[

v

i

]
, 0≤ t < 2,

⎡
⎢⎢⎢⎢⎢⎣

−1

6
0 −1

3

0 0
1

3
1

6
−1

6
−1

3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦+

⎡
⎢⎢⎢⎢⎣

1

6

0

0

⎤
⎥⎥⎥⎥⎦ v, 2≤ t.

(29.65)

We can use the ET to compute the reach set of Equation 29.65 for some time t > 2, say, t = 3.

>> % define system 1:
>> A1 = [-1/6 0 -1/3; 0 0 1/7; 1/2 -1/2 -1/2];
>> B1 = [1/6 1/3; 0 0; 0 0];
>> U1 = ellipsoid(eye(2));
>> s1 = linsys(A1, B1, U1);
>>
>> % define system 2:
>> A2 = [-1/6 0 -1/3; 0 0 1/3; 1/6 -1/6 -1/3];
>> B2 = [1/6; 0; 0];
>> U2 = ellipsoid(1);
>> s2 = linsys(A2, B2, U2);
>>
>> X0 = ellipsoid(0.01*eye(3)); % set of initial states
>> L0 = eye(3); % 3 initial directions
>> TS = 2; % time of switch
>> T = 3; % terminal time
>>
>> % compute the reach set:
>> rs1 = reach(s1, X0, L0, TS); % reach set of the first system
>> % computation of the second reach set starts
>> % where the first left off
>> rs2 = evolve(rs1, T, s2);
>>
>> % obtain projections onto (x1, x2) subspace:
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>> BB = [1 0 0; 0 1 0]’; % (x1, x2) subspace basis
>> ps1 = projection(rs1, BB);
>> ps2 = projection(rs2, BB);
>>
>> % plot the results:
>> subplot(2, 2, 1);
>> plot_ea(ps1, ’r’); % external apprx. of reach set 1 (red)
>> hold on;
>> plot_ia(ps1, ’g’); % internal apprx. of reach set 1 (green)
>> plot_ea(ps2, ’y’); % external apprx. of reach set 2 (yellow)
>> plot_ia(ps2, ’b’); % internal apprx. of reach set 2 (blue)
>>
>> % plot the 3-dimensional reach set at time t = 3:
>> subplot(2, 2, 2);
>> plot_ea(cut(rs2, 3), ’y’);
>> hold on;
>> plot_ia(cut(rs2, 3), ’b’);

Figure 29.2a shows how the reach set of system (Equation 29.65) projected onto the (x1, x2) plane
evolves in time from t = 0 to t = 3. The external reach set approximation for the first dynamics is in light
gray, the internal approximation is in dark gray. The dynamics switches at t = 2. The external reach set
approximation for the second dynamics is in very light gray, its internal approximation is in dark gray.
The full three-dimensional external (very light gray) and internal (dark gray) approximations of the reach
set at t = 3 are shown in Figure 29.2b.

To find out where the system should start at time t = 0 in order to reach a neighborhood M of the origin
at time t = 3, we compute the backward reach set from t = 3 to t = 0.

>> M = ellipsoid(0.01*eye(3)); % terminal set
>> TT = 3; % terminal time
>>
>> % compute backward reach set:
>> % compute the reach set:
>> brs2 = reach(s2, M, L0, [TT TS]); % second system comes first
>> brs1 = evolve(brs2, 0, s1); % then the first system
>>
>> % obtain projections onto (x1, x2) subspace:
>> bps1 = projection(brs1, BB);
>> bps2 = projection(brs2, BB);
>>
>> % plot the results:
>> subplot(2, 2, 3);
>> plot_ea(bps1, ’r’); % external apprx. of backward reach set 1

(red)
>> hold on;
>> plot_ia(bps1, ’g’); % internal apprx. of backward reach set 1

(green)
>> plot_ea(bps2, ’y’); % external apprx. of backward reach set 2

(yellow)
>> plot_ia(bps2, ’b’); % internal apprx. of backward reach set 2

(blue)
>>
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FIGURE 29.2 Forward and backward reach sets of the switched system (external and internal approximations). The
dynamics switches at t = 2. (a) Forward reach set for the time interval 0≤ t ≤ 3 projected onto (x1, x2) subspace. (b)
Forward reach set at t = 3 in R3. (c) Backward reach set evolving from t = 3 to t = 0 projected onto (x1, x2) subspace.
(d) Backward reach set at t = 0 in R3.

>> % plot the 3-dimensional backward reach set at time t = 0:
>> subplot(2, 2, 4);
>> plot_ea(cut(brs1, 0), ’r’);
>> hold on;
>> plot_ia(cut(brs1, 0), ’g’);

Figure 29.2c presents the evolution of the reach set projected onto the (x1, x2) plane in backward
time. Again, external and internal approximations corresponding to the first dynamics are shown in dark
and light gray, and these corresponding to the second dynamics in very light and dark gray. The full
dimensional backward reach set external and internal approximations of system (Equation 29.65) at time
t = 0 is shown in Figure 29.2d.

29.5.3 Hybrid System

There is no explicit implementation of the reachability analysis for hybrid systems in the ET. Nonetheless,
the operations of intersection available in the toolbox allow us to work with certain class of hybrid sys-
tems, namely, hybrid systems with affine continuous dynamics whose guards are ellipsoids, hyperplanes,
halfspaces, or polytopes.

We consider the switching-mode model of highway traffic presented in [33]. The highway segment is
divided into N cells as shown in Figure 29.3. In this particular case, N = 4. The traffic density in cell i is
xi vehicles per mile, i = 1, 2, 3, 4.

Define

• vi , the average speed in mph, in the ith cell, i = 1, 2, 3, 4.
• wi , the backward congestion wave propagation speed in mph, in the ith highway cell, i = 1, 2, 3, 4.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-34&iName=master.img-000.jpg&w=159&h=86
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-34&iName=master.img-002.jpg&w=160&h=94
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-34&iName=master.img-003.jpg&w=157&h=108
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1 2 3 4

u1 u2

u3 b

FIGURE 29.3 Highway model. (Adapted from L. Muñoz, et al. In American Control Conference, pp. 3750–3755,
2003.)

• xMi , the maximum allowed density in the ith cell; when this value is reached, there is a traffic jam,
i = 1, 2, 3, 4.

• di , the length of ith cell in miles, i = 1, 2, 3, 4.
• Ts, the sampling time in hours.
• b, the split ratio for the off-ramp.
• u1, the traffic flow coming into the highway segment, in vehicles per hour (vph).
• u2, the traffic flow coming out of the highway segment (vph).
• u3, the on-ramp traffic flow (vph).

Highway traffic operates in two modes: free-flow in normal operation; and congested mode, when there is
a jam. Traffic flow in free-flow mode is described by

⎡
⎢⎢⎣

x1[t+ 1]
x2[t+ 1]
x3[t+ 1]
x4[t+ 1]

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− v1Ts

d1
0 0 0

v1Ts

d2
1− v2Ts

d2
0 0

0
v2Ts

d3
1− v3Ts

d3
0

0 0 (1− b)
v3Ts

d4
1− v4Ts

d4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x1[t]
x2[t]
x3[t]
x4[t]

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1Ts

d1
0 0

0 0
v2Ts

d2

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣u1

u2

u3

⎤
⎦ .

(29.66)
The equation for the congested mode is

⎡
⎢⎢⎣

x1[t+ 1]
x2[t+ 1]
x3[t+ 1]
x4[t+ 1]

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− w1Ts

d1

w2Ts

d1
0 0

0 1− w2Ts

d2

w3Ts

d2
0

0 0 1− w3Ts

d3

1

1− b

w4Ts

d3

0 0 0 1− w4Ts

d4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

x1[t]
x2[t]
x3[t]
x4[t]

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0
w1Ts

d1

0 0 0

0 0 0

0 −w4Ts

d4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣u1

u2

u3

⎤
⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1Ts

d1
−w2Ts

d1
0 0

0
w2Ts

d2
−w3Ts

d2
0

0 0
w3Ts

d3
− 1

1− b

w4Ts

d3

0 0 0
w4Ts

d4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

xM1

xM2

xM3

xM4

⎤
⎥⎥⎦ . (29.67)
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The switch from the free-flow to the congested mode occurs when the density x2 reaches xM2. In other
words, the hyperplane H([0 1 0 0]T , xM2) is the guard. (When the state enters the guard, the system
equation switches.)

We indicate how to implement the reach set computation of this hybrid system using the ET. We first
define the two linear systems and the guard.

>> % assign parameter values:
>> v1 = 65; v2 = 60; v3 = 63; v4 = 65; % mph
>> w1 = 10; w2 = 10; w3 = 10; w4 = 10; % mph
>> d1 = 2; d2 = 3; d3 = 4; d4 = 2; % miles
>> Ts = 2/3600; % sampling time in hours
>> xM1 = 200; xM2 = 200; xM3 = 200; xM4 = 200; % vehicles per lane
>> b = 0.4;
>>
>> A1 = [(1-(v1*Ts/d1)) 0 0 0

(v1*Ts/d2) (1-(v2*Ts/d2)) 0 0
0 (v2*Ts/d3) (1-(v3*Ts/d3)) 0
0 0 ((1-b)*(v3*Ts/d4)) (1-(v4*Ts/d4))];

>> B1 = [v1*Ts/d1 0 0; 0 0 v2*Ts/d2; 0 0 0; 0 0 0];
>> U1 = ellipsoid([180; 150; 50], [100 0 0; 0 100 0; 0 0 25]);
>>
>> A2 = [(1-(w1*Ts/d1)) (w2*Ts/d1) 0 0

0 (1-(w2*Ts/d2)) (w3*Ts/d2) 0
0 0 (1-(w3*Ts/d3)) ((1/(1-b))*(w4*Ts/d3))
0 0 0 (1-(w4*Ts/d4))];

>> B2 = [0 0 w1*Ts/d1; 0 0 0; 0 0 0; 0 -w4*Ts/d4 0];
>> U2 = U1;
>> G2 = [(w1*Ts/d1) (-w2*Ts/d1) 0 0

0 (w2*Ts/d2) (-w3*Ts/d2) 0
0 0 (w3*Ts/d3) ((-1/(1-b))*(w4*Ts/d3))
0 0 0 (w4*Ts/d4)];

>> V2 = [xM1; xM2; xM3; xM4];
>>
>> % define linear systems:
>> s1 = linsys(A1, B1, U1, [], [], [], [], ’d’); % free-flow mode
>> s2 = linsys(A2, B2, U2, G2, V2, [], [], ’d’); % congestion mode
>>
>> % define guard:
>> GRD = hyperplane([0; 1; 0; 0], xM2);

We assume that initially the system is in free-flow mode. Given a set of initial conditions, we compute
the reach set according to dynamics (Equation 29.66) for certain number of time steps. We consider an
external approximation of the reach set by a single ellipsoid.

>> initial conditions:
>> X0 = [170; 180; 175; 170] + 10*ell_unitball(4);
>
>> L0 = [1; 0; 0; 0]; % single initial direction
>> N = 100; % number of time steps
>>
>> ffrs = reach(s1, X0, L0, N); % free-flow reach set
>> EA = get_ea(ffrs); % 101x1 array of external ellipsoids
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Having obtained the ellipsoidal array EA representing the reach set evolving in time, we determine the
ellipsoids in the array that intersect the guard.

>> I = hpintersection(EA, GRD); % some of the intersections are empty
>> D = find(˜isempty(I)); % determine nonempty intersections
>> min(D)

ans =

19

>> max(D)

ans =

69

Analyzing the values in array D, we conclude that the free-flow reach set has nonempty intersection
with hyperplane GRD at t = 18 for the first time, and at t = 68 for the last time. Between t = 18 and t = 68
the reach set crosses the guard. Figure 29.4a shows the free-flow reach set projected onto the (x1, x2, x3)
subspace for t = 10, before the guard crossing; Figure 29.4b for t = 50, during the guard crossing; and
Figure 29.4c for t = 80, after the guard was crossed.

For each time step that the intersection of the free-flow reach set and the guard is nonempty, we
establish a new initial time and a set of initial conditions for the reach set computation according to
dynamics (Equation 29.67). The initial time is the array index minus one, and the set of initial conditions
is the intersection of the free-flow reach set with the guard.

>> crs = [];
>> for i = 1:size(D, 2)

rs = reach(s2, I(D(i)), L0, [(D(i)-1) N]);
crs = [crs rs];

end

The union of reach sets in array crs forms the reach set for the congested dynamics.
A summary of the reach set computation of the linear hybrid system (Equations 29.66 and 29.67) for

N = 100 time steps with one guard crossing is given in Figure 29.4d, which shows the projection of the
reach set trace onto the (x1, x2) subspace. The system starts evolving in time in free-flow mode from a set
of initial conditions at t = 0, whose boundary is shown in magenta. The free-flow reach set evolving from
t = 0 to t = 100 is shown in blue. Between t = 18 and t = 68, the free-flow reach set crosses the guard.
The guard is shown in red. For each nonempty intersection of the free-flow reach set and the guard,
the congested mode reach set starts evolving in time until t = 100. All the congested mode reach sets
are shown in green. Observe that in the congested mode the density x2 in the congested part decreases
slightly, while the density x1 upstream of the congested part increases. The blue set above the guard is not
actually reached, because the state evolves according to the green region.

29.6 Conclusion

Control problems with hard bounds on the control set and for which finite time behavior has to meet
guarantees (reaching or avoiding a target set) despite disturbances cannot be addressed by traditional
methods of design. Central to recent approaches to solving these design problems are the concept and
calculation of the OLRS or CLRS. Effective reach set computational tools have been developed over the
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FIGURE 29.4 Reach set of the free-flow system is dark gray, reach set of the congested system is very light gray, the
guard is gray straight line. (a) Reach set of the free-flow system at t = 10, before reaching the guard (projection onto
(x1, x2, x3)). (b) Reach set of the free-flow system at t = 50, crossing the guard (projection onto (x1, x2, x3)). (c) Reach
set of the free-flow system at t = 80, after the guard is crossed (projection onto (x1, x2, x3)). (d) Reach set trace from
t = 0 to t = 100, free-flow system in dark gray, congested system in green; bounds of initial conditions are marked
with light gray (projection onto (x1, x2)).

past decade. These tools have been described. Among these tools, the ellipsoidal approach is the most
promising. That approach, embodied in the ET, is illustrated by three examples.
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30.1 Introduction

Hybrid systems are heterogeneous dynamical systems, the behaviors of which are determined by inter-
acting continuous variables and discrete switching logics [1,2]. By heterogeneity, we mean hybrid systems
containing two different kinds of dynamics. One is time-driven continuous variable dynamics, usually
described by differential or difference equations; the other is event-driven discrete logic dynamics, whose
evolutions depend on “if-then-else” type of rules and may be described by automata or Petri nets. In addi-
tion, these two kinds of dynamics interact with each other and generate complex dynamical behaviors,
such as switching once certain continuous variable passes through a threshold, or state jumping when
certain discrete event occurs. As a simple example, the temperature regulation in an air-conditioned
room can be considered as a hybrid system; the room temperature evolution forms the continuous vari-
able dynamics following thermophysical laws, whereas the on–off evolution of the air conditioner can be
modeled as a discrete event process.

Hybrid systems have been identified in a wide variety of applications; in the control of mechanical sys-
tems, in process control, in automotive industry, power systems, aircraft, and traffic control, among many
other fields. Specifically, hybrid systems have a central role in embedded control systems, where program
codes interact with the physical world. In particular, the logic rules programmed in the embedded devices,

30-1
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which can be modeled as discrete event systems, are affected and influenced by the continuous variable
physical processes, such as spatial location, temperature, and pressure evolutions. Studies in hybrid sys-
tems could provide a unified modeling framework for embedded systems, and systematic methods for
performance analysis, verification, and embedded microcontroller design. Therefore, hybrid systems have
attracted the attention of researchers not only from control engineering, but also from computer science
and mathematics. Topics, such as modeling, verification, stability, controllability, optimal control, and
supervisory control, have been extensively studied in the hybrid system literature, and the interested
readers may refer to [1,2,4,5,13] and the references therein. In this chapter, we focus on the stability issues
of hybrid systems.

It is known that the stability of hybrid systems includes several interesting phenomena due to the
interaction of continuous variable dynamics and discrete switching logics [3,6,8]. For example, even
when all the continuous variable subsystems are exponentially stable, the hybrid system may have
divergent trajectories under certain discrete switching logic. On the other hand, one may carefully
switch between unstable continuous variable subsystems to make the overall hybrid system exponen-
tially stable. As these examples suggest, the stability of hybrid systems depends not only on the con-
tinuous variable dynamics of each subsystem, but also on the properties of discrete switching logics.
Therefore, the stability study of hybrid systems can be roughly divided into two kinds of problems.
One is the stability analysis of hybrid systems under given discrete switching logics; the other is
the synthesis of stabilizing switching logics for a given collection of continuous variable dynamical
systems.

We mainly focus on a subclass of hybrid systems that consists of a finite number of continuous-variable
subsystems and a discrete logical rule, which orchestrates switching between these subsystems. The sys-
tems are usually called switched systems in the literature [6,8]. In this chapter, we use the terms “hybrid sys-
tems” and “switched systems” interchangeably. One convenient way to classify hybrid/switched systems is
based on the dynamics of their subsystems, for example, continuous-time or discrete-time, linear or non-
linear and so on. In this chapter, we focus our attention to hybrid/switched systems where all subsystems
are linear time-invariant (LTI) systems. The generalization of these results to nonlinear switched systems
or more general cases are well documented in the literature; see, for example, survey papers [3,6,8] for
further references.

The rest of this chapter is organized as follows. First, we focus on the stability analysis of hybrid systems
under given discrete switching logics. In particular, some results on the stability analysis for hybrid systems
under arbitrary switching are introduced in Section 30.2, while the stability under slow switching (like
dwell time and average dwell time) is studied in Section 30.3.1. The general case of hybrid system stability
under restricted switching is investigated in Section 30.3 through multiple Lyapunov functions. Then, we
turn to the synthesis of stabilizing switching logic for a given collection of continuous variable dynamical
systems in Section 30.4, where several stabilization conditions and design methods are described. Finally,
the chapter concludes with remarks and a list of references.

30.2 Arbitrary Switching

In this section, we first consider the stability analysis problem where there are no restrictions on the
discrete event dynamics of the hybrid system. This may be due to our lack of knowledge of the discrete
event logic, or of the partitions of the state space, or of the constraints in the hybrid system of concern.
Under these circumstances, one usually tends to be more conservative and assumes that all discrete
switchings are possible; this is called arbitrary switching in the literature. On the other hand, when the
stability under arbitrary switching is guaranteed, this could provide us with flexibility in the discrete logic
design, where one may focus on improving the performances, since the closed-loop system stability is not
a problem any longer.
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30.2.1 Common Lyapunov Function

We know that a hybrid system may become unstable even when all subsystems are exponentially stable.
Therefore, to identify conditions under which a hybrid system is stable under arbitrary switching is
nontrivial and interesting. For this, it is necessary that all the subsystems are asymptotically stable, since if
one subsystem were unstable, one switching strategy would have been to always select that subsystem all
the time, which is a valid “switching logic” as well, and that would make the system unstable. In general,
the above subsystems’ stability assumption is not sufficient to ensure stability for the hybrid systems
under arbitrary switching. However, if there exists a common Lyapunov function for all the subsystems,
that is, a continuously differentiable, radially unbounded, positive definite function V : R×R

n → R, for
which the derivative V̇ (x, t) is negative definite along all subsystems’ trajectories, then the stability of the
hybrid systems is guaranteed under arbitrary switchings. This provides us with a possible way to solve
this problem, and a lot of research efforts have been focused on finding common quadratic Lyapunov
functions (CQLFs).

30.2.1.1 Common Quadratic Lyapunov Functions

First, we consider a collection of continuous-time LTI systems

ẋ(t)= Aix(t), t ∈ R
+, i ∈ I, (30.1)

where I stands for a finite index set. For all i ∈ I, the state matrices Ai ∈ R
n×n. Note that the origin xe = 0

is a common equilibrium for the systems described in Equation 30.1. The hybrid system of interest is
built by allowing arbitrary switching among these LTI systems (Equation 30.1).

A CQLF for Equation 30.1 is a special class of Lyapunov functions of the form

V (x)= xT Px, (30.2)

where P = PT (symmetric) and P > 0 (positive definite). In addition, its time derivative along any trajec-
tory of systems (Equation 30.1) is negative definite, or alternatively

AT
i P+ PAi =−Qi , i ∈ I, (30.3)

where Qi are symmetric and positive definite for all i ∈ I. The existence of a CQLF for all its subsystems
assures the quadratic stability of the hybrid system. Quadratic stability is a special class of exponential
stability, which implies asymptotic stability, and has attracted a lot of research efforts due to its importance
in practice.

A CQLF for Equation 30.1 can be obtained by solving a set of linear matrix inequalities (LMIs). for
example, there exists a positive definite symmetric matrix P, P ∈ R

n×n, such that

PAi +AT
i P < 0, ∀i ∈ I , (30.4)

hold simultaneously. However, the standard interior point methods for LMIs may become ineffective as
the number of subsystems increases. This motivates researchers to identify easily verifiable conditions
that guarantee the existence of a CQLF for Equation 30.1. Here, we take a look at a well-studied special
case in the literature; interested readers may refer to [6,8] for further references.

30.2.1.2 Commutative Systems

Let us first look at a special case, where the subsystems’ state matrices are pairwise commutative, that is,
AiAj = AjAi for all i, j ∈ I. Because of the commutativity, it is easy to show that

Ak1
i Ak2

j = Ak2
j Ak1

i
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for any nonnegative integer k1 and k2, and

eAit1 eAjt2 = eAjt2 eAit1

for any nonnegative real number t1 and t2. By direct computation, it is straightforward to verify that in
this case the arbitrary switching system is stable if and only if all its subsystems are stable.

Theorem 30.1:

For a collection of LTI systems (Equation 30.1) with the index set I= {1, . . . , N}, if all subsystem matrices
are stable (i.e., all eigenvalues of Ai have negative real part) and commute pairwise (AiAj = AjAi , ∀i, j ∈ I),
then the hybrid system with subsystems given by Equation 30.1 is asymptotically stable under arbitrary
switching.

A CQLF exists in this case, and can be determined by solving a collection of chained Lyapunov equations
as shown in the following:

Theorem 30.2:

Assume that the index set I= {1, . . . , N}. Let P1, . . . , PN be the unique symmetric positive definite matrices
that satisfy the Lyapunov equations

AT
1 P1+ P1A1 =−I , (30.5)

AT
i Pi + PiAi =−Pi−1, i = 2, . . . , N . (30.6)

Then the function V (x)= xT PN x is a CQLF for systems ẋ(t)= Aix(t), i = 1, . . . , N.

In addition, the matrix PN can be expressed in integral form as

PN =
∫ ∞

0
eAT

N tN · · ·
(∫ ∞

0
eAT

1 t1 eA1t1 dt1

)
· · · eAN tN dtN .

It is not difficult to extend this result to the discrete-time case.

Theorem 30.3:

Let P1, . . . , PN be the unique symmetric positive definite matrices that satisfy the Lyapunov equations

AT
1 P1A1+ P1 =−I , (30.7)

AT
i PiAi + Pi =−Pi−1, i = 2, . . . , N . (30.8)

Then the function V(x)= xT PN x is a common Lyapunov function for the systems x[k+ 1] = Aix[k],
i = 1, . . . , N.

In the literature, there exist several interesting necessary and also sufficient algebraic conditions for
the existence of a CQLF for more general cases but usually for low-dimensional systems, and interested
readers may consult [6,8] for further references. Note that Lie algebraic conditions were proposed in the
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literature; see, for example, [6], for arbitrary switching systems, which are based on the solvability of the
Lie algebra generated by the subsystems’ state matrices. It was shown that if the Lie algebra generated by
the set of state matrices Ai is solvable, then there exists a CQLF, and the hybrid system is stable under
arbitrary switching.

30.2.2 Switched Quadratic Lyapunov Functions

It should be pointed out that the existence of a CQLF is only sufficient for the stability of arbitrary
switching systems. Therefore, in general, the existence of a CQLF is only sufficient for the asymptotic
or exponential stability of hybrid systems under arbitrary switching, and could be rather conservative.
Hence, some attention has been paid to a less conservative class of Lyapunov functions, called switched
quadratic Lyapunov functions.

In this subsection, we investigate the stability of the following discrete-time arbitrary switching LTI
systems:

x[k+ 1] = Aix[k], t ∈ Z
+, (30.9)

where x ∈ R
n, and i ∈ I. Basically, since every subsystem is stable, there exists a positive definite symmetric

matrix Pi that solves the Lyapunov equation for each ith subsystem:

AT
i PiAi − Pi < 0,

for all i ∈ I . Next, these matrices, Pi , are patched together based on the switching signals to construct a
global Lyapunov function as

V (k, x[k])= xT [k]Pσ(k)x[k], (30.10)

where σ(k) : k→ I stands for the switching signal at step k. Since all Pi are positive definite, it is clear that
the function V (k, x[k])= xT [k]Pσ(k)x[k] is also positive definite. If it further holds that ΔV (k, x[k])=
V (k+ 1, x[k+ 1])−V (k, x[k]) is negative definite along the solution of Equation 30.9, then the origin of
the system (Equation 30.9) is globally asymptotically stable. In particular, a sufficient condition for the
stability of the arbitrary switching system (Equation 30.9) is given as follows.

Theorem 30.4:

If there exist positive definite symmetric matrices Pi ∈ R
n×n (Pi = PT

i ) for i ∈ I , satisfying

[
Pi AT

i Pj

PjAi Pj

]
> 0 (30.11)

for all i, j ∈ I , then the linear system (Equation 30.9) with arbitrary switching is asymptotically stable.

The stability checking for arbitrary switching linear systems can be performed by solving LMIs.
It is clear that when Pi = Pj for all i, j ∈ I , the switched quadratic Lyapunov function becomes the

CQLF. Therefore, the stability criteria based on the switched quadratic Lyapunov function generalize
the CQLF approach and usually give us less conservative results. However, it is worth pointing out that
the switched quadratic Lyapunov function method is still only a sufficient condition.

30.2.3 Necessary and Sufficient Conditions

In the sequel, we will provide some necessary and sufficient conditions for the asymptotic stability of
arbitrary switching linear systems. It is shown that the asymptotic stability problem for hybrid linear
systems with arbitrary switching is equivalent to the robust asymptotic stability problem for polytopic
uncertain linear time-variant systems, for which several strong stability conditions exist.
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Theorem 30.5: [8,10]

The following statements are equivalent:

1. The arbitrary switching system
ẋ(t)= Aσ(t)x(t),

where Aσ(t) ∈ {A1, A2, . . . , AN }, is asymptotically stable;
2. The linear time-variant system

ẋ(t)= A(t)x(t),

where A(t) ∈A =̂Conv{A1, A2, . . . , AN }, where Conv{·} stands for the convex combination, is
asymptotically stable;

3. There exists a full column rank matrix L ∈ R
m×n, m≥ n, and a family of matrices {Āi ∈ R

m×n : i ∈ I }
with strictly negative row dominating diagonal, that is, for each Āi , i ∈ I its elements satisfying

ākk +
∑
k �=l

|ākl|< 0, k = 1, . . . , m,

such that the matrix relations
LAi = ĀiL

are satisfied.

It is interesting to note that the nice property of Āi (i ∈ I ) implies the existence of a CQLF for
the higher-dimensional arbitrary switching system. Unfortunately, applying the above Theorem is still
difficult, because, in general, the numerical search for the matrix L is not simple. However, this equivalence
bridges two research fields, namely the fields of hybrid system and robust stability. Therefore, existing
results in the robust stability area, which has been extensively studied for over two decades, can be
directly introduced to study the arbitrarily switching systems and vice versa. For example, it is known
in the robust stability literature that the global attractiveness, (global) asymptotic stability, and (global)
exponential stability are all equivalent for the polytopic uncertain linear time-variant systems [10]. Hence,
these stability concepts are also equivalent for arbitrary switching systems. Similar results can be developed
for the discrete-time case as shown below.

Theorem 30.6: [8,10]

The following statements are equivalent:

1. The arbitrary switching system x[k+ 1] = Aσ(k)x[k], where Aσ(k) ∈ {A1, A2, . . . , AN }, is asymptoti-
cally stable.

2. The linear time-variant system x[k+ 1] = A(k)x[k], where A(k) ∈A =̂Conv{A1, A2, . . . , AN }, is
robustly asymptotically stable.

3. There exists an integer m≥ n and L ∈ R
n×m, rank(L)= n such that for all Ai , i ∈ I , there exists

Āi ∈ R
m×m with the following properties:

a. AT
i L= LĀT

i .
b. Each column of Āi has no more than n nonzero elements and

‖Āi‖∞ = max
1≤k≤m

m∑
l=1

|ākl|< 1.
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Based on the equivalence between the asymptotic stability of arbitrary switching linear systems and
the robust stability of polytopic uncertain linear time-variant systems, some well-established converse
Lyapunov theorems can be introduced for arbitrary switching linear systems. For example, the following
results were taken from [10].

Theorem 30.7:

If the arbitrary switching system is exponentially stable, then it has a strictly convex, homogenous (of second
order) common Lyapunov function of a quasi-quadratic form V (x)= xT L(x)x, where L(x)= LT (x)=
L(τx) for all nonzero x ∈ R

n and τ ∈ R.

Furthermore, we may restrict our search to include only polyhedral Lyapunov functions (also known
as piecewise linear Lyapunov functions) as the following result pointed out.

Theorem 30.8:

If an arbitrary switching linear system is asymptotically stable, then there exists a polyhedral Lyapunov
function, which is monotonically decreasing along the switched system’s trajectories.

This converse Lyapunov theorem holds for both discrete-time and continuous-time cases, which
suggests that the existence of a common Lyapunov function (not necessarily quadratic) is not only
sufficient, but also necessary for the stability of a hybrid system under arbitrary switching.

Before we move on to another topic, let us take a look at the following example, which is taken from
the robust stability literature.

Example 30.1:

Consider an arbitrary switching system, ẋ = Ai x , i ∈ {1, 2}, where

A1 =
[

0 1
−0.06 −1

]
; A2 =

[
0 1

−1.94 −1

]
.

It is known that no CQLF exits. However, the arbitrary switching system is asymptotically stable,
which is assured by the existence of a piecewise quadratic Lyapunov function; a particular piecewise
linear Lyapunov function is also suggested in the robust literature.

30.3 Restricted Switching

Hybrid systems may fail to preserve stability under arbitrary switching. On the other hand, one may have
some knowledge about the occurrence of possible discrete event dynamics in the hybrid systems and
this knowledge can be translated into restrictions on the switching signals. For example, there must exist
certain bounds on the time interval between two successive switchings, which may be due to the fact that
the state trajectories have to spend some finite period of time in traveling from the initial set to certain
boundary sets before switching, if these two sets are separated. With such kind of prior knowledge about
the switching signals, we may derive stronger results on the stability for a given hybrid system instead of
just using the worst-case arguments of the previous section.
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30.3.1 Slow Switching

By studying the cases where divergent trajectories are generated through switching between two stable
systems, one may note that the unboundedness is caused by the failure to absorb the energy increase
caused by frequent switchings. In addition, when there is an unstable subsystem present (e.g., controller
failure or sensor fault), if one either stays too long on it or switches too frequently to it, this may cause
instability. Therefore, a natural question is what if we restrict the switching signals to some constrained
subclasses. Intuitively, if one stays at stable subsystems long enough and switches less frequently, that is,
slow switching, one may trade off the energy increase caused by switching or unstable modes, and it should
perhaps become possible to attain stability. These ideas are proved to be reasonable and are captured by
concepts such as dwell time and average dwell time [4] between switchings that are introduced below.

The simplest way to characterize the concept of slow switching is perhaps to request a lower bound on
two consecutive switching times.

Definition 30.1:

A positive scalar τd is called the dwell time if the time interval between any two consecutive switchings is no
smaller than τd.

Assume that all subsystems of the hybrid system are exponentially stable. Then, it can be shown that
there exists a scalar τd > 0 such that the hybrid system remains exponentially stable if the dwell time is
larger than τd . In addition, one may give an estimate on the bound of the dwell time and decay rate.

In fact, it really does not matter if one occasionally has a smaller dwell time between switching, provided
this does not occur too frequently. This concept is captured by the concept of “average dwell-time.”

Definition 30.2:

A positive constant τa is called the average dwell time if Nσ(t)≤ N0+ t/τa holds for all t > 0 and some
scalar N0 ≥ 0, where Nσ(t) denotes the number of discontinuities of a given switching signal σ over [0, t).

Here the constant τa is called the average dwell time and N0 the chatter bound. The reason for calling
a class of switching signals that satisfy

Nσ(t)≤ N0+ t

τa

having an average dwell no less than τa is because

Nσ(t)≤ N0+ t

τa
⇐⇒ t

Nσ(t)−N0
≥ τa.

This means that on an average the “dwell time” between any two consecutive switchings is no smaller
than τa. The idea is that there may exist consecutive switching separated by less than τa, but the average
time interval between consecutive switching is not less than τa.

Theorem 30.9:

Assume that all subsystems, ẋ = Aix for i ∈ I, in the hybrid system are exponentially stable. Then, there exists
a scalar τa > 0 such that the hybrid system is exponentially stable if the average dwell time is larger than τa.

Moreover, we can also obtain a bound on the decay rate.
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Theorem 30.10:

Given a positive scalar λ0 such that Ai +λ0I is stable for all i ∈ I. Then, for any given λ ∈ (0,λ0), there
exists a finite constant τa such that the hybrid system is exponentially stable with decay rate λ provided that
the average dwell time is no less than τa.

The stability results for slow switching can be extended to discrete-time case, where the dwell time τd

or average dwell time τa are counted as the number of sampling periods. In particular,

Definition 30.3:

A positive constant τa is called the average dwell time if Nσ(k)≤ N0+ k/τa holds for all k > 0 and some
scalar N0 ≥ 0, where Nσ(k) denotes the number of switchings of a given switching signal σ over [0, k).

Theorem 30.11:

Given a positive scalar λ0 such that Ai/λ0 is stable for all i ∈ I. Then, for any given λ ∈ (λ0, 1), there
exists a finite constant τa such that the hybrid system, consisting of x[k+ 1] = Aix[k] as its subsystems, is
exponentially stable with decay rate λ provided that the average dwell time is no less than τa.

Interested readers may refer to the survey papers [4,6,8] for further references on the stability of hybrid
systems under slow switchings.

We continue our study of the stability of hybrid systems under restricted switchings in this section.
It should be pointed out that not all restrictions on switching signals can be captured by the dwell time
or average dwell time. For example, it is difficult to transform the invariant set constraints, guard set
constraints, and so on, which determine the switching signals, into only dwell-time or average dwell time
restrictions on switching signals. The main difficulty comes from the fact that most constraints in hybrid
systems are state dependent and in the form of partitions of the state space, and so it is hard to transform
them into pure time-dependent constraints such as dwell time, and so on. This calls for a more general tool
to study hybrid system stability, and we introduce a powerful tool, multiple Lyapunov functions (MLFs).

30.3.2 Multiple Lyapunov Functions

The stability analysis under constrained switching has usually been pursued in the framework of MLFs.
The basic idea is to use multiple Lyapunov or Lyapunov-like functions, each of which may correspond to
a single subsystem or certain regions in the state space, concatenated together to produce a nontraditional
Lyapunov function. The nontraditionality is in the sense that the MLF may not be monotonically decreas-
ing along the state trajectories, may have discontinuities, and be piecewise differentiable. The reason for
considering nontraditional Lyapunov functions is that the traditional Lyapunov function may not exist
for hybrid systems with restricted switching signals. For such cases, one may still construct a collection
of Lyapunov-like functions, which only requires nonpositive Lie-derivative for certain subsystems in a
certain region of the state space instead of globally negativity conditions.

Lyapunov-like functions are defined as a family of real-valued functions {Vi , i = 1, . . . , N}with certain
properties, each associated with the vector field ẋ = fi(x) that represents the continuous dynamics for the
hybrid system under the ith discrete mode.
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Definition 30.4: Lyapunov-Like Function

By saying that a subsystem has an associated Lyapunov-like function Vi in regionΩi ⊆ R
n, we mean that

1. There exist constant scalars βi ≥ αi > 0, such that

αi‖x‖2 ≤ Vi(x)≤ βi‖x‖2

holds for any x ∈Ωi .
2. For all x ∈Ωi and x �= 0, V̇i(x) < 0.

Here V̇i(x)= (∂Vi(x)/∂x)fi(x). The first condition implies positiveness and radius unboundedness for
Vi(x) when x ∈Ωi , while the second condition guarantees the decrease of the abstracted energy, value of
function Vi(x), along the trajectories of subsystem i insideΩi .

Suppose that these regionsΩi cover the whole state space, and so a cluster of Lyapunov-like functions is
obtained. By concatenating these Lyapunov-like functions together, we obtain a nontraditional Lyapunov
function, called MLF, which can be used to study the global stability of hybrid systems. MLFs are proved
to be a powerful tool for studying the stability of switched systems and hybrid systems; see, for example,
[3,6,8,9]. There are several versions of MLF results in the literature. A very intuitive MLF result [3] is
illustrated in Figure 30.1, where the Lyapunov-like function decreases when the corresponding mode is
active and does not increase its value at each switching instant. Formally, this result can be stated by the
following theorem [3].

Theorem 30.12:

Suppose that each subsystem has an associated Lyapunov-like function Vi in its active regionΩi , each with
equilibrium point x = 0. Also, suppose that

⋃
i Ωi = R

n. Let σ(t) be a class of piecewise-constant switching

Q

Vq3 (x)

Vq2 (x)
t

Vq3 (x)

q1

q2

τ1 τ′1 = τ2 τ′2 = τ3 τ′3 = τ4

q3

Vqi (x)

Vqi (x)

FIGURE 30.1 The hybrid system is asymptotically stable if the Lyapunov-like functions’ values at the switching
instants form a decreasing sequence.
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sequences such that σ(t) can take value i only if x(t) ∈Ωi , and in addition

Vj(x(ti,j))≤ Vi(x(ti,j)),

where ti,j denotes the time when switched system switches from subsystem i to subsystems j, that is, x(t−i,j ) ∈
Ωi while x(ti j) ∈Ωj . Then, the switched linear system (Equation 30.1) is exponentially stable under the
switching signals σ(t).

The above MLF theorem requires that at each switching instant the Lyapunov-like function does
not increase its value, which is quite conservative. Actually, one may obtain less conservative results.
For example, the switching signals may be restricted in such a way that at every time when we exit
(switch from) a certain subsystem its corresponding Lyapunov-like function value is smaller than its
value at the previous exiting time. Then the switched system is asymptotically stable. In other words,
for each subsystem, the corresponding Lyapunov-like function values at every exiting instant form a
monotonically decreasing sequence. Alternatively, the decreasing tendency is captured by the Lyapunov-
like function’s value at the entering instant instead. This case is illustrated in Figure 30.2. This result can
be presented as follows.

Theorem 30.13: [3]

Assume that there exists a family of Lyapunov functions {Vi : i ∈ I} for each stable subsystem. If for any
two switching instants ti and tj such that i < j and σ(ti)= σ(tj) we have

Vσ(tj)(x(tj+1))−Vσ(ti)(x(ti+1))≤−ρ‖x(ti+1)‖2,

for some constant ρ> 0, then the switched system is asymptotically stable.

Furthermore, as shown in [9], the Lyapunov-like function may increase its value during a time interval,
only if the increment is bounded by certain kind of continuous functions as illustrated in Figure 30.3.

Q

Vq2 (x)

t

Vq2 (x)

q1
τ1 τ′1 = τ2 τ′2 = τ3 τ′3 = τ4

q2

Vq1 (x) Vq1 (x)

Vqi (x)

FIGURE 30.2 For every subsystem, its Lyapunov-like function’s value Vi at the start point of each interval exceeds
the value at the start point of the next interval on which the ith subsystem is activated, then the hybrid system is
asymptotically stable.
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Q

t

Vq2 (x)

Vq1 (x)

Vq1 (x)

Vq1 (x)

Vq2 (x)

Vq2 (x)

q1

q2

τ1 τ′3 = τ4 τ′4 = τ5 τ′5 = τ6

Vqi (x)

τ′1 = τ2 τ′2 = τ3

FIGURE 30.3 The hybrid system can remain stable even when the Lyapunov-like function increases its value during
a certain period.

Interested readers may refer to the survey papers [3,6,9] and references therein. Note that all the arguments
for continuous-time hybrid/switched systems can be extended to the discrete-time case without essential
differences.

30.3.3 Piecewise Quadratic Lyapunov Functions

The critical challenge of applying the MLF theorems to practical switched/hybrid systems is how to
construct a proper family of Lyapunov-like functions. Usually this is a hard problem. However, if one
focuses on the linear case, piecewise quadratic Lyapunov-like functions could be attractive candidates,
since the stability conditions in the MLF theorems can be formulated as LMIs [3,5], for which efficient
software solution packages exist.

Considering the hybrid system with an LTI subsystem, ẋ(t)= Aix(t), since we do not assume that the
subsystem is stable, there may not exist a quadratic Lyapunov function in a classical sense. However, it
is still possible to restrict our search to certain regions of the state space, say Ωi ⊂ R

n, and the energy
of the ith subsystem could be decreasing along the trajectories inside this region (there is no decreasing
requirements outside Ωi). Suppose that the union of all these regions Ωi covers the whole state space;
then we obtain a cluster of Lyapunov-like functions. Broadly speaking, the problem entails searching for
Lyapunov-like functions whose associatedΩ-region covers the state space.

Assume that the state space R
n has a partition given by {Ω1, . . . ,ΩN }, and these regionsΩi are defined a

priori as a restriction of the possible switching signals (state-dependent). In this subsection, we present LMI
conditions for the existence of quadratic Lyapunov-like functions of the form of Vi(x)= xT Pix, assigned
to each regionΩi . A Lyapunov-like function Vi(x)= xT Pix needs to satisfy the following two conditions:

Condition 30.1:

There exist constant scalars βi ≥ αi > 0 such that

αi‖x‖2 ≤ Vi(x)≤ βi‖x‖2

hold for all x ∈Ωi .
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Consider a quadratic Lyapunov-like function candidate, Vi(x)= xT Pix, and require that

αix
T Ix ≤ xT Pix ≤ βix

T Ix

holds for any x ∈Ωi . That is {
xT (αiI − Pi)x ≤ 0
xT (Pi − βiI)x ≤ 0

holds for all x ∈Ωi .

Condition 30.2:

For all x ∈Ωi and x �= 0, V̇i(x) < 0.
This negativeness of the Lyapunov-like function’s derivative along the trajectories of a subsystem can be

represented as ∃Pi , (Pi = PT
i ) such that

xT [AT
i Pi + PiAi]x < 0 (30.12)

for x ∈Ωi .

30.3.3.1 Switching Condition

In addition, based on the MLF theorem of [3], for stability it is also required that the Lyapunov-like
functions’ values at switching instant are nonincreasing, which can be expressed by

xT Pjx ≤ xT Pix

for x ∈Ωi,j ⊆Ωi
⋂
Ωj. The region Ωi,j stands for the states where the trajectory passes from region Ωi

toΩj.
Note that all the above matrix inequalities are constrained in a local region, such as x ∈Ωi or Ωi j. A

technique called S-procedure can be applied to replace a constrained matrix inequality condition by a
condition without constraints. To employ the S-procedure, the regionsΩi andΩi j need to be expressed
by or be contained in regions characterized by quadratic forms. For simplicity, we assume here that each
regionΩi has a quadratic representation or approximation, that is

Ωi = {x| xT Qix ≥ 0},
and regionsΩi,j can be expressed or approximated by

Ωi,j = {x| xT Qi jx ≥ 0}.
Then the above matrix inequalities can be transformed into unconstrained ones based also on the
S-procedure, namely

Theorem 30.14:

The system (Equation 30.1) is (exponentially) stable if there exist matrices Pi (Pi = PT
i ) and scalars α>

0, β> 0,μi ≥ 0, νi ≥ 0,ϑi ≥ 0, and ηi,j ≥ 0, such that
⎧⎨
⎩
αI +μiQi ≤ Pi ≤ βI − νiQi

AT
i Pi + PiAi +ϑiQi ≤−I

Pj +ηi jQi j ≤ Pi

(30.13)

are satisfied.
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The above theorem is an adaptation of a result in [3]. If there is a solution to the above LMI problem,
the exponential stability is verified. In addition, a bound on the convergence rate can be estimated:

‖x(t)‖ ≤
√
β

α
e−

1
2β t‖x0‖,

where x(t) is the continuous trajectory with an initial state x0, and the constants α, β are solutions of the
LMI (Equation 30.13). Based on similar arguments, LMI- based sufficient conditions for the discrete-time
case can be derived; see, for example, [8].

An example is now presented to illustrate Theorem 30.14.

Example 30.2:

Consider a hybrid system
⎧⎪⎪⎨
⎪⎪⎩

ẋ(t)=
[

0 10
0 0

]
x(t), if x(t) ∈Ω1 = {x|xT Q1x ≥ 0},

ẋ(t)=
[

1.5 2
−2 −0 5

]
x(t), if x(t) ∈Ω2 = {x|xT Q2x ≥ 0},

(30.14)

where Q1 =
[−0.25 −0 25
−0.25 2

]
and Q2 =

[
0.25 0.25
0.25 −2

]
. Since Q1 =−Q2, it is straightforward to ver-

ify thatΩ1
⋃
Ω1 = R

2.
Solving the LMI problem in Theorem 30.14 results in a solution

P1 =
[

0.1000 −0.4500
−0.4500 41.1167

]
, P2 =

[
4.3792 3.8292
3.8292 6.8833

]

with a value of β= 41.12. Hence, the hybrid system is exponentially stable. Interested readers may
refer to [3] for details and illustration of trajectories and Lyapunov-level curves.

Note that the above conditions are all based on MLF theorems; hence the results developed in this sub-
section are only sufficient. To reduce the possible conservativeness, a new kind of polynomial Lyapunov
functions has been introduced and investigated for the stability analysis of hybrid systems. The compu-
tation of such polynomial Lyapunov functions can be efficiently performed using convex optimization,
based on the sum of squares (SOS) decomposition of multivariate polynomials. It is also possible to use
SOS techniques together with the S-procedure to construct piecewise polynomial Lyapunov functions,
with each polynomial as a SOS while incorporating the state constraints, and hence to generalize piecewise
quadratic Lyapunov functions. Interested readers may refer to the survey paper [8] for further references.

30.4 Switching Stabilization

Implicitly, the above MLF results provide methodologies for the design of switching logics between vector
fields so as to achieve a stable trajectory, since MLF results characterize the conditions on switching signals,
under which the hybrid system is stable. In this section, we explicitly consider the design of stabilizing
switching logics for hybrid systems. The formulation of the problem can be stated as follows.

• Given a collection of LTI systems ẋ = Aix, design switching logics so that the induced hybrid system
is stable.

This is usually called the switching stabilization problem in the literature. It is known that even when all
subsystems are unstable, there still may exist stabilizing switching signals.
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30.4.1 Quadratic Switching Stabilization

In the switching stabilization literature, most of the work has focused on quadratic stabilization for certain
classes of systems. A hybrid system is called quadratically stabilizable when there exist switching signals
that stabilize the system along a quadratic Lyapunov function, V (x)= xT Px.

It is known that a necessary and sufficient condition for a pair of LTI systems to be quadratically
stabilizable is the existence of a stable convex combination of the two subsystems’ matrices. Specifically,

Theorem 30.15:

A hybrid system that contains two LTI subsystems, ẋ(t)= Aix(t), i = 1, 2, is quadratically stabilizable if and
only if the matrix pencil γα(A1, A2)= {Aα | Aα = αA1+ (1− α)A2, 0≤ α≤ 1} contains a stable matrix.

A generalization to more than two LTI subsystems was suggested by using a “min-projection strategy,”
that is,

σ(t)= arg min
i∈I

x(t)T PAix(t). (30.15)

Theorem 30.16:

If there exist constants αi ∈ [0, 1], and
∑

i∈I αi = 1 such that

Aα =
∑
i∈I
αiAi ,

is stable, then the min-projection strategy (Equation 30.15) quadratically stabilizes the switched system.

However, the existence of a stable convex combination matrix Aα is only sufficient for switched
LTI systems with more than two subsystems. There are example systems for which no stable convex
combination state matrix exists, yet the system is quadratically stabilizable using certain switching signals.
A necessary and sufficient condition for the quadratic stabilizability of switched controller systems is as
follows.

Theorem 30.17: [12]

The switched system is quadratically stabilizable if and only if there exists a positive definite real symmetric
matrix P = PT > 0 such that the set of matrices {AiP+ PAT

i } is strictly complete, that is, for any x ∈ R
n/{0},

there exists i ∈ I such that xT (AiP+ PAT
i )x < 0. In addition, a stabilizing switching signal can be selected

as σ(t)=mini{xT (t)(AiP+ PAT
i )x(t)}.

Analogously, for the discrete-time case, it is necessary and sufficient for quadratic stabilizability to
check whether there exists a positive symmetric matrix P such that the set of matrices {AT

i PAi − P} is
strictly complete. Obviously, the existence of a convex combination of state matrices Aα automatically
satisfies the above strict completeness conditions due to convexity, while the inverse statement is not true
in general. Unfortunately, checking the strict completeness of a set of matrices is NP hard [12]. Interested
readers may refer to survey papers [3,6,8] for further references.

Quadratic stability means that there exists a positive constant ε such that V̇ (x)≤−εxT x. All of these
methods guarantee stability by using a common quadratic Lyapunov function, which is conservative in the
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sense that there are switched systems that can be asymptotically (or exponentially) stabilized in case when
a CQLF function does not exist. Therefore, we will turn our attention to multiple Lyapunov functions,
and describe constructive synthesis methods based on the piecewise quadratic Lyapunov function in the
next section, which are mainly based on [11].

30.4.2 Piecewise Quadratic Switching Stabilization

According to Theorem 30.14, if there exist real matrices Pi (Pi = PT
i ) and scalars α> 0, β> 0,μi ≥ 0, νi ≥

0,ϑi ≥ 0, and ηi,j ≥ 0, satisfying

⎧⎨
⎩
αI +μiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA+ϑiQi ≤−I
Pj +ηi,jQi,j ≤ Pi

,

then the switched linear system (Equation 30.1) is exponentially stable.
In contrast to the stability analysis problem, here the state-space partitions Ωi are not given a priori

any more. Actually, the state partitions Ωi , which induce the state-dependent switching signals, are
to be designed. Moreover, the state space cannot be partitioned in an arbitrary way. The partition of
the state space should facilitate the search of proper quadratic Lyapunov-like functions, and satisfy the
nonincreasing conditions when switching occurs. This will be discussed in detail in the following.

30.4.2.1 State-Space Partition

Once again, the purpose of dividing the whole state space R
n into pieces, denoted as Ωi , is to facilitate

the search for Lyapunov-like functions for one of these subsystems. After successfully obtaining these
Lyapunov-like functions associated with each region Ωi , one may patch them together, following the
conditions of the above MLF theorem, so as to guarantee global stability.

For this purpose, it is necessary that these regionsΩi cover the whole state space, that is, the following
covering property holds:

Ω1

⋃
Ω2

⋃
· · ·
⋃
ΩN = R

n.

This condition merely says that there are no regions in the state space where none of the subsystems
are activated.

Since we will restrict our attention to quadratic Lyapunov-like functions for the purpose of computa-
tional efficiency, we will consider regions given (or approximated) by quadratic forms

Ωi = {x ∈ R
n| xT Qix ≥ 0},

where Qi ∈ R
n×n are symmetric matrices, and i ∈ {1, . . . , N}.

The following lemma gives a sufficient condition for the covering property.

Lemma 30.1: [11]

If for every x ∈ R
n

N∑
i=1

θix
T Qix ≥ 0, (30.16)

where θi ≥ 0, i ∈ I , then
⋃N

i=1Ωi = R
n.
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30.4.2.2 Switching Condition

In order to guarantee exponential stability we also need to make sure that

1. Subsystem i is active only when x(t) ∈Ωi .
2. When switching occurs, it is required to guarantee that the Lyapunov-like function values do not

increase.

To verify the first requirement, we consider the largest region function strategy, that is,

σ(x(t))= arg

(
max
i∈I

x(t)T Qix(t)

)
. (30.17)

This is due to the selection of subsystems (at state x(t)) corresponding to the largest value of the region
function x(t)T Qix(t).

Suppose that the covering condition (Equation 30.16) holds, that is,

N∑
i=1

θix
T Qix ≥ 0

for some θi ≥ 0, i ∈ I . Then, based on the largest region function strategy, the state x with the current
active mode i satisfies xT Qix ≥ 0. This implies that x ∈Ωi . So the first condition holds for the largest
region function strategy (Equation 30.17).

To satisfy the second energy decreasing condition at switching instants, we need to know in which
direction the state trajectory x(t) passes through the switching surfaces. However, the switching surface
is to be designed, and so such information is lacking in general. Then we make a compromise and require
that

xT Pix = xT Pjx

for states at the switching plane, that is, x ∈Ωi ∩Ωj. Assume that the set Ωi ∩Ωj can be represented by
the following quadratic form:

Ωi ∩Ωj = {x|xT (Qi −Qj)x = 0}.
Again, applying the S-procedure, we obtain

Pi − Pj +ηi,j(Qi −Qj)= 0,

for an unknown scalar ηi,j, as the switching condition.

30.4.2.3 Synthesis Condition

The above discussion can be summarized by the following sufficient conditions for the collection of
continuous-time systems (Equation 30.1) to be exponentially stabilized.

Theorem 30.18: [11]

If there exist real matrices Pi (Pi = PT
i ) and scalars α> 0, β> 0,μi ≥ 0, νi ≥ 0, θi ≥ 0,ϑi ≥ 0, and ηi j ,

solving the optimization problem

min β

s.t.

⎧⎪⎪⎨
⎪⎪⎩

αI +μiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA+ϑiQi ≤−I
Pj = Pi +ηi j(Qi −Qj)
θ1Q1+ · · ·+ θN QN ≥ 0

for all i, j ∈ {1, . . . , N}, then the switched linear system (Equation 30.1) can be exponentially stabilized (with
decay rate 1

2β ) by the largest region function strategy (Equation 30.17).
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The extension of the synthesis method for continuous-time switched linear systems to discrete-time
counterpart is not obvious. The main difficulty is that, unlike the continuous-time case, discrete-time
switched systems do not have the nice property that the switching occurs exactly on the switching
surface. Instead, the switching happens in a region around the switching surface. As a result, we
cannot simply capture the switching instants for discrete-time switched systems at the time instants
when the state trajectories cross the switching surfaces. Therefore, in order to guarantee the nonin-
creasing requirement at the switching instants for the discrete-time case, we need to include more
constraints involving state transitions for the discrete-time switched systems around the switching
surfaces. This makes the switching stabilization problem for discrete-time switched systems more
challenging.

Some remarks are in order. First, for both the continuous-time and discrete-time cases, the optimization
problem above is a Bilinear Matrix Inequality (BMI) problem, due to the product of unknown scalars
and matrices. BMI problems are non-convex, and not computationally efficient. However, practical
algorithms for optimization problems over BMIs exist and typically involve approximations, heuristics,
branch-and-bound, or local search. One possible way to solve the BMI problem is to grid up the unknown
scalars, and then solve a set of LMIs for fixed values of these parameters. It is argued in [11] that the
gridding of the unknown scalars can be made quite sparsely.

Example 30.3: [11]

To illustrate the synthesis procedure, consider the case of two unstable subsystems given by

A1 =
[

1 −5
0 1

]
, A2 =

[
1 0
5 1

]
.

It can be shown that there is no stable convex combination of these two matrices, which means that
the system cannot be quadratically stabilized. However, solving the BMI in Theorem 30.18 through
gridding up the unknown parameters results in a solution

β= 3.7941, α= 0.2101

and

Q1 =−Q2 =
[−0.08242 0.8648

0.8648 0.8053

]
, (30.18)

P1 =
[

1.1896 1.1440
1.1440 3.2447

]
, P2 =

[
3.3325 −1.1044
−1.1044 1.1509

]
. (30.19)

Hence, the switched linear system can be exponentially stabilized by the largest region function
strategy (Equation 30.17), and the estimate of the exponential convergence becomes ‖x(t)‖ ≤
4.2495e−0.1318t‖x0‖.

So far, we have only derived sufficient conditions for the existence of stabilizing switching signals for
a given collection of linear systems. A more difficult problem has been the necessity part of the switching
stabilizability problem, and a particularly challenging part has been the problem of finding necessary and
sufficient conditions for switching stabilizability. In [7], a necessary and sufficient condition was proposed
for the existence of a switching control law (in static state-feedback form) for asymptotic stabilization of
continuous-time switched linear systems.
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30.5 Conclusion

In this chapter, we discussed, by necessity, a brief introduction to the basic concepts and results of the
field of stability and stabilizability of hybrid systems. For further references, we would suggest several
survey papers on the stability of hybrid and switched systems, for example [3,6,8,9].
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31.1 Introduction

People, engineers, and scientists encounter a variety of switched systems everyday. Gear selection in
automatic transmissions [1], control of robots subject to constraints [2], power management in hybrid
electric vehicles [3], load balancing in a computer cluster [4], coordination of flexible AC transmission
systems (FACTS) devices [5], and output voltage regulation in DC/DC converters [6–10] are but a few
examples. Minimizing energy/power usage and/or tracking errors are typical objectives in these control
systems. These objectives are achieved by formulating an appropriate cost function to be optimized over
some switching functions in combination with the usual continuous control input. Switched systems

31-1
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are a subclass of hybrid systems in which both discrete (switching) and the continuous control inputs
are present. Additionally, there may be internal or uncontrolled switches that result when the system
trajectory and/or continuous inputs enter certain regions of the state and input spaces, respectively.
These switches are called autonomous.

There are a variety of techniques for solving hybrid optimal control problems. In general, the problem
can be subdivided into three tasks: (1) finding the optimal sequence of switching instants, (2) finding the
optimal sequence of discrete input modes, and (3) finding the optimal value for the continuous control
input. For general cases, completing all three tasks is difficult. For example, Giua et al. [11], Xu and
Antsaklis [12], and Loxton et al. [7] fix the switching sequence, and then compute the continuous control
input. Bemporad and Morari [13] suggest using mixed integer programming to find the optimal solution
whose computational complexity is NP-hard and increases exponentially with the number of modes.
The minimum principle [14–16] has also been applied to solve for solutions. The dynamic programming
approach adopted in [1,17,18] has the curse of dimensionality as a drawback. In [19], the Heaviside
function (calculus of variations) is used to re-create a continuous system from the hybrid system with
state jumps.

Based on the result in [20], we show, in this chapter, that for quite a general class of hybrid optimal
control problems, the computational complexity of the problem is no greater than that of smooth optimal
control problems. In Appendix A, we also describe how to extend the embedding methodology of [20]
to incorporate hybrid behavior stemming from memoryless autonomous switches that results in plant
equations with piecewise smooth vector fields. Further we point out that the approach from [20] can be
readily extended to systems with an arbitrary number of modes with only a linear increase in complexity
[21]. A direct collocation approach to the solution of the hybrid optimal control problems is summarized
in Appendix B.

The switched systems studied herein exhibit two types of switching behavior: autonomous (uncon-
trolled) switches and controlled switches. They both result in discontinuous jumps in the vector fields
governing the evolution of the continuous state of the system. In the case of autonomous switches, the
vector fields of the system undergo discontinuous jumps as a result of the state and the input entering
different regions in the combined state and input space. Such switches are uncontrolled, meaning that
the switches cannot be affected directly through a separate switching mechanism. An example of a sys-
tem with autonomous switches is the one subject to continuous state-dependent constraints, where the
autonomous switches correspond to different combinations of constraints that are active in a particular
continuous state. A practical example is a mobile robot that encounters a patch of ice in which rolling
motion changes abruptly to sliding motion. The second type of switches involves discontinuous jumps in
the vector fields that can be directly controlled, and thus are called controlled switches. An example of a
system with such switches is a continuous control system whose control mechanism consists of a finite
number of different continuous controllers, and the controller to be used is determined at a supervisory
or decision-making level of the overall control system. Such would be the case for power management in
a hybrid electric vehicle, or, for example, a large ship’s propulsion/electrical system. We assume that the
set of different operating regimes of the system defined through the autonomous and controlled switches
is finite.

As mentioned, in hybrid electric vehicles, the energy or power management problem is naturally
modeled as an optimal switched system in which the electric drive operates either as a propelling machine
or as a generating machine for recharging the battery. A suboptimal model predictive control (MPC)
approach was adopted to solve for the energy management solutions in [3,22–24]. A nonlinear MPC
(NMPC) version provides more accurate hybrid electric vehicle (HEV) solution but at the expense of
computational requirement [3]. To improve the computational time, a few optimization subproblems
can be solved offline and the solutions stored as maps, thereby decreasing the computational load [25,26].
Real-time MPC is detailed for boost converters in [8–10].

The formal definition of the switched optimal control problem (SOCP) is provided in Section 31.2.
This section also illustrates mathematically how to parameterize the family of problems as the embedded
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optimal control problem (EOCP). This section suggests solving the SOCP via first solving the EOCP. The
benefits of the embedding technique are also provided.

Section 31.3 summarizes sufficient and the necessary conditions for solvability of the EOCP. It will
be seen therein that sufficiency conditions can be met rather easily by many systems. The necessary
conditions can be seen as a generalized Maximum Principles without explicit assumptions on fixing the
number or sequence of switchings. This is followed by a description of the extension to three modes (and
implicitly to n) in Section 31.4.

The application of the necessary conditions for solving the EOCP is illustrated in Section 31.5. Therein
a simplified vehicle with two gears is investigated [20]. Through the usage of the generalized Hamiltonian
one can apply the EOCP to characterize the solutions, including the singular cases.

Since applying the necessary condition requires solving for the state and the adjoint equations simulta-
neously, the sensitivity of the solution on the initial state or adjoint state is known to be large, precluding
the use of single shooting methods. Section 31.6 applies the direct collocation method, a more robust
technique to solve an example of MPC of a unicycle. A summary of the direct collocation method
is provided in Appendix B. Concluding remarks and further pointers to the literature are given in
Section 31.7.

31.2 The Switched and EOCPs

This section formalizes a model and problem formulation for a two-switched system. Generalization to
3-modes is described in Section 31.4 and the extension to n-modes is straightforward [21]. The well-
known SOCP is developed first. Then as per Bengea and DeCarlo [20], the embedded formulation is
presented. The relationship between the two formulations is then set forth. One can then show that the
embedded problem is a viable approach for solving the SOCP and in contrast to other approaches has
linearly increasing complexity with the number of modes rather than combinatorial complexity.

31.2.1 Model of a Two-Switched System

The state dynamics of a two-switched system is

ẋS(t)= fvS(t)(t, xS(t), uS(t)), xS(t0)= x0 ∈ R
n, t ≥ t0 (31.1)

where (1) the continuously differentiable vector fields, f0, f1 : R×R
n×R

m → R
n, specify the dynamics of

each of two possible system configurations; (2) the classical control input, uS(t) ∈Ω⊂ R
m, is constrained

to the bounded and convex set,Ω, at each time instant; and (3) a mode switching mechanism, represented
through the subscript vS(t) ∈ {0, 1}, identifies which of the two possible system configurations, f0 or f1,
is operational. These “controls” ensure that the system vector field can be controlled both through a
selection of the control and switching inputs. We also assume that the initial time, t0, initial state, xS(t0),
final time, tf , and final state, xS(tf ), are restricted to a boundary set B as follows: (t0, xS(t0), tf , xS(tf )) ∈
B � T0×B0×Tf ×Bf ⊂ R

2n+2.
In addition to controlled switches, there are often autonomous switches and even switches that are

only possible in certain regions of the state space. Appendix A describes how autonomous switches can
be easily incorporated into the framework set forth in this chapter.

In general, the behavior of switched systems can be quite complex and might lead to anomalies such
as Zeno behavior or deadlock states. Furthermore, the systems of Equation 31.1 (or Equations 31.42 and
31.44) belong to the class of systems with discontinuous right-hand sides [27]; hence, the questions of
existence and uniqueness of solutions have to be carefully studied. Although certainly important, these
issues are outside the scope of this chapter and we will assume that the existence and uniqueness (in the
appropriate sense) are guaranteed. We refer the interested reader to the conference series [28,29], special
issues [30,31], and [32,33] for further reading.



�

�

�

�

� �

31-4 Control System Advanced Methods

31.2.2 Performance Index and the SOCP

The extent to which it is preferable (when the same trajectories can be generated in both modes) or feasible
(when only one mode can generate desired trajectories) to modulate the continuous inputs or choose the
switching control input value depends on the input and state constraint set and a performance index (PI).
For measuring the degree of optimality of triplets (uS(·), vS(·), xS(·)), we introduce the following cost PI:

JS(x0, uS, vS)= g(t0, x0, tf , xf )+
∫ tf

t0

FvS(t)(t, xS(t), uS(t)) dt (31.2)

where the function g penalizes the endpoints and is defined on a neighborhood of B, and the integrands
F0 and F1 are real-valued continuously differentiable functions that penalize the running cost in each
mode, respectively. Depending on the engineering applications, the functions F0 and F1 represent the
cost of operation of various subsystems that are active only during individual modes of operations. For a
hybrid electric vehicle example, during acceleration we want to minimize fuel consumption, while during
braking one tries to maximize the regenerative power [3,24].

The previously introduced dynamics, input and state constraints, and performance measure define the
SOCP:

min
uS∈Ω,vS∈{0,1} JS(x0, uS, vS)

constrained by

1. Dynamical state equation 31.1.
2. Endpoint constraints (t0, xS(t0), tf , xS(tf )) ∈ B.

In the selection of the above switching system dynamics and performance measure, we make several
transparent assumptions that limit the application of the proposed approach:

1. The dynamical equation 31.1 models the switching control input vS(t) as an independent control
input; therefore, the mode switching can occur independently of the state values and control
input values. In practical examples, this may not be the case as would be for the speed-dependent
gear-switching mechanism of a vehicle. The state-dependent switching can still be studied via the
formulated SOCP by penalizing the switching (a formulation known as a “soft” constraint).

2. Mode-switching is assumed to occur instantaneously. In engineering application, switching among
the vector fields is implemented by generating new actuator values that interconnect and/or dis-
connect various subsystems. In power electronics, such switching takes place over a time interval
that is negligible in comparison with other component dynamics. When this switching action
absorbs large amounts of energy or affects the dynamics of the physical system beyond the con-
nection/disconnection process, the switching dynamics may need to be modeled.

31.2.3 The Embedded Optimal Control Problem

To display the interaction between the discrete and continuous control inputs Equation 31.1 can be
rewritten as a convex combination:

ẋE(t)= [1− vE(t)] · f0(t, xE(t), uE0(t))+ vE(t) · f1(t, xE(t), uE1(t)) (31.3)

which reduces to Equation 31.1 under the conditions: vE(t)= vS(t) and uE0(t)= uE1(t)= uS(t). However,
although Equation 31.3 is equivalent to Equation 31.1 under the indicated conditions, this new equation
invites exploration of additional trajectories generated with an enlarged domain of the switching control
denoted here by vE ∈ [0, 1] and independent continuous-time controls uE0(t), uE1(t) ∈Ω.

For illustrating the possible trajectories generated with vE ∈ [0, 1], we sketch in Figure 31.1 vector fields
and trajectories for a hypothetical switching system and the corresponding switching controls vE . With
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(1 – vS)*f0 + vS*f1

f1 (vS = 1)

B0

B
f

f0 (vS = 0)
x2

x1

FIGURE 31.1 Trajectories generated with various control inputs vE for a hypothetical switch system: vE = 0(solid
upward arrow), vE = 1(solid rightward arrow); some vE ∈ (0, 1) (solid dark arrow).

this enlarged control input set the original switching control becomes a special case; it would appear that
the generated trajectories are no longer feasible for the original switched system.

This expansion of the control input domains follows relaxation techniques from optimal control
employed when certain sets that guarantee solution existence need to be rendered convex [34]. We call
this relaxation of the switching system an “embedding.” The PI of Equation 31.2 has a similar embedding
given by

JE(x0, uE0, uE1, vE)= g(t0, xE(t0), tf , xE(tf ))+
∫ tf

t0

{[1− vE(t)] · F0(t, xE(t), uE0(t))

+ vE(t) · F1(t, xE(t), uE1(t))} dt (31.4)

which leads to the EOCP:
min

uE0,uE1∈Ω,vE∈[0,1] JE(x0, uE0, uE1, vE)

subject to

1. Dynamical state equation 31.3.
2. Endpoint constraints (t0, xE(t0), tf , xE(tf )) ∈ B.

The EOCP becomes now a classical optimization problem with continuous control inputs. Although
application of established techniques is now possible for solving this problem, the EOCP’s solutions
(x∗E , u∗E0, u∗E1, v∗E) may have v∗E ∈ (0, 1) for almost all time instants t ∈ [t0, tf ]. One wonders how this might
help solve the original SOCP where the switching control v∗S ∈ {0, 1}. If one selects a signal vS that switches
between 0 and 1 with an appropriate duty cycle per (small) unit time, then a trajectory of Equation 31.1,
so generated, ought to approximate an embedded trajectory xE as is illustrated in Figure 31.2. The idea
of approximating trajectories generated with vE by appropriately selecting an on–off signal vS ∈ {0, 1} is
made more rigorous in Theorem 31.1.

Theorem 31.1:

Let uE0, uE1 ∈Ω and vE ∈ [0, 1] be a control triplet for the embedded system Equation 31.3 and xE the
generated trajectory on the interval [t0, tf ]. Let both the switched and embedded systems have the same
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ti tf
t

x

t0

xS
( f0, vS = 0)

xE
( fE, vE)

xS
( f1, vS = 1)

FIGURE 31.2 Embedded system trajectory xE(black), approximating switching system trajectory xS , and corre-
sponding switching signal.

initial condition, xS(t0)= xE(t0). Then for any desired trajectory-approximation error ε> 0, there are
control inputs vS,ε(t) ∈ {0, 1} and uS,ε(t) ∈Ω defined on [t0, tf ] such that the generating switching trajectory
has the property

∥∥xS,ε(t)− xE(t)
∥∥< ε for all t ∈ [t0, tf ].

The proof of the theorem and details on the approximation can be found in [20]. By establishing
that the set of embedded system trajectories is not significantly larger than the set of the trajectory set of
Equation 31.1, the theorem validates the approach of generating optimal solution for the SOCP by solving
the EOCP, a classical optimization problem. Indeed, the set of trajectories of Equation 31.1 is dense in
the set of trajectories of the embedded system. After application of standard techniques for generating
a solution (x∗E , u∗E0, u∗E1, v∗E) for the EOCP, at least a suboptimal solution of the SOCP (xS, uS, vS) is
guaranteed to exist by Theorem 31.1. How best to achieve the approximation remains an area of open
research.

Based on Theorem 31.1 and on the properties of the EOCP, it can be shown that the relationships
of Table 31.1 hold (see Propositions 3 and 5 in [20]). An alternate proof of Theorem 31.1 based on the
Lyapunov (integral) theorem is given in [35].

The embedding approach enables the study of the cases when the SOCP does and does not have
solutions. The presence of singular solutions, with v∗E ∈ (0, 1), can reveal situations when the SOCP does
not have solutions. The only case, 2a in Table 31.1, when the EOCP does not solve the SOCP is the
case when the end-state of the embedded system trajectory x∗E(tf ) is on the boundary of the closed set
Bf . And this happens because the end-states of approximating trajectories xS,ε(tf ) are not guaranteed to
meet this final constraint. This case has not been completely studied, and the current analysis does not

TABLE 31.1 Relationship between SOCP’s and EOCP’s Solutions

EOCP Solutions SOCP Solutions Remarks

1. Bang-bang solutions

with v∗E ∈ {0, 1}
The same as ECOP

bang-bang solution with

v∗S = v∗E and x∗S = x∗E

SOCP is solved

2a. Singular solutions only

v∗E ∈ (0, 1)

May have solutions EOCP does not solve SOCP

2b. Does not have solutions Suboptimal solutions can be

constructed via Theorem 31.1
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exclude its existence. From an engineering perspective, however, this case has little relevance. By using
engineering approximations for a particular application, the terminal constraint set can in most cases be
slightly enlarged making Case 2a unlikely. Hence, approximate feasible solutions of the SOCP can always
be constructed, motivating a continued focus on the embedding approach.

31.3 Sufficient and Necessary Conditions for Solvability
of the EOCP

This section presents conditions that guarantee the existence of EOCP solutions and properties of these
solutions. Combined with the EOCP and SOCP relationships of Table 31.1, the existence conditions
for the EOCP solutions enable the study of sufficient conditions for the SOCP. In deriving existence
conditions for the EOCP solutions, we employ the generic theorem of Berkovitz [34, Theorem 51, p. 61].
With appropriate notational adaptations to the EOCP formulation, this theorem states that a solution
exists for a generic optimal control problem, if the following conditions are met:

1. The set of admissible pairs states-control inputs, (xE , uE0, uE1, vE), is not empty.
2. There is a compact set that includes all the points (t, xE(t)) for all t ∈ [t0, tf ].
3. The terminal constraint set B is compact.
4. The input constraint setΩ×Ω×[0, 1] is compact.
5. The set

Q+E �
{

(y0, y) : y0 > (1−μ)F0(t, xE , uE0)+μF1(t, xE , uE1),

y = (1−μ)f0(t, xE , uE0)+μf1(t, xE , uE1),μ ∈ [0, 1], uE0, uE1 ∈Ω)
}

(31.5)

is convex.

Among all the above conditions, meeting the convexity requirement of the set Q+E is the most chal-
lenging. From [34], this condition is met when a system is affine and the penalty cost is convex in the
continuous control input. The particular form of the EOCP, where both the vector field and the penalty
costs are affine in the additional switching control input, makes possible the extension of the mentioned
results to the EOCP.

Proposition 31.1:

The set Q+E , defined in Equation 31.5, is convex for the following class of EOCP vector fields:
(S1) The vector fields for the two modes of operation are linear in their control inputs: f0(t, xE , uE0)=

A0(t, xE)+B0(t, xE) · uE0, f1(t, xE , uE1)= A1(t, xE)+B1(t, xE) · uE1, with A0, B0, A1, B1 continuously
differentiable functions.

(S2) The cost functional integrands are convex in their continuous control inputs: for every (t, xE); the
functions F0(t, xE , uE0) and F1(t, xE , uE1) are convex in the inputs uE0 and uE1, respectively.

Proposition 31.1 and the previously presented relationships of Table 31.1 between the SOCP’s and
EOCP’s solutions are the main implements one can use for analyzing the existence of SOCP’s solutions.
Before understanding what particular case of Table 31.1 is applicable to a specific problem, the EOCP
solutions must be generated. Assuming that the EOCP has a solution, a characterization of these solutions
can be made by using classical results of optimal control theory. In the following, we use these results and
the particular form of EOCP vector fields and cost functional to derive conditions corresponding to the
cases presented in Table 31.1.
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The Hamiltonian associated with the EOCP is a function HE : R×R
n×R

m×R
m×[0, 1]×R×R

n →
R defined as

HE(t, xE , uE0, uE1, vE ,λ0
E ,λE)= λ0

E [(1− vE)F0(t, xE , uE0)+ vEF1(t, xE , uE1)]

+λT
E

[
(1− vE)f0(t, xE , uE0)+ vEf1(t, xE , uE1)

]
(31.6)

To emphasize the affine dependency on the generalized switching input vE , the Hamiltonian is
factored as

HE(t, xE , uE0, uE1, vE ,λ0
E ,λE)= E0(t, xE , uE0, uE1,λ0

E ,λE)+ vE ·E1(t, xE , uE0, uE1,λ0
E ,λE) (31.7)

with the obvious definitions of E0 and E1. Assuming that an optimal solution of the EOCP exists, denoted
hereafter as (t, x∗E , u∗E0, u∗E1, v∗E), a characterization of its properties is possible via application of Maximum
Principle [34, Theorem 31, p. 185, and Corollary 3.1, p. 186]. These conditions guarantee the existence of
a constant λ0∗

E and an absolutely continuous function λ∗E(t) on [t0, tf ] such that for almost all t ∈ [t0, tf ]
the following hold (the argument t is not included for simplicity):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ∗E =
∂HE

∂λE

]
(x∗E ,u∗E0,u∗E1,v∗E ,λ0∗

E ,λ∗E)

λ̇∗E =−
∂HE

∂xE

]
(x∗E ,u∗E0,u∗E1,v∗E ,λ0∗

E ,λ∗E)

(NC1)

where (∂HE/∂λE) and (∂HE/∂xE) denote appropriate partial derivatives;

HE(t, x∗E , u∗E0, u∗E1, v∗E ,λ0∗
E ,λ∗E)≥HE(t, x∗E , uE0, uE1, vE ,λ0∗

E ,λ∗E) (NC2)

for all uE0, uE1 ∈Ω and vE ∈ [0, 1]. Using simple manipulations detailed in [20], condition NC2 can be
shown to be equivalent to

HE(t, x∗E , u∗E0, u∗E1, v∗E ,λ0∗
E ,λ∗E)

=max
{

max
uE0,uE1

{HE(t, x∗E , uE0, uE1, 0,λ0∗
E ,λ∗E)}, max

uE0,uE1
{HE(t, x∗E , uE0, uE1, 1,λ0∗

E ,λ∗E)}
}

(31.8)

where the two inner Hamiltonian expressions are directly associated with the two modes of the switching
system. We observe this is the first step in the derivation where the SOCP’s solutions emerge as solution
of the EOCP. However, Equation 31.8 alone does not yet guarantee that EOCP solutions are of the bang-
bang type, that is, v∗E ∈ {0, 1}. In analyzing the cases when the EOCP has bang-bang-type solutions, the
expression

E1(t, xE , uE0, uE1,λ0
E ,λE)

= λ0
E [F1(t, xE , uE1)− F0(t, xE , uE0)]+λT

E

[
f1(t, xE , uE1)− f0(t, xE , uE0)

] (31.9)

of Equation 31.7 plays a critical role, specifically when it becomes zero. This role motivates the introduction
of the following set of time instants:

T �
{

t ∈ [t0, tf ] : E1(t, x∗E , u∗E0, u∗E1, vE ,λ0∗
E ,λ∗E)= 0

}
(31.10)

As an intuitive explanation, suppose the expression E1 of Equation 31.9 is nonzero almost everywhere
along the optimal solution then its sign would indicate which of the two maxima of Equation 31.8 is
attained. This in turn specifies the optimal value of the control input v∗E , which in this case would be
restricted to the set {0,1}. These statements are formalized in the following theorem:
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Theorem 31.2:

For almost all t ∈ [t0, tf ]−T the following hold:

1. (Mode 0) If maxuE0,uE1{HE(t, x∗E , uE0, uE1, 0,λ0∗
E ,λ∗E)}> maxuE0,uE1{HE(t, x∗E , uE0, uE1, 1,λ0∗

E ,λ∗E)},
then v∗E(t)= 0 and the equations of NC1 become

⎧⎪⎨
⎪⎩

ẋ∗E = f0
(
t, x∗E , u∗E0

)

λ̇∗E =−λ0
E

[
∂F0

∂x

]
(t,x∗E ,u∗E0)

−λT
E

[
∂f0
∂x

]
(t,x∗E ,u∗E0)

. (31.11)

The optimal control input u∗E1 has an indeterminate value and

u∗E0 = arg min
uE0∈Ω

{HE(t, x∗E , uE0, uE1, 0,λ0∗
E ,λ∗E)} (31.12)

(here HE does not depend on uE1).
2. (Mode 1) If maxuE0,uE1{HE(t, x∗E , uE0, uE1, 0,λ0∗

E ,λ∗E)}< maxuE0,uE1{HE(t, x∗E , uE0, uE1, 1,λ0∗
E ,λ∗E)},

then v∗E(t)= 1 and the equations of NC1 become

⎧⎪⎨
⎪⎩

ẋ∗E = f1
(
t, x∗E , u∗E1

)

λ̇∗E =−λ0
E

[
∂F1

∂x

]
(t,x∗E ,u∗E1)

−λT
E

[
∂f1
∂x

]
(t,x∗E ,u∗E1)

(31.13)

The optimal control input u∗E0 has an indeterminate value and

u∗E1 = arg min
uE1∈Ω

{HE(t, x∗E , uE0, uE1, 1,λ0∗
E ,λ∗E)} (31.14)

(here HE does not depend on uE0).
3. (Nonsingularity) If maxuE0,uE1{HE(t, x∗E , uE0, uE1, 0,λ0∗

E ,λ∗E)}=maxuE0,uE1{HE(t, x∗E , uE0, uE1, 1,λ0∗
E ,

λ∗E)}, then either v∗E ∈ {0, 1} or the corresponding . Equations 31.11 or 31.13 hold, but additional
constraints need to be used to determine exactly which of the two modes are optimal at time t.

Theorem 31.2 characterizes all the situations of Case 1 of Table 31.1. The singular solutions, summarized
in Case 2 of Table 31.1, may be generated when the expression E1 of Equation 31.9 equals zero for some
time interval of nonzero measure; in this case

max
uE0,uE1

{HE(t, x∗E , uE0, uE1, 0,λ0∗
E ,λ∗E)} = max

uE0,uE1
{HE(t, x∗E , uE0, uE1, 1,λ0∗

E ,λ∗E)} (31.15)

As such, the optimal solution x∗E is generated with some v∗E /∈ {0, 1} on the same nonzero measure time
interval. In summary, all these cases occur when the set T of Equation 31.10 is positive time-invariant,
on some time interval, for the dynamical system of NC1, and Equations 31.12, 31.14, and 31.15 hold
simultaneously for some v∗E /∈ {0, 1}.

31.4 Optimal Control of a Switched System with
Three Modes of Operation

The results of Section 31.3 can be extended to a switched system with multiple modes of operation,
and we illustrate here the extension to three modes only for simplifying the notational complexity. Let
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the vector fields of these modes be denoted as f00(t, xS, uS), f01(t, xS, uS), and f1(t, xS, uS). The subscripts
are selected to correspond to different combinations of two discrete signals (vS0, vS1) ∈ {0, 1}× {0, 1} as
described below by the dynamics of the switched system (where we drop the time dependency to simplify
the exposition):

ẋS =
(
1− vS0

) · {(1− vS1
) · f00(xS, uS)+ vS1 · f01(xS, uS)

}+ vS0 · f1(xS, uS) (31.16)

One observes that, for example, the mode-switching input combination
(
vS0 = 0, vS1 = 1

)
selects the

dynamics ẋS = f01(xs, uS), and therefore three modes are possible: 00, 01, and 1. Other vector field com-
binations can be selected to describe the same switched system dynamics:

ẋS = vS0 · f00(xS, uS)+ vS1 · f01(xS, uS)+ (1− vS0− vS1
) · f1(xS, uS) (31.17)

Although the results are the same for the two approaches, the one described by Equation 31.16 has two
advantages:

1. A parsimonious selection of switching inputs. For n modes, Equation 31.16 uses at most
⌈

log2 n
⌉

inputs (the smallest integer larger than log2 n), whereas Equation 31.17 uses (n− 1) inputs.
Although in our case, for n= 3,

⌈
log2 n

⌉= n− 1, the number of discrete inputs becomes larger
for Equation 31.17 as n increases.

2. The results of Sections 31.3 and 31.4 can be directly applied in a few nested steps.

We continue to use Equation 31.16, and refer the reader to [21] for development of similar results
derived based on Equation 31.17. The embedding of switched system of Equation 31.16 follows the
same approach as presented in Section 31.4 with the switching control inputs redefined as

(
vE0, vE1

) ∈
[0, 1]× [0, 1]:

ẋE =
(
1− vE0

) · {(1− vE1
) · f00(xE , uE00)+ vE1 · f01(xE , uE01)

}+ vE0 · f1(xE , uE1) (31.18)

Intuitively, and this is based on the construction theorem presented in [20], Theorem 31.1 holds for
systems (Equations 31.16 and 31.17). This motivates the study of the EOCP and we focus on the necessary
conditions for the embedded system solution

(
x∗E , u∗E00, u∗E01, u∗E1, v∗E0, v∗E1

)
to be a solution of the SOCP,

with
(
v∗E0, v∗E1

) ∈ {0, 1}× {0, 1} and x∗S = x∗E .
With the optimization cost integrands, similarly to Equation 31.4, denoted by F00

(
xE , uE00

)
,

F01
(
xE , uE01

)
, and F1

(
xE , uE1

)
, the Hamiltonian of the embedded system (Equation 31.18) can be written

as

HE
(
xE , uE00, uE01, uE1, vE0, vE1,λ0

E ,λE
)= λ0

E ·
{(

1− vE0
) · [(1− vE1

) · F00(xE , uE00)+ vE1 · F01(xE , uE01)
]

+vE0 · F1(xE , uE1)}+λT
E ·
{(

1− vE0
) · [(1− vE1

) · f00(xE , uE00)

+vE1 · f01(xE , uE01)
]+ vE0 · f1(xE , uE1)

}
(31.19)

Similarly to Equation 31.7, the three-mode switched system Hamiltonian of Equation 31.19 can be
rewritten more compactly as

HE = vE0 · vE1 ·E1+ vE1 ·E2+ vE0 ·E3+E4 (31.20)

where the arguments
(
xE , uE00, uE01, uE1, vE0, vE1,λ0

E ,λE
)

are dropped for HE and the new expressions E1,
E2, E3, and E4. These expressions are very similar to those of Equation 31.7: they are weighted summations
of differences between vector fields and penalties corresponding to pairwise switching modes. These
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expressions are

E1 = λ0
E · [F00− F01]+λT

E ·
[
f00− f01

]
(31.21)

E2 = λ0
E · [F1− F00]+λT

E ·
[
f1− f00

]
(31.22)

E3 = λ0
E · [F01− F00]+λT

E ·
[
f01− f00

]
(31.23)

E4 = λ0
E · F00+λT

E · f00 (31.24)

where again the arguments are dropped.
The compact form of the switched system dynamics that resulted in the Hamiltonian of Equation 31.20

can now be used to generate the final result of this section. The following necessary condition for the
optimal solution

(
x∗E , u∗E00, u∗E01, u∗E1, v∗E0, v∗E1,λ0∗

E ,λ∗E
)

is derived by applying in two steps the results of
Lemma 10 of [20] in two steps (again, the arguments are not included).

HE
(
Optimal Sol

)= max
(vE0,vE1)∈[0,1]×[0,1]

(uE00,uE01,uE1)∈Ω×Ω×Ω
HE

(
x∗E , uE00, uE01, uE1, vE0, vE1,λ0∗

E ,λ∗E
)

= max
(vE0,vE1)∈[0,1]×[0,1]

(uE00,uE01,uE1)∈Ω×Ω×Ω
{vE0 · vE1 ·E1+ vE1 ·E2+ vE0 ·E3+E4}

=max

⎧⎪⎪⎨
⎪⎪⎩

max
vE0=0,vE1∈[0,1]

(uE00,uE01,uE1)∈Ω×Ω×Ω
{vE1 ·E2+E4} ,

max
vE0=1,vE1∈[0,1]

(uE00,uE01,uE1)∈Ω×Ω×Ω
{vE1 ·E1+ vE1 ·E2+E3+E4}

⎫⎪⎪⎬
⎪⎪⎭

=max

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max

⎧⎨
⎩ max

vE0=0,vE1=0
(uE00,uE01,uE1)∈Ω×Ω×Ω

{E4} , max
vE0=0,vE1=1

(uE00,uE01,uE1)∈Ω×Ω×Ω
{E2+E4}

⎫⎬
⎭ ,

max

⎧⎨
⎩ max

vE0=1,vE1=0
(uE00,uE01,uE1)∈Ω×Ω×Ω

{E3+E4} , max
vE0=1,vE1=1

(uE00,uE01,uE1)∈Ω×Ω×Ω
{E1+E2+E3+E4}

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=max

⎧⎪⎨
⎪⎩

max
(uE00,uE01,uE1)∈Ω×Ω×Ω

{E4} , max
(uE00,uE01,uE1)∈Ω×Ω×Ω

{E2+E4} ,

max
(uE00,uE01,uE1)∈Ω×Ω×Ω

{E3+E4}

⎫⎪⎬
⎪⎭ (we used E1 =−E3)

This is an equivalent way of saying that the embedded-system Hamiltonian calculated at the
optimal solution is equal to the maximum of the Hamiltonians associated with all modes, similarly to
Equation 31.8.

HE
(
Optimal Sol

)=max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
(uE00,uE01,uE1)∈Ω×Ω×Ω

HE
(
x∗E , uE00, uE01, uE1, vE0 = 0, vE1 = 0,λ0∗

E ,λ∗E
)

,

max
(uE00,uE01,uE1)∈Ω×Ω×Ω

HE
(
x∗E , uE00, uE01, uE1, vE0 = 0, vE1 = 1,λ0∗

E ,λ∗E
)

,

max
(uE00,uE01,uE1)∈Ω×Ω×Ω

HE
(
x∗E , uE00, uE01, uE1, vE0 = 1, vE1 = 0,λ0∗

E ,λ∗E
)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(31.25)
Therefore, a result similar to Theorem 31.2 can be derived providing necessary conditions for optimality
for the embedded system of Equation 31.18.

31.5 Two-Gear Car Example with Application
of Necessary Conditions

This section uses the embedded methodology developed in Sections 31.2 and 31.3 to analyze a crude two-
dimensional model of a car with two gears [1, Example 1, p. 3975] having speed-dependent efficiencies



�

�

�

�

� �

31-12 Control System Advanced Methods

1

0.5

G
ea

r e
ffi

ci
en

ci
es

0

0 1 2
Speed (x2)

g0 (x2)

g1 (x2)

3

FIGURE 31.3 Gear efficiencies as a function of normalized speed.

g0(ς) and g1(ς) as plotted in Figure 31.3. Let x1 denote the car’s position and x2 its velocity with respect
to some coordinate system.

The embedded system has the form (ẋ = (1− v)f0(x, u0)+ vf1(x, u1)):
[

ẋ1(t)
ẋ2(t)

]
= (1− v(t)

) [ x2(t)
g0
(
x2(t)

) · u0(t)

]
+ v(t)

[
x2(t)

g1
(
x2(t)

) · u1(t)

]
(31.26)

The inputs u0(t), u1(t) ∈Ω= [−1, 1] represent control of the brake or throttle. The terminal state
constraints are x(0)= [−5, 0]T and x(tf )= [0, 0]T in which case the terminal constraint set is
B= {(t0, x0, tf , xf )= (0, [−5, 0]T , tf , [0, 0]T) |tf ∈ R

}
. Additionally, we require that the vehicle begins

in Mode 0 and returns to Mode 0 at tf , but for the moment we do not impose these constraints; it turns
out that they follow directly from the solution of the “mode unconstrained” scenario. Finally, we define
the embedded PI to be

JE(x, v, u0, u1)=
∫ tf

0
[(1− v(t))F0(t, x, u)+ v(t)F1(t, x, u)] dt =

∫ tf

0
dt = tf

where we have set F0 = F1 = 1; this is a minimum time problem. One observes that the sufficiency
conditions for the existence of an optimal solution are satisfied. We denote the optimal solution by(
x∗(t), u∗0(t), u∗1(t), v∗(t)

)
.

The Hamiltonian associated with system Equation 31.26 is with λ= [λ1,λ2]T (suppressing
t-dependencies)

HE
(
t, x, u0, u1, v,λ0,λ

)= v ·λ2
[
g1(x2)u1− g0(x2)u0

]+ [λ0+λ1x2+λ2g0(x2)u0
]

� v ·E1(t, x, u0, u1,λ0,λ)+E0(t, x, u0, u1,λ0,λ)
(31.27)

We like to argue that the Hamiltonian of Equation 31.27 implies the existence of bang-bang solutions as
wellasotherinformationabouttheoptimalsolution.ThisrequiresthatE1(t, x∗(t), u∗0(t), u∗1(t),λ0,λ(t)) �= 0
almost everywhere on [0, tf ], which is shown in Proposition 4.2.1 [36], that is, there are only bang-bang
solutions to the hybrid optimal control problem. Let us now determine the values for the optimal solution.

From the material of Section 31.3, there exists a constant λ0 ≤ 0 and an absolutely continuous function
λ(·) : [0, tf ] → R

2 such that
(
λ0,λ(t)

) �= 0 on [0, tf ], and for almost all t ∈ [0, tf ], the state equations

[
ẋ∗1 (t)
ẋ∗2 (t)

]
=
[

x∗2 (t)(
1− v∗(t)

)
g0
(
x∗2 (t)

) · u∗0(t)+ v∗(t)g1
(
x∗2 (t)

) · u∗1(t)

]
(31.28)
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and costate equations (suppressing t-dependencies)

[
λ̇1

λ̇2

]
=
⎡
⎢⎣

0

−λ1−λ2(1− v∗)u∗0
[

dg0

dx2

]
x∗2
−λ2v∗u∗1

[
dg1

dx2

]
x∗2

⎤
⎥⎦ (31.29)

hold.
We can draw two conclusions: (1) from Equation 31.29, λ1(t)= λ1, a constant that can be shown to

be greater than zero; and from the transversality condition,

HE
(
tf , x∗(tf ), u∗0(tf ), u∗1(tf ), v∗(tf ),λ0,λ(tf )

)= 0 (31.30)

Thus, Equations 31.27 and 31.30, with x∗2 (tf )= 0, imply that

λ0+λ2(tf )
[
v∗(tf )g1(0)u∗1(tf )+ (1− v∗(tf )

)
g0(0)u∗0(tf )

]= 0 (31.31)

With Equation 31.31 and a “proof by contradiction,” one can also show that λ2(·) �= 0 (not identically
zero) on any nonzero subinterval of [t0, tf ]. Hence, using an equivalent form of Equation 31.8, we conclude
that

max
u0∈Ω

HE
(
t, x∗(t), u0, u1, 0,λ0,λ(t)

)−max
u1∈Ω

HE
(
t, x∗(t), u0, u1, 1,λ0,λ(t)

)

=
{
λ0+λ1x∗2 (t)+ max

u0∈[−1,1]
[
λ2(t)g0

(
x∗2 (t)

)
u0
]}−

{
λ0+λ1x∗2 (t)+ max

u1∈[−1,1]
[
λ2(t)g1

(
x∗2 (t)

)
u1
]}

= [g0
(
x∗2 (t)

)− g1
(
x∗2 (t)

)]
max

u∈[−1,1] [λ2(t)u] (31.32)

From Equation 31.32, we observe that the optimal mode of operation is the mode with the largest gear
ratio, and, excepting the time instants when (possibly) λ2(t)= 0, the optimal throttle/braking control is
either+1 or−1, depending on the sign of λ2(t). This brings us to the following optimal operation:

1. Similar to the discussion in [1], the optimal mode v(t) is given by the mode with the largest
efficiency at time instant t.

2. For Mode 0 (E1(·) > 0). If g0
(
x∗2 (t)

)
> g1

(
x∗2 (t)

)
, that is, x∗2 (t) < 0.5 for some t ∈ [0, tf ], then

v(t)= 0 and

u0(t)=
{

sgn
(
λ2(t)

)
, λ2(t) �= 0

indeterminate in [−1, 1], λ2(t)= 0
(31.33)

3. For Mode 1 (E1(·) < 0). If g0
(
x∗2 (t)

)
< g1

(
x∗2 (t)

)
, that is, x∗2 (t) > 0.5 for some t ∈ [0, tf ], then

v(t)= 1 and

u1(t)=
{

sgn
(
λ2(t)

)
λ2(t) �= 0,

indeterminate in [−1, 1] λ2(t)= 0
(31.34)

4. From the endpoint constraints, x∗2 (0)= x∗2 (tf )= 0, it follows that v∗(0)= v∗(tf )= 0 since
g0
(
x∗2 (t)

)
> g1

(
x∗2 (t)

)
for t = 0, tf ; thus optimality enforces the physically meaningful mode con-

straint at the endpoints. Finally, we mention again that the constant λ1 > 0, and that as per [36]
there exists 0 < t1 < tf such that λ2(t) > 0 for all t ∈ [0, t1) and λ2(t) < 0 for all t ∈ (t1, tf ]. We
make the following further conclusions:

1. If t < t1 and x∗2 (t) < 0.5, then v∗(t)= 0 and u∗0(t)= 1.
2. If t < t1 and x∗2 (t) > 0.5, then v∗(t)= 1 and u∗1(t)= 1.
3. If t > t1 and x∗2 (t) < 0.5, then v∗(t)= 0 and u∗0(t)=−1.
4. If t > t1 and x∗2 (t) > 0.5, then v∗(t)= 1 and u∗1(t)=−1.

It turns out that this solution is also optimal for a penalty on switching. See Figure 31.4 for
simulation results. A variation of this example for control through a communication network with
fixed delay is considered in [37].
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FIGURE 31.4 Optimal x∗1 (t), x∗2 (t), u∗(t), and v∗(t).

31.6 Unicycle Example with Direct Collocation

To demonstrate the full power of the embedding approach, we show how to numerically compute optimal
trajectories for a system exhibiting both controlled and autonomous switches. Further details on how the
embedding technique can be applied to such systems can be found in Appendix B and [21]. The example
considers a unicycle driving on a horizontal plane (Figure 31.5). The wheel of the unicycle can either roll
or slide, resulting in autonomous switches. In addition, we assume that the unicycle has a regenerative
brake that can be turned on or off. These switches are controlled. We assume that the unicycle contains a
separate motor and a generator, both connected to a battery pack. This implies that the system can brake
either by applying a negative torque on the wheels or by using the regenerative braking.

Referring to Figure 31.5, the forward velocity of the wheel is controlled by the torque u1 applied to the
wheel’s axle, while its heading is controlled by the torque u2. Our objective is to drive the unicycle to
the origin within an allotted time while minimizing weighted power usage. We use MPC [38] to compute
the control inputs for the system.

vy vx

u2 

u1 

∅ θ 

h 

m 

r y 

x 

FIGURE 31.5 A top view and a side view of the unicycle.
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31.6.1 Unicycle Model

The generalized coordinates for the unicycle are its center of mass position x and y, body orientation θ
(heading) relative to the x-axis, and the angular position of the wheel ϕ. Since we are not interested in ϕ
itself, the state variables for the system are zT = [x, y, θ, vx , vy , θ̇, ϕ̇]T ∈ R7, where [vx , vy] is the velocity of
the center of mass of the unicycle, expressed in the body frame, θ̇ is the turning velocity of the unicycle,
and ϕ̇ is the angular velocity of the wheel as it spins on its axle. The equations of motion for the unicycle
take the form

ẋ = vx cos(θ)− vy sin(θ) (31.35a)

ẏ = vx sin(θ)+ vy cos(θ) (31.35b)

θ̇= ω (31.35c)

v̇x = Fx(z)

m
+ θ̇vy (31.35d)

v̇x = Fx(z)

m
+ θ̇vy (31.35e)

θ̈= 1

I2
u2 (31.35f )

ϕ̈= Fxr

I1
+ 1

I1
u1 (31.35g)

where (1) m is the mass of the unicycle, (2) r is the radius of the wheel, (3) I1 is the moment of inertia of
the wheel around its axis, (4) I2 is the moment of inertia of the unicycle about the vertical axis through
the center of mass, and (5) Fx and Fy are the forces between the ground and the wheel in the forward and
lateral directions, respectively.

The autonomous switched behavior of the unicycle occurs because Fx(z) and Fy(z) depend on whether
the unicycle is rolling (Fx and Fy are ground reaction forces that oppose slipping) or sliding (where Fx and
Fy are frictional forces). We note that when rolling, the relative velocity, vr = [vrx , vry]T = [vx + ϕ̇r, vy]T ,
between the ground and the wheel’s point of contact is zero, that is,

[vrx , vry] = [vx + ϕ̇r, vy] = [0, 0] (31.36)

Thus from Equations 31.35a and 31.36, with μd the coefficient of dynamic friction and g the gravita-
tional constant

[Fx(z), Fy(z)] =

⎧⎪⎪⎨
⎪⎪⎩
−mr

[
u1

mr2+ I1
θ̇ϕ̇

]
Rolling

−μdmg

‖vr‖
[
vx + ϕ̇r vy

]
Sliding

(31.37)

The autonomous switch from rolling to sliding occurs when the magnitude of the constraint force F =
[Fx , Fy]T exceeds the maximum possible magnitude of the static friction, μsmg (μs being the coefficient
of static friction), that is, ‖F‖> μsmg ⇒ “rolling → sliding”. On the other hand, the switch from sliding
to rolling occurs when (1) vr = [vrx , vry]T = 0 and (2) the maximum magnitude of the frictional force
exceeds that of the constraint force F, that is, ‖vr‖ = 0 and ‖F‖< Fs,max = μsmg ⇒ “sliding → rolling”.

In contrast to the autonomous switches, described above, the regenerative brake can be switched off
(Mode 0) or switched on (Mode 1) arbitrarily. For Mode 0,

u1 = u0
1A ∈ [−20, 20] (31.38a)

denotes an actuating torque that can be either propelling or braking. Mode 1 denotes the use of regener-
ative braking alone in which case

u1 = u1
1 =

{ −Kbϕ̇, |ϕ̇| ≤ 2

−20sgn(ϕ̇), |ϕ̇|> 2

}
(31.38b)
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where Kb = 10 is a fixed regenerative braking coefficient; note that the magnitude of u1 saturates at 20
Nm. Note that both control modes are possible in either sliding or rolling, an example of decoupled
switches. The resulting torque control has the form

u1(t)= (1− v(t)
)

u0
1(t)+ v(t)u1

1(t) (31.39)

where v(t) ∈ {0, 1} denotes the original problem whereas v(t) ∈ [0, 1] the embedded problem which is
solved in this investigation. Because of the autonomous switches determined by Equation 31.37, the
right-hand side of Equation 31.35 is piecewise continuous, provided the system does not chatter about
the boundary implicitly defined in Equation 31.37; if there is such chattering then we must interpret the
solution of the equations in the sense of Filippov [27].

31.6.2 Control Objective, PI, and MPC

The objective of the control design is to drive the unicycle from a given starting initial state, zT
0 =

[x(0), y(0), vx(0), vy(0), θ(0),ω(0), φ̇(0)]T = [0, 4, 0, 0, 1, 0, 1]T back to the origin while minimizing the
energy usage. In addition, we like to limit the undesirable sliding motion of the wheel as it implies a loss
of controllability. As such, the PI takes the form

J = c0 ‖z(T)‖2 +
∫ T

0

[
c1
(
1− v

) (
u1
)2+ c2

(
u2
)2+ c3 ‖vr‖2

]
dt (31.40)

where the constant weights ci > 0. The term (1) c0
(
zT (T)z(T)

)
drives the final position of the unicycle

toward the origin; (2) c1
(
1− α) (u1

)2
penalizes the actuating power usage; (3) c2

(
u2
)2

penalizes the

heading power usage; and (4) c3
(‖vr‖

)2
limits the sliding motion. The terminal constraints are enforced

through the cost functional (as soft constraints) rather than imposed as hard constraints because the
system is stabilizable but not controllable in the sliding regime. Therefore, using hard constraints could
make the optimal control problem infeasible. Note also that there is no penalty for regenerative braking.

The control objective is to minimize the PI of Equation 31.40 subject to the embedded state dynamics
given by Equations 31.35 and the initial state z0. However, when applying the computed controls to
the actual model that differs from the nominal model due to the presence of disturbances or modeling
uncertainties, the state trajectory might deviate from the desired trajectory, and fail to reach the desired
final state within the allotted time interval. To cope with such disturbances and uncertainties, an MPC-
type controller that is well known for its robustness is utilized. The MPC approach can be summarized as
follows:

1. Given z0, partition the time interval T into N equal subintervals of length h= T/N , for the
purpose of computing a (backward) piecewise constant control sequence

{
û1, . . . , ûN

}
, where

ûi =
[
u1(ih) u2(ih)

]T
, and the state values {z1, . . . , zn}.

2. For k = 1, . . . , N , solve the embedded problem of the unicycle over the receding horizon [k, N] by
minimizing the PI given by Equation 31.40 subject to the nominal model with the initial state zk−1

and obtain the (look ahead) control sequence
{

ûk , . . . , ûN
}

.
3. Apply the control input ûk for the time interval tk−1 ≤ t < tk to the real model. The value of the

state of the real model at the end of the interval becomes , the initial condition for the next iteration.
4. Repeat steps 2 and 3 until k = N .

31.6.3 Simulation Results and Discussion

A variation of the direct collocation method [39] is used to numerically solve the EOCP at each step of
the MPC algorithm. The number of points for the discretization was N = 20. Nominal trajectories are
for the model without any disturbances. Comparisons are made to the MPC-controlled process with a
frictional disturbance. In all cases the embedded problem has a bang-bang solution, meaning that it is
also a solution to the original hybrid optimal control problem.
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FIGURE 31.6 Modes of operation.

31.6.3.1 Unicycle Trajectories for the PI of Equation 31.40

The plots show trajectories of the unicycle that minimize the minimum energy PI of Equation 31.40, and
its behavior under MPC control. The computed cost of the nominal optimal trajectory is 972.2 versus
1036.3 for the disturbed MPC-controlled trajectory. The nominal response is for the model without
disturbances, whereas the MPC control is for the frictional disturbance where in an annulus 0.9≤ r ≤ 1.4
around the origin, the static coefficient of frictionμs drops from 0.7 to 0.002, and the dynamic coefficient
of friction μd drops from 0.6 to 0.001. Moreover, the unicycle’s nominal parameters mnominal = 1 and
rnominal = 4 during the simulation were perturbed so that mactual = 1.05 and ractual = 3.9. After starting
in the sliding mode, the unicycle is driven to the rolling mode after about 0.2 s. At around 5 s the unicycle
encounters the frictional disturbances and switches from rolling to sliding as indicated in Figure 31.6.
However, after leaving the slippery area at about 6 s, in conjunction with the corrective action of the
MPC controller, the unicycle starts to roll again. Figures 31.7 and 31.8 show the unicycle’s trajectories
and the evolutions of two states Vx and Vy . It clearly shows that the unicycle can still reach the origin
in the required time despite disturbances and model errors. Figure 31.9 displays the control inputs that
again adapt in accordance with state and model changes. The results thus confirm that the influence
of disturbances on system performance is small and the MPC scheme achieves good performance and
robustness. Recall that the electric motor can apply both a propelling torque and a braking torque u0

1 in
Mode 0, while a regenerative braking torque u1

1 is applied in Mode 1. One observes that during the final
4 s of the simulation, the switches of the braking torque in Mode 0 and the regenerative braking torque in
Mode 1 are coordinated to reduce cost and reach the origin on time.

31.7 Concluding Remarks

This study has developed an approach to the solution of optimal control of switching systems that converts
the nonconvex SOCP into a convex EOCP, which allows for direct solution to the SOCP or for arbitrarily
close approximations to the SOCP except in rare circumstances. This chapter illustrated the use of the
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FIGURE 31.7 Wheel’s position on the x–y plane.

approach in two examples while directing the reader to the references for additional examples and for
further developments. What was not discussed in this chapter is the development of discrete-time optimal
control problems and the related ongoing work. To this end we offer the following recent work.

A general framework based on the method of approximate dynamic programming is developed in [40]
for the controller synthesis of discrete-time switched linear systems (SLS) as well as discrete-time nonlin-
ear systems, particularly for their optimal control and stabilization. As pointed out earlier in this chapter,
direct solution of switched system problems is challenged by their combinatorial nature, the size of
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FIGURE 31.8 Forward and lateral velocities.
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FIGURE 31.9 Control inputs.

control policy space, which consists of traditional controls and discrete mode sequences that become pro-
hibitively large as the time horizon increases. Using an iterative implementation of approximate dynamic
programming, and by permitting a small compromise in optimality, the computational complexity of
finding a (sub)optimal solution may be significantly reduced. For SLS, efficient solution algorithms (the
so-called relaxed switched Riccati iterations) exist that find the optimal controllers for fairly large dimen-
sional discrete-time systems. The reduction in computational complexity suggests that the (iterative)
algorithms are amenable to practical implementation [41,42]. A relationship between stabilization and
the optimal control of an SLS is established in [43].

31.8 Appendix A: Modeling with Autonomous Switches

Four quantities are essential to describe the evolution of a system subject to autonomous and con-
trolled switches: (1) the usual continuous state x(t) ∈ R

n; (2) the usual continuous control input
u(t) ∈ R

m; (3) a switching (discrete) control input, v(t) ∈ Dv = {1, 2, . . . , dv}; and (4) a discrete state
ξ ∈ Dξ = {1, 2, . . . , dξ} that identifies autonomous switches. This chapter only considers autonomous
switches that depend on the continuous state x(t) and the continuous input u(t) but do not depend on
the current values of the discrete states, ξ(t) or v(t). Such systems are usually called memoryless systems.
The evolution of the discrete state, ξ(t), of the memoryless system is defined by a piecewise continuous∗
function η : Rn×R

m → Dξ, such that

ξ(t+)= η(x(t), u(t)) ∈ Dξ (31.41)

Thus, for each i ∈ Dξ, we define

Mi = {(x, u) ∈ R
n×R

m|η(x, u)= i} ⊆ R
n×R

m

∗ By piecewise continuous we mean a function that is continuous everywhere except on a finite union of switching surfaces
that are smooth submanifolds of R

n×R
m with measure 0 where it undergoes discontinuous jumps, but has well-defined

limits in all directions.
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Mi ⊆ R
n×R

m is the set of pairs (x, u) corresponding to the discrete state i ∈ Dξ. Let f(i,j) :Mi → R
n,

i ∈ Dξ, j ∈ Dv , be a collection of C1 vector fields associated with a system. The evolution of the continuous
state x(t) is then described by

ẋ(t)= f(η(x(t),u(t)),v(t))
(
x(t), u(t)

)
, x(t0)= x0. (31.42)

At each t ≥ t0 and for each discrete state ξ(t) ∈ Dξ, the switching control input v(t) ∈ Dv thus selects
the particular vector field that governs the evolution of the continuous state.

As mentioned in Section 31.3, we assume that the continuous control input u(t) ∈Ω, a convex and
compact set in R

m, and that the switching control input v(t) and the continuous control input u(t) are
both measurable functions. Note that we restrict our attention to time-invariant systems, but the results
can be easily generalized to time-varying systems.

Given that the discrete state ξ(t) is completely determined by x(t) and u(t) through Equation 31.41,
we can define for each j ∈ Dv a piecewise C1 vector field:∗

fj(x(t), u(t)) � f(η(x(t),u(t)),j)(x(t), u(t)) (31.43)

and rewrite Equation 31.42 in a more convenient form:

ẋ(t)= fυ(t)(x(t), u(t)), x(t0)= x0 (31.44)

This means the vector fields fj all have the same set of points of discontinuity. We thus refer to the
systems described by Equations 31.42 and 31.44 as systems with decoupled switches.

We are interested in computing optimal control laws for the system described by Equation 31.42
or Equation 31.44. If the system only undergoes autonomous switches (Dv = {1}), only the continuous
input u(t) needs to be computed. This suggests that the complexity of the optimal control problem might
not be any different than in the traditional case. In contrast, for systems with controlled switches we
need to compute the sequence of switching times t1, . . . , tn (including n), the sequence of discrete inputs
v1, . . . , vn, as well as the continuous input u(t) on each interval [ti , ti + 1] for i = 0, . . . , n− 1. It would
therefore appear that for systems with controlled switches the optimal control problem has combinatorial
complexity. As discussed in this chapter, both these cases have the same complexity and are amenable
to traditional nonlinear programming techniques such as sequential quadratic programming (SQP). This
further implies that for the systems with memoryless autonomous switches and controlled switches the
optimal control problem is no more complex than the traditional smooth problem.

31.9 Appendix B: Numerical Solution Using Direct Collocation

This section overviews the direct numerical solution algorithm and strategy used in the solution of the
unicycle example without first having to apply the necessary conditions for optimality. Specifically, we
discuss the collocation method for solving hybrid optimal control problems [21,44–47].

Given the embedded PI and the state equation and constraints mentioned in Section 31.3, one dis-
cretizes these equations using the collocation method. These discretized equations convert the EOCP
into a finite-dimensional nonlinear programming problem (NLP), where states and inputs are treated as
unknown variables. The NLP can be solved using an SQP solver, such as fmincon in the optimization
toolbox of MATLAB�. The discretization-and-collocation technique consists of several steps that have
two main stages: (1) time discretization, and state and input function approximations by a finite number

∗ Similarly as before, by piecewise C1, we mean a function that is C1 everywhere, except on a finite union of switching
surfaces that are smooth submanifolds R

n×R
m with measure 0 where the function is not differentiable and undergoes

discontinuous jumps, but has well defined limits in all directions.
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of polynomial basis functions; (2) approximation of the continuous state dynamics and PI integrand by
discrete-state and discrete-input-dependent counterparts.

Without going through a lengthy derivation, the continuous-time interval [t0, tf ] is discretized into
a sequence of points t0 < t1 < t2 < · · ·< tN−1 < tN = T , where, for simplicity, we take tj − tj−1 = h, for
j = 1, . . . , N . A “hat” notation is also used to distinguish the numerically estimated state and control
values from their actual counterparts that are “hatless,” for example, x̂j = x̂(tj), û0 j = û0(tj), û1,j = û1(tj),
and v̂j = v̂(tj). The collocation method used here assumes triangular basis functions for the state and
piecewise constant basis functions (derivatives of triangular functions) for the controls. Specifically, the
estimated state is given by

x̂(t)=
N∑

j=0

x̂jϕj(t) (31.45)

where the x̂j ’s are to be determined and the triangular basis functions are given by

ϕj(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t− tj−1

h
, tj−1 < t ≤ tj

tj+1− t

h
, tj < t ≤ tj+1

0, elsewhere

(31.46)

We note two points: the method is not restricted to using triangular basis functions and each of the
ϕj(t)’s is a time shift of the previous one.

As summarized in [45], the theoretical approach for computing the controls is to extend the state
space with new state variables, xext ∈ Rm+1, whose derivative are the desired controls, u(t) ∈ Rm and
v(t) ∈ [0, 1] ⊂ R, to be computed. However, our choice of triangular basis functions for the states renders
the control inputs piecewise constant and we simply solve directly for these (constant) control values.
Specifically, the estimates of the control inputs are given by

[
û(t)
v̂(t)

]
=

N∑
j=1

[
ûj

v̂j

]
ψj(t) (31.47)

where the piecewise constant basis functions are given by

ψj(t)=
{

1 tj−1 < t ≤ tj

0 elsewhere
(31.48)

Here we note that by the definition of the basis functions in Equation 31.48, the control values computed
at tj are enforced over the interval tj−1 < t ≤ tj.

The essence of the midpoint rule in the collocation method is to enforce the constraints at the midpoints
of each interval [tj−1, tj] for j = 1, . . . , N . There results the discretized embedded state dynamics

x̂j = x̂j−1+ h · (1− v̂j) · f0
(

x̂j−1+ x̂j

2
, û0j

)
+ h · v̂j · f1

(
x̂j−1+ x̂j

2
, û1j

)
(31.49)

for j = 1, . . . , N , with f0(·) and f1(·) the discretized state dynamics in modes −0 and −1, respectively.
Thus the solution to the EOCP is given by the following NLP: Minimize

Ĵ = gN
(
tN , xN

)+
N∑

j=1

1

2
h
{

FE
(
tj, x̂j, û0j, û1j, v̂j, p̂j

)+ FE
(
tj−1, x̂j−1, û0j, û1j, v̂j, p̂j

)}
(31.50)

over the controls (ûj, v̂j) ∈Ω× [0, 1], subject to Equation 31.49 and all other equality constraints rep-
resented as g(x̂j−1, x̂j, ûj, v̂j, p̂j)= 0. Here FE(·) is the integrand of the PI properly discretized and p̂j

represents various intermediate constraints.
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32.1 Introduction

Methods for automatic tuning of PID controllers have been one of the results of the active research
on adaptive control. PID controllers are defined in Section 9.5. A result of this development is that the
design of PID controllers is going through a very interesting phase. Practically, all PID controllers that
are designed now have at least some features for automatic tuning. Automatic tuning has also made it
possible to generate automatically gain schedules. Many controllers also have adaptation of feedback and
feedforward gains. Overviews of the development are given in [1,2].

The most important component of the adaptive controllers and automatic tuning procedures is the
design method. The next section presents some of the most common design methods for PID con-
trollers. These design methods are divided into three categories: (1) future-based techniques, (2) analytical
methods, and (3) methods that are based on optimization.

Section 32.3 treats adaptive techniques. An overview of different uses of these techniques is first
presented, followed by a more detailed treatment of automatic tuning, gain scheduling, and adaptive
control. Section 32.4 gives an overview of how the adaptive techniques have been used in commercial
controllers. References are at the end of the chapter.

32.2 Design Methods

To obtain rational methods for designing controllers it is necessary to deal with specifications and models.
In the classical Ziegler–Nichols methods, the process dynamics are characterized by two parameters, a gain
and a time. Another approach is used in the analytical design methods, where the controller parameters

32-1
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are obtained from the specifications and the process transfer function by a direct calculation. Optimization
methods allow for compromise between several different criteria. These approaches are discussed here.

32.2.1 Specifications

When solving a control problem, it is necessary to understand the primary goal of control. Two common
control objectives are to follow the setpoint and to reject disturbances. It is also important to have an
assessment of the major limitations, which can be system dynamics, nonlinearities, disturbances, or pro-
cess uncertainty. Typical specifications on a control system may include attenuation of load disturbances,
setpoint following, robustness to model uncertainty, and lack of sensitivity to measurement noise.

32.2.1.1 Attenuation of Load Disturbances

Attenuation of load disturbances is of primary concern for process control. The disturbances may enter
the system in many different ways, but it is often assumed that they enter at the process input. Let e be the
error caused by a unit step load disturbance at the process input. Typical quantities used to characterize
the error are maximum error, time to reach maximum, settling time, decay ratio, and the integrated
absolute error (IAE) which is defined by

IAE =
∫ ∞

0
|e(t)|dt. (32.1)

32.2.1.2 Setpoint Following

Setpoint following is of primary interest in motion control, but of less importance for process control
because production rates are not changed so often. Furthermore, the response to setpoint changes can
be improved by setpoint weighting or by prefiltering of the command signal. Specifications on setpoint
following may include requirements on rise time, settling time, decay ratio, overshoot, and steady-state
offset for step and ramp changes in setpoint.

32.2.1.3 Robustness to Model Uncertainty

It is important that the controller parameters are chosen in such a way that the closed-loop system is
not too sensitive to changes in process dynamics. There are many ways to specify the sensitivity. Many
different criteria are conveniently expressed in terms of the Nyquist plot of the loop transfer function, and
its distance to the critical point −1. The gain and phase margins are classical robustness measures, see
Section 9.1. A drawback is that even if both are specified the Nyquist curve can still be close to the critical
point. Maximum sensitivity Ms is a better robustness measure since 1/Ms is the shortest distance between
the Nyquist plot and the critical point. A requirement on Ms simultaneously captures requirements on
both gain and phase margins because of the following inequalities:

gm ≥ Ms

Ms− 1
,

ϕm ≥ 2 arcsin
( 1

2Ms

)
.

32.2.1.4 Sensitivity to Measurement Noise

Care should always be taken to reduce measurement noise by appropriate filtering, since it will be fed
into the system through the feedback. It will generate control actions and control errors. Measurement
noise is typically of high frequency. The high-frequency gain of a PID controller is

Khf = K(1+N),

where K is the controller gain and N is the derivative gain limitation factor. See Section 9.5. Note that
N = 0 corresponds to PI control, and N →∞ corresponds to PID control without filtering and with
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Kp

0.36 Kp

a A

L

B C
T

FIGURE 32.1 Determining a first-order plus dead-time model from a step response. Time constant T can be
obtained either as the distance AB or the distance AC.

infinite high-frequency gain. Multiplication of the measurement noise by Khf gives the fluctuations in
the control signal that are caused by the measurement noise. Also note that there may be a significant
difference in Khf for PI and PID control. It is typically an order of magnitude larger for a PID controller,
since the gain normally is higher for a PID controller than for a PI controller, and N is typically around 10.
It could also be advantageous to use a second-order filter as discussed in Section 9.1.

32.2.2 Feature-Based Techniques

The simplest design methods are based on a few features of the process dynamics that are easy to obtain
experimentally. Typical time-domain features are static gain Kp, dominant time constant T , and dominant
dead time L. They can all be determined from a step response of the process, see Figure 32.1. Static gain Kp,
dominant time constant T , and dominant dead time L can be used to obtain an approximate first-order
plus dead-time model for the process as given in Equation 32.2.

Gp(s)= Kp

1+ sT
e−sL (32.2)

Typical frequency-domain features are static gain Kp, ultimate gain Ku, and ultimate period Tu. They
are defined in Figure 32.2.

Ultimate point

–1
a

Re G(iω)

ω = 0

φ

ω

Im G(iω)

FIGURE 32.2 Static gain Kp, ultimate gain Ku, and ultimate period Tu defined in the Nyquist diagram. Static gain
Kp is the point on the Nyquist plot at ω= 0. Ultimate gain Ku is −1 divided by the ultimate point. Ultimate period
Tu is 2π divided by the frequency corresponding to the ultimate point.
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TABLE 32.1 Controller Parameters Obtained from the Ziegler–Nichols

Step Response Method

Controller K Ti Td

P 1/a

PI 0.9/a 3L

PID 1.2/a 2L L/2

32.2.2.1 Ziegler–Nichols Methods

In 1942, Ziegler and Nichols presented two design methods for PID controllers: time-domain method and
frequency-domain method [3]. The methods are based on determination of process dynamics in terms
of only two parameters, gain and time. The controller parameters are then expressed in terms of these
parameters by simple formulas. In both methods, the design specification of quarter amplitude decay
ratio was used. The decay ratio is the ratio between two consecutive maxima of the control error after a
step change in setpoint or load.

The time-domain method is based on a registration of the open-loop step response of the process.
Ziegler and Nichols have given PID parameters directly as functions of a and L, defined in Figure 32.1.
These are given in Table 32.1.

The second method presented by Ziegler and Nichols is based on the frequency response of the process.
They have given simple formulas for the parameters of the controller in terms of ultimate gain Ku and
ultimate period Tu. These parameters can be determined in the following way. Connect a controller to
the process, set the parameters so that control action is proportional, that is, Ti =∞ and Td = 0. Increase
the gain slowly until the process starts to oscillate. The gain when this occurs is Ku and the period of the
oscillation is Tu. The parameters can also be determined approximately by relay feedback as is discussed
in Section 32.3. The controller parameters are given in Table 32.2.

32.2.2.2 Modifications of the Ziegler–Nichols Methods

The Ziegler–Nichols methods do not give satisfactory control. Therefore, there have been many modifi-
cations of the method [2,4–6]. The reason is that they give closed-loop systems with very poor damping.
The design criterion “quarter amplitude decay ratio” corresponds to a relative damping of ζ≈ 0.2 which
is much too small for most applications. The maximum sensitivity is also much too large, which means
that the closed-loop systems obtained are too sensitive to parameter variations.

The Ziegler–Nichols methods do, however, have the advantage of being very easy to use. Many efforts
have therefore been made to obtain tuning methods that retain the simplicity of the Ziegler–Nichols
methods but give improved robustness.

32.2.2.3 AMIGO Tuning

Significantly better tuning rules can be obtained if the process dynamics are described in terms of three
parameters instead of two. An early step in this direction was made by Cohen and Coon, who assumed

TABLE 32.2 Controller Parameters Obtained from the Ziegler–Nichols

Frequency Response Method

Controller K Ti Td

P 0.5Ku

PI 0.4Ku 0.8Tu

PID 0.6Ku 0.5Tu 0.12Tu
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that the process was given by Equation 32.2, which has three parameters [5]. Their design did, however,
also give very sensitive systems.

The AMIGO (Approximate M-constraint Integral Gain Optimization) tuning rules [2] where derived
in the following way. PI and PID controllers were designed for a large test batch consisting of 134 process
models. The design goal was to maximize the controller integral gain subject to robustness constraints
expressed by maximum sensitivities (MIGO). The process models were then approximated by simple
models and relations between model parameters and controller parameters were derived. These relations
form the AMIGO (Approximate MIGO) tuning rules. Two versions are available, one step response
method and one frequency response method.

PID controllers were designed by maximizing integral gain subject to the constrains that the sensitivity
functions Ms and Mt should be smaller than 1.4. In the step response method it was attempted to correlate
controller gains to parameters of the simple FOTD (First order plus time delay) model (Equation 32.2).
The parameters describing the process were obtained by approximating the step responses by Equation
32.2. Processes with integration are approximated by

Gp(s)= Kv

s
e−sL, (32.3)

where Kv is the velocity gain and L the time delay.
Figure 32.3 illustrates the relations between the PI controller parameters and the process parameters

for all processes in the test batch. The controller gain is normalized by multiplying it either with the static
process gain Kp or with the parameter a= KpL/T = KvL. The integral time is normalized by dividing
it by T or by L. The controller parameters in Figure 32.3 are plotted versus the normalized dead time
τ= L/(L+T). The figure shows that there is a good correlation between the normalized controller
parameters and normalized dead time.

The solid lines in Figure 32.3 correspond to the AMIGO tuning formula,

K = 0.15

Kp
+
(

0.35− LT

(L+T)2

)
T

KpL
,

Ti = 0.35L+ 13LT2

T2+ 12LT + 7L2 ,

(32.4)

and the dotted lines show the limits for 15 % variations in the controller parameters. Almost all processes
included in the test batch fall within these limits.

For integrating processes, Kp and T go to infinity and Kp/T = Kv . Therefore, the AMIGO tuning rules
(Equation 32.4) can be simplified to

K = 0.35

KvL
,

Ti = 13.4L.
(32.5)

for integrating processes.
The suggested AMIGO tuning rules for PID controllers are

K = 1

Kp

(
0.2+ 0.45

T

L

)
,

Ti = 0.4L+ 0.8T

L+ 0.1T
L,

Td = 0.5LT

0.3L+T
.

(32.6)
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0 0.2 0.4

KKp vs. τ aK vs. τ
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10–1
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FIGURE 32.3 Normalized PI controller parameters plotted versus normalized time delay τ. The solid lines corre-
spond to the AMIGO design rule (Equation 32.4), and the dotted lines indicate 15 % parameter variations.

For integrating processes, Equation 32.6 can be written as

K = 0.45/(KvL),

Ti = 8L,

Td = 0.5L.

(32.7)

In the AMIGO frequency-response method, the processes in the test batch are characterized by the
three parameters static gain Kp, ultimate gain Ku, and ultimate period Tu. The processes are classified
according to the gain ratio κ= 1/(KpKu). The AMIGO tuning rules are appropriate for processes where
κ> 0.2. The PI tuning rules are

K = 0.16Ku,

Ti = 1

1+ 4.5κ
Tu

(32.8)

and the PID rules are

K = (0.3− 0.1κ4)Ku,

Ti = 0.6

1+ 2κ
Tu,

Td = 0.15(1− κ)

1− 0.95κ
Tu.

(32.9)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-38&iName=master.img-002.jpg&w=146&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-38&iName=master.img-003.jpg&w=145&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-38&iName=master.img-004.jpg&w=145&h=113
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-38&iName=master.img-005.jpg&w=145&h=113
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32.2.3 Tuning Based on Gain and Phase Margins

Figure 32.3 shows that integral time is close to the process time constant for a reasonably wide range of
τ. We can use this insight to obtain a Ziegler–Nichols like formula which contains specifications on gain
and phase margins. A PI controller that cancels the process pole is,

C(s)= K(1+ sT)

sT
.

The corresponding loop transfer function is

Gl =
KKp

sT
e−sL,

and the gain crossover frequency is ωgc = KpK/T . The phase at the gain crossover frequency is

arg Gl(iωgc)= π
2
−ωgcL= π

2
− KpKL

T
.

Requiring a phase margin ϕm gives

ωgc = αm

L
, αm = π

2
−ϕm.

With ϕm = π/3 we obtain αm = π/6= 0.52≈ 0.5. The tuning rule becomes

K = αmT

KpL
, ki = K

T
= αm

KpL
. (32.10)

Note that kiKpL= αm.
The control law (Equation 32.10) gives good control when L≈ T , but not when L >> T or L << T .

The proportional gain goes to zero with L/T and the gain is too low for delay-dominated processes. To
explore how proportional gain should be increased we approximate the transfer function by

P(s)≈ Kpe−sL,

and we find that the proportional gain can be increased to

K <
1

gmKp
,

where gm is the gain margin. A gain margin gm = 5 gives K < 0.2/Kp. The formula (Equation 32.10) gives
very poor damping for systems with lag-dominated dynamics, which can be approximated by

P(s)≈ Kp

sT
e−sL.

The gain crossover frequency for a proportional controller that gives the phase margin ϕm is then

ωgc = αm

L
,

and the controller has the gain

K = αmT

KpL
.

Note that this is the same gain as was obtained for systems with balanced dynamics, compare with
Equation 32.10. Adding integral action reduces the phase margin. To avoid reducing it too much we



�

�

�

�

� �

32-8 Control System Advanced Methods

require that ωgcTi > β, which corresponds to an increase of the phase lag of β, where β typically is in
the range of 0.1–0.5. The condition can also be written as αmTi ≥ βL. The corresponding condition on
integral gain is

ki = K

Ti
≤ αmT

βKpL2 .

Summarizing, we find the following tuning rule:

K =

⎧⎪⎪⎨
⎪⎪⎩

αmT

KpL
for

L

T
< αmgm,

1

gm
for

L

T
≥ αmgm,

ki =

⎧⎪⎪⎨
⎪⎪⎩

αmT

βKpL2 for
L

T
<

1

β
,

αm

KpL
for

L

T
≥ 1

β
,

(32.11)

where αm = π/2−ϕm, and ϕm is the phase margin in radians and gm is the gain margin.

32.2.4 Analytical Methods

If the process can be described well by a simple model, the controller parameters can be obtained by a
direct calculation. This approach is treated in this section.

32.2.4.1 Pole Placement

If the process is described by a low-order transfer function, a complete pole-placement design can be
performed. A PI controller has two parameters and the two poles can be placed and a PID controller can
place three poles. The zeros can be influenced by using setpoint weighting. Equations for the controller
parameters are given in [2]. To have a robust system the desired closed loop poles should be chosen with
care [7].

32.2.4.2 λ-Tuning

Let Gp and Gc be the transfer functions of the process and the controller. The closed-loop transfer function
obtained with error feedback is then

G0 = GpGc

1+GpGc
.

Solving this equation for Gc gives

Gc = 1

Gp
· G0

1−G0
. (32.12)

If the closed-loop transfer function G0 is specified and Gp is known, it is thus easy to compute Gc .
The method, calledλ-tuning, was developed for processes with long dead time L [8]. Consider a process

with the transfer function

Gp = Kp

1+ sT
e−sL. (32.13)

Assume that the desired closed-loop transfer function is specified as

G0 = e−sL

1+ sλT
, (32.14)

where λ is a tuning parameter. The time constants of the open- and closed-loop systems are the same
when λ= 1. The closed-loop system responds faster than the open-loop system if λ< 1. It is slower when
λ> 1.
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It follows from Equation 32.12 that the controller transfer function becomes

Gc = 1+ sT

Kp(1+λsT − e−sL)
.

When L= 0 this becomes a PI controller with gain K = 1/(λKp) and integral time Ti = T . The sensitivity
function obtained with λ-tuning is given by

S(s)= 1− e−sL

1+ sλT
= 1+ sλT − e−sL

1+ sλT
.

The maximum sensitivity Ms is always less than 2 if the model is correct. With unmodeled dynamics,
the sensitivity may be larger. The parameter λ should be small to give a low IAE, but a small value of λ
increases the sensitivity.

32.2.4.3 Internal Model Control

The internal model principle is a general method for design of control systems that can be applied to PID
control [9]. A block diagram of such a system is shown in Figure 32.4. It is assumed that all disturbances
acting on the process are reduced to an equivalent disturbance d at the process output. In this figure, Gm

denotes a model of the process, G†
m is an approximate inverse of Gm, and Gf is a low-pass filter. The name

internal model controller derives from the fact that the controller contains a model of the process. This
model is connected in parallel with the process.

If the model matches the process, that is, Gm = Gp, the signal e is equal to the disturbance d for all
control signals u. If Gf = 1 and G†

m is an exact inverse of the process, then the disturbance d will be
canceled perfectly. The filter Gf is introduced to obtain a system that is less sensitive to modeling errors,
and to ensure that the system Gf G†

m is realizable. A common choice is Gf (s)= 1/(1+ sTf ), where Tf is a
design parameter.

The controller obtained by the internal model principle can be represented as an ordinary series
controller with the transfer function

Gc =
Gf G†

m

1−Gf G†
mGm

. (32.15)

From this expression it follows that controllers of this type cancel process poles and zeros. The controller
is normally of high order. Using simple models it is, however, possible to obtain PI or PID controllers.
To see this, consider a process with the transfer function

Gp(s)= Kp

1+ sT
e−sL.

Controller Process
Σ

ysp Gf G†
m Gp

–

Gm

d

yu

–1 e

Σ

Σ

FIGURE 32.4 Block diagram of a closed-loop system with a controller based on the internal model principle.
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An approximate inverse, where no attempt is made to find an inverse of the time delay, is given by

G†
m(s)= 1+ sT

Kp
.

Choosing the filter

Gf (s)= 1

1+ sTf

and approximating the time delay by

e−sL ≈ 1− sL

Equation 32.15 now gives

Gc(s)= 1+ sT

Kps(L+Tf )
,

which is a PI controller. If the time delay is approximated instead by a first-order Padé approximation

e−sL ≈ 1− sL/2

1+ sL/2
.

Equation 32.15 gives instead the PID controller

Gc(s)= (1+ sL/2)(1+ sT)

Kps(L+Tf + sTf L/2)
≈ (1+ sL/2)(1+ sT)

Kps(L+Tf )
.

An interesting feature of the internal model controller is that robustness is considered explicitly in the
design. Robustness can be adjusted by selecting the filter Gf properly. A trade-off between performance
and robustness can be made by using the filter constant as a design parameter.

The internal model control (IMC) method can be designed to give excellent responses to setpoint
changes. Since the design method inherently implies that poles and zeros of the plant are canceled, the
response to load disturbances may be poor if the canceled poles are slow in comparison with the dominant
poles. This is discussed in the next section.

32.2.4.4 Skogestad’s Internal Model Controller

Skogestad has developed a simple tuning method based on internal model control for FOTD systems.
The closed loop transfer function is specified as

Gyysp =
1

1+ sTcl
e−sL.

For an FOTD system it then follows from Equation 32.13 that the controller transfer function is

Gc(s)= 1+ sT

Kp(1+ sTcl − e−sL)
≈ 1+ sT

sKp(Tcl + L)
,

where the exponential function is approximated using a Taylor-series expansion. The closed-loop
response time is specified to be proportional to the time delay L and the integral time is modified
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for lag-dominated processes leading to the following tuning rule for PI control:

K = T

2KpL
,

Ti =min (T , 8L).

(32.16)

Note that the proportional gain has the same form as for the Ziegler–Nicols rule but that the gain is
smaller. Also note the similarity with Equation 32.11.

The same parameters are used for a PID controller in series form, and the derivative time is chosen as
the shortest time constant.

32.2.5 Loop-Shaping

Most traditional control design techniques can also be applied to PID control. Loop-shaping tries to
achieve a desired loop transfer function by suitable choice of the controller. The following procedures are
minor modifications of techniques proposed in [10].

We start by choosing a desired gain crossover frequency ωgc . The choice could be governed by the
requirement of attenuation of load disturbances. Using a controller with integral action the attenuation
of a sinusoidal load disturbances with frequency ωd is approximately ωgc/ωd . This approximation is
particularly good when the phase margin is 60◦ because the sensitivity crossover frequency are then equal
to the gain crossover frequency. To have the phase margin φm we obtain the following condition:

∠C(iωgc)+∠P(iωgc)=−180◦ +φm, (32.17)

where φm is the required phase margin.
Any stable process can be controlled by an integrating controller. Since an integrating controller has

a phase lag of 90◦ we find that an integral controller can be used if the phase lag of the process is in the
range of 0–90◦ −φm (0–30◦ with a phase margin φm = 60◦). The integral gain is then given by

ki = ωgc

|P(iωgc)| .

PI control can be used if higher gain crossover frequencies are desired. Since a PI controller has a phase
lag between 0◦ and 90◦ it follows from Equation 32.17 that PI control can be used if the phase lag of
the process is in the range of 90◦ −φm (30–120◦ with a phase margin φm = 60◦). The phase lag of a PI
controller at ωgc is 90− arctanωgcTi . Equation 32.17 then gives

ωgcTi =−∠P(iωgc)− 90◦ +φm.

The integral gain is then given by

ki = ωgc

|G(iωgc)|
√

1+ω2
gcT2

i

.

A PID controller can provide lead and it is then possible to choose even higher gain crossover fre-
quencies. The phase lead is at most 90◦ which corresponds to pure derivative control, and the crossover
frequency can be such that the process phase lag approaches 270◦ −φm.

The limits of 270◦ −φm phase lag for PID control and 180◦ −φm for PI control are too optimistic
because they correspond to pure derivative and pure proportional control. In practice, the allowable
phase lags are smaller because integral action is needed.
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To find a PID controller of the form

C(s)= ki
1+ sTi + s2TiTd

s(1+ sTf )
, (32.18)

we first allocate a phase lag to the filter by picking the filter time constant Tf so that the phase φf =
arctanωgcTf has a reasonable value, typically about 10◦. The required phase advance is then

φ=−∠P(iωgc)+φf +φm− 90◦.

This phase lag has to be provided by the numerator 1+ sTi + s2Td of the transfer function 32.18, hence

tanφ= ωgcTi

1−ω2
gcTiTd

= αωgcTi

α−ω2
gcT2

i

.

Since there are two parameters Ti and Td , one of them has been fixed by choosing α= Ti/Td as a
tuning parameter which will be adjusted later (typical values are in the range of 0.1–1). Solving the above
equation for Ti gives

Ti =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−α+√α2+ 4α tan2 φ

2ωgc tanφ
for φ< 90◦,

−α−√α2+ 4α tan2 φ

2ωgc tanφ
for 90◦ ≤ φ< 180◦.

(32.19)

Having determined Ti integral gain is then adjusted to give unit gain at the crossover frequency; hence

ki =
ωgc

√
1+ω2

gcT2
f

|P(iωgc)(1− αω2
gcT2

i + iωgcTi)| (32.20)

The design parameter α can be adjusted, for example, to maximize the integral gain. An interactive
learning module for loop-shaping can be downloaded from http://www.calerga.com/contrib/index.html.

32.2.6 Optimization Methods

Optimization is a powerful tool for design of controllers. The method is conceptually simple. A controller
structure with a few parameters is specified. Specifications are expressed as inequalities of functions of the
parameters. The specification that is most important is chosen as the function to optimize. The method
is well suited for PID controllers where the controller structure and the parameterization are given.
There are several pitfalls when using optimization. Care must be exercised when formulating criteria and
constraints; otherwise, a criterion will indeed be optimal, but the controller may still be unsuitable because
of a neglected constraint. Another difficulty is that the loss function may have many local minima. A third
is that the computations required may be excessive. Numerical problems may also arise. Nevertheless,
optimization is a good tool that has successfully been used to design PID controllers.

Popular optimization criteria are the IAE, the integrated time absolute error (ITAE), and the integrated
square error (ISE). They are mostly done for the first-order plus dead-time model as given in Equation 32.2.
Many tables that provide controller parameters based on optimization have been published [6]. A very
general optimization algorithm which considers many different constrains is presented in [11].

32.2.6.1 Modulus Optimum and Symmetrical Optimum

Modulus Optimum (BO) and Symmetrical Optimum (SO) are two design methods that are based on
optimization. The acronyms BO and SO are derived from the German words Betrags Optimum and
Symmetrische Optimum. These methods are based on the idea of finding a controller that makes the



�

�

�

�

� �

Automatic Tuning of PID Controllers 32-13

frequency response from setpoint to plant output as close to one as possible for low frequencies. If G(s)
is the transfer function from the setpoint to the output, the controller is determined in such a way that
G(0)= 1 and that dn|G(iω)|/dωn = 0 at ω= 0 for as many n as possible.

If the closed-loop system is given by

G(s)= ω2
0

s2+√2ω0s+ω2
0

,

the first three derivatives of |G(iω)| will vanish at the origin. If the transfer function G in the example is
obtained by error feedback of a system with the loop transfer function GBO, the loop transfer function is

GBO(s)= G(s)

1−G(s)
= ω2

0

s(s+√2ω0)
,

which is the desired loop transfer function for the method called modulus optimum.
If the closed-loop transfer function is given by

G(s)= ω3
0

(s+ω0)(s2+ω0s+ω2
0)

(32.21)

the first five derivatives of |G(iω)| will vanish at the origin. A system with this closed-loop transfer
function can be obtained with a system having error feedback and the loop transfer function

G�(s)= ω3
0

s(s2+ 2ω0s+ 2ω2
0)

.

The closed-loop transfer function (Equation 32.21) can also be obtained from other loop transfer functions
if a two-degree of freedom controller is used. For example, if a process with the transfer function

Gp(s)= ω2
0

s(s+ 2ω0)

is controlled by a PI controller having parameters K = 2, Ti = 2/ω0, and b= 0, the loop transfer function
becomes

GSO = ω
2
0(2s+ω0)

s2(s+ 2ω0)
. (32.22)

The symmetric optimum aims at obtaining the loop transfer function given by Equation 32.22. Note
that the Bode diagram of this transfer function is symmetrical around the frequency ω= ω0. This is the
motivation for the name symmetrical optimum.

The methods BO and SO can be called loop-shaping methods since both methods try to obtain a
specific loop transfer function. The design methods can be described as follows. It is first established
which of the transfer functions, GBO or GSO, is most appropriate. The transfer function of the controller
Gc(s) is then chosen so that G�(s)= Gc(s)Gp(s), where G� is the chosen loop transfer function.

32.2.6.2 Cancellation of Process Poles

The PID controller has two zeros. Many design methods choose these zeros so that they cancel one or two
of the dominant process poles. This often results in a simple design as in IMC or SO optimization. The
response to setpoint changes is generally good. The responses to load disturbances may, however, be poor
if the canceled poles are slower than the dominating closed-loop poles. Figure 32.5 illustrates the problem.
A process with a time constant T = 10 is controlled with a PI controller with integral time Ti = 10 and a
suitable controller gain. The design is made so that the closed-loop time constant is significantly shorter
than the open-loop time constant. This is seen in the response to the setpoint change. However, the load
disturbance response is very sluggish since the open-loop time constant is present and dominating. The
figure also shows a retuned controller, where pole cancellation is avoided.
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Cancellation

Cancellation

Cancellation

Cancellation

Retuned

Retuned

Retuned
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FIGURE 32.5 Simulation of a closed-loop system obtained by pole cancelation. The process transfer function is
G(s)= e−s/(10s+ 1), and the controller parameters are K = 6.67 and Ti = 10. The upper diagram shows setpoint
ysp = 1 and process output y, and the lower diagram shows control signal u. The figure also shows the responses to a
retuned controller with K = 6.67, Ti = 3 and b= 0.5.

32.3 Adaptive Techniques

This section gives an overview of adaptive techniques. It starts with a discussion of uses of the different
techniques, followed by a more detailed presentation of automatic tuning, gain scheduling, and adaptive
control. The section ends with a presentation of how the adaptive techniques have been used in industrial
controllers.

32.3.1 Use of the Adaptive Techniques

The word adaptive techniques is used to cover autotuning, gain scheduling, and adaptation. Although
research on adaptive techniques has almost exclusively focused on adaptation, experience has shown
that autotuning and gain scheduling have much wider industrial applicability. Figure 32.6 illustrates the
appropriate use of the different techniques.

Constant but
unknown dynamics

Constant controller
parameters

Predictable
parameter changes

Unprdictable
parameter changes

Autotuning Autotuning

Gain scheduling Adaptation

Autotuning

Predictable
changes in dynamics

Unpredictable
changes in dynamics

FIGURE 32.6 When to use different adaptive techniques.



�

�

�

�

� �

Automatic Tuning of PID Controllers 32-15

Controller performance is the first issue to consider. If requirements are modest, a controller with
constant parameters and conservative tuning can be used. Other solutions should be considered when
higher performance is required.

If the process dynamics are constant, a controller with constant parameters should be used. The
parameters of the controller can be obtained by autotuning.

If the process dynamics or the character of the disturbances are changing it is useful to compensate
for these changes by changing the controller. If the variations can be predicted from measured signals,
gain scheduling should be used since it is simpler and gives superior and more robust performance than
continuous adaptation. Typical examples are variations caused by nonlinearities in the control loop.
Autotuning can be used to build up the gain schedules automatically.

There are also cases where the variations in process dynamics are not predictable. Typical examples
are changes due to unmeasurable variations in raw material, wear, fouling, and so on. These variations
cannot be handled by gain scheduling but must be dealt with by adaptation. An autotuning procedure is
often used to initialize the adaptive controller. It is then sometimes called pretuning or initial tuning.

32.3.2 Automatic Tuning

Automatic tuning (or autotuning) is a method where a controller is tuned automatically on demand from
the user. Typically, the user will either push a button or send a command to the controller. Automatic
tuning is sometimes called tuning on demand or one-shot tuning.

Automatic tuning can also be performed by external devices that are connected to the control loop
during the tuning phase. Since these devices are supposed to work together with controllers from
different manufacturers, they must be provided with quite a lot of information about the controller
structure and parameterization in order to provide appropriate controller parameters. Such information
includes controller structure (series or parallel form), sampling rate, filter time constants, and units of the
different controller parameters (gain or proportional band, minutes or seconds, time or repeats/time).

The automatic tuning procedures can be divided into methods that are based on step response experi-
ments, and methods based on frequency response experiments.

32.3.2.1 Step Response Methods

Most methods for automatic tuning of PID controllers are based on step response experiments. When the
operator wishes to tune the controller, an open-loop step response experiment is performed. A process
model is then obtained from the step response, and controller parameters are determined. This is usually
done using simple look-up tables as in the Ziegler–Nichols method.

The greatest difficulty in carrying out the tuning automatically is in selecting the amplitude of the step.
The user naturally wants the disturbance to be as small as possible so that the process is not disturbed
more than necessary. On the other hand, it is easier to determine the process model if the disturbance is
large. The result of this dilemma is usually that the operator himself has to decide how large the step in
the control signal should be.

Controllers with automatic tuning which are based on this technique have become very common in
the last few years. This is especially true of temperature controllers.

32.3.2.2 The Relay Autotuner

Frequency-domain characteristics of the process can be determined from experiments with relay feedback
in the following way [12]. When the controller is to be tuned, a relay with hysteresis is introduced in the
loop, and the PID controller is temporarily disconnected; see Figure 32.7. For large classes of processes,
relay feedback gives an oscillation with period close to the ultimate frequencyωu, as shown in Figure 32.8.
The control signal is a square wave and the process output is close to a sinusoid. The gain of the transfer
function at this frequency is also easy to obtain from amplitude measurements. Describing function
analysis can be used to determine the process characteristics. The describing function of a relay with
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Process

–1

PID

FIGURE 32.7 The relay autotuner. In the tuning mode, the process, is connected to relay feedback.

hysteresis is

N(a)= 4d

πa

(√
1−

( ε
a

)2− i
ε

a

)
,

where d is the relay amplitude, ε is the relay hysteresis, and a is the amplitude of the input signal. The
negative inverse of this describing function is a straight line parallel to the real axis; see Figure 32.9. The
oscillation corresponds to the point where the negative inverse describing function crosses the Nyquist
curve of the process, that is, where

G(iω)=− 1

N(a)
.

Since N(a) is known, G(iω) can be determined from the amplitude a and the frequencyω of the oscillation.
Note that the relay experiment is easily automated. There is often an initialization phase where the

noise level in the process output is determined during a short period of time. The noise level is used
to determine the relay hysteresis and a desired oscillation amplitude in the process output. After this
initialization phase, the relay function is introduced. Since the amplitude of the oscillation is proportional
to the relay output, it is easy to control it by adjusting the relay output. Also note in Figure 32.8 that a
stable oscillation is established very quickly. The amplitude and the period can be determined after about
10 s only. The average residence time of the system is 12 s, which means that it would take about 40 s for
an open-loop response to reach steady state.

32.3.3 Gain Scheduling

By gain scheduling we mean a system where controller parameters are changed depending on measured
operating conditions. The scheduling variable can, for instance, be the measurement signal, controller
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FIGURE 32.8 Relay output u (dashed) and process output y (solid) for a system under relay feedback.
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G(iω)

1
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–

FIGURE 32.9 The negative inverse describing function of a relay with hysteresis −1/N(a) and a Nyquist
curve G(iω).

output, or an external signal. For historical reasons the word “gain scheduling” is used even if other
parameters such as derivative time or integral time are changed. Gain scheduling is a very effective way
of controlling systems whose dynamics change with the operating conditions.

The notion of gain scheduling was originally used for flight control systems, but it is being used
increasingly in process control. It is, in fact, a standard ingredient in some single-loop PID controllers.
For process control applications, significant improvements can be obtained by using just a few sets of
controller parameters.

32.3.4 Adaptive Control

An adaptive controller is a controller whose parameters are continuously adjusted to accommodate
changes in process dynamics and disturbances. Parameters can be adjusted directly or indirectly via
estimation of process parameters. There is a large number of both direct and indirect methods available.
Adaptation can be applied both to feedback and feedforward control parameters. Adaptive controls can
be described conveniently in terms of the methods used for modeling and control design.

32.3.4.1 Model-Based Methods

All indirect systems can be represented by the block diagram in Figure 32.10. There is a parameter
estimator that determines the parameters of the model based on observations of process inputs and
outputs. There is also a design block that computes controller parameters from the model parameters.
The parameters can either be estimated recursively or batchwise.

Controller
design Model

Controller Process

–1

r u y

FIGURE 32.10 Block diagram of indirect systems.
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32.3.4.2 Rule-Based Methods

In the direct methods, the key issues are to find suitable features that characterize relevant properties of
the closed-loop system and appropriate ways of changing the controller parameters so that the desired
properties are obtained.

The majority of the PID controllers in industry are tuned manually by instrument engineers. The tuning
is done based on past experience and heuristics. By observing the pattern of the closed-loop response to
a setpoint change, the instrument engineers use heuristics to directly adjust the controller parameters.
The heuristics have been captured in tuning charts that show the responses of the system for different
parameter values. A considerable insight into controller tuning can be developed by studying such charts
and performing simulations. The heuristic rules have also been captured in knowledge bases in the form
of crisp or fuzzy rules. Rules of this type are used in several commercial adaptive controllers. Most
products will wait for setpoint changes or major load disturbances. When these occur, properties such as
damping, overshoot, period of oscillations and static gains are estimated. Based on these properties, rules
for changing the controller parameters to meet desired specifications are executed.

32.3.5 Adaptive Feed Forward

Feedforward control deserves special mention. It is a very powerful method for dealing with measurable
disturbances. Use of feedforward control requires, however, good models of process dynamics. It is
difficult to tune feedforward control loops automatically on demand, since the operator often cannot
manipulate the disturbance used for the feedforward control. To tune the feedforward controller it is
therefore necessary to wait for an appropriate disturbance. Adaptation is therefore particularly useful for
the feedforward controller.

32.4 Some Commercial Products

Commercial PID controllers with adaptive techniques have been available since the beginning of the
1980s [2,13].

There is a distinction between temperature controllers and process controllers. Temperature controllers
are primarily designed for temperature control, whereas process controllers are supposed to work for
a wide range of control loops in the process industry such as flow, pressure, level, and pH control
loops. Automatic tuning and adaptation are easier to implement in temperature controllers, since most
temperature control loops have several common features. This is the main reason why automatic tuning
has been introduced more rapidly in these controllers.

The process controllers can be separate hardware boxes for single loops, or distributed control systems
(DCS) where many loops are handled by one system.

Since the processes that are controlled with process controllers may have large differences in their
dynamics, tuning and adaptation becomes more difficult compared to the pure temperature control
loops. In Table 32.3, a collection of process controllers is presented together with information about their
adaptive techniques.

Automatic tuning is the most common adaptive technique in the industrial products. The usefulness
of this technique is also obvious from Figure 32.6, where it is shown that the autotuning procedures are
used not only to tune the controller, but also to obtain a comfortable operation of the other adaptive
techniques. Most auto-tuning procedures are based on step response analysis.

Gain scheduling is often not available in the controllers. This is surprising, since gain scheduling is
found to be more useful than continuous adaptation in most situations. Furthermore, the technique is
much simpler to implement than automatic tuning or adaptation.

It is interesting to see that many industrial adaptive controllers are rule based instead of model based.
The research on adaptive control at universities has been almost exclusively focused on model-based
adaptive control.
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TABLE 32.3 Industrial Adaptive Process Controllers

Automatic Gain Adaptive Adaptive

Manufacturer Controller Tuning Scheduling Feedback Feedforward

Bailey Controls CLC04 Step Yes Model based –

Control Techniques Expert controller Ramps – Model based –

Fisher Controls DPR900 Relay Yes – –

DPR910 Relay Yes Model based Model based

Foxboro Exact Step – Rule based –

Fuji CC-S:PNA 3 Steps Yes – –

Hartmann & Braun Protronic P Step – – –

Digitric P Step – – –

Honeywell UDC 6000 Step Yes Rule based –

Alfa Laval Automation ECA40 Relay Yes – –

ECA400 Relay Yes Model based Model based

Siemens SIPART DR22 Step Yes – –

Toshiba TOSDIC-215D PRBS Yes Model based –

EC300 PRBS Yes Model based –

Turnbull Control Systems TCS 6355 Steps – Model based –

Yokogawa SLPC-171,271 Step Yes Rule based –

SLPC-181,281 Step Yes Model based –

One of the earliest rule-based adaptive controllers is the Foxboro EXACT [14]. It was released in 1984.
In this controller, the user specifies a maximum damping and a maximum overshoot. Whenever the
control loop is subjected to a larger load disturbance or setpoint change, the response is investigated and
the controller parameters are adjusted according to certain rules to meet the specifications.

Adaptive feedforward control is seldom provided in the industrial controllers. This is surprising, since
adaptive feedforward control is known to be of great value. Furthermore, it is easier to develop robust
adaptive feedforward control than adaptive feedback control.

Alfa Laval Automation’s ECA400 and Fisher Controls DPR910 are identical. This controller has auto-
matic tuning, gain scheduling, adaptive feedback, and adaptive feedforward. The automatic tuning pro-
cedure is based on relay feedback. The automatic tuning procedure is also used to build the gain sched-
ule automatically, and to initiate the adaptive feedback and feedforward. In this way, there is no need
for the user to supply any information about the process dynamics. All adaptive features can be used
automatically.
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33.1 Introduction

Most control theory is concerned with the design of feedback systems for time-invariant plants with
known mathematical models, e.g., in the form of given transfer functions. The assumption of constant,
known models is not valid for many modern technical or nontechnical systems, such as:

Robotics: Inertias as seen by the drive motors vary with the end-effector position and the load mass so
that the dynamic model varies with the robot’s attitude.

Chemical reactors: Transfer functions vary according to the mix of reagents and catalyst in the vessel
and change as the reaction progresses.

People: The gain of the function {injected anaesthetic → unconsciousness} depends on the patient’s
metabolism.

So how can controllers be designed to cope with these initial model uncertainties and time variations
in dynamics? One approach is to design a robust fixed controller that ensures stability for all possible
plant dynamics, but this is often at the expense of “detuned” behavior. Instead we can embed algorithms
inside computers that “learn from experience” and self-tune the controllers so as to improve closed-
loop performance. Often this learning process builds up a mathematical model based on experimental
input/output data; this operation is known as system identification or parameter estimation. The model

33-1



�

�

�

�

� �

33-2 Control System Advanced Methods

w u y

Slow updating loop

Design
algorithm

Controller

Parameter
estimator

Plant

Fast control loop

FIGURE 33.1 Structure of a self-tuning controller.

could be a complete transfer function or simply the gain and phase of the plant at a given input frequency.
In the design of “learning” controllers there are two main themes:

• For controlling systems that have unknown but constant dynamics, using single-shot methods
when the controller is first commissioned: If the target control law is the “industry-standard” PID
(proportional-integral-derivative, or three-term) form, the approach is often called autotuning . If
the controller is more complex, for example, when the plant has significant dead time for which
PID control is not “tight,” a full process model is estimated using system identification methods,
and an analytic design procedure uses the model to self-tune the coefficients of a fixed control law.

• For time-varying systems: Here the identification algorithm operates all the time to “update”
the model, and the coefficients of the control law are then automatically adjusted, as shown in
Figure 33.1. This scheme must be “alert” so as to track variations in the plant’s transfer function.
This is the full adaptive control approach.

Figure 33.1 shows the basic structure of a self-tuning controller: the parameter estimator builds up the
plant model from input/output data {u(t), y(t)}; a control design algorithm takes the estimated model
parameters θ̂ and determines the “best” set of controller parameter θc (such as gains and time constants);
and a controller applies these gains in a feedback loop. Such self-tuning designs have two time scales: a
fast inner control loop and a slow outer “updating” loop.

33.1.1 Examples of Unknown and Time-Varying Systems

An annealing furnace thermally soaks metal over some prescribed temperature/time profile to attain
desired material properties. The equation describing the furnace temperature T as a function of heat
input u is

mcp
dT

dt
= u− βT ,

where m is the mass of the “burden,” which differs from load to load, and β gives the heat loss from
Newton’s law of cooling. Hence the time-constant of the system, mcp/β, varies with the burden, so that a
fixed controller will lead to transients that differ accordingly. For example, a controller tuned for a large
load would heat up a small mass too quickly. A self-tuned controller that deduces m (or an equivalent
parameter) during warm-up provides more consistent results.
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A hydraulically powered shaking table is used to test models of buildings to evaluate their earthquake
resistance. It is required that the spectral density of the shaking should correspond to that of typical
earthquakes at the design site. However, the model has mass and other dynamics that affect the behavior
of the table (just as an inertial load added to a position control affects the loop dynamics). A dynamically
complex (i.e., more than just PID) self-tuning controller is required to ensure that in closed loop the
spectral density of the shaking is accurate. A similar problem occurs when testing suspension systems for
racing cars using hydraulic actuators, where the objective is to replay the surface deviations of a given
racing track in order to “tune” the suspension for best performance.

An exothermic chemical reactor generates heat Q = kxeαT , which varies exponentially with temper-
ature T and depends on the proportion x(t) of reagents left in the mixture. A linear model for small
excursions around some nominal operating point T0 can be deduced, so that the transfer function
between u (control) andΔT (deviations) is

G(s)= 1

sc+ β− γα ,

where γ= kx exp(αT0). Consider the behavior during a batch with x(0)= 1 initially and where the
objective is to end up with x = 0 as quickly as possible. First T is small and G(s) is stable. Heat is then
added via u so the temperature and hence γ increase. This might cause the pole of G to become unstable.
As the reagent “strength” x(t) decreases during the reaction, the plant becomes stable again. In practice,
many reactors are used for producing a range of chemicals for which variations between batches are highly
significant. In such cases, a self-tuned controller that adjusts parameters according to the individual batch
might suffice. Even better performance is possible if an adaptive controller is used, adjusting its parameters
as the reaction progresses.

A materials testing machine has dynamics that depend on the stiffness of the specimen under test. If it
is testing a manufactured item such as a bump-stop for a car suspension, the stiffness changes radically
during the cycle. With a fixed controller, the response is either “sluggish” during one phase and acceptable
in the other, or it can be successively well tuned initially and then oscillatory. The output of a “specimen
stiffness estimator” can be used to “gain schedule” a PI (proportional-integrator) regulator to get good
response over both parts of the cycle. This is full adaptive control, as rapid variations in parameters
are seen.

The above examples indicate the range of possible controller tuning problems: PI settings for a simple
fixed plant; a more general controller for a plant with rich dynamics; regulating a slowly changing plant; a
rapidly time-varying plant for which the dynamics depend on some changing but measurable parameter.

Successful applications of self-tuning control have been for those cases where engineering knowledge
leads to a simple model of the underlying dynamics for which bounds on parameter variation can be
deduced. Early hopes for an effective “general-purpose” self-tuner have not been realized in practice. In
particular, this is because of the requirement for “persistency of excitation” in the plant’s input/output
data, which cannot in general be guaranteed. Hence, in the following we concentrate on the fundamental
ideas; the section “References” contains more details of, for example, multivariable self-tuning designs.

33.2 Some Simple Methods

One of the most basic problems in self-tuning is to find a “good” dynamic model of a plant. Suppose we take
the classical first-order system G(s)= K/(1+ sT), where K , T are unknown numbers that characterize its
behavior. The simplest test is to inject a step of amplitude U and inspect the response and its derivative:

y(t)= KU(1− e−t/T )→ ẏ(t)= KU

T
e−t/T . (33.1)

We note two things: (1) y(t)→ KU as t →∞, and (2) the tangent at t = 0 has slope KU/T and meets
the line y = KU when t = T . Hence the “final value” gives K , and the meet of the tangent at the origin
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with the final value gives T . Now many real plant responses can be approximated by a first-order system
together with a dead time, giving:

G(s)≈ e−sTd
K

1+ sT
. (33.2)

The response of this model is simply the above first-order response shifted by the dead time Td , so that
Td is found just by inspecting when the output starts to move after the input step U is injected. To give a
sense of the accuracy of this approximation, Figure 33.2 shows the step response of 1/(s+ 1)(1+ 0.1s)2,
having a pole at s =−1 and two “fast” poles at s =−10. It is seen that the initial dynamics look closely
like those of a dead-time of about 0.2 seconds.

How can we use the above simple idea for finding K , T , Td? What we can look for is the point of
inflection of the output curve and extrapolate, as shown in Figure 33.3.

This is easily done by inspection, but such a procedure is actually quite hard to do in a computer. Even
more tricky is to derive a method that is reliable with real data where the output response is corrupted
by noise. We might be able to get “reasonable” values of the model parameters “by eye,” but a computer
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algorithm will be completely confused. What is necessary is a method that considers the overall response
without getting locked into local features. Hence, looking for points of inflection is not the answer. Revert
to the original first-order system, and write it as a differential equation:

T
dy

dt
+ y = Ku(t).

Integrating with respect to t from t = t1 to t = t2 gives:

T[y(t2)− y(t1)]+
∫ t2

t1
y dt = K

∫ t2

t1
u dt. (33.3)

Given a series of output samples y(0), y(h), y(2h), . . . , y(ih), . . . , where h is the sample interval, we can
approximate the integrals in Equation 33.3 by, say, using the rectangular approximation:

∫ kh

jh
y dt ≈ h

i=k−1∑
i=j

y(ih),

leading to:
Ta1+ a2 = Kb1, (33.4)

where a1, a2, b1 are available numerically. By repeating the procedure over another time period, a second
such equation results, allowing the unknowns K , T to be deduced. We note that the use of the integrated
equation to a certain extent “smoothes out” the noise.

Suppose (as with the annealing furnace) it is desired that the closed-loop transfer function is to be
first-order with unit dc gain and a fixed time constant Tc irrespective of the values of K , T . With a PI
controller of the form C(s)= Kc(1+ 1/sTi), the choices Ti = T̂ and Kc = Ti/(K̂Tc) are appropriate. This
completes the self-tuning design.

33.2.1 A Plant with an Unknown Time-Varying Gain

Consider now controlling an unknown-gain plant using discrete-time methods. At the sample instants,
the output measurement y(t) is made via an analog-to-digital converter, and the control u(t) is calculated
and applied via a digital-to-analog converter. We treat the general self-tuning design problem in two
stages:

1. The design of a controller assuming known transfer function parameters
2. The estimation of the plant’s dynamic parameters from the input/output data sequences

For discrete-time systems we will use a mixed Z-transform/shift-operator notation, where the z is con-
sidered to be the forward-shift operator: zx(t)→ x(t+ 1). The current sample of a variable x is x(t), the
previous sample is x(t− 1), and so on. In particular,Δ is the backward-difference operatorΔ= 1− z−1,
givingΔx(t)→ x(t)− x(t− 1).

A plant with known gain K has a sampled-data model y(t+ 1)= Ku(t), as the control asserted at
sample t affects the output measurement one sample later, so given the set point w(t) the “best” open-loop
control for attaining this value one sample later is clearly u(t)= w(t)/K . But we generally want to have
closed-loop control so we compute an error signal:

e(t)= w(t)− y(t) or e(t)= w(t)−Ku(t− 1),

in the usual way. But the “best” control is such that w(t)= Ku(t), so replace w(t) by Ku(t) and rearrange
to get the feedback control:

u(t)= u(t− 1)+ e(t)/K , or Δu(t)= u(t)− u(t− 1)= e(t)/K ,
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i.e.,

u(t)= 1

KΔ
e(t), (33.5)

where e(t) is the system error. Hence, the controller has the transfer function 1/KΔ: an integrator. We can
modify the controller gain by a factorμ to giveμ/KΔ for which the “gain”μ= 1 gives “ideal” single-step
response to a change in w. This is the first step in a self-tuning design.

Now we design an estimator for the unknown plant gain parameter K . The basic idea is that if
the output=Gain*input, then the Gain estimate= output/input. The way we will do it, however, will
generalize to larger problems. The idea is to use the model to “predict the present” and to compare the
prediction with the actual measured plant response.

A prediction model gives a forecast ŷ(t+ 1|t) of the future output y(t+ 1) depending on available
input/output data and values of the model parameters. In our case, the forecast of the current output
depends on the existing value of the gain estimate K̂(t− 1) calculated at the previous sample:

ŷ(t|t− 1)= K̂(t− 1)u(t− 1),

and we define the prediction error ε(t) to be

ε(t)= y(t)− ŷ(t|t− 1). (33.6)

The estimator updates at each t its “best guess” of plant gain. An “open-loop” best estimator would give
K̂(t)= y(t)/u(t− 1); but, as with control design, we prefer a closed-loop algorithm of the form:

K̂(new)= K̂(old)+ f (data).ε(t).

Hence we write, as for the controller design:

K̂(t)= y(t)

u(t− 1)
= [K̂(t− 1)u(t− 1)+ ε(t)]

u(t− 1)
,

noting that

y(t)= ŷ(t)+ ε(t)= K̂(t− 1)+ λ

u(t− 1)
ε(t), (33.7)

where the “estimator gain”λ is 1 for “optimal” performance. The sequence of operations is first to estimate
ε(t) by comparing the old model’s prediction ŷ(t) of the newly acquired output data y(t), then to update
the model parameters depending on the chosen value of “adaptive gain” λ.

To get the full self-tuner we just couple the estimator of plant gain of Equation 33.7 to the feedback
controller of Equation 33.5 by passing K̂ from one to the other. Note the resemblance between controller
and estimator as shown in Figure 33.4: both are integrators. The use of feedback in control is for good
performance despite “bad” models and disturbances; similarly, with the estimator we can get good results
despite noise added to y. Just as with control where loop gainμ is reduced to improve stability, we reduce
λ to improve the estimator’s robustness. With “optimal” values of μ and λ, the algorithm takes just two
successive sample times to get perfect control: step 1 gives an accurate K̂ and step 2 attains the set-point.
As an example, consider a plant that at t = 0 has K = 2 and our model K̂(0)= 1. At t = 1 the set point w
is made 4, and at t = 3 the plant gain changes to 1. Iterating the equations for the first five samples gives
Table 33.1.
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FIGURE 33.4 The controller and estimator as feedback loops.

33.3 Plant Models

A mathematical model of a plant is required in order to design a controller. The design procedure needs
to be analytic so that a unique control comes from a given model and performance criterion. In most
cases, we consider a model as a predictor of the behavior of the system, e.g., its output response y(t+ i)
to inputs u(t− j). The model will have a set of parameters θ; identification will provide values for these,
which can be fed into the control design. It is to be hoped that the model can in fact represent the “real”
behavior of the plant. (Aside: A distillation column might be described by four hundred simultaneous
nonlinear differential equations—far too complex for our needs. Fortunately, it is often well represented
by a second-order transfer function with dead time.)

We adopt a model structure M(↑) that is parameterized by the set θ; for example, we could choose:

M(θ)= b0

a1s+ a0
, i.e., θ= {a0, a1, b0},

but this would not be sensible as an infinite number of values θ would give the same transfer function.
Clearly it is better to divide through by a1 and assume:

M(θ)= b0

s+ a0
, i.e., θ= {a0, b0},

with one fewer parameter to estimate and a unique answer obtainable.
The choice of model structure is therefore important in the design of general-purpose system identifi-

cation or self-tuning schemes:

• Can M represent a general class of plants (e.g., unstable, lightly damped, high order, . . .) so that
the self-tuner does not need to be redesigned for each case?

TABLE 33.1 The Signals in the Simple Self-Tuner

t w y e K K̂ ŷ ε u

0 0 0 0 2 1 0 0 0

1 4 0 4 2 1 0 0 4

2 4 8 −4 2 2 4 4 2

3 4 4 0 2 2 4 0 2

4 4 2 2 1 1 4 −2 4

5 4 4 0 1 1 4 0 4



�

�

�

�

� �

33-8 Control System Advanced Methods

• Does M use a minimal set of parameters so that the “true” input/output behavior is given by unique
values of θ?

• Is the structure of M such that estimation is simple? So that it is robust to bad assumptions (e.g.,
about the number of poles and zeros in the real plant)?

We shall concentrate on dynamic models in which the underlying plant is continuous time and assumed
to be in the locally linearized form:

y(t)= B(s)

A(s)
u(t−Td)+ d(t), (33.8)

where Td is the dead time and d(t) is an unmeasured disturbance. The inclusion of a dead time is for
two reasons: (1) many industrial processes involve mass transport with corresponding delays, but also (2)
plants with complex dynamics (e.g., many poles) can be approximated by a low-order model with dead
time. The disturbance reflects reality: it corresponds to any factor that affects the output not included in
the G(s) such as measurement noise, “unmodeled dynamics,” nonlinear effects, real disturbances (such as
load torques) acting on the system. It will be found that estimation is a compromise between “alertness”
to changes in the plant’s G(s) and susceptibility of the estimator to noise (fast estimators adapt rapidly to
new output data, which sadly could be noise rather than real signals).

As most identification and self-tuning algorithms are implemented digitally, we shall assume discrete-
time models obtained from G(s) via sampling. These models can come in many forms, though all are
usable as predictors. The simplest general-purpose form is the pulse response or weighting sequence.
Consider injecting a unit pulse (i.e., of height 1 and over the sample interval h) into the plant and
sampling the output to get a sequence {hi}. For a general input u(t), the sampled output y(t) is then given
by the convolution sum:

y(t)=
∞∑

i=1

hiu(t− i). (33.9)

The only assumptions here are superposition and open-loop stability: the arbitrary linear plant has a
parameter set θ= {hi} being the sampled points on the pulse response.

Theoretically there are an infinite number of parameters in this model, but in practice we truncate after
some point N , assuming [hi = 0, i > N] and where h0 is zero, as the plant cannot respond instantaneously.
If there is a dead time of k samples between a control and its initial effect on the output, then [hi =
0, for i = 1 . . . k] also, so that the model handles dead time simply by having leading coefficients of zero.

One problem with FIR models is that they require a very large number of parameters accurately to
represent “stiff” dynamic systems (i.e., with fast and slow modes in the same plant), or even a simple
lightly damped pole pair. The sample interval h must be less than the smallest time constant of interest,
and the model “length” must be such that Nh exceeds the plant settling time, which is typically five times
the largest time constant. Hence, even with only a 1:10 range of time constants, at least 50 parameters
may be necessary. Nevertheless, the associated computations are very simple (easily embedded in VLSI),
and FIRs are commonly used in signal processing and some process control designs. It sometimes proves
to be useful to consider the input to a plant as a series of incrementsΔu(t)= u(t)− u(t− 1) (i.e., steps or
control “moves” as in a stepper-motor) and the response (by superposition) to be

y(t)= s1Δu(t− 1)+ s2Δu(t− 2)+ · · ·+ siΔu(t− i)+ · · · ,
where si is the ith point on the plant’s unit-step response. It is easy to show that the predictor that gives
the next plant output is

y(t+ 1)= y(t)+ s1Δu(t)+
N∑

i=1

hiΔu(t− i). (33.10)

The predicted output y(t+ 1) is the sum of three components: the current output y(t), the forced response
due to the current control “move”Δu(t), plus the free response due to previous control moves.
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33.3.1 Transfer-Function or Difference-Equation Models

By far the most popular model in self-tuning control is the DARMA (deterministic autoregressive and
moving average) or general difference-equation form:

y(t)+ a1y(t− 1)+ a2y(t− 2)+ · · ·+ anay(t− na)= b1u(t− 1)

+ b2u(t− 2)+ · · ·+ bnbu(t− nb). (33.11)

Defining A(z−1) and B(z−1) to be polynomials in the backward-shift operator:

A(z−1)= 1+ a1z−1+ · · ·+ anaz−na (33.12)

B(z−1)= b1z−1+ · · ·+ bnbz−nb, (33.13)

this can be written
A(z−1)y(t)= B(z−1)u(t),

i.e., a transfer function

G(z−1)= B(z−1)

A(z−1)
. (33.14)

The values of the parameters are obtained by taking Z-transforms of G(s) (+ZOH) as previously shown.
Note that:

• There is a unique correspondence [via the mapping z = exp(sh)] between the continuous- and
discrete-time poles; the degree na is the same as that of G(s). A pole s =−α in the left half-plane
(LHP) in s (stable) maps into z = exp(−αh); i.e., within the unit circle.

• There is no simple mapping of zeros. Indeed, even if G(s) has all its zeros in the stability region (LHP),
this does not mean that G(z−1) will be likewise (in unit circle). It is, in fact, extremely common for
so-called nonminimum-phase discrete-time models to appear (zeros outside unit circle), e.g., when
there is fractional dead time or when controlling a high-order plant with a small sample interval h.

33.3.2 Incorporating Disturbances

In continuous-time random processes it is useful to define “white noise”—a signal with a constant spectral
power at all frequencies. In discrete time, the corresponding signal is a sequence of random independent
(uncorrelated) variables with zero mean and common variance σ2 [hence called a (0, σ2) uncorrelated
random sequence (URS)]. Here we do not have an “infinite variance” signal, but instead something easily
produced by a random signal generator such as RAND in MATLAB�. Such a signal has the following
properties:

Ee(t)= 0; Ee2(t)= σ2
e ; Ee(i)e(j)= 0, for i �= j, (33.15)

where E denotes the expectation operation. As in continuous time, a general stationary discrete-time
random process is modeled by white noise passing through a transfer function in z.

Suppose the controlled part of a plant is G = B1/A1 and the output y is affected by additive disturbances
C1/D1e(t). Then we have:

y(t)= B1

A1
u(t)+ C1

D1
e(t),

which, when multiplied up, gives:

A1D1y(t)= B1D1u(t)+C1A1e(t).

Hence, we make the common overall plant assumption of the CARMA (controlled autoregressive and
moving average) model:

A(z−1)y(t)= B(z−1)u(t)+C(z−1)e(t), (33.16)

where e(t) is a URS sequence of independent (0, σ2) random variables. The corresponding difference
equation is then generated using the polynomials A, B, C.
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However, the CARMA form is insufficient to characterize offsets for which u= 0 is not accompanied
by y = 0. A model could include deviations from the mean levels u0, y0, say, but in control loops these
mean levels would not, in general, be constant or known. Indeed, it is often found that disturbances are
“steps”; for example, when passengers enter an elevator, there are steps in the load torque acting on the
motor: these correspond to shifts in mean levels. One way to deal with this problem is to add an offset
parameter d to the output. In a full model used in self-tuning, the value of d would need to be estimated
along with the other (dynamic) parameters in the A, B, C polynomials.

In practice, the disturbance is likely to be a combination of factors such that no consistent values of the
parameters C(z−1) can be estimated. But it is known from the internal model principle that disturbance
elimination is best achieved by having an internal model of the disturbance in the control law. Inspection
provides the following “theorem”: the ubiquitous nature of PID regulators in industry implies that an
integrator is the internal model of most practical disturbances. Hence, the best general assumption is of a
CARIMA (integrated) model in which random disturbances are integrated:

A(z−1)y(t)= B(z−1)u(t)+C(z−1)x(t), (33.17)

where x(t) is of the form a/Δ for deterministic step disturbances, or Δx(t)= e(t) [with e(t) a URS] for
random disturbances. Incorporating into the model gives an incremental form:

A(z−1)Δy(t)= B(z−1)Δu(t)+C(z−1)e(t), (33.18)

or

y(t)= y(t− 1)− a1Δy(t− 1)− · · · anaΔy(t− na)+ b1Δu(t− 1)+ · · · bnbΔu(t− nb)

+ e(t)+ c1e(t− 1)+ · · ·+ cnce(t− nc). (33.19)

Note that the model deals with increments of the input/output data such asΔy(t− 1)= y(t− 1)− y(t− 2)
and hence no dc term is involved asΔ.constant= 0. It is found that injecting a pulse into x (or e) gives a
step change in y, and injecting a “white” random sequence or URS gives “Brownian motion” for which y
“drifts” (Brownian motion is quite a good model of stock exchange prices).

33.4 Recursive Prediction Error (RPE) Estimators

The job of an estimator is to provide values for the model parameters based on fitting the model’s
responses to the measured plant input/output data. A recursive estimator updates the estimates at each
sample instant based on the newly available information. One important point about recursive estimators
is that the computational load must not increase with time. Note that potentially the amount of data is
always increasing with more available from each sample. Prediction error methods consider the model
to be a forecaster ŷ(t|t− 1) of the actual outcome y(t), the difference or residual ε= y− ŷ being used to
correct the estimates. Now define the following n vectors:

1. θ= [θ1, . . . , θn]′ are the n unknown plant parameters.
2. θ̂(t)= [θ̂1(t), . . . , θ̂n(t)]′ are the corresponding estimates at time t.
3. x(t)= [x1(t), . . . , xn(t)]′ are known data associated with the parameters.

A prediction model generates a forecast ŷ(t) depending on θ̂(t− 1) and x(t):

ŷ(t)== ŷ(t|t− 1)= f (θ̂(t− 1), x(t)). (33.20)

The models we will consider are all in linear-in-the-parameters (LITP) form with:

ŷ(t)=
n∑

i=1

θ̂i(t− 1)xi(t), (33.21)
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FIGURE 33.5 General RPE structure.

and where the measured plant output is assumed to satisfy the LITP equation:

y(t)=
n∑

i=1

θixi(t)+ e(t), (33.22)

with e(t) corresponding to “noise” or “disturbances” and assumed to be independent of the data x(t). The
scalar prediction error is defined to be

ε(t)= y(t)− ŷ(t)= y(t)− f (θ̂(t− 1), x(t)), (33.23)

where y(t) is the new output measurement. The general structure is shown in Figure 33.5.
Typical models that come under the general description of Equation 33.21 are:

Pulse response

y(t)=
n∑

i=1

hiu(t− i)

where:

θ= [h1, h2, . . . , hn]′ and x(t)= [u(t− 1), u(t− 2), . . . , u(t− n)]′.
In this model, the parameter vector are points on the pulse response, and the data vector contains n past
values of the control signal.

DARMA

y(t)=−a1y(t− 1)− · · ·+ b1u(t− 1)+ · · ·+ bnbu(t− nb)

where:

θ= [a1, . . . ana, b1, . . . , bnb]′

and:

x(t)= [−y(t− 1), . . . ,−y(t− na), u(t− 1), . . . , u(t− nb)]′.
In this model, the parameters are the difference-equation constants, and the data vector contains past
values of inputs and outputs.

Note that the LITP equations can be written concisely as:

ŷ(t)= x′(t)θ̂(t− 1),

and equivalently

y(t)= x′(t)θ+ e(t),
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so that if the parameter error vector θ̃(t) is defined to be θ− θ̂(t), then:

ε(t)= y(t)− ŷ(t)= x′(t)θ̃(t− 1)+ e(t). (33.24)

This important equation shows that the prediction error, has two components: the model error and the
unknown disturbance. Our use of this result depends on whether we want to identify a time-invariant
system (in which case we average over a lot of data to eliminate the effects of noise) or whether we want to
track a time-varying plant (which is possible only if the signal to noise ratio is large and the variations are
not too fast). We can associate with the prediction error a cost function J such as J(t)= 0.5ε2(t). If there
is no noise, this cost depends only on θ̃ and so we can imagine a set of equal-cost contours in the n-space
of the parameters θ̂with the minimum value at the “true” parameters. If there is noise, these contours will
correspond to average or expected values.

An RPE algorithm updates the estimates using:

θ̂(t)= θ̂(t− 1)+ a(t)M(t)x(t)ε(t), (33.25)

where:

• a(t) is a scalar “gain factor,” giving the step length.
• x(t)ε(t) is along the gradient vector −∇J of the cost-function surface, pointing down the slope of

local steepest descent.
• M(t) is a rotation matrix that modifies the parameter update direction away from the steepest

descent route.

We can reduce the parameter error using a “large” value of the gain a(t), but this increases the effect of
the disturbance e(t). The compromise between rapid model error reduction and insensitivity to noise
is a fundamental design issue: in practice, we want rapid initial convergence, followed by good noise
immunity for steady-state tracking. In view of its long history of success in many applications, the most
common estimator used in self-tuning is based on variants of the least-squares (LS) method, for which
the current estimate ˆθ(t) minimizes the “loss function”:

J(t)= (θ̂(t)− θ̂(0))′S(0)(θ̂(t)− 1θ̂(0))+
t∑

i=1

(y(i)− x′(i)θ̂(t))2 (33.26)

It can be shown (e.g., Isermann et al. [8]) that J(t) is minimized by the recursions:

S(t)= S(t− 1)+ x(t)x′(t) (33.27)

θ̂(t)= θ̂(t− 1)+ S(t)−1x(t)ε(t), (33.28)

with θ̂(0) being the initial “guess” of the parameters and S(0) an assertion about their likely accuracy (i.e.,
small entries in S implies low accuracy). It can be shown that:

S(t)θ̂(t)= S(0)θ̂(0)+[S(t)− S(0)]θ, (33.29)

so that as S(t) increases, the effect of the initial assumptions declines, and a solution is possible only if S
has full rank: a “persistency of excitation” condition.

In practice, we prefer to propagate P(t)= S−1(t) to avoid the inversion in Equation 33.28; using P, the
important recursive least-squares (RLS) equations become:

Kalman gain vector:

k(t)= P(t− 1)x(t)

1+ x′(t)P(t− 1)x(t)
(33.30)

parameter update:
θ̂(t)= θ̂(t− 1)+ k(t)ε(t) (33.31)
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covariance update:

P(t)= [I− k(t)x′(t)]P(t− 1) (33.32)

The algorithm needs to be initialized. Note that P is proportional to the “errors in the parameters,”
as P= S−1, so that at t = 0 where nothing (or little) is known, the appropriate choice is γI where γ is
large. It can then be shown that the estimates obtained after n samples using RLS are the same as with
“off-line” LS. For smaller γ, though, slower parameter movement is seen, for that choice indicates the
chosen θ̂(0) are fairly accurate. In this way it is possible to start recursive estimation with a reasonable
“guessed” model rather than simply (0, 0, 0 . . .)′.

What happens for large t? Assuming that there are good persistently exciting data, then S=∑t
0 xx′

increases all the time and hence ||k|| → 0. This means that asymptotically RLS loses its “alertness” (though
by that time there should be convergence to the “true” values despite noise). This is a natural consequence
of the built-in assumptions: a fixed parameter plant where accurate estimates are wanted. Hence, the
method is possibly suitable for self-tuning but not for adaptive control. Figure 33.6 shows RLS in action
with data from a FIR model in which the parameters {h1(t), h2(t)} each change by square waves. The
input is white noise in “bursts” so it is not exciting during quiescent periods. The estimates do not move
at all when there is zero excitation and change at an increasingly slow rate even when the data are “rich.”
Hence, RLS concentrates on accuracy (assuming fixed plant parameters) and not on tracking parameter
changes.

33.4.1 Forgetting Factors

The cost function in LS weights all residuals ε(t− j) equally, no matter how far back in the past the data
were acquired. If it is expected that the model dynamics varies with time, then recent data are more
significant than old data. Thus, the idea is to “forget” so that the effect of data on the estimates decays
in time. It is convenient to consider a simple single-parameter continuous-time estimator to explore the
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FIGURE 33.6 RLS with no forgetting.
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ideas. As a preliminary, consider the integral:

I =
∫ t

0
e−α(t−λ)f (λ) dλ. (33.33)

Then, from first principles:
dI

dt
= f (t)− αI . (33.34)

A fixed forgetting factor exponentially weights past data at a rate α, so that using the continuous-time
exponentially weighted version of Equation 33.26, the estimate θ̂(t) minimizes:

J(t)= e−αt s(0)(θ̂(t)− θ̂(0))2+
∫ t

0
e−α(t−λ)(y(λ)− θ̂(t)x(λ))2 dλ, (33.35)

giving, by setting the partial differential with respect to θ̂ to zero:

s(t)θ̂(t)= e−αt s(0)θ̂(0)+
∫ t

0
e−α(t−λ)y(λ)x(λ) dλ (33.36)

where:

s(t)= e−αt s(0)+
∫ t

0
e−α(t−λ)x2(λ) dλ. (33.37)

Differentiating with respect to t and using the preliminary result gives the recursive equations of
continuous-time RLS for a single parameter:

ds

dt
+ αs = x2 (33.38)

dθ̂

dt
+ x2

s
θ̂= xy

s
, (33.39)

with initial conditions {s(0), θ̂(0)}. The Equation 33.39 shows that, for constant excitation x = X, s(t)
rises exponentially to X2/α; for zero “forgetting” α= 0, s(t)→∞ if the data are persistently exciting. In
practice, the convention is to use the current prediction error ε= y− θ̂x, so substituting we get as the
update equation:

dθ̂

dt
= x

s
ε. (33.40)

It is instructive to find how the modeling error θ̃= θ− θ̂ changes with time. Substituting for y using
y = θx+ e and assuming that θ varies in time we get:

dθ̃

dt
+ x2

s
θ̃= dθ

dt
− x

s
e.

The left-hand side tries to drive θ̃ to zero at a rate depending on x2/s while the right-hand drives it away
from zero. In RLS it is conventional to use the inverse p= 1/s in the calculations. Substituting in the
update for s we get:

dp

dt
− αp=−p2x2, or

dp

dt
+ (x2p− α)p= 0. (33.41)

The behavior of forgetting factors such as α is clearly shown in this formulation: the equation has an
unstable mode when x2p < α. If there is no excitation [x(t)= 0], p(t) increases exponentially at a rate
determined by α. If x is constant p increases until p= α/x2 and then becomes constant. Hence, clearly
one method to avoid “blow up” is to add a small quantity x2

0 to x2 in the updating equation for p.
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33.4.2 Variable Forgetting Factors

The loss function J can be written in terms of ε:

J(t)= J0(t)+
∫ t

0
e−α(t−λ)ε(λ)2 dλ.

Suppose now that estimation is perfect (i.e., θ̂= θ) for all t so that ε(t)= e(t) always and the variance of
the noise is σ2

0. Then the expected value of the irreducible or “ideal loss” is given by:

E{Jopt} =
∫ t

0
e−α(t−λ)σ2

0 dλ= σ
2
0

α
(1− exp−αt).

For large t, this approaches the valueσ2
0/α= Tcσ

2
0, say, where Tc corresponds to the “asymptotic averaging

time”; i.e., the period of past time that contains the data “most influential” in providing the estimate.
Consider the differential equation for J , which is:

dJ

dt
+ αJ = ε2(t).

We would expect the average value for ε2 to be greater than σ2
0, given that ε(t)= xθ̃(t)+ e(t). In particular,

we expect that ε2 � σ2
0 when the estimate is far from the true value of θ. One way to proceed is to assert

that the value J (or 1/J) contains the “information” about the parameter and that this should be constant
in the steady state. This implies that a good value for α is obtained by making αJ = ε2 = αJopt , giving:

α= 1

Tc

(
ε(t)

σ0

)2

,

and the update equation for s now reads:

ds

dt
+ 1

Tc

(
ε(t)

σ0

)2

s = x2. (33.42)

Hence, adaptation is faster with a prediction error that is large compared with the assumed SD of the
underlying noise.

33.4.3 Forgetting with Multiparameter Models

For discrete-time estimation we write β= exp(−αh), where h is the sample interval (small α→ β≈
1− αh,) and then the RLS equations become:

k(t)= P(t− 1)x

β+ x′P(t− 1)x
(33.43)

θ̂(t)= θ̂(t− 1)+ k(t)ε(t) (33.44)

P(t)= [I− k(t)x′(t)]P(t− 1)/β (33.45)

A useful measure of the amount of data effectively contributing to the current estimate is the asymptotic
sample length (ASL) or time constant, given by 1/(1− β). A rapidly varying system might need an ASL of
20 samples (β= 0.95) to more than 1000 (β= 0.999). Figure 33.7 repeats the experiment of Figure 33.6
but using β= 0.95. Again, when the input is not exciting, the parameters freeze (and P “blows up”), but
otherwise track changes rapidly. Moral: Use forgetting, but then make sure the input perturbs the plant.
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FIGURE 33.7 RLS with forgetting.

33.5 Predictive Models

Industrial processes have characteristics that make advanced control useful:

Disturbances: Fluctuations in the raw materials and the operating environment; sensor noise.
Dead-time: The effect of the current control is not seen in the measured response for a number of

samples, because of material transport times.

Typical examples of processes like this are:

Steel rolling: Controls are via screws on the stands; gauge responses are after the end of the mill; x-ray
gauge measurements are noisy.

Papermaking: The controls are on the head box at entry to the Fourdrinier wire; the basis weight of
the dried paper is measured after the heating rolls.

Strip annealing: Inductive heating causes temperature changes, later measured by a pyrometer with
large random fluctuations in its signal.

Distillation: The multiple lags (several hundred) arising from the thermal behavior of each tray appear
like dead time; composition is measured by a chromatograph with sampling delays; ambient thermal
variations induce disturbances.

Delays cause phase lag, which means that PID control gains must be reduced. Predictive control can
give “perfect” control provided the delay is known; even better performance is obtainable if the distur-
bance process can be predicted also. Consider the problem of predicting the plant output with its two
components:

Deterministic effects: Old inputs and outputs give initial conditions, from which the “free response”
can be determined via the model. The “forced response” is the additional effect due to current and
future controls.

Disturbances: Old URS values e(t− i) can be reconstructed from the model and known data. The free
response can then be computed; as nothing is known about future white noise, the best approach is
simply to assume its mean value of 0.
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Consider an autoregressive (AR) process driven by white noise giving the measured output y(t):

y(t)= 0.9y(t− 1)+ e(t), or y(t)= 1

(1− 0.9z−1)
e(t).

By expanding as a power series, the model can be written in pulse form:

y(t)= e(t)+ 0.9e(t− 1)+ 0.92e(t− 1)+ 0.93e(t− 2)+ · · ·.

Consider its value two steps into the future:

y(t+ 2)= e(t+ 2)+ 0.9e(t+ 1)+ 0.92e(t)+ 0.93e(t− 1)+ · · ·.

As e(t+ 1), e(t+ 2) are not known at time t, the best prediction of y(t+ 2) is

ŷ(t+ 2|t)= 0.92e(t)+ 0.93e(t− 1)+ · · · = 0.92

(1− 0.9z−1)
e(t).

But the noise model gives e(t)= (1− 0.9z−1)y(t), giving the simple result that ŷ(t+ 2|t)= 0.92y(t)
(the free response of the noise model). The error in the prediction is

ỹ(t+ 2|t)= e(t+ 2)+ 0.9e(t+ 1).

To find the variance or mean square of this signal, simply square and take averages, taking Ee(t+ i)2 =
σ2; Ee(t+ i)e(t+ j)= 0, and the following should be noted:

1. The prediction error (p.e.) is independent of the “known” data [in this case, e(t), e(t− 1), . . .]; i.e.,
the maximum possible information has been extracted.

2. The variance of the p.e. is (1+ 0.92)σ2, where σ2 is the variance of the URS e.
3. The p.e. variance increases with the prediction horizon; here, two-steps ahead.
4. “Sluggish” disturbances (pole near 1) are predicted with more accuracy than rapidly moving

disturbances.

To generalize this example, consider a noise model in moving-average (MA) form:

y(t)= N(z−1)e(t),

so that:

y(t+ k)= (1+ n1z−1+ · · ·+ nk−1z−k+1)e(t+ k)+ (nkz−k + nk+1z−k−1+ · · · )e(t+ k)

= N∗k (z−1)e(t+ k)+Nk(z−1)e(t). (33.46)

The disturbance is split into “future” and “past” components, and the prediction uses known data:

ŷ(t+ k|t)= Nk(z−1)e(t)= nke(t)+ nk+1e(t− 1)+ · · · .

How does this procedure work with a transfer function (ARMA) structure:

y(t)= C(z−1)

A(z−1)
e(t)?
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Performing long division by A and stopping after k terms gives:

C(z−1)

A(z−1)
= E(z−1)+ z−k F(z−1)

A(z−1)
= N∗k + z−kNk .

In fact, instead of doing long division we multiply each side by A to get:

C(z−1)= E(z−1)A(z−1)+ z−kF(z−1). (33.47)

This key equation is known as a Diophantine (or Bezoutian) identity from which E and F can be obtained
for given A, C, k by equating powers of z−1. For example, consider:

(1− 0.9z−1)y(t)= (1+ 0.7z−1)e(t)→ A= (1− 0.9z−1); C = (1+ 0.7z−1).

Hence, the Diophantine identity of Equation 33.47 for k = 2 becomes:

(1+ 0.7z−1)= E(z−1)(1− 0.9z−1)+ z−2F(z−1),

or

(1+ 0.7z−1)= (e0+ e1z−1)(1− 0.9z−1)+ z−2f0. (33.48)

Equating coefficients of increasing powers of z−1 in Equation 33.48:

z0 : 1= e0; z−1 : 0.7=−0.9+ e1;

z−2 : 0=−0.9e1+ f0.

Hence we have:

e0 = 1; e1 = 1.6; f0 = 1.44,

i.e.,

E(z−1)= 1+ 1.6z−1 and F(z−1)= 1.44, (33.49)

and so the two-step-ahead prediction becomes:

ŷ(t+ 2|t)= Nk(z−1)e(t)= F

A
e(t)= 1.44

(1− 0.9z−1)
e(t).

But we can reconstruct e(t) from the measured value of y(t) and the inverted model:

e(t)= A(z−1)

C(z−1)
y(t),

giving the predictor:

ŷ(t+ 2|t)= 1.44

1+ 0.7z−1 y(t). (33.50)

The prediction error ỹ is given by E(z−1)e(t+ 2), or:

ỹ(t+ 2|t)= e(t+ 2)+ 1.6e(t+ 1),

which has a variance of (1+ 1.62)σ2 = 3.56σ2. It is interesting to note that the actual variance of y(t+ 2)
is 14.47σ2, meaning that our predictor “explains” roughly three fourths of the output variance.
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33.6 Minimum-Variance (MV) Control

A growing requirement in manufacturing is guaranteed and quantified quality, as measured, for example,
by the proportion of a product lying outside some prespecified limit. In continuous processes, such as
papermaking, it is important that the output (at worst) exceeds some lower quality limit (e.g., thickness
of paper). To ensure that this is so, the average thickness must be set greater than the minimum by an
amount dependent on the variance of the controlled output. Hence, if this variance is minimized, the
manufacturer can reduce the average, as shown in Figure 33.8.

[Aside: the worst manufacturers sometimes make the best product. If they have a large spread in quality,
they have to test everything and reject out-of-spec items; i.e., those below the lower statistical limit (LSL)
of the figure. Hence, the majority of sales is at a higher quality than really needed. It is best to be “just
good enough” = low spread of quality, and hence be profitable.]

Consider the plant with dead time k samples and with model:

A(z−1)y(t)= B(z−1)u(t− k)+C(z−1)e(t), (33.51)

or, dividing:

y(t+ k)= B(z−1)

A(z−1)
u(t)+ C(z−1)

A(z−1)
e(t+ k). (33.52)

The second right-hand side term is the effect of the disturbances on the output, which can be predicted
using the ideas of the previous section; the first term is the effect of the control (which by assumption can
affect the output only after k samples). The idea of MV control, in essence, is to choose the control u(t)
that will counteract the predicted disturbance at time t+ k. The development first solves the Diophantine
identity Equation 33.47 to provide E(z−1) and multiplies:

A(z−1)y(t+ k)= B(z−1)u(t)+C(z−1)e(t+ k)

(each side) by E(z−1) to give:
EAy(t+ k)= EBu(t)+ECe(t+ k)

or, as EA= C− z−kF from Equation 33.47:

Cy(t+ k)− Fy(t)= Gu(t)+ECe(t+ k),

p(y) p(y)
Required
average

Smaller variance
hence a smaller average
for same off-spec

% below
spec

LSL LSLy y

FIGURE 33.8 Using minimum-variance control.
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where G(z−1)= E(z−1)B(z−1). Hence, we have the equation:

y(t+ k)= Fy(t)+Gu(t)

C
+Ee(t+ k). (33.53)

The first term on the right-hand side is the k-step-ahead predictor and the second is the prediction error.
Hence, we can write the key prediction equations:

k step prediction:

ŷ(t+ k|t)= F(z−1)y(t)+G(z−1)

C(z−1)
u(t) (33.54)

k step error:

ỹ(t+ k|t)= E(z−1)e(t+ k). (33.55)

As an example take the plant:

(1− 0.9z−1)y(t)= 0.5u(t− 2)+ (1+ 0.7z−1)e(t),

where we have already solved the Diophantine identity of Equation 33.47 giving Equation 33.49 and so:

y(t+ 2)= 1.44y(t)+ (0.5+ 0.8z−1)u(t)

(1+ 0.7z−1)
+ (1+ 1.6z−1)e(t+ 2).

The MV control is then easy to determine: Simply choose u(t) so that the first right-hand side term
becomes 0; all that remains on the controlled output is the prediction error, which cannot be minimized
further as it is comprised of only future white noise components e(t+ 1) and e(t+ 2). The feedback
control law for our example is then:

1.44y(t)+ (0.5+ 0.8z−1)u(t)= 0,

or:

u(t)=−1.6u(t− 1)− 2.88y(t).

In the general case, the control becomes:

u(t)=− F

G
y(t)=− F(z−1)

B(z−1)E(z−1)
y(t); (33.56)

this controller cancels the zeros of the plant transfer function. In closed loop, the characteristic equation is

1+ F

BE
z−kBA= 0, or B(EA+ z−kF)= 0,

so that, using the Diophantine identity of Equation 33.47, this reduces to:

B(z−1)C(z−1)= 0. (33.57)

The closed-loop modes are defined by those of C (which, in fact, are stable) and of B(z−1). There
is, therefore, a potential instability problem with MV control in cases where B has roots outside the
unit-circle stability region (so-called nonminimum-phase zeros) as these appear as unstable poles of the
closed loop; such nonminimum-phase zeros occur much more frequently in discrete systems than in
continuous-time control.
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33.7 Minimum-Variance Self-Tuning

All the machinery is now available for self-tuning: connect a parameter estimator to an MV controller by
solving the Diophantine identity of Equation 33.47. Note that MV controller design requires knowledge
of k, A, B, and C. In difference equation terms the CARMA plant model is

y(t)=−a1y(t− 1)− · · ·+ b0u(t− k)+ · · ·+ e(t)+ c1e(t− 1)+ · · · ,

but the standard estimators can estimate only A, B; the driving noise e(t) is not measurable and, hence,
cannot be placed into the x-vector to estimate C. There are methods (such as extended least squares) for
estimating C, but these tend to be unreliable in practice. However, it transpires we can obtain self-tuned
MV (giving a self-tuning regulator) by using a standard LS estimator without needing knowledge of C (in
effect, assuming C = 1)!

There is potentially a further problem: the effect of feedback control on the parameter estimates.
Suppose, for example, that a plant:

y(t)= ay(t− 1)+ bu(t− 1)+ e(t) (33.58)

has a simple proportional controller (with zero set point):

u(t)=−αy(t), or αy(t− 1)+ u(t− 1)= 0. (33.59)

Then adding a fraction μ of Equation 33.59 to Equation 33.58 gives:

y(t)= (a+μα)y(t− 1)+ (b+μ)u(t− 1)+ e(t).

If we now use an estimator based on the two-parameter model:

y(t)= θ1y(t− 1)+ θ2u(t− 1)+ e(t)= x′θ+ e,

then θ̂1 = (a+μα), θ̂2 = (b+μ) will be obtained, where μ is arbitrary. Hence, if we use LS estimation
in a closed-loop mode, the estimated θ̂ does not converge to a unique point but to a line where the
estimated parameters can wander up and down in unison. This is a problem of using closed-loop data
with only internal signals such as e(t) stimulating the loop; to get an consistent estimate we must do one
of the following:

1. Use externally generated test signals, such as step changes in set point.
2. Have a controller that is more complex (higher order) than the plant.
3. Have a time-varying controller.

This third solution is appropriate for self-tuning, though it is still best to make the data “rich” by
exciting the plant with external signals (e.g., a PRBS added to the set point).

How is it that we can use LS? The key idea is not to go estimate→ design→ controller (giving what is
called the indirect approach), but instead to proceed estimate → controller (the direct approach). What
are estimated are the controller (in fact, the k-step-ahead predictor) rather than the plant parameters.
How this is done is seen below.

Recall the prediction Equation 33.54 when multiplied up by C(z−1):

(1+ c1z−1+ c2z−2+ · · · )ŷ(t+ k|t)= Fy(t)+Gu(t),

giving at time t:

ŷ(t|t− k)= Fy(t− k)+Gu(t− k)−
∑

ciz
−i ŷ(t|t− k).
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But the point about MV control is that it makes the prediction zero by correct choice of u. Hence all
the terms in the sum on the right-hand side are set to zero by previous controls, so that from:

y(t)= ŷ(t|t− k)+ ỹ(t|t− k), (33.60)

we have:

y(t)= F(z−1)y(t− k)+G(z−1)u(t− k)+E(z−1)e(t). (33.61)

This is the crucial equation: it obeys the LS rules of an LITP model with:

x(t)= [ y(t− k), y(t− k− 1), . . . , u(t− k), u(t− k− 1), . . .]′ (33.62)

θ= [ f0, f1, . . . , g0, g1, . . .]′, (33.63)

and, most importantly, the data x(t) are independent of the error term as the data are from t− k back-
wards, whereas E(z−1)e(t) finishes at ek−1e(t− k+ 1). Hence, LS leads directly to the required F̂ and Ĝ
parameters, so we get a self-tuner with feedback law:

F̂(z−1)y(t)+ Ĝ(z−1)u(t)= 0. (33.64)

The procedure, then, is as follows:

1. Assemble old data into the x-vector as in Equation 33.63.
2. Use RLS to get θ̂= F̂, Ĝ.
3. Use the estimated parameters in the feedback law of Equation 33.64.

Of course, the above is simply a plausibility argument; in fact, the algorithm can by lengthy algebra be
shown to converge to give the required control signals; i.e., satisfying the self-tuning property. The speed
of convergence is found to depend on the roots of C(z−1). As an example, consider the first-order system:

(1− 0.9z−1)y(t)= 0.2u(t− 2)+ (1+ 0.9z−1)e(t),

which has the two-step-ahead prediction equation:

(1+ 0.9z−1)ŷ(t+ 2|t)= 1.62y(t)+ 0.2(1+ 1.8z−1)u(t),

for which the MV controller with known parameters is

1.62y(t)+ 0.2u(t)+ 0.36u(t− 1)= 0.

The corresponding model to estimate in self-tuning is

y(t)= f0y(t− 2)+ g0u(t− 2)+ g1u(t− 3)+ ε(t).

The estimator for a self-tuner will have data and parameter vectors:

x = [y(t− 2), u(t− 2), u(t− 3)]′
θ= [f0, g0, g1]′ → [1.62, 0.2, 0.36]′.
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The system was simulated for 1000 samples, the first 500 being “open loop.” At t = 500 the self-tuner was
switched on, giving the results seen in Figure 33.9. Observe how the variance has been reduced by STMV
and how the estimated parameters “wander about.”

As discussed above, the estimates of the parameters are not unique, as the control Equation 33.64 can
be multiplied by an arbitrary factor μ without affecting u(t). In principle, this is not a problem, but to
avoid excessively large or small estimates we can “fix a parameter” to a guessed value and estimate the
others. Typically, the fixed parameter is the value of g0: the multiplier of the current control u(t), whose
nominal value is b0. Suppose ḡ0 is the choice. In our example, it means that the model becomes:

y(t)− ḡ0u(t− 2)= y1(t)= f0y(t− 2)+ g1u(t− 3)+ ε(t).

Then the model to use in RLS has data and parameter vectors:

x(t)= [y(t− k), y(t− k− 1), . . . , u(t− k− 1), . . .]′ (33.65)

= [y(t− 2), u(t− 3)]′ (33.66)

in our example;

θ= [f0, f1, . . . , g1, . . .]′, (33.67)

and with “output” y1(t)= y(t)− ḡ0u(t− 2). The control to use is like Equation 33.64 but is based on the
chosen fixed ḡ0 and the remaining estimates:

u(t)=−[
∑

f̂iy(t− i)+
∑

ĝiu(t− i)]/ḡ0.

20 
Minimum variance ST: estimated b0: plant output

SD 1st half: 4.001 2nd half: 2.15 

Tuned controller parameters 

Forgetting factor: 0.98 

a: 0.9 b: 0.2 c: 0.9 k: 2

Control input 

10 
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–10 

–20 

4 

2 

0 

–2 
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–20 
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FIGURE 33.9 MV self-tuning, all parameters estimated.
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A self-tuner based on this idea is coded in MATLAB as:

% M-file for the simple first-order A-W
% minimum-variance self-tuner.

nt = 1000; na = 1; nb = k-1; np = na+nb;
th=zeros(nt,np); P = 100*eye(np);
II = eye(np);

for i=k+1:nt,
e(i) = rand;
y(i) = a*y(i-1) + b*u(i-k) + e(i) + c*e(i-1); % plant
if i > nt/2,
x = [y(i-k) u(i-2*k+1:i-k-1)]; % data vector
ep = y(i)-g0*u(i-k) - x*th(i-1,:)’; % pred error
kk = x*P/(beta+x*P*x’); % RLS
th(i,:) = th(i-1,:) + kk*ep; % ..
P=(II - kk’*x)*P/beta; % update
u(i) = - (th(i,1)*y(i) + u(i-nb:i-1)*th(i,2:np)’)/g0;

end;
end;

Does it matter if the wrong value of ḡ0 is chosen? No, provided that:

1

2
<

ḡ0

b0
<∞. (33.68)

This means that a “large” value of the fixed parameter is safe.
Figure 33.10 and Figure 33.11 show the behavior of a self-tuner with the parameter ḡ0 set to 0.4 and

then 2. Both are perfectly well behaved, though with slower convergence for ḡ0 = 2. Note that in the
original example with no “fixing” there is a point where the parameter estimates “jump.” It is found that
without fixing and with no external signals a self-tuner tends to “burst” like this every now and then.

Generalized minimum-variance (GMV) control was developed to overcome the problems of (1) MV’s
instability when B is nonminimum-phase and (2) the large control variance produced by MV, particularly
when using “fast sampling.” An auxiliary output φ(t) is defined:

φ(t)= P(z−1)y(t)−R(z−1)w(t− k)+Q(z−1)u(t− k), (33.69)

where P, Q, R are design polynomials whose choice gives a range of possible closed-loop objectives; see
Harris and Billings [7] or Wellstead and Zarrop [11] for more details. GMV self-tuning simply uses the
same approach as developed for MV:

1. Estimate polynomials F̂, Ĝ, Ĥ in the predictor model:

φ(t)= F̂(z−1)y(t− k)+ Ĝ(z−1)u(t− k)+ Ĥ(z−1)w(t− k)+ ε(t). (33.70)

2. Using the estimates from Equation 33.70, compute the control:

Ĝ(z−1)u(t)=−[F̂(z−1)y(t)+ Ĥ(z−1)w(t)]. (33.71)
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FIGURE 33.10 Simulation of a simple self-tuner with a fixed parameter ḡ0.
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w(t) = 0 u(t) y(t) 

+ 
F(z–1) 
G(z–1) 

– 

B(z–1) z–k
A(z–1) 

FIGURE 33.12 Feedback controller for pole placement.

A simple case of GMV is when P = R = 1 and Q = λ for which it can be shown that the cost:

JGMV = E[(y(t+ k)−w(t))2+ λ

b0
u2(t)|t] (33.72)

is minimized, where the expectation is conditional on data available up to time t. It can further be shown
that the characteristic polynomial now has a factor:

B(z−1)+ λ

b0
A(z−1),

so that λ can be considered a root-locus parameter; for plants with a stable A polynomial, a large enough
value of λ ensures loop stability even for nonminimum-phase plants. Unfortunately for self-tuning
applications, a prior “good” value of λ needs to be known; nevertheless, λ can be used to trade off output
variance against control activity.

33.8 Pole-Placement (PP) Self-Tuning

The problem with MV regulators if that they are unstable if the plant has a zero outside the unit circle,
as the controller attempts to cancel the zero by having an unstable pole. Hence, there is a mode in the
control signal that grows without limit. Therefore, alternative strategies such as GMV must be used for
more complex plants; one such appeals to classical control design.

Recall the root-locus approach: it is a method of analysis showing how the poles of the closed-loop
transfer function vary as some parameter, such as the controller gain, is changed. Design considers some
pole-zero structure of a controller and then fixes the gain to give “nice” closed-loop pole positions, such as
largeωn for a desired value of ζ such as 1/

√
2. An alternative procedure that is often used in discrete-time

control is first to choose the desired pole positions and then back-calculate the appropriate controller.
Suppose that the feedback controller of Figure 33.12 is:

F(z−1)y(t)+G(z−1)u(t)= 0, where g0 = 1, (33.73)

which gives the control action as:

u(t)=−g1u(t− 1)− g2u(t− 1)− · · ·− f0y(t)− f1y(t− 1)− · · · .

If the plant has the CARMA model:

A(z−1)y(t)= z−kB(z−1)u(t)+C(z−1)e(t),

where the dead time k is explicitly factored from the zero polynomial, the closed loop is given by:

[A(z−1)G(z−1)+ z−kB(z−1)F(z−1)]y(t)= C(z−1)G(z−1)e(t). (33.74)

Suppose that the polynomials F and G are obtained by solving the Diophantine identity:

AG+ z−kBF = CT(z−1), (33.75)
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where T(z−1) is a polynomial chosen by the designer of the form:

T(z−1)= 1+ t1z−1+ t2z−2+ · · · =
∏

i

(1− αiz
−1),

with the αi corresponding to the desired closed-loop pole positions. (For hand calculation, we compare
powers of z−1 as before; in a computer, we use Euclid’s algorithm.) By substituting Equation 33.75 into
Equation 33.74, the closed loop is given by:

C(z−1)T(z−1)y(t)= C(z−1)G(z−1)e(t),

or:

y(t)= G(z−1)

T(z−1)
e(t), and u(t)=− F(z−1)

T(z−1)
e(t). (33.76)

Hence, the closed-loop poles are given by the user-chosen polynomial T ; as the B polynomial is not
cancelled by this law, there is no longer any unstable mode in the control signal even if the plant is
nonminimum-phase. As an example, consider again the system:

(1− 0.9z−1)y(t)= 0.5u(t− 2)+ (1+ 0.7z−1)e(t),

and choose T(z−1)= 1− 0.5z−1, giving a relatively fast closed-loop pole atα= 0.5. Then the Diophantine
identity of Equation 33.75 becomes:

(1− 0.9z−1)(1+ g1z−1+ · · · )+ z−20.5(f0+ f1z−1 · · · )= (1+ 0.7z−1)(1− 0.5z−1).

Comparing coefficients of increasing powers of z−1 gives g1 = 1.1 and f0 = 1.28, all other coefficients
being zero. Hence, the control law is given by

u(t)=−[1.1u(t− 1)+ 1.28y(t)],

and in closed loop we have from Equation 33.76:

y(t)= 1+ 1.1z−1

1− 0.5z−1 e(t), and u(t)=− 1.28

1− 0.5z−1 e(t).

It can be shown that the output variance due to this control law is 5.6σ2, roughly double the MV result:
you don’t get something for nothing .

It is interesting to see that pole assignment (for this regulator case) can also be self-tuned using
RLS without knowing or estimating the polynomial C. To see why this is so, let A(z−1) and B(z−1)
be the solutions to a new Diophantine identity that does not include the C polynomial (compare with
Equation 33.75):

AG(z−1)+ z−kBF(z−1)= T(z−1). (33.77)

The polynomials F and G provided as “input” to this identity are those obtained by using the previous
identity of Equation 33.75 with the “true” plant polynomials A, B, C. Let us take our example, giving the
new Diophantine identity of Equation 33.77:

A(1+ 1.1z−1)+ z−2B1.28= (1− 0.5z−1),

giving A = 1− 1.6z−1, B = 1.6× 1.1/1.28= 1.375.
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Consider operating the plant in closed loop using the “correct” controller −F/G as computed by
Equation 33.75; then the sequence:

A(z−1)y(t)− z−kB(z−1)u(t)= AG+ z−kBF

T(z−1)
e(t)= e(t), (33.78)

using the closed-loop behavior from Equation 33.76 and then the second Diophantine identity of Equa-
tion 33.77. This result gives the key idea: when in closed loop with the right PP controller, there exists a
relationship between the input and output signals given by the new polynomials A and B such that the
error term is just the white driving noise.

Equation 33.78 shows that RLS can be used to get unbiased estimates of A and B, as the right-hand
side noise term is uncorrelated. To estimate the parameters, simply choose the data vector to be

x(t)= [−y(t− 1),−y(t− 2), . . . ; u(t− 1), u(t− 2), . . .]′

and with model output y(t). Hence, if the data sequences follow those of the pole-placed closed loop of
Equation 33.76, then LS simply gives θ̂→ [A, B]. If these estimates are placed as input to the second
Diophantine identity of Equation 33.77, we can use the identity to recompute the controller F
and G polynomials; i.e., the procedure of going [A, B, C, T] → [F, G] via 33.75 → [A, B] via RLS →
[F, G] via 33.77 is self-consistent.

Hence, the self-tuned version of PP goes through the following steps:

1. Use RLS to obtain estimates Â and B̂ from the model Ay(t)= z−kBu(t)+ e(t) (i.e., no C
estimated).

2. Resolve the Diophantine identity of Equation 33.77 at each sample for user-chosen T (using as
input the estimates Â and B̂) to obtain F̂ and Ĝ, by equating powers of z−1 as usual.

3. Assert the control F̂y(t)+ Ĝu(t)= 0, or u(t)=−[F̂/Ĝ]y(t).

As with self-tuned MV, the above argument is simply to give plausibility to the approach; in practice,
the procedure converges provided that there is a solution to the Diophantine identity of Equation 33.77
(which is not possible if there are common roots in the estimated model polynomials).

33.9 Long-Range Predictive Control

For practical applications, an adaptive controller must be robust against the prior assumptions made
about the plant to be controlled. For example, we must choose sometimes arbitrary values for the degrees
of the estimated polynomials and have no assurance that, for all t, our model is of neither too high nor
too low an order compared with the true plant model within the bandwidth of our closed loop. The
estimates may be affected over periods of time by disturbances not fully captured by our assumptions
about C(z−1). There may be occasions when there are common factors in the estimated TFs. The dead
time of the plant may vary so that the k assumed in k-step-ahead prediction for MV control is not correct
(so that the “true” value of g0 is zero). Fractional dead time and fast sampling might cause the model to
become nonminimum phase. Hence:

Minimum-variance: We might get instability by assuming too small a value of k, or if the plant is
nonminimum phase.

Pole placement: There is no solution to the Diophantine identity if there are common factors in the
estimated A, B polynomials.

Results of controlling a time-varying plant with an adaptive MV algorithm with a forgetting factor of
0.98 are shown in Figure 33.13. The plant changes its order n and delay k at various stages during the run.
When the actual plant delay exceeds the assumed delay of the algorithm, MV goes unstable. Similarly,
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FIGURE 33.13 Simulation of the adaptive MV control of a dynamically time-varying plant.

it is found that with adaptive PP, the control goes unstable if the assumed model order is greater than
the actual model order. With a fixed PID control the initial results are good, but instability sets in when
the plant changes its dynamics. In practice, good engineering design using prior knowledge and proper
choice of sample interval (e.g., at most 0.1 times the open loop rise time) can give good results with MV
and PP. On the other hand, you can be unlucky.

Long-range predictive control (LRPC) is a more modern approach that overcomes many of the above
problems and has many extra features, which makes it useful in applications. The basic idea is to predict the
future output as the sum of a free response (based on past known data) and a forced response depending on
current and future control actions, as shown in Figure 33.14. Consider the noise-free incremental model:

A(z−1)Δy(t)= B(z−1)Δu(t− 1), (33.79)

or:
y(t)= y(t− 1)− a1Δy(t− 1)− · · ·+ b1Δu(t− 1)+ · · · . (33.80)

Consider using this model to give the prediction p(t+ 1) of the free output response based on maintaining
the control signal equal to the previous value u(t− 1):

p(t+ 1)= y(t)− a1Δy(t)− · · ·+ b2Δu(t− 1)+ · · · ,
as by assumptionΔu(t)= 0. Continuing the iteration further:

p(t+ 2)= p(t+ 1)− a1Δp(t+ 1)− · · ·+ b3Δu(t− 1)+ · · · ,
where the termΔp(t+ 1)= p(t+ 1)− y(t), the difference between the prediction and the available data
y(t). After some stage all the Δu(t− 1) terms drop out as the polynomial B has been exhausted, leaving
the iterations:

p(t+ i)= p(t+ i− 1)− a1Δp(t+ i− 1)− a2Δp(t+ i− 2)− · · · . (33.81)

Hence, the predictions can be expressed verbally as “iterate the plant equations forward in time, assuming
current and future control increments (moves) are zero, and using existing old Δu,Δy to initialize the
data.”

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-39&iName=master.img-058.jpg&w=341&h=72
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-39&iName=master.img-059.jpg&w=340&h=73
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FIGURE 33.14 Long-range predictive control.

Now consider the forced component of response, with the control input being a set of moves
Δu(t),Δu(t+ 1), . . . , which are to be determined by the algorithm. This is simply a series of “steps”
so that the output is just the superposition of a set of step responses {si}, giving the total response as:

y(t+ 1)= s1Δu(t)+ p(t+ 1)

y(t+ 2)= s1Δu(t+ 1)+ s2Δu(t)+ p(t+ 2)

· · ·
y(t+ j)= s1Δu(t+ j− 1)+ s2Δu(t+ j− 2)+ · · ·+ sjΔu(t)+ p(t+ j)

· · ·

Hence, we can collect N such equations into vector-matrix form:

y = GΔu+ p, (33.82)

where:

y = [y(t+ 1), y(t+ 2), . . . , y(t+N)]′
Δu = [Δu(t),Δu(t+ 1), . . . ,Δu(t+N − 1)]′

p= [p(t+ 1), p(t+ 2), . . . , p(t+N)]′

and:

G=

⎡
⎢⎢⎣

s1 0 · · · 0
s2 s1 · · · 0
· · ·
sN sN−1 · · · s1

⎤
⎥⎥⎦ .
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Suppose that we had a “future set point” sequence {w(t+ 1) · · ·w(t+N)} available at time t. In robotics,
this could be the required future trajectory, whereas in process control we would normally assume the
future set point to equal the current value. Either way, we can collect the sequence into a vector and hence
define a vector of “future system errors”:

e = [w(t+ 1)− y(t+ 1), w(t+ 2)− y(t+ 2), . . . , w(t+N)− y(t+N)]′,

giving:

e = w− (GΔu+ p).

The only unknowns in this set of equations are the future controls, so we minimize S =∑ e(t+ j)2 over
the predictions by the set of controls:

Δu = (G′G)−1G′(w− p). (33.83)

This gives a set of “best” future control actions; we then use a receding-horizon strategy, which simply
asserts the first of this sequence and repeats the whole calculation at each sample instant. Note, however,
that G is an N ×N matrix and we get a solution only if it is invertible, giving:

Δu = G−1(w− p). (33.84)

This solution is exact such that the control sequence would drive all the future system errors to zero.
Good in theory; bad in practice as it would require excessive control signals. Moreover, what happens if
the plant delay is, say, 2 so that s1 = 0? The result is failure, as we cannot then invert G.

How can we derive more equations than unknowns to let LS “smooth” out our future errors? We
can make assumptions about what controls will be exerted in the future. Consider controlling a simple
Type 0 plant. We could inject a large initial signal to get it moving and then maintain a constant control
of sufficient size to get it to the final set point. This would mean that at the initial time only two control
increments are considered. Hence, we take:

Δu = [Δu(t),Δu(t+ 1), 0, 0, . . . , 0]′,

so that now we have fewer unknowns than equations. In general we can allow only NU control increments
to be nonzero (called the “control horizon”; see Figure 33.14) and will define the “future control increment
vector” to be

Δu = [Δu(t),Δu(t+ 1), . . . ,Δu(t+NU − 1)]′.

This means that our set of equations for e involve a nonsquare matrix G.
One special case is where only one control increment is considered at time t; i.e., NU = 1. In essence

we are asking, “What step change in control will minimize the sum-of-squares of the future system
errors?” Suppose we make the prediction horizon N very large. Then if there were any steady-state error,
the corresponding sum-of-squares would be large compared with errors accruing during the transient.
The outcome is that the control step will be just the right size to make the steady-state error zero, and there
will be just the same dynamics in closed loop as in open loop. This simple approach is called mean-level
control (see Figure 33.15). Given that NU = 1, the matrix inversion is simple, as G′G is just

∑N
1 s2

i : a
scalar.

Consider the case where N is not large. Then the initial transient errors become increasingly important
in comparison with the steady-state error so that the initial control is made larger to reduce them; i.e., we
obtain a faster response as N reduces.
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FIGURE 33.15 Mean-level control.

33.10 The Generalized Predictive Control (GPC) Cost Function

We can include other ideas into the LRPC algorithm. For example, if it is known that the plant has a dead
time, then it is clear that the current control u(t) cannot affect the future errors until the dead time is
cleared. Hence, there is no point in putting e(t+ 1) · · · e(t+ k− 1) into the LS cost function. We might
also want to have a mechanism for “trading” the cost of control (e.g., control variance) against output
performance (i.e., error variance). Combining all these we get the generalized predictive control (GPC)
cost-function:

JGPC(N1, N2, NU ,λ)=
N2∑

i=N1

e(t+ i)2+λ
NU∑
i=1

Δu(t+ i− 1)2,

where:

N1 is the lower costing horizon
N2 is the upper costing horizon
N1→ N2 is the costing range
NU is the control horizon; i.e., the “degrees of freedom” in the control
λ is the control weighting

subject to the condition that assumed future control-increment sequence is zero after the control horizon.
Using GPC we have the solution

Δu = (G′G+λI)−1G′(w− p), (33.85)

where the matrix G is now N2−N1+ 1 by NU :

G=

⎡
⎢⎢⎢⎣

sN1 sN1−1 · · · 0
sN1+1 sN1 sN1−1 · · ·

...
sN2 sN2−1 · · · sN2−NU+1

⎤
⎥⎥⎥⎦ .

There are many possible combinations of the four “design parameters” (N1, N2, NU ,λ) but in practice,
two main choices are made. The first is mean-level control as above: [k, large, 1, 0], where “large” means
about 10. The other is based on “dead beat” control where the idea is to attain the set point as rapidly as
possible such that the error and all its derivatives become zero simultaneously. This can be shown to be
achieved by the following choices of horizon:

N1= n, N2≥ 2n− 1, NU = n and λ= 0,
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FIGURE 33.16 Adaptive GPC control of a time-varying plant.

where n is the largest power of z−1 found in the model (including the extra because of theΔ= 1− z−1).
Suppose we choose N2= 2n− 1. Then G is n× n, and, provided it is invertible the GPC solution gives
J = 0 (as the equations are solved exactly) and hence e(t+ n) · · · e(t+ 2n− 1) are all 0. This means that
the control is such as to make n successive future system errors zero, a prerequisite for state deadbeat
control.

It is not just the flexibility of GPC (see for example Soeterboek [10]) that gives it the power. It can
handle realistic control problems that cannot be treated by other designs. Suppose that we know the
control signal to be constrained (as with torque saturation in motors) or that some internal variable (such
as temperature in a catalytic cracker) must not exceed some limit. In principle, we can use the prediction
idea to test if any of our variables is likely to hit constraints and, hence, modify the control signal suitably.
By running a plant nearer to constraints, we enhance quality and profitability, so LRPC is increasingly
popular in industry.

By connecting an RLS estimator to GPC on the plant as in Figure 33.13, using a prediction horizon of
10 and a control horizon of 1 (approximating to mean-level control) we obtain the results of Figure 33.16:
much better!

The problem with “simple” GPC as presented above is the lack of stability proofs, except for some
limiting cases such as mean-level control; with practical applications, mean-level control has been used
most often and this has not been found to cause difficulties. However, in order to get stability guarantees,
we can use infinite-horizon LQ (e.g., Bitmead et al. [2]) or adopt terminal constraints where the objective
now is to minimize a cost function subject to the output y(t+ j) exactly matching the set point over some
future constraint range (see Clarke [3], and Mosca [9], for details).

33.11 Robustness of Self-Tuning Controllers

Applications of self-tuning control have to take into account the following practical problems:

• Disturbances acting on a process are likely to be nonstationary and to have inconsistent behavior,
e.g., during plant start-up.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-39&iName=master.img-060.jpg&w=340&h=73
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-39&iName=master.img-061.jpg&w=340&h=72
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• Certain patterns of disturbance can lead to the estimation of a poor plant model.
• The dynamic order of the process is likely to be significantly greater than that assumed by the

self-tuning control design.
• Actuator nonlinearities (e.g., stiction) give unrepresentative small-signal behavior.

Some of these difficulties (in particular, the problem of unmodeled dynamics) have been treated in
some detail; others (e.g., nonlinear actuation) require careful attention to engineering detail. In general, a
“good” self-tuner requires (1) a robust estimator; (2) a robust control design; and (3) “jacketing” software
that takes into account practical process features.

For improving the estimator, it is possible to add normalization and a dead zone. Normalization
simply takes the regressor vector and produces a factor m(t− 1)=max{m, ||x(t− 1)||} and divides the
prediction error Equation 33.23 by m(t− 1). A dead zone takes into account that the “true” prediction is
of the form:

ŷ(t)=
n∑
1

θ̂m
i xm(t− i)+

n∑
1

θ̂u
i xu(t− i),

where xm is the “modeled” data input and xu, the “unmodeled” input. If, after normalization, the prediction
error is smaller than a certain amount, then this is deemed to be due to the (assumed small) effect
of unmodeled dynamics and the estimation is temporarily frozen. While there is a good theoretical
background for this approach (see, for example, Mosca [9]), there is not much practical experience in
how to choose an appropriate value for the dead zone parameter.

Perhaps the most important advance for ensuring robustness is the reconsideration of the CARIMA
model in the form:

A(z−1)y(t)= B(z−1)u(t)+ T(z−1)

Δ
e(t), (33.86)

where T(z−1) is now considered to be an assigned design rather than an estimated polynomial for enhanc-
ing estimation and control robustness. Multiplying up in Equation 33.86 gives:

A(z−1)yf (t)= B(z−1)uf (t)+ e(t), (33.87)

where the signals are given by y f =Δy/T , u f =Δu/T ; i.e., they are band-pass filtered byΔ/T . The effect
ofΔ is to remove dc-offset or constant-load disturbances; the effect of 1/T is to filter out high-frequency
effects so that the estimation concentrates on low-frequency behavior.

The above assumption about the disturbance also affects predictive controller design, as optimal
predictions take into account the assumed model for the disturbance. For example, it can be shown
that a predictive controller in closed loop satisfies:

αT(z−1)w(t)= R(z−1)Δu(t)+ S(z−1)y(t), (33.88)

where the polynomials R, S satisfy the Diophantine identity:

R(z−1)A(z−1)Δ+B(z−1)S(z−1)= Pc(z−1)T(z−1), (33.89)

where Pc gives the closed-loop poles (e.g., for mean-level control Pc = A). Then the closed loop is stable
for fixed estimated polynomials Â, B̂ provided that for all frequencies up to Nyquist:

∣∣∣∣∣
B

A
− B̂

Â

∣∣∣∣∣<
∣∣∣∣Pc

Â

∣∣∣∣ .

∣∣∣∣TS
∣∣∣∣ , (33.90)

where S is deduced from Equation 33.89 using the estimated parameters. Hence, the right-hand side of
Equation 33.90 is known from the estimated model, and in particular, T can be chosen to ensure the
bound is satisfied, particularly at high frequencies where the undermodeling problem arises; see [3] for
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more details. It has been found by “benchmark” studies that good choice of T is highly significant. It is
possible to consider different designs of T for the estimator and controller, but in practice it is convenient
and near optimal to use the same polynomial. In general, the choice of T = Â(1− γz−1)m, where γ is in
the neighborhood of a dominant plant pole, is fairly effective.
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34.1 Introduction

Research in adaptive control has a long history of intense activity involving debates about the precise
definition of adaptive control, examples of instabilities, stability and robustness proofs, and applications.
Starting in the early 1950s, the design of autopilots for high-performance aircraft motivated an intense
research activity in adaptive control. High-performance aircraft undergo drastic changes in their dynamics
when they fly from one operating point to another. These changes cannot be handled by constant gain
feedback control. A sophisticated controller, such as an adaptive controller, that would be able to learn and
accommodate changes in the aircraft dynamics was needed. Model reference adaptive control (MRAC)
was suggested by Whitaker et al. [9] to solve the autopilot control problem. The sensitivity method and
the MIT rule [18] were used to design the adjustment or adaptive laws for estimating the unknown
parameters for the various proposed MRAC schemes.

The work on adaptive flight control was characterized by “a lot of enthusiasm, bad hardware and
nonexisting theory” [1]. The lack of stability proofs and the lack of understanding of the properties of
the proposed adaptive control schemes, coupled with a disaster in a flight test [8] caused the interest in
adaptive control in the late 1950s and early 1960s to diminish.

The 1960s became the most important period for the development of control theory and adaptive
control in particular. State-space techniques and stability theory based on Lyapunov were introduced.
Developments in dynamic programming [11], dual control [13], and stochastic control in general and
in system identification and parameter estimation [10] played a crucial role in the reformulation and
redesign of adaptive control. By 1966 Parks [6] and others found a way of redesigning the MIT rule-based
adaptive laws used in the MRAC schemes of the 1950s by applying the Lyapunov design approach. Their

34-1
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work, even though applicable to a special class of linear, time-invariant (LTI) plants, set the stage for
further rigorous stability proofs in MRAC for more general classes of plant models.

The advances in stability theory and the progress in control theory in the 1960s improved the under-
standing of adaptive control and contributed to a strong renewed interest in the field in the 1970s. On
the other hand, the simultaneous development and progress in computers and electronics that made the
implementation of complex controllers, such as the adaptive ones, feasible, contributed to an increased
interest in applications of adaptive control. The 1970s witnessed several breakthrough results in the design
of adaptive control. MRAC schemes using the Lyapunov design approach were developed and analyzed
and the concepts of positivity and hyperstability were used to develop a wide class of MRAC schemes with
well-established stability properties [4,5,12,18]. At the same time, parallel efforts for discrete-time plants
in a deterministic and stochastic environment produced several classes of adaptive control schemes with
rigorous stability proofs [14]. The excitement of the 1970s and the development of a wide class of adaptive
control schemes with well-established stability properties was accompanied by a number of successful
applications [15].

The successes of the 1970s, however, were soon followed by controversies over the practicality of
adaptive control. As early as 1979 it was pointed out that the MRAC schemes of the 1970s could easily go
unstable in the presence of small disturbances [12]. The nonrobust behavior of adaptive control became
very controversial in the early 1980s when more examples of instabilities were published, demonstrating
lack of robustness in the presence of unmodeled dynamics and or bounded disturbances [7,16]. These
examples stimulated many researchers, whose objective was to understand the mechanisms of instabilities
and find ways to counteract them. By the mid 1980s, a number of new redesigns and modifications
were proposed and analyzed, leading to a body of work known as robust adaptive control. An adaptive
controller is defined to be robust if it guarantees signal boundedness in the presence of “reasonable”
classes of unmodeled dynamics and bounded disturbances as well as performance error bounds that are
of the order of the modeling error. The work on robust adaptive control continued throughout the 1980s
and involved the understanding of the various robustness modifications and their unification under a
more general framework [2,12].

The solution of the robustness problem in adaptive control led to the solution of the long-standing
problem of controlling a linear plant whose parameters are unknown and changing with time. By the end
of the 1980s several breakthrough results were published in the area of adaptive control and in particular
MRAC for linear time-varying plants [19] .

The focus of adaptive control research in the late 1980s and early 1990s was on performance properties
and on extending the results of the 1980s to certain classes of nonlinear plants with unknown parameters.
These efforts led to new classes of MRAC-type schemes motivated from nonlinear system theory [3], as
well as to MRAC schemes with improved transient and steady-state performance [2].

Adaptive control has been traditionally divided into two classes, the MRAC-type schemes and adaptive
pole placement control (APPC) schemes. In MRAC both the poles and zeros of the plant are changed so
that the closed-loop plant has the same input–output properties as those of a given reference model. In
APPC only the poles of the plant are changed. In this chapter we concentrate on MRAC for continuous-
time plants that attracted considerable interest in the literature of adaptive control. For information on
APPC and discrete-time adaptive control, the reader is referred to [17] and [14].

34.2 MRAC Schemes

Model reference adaptive control (MRAC) is derived from the model-following problem or model refer-
ence control (MRC) problem. In MRC, a good understanding of the plant and the performance require-
ments it has to meet allows the designer to come up with a model, referred to as the reference model, that
describes the desired input–output properties of the closed-loop plant. The objective of MRC is to find
the feedback control law that changes the structure and dynamics of the plant so that its input–output
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Reference model
Wm(s)

Controller
c (θ*c)
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Plant
Gp(s)

r ∑

FIGURE 34.1 The diagram shows the basic structure of model reference control (MRC).

properties are exactly the same as those of the reference model. The structure of an MRC scheme for a
LTI, single-input, single-output (SISO) plant is shown in Figure 34.1. The transfer function Wm(s) of the
reference model is designed so that, for a given reference input signal r(t), the output ym(t) of the refer-
ence model represents the desired response the plant output yp(t) has to follow. The feedback controller,
denoted by C(θ∗c ), is designed so that all signals are bounded and the closed-loop plant transfer function
from r to yp is equal to Wm(s). This transfer function matching guarantees that for any given reference
input r(t), the tracking error e1(t), which represents the deviation of the plant output yp from the desired
trajectory ym, converges to zero with time. The transfer function matching is achieved by cancelling the
zeros of the plant transfer function Gp(s) and replacing them with those of Wm(s) through the use of
the feedback controller C(θ∗c ). The cancellation of the plant zeros puts a restriction on the plant to be
minimum phase, i.e., have stable zeros. If any plant zero is unstable, its cancellation may easily lead to
unbounded signals.

The design of C(θ∗c ) requires knowledge of the coefficients of the plant transfer function Gp(s). If θ∗ is
a vector containing all the coefficients of Gp(s)= Gp(s, θ∗), then the controller parameter vector θ∗c may
be computed by solving an algebraic equation of the form

θ∗c = F(θ∗) (34.1)

When θ∗ is unknown the MRC scheme of Figure 34.1 cannot be implemented, since θ∗c cannot be
calculated using Equation 34.1 and is therefore unknown. One way of dealing with the unknown param-
eter case is to use the certainty equivalence approach [14,17]. In this context, the certainty equivalence
approach is to replace the unknown θ∗c in the control law with its estimate θc(t) obtained using the direct
or the indirect approach. The resulting control schemes are known as MRAC and can be classified as
indirect MRAC, shown in Figure 34.2, and direct MRAC, shown in Figure 34.3. In indirect MRAC the
controller parameter vector θc is calculated at each time using the estimate of the plant parameter vector
θ∗ and the mapping defined by Equation 34.1. In direct MRAC the vector θc is adjusted directly without
any intermediate calculations that involve estimates of θ∗. In this case the plant transfer function Gp(s, θ∗)
is parameterized with respect to θ∗c to obtain Gp(s, θ∗c ), whose form is used to estimate θ∗c directly.

Different choices of on-line parameter estimators lead to further classifications of MRAC.

34.2.1 Model Reference Control

Consider the SISO, LTI plant described by the vector differential equation

ẋp = Apxp+Bpup, xp(0)= x0

yp = CT
p xp (34.2)

where xp ∈ Rn; yp, up ∈ R1and Ap, Bp, Cp have the appropriate dimensions. The transfer function of the
plant is given by

yp = Gp(s)up = kp
Zp(s)

Rp(s)
up (34.3)
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FIGURE 34.2 The diagram shows the basic structure of indirect MRAC.

where Zp(s), Rp(s) are monic polynomials and kp is a constant referred to as the high-frequency gain. The
reference model, selected by the designer to describe the desired characteristics of the closed-loop system,
is given by

ym =Wm(s)r = km
Zm(s)

Rm(s)
r (34.4)

where Zm(s), Rm(s) are monic polynomials of degree qm, pm, respectively, and km is a constant.
The MRC objective is to determine the plant input up so that all signals are bounded and the plant

output yp tracks the reference model output ym as closely as possible for any given reference input r(t)
that is bounded and continuous. We refer to the problem of finding the desired up to meet the control
objective as the MRC problem.

In order to meet the MRC objective with a control law that uses signals that are available for measure-
ment, we assume that the plant and reference models satisfy the following assumptions:

Plant Assumptions:

P1. Zp(s) is a monic Hurwitz polynomial of degree mp, i.e., Zp(s) is a monic polynomial of degree mp

that has all roots in the open left half s-plane

Plant

Reference model
Wm(s)

Controller
C(θc)

yp

ym

e1

up
Gp(s, θ*) Gp(s, θc*)

On-line
parameter

estimation of θc*

r

r

θc

–

+
∑

FIGURE 34.3 The diagram shows the basic structure of direct MRAC.
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P2. An upper bound n of the degree np of Rp(s)
P3. the relative degree n∗ = np−mp of Gp(s) and
P4. the sign of the high-frequency gain kp

are known.

Reference Model Assumptions:

M1. Zm(s), Rm(s) are monic Hurwitz polynomials of degree qm, pm, respectively, where pm ≤ n
M2. The relative degree n∗m = pm− qm of Wm(s) is the same as that of Gp(s), i.e., n∗m = n∗

In addition to assumptions P1 to P4 and M1, M2, let us also assume that the plant parameters, i.e., the
coefficients of Gp(s), are known exactly. Since the plant is LTI and known, the design of the MRC scheme
is achieved using linear system theory.

The MRC objective is met if up is chosen so that the closed-loop transfer function from r to yp has stable
poles and is equal to Wm(s), the transfer function of the reference model. Such transfer function matching
guarantees that for any reference input signal r(t) the plant output yp converges to ym exponentially fast.

We consider the feedback control law

up = θ∗T
1 ω1+ θ∗T

2 ω2+ θ∗3yp+ c∗0 r = θ∗T
c ω (34.5)

where θ∗c = [θ∗T
1 , θ∗T

2 , θ∗3, c∗0 ]T , ω= [ωT
1 ,ωT

2 , yp, r]T , α(s)= [sn−2, sn−3, . . . , s, 1]T ω1 = α(s)
Λ(s) up, ω2 =

α(s)
Λ(s) yp, c∗0 , θ∗3 ∈ R1; θ∗1, θ∗2 ∈ Rn−1 are constant parameters to be designed and Λ(s) is an arbitrary monic
Hurwitz polynomial of degree n− 1 that contains Zm(s) as a factor, i.e.,Λ(s)=Λ0(s)Zm(s), which implies
thatΛ0(s) is monic, Hurwitz, and of degree n0 = n− 1− qm. The controller parameter vector θ∗c ∈ R2n is
to be chosen so that the transfer function from r to yp i.e., yp = Gc(s)r given by

Gc(s)= c∗0 kpZpΛ
2

Λ[(Λ− θ∗T
1 α)Rp− kpZp(θ∗T

2 α+ θ∗3Λ)] (34.6)

is stable and is equal to Wm(s)= km
Zm
Rm

for all s.
Since the degree of the denominator of Gc(s) is np+ 2n− 2 and that of Rm(s) is pm ≤ n, for the

matching equation
c∗0 kpZpΛ

2

Λ[(Λ− θ∗T
1 α)Rp− kpZp(θ∗T

2 α+ θ∗3Λ)] = km
Zm

Rm
(34.7)

to hold, an additional np+ 2n− 2− pm zero-pole cancellations must occur in Gc(s). Now since Zp(s) is
Hurwitz by assumption, andΛ(s)=Λ0(s)Zm(s) is designed to be Hurwitz, it follows that all the zeros of
Gc(s) are stable and therefore any zero-pole cancellation can only occur in C−, the open left half of the
complex plane. Choosing

c∗0 =
km

kp
(34.8)

and usingΛ(s)=Λ0(s)Zm(s) the matching Equation 34.7 becomes

(Λ− θ∗T
1 α)Rp− kpZp(θ∗T

2 α+ θ∗3Λ)= ZpΛ0Rm (34.9)

Dividing both sides of Equation 34.9 by Rp(s), we obtain

Λ− θ∗T
1 α− kp

Zp

Rp
(θ∗T

2 α+ θ∗3Λ)= Zp

(
Q+ kp

Δ∗

Rp

)

where Q(s) (of degree n− 1−mp) is the quotient and kpΔ
∗ (of degree at most np− 1) is the remainder

ofΛ0Rm/Rp, respectively. Then the solution for θ∗i , i = 1, 2, 3 can be found by inspection, i.e.,

θ∗T
1 α(s)=Λ(s)−Zp(s)Q(s)
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θ∗T
2 α(s)+ θ∗3Λ(s)= Q(s)Rp(s)−Λ0(s)Rm(s)

kp
(34.10)

where the equality in the second equation is obtained by substituting forΔ∗(s) using the identity

Λ0Rm

Rp
= Q+ kpΔ

∗

Rp

The parameters θ∗i , i = 1, 2, 3 can now be obtained directly by equating the coefficients of the powers of
s on both sides of Equation 34.10. Equation 34.10 indicates that, in general, the controller parameters
θ∗i , i = 1, 2, 3 are nonlinear functions of the coefficients of the plant polynomials Zp(s), Rp(s) due to the
dependence of Q(s) on the coefficients of Rp(s). When n= np and n∗ = 1, however, Q(s)= 1 and the θ∗i s
are linear functions of the coefficients of Zp(s), Rp(s).

Lemma 34.1:

i. Let the degrees of Rp, Zp,Λ,Λ0 and Rm be as specified in Equation 34.5. Then the solution θ
∗
c =

[θ∗T
1 , θ∗T

2 , θ∗T
3 ] of Equation 34.9 or Equation 34.10 always exists.

ii. In addition, if Rp, Zp are coprime and n= np, then the solution θ
∗
c is unique.

The proof is based on the solution of certain Diophantine equations and is given in [17].
It can be shown that the control law (Equation 34.5) with θ∗c calculated from Equations 34.8 and 34.10

guarantees that the closed-loop plant is stable and the tracking error e1 = yp− ym converges exponentially
to zero for any given bounded reference input r.

34.2.2 Direct MRAC

A direct MRAC scheme is formed by combining the control law (Equation 34.5), with θ∗c replaced by its
estimate θc(t) at time t, i.e.,

up = θT
c (t)ω (34.11)

with an adaptive law that generates θc(t) at each time t.
The estimate θc(t) of θ∗c is generated by first obtaining an appropriate parameterization of the plant in

terms of θ∗c and then using parameter estimation techniques to form the adaptive law for θc(t). Such a
parameterization is developed by using the plant and matching equations to obtain

e1 =Wm(s)ρ∗(up− θ∗T
c ω) (34.12)

where e1 = yp− ym, and ρ∗ = 1/c∗0 . Using Equation 34.12 a wide class of adaptive laws may be developed
to estimate θ∗c , ρ∗. The adaptive laws may be split into two major classes; those with unnormalized signals
and those with normalized signals leading to direct MRAC without normalization and direct MRAC with
normalization.

34.2.2.1 Direct MRAC without Normalization

The derivation and complexity of the MRAC scheme depends on the relative degree n∗ of the plant.
For n∗ = 1 we choose the transfer function Wm(s) of the reference model to be strictly positive real
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(SPR) [17,18]. Substituting for up = θT
c (t)ω in Equation 34.12 we obtain the error equation

e1 =Wm(s)ρ∗θ̃T
c ω (34.13)

where θ̃c = θc − θ∗c is the parameter error. Since Wm(s) is SPR we can use the SPR-Lyapunov design
approach [17] to generate the adaptive law

θ̇c =−Γe1ωsgn(ρ∗) (34.14)

where
Γ= ΓT > 0

which, together with Equation 34.11 forms the MRAC scheme. The adaptive law (Equation 34.14) is
chosen so that a certain positive definite function V of the error states of Equation 34.13 and Equation 34.14
is a Lyapunov function with the property

dV

dt
≤ 0

which implies uniform stability and with additional arguments, e1(t)→ 0 as t →∞.
When n∗ = 2, Wm(s) cannot be designed to be SPR because of assumption M2 and the fact that a

transfer function of relative degree 2 cannot be SPR. In this case we rewrite Equation 34.12 as

e1 =Wm(s)(s+ p)ρ∗[uf − θ∗T
c ωf ]

where uf = 1
s+p up,ωf = 1

s+pω, and p > 0 is chosen so that Wm(s)=Wm(s)(s+ p) is SPR. If we choose

uf = θT
c ωf then

e1 =Wm(s)ρ∗(θ̃T
c ωf )

which has the same form as Equation 34.13 and leads to the adaptive law

θ̇c =−Γe1ωf sgn(ρ∗) (34.15)

The adaptive law (Equation 34.15) is generated by using uf = θT
c ωf . Since uf = 1

s+p up the control input

up has to be chosen so that uf = θT
c ωf . We have

up = (s+ p)θT
c ωf = θT

c ω+ θ̇T
c ωf

where the second equality is obtained by treating s as a differential operator. Since θ̇c is given by Equa-
tion 34.15, the MRAC scheme when n∗ = 2 is given by

up = θT
c ω+ θ̇T

c ωf (34.16)

θ̇c =−Γe1ωf sgn(ρ∗)

When n∗ = 3 we can use the same procedure as in the case of n∗ = 2 to obtain the error equation

e1 =Wm(s)(s+ p1)(s+ p2)ρ∗[uf − θ∗T
c φ]

where

uf = 1

(s+ p1)(s+ p2)
up, φ= 1

(s+ p1)(s+ p2)
ω

and p1, p2 > 0 are chosen so that Wm(s)=Wm(s)(s+ p1)(s+ p2) is SPR. In this case we cannot choose
uf = θT

c φ since such a choice will have to include second derivatives of θc in the expression for up that are
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not available for measurement. We go around this difficulty by using the nonlinear tools “backstepping”
and “nonlinear damping” as explained in [3,17] to obtain the MRAC scheme

up = θT
c ω+ θ̇T

c φ1− (s+ p2)α0(φTΓφ)2r0 (34.17)

ṙ0 =−[p1+ α0(φTΓφ)2]r0+φTΓφε1sgn(ρ∗)

θ̇c =−Γε1φsgn(ρ∗), ρ̇= γε1r0

φ1 = 1

s+ p2
ω, ε1 = e1− 1

s+ q0
ρr0

where α0 > 0 is a design constant and Wm(s)= 1/(s+ q0). For n∗ > 3 the procedure is the same, but it
leads to much more complex MRAC schemes.

The above MRAC schemes guarantee that all signals are bounded and the tracking error converges to
zero. If r is sufficiently rich then the MRAC scheme for n∗ = 1, 2 guarantees exponential convergence of
the parameter error θ̃c and that the tracking error e1 goes to zero. For n∗ ≥ 3 the convergence of θ̃c to
zero is asymptotic [17].

34.2.2.2 Direct MRAC with Normalized Adaptive Laws

This class of MRAC schemes dominated the literature of adaptive control due to the simplicity of their
design as well as their robustness properties in the presence of modeling errors. The adaptive laws of these
schemes are driven by a normalized error signal that “slows” down adaptation and improves robustness
with respect to plant uncertainties. For this reason they are referred to as normalized adaptive laws. The
MRAC law up = θT

c ω in Equation 34.11 remains unchanged and the parametric model (Equation 34.12)
is used to generate the adaptive law for θc . The parametric model (Equation 34.12) may be rewritten in
various other forms, giving rise to a wide class of adaptive laws. For example, we can rewrite Equation 34.12
as

z = θ∗T
c φp (34.18)

where z =Wm(s)up, φp = [Wm(s)ωT
1 , Wm(s)ωT

2 , Wm(s)yp, yp]T or

e1 = ρ∗(uf − θ∗T
c φ) (34.19)

where uf =Wm(s)up, φ=Wm(s)ω. Equation 34.18 is obtained by first rewriting Equation 34.12 as
yp− ym = ρ∗[z− θ∗T

c φp− c∗o ym+ c∗o yp] and then using the identity ρ∗c∗o = 1.
Using Equation 34.12 and the SPR-Lyapunov approach [17], we have the adaptive law

θ̇c =−Γεφsgn(ρ∗) ρ̇= γεξ (34.20)

where

ε= e1− ê1−WmL(εn2
s )

ê1 =Wm(s)L(s)[ρ(uf − θT
c φ)]

ξ= uf − θT
c φ, φ= L−1(s)ω

uf = L−1(s)up, n2
s = φTφ+ u2

f

L(s) is chosen so that WmL is SPR and proper, and L−1(s) is proper and stable.
Using Equation 34.19 and the gradient method [17] we have

θ̇c =−Γεφsgn(ρ∗) ρ̇= γεξ (34.21)

where ε,φ, ξ are the same as in Equation 34.20 with L−1(s)=Wm(s).
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Using Equation 34.18 we can generate a wide class of adaptive laws using the gradient method with
different cost functions as well as least squares [17]. The gradient algorithm is given by

θ̇c = Pr[Γεφp] (34.22)

and the least squares is given by

θ̇= Pr[Pεφp]

Ṗ = Pr

[
−Pφpφ

T
p P

m2

]
(34.23)

where ε= z−ẑ
m2 , ẑ = θT

c φp, m2 = 1+φT
p φp and Pr[.] is the projection operator that constrains c0(t),

the estimate of c∗0 , to satisfy |c0
(
t
) | ≥ cm,∀t ≥ 0, where cm > 0 is a lower bound for |c∗0 |. The Pr(.) operator

sets Ṗ = 0, when |c0(t)| = cm and ċ0 < 0. The projection is used to guarantee that 1/(c0(t)) is bounded
for all t ≥ 0, a property that is used in the stability analysis of the MRAC scheme (Equation 34.11) with
θc generated by Equation 34.22 or 34.23. For the implementation of projection we require the knowledge
of cm, a lower bound for |c∗0 | and the sign of c∗0 .

The control law (Equation 34.11) with any one of the adaptive laws (Equation 34.20, 34.21, 34.22, or
34.23) forms a direct MRAC scheme. As shown in [17] these schemes guarantee signal boundedness and
convergence of the tracking error to zero. If, in addition, the reference input r(t) is sufficiently rich of
order 2n then both the parameter and tracking errors converge to zero. The rate of convergence in the
case of Equation 34.11 with Equation 34.22 or 34.23 is exponential, whereas for the case of the MRAC
scheme (Equations 34.11 and 34.20, or 34.11 and 34.21), the convergence is asymptotic.

34.2.3 Indirect MRAC

In indirect MRAC the controller parameter vector θc(t) in the control law (Equation 34.11) is calculated
at each time t using the estimates of kp and of the coefficients of Zp(s), Rp(s) that are generated using
an adaptive law. The calculation of θc(t) is achieved by using the mapping defined by the matching
Equations 34.8 and 34.10.

As in the direct MRAC case the adaptive laws for the estimated coefficients of Zp(s), Rp(s) could be
normalized or unnormalized. We concentrate on the normalized adaptive laws and refer the reader to [17]
for results using unnormalized adaptive laws.

The adaptive law for estimating kp and the coefficients of Zp(s), Rp(s) is generated using the parametric
plant model

z = θ∗T
p φ (34.24)

where

z = sn

Λp(s)
yp, φ=

[
αT

n−1(s)

Λp(s)
up,
−αT

n−1(s)

Λp(s)
yp

]T

θ∗p = [0, . . . , 0, bm, pT
1 , pT

2 ]T ∈ R2n, p1 = [bm−1, . . . , b0]T and p2 = [an−1, . . . , a0]T are the coefficient vec-
tors of kp[Zp(s)− sm], Rp(s)− sn, respectively, Λp(s) is an nth order monic Hurwitz polynomial,
an−1(s)= [sn−1, . . . , s, 1]T and bm = kp.

Using Equation 34.24 the estimate θp(t) of θ∗p may be generated using adaptive laws that are based on the

gradient or the least squares methods. The controller parameter vector θc(t)= [θT
1 (t), θT

2 (t), θ3(t), c0(t)]T
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is calculated from θp(t)= [0, . . . 0, k̂p, p̂T
1 , p̂T

2 ]T , the estimate of θ∗p at each time t, as follows:

c0(t)= km

k̂p

θT
1 αn−2(s)=Λ(s)− Ẑp(s, t) • Q̂(s, t) (34.25)

θT
2 αn−2(s)+ θ3Λ(s)= 1

k̂p

[Q̂(s, t) • R̂p(s, t)−Λ0(s)Rm(s)]

where

Q̂(s, t)= quotient of
Λ0(s)Rm(s)

R̂p(s, t)
,

Ẑp(s, t)= k̂psm+ p̂T
1 αm−1(s)

R̂p(s, t)= sn+ p̂T
2 αn−1(s), αi(s)= [si , si−1, . . . , s, 1]T

and A •B denotes pointwise in time multiplication. From Equation 34.25 it is clear that the adaptive law
for k̂p has to be modified using projection so that |k̂p(t)| ≥ km ≥ 0, where km > 0 is a lower bound for kp.
As an example of an adaptive law consider the gradient algorithm

θ̇p = Pr[Γεφ], (34.26)

ε= z− ẑ

m2 , ẑ = θT
p φ, m2 = 1+φTφ

where Pr[•] is the projection operator that guarantees |k̂p| ≥ km > 0 for all t≥ 0. The projection operator
requires the knowledge of the sign of kp and the lower bound km of kp. The indirect MRAC scheme
(Equations 34.11, 34.25, and 34.26) guarantees that θc(t) given by Equation 34.25 exists and is bounded
for any bounded estimate θp, all signals in the closed-loop plant are bounded and the tracking error
converges to zero with time. If, in addition, the reference signal r is sufficiently rich of order 2n then the
parameter and tracking errors converge to zero exponentially fast [17].

34.2.4 Robust MRAC

The MRAC schemes presented above are designed for the plant model (Equation 34.2) that is free of
disturbances and unmodeled dynamics. In the presence of disturbances and/or unmodeled dynamics the
above schemes may be driven unstable, as shown by several examples in [16]. These schemes can be made
robust by modifying the adaptive laws using leakage, dead-zone, projections and their by-products [17].
For the MRAC schemes without normalization these modifications guarantee the existence of a region
of attraction in which all signals are bounded and the tracking error converges to a smaller residual set.
For the MRAC schemes with normalization the region of attraction becomes the whole space provided a
special normalizing signal is used to bound from above all the modeling error terms that are required to
be small in the low-frequency range.

As an example, let us modify the direct MRAC scheme (Equations 34.11 and 34.20) for robustness
using a leakage type of modification known as σ-modification. We have

up = θT
c ω

θ̇c =−Γεφsgn(ρ∗)− σΓθc, ρ̇=−γεξ− σ2γρ

n2
s = φTφ+ u2

f +ms

ṁs =−δ0ms+ u2
p+ y2

p , ms(0)= 0

where σ1, σ2 > 0 are small positive constants, ms is the dynamic normalizing signal, and δ0 > 0 is chosen
so that the ms bounds from above any modeling error term in the plant. The rest of the signals are as
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defined in Equation 34.20. If the above robust MRAC scheme is applied to the plant

yp = Gp(s)(1+Δm(s))up

whereΔm(s) is a multiplicative plant uncertainty with the property thatΔm(s− δ0/2) has stable poles, then
for small Δ∞ Δ=‖W(s− δ0/2)Δm(s− δ0/2)‖∞, Δ2


=‖W(s− δ0/2)Δm(s− δ0/2)‖2 where W(s− δ0/2) is
an arbitrary stable transfer function with stable W−1(s− δ0/2) and W(s)Δm(s) is strictly proper, we have
signal boundedness for any finite initial condition. Furthermore, the tracking error has a mean square
value of the order ofΔ∞, Δ2. The details of the design and analysis of robust MRAC schemes are given
in [17].

34.3 Examples

In this section, we present several examples that illustrate the design and analysis of the MRAC schemes
described in the previous sections.

34.3.1 Scalar Example: Adaptive Regulation

Consider the following scalar plant:

ẋ = ax+ u, x(0)= x0 (34.27)

where a is a constant but unknown. The control objective is to determine a bounded function u= f (t, x)
such that the state x(t) is bounded and converges to zero as t →∞ for any given initial condition x0. Let
−am be the desired closed-loop pole where am > 0 is chosen by the designer. In this case the reference
model is

ẋm =−amxm, xm(0)= x0 (34.28)

Control law: If the plant parameter a is known the control law

u=−k∗x (34.29)

with k∗ = a+ am could be used to meet the control objective, i.e., with Equation 34.29, the closed-loop
plant is

ẋ =−amx, x(0)= x0

whose equilibrium xe = 0 is exponentially stable in the large.
Since a is unknown, k∗ cannot be calculated and therefore Equation 34.29 cannot be implemented. A

possible procedure to follow in the unknown parameter case is to use the same control law as given in
Equation 34.29, but with k∗ replaced by its estimate k(t), i.e., we use

u=−k(t)x (34.30)

and search for an adaptive law to update k(t) continuously with time.

Adaptive law: The adaptive law for generating k(t) is developed by viewing the problem as an on-line
identification problem for k∗. This is accomplished by first obtaining an appropriate parameterization
for the plant (Equation 34.27) in terms of the unknown k∗, as follows.
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We add and subtract the desired control input−k∗x in the plant equation 34.27 to obtain

ẋ = ax− k∗x+ k∗x+ u

Since a− k∗ = −am we have
ẋ =−amx+ k∗x+ u

or

x = 1

s+ am
(u+ k∗x) (34.31)

Equation 34.31 is a parameterization of the plant equation 34.27 in terms of the unknown controller
parameter k∗. Since x, u are measured and am > 0 is known, many adaptive laws may be generated using
Equation 34.31 as shown in [17].

Substituting for the control u=−k(t)x in Equation 34.31, we obtain the error equation that relates the
parameter error k̃ = k− k∗ with the estimation error ε1 = x, i.e.,

ε̇1 =−amε1− k̃x, ε1 = x (34.32)

Due to Equation 34.31 the estimation error ε1, which is defined as the error that reflects the parameter
error k̃, is equal to the regulation error x. The error equation 34.32 is in a convenient form for choosing
an appropriate Lyapunov function to design the adaptive law for k(t). We assume that the adaptive law is
of the form ˙̃k = k̇ = f1(ε1, x, u) (34.33)

where f1 is some function to be selected, and propose

V (ε1, k̃)= ε
2
1

2
+ k̃2

2γ

for some γ > 0 as a potential Lyapunov function for the system defined by Equations 34.32 and 34.33.
The time derivative of V along the trajectory of this system is given by

V̇ =−amε
2
1− k̃ε1x+ k̃f1

γ

Choosing f1 = γε1x, i.e.,
k̇ = γε1x = γx2, k(0)= k0 (34.34)

we have
V̇ =−amε

2
1 ≤ 0

Analysis: Since V is a positive definite function and V̇ ≤ 0, we have V ∈ L∞, which implies that
ε1, k̃ ∈ L∞. Since ε1 = x, we also have that x ∈ L∞ and therefore all signals in the closed-loop plant are
bounded. Furthermore, ε1 = x ∈ L2, and ε̇1 = ẋ ∈ L∞ which imply that ε1(t)= x(t)→ 0 as t →∞.
From x(t)→ 0 and the boundedness of k, we establish that k̇(t)→ 0, u(t)→ 0 as t →∞.

We have shown that the combination of the control law (Equation 34.30) with the adaptive law
(Equation 34.34) meets the control objective, in the sense that it forces the plant state to converge to zero
while guaranteeing signal boundedness.

It is worth mentioning that we cannot establish that k(t) converges to k∗, i.e., that the pole of the closed-
loop plant converges to that of the reference model given by −am. The lack of parameter convergence is
less crucial in adaptive control than in parameter identification, since in most cases the control objective
can be achieved without requiring the parameters to converge to their true values. The simplicity of this
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scalar example, however, allows us to solve for ε1 = x explicitly, and study the properties of k(t), x(t) as
they evolve with time. We can verify that

ε1(t)= 2ce−ct

c+ k0− a+ (c− k0+ a)e−2ct ε1(0), ε1 = x

k(t)= α+ c[(c+ k0− α)e2ct − (c− k0+ α)]
(c+ k0− α)e2ct + (c− k0+ α)

(34.35)

where c2 = γx2
0 + (k0− a)2, satisfy the differential equations 34.32 and 34.34 of the closed-loop plant.

Equation 34.35 can be used to investigate the effects of initial conditions and adaptive gain γ on
the transient and asymptotic behavior of x(t), k(t). We have limt→∞ k(t)= a+ c, if c > 0, and
limt→∞ k(t)= a− c if c < 0, i.e.,

lim
t→∞ k(t)= k∞ = a+[γx2

0 + (k0− a)2]1/2

Therefore for x0 �= 0, k(t) converges to a stabilizing gain whose value depends on γ and the initial
condition x0, k0. It is clear from Equation 34.35 that the value of k∞ is independent of whether k0 is a
destabilizing gain, i.e., 0 < k0 < a, or a stabilizing one, i.e., k0 > a, as long as (k0− a)2 is the same. The
use of different k0, however, will affect the transient behavior as it is obvious from Equation 34.35. In the
limit as t →∞, the closed-loop pole converges to−(k∞− a) which may be different from−am. Since the
control objective is to achieve signal boundedness and regulation of the state x(t) to zero, the convergence
of k(t) to k∗ is not crucial.

34.3.2 Scalar Example: Adaptive Tracking

Consider the following first-order plant:
ẋ = ax+ bu (34.36)

where a, b are unknown parameters but the sign of b is known. The control objective is to choose an
appropriate control law u such that all signals in the closed-loop plant are bounded and x tracks the state
xm of the reference model given by

xm = bm

s+ am
r

for any bounded piecewise continuous signal r(t), where am > 0, bm are known and xm(t), r(t) are
measured at each time t. It is assumed that am, bm and r are chosen so that xm represents the desired state
response of the plant.

Control law: In order for x to track xm for any reference input signal r, the control law should be chosen
so that the closed-loop plant transfer function from the input r to the output x is equal to that of the
reference model. We propose the control law

u=−k∗x+ l∗r (34.37)

where k∗, l∗ are calculated so that

x(s)

r(s)
= bl∗

s− a+ bk∗
= bm

s+ am
= xm(s)

r(s)
(34.38)

Equation 34.38 is satisfied if we choose

l∗ = bm

b
k∗ = am+ a

b
(34.39)

provided of course that b �= 0, i.e., the plant is controllable. The control law (Equations 34.37 and 34.39)
guarantees that the transfer function of the closed-loop plant, i.e., x(s)/r(s) is equal to that of the reference
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model. Such a transfer function matching guarantees that x(t)= xm(t), ∀t ≥ 0 when x(0)= xm(0) or
|x(t)− xm(t)| → 0 exponentially fast when x(0) �= xm(0), for any bounded reference signal r(t).

When the plant parameters a, b are unknown, Equation 34.37 cannot be implemented. Therefore,
instead of Equation 34.37, we propose the control law

u=−k(t)x+ l(t)r (34.40)

where k(t), l(t) is the estimate of k∗, l∗, respectively, at time t, and search for an adaptive law to generate
k(t), l(t) on-line.

Adaptive law: As before, we can view the problem as an on-line identification problem of the unknown
constants k∗, l∗. We start with the plant equation, which we express in terms of k∗, l∗ by adding and
subtracting the desired input term−bk∗x+ bl∗r to obtain

x = bm

s+ am
r+ b

s+ am
(k∗x− l∗r+ u) (34.41)

Since xm = bm
s+am

r is a known bounded signal, we express Equation 34.41 in terms of the tracking error
defined as ε1 = x− xm, i.e.,

ε1 = b

s+ am
(k∗x− l∗r+ u) (34.42)

Substituting for u=−k(t)x+ l(t)r in Equation 34.42 and defining the parameter errors k̃ Δ=k−
k∗, l̃ Δ=l− l∗, we have

ε̇1 =−amε1+ b(−k̃x+ l̃r)

ε1 = x− xm (34.43)

The development of the differential equation 34.43 relating the estimation error with the parameter error
is a significant step in deriving the adaptive laws for updating k(t), l(t). We assume that the structure of
the adaptive law is given by

k̇ = f1(ε1, x, r, u) l̇ = f2(ε1, x, r, u) (34.44)

where the functions f1, f2 are to be designed.
Consider the function

V (ε1, k̃, l̃)= ε
2
1

2
+ k̃2

2γ1
|b| + l̃2

2γ2
|b|

where γ1, γ2 > 0, as a Lyapunov candidate for the system (Equations 34.43 and 34.44). The time derivative
V̇ along any trajectory of the system is given by

V̇ =−amε
2
1− bk̃ε1x+ bl̃ε1r+ |b|k̃

γ1
f1+ |b|l̃

γ2
f2 (34.45)

Since |b| = bsgn(b), the indefinite terms in Equation 34.43 disappear if we choose f1 = γ1ε1xsgn(b),
f2 =−γ2ε1rsgn(b). Therefore, for the adaptive law

k̇ = γ1ε1xsgn(b), l̇ =−γ2ε1rsgn(b) (34.46)

we have
V̇ =−amε

2
1

Analysis: Treating xm(t), r(t) in Equation 34.43 as bounded arbitrary functions of time, it follows that
V is a Lyapunov function for the third-order differential equations 34.43 and 34.46 and the equilibrium
ε1e = 0, k̃e = 0, l̃e = 0 is uniformly stable. Furthermore, ε1, k̃, l̃ ∈ L∞ and ε1 ∈ L2. Since ε1 = x− xm,
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xm ∈ L∞ , we also have x ∈ L∞ and u ∈ L∞ and therefore all signals in the closed-loop plant are bounded.
Now from Equation 34.43 we have ε̇1 ∈ L∞, which together with ε1 ∈ L2, implies that ε1(t)→ 0, as
t →∞. We have established that the control law (Equation 34.40), together with the adaptive law (Equa-
tion 34.46) guarantees boundedness for all signals in the closed-loop system. In addition, the plant state
x(t) tracks the state of the reference model xm asymptotically with time for any reference input signal
r which is bounded and piecewise continuous. These results do not imply that k(t)→ k∗, l(t)→ l∗ as
t →∞, i.e., that the transfer function of the closed-loop plant approaches that of the reference model as
t →∞. In order to achieve such a result, the reference input r has to be sufficiently rich of order 2. A
sufficiently rich input is one that excites all the modes of the system [14,17]. For example r(t)=sinωt for
some ω �= 0 is sufficiently rich of order 2 and guarantees the exponential convergence of x(t) to xm(t)
and of k(t), l(t) to k∗, l∗, respectively. In general, a sufficiently rich reference input r(t) is not desirable in
cases where the control objective involves tracking of signals that are not rich in frequencies.

34.3.3 Example: Direct MRAC without Normalization (n* = 1)

Let us consider the second-order plant

yp = kp(s+ b0)

s2+ a1s+ a0
up

where kp > 0, b0 > 0, kp, b0, a1, a0 are unknown constants. The desired performance of the plant is speci-
fied by the reference model

ym = 1

s+ 1
r

Using the results of Section 34.2.2 the control law is designed as

ω̇1 =−2ω1+ up, ω1(0)= 0

ω̇2 =−2ω2+ yp, ω2(0)= 0

up = θ1ω1+ θ2ω2+ θ3yp+ c0r

by choosingΛ(s)= s+ 2 in the general control law. The adaptive law is given by

θ̇c =−Γe1ω, θc(0)= θ0

where e1 = yp− ym, θc = [θ1,θ2,θ3,c0]T ,ω= [ω1,ω2,yp,r]T and Γ= ΓT is any positive definite matrix.

Analysis: From Equation 34.12 we have that the tracking error e1 satisfies

e1 = 1

s+ 1
ρ∗θ̃T

c ω

where ρ∗ = kp, θ̃c = θc − θ∗c , i.e., ė1 =−e1+ kpθ̃
T
c ω.

We choose the positive definite function

V = e2
1

2
+ kp

θ̃T
c Γ

−1θ̃c

2

then
V̇ =−e2

1 + kpθ̃
T
c e1ω− kpθ̃

T
c e1ω=−e2

1 ≤ 0

Therefore, e1, θc are bounded, i.e., e1, θc ∈ L∞ and e1 is square integrable, i.e., e1 ∈ L2. Since ym, e1 ∈
L∞, we have yp ∈ L∞ and therefore ω2 ∈ L∞. Now

ω1 = 1

s+ 2
up = (s2+ a1s+ a0)

(s+ 2)kp(s+ b0)
yp



�

�

�

�

� �

34-16 Control System Advanced Methods

Since b0 > 0, i.e., the plant is minimum phase and yp ∈ L∞,we have ω1 ∈ L∞. Hence, ω ∈ L∞, which

implies that up ∈ L∞. Since e1, θ̃T
c ω ∈ L∞, we have ė1 ∈ L∞, which together with e1 ∈ L2, implies that

e1(t)→ 0 as t →∞.
For parameter convergence, we choose r to be sufficiently rich of order 4. As an example, we select

r(t)= A1 sinω1t+A2 sinω2t for some nonzero constants A1, A2,ω1,ω2 with ω1 �= ω2.

34.3.4 Example: Direct MRAC without Normalization (n* = 2)

Let us consider the second-order plant

yp = kp

s2+ a1s+ a0
up

where kp > 0, a1, a0 are constants. The reference model is chosen as

ym = 5

(s+ 5)2 r

Using the results of Section 34.2.2 the control law is chosen as

ω̇1 =−2ω1+ up, ω̇2 =−2ω2+ yp

φ̇=−φ+ω
up = θT

c ω−φTΓφe1

whereω = [ω1,ω2,yp,r]T , e1 = yp− ym, p= 1,Λ(s)= s+ 2 and 5(s+ 1)/(s+ 5)2 is SPR. The adaptive law
is given by

θ̇c =−Γe1φ

where Γ =ΓT > 0 is arbitrary and θc = [θ1, θ2, θ3, c0]T .

Analysis: From Equation 34.12 by substituting for up we have that

e1 =Wm(s)kp(θ̃T
c ω+ θ̇T

c ω)

or

e1 =Wm(s)(s+ 1)kpθ̃
T
c φ (34.47)

Since Wm(s)(s+ 1) is SPR and kp > 0 we can establish using the Lyapunov-like function

V = eT Pe

2
+ θ̃

T
c Γ

−1θ̃c

2
kp

where e is the state of a state-space representation of Equation 34.47 and P = PT > 0 satisfies the
Lefschetz-Kalman-Yakubovich lemma [17] that

V̇ ≤−ce2
1

for some constant c > 0. This implies that e1, θ̃c ∈ L∞ and e1 ∈ L2. Proceeding as in the case of n∗ = 1
we can establish that all signals are bounded and e1(t)→ 0 as t →∞. For parameter convergence, the
input r is chosen as r(t)= A1 sinω1t+A2 sinω2t for some A1, A2 �= 0,ω1 �= ω2.
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34.3.5 Example: Direct MRAC with Normalization

In contrast to the direct MRAC schemes without normalization the complexity of the design and analysis
of direct MRAC schemes with normalization does not change with the relative degree of the plant. We
demonstrate the design and analysis of MRAC with normalization using the first-order plant

ẋ = ax+ bu

where a, b are unknown and b > 0. The closed-loop plant is required to be stable and the state x is required
to track the state xm of the reference model

xm = bm

s+ am
r

for any given bounded reference input signal r. If a, b were known the control law

u=−k∗x+ l∗r (34.48)

with k∗ = (am+ a)/b, l∗ = bm/b could be used to meet the control objective exactly. Since a, b are
unknown, we replace Equation 34.48 with

u=−k(t)x+ l(t)r (34.49)

where k(t), l(t) are the on-line estimates of k∗, l∗, respectively. We design the adaptive laws for updating
k(t), l(t) by first developing appropriate parametric models for k∗, l∗. We can show that the tracking error
e1 satisfies

e1 = b

s+ am
[u− (−k∗x+ l∗r)]

which may be written in the form of Equation 34.19 in Section 34.2.2, i.e.,

e1 = b(uf − θ∗T
c φ)

where θ∗c = [k∗, l∗]T ,φ=Wm(s)[−x, r]T , uf = 1
s+am

u. Using the gradient method and the fact that b > 0
we have

θ̇c =−Γεφ, ˙̂b= γεξ (34.50)

where θc , b̂ are the estimates of θ∗c , b, respectively,

ε= e1− ê1

m2 , ê1 = b̂[uf − θT
c φ]

ξ= uf − θT
c φ, m2 = 1+φTφ+ uf

2

The stability analysis of the MRAC examples is accomplished as follows. First we show that Equation 34.50

guarantees that θc , b̂, ε, εm ∈ L∞ and ε, εm, θ̇c , ˙̂b ∈ L2 independent of the choice of u and the boundedness
of φ, u, e1. These properties are then used to establish the boundedness of all signals in the control loop
and the convergence of the tracking error e1 to zero. The details of the analysis are given in [17].



�

�

�

�

� �

34-18 Control System Advanced Methods

34.3.6 Example: Indirect MRAC

Consider the following third-order plant:

yp = 1

s2(s+ a)
up (34.51)

where a is the only unknown parameter. The output yp is required to track the output of ym of the
reference model

ym = 1

(s+ 2)3 r

The control law is given by

up = θ11
s

(s+λ1)2 up+ θ12
1

(s+λ1)2 up+ θ21
s

(s+λ1)2 yp+ θ22
1

(s+λ1)2 yp+ θ3yp+ c0r

where θc = [θ11, θ12, θ21, θ22, c0]T ∈ R6. In direct MRAC, θc is generated by a sixth-order adaptive law. In
indirect MRAC, θc is calculated from the adaptive law as follows. Using the results of Section 34.2.2 the
estimate â of the only unknown plant parameter a is given by

˙̂a= γaφaε

ε= z− ẑ

1+φTφ
, ẑ = θT

p φ, z = yp+λT
p φ2

φ= [φT
1 ,φT

2 ]T , φ1 = [s
2, s, 1]T

(s+λ1)3 up,

φ2 =−[s
2, s, 1]T

(s+λ1)3 yp

where θp = [0, 0, 1, â, 0, 0]T , Λ(s) is chosen as Λ(s) = (s+λ1)3,λp = [3λ1, 3λ2
1, 3λ3

1]T , φa = [0, 0, 0,

1, 0, 0]φ=− s2

(s+λ1)3 yp and γa > 0 is a constant. The controller parameter vector is calculated as c0 = 1,

θT
1 [s, 1]T = (s+λ1)2− Q̂(s, t)

θT
2 [s, 1]T + θ3(s+λ1)2 = Q̂(s, t) • [s3+ âs2]− (s+λ1)2(s+ 2)3

where Q̂(s, t) is the quotient of (s+λ1)2(s+ 2)3/
(
s3+ âs2

)
.

The example demonstrates that for the plant equation 34.50, the indirect scheme requires a first-order
adaptive law, whereas the direct scheme requires a sixth-order one.
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35.1 Introduction

The design of autopilots for high-performance aircraft was one of the primary motivations for active
research in adaptive control in the early 1950s. Aircrafts operate over a wide range of speeds and altitudes,
and their dynamics are nonlinear and conceptually time-varying. For a given operating point, specified
by the aircraft speed (Mach number) and altitude, the longitudinal nonlinear aircraft dynamics can be
approximated by a linear model. As the aircraft goes through different flight conditions, the operating
point changes. These changes cannot be handled by constant gain feedback control. Since the output
response y(t) carries information about the state as well as the parameters, one may argue that in principle,
a sophisticated feedback controller should be able to learn about the plant changes by processing the
input/output (I/O) measurements (u, y) and choosing the appropriate controller from a list or design a
new one in real-time. The real-time or on-the-fly selection or design of the controller is what distinguishes
adaptive from nonadaptive schemes. Figure 35.1 illustrates this general adaptive control structure. The
structure covers almost all classes of adaptive control. The idea is to process the I/O and possibly auxiliary
measurements and decide what controller to use in real-time. Under this generic structure one can include
gain scheduling where the real time controller design block is just a look-up table with a scheduler logic.
In identifier-based schemes, this block includes a parameter estimator and the online calculation of the
controller whereas in nonidentifier-based schemes, the block may consist of multiple models, stored
controllers, and so on and an appropriate logic for selecting the right controller in real-time. Structures
such as direct and indirect adaptive control also fall into this general feedback structure.

35-1
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Plant
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FIGURE 35.1 General adaptive control structure.

The assumption that the plant is linear time-invariant with constant parameters, some or all of which
could be unknown, was used in almost all the early work on adaptive control. It was not till robust-
ness issues were resolved that controlling linear plants with unknown time-varying parameters became
possible [1]. An important part of most adaptive control schemes is the online parameter identifier or
adaptive law, which generates estimates of the unknown parameters to be used for calculating or updat-
ing the controller parameters in real-time. The way the adaptive law is combined with the control law
gives rise to different adaptive control structures. The class of adaptive controllers that employ online
parameter estimators are labeled as identifier-based adaptive control schemes. If instead of a realtime,
parameter identifier one could partition the parameter space into a finite set of regions for which a
controller could be designed a priori, the problem then becomes that of identifying in real-time which
of the controllers is the right one to be switched on. Similarly, a bank of possible models for the plant
can be formed. For each model a controller is designed a priori. A switching logic then can identify
which plant model is valid based on input output measurements, and therefore choose the appropri-
ate controller from a given list. These schemes that do not involve a parameter estimator or adaptive
law are referred to as nonidentifier-based. There is also the class of adaptive controllers which could
be a combination of identifier-based and nonidentifier-based schemes. In the following sections we
discuss these different structures and associated stability and performance results, after we present a
brief history how these different adaptive control structures and schemes evolved during the past 50
years.

35.1.1 Brief History

Research in adaptive control has a long history of intense activities that involved debates about the
precise definition of adaptive control, designs based on heuristics, stability-based schemes, examples of
instabilities, stability and robustness proofs, and applications.

Starting in the early 1950s, the design of autopilots for high-performance aircraft motivated an intense
research activity in adaptive control. High-performance aircraft undergo drastic changes in their dynamics
when they fly from one operating point to another that cannot be handled by constant-gain feedback
control. A sophisticated controller, such as an adaptive controller, that could learn and accommodate
changes in the aircraft dynamics was needed. Model reference adaptive control (MRAC) was suggested
by Whitaker and coworkers in [2] to solve the autopilot control problem. The sensitivity method and
the MIT rule was used to design the adaptive laws of the various proposed adaptive control schemes. An
adaptive pole placement scheme based on the optimal linear quadratic problem was suggested by Kalman
in [3]. The lack of stability proofs and the lack of understanding of the properties of the proposed adaptive
control schemes coupled with a disaster in a flight test caused the interest in adaptive control to diminish.

The 1960s became the most important period for the development of control theory and adaptive
control in particular. State-space techniques and stability theory based on Lyapunov were introduced.
Developments in dynamic programming [4], dual control [5], and stochastic control in general, and in
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system identification and parameter estimation played a crucial role in the reformulation and redesign of
adaptive control. By 1966 Parks and others [6] found a way of redesigning the MIT rule-based adaptive
laws used in the MRAC schemes of the 1950s by applying the Lyapunov design approach. Their work,
even though applicable to a special class of LTI plants, set the stage for further rigorous stability proofs in
adaptive control for more general classes of plant models in subsequent years.

The advances in stability theory and the progress in control theory in the 1960s improved the under-
standing of adaptive control and contributed to a strong renewed interest in the field in the 1970s. On
the other hand, the simultaneous development and progress in computers and electronics that made the
implementation of complex controllers feasible, contributed to an increased interest in applications of
adaptive control. The 1970s witnessed several breakthrough results in the design of adaptive control. A
Lyapunov stability-based design approach was used to design and analyze MRAC schemes in [7,8]. The
concepts of positivity and hyperstability were used in [9] to develop a wide class of MRAC schemes with
well-established stability properties. At the same time, parallel efforts for discrete-time plants in a deter-
ministic and stochastic environment produced several classes of adaptive control schemes with rigorous
stability proofs [10]. The excitement of the 1970s and the development of a wide class of adaptive control
schemes with well-established stability properties was accompanied by several successful applications.
The successes of the 1970s, however, were soon followed by controversies over the practicality of adaptive
control. As early as 1979 it was pointed out that the adaptive schemes of the 1970s could easily go unstable
in the presence of small disturbances [11]. The nonrobust behavior of adaptive control became very con-
troversial in the early 1980s when more examples of instabilities were published demonstrating lack of
robustness in the presence of unmodeled dynamics and/or bounded disturbances [12,13]. Understand-
ing the mechanisms of instabilities and finding ways to counteract them became the focus of subsequent
research studies. By the mid-1980s, several new redesigns and modifications were proposed and analyzed,
leading to a body of work known as robust adaptive control. An adaptive controller is defined to be robust
if it guarantees signal boundedness in the presence of “reasonable” classes of unmodeled dynamics and
bounded disturbances as well as performance error bounds that are of the order of the modeling error.
The work on robust adaptive control continued throughout the 1980s and involved the understanding of
the various robustness modifications and their unification under a more general framework [14]. Global
stability in the presence of unmodeled dynamics using various fixes and a dynamic normalizing signal
was established in [15] for discrete-time systems. The use of the normalizing signal together with the
switching σ-modification led to the proof of global stability in the presence of unmodeled dynamics for
continuous-time plants in [16].

The solution of the robustness problem in adaptive control led to the solution of the long-standing
problem of controlling a linear plant whose parameters are unknown and changing with time. By the
end of the 1980s several breakthrough results were published in the area of adaptive control for linear
time-varying plants [1]. The focus of adaptive control research in the late 1980s to early 1990s was
on performance properties and on extending the results of the 1980s to certain classes of nonlinear
plants with unknown parameters. These efforts led to new classes of adaptive schemes, motivated from
nonlinear system theory [17] as well as to adaptive control schemes with improved transient and steady-
state performance [18,19]. New concepts such as adaptive backstepping, nonlinear damping, and tuning
functions are used to address the more complex problem of dealing with parametric uncertainty in classes
of nonlinear systems.

In the late 1980s to early 1990s, the use of neural networks as universal approximators of unknown
nonlinear functions led to the use of on-line parameter estimators to “train” or update the weights of
the neural networks. Difficulties in establishing global convergence results soon arose since in multilayer
neural networks the weights appear in a nonlinear fashion, leading to “nonlinear in the parameters”
parameterizations for which globally stable on-line parameter estimators cannot be developed. This
led to the consideration of single-layer neural networks where the weights can be expressed in certain
parametric models that are convenient for estimation [20,21].
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In the mid-1980s to recent years, several groups of researchers started looking at alternative methods of
controlling plants with unknown parameters [22–27]. These methods avoid the use of online parameter
estimators in general and use search methods to identify unknown parameters, multiple models to char-
acterize parametric uncertainty, switching logic to identify the stabilizing controller, and so on. They were
motivated from the fact that in identifier-based schemes the estimated plant has to be stabilizable at each
instant of time in order for a controller to exist. Since there is no guarantee that the online estimator will
generate estimates that correspond to a stabilizable plant at all times, it raises theoretical and implemen-
tation issues that need to be addressed. Designing all the stabilizing controllers to cover all possible plant
parameter changes a priori eliminates this problem and transfers it to the ability of identifying which one
of the a priori designed controllers is the right one to use. One distinct advantage of these efforts which
are currently continuing is that well-established techniques from robust control for LTI systems can be
employed. In the following sections we will elaborate further on some of the most popular adaptive control
methodologies.

35.2 Identifier-Based Adaptive Control

35.2.1 Direct and Indirect Adaptive Control

An adaptive controller of the identifier-based class is formed by combining an online parameter estimator,
which provides estimates of unknown parameters at each time instant, with a control law that is motivated
from the known parameter case. The way the parameter estimator, also referred to as adaptive law, is
combined with the control law gives rise to two different approaches. In the first approach, referred to as
indirect adaptive control, the plant parameters are estimated online and used to calculate the controller
parameters at each instant of time. This approach has also been referred to as explicit adaptive control,
because the design is based on an explicit plant model. In the second approach, referred to as direct
adaptive control, the plant model is parameterized in terms of the controller parameters that are estimated
directly without intermediate calculations involving plant parameter estimates. This approach has also
been referred to as implicit adaptive control because the design is based on the estimation of an implicit
plant model.

The principle behind the design of direct and indirect adaptive control is conceptually simple. It
treats the parameter estimates at each instant of time as if they are the true ones. In indirect adaptive
control, the parameter estimates are associated with a plant parameterization, such as the coefficients of
its transfer function in the case of an LTI plant, and so on. Hence at each time, the estimated parameters
can be used to generate an estimated plant. The estimated plant is then treated as the true one and is
used to calculate the controller by following the same techniques as in the known parameter case. In
direct adaptive control, the plant is parametrized with respect to the desired controller parameters and
the estimator generates the estimated controller parameters directly. Again the estimated parameters at
each instant of time are treated as the true ones. This design approach of treating estimated parameters
at each time instant as the true parameters and using them to generate the controller parameters is
called certainty equivalence and has been used to generate a wide class of adaptive control schemes by
combining different online parameter estimators with different control laws. The idea behind the certainty
equivalence approach is that as the parameter estimates converge to the true ones, the performance of
the adaptive controller tends to that achieved by the desired controller in the case of known parameters.
The parameter estimator or adaptive law has a multiplicative nonlinearity that makes the closed-loop
system nonlinear and time-varying. Because of this, the analysis and understanding of the stability and
robustness of adaptive control schemes are more challenging, since most of the practical control design
tools incorporating robustness and performance specifications used for LTI systems are not applicable to
time-varying and nonlinear systems and therefore to adaptive control. For example, we can no longer use
pole location and gain or phase margins considerations to specify or analyze stability and performance.
Instead nonlinear techniques need to be developed specifically for adaptive control.
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35.2.2 Online Parameter Estimation

The first step in the design of online parameter estimation algorithms is to lump the unknown parameters
in a vector and separate them from known signals, transfer functions, and other known parameters in an
equation that is convenient for parameter estimation. In the general case, the class of parameterizations
of the form

z = θ∗Tφ, (35.1)

where θ∗ ∈ R
n is the vector with all the unknown parameters and z ∈ R, φ ∈ R

n are signals available
for measurement, are referred to as the linear static parametric model (SPM). The SPM may represent a
dynamic, static, linear, or nonlinear system. Any linear or nonlinear dynamics in the original system are
hidden in the signals z, φ that usually consist of the I/O measurements of the system and their filtered
values.

Another type of parameterization is of the form

z =W(q)
(
θ∗Tφ

)
, (35.2)

where z ∈ R, φ ∈ R
n are signals available for measurement and W(q) is a known stable proper transfer

function; q is either the shift operator in discrete time (i.e., q= z) or the differential operator (q= s)
in continuous time. We refer to Equation 35.2 as the linear dynamic parametric model (DPM). The
importance of the SPM and DPM as compared to other possible parameterizations is that the unknown
parameter vector θ∗ appears linearly. For this reason we refer to Equations 35.1 and 35.2 as linear in
the parameters parameterizations. This property is significant in designing online parameter estimators
whose global convergence properties can be established analytically.

In some cases, the unknown parameters cannot be expressed in the form of the linear in the parameters
models. In such cases, the parameter estimators algorithms based on such models cannot be shown to
converge globally. Special cases of nonlinear in the parameters models for which convergence results exist
is when the unknown parameters appear in the special bilinear form

z = ρ∗
(
θ∗Tφ+ z1

)
, (35.3)

z =W(q)ρ∗
(
θ∗Tφ+ z1

)
, (35.4)

where z ∈ R, φ ∈ R
n, and z1 ∈ R are signals available for measurement at each time t, and ρ∗ ∈ R,

and θ∗ ∈ R
n are the unknown parameters. The transfer function W(q) is a known stable transfer func-

tion. We refer to Equations 35.3 and 35.4 as the bilinear SPM (B-SPM) and bilinear DPM (B-DPM),
respectively.

In some applications of parameter identification or adaptive control of plants in state-space form whose
state x is available for measurement, the following parametric model may be used:

ẋ = Amx+Θ∗TΦ, (35.5)

where Am is a stable design matrix; Θ∗ is an unknown matrix; Φ= [xT uT ]T , and x, u are signal vectors
available for measurement. We refer to this class of parametric models as state-space parametric models
(SSPMs). It is clear that SSPMs can be expressed in the form of DPMs and SPMs. Another class of
state-space models that appear in adaptive control is

ẋ = Amx+BΘ∗TΦ, (35.6)

where B is also unknown but is positive definite, negative definite, or the sign of each of its elements
is known. We refer to this class of parametric models as B-SSPMs. The B-SSPM model can be easily
expressed as a set of scalar B-SPMs or B-DPMs.



�

�

�

�

� �

35-6 Control System Advanced Methods

The parameter estimation problem can now be stated as follows:

• Given the available measurements, generate θ(t), the estimate of the unknown vector θ∗, at each
time t. The parameter estimator or adaptive law updates θ(t) with time so that as time evolves, θ(t)
approaches or converges to θ∗. Since we are dealing with online parameter estimation, we would
also expect that if θ∗ changes, then the estimator will react to such change and update the estimate
θ(t) to match the new value of θ∗.

The online parameter estimators generate estimates at each time t, by using the past and current
measurements of signals. Convergence is achieved asymptotically as time evolves. For this reason they
are referred to as recursive parameter estimators to be distinguished from the nonrecursive ones, in
which all the measurements are collected a priori over large intervals of time and are processed off-line
to generate the estimates of the unknown parameters. Generating the parametric models (Equations 35.1
through 35.6) is the first step in the design of the appropriate parameter estimators. The essential idea
behind online estimation is the comparison of the observed system response z(t), with the output of
a parameterized model ẑ(θ; t) whose structure is the same as that of the plant model. The parameter
vector θ(t) is adjusted continuously so that ẑ(θ; t) approaches z(t) as t increases. Under certain input
conditions, ẑ(θ; t) being close to z(t) implies that θ(t) is close to the unknown parameter vector θ∗ of the
plant model. The adaptive law is usually a differential equation whose state is θ(t) and is designed using
stability considerations or simple optimization techniques to minimize the difference between z(t) and
ẑ(θ; t) with respect to θ(t) at each time t.

For the SPM case, the estimation model has the same form as the SPM with the exception that the
unknown parameter θ∗ is replaced with its estimate at time t, denoted by θ(t), that is,

ẑ = θT (t)φ, (35.7)

where ẑ is the estimate of z based on the parameter estimate θ(t) at time t. Since θ∗ is unknown,
the difference θ̃(t)= θ(t)− θ∗ is not available for measurement. Therefore, the only signal that we can
generate, using available measurements, that reflects the difference between θ(t) and θ∗ is the error signal

ε= ẑ− z

m2
s

, (35.8)

which we refer to as the estimation error. m2
s > 1 is a normalization signal designed to guarantee that

φ/ms is bounded. This property of ms is used to establish the boundedness of the estimated parameters
even when φ is not guaranteed to be bounded. A straightforward choice for ms is m2

s = 1+ aφTφ, a > 0.
If φ is bounded, we can take m2

s = 1. Using Equation 35.7 in Equation 35.8, we can express the estimation
error as a function of the parameter error θ̃, that is,

ε=− θ̃
Tφ

m2
s

. (35.9)

We update θ(t) in a direction that minimizes a certain cost of the estimation error ε. As an example,
consider the cost criterion

J(θ)= (z− θTφ)2

2m2
s

, (35.10)

which we minimize with respect to θ using the gradient method to obtain the adaptive law

θ̇=−Γ∇J(θ)= Γεφ. (35.11)

The gradient algorithm (Equation 35.11) guarantees ε, εms, θ̇ ∈ L2 ∩L∞, and θ ∈ L∞.
The procedure for estimating θ∗ in a linear model extends to the other parametric models: the details

of which can be found in [28,29].
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35.2.3 Model Reference Adaptive Control

MRAC has been one of the most popular approaches to adaptive control. The basic structure of an
MRAC scheme is shown in Figure 35.2 for the indirect scheme and Figure 35.3 for the direct scheme.
The reference model is chosen to generate the desired trajectory, ym, that the plant output yp has to
follow. The tracking error e1 = yp− ym represents the deviation of the plant output from the desired
trajectory. The closed-loop plant is made up of an ordinary feedback control law that contains the plant
and a controller C(θ) and an adjustment mechanism that generates the controller parameter estimates
θ(t) online.

MRAC schemes can be characterized as direct or indirect and with normalized or unnormalized
adaptive laws (Figure 35.4). In direct MRAC, the parameter vector θ of the controller C(θ) is updated
directly by an adaptive law, whereas in indirect MRAC, θ is calculated at each time t by solving a certain
algebraic equation that relates θwith the online estimates of the plant parameters through some mapping
F(·). In both direct and indirect MRAC with normalized adaptive laws, the form of C(θ), motivated from
the known parameter case, is kept unchanged. The controller C(θ) is combined with an adaptive law (or an
adaptive law and an algebraic equation in the indirect case) that is developed independently by following
the techniques of Section 35.2.2. This design procedure allows the use of a wide class of adaptive laws that
includes gradient, least-squares, and those based on the SPR–Lyapunov design approach [28,29].

Reference model

Plant

Adaptive
law

Reference
input r

Wm(S)

C(S, θc (t )) Gp (S, θ*p )

ym

e1

θc(t )

yp

up

–

+

θp(t )

F(·)

FIGURE 35.2 Indirect MRAC.
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FIGURE 35.4 Classes of MRAC.

For most classes of MRAC, the controller and the parameter estimator are of the form

u(t)= θT (t)φ(t), (35.12)

θ̇(t)= Γε(t)φ(t), (35.13)

for the direct scheme and

u(t)= θT (t)φ(t), (35.14)

θ̇p(t)= Γε(t)φp(t), (35.15)

θ(t)= F(θp(t)), (35.16)

for the indirect scheme. These schemes guarantee that all signals are bounded and the plant output tracks
the output of the reference model asymptotically with time for any input command. Furthermore, if the
input command is sufficiently rich in frequencies, then θ(t) converges to the true parameter value θ∗.

In order to meet the model reference control (MRC) objective we must assume that the plant transfer
function is minimum phase. The minimum-phase assumption is a consequence of the control objective
which is met by designing an MRC control law that cancels the zeros of the plant and replaces them with
those of the reference model in an effort to force the closed-loop plant transfer function from r to yp to be
equal to Wm(s). Other assumptions such as the knowledge of an upper bound for the plant order or the
knowledge of the relative degree may be relaxed at the expense of additional complexity in the control
and adaptive laws.

35.2.4 Adaptive Pole Placement Control

The assumption that the plant is minimum phase, that is, it has stable zeros, is rather restrictive in many
applications. For example, the approximation of time delays leads to plant models with unstable zeros.
Furthermore, the desired properties of the plant to be controlled are often expressed in terms of desired
pole locations to be placed by the controller. Consequently, there is no need to alter the zeros of the plant.
If the plant satisfies the properties of controllability and observability, then a controller always exists to
place the poles in the desired locations. These schemes are referred to as pole placement schemes and are
applicable to both minimum- and nonminimum-phase LTI plants. The combination of a pole placement
control law with a parameter estimator or an adaptive law leads to an adaptive pole placement control
(APPC) scheme that can be used to control a wide class of LTI plants with unknown parameters.

As in the MRAC case, the APPC schemes may be divided into two classes: the indirect APPC schemes
where the adaptive law generates online estimates of the coefficients of the plant transfer function that
are then used to calculate the parameters of the pole placement control law by solving a certain algebraic
equation; and the direct APPC where the parameters of the pole placement control law are generated
directly by an adaptive law without any intermediate calculations that involve estimates of the plant
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parameters. The direct APPC schemes are restricted to scalar plants and to special classes of plants where
the desired parameters of the pole placement controller can be expressed in the form of the linear or
bilinear parametric model. The indirect APPC schemes, on the other hand, are easy to design and are
applicable to a wide class of LTI plants that are not required to be minimum phase or stable. Because
of this flexibility in choosing the controller design methodology (observer-based state feedback, linear
quadratic, etc.) and adaptive law (least-squares, gradient, or SPR–Lyapunov type), indirect APPC is the
most general class of adaptive control schemes. This class also includes indirect MRAC as a special case
where some of the poles of the plant are assigned to be equal to the zeros of the plant to facilitate the
required zero-pole cancellation for transfer function matching.

In the indirect case, the APPC scheme is of the form

u(t)= θT (t)φ(t), (35.17)

θ̇p(t)= Γε(t)φp(t), (35.18)

F(θ(t), θp(t))= 0, (35.19)

where the last equation must be solved for the controller parameters θ(t) at each time t. It is a pole
placement equation to be solved pointwise in time. Such an equation has a unique solution only if
the estimated plant polynomials are strongly coprime at each time t. Such a strong condition cannot
be guaranteed by the adaptive law without any additional modifications, giving rise to the so-called
“stabilizability” or “admissibility” problem, which is the main drawback of indirect APPC. This drawback
can be eliminated by modifying the indirect APPC schemes at the expense of adding more complexity.
If the estimated plant polynomials are strongly coprime at each time t then all signals are bounded and
the tracking error converges to zero asymptotically with time. The same result holds if we replace the
gradient algorithm with any other adaptive law. Furthermore, if the reference trajectory is sufficiently
rich in frequencies then convergence is exponential and we have parameter convergence of θ(t) to the
true parameter value θ∗. The proof involves the manipulation of the estimation error and control law
equations to express the plant input up and output yp in terms of the estimation error in an equation of
the form

ẋ(t)= A(t)x(t)+ bθ̃Tφ+ d, (35.20)

where the state x is formed by the plant input up and output yp and their derivatives, d is a bounded vector,

and θ̃ is the parameter error. The matrix A(t) has stable eigenvalues at each frozen time t by design as a
result of the pole placement approach. Furthermore, the adaptive law guarantees that

∥∥Ȧ(t)
∥∥ ∈ L2. These

two properties are used to show that the homogeneous part of Equation 35.20 is uniformly asymptotically
stable (u.a.s.). Using the properties of the L2 norm and Bellman–Gronwall lemma, we can establish
boundedness of up and yp and also θ̃Tφ ∈ L2 ∩L∞. The convergence of e1 to zero follows by using the
control and estimation error equations to express e1 as the output of proper stable LTI systems whose
inputs are in L2 ∩L∞. In the direct case and MRAC, the form of Equation 35.20 is the same with the
exception that the matrix A is time-invariant with stable eigenvalues, implying that the homogeneous
part is u.a.s. The rest of the analysis follows the same way as in the indirect case using the same tools.
Similar results and techniques can be established for discrete time systems. A wide class of MRAC and
APPC can be designed to meet the performance requirements of signal boundedness and convergence
of the regulation or tracking error to zero. This speed of convergence is asymptotic unless the reference
input has a sufficient number of frequencies in which case we also have parameter convergence. In most
applications the use of sufficiently rich signals is not possible as it violates the tracking performance
requirements. In such case, the estimated parameters may not converge to any constant values but
continuously move on some manifolds that guarantee signal boudedness and convergence of the tracking
error to zero. This ability of the adaptive control schemes to guarantee tracking performance without
having parameter convergence to the true values is remarkable. The price paid, however, is that in the
presence of uncertainties the schemes may lose stability as discussed in the next section.
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35.2.5 Instability Phenomena in Adaptive Systems

The adaptive laws and control schemes discussed in previous section are based on a plant model that is
free of noise, disturbances, and unmodeled dynamics. These schemes are to be implemented on actual
plants that most likely deviate from the plant models on which their design is based. An actual plant may
be infinite dimensional, nonlinear and its measured input and output may be corrupted by noise and
external disturbances. The effect of these discrepancies on the stability and performance of the schemes
designed using idealized models is therefore of paramount importance from the practical point of view.
Let us examine the effect of modeling errors using the following simple plant example:

y(t)= θ∗u(t)+ d(t), (35.21)

where d is an external bounded disturbance. The simple estimator

θ̇(t)= γε(t)u(t), ε(t)= y(t)− θ(t)u(t) (35.22)

is designed assuming that the external disturbance does not exist, that is, d = 0. In the ideal case (d = 0)
we can establish that ε, θ ∈ L∞, and ε→ 0 as t →∞. When d is different than zero these results cannot be
guaranteed. More important is that the boundedness of the estimated parameters cannot be guaranteed
either. In fact, we can find an input u such that ε→ 0 and |θ| →∞ as t →∞. This rather strange
phenomenon is better understood by analyzing the parameter error equation

˙̃
θ(t)=−γu2(t)θ̃(t)+ γd(t)u(t) (35.23)

obtained from Equation 35.22.
The homogeneous part of Equation 35.23 is not guaranteed to be u.a.s for all possible bounded inputs u.

Consequently, bounded input does not imply bounded output. This instability phenomenon where the
estimated parameters drift to infinity is known as parameter drift. It is mainly due to the pure integral
action of the adaptive law, which, in addition to integrating the "good" signals, integrates the disturbance
term as well, leading to the parameter drift phenomenon.

Another kind of instability is the so-called high-gain instability. Consider the plant transfer function

1−μs

(s− a)(1+μs)
= 1

s− a

[
1− 2μs

1+μs

]
, (35.24)

where μ is a small positive number which may be due to a small time constant in the plant. Let us now
design an adaptive controller for the simplified first-order plant (μ= 0) and use it to control the actual
second-order plant, where μ> 0. The adaptive control law

u(t)=−k(t)y(t), k̇(t)= γy2(t) (35.25)

guarantees that whenμ= 0, u, k, y ∈ L∞, and y → 0 as t →∞ for all initial conditions. But whenμ �= 0,
for k(0) > 1/μ− a, we have u, k, y →∞ as t →∞, indicating that the presence of modeling errors
reduced the stability of the closed-loop system from global to local.

The instability examples presented demonstrate that the adaptive schemes designed for ideal plants, that
is, plants with no modeling errors may easily go unstable in the presence of disturbances or unmodeled
dynamics. The lack of robustness is primarily due to the adaptive law which is nonlinear in general
and therefore more susceptible to modeling error effects. The lack of robustness of adaptive schemes in
the presence of bounded disturbances was demonstrated as early as 1979 [11] and became a hot issue
in the early 1980s when several adaptive control examples are used to show instability in the presence
of unmodeled dynamics and bounded disturbances [12,13]. It was clear from these examples that new
approaches and adaptive laws were needed to assure boundedness of all signals in the presence of plant
uncertainties. These activities led to a new body of work referred to as robust adaptive control.
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35.2.6 Robust Adaptive Laws

It turns out that the destabilizing effects of bounded disturbances and dynamic uncertainties can be
counteracted by modifying the adaptive laws developed for the ideal plants using techniques such as
leakage, dead zones, projection, signal normalization, and so on. One unique characteristics of these
modifications is that they remove the pure integral action of the adaptive laws at all or some of the time.
In this section we extend the results of Section 35.2.2 to a general class of parametric models with modeling
errors that may arise in the online parameter estimation problem of a wide class of plants. If the objective
is parameter convergence, then parameter drift can be prevented by making sure that the regressor vector
is persistently exciting (PE) with a level of excitation higher than the level of the modeling error. In many
applications, such as in adaptive control, the plant input is the result of feedback and cannot be designed
to be sufficiently rich. In such situations, the objective is to drive the plant output to zero or force it
to follow a desired trajectory rather than convergence of the online parameter estimates to their true
values. It is therefore of interest to guarantee stability and robustness even in the absence of persistence
of excitation. This can be achieved by modifying the adaptive laws of the previous sections to guarantee
stability and robustness in the presence of modeling errors independent of the properties of the regressor
vector φ.

A class of robust modifications involves the use of a small feedback around the “pure” integrator in the
adaptive law, leading to the adaptive law structure

θ̇(t)= Γε(t)φ(t)− σl(t)Γ(t)θ(t), (35.26)

where σl > 0 is a small design parameter and Γ= ΓT > 0 is the adaptive gain. The above modification is
referred to as the σ-modification or as leakage [12,28,30]. Different choices of σl(t) lead to different robust
adaptive laws. The simpler choice is the fixed σ-modification:

σl(t)= σ > 0, ∀t ≥ 0. (35.27)

Another possible choice of σl(t) leads to the switching σ-modification: and M0 is known:

σl =

⎧⎪⎨
⎪⎩

0 if |θ(t)| ≤M0( |θ(t)|
M0

− 1
)q0
σ0 if M0 < |θ(t)| ≤ 2M0,

σ0 if |θ(t)|> 2M0

(35.28)

where q0 ≥ 1 is any finite integer, σ0 > 0 is a design constant, and M0 is a known upper bound of |θ∗|.
Another effective way to guarantee bounded parameter estimates is to use projection to constrain

the parameter estimates to lie inside a bounded convex set in the parameter space that contains the
unknown θ∗. By requiring the parameter set to be bounded, projection can be used to guarantee that the
estimated parameters are bounded by forcing them to lie within the bounded set. As an example, consider
the set

P =
{
θ | θTθ−M2

0 ≤ 0
}

, (35.29)

where M0 is chosen so that M0 > |θ∗|. The adaptive law with projection becomes

θ̇=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Γεφ

if θTθ< M2
0 or

if θTθ=M2
0

and (Γεφ)Tθ≤ 0(
I − Γθθ

T

θTΓθ

)
Γεφ otherwise.

(35.30)

In the presence of modeling errors the static linear parametric model is of the form

z = θ∗Tφ+η, (35.31)
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where η is the modeling error term. Let us now consider the estimation error

ε= z− θTφ

m2
s

= −θ̃
Tφ+η
m2

s
. (35.32)

The signal ε that drives the adaptive law is a function of the good signal that depends on the parameter
error θ̃, and of the modeling error η. Large εm2

s implies that θ̃ is large and that the effect of the modeling
error η is small, and therefore the parameter estimates driven by ε move in a direction which reduces
θ̃. When εms is small, however, the effect of η may be more dominant than that of the signal θ̃Tφ, and
the parameter estimates may be driven in a direction dictated mostly by η. Thus, it seems reasonable
to update the parameter estimate θ only when the signal θ̃Tφ is large relative to the disturbance η and
switch-on adaptation when θ̃Tφ is small relative to the size of η. This method of adaptation is referred to
as dead zone because of the presence of a zone or interval where θ is constant, that is, no updating occurs.
The adaptive law in this case takes the form:

θ̇(t)=
{
Γεφ if |εms|> g0

0 otherwise,
(35.33)

where g0 is a known upper bound of the normalized modeling error η/ms. In other words, the parameters
are updated in the direction of the steepest descent only when the estimation error is large relative to the
modeling error, that is, when |εms|> g0.

Another important modification that helps improve robustness and performance is the use of a dynamic
normalizing signal in the adaptive law. The dynamic normalizing signal is designed to bound from above
the modelling error signals and in some sense make sure that the speed of adaptation is slower than
the speed with which the modeling error terms change. We demonstrate the design of the dynamic
normalizing signal for the SPM with modeling error

z(t)= θ∗φ(t)+η(t), (35.34)

where η(t)=Δ1(s)u(t)+Δ2(s)y(t) in the case of an LTI plant with additive and multiplicative uncer-
tainties. Δ1(s), Δ2(s) are strictly proper transfer functions with stable poles. Our objective is to design
a dynamic normalizing signal ms so that η/ms ∈ L∞. We assume that Δ1(s), Δ2(s) are analytic in
/[s]>−δ0 for some known δ0 > 0. If we define nd = ‖ut‖2δ0 +

∥∥yt
∥∥

2δ0
which can be generated by the

differential equation
ṅd(t)=−δ0nd(t)+ u2(t)+ y2(t). (35.35)

then it follows that m2
s = 1+ nd bounds |η(t)| from above and

|η(t)|
ms

≤ ‖Δ1‖2δ0 +‖Δ2‖2δ0 , (35.36)

where ‖H‖2δ � 1√
2π

{∫ 2π
0

∣∣∣H(jω− δ
2 )
∣∣∣2 dω

}1/2

. The normalizing signal ms, used in the adaptive laws

for parametric models free of modeling errors, is required to bound the regressor φ from above. In the
presence of modeling errors, ms is chosen to bound both φ and the modeling error η from above for
improved robustness properties. An example of such normalizing signal is

m2
s = 1+ n2

s + nd , (35.37)

where ns is the static part and nd the dynamic one. Examples of static and dynamic normalizing signals
are n2

s = φTφ or n2
s = φT Pφ, where P = PT > 0, and

ṅd(t)=−δ0nd(t)+ δ1(u2(t)+ y2(t)) (35.38)
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or

nd = n2
1, ṅ1(t)=−δ0n1(t)+ δ1(|u(t)| + |y(t)|) (35.39)

or

nd = n2∞, n∞ = δ1 max

(
sup
τ≤t
|u(τ)| , sup

τ≤t
|y(τ)|

)
. (35.40)

Any one of the choices (Equations 35.38 through 35.40) can be shown to guarantee that η/ms ∈ L∞.
Since φ=H(s)[u y]′, for an appropriate transfer function H(s), the dynamic normalizing signal can be
chosen to bound φ from above, provided that H(s) is analytic in R[s] ≥ − δ2 , in which case m2

s = 1+ nd

bounds both φ and η from above.
The above adaptive laws are shown to be robust with respect to a wide class of plant model uncertainties

and can be combined with control laws to generate robust adaptive control schemes. Let us consider the
plant

y(t)= G0(s)(1+Δm(s))u(t)+ d(t), (35.41)

where G0(s) represents the dominant or modeled part of the plant transfer function,Δm(s) is a multiplica-
tive perturbation, and d(t) is a bounded disturbance, that is, |d(t)|< d0. It is important to note that we
can rewrite Equation 35.41 in the form of Equation 35.34. Suppose there exists a strictly proper transfer
function W(s) analytic in R[s] ≥ −δ0/2 and such that W(s)Δm(s) is strictly proper. The result is that
there exists a δ∗ > 0 such that if cΔ2∗ < δ∗, where Δ∗ = ‖W(s)Δm(s)‖2δ0 and c > 0 is a finite constant,
then all the signals are bounded and the tracking error e1 satisfies

1

T

∫ t+T

t
e2

1(τ) dτ≤ c0(Δ2∗ + d2
0 + f0)+ c1

T
, ∀t > 0 (35.42)

for any T > 0 and some positive constants c0, c1, where f0 = 0 in the case of switching σ-modification
and projection, and f0 > 0 in the case of fixed σ-modification (f0 = σ) and dead zone ( f0 = g0). Due
to the presence of modeling errors we no longer have exact convergence of the tracking error to zero.
Rather the tracking error is of the order of the modeling error in the mean square sense. This, however,
does not guarantee that the tracking error will be bounded from above by the modeling error bound
at all times. In fact, simulations show that a phenomenon known as “bursting” could occur. That is the
tracking error converges to a small value where it stays for some time before it bursts to large values and
then again converges back to the small steady-state value. Condition (Equation 35.42) does not exclude
such phenomena. One explanation of the “bursting” phenomenon is that when the signals are small the
modeling error becomes dominant and could force the estimated parameters to drift to the unstable
region. The plant output then grows causing the good signals to be come dominant which then force the
estimated parameters to move to a region that corresponds to a smaller tracking error. This phenomenon
can keep repeating itself and is a major drawback. One way to get rid of it is to use PE signals but this is
not practical as such signals will interfere with the performance objective. A more practical approach is
to use a dead zone to switch-off adaptation when convergence to steady-state values is achieved [1].

35.3 Nonidentifier-Based Adaptive Control

The stabilizability issues encountered in the case of indirect adaptive control as well as the nonlinearities
introduced by the adaptive law in the feedback control system do not allow the use of the powerful control
design techniques developed for LTI plants. Because of these two main reasons a number of researchers
explored the possibility of controlling plants with unknown parameters without necessarily following the
traditional adaptive control procedure that relies on the certainty equivalence principle. This let to a wide
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class of adaptive schemes with and without parameter estimation, with switching and supervisory logic in
an effort to utilize as much as possible tools from robust control of known LTI systems. In the following
sections we discuss some of these main approaches.

35.3.1 Switching and Multiple Models

In multiple model adaptive control (MMAC) schemes [22,31], since the plant parameters are unknown,
the parameter space is parameterized with respect to a set of plant models, which is used to design a finite
set of controllers, so that each plant model from the set can be stabilized by at least one controller from
the controller set. A switching approach is then developed so that the stabilizing controller is selected
online based on the I/O data measurements. The general structure of this MMAC with switching, as it is
often called, is shown in Figure 35.5.

In Figure 35.5, N controllers are used to control a plant whose parameters θ∗ are unknown or could
change with time. The a priori knowledge of where the elements of θ∗ are located, such as lower and
upper bounds, is used to parameterize the plant and generate a finite set of nominal models M1, . . . , MN ,
as well as a finite set of candidate controllers C1, . . . , CN so that for each possible plant there exists at
least one stabilizing controller from the set of the N controllers. This by itself could be a difficult task in
some practical situations where the plant parameter regions are uncertain or change in an unpredictable
manner. Furthermore, since there is an infinite number of plants within any given bound of parametric
uncertainty, finding controllers to cover all possible parametric uncertainties may also be challenging.
It is usually assumed that the set of controllers with the property that at least one of them is stabilizing
is available. Once the set of controllers with the stabilizing property is available, the problem of finding
the stabilizing one using I/O data has to be resolved. This is achieved by the use of a switching logic that
differs in detail from one approach to another.

An example of such logic is described as follows: each nominal model Mi is used to construct an output-
predictor Ei , a dynamical system whose inputs are the output y and the input u of the unknown plant,
and whose output is the prediction output ŷi . Each ŷi will converge to y asymptotically if the transfer
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FIGURE 35.5 The MMAC architecture.
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function of the unknown plant is equal to the nominal process model transfer function Mi and there
is no noise or disturbances. Controller selection is decided by comparing in real-time suitably defined
norm-squared prediction errors, also referred to as performance signal. Typically, the performance signal
is an exponentially weighted integral of prediction errors

μi(t)=
∫ t

0
e−2λ(t−τ)e2

i (τ) dτ. (35.43)

where ei(t)= y(t)− ŷi(t) is the prediction error associated with the ith nominal model.
In Figure 35.5, σ(t) is a piecewise continuous switching signal that takes on values from the candidate

controller index set. The candidate controller associated with the smallest performance signal is placed
in the loop according to an appropriate switching logic. The stability results associated with the MMAC
schemes state that there exists a number δ̄ such that if the unmodeled dynamics are smaller than δ̄, then
all the closed-loop signals remain bounded. Furthermore, switching stops after some finite time [32].

Following the idea of supervisory control, logic-based switching and multiple models are combined
with conventional adaptive control [22] with the objective of improving the sometimes poor transient
performance of conventional adaptive schemes.

Another MMAC approach is the so-called robust MMAC (RMMAC), whose basic structure is described
in Figure 35.6. RMMAC provides guidelines for designing both the candidate controller set and the
supervisor [33,34]. The candidate controller set is designed by using robust control techniques such as the
mixed-μ synthesis, in order to account for robust stability and performance requirements. The supervisor
identifies the nearest probabilistic model via a dynamic hypothesis testing, and uses the probabilities
obtained to weight the output of each candidate controller.
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ū
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FIGURE 35.6 The RMMAC architecture.
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Given a state-space description of the plant, where the system matrices depend upon a real-valued
parameter vector θ ∈Ω, the spaceΩ is partitioned into N small subsetsΩi . For each subsetΩi a candidate
controller Ci is designed and a stochastic LTI model Mi is developed, including disturbance covariances,
which are used to design a set of N Kalman filters (KFs), one for each model Mi .

The supervisor comprises the set of KFs plus a posterior probability evaluator. For each KF, the residual
ri(t)= y(t)− ŷi(t|t− 1) is calculated. The posterior probability Pi(t), that is the probability that the model
corresponding to the ith KF is the true one, is computed using the recursive formula

Pi(t)= βierT
i (t)S−1

i ri(t)

∑N
j=1 βje

rT
j (t)S−1

j rj(t)
Pi(t− 1) (35.44)

with βi = 1/
√

2π det(Si), and Si is the residual covariance matrix, which can be precalculated using the
steady-state covariance equations for the KF. The control input is the sum of the output of each candidate
controller, weighted with the probabilities obtained:

u(t)=
N∑

i=1

Pi(t)ui(t). (35.45)

The RMMAC scheme requires the disturbances to be Gaussian random variables with known covari-
ance. Furthermore, the KFs must satisfy a Baram proximity measure (BPM) requirement (see [33] for
details). When all the assumptions are satisfied, extensive simulations show, at least empirically, the
goodness of the method under various scenarios. A drawback of the scheme is that the performance
of the RMMAC scheme may be sensitive to model assumptions (disturbance model, initial conditions,
etc.). For this reason, the same authors developed a variant architecture, called RMMAC/XI, in order
to account for possible performance degradation of the standard RMMAC when the plant disturbances
have wide variability, at the expense of doubling the number of KFs. Another drawback of the method is
that currently, there are no stability results. Despite these drawbacks, the scheme has been demonstrated
to perform very well compared to other schemes in many situations. Recently, the RMMAC scheme was
integrated with the Stability Overlay (SO), an algorithm that can be integrated with virtually any MMAC
architecture, guaranteeing the stability of the closed-loop system, while preserving the high levels of per-
formance observed in the simulation of the standard RMMAC, whenever the model assumptions are not
violated [35]. The SO is based on a falsification philosophy: a controller receives a “reward” if a stability
test is satisfied and the controller is disqualified or not, based on its rewards. However, unlike [36], where
the rewards are also used to achieve performance, the SO is only responsible for the I/O stability of the
plant, constraining the controllers that can be selected at each sampling time. The RMMAC algorithm is
run in parallel in order to satisfy the posed performance requirements.

35.3.2 Unfalsified Adaptive Control

Another class of supervisory-based adaptive control schemes proposed in the literature aimed to relax
the assumptions on the plant model required in the multiple model adaptive schemes. This family of
nonidentifier-based schemes, referred to as unfalsified adaptive switching control (UASC), shown in
Figure 35.7, compares at every time instant certain performance-related test functionals generated using
a virtual reference input signal [36,37]. The currently operating controller is substituted whenever its
tested performance turns out to be worse than the inferred performance of another candidate controller.
Unfalsified control requires no a priori knowledge of the plant [26], and relies solely on I/O data to choose
the stabilizing controller from a given set of controllers.

Given an unknown plant P and a family of N LTI controllers C = {Ci(s), i ∈←−N }, the switching super-
visor aims at controlling the uncertain plant by switching at any time a selected controller Cσ(t) from
a set of candidate controllers according to a specified switching logic. The so-called fictitious reference
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signals or virtual reference vi , are constructed using I/O data. Given at time t a set of past measured data
(u(·), y(·)) obtained over [0, t] from the feedback system (P, Cσ(·)), vi equals the fictitious reference that,
if injected into the feedback system (P, Ci) would reproduce the unknown plant I/O pairs (u(·), y(·)).

For a candidate controller Ci , the performance index, or test functional Ji is calculated from past I/O
data. The functional is a measure of performance of the closed-loop system over the interval [0, t], had
the controller Ci been in the closed loop with the corresponding vi as the reference signal and the past
I/O pairs (u(·), y(·)) as the measured data. A typical test functional used in UASC is

Ji(t)= max
0≤τ<t

Li(τ), Li(τ)= ‖ε
τ
i ‖2

2+ ρ‖uτ‖2
2

m2+‖vτi ‖2
2

, (35.46)

where ρ> 0 is a design constant, εi(τ) � vi(τ)− y(τ), and m2 > 0 prevents the denominator from assum-
ing values too close to zero. The notation ‖xτ‖2 stands for the l2 norm of the sequence x(·) up to time τ.
The selection of the controller index σ(t) is made, at each time t, via a hysteresis switching logic [24]. The
virtual reference is well defined, provided that the Ci ’s be causal and stably causally invertible (CSCI).
While the results summed up hinge upon the assumption that all Ci ’s be CSCI, in [38], it is proved that
the same conclusions hold true for possibly nonstably invertible Ci ’s provided that a modified virtual
reference, be appropriately used.

The main positive feature of UASC schemes is the fact that, even in the absence of any prior information
on the uncertain plant (the plant can be of any order, unstable, nonminimum phase, nonlinear or of infinite
order), they can select in finite time a final controller yielding, a finite affine gain from the reference to
the data, under the minimal conceivable requirement, namely the existence of a stabilizing candidate
controller in the candidate controller set. One of course could argue that to design a stabilizing controller
to start with you need to know something about the plant. One major drawback is that there is no stability
result that guarantees that convergence to the stabilizing controller will be achieved in general. In fact,
the system could converge to an unstable controller leading to an internally unstable closed-loop system
when the adaptive procedure is switched off. Since the method is driven by data, the quality of the data
is crucial. If the data do not carry information about the plant or are corrupted by initial conditions
and/or disturbances and other plant uncertainties the wrong controllers could be selected leading to
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large transients which from the practical point of view are unacceptable. Such bad transients have been
observed by independent simulation studies [39,40].

When candidates of possible plant models are available, they can be incorporated into the design
of the candidate controllers, and the construction of test functionals, to obtain a multimodel UASC
(MUASC) scheme with improved performance [27]. The multimodel based UASC approach consists
of embedding in the UASC scheme a family of nominal models Mi pairwise associated with the given
candidate controllers Ci in such a way that the feedback interconnection (Mi , Ci) is stable.

Consider now, according to Figure 35.8, the feedback interconnection of each model Mi with the
corresponding Ci {

yi(t)=Mi(ui)(t),
ui(t)= Ci(vi − yi)(t),

where vi is the virtual reference input for the ith controller. Define zi(t)= [ui(t) yi(t)
]′

, and z̃i(t)=
[ ũi(t) ỹi(t) ] ′ = z(t)− zi(t). Note that z̃i measures the discrepancy of (P, Ci) from the tuned-loop (Mi , Ci).

The MUASC algorithm replaces the test functional (Equation 35.46) with the multimodel-based test
functional

Ji(t)=max
τ<t

Λi(τ), (35.47)

Λ
1/2
i (τ)=

{
0, if ‖zτ‖2 = 0,
‖z̃τi ‖2‖zτi ‖2

, elsewhere.
(35.48)

In [27], it is shown that the computation of vi can be avoided in order to calculate Equations 35.47
and 35.48, so that the validity of Equations 35.47 through 35.48 holds true for general controllers Ci , even
when, as in the case of nonstably invertible controllers, vi is not well defined.

As in UASC, for the MUASC scheme, stability is guaranteed under the minimal conceivable assumption
that a stabilizing candidate controller exists. Furthermore, with MUASC, guidelines are provided how
to design the family of nominal models and the family of candidate controllers, so that the number of
controller switching is reduced and the chance that destabilizing controllers be switched-on is moderated,
which helps reduce transients. These properties cannot in general be guaranteed in schemes with no
nominal models. Extensive simulation studies demonstrate the advantages of MUASC.
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35.4 Mixed Identifier and Nonidentifier-Based Tools

35.4.1 Adaptive Control with Mixing

To reduce sensitivity to model assumptions that occurs in RMMAC, a design, called adaptive mixing
control (AMC), shown in Figure 35.9, substitutes the posterior probability evaluator with a robust online
parameter estimator plus a mixing strategy for the output of each candidate controller [41].

The supervisor consists of two subsystems: the online parameter estimators and the mixer. By monitor-
ing the results of the robust parameter estimators at each time t the adaptive control mixer decides which
outputs of controllers to combine and pass on to the plant. The candidate controllers are designed to
handle overlapping parameter sets and therefore mixing their outputs up when the estimated parameters
fall into these overlapping parameter sets is appropriate. Another advantage is that no switching takes
place but rather a smooth transition from one controller or combination of controllers to another. We
present below some of the technical details and stability results of the AMC approach. Consider the SISO
LTI plant:

y = G0(s, θ∗)(1+Δm(s))(u+ ξ)+ ζ, (35.49)

where G0(s, θ∗) represents the nominal plant; the vector θ∗ ∈Ω contains the unknown parameters of
G0(s, θ∗); Δm(s) is an unknown multiplicative perturbation; and ξ, ζ are bounded disturbances, that is,
|ξ(t)| ≤ ξ0, |ζ(t)| ≤ ζ0, ∀t ≥ 0.

As with the MMAC schemes, the parameter uncertainty setΩ is divided into n smaller subsetsΩi , and
a family of N candidate controllers Ci(s), . . . , CN (s) is designed using the powerful tools from robust con-
trol for LTI plants. We use a mixing strategy to develop the multicontroller C(β, θ), which is constructed
from Ci(s), . . . , CN (s) by taking into account linear combinations of these controllers. The multicon-
troller depends on the mixing signal β ∈ R

N which determines the participation level of the candidate
controllers generating a mix of candidate control laws. For fixed values of β ∈ [0, 1]N , the multicontroller
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FIGURE 35.9 The AMC architecture.
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u=−C(s; β, θ)y has the state-space form

ẋC = AC(β, θ)xC +BC(β, θ)y,

u=−CC(β, θ)xC .

The mixer determines the participation level βi of each candidate controller, through the map β :Ω �→
[0, 1]N . Construction of the multicontroller involves interpolating the candidate controllers over the
parameter overlaps. The mixing strategy must be designed to ensure stability on the overlapping regions.
As in gain scheduling, interpolation methods may not satisfy pointwise stability over the setΩ; therefore
the controllers should be designed by taking into account the interpolation used in order to guarantee
stability.

The adaptive mixing law approach replaces θ∗ with its estimate θ. Because of the presence of multiplica-
tive uncertainty Δm(s) and disturbances ξ, ζ, a robust online parameter estimator, like those developed
in Section 35.2.6 is used.

The main stability properties of the AMC scheme for the case of regulation are [41]

1. IfΔm, ξ, ζ= 0, then u, y → 0, u̇, ẏ → 0 as t →∞.
2. If Δm, ξ, ζ �= 0, There exists μ∗ > 0 such that, if cΔ2

1 < μ∗, where Δ1 depends on Δm, and c > 0
is a finite constant, then the AMC scheme guarantees u, y, u̇, ẏ ∈ L∞, and

∫ t

0

∣∣y(τ)
∣∣2 dτ≤ c0μ

2t+ c1, (35.50)

where μ2 = c(Δ2
1+ ξ2

0+ ζ20).

The stability properties and performance in simulations of different schemes have been studied using
a benchmark example in [40] demonstrate the advantages and disadvantages of the different approaches.

35.5 Conclusions

The area of robust adaptive control has grown to include classes of different techniques and algorithms
based on different assumptions with the goal to control plants with large parametric uncertainties which
cannot be handled by nonadaptive schemes. A significant achievement of most of these efforts is that
robust adaptive control in general can effectively deal with parametric uncertainties as no other schemes.
In addition, it can also handle modeling errors, bounded disturbances, noise, and so on. While some
schemes perform better than others, in general, all schemes suffer from the same fundamental limitations.
Since they all rely on online learning to design or choose the appropriate controller, the plant performance
relies on the quality of learning which in turn relies on the quality of the I/O data it processes. Corruption
of the I/O data by initial conditions, disturbances, modeling errors, and so on could influence learning
and lead to wrong selection of controllers for some intervals of time especially initially. This will lead
to large transients which in turn improve the situation as the signal-to-noise ratio increases aiding the
learning process and leading to the selection of a better controller. The scheme that causes the least
transients is obviously better. Expecting an adaptive scheme to have similar transient behavior as in
the nonadaptive case is very unrealistic and possibly counter intuitive in general. Another fundamental
limitation of robust adaptive control is that the closed-loop system is nonlinear. Therefore, poles and
zeros no longer make sense and measures such as gain and phase margins, bandwidth, and so on are
not applicable as they are only defined for LTI systems. The nonidentifier-based schemes aim to reduce
this drawback by switching from one LTI controller to another so that at least within each time interval
the closed loop system behaves as an LTI system. Even in this case, however, convergence to the desired
stabilizing controller cannot be guaranteed unless there is persistence of excitation which is unrealistic in
most practical situations. Convergence to a nonstabilizing controller which in the closed loop guarantees
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zero regulation or tracking error is possible and this is what is usually achieved. As long as the scheme is
switched-on, then every thing will stay as it is till the plant parameters change and that is when switching
will start again. The library of adaptive control tools developed together with a good understanding of the
advantages and limitations of different tools as well as a good understanding of the limitations associated
with trying to control a plant while at the same time trying to learn its parameters from I/O data are very
important in every application of robust adaptive control.
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36.1 Introduction

Iterative learning control (ILC) is a performance-enhancing feedforward control scheme for systems that
repeat the same trajectory or task. Before the start of each iteration of the trajectory, the designed ILC
algorithm uses the error signal from the previous iteration(s) to generate an updated feedforward control
signal. The learning process converges after anywhere from a few to tens of iterations, depending on
the algorithm. In the literature it is commonly reported that ILC improves the performance of physical
systems by several orders of magnitude, measured by root mean square (RMS) or maximum error, as
compared to those systems’ feedback controllers.

The essential caveat in ILC is system repeatability, meaning that multiple repetitions of the trajectory
or task yield nearly identical error signals. Although this may appear to be very restrictive, many practical
systems are highly repetitive. This is particularly true in manufacturing systems, as will be discussed
shortly. When the system is repeatable, one expects that for a given trajectory there exists a control signal
that yields zero or nearly zero error. In practice, it is rare that this control signal is known a priori.
However, in applications where the trajectory repeats ILC is used to search for, or learn, the optimal
control signal. The process is illustrated in Figure 36.1.

ILC was originally developed in the mid-1980s for robotics [2] and, although robotics remains an
important application area, it has expanded to a much broader class of manufacturing and chemical
processing systems. Examples (see references in [3,5,6]) include computer numerically controlled (CNC)
machine tools, wafer stage motion systems, injection molding machines, aluminum extruders, cold rolling

36-1
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FIGURE 36.1 Time- and iteration-domain evolution of signals in ILC.

mills, induction motors, chain conveyor systems, rapid thermal processing, and semibatch chemical
reactors. There are many books and surveys on ILC [3–6,9,12,13,18]. This chapter focuses on summarizing
the main ideas in ILC and presenting established design techniques for linear systems. The reference list
to this chapter is a good starting place for the reader interested in continuing beyond the information
contained in the following sections.

36.1.1 Implementation Hardware

Before delving into the algorithms of ILC, the practicing engineer may be interested in the hardware
needs of such an advanced control algorithm. Most advantageously, ILC is usually implemented as an
offline algorithm, in between iterations. In an offline mode, the ILC algorithm can usually be computed
using the control system’s existing digital signal processor (DSP) or on another computational platform
such as a PC. In high-throughput manufacturing where offline time is expensive, a simple ILC algorithm
is preferable to minimize downtime. Using a modern DSP, offline time should be on the order of mil-
liseconds for all but the most complex algorithms or longest trajectories. Additionally, offline time can be
eliminated by “freezing” the control signal after convergence. That is, learning is used only on the first few
iterations of the process until the control signal converges. The remaining process runs skip the learning
step, eliminating downtime, and simply reuse the already converged feedforward control signal.

Because ILC requires the storage of error signals and control signals for offline computation, memory
capacity (usually RAM) must be considered. The amount of memory required is calculated as follows:

Memory (bits)= 2 × No. of time
samples/iteration

× Bits of
resolution

× No. of axes × Order of
algorithm

,

where “2” is used to account for the error signal and the control signal.

36.1.2 Outline

The remainder of this chapter is organized as follows. A basic ILC algorithm is introduced and tuned for
a servo system example problem in Section 36.2. Two design frameworks are presented in this chapter.
The first one, frequency-domain design, is presented in Section 36.3. This is a simpler approach that
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is less general than the second one. The second technique, time-domain norm-optimal design, requires
additional preliminary setup and results before it can be presented. As such, Section 36.4 presents the
class of systems and Section 36.5 presents some analytical convergence and robustness results. The norm-
optimal design is presented in Section 36.6. A brief discussion of advanced algorithms and concluding
remarks are given in Section 36.7.

36.2 Example: A Servo System

Consider the discrete-time system,

G(z)= z− 0.5

(z− 1)(z− 0.925)
, (36.1)

whose Bode plot is shown in Figure 36.2. Discrete-time is assumed because ILC requires the storage
of signals, which is typically done digitally. Here, G represents a servo-positioning system with viscous
friction. Assume that the system is stabilized with a proportional feedback controller,

C(z)= 0.425. (36.2)

The desired output trajectory is the triangle wave (shown in Figure 36.3a),

yd(k)=
{

k/200, 0≤ k ≤ 200,

2− k/200, 201≤ k ≤ 400,
(36.3)

where k = 0, 1, . . . , 400 is the time index. The triangle wave is used, for example, in scanning operations
where the forward and backward motions are scanning at the same velocity. Figure 36.3b shows the error
signal from the feedback controller. The goal is to reduce the tracking error by adding an ILC to the
control system.

ILC is a plug-in-type controller that can be added to an existing control loop, as shown in Figure 36.4,
by adding the ILC signal to the feedback controller’s signal. The reader may note that the ILC signal
is injected in the same location in the loop that is often used for feedforward control in servo systems.
This does not, however, exclude the use of ILC on systems that already employ a feedforward controller
[5]. Alternatively, ILC can be added to the reference signal, which is most commonly used on closed-
architecture control systems [5,11].
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FIGURE 36.2 Bode plot of the open-loop servo plant in Equation 36.1.
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FIGURE 36.3 (a) Triangle reference signal. (b) Error signal using feedback controller, e0(k).

For ILC design, several assumptions are made:

A1. The reference signal repeats. Each repetition is referred to as a trial or iteration, and all iterations
have the same length.

A2. Any external disturbance repeats identically on each iteration.
A3. Initial conditions (ICs) on each iteration are identical.

Assumptions A1–A3 are standard in ILC analysis and design. Although A2 and A3 are rarely strictly
true, in practice iteration-to-iteration variations are often negligible in precision servo systems. The topic
of iteration-to-iteration variation is discussed in more detail in Section 36.5.

Possibly the simplest approach is a first-order P-type ILC algorithm as given by

uj+1(k)= uj(k)+ γej(k+ 1), (36.4)

where γ is the learning gain. One can think of Equation 36.4 as an integrator in the iteration domain, as
follows. On each iteration that the error is nonzero, the control signal grows until the error finally reaches
zero. The reader may note that the error signal is forward shifted by one time step in Equation 36.4. This
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FIGURE 36.4 ILC added to a feedback control loop as a “plug-in” controller.

is standard in ILC and used to compensate for the usual one-step delay (or equivalently relative degree of
one) in the plant, Equation 36.1. That is, uj(k) does not affect ej(k) because of the plant’s one-step delay;
hence, ej(k+1) is used instead.

The algorithm parameter γ can be tuned to achieve convergence with satisfactory performance. One
suitable choice, obtained through trial-and-error tuning, for the previous example is γ= 0.1. The RMS
error iteration series for this choice is shown in Figure 36.5. As shown in the figure, the error is asymp-
totically approaching zero at a rate of approximately one order of magnitude for every 50 iterations.
Figure 36.6 shows the error, feedback control, and ILC time series for iterations 0, 1, 10, and 100. As the
ILC converges, the control effort transfers from the feedback controller to the ILC, as shown by the signals
in Figure 36.6. One measure of effectiveness of a feedforward control, such as ILC, is the magnitude of
feedback control effort.

The P-type algorithm is the simplest algorithm that can be used. As a cautionary note, the P-type
algorithm may not be sufficient for many systems. In particular, high-frequency resonances, common in
servo systems, may be problematic for P-type learning [11]. In practice, it is more common to use an
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FIGURE 36.5 RMS error iteration series using P-type ILC.
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FIGURE 36.6 Error, feedback control, and ILC time series using P-type ILC.

algorithm of the form

uj+1(k)= Q(z)(uj(k)+ L(z)ej(k)), (36.5)

where the mixture of time-domain signals and frequency-domain filters is a (standard) abuse of nota-
tion. The Q-filter is a low-pass filter used to limit the learning bandwidth to provide robustness and is
particularly useful in servo systems with lightly damped system resonances. The L-filter, also called the
learning filter, is designed to maximize the learnable bandwidth and convergence rate. Q and L designs
are discussed in more detail in the following sections.

36.3 Frequency-Domain Design

The frequency-domain design framework uses classical control design tools such as z-transform and
Nyquist plots [11,14]. A key additional assumption in this framework is that the iteration length (or
reference length) is infinitely long. This is, of course, an approximation of reality because the iteration
length is always finite in practice. However, this assumption permits the use of the z-transform, which
greatly simplifies the design.
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Assuming zero ICs, the output of the system shown in Figure 36.4 on the jth iteration can be calculated as

Yj(z)= C(z)G(z)

1+C(z)G(z)
Yd(z)+ G(z)

1+C(z)G(z)
Uj(z). (36.6)

The error on the jth iteration is Ej(z)= Yd(z)−Yj(z), or,

Ej(z)= E0(z)−H(z)Uj(z), (36.7)

where

H(z)≡ G(z)

1+C(z)G(z)
(36.8)

is the transfer function from the ILC input to the error and

E0(z)≡ 1

1+C(z)G(z)
Yd(z) (36.9)

is the initial error, or the error from the feedback control. It is easy to show that the addition of nonzero
ICs and exogenous disturbance signals appear as additional terms in E0(z). Furthermore, changing the
location of where the ILC enters into the control loop, such as the reference signal [5,11], changes only
H(z). Thus, one can conclude that the form of Equation 36.7 is general, although E0(z) and H(z) depend
on the specific control system architecture and disturbances.

36.3.1 Frequency-Domain Analysis

The frequency-domain description of the first-order ILC algorithm (Equation 36.5) is

Uj+1(z)= Q(z)(Uj(z)+ L(z)Ej(z)). (36.10)

Substituting Equation 36.7 into Equation 36.10, the iteration dynamics can be obtained as

Uj+1(z)= Q(z)(1− L(z)H(z))Uj(z)+Q(z)L(z)E0(z). (36.11)

The goal in designing L(z) and Q(z) is to force a contractive mapping from Uj(z) to Uj+1(z), which is
done by making

‖Q(z)(1− L(z)H(z))‖∞ < 1, (36.12)

where ‖•(z)‖∞ ≡max−π≤ω<π |•(eiω)|. The contractive mapping ensures convergence of Uj(z), which
can be calculated from Equation 36.11 as

U∞(z)≡ lim
j→∞Uj(z)= Q(z)L(z)

1−Q(z)(1− L(z)H(z))
E0(z). (36.13)

Substituting Equation 36.13 into Equation 36.7 yields the converged tracking error as

E∞(z)≡ E0(z)−H(z)U∞(z)=
(

1−Q(z)

1−Q(z)(1− L(z)H(z))

)
E0(z). (36.14)
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36.3.1.1 The Role of the Q-Filter

Fundamental to frequency-domain design is the low-pass Q-filter, which ideally has the frequency-domain
characteristic

Qideal
(
eiω)=

{
1, 0≤ ω≤ ωc

0, ωc < ω≤ π (36.15)

where ωc is the cutoff frequency. For Qideal(eiω), the stability condition (Equation 36.12) simplifies to

∣∣1− L(eiω)H(eiω)
∣∣< 1 for 0≤ ω≤ ωc , (36.16)

and the asymptotic error is given by

EQideal∞ (eiω)=
{

0, 0≤ ω≤ ωc

E0(eiω), ωc < ω≤ π.
(36.17)

Thus, the low-pass Q-filter simplifies the design problem by limiting the frequency range over which
Equation 36.16 must be satisfied, but at the expense of performance. In fact, in the ideal Q-filter analysis,
Q acts as a learning switch. When Q is unity at a particular frequency, that frequency is turned on
for learning. When Q is zero at a particular frequency, that frequency is turned off. The goal in the
Nyquist tuning approach presented in the following subsection is to design L to maximize the range
0≤ ω≤ ωc over which Equation 36.16 is satisfied. In doing so, Q can be “turned on” for the largest range
of frequencies.

36.3.2 Tuning Based on Nyquist Analysis

The Nyquist-based tuning method, referred to more commonly in the literature simply as frequency-
domain design [11], is a two-step design process as illustrated in Figure 36.7. The first step is to select a
filter type for L(z) and then to tune the filter parameters so that the Nyquist plot of L(eiω)H(eiω) fits inside
the unit circle centered at one for as high a frequency range 0≤ ω≤ ωc as the designer is able to achieve.
This is equivalent to satisfying Equation 36.16 over the same frequency range. The second step is to
construct a low-pass Q(z) (e.g., Butterworth, Chebyshev Type I and II, etc.) that satisfies Equation 36.12.
For an ideal low-pass filter, the bandwidth is ωc , although for practical filters the actual bandwidth may
vary. The result will give near-zero tracking error up to ωc frequency.

Any type of filter may be used for L(z), although some popular choices are listed in Table36.1. The
phase lead (and PD-type to a lesser extent) adds positive phase to partially compensate for the plant’s
phase lag. The model inversion type is intended to fully compensate for the plant’s dynamics, but may
be challenging to implement in practice. First, the inverse of the plant may not be stable, although stable,
approximate inversion [17] can be used. Second, because many plants have high-frequency rolloff, the
inverse results in high-frequency gain, which may amplify noise. Third, the designer may be unaware of
the model’s inaccuracy and the inverse may create a false perception of attainable bandwidth. However,
this may be true of any filter choice and the designer should take appropriate care in implementation and

Iterate

Step 2 Step 3Step 1

Evaluate
results

Design Q(z)
(Equation 36.31)

Design L(z)
using Nyquist

FIGURE 36.7 Nyquist tuning two-step design procedure.
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TABLE 36.1 Common Filter Types for L(z)

Filter Name Equation

P-type L(z)= γz

PD-type L(z)= γz+λ(z− 1)

Phase lead L(z)= γzs

Model inversion L(z)≈H−1(z)

testing. When possible, it is safest to “tune up” the Q-filter bandwidth online by starting low and slowly
increasing ωc through repeated experiments.

36.3.2.1 Servo System Revisited: Robustness

Figure 36.8 shows the Nyquist plots of H(z) and L(z)H(z) for the servo system ILC design presented in
Section 36.2. Recall that for this example, L(z)=0.1z. The 0.1 gain reduces the magnitude of H(z) and the
z adds enough phase lead to rotate the high frequencies of H(z) into the unit circle centered at one. To
illustrate robust design, consider now a high-frequency perturbation to H(z),

H ′(z)=H(z)× 1

z+ 0.01
.

The Nyquist plots for the original system L(z)H(z) and the perturbed system L(z)H ′(z) using the same
learning filter are shown in Figure 36.9. The perturbed system leaves the unit circle atωc = 0.55 rad/sample
and therefore is not stable with the same learning filter as the nominal system. The designer has two options
to robustly stabilize the nominal and perturbed system. The designer can look for a learning filter that
stabilizes both systems, or the designer can use a Q-filter to limit the learning bandwidth to the frequency
range that is stable for both systems, ω ∈ [0, 0.55]. The latter option is explored next.

The stabilizing effect of the Q-filter can also be seen using other frequency-domain tools with which
the user is comfortable. Here we use a Bode plot to demonstrate that the same tools from classical control
apply. In Figure 36.10, a Bode plot of Q(z)(1− L(z)H(z)) is shown for several scenarios. The goal is to
keep the magnitude below one for all frequencies, which equates to stability (Equation 36.12). The solid
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FIGURE 36.8 Nyquist plot of the servo system example.
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FIGURE 36.9 Nyquist plot of the perturbed servo system.

line shows the unperturbed plant and the P-type learning function (Equation 36.4) presented in Section
36.2 (in this case, Q(z)= 1). As noted previously, this learning algorithm is stable, which is confirmed on
the Bode plot with magnitude less than 0 dB. The dashed line shows the Bode plot for the perturbed plant,
H ′(z). In this case, the magnitude crosses 0 dB at ω= 0.55 rad/sample in agreement with the Nyquist
plot of Figure 36.9. The dash-dot line shows the perturbed plant again, but this time with a second-order
Butterworth Q-filter with cutoff frequency ωc = 0.55 rad/sample. The Butterworth Q-filter successfully
reduces the magnitude below 0 dB to achieve a stable learning algorithm.

As discussed previously, the Q-filter provides robust stability at the cost of asymptotic performance.
The performance loss can be minimized through careful selection of the cutoff frequency so as not to be
overly conservative. Filter type and order will also affect performance. Generally, sharp filter “rolloff” is
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FIGURE 36.10 Bode plot of the perturbed servo system with second-order Butterworth Q-filter.
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preferred to slow “rolloff” because it better approximates the ideal low-pass filter. Zero-phase Q-filters,
or filters without lag, are also preferable (and popular) in ILC. These filters are discussed in the following
subsection.

36.3.3 Zero-Phase Q-Filter

Phase lag in the Q-filter adds delay to the control signal, which degrades the asymptotic performance,
particularly for high acceleration motions such as steps. The phase lag can be eliminated by using a
zero-phase Q-filter. The zero-phase Q-filter is noncausal, although this is not problematic in ILC because
the filtering is done offline after the entire signal has been collected. There are a number of methods for
creating a zero-phase filter. Two methods, an infinite-impulse response (IIR) method and a finite-impulse
response (FIR) method, are developed below using basic signal processing techniques.

36.3.3.1 Filtfilt (IIR Method)

This approach uses any nonzero-phase low-pass filter F(z) in a modified filtering procedure to produce
zero-phase shift. The procedure is as follows.

1. Filter the input signal; s1(k)= F(z)sin(k), where sin(k) is the signal to be filtered.
2. Reverse the resultant signal in time; s2(k)= s1(N − k).
3. Filter the signal again; s3(k)= F(z)s2(k).
4. Reverse the resultant signal in time; sout(k)= s3(N − k).

The phase lag introduced in step 1 is canceled in step 3 resulting in zero total phase shift. Note that the
effective gain of the process is |F(eiω)|2, owing to the double-filtering.

36.3.3.2 FIR Convolution (FIR Method)

In this approach, a zero-phase filter is constructed using an FIR approximation of the filter. Let f (k),
k = 0, 1, . . . , NFIR− 1 be the NFIR-step truncation of the impulse response of F(z). Then,

fNC(k)= h(k)∑NFIR−1
l=−NFIR+1 h(l)

,

where h(k)= f (k) ∗ f (−k) with*defined as the convolution symbol is an FIR moving average filter with
zero phase.

36.3.4 H∞ Methods

The H∞ method [7] is the reverse of the Nyquist tuning method in that Q(z) is selected first, and L(z) is
designed second. Q(z) can be a low-pass filter of any type, and L(z) is optimally obtained as the solution
to the model matching problem

L∗(z)= arg min
L

‖Q(z)(I − L(z)H(z))‖∞.

This can be written equivalently as a lower linear fractional transform

Q(z)(I − L(z)H(z))= G11(z)+G12(z)L(z)(I −G22(z)L(z))−1G21(z),

where

G(z)=
[

G11(z) G12(z)
G21(z) G22(z)

]
=
[

Q(z) Q(z)
−H(z) 0

]
.

In this form, standard H∞ synthesis tools can be used to solve the problem. If no solution is found, the
bandwidth of Q(z) is lowered. If a solution is found, the bandwidth can be increased and a new L(z)
obtained.
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While the frequency domain provides a simple design approach, the next three sections present a more
rigorous and general design technique using a time-domain system description.

36.4 Generalized Time-Domain System Description

Consider the discrete-time (DT), linear time-varying (LTV) system

xj(k+ 1)= A(k)xj(k)+B(k)uj(k),

yj(k)= C(k)xj(k)+ d(k),
(36.18)

where x ∈ Rn, u ∈ Rr is the control input, y ∈ Rr is the output, d ∈ Rr is an iteration-invariant exogenous
signal, k = 0, 1, . . . , N is the time index, and j = 1, 2, . . . is the iteration index. If xj(0)= x0 for all j, the
input–output solution for (36.18) is given by

yj(k)= C(k)Φ(k, 0)x0+
k−1∑
l=0

H(k, l)uj(l)+ d(k), (36.19)

where

H(k, l)= C(k)Φ(k, l+ 1)B(l), (36.20)

Φ(k, l)= A(k− 1)A(k− 2) . . . A(l), Φ(k, k)= I . (36.21)

Let yd(k) be the desired output for k = 1, . . . , N and define the error as

ej(k)≡ yd(k)− yj(k). (36.22)

Then,

ej(k)= e0(k)−
k−1∑
l=0

H(k, l)uj(l), (36.23)

where
e0(k)= yd(k)−C(k)Φ(k, 0)x0− d(k). (36.24)

The reader should note that (36.23) is the time-domain equivalent to (36.7).
The lifted-system (or supervector) representation is given by

ej = e0−Huj, (36.25)

where

ej =
[

eT
j (1) eT

j (2) . . . eT
j (N)

]T
, (36.26)

uj =
[

uT
j (0) uT

j (1) . . . uT
j (N − 1)

]T
, (36.27)

H=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H(1, 0) 0 0 · · · 0

H(2, 0) H(2, 1) 0 0

H(3, 0) H(3, 1) H(3, 2)
. . .

...

...
. . . 0

H(N , 0) H(N , 1) H(N , 2) · · · H(N , N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36.28)

The lifted-system representation transforms the r-input, r-output, two-dimensional (time and
iteration) system into an Nr-input, Nr-output, one-dimensional (iteration) system.
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The most general first-order linear ILC algorithm for (36.25) is

uj+1 = Luuj + Leej, (36.29)

where Lu, Le ∈ RNr×Nr . Note that (36.29) has a slightly different form than (36.5). The convention in the
norm-optimal design presented in Section 36.6 is to use the more general Lu, Le form, while the convention
in frequency-domain design is Q(z), L(z). For the purpose of exposition, (36.29) can be rewritten as

uj+1 = Luuj + Leej =Q(uj + Lej), where Lu =Q, Le =QL. (36.30)

Although the lifted representation is very useful in design and analysis, it is not necessary, or oftentimes
desirable, to use the lifted representation in the implementation because Lu and Le are large matrices when
the iteration length is long. For example, consider the choice Lu = I and Le = diag {γ(0), . . . , γ(N − 1)},
γ ∈ Rr×r . This is the P-type algorithm, written in time domain as

uj+1(k)= uj(k)+ γ(k)ej(k+ 1), (36.31)

and is the discrete-time analog to the P-type algorithm for continuous time presented in Section 36.2.
Although both are equivalent, it is much more efficient to apply the filter description (36.31) in practice
than the matrix description (36.29) for this choice of Lu and Le.

36.5 Time-Domain Analysis

36.5.1 Asymptotic Stability

Substituting (36.25) into (36.29) yields the closed-loop iteration domain dynamics

uj+1 = (Lu− LeH)uj + Lee0. (36.32)

The iterative learning controller is asymptotic stability (AS) if and only if |λi(Lu− LeH)|< 1 for
i = 1, 2, . . . , Nr, where λi(•) is the ith eigenvalue of (•). Using the P-type algorithm (36.31), stability
simplifies to |λi(I− diag{γ(0), . . . , γ(N − 1)}H)|< 1, or the following results:

|1− γ(k)C(k+ 1)B(k)|< 1, for k = 0, 1, . . . , N . (36.33)

This is the discrete-time analog to Arimoto et al.’s [2] original result for continuous-time systems.
If the controller is AS, and (I− Lu+ LeH) is nonsingular, then the asymptotic control can be found as

lim
j→∞ uj ≡ u∞ = (I− Lu+ LeH)−1Lee0. (36.34)

The asymptotic error is

lim
j→∞ ej ≡ e∞ = e0−Hu∞,

= [I−H(I− Lu+ LeH)−1Le
]

e0. (36.35)

Interestingly, e∞ = 0 for an AS P-type control. The ease by which perfect tracking can be achieved
with the simplest type of iterative algorithm may be surprising. The practicality of this result, however, is
limited in actual practice by two challenges: convergence behavior and trial-varying disturbances.
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36.5.2 Monotonic Convergence

For most practical systems, AS is not a strong enough condition. ILC systems that are AS may experience
large transient learning growth, a problem studied extensively by Longman [11]. The transient learning
growth appears as a rapid growth in the error over many iterations before convergence. Growth may
be many orders of magnitude and convergence very slow [11], well outside the realm of practicality for
physical implementations.

Monotonic convergence is a stronger stability requirement than AS and is not susceptible to transient
learning growth. Monotonic convergence of the error requires that ‖e∞− ej‖ decreases at each iteration,
where ‖•‖ is a suitable norm. For ILC design with monotonic convergence, the most commonly used
norm is the induced 2-norm. Monotonic convergence of the control,

∥∥u∞− uj
∥∥, may also be used. (36.29)

is monotonically convergent if

η≡ ‖(Lu− LeH)‖< 1. (36.36)

Furthermore,
∥∥u∞− uj+1

∥∥≤ η ∥∥u∞− uj
∥∥ gives the rate of convergence.

36.5.3 Trial-Varying Disturbances

One of the key assumptions in most ILC literature is that disturbance signals repeat identically from one
iteration to the next. In practice this is rarely the case. As will be shown, trial-varying disturbances do
not affect stability. They do, however, affect the performance. Because ILC is a feedforward technique,
it cannot compensate for random trial-varying disturbances. In fact, ILC will tend to learn from these
disturbances and incorrectly attempt to compensate for them on subsequent iterations, amplifying their
affect. Design parameters in Section 36.6 can be selected to minimize the amplification.

Trial-varying disturbances can be treated by adding the signal δj to the system description

ej = e0−Huj − δj.

Substituting into (36.29) yields the iteration domain closed loop

uj+1 = (Lu− LeH)uj + Lee0− Leδj. (36.37)

If δj is bounded, then the AS from Section 36.5.1 becomes the bounded-input, bounded-output stability
condition for trial-varying disturbances. Note that δj is filtered by Le in (36.37), and thus one expects
trial-varying disturbance sensitivity to decrease when the gain Le is reduced.

36.5.3.1 IC Variation

IC variation is a problem in many systems because feedback control system limitations and nonlinear-
ities such as friction make perfect resetting challenging. IC variation can be treated as a trial-varying
disturbance, by setting δj(k)= C(k)Φ(k, 0)x0 j, where x0,j is the IC on the jth iteration.

36.5.4 Robustness

As demonstrated in Section 36.3, small perturbations to the system dynamics may destabilize an ILC.
Analytical results depend on the type of model uncertainty considered, which is an active area of research.
In the following section, analysis is presented demonstrating that the norm-optimal design is robustly
monotonically convergent to additive system perturbations Δ of the form, Ht =H+Δ. The largest
system perturbation σ̄(Δ) for which the ILC is robustly monotonically convergent depends on the choice
of design parameters.
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36.6 Time-Domain Norm-Optimal Design

The time-domain or norm-optimal algorithm is designed to minimize the quadratic optimization problem
[1,8,10],

J = eT
j+1Qej+1+ uT

j+1Suj+1+
(
uj+1− uj

)T
R
(
uj+1− uj

)
, (36.38)

where {Q, S, R} are symmetric positive (semi)-definite real-valued matrices of appropriate dimension
and HT QH+ S is positive definite. Often {Q, S, R} ≡ {qI, sI, rI} with q, s, r real-valued positive scalars.
Applying the substitution ej+1 = ej −H(uj+1− uj), differentiating J with respect to uj+1, setting the
result equal to zero, and rearranging the solution yields the norm-optimal ILC controller

uj+1 = Luuj + Leej, (36.39)

Lu = (HTQH+ S+R)−1(HTQH+R), (36.40)

Le = (HTQH+ S+R)−1HTQ. (36.41)

As an essential part of the design process, we discuss here some guidelines [16] for designing the
weighting matrices by studying the properties of the ILC system with respect to convergence, performance,
robust convergence, and performance in the presence of trial-varying disturbances.

36.6.1 Weighting Matrix Design

It is straightforward to verify that the norm-optimal controller is monotonically convergent in the
control, under the 2-norm, by substituting (36.39) into (36.36). The convergence rate is calculated as

η= ‖(HT QH+ S+R
)−1

R‖i2. Note that the iteration-domain convergence speed depends strongly on
R: for ‖R‖i2 = 0 deadbeat control is achieved, as ‖R‖i2 →∞ the convergence speed approaches zero.

The asymptotic error for norm-optimal ILC, obtained by substitution of (36.39) into (36.35), is

e∞ =
(

I−H
(
HT QH+ S

)−1
HT Q

)
e0. For zero error, ‖S‖i2 = 0 is necessary, and hence HTQH must be

positive definite. An important result is that e∞ is not a function of R, and hence performance is not a
function of convergence speed.

For robust convergence, the true system Ht =H+Δ, with additive uncertainty Δ, is considered. As a
result, the requirement for robust convergence is

‖Lu− LeHt‖i2 < 1−→max
Δ

∥∥∥(HT QH+ S+R)−1(R+HT Q(H−Ht))
∥∥∥

i2
< 1. (36.42)

One can deduce that increasing ‖S‖i2 allows for more robustness to model uncertainty.
Finally, for trial-varying disturbances δj, which affect steady-state error fluctuations, one should

minimize ‖Le‖i2. From (36.39), ‖Le‖i2 is affected by S and R. Given that R does not affect the per-
formance, it is the natural candidate for reducing trial-varying disturbance sensitivity.

Based on the above information, the following tuning guidelines [16] for norm-optimal ILC control
can be given. These guidelines are most easily implemented using common

{
qI, sI, rI

}
diagonal-type

real-valued scalar gains.

1. Design Q to correspond to the desired weighting of the error. Usually, Q= I for uniform weighting
of the error.

2. The actual system dynamics will not usually be perfectly captured by the system model. Thus,
S must be designed such that the system is robustly monotonically convergent. Start with an S
yielding ‖S‖i2 ≈ 0.01 ‖H‖i2. Note that the critical design parameter is the size of ‖S‖i2 relative to
the size of ‖H‖i2, where the magnitude of ‖H‖i2 is related to system uncertainty. Subsequently,
reduce ‖S‖i2 until the system diverges. Set ‖S‖i2 = 2 · ‖S‖min

i2 to allow for a safety factor of 2.
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3. When trial-varying disturbances are present, steady-state error fluctuations will occur. Start with
‖R‖i2 = 0 and increase ‖R‖i2 until the fluctuations are within desired bounds, or the RMS error
does not decrease anymore.

36.6.1.1 Servo System Revisited: Norm-Optimal Design

To illustrate the effects of varying {Q, S, R}, this subsection provides performance results for various
combinations of the weighting matrices, where

{
Q= qI, S= sI, R= rI

}
. The different weighting matrices

are applied to the servo system example in Section 36.2.
Figure 36.11 shows the error, feedback control signal, and feedforward control signal for {Q, S, R} =

{I, I, I}. Similar to the results shown in Figure 36.6 the feedback signal is slowly replaced by the ILC
feedforward signal with increasing iteration.

To determine the effect of q on the error, s and r were held constant at {s, r} = {1, 1}, while the value of q
was varied as {1, 0.5, 0.1, 0.001}. Figure 36.12 illustrates that the smaller the value of q, the larger the value
of the RMS converged tracking error. Varying s affects both the performance and convergence. While
a smaller s results in smaller converged RMS error, robustness to model uncertainty requires a larger s
value. Holding

{
q, r
}

constant at {1, 1}, respectively, Figure 36.13 illustrates how decreasing s results in a
decrease in the RMS-converged error.
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FIGURE 36.11 Error, feedback control, and ILC time series using norm-optimal ILC.
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FIGURE 36.12 RMS converged error values for various Q weighting matrices.

Lastly, r can be increased to minimize trial-varying disturbances, at the expense of convergence rate.
Holding

{
q, s
}

constant at {1, 1}, respectively, Figure 36.14 shows how the convergence rate increases as
r increases. Figure 36.15 illustrates the effects on the RMS error of adding white noise {(mean,var)=
(0,1e-6)} to the system. As r increases, the effect of the noise on the system is decreased, as demonstrated
by a decrease in converged RMS error.
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FIGURE 36.13 RMS error and monotonic convergence values for varying S weighting matrices.



�

�

�

�

� �

36-18 Control System Advanced Methods

101

10–1

100

100 102 103

Iterations

N
or

m
al

iz
ed

 R
M

S 
er

ro
r

Converges in
 ~ 800 iterations

Converges in
~ 2000 iterations

Converges in
 ~ 30 iterations

Converges in
 ~ 200 iterations

r = 1

r = 100
r = 500

r = 1000

FIGURE 36.14 RMS error values for varying R weighting matrices. Note the longer iteration range.
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36.7 Concluding Remarks

This chapter has introduced the basic ILC design and analysis tools for linear systems. The results and
design details presented here only touch the surface of the field of ILC. In particular, a number of advanced
algorithms have been developed, which may be of interest to the reader. Current-iteration-tracking-error
(CITE) [6] ILC algorithms use the current iteration’s error signal in the learning algorithm, effectively
adding feedback control in ILC design. Most notably, CITE algorithms can use the feedback component
to compensate for trial-varying disturbances. For stochastic measurement noise, one might consider the
use of optimal trial-varying algorithms [15]. For faster convergence rate and better robustness, high-order
algorithms [6] use several iterations of past control and error signals in the update algorithm.
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37.1 Input–Output Feedback Linearization

Consider a nonlinear single-input single-output system, described by equations of the form

ẋ = f (x)+ g(x)u

y = h(x)
(37.1)

and suppose x = 0 is an equilibrium of the vector field f (x); that is, f (0)= 0, and h(0)= 0. Assume also
that this system has relative degree r < n at x = 0. Then there is a neighborhood U of x = 0 in R

n and
a local change of coordinates z =Φ(x) defined on U [and satisfying Φ(0)= 0] such that, in the new
coordinates, the system is described by equations of the form (see Chapter 46 for details)

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = v

żr+1 = b(z)+ a(z)u

żr+1 = qr+1(z)

· · ·
żn = qn(z)

y = z1.

(37.2)

37-1
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Equation 37.2, which describes the system in the new coordinates, can be more conveniently repre-
sented as follows. Set

ξ=

⎛
⎜⎜⎝

z1

z2

· · ·
zr

⎞
⎟⎟⎠ η=

⎛
⎜⎜⎝

zr+1

zr+2

· · ·
zn

⎞
⎟⎟⎠ ,

and recall that, in particular,

ξ=

⎛
⎜⎜⎝

h(x)
Lf h(x)
· · ·

Lr−1
f h(x)

⎞
⎟⎟⎠ .

Moreover, define

A=

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
0 0 0 · · · 0 1
0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠ , B=

⎛
⎜⎜⎜⎜⎝

0
0
·
0
1

⎞
⎟⎟⎟⎟⎠ ,

C = (1 0 0 · · · 0 0
)

and set

q(z)=

⎛
⎜⎜⎝

qr+1(z)
qr+2(z)
· · ·

qn(z)

⎞
⎟⎟⎠ .

Then, Equation 37.2 reduces to equations of the form

ξ̇= Aξ+B(b(ξ,η)+ a(ξ,η)u)

η̇= q(ξ,η)

y = Cξ.

(37.3)

Suppose now the input u to the system of Equation 37.3 is chosen as

u= 1

a(ξ,η)
(−b(ξ,η)+ v) . (37.4)

This feedback law yields a closed-loop system that is described by equations of the form

ξ̇= Aξ+Bv

η̇= q(ξ,η).
(37.5)

This system clearly appears decomposed into a linear subsystem, of dimension r, which is the only one
responsible for the input–output behavior, and a possibly nonlinear subsystem, of dimension n− r, whose
behavior does not affect the output. In other words, this feedback law has changed the original system so
as to obtain a new system whose input–output behavior coincides with that of a linear (controllable and
observable) system of dimension r having transfer function

H(s)= 1

sr .
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Remark 37.1

To interpret the role played by the feedback law of Equation 37.4, it is instructive to examine the effect
produced by a feedback of this kind on a linear system. In this case, the system of Equations 37.3 is
modeled by equations of the form

ξ̇= Aξ+B(Rξ+ Sη+Ku)

η̇= Pξ+Qη

y = Cξ

in which R and S are row vectors, of suitable dimensions, of real numbers; K is a nonzero real number;
and P and Q are matrices, of suitable dimensions, of real numbers. The feedback of Equation 37.4 is a
feedback of the form

u=− R

K
ξ− S

K
η+ 1

K
v . (37.6)

A feedback of this type indeed modifies the eigenvalues of the system on which it is imposed. Since,
from the previous analysis, it is known that the transfer function of the resulting closed-loop system has
no zeros and r poles at s = 0, it can be concluded that the effect of the feedback of Equation 37.6 is such
as to place r eigenvalues at s = 0 and the remaining n− r eigenvalues exactly where the n− r zeros of
the transfer function of the open-loop system are located. The corresponding closed-loop system, having
n− r eigenvalues coinciding with its n− r zeros, is unobservable and its minimal realization has a transfer
function that has no zeros and r poles at s = 0.

37.2 The Zero Dynamics

In this section we discuss an important concept that in many instances plays a role exactly similar to that
of the “zeros” of the transfer function in a linear system.

Given a single-input single-output system, having relative degree r < n at x = 0 represented by equa-
tions of the form of Equation 37.3, consider the following problem, which is sometimes called the Problem
of Zeroing the Output. Find, if any, pairs consisting of an initial state x◦ and of an input function u◦(·),
defined for all t in a neighborhood of t = 0, such that the corresponding output y(t) of the system is iden-
tically zero for all t in a neighborhood of t = 0. Of course, the interest is to find all such pairs (x◦, u◦) and
not simply the trivial pair x◦ = 0, u◦ = 0 (corresponding to the situation in which the system is initially
at rest and no input is applied).

Recalling that, in the normal form of Equation 37.3

y(t)= ξ1(t),

we observe that the constraint y(t)= 0 for all t implies

ξ̇1(t)= ξ̇2(t)= . . .= ξ̇r(t)= 0 ,

that is, ξ(t)= 0 for all t. In other words, if the output of the system is identically zero, its state necessarily
respects the constraint ξ(t)= 0 for all t. In addition, the input u(t) must necessarily be the unique solution
of the equation

0= b(0,η(t))+ a(0,η(t))u(t)

[recall that a(0,η(t)) �= 0 if η(t) is close to 0]. As far as the variable η(t) is concerned, it is clear that, ξ(t)
being identically zero, its behavior is governed by the differential equation

η̇(t)= q(0,η(t)). (37.7)

From this analysis it is possible to conclude the following. In order to have the output y(t) of the system
identically zero, necessarily the initial state must be such that ξ(0)= 0, whereas η(0)= η◦ can be chosen
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arbitrarily. According to the value of η◦, the input must be set equal to the following function

u(t)=−b(0,η(t))

a(0,η(t))

where η(t) denotes the solution of the differential equation

η̇(t)= q(0,η(t))

with initial condition η(0)= η◦. Note also that for each set of initial conditions (ξ,η)= (0,η◦) the input
thus defined is the unique input capable of keeping y(t) identically zero.

The dynamics of Equation 37.7 correspond to the dynamics describing the “internal” behavior of the
system when input and initial conditions have been chosen in such a way as to constrain the output to
remain identically zero. These dynamics, which are rather important in many instances, are called the
zero dynamics of the system.

The previous analysis interprets the trajectories of the (n− r)-dimensional system

η̇= q(0,η) (37.8)

as “open-loop” trajectories of the system, when the latter is forced (by appropriate choice of input and
initial condition) to constrain the output to be identically zero. However, the trajectories of Equation 37.8
can also be interpreted as autonomous trajectories of an appropriate “closed-loop system.” In fact, consider
again a system in the normal form of Equation 37.3 and suppose the feedback control law of Equation 37.4
is imposed, under which the input–output behavior becomes identical with that of a linear system. The
corresponding closed-loop system thus obtained is described by Equations 37.5. If the linear subsystem
is initially at rest and no input is applied, then y(t)= 0 for all values of t, and the corresponding internal
dynamics of the whole (closed-loop) system are exactly those of Equation 37.8, namely, the zero dynamics
of the open-loop system.

Remark 37.2

In a linear system, the dynamics of Equation 37.8 are determined by the zeros of the transfer function of
the system itself. In fact, consider a linear system having relative degree r and let

H(s)= K
b0+ b1s+ · · ·+ bn−r−1sn−r−1+ sn−r

a0+ a1s+ · · ·+ an−1sn−1+ sn

denote its transfer function. Suppose the numerator and denominator polynomials are relatively prime
and consider a minimal realization of H(s)

x = Ax+Bu

y = Cx

with

A=

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎞
⎟⎟⎟⎟⎠ B=

⎛
⎜⎜⎜⎜⎝

0
0
· · ·
0
K

⎞
⎟⎟⎟⎟⎠

C = (
b0 b1 · · · bn−r−1 1 0 · · · 0

)
.
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The realization in question can easily be reduced to the form of Equation 37.2. For the ξ coordinates
one has to take

ξ1 = Cx = b0x1+ b1x2+ · · ·+ bn−r−1xn−r + xn−r+1

ξ2 = CAx = b0x2+ b1x3+ · · ·+ bn−r−1xn−r+1+ xn−r+2

· · ·
ξr = CAr−1x = b0xr + b1xr+1+ · · ·+ bn−r−1xn−1+ xn.

while for the η coordinates it is possible to choose

η1 = x1

η2 = x2

· · ·
ηn−r = xn−r .

In the new coordinates we obtain equations in normal form, which, because of the linearity of the
system, have the following structure

ξ̇= Aξ+B(Rξ+ Sη+Ku)

η̇= Pξ+Qη

where R and S are row vectors and P and Q are matrices of suitable dimensions. The zero dynamics of
this system, according to our previous definition, are those of

η̇= Qη.

The particular choice of the last n− r new coordinates (i.e., of the elements of η) entails a particularly
simple structure for the matrices P and Q. As a matter of fact, it is easily checked that

P =

⎛
⎜⎜⎜⎜⎝

0
0
·
0
1

⎞
⎟⎟⎟⎟⎠ , Q =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1

⎞
⎟⎟⎟⎟⎠ .

From the particular form of this matrix, it is clear that the eigenvalues of Q coincide with the zeros of
the numerator polynomial of H(s), that is, with the zeros of the transfer function. Thus, it is concluded
that in a linear system the zero dynamics are linear dynamics with eigenvalues coinciding with the zeros
of the transfer function of the system.

These arguments also show that the linear approximation, at η= 0, of the zero dynamics of a system
coincides with the zero dynamics of the linear approximation of the system at x = 0. In order to see this,
consider for f (x), g(x) and h(x) expansions of the form

f (x)= Ax+ f2(x)

g(x)= B+ g1(x)

h(x)= Cx+ h2(x)

where

A=
[

∂f

∂x

]
x=0

, B= g(0), C =
[

∂h

∂x

]
x=0

.
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An easy calculation shows, by induction, that

Lk
f h(x)= CAkx+ dk(x)

where dk(x) is a function such that [
∂dk

∂x

]
x=0

= 0 .

From this, one deduces that

CAkB= Lg Lk
f h(0)= 0 for all k < r− 1

CAr−1B= Lg Lr−1
f h(0) �= 0

that is, the relative degree of the linear approximation of the system at x = 0 is exactly r.
From this fact, it is concluded that taking the linear approximation of equations in normal form, based

on expansions of the form

b(ξ,η)= Rξ+ Sη+ b2(ξ,η)

a(ξ,η)= K + a1(ξ,η)

q(ξ,η)= Pξ+Qη+ q2(ξ,η)

yields a linear system in normal form. Thus, the Jacobian matrix

Q =
[

∂q

∂η

]
(ξ,η)=0

which describes the linear approximation at η= 0 of the zero dynamics of the original nonlinear system,
has eigenvalues that coincide with the zeros of the transfer function of the linear approximation of the
system at x = 0.

37.3 Local Stabilization of Nonlinear Minimum-Phase Systems

In analogy with the case of linear systems, which are traditionally said to be “minimum phase” when all
their transmission zeros have negative real part, nonlinear systems (of the form of Equation 37.1) whose
zero dynamics (Equation 37.8) have a locally (globally) asymptotically stable equilibrium at z = 0 are
also called locally (globally) minimum-phase systems. As in the case of linear systems, minimum-phase
nonlinear systems can be asymptotically stabilized via state feedback. We discuss first the case of local
stabilization.

Consider again a system in normal form of Equation 37.3 and impose a feedback of the form

u= 1

a(ξ,η)
(−b(ξ,η)− c0ξ1− c1ξ2− · · ·− cr−1ξr) (37.9)

where c0, c1, · · · , cr−1 are real numbers.
This choice of feedback yields a closed-loop system of the form

ξ̇= (A+BK)ξ

η̇= q(ξ,η)
(37.10)

with

A+BK =

⎛
⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−c0 −c1 −c2 · · · −cr−1

⎞
⎟⎟⎟⎟⎠ .
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In particular, the matrix A+BK has a characteristic polynomial

p(s)= c0+ c1s+ · · ·+ cr−1sr−1+ sr .

From this form of the equations describing the closed-loop system we deduce the following interesting
property.

Proposition 37.1:

Suppose the equilibrium η= 0 of the zero dynamics of the system is locally asymptotically stable and all
the roots of the polynomial p(s) have negative real part. Then the feedback law of Equation 37.9 locally
asymptotically stabilizes the equilibrium (ξ,η)= (0, 0).

This is a consequence of the fact that the closed-loop system has a triangular form. According to a
well-known property of systems in triangular form, since by assumption the subsystem

η̇= q(0,η)

has a locally asymptotically stable equilibrium at η= 0 and the subsystem

ξ̇= (A+BK)ξ

has a (globally) asymptotically stable equilibrium at ξ= 0, the equilibrium (ξ,η)= (0, 0) of the entire
system is locally asymptotically stable.

Note that the matrix

Q =
[

∂q(ξ,η)

∂η

]
(ξ,η)=(0,0)

characterizes the linear approximation of the zero dynamics atη= 0. If this matrix had all its eigenvalues in
the left complex half-plane, then the result stated in Proposition 37.1 would have been a trivial consequence
of the Principle of Stability in the First Approximation, because the linear approximation of Equation 37.10
has the form (

ξ̇

η̇

)
=
(

A 0
� Q

)(
ξ

η

)
.

However, Proposition 37.1 establishes a stronger result, because it relies only upon the assumption
that η= 0 is simply an asymptotically stable equilibrium of the zero dynamics of the system, and this (as
is well known) does not necessarily require, for a nonlinear dynamics, asymptotic stability of the linear
approximation (i.e., all eigenvalues of Q having negative real part). In other words, the result in question
may also hold in the presence of some eigenvalue of Q with zero real part.

In order to design the stabilizing control law there is no need to know explicitly the expression of the
system in normal form, but only to know the fact that the system has a zero dynamics with a locally
asymptotically stable equilibrium at η= 0. Recalling how the ξ coordinates and the functions a(ξ,η) and
b(ξ,η) are related to the original description of the system, it is easily seen that, in the original coordinates,
the stabilizing control law assumes the form

u= 1

Lg Lr−1
f h(x)

(
−Lr

f h(x)− c0h(x)− c1Lf h(x)− · · · − cr−1Lr−1
f h(x)

)

which is particularly interesting because expressed in terms of quantities that can be immediately calcu-
lated from the original data.
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If an output function is not defined, the zero dynamics are not defined as well. However, it may
happen that one is able to design a suitable dummy output whose associated zero dynamics have an
asymptotically stable equilibrium. In this case, a control law of the form discussed before will guarantee
asymptotic stability. This procedure is illustrated in the following simple example, taken from [5].

Example 37.1:

Consider the system

ẋ1 = x2
1 x3

2

ẋ2 = x2+ u

whose linear approximation at x = 0 has an uncontrollable mode corresponding to the eigenvalue
λ= 0. Suppose one is able to find a function γ(x1) such that

ẋ1 = x2
1 [γ(x1)]3

is asymptotically stable at x1 = 0. Then, setting

y = h(x)= γ(x1)− x2

a system with an asymptotically stable zero dynamics is obtained. As a matter of fact, we know that
the zero dynamics are those induced by the constraint y(t)= 0 for all t. This, in the present case,
requires that the x1 and x2 respect the constraint

γ(x1)− x2 = 0 .

Thus, the zero dynamics evolve exactly according to

ẋ1 = x2
1 [γ(x1)]3

and the system can be locally stabilized by means of the procedure discussed above. A suitable
choice of γ(x1) will be, e.g.,

γ(x1)=−x1 .

Accordingly, a locally stabilizing feedback is the one given by

α(x)= 1
Lgh(x)

(−Lf h(x)− ch(x)
)=−cx1− (1+ c)x2− x2

1 x3
2

with c > 0.

37.4 Global Stabilization of Nonlinear Minimum-Phase Systems

In this section we consider a special class of nonlinear system that can be globally asymptotically stabilized
via state feedback. The systems in question are systems that can be transformed, by means of a globally
defined change of coordinates and/or feedback, into a system having this special normal form

ż = f0(z, ξ1)

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = u.

(37.11)
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Remark 37.3

Note that a system in the normal form of Equation 37.2, considered in the previous sections, can indeed
be changed, via feedback, into a system of the form

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr

ξ̇r = u

η̇= q(ξ,η).

(37.12)

Moreover, if the normal form of Equation 37.2 is globally defined, so also is the feedback yielding
the (globally defined) normal form of Equation 37.12. The form of Equation 37.11 is a special case of
Equation 37.12, the one in which the function q(ξ,η) depends only on the component ξ1 of the vector
ξ. In Equation 37.11, for consistency with the notations more frequently used in the literature on global
stabilization, the vector z replaces the vectorηof Equation 37.12 and the places of z and ξ are interchanged.

In order to describe how systems of the form of Equation 37.11 can be globally stabilized, we begin
with the analysis of the (very simple) case in which r = 1. For convenience of the reader, we recall that a
smooth function V : Rn → R is said to be positive definite if V (0)= 0 and V (x) > 0 for x �= 0, and proper
if, for any a ∈ R, the set V−1([0, a])= {x ∈ R

n : 0≤ V (x)≤ a} is compact.
Consider a system described by equations of the form

ż = f (z, ξ)

ξ̇= u
(37.13)

in which (z, ξ) ∈ R
n×R, and f (0, 0)= 0. Suppose the subsystem

ż = f (z, 0)

has a globally asymptotically stable equilibrium at z = 0. Then, in view of a converse Lyapunov theorem,
there exists a smooth positive definite and proper function V (z) such that ∂V

∂z f (z, 0) is negative for each
nonzero z. Using this property, it is easy to show that the system of Equation 37.13 can be globally
asymptotically stabilized. In fact, observe that the function f (z, ξ) can be put in the form

f (z, ξ)= f (z, 0)+ p(z, ξ)ξ (37.14)

where p(z, ξ) is a smooth function. For it suffices to observe that the difference

f̄ (z, ξ)= f (z, ξ)− f (z, 0)

is a smooth function vanishing at ξ= 0, and to express f̄ (z, ξ) as

f̄ (z, ξ)=
∫ 1

0

∂ f̄ (z, sξ)

∂s
ds =

∫ 1

0

[
∂ f̄ (z, ζ)

∂ζ

]
ζ=sξ

ξds .

Now consider the positive definite and proper function

W(z, ξ)= V (z)+ 1

2
ξ2 , (37.15)

and observe that (
∂W

∂z

∂W

∂ξ

)(
f (z, ξ)

u

)
= ∂V

∂z
f (z, 0)+ ∂V

∂z
p(z, ξ)ξ+ ξu .
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Choosing

u= u(z, ξ)=−ξ− ∂V

∂z
p(z, ξ) (37.16)

yields (
∂W

∂z

∂W

∂ξ

)(
f (z, ξ)
u(z, ξ)

)
< 0

for all nonzero (z, ξ). By the direct Lyapunov theorem, it is concluded that the system

ż = f (z, ξ)

ξ̇= u(z, ξ)

has a globally asymptotically stable equilibrium at (z, ξ)= (0, 0).
In other words, it has been shown that, if ż = f (z, 0) has a globally asymptotically stable equilibrium

at z = 0, then the equilibrium (z, ξ)= (0, 0) of the system of Equation 37.13 can be rendered globally
asymptotically stable by means of a smooth feedback law u= u(z, ξ).

The result thus proven can be easily extended by showing that, for the purpose of stabilizing the
equilibrium (z, ξ)= (0, 0) of Equation 37.13, it suffices to assume that the equilibrium z = 0 of

ż = f (z, ξ)

is stabilizable by means of a smooth law ξ= v�(z).

Lemma 37.1:

Consider a system described by equations of the form of Equation 37.13. Suppose there exists a smooth
real-valued function

ξ= v�(z) ,

with v�(0)= 0, and a smooth real-valued function V (z), which is positive definite and proper, such that

∂V

∂z
f (z, v�(z)) < 0

for all nonzero z. Then, there exists a smooth static feedback law u= u(z, ξ) with u(0, 0)= 0, and a smooth
real-valued function W(z, ξ), which is positive definite and proper, such that(

∂W

∂z

∂W

∂ξ

)(
f (z, ξ)
u(z, ξ)

)
< 0

for all nonzero (z, ξ).

In fact, it suffices to consider the (globally defined) change of variables

y = ξ− v�(z) ,

which transforms Equation 37.13 into

ż = f (z, v�(z)+ y)

ẏ =−∂v�

∂z
f (z, v�(z)+ y)+ u ,

(37.17)

and observe that the feedback law

u= ∂v�

∂z
f (z, v�(z)+ y)+ u′

changes the latter into a system satisfying the hypotheses that are at the basis of the previous construction.



�

�

�

�

� �

Nonlinear Zero Dynamics 37-11

Using repeatedly the property indicated in Lemma 37.1, it is straightforward to derive the following
stabilization result about a system in the form of Equation 37.11.

Theorem 37.1:

Consider a system of the form of Equation 37.11. Suppose there exists a smooth real-valued function

ξ1 = v�(z) ,

with v�(0)= 0, and a smooth real-valued function V (z), which is positive definite and proper, such that

∂V

∂z
f0(z, v�(z)) < 0

for all nonzero z. Then, there exists a smooth static feedback law

u= u(z, ξ1, . . . , ξr)

with u(0, 0, . . . , 0)= 0, which globally asymptotically stabilizes the equilibrium (z, ξ1, . . . , ξr)=
(0, 0, . . . , 0) of the corresponding closed-loop system.

Of course, a special case in which the result of Theorem 37.1 holds is when v�(z)= 0, that is, when
ż = f0(z, 0) has a globally asymptotically stable equilibrium at z = 0. This is the case of a system whose
zero dynamics have a globally asymptotically stable equilibrium at z = 0, that is, the case of a globally
minimum-phase system.

The stabilization procedure outlined above is illustrated in the following example, taken from [1].

Example 37.2:

Consider the problem of globally asymptotically stabilizing the equilibrium (x1, x2, x3)= (0, 0, 0) of
the nonlinear system

ẋ1 = x3
2

ẋ2 = x3
3

ẋ3 = u.

(37.18)

To this end, observe that a “dummy output” of the form

y = x3− v�(x1, x2)

yields a system having relative degree r = 1 at each x ∈ R
3 and two-dimensional zero dynamics. The

latter, that is, the dynamics obtained by imposing on Equation 37.18 the constraint y = 0, are those
of the autonomous system

ẋ1 = x3
2

ẋ2 = (v�(x1, x2))3.
(37.19)

From the discussion above we know that, if it is possible to find a function v�(x1, x2) that globally
asymptotically stabilizes the equilibrium (x1, x2)= (0, 0) of Equation 37.19, then there exists an input
u(x1, x2, x3) that globally asymptotically stabilizes the equilibrium (x1, x2, x3)= (0, 0, 0) of Equation 37.18.
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It is easy to check that the function

v�(x1, x2)=−x1exp(x1x2)

accomplishes this task. In fact, consider the system

ẋ1 = x3
2

ẋ2 =−x3
1exp(3x1x2),

(37.20)

and choose a candidate Lyapunov function

V (x1, x2)= x4
1 + x4

2 ,

which yields

V̇ = 4(x1x2)3(1− exp(3x1x2)).

This function is nonpositive for all (x1, x2) and zero only at x1 = 0 or x2 = 0. Since no nontrivial trajectory
of Equation 37.20 is contained in the set

M = {(x1, x2) : V̇ = 0} ,

by Lasalle’s invariance principle it is concluded that the equilibrium (x1, x2)= (0, 0) of Equation 37.20 is
globally asymptotically stable.

In order to obtain the input function that globally stabilizes the equilibrium (x1, x2, x3)= (0, 0, 0) of
Equation 37.18, it is necessary to use the construction indicated in the proof of Lemma 37.1. In fact,
consider the change of variables

y = x3− v�(x1, x2)

which transforms Equation 37.18 into

ẋ1 = x3
2

ẋ2 = (y+ v�(x1, x2))3

ẏ = u− ∂v�

∂x1
x3

2 −
∂v�

∂x2
(y+ v�(x1, x2))3.

(37.21)

Choosing a preliminary feedback

u= ∂v�

∂x1
x3

2 +
∂v�

∂x2
(y+ v�(x1, x2))3+ u′

yields

ẋ1 = x3
2

ẋ2 = (y+ v�(x1, x2))3

ẏ = u′.
(37.22)

which has exactly the form of Equation 37.13, namely,

ż = f (z, ξ)

ξ̇= u′,
with

z =
(

x1

x2

)

f (z, ξ)=
(

x3
2

(v�(x1, x2))3

)
+ ξ

(
0

3(v�(x1, x2))2+ 3v�(x1, x2)ξ+ ξ2

)

and ż = f (z, 0) has a globally asymptotically stable equilibrium at z = 0. As a consequence, this system can
be globally asymptotically stabilized by means of a feedback law u′ = u′(z, ξ) of the form of Equation 37.16.
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38.1 Introduction

Time-dependent events a(t) and b(t) are said to commute if the occurrence of a(t) during a time interval
T followed by the occurrence of b(t) during an interval S leads to an outcome that does not change when
the order of events is reversed. Denoting by b(S)a(T) the occurrence of a followed by b, then a(T)b(S)
denotes the reversed order, and a and b commute if a(T)b(S)= b(S)a(T). Otherwise, a and b are said to
be noncommutative events.

Most events do not commute, as is evident from common experience. For instance, filling the swim-
ming pool with water and then diving into the pool results in a state different from one in which the order
is reversed. Driving an automobile relies on a more subtle use of noncommutativity (based on nonholon-
omy). Any automobile driver knows that the rotations of the steering wheel do not commute with either
forward or backward motions of the automobile. The ability to park the automobile in a tight spot, a most
demanding challenge for an inexperienced driver, is only possible because of the noncommuting nature
of these events. An experienced driver knows that it is possible to execute a parallel displacement of an
automobile in any space which is large enough to allow some forward and backward movement, although
the number of maneuvers may be so large that it might very well be advisable to look for another parking
spot with more space to spare.

Control of many dynamic systems, like the control of an automobile, consists of a time-sequential
application of noncommuting events. Knowing which event to apply at a given time is a basic require-
ment of successful control. The recognition of noncommutativity as a fundamental issue of control is a
starting point for geometric control; this chapter describes the main mathematical tools required for its
understanding.

38-1
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38.2 Notations and Basic Assumptions

The subsequent discussion is confined to control systems described by a differential equation dx
dt = F(x, u)

in which the control functions u(t)= (u1(t), . . . , um(t)) take values in a fixed set U in Rm. Most of the
theory presented in this chapter is extracted through F and its derivatives, and for that reason it is
expedient to assume that the state variable x(t) belongs to an analytic manifold M and that F(x, u) is
an analytic vector field for each u in U . The reader not familiar with these notions may assume at the
beginning that M is a finite dimensional vector space and that for each u ∈ U , F(x, u) can be represented
by its Taylor series at each point x in M. The extensions to arbitrary manifolds will be defined as
needed.

Throughout this chapter A(x, T) will denote the set of states reachable from an initial state x in
exactly T units of time. Then, A(x,≤ T)= ⋃

0≤t≤T
A(x, t), and A(x)= ⋃

t≥0
A(x, t). As will be explained

later, a differential control system may also be viewed as a family of vector fields F , in which case
the reachable sets will be subscripted AF (x, T), AF (x,≤ T), and AF (x) in order to emphasize their
dependence on a given system F . These notations will be needed particularly when discussing several
systems simultaneously.

38.3 Vector Fields

Geometric control theory begins with a distinctive view of a differential equation, initiated by H. Poincaré
in the latter part of the 19th century, that the solutions of

dx

dt
= F(x(t)) x(t) in M (38.1)

can be analyzed in simple mathematical terms without ever having to solve the differential equation. The
corresponding theory is based on a single assumption that for each initial state x0 differential Equation 38.1
admits a unique solution through that state defined for all times t. Assuming that this is the case, let x(x0, t)
denote the solution of Equation 38.1 for which x(x0, 0)= x0. The mapping (x0, t)→ x(x0, t) is called the
flow, or dynamic system induced by the vector field F. Its essential properties are

1. x(x0, 0)= x0 for each x0 in M
2. x(x0, t+ s)= x(x(x0, t), s))= x(x(x0, s), t) for all x0 in M and s, t in R
3. ∂

∂t x(x0, t)= F(x(x0, t))

At each instant of time, t, the flow of F induces a transformation on M which will be denoted by exptF:
exptF maps each initial point x0 onto x(x0, t). It follows from (1) and (2) that exp 0F = Identity and
that exp(t+ s)F = (exptF)(expsF)= (expsF)(exptF) for any s and t, with (expsF)(exptF) denoting the
composition of mappings. Since exp 0F = Identity, it follows that (exptF)−1 = exp−tF, and therefore,
the mappings {exptF : t ∈ R} form a commutative group. This group is called the one-parameter group
of transformations induced by F.

Example 38.1:

If F is a linear vector field, i.e., F(x)= Ax for some linear mapping on M then x(x0, t)= etAx0 with

etA =∑∞
k=0

tk

k!A
k . Thus, in this case exptF is a linear transformation on M equal to the exponential

of a linear mapping.
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Example 38.2:

If F(x)= b is a constant vector field, then x(x0, t)= x0+ tb, and therefore each transformation exptF
is a translation in the direction of b.

Vector fields, no matter how nonlinear, admit linear interpretations on an infinite dimensional vector
space in which exptF becomes the exponential of a linear mapping. In this interpretation vector fields act
linearly on functions on M as follows: let

(exptF)(f )(x0)= f (x(x0, t))

for any real-valued function, f . Then Ff is the function on M defined by

Ff = d

dt
(exptF)(f )|t=0

Ff is called the derivation of f along the vector field F.
Ff admits a simple description in any system of coordinates on M. Assuming that M is a linear vector

space, then any basis a1, . . . , an in M induces coordinates x1, . . . , xn on M by the formula x =∑n
i=1 xiai .

Then F(x)=∑n
i=1 Fi(x1, . . . , xn)ai and Equation 38.1 is written as a system of differential equations in Rn

dxi

dt
= Fi(x1, . . . , xn) i = 1, . . . , n. (38.2)

Any real-valued function on M becomes a function on Rn by the correspondence f (x)= f (x1, . . . xn).
Then,

d

dt
f (x1(t), . . . , xn(t))|t=0 =

n∑
i=1

∂f

∂xi
(x1, . . . , xn)Fi(x1, . . . , xn)

and therefore

(Ff )(x1, . . . , xn)=
n∑

i=1

∂f

∂x1
Fi(x1, . . . , xn)

It follows that (Ff )(x) is equal to the directional derivative of f at x in the direction of F(x). In particular,
when f = xi , then Fxi = Fi , i = 1, . . . , n. Evidently F acts linearly on functions (as a directional derivative)
and therefore satisfies further properties:

Ff = 0 for constant functions f , and F(fg)= f (Fg)+ g(Ff ) with respect to the products of functions.
(fg denotes the product of f and g , i.e., (fg)(x)= f (x)g(x) and f (Fg) is the product of f with Fg . Note that
f (Fg) �= (Ff )g .)

As a mapping on the space of functions exptF satisfies

d

dt
exptF = F(exptF)= (exptF)F and

dn

dtn exptF = FnexptF (38.3)

with each product denoting the composition of linear mappings. Analytic vector fields can be rep-

resented by their Taylor series and therefore (exptF)(f )=∑∞
k=0

tk

k!F
k(f ) for any analytic function

f . The reader can easily verify that in each system of coordinates, F2f = F(Ff )= F
(∑n

i=1
∂f
∂xi

Fi

)
=∑n

i j=1

(
∂2f

∂xi∂xj
FiFj + ∂f

∂xi

∂Fi
∂xj

)
. Then F3f is the directional derivative of F2f in the direction F and so on

for each derivate Fnf .
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38.4 The Lie Bracket

With these notions and notations at our disposal, let us return to the commutativity issue raised in the
introduction, and consider commutativity properties of exptF and expsG corresponding to vector fields
F and G. This question may be further motivated through the following control theoretic context:

Consider a control system
dx

dt
= u(t)F(x(t))+ (1− u(t))G(x(t))

with switching control u which can only take values 0 or 1 (on-off controls). During any time interval that
the control is turned on the system follows F and during the time intervals that the control is switched off
the system follows G.

Let u1(t) and u2(t) denote the following control functions defined in an interval [0, T + S]:

u1(t)=
{

1, t ∈ [0, T)

0, t ∈ [T , T + S]

u2(t)=
{

0, t ∈ [0, S)

1, t ∈ [S, T + S]
The corresponding trajectories x1(t) and x2(t), both initiating from the same initial point x0, are

given by:

x1(t)= (exptF)(x0), t ∈ [0, T)

x1(t)= (exp(t−T)G)(exptTF)(x0), t ∈ [T , T + S]
and

x2(t)= (exptG)(x0), t ∈ [0, S)

x2(t)= (exp(t− S)F)(exp SG)(x0) for t ∈ [S, S+T]
At the terminal time t = T + S, x1(t)= (exp SG)(exp TF)(x0), and x2(t)= (exp TF)(exp SG)(x0).

Assuming that the control actions of u1(t) and u2(t) lead to the same terminal state independently
of the initial point x0 and of the switching times S and T , then (exp SG)(exp TF)= (exp TF)(exp SG).
This equality remains unaltered when the domain is extended to the space of functions and therefore,
∂
∂t

∂
∂s (expsG)(exptF)(f )= ∂

∂s
∂
∂t (exptF)(expsG)(f ) for any function f .

Taking advantage of formulas (Equation 38.3)

∂

∂t

∂

∂s
(expsG)(exptF)f = ∂

∂t
G(expsG)(exptF)(f )= G(expsG)(FexptF)f ,

and
∂

∂s

∂

∂t
(exptF)(expsG)(f )= F(exptF)(GexpsG)f

Evaluating these derivatives at t = s = 0 gives

G(Ff )= F(Gf )

Definition 38.1:

Let F and G be any vector fields on M. Then [F, G](f )= G(Ff )− F(Gf ) for any real-valued function f on
M. [F, G] is called the Lie bracket of F with G.
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It follows that [F, G] is a vector field for any vector fields F and G. Note that [F, G] = −[G, F]. The ith
coordinate of the Lie bracket [F, G] is given by [F, G](xi). Therefore,

[F, G](xi)= G(Fi)− F(Gi)=
n∑

j=1

∂Fi

∂xj
Gj − ∂Gi

∂xj
Fj (38.4)

The calculations above show that if (expsG)(exptF)= (exptF)(expsG) for all s and t then [F, G] = 0.
Somewhat remarkably, the converse is also true; i.e., if [F, G] = 0, then (exptF)(expsG)= (expsG)(exptF).

Example 38.3:

If F(x)= b and G(x)= c are any constant vector fields, then their coordinates are constant
functions, and therefore [F , G] = 0 (as can be seen from Equation 38.4). Then, (exptF)(x)=
x+ tb and (expsG)(x)= x+ sc, and therefore (exptF)(expsG)(x)= (x+ sc)+ tb= (x+ tb)+ sc =
(expsG)(exptF)(x), confirming that the flows commute.

Example 38.4:

Let F(x)= Ax be a linear vector field and G(x)= b a constant vector field. In terms of any linear
coordinates x1, . . . , xn, Fi (x1, . . . , xn)=∑n

j=1 Aij · xj . (Aij ) is the matrix of A relative to this basis. Then

[F , G](xi )=
n∑

j=1

∂Fi

∂xj
Gj − ∂Gi

∂xj
Fj =

n∑
j=1

Aij bj −O · Fj =
n∑

j=1

Aij bj

Thus [G, F] is a constant vector field equal to Ab. [G, F] = 0 if and only if b ∈ ker A.

For instance, the rotation A=
⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ and b=

⎛
⎝0

0
1

⎞
⎠ commute, while A does not commute

with b=
⎛
⎝1

0
0

⎞
⎠ (Figure 38.1).

x3(a) (b)

x3

x1

FIGURE 38.1 Commutativity: (a) Commuting case and (b) Noncommuting case.
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Example 38.5:

Let F(x)= Ax and G(x)= Bx be linear vector fields on M. Then [F , G] is a linear vector field given by
[F , G](x)= (AB− BA)(x).

For example, if A=
(

1 0
0 −1

)
and B =

(
0 1
1 0

)
are the matrices corresponding to F and G (relative

to a linear system of coordinates) then C = 2
(

0 1
−1 0

)
is the matrix that corresponds to [F , G]. The

flows of these fields are shown in Figure 38.2.

(F)

(G)

(F, G)

FIGURE 38.2 Lie brackets of vector fields.
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Return now to the general discussion, and consider the expression

(exp−tG)(exp−tF)(exptG)(exptF) (38.5)

As shown earlier, this expression reduces to the identity when [F, G] = 0. Begin with a simple case with

F and G linear vector fields defined by linear mappings A and B. Then exptF = etA =∑∞
k=0

tk

k!A
k , and

exptG =∑∞
k=0

tk

k!B
k . We shall be interested only in the terms up to and including the second-order terms

in t. Then,

etBetA = I + t(A+B)+ t2BA+ t2

2! (A2+B2)

and

e−tBe−tA = I − t(A+B)+ t2BA+ t2

2! (A2+B2)

Therefore,

e−tBe−tAetBetA =
(

I − t(A+B)+ t2BA+ t2

2! (A2+B2)

)(
I + t(A+B)+ t2BA+ t2

2! (A2+B2)

)

= I + t(A+B)+ t2BA+ t2

2
(A2+B2)− t(A+B)− t2(A+B)2+ t2BA+ t2

2
(A2+B2)

= I − t2(AB+BA)+ 2t2BA= I + t2(BA−AB)

These calculations show that up to second-order terms in t,

(exp−tG)(exp−tF)(exptG)(exptF)= I + t2[G, F]

This result extends to arbitrary vector fields, as can be demonstrated through the formulas exptF =∑∞
k=0

tk

k!F
k(f ) and (exptG)(f )=∑∞

k=0
tk

k!G
k(f ) described earlier. These arguments show that the proof

for the general flows is the same as it is for the linear flows.
The asymptotic formula obtained above shows that the curve σ(t)= (exp−√tG)(exp−√tF)

(expt
√

tG)(expt
√

tF)(x0) satisfies σ(0)= x0 and dσ
dt (0)= [G, F](x0).

The preceding developments may be stated in a control theoretic context, as follows.

Theorem 38.1:

Suppose that dx
dt = F(x, u) is any system in M with the control functions taking place in a set U ⊂ Rm.

Suppose that F1(x)= F(x, u1) and F2(x)= F(x, u2) for some choices u1 and u2 of control values. Assume
that there exist control values u3 and u4 in U such that−F1(x)= F(x, u3) and−G(x)= F(x, u4) for all x.
Then there is a curveσ(t) contained in the reachable set A(x,≤ ε) for any ε> 0 such that dσ

dt (0)= [F1, F2](x).
That is, the system can move infinitesimally in the direction of the Lie bracket.

Example 38.6:

Let A=
(

0 1
1 0

)
and B =

(
1 0
0 −1

)
define the bilinear system dx

dt = (1− u)Ax+ uBx in M= R2, with

0≤ u(t)≤ 1. Then, u= 0 follows F(x)= Ax and u= 1 follows G(x)= Bx . The Lie bracket [F , G] is a
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A(x, ≤ ε)

[F, G](x)

x2

x1

FIGURE 38.3 Noncontrollability of the Lie bracket.

linear field given by the rotation matrix 2
(

0 1
−1 0

)
. Since

dx1

dt
= ux1+ (1− u)x2 and

dx2

dt
=−x2u+ x1(1− u),

d

dt
x1(t)x2(t)= (ux1+ (1− u)x2)x2+ (−x2u+ x1(1− u))x1 = (1− u)(x2

1 + x2
2 )≥ 0.

Thus, x1(t)x2(t) is increasing for any admissible control function. The system cannot move infinitesimally
in the direction of [F, G]because neither−F nor−G can be traced by the admissible controls (Figure 38.3).

38.5 The Lie Algebras

From a geometric point of view, a control system is a family of vector fields parameterized by controls.
Each control value determines a vector field, and the corresponding trajectory is a solution curve of this
field. As the control switches to a new value so does the vector field and the trajectory begins to follow
the direction of the new field. From this view a trajectory generated by a piecewise constant control is a
continuous curve in M having discontinuous derivatives with the breaks in the derivative corresponding
to the changes in vector fields caused by the switches in the control. Such curves are conveniently called
continuous broken trajectories. Between any consecutive breaks, the trajectory is a solution curve of a
vector field in the family.

From this perspective, a linear control system dx
dt = Ax+Bu, u ∈ U is a collection of affine vector fields

F of the form Fu(x)= Ax+Bu with u ∈ U . An affine vector field F is any vector field in M which satisfies
F(
∑
λixi)=∑λiF(xi) for any affine combination

∑
λixi with

∑
λi = 1. It can be shown that any affine

field is the sum of a linear vector field and a constant vector field. The exponential map exptF of any
affine vector field F(x)= Ax+ b is given by (exptF)(x)= eAt(x+ ∫ t

0 e−Asb ds). For instance, if b ∈ ker A,
then e−Asb= b, and (exptF)(x)= eAtx+ bt.
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Vector fields form a vector space under pointwise addition and multiplication by scalars. The solution
curves of F and λF,λ a real number, differ only by reparameterization of time; i.e., if dx

dt (t)= F(x(t)) then
d
dt x(λt)= λF(x(λt)), and consequently y(t)= x(λt) is a solution curve of λF.

For sums of vector fields the situation is different. Thus, F(x)=
(

0 1
0 0

)(
x1

x2

)
, G(x)=

(
0 0
1 0

)(
x1

x2

)

add to H(x)=
(

0 1
1 0

)(
x1

x2

)
.

The phase portraits of these flows are shown in Figure 38.4.
It is known that every solution curve of the sum F+G can be approximated by a curve that oscillates

between the solution curves of F and the solution curves of G, as shown in Figure 38.5.
The vector space structure, together with the Lie bracket operation, turns the set of all vector fields into

an algebra called the Lie algebra.
Any set of vector fields F generates the smallest sub-algebra that contains F . We will use Lie(F ) to

denote the Lie algebra generated by a family of vector fields F .

(F) (G)

(F + G)

FIGURE 38.4 Sums of vector fields.
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FIGURE 38.5 Chattering along the sum of vector fields.

Example 38.7:

Let F consist of two vector fields F and G in R2 given by Ff = x2
1

∂f
∂x1

and Gf = x2
1

∂f
∂x2

. Then, [F , G]f =
−2x3

1
∂f
∂x2

. Furthermore, [F , [F , G]] = 6x4
1

∂
∂x2

. It then follows by induction that each vector field xn
1

∂f
∂x2

is contained in Lie(F ), and therefore Lie(F ) is an infinite dimensional algebra of vector fields.

Example 38.8:

Consider now the family of affine vector fields F = {Fu(x)= Ax+ Bu : u ∈ U} defined by a linear
system with a constraint set U. When the linear span of points in U spans Rm, Lie(F ) coincides with
the Lie algebra generated by F0(x)= Ax and the constant vector fields with values in the range of B.

As we have already shown in Example 38.2, [F0, G] = Ab for any constant vector field G = b. Let B
denote the range space of B. Then, it follows by the preceding observation that the space of constant
vector fields in B+AB is contained in Lie(F ). Denote by Lk the vector space of all constant vector fields
with values in B+AB+ · · ·+Ak−1B. It follows that Lk+1 = [F0, Lk]+Lk and therefore each space
Lk is contained in Lie(F ). Since each power An+k is a linear combination of {Ak : 0≤ k ≤ n− 1}, as a
consequence of the Cayley–Hamilton theorem, it follows that Lie(F ) is equal to the linear span of F0 and
Ln, and is therefore a finite dimensional Lie algebra. The space Ln is usually described as the range space
of the controllability matrix

(B AB . . . An−1B)

An arbitrary family of vector fields F in Lie(F ), when evaluated at each point x, defines a linear
space of tangent vectors at x. For instance, in Example 38.7, each vector in Lie(F ) evaluated at x1 = 0
is equal to zero. Therefore, each element in Lie(F ) is equal to zero at such points, and consequently the
corresponding space of tangent vectors is zero-dimensional. At any other point of the plane G and F are
linearly independent, and their span is two-dimensional.
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The Lie algebra in Example 38.8 evaluated at the origin is equal to the range space of the controllability
matrix. The Lie algebra evaluated at any other point is the vector sum of Ax and the range of the
controllability matrix.

We shall use Liex(F ) to denote the vector space of all tangent vectors F(x) with F in Lie(F ). Then
dim Liex(F ) will denote the dimension of this vector space.

The following theorem is of fundamental importance for geometric control theory.

Theorem 38.2:

Let F be any family of vector fields, and let AF (x,≤ T) denote its reachable set from x in T units of time (in
accordance with the conventions outlined earlier). Then dim Liex(F )= dim M is a necessary and sufficient
condition that AF (x,≤ T) has a non-empty interior in M. Furthermore, when dim Liex(M)= dim M, then

clAF (x,≤ T)⊆ int AF (x,≤ T + ε)⊆AF (x,≤ T + ε) for any T > 0 and any ε> 0.

In the preceding notation, cl(A) denotes the topological closure of a set A, which means that cl(A)
consists of A along with all points of M which are limit points of elements in A. The interior of any set
A, denoted by int (A), consists of all points a in A contained in an open ball in M centered at a which is
entirely contained in A.

Typically, the initial point x belongs to the boundary of the reachable set A(x,≤ T), as in Example 38.6.
x is said to be small-time controllable by F whenever x belongs to the interior of AF (x,≤ T) for any
T > 0. The following example shows that x can be small-time locally controllable even for families of two
vector fields neither of which vanishes at x.

Example 38.9:

Let F be the family consisting of linear vector fields F and G in R2 described by A=
(

0 1
1 0

)
and

B =
(−1 0

0 −2

)
. The solution curves of F are hyperbolas x2

2 − x2
1 = const while the integral curves

of G are parabolas x2 = cx2
1 . The curves are tangent to each other along the lines x1 =±

√
2x2. Any

initial point x along such a line is in the interior of AF (x ,≤ T ), as Figure 38.6 shows.

For linear systems, any trajectory x(t) which originates at x0 = 0 is of the form x(t)=
eAt

∫ t
0 e−AsBu(s) ds, and is therefore necessarily contained in the range space of the controllability matrix,

as can be seen from the expression

eA(t−s)Bu(s)=
∞∑

k=0

(t− s)k

k! AkBu(s) ds

confirming the necessity of the Lie algebraic criterion stated in Theorem 38.2.

38.6 The Lie Saturate

We now shift to the invariance properties of control systems using the closure of the reachable sets as the
basic criterion for invariance. Let F1 and F2 be any families of vector fields. Then F1 is said to be strongly
equivalent to F2 if
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(a) (b)

(c)

FIGURE 38.6 Small-time local controllability: (a) solution curves of G; (b) solution curves of F; and (c) closed
cycles.

1. Liex(F1)= Liex(F2) for all x in M
2. clAF1 (x,≤ T)= clAF2 (x,≤ T) for all T > 0 and all x in M

F1 and F2 are said to be equivalent if (2) is replaced by clAF1 (x)= clAF2 (x).

Definition 38.2:

The (strong) Lie saturate of a given control system is the largest family of vector fields (strongly) equivalent
to F . The (strong) Lie saturate will be denoted by LSs(F ), and LS(F ) will denote the Lie saturate of F .

Definition 38.3:

A control system F is said to be strongly controllable if AF (x,≤ T)=M for each x in M and each T > 0.
It is said to be controllable if AF (x)=M for each x in M.
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Theorem 38.3:

i. A control system F is strongly controllable if and only if the strong Lie saturate of F is equal to Lie(F ).
ii. F is controllable if and only if the Lie saturate of F is equal to Lie(F ).

The above theorem is called the Lie saturate criterion of controllability. As elegant as the criterion
seems, its practical value rests on the constructive means of calculating the Lie saturate. The next theorems
describe permissible system enlargements, prolongations, which respect the reachable sets and may be
used to generate a procedure for calculating the Lie saturate. We say that F2 is a prolongation of F1 if
F1 ⊂ F2 and if F1 and F2 have the same Lie saturates.

We begin by noting that the convex hull of any family of vector fields is contained in the strong Lie
saturate of the family. Recall that the convex hull of F consists of all convex combinations

∑m
i=1 λiFi ,

with
∑m

i=1 λi = 1,λi ≥ 0, and each Fi in F . It is known that

(
exp

(
t
∑

λiFi

))
(x) ∈ clAF (x, t)

for each t > 0, because any trajectory of a convex combination can be approximated by a trajectory
of F . The approximation is achieved by switching sufficiently fast along the trajectories of F1, . . . , Fm

around the trajectory of the convex sum (as illustrated in Figure 38.5). It may happen that the termi-
nal point of the trajectory of the convex sum is not reachable by the original system, as the example
below shows.

Example 38.10:

The point x = 1, y = 0 cannot be reached in time t = 1 from the origin by the trajectories of

dx

dt
=−y2+ 1

dy

dt
= u with u(t)=±1

The convex hull of U = {−1, 1} is the closed interval−1≤ u ≤ 1. Therefore, u(t)= 0 is in the convex
hull of U = {−1, 1}. The corresponding trajectory which originates at 0 is given by x(t)= t, y(t)= 0
and reaches x = 1, y = 0 at t = 1.

Having taken the closure of the reachable sets as the criterion for equivalence, it becomes natural to
pass to topologically closed families of vector fields. The choice of topology for the space of vector fields
is not particularly important. In this context it is convenient to topologize the space of all vector fields
by the C∞ topology on compact subsets of M. Rather than going into the mathematical details of this
topology, let us illustrate the use with an example.

Suppose that Xλ(x)= λ(Ax+ 1
λ

b) is a family of affine vector fields parameterized by λ. For each λ �=
0, (exptXλ)x = etλAx+ ∫ t

0 eλ(t−s)Ab ds, limλ→0(exptXλ)(x)= x+ bt because limλ→0 etλA = I uniformly
in t. Thus the limiting curve x+ bt is equal to (exptX0)(x) with X0 = limλ→0 Xλ.

It can be shown in general that if a sequence of vector fields converges to a vector field F then each
curve σn(t)= (exptFn)(x0) converges uniformly in t to σ(t)= (exptF)(x0). Therefore, each family F may
be prolonged to its topological closure.

In addition to the convexification and the topological closure, there is another means of prolonging a
given family of vector fields based on reparameterizations of trajectories.



�

�

�

�

� �

38-14 Control System Advanced Methods

Note that y(t)= x(λt) remains in the reachable set AF (x0,≤ T) for any trajectory x(t) of F for which
x(0)= x0 provided that 0≤ λ≤ 1. y(t) ∈AF (x0) for anyλ≥ 0. Thus,λF ∈ LSs(F ) for any 0≤ λ≤ 1 and
any F in LSs(F ). It will be useful for further references to assemble these prolongations into a theorem.

Theorem 38.4:

i. The Lie saturate of any system is a closed convex cone, i.e.,
∑m

i=1 λiFi ∈ LS(F ) for any vector fields
F1, . . . , Fm in LS(F ) and any numbers λ1 ≥ 0, . . . ,λm ≥ 0.

ii. The strong Lie saturate of any family of vector fields is a closed convex body, i.e.,
∑m

i=1 λiFi ∈
LSs(F ) for any elements F1, . . . , Fm in LSs(F ) and any non-negative numbers λ1, . . . ,λn such that∑m

i=1 λi ≤ 1.

We now describe another operation which may be used to prolong the system without altering its
reachable sets. This operation is called the normalization of the system.

An invertible map Φ :M →M is called a strong normalizer for F if Φ(AF (Φ−1(x),≤ T))⊂
clAF (x,≤ T) for all x in M and T > 0.Φ is called a normalizer for F ifΦAF (Φ−1(x))⊂ clAF (x). It may
be also said thatΦ is a strong normalizer if bothΦ(x) andΦ−1(x) are contained in clAF (x,≤ T) and that
Φ is a normalizer if both Φ(x) and Φ−1(x) belong to clAF (x). In this notation Φ(AF (Φ−1(x),≤ T)) is
equal to the set of pointsΦ(y) with y belonging to AF (Φ−1(x),≤ T). IfΦ is any invertible transformation,
and if F is any vector field then (Φ)(exptF)Φ−1 is a one-parameter group of transformations and is itself
generated by a vector field. That is, there is a vector field G such that

(exptG)=Φ(exptF)Φ−1

It can be shown that G = (dΦ)F(Φ−1) where dΦ denotes the derivative of Φ. We shall use Φ#(F) to
denote the vector field (dΦ)(FΦ−1).

Example 38.11:

i. LetΦ be a transformationΦ(x)= x+ b, and F a linear vector field F(x)= Ax. Then,

ΦexptFΦ−1(x)= eAt(x− b)+ b

Therefore, d
dt eAt(x− b)+ b|t=0 = A(x− b)= Ax−Ab. Thus,Φ#F is an affine vector field.

ii. IfΦ is a linear transformation, then dΦ is also linear, and therefore,Φ#F =ΦAΦ−1, i.e.,Φ#F is a
linear vector field for any linear field F.

Theorem 38.5:

i. IfΦ is a strong normalizer for a family of vector fields F then,

Φ#(LSs(F ))∩ Lie(F )⊂ LSs(F )

ii. IfΦ is a normalizer for F , then

Φ#(LS(F ))∩ Lie(F )⊂ LS(F )
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38.7 Applications to Controllability

The geometric ideas that led to the Lie saturate criterion of controllability provide a beautiful proof of
controllability of linear systems, demonstrating at the same time that linearity plays an inessential role.
This proof goes as follows.

We use the induction on k to show that each controllability space Lk = B+AB+ · · ·+Ak−1B defined
in Example 38.8 is contained in the strong Lie saturate of the system.

Let F denote the family of affine vector fields Fu(x)= Ax+Bu defined by the linear system dx
dt =

Ax+Bu. For each real number λ, 0≤ λ≤ 1 and each Fu in F

Fλ,u(x)= λ(Ax+ 1

λ
Bu)

belongs to LSs(F ) by Theorem 38.4 (ii). Its limit asλ→ 0 also belongs to LSs(F ) since the latter is closed.
It follows that limλ→0 Fλ,u = Bu and therefore L1 = B is contained in LSs(F ).

Now assume that Lk−1 ⊂ LSs(F ). Let b be any element of Lk−1 and let α be any real number. The
constant vector field Fα = αb is in Lk−1 for eachα. LetΦα = exp Fα. Then (Φα)−1 = exp F−α and therefore
both Φα(x) and Φ−1

α (x) remain in clAF (x,≤ T) for any x ∈M and T > 0. Therefore, Φα is a strong
normalizer for F . According to Theorem 38.5, (Φα)#(Fu)⊂ LSs(F ) provided that (Φα)#(Fu) ∈ Lie(F ).
Then ((Φα)#(F0))(x)= αΦαAΦ−α(x)= A(x− αb) because the derivative map of a translation is equal to
the identity map. Thus, (Φα)#(Fu) belongs to Lie(F ). An analogous argument used in the first step of the
induction procedure applied to the limit of λ(Φα

λ
)#(F0) as λ tends to 0 shows that the constant vector

field −αAb is contained in LSs(F ) for each real number α. But then Lk ⊂ LSs(F ) because the convex
hull of two vector spaces is the vector space spanned by their sum, i.e., Lk = Lk−1+ALk−1. Therefore,
each Lk is in LSs(F ).

When Ln−1 =M, the space of all constant vector fields is in the strong Lie saturate and hence
cl(AF (x,≤ T))=M for each x ∈M and T > 0. But then it follows from Theorem 38.2 that M =
clAF (x,≤ T)⊂ int AF (x,≤ T + ε)⊂AF (x,≤ T + ε). Therefore, the system is strongly controllable.

The inductive procedure can also be described pictorially as follows:

Step 1: Prolong the original system to its closed convex body F1. Geometrically F (x) is the translate
of B to Ax. For each u, Ax+λBu is the line through Ax parallel to Bu, as shown in Figure 38.7a.
F1(x) is the union of all translates of B to points λAx, 0≤ λ≤ 1, as shown in Figure 38.7b.

Step 2: F1 contains the vector space B as its edge. Conjugate the original family F by B to obtain a
prolonged family F2 given by dx

dt = Ax+Bu+ABv with both u and v as controls. F2(x) is the
translate of B+AB to Ax, while the convex body F3 generated by F2 at each point x is the union

Ax + Bu

λ(Ax + Bu)

x
x

Bu

(a) (b)

FIGURE 38.7 llustration for step 1: (a) F (x) and (b) F1(x).
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(a) (b)Ax + Bu + ABυ

x

x

FIGURE 38.8 Illustration for step 2: (a) F2(x) and (b) F3(x).

of all translates of B+AB to λAx as λ ranges in the interval [0, 1]. Figure 38.8 illustrates their
differences.

Step 3: Conjugate the original family by the edge B+AB of F3. The prolonged family is given by
dx
dt = Ax+Bu+ABv+A2Bw.

A repetition of these steps embodied in the induction scheme leads to the saturated system from which
the controllability properties are evident.

We now illustrate the importance of the Lie saturate by considering controllability of linear systems
with bounded controls. Strong controllability is not possible when the constraint set U is compact, because
each set AF (x,≤ T) is compact. It is also known that controllability is not possible whenever the drift
vector field Ax has an eigenvalue with non-zero real parts. We will now use the geometric framework
provided by the Lie saturate criterion to obtain affirmative controllability results when the real part of
the spectrum of A is zero. For simplicity the proof will be given for a particular case only when all the
eigenvalues of A are zero, i.e., when A is nilpotent.

Theorem 38.6:

Suppose that U is a compact neighborhood of the origin in Rm, and suppose further that the linear drift
is nilpotent, i.e., suppose that there is a positive integer p such that Ap �= 0 but Ap+1 = 0. Then dx

dt =
Ax+Bu, u ∈ U is controllable, provided that the rank of (B AB . . . An−1B) is equal to dim M.

Proof. There is no loss of generality in assuming that U is the cube |ui| ≤ ε i = 1, . . . , m. Then the
reachable set A(0) is a convex neighborhood of the origin in M. Any trajectory x(t) which originates at
x(0)= 0 is of the form

x(t)=
∫ t

0
eA(t−s)Bu(s) ds =

p∑
k=0

AkB

k!
∫ t

0
(t− s)ku(s) ds

For any u ∈ Rm, and any real number λ, there exists T > 0 such that |λui |
Tp < ε for all i = 1, . . . , m. Let

u(T)= λu
Tp . The corresponding response x(T) is equal to

λ

(
Bu

Tp +
ABu

Tp−1 + · · ·+
Ap−1Bu

p!T + ApBu

(p+ 1)!
)

,

and therefore, limT→∞ x(T)= λApBu
(p+1)! . Therefore, the line through ApBu is contained in the closure of

A(0). The convex hull of these lines as u ranges over Rm is equal to the vector space ApB.
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Take now u(T)= λu
Tp−1 . The corresponding trajectory x(T) is given byλ( Bu

Tp−1 + · · ·+ Ap−1Bu
p! + TApBu

(p+1)! ).

Then, 1
2 (x(T)− λTApBu

(p+1)! ) ∈ clA(0), since the latter is convex. But then limT→∞ 1
2 (x(T)− λTApBu

(p+1)! )=
λAp−1Bu

p! . A repetition of the previous argument shows that the sum of Ap−1B and ApB is contained

in clA(0). Further repetitions of the same argument show that clA(0)= B+AB+ · · ·+ApB. The latter
is equal to M by the rank assumption.

Since −A is also nilpotent, the above proof is applicable to the time reversed system dx
dt =−Ax−Bu,

with u ∈ U , to show that its reachable set from the origin is the entire space M. Therefore, any initial
point x0 can be steered to the origin in some finite time T1 using the time-reversed system. But then the
origin can be steered to any terminal state x1 as a consequence of the fact proved above that A(0)=M.
Thus, A(x0)=M for any x0 in M and our proof is finished.

Remark 38.1

We have implicitly used the Lie saturate criterion to conclude that A(x)=M for all x ∈M whenever
clA(x)=M for all x in M.

38.8 Rotations

The group of rotations in R3 is a natural state space for many mechanical control problems, because the
kinematics of a rigid body can be described by the movements of an orthonormal frame fixed on the body
relative to an orthonormal frame fixed in the ambient space. Recall that the rotation group consists of all
linear transformations R which leave the Euclidean metric 〈 , 〉 in R3 invariant. A Euclidean metric in R3

is any positive definite scalar product. So if e1, e2, e3 is any orthonormal basis in R3 and if x =∑3
i=1 xiei ,

and y =∑3
i=1 yiei then 〈x, y〉 =∑3

i=1 xiyi . R is a rotation if 〈Rx, Ry〉 = 〈x, y〉 for all x and y in R3.
Denoting by a1, a2, a3 an orthonormal frame fixed on the body, then any motion of the body is

monitored by the rotation through which the moving frame a1, a2, a3 undergoes relative to the fixed
frame e1, e2, e3. This rotation, when expressed relative to the basis e1, e2, e3, becomes a 3× 3 matrix whose
columns consist of the coordinates of a1, a2, a3 relative to the fixed basis e1, e2, e3.

The group of all such matrices whose determinant is equal to 1 is called the special orthogonal group and
is denoted by SO3(R). SO3(R) is a three-dimensional manifold, which, together with its group structure,
accounts for a rich geometric base, which needs to be properly understood as a prerequisite for effective
control of mechanical systems.

Let us first outline the manifold structure of SO3(R). To begin with, the tangent space of SO3(R) at any
point R0 consists of all tangent vectors d

dεR(ε)|ε=0 for curves R(ε) in SO3(R) which satisfy R(0)= R0. The
tangent space at the group identity I plays a special role and is called the Lie algebra of SO3(R). It consists
of all matrices A for which eAe ∈ SO3(R). Each such matrix A is antisymmetric because the rotations
satisfy R−1 = R∗ with R∗ equal to the transpose, and e−Aε = (eAε)∗ = eA∗ε. Consequently, A∗ = −A.

The space of 3× 3 antisymmetric matrices is a three-dimensional vector space and is denoted by so3(R).
Each rotation, consisting of orthonormal column vectors, is defined by six orthonormality relations in
a nine-dimensional group of all 3× 3 matrices. Therefore, SO3(R) is a three-dimensional manifold, and
consequently, each tangent space is three-dimensional. But then, the tangent space at I is equal to so3(R).

Consider now the tangent space at an arbitrary point R0. For any antisymmetric matrix A each of the
curves R1(ε)= R0eAε and R2(ε)= eAεR0 is a curve in SO3(R) which passes through R0 at ε= 0. Therefore,
both dR1

dε (0)= R0A and dR2
dε (0)= AR0 are tangent vectors at R0. These vectors are different from each

other because of noncommutativity of R0 with A. The first vector is called the left-translation of A by R0,
and the second is called the right-translation of A by R0. It follows that the tangent space at R0 can be
described by either left- or right-translations of so3(R).
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Denote by A1, A2, A3 the standard basis of so3(R),

A1 =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ A2 =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ A3 =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠

Since Aiei = 0, it follows that each eAiε is a rotation about the axis containing ei , i = 1, 2, 3. For any

antisymmetric matrix A=
⎛
⎝ 0 −a2 a2

a2 0 −a1

−a2 a1 0

⎞
⎠ we will use Â to denote the column vector

⎛
⎝a1

a2

a3

⎞
⎠. Â is

the coordinate vector of A relative to the standard basis.
Any antisymmetric matrix A induces vector fields on SO3(R). The first vector field is given by Fl(R)=

RA, and the second is Fr(R)= AR. Fl is called the left-invariant vector field induced by A because its
tangent vector at R is a left translation by R of its tangent vector at the group identity. Similar explanations

apply to right-invariant vector fields Fr . We will use
→
Al to denote the left-invariant vector field whose

tangent at I is equal to A, i.e.,
→
Al (R)= RA. Similarly,

→
Ar denotes the right-invariant field

→
Ar (R)= AR.

Then (
→
A1)l , (

→
A2)l and (

→
A3)l is a basis of left-invariant vector fields which span each tangent space and

(
→
A1)r , (

→
A2)r and (

→
A3)r is a basis of right-invariant vector fields with the same property.

Any differentiable curve R(t) in SO3(R) defines a curve of tangent vectors dR
dt at R(t), which can be

expressed by either right or left basis. Let dR
dt =

∑3
i=1 ωi(t)(

→
Ai )r(R)=∑3

i=1Ωi(t)(
→
Ai )l(R(t)) denote the

corresponding coordinates of dR
dt . Vectors ω(t)=

⎛
⎝ω1(t)
ω2(t)
ω3(t)

⎞
⎠, andΩ(t)=

⎛
⎝Ω1(t)
Ω2(t)
Ω3(t)

⎞
⎠ are called the angular

velocities of R(t). In analogy with the kinematics of a rigid body, the first angular velocity is called the
(absolute) angular velocity, while the second is called the body angular velocity. The above differential
equations can be rewritten as

⎛
⎝ 0 −ω3(t) ω2(t)
ω3(t) 0 −ω1(t)
−ω2(t) ω1(t) 0

⎞
⎠R(t)= dR(t)

dt
= R(t)

⎛
⎝ 0 −Ω3(t) Ω2(t)
Ω3(t) 0 −Ω1(t)
−Ω2(t) Ω1(t) 0

⎞
⎠

It can be shown thatΩ(t)= R−1(t)ω(t).
Any differentiable curve R(t) whose angular velocity is constant is a solution curve of an invariant

vector field. If ω(t) is constant, then dR
dt = AR with Â= ω, and if Ω(t) is constant then dR

dt = RA with

Â=Ω. In the first case, R(t)= eAtR0 while in the second case R(t)= R0eAt .
It can be shown that the Lie bracket of a right (respectively, left) invariant vector fields is a right

(respectively, left) invariant vector field, with [→Al ,
→
Bl ](R)= R(BA−AB) and [→Ar ,

→
Br ](R)= (AB−BA)R.

It is easy to verify that the commutator AB−BA can also be expressed in terms of the cross-product
of Â and B̂ in R3 as follows: let [A, B]r = AB−BA and [A, B]l = BA−AB. Then, [̂A, B]r = Â× B̂, while
[̂A, B]l = B̂× Â.

Except for the cross-product correspondence, all of these concepts extend to the rotation group SOn(R)
of Rn, and its n(n−1)

2 -dimensional Lie algebra son(R) of n× n antisymmetric matrices.

38.9 Controllability in SOn(R)

A unit sphere which rolls on a horizontal plane without slipping and without spinning along the axis
perpendicular to the point of contact, can be described by the following equations:

dx1

dt
= u1(t)
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dx2

dt
= u2(t)

dR(t)

dt
=
⎛
⎝ 0 0 u1

0 0 u2

−uo −u2 0

⎞
⎠R(t)

x1(t) and x2(t) are the coordinates of the center of the sphere (x3 = 1), and R(t) is the orientation of the

sphere relative to an absolute frame e1, e2, e3. The angular velocityω(t)=
⎛
⎝−u2

u1

0

⎞
⎠ of the sphere is always

orthogonal to the velocity of its center.
The rotational kinematics of the sphere may be viewed as a left-invariant control system on SO3(R) with

two controls u1 and u2. This control system has no drift, and therefore, according to a well-known theorem
of geometric control theory, the system is strongly controllable whenever the Lie algebra generated by
the controlling vector fields is equal to the Lie algebra of the group (in this case SO3(R)). It follows that
the controlling vector fields are F1(R)= A2R and F2(R)=−A1R corresponding to u1 = 1, u2 = 0 and
u2 = 0, u1 = 1. The rotational part is strongly controllable since [F1, F2](R)= A3R. It can also be shown
that the overall system in R3× SO3(R) is strongly controllable because the Lie algebra generated by the
controlling vector fields is equal to R2× so3(R).

There is a simple argument showing that any states in R2× SO3(R) can be transferred to each other
by two switches in controls. Note first that for any angular velocity Â the corresponding rotation eA is
the rotation about Â through the angle ‖Â‖. Figure 38.9 shows that any rotation can be achieved by one
switch in controls (two angular velocities ω1 and ω2).

The proof begins with the observation that each unit circle in the e1, e2 plane centered at the origin
has a line ω in common with the circle in the a1, a2 plane also centered at the origin. ω is in the plane
ω3 = 0 as shown in the picture. The first move consists of rotating aboutω so that a3 coincides with−e1.
Then rotate through π radians along the midpoint of the arc between a2 and e2. These two moves rotate
any frame a1, a2, a3 into the standard frame. The remaining moves are used to roll for the position of
the point of contact along a line segment whose length is an integral multiple of 2π. Such moves do not
alter the orientation of the ball. Any two points in the plane can be joined along the sides of an isosceles
triangle with equal sides equal to 2πm, as shown in Figure 38.10.

The reader may note the similarity of this argument with the one used to show that any rotation in R3

may be achieved by the rotations through the Euler angles φ, θ, and ψ.
This exposition ends with a controllability theorem whose proof also relies on the Lie saturate.

e1
e1 e1 = a1

e3 = a3

e2 = a2e2

e3

e2

e3

a1

a1

a3

a3

a2

a2

FIGURE 38.9 Rotational kinematics.
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2πm

2πm

x

y

FIGURE 38.10 Translational kinematics.

Theorem 38.7:

Suppose that F is any family of right (or left) invariant vector fields on SOn(R) (or any other compact
Lie group G). Then F is controllable if and only if Lie(F ), evaluated at I, is equal to the Lie algebra of
SOn(R) (or G).

The proof consists in showing that −F is contained in the Lie saturate of F . Therefore, the vector
span of F is contained in L S(F ) by the convexity property of LS(F ). But then the Lie algebra of F is
contained in the Lie saturate and, hence, must be equal to it. The controllability result then follows from
the Lie saturate criterion. So, the proof will be complete once we showed that (exp−tF)(R) ∈ clAF (R)
for any t > 0 and any F ∈ F . Let F(R)= AR. Then, (exp−tF)(R)= e−tAR, and therefore (exp−tF)(R)
belongs to clAF (R) if and only if e−tA belongs to the closure of the reachable set from the group identity.

S0n(R) is a compact group and therefore there exists a sequence of times tn tending to ∞ such that
lim etnA exists. Let limt→∞ etnA = R0. Then, R−1

0 = limn→∞ e−Atn . If necessary, choose a subsequence so
that tn+1− tn also tends to∞. Then, I = R−1

0 R0 = (limn→∞ e−tnA)(lim etn+1A)= limn→∞ e(tn+1−tn)A.
The preceding argument shows that etA comes arbitrarily close to the identity for large values of time.

Then,

e−tA = e−tA( lim
n→∞ e(tn+1−tn)A)= lim

n→∞ e((tn+1−tn)−t)A

Since tn+1− tn →∞, (tn+1− tn)− t > 0 for large values of n and therefore e−tA ∈ clAF (I). The proof is
now finished.

Theorem 38.7 might be used to show that the orientation of a rigid body may be controlled by any
number of gyros situated on the body as long as the Lie algebra generated by their angular velocities has
full rank.
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Further Reading

The proofs of all theorems quoted in this paper can be found in the forthcoming book titled Geometric
Control Theory by V. Jurdjevic, (to appear in Studies in Advanced Mathematics, Cambridge University
Press.) The material for this article is taken out of the first part of the book dealing with the reachable sets
of Lie determined systems (which includes analytic systems).
The reader may also find some of this material in the following publications:

1. Jurdjevic, V. and Kupka, I.A., Polynomial control system, Math. Ann., 361–368, 1985.
2. Jurdjevic, V. and Sussmann, H.J., Control systems on Lie groups, J. Diff. Eqs., 12, 313–329, 1972.
3. Sussmann, H.J. and Jurdjevic, V., Controllability of non-linear systems, J. Diff. Eqs., 12, 95–116,

1972.

Convexification of control systems is also known as the relaxation of controls in the early literature on
control. See for instance,

4. Hermes, H. and LaSalle, J.P., Functional Analysis and Time Optimal Control, Academic Press, New
York, 1969.

5. Warga, T., Optimal Control of Differential and Functional Equations, Academic Press, New York,
1972.

For other applications of Lie theory to control systems the reader may consult Geometric Methods in
Systems Theory, Proceedings of the NATO Advanced Study Series, Editors: R. Brockett and D. Q. Mayne,
Reidel Publishing, 1973.
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39.1 Introduction

In this chapter we present the asymptotic methods of averaging and singular perturbation. Suppose we
are given the state equation ẋ = f (t, x, ε), where ε is a “small” positive parameter, and, under certain
conditions, the equation has an exact solution x(t, ε). Equations of this type are encountered in many
applications. The goal of an asymptotic method is to obtain an approximate solution x̃(t, ε) such that
the approximation error x(t, ε)− x̃(t, ε) is small, in some norm, for small ε and the approximate solution
x̃(t, ε) is expressed in terms of equations simpler than the original equation. The practical significance of
asymptotic methods is in revealing underlying multiple timescale structures inherent in many practical
problems. Quite often the solution of the state equation exhibits the phenomenon that some variables
move in time faster than other variables, leading to the classification of variables as “slow” and “fast.”
Both the averaging and singular perturbation methods deal with the interaction of slow and fast variables.

39.2 Asymptotic Methods

We start by a brief description of the perturbation method that seeks an approximate solution as a finite
Taylor expansion of the exact solution. Then, we introduce the averaging method in its simplest form,
which is sometimes called “periodic averaging” since the right-hand side function is periodic in time.
Next, we introduce the singular perturbation model and give its two timescale properties. Finally, we
show how to improve the accuracy of the reduced model of a singularly perturbed system.

39.2.1 The Perturbation Method

Consider the system

ẋ = f (t, x, ε), x(t0)= η (39.1)

39-1
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where f is sufficiently smooth in its arguments in the domain of interest, and ε is a positive parameter.
The solution of Equation 39.1 depends on the parameter ε, a point that we shall emphasize by writing the
solution as x(t, ε). The goal of the perturbation method is to exploit the “smallness” of the perturbation
parameter ε to construct approximate solutions that will be valid for sufficiently small ε. The simplest
approximation results by setting ε= 0 in Equation 39.1 to obtain the nominal or unperturbed problem:

ẋ = f (t, x, 0), x(t0)= η (39.2)

Suppose this problem has a unique solution x0(t) defined on [t0, t1]. By continuous dependence of the
solutions of differential equations on parameters, we know that, for sufficiently small ε, the system
equation 39.1 has a unique solution x(t, ε), defined on [t0, t1], such that

‖x(t, ε)− x0(t)‖ ≤ kε, ∀ ε< ε1, ∀ t ∈ [t0, t1]

for some k > 0 and ε1 > 0. In this case, we say that the error is of the order O(ε) and write x(t, ε)− x0(t)=
O(ε). This order of magnitude notation will be used frequently. It is defined as follows.

Definition 39.1:

δ1(ε)= O(δ2(ε)) if there exist positive constants k and c such that

|δ1(ε)| ≤ k|δ2(ε)|, ∀ |ε|< c

Higher-order approximations for the solution of Equation 39.1 can be obtained in a straightforward
manner. We construct a finite Taylor series

x(t, ε)= x0(t)+
N−1∑
k=1

xk(t)εk + εN r(t, ε) (39.3)

Substitution of Equation 39.3 into Equation 39.1 yields

N−1∑
k=0

ẋk(t)εk + εN ṙ(t, ε)= f (t, x(t, ε), ε)
def= h(t, ε) (39.4)

where the coefficients of the Taylor series of h(t, ε) are functions of the coefficients of the Taylor series
of x(t, ε). Since the equation holds for all sufficiently small ε, it must hold as an identity in ε. Hence,
coefficients of like powers of ε must be equal. Matching those coefficients we can derive the equations
that must be satisfied by x0, x1, and so on. The zeroth-order term h0(t) is given by h0(t)= f (t, x0(t), 0).
Hence, matching coefficients of ε0 in Equation 39.4, we determine that x0(t) satisfies

ẋ0 = f (t, x0, 0), x0(t0)= η

which, not surprisingly, is the unperturbed problem of Equation 39.2. The first-order term h1(t) is
given by

h1(t)= ∂f

∂x
(t, x0(t), 0) x1(t)+ ∂f

∂ε
(t, x0(t), 0)

Matching coefficients of ε in Equation 39.4 we find that x1(t) satisfies

ẋ1 = A(t)x1+ g1(t, x0(t)), x1(t0)= 0 (39.5)



�

�

�

�

� �

Two Timescale and Averaging Methods 39-3

where

A(t)= ∂f

∂x
(t, x0(t), 0), g1(t, x0(t))= ∂f

∂ε
(t, x0(t), 0)

This linear equation has a unique solution defined on [t0, t1]. This process can be continued to derive the
equations satisfied by x2, x3, and so on. By straightforward error analysis, it can be established that

x(t, ε)−
N−1∑
k=0

xk(t)εk = O(εN ) (39.6)

The O(εN ) error bound in Equation 39.6 is valid only on finite time intervals [t0, t1]. It does not hold
on intervals like [t0, T/ε] nor on the infinite time interval [t0,∞). The reason is that the constant k in the
bound kεN depends on t1 and may grow unbounded as t1 increases. The error bound in Equation 39.6 can
be extended to the infinite time interval [t0,∞) if some additional conditions are added to ensure stability
of the solution of the nominal system of Equation 39.2. In particular, suppose that Equation 39.2 has an
exponentially stable equilibrium point p∗, then Equation 39.6 holds on the infinite time interval [t0,∞),
provided η is sufficiently close to p∗. We recall that a solution x̄(t) of a state equation is exponentially
stable if for x(0) sufficiently close to x̄(0), the inequality

‖x(t)− x̄(t)‖ ≤ k‖x(0)− x̄(0)‖ exp(−γt), ∀ t ≥ 0

is satisfied with some positive constants k and γ. This definition applies whether x̄ is an equilibrium point
or a periodic solution. For a time-invariant system ẋ = f (x), an equilibrium point p∗ is exponentially stable
if the Jacobian matrix [∂f /∂x], evaluated at x = p∗, has eigenvalues with negative real parts.

39.2.2 Averaging

The averaging method applies to a system of the form

ẋ = εf (t, x, ε) (39.7)

where ε is a small positive constant and f (t, x, ε) is T-periodic in t, uniformly in (x, ε); that is,

f (t, x, ε)= f (t+T , x, ε)

for all x and ε. We assume that f is sufficiently smooth in its arguments over the domain of interest. The
method approximates the solution of Equation 39.7 by the solution of the time-invariant average system

ẋ = εfav(x) (39.8)

where

fav(x)= 1

T

∫ T

0
f (τ, x, 0) dτ (39.9)

The intuition behind this approximation can be seen as follows. When ε is small, the solution x will
vary “slowly” with t relative to the periodic fluctuation of f (t, x, ε). Therefore, x will be determined
predominantly by the average of f . This intuition has its roots in linear system theory where we know
that if the bandwidth of the system is much smaller than the bandwidth of the input, then the system will
act as a low-pass filter that rejects the high-frequency component of the input.

The basic problem in the averaging method is to determine in what sense the behavior of the time-
invariant system of Equation 39.8 approximates the behavior of the time-varying system of Equation 39.7.
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We shall address this problem by showing, via a change of variables, that the system of Equation 39.7 can
be represented as a perturbation of the system of Equation 39.8. Define

u(t, x)=
∫ t

0
[f (t, x, 0)− fav(x)] dτ (39.10)

Since f (t, x, 0)− fav(x) is T-periodic in t with zero mean, the function u(t, x) is T-periodic in t. It can be
also shown that ∂u/∂t and ∂u/∂x are T-periodic in t. The change of variables

x = y+ εu(t, y) (39.11)

transforms Equation 39.7 into the form

ẏ = εfav(y)+ ε2q(t, y, ε) (39.12)

where q(t, y, ε) is T-periodic in t. This equation is a perturbation of the average system of Equation 39.8.
It can be represented as a standard perturbation problem by changing the time variable from t to s = εt.
In the s timescale the equation is given by

dy

ds
= fav(y)+ εq

( s

ε
, y, ε

)
(39.13)

where q(s/ε, y, ε) is εT-periodic in s.
The problem has now been reduced to the perturbation problem we studied in the previous section. If,

for a given initial state x(0)= η, the average system

dy

ds
= fav(y), y(0)= η

has a unique solution ȳ(s) defined on [0, b], then for sufficiently small ε the perturbed system of Equation
39.13 will have a unique solution defined for all s ∈ [0, b] and the two solutions will be O(ε) close. Since
t = s/ε and x− y = O(ε), by Equation 39.11, the solution of the average system of Equation 39.8 provides
an O(ε) approximation for the solution of Equation 39.7 over the time interval [0, b/ε] in the t timescale. If
the average system of Equation 39.8 has an exponentially stable equilibrium point p∗ and Ω is a compact
subset of its region of attraction, then for all initial states in Ω, the O(ε) approximation will be valid for
all t ≥ 0.

Investigation of Equation 39.13 reveals another interesting relationship between Equations 39.7 and
39.8. If Equation 39.8 has an exponentially stable equilibrium point p∗, then Equation 39.7 has a unique
exponentially stable T-periodic solution in an O(ε) neighborhood of p∗.

The averaging method can be extended to systems where the right-hand side of Equation 39.7 is not
periodic in t, if an average of f (t, x, 0) can be defined by the limit

fav(x)= lim
T→∞

1

T

∫ t+T

t
f (τ, x, 0) dτ

A simple example is the case when f (t, x, 0)= f1(t, x)+ f2(t, x), where f1 is periodic in t while f2 satisfies
‖f2(t, x)‖ ≤ ke−γt over the domain of interest.

39.2.3 Singular Perturbation

While the perturbation method of Section 39.2.1 applies to state equations that depend smoothly on a small
parameter ε, in this section we face a perturbation problem characterized by discontinuous dependence
of system properties on the perturbation parameter ε. We shall study the singular perturbation model

ẋ = f (t, x, z, ε) (39.14)

εż = g(t, x, z, ε) (39.15)

where setting ε= 0 causes a fundamental and abrupt change in the dynamic properties of the system, as
the differential equation εż = g degenerates into the algebraic or transcendental equation 0= g(t, x, z, 0).
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The essence of the theory described in this section is that the discontinuity of solutions caused by singular
perturbations can be avoided if analyzed in separate timescales. This multi timescale approach is a
fundamental characteristic of the singular perturbation method.

Consider the singularly perturbed system of Equations 39.14 and 39.15 where x ∈ Rn and z ∈ Rm. We
assume that the functions f and g are sufficiently smooth in the domain of interest. When we set ε= 0
in Equation 39.15, the dimension of the state equation reduces from n+m to n because the differential
equation 39.15 degenerates into the equation

0= g(t, x, z, 0) (39.16)

We shall say that the model of Equations 39.14 and 39.15 is in the standard form if and only if Equation
39.16 has k ≥ 1 isolated real solutions

z = hi(t, x), i = 1, 2, . . . , k (39.17)

for each (t, x) in the domain of interest. This assumption ensures that a well-defined n-dimensional
reduced model will correspond to each solution of Equation 39.16. To obtain the ith reduced model, we
substitute Equation 39.17 into Equation 39.14, at ε= 0, to obtain

ẋ = f (t, x, h(t, x), 0) (39.18)

where we have dropped the subscript i from h. It is usually clear from the context in which the solution
of Equation 39.17 is being used. This model is called quasi-steady-state model because z, whose velocity
ż = g/ε can be large when ε is small and g �= 0, may rapidly converge to a solution of Equation 39.16
which is the equilibrium of Equation 39.15. The model of Equation 39.18 is also known as the slow model
or the reduced model.

Singular perturbations cause a two timescale behavior characterized by the presence of slow and fast
transients in the system’s response. Loosely speaking, the slow response is approximated by the reduced
model of Equation 39.18, while the discrepancy between the response of the reduced model (Equation
39.18) and that of the full model of Equations 39.14 and 39.15 is the fast transient. To see this point, let
us consider the problem of solving the state equation

ẋ = f (t, x, z, ε), x(t0)= ξ (39.19)

εż = g(t, x, z, ε), z(t0)= η (39.20)

Let x(t, ε) and z(t, ε) denote the solution of the full problem of Equations 39.19 and 39.20. When we
define the corresponding problem for the reduced model of Equation 39.18, we can only specify n initial
conditions since the model is of nth order. Naturally we retain the initial state for x, to obtain the reduced
problem

ẋ = f (t, x, h(t, x), 0), x(t0)= ξ (39.21)

Denote the solution of Equation 39.21 by x̄(t). Since the variable z has been excluded from the reduced
model and substituted by its “quasi-steady-state” h(t, x), the only information we can obtain about z by

solving Equation 39.21 is to compute z̄(t)
def= h(t, x̄(t)), which describes the quasi-steady-state behavior of

z when x = x̄. By contrast to the original variable z, starting at t0 from a prescribedη, the quasi-steady-state
z̄ is not free to start from a prescribed value, and there may be a large discrepancy between its initial value
z̄(t0)= h(t0, ξ) and the prescribed initial state η. Thus z̄(t) cannot be a uniform approximation of z(t, ε).
The best we can expect is that the estimate z(t, ε)− z̄(t)= O(ε) will hold on an interval excluding t0, that is,
for t ∈ [tb, t1]where tb > t0. On the other hand, it is reasonable to expect the estimate x(t, ε)− x̄(t)= O(ε)
to hold uniformly for all t ∈ [t0, t1] since x(t0, ε)= x̄(t0).

If the error z(t, ε)− z̄(t) is indeed O(ε) over [tb, t1], then it must be true that during the initial
(“boundary layer”) interval [t0, tb] the variable z approaches z̄. Let us remember that the speed of z
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can be large since ż = g/ε. In fact, having set ε= 0 in Equation 39.15, we have made the transient of z
instantaneous whenever g �= 0. To analyze the behavior of z in the boundary layer, we set y = z− h(t, x),
to shift the quasi-steady-state of z to the origin, and change the timescale from t to τ= (t− t0)/ε. The
new time variable τ is “stretched”; that is, if ε tends to zero, τ tends to infinity even for finite t only slightly
larger than t0 by a fixed (independent of ε) difference. In the τ timescale, y satisfies the equation

dy

dτ
= g(t, x, y+ h(t, x), ε)− ε∂h

∂t
(t, x, y+ h(t, x), ε)− ε∂h

∂x
(t, x, y+ h(t, x), ε)f (t, x, y+ h(t, x), ε)

(39.22)
with y(0)= η− h(t0, ξ). The variables t and x in the foregoing equation will be slowly varying since, in
the τ timescale, they are given by

t = t0+ ετ, x = x(t0+ ετ, ε)

Setting ε= 0 freezes these variables at their initial values and reduces Equation 39.22 to the time-invariant
system

dy

dτ
= g(t0, ξ, y+ h(t0, ξ), 0), y(0)= η(0)− h(t0, ξ) (39.23)

which has equilibrium at y = 0. The frozen parameters (t0, ξ0) in Equation 39.23 depend on the given
initial time and initial state. In our investigation of the stability of the origin of Equation 39.23 we should
allow the frozen parameters to take any values in the region of the slowly varying parameters (t, x). We
rewrite Equation 39.23 as

dy

dτ
= g(t, x, y+ h(t, x), 0) (39.24)

where (t, x) are treated as fixed parameters. We shall refer to Equation 39.24 as the boundary-layer model
or the boundary-layer system. The crucial stability property we need for the boundary-layer system is
exponential stability of its origin, uniformly in the frozen parameters. The following definition states this
property precisely.

Definition 39.2:

The equilibrium y = 0 of the boundary-layer system of Equation 39.24 is exponentially stable uniformly in
(t, x) if there exist positive constants k and γ and a compact setΩ, containing the origin, such that for each
y(0) ∈Ω the solution of Equation 39.24 satisfies the inequality

‖y(τ)‖ ≤ k‖y(0)‖ exp(−γτ), ∀ τ≥ 0 (39.25)

for all (t, x) in the domain of interest.

If the Jacobian matrix [∂g/∂y] satisfies the eigenvalue condition

Re

[
λ

{
∂g

∂y
(t, x, h(t, x), 0)

}]
≤−c < 0 (39.26)

for all (t, x) in the domain of interest, then there exist k, γ, and Ω for which the inequality of Equation
39.25 is satisfied.

Under the boundary-layer stability condition, the fundamental result of singular perturbation, known
as Tikhonov’s theorem, states that if the reduced problem of Equation 39.21 has a unique solution x̄(t),
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defined on [t0, t1], and η− h(t0, ξ) ∈Ω, then for sufficiently small ε, the full problem of Equations 39.19
and 39.20 has a unique solution (x(t, ε), z(t, ε)) defined on [t0, t1], and

x(t, ε)− x̄(t)= O(ε) (39.27)

z(t, ε)− h(t, x̄(t))− ŷ((t− t0)/ε)= O(ε) (39.28)

hold uniformly for t ∈ [t0, t1], where ŷ(τ) is the solution of the boundary-layer model of Equation 39.23.
Moreover, given any tb > t0,

z(t, ε)− h(t, x̄(t))= O(ε) (39.29)

holds uniformly for t ∈ [tb, t1]. An infinite time version of this result holds when the reduced system of
Equation 39.18 has an exponentially stable equilibrium point.

39.2.4 Model Order Reduction

The singular perturbation method provides a systematic procedure to obtain a reduced-order model of
a two timescale system by neglecting its fast dynamics. In this section we show how we can improve the
accuracy of the reduced model. We consider a time-invariant special case of Equations 39.14 and 39.15,
namely,

ẋ = f (x, z) (39.30)

εż = g(x, z) (39.31)

in which f and g do not depend on ε. Let z = h(x) be an isolated solution of the equation 0= g(x, z) and
suppose the assumptions of Tikhonov’s theorem are satisfied with a nonsingular Jacobian matrix [∂g/∂z].
The equation z = h(x) describes an n-dimensional manifold in the the (n+m)-dimensional state space
of x and z. It is an invariant manifold for the system

ẋ = f (x, z)

0= g(x, z)

since a trajectory starting in the manifold z = h(x) stays in the manifold for all future (or past) time. The
existence of an invariant manifold will carry over to the case ε> 0 when ε is sufficiently small. We seek
the manifold equation in the form

z = φ(x, ε) (39.32)

where φ is sufficiently smooth. Equation 39.32 defines an ε-dependent n-dimensional manifold. For
z = φ(x, ε) to be an invariant manifold for the system of Equations 39.30 and 39.31, it must be true that

ε
∂φ

∂x
f (x,φ(x, ε))= g(x,φ(x, ε)) (39.33)

for all x in the domain of interest and all ε ∈ [0, ε0]. It can be shown that, for sufficiently small ε, there is
a function φ that satisfies Equation 39.33 and φ(x, 0)= h(x). The reduced-order model

ẋ = f (x,φ(x, ε)) (39.34)

is an exact slow model that describes the motion of the system on the invariant manifold z = φ(x, ε). The
reduced model of the previous section, namely,

ẋ = f (x, h(x))
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is an approximation of the model of Equation 39.34. We can improve the approximation of the model by
seeking the solution of Equation 39.33 in the power-series form

φ(x, ε)= φ0(x)+ εφ1(x)+ ε2φ2(x)+ · · · (39.35)

where φ0(x)= h(x). The series of Equation 39.35 is substituted into Equation 39.33 and the terms φ0,
φ1, · · · are calculated by matching the coefficients of like powers of ε. The more terms we include in the
approximation of φ, the more accurate the reduced model is.

39.3 Examples

We give four examples to illustrate the foregoing discussion. Example 39.1 illustrates the averaging
method. Example 39.2 shows how the averaging method can be used to detect the existence of limit cycles
in weakly nonlinear second-order systems. Example 39.3 illustrates the singular perturbation method.
Example 39.4 shows how the accuracy of the reduced model can be improved.

Example 39.1:

Consider the scalar system
ẋ = ε(x sin2 t− 0.5x2)= εf (t, x)

The function f (t, x) is π-periodic in t. The average function fav (x) is given by

fav (x)= 1
π

∫ π

0
(x sin2 t− 0.5x2) dt = 0 5(x− x2)

The average system
ẋ = 0.5ε(x− x2)

has an exponentially stable equilibrium point at x = 1 since [dfav/dx](1)=−0.5. Hence, for suffi-
ciently small ε, the original system has an exponentially stable π-periodic solution in an O(ε) neigh-
borhood of x = 1. Moreover, for initial states sufficiently near x = 1, solving the average system with
the same initial state as the original system yields the approximation

x(t, ε)− xav (εt)= O(ε), ∀ t ≥ 0

Figure 39.1 shows the solutions of the original and average systems for the initial state x(0)= 0.5 and
ε= 0.2.
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FIGURE 39.1 The exact (solid) and average (dashed) solutions of Example 39.1 with ε= 0.2.
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Example 39.2:

Consider the Van der Pol equation

ẋ1 = x2

ẋ2 =−x1+ εx2(1− x2
1 )

Representing the system in the polar coordinates

x1 = r sinφ, x2 = r cosφ

it can be shown that

ṙ = εr cos2 φ (1− r2 sin2 φ) (39.36)

φ̇= 1− ε sinφ cosφ (1− r2 sin2 φ) (39.37)

Divide Equation 39.36 by Equation 39.37 to obtain

dr

dφ
= εr cos2 φ (1− r2 sin2 φ)

1− ε sinφ cosφ (1− r2 sin2 φ)
def= εf (φ, r, ε) (39.38)

If we viewφ as the independent variable, then Equation 39.38 takes the form of Equation 39.7, where
f (φ, r, ε) is 2π-periodic in φ. The average system

dr

dφ
= ε

(
1
2

r− 1
8

r3
)

(39.39)

has an exponentially stable equilibrium point at r = 2 since [dfav/dr](2)=−1. Therefore, for suffi-
ciently small ε, Equation 39 38 has an exponentially stable 2π-periodic solution r = R(φ, ε) in an O(ε)
neighborhood of r = 2. Substitution of r = R(φ, ε) into Equation 39.37 yields

φ̇= 1− ε sinφ cosφ (1− R2(φ, ε) sin2 φ) (39.40)

Let φ∗(t, ε) be the solution of Equation 39.40 that starts at φ∗(0, ε)= 0. It can be argued that there is
T (ε)= 2π+O(ε) such that

φ∗(t+ T (ε), ε)= 2π+φ∗(t, ε), ∀ t ≥ 0

Hence,

R(φ∗(t+ T (ε), ε), ε)= R(2π+φ∗(t, ε), ε)= R(φ∗(t, ε), ε)

which shows that the Van der Pol equation has a stable limit cycle in an O(ε) neighborhood of r = 2.
The period of oscillation is O(ε) close to 2π.

Example 39.3:

Consider the singular perturbation problem

ẋ= x2(1+ t)/z, x(0)= 1
εż=−[z+ (1+ t)x] z [z− (1+ t)], z(0)=η
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Setting ε= 0 yields the equation

0=−[z+ (1+ t)x] z [z− (1+ t)]
which has three isolated solutions

z =−(1+ t)x ; z = 0; z = 1+ t

in the region {t ≥ 0 and x ≥ k}, where 0 < k < 1. Consider first the solution z =−(1+ t)x . The
boundary-layer model of Equation 39.24 is

dy

dτ
=−y[y− (1+ t)x][y− (1+ t)x− (1+ t)]

Using the Lyapunov function V (y)= 1
2 y2, it can be verified that the boundary-layer stability condi-

tion is satisfied for |y(0)| ≤ ρ< (1+ t)x . The reduced problem

ẋ =−x , x(0)= 1

has the unique solution x̄(t)= exp(−t) for all t ≥ 0. The boundary-layer problem with t = 0 and x = 1
is

dy

dτ
=−y(y− 1)(y− 2), y(0)= η+ 1

and has a unique exponentially decaying solution ŷ(τ) for η< 0. Consider next the solution z = 0.
The boundary-layer model of Equation 39.24 is

dy

dτ
=−[y+ (1+ t)x] y [y− (1+ t)]

By sketching the right-hand side function, it can be shown that the origin is unstable. Hence,
Tikhonov’s theorem does not apply to this case. Finally, the boundary-layer model for the solution
z = 1+ t is

dy

dτ
=−[y+ (1+ t)+ (1+ t)x][y+ (1+ t)]y

Similar to the first case, it can be shown that the origin is exponentially stable uniformly in (t, x). The
reduced problem

ẋ = x2, x(0)= 1

has the unique solution x̄(t)= 1/(1− t) for all t ∈ [0, 1). Notice that x̄(t) has a finite escape time at
t = 1. However, Tikhonov’s theorem still holds for t ∈ [0, t1]with t1 < 1. The boundary-layer problem,
with t = 0 and x = 1,

dy

dτ
=−(y+ 2)(y+ 1)y, y(0)= η− 1

has a unique exponentially decaying solution ŷ(τ) for η> 0. Among the three solutions of Equation
39.16, only two solutions, h=−(1+ t)x and h= 1+ t, give rise to valid reduced models. Tikhonov’s
theorem applies to the solution h=−(1+ t)x if η< 0 and to the solution h= 1+ t if η> 0.
Figure 39.2 shows the exact and approximate solutions of x and z for η=−2 and ε= 0.3. The z
solution exhibits a two timescale behavior. It starts with a fast transient from η to the reduced solu-
tion z̄(t). After the decay of this transient, it remains close to z̄(t). The approximation z̄(t)+ ŷ(t/ε) is
valid for all t ∈ [0, 1], while the approximation z̄(t) is valid only after the boundary-layer period. As
for the slow variable x , the approximation x̄(t) is valid for all t ∈ [0, 1].

Example 39.4:

Consider the singularly perturbed system

ẋ1 = x2
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FIGURE 39.2 The exact (solid), reduced (dashed), and approximate (dotted) solutions of Example 39.3
with ε= 0.3.

ẋ2 =−x1+ (1− x2
1 )z

εż = x2− z

The manifold condition of Equation 39.33 takes the form

ε

[
∂φ

∂x1
x2+ ∂φ

∂x2
(−x1+ (1− x2

1 )φ)
]
= x2−φ

Seeking the solution φ in the power series of Equation 39.35 and matching the coefficients of like
powers of ε, we see that φ0 = x2, which results in the reduced model

ẋ1 = x2

ẋ2 =−x1+ (1− x2
1 )x2

The next term φ1 is given by φ1 = x1− (1− x2
1 )x2. Approximating φ by φ0+ εφ1 results in the

corrected reduced model

ẋ1 = x2

ẋ2 =−x1+ (1− x2
1 )[x2+ ε(x1− (1− x2

1 )x2)]
Figure 39.3 shows the improvement in approximating x(t) as we go from the reduced to the corrected
reduced models. The calculations are done with the initial conditions x1(0)= x2(0)= 1 and z(0)= 0.

39.4 Defining Terms

Average system: A time-invariant system obtained by averaging the fast periodic right-hand side
function of a time-varying system.

Boundary-layer model: A reduced order model that describes the motion of the fast variables of a
singularly perturbed system in a fast timescale where the slow variables are treated as constant
parameters.

Equilibrium point: A constant solution of ẋ = f (t, x). For the time-invariant system ẋ = f (x), the
equilibrium points are the real solutions of the equation 0= f (x).

Exponentially stable solution: A solution (e.g., equilibrium point or periodic solution) is exponentially
stable if other solutions in its neighborhood converge to it faster than an exponentially decaying
function.
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FIGURE 39.3 The exact (solid), reduced (dashed), and corrected reduced (dotted) solutions of Exam-
ple 39.4 with ε= 0.1.

Linearization: Approximation of the nonlinear state equation in the vicinity of a nominal solution
by a linear state equation, obtained by dropping second- and higher-order terms of the Taylor
expansion (about the nominal solution) of the right-hand side function.

Periodic solution (orbit): A periodic solution x(t) of ẋ = f (t, x) satisfies the condition x(t+T)= x(t),
for all t ≥ 0 for some positive constant T . The image of a periodic solution in the state space is a
closed orbit.

Reduced Model: A reduced-order model that describes the motion of the slow variables of a singularly
perturbed system. The model is obtained by setting ε= 0 and eliminating the fast variables.

Region of attraction: A domain containing an asymptotically stable equilibrium point such that all
trajectories starting in the domain converge to the point.

Stable limit cycle: An isolated periodic orbit such that all trajectories in its neighborhood asymptotically
converge to it.

Standard singularly perturbed model: A singularly perturbed model where upon setting ε= 0, the
degenerate equation has one or more isolated solutions.

Time-invariant system: A state equation where the right-hand side function is independent of the time
variable.
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For Further Information

Our presentation of the asymptotic methods is based on the textbook by Khalil [1]. For further information
on this topic, the reader is referred to Chapters 10 and 11 of Khalil’s book. Chapter 10 covers the
perturbation method and averaging, and Chapter 11 covers the singular perturbation method. Proofs of
the results stated here are given in the book.

The discussion of model order reduction is based on Chapter 1 of Kokotovic et al. [2]. This book gives a
broader view of the use of singular perturbation methods in systems and control. Modeling two timescale
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systems in the singularly perturbed form is discussed in Chapters 1 and 2 of Kokotovic [2] and Chapter 11
of Khalil [1].

For a broader view of the averaging method, the reader may consult Sanders, J.A., Verhulst, F. and
Murdock, J. 2007. Averaging Methods in Nonlinear Dynamical Systems, 2nd Edn., Springer, Berlin. A
unified treatment of singular perturbation and averaging is given in Teel, A.R., Moreau, L. and Nesic, D.
2003. A unified framework for input-to-state stability in systems with two timescales, IEEE Transactions
on Automatic Control, vol. 48, no. 9, 1526–1544.
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40.1 Motivation

40.1.1 Some Simple Examples

Consider the linear system
{

ẋ(t)= Ax(t)+Bu(t), x ∈ Rn, u ∈ R, x(0)= x0

y(t)= Cx(t)

Its solution may be written in the form

y(t)= CeAtx0+
∫ t

0
CeA(t−τ)Bu(τ) dτ. (40.1)

On the other hand, the scalar time-varying linear system
{

ẋ(t)= a(t)x+ b(t)u(t), x, y, u ∈ R, x(0)= x0

y(t)= c(t)x(t)
,

has a solution

y(t)= c(t)e(
∫ t

0 a(τ)dτ)x0+
∫ t

0
c(t)e(

∫ t
τ a(σ)dσ)b(τ)u(τ) dτ. (40.2)

40-1
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Now consider the system

{
ẋ(t)= (Dx(t)+B)u(t), x ∈ R2, y, u ∈ R, x(0)= (0, 0)T

y(t)= Cx(t)

where

D =
[

0 0
1 0

]
, B=

[
1
0

]
, and C = [0 1

]
.

The solution of this system may be written in the form

x(t)= C
∫ t

0
e(D

∫ t
τ u(σ)dσ)Bu(τ) dτ.

Since D2 = 0, the series definition of the exponential gives

e(D
∫ t
τ u(σ)dσ) =

[
1 0∫ t

τ
u(σ) dσ 1

]

and therefore

y(t)=
∫ t

0

∫ t

τ

u(σ)u(τ)dσdτ

or

y(t)=
∫ t

0

∫ t

0
μ(σ− τ)u(σ)u(τ)dσdτ (40.3)

where μ is the step function μ(t)=
{

1 t ≥ 0
0 t < 0

.

Before introducing various types of expansions for the response of nonlinear control systems, let us
summarize some classical results for the solution of linear differential equations.

40.1.2 Linear Differential Equations

Let us consider the linear time-varying differential equation

ẋ(t)=
m∑

i=1

αi(t)Aix(t), x ∈ Rn, x(0)= x0 (40.4)

where for i = 1, . . . , m, αi : R → R are locally Lebesgue integrable functions and Ai are constant n× n
matrices. We may also write

x(t)= x0+
m∑

i=1

∫ t

0
αi(σ)Aix(σ) dσ

From the classical Peano–Baker scheme, there exists a series solution of Equation 40.4 of the form [1]

x(t)= x0+
m∑

i=1

(∫ t

0
αi(σ1)dσ1

)
Aix0+

m∑
i,j=1

(∫ t

0

∫ σ1

0
αi(σ1)αj(σ2)dσ1dσ2

)
AiAjx0+ · · ·

+
m∑

i1,...,ik=1

(∫ t

0

∫ σ1

0
. . .

∫ σk−1

0
αi1 (σ1) . . . αik (σk)dσ1 . . . dσk

)
Ai1 . . . Aik x0+ · · · . (40.5)

This series expansion was used in quantum electrodynamics [11].
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Under certain unspecified conditions of convergence, the solution of Equation 40.4 may also be
written [37]

x(t)= eΩ(t)x0 (40.6)

with

Ω(t)=
m∑

i=1

(∫ t

0
αi(σ1)dσ1

)
Ai + 1

2

m∑
i,j=1

(∫ t

0

∫ σ1

0
αi(σ1)αj(σ2)dσ1dσ2

) [
Ai , Aj

]

+ 1

4

m∑
i j,k=1

(∫ t

0

∫ σ1

0

∫ σ2

0
αi(σ1)αj(σ2)αk(σ3)dσ1dσ2dσ3

) [
Ai ,
[
Aj, Ak

]]

+ 1

12

m∑
i,j,k=1

(∫ t

0

∫ σ1

0

∫ σ2

0
αi(σ1)αj(σ2)αk(σ3)dσ1dσ2dσ3

) [[
Ai , Aj

]
, Ak

]+ · · · , (40.7)

where the commutator product or Lie-product is defined by

[
Ai , Aj

]= AiAj −AiAj.

Indeed, for instance, the first terms of the expansion 40.6 are given by

m∑
i=1

(∫ t

0
αi(σ1)dσ1

)
Ai + 1

2

m∑
i,j=1

(∫ t

0

∫ σ1

0
αi(σ1)αj(σ2)dσ1dσ2

)

× [Ai , Aj
]+ 1

2!

(
m∑

i=1

(∫ t

0
αi(σ1)dσ1

)
Ai

)2

Using an integration by parts, this leads to

m∑
i=1

(∫ t

0
αi(σ1)dσ1

)
Ai +

m∑
i,j=1

(∫ t

0

∫ σ1

0
αi(σ1)αj(σ2)dσ1dσ2

)
AiAj

which corresponds to the first two terms of the expansion 40.5.

40.2 Functional Expansions for Nonlinear Control Systems

The general problem we consider here is how to generalize Equations 40.1 through 40.3, and 40.5 or 40.6
to nonlinear control systems of the form

dx

dt
= f0(x(t))+

m∑
i=1

ui(t)fi(x(t)) (40.8)

where f0, f1, . . . , fm are C∞ vector fields on a n-dimensional manifold M, x takes values in M and ui : R+ →
R, i = 1, . . . , m are piecewise continuous. In a local coordinate chart, x = (x1, . . . , xn)T , Equation 40.8
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can be written

ẋk(t)= f k
0 (x(t))+

m∑
i=1

ui(t)f k
i (x(t)), 1≤ k ≤ n (40.9)

where the functions f k
i : Rn → R are C∞. Let h ∈ C∞(M). Then

d

dt
h(x)= dh(x)ẋ = Lf0 h(x(t))+

m∑
i=1

ui(t)Lfi h(x(t)),

where Lfi h is the Lie derivative of h along the vector field fi , i = 0, . . . n,

Lfi h=
n∑

j=1

f
j

i (x)
∂

∂xj
h(x).

Thus,

h(x(t))= h(x(0))+
m∑

i=0

∫ t

0
ui(σ)Lfi h(x(σ)) dσ

where u0(t)= 1, t ≥ 0. Also,

Lfi h(x(t))= Lfi h(x(0))+
m∑

j=0

∫ t

0
uj(σ)Lfj Lfi h(x(σ)) dσ,

so that

h(x(t))= h(x(0))+
m∑

i=0

(∫ t

0
ui(σ)dσ

)
Lfi h(x(0))

+
m∑

i j=0

∫ t

0

∫ σ2

0
ui(σ2)uj(σ1)Lfj Lfi h(x(σ1))dσ1dσ2.

Iterating this procedure yields

h(x(t))= h(x(0))+
m∑

i=0

(∫ t

0
ui(σ)dσ

)
Lfi h(x(0))+

N∑
ν≥2

m∑
j1,... jν=0

×
(∫ t

0

∫ σν

0
. . .

∫ σ2

0
ujν (σν) . . . uj2 (σ2)uj1 (σ1)dσ1dσ2 . . . dσν

)
× Lfjν . . . Lfj2

Lfj1
h(x(0))

+
m∑

j1,...,jN+1=0

∫ t

0

∫ σN+1

0
. . .

∫ σ2

0
ujN+1 (σN+1) . . . uj2 (σ2)uj1 (σ1)

× LfjN+1
. . . Lfj2

Lfj1
h(x(σ1))(σ1)dσ1dσ2 . . . dσN+1 (40.10)

It is not difficult to see that the remainder [45]

RN =
m∑

j1,...,jN+1=0

∫ t

0

∫ σN+1

0
. . .

∫ σ2

0
ujN+1 (σN+1) . . . uj2 (σ2)uj1 (σ1)

× Lfjν . . . Lfj2
Lfj1

h(x(σ1))(σ1)dσ1dσ2 . . . dσN+1

is such that

‖RN‖ ≤ AN+1
t tN+1

(N + 1)! CN ,
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where CN is such that

|LfjN+1
. . . Lfj2

Lfj1
h(x)| ≤ CN

on some compact set and

At = sup

(
1, max

0≤τ≤t,1≤i≤n
|ui(τ)|

)
.

If the vector fields fi are analytic, and the function h is also analytic, then the previous result can be
strengthened. One can actually prove [12,45] that the series

h(x(0))+
m∑

i=0

(∫ t

0
ui(σ)dσ

)
Lfi h(x(0))

+
N∑
ν≥2

m∑
j1,...,jν=0

(∫ t

0

∫ σν

0
. . .

∫ σ2

0
ujν (σν) . . . uj1 (σ1)dσ1 . . . dσν

)
Lfjν . . . Lfj2

Lfj1
h(x(0)) (40.11)

converges to h(x(t)). Indeed in this case, there exists a constant C > 0 such that

|Lfjν . . . Lfj2
Lfj1

h(x)| ≤ (ν)!Cν.

for all ν≥ 1.

40.2.1 Volterra Series

In the following, we consider scalar input, scalar output nonlinear systems on Rn called linear-analytic,

{
ẋ(t)= f (x(t))+ u(t)g(x(t)), x(0)= x0

y(t)= h(x(t))
(40.12)

We always assume that f , g , and h are analytic functions in x, in some neighborhood of the free response
(when u(t)= 0, ∀t ≥ 0). Analyticity is important but the restriction to scalar inputs and outputs can be
easily removed. We say that a linear–analytic system admits a Volterra series representation if there exist
locally bounded, piecewise continuous functions

wn : Rn → R, n= 0, 1, 2, . . . ,

such that for each T > 0 there exists ε(T) > 0 with the property that for all piecewise continuous functions
u(.) with | u(T) |≤ ε on [0, T] we have

y(t)= w0(t)+
∞∑

n=1

∫ t

0
. . .

∫ t

0
wn(t, σ1, . . . , σn)u(σ1) . . . u(σn)dσ1 . . . dσn (40.13)

with the series converging absolutely and uniformly on [0, T].

40.2.2 Bilinear Systems

It is not difficult to show that the following class of nonlinear systems called bilinear systems

{
ẋ(t)= [A(t)+ u(t)B(t)] x(t), x(0)= x0

y(t)= c(t)x(t)
(40.14)

admits a Volterra series representation.



�

�

�

�

� �

40-6 Control System Advanced Methods

LetΦA denote the transition matrix for A(t). Make the change of variable z(t)=ΦA(0, t)x(t) in order
to eliminate A. This gives {

ż(t)= u(t)B̃(t)z(t),
y(t)= c̃(t)z(t)

where B̃(t)=ΦA(0, t)B(t)ΦA(t, 0) and c̃(t)= c(t)ΦA(0, t). Applying the Peano-Baker formula
(Equation 40.5) construction, we have

z(t)=
(

I +
∫ t

0
u(σ1)B̃(σ1)dσ1+

∫ t

0

∫ σ2

0
u(σ2)B̃(σ2)u(σ1)B̃(σ1)dσ1dσ2+ · · ·

)
z(0)

Thus, the Volterra kernels for y(t) are given in triangular form by

wn(t, σ1, σ2, . . . , σn)

{
c(t)ΦA(t, σn)B(σn)ΦA(σn, σn−1)B(σn−1) . . . B(σ1)ΦA(σ1, 0)x(0)
0 if σi+p < σp, i, p= 1, 2, 3, . . .

For A, B, and u bounded this series converges uniformly on any compact interval.
The existence and the computation of the Volterra series for more general nonlinear systems is less

straightforward. Several authors [6,15,25,36] gave the main results at about the same time.
For the existence of the Volterra series, let us recall for instance Brockett’s result: Suppose that

f (., .) : R×Rn → Rn and g(., .) : R×Rn → Rn

are continuous with respect to their first argument and analytic with respect to their second. Given any
interval [0, T] such that the solution of

ẋ(t)= f (t, x(t)), x(0)= 0,

exists on [0, T], there exists an ε> 0 and a Volterra series for

ẋ(t)= f (t, x(t))+ u(t)g(t, x(t)), x(0)= 0, (40.15)

with the Volterra series converging uniformly on [0, T] to the solution of Equation 40.15 provided
|u(t)|< ε.

Although the computation of the Volterra kernels is given in the previous referenced papers, their
expressions may also be obtained from the Fliess algebraic framework [13] summarized in the next
section.

40.2.3 Fliess Series

Let us recall some definitions and results from the Fliess algebraic approach [12]. Let u1(t), u2(t), . . . , um(t)
be some piecewise continuous inputs and Z = {z0, z1, . . . , zm} be a finite set called the alphabet. We denote
by Z∗ the set of words generated by Z. The algebraic approach introduced by Fliess may be sketched as
follows. Let us consider the letter z0 as an operator which codes the integration with respect to time and
the letter zi , i = 1, . . . , m, as an operator which codes the integration with respect to time after multiplying
by the input ui(t). In this way, any word w ∈ Z∗ gives rise to an iterated integral, denoted by It{w}, which
can be defined recursively as follows:

It{∅} = 1
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It{w} =
{∫ t

0 dτIτ{v} if w = z0v∫ t
0 ui(τ)dτIτ{v} if w = z1v

, v ∈ Z∗. (40.16)

Using the previous formalism and an iterative scheme like Equation 40.10, the solution y(t) of the
nonlinear control system ⎧⎪⎨

⎪⎩
ẋ(t)= f (x(t))+

m∑
i=1

ui(t)gi(x(t)), x(0)= x0

y(t)= h(x(t))

(40.17)

may be written [12]

y(t)= h(x0)+
∑
ν≥0

m∑
j0 j1,...,jν=0

Lfjν . . . Lfj2
Lfj1

h(x0)It{zj0 zj1 . . . zjν} (40.18)

with the series converging uniformly for small t and small |ui(τ)|, 0≤ τ≤ t, 1≤ i ≤m. This functional
expansion is called the Fliess fundamental formula or Fliess expansion of the solution. To this expansion
can be also associated [12] an absoluting converging power series for small t and small |ui(τ)|, 0≤ τ≤ t,
1≤ i ≤m, called the Fliess generating power series or Fliess series denoted by g of the following form

g = h(x0)+
∑
ν≥0

m∑
j0 j1,...,jν=0

Lfjν . . . Lfj2
Lfj1

h(x0)zj0 zj1 . . . zjν . (40.19)

This algebraic setting allows us to generalize to the nonlinear domain the Heaviside calculus for linear
systems. This will appear clearly in the next section devoted to the effective computation of the Volterra
series.

A lot of work uses this formalism, see for instance the work on bilinear realizability [44], some analytic
aspects and local realizability of generating power series, on realization and input–output relations [49],
or works establishing links with other algebras [10,17].

40.2.4 Links Between Volterra and Fliess Series

The following result [6,13,31,36] gives the expression of the Volterra kernels of the response of the
nonlinear control system (40.12) in terms of the vector fields and the output function defining the system,

y(t)= w0(t)+
∞∑

n=1

∫ t

0

∫ τ2

0
. . .

∫ τn

0
wn(t, τn, . . . , τ1)u(τn) . . . u(τ1)dτn · · · dτ1, (40.20)

where the kernels are analytic functions of the form

w0(t)=
∑
ν≥0

Lνf h(x0)
tν

ν! = etLf h(x0),

w1(t, τ1)=
∑
ν0,ν1≥0

Lν0
f Lg Lν1

f h(x0)
(t− τ1)ν1τ

ν0
1

ν1!ν0!
= eτ1Lf Lg e(t−τ1)Lf h(x0),

...

wn(t, τn, τn−1, . . . , τ1)=
∑

ν0,ν1,··· ,νn≥0

Lν0
f Lg Lν1

f . . . Lg Lνn
f h(x0)

(t− τn)νn . . . τ
ν0
1

νn! . . . ν0!
= eτ1Lf Lg e(τ2−τ1)Lf . . . Lg e(t−τn)Lf h(x0)

(40.21)
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In order to show this, let us use the fundamental formula (Equation 40.18). The zero order kernel is
the free response of the system. Indeed, from Equation 40.18 we have

w0(t)= h(x0)+
∑
ν≥0

∑
j0,··· ,jν=0

Lfjν . . . Lfj2
Lfj1

h(x0)
∫ t

0
dξjνdξjν−1 · · · dξj0 ,

which can also be written as

y(t)=
∑
l≥0

Ll
f h(x0)

tl

l! ,

or using a formal notation,

y(t)= etLf h(x0).

This formula is nothing other than the classical formula given in [16].
For the computation of the first order kernel, let us consider the terms of Equation 40.18 which contain

only one contribution of the input u; therefore,

∫ t

0
w1(t, τ1)u(τ1) dτ1 =

∑
ν0,ν1≥0

Lν0
f Lg Lν1

f h(x0)
∫ t

0
dξ0 . . . dξ0︸ ︷︷ ︸
ν1- times

dξ1 dξ0 . . . dξ0︸ ︷︷ ︸
ν0- times

.

But the iterated integral inside can be proven to be equal to

∫ t

0

(t− τ1)ν1τ
ν0
1

ν1!ν0! u(τ1) dτ1.

So, the first order kernel may be written as

w1(t, τ1)=
∑
ν0,ν1≥0

Lν0
f Lg Lν1

f h(x0)
(t− τ1)ν1τ

ν0
1

ν1!ν0!
= eτ1Lf Lg e(t−τ1)Lf h(x0).

For the computation of the second order kernel, let us regroup the terms of Equation 40.18, which
contain exactly two contributions of the input u; therefore,

∫ t

0

∫ τ2

0
w2(t, τ1, τ2)u(τ1)u(τ2)dτ1dτ2 =

∑
ν0,ν1,ν2≥0

Lν0
f Lg Lν1

f Lg Lν2
f h(x0)

×
∫ t

0

∫ τ2

0
dξ0 . . . dξ0︸ ︷︷ ︸
ν2- times

dξ1 dξ0 . . . dξ0︸ ︷︷ ︸
ν1- times

dξ1 dξ0 . . . dξ0︸ ︷︷ ︸
ν0- times

.

The iterated integral inside this expression can be proven to be equal to

∫ t

0

∫ τ2

0

(t− τ2)ν2 (τ2− τ1)ν1τ
ν0
1

ν2!ν1!ν0! u(τ1)u(τ2)dτ1dτ2.

Thus, the second order kernel may be written as

w2(t, τ1, τ2)=
∑

ν0,ν1,ν2≥0

Lν0
f Lg Lν1

f Lg Lν2
f h(x0)

(t− τ2)ν2 (τ2− τ1)ν1τ
ν0
1

ν2!ν1!ν0!
= eτ2Lf Lg e(τ1−τ2)Lf Lg e(t−τ1)Lf h(x0).

The higher order is obtained in the same way.
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Using the Campbell-Baker-Hausdorff formula

eσLf Lg e−σLf h(x0)=
∞∑

i=1

σi

i! adi
Lf

Lg ,

the expressions for the kernels (Equation 40.21) may be written,

w0(t)= etLf h(x0),

w1(t, τ1)= eτ1Lf Lg e(t−τ1)Lf h(x0)

=
∞∑

i=1

τi
1

i! adi
Lf

Lg etLf h(x0)

w2(t, τn, τn−1, . . . , τ1)= eτ1Lf Lg e(τ2−τ1)Lf Lg e(t−τ2)Lf h(x0)

=
∞∑

i,j=1

τi
1

i!
τ

j
2

j! adi
Lf

Lg ad
j
Lf

Lg etLf h(x0)

...

(40.22)

These kernel expressions lead to techniques which may, for example, be used in singular optimal
control problems [32]. This will be sketched in the next section.

40.3 Effective Computation of Volterra Kernels

Example 40.1

Let us consider the system [39],

ÿ(t)+ (ω2+ u(t))y(t)= 0, t ≥ 0, y(0)= 0, ẏ(0)= 1,

After two integrations, we obtain

y(t)+ω2
∫ t

0

∫ τ

0
y(σ)dσdτ+

∫ t

0

∫ τ

0
u(σ)y(σ)dσdτ− t = 0

The associated algebraic equation for the Fliess series (see Section 40.2.3) g is given by

(1+ω2z2
0 )g+ z0z1g− z0 = 0.

In order to solve this equation, let us use the following iterative scheme

g = g0+ g1+ g2+ · · ·+ gi + · · ·
where gi contains all the terms of the solution g having exactly i occurrences in the variable z1,

g0 = (1+ω2z2
0 )−1z0,

g1 =−(1+ω2z2
0 )−1z0z1g0

=−(1+ω2z2
0 )−1z0z1(1+ω2z2

0 )−1z0,

g2 =−(1+ω2z2
0 )−1z0z1g1

= (1+ω2z2
0 )−1z0z1(1+ω2z2

0 )−1z0z1(1+ω2z2
0 )−1z0,

...
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Each gi , i ≥ 0 is a (rational) generating power series of functionals yi , i ≥ 0 which represents the ith order
term of the Volterra series associated with the solution y(t). Let us now compute yi(t) associated with gi ,
i ≥ 0. First, note that

(1− az0)−1 =
∑
n≥0

anzn
0 , a ∈ C,

represents in the algebraic domain, the function e−at . Indeed,

It(zn
0 )= tn

n! .

Consider now

g0 =− 1

2jω
(1+ jωz0)−1+ 1

2jω
(1− jωz0)−1.

Hence,

y0(t)= w0(t)=− 1

2jω
e−jωt + 1

2jω
ejωt = 1

ω
sin(wt).

The power series

g1 =−(1+ω2z2
0 )−1z0z1(1+ω2z2

0 )−1z0,

after decomposing into partial fractions the term on the right and on the left of z1,
[

1

2jω
(1+ jωz0)−1− 1

2jω
(1− jωz0)−1

]
z1

[
− 1

2jω
(1+ jωz0)−1+ 1

2jω
(1− jωz0)−1

]

or

g1 = 1

4ω2

[
(1+ jωz0)−1z1(1+ jωz0)−1− (1+ jωz0)−1z1(1− jωz0)−1

− (1− jωz0)−1z1(1+ jωz0)−1+ (1− jωz0)−1z1(1− jωz0)−1]

In order to obtain the equivalent expression in the time domain, we need the following result [27,31].
The rational power series

(1− a0z0)−p0 z1(1− a1z0)−p1 z1 . . . z1(1− alz0)−pl , (40.23)

where a0, a1, . . . , al ∈ C, p0, p1, . . . , pl ∈N, in the symbolic representation of

∫ t

0

∫ τl

0
· · ·
∫ τ2

0
f

p0
a0 (t− τl) . . . f

pl−1
al−1 (τ2− τ1)f

pl
al (τ1)u(τl) . . . u(τ1)dτl . . . dτ1,

where f
p

a (t) denotes the exponential polynomial
⎛
⎜⎜⎜⎝

p−1∑
j=0

(
j

p− 1

)

j! ajtj

⎞
⎟⎟⎟⎠ eat .

For the previous example

y1(t)=
∫ t

0

1

2jω
e−jω(t−τ)u(τ)

[−1

2jω
e−jωτ+ 1

2jω
ejωτ

]
dτ−

∫ t

0

1

2jω
ejω(t−τ)u(τ)

[−1

2jω
e−jωτ+ 1

2jω
ejωτ

]
dτ.
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Therefore,

y1(t)=
∫ t

0
w1(t, τ)u(τ) dτ,

with w1(t, τ)=− 1
ω2 sin[ω(t− τ)] sinωt.

The higher-order kernels can be computed in the same way after decomposing into partial fraction
each rational power series.

40.3.1 Noncommutative Padé-Type Approximants

Assume that the functions f k
i : Rn → R of Equation 40.9 are Cω, with

f k
i (x1, . . . , xn)=

∑
j1,...,jn≥0

ak,i
j1,...,jn (x1) j1 . . . (xn) jn

h(x1, . . . , xn)=
∑

j1,...,jn≥0
hj1,...,jn (x1) j1 . . . (xn) jn .

Let γ denote an equilibrium point of the system (Equation 40.9) and let

x
<p>
j1,...,jn

denote the monomial or new state

(x1) j1 . . . (xn) jn , j1+ · · · jn ≤ p.

Then the Brockett bilinear system

⎧⎨
⎩

ẋ
<p>
j1,...,jn =

∑n
k=1 jk

(∑m
i=0 ui

∑
i1,...,in ak,i

j1,... jn x
<p>
j1+i1,... jk+ik−1,...,jn+in

)
,

y<p> =∑i1,...,in hj1,... jn x
<p>
j1,... jn

(40.24)

with initial conditions

x
<p>
j1,··· jn (0)= (γ1) j1 . . . (γn) jn

where

x
<p>
j1,...,−1,...,jn

= 0

for all j1, . . . , jn ≥ 0 and

x
<p>
j1,...,jn = 0

if j1+ . . .+ jn > p, has the same Volterra series up to order p as the Volterra series of the nonlinear system
(Equation 40.9).

This system may be interpreted in the algebraic context by defining the generating power series g
<p>
j1,... jn

associated with x
<p>
j1,... jn and g<p> associated with y<p>,

⎧⎨
⎩

g
<p>
j1,... jn =

∑n
k=1 jk

(∑m
i=0 zi

∑
i1,...,in ak,i

j1,...,jn g
<p>
j1+i1,...,jk+ik−1,... jn+in

)
,

g<p> =∑i1,...,in hj1,...,jn g
<p>
j1,...,jn

(40.25)

The rational power series g<p> may be seen as a noncommutative Padé-type approximant for the forced
differential system (Equation 40.9) which generalizes the notion of Padé-type approximant obtained in [4].
Using algebraic computing, these approximants may be derived explicitly [38]. These algebraic tools for
the first time enable one to derive the Volterra kernels.
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Other techniques have recently been introduced in order to compute approximate solutions to the
response of nonlinear control systems. The method in [34] is based on the combinatorial notion of
L-species. Links between this combinatorial method and the Fliess algebraic setting have been studied
in [33,35]. Another approach using automata representations [41] is proposed in [23].

The Volterra series (Equation 40.13) terminating with the term involving the pth kernel is called a
Volterra series of length p. In the following we will summarize some properties of an input–output map
having a finite Volterra series. The main question is how to characterize a state space representation
(Equation 40.12) that admits a finite Volterra series representation [8]. This study lead in particular to
the introduction of a large class of approximating systems, having a solvable but not necessarily nilpotent
Lie algebra [9] (see also [24]).

40.4 Approximation Abilities of Volterra Series

40.4.1 Analysis of Responses of Systems

In this part we show how to compute the response of nonlinear systems to typical inputs. We assume here
m= 1. This method, based on the use of the formal representation of the Volterra kernels (Equation 40.25),
is also easily implementable on a computer using formal languages [38]. These algebraic tools allow us to
derive exponential polynomial expressions depending explicitly on time for the truncated Volterra series
associated with the response [27,31] and therefore lead to a finer analysis than pure numerical results.

To continue our use of algebraic tools, let us introduce the Laplace–Borel transform associated with a
given analytic function input

u(t)=
∑
n≥0

an
tn

n! .

Its Laplace–Borel transform is

gu =
∑
n≥0

anzn
0 .

For example, the Borel transformation of

cosωt = 1

2
e jωt + 1

2
e−jωt .

is given by

gu = 1

2
(1− jωtz0)−1+ 1

2
(1+ jωtz0)−1 = (1+ω2z2

0 )−1.

Before seeing the algebraic computation itself in order to compute the first terms of the response to
typical inputs, let us introduce a new operation on formal power series, the shuffle product.

Given two formal power series,

g1 =
∑

w∈Z∗
(g1, w)w and g2 =

∑
w∈Z∗

(g2, w)w.

The shuffle product of two formal power series g1 and g2 is given by

g1♦g2 =
∑

w1,w2∈Z∗
(g1, w1)(g2, w2)w1♦w2,

where shuffle product of two words is defined as follows,

• 1♦1= 1
• ∀z ∈ Z, 1♦z = z♦1= z



�

�

�

�

� �

Volterra and Fliess Series Expansions for Nonlinear Systems 40-13

• ∀z, z′ ∈ Z, ∀w, w′ ∈ Z∗
zw♦z′w′ = z[w♦z′w′] + z′[zw♦w′]

This operation consists of shuffling all the letters of the two words by keeping the order of the letters
in the two words. For instance,

z0z1♦z1z0 = 2z0z2
1 z0+ z0z1z0z1+ z1z0z1z0+ z1z2

0 z1.

It has been shown that the Laplace–Borel transform of Equation 40.23, for a given input u(t) with the
Laplace-Borel transform gu, is obtained by substituting from the right, each variable z1 by the operator
z0[gu♦·].

Therefore, in order to apply this result, we need to know how to compute shuffle product of algebraic
expressions of the form

gn = (1+ a0z0)−1zi1 (1+ a1z0)−1zi2 . . . (1+ an−1z0)−1zin (1+ anz0)−1

where i1, i2, · · · , in ∈ {0, 1}. This computation is very simple as it amounts to adding some singularities.
For instance

(1+ az0)−1♦(1+ bz0)−1 = (1+ (a+ b)z0)−1.

Consider two generating power series of the form (Section 40.4.1),

gp = (1+ a0z0)−1zi1 (1+ a1z0)−1zi2 . . . (1+ ap−1z0)−1zip (1+ apz0)−1

and

gq = (1+ b0z0)−1zj1 (1+ b1z0)−1zj2 . . . (1+ bq−1z0)−1zjq (1+ bqz0)−1

where p and q ∈N, the indices i1, i2, . . . , ip ∈ {0, 1}, j1, j2, . . ., jq ∈ {0, 1} and ai , bj ∈ C. The shuffle product
of these expressions is given by induction on the length

gp♦gq = gp♦gq−1zjq (1+ (ap+ bq)z0)−1+ gp−1♦gqzip (1+ (ap+ bq)z0)−1.

See [30] for case-study examples and some other rules for computing directly the stationary response
to harmonic inputs or the response of a Dirac function and see [14] for the algebraic computation of the
response to white noise inputs. This previous effective computation of the rational power series g and of
the response to typical entries has been applied to the analysis of nonlinear electronics circuits [2] and to
the study of laser semi-conductors [18].

40.4.2 Optimality

Volterra series expansions have been used in order to study control variations for the output of nonlinear
systems combined with some multiple integral identities [10]. This analysis [32,42,43], demonstrates links
between the classical Hamiltonian formalism and the Lie algebra associated with the nonlinear control
problem. To be more precise, let us consider the control system

∑{
ẋ(t)= f (x(t), u(t)),
x(0)= x0

, (40.26)

where f : Rn×Rm → Rn is a smooth mapping. Let h : Rn → R be a smooth function, let

γ(t, x0)= etLf x0
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be the free response of the system and let x(t, x0, u) be the solution relative to the control u, u being
an integrable function taking values in some given bounded open set U ∈ Rm. An example of control
problem is the following: find necessary conditions such that

h(γ(T))=min
u

h(x(T , x0, u)). (40.27)

Let w0 : [0, T]×Rn → R be defined as follows,

w0(t, x)= h(e(T−t)Lf x).

It is easy to see that the map λ : [0, T] → (R)∗ given by

λ(t)= ∂w0

∂x
(t, γ(t))

is the solution of the adjoint equation

−λ̇(t)= λ(t)
∂f (x, 0)

∂x
(t, γ(t))

and λ(T)= dh(γ(t)).
A first order necessary condition is provided by the application of the Maximum Principle: If γ(t)

satisfies (Equation 40.27) for t ∈ [0, T], then

adf0 fiw0(t, γ(t))= 0 for t ∈ [0, T] (40.28)

and the matrix ((
fijw0(t, γ(t))

))
(40.29)

is a non-negative matrix for t ∈ [0, T] where

f0(x)= f (0, x), fi(x)= ∂f

∂ui
(x, 0),

and

fij(x)= ∂2f

∂ui∂uj
(x, 0), i, j = 1, . . . , m.

The reference trajectoryγ is said extremal if it satisfies Equation 40.28 and is said singular if it is extremal
and if all the terms in the matrix (Equation 40.29) vanish. Ifγ is singular and it satisfies Equation 40.27, then
it can be shown for instance (see [32]) that if there exists s ≥ 1 such that for t ∈ [0, T] and i, j = 1, . . . , m,

[adk+1
f0

fi , adk
f0

fj]w0(t, γ(t))= 0 for k = 0, 1, s− 1,

then

[adk1
f0

fi , adk2
f0

fj]w0(t, γ(t))= 0 for k1, k2 ≥ 0 with k1+ k2 = 0, . . . , 2s

and the matrix ((
[ads+1

f0
fi , ads

f0
fj]w0(t, γ(t))

))

is a symmetric non-negative matrix for t ∈ [0, T].
As a dual problem, sufficient conditions for local controllability have been derived using Volterra series

expansions (see for instance [3]).
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40.4.3 Search for Limit Cycles and Bifurcation Analysis

The Hopf bifurcation theorem deals with the appearance and growth of a limit cycle as a parameter is
varied in a nonlinear system. Several authors have given a rigorous proof using various mathematical tools,
series expansions, central manifold theorem, harmonic balance, Floquet theory, or Lyapunov methods.
Using Volterra series [47] did provide a conceptual simplification of the Hopf proof. In many problems,
the calculations involved are simplified leading to practical advantages as well as theoretical ones.

40.5 Other Approximations: Application to Motion Planning

Let us consider a control system

ẋ =
m∑

i=1

ui(t)fi(x). (40.30)

The dynamical exact motion planning problem is the following: given two state vectors p and q, find an
input function u(t)= (u1(t), u2(t), . . . , um(t)) that drives exactly the state vector from p to q. In order to
solve this problem, several expansions for the solutions which are intimately linked with the Fliess series
are used.

When the vector fields fi , i = 1, . . . , m are real analytic and complete and such that the generated control
Lie algebra is everywhere of full rank and nilpotent, then in [26,46], the authors described a complete
solution of the previous control problem using P. Hall basis.

Let A(z1, z2, . . . , zm) denote the algebra of noncommutative polynomials in (z1, z2, . . . , zm) and let
L(z1, z2, . . . , zm) denote the Lie subalgebra of A(z1, z2, . . . , zm) generated by z1, z2, . . . , zm with the Lie
bracket defined by [P, Q] = PQ−QP. The elements of L(z1, z2, . . . , zm) are known as Lie polynomials
in z1, z2, . . . , zm. Let F m be the set of formal Lie monomials in z1, z2, . . . , zm. A P. Hall basis of L(z1, z2,
. . . , zm) is a totally ordered subset (B, <) of Fm such that,

The zi belong to B.
If A, B ∈ B, and degree(A) < degree(B), then A < B.
If P ∈ Fm and P is not one of the zi , then P ∈ B if and only if P = [A, B]with A, B ∈ B, A < B, and either

B= zi for some i or B= [C, D] with C, D ∈ B, C ≤ A.

If Lk(z1, z2, . . . , zm) denote the nilpotent version of L(z1, z2, . . . , zm) obtained by killing all the monomials
of degree k+ 1, it is not difficult to see that {M ∈ B̂ : degree(M)≤ k} is a basis of Lk(z1, z2, . . . , zm), where
B̂ is the set of all elements of L(z1, z2, . . . , zm) obtained by actually evaluating the Lie brackets.

Now, let z1, . . . , zm, zm+1, . . . , zr a P. Hall basis of Lk(z1, z2, . . . , zm) and let Ef be the evaluation map
that assigns to each P the vector field obtained by plugging in the fi , i = 1, . . . , m, for the corresponding
zi . We assume that the vector fields fm+1, . . . , fr are given by fj = Ef (zj) for j =m+ 1, . . . r.

An expansion for Equation 40.30, and consequently a solution to the exact motion planning problem,
is then obtained [26] from the solution of

Ṡ(t)= S(t)
(
u1(t)z1+ u2(t)z2+ · · ·+ ur(t)zr

)
, S(0)= 1,

written as a product

S(t)= ehr (t)zr ehr−1(t)zr−1 · · · eh2(t)z2 eh1(t)z1 .



�

�

�

�

� �

40-16 Control System Advanced Methods

For example, in the case k = 3, m= 2, we may choose z3 = [z1, z2], z4 = [z1, [z1, z2]] and z5 =
[z2, [z1, z2]]. For this choice, the functions hj, j = 1, . . . , r are computed by solving

ḣ1 = u1

ḣ2 = u2

ḣ3 = h1u2+ u3

ḣ4 = 1

2
h2

1u2+ h1u3+ u4

ḣ5 = h2u3+ h1h2u2

with hj(0)= 0, j = 1, . . . , 5.
In order to take into account systems with drift, for the system (Equation 40.30) where u1(t) may be

identically equal to 1, a different basis, called the Lyndon basis, has been used in [21]. Without going
into the details, for the previous case, it is shown that the solution is given by the following exponential
product expansion

x(t)= eξ1(t)f1 eξ2(t)f2 eξ3(t)f3 eξ4(t)f4 eξ5(t)f5 · Id(x)|x(0)

with here z3 = [z2, z1], z4 = [z2, [z1, z1]], z5 = [z2, [z2, z1]], fj =Ef (zj) for j = 3, . . . , 5 and

ξ1 =
∫ t

0
u1(τ) dτ

ξ2 =
∫ t

0
u2(τ) dτ

ξ3 =
∫ t

0
ξ2 dξ1

ξ4 =
∫ t

0
ξ3 dξ1

ξ5 = 1

2

∫ t

0
ξ2

2 dξ1.
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41.1 Introduction

Integral quadratic constraints (IQC∗) are inequalities used to describe (partially) possible signal com-
binations within a given dynamical system. IQC offer a framework for abstracting “challenging” (e.g.,
nonlinear, time-varying, uncertain, or distributed) elements of dynamical system models to aid in rigor-
ous analysis of robust stability and performance (more specifically, to establish L2 gain bounds, passivity,
and other system properties, which can be expressed, exactly or approximately, in terms of general-
ized dissipativity). While the technique can be employed to prove general theorems, it is most powerful
when used to derive optimization-based algorithms for certification of stability and robustness of specific
feedback systems.

IQC can be viewed as implicit generalized dissipation inequalities with known quadratic supply rates
and unspecified storage functions, not necessarily quadratic or sign definite. Alternatively, they have a
frequency domain interpretation as bounds on the degree of harmonic distortion produced by a specific
element of the complete model. The past research in nonlinear systems and robust control can be harvested
to extract rich IQC descriptions of commonly used components of feedback systems. These IQC can then
be reused in a modular approach to system analysis.

The IQC framework is closely related to multiplier-based passivity, upper bounding of structured sin-
gular values, quadratic relaxations in nonconvex optimization (including the sums of squares approach
to positivity of multivariable polynomials), and other constructive techniques for handling nonlinearity
and uncertainty. The IQC approach could be viewed as a unifying framework where ideas from sev-
eral research directions have been combined and developed in order to obtain a flexible and powerful

∗ We will use “IQC” for both singular and plural forms.

41-1



�

�

�

�

� �

41-2 Control System Advanced Methods
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Linear matrix inequality
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FIGURE 41.1 The IQC theory unifies powerful ideas from several important research fields: (1) The input–output
theory; (2) the dissipative systems theory that was developed primarily in the west during 1960–1975; (3) The absolute
stability theory that was developed in the Soviet Union during 1960–1975; (4) The robust control field from 1980–1995,
and finally; and (5) tools from convex optimization that have been developed since the late 1980s.

framework that can be easily implemented as a MATLAB�-based software package. This is illustrated
in Figure 41.1.

41.1.1 Notation

The real numbers are denoted by R and the complex numbers by C. The subset of nonnegative real
numbers is denoted R+. We treat elements of R

d (or C
d) as d-by-1 column matrices. The notation [x; y]

means the column vector
[
x′ y′

]′
obtained by stacking two column vectors x and y on top of each other,

and ′ is the operation of Hermitian conjugation (transposition for real matrices).
Central to the development in this article is the use of quadratic forms.
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41.1.1.1 Quadratic Forms

A quadratic form σ : R
d �→ R is a function defined by σ(x)= x′Px where P is a real d-by-d matrix (the

set of all such matrices to be denoted by R
d×d). Without loss of generality, P can be assumed to be

symmetric, that is, such that P = P′. The Hermitian extension σH : C
d �→ R of σ is then the function

defined by σ(x)= x′Px for all x ∈ C
d . Any function that has the same form as that of σH is called a

Hermitian form.
The notation σ ≥ 0 means that the quadratic form is positive semidefinite, that is, σ(x)≥ 0 for all

x ∈ R
d . This is equivalent to P being positive semidefinite, which is denoted as P ≥ 0.

41.2 Getting Started with IQC

In this section we introduce basic elements of the IQC framework by applying it to the classical problem of
global analysis of a feedback interconnection of a single-input single-output (SISO) linear time-invariant
system (LTI) and a memoryless “rate limited” nonlinearity. The overall model can be described either by
the block diagram

G(s)

φ(·) �

�

w v

or by the n-dimensional ordinary differential equation

ẋ = Ax+Bw, w = φ(Cx), (41.1)

where A, B, C are given real matrices with A Hurwitz (i.e., det(sI −A) �= 0 for Re(s)≥ 0), G(s)= C(sI −
A)−1B is the transfer function of the LTI subsystem, and φ : R �→ R is such that φ(0)= 0 and φ̇ ∈ [0, 1].
The analysis objective is to establish global asymptotic stability of the equilibrium x = 0.

41.2.1 IQC Modeling

IQC analysis begins with IQC modeling, which includes (1) recognizing the exact model S of the dynamical
system under consideration; (2) specifying the analysis objective as an IQC to be established for S; and
(3) finding a sufficiently rich family of IQC readily known to be satisfied on S.

To apply IQC analysis to the system in Equation 41.1, let S be its behavioral model in terms of signals
w and x:

S = {[w; x] : ẋ = Ax+Bw, w = φ(Cx)}. (41.2)

41.2.1.1 Complete and Conditional IQC

For a set S = {q} of d-dimensional signals q= q(t), an IQC is defined by a quadratic form∗ σ : R
d �→ R

(referred to as the supply rate of the IQC), and a statement of the existence of a lower bound κ= κ(q(0))

∗ While it is possible to construct a similar theory utilizing general supply rates σ, requiring σ to be quadratic is important
for practical feasibility of the approach: eventually, checking positive semidefiniteness of linear combinations of different
σ will be required to reach an analysis conclusion, and quadratic functions form the only generic class for which this can
be done efficiently.
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for the integrals of σ(q(t)) over long intervals of time: a complete IQC σ . 0 on S means existence of a
continuous function κ : R

d �→ R+ such that κ(0)= 0 and∫ T

0
σ(q(t)) dt ≥−κ(q(0)) (41.3)

for all q ∈ S and T ≥ 0, while a conditional IQC σ� 0 on S states that∫ ∞

0
σ(q(t)) dt ≥−κ(q(0)) (41.4)

for all signals q ∈ S of finite energy.
Informally, one can think of a complete IQC σ . 0 as an implicit dissipation inequality σ(q(t))≥

dV (xh(t))/dt where xh = xh(t) is the hidden state of the system, and V = V (xh) is an unknown non-
negative storage function satisfying an unknown∗ upper bound V (xh(0))≤ κ(q(0)). In a similar way, a
conditional IQC σ� 0 corresponds to the case where the storage function is not necessarily nonnegative,
but satisfies V (0)≥ 0.

41.2.1.2 IQC as Analysis Objective and Background Information

IQC can be used to define an objective of system analysis. For example, since A is a Hurwitz matrix, global
asymptotic stability of the equilibrium x(0)= 0 in Equation 41.1 is implied by the energy bound∫ T

0
|w(t)|2dt ≤ κ(x(0)), ∀T ≥ 0, (41.5)

where κ : R
n �→ R+ is continuous and such that κ(0)= 0. By definition, Equation 41.5 is a complete IQC

σ∗ . 0 on S, where
σ∗([w; x])=−|w|2 (w ∈ R, x ∈ R

n). (41.6)

In the standard IQC analysis flow, the main effort in proving σ∗ . 0 is devoted to finding a quadratic
form σ0 such that σ0 � 0 and σ∗ ≥ σ0. This is accomplished by compiling a large setΛ0 = {σ} of quadratic
forms for which the IQC σ� 0 are either trivial or readily established, and then optimizing over the convex
hullΛ ofΛ0 to satisfy σ∗ ≥ σ for some σ ∈Λ. Thus, the IQC σ� 0 for σ ∈Λ0 become elementary pieces
of “background information” about S, and success of IQC analysis depends on one’s ability to generate a
setΛ0 which is rich enough.

41.2.1.3 Sector IQC

Since φ(0)= 0 and φ̇ ∈ [0, 1], φ(v) is between 0 and v for all v ∈ R, that is, the points [v; w] ∈ R
2 such that

w = φ(v) lies in the sector w(v−w)≥ 0.

� φ(·) � �

�

v(t)

w(t)

�
�

�
�

�
�

�
�

��

v w

Hence, w(t)[v(t)−w(t)] ≥ 0 for all t and all [w; x] ∈ S, v = Cx, which implies that the complete IQC
σs . 0 is satisfied on S for

σs([w; x])= 2w(Cx−w) (w ∈ R, x ∈ R
n). (41.7)

The corresponding lower bound κ= κs can be chosen as κs ≡ 0.

∗ In most applications, it is possible to have explicit upper bounds κ(·), which can be useful in performing advanced analysis
tasks.
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41.2.1.4 Popov IQC

The sector IQC σs . 0 does not reflect the time-invariant nature of the relation between v = Cx and
w: it is still satisfied when the equation w(t)= φ(v(t)) in the definition of S is replaced by w(t)=
α(t)−1φ(α(t)v(t)), where α= α(t) is an arbitrary time-varying nonzero coefficient. Two less obvious IQC
can be derived from the observation that for every [w; x] ∈ S and v = Cx we have

wv̇ = d

dt
ψ(v), where ψ(h)=

∫ h

0
φ(τ) dτ.

Since, due to φ(0)= 0 and φ̇ ∈ [0, 1], we have 0≤ψ(v)≤ v2/2 for all v ∈ R, the IQC σp . 0 (with
κ([w; x])= |Cx|2 for w ∈ R, x ∈ R

n) and−σp � 0 (with κ≡ 0) hold on S for

σp([w; x])= 2wC(Ax+Bw) (w ∈ R, x ∈ R
n). (41.8)

41.2.1.5 Pure Integrator IQC

Since, due to Equation 41.1, Ax+Bw is the derivative of x, for every symmetric real matrix Q = Q′ the
signal 2x′Q(Ax+Bw) is the derivative of x′Qx. Hence, both σI � 0 on S for all Q = Q′ and σI . 0 on S
for all Q = Q′ ≥ 0, where

σI ([w; x])= 2x′Q(Ax+Bw) (w ∈ R, x ∈ R
n), (41.9)

with κ([w; x])= x′Qx.

41.2.1.6 Zames–Falb IQC

To give a taste of less obvious IQC relations describing the memoryless nonlinearity of system in Equa-
tion 41.1, consider the following IQC from a (much larger) family established by a classical result by
G. Zames and P. Falb (see Section 41.4.2 for details). Define an extension Se of S by

Se = {[w; x; ξ; ξ̇] : [w; x] ∈ S, ξ̈+ 3ξ̇+ 2ξ= 2w, ξ̇(0)= ξ(0)= 0}.

It turns out that, due to the rate limit φ̇ ∈ [0, 1], the complete IQC σz . 0 is satisfied on Se, where

σz([w; x; ξ0; ξ1])= 2(Cx−w)(w− ξ0) (w, ξ0, ξ1 ∈ R, x ∈ R
n), (41.10)

with κ≡ 0.
This IQC has an interesting interpretation in the frequency domain. Assume that v = Cx has finite

energy, and let y = v−w = v−φ(v). It can then be shown that the IQC σz � 0 claims that, due to the
rate limit imposed on the memoryless nonlinearity φ, the integral of Re[w̃( jω)′Ge( jω)ỹ( jω)], where
Ge(s)= (s2+ 3s)/(s2+ 3s+ 2) and w̃, ỹ denote the Fourier transforms, is also not negative. In other
words, the IQC σz � 0 sets a limit on the amount of harmonic distortion, which can be introduced by
the nonlinear transformation v �→ φ(v). Note that this frequency domain interpretation is far from trivial
since in general, the time domain relation w(t)y(t)≥ 0 does not imply the corresponding inequality
Re[w̃( jω)′ỹ( jω)] ≥ 0 for the Fourier transforms.

While it can be shown that the IQC σz . 0 indicates existence of a nonnegative storage function
Vz = Vz(ξ̇, ξ) such that (Cx−w)(w− 2ξ)≥ dVz/dt, no explicit form for Vz is available.∗ Despite its
“implicit” nature, the IQC σz . 0, can be very useful in analysis of specific nonlinear systems.

∗ To the best of authors knowledge, the only available proof is based on a converse storage function argument, and, as such,
is not very constructive.
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Note that applying the “extension” S �→ Se does not remove any of the original IQC: the sector and
Popov IQC σs . 0, σp . 0,−σp � 0 are still valid on Se

∗, the “objective” IQC σ∗ . 0 has the same meaning
on S and Se, and the family of “pure integration” IQC σI � 0 generalizes to σIe � 0, where

σIe([w; x; ξ0; ξ1])= 2

⎡
⎣ x
ξ0

ξ1

⎤
⎦
′

Qe

⎡
⎣ Ax+Bw

ξ1

−2ξ0− 3ξ1+ 2w

⎤
⎦ , Qe = Q′e. (41.11)

41.2.1.7 Combining IQC

As long as linear operations are concerned, IQC can be handled as usual inequalities: if σ1 � 0 and σ2 � 0
on S then c1σ1+ c2σ2 � 0 on S for arbitrary nonnegative real numbers ci . Similarly, if σ1 . 0 and σ2 . 0
then c1σ1+ c2σ2 . 0. This allows the user of the IQC framework to convert individual IQC satisfied for
subsystems of a larger model into one convex setΛ= {σ} of quadratic forms σ defining valid conditional
IQC σ� 0 on S. In addition, since many of the classical IQC are readily shown to be complete, a convex
subsetΛ+ ⊂Λ such that σ . 0 for all σ ∈Λ+ can be constructed as well.

In particular, for the behavioral model S defined by Equation 41.1, the setΛ compiled so far is given by

Λ= {csσs+ cpσp+ σI : cs ∈ R+, cp ∈ R, Q = Q′}, (41.12)

where σs, σp, σI are defined in Equations 41.7 through 41.9. In contrast, the setΛ+ of recognized complete
IQC consists of σ= csσs+ cpσp+ σI with cs ≥ 0, cp ≥ 0, Q = Q′ ≥ 0. It is important to understand that,
depending on the coefficient matrices A, B, C, there could be some σ ∈Λ such that σ . 0 on S but σ �∈Λ+:
those are the quadratic forms defining valid complete IQC which are not recognized as such.

Similarly, for the extended model Se,

Λ= {csσs+ cpσp+ σIe + czσz : cs, cz ∈ R+, cp ∈ R, Qe = Q′e}, (41.13)

with σIe defined in Equation 41.11, and the forms from Λ+ satisfy the additional constraints cp ≥ 0 and
Qe ≥ 0.

41.2.2 Feasibility Optimization and Postfeasibility Analysis

Once the exact model S is defined, the objective IQC σ∗ is selected, and a convex set Λ= {σ} of valid
IQC σ� 0 on S is compiled, the next step in the IQC framework is feasibility analysis, understood as
the search for σ0 ∈Λ satisfying σ∗ ≥ σ0. In a typical application, there is also a “cost” parameter to be
minimized (in the IQC model for Equation 41.1, this could be γ, subject to γI ≥ |cp|C′C+Q, bounding
κ in Equation 41.5), so there is a well-defined optimization criterion in addition to the feasibility task.

If there is no σ0 ∈Λ such that σ∗ ≥ σ0, the IQC analysis fails, and the only option is to return to the IQC
modeling step to find a larger setΛ. Sometimes it helps to consider (as in the Zames–Falb IQC example)
replacing S with an extension Se of S: a cleverly defined set Se = {qe} of signals of fixed dimension de > d
such that for every q ∈ S there is at least one signal g such that [q; g] ∈ Se.

Having σ∗ ≥ σ0 for some σ0 ∈Λ means that σ∗� 0, that is, either σ∗ . 0, as desired, or σ∗� 0 but
σ∗ �. 0. In most applications, the latter means that the system is strongly unstable: subject to mild assump-
tions, the conditional IQC σ∗� 0 on S is a “certificate of dichotomy,” that is, it implies that S is either
quite stable or very unstable, no middle ground. In most situations, general theorems of postfeasibility
analysis provide easy criteria to decide which outcome actually takes place.

∗ Here we allow some abuse of notation, using the same identifier for a quadratic form σ : R
d �→ R and its “extension”

σ̃ : R
d+2 �→ R defined by σ̃([w; x; ξ0; ξ1])= σ([w; x]).
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41.2.2.1 Feasibility Optimization and Semidefinite Programming

When the set Λ is linearly parameterized by a vector variable which is in turn subject to a linear matrix
inequality (LMI) constraint, the search for σ0 ∈Λ satisfying σ∗ ≥ σ0 becomes a semidefinite program.

For example, in the analysis of Equation 41.1 with Λ defined by Equation 41.12, one possible semi-
definite program to solve is: min γ subject to γI ≥±cpC′C+Q, cs ≥ 0, and

[
2cs− 1− 2cpCB −csC− cpCA−B′Q

−csC′ − cpA′C′ −QB −QA−A′Q

]
≥ 0, (41.14)

where the decision variables are γ, cp, cs ∈ R and Q = Q′ ∈ R
n×n. While the LMI in Equation 41.14 looks

quite cumbersome, the quadratic form notation is usually much more straightforward. For example, the
functional version of Equation 41.14 is

−|w|2− 2csw(Cx−w)− 2cpwC(Ax+Bw)− 2x′Q(Ax+Bw)≥ 0 ∀ w, x.

Certain programming tools can be used to convert quadratic form notation into the format of the standard
semidefinite program solvers [6].

41.2.2.2 Feasibility Optimization and the Kalman–Yakubovich–Popov Lemma

While conversion to a semidefinite program, to be solved numerically, appears to be the only practical
approach to feasibility analysis of advanced IQC models, valuable theoretical insight can be gained by
applying the following version of the classical Kalman–Yakubovich–Popov (KYP) Lemma (sometimes also
called the positive real Lemma).

Theorem 41.1:

For real matrices A, B of dimensions n-by-n and n-by-m respectively, and a Hermitian form σ : C
m+n �→ R

with real coefficients, letΩ be the set of ω ∈ R such that the matrix Aω = jωIn−A is invertible. For ω ∈Ω
let Lω = A−1

ω B. Consider the following statements:

a. σ([u; Lωu])≥ 0 for all u ∈ C
m and ω ∈Ω

b. There exists ω ∈Ω such that σ([u; Lωu]) > 0 for all u ∈ C
m, u �= 0

c. The quadratic form σ([u; x])− 2x′Q(Ax+Bu) (where x ∈ R
n and u ∈ R

m) is positive semidefinite
for some real matrix Q = Q′

Then

i. (c) implies (a)
ii. when the pair (A, B) is controllable, (a) implies (c)

iii. when the pair (A, B) is stabilizable, (a) and (b) together imply (c)

Theorem 41.1 can be used to formulate frequency domain conditions of feasibility in IQC analysis
when the “pure integration” term 2x′Q(Ax+Bu) is present in the description ofΛ.

41.2.2.3 The Circle Criterion

In the special case where only the pure integrator and sector IQC are used to represent system Equa-
tion 41.1, the feasibility analysis calls for finding cs ∈ R+ and Q = Q′ such that

−|w|2− 2csw(Cx−w)− 2x′Q(Ax+Bw)≥ 0 ∀ w ∈ R, x ∈ R
n. (41.15)

Theorem 41.1 offers valuable insight into the feasibility of the associate semidefinite program: together
with the identity CLω = G( jω), it allows one to conclude that Q = Q′ satisfying Equation 41.15 exists for
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some cs ∈ R+ if and only if (assuming A is Hurwitz and (A, B) is controllable)

−|w|2− csRe[G( jω)− 1]|w|2 ≥ 0, ∀w ∈ C,ω ∈ R

Since cs can be taken arbitrarily large, it can be seen that the frequency domain condition holds if ρ< 1,
where ρ= supω∈R

Re[G( jω)] (the minimal upper bound of Re[G( jω)] over ω ∈ R).
When ρ≥ 1, the IQC analysis proves nothing: system in Equation 41.1 may be stable or unstable

depending on fine details not reflected in the IQC model used so far. When ρ< 1, we have σ∗ ≥ σ0 where
σ0 = csσs+ σI for some cs > 0 and Q = Q′. Since σs . 0 on S and σI . 0 on S for Q ≥ 0, the desired
complete IQC σ∗ . 0 will be established as long as it is possible to guarantee that Q = Q′ is positive
semidefinite. When Q is found numerically by solving a semidefinite program, the inequality Q ≥ 0 can
be checked directly. Otherwise, checking that Q ≥ 0 becomes a typical postfeasibility analysis task.

Substituting w = 0 into the inequality in Equation 41.15 yields QA+A′Q ≤ 0. Since A is a Hurwitz
matrix, which in turn implies Q ≥ 0, recovering the CIRCLE CRITERION: system in Equation 41.1 is globally
asymptotically stable when Re[G( jω)]< 1 for all ω ∈ R∪ {∞}.

41.2.2.4 The Popov Criterion

In the case where the pure integrator, sector, and Popov IQC are used together to represent system in
Equation 41.1, the feasibility analysis calls for finding cs ∈ R+, cp ∈ R, and Q = Q′ such that

−|w|2− 2csw(Cx−w)− 2cpwC(Ax+Bw)− 2x′Q(Ax+Bw)≥ 0 ∀ w ∈ R, x ∈ R
n. (41.16)

Theorem 41.1 can be used to show that existence of cs ∈ R+, cp ∈ R, Q = Q′ ∈ R
n×n satisfying in

Equation 41.16 is equivalent to existence of p ∈ R such that ρp < 1, where ρp is the minimal upper bound
of Re[(1+ jωp)G( jω)] over ω ∈ R (when ρp < 1, one can use cp = pcs with cs > 0 large enough).

Since the storage function for the IQC σs+ pσp+ σI � 0 is V (x)= x′Qx+ 2pψ(Cx), the desired IQC
σ∗ . 0 is established when nonnegativity of V is assured. Since Equation 41.16 with w = 0 implies
QA+A′Q ≤ 0, we know that Q ≥ 0 is positive semidefinite. Since ψ(y)≥ 0 for all y ∈ R, this implies
V ≥ 0 when p≥ 0.

The postfeasibility analysis becomes trickier in the case p≤ 0. The upper bound ψ(y)≤ y2/2 can be
used to show that V ≥ 0 whenever Q+ cpC′C ≥ 0. However, this special treatment is not necessary,
as, according to the general postfeasibility analysis theorems discussed in Section 41.3.2, the inequality
σ∗ ≥ csσs+ cpσp+ σI implies the complete IQC csσs+ cpσp+ σI . 0 whenever cs ≥ 0 and A is a Hurwitz
matrix. This establishes the classical POPOV CRITERION: system in Equation 41.1 is globally asymptotically
stable when there exists p ∈ R such that Re[(1+ pjω)G( jω)]< 1 for all ω ∈ R∪ {∞}.

41.3 Theory of IQC Analysis

In general, IQC analysis follows the steps highlighted in Section 41.2 (IQC modeling, feasibility optimiza-
tion, postfeasibility analysis). This section gives a formal presentation of the framework.

41.3.1 IQC Modeling

An IQC model consists of a system (understood as a set S of signals of fixed dimension d) and an analysis
objective in terms of IQC, where each IQC is a property of S defined by a quadratic form σ on R

d .

41.3.1.1 Signals

A continuous time (CT) signal of dimension d is an element of the set Ld of all measurable locally bounded
functions q : [0,∞) �→ R

d (we also use L for Ld with d = 1).
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We define q̇= dq/dt for q ∈ Ld (in which case the constraint dq/dt ∈ Ld is imposed automatically).
We use I [q] to denote the total integral of q:

I [q] =
∫ ∞

0
q(t) dt for q ∈ Ld

(I [q] is not defined for some q, and it is possible to have I [q] =∞ or I [q] = −∞). We use ‖q‖ to denote
the square root of the energy ‖q‖2 = I [|q|2] of signal q, and denote by Ld

0 the set of all finite energy signals
in Ld . Given T ≥ 0 and q ∈ Ld , p= [q]T ∈ Ld

0 denotes the past history of q: p(t)= q(t) for t ≤ T , p(t)= 0
for t > T .

When σ : R
d �→ R is a quadratic form, we use σ〈q〉 as a shortcut notation for I [σ(q)] when q ∈ Ld

0 . In
the special case σ(x)= |x|2 (x ∈ R

d), we use ‖x‖2
T in place of σ〈[x]T 〉 for x ∈ Ld and T ≥ 0.

41.3.1.2 Systems

Mathematically, we view a general system as a behavioral model, that is, simply a set S of signals of
given dimension. The elements of S are assumed to represent all possible combinations of all signals of
interest (the “outputs” may include components of the hidden state as well as auxiliary signals introduced
specifically to simplify the analysis). Accordingly, a system is a subset of Ld , where d is a positive integer.

We also consider the special case of operator models, which are functions Δ : Lk �→ Lm mapping
signals to signals. An operator model Δ can be described by a behavioral model defined as the graph
GΔ = {[Δ(v); v] : v ∈ Lk} of Δ. The operator model Δ is called causal when [Δ(v)]T is completely
defined by [v]T for all T ≥ 0, that is, [Δ(v1)]T = [Δ(v2)]T whenever [v1]T = [v2]T . The operator model
Δ is called stable (in the “bounded input energy implies bounded output energy” sense) if ‖Δ(v)‖<∞
whenever ‖v‖<∞.

In particular, a finite order LTI operator defined by real matrices A, B, C, D is a causal operator model
mapping v to y = Cx+Dv ∈ Lk where x is defined by ẋ = Ax+Bv and x(0)= 0. An LTI operator is
completely defined by its transfer matrix G(s)= D+C(sI −A)−1B, an element of the set RLk×m of all
real rational k-by-m matrix functions of scalar complex argument s which are proper (i.e., bounded as
|s| →∞).

41.3.1.3 Definition of IQC

Let σ : R
d �→ R be a quadratic form. We say that system S ⊂ Ld satisfies the conditional IQC defined by

σ (shortcut notation σ� 0 or σ(q) � 0 when it is more convenient) if there exists a continuous function
κ : R

d �→ R+, such that κ(0)= 0 and

σ〈q〉 ≥ −κ(q(0)) whenever q ∈ S, ‖q‖<∞. (41.17)

We say that system S satisfies the complete IQC defined by σ (shortcut notation σ . 0 or σ(q). 0) if there
exists a continuous function κ : R

d �→ R+, such that κ(0)= 0 and

σ〈[q]T 〉 ≥ −κ(q(0)) whenever q ∈ S, T ≥ 0. (41.18)

41.3.1.4 Extended Systems and IQC

Introducing new signals into consideration (an action referred to as extension here) frequently helps
to expose IQC relations in the original model. In general, the behavioral model S ⊂ Ld+N is called an
extension of S0 ⊂ Ld if for every q0 ∈ S0 there exists g ∈ LN such that [q0; g] ∈ S.

Example 41.1:

Consider the behavioral model S0 = {[u3; u2] : u ∈ L} (it is the graph of the memoryless nonlinear
operator v �→ v2/3). It can be shown that every quadratic form σ : R

2 �→ R such that σ� 0 on S0 is
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positive semidefinite, that is, S0 does not satisfy any nontrivial IQC. The extension S = {[u3; u2; u; 1] :
u ∈ L}, however, satisfies a set of useful IQC σ . 0, where

σ([x3; x2; x1; x0])= c1(x0x2− x2
1 )+ c2(x0x3− x1x2)+ c3(x1x3− x2

2 ),

and the coefficients ci ∈ R are arbitrary.

41.3.1.5 Stable LTI Extensions and Frequency Weighted IQC

The situation in which an extension S of S0 is defined by a stable LTI operator E according to S =
{[q0; Eq0] : q0 ∈ S0} is of special importance in the IQC framework. Allowing some abuse of notation,
let E = E(s) also denote the transfer matrix of E. Assume that σ� 0 on S for some quadratic form
σ : R

d+N �→ R.
LetΠ= P{σ, E} ∈ RLd×d be the transfer matrix defined (uniquely) by the identities

σH ([u; E( jω)u])= u′Π( jω)u, Π( jω)=Π( jω)′ ∀ u ∈ C
d , ω ∈ R,

where σH denotes the Hermitian extension of σ. The IQC σ〈q〉� 0 on the extended system S can be inter-
preted as a frequency domain weighted IQC on the imaginary axis (shortcut notationσH ([q0; E( jω)q0]) � 0
or q′0Π( jω)q0 � 0). Indeed, due to the Parseval identity, σ〈q〉 can be represented as the integral

∫ ∞

−∞
q̃0( jω)′Π( jω)q̃0( jω) dω

for all q0 ∈ Ld
0 , q= [q0; Eq0], where q̃0 denotes the Fourier transform of q0 ∈ Ld

0 . While Π is uniquely
defined by E and σ, a singleΠ corresponds to a variety of pairs (E, σ). All such “realizations” are equivalent
in the framework of conditional IQC.

41.3.1.6 Extended IQC for I/O System and State-Space Interpretation

In the most common scenario, extended IQC are derived for input/output relations, that is, for behavioral
models of the form

S0 = {q0 = [w; v] : v ∈ Lk , w ∈ Lm, w =Δ(v)},
whereΔ : Lk �→ Lm is a causal and stable operator. Suppose the transfer matrix E in Section 41.3.1.5 has
a state-space realization E(s)= Ce(sI −Ae)−1

[
Be1 Be2

]+ [De1 De2
]
, where Ae, Be1, Be2, Ce, De1, De2

are fixed real matrices, and Ae is a Hurwitz N-by-N matrix. Then the stable dynamical extension S can
alternatively be represented as

Sss = {q= [w; v; xe] ∈ Lk+m+N : w =Δ(v), ẋe = Aexe +Be1v+Be2w, xe(0)= 0}, (41.19)

(see Figure 41.2 for an illustration) and the corresponding quadratic form is

σss(q) := σ([w; v; Cexe +De1v+De2w])

Clearly σss � 0 on Sss if and only if σH
ss ([q0; E( jω)q0]) � 0 on S0.

For example, in the special case of the Zames–Falb IQC in Section 41.2.1.6, the IQC σz � 0 on Se

can be expressed as a frequency-weighted IQC (v−w)(w−H( jω)w) � 0, where H(s)= 2/(s2+ 3s+ 2),
relating signals v = Cx ∈ L0 and w = φ(y) ∈ L0. In this case, the explicit expression forΠ is

Π( jω)=
[

0 1−H( jω)
1−H( jω)′ 2Re[1−H( jω)]

]
.
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Δ v w 

yeẋ 

e = Aexe + Be1v + Be2e
ye = Cexe + De1v + De2w

FIGURE 41.2 Extended IQC setup for I/O systemΔ.

41.3.2 Feasibility Optimization

This section briefly discusses the problem of feasibility optimization. The attention is restricted to a special
system structure that frequently appears in applications.

41.3.2.1 Stable Operator Feedback Setup

An important class of IQC analysis scenarios is given by the stable operator feedback setup which calls
for certifying the complete IQC r|f |2− |e|2 . 0 (with r ≥ 0 being as small as possible) in the feedback
interconnection of a stable causal operator Δ (input v ∈ Lk , output w ∈ Lm) and a stable LTI system M
(input [ f ; w] ∈ Ll+m, output [e; v] ∈ Ld+k , state x ∈ Ln), assuming the interconnection satisfies the IQC
σΔ〈[ f ; w; x]〉� 0.

�

�
M

Δ �

�f e

w v

The IQC σΔ� 0 is interpreted as one describing Δ. While a typical IQC model will have multiple IQC
for every subsystem, the single IQC setup is general enough to formulate abstract statements relevant to
feasibility optimization and postfeasibility analysis.

The quadratic form σΔ : R
k+m+n �→ R, as well as the real coefficient matrices A, Bi , Ci , Dij (where the

pair (A, [B1, B2]) is controllable) in the equations

M :
⎡
⎣e

v
ẋ

⎤
⎦=

⎡
⎣D11 D12 C1

D21 D22 C2

B1 B2 A

⎤
⎦
⎡
⎣ f

w
x

⎤
⎦ , x(0) ∈ X0 (41.20)

are given, while the feedback operator Δ and the (nonempty) set of initial conditions X0 ⊂ R
n are not

expected to be known in detail.
The associated IQC model is given by the triplet (S, σ∗,Λ), where S = {q} is the behavioral model

consisting of all signals q= [ f ; w; x], satisfying the Equation 41.20 and w =Δ(v) for some e, v,

σ∗([ f ; w; x])= r|f |2− |C1x+D11f +D12w|2 (41.21)

is the parameterized “analysis objective” quadratic form, and

Λ= {σ= cσΔ+ σI : c ≥ 0, Q = Q′ ∈ R
n×n}

where σI = σI ([ f ; w; x])= 2x′Q(Ax+B1f +B2w) (“pure integrator” IQC). This is the set of quadratic
forms σ for which the IQC σ� 0 on S is readily established. In particular, as mentioned in Section 41.2.1.5,
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Δ 

v w 

e f G 
M 

ẋ0 = A0x0 + B0,1 f + B0,2w
e = C0,1x0 + D0,11v + D0,12w
v = C0,2x0 + D0,21v + D0,22w

ẋe = Aexe + Be,1v + Be,2w

FIGURE 41.3 Illustration of how the state-space extension contributes to the dynamics of M. The extended state
vector does not affect the signals in the feedback loop (e, v, w). It is only used in the IQC that describesΔ.

for continuous time signals of finite energy, the relation ẋ = Ax+B1f +B2w implies σI〈[ f ; w; x]〉� 0 for
every Q = Q′. Moreover, σI〈[ f ; w; x]〉 . 0 when Q ≥ 0 is positive semidefinite.

The LTI system M in general includes a nominal LTI part of the system under investigation as well
as a stable state-space extension used for the IQC modeling. As an example, consider Figure 41.3, where
a linear system G is interconnected with Δ. By using an extended IQC description as in Figure 41.2
we obtain an LTI model M with state vector x = [x0; xe]. The IQC σΔ〈[ f ; w; x]〉� 0 on S that is used
to describe Δ then depends on x not only via the output v = C0,2x0+D0,21v+D0,22w but also via the
extended state vector xe. This IQC also has a frequency domain representation. To see this, let

Γ=
[
Γ11 Γ12

Γ21 Γ22

]
= P{σΔ, (sI −A)−1[B1, B2]}, (41.22)

where the operation P = P{σ, E} is defined in Section 41.3.1.5. Since M is assumed to be stable (i.e., A is
Hurwitz), the IQCσΔ� 0 on S can be expressed in the frequency domain format as [ f ; w]′Γ( jω)[ f ; w]� 0,
as long as X0 = {0}.

41.3.2.2 Feasibility Optimization in Time and Frequency Domain

Consider again the operator feedback setup in Section 41.3.2.1. The task of finding σ0 ∈Λ such that
σ∗ ≥ σ0 with r as small as possible can be delegated to an appropriate optimization engine as a semidefinite
program with decision variables c ∈ R+, Q = Q′ ∈ R

n×n, r ∈ R and objective r →min.
It is possible to find an equivalent frequency domain formulation. By the KYP Lemma (Theorem 41.1),

the existence of Q = Q′ ∈ R
n×n such that the quadratic form

σ∗([ f ; w; x])− cσΔ( f ; w; x])− σI ([ f ; w, x])≥ 0,

is positive semidefinite is equivalent to the following condition∗:

r|f |2− |M1( jω)[ f ; w]|2− c[ f ; w]′Γ( jω)[ f ; w] ≥ 0, ∀[ f ; w] ∈ C
l+m, ω ∈ R (41.23)

where M1(s)= [M11(s), M12(s)] = C1(sI −A)−1[B1, B2]+ [D1, D2], and Γ(s) is as defined in Equa-
tion 41.22. One can verify that there exists r, c ∈ R+ such that Equation 41.23 holds if and only if the

∗ We use that A is Hurwitz and assume that (A, [B1, B2]) is controllable.
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condition

Γ22( jω)≤−ε(Γ12( jω)′Γ12( jω)+M12( jω)′M12( jω)) ∀ ω ∈ R, (41.24)

is satisfied for some ε> 0.

41.3.2.3 Need for Postfeasibility Analysis

In general, the existence of c ≥ 0 and Q = Q′ such that σ∗ ≥ cσΔ+ σI does not imply the complete IQC
σ∗ . 0. This could be due to the fact thatσΔ� 0 butσΔ �. 0, or because Q = Q′ is not positive semidefinite.
On the other hand, it is possible to have σΔ �. 0 and Q �≥ 0 while σΔ+ σI . 0.

For example, consider the stable operator feedback setup from Section 41.3.2.1 given by state-space
equations ẋ1 =−x1+ f , ẋ2 =−x2+w, e = v = x1+ x2 with X0 = {0}:

1
s+1 Δ�� � � �

�

f u wv

The conditional IQC σΔ� 0, where σΔ([ f ; w; x1; x2])= |x1|2− 0.25|w|2 (or, equivalently, |v− w
jω+1 |2−

0.25|w|2 � 0) is satisfied for Δ=Δ0 as well as for Δ=Δ1, where Δ0(v)≡ 0 and Δ1(v)= 2v. Also,
existence of Q = Q′, c ≥ 0, and r ∈ R such that σ∗ ≥ cσΔ+ σI is guaranteed by the frequency domain
condition (Equation 41.24), as in this case

Γ(s)=
[ 1

1−s2 0
0 −0.25

]
, Mij(s)= 1

1+ s
.

Nevertheless, the complete IQC σ∗ . 0 holds for r ≥ 1 when Δ=Δ0, but the feedback interconnection
is unstable, and the power gain from f to e equals infinity, whenΔ=Δ1.

41.3.3 Postfeasibility Analysis

In this section, we briefly discuss conditions, to be imposed on a behavioral model S ⊂ Ld and quadratic
forms σ∗, σ0 : R

d �→ R, which guarantee that conditional IQC σ0 � 0 and the inequality σ∗ ≥ σ0 imply
the complete IQC σ∗ . 0.

Three approaches can be considered: minimal stability, the homotopy, and the minimax approaches.
The later two are often convenient to apply in analysis of complex systems with many different compo-
nents. This will be discussed in further detail in the next section.

The minimal stability is a simple condition∗ to be imposed on σq = σ∗ − cσΔ, which guarantees that
Q ≥ 0 whenever σq ≥ σI . Then σI . 0 and σ∗ . 0 follows as long as it is known that σΔ . 0.

In terms of the stable operator feedback setup from Section 41.3.2.1, minimal stability means exis-
tence of real matrices K1, K2 such that AK = A+B1K1+B2K2 is stable (i.e., AK is Hurwitz), and
σq(K1x, K2x, x)≤ 0 for all x ∈ R

n. Indeed, since σq ≥ σI , minimal stability implies QAK +A′K Q ≤ 0,
hence Q ≥ 0. Such K1, K2 are usually easy to find when σΔ has a simple structure, as in the classical theory
of absolute stability.

For example, the derivation of the circle criterion in Section 41.2.2.3 uses the stable operator feedback
setup with B1 = 0, B2 = B,Δ(y)= φ(y), and σΔ([ f ; w; x])= 2csw(Cx−w) satisfying σΔ . 0. It employs
a minimal stability argument, with K2 = 0, to show that Q ≥ 0. The derivation of the Popov criterion
in Section 41.2.2.4 can use a similar argument, with σΔ([ f ; w; x])= 2csw(Cx−w)+ 2cpwC(Ax+Bw),

∗ Invented and frequently used by V. Yakubovich.
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when cp ≥ 0 (and hence 2cpwC(Ax+Bw). 0). When, cp < 0, σδ should be redefined as

σδ([ f ; w; x])= 2csw(Cx−w)+ 2cpwC(Ax+Bw)− 2cpx′C′C(Ax+Bw).

Since 2cpwC(Ax+Bw)− 2cpx′C′C(Ax+Bw). 0 when cp ≤ 0, the minimal stability argument can be
used, with K2 = C being the natural selection. Establishing that AK = A+BC is a Hurwitz matrix is the
extra effort required in this case.

The homotopy approach does not utilize information about σ but requires the IQC σ∗� 0 to be “strict”
and the system to be parameter-dependent. It considers a family {S(τ)} of behavioral models S(τ)⊂ Ld

depending continuously on parameter τ ∈ [0, 1] (so that S(0) is easy to analyze and S(1) is the true system
of interest), and a quadratic form σ∗ : R

d �→ R such that the conditional IQC σ∗� 0 is satisfied on S(τ)
for all τ ∈ [0, 1]. Conditions can then be derived under which, the complete IQC σ∗ . 0 on S(1) is implied
by the complete IQC σ∗ . 0 on S(0).

The homotopy approach is particularly easy to use in the stable operator setup in Section 41.3.2.1. Then
the homotopy is easy to construct due to the fact that all operators in the loop are stable, see Section 41.4
and [3,8,9] for further details. The extension to more general situations is discussed in [11].

The “minimax” approach does not utilize information about σ and does not require one to construct a
homotopy of systems. Instead, it assumes that S = {q= [w; v; x]} is a feedback connection of a marginally
stable “nominal” LTI system with inputs v, w and state x, and a causal stable feedback w =Δ(v). This
includes the setup in Section 41.3.2.1 with the exception that the system matrix A could be marginally
stable. The quadratic form σ0 is assumed to be such that, subject to the nominal LTI equations, the
conditional IQC σ∗� 0 is satisfied not only for the actualΔ, but also forΔ= 0, and is a convex constraint
on w. These assumptions allow one to use the minimax theorem to prove the complete IQC σ∗ . 0. A
more elaborate discussion can be found in [7].

41.4 Application of IQC Analysis

The framework discussed in the previous section is a flexible and versatile approach for systems analysis
that can be used in many contexts. In this section we illustrate how IQC can be used in analysis of
systems consisting of a nominal part interconnected with a number of more challenging componentsΔk ,
k = 1, . . . , N ; see Figure 41.4. We restrict our attention to the case where the components Δk are stable
causal operators and the nominal part is LTI and stable with a transfer function representation G(s). It is
assumed that G(s) has a state-space realization as in Figure 41.3. The purpose of the analysis is as before
to verify an energy gain from input f to output e.

One of the main advantages of IQC is that components of very different nature can be characterized
in a unified way. The analysis framework can therefore be implemented as a software package consisting
of a library of component descriptions, a compiler that assembles the IQC descriptions, and finally, an
optimization engine to solve the resulting feasibility optimization problem. One such prototype, IQCβ, is
implemented in MATLAB; interested readers are referred to [6] for more details.

In this section we briefly describe the IQC analysis flow and apply it to a simple example. A brief
“library” containing the two IQC descriptions used in the example is also included.

Δ1 ΔN 

v1 vN 
w1 wN 

f e 
Nominal system 

…

FIGURE 41.4 Illustration of a system consisting of a nominal part and complicating elementsΔk , k = 1, . . . , N .
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41.4.1 The IQC Analysis Flow

The IQC framework applied to the system in Figure 41.4 involves the following three steps.
IQC modeling: The first step is to find IQC descriptions for the Δk . For this purpose, we consider

behavioral models that usually contain a stable LTI extension

SΔk = {qk = [wk ; vk ; xek] : wk =Δk(vk); ẋek = Aekxek +Bek1vk +Bek2wk}

and set of quadratic forms Λk = {σk} such that σk〈qk〉� 0 on SΔk for each σk ∈Λk . These IQC descrip-
tions can be assembled to obtain a complete IQC model of the form (S, σ∗,Λ), where S = {q= [ f ; w; x]}
is a behavioral model for the whole interconnected system, consisting of signals satisfying a state-space
equation of the form in Equation 41.20 with x = [x0; xe1, . . . , xeN ], v = [v1; . . . ; vN ], w = [w1; . . . ; wN ],
and wk =Δk(vk). The quadratic form σ∗ is the analysis objective of the form in Equation 41.21 and

Λ=
{
σ=

∑
ckσk + σI : σk ∈Λk ; ck ≥ 0

}

is a set of quadratic forms for which σ� 0 on S.
Feasibility analysis: The feasibility analysis can be formulated as the semidefinite program

minimize r subject to σ∗ −
∑

ck,lσk,l − σI > 0; ck,l ≥ 0 (41.25)

for some fixed σkl ∈Λk , k = 1, . . . , n. Since we are using a strict inequality feasibility of this optimization
problem implies that the IQC σ∗� 0 is strict, which is necessary in order to use the homotopy approach
for postfeasibility analysis.

This optimization problem can sometimes be of a very large dimension, which makes solving the
problem numerically a challenge. In such cases, in order to improve the computational efficiency, it
becomes crucial to explore and exploit special structures of the optimization problem. One idea, proposed
and developed in [12], is to solve the dual formulation of the semidefinite program in Equation 41.25.
The number of decision variables to be optimized in the dual formulation is usually significantly smaller
than those of Equation 41.25; thus the computational complexity of the dual problem is substantially
reduced. Another idea is to reformulate Equation 41.25 into an equivalent semi-infinite form and solve
the semi-infinite problem using specialized algorithms. Along this line of thought, several algorithms
have been proposed, developed, and tested. See [4,5] for more details.

Postfeasibility analysis: By assembling the IQC descriptions for theΔk we arrive at the stable operator
setup in Section 41.3.2.1 with Δ(v)= [Δ1(v1); . . . ;ΔN (vN )]. Application of the homotopy argument to
the stable operator feedback setup is generally straightforward. It is sufficient to use a parametrization of
the form

S(τ)= {[ f ; w; x] ∈ Ll+m+n : w =Δτ(v); Equation 41.20 is satisfied},
whereΔτ is a continuous parametrization ofΔ such that

1. There exists γ > 0 such that ‖Δτ1 −Δτ2‖ ≤ γ|τ1− τ2|, for τ1, τ2 ∈ [0, 1]
2. Δ1 =Δ
3. S(0) is a stable system, that is, σ∗ . 0 on S(0)
4. σΔ� 0 on S(τ), for τ ∈ [0, 1]

The simple parametrizationΔτ = τΔ is often sufficient.
It is sometimes also possible to apply the minimax approach by exploiting convexity properties of the

quadratic forms that define the IQC. The later approach is particularly easy to apply in the frequency
domain formulation described next. This formulation is in line with how IQC analysis was presented
in [8].
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We have seen in the previous sections the IQC can be formulated in both time and frequency
domain. Each of the IQC descriptions considered above is equivalent to a frequency domain IQC
[vk ; wk]′Πk( jω)[vk ; wk]� 0, where

Πk =
[
Πk,11 Πk,12

Π′k,12 Πk,22

]
= P{σΔk , (sI −Aek)−1[Bek1, Bek2]}.

In fact, we may use a convex set of IQC obtained as

ΠΔk =
{∑

ck,lΠk,l : ck,l ≥ 0
}

,

where P{σΔk,l , (sI −Aek)−1[Bek1, Bek2] for some fixed σΔk,l ∈Λk . The three-step procedure of IQC anal-
ysis goes as follows.

IQC modelling: The model of the linear part of the system has the form Slin = {[ f ; w; e; v] : [e; v] =
G[ f ; w]}, where G has block row structure G = [G0; G1; . . . ; GN ] with dimensions consistent with the
output signals [e; v1; . . . ; vN ]. The complete system has the behavioral model

S = {q= [ f ; w; e; v] : q ∈ Slin; wk =Δk(vk)}.

For this, we have the analysis objective

r| f |2− |e|2 . 0

and the IQC descriptions

[vk ; wk]′Πk( jω)[vk ; wk]� 0, Πk ∈ΠΔk .

Feasibility analysis: The feasibility criterion can be formulated as a frequency domain constraint

r|f |2− |G0( jω)[ f ; w]|2 >

N∑
k=1

[Gk( jω)[ f ; w]]′Πk( jω)[Gk( jω)[ f ; w]]

for all ω ∈ R∪ {∞}, [ f ; w] ∈ C. This can equivalently be rewritten

[
G
I

]′
⎡
⎢⎢⎣

1 0 0 0
0 Π11 0 Π12

0 0 −r 0
0 Π′12 0 Π22

⎤
⎥⎥⎦
[

G
I

]′
( jω) < 0 (41.26)

for all w ∈ R∪ {∞}, whereΠkl = diag(Π1,kl , . . . ,ΠN ,kl), k, l = 1, 2. The feasibility optimization can thus
be formulated as

minimize r subject to Equation 41.26; Πk ∈ΠΔk .

Post-feasibility analysis: The minimax approach applies to this setup if Π11( jω)≥ 0 and Π22( jω)≤ 0
for allω ∈ R. Otherwise, the homotopy approach applies under the same assumptions as discussed above.

The above analysis expression can be arrived at more efficiently as we will see in the example presented
in Section 41.4.3.

41.4.2 IQC Library

There exists a large number of IQC established for common nonlinear, time-varying, uncertain, and
distributed elements of dynamical system models. Here we present two that will be used below.
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41.4.2.1 Monotonic Odd Nonlinearity

Let φ : R→ R be an odd function such that φ(0)= 0 and φ̇ ∈ [0, k] for some constant k. Let Smon =
{[w; v] : v ∈ L, w(t)= φ(v(t))} be the behavioral model describing the mapping v(t) �→ φ(v(t)), and

Smon,e =
{
[w; v; f ] : [w; v] ∈ S, f (t)=

∫ ∞

−∞
h(t− τ)w(τ) dτ

}
,

be an extended model for Smon, where h is any function which satisfies
∫ ∞

−∞
|h(t)| dt ≤ 1; that is, the

L1-norm of h is bounded by 1. It can be shown that Smon,e satisfies IQC σzf . 0, where

σzf ([w; v; f ])= α(v−w/k)(w− f ),

and α≥ 0 is any nonnegative real number. This IQC is derived from a classical paper by G. Zames and
P. Falb [16], and sometimes referred to as the “Zames–Falb” IQC. Note that, although any h whose L1-
norm is bounded by 1 can be chosen to form the extended model Smon,e, one would usually select an h
which is the impulse response of some rational transfer function in order to take advantage of utilizing
convex optimization tools in the feasibility analysis step.

In the case when the function φ is not odd but satisfies the other properties above, the IQC σzf . 0
is still valid as long as the additional condition h(t)≥ 0, ∀t holds. For example, the IQC presented in
Section 41.2.1.6 corresponds to selecting h(t)= 2(e−t − e−2t) for t ≥ 0 and h(t)= 0 when t < 0. It can
be readily verified that h is the impulse response of transfer function H(s)= 2/(s2+ 3s+ 2), and the
L1-norm of h is equal to 1. The corresponding extended model Smon,e can be equivalently expressed as

Smon,e =
{
[w; v; f ; ḟ ] : [w; v] ∈ S, f̈ + 3ḟ + 2f = 2w, ḟ (0)= f (0)= 0

}
,

which satisfies IQC 2(v−w)(w− f ). 0.

41.4.2.2 LTI Unmodeled Dynamics

Let Δ : Ln → Lm be a LTI bounded operator with the L2-induced gain being less than or equal to 1. Let
Sud = {[w; v] : v ∈ Ln, w =Δv} be the behavioral model describing the LTI transformation v �→Δv. It
can be shown that Sud satisfies the frequency weighted IQC σud � 0, where

σH
ud([w; v])= α( jω)(|v|2− |w|2),

for every rational function α ∈ RL1×1 which is bounded and nonnegative on the imaginary axis. This IQC
can be proven by observing that the Fourier transforms ṽ, w̃ of finite energy [w; v] ∈ Sud satisfy

w̃( jω)= Δ̃( jω)ṽ( jω), ∀ω ∈ R,

where Δ̃(s) is the representation of Δ in the Laplace domain. Since supω σ̄
(
Δ̃( jω)

)
≤ 1, where σ̄(M)

denotes the maximal singular value of M, we conclude that

‖w̃( jω)‖2 ≤ ‖ṽ( jω)‖2, ∀ω ∈ R,

and hence the IQC.

41.4.3 Example

Figure 41.5 shows a model of a servo system consisting of a nominal plant P, a controller K , a standard
saturation nonlinearity, and a dynamic uncertainty Δ, which represents unmodeled flexible modes. It is
assumed that the energy gain ofΔ is upper bounded by κ. The analysis objective is to verify whether the
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Δ

e
f

v1 w1

v2 w2

PK

−1

FIGURE 41.5 Feedback system with saturation and unmodeled dynamics.

energy gain from the input disturbance f to the output e is less than
√

r. In this case we use quadratic
form σ∗ = r|e|2− | f |2 as the analysis objective, the IQC description

α1 · 2Re[(v1−w1)(1−H( jω))w1]� 0 (41.27)

for the saturation nonlinearity, and the IQC description

α2( jω)(κ2|v2|2− |w2|2) � 0 (41.28)

for the dynamic uncertainty, where α1 ≥ 0, α2( jω)≥ 0, and H is a transfer function whose impulse
response function has L1-norm less than one. The frequency domain formulation of the analysis condition
can directly be formulated as

r|P( jω)( f +w1)+w2|2− | f |2 > α2( jω)(κ2|P( jω)( f +w1)|2− |w2|2)

+ 2α1Re[(−K( jω)(w2+ P( jω)(w1+ f ))−w1
)

(1−H( jω))w1]
(41.29)

for all ω ∈ R∪ {∞} and f , w1, w2 ∈ C. It is easy to see that the postfeasibilty conditions discussed above
are satisfied.

In the previous section, we mentioned that the IQC analysis framework is implemented in MATLAB.
The toolbox, named IQCβ, consists of a parser and a library of IQC descriptions for various kind of
uncertain/nonlinear operators. The toolbox allows the users to perform IQC analysis in the MATLAB
environment, using syntax similar to the language of MATLAB. The parser interprets the IQC models,
descriptions, and the analysis objective that users input to the computer, defines the corresponding
optimization problem for feasibility analysis, and calls for an optimization engine (an LMI solver if the
problem is formulated as a set of finite dimensional LMIs) to solve the optimization problem. In the
following, we briefly illustrate how to use IQCβ to perform the energy gain analysis described above.
For the sake of illustration, let the plant P and the controller K be modelled by the following transfer
functions:

P(s)= −s+ 1

s2+ 0.01s+ 1
, K(s)= 1.92s− 3.471

s2+ 4.628s+ 11.02
.

The MATLAB codes for calculating an upper bound of the energy gain are given below.

s = tf([1,0],1); %(1)
P = (-s+1)/(s∗s+0.01∗s+1); %(2)
K = (1.92∗s-3.471)/(s∗s+4.628∗s+11.02); %(3)
abst_init_iqc %(4)
f = signal; %(5)
w1 = signal; %(6)
w2 = signal; %(7)
v2 = P∗(f+w1); %(8)
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e = w2+v2; %(9)
v1 = K∗(-1)∗e; %(10)
w1 == iqc_monotonic(v1,1,1,1); %(11)
w2 == iqc_ltiunmod(v2,1,1,0.01); %(12)
iqc_gain_tbx(f,e) %(13)

Command lines (1) through (3) define the transfer functions P(s) and K(s). The function/operations used
in these command lines are native to MATLAB and not a part of the IQCβ toolbox. Command lines
(4) through (13), on the other hand, utilize functions and operations which are parts of IQCβ and will
not work if the toolbox is not installed. Command line (4) initiates the environment for IQC analysis
under MATLAB. Command lines (5) through (10) define the linear part of the system in Figure 41.5;
that is, the corresponding Slin for this system. In this example, the linear part of the system has three
“external inputs” f , w1, and w2, which are defined by command lines (5), (6), and (7), respectively.
The “internal signals” v2, e, and v1, are related to f , w1, and w2 by command lines (8) through (10).
Command line (11) defines the IQC model for the saturation nonlinearity, which is embedded as a
monotonic odd nonlinearity. The IQC relation in Equation 41.27 for signals w1 and v1 is defined in the
function iqc_monotonic.m. Here the corresponding H( jω) is 1/( jω+ 1). Likewise, Command line
(12) defines the IQC model for the dynamic uncertainty Δ, and the IQC relation in Equation 41.28 for
signals w2 and v2 is defined in the function iqc_ltiunmod.m. The corresponding α2( jω) has the
form x/( jω+ 1), where parameter x is a positive real number. We also note that for this illustration, we
assume the energy gain of Δ to be less than 0.01. Finally, command line (13) executes the IQC parser,
which collects the information defined by command lines (1) through (12), formulates the corresponding
optimization problem in Equation 41.29 as LMIs, and call the generic LMI solver provided by MATLAB
to find the least upper bound of energy gain. In this example, the bound found by the optimization engine
is around 142.9.

41.5 Historical Remarks and References

The use of IQC in systems analysis has a long history. The term was, to our knowledge, introduced by
V.A. Yakubovich in the 1960s in a sequence of works where advanced sector and Popov criteria were
developed using IQC. Yakubovich continued to develop this approach and a recent survey can be found
in [15].

Several related and equally important directions were initiated in the 1960s and 1970s. The theory
of dissipative dynamical systems was introduced by J.C. Willems with a focus on the use of dissipation
inequalities and positive definite storage functions as a natural way to quantify energy dissipation in
physical systems. See, for example, the recent survey in [14]. Another approach to stability analysis
was the input–output theory developed by Zames, Sandberg, and others. The most powerful results are
obtained by using the multipliers, an idea, which to our knowledge was introduced by Brockett and
Willems [1] and further developed to allow the use of noncausal multipliers by Zames and Falb [16].
Extensive accounts of the input–output theory can be found in the books [2,13].

Later in the 1980s and 1990s the attention turned to more complex systems with structured uncer-
tainties. The development of efficient algorithms and software for convex optimization motivated the
computational frameworks for robustness analysis in, for example, [10]. However, as more complex
uncertainty structures were considered it became evident that the input–output theory required certain
factorization conditions on the multipliers, which complicated the analysis. This was overcome by using
IQC defined in the frequency domain as in presented [8]. This tutorial paper presents the IQC approach
closer to the way it is implemented in the custom-made MATLAB toolbox IQCβ [6]. It provides a general
tool for analysis of complex systems containing heterogeneous components. A previous tutorial on IQC
can be found in [3] and further perspectives are given in [9,11].
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42.1 Introduction

In this chapter, we study motion planning and control for systems subject to nonholonomic and underac-
tuation constraints. All such systems can be written in the form

ẋ = f (x)+
m∑

i=1

uigi(x), ui ∈ R, (42.1)

where f (x) is a drift vector field, gi(x) are linearly independent control vector fields, and u= [u1, . . . , um]T
is the control. Unless otherwise specified, we work in local coordinates and treat the state as x ∈M= R

p.
While many nonlinear systems can be written in the control-affine form (Equation 42.1), we are partic-

ularly interested in first-order kinematic systems and second-order dynamic mechanical systems. In the
case of kinematic systems, the state x is simply the configuration q ∈Q= R

n (i.e., p= n), the control vector
fields are velocity vector fields, and the controls u are speeds. For second-order mechanical systems, the
state is x = (q, q̇) in the tangent bundle TQ= R

2n, the control vector fields encode acceleration directions,
and the controls u are generalized forces. For both first-order kinematic and second-order mechanical
systems, we are interested in the case of fewer control inputs than configuration variables, m < n.

42-1



�

�

�

�

� �

42-2 Control System Advanced Methods

A classical nonholonomic constraint is a velocity constraint that cannot be integrated to yield an
equivalent configuration constraint. A common kind of velocity constraint is a Pfaffian constraint of the
form

a(q)q̇= 0. (42.2)

If there exists a function h(q) such that ∂h/∂q= μ(q)a(q) for a suitable functionμ(q), then the Pfaffian
constraint is not nonholonomic, but is the derivative of a holonomic constraint. A holonomic constraint
reduces the dimension of configuration space. If there is no equivalent holonomic constraint, then the
constraint is nonholonomic and reduces the dimension of the feasible velocities, but does not reduce the
dimension of the reachable configuration space.

Our interest here is in nonintegrable Pfaffian constraints of the form A(q)q̇= 0, where k velocity
constraints are encoded in the n× k matrix A(q). Such nonholonomic constraints arise from rolling
without slip, and may be implicit in some conservation laws, such as conservation of angular momentum.
The constraints define a distribution D in the tangent bundle TQ, and Dq denotes the subspace of feasible
velocities at each q.

While kinematic systems may be subject to nonholonomic velocity constraints, second-order systems
may be subject to both velocity and acceleration constraints. Acceleration constraints arise due to the fact
that the system is underactuated—it has fewer control inputs than configuration variables (m < n).∗ If
acceleration constraints cannot be integrated to yield equivalent velocity constraints, we refer to them as
second-order nonholonomic constraints.

Thus the systems of interest in this chapter are kinematic systems with velocity constraints, and second-
order mechanical systems with velocity and/or acceleration constraints. All of the systems we consider
can be expressed in the form (Equation 42.1).

Control of nonholonomic and underactuated systems is challenging, as we experience every time we
try to parallel park a car. This chapter focuses on the following challenges:

• Evaluating controllability. Given a description of the system in the form (Equation 42.1), Lie alge-
braic tests can be used to study the reachable state space. Some controllability concepts are specific
to second-order mechanical systems and allow simplified tests.

• Feedback stabilization. A classic result due to Brockett prompts the search for discontinuous or
time-varying feedback control laws. Another strategy is to derive motion planners and to use
feedback control to stabilize planned trajectories.

• Motion planning. The motion planning problem is to find an efficient algorithm that gives an
open-loop control steering the system from a start state to a goal state.

In the next section we provide examples of nonholonomic and underactuated systems, and the remain-
ing sections address the issues above. General references for further reading include [2,5,11,13,18].

42.2 Notation and Examples

We can classify example systems according to whether they are first-order kinematic systems or second-
order mechanical systems. For first-order kinematic systems, the system state x is simply the configuration

∗ At least two definitions of “underactuated” are possible: (1) the number of control inputs m is less than the number of
configuration variables n, as adopted in this chapter or (2) m is less than the dimension of Dq , the number of linearly
independent instantaneously feasible velocity directions. For example, a simple model of a car has n= 3 (the position and
heading direction of the car in the plane) and m= 2 controls (the forward and turning speeds). The car is underactuated
by the first definition, but not by the second—the no-slip constraint of the car means that the control vector fields span
the space of feasible velocities. We could modify our definition of “underactuated” to be that m is less than the number
of “degrees of freedom,” but this also does not settle the matter: some authors equate “degrees of freedom” to n, while
others equate it to the dimension of Dq . In any case, once the system is converted to the form (Equation 42.1), there is no
ambiguity, and m < n for all systems we study.
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FIGURE 42.1 The geometry and configuration coordinates for the vertical rolling disk.

q, and k = n−m≥ 1, that is, the number of velocity constraints is equal to the dimension of the con-
figuration space minus the dimension of the control space. For second-order mechanical systems, there
are three possibilities: k = 0 (and n−m≥ 1), that is, there are no nonholonomic velocity constraints;
k = n−m≥ 1, that is, the actuators can apply a generalized force in each unconstrained velocity direc-
tion; and n−m > k ≥ 1, that is, there is one or more unconstrained velocity direction which has no
associated actuator. We give examples of each of these cases below. More detail on these examples can be
found in [2,11–13,21].

42.2.1 Kinematic Systems

Example 42.1: The Vertical Rolling Disk

The configuration of a disk of radius R rolling on a horizontal plane can be parameterized by
q= [x , y,ψ,φ]T , as shown in Figure 42.1. The k = 2 nonholonomic rolling constraints can be written
A(q)q̇= 0, where

A(q)=
[

1 0 −R cosφ 0
0 1 −R sinφ 0

]
. (42.3)

The m= 2 controls are the wheel rolling velocity u1 = ψ̇ and the heading rate of change u2 = φ̇,
with corresponding control vector fields g1(q)= [R cosφ, R sinφ, 1, 0]T and g2(q)= [0, 0, 0, 1]T . There
is no drift field, f (q)= 0.

It is easy to confirm that the rolling disk can reach any configuration in Q (see Section 42.3).
Therefore, the constraints A(q)q̇= 0 are indeed nonholonomic—they do not restrict the reachable
configuration space. If we add one more velocity constraint, u2 = φ̇= 0, however, we see that
the three constraints taken together can be integrated to obtain three holonomic constraints. The
reachable configuration space has been reduced from four-dimensional to one-dimensional integral
manifold of the vector field g1; the disk can only roll back and forth on a line, and its position on
the line, together with the initial configuration, determines ψ. While the reduction in the reachable
space is obvious in this example, and indeed in any drift-free example with a single control vector
field, in general the integrability of constraints can be evaluated by considering the Lie algebra of
the system vector fields (Section 42.3).

Example 42.2: The Heisenberg System (Nonholonomic Integrator)

Consider the vertical disk example, but eliminating ψ from the representation of the configuration.
The system can be written

ẋ = vR cosφ,
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ẏ = vR sinφ,

φ̇= ω,

where the forward velocity and heading velocity controls are v and ω, respectively. We can define a
change of coordinates F(φ) ⎡

⎣x1
x2
z

⎤
⎦= F(φ)

⎡
⎣x

y
φ

⎤
⎦ ,

where

F(φ)=
⎡
⎣ 0 0 1

cosφ sinφ 0
φ cosφ− 2 sinφ φ sinφ+ 2 cosφ 0

⎤
⎦ ,

and a nonsingular state-dependent transformation of the controls

u1 = ω,

u2 = Rv+
( z

2
− x1x2

2

)
ω,

yielding the system

ẋ1 = u1, (42.4)

ẋ2 = u2, (42.5)

ż = x1u2− x2u1 (42.6)

defined by the control vector fields g1 = [1, 0,−x2]T and g2 = [0, 1, x1]T . This system is called the
Heisenberg system or nonholonomic integrator [8,9]. The importance of this system is that the asso-
ciated three-dimensional Lie algebra is the Heisenberg algebra appearing in quantum mechanics.
Generalizations can be used to model a number of other important systems.

Example 42.3: Wheeled Mobile Robots

Kinematic wheeled mobile robots are perhaps the best-known examples of nonholonomic sys-
tems. Some of the most common wheeled mobile robots can be described by the Heisenberg
system. We denote the configuration of the robot in a horizontal plane as q= [x , y,φ]T , where
(x , y) is the location of a reference point halfway between two wheels of the robot, and φ is
the orientation of the robot (Figure 42.2). For a differential-drive robot, the two wheels are not
steered but their speeds can be controlled independently. For a car-like robot, the reference point
is between the unsteered rear wheels. In both cases, the system is described by the vector fields
g1 = [cosφ, sinφ, 0]T and g2 = [0, 0, 1]T with controls u1 = v, the forward velocity, and u2 = ω, the
angular velocity.

A number of different control sets have been studied for wheeled mobile robots. Four sets are
shown in Figure 42.2, corresponding to a car with a limited forward-reverse speed and limited turning
radius; a differential-drive robot with limited wheel speeds; a “Reeds–Shepp” car, which is a car that
can only take forward–reverse velocities in the set {−vmax, vmax}; and a forward-only “Dubins” car
that has v fixed at vmax. For simplicity, in this chapter, we treat control sets as R

m, but some results
also apply to restricted control sets as in Figure 42.2.

42.2.2 Dynamic Mechanical Systems

42.2.2.1 Systems with Velocity Constraints

To describe a constrained mechanical system, we need the following elements: a symmetric
positive-definite inertia tensor M(q) ∈ R

n×n and a potential energy U(q) ∈ R defining the Lagrangian
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FIGURE 42.2 Configuration coordinates of a wheeled mobile robot, and four different control sets in the space of
forward velocities v and turning rates ω.

L(q, q̇)= 1
2 q̇T M(q)q̇−U(q); a set of controls U , which we take to be R

m for simplicity; and an input
tensor T(q) ∈ R

n×m indicating how a control u acts on the generalized coordinates q. If the system is
subject to Pfaffian velocity constraints, then the k constraints are written A(q)q̇= 0, where A(q) ∈ R

k×n,
and these constraints result in a set of constraint forces AT (q)λ, where λ ∈ R

k .
We define the n3 Christoffel symbols of M(q)

Γi
jk(q)= 1

2

(
∂mij(q)

∂qk
+ ∂mik(q)

∂qj
− ∂mkj(q)

∂qi

)
,

where mij(q) is the (i, j)th element of M(q). Then Lagrange’s equations yield the dynamics

M(q)q̈+ b(q, q̇)= T(q)u+AT (q)λ, (42.7)

A(q)q̇= 0, (42.8)

where b(q, q̇)= q̇TΓ(q)q̇+ ∂U(q)/∂q, and the ith element of the n-vector q̇TΓ(q)q̇ of Coriolis and
centripetal terms is defined as q̇TΓi(q)q̇.

For Equation 42.8 to be satisfied at all times, we must also have

Ȧ(q)q̇+A(q)q̈= 0, (42.9)

allowing us to solve for the the Lagrange multipliers λ. Dropping the dependence on q,

λ= (AM−1AT )−1(AM−1(b−Tu)− Ȧq̇). (42.10)

Plugging Equation 42.10 into Equation 42.7 to eliminate the Lagrange multipliers, we obtain the n
dynamic equations

q̈=M−1(AT (AM−1AT )−1Ȧq̇− P⊥b+ P⊥Tu
)
, (42.11)
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where
P⊥ = In−AT (AM−1AT )−1AM−1 (42.12)

is an n× n matrix of rank n− k that orthogonally projects (by the kinetic energy metric) generalized
forces to the components that do work on the system, and In is the n× n identity matrix. Equation 42.11
can be expressed more compactly as

P⊥(q)
(
M(q)q̈+ b(q, q̇)

)= P⊥(q)T(q)u

or
P(q)

(
q̈+M−1(q)b(q, q̇)

)= P(q)M−1(q)T(q)︸ ︷︷ ︸
Y (q)

u, (42.13)

where P =M−1P⊥M is an n× n matrix of rank n− k that orthogonally projects motions to those that
satisfy the velocity constraints. P and P⊥ are orthogonal by the kinetic energy metric. We call the columns
of Y (q) input vector fields, discussed in Section 42.3.2.2.

Using Equation 42.11, we could now write the 2n-dimensional drift and control vector fields of
Equation 42.1. If Equation 42.11 is integrated exactly, the system state evolves on the (2n− k)-dimensional
distribution D defined by the k nonholonomic velocity constraints. Note, however, that there are only
n− k independent equations in Equations 42.11 and 42.13, and when we examine controllability of the
system using Lie brackets, we use Taylor expansions of the system vector fields. Because these only
approximate the vector fields, our controllability analysis may incorrectly conclude that the system can
escape D to other points in TQ. See Section 42.3.2.2 for controllability tests based on the dynamics
(Equation 42.13).

As an alternative, we can use the nonholonomic Pfaffian constraints to eliminate k velocity state
variables and arrive at a reduced set of equations on the (2n− k)-dimensional distribution D. Reordering
the configuration variables and labeling them q= [qT

1 , qT
2 ]T , we can write the Pfaffian constraints as

A(q)︸︷︷︸
k×n

q̇= [A1(q)︸ ︷︷ ︸
k×n−k

A2(q)︸ ︷︷ ︸
k×k

] [q̇1

q̇2

]
= 0, (42.14)

where A2(q) is invertible. The k-dependent velocities q̇2 can be calculated from the n− k-independent
velocities q̇1 by

q̇2 = D(q)q̇1 =−A−1
2 (q)A1(q)q̇1.

Defining the n× (n− k) matrix

C(q)=
[
In−k

D(q)

]
,

we obtain

q̇= C(q)q̇1, (42.15)

q̈= Ċ(q)q̇1+C(q)q̈1. (42.16)

Substituting Equations 42.15 and 42.16 into Equation 42.7 and premultiplying both sides by CT(q), we
obtain

CT(q)M(q)C(q)q̈1 = CT(q)
[
T(q)u− b(q, C(q)q̇1)−M(q)Ċ(q)q̇1

]
.

Premultiplying each side by the inverse of the full rank (n− k)× (n− k) matrix M̃(q)=
CT(q)M(q)C(q), and dropping the dependence on q, we obtain

q̈1 = M̃−1CT T︸ ︷︷ ︸
H(q)

u− M̃−1CT (b+MĊq̇1)︸ ︷︷ ︸
c(q,q̇1)

. (42.17)

We have reduced the n dynamic equations with constraint forces in Equation 42.7 to n− k equations for
q̈1. Defining the state variables x1 = q1, x2 = q2, x3 = q̇1, we can write the 2n− k state equations in the
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form (Equation 42.1):

ẋ =
⎡
⎣ẋ1

ẋ2

ẋ3

⎤
⎦=

⎡
⎣ x3

D(x1, x2)x3

−c(x)

⎤
⎦

︸ ︷︷ ︸
f (x)

+
⎡
⎣ 0

0
H(x1, x2)

⎤
⎦

︸ ︷︷ ︸
G(x1,x2)

u. (42.18)

The m columns of G(x1, x2) ∈ R
(2n−k)×m are the control vector fields gi(x) in Equation 42.1.

42.2.2.2 Systems without Velocity Constraints

In the case of no velocity constraints (k = 0), we can simplify the equations by first partitioning
the configuration variables into those that are acted upon by the inputs and those that are not,
qT = [qT

1 , qT
2 ], q1 ∈ R

m, q2 ∈ R
n−m.∗ Lagrange’s equations can then be written

M11(q)q̈1+M12(q)q̈2+ b1(q, q̇)= B(q)u, (42.19)

M21(q)q̈1+M22(q)q̈2+ b2(q, q̇)= 0, (42.20)

where B(q) ∈ R
m×m is invertible for all q ∈Q, b1(q, q̇) ∈ R

m, b2(q, q̇) ∈ R
n−m, and Mij(q), i, j = 1, 2, are

components of M(q). We may solve for q̈2 as

q̈2 =−M−1
22 (q)[M21(q)q̈1+ b2(q, q̇)],

and substitute into Equation 42.19 to obtain

M̄(q)q̈1+ b̄(q, q̇)= B(q)u,

where

M̄(q)=M11(q)−M12(q)M−1
22 (q)M21(q),

b̄(q, q̇)= b1(q, q̇)−M12(q)M−1
22 (q)b2(q, q̇).

Consequently, using the partial feedback linearizing controller

u= B−1(q)[M̄(q)v+ b̄(q, q̇)],
Equations 42.19 and 42.20 can be rewritten as

q̈1 = v, (42.21)

q̈2 = J(q)q̈1+R(q, q̇), (42.22)

where

J(q)=−M−1
22 (q)M21(q),

R(q, q̇)=−M−1
22 (q)b2(q, q̇).

Equations 42.21 and 42.22 have a special triangular or cascade form that appropriately captures
the important attributes of underactuated mechanical systems. Equation 42.21 defines the linearized
dynamics of the m completely actuated degrees of freedom. Equation 42.22 defines the dynamics of the
n−m unactuated degrees of freedom; these are expressed in terms of equalities involving the generalized
accelerations. If these latter relations do not admit any nontrivial integral, that is, any nonconstant smooth

∗ It may be necessary to perform a coordinate transformation to obtain this form.
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function h(q, q̇, t) such that dh/dt = 0 along the solutions, then these relations may be interpreted as n−m
completely nonintegrable acceleration constraints (or second-order nonholonomic constraints). As will
be seen in the subsequent development, controllability and stabilizability properties of underactuated
mechanical systems are closely related to this property. Hence, it is crucial to identify underactuated
mechanical systems where the acceleration relations defined by Equation 42.22 are completely noninte-
grable.

Equations 42.21 and 42.22 can be expressed in the form (Equation 42.1) by defining the state variables

x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2.

Then the state equations are given by

ẋ1 = x3, (42.23)

ẋ2 = x4, (42.24)

ẋ3 = v, (42.25)

ẋ4 = J(x1, x2)v+R(x1, x2, x3, x4). (42.26)

Equations 42.23 through 42.26 define a drift vector field f (x)= [xT
3 , xT

4 , 0T , RT (x1, x2, x3, x4)]T and m
control vector fields gi(x)= [0T , 0T , eT

i , JT
i (x1, x2)]T , where ei denotes the ith standard basis vector in R

m

and Ji(x1, x2) denotes the ith column of the matrix-valued function J(x1, x2).

42.2.2.3 Examples

Example 42.4: The Dynamic Rolling Disk

Consider the rolling disk of Figure 42.1, but now with rolling and steering torques as inputs, instead of
angular velocities. In this example, n= 4, m= 2, and k = 2, and therefore k = n−m= 2—there is an
actuator for each unconstrained velocity direction. Following the development in Equations 42.14
through 42.18, we reorder the configuration variables from the kinematic case to q= [qT

1 , qT
2 ]T ,

where q1 = [ψ,φ]T and q2 = [x , y]T . The system is described by the reordered rolling constraints
from Equation 42.3, A1(q)q̇1+A2(q)q̇2 = 0, where

A1(q)=
[−R cosφ 0
−R sinφ 0

]
, A2(q)=

[
1 0
0 1

]
,

and

M(q)=

⎡
⎢⎢⎣

J 0 0 0
0 I 0 0
0 0 m 0
0 0 0 m

⎤
⎥⎥⎦ , T (q)=

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ ,

where m is the mass of the disk, J is the inertia of the disk about an axis perpendicular to the face of
the disk and through the disk’s center, and I is the inertia of the disk about a vertical axis through its
center. The disk has zero potential energy, U(q)= 0. Setting x1 = q1, x2 = q2, x3 = q̇1, the drift and
control vector fields in Equation 42.18 on the six-dimensional distribution D are described by

D(x1, x2)=
[

R cosφ 0
R sinφ 0

]
, c(x)=

[
0
0

]
, H(x1, x2)=

⎡
⎢⎣

1

J+mR2 0

0
1
I

⎤
⎥⎦ .
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FIGURE 42.3 The snakeboard model.

Example 42.5: The Snakeboard

The snakeboard is a commercial toy whose concept is derived from the well-known skateboard. It is
composed of two steerable wheeled platforms joined by a coupling bar, and the rider propels itself
forward without touching the ground by steering the wheels and twisting it body back and forth.
A simple model of the snakeboard is shown in Figure 42 3. Here a momentum rotor simulates the
rider by spinning back and forth, and by conservation of angular momentum about the rotation
center chosen by the wheels, the snakeboard body moves.

Our simple model of the snakeboard has n= 5, m= 2, and k = 2, and therefore n−m > k = 2—
there is no actuator for each unconstrained velocity direction. Let the configuration of the snakeboard
be represented by q= [θ,ψ,φ, x , y]T , where (x , y) represents the Cartesian position of the center of
the snakeboard coupler, θ is its angle, andψ and φ are the angle of the rotor and the steering angle
of the wheels, respectively, expressed in the body frame. The inertia matrix for the simplified model
of the snakeboard is given by

M=

⎡
⎢⎢⎢⎢⎣

I+ Ir + Iw Ir 0 0 0
Ir Ir 0 0 0
0 0 Iw 0 0
0 0 0 m 0
0 0 0 0 m

⎤
⎥⎥⎥⎥⎦ ,

where m is the total mass of the snakeboard, I is the inertia of the coupler about its center of mass,
Ir is the rotor inertia, and 1

2 Iw is the inertia of each set of wheels about its pivot point. (Note that
because the inertia matrix is invariant to the configuration, the Christoffel symbols are zero.) The
system is subject to two control inputs: a torque u1 that controls the rotor angle ψ, and a torque u2
controlling the steering angle φ. Therefore, T (q) can be written

T (q)=

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦ .

The wheels are assumed to roll without lateral slipping, and the wheel angle chooses a rotation
center along a line perpendicular to the body of the snakeboard and through its center. The no-slip
constraints can be written in the form A(q)q̇= 0, where

A(q)=
[−� cos θ cosφ 0 0 sinφ 0
−� sin θ cosφ 0 0 0 sinφ

]
.

Following the development in Equations 42.14 through 42.18, we could choose q1 = [θ,ψ,φ]T ,
q2 = [x , y]T , and A2(q) to be the right 2× 2 submatrix of A(q). This yields the state equations 42.18 on
the eight-dimensional distribution D away from states whereφ ∈ {0,π}, where A2(q) is noninvertible.
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FIGURE 42.4 The 3R robot with three revolute joints.

Example 42.6: The 3R Robot

A 3R robot manipulator consists of three revolute joints (Figure 42.4). We consider such a robot
operating in a horizontal plane with a passive joint—one joint lacks an actuator. This is an example
of an underactuated system with no velocity constraints (k = 0).

This system is described by q= [θ1, θ2, θ3]T , zero potential energy, and

M(q)=
⎡
⎣m11 m12 m13

m21 m22 m23
m31 m32 m33

⎤
⎦ ,

where

m11 = I1+ I2+ I3+m1r2
1 +m2(L2

1+ r2
2 )+m3(L2

1+ L2
2+ r2

3 )+ 2m2L1r2c2

+ 2m3(L1L2c2+ L2r3c3+ L1r3c23),

m12 =m21 = I2+ I3+m2(r2
2 + L1r2c2)+m3(L2

2+ r2
3 + L1L2c2+ 2L2r3c3+ L1r3c23,

m13 =m31 = I3+m3(r2
3 + L2r3c3+ L1r3c23),

m22 = I2+ I3+m2r2
2 +m3(L2

2+ r2
3 + 2L2r3c3),

m23 =m32 = I3+m3(r2
3 + L2r3c3),

m33 = I3+m3r2
3 ,

and mi is the mass of link i, Ii is the inertia of link i about its center of mass, and c2 = cos θ2, c3 = cos θ3,
c23 = cos(θ2+ θ3).

The 3× 2 input matrix T (q) consists of two of the three columns [1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T ,
depending on which actuator is missing. This system can be written in the form (Equations 42.21 and
42.22). Accordingly, this system is subject to an acceleration constraint. If the missing actuator is at
the first joint, the acceleration constraint integrates to a velocity constraint—the angular momentum
of the robot is conserved. The acceleration constraint does not integrate to a velocity constraint when
the actuator is missing at the second or the third joint.

Example 42.7: Underactuated Surface Vessel

The underactuated surface vessel is another system with k = 0, but now with added damping.
The problem is to control the Cartesian position and orientation of a vessel with two independent
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FIGURE 42.5 Underactuated surface vessel.

propellers as shown in Figure 42.5. The kinematic model describing the geometrical relationship
between the earth-fixed (I-frame) and the vehicle-fixed (B-frame) motion is given as

ẋ = vx cosψ− vy sinψ, (42.27)

ẏ = vx sinψ+ vy cosψ, (42.28)

ψ̇= ωz , (42.29)

where (x , y) denotes the I-frame position of the center of mass of the vehicle, ψ denotes the ori-
entation, and (vx , vy ) and ωz are the linear and angular velocities of the vehicle in the B-frame. For
simplicity, the origin of the B-frame is assumed to be located at the center of mass of the vehicle. It
is also assumed that the vehicle is neutrally buoyant. Then the dynamic equations of motion of the
vehicle can be expressed in the B-frame as

Mν̇+ C(ν)ν+D(ν)ν= τ, (42.30)

where ν= [vx , vy ,ωz]T denotes the velocity vector; τ= [Fx , 0, Tz]T denotes the vector of external
force and torque generated by the two propellers; M ∈ R

3×3 is the inertia matrix, including hydrody-
namic added mass; and C(ν) ∈ R

3×3 and D(ν) ∈ R
3×3 denote the Coriolis/centrifugal and damping

matrices, respectively. The following simplified model can be obtained by assuming that both the
inertia matrix M and the damping matrix D are constant and diagonal:

m11v̇x −m22vyωz + d11vx = Fx , (42.31)

m22v̇y +m11vxωz + d22vy = 0, (42.32)

m33ω̇z + (m22−m11)vx vy + d33ωz = Tz , (42.33)

where mii , dii , i = 1, 2, 3, are positive constants.
The surface vessel considered here has no side thruster, that is, Fy = 0, but the controllability

analysis and control synthesis can be easily extended to the cases where τ= [Fx , Fy , 0]T or τ=
[0, Fy , Tz]T .

Let (ξ,η) denote the position of the center of mass of the vehicle in the B-frame, which is given by

(ξ,η)= (x cosψ+ y sinψ,−x sinψ+ y cosψ).

Denote by Q= S
1×R

2 the configuration space parameterized by q= [ψ, ξ,η]T .
By defining control input transformations from (Fx , Tz ) to new control inputs (u1, u2) the equations

of motion can be written as

ψ̈= u1, (42 34)

ξ̈= u2, (42.35)

η̈=−ξu1− α(η̇+ ψ̇ξ)− (1+ β)ψ̇ξ̇+ βψ̇2η, (42.36)

where α= d22/m22 and β=m11/m22.
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Equation 42.36 can be rewritten as

η̈=−ξψ̈− α(η̇+ ψ̇ξ)− (1+ β)ψ̇ξ̇+ βψ̇2η.

This equation represents a nonintegrable relation involving not only the generalized coordinates
and velocities but also the generalized accelerations and, hence, it can be viewed as a second-order
nonholonomic constraint.

42.3 Controllability

In this section we briefly review some nonlinear controllability definitions. We then provide tests for
these properties, including tests specific to mechanical systems. Further reading on definitions and tests
for controllability can be found in [2,11,13,20,24].

42.3.1 Controllability Definitions

Let V be a neighborhood of a point x ∈M. Let RV (x, T) indicate the set of reachable points at time T by
trajectories remaining inside V and satisfying Equation 42.1, and let

RV (x,≤ T)=
⋃

0<t≤T

RV (x, t).

We define the following versions of nonlinear controllability:

• The system is controllable from x if, for any xf ∈M, there exists a T > 0 such that xf ∈ RM(x,≤ T).
In other words, any goal state is reachable from x in finite time.

• The system is accessible from x if RM(x,≤ T) contains a full-dimensional subset of M for some
T > 0.

• The system is locally strongly accessible from x if RV (x, T) contains a full n-dimensional subset of
M for all neighborhoods V and all sufficiently small T > 0.

• The system is small-time locally accessible (STLA) from x if RV (x,≤ T) contains a full n-dimensional
subset of M for all neighborhoods V and all T > 0. This is a weaker property than strong accessi-
bility.

• The system is small-time locally controllable (STLC) from x if RV (x,≤ T) contains a neighborhood
of x for all neighborhoods V and all T > 0.

The phrase “small-time” indicates that the property holds for any time T > 0, and “locally” indicates
that the property holds for arbitrarily small (but full-dimensional) wiggle room around the initial
state.

Small-time local controllability is of particular interest. STLC implies that the system can locally
maneuver in any direction, and if the system is STLC at all x ∈M, then the system can follow any
curve on M arbitrarily closely. This allows the system to maneuver through cluttered spaces, since
any motion of a system with no motion constraints can be approximated by a system that is STLC
everywhere.

For second-order mechanical systems, by definition STLC can only hold at zero velocity states. Nonzero
velocity means that in small time, the system will necessarily have changed its configuration in the direc-
tion of the velocity, effectively placing a unilateral constraint on the small-time reachable configurations.
Also, for mechanical systems with velocity constraints, controllability and accessibility questions only
make sense on the (2n− k)-dimensional distribution D ⊂ TQ.

For mechanical systems, we are often particularly interested in understanding the reachable configu-
rations irrespective of the velocity. This is a more restricted question than understanding the reachable
states. Beginning from an equilibrium state x = [qT , 0T ]T , a system is small-time locally configuration
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accessible (STLCA) from q if the locally reachable set is full-dimensional on Q, and small-time locally
configuration controllable (STLCC) from q if the locally reachable set on Q contains q in the interior.
A stronger condition than STLCC is small-time local equilibrium controllability (STLEC) from q, which
holds if the locally reachable set contains zero velocity states forming a neighborhood of q on Q. STLEC is
stronger than STLCC, as STLEC demands that nearby configurations be reachable at zero velocity, while
STLCC says nothing about the velocity. Finally, the system is equilibrium controllable if any equilibrium
state can be reached from any other equilibrium state.

In some cases, second-order mechanical systems can be modeled by first-order kinematic systems.
Consider a second-order mechanical system written as

ẋ = f (x)+
m∑

i=1

uigi(x), (42.37)

and a first-order kinematic system

q̇=
�∑

j=1

wjvj(q), where q, vj(q) ∈ R
n, (42.38)

where the velocity controls wj are continuous. The kinematic system (Equation 42.38) is a kinematic
reduction of Equation 42.37 if all feasible trajectories of Equation 42.38 are feasible for Equation 42.37.
We further say that a mechanical system (Equation 42.37) is maximally reducible to a kinematic system
if there exists a kinematic reduction such that all feasible trajectories of the mechanical system, starting
with an initial configuration q0 and velocity in the column space of Y (q0) (defined in Equation 42.13), are
also trajectories of the kinematic reduction. For example, all fully actuated mechanical systems are maxi-
mally reducible to kinematic systems—we can equivalently assume the controls are forces or continuous
velocities.

If there exist kinematic reductions such that the kinematic model is STLC on configuration space, the
second-order mechanical system is called small-time locally kinematically controllable (STLKC). STLKC
implies STLEC.

42.3.2 Controllability Tests

42.3.2.1 General Controllability Concepts

STLA and STLC are local concepts that can be established by looking at the Lie algebra of the system vector
fields in a neighborhood of a state (i.e., using Taylor expansions of the vector fields at x). Accessibility
and controllability, on the other hand, are global concepts. As a result, they may depend on things such
as the topology of the space and nonlocal behavior of the system vector fields. In this section we focus on
local tests.

The Lie bracket of vector fields g1 and g2 is another vector field, given in local coordinates as

[g1, g2] = ∂g2

∂x
g1− ∂g1

∂x
g2.

To order ε2, this is the direction of the net motion obtained by flowing along the vector field g1 for time ε,
g2 for time ε,−g1 for time ε, and−g2 for time ε, where ε$ 1. We define the Lie algebra of a set of vector
fields G, written Lie{G}, to be the linear span of all iterated Lie brackets of vector fields in G. For example,
for G = {g1, g2, g3}, the Lie algebra is spanned by g1, g2, g3, [g1, g2], [g1, g3], [g1, [g1, g2]], [g3, [g1, [g2, g3]]],
and so on. Each of these terms is called a Lie product, and the degree of a Lie product is the total number of
original vector fields in the product. Lie products satisfy the Jacobi identity [g1, [g2, g3]]+ [g2, [g3, g1]] +
[g3, [g1, g2]] = 0, and this fact can be used to find a Philip Hall basis, a subset all possible Lie products that
spans the Lie algebra [18].
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Theorem 42.1:

The system (Equation 42.1) is STLA from x if (and only if for analytic vector fields) it satisfies the Lie algebra
rank condition (LARC)—the Lie algebra of the vector fields, evaluated at x, is the tangent space at x, that
is, Lie({f , g1, . . . , gm})(x)= TxM. If f = 0, and by assumption the control set is U = R

m, then the system
is symmetric and the LARC also implies small-time local controllability.

An early version of this result is due to W.-L. Chow, and it is sometimes called Chow’s theorem.

Example 42.8:

The control vector fields for the kinematic rolling disk are g1 = [R cosφ, R sinφ, 1, 0]T and g2 =
[0, 0, 0, 1]T . We define

g3 = [g1, g2] = [R sinφ,−R cosφ, 0, 0]T ,

g4 = [g2, [g1, g2]] = [R cosφ, R sinφ, 0, 0]T ,

and note that G = {g1, . . . , g4} spans TxM at all x . Because f = 0, the rolling disk is STLC at all x .

Second-order systems with nonzero drift are not symmetric for any control set. The system may still
be STLC at zero velocity states, however, as symmetry plus the LARC is sufficient but not necessary for
STLC. Sussmann [25] provided a more general sufficient condition for STLC that includes the symmetric
case (f = 0) as a special case. To understand it, we first define a Lie product term to be a bad bracket if the
drift term f appears an odd number of times in the product and each control vector field gi , i = 1, . . . , m,
appears an even number of times (including zero). A good bracket is any Lie product that is not bad. For
example, [g1, [f , g1]] is a bad bracket and [g2, [g1, [f , g1]]] and [g1, [g2, [g1, g2]]] are good brackets. With
these definitions, we can state a version of Sussmann’s theorem:

Theorem 42.2:

The system (Equation 42.1) is STLC at x if

1. f (x)= 0
2. The LARC is satisfied by good Lie bracket terms up to degree k
3. Any bad bracket of degree j ≤ k can be expressed as a linear combination of good brackets of degree

less than j

The intuition behind the theorem is the following. Bad brackets are called bad because, after generating
the net motion obtained by following the Lie bracket motion prescription, we find that the controls ui only
appear in the net motion with even exponents, meaning that the vector field can only be followed in one
direction. In this sense, a bad bracket is similar to a drift field, and we must be able to compensate for it.
Since motions in Lie product directions of high degree are essentially “slower” than those in directions with
a lower degree, we should only try to compensate for bad bracket motions by good bracket motions of lower
degree. If a bad bracket of degree j can be expressed as a linear combination of good brackets of degree
less than j, the good brackets are said to neutralize the bad bracket. For the bad bracket of degree 1 (the
drift vector field f ), there are no lower degree brackets that can be used to neutralize it; hence we require
f (x)= 0. Therefore, this result only holds at states x where the drift vanishes, that is, equilibrium states.
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Example 42.9:

For the dynamic rolling disk, the configuration variables are [x1, x2, x3, x4]T = [ψ,φ, x , y]T , the
drift vector field is f = [x5, x6, x5R cos x2, x5R sin x2, 0, 0]T , and the control vector fields are g1 =
[0, 0, 0, 0, 1/(J+mR2), 0]T and g2 = [0, 0, 0, 0, 0, 1/I]T , each defined on the six-dimensional distri-
bution D. We define the good Lie brackets g3 = [f , g1], g4 = [f , g2], g5 = [[f , g1], [f , g2]], g6 =
[[[f , g1], [f , g2]], [f , g2]], and observe that G = {g1, . . . , g6} spans TxM at all x . By Theorem 42.1,
the system is STLA at all x . The maximum degree of good Lie brackets in G is six, and we find that all
bad brackets of equal or lesser degree (degree 1, 3, and 5) are zero or can be neutralized by good
brackets of lower degree. Therefore, at zero velocity states where f (x)= 0, the dynamic rolling disk
is STLC.

42.3.2.2 Simple Mechanical Systems with Zero Potential

For the case of second-order mechanical systems (Equations 42.7 and 42.8) with no damping or potential
terms (U(q)= 0), we can use the structure of the Lie brackets to derive simplified controllability tests.
See [11,13] for details.

We define the m columns of Y (q) (from Equation 42.13) as the input vector fields y1(q), . . . , ym(q).
The (constrained) covariant derivative of y2(q) with respect to y1(q) is

∇y1(q)y2(q)= P(q)

(
∂y2(q)

∂q
y1(q)+M−1(q)yT

1 (q)Γ(q)y2(q)

)
. (42.39)

With this definition, we can define the symmetric product of y1 and y2 as the vector field

〈y1 : y2〉 = ∇y1 y2+∇y2 y1.

We can use the symmetric product in simplified controllability calculations for mechanical systems with
no potential. The symmetric product captures patterns that appear when taking Lie brackets of the full
system vector fields f (x) and gi(x). Advantages of using the symmetric product are that the vector fields
have half the number of elements, and controllability properties may be established by products of lower
degree than with Lie brackets. As a result, the number of controllability computations is reduced.

Let Y = {y1(q), . . . , ym(q)} denote the set of input vector fields, and let Sym(Y) be the span of Y and
its iterated symmetric products. A symmetric product is “bad” if each of the vector fields appears an even
number of times, and is “good” otherwise.

Theorem 42.3:

Beginning from an equilibrium state x = [qT , 0T ]T , the system (Equation 42.13) with zero potential is

1. STLA from x if and only if Sym(Y)(q)=Dq and Lie(D)(q)= TqQ.
2. STLC from x if Sym(Y)(q)=Dq and Lie(D)(q)= TqQ, and every bad symmetric product can be

expressed as a linear combination of good symmetric products of lower degree.
3. STLCA from q if and only if Lie(Sym(Y))(q)= TqQ.
4. Both STLCC and STLEC from q if Lie(Sym(Y))(q)= TqQ and if every bad symmetric product can

be expressed as a linear combination of good symmetric products of lower degree. If these conditions
are satisfied at all q ∈Q, then the system is equilibrium controllable.

We can also use the symmetric product to determine if the mechanical system is reducible to an
equivalent kinematic system.
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Theorem 42.4:

A second-order mechanical system is maximally reducible to a kinematic system if and only if Sym(Y)=
span(Y).

Even when the underactuated mechanical system is not fully reducible to a kinematic system, it may
admit one or more kinematic reductions consisting of a single vector field. Such a kinematic reduction is
also known as a decoupling vector field—a velocity vector field that the full mechanical system can follow
at any speed.

Theorem 42.5:

A velocity vector field v(q) is a decoupling vector field of the second-order mechanical system if and only if
v ∈ span(Y) and ∇vv ∈ span(Y).

Example 42.10:

The input vector fields for the dynamic rolling disk are computed to be y1(q)= (J+mR2)−1(∂/∂ψ+
(R cosφ)∂/∂x+ (R sinφ)∂/∂y

)
and y2(q)= (1/I)∂/∂φ. The disk is trivially shown to be STLC at zero

velocity states by Theorem 42.3 as span({y1, y2})(q)=Dq for all q, and we have already shown
that Lie(D)(q)= TqQ. Further, by Theorem 42.4, the disk is maximally reducible to the kinematic
disk system, with velocity vector fields v1 = y1, v2 = y2, and the system is STLKC with these vector
fields.

Example 42.11:

For the snakeboard example, the two input vector fields y1, y2 of Y (q) in Equation 42.13 correspond
to torque rotating the rotor and the wheels, respectively. The snakeboard is STLC at zero velocity
states, and therefore STLCC and STLEC, by Theorem 42.3. The vector fields y1, y2 are also decoupling
vector fields making the system STLKC. The snakeboard is not maximally reducible to a kinematic
system, however.

Example 42.12:

For the 3R robot with a missing actuator at the first joint, the acceleration constraint integrates
to a velocity constraint (conservation of angular momentum), and therefore the system is con-
strained to a lower-dimensional subspace of TQ. This system is maximally reducible to a kinematic
system.

For a missing actuator at the third joint, the system admits two decoupling vector fields: translation
along the length of the third link and rotation of the third link about a point on the link a distance
r3+ I3/m3r3 from the third joint. (This point is known as the center of percussion of the link with
respect to the third joint.) The 3R robot is STLC at zero velocity states, STLCC, STLEC, and STLKC away
from the singularity where θ2 ∈ {0,π}. It is not maximally reducible to a kinematic system, however.
See [12] for details.
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42.3.2.3 Mechanical Systems with Nonintegrable Acceleration Relations
and No Velocity Constraints

This section develops controllability and stabilizability results for underactuated systems with completely
nonintegrable acceleration relations.

Consider Equations 42.21 and 42.22, and let Ip denote the set {1, . . . , p} for any integer p≥ 1. Define
the n−m covector fields

ωi =
m∑

j=1

Jij(q)dq̇1,j − dq̇2,i +Ri(q, q̇)dt, i ∈ In−m, (42.40)

on M×R so that the n−m relations given by Equation 42.22 can be rewritten as ωi = 0, i ∈ In−m.
Augment the covector fields (Equation 42.40) with

ω̃j = dq1,j − q̇1 jdt, j ∈ Im, (42.41)

ω̃m+k = dq2,k − q̇2,kdt, k ∈ In−m, (42.42)

and letΩ⊂ T∗(M×R) denote the codistribution

Ω= span{ωi , ω̃j, i ∈ In−m, j ∈ In}. (42.43)

The annihilator ofΩ, denotedΩ⊥, is spanned by m+ 1 linearly independent smooth vector fields

τ0 =
m∑

j=1

q̇1,j
∂

∂q1,j
+

n−m∑
k=1

(
q̇2,k

∂

∂q2,k
+Rk(q, q̇)

∂

∂q̇2,k

)
+ ∂

∂t
, (42.44)

τj = ∂

∂q̇1 j
+

n−m∑
i=1

Jij(q)
∂

∂q̇2,i
, j ∈ Im. (42.45)

We present the following definition.

Definition 42.1: [21]

Consider the distribution Ω⊥ and let C̃ denote its accessibility algebra, that is, the smallest subalgebra
of V∞(M×R) that contains τ0, τ1, . . . , τm. Let C̃ denote the accessibility distribution generated by the
accessibility algebra C̃. Then the acceleration relations defined by Equation 42.22 are said to be completely
nonintegrable if

dim C̃(x, t)= 2n+ 1, ∀(x, t) ∈M×R.

Note that the above definition gives a coordinate-free characterization of nonintegrability for any set
of acceleration relations of the form Equation 42.22. Note also that this definition is analogous to the
definition given in [2] for the nonintegrability of a set of kinematic or velocity relations.

Examples of underactuated systems with completely nonintegrable acceleration relations include
underactuated robot manipulators (such as our 3R robot), underactuated marine vehicles, the planar
vertical takeoff and landing (PVTOL) aircraft, the rotational translational actuator (RTAC) system, the
acrobot system, the pendubot system, and examples in [21].

In the rest of this section, we assume that the acceleration constraints (Equation 42.22) are completely
nonintegrable. With this assumption, the underactuated mechanical system (Equations 42.21 and 42.22)
is strongly accessible [21].
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A particularly important class of solutions of Equations 42.21 and 42.22 are the equilibrium solutions
with v(t)= 0, ∀t ≥ 0. A solution is an equilibrium solution if it is a constant solution. If (q, q̇)= (qe, 0)
is an equilibrium solution, we refer to qe as an equilibrium configuration. Clearly, the set of equilibrium
configurations of the system (Equations 42.21 and 42.22) is given by

{q ∈Q | R(q, 0)= 0}.
It is well-known that strong accessibility is far from being sufficient for the existence of a feedback

control that asymptotically stabilizes the underactuated system at an equilibrium solution. In certain cases
it is possible to prove STLC at equilibrium states, which guarantees the existence of a piecewise analytic
feedback law for asymptotic stabilization in the real analytic case. Since an underactuated mechanical
system satisfies 1≤m < n, the dimension of the state is at least four. Hence, in the real-analytic case,
the STLC property also guarantees the existence of asymptotically stabilizing continuous time-periodic
feedback laws (see, for example, [21] and the references therein).

We now briefly summarize a result of Bianchini and Stefani [1] that generalizes Theorem 42.2 and is
utilized to prove the subsequent controllability results. Let Br(X) denote the smallest Lie algebra of vector
fields containing f , g1, . . . , gm and let B denote any bracket in Br(X). Let δ0(B), δ1(B), . . . , δm(B) denote
the number of times f , g1, . . . , gm, respectively, occur in the bracket B. For an admissible weight vector
l = (l0, l1, . . . , lm), li ≥ l0 ≥ 0, ∀i, the l-degree of B is equal to the value of

∑m
i=0 liδi(B). The Bianchini and

Stefani condition for STLC for a strongly accessible system is essentially that the so-called bad brackets,
the brackets with δ0(B) odd and δi(B) even for each i, must be l-neutralized, that is, must be a linear
combination of good brackets of lower l-degree at the equilibrium.

Consider the system Equations 42.21 and 42.22, and rewrite the drift and control vector fields as

f = [q̇T
1 , q̇T

2 , 0T , RT (q, q̇)]T ,

gj = [0T , 0T , eT
j , JT

j (q)]T , j ∈ Im.

The following Lie bracket calculations are straightforward:

[gj, gi] ≡ 0, i, j ∈ Im,

[f , gi] = [−eT
i ,−JT

i (q), 0T , ∗]T , i ∈ Im,

[gj, [f , gi]] = [0T , 0T , 0T , HT
ij (q)]T , i, j ∈ Im,

[f , [gj, [f , gi]]] = [0T ,−HT
ij (q), 0T , ∗]T , i, j ∈ Im,

where

Hij(q)= ∂Ji(q)

∂q
hj(q)+ ∂Jj(q)

∂q
hi(q)− ∂

∂q̇

(
∂R(q, q̇)

∂q̇
hi(q)

)
hj(q), i, j ∈ Im, (42.46)

hi(q)=
[

ei

Ji(q)

]
, i ∈ Im. (42.47)

Note that the vertical lift of hi (considered as a vector field on the configuration space Q) is the control
vector field gi . Note also that Hij(q)=Hji(q), ∀q ∈Q, ∀i, j ∈ Im.

We now present the following result.

Theorem 42.6:

Let n−m≥ 1 and let (qe, 0) denote an equilibrium solution. The underactuated mechanical system, defined
by Equations 42.21 and 42.22, is STLC at (qe, 0) if there exists a set of n−m pairs of indices (ik , jk) ∈ I2

m
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such that

dim span{Hikjk (qe), ik �= jk , k ∈ In−m} = n−m (42.48)

and Hii(qe), i ∈ Im, can be written as a linear combination of Hikjk (qe), ik �= jk , k ∈ In−m, such that l0+
2li > l0+ lik + ljk for some admissible weight vector l = (l0, l1, . . . , lm), li ≥ l0 ≥ 0, ∀i.

Note that for the condition (Equation 42.48) to hold, the condition m(m+ 1)≥ 2n must be satisfied.
This condition arises due to the fact that in the above result we have considered Lie brackets up to degree
four only. It is possible to develop a result that weakens or even removes this restriction by also taking
into account higher-order Lie brackets.

We now restrict our consideration to underactuated mechanical systems with no potential or friction
forces. For such systems, when evaluated at the equilibrium, the only nontrivial brackets are those satisfy-
ing

∑m
i=1 δ

i(B)− δ0(B)= 0 or
∑m

i=1 δ
i(B)− δ0(B)= 1. Clearly, the brackets with

∑m
i=1 δ

i(B)− δ0(B)= 0
are all good, and the only bad brackets are those with

∑m
i=1 δ

i(B)− δ0(B)= 1, δ0(B) odd, and δi(B) even,
∀i ∈ Im.

We define the following sequence of collections of vector fields:

G1 = {gi , i ∈ Im},
Gk = {[X, [f , Y ]], X ∈ Gi , Y ∈ Gj, k = i+ j}, k ≥ 2,

G =
⋃
i≥2

Gi .

Let X denote a vector field in G. It is easy to show that X has the form X = [0T , 0T , 0T , NT (q)]T , where N(q)
is an n−m vector function, and its Lie bracket with f can be written as [f , X] = [0T ,−NT (q), 0T , ∗]T .
Now let (qe, 0) denote an equilibrium solution. Clearly, if there exists an integer k∗ ≥ 2 such that

dim span

⎧⎨
⎩X(qe, 0), X ∈

k∗⋃
i=2

Gi

⎫⎬
⎭= n−m, (42.49)

then the system is strongly accessible at (qe, 0), that is, the system satisfies a necessary condition for STLC
at (qe, 0). As shown in [21], all the bad brackets can be written as linear combinations of the bad brackets
contained in G. Thus, a sufficient condition for STLC at (qe, 0) can be obtained by considering the bad
brackets in G and applying the Bianchini and Stefani condition.

The following result can now be stated.

Theorem 42.7:

Let n−m≥ 1 and let (qe, 0) denote an equilibrium solution. Consider the underactuated mechanical system,
defined by Equations 42.21 and 42.22, and assume that the components of R(q, q̇) are of second-order in
q̇-variables. Also assume that the condition (Equation 42.49) is satisfied. Then, the system is STLC at (qe, 0)
if there exists an admissible weight vector l = (l0, l1, . . . , lm), li ≥ l0 ≥ 0, ∀i, such that every bad bracket in
G2k , k ∈ Z

+, can be l-neutralized.

Example 42.13:

Consider the surface vessel dynamics described by Equations 42.34 through 42.36. It can be shown
that the following hold:
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1. The system is strongly accessible since the space spanned by the vectors

g1, g2, [f , g1], [f , g2], [g2, [f,g1]], [f , [g2, [f , g1]]]

has dimension 6 at any (q, q̇) ∈M= TQ.
2. The system is STLC at any equilibrium (qe , 0) since the sufficient conditions for STLC of Theo-

rem 42.6 are satisfied with the admissible weight vector l= (2, 4, 3).
3. There exist both time-invariant piecewise analytic feedback laws and time-periodic continuous

feedback laws that asymptotically stabilize (qe , 0).

These controllability properties guarantee the existence of the solution to the problem of control-
ling the surface vessel to any desired equilibrium configuration. The time-invariant discontinuous
feedback control laws developed in [22] represent such solutions.

42.4 Feedback Stabilization

A beautiful general theorem on necessary conditions for feedback stabilization of nonlinear systems was
given in [9].

Theorem 42.8: Brockett

Consider the nonlinear system ẋ = f (x, u) with f (x0, 0)= 0 and f (·, ·) continuously differentiable in a
neighborhood of (x0, 0). Necessary conditions for the existence of a continuously differentiable control law
for asymptotically stabilizing (x0, 0) are:

1. The linearized system has no uncontrollable modes associated with eigenvalues with positive real
part.

2. There exists a neighborhood N of (x0, 0) such that for each ξ ∈ N there exists a control uξ(t)
defined for all t > 0 that drives the solution of ẋ = f (x, uξ) from the point x = ξ at t = 0 to
x = x0 at t =∞.

3. The mapping γ : N ×R
m → R

n, N a neighborhood of the origin, defined by γ : (x, u)→ f (x, u)
should be onto an open set of the origin.

Based on an extension of this result to continuous feedback, the key consequence for kinematic systems
is the following.

Proposition 42.1:

Consider the system

ẋ =
m∑

k=1

ukgk , (42.50)

where x ∈ R
n, m < n, and

rank{g1(0), . . . , gm(0)} =m.

There exists no continuous feedback that locally asymptotically stabilizes the origin.

One way to deal with this problem is to use time-varying feedback. A key result on stabilization by
time-varying feedback is that of [15]. Another approach is nonsmooth feedback (see below).



�

�

�

�

� �

Control of Nonholonomic and Underactuated Systems 42-21

42.4.1 Kinematic Example: The Heisenberg System

In this section we consider the problem of feedback stabilization of the Heisenberg system Equations 42.4
through 42.6 to an equilibrium or a trajectory. This serves as a model system for the kinematic vertical disk
and many wheeled mobile robots, for example. We then extend the results to the generalized Heisenberg
system, which can be shown to be equivalent to a broad class of first-order nonholonomic systems.

42.4.1.1 Stabilization of the Heisenberg System

One of the possibilities suggested in [3] is to utilize sliding modes to stabilize the Heisenberg system, by
applying the following feedback control law:

u1 =−αx1+ βx2 sign(z), (42.51)

u2 =−αx2− βx1 sign(z), (42.52)

where α and β are positive constants. It is shown that if an initial condition is outside of the parabolic
region defined by the inequality

β

2α
(x2

1 + x2
2)≤ |z|, (42.53)

then the control (Equations 42.51 and 42.52) stabilizes the state z to zero in finite time, and on the
manifold z = 0 the two remaining states x1 and x2 converge to the origin too. If the initial data are such
that Equation 42.53 is true, that is, the state is inside the paraboloid, we can use any control law which
steers it outside, and then apply (Equations 42.51 and 42.52).

Let us note here that because of the switchings, the above strategy assumes that the control input is
a discontinuous function of the state variables. In such a system the sliding mode may exist when the
solution moves along the set of discontinuity of the right-hand side (as happens with Equations 42.51 and
42.52 when z = 0). Thus, the existence of the corresponding solution of the differential equations (off the
z-axis only) should be understood in the sense of the Filippov definition.

A similar way to stabilize system (Equations 42.4 through 42.6) to the origin is the following variable
structure control law:

u1 =−αx1+ βzx2, (42.54)

u2 =−αx2− βzx1, (42.55)

where α= α(x1, x2, z) and β= β(x1, x2, z) are positive state-dependent switching functions.
With this choice, the system (Equations 42.4 through 42.6) becomes

ẋ1 =−αx1+ βzx2, (42.56)

ẋ2 =−αx2− βzx1, (42.57)

ż =−βz(x2
1 + x2

2). (42.58)

There are a number of strategies for choosing α and β to stabilize the system. Let V = x2
1 + x2

2 , then
V̇ =−2αV . It is clear from Equation 42.58 that if we initially choose α= 0 and β> 0, then for x1 or x2

not equal to zero, z will be driven asymptotically to 0, while V will remain fixed. On the other hand, for
α> 0 and β= 0, V will be driven to 0. Thus, the stabilizing control in this case should be the following.
(1) unless V = 0, apply α= 0 and β> 0. This guarantees z → 0. Then (2) apply α> 0 and β= 0. In this
case, while z remains zero, V → 0. If initially V = 0, apply any other nonzero control to make V �= 0,
then apply (1). The convergence in phase (1) is asymptotic, but it is clear that we can achieve stabilization
with any desired accuracy by alternating steps (1) and (2), if necessary.

As we show below, this strategy can be extended to the generalized system (Equations 42.80 and 42.81).
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42.4.1.2 Tracking in the Heisenberg System

The robustness property of the sliding mode algorithm (Equations 42.51 and 42.52) allows trajectory
tracking for arbitrary smooth three-dimensional trajectories, even though the control dimension is equal
to two.

Let X∗(t)= [x∗1 (t), x∗2 (t), z∗(t)]T be an arbitrary smooth curve in R
3. Let ẑ be defined as

ẑ(t)= z(t)− x∗1 (t)x2(t)+ x∗2 (t)x1(t). (42.59)

Using Equations 42.4 through 42.6 and 42.59, the derivative of ẑ can be written as

˙̂z = (x1− x∗1 )(u2− ẋ2
∗)− (x2− x∗2 )(u1− ẋ∗1 )+ g(t, x1, x2), (42.60)

where
g(t, x1, x2)= 2x1ẋ∗2 − ẋ∗2 x∗1 − 2x2ẋ∗1 + ẋ∗1 x∗2 . (42.61)

The problem of tracking x∗1 , x∗2 , z∗ by the variables x1, x2, z is equivalent to the one of stabilizing
x̄1 = x1− x∗1 , x̄2 = x2− x∗2 , z̄ = ẑ− z∗.

The system (Equations 42.4 through 42.6) in the new variables can be written as

˙̄x1 = ū1, (42.62)
˙̄x2 = ū2, (42.63)
˙̄z = x̄1ū2− x̄2ū1+ ḡ , (42.64)

where we used the notations ū1 = u1− ẋ∗1 , ū2 = u2− ẋ∗2 , ḡ = g − ż∗.
If ḡ ≡ 0, that is, the desired trajectory satisfies the constraint

ż∗ = x∗1 ẋ∗2 − x∗2 ẋ∗1 , (42.65)

then the system (Equations 42.62 through 42.64) corresponds exactly to the Heisenberg system, and we
can use the control Equations 42.51 and 42.52 or Equations 42.54 and 42.55 described in the previous
section.

If ḡ �= 0, then unlike in the previous case, perfect tracking is not possible, but we can track with
arbitrary accuracy. In this case we can still apply control of the type (Equations 42.51 and 42.52), but with
state-dependent α and β:

ū1 =−αx̄1+ βx̄2 sign(z̄), (42.66)

ū2 =−αx̄2− βx̄1 sign(z̄). (42.67)

Substituting into Equations 42.62 through 42.64, we obtain

˙̄x1 =−αx̄1+ βx̄2 sign(z̄), (42.68)
˙̄x2 =−αx̄2− βx̄1 sign(z̄), (42.69)

˙̄z =−β(x̄2
1 + x̄2

2) sign(z̄)+ ḡ . (42.70)

Here we assume that α is the following function of x̄1 and x̄2:

α=
{
α0 if x̄2

1 + x̄2
2 ≥ ε2

α1 if x̄2
1 + x̄2

2 < ε2,
(42.71)

where α0 > 0 and α1 < 0 are constants, and ε> 0 is a constant that defines the tracking accuracy. Let us
consider the Lyapunov function V = x̄2

1 + x̄2
2 . As in the previous case, its derivative along the trajectories

of the system (Equations 42.68 through 42.70) is V̇ =−2αV . Due to this choice of α, the function
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V converges to V = ε2 = const. for any initial conditions except for the origin. This means that for
sufficiently large β such that

βε2 > |ḡ | (42.72)

and for sufficiently large t in Equation 42.70,

˙̄z =−βV sign(z̄)+ ḡ (42.73)

we obtain sliding mode on the manifold

z̄ ≡ 0 for t ≥ t1, (42.74)

where the time t1 can be chosen arbitrarily close to the initial moment by increasing β. In general, β
should be chosen to be a function of x1, x2, and X∗, Ẋ∗ to satisfy (Equation 42.72), but due to the separate
convergence of x̄1, x̄2 to the ε-neighborhood of the origin. For a bounded reference curve with bounded
derivative β can be constant.

Thus, the state trajectory X(t)= [x1(t), x2(t), z(t)]T enters an ε-neighborhood of the curve X∗(t) not
later than in time t1 and stays in that neighborhood for all subsequent moments of time. The generalization
of the ε-solution of the tracking problem for the case of higher-order systems can be found in [16].

42.4.1.3 The General Setting

In Section 42.2.1, we used the rolling vertical disk example to demonstrate the equivalence of the Heisen-
berg system to a particular class of nonholonomic systems. The generalization of this equivalence, at least
locally, was obtained by Brockett [8]. He showed that controllable systems of the form

ẋ = B(x)u, (42.75)

where u ∈ R
n and x ∈ R

n(n+1)/2 is such that the first derived algebra of control vector fields spans the
tangent space TR

n(n+1)/2 at any point, is locally equivalent to

ẋ = u, (42.76)

Ẏ = xuT − uxT , (42.77)

where x and u are column vectors in R
n and Y ∈ so(n), n≥ 2. Here so(n) is the Lie algebra of n× n skew

symmetric matrices: Y T =−Y .
The system (Equations 42.4 through 42.6) is a particular case of the so(n) system (Equations 42.76 and

42.77). That can be easily seen if we identify the variable z with the skew-symmetric matrix

Y =
[

0 z
−z 0

]

and observe that
[

x1

x2

]
[u1, u2]−

[
u1

u2

]
[x1, x2] =

[
0 x1u2− x2u1

−x1u2+ x2u1 0

]
.

A different generalization of the Heisenberg system (Equations 42.4 through 42.6) is obtained by
identifying the vectors [x1, x2]T and [u1, u2]T with the matrices

X = 1√
2

[
x1 −x2

−x2 −x1

]
and U = 1√

2

[
u1 −u2

−u2 −u1

]
,
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respectively. Then we have

[U , X] = UX −XU =
[

0 x1u2− x2u1

−x1u2+ x2u1 0

]
.

This suggests the following matrix system occurring in the Lie algebra sl(n, R) of n× n matrices with
trace 0:

Ẋ = U , (42.78)

Ẏ = [U , X], (42.79)

where X, U ∈ sym0(n, R) and Y ∈ so(n). Here sym0(n, R) is the space of n× n real symmetric matrices
with zero trace. Note that sl(n, R)= sym0(n, R)⊕ so(n).

The system that generalizes both the so(n) system (Equations 42.76 and 42.77) and the sl(n, R) system
(Equations 42.78 and 42.79) is the following system on a Lie algebra:

ẋ = u, (42.80)

Ẏ = [u, x], (42.81)

where x, u ∈m, Y ∈ h such that h is a Lie subalgebra of a real semisimple Lie algebra g, and m is the
orthogonal complement of h relative to the Killing form B : g× g→ R. The algebra g has the structure of
a direct sum decomposition g=m⊕ h, [h,m] ⊆m, and [m,m] = h. We note that every simple Lie algebra
with a Cartan decomposition is of this type.

The problem we consider herein is that of finding a stabilizing control for the general system (Equations
42.80 and 42.81). Since the dimension of m, which is where the control u takes its values, is smaller than
the dimension of the state space g, the system fails Brockett’s necessary condition for the existence of a
continuous feedback law (see [9]). A discontinuous feedback for the state stabilization of the generalized
Heizenberg system can be found in [3,4]. It completely solves the stabilization problem for Equations 42.80
and 42.81.

We now consider the general setting for stabilization of the system (Equations 42.80 and 42.81) in
g=m⊕ h. The main part of the variable structure control is given by

u=−αx+ β[Y , x]− γ[Y , [Y , x]] = −αx+ β[Y , x]+ γN(Y )x, (42.82)

where α, β, γ : g→ R are switching functions, and N(Y )=−(ad Y )2|m is a nonnegative symmetric oper-
ator on m relative to the inner product. We will also need M(x)= ε(ad x)2|h, a nonnegative symmetric
operator on h relative to the inner product. Here

ε=
{

1, if g is of noncompact type
−1, if g is of compact type

, (42.83)

Note that (ad x)2 is nonnegative if g is noncompact, and nonpositive if g is compact, and therefore,
introducing ε into the definition of M(x) guarantees that it is a nonnegative operator. We will assume
that α, γ ≥ 0 and βε≤ 0.

With (Equation 42.82) as our choice of u, the system (Equations 42.80 and 42.81) becomes

ẋ =−αx+ β[Y , x]+ γN(Y )x, (42.84)

Ẏ = βεM(x)Y + γ[N(Y )x, x] = βεM(x)Y − γε[Y , M(x)Y ]. (42.85)

Using (Equations 42.84 and 42.85), we compute

d

dt
‖x‖2 =−2α‖x‖2+ 2γ〈x, N(Y )x〉 (42.86)
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and
d

dt
‖Y‖2 = 2βε〈Y , M(x)Y〉. (42.87)

Since βε≤ 0 and M(x) is a nonnegative operator, it follows that the right-hand side of Equation 42.87 is
nonpositive. Thus, ‖Y‖ is nonincreasing in general, and is constant if β= 0.

Our stabilization algorithm will be (necessarily) discontinuous, and will require switching of the control
(Equation 42.82) between the following three cases 1–3 and case 4:

1. α> 0, β= γ= 0
2. α= κλ∗, γ= κ, and β= 0, where λ∗ is the largest eigenvalue of N(Y )
3. α= γ= 0, βε< 0
4. u=−α(x− z∗), where α> 0, and z∗ denotes a fixed λ∗-eigenvector of N(Y )

In case 1, x is driven to 0 radially while Y remains fixed. If Y was not already 0 in the first place, imple-
menting the control (Equation 42.82) with these parameter values will render the system unstabilizable.
Thus, this case will only be used if Y ≡ 0.

In case 2, ‖Y‖ is a constant and the spectrum of ad Y is constant. Therefore, the spectrum of the
operator N(Y ) is constant, as are the dimensions of its eigenspaces. Let λ∗ denote those eigenvalues of
N(Y ) in this case, we have that Y evolves isospectrally with constant norm and asymptotically vanishing
velocity, while x is driven to x∗, its (constant) projection onto the λ∗-eigenspace of N(Y ).

In case 3, ‖x‖ is a constant. If we let Y# denote the projection of Y onto the nullspace of M(x), then
noting that Y# ≡ Y#|t=0 is constant, we conclude that Y → Y# asymptotically. Summarizing, in this case,
we have that x evolves isospectrally with a constant norm, Y is driven to Y#, its (constant) projection onto
the nullspace of M(x), and using the orthogonality of the eigenspaces, we can compute

‖Y#‖2 ≤ ‖Y‖2−λ∗. (42.88)

Case 4 is used to move x from the origin along the eigenvector corresponding to the biggest eigenvalue
λ∗ of N(Y ).

The idea of the feedback strategy is the following. Since for Y = 0 step (1) stabilizes the system, the
main task of the algorithm is to move Y to the origin. As mentioned above, step (2) allows to decrease
the magnitude of ‖Y‖2 by λ∗, the biggest eigenvalue of N(Y ). On the other hand, applying (2) guarantees
that ‖Y‖ and the spectrum of the operator N(Y ) remain constant. Thus, Y evolves isospectrally with a
constant norm, while x converges to the constant x∗. If x∗ �= 0, then go to (3). Otherwise, use (4). Then x
converges to z∗ while Y remains constant.

As shown in [4], by alternating steps (1)–(4) the system can be stabilized in a finite number of steps.
The resulting algorithm is a variable structure feedback.

42.4.2 Energy Methods for Nonholonomic Mechanical Systems
with Symmetries

We discuss here stabilization of nonholonomic systems with symmetry. In the simplest setting, the
configuration space Q is the direct product S×G, where S is a smooth manifold and G is the symmetry
group.∗ The Lagrangian and the constraints are invariant with respect to the action of G by left translations
on the second factor of the decomposition of Q. If the group G is Abelian, the group variables become
cyclic. We assume here that the Lagrangian L :Q→ R equals kinetic minus potential energy of the system,
and that the kinetic energy is given by a quadratic form on the configuration space.

In the presence of symmetry, we write the configuration coordinates as q= (r, g), where r ∈ S is the
shape variable and g ∈ G is the group variable. The state coordinates are x = (r, g , ṙ,Ω), whereΩ ∈ g is the

∗ In general, this direct product structure is observed only locally, while globally one sees a (principal) fiber bundle.
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constrained group velocity relative to the so-called body frame (see [2] for details).∗ With these notations,
Equations 42.11 are usually written as

r̈ = F(r, ṙ,Ω), (42.89)

Ω̇= ṙTΛ(r)Ω+ΩTΓ(r)Ω+ ṙTΥ(r)ṙ, (42.90)

ġ = gΩ, (42.91)

as discussed in [2]. Note that controls have not been introduced yet. Equations 42.89 and 42.90 are called
the shape and momentum equations, respectively. Equation 42.91 is called the reconstruction equation.
Below, stability is understood in the orbital sense, and thus one can study system (Equations 42.89 and
42.90).

42.4.2.1 The Energy--Momentum Method

Recall that relative equilibria are solutions of the full system (Equations 42.89 through 42.91) such that
the shape and momentum variables are kept constant. In other words, after reduction relative equilibria
of Equations 42.89 through 42.91 become equilibria of the reduced system (Equations 42.89 and 42.90).
Stability of these equilibria implies orbital stability of corresponding relative equilibria.

The energy momentum method is a stability analysis technique that uses the restriction of energy on
the momentum levels as a Lyapunov function. The momentum is always conserved in holonomic systems
with symmetry.

Unlike the holonomic case, the momentum equation in the nonholonomic setting generically does not
define conservation laws. Examples such as the rattleback and Chaplygin sleigh are well known. Some-
times, however, the components of momentum relative to an appropriately selected moving frame are
conserved. This is observed in examples like the balanced Chaplygin sleigh, where the angular momen-
tum relative to the vertical line through the contact point of the body and the supporting plane and the
projection of the linear momentum onto the blade direction are conserved. We remark that this kind of
momentum conservation is significantly different from that of in holonomic systems, in which, according
to Noether’s theorem, the spatial momentum is conserved.

In the special case Υ(r)≡ 0, Γ(r)≡ 0, the momentum equation can be rewritten as

dΩ= drTΛ(r)Ω. (42.92)

Theorem 42.9: [26]

If the distribution (Equation 42.92) is integrable, the system has conservation laws

Ω= F (r, c), (42.93)

where c are constants.

These conservation laws enable one to extend the energy–momentum method for stability analysis
to nonholonomic setting. Let E(r, ṙ,Ω) be the energy of the system; since the system is G-invariant,
the energy is independent of the group variable g . The energy itself is often not positive-definite at an
equilibrium (re,Ωe) of the reduced system, and thus the energy cannot be used as a Lyapunov function. If,
however, the conditions of Theorem 42.9 are satisfied, one can construct a family of Lyapunov functions,
one for each level (Equation 42.93).

∗ Here and below, g denotes the Lie algebra of the group G.
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Theorem 42.10: [2]

Assume that the energy restricted to the level of the conservation law (Equation 42.93) through the equilib-
rium (re,Ωe) of Equations 42.89 and 42.90 is positive-definite. Then this equilibrium is Lyapunov stable,
and the corresponding relative equilibrium is orbitally stable.

The statement of this theorem can be extended to a more general class of systems and used for
establishing partial asymptotic stability of relative equilibria of nonholonomic systems. Details may be
found in [2].

42.4.2.2 Energy-Based Feedback Stabilization

Following [6], we now apply the energy–momentum approach to the problem of stabilization of
relative equilibria of nonholonomic systems with symmetry. Recall that the dynamics is given by
Equations 42.89 through 42.91. We assume that control inputs are G-invariant, are applied in the sym-
metry directions, and are consistent with constraints. Thus, the controlled dynamics are G-invariant and
the corresponding reduced controlled dynamics are given by

r̈ = F(r, ṙ,Ω),

Ω̇= ṙTΛ(r)Ω+ΩTΓ(r)Ω+ ṙTΥ(r)ṙ+T(r)u,

where u are the controls. Our strategy is to assign feedback control inputs that have the same structure
as the right-hand side of the momentum equation. That is, the control inputs are given by homogeneous
quadratic polynomials in ṙ and Ω whose coefficients are functions of r. The controls are selected in
such a way that the controlled momentum equation satisfies the conditions of Theorem 42.9, and thus
the controlled momentum equation defines controlled conservation laws. We then utilize the remaining
freedom in the control selection and make the equilibria of the system’s dynamics, reduced to the levels
of the controlled conservation laws, stable. In other words, the controls are used to shape the momentum
levels in such a way that the energy reduced to the level through the equilibrium of interest becomes
positive-definite, thus letting us use the energy–momentum method to conclude stability.

The proposed strategy is only capable of nonasymptotic stabilization. If partial asymptotic stabilization
is desirable, one should add dissipation-emulating terms to the control inputs. In this case, stability is
checked by the energy–momentum method, although it may be necessary to use methods for stability
analysis for nonconservative systems such as the Lyapunov–Malkin theorem. See [2] for details.

To simplify the exposition, the details are given for systems with one shape degree of freedom.
Consider a system with Lagrangian

L(r, ṙ,Ω)= K(r, ṙ,Ω)−U(r)

and assume that the momentum equation of the controlled system is

Ω̇= (Λ(r)+ Λ̃(r)
)
Ω ṙ.

According to our general strategy, the distribution defined by this equation;

dΩ= (Λ(r)+ Λ̃(r))Ω dr

is integrable and defines controlled conservation laws

Ω= F c(r, c). (42.94)
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Dynamics on the levels of these conservation laws reads

r̈ = F(r, ṙ, F c(r, c)). (42.95)

This defines a family of one degree of freedom Lagrangian (or Hamiltonian) systems. The orbital
stability analysis of relative equilibria of the original system reduces to the stability analysis of equilibria
of Equation 42.95. This analysis is somewhat simpler to carry out if the Euler–Lagrange form of the
equations of motion is used instead of Equation 42.95.

Skipping some technical details, the Euler–Lagrange form of the dynamics on the levels of controlled
conservation laws (Equation 42.94) is

d

dt

(
g(r)ṙ

)+Q(F c(r, c))+ ∂U

∂r
= 0, (42.96)

where Q(·) is a quadratic form. Therefore, the equilibrium (re,Ωe) is stable if the following condition is
satisfied:

d

dr

(
Q(F c(r, ce))+ ∂U

∂r

) ∣∣∣∣
r=re

> 0, (42.97)

where ce is defined by the condition
F c(re, ce)=Ωe.

This stability condition is obtained by using the energy of dynamics (Equation 42.96) as a Lyapunov
function, which is justified by the energy–momentum approach to stability analysis; see [2] for details.

We illustrate the above techniques by the problem of stabilization of slow motions of a falling rolling
disk along a straight line.

42.4.2.3 Stabilization of a Falling Disk

Consider a uniform disk rolling without sliding on a horizontal plane. The disk can reach any configura-
tion, therefore the constraints imposed on the disk are nonholonomic. It is well-known that some of the
steady-state motions are the uniform motions of the disk along a straight line. Such motions are unstable
if the angular velocity of the disk is small. Stability is observed if the angular velocity of the disk exceeds a
certain critical value; see [2] and [19] for details. Below we use a steering torque for stabilization of slow
unstable motions of the disk.

We assume that the disk has a unit mass and a unit radius. The moments of inertia of the disk relative
to its diameter and to the line orthogonal to the disk and through its center are I and J , respectively. The
configuration coordinates for the disk are [θ,ψ,φ, x, y]T as in Figure 42.6. Following [19], we select e1 to

ψ

θ

z

P

y

e3 e2

e1
x (x, y) Q

ϕ

FIGURE 42.6 The geometry and configuration coordinates for the falling rolling disk.
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be the vector in the xy-plane and tangent to the rim of the disk, e2 to be the vector from the contact point
to the center of the disk, and e3 to be e1× e2, as shown in Figure 42.6.

At each q ∈Q, the fields e1, e2, and e3 span the subspace Dq defined by the constraint distribution D,
the fields e2 and e3 span the constrained symmetry directions, and the dual of e2 is the control direction.
The component of disk’s angular velocity along e1 equals θ̇; the e2 and e3 components are denoted by ξ
and η.

Using this frame, equations of motion are computed to be

(I + 1)θ̈+ Iξ2 tan θ− (J + 1)ξη− g sin θ= 0, (42.98)

I ξ̇− Iξθ̇ tan θ+ Jηθ̇= u, (42.99)

(J + 1)η̇+ ξθ̇= 0, (42.100)

where u is the steering torque and g is the acceleration of gravity. In the absence of the torque, the last
two equations can be written as conservation laws of the form

ξ= Fξ(θ, cξ, cη), η= Fη(θ, cξ, cη); (42.101)

here and below the parameters cξ and cη label the levels of these conservation laws. These conservation
laws are obtained by integrating the equations

I
dξ

dθ
= Iξ tan θ− Jη, ( J + 1)

dη

dθ
=−ξ.

Now consider a steady-state motion θ= 0, ξ= 0, η= ηe. This motion is unstable if ηe is small. Set

u=−f (θ)ηθ̇, (42.102)

where f (θ) is a differentiable function. The motivation for the choice (Equation 42.102) for u is that it
preserves the structure of Equations 42.99 and 42.100, and thus the controlled system will have conser-
vation laws whose structure is similar to that of the uncontrolled system. Viewing θ as an independent
variable, we replace Equations 42.99 and 42.100 with the linear system

I
dξ

dθ
= Iξ tan θ− ( J + f (θ))η, ( J + 1)

dη

dθ
=−ξ. (42.103)

The general solution of system (Equation 42.103),

ξ= F c
ξ (θ, cξ, cη), η= F c

η(θ, cξ, cη), (42.104)

is interpreted as the controlled conservation laws. The functions that define these conservation laws are
typically difficult or impossible to find explicitly.

Dynamics (Equation 42.96) on the level set of the conservation laws for the disk becomes

(I + 1)θ̈+ I tan θ (F c
ξ (θ, cξ, cη))2− (J + 1)F c

ξ (θ, cξ, cη)F c
η(θ, cξ, cη)− g sin θ= 0.

The condition for stability of the relative equilibrium θ= 0, ξ= 0, η= ηe is obtained using formula
(Equation 42.97). Using Equation 42.103, the stability condition becomes

f (0) >
Ig

( J + 1)η2
e
− J . (42.105)

That is, any function f (θ) whose value at θ= 0 satisfies inequality (Equation 42.105) defines a stabilizing
steering torque.

Let us reiterate that in the settings considered here the energy–momentum method gives conditions
for nonlinear Lyapunov (nonasymptotic) stability. Hence stabilization by the torque (Equation 42.102)
is nonlinear and nonasymptotic. Partial asymptotic stabilization can be achieved by adding dissipation-
emulating terms to the control input.
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42.5 Motion Planning

Motion planning problems for nonholonomic and underactuated systems can be characterized along a
number of dimensions. Is the system drift-free or not? Are there configuration obstacles? What form do
control constraints take? Is it more important to find a solution that minimizes time or energy, or is it
more important to find a satisficing motion plan quickly?

Motion planning for nonholonomic and underactuated systems is an active research area, and in this
section we only briefly describe a few approaches. More can be found in [2,11,13,17,18] and references
therein.

42.5.1 Numerical Optimal Control

This approach typically involves choosing a finite-dimensional parameterization of the control history
u : [0, T] → U and solving for these design variables to minimize a cost function while satisfying equality
and inequality constraints. Example constraints include control limits, terminal state conditions, and
perhaps obstacle constraints, sampled at equally spaced points in time. The nonlinear optimization
problem is typically solved by an algorithm that takes advantage of the gradient (and perhaps Hessian)
of the cost function and constraints with respect to the design variables. A typical algorithm choice is
Sequential Quadratic Programming. A variant of the approach is to dispense with the objective function
and to simply cast the problem as a nonlinear root-finding problem. These approaches can be applied
to general underactuated systems with drift. The success of these methods depends on problem-specific
characteristics, such as the quality of the initial guess to the gradient-based algorithm, the number of local
minima in the design space, and the method used to calculate gradients.

42.5.2 Optimal Control of the Heisenberg System

Some motion planning problems admit an analytical optimal solution. One such problem is to drive the
Heisenberg system from an initial state [x1, x2, z]T = [0, 0, 0]T to a goal state [0, 0, a > 0]T in time T while
minimizing the cost functional

1

2

∫ T

0
(u2

1+ u2
2) dt.

An equivalent formulation is the following: Minimize the integral

1

2

∫ T

0
(ẋ2

1 + ẋ2
2) dt

among all curves q(t) joining q(0)= [0, 0, 0]T to q(T)= [0, 0, a]T that satisfy the constraint

ż = x2ẋ1− x1ẋ2.

Any solution must satisfy the Euler–Lagrange equations for the Lagrangian with a Lagrange multiplier
inserted:

L(x1, ẋ1, x2, ẋ2, z, ż,λ, λ̇)= 1
2

(
ẋ2

1 + ẋ2
2

)+λ (ż− x2ẋ1+ x1ẋ2
)

.

The corresponding Euler–Lagrange equations are given by

ẍ1− 2λẋ2 = 0, (42.106)

ẍ2+ 2λẋ1 = 0, (42.107)

λ̇= 0. (42.108)
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We can show the solution of the optimal control problem is given by choosing initial conditions such that
ẋ1(0)2+ ẋ2(0)2 = 2πa/T2 and with the trajectory in the x1x2-plane given by the circle

[
x1(t)
x2(t)

]
= 1

2λ

[
cos(2πt/T)− 1 − sin(2πt/T)

sin(2πt/T) cos(2πt/T)− 1

] [−ẋ2(0)
ẋ1(0)

]
(42.109)

and with z given by

z(t)= ta

T
− a

2π
sin

(
2πt

T

)
.

A motion planner to an arbitrary final state [x1d, x2d, zd]T could simply use the two controls to drive the
first two configuration variables directly to the goal state, followed by the optimal trajectory to accomplish
the remaining necessary motion in z. More details can be found in [2] and [9].

42.5.3 Motion Planning for the Generalized Heisenberg System

The approach above can be generalized to chained-form systems [13,18] and the generalized Heisenberg
system (Equations 42.76 and 42.77).

As with the Heisenberg system, for the generalized Heisenberg system we first use the controls to drive
the system directly to the desired x states, and then use sinusoidal controls to accomplish a net motion in
Y while producing zero net motion in x. The idea is to proceed along loops in x-space, which gradually
drives one through Y-space.

We choose the control law

ui =
∑

k

aik sin kt+
∑

k

bik cos kt, k = 1, . . . , (42.110)

where aik and bik are real numbers. Since ẋi = ui , integration gives

xi =−
∑

k

aik

k
cos kt+

∑
k

bik

k
sin kt+Ci , (42.111)

where Ci is a constant depending on the initial value of x.
Substituting these equations for xi(t) and ui(t) into Equation 42.77 and integrating yields

Yij(2π)=
∑

k

2π

k

(
bikajk − bjkaik

)+Yij(0), (42.112)

since all integrals except those of the squares of cosine and sine vanish. Under this input, x has zero net
motion. More details can be found in [2].

42.5.4 Search-Based Methods

Configuration obstacles can be accounted for by constraints in a numerical optimization or by using search
algorithms from computer science [13,17]. Search-based methods for motion planning for underactuated
systems usually involve choosing a small number of “representative” controls from the control set. One
or more of these controls are integrated forward for a short time Δt from the initial state x0 to create a
new set of reached states X . Trajectories that intersect obstacles are discarded, and the remaining states
in X are put in a list sorted by the cost of reaching the state. The first state on the list is then removed,
assigned to be x0, and the process continues until x0 is in a neighborhood of the goal state. To reduce the
planning time or improve the plans, heuristics can be designed for choosing the controls, pruning states
that are “close” to previously reached states, and assigning the cost of states. This approach is applied to
parallel parking a car-like robot in Figure 42.7. The cost trades off the length of the path and the number
of control changes (e.g., cusps).
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FIGURE 42.7 A car parallel parking.

42.5.5 Path Transformation Methods

If the system is kinematic and STLC, one can first plan a path among obstacles assuming the system has
no nonholonomic constraints, using one of the many collision-free motion planning methods developed
in the robotics literature. This plan can then be transformed into a motion plan that satisfies the velocity
constraints [13]. Typically this transformation proceeds by recursively choosing a segment of the initial
path and attempting to replace it with a path chosen by a local path planner. The local planner takes the
initial and final configurations q0 and qf of the segment and chooses a path satisfying the nonholonomic
constraints, but ignoring the obstacles. The replacement occurs if the new path segment is collision-free.
If not, the initial segment is subdivided again. To guarantee success of the transformation process, the
local path planner must have the property that the length of the chosen path goes to zero as ‖qf− q0‖
goes to zero. The final feasible path produced by the transformation could be further post-processed to
reduce some measure of the cost of the path.

42.5.6 Kinematic Reductions

For dynamic underactuated systems with kinematic reductions yielding STLKC, trajectory planning from
one equilibrium state to another can be reduced to the problem of path planning using the kinematic
reductions, followed by time-scaling of the path to produce a trajectory [11–13]. This decoupling of the
trajectory planning problem reduces the computational complexity by turning the constrained motion
planning problem on the 2n-dimensional state space into path planning on the n-dimensional config-
uration space. In addition, time-optimal time scaling algorithms can be used to turn the paths into fast
feasible trajectories. Because the kinematic reductions take account of the underactuation constraints, the
only constraints on path speed come from the actuator limits.

An example is shown in Figure 42.8 for the 3R robot of Figure 42.4. The robot arm has no
actuator at the third link and is described by L1,2 = 0.3 m, r1,2,3 = 0.15 m, mi = {2.0, 1.0, 0.5} kg, Ii =
{0.02, 0.01, 0.004125} kgm2 with actuator limits |u1| ≤ 20 Nm, |u2| ≤ 10 Nm. As mentioned earlier, the
two decoupling vector fields are translation along the third link and rotation of the third link about its
center of percussion with respect to the third joint. Using just these motions, we can use a path planner
to plan point-to-point motions. Figure 42.8 shows an example path consisting of four segments along the
decoupling vector fields. Also shown is the time-optimal time scaling, which allows the robot to follow
the path as quickly as possible subject to actuator limits. Because the only common velocity between the
two decoupling vector fields is zero velocity, the robot must come to a stop at the transitions between
vector fields.
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FIGURE 42.8 Four path segments and their time scalings for a 3R robot without an actuator at the third joint. Note
that the time-optimal time scalings saturate one actuator at all times.

42.5.7 Differentially Flat Systems

Differentially flat and dynamically feedback linearizable systems have a structure that makes motion plan-
ning (in the absence of control and configuration constraints such as obstacles) particularly simple [23].
For a differentially flat system with a state x and u ∈ R

m, there exists a set of m functions zi , i = 1, . . . , m,
of the state, the control, and its derivatives,

zi(x, u, u̇, . . . , u(r)), i = 1, . . . , m,

such that the states and control inputs can be expressed as functions of z and its time-derivatives:

x = φ(z, ż, . . . , z(s)),

u=ψ(z, ż, . . . , z(s)).

The functions zi are known as the flat outputs. Armed with a set of flat outputs, the problem of
finding a feasible trajectory (x(t), u(t)), x(0)= x0, x(tf)= xf, t ∈ [0, tf] for the underactuated system is
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transformed to the problem of finding a curve z(t) satisfying constraints on z(0), ż(0), . . . , z(s)(0) and
z(tf), ż(tf), . . . , z(s)(tf) specified by x0 and xf. In other words, the problem of finding a trajectory satisfying
the underactuation constraints becomes the relatively simple algebraic problem of finding a curve to fit
the start and end constraints on z. Any curve z(t) maps directly to a consistent pair of state and control
histories x(t) and u(t).

The flat outputs for mechanical systems are often a function of configuration variables only, and
sometimes are just the location of particular points on the system. Unfortunately, there is no systematic
way to determine if a system is differentially flat, or what the flat outputs for a system are. Many important
systems have been shown to be differentially flat, however, such as chained-form systems, cars, and cars
pulling trailers.

As an example, consider a vertical rolling disk, ignoring the configuration variableψ. The configuration
is q= [x, y,φ]T , and the controls are the forward velocity v and the turning rate ω (Figure 42.2). The flat
outputs are simply z1 = x and z2 = y. The state and controls can be derived from the flat outputs and
their derivatives as follows:

[x, y,φ]T =
[

z1, z2, tan−1 ż2

ż1

]T

, (42.113)

[v,ω]T =
[
±
√

ż2
1 + ż2

2 ,
ż1z̈2− z̈1ż2

ż2
1 + ż2

2

]T

. (42.114)

The orientation φ and the turning control ω are not well defined as a function of the flat outputs when
the linear velocity of the disk is zero.

Now we would like to find a feasible trajectory from q0 = [0, 0, 0]T to qf = [1, 1, 0]T . Since there are six
state variables in the specification of the start and goal points, there are six constraints on the flat outputs
z and their derivatives at the beginning and end of motion. These constraints can be written

z1(0)= 0, z2(0)= 0,
z1(tf)= 1, z2(tf)= 1,

ż2(0)= 0,
ż2(tf)= 0,

where the last two constraints indicate that the initial and final motion of the unicycle must be along the
x-axis, indicating that the wheel is oriented with the x-axis. The simplest polynomial functions of time
that have enough free coefficients to satisfy these constraints are

z1(t)= a0+ a1t,

z2(t)= b0+ b1t+ b2t2+ b3t3.

Setting the time of motion tf = 1 and using the constraints to solve for the polynomial coefficients, we
obtain

z1(t)= t, (42.115)

z2(t)= 3t2− 2t3. (42.116)

The state and control can be obtained from Equations 42.113 and 42.114. The unicycle motion is shown
in Figure 42.9.

In fitting a curve z(t), we must choose a family of curves with enough degrees of freedom to satisfy
the initial and terminal constraints. We may choose a family of curves with more degrees of freedom,
however, and use the extra degrees of freedom to, individually or severally, (1) satisfy bounds on the
control u(t), (2) avoid obstacles in the configuration space, or (3) minimize a cost function. Incorporating
these conditions in the calculation of z(t) typically requires resorting to numerical optimization methods.
A good way to generate an initial guess for the optimization is to solve exactly for a minimal number of
coefficients to satisfy the initial and terminal constraints, setting the other coefficients to zero.
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FIGURE 42.9 A feasible path for the unicycle from [0, 0, 0]T to [1, 1, 0]T , and the controls.
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43.1 Introduction

Stability theory plays a central role in systems theory and engineering. It deals with the system’s behavior
over a long time period. There are several ways to characterize stability. For example, we may characterize
stability from an input–output viewpoint, by requiring the output of a system to be “well-behaved” in
some sense, whenever the input is well behaved. Alternatively, we may characterize stability by studying
the asymptotic behavior of the state of the system near steady-state solutions, like equilibrium points or
periodic orbits.

In this chapter we introduce Lyapunov’s method for determining the stability of equilibrium points.
Lyapunov laid the foundation of this method over a century ago, but of course the method as we use
it today is the result of intensive research efforts by many engineers and applied mathematicians. The
attractive features of the method include a solid theoretical foundation, the ability to conclude stability
without knowledge of the solution (no extensive simulation effort), and an analytical framework that
makes it possible to study the effect of model perturbations and to design feedback control. Its main
drawback is the need to search for an auxiliary function that satisfies certain conditions.

43.2 Stability of Equilibrium Points

We consider a nonlinear system represented by the state model

ẋ = f (x) (43.1)

where the components of the n-dimensional vector f (x) are locally Lipschitz functions of x, defined for
all x in a domain D ⊂ Rn. A function f (x) is locally Lipschitz at a point x0 if it satisfies the Lipschitz
condition ‖f (x)− f (y)‖ ≤ L‖x− y‖ for all x, y in some neighborhood of x0, where L is a positive constant

and ‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n. The Lipschitz condition guarantees that Equation 43.1 has a unique

solution for a given initial state x(0). Suppose x̄ ∈ D is an equilibrium point of Equation 43.1; that is,

43-1
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f (x̄)= 0. Whenever the state of the system starts at x̄ it will remain at x̄ for all future time. Our goal is to
characterize and study the stability of x̄. For convenience, we take x̄ = 0. There is no loss of generality in
doing so because any equilibrium point x̄ can be shifted to the origin via the change of variables y = x− x̄.
Therefore, we shall always assume that f (0)= 0, and study stability of the origin x = 0.

The equilibrium point x = 0 of Equation 43.1 is stable, if for each ε > 0, there is δ= δ(ε) > 0 such
that ‖x(0)‖< δ implies that ‖x(t)‖< ε, for all t ≥ 0. It is asymptotically stable, if it is stable and δ can
be chosen such that ‖x(0)‖< δ implies that x(t) converges to the origin as t tends to infinity. When the
origin is asymptotically stable, the region of attraction (also called region of asymptotic stability, domain
of attraction, or basin) is defined as the set of all points x such that the solution of Equation 43.1 that
starts from x at time t = 0, approaches the origin as t tends to ∞. When the region of attraction is the
whole space, we say that the origin is globally asymptotically stable. A stronger form of asymptotic stability
arises when there exist positive constants c, k, and λ such that the solutions of Equation 43.1 satisfy the
inequality

‖x(t)‖ ≤ k‖x(0)‖e−λt , ∀ t ≥ 0 (43.2)

for all ‖x(0)‖< c. In this case, the equilibrium point x = 0 is said to be exponentially stable. It is said to
be globally exponentially stable if the inequality is satisfied for any initial state x(0).

43.2.1 Linear Systems

For the linear time-invariant system
ẋ = Ax (43.3)

the stability properties of the origin can be characterized by the location of the eigenvalues of A. The
origin is stable if and only if all the eigenvalues of A satisfy Re[λi] ≤ 0 and for every eigenvalue with
Re[λi] = 0 and algebraic multiplicity qi ≥ 2, rank(A−λiI)= n− qi , where n is the dimension of x and
qi is the multiplicity of λi as a zero of det(λI −A). The origin is globally exponentially stable if and
only if all eigenvalues of A have negative real parts; that is, A is a Hurwitz matrix. For linear systems,
the notions of asymptotic and exponential stability are equivalent because the solution is formed of
exponential modes. Moreover, due to linearity, if the origin is exponentially stable, then the inequality of
Equation 43.2 will hold for all initial states.

43.2.2 Linearization

Suppose the function f (x) of Equation 43.1 is continuously differentiable in a domain D containing the
origin. The Jacobian matrix [∂f /∂x] is an n× n matrix whose (i, j) element is ∂fi/∂xj. Let A be the
Jacobian matrix evaluated at the origin x = 0. It can be shown that

f (x)= [A+G(x)]x, where lim
x→0

G(x)= 0

This suggests that in a small neighborhood of the origin we can approximate the nonlinear system ẋ = f (x)
by its linearization about the origin ẋ = Ax. Indeed, we can draw conclusions about the stability of the
origin as an equilibrium point for the nonlinear system by examining the eigenvalues of A. The origin
of Equation 43.1 is exponentially stable if and only if A is Hurwitz. It is unstable if Re[λi]> 0 for one or
more of the eigenvalues of A. Linearization fails when Re[λi] ≤ 0 for all i, with Re[λi] = 0 for some i, for
in this case we cannot draw a conclusion about the stability of the origin of Equation 43.1.

43.2.3 Lyapunov Method

Let V (x) be a continuously differentiable scalar function defined in a domain D ⊂ Rn that contains the
origin. The function V (x) is said to be positive definite if V (0)= 0 and V (x) > 0 for x �= 0. It is said to
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be positive semidefinite if V (x)≥ 0 for all x. A function V (x) is said to be negative definite or negative
semidefinite if−V (x) is positive definite or positive semidefinite, respectively. The derivative of V along
the trajectories of Equation 43.1 is given by

V̇ (x)=
n∑

i=1

∂V

∂xi
ẋi = ∂V

∂x
f (x)

where [∂V/∂x] is a row vector whose ith component is ∂V/∂xi .
Lyapunov’s stability theorem states that the origin is stable if there is a continuously differentiable

positive-definite function V (x) so that V̇ (x) is negative semidefinite, and it is asymptotically stable if V̇ (x)
is negative definite.

A function V (x) satisfying the conditions for stability is called a Lyapunov function. The surface
V (x)= c, for some c > 0, is called a Lyapunov surface or a level surface. Using Lyapunov surfaces,
Figure 43.1 makes the theorem intuitively clear. It shows Lyapunov surfaces for decreasing constants
c3 > c2 > c1 > 0. The condition V̇ ≤ 0 implies that when a trajectory crosses a Lyapunov surface V (x)= c,
it moves inside the set Ωc = {V (x)≤ c} and can never come out again, since V̇ ≤ 0 on the boundary
V (x)= c. When V̇ < 0, the trajectory moves from one Lyapunov surface to an inner Lyapunov surface
with a smaller c. As c decreases, the Lyapunov surface V (x)= c shrinks to the origin, showing that the
trajectory approaches the origin as time progresses. If we only know that V̇ ≤ 0, we cannot be sure that
the trajectory will approach the origin, but we can conclude that the origin is stable since the trajectory
can be contained inside any ε neighborhood of the origin by requiring the initial state x(0) to lie inside a
Lyapunov surface contained in that neighborhood.

When V̇ (x) is only negative semidefinite, we may still conclude asymptotic stability of the origin if we
can show that no solution can stay identically in the set {V̇ (x)= 0}, other than the zero solution x(t)≡ 0.
Under this condition, V (x(t)) must decrease toward 0, and consequently x(t) converges to zero as t tends
to infinity. This extension of the basic theorem is known as the invariance principle.

Lyapunov functions can be used to estimate the region of attraction of an asymptotically stable origin,
that is, to find sets contained in the region of attraction. Let V (x) be a Lyapunov function that satisfies the
conditions of asymptotic stability over a domain D. For a positive constant c, let Ωc be the component
of {V (x)≤ c} that contains the origin in its interior. The properties of V guarantee that, by choosing c
small enough, Ωc will be bounded and contained in D. Then, every trajectory starting in Ωc remains in
Ωc , and approaches the origin as t →∞. Thus, Ωc is an estimate of the region of attraction. If D = Rn

and V (x) is radially unbounded, that is, ‖x‖→∞ implies that V (x)→∞, then any point x ∈ Rn can be
included in a bounded set Ωc by choosing c large enough. Therefore, the origin is globally asymptotically
stable if there is a continuously differentiable, radially unbounded function V(x) such that for all x ∈ Rn,

c1c2

c3

x = 0

FIGURE 43.1 Lyapunov surfaces V (x)= ci with c3 > c2 > c1.
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V (x) is positive definite and V̇ (x) is either negative definite or negative semidefinite, but no solution can
stay identically in the set {V̇ (x)= 0} other than the zero solution x(t)≡ 0.

Lyapunov’s method is a powerful tool for studying the stability of equilibrium points. However, there
are two drawbacks of the method that we should be aware of. First, there is no systematic method for
finding a Lyapunov function for a given system. Second, the conditions of the method are only sufficient;
they are not necessary. Failure of a Lyapunov function candidate to satisfy the conditions for stability or
asymptotic stability does not mean that the origin is not stable or asymptotically stable.

43.2.4 Time-Varying Systems

Equation 43.1 is time-invariant because f does not depend on t. The more general time-varying system is
represented by

ẋ = f (t, x) (43.4)

In this case, we may allow the Lyapunov function candidate V to depend on t. Let V (t, x) be a continuously
differentiable function defined for all t ≥ 0 and all x ∈ D. The derivative of V along the trajectories of
Equation 43.4 is given by

V̇ (t, x)= ∂V

∂t
+ ∂V

∂x
f (t, x)

If there are positive-definite functions W1(x), W2(x), and W3(x) such that

W1(x)≤ V (t, x)≤W2(x) (43.5)

V̇ (t, x)≤−W3(x) (43.6)

for all t ≥ 0 and all x ∈ D, then the origin is uniformly asymptotically stable, where “uniformly” indicates
that the ε–δ definition of stability and the convergence of x(t) to zero are independent of the initial
time t0. Such uniformity annotation is not needed with time-invariant systems since the solution of a
time-invariant state equation starting at time t0 depends only on the difference t− t0, which is not the
case for time-varying systems. If the inequalities of Equations 43.5 and 43.6 hold globally and W1(x)
is radially unbounded, then the origin is globally uniformly asymptotically stable. If W1(x)= k1‖x‖a,
W2(x)= k2‖x‖a, and W3(x)= k3‖x‖a for some positive constants k1, k2, k3, and a, then the origin is
exponentially stable.

43.2.5 Perturbed Systems

Consider the system

ẋ = f (t, x)+ g(t, x) (43.7)

where f and g are continuous in t and locally Lipschitz in x, for all t ≥ 0 and x ∈ D, in which D ⊂ Rn

is a domain that contains the origin x = 0. Suppose f (t, 0)= 0 and g(t, 0)= 0 so that the origin is an
equilibrium point of Equation 43.7. We think of the system of Equation 43.7 as a perturbation of the
nominal system

ẋ = f (t, x) (43.8)

The perturbation term g(t, x) could result from modeling errors, uncertainties, or disturbances, which
exist in any realistic problem. In a typical situation, we do not know g(t, x), but we know some information
about it, like knowing an upper bound on ‖g(t, x)‖. Suppose the nominal system has an exponentially
stable equilibrium point at the origin, what can we say about the stability of the origin as an equilibrium
point of the perturbed system? A natural approach to address this question is to use a Lyapunov function
for the nominal system as a Lyapunov function candidate for the perturbed system.



�

�

�

�

� �

Lyapunov Stability 43-5

Let V (t, x) be a Lyapunov function that satisfies

c1‖x‖2 ≤ V (t, x)≤ c2‖x‖2 (43.9)

∂V

∂t
+ ∂V

∂x
f (t, x)≤−c3‖x‖2 (43.10)∥∥∥∥∂V

∂x

∥∥∥∥≤ c4‖x‖ (43.11)

for all x ∈ D for some positive constants c1, c2, c3, and c4. Suppose the perturbation term g(t, x) satisfies
the linear growth bound

‖g(t, x)‖ ≤ γ‖x‖, ∀ t ≥ 0, ∀ x ∈ D (43.12)

where γ is a nonnegative constant. We use V as a Lyapunov function candidate to investigate the stability
of the origin as an equilibrium point for the perturbed system. The derivative of V along the trajectories
of Equation 43.7 is given by

V̇ (t, x)= ∂V

∂t
+ ∂V

∂x
f (t, x)+ ∂V

∂x
g(t, x)

The first two terms on the right-hand side are the derivative of V (t, x) along the trajectories of the nominal
system, which is negative definite and satisfies the inequality of Equation 43.10. The third term, [∂V/∂x]g ,
is the effect of the perturbation. Using Equations 43.10 through 43.12, we obtain

V̇ (t, x)≤−c3‖x‖2+
∥∥∥∥∂V

∂x

∥∥∥∥ ‖g(t, x)‖ ≤ −c3‖x‖2+ c4γ‖x‖2

If γ < c3/c4, then

V̇ (t, x)≤−(c3− γc4)‖x‖2, (c3− γc4) > 0

which shows that the origin is an exponentially stable equilibrium point of Equation 43.7.

43.3 Examples and Applications

Example 43.1:

A simple pendulum moving in a vertical plane can be modeled by the state equation

ẋ1 = x2

ẋ2 =−a sin x1− bx2

where a > 0, b≥ 0, and x1 is the angle between the pendulum and the vertical line through the
pivot point. The case b= 0 is an idealized frictionless pendulum. To find the equilibrium points, we
set ẋ1 = ẋ2 = 0 and solve for x1 and x2. The first equation gives x2 = 0 and the second one gives
sin x1 = 0. Thus, the equilibrium points are located at (nπ, 0), for n= 0,±1,±2, . . . The pendulum
has only two equilibrium positions corresponding to the equilibrium points (0, 0) and (π, 0). The
other equilibrium points are repetitions of these two positions that correspond to the number of full
swings the pendulum would make before it rests at one of the two equilibrium positions.



�

�

�

�

� �

43-6 Control System Advanced Methods

To start with, let us investigate the stability of the equilibrium points by linearization. The Jacobian
matrix is given by

∂f

∂x
=

⎡
⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

⎤
⎥⎥⎦=

[
0 1

−a cos x1 −b

]

To investigate the stability of the origin, we evaluate the Jacobian matrix at x = 0.

A= ∂f

∂x

∣∣∣∣
x=0

=
[

0 1
−a −b

]

The eigenvalues of A are λ1,2 =
(
−b±√b2− 4a

)
/2. For all positive values of a and b, the eigenvalues

satisfy Re[λ]< 0. Hence, the equilibrium point at the origin is exponentially stable. In the absence of
friction (b= 0), both eigenvalues are on the imaginary axis. In this case, we cannot determine the stability
of the origin through linearization. To investigate the stability of (π, 0), we evaluate the Jacobian at this
point. This is equivalent to performing a change of variables z1 = x1−π, z2 = x2 to shift the equilibrium
point to the origin, and then evaluating the Jacobian [∂f /∂z] at z = 0.

Ã= ∂f

∂x

∣∣∣∣
x1=π,x2=0

=
[

0 1
a −b

]

The eigenvalues of Ã are λ1,2 =
(
−b±√b2+ 4a

)
/2. For all a > 0 and b ≥ 0, there is, at least, one

eigenvalue with positive real part. Hence, (π, 0) is unstable.
Let us now use Lyapunov’s method to study the stability of the origin. As a Lyapunov function candidate,

we use the energy of the pendulum, which is defined as the sum of its potential and kinetic energies,
namely,

V (x)=
∫ x1

0
a sin y dy+ 1

2
x2

2 = a(1− cos x1)+ 1

2
x2

2

The reference of the potential energy is chosen such that V (0)= 0. The function V (x) is positive definite
over the domain−2π< x1 < 2π. The derivative of V along the trajectories of the system is given by

V̇ (x)= aẋ1 sin x1+ x2ẋ2 =− bx2
2

When friction is neglected (b= 0), V̇ (x)= 0 and we can conclude that the origin is stable. Moreover,
V (x) is constant during the motion of the system. Since V (x)= c forms a closed contour around x = 0
for small c > 0, we see that the trajectory will be confined to one such contour and will not approach the
origin. Hence the origin is not asymptotically stable. On the other hand, in the case with friction (b > 0),
V̇ (x)=−bx2

2 ≤ 0 is negative semidefinite and we can conclude that the origin is stable. Note that V̇ (x) is
only negative semidefinite and not negative definite because V̇ (x)= 0 for x2 = 0 irrespective of the value
of x1. Therefore, we cannot conclude asymptotic stability using Lyapunov’s stability theorem. Here comes
the role of the invariance principle. Consider the set {V̇ (x)= 0} = {x2 = 0}. Suppose that a solution of
the state equation stays identically in this set. Then

x2(t)≡ 0 ⇒ ẋ2(t)≡ 0 ⇒ sin x1(t)≡ 0

Hence, on the segment−π< x1 < π of the x2 = 0 line, the system can maintain the V̇ (x)= 0 condition
only at the origin x = 0. Noting that the solution is confined to Ωc (the component {V (x)≤ c} that
contains the origin) and for sufficiently small c, Ωc ⊂ {−π< x1 < π}, we conclude that no solution
can stay forever in the set Ωc ∩ {x2 = 0} other than the trivial solution x(t)≡ 0. Hence, the origin is
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asymptotically stable. We can also estimate the region of attraction by Ωc with c < 2a to ensure that Ωc

is bounded and contained in the strip {−π< x1 < π}.

Example 43.2:

Consider the system

ẋ1 = x2

ẋ2 =−g1(x1)− g2(x2)

where g1 and g2 are locally Lipschitz and satisfy

gi (0)= 0, ygi (y) > 0, ∀ y �= 0, i = 1, 2

and
∫ y

0 g1(z) dz →∞, as |y| →∞. The system has an isolated equilibrium point at the origin. It
can be viewed as a generalized pendulum equation with g2(x2) as the friction term. Therefore, a
Lyapunov function candidate may be taken as the energy-like function

V (x)=
∫ x1

0
g1(y) dy+ 1

2
x2

2 ,

which is positive definite in R2 and radially unbounded. The derivative of V (x) along the trajectories
of the system is given by

V̇ (x)= g1(x1)x2+ x2[−g1(x1)− g2(x2)] = −x2g2(x2)≤ 0

Thus, V̇ (x) is negative semidefinite. Note that V̇ (x)= 0 implies x2g2(x2)= 0, which implies x2 = 0.
Therefore, the only solution that can stay identically in the set {x ∈ R2 | x2 = 0} is the zero solution
x(t)≡ 0. Thus, the origin is globally asymptotically stable.

Example 43.3:

The second-order system

ẋ1 =−x2

ẋ2 = x1+ (x2
1 − 1)x2

has a unique equilibrium point at the origin. Linearization at the origin yields the matrix

A= ∂f

∂x

∣∣∣∣
x=0

=
[

0 −1
1 −1

]

which is Hurwitz. Hence, the origin is exponentially stable. By viewing the nonlinear system ẋ = f (x)
as a perturbation of the linear system ẋ = Ax , we can find a Lyapunov function for the linear system
and use it as a Lyapunov function candidate for the nonlinear system. For the linear system ẋ = Ax
with Hurwitz matrix A, a quadratic Lyapunov function is given by V (x)= xT Px , where P is the solution
of the Lyapunov equation

PA+AT P =−Q

for any positive-definite symmetric matrix Q. This is so because the solution P of the Lyapunov equa-
tion is a positive-definite symmetric matrix and the derivative of V (x)= xT Px along the trajectories
of ẋ = Ax is−xT Qx . For our example, taking Q = I results in

P =
[

1.5 −0.5
−0.5 1

]

Now we use V (x)= xT Px as a Lyapunov function candidate for the nonlinear system. The perturbation
term f (x)−Ax satisfies the linear growth bound of Equation 43.12 and the constant γ can be made
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arbitrarily small by limiting the analysis to a sufficiently small neighborhood of the origin. This is so
because f (x)−Ax = G(x)x , where limx→0 G(x)= 0. Therefore, from the earlier analysis of perturbed
systems we know that V (x) is a Lyapunov function for the nonlinear system in some neighborhood
of the origin. Let us estimate the region of attraction. The function V (x) is positive definite for all
x . We need to determine a domain D about the origin where V̇ (x) is negative definite and a set
Ωc = {V (x)≤ c} ⊂ D. The set Ωc is bounded for any c > 0. We are interested in the largest set Ωc
that we can determine, that is, the largest value for the constant c. The derivative of V (x) along the
trajectories of the system is given by

V̇ (x)=−(x2
1 + x2

2 )− x2
1 x2(x1− 2x2)

The right-hand side of V̇ (x) is written as the sum of two terms. The first term, −‖x‖2, is the con-
tribution of the linear part Ax , while the second term is the contribution of the nonlinear term
f (x)−Ax . Using the inequalities |x1− 2x2| ≤

√
5‖x‖ and |x1x2| ≤ 1

2‖x‖2, we see that V̇ (x) satisfies

the inequality V̇ (x)≤−‖x‖2+ (
√

5/2)‖x‖4. Hence V̇ (x) is negative definite in the region {‖x‖< r},
where r2 = 2/

√
5. We would like to choose a positive constant c such that {V (x)≤ c} is a subset of this

region. Since xT Px ≥ λmin(P)‖x‖2, we can choose c < λmin(P)r2. Using λmin(P)≥ 0.69, we choose
c = 0.615 < 0.69(2/

√
5)= 0.617. The set {V (x)≤ 0.615} is an estimate of the region of attraction.

Example 43.4:

Consider the time-varying system

ẋ1 =−x1− g(t)x2

ẋ2 = x1− x2

where g(t) is continuously differentiable and satisfies 0≤ g(t)≤ k and ġ≤ g(t) for all t ≥ 0. The
system has an equilibrium point at the origin. Consider a Lyapunov function candidate V (t, x)=
x2

1 +[1+ g(t)]x2. The function V satisfies the inequalities

x2
1 + x2

2 ≤ V (t, x)≤ x2
1 + (1+ k)x2

2

The derivative of V along the trajectories of the system is given by

V̇ =−2x2
1 + 2x1x2−[2+ 2g(t)− ġ(t)]x2

2

Using the bound on ġ(t), we have 2+ 2g(t)− ġ(t)≥ 2+ 2g(t)− g(t)≥ 2. Therefore,

V̇ ≤−2x2
1 + 2x1x2− 2x2

2 =−xT
[

2 −1
−1 2

]
x =−xT Qx

The matrix Q is positive definite. Hence, the origin is globally exponentially stable.

43.3.1 Feedback Stabilization

Consider the nonlinear system

ẋ = f (x, u)

y = h(x)

where x is an n-dimensional state, u is an m-dimensional control input, and y is a p-dimensional measured
output. Suppose f and h are continuously differentiable in the domain of interest, and f (0, 0)= 0, h(0)= 0
so that the origin is an open-loop equilibrium point and the output y vanishes at the origin. Suppose
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we want to design an output feedback controller to stabilize the origin, that is, to make the origin
an asymptotically stable equilibrium point of the closed-loop system. We can pursue the design via
linearization. The linearization of the system about the point (x = 0, u= 0) is given by

ẋ = Ax+Bu

y = Cx

A= ∂f

∂x

∣∣∣∣
x=0,u=0

, B= ∂f

∂u

∣∣∣∣
x=0,u=0

, C = ∂h

∂x

∣∣∣∣
x=0

Assuming that (A, B) is stabilizable and (A, C) is detectable, that is, uncontrollable and unobservable
eigenvalues, if any, have negative real parts, we can design a dynamic output feedback controller

ż = Fz+Gy,

u=Hz+Ky,

where z is a q-dimensional vector, such that the matrix

A =
[

A+BKC BH
GC F

]

is Hurwitz. When the feedback controller is applied to the nonlinear system it results in a system of order
(n+ q), whose linearization at the origin is the matrix A. Hence, the origin of the closed-loop system
is exponentially stable. By solving the Lyapunov equation PA+ATP =−Q for some positive-definite
matrix Q, we can use V = XTPX , where X = [x z]T , as a Lyapunov function for the closed-loop system,
and we can estimate the region of attraction of the origin, as illustrated in Example 43.3.

43.4 Defining Terms

Asymptotically stable equilibrium point: A stable equilibrium point with the additional feature that all
trajectories starting at nearby points approach the equilibrium point as time approaches infinity.

Equilibrium point: A constant solution of ẋ = f (t, x). For the time-invariant system ẋ = f (x), equilib-
rium points are the real solutions of the equation 0= f (x).

Exponentially stable equilibrium point: An asymptotically stable equilibrium point with the additional
feature that the norm of the state is bounded by an exponentially decaying function of time
whose amplitude is proportional to the norm of the difference between the initial state and the
equilibrium point.

Globally asymptotically stable equilibrium point: An asymptotically stable equilibrium point where the
region of attraction is the whole space.

Hurwitz matrix: A square real matrix is Hurwitz if all its eigenvalues have negative real parts.
Linearization: Approximation of the nonlinear state equation in the vicinity of an equilibrium point by

a linear state equation, obtained by calculating the Jacobian matrix of the right-hand side at the
equilibrium point.

Lipschitz condition: A condition imposed on a function f (x) to ensure that it has a finite slope. For a
vector-valued function, it takes the form ‖f (x)− f (y)‖ ≤ L‖x− y‖ for some positive constant L.

Locally Lipschitz function: A function f (x) is locally Lipschitz at a point if it satisfies the Lipschitz
condition in the neighborhood of that point.

Lyapunov equation: A linear algebraic matrix equation of the form PA+AT P =−Q, where A and Q are
real square matrices. When Q is symmetric and positive definite, the equation has a (unique)
positive-definite solution P if and only if A is Hurwitz.
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Lyapunov function: A scalar positive-definite function of the state whose derivative along the trajectories
of the system is negative semidefinite.

Lyapunov surface: A set of the form V (x)= c where V (x) is a Lyapunov function and c is a positive
constant.

Negative (semi-) definite function: A scalar function of a vector argument V (x) is negative (semi-)
definite if V (0)= 0 and V (x) < 0 (≤ 0) for all x �= 0 in some neighborhood of x = 0.

Positive (semi-) definite function: A scalar function of a vector argument V (x) is positive (semi-) definite
if V (0)= 0 and V (x) > 0 (≥ 0) for all x �= 0 in some neighborhood of x = 0.

Positive-definite matrix: A symmetric real square matrix P is positive definite if the quadratic form
V (x)= xT Px is a positive definite function. Equivalently, P is positive definite if and only if all
its eigenvalues are positive.

Region of attraction: For an asymptotically stable equilibrium point, the region of attraction is the set of
all points with the property that the trajectories starting at these points asymptotically approach
the equilibrium point. It is an open connected set that contains the equilibrium point in its
interior.

Stable equilibrium point: An equilibrium point where all solutions can be confined to an ε-neighborhood
of the point be constraining the initial states to belong to a δ-neighborhood.

Reference

1. Khalil, H.K. 2002. Nonlinear Systems, 3rd Edition, Prentice-Hall, Upper Saddle River, NJ.

Further Reading

The presentation of Lyapunov stability is based on the textbook by Khalil (see [1]). For further information
on Lyapunov stability, the reader is referred to Chapters 4, 8, and 9 of Khalil’s book. Chapter 4 covers the
basic Lyapunov theory. Chapter 8 covers more advanced topics, including the use of the center manifold
theorem when linearization fails. Chapter 9 covers the stability of perturbed systems.

Other engineering textbooks where Lyapunov stability is emphasized include Vidyasagar, M. 2002.
Nonlinear Systems Analysis, classic Ed., SIAM Philadelphia, PA; Slotine, J-J. and Li, W. 1991. Applied
Nonlinear Control, Prentice-Hall, Englewood Cliffs; Sastry, S. 1999. Nonlinear Systems: Analysis, Stability,
and Control, Springer, New York.

For a deeper look into the theoretical foundation of Lyapunov stability, there are excellent references,
including Rouche, N., Habets, P., and Laloy, M. 1977. Stability Theory by Lyapunov’s Direct Method,
Springer-Verlag, New York; Hahn, W. 1967. Stability of Motion, Springer-Verlag, New York; Krasovskii,
N.N. 1963. Stability of Motion, Stanford University Press, Palo Alto, CA.

Control journals often include articles where Lyapunov’s method is used in system analysis or control
design. Examples are the IEEE Transactions on Automatic Control and the IFAC Journal Automatica.
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44.1 Introduction

A common task for an engineer is to design a system that reacts to stimuli in some specific and desirable
way. One way to characterize appropriate behavior is through the formalism of input–output stability. In
this setting a notion of well-behaved input and output signals is made precise and the question is posed:
do well-behaved stimuli (inputs) produce well-behaved responses (outputs)?

General input–output stability analysis has its roots in the development of the electronic feedback
amplifier of H.S. Black in 1927 and the subsequent development of classical feedback design tools for lin-
ear systems by H. Nyquist and H.W. Bode in the 1930s and 1940s, all at Bell Telephone Laboratories. These
latter tools focused on determining input–output stability of linear feedback systems from the characteris-
tics of the feedback components. Generalizations to nonlinear systems were made by several researchers in
the late 1950s and early 1960s. The most notable contributions were those of G. Zames, then at M.I.T., I.W.
Sandberg at Bell Telephone Laboratories, and V.M. Popov. Indeed, much of this chapter is based on the
foundational ideas found in [5,7,10], with additional insights drawn from [6]. A thorough understanding
of nonlinear systems from an input–output point of view is still an area of ongoing and intensive research.

The strength of input–output stability theory is that it provides a method for anticipating the qualitative
behavior of a feedback system with only rough information about the feedback components. This, in turn,
leads to notions of robustness of feedback stability and motivates many of the recent developments in
modern control theory.

44.2 Systems and Stability

Throughout our discussion of input–output stability, a signal is a “reasonable” (e.g., piecewise continuous)
function defined on a finite or semi-infinite time interval, i.e., an interval of the form [0, T) where T is
either a strictly positive real number or infinity. In general, a signal is vector-valued; its components
typically represent actuator and sensor values. A dynamical system is an object which produces an output
signal for each input signal.

44-1
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To discuss stability of dynamical systems, we introduce the concept of a norm function, denoted || · ||,
which captures the “size” of signals defined on the semi-infinite time interval. The significant properties
of a norm function are that 1) the norm of a signal is zero if the signal is identically zero, and is a strictly
positive number otherwise, 2) scaling a signal results in a corresponding scaling of the norm, and 3) the
triangle inequality holds, i.e., ||u1+ u2|| ≤ ||u1|| + ||u2||. Examples of norm functions are the p-norms.
For any positive real number p≥ 1, the p-norm is defined by

||u||p :=
(∫ ∞

0
|u(t)|p

) 1
p

(44.1)

where | · | represents the standard Euclidean norm, i.e., |u| =
√√√√ n∑

i=1

u2
i . For p=∞, we define

||u||∞ := sup
t≥0
|u(t)|. (44.2)

The ∞-norm is useful when amplitude constraints are imposed on a problem, and the 2-norm is of
more interest in the context of energy constraints. The norm of a signal may very well be infinite. We
will typically be interested in measuring signals which may only be defined on finite time intervals or
measuring truncated versions of signals. To that end, given a signal u defined on [0, T) and a strictly
positive real number τ, we use uτ to denote the truncated signal generated by extending u onto [0,∞) by
defining u(t)= 0 for t ≥ T , if necessary, and then truncating, i.e., uτ is equal to the (extended) signal on
the interval [0, τ] and is equal to zero on the interval (τ,∞).

Informally, a system is stable in the input–output sense if small input signals produce correspondingly
small output signals. To make this concept precise, we need a way to quantify the dependence of the
norm of the output on the norm of the input applied to the system. To that end, we define a gain function
as a function from the nonnegative real numbers to the nonnegative real numbers which is continuous,
nondecreasing, and zero when its argument is zero. For notational convenience we will say that the “value”
of a gain function at ∞ is ∞. A dynamical system is stable (with respect to the norm || · ||) if there is a
gain function γ which gives a bound on the norm of truncated output signals as a function of the norm
of truncated input signals, i.e.,

||yτ|| ≤ γ(||uτ||), for all τ. (44.3)

In the very special case when the gain function is linear, i.e., there is at most an amplification by a constant
factor, the dynamical system is finite gain stable. The notions of finite gain stability and closely related
variants are central to much of classical input–output stability theory, but in recent years much progress
has been made in understanding the role of more general (nonlinear) gains in system analysis.

The focus of this chapter will be on the stability analysis of interconnected dynamical systems as
described in Figure 44.1. The composite system in Figure 44.1 will be called a well-defined interconnection

d1

d2

+
+

+

+
+

+

y1∑1

∑2

y2

FIGURE 44.1 Standard feedback configuration.
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if it is a dynamical system with

(
d1

d2

)
as input and

(
y1

y2

)
as output, i.e., given an arbitrary input signal

(
d1

d2

)
, a signal

(
y1

y2

)
exists so that, for the dynamical system Σ1, the input d1+ y2 produces the output

y1 and, for the dynamical system Σ2, the input d2+ y1 produces the output y2. To see that not every
interconnection is well-defined, consider the case where both Σ1 and Σ2 are the identity mappings.

In this case, the only input signals

(
d1

d2

)
for which an output

(
y1

y2

)
can be found are those for which

d1+ d2 = 0. The dynamical systems which make up a well-defined interconnection will be called its
feedback components.

For stability of well-defined interconnections, it is not necessary for either of the feedback components
to be stable nor is it sufficient for both of the feedback components to be stable. On the other hand,
necessary and sufficient conditions for stability of a well-defined interconnection can be expressed in
terms of the set of all possible input–output pairs for each feedback component. To be explicit, following
are some definitions. For a given dynamical system Σ with input signals u and output signals y, the set
of its ordered input–output pairs (u, y) is referred to as the graph of the dynamical system and is denoted
GΣ. When the input and output are exchanged in the ordered pair, i.e., (y, u), the set is referred to as the
inverse graph of the system and is denoted GI

Σ. Note that, for the system in Figure 44.1, the inverse graph
of Σ2 and the graph of Σ1 lie in the same Cartesian product space called the ambient space. We will use
as norm on the ambient space the sum of the norms of the coordinates.

The basic observation regarding input–output stability for a well-defined interconnection says, in
informal terms, that if a signal in the inverse graph ofΣ2 is near any signal in the graph ofΣ1 then it must
be small. To formalize this notion, we need the concept of the distance to the graph of Σ1 from signals x
in the ambient space. This (truncated) distance is defined by

dτ(x, GΣ1 ) := inf
z∈GΣ1

||(x− z)τ||. (44.4)

Theorem 44.1: Graph Separation Theorem

A well-defined interconnection is stable if, and only if, a gain function γ exists which gives a bound on the
norm of truncated signals in the inverse graph ofΣ2 as a function of the truncated distance from the signals
to the graph of Σ1, i.e.,

x ∈ GI
Σ2
=⇒ ||xτ|| ≤ γ

(
dτ
(
x, GΣ1

))
, for all τ. (44.5)

In the special case where γ is a linear function, the well-defined interconnection is finite gain stable.

The idea behind this observation can be understood by considering the signals that arise in the closed
loop which belong to the inverse graph ofΣ2, i.e., the signals (y2, y1+ d2). (Stability with these signals taken
as output is equivalent to stability with the original outputs.) Notice that, for the system in Figure 44.1,
signals in the graph of Σ1 have the form (y2+ d1, y1). Consequently, signals x ∈ GI

Σ2
and z ∈ GΣ1 , which

satisfy the feedback equations, also satisfy

(x− z)τ = (d1,−d2)τ (44.6)

and
||(x− z)τ|| = ‖(d1, d2)τ‖ (44.7)

for truncations within the interval of definition. If there are signals x in the inverse graph ofΣ2 with large
truncated norm but small truncated distance to the graph ofΣ1, i.e., there exists some z ∈ GΣ1 and τ> 0
such that ||(x− z)τ|| is small, then we can choose (d1, d2) to satisfy Equation 44.6 giving, according to
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Equation 44.7, a small input which produces a large output. This contradicts our definition of stability.
Conversely, if there is no z which is close to x, then only large inputs can produce large x signals and thus
the system is stable.

The distance observation presented above is the unifying idea behind the input–output stability criteria
applied in practice. However, the observation is rarely applied directly because of the difficulties involved
in exactly characterizing the graph of a dynamical system and measuring distances. Instead, various
simpler conditions have been developed which constrain the graphs of the feedback components to
guarantee that the graph of Σ1 and the inverse graph of Σ2 are sufficiently separated. There are many
such sufficient conditions, and, in the remainder of this chapter, we will describe a few of them.

44.3 Practical Conditions and Examples

44.3.1 The Classical Small Gain Theorem

One of the most commonly used sufficient conditions for graph separation constrains the graphs of
the feedback components by assuming that each feedback component is finite gain stable. Then, the
appropriate graphs will be separated if the product of the coefficients of the linear gain functions is
sufficiently small. For this reason, the result based on this type of constraint has come to be known as the
small gain theorem.

Theorem 44.2: Small Gain Theorem

If each feedback component is finite gain stable and the product of the gains (the coefficients of the linear
gain functions) is less than one, then the well-defined interconnection is finite gain stable.

Figure 44.2 provides the intuition for the result. If we were to draw an analogy between a dynamical
system and a static map whose graph is a set of points in the plane, the graph ofΣ1 would be constrained
to the darkly shaded conic region by the finite gain stability assumption. Likewise, the inverse graph of
Σ2 would be constrained to the lightly shaded region. The fact that the product of the gains is less than
one guarantees the positive aperture between the two regions and, in turn, that the graphs are separated
sufficiently.

To apply the small gain theorem, we need a way to verify that the feedback components are finite gain
stable (with respect to a particular norm) and to determine their gains. In particular, any linear dynamical
system that can be represented with a real, rational transfer function G(s) is finite gain stable in any of the
p-norms if, and only if, all of the poles of the transfer function have negative real parts. A popular norm
to work with is the 2-norm. It is associated with the energy of a signal. For a single-input, single-output
(SISO) finite gain stable system modeled by a real, rational transfer function G(s), the smallest possible
coefficient for the stability gain function with respect to the 2-norm, is given by

γ̄ := sup
ω
|G(jω)|. (44.8)

For multi-input, multioutput systems, the magnitude in Equation 44.8 is replaced by the maximum
singular value. In either case, this can be established using Parseval’s theorem. For SISO systems, the
quantity in Equation 44.8 can be obtained from a quick examination of the Bode plot or Nyquist plot for
the transfer function. If the Nyquist plot of a stable SISO transfer function lies inside a circle of radius
γ̄ centered at the origin, then the coefficient of the 2-norm gain function for the system is less than or
equal to γ̄.
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Inverse
graph of ∑2

Graph of ∑1

y

u

1/γ2

γ1

FIGURE 44.2 Classical small gain theorem.

More generally, consider a dynamical system that can be represented by a finite dimensional ordinary
differential equation with zero initial state:

ẋ = f (x, u), x(0)= 0 and y = h(x, u). (44.9)

Suppose that f has globally bounded partial derivatives and that positive real numbers �1 and �2 exist
so that

|h(x, u)| ≤ �1|x| + �2|u|. (44.10)

Under these conditions, if the trajectories of the unforced system with nonzero initial conditions,

ẋ = f (x, 0), x(0)= x◦, (44.11)

satisfy
|x(t)| ≤ k exp(−λt)|x◦|, (44.12)

for some positive real number k and λ and any x◦ ∈ R
n, then the system (Equation 44.9) is finite gain

stable in any of the p-norms. This can be established using Lyapunov function arguments that apply to
the system (Equation 44.11). The details can be found in the textbooks on nonlinear systems mentioned
later.

Example 44.1:

Consider a nonlinear control system modeled by an ordinary differential equation with state x ∈ R
n,

input v ∈ R
m and disturbance d1 ∈ R

m :

ẋ = f (x , v+ d1). (44.13)

Suppose that f has globally bounded partial derivatives and that a control v = α(x) can be found,
also with a globally bounded partial derivative, so that the trajectories of the system

ẋ = f (x , α(x)), x(0)= x◦ (44.14)
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satisfy the bound
|x(t)| ≤ k exp(−λt)|x◦| (44.15)

for some positive real numbers k and λ and for all x◦ ∈ R
n. As mentioned above, for any function h

satisfying the type of bound in Equation 44.10, this implies that the system

ẋ = f (x , α(x)+ d1), x(0)= 0 and y = h(x , d1) (44.16)

has finite 2-norm gain from input d1 to output y. We consider the output

y := α̇= ∂α

∂x
f (x , α(x)+ d1) (44.17)

which satisfies the type of bound in Equation 44.10 because α and f both have globally bounded
partial derivatives.

We will show, using the small gain theorem, that disturbances d1 with finite 2-norm continue to
produce outputs y with finite 2-norm even when the actual input v to the process is generated by
the following fast dynamic version of the commanded input α(x):

εż = Az+ B(α(x))+ d2, z(0)=−A−1Bα(x(0))

v = Cz.
(44.18)

Here, ε is a small positive parameter, the eigenvalues of A all have strictly negative real part (thus A is
invertible), and−CA−1B = I. This system may represent unmodeled actuator dynamics.

To see the stability result, we will consider the composite system in the coordinates x and ζ=
z+A−1Bα(x). Using the notation from Figure 44.1,

ẋ = f (x , α(x)+ u1), x(0)= 0

Σ1:
y1 = A−1Bα̇(x),

(44.19)

and

ζ̇= ε−1Aζ+ u2, ζ= 0

Σ2:
y2 = Cζ,

(44.20)

with the interconnection conditions

u1 = y2+ d1, and u2 = y1+ ε−1d2. (44.21)

Of course, if the system is finite gain stable with the inputs d1 and ε−1d2, then it is also finite gain
stable with the inputs d1 and d2. We have already discussed that the system Σ1 in Equation 44.19
has finite 2-norm gain, say γ1. Now consider the systemΣ2 in Equation 44.20. It can be represented
with the transfer function

G(s)= C(sI− ε−1A)−1,

= εC(εsI−A)−1,

=: εḠ(εs).

(44.22)

Identifying Ḡ(s)= C(sI−A)−1, we see that, if

γ2 := sup
ω
σ(Ḡ(jω)), (44.23)

then
sup
ω
σ(G( jω))= εγ2. (44 24)

We conclude from the small gain theorem that, if ε<
1
γ1γ2

, then the composite system (Equa-

tions 44.19 through 44 21), with inputs d1 and d2 and outputs y1 = A−1Bα̇(x) and y2 = Cζ, is finite
gain stable.
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44.3.2 The Classical Passivity Theorem

Another very popular condition used to guarantee graph separation is given in the passivity theorem.
For the most straightforward passivity result, the number of input channels must equal the number of
output channels for each feedback component. We then identify the relative location of the graphs of the
feedback components using a condition involving the integral of the product of the input and the output
signals. This operation is known as the inner product, denoted 〈·, ·〉. In particular, for two signals u and y
of the same dimension defined on the semi-infinite interval,

〈u, y〉 :=
∫ ∞

0
uT (t)y(t) dt. (44.25)

Note that 〈u, y〉 = 〈y, u〉 and 〈u, u〉 = ||u||22. A dynamical system is passive if, for each input–output pair
(u, y) and each τ> 0, 〈uτ, yτ〉 ≥ 0. The terminology used here comes from the special case where the input
and output are a voltage and a current, respectively, and the energy absorbed by the dynamical system,
which is the inner product of the input and output, is nonnegative.

Again by analogy to a static map whose graph lies in the plane, passivity of a dynamical system can
be viewed as the condition that the graph is constrained to the darkly shaded region in Figure 44.3,
i.e., the first and third quadrants of the plane. This graph and the inverse graph of a second system
would be separated if, for example, the inverse graph of the second system were constrained to the
lightly shaded region in Figure 44.3, i.e., the second and fourth quadrants but bounded away from
the horizontal and vertical axes by an increasing and unbounded distance. But, this is the same as
asking that the graph of the second system followed by the scaling “−1,” i.e., all pairs (u,−y), be
constrained to the first and third quadrants, again bounded away from the axes by an increasing and
unbounded distance, as in Figure 44.4a. For classical passivity theorems, this region is given a linear
boundary as in Figure 44.4b. Notice that, for points (u◦, y◦) in the plane, if u◦ · y◦ ≥ ε(u2◦ + y2◦) then
(u◦, y◦) is in the first or third quadrant, and (ε)−1|u◦| ≥ |y◦| ≥ ε|u◦| as in Figure 44.4b. This leads to

Inverse
graph of ∑2

Graph of ∑1

y

u

FIGURE 44.3 General passivity-based interconnection.
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Graph of ∑

(a) (b)y

u

Graph of ∑

y

u

FIGURE 44.4 Different notions of input and output strict passivity.

the following stronger version of passivity. A dynamical system is input and output strictly passive
if a strictly positive real number ε exists so that, for each input–output pair (u, y) and each τ> 0,
〈uτ, yτ〉 ≥ ε

(||uτ||22+ ||yτ||22).
There are intermediate versions of passivity which are also useful. These correspond to asking for an

increasing and unbounded distance from either the horizontal axis or the vertical axis but not both. For
example, a dynamical system is input strictly passive if a strictly positive real number ε exists so that, for
each input–output pair (u, y) and each τ> 0, 〈uτ, yτ〉 ≥ ε||uτ||22. Similarly, a dynamical system is output
strictly passive if a strictly positive real number ε exists so that, for each input–output pair (u, y) and
each τ> 0, 〈uτ, yτ〉 ≥ ε||yτ||22. It is worth noting that input and output strict passivity is equivalent to
input strict passive plus finite gain stability. This can be shown with standard manipulations of the inner
product. Also, the reader is warned that all three types of strict passivity mentioned above are frequently
called “strict passivity” in the literature.

Again by thinking of a graph of a system as a set of points in the plane, output strict passivity is the
condition that the graph is constrained to the darkly shaded region in Figure 44.5, i.e., the first and third
quadrants with an increasing and unbounded distance from the vertical axis. To complement such a
graph, consider a second dynamical system which, when followed by the scaling “−1,” is also output
strictly passive. Such a system has a graph (without the “−1” scaling) constrained to the second and
fourth quadrants with an increasing and unbounded distance from the vertical axis. In other words, its
inverse graph is constrained to the lightly shaded region of Figure 44.5, i.e., to the second and fourth
quadrants but with an increasing and unbounded distance from the horizontal axis. The conclusions
that we can then draw, using the graph separation theorem, are summarized in the following passivity
theorem.

Theorem 44.3: Passivity Theorem

If one dynamical system and the other dynamical system followed by the scaling “−1” are

• both input strictly passive, OR
• both output strictly passive, OR
• respectively, passive and input and output strictly passive,

then the well-defined interconnection is finite gain stable in the 2-norm.
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Inverse
graph of ∑2

Graph of ∑1

y

u

FIGURE 44.5 Interconnection of output strictly passive systems.

To apply this theorem, we need a way to verify that the (possibly scaled) feedback components are
appropriately passive. For stable SISO systems with real, rational transfer function G(s), it again follows
from Parseval’s theorem that, if

Re G( jω)≥ 0,

for all real values of ω, then the system is passive. If the quantity Re G(jω) is positive and uniformly
bounded away from zero for all real values ofω, then the linear system is input and output strictly passive.
Similarly, if ε> 0 exists so that, for all real values of ω,

Re G(jω− ε)≥ 0, (44.26)

then the linear system is output strictly passive. So, for SISO systems modeled with real, rational transfer
functions, passivity and the various forms of strict passivity can again be easily checked by means of a
graphical approach such as a Nyquist plot.

More generally, for any dynamical system that can be modeled with a smooth, finite dimensional
ordinary differential equation,

ẋ = f (x)+ g(x)u, x(0)= 0

y = h(x),
(44.27)

if a strictly positive real number ε exists and a nonnegative function V : Rn → R≥ 0 with V (0)= 0
satisfying

∂V

∂x
(x)f (x)≤−εhT (x)h(x), (44.28)

and
∂V

∂x
(x)g(x)= hT (x), (44.29)

then the system is output strictly passive. With ε= 0, the system is passive. Both of these results are
established by integrating V̇ over the semi-infinite interval.
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Example 44.2:

(This example is prompted by the work in Berghuis and Nijmeijer, Syst. Control Lett., 1993, 21, 289–
295.) Consider a “completely controlled dissipative Euler-Lagrange” system with generalized “forces”
F , generalized coordinates q, uniformly positive definite “inertia” matrix I(q), Rayleigh dissipation
function R(q̇) and, say positive, potential V (q) starting from the position qd . Let the dynamics of the
system be given by the Euler-Lagrange-Rayleigh equations,

˙︷ ︸︸ ︷
∂L

∂q̇
(q, q̇)= ∂L

∂q
(q, q̇)+ F, − ∂L

∂q
(q̇)

q(0)= qd, q̇(0)= 0, (44.30)

where L is the Lagrangian

L(q, q̇)= 1
2

q̇,I(q) q̇− V (q). (44.31)

Along the solution of Equation 44.30,

L̇= ∂L

∂q̇
q̈+ ∂L

∂q
q̇= ∂L

∂q̇
q̈+

⎡
⎢⎣
˙︷︸︸︷

∂L

∂q̇
− F, + ∂R

∂q̇

⎤
⎥⎦ q̇, (44.32)

=
˙︷ ︸︸ ︷(

∂L

∂q̇
q̇

)
−
[

F, − ∂R

∂q̇

]
q̇=

˙︷ ︸︸ ︷(
∂q̇,I(q) q̇

)
−
[

F, − ∂R

∂q̇

]
q̇, (44.33)

= 2
˙︷ ︸︸ ︷

L+ V −
[

F, − ∂R

∂q̇

]
q̇=−2 V̇ +

[
F, − ∂R

∂q̇

]
q̇. (44 34)

We will suppose that ε> 0 exists so that

∂R

∂q̇
(q̇) q̇ ≥ ε |q̇|2. (44.35)

Now let Vd be a function so that the modified potential

Vm = V + Vd (44.36)

has a global minimum at q= qd , and let the generalized “force” be

F = −∂Vd
∂q

(q) + Fm. (44.37)

We can see that the system (Equation 44.30) combined with Equation 44.37, having input Fm and
output q̇, is output strictly passive by integrating the derivative of the defined Hamiltonian,

H = 1
2

q̇,I(q) q̇ + Vm(q) = L + 2 V + Vd . (44.38)

Indeed the derivative is

Ḣ =
[

F,m −
∂R

∂q̇

]
q̇ (44.39)

and, integrating, for each τ 〈[
Fmτ −

∂R

∂q̇
(q̇τ),

]
, q̇τ

〉
= H(τ)−H(0). (44.40)

Since H ≥ 0, H(0)= 0 and Equation 44.35 holds

〈Fmτ, q̇τ〉 ≥ ε||q̇τ||22. (44.41)

Using the notation from Figure 44.1, let Σ1 be the system (Equations 44.30 and 44.37) with input
Fm and output q̇. Let Σ2 be any system that, when followed by the scaling “−1,” is output strictly
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passive. Then, according to the passivity theorem, the composite feedback system as given in Fig-
ure 44.1 is finite gain stable using the 2-norm. One possibility for Σ2 is minus the identity mapping.
However, there is interest in choosing Σ2 followed by the scaling “−1” as a linear, output strictly
passive compensator which, in addition, has no direct feed-through term. The reason is that if, d2 in
Figure 44.1 is identically zero, we can implement Σ2 with measurement only of q and without q̇. In
general,

G(s)q̇= G(s)s

(
1
s

q̇

)
= G(s)s(q− qd ), (44.42)

and the system G(s)s is implementable if G(s) has no direct feed-through terms. To design an output
strictly passive linear system without direct feed-through, let A be a matrix having all eigenvalues
with strictly negative real parts so that, by a well-known result in linear systems theory, a positive
definite matrix P exists satisfying

AT P+ PA=−I. (44.43)

Then, for any B matrix of appropriate dimensions, the system modeled by the transfer function,

G(s)=−BT P(sI−A)−1B, (44.44)

followed by the scaling “−1,” is output strictly passive. To see this, consider a state-space realization

ẋ = Ax+ Bu x(0)= 0

y = BT Px ,
(44.45)

and note that

˙︷ ︸︸ ︷
x,P x =−x,x + 2 x,P B u (44.46)

=−x,x + 2 y,u. (44.47)

But, with Equation 44.45, for some strictly positive real number c,

2c y,y ≤ x,x . (44.48)

So, integrating Equation 44.47 and with P positive definite, for all τ,

〈yτ, uτ〉 ≥ c||yτ||22. (44.49)

As a point of interest, one could verify that

G(s)s=−BT PA(sI−A)−1B− BT PB. (44.50)

44.3.3 Simple Nonlinear Separation Theorems

In this section we illustrate how allowing regions with nonlinear boundaries in the small gain and passivity
contexts may be useful. First we need a class of functions to describe nonlinear boundaries. A proper
separation function is a function from the nonnegative real numbers to the nonnegative real numbers
which is continuous, zero at zero, strictly increasing and unbounded. The main difference between a gain
function and a proper separation function is that the latter is invertible, and the inverse is another proper
separation function.

44.3.3.1 Nonlinear Passivity

We will briefly discuss a definition of nonlinear input and output strict passivity. To our knowledge, this
idea has not been used much in the literature. The notion replaces the linear boundaries in the input
and output strict passivity definition by nonlinear boundaries as in Figure 44.4a. A dynamical system
is nonlinearly input and output strictly passive if a proper separation function ρ exists so that, for each
input–output pair (u, y) and each τ> 0, 〈uτ, yτ〉 ≥ ||uτ||2ρ(||uτ||2)+ ||yτ||2ρ(||yτ||2). (Note that in the
classical definition of strict passivity, ρ(ζ)= εζ for all ζ≥ 0.)
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Theorem 44.4: Nonlinear Passivity Theorem

If one dynamical system is passive and the other dynamical system followed by the scaling “−1” is nonlinearly
input and output strictly passive, then the well-defined interconnection is stable using the 2-norm.

Example 44.3:

LetΣ1 be a single integrator system,

ẋ1 = u1 x1(0)= 0

y1 = x1.
(44.51)

This system is passive because

0≤ 1
2 x1(τ)2 =

∫ τ

0

d

dt
1
2 x(t)2 dt =

∫ τ

0
y1(t)u1(t) dt = 〈y1τ , u1τ 〉. (44.52)

LetΣ2 be a system which scales the instantaneous value of the input according to the energy of the
input:

ẋ2 = u2
2 x2(0)= 0

y2 =−u2

(
1

1+ |x2|0.25

)
.

(44.53)

This system followed by the scaling “−1” is nonlinearly strictly passive. To see this, first note that

x2(t)= ||u2t ||22 (44 54)

which is a nondecreasing function of t. So,

〈−y2τ , u2τ 〉 =
∫ τ

0
u2

2(t)
(

1

1+ |x2(t)|0.25

)
dt,

≥
(

1

1+ |x2(τ)|0.25

)∫ τ

0
u2

2(t) dt,

=
(

1

1+ ||u2τ ||0.5
2

)
||u2τ ||22.

(44.55)

Now we can define

ρ(ζ) := 0.5ζ

1+ ζ0.5 , (44.56)

which is a proper separation function, so that

〈−y2τ , u2τ 〉 ≥ 2ρ(||u2τ ||2)||u2τ ||2. (44.57)

Finally, note that

||y2τ ||22 =
∫ τ

0
u2

2(t)
1(

1+ x0.25
2 (t)

)2 dt ≤ ||u2τ ||22, (44.58)

so that
〈−y2τ , u2τ 〉 ≥ ρ(||u2τ ||2)||u2τ ||2+ ρ(||y2τ ||2)||y2τ ||2. (44.59)
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Inverse
graph of ∑2

Graph of ∑1

y

u

(γ2(ξ), ξ)

(ζ, γ1(ζ))

FIGURE 44.6 Nonlinear small gain theorem.

The conclusion that we can then draw from the nonlinear passivity theorem is that the interconnec-
tion of these two systems:

ẋ1 =−(x1+ d2)
(

1

1+ |x2|0.25

)
+ d1, ẋ2 = (x1+ d2)2,

y1 = x1, and y2 =−(x1+ d2)
(

1

1+ |x2|0.25

) (44.60)

is stable when measuring input (d1, d2) and output (y1, y2) using the 2-norm.

44.3.3.2 Nonlinear Small Gain

Just as with passivity, the idea behind the small gain theorem does not require the use of linear boundaries.
Consider a well-defined interconnection where each feedback component is stable but not necessarily
finite gain stable. Let γ1 be a stability gain function for Σ1 and let γ2 be a stability gain function for Σ2.
Then the graph separation condition will be satisfied if the distance between the curves (ζ, γ1(ζ)) and
(γ2(ξ), ξ) grows without bound as in Figure 44.6. This is equivalent to asking whether it is possible to add
to the curve (ζ, γ1(ζ)) in the vertical direction and to the curve (γ2(ξ), ξ) in the horizontal direction, by an
increasing and unbounded amount, to obtain new curves

(
ζ, γ1(ζ)+ ρ(ζ)

)
and

(
γ2(ξ)+ ρ(ξ), ξ

)
where ρ

is a proper separation function, so that the modified first curve is never above the modified second curve.
If this is possible, we will say that the composition of the functions γ1 and γ2 is a strict contraction. To say
that a curve (ζ, γ̃1(ζ)) is never above a second curve (γ̃2(ξ), ξ) is equivalent to saying that γ̃1(γ̃2(ζ))≤ ζ or
γ̃2(γ̃1(ζ))≤ ζ for all ζ≥ 0. (Equivalently, we will write γ̃1 ◦ γ̃2 ≤ Id or γ̃2 ◦ γ̃1 ≤ Id.) So, requiring that the
composition of γ1 and γ2 is a strict contraction is equivalent to requiring that a strictly proper separation
function ρ exists so that (γ1+ ρ) ◦ (γ2+ ρ)≤ Id (equivalently (γ2+ ρ) ◦ (γ1+ ρ)≤ Id). This condition
was made precise in [3]. (See also [2].) Note that it is not enough to add to just one curve because it is
possible for the vertical or horizontal distance to grow without bound while the total distance remains
bounded. Finally, note that, if the gain functions are linear, the condition is the same as the condition that
the product of the gains is less than one.
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Theorem 44.5: Nonlinear Small Gain Theorem

If each feedback component is stable (with gain functions γ1 and γ2) and the composition of the gains is a
strict contraction, then the well-defined interconnection is stable.

To apply the nonlinear small gain theorem, we need a way to verify that the feedback components are
stable. To date, the most common setting for using the nonlinear small gain theorem is when measuring
the input and output using the∞-norm. For a nonlinear system which can be represented by a smooth,
ordinary differential equation,

ẋ = f (x, u), x(0)= 0, and y = h(x, u), (44.61)

where h(0, 0)= 0, the system is stable (with respect to the∞-norm) if there exist a positive definite and
radially unbounded function V : Rn → R≥ 0, a proper separation function ψ, and a gain function γ̃ so
that

∂V

∂x
f (x, u)≤−ψ(|x|)+ γ̃(|u|). (44.62)

Since V is positive definite and radially unbounded, additional proper separation functions α and ᾱ exist
so that

α(|x|)≤ V (x)≤ ᾱ(|x|). (44.63)

Also, because h is continuous and zero at zero, gain functions φx and φu exist so that

|h(x, u)| ≤ φx(|x|)+φu(|u|). (44.64)

Given all of these functions, a stability gain function can be computed as

γ= φx ◦ α−1 ◦ ᾱ ◦ψ−1 ◦ γ̃+φu. (44.65)

For more details, the reader is directed to [8].

Example 44.4:

Consider the composite system,

ẋ = Ax+ Bsat(z+ d1), x(0)= 0

ż =−z+ ε(exp(|x| + d2)− 1) , z(0)= 0,
(44.66)

where x ∈ R
n, z ∈ R, the eigenvalues of A all have strictly negative real part, ε is a small parameter, and

sat(s)= sgn(s) min{|s|, 1}. This composite system is a well-defined interconnection of the subsystems

ẋ = Ax+ Bsat(u1), x(0)= 0

Σ1 :
y1 = |x|

(44.67)

and

ż =−z+ ε (exp(u2)− 1
)

, z(0)= 0

Σ2 :
y2 = z.

(44.68)
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A gain function for theΣ1 system is the product of the∞-gain for the linear system

ẋ = Ax+ Bu, x(0)= 0

y = x ,
(44.69)

which we will call γ̄1, with the function sat(s), i.e., for the systemΣ1,

||y||∞ ≤ γ̄1sat(||u1||∞). (44.70)

For the systemΣ2,

||z||∞ ≤ |ε| (exp
(||u2||∞

)− 1
)

. (44.71)

The distance between the curves (ζ, γ̄1sat(ζ)) and (|ε| (exp
(
ξ
)− 1

)
, ξ) must grow without bound.

Graphically, one can see that a necessary and sufficient condition for this is that

|ε|< 1
exp(γ̄1)− 1

. (44.72)

44.3.4 General Conic Regions

There are many different ways to partition the ambient space to establish the graph separation condition
in Equation 44.5. So far we have looked at only two very specific sufficient conditions, the small gain
theorem and the passivity theorem. The general idea in these theorems is to constrain signals in the graph
ofΣ1 within some conic region, and signals in the inverse graph ofΣ2 outside of this conic region. Conic
regions more general than those used for the small gain and passivity theorems can be generated by using
operators on the input–output pairs of the feedback components.

Let C and R be operators on truncated ordered pairs in the ambient space, and let γ be a gain function.
We say that the graph ofΣ1 is inside Cone(C, R, γ) if, for each (u, y)=: z belonging to the graph ofΣ1,

||C(zτ)|| ≤ γ(||R(zτ)||), for all τ. (44.73)

On the other hand, we say that the inverse graph ofΣ2 is strictly outside Cone(C, R, γ) if a proper separation
function ρ exists so that, for each (y, u)=: x belonging to the inverse graph ofΣ2,

||C(xτ)|| ≥ γ ◦ (Id+ ρ)(||R(xτ)||)+ ρ(||xτ||), for all τ. (44.74)

We will only consider the case where the maps C and R are incrementally stable, i.e., a gain function γ̄
exists so that, for each x1 and x2 in the ambient space and all τ,

||C(x1τ )−C(x2τ )|| ≤ γ̄(||x1τ − x2τ ||)
||R(x1τ )−R(x2τ )|| ≤ γ̄(||x1τ − x2τ ||).

(44.75)

In this case, the following result holds.

Theorem 44.6: Nonlinear Conic Sector Theorem

If the graph ofΣ1 is inside CONE(C, R, γ) and the inverse graph ofΣ2 is strictly outside CONE(C, R, γ), then
the well-defined interconnection is stable.

When γ and ρ are linear functions, the well-defined interconnection is finite gain stable.
The small gain and passivity theorems we have discussed can be interpreted in the framework of the

nonlinear conic sector theorem. For example, for the nonlinear small gain theorem, the operator C is a
projection onto the second coordinate in the ambient space, and R is a projection onto the first coordinate;
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ϕ(u, t)

u

–(c – r)

–(c + r)

FIGURE 44.7 Instantaneous sector.

γ is the gain function γ1, and the small gain condition guarantees that the inverse graph of Σ2 is strictly
outside of the cone specified by this C, R and γ.

In the remaining subsections, we will discuss other useful choices for the operators C and R.

44.3.4.1 The Classical Conic Sector (Circle) Theorem

For linear SISO systems connected to memoryless nonlinearities, there is an additional classical result,
known as the circle theorem, which follows from the nonlinear conic sector theorem using the 2-norm
and taking

C
(
u, y

)= y+ cu

R
(
u, y

)= ru r ≥ 0

γ(ζ)= ζ.
(44.76)

Suppose φ is a memoryless nonlinearity which satisfies

|φ(u, t)+ cu| ≤ |ru| for all t, u. (44.77)

Graphically, the constraint on φ is shown in Figure 44.7. (In the case shown, c > r > 0.) We will use the
notation Sector[−(c+ r),−(c− r)] for the memoryless nonlinearity. It is also clear that the graph of φ lies
in the CONE(C, R, γ) with C, R, γ defined in Equation 44.76. For a linear, time invariant, finite dimensional
SISO system, whether its inverse graph is strictly outside of this cone can be determined by examining
the Nyquist plot of its transfer function. The condition on the Nyquist plot is expressed relative to a disk
Dc,r in the complex plane centered on the real axis passing through the points on the real axis with real
parts−1/(c+ r) and−1/(c− r) as shown in Figure 44.8.

Theorem 44.7: Circle Theorem

Let r ≥ 0, and consider a well-defined interconnection of a memoryless nonlinearity belonging to
SECTOR[−(c+ r),−(c− r)] with a SISO system having a real, rational transfer function G(s). If
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D

– 1
(c – r)

– 1

ℑ[s]

IR[s]

(c + r)– 1
c

FIGURE 44.8 A disc in the complex plane.

• r > c, G(s) is stable and the Nyquist plot of G(s) lies in the interior of the disc Dc,r , or
• r = c, G(s) is stable and the Nyquist plot of G(s) is bounded away and to the right of the vertical line

passing through the real axis at the value−1/(c+ r), or
• r < c, the Nyquist plot of G(s) (with Nyquist path indented into the right-half plane) is outside of

and bounded away from the disc Dc,r , and the number of times the plot encircles this disc in the
counterclockwise direction is equal to the number of poles of G(s) with strictly positive real parts,

then the interconnection is finite gain stable.

Case 1 is similar to the small gain theorem, and case 2 is similar to the passivity theorem. We will now
explain case 3 in more detail. Let n(s) and d(s) represent, respectively, the numerator and denominator
polynomials of G(s). Since the point (−1/c, 0) is inside the disc Dc,r , it follows, from the assumption of the
theorem together with the well-known Nyquist stability condition, that all of the roots of the polynomial
d(s)+ cn(s) have negative real parts. Then y = G(s)u= N(s)D(s)−1u where

D(s) := d(s)

d(s)+ cn(s)
, and N(s) := n(s)

d(s)+ cn(s)
, (44.78)

and, by taking z = D(s)−1u, we can describe all of the possible input–output pairs as

(u, y)= (D(s)z, N(s)z
)

. (44.79)

Notice that D(s)+ cN(s)= 1, so that

||u+ cy||2 = ||z||2. (44.80)

To put a lower bound on this expression in terms of ||u||2 and ||y||2, to show that the graph is strictly
outside of the cone defined in Equation 44.76, we will need the 2-norm gains for systems modeled by the
transfer functions N(s) and D(s). We will use the symbols γN and γD for these gains. The condition of
the circle theorem guarantees that γN < r−1. To see this, note that

N(s)= G(s)

1+ cG(s)
(44.81)



�

�

�

�

� �

44-18 Control System Advanced Methods

implying

γN := sup
ω∈R

∣∣∣∣ G(jω)

1+ cG(jω)

∣∣∣∣ . (44.82)

But

|1+ c G(jω)|2− r2|G( jω)|2
= (c Re

{
G( jω)

}+ 1
)2+ c2 Im2 {G( jω)

}− r2 Re2 {G( jω)
}− r2 Im2 {G( jω)

}
,

= (c2− r2)

(
Re
{

G( jω)
}+ c

c2− r2

)2

+ (c2− r2) Im2 {G( jω)
}− r2

c2− r2 .

(44.83)

Setting the latter expression to zero defines the boundary of the disc Dc,r . Since the expression is positive
outside of this disc, it follows that γN < r−1.

Returning to the calculation initiated in Equation 44.80, note that γN < r−1 implies that a strictly
positive real number ε exists so that

(1− εγD)γ−1
N ≥ r+ 2ε. (44.84)

So,

||u+ cy||2 = ||z||2 = (1− εγD)||z||2+ εγD||z||2,

≥ (1− εγD)γ−1
N ||y||2+ ε||u||2,

≥ (r+ ε)||y||2+ ε(||u||2+ ||y||2).

(44.85)

We conclude that the inverse graph of the linear system is strictly outside of the CONE(C, R, γ) as defined
in Equation 44.76.

Note, incidentally, that N(s) is the closed loop transfer function from d1 to y1 for the special case
where the memoryless nonlinearity satisfies φ(u)=−cu. This suggests another way of determining sta-
bility: first make a preliminary loop transformation with the feedback −cu, changing the original linear
system into the system with transfer function N(s) and changing the nonlinearity into a new nonlin-
earity φ̃ satisfying |φ̃(u, t)| ≤ r|u|. Then apply the classical small gain theorem to the resulting feedback
system.

Example 44.5:

Let

G(s)= 175

(s− 1)(s+ 4)2 . (44.86)

The Nyquist plot of G(s) is shown in Figure 44.9. Because G(s) has one pole with positive real part, only
the third condition of the circle theorem can apply. A disc centered at−8.1 on the real axis and with
radius 2.2 can be placed inside the left loop of the Nyquist plot. Such a disc corresponds to the values
c = 0.293 and r = 0.079. Because the Nyquist plot encircles this disc once in the counterclockwise
direction, it follows that the standard feedback connection with the feedback components G(s) and
a memoryless nonlinearity constrained to the SECTOR[−0.372,−0.214] is stable using the 2-norm.

44.3.4.2 Coprime Fractions

Typical input–output stability results based on stable coprime fractions are corollaries of the conic sector
theorem. For example, suppose both Σ1 and Σ2 are modeled by transfer functions G1(s) and G2(s).
Moreover, assume stable (in any p-norm) transfer functions N1, D1, Ñ1, D̃1, N2 and D2 exist so that D1,
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FIGURE 44.9 The Nyquist plot for G(s) in Example 44.5.

D2 and D̃1 are invertible, and

G1 = N1D−1
1 = D̃−1

1 Ñ1

G2 = N2D−1
2

Id = D̃1D2− Ñ1N2.

(44.87)

Let C(u, y)= D̃1(s)y− Ñ1(s)u, which is incrementally stable in any p-norm, let R(u, y)= 0, and let
γ≡ 0. Then, the graph of Σ1 is inside and the inverse graph of Σ2 is strictly outside CONE(C, R, γ) and
thus the feedback loop is finite gain stable in any p-norm.

To verify these claims about the properties of the graphs, first recognize that the graph of Σi can be
represented as

GΣi =
(
Di(s)z, Ni(s)z

)
(44.88)

where z represents any reasonable signal. Then, for signals in the graph ofΣ1,

C
(
D1(s)zτ, N1(s)zτ

)= D̃1(s)N1(s)zτ− Ñ1(s)D1(s)zτ ≡ 0. (44.89)

Conversely, for signals in the inverse graph ofΣ2,

∥∥C
(
N2(s)zτ, D2(s)zτ

)∥∥= ∥∥D̃1(s)D2(s)zτ− Ñ1(s)N2(s)zτ
∥∥

= ‖zτ‖ ≥ ε
∥∥(N2(s)zτ, D2(s)zτ

)∥∥ (44.90)

for some strictly positive real number ε. The last inequality follows from the fact that D2 and N2 are finite
gain stable.

Example 44.6:

(This example is drawn from the work in Potvin, M-J., Jeswiet, J., and Piedboeuf, J.-C. , Trans.
NAMRI/SME 1994, XXII, pp 373–377.) Let Σ1 represent the fractional Voigt–Kelvin model for the
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relation between stress and strain in structures displaying plasticity. For suitable values of Young’s
modulus, damping magnitude, and order of derivative for the strain, the transfer function ofΣ1 is

g1(s)= 1

1+√s
.

Integral feedback control, g2(s)=−1
s

, may be used for asymptotic tracking. Here

N1(s)= 1
s+ 1

, D1(s)= 1+√s

s+ 1
,

N2(s)=− s+ 1

1+ s(1+√s)
, D2(s)= s(s+ 1)

1+ s(1+√s)
.

(44.91)

It can be shown that these fractions are stable linear operators, and thereby incrementally stable
in the 2-norm. (This fact is equivalent to proving nominal stability and can be shown using Nyquist
theory.) Moreover, it is easy to see that D1D2−N1N2 = 1 so that the feedback loop is stable and
finite gain stable.

44.3.4.3 Robustness of Stability and the Gap Metric

It is clear from the original graph separation theorem that, if a well-defined interconnection is stable, i.e.,
the appropriate graphs are separated in distance, then modifications of the feedback components will not
destroy stability if the modified graphs are close to the original graphs.

Given two systemsΣ1 andΣ, define 9δ(Σ1,Σ)= α if α is the smallest number for which

x ∈ GΣ, =⇒ dτ(x, GΣ1 )≤ α‖x‖τ for all τ.

The quantity 9δ(·, ·) is called the “directed gap” between the two systems and characterizes basic neighbor-
hoods where stability as well as closed-loop properties are preserved under small perturbations from the
nominal systemΣ1 to a nearby systemΣ.

More specifically, if the interconnection of (Σ1,Σ2) is finite gain stable, we define the gain βΣ1,Σ2 as
the smallest real number so that∥∥∥∥

(
d1+ y2

y1

)∥∥∥∥
τ

≤ βΣ1,Σ2

∥∥∥∥
(

d1

d2

)∥∥∥∥
τ

, for all τ.

IfΣ is such that
9δ(Σ1,Σ)βΣ1,Σ2 < 1,

then the interconnection of (Σ,Σ2) is also finite gain stable.
As a special case, letΣ,Σ1,Σ2 represent linear systems acting on finite energy signals. Further, assume

that stable transfer functions N , D exist where D is invertible, G1 = ND−1, and N and D are normalized
so that DT (−s)D(s)+NT (−s)N(s)= Id. Then, the class of systems in a ball with radius γ ≥ 0, measured
in the directed gap, is given by CONE(C, R, γ), where R = Id and

C = Id−
(

D(s)
N(s)

)
P+(DT (−s), NT (−s))

where P+ designates the truncation of the Laplace transform of finite energy signals to the part with poles
in the left half plane. At the same time, if βΣ1,Σ2 < 1/γ, then it can be shown thatΣ2 is strictly outside the
cone CONE(C, R, γ) and, therefore, stability of the interconnection of Σ with Σ2 is guaranteed for any Σ
inside CONE(C, R, γ).

GivenΣ andΣ1, the computation of the directed gap reduces to a standard H∞-optimization problem
(see [1]). Also, given Σ1, the computation of a controller Σ2, which stabilizes a maximal cone around
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Σ1, reduces to a standard H∞-optimization problem [1] and forms the basis of the H∞-loop shaping
procedure for linear systems introduced in [4].

A second key result which prompted introducing the gap metric is the claim that the behavior of the
feedback interconnection ofΣ andΣ2 is “similar” to that of the interconnection ofΣ1 andΣ2 if, and only
if, the distance between Σ and Σ1, measured using the gap metric, is small (i.e., Σ lies within a “small
aperture” cone aroundΣ1). The “gap” function is defined as

δ(Σ1,Σ)=max{9δ(Σ1,Σ), 9δ(Σ,Σ1)}
to “symmetrize” the distance function 9δ(·, ·) with respect to the order of the arguments. Then, the above
claim can be stated more precisely as follows: for each ε> 0, a ζ(ε) > 0 exists so that

δ(Σ1,Σ) < ζ(ε) =⇒ ‖x− x1‖τ < ε‖d‖τ
where d =

(
d1

d2

)
is an arbitrary signal in the ambient space and x (resp. x1) represents the response

(
d1+ y2

y1

)
of the feedback interconnection of (Σ,Σ2) (resp. (Σ1,Σ2)). Conversely, if ‖x− x1‖τ < ε‖d‖τ

for all d and τ, then δ(Σ1,Σ)≤ ε.

Defining Terms

Ambient space: the Cartesian product space containing the inverse graph ofΣ2 and the graph ofΣ1.
Distance (from a signal to a set): measured using a norm function; the infimum, over all signals in the

set, of the norm of the difference between the signal and a signal in the set; see Equation 44.4; used
to characterize necessary and sufficient conditions for input–output stability; see Section 44.2.

Dynamical system: an object which produces an output signal for each input signal.
Feedback components: the dynamical systems which make up a well-defined interconnection.
Finite gain stable system: a dynamical system is finite gain stable if a nonnegative constant exists so that,

for each input–output pair, the norm of the output is bounded by the norm of the input times
the constant.

Gain function: a function from the nonnegative real numbers to the nonnegative real numbers which is
continuous, nondecreasing and zero when its argument is zero; used to characterize stability;
see Section 44.2; some form of the symbol γ is usually used.

Graph (of a dynamical system): the set of ordered input–output pairs (u, y).
Inner product: defined for signals of the same dimension defined on the semi-infinite interval; the integral

from zero to infinity of the component-wise product of the two signals.
Inside (or strictly outside) CONE(C, R, γ): used to characterize the graph or inverse graph of a system;

determined by whether or not signals in the graph or inverse graph satisfy certain inequalities
involving the operators C and R and the gain function γ; see Equations 44.73 and 44.74; used in
the conic sector theorem.

Inverse graph (of a dynamical system): the set of ordered output-input pairs (y, u).
Norm function (|| · ||): used to measure the size of signals defined on the semi-infinite interval; examples

are the p-norms p ∈ [1,∞] (see Equations 44.1 and 44.2).
Parseval’s theorem: used to make connections between properties of graphs for SISO systems modeled

with real, rational transfer functions and frequency domain characteristics of their transfer
functions; Parseval’s theorem relates the inner product of signals to their Fourier transforms
if they exist. For example, it states that, if two scalar signals u and y, assumed to be zero for
negative values of time, have Fourier transforms û(jω) and ŷ(jω) then

〈u, y〉 = 1

2π

∫ ∞

−∞
ŷ∗(jω)û(jω) dω.
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Passive: terminology resulting from electrical network theory; a dynamical system is passive if the inner
product of each input–output pair is nonnegative.

Proper separation function: a function from the nonnegative real numbers to the nonnegative real num-
bers which is continuous, zero at zero, strictly increasing and unbounded; such functions are
invertible on the nonnegative real numbers; used to characterize nonlinear separation theorems;
some form of the symbol ρ is usually used.

Semi-infinite interval: the time interval [0,∞).
Signal: a “reasonable” vector-valued function defined on a finite or semi-infinite time interval; by “rea-

sonable” we mean piecewise continuous or measurable.
SISO systems: an abbreviation for single input, single output systems.
Stable system: a dynamical system is stable if a gain function exists so that, for each input–output pair,

the norm of the output is bounded by the gain function evaluated at the norm of the input.
Strict contraction: the composition of two gain functions γ1 and γ2 is a strict contraction if a proper

separation function ρ exists so that (γ1+ ρ) ◦ (γ2+ ρ)≤ Id, where Id(ζ)= ζ and γ̃1 ◦ γ̃2(ζ)=
γ̃1(γ̃2(ζ)). Graphically, this is the equivalent to the curve (ζ, γ1(ζ)+ ρ(ζ)) never being above the
curve (γ2(ξ)+ ρ(ξ), ξ). This concept is used to state the nonlinear small gain theorem.

Strictly passive: We have used various notions of strictly passive including input-, output-, input and
output-, and nonlinear input and output-strictly passive. All notions strengthen the requirement
that the inner product of the input–output pairs be positive by requiring a positive lower bound
that depends on the 2-norm of the input and/or output.

Truncated signal: A signal defined on the semi-infinite interval which is derived from another signal (not
necessarily defined on the semi-infinite interval) by first appending zeros to extend the signal
onto the semi-infinite interval and then keeping the first part of the signal and setting the rest
of the signal to zero. Used to measure the size of finite portions of signals.

Well-defined interconnection: An interconnection of two dynamical systems in the configuration of
Figure 44.1 which results in another dynamical system, i.e., one in which an output signal is
produced for each input signal.

References

1. Georgiou, T.T. and Smith, M.C., Optimal robustness in the gap metric, IEEE Trans. Auto. Control, 35,
673–686, 1990.

2. Jiang, Z.P., Teel, A.R., and Praly, L., Small-gain theorem for ISS systems and applications, Math. Control,
Sign., Syst., 7(2), 95–120, 1995.

3. Mareels, I.M.Y. and Hill, D.J., Monotone stability of nonlinear feedback systems, J. Math. Syst., Est.
Control, 2(3), 275–291, 1992.

4. McFarlane, D.C. and Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant
Descriptions, Lecture Notes in Control and Information Sciences, Springer-Verlag, vol. 138, 1989.

5. Popov, V.M., Absolute stability of nonlinear systems of automatic control, Auto. Remote Control, 22,
857–875, 1961.

6. Safonov, M., Stability and Robustness of Multivariable Feedback Systems, The MIT Press, Cambridge,
MA, 1980.

7. Sandberg, I.W., On the L2-boundedness of solutions of nonlinear functional equations, Bell Sys. Tech. J.,
43, 1581–1599, 1964.

8. Sontag, E., Smooth stabilization implies coprime factorization, IEEE Trans. Auto. Control, 34, 435–443,
1989.

9. Zames, G., On the input–output stability of time-varying nonlinear feedback systems, Part I: Conditions
using concepts of loop gain, conicity, and positivity, IEEE Trans. Auto. Control, 11, 228–238, 1969.

10. Zames, G., On the input–output stability of time-varying nonlinear feedback systems, Part II: Conditions
involving circles in the frequency plane and sector nonlinearities, IEEE Trans. Auto. Control, 11, 465–
476, 1966.



�

�

�

�

� �

Input–Output Stability 44-23

Further Reading

As mentioned at the outset, the material presented in this chapter is based on the results in [6,7,9,10]. In the
latter, a more general feedback interconnection structure is considered where nonzero initial conditions
can also be consider as inputs.

Other excellent references on input–output stability include The Analysis of Feedback Systems, 1971,
by J.C. Willems and Feedback Systems: Input–Output Properties, 1975, by C. Desoer and M. Vidyasagar.
A nice text addressing the factorization method in linear systems control design is Control Systems
Synthesis: A Factorization Approach, 1985, by M. Vidyasagar. A treatment of input–output stability for
linear, infinite dimensional systems can be found in Chapter 6 of Nonlinear Systems Analysis, 1993, by
M. Vidyasagar. That chapter also discusses many of the connections between input–output stability and
state-space (Lyapunov) stability. Another excellent reference is Nonlinear Systems, 1992, by H. Khalil.

There are results similar to the circle theorem that we have not discussed. They go under the heading
of “multiplier” results and apply to feedback loops with a linear element and a memoryless, nonlinear
element with extra restrictions such as time invariance and constrained slope. Special cases are the well-
known Popov and off-axis circle criterion. Some of these results can be recovered using the general conic
sector theorem although we have not taken the time to do this. Other results, like the Popov criterion,
impose extra smoothness conditions on the external inputs which are not found in the standard problem.
References for these problems are Hyperstability of Control Systems, 1973, V.M. Popov, the English
translation of a book originally published in 1966, and Frequency Domain Criteria for Absolute Stability,
1973, by K.S. Narendra and J.H. Taylor.

Another topic closely related to these multiplier results is the structured small gain theorem for linear
systems which lends to much of the μ-synthesis control design methodology. This is described, for
example, in μ-Analysis and Synthesis Toolbox, 1991, by G. Balas, J. Doyle, K. Glover, A. Packard and R.
Smith.

There are many advanced topics concerning input–output stability that we have not addressed. These
include the study of small-signal stability, well-posedness of feedback loops, and control design based on
input–output stability principles. Many articles on these topics frequently appear in control and systems
theory journals such as IEEE Transactions on Automatic Control, Automatica, International Journal of
Control, Systems and Control Letters, Mathematics of Control, Signals, and Systems, to name a few.
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45.1 Introduction

The notion of input-to-state stability (ISS) was introduced in [21]. Together with several variants, also
discussed in this article, it provides theoretical concepts that describe various desirable stability features
of a mapping u(·) �→ (·) from (time-dependent) inputs to outputs (or internal states). Prominent among
these features are that inputs that are bounded, “eventually small,” “integrally small,” or convergent,
should lead to outputs with the respective property. In addition, ISS and related notions quantify in
what manner initial states affect transient behavior. The discussion in this article focuses on stability
notions relative to globally attractive steady states, but a more general theory is also possible, that allows
consideration of more arbitrary attractors, as well as robust and/or adaptive concepts. The reader is
referred to the cited literature, as well as the textbooks [5,7,8,12,14,15,20], for extensions of the theory
as well as applications, The paper [26] may also be consulted for further references and an exposition of
many extensions of the concepts and results discussed in this chapter.

45-1
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45.1.1 Operator and Lyapunov Stability

Broadly speaking, there are two main competing approaches to system stability: the state-space approach
usually associated with the name of Lyapunov, and the operator approach, of which George Zames was
one of the main proponents and developers and which was the subject of major contributions by Sandberg,
Willems, Safonov, and others. In the operator approach, one studies the i/o mapping:

(
x0, u(·)) �→ y(·),

R
n× [Lq(0,+∞)

]m → [
Lq(0,+∞)

]p
,

that sends initial states and input functions into output functions. This includes the special case when the
output is the internal state of a system. The notation Lq refers to spaces of functions whose qth power is
integrable; typical choices are q= 2 or q=∞. This approach permits the use of Hilbert or Banach space
techniques, and elegantly generalizes to nonlinear systems many properties of linear systems, especially in
the context of robustness analysis. The state-space approach, in contrast, is geared to the study of systems
without inputs, but is better suited to the study of nonlinear dynamics, and it allows the use of geometric
and topological ideas. The ISS notion combines these dual views of stability.

45.1.2 The Class of Systems

This chapter considers systems with inputs and outputs in the usual sense of control theory [24]:

ẋ(t) = f (x(t), u(t)), y(t)= h(x(t))

(the arguments “t” is often omitted). There are n state variables, m input channels, and p output channels.
States x(t) take values in Euclidean space R

n, and the inputs (also called “controls” or “disturbances”
depending on the context) are measurable locally essentially bounded maps u(·) : [0,∞)→ R

m. Output
values y(t) take values in R

p, The map f : Rn×R
m → R

n is assumed to be locally Lipschitz with f (0, 0)=
0, and h : Rn → R

p is continuous with h(0)= 0. These two properties mean that the state x = 0 is an
equilibrium when the input is u= 0, and the corresponding output is y = 0. Many of these assumptions
can be weakened considerably, and the cited references should be consulted for more details. The solution,
defined on some maximal interval [0, tmax(x0, u)), for each initial state x0 and input u, is denoted as
x(t, x0, u), and in particular, for systems with no inputs

ẋ(t) = f (x(t)),

just as x(t, x0). The zero-system associated to ẋ = f (x, u) is by definition the system with no inputs
ẋ = f (x, 0). Euclidean norm is written as |x|. For a function of time, typically an input or an output, ‖u‖,
or ‖u‖∞ for emphasis, is the (essential) supremum or “sup” norm (possibly +∞, if u is not bounded).
The norm of the restriction of a signal to an interval I is denoted by ‖uI‖∞ (or just‖uI‖).

45.1.3 Notions of Stability

It is convenient to introduce “comparison functions” to quantify stability. A class K∞ function is a function
α : R≥0 → R≥0 which is continuous, strictly increasing, unbounded, and satisfies α(0)= 0 and a class KL
function is a function β : R≥0×R≥0 → R≥0 such that β(·, t) ∈K∞ for each t and β(r, t) decreases to zero
as t →∞, for each fixed r.

For a system with no inputs ẋ = f (x), there is a well-known notion of global asymptotic stability
(GAS), or “0-GAS” when referring to the zero-system ẋ = f (x, 0) associated to a given system with inputs
ẋ = f (x, u)) due to Lyapunov, and usually defined in “ε-δ” terms. It is an easy exercise to show that this
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standard definition is in fact equivalent to the following statement:

(∃ β ∈ KL) |x(t, x0)| ≤ β (|x0|, t
)

, ∀ x0, ∀ ≥ 0.

Observe that, since β decreases on t, in particular:

|x(t, x0)| ≤ β
(|x0|, 0

)
, ∀ x0, ∀ t ≥ 0,

which provides the Lyapunov-stability or “small overshoot” part of the GAS definition (because β
(|x0|, 0

)
is small whenever

∣∣x0
∣∣ is small, by continuity of β(·, 0) and β(0, 0)= 0), while the fact that β→ 0 as t →∞

gives

|x(t, x0)| ≤ β (|x0|, t
)
−→

t→∞0, ∀ x0,

which is the attractivity (convergence to steady state) part of the GAS definition.
In [23, Proposition 7], it is shown that for each β ∈KL there exist two class K∞ functions α1, α2 such

that:
β(r, t) ≤ α2

(
α1(r)e−t) , ∀ s, t ≥ 0,

which means that the GAS estimate can be also written in the form:

|x(t, x0)| ≤ α2
(
α1(|x0|)e−t)

and thus suggests a close analogy between GAS and an exponential stability estimate |x(t, x0)| ≤ ∣∣x0
∣∣ e−at .

In general, 0-GAS does not guarantee good behavior with respect to inputs. To explain why this is
relevant, let us briefly recall the case of linear systems. A linear system in control theory is the one for
which both f and h are linear mappings:

ẋ = Ax+Bu, y = Cx

with A ∈ R
n×n, B ∈ R

n×m, and C ∈ R
p×n. It is well-known that a linear system is 0-GAS (or “internally

stable”) if and only if the matrix A is a Hurwitz matrix, that is to say, all the eigenvalues of A have
negative real parts. Such a 0-GAS linear system automatically satisfies all reasonable i/o stability properties:
bounded inputs result in bounded state trajectories as well as outputs, inputs converging to zero imply
solutions (and outputs) converging to zero, and so forth [24]. But the 0-GAS property is not equivalent, in
general, to i/o, or even input/state, stability of any sort. The implication that 0-GAS implies i/o stability
is in general false for nonlinear systems. For a simple example, consider the following one-dimensional
(n= 1) system, with scalar (m= 1) inputs:

ẋ =−x+ (x2+ 1)u.

This system is clearly 0-GAS, since it reduces to ẋ =−x when u≡ 0. On the other hand, solutions
diverge even for some inputs that converge to zero. For example, take the control u(t)= (2t+ 2)−1/2

and x0 =√2, This results in the unbounded trajectory x(t)= (2t+ 2)1/2. This is in spite of the fact that
the unforced system is GAS. Thus, the converging-input converging-state property does not hold. Even
worse, the bounded input u≡ 1 results in a finite-time explosion. This example is not artificial, as it arises
in feedback-linearization design, mentioned below.

45.1.4 Gains for Linear Systems

For linear systems, the three most typical ways of defining i/o stability in terms of operators
{

L2, L∞
}→ {

L2, L∞
}

are as follows. The statements below should be read, more precisely, as asking that there should exist
positive c and λ such that the given estimates hold for all t ≥ 0 and all solutions of ẋ = Ax+Bu with
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x(0)= x0 and arbitrary inputs u(·). The estimates are written in terms of states x(t), but similar notions
can be defined for more general outputs y = Cx.

“L∞→ L∞” : c
∣∣x(t, x0, u)

∣∣ ≤ ∣∣x0
∣∣ e−λt + sup

s∈[0,t]
|u(s)|

“L2 → L∞” : c
∣∣x(t, x0, u)

∣∣ ≤ ∣∣x0
∣∣ e−λt +

∫ t

0
|u(s)|2 ds

“L2 → L2” : c
∫ t

0

∣∣x(s, x0, u)
∣∣2 ds ≤ ∣∣x0

∣∣+
∫ t

0
|u(s)|2 ds

(the missing case L∞→ L2 is less interesting, being too restrictive).
For linear systems, these estimates are all equivalent in the following sense: if an estimate of one type

exists, then the other two estimates exist too, although the actual numerical values of the constants c,λ
appearing in the different estimates are not necessarily the same: they are associated to various types of
norms on input spaces and spaces of solutions, such as “H2” and “H∞” gains, [4]. It is easy to see that
existence of the above estimates is simply equivalent to the requirement that the A matrix be Hurwitz,
that is to say, to 0-GAS, the asymptotic stability of the unforced system ẋ = Ax.

45.1.5 Nonlinear Coordinate Changes

A “geometric” view of nonlinear dynamics suggests that notions of stability should be invariant under
(nonlinear) changes of variables: under a change of variables, a system which is stable in some technical
sense should remain stable, in the same sense, when written in the new coordinates. This principle leads
to the ISS notion when starting from the above linear notions, as elaborated next. In this article, a change
of coordinates is any map

T : R
n→R

n

such that the following properties hold: T(0)= 0 (this fixes the equilibrium at x = 0), T is continuous,
and it admits an inverse map T−1 : Rn→R

n, which is well-defined and continuous as well. In other
words, T is a homeomorphism which fixes the origin. One could add the requirement that T should be
differentiable, or that it be differentiable at least for x �= 0, but the discussion to follow does not require
this additional condition. Now suppose that a system ẋ = f (x) is exponentially stable:

|x(t, x0)| ≤ c |x0|e−λt ∀ t ≥ 0 (some c,λ> 0)

and that a change of variables is performed:

x(t)= T(z(t)).

Consider, for this transformation T , the following two functions:

α(r) := min|x|≥r
|T(x)| and α(r) :=max|x|≤r

|T(x)| ,

which are well-defined because T and its inverse are both continuous, and are both functions of class K∞
(easy exercise). Then,

α(|x|) ≤ |T(x)| ≤ α(|x|), ∀ x ∈ R
n

and therefore, substituting x(t, x0)= T(z(t, z0)) in the exponential stability estimate:

α(|z(t, z0)|) ≤ c α(|z0|) e−λt ,

where z0 = T−1(x0). Thus, the estimate in z-coordinates takes the following form:

|z(t, z0)| ≤ β
(|z0|, t

)
,

where β(r, t)= α−1
(
cα
(
re−λt

))
is a function of class KL. (As remarked earlier, any possible function of

class KL can be written in this factored form, actually.)
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In summary, the concept of GAS is rederived simply by making coordinate changes on globally
exponentially stable systems. The same considerations, applied to systems with inputs, lead to ISS and
related notions. In addition to the state transformation x(t)= T(z(t)), there is now also a transformation
u(t)= S(v(t)), where S is a change of variables in the space of input values R

m. Arguing analogously as
for systems without inputs, one arrives to the following three concepts:

L∞→ L∞ � α
(|x(t)|) ≤ β(

∣∣x0
∣∣ , t)+ sup

s∈[0,t]
γ(|u(s)|),

L2 → L∞ � α
(|x(t)|) ≤ β(

∣∣x0
∣∣ , t)+

∫ t

0
γ(|u(s)|) ds

L2 → L2 �
∫ t

0
α
(|x(s)|) ds ≤ α0(

∣∣x0
∣∣)+

∫ t

0
γ(|u(s)|) ds

(x(t) is written instead of the more cumbersome x(t, x0, u)). If more general outputs y = h(x) instead of
states are the object of interest, these notions can be modified in several ways, as discussed later in the
chapter. Unless otherwise stated, the convention when giving an estimate like the ones above is that there
should exist comparison functions (α, α0 ∈K∞, β ∈ KL) such that the estimates hold for all inputs and
initial states. These three notions will be studied one at a time.

45.2 ISS and Feedback Redesign

The “L∞→ L∞” estimate, under changes of variables, leads to the concept of ISS: there should exist some
β ∈ KL and γ ∈ K∞ such that

|x(t)| ≤ β(
∣∣x0
∣∣ , t)+ γ (‖u‖∞

)
(ISS)

holds for all solutions (meaning that the estimate is valid for all inputs u(·), all initial conditions x0,
and all t ≥ 0). Note that there is now no function “α” is the left-hand side because, redefining β and
γ, one can assume, without loss of generality, that α is the identity: if α(r)≤ β(s, t)+ γ(t) holds, then
also r ≤ α−1(β(s, t)+ γ(t))≤ α−1(2β(s, t))+ α−1(2γ(t)); since α−1(2β(·, ·)) ∈KL and α−1(2γ(·)) ∈ K∞,
an estimate of the same type, but now with no “α,” is obtained. In addition, note that the supremum
sups∈[0,t] γ(|u(s)|) over the interval [0, t] is the same as γ(‖u[0,t]‖∞)= γ(sups∈[0,t](|u(s)|)), because the
function γ is increasing, so one may replace this term by γ(‖u‖∞), where ‖u‖∞ = sups∈[0,∞) γ(|u(s)|)
is the sup norm of the input, because the solution x(t) depends only on values u(s), s ≤ t (so, one could
equally well consider the input that has values≡ 0 for all s > t).

Note that a potentially weaker definition might be that the ISS estimate should hold merely for all
t ∈ [0, tmax(x0, u)). However, this potentially different definition turns out to be equivalent. Indeed, if
the estimate holds a priori only on such a maximal interval of definition, then, since the right-hand
is bounded on [0, T], for any T > 0 (recall that inputs are by definition assumed to be bounded on
any bounded interval), it follows that the maximal solution of x(t, x0, u) is bounded, and therefore that
tmax(x0, u)=+∞ (e.g., Proposition C.3.6 in [24]). In other words, the ISS estimate holds for all t ≥ 0
automatically, if it is required to hold merely for maximal solutions.

Since, in general, max{a, b} ≤ a+ b ≤max{2a, 2b}, one can restate the ISS condition in a slightly
different manner, namely, asking for the existence of some β ∈ KL and γ ∈K∞ (in general, different
from the ones in the ISS definition) such that

|x(t)| ≤max
{
β(|x0|, t), γ

(‖u‖∞
)}

holds for all solutions. Such redefinitions, using “max” instead of sum, are also possible for each of the
other concepts to be introduced later.
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x

≈ |x0|

≈ ||u||∞

FIGURE 45.1 ISS combines overshoot and asymptotic behavior.

Intuitively, the definition of ISS requires that, for t large, the size of the state must be bounded by some
function of the sup norm—that is to say, the amplitude—of inputs (because β(

∣∣x0
∣∣ , t)→ 0 as t →∞). On

the other hand, the β(
∣∣x0
∣∣ , 0) term may dominate for small t, and this serves to quantify the magnitude

of the transient (overshoot) behavior as a function of the size of the initial state x0 (Figure 45.1).
The ISS superposition theorem, discussed later, shows that ISS is, in a precise mathematical sense, the

conjunction of two properties, one of them dealing with asymptotic bounds on
∣∣x0
∣∣ as a function of the

magnitude of the input, and the other one providing a transient term obtained when one ignores inputs.

45.2.1 Linear Case, for Comparison

For internally stable linear systems ẋ = Ax+Bu, the variation of parameters formula gives immediately
the following inequality:

|x(t)| ≤ β(t)
∣∣x0
∣∣+ γ ‖u‖∞ ,

where

β(t)= ∥∥etA
∥∥ → 0 and γ= ‖B‖

∫ ∞

0

∥∥esA
∥∥ ds < ∞.

This is a particular case of the ISS estimate, |x(t)| ≤ β(|x0|, t)+ γ (‖u‖∞
)
, with linear comparison func-

tions.

45.2.2 Feedback Redesign

The notion of ISS arose originally as a way to precisely formulate, and then answer the following question.
Suppose that, as in many problems in control theory, a system ẋ = f (x, u) has been stabilized by means of
a feedback law u= k(x) (Figure 45.2), that is to say, k was chosen such that the origin of the closed-loop
system ẋ = f (x, k(x)) is globally asymptotically stable. (See e.g. [25] for a discussion of mathematical

u x

x = f (x, υ)

u = k(x)

FIGURE 45.2 Feedback stabilization, closed-loop system ẋ = f (x, k(x)).
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u

d υ

x

x = f (x, υ)

u = k(x)

FIGURE 45.3 Actuator disturbances, closed-loop system ẋ = f (x, k(x)+ d).

aspects of state feedback stabilization.) Typically, the design of k was performed by ignoring the effect of
possible input disturbances d(·) (also called actuator disturbances). These “disturbances” might represent
true noise or perhaps errors in the calculation of the value k(x) by a physical controller, or modeling
uncertainty in the controller or the system itself. What is the effect of considering disturbances? In order to
analyze the problem, d is incorporated into the model, and one studies the new system ẋ = f (x, k(x)+ d),
where d is seen as an input (Figure 45.3). One may then ask what is the effect of d on the behavior of the
system.

Disturbances d may well destabilize the system, and the problem may arise even when using a routine
technique for control design, feedback linearization. To appreciate this issue, take the following very
simple example. Given is the system

ẋ = f (x, u)= x+ (x2+ 1)u.

In order to stabilize it, substitute u= ũ/(x2+ 1) (a preliminary feedback transformation), rendering the
system linear with respect to the new input ũ: ẋ = x+ ũ, and then use ũ=−2x in order to obtain the
closed-loop system ẋ =−x. In other words, in terms of the original input u, the feedback law is

k(x)= −2x

x2+ 1
,

so that f (x, k(x))=−x. This is a GAS system. The effect of the disturbance input d is analyzed as follows.
The system ẋ = f (x, k(x)+ d) is

ẋ =−x+ (x2+ 1) d.

As seen before, this system has solutions that diverge to infinity even for inputs d that converge to
zero; moreover, the constant input d ≡ 1 results in solutions that explode in finite time. Thus k(x)=
−2x/(x2+ 1) was not a good feedback law, in the sense that its performance degraded drastically once
actuator disturbances were taken into account.

The key observation for what follows is that, if one adds a correction term “−x” to the above formula
for k(x), so that now

k̃(x)= −2x

x2+ 1
− x,

then the system ẋ = f (x, k̃(x)+ d) with disturbance d as input becomes, instead

ẋ = −2x− x3+ (x2+ 1) d

and this system is much better behaved: it is still GAS when there are no disturbances (it reduces to ẋ =
−2x− x3) but, in addition, it is ISS (easy to verify directly, or appealing to some of the characterizations
mentioned later). Intuitively, for large x, the term −x3 serves to dominate the term (x2+ 1)d, for all
bounded disturbances d(·), and this prevents the state from getting too large.
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d

~

x = f (x, u)

u = k(x)

FIGURE 45.4 Different feedback ISS-stabilizes.

45.2.3 A Feedback Redesign Theorem for Actuator Disturbances

This example is an instance of a general result, which says that whenever there is some feedback law that
stabilizes a system, there is also a (possibly different) feedback so that the system with external input d
(Figure 45.4) is ISS.

Theorem 45.1: [21]

Consider a system affine in controls

ẋ = f (x, u)= g0(x)+
m∑

i=1

uigi(x)
(
g0(0)= 0

)

and suppose that there is some differentiable feedback law u= k(x) so that

ẋ = f (x, k(x))

has x = 0 as a GAS equilibrium. Then, there is a feedback law u= k̃(x) such that

ẋ = f (x, k̃(x)+ d)

is ISS with input d(·)

The proof is very easy, once the appropriate technical machinery has been introduced: one starts by
considering a smooth Lyapunov function V for GAS of the origin in the system ẋ = f (x, k(x)) (such a
V always exists, by classical converse theorems); then k̂(x) := −(LGV (x))T =−(∇V (x)G(x))T , where G
is the matrix function whose columns are the gi , i = 1, . . . , m and T indicates transpose, provides the
necessary correction term to add to k. This term has the same degree of smoothness as the vector fields
making up the original system. Somewhat less than differentiability of the original k is enough for this
argument: continuity is enough. However, if no continuous feedback stabilizer exists, then no smooth
V can be found. (Continuous stabilization of nonlinear systems is basically equivalent to the existence
of what are called smooth control-Lyapunov functions, see e.g. [25].) In that case, if only discontinuous
stabilizers are available, the result can still be generalized, see [17], but the situation is harder to analyze,
since even the notion of “solution” of the closed-loop system ẋ = f (x, k(x)) has to be carefully defined.

There is also a redefinition procedure for systems that are not affine on inputs, but the result as stated
above is false in that generality, and is much less interesting; see [22] for a discussion.

The above feedback redesign theorem is merely the beginning of the story. The reader is referred to
the book [15], and the references given later, for many further developments on the subjects of recursive
feedback design, the “backstepping” approach, and other far-reaching extensions.
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45.3 Equivalences for ISS

This section reviews results that show that ISS is equivalent to several other notions, including asymptotic
gain (AG), existence of robustness margins, dissipativity, and an energy-like stability estimate.

45.3.1 Nonlinear Superposition Principle

Clearly, if a system is ISS, then the system with no inputs ẋ = f (x, 0) is GAS: the term ‖u‖∞ vanishes,
leaving precisely the GAS property. In particular, then, the system ẋ = f (x, u) is 0-stable, meaning that
the origin of the system without inputs ẋ = f (x, 0) is stable in the sense of Lyapunov: for each ε> 0, there
is some δ> 0 such that

∣∣x0
∣∣< δ implies

∣∣x(t, x0)
∣∣< ε. (In comparison function language, one can restate

0-stability as: there is some γ ∈ K such that
∣∣x(t, x0)

∣∣≤ γ(
∣∣x0
∣∣) holds for all small x0.)

On the other hand, since β(
∣∣x0
∣∣ , t)→ 0 as t →∞, for t large one has that the first term in the ISS

estimate |x(t)| ≤max
{
β(|x0|, t), γ

(‖u‖∞
)}

vanishes. Thus, an ISS system satisfies the following “AG”
property: there is some γ ∈ K∞ so that:

lim
t→+∞

∣∣x(t, x0, u)
∣∣ ≤ γ

(‖u‖∞
)

, ∀ x0, u(·) (AG)

(see Figure 45.5). In words, for all large enough t, the trajectory exists, and it gets arbitrarily close to
a sphere whose radius is proportional, in a possibly nonlinear way quantified by the function γ, to
the amplitude of the input. In the language of robust control, the estimate (AG) would be called an
“ultimate boundedness” condition; it is a generalization of attractivity (all trajectories converge to zero,
for a system ẋ = f (x) with no inputs) to the case of systems with inputs; the “lim sup” is required
since the limit of x(t) as t →∞ may well not exist. From now on (and analogously when defining
other properties), we will just say “the system is AG” instead of the more cumbersome “satisfies the
AG property.”

Observe that, since only large values of t matter in the limsup, one can equally well consider merely
tails of the input u when computing its sup norm. In other words, one may replace γ(‖u‖∞) by
γ(limt→+∞ |u(t)|), or (since γ is increasing), limt→+∞γ(|u(t)|).

x(0)

x(t)

γ (||u||)

FIGURE 45.5 Asymptotic gain property.
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The surprising fact is that these two necessary conditions are also sufficient. This is summarized by the
ISS superposition theorem:

Theorem 45.2: [29]

A system is ISS if and only if it is 0-stable and AG.

The basic difficulty in the proof of this theorem is in establishing uniform convergence estimates for
the states, that is, in constructing the β function in the ISS estimate, independently of the particular input.
As in optimal control theory, one would like to appeal to compactness arguments (using weak topologies
on inputs), but there is no convexity to allow this. The proof hinges upon a lemma given in [29], which
may be interpreted [6] as a relaxation theorem for differential inclusions, relating GAS of an inclusion
ẋ ∈ F(x) to GAS of its convexification.

A minor variation of the above superposition theorem is as follows. Let us consider the limit property
(LIM):

inf
t≥0
|x(t, x0, u)| ≤ γ(‖u‖∞), ∀ x0, u(·) (LIM)

(for some γ ∈ K∞).

Theorem 45.3: [29]

A system is ISS if and only if it is 0-stable and LIM.

45.3.2 Robust Stability

In this article, a system is said to be robustly stable if it admits a margin of stability ρ, that is, a smooth
function ρ ∈K∞ so the system

ẋ = g(x, d) := f (x, dρ(|x|))

is GAS uniformly in this sense: for some β ∈ KL,

∣∣x(t, x0, d)
∣∣≤ β(

∣∣x0
∣∣ , t)

for all possible d(·) : [0,∞)→ [−1, 1]m. An alternative way to interpret this concept (cf. [28]) is as
uniform GAS of the origin with respect to all possible time-varying feedback laws Δ bounded by ρ:
|Δ(t, x)| ≤ ρ(|x|). In other words, the system

ẋ = f (x,Δ(t, x))

(Figure 45.6) is stable uniformly over all such perturbations Δ. In contrast to the ISS definition, which
deals with all possible “open-loop” inputs, the present notion of robust stability asks about all possible
closed-loop interconnections. One may think of Δ as representing uncertainty in the dynamics of the
original system, for example.

Theorem 45.4: [28]

A system is ISS if and only if it is robustly stable.
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u x

x = f (x, u)

Δ

FIGURE 45.6 Margin of robustness.

Intuitively, the ISS estimate |x(t)| ≤max
{
β(|x0|, t), γ

(‖u‖∞
)}

says that the β term dominates as long
as |u(t)| $ |x(t)| for all t, but |u(t)| $ |x(t)| amounts to u(t)= d(t).ρ(|x(t)|) with an appropriate function
ρ. This is an instance of a “small gain” argument, see below. One analog for linear systems is as follows: if
A is a Hurwitz matrix, then A+Q is also Hurwitz, for all small enough perturbations Q; note that when
Q is a nonsingular matrix, |Qx| is a K∞ function of |x|.

45.3.3 Dissipation

Another characterization of ISS is as a dissipation notion stated in terms of a Lyapunov-like function. A
continuous function V : Rn → R is said to be a storage function if it is positive definite, that is, V (0)= 0
and V (x) > 0 for x �= 0, and proper, that is, V (x)→∞ as |x| →∞. This last property is equivalent to
the requirement that the sets V−1([0, A]) should be compact subsets of R

n, for each A > 0, and in the
engineering literature it is usual to call such functions radially unbounded. It is an easy exercise to show
that V : Rn → R is a storage function if and only if there exist α, α ∈ K∞ such that

α(|x|) ≤ V (x) ≤ α(|x|) ∀ x ∈ R
n

(the lower bound amounts to properness and V (x) > 0 for x �= 0, while the upper bound guarantees
V (0)= 0). For convenience, V̇ : Rn×R

m → R is the function

V̇ (x, u) := ∇V (x) · f (x, u),

which provides, when evaluated at (x(t), u(t)), the derivative dV (x(t))/dt along solutions of ẋ = f (x, u).
An ISS-Lyapunov function for ẋ = f (x, u) is by definition a smooth storage function V for which there

exist functions γ, α ∈ K∞ so that

V̇ (x, u) ≤ −α(|x|)+ γ(|u|), ∀ x, u. (L-ISS)

Integrating, an equivalent statement is that, along all trajectories of the system, there holds the following
dissipation inequality:

V (x(t2))−V (x(t1)) ≤
∫ t2

t1

w(u(s), x(s)) ds,

where, using the terminology of [31], the “supply” function is w(u, x)= γ(|u|)− α(|x|). For systems with
no inputs, an ISS-Lyapunov function is precisely the same object as a Lyapunov function in the usual
sense.

Theorem 45.5: [28]

A system is ISS if and only if it admits a smooth ISS-Lyapunov function.
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Since−α(|x|)≤−α(α−1(V (x))), the ISS-Lyapunov condition can be restated as

V̇ (x, u)≤−α̃(V (x))+ γ(|u|), ∀ x, u

for some α̃ ∈K∞. In fact, one may strengthen this a bit [19]: for any ISS system, there is a always a smooth
ISS-Lyapunov function satisfying the “exponential” estimate V̇ (x, u)≤−V (x)+ γ(|u|).

The sufficiency of the ISS-Lyapunov condition is easy to show, and was already in the original
paper [21]. A sketch of the proof is as follows, assuming for simplicity a dissipation estimate in the
form V̇ (x, u)≤−α(V (x))+ γ(|u|). Given any x and u, either α(V (x))≤ 2γ(|u|) or V̇ ≤−α(V )/2. From
here, one deduces by a comparison theorem that, along all solutions,

V (x(t))≤max
{
β(V (x0), t), α−1(2γ(‖u‖∞))

}
,

where the KL function β(s, t) is the solution y(t) of the initial value problem

ẏ =−1

2
α(y)+ γ(u), y(0)= s.

Finally, an ISS estimate is obtained from V (x0)≤ α(x0).
The proof of the converse part of the theorem is based upon first showing that ISS implies robust stability

in the sense already discussed, and then obtaining a converse Lyapunov theorem for robust stability for the
system ẋ = f (x, dρ(|x|))= g(x, d), which is asymptotically stable uniformly on all Lebesgue-measurable
functions d(·) : R≥0 → B(0, 1). This last theorem was given in [16], and is basically a theorem on Lyapunov
functions for differential inclusions. The classical result of Massera [18] for differential equations (with
no inputs) becomes a special case.

45.3.4 Using “Energy” Estimates Instead of Amplitudes

In linear control theory, H∞ theory studies L2 → L2-induced norms, which under coordinate changes
leads to the following type of estimate:

∫ t

0
α
(|x(s)|) ds ≤ α0(|x0|)+

∫ t

0
γ(|u(s)|) ds

along all solutions, and for some α, α0, γ ∈K∞. Just for the statement of the next result, a system is said
to satisfy an integral–integral estimate if for every initial state x0 and input u, the solution x(t, x0, u) is
defined for all t > 0 and an estimate as above holds. (In contrast to ISS, this definition explicitly demands
that tmax =∞.)

Theorem 45.6: [23]

A system is ISS if and only if it satisfies an integral–integral estimate.

This theorem is quite easy to prove, in view of previous results. A sketch of the proof is as follows. If the
system is ISS, then there is an ISS-Lyapunov function satisfying V̇ (x, u)≤−V (x)+ γ(|u|), so, integrating
along any solution:

∫ t

0
V (x(s)) ds ≤

∫ t

0
V (x(s)) ds+V (x(t))≤ V (x(0))+

∫ t

0
γ(|u(s)|) ds

and thus an integral–integral estimate holds. Conversely, if such an estimate holds, one can prove that
ẋ = f (x, 0) is stable and that an AG exists.
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45.4 Cascade Interconnections

One of the main features of the ISS property is that it behaves well under composition: a cascade
(Figure 45.7) of ISS systems is again ISS, see [21]. This section sketches how the cascade result can
also be seen as a consequence of the dissipation characterization of ISS, and how this suggests a more
general feedback result. For more details regarding the rich theory of ISS small-gain theorems, and their
use in nonlinear feedback design, the references should be consulted. Consider a cascade as follows:

ż = f (z, x),

ẋ = g(x, u),

where each of the two subsystems is assumed to be ISS. Each system admits an ISS-Lyapunov function
Vi . But, moreover, it is always possible (see [27]) to redefine the Vi ’s so that the comparison functions for
both are matched in the following way:

V̇1(z, x)≤ θ(|x|)− α(|z|),

V̇2(x, u)≤ θ̃(|u|)− 2θ(|x|).

Now it is obvious why the full system is ISS: simply use V := V1+V2 as an ISS-Lyapunov function for
the cascade:

V̇ ((x, z), u) ≤ θ̃(|u|)− θ(|x|)− α(|z|).

Of course, in the special case in which the x-subsystem has no inputs, this also proved that the cascade
of a GAS and an ISS system is GAS.

More generally, one may allow a “small gain” feedback as well (Figure 45.8). That is, one allows
inputs u= k(z) as long as they are small enough:

|k(z)| ≤ θ̃−1((1− ε)α(|z|)).

The claim is that the closed-loop system

ż = f (z, x),

ẋ = g(x, k(x))

is GAS. This follows because the same V is a Lyapunov function for the closed-loop system; for (x, z) �= 0:

θ̃(|u|)≤ (1− ε)α(|z|) � V̇ (x, z)≤−θ(|x|)− εα(|z|) < 0.

A far more interesting version of this result, resulting in a composite system with inputs being itself
ISS, is the ISS small-gain theorem due to Jiang et al. [10].

u x z

FIGURE 45.7 Cascade.

x

k

z

FIGURE 45.8 Adding a feedback to the cascade.
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45.5 Integral ISS

Several different properties, including “integral-to-integral” stability, dissipation, robust stability margins,
and AG properties, were all shown to be exactly equivalent to ISS. Thus, it would appear to be difficult
to find a general and interesting concept of nonlinear stability that is truly distinct from ISS. One such
concept, however, does arise when considering a mixed notion which combines the “energy” of the input
with the amplitude of the state. It is obtained from the “L2 → L∞” gain estimate, under coordinate
changes, and it provides a genuinely new concept [23].

A system is said to be integral-input-to-state stable (iISS) provided that there exist α, γ ∈K∞ and
β ∈ KL such that the estimate

α
(|x(t)|)≤ β(|x0|, t)+

∫ t

0
γ(|u(s)|) ds (iISS)

holds along all solutions. Just as with ISS, one could state this property merely for all times t ∈ tmax(x0, u).
Since the right-hand side is bounded on each interval [0, t] (because, inputs are by definition assumed
to be bounded on each finite interval), it is automatically true that tmax(x0, u)=+∞ if such an estimate
holds along maximal solutions. So forward-completeness (solution exists for all t > 0) can be assumed
with no loss of generality.

45.5.1 Other Mixed Notions

A change of variables starting from a system that satisfies a finite operator gain condition from Lp to Lq,
with p �= q both finite, leads naturally to the following type of “weak integral-to-integral” mixed estimate:

∫ t

0
α(|x(s)|) ds ≤ κ(|x0|)+ α

(∫ t

0
γ(|u(s)|) ds

)

for appropriate K∞ functions (note the additional “α”). See [3] for more discussion on how this estimate
is reached, as well as the following result:

Theorem 45.7: [3]

A system satisfies a weak integral-to-integral estimate if and only if it is iISS.

Another interesting variant is found when considering mixed integral/supremum estimates:

α(|x(t)| ≤ β(|x0|, t)+
∫ t

0
γ1(|u(s)|) ds+ γ2(‖u‖∞)

for suitable β ∈ KL and α, γi ∈K∞. One then has:

Theorem 45.8: [3]

A system satisfies a mixed estimate if and only if it is iISS.

45.5.2 Dissipation Characterization of iISS

Recall that a storage function is a continuous V : Rn → R which is positive definite and proper. A smooth
storage function V is an iISS-Lyapunov function for the system ẋ = f (x, u) if there are a γ ∈ K∞ and an
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α : [0,+∞)→ [0,+∞) which is merely positive definite (i.e., α(0)= 0 and α(r) > 0 for r > 0) such that
the inequality

V̇ (x, u)≤−α(|x|)+ γ(|u|) (L-iISS)

holds for all (x, u) ∈ R
n×R

m. To compare, recall that an ISS-Lyapunov function is required to satisfy an
estimate of the same form but where α is required to be of class K∞; since every K∞ function is positive
definite, an ISS-Lyapunov function is also an iISS-Lyapunov function.

Theorem 45.9: [2]

A system is iISS if and only if it admits a smooth iISS-Lyapunov function.

Since an ISS-Lyapunov function is also an iISS one, ISS implies iISS. However, iISS is a strictly weaker
property than ISS, because α may be bounded in the iISS-Lyapunov estimate, which means that V may
increase, and the state become unbounded, even under bounded inputs, so long as γ(|u(t)|) is larger than
the range of α. This is also clear from the iISS definition, since a constant input with |u(t)| = r results in
a term in the right-hand side that grows like rt.

An interesting general class of examples is given by bilinear systems

ẋ =
(

A+
m∑

i=1

uiAi

)
x+Bu

for which the matrix A is Hurwitz. Such systems are always iISS (see [23]), but they are not in general
ISS. For instance, in the case when B= 0, boundedness of trajectories for all constant inputs already
implies that A+∑m

i=1 uiAi must have all eigenvalues with nonpositive real part, for all u ∈ R
m, which is

a condition involving the matrices Ai (e.g., ẋ =−x+ ux is iISS but it is not ISS).
The notion of iISS is useful in situations where an appropriate notion of detectability can be verified

using LaSalle-type arguments. There follow two examples of theorems along these lines.

Theorem 45.10: [2]

A system is iISS if and only if it is 0-GAS and there is a smooth storage function V such that, for some
σ ∈ K∞:

V̇ (x, u) ≤ σ(|u|)
for all (x, u).

The sufficiency part of this result follows from the observation that the 0-GAS property by itself already
implies the existence of a smooth and positive-definite, but not necessarily proper, function V0 such that
V̇0 ≤ γ0(|u|)− α0(|x|) for all (x, u), for some γ0 ∈K∞ and positive-definite α0 (if V0 were proper, then it
would be an iISS-Lyapunov function). Now one uses V0+V as an iISS-Lyapunov function (V provides
properness).

Theorem 45.11: [2]

A system is iISS if and only if there exists an output function y = h(x) (continuous and with h(0)=
0), which provides zero-detectability (u≡ 0 and y ≡ 0⇒ x(t)→ 0) and dissipativity in the following
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sense: there exists a storage function V and σ ∈ K∞, α positive definite, so that:

V̇ (x, u)≤ σ(|u|)− α(h(x))

holds for all (x, u).

The paper [3] contains several additional characterizations of iISS.

45.5.3 Superposition Principles for iISS

There are also AG characterizations for iISS. A system is bounded energy weakly converging state (BEWCS)
if there exists some σ ∈ K∞ so that the following implication holds:∫ +∞

0
σ(|u(s)|) ds <+∞ ⇒ lim inf

t→+∞
∣∣x(t, x0, u)

∣∣= 0 (BEWCS)

(more precisely: if the integral is finite, then tmax(x0, u)=+∞ and the lim inf is zero). It is bounded energy
frequently bounded state (BEFBS) if there exists some σ ∈ K∞ so that the following implication holds:∫ +∞

0
σ(|u(s)|) ds <+∞ ⇒ lim inf

t→+∞
∣∣x(t, x0, u)

∣∣<+∞ (BEFBS)

(again, meaning that tmax(x0, u)=+∞ and the lim inf is finite).

Theorem 45.12: [1]

The following three properties are equivalent for any given system ẋ = f (x, u):

• The system is iISS
• The system is BEWCS and 0-stable
• The system is BEFBS and 0-GAS

45.6 Output Notions

Until now, the chapter discussed only stability of states with respect to inputs. For systems with outputs
ẋ = f (x, u), y = h(x), several new notions can be introduced.

45.6.1 Input-to-Output Stability

If one simply replaces states by outputs in the left-hand side of the estimate defining ISS, there results the
notion of input-to-output stability (IOS): there exist some β ∈ KL and γ ∈ K∞ such that∣∣y(t)

∣∣ ≤ β(|x0|, t)+ γ (‖u‖∞
)

(IOS)

holds for all solutions, where y(t)= h(x(t, x0, u)). (Meaning that the estimate is valid for all inputs u(·), all
initial conditions x0, and all t ≥ 0, and imposing as a requirement that the system be forward complete,
that is, tmax(x0, u)=∞ for all initial states x0 and inputs u.) As earlier, x(t), and hence y(t)= h(x(t)),
depend only on past inputs (“causality”), so one could have used just as well simply used the supremum
of |u(s)| for s ≥ t in the estimate.

A system is bounded-input bounded-state stable (BIBS) if, for some σ ∈ K∞, the following estimate

|x(t)| ≤ max
{
σ(|x0|), σ(‖u‖∞)

}
holds along all solutions. (Note that forward completeness is a consequence of this inequality, even if it is
only required on maximal intervals, since the state is upper bounded by the right-hand side expression.)
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An IOS-Lyapunov function is any smooth function V : Rn → R≥0 so that, for some αi ∈K∞:

α1(|h(x)|)≤ V (x)≤ α2(|x|), ∀ x ∈ R
n, u ∈ R

m

and, for all x, u:
V (x) > α3(|u|) ⇒ ∇V (x) f (x, u) < 0.

One of the key results for IOS is as follows:

Theorem 45.13: [30]

A BIBS system is IOS if and only if it admits an IOS-Lyapunov function.

45.6.2 Detectability and Observability

Recall (see [24] for precise definitions) that an observer for a given system with inputs and outputs
ẋ = f (x, u), y = h(x) is another system which, using only information provided by past input and output
signals, provides an asymptotic (i.e., valid as t →∞) estimate x̂(t) of the state x(t) of the system of interest
(Figure 45.9).

One may think of the observer as a physical system or as an algorithm implemented by a digital
computer. The general problem of building observers is closely related to “incremental” ISS-like notions,
a subject not yet studied enough. This chapter will limit itself to an associated but easier question. When
the ultimate goal is that of stabilization to an equilibrium, say x = 0 in Euclidean space, sometimes a
weaker type of estimate suffices: it may be enough to obtain a norm-estimator which provides merely an
upper bound on the norm |x(t)| of the state x(t); see [9,11,19].

Suppose that an observer exists for a given system. Since x0 = 0 is an equilibrium for ẋ = f (x, 0), and
also h(0)= 0, the solution x(t)≡ 0 is consistent with u≡ 0 and y ≡ 0. Thus, the estimation property
x̂(t)− x(t)→ 0 implies that x̂(t)→ 0. Now consider any state x0 for which u≡ 0 and y ≡ 0, that is,
so that h(x(t, x0, 0))≡ 0. The observer output, which can only depend on u and y, must be the same x̂
as when x0 = 0, so x̂(t)→ 0; then, using once again the definition of observer x̂(t)− x(t, x0, 0)→ 0, it
follows that x(t, x0, 0)→ 0. In summary, a necessary condition for the existence of an observer is that the
“subsystem” of ẋ = f (x, u), y = h(x), consisting of those states for which u≡ 0 produces the output y ≡ 0,
must have x = 0 as a GAS state (Figure 45.10); one says in that case that the system is zero detectable.
(For linear systems, zero detectability is equivalent to detectability or “asymptotic observability” [24]:
two trajectories than produce the same output must approach each other. But this equivalence need not
hold for nonlinear systems.) In a nonlinear context, zero detectability is not “well-posed” enough: to
get a well-behaved notion, one should add explicit requirements to ask that small inputs and outputs
imply that internal states are small too (Figure 45.11), and that inputs and outputs converging to zero

u x
xy

FIGURE 45.9 Observer provides estimate x̂ of state x; x̂(t)− x(t)→ 0 as t →∞.

u ≡ 0 y ≡ 0⇒ →x 0

FIGURE 45.10 Zero detectability.
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u ≈ 0 y ≈ 0⇒ ≈x 0

FIGURE 45.11 Small inputs and outputs imply small states.

u → 0 y → 0→x 0

FIGURE 45.12 Converging inputs and outputs imply convergent states.

as t →∞ implies that states do, too (Figure 45.12). These properties are needed so that “small” errors
in measurements of inputs and outputs processed by the observer give rise to small errors. Furthermore,
one should impose asymptotic bounds on states as a function of input/output bounds, and it is desirable
to quantify “overshoot” (transient behavior). This leads us to the following notion.

45.6.3 Dualizing ISS to OSS and IOSS

A system is input/output to state stable (IOSS) if, for some β ∈ KL and γu, γy ∈K∞,

x(t) ≤ β(|x0|, t)+ γ1
(∥∥u[0,t]

∥∥∞)+ γ2
(∥∥y[0,t]

∥∥∞) (IOSS)

for all initial states and inputs, and all t ∈ [0, Tξ,u). Just as ISS is stronger than 0-GAS, IOSS is stronger
than zero detectability. A special case is when one has no inputs, output to state stability:

|x(t, x0)| ≤ β(|x0|, t)+ γ (∥∥y|[0,t]
∥∥∞)

and this is formally “dual” to ISS, simply replacing inputs u by outputs in the ISS definition. This duality
is only superficial, however, as there seems to be no useful way to obtain theorems for OSS by dualizing
ISS results. (Note that the outputs y depend on the state, not vice versa.)

45.6.4 Lyapunov-Like Characterization of IOSS

To formulate a dissipation characterization, we define an IOSS-Lyapunov function as a smooth storage
function so that

∇V (x) f (x, u)≤−α1(|x|)+ α2(|u|)+ α3(|y|)
for all x ∈ R

n, u ∈ R
m, y ∈ R

p. The main result is

Theorem 45.14: [13]

A system is IOSS if and only if it admits an IOSS-Lyapunov function.

45.6.5 Norm-Estimators

A state-norm-estimator (or state-norm-observer) for a given system is another system

ż = g(z, u, y), with output k : R�×R
p → R≥0

evolving in some Euclidean space R
�, and driven by the inputs and outputs of the original system. It is

required that the output k should be IOS with respect to the inputs u and y, and the true state should be
asymptotically bounded in norm by some function of the norm of the estimator output, with a transient
(overshoot) which depends on both initial states. Formally
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• there are γ̂1, γ̂2 ∈K and β̂ ∈KL so that, for each initial state z0 ∈ R
�, and inputs u and y, and every

t in the interval of definition of the solution z(·, z0, u, y):

k
(
z(t, z0, u, y), y(t)

)≤ β̂(|z0|, t)+ γ̂1
(∥∥u|[0,t]

∥∥)+ γ̂2
(∥∥y|[0,t]

∥∥) ;

• there are ρ ∈K, β ∈ KL so that, for all initial states x0 and z0 of the system and observer, and every
input u: ∣∣x(t, x0, u)

∣∣≤ β(|x0| + |z0|, t)+ ρ (k (z(t, z0, u, yx0,u), yx0,u(t)
))

for all t ∈ [0, tmax(x0, u)), where yx0,u(t)= y(t, x0, u).

Theorem 45.15: [13]

A system admits a state-norm-estimator if and only if it is IOSS.

45.7 The Fundamental Relationship among ISS, IOS, and IOSS

The definitions of the basic ISS-like concepts are consistent and related in an elegant conceptual manner,
as follows:
A system is ISS if and only if it is both IOS and IOSS.
In informal terms:

External stability and detectability ⇐⇒ Internal stability

as it is the case for linear systems. Intuitively, consider the three possible signals in Figure 45.13
The basic idea of the proof is as follows. Suppose that external stability and detectability hold, and

take an input so that u→ 0. Then y → 0 (by external stability), and this then implies that x → 0 (by
detectability). Conversely, if the system is internally stable, then it is i/o stable and detectable. Suppose
that u→ 0. By internal stability, x → 0, and this gives y(t)→ 0 (i/o stability). Detectability is even easier:
if both u(t)→ 0 and y(t)→ 0, then in particular u→ 0, so x → 0 by internal stability. The proof that ISS
is equivalent to the conjunction of IOS and IOSS must keep careful track of the estimates, but the idea is
similar.

45.8 Response to Constant and Periodic Inputs

Systems ẋ = f (x, u) that are ISS have certain noteworthy properties when subject to constant or, more
generally periodic, inputs.

Let V be an ISS-Lyapunov function that satisfies the inequality V̇ (x, u)≤−V (x)+ γ(|u|) for all x, u,
for some γ ∈ K∞. To start with, suppose that ū is any fixed bounded input, and let a := γ(‖ū‖∞), pick any
initial state x0, and consider the solution x(t)= x(t, x0, ū) for this input. Letting v(t) := V (x(t)), it follows
that v̇(t)+ v(t)≤ a so, using et as an integrating factor, v(t)≤ a+ e−t(v(0)− a) for all t ≥ 0. In particular,
if v(0)≤ a it will follow that v(t)≤ a for all t ≥ 0, that is to say, the sublevel set K := {x | V (x)≤ a}
is a forward-invariant set for this input: if x0 ∈ K then x(t)= x(t, x0, ū) ∈ K for all t ≥ 0. Therefore,

u → 0 y → 0→x 0

FIGURE 45.13 Convergent input, state, and/or output.
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MT : x0 �→ x(T , x0, ū) is a continuous mapping from K into K , for each fixed T > 0, and thus, provided
that K has a fixed-point property (every continuous map M : K → K has some fixed point), then for each
T > 0 there exists some state x0 such that x(T , x0, ū)= x0. The set K indeed has the fixed-point property,
as does any sublevel set of a Lyapunov function. To see this, note that V is a Lyapunov function for the
zero-input system ẋ = f (x, 0), and thus, if B is any ball which includes K in its interior, then the map
Q : B→ K which sends any ξ ∈ B into x(tξ, ξ), where tξ is the first time such that x(t, ξ) ∈ K is continuous
(because the vector field is transversal to the boundary of K since ∇V (x).f (x, 0) < 0), and is the identity
on K (that is, Q is a topological retraction). A fixed point of the composition M ◦Q : B→ B is a fixed
point of M.

Now suppose that ū is periodic of period T , ū(t+T)= ū(t) for all t ≥ 0, and pick any x0 which is a
fixed point for MT . Then the solution x(t, x0, ū) is periodic of period T as well. In other words, for each
periodic input, there is a solution of the same period. In particular, if ū is constant, one may pick for each
h > 0 a state xh so that x(h, xh, ū)= xh, and therefore, picking a convergent subsequence xh → x̄ gives
that 0= (1/h)(x(h, xh, ū)− xh)→ f (x̄, ū), so f (x̄, ū)= 0. Thus one also has the conclusion that for each
constant input, there is a steady state.
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46.1 The Problem of Feedback Linearization

A basic problem in control theory is how to use feedback in order to modify the original internal dynamics
of a controlled plant so as to achieve some prescribed behavior. In particular, feedback may be used for the
purpose of imposing, on the associated closed-loop system, the (unforced) behavior of some prescribed
autonomous linear system. When the plant is modeled as a linear time-invariant system, this is known as
the problem of pole placement, while, in the more general case of a nonlinear model, this is known as the
problem of feedback linearization (see [1–4]).

The purpose of this chapter is to present some of the basic features of the theory of feedback
linearization.

Consider a plant modeled by nonlinear differential equations of the form

ẋ = f (x)+ g(x)u (46.1)

y = h(x) (46.2)

having internal state x = (x1, x2, · · · , xn) ∈ R
n, control input u ∈ R and measured output y ∈ R. The

functions

f (x)=

⎛
⎜⎜⎝

f1(x1, x2, · · · , xn)
f2(x1, x2, · · · , xn)

· · ·
fn(x1, x2, · · · , xn)

⎞
⎟⎟⎠ ,

g(x)=

⎛
⎜⎜⎝

g1(x1, x2, · · · , xn)
g2(x1, x2, · · · , xn)

· · ·
gn(x1, x2, · · · , xn)

⎞
⎟⎟⎠ ,

h(x)= h(x1, x2, · · · , xn)

46-1
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are nonlinear functions of their arguments that are assumed to be differentiable a sufficient number
of times.

Changes in the description and in the behavior of this system will be investigated under two types of
transformations: (1) changes of coordinates in the state space and (2) static state feedback control laws,
i.e., memoryless state feedback laws.

In the case of a linear system,

ẋ = Ax+Bu (46.3)

y = Cx (46.4)

a static state feedback control law takes the form

u= Fx+Gv, (46.5)

in which v represents a new control input and F and G are matrices of appropriate dimensions. Moreover,
only linear changes of coordinates are usually considered. This corresponds to the substitution of the
original state vector x with a new vector z related to x by a transformation of the form

z = Tx

where T is a nonsingular matrix. Accordingly, the original description of the system of Equations 46.3
and 46.4 is replaced by a new description

ż = Ãz+ B̃u

y = C̃z

in which
Ã= TAT−1, B̃= TB, C̃ = CT−1.

In the case of a nonlinear system, a static state feedback control law is a control law of the form

u= α(x)+ β(x)v, (46.6)

where v represents a new control input and β(x) is assumed to be nonzero for all x. Moreover, nonlinear
changes of coordinates are considered, i.e., transformations of the form

z =Φ(x) (46.7)

where z is the new state vector andΦ(x) represents a (n-vector-valued) function of n variables,

Φ(x)=

⎛
⎜⎜⎝
φ1(x)
φ2(x)
· · ·
φn(x)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
φ1(x1, x2, · · · , xn)
φ2(x1, x2, · · · , xn)

· · ·
φn(x1, x2, · · · , xn)

⎞
⎟⎟⎠

with the following properties:

1. Φ(x) is invertible; i.e., there exists a functionΦ−1(z) such that

Φ−1(Φ(x))= x, Φ(Φ−1(z))= z

for all x ∈ R
n and all z ∈ R

n.
2. Φ(x) andΦ−1(z) are both smooth mappings i.e., continuous partial derivatives of any order exist

for both mappings.
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A transformation of this type is called a global diffeomorphism. The first property is needed to guarantee
the invertibility of the transformation to yield the original state vector as

x =Φ−1(z)

while the second one guarantees that the description of the system in the new coordinates is still a
smooth one.

Sometimes a transformation possessing both these properties and defined for all x is hard to find and
the properties in question are difficult to check. Thus, in most cases, transformations defined only in a
neighborhood of a given point are of interest. A transformation of this type is called a local diffeomorphism.
To check whether a given transformation is a local diffeomorphism, the following result is very useful.

Proposition 46.1:

SupposeΦ(x) is a smooth function defined on some subset U of R
n. Suppose the Jacobian matrix

∂Φ

∂x
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂φ1

∂x1

∂φ1

∂x2
· · · ∂φ1

∂xn

∂φ2

∂x1

∂φ2

∂x2
· · · ∂φ2

∂xn

· · · · · ·
∂φn

∂x1

∂φn

∂x2
· · · ∂φn

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is nonsingular at a point x = x0. Then, for some suitable open subset U0 of U, containing x0,Φ(x) defines
a local diffeomorphism between U0 and its imageΦ(U0).

The effect of a change of coordinates on the description of a nonlinear system can be analyzed as
follows. Set

z(t)=Φ(x(t))

and differentiate both sides with respect to time to yield

ż(t)= dz

dt
= ∂Φ

∂x

dx

dt
= ∂Φ

∂x
( f (x(t))+ g(x(t))).

Then, expressing x(t) asΦ−1(z(t)), one obtains

ż(t)= f̃ (z(t))+ g̃(z(t))u(t)

y(t)= h̃(z(t))

where

f̃ (z)=
(

∂Φ

∂x
f (x)

)
x=Φ−1(z)

g̃(z)=
(

∂Φ

∂x
g(x)

)
x=Φ−1(z)

h̃(z)= (h(x)
)

x=Φ−1(z) .

The latter are the formulas relating the new description of the system to the original one.
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Given the nonlinear system of Equation 46.1, the problem of feedback linearization consists of finding,
if possible, a change of coordinates of the form of Equation 46.7 and a static state feedback of the form of
Equation 46.6 such that the composed dynamics of Equations 46.1 through 46.6, namely the system

ẋ = f (x)+ g(x)α(x)+ g(x)β(x)v, (46.8)

expressed in the new coordinates z, is the linear and controllable system

ż1 = z2

ż2 = z3

· · ·
żn−1 = zn

żn = v.

46.2 Normal Forms of Single-Input Single-Output Systems

Single-input single-output nonlinear systems can be locally given, by means of a suitable change of
coordinates in the state space, a “normal form” of special interest, in which several important properties
can be put in evidence and which is useful in solving the problem of feedback linearization. In this section,
methods for obtaining this normal form are presented.

Given a real-valued function of x = (x1, . . . , xn)

λ(x)= λ(x1, . . . , xn)

and a (n-vector)-valued function of x

f (x)=
⎛
⎝ f1(x1, . . . , xn)

· · ·
fn(x1, . . . , xn)

⎞
⎠ ,

we define a new real-valued function of x, denoted Lf λ(x), in the following way

Lf λ(x)= Lf λ(x1, . . . , xn)=
n∑

i=1

∂λ

∂xi
fi(x1, . . . , xn).

Setting
∂λ

∂x
=
(

∂λ

∂x1
· · · ∂λ

∂xn

)

the function Lf λ(x) can be expressed in the simple form

Lf λ(x)= ∂λ

∂x
f (x).

The new function Lf λ(x) thus defined is sometimes called the derivative of λ(x) along f (x). Repeated
use of this operation is possible. Thus, for instance, by differentiating λ(x) first along f (x) and then along
g(x), we may construct the function

Lg Lf λ(x)= ∂Lf λ

∂x
g(x),

or, differentiating k times λ(x) along f (x), we may construct a function recursively defined as

Lk
f λ(x)=

∂Lk−1
f λ

∂x
f (x).

With the help of this operation, we introduce the notion of relative degree of a system.
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Definition 46.1:

The single-input single-output nonlinear system

ẋ = f (x)+ g(x)u

y = h(x)

has relative degree r at x0 if:

1. Lg Lk
f h(x)= 0 for all x in a neighborhood of x0 and all k < r− 1.

2. Lg Lr−1
f h(x0) �= 0.

Example 46.1:

Consider the system

ẋ =
⎛
⎝ 0

x2
1 + sin x2
−x2

⎞
⎠+

⎛
⎝exp(x2)

1
0

⎞
⎠ u (46.9)

y = h(x)= x3 . (46.10)

For this system we have

∂h

∂x
= (0 0 1), Lgh(x)= 0, Lf h(x)=−x2

∂(Lf h)
∂x

= (0 − 1 0), LgLf h(x)=−1.

Thus, the system has relative degree 2 at any point x◦. However, if the output function were, for
instance

y = h(x)= x2

then Lgh(x)= 1 and the system would have relative degree 1 at any point x◦.

The notion of relative degree has the following interesting interpretation. Suppose the system at some
time t0 is in the state x(t0)= x0. Calculate the value of y(t), the output of the system, and of its derivatives
with respect to time, y(k)(t), for k = 1, 2, . . . , at t = t0, to obtain

y(t0)= h(x(t0))= h(t0)

y(1)(t)= ∂h

∂x

dx

dt
= ∂h

∂x
(f (x(t))+ g(x(t))u(t))= Lf h(x(t))+ Lg h(x(t))u(t).

If the relative degree r is larger than 1, for all t such that x(t) is near x0, i.e., for all t near t = t0, we
have Lg h(x(t))= 0 and therefore

y(1)(t)= Lf h(x(t)).

This yields

y(2)(t)= ∂Lf h

∂x

dx

dt
= ∂Lf h

∂x
(f (x(t))+ g(x(t))u(t))

= L2
f h(x(t))+ Lg Lf h(x(t))u(t)

Again, if the relative degree is larger than 2, for all t near t = t0, we have Lg Lf h(x(t))= 0 and

y(2)(t)= L2
f h(x(t)).
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Continuing in this way, we get

y(k)(t)= Lk
f h(x(t))

for all k < r and all t near t = t0, and

y(r)(t0)= Lr
f h(x0)+ Lg Lr−1

f h(x0)u(t0).

Thus, r is exactly the number of times y(t) has to be differentiated at t = t0 for u(t0) to appear explicitly.
The above calculations suggest that the functions h(x), Lf h(x), . . . , Lr−1

f h(x) have a special importance.
As a matter of fact, it is possible to show that they can be used in order to define, at least partially, a
local coordinate transformation near x0, where x0 is a point such that Lg Lr−1

f h(x0) �= 0. This is formally
expressed in the following statement.

Proposition 46.2:

Let the system of Equations 46.1 and 46.2 be given and let r be its relative degree at x = x0. Then r ≤ n. Set

φ1(x)= h(x)

φ2(x)= Lf h(x)

· · ·
φr(x)= Lr−1

f h(x).

If r is strictly less than n, it is always possible to find n− r additional functions φr+1(x), . . . ,φn(x) such
that the mapping

Φ(x)=
⎛
⎝φ1(x)
· · ·
φn(x)

⎞
⎠

has a Jacobian matrix that is nonsingular at x0 and therefore qualifies as a local coordinates transformation
in a neighborhood of x0. The value at x0 of these additional functions can be fixed arbitrarily. Moreover, it
is always possible to choose φr+1(x), . . . ,φn(x) in such a way that

Lgφi(x)= 0

for all r+ 1≤ i ≤ n and all x around x0.

The description of the system in the new coordinates zi = φi(x), 1≤ i ≤ n can be derived very easily.
From the previous calculations, we obtain for z1, . . . , zr

dz1

dt
= ∂φ1

∂x

dx

dt
= ∂h

∂x

dx

dt
= Lf h(x(t))= φ2(x(t))= z2(t)

· · ·
dzr−1

dt
= ∂φr−1

∂x

dx

dt
=

∂Lr−2
f h

∂x

dx

dt
= Lr−1

f h(x(t))= φr(x(t))= zr(t).

For zr we obtain
dzr

dt
= Lr

f h(x(t))+ Lg Lr−1
f h(x(t))u(t).



�

�

�

�

� �

Feedback Linearization of Nonlinear Systems 46-7

On the right-hand side of this equation we must now replace x(t) by its expression as a function of z(t),
i.e., x(t)=Φ−1(z(t)). Thus, set

a(z)= Lg Lr−1
f h(Φ−1(z))

b(z)= Lr
f h(Φ−1(z)),

to obtain
dzr

dt
= b(z(t))+ a(z(t))u(t).

As far as the remaining coordinates are concerned, we cannot expect any special structure for the
corresponding equations. If φr+1(x), . . . ,φn(x) have been chosen so that Lgφi(x)= 0, then

dzi

dt
= ∂φi

∂x
(f (x(t))+ g(x(t))u(t))= Lf φi(x(t))+ Lgφi(x(t))u(t)= Lf φi(t).

Setting

qi(z)= Lf φi(Φ
−1(z))

for r+ 1≤ i ≤ n, the latter can be rewritten as

dzi

dt
= qi(z(t)).

Thus, in summary, the state space description of the system in the new coordinates is as follows

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = b(z)+ a(z)u

żr+1 = qr+1(z)

· · ·
żn = qn(z).

In addition to these equations, one has to specify how the output of the system is related to the new state
variables. Since y = h(x), it is immediately seen that

y = z1

The equations thus defined are said to be in normal form. Note that at point z0 =Φ(x0), a(z0) �= 0 by
definition. Thus, the coefficient a(z) is nonzero for all z in a neighborhood of z0.

Example 46.2:

Consider the system of Equations 46.9 and 46.10. In order to find the normal form, we set

z1 = φ1(x)= h(x)= x3

z2 = φ2(x)= Lf h(x)=−x2.
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We now have to find a function φ3(x) that completes the coordinate transformation and is such
that Lgφ3(x)= 0, i.e ,

∂φ3

∂x
g(x)= ∂φ3

∂x1
exp(x2)+ ∂φ3

∂x2
= 0 .

The function

φ3(x)= 1+ x1− exp(x2)

satisfies the equation above. The transformation z =Φ(x) defined by the functions φ1(x), φ2(x), and
φ3(x) has a Jacobian matrix

∂Φ

∂x
=
⎛
⎝0 0 1

0 −1 0
1 − exp(x2) 0

⎞
⎠

which is nonsingular for all x , andΦ(0)= 0. Hence, z =Φ(x) defines a global change of coordinates.
The inverse transformation is given by

x1 = z3− 1+ exp(−z2)

x2 =−z2

x3 = z1 .

In the new coordinates the system is described by

ż1 = z2

ż2 = (1− z3− exp(−z2))2+ sin z2− u

ż3 = exp(−z2)(sin z2− (z3− 1+ exp(−z2))2) .

These equations describe the system in normal form and are globally valid because the coordinate
transformation we considered is global.

46.3 Conditions for Exact Linearization via Feedback

In this section, conditions and constructive procedures are given for a single-input single-output nonlinear
system to be transformed into a linear and controllable system via change of coordinates in the state space
and static state feedback.

The discussion is based on the normal form developed in the previous section. Consider a nonlinear
system having at some point x = x0 relative degree equal to the dimension of the state space, i.e., r = n. In
this case, the change of coordinates required to construct the normal form is given by the function h(x)
and its first n− 1 derivatives along f (x), i.e.,

Φ(x)=

⎛
⎜⎜⎝
φ1(x)
φ2(x)
· · ·
φn(x)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

h(x)
Lf h(x)
· · ·

Ln−1
f h(x)

⎞
⎟⎟⎠ . (46.11)

No additional functions are needed to complete the transformation. In the new coordinates

zi = φi(x)= Li−1
f (x) 1≤ i ≤ n
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the system is described by equations of the form:

ż1 = z2

ż2 = z3

· · ·
żn−1 = zn

żn = b(z)+ a(z)u

where z = (z1, z2, . . . , zn). Recall that at the point z0 =Φ(x0), and hence at all z in a neighborhood of z0,
the function a(z) is nonzero.

Choose now the following state feedback control law

u= 1

a(z)
(−b(z)+ v), (46.12)

which indeed exists and is well defined in a neighborhood of z0. The resulting closed-loop system is
governed by the equations

ż1 = z2 (46.13)

ż2 = z3 (46.14)

· · · (46.15)

żn−1 = zn (46.16)

żn = v, (46.17)

i.e., it is linear and controllable. Thus we conclude that any nonlinear system with relative degree n at
some point x0 can be transformed into a system that is linear and controllable by means of (1) a local
change of coordinates, and (2) a local static state feedback.

The two transformations used in order to obtain the linear form can be interchanged: one can first
apply a feedback and then change the coordinates in the state space, without altering the result. The
feedback needed to achieve this purpose is exactly the feedback of Equation 46.12, but now expressed in
the x coordinates as

u= 1

a(Φ(x))
(−b(Φ(x))+ v). (46.18)

Comparing this with the expressions for a(z) and b(z) given in the previous section, one immediately
realizes that this feedback, expressed in terms of the functions f (x), g(x), h(x), which characterize the
original system, has the form

u= 1

Lg Ln−1
f (x)

(−Ln
f (x)+ v)

An easy calculation shows that the feedback of Equation 46.18, together with the same change of coordi-
nates used so far (Equation 46.11), exactly yields the same linear and controllable system.

If x0 is an equilibrium point for the original nonlinear system, i.e., if f (x0)= 0, and if also h(x0)= 0,
then

φ1(x0)= h(x0)= 0

and

φi(x0)=
∂Li−1

f h

∂x
f (x0)= 0

for all 2≤ i ≤ n, so that z0 =Φ(x0)= 0. Note that a condition like h(x0)= 0 can always be satisfied
by means of a suitable translation of the origin of the output space. Thus, we conclude that, if x0 is
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an equilibrium point for the original system, and this system has relative degree n at x0, there is a
feedback control law (defined in a neighborhood of x0) and a coordinate transformation (also defined in
a neighborhood of x0) that change the system into a linear and controllable one, defined in a neighborhood
of the origin.

New feedback controls can be imposed on the linear system thus obtained; for example,

v = Kz

where
K = (k1 k2 · · · kn

)
can be chosen to meet some given control specifications, e.g., to assign a specific set of eigenvalues or
to satisfy an optimality criterion. Recalling the expression of the zis as functions of x, the feedback in
question can be rewritten as

v = k1h(x)+ k2Lf h(x)+ · · ·+ knLn−1
f h(x)

i.e., in the form of a nonlinear feedback from the state x of the original description of the system.
Up to this point of the presentation, the existence of an “output” function h(x) relative to which the

system of Equations 46.1 and 46.2 has relative degree exactly equal to n (at x0) has been key in making
it possible to transform the system into a linear and controllable one. Now, if such a function h(x) is
not available beforehand, either because the actual output of the system does not satisfy the conditions
required to have relative degree n or simply because no specific output is defined for the given system,
the question arises whether it is possible to find an appropriate h(x) that allows output linearization. This
question is answered in the remaining part of this section.

Clearly, the problem consists of finding a function, h(x), satisfying the conditions

Lg h(x)= Lg Lf h(x)= · · · = Lg Ln−2
f h(x)= 0

for all x near x0 and
Lg Ln−2

f h(x0) �= 0.

We shall see that these conditions can be transformed into a partial differential equation for h(x),
for which conditions for existence of solutions as well as constructive integration procedures are well
known. In order to express this, we need to introduce another type of differential operation. Given two
(n-vector)-valued functions of x = (x1, . . . , xn), f (x) and g(x), we define a new (n-vector)-valued function
of x, denoted [ f , g](x), in the following way

[ f , g](x)= ∂g

∂x
f (x)− ∂f

∂x
g(x)

where
∂g

∂x
and

∂f

∂x
are the Jacobian matrices of g(x) and f (x), respectively. The new function thus defined

is called the Lie product or Lie bracket of f (x) and g(x). The Lie product can be used repeatedly. Whenever
a function g(x) is “Lie-multiplied” several times by a function f (x), the following notation is frequently
used

adf g(x)= [ f , g](x)

ad2
f g(x)= [ f , [f , g]](x)

· · ·
adk

f g(x)= [ f , adk−1
f g](x).

We shall see now that the conditions a function h(x) must obey in order to be eligible as “output” of a
system with relative degree n can be re-expressed in a form involving the gradient of h(x) and a certain
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number of the repeated Lie products of f (x) and g(x). For, note that, since

L[ f ,g]h(x)= Lf Lg h(x)− Lg Lf h(x),

if Lg h(x)= 0, the two conditions L[ f ,g]h(x)= 0 and Lg Lf h(x)= 0 are equivalent. Using this property
repeatedly, one can conclude that a system has relative degree n at x0 if and only if

Lg h(x)= Ladf g h(x)= · · · = Ladn−2
f g h(x)= 0

for all x near x0, and
Ladn−1

f g h(x0) �= 0.

Keeping in mind the definition of derivative of h(x) along a given (n-vector)-valued function, the first set
of conditions can be rewritten in the following form

∂h

∂x

(
g(x) adf g(x) · · · adn−2

f g(x)
)
= 0. (46.19)

This partial differential equation for h(x) has important properties. Indeed, if a function h(x) exists such
that

Lg h(x)= Ladf g h(x)= · · · = Ladn−2
f g h(x)= 0

for all x near x0, and
Ladn−1

f g h(x0) �= 0,

then necessarily the n vectors

g(x0) adf g(x0) · · · adn−2
f g(x0) adn−1

f g(x0)

must be linearly independent. So, in particular, the matrix
(

g(x) adf g(x) · · · adn−2
f g(x)

)

has rank n− 1. The conditions for the existence of solutions to a partial differential equation of the form
of Equation 46.19 where the matrix

(
g(x) adf g(x) · · · adn−2

f g(x)
)

has full rank are given by the well-known Frobenius’ theorem.

Theorem 46.1:

Consider a partial differential equation of the form

∂h

∂x

(
X1(x) X2(x) · · · Xk(x)

)= 0,

in which X1(x), · · · , Xk(x) are (n-vector)-valued functions of x. Suppose the matrix

(
X1(x) X2(x) · · · Xk(x)

)

has rank k at the point x = x0. There exist n− k real-valued functions of x, say h1(x), . . . , hn−k(x), defined
in a neighborhood of x0, that are solutions of the given partial differential equation, and are such that the
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Jacobian matrix ⎛
⎜⎜⎜⎜⎜⎝

∂h1

∂x

· · ·
∂hn−k

∂x

⎞
⎟⎟⎟⎟⎟⎠

has rank n− k at x = x0 if and only if, for each pair of integers (i, j), 1≤ i, j ≤ k, the matrix

(
X1(x) X2(x) · · · Xk(x) [Xi , Xj](x)

)

has rank k for all x in a neighborhood of x0.

Remark 46.1

A set of k (n-vector)-valued functions {X1(x), . . . , Xk(x)}, such that the matrix:

(
X1(x) X2(x) · · · Xk(x)

)

has rank k at the point x = x0, is said to be involutive near x0 if, for each pair of integers (i, j), 1≤ i, j ≤ k,
the matrix (

X1(x) X2(x) · · · Xk(x) [Xi , Xj](x)
)

still has rank k for all x in a neighborhood of x0. Using this terminology, the necessary and sufficient
condition indicated in the previous theorem can be simply referred to as the involutivity of the set
{X1(x), . . . , Xk(x)}.

The arguments developed thus far can be summarized formally as follows.

Proposition 46.3:

Consider a system:

ẋ = f (x)+ g(x)u

There exists an “output” function h(x) for which the system has relative degree n at a point x0 if and only if
the following conditions are satisfied:

1. The matrix (
g(x0) adf g(x0) · · · adn−2

f g(x0) adn−1
f g(x0)

)

has rank n.
2. The set {g(x), adf g(x), . . . , adn−2

f g(x)} is involutive near x0.

In view of the results illustrated at the beginning of the section, it is now possible to conclude that
conditions 1 and 2 listed in this statement are necessary and sufficient conditions for the existence of a
state feedback and of a change of coordinates transforming, at least locally around the point x0, a given
nonlinear system of the form

ẋ = f (x)+ g(x)u

into a linear and controllable one.
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Remark 46.2

For a nonlinear system whose state space has dimension n= 2, condition 2 is always satisfied since
[g , g](x)= 0. Hence, by the above result, any nonlinear system whose state space has dimension n= 2
can be transformed into a linear system, via state feedback and change of coordinates, around a point x0

if and only if the matrix
(g(x0) adf g(x0))

has rank 2. If this is the case, the vector g(x0) is nonzero and it is always possible to find a function
h(x)= h(x1, x2), defined locally around x0, such that

∂h

∂x
g(x)= ∂h

∂x1
g1(x1, x2)+ ∂h

∂x2
g2(x1, x2)= 0.

If a nonlinear system of the form of Equations 46.1 and 46.2 having relative degree strictly less than
n meets requirements 1 and 2 of the previous proposition, there exists a different “output” function, say
k(x), with respect to which the system has relative degree exactly n. Starting from this new function, it is
possible to construct a feedback u= α(x)+ β(x)v and a change of coordinates z =Φ(x), that transform
the system

ẋ = f (x)+ g(x)u

into a linear and controllable one. However, in general, the real output of the system expressed in the new
coordinates

y = h(Φ−1(z))

is still a nonlinear function of the state z. Then the question arises whether there exist a feedback and a
change of coordinates transforming the entire description of the system, output function included, into
a linear and controllable one. The appropriate conditions should include the previous ones with some
additional constraints arising from the need to linearize the output map. For the sake of completeness, a
possible way of stating these conditions is given hereafter.

Proposition 46.4:

Let the system of Equations 46.1 and 46.2 be given and let r be its relative degree at x = x0. There exist a
static state feedback and a change of coordinates, defined locally around x0, so that the system is transformed
into a linear and controllable one

ẋ = Ax+Bu

y = Cx

if and only if the following conditions are satisfied:

1. The matrix (
g(x0) adf g(x0) · · · adn−2

f g(x0) adn−1
f g(x0)

)

has rank n.
2. The (n-vector)-valued functions defined as

f̃ (x)= f (x)−
Lr

f h(x)

Lg Lr−1
f h(x)

g(x) g̃(x)= 1

Lg Lr−1
f h(x)

g(x)

are such that [
adi

f̃
g̃ , ad

j

f̃
g̃
]
= 0

for all pairs (i, j) such that 0≤ i, j ≤ n.
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Example 46.3:

Consider the system of Equations 46.9 and 46.10. In order to see if this system can be transformed
into a linear and controllable system via static state feedback and change of coordinates, we have to
check conditions 1 and 2 of Proposition 46.3. We first compute adf g(x) and ad2

f g(x):

adf g(x)=
⎛
⎜⎝

exp(x2)(x2
1 + sin x2)

−2x1 exp(x2)− cos x2
1

⎞
⎟⎠

ad2
f g(x)=

⎛
⎜⎜⎝

exp(x2)(x2
1 + sin x2)(x2

1 + sin x2+ cos x2)

x2
1 (sin x2− 4x1 exp(x2))+ 1− 4x1 exp(x2) sin x2+ 2x1 exp(x2) cos x2

−2x1 exp(x2)− cos x2.

⎞
⎟⎟⎠

The matrix (
g(x) adf g(x) ad2

f g(x)
)

has rank 3 at all points x where its determinant, an analytic function of x , is different from zero. Hence,
condition 1 is satisfied almost everywhere. Note that at point x = 0 the matrix(

g(x) adf g(x) ad2
f g(x)

)

has rank 2, and this shows that condition 1 is not satisfied at the origin.
The product [g, adf g](x) has the form

[g, adf g](x)=
⎛
⎜⎝

4x1 exp(2x2)+ exp(x2)(x2
1 + sin x2+ 2 cos x2)

sin x2− 2 exp(2x2)− 2x1 exp(x2)
0

⎞
⎟⎠ .

Then one can see that the matrix (
g(x) adf g(x) [g, adf g](x)

)
has rank 2 at all points x for which its determinant

exp(x2)(2 exp(2x2)+ 6x1 exp(x2)+ 2 cos x2+ x2
1 )

is zero. This set of points has measure zero. Hence, condition 2 is not satisfied at any point x of the
state space.

In summary, the system of Equations 46.9 and 46.10 satisfies condition 1 almost everywhere but does
not satisfy condition 2. Hence, it is not locally feedback linearizable.

Example 46.4:

Consider the system

ẋ =

⎛
⎜⎜⎝

x3− x2

0

x3+ x2
1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0

exp(x1)

exp(x1)

⎞
⎟⎟⎠ u

y = x2 .

This system has relative degree 1 at all x since Lgh(x)= exp(x1). It is easily checked that conditions
1 and 2 of Proposition 46.3 are satisfied. Hence, there exists a function h(x) for which the system has
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relative degree 3. This function has to satisfy

∂h

∂x

(
g(x) adf g(x)

)= 0.

A solution to this equation is given by
h(x)= x1.

The system can be transformed into a linear and controllable one by means of the static state
feedback

u= −L3
f h(x)+ v

LgL2
f h(x)

= 2x1x2− 2x1x3− x3− x2
1 + v

exp(x1)

and the coordinates transformation

z1 = h(x)= x1

z2 = Lf h(x)= x3− x2

z3 = L2
f h(x)= x3+ x2

1 .

The original output of the system y = x2 is a nonlinear function of z:

y =−z2+ z3− z2
1 .

To determine whether the entire system, output function included, can be transformed into a linear
and controllable one, condition 2 of Proposition 46.4 should be checked. Since Lf h(x)= 0, f̃ (x)= f (x)

and g̃(x)=
⎛
⎝0

1
1

⎞
⎠. Easy calculations yield

[ad̃f g̃] =
⎛
⎝ 0

0
−1

⎞
⎠

[ad2
f̃

g̃] =
⎛
⎝1

0
1

⎞
⎠

[ad3
f̃

g̃] =
⎛
⎝ −1

0
−2x1− 1

⎞
⎠

One can check that [ad2
f̃

g̃, ad3
f̃

g̃] �= 0. Hence, condition 2 of Proposition 46.4 is not satisfied.

Therefore, the system with its output cannot be transformed into a linear and controllable one.
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47.1 Limit Sets

In linear system theory, if the variables which characterize the behavior of a system are either constant
or periodic functions of time, the system is said to be in steady state. In a stable linear system, the steady
state can be seen as a limit behavior, approached either as the actual time t tends to+∞ or, alternatively,
as the initial time t0 tends to −∞ (the two viewpoints being in fact equivalent). For a general nonlinear
dynamical system, concepts yielding to a notion of steady-state repose on certain fundamental ideas
dating back to the works of H. Poincaré and G.D. Birkhoff.∗ In particular, a fundamental role is played by
the concept ofω-limit set of a given point, which is defined as follows. Consider an autonomous ordinary
differential equation

ẋ = f (x), (47.1)

in which x ∈ R
n. Suppose that f (x) is locally Lipschitz. Then, it is well-known that, for any x0 ∈ R

n, the
solution of Equation 47.1 with initial condition x(0)= x0, denoted in what follows by x(t, x0), exists on
some open interval of the point t = 0 and is unique.

Suppose that, for some x0, the solution x(t, x0), is defined for all t ≥ 0, that is, for all forward times.
A point x is said to be an ω-limit point of the trajectory x(t, x0) if there exists a sequence of times {tk},
with limk→∞ tk =∞, such that

lim
k→∞

x(tk , x0)= x .

The ω-limit set of a point x0, denoted ω(x0), is the union of all ω-limit points of the trajectory x(t, x0).
It is obvious from this definition that an ω-limit point is not necessarily a limit of x(t, x0) as t →∞,

since the solution in question may not admit any limit as t →∞. However, it happens that if the motion
x(t, x0) is bounded, then x(t, x0) asymptotically approaches the set ω(x0). In fact, the following property
holds [1, p. 198].

∗ Relevant, in this regard, are the concepts introduced by G.D. Birkhoff in his classical 1927 essay, where he asserts that
“with an arbitrary dynamical system . . . there is associated always a closed set of ‘central motions’ which do possess this
property of regional recurrence, towards which all other motions of the system in general tend asymptotically” [1, p. 190].

47-1
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Lemma 47.1:

Suppose x(t, x0) is bounded in forward time, that is, there is a M > 0 such that ‖x(t, x0)‖ ≤M for all t ≥ 0.
Then,ω(x0) is a nonempty compact connected set, invariant under the dynamics equation 47.1.∗ Moreover,
the distance of x(t, x0) from ω(x0) tends to 0 as t →∞.†

One of the features of the set ω(x0), highlighted in this Lemma, is that this set is invariant for
Equation 47.1. Hence, the set ω(x0) is filled by trajectories of Equation 47.1 which are defined for all
backward and forward times, and also bounded, because so is the set ω(x0). The other relevant feature is
that x(t, x0) asymptotically approaches the set ω(x0) as t →∞, in the sense that the distance of the point
x(t, x0) from the set ω(x0) tends to 0 as t →∞.

Suppose now that the initial conditions of Equation 47.1 range over some set B and that x(t, x0)
is bounded, in forward time, for any x0 ∈ B. Since any trajectory which is bounded in forward time
asymptotically approaches its own ω-limit set ω(x0), it is concluded that any trajectory obtained by
picking x0 in B asymptotically approaches the set

ψ(B)=
⋃

x0∈B

ω(x0) .

The set in question is filled by trajectories of Equation 47.1 which are bounded in forward and backward
time. Since the set ψ(B) is approached asymptotically by any trajectory with initial condition in B, it
seems plausible to regard the set of all trajectories evolving in ψ(B) as the set of steady-state “behaviors”
of Equation 47.1. There is, however, a problem in taking this as the definition of steady-state behavior of
a nonlinear system: the convergence of x(t, x0) to ψ(B) is not guaranteed to be uniform in x0, even if the
set B is compact (see, e.g., [2]).

Uniform convergence to the steady state, which is automatically guaranteed in the case of linear
systems, is an important feature to be kept in extending the notion of steady state from linear to nonlinear
systems. In fact, the notion of steady-state would lose much of its practical relevance if the convergence
were not uniform, that is, if the time needed to get within an ε-distance from the steady state could grow
unbounded when the initial state is varied (even when the latter is picked within a fixed bounded set).
Thus, the set ψ(B) is not a good candidate for a definition of steady state in a nonlinear system. There
is a larger set, however, which does have this property of uniform convergence. This set, known as the
ω limit set of a set, is defined as follows. Suppose that, for all x0 ∈ B, the trajectory x(t, x0) is defined for
all t ≥ 0. The ω-limit set of B, denoted ω(B), is the set of all points x for which there exists a sequence of
pairs {xk , tk}, with xk ∈ B and limk→∞ tk =∞ such that

lim
k→∞

x(tk , xk)= x .

It is clear from this definition that if B consists of only one single point x0, all xk ’s in the definition above
are necessarily equal to x0 and the definition in question reduces to the definition of ω-limit set of a
point. It is also clear from this definition that, if for some x0 ∈ B the set ω(x0) is nonempty, all points of
ω(x0) are points of ω(B). In fact, all such points have the property indicated in the definition, if all the
xk ’s are taken equal to x0. Thus, in particular, if all motions with x0 ∈ B are bounded in forward time,
ψ(B)⊂ ω(B). However, the converse inclusion is not true in general. The simplest example in which this

∗ A set S is invariant for Equation 47.1 if, for any x0 ∈ S, the solution x(t, x0) exists for all t ∈ R and x(t, x0) ∈ S for all t ∈ R.
† The distance of a point x ∈ R

n from a set S ⊂ R
n, written as dist(x, S), is defined as inf y∈S ‖y− x‖.
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fact can be checked is the the case of a stable Van der Pol oscillator

ẋ = y,

ẏ =−x− ε(1− x2)y ε> 0.

If B is a disc of sufficiently large radius, centered at (x, y)= (0, 0), the set ψ(B) consists of the union of
the (unstable) equilibrium at (x, y)= (0, 0) and of the (stable) limit cycle. On the contrary, the set ω(B)
consists of all points on the limit cycle and of all points inside this limit cycle.

The counterpart of Lemma 47.1 is the following result, which characterizes the relevant features of the
concept of the ω-limit set of a set [3, p. 8].

Lemma 47.2:

Let B be a nonempty bounded subset of R
n and suppose there is a number M such that ‖x(t, x0)‖ ≤M for

all t ≥ 0 and all x0 ∈ B. Then ω(B) is a nonempty compact set, invariant under Equation 47.1. Moreover,
the distance of x(t, x0) from ω(B) tends to 0 as t →∞, uniformly in x0 ∈ B. If B is connected, so is ω(B).

As in the case of the set ψ(B), it is seen that the set ω(B) is filled with trajectories which are defined
for all backward and forward times, and bounded. But, above all, it is seen that the set in question is
uniformly approached by trajectories with initial state x0 ∈ B, a property that the set ψ(B) does not have.
The set ω(B) asymptotically attracts, as t →∞, all motions that start in B. Since the convergence to
ω(B) is uniform in x0, it is also true that, whenever ω(B) is contained in the interior of B, the set ω(B) is
asymptotically stable, in the sense of Lyapunov, that is, for every number ε> 0 there is a number δ> 0
such that, if the distance of x0 fromω(B) is less than δ, then the distance of x(t, x0) fromω(B) is less than ε
for all t ≥ 0. This property is very important in nonlinear feedback design, because it is a key property in
establishing the existence of Lyapunov functions, as often required in most results concerning the design
of stabilizing feedback laws.

47.2 The Steady-State Behavior of a System

Consider an autonomous finite-dimensional system

ẋ = f (x). (47.2)

with initial conditions in a closed subset X ⊂ R
n, and suppose the set X is forward invariant, that is, for

any initial condition x0 ∈ X, the solution x(t, x0) exists for all t ≥ 0 and x(t, x0) ∈ X for all t ≥ 0.
The motions of this system are said to be ultimately bounded if there is a bounded subset B with the

property that, for every compact subset X̄ of X, there is a time T̄ > 0 such that x(t, x0) ∈ B for all t ≥ T̄
and all x0 ∈ X̄. In other words, the motions are ultimately bounded if any admissible trajectory in finite
time (this finite time possibly being dependent on the chosen initial condition) enters a bounded set B,
and remains in this set for all future times.

If the motions of a system are ultimately bounded, in particular all trajectories with initial conditions
in B are bounded. As a consequence, the limit set ω(B) is nonempty. Since all trajectories with initial
conditions in X eventually enter the set B, the set ω(B)—which by Lemma 47.2 attracts all trajectories
with initial condition in B—also attracts all trajectories with initial conditions in X. It is therefore natural
to regard ω(B) as a set to which all admissible trajectories of Equation 47.2 converge. While the set B,
in the definition of ultimate boundedness, is not uniquely characterized, it is easy to see that the set
ω(B) is, on the contrary, a uniquely defined object. In fact, it is possible to prove that if the motions of
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Equation 47.2 are ultimately bounded and if B′ �= B is any other bounded subset with the property that,
for every compact subset X̄ of X, there is a time T̄ > 0 such that x(t, x0) ∈ B′ for all t ≥ T̄ and all x0 ∈ X̄,
then ω(B′)= ω(B) (see, e.g., [2]).

In view of these properties, it is concluded that if the motions of a system are ultimately bounded, any
trajectory asymptotically approaches a uniquely defined compact invariant set, the set ω(B). The latter is
nonempty, compact, and invariant. In other words, any trajectory of the system approaches a nonempty
set, which is in turn filled by other trajectories, which are defined and bounded in forward and backward
time. Thus it is natural to look at any of such trajectories as a steady-state trajectory and to regard the set
ω(B) as the set in which the steady-state behavior of the system takes place. This leads to the following
definition (see [2]).

Definition 47.1:

Suppose the motions of system (Equation 47.2), with initial conditions in a closed and forward invariant
set X, are ultimately bounded. A steady-state motion is any motion with initial condition x(0) ∈ ω(B).
The set ω(B) is the steady-state locus of Equation 47.2 and the restriction of Equation 47.2 to ω(B) is the
steady-state behavior of Equation 47.2.

47.3 The Steady-State Response

The definition given in the previous section recaptures the classical notion of steady state for linear
systems and provides a powerful tool to deal with similar issues in the case of nonlinear systems. We
discuss in what follows a number of relevant cases.

Consider an n-dimensional, single-input, asymptotically stable linear system

ż = Az+Bu , (47.3)

forced by the harmonic input u(t)= u0 sin(Ωt+φ0). It is well-known that, regardless of what the initial
condition is, the response z(t) converges to a unique, well-defined, steady-state response, a periodic
function of period 2π/Ω. A simple (geometric) method to determine such response consists in viewing
the forcing input u(t) as provided by an autonomous “signal generator” of the form

ẇ = Sw u= Qw

in which

S =
(

0 Ω

−Ω 0

)
Q = (1 0)

and in analyzing the state behavior of the associated “augmented" system

ẇ = Sw,

ż = BQw+Az.
(47.4)

Since the matrices S and A do not have common eigenvalues, the Sylvester equation ΠS = AΠ+BQ
has a unique solution. The augmented system possesses two complementary invariant subspaces: a stable
invariant subspace and a center invariant subspace. The former is the set of all pairs (w, z) in which w = 0,
while the latter is the graph of a linear map

π: R2 → R
n

w �→Πw.

All trajectories of Equation 47.4 approach the center invariant subspace as t →∞, and hence the limit
behavior of Equation 47.4 is determined by the restriction of its motions to this invariant subspace. As a
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consequence, the steady-state response of Equation 47.3 to the periodic input u(t)= u0 sin(Ωt+φ0) is
given by

x(t)=Πw(t)=Π
(

u0 sin(Ωt+φ0)
u0 cos(Ωt+φ0)

)
.

Revisiting this analysis from the viewpoint of the more general notion of steady state introduced above,
let W ⊂ R

2 be a set of the form

W = {w ∈ R
2 : ‖w‖ ≤ c} (47.5)

in which c is a fixed number, and suppose the set of initial conditions for Equation 47.4 is W ×R
n. This

is the case when the problem of evaluating the periodic response of Equation 47.3 to harmonic inputs
whose amplitude does not exceed a fixed number c is addressed. Note that the set W is compact and
invariant for the upper subsystem of Equation 47.4.

The set W ×R
n is closed and forward invariant for the full system Equation 47.4 and, moreover, since

the lower subsystem of Equation 47.4 is a linear asymptotically stable system driven by a bounded input, it
is immediate to check that the motions of system Equation 47.4, with initial conditions taken in W ×R

n,
are ultimately bounded. In particular,

ω(B)= {(w, z) ∈ R
2×R

n : w ∈W , z =Πw} ,

that is, ω(B) is the graph of the restriction of the map π to the set W . The restriction of Equation 47.4
to the invariant set ω(B) characterizes the steady-state behavior of Equation 47.3 under the family of all
harmonic inputs of fixed angular frequency ω, and amplitude not exceeding c.

A similar result holds if u(t) is provided by a nonlinear “signal generator” of the form

ẇ = s(w), u= q(w). (47.6)

In fact, consider an augmented system of the form

ẇ = s(w),

ż = Bq(w)+Az ,
(47.7)

in which w ∈W ⊂ R
s, with W a compact set, invariant for the the upper subsystem of Equation 47.7.

Suppose, as before, that the matrix A has eigenvalues with negative real part.
As in the previous example, since the lower subsystem of Equation 47.7 is a linear asymptotically

stable system driven by the bounded input u(t)= q(w(t, w0)), the motions of system Equation 47.7, with
initial conditions taken in W ×R

n, are ultimately bounded. A simple calculation (see [2]) shows that the
steady-state locus of Equation 47.7 is the graph of the map

π :W → R
n

w �→ π(w) ,

defined by

π(w)= lim
T→∞

∫ 0

−T
e−AτBq(w(τ, w)) dτ . (47.8)

As a consequence, it is concluded that the steady-state response of Equation 47.3 to an input u(t) produced
by a signal generator of the form (Equation 47.6) can be expressed as z(t)= π(w(t)).
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There are various ways in which the result discussed in the previous example can be generalized. For
instance, it can be extended to describe the steady-state response of a nonlinear system

ż = f (z, u) (47.9)

to an input provided by a nonlinear signal generator of the form (Equation 47.6), if system (Equation 47.9)
is input-to-state stable.∗ In this case, in fact, the composition of Equations 47.9 and 47.6

ẇ = s(w),

ż = f (z, q(w)) ,
(47.10)

with initial conditions (w0, z0) ∈W ×R
n is a system whose motions are ultimately bounded and hence a

well-defined steady-state locus exists.
A common feature of the two examples (Equations 47.4 and 47.7) is the fact that the steady-state locus

of the system can be expressed as the graph of a map, defined on the set W . This means that, so long
as this is the case, the system has a unique well-defined steady-state response to the input u(t)= q(w(t)),
expressible as z(t)= π(w(t)). Of course, in general, this may not be the case and the global structure of the
steady-state locus could be very complicated. In particular, the set ω(B) may fail to be the graph of a map
defined on W and multiple steady-state responses to a given input may occur. This is the counterpart—in
the context of forced motions—of the fact that, in general, a nonlinear system may possess multiple
equilibria. In these cases, the steady-state response is determined not only by the forcing input, but also
by the initial state of the system to which the input is applied.

Even though, in general, uniqueness of the steady-state response of a system (Equation 47.9) to inputs
generated by a system of the form (Equation 47.6) cannot be guaranteed, if the set W is compact and
invariant (as assumed above), for each w ∈W there is always at least one initial condition z of Equa-
tion 47.9 such that the pair (w, z) produces a steady-state response.

Lemma 47.3:

Let W be a compact set, invariant under the flow of Equation 47.6. Let Z be a closed set and suppose that
the motions of Equation 47.10 with initial conditions in W ×Z are ultimately bounded. Then, the steady
state locus of Equation 47.10 is the graph of a set-valued map defined on the whole of W.

This result is particularly useful in establishing certain necessary conditions in the analysis of the
problem of nonlinear output regulation.
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48.1 The Problem

A classical problem in control theory is to impose, via feedback, a prescribed steady-state response to every
external command in a given family. This may include, for instance, the problem of having the output
of a controlled plant asymptotically track any prescribed reference signal in a certain class of functions
of time, as well as the problem of having this output asymptotically reject any undesired disturbance in a
certain class of disturbances. In both cases, the issue is to force a suitably defined tracking error to zero, as
time tends to infinity, for every reference output and every undesired disturbance ranging over prescribed
families of functions of time.

Generally speaking, the problem can be cast as follows. Consider a finite-dimensional, time-invariant,
nonlinear system modeled by equations of the form

ẋ = F(w, x, u),

e =H(w, x),
(48.1)

in which x ∈ R
n is a vector of state variables, u ∈ R is a vector of inputs used for control purposes, w ∈ R

s

is a vector of inputs that cannot be controlled and include exogenous commands, exogenous disturbances,
and model uncertainties, and e ∈ R is a vector of regulated outputs that include tracking errors and any
other variable that needs to be steered to 0. The problem is to design a controller, which receives e(t)
as input and produces u(t) as output, able to guarantee that, in the resulting closed-loop system, x(t)
remains bounded and e(t)→ 0 as t →∞, regardless of what the exogenous input w(t) actually is.

The ability to successfully address this problem very much depends on how much the controller is
allowed to know about the exogenous disturbance w(t). In the ideal situation in which w(t) is available
to the controller in real time, the design problem indeed looks much simpler. This is, however, only an
extremely optimistic situation which does not represent, in any circumstance, a realistic scenario. The
other extreme situation is the one in which nothing is known about w(t). In this, pessimistic, scenario the
best result one could hope for is the fulfillment of some prescribed ultimate bound for |e(t)|, but certainly

48-1
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not a sharp goal such as the convergence of e(t) to 0. A more comfortable, intermediate, situation is the
one in which w(t) is only known to belong to a fixed family of functions of time, for instance, the family
of all solutions obtained from a fixed ordinary differential equation of the form

ẇ = s(w) (48.2)

as the corresponding initial condition w(0) is allowed to vary on a prescribed set. This situation is in fact
sufficiently distant from the ideal but unrealistic case of perfect knowledge of w(t) and from the realistic
but conservative case of totally unknown w(t). But, above all, this way of thinking about the exogenous
inputs covers a number of cases of major practical relevance. There is, in fact, an abundance of design
problems in which parameter uncertainties, reference command, and/or exogenous disturbances can be
modeled as functions of time that satisfy an ordinary differential equation.

The control law is to be provided by a system modeled by equations of the form

ẋc = Fc(xc, e),

u=Hc(xc, e),
(48.3)

with state xc ∈ R
ν. The initial conditions x(0) of the controlled plant (Equation 48.1), w(0) of the exosystem

(Equation 48.2), and xc(0) of the controller (Equation 48.3) are allowed to range over a fixed compact sets
X ⊂ R

n, W ⊂ R
s, and Xc ⊂ R

ν respectively. All maps characterizing the model of the controlled plant, of
the exosystem, and of the controller are assumed to be sufficiently differentiable.

The problem that is analyzed in this chapter, known as the problem of output regulation (or generalized
tracking problem or also generalized servomechanism problem), is to design a feedback controller of the
form (Equation 48.3) so as to obtain a closed-loop system in which all trajectories are bounded and
the regulated output e(t) asymptotically decays to 0 as t →∞. More precisely, it is required that the
composition of Equations 48.1, 48.2, and 48.3, that is the autonomous system

ẇ = s(w),

ẋ = F(w, x, Hc(xc, H(w, x)),

ẋc = Fc(xc, H(w, x)),

(48.4)

with output

e =H(w, x),

be such that

• The positive orbit of W ×X×Xc is bounded, that is, there exists a bounded subset S of R
s×R

n×R
ν

such that, for any (w0, x0, xc,0) ∈W ×X×Xc, the integral curve (w(t), x(t), xc(t)) of Equation 48.4
passing through (w0, x0, xc,0) at time t = 0 remains in S for all t ≥ 0.

• limt→∞ e(t)= 0, uniformly in the initial condition, that is, for every ε> 0 there exists a time
t̄, depending only on ε and not on (w0, x0, xc,0) ∈W ×X×Xc, such that the integral curve
(w(t), x(t), xc(t)) of Equation 48.4 passing through (w0, x0, xc,0) at time t = 0 satisfies |e(t)| ≤ ε
for all t ≥ t̄.

Cast in these terms, the problem is readily seen to be equivalent to a problem to design a controller
yielding a closed-loop system that possesses a steady-state locus∗ entirely immersed in the set of all (w, x)
at which the regulated output e =H(w, x) is 0. This being the case, there is no loss of generality in assuming
from the very beginning that the exosystem is in steady state, which is the case when the compact set W
is invariant under the dynamics of Equation 48.2. This will be assumed throughout the entire chapter.

∗ See Chapter 47 for a definition of steady state in a nonlinear system.
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Note also that an approach of this kind covers also the case in which the exosystem dynamics admit a
decomposition of the form

ẇ1 = s1(w1, w2),

ẇ2 = 0,

in which some of the components of the exogenous input have a trivial dynamics, that is, are constant.
The elements of w2 comprise any uncertain constant parameters (assumed to range on a compact set)
affecting the model of the controlled plant (Equation 48.1), as well as the dynamics of the time-varying
components of w. Thus, solving a design problem cast in these terms provides robustness with respect to
structured parametric uncertainties in the model of the plant, as well as in the model of the exogenous
inputs to be tracked and/or rejected.

48.2 The Case of Linear Systems as a Design Paradigm

As an introduction, we describe in this section how the problem of output regulation can be analyzed and
solved for linear systems. This provides in fact an instructive design paradigm that can be successfully
followed in handling the corresponding general problem. The first step is the analysis of the steady state,
which in turn entails the derivation of certain necessary conditions.

Consider the case in which the composition of exosystem (Equation 48.2) and controlled plant (Equa-
tion 48.1) is modeled by equations of the form

ẇ = Sw,

ẋ = Pw+Ax+Bu,

e = Qw+Cx,

(48.5)

and the controller (Equation 48.3) is modeled by equations of the form

ẋc = Acxc+Bce,

u= Ccxc+Dce.
(48.6)

The associated closed-loop system is the autonomous linear system

⎛
⎝ẇ

ẋ
ẋc

⎞
⎠=

⎛
⎝ S 0 0

P+BDcQ A+BDcC BCc

BcQ BcC Ac

⎞
⎠
⎛
⎝w

x
xc

⎞
⎠ . (48.7)

If the controller (Equation 48.6) solves the problem of output regulation, the trajectories of
Equation 48.7 are bounded and, necessarily, all the eigenvalues of the matrix

(
A+BDcC BCc

BcC Ac

)

have negative real part. Since by assumption S has all eigenvalues on the imaginary axis, system
(Equation 48.7) possesses two complementary invariant subspaces: a stable invariant subspace and a
center invariant subspace. The latter, in particular, is the graph of a linear map

w �→
(

x
xc

)
=
(
Π

Πc

)
w
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in whichΠ andΠc are solutions of the Sylvester equation(
Π

Πc

)
S =

(
A+BDcC BCc

BcC Ac

)(
Π

Πc

)
+
(

P+BDcQ
BcQ

)
. (48.8)

Any trajectory of Equation 48.7 has a unique decomposition into a component entirely contained in
the stable invariant subspace and a component entirely contained in the center invariant subspace. The
former, which asymptotically decays to 0 as t →∞ is the transient component of the trajectory. The latter,
in which x(t) and xc(t) have, respectively, the form

x(t)=Πw(t), xc(t)=Πcw(t) (48.9)

is the steady-state component of the trajectory.
If the controller (Equation 48.6) solves the problem of output regulation, the steady-state component of

any trajectory must be contained in the kernel of the map e = Qw+Cx and hence the solution (Π,Πc) of
the Sylvester equation 48.8 necessarily satisfies Q+CΠ= 0. Entering this constraint into Equation 48.8
it is concluded that if the controller (Equation 48.6) solves the problem of output regulation, necessarily
there exists a pair (Π,Πc) satisfying

ΠS = AΠ+BCcΠc+ P,

ΠcS = AcΠc,

0= CΠ+Q.

Setting Ψ = CcΠc the first and third equations are more conveniently rewritten in the (controller-
independent) form

ΠS = AΠ+BΨ+ P,

0= CΠ+Q,
(48.10)

in which, of course,Ψ is a matrix satisfying

Ψ = CcΠc,

ΠcS = AcΠc,
(48.11)

for some choice ofΠc, Ac, Cc. The linear equations 48.10 are known as Francis’ equations and the existence
of a solution pair (Π,Ψ) is—as shown—a necessary condition for the solution of the problem of output
regulation [1,10,11].

Equations 48.11, from a general viewpoint, could be regarded as a constraint on the component Ψ of
the solution of Francis’ equations 48.10. However, as an easy calculation shows, this constraint is actually
irrelevant. In fact, given any pair S,Ψ it is always possible to fulfill conditions like (Equation 48.11). Let

d(λ)= s0+ s1λ+ · · ·+ sd−1λ
d−1+λd

denote the minimal polynomial of S and set

T =

⎡
⎢⎢⎢⎢⎣

Ψ

ΨS
· · ·
ΨSd−2

ΨSd−1

⎤
⎥⎥⎥⎥⎦ , Φ=

⎛
⎜⎜⎜⎜⎝

0 1 0 · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
−s0 −s1 −s2 · · · −sd−1

⎞
⎟⎟⎟⎟⎠ , Γ= (1 0 0 · · · 0).

Then, it is immediate to check that

Ψ = ΓT ,

TS =ΦT ,
(48.12)

which is precisely a constraint of the form (Equation 48.11). Note, in particular, that the pair (Φ,Γ) thus
defined is observable.
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The relevant role, however, of Equations 48.11 is that they interpret the ability, of the controller, to
generate the feedforward input necessary to keep the regulated variable identically zero in steady state. In
steady state—as shown—the state x(t) of the plant and xc(t) of the controller evolve as in Equation 48.9
and e(t)= 0. Consequently, in steady state the controller is driven by input which is identically zero and
generates, as output, a control of the form

uss(t)= Ccxc(t)= CcΠcw(t)=Ψw(t).

The latter, as predicated by Francis’ equations, is a control able to force a steady state trajectory of
the form x(t)=Πw(t) and consequently to keep e(t) identically zero. The property thus described
is usually referred to as the internal model property: any controller that solves the problem of out-
put regulation necessarily embeds a model of the feedforward inputs needed to keep e(t) identically
zero [2].

We proceed now with the design of a control that ensures asymptotic convergence to the required
steady state. In view of the above analysis, to solve the problem of output regulation it is natural to assume
that Francis’ equations 48.10 have a solution, and to consider a controller of the form

u= Γη+ v,

η̇=Φη+ v′,
(48.13)

where Γ andΦ satisfy (Equation 48.12) for some T (which, as shown, is always possibile) and where v, v′
are additional controls. If these controls vanish in steady state, the graph of the linear map

w �→
(

x
η

)
=
(
Π

T

)
w (48.14)

is, by construction, an invariant subspace of the composite system

ẇ = Sw,

ẋ = Pw+Ax+B(Γη+ v),

η̇=Φη+ v′,
e = Qw+Cx.

(48.15)

The regulated variable e vanishes on the graph of Equation 48.14. Thus, if the additional controls v and v′
are able to (robustly) steer all trajectories to this invariant subspace, the problem of output regulation is
solved.

Let now the states x and η of Equation 48.15 be replaced by the differences

x̃ = x−Πw, η̃= η−Tw,

in which case the equations describing the system, by virtue of Equations 48.10 and 48.12, become

˙̃x = Ax̃+BΓη̃+Bv,

˙̃η=Φη̃+ v′,
e = Cx̃.

(48.16)

To steer all trajectories of Equation 48.15 to the graph of Equation 48.14 is the same as to stabilize the
equilibrium (x̃, η̃)= (0, 0) of Equation 48.16.
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A simple design option, at this point, is to set v′ = Gv, and to seek a (possibly dynamic) controller,
with input e and output v, which (robustly) stabilizes the equilibrium (x̃, η̃)= (0, 0) of

˙̃x = Ax̃+BΓη̃+Bv,

˙̃η=Φη̃+Gv,

e = Cx̃.

(48.17)

A sufficient condition under which such a robust stabilizer exists is that all zeros of Equation 48.17 have
negative real part. The zeros of system (Equation 48.17), on the other hand, are the roots of the equation

0= det

⎛
⎝A−λI BΓ B

0 Φ−λI G
C 0 0

⎞
⎠= det

⎛
⎝A−λI 0 B

0 Φ−GΓ−λI G
C 0 0

⎞
⎠

= det

(
A−λI B

C 0

)
det(Φ−GΓ−λI),

and hence it is readily seen that a sufficient condition for the existence of the desired robust stabilizer is
that all roots of the equation

0= det

(
A−λI B

C 0

)
(48.18)

and all eigenvalues of the matrix Φ−GΓ have negative real part. The latter condition can always be
fulfilled. In fact, as observed earlier, it is always possible to find an observable pair (Φ,Γ) which render
(Equation 48.12) fulfilled for some T . Hence, there always exists a vector G which makes Φ−GΓ a
Hurwitz matrix. In view of this, it is concluded that a sufficient condition for the existence of a robust
stabilizer for Equation 48.17, once the vector G has been chosen in this way, is simply that all roots of
Equation 48.18, or—what is the same—all zeros of

ẋ = Ax+Bu,

e = Cx
(48.19)

have negative real part. This condition, on the other hand, also guarantees that the Francis’ equation 48.10
have a solution.

48.3 Steady-State Analysis

Controlling the nonlinear plant (Equation 48.1) by means of the nonlinear controller (Equation 48.3)
yields a closed-loop system modeled by Equations 48.4. If the problem of output regulation is solved, the
positive orbit of the set W ×X×Xc of initial conditions is bounded and hence all trajectories asymptot-
ically approach a steady-state locus ω(W ×X×Xc). This set is the graph of a (possibly set-valued) map
defined on W .∗ To streamline the analysis, we assume that this map is single-valued, that is, that there
exists a pair of maps x = π(w) and xc = πc(w), defined on W , such that

ω(W ×X×Xc)= {(w, x, xc) : w ∈W , x = π(w), xc = πc(w)}. (48.20)

This is equivalent to assume that, in the closed-loop system, for each given exogenous input function
w(t), there exists a unique steady state response, which therefore can be expressed as x(t)= π(w(t))
and xc(t)= πc(w(t)). Moreover, for convenience, we also assume that the maps π(w) and πc(w) are

∗ See Chapter 47 for details.
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continuously differentiable. This enables us to characterize in simple terms the property that the steady
state locus is invariant under the flow of the closed-loop system (Equation 48.4). If this is the case, in fact,
to say that the locus (Equation 48.20) is invariant under the flow of Equation 48.4 is the same as to say
that π(w) and πc(w) satisfy

∂π

∂w
s(w) = F(w,π(w), Hc(πc(w), H(w,π(w)))),

∂πc

∂w
s(w)= Fc(πc(w), H(w,π(w))),

∀w ∈W . (48.21)

These equations are the nonlinear counterpart of the Sylvester equations 48.8. If the controller solves the
problem of output regulation, the steady state locus, which is asymptotically approached by the trajectories
of the closed-loop system, must be a subset of the set of all pairs (w, x) for which H(w, x)= 0 and hence
the mapπ(w) necessarily satisfies H(w,π(w))= 0. Entering this constraint into Equation 48.21 it follows
that

∂π

∂w
s(w) = F(w,π(w), Hc(πc(w), 0)),

∂πc

∂w
s(w)= Fc(πc(w), 0),

0=H(w,π(w)).

(48.22)

Proceeding as in the case of linear systems and setting ψ(w)=Hc(πc(w), 0), the first and third Equa-
tions of 48.22 can be rewritten in controller-independent form as

∂π

∂w
s(w)= F(w,π(w),ψ(w)),

0=H(w,π(w)),
∀w ∈W . (48.23)

These equations, introduced in [3] and known as the nonlinear regulator equations, are the nonlinear
counterpart of the Francis’ equations 48.10.

Observe that the map ψ(w) appearing in Equation 48.23 satisfies

ψ(w)=Hc(πc(w), 0),

∂πc

∂w
s(w)= Fc(πc(w), 0).

(48.24)

These constraints also can be formally rewritten in controller-independent form. In fact, the constraint
in question simply expresses the existence of an integer d, of an autonomous dynamical system

η̇= ϕ(η), η ∈ R
d (48.25)

with output
u= γ(η), (48.26)

and of a map τ :W → R
d such that

ψ(w)= γ(τ(w)),

∂τ

∂w
s(w)= ϕ(τ(w)),

∀w ∈W . (48.27)

These are nonlinear counterparts of the constraints (Equation 48.12). However, while in the case of linear
systems constraints of this form are irrelevant (i.e., can always be satisfied), in the case of nonlinear systems
some technical problems arise and the existence of a triplet {ϕ(·), γ(·), τ(·)} satisfying Equation 48.27 may
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require extra hypotheses. Issues associated with the existence and the design of such a triplet will be
discussed later in Section 48.4. For the time being, we observe that the constraints (Equation 48.24) still
interpret the ability, of the controller, to generate the feedforward input necessary to keep e(t)= 0 in
steady state. In steady state, in fact, a controller that solves the problem generates a control of the form

uss(t)=Hc(xc(t), 0)=Hc(πc(w(t)), 0)=ψ(w(t)),

which, as predicated by the nonlinear regulator equations, is a control able to force a steady state trajectory
of the form x(t)= π(w(t)) and consequently to keep e(t) identically zero.

The nonlinear regulator equations can be given a more tangible form if the model (Equation 48.1)
of the plant is affine in the input u and, viewed as a system with input u and output e, has a globally
defined normal form. ∗ This means that, in suitable (globally defined) coordinates, the composition of
plant (Equation 48.1) and exosystem (Equation 48.2) can be modeled by equations of the form

ẇ = s(w),

ż = f (w, z, ξ1, . . . , ξr),

ξ̇1 = ξ2

· · ·
ξ̇r−1 = ξr ,

ξ̇r = a(w, z, ξ1, . . . , ξr)+ b(w, z, ξ1, . . . , ξr)u,

e = ξ1

(48.28)

in which r is the relative degree of the system, z ∈ R
n−r and b(w, z, ξ1, . . . , ξr), the so-called high-frequency

gain, is nowhere zero.
If the model of the plant is available in normal form, the nonlinear regulator equations 48.23 can be

dealt with as follows. Let π(w) be partitioned, consistently with the partition of the state (z, ξ1, . . . , ξr) of
Equation 48.28, into

π(w)= col(π0(w),π1(w), . . . ,πr(w))

in which case the equations in question become

∂π0

∂w
s(w)= f (w,π0(w),π1(w), . . . ,πr(w)),

∂πi

∂w
s(w)= πi+1(w) i = 1, . . . , r− 1,

∂πr

∂w
s(w)= a(w,π0(w),π1(w), . . . ,πr(w))+ b(w,π0(w),π1(w), . . . ,πr(w))ψ(w),

0= π1(w).

From these, we deduce that
π1(w)= · · · = πr(w)= 0,

while π0(w) satisfies
∂π0

∂w
s(w)= f0(w,π0(w)), (48.29)

in which
f0(w, z)= f (w, z, 0, . . . , 0).

Moreover,
ψ(w)=− q0(w,π0(w)), (48.30)

∗ See Section 57.1 of Chapter 57 for the definition of relative degree and normal form.
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in which

q0(w, z)= a(w, z, 0, . . . , 0)

b(w, z, 0, . . . , 0)
.

The autonomous system

ẇ = s(w),

ż = f0(w, z),
(48.31)

characterizes the so-called zero dynamics of Equation 48.28. Thus, to say that the nonlinear regulator
equations 48.23 have a solution is to say that the zero dynamics of Equation 48.28 possess an invariant
manifold expressible as the graph of a map z = π0(w) defined on W .

48.4 Convergence to the Required Steady State

Mimicking the design philosophy chosen in the case of linear systems, it is natural to look at a controller
of the form

u= γ(η)+ v,

η̇= ϕ(η)+ v′,
(48.32)

where γ(·) and ϕ(·) satisfy (Equation 48.27) for some τ(·) and where v, v′ are additional controls. If these
controls vanish in steady state, the graph of the nonlinear map

w ∈W �→
(

x
η

)
=
(
π(w)
τ(w)

)
(48.33)

is by construction an invariant manifold in the composite system

ẇ = s(w),

ẋ = f (w, x, γ(η)+ v),

η̇= ϕ(η)+ v′.
(48.34)

The regulated variable e vanishes on the graph of Equation 48.33. Thus, if the additional controls v and v′
are able to steer all trajectories to this invariant manifold, the problem of output regulation is solved. In
the case of linear systems, the success of a similar design philosophy was made possible by the additional
assumption that all zeros of the controlled plant had negative real part. In what follows, we show how the
approach in question can be extended to the case of nonlinear systems.

For convenience, we begin by addressing the special case in which r = 1 and b= 1, deferring to Section
48.6 the discussion of more general cases. Picking, as in the case of linear systems, v′ = Gv, system
(Equation 48.34) reduces to a system of the form

ẇ = s(w),

ż = f (w, z, ξ1),

ξ̇1 = a(w, z, ξ1)+ γ(η)+ v,

η̇= ϕ(η)+Gv,

e = ξ1,

(48.35)

which, in what follows, will be referred to as the augmented system. The (compact) set of admissible initial
conditions of Equation 48.35 is a set of the form W ×Z×Ξ×H .
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System (Equation 48.35) still has relative degree r = 1 between input v and output e, with a normal
form which can be revealed by simply changing η into

χ= η−Gξ1,

which yields

ẇ = s(w),

ż = f (w, z, ξ1),

χ̇= ϕ(χ+Gξ1)−Gγ(χ+Gξ1)−Ga(w, z, ξ1),

ξ̇1 = a(w, z, ξ1)+ γ(χ+Gξ1)+ v,

e = ξ1.

(48.36)

Observe, in this respect, that the zero dynamics of this system, which will be referred to as the augmented
zero-dynamics, obtained by entering the constraint e = 0, are those of the autonomous system

ẇ = s(w),

ż = f0(w, z),

χ̇= ϕ(χ)−Gγ(χ)−Gq0(w, z).

(48.37)

By virtue of Equation 48.27 through 48.30, it is readily seen that the manifold

M= {(w, z,χ) : w ∈W , z = π0(w),χ= τ(w)} (48.38)

is an invariant manifold of Equation 48.37.
It is now convenient to regard system (Equation 48.36) as feedback interconnection of a system with

input ξ1 and state (w, z,χ) and of a system with inputs (w, z,χ) and v and state ξ1. In particular, setting

p= col(w, z,χ)

the system in question can be regarded as a system of the form

ṗ=M(p)+N(p, ξ1),

ξ̇1 =H(p)+ J(p, ξ1)+ b(p, ξ1)v,
(48.39)

in which M(p) and H(p) are defined as

M(p)=
⎛
⎝ s(w)

f0(w, z)
ϕ(χ)−Gγ(χ)−Gq0(w, z)

⎞
⎠

and
H(p)= q0(w, z)+ γ(χ),

while N(p, ξ1) and J(p, ξ1) are residual functions satisfying N(p, 0)= 0 and J(p, 0)= 0, and b(p, ξ1)= 1.
The advantage of seeing system (Equation 48.36) in this form is that, under appropriate hypotheses,

the control
v =−kξ1 (48.40)

keeps all admissible trajectories bounded and forces ξ1(t) to zero as t →∞. In fact, the following result
holds (see, e.g., [4,9]).
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Theorem 48.1:

Consider a system of the form (Equation 48.39) with v as in Equation 48.40. Suppose that M(p), N(p, ξ1),
H(p), J(p, ξ1), and b(p, ξ1) are at least locally Lipschitz and b(p, ξ1) > 0. Let the initial conditions of the
system range in a compact set P×Ξ. Suppose there exists a set A which is locally exponentially stable for
ṗ=M(p), with a domain of attraction that contains the set P. Suppose also that H(p)= 0 for all p ∈A.
Then, there is a number k∗ such that, for all k > k∗, the set A×{0} is locally exponentially stable for the
interconnection (Equations 48.39 through 48.40), with a domain of attraction that contains P×Ξ.

Applying this result to system (Equation 48.36), it is observed that the system ṗ=M(p) coincides
with Equation 48.37, that is with the zero dynamics of the augmented system (Equation 48.36). The
set (Equation 48.38) is an invariant manifold of these dynamics and, by construction, the map H(p)
vanishes on this set. Thus, it is concluded that if the set (Equation 48.38) is locally exponentially stable
for Equation 48.37, with a domain of attraction that contains the set of all admissible initial conditions,
the choice of a high-gain control as in Equation 48.40 suffices to steer ξ1 to zero and hence to solve the
problem of output regulation.

For convenience, we summarize the result obtained so far as follows.

Corollary 48.1:

Consider a system in normal form (Equation 48.28) with r = 1 and b= 1. Suppose (Equation 48.29) holds
for some π0(w). Letψ(w) be defined as in Equation 48.30 and ϕ(η) and γ(η) be such that (Equation 48.27)
hold for some τ(w). Consider a controller of the form

u= γ(η)− ke,

η̇= ϕ(η)−Gke.
(48.41)

If the manifold (Equation 48.38) is locally exponentially stable for Equation 48.37, with a domain of
attraction that contains the set of all admissible initial conditions, there exists k∗ such that, for all k > k∗,
the positive orbit of the set of admissible initial conditions in bounded and e(t)→ 0 as t →∞.

The main issue that remains to be addressed, in this framework, is to determine whether or not
the desired asymptotic properties of the invariant manifold (Equation 48.38) of Equation 48.37 can be
obtained. In this respect, the asymptotic properties of the zero dynamics (Equation 48.31) of the controlled
plant—on the one hand—and the choice of {ϕ(·), γ(·), G}—on the other hand—indeed play a major role.
This issue is addressed in the next section. For the time being, we observe that, in the case of linear
systems, the dynamics of Equation 48.37 reduce to linear dynamics, modeled by

ẇ = Sw,

ż = B0w+A0z,

χ̇= (Φ−GΓ)χ−G(D0w+C0z),

in which A0 is a matrix whose eigenvalues coincide with the zeros of Equation 48.19. The maps π0(w)
and τ(w) are linear maps, π0(w)=Π0w and τ(w)= Tw, satisfying

Π0S = B0+A0Π0, TS =ΦT , ΓT =−(D0+C0Π0).

Changing z,χ into z̃ = z−Π0w and χ̃= χ−Tw, respectively, these dynamics can be rewritten as

ẇ = Sw,
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˙̃z = A0z̃,

˙̃χ= (Φ−GΓ)χ̃−GC0z̃,

from which it is readily seen, as expected, that if all zeros of Equation 48.19 and all eigenvalues of (Φ−GΓ)
have negative real part, the dynamics in question have the desired asymptotic properties.

48.5 The Design of the Internal Model

System (Equation 48.37) can be interpreted as the cascade of

ẇ = s(w),

ż = f0(w, z),

y = q0(w, z),

(48.42)

and of
χ̇= ϕ(χ)−Gγ(χ)−Gy. (48.43)

We are interested in finding hypotheses under which there exists a triplet {ϕ(·), γ(·), G} such that Equa-
tion 48.27, withψ(w)=−q0(w,π0(w)), holds for some τ(·) and such that the resulting invariant manifold
(Equation 48.38) is locally exponentially stable, with a domain of attraction that contains the set of all
admissible initial conditions. The first obvious hypothesis is that the set z = π0(w) is a locally expo-
nentially stable (invariant) manifold of Equation 48.42, with a domain of attraction that contains the
set W ×Z. This assumption is the nonlinear analogue of the assumption that system (Equation 48.19)
has all zeros with negative real part and is usually referred to, with some abuse of terminology, as the
minimum-phase assumption.

Once this is assumed, the matter is to determine the existence of a triplet {ϕ(·), γ(·), G} with the
appropriate properties. As we have seen, this is always possible for a linear system. The basic argument
behind the construction of the pair (Φ,Γ) that makes conditions (Equation 48.12) fulfilled (recall that
these are the linear version of Equation 48.27) is that, by Cayley–Hamilton’s theorem,

ΨSd =−(s0Ψ+ s1ΨS+ · · ·+ sd−1ΨSd−1).

It is seen from this that the function uss(t)=Ψw(t), with w(t) solution of ẇ = Sw, satisfies the linear
differential equation

u(d)
ss (t)=−s0uss(t)− s1u(1)

ss (t)− · · ·− sd−1u(d−1)
ss (t).

Motivated by this interpretation, we may assume, in the nonlinear case, the existence of an integer
d, of a (locally Lipschitz) function φ : Rd → R with the property that, for any w0 ∈W , the solution
w(t) of ẇ = s(w) passing through w0 at time t = 0 is such that the function uss(t)=ψ(w(t)), in which
ψ(w)=−q0(w,π0(w)), satisfies the nonlinear differential equation

u(d)
ss (t)= φ(uss(t), u(1)

ss (t), . . . , u(d−1)
ss (t)). (48.44)

If this property is assumed, it is easy to find a pair ϕ(·), γ(·) such that Equation 48.27 holds for some
τ(·). In fact, it suffices to set

τ(w)= col(ψ(w), Lsψ(w), . . . , Ld−1
s ψ(w)),

to pick any function φc : Rd → R which is globally Lipschitz and agrees with φ(·) on τ(W), and set

ϕ(η)=

⎛
⎜⎜⎝

η2

· · ·
ηd

φc(η1, . . . ,ηd),

⎞
⎟⎟⎠ , γ(η)= η1. (48.45)

A simple calculation shows that conditions (Equation 48.27) hold.
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Once the ϕ(·), γ(·) have been determined, it remains to show that a vector G can be found yielding the
desired asymptotic properties. To this end, set

χ̃= χ− τ(w), ỹ = q0(w, z)− q0(w,π0(w))

and observe that
˙̃χ= ϕ(χ̃+ τ(w))−ϕ(τ(w))−Gχ̃1−Gỹ. (48.46)

Since z = π0(w) is an asymptotically stable (invariant) manifold of Equation 48.42, the input ỹ of Equa-
tion 48.46 decays to zero as t →∞. Moreover, by construction, χ̃= 0 is an equilibrium of Equation 48.46
when ỹ = 0.

The pair {ϕ(·), γ(·)} defined in Equation 48.45 is uniformly observable (see [5]). Therefore, it is likely
that the desired asymptotic properties of Equation 48.46 could be achieved by picking G as in the design
of high-gain observers. Proceeding in this way, choose

G = DκG0,

in which

Dκ = diag(κ, κ2, . . . , κd),

G0 = col(cd−1, cd−2, . . . , c0),

with cd−1, . . . , c0 coefficients of a Hurwitz polynomial

p(λ)= c0+ c1λ+ · · ·+ cd−1λ
d−1+λd .

It is possible to prove (see, e.g., [6]) that, if κ is large enough, system (Equation 48.46) is globally input-to-
state stable, actually with a linear gain function, and that the equilibrium χ̃= 0—achieved for ỹ = 0—is
globally exponentially stable. This, coupled with the assumption that z = π0(w) is a locally exponentially
stable (invariant) manifold of Equation 48.42, proves that Equation 48.38 is a locally exponentially stable
(invariant) manifold of Equation 48.37, with a domain of attraction that contains the set W ×Z×R

d .
This makes the result of Corollary 48.1 applicable.

We have shown, in this way, that under the assumptions that the controlled plant is minimum phase
and that the family of all “steady state inputs” uss(t)=ψ(w(t)) obeys a (possibly nonlinear) high-order
differential equation of the form (Equation 48.44), the problem of output regulation can be solved. One
may wonder whether these assumptions can be weakened, in particular the assumption of the existence
of a differential equation of the form (Equation 48.44). There is, in fact, an alternative design strategy,
in which the assumption in question is not needed. This strategy is based on seeking the fulfillment of
Equation 48.27 with a ϕ(η) of the form

ϕ(η)= Fη+Gγ(η),

which entails, for the system (Equation 48.43), a structure of the form

χ̇= Fχ−Gy, (48.47)

with F a Hurwitz matrix. In this case, to say that Equation 48.27 are fulfilled is to say that there exists a
pair (F, G), with F a Hurwitz matrix and a map γ(η) such that

ψ(w)= γ(τ(w)),

∂τ

∂w
s(w)= Fτ(w)+Gψ(w),

∀w ∈W (48.48)

hold for some τ(w). The relevant result, in this respect, is that such a triplet always exists, if the dimension
d of F is sufficiently large and γ(η) is allowed to be only continuous (and, thus, possibly not locally
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Lipschitz). Specifically, note that, regardless of what the dimension of the matrix F is, if the latter is
Hurwitz, a map τ(w) fulfilling the second equation of Equation 48.48 always exists. In fact, if the controlled
plant is minimum phase, and hence all trajectories of Equation 48.42 with initial conditions in W ×Z are
bounded, and if the matrix F is Hurwitz, also all trajectories of

ẇ = s(w),

ż = f0(w, z),

χ̇= Fχ−Gq0(w, z)

(48.49)

for any initial conditions in W ×Z×R
d are bounded, and converge to a steady state locus. The latter

is the graph of a map defined on W , in which z = π0(w) and χ= τ(w), where τ(w), if continuously
differentiable, satisfies

∂τ

∂w
s(w)= Fτ(w)−Gq0(w,π0(w))= Fτ(w)+Gψ(w). (48.50)

Thus, the real issue is simply when there exists a map γ(η) such that the map τ(w) which characterizes
the steady state locus of Equation 48.49 satisfies the first condition in Equation 48.48. This problem has
been recently answered in [4], in the following terms.

Proposition 48.1:

There is an integer � > 0 such that, if the eigenvalues of F have real part which is less than − �, there exists
a unique continuously differentiable τ(w) which satisfies (Equation 48.50). Suppose

d ≥ 2 dim(w)+ 2.

Then for almost all choices (see [4] for details) of a controllable pair (F, G), with F a Hurwitz matrix whose
eigenvalues have real part which is less than−�, the map τ(w) satisfies

τ(w1)= τ(w2) ⇒ ψ(w1)=ψ(w2), ∀(w1, w2) ∈W ×W .

As a consequence, there exists a continuous map γ : Rd → R such that the first identity in Equation 48.48
holds.

This shows that the existence of a triplet {F, G, γ(·)}with the desired properties can always be achieved,
so long as the integer d is large enough. As a consequence, the design procedure outlined earlier in Corol-
lary 48.1 is always applicable, so long as the controlled plant satisfies the minimum-phase assumption.
From the constructive viewpoint, however, it must be observed that the result indicated in Proposition
48.1 is only an existence result and that the function γ(·), whose existence is guaranteed, is only known to
be continuous. Obtaining continuous differentiability of such γ(·) is likely to require further hypotheses.∗

48.6 The Case of Higher Relative Degree

Consider now the case of a system having relative degree higher than 1, but still assume, for simplicity,
that b(w, z, ξ1, . . . , ξr)= 1. In addition, assume that the function f (w, z, ξ1, . . . , ξr) is independent of

∗ Closed-form expressions for γ(·) and other relevant constructive aspects are discussed in [7].
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ξ2, . . . , ξr . Choose, as in Section 48.4, a control of the form (Equation 48.32) with v′ = Gv. This yields an
augmented system that can be written in the form

ẇ = s(w),

ż = f (w, z, Cz̄),
˙̄z = Az̄+Bξr ,

ξ̇r = a(w, z, z̄, ξr)+ γ(η)+ v,

η̇= ϕ(η)+Gv,

e = Cz̄,

(48.51)

in which z̄ = col(ξ1, . . . , ξr−1) and

A=

⎛
⎜⎜⎜⎜⎝

0 1 0 · 0
0 0 1 · · · 0
· · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ , B=

⎛
⎜⎜⎜⎜⎝

0
0
·
0
1

⎞
⎟⎟⎟⎟⎠ , C = (1 0 0 · · · 0).

The idea is to try to transform this system into a system of the form (Equation 48.39) and to try to use
again, if possible, the result of Theorem 48.1. Transformation into a system of the form (Equation 48.39)
can be achieved by changing ξr into

θ= ξr −Kz̄,

and η into
χ= η−Gθ, (48.52)

in which K is a vector of design parameters yet to be determined. In this way, the augmented system
(Equation 48.51) can be written as

ṗ=M(p)+N(p, θ),

θ̇=H(p)+ J(p, θ)+ b(p, θ)v,
(48.53)

in which p= col(w, z, z̄,χ). The subsystem ṗ=M(p), which coincides with the zero dynamics of Equa-
tion 48.51 if the latter is viewed as a system with input v and output θ, is a system of the form

⎛
⎜⎜⎝

ẇ
ż
˙̄z
χ̇

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

s(w)
f0(w, z)+ f1(w, z, Cz̄)

(A+BK)z̄
ϕ(χ)−Gγ(χ)−Gq0(w, z)−Gq1(w, z, z̄)

⎞
⎟⎟⎠ , (48.54)

in which

f1(w, z, Cz̄)= f (w, z, Cz̄)− f0(w, z),

q1(w, z, z̄)= a(w, z, z̄, Kz̄)−K(A+BK)z̄− q0(w, z)

are functions vanishing at z̄ = 0. The map H(p) is a map of the form

H(p)= q0(w, z)+ γ(χ)+ q1(w, z, z̄),

the residual functions N(p, θ) and J(p, θ) vanish at θ= 0, and b(p, θ)= 1. Observe that the manifold

M= {(w, z, z̄,χ) : w ∈W , z = π0(w), z̄ = 0,χ= τ(w)} (48.55)

is invariant for the dynamics of Equation 48.54 and that the map N(p) vanishes on this set.
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It follows from Theorem 48.1 that, if the manifold (Equation 48.55) is locally exponentially stable for
Equation 48.54, with a domain of attraction that contains the set of all admissible initial conditions, the
choice of a high-gain control

v =−kθ=−k(ξr −Kz̄)

suffices to steer θ to zero and p to Equation 48.55. Since ξ1, a component of z̄, is zero in Equation 48.55,
then ξ1 also is steered to zero and the problem of output regulation is solved.

The control law proposed in this way is a law which presupposes the availability of ξ1, . . . , ξr , that
is, of the regulated variable e and its derivatives e(1), . . . , e(r−1). This is not a problem, however, since
appropriate substitutes for these variables can be generated, so long as the set of admissible initial condi-
tions is compact, by means of an appropriate r-dimensional system driven by e, as suggested in [8]. The
applicability of the methods depends therefore on the ability to choose the design parameters in such a
way that the manifold (Equation 48.55) is locally exponentially stable for Equation 48.54, with a domain
of attraction that contains the set of all admissible initial conditions. In this respect, it must be observed
that the system in question can be seen as a cascade of

ẇ = s(w),

ż = f0(w, z)+ f1(w, z, Cz̄),
˙̄z = (A+BK)z̄,

y = q0(w, z)+ q1(w, z, z̄),

(48.56)

and of system (Equation 48.43).
It is known that, if the controlled plant is minimum phase, that is, if the set z = π0(w) is a locally

exponentially stable (invariant) manifold for the dynamics of Equation 48.42, with a domain of attraction
that contains the set W ×Z, then given any compact set Z̄, there is a matrix K such that the set (z, z̄)=
(π0(w), 0) is a locally exponentially stable invariant manifold for the dynamics of Equation 48.56, with
a domain of attraction that contains the set W ×Z× Z̄ (see, e.g., [9]). Thus, if K is chosen in this way,
either one of the two methods for the design of {ϕ(·), γ(·), G} suggested in Section 48.5 can be used to
complete the design of the regulator.

We conclude by observing that, if the high-frequency gain on the system is not equal to 1, identical
results hold, which can be proven using the change of variable

χ= η−G
∫ θ

0

1

b(w, z, ξ1, . . . , ξr−1, s)
ds,

instead of Equation 48.52. On the contrary, the assumption that f (w, z, ξ1, . . . , ξr) is independent of
ξ2, . . . , ξr can only be removed at the expense of other assumptions, such as the property, of system

ẇ = s(w),

ż = f (w, z, ξ1, . . . , ξr),

of being input-to-state stable, in the input (ξ1, . . . , ξr).
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49.1 Introduction

Lyapunov functions represent the primary tool for the stability analysis of nonlinear systems. They verify
the stability of a given trajectory, and they also provide an estimate of its region of attraction. The purpose
of this text is to illustrate the utility of Lyapunov functions in the synthesis of nonlinear control systems.
We will focus on recursive state-feedback design methods which guarantee robust stability for systems
with uncertain nonlinearities. Lyapunov design is used in many other contexts, such as dynamic feedback,
output feedback, gain assignment, estimation, and adaptive control, but such topics are beyond the scope
of this chapter.

Given a state-space model of a plant, the Lyapunov design strategy is conceptually straightforward and
consists of two main steps:

1. Construct a candidate Lyapunov function V for the closed-loop system.
2. Construct a controller which renders its derivative V̇ negative for all admissible uncertainties.

Such a controller design guarantees, by standard Lyapunov theorems, the robust stability of the closed-
loop system. The difficulty lies in the first step, because only carefully constructed Lyapunov functions
can lead to success in the second step. In other words, for an arbitrary Lyapunov function candidate V , it
is likely that no controller can render V̇ negative in the entire region of interest. Those select candidates
which do lead to success in the second step are called control Lyapunov functions. Our first design step
should, therefore, be to construct a control Lyapunov function for the given system; this will then insure
the existence of controllers in the second design step.

In Section 49.2 we review the Lyapunov redesign method, in which a Lyapunov function is known for
the nominal system (the system without uncertainties) and is used as the control Lyapunov function for
the uncertain system. We will see that this method is essentially limited to systems whose uncertainties
satisfy a restrictive matching condition. In Section 49.3 we show how such limitations can be avoided
by taking the uncertainty into account while building the control Lyapunov function. We then present
a recursive robust control design procedure in Section 49.4 for a class of uncertain nonlinear systems.
Flexibilities in this recursive design are discussed in Section 49.6.

49-1
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49.2 Lyapunov Redesign

A standard method for achieving robustness to state-space uncertainty is Lyapunov redesign; see [12].
In this method, one begins with a Lyapunov function for a nominal closed-loop system and then uses
this Lyapunov function to construct a controller which guarantees robustness to given uncertainties. To
illustrate this method, we consider the system,

ẋ = F(x)+G(x)u+Δ(x, t), (49.1)

where F and G are known functions comprising the nominal system andΔ is an uncertain function known
only to lie within some bounds. For example, we may know a function ρ(x) so that |Δ(x, t) |≤ ρ(x). A
more general uncertainty Δ would also depend on the control variable u, but for simplicity we do not
consider such uncertainty here. We assume that the nominal system is stabilizable, that is, that some state
feedback unom(x) exists so that the nominal closed-loop system,

ẋ = F(x)+G(x)unom(x), (49.2)

has a globally asymptotically stable equilibrium at x = 0. We also assume knowledge of a Lyapunov
function V for this system so that

∇V (x) [F(x)+G(x)unom(x)] < 0 (49.3)

whenever x �= 0. Our task is to design an additional robustifying feedback urob(x) so that the composite
feedback u= unom+ urob robustly stabilizes the system (Equation 49.1), that is, guarantees stability for
every admissible uncertaintyΔ. It suffices that the derivative of V along closed-loop trajectories is negative
for all such uncertainties. We compute this derivative as follows:

V̇ = ∇V (x) [F(x)+G(x)unom(x)]+∇V (x) [G(x)urob(x)+Δ(x, t)] (49.4)

Can we make this derivative negative by some choice of urob(x)? Recall from Equation 49.3 that the first
of the two terms in Equation 49.4 is negative; it remains to examine the second of these terms. For those
values of x for which the coefficient ∇V (x) ·G(x) of the control urob(x) is nonzero, we can always choose
the value of urob(x) large enough to overcome any finite bound on the uncertainty Δ and thus make
the second term in Equation 49.4 negative. The only problems occur on the set where ∇V (x) ·G(x)= 0,
because on this set

V̇ = ∇V (x) · F(x)+∇V (x) ·Δ(x, t) (49.5)

regardless of our choice for the control. Thus to guarantee the negativity of V̇ , the uncertainty Δ must
satisfy

∇V (x) · F(x)+∇V (x) ·Δ(x, t)≤ 0 (49.6)

at all points where ∇V (x) ·G(x)= 0. This inequality constraint on the uncertaintyΔ is necessary for the
Lyapunov redesign method to succeed. Unfortunately, there are two undesirable aspects of this necessary
condition. First, the allowable size of the uncertainty Δ is dictated by F and V and can thus be severely
restricted. Second, this inequality (Equation 49.6) cannot be checked a priori on the system (Equation 49.1)
because it depends on the choice for V .

These considerations lead to the following question. Are there structural conditions that can be imposed
on the uncertaintyΔ so that the necessary condition (Equation 49.6) is automatically satisfied? One such
structural condition is obvious. If we require that the uncertaintyΔ is of the form,

Δ(x, t)= G(x) · Δ̄(x, t), (49.7)

for some uncertain function Δ̄, then clearly ∇V ·Δ= 0 at all points where ∇V ·G = 0, and thus the
necessary condition (Equation 49.6) is satisfied. In the literature, Equation 49.7 is called the matching
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condition because it allows the system (Equation 49.1) to be written

ẋ = F(x)+G(x)[u+ Δ̄(x, t)] (49.8)

where now the uncertainty Δ̄ is matched with the control u, that is, it enters the system through the same
channel as the control [2,4,12].

There are many methods available for the design of urob(x) when the matching condition (Equa-
tion 49.7) is satisfied. For example, if the uncertainty Δ̄ is such that | Δ̄(x, t) |≤ ρ̄(x) for some known
function ρ̄, then the control,

urob(x)=−ρ̄(x)

(∇V (x) ·G(x)
)T

| ∇V (x) ·G(x) | , (49.9)

yields
V̇ ≤ ∇V (x) [F(x)+G(x)unom(x)]+ | ∇V (x) ·G(x) | [−ρ̄(x)+ | Δ̄(x, t) |] (49.10)

The first term in Equation 49.10 is negative from the nominal design (Equation 49.3), and the second
term is also negative because we know that | Δ̄(x, t) |≤ ρ̄(x). The composite control u= unom+ urob thus
guarantees stability and robustness to the uncertainty Δ̄. This controller (Equation 49.9), proposed, for
example, by [8], is likely to be discontinuous at points where∇V (x) ·G(x)= 0. Indeed, in the scalar input
case, Equation 49.9 becomes

urob(x)=−ρ̄(x)sgn
(∇V (x) ·G(x)

)
(49.11)

which is discontinuous unless ρ̄(x)= 0 whenever∇V (x) ·G(x)= 0. Corless and Leitmann [4] introduced
a continuous approximation to this controller which guarantees convergence, not to the point x = 0, but
to an arbitrarily small prescribed neighborhood of this point. We will return to this continuity issue in
Section 49.5.

We have seen that, because of the necessary condition (Equation 49.6), the Lyapunov redesign method
is essentially limited to systems whose uncertainties satisfy the restrictive matching condition. In the next
sections, we will take a different look at Equation 49.6 and obtain much weaker structural conditions on
the uncertainty, which still allow a systematic robust controller design.

49.3 Beyond Lyapunov Redesign

In the previous section, we have seen that, if a Lyapunov function V is to guarantee robustness to an
uncertaintyΔ, then the inequality

∇V (x) · F(x)+∇V (x) ·Δ(x, t)≤ 0 (49.12)

must be satisfied at all points where ∇V (x) ·G(x)= 0. In the Lyapunov redesign method, this inequality
was viewed as a constraint on the uncertaintyΔ. Now let us instead view this inequality as a constraint on
the Lyapunov function V . This new look at Equation 49.12 will lead us beyond Lyapunov redesign: our
construction of V will be based on Equation 49.12 rather than on the nominal system. In other words, we
will take the uncertaintyΔ into account during the construction of V itself.

To illustrate our departure from Lyapunov redesign, consider the second-order, single-input uncertain
system,

ẋ1 = x2+Δ1(x, t) (49.13)

ẋ2 = u+Δ2(x, t) (49.14)

where Δ1 and Δ2 are uncertain functions which satisfy some known bounds. Let us try Lyapunov
redesign. The first step would be to find a state feedback unom(x) so that the nominal closed-loop system,

ẋ1 = x2 (49.15)

ẋ2 = unom(x) (49.16)
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has a globally asymptotically stable equilibrium at x = 0. Because the nominal system is linear, this step
can be accomplished with a linear control law unom(x)= Kx, and we can obtain a quadratic Lyapunov
function V (x)= xT Px for the stable nominal closed-loop system. In this case, the necessary condition
Equation 49.12 becomes

2xT P

[
x2+Δ1(x, t)
Δ2(x, t)

]
≤ 0 (49.17)

at all points where 2xT P[0 1]T = 0, that is, where x2 =−cx1 for some constant c > 0. We substitute
x2 =−cx1 in Equation 49.17, and, after some algebra, we obtain

x1Δ1(x1,−cx1, t)≤ cx2
1 (49.18)

for all x1, t ∈ R. Now suppose our knowledge of the uncertaintyΔ1(x1,−cx1, t) consists of a bound ρ1(x1)
so that |Δ1(x1,−cx1, t) |≤ ρ1(x1). Then Equation 49.18 implies that ρ1(x1)≤ c | x1 |, that is, that the
uncertainty Δ1 is restricted to exhibit only linear growth in x1 at a rate determined by the constant c.
In other words, if the uncertaintyΔ1 does not satisfy this c-linear growth, then this particular Lyapunov
redesign fails. This was to be expected because the uncertaintyΔ1 does not satisfy the matching condition.

The above Lyapunov redesign failed because it was based on the linear nominal system which suggested
a quadratic Lyapunov function V . Let us now ignore the nominal system and base our search for V directly
on the inequality (Equation 49.12). Let μ(x1) be a smooth function so that μ(0)= 0, and consider the
Lyapunov function

V (x)= x2
1 + [x2−μ(x1)]2 . (49.19)

This function V is smooth, positive definite, and radially unbounded and thus qualifies as a candidate
Lyapunov function for our system (Equations 49.13 and 49.14). We will justify this choice for V in the
next section; our goal here is to illustrate how we can use our freedom in the choice for the function μ to
derive a necessary condition on the uncertaintyΔ1 which is much less restrictive than Equation 49.18.

For V in Equation 49.19, ∇V (x) ·G(x)= 0 if, and only if, x2 = μ(x1), so that the necessary condition
Equation 49.12 becomes

x1μ(x1)+ x1Δ1(x1,μ(x1), t)≤ 0 (49.20)

for all x1, t ∈ R. Because we have left the choice for μ open, this inequality can be viewed as a constraint
on the choice of V (through μ) rather than a constraint on the uncertainty Δ1. We need only impose a
structural condition onΔ1 which guarantees the existence of a suitable function μ. An example of such a
condition would be the knowledge of a bound ρ1(x1) so that |Δ1(x1, x2, t) |≤ ρ1(x1); then Equation 49.20
becomes

x1μ(x1)+ | x1 | ρ1(x1)≤ 0 (49.21)

for all x1 ∈ R. It is then clear that we can satisfy Equation 49.21 by choosing, for example,

μ(x1)=−x1− ρ1(x1)sgn(x1). (49.22)

A technical detail is that this μ is not smooth at x1 = 0 unless ρ1(0)= 0, which means V in Equa-
tion 49.19 may not strictly qualify as a Lyapunov function. As we will show in Section 49.5, however,
smooth approximations always exist that will end up guaranteeing convergence to a neighborhood of
x = 0 in the final design. What is important is that this design succeeds for any function ρ1(x1), regardless
of its growth. Thus the c-linear growth condition onΔ1 which appeared in the above Lyapunov redesign
through Equation 49.18 is gone; this new design allows arbitrary growth (in x1) of the uncertaintyΔ1.

We have not yet specified the controller design; rather, we have shown how the limitations of Lyapunov
redesign can be overcome through a reinterpretation of the necessary condition (Equation 49.12) as a
constraint on the choice of V . Let us now return to the controller design problem and motivate our choice
of V in Equation 49.19.
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49.4 Recursive Lyapunov Design

Let us consider again the system (Equations 49.13 and 49.14):

ẋ1 = x2+Δ1(x, t) (49.23)

ẋ2 = u+Δ2(x, t) (49.24)

We assume knowledge of two bounding functions ρ1(x1) and ρ2(x) so that all admissible uncertainties
are characterized by the inequalities,

|Δ1(x, t) | ≤ ρ1(x1) (49.25)

|Δ2(x, t) | ≤ ρ2(x) (49.26)

for all x ∈ R2 and all t ∈ R. Note that the bound ρ1 on the uncertaintyΔ1 is allowed to depend only on the
state x1; this is the structural condition suggested in the previous section and will be characterized more
completely below. We will take a recursive approach to the design of a robust controller for this system.
This approach is based on the integrator backstepping technique developed by [11] for the adaptive control
of nonlinear systems. The first step in this approach is to consider the scalar system,

ẋ1 = ū+Δ1(x1, ū, t), (49.27)

which we obtain by treating the state variable x2 in Equation 49.23 as a control variable ū. This new
system (Equation 49.27) is only conceptual; its relationship to the actual system (Equations 49.23–49.24)
will be explored later. Let us next design a robust controller ū= μ(x1) for this conceptual system. By
construction, this new system satisfies the matching condition, and so we may use the Lyapunov redesign
method to construct the feedback ū= μ(x1). The nominal system is simply ẋ1 = ū which can be stabilized
by a nominal feedback ūnom =−x1. A suitable Lyapunov function for the nominal closed-loop system
ẋ1 =−x1 would be V1(x1)= x2

1 . We then choose ū= ūnom+ ūrob, where ūrob is given, for example, by
Equation 49.9 with ρ̄= ρ1. The resulting feedback function for ū is

μ(x1)=−x1− ρ1(x1)sgn(x1). (49.28)

If we now apply the feedback ū= μ(x1) to the conceptual system (Equation 49.27), we achieve V̇1 ≤−2x2
1

and thus guarantee stability for every admissible uncertaintyΔ1. Let us assume for now that this function
μ is (sufficiently) smooth; we will return to the question of smoothness in Section 49.5.

The idea behind the backstepping approach is to use the conceptual controller (Equation 49.28) in
constructing a control Lyapunov function V for the actual system (Equations 49.23–49.24). If we treat the
Lyapunov function as a penalty function, it is reasonable to include in V a term penalizing the difference
between the state x2 and the conceptual control ū designed for the conceptual system (Equation 49.27):

V (x)= V1(x1)+[x2−μ(x1)]2. (49.29)

We have seen in the previous section that this choice satisfies the necessary condition (Equation 49.12)
and is thus a good candidate for our system (Equations 49.23–49.24). It is no coincidence that we arrived
at the same expression for μ in Equations 49.22 and 49.28 both from the viewpoint of the necessary
condition (Equation 49.12) and from the viewpoint of the conceptual system (Equation 49.27).

Let us now verify that the choice of Equation 49.29 for V leads to a robust controller design for the
system (Equations 49.23–49.24). Computing V̇ we obtain

V̇ = 2x1[x2+Δ1(x, t)]+ 2[x2−μ(x1)] [u+Δ2(x, t)−μ′(x1)[x2+Δ1(x, t)]] (49.30)

where μ′ := dμ/dx. Rearranging terms and using Equation 49.28,

V̇ ≤−2x2
1 + 2[x2−μ(x1)] [x1+ u+Δ2(x, t)−μ′(x1)[x2+Δ1(x, t)]] (49.31)

The effect of backstepping is that the uncertainties enter the expression (Equation 49.31) with the same
coefficient as the control variable u; in other words, the uncertainties effectively satisfy the matching



�

�

�

�

� �

49-6 Control System Advanced Methods

condition. As a result, we can again apply the Lyapunov redesign technique; the feedback control u=
unom+ urob with a nominal control,

unom(x)=− [x2−μ(x1)]− x1+μ′(x1)x2, (49.32)

yields

V̇ ≤−2x2
1 − 2 [x2−μ(x1)]2+ 2 [x2−μ(x1)]

[
urob+Δ2(x, t)−μ′(x1)Δ1(x, t)

]
. (49.33)

We may complete the design by choosing urob as in Equation 49.9:

urob(x)=−ρ̄(x)sgn [x2−μ(x1)] (49.34)

where ρ̄ is some function satisfying |Δ2(x, t)−μ′(x1)Δ1(x, t) |≤ ρ̄(x). This yields

V̇ ≤−2x2
1 − 2 [x2−μ(x1)]2 (49.35)

for all admissible uncertaintiesΔ1 andΔ2, and thus robust stability is guaranteed.

Example 49.1:

The above second-order design applies to the following system:

ẋ1 = x2+Δ1(x , t) (49.36)

ẋ2 = u (49.37)

where we let the uncertainty Δ1 be any function satisfying |Δ1(x , t) |≤ |x1|3. In this case, the
function μ in Equation 49.28 would be μ(x1)=−x1− x3

1 which is smooth as required. The nom-
inal control unom is given by Equation 49.32, which, for this example, becomes

unom(x)=−
[

x2+ x1+ x3
1

]
− x1− (1+ 3x2

1 )x2 (49.38)

Adding the robustifying term (Equation 49.34), we obtain the following robust controller:

u(x)=−
[

x2+ x1+ x3
1

]
− x1−

(
1+ 3x2

1

)
x2−

(
| x1 |3 +3 | x1 |5

)
sgn

(
x2+ x1+ x3

1

)
. (49.39)

This robust controller is not continuous at points where x2+ x1+ x3
1 = 0; an alternate smooth design

will be proposed in Section 49.5.
The above controller design for the system (Equations 49.23 and 49.24) is a two-step design. In the

first step, we considered the scalar system (Equation 49.27) and designed a controller ū= μ(x1) which
guaranteed robust stability. In the second step, we used the Lyapunov function (Equation 49 29) to
construct a controller (Equations 49.32 + 49.34) for the actual system (Equations 49.23 and 49.24).
This step-by-step design can be repeated to obtain controllers for higher order systems. For example,
suppose that instead of the system (Equations 49 23 and 49.24), we have the system

ẋ1 = x2+Δ1(x , t) (49.40)

ẋ2 = z+Δ2(x , t)

ż = υ+Δ3(x , z, t) (49.41)

whereΔ1 andΔ2 are as in Equations 49 25 and 49.26,Δ3 is a new uncertainty, and υ is the control
variable. We can use the controller u(x) := unom(x)+ urob(x) designed above in Equations 49.32 +
49.34 to obtain the following Lyapunov function W for our new system:

W (x , z)= V (x)+ [z− u(x)]2 (49.42)

Here V is the Lyapunov function (Equation 49 29) used above, and we have simply added a term
which penalizes the difference between the state variable z and the controller u(x) designed above
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for the old system (Equations 49 23 and 49.24). If u(x) is smooth, then Equation 49.42 qualifies as a
candidate Lyapunov function for our new system; see Section 49.5 below for details on choosing a
smooth function u(x). We can now construct a controller υ= υ(x , z) for our new system in the same
manner as the construction of μ(x1) and u(x) above.

We have thus obtained a systematic method for constructing Lyapunov functions and robust
controllers for systems of the form,

ẋ1 = x2+Δ1(x , t), (49.43)

ẋ2 = x3+Δ2(x , t),

...

ẋn = u+Δn(x , t). (49.44)

The Lyapunov function will be of the form

V (x)= x2
1 +

n−1∑
i=1

[
xi+1−μi (x1, . . . , xi )

]2 (49.45)

where the functions μi are constructed according to the recursive procedure described above. For
this approach to succeed, it is sufficient that the uncertaintiesΔi satisfy the following strict feedback
condition:

|Δi (x , t) |≤ ρi (x1, . . . , xi ) (49.46)

for known functions ρi . The restriction here is that the ith bound ρi can depend only on the first i
states (x1, . . . , xi ).

This recursive Lyapunov design technique applies to uncertain systems more general than
Equations 49.43–49.44. Multi-input versions are possible, and the strict feedback condition (Equa-
tion 49.46) can be relaxed to allow the bound ρi to depend also on the state xi+1. In particular, the
bound ρn on the last uncertaintyΔn can also depend on the control variable u. More details can be
found in [5,14,16,17].

49.5 Smooth Control Laws

The control lawμi designed in the ith step of the recursive design becomes part of the Lyapunov function
(Equation 49.45) in the next step. It is imperative, therefore, that each such function μi be differentiable.
To illustrate how smooth functions can be obtained at each step, let us return to the second-order design
in Section 49.4. The first step was to design a robust controller ū= μ(x1) for the conceptual system,

ẋ1 = ū+Δ1(x1, ū, t) (49.47)

with |Δ1 |≤ ρ1(x1). In general, when ρ1(0) �= 0, we cannot choose μ as in Equation 49.28 because of the
discontinuity at x1 = 0. One alternative is to approximate Equation 49.28 by smooth function as follows:

μ(x1)=−x1− ρ1(x1)
x1

| x1 | +δ(x1)
(49.48)

where δ(x1) is a smooth, strictly positive function. This choice for μ is once differentiable, and it reduces
to the discontinuous function (Equation 49.28) when δ≡ 0. We compute the derivative of V1(x1)= x2

1
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for the system (Equation 49.47) with the smooth feedback (Equation 49.48):

V̇ ≤−2x2
1 − 2ρ1(x1)

x2
1

| x1 | +δ(x1)
+ 2ρ1(x1) | x1 |

≤ −2x2
1 + 2ρ1(x1)

δ(x1) | x1 |
| x1 | +δ(x1)

≤−2x2
1 + 2ρ1(x1)δ(x1) (49.49)

If we now choose δ(x1) so that ρ1δ is small, we see that V̇1 < 0 except in a small neighborhood of x1 = 0.
In the second design step, we will choose unom as before in Equation 49.32, but instead of Equation 49.33

we obtain the Lyapunov derivative,

V̇ ≤−2x2
1 + 2ρ1(x1)δ(x1)− 2 [x2−μ(x1)]2+ 2 [x2−μ(x1)]

[
urob+Δ2(x, t)−μ′(x1)Δ1(x, t)

]
(49.50)

where the extra term 2ρ1δ comes from Equation 49.49 and is a result of our smooth choice forμ(x1). Our
remaining task is to construct the robustifying term urob. Using the bound |Δ2(x, t)−μ′(x1)Δ1(x, t) |≤
ρ̄(x) as before, we obtain

V̇ ≤−2x2
1 + 2ρ1(x1)δ(x1)− 2 [x2−μ(x1)]2+ 2 [x2−μ(x1)] urob+ 2 |x2−μ(x1)| ρ̄(x) (49.51)

We cannot choose urob as before in Equation 49.34 because it is not continuous at points where x2 = μ(x1).
We could choose a smooth approximation to Equation 49.34, as we did above for the function μ, but, to
illustrate an alternative approach, we will instead make use of Young’s inequality,

2ab ≤ 1

ε
a2+ εb2 (49.52)

which holds for any a, b ∈ R and any ε> 0. Applying this inequality to the last term in Equation 49.51,
we obtain

V̇ ≤−2x2
1 + 2ρ1(x1)δ(x1)−

[
2− 1

ε(x)

]
[x2−μ(x1)]2+ 2 [x2−μ(x1)] urob+ ε(x) [ρ̄(x)]2 (49.53)

where ε(x) is a smooth, strictly positive function to be chosen below. Thus

urob(x)=− 1

2ε(x)
[x2−μ(x1)] (49.54)

is smooth and yields

V̇ ≤−2x2
1 − 2 [x2−μ(x1)]2+ 2ρ1(x1)δ(x1)+ ε(x) [ρ̄(x)]2 . (49.55)

It is always possible to choose δ(x1) and ε(x) so that the right-hand side of Equation 49.55 is negative,
except possibly in a neighborhood of x = 0. Thus we have gained smoothness in the control law but lost
exact convergence of the state to zero.

49.6 Design Flexibilities

The degrees of freedom in the recursive Lyapunov design procedure outlined above are numerous and
allow for the careful shaping of the closed-loop performance. However, this procedure is new, and
guidelines for exploiting design flexibilities are only beginning to appear. Our purpose in this section is
to point out several of these degrees of freedom and discuss the consequences of various design choices.
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We have already seen that the choices for the functions μi in the Lyapunov function (Equation 49.45)
are by no means unique, nor is it the final choice for the control law. For example, when choosing
a robustifying term urob in some step of the design, should we choose a smooth approximation to
Equation 49.9 as in Equation 49.48, or should we use Young’s inequality and choose Equation 49.54?
Also, how should we choose the nominal term unom? Is it always good to cancel nonlinearities and apply
linearlike feedback as in Equation 49.32, and if so, which gain should we use? Such questions are difficult
in general, but there are some guidelines that apply in many situations. For example, consider the task of
robustly stabilizing the point x = 0 of the simple scalar system,

ẋ =−x3+ u+Δ(x, t) (49.56)

where Δ is an uncertain function with a known bound |Δ(x, t) |≤| x |. Because the matching condition
is satisfied, we can apply the Lyapunov redesign method and choose u= unom+ urob. One choice for the
nominal control would be unom(x)= x3− x, which, together with a robustifying term as in Equation 49.9
yields a control law

u(x)= x3− 2x (49.57)

This control law is valid from the viewpoint of Lyapunov redesign, and it indeed guarantees robustness to
the uncertaintyΔ. In such a choice, however, large positive feedback x3 is used to cancel the nonlinearity
−x3 in Equation 49.56. This is absurd because the nonlinearity −x3 is beneficial for stabilization, and
positive feedback x3 will lead to unnecessarily large control effort and will cause robustness problems more
severe than those caused by the uncertainty Δ. Clearly, a much more reasonable choice is u(x)=−2x,
but how can we identify better choices in a more general setting? One option would be to choose the
control to minimize some meaningful cost functional. For example, the control

u(x)= x3− x− x
√

x4− 2x2+ 2 (49.58)

minimizes the worst-case cost functional

J = sup
|Δ|≤|x|

∫ ∞

0

[
x2+ u2] dt (49.59)

for this system Equation 49.56. The two control laws (Equations 49.57 and 49.58) are shown in Figure 49.1.
We see that the optimal control (Equation 49.58) recognizes the benefit of the nonlinearity −x3 in
Equation 49.56 and accordingly produces little control effort for large x. Moreover, this optimal control is
never positive feedback. Unfortunately, the computation of the optimal control (Equation 49.58) requires
the solution of a Hamilton–Jacobi–Isaacs partial differential equation, and will be difficult and expensive
for all but the simplest problems.

As a compromise between the benefits of optimality and its computational burden, we might consider
the inverse optimal control problem, summarized for example by [7]. In this approach, we start with
a Lyapunov function as in the Lyapunov redesign method above. We then show that this Lyapunov
function is in fact the value function for some meaningful optimal stabilization problem, and we use this
information to compute the corresponding optimal control. Freeman and Kokotović [6] have shown that
the pointwise solutions of static minimization problems of the form,

minimize uT Su, S = ST > 0, (49.60)

subject to sup
Δ

[
V̇ (x, u,Δ)+ σ(x)

]≤ 0, (49.61)

yield optimal controllers (in this inverse sense) for meaningful cost functionals, where V is a given
control Lyapunov function and σ is a positive function whose choice represents a degree of freedom.
When the system is jointly affine in the control u and the uncertainty Δ, this optimization problem
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FIGURE 49.1 Comparison of the control laws Equation 49.57 (solid) and Equation 49.58 (dotted).

(Equations 49.60 and 49.61) is a quadratic program with linear constraints and thus has an explicit
solution u(x). For example, the solution to Equations 49.60 and 49.61 for the system (Equation 49.56)
with V = x2 and σ= 2x2 yields the control law,

u(x)=
{

x3− 2x when x2 ≤ 2,
0 when x2 ≥ 2.

(49.62)

As shown in Figure 49.2, this control (Equation 49.62) is qualitatively the same as the optimal control
(Equation 49.58); both recognize the benefit of the nonlinearity −x3 and neither one is ever positive
feedback. The advantage of the inverse optimal approach is that the controller computation is simple
once a control Lyapunov function is known.
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FIGURE 49.2 A comparison of the control laws Equation 49.62 (solid) and Equation 49.58 (dotted).
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We thus have some guidelines for choosing the intermediate control laws μi at each step of the design,
namely, we can avoid the wasteful cancellations of beneficial nonlinearities. However, these guidelines,
when used at early steps of the recursive design, have not yet been proved beneficial for the final design.

We have shown that the choices for the functions μi in Equation 49.45 represent important degrees
of freedom in the recursive Lyapunov design procedure. Perhaps even more important is the choice of
the form of V itself. Recall that, given a Lyapunov function Vi and a control μi at the ith design step, we
constructed the new Lyapunov function Vi+1 as follows:

Vi+1(x1, . . . , xi+1)= Vi(x1, . . . , xi)+ [xi+1−μi(x1, . . . , xi)]2 . (49.63)

This choice for Vi+1 is not the only choice that will lead to a successful design, and we are thus confronted
with another degree of freedom in the design procedure. For example, instead of Equation 49.63, we can
choose

Vi+1(x1, . . . , xi+1)= κ [Vi(x1, . . . , xi)]+ [xi+1−μi(x1, . . . , xi)]2 . (49.64)

where κ : R+ → R+ is any smooth, positive-definite, unbounded function whose derivative is everywhere
strictly positive. This function κ represents a nonlinear weighting on the term Vi and can have a large
effect on the control laws obtainable in future steps.

The last degree of freedom we wish to discuss involves the quadratic-like term in Equations 49.63 and
49.64. Praly et al. [15] have shown that Equation 49.64 can be replaced by the more general expression

Vi+1(x1, . . . , xi+1)= κ [Vi(x1, . . . , xi)]+
∫ xi+1

μi(x1,...,xi)
φ(x1, . . . , xi , s) ds (49.65)

for a suitable choice of the function φ. Indeed, Equation 49.64 is a special case of Equation 49.65 for
φ= 2[s−μi(x1, . . . , xi)]. This degree of freedom in the choice of φ can be significant; for example, it
allowed extensions of the recursive design to the nonsmooth case by [15]. It can also be used to reduce
the unnecessarily large control gains often caused by the quadratic term in Equation 49.63. To illustrate
this last point, let us return to the second-order example (Equations 49.36 and 49.37) given by

ẋ1 = x2+Δ1(x, t) (49.66)

ẋ2 = u (49.67)

where the uncertainty Δ1 is any function satisfying |Δ1(x, t) | ≤ | x1 |3 . Recall that using the Lyapunov
function,

V (x)= x2
1 +

[
x2+ x1+ x3

1

]2
(49.68)

–900

900 –20

20

z1
z2

FIGURE 49.3 Quadratic-like Lyapunov function (Equation 49.68). (From Freeman, R. A. and Kokotović, P. V.,
Automatica, 29(6), 1425–1437, 1993. With permission.)
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z2
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FIGURE 49.4 Controller from quadratic-like Lyapunov function (Equation 49.68). (From Freeman, R. A. and
Kokotović, P. V., Automatica 29(6), 1425–1437, 1993. With permission.)

we designed the following robust controller (Equation 49.39) for this system:

u(x)=− [x2+ x1+ x3
1

]− x1−
(
1+ 3x2

1

)
x2−

(|x1|3+ 3|x1|5
)

sgn
(
x2+ x1+ x3

1

)
. (49.69)

This controller is not continuous at points where x2+ x1+ x3
1 = 0. In other words, the local controller

gain ∂u/∂x2 is infinite at such points. Such infinite gain will cause high-amplitude chattering along the
manifold M described by x2+ x1+ x3

1 = 0. As a result of such chattering, this control law may not be
implementable because of the unreasonable demands on the actuator. However, as was shown in Sec-
tion 49.5, we can use this same Lyapunov function (Equation 49.68) to design a smooth robust controller
ū for our system. Will such a smooth controller eliminate the chattering caused by the discontinuity
in Equation 49.69? Surprisingly, the answer is no. One can show that the local controller gain ∂ū/∂x2,
although finite because of the smoothness of ū, grows like x6

1 along the manifold M. Thus for large sig-
nals, this local gain is extremely large and can cause chattering as if it were infinite. Figure 49.3 shows
the Lyapunov function V in Equation 49.68, plotted as a function of the two variables, z1 := x1 and
z2 := x2+ x1+ x3

1 . A smooth control law ū designed using this V is shown in Figure 49.4, again plotted as
a function of z1 and z2. Note that the x6

1 growth of the local gain of ū along the manifold z2 = 0 is clearly
visible in this figure. One might conclude that such high gain is unavoidable for this particular system.
This conclusion is false, however, because the x6

1 growth of the local gain is an artifact of the quadratic

–900

900
z2

z1

–20

20

FIGURE 49.5 New flattened Lyapunov function. (From Freeman, R. A. and Kokotović, P. V., Automatica, 29(6),
1425–1437, 1993. With permission.)
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FIGURE 49.6 Controller from flattened Lyapunov function. (From Freeman, R. A. and Kokotović, P. V., Automat-
ica, 29(6), 1425–1437, 1993. With permission.)

form of the Lyapunov function (Equation 49.68) and has nothing to do with robust stability requirements
for this system. Freeman and Kokotović [6] have shown how to choose the function φ in Equation 49.65
to reduce greatly the growth of the local gain. For this example (Equations 49.66 and 49.67), they achieved
a growth of x2

1 as opposed to the x6
1 growth caused by the quadratic V in Equation 49.68. Their new,

flattened Lyapunov function is shown in Figure 49.5, and the corresponding control law is shown in Fig-
ure 49.6. The x2

1 versus x6
1 growth of the local gain is evident when comparing Figures 49.6 and 49.4. The

control signals generated from a particular initial condition are compared in Figure 49.7. These controls
produce virtually the same state trajectories, but the chattering caused by the old control law has been
eliminated by the new one.
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FIGURE 49.7 Comparison of control signals. (From Freeman, R. A. and Kokotović, P. V., Automatica, 29(6),
1425–1437, 1993. With permission.)
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Further Reading

Contributions to the development of the Lyapunov design methodology for systems with no uncertainties
include [1,9,10,13,18]. A good introduction to Lyapunov redesign can be found [12]. Corless [3] has
recently surveyed various methods for the design of robust controllers for nonlinear systems using
quadratic Lyapunov functions. Details of the recursive design presented in Section 49.4 can be found in [6,
14,16]. The state-space techniques discussed in this chapter can be combined with nonlinear input/output
techniques to obtain more advanced designs (see Chapter 44). Finally, when the uncertain nonlinearities
are given by constant parameters multiplying known nonlinearities, adaptive control techniques apply
(see Chapter 53).
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50.1 Introduction and Background

This chapter investigates variable structure control (VSC) as a high-speed switched feedback control
resulting in a sliding mode. For example, the gains in each feedback path switch between two values
according to a rule that depends on the value of the state at each time instant. The purpose of the
switching control law is to drive the plant’s state trajectory onto a prespecified (user-chosen) surface in
the state space and to maintain the plant’s state trajectory on this surface for all subsequent time. This
surface is called a switching surface and the resulting motion of the state trajectory a sliding mode. When
the plant state trajectory is “above” the surface, a feedback path has one gain and a different gain if the

50-1
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trajectory drops “below” the surface. This surface defines the rule for proper switching. The surface is also
called a sliding surface (sliding manifold) because, ideally speaking, once intercepted, the switched control
maintains the plant’s state trajectory on the surface for all subsequent time and the plant’s state trajectory
then slides along this surface. The plant dynamics restricted to this surface represent the controlled
system’s behavior. The first critical phase of a VSC design is to properly construct a switching surface,
so that the plant, restricted to the surface, has desired dynamics, such as stability to the origin, tracking,
regulation, and so on.

In summary, a VSC control design generally breaks down into two phases. The first phase is to design
or choose a sliding manifold/switching surface, so that the plant state restricted to the surface has desired
dynamics. The second phase is to design a switched control that will drive the plant state to the switching
surface and maintain it on the surface upon interception. A Lyapunov approach is used in this chapter
to characterize this second design phase. Here, a generalized Lyapunov function, which characterizes the
motion of the state trajectory to the surface, is specified in terms of the surface. For each chosen switched
control structure, one chooses the “gains,” so that the derivative of this Lyapunov function is negative
definite with respect to the sliding surface, thus guaranteeing motion of the state trajectory to the surface.

As an introductory example, consider the first-order system ẋ(t)= u(x, t) with control

u(x, t)=−sgn(x)=
{
−1, if x > 0,

+1, if x < 0.

Hence, the system with control satisfies ẋ =−sgn(x) with trajectories plotted in Figure 50.1a. Here
the control u(x, t) switches, changing its value between ±1 around the surface σ(x, t)= x = 0. Hence,
for any initial condition x0, a finite time t1 exists for which x(t)= 0 for all t ≥ t1. Now, suppose ẋ(t)=
u(x, t)+ v(t), where again u(x, t)=−sgn(x) and v(t) is a bounded disturbance for which supt |v(t)|< 1.
As before, the control u(x,t) switches its value between ±1 around the surface σ(x, t)= x = 0. It follows
that if x(t) >0, then ẋ(t)=−sgn[x(t)]+ v(t) < 0, forcing motion toward the line σ(x, t)= x = 0, and if
x(t) < 0, then ẋ(t)=−sgn[x(t)]+ v(t) > 0, again forcing motion toward the line σ(x, t)= x = 0. For a
positive initial condition, this is illustrated in Figure 50.1b. The rate of convergence to the line depends
on the disturbance. Nevertheless, a finite time t1 exists for which x(t)= 0 for all t ≥ t1. If the disturbance

(b)

x0 > 0

x(t)

State trajectories

(a)

t1
t

x0 > 0

x(t)

t1(v)
t

State trajectory

FIGURE 50.1 (a) State trajectories for the system ẋ =−sgn(x); (b) State trajectory for the system ẋ(t)=
−sgn[x(t)]+ v(t).
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magnitude exceeds 1, then the gain can always be adjusted to compensate for the change. Hence, this VSC
law is robust in the face of bounded disturbances, illustrating the simplicity and advantage of the VSC
technique.

From the above example, one can see that VSC can provide a robust means of controlling (nonlinear)
plants with disturbances and parameter uncertainties. Further, the advances in computer technology
and high-speed switching circuitry have made the practical implementation of VSC quite feasible and of
increasing interest. Indeed, pulse-width modulation control and switched dc-to-dc power converters [1]
can be viewed in a VSC framework.

50.2 System Model, Control Structure, and Sliding Modes

50.2.1 System Model

The class of systems investigated herein has a state model nonlinear in the state vector x(·) and linear in
the control vector u(·) of the form

ẋ(t)= F(x, t, u)= f (x, t)+B(x, t)u(x, t), (50.1)

where x(t) ∈ Rn, u(t) ∈ Rm, and B(x, t) ∈ Rn×m; further, each entry in f (x,t) and B(x,t) is assumed contin-
uous with a bounded continuous derivative with respect to x. In the linear time-invariant case, Equation
50.1 becomes

ẋ = Ax+Bu (50.2)

with A n× n and B n×m being constant matrices.
As mentioned in the previous section, the first phase of VSC or sliding mode control (SMC) design

is to choose a manifold S ⊂ Rn, so that the control goal is reached once the state is maintained on S. As
such we formally define the (n−m)-dimensional switching surface (also called a discontinuity, sliding
manifold, or equilibrium manifold), as (the possibly time-varying)

S = {x ∈ Rn|σ(x, t)= 0
}=

n⋂
i=1

{
x ∈ Rn|σi(x, t)= 0

}
, (50.3)

where
σ(x, t)= [σ1(x, t), . . . , σm(x, t)]T = 0. (50.4)

(We will often refer to S as σ(x, t)= 0.) When there is no t-dependence, this (n−m)-dimensional
manifold S ⊂ Rn is determined as the intersection of m (n− 1)-dimensional surfaces σi(x, t)= 0. These
surfaces are designed in such a way that the system state trajectory, restricted to σ(x, t)= 0, has a desired
behavior such as stability or tracking. Although general nonlinear time-varying surfaces as in Equation
50.3 are possible, linear ones are more prevalent in design [2–6]. Linear surface design is presented in
Section 50.4.

50.2.2 Control Structure

After proper design of the surface, a controller u(x, t)= [u1(x, t), . . . , um(x, t)]T is constructed, which
generally has a switched form

ui(x, t)=
{

u+i (x, t), when σi(x, t) > 0,

u−i (x, t), when σi(x, t) < 0.
(50.5)

Equation 50.5 indicates that the control changes its value depending on the sign of σ(x, t). Here
we can define that a discontinuity set, D, in the right-hand side is a union of the hypersurfaces
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defined by σi(x, t)= 0:

D =
n⋃

i=1

{x ∈ Rn|σi(x, t)= 0}.

Thus, the (possibly t-dependent) hypersurfaces {x ∈ Rn|σi(x, t)= 0} can be called switching surfaces
and the functions σi(x, t) switching functions. The goal of phase 2 is to stabilize the state to S. Off S,
the control values u±i are chosen so that the state trajectory converges to S in finite time, that is, the
sliding mode exists on S, but the sliding mode may (or may not) also exist on some of the hypersurfaces
{x ∈ Rn|σi(x, t)= 0} while the state is converging to S.

50.2.3 Sliding Modes

The control u(x, t) is designed in such a way that the system state trajectory is attracted to S and, once
having intercepted S, remains there for all subsequent time; thus, the state trajectory can be viewed as
sliding along S meaning that the system is in a sliding mode. A sliding mode exists if, in the vicinity of
the switching surface, S, the tangent or velocity vectors of the state trajectory point toward the switching
surface. If the state trajectory intersects the sliding surface, the value of the state trajectory or “repre-
sentative point” remains within an ε-neighborhood of S. If a sliding mode exists on S, then S, or more
commonly σ(x, t)= 0, is also termed a sliding surface. Note that interception of the surface σi(x, t)= 0
does not guarantee sliding on the surface for all subsequent time as illustrated in Figure 50.2, although
this is possible.

An ideal sliding mode exists only when the state trajectory x(t) of the controlled plant satisfies
σ(x(t), t)= 0 at every t ≥ t1 for some t1. This may require infinitely fast switching. In real systems, a
switched controller has imperfections, such as delay, hysteresis, and so on, which limit switching to a
finite frequency. The representative point then oscillates within a neighborhood of the switching surface.
This oscillation, called chattering (discussed in a later section), is also illustrated in Figure 50.2. If the
frequency of the switching is very high relative to the dynamic response of the system, the imperfections
and the finite switching frequencies are often but not always negligible. The subsequent development
focuses primarily on ideal sliding modes.

(x0, t0)

(x1, t1)

Chattering

Sliding
Origin
x = 0

σ2 = 0

σ1 = 0

FIGURE 50.2 A situation in which a sliding mode exists on the intersection of the two indicated surfaces for t ≥ t1.
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Non-sliding
trajectory

D

x1

x2
σ = 0

ε vicinity of
boundary point
of D

Sliding mode
trajectory

Boundary point of D

ε

δ

εδ

FIGURE 50.3 Two-dimensional illustration of the domain of a sliding mode.

50.2.4 Conditions for the Existence of a Sliding Mode

The existence of a sliding mode [2,5,6] requires stability of the state trajectory to the switching surface
σ(x, t)= 0, that is, after some finite time t1, the system representative point, x(t), must be in some
suitable neighborhood, {x| ‖σ(x, t)‖< ε}, of S for suitable ε> 0. A domain, D, of dimension n−m in
the manifold, S, is a sliding-mode domain if, for each ε>0, there is a δ> 0, so that any motion starting
within an n-dimensional δ-vicinity of D may leave the n-dimensional ε-vicinity of D only through the
n-dimensional ε-vicinity of the boundary of D as illustrated in Figure 50.3.

The region of attraction is the largest subset of the state space from which sliding is achievable. A sliding
mode is globally reachable if the domain of attraction is the entire state space. The second method of
Lyapunov provides the natural setting for a controller design leading to a sliding mode. In this effort one
uses a generalized Lyapunov function, V (t, x, σ), that is positive definite with a negative time derivative
in the region of attraction.

Theorem 50.1: [5, p. 83]:

For the (n−m)-dimensional domain D to be the domain of a sliding mode, it is sufficient that in some
n-dimensional domainΩ⊃ D, a function V(t, x, σ) exists, continuously differentiable with respect to all of
its arguments and satisfying the following conditions:

1. V (t, x, σ) is positive definite with respect to σ, that is, for arbitrary t and x, V (t, x, σ) > 0, when σ �= 0
and V (t, x, 0)= 0; on the sphere ||σ|| ≤ ρ> 0, for all x ∈Ω and any t, the relationships

inf||σ||=ρV (t, x, σ)= hρ, hρ > 0 and sup
||σ||=ρ

V (t, x, σ)=Hρ, Hρ > 0

hold, where hρ and Hρ depend only on ρ with hρ �= 0 if ρ �= 0.
2. The total time derivative of V (t, x, σ) on the trajectories of the system of Equation 50.1 has a negative

supremum for all x ∈Ω except for x on the switching surface where the control inputs are undefined
and the derivative of V (t, x, σ) does not exist.
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In summary, two phases underlie VSC design. The first phase is to construct a switching surface
σ(x, t)= 0, so that the system restricted to the surface has a desired global behavior, such as stability,
tracking, regulation, and so on. The second phase is to design a (switched) controller u(x, t), so that away
from the surface σ(x, t)= 0, the tangent vectors of the state trajectories point toward the surface, that
is, there is stability to the switching surface. This second phase is achieved by defining an appropriate
Lyapunov function V (t,x,σ), differentiating this function so that the control u(x,t) becomes explicit, and
adjusting controller gains so that the derivative is negative definite. The choice of V (t,x,σ) determines the
allowable controller structures. Conversely, a workable control structure has a set of possible Lyapunov
functions to verify its viability. A later section discusses general control structures.

50.2.5 An Illustrative Example

To conclude this section, we present an illustrative example for a single pendulum system,

ẋ = A(x)x+Bu(x)=
⎡
⎣ 0 1

− sin(x1)

x1
0

⎤
⎦[x1

x2

]
+
[

0
1

]
u(x),

with a standard feedback control structure, u(x)= k1(x)x1+ k2(x)x2, having nonlinear feedback gains
switched according to the rule

ki(x)=
{
αi(x), if σ(x)xi > 0,

βi(x), if σ(x)xi < 0,

which depend on the linear switching surface
(
σ(x)= [s1 s2]x

)
. Without loss of generality, assume s2 > 0.

For such single-input systems it is ordinarily convenient to choose a Lyapunov function of the form
V (t, x, σ)= 0.5σ2(x). To determine the gains necessary to drive the system state to the surface σ(x)= 0,
they may be chosen so that

V̇ (t, x, σ)= 0.5
dσ2

dt
= σ(x)

dσ(x)

dt
= σ(x)[s1 s2]ẋ

= σ(x)x1

[
s2

(
k1(x)− sin(x1)

x1

)]
+ σ(x)x2 [s1+ s2k2(x)] < 0.

This is satisfied whenever

α1(x)= α1 < min
x1

[
sin(x1)

x1

]
=−1,

β1(x)= β1 > max
x1

[
sin(x1)

x1

]
= 1,

α2 <−(s1/s2) and β2 >−(s1/s2). Thus, for properly chosen s1 and s2, the controller gains are readily
computed.

This example proposed no methodology for choosing s1 and s2, that is, for designing the switching
surface. Section 50.4 presents this topic. Further, this example was only single input. For the multi-input
case, ease of computation of the control gains depends on a properly chosen Lyapunov function. For most
cases, a quadratic Lyapunov function is adequate. This topic is discussed in Section 50.5.

50.3 Existence and Uniqueness of Solutions to VSC Systems

VSC produces system dynamics with discontinuous right-hand sides owing to the switching action of
the controller. Thus they fail to satisfy conventional existence and uniqueness results of differential
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Grad(σ)

F –

F + 

F 0 = αF + + (1 – α ) F –

α ∈ [0, 1]

FIGURE 50.4 Illustration of the Filippov method of determining the desired velocity vector F0 for the motion of
the state trajectory on the sliding surface as per Equation 50.6.

equation theory. Nevertheless, an important aspect of VSC is the presumption that the plant behaves
uniquely when restricted to σ(x, t)= 0. One of the earliest and conceptually straightforward approaches
addressing existence and uniqueness is the method of Filippov [7]. The following briefly reviews this
method in the two-dimensional, single-input case.

From Equation 50.1, ẋ(t)= F(x, t, u) and the control u(x, t) satisfy Equation 50.5. Filippov’s work
shows that the state trajectories of Equation 50.1 with control Equation 50.5 on the switching manifold
Equation 50.3 solve the equation

ẋ(t)= αF+ + (1− α)F− = F0, 0≤ α≤ 1. (50.6)

This is illustrated in Figure 50.4, where F+ = F(x, t, u+), F− = F(x, t, u−), and F0 is the resulting velocity
vector of the state trajectory in a sliding mode.

The problem is to determine α, which follows from solving the equation 〈grad(σ), F0〉 = 0, where the
notation 〈a, b〉 denotes the inner product of a and b, that is,

α= 〈grad(σ), F−〉
〈grad(σ), (F− − F+)〉 ,

provided:

1. 〈grad(σ), (F− − F+)〉 �= 0.
2. 〈grad(σ), F+〉 ≤ 0.
3. 〈grad(σ), F−〉 ≥ 0.

Here, F0 represents the “average” velocity, ẋ(t) of the state trajectory restricted to σ(x, t)= 0. On
average, the solution to Equation 50.1 with control Equation 50.5 exists and is uniquely defined on the
switching surface S. This technique can also be used to determine the plant behavior in a sliding mode.

50.4 Switching-Surface Design

Switching-surface design is predicated based on the knowledge of the system behavior in a sliding mode.
This behavior depends on the parameters of the switching surface. Nonlinear switching surfaces are
nontrivial to design. In the linear case, the switching-surface design problem can be converted into an
equivalent state feedback design problem. In any case, achieving a switching-surface design requires
analytically specifying the motion of the state trajectory in a sliding mode. The so-called method of
equivalent control is essential to this specification.
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50.4.1 Equivalent Control

Equivalent control constitutes a control input which, when exciting the system, produces the motion of
the system on the sliding surface whenever the initial state is on the surface. Suppose at t1 the plant’s
state trajectory intercepts the switching surface and a sliding mode exists. The existence of a sliding
mode implies that for all t ≥ t1,σ(x(t), t)= 0, and hence σ̇(x(t), t)= 0. Using the chain rule, we define the
equivalent control ueq for systems of the form of Equation 50.1 as the input, satisfying

σ̇= ∂σ

∂t
+ ∂σ

∂x
ẋ = ∂σ

∂t
+ ∂σ

∂x
f (x, t)+ ∂σ

∂x
B(x, t)ueq = 0.

Assuming that the matrix product (∂σ/∂x)B(x, t) is nonsingular for all t and x, one can compute ueq as

ueq =−
[

∂σ

∂x
B(x, t)

]−1 (∂σ

∂t
+ ∂σ

∂x
f (x, t)

)
. (50.7)

Therefore, given that σ(x(t1), t1)= 0, then, for all t ≥ t1, the dynamics of the system on the switching
surface will satisfy

ẋ(t)=
[

I −B(x, t)

[
∂σ

∂x
B(x, t)

]−1 ∂σ

∂x

]
f (x, t)−B(x, t)

[
∂σ

∂x
B(x, t)

]−1 ∂σ

∂t
. (50.8)

This equation represents the equivalent system dynamics on the sliding surface. The driving term is present
when some form of tracking or regulation is required of the controlled system, for example, when

σ(x, t)= Sx+ r(t)= 0

with r(t) serving as a “reference” signal [4].
The (n−m)-dimensional switching surface, σ(x, t)= 0, imposes m constraints on the plant dynamics

in a sliding mode. Hence, m of the state variables can be eliminated, resulting in an equivalent reduced-
order system whose dynamics represent the motion of the state trajectory in a sliding mode. Unfortunately,
the structure of Equation 50.8 does not allow convenient exploiting of this fact in switching-surface
design. To set forth a clearer switching-surface design algorithm, we first convert the plant dynamics to
the so-called regular form.

50.4.2 Regular Form of the Plant Dynamics

The regular form of the dynamics of Equation 50.1 is

ż1 = f̂1(z, t),

ż2 = f̂2(z, t)+ B̂2(z, t)u(z, t),
(50.9)

where z1 ∈ Rn−m, z2 ∈ Rm. This form can often be constructed through a linear state transformation,
z(t)= Tx(t), where T has the property

TB(x, t)= TB(T−1z, t)=
[

0
B̂2(z, t)

]
,

and B̂2(z, t) is an (m×m) nonsingular mapping for all t and z. In general, computing the regular form
requires the nonlinear transformation,

z(t)= T(x, t)=
[

T1(x, t)
T2(x, t)

]
,
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where

1. T(x,t) is a diffeomorphic transformation, that is, a continuous differentiable inverse mapping
T̃(z, t)= x exists, satisfying T̃(0, t)= 0 for all t.

2. T1(·, ·) : Rn×R→ Rn−m and T2(·, ·) : Rn×R→ Rm.
3. T(x, t) has the property that

∂T

∂x
B(x, t)=

⎡
⎢⎢⎣

∂T1

∂x
∂T2

∂x

⎤
⎥⎥⎦B(T̃(z, t), t)=

[
0

B̂2(z, t)

]
.

This partial differential equation has a solution only if the so-called Frobenius condition is satisfied
[8]. The resulting nonlinear regular form of the plant dynamics has the structure,

ż1 = ∂T1

∂x
f (T̃(z, t), t)+ ∂T1

∂t
� f̂1(z, t),

ż2 = ∂T2

∂x
f (T̃(z, t), t)+ ∂T2

∂t
+ ∂T2

∂x
B(T̃(z, t), t)

� f̂2(z, t)+ B̂2(z, t)u.

(50.10)

Sometimes all nonlinearities in the plant model can be moved to f̂2(z, t) so that

ż1 = f̂1(z, t)= [A11 A12
] [z1

z2

]
, (50.11)

which solves the sliding-surface design problem with linear techniques (to be shown). If the original
system model is linear, the regular form is given by

[
ż1

ż2

]
=
[

A11 A12

A21 A22

] [
z1

z2

]
+
[

0
B2

]
u, (50.12)

where z1 ∈ Rn−m and z2 ∈ Rm are as above.

50.4.3 Equivalent System Dynamics via Regular Form

The regular form of the equivalent state dynamics is convenient for analysis and switching-surface design.
To simplify the development we make three assumptions: (1) the sliding surface is given in terms of the
states of the regular form; (2) the surface has the linear time-varying structure,

σ(z, t)= Sz+ r(t)= [S1 S2]
[

z1

z2

]
+ r(t)= 0,

where the matrix S2 is chosen to be nonsingular; and (3) the system is in a sliding mode, that is, for some
t1, σ(x(t), t)= 0 for all t ≥ t1. With these three assumptions, one can solve for z2(t) as

z2(t)=−S−1
2 S1z1(t)− S−1

2 r(t). (50.13)

Substituting Equation 50.13 into the nonlinear regular form of Equation 50.10 yields

ż1 = f̂1(z1, z2, t)= f̂1
(

z1,−S−1
2 S1z1− S−1

2 r(t), t
)

.

The goal then is to choose S1 and S2 to achieve a desired behavior of this nonlinear system.
If this system is linear, that is, if Equation 50.11 is satisfied, then, using Equation 50.13, the reduced-

order dynamics are

ż1 =
(

A11−A12S−1
2 S1

)
z1−A12S−1

2 r(t). (50.14)
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50.4.4 Analysis of the State Feedback Structure of Reduced-Order Linear
Dynamics

The equivalent reduced-order dynamics of Equation 50.14 exhibit a state feedback structure in which
F = S−1

2 S1 is a state feedback map and A12 represents an “input” matrix. Under the conditions that the
original (linear) system is controllable, the following well-known theorem applies.

Theorem 50.2: [9]:

If the linear regular form of the state model (Equation 50.12) is controllable, then the pair (A11, A12) of the
reduced-order equivalent system of Equation 50.14 is controllable.

This theorem leads to a wealth of switching-surface design mechanisms. First, it permits setting the
poles of A11 – A12S−1

2 S1, for stabilizing the state trajectory to zero when r(t)= 0 or to a prescribed rate
of tracking, otherwise. Alternatively, one can determine S1 and S2 to solve the LQR (linear quadratic
regulator) problem when r(t)= 0.

As an example, suppose a system has the regular form of Equation 50.12 except that A21 and A22 are
time-varying and nonlinear,

[
ż1

ż2

]
=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

⎤
⎥⎥⎥⎥⎦
[

z1

z2

]
+

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
1 0
0 1

⎤
⎥⎥⎥⎥⎦ u,

where aij = aij(t,x) and amin
ij ≤ aij(t, x)≤ amax

ij . Let the switching surface be given by

σ(z)= [S1 S2]
[

z1

z2

]
= 0.

The pertinent matrices of the reduced-order equivalent system matrices are

A11 =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ and A12 =

⎡
⎣0 0

1 0
0 1

⎤
⎦.

To stabilize the system, suppose that the goal is to find F so that the equivalent system has eigenvalues
at {–1,–2,–3}. Using MATLAB�’s Control System’s Toolbox yields

F =
[

2 3 0
0 0 3

]
= S−1

2 S1.

Choosing S2 = I leaves S1 = F. This then specifies the switching-surface matrix S = [F I].
Alternatively, suppose that the objective is to find the control that minimizes the performance index

J =
∫ ∞

0
(zT

1 Qz1+ ûT Rû) dt,

where the lower limit of integration refers to the initiation of sliding. This is associated with the equivalent
reduced-order system

ż1 = A11z1−A12û,
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where
û= S−1

2 S1z1 ≡ Fz1.

Suppose weighting matrices are taken as

Q =
⎡
⎣1.0 0.5 1.0

0.5 2.0 1.0
1.0 1.0 3.0

⎤
⎦, R =

[
2 0
0 1

]
.

Using MATLAB Control Systems Toolbox, the optimal feedback is

F =
[

0.6420 1.4780 0.2230
0.4190 0.4461 1.7031

]
.

Again, choosing S2 = I , the switching-surface matrix is given by S = [F I]. Here, the poles of the system
in sliding are {–1.7742,–0.7034±j 0.2623}.

50.5 Controller Design

50.5.1 Stability to Equilibrium Manifold

As mentioned, in VSC a Lyapunov approach is used for deriving conditions on the control u(x, t) that
will drive the state trajectory to the equilibrium manifold. Ordinarily, it is sufficient to consider only
quadratic Lyapunov function candidates of the form

V (t, x, σ)= σT (x, t)Wσ(x, t), (50.15)

where W is a symmetric positive-definite matrix. The control u(x,t) must be chosen so that the time
derivative of V (t, x, σ) is negative definite for σ �= 0. To this end, consider

V̇ (t, x, σ)= σ̇T Wσ+ σT W σ̇= 2σT W σ̇, (50.16)

where we have suppressed specific x and t dependencies. Recalling Equation 50.1, it follows that

σ̇= ∂σ

∂t
+ ∂σ

∂x
ẋ = ∂σ

∂t
+ ∂σ

∂x
f + ∂σ

∂x
Bu. (50.17)

Substituting Equation 50.17 into Equation 50.16 leads to a Lyapunov-like theorem.

Theorem 50.3:

A sufficient condition for the equilibrium manifold (Equation 50.3) to be globally attractive is that the
control u(x, t) be chosen so that

V̇ = 2σT W
∂σ

∂t
+ 2σT W

∂σ

∂x
f + 2σT W

∂σ

∂x
Bu < 0 (50.18)

for σ �= 0, that is, V̇ (t, x, σ) is negative definite.

Observe that Equation 50.18 is linear in the control. Virtually all control structures for VSC are chosen
so that this inequality is satisfied for appropriate W . Some control laws utilize an x- and t-dependent W
requiring that the derivation above be generalized.
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50.5.2 Various Control Structures

To make the needed control structures more transparent, recall the equivalent control of Equation 50.7,

ueq(x, t)=−
[

∂σ

∂x
B(x, t)

]−1 (∂σ

∂t
+ ∂σ

∂x
f (x, t)

)

computed assuming that the matrix product ∂σ
∂x B(x,t) is nonsingular for all t and x. We can now decom-

pose the general control structure as

u(x, t)= ueq(x, t)+ uN (x, t), (50.19)

where uN (x, t) is as yet an unspecified substructure. Substituting the above into Equation 50.18 produces
the following sufficient condition for stability to the switching surface: Choose uN (x, t) so that

V̇ (t, x, σ)= 2σT W
∂σ

∂x
B(x, t)uN (x, t) < 0. (50.20)

Because ∂σ
∂x B(x, t) is assumed to be nonsingular for all t and x, it is convenient to set

uN (x, t)=
[

∂σ

∂x
B(x, t)

]−1

ûN (x, t). (50.21)

Often a switching surface σ(x,t) can be designed to achieve a desired system behavior in sliding and,
at the same time, to satisfy the constraint ∂σ

∂x B= I in which case uN = ûN . Without loss of generality, we
make one last simplifying assumption, W = I , because W > 0, W is nonsingular, and can be compensated
for in the control structure. Hence, stability on the surface reduces to finding ûN (x, t) such that

V̇ = 2σT W

[
∂σ

∂x
B

] [
∂σ

∂x
B

]−1

ûN = 2σT ûN < 0. (50.22)

These simplifications allow us to specify five common controller structures:

1. Relays with constant gains: ûN (x, t) is chosen so that

ûN = α sgn(σ(x, t))

with α= [αij] an m×m matrix, and sgn (σ(x, t)) is defined componentwise. Stability to the sur-
face is achieved if α= [αij] is chosen diagonally dominant with negative diagonal entries [5].
Alternatively, if α is chosen to be diagonal with negative diagonal entries, then the control can be
represented as

ûNi = αiisgn(σi(x, t))

and, for σi �= 0,
2σiûNi = 2αiiσisgn(σi)= 2αii|σi|< 0,

which guarantees stability to the surface, given the Lyapunov function, V (t, x, σ)= σT (x, t)σ(x, t).
2. Relays with state-dependent gains: Each entry of ûN (x, t) is chosen so that

ûNi = αii(x, t)sgn(σi(x, t)), αii(x, t) < 0.

The condition for stability to the surface is that

2σiûN = 2αii(x, t)σisgn(σi)= 2αii(x, t)|σi|< 0 for σi �= 0.

An adequate choice for αii(x, t) is to choose βi < 0, γi > 0, and k a natural number with

αii(x)= βi(σ
2k
i (x, t)+ γi).
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3. Linear state feedback with switched gains: Here ûN (x,t) is chosen so that

ûN =Ψx; Ψ = [Ψij
]

; Ψij =
{
αij < 0, σixj > 0,

βij > 0, σixj < 0.

To guarantee stability, it is sufficient to choose αij and βij so that

σiûNi = σi
(
Ψi1x1+Ψi2x2+ · · ·+Ψinxn

)=Ψi1σix1+Ψi2σix2+ · · ·+Ψinσixn < 0.

4. Linear continuous feedback: Choose

ûN =−Pσ(x, t), P = PT > 0,

that is, P ∈ Rm×m is a symmetric positive-definite constant matrix. Stability is achieved because

σT ûN =−σT Pσ < 0,

where P is often chosen as a diagonal matrix with positive diagonal entries.
5. Univector nonlinearity with scale factor: In this case, choose

ûN =

⎧⎪⎨
⎪⎩
σ(x, t)

||σ(x, t)||ρ, ρ< 0 and σ �= 0,

0, σ= 0.
.

Stability to the surface is guaranteed because, for σ �= 0,

σT ûN = σ
Tσ

||σ||ρ= ||σ||ρ< 0.

Of course, it is possible to make ρ time dependent, if necessary, for certain tracking problems. This
concludes our discussion of control structures to achieve stability to the sliding surface.

50.6 Design Examples

This section presents two design examples illustrating typical VSC strategies.

Design Example 50.1:

In this example, we illustrate a constant gain relay control with nonlinear sliding surface design for a
single-link robotic manipulator driven by a dc armature-controlled motor modeled by the normalized
(i.e , scaled) simplified equations

⎡
⎣ẋ1

ẋ2
ẋ3

⎤
⎦=

⎡
⎣ x2

sin(x1)+ x3
x2+ x3

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦ u≡ f (x)+ Bu

in the regular form.
To determine the structure of an appropriate sliding surface, recall the assumption that ∂σ

∂x B(x , t)

is nonsingular. Because B = [0 0 1]T , it follows that ∂σ
∂x3

must be nonzero. Without losing generality,
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we set ∂σ
∂x3

= 1. Hence, it is sufficient to consider sliding surfaces of the form

σ(x)= σ(x1, x2, x3)= σ1(x1, x2)+ x3 = 0. (50.23)

Our design presumes that the reduced-order dynamics have a second-order response represented
by the reduced-order state dynamics,

[
ẋ1
ẋ2

]
=
[

x2
−a1x1 − a2x2

]
=
[

0 1
−a1 −a2

] [
x1
x2

]
.

This form allows us to specify the characteristic polynomial of the dynamics and thus the eigenvalues,
that is, πA(λ)= λ2+ a2λ+ a1. Proper choice of a1 and a2 leads to proper rise time, settling time,
overshoot, gain margin, and so on.

The switching-surface structure of Equation 50.23 implies that, in a sliding mode,

x3 =−σ1(x1, x2).

Substituting the above equation into the given system model, the reduced-order dynamics become
[

ẋ1
ẋ2

]
=
[

x2
sin(x1) − σ1(x1, x2)

]
=
[

x2
−a1x1 − a2x2

]
.

Hence the switching-surface design is completed by setting

σ1(x1, x2)= sin(x1)+ a1x1+ a2x2.

To complete the controller design, we first compute the equivalent control,

ueq =−
[

∂σ1

∂x1

∂σ1

∂x2
1
]⎡⎣ x2

sin(x1)+ x3
x2+ x3

⎤
⎦.

For the constant gain relay control structure (Equation 50.19),

uN = α sgn(σ(x)).

Stability to the switching surface results whenever α<0 as

σσ̇= ασ sgn(σ)= α|σ|< 0.

Design Example 50.2:

Consider the fourth-order (linear) model of a mass–spring system that could represent a simplified
model of a flexible structure in space with two-dimensional control (Figure 50.5).

u1

u2

x1 x2

m2m1

FIGURE 50.5 A mass spring system for design Example 50.2.
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Here, x1 is the position of m1, x2 the position of m2, u1 the force applied to m1, and u2 the force
applied between m1 and m2. The differential equation model has the form

m1ẍ1+ k(x1− x2)= u1+ u2,

m2ẍ2+ k(x2− x1)=−u2,

where k is the spring constant. Given that x3 = ẋ1 and x4 = ẋ2, the resulting state model in regular
form is

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x3
x4

− k

m1
x1+ k

m1
x2

k

m2
x1− k

m2
x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

1
m1

u1+ 1
m1

u2

− 1
m2

u2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

There are two simultaneous control objectives:

1. Stabilize oscillations, that is, x1 = x2.
2. Track a desired trajectory, x2(t)= zref (t).

These goals are achieved if the following relationships are maintained for c1, c2 > 0:

ẋ1− ẋ2+ c1(x1− x2)= 0 =⇒ x1− x2 −→ 0

and

ẋ2− żref + c2(x2− zref )= 0 =⇒ x2− zref −→ 0.

The first step is to determine the appropriate sliding surface. To achieve the first control objective,
set

σ1(x , t)= x3− x4+ c1(x1− x2)= 0,

and to achieve the desired tracking, set

σ2(x , t)= x4− żref + c2(x2− zref )= 0.

The next step is to design a VSC law to drive the state trajectory to the intersection of these switching
surfaces. In this effort, we illustrate two controller designs. The first is a hierarchical structure [2] so
that, for σ �= 0,

u1 = α1sgn(σ1),

u2 = α2sgn(σ2)

with the sign of α1, α2 �= 0 to be determined.
For stability to the surface, it is sufficient to have σ1σ̇1 < 0 and σ2σ̇2 < 0, as can be seen from

Equation 50.16, with W = I. Observe that

σ̇1 = ẋ3− ẋ4+ c1(ẋ1− ẋ2)= ẋ3− ẋ4+ c1(x3− x4)

and

σ̇2 = ẋ4− z̈ref + c2(ẋ2− żref )= ẋ4− z̈ref + c2(x4− żref ).

Substituting for the derivatives of x3 and x4 leads to

[
σ̇1
σ̇2

]
=

⎡
⎢⎢⎣

1
m1

1
m1

+ 1
m2

0 − 1
m2

⎤
⎥⎥⎦
[

u1
u2

]
+
[

h1
h2

]
=

⎡
⎢⎢⎣

1
m1

1
m1

+ 1
m2

0 − 1
m2

⎤
⎥⎥⎦
[
α1sgn(σ1)
α2sgn(σ2)

]
+
[

h1
h2

]
, (50 24)
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where

h1 =− k

m1
x1+ k

m1
x2− k

m2
x1+ k

m2
x2+ c1x3− c1x4

and

h2 = k

m2
x1− k

m2
x2− z̈ref + c2x4− c2żref .

Taking a brute force approach to the computation of the control gains, stability to the switching
surface is achieved, provided

σ2σ̇2 = −α2

m2
σ2sgn(σ2)+ σ2h2 < 0,

which is satisfied if
α2 > m2|h2|(> 0),

and provided

σ1σ̇1 = α1

m1
σ1sgn(σ1)+ σ1

[(
1

m1
+ 1

m2

)
α2sgn(σ2)+ h1

]
< 0

which is satisfied if

α1 <−m1|h1| −
(

1+ m1

m2

)
α2.

In a second controller design, we recall Equation 50.24. For σ1 �= 0 and σ2 �= 0, it is convenient to
define the controller as

[
u1
u2

]
=
⎡
⎢⎣

1
m1

1
m1

+ 1
m2

0 − 1
m2

⎤
⎥⎦
−1 [

β1sgn(σ1)
β2sgn(σ2)

]
,

where β1 and β2 are to be determined. It follows that[
σ̇1
σ̇2

]
=
[
β1sgn(σ1)
β2sgn(σ2)

]
+
[

h1
h2

]
.

As in the first controller design, the state trajectory will intercept the sliding surface in finite time and
sliding will occur for β1 and β2 sufficiently negative, thereby achieving the desired control objective.

A unifying characterization of sliding mode controllers that drive a trajectory to the sliding manifold
is given in [10].

50.7 Chattering

The VSC controllers developed earlier assure the desired behavior of the closed-loop system. These
controllers, however, require an infinitely (in the ideal case) fast switching mechanism. The phenomenon
of nonideal but fast switching was labeled as chattering (actually, the word stems from the noise generated
by the switching element). The high-frequency components of the chattering are undesirable because they
may excite unmodeled high-frequency plant dynamics resulting in unforeseen instabilities. To reduce
chatter, define a so-called boundary layer as

{x| ‖σ(x)‖ ≤ ε, ε> 0} , (50.25)

whose thickness is 2ε. Now, modify the control law of Equation 50.26 (suppressing t and x arguments) to

u=
{

ueq+ uN , ||σ|| ≥ ε,
ueq+ p(σ, x), ||σ|| ≤ ε, (50.26)



�

�

�

�

� �

Variable Structure, Sliding-Mode Controller Design 50-17

where p(σ, x) is any continuous function satisfying p(0, x)= 0 and p(σ, x)= uN (x) when ‖σ(x)‖ = ε.
This control guarantees that trajectories are attracted to the boundary layer. Inside the boundary layer,
Equation 50.26 offers a continuous approximation to the usual discontinuous control action. Similar to
Corless and Leitmann [11], asymptotic stability is not guaranteed but ultimate boundedness of trajectories
to within an ε-dependent neighborhood of the origin is assured.

50.8 Robustness to Matched Disturbances and Parameter
Variations

To explore the robustness of VSC to disturbances and parameter variations, one modifies Equation 50.1
to

ẋ(t)= [f (x, t)+Δf (x, t, q(t))]+ [B(x, t)+ΔB(x, t, q(t))]u(x, t)+ d(t), (50.27)

where q(t) is a vector function representing parameter uncertainties,Δf andΔB represent the cumulative
effects of all plant uncertainties, and d(t) denotes an external (deterministic) disturbance. The first critical
assumption in our development is that all uncertainties and external disturbances satisfy the so-called
matching condition, that is,Δf ,ΔB, and d(t) lie in the image of B(x, t) for all x and t. As such they can all
be lumped into a single vector function ξ(x, t, q, d, u), so that

ẋ(t)= f (x, t)+B(x, t)u(x, t)+B(x, t)ξ(x, t, q, d, u). (50.28)

The second critical assumption is that a positive continuous bounded function ρ(x, t) exists, satisfying

||ξ(x, t, q, d, u)|| ≤ ρ(x, t). (50.29)

To incorporate robustness into a VSC design, we utilize the control structure of Equation 50.19, u(x, t)=
ueq(x, t)+ uN (x, t), where ueq(x, t) is given by Equation 50.7. Given the plant and disturbance model of
Equation 50.28, then, as per Equation 50.20, it is necessary to choose uN (x, t), so that

V̇ (t, x, σ)= 2σT W
∂σ

∂x
B(x, t)

[
uN (x, t)+ ξ(x, t, q, d, u)

]
< 0.

Choosing any one of the control structures outlined in Section 50.5, a choice of sufficiently “high” gains
will produce a negative-definite V̇ (t, x, σ). Alternatively, one can use a control structure [2],

uN (x, t)=

⎧⎪⎪⎨
⎪⎪⎩
− BT

[
∂σ
∂x

]T
σ∥∥∥BT

[
∂σ
∂x

]T
σ

∥∥∥ [ρ(x, t)+ α(x, t)] for σ(x, t) �= 0,

0 otherwise,

(50.30)

where α(x, t) is to be determined. Assuming W = I , it follows that, for σ �= 0,

V̇ (t, x, σ)=−2σT
∂σ
∂x BBT

[
∂σ
∂x

]T
σ∥∥∥BT

[
∂σ
∂x

]T
σ

∥∥∥ ×[ρ(x, t)+ α(x, t)]+ 2σT ∂σ

∂x
Bξ

≤−2

∥∥∥∥∥BT
[

∂σ

∂x

]T

σ

∥∥∥∥∥ α(x, t).

Choosing α(x, t)= α> 0 leads to the stability of the state trajectory to the equilibrium manifold despite
matched disturbances and parameter variations, demonstrating the robustness property of a VSC law.
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50.9 Observer Design

“Observers” can be viewed as software algorithms that allow online estimation of the current state of a
dynamic system when only the output and the input of the system can be measured. In the case of a linear
system, we have

ẋ = Ax+Bu+Bξ,

y = Cx,
(50.31)

where C ∈ Rp×n, and we assume that the pair (C, A) is observable. The observer design problem is to
construct a dynamic system that estimates the system state based on knowledge of the input and the
output measurement. This results in the so-called Luenberger observer when ξ= 0,

˙̂x = Ax̂+Bu+ L(y−Cx̂), (50.32)

The estimation error e(t)= x(t)− x̂(t) satisfies: ė(t)= (A− LC)e(t). Since (C, A) is observable, the eigen-
values of A− LC can be assigned arbitrarily by a choice of the gain matrix L, although in practice this is
limited by the bandwidth of the system.

The sliding mode concept can be used for designing an observer by replacing L(y−Cx̂) in Equation
50.32 with a discontinuous function Ed(y, x̂) of and x̂ yielding

˙̂x = Ax̂+Bu+Ed(y, ŷ),

ŷ = Cx̂,
(50.33)

where Ed is a user-chosen function to insure convergence in the presence of uncertainties modeled by
nonzero ξ in Equation 50.31.

One possibility is to choose Ed(y, ŷ)= L(y−Cx̂)+BE(y, ŷ), where L is chosen so that A-LC is a stability
matrix (eigenvalues in the open left-half-complex plane) and

E(y, ŷ)= η F(y− ŷ)∥∥F(y− ŷ)
∥∥ , (50.34)

where η is a design parameter satisfying η> ||ξ||. Now, L, F ∈ Rm×p, p ≥ m, and a matrix P = PT > 0
must simultaneously satisfy:

1. eig(A− LC)⊂ C−
2. FC = BT P, and
3. (A− LC)T P+ P(A− LC)=−Q

for an appropriate Q = QT >0, if it exists. A solution for (L, F, P) exists if and only if

1. rank(B)= rank(CB)= r and

2. rank

[
sI −A B

C 0

]
= n+ r, Re[s] ≥ 0

With the estimation error as e(t)= x(t)− x̂(t), the error dynamics become

ė(t)= (A− LC)e(t)−BE(y, ŷ)+Bξ. (50.35)

It follows that

d

dt
(eT Pe)=−eT Qe− 2η ‖FCe‖+ 2eT PBξ

≤−eT Qe− 2η ‖FCe‖+ 2 ‖FCe‖ ‖ξ‖ ≤ −eT Qe,

which implies limt→∞e(t)= 0. For further analysis see [3,12,13]. For an alternate sliding mode observer
structure, see [14–16].
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50.9.1 Observer Design 2 [17,18]

Now consider Ed(y, x̂)= L sign(y−Cx̂) resulting in the observer dynamics

x̂ = Ax̂+Bu+ L sign(y−Cx̂). (50.36)

For the deterministic case (ξ= 0) the observation error satisfies ė = Ae− L sgn(Ce). For such a system,
a sliding mode is possible on the manifold Ce= 0. In order to describe the choice of the observer gain L
and analyze the error dynamics let us consider a nonsingular transformation of the state x into a new set
of coordinates such that the first p coordinates correspond to the observed vector y:[

y
w

]
=
[

C
M

]
x.

The transformed plant dynamics are[
ẏ
ẇ

]
=
[

A11 A12

A21 A22

] [
y
w

]
+
[

B1

B2

]
u. (50.37)

The observer in the new coordinates is

˙̂y = A11ŷ+A12ŵ+B1u+ L1 sgn(y− ŷ), (50.38a)

˙̂w = A21ŷ+A22ŵ+B2u+ L2 sgn(y− ŷ). (50.38b)

Denoting e1(t)= y(t)− ŷ(t) and e2(t)= w(t)− ŵ(t), the error dynamics for the first subsystem is

ė1 = A11e1+A12e2− L1 sgn(e1), (50.39a)

ė2 = A21e1+A22e2− L2 sgn(e1). (50.39b)

By choosing an appropriate nonsingular gain matrix L1 (it is a square matrix), we can enforce sliding
regime in the first equation along the manifold e1(t)= 0. Indeed, the equivalent control is obtained from
Equation 50.39a under the condition, ė1(t)= 0 as[

sgn(e1)
]

eq = L−1
1 A12e2. (50.40)

The dynamics of the system in a sliding mode (ė1 = 0) can be obtained by substituting this value into
Equation 50.39b, to obtain the linear equation

ė2 = (A22− L2L−1
1 A12)e2. (50.41)

Let us note that the observability of the original pair (C, A) implies observability of the pair (A12, A22)
in the system (Equation 50.37). Using this fact it follows that we can assign any eigenvalues in this system
by appropriate choice of L2; thus, guaranteeing convergence e2(t)→ 0 with any desired exponential
rate. The dimension of the system or Equation 50.41 is n–p. The case when the output is corrupted by
measurement noise was also considered in [18]. Similar observer structures and explanations can be
found in [6,14–16]. An application of such an observer structure to state estimation of a magnetic bearing
is considered in [19].

In [20], Drakunov proposed a sliding mode observer structure

˙̂x =
[

∂H(x̂)

∂x

]−1

M(x̂, t) sgn[V −H(x̂)] (50.42)

that can be used for a nonlinear system of the form

ẋ = f (x),

y = h(x),

where the measurement map h : Rn → R is a scalar and where H(x)= [h1(x) h2(x) · · · hn(x)]T

has entries defined using repeated Lie derivatives: h1(x)= h(x), h2(x)= Lf h(x), h3(x)=
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L2
f h(x), . . . , hn(x)= Ln−1

f h(x); M(x̂, t)= diag(m1(x̂, t), . . . , mn(x̂, t)) is a diagonal gain matrix and

the vector V = [v1 v2 · · · vn]T has components defined recursively: v1(t)= y(t), vi+1(t)=[
mi(x̂, t)sgn

(
vi(t)− hi(x̂)

)]
eq. The equivalent values can be obtained using an equivalent control fil-

ter such as a low-pass filter, although a first-order low-pass filter may not be sufficient; more complicated
even nonlinear digital filters may need to be employed.

Example 50.3:

To illustrate the above nonlinear observer design, consider the nonlinear state model

ẋ1 = (1− 2x1+ 2x2
2 )x2,

ẋ2 =−x1+ x2
2

with the output y = x1− x2
2 . In this case, we have h(x)= h1(x1, x2)= x1− x2

2 , and since n=2 we
need only the first Lie derivative: h2(x1, x2)= Lf h(x)= x2. Therefore, the corresponding map H and
its Jacobian matrix are

H(x)=
[

x1− x2
2

x2

]
,

∂H

∂x
=
[

1 −2x2
0 1

]
⇒

(
∂H

∂x

)−1
=
[

1 2x2
0 1

]
.

The observer of Equation 50.42 is

˙̂x1 =m1 sgn(y− x̂1+ x̂2
2 )+ 2m2x̂2 sgn(v− x̂2),

˙̂x2 =m2 sgn(v− x̂2),

where v = {m1 sgn(y− x̂1+ x̂2
2 )}eq. The second-order observer converges as long as the observer

gains are sufficiently large, which means that m1 ≥ |x2| , m2 ≥
∣∣∣x1− x2

2

∣∣∣. If the region of initial condi-

tions and system trajectories are bounded, then the gains can be chosen to be constant. In general,
the gains depend on (x̂1, x̂2). The equivalent value operator {· · · }eq can be implemented in different
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FIGURE 50.6 Nonlinear observer convergence.
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ways, the easiest of which is a first-order low-pass filter v̇ =−λv+λm1sgn(y− x̂1+ x̂2
2 ) for an appro-

priate value of λ> 0. The resulting solution to the filtering equation is v = {m1sgn(y− x̂1+ x̂2
2 )}eq.

The simulation results are shown in Figure 50.6.

For further work on VSC systems and sliding mode observers we refer the reader to [16,20–22].

50.10 Concluding Remarks

This chapter has summarized the salient results of sliding mode control theory and illustrated the design
procedures with various examples. A wealth of literature exists on the subject that cannot be included
because of space limitations. In particular, the literature is replete with realistic applications [1,23],
extensions to output feedback [24], extensions to decentralized control [25], and extensions to discrete-
time systems. Additionally, there is some work, old and new, on higher-order sliding modes [16] and
[26]. For extensions of the above methods to time delay systems, see [18,27,29]. The reader is encouraged
to search the literature for many papers in this area.

50.11 Defining Terms

Chattering: The phenomenon of nonideal but fast switching. The term stems from the noise generated
by a switching element.

Equilibrium (discontinuity) manifold: A specified, user-chosen manifold in the state space to which a
system’s trajectory is driven and maintained for all time subsequent to intersection of the mani-
fold by a discontinuous control that is a function of the system’s states, and hence, discontinuity
manifold. Other terms commonly used are sliding surface and switching surface.

Equivalent control: The solution to the algebraic equation involving the derivative of the equation of the
switching surface and the plant’s dynamic model. The equivalent control is used to determine
the system’s dynamics on the sliding surface.

Equivalent system dynamics: The system dynamics obtained after substituting the equivalent control
into the plant’s dynamic model. It characterizes state motion parallel to the sliding surface if the
system’s initial state is off the surface and state motion is on the sliding surface if the initial state
is on the surface.

Ideal sliding mode: Motion of a system’s state trajectory along a switching surface when switching in the
control law is infinitely fast.

Matching condition: The condition requiring the plant’s uncertainties to lie in the image of the input
matrix, that is, the uncertainties can affect the plant dynamics only through the same channels
as the plant’s input.

Region of attraction: A set of initial states in the state space from which sliding is achievable.
Regular form: A particular form of the state-space description of a dynamic system obtained by a suitable

transformation of the system’s state variables.
Sliding surface: See equilibrium manifold.
Switching surface: See equilibrium manifold.
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51.1 Introduction

This chapter deals with the control of bifurcations and chaos in nonlinear dynamical systems. This is
a young subject area that is currently in a state of active development. Investigations of control system
issues related to bifurcations and chaos began relatively recently, with most currently available results
having been published within the past decade. Given this state of affairs, a unifying and comprehensive
picture of control of bifurcations and chaos does not yet exist. Therefore, the chapter has a modest but, it
is hoped, useful goal: to summarize some of the motivation, techniques, and results achieved to date on
control of bifurcations and chaos. Background material on nonlinear dynamical behavior is also given,
to make the chapter somewhat self-contained. However, interested readers unfamiliar with nonlinear
dynamics will find it helpful to consult nonlinear dynamics texts to reinforce their understanding.

Despite its youth, the literature on control of bifurcations and chaos contains a large variety of
approaches as well as interesting applications. Only a small number of approaches and applications
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can be touched upon here, and these reflect the background and interests of the authors. The Further
Reading section provides references for those who would like to learn about alternative approaches or to
learn more about the approaches discussed here.

Control system design is an enabling technology for a variety of application problems in which non-
linear dynamical behavior arises. The ability to manage this behavior can result in significant practical
benefits. This might entail facilitating system operability in regimes where linear control methods break
down; taking advantage of chaotic behavior to capture a desired oscillatory behavior without expending
much control energy; or purposely introducing a chaotic signal in a communication system to mask a
transmitted signal from an adversary while allowing perfect reception by the intended party.

The control problems addressed in this chapter are characterized by two main features:

1. Nonlinear dynamical phenomena impact system behavior
2. Control objectives can be met by altering nonlinear phenomena

Nonlinear dynamics concepts are clearly important in understanding the behavior of such systems (with
or without control). Traditional linear control methods are, however, often effective in the design of control
strategies for these systems. In other cases, such as for systems of the type discussed in Section 51.5.2,
nonlinear methods are needed both for control design and performance assessment.

The chapter proceeds as follows. In Section 51.2, some basic nonlinear system terminology is recalled.
This section also includes a new term, namely “candidate operating condition,” which facilitates sub-
sequent discussions on control goals and strategies. Section 51.3 contains a brief summary of basic
bifurcation and chaos concepts that will be needed. Section 51.4 provides application examples for which
bifurcations and/or chaotic behavior occur. Remarks on the control aspects of these applications are also
given. Section 51.5 is largely a review of some basic concepts related to control of parameterized families
of (nonlinear) systems. Section 51.5 also includes a discussion of what might be called “stressed operation”
of a system. Section 51.6 is devoted to control problems for systems exhibiting bifurcation behavior. The
subject of Section 51.7 is control of chaos. Conclusions are given in Section 51.8. The final section gives
some suggestions for further reading.

51.2 Operating Conditions of Nonlinear Systems

In linear system analysis and control, a blanket assumption is made that the operating condition of interest
is a particular equilibrium point, which is then taken as the origin in the state space. The topic addressed
here relates to applying control to alter the dynamical behavior of a system possessing multiple possible
operating conditions. The control might alter these conditions in terms of their location and amplitude,
and/or stabilize certain possible operating conditions, permitting them to take the place of an undesirable
open-loop behavior. For the purposes of this chapter, therefore, it is important to consider a variety of
possible operating conditions, in addition to the single equilibrium point focused on in linear system
theory. In this section, some basic terminology regarding operating conditions for nonlinear systems is
established.

Consider a finite-dimensional continuous-time system

ẋ(t)= F(x(t)) (51.1)

where x ∈ R
n is the system state and F is smooth in x. (The terminology recalled next extends straightfor-

wardly to discrete-time systems xk+1 = F(xk).) An equilibrium point or fixed point of the system (Equation
51.1) is a constant steady-state solution, i.e., a vector x0 for which F(x0)= 0. A periodic solution of the sys-
tem is a trajectory x(t) for which there is a minimum T > 0 such that x(t+T)= x(t) for all t. An invariant
set is a set for which any trajectory starting from an initial condition within the set remains in the set for
all future and past times. An isolated invariant set is a bounded invariant set a neighborhood of which
contains no other invariant set. Equilibrium points and periodic solutions are examples of invariant sets.
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A periodic solution is called a limit cycle if it is isolated. An attractor is a bounded invariant set to which
trajectories starting from all sufficiently nearby initial conditions converge as t →∞. The positive limit
set of Equation 51.1 is the ensemble of points that some system trajectory either approaches as t →∞ or
makes passes nearer and nearer to as t →∞. For example, if a system is such that all trajectories converge
either to an equilibrium point or a limit cycle, then the positive limit set would be the union of points on
the limit cycle and the equilibrium point. The negative limit set is the positive limit set of the system run
with time t replaced by −t. Thus, the positive limit set is the set where the system ends up at t =+∞,
while the negative limit set is the set where the system begins at t =−∞ [30]. The limit set of the system
is the union of its positive and negative limit sets.

It is now possible to introduce a term that will facilitate the discussions on control of bifurcations and
chaos. A candidate operating condition of a dynamical system is an equilibrium point, periodic solution
or other invariant subset of its limit set. Thus, a candidate operating condition is any possible steady-state
solution of the system, without regard to its stability properties. This term, though not standard, is useful
since it permits discussion of bifurcations, bifurcated solutions, and chaotic motion in general terms
without having to specify a particular nonlinear phenomenon. The idea behind this term is that such a
solution, if stable or stabilizable using available controls, might qualify as an operating condition of the
system. Whether or not it would be acceptable as an actual operating condition would depend on the
system and on characteristics of the candidate operating condition. As an extreme example, a steady spin
of an airplane is a candidate operating condition, but certainly is not acceptable as an actual operating
condition!

51.3 Bifurcations and Chaos

This section summarizes background material on bifurcations and chaos that is needed in the remainder
of the chapter.

51.3.1 Bifurcations

A bifurcation is a change in the number of candidate operating conditions of a nonlinear system that
occurs as a parameter is quasistatically varied. The parameter being varied is referred to as the bifurcation
parameter. A value of the bifurcation parameter at which a bifurcation occurs is called a critical value of
the bifurcation parameter. Bifurcations from a nominal operating condition can only occur at parameter
values for which the condition (say, an equilibrium point or limit cycle) either loses stability or ceases to
exist.

To fix ideas, consider a general one-parameter family of ordinary differential equation systems

ẋ = Fμ(x) (51.2)

where x ∈ R
n is the system state, μ ∈ R denotes the bifurcation parameter, and F is smooth in x and μ.

Equation 51.2 can be viewed as resulting from a particular choice of control law in a family of nonlinear
control systems (in particular, as Equation 51.9 with the control u set to a fixed feedback function u(x,μ)).
For any value ofμ, the equilibrium points of Equation 51.2 are given by the solutions for x of the algebraic
equations Fμ(x)= 0.

Local bifurcations are those that occur in the vicinity of an equilibrium point. For example, a small-
amplitude limit cycle can emerge (bifurcate) from an equilibrium as the bifurcation parameter is varied.
The bifurcation is said to occur regardless of the stability or instability of the “bifurcated” limit cycle.
In another local bifurcation, a pair of equilibrium points can emerge from a nominal equilibrium point.
In either case, the bifurcated solutions are close to the original equilibrium point—hence the name local
bifurcation. Global bifurcations are bifurcations that are not local, i.e., those that involve a domain in
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phase space. Thus, if a limit cycle loses stability releasing a new limit cycle, a global bifurcation is said to
take place.∗

The nominal operating condition of Equation 51.2 can be an equilibrium point or a limit cycle. In fact,
depending on the coordinates used, it is possible that a limit cycle in one mathematical model corresponds
to an equilibrium point in another. This is the case, for example, when a truncated Fourier series is used
to approximate a limit cycle, and the amplitudes of the harmonic terms are used as state variables in
the approximate model. The original limit cycle is then represented as an equilibrium in the amplitude
coordinates.

If the nominal operating condition of Equation 51.2 is an equilibrium point, then bifurcations from
this condition can occur only when the linearized system loses stability. Suppose, for example, that the
origin is the nominal operating condition for some range of parameter values. That is, let Fμ(0)= 0 for
all values of μ for which the nominal equilibrium exists. Denote the Jacobian matrix of Equation 51.2
evaluated at the origin by

A(μ) := ∂Fμ

∂x
(0).

Local bifurcations from the origin can only occur at parameter values μ where A(μ) loses stability.
The scalar differential equation

ẋ = μx− x3 (51.3)

provides a simple example of a bifurcation. The origin x0 = 0 is an equilibrium point for all values of the
real parameterμ. The Jacobian matrix is A(μ)= μ (a scalar). It is easy to see that the origin loses stability
as μ increases through μ= 0. Indeed, a bifurcation from the origin takes place at μ= 0. For μ≤ 0,
the only equilibrium point of Equation 51.3 is the origin. For μ> 0, however, there are two additional
equilibrium points at x =±√μ. This pair of equilibrium points is said to bifurcate from the origin at
the critical parameter value μc = 0. This is an example of a pitchfork bifurcation, which will be discussed
later.

51.3.1.1 Subcritical vs. Supercritical Bifurcations

In a very real sense, the fact that bifurcations occur when stability is lost is helpful from the perspective
of control system design. To explain this, suppose that a system operating condition (the “nominal”
operating condition) is not stabilizable beyond a critical parameter value. Suppose a bifurcation occurs
at the critical parameter value. That is, suppose a new candidate operating condition emerges from the
nominal one at the critical parameter value. Then it may be that the new operating condition is stable
and occurs beyond the critical parameter value, providing an alternative operating condition near the
nominal one. This is referred to as a supercritical bifurcation. In contrast, it may happen that the new
operating condition is unstable and occurs prior to the critical parameter value. In this situation (called
a subcritical bifurcation), the system state must leave the vicinity of the nominal operating condition for
parameter values beyond the critical value. However, feedback offers the possibility of rendering such a
bifurcation supercritical. This is true even if the nominal operating condition is not stabilizable. If such a
feedback control can be found, then the system behavior beyond the stability boundary can remain close
to its behavior at the nominal operating condition.

The foregoing discussion of bifurcations and their implications for system behavior can be gainfully
viewed using graphical sketches called bifurcation diagrams. These are depictions of the equilibrium
points and limit cycles of a system plotted against the bifurcation parameter. A bifurcation diagram is a
schematic representation in which only a measure of the amplitude (or norm) of an equilibrium point or
limit cycle need be plotted. In the bifurcation diagrams given in this chapter, a solid line indicates a stable
solution, while a dashed line indicates an unstable solution.

∗ This use of the terms local bifurcation and global bifurcation is common. However, in some books, a bifurcation from a
limit cycle is also referred to as a local bifurcation.



�

�

�

�

� �

Control of Bifurcations and Chaos 51-5

x

0

B

A

μ

FIGURE 51.1 Subcritical bifurcation with hysteresis.

Several bifurcation diagrams will now be used to further explain the meanings of supercritical and
subcritical bifurcation, and to introduce some common bifurcations. It should be noted that not all
bifurcations are supercritical or subcritical. For example, bifurcation can also be transcritical. In such
a bifurcation, bifurcated operating conditions occur both prior to and beyond the critical parameter
value. Identifying a bifurcation as supercritical, subcritical, transcritical, or otherwise is the problem of
determining the direction of the bifurcation. A book on nonlinear dynamics should be consulted for a more
extensive treatment (e.g., [10,18,28,30,32,43,46]). In this chapter only the basic elements of bifurcation
analysis can be touched upon.

Suppose that the origin of Equation 51.2 loses stability as μ increases through the critical parameter
value μ= μc . Under mild assumptions, it can be shown that a bifurcation occurs at μc .

Figure 51.1 serves two purposes: it depicts a subcritical bifurcation from the origin, and it shows a
common consequence of subcritical bifurcation, namely hysteresis. A subcritical bifurcation occurs from
the origin at the point labeled A in the figure. It leads to the unstable candidate operating condition
corresponding to points on the dashed curve connecting points A and B. As the parameter μ is decreased
to its value at point B, the bifurcated solution merges with another (stable) candidate operating condi-
tion and disappears. A saddle-node bifurcation is said to occur at point B. This is because the unstable
candidate operating condition (the “saddle” lying on the dashed curve) merges with a stable candidate
operating condition (the “node” lying on the solid curve). These candidate operating conditions can be
equilibrium points or limit cycles—both situations are captured in the figure. Indeed, the origin can also
be reinterpreted as a limit cycle and the diagram would still be meaningful. Another common name for a
saddle-node bifurcation point is a turning point.

The physical scenario implied by Figure 51.1 can be summarized as follows. Starting from operation at
the origin for smallμ, increasingμ until point A is reached does not alter system behavior. Ifμ is increased
past point A, however, the origin loses stability. The system then transitions (“jumps”) to the available
stable operating condition on the upper solid curve. This large transition can be intolerable in many
applications. Asμ is then decreased, another transition back to the origin occurs but at a lower parameter
value, namely that corresponding to point B. Thus, the combination of the subcritical bifurcation at A
and the saddle-node bifurcation at B can lead to a hysteresis effect.

Figure 51.2 depicts a supercritical bifurcation from the origin. This bifurcation is distinguished by the
fact that the solution bifurcating from the origin at point A is stable, and occurs locally for parameter
values μ beyond the critical value (i.e., those for which the nominal equilibrium point is unstable). In
marked difference with the situation depicted in Figure 51.1, here as the critical parameter value is crossed
a smooth change is observed in the system operating condition. No sudden jump occurs.

Suppose closeness of the system’s operation to the nominal equilibrium point (the origin, say) is
a measure of the system’s performance. Then supercritical bifurcations ensure close operation to the
nominal equilibrium, while subcritical bifurcations may lead to large excursions away from the nominal
equilibrium point. For this reason, a supercritical bifurcation is commonly also said to be safe or soft,
while a subcritical bifurcation is said to be dangerous or hard [32,49,52].
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FIGURE 51.2 Supercritical bifurcation.

Given full information on the nominal equilibrium point, the occurrence of bifurcation is a consequence
of the behavior of the linearized system at the equilibrium point. The manner in which the equilibrium
point loses stability as the bifurcation parameter is varied determines the type of bifurcation that arises.

Three types of local bifurcation and a global bifurcation are discussed next. These are, respectively,
the stationary bifurcation, the saddle-node bifurcation, the Andronov–Hopf bifurcation, and the period
doubling bifurcation. All of these except the saddle-node bifurcation can be safe or dangerous. However,
the saddle-node bifurcation is always dangerous.

There are analytical techniques for determining whether a stationary, Andronov-Hopf, or period
doubling bifurcation is safe or dangerous. These techniques are not difficult to understand but involve
calculations that are too lengthy to repeat here. The calculations yield formulas for so-called “bifurcation
stability coefficients” [18], the meaning of which is addressed below. The references [1,2,4,18,28,32] can
be consulted for details.

What is termed here as “stationary bifurcation” is actually a special case of the usual meaning of the
term. In the bifurcation theory literature [10], stationary bifurcation is any bifurcation of one or more
equilibrium points from a nominal equilibrium point. When the nominal equilibrium point exists both
before and after the critical parameter value, a stationary bifurcation “from a known solution” is said to
occur. If the nominal solution disappears beyond the critical parameter value, a stationary bifurcation
“from an unknown solution” is said to occur. To simplify the terminology, here the former type of
bifurcation is called a stationary bifurcation. The saddle-node bifurcation is the most common example
of the latter type of bifurcation.

Andronov–Hopf bifurcation also goes by other names. “Hopf bifurcation” is the traditional name in
the West, but this name neglects the fundamental early contributions of Andronov and his coworkers
(see, e.g., [6]). The essence of this phenomenon was also known to Poincaré, who did not develop a
detailed theory but used the concept in his study of lunar orbital dynamics [37, Secs. 51–52]. The same
phenomenon is sometimes called flutter bifurcation in the engineering literature. This bifurcation of a
limit cycle from an equilibrium point occurs when a complex conjugate pair of eigenvalues crosses the
imaginary axis into the right half of the complex plane at μ= μc . A small-amplitude limit cycle then
emerges from the nominal equilibrium point at μc .

51.3.1.2 Saddle-Node Bifurcation and Stationary Bifurcation

Saddle-node bifurcation occurs when the linearized system has a zero eigenvalue atμ= μc but the origin
does not persist as an equilibrium point beyond the critical parameter value. Saddle-node bifurcation was
discussed briefly before, and will not be discussed in any detail in the following. Several basic remarks are,
however, in order.

1. Saddle-node bifurcation of a nominal, stable equilibrium point entails the disappearance of the
equilibrium upon its merging with an unstable equilibrium point at a critical parameter value.

2. The bifurcation occurring at point B in Figure 51.1 is representative of a saddle-node bifurcation.
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3. The nominal equilibrium point possesses a zero eigenvalue at a saddle-node bifurcation.
4. An important feature of the saddle-node bifurcation is the disappearance, locally, of any stable

bounded solution of the system (Equation 51.2).

Stationary bifurcation (according to the agreed upon terminology above) is guaranteed to occur when
a single real eigenvalue goes from being negative to being positive as μ passes through the valueμc . More
precisely, the origin of Equation 51.2 undergoes a stationary bifurcation at the critical parameter value
μ= 0 if hypotheses (S1) and (S2) hold.

S1 F of system (Equation 51.2) is sufficiently smooth in x,μ, and Fμ(0)= 0 for all μ in a neighborhood
of 0. The Jacobian A(μ) := ∂Fμ

∂x (0) possesses a simple real eigenvalue λ(μ) such that λ(0)= 0 and
λ′(0) �= 0.

S2 All eigenvalues of the critical Jacobian ∂Fμ
∂x (0) besides 0 have negative real parts.

Under (S1) and (S2), two new equilibrium points of Equation 51.2 emerge from the origin at μ= 0.
Bifurcation stability coefficients are quantities that determine the direction of bifurcation, and in particular
the stability of the bifurcated solutions. Next, a brief discussion of the origin and meaning of these
quantities is given.

Locally, the new equilibrium points occur for parameter values given by a smooth function of an
auxiliary small parameter ε (ε can be positive or negative):

μ(ε)= μ1ε+μ2ε
2+μ3ε

3+ · · · (51.4)

where the ellipsis denotes higher order terms. One of the new equilibrium points occurs for ε> 0 and the
other for ε< 0. Also, the stability of the new equilibrium points is determined by the sign of an eigenvalue
β(ε) of the system linearization at the new equilibrium points. This eigenvalue is near 0 and is also given
by a smooth function of the parameter ε:

β(ε)= β1ε+ β2ε
2+ β3ε

3+ · · · (51.5)

Stability of the bifurcated equilibrium points is determined by the sign of β(ε). If β(ε) < 0 the correspond-
ing equilibrium point is stable, while if β(ε) > 0 the equilibrium point is unstable. The coefficients βi ,
i = 1, 2, . . . in the expansion above are the bifurcation stability coefficients mentioned earlier, for the case
of stationary bifurcation. The values of these coefficients determine the local nature of the bifurcation.

Since ε can be positive or negative, it follows that if β1 �= 0 the bifurcation is neither subcritical
nor supercritical. (This is equivalent to the condition μ1 �= 0.) The bifurcation is therefore generically
transcritical. In applications, however, special structures of system dynamics and inherent symmetries
often result in stationary bifurcations that are not transcritical. Also, it is sometimes possible to render
a stationary bifurcation supercritical using feedback control. For these reasons, a brief discussion of
subcritical and supercritical pitchfork bifurcations is given next.

If β1 = 0 and β2 �= 0, a stationary bifurcation is known as a pitchfork bifurcation. The pitchfork bifurca-
tion is subcritical if β2 > 0; it is supercritical if β2 < 0. The bifurcation diagram of a subcritical pitchfork
bifurcation is depicted in Figure 51.3, and that of a supercritical pitchfork bifurcation is depicted in
Figure 51.4. The bifurcation discussed previously for the example system (Equation 51.3) is a supercriti-
cal pitchfork bifurcation.

51.3.1.3 Andronov–Hopf Bifurcation

Suppose that the origin of Equation 51.2 loses stability as the result of a complex conjugate pair of
eigenvalues of A(μ) crossing the imaginary axis. All other eigenvalues are assumed to remain stable,
i.e., their real parts are negative for all values of μ. Under this simple condition on the linearization
of a nonlinear system, the nonlinear system typically undergoes a bifurcation. The word “typically” is
used because there is one more condition to satisfy, but it is a mild condition. The type of bifurcation
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x

A

μ

FIGURE 51.3 Subcritical pitchfork bifurcation.

that occurs under these circumstances involves the emergence of a limit cycle from the origin as μ is
varied through μc . This is the Andronov–Hopf bifurcation, a more precise description of which is given
next. The following hypotheses are invoked in the Andronov–Hopf Bifurcation Theorem. The critical
parameter value is taken to be μc = 0 without loss of generality.

AH1 F of system (Equation 51.2) is sufficiently smooth in x,μ, and Fμ(0)= 0 for all μ in a neighborhood
of 0. The Jacobian ∂Fμ

∂x (0) possesses a complex-conjugate pair of (algebraically) simple eigenvalues

λ(μ)= α(μ)+ iω(μ),λ(μ), such that α(0)= 0, α′(0) �= 0 and ωc := ω(0) > 0.
AH2 All eigenvalues of the critical Jacobian ∂Fμ

∂x (0) besides±iωc have negative real parts.

The Andronov–Hopf Bifurcation Theorem asserts that, under (AH1) and (AH2), a small-amplitude
nonconstant limit cycle (i.e., periodic solution) of Equation 51.2 emerges from the origin atμ= 0. Locally,
the limit cycles occur for parameter values given by a smooth and even function of the amplitude ε of the
limit cycles:

μ(ε)= μ2ε
2+μ4ε

4+ · · · (51.6)

where the ellipsis denotes higher order terms.
Stability of an equilibrium point of the system (Equation 51.2) can be studied using eigenvalues of the

system linearization evaluated at the equilibrium point. The analogous quantities for consideration of
limit cycle stability for Equation 51.2 are the characteristic multipliers of the limit cycle. (For a definition,
see for example [10,18,28,30,32,43,46,48].) A limit cycle is stable (precisely: orbitally asymptotically stable)
if its characteristic multipliers all have magnitude less than unity. This is analogous to the widely known
fact that an equilibrium point is stable if the system eigenvalues evaluated there have negative real parts.
The stability condition is sometimes stated in terms of the characteristic exponents of the limit cycle,
quantities which are easily obtained from the characteristic multipliers. If the characteristic exponents
have negative real parts, then the limit cycle is stable. Although it is not possible to discuss the basic theory
of limit cycle stability in any detail here, the reader is referred to almost any text on differential equations,
dynamical systems, or bifurcation theory for a detailed discussion (e.g., [10,18,28,30,32,43,46,48]).

x

A

μ

FIGURE 51.4 Supercritical pitchfork bifurcation.
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y

A

μ

x

FIGURE 51.5 Subcritical Andronov–Hopf bifurcation.

The stability of the limit cycle resulting from an Andronov–Hopf bifurcation is determined by the sign
of a particular characteristic exponent β(ε). This characteristic exponent is real and vanishes in the limit
as the bifurcation point is approached. It is given by a smooth and even function of the amplitude ε of the
limit cycles:

β(ε)= β2ε
2+ β4ε

4+ · · · (51.7)

The coefficients μ2 and β2 in the expansions above are related by the exchange of stability formula

β2 =−2α′(0)μ2. (51.8)

Generically, these coefficients do not vanish. Their signs determine the direction of bifurcation. The
coefficients β2, β4, . . . in the expansion (Equation 51.7) are the bifurcation stability coefficients for the
case of Andronov–Hopf bifurcation.

If β2 > 0, then locally the bifurcated limit cycle is unstable and the bifurcation is subcritical. This
case is depicted in Figure 51.5. If β2 < 0, then locally the bifurcated limit cycle is stable (more precisely,
one says that it is orbitally asymptotically stable [10]). This is the case of supercritical Andronov–Hopf
bifurcation, depicted in Figure 51.6. If it happens that β2 vanishes, then stability is determined by the first
nonvanishing bifurcation stability coefficient (if one exists).

51.3.1.4 Period Doubling Bifurcation

The bifurcations considered above are all local bifurcations, i.e., bifurcations from an equilibrium point
of the system (Equation 51.2). Solutions emerging at these bifurcation points can themselves undergo
further bifurcations. A particularly important scenario involves a global bifurcation known as the period
doubling bifurcation.

To describe the period doubling bifurcation, consider the one-parameter family of nonlinear systems
(Equation 51.2). Suppose that Equation 51.2 has a limit cycle γμ for a range of values of the real parameter

y
x

A

μ

FIGURE 51.6 Supercritical Andronov–Hopf bifurcation.
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μ < μc μ < μc

FIGURE 51.7 Period doubling bifurcation (supercritical case).

μ. Moreover, suppose that for all values of μ to one side (say, less than) a critical value μc , all the
characteristic multipliers of γμ have magnitude less than unity. If exactly one characteristic multiplier
exits the unit circle at μ= μc , and does so at the point (−1, 0), and if this crossing occurs with a nonzero
rate with respect to μ, then one can show that a period doubling bifurcation from γμ occurs at μ= μc .
(See, e.g., [4] and references therein.)

This means that another limit cycle, initially of twice the period of γμc , emerges from γμ at μ= μc .
Typically, the bifurcation is either supercritical or subcritical. In the supercritical case, the period doubled
limit cycle is stable and occurs for parameter values on the side of μc for which the limit cycle γμ is
unstable. In the subcritical case, the period doubled limit cycle is unstable and occurs on the side of μc

for which the limit cycle γμ is stable. In either case, an exchange of stability is said to have occurred
between the nominal limit cycle γμ and the bifurcated limit cycle. Figure 51.7 depicts a supercritical
period doubling bifurcation. In this figure, a solid curve represents a stable limit cycle, while a dashed
curve represents an unstable limit cycle. The figure assumes that the nominal limit cycle loses stability as
μ increases through μc .

The direction of a period doubling bifurcation can easily be determined in discrete-time, using formulas
that have been derived in the literature (see, e.g., [4]). Recently, an approximate test that applies in
continuous-time has been derived using the harmonic balance approach [47].

51.3.2 Chaos

Bifurcations of equilibrium points and limit cycles are well understood and there is little room for
alternative definitions of the main concepts. Although the notation, style, and emphasis may differ
among various presentations, the main concepts and results stay the same. Unfortunately, the situ-
ation is not quite as tidy in regard to discussions of chaos. There are several distinct definitions of
chaotic behavior of dynamical systems. There are also some aspects of chaotic motion that have been
found to be true for many systems but have not been proved in general. The aim of this subsection
is to summarize in a nonrigorous fashion some important aspects of chaos that are widely agreed
upon.

The following working definition of chaos will suffice for the purposes of this chapter. The definition
is motivated by [46, p. 323] and [11, p. 50]. It uses the notion of “attractor” defined in section two, and
includes the definition of an additional notion, namely that of “strange attractor.”

A solution trajectory of a deterministic system (such as Equation 51.1) is chaotic if it converges to a
strange attractor. A strange attractor is a bounded attractor that: (1) exhibits sensitive dependence
on initial conditions, and (2) cannot be decomposed into two invariant subsets contained in disjoint
open sets.

A few remarks on this working definition are in order. An aperiodic motion is one that is not
periodic. Long-term behavior refers to steady-state behavior, i.e., system behavior that persists after
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(a) (b)

FIGURE 51.8 Strange attractor with embedded unstable limit cycle.

the transient decays. Sensitive dependence on initial conditions means that for almost any initial
condition lying on the strange attractor, there exists another initial condition as close as desired to
the given one such that the solution trajectories starting from these two initial conditions separate by
at least some prespecified amount after some time. The requirement of nondecomposability simply
ensures that strange attractors are considered as being distinct if they are not connected by any system
trajectories.

Often, sensitive dependence on initial conditions is defined in terms of the presence of at least one pos-
itive “Lyapunov exponent” (e.g., [34,35]). Further discussion of this viewpoint would entail technicalities
that are not needed in the sequel.

From a practical point of view, a chaotic motion can be defined as a bounded invariant motion
of a deterministic system that is not an equilibrium solution or a periodic solution or a quasiperiodic
solution [32, p. 277]. (A quasiperiodic function is one that is composed of finitely many periodic functions
with incommensurate frequencies. See [32, p. 231].)

There are two more important aspects of strange attractors and chaos that should be noted, since they
play an important role in a technique for control of chaos discussed in Section 51.7. These are:

1. A strange attractor generally has embedded within itself infinitely many unstable limit cycles. For
example, Figure 51.8a depicts a strange attractor, and Figure 51.8b depicts an unstable limit cycle
that is embedded in the strange attractor. Note that the shape of the limit cycle resembles that of
the strange attractor. This is to be expected in general. The limit cycle chosen in the plot happens
to be one of low period.

2. The trajectory starting from any point on a strange attractor will, after sufficient time, pass as
close as desired to any other point of interest on the strange attractor. This follows from the
indecomposability of strange attractors noted previously.

An important way in which chaotic behavior arises is through sequences of bifurcations. A well-
known such mechanism is the period doubling route to chaos, which involves the following sequence of
events:

1. A stable limit cycle loses stability, and a new stable limit cycle of double the period emerges.
(The original stable limit cycle might have emerged from an equilibrium point via a supercritical
Andronov–Hopf bifurcation.)

2. The new stable limit cycle loses stability, releasing another stable limit cycle of twice its period.
3. There is a cascade of such events, with the parameter separation between each two successive

events decreasing geometrically.∗ This cascade culminates in a sustained chaotic motion (a strange
attractor).

∗ This is true exactly in an asymptotic sense. The ratio in the geometric sequence is a universal constant discovered by
Feigenbaum. See, e.g., [11,32,34,43,46,48].
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51.4 Bifurcations and Chaos in Physical Systems

In this brief section, a list of representative physical systems that exhibit bifurcations and/or chaotic
behavior is given. The purpose is to provide practical motivation for study of these phenomena and their
control.

Examples of physical systems exhibiting bifurcations and/or chaotic behavior include the following.

• An aircraft stalls for flight under a critical speed or above a critical angle-of-attack (e.g., [8,13,39,51]).
• Aspects of laser operation can be viewed in terms of bifurcations. The simplest such observation

is that a laser can only generate significant output if the pump energy exceeds a certain threshold
(e.g., [19,46]). More interestingly, as the pump energy increases, the laser operating condition can
exhibit bifurcations leading to chaos (e.g., [17]).

• The dynamics of ships at sea can exhibit bifurcations for wave frequencies close to a natural
frequency of the ship. This can lead to large-amplitude oscillations, chaotic motion, and ship
capsize (e.g., [24,40]).

• Lightweight, flexible, aircraft wings tend to experience flutter (structural oscillations) (e.g., [39])
(along with loss of control surface effectiveness (e.g., [15])).

• At peaks in customer demand for electric power (such as during extremes in weather), the sta-
bility margin of an electric power network may become negligible, and nonlinear oscillations or
divergence (“voltage collapse”) can occur (e.g., [12]).

• Operation of aeroengine compressors at maximum pressure rise implies reduced weight require-
ments but also increases the risk for compressor stall (e.g., [16,20,25]).

• A simple model for the weather consists of fluid in a container (the atmosphere) heated from below
(the sun’s rays reflected from the ground) and cooled from above (outer space). A mathematical
description of this model used by Lorenz [27] exhibits bifurcations of convective and chaotic
solutions. This has implications also for boiling channels relevant to heat-exchangers, refrigeration
systems, and boiling water reactors [14].

• Bifurcations and chaos have been observed and studied in a variety of chemically reacting systems
(e.g., [42]).

• Population models useful in the study and formulation of harvesting strategies exhibit bifurcations
and chaos (e.g., [19,31,46]).

51.5 Control of Parametrized Families of Systems

Tracking of a desired trajectory (referred to as regulation when the trajectory is an equilibrium), is a
standard goal in control system design [26]. In applying linear control system design to this standard
problem, an evolving (nonstationary) system is modeled by a parametrized family of time-invariant
(stationary) systems. This approach is at the heart of the gain scheduling method, for example [26].

In this section, some basic concepts in control of parameterized families of systems are reviewed, and
a notion of stressed operation is introduced. Control laws for nonlinear systems usually consist of a
feedforward control plus a feedback control. The feedforward part of the control is selected first, followed
by the feedback part. This decomposition of control laws is discussed in the next subsection, and will
be useful in the discussions of control of bifurcations and chaos. In the second subsection, a notion of
“stressed operation” of a system is introduced. Stressed systems are not the only ones for which control
of bifurcations and chaos are relevant, but they are an important class for which such control issues need
to be evaluated.
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51.5.1 Feedforward/Feedback Structure of Control Laws

Control designs for nonlinear system can usually be viewed as proceeding in two main steps [26, Chapters
2, 14], [45, Chapter 3]:

1. Feedforward control
2. Feedback control

In Step 1, the feedforward part of the control input is selected. Its purpose is to achieve a desired candidate
operating condition for the system. If the system is considered as depending on one or more parameters,
then the feedforward control will also depend on the parameters. The desired operating condition can
often be viewed as an equilibrium point of the nonlinear system that varies as the system parameters
are varied. There are many situations when this operating condition is better viewed as a limit cycle that
varies with the parameters. In Step 2, an additional part of the control input is designed to achieve desired
qualities of the transient response in a neighborhood of the nominal operating condition. Typically this
second part of the control is selected in feedback form.

In the following, the feedforward part of the control input is taken to be designed already and reflected
in the system dynamical equations. The discussion centers on design of the feedback part of the control
input. Because of this, it is convenient to denote the feedback part of the control simply by u and to view
the feedforward part as being determined a priori. It is also convenient to take u to be small (close to zero)
near the nominal operating condition. (Any offset in u is considered part of the feedforward control.)

It is convenient to view the system as depending on a single exogeneous parameter, denoted by μ.
For instance, μ can represent the set-point of an aircraft’s angle-of-attack, or the power demanded of an
electric utility by a customer. In the former example, the control u might denote actuation of the aircraft’s
elevator angles about the nominal settings. In the latter example, u can represent a control signal in the
voltage regulator of a power generator.

Consider, then, a nonlinear system depending on a single parameter μ

ẋ = f μ(x, u). (51.9)

Here x ∈ R
n is the n-dimensional state vector, u is the feedback part of the control input, and μ is a

parameter. Both u and μ are taken to be scalar-valued for simplicity. The dependence of the system
equations on x, u, and μ is assumed smooth; i.e., f is jointly continuous and several times differentiable
in these variables. This system is thus actually a one-parameter family of nonlinear control systems. The
parameter μ is viewed as being allowed to change so slowly that its variation can be taken as quasistatic.

Suppose that the nominal operating condition of the system is an equilibrium point x0(μ) that depends
on the parameter μ. For simplicity of notation, suppose that the state x has been chosen so that this
nominal equilibrium point is the origin for the range of values of μ for which it exists (x0(μ)≡ 0). Recall
that the nominal equilibrium is achieved using feedforward control. Although the process of choosing a
feedforward control is not elaborated on here, it is important to emphasize that in general this process
aims at securing a particular desired candidate operating condition. The feedforward control thus is
expected to result in an acceptable form for the nominal operating condition, but there is no reason to
expect that other operating conditions will also behave in a desirable fashion. As the parameter varies,
the nominal operating condition may interact with other candidate operating conditions in bifurcations.
The design of the feedback part of the control should take into account the other candidate operating
conditions in addition to the nominal one.

For simplicity, suppose the control u is not allowed to introduce additional dynamics. That is, suppose
u is required to be a direct state feedback (or static feedback), and denote it by u= u(x,μ). Note that in
general u can depend on the parameter μ. That is, it can be scheduled. Since in the discussion above it
was assumed that u is small near the nominal operating condition, it is assumed that u(0,μ)≡ 0 (for the
parameter range in which the origin is an equilibrium).
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Denote the linearization of Equation 51.9 at x0 = 0, u= 0 by

ẋ = A(μ)x+ b(μ)u. (51.10)

Here,

A(μ) := ∂f μ

∂x
(0, 0)

and

b(μ) := ∂f μ

∂u
(0, 0).

Consider how control design for the linearized system depends on the parameter μ. Recall the termi-
nology from linear system theory that the pair (A(μ), b(μ)) is controllable if the system (Equation 51.10)
is controllable. Recall also that there are several simple tests for controllability, one of which is that the
controllability matrix

(b(μ), A(μ)b(μ), (A(μ))2b(μ), . . . , (A(μ))(n−1)b(μ))

is of full rank. (In this case this is equivalent to the matrix being nonsingular, since here the controllability
matrix is square.)

If μ is such that the pair (A(μ), b(μ)) is controllable, then a standard linear systems result asserts the
existence of a linear feedback u(x,μ)=−k(μ)x stabilizing the system. (The associated closed-loop system
would be ẋ = (A(μ)− b(μ)k(μ))x.) Stabilizability tests not requiring controllability also exist, and these
are more relevant to the problem at hand. Even more interesting from a practical perspective is the issue
of output feedback stabilizability, since not all state variables are accessible for real-time measurement in
many systems. Asμ is varied over the desired regime of operability, the system (Equation 51.10) may lose
stability and stabilizability.

51.5.2 Stressed Operation and Break-Down of Linear Techniques

A main motivation for the study of control of bifurcations is the need in some situations to operate a
system in a condition for which the stability margin is small and linear (state or output) feedback is
ineffective as a means for increasing the stability margin. Such a system is sometimes referred to as being
“pushed to its limits,” or “heavily loaded.” In such situations, the ability of the system to function in a state
of increased loading is a measure of system performance. Thus, the link between increased loading and
reduced stability margin can be viewed as a performance vs. stability trade-off. Systems operating with a
reduced achievable margin of stability may be viewed as being “stressed.” This trade-off is not a general
fact that can be proved in a rigorous fashion, but has been found to occur in a variety of applications.
Examples of this trade-off are given at the end of this subsection.

Consider a system that is weakly damped and for which the available controls cannot compensate
with sufficient additional damping. Such a situation may arise for a system for some ranges of parameter
values and not for others. Let the operating envelope of a system be the possible combinations of system
parameters for which system operability is being considered. Linear control system methods lose their
effectiveness on that part of the operating envelope for which the operating condition of interest of system
(Equation 51.10) is either:

1. not stabilizable with linear feedback using available sensors and actuators
2. linearly stabilizable using available sensors and actuators but only with unacceptably high feedback

gains
3. vulnerable in the sense that small parameter changes can destroy the operating condition completely

(as in a saddle-node bifurcation)



�

�

�

�

� �

Control of Bifurcations and Chaos 51-15

Operation in this part of the desired operating envelope can be referred to by terms such as “stressed
operation.”

An example of the trade-off noted previously is provided by an electric power system under conditions
of heavy loading. At peaks in customer demand for electric power (such as during extremes in weather),
the stability margin may become negligible, and nonlinear dynamical behaviors or divergence may arise
(e.g., [12]). The divergence, known as voltage collapse, can lead to system blackout. Another example
arises in operation of an aeroengine compressor at its peak pressure rise. The increased pressure rise
comes at the price of nearness to instability. The unstable modes that can arise are strongly related to
flow asymmetry modes that are unstabilizable by linear feedback to the compression system throttle.
However, bifurcation control techniques have yielded valuable nonlinear throttle actuation techniques
that facilitate operation in these circumstances with reduced risk of stall [16,25].

51.6 Control of Systems Exhibiting Bifurcation Behavior

Most engineering systems are designed to operate with a comfortable margin of stability. This means
that disturbances or moderate changes in system parameters are unlikely to result in loss of stability.
For example, a jet airplane in straight level flight under autopilot control is designed to have a large
stability margin. However, engineering systems with a usually comfortable stability margin may at times
be operated at a reduced stability margin. A jet airplane being maneuvered at high angle-of-attack to gain
an advantage over an enemy aircraft, for instance, may have a significantly reduced stability margin. If a
system operating condition actually loses stability as a parameter (like angle-of-attack) is slowly varied,
then generally it is the case that a bifurcation occurs. This means that at least one new candidate operating
condition emerges from the nominal one at the point of loss of stability. The purpose of this section
is to summarize some results on control of bifurcations, with an emphasis placed on control of local
bifurcations. Control of a particular global bifurcation, the period doubling bifurcation, is considered in
the next section on control of chaos. This is because control of a period doubling bifurcation can result
in quenching of the period doubling route to chaos summarized at the end of section three.

Bifurcation control involves designing a control input for a system to result in a desired modification to
the system’s bifurcation behavior. In Section 51.5, the division of control into a feedforward component
and a feedback component was discussed. Both components of a control law can be viewed in terms of
bifurcation control. The feedforward part of the control sets the equilibrium points of the system, and may
influence the stability margin as well. The feedback part of the control has many functions, one of which
is to ensure adequate stability of the desired operating condition over the desired operating envelope.
Linear feedback is used to ensure an adequate margin of stability over a desired parameter range. Use
of linear feedback to “delay” the onset of instability to parameter ranges outside the desired operating
range is a common practice in control system design. An example is the gain scheduling technique [26].
Delaying instability modifies the bifurcation diagram of a system. Often, the available control authority
does not allow stabilization of the nominal operating condition beyond some critical parameter value. At
this value, instability leads to bifurcations of new candidate operating conditions. For simplicity, suppose
that a single candidate operating condition is born at the bifurcation point. Another important goal
in bifurcation control is to ensure that the bifurcation is supercritical (i.e., safe) and that the resulting
candidate operating condition remains stable and close to the original operating condition for a range
of parameter values beyond the critical value. The need for control laws that soften (stabilize) a hard
(unstable) bifurcation has been discussed earlier in this chapter. This need is greatest in stressed systems,
since in such systems delay of the bifurcation by linear feedback is not viable. A soft bifurcation provides
the possibility of an alternative operating condition beyond the regime of operability at the nominal
condition.

Both of these goals (delaying and stabilization) basically involve local considerations and can be
approached analytically (if a good system model is available). Another goal might entail a reduction
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in amplitude of any bifurcated solutions over some prespecified parameter range. This goal is generally
impossible to work with on a completely analytical basis. It requires extensive numerical study in addition
to local analysis near the bifurcation(s).

In the most severe local bifurcations (saddle-node bifurcations), neither the nominal equilibrium
point nor any bifurcated solution exists past the bifurcation. Even in such cases, an understanding of
bifurcations provides some insight into control design for safe operation. For example, it may be possible
to use this understanding to determine (or introduce via added control) a warning signal that becomes
more pronounced as the severe bifurcation is approached. This signal would alert the high-level control
system (possibly a human operator) that action is necessary to avoid catastrophe.

In this section, generally it is assumed that the feedforward component of the control has been pre-
determined, and the goal is to design the feedback component. An exception is the following brief
discussion of a real-world example of the use of feedforward control to modify a system’s operating
condition and its stability margin in the face of large parameter variations. In short, this is an example
where feedforward controls are used to successfully avoid the possibility of bifurcation. During takeoff and
landing of a commercial jet aircraft, one can observe the deployment of movable surfaces on the leading-
and trailing-edges of the wings. These movable surfaces, called flaps and slats, or camber changers [13],
result in a nonlinear change in the aerodynamics, and, in turn, in an increased lift coefficient [13,51].
This is needed to allow takeoff and landing at reduced speeds. Use of these surfaces has the drawback of
reducing the critical angle-of-attack for stall, resulting in a reduced stability margin. A common method
to alleviate this effect is to incorporate other devices, called vortex generators. These are small airfoil-
shaped vanes, protruding upward from the wings [13]. The incorporation of vortex generators results in
a further modification to the aeodynamics, moving the stall angle-of-attack to a higher value. Use of the
camber changers and the vortex generators are examples of feedforward control to modify the operating
condition within a part of the aircraft’s operating envelope. References [13] and [51] provide further
details, as well as diagrams showing how the lift coefficient curve is affected by these devices.

51.6.1 Local Direct State Feedback

To give a flavor of the analytical results available in the design of the feedback component in bifurcation
control, consider the nonlinear control system (Equation 51.9), repeated here for convenience:

ẋ = f μ(x, u). (51.11)

Here, u represents the feedback part of the control law; the feedforward part is assumed to be incorpo-
rated into the function f . The technique and results of [1,2] form the basis for the following discussion.
Details are not provided since they would require introduction of considerable notation related to multi-
variate Taylor series. However, an illustrative example is given based on formulas available in [1,2].

Suppose for simplicity that Equation 51.11 with u≡ 0 possesses an equilibrium at the origin for
a parameter range of interest (including the value μ= 0). Moreover, suppose that the origin of
Equation 51.11 with the control set to zero undergoes either a subcritical stationary bifurcation or a
subcritical Andronov–Hopf bifurcation at the critical parameter value μ= 0. Feedback control laws of
the form u= u(x) (“static state feedbacks”) are derived in [1,2] that render the bifurcation supercritical.

For the Andronov-Hopf bifurcation, this is achieved using a formula for the coefficient β2 in the
expansion (Equation 51.7) of the characteristic exponent for the bifurcated limit cycle. Smooth nonlinear
controls rendering β2 < 0 are derived. For the stationary bifurcation, the controlled system is desired to
display a supercritical pitchfork bifurcation. This is achieved using formulas for the coefficients β1 and β2

in the expansion (Equation 51.5) for the eigenvalue of the bifurcated equilibrium determining stability.
Supercriticality is insured by determining conditions on u(x) such that β1 = 0 and β2 < 0.

The following example is meant to illustrate the technique of [2]. The calculations involve use of for-
mulas from [2] for the bifurcation stability coefficients β1 and β2 in the analysis of stationary bifurcations.
The general formulas are not repeated here.
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Consider the one-parameter family of nonlinear control systems

ẋ1 = μx1+ x2+ x1x2
2 + x3

1 , (51.12)

ẋ2 =−x2− x1x2
2 +μu+ x1u. (51.13)

Here x1, x2 are scalar state variables, and μ is a real-valued parameter. This is meant to represent a
system after application of a feedforward control, so that u is to be designed in feedback form. The nominal
operating condition is taken to be the origin (x1, x2)= (0, 0), which is an equilibrium of (Equations 51.12
and 51.13) when the control u= 0 for all values of the parameter μ.

Local stability analysis at the origin proceeds in the standard manner. The Jacobian matrix A(μ) of the
right side of (Equations 51.12 and 51.13) is given by

A(μ)=
(
μ 1
0 −1

)
. (51.14)

The system eigenvalues areμ and−1. Thus, the origin is stable forμ< 0 but is unstable forμ> 0. The
critical value of the bifurcation parameter is therefore μc = 0. Since the origin persists as an equilibrium
point past the bifurcation, and since the critical eigenvalue is 0 (not an imaginary pair), it is expected that
a stationary bifurcation occurs. The stationary bifurcation that occurs for the open-loop system can be
studied by solving the pair of algebraic equations

0= μx1+ x2+ x1x2
2 + x3

1 , (51.15)

0=−x2− x1x2
2 (51.16)

for a nontrivial (i.e., nonzero) equilibrium (x1, x2) near the origin for μ near 0. Adding Equation 51.15 to
Equation 51.16 gives

0= μx1+ x3
1 . (51.17)

Disregarding the origin, this gives two new equilibrium points that exist for μ< 0, namely

x(μ)=
(±√−μ

0

)
. (51.18)

Since these bifurcated equilibria occur for parameter values (μ< 0) for which the nominal operating
condition is unstable, the bifurcation is a subcritical pitchfork bifurcation.

The first issue addressed in the control design is the possibility of using linear feedback to delay the
bifurcation to some positive value ofμ. This would require stabilization of the origin atμ= 0. Because of
the way in which the control enters the system dynamics, however, the system eigenvalues are not affected
by linear feedback at the parameter value μ= 0. To see this, simply note that in Equation 51.13, the term
μu vanishes when μ= 0, and the remaining impact of the control is through the term x1u. This latter
term would result only in the addition of quadratic terms to the right side of Equations 51.12 and 51.13
for any linear feedback u. Hence, the system is an example of a stressed nonlinear system for μ near 0.

Since the pitchfork bifurcation cannot be delayed by linear feedback, next consider the possibility of
rendering the pitchfork bifurcation supercritical using nonlinear feedback. This rests on determining how
feedback affects the bifurcation stability coefficients β1 and β2 for this stationary bifurcation. Once this is
known, it is straightforward to seek a feedback that renders β1 = 0 and β2 < 0. The formulas for β1 and
β2 derived in [2] simplify for systems with no quadratic terms in the state variables. For such systems,
the coefficient β1 always vanishes, and the calculation of β2 also simplifies. Since the dynamical equations
51.12 and 51.13 in the example contain no quadratic terms in x, it follows that β1 = 0 in the absence
of control. Moreover, if the control contains no linear terms, then it will not introduce quadratic terms
into the dynamics. Hence, for any smooth feedback u(x) containing no linear terms in x, the bifurcation
stability coefficient β1 = 0.
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As for the bifurcation stability coefficient β2, the pertinent formula in [2] applied to the open-loop
system yields β2 = 2. Thus, a subcritical pitchfork bifurcation is predicted for the open-loop system, a
fact that was established above using simple algebra. Now let the control consist of a quadratic function
of the state and determine conditions under which β2 < 0 for the closed-loop system.∗ Thus, consider u
to be of the form

u(x1, x2)=−k1x2
1 − k2x1x2− k3x2

2 . (51.19)

The formula in [2] yields that β2 for the closed-loop system is then given by

β2 = 2(1− k1). (51.20)

Thus, to render the pitchfork bifurcation in Equations 51.12 and 51.13 supercritical, it suffices to take
u to be the simple quadratic function

u(x1, x2)=−k1x2
1 , (51.21)

with any gain k1 > 1. In fact, other quadratic terms, as well as any other cubic or higher order terms,
can be included along with this term without changing the local result that the bifurcation is rendered
supercritical. Additional terms can be useful in improving system behavior as the parameter leaves a local
neighborhood of its critical value.

51.6.2 Local Dynamic State Feedback

Use of a static state feedback control law u= u(x) has potential disadvantages in nonlinear control of
systems exhibiting bifurcation behavior. To explain this, consider the case of an equilibrium x0(μ) as the
nominal operating condition. The equilibrium is not translated to the origin to illustrate how it is affected
by feedback. In general, a static state feedback

u= u(x− x0(μ)) (51.22)

designed with reference to the nominal equilibrium path x0(μ) of Equation 51.11 will affect not only
the stability of this equilibrium but also the location and stability of other equilibria. Now suppose that
Equation 51.11 is only an approximate model for the physical system of interest. Then the nominal
equilibrium branch will also be altered by the feedback. A main disadvantage of such an effect is the
wasted control energy that is associated with the forced alteration of the system equilibrium structure.
Other disadvantages are that system performance is often degraded by operating at an equilibrium that
differs from the one at which the system is designed to operate. Moreover, by influencing the locations of
system equilibria, the feedback control is competing with the feedforward part of the control.

For these reasons, dynamic state feedback-type bifurcation control laws have been developed that do
not affect the locations of system equilibria [22,23,50]. The method involves incorporation of filters called
“washout filters” into the controller architecture. A washout filter-aided control law preserves all system
equilibria, and does so without the need for an accurate system model.

A washout filter is a stable high pass filter with zero static gain [15, p. 474]. The typical transfer function
for a washout filter is

G(s)= yi(s)

xi(s)
= s

s+ d
. (51.23)

where xi is the input variable to the filter and yi is the output of the filter. A washout filter produces a
nonzero output only during the transient period. Thus, such a filter “washes out” sensed signals that have
settled to constant steady-state values. Washout filters occur in control systems for power systems [5, p.
277], [41, Chapter 9] and aircraft [7,15,39,45].

∗ Cubic terms are not included because they would result in quartic terms on the right side of Equations 51.12 and 51.13,
while the formula for β2 in [2] involves only terms up to cubic order in the state.
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Washout filters are positioned in a control system so that a sensed signal being fed back to an actuator
first passes through the washout filter. If, due to parameter drift or intentional parameter variation, the
sensed signal has a steady-state value that deviates from the assumed value, the washout filter will give
a zero output and the deviation will not propagate. If a direct state feedback were used instead, the
steady-state deviation in the sensed signal would result in the control modifying the steady-state values
of the other controlled variables. As an example, washout filters are used in aircraft yaw damping control
systems to prevent these dampers from “fighting” the pilot in steady turns [39, p. 947].

From a nonlinear systems perspective, the property of washout filters described above translates to
achieving equilibrium preservation, i.e., zero steady-state tracking error, in the presence of system uncer-
tainties.

Washout filters can be incorporated into bifurcation control laws for Equation 51.11. This should be
done only after the feedforward control has been designed and incorporated and part of the feedback
control ensuring satisfactory equilibrium point structure has also been designed and incorporated into
the dynamics. Otherwise, since washout filters preserve equilibrium points, there will be no possibility of
modifying the equilibria. It is assumed below that these two parts of the control have been chosen and
implemented.

For each system state variable xi , i = 1, . . . , n, in Equation 51.11, introduce a washout filter governed
by the dynamic equation

żi = xi − dizi (51.24)

along with output equation

yi = xi − dizi . (51.25)

Here, the di are positive parameters (this corresponds to using stable washout filters). Finally, require the
control u to depend only on the measured variables y, and that u(y) satisfy u(0)= 0.

In this formulation, n washout filters, one for each system state, are present. In fact, the actual number
of washout filters needed, and hence also the resulting increase in system order, can usually be taken less
than n.

It is straightforward to see that washout filters result in equilibrium preservation and automatic equilib-
rium (operating point) following. Indeed, since u(0)= 0, it is clear that y vanishes at steady-state. Hence,
the x subvector of a closed-loop equilibrium point (x, z) agrees exactly with the open-loop equilibrium
value of x. Also, since yi may be re-expressed as

yi = xi − dizi = (xi − x0
i (μ))− di(zi − z0

i (μ)), (51.26)

the control function u= u(y) is guaranteed to center at the correct operating point.

51.7 Control of Chaos

Chaotic behavior of a physical system can either be desirable or undesirable, depending on the application.
It can be beneficial for many reasons, such as enhanced mixing of chemical reactants, or, as proposed
recently [36], as a replacement for random noise as a masking signal in a communication system. Chaos
can, on the other hand, entail large amplitude motions and oscillations that might lead to system failure.
The control techniques discussed in this section have as their goal the replacement of chaotic behavior by
a nonchaotic steady-state behavior. The first technique discussed is that proposed by Ott, Grebogi, and
Yorke [33]. The Ott–Grebogi–Yorke (OGY) method sparked significant interest and activity in control
of chaos. The second technique discussed is the use of bifurcation control to delay or extinguish the
appearance of chaos in a family of systems.
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51.7.1 Exploitation of Chaos for Control

Ott, Grebogi, and Yorke [33] proposed an approach to control of chaotic systems that involves use of
small controls and exploitation of chaotic behavior. To explain this method, recall from section three
that a strange attractor has embedded within itself a “dense” set (infinitely many) of unstable limit cycles.
The strange attractor is a candidate operating condition, according to the definition in section two. In
the absence of control, it is the actual system operating condition. Suppose that system performance
would be significantly improved by operation at one of the unstable limit cycles embedded in the strange
attractor. The OGY method replaces the originally chaotic system operation with operation along the
selected unstable limit cycle.

Figure 51.8 depicts a strange attractor along with a particular unstable limit cycle embedded in it. It is
helpful to keep such a figure in mind in contemplating the OGY method. The goal is to reach a limit cycle
such as the one shown in Figure 51.8, or another of some other period or amplitude. Imagine a trajectory
that lies on the strange attractor in Figure 51.8, and suppose the desire is to use control to force the tra-
jectory to reach the unstable limit cycle depicted in the figure and to remain there for all subsequent time.

Control design to result in operation at the desired limit cycle is achieved by the following reasoning.
First, note that the desired unstable limit cycle is also a candidate operating condition. Next, recall from
section three that a trajectory on the strange attractor will, after sufficient time, pass as close as desired
to any other point of interest on the attractor. Thus, the trajectory will eventually come close (indeed,
arbitrarily close) to the desired limit cycle. Thus, no control effort whatsoever is needed in order for the
trajectory to reach the desired limit cycle—chaos guarantees that it will. To maintain the system state
on the desired limit cycle, a small stabilizing control signal is applied once the trajectory enters a small
neighborhood of the limit cycle. Since the limit cycle is rendered stable by this control, the trajectory will
converge to the limit cycle. If noise drives the trajectory out of the neighborhood where control is applied,
the trajectory will wander through the strange attractor again until it once again enters the neighborhood
and remains there by virtue of the control.

Note that the control obtained by this method is an example of a variable structure control, since it is
“on” in one region in state space and “off” in the rest of the space. Also, the particular locally stabilizing
control used in the neighborhood of the desired limit cycle has not been discussed in the foregoing.
This is because several approaches are possible, among them pole placement [38]. See [34,35] for further
discussion.

Two particularly significant strengths of the OGY technique are:

1. It requires only small controls
2. It can be applied to experimental systems for which no mathematical model is available

The first of these strengths is due to the assumption that operation at an unstable limit cycle embedded
in the strange attractor is desirable. If none of the embedded limit cycles provides adequate performance,
then a large control could possibly be used to introduce a new desirable candidate operating condition
within the strange attractor. This could be followed by a small control possibly designed within the
OGY framework. Note that the large control would be a feedforward control, in the terminology used
previously in this chapter. For a discussion of the second main strength of the OGY control method
mentioned above, see, e.g., [17,33,34]. It suffices to note here that a construction known as experimental
delay coordinate embedding is one means to implement this control method without a priori knowledge
of a reliable mathematical model.

Several interesting applications of the OGY control method have been performed, including control of
cardiac chaos (see [35]). In [17], a multimode laser was controlled well into its usually unstable regime.

51.7.2 Bifurcation Control of Routes to Chaos

The bifurcation control techniques discussed in section six have direct relevance for issues of control
of chaotic behavior of dynamical systems. This is because chaotic behavior often arises as a result of
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bifurcations, such as through the period doubling route to chaos. The bifurcation control technique
discussed earlier in this chapter is model-based. Thus, the control of chaos applications of the technique
also require availability of a reliable mathematical model.

Only a few comments are given here on bifurcation control of routes to chaos, since the main tool has
already been discussed in section six. The cited references may be consulted for details and examples.

In [50], a thermal convection loop model is considered. The model, which is equivalent to the Lorenz
equations mentioned in Section 51.4, displays a series of bifurcations leading to chaos. In [50], an
Andronov–Hopf bifurcation that occurs in the model is rendered supercritical using local dynamic state
feedback (of the type discussed in Section 51.6). The feedback is designed using local calculations at the
equilibrium point of interest. It is found that this simple control law results in elimination of the chaotic
behavior in the system. From a practical perspective, this allows operation of the convection loop in a
steady convective state with a desired velocity and temperature profile.

Feedback control to render supercritical a previously subcritical period doubling bifurcation was
studied in [4,47]. In [4], a discrete-time model is assumed, whereas a continuous-time model is assumed
in [47]. The discrete-time model used in [4] takes the form (k is an integer)

x(k+ 1)= f μ(x(k), u(k)) (51.27)

where x(k) ∈ R
n is the state, u(k) is a scalar control input, μ ∈ R is the bifurcation parameter, and the

mapping f μ is sufficiently smooth in x, u, and μ. The continuous-time model used in [47] is identical to
Equation 51.9.

For discrete-time systems, a limit cycle must have an integer period. A period-1 limit cycle sheds a
period-2 limit cycle upon period doubling bifurcation. The simplicity of the discrete-time setting results
in explicit formulas for bifurcation stability coefficients and feedback controls [4]. By improving the
stability characteristics of a bifurcated period-2 limit cycle, an existing period doubling route to chaos can
be extinguished. Moreover, the period-2 limit cycle will then remain close to the period-1 limit cycle for
an increased range of parameters.

For continuous-time systems, limit cycles cannot in general be obtained analytically. Thus, [47] employs
an approximate analysis technique known as harmonic balance. Approximate bifurcation stability coef-
ficients are obtained, and control to delay the onset of period doubling bifurcation or stabilize such a
bifurcation is discussed.

The washout filter concept discussed in section six is extended in [4] to discrete-time systems. In [47],
an extension of the washout filter concept is used that allows approximate preservation of limit cycles of
a certain frequency.

51.8 Concluding Remarks

Control of bifurcations and chaos is a developing area with many interesting avenues for research and
for application. Some of the tools and ideas that have been used in this area were discussed. Connections
among these concepts, and relationships to traditional control ideas, have been emphasized.
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Further Reading

Detailed discussions of bifurcation and chaos are available in many excellent books (e.g., [6,10,11,18,19,
28,30,32,34,35,43,46,48]). These books also discuss a variety of interesting applications. Many examples of
bifurcations in mechanical systems are given in [52]. There are also several journals devoted to bifurcations
and chaos. Of particular relevance to engineers are Nonlinear Dynamics, the International Journal of
Bifurcation and Chaos, and the journal Chaos, Solitons and Fractals.

The book [45] discusses feedforward control in the context of “trimming” an aircraft using its nonlinear
equations of motion and the available controls. Bifurcation and chaos in flight dynamics are discussed
in [8]. Lucid explanations on specific uses of washout filters in aircraft control systems are given in [15, pp.
474–475], [7, pp. 144–146], [39, pp. 946–948 and pp. 1087–1095], and [45, pp. 243–246 and p. 276]. The
book [31] discussed applications of nonlinear dynamics in biology and population dynamics.
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Computational issues related to bifurcation analysis are addressed in [43]. Classification of bifurcations
as safe or dangerous is discussed in [32,43,48,49].

The edited book [14] contains interesting articles on research needs in applications of bifurcations and
chaos.

The article [3] contains a large number of references on bifurcation control, related work on stabiliza-
tion, and applications of these techniques. The review papers [9,44] address control of chaos methods.
In particular, [44] includes a discussion of use of sensitive dependence on initial conditions to direct tra-
jectories to targets. The book [35] includes articles on control of chaos, detection of chaos in time series,
chaotic data analysis, and potential applications of chaos in communication systems. The book [32] also
contains discussions of control of bifurcations and chaos, and of analysis of chaotic data.
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52.1 Introduction

The interesting discovery that the topmost equilibrium of a pendulum can be stabilized by oscillatory
vertical movement of the suspension point has been attributed to Bogolyubov [11] and Kapitsa [26],
who published papers on this subject in 1950 and 1951, respectively. In the intervening years, literature
appeared analyzing the dynamics of systems with oscillatory forcing, e.g., [31]. Control designs based
on oscillatory inputs have been proposed (for instance [8] and [9]) for a number of applications. Many
classical results on the stability of operating points for systems with oscillatory inputs depend on the
eigenvalues of the averaged system lying in the left half-plane. Recently, there has been interest in the
stabilization of systems to which such classical results do not apply. Coron [20], for instance, has shown
the existence of a time-varying feedback stabilizer for systems whose averaged versions have eigenvalues
on the imaginary axis. This design is interesting because it provides smooth feedback stabilization for
systems which Brockett [15] had previously shown were never stabilizable by smooth, time-invariant
feedback. For conservative mechanical systems with oscillatory control inputs, Baillieul [7] has shown
that stability of operating points may be assessed in terms of an energy-like quantity known as the averaged
potential. Control designs with objectives beyond stabilization have been studied in path-planning for
mobile robots [40] and in other applications where the models result in “drift-free” controlled differential

52-1
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equations. Work by Sussmann and Liu [36–38], extending earlier ideas of Haynes and Hermes, [21],
has shown that, for drift-free systems satisfying a certain Lie algebra rank condition (LARC discussed in
Section 52.2), arbitrary smooth trajectories may be interpolated to an arbitrary accuracy by appropriate
choice of oscillatory controls. Leonard and Krishnaprasad [28] have reported algorithms for generating
desired trajectories when certain “depth” conditions on the brackets of the defining vector fields are
satisfied.

This chapter summarizes the current theory of open-loop control using oscillatory forcing. The recent
literature has emphasized geometric aspects of the methods, and our discussion in Sections 52.2 and
52.3 will reflect this emphasis. Open-loop methods are quite appealing in applications in which the
realtime sensor measurements needed for feedback designs are expensive or difficult to obtain. Because
the methods work by virtue of the geometry of the motions in the systems, the observed effects may
be quite robust. This is borne out by experiments described below. The organization of the article is
as follows. In the present section we introduce oscillatory open-loop control laws in two very different
ways. Example 52.1 illustrates the geometric mechanism through which oscillatory forcing produces
nonlinear behavior in certain types of (drift-free) systems. Following this, the remainder of the section
introduces a more classical analytical approach to control systems with oscillatory inputs. Section 52.2
provides a detailed exposition of open loop design methods for so-called “drift-free” systems. The principal
applications are in kinematic motion control, and the section concludes with an application to grasp
mechanics. Section 52.3 discusses some geometric results of oscillatory forcing for stabilization. Examples
have been chosen to illustrate different aspects of the theory.

52.1.1 Noncommuting Vector Fields, Anholonomy, and the Effect of
Oscillatory Inputs

We begin by describing a fundamental mathematical mechanism for synthesizing motions in a controlled
dynamical system using oscillatory forcing. We shall distinguish among three classes of systems:

I. Drift-free systems with input entering linearly:

ẋ =
m∑

i=1

uigi(x). (52.1)

Here we assume each gi : Rn → Rn is a smooth (i.e. analytic) vector field, and each “input” ui(·) is
a piecewise analytic function of time. Generally, we assume m < n.

II. Systems with drift and input entering affinely:

ẋ = f (x)+
m∑

i=1

uigi(x). (52.2)

The assumptions here are, as in the previous case, with f : Rn → Rn also assumed to be smooth.
III. Systems with no particular restriction on the way in which the control enters:

ẋ = f (x, u). (52.3)

Here u= (u1, . . . , um)T is a vector of piecewise analytic inputs, as in the previous two cases, and
f : Rn×Rm → Rn is analytic.

This is a hierarchy of types, each a special case of its successor in the list. More general systems could be
considered, and indeed, in the Lagrangian models which are described in Section 52.3, we shall encounter
systems in which the derivatives of inputs also enter the equations of motion. It will be shown that these
systems can be reduced to Class III, however.
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Remark 52.1

The extra term on the right hand side of Equation 52.2 is called a “drift” because, in the absence of control
input, the differential equation “drifts” in the direction of the vector field f .

Example 52.1:

Even Class I systems possess the essential features of the general mechanism (anholonomy) by which
oscillatory inputs may be used to synthesize desired motions robustly. (See remarks below on the
robustness of open-loop methods.) Consider the simple and widely studied “Heisenberg” system
(see [16]): ⎛

⎝ẋ1
ẋ2
ẋ3

⎞
⎠=

⎛
⎝ u1(t)

u2(t)
u2(t)x1− u1(t)x2

⎞
⎠ . (52.4)

This system is a special case of Equation 52.1 in which m= 2 and

g1(x)=
⎛
⎝ 1

0
−x2

⎞
⎠ , g2(x)=

⎛
⎝ 0

1
x1

⎞
⎠ .

If we define the Lie bracket of these vector fields by [g1, g2] = ∂g1
∂x g2− ∂g2

∂x g1, then a simple calculation
reveals [g1, g2] = (0, 0,−2)T . Another fairly straightforward calculation shows that, from general con-
siderations, there is a choice of inputs (u1(·), u2(·)) which generates a trajectory pointing approximately
in the direction (0, 0, 1)T , and this approximation may be made arbitrarily accurate (see, Nijmeijer and
Van der Schaft, [30], p. 77 or Bishop and Crittenden, [10], p. 18.). In the present case, we can be more
precise and more explicit. Starting at the origin, (x1, x2, x3)= (0, 0, 0), motion in any of the three coor-
dinate directions is possible. By choosing u1(t)≡ 1, u2(t)≡ 0, for instance, motion along the x1-axis is
produced, and motion along the x2-axis may similarly be produced by reversing the role of u1(·) and u2(·).
Motion along the x3-axis is more subtle. If we let the inputs, (u1(·), u2(·)), trace a closed curve so that the
states x1 and x2 end with the same values with which they began, the net motion of the system is along the
x3-axis. This is illustrated in Figure 52.1. Brockett [17] has observed that the precise shape of the input

State space
curve

Anholonomy

Input space curve

FIGURE 52.1 The anholonomy present in the Heisenberg system is depicted in a typical situation in which the
input variables trace a closed curve and the state variables trace a curve which does not close. The distance between
endpoints of the state space curve (measured as the length of the dashed vertical line) reflects the anholonomy in the
system.
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curve is unimportant, but the x3-distance is twice the (signed) area circumscribed by the (x1, x2)-curve.
For this simple system, we thus have a way to prescribe trajectories between any two points in R3. Taking
the case of trajectories starting at the origin, for instance, we may specify a trajectory passing through
any other point (x, y, z) at time t = 1 by finding a circular arc initiating at the origin in (x1, x2)-space
with appropriate length, initial direction, and curvature. This construction of inputs may be carried out
somewhat more generally, as discussed below in Section 52.2. Ideas along this line are also treated in more
depth in [28].

The geometric mechanism by which motion is produced by oscillatory forcing is fairly transparent in
the case of the Heisenberg system. For systems of the form of Equation 52.2 and especially of the form
of Equation 52.3, there is no comparably complete geometric theory. Indeed, much of the literature on
such systems makes no mention of geometry. A brief survey/overview of some of the classical literature
on such systems is given next. We shall return to the geometric point of view in Sections 52.2 and 52.3.

52.1.2 Oscillatory Inputs to Control Physical Systems

The idea of using oscillatory forcing to control physical processes is not new. Prompted by work in the
1960s on the periodic optimal control of chemical processes, Speyer and Evans [33] derived a sufficiency
condition for a periodic process to minimize a certain integral performance criterion. This approach
also led to the observation that periodic paths could be used to improve aircraft fuel economy (see
[32].). Previously cited work of Bogolyubov and Kapitsa [11] and [26], led Bellman et al. [8] and [9]
to investigate the systematic use of vibrational control as an open loop control technique in which zero
average oscillations are introduced into a system’s parameters to achieve a dynamic response (such as
stabilizing effects). For example, it has been shown in [8,9,24,25], that the oscillation of flow rates in
a continuous stirred tank reactor allows operating exothermic reactions at (average) yields which were
previously unstable. Similarly, [6] and [7] describe the general geometric mechanism by which oscillations
along the vertical support of an inverted pendulum stabilize the upper equilibrium point.

This section treats the basic theory of vibrational control introduced in [8] and [9]. The techniques are
primarily based on [8], with additional material taken from [24] and [25]. In particular, in [24] and [25],
the technique of vibrational control has been extended to delay differential equations.

52.1.3 Problem Statement

Consider the nonlinear differential equation (Class III)

dx

dt
= f (x, u), (52.5)

where f : Rn×Rd → Rn is continuously differentiable, x ∈ Rn is the state, and u= (u1, . . . , ud)T is a
vector of control inputs assumed to be piecewise analytic functions of time. These are the quantities
which we can directly cause to vibrate.

Introduce into Equation 52.5 oscillatory inputs according to the law u(t)= λ0+ γ(t) where λ0 is a
constant vector and γ(t) is a periodic average zero (PAZ) vector. (For simplicity, γ(t) has been assumed
periodic. However, the following discussion can be extended to the case where γ(t) is an almost periodic
zero average vector [8,9,24,25].) Then Equation 52.5 becomes

dx

dt
= f (x,λ0+ γ(t)). (52.6)

Assume that Equation 52.5 has a fixed equilibrium point xs = xs(λ0) for fixed u(t)= λ0.
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Definition 52.1:

An equilibrium point xs(λ0) of Equation 52.5 is said to be vibrationally stabilizable if, for any δ> 0, there
exists a PAZ vector γ(t) such that Equation 52.6 has an asymptotically stable periodic solution, x∗(t),
characterized by

‖ x∗ − xs(λ0) ‖≤ δ, where x∗ = 1

T

∫ T

0
x∗(t) dt.

It is often preferable that Equations 52.5 and 52.6 have the same fixed equilibrium point, xs(λ0).
However, this is not usually the case because the right hand side of Equation 52.6 is time varying and
periodic. Therefore, the technique of vibrational stabilization is to determine vibrations γ(t) so that the
(possibly unstable) equilibrium point xs(λ0) bifurcates into a stable periodic solution whose average is
close to xs(λ0). The engineering aspects of the problem consist of 1) finding conditions for the existence
of stabilizing vibrations, 2) determining which oscillatory inputs, u(·), are physically realizable, and 3)
determining the shape (waveform type, amplitude, phase) of the oscillations which will insure the desired
response. In Section 52.3, we shall present an example showing how oscillatory forcing induces interesting
stable motion in neighborhoods of points which are not close to equilibria of the time-varying system of
Equation 52.6.

52.1.4 Vibrational Stabilization

It is frequently assumed that Equation 52.6 can be decomposed as

dx

dt
= f1(x(t))+ f2(x(t), γ(t)), (52.7)

where λ0 and γ(·) are as above and where f1(x(t))= f1(λ0, x(t)) and the function f2(x(t), γ(t)) is linear
with respect to its second argument. Systems for which this assumption does not hold are discussed in
Section 52.3. For simplicity only, assume that f1 and f2 are analytic functions. Additionally, assume that
γ(t), the control, is periodic of period T(0 < T $ 1) and in the form, γ(t)= ωû(ωt), where ω= 2π

T ,
and û(·) is some fixed period-2π function (e.g., sin or cos). We write γ(·) in this way because, although
the theory is not heavily dependent on the exact shape of the waveform of the periodic input, there is a
crucial dependence on the simultaneous scaling of the frequency and amplitude. Because we are usually
interested in high frequency behavior, this usually implies that the amplitude of γ(t) is large. It is possible,
however, that û(·) has small amplitude, making the amplitude of γ(t) small also.

Under these assumptions, Equation 52.7 can be rewritten as

dx

dt
= f1(x(t))+ωf2(x(t), û(ωt)). (52.8)

To proceed with the stability analysis, Equation 52.8 will be transformed to an ordinary differential
equation in “standard” form ( dx

dt = εf (x, t)) so that the method of averaging can be applied (see [11]
and [24]). This allows the stability properties of the time varying system Equation 52.8 to be related to
the stability properties of a simpler autonomous differential equation (the averaged equation). To make
this transformation, consider the so-called “generating equation”

dx

dt
= f2(x(t), û(t)).

Suppose that this generating equation has a T-periodic general solution h(t, c), for some û(·) and t ≥ t0,
where h : R×Rn → Rn and c ∈ Rn is uniquely defined for every initial condition x(t0) ∈Ω⊂ Rn.
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Introduce into Equation 52.8 the Lyapunov substitution x(t)= h(ωt, q(t)) to obtain an equation
for q(·):

dq

dt
=
[

∂h(ωt, q(t))

∂q

]−1

f1(h(ωt, q(t))),

which, in slow time τ= ωt, with z(τ)= q(t) and ε= 1
ω

, becomes

dz

dτ
= ε

[
∂h[τ, z(τ)]

∂z

]−1

f1(h(τ, z(τ))). (52.9)

Equation 52.9 is a periodic differential equation in “standard” form and averaging can be applied. If
T denotes the period of the right hand side of Equation 52.9, then the averaged equation (autonomous)
corresponding to Equation 52.9 is given as

dy

dτ
= εȲ (y(τ)); where

Ȳ (c)= 1

T

∫ T

0

[
∂h(τ, c)

∂z

]−1

f1(h(τ, c)) dτ. (52.10)

By the theory of averaging, it is known that an ε0 > 0 exists such that for 0 < ε≤ ε0, the hyperbolic
stability properties of Equation 52.9 and Equation 52.10 are the same. Specifically, if ys is an asymptotically
stable equilibrium point of Equation 52.10, this implies that, for 0 < ε≤ ε0, a unique periodic solution,
z∗(τ) of Equation 52.9 exists, in the vicinity of ys that is asymptotically stable also. Since the transformation
x(t)= h(ωt, q(t)) is a homeomorphism, there will exist an asymptotically stable, periodic, solution to
Equation 52.8 given by x∗(t)= h(ωt, z∗(ωt)) (converting back to fast time using the fact that q(t)= z(ωt),
where z(·) is the solution to Equation 52.9). Using Definition 52.1, Equation 52.5 is said to be vibrationally
stabilized provided that x∗ = 1

T

∫ T
0 x∗(t)dt remains in the vicinity of xs(λ0). This can be formalized by

the following theorem given in [8] and [24]:

Theorem 52.1:

Assume that Equation 52.6 with γ(t)= ωû(ωt) has the form of Equation 52.8, with f1 and f2 analytic.

Assume, also, that h(t, c) is periodic and that the function
[

∂h(τ,z(τ))
∂z

]−1
f1(h(τ, z(τ))) in Equation 52.8 is

continuously differentiable with respect to z ∈Ω⊂ Rn. Then the equilibrium point xs(λ0) of Equation 52.5
is vibrationally stabilizable if a û(t) exists such that Equation 52.10 has an asymptotically stable equilibrium
point characterized by 1

T

∫ T
0 h(τ, ys) dτ= xs.

The technique of vibrational control now becomes clearer. Introduce open loop oscillatory forcing into
Equation 52.5, u(t)= λ0+ωû(ωt), such that Equation 52.5 is in the form of Equation 52.8. Transform
Equation 52.8 into Equation 52.9 and study the stability properties of the corresponding average of
Equation 52.9, given by Equation 52.10. Then determine parameters of û (phase, amplitude and frequency)
such that Equation 52.10 has an asymptotically stable equilibrium point ys. If 1

T

∫ T
0 h(τ, ys) dτ= xs, then

the system is vibrationally stabilizable.
The procedure of vibrational stabilization described above is trial and error. Vibrations are inserted

into a system until vibrations are found which give the desired response. However, if specific classes of
vibrations are analyzed, explicit algorithms are known which explain the size and location of vibration
needed to give specified responses (see [8,9,24]). For example, it is common to assume that the vibrations
are in linear multiplicative form, f2(x(t), γ(t))= B(t)x(t) or vector additive form, f2(x(t), γ(t))= L(t). In
each of these cases, sufficient conditions (sometimes necessary and sufficient) are known for vibrational
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FIGURE 52.2 A simple pendulum whose hinge point undergoes vertical motion.

stabilization of systems. We return to linear multiplicative vibrations in Section 52.3, using a more
geometric framework.

Finally, it should be noted that [8] and [24] can relate the transient behavior of Equation 52.10 to the
“average” transient behavior of Equation 52.7 through the estimation x(t)≈ h(ωt, y(ωt)), where y(τ) is
the solution of Equation 52.10 in slow time. Hence, the technique of vibrational control has the ability to
both stabilize a system and control transient response issues.

Example 52.2: Oscillatory Stabilization of a Simple Pendulum

A classical example to which the theory applies involves stabilizing the upright equilibrium of a
simple pendulum by the forced vertical oscillation of the pendulum’s hinge point. Consider a simple
pendulum consisting of a massless but rigid link of length � to which a tip of mass m is attached.
Suppose the hinge point of the pendulum undergoes vertical motion, and is located at time t at
vertical position R(t) with respect to some reference coordinate (see Figure 52.2.). Taking into account
motion in this variable and the friction coefficient at the hinge (b > 0), the pendulum dynamics may
be written as

�θ̈+
(

b

m

)
θ̇+ R̈ sin θ+ g sin θ= 0.

Consider the simple sinusoidal oscillation of the hinge-point, R(t)= α sin βt. Then R̈(t)=−ηβ sin βt,
where η= η(β)= αβ. Letting x1 = θ and x2 = θ̇, the system can be placed in the form of
Equation 52.8. The corresponding generating equation is given as ẋ1 = 0 and ẋ2 = (η/�) sin t sin x1,
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which has solution x1 = c1 = h1(t, c) and x2 =−(η/�) cos t sin c1+ c2 = h2(t, c). Introducing the
transformation x1 = z1 and x2 =−(η/�) cos βt sin z1+ z2, letting τ= βt, and letting ε= 1/β,
Equation 52.9 specializes to

ż1 = ε
[
−
(η

�

)
cos τ sin z1+ z2

]

ż2 = ε
[
−
(
η2

�2

)
cos2 τ cos z1 sin z1−

(g

�

)
sin z1+

(η
�

)
z2 cos τ cos z1

+
(
ηb

m�2

)
cos τ sin z1−

(
b

m�

)
z2

]
.

Therefore the averaged equations are ẏ1 = εy2 and ẏ2 = ε
[− η2

2�2 cos y1 sin y1− (g/�) sin y1

− (b/m�)y2
]
. The upper equilibrium point in the averaged equation has been preserved

and xs = 1
T

∫ T
0 h(τ, ys) dτ. Hence, by the above theorem, if the vertical equilibrium point is asymp-

totically stable for the averaged equation, then for sufficiently large β the inverted pendulum with
oscillatory control has an asymptotically stable periodic orbit vibrating vertically about the point
θ= π. A simple linearization of the averaged equation reveals that its upper equilibrium point is
asymptotically stable when α2β2 > 2g�. Under these conditions, the upper equilibrium point of the
inverted pendulum is said to be vibrationally stabilized.

52.2 The Constructive Controllability of Drift-Free
(Class I) Systems

Class I control systems arise naturally as kinematic models of mechanical systems. In this section, we
outline the current theory of motion control for such systems, emphasizing the geometric mechanism
(anholonomy) through which oscillatory inputs to Equation 52.1 produce motions of the state variables.
Explicit results along the lines given in Section 52.1 for the Heisenberg system have been obtained in a
variety of settings, and some recent work will be discussed below. The question of when such explicit
constructions are possible more generally for Class I systems does not yet have a complete answer. Thus we
shall also discuss computational approaches that yield useful approximate solutions. After briefly outlining
the state of current theory, we conclude the section with an example involving motion specification for a
ball “grasped” between two plates.

The recent literature treating control problems for such systems suggests that it is useful distinguishing
between two control design problems:

P1: The prescribed endpoint steering problem requires that, given any pair of points x0, x1 ∈ Rn, a vector
of piecewise analytic control inputs u(·)= (u1(·), . . . , um(·)) is to be determined to steer the state
of Equation 52.1 from x0 at time t = 0 to x1 at time t = T > 0.

P2: The trajectory approximation steering problem requires that, given any sufficiently “regular” curve
γ : [0, T] → Rn, we determine a sequence {uj(·)} of control input vectors such that the correspond-
ing sequence of trajectories of Equation 52.1 converges (uniformly) to γ.

A general solution to either of these problems requires that a certain Lie algebra rank condition (LARC)
be satisfied. More specifically, with the Lie bracket of vector fields defined as in Section 52.1, define a set
of vector fields

C = {ξ : ξ= [ξj, [ξj−1, [. . . , [ξ1, ξ0] . . . ]]];
ξi ∈ {g1, . . . , gm}, i = 1, . . . , j; j = 1, . . . ,∞}.

Then L= span(C) (= the set of all linear combinations of elements of C) is called the Lie algebra
generated by {g1, . . . , gm}. We say Equation 52.1 (or equivalently the set of vector fields {g1, . . . , gm})
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satisfies the Lie algebra rank condition on Rn if L spans Rn at each point of Rn. The following result is
fundamental because it characterizes those systems for which the steering problems may, in principle, be
solved.

Theorem 52.2:

A drift-free system Equation 52.1 is completely controllable in the sense that, given any T > 0 and any pair
of points x0, x1 ∈ Rn, there is a vector of inputs u= (u1, . . . , um) which are piecewise analytic on [0, T] and
which steer the system from x0 to x1 in T units of time if, and only if, the system satisfies the Lie algebra
rank condition.

As stated, this theorem is essentially due to W.L. Chow [19], but it has been refined and tailored to
control theory by others ([13,35]). The various versions of this theorem in the literature have all been
nonconstructive. Methods for the explicit determination of optimal (open-loop) control laws for steering
Class I systems between prescribed endpoints have appeared in [1,2,16,18]. The common features in all
this work are illustrated by the following:

A model nonlinear optimal control problem with three states and two inputs: Find controls u1(·), u2(·)
which steer the system ⎛

⎝ẋ1

ẋ2

ẋ3

⎞
⎠=

⎛
⎝ 0 0 u2

0 0 −u1

−u2 u1 0

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠ (52.11)

between prescribed endpoints to minimize the cost criterion

η=
∫ 1

0
u2

1+ u2
2 dt.

Several comments regarding the geometry of this problem are in order. First, an appropriate version
of Chow’s theorem shows that Equation 52.11 is controllable on any 2-sphere, S = {x ∈ R3 : ‖x‖ = r} for
some r > 0, centered at the origin in R3. Hence, the optimization problem is well-posed precisely when the
prescribed endpoints x0, x1 ∈ R3 satisfy ‖x0‖ = ‖x1‖. Second, the problem may be interpreted physically
as seeking minimum length paths on a sphere in which only motions composed of rotations about the
x-axis (associated with input u1) and y-axis (associated with u2) are admissible. General methods for
solving this type of problem appear in [1] and [2]. Specifically, in the first author’s 1975 PhD thesis
(see reference in [1] and [2]), it was shown that the optimal inputs have the form, u1(t)= μ sin(ωt+
φ), u2(t)= μ cos(ωt+φ). The optimal inputs depend on three parameters reflecting the fact that the set
(group) of rotations of the 2-sphere is three dimensional. The details for determining the values of the
parameters μ, ω, and φ in terms of the end points x0 and x1 are given in the thesis cited in [1] and [2].

The general nonlinear quadratic optimal control problem of steering Equation 52.1 to minimize a
cost of the form

∫ 1
0 ‖u‖2 dt has not yet been solved in such an explicit fashion. The general classes of

problems which have been discussed in [1,2,16,18] are associated with certain details of structure in
the set of vector fields {g1, . . . , gm} and the corresponding Lie algebra L. In [16] and [18], for example,
Brockett discusses various higher dimensional versions of the Lie algebraic structure characterizing the
above sphere problem and the Heisenberg system.

In addition to optimal control theory having intrinsic interest, it also points to a broader approach to
synthesizing control inputs. Knowing the form of optimal trajectories, we may relax the requirement that
inputs be optimal and address the simpler question of whether problems P1 and P2 may be solved using
inputs with the given parametric dependence. Addressing the cases where we have noted the optimal
inputs are phase-shifted sinusoids, we study the effect of varying each of the parameters. For instance,
consider Equation 52.4 steered by the inputs u1(t)= μ sin(ωt+φ), u2(t)= μ cos(ωt+φ), with μ and φ
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fixed and ω allowed to vary. As ω increases, the trajectories produced become increasingly tight spirals
ascending about the z-axis. One consequence of this is that, although the vectorfields

⎛
⎝ 1

0
−x2

⎞
⎠ , and

⎛
⎝ 0

1
x1

⎞
⎠

are both perpendicular to the x3-axis at the origin, pure motion in the x3-coordinate direction may
nevertheless be produced to an arbitrarily high degree of approximation. This basic example can be
generalized, and extensive work on the use of oscillatory inputs for approximating arbitrary motions in
Class I systems has been reported by Sussmann and Liu, [36]. The general idea is that, when a curve
γ(t) is specified, a sequence of appropriate oscillatory inputs uj(·) is produced so that the corresponding
trajectories of Equation 52.1 converge to γ(·) uniformly. The interested reader is referred to [37,38], and
the earlier work of Haynes and Hermes, [21], for further details.

Progress on problem P1 has been less extensive. Although a general constructive procedure for gener-
ating motions of Equation 52.1 which begin and end exactly at specified points, x0 and x1, has not yet been
developed, solutions in a number of special cases have been reported. For the case of arbitrary “nilpo-
tent” systems, Lafferriere and Sussmann, [22] and [23], provide techniques for approximating solutions
for general systems. Leonard and Krishnaprasad [28] have designed algorithms for synthesizing open-
loop sinusoidal control inputs for point-to-point system maneuvers where up to depth-two brackets are
required to satisfy the LARC.

Brockett and Dai [18] have studied a natural subclass of nilpotent systems within which the Heisenberg
system Equation 52.4 is the simplest member. The underlying geometric mechanism through which a
rich class of motions in R3 is produced by oscillatory inputs to Equation 52.4 is also present in systems
with two vector fields but higher dimensional state spaces. These systems are constructed in terms of
nonintegrable p-forms in the coordinate variables x1 and x2. We briefly describe the procedure, referring
to [18] for more details.

The number of linearly independent p-forms in x1 and x2 is p+ 1. (Recall that a p-form in x1

and x2 is a monomial of the form xk
1 x

p−k
2 . The linearly independent p-forms may be listed explicitly

{xp
1 , x

p−1
1 x2, . . . , x

p
2}.) Thus, there are 2(p+ 1) linearly independent expressions of the form

η= φ(x1, x2)ẋ1+ψ(x1, x2)ẋ2

whereφ,ψ are homogeneous polynomials of degree p in x1 and x2. Within the set of such expressions, there
is a set of p+ 2 linearly independent expressions of the form η= dγ/dt, where γ is a homogeneous poly-
nomial in x1, x2 of degree p+ 1 (Such expressions are called exact differentials). There is a complementary
p-dimensional family (p= 2(p+ 1)− (p+ 2)) of η’s which are not integrable.

For example, if p= 2, there are 2 linearly independent nonintegrable forms η, and we may take these
to be {x2

1 ẋ2, x2
2 ẋ1}. From these, we construct a completely controllable two-input system

⎛
⎜⎜⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

u
v

x1v− x2u
x2

1v
x2

2u

⎞
⎟⎟⎟⎟⎠ . (52.12)

More generally, for each positive integer p we could write a completely controllable two-input system
whose state space has dimension 2+ p(p+ 1)/2. Brockett and Dai [18] consider the optimal control
problem of steering Equation 52.12 between prescribed endpoints x(0), x(T) ∈ R5 to minimize the cost
functional ∫ T

0
u2+ v2 dt.
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FIGURE 52.3 A ball rolling without slipping between two flat plates.

It is shown that explicit solutions may also be obtained in this case, and these are given in terms of elliptic
functions.

Before treating an example problem in mechanics which makes use of these ideas, we summarize
some other recent work on control synthesis for Class I systems. Whereas Sussmann and his coworkers
[22,23,36–38] have used the concept of a P. Hall basis for free Lie algebras to develop techniques applicable
in complete generality to Class I systems, an approach somewhat in the opposite direction has been
pursued by S. Sastry and his coworkers [29,39,40]. This approach sought to characterize systems controlled
by sinusoidal inputs. Motivated by problems in the kinematics of wheeled vehicles and robot grasping,
they have defined a class of chained systems in which desired motions result from inputs which are
sinusoids with integrally related frequencies. While the results are no less explicit than the Heisenberg
example in Section 52.1, the systems themselves are very special. Conditions under which a Class I system
may be converted to chained form are given in [29].

Example 52.3:

The example we discuss next (due to Brockett and Dai [18]) is prototypical of applications involving
the kinematics of objects in the grasp of a robotic hand. Consider a ball that rolls without slipping
between two flat horizontal plates. It is convenient to assume the bottom plate is fixed. Suppose that
the ball has unit radius. Fix a coordinate system whose x- and y-axes lie in the fixed bottom plate with
the positive z-axis perpendicular to the plate in the direction of the ball. Call this the (bottom) “plate
frame.” We keep track of the ball’s motion by letting (x1, x2, 1) denote the plate-frame coordinates
of the ball’s center. We also fix an orthonormal frame in the ball, and we denote the plate-frame
directions of the three coordinate axes by a 3× 3 orthogonal matrix

A=
⎛
⎝a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞
⎠ .
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The ball’s position and orientation are thus specified by the 4× 4 matrix

H =
(

A 9x
0 1

)
=

⎛
⎜⎜⎝

a11 a12 a13 x1
a21 a22 a23 x2
a31 a32 a33 1

0 0 0 1

⎞
⎟⎟⎠ .

As the top plate moves in the plate-frame x direction with velocity v1, the ball’s center also moves
in the same direction with velocity u1 = v1/2. This motion imparts a counterclockwise rotation about
the y-axis, and since the ball has unit radius, the angular velocity is also u1. Similarly, if the top plate
moves in the (plate-frame) y direction with velocity v2, the ball’s center moves in the y direction
with velocity u2 = v2/2, and the angular velocity imparted about the x-axis is −u2. The kinematic
description of this problem is obtained by differentiating H with respect to time.

Ḣ =
(
ΩA 9u
0 0

)

where

Ω=
⎛
⎝ 0 0 u1

0 0 u2
−u1 −u2 0

⎞
⎠ and 9u=

⎛
⎝u1

u2
0

⎞
⎠ .

This velocity relationship, at the point (x1, x2)= (0, 0), is

Ḣ = u1U1H+ u2U2H, (52.13)

where

U1 =

⎛
⎜⎜⎝

0 0 1 1
0 0 0 0
−1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and U2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 1
0 −1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Computing the Lie bracket of the vector fields U1H and U2H according to the formula given in
Section 52.1, we obtain a new vector field U3H = [U1H, U2H], where

U3 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Computing additional Lie brackets yields only quantities which may be expressed as linear com-
binations of U1H, U2H, and U3H. Since the number of linearly independent vector fields obtained
by taking Lie brackets is three, the system is completely controllable on a three dimensional space.
Comparison with the problem of motion on a sphere discussed above shows that, by having the top
plate execute a high-frequency oscillatory motion—u1(t)= μ sin(ωt+φ), u2(t)= μ cos(ωt+φ), the
ball may be made to rotate about its z-axis. The motion of the ball is “retrograde.” If the top plate
executes a small amplitude clockwise loop about the “plate-frame” z-axis, the motion of the ball is
counterclockwise.

52.3 Systems with Drift—Stability Analysis Using
Energy Methods and the Averaged Potential

Constructive design methods for the control of systems of Class II are less well developed than in the
Class I case. Nevertheless, the classical results on stability described in Section 52.2 apply in many cases,
and the special structure of Class II systems again reveals the geometric mechanisms underlying stability.
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52.3.1 First and Second Order Stabilizing Effects of Oscillatory Inputs
in Systems with Drift

Much of the published literature on systems of Class I and Class II is devoted to the case in which the
vector fields are linear in the state. Consider the control system

ẋ = (A+
m∑

i=1

ui(t)Bi)x, (52.14)

where A, B1, . . . , Bm are constant n× n matrices, x(t) ∈ Rn with control inputs of the type we have been
considering. We shall be interested in the possibility of using high-frequency oscillatory inputs to create
stable motions in a neighborhood of the origin x = 0.

Assume that û1(·), . . . , ûm(·) are periodic functions and (for simplicity only) assume that each ûi(·)
has common fundamental period T > 0. To apply classical averaging theory to study the motion of
Equation 52.14, we consider the effect of increasing the frequency of the forcing. Specifically, we study
the dynamics of

ẋ(t)= (A+
∑

ûi(ωt)Bi)x(t)

as ω becomes large. The analysis proceeds by scaling time and considering τ= ωt. Let z(τ)= x(t). This
satisfies the differential equation

dz

dτ
= 1

ω
(A+

∑
ûi(τ)Bi)z. (52.15)

Assuming ω> 0 is large, and letting ε= 1
ω

, we see that Equation 52.15 is in a form to which classical
averaging theory applies.

Theorem 52.3:

Consider the system of Equation 52.14 with ui(·)= ûi(·) where, for i = 1, . . . , m, ûi(·) is continuous on
0≤ t < tf ≤∞ and periodic of period T $ tf . Let

ūi = 1

T

∫ T

0
ûi(t) dt,

and let y(τ) be a solution of the constant coefficient linear system

ẏ(τ)= ε(A+
∑

ūiBi)y(τ). (52.16)

If z0 and y0 are respective initial conditions associated with Equations 52.15 and 52.16 such that |z0− y0| =
O(ε), then |z(τ)− y(τ)| =O(ε) on a time scale τ∼ 1

ε
. If A+∑ ūiBi has its eigenvalues in the left half

plane, then |z(τ)− y(τ)| =O(ε) as τ→∞.

This theorem relies on classical averaging theory and is discussed in [7]. A surprising feature of
systems of this form is that the stability characteristics can be modified differently if both the magnitude
and frequency of the oscillatory forcing are increased. A contrast to Theorem 52.3 is the following:

Theorem 52.4:

Let û1(·), . . . , ûm(·) be periodic functions of period T > 0 for i = 1, . . . , m. Assume that each ûi(·) has mean
0. Consider Equation 52.14, and assume that, for all i, j = 1, . . . , m, BiBj = 0. Let ε= 1

ω
. Define for each
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i = 1, . . . , m, the periodic function vi(t)= ∫ t
0 ûi(s) ds, and let

v̄i = 1

T

∫ T

0
vi(s) ds, i = 1, . . . , m,

and

σij = 1

T

∫ T

0
vi(s)vj(s) ds, i, j = 1, . . . , m.

Let y(t) be a solution of the constant coefficient linear system

ẏ =
⎛
⎝A+

∑
i,j

(v̄i v̄j − σij)BiABj

⎞
⎠ y. (52.17)

Suppose that the eigenvalues of Equation 52.17 have negative real parts. Then there is a t1 > 0 such that
for ω> 0 sufficiently large (i.e., for ε> 0 sufficiently small), if x0 and y0 are respective initial conditions for
Equations 52.14 and 52.17 such that |x0− y0| =O(ε), then |x(t)− y(t)| =O(ε) for all t > t1.

The key distinction between these two theorems is that induced stability is a first order effect in
Theorem 52.3 where we scale frequency alone, whereas in Theorem 52.4 where both frequency and
magnitude are large, any induced stability is a second order effect (depending on the rms value of the
integral of the forcing). Further details are provided in [7]. Rather than pursue these results, we describe
a closely related theory which may be applied to mechanical and other physical systems.

52.3.2 A Stability Theory for Lagrangian and Hamiltonian Control Systems
with Oscillatory Inputs

The geometric nature of emergent behavior in systems subject to oscillatory forcing is apparent in the
case of conservative physical systems. In this subsection, we again discuss stabilizing effects of oscillatory
forcing. The main analytical tool will be an energy-like quantity called the averaged potential. This is
naturally defined in terms of certain types of Hamiltonian control systems of the type studied in [30].
Because we shall be principally interested in systems with symmetries most easily described by Lagrangian
models, we shall start from a Lagrangian viewpoint and pass to the Hamiltonian description via the
Legendre transformation. Following Brockett, [14] and Nijmeijer and Van der Schaft, [30], we define
a Lagrangian control system on a differentiable manifold M as a dynamical system with inputs whose
equations of motion are prescribed by applying the Euler-Lagrange operator to a function L : TM×U →
R, L= L(q, q̇; u), whose dependence on the configuration q, the velocity q̇, and the control input u is
smooth. U is a set of control inputs satisfying the general properties outlined in Section 52.1.

Lagrangian systems arising via reduction with respect to cyclic coordinates: Consider a Lagrangian
control system with configuration variables (q1, q2) ∈ Rn1 ×Rn2 . The variable q1 will be called cyclic if it
does not enter into the Lagrangian when u= 0, i.e., if ∂L

∂q1
(q1, q2, q̇1, q̇2; 0)≡ 0. A symmetry is associated

with the cyclic variables q1 which manifests itself in the invariance of L(q1, q2, q̇1, q̇2; 0) with respect to a
change of coordinates q1 �→ q1+ α for any constant α ∈ Rn. We shall be interested in Lagrangian control
systems with cyclic variables in which the cyclic variables may be directly controlled. In such systems, we
shall show how the velocities associated with the cyclic coordinates may themselves be viewed as controls.
Specifically, we shall consider systems of the form

L(q1, q2, q̇1, q̇2; u)= L(q2, q̇1, q̇2)+ qT
1 u (52.18)

where

L(q2, q̇1, q̇2)= 1

2
(q̇T

1 , q̇T
2 )

(
m(q2) AT (q2)
A(q2) M(q2)

)(
q̇1

q̇2

)
−V (q2).
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The matrices m(q2) and M(q2) are symmetric and positive definite of dimension n1× n1 and n2× n2

respectively, where dim q1 = n1, dim q2 = n2, and the matrix A(q2) is arbitrary.
To emphasize the distinguished role to be played by the velocity associated with the cyclic variable q1,

we write v = q̇1. Applying the usual Euler–Lagrange operator to this function leads to the equations of
motion,

d

dt

∂L
∂v
= u

and (
d

dt

∂L
∂q̇2

− ∂L
∂q2

)
|(q2,q̇2,v)

= 0. (52.19)

The first of these equations may be written more explicitly as

d

dt
(m(q2)v+A(q2)T q̇2)= u. (52.20)

Although, in the physical problem represented by the Lagrangian Equation 52.18, u(·) is clearly the
input with v(·) determined via Equation 52.20, it is formally equivalent to take v(·) as the input with
the corresponding u(·) determined by Equation 52.20. In actual practice, this may be done, provided we
may command actuator inputs u(·) large enough to dominate the dynamics. The motion of q2 is then
determined by Equation 52.19 with the influence of the actual control input felt only through v(·) and v̇(·).
Viewing v(·) together with v̇(·) as control input, Equation 52.19 is a Lagrangian control system in its own
right. The defining Lagrangian is given by L̂(q2, q̇2; v)= 1

2 q̇T
2 M(q2)q̇2+ q̇T

2 A(q2)v−Va(q2; v), where Va

is the augmented potential defined by Va(q; v)= V (q)− 1
2 vT m(q2)v. In the remainder of our discussion,

we shall confine our attention to controlled dynamical systems arising from such a reduced Lagrangian.
Because the reduction process itself will typically not be central, we henceforth omit the subscript “2” on
the generalized configuration and velocity variables which we wish to control. We write:

L̂(q, q̇; v)= 1

2
q̇T M(q)q̇+ q̇T A(q)v−Va(q; v). (52.21)

Example 52.4: The Rotating Pendulum

As in [4], we consider a mechanism consisting of a solid uniform rectangular bar fixed at one end to
a universal joint as depicted in Figure 52.4. The universal joint is comprised of two single degree of
freedom revolute joints with mutually orthogonal intersecting axes (labeled x and y in Figure 52.2).
These joints are assumed to be frictionless. Angular displacements about the x- and y-axes are
denoted φ1 and φ2 respectively, with (φ1,φ2)= (0, 0) designating the configuration in which the
pendulum hangs straight down. The pendulum also admits a controlled rotation about a spatially
fixed vertical axis. Let θ denote the amount of this rotation relative to some chosen reference
configuration.

To describe the dynamics of the forced pendulum, we choose a (principal axis) coordinate frame, fixed
in the bar, consisting of the x- and y-axes of the universal joint together with the corresponding z-axis
prescribed by the usual right-hand rule. When the pendulum is at rest, for some reference value of θ,
the body frame x−, y−, and z-axes will coincide with corresponding axes x′, y′, and z′ of an inertial
frame, as in Figure 52.4, with respect to which we shall measure all motion. Let Ix , Iy , and Iz denote the
principal moments of inertia with respect to the body (x, y, z)-coordinate system. Then the system has
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θ

ϕ1
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z′

y′

x

x′

FIGURE 52.4 A rotating pendulum suspended from a universal joint.

the Lagrangian

L(φ1, φ̇1;φ2, φ̇2; θ̇)= 1

2

[
Ix(θ̇s2+ φ̇1)2+ Iy(θ̇c2s1− φ̇2c1)2+ Iz(θ̇c1c2+ φ̇2s1)2]+ c1c2, (52.22)

where the last term is a normalized gravitational potential, and where si = sinφi , ci = cosφi . We assume
that there is an actuator capable of rotating the mechanism about the inertial z-axis with any prescribed
angular velocity θ̇. We shall study the dynamics of this system when Ix ≥ Iy � Iz , and as above, we shall
view v = θ̇(·) as a control input. The reduced Lagrangian Equation 52.21 takes the form

L̂(φ, φ̇; v)= 1

2

[
Ixφ̇

2
1+ (Iyc2

1 + Izs2
1)φ̇2

2

]+ v
[
Ixs2φ̇1+ (Iz − Iy)s1c1c2φ̇2

]
+ [(Izc2

1 + Iys2
1)c2

2 + Ixs2
2

]
v2+ c1c2. (52.23)

The corresponding control system is given by applying the Euler-Lagrange operator to L̂, and this is
represented by a system of coupled second order differential equations,

d

dt

∂L̂

∂φ̇
− ∂L̂

∂φ
= 0. (52.24)

From the way in which v appears in the reduced Lagrangian, the equations of motion Equation 52.24 will
have terms involving v̇ as well as terms involving v. Though it is possible to analyze such a system directly,
we shall not discuss this approach. The general analytical technique advocated here is to transform all
Lagrangian models to Hamiltonian form.

The Hamiltonian viewpoint and the averaged potential: Recall that in Hamiltonian form the dynamics

are represented in terms of the configuration variables q and conjugate momenta p= ∂L̂
∂q̇ (see [30], p. 351).
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Referring to the Lagrangian in Equation 52.21 and applying the Legendre transformation H(q, p; v)=
[p · q̇− L̂(q, q̇; v)]|(q,p) , we obtain the corresponding Hamiltonian

H(q, p; v)= 1

2
(p− vA)T M−1(p− vA)+Va(v, q). (52.25)

The equations of motion are then written in the usual way in position and momentum coordinates as

q̇=M−1(p− vA) (52.26)

ṗ=− ∂

∂q

[
1

2
(p− vA)T M−1(p− vA)+Va(v, q)

]
. (52.27)

We may obtain an averaged version of this system by replacing all coefficients involving the input v(·) by
their time-averages. Assuming v(·) is bounded, piecewise continuous, and periodic of period T > 0, v(·)
has a Fourier series representation:

v(t)=
∞∑

k=−∞
ake

2πk
T it . (52.28)

Equations 52.26 and 52.27 contain terms of order not greater than two in v. Averaging the coefficients we
obtain

Proposition 52.1:

Suppose v(·) is given by Equation 52.28. Then, if all coefficients in Equations 52.26 and 52.27 are replaced
by their time averages, the resulting averaged system is Hamiltonian with corresponding Hamiltonian
function

H̄(q, p)= 1

2
(p−A(q)v̄)T M(q)−1(p−A(q)v̄)+VA(q), (52.29)

where

VA(q)= V (q)+ 1

2

(
Σ(q)− v̄T A(q)T M(q)−1A(q)v̄

)
, (52.30)

v̄ = 1

T

∫ T

0
v dt,

and

Σ(q)= 1

T

∫ T

0
v(t)T

(
A(q)T M(q)−1A(q)−m(q)

)
v(t) dt.

Definition 52.2:

We refer to H̄(q, p) in Equation 52.29 as the averaged Hamiltonian associated with Equation 52.25. VA(q),
defined in Equation 52.30, is called the averaged potential.

Remark 52.2

(Averaged kinetic and potential energies, the averaged Lagrangian.) Before describing the way in which
the averaged potential may be used for stability analysis, we discuss its formal definition in more detail.
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The Legendre transformation used to find the Hamiltonian corresponding to Equation 52.21 makes use
of the conjugate momentum

p= p(q, q̇, t)= ∂L̂

∂q̇
=M(q)q̇+A(q)v(t).

This explicitly depends on the input v(t). Given a point in the phase space, (q, q̇), the corresponding
averaged momentum is

p=M(q)q̇+A(q)v̄.

We may think of the first term 1
2 (p−A(q)v̄)T M(q)−1(p−A(q)v̄) in Equation 52.29 as an “averaged

kinetic energy.” It is not difficult to see that there is an “averaged Lagrangian”

L̄(q, q̇)= 1

2
q̇T M(q)q̇+ q̇T A(q)v̄−VA(q)

from which the Hamiltonian H̄ in Equation 52.29 is obtained by means of the Legendre transformation.
The averaged potential is useful in assessing the stability of motion in Hamiltonian (or Lagrangian)

control systems. The idea behind this is that strict local minima of the averaged potential will correspond
to stable equilibria of the averaged Hamiltonian system. The theory describing the relationship with the
stability of the forced system is discussed in [6] and [7]. The connection with classical averaging is empha-
sized in [6], where Rayleigh dissipation is introduced to make the critical points hyperbolically stable.
In [7], dissipation is not introduced, and a purely geometric analysis is applied within the Hamiltonian
framework. We state the principal stability result.

Theorem 52.5:

Consider a Lagrangian control system prescribed by Equation 52.21 or its Hamiltonian equivalent (Equation
52.25). Suppose that the corresponding system of Equations 52.26 and 52.27 is forced by the oscillatory input
given in Equation 52.28. Let q0 be a critical point of the averaged potential which is independent of the period
T (or frequency) of the forcing. Suppose, moreover, that, for all T sufficiently small (frequencies sufficiently
large), q0 is a strict local minimum of the averaged potential. Then (q, q̇)= (q0, 0) is a stable equilibrium
of the forced Lagrangian system, provided T is sufficiently small. If (q, p)= (q0, 0) is the corresponding
equilibrium of the forced Hamiltonian system, then it is likewise stable, provided T is sufficiently small.

This theorem is proved in [7].
We end this section with two examples to which this theorem applies, followed by a simple example

which does not satisfy the hypothesis and for which the theory is currently less complete.

Example 52.5: Oscillatory Stabilization of a Simple Pendulum

Consider, once again, the inverted pendulum discussed in Example 52.2. Assume now that no
friction exists in the hinge and, therefore, b= 0. Using the classical theory of vibrational control in
Example 52.6, it is not possible to draw conclusions on the stabilization of the upper equilibrium point
by fast oscillating control, because the averaged equation will have purely imaginary eigenvalues
when b= 0. The averaged potential provides a useful alternative in this case. For b= 0, the pendulum
dynamics may be written

�θ̈+ R̈ sin θ+ g sin θ= 0,

where all the parameters have been previously defined in Example 52.2. Writing the pendulum’s ver-
tical velocity as v(t)= Ṙ(t), this is a system of the type we are considering with (reduced) Lagrangian
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L̂(θ, θ̇; v)= (1/2)�θ̇2+ vθ̇ sin θ+ g cos θ. To find stable motions using the theory we have presented,
we construct the averaged potential by passing to the Hamiltonian description of the system. The

momentum (conjugate to θ) is p= ∂L̂
∂θ̇
= �θ̇+ v sin θ. Applying the Legendre transformation, we

obtain the corresponding Hamiltonian

H(θ, p; v)= (p θ̇− L̂)|(θ,p) =
1

2�
(p− v sin θ)2− g cos θ.

If we replace the coefficients involving v(·) with their time-averages over one period, we obtain the
averaged Hamiltonian

H̄(θ, p)= 1
2�

(p− v̄ sin θ)2+ 1
2�

(Σ− v̄2) sin2 θ− g cos θ,

where v̄ and Σ are the time averages over one period of v(t) and v(t)2 respectively. The averaged
potential is just VA(θ)= 1

2� (Σ− v̄2) sin2 θ− g cos θ. Consider the simple sinusoidal oscillation of the
hinge-point, R(t)= α sin βt. Then v(t)= αβ cos βt. Carrying out the construction we have outlined,
the averaged potential is given more explicitly by

VA(θ)= α
2β2

4�
sin2 θ− g cos θ. (52.31)

Looking at the first derivative V ′A(θ), we find that θ= π is a critical point for all values of the param-

eters. Looking at the second derivative, we find that V ′′A (π) > 0 precisely when α2β2 > 2�g. From
Theorem 52.5 we conclude that, for sufficiently large values of the frequency β, the upright equilib-
rium is stable in the sense that motions of the forced system will remain nearby. This is of course
completely consistent with classical results on this problem. (cf. Example 52.2.)

Example 52.6:

Example 52.4, reprise: oscillatory stabilization of a rotating pendulum.

Let us return to the mechanical system treated in Example 52.4. Omitting a few details, we proceed
as follows. Starting from the Lagrangian in Equation 52.23, we obtain the corresponding Hamiltonian
(the general formula for which is given by Equation 52.25). The averaged potential is given by the
formula in Equation 52.30. Suppose the pendulum is forced to rotate at a constant rate, perturbed
by a small-amplitude sinusoid, v(t)= ω+ α sin βt. Then the coefficients in Equation 52.30 are

v̄ = β

2π

∫ 2π/β

0
v(t) dt = ω, and

Σ= β

2π

∫ 2π/β

0
v(t)2 dt = ω2+ α

2

2
,

and some algebraic manipulation shows that the averaged potential is given in this case by

VA(φ1,φ2)=−c1c2− 1
4

Iy Iz c2
2

Iy c2
1 + Iz s2

2

α2− 1
2

[
Ix s2

2+ (Iy s2
1+ Iz c2

1)c2
2

]
ω2.

Stable modes of behavior under this type of forcing correspond to local minima of the averaged
potential. A brief discussion of how this analysis proceeds will illustrate the utility of the approach.

When α= 0, the pendulum undergoes rotation at a constant rate about the vertical axis. For all ratesω,
the pendulum is in equilibrium when it hangs straight down. There is a critical value,ωcr , however, above
which the vertical configuration is no longer stable. A critical point analysis of the averaged potential
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yields the relevant information and more. The partial derivatives of VA with respect to φ1 and φ2 both
vanish at (φ1,φ2)= (0, 0) for all values of the parameters α, β, ω. To assess the stability of this critical
point using Theorem 52.5, we compute the Hessian (matrix of second partial derivatives) of VA evaluated
at (φ1,φ2)= (0, 0):

⎛
⎜⎜⎜⎝

∂2VA

∂φ2
1

(0, 0)
∂2VA

∂φ1∂φ2
(0, 0)

∂2VA

∂φ1∂φ2
(0, 0)

∂2VA

∂φ2
2

(0, 0)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

1+ 1

2

Iz

Iy
(Iz − Iy)α2− (Iy − Iz)ω2 0

0 1+ 1

2
Izα

2− (Ix − Iz)ω2

⎞
⎟⎟⎠ .

Let us treat the constant rotation case first. We have assumed Ix ≥ Iy � Iz . When α= 0, this means that
the Hessian matrix above is positive definite for 0≤ ω2 < 1/(Ix − Iz). This inequality gives the value of
the critical rotation rate precisely as ωcr = 1/

√
Ix − Iz . We wish to answer the following question: Is it

possible to provide a stabilizing effect by superimposing a small-amplitude, high-frequency sinusoidal
oscillation on the constant-rate forced rotation? The answer emerges from Theorem 52.5 together with
analysis of the Hessian. In the symmetric case, Ix = Iy , the answer is “no” because any nonzero value of
α will decrease the (1, 1)-entry and hence the value of ωcr . If Ix > Iy , however, there is the possibility of
increasing ωcr slightly, because, although the (1, 1)-entry is decreased, the more important (2, 2)-entry is
increased.

Current research on oscillatory forcing to stabilize rotating systems (chains, shafts, turbines, etc.) is
quite encouraging. Though only modest stabilization was possible for the rotating pendulum in the
example above, more pronounced effects are generally possible with axial forcing. Because this approach
to control appears to be quite robust (as seen in the next example), it merits attention in applications
where feedback designs would be difficult to implement.

We conclude with an example to which Theorem 52.5 does not apply and for which the theory is
currently less well developed. Methods of [6] can be used in this case.

Example 52.7:

Oscillation induced rest points in a pendulum on a cart. We consider a slight variation on Example 52.5

wherein we consider oscillating the hinge point of the pendulum along a line which is not vertical.
More specifically, consider a cart to which there is a simple pendulum (as described in Example 52.5)
attached so that the cart moves along a track inclined at an angle ψ to the horizontal. Suppose
the position of the cart along its track at time t is prescribed by a variable r(t). Then the pendulum
dynamics are expressed

�θ̈+ r̈ cos(θ−ψ)+ g sin θ= 0.

Note that when ψ= π/2, the track is aligned vertically, and we recover the problem treated in
Example 52.5. In the general case, let v(t)= ṙ(t) and write the averaged potential

VA(θ)=−g cos θ+ 1
2�

cos2(θ− α) (Σ− v̄2)

where

v̄ = 1
T

∫ T

0
v(t) dt

and

Σ= 1
T

∫ T

0
v(t)2 dt.
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As in Example 52.5, we may take v(t)= αβ cos βt. For sufficiently large frequencies β there are
strict local minima of the averaged potential which are not equilibrium points of the forced system.
Nevertheless, as noted in [6], the pendulum will execute motions in a neighborhood of such a point.
To distinguish such emergent behavior from stable motions in neighborhoods of equilibria (of the
nonautonomous system), we have called motions confined to neighborhoods of nonequilibrium
critical points of the averaged potential hovering motions. For more information on such motions,
the reader is referred to [41].

Remark on the Robustness of Open-Loop Methods

The last example suggests, and laboratory experiments bear out, that the stabilizing effects of oscillatory
forcing of the type we have discussed are quite pronounced. Moreover, they are quite insensitive to the fine
details of the mathematical models and to physical disturbances which may occur. Thus, the stabilizing
effect observed in the inverted pendulum will be entirely preserved if the pendulum is perturbed or if the
direction of the forcing isn’t really vertical. Such robustness suggests that methods of this type are worth
exploring in a wider variety of applications.

Remark on Oscillatory Control with Feedback

There are interesting applications (e.g., laser cooling) where useful designs arise through a combination
of oscillatory forcing and certain types of feedback. For the theory of time-varying feedback designs,
the reader is referred to [20] and the chapters on stability by Khalil, Teel, Sontag, Praly, and Georgiou
appearing in this handbook.

52.4 Defining Terms

Anholonomy: Consider the controlled differential equation 52.1, and suppose that there is a non-zero
function φ : Rn×Rn → R such that φ(x, gi(x))≡ 0 for i = 1, . . . , m. This represents a constraint
on the state velocities which can be commanded. Despite such a constraint, it may happen that any
two specified states can be joined by a trajectory x(t) generated via Equation 52.1 by an appropriate
choice of inputs ui(·). Any state trajectory arising from Equation 52.1 constrained in this way is said
to be determined from the inputs ui(·) by anholonomy. In principle, the notation of anholonomy
can be extended to systems given by Equation 52.2 or 52.3. Some authors who were consulted in
preparation of this chapter objected to the use of the word in this more general context.

Averaged potential: An energy-like function that describes the steady-state behavior produced by high-
frequency forcing of a physical system.

Completely controllable: A system of Equation 52.3 is said to be completely controllable if, given any
T > 0 and any pair of points x0, x1 ∈ Rn, there is a control input u(·) producing a motion x(·) of
Equation 52.3 such that x(0)= x0 and x(T)= x1.

LARC: The Lie algebra rank condition is the condition that the defining vector fields in systems, such as
Equation 52.1 or 52.2 together with their Lie brackets of all orders span Rn.
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53.1 Introduction: Backstepping

Realistic models of physical systems are nonlinear and usually contain parameters (masses, inductances,
aerodynamic coefficients, etc.) which are either poorly known or dependent on a slowly changing
environment. If the parameters vary in a broad range, it is common to employ adaptation: a parameter
estimator—identifier—continuously acquires knowledge about the plant and uses it to tune the controller
“on-line.”

Instabilities in nonlinear systems can be more explosive than in linear systems. During the parameter
estimation transients, the state can “escape” to infinity in finite time. For this reason, adaptive nonlinear
controllers cannot simply be the “adaptive versions” of standard nonlinear controllers.

Currently, the most systematic methodology for adaptive nonlinear control design is backstepping. We
introduce the idea of backstepping by carrying out a nonadaptive design for the system

ẋ1 = x2+ϕ(x1)Tθ, ϕ(0)= 0 (53.1)

ẋ2 = u, (53.2)

where θ is a known parameter vector and ϕ(x1) is a smooth nonlinear function. Our goal is to stabilize
the equilibrium x1 = 0, x2 =−ϕ(0)Tθ= 0. Backstepping design is recursive. First, the state x2 is treated

53-1
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as a virtual control for the x1-equation 53.1, and a stabilizing function

α1(x1)=−c1x1−ϕ(x1)Tθ, c1 > 0 (53.3)

is designed to stabilize (Equation 53.1) assuming that x2 = α1(x1) can be implemented. Since this is not
the case, we define

z1 = x1, (53.4)

z2 = x2− α1(x1), (53.5)

where z2 is an error variable expressing the fact that x2 is not the true control. Differentiating z1 and z2

with respect to time, the complete system (Equations 53.1 and 53.2) is expressed in the error coordinates
(Equations 53.4 and 53.5):

ż1 = ẋ1 = x2+ϕTθ= z2+ α1+ϕTθ=−c1z1+ z2, (53.6)

ż2 = ẋ2− α̇1 = u− ∂α1

∂x1
ẋ1 = u− ∂α1

∂x1

(
x2+ϕTθ

)
. (53.7)

It is important to observe that the time derivative α̇1 is implemented analytically, without a differen-
tiator. For the system (Equations 53.6 and 53.7), we now design a control law u= α2(x1, x2) to render the
time derivative of a Lyapunov function negative definite. It turns out that the design can be completed
with the simplest Lyapunov function

V (x1, x2)= 1

2
z2

1 +
1

2
z2

2 . (53.8)

Its derivative for Equations 53.6 and 53.7 is

V̇ = z1
(−c1z1+ z2

)+ z2

[
u− ∂α1

∂x1

(
x2+ϕTθ

)]

=−c1z2
1 + z2

[
u+ z1− ∂α1

∂x1

(
x2+ϕTθ

)]
. (53.9)

An obvious way to achieve negativity of V̇ is to employ u to make the bracketed expression equal to
−c2z2 with c2 > 0, namely,

u= α2(x1, x2)=−c2z2− z1+ ∂α1

∂x1

(
x2+ϕTθ

)
. (53.10)

This control may not be the best choice because it cancels some terms which may contribute to the
negativity of V̇ . Backstepping design offers enough flexibility to avoid cancellation. However, for the sake
of clarity, we assume that none of the nonlinearities is useful, so that they all need to be cancelled as in
the control law (Equation 53.10). This control law yields

V̇ =−c1z2
1 − c2z2

2 , (53.11)

which means that the equilibrium z = 0 is globally asymptotically stable. In view of Equations 53.4 and
53.5, the same is true about x = 0. The resulting closed-loop system in the z-coordinates is linear:[

ż1

ż2

]
=
[−c1 1
−1 −c2

] [
z1

z2

]
. (53.12)

In the next four sections we present adaptive nonlinear designs through examples. Summaries of
general design procedures are also provided but without technical details, for which the reader is referred
to the text on nonlinear and adaptive control design by Krstić et al. [9]. Only elementary background on
Lyapunov stability is assumed, while no previous familiarity with adaptive linear control is necessary. The
two main methodologies for adaptive backstepping design are the tuning functions design, Section 53.2,
and the modular design, Section 53.3. These sections assume that the full state is available for feedback.
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Section 53.4 presents designs where only the output is measured. Section 53.5 discusses various extensions
to more general classes of systems, followed by a brief literature review in Section 53.6.

53.2 Tuning Functions Design

In the tuning functions design, both the controller and the parameter update law are designed recursively.
At each consecutive step a tuning function is designed as a potential update law. The tuning functions are
not implemented as update laws. Instead, the stabilizing functions use them to compensate the effects of
parameter estimation transients. Only the final tuning function is used as the parameter update law.

53.2.1 Introductory Examples

The tuning functions design will be introduced through examples with increasing complexity:

A B C
ẋ1 = u+ϕ(x1)Tθ ẋ1 = x2+ϕ(x1)Tθ ẋ1 = x2+ϕ(x1)Tθ

ẋ2 = u ẋ2 = x3

ẋ3 = u

The adaptive problem arises because the parameter vector θ is unknown. The nonlinearity ϕ(x1) is known
and for simplicity it is assumed that ϕ(0)= 0. The systems A, B, and C differ structurally: the number
of integrators between the control u and the unknown parameter θ increases from zero at A, to two at
C. Design A will be the simplest because the control u and the uncertainty ϕ(x1)Tθ are “matched,” that
is, the control does not have to overcome integrator transients in order to counteract the effects of the
uncertainty. Design C will be the hardest because the control must act through two integrators before it
reaches the uncertainty.

53.2.1.1 Design A

Let θ̂ be an estimate of the unknown parameter θ in the system

ẋ1 = u+ϕTθ. (53.13)

If this estimate were correct, θ̂= θ, then the control law

u=−c1x1−ϕ(x1)Tθ̂ (53.14)

would achieve global asymptotic stability of x = 0. Because θ̃= θ− θ̂ �= 0, we have

ẋ1 =−c1x1+ϕ(x1)Tθ̃, (53.15)

that is, the parameter estimation error θ̃ continues to act as a disturbance which may destabilize the
system. Our task is to find an update law for θ̂(t) which preserves the boundedness of x(t) and achieves
its regulation to zero. To this end, we consider the Lyapunov function

V1(x, θ̂)= 1

2
x2

1 +
1

2
θ̃TΓ−1θ̃, (53.16)

where Γ is a positive definite symmetric matrix. The derivative of V1 is

V̇1 =−c1x2
1 + x1ϕ(x1)Tθ̃− θ̃TΓ−1 ˙̂θ=−c1x2

1 + θ̃TΓ−1
(
Γϕ(x1)x1− ˙̂θ

)
. (53.17)

Our goal is to select an update law for ˙̂θ to guarantee

V̇1 ≤ 0. (53.18)
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The only way this can be achieved for any unknown θ̃ is to choose

˙̂
θ= Γϕ(x1)x1. (53.19)

This choice yields
V̇1 =−c1x2

1 , (53.20)

which guarantees global stability of the equilibrium x1 = 0, θ̂= θ, and hence, the boundedness of x1(t)
and θ̂(t). By LaSalle’s invariance theorem (see Chapter 39 by Khalil in this book), all the trajectories of the
closed-loop adaptive system converge to the set where V̇1 = 0, that is, to the set where c1x2

1 = 0, which
implies that

lim
t→∞ x1(t)= 0. (53.21)

Alternatively, we can prove Equation 53.21 as follows. By integrating Equation 53.20 we obtain∫ t
0 c1x1(τ)2dτ= V1(x1(0), θ̂(0))−V1(x1(t), θ̂(t)), which, thanks to the nonnegativity of V1, implies that∫ t
0 c1x1(τ)2dτ≤ V1(x1(0), θ̂(0)) <∞. Hence, x1 is square-integrable. Due to the boundedness of x1(t) and

θ̂(t), from Equations 53.15 and 53.19 it follows that ẋ1(t) and ˙̂θ are also bounded. By Barbalat’s lemma we
conclude that x1(t)→ 0.

The update law (Equation 53.19) is driven by the vector ϕ(x1), called the regressor, and the state x1.
This is a typical form of an update law in the tuning functions design: the speed of adaptation is dictated
by the nonlinearity ϕ(x1) and the state x1.

53.2.1.2 Design B

For the system

ẋ1 = x2+ϕ(x1)Tθ,

ẋ2 = u, (53.22)

we have already designed a nonadaptive controller in Section 53.1. To design an adaptive controller, we
replace the unknown θ by its estimate θ̂ both in the stabilizing function (Equation 53.3) and in the change
of coordinate (Equation 53.5):

z2 = x2− α1(x1, θ̂), α1(x1, θ̂)=−c1z1−ϕTθ̂. (53.23)

Because in the system (Equation 53.22) the control input is separated from the unknown parameter by
an integrator, the control law (Equation 53.10) will be strengthened by a term ν2(x1, x2, θ̂) which will
compensate for the parameter estimation transients:

u= α2(x1, x2, θ̂)=−c2z2− z1+ ∂α1

∂x1

(
x2+ϕTθ̂

)
+ ν2(x1, x2, θ̂). (53.24)

The resulting system in the z coordinates is

ż1 = z2+ α1+ϕTθ=−c1z1+ z2+ϕTθ̃, (53.25)

ż2 = ẋ2− α̇1 = u− ∂α1

∂x1

(
x2+ϕTθ

)
− ∂α1

∂θ̂

˙̂
θ

=−z1− c2z2− ∂α1

∂x1
ϕTθ̃− ∂α1

∂θ̂

˙̂
θ+ ν2(x1, x2, θ̂), (53.26)

or, in vector form,

[
ż1

ż2

]
=
[−c1 1
−1 −c2

] [
z1

z2

]
+
⎡
⎢⎣

ϕT

−∂α1

∂x1
ϕT

⎤
⎥⎦ θ̃+

⎡
⎢⎣

0

−∂α1

∂θ̂

˙̂
θ+ ν2(x1, x2, θ̂)

⎤
⎥⎦ . (53.27)
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The term ν2 can now be chosen to eliminate the last brackets:

ν2(x1, x2, θ̂)= ∂α1

∂θ̂

˙̂
θ. (53.28)

This expression is implementable because ˙̂θ will be available from the update law. Thus we obtain the
error system

[
ż1

ż2

]
=
[−c1 1
−1 −c2

] [
z1

z2

]
+
⎡
⎢⎣

ϕT

−∂α1

∂x1
ϕT

⎤
⎥⎦ θ̃. (53.29)

When the parameter error θ̃ is zero, this system becomes the linear asymptotically stable system (Equation

53.12). Our remaining task is to select the update law ˙̂θ= Γτ2(x, θ̂). Consider the Lyapunov function

V2(x1, x2, θ̂)= V1+ 1

2
z2

2 =
1

2
z2

1 +
1

2
z2

2 +
1

2
θ̃TΓ−1θ̃. (53.30)

Because ˙̃θ=−˙̂θ, the derivative of V2 is

V̇2 =−c1z2
1 − c2z2

2 +[z1, z2]
⎡
⎢⎣

ϕT

−∂α1

∂x1
ϕT

⎤
⎥⎦ θ̃− θ̃TΓ−1 ˙̂θ

=−c1z2
1 − c2z2

2 + θ̃TΓ−1
(
Γ

[
ϕ,−∂α1

∂x1
ϕ

] [
z1

z2

]
− ˙̂θ

)
. (53.31)

The only way to eliminate the unknown parameter error θ̃ is to select the update law

˙̂
θ= Γτ2(x, θ̂)= Γ

[
ϕ, −∂α1

∂x1
ϕ

] [
z1

z2

]
= Γ

(
ϕz1− ∂α1

∂x1
ϕz2

)
. (53.32)

Then V̇2 is nonpositive:
V̇2 =−c1z2

1 − c2z2
2 , (53.33)

which means that the global stability of z = 0, θ̃= 0 is achieved. Moreover, by applying either the LaSalle
or the Barbalat argument mentioned in Design A, we prove that z(t)→ 0 as t →∞. Finally, from
Equation 53.23, it follows that the equilibrium x = 0, θ̂= θ is globally stable and x(t)→ 0 as t →∞.

The crucial property of the control law in Design B is that it incorporates the ν2-term (Equation

53.28) which is proportional to ˙̂θ and compensates for the effect of parameter estimation transients on
the coordinate change (Equation 53.23). It is this departure from the certainty equivalence principle that
makes the adaptive stabilization possible for systems with nonlinearities of arbitrary growth.

By comparing Equation 53.32 with Equation 53.19, we note that the first term ϕz1 is the potential
update law for the z1-system. The functions

τ1(x1)= ϕz1, (53.34)

τ2(x1, x2, θ̂)= τ1(x1)− ∂α1

∂x1
ϕz2 (53.35)

are referred to as the tuning functions, because of their role as potential update laws for intermediate
systems in the backstepping procedure.
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53.2.1.3 Design C

The system
ẋ1 = x2+ϕ(x1)Tθ,
ẋ2 = x3,
ẋ3 = u

(53.36)

is obtained by augmenting system (Equation 53.22) with an integrator. The control law α2(x1, x2, θ̂)
designed in (Equation 53.24) can no longer be directly applied because x3 is a state and not a control
input. We “step back” through the integrator ẋ3 = u and design the control law for the actual input u.
However, we keep the stabilizing function α2 and use it to define the third error coordinate

z3 = x3− α2(x1, x2, θ̂). (53.37)

The parameter update law (Equation 53.32) will have to be modified with an additional z3-term. Instead

of ˙̂θ in Equation 53.28, the compensating term ν2 will now use the potential update law (Equation 53.35)
for the system (Equation 53.29):

ν2(x1, x2, θ̂)= ∂α1

∂θ̂
Γτ2(x1, x2, θ̂). (53.38)

Hence, the role of the tuning function τ2 is to substitute for the actual update law in the compensation of
the effects of parameter estimation transients.

With Equations 53.23, 53.35, 53.37, and 53.38, and the stabilizing function α2 in Equation 53.24, we
have [

ż1

ż2

]
=
[−c1 1
−1 −c2

] [
z1

z2

]
+
⎡
⎢⎣

ϕT

−∂α1

∂x1
ϕT

⎤
⎥⎦ θ̃+

⎡
⎢⎣

0

z3+ ∂α1

∂θ̂
(Γτ2− ˙̂θ)

⎤
⎥⎦ . (53.39)

This system differs from the error system (Equation 53.29) only in its last term. Likewise, instead of
the Lyapunov inequality (Equation 53.33) we have

V̇2 =−c1z2
1 − c2z2

2 + z2z3+ z2
∂α1

∂θ̂
(Γτ2− ˙̂θ)+ θ̃T(τ2−Γ−1 ˙̂θ). (53.40)

Differentiating Equation 53.37, we obtain

ż3 = u− ∂α2

∂x1

(
x2+ϕTθ

)
− ∂α2

∂x2
x3− ∂α2

∂θ̂

˙̂
θ

= u− ∂α2

∂x1

(
x2+ϕTθ̂

)
− ∂α2

∂x2
x3− ∂α2

∂θ̂

˙̂
θ− ∂α2

∂x1
ϕTθ̃. (53.41)

We now stabilize the (z1, z2, z3)-system (Equation 53.39 and 53.41 with respect to the Lyapunov
function

V3(x, θ̂)= V2+ 1

2
z2

3 =
1

2
z2

1 +
1

2
z2

2 +
1

2
z2

3 +
1

2
θ̃TΓ−1θ̃. (53.42)

Its derivative along Equations 53.39 and 53.41 is

V̇3 =−c1z2
1 − c2z2

2 + z2
∂α1

∂θ̂
(Γτ2− ˙̂θ)+ z3

[
z2+ u− ∂α2

∂x1

(
x2+ϕTθ̂

)
− ∂α2

∂x2
x3− ∂α2

∂θ̂

˙̂
θ

]

+ θ̃T
(
τ2− ∂α2

∂x1
ϕz3−Γ−1 ˙̂θ

)
. (53.43)
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Again we must eliminate the unknown parameter error θ̃ from V̇3. For this we must choose the update
law as

˙̂
θ= Γτ3(x1, x2, x3, θ̂)= Γ

(
τ2− ∂α2

∂x1
ϕz3

)
= Γ

[
ϕ, −∂α1

∂x1
ϕ,

∂α2

∂x1
ϕ

]⎡⎣z1

z2

z3

⎤
⎦ . (53.44)

Upon inspection of the bracketed terms in V̇3, we pick the control law:

u= α3(x1, x2, x3, θ̂)=−z2− c3z3+ ∂α2

∂x1

(
x2+ϕTθ̂

)
+ ∂α2

∂x2
x3+ ν3. (53.45)

The compensation term ν3 is yet to be chosen. Substituting Equation 53.45 into Equation 53.43, we obtain

V̇3 =−c1z2
1 − c2z2

2 − c3z2
3 + z2

∂α1

∂θ̂
(Γτ2− ˙̂θ)+ z3

(
ν3− ∂α2

∂θ̂

˙̂
θ

)
. (53.46)

From this expression it is clear that ν3 should cancel ∂α2

∂θ̂

˙̂
θ. In order to cancel the cross-term z2

∂α1

∂θ̂
(Γτ2− ˙̂θ)

with ν3, it appears that we would need to divide by z3. However, the variable z3 might take a zero value
during the transient, and should be regulated to zero to accomplish the control objective. We resolve this
difficulty by noting that

˙̂
θ−Γτ2 = ˙̂θ−Γτ3+Γτ3−Γτ2

= ˙̂θ−Γτ3−Γ∂α2

∂x1
ϕz3, (53.47)

so that V̇3 in Equation 53.46 is rewritten as

V̇3 =−c1z2
1 − c2z2

2 − c3z2
3 + z3

(
ν3− ∂α2

∂θ̂
Γτ3+ ∂α1

∂θ̂
Γ

∂α2

∂x1
ϕz2

)
. (53.48)

From Equation 53.48, the choice of ν3 is immediate:

ν3(x1, x2, x3, θ̂)= ∂α2

∂θ̂
Γτ3− ∂α1

∂θ̂
Γ

∂α2

∂x1
ϕz2. (53.49)

The resulting V̇3 is

V̇3 =−c1z2
1 − c2z2

2 − c3z2
3 , (53.50)

which guarantees that the equilibrium x = 0, θ̂= θ is globally stable, and x(t)→ 0 as t →∞. The
Lyapunov design leading to Equation 53.48 is effective but does not reveal the stabilization mechanism.
To provide further insight we write the (z1, z2, z3)-system (Equations 53.39 and 53.41) with u given in
Equation 53.45 but with ν3 yet to be selected:

⎡
⎣ż1

ż2

ż3

⎤
⎦=

⎡
⎣−c1 1 0
−1 −c2 1
0 −1 −c3

⎤
⎦
⎡
⎣z1

z2

z3

⎤
⎦+

⎡
⎢⎢⎢⎢⎣

ϕT

−∂α1

∂x1
ϕT

−∂α2

∂x1
ϕT

⎤
⎥⎥⎥⎥⎦ θ̃+

⎡
⎢⎢⎢⎢⎣

0

∂α1

∂θ̂
(Γτ2− ˙̂θ)

ν3− ∂α2

∂θ̂
Γτ3

⎤
⎥⎥⎥⎥⎦. (53.51)
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While ν3 can cancel the matched term ∂α2

∂θ̂

˙̂
θ, it cannot cancel the term ∂α1

∂θ̂
(Γτ2− ˙̂θ) in the second

equation. By substituting Equation 53.47, we note that ∂α1

∂θ̂
(Γτ2− ˙̂θ) has z3 as a factor and absorb it into

the “system matrix”:

⎡
⎣ż1

ż2

ż3

⎤
⎦=

⎡
⎢⎢⎢⎣
−c1 1 0

−1 −c2 1+ ∂α1

∂θ̂
Γ

∂α2

∂x1
ϕ

0 −1 −c3

⎤
⎥⎥⎥⎦
⎡
⎣z1

z2

z3

⎤
⎦+

⎡
⎢⎢⎢⎢⎣

ϕT

−∂α1

∂x1
ϕT

−∂α2

∂x1
ϕT

⎤
⎥⎥⎥⎥⎦ θ̃+

⎡
⎢⎢⎢⎣

0
0

ν3− ∂α2

∂θ̂
Γτ3

⎤
⎥⎥⎥⎦ . (53.52)

Now ν3 in Equation 53.49 yields

⎡
⎣ż1

ż2

ż3

⎤
⎦=

⎡
⎢⎢⎢⎢⎣

−c1 1 0

−1 −c2 1+ ∂α1

∂θ̂
Γ

∂α2

∂x1
ϕ

0 −1− ∂α1

∂θ̂
Γ

∂α2

∂x1
ϕ −c3

⎤
⎥⎥⎥⎥⎦
⎡
⎣z1

z2

z3

⎤
⎦+

⎡
⎢⎢⎢⎢⎢⎣

ϕT

−∂α1

∂x1
ϕT

−∂α2

∂x1
ϕT

⎤
⎥⎥⎥⎥⎥⎦
θ̃. (53.53)

This choice, which places the term−∂α1

∂θ̂
Γ∂α2

∂x1
ϕ at the (2,3) position in the system matrix, achieves skew-

symmetry with its positive image above the diagonal. What could not be achieved by pursuing a linear-like
form was achieved by designing a nonlinear system where the nonlinearities are “balanced” rather than
cancelled.

53.2.2 General Recursive Design Procedure

A systematic backstepping design with tuning functions has been developed for the class of nonlinear
systems transformable into the parametric strict-feedback form:

ẋ1 = x2+ϕ1(x1)Tθ,

ẋ2 = x3+ϕ2(x1, x2)Tθ,

...

ẋn−1 = xn+ϕn−1(x1, . . . , xn−1)Tθ,

ẋn = β(x)u+ϕn(x)Tθ,

y = x1,

(53.54)

where β and

F(x)= [ϕ1(x1), ϕ2(x1, x2), . . . ,ϕn(x)] (53.55)

are smooth nonlinear functions, and β(x) �= 0, ∀x ∈ IRn. (Broader classes of systems that can be controlled
using adaptive backstepping are listed in Section 53.5.)
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TABLE 53.1 Summary of the Tuning Functions Design for Tracking

zi = xi − y(i−1)
r − αi−1, (53.56)

αi(x̄i , θ̂, ȳ(i−1)
r )=−zi−1− cizi −wT

i θ̂+
i−1∑
k=1

(
∂αi−1

∂xk
xk+1+

∂αi−1

∂y(k−1)
r

y(k)
r

)
+ νi , (53.57)

νi(x̄i , θ̂, ȳ(i−1)
r )=+∂αi−1

∂θ̂
Γτi +

i−1∑
k=2

∂αk−1

∂θ̂
Γwizk , (53.58)

τi(x̄i , θ̂, ȳ(i−1)
r )= τi−1+wizi , (53.59)

wi(x̄i , θ̂, ȳ(i−2)
r )= ϕi −

i−1∑
k=1

∂αi−1

∂xk
ϕk , (53.60)

i = 1, . . . , n, x̄i = (x1, . . . , xi), ȳ(i)
r = (yr, ẏr, . . . , y(i)

r ).

Adaptive Control Law:

u= 1

β(x)

[
αn(x, θ̂, ȳ(n−1)

r )+ y(n)
r

]
. (53.61)

Parameter Update Law:

˙̂
θ= Γτn(x, θ̂, ȳ(n−1)

r )= ΓWz. (53.62)

Note: For notational convenience we define z0

= 0, α0


= 0, τ0

= 0.

The general design summarized in Table 53.1 achieves asymptotic tracking, that is, the output y = x1

of the system (Equation 53.54) is forced to asymptotically track the reference output yr(t) whose first n
derivatives are assumed to be known, bounded, and piecewise continuous.

The closed-loop system has the form

ż = Az(z, θ̂, t)z+W(z, θ̂, t)Tθ̃, (53.63)

˙̂
θ= ΓW(z, θ̂, t)z, (53.64)

where

Az(z, θ̂, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−c1 1 0 · · · 0
−1 −c2 1+ σ23 · · · σ2n

0 −1− σ23
. . .

. . .
...

...
...

. . .
. . . 1+ σn−1,n

0 −σ2n · · · −1− σn−1,n −cn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(53.65)

and

σjk(x, θ̂)=−∂αj−1

∂θ̂
Γwk . (53.66)

Because of the skew-symmetry of the off-diagonal part of the matrix Az , it is easy to see that the Lyapunov
function

Vn = 1

2
zTz+ 1

2
θ̃TΓ−1θ̃ (53.67)

has the derivative

V̇n =−
n∑

k=1

ckz2
k , (53.68)
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which guarantees that the equilibrium z = 0, θ̂= θ is globally stable and z(t)→ 0 as t →∞. This means,
in particular, that the system state and the control input are bounded and asymptotic tracking is achieved:
limt→∞

[
y(t)− yr(t)

]= 0.
To help understand how the control design of Table 53.1 leads to the closed-loop system (Equations

53.63 through 53.66), we provide an interpretation of the matrix Az for n= 5:

Az =

⎡
⎢⎢⎢⎢⎣

−c1 1
−1 −c2 1

−1 −c3 1
−1 −c4 1

−1 −c5

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 σ23 σ24 σ25

0 −σ23 σ34 σ35

0 −σ24 −σ34 σ45

0 −σ25 −σ35 −σ45

⎤
⎥⎥⎥⎥⎦ . (53.69)

If the parameters were known, θ̂≡ θ, in which case we would not use adaptation, Γ= 0, the stabilizing
functions (Equation 53.57) would be implemented with νi ≡ 0, and hence σi j = 0. Then Az would be
just the above constant tridiagonal asymptotically stable matrix. When the parameters are unknown, we

use Γ> 0 and, owing to the change of variable zi = xi − y(i−1)
r − αi−1, in each of the żi-equations a term

−∂αi−1

∂θ̂

˙̂
θ=∑n

k=1 σikzk appears. The term νi =−∑i
k=1 σikzk −∑i−1

k=2 σkizk in the stabilizing function

(Equation 53.57) is crucial in compensating the effect of ˙̂θ. The σik-terms above the diagonal in Equation

53.69 come from ˙̂
θ. Their skew-symmetric negative images come from feedback νi .

It can be shown that the resulting closed-loop system (Equations 53.63 and 53.64), as well as each
intermediate system, has a strict passivity property from θ̃ as the input to τi as the output. The loop
around this operator is closed (see Figure 53.1) with the vector integrator with gain Γ, which is a passive
block. It follows from passivity theory that this feedback connection of one strictly passive and one passive
block is globally stable.

53.3 Modular Design

In the tuning functions design, the controller and the identifier are derived in an interlaced fashion. This
interlacing led to considerable controller complexity and inflexibility in the choice of the update law.

It is not hard to extend various standard identifiers for linear systems to nonlinear systems. It is
therefore desirable to have adaptive designs where the controller can be combined with different identifiers
(gradient, least-squares, passivity based, etc.). We refer to such adaptive designs as modular.

In nonlinear systems it is not a good idea to connect a good identifier with a controller which is good
when the parameter is known (a “certainty equivalence” controller). To illustrate this, let us consider the

+
θ

θ̂

+
φT

− ∂α1
∂x1

φT

TφT

− ∂α1
∂x1

φT

−c1 1
−1 −c2

Γ
θ̂̇

θ̃

z1
z2 τ2

−

FIGURE 53.1 The closed-loop adaptive system (Equations 53.29 and 53.32).
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error system
ẋ =−x+ϕ(x)θ̃ (53.70)

obtained by applying a certainty equivalence controller u=−x−ϕ(x)θ̂ to the scalar system ẋ = u+
ϕ(x)θ. The parameter estimators commonly used in adaptive linear control generate bounded estimates
θ̂(t) with convergence rates not faster than exponential. Suppose that θ̃(t)= e−t and ϕ(x)= x3, which,
upon substitution in Equation 53.70, gives

ẋ =−x+ x3e−t . (53.71)

For initial conditions |x0|>
√

3
2 , the system (Equation 53.71) is not only unstable but its solution escapes

to infinity in finite time:

x(t)→∞ as t → 1

3
ln

x2
0

x2
0 − 3/2

. (53.72)

From this example we conclude that for nonlinear systems we need stronger controllers which prevent
unbounded behavior caused by θ̃.

53.3.1 Controller Design

We strengthen the controller for the preceding example, u=−x−ϕ(x)θ̂, with a nonlinear damping term
−ϕ(x)2x, that is, u=−x−ϕ(x)θ̂−ϕ(x)2x. With this stronger controller, the closed-loop system is

ẋ =−x−ϕ(x)2x+ϕ(x)θ̃. (53.73)

To see that x is bounded whenever θ̃ is, we consider the Lyapunov function V = 1
2 x2. Its derivative along

the solutions of Equation 53.73 is

V̇ =−x2−ϕ(x)2x2+ xϕ(x)θ̃=−x2−
[
ϕ(x)x− 1

2
θ̃

]2

+ 1

4
θ̃2

≤−x2+ 1

4
θ̃2. (53.74)

From this inequality it is clear that |x(t)| will not grow larger than 1
2 |θ̃(t)|, because then V̇ becomes

negative and V = 1
2 x2 decreases. Thanks to the nonlinear damping, the boundedness of θ̃(t) guarantees

that x(t) is bounded.
To show how nonlinear damping is incorporated into a higher-order backstepping design, we consider

the system
ẋ1 = x2+ϕ(x1)Tθ,
ẋ2 = u.

(53.75)

Viewing x2 as a control input, we first design a control law α1(x1, θ̂) to guarantee that the state x1

in ẋ1 = x2+ϕ(x1)Tθ is bounded whenever θ̃ is bounded. In the first stabilizing function we include a
nonlinear damping term∗ −κ1|ϕ(x1)|2x1:

α1(x1, θ̂)=−c1x1−ϕ(x1)Tθ̂− κ1|ϕ(x1)|2x1, c1, κ1 > 0. (53.76)

Then we define the error variable z2 = x2− α1(x1, θ̂), and for uniformity denote z1 = x1. The first
equation is now

ż1 =−c1z1− κ1|ϕ|2z1+ϕTθ̃+ z2. (53.77)

∗ The Euclidian norm of a vector v is denoted as |v| =
√

vTv.
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If z2 were zero, the Lyapunov function V1 = 1
2 z2

1 would have the derivative

V̇1 =−c1z2
1 − κ1|ϕ|2z2

1 + z1ϕ
Tθ̃=−c1z2

1 − κ1

∣∣∣∣ϕz1− 1

2κ1
θ̃

∣∣∣∣
2

+ 1

4κ1
|θ̃|2 ≤−c1z2

1 +
1

4κ1
|θ̃|2, (53.78)

so that z1 would be bounded whenever θ̃ is bounded. With z2 �= 0 we have

V̇1 ≤−c1z2
1 +

1

4κ1
|θ̃|2+ z1z2. (53.79)

Differentiating x2 = z2+ α1(x1, θ̂), the second equation in Equation 53.75 yields

ż2 = ẋ2− α̇1 = u− ∂α1

∂x1

(
x2+ϕTθ

)
− ∂α1

∂θ̂

˙̂
θ. (53.80)

The derivative of the Lyapunov function

V2 = V1+ 1

2
z2

2 =
1

2
|z|2 (53.81)

along the solutions of Equations 53.77 and 53.80 is

V̇2 ≤−c1z2
1 +

1

4κ1
|θ̃|2+ z1z2+ z2

[
u− ∂α1

∂x1

(
x2+ϕTθ

)
− ∂α1

∂θ̂

˙̂
θ

]

≤−c1z2
1 +

1

4κ1
|θ̃|2+ z2

[
u+ z1− ∂α1

∂x1

(
x2+ϕTθ̂

)
−
(

∂α1

∂x1
ϕTθ̃+ ∂α1

∂θ̂

˙̂
θ

)]
. (53.82)

We note that now, in addition to the θ̃-dependent disturbance term ∂α1
∂x1
ϕTθ̃, we also have a ˙̂θ-dependent

disturbance ∂α1

∂θ̂

˙̂
θ. No such term appeared in the scalar system (Equation 53.73). We now use nonlinear

damping terms−κ2

∣∣∣∂α1
∂x1
ϕ

∣∣∣2 z2 and−g2

∣∣∣∂α1

∂θ̂

T
∣∣∣2 z2 to counteract the effects of both θ̃ and ˙̂θ:

u=−z1− c2z2− κ2

∣∣∣∣∂α1

∂x1
ϕ

∣∣∣∣
2

z2− g2

∣∣∣∣∣
∂α1

∂θ̂

T
∣∣∣∣∣
2

z2+ ∂α1

∂x1

(
x2+ϕTθ̂

)
, (53.83)

where c2, κ2, g2 > 0. Upon completing the squares as in Equation 53.78, we obtain

V̇2 ≤−c1z2
1 − c2z2

2 +
(

1

4κ1
+ 1

4κ2

)
|θ̃|2+ 1

4g2
|˙̂θ|2, (53.84)

which means that the state of the error system

ż =
⎡
⎢⎣
−c1− κ2 |ϕ|2 1

−1 −c2− κ2

∣∣∣∣∂α1

∂x1
ϕ

∣∣∣∣
2

− g2

∣∣∣∣∣
∂α1

∂θ̂

T
∣∣∣∣∣
2

⎤
⎥⎦ z+

⎡
⎢⎣

ϕT

−∂α1

∂x1
ϕT

⎤
⎥⎦ θ̃+

⎡
⎢⎣

0

−∂α1

∂θ̂

⎤
⎥⎦ ˙̂θ (53.85)

is bounded whenever the disturbance inputs θ̃ and ˙̂θ are bounded. Moreover, since V2 is quadratic in z,
see Equation 53.81, we can use Equation 53.84 to show that the boundedness of z is guaranteed also when
˙̂
θ is square-integrable but not bounded. This observation is crucial for the modular design with passive

identifiers where ˙̂θ cannot be a priori guaranteed to be bounded.
The recursive controller design for the parametric strict-feedback systems (Equation 53.54) is summa-

rized in Table 53.2.
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TABLE 53.2 Summary of the Controller Design in the Modular Approach

zi = xi − y(i−1)
r − αi−1, (53.86)

αi(x̄i , θ̂, ȳ(i−1)
r )=−zi−1− cizi −wT

i θ̂+
i−1∑
k=1

(
∂αi−1

∂xk
xk+1+

∂αi−1

∂y(k−1)
r

y(k)
r

)
− sizi , (53.87)

wi(x̄i , θ̂, ȳ(i−2)
r )= ϕi −

i−1∑
k=1

∂αi−1

∂xk
ϕk , (53.88)

si(x̄i , θ̂, ȳ(i−2)
r )= κi|wi|2+ gi

∣∣∣∣∣
∂αi−1

∂θ̂

T
∣∣∣∣∣
2

, (53.89)

i = 1, . . . , n, x̄i = (x1, . . . , xi), ȳ(i)
r = (yr, ẏr, . . . , y(i)

r ).

Adaptive Control Law:

u= 1

β(x)

[
αn(x, θ̂, ȳ(n−1)

r )+ y(n)
r

]
. (53.90)

Controller Module Guarantees:

If θ̃ ∈ L∞ and ˙̂
θ ∈ L2 or L∞ then x ∈ L∞.

Note: For notational convenience we define z0

= 0, α0


= 0.

Comparing the expression for the stabilizing function (Equation 53.87) in the modular design with the
expression (Equation 53.57) for the tuning functions design we see that the difference is in the second
lines. While the stabilization in the tuning functions design is achieved with the terms νi , in the modular
design this is accomplished with the nonlinear damping term−sizi , where

si(x̄i , θ̂, ȳ(i−2)
r )= κi|wi|2+ gi

∣∣∣∣∣
∂αi−1

∂θ̂

T
∣∣∣∣∣
2

. (53.91)

The resulting error system is

ż = Az(z, θ̂, t)z+W(z, θ̂, t)Tθ̃+Q(z, θ̂, t)T ˙̂θ, (53.92)

where Az , W , and Q are

Az(z, θ̂, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1− s1 1 0 · · · 0

−1 −c2− s2 1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · 0 −1 −cn− sn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W(z, θ̂, t)T =

⎡
⎢⎢⎢⎣

wT
1

wT
2
...

wT
n

⎤
⎥⎥⎥⎦ , Q(z, θ̂, t)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

−∂α1

∂θ̂
...

−∂αn−1

∂θ̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (53.93)
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Since the controller module guarantees that x is bounded whenever θ̃ is bounded and ˙̂θ is either
bounded or square-integrable, then we need identifiers which independently guarantee these properties.

Both the boundedness and the square-integrability requirements for ˙̂θ are essentially conditions which
limit the speed of adaptation, and only one of them needs to be satisfied. The modular design needs slow

adaptation because the controller does not cancel the effect of ˙̂θ, as was the case in the tuning functions
design.

In addition to boundedness of x(t), our goal is to achieve asymptotic tracking, that is, to regulate z(t)
to zero. With z and θ̂ bounded, it is not hard to prove that z(t)→ 0 provided

W(z(t), θ̂(t), t)Tθ̃(t)→ 0 and ˙̂
θ(t)→ 0.

Let us factor the regressor matrix W , using Equations 53.93, 53.88, and 53.55 as

W(z, θ̂, t)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

−∂α1

∂x1
1

. . .
...

...
. . .

. . . 0

−∂αn−1

∂x1
· · · −∂αn−1

∂xn−1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

F(x)T 
= N(z, θ̂, t)F(x)T. (53.94)

Since the matrix N(z, θ̂, t) is invertible, the tracking condition W(z(t), θ̂(t), t)Tθ̃(t)→ 0 becomes
F(x(t))Tθ̃(t)→ 0.

In the next two subsections we develop identifiers for the general parametric model

ẋ = f (x, u)+ F(x, u)Tθ. (53.95)

The parametric strict-feedback system (Equation 53.54) is a special case of this model with F(x, u) given
by Equation 53.55 and f (x, u)= [x2, . . . , xn, β0(x)u]T.

Before we present the design of identifiers, we summarize the properties required from the identifier
module:

1. θ̃ ∈ L∞ and ˙̂
θ ∈ L2 or L∞,

2. If x ∈ L∞ then F(x(t))Tθ̃(t)→ 0 and ˙̂
θ(t)→ 0.

We present two types of identifiers: the passive identifier and the swapping identifier.

53.3.2 Passive Identifier

For the parametric model (Equation 53.95), we implement, as shown in Figure 53.2, the “observer”

˙̂x =
[

A0−λF(x, u)TF(x, u)P
]

(x̂− x)+ f (x, u)+ F(x, u)Tθ̂, (53.96)

where λ> 0 and A0 is an arbitrary constant matrix such that

PA0+AT
0 P =−I , P = PT > 0. (53.97)

By direct substitution it can be seen that the observer error

ε= x− x̂ (53.98)

is governed by

ε̇=
[

A0−λF(x, u)TF(x, u)P
]
ε+ F(x, u)Tθ̃. (53.99)
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ẋ = f + FT θ

x̂̇  = (A0 − λFT FP) (x̂ − x) + f + FT θ̂

ΓFP

−
+

θ̇̂θ̂

x

x̂

FIGURE 53.2 The passive identifier.

The observer error system (Equation 53.99) has a strict passivity property from the input θ̃ to the output
F(x, u)Pε. A standard result of passivity theory is that the equilibrium θ̃= 0, ε= 0 of the negative feedback
connection of one strictly passive and one passive system is globally stable. Using integral feedback such
a connection as in Figure 53.3 can be formed. This suggests the use of the following update law:

˙̂
θ= ΓF(x, u)Pε, Γ= ΓT > 0. (53.100)

To analyze the stability properties of the passive identifier we use the Lyapunov function

V = θ̃TΓ−1θ̃+ εTPε. (53.101)

After uncomplicated calculations, its derivative can be shown to satisfy

V̇ ≤−εTε− λ

λ̄(Γ)2
|˙̂θ|2. (53.102)

This guarantees the boundedness of θ̃ and ε, even whenλ= 0. However, ˙̂θ cannot be shown to be bounded

(unless x and u are known to be bounded). Instead, for the passive identifier one can show that ˙̂θ is square-
integrable. For this we must useλ> 0, that is, we rely on the nonlinear damping term−λF(x, u)TF(x, u)P

in the observer. The boundedness of θ̃ and the square-integrability of ˙̂θ imply (cf. Table 53.2) that x is
bounded.

To prove the tracking, we need to show that the identifier guarantees that, whenever x is bounded,

F(x(t))Tθ̃(t)→ 0 and ˙̂θ(t)→ 0. Both properties are established by Barbalat’s lemma. The latter property

can easily be shown to follow from the square-integrability of ˙̂θ. The regulation of F(x)Tθ̃ to zero follows
upon showing that both ε(t) and ε̇(t) converge to zero. While the convergence of ε(t) follows by deducing
its square-integrability from Equation 53.102, the convergence of ε̇(t) follows from the fact that its integral,∫∞

0 ε̇(τ) dτ= ε(∞)− ε(0)=−ε(0), exists.

(99)

Γ
s

θ̃ FPe

−

FIGURE 53.3 Negative feedback connection of the strictly passive system (Equation 53.99) with the passive
system Γ

s .
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53.3.3 Swapping Identifier

For the parametric model (Equation 53.95), we implement two filters,

Ω̇T =
[

A0−λF(x, u)TF(x, u)P
]
ΩT+ F(x, u)T, (53.103)

Ω̇0 =
[

A0−λF(x, u)TF(x, u)P
]

(Ω0− x)− f (x, u), (53.104)

where λ≥ 0 and A0 is as defined in Equation 53.97. The estimation error,

ε= x+Ω0−ΩTθ̂. (53.105)

can be written in the form
ε=ΩTθ̃+ ε̃, (53.106)

where ε̃

= x+Ω0−ΩTθ decays exponentially because it is governed by

˙̃ε=
[

A0−λF(x, u)TF(x, u)P
]
ε̃. (53.107)

The filters (Equations 53.103 and 53.104) have converted the dynamic model (Equation 53.95) into the
linear static parametric model (Equation 53.106) to which we can apply standard estimation algorithms.
As our update law we will employ either the gradient

˙̂
θ= Γ Ωε

1+ νtr{ΩTΩ} , Γ= ΓT > 0, ν≥ 0 (53.108)

or the least-squares algorithm

˙̂
θ= Γ Ωε

1+ νtr{ΩTΩ} ,

Γ̇=−Γ ΩΩT

1+ νtr{ΩTΩ}Γ, Γ(0)= Γ(0)T > 0, ν≥ 0.

(53.109)

By allowing ν= 0, we encompass unnormalized gradient and least squares. The complete swapping
identifier is shown in Figure 53.4.

The update law normalization, ν> 0, and the nonlinear damping, λ> 0, are two different means for

slowing down the identifier in order to guarantee the boundedness and square-integrability of ˙̂θ.
For the gradient update law (Equation 53.108), the identifier properties (boundedness of θ̃ and ˙̂θ and

regulation of F(x)θ̃ and ˙̂θ) are established via the Lyapunov function

V = 1

2
θ̃TΓ−1θ̃+ ε̃Pε̃ (53.110)

whose derivative is

V̇ ≤−3

4

εTε

1+ νtr{ΩTΩ} . (53.111)

The Lyapunov function for the least-squares update law (Equation 53.109) is V = θ̃TΓ(t)−1θ̃+ ε̃Pε̃.

53.4 Output Feedback Designs

For linear systems, a common solution to the output-feedback problem is a stabilizing state-feedback
controller employing the state estimates from an exponentially converging observer. Unfortunately,
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ẋ = f + FTθ

Ω̇ 0 = (A0 − λFTFP) (Ω0 − x) + f

Ω̇  = (A0 − λFTFP) Ω + F

ΓΩ
1 + υ|Ω|2

x

∋

ΩT
×

θ̂ θ̇̂

++

−

Ω

FIGURE 53.4 The swapping identifier.

this approach is not applicable to nonlinear systems. Additional difficulties arise when the non-
linear plant has unknown parameters because adaptive observers, in general, are not exponentially
convergent.

These obstacles have been overcome for systems transformable into the output-feedback form:

ẋ = Ax+φ(y)+Φ(y)a+
[

0
b

]
σ(y)u, x ∈ IRn

y = eT
1 x,

(53.112)

where only the output y is available for measurement,

A=
⎡
⎢⎣

0
...

In−1

0 · · · 0

⎤
⎥⎦ , (53.113)

φ(y)=
⎡
⎢⎣
ϕ0,1(y)

...
ϕ0,n(y)

⎤
⎥⎦ , Φ(y)=

⎡
⎢⎣
ϕ1,1(y) · · · ϕq,1(y)

...
...

ϕ1,n(y) · · · ϕq,n(y)

⎤
⎥⎦ , (53.114)

and the vectors of unknown constant parameters are

a= [a1, . . . , aq]T, b= [bm, . . . , b0]T. (53.115)

We make the following assumptions: the sign of bm is known; the polynomial B(s)= bmsm+ · · ·+ b1s+
b0 is known to be Hurwitz; and σ(y) �= 0 ∀y ∈ IR. An important restriction is that the nonlinearities φ(y)
andΦ(y) are allowed to depend only on the output y. Even when θ is known, this restriction is needed to
achieve global stability.



�

�

�

�

� �

53-18 Control System Advanced Methods

TABLE 53.3 State Estimation Filters
Filters:

ξ̇= A0ξ+ ky+φ(y), (53.116)

Ξ̇= A0Ξ+Φ(y), (53.117)

λ̇= A0λ+ enσ(y)u. (53.118)

vj = A
j
0λ, j = 0, . . . , m, (53.119)

ΩT = [vm, . . . , v1, v0, Ξ]. (53.120)

We define the parameter-dependent state estimate

x̂ = ξ+ΩTθ, (53.121)

which employs the filters given in Table 53.3, with the vector k = [k1, . . . , kn]T chosen so that the matrix
A0 = A− keT

1 is Hurwitz, that is,

PA0+AT
0 P =−I , P = PT > 0. (53.122)

The state estimation error

ε= x− x̂ (53.123)

is readily shown to satisfy

ε̇= A0ε. (53.124)

The following two expressions for ẏ are instrumental in the backstepping design:

ẏ = ω0+ωTθ+ ε2 (53.125)

= bmvm,2+ω0+ ω̄Tθ+ ε2, (53.126)

where

ω0 = ϕ0,1+ ξ2, (53.127)

ω= [vm,2, vm−1,2, . . . , v0,2, Φ(1)+Ξ(2)]T, (53.128)

ω̄= [0, vm−1,2, . . . , v0,2, Φ(1)+Ξ(2)]T. (53.129)

Since the states x2, . . . , xn are not measured, the backstepping design is applied to the system

ẏ = bmvm,2+ω0+ ω̄Tθ+ ε2, (53.130)

v̇m,i = vm,i+1− kivm,1, i = 2, . . . , ρ− 1, (53.131)

v̇m,ρ = σ(y)u+ vm,ρ+1− kρvm,1. (53.132)

The order of this system is equal to the relative degree of the plant (Equation 53.112).

53.4.1 Output-Feedback Design with Tuning Functions

The output-feedback design with tuning functions is summarized in Table 53.4. The resulting error
system is

ż = Az(z, t)z+Wε(z, t)ε2+Wθ(z, t)Tθ̃− bm
(
ẏr+ ᾱ1

)
e1'̃, (53.133)
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where

Az =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1− d1 b̂m 0 · · · · · · 0

−b̂m −c2− d2

(
∂α1

∂y

)2

1+ σ23 σ24 · · · σ2,ρ

0 −1− σ23
. . .

. . .
. . .

...
... −σ24

. . .
. . .

. . . σρ−2,ρ
...

...
. . .

. . .
. . . 1+ σρ−1,ρ

0 −σ2,ρ · · · −σρ−2,ρ −1− σρ−1,ρ −cρ− dρ

(
∂αρ−1

∂y

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53.134)

and

Wε(z, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−∂α1

∂y
...

−∂αρ−1

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Wθ(z, t)T =Wε(z, t)ωT− '̂ (ẏr+ ᾱ1
)

e1eT
1 . (53.135)

The nonlinear damping terms −di

(
∂αi−1

∂y

)2
in Equation 53.134 are included to counteract the expo-

nentially decaying state estimation error ε2. The variable '̂ is an estimate of '= 1/bm.

TABLE 53.4 Output-Feedback Tuning Functions Design

z1 = y− yr, (53.136)

zi = vm,i − '̂y(i−1)
r − αi−1, i = 2, . . . , ρ. (53.137)

α1 = '̂ᾱ1, ᾱ1 =−
(
c1+ d1

)
z1−ω0− ω̄Tθ̂, (53.138)

α2 =−b̂mz1−
[

c2+ d2

(
∂α1

∂y

)2
]

z2+
(

ẏr+ ∂α1

∂'̂

)
˙̂'+ ∂α1

∂θ̂
Γτ2+ β2, (53.139)

αi =−zi−1−
[

ci + di

(
∂αi−1

∂y

)2
]

zi +
(

y(i−1)
r + ∂αi−1

∂'̂

)
˙̂',

+∂αi−1

∂θ̂
Γτi −

i−1∑
j=2

∂αj−1

∂θ̂
Γ

∂αi−1

∂y
zj + βi , i = 3, . . . , ρ, (53.140)

βi = ∂αi−1

∂y

(
ω0+ωTθ̂

)
+ ∂αi−1

∂ξ

(
A0ξ+ ky+φ)+ ∂αi−1

∂Ξ

(
A0Ξ+Φ

)
,

+
i−1∑
j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r + kivm,1+

m+i−1∑
j=1

∂αi−1

∂λj
(−kjλ1+λj+1). (53.141)
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TABLE 53.4 (Continued) Output-Feedback Tuning Functions Design

τ1 =
(
ω− '̂ (ẏr+ ᾱ1

)
e1
)

z1, (53.142)

τi = τi−1− ∂αi−1

∂y
ωzi , i = 2, . . . , ρ. (53.143)

Adaptive Control Law:

u= 1

σ(y)

(
αρ− vm,ρ+1+ '̂y(ρ)

r

)
. (53.144)

Parameter Update Laws:

˙̂
θ= Γτρ (53.145)

˙̂'=−γ sgn(bm)
(
ẏr+ ᾱ1

)
z1. (53.146)

TABLE 53.5 Output-Feedback Controller in the Modular Design

z1 = y− yr, (53.147)

zi = vm,i − 1

b̂m
y(i−1)

r − αi−1, i = 2, . . . , ρ. (53.148)

α1 =− sgn(bm)

ςm

(
c1+ s1

)
z1+ 1

b̂m
ᾱ1, ᾱ1 =−ω0− ω̄Tθ̂, (53.149)

α2 =−b̂mz1−
(
c2+ s2

)
z2+ β2, (53.150)

αi =−zi−1−
(
ci + si

)
zi + βi , i = 3, . . . , ρ, (53.151)

βi = ∂αi−1

∂y

(
ω0+ωTθ̂

)
+ ∂αi−1

∂ξ

(
A0ξ+ ky+φ)+ ∂αi−1

∂Ξ

(
A0Ξ+Φ

)

+
i−1∑
j=1

∂αi−1

∂y
(j−1)
r

y
(j)
r + kivm,1+

m+i−1∑
j=1

∂αi−1

∂λj
(−kjλ1+λj+1). (53.152)

s1 = d1+ κ1

∣∣∣∣ω̄+ 1

b̂m

(
ẏr+ ᾱ1

)
e1

∣∣∣∣
2

, (53.153)

s2 = d2

(
∂α1

∂y

)2
+ κ2

∣∣∣∣∂α1

∂y
ω− z1e1

∣∣∣∣
2
+ g2

∣∣∣∣∣
∂α1

∂θ̂

T
− 1

b̂2
m

ẏre1

∣∣∣∣∣
2

, (53.154)

si = di

(
∂αi−1

∂y

)2
+ κi

∣∣∣∣∂αi−1

∂y
ω

∣∣∣∣
2
+ gi

∣∣∣∣∣
∂αi−1

∂θ̂

T
− 1

b̂2
m

y(i−1)
r e1

∣∣∣∣∣
2

, i = 3, . . . , ρ. (53.155)

Adaptive Control Law:

u= 1

σ(y)

(
αρ− vm,ρ+1+ 1

b̂m
y(ρ)

r

)
. (53.156)
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53.4.2 Output-Feedback Modular Design

In addition to sgn(bm), in the modular design we assume that a positive constant ςm is known such that
|bm| ≥ ςm.

The complete design of the control law is summarized in Table 53.5. The resulting error system is

ż = A∗z (z, t)z+Wε(z, t)ε2+W∗
θ (z, t)Tθ̃+Q(z, t)T ˙̂θ, (53.157)

where

A∗z (z, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−|bm|
ςm

(c1+ s1) bm 0 · · · 0

−bm −(c2+ s2) 1
. . .

...

0 −1
. . .

. . . 0
...

. . .
. . .

. . . 1
0 · · · 0 −1 −(cρ+ sρ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (53.158)

Wε(z, t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

−∂α1

∂y
...

−∂αρ−1

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

W∗
θ (z, t)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω̄T+ 1

b̂m

(
ẏr + ᾱ1

)
eT

1

−∂α1

∂y
ωT+ z1eT

1

−∂α2

∂y
ωT

...

−∂αρ−1

∂y
ωT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (53.159)

Q(z, t)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−∂α1

∂θ̂
+ 1

b̂2
m

ẏreT
1

...

−∂αρ−1

∂θ̂
+ 1

b̂2
m

y(ρ−1)
r eT

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53.160)

53.4.2.1 Passive Identifier

For the parametric model (Equation 53.125), we introduce the scalar observer

˙̂y =− (c0+ κ0|ω|2
) (

ŷ− y
)+ω0+ωTθ̂. (53.161)

The observer error
ε= y− ŷ (53.162)

is governed by
ε̇=− (c0+ κ0|ω|2

)
ε+ωTθ̃+ ε2. (53.163)

The parameter update law is

˙̂
θ= Proj

b̂m

{Γωε} ,
b̂m(0)sgnbm > ςm

Γ= ΓT > 0
(53.164)

where the projection operator is employed to guarantee that |b̂m(t)| ≥ ςm > 0, ∀t ≥ 0.
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53.4.2.2 Swapping Identifier

The estimation error

ε= y− ξ1−ΩT
1 θ̂ (53.165)

satisfies the following equation linear in the parameter error:

ε=ΩT
1 θ̃+ ε1. (53.166)

The update law for θ̂ is either the gradient:

˙̂
θ= Proj

b̂m

{
Γ

Ω1ε

1+ ν|Ω1|2
}

,
b̂m(0)sgnbm > ςm

Γ= ΓT > 0
ν> 0

(53.167)

or the least squares:

˙̂
θ= Proj

b̂m

{
Γ

Ω1ε

1+ ν|Ω1|2
}

, b̂m(0)sgnbm > ςm

Γ̇=−Γ Ω1Ω
T
1

1+ ν|Ω1|2Γ,
Γ(0)= Γ(0)T > 0
ν> 0.

(53.168)

53.5 Extensions

Adaptive nonlinear control designs presented in the preceding sections are applicable to classes of non-
linear systems broader than the parametric strict-feedback systems (Equation 53.54).

53.5.1 Pure-Feedback Systems

ẋi = xi+1+ϕi(x1, . . . , xi+1)Tθ, i = 1, . . . , n− 1,

ẋn =
(
β0(x)+ β(x)Tθ

)
u+ϕ0(x)+ϕn(x)Tθ,

(53.169)

where ϕ0(0)= 0, ϕ1(0)= · · · = ϕn(0)= 0, and β0(0) �= 0. Because of the dependence of ϕi on xi+1,
the regulation or tracking for pure-feedback systems is, in general, not global, even when θ is known.

53.5.2 Unknown Virtual Control Coefficients

ẋi = bixi+1+ϕi(x1, . . . , xi)
Tθ, i = 1, . . . , n− 1,

ẋn = bnβ(x)u+ϕn(x1, . . . , xn)Tθ,
(53.170)

where, in addition to the unknown vector θ, the constant coefficients bi are also unknown. The unknown
bi-coefficients are frequent in applications ranging from electric motors to flight dynamics. The signs of
bi , i = 1, . . . , n, are assumed to be known. In the tuning functions design, in addition to estimating bi , we
also estimate its inverse 'i = 1/bi . In the modular design we assume that in addition to sgnbi , a positive
constant ςi is known such that |bi| ≥ ςi . Then, instead of estimating 'i = 1/bi , we use the inverse of the
estimate b̂i , that is, 1/b̂i , where b̂i(t) is kept away from zero by using parameter projection.
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53.5.3 Multi-Input Systems

Ẋi = Bi(X̄i)Xi+1+Φi(X̄i)
Tθ, i = 1, . . . , n− 1,

Ẋn = Bn(X)u+Φn(X)Tθ,
(53.171)

where Xi is a νi-vector, ν1 ≤ ν2 ≤ · · · ≤ νn, X̄i =
[
XT

1 , . . . , XT
i

]T
, X = X̄n. and the matrices Bi(X̄i) have

full rank for all X̄i ∈ IR
∑i

j=1 νj . The input u is a νn-vector. The matrices Bi can be allowed to be unknown,
provided they are constant and positive definite.

53.5.4 Block Strict-Feedback Systems

ẋi = xi+1+ϕi(x1, . . . , xi , ζ1, . . . , ζi)
Tθ, i = 1, . . . , ρ− 1,

ẋρ = β(x, ζ)u+ϕρ(x, ζ)Tθ,

ζ̇i =Φi,0(x̄i , ζ̄i)+Φi(x̄i , ζ̄i)
Tθ, i = 1, . . . , ρ,

(53.172)

with the following notation: x̄i = [x1, . . . , xi]T , ζ̄i =
[
ζT1 , . . . , ζTi

]T
, x = x̄ρ, and ζ= ζ̄ρ. Each ζi-subsystem

of Equation 53.172 is assumed to be bounded-input bounded-state (BIBS) stable with respect to the input
(x̄i , ζ̄i−1). For this class of systems it is quite simple to modify the procedure in Tables 53.1 and 53.2. Because
of the dependence of ϕi on ζ̄i , the stabilizing function αi is augmented by the term +∑i−1

k=1
∂αi−1
∂ζk

Φk,0,

and the regressor wi is augmented by−∑i−1
k=1Φi

(
∂αi−1
∂ζk

)T
.

53.5.5 Partial State-Feedback Systems

In many physical systems there are unmeasured states as in the output-feedback form (Equation 53.112),
but there are also states other than the output y = x1 that are measured. An example of such a system is

ẋ1 = x2+ϕ1(x1)Tθ,

ẋ2 = x3+ϕ2(x1, x2)Tθ,

ẋ3 = x4+ϕ3(x1, x2)Tθ,

ẋ4 = x5+ϕ4(x1, x2)Tθ,

ẋ5 = u+ϕ5(x1, x2, x5)Tθ.

The states x3 and x4 are assumed not to be measured. To apply the adaptive backstepping designs
presented in this chapter, we combine the state-feedback techniques with the output-feedback techniques.
The subsystem (x2, x3, x4) is in the output-feedback form with x2 as a measured output; hence we employ
a state estimator for (x2, x3, x4) using the filters introduced in Section 53.4.

53.6 For Further Information

Here we have briefly surveyed representative results in adaptive nonlinear control, a research area that
exhibited rapid growth in the 1990s and continues to be active today.

The first adaptive backstepping design was developed by Kanellakopoulos et al. [5]. Its overparametriza-
tion was removed by the tuning functions design of Krstić et al. [8]. Possibilities for extending the class
of systems in [5] were studied by Seto et al. [17].

Among the early estimation-based results are Sastry and Isidori [16], Pomet and Praly [13], and so on.
They were surveyed in Praly et al. [14]. All these designs involve some growth conditions. The modular
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approach of Krstić and Kokotović [10] removed the growth conditions and achieved a complete separation
of the controller and the identifier.

One of the first output-feedback designs was proposed by Marino and Tomei [11]. Kanellakopoulos
et al. [6] presented a solution to the partial state-feedback problem. Subsequent efforts in adaptive non-
linear control focused on broadening the class of nonlinear systems for which adaptive controllers are
available. Jiang and Pomet [4] developed a design for nonholonomic systems using the tuning functions
technique. Khalil [7] developed semiglobal output feedback designs for a class which includes some
systems not transformable into the output feedback form.

For a complete and pedagogical presentation of adaptive nonlinear control the reader is referred to the
text “Nonlinear and Adaptive Control Design” by Krstić et al. [9]. The book introduces backstepping and
illustrates it with numerous applications (including jet engine, automotive suspension, aircraft wing rock,
robotic manipulator, and magnetic levitation). It contains the details of methods surveyed here and their
extensions. It also covers several important topics not mentioned here. Among them is the systematic
improvement of transient performance. It also shows the advantages of applying adaptive backstepping
to linear systems.

Hundreds of papers have been written on the subject of adaptive nonlinear control and backstepping
design over the last decade and a half. A detailed citation survey is beyond the scope of this chapter, but we
mention some of the key groups of results. Adaptive nonlinear controllers have been developed for the class
of strict-feedforward systems, some classes of stochastic nonlinear systems, and some classes of nonlinear
systems involving time delays. Robustness of adaptive backstepping controllers to disturbances and
unmodeled dynamics has been studied, as well as parameter convergence and identifiability. Extensions to
discrete-time nonlinear systems have been developed. Some classes of nonlinearly parametrized problems
have also been considered. The fundamental problem of asymptotic behavior of parameter estimates
in the absence of persistency of excitation has also been addressed, with surprising results—estimates
may converge to destabilizing frozen values from large sets of initial conditions. Decentralized forms
of adaptive backstepping have also been developed. Numerous control application results have been
reported using adaptive backstepping methods, from automotive, aerospace, and underwater vehicles, to
biochemical systems, magnetic levitation, HVAC, and so on.

A number of books have been inspired by the design frameworks introduced in [9]. We mention only a
few of the books. Marino and Tomei [12] and Qu [15] presented additional or alternative recursive design
techniques for adaptive and robust nonlinear control. Spooner et al. [18] combined the methods presented
this chapter with neural and fuzzy approximation techniques. French et al. [3] studied the performance
properties of adaptive backstepping controllers employing neural networks. Dawson et al. [2] presented a
comprehensive methodology for adaptive nonlinear control of electric machines based on backstepping
methods. Astolfi et al. [1] developed the idea of system immersion and manifold invariance, leading to
modular rather than classical Lyapunov schemes.
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54.1 Introduction

Intelligent control, the discipline where control algorithms are developed by emulating certain
characteristics of intelligent biological systems, is an emerging area of control that is being fueled by
the advancements in computing technology (Antsaklis and Passino, 1993; Passino, 2005). For instance,
software development and validation tools for expert systems (computer programs that emulate the actions
of a human who is proficient at some task) are being used to construct “expert controllers” that seek to
automate the actions of a human operator who controls a system. Other knowledge-based systems such
as fuzzy systems (rule-based systems that use fuzzy logic for knowledge representation and inference) and
planning systems (that emulate human planning activities) are being used in a similar manner to auto-
mate the perceptual, cognitive (deductive and inductive), and action-taking characteristics of humans
who perform control tasks. Artificial neural networks emulate biological neural networks and have been
used to (1) learn how to control systems by observing the way that a human performs a control task, and
(2) learn in an online fashion how to best control a system by taking control actions, rating the quality
of the responses achieved when these actions are used, then adjusting the recipe used for generating
control actions so that the response of the system improves. Genetic algorithms are being used to evolve
controllers via off-line computer-aided-design of control systems or in an online fashion by maintaining
a population of controllers and using survival of the fittest principles where “fittest” is defined by the
quality of the response achieved by the controller.

From these examples we see that computing technology is driving the development of the field of control
by providing alternative strategies for the functionality and implementation of controllers for dynamical
systems. In fact, there is a trend in the field of control to integrate the functions of intelligent systems,
such as those listed above, with conventional control systems to form highly “autonomous” systems

54-1
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that have the capability to perform complex control tasks independently with a high degree of success.
This trend toward the development of intelligent autonomous control systems is gaining momentum as
control engineers have solved many problems and are naturally seeking control problems where broader
issues must be taken into consideration and where the full range of capabilities of available computing
technologies is used.

The development of such sophisticated controllers does, however, still fit within the conventional
engineering methodology for the construction of control systems. Mathematical modeling using first
principles or data from the system, along with heuristics are used. Some intelligent control strategies rely
more on the use of heuristics (e.g., direct fuzzy control) but others utilize mathematical models in the same
way that they are used in conventional control (e.g., see the chapter in this section on neural control of
nonlinear systems), while still others use a combination of mathematical models and heuristics (see, e.g.,
the approaches to fuzzy adaptive control in Passino, 2005). There is a need for systematic methodologies
for the construction of controllers. Some methodologies for the construction of intelligent controllers are
quite ad hoc (e.g., for the fuzzy controller) yet often effective since they provide a method and formalism for
incorporating and representing the nonlinearities that are needed to achieve high-performance control.
Other methodologies for the construction of intelligent controllers are no more ad hoc than ones for
conventional control (e.g., for neural and fuzzy adaptive controllers). There is a need for nonlinear
analysis of stability, controllability, and observability properties. Although there has been significant
progress recently in stability analysis of fuzzy, neural, and expert control systems, there is need for much
more work in nonlinear analysis of intelligent control systems, especially in hybrid ones. Simulations and
experimental evaluations of intelligent control systems are necessary. Comparative analysis of competing
control strategies (conventional or intelligent) is, as always, important. Engineering cost–benefit analysis
that involves issues of performance, stability, ease-of-design, lead-time to implementation, complexity of
implementation, cost, and other issues must be used.

Overall, while the intelligent control paradigm focuses on biologically motivated (bioinspired)
approaches (and uses what some call biomimicry), there are sometimes only small differences in the
behavior of the resulting controllers that are finally implemented (intelligent are not mystical; they are
simply nonlinear, often adaptive controllers). This is, however, not surprising since there seems to be an
existing conventional control approach that is analogous to every new intelligent control approach that
has been introduced. This is illustrated in Table 54.1. It is not surprising then that while there seem to
be some new concepts growing from the field of intelligent control, there is a crucial role for the control
engineer and control scientist to play in evaluating and developing the field of intelligent control. For
more detailed discussions on the relationships between conventional and intelligent control; see Passino
(2005).

TABLE 54.1 Analogies between Conventional and Intelligent Control

Intelligent Control Technique Conventional Control Approach

Direct fuzzy control Nonlinear control

Fuzzy adaptive/learning control Adaptive control and identification

Fuzzy supervisory control Gain-scheduled control, hierarchical control

Direct expert control Controllers for automata, Petri nets, and other discrete event

systems

Planning systems for control Certain types of controllers for discrete event systems, receding

horizon control of nonlinear systems, model predictive control

Neural control Adaptive control and identification, optimal control

Genetic algorithms for computer-aided-design

(CAD) of control systems, controller tuning,

identification

CAD using heuristic optimization techniques, optimal control,

receding horizon control, and stochastic adaptive control
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In this chapter, we briefly examine the basic techniques of intelligent control, provide an overview of
intelligent autonomous control, and discuss some advances that have focused on comparative analysis,
modeling, and nonlinear analysis of intelligent control systems. The intent is only to provide a brief
introduction to the field of intelligent control and to the next two chapters; the interested reader should
consult the references provided at the end of the chapter, or the chapters on fuzzy and neural control for
more details.

54.2 Intelligent Control Techniques

Major approaches to intelligent control are outlined below and references are provided in case the reader
would like to learn more about any one of these approaches. It is important to note that while each of
the approaches is presented separately, in practice there is a significant amount of work being done to
determine the best ways to utilize various aspects of each of the approaches in “hybrid” intelligent control
techniques. For instance, neural and fuzzy control approaches are often combined. In other cases, neural
networks are trained with genetic algorithms. One can imagine justification for integration of just about
any permutation of the presented techniques depending on the application at hand.

54.2.1 Fuzzy Control

A fuzzy controller can be designed to crudely emulate the human deductive process (i.e., the process
whereby we successively infer conclusions from our knowledge). As shown in Figure 54.1 the fuzzy con-
troller consists of four main components. The rule-base holds a set of “IF–THEN” rules that are quantified
via fuzzy logic and used to represent the knowledge that human experts may have about how to solve a
problem in their domain of expertise. The fuzzy inference mechanism successively decides what rules are
most relevant to the current situation and applies the actions indicated by these rules. The fuzzification
interface converts numeric inputs into a form that the fuzzy inference mechanism can use to determine
which knowledge in the rule-base is most relevant at the current time. The defuzzification interface com-
bines the conclusions reached by the fuzzy inference mechanism and provides a numeric value as an
output. Overall, the fuzzy control design methodology, which primarily involves the specification of the
rule-base, provides a heuristic technique to construct nonlinear controllers and this is one of its main
advantages. For more details on direct fuzzy control see the next chapter or Passino and Yurkovich (1998).

Often it is the case that we have better knowledge about how to control a process such as, information
on how to tune the controller while it is in operation or how to coordinate the application of different
controllers based on the operating point of the system. For instance, in aircraft control certain key variables
are used in the tuning (scheduling) of control laws and fuzzy control provides a unique approach to the
construction and implementation of such a gain scheduler. In process control, engineers or process
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FIGURE 54.1 Fuzzy control system.



�

�

�

�

� �

54-4 Control System Advanced Methods

Process
Outputs

InputsController
Reference
input

Rule-based supervisor

FIGURE 54.2 Rule-based supervisory control.

operators often have a significant amount of heuristic expertise on how to tune proportional-integral-
derivative (PID) controllers while they are in operation and such information can be loaded into the
rule-base of a “fuzzy PID tuner” and used to make sure that a PID controller is tuned properly at all
times. In the more general case, we may have knowledge of how to tune and coordinate the application
of conventional or fuzzy controllers and this can be used in a rule-based supervisor as it is shown in
Figure 54.2. For more details on fuzzy supervisory control see the next chapter.

In other fuzzy control approaches, rather than implementing deductive systems, the goal is to imple-
ment an “inductive system,” that is, one that can learn and generalize from particular examples (e.g.,
examples of how the system is behaving). Such approaches typically fall under the title of “fuzzy learning
control” or “fuzzy adaptive control.” In one approach, shown in Figure 54.3, called fuzzy model reference
learning control (FMRLC) (Layne and Passino, 1993), there is a fuzzy controller with a rule-base that
has no knowledge about how to control the system. A “reference model” with output ym(t) is used to
characterize how you would like the closed-loop system to behave (i.e., it holds the performance speci-
fications). Then, a learning mechanism compares y(t) to ym(t) (i.e., the way that the system is currently
performing to how you would like it to perform) and decides how to synthesize and tune the fuzzy con-
troller so that the difference between y(t) and ym(t) goes to zero and hence, the performance objectives
are met.

Overall, our experiences with the FMRLC indicate that significant advantages may be obtained if
one can implement a controller that can truly learn from its experiences (while forgetting appropriate
information) so that when a similar situation is repeatedly encountered the controller already has a
good idea of how to react. This seems to represent an advance over some adaptive controllers where
parameters are adapted in a way such that each time the same situation is encountered, some amount of
(often complete) readaptation must occur no matter how often this situation is encountered (for more
details on this and other fuzzy learning/adaptive control approaches see the next chapter or Passino, 2005).

Process

y(t)u(t)

ym(t)

r(t)
Fuzzy

controller

Reference
model

Learning
mechanism

FIGURE 54.3 Fuzzy model reference learning control.
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54.2.2 Expert and Planning Systems

While fuzzy control techniques similar to those described above have been employed in a variety of indus-
trial control applications, more general “knowledge-based controllers” have also been used successfully.
For instance, there are “expert controllers” that are being used to directly control complex processes
or in a supervisory role similar to that shown in Figure 54.2 (Antsaklis and Passino, 1993; Passino and
Lunardhi, 1995). Others are being used to supervise conventional control algorithms. For instance, the
work in Astrom et al. (1986) describes the use of expert supervisory systems for conventional adaptive
controllers. Expert systems are also being used as the basis for learning controllers.

In addition, there are planning systems (computer programs that emulate the way that experts plan)
that have been used in path planning and high-level decisions about control tasks for robots (Antsaklis
and Passino, 1993; Valavanis and Saridis, 1992; Dean and Wellman, 1991). A generic planning system,
configured in the architecture of a standard control system, is shown in Figure 54.4. Here, the “problem
domain” is the environment that the planner operates in, that is, the plant. There are measured outputs yi

at step i (variables of the problem domain that can be sensed in real-time), control actions ui (the ways in
which we can affect the problem domain), disturbances di (that represent random events that can affect
the problem domain and hence, the measured variable yi), and goals gi (what we would like to achieve in
the problem domain). There are closed-loop specifications that quantify performance specifications and
stability requirements.

It is the task of the planner, shown in Figure 54.4, to monitor the measured outputs and goals and
generate control actions that will counteract the effects of the disturbances and result in the goals and
the closed-loop specifications to be achieved. To do this, the planner performs “plan generation” where
it projects into the future (a finite number of steps using a model of the problem domain) and tries to
determine a set of candidate plans. Next, this set of plans is pruned to one plan that is the best one to
apply at the current time. The plan is executed and during execution the performance resulting from
the plan is monitored and evaluated. Often, due to disturbances, plans will fail and hence the planner
must generate a new set of candidate plans, select one, and then execute that one. While not pictured
in Figure 54.4, some planning systems use “situation assessment” to try to estimate the state of the
problem domain (this can be useful in execution monitoring and in plan generation), others perform
“world modeling” where a model of the problem domain is developed in an online fashion (similar to
online system identification), and “planner design” where information from the world modeler is used
to tune the planner (so that it makes the right plans for the current problem domain). The reader will,
perhaps, think of such a planning system as a general “self-tuning regulator.” For more details on the
use of planning systems for control see Antsaklis and Passino (1993), Dean and Wellman (1991), and
Passino (2005).
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54.2.3 Neural Networks for Control

There has been significant activity in the use of artificial neural networks for control (Hunt et al., 1994;
Spooner et al., 2002; Farrell and Polycarpou, 2006). In this approach, engineers are trying to emulate
the low-level biological functions of the brain and use these to solve challenging control problems. For
instance, for some control problems we may train an artificial neural network to remember how to
regulate a system by repeatedly providing it with examples of how to perform such a task. After the neural
network has learned the task, it can be used to recall the control input for each value of the sensed output.
Some other approaches to neural control, taken from Hunt et al. (1994 and the references therein), include
a neural “internal model control” method and a “model reference structure” that is based on an approach
to using neural networks for system identification.

Still other neural control approaches bear some similarities to the FMRLC in Figure 54.3 in the sense
that they automatically learn how to control a system by observing the behavior from that system. For
instance, in Figure 54.5 we show a “neural predictive control” approach from Hunt et al. (1994) where
one neural network is used as an identifier (structure) for the plant and another is used as a feedback
controller for the plant that is tuned online. This tuning proceeds at each step by having the “optimizer”
specify an input u′ for the neural model of the plant over some time interval. The predicted behavior of
the plant y′ is obtained and used by the optimizer, along with ym to pick the best parameters of the neural
controller so that the difference between the plant and reference model outputs is as small as possible (if
y′ predicts y well we would expect that the optimizer would be quite successful at tuning the controller).
For more details on the multitude of techniques for using neural networks for control see Hunt et al.
(1994).

54.2.4 Genetic Algorithms for Control

A genetic algorithm uses the principles of evolution, natural selection, and genetics from natural biological
systems in a computer algorithm to simulate evolution (Goldberg, 1989). Essentially, the genetic algorithm
performs a parallel, stochastic, but directed search to evolve the population that is most fit. It has been
shown that a genetic algorithm can be used effectively in the (off-line) computer-aided-design of control
systems because it can artificially “evolve” an appropriate controller that meets the performance specifi-
cations to the greatest extent possible. To do this, the genetic algorithm maintains a population of strings
where each represents a different controller and it uses the genetic operators of “reproduction” (which
represents the “survival of the fittest” characteristic of evolution), “crossover” (which represents “mating”),
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and “mutation” (which represents the random introduction of new “genetic material”), coupled with a
“fitness measure” (which often quantifies the performance objectives) to generate successive generations
of the population. After many generations, the genetic algorithm often produces an adequate solution to
a control design problem since the stochastic, but directed, search helps avoid locally optimal designs and
seeks to obtain the best design possible.

Another more challenging problem is that of how to evolve controllers while the system is oper-
ating, rather than in off-line design. Progress in this direction has been made by the introduction of
the genetic model reference adaptive controller (GMRAC) shown in Figure 54.6 (Porter and Passino,
1994). As in the FMRLC, the GMRAC uses a reference model to characterize the desired performance.
For the GMRAC a genetic algorithm maintains a population of strings that represent candidate con-
trollers. This genetic algorithm uses a process model (e.g., a linear model of the process) and data from
the process to evaluate the fitness of each controller in the population at each time step. Using this
fitness evaluation the genetic algorithm propagates controllers into the next generation via the stan-
dard genetic operators. The controller that is the most fit one in the population is used to control the
system. This allows the GMRAC to automatically evolve a controller from generation to generation
(i.e., from one time step to the next) and hence to tune a controller in response to changes in the
process (e.g., due to temperature variations, parameter drift, etc.) or due to an online change of the
specifications in the reference model. Early indications are that the GMRAC seems quite promising
as a new technique for stochastic adaptive control since it provides a unique feature where alternative
controllers can be quickly applied to the problem if they appear useful, and because it has some inher-
ent capabilities to learn via evolution of its population of controllers. There is, however, a significant
amount of comparative and nonlinear analysis that needs to be done to fully evaluate this approach
to control.

54.3 Autonomous Control

The goal of the field of autonomous control is to design control systems that automate enough functions
so that they can independently perform well under significant uncertainties for extended periods of time
even if there are significant system failures or disturbances. Below, we overview some of the basic ideas
from Antsaklis and Passino (1993) and Passino (2005) on how to specify controllers that can in fact
achieve high levels of autonomy.
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54.3.1 The Intelligent Autonomous Controller

Figure 54.7 shows a functional architecture for an intelligent autonomous controller with an interface
to the process (plant) involving sensing (e.g., via conventional sensing technology, vision, touch, smell,
etc.), actuation (e.g., via hydraulics, robotics, motors, etc.), and an interface to humans (e.g., a driver,
pilot, crew, etc.) and other systems. The “execution level” has low-level numeric signal processing and
control algorithms (e.g., PID, optimal, or adaptive control; parameter estimators, failure detection and
identification (FDI) algorithms). The “coordination level” provides for tuning, scheduling, supervision,
and redesign of the execution level algorithms, crisis management, planning and learning capabilities for
the coordination of execution level tasks, and higher-level symbolic decision making for FDI and control
algorithm management. The “management level” provides for the supervision of lower level functions
and for managing the interface to the human(s). In particular, the management level will interact with the
users in generating goals for the controller and in assessing capabilities of the system. The management
level also monitors performance of the lower level systems, plans activities at the highest level (and
in cooperation with the human), and performs high level learning about the user and the lower level
algorithms. Applications that have used this type of architecture can be found in Antsaklis and Passino
(1993), Valavanis and Saridis (1992), and Gazi et al. (2001).

Intelligent systems/controllers (fuzzy, neural, genetic, expert, etc.) can be employed as appropriate in
the implementation of various functions at the three levels of the intelligent autonomous controller (adap-
tive fuzzy control may be used at the execution level, planning systems may be used at the management
level for sequencing operations, and genetic algorithms may be used in the coordination level to pick
an optimal coordination strategy). Hierarchical controllers composed of a hybrid mix of intelligent and
conventional systems are commonly used in the intelligent control of complex dynamical systems. This
is due to the fact that to achieve high levels of autonomy, we often need high levels of intelligence, which
calls for incorporation of a diversity of decision-making approaches for complex dynamic reasoning.

There are several fundamental characteristics that have been identified for intelligent autonomous
control systems (see Valavanis and Saridis, 1992; Antsaklis and Passino, 1993, and the references therein).
For example, there is generally a successive delegation of duties from the higher to lower levels and
the number of distinct tasks typically increases as we go down the hierarchy. Higher levels are often

Process

Execution
level

Coordination
level

Management
level

Humans/other subsystems

FIGURE 54.7 Intelligent autonomous controller.
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concerned with slower aspects of the system’s behavior and with its larger portions, or broader aspects.
There is then a smaller contextual horizon at lower levels, that is, the control decisions are made by
considering less information. Higher levels are typically concerned with longer time horizons than lower
levels. It is said that there is “increasing intelligence with decreasing precision as one moves from the lower
to the higher levels” (see Valavanis and Saridis, 1992, and the references therein). At the higher levels
there is typically a decrease in time scale density, a decrease in bandwidth or system rate, and a decrease
in the decision (control action) rate. In addition, there is typically a decrease in granularity of models
used, or equivalently, an increase in model abstractness at the higher levels. Finally, we note that there
is an ongoing evolution of the intelligent functions of an autonomous controller so that by the time one
implements its functions they no longer appear intelligent—just algorithmic. It is this evolution principle
and the fact that implemented intelligent controllers are nonlinear controllers that many researchers
feel more comfortable focusing on achieving autonomy rather than whether the resulting controller is
intelligent.

54.3.2 The Control-Theoretic View of Autonomy

Next, it is explained how to incorporate the notion of autonomy into the conventional manner of thinking
about control problems. Consider the general control system shown in Figure 54.8 where P is a model of
the plant, C represents the controller, and T represents specifications on how we would like the closed-
loop system to behave (i.e., closed-loop specifications). For some classical control problems the scope is
limited so that C and P are linear and T simply represents, for example, stability, rise time, overshoot, and
steady-state tracking error specifications. In this case, intelligent control techniques may not be needed.
As engineers, the simplest solution that works is the best one. We tend to need more complex controllers
for more complex plants (where, for example, there is a significant amount of uncertainty) and more
demanding closed-loop specifications T (see Valavanis and Saridis, 1992; Antsaklis and Passino, 1993,
and the references therein).

Consider the case where

1. P is so complex that it is most convenient to represent it with ordinary differential equations and
discrete event system (DES) models (or some other “hybrid” mix of models) and for some parts of
the plant the model is not known (i.e., it may be too expensive to find).

2. T is used to characterize the desire to make the system perform well and act with high degrees
of autonomy (i.e., so that the system performs well under significant uncertainties in the system
and its environment for extended periods of time, and compensates for significant system failures
without external intervention (Antsaklis and Passino, 1993).

The general control problem is how to construct C, given P, so that T holds. The intelligent autonomous
controller described briefly in the previous section provides a general architecture for C to achieve highly
autonomous behavior specified by T for very complex plants P.

T

PC

FIGURE 54.8 Control system.
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54.3.3 Modeling and Analysis∗

Conventional approaches to modeling P include the use of ordinary differential or difference equations,
partial differential equations, stochastic models, models for hierarchical and distributed systems, and so
on. However, often some portion of P is more easily represented with an automata model, Petri net, or
some other DES model. Moreover, for analysis of the closed-loop system where there are a variety of
intelligent and conventional controllers that are working together to form C (e.g., a planning system and
a conventional adaptive controller) there is the need for “hybrid” modeling formalisms that can represent
dynamics with differential equations and DES models. Control engineers use a model of the plant P to aid
in the construction of the model of the controller C and this model is then implemented to control the real
plant. In addition, models of C and P are used as formalisms to represent the dynamics of the closed-loop
system so that analysis of the properties of the feedback system is possible before implementation (for
redesign, verification, certification, and safety analysis). If the model of P is chosen to be too complex
and C is very complex it will be difficult to develop and utilize mathematical approaches for the analysis
of the resulting closed-loop system. Often we want the simplest possible model P that will allow for the
development of the (simplest) controller C, and allow for it to be proven/demonstrated so that the closed-
loop specifications T are met (of course, a separate more complex model P may be needed for simulation).
Unfortunately, there is no clear answer to the question of how much or what type of modeling is needed
for the plant P and there is no standardization of models for intelligent control in the way that there is
for many areas of conventional control. Hence, although it is not exactly clear how to proceed with the
modeling task, it is clear that knowledge of many different types of models may be needed, depending on
the task at hand.

Given the model of the plant P and the model of the controller C, the next task often considered by
a control engineer is the use of analysis to more fully understand the behavior of P or the closed-loop
system, and to show that when C and P are connected, the closed-loop specifications T are satisfied. Formal
mathematical analysis can be used to verify stability, controllability, and observability properties. There
is, in fact, a growing amount of literature on nonlinear analysis (e.g., stability and describing function
analysis) of fuzzy control systems (both direct and adaptive [Jenkins and Passino, 1999; Spooner et al.,
2002; Farrell and Polycarpou, 2006]). There is a significant amount of activity in the area of nonlinear
analysis of neural control systems and results in the past on nonlinear analysis of (numerical) learning
control systems (see the later chapter in this section of this book and Hunt et al. (1994). There have already
been some applications of DES theory to artificial intelligent (AI) planning systems and there have been
recent results on stability analysis of expert control systems (Passino and Lunardhi, 1995). There has
been some progress in defining models and developing approaches to analysis for some hybrid systems,
but there is the need for much more work in this area. Many fundamental modeling and representation
issues need to be reconsidered, different design objectives and control structures need to be examined,
our repertoire of approaches to analysis and design needs to be expanded, and there is the need for more
work in the area of simulation and experimental evaluation for hybrid systems. The importance of the
solution to the hybrid control system analysis problem is based on the importance of solving the general
control problem described above; that is, hybrid system analysis techniques could provide an approach to
verifying the operation of intelligent controllers that seek to obtain truly autonomous operation. Finally,
it must be emphasized that while formal verification of the properties of a control system is important,
simulation and experimental evaluation always plays an especially important role also.

54.4 Concluding Remarks

We have provided a brief overview of the main techniques in the field of intelligent control and have pro-
vided references for the reader who is interested in investigating the details of any one of these techniques.

∗ The reader can find references for the work on modeling and analysis of intelligent control systems discussed in this
section in [Passino, 2005].
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The intent of this chapter was to provide the reader with an overview of a relatively new area of control,
while the intent of the next two chapters is to provide an introduction to two of the more well-developed
areas in intelligent control—fuzzy and neural control. In a chapter so brief it seems important to indicate
what has been omitted. We have not discussed: (1) FDI methods that are essential for a truly autonomous
controller, (2) reconfigurable (fault tolerant) control strategies that use conventional nonlinear robust
control techniques and intelligent control techniques, (3) sensor fusion and integration techniques that
will be needed for autonomous control, (4) architectures for intelligent and autonomous control systems
(e.g., alternative ways to structure interconnections of intelligent subsystems), (5) distributed intelligent
systems (e.g., multiagent systems), (6) attentional systems, and (7) applications.

54.5 Defining Terms

Expert system: A computer program designed to emulate the actions of a human who is proficient
at some task. Often the expert system is broken into two components: a “knowledge-base”
that holds information about the problem domain, and an inference mechanism (engine) that
evaluates the current knowledge and decides what actions to take. An “expert controller” is an
expert system that is designed to automate the actions of a human operator who controls a
system.

Fuzzy systems: A type of knowledge-based system that uses fuzzy logic for knowledge representation and
inference. It is composed of four primary components: the fuzzification interface, the rule-base
(a knowledge-base that is composed of rules), an inference mechanism, and a defuzzification
interface. A fuzzy system that is used to control a system is called a “fuzzy controller.”

Planning system: Computer program designed to emulate human planning activities. These may be a
type of expert system that has a special knowledge-base that has plan fragments and strategies
for planning and an inference process that generates and evaluates alternative plans.

Neural network: Artificial hardware (e.g., electrical circuits) designed to emulate biological neural
networks. These may be simulated on conventional computers or on specially designed “neural
processors.”

Genetic algorithm: A genetic algorithm uses the principles of evolution, natural selection, and genetics
from natural biological systems in a computer algorithm to simulate evolution. Essentially,
the genetic algorithm performs a parallel, stochastic, but directed search to evolve the most fit
population.

Intelligent autonomous control system: A control system that uses conventional and intelligent control
techniques to provide enough automation so that the system can independently perform well
under significant uncertainties for extended periods of time even if there are significant system
failures or disturbances.
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For Further Information

While the books and articles referenced above (particularly, Passino, 2005) should provide the reader
with an introduction to the area of intelligent control, there are other sources that may also be useful. For
instance, there are many relevant conferences including: (1) IEEE International Symposium on Intelligent
Control, (2) American Control Conference, (3) IEEE Conference on Decision and Control, (4) IEEE Confer-
ence on Control Applications, and (5) IEEE International Conference on Systems, Man, and Cybernetics.
In addition, there are many conferences on fuzzy systems, expert systems, genetic algorithms, and neural
networks where applications to control are often studied. There are many journals that cover the topic
of intelligent control including: (1) IEEE Control Systems Magazine, (2) IEEE Trans. on Control Systems
Technology, (3) IEEE Trans. on Systems, Man, and Cybernetics, (4) IEEE Trans. on Fuzzy Systems, (5) IEEE
Trans. on Neural Networks, (6) Engineering Applications of Artificial Intelligence, (7) Journal of Intelligent
and Robotic Systems, (8) Applied Artificial Intelligence, and (9) Journal of Intelligent and Fuzzy Systems.
There are many other journals on expert systems, neural networks, genetic algorithms, and fuzzy systems
where applications to control can often be found. The professional societies most active in intelligent
control are the IEEE Control Systems Society, International Federation on Automatic Control, and the
IEEE Systems, Man, and Cybernetics Society.
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55.1 Introduction

When confronted with a control problem for a complicated physical process, the control engineer usually
follows a predetermined design procedure, which begins with the need for understanding the process and
the primary control objectives. A good example of such a process is that of an automobile “cruise control,”
designed with the objective of providing the automobile with the capability of regulating its own speed
at a driver-specified set-point (e.g., 55 mph). One solution to the automotive cruise control problem
involves adding an electronic controller that can sense the speed of the vehicle via the speedometer
and actuate the throttle position so as to regulate the vehicle speed at the driver-specified value even if
there are road grade changes, head-winds, or variations in the number of passengers in the automobile.
Control engineers typically solve the cruise control problem by (1) developing a model of the automobile
dynamics (which may model vehicle and power train dynamics, road grade variations, etc.), (2) using
the mathematical model to design a controller (e.g., via a linear model develop a linear controller with
techniques from classical control), (3) using the mathematical model of the closed-loop system and
mathematical or simulation-based analysis to study its performance (possibly leading to redesign), and
(4) implementing the controller via, for example, a microprocessor, and evaluating the performance of
the closed-loop system (again possibly leading to redesign).

55-1
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The difficult task of modeling and simulating complex real-world systems for control systems devel-
opment, especially when implementation issues are considered, is well documented. Even if a relatively
accurate model of a dynamical system can be developed, it is often too complex to use in controller devel-
opment, especially for many conventional control design procedures that require restrictive assumptions
for the plant (e.g., linearity). It is for this reason that in practice conventional controllers are often
developed via simple crude models of the plant behavior that satisfy the necessary assumptions, and via
the ad hoc tuning of relatively simple linear or nonlinear controllers. Regardless, it is well understood
(although sometimes forgotten) that heuristics enter the design process when the conventional control
design process is used as long as one is concerned with the actual implementation of the control system. It
must be acknowledged, however, that conventional control engineering approaches that use appropriate
heuristics to tune the design have been relatively successful (the vast majority of all controllers currently
in operation are conventional PID controllers). One may ask the following questions: How much of the
success can be attributed to the use of the mathematical model and conventional control design approach,
and how much should be attributed to the clever heuristic tuning that the control engineer uses upon
implementation? If we exploit the use of heuristic information throughout the entire design process can
we obtain higher performance control systems?

Fuzzy control provides a formal methodology for representing, manipulating, and implementing a
human’s heuristic knowledge about how to control a system. Fuzzy controller design involves incor-
porating human expertise on how to control a system into a set of rules (a rule-base). The inference
mechanism in the fuzzy controller reasons over the information in the knowledge-base, the process out-
puts, and the user-specified goals to decide what inputs to generate for the process so that the closed-loop
fuzzy control system will behave properly (e.g., so that the user-specified goals are met). From the cruise
control example discussed above, it is clear that anyone who has experience in driving a car can practice
regulating the speed about a desired set-point and load this information into a rule-base. For instance,
one rule that a human driver may use is “IF speed is lower than the set-point THEN press down further on
the accelerator pedal.” A rule that would represent even more detailed information about how to regulate
the speed would be “IF speed is lower than the set-point AND speed is approaching the set-point very fast
THEN release the accelerator pedal by a small amount.” This second rule characterizes our knowledge
about how to make sure that we do not overshoot our desired (goal) speed. Generally speaking, if we
load very detailed expertise into the rule-base we enhance our chances of obtaining better performance.
Overall, the focus in fuzzy control is on the use of heuristic knowledge to achieve good control, whereas
in conventional control the focus is on the use of a mathematical model for control systems development
and subsequent use of heuristics in implementation.

55.1.1 Philosophy of Fuzzy Control

Due to the substantial amount of hype and excitement about fuzzy control, it is important to begin by
providing a sound control engineering philosophy for this approach. First, there is a need for the control
engineer to assess what (if any) advantages fuzzy control methods have over conventional methods. Time
permitting, this must be done by careful comparative analyses involving modeling, mathematical analysis,
simulation, implementation, and a full engineering cost–benefit analysis (which involves issues of cost,
reliability, maintainability, flexibility, lead-time to production, etc.). When making the assessment of
what control technique to use, the engineer should be cautioned that most work in fuzzy control to date
has only focused on its advantages and has not taken a critical look at what possible disadvantages there
could be to using it. For example, the following questions are cause for concern:

• Will the behaviors observed by a human expert include all situations that can occur due to distur-
bances, noise, or plant parameter variations?

• Can the human expert realistically and reliably foresee problems that could arise from closed-loop
system instabilities or limit cycles?
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• Will the expert be able to effectively incorporate stability criteria and performance objectives (e.g.,
rise-time, overshoot, and tracking specifications) into a rule-base to ensure that reliable operation
can be obtained?

• Can an effective and widely used synthesis procedure be devoid of mathematical modeling and
subsequent use of proven mathematical analysis tools?

These questions may seem even more troublesome if: (1) the control problem involves a “critical envi-
ronment” where the failure of the control system to meet performance objectives could lead to loss of
human life or an environmental disaster (e.g., in aircraft or nuclear power plant control), or (2) if the
human expert’s knowledge implemented in the fuzzy controller is somewhat inferior to that of a very
experienced specialist that we expect to have design the control system (different designers have different
levels of expertise). Clearly, then, for some applications there is a need for a methodology to develop,
implement, and evaluate fuzzy controllers to ensure that they are reliable in meeting their performance
specifications.

As it is discussed above, the standard control engineering methodology involves repeatedly coordi-
nating the use of modeling, controller (re)design, simulation, mathematical analysis, and experimen-
tal evaluations to develop control systems. What is the relevance of this established methodology to
the development of fuzzy control systems? Engineering a fuzzy control system uses many ideas from
the standard control engineering methodology, except that in fuzzy control it is often said that a for-
mal mathematical model is assumed unavailable so that mathematical analysis is impossible. While it
is often the case that it is difficult, impossible, or cost-prohibitive to develop an accurate mathemat-
ical model for many processes, it is almost always possible for the control engineer to specify some
type of approximate model of the process (after all, we do know what physical object we are trying to
control). Indeed, it has been our experience that most often the control engineer developing a fuzzy
control system does have a mathematical model available. While it may not be used directly in con-
troller design, it is often used in simulation to evaluate the performance of the fuzzy controller before
it is implemented (and it is often used for rule-base redesign). Certainly there are some applications
where one can design a fuzzy controller and evaluate its performance directly via an implementation. In
such applications one may not be overly concerned with a high performance level of the control system
(e.g., for some commercial products such as washing machines or a shaver). In such cases, there may
thus be no need for conducting simulation-based evaluations (requiring a mathematical model) before
implementation. In other applications there is the need for a high level of confidence in the reliabil-
ity of the fuzzy control system before it is implemented (e.g., in systems where there is a concern for
safety).

In addition to simulation-based studies, one approach to enhancing our confidence in the reliability
of fuzzy control systems is to use the mathematical model of the plant and nonlinear analysis for (1)
verification of stability and performance specifications and (2) possible redesign of the fuzzy controller
(for an overview of the results in this area see [1]). Some may be confident that a true expert would
never need anything more than intuitive knowledge for rule-base design, and therefore, never design a
faulty fuzzy controller. However, a true expert will certainly use all available information to ensure the
reliable operation of a control system including approximate mathematical models, simulation, nonlin-
ear analysis, and experimentation. We emphasize that mathematical analysis cannot alone provide the
definitive answers about the reliability of the fuzzy control system because such analysis proves properties
about the model of the process, not the actual physical process. It can be argued that a mathematical
model is never a perfect representation of a physical process; hence, while nonlinear analysis (e.g., of
stability) may appear to provide definitive statements about control system reliability, it is understood
that such statements are only accurate to the extent that the mathematical model is accurate. Nonlinear
analysis does not replace the use of common sense and evaluation via simulations and experimentation;
it simply assists in providing a rigorous engineering evaluation of a fuzzy control system before it is
implemented.
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It is important to note that the advantages of fuzzy control often become most apparent for very
complex problems where we have an intuitive idea about how to achieve high performance control.
In such control applications an accurate mathematical model is so complex (i.e., high order, nonlin-
ear, stochastic, with many inputs and outputs) that it is sometimes not very useful for the analysis
and design of conventional control systems (since assumptions needed to utilize conventional control
design approaches are often violated). The conventional control engineering approach to this prob-
lem is to use an approximate mathematical model that is accurate enough to characterize the essential
plant behavior, yet simple enough so that the necessary assumptions to apply the analysis and design
techniques are satisfied. However, due to the inaccuracy of the model, upon implementation the devel-
oped controllers often need to be tuned via the “expertise” of the control engineer. The fuzzy control
approach, where explicit characterization and utilization of control expertise is used earlier in the design
process, largely avoids the problems with model complexity that are related to design. That is, for the
most part fuzzy control system design does not depend on a mathematical model unless it is needed
to perform simulations to gain insight into how to choose the rule-base and membership functions.
However, the problems with model complexity that are related to analysis have not been solved (i.e.,
analysis of fuzzy control systems critically depends on the form of the mathematical model); hence,
it is often difficult to apply nonlinear analysis techniques to the applications where the advantages of
fuzzy control are most apparent. For instance, as shown in [1], existing results for stability analysis of
fuzzy control systems typically require that the plant model be deterministic, satisfy some continuity
constraints, and sometimes require the plant to be linear or “linear-analytic.” The only results for analysis
of steady-state tracking error of fuzzy control systems, and the existing results on the use of describ-
ing functions for analysis of limit cycles, essentially require a linear time-invariant plant (or one that
has a special form so that the nonlinearities can be bundled into a separate nonlinear component in
the loop).

The current status of the field, as characterized by these limitations, coupled with the importance
of nonlinear analysis of fuzzy control systems, make it an open area for investigation that will help
establish the necessary foundations for a bridge between the communities of fuzzy control and non-
linear analysis. Clearly fuzzy control technology is leading the theory; the practitioner will proceed
with the design and implementation of many fuzzy control systems without the aid of nonlinear
analysis. In the mean time, theorists will attempt to develop a mathematical theory for the verifica-
tion and certification of fuzzy control systems. This theory will have a synergistic effect by driving
the development of fuzzy control systems for applications where there is a need for highly reliable
implementations.

55.1.2 Summary

The focus of this chapter is on providing a practical introduction to fuzzy control (a “users guide”) in
the style of the book [2] (which is available at Kevin M Passino’s web site for a free download); hence,
we omit discussions of mathematical analysis of fuzzy control systems and invite the interested reader to
investigate this topic further by consulting the bibliographic references. The remainder of this chapter
is arranged as follows. We begin by providing a general mathematical introduction to fuzzy systems in
a tutorial fashion. Next, we introduce a rotational inverted pendulum “theme problem.” Many details
on control design using principles of fuzzy logic are presented via this theme problem. We perform
comparative analyses for fixed (nonadaptive) fuzzy and linear controllers. Following this we introduce
the area of adaptive fuzzy control and show how one adaptive fuzzy technique has proven to be particularly
effective for balancing control of the inverted pendulum. In the concluding remarks we explain how the
area of fuzzy control is related to other areas in the field of intelligent control and what research needs to
be performed as the field of fuzzy control matures.
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55.2 Introduction to Fuzzy Control

The functional architecture of the fuzzy system (controller)∗ is composed of a rule-base (containing a fuzzy
logic quantification of the expert’s linguistic description of how to achieve good control), an inference
mechanism (which emulates the expert’s decision-making in interpreting and applying knowledge about
how to do good control), a fuzzification interface (which converts controller inputs into information that
the inference mechanism can easily use to activate and apply rules), and a defuzzification interface (which
converts the conclusions of the inference mechanism into actual inputs for the process). Here we describe
each of these four components in more detail (see Section 55.4 for a block diagram) [3–5].

55.2.1 Linguistic Rules

For our purposes, a fuzzy system is a static nonlinear mapping between its inputs and outputs (i.e., it is
not a dynamical system). It is assumed that the fuzzy system has inputs ui ∈ U i where i = 1, 2, . . . , n and
outputs yi ∈ Yi where i = 1, 2, . . . , m. The ordinary (“crisp”) sets Ui and Yi are called the “universes of
discourse” for ui and yi , respectively (in other words they are their domains).

To specify rules for the rule-base the expert will use a “linguistic description”; hence, linguistic expres-
sions are needed for the inputs and outputs and the characteristics of the inputs and outputs. We will
use “linguistic variables” (constant symbolic descriptions of what are in general time-varying quantities)
to describe fuzzy system inputs and outputs. For our fuzzy system, linguistic variables denoted by ũi are
used to describe the inputs ui . Similarly, linguistic variables denoted by ỹi are used to describe outputs yi .
For instance, an input to the fuzzy system may be described as ũi =“velocity error” and an output from
the fuzzy system may be ỹi =“voltage in.”

Just as ui and yi take on values over each universe of discourse Ui and Yi , respectively, linguistic
variables ũi and ỹi take on “linguistic values” that are used to describe characteristics of the variables.

Let Ã
j
i denote the jth linguistic value of the linguistic variable ũi defined over the universe of discourse

Ui . If we assume that there exist many linguistic values defined over Ui , then the linguistic variable ũi

takes on the elements from the set of linguistic values denoted by Ãi = {Ãj
i : j = 1, 2, . . . , Ni} (sometimes

for convenience we will let the j indices take on negative integer values). Similarly, let B̃
j
i denote the jth

linguistic value of the linguistic variable ỹi defined over the universe of discourse Yi . The linguistic variable
ỹi takes on elements from the set of linguistic values denoted by B̃i = {B̃p

i : p= 1, 2, . . . , Mi} (sometimes
for convenience we will let the p indices take on negative integer values). Linguistic values are generally
expressed by descriptive terms such as “positive large,” “zero,” and “negative big” (i.e., adjectives).

The mapping of the inputs to the outputs for a fuzzy system is in part characterized by a set of
condition→ action rules, or in modus ponens (If . . . Then) form,

If (antecedent) Then (consequent). (55.1)

As usual, the inputs of the fuzzy system are associated with the antecedent, and the outputs are associated
with the consequent. These If . . . Then rules can be represented in many forms. Two standard forms, multi-
input multi-output (MIMO) and multi-input single output (MISO) are considered here. The MISO form
of a linguistic rule is:

If ũ1 is Ã
j
1 and ũ2 is Ãk

2 and, . . . , and ũn is Ãl
n Then ỹq is B̃

p
q. (55.2)

It is a whole set of linguistic rules of this form that the expert specifies on how to control the system.

Note that if ũ1=“velocity error” and Ã
j
1=“positive large,” then “ũ1 is Ã

j
1,” a single term in the antecedent

of the rule, means “velocity error is positive large.” It can be easily shown that the MIMO form for a rule

∗ Sometimes a fuzzy controller is called a “fuzzy logic controller” or even a “fuzzy linguistic controller” since, as we will see,
it uses fuzzy logic in the quantification of linguistic descriptions.
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(i.e., one with consequents that have terms associated with each of the fuzzy controller outputs) can be
decomposed into a number of MISO rules (using simple rules from logic). We assume that there are a
total of R rules in the rule-base numbered 1, 2, . . . , R. For simplicity we will use tuples (j, k, . . . , l; p, q)i to
denote the ith MISO rule of the form given in Equation 55.2. Any of the terms associated with any of the
inputs for any MISO rule can be included or omitted. Finally, we naturally assume that the rules in the
rule-base are distinct (i.e., there are no two rules with exactly the same antecedents and consequents).

55.2.2 Fuzzy Sets, Fuzzy Logic, and the Rule-Base

Fuzzy sets and fuzzy logic are used to heuristically quantify the meaning of linguistic variables, linguistic
values, and linguistic rules that are specified by the expert. The concept of a fuzzy set is introduced by first

defining a “membership function.” Let Ui denote a universe of discourse and Ã
j
i ∈ Ãi denote a specific

linguistic value for the linguistic variable ũi . The function μ(ui) associated with Ã
j
i that maps Ui to [0, 1]

is called a “membership function.” This membership function describes the “certainty” that an element

of Ui , denoted ui , with a linguistic description ũi , may be classified linguistically as Ã
j
i . Membership

functions are generally subjectively specified in an ad hoc (heuristic) manner from experience or intuition.

For instance, if Ui = [−150, 150], ũi=“velocity error,” and Ã
j
i=“positive large,” then μ(ui) may be a bell-

shaped curve that peaks at one at ui = 75 and is near zero when ui < 50 or ui > 100. Then if ui = 75,
μ(75)= 1 so that we are absolutely certain that ui is “positive large.” If ui =−25 thenμ(−25) is very near
zero, which represents that we are very certain that ui is not “positive large.” Clearly, many other choices
for the shape of the membership function are possible (e.g., triangular and trapezoidal shapes) and these
will each provide a different meaning for the linquistics that they quantify. Below, we will show how to
specify membership functions for a fuzzy controller for the rotational inverted pendulum.

Given a linguistic variable ũi with a linguistic value Ã
j
i defined on the universe of discourse Ui , and

membership function μ
A

j
i
(ui) (membership function associated with the fuzzy set A

j
i) that maps Ui to

[0, 1], a “fuzzy set” denoted with A
j
i is defined as

A
j
i = {(ui ,μA

j
i
(ui)) : ui ∈ Ui}. (55.3)

Next, we specify some set-theoretic and logical operations on fuzzy sets. Given fuzzy sets A1
i and A2

i
associated with the universe of discourse Ui (Ni = 2), with membership functions denoted μA1

i
(ui) and

μA2
i
(ui), respectively, A1

i is defined to be a “fuzzy subset” of A2
i , denoted by A1

i ⊂ A2
i , ifμA1

i
(ui)≤ μA2

i
(ui)

for all ui ∈ Ui .
The intersection of fuzzy sets A1

i and A2
i which are defined on the universe of discourse Ui is a fuzzy

set, denoted by A1
i ∩A2

i , with a membership function defined by either:

Minimum: μA1
i ∩A2

i
=min{μA1

i
(ui),μA2

i
(ui) : ui ∈ Ui},

Algebraic Product: μA1
i ∩A2

i
= {μA1

i
(ui)μA2

i
(ui) : ui ∈ Ui}.

(55.4)

Suppose that we use the notation x ∗ y =min{x, y} or at other times we will use it to denote the product
x ∗ y = xy (∗ is sometimes called the “triangular norm”). Then μA1

i
(ui) ∗μA2

i
(ui) is a general represen-

tation for the intersection of two fuzzy sets. In fuzzy logic, intersection is used to represent the “and”
operation.

The union of fuzzy sets A1
i and A2

i , which are defined on the universe of discourse Ui , is a fuzzy set
denoted A1

i ∪A2
i , with a membership function defined by either:

Maximum: μA1
i ∪A2

i
(ui)=max{μA1

i
(ui),μA2

i
(ui) : ui ∈ Ui},

Algebraic Sum: μA1
i ∪A2

i
(ui)= {μA1

i
(ui)+μA2

i
(ui)−μA1

i
(ui)μA2

i
(ui) : ui ∈ Ui}.

(55.5)
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Suppose that we use the notation x⊕ y =max{x, y} or at other times we will use it to denote x⊕
y = x+ y− xy (⊕ is sometimes called the “triangular conorm”). Then μA1

i
(ui)⊕μA2

i
(ui) is a general

representation for the union of two fuzzy sets. In fuzzy logic, union is used to represent the “or” operation.
The intersection and union above are both defined for fuzzy sets that lie on the same universe of

discourse. The fuzzy Cartesian product is used to quantify operations on many universes of discourse.

If A
j
1, Ak

2, . . . , Al
n are fuzzy sets defined on the universes of discourse U1, U2, . . . , Un, respectively, their

Cartesian product is a fuzzy set (sometimes called a “fuzzy relation”), denoted by A
j
1×Ak

2× · · ·×Al
n,

with a membership function defined by

μ
A

j
1×Ak

2×···×Al
n
(u1, u2, . . . , un)= μ

A
j
1
(u1) ∗μAk

2
(u2) ∗ · · · ∗μAn (un). (55.6)

Next, we show how to quantify the linguistic elements in the antecedent and consequent of the linguistic
If . . . Then rule with fuzzy sets. For example, suppose we are given the If . . . Then rule in MISO form in
Equation 55.2. Define the fuzzy sets:

A
j
1 = {(u1,μ

A
j
1
(u1)) : u1 ∈ U1}

Ak
2 = {(u2,μAk

2
(u2)) : u2 ∈ U2}

...

Al
n = {(un,μAl

n
(un)) : un ∈ Un}

B
p
q = {(yq,μB

p
q
(yq)) : yq ∈ Yq}.

(55.7)

These fuzzy sets quantify the terms in the antecedent and the consequent of the given If . . . Then rule, to
make a “fuzzy implication”

If A
j
1 and Ak

2 and, . . . , and Al
n Then B

p
q, (55.8)

where the fuzzy sets A
j
1, Ak

2, . . . , Al
n, and B

p
q are defined in Equation 55.8. Therefore, the fuzzy set A

j
1 is

associated with, and quantifies, the meaning of the linguistic statement “ũ1 is Ã
j
1” and B

p
q quantifies the

meaning of “ỹq is B̃
p
q.” Each rule in the rule-base (j, k, . . . , l; p, q)i , i = 1, 2, . . . , R is represented with such

a fuzzy implication (a fuzzy quantification of the linguistic rule). The reader who is interested in more
mathematical details on fuzzy sets and fuzzy logic should consult [6].

55.2.3 Fuzzification

Fuzzy sets are used to quantify the information in the rule-base, and the inference mechanism operates
on fuzzy sets to produce fuzzy sets; hence, we must specify how the fuzzy system will convert its numeric
inputs ui ∈ Ui into fuzzy sets (a process called “fuzzification”) so that they can be used by the fuzzy system.
Let U∗i denote the set of all possible fuzzy sets that can be defined on Ui . Given ui ∈ Ui , fuzzification
transforms ui to a fuzzy set denoted by Âfuz

i defined∗ over the universe discourse Ui . This transformation
is produced by the fuzzification operator F defined by F : Ui → U∗i , where F (ui) := Âfuz

i . Quite often
“singleton fuzzification” is used, which produces a fuzzy set Âfuz

i ∈ U∗i with a membership function
defined by

μÂfuz
i

(x)=
{

1 x = ui ,
0 otherwise

(55.9)

(any fuzzy set with this form for its membership function is called a “singleton”). Singleton fuzzification
is generally used in implementations since, without the presence of noise, we are absolutely certain

∗ In this section, as we introduce various fuzzy sets. We will always use a hat over any fuzzy set whose membership function
changes dynamically over time as ui changes.
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that ui takes on its measured value (and no other value) and since it provides certain savings in the
computations needed to implement a fuzzy system (relative to, e.g., “Gaussian fuzzification” which would
involve forming bell-shaped membership functions about input points). Throughout the remainder of
this chapter we use singleton fuzzification.

55.2.4 The Inference Mechanism

The inference mechanism has two basic tasks: (1) determining the extent to which each rule is relevant
to the current situation as characterized by the inputs ui , i = 1, 2, . . . , n (we call this task “matching”),
and (2) drawing conclusions using the current inputs ui and the information in the rule-base (we call

this task an “inference step”). For matching note that A
j
1×Ak

2× · · ·×Al
n is the fuzzy set representing the

antecedent of the ith rule (j, k, . . . , l; p, q)i (there may be more than one such rule with this antecedent).
Suppose that at some time we get inputs ui , i = 1, 2, . . . , n, and fuzzification produces Âfuz

1 , Âfuz
2 , . . . , Âfuz

n ,

the fuzzy sets representing the inputs. The first step in matching involves finding fuzzy sets Â
j
1, Âk

2, . . . , Âl
n

with membership functions

μ
Â

j
1
(u1)= μ

A
j
1
(u1) ∗μÂfuz

1
(u1)

μÂk
2
(u2)= μAk

2
(u2) ∗μÂfuz

2
(u2)

...

μÂl
n
(un)= μAl

n
(un) ∗μÂfuz

n
(un)

(for all j, k, . . . , l) that combine the fuzzy sets from fuzzification with the fuzzy sets used in each of the
terms in the antecedents of the rules. If singleton fuzzification is used then each of these fuzzy sets is
a singleton that is scaled by the antecedent membership function (e.g., μ

Â
j
1
(ū1)= μ

A
j
1
(ū1) for ū1 = u1

and μ
Â

j
1
(ū1)= 0 for ū1 �= u1). Second, we form membership values μi(u1, u2, . . . , un) for each rule that

represent the overall certainty that rule i matches the current inputs. In particular, we first let

μ̄i(u1, u2, . . . , un)= μ
Â

j
1
(u1) ∗μÂk

2
(u2) ∗ · · · ∗μÂl

n
(un) (55.10)

be the membership function for Â
j
1× Âk

2× · · ·× Âl
n. Notice that since we are using singleton fuzzification,

we have
μ̄i(ū1, ū2, . . . , ūn)= μ

A
j
1
(ū1) ∗μAk

2
(ū2) ∗ · · · ∗μAl

n
(ūn) (55.11)

for ūi = ui , and μ̄i(ū1, ū2, . . . , ūn) := 0 for ūi �= ui , i = 1, 2, . . . , n. Since the ui are given,
μ

A
j
1
(u1),μAk

2
(u2), . . . ,μAl

n
(un) are constants. Define

μi(u1, u2, . . . , un)= μ
A

j
1
(u1) ∗μAk

2
(u2) ∗ · · · ∗μAl

n
(un), (55.12)

which is simply a function of the inputs ui . We use μi(u1, u2, . . . , un) to represent the certainty that
the antecedent of rule i matches the input information. This concludes the process of matching input
information with the antecedents of the rules.

Next, the inference step is taken by computing, for the ith rule (j, k, . . . , l; p, q)i , the “implied fuzzy set”
B̂i

q with membership function

μB̂i
q
(yq)= μi(u1, u2, . . . , un) ∗μB

p
q
(yq). (55.13)

The implied fuzzy set B̂i
q specifies the certainty level that the output should be a specific crisp output yq

within the unverse of discourse Yq, taking into consideration only rule i. Note that sinceμi(u1, u2, . . . , un)
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will vary with time so will the shape of the membership functions μB̂i
q
(yq) for each rule. Alternatively,

the inference mechanism could, in addition, compute the “overall implied fuzzy set” B̂q with membership
function

μB̂q
(yq)= μB̂1

q
(yq)⊕μB̂2

q
(yq)⊕ · · ·⊕μB̂R

q
(yq) (55.14)

that represents the conclusion reached considering all the rules in the rule-base at the same time (notice
that determining B̂q can, in general, require significant computational resources).

Using the mathematical terminology of fuzzy sets, the computation of μB̂q
(yq) is said to be produced

by a “sup-star compositional rule of inference.” The “sup” in this terminology corresponds to the ⊕
operation and the “star” corresponds to ∗. “Zadeh’s compositional rule of inference” [7] is the special
case of the sup-star compositional rule of inference when max is used for ⊕ and min is used for ∗. The
overall justification for using the above operations to represent the inference step lies in the fact that we
can be no more certain about our conclusions than we are about our premises (antecedents). The operations
performed in taking an inference step adhere to this principle. To see this, study Equation 55.13 and note
that the scaling from μi(u1, u2, . . . , un) that is produced by the antecedent matching process ensures that
supyq

{μB̂i
q
(yq)} ≤ μi(u1, u2, . . . , un) (a similar statement holds for the overall implied fuzzy set).

Up to this point we have used fuzzy logic to quantify the rules in the rule-base, fuzzification to produce
fuzzy sets characterizing the inputs, and the inference mechanism to produce fuzzy sets representing the
conclusions that it reaches considering the current inputs and the information in the rule-base. Next, we
look at how to convert this fuzzy set quantification of the conclusions to a numeric value that can be input
to the plant.

55.2.5 Defuzzification

A number of defuzzification strategies exist. Each provides a means to choose a single output (which we
denote with ycrisp

q ) based on either the implied fuzzy sets or the overall implied fuzzy set (depending on
the type of inference strategy chosen). First, we present typical defuzzification techniques for the overall
implied fuzzy set B̂q:

• Max Criteria: A crisp output ycrisp
q is chosen as the point on the output universe of discourse Yq for

which the overall implied fuzzy set B̂q achieves a maximum that is,

ycrisp
q ∈

{
arg sup

Yq

{
μB̂q

(yq)
}}

. (55.15)

Since the supremum can occur at more than one point in Yq one also needs to specify a strategy on
how to pick only one point for ycrisp

q (e.g., choosing the smallest value). Often this defuzzification
strategy is avoided due to this ambiguity.

• Mean of Maximum: A crisp output ycrisp
q is chosen to represent the mean value of all elements whose

membership in B̂q is a maximum. We define b̂max
q as the supremum of the membership function of

B̂q over the universe of discourse Yq. Moreover, we define a fuzzy set B̂∗q ∈ Yq with a membership
function defined as

μB̂∗q (yq)=
{

1 μB̂q
(yq)= b̂max

q ,

0 otherwise,
(55.16)

then a crisp output, using the mean of maximum method, is defined as

ycrisp
q =

∫
Yq

yq ·μB̂∗q (yq) · dyq∫
Yq
μB̂∗q (yq) · dyq

. (55.17)
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Note that the integrals in Equation 55.17 must be computed at each time instant since they depend
on B̂q which changes with time. This can require excessive computational resources; hence, this
defuzzification technique is often avoided in practice.

• Center of Area (COA): A crisp output ycrisp
q is chosen as the COA for the membership function of

the overall implied fuzzy set B̂q. For a continuous output universe of discourse Yq the COA output
is denoted by

ycrisp
q =

∫
Yq

yq ·μB̂q
(yq) dyq∫

Yq
μB̂q

(yq) dyq
. (55.18)

Note that similar to the mean of the maximum method this defuzzification approach can be
computationally expensive. Also, the fuzzy system must be defined so that

∫
Yq
μB̂q

(yq)dyq �= 0 for

all ui .

Next, we specify typical defuzzification techniques for the implied fuzzy sets B̂i
q:

• Centroid: A crisp output ycrisp
q is chosen using the centers of each of the output membership

functions and the maximum certainty of each of the conclusions represented with the implied
fuzzy sets and is given by

ycrisp
q =

∑R
i=1 ci

q supyq
{μB̂i

q
(yq)}

∑R
i=1 supyq

{μB̂i
q
(yq)} , (55.19)

where ci
q is the COA of the membership function of B

p
q associated with the implied fuzzy set B̂i

q
for the ith rule (j, k, . . . , l; p, q)i . Notice that supyq

{μB̂i
q
(yq)} is often very easy to compute since if

μB
p
q
(yq)= 1 for at least one yq (which is the normal way to define membership functions), then for

many inference strategies supyq
{μB̂i

q
(yq)} = μi(u1, u2, . . . , un) which as already been computed in

the matching process. Notice that the fuzzy system must be defined so that
∑R

i=1 supyq
{μB̂i

q
(yq)} �= 0

for all ui .
• Center of Gravity (COG): A crisp output ycrisp

q is chosen using the COA and area of each implied
fuzzy set and is given by

ycrisp
q =

∑R
i=1 ci

q

∫
Yq
μB̂i

q
(yq) dyq∑R

i=1

∫
Yq
μB̂i

q
(yq) dyq

, (55.20)

where ci
q is the COA of the membership function of B

p
q associated with the implied fuzzy set B̂i

q
for the ith rule (j, k, . . . , l; p, q)i . Notice that COG can be easy to compute since it is often easy to
find closed-form expressions for

∫
Yq
μB̂i

q
(yq) dyq, which is the area under a membership function.

Notice that the fuzzy system must be defined so that
∑R

i=1

∫
Yq
μB̂i

q
(yq) dyq �= 0 for all ui .

Overall, we see that using the overall implied fuzzy set in defuzzification is often undesirable for two
reasons: (1) the overall implied fuzzy set B̂q is itself difficult to compute in general, and (2) the defuzzifi-
cation techniques based on an inference mechanism that provides B̂q are also difficult to compute. It is
for this reason that most existing fuzzy controllers (including the ones in this chapter) use defuzzification
techniques based on the implied fuzzy sets such as Centroid or COG.

55.3 Theme Problem: Rotational Inverted Pendulum

One of the classic problems in the study of nonlinear systems is that of the inverted pendulum. The
primary control problem one considers with such a system is regulating the position of the pendulum
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(typically a rod with mass at the endpoint) to the vertical (up) position; that is, “balanced.” A secondary
problem is that of “swinging up” the pendulum from its rest position (vertical down). Often, actuation
is accomplished either via a motor at the base of the pendulum (at the hinge), or via a cart through
translational motion. In this example actuation of the pendulum is accomplished through rotation of a
separate, attached link, referred to, henceforth, as the “base.”

55.3.1 Experimental Apparatus

The test bed consists of three primary components: the plant, digital and analog interfaces, and the
digital controller. The overall system is shown in Figure 55.1 where the three components can be clearly
identified [8]. The plant is composed of a pendulum and a rotating base made of aluminum rods, two
optical encoders as the angular position sensors with effective resolutions of 0.2 degrees for the pendulum
and 0.1 degrees for the base, and a large, high-torque permanent-magnet DC motor (with rated stall
torque of 5.15 N m). As the base rotates through the angle θ0 the pendulum is free to rotate (high
precision bearings are utilized) through its angle θ1 made with the vertical.

Interfaces between the digital controller and the plant consist of two data acquisition cards and some
signal conditioning circuitry, structured for the two basic functions of sensor integration and control
signal generation. The signal conditioning is accomplished via a combination of several logic gates to
filter quadrature signals from the optical encoders, which are then processed through a separate data
acquisition card to utilize the four 16-bit counters (accessed externally to count pulses from the circuitry
itself). Another card supplies the control signal interface through its 12-bit D/A converter (to generate
the actual control signal), while the board’s 16-bit timer is used as a sampling clock. The computer used
for control is a personal computer with its Intel 80486DX processor operating at 50 MHz. The real-time
codes for control are written in C.

55.3.2 Mathematical Model

For brevity, and because this system is a popular example for nonlinear control, we omit details of the
necessary physics and geometry for modeling. The differential equations that approximately describe the
dynamics of the plant are given by

θ̈0 =−apθ̇0+Kp va, (55.21)

θ̈1 =−C1

J1
θ̇1+ m1 g �1

J1
sin(θ1)+K1θ̈0, (55.22)

where, again, θ0 is the angular displacement of the rotating base, θ̇0 is the angular speed of the rotating
base, θ1 is the angular displacement of the pendulum, θ̇1 is the angular speed of the pendulum, va is the
motor armature voltage, Kp and ap are parameters of the DC motor with torque constant K1, g is the
acceleration due to gravity, m1 is the pendulum mass, �1 is the pendulum length, J1 is the pendulum
inertia, and C1 is a constant associated with friction (actual parameter values appear in [8]).

For controller synthesis (and model linearization) we will require a state variable description of the
system. This is easily done by defining state variables x1 = θ0, x2 = θ̇0, x3 = θ1, x4 = θ̇1, and control
signal u= va. Linearization of these equations about the vertical position (i.e., θ1 = 0), and using the
system physical parameters [8] results in the following linear, time invariant state variable description:

⎡
⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 1 0 0
0 −33.04 0 0
0 0 0 1
0 49.30 73.41 −2.29

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
74.89

0
−111.74

⎤
⎥⎥⎦ u. (55.23)
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55.3.3 Swing-Up Control

Because we intend to develop control laws that will be valid in regions about the vertical position (θ1 = 0),
it is crucial to swing the pendulum up so that it is near vertical at near zero (angular) velocity. Elaborate
schemes can be used for this task (such as those employing concepts from differential geometry), but
for the purposes of this example we choose to use a simple heuristic procedure based on an “energy
pumping strategy” proposed in [9] for a similar under-actuated system. The goal of this simple swing-up
control strategy is to “pump” energy into the pendulum link in such a way that the energy or magnitude
of each swing increases until the pendulum approaches its inverted position. To apply such an approach,
we simply consider how one would (intuitively) swing the pendulum from its hanging position (θ1 = π)
to its upright position. If the rotating base is swung to the left and right continually at an appropriate
frequency, the magnitude of the pendulum at each swing will increase.

The control scheme we will ultimately employ consists of two main components: the “scheduler”
(which we will also call a “supervisor”) observes the position of the pendulum relative to its stable
equilibrium point (θ1 = π), then schedules the transitions between two reference positions of the rotating
base (θ0

ref =±Γ); and, the “positioning control” regulates the base to the desired reference point. These
two components compose a closed-loop planning algorithm to command the rotating base to move in
a certain direction based on the position of the pendulum. In effect, the human operator acts as the
supervisor in tuning the positioning control (through trial and error on the system).

For simplicity, a proportional controller will be used as the positioning control. The gain Kp is chosen
just large enough so that the actuator drives the base fast enough without saturating the control output;
after several trials, Kp was set to 0.5. The parameter Γ determines how far the base is allowed to swing;
larger swings transfer more energy to swinging up the pendulum. The swing-up motion of the pendulum
can be approximated as an exponentially growing cosine function. The parameter Γ significantly affects
the “negative damping” (i.e., exponential growth) of the swing-up motion. By tuning Γ, one can adjust
the motion of the pendulum in such a way that the velocity of the pendulum and the control output are
minimum when the pendulum reaches its inverted position (i.e., the pendulum has the largest potential
energy and the lowest kinetic energy). Notice that if the dynamics of the pendulum are changed (e.g.,
adding extra weight to the endpoint of the pendulum), then the parameter Γ must be tuned. In [8] it is
shown how a rule-based system can be used to effectively automate the swing-up control by implementing
fuzzy strategies in the supervisor portion of the overall scheme.

55.3.4 Balancing Control

Synthesis of the fuzzy controllers to follow is aided by (1) a good understanding of the pendulum dynamics
(the analytical model and intuition related to the physical process), and (2) experience with performance
of linear control strategies. Although numerous linear control design techniques have been applied to
this particular system, here we consider the performance of only one linear strategy (the one tested) as
applied to the experimental system: the linear quadratic regulator (LQR). Our purpose is twofold. First,
we form a baseline for comparison to fuzzy control designs to follow, and second, we provide a starting
point for synthesis of the fuzzy controller. It is important to note that extensive simulation results (on the
nonlinear model) were carried out prior to application to the laboratory apparatus; designs were carried
out on the linearized model of the system. Specifics of the design process for the LQR and other applicable
linear design techniques may be found in other chapters of this volume.

Because the linearized system is completely controllable and observable, state feedback strategies,
including the optimal strategies of the LQR, are applicable. Generally speaking, the system performance
is prescribed via the optimal performance index

J =
∫ ∞

0
(x(t)T Qx(t)+ u(t)T Ru(t)) dt, (55.24)
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where Q and R are the weighting matrices corresponding to the state x and input u, respectively. Given
fixed Q and R, the feedback gains that optimize the function J can be uniquely determined by solv-
ing an algebraic Riccati equation. Because we are more concerned with balancing the pendulum than
regulating the base, we put the highest priority in controlling θ1 by choosing the weighting matrices
Q = diag(1, 0, 5, 0) and R = [1]. For a 10 ms sampling time, the discrete optimal feedback gains cor-
responding to the weighting matrices Q and R are k1 =−0.9, k2 =−1.1, k3 =−9.2, and k4 =−0.9.
Although observers may be designed to estimate the states θ̇1 and θ̇0, we choose to use an equally effective
and simple first-order approximation for each derivative.

Note that this controller is designed in simulation for the system as modeled (and subsequently
linearized). When the resulting controller gains (k1 through k4) are implemented on the actual system,
some “trial-and-error” tuning is required (due primarily to modeling uncertainties), which amounted to
adjusting the designed gain by about 10% to obtain performance matching the predicted results from
simulation. Moreover, it is critical to note that the design process (as well as the empirical tuning)
has been done for the “nominal” system (i.e., the pendulum system with no additional mass on the
endpoint).

Using a swing-up control strategy tuned for the nominal system, the results of the LQR control design
are given in Figure 55.2 for the base angle (top plot), pendulum angle (center plot), and control output
(bottom plot).
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FIGURE 55.2 LQR on the nominal system.
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55.4 Fuzzy Control for the Rotational Inverted Pendulum

Aside from serving to illustrate procedures for synthesizing a fuzzy controller, several reasons arise for
considering the use of a nonlinear control scheme for the pendulum system. Because all linear controllers
are designed based on a linearized model of the system, they are inherently valid only for a region about
a specific point (in this case, the vertical, θ1 = 0 position). For this reason, such linear controllers tend to
be very sensitive to parametric variations, uncertainties, and disturbances. This is indeed the case for the
experimental system under study; when an extra weight or sloshing liquid (using a water-tight bottle) is
attached at the endpoint of the pendulum, the performance of all linear controllers degrades considerably,
often resulting in unstable behavior. Thus, to enhance the performance of the balancing control, one
naturally turns to some nonlinear control scheme that is expected to exhibit improved performance
in the presence of disturbances and uncertainties in modeling. Two such nonlinear controllers will be
investigated here: in the next section, a direct fuzzy controller is constructed and later an adaptive version
of this same controller is discussed.

55.4.1 Controller Synthesis

For simplicity, the controller synthesis example explained next will utilize singleton fuzzification and
symmetric, “triangular” membership functions on the controller inputs and output (they are, in fact, very
simple to implement in real-time code). We choose to use seven membership functions for each input,
uniformly distributed across their universes of discourse (over crisp values of each input ei) as shown in
Figure 55.3. The linguistic values for the ith input are denoted by Ẽr

i where r ∈ {−3,−2,−1, 0, 1, 2, 3}.
Linguistically, we would therefore define Ẽ−3

i as “negative large,” Ẽ−2
i as “negative medium,” Ẽ0

i as
“zero,” and so on. Note also that a “saturation nonlinearity” is built in for each input in the membership
functions corresponding to the outermost regions of the universes of discourse. We use min to represent
the antecendent (i.e., “∗” from Section 55.2 is min) and COG defuzzification.

To synthesize a fuzzy controller for our example system, we pursue the idea of seeking to “expand”
the region of operation of the fixed (nonadaptive) controller. In doing so, we will utilize the results of the
LQR design presented in Section 55.3 to lead us in the design. A block diagram of the fuzzy controller
is shown in Figure 55.4. Similar to the LQR, the fuzzy controller for the inverted pendulum system will
have four inputs and one output. The four (crisp) inputs to the fuzzy controller are the position error of
the base e1, its derivative e2, the position error of the pendulum e3, and its derivative e4.

The normalizing gains gi essentially serve to expand and compress the universes of discourse to some
predetermined, uniform region, primarily to standardize the choice of the various parameters in synthe-
sizing the fuzzy controller. A crude approach to choosing these gains is strictly based on intuition and does
not require a mathematical model of the plant. In that case the input normalizing gains are chosen in such
a way that all the desired operating regions are mapped into [−1,+1]. Such a simple approach in design
works often for a number of systems, as witnessed by the large number of applications documented in the
open literature. For complicated systems, however, such a procedure can be very difficult to implement
because there are many ways to define the linguistic values and linguistic rules; indeed, it can be extremely
difficult to find a viable set of linguistic values and rules just to maintain stability. Such was the case for
this system.

What we propose here is an approach based on experience in designing the LQR controller for the
linearized model of the plant, leading to a mechanized procedure for determining the normalizing gains,
output membership functions, and rule-base. Recall from our discussion in Section 55.2 that a fuzzy
system is a static nonlinear map between its inputs and output. Certainly, therefore, a linear map such as
the LQR can be easily approximated by a fuzzy system (for small values of the inputs to the fuzzy system).
Two components of the LQR are the optimal gains and the summer; the optimal gains can be replaced with
the normalizing gains of a fuzzy system, and the summer can essentially be incorporated into the rule-
base of a fuzzy system. By doing this, we can effectively utilize a fuzzy system implementation to expand
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the region of operation of the controller beyond the “linear region” afforded by the linearization/design
process. Intuitively, this is done by making the “gain” of the fuzzy controller match that of the LQR
when the fuzzy controller inputs are small, while shaping the nonlinear mapping representing the fuzzy
controller for larger inputs (in regions further from zero).

As pointed out in Section 55.2, the rule-base contains information about the relationships between the
inputs and output of a fuzzy system. Within the controller structure chosen, recall that we wish to construct
the rule-base to perform a weighted sum of the inputs. The summation operation is straightforward; prior
to normalization, it is simply a matter or arranging each If...Then rule such that the antecedent indices
sum to the consequent indices. Specification of the normalizing gains is explained next.

The basic idea [10] in specifying the g0− g4 is so that for “small” controller inputs (ei) the local slope
(about zero) of the input–output mapping representing the controller will be the same as the LQR gains
(i.e., the ki). As alluded to above, the normalizing gains g1− g4 transform the (symmetric) universes of
discourse for each input (see Figure 55.3) to [−1, 1]. For example, if [−βi , βi] is the interval of interest
for input i, the choice gi = 1/βi would achieve this normalization, whereas the choice g0 = β0 would
map the output of the normalized fuzzy system to the real output to achieve a corresponding interval of
[−β0, β0]. Then, assuming the fuzzy system provides the summation operation, the “net gain” for the ith
input–ouput pair is gig0. Finally, therefore, this implies that gig0 = ki is required to match local slopes of
the LQR controller and the fuzzy controller (in the sense of input–output mappings).

We are now in position to summarize the gain selection procedure. Recalling (Section 55.3) that the
optimal feedback gains based on the LQR approach are k1 =−0.9, k2 =−1.1, k3 =−9.2, and k4 =−0.9,
transformation of the optimal LQR gains into the normalizing gains of the fuzzy system is achieved
according to the following simple scheme:

• Choose the controller input which most greatly influences plant behavior and overall control objec-
tives; in our case, we choose the pendulum position θ1. Subsequently, we specify the operating range
of the this input (e.g., the interval [−0.5,+0.5] radians, for which the corresponding normalizing
input gain g3 = 2).

• Given g3, the output gain of the fuzzy controller is calculated according to g0 = k3/g3 =−4.6 .
• Given the output gain g0, the remaining input gains can be calculated according to gj = kj/g0, where

j ∈ {1, 2, 3, 4}, j �= i (note that i = 3). For g0 =−4.6, the input gains g1, g2, g3, and g4 are 0.1957,
0.2391, 2, and 0.1957, respectively.

Determination of the controller output universe of discourse and corresponding normalizing gain is
dependent on the structure of the rule-base. A nonlinear mapping can be used to rearrange the output
membership functions (in terms of their centers) for several purposes, such as to add higher gain near
the center, to create a dead zone near the center, to eliminate discontinuities at the saturation points,
and so on. This represents yet another area where intuition (i.e., knowledge about how to best control
the process) may be incorporated into the design process. In order to preserve behavior in the “linear”
region (i.e., the region near the origin) of the LQR-extended controller, but at the same time provide
a smooth transition from the linear region to its extensions (e.g., regions of saturation), we choose an
arctangent-type mapping to achieve this rearrangement. Because of the “flatness” of such a mapping near
the origin, we expect the fuzzy controller to behave like the LQR when the states are near the process
equilibrium.

It is important to note that, unlike the input membership function of Figure 55.3, the output member-
ship functions at the outermost regions of the universe of discourse do not include the saturating effect;
rather, they return to zero value which is required so that the fuzzy controller mapping is well-defined.
In general, for a fuzzy controller with n inputs and one output, the center of the controller output fuzzy
set Y s would be located at where s = j+ k+ · · ·+ l is the index of the output fuzzy set Y s (and the output
linguistic value), {j, k, . . . , l} are the indices of the input fuzzy sets (and linguistic values), N is the number
of membership functions on each input, and n is the number of inputs. Note that we must nullify the
effect of divisor n by multiplying the output gain g0 by the same factor.
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55.4.2 Performance Evaluation

55.4.2.1 Simulation

Some performance evaluation via simulation is prudent to investigate the effectiveness of the strategies
employed in the controller synthesis. Using the complete nonlinear model, the simulated responses of the
direct fuzzy controller with seven membership functions on each input indicate that the fuzzy controller
successfully balances the pendulum, but with a slightly degraded performance as compared to that of the
LQR (e.g., the fuzzy controller produces undesirable high-frequency “chattering” effects over a bandwidth
that may not be realistic in implementation).

One way to increase the “resolution” of the fuzzy controller is to increase the number of membership
functions. As we increase the number of membership functions on each input to 25, responses using
the fuzzy controller become smoother and closer to that of the LQR. Additionally, the control surface
of the fuzzy controller also becomes smoother and has a much smaller gain near the center. As a result,
the control output of the fuzzy controller is significantly smoother. On the other hand, the direct fuzzy
controller, with 25 membership functions on each input comes with increased complexity in design and
implementation (e.g., a four-input, one-output fuzzy system with 25 membership functions on each input
has 254 = 390,625 linguistic rules).

55.4.2.2 Application to Nominal System

Given the experience of the simulation studies, the final step is to implement the fuzzy controller (with
seven membership functions on each input) on the actual apparatus. For comparative purposes, we
again consider application to the nominal system, that is, the pendulum alone with no added weight or
disturbances. With the pendulum initialized at its hanging position (θ1 = π), the swing-up control was
tuned to give the best swing-up response, as in the case of the LQR results of Section 55.3. The sampling
time was set to 10 ms (smaller sampling times produced no significant difference in responses for any of
the controllers tested on this apparatus). The only tuning required for the fuzzy control scheme (from
simulation to implementation in experimentation) was in adjusting the value for g3 upward to improve
the performance; recall that the gain g3 is critical in that it essentially determines the other normalizing
gains.

Figure 55.5 shows the results for the fuzzy controller on the laboratory apparatus; the top plot shows
the base position (angle), the center plot shows the pendulum position (angle), and the bottom plot shows
the controller output (motor voltage input). The response is comparable to that of the LQR controller
(compare to Figure 55.2), in terms of the pendulum angle (ability to balance in the vertical position).
However, some oscillation is noticed (particularly in the controller output, as predicted in simulation
studies), but any difference in the ability to balance the pendulum is only slightly discernible in viewing
the operation of the system.

55.4.2.3 Application to Perturbed System

When the system experiences disturbances and changes in dynamics (by attaching additional weight to the
pendulum endpoint, or by attaching a bottle half filled with liquid), degraded responses are observed for
these controllers. Such experiments are also informative for considerations of robustness analysis, although
here we regard such perturbations on the nominal system as probing the limits of linear controllers (i.e.,
operating outside the linear region).

As a final evaluation of the performance of the fuzzy controller as developed above, we show
results when a container half-filled with water was attached to the pendulum endpoint. This essen-
tially gives a “sloshing liquid” effect, because the additional dynamics associated with the sloshing liq-
uid are easily excited. In addition, the added weight shifted the pendulum’s center of mass away from
the pivot point; as a result, the natural frequency of the pendulum decreased. Furthermore, the effect
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FIGURE 55.5 Direct fuzzy control on the nominal system.

of friction becomes less dominant because the inertia of the pendulum increases. These effects obvi-
ously come to bear on the balancing controller performance, but also significantly affect the swing-up
controller as well. From the present chapter, we note that the swing-up control scheme requires tun-
ing, once additional weight is added to the endpoint, and we refer the interested reader to [8] for
details of a supervisory fuzzy controller scheme where tuning of the swing-up controller is carried out
autonomously.

With the sloshing liquid added to the pendulum endpoint, the LQR controller (and, in fact, other
linear control schemes we implemented on this system) produced an unstable response (was unable to
balance the pendulum). Of course, the linear control schemes can be tuned to improve the performance
for the perturbed system, at the expense of degraded performance for the nominal system. Moreover, it
is important to note that tuning of the LQR type controller is difficult and ad hoc without additional
modeling to account for the added dynamics. Such an attempt on this system produced a controller with
stable but poor performance.

The fuzzy controller, on the other hand, because of its expanded region of operation (in the sense
that it acts like the LQR for small inputs and induces a nonlinearity for larger signals), was able to
maintain stability in the presence of the additional dynamics and disturbances caused by the sloshing
liquid, without tuning. These results are shown in Figure 55.6 where some degradation of controller
performance is apparent. Such experiments may also motivate the need for a controller, which can adapt
to changing dynamics during operation; this issue is discussed later when we address adaptation in fuzzy
controllers.
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FIGURE 55.6 Direct fuzzy control on the pendulum with sloshing liquid at its endpoint.

55.5 Adaptive Fuzzy Control

55.5.1 Overview

While fuzzy control has, for some applications, emerged as a practical alternative to classical control
schemes, there exist rather obvious drawbacks. We will not address all of these drawbacks here (such as
stability which is a current research direction); rather, we will focus on an important emerging topical area
within the realm of fuzzy control, that of adaptive fuzzy control, as it relates to some of these drawbacks.

The point that is probably most often raised in discussion of controller synthesis using fuzzy logic is that
such procedures are usually performed in an ad hoc manner, where mechanized synthesis procedures,
for the most part, are nonexistent (e.g., it is often not clear exactly how to justify the choices for many
controller parameters, such as membership functions, defuzzification strategy, and inference strategy). On
the other hand, some mechanized synthesis procedures do exist for particular applications, such as the one
discussed above for the balancing control part of the inverted pendulum problem where a conventional
LQR scheme was utilized in the fuzzy control design. Typically such procedures arise primarily out of
necessity because of system complexity (such as when many inputs and multiple objectives must be
achieved). Controller adaptation, in which a form of automatic controller synthesis is achieved, is one way
of attacking this problem, when no other “direct” synthesis procedure is known.

Another, perhaps equally obvious requirement in the design and operation of any controller (fuzzy or
otherwise) involves questions of system robustness. For instance, we illustrated in our theme example that
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the performance of the direct fuzzy controller constructed for the nominal plant may degrade if significant
and unpredictable plant parameter variations, structural changes, or environmental disturbances occur.
Clearly, controller adaptation is one way of overcoming these difficulties to achieve reliable controller
performance in the presence of unmodeled parameter variations and disturbances.

Some would argue that the solution to such problems is always to incorporate more expertise into
the rule-base to enhance the performance; however, there are several limitations to such a philosophy,
including: (1) the difficulties in developing (and characterizing in a rule-base) an accurate intuition about
how to best compensate for the unpredictable and significant process variations that can occur for all
possible process operating conditions; and (2) the complexities of constructing a fuzzy controller that
potentially has a large number of membership functions and rules. Experience has shown that it is often
possible to tune fuzzy controllers to perform very well if the disturbances are known. Hence, the problem
does not result from a lack of basic expertise in the rule-base, but from the fact that there is no facility
for automatically redesigning (i.e., retuning) the fuzzy controller so that it can appropriately react to
unforeseen situations as they occur.

There have been many techniques introduced for adaptive fuzzy control. For instance, one adaptive
fuzzy control strategy that borrows certain ideas from conventional “model reference adaptive control”
(MRAC) is called “fuzzy model reference learning control” (FMRLC) [11]. The FMRLC can automatically
synthesize a fuzzy controller for the plant and later tune it if there are significant disturbances or process
variations. The FMRLC has been successfully applied to an inverted pendulum, a ship-steering problem
[11], antiskid brakes [12], reconfigurable control for aircraft [10], and in implementation for a flexible-
link robot [13]. Modifications to the basic FMRLC approach have been studied in [14]. The work on the
FMRLC and subsequent modifications to it tend to follow the main focus in fuzzy control where one
seeks to employ heuristics in control. There are other techniques that take an approach that is more like
conventional adaptive control in the sense that a mathematical model of the plant and a Lyapunov-type
approach is used to construct the adaptation mechanism. Such work is described in [3]. There are many
other “direct” and “indirect” adaptive fuzzy control approaches that have been used in a wide variety of
applications (e.g., for scheduling manufacturing systems [15]). The reader should consult the references
in the papers cited above for more details.

Another type of system adaptation, where a significant amount and variety of knowledge can be
loaded into the rule-base of a fuzzy system to achieve high-performance operation, is the supervisory
fuzzy controller, a two-level hierarchical controller which uses a higher-level fuzzy system to supervise
(coordinate or tune) a lower-level conventional or fuzzy controller. For instance, an expert may know
how to control the system very well in one set of operating conditions, but if the system switches to
another set of operating conditions, the controller may be required to behave differently to again achieve
high-performance operation. A good example is the PID controller which is often designed (tuned) for
one set of plant operating conditions, but if the operating conditions change the controller will not be
properly tuned. This is such an important problem that there is a significant amount of expertise on how
to manually and automatically tune PID controllers. Such expertise may be utilized in the development
of a supervisory fuzzy controller, which can observe the performance of a low-level control system and
automatically tune the parameters of the PID controller. Many other examples exist of applications where
the control engineer may have a significant amount of knowledge about how to tune a controller. One
such example is in aircraft control when controller gains are scheduled based on the operating conditions.
Fuzzy supervisory controllers have been used as schedulers in such applications. In other applications we
may know that conventional or fuzzy controllers need to be switched on based on the operating conditions
(see the work in [16] for work on fuzzy supervision of conventional controllers for a flexible-link robot)
or a supervisory fuzzy controller may be used to tune an adpative controller (see the work in [10] where
a fuzzy supervisor is used to tune an adaptive fuzzy controller that is used as a reconfigurable controller
for an aircraft). It is this concept of monitoring and supervising lower-level controllers (possibly fuzzy,
possibly conventional) that defines the supervisory control scheme. Indeed, in this sense supervisory and
adaptive systems can be described as special cases of one another.
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55.5.2 Auto-Tuning for Pendulum Balancing Control

Many techniques exist for automatically tuning a fuzzy controller in order to meet the objectives men-
tioned above. One simple technique we present next, studied in [8,14,15], expands on the idea of increasing
the “resolution” of the fuzzy controller in terms of the characteristics of the input membership functions.
Recall from Section 55.4 for our theme problem that when we increased the number of membership func-
tions on each input to 25, improved performance (and smoother control action) resulted. Likewise, we
suspect that increasing the resolution would result in improved performance for the perturbed pendulum
case.

To increase the resolution of the direct fuzzy controller with a limited number of membership func-
tions (as before, we will impose a limit of seven), we propose an “auto-tuned fuzzy control.” To gain
insight on how the auto-tuned fuzzy control works, consider the idea of a “fine controller,” with smooth
interpolation, achieved using a fuzzy system where the input and output universes of discourse are nar-
row (i.e., the input normalizing gains are large, and the output gain is small). In this case there are many
membership functions on a small portion of the universe of discourse (i.e., “high resolution”). Intuitively,
we reason that as the input gains are increased and the output gain is decreased, the fuzzy controller
will have better resolution. However, we also conjecture that to obtain the most effective control action
the input universes of discourse must also be large enough to avoid saturation. This obviously raises
a question of trying to satisfy two opposing objectives. The answer is to adjust the gains based on the
current operating states of the system. For example, if the states move closer to the center, then the input
universe of discourse should be compressed to obtain better resolution, yet still cover all the active states.
If the states move away from the center, then the input universe of discourse must expand to cover these
states, at the expense of lowering the resolution.

The input–output gains of the fuzzy controller can be tuned periodically (e.g., every 50 samples) using
the auto-tuning mechanism shown in Figure 55.7. Ideally, the auto-tuning algorithm should not alter the
nominal control algorithm near the center; we therefore do not adjust each input gain independently.
We can, however, tune the most significant input gain, and then adjust the rest of the gains based on this
gain. For the inverted pendulum system, the most significant controller input is the position error of the
pendulum, e3 = θ1.

The input–output gains are updated every ns samples in the following manner:

• Find the maximum e3 over the most recent ns samples and denote it by emax
3 .

• Set the input gain g3 = 1/|emax
3 |.

• Recalculate the remaining gains using the technique discussed in Section 55.4 so as to preserve the
nominal control action near the center.

We note that the larger ns is, the slower the updating rate is, and that too fast an updating rate may cause
instability. Of course, if a large enough buffer were available to store the most recent ns samples of the
input, the gains could be updated at every sample (utilizing an average); here we minimized the usage of
memory and opted for the procedure mentioned above (finding the maximum value of e3).

Simulation tests (with a 50-sample observation window and normalizing gain g3 = 2) reveal that when
the fuzzy controller is activated (after swing up), the input gains gradually increase while the output gain
decreases, as the pendulum moves closer to its inverted position. As a result, the input and output universes
of discourses contract, and the resolution of the fuzzy system increases. As g3 reaches its maximum value∗,
the control action near θ1 = 0 is smoother than that of direct fuzzy control with 25 membership functions
(as investigated previously via simulation), and very good balancing performance is achieved.

When turning to actual implementation on the laboratory apparatus, some adjustments were done
in order to optimize the performance of the auto-tuning controller. As with the direct fuzzy con-
troller, the value of g3 was adjusted upward, and the tuning (window) length was increased to 75

∗ In practice, it is important to constrain the maximum value for g3 (for our system, to a value of 10) because disturbances
and inaccuracies in measurements could have have adverse effects.
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FIGURE 55.8 Auto-tuned fuzzy control on the pendulum with sloshing liquid at its endpoint.

samples. The first test was to apply the scheme to the nominal system; the auto-tuning mechanism
improved the response of the direct fuzzy controller (Figure 55.5) by varying the controller resolution
online. That is, as the resolution of the fuzzy controller increased over time, the high-frequency effects
diminished.

The true test of the adaptive (auto-tuning) mechanism is to evaluate its ability to adapt its con-
troller parameters as the process dynamics change. Once again we investigate the performance when
the “sloshing liquid” dynamics (and additional weight) are appended to the endpoint of the pendulum.
As expected from simulation exercises, the tuning mechanism, which “stretches” and “compresses” the
universes of discourse on the input and output, not only varied the resolution of the controller but also
effectively contained and suppressed the disturbances caused by the sloshing liquid, as clearly shown in
Figure 55.8.

55.6 Concluding Remarks

We have introduced the general fuzzy controller, shown how to design a fuzzy controller for our rotational
inverted pendulum theme problem, and compared its performance to a nominal LQR controller. We
overviewed supervisory and adaptive fuzzy control techniques and presented a particular adaptive scheme
that worked very effectively for the balancing control of our rotational inverted pendulum theme problem.
Throughout the chapter we have emphasized the importance of comparative analysis of fuzzy controllers
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with conventional controllers with the hope that more attention will be given to detailed engineering
cost–benefit analyses rather than the hype that has surrounded fuzzy control in the past.

There are close relationships between fuzzy control and several other intelligent control methods.
For instance, expert systems are generalized fuzzy systems since they have a knowledge-base (a gener-
alized version of a rule-base where information in the form of general rules or other representations
may be used), an inference mechanism that utilizes more general inference strategies, and are con-
structed using the same general approach as fuzzy systems. There are close relationships between some
types of neural networks (particularly radial basis function neural networks) and fuzzy systems and,
while we did not have the space to cover it here, fuzzy systems can be trained with numerical data
in the same way that neural networks can (see [3] for more details). Genetic algorithms provide for a
stochastic optimization technique and can be useful for computer-aided-design of fuzzy controllers,
training fuzzy systems for system identification, or tuning fuzzy controllers in an adaptive control
setting.

While there exist such relationships between fuzzy control and other techniques in intelligent control,
the exact relationships between all the techniques have not been established. Research along these lines
is progressing but will take many years to complete. Another research area that is gaining increasing
attention is the nonlinear analysis of fuzzy control systems and the use of comparative analysis of fuzzy
control systems and conventional control systems to determine the advantages and disadvantages of fuzzy
control. Such work, coupled with the application of fuzzy control to increasingly challenging problems,
will help establish the technique as a viable control engineering approach.

55.7 Defining Terms

Rule-base: A part of the fuzzy system that contains a set of If...Then rules that quantify a human expert’s
knowledge about how to best control a plant. It is a special form of a knowledge-base that only
contains If...Then rules that are quantified with fuzzy logic.

Inference Mechanism: A part of the fuzzy system that reasons over the information in the rule-base
and decides what actions to take. For the fuzzy system the inference mechanism is implemented
with fuzzy logic.

Fuzzification: Converts standard numerical fuzzy system inputs into a fuzzy set that the inference
mechanism can operate on.

Defuzzification: Converts the conclusions reached by the inference mechanism (i.e., fuzzy sets) into
numeric inputs suitable for the plant.

Supervisory Fuzzy Controller: A two-level hierarchical controller which uses a higher-level fuzzy system
to supervise (coordinate or tune) a lower level conventional or fuzzy controller.

Adaptive Fuzzy Controller: An adaptive controller that uses fuzzy systems either in the adaptation
mechanism or as the controller that is tuned.
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56.1 Introduction

In control, filtering, and prediction applications the available a priori model information is sometimes
not sufficiently accurate for a fixed design to satisfy all of the design specifications. In these circumstances,
the designer may

• Reduce the specified level of required performance.
• Expend additional efforts to reduce the level of model uncertainty.
• Design a system to adjust itself online to increase its performance level as the accumulated input

and output data are used to reduce the amount of model uncertainty during operation.

Controllers (filters and predictors can be implemented by similar techniques) that implement the last
approach are the topic of this chapter. Such techniques are suitable when additional a priori effort in
modeling and validation is unacceptable because of cost and feasibility, and the desired level of perfor-
mance must be maintained.

Adaptive linear control mechanisms (see [17] and Chapters 34 and 35 of this book) have been developed
for systems that, by suitable limitation of their operating domain, can be adequately modeled as linear.

56-1
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The online system identification and control techniques developed for nonlinear systems can be classified
into two categories, parametric and nonparametric. Parametric techniques assume that the functional
form of the unknown nonlinearity is known, based on physical modeling principles, but that the model
parameters are unknown. Nonparametric techniques are necessary when the functional form of the
unknown nonlinearity is itself unknown. In this case a general family of function approximators is selected
based on the known properties of the approximation family and the characteristics of the application.
Similar to parametric techniques, the objective of the nonparametric approach is still to select a set of
parameters to achieve an optimal approximation of the unknown function.

Learning and neural control (and system identification) [13,14,36] are nonparametric techniques
developed to enhance the performance of those poorly modeled nonlinear systems for which a suitable
model structure is not available. This performance improvement is achieved by exploiting experiences
obtained through online interactions with the actual plant. Adaptive approximation-based control is an
alternative name used in the literature for this class of techniques, and it includes approximators such as
neural networks, fuzzy systems and traditional approximation approaches. Neural control is the name
applied in the literature when a neural network is selected as the function approximator. To be both concise
and general, adaptive approximation-based control will be the name used throughout this chapter.

Adaptive approximation-based control has an important role to play in the development of advanced
control systems. This class of techniques has become feasible in recent decades due to the rapid advances
that have occurred in computing technologies. Inexpensive desktop computing has inspired many ad hoc
approximation-based control approaches. In addition, similar approaches in different communities (e.g.,
neural, fuzzy) have been derived and presented using different nomenclature yet nearly identical theoreti-
cal results. Our objective in this chapter is to treat such approaches within a unifying framework so that
the resulting presentation encompasses a variety of approximation structures with different properties.

The three terms, adaptation, learning, and self-organization, are used with different meanings by
different authors in the literature. In this chapter, we will use adaptation to refer to temporal changes.
For example, adaptive control is applicable when the estimated parameters are slowly varying functions
of time. We will use learning to refer to methods that retain information as a function of measured
variables. Herein, learning is implemented via function approximation. Therefore, learning has a spatial
connotation whereas adaptation refers to temporal effects. The process of learning requires adaptation,
but the retention of information as a function of other variables in learning implies that learning is
a higher level process than is adaptation. Self-organization refers to methods that adapt the function
approximation structure during online operation [11,38]. Such methods are not covered in this chapter.

This chapter will focus on the motivation for, and implementation of, adaptive approximation-based
control systems. Many of the concepts and results from function approximation and data interpolation
are important relative to adaptive approximation-based control. Section 56.2 discusses various properties
of function approximators as they relate to adaptive function approximation for control purposes. Section
56.3 presents a few function approximation structures that have been considered for implementation of
adaptive approximation-based controllers. Section 56.4 focuses on issues related to parameter estimation.
Section 56.5 reviews various nonlinear control system design methodologies. In Section 56.6 we bring
together the ideas of function approximation, parameter estimation, and nonlinear control in the design of
adaptive approximation-based control systems. Section 56.7 presents briefly the concept of approximate
dynamic programming (ADP), which constitutes an important class of neural control schemes that has
attracted a lot of attention in the literature. Finally, Section 56.8 contains some concluding remarks.

56.2 Approximator Properties

This section discusses issues and trade-offs related to the selection of a function approximation structure.
We consider the situation where a control problem and solution have been defined that include a function
h(z). If the function h were known, then the control approach could be directly implemented. When
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h is unknown, then the control law is rewritten using ĥ(z; θ), which is intended to approximate the
unknown function h(z) well for some optimal value θ= θ∗, which will be estimated online. In this
discussion, the symbol z represents a dummy vector variable that may contain portions of the state vector
or exogenous input variables. To proceed, it is necessary that the vector z be known or measured. We
are interested in those applications where h(z) is unknown, but we have information available to us that
allows approximation of h(z) for z ∈D, where D is a domain of interest.

A few examples are useful to clarify the meaning of the function h and the argument z. For example,
h(z) could represent the system dynamics f (x, u) where z would then represent the vector [x, u]. In an
adaptive gain scheduling approach, h(z) might represent a mapping from the current operating condition
represented by z to linear control system parameters.

It is almost always desirable to have theoretical results showing that the control law performance using
ĥ(z; θ) is asymptotically equivalent to that of the control law using h(z). From the control theory point of
view, it is necessary to show boundedness of all signals in the control loop and asymptotic convergence
of certain signals (e.g., tracking errors) toward zero. Preferably, the previously mentioned bounds can be
made as small as desired, without increasing the control system gains (i.e., bandwidth). In addition, it is
sometimes of interest to analyze whether ĥ(z; θ) converges to h(z) as t →∞ for all z ∈D. It should be
noted that the control performance goal can be achieved without convergence of the approximator.

Note that we have converted the function approximation problem to a parameter estimation problem,
by assuming a known structure for the approximator. Selecting this structure is a critical design decision.

56.2.1 The Domain of Approximation

Whether convergence of the function approximator is required or not, proper definition of the function
approximation problem is important. The optimal function approximator will minimize some measure
of the error between ĥ(z; θ) and h(z). Although the function h(z) may be defined for z ∈ /m, the function
approximation problem can only be well defined over some compact set denoted by D. For example, the
problem of finding

θ∗ = argminθJ(θ), (56.1)

where

J(θ)=
∫

D
‖h(z)− ĥ(z; θ)‖2 dz (56.2)

is well defined∗ for compact D and h, ĥ ∈ C(D). To see the necessity of the constraint that the optimization
be over a compact set D, consider the simple problem of finding the optimal constant approximation
ĥ(z : θ)= θ to the quadratic function h(z)= z2. While this problem has a well-defined solution over every
compact subset of /, there is no solution over the set of real numbers /.

While a few papers fail to state assumptions on the domain of approximation D, the vast majority of
the papers in the literature work with a fixed domain of approximation that is defined a priori. At this
point in time, the authors are unaware of articles that define the region D during operation in a rigorous
fashion, which is an issue closely related to the topic of self-organization of the function approximation
structure.

Finally, with the approximator defined over a domain D, the designer must be concerned with two
situations related to the time evolution of the argument z(t) as a function of time. First, the initial value
z(0) may not be in D. In this case, the designer must ensure that z(t) enters D in finite time so that the
benefits of the adaptive approximation can be realized. Second, once z(t) enters D, the designer must
ensure either that it does not leave D or that it returns to D in finite time [32].

∗ The notation C(D) is read as “the set of functions continuous on domain D.”



�

�

�

�

� �

56-4 Control System Advanced Methods

56.2.2 Approximation Error

When h(z) ∈ C(D) and ĥ(z; θ) ∈ C(D) for all θ, then for any θ, the approximation error

ε(z; θ)= h(z)− ĥ(z; θ) (56.3)

is continuous and bound for z ∈D. Therefore, the minimization defined in Equation 56.2 is well defined
and the optimal error function

ε∗(z)= ε(z; θ∗)= h(z)− ĥ(z; θ∗) (56.4)

is also a continuous bounded function for z ∈D. The function ε∗(z) will be referred to as the minimum
function approximation error (MFAE).

Many articles in neural control include an assumption similar to the following.

Assumption 56.1:

For the functions h(z) ∈ C(D) and ĥ(z; θ) ∈ C(D), there exists θ∗ ∈ /p and ε̄> 0 such that ‖ε(z; θ∗)‖ ≤ ε̄,
∀z ∈D.

The boundedness of the approximation error—for a continuous function h(z), a continuous approx-
imator ĥ(z; θ), and a compact domain D—is a property of the problem statement. The assumption is
only giving a name ε̄ to the bound. Ideally, the designer expects the bound ε̄ to be small, but the size
of the bound will be directly affected by the designer’s choice of the function approximation structure
ĥ(z; θ). Because the approximation error may significantly affect the control performance, the choice of
the approximation structure is very important.

56.2.3 The Context

Function approximation problems are well studied, especially in the case where h(z) and ĥ(z; θ) are known
analytically and D is given. Examples include the decomposition of a known function into its Fourier or
Taylor series representation. Such problems are often studied in purely mathematical contexts [22,29].

There is also vast literature related to the development of functions to either interpolate or approximate
a given batch of data. Online approximation applications are different in that the data are not a fixed
batch, but are arriving continuously as the system operates. In addition, there is no guarantee that the
data that arrive will represent the region D in a statistically uniform sense. Such problems are sometimes
referred to as incremental, scattered data, approximation problems.

In the applications that are of interest to this chapter, h(z) is not known as an analytic formula;
therefore, Equation 56.2 cannot be optimized analytically. Instead, a typical approach is to optimize a cost
function based on online measurements that depend on the function (i.e., h(z(t))), where z(t) is defined
by the system trajectory. When the values of h(z(t)) are available as a function of time, the cost function
is effectively

J(θ)= 1

t

∫ t

0

∥∥∥h(z(τ))− ĥ(z(τ); θ)
∥∥∥2

dτ. (56.5)

Note, that while the cost function of Equation 56.2 is uniformily weighted over the region D, the cost
function of Equation 56.5 is biased toward those portions of D wherein the system operates most often.
Therefore, the two cost functions can have significantly different minimizing values of θ.

Finally, it is often the case that the values of h(z(t)) are not directly available; therefore, even Equa-
tion 56.5 cannot be directly evaluated. Instead, adjustments to the parameter estimate θ̂ will be inferred,
possibly based on stability-based formulations using the tracking error or identification error.
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56.2.4 Active and Passive Learning

The fact that the sample locations z(t) ∈D are determined by the system trajectory leads to an interesting
distinction between active and passive learning scenarios. Active learning describes those situations in
which the designer has the freedom to control the training sample distribution. Passive learning describes
those situations in which the training sample density is defined by some external mechanism. Online
applications usually involve passive learning because the plant is performing some useful function.

When active learning is possible, the designer will have the additional task to define the trajectory z(t)
to appropriately trade-off control performance relative to achieving accurate function approximation
over D.

56.2.5 Local versus Global Models

In the selection of a suitable model structure, it is useful to consider the domain over which the model is
expected to apply. In particular, the following two definitions are of interest.

Definition 56.1: Local Approximation Structure

A parametric model ĥ(z; θ) is a local approximation to h(z) at z0 ∈D if, for any ε> 0, there exist θ and δ
so that ‖h(z)− ĥ(z; θ)‖ ≤ ε for all z ∈ B(z0, δ) where B(z0, δ)= {z | ‖z− z0‖< δ}.

Definition 56.2: Global Approximation Structure

A parametric model ĥ(z; θ) is a global approximation to h(z) over domain D if for any ε> 0 there exists θ
so that ‖h(z)− ĥ(z; θ)‖ ≤ ε for all z ∈D.

The following items are of interest relative to the definition of local and global models:

• Physical models derived from first principles are expected to be global models (i.e., valid over the
domain of operation D).

• Whether a given approximation structure is local or global depends on the system that is being
modeled and the domain D.

• If a parameter vector θ exists satisfying Definition 56.2 for a particular ε, then this θ also satisfies
Definition 56.1 for the same ε at each x0 ∈D. Therefore, the set of global models is a strict subset
of the set of local models.

• As the desired level of accuracy increases (i.e., ε decreases), the dimension of the parameter vector
or the complexity of the model structure will usually have to increase.

56.2.6 Adaptation versus Learning

As the operating point z(t) moves through D, a local approximation structure could maintain accuracy
in the vicinity of the operating point by adjusting the parameter vector through time (i.e., adaptation).
Alternatively, the parameter vector could be stored as a function of the operating point (i.e., learning). The
former approach is typical of linear adaptive control methodologies in nonlinear control applications.
The latter approach is one implementation of learning control [12] that constructs a global approximation
structure by connecting several local approximating structures together in a smooth fashion [3].

The conceptual differences between adaptive linear control and learning control are of interest. In
a nonlinear application, adaptive linear control methodologies can be developed to maintain a locally
accurate model or control law at the current operating point z0. With the assumption that the linearized
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model will change over time, as the operating point changes, the adaptive mechanism will adjust the
parameter estimates to maintain the accuracy of the local fit. Such an approach can provide satisfactory
performance if the locally linearized model changes slowly, but will have to estimate the same model
parameters repetitively if the operating point moves repetitively over a set of standard operating points.
A more ambitious proposal is to develop a global model of the dynamics that stores model information
locally as a function of operating condition. One mechanism for this approach is to store the local linear
models or controllers as a function of the operating point.

For example,

ĥ(z; θ)=
m∑

i=1

(
Ai(z− zi)+Bi

)
w

(‖z− zi‖
μ

)
, (56.6)

where μ> 0; w(λ) : /+ �→ /+ is continuous and positive function that is non-zero only for λ ∈ [0, 1]
with

∑m
i=1 w

( ‖z−zi‖
μ

)
= 1 for all z ∈D; and Ai ∈ /n×n and Bi ∈ /n are unknown parameters. Given these

definitions, with appropriately chosen parameters, the function Ai(z− zi)+Bi is the linearized model
at operating point zi . The support of each linearized model is Si = B(zi ,μ). By the assumptions stated,
D ⊂ ∪m

i=1Si . If μ is selected small enough so that each linear model achieves approximation accuracy ε

over its support region, then the approximator ĥ defined in Equation 56.6 will achieve accuracy ε over D.
If a parameter adjustment mechanism is designed such that Ai and Bi are only adjusted for z ∈ Si , then
the model will be adjusted locally and retained locally; therefore, learning (i.e., retention of information
within a recallable context) will have been achieved.

The name Learning Control stems from the idea that past performance information is used to estimate
and store information (relevant to an operating point) for use when the system operates in the vicinity
of the same operating point in the future. Learning Control requires more extensive use of computer
memory and computational effort than adaptive or fixed parameter control. The required amount of
memory and computation will be determined predominantly by the selection of function approximation
and parameter estimation (training) techniques.

56.2.7 Universal Approximation

Given the problem of approximating the unknown function h(z) ∈ C(D) over the compact domain D, the
structure of the approximator ĥ(z; θ) should be carefully considered. Ideally, the designer should know
that if the dimension of θ is increased, in some appropriate way, then it is possible to make

max
z∈D

|ε∗(z)| =max
z∈D

|h(z)− ĥ(z; θ∗)|

sufficiently small. Such results are referred to as universal approximation (UA) theorems and the approx-
imators that satisfy the theorems are referred to as universal approximators.

Several UA results have been derived in the literature, for example, [16,26]. A typical result is presented
below for discussion. Prior to the statement of the theorem, we require a definition forΣΠ networks.

Definition 56.3:

The family of r input, N node, single hidden layer (ΣΠ) network approximators associated with nodal
processor g(·) is defined by

SrN =
⎧⎨
⎩h(z; θ, w, b)=

N∑
i=1

θi

q∏
j=1

g
(

w,ij z+ bij

)⎫⎬
⎭ .
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Theorem 56.1: [16]

Let D ⊂/r be compact and g : / �→ / be any continuous nonconstant function. Then, the set SrN with
nodal processor g has the property that for any h ∈ C(D) and any ε> 0, there exists N (sufficiently large)
such that maxz∈D |ε∗(z)|< ε.

This theorem indicates that if g is a nodal function satisfying certain technical assumptions and ε is
a specified approximation accuracy, then any given continuous function can be approximated over the
compact set D to the desired degree of accuracy if the number of nodes N is sufficiently large. Such UA
results are powerful, but should be interpreted with caution.

First, such theorems are very general. They do not state that any specific type of neural network has
superior abilities for function approximation. In fact, the constraints on the nodal function g are quite lax.

Second, UA requires that the number of nodes per layer be expandable. In most applications, the
number of nodes N is fixed a priori. Once each N is fixed, the network can no longer approximate an
arbitrary continuous function to a specified accuracy ε; hence, approximation structures that allow criteria
for the network structure specification are beneficial. Also, UA is achieved by making N “sufficiently”
large. Starting a priori with a small N defeats the objective of using a universal approximator.

Third, UA results state existence. They are not constructive. In particular, neither the required value
of N for a particular nodal processor, nor the approximator structure are defined by the theorems.

56.2.8 Generalization

For the applications discussed, the parameters of the approximation structure will be estimated using
the training set Tt = {z(τ) for τ ∈ [0, t]} defined by the system trajectory. However, the approximating
function may be evaluated at any point z ∈ D. Therefore, it is desirable that the resulting approximation
converge to a form that is accurate throughout D, not only at the points z ∈ Tt . The ability of parametric
approximators to provide answers—good or bad—at points outside the training set is referred to in the
neural network literature as generalization.

The fact that an approximation structure is capable of generalizing from the training data is not neces-
sarily a beneficial feature. Note that the approximator will output results ĥ(z; θ) at any evaluation point z.
The user must take appropriate steps to verify or ensure the accuracy of the resulting approximation at
that point. Families of approximators that allow this assessment to occur online are desirable.

Generalization of training data may also be described as interpolation or extrapolation of the training
data. Interpolation refers to the process of filling in the holes between nearby training samples. Interpo-
lation is a desirable form of generalization. Most approximators interpolate well. Some approximators
will allow online analysis of the interpolation accuracy. Extrapolation refers to the process of providing
answers in regions of the learning domain D that the training set Tt does not adequately represent. Extrap-
olation from the training data is risky when the functional form is unknown by assumption. Clearly, it is
desirable to know whether the approximator is interpolating between the training data or extrapolating
from the training data.

56.2.9 Parameter (Non)Linearity

A general representation of function approximators is

ĥ(z; θ, σ)= φ(z; σ),θ, (56.7)
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where the adjustable parameters are represented by θ, which appears linearly, and σ, which appears
nonlinearly. For example, in the approximator

ĥ(z; θ, σ)=
N∑

i=1

θi exp
(
− (z− σi

)2
)

. (56.8)

the coefficients θi appear linearly while the center location parameters σi appear nonlinearly. The design
must determine whether to adjust both sets of parameters or just those that appear linearly. If all the non-
linear parameters are fixed during the design stage, then a linear-in-the-parameters (LIP) approximator
is obtained. Nonlinear in the parameter approximators are more flexible, but also are more difficult to
analyze theoretically and to tune in an online fashion.

The relative drawbacks of LIP approximators are discussed, for example, in [4] where it is shown that
under certain technical assumptions, nonlinear in the parameter approximators have squared errors of
order O

(
1/N

)
, whereas LIP approximators cannot have approximation errors less than O

(
1/N2/n

)
(N

is the number of parameters and n is the dimension of D).
Function approximators that are LIP can be represented as

ĥ(z; θ)= φ(z),θ, (56.9)

where θ is the unknown parameter vector, and the regressor vector φ(z) is a known, usually nonlinear,
vector function of z. The powerful parameter estimation and performance analysis techniques that exist
for LIP approximators (see [15]) make this a beneficial property.

By substituting Equation 56.3 into Equation 56.2, we obtain

J(θ)=
∫

D
‖ε(z; θ)‖2 dz, (56.10)

which is strictly convex in ε. For LIP approximators, defining θ̃= θ− θ∗, by Equations 56.3 and 56.4 it is
clear that

ε(z; θ)=−φ(z),θ̃+ ε∗(z),

which is linear in the parameter error vector. Therefore, J(θ) is convex in the parameter error vector. Note
that for a fixed value of z, there is a linear subspace of values Θ defined as Θ= {θ : φ(z),θ= 0}. If z
varies sufficiently, then this subspace will shrink down to the single point θ∗. The fact that J is convex in ε,
which is linear in θ, ensures thatΘ is the unique equivalence set of global minima. When the parameters
appear in a nonlinear fashion, then numerous local minima may also exist.

As discussed in Section 56.2.3, when a sample error cost function such as Equation 56.5 is used in
place of the cost function of Equation 56.2, the optimal parameter estimate that results will depend on
the distribution of the training samples in the training set Tt . The fact that different parameter estimates
result from different sets of training samples is not the result of multiple local minima; it is, instead, the
result of different weightings by the sample distribution in the cost function.

56.2.10 Coverage

Coverage ensures that the value of the approximator can be adjusted at any point z ∈D. This property
can be stated formally as follows: for any z ∈ D, there exists at least one θj such that |∂h(z; θj)/∂θ| �= 0. If
this property does not apply, then there exists some point z ∈ D for which the approximation cannot be
changed. This is obviously an undesirable situation.

56.2.11 Localization

The localization property is stated formally as follows: for θj, if
∣∣∂h(z; θ)/∂θj

∣∣ is nonzero in the vicinity of
zo ∈D, then it must be zero outside the ball B(zo, δ) for some δ> 0. The smallest such δ is the radius of
support.
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With the localization property, the effects of changing any single parameter are limited to radius of
support of that parameter. Thus, experience and consequent learning in one part of the input domain
cannot positively nor negatively affect the knowledge previously accrued in other parts of the mapping
domain. A polynomial or Fourier series approximation does not have the localization property. It is easy
to see that adjusting any parameter of such an approximator will affect the approximation throughout D.

The fact that a limited subset of the model parameters is relevant for a given point in the learning
domain also makes it possible to reduce significantly the required amount of computation per sample
interval. The trade-off is that an approximator with the localization property may require a higher number
of parameters (more memory) than an approximator without the property. For example, if the domain D
has dimension d, and m parameters are necessary for a given local approximator per input dimensions,
then on the order of md parameters will generally be required to approximate the D dimensional function.
This exponential increase in the memory requirements with input dimension is referred to in the literature
as the curse of dimensionality.∗

56.3 Function Approximators

Examples of several classes of function approximators are given in this section. This list of examples is
not meant to be comprehensive. Many additional classes of approximators exist. See for example [13].

56.3.1 Sigmoidal Neural Networks

A strict mathematical definition of what is or is not a neural network does not exist; however, the class of
sigmoidal neural networks has become widely accepted as function approximators.

Single hidden-layer neural networks have the form

ĥ(z)=
N∑

j=1

θjφ(σj0−[σj1, . . . , σjM ]z), (56.11)

where usually both the linear parameters θ ∈ /N and the nonlinear parameters σ ∈ /N×(M+1) are
adjusted, and the nodal processor φ is a scalar function of a single variable. Most often, the nodal
processor has a sigmoidal shape similar to φ(v)= atan(v) or φ(v)= 1/(1+ e−v).

Multiple layer networks are constructed by cascading single layer networks together, with the output
from one network serving as the input to the next.

56.3.2 Orthogonal Polynomial Series

A set of polynomial functions φi(z), i = 1, 2, . . . is orthogonal with respect to a nonnegative weight
function w(t) over the interval [a, b], if

∫ b

a
w(z)φi(z)φj(z) dz =

{
ri , i = j,
0, i �= j,

for some nonzero constants ri . When a function h(z) satisfies certain integrability conditions, it can be
expanded as

h(z)=
∞∑

n=0

θnφn(z),

∗ The term curse of dimensionality was originally used by Bellman to refer to the increasing complexity of the solution to
dynamic programming problems with increasing input dimension.
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where

θn = 1

rn

∫ b

a
w(z)h(z)φj(z) dz.

The mth order finite approximation of h(z) with respect to the polynomial series φi(z) is given by

ĥ(z)=
m−1∑
n=0

θnφn(z). (56.12)

The integral of the error between h(z) and ĥ(z) over [a, b] converges to zero as m approaches∞. When
h(z) is unknown, it may be reasonable to approximate the θn in Equation 56.12 using online data.

56.3.3 Localized Basis Influence Functions

Due to the usefulness of the interconnection of local models to generate global models, the class of Basis
Influence Functions [25] is presented. The definition is followed by examples of several approximation
architectures that satisfy the definition. The purpose of the examples is to demonstrate the concept and
to illustrate that several approximators often discussed independently can be studied as a class within the
setting of the definition.

Definition 56.4: Localized-Basis Influence Functions

A function approximator is of the BI Class if, and only if, it can be written as

ĥ(z; θ̂)=
∑

i

hi(z; θ̂, zi)Γi(z; zi), (56.13)

where each hi(z; θ̂, zi) is a local approximation to h(z) for all z ∈ B(zi , δ); Γ(z; zi) has local support Si = {z :
Γ(z; zi) �= 0}, which is a subset of B(zi , δ); and D ⊆⋃i Si.

In this framework, the hi(z; θ̂, zi) are the basis functions and the Γi(z; zi) are the influence functions. It
is interesting to note the similarity between BI class approximations, as described above, and some fuzzy
approximators. In the language of fuzzy systems, a basis function is called a rule and an influence function
is called a membership function.

BOXES. One of the simplest approximation structures that satisfies Definition 56.4 is the piecewise
constant function

h(z; θ)=
∑

i

θiΓi ,

where

Γi =
{

1, if z ∈ Di ,
0, otherwise,

where ∪iDi =D and Di ∩Dj = ∅. Often, the Di are selected in a rectangular grid covering D. In this
case, very efficient code can be written to calculate the approximation and to update its parameters.
Generalizations of this concept include using more complex basis elements (e.g., parameterized linear
functions) in place of the constants θi , and interpolating between several neighboring Di to produce a
more continuous approximation. A disadvantage is that the influence functions are not continuous.
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56.3.4 Spline-Like Functions

Interpolating between regions in the BOXES approach can result in spline functions, such as (for a one
dimensional domain)

h(z; θ)= λiθi + (1−λi)θi+1,

where

λi = zi+1− z

zi+1− zi
(56.14)

for zi+1 > z ≥ zi and θi is the value of h(z; θ) at zi . When the knots (i.e., the zi for i = 1, . . . , N) are
equally spaced, Equation 56.14 can be rewritten to satisfy Definition 56.4 with constant basis functions
and influence functions of the form

Γi(z)=
⎧⎨
⎩

1− |z− zi|
zi+1− zi

, if zi−1 ≤ z ≤ zi+1,

0, otherwise.
(56.15)

Note that such schemes can be extended to both multidimensional inputs and outputs, at the expense of
increased memory and computational requirements. For example, a multidimensional output could be
the state feedback gain as a function of operating condition.

56.3.5 Radial Basis Functions

An approximation structure defined as

ĥ(z, θ̂)=
∑

i

θiΓ(z; zi),

where Γ(z; zi) is a function such as exp(−‖z− zi‖2), which changes with the distance of z from zi , is
called a Radial Basis Function (RBF) Approximator. In the case where Γ(z; zi) has only local support,
the RBF also satisfies Definition 56.4, with the basis elements being constant functions. Of course, the
basis functions can again be generalized to be more inclusive functions, at the expense of more involved
computations.

56.4 Parameter Estimation

Section 56.2 has presented various key properties of function approximators and Section 56.3 described
several neural and other approximation structures that can be used to adaptively approximate unknown
nonlinearities in uncertain dynamical systems. The present section addresses the problem of designing
and analyzing parameter estimation algorithms with certain stability and robustness properties.

Unlike standard parameter estimation problems, in the case of nonlinear dynamical systems with
unknown nonlinearities, there is a need to first derive a suitable parametric model before designing and
analyzing the learning scheme. The overall procedure is referred to as adaptive approximation problem,
which is summarized as follows.

56.4.1 Adaptive Approximation Problem

Given an input/output system containing unknown nonlinear functions, the adaptive approximation
problem deals with the design of online learning schemes and parameter adaptive laws for approximating
the unknown nonlinearities.
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The overall design procedure for solving the adaptive approximation problem consists of the following
three steps:

1. Derive a parametric model by rewriting the dynamical system in the form

χ(t)=W(s)[f̂ (z(t); θ∗, σ∗)]+ δ(t), (56.16)

where χ(t) ∈ /n is a vector that can be computed from available signals, W(s) is a known transfer
function (in the Laplace s-domain) of dimension n× p, the vector function f̂ : /m×/qθ ×/qσ �→
/p represents an adaptive approximator, z(t) ∈ /m is the input to the adaptive approximator, θ∗ ∈
/qθ and σ∗ ∈ /qσ are unknown “optimal” weights for the adaptive approximator, and δ(t) ∈ /n is
a possibly filtered version of the MFAE ε∗f (x(t)).

2. Design a learning scheme of the form

χ̂(t)= L(z(t), θ̂(t), σ̂(t)),

e(t)= χ̂(t)−χ(t),

where θ̂(t), σ̂(t) are adjustable weights of the adaptive approximator, L is the structure of the learn-
ing scheme, and χ̂(t) is an estimate of χ(t), which is used to generate the output estimation error
e(t). The output estimation error e(t) provides a measure of how well the estimator approximates
the unknown nonlinearities, and therefore is utilized in updating the parameter adaptive laws.

3. Design a parameter adaptive law for updating θ̂(t) and σ̂(t), of the form

˙̂
θ(t)=Aθ(z(t),χ(t), χ̂(t), θ̂(t)),

˙̂σ(t)=Aσ(z(t),χ(t), χ̂(t), σ̂(t)),

where Aθ and Aσ represent the right-hand side of the adaptive law for θ̂(t) and σ̂(t)), respectively.

The role of the filter W(s) will become clear in the subsequent presentation. For some applications, the
form of the filter W(s) is imposed by the structure of the problem. In other applications, the structure
of the problem may purposefully be manipulated to insert the filter in order to take advantage of its
beneficial noise reduction properties.

The analysis of the learning scheme consists of proving (under reasonable assumptions) the following
properties:

Stable Adaptation Property: In the case of zero mismatch error (i.e., δ(t)= 0), the estimation error
e(t)= χ̂(t)−χ(t) remains bounded and asymptotically approaches zero (or a small neighborhood
of zero).

Stable Learning Property: In the case of zero mismatch error (i.e., δ(t)= 0), the function approximation
error f̂ (z(t), θ̂(t), σ̂(t))− f̂ ((z(t), θ∗, σ∗) remains bounded for all z in some domain of interest D
and asymptotically approaches zero (or is asymptotically less than some threshold ε over D).

Robust Adaptive and Learning Properties: In the case of nonzero mismatch error (i.e., δ(t) �= 0), the
function approximation error f̂ (z(t), θ̂(t), σ̂(t))− f̂ ((z(t), θ∗, σ∗), and the estimation error e(t)=
χ̂(t)−χ(t) remain bounded for all z in some domain of interest D and satisfy a small-in-the-
mean-square property [17] with respect to the magnitude of the mismatch error.

It is important for the reader to note that the parameter estimation methodologies for neural control and
adaptive approximation-based control did not develop in a research vacuum, but they are the extension of
a large number of parameter estimation results. Parametric estimation is a well-established field in science
and engineering since it is one of the key components in developing models from observations. Several
books are available for parameter estimation in the context of system identification [21], adaptive control
[17] and time series analysis [10]. The parameter estimation methods presented herein are based on these
standard estimation techniques but with special emphasis on the adaptive approximation problem.



�

�

�

�

� �

Neural Control 56-13

A significant number of results have been developed for offline parameter estimation, where all the
data are first collected and then processed to fit an assumed model. Both frequency and time-domain
approaches can be used, depending on the nature of the input–output data. Moreover, stochastic tech-
niques have been extensively used to deal with measurement noise and other types of uncertainty. A key
component in offline parameter estimation is the selection of the norm, which determines the objective
function to be minimized.

Adaptive approximation-based control requires the use of online parameter estimation methods; that
is, techniques that are based on the idea of first choosing an initial estimate for the unknown parameter
vector, then recursively updating the estimate based on the current set of measurements. One of the
key characteristics of online parameter estimation methods is that as streaming data become available
in real-time, it is processed, via updating the of parameter estimates, and then discarded. Therefore, the
presented techniques require no data storage during real-time processing applications, except possibly
for some buffering window that can be used to filter measurement noise. In general, the information
presented by the past history of measurements (in time and/or space) is encapsulated by the current
value of the parameter estimate. Adaptive parameter estimation methods are used extensively in various
applications, especially those dealing with time-varying systems or unstable open-loop systems. It is also
used as a way of avoiding long delays and high costs that result from offline system identification methods.

As discussed in Section 56.2, adaptive approximators can be classified into two categories of interest:
linearly parameterized and nonlinearly parameterized. In the case of linearly parameterized approxi-
mators, the parameters denoted by σ are selected a priori and remain fixed. Therefore, the remaining
adaptable weights θ̂ appear linearly. For nonlinearly parameterized approximators, both θ and σ weights
are updated online. The case of linearly parameterized approximators allows the derivation of stronger
analytical results for stability and convergence.

The adaptive parameter estimation problem can be formulated both in a continuous-time as well as a
discrete-time framework. In practical applications, the actual plant typically evolves in continuous-time,
while data processing (parameter estimation, monitoring, etc.) and feedback control is implemented in
discrete-time using computing devices. Therefore, real-time applications yield so-called hybrid systems,
where both continuous-time and discrete-time signals are intertwined [1].

It is important to keep in mind that different applications may have different objectives relevant to
parameter convergence. In most control applications that focus on accurate tracking of reference input
signals, the main objective is not necessarily to make the parameter estimates θ̂(t) and σ̂(t) converge to
the optimal values θ∗ and σ∗, respectively, since accurate tracking performance can be achieved without
convergence of the parameters. In general, parameter convergence is a strong requirement. In applications
where parameter convergence is desired, the input to the approximator, denoted by z(t), must also satisfy
a so-called persistency of excitation condition. The structure of the persistence of excitation condition can
be strongly affected by the choice of function approximator.

56.5 Nonlinear Control

Adaptive approximation-based control is based on the concept of designing control algorithms for systems
with unknown nonlinearities. To understand adaptive approximation-based control methods, it is impor-
tant to start by considering the simpler problem of designing of nonlinear control algorithms for systems
with known nonlinearities. In other words, if the nonlinearities were known, how would we go about
designing a control system? This section provides a general overview of various approaches for nonlinear
control design. An excellent treatment of nonlinear systems and control methods is given in [18].

56.5.1 Small-Signal Linearization and Gain Scheduling

A traditional approach for dealing with nonlinear systems is to linearize the system around an equilibrium
point or around a trajectory. This is referred to as small-signal linearization. The main idea behind
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small-signal linearization is to approximate the nonlinear system by a linear model of the form ẋ =
Ax+Bu, where A and B are matrices of appropriate dimension. The term small-signal linearization is
used to characterize the fact that the linear model is an accurate approximation of the nonlinear system
only in a neighborhood of the point around which the linearization took place.

A key limitation of the small-signal linearization approach is the fact that the linear model is accurate
only in a neighborhood around the operating (linearizing) point. To alleviate this limitation, the gain
scheduling control approach is based on the idea of linearizing around multiple operating points. For each
linear model there corresponds a feedback controller, thus creating a family of feedback control laws,
each applicable in the neighborhood of a specific operating point. The family of feedback controllers can
be combined into a single control whose parameters are changed by a scheduling scheme based on the
trajectory or some other scheduling variables [34].

The performance and robustness of the gain scheduling control approaches is impacted by the fact that
the controller parameters are precomputed offline for each operating condition. Hence, during operation
the controller is fixed, even though the linear control gains are changing as the operating conditions
change. In the presence of modeling errors or changes in the system dynamics, the gain scheduling
controller may result in deterioration of the performance since the method does not provide any learning
capability to correct—during operation—any inaccurate schedules. Another possible drawback of the
gain scheduling approach is that it requires considerable offline effort to derive a reliable gain schedule
for each possible situation that the plant will encounter.

The gain scheduling approach can be conveniently viewed as a special case of the adaptive approxima-
tion approach since a local linear model is an example case of a local approximation function. One of the
key differences between the standard gain scheduling technique and the adaptive approximation-based
control approach is the ability of the latter to adjust certain parameters (weights) during operation. Unlike
gain scheduling, adaptive approximation is designed around the principle of “learning” and thus reduces
the amount of modeling effort that needs to be expended offline. Moreover, it allows the control scheme
to deal with unexpected changes in plant dynamics due to faults or severe disturbances.

56.5.2 Feedback Linearization

Feedback linearization is one of the most powerful and commonly found techniques in nonlinear control.
This approach is based on cancelling the nonlinearities by the combined use of feedback and change of
coordinates. A nonlinear system

ẋ = f (x)+G(x)u (56.17)

is said to be input-state feedback linearizable if there exists a diffeomorphism z = T(x), with T(0)= 0,
such that

ż = Az+Bβ−1(z) [u− α(z)] , (56.18)

where (A, B) is a controllable pair and β(z) is an invertible matrix for all z in a domain of interest Dz ⊂/n.
Similarly, input–output feedback linearization describes input–output systems that can be linearized by
the use of feedback.

Therefore, we see that the class of feedback linearizable systems includes not only systems that can be
directly transformed to a linear system by feedback, but also systems that can be transformed into that
form by a nonlinear state transformation. Determining whether a given nonlinear system is feedback
linearizable and what is an appropriate diffeomorphism are not obvious issues, and in fact they can be
extremely difficult since in general they involve solving a set of partial differential equations.

One of the key drawbacks of feedback linearization is that it depends on exact cancellation of non-
linear functions. If one of the functions is uncertain then cancellation is not possible. This is one of the
motivations for adaptive approximation-based control. Another possible difficulty with feedback lin-
earization is that not all systems can be transformed to a linearizable form. Another technique, referred
to as Backstepping [19], can be applied to a class of systems that may not be feedback linearizable.
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56.5.3 Robust Nonlinear Control

The methodologies introduced so far in this section were based on the key assumption that the control
designer exactly knows the system nonlinearities. In practice, this is not a realistic assumption. Another
class of nonlinear control design tools are based on the principle of assuming that the unknown compo-
nents of the nonlinearities are bounded in some way by a known function. If this assumption is satisfied
then it is possible to derive nonlinear control schemes that utilize these known bounding functions instead
of the unknown nonlinearities.

This class of tools is referred to as robust nonlinear control design methods [13,18], and it includes:
(1) bounding control, (2) sliding mode control, (3) Lyapunov redesign method, (4) nonlinear damping,
and (5) adaptive bounding. Although these techniques have been extensively studied in the nonlinear
control literature, they tend to yield conservative control laws, especially in cases where the uncertainty
is significant. The term “conservative” is used among control engineers to indicate the fact that due to
the uncertainty the control effort applied is more than needed. As a result, the control signal u(t) may be
large with rapid temporal variations (due to high-gain feedback). These characteristics may cause several
problems, such as saturation or excessive wear of the actuators, large error in the presence of measurement
noise, excitation of unmodeled dynamics, and large transient errors.

The robust nonlinear control design methods provide an interesting contrast to adaptive
approximation-based control. Specifically, adaptive approximation-based control can be viewed as a way
of reducing uncertainty during operation such that the need for conservative robust control can be elimi-
nated or reduced. Another reason for studying these techniques in the context of adaptive approximation
is their utilization to guarantee closed-loop stability outside of the approximation region D.

56.6 Adaptive Approximation-Based Control

Sections 56.2 and 56.3 have presented approximator properties and structures, respectively. Section 56.4
discussed methods for parameter estimation and issues related to adaptive approximation, while Section
56.5 reviewed various nonlinear control design methods. This section brings these different topics together
in the synthesis of adaptive approximation-based control systems.

The role of adaptive approximation-based control is to estimate unknown nonlinear functions and can-
cel their effect using the feedback control signal. Cancelling the estimated nonlinear function allows accu-
rate tracking to be achieved with a smoother control signal, as compared to the robust nonlinear control
design methods discussed in the previous section. The trade-off is that the adaptive approximation-based
controller will typically have much higher state dimension (with the approximator adaptive parameters
considered as states). This trade-off has become significantly more feasible over the past two decades,
since controllers are frequently implemented via digital computers that have increased remarkably in
memory and computational capabilities over this recent time span.

To illustrate some of the key concepts in the design and analysis of adaptive approximation-based
control schemes, let us consider a simple scalar system

ẋ = ( fo(x)+ f ∗(x))+ (go(x)+ g∗(x))u, (56.19)

where u(t) is the control input, and y(t)= x(t) is the output. The functions fo(x) and go(x) are the known
components of the dynamics and f ∗(x) and g∗(x) are the unknown parts of the dynamics. The objective
is to achieve tracking of a certain signal yd(t) by the output y(t).

The unknown portions of the model will be approximated over the compact region D. This region
is sometimes referred to as the safe operating envelope. For any system, the region D is physically
determined at the design stage. For example, an electrical motor is designed to operate within certain
voltage, current, torque, and speed constraints. If these constraints are violated, then the electrical or
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mechanical components of the motor may fail; therefore, the controller must ensure that the safe physical
limits of the system represented by D are not violated.

The state Equation 56.19 can be expressed as

ẋ =
(

fo(x)+ f̂ (x; θ∗f )
)
+ ε∗f (x)+

(
go(x)+ ĝ(x; θ∗g )

)
u+ ε∗g (x)u, (56.20)

where θ∗f and θ∗g are the unknown “optimal” weight vectors, and ε∗f and ε∗g represent the MFAE as defined
in Equation 56.4. The MFAE is a critical quantity, representing the minimum possible deviation between
the unknown function f ∗ and the input/output function of the adaptive approximator f̂ (x; θ̂f ). In general,
increasing the number of adjustable weights reduces the MFAE. The UA results indicate that any specified
approximation accuracy ε can be attained uniformly on the compact region D if the number of weights
is sufficiently large.

The optimal weight vectors θ∗f and θ∗g are unknown quantities required only for analytical purposes.
Typically, θ∗f (similarly for θ∗g ) is defined as the value of θf that minimizes some cost function as defined
in Equation 56.2. A special case, for the ∞-norm yields the uniform network approximation error over
all x ∈D:

θ∗f := arg min
θ̂f ∈Rqf

{
sup
x∈D

∣∣∣f ∗(x)− f̂ (x, θ̂f )
∣∣∣
}

. (56.21)

The approximation-based feedback linearizing control law is summarized as

ua =−amx̃+ ẏd − fo(x)−φf (x),θ̂f − vf , (56.22)

u= ua

go(x)+φg (x),θ̂g + vg
, (56.23)

˙̂
θf = Γf φf x̃, for x ∈D, (56.24)

˙̂
θg = PS

(
Γgφg x̃u

)
, for x ∈D, (56.25)

where x̃ = x− yd is the tracking error, am > 0 is a positive design constant,Γf andΓg are positive-definite

matrices, and PS is the projection operator that will be used to ensure the stabilizability condition on θ̂g .
The auxiliary terms vf and vg are included to ensure that the state remains within the approximation
region D.

In the ideal case of zero MFAE, with vf = vg = 0, the adaptive approximation-based control scheme
with linearly parameterized approximators guarantees that all the signals remain bounded and the tracking
error x̃(t) converges to zero. The stability proof is based on the use of Lyapunov stability theory [27].

In the case where the MFAE is nonzero (i.e., the adaptive approximation model is not able to approxi-
mate exactly the unknown nonlinearities within the region D), it is possible for the parameter estimates
to become unbounded in their attempt to estimate a function that cannot be physically estimated with
the current number of weights. To prevent this from happening, the parameter update laws are modified
by the use of the so-called dead-zone or σ-modification algorithms [17].

Another issue that needs to be addressed is what happens if the trajectory goes outside the operating
envelope D, which is a physically defined region over which it is safe and desirable for the system to operate.
The trajectory generation system ensures that the desired state remains in D. The control designer must
ensure that the actual state converges to D. Within D the objective is high accuracy trajectory tracking;
therefore, the designer will select the approximator structure to provide confidence about the capability
of the approximators f̂ and ĝ to approximate the unknown functions f ∗ and g∗ accurately for x ∈D.

The control algorithms developed earlier had assumed that if x(t) leaves the region D, then the auxiliary
control terms vf and vg are able to bring the state back within D. Here, we show how to ensure that the
design of the auxiliary terms vf and vg achieves the objective of bringing the trajectory within D. Let
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D =Rn−D; that is, D is the region outside of D. We assume that outside of D, the unknown functions
f ∗(x) and g∗(x) are bounded by known nonlinearities as follows:

fL(x)≤ f ∗(x)≤ fU (x), x ∈D,

0 < gL(x)≤ g∗(x)≤ gU (x), x ∈D.

The control design for x ∈D has already been considered. For x ∈D, the adaptation of the parameter
estimates θ̂f and θ̂g is stopped and φf (x)= 0, φg (x)= 0; that is, no basis functions are placed in D.
Therefore, for x ∈D, the auxiliary terms vf and vg are selected as follows:

vf =
{

fU (x), if e ≥ 0,
fL(x), if e ≤ 0,

(56.26)

vg =
{

gU (x), if eua ≥ 0,
gL(x), if eua ≤ 0,

(56.27)

where e(t)= x̃(t) is the tracking error. The stability of the closed-loop system for x ∈D is obtained again
by using Lyapunov stability theory [13].

The functions vf and vg are not Lipschitz functions. Their simplicity facilitates a clear discussion of
methods to enforce convergence to D. Usually these functions are smoothed across the boundary of D
for practical implementations.

56.7 Reinforcement Learning

Optimal control theory was developed formally in the 1950s, following the contributions of L. S.
Pontryagin and R. Bellman. Pontryagin introduced the minimum principle [28], which gave necessary
conditions for the existence of optimal trajectories. Bellman introduced the concept of dynamic program-
ming [7,8] that led to the notion of the celebrated Hamilton–Jacobi–Bellman (HJB) partial differential
equation, which has the value function V∗ as its solution.

Consider the nth order nonlinear system

ẋ = f (x)+ g(x)u, (56.28)

where x = [x1, . . . , xn], ∈ Rn is the state and u ∈ Rn is the control input. The optimal control problem is
to find the control signal u to minimize a cost function J(x, u) subject to the constraint on the trajectory
evolution defined in Equation 56.28.

When the system model of Equation 56.28 is linear and and the cost function is quadratic in x and u,
for example:

J∞ =
∫ ∞

t0

(x,(τ)Qx(τ)+‖u(τ)‖2) dτ, (56.29)

where Q is a positive-definite matrix, this becomes the Linear Quadratic Gaussian (LQG) problem [2],
(i.e., the H2 optimal control problem) and the HJB partial differential equation becomes two separate
Riccati equations, which can be solved very efficiently. For general nonlinear systems, it is extremely
difficult to solve the HJB equation to obtain an optimal controller.
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If f (x) is nonlinear and known, a standard dynamic programming argument reduces the above optimal
control problem to finding the value function V∗ solving the HJB partial differential equation

V∗x f − 1

4

(
V∗x gg,V∗x

,)+ x,Qx = 0, (56.30)

where V∗x denotes ∂V∗/∂x. If there exists a continuously differentiable positive-definite solution V∗ to
Equation 56.30, then the optimal controller can be expressed as

u=−1

2
g,V∗x

,. (56.31)

There are two obstacles that complicate the solution to the optimal control problem. The first challenge
is that it can be extremely difficult to solve the HJB partial differential Equation 56.30 when the nonlinear
function f (x) is known. The second challenge is that f (x) may be only partially unknown.

Given the above challenges, many approximate optimal control techniques have been developed for
nonlinear systems. For example, control approaches such as receding horizon control [23], approximation
of value functions [6,20,33,37], ADP [9,30,31] have been developed. Many ADP approaches address
situations where the model is at least partially unknown and therefore address applications similar to
those discussed in the main body of this chapter. There are numerous varieties of ADP, too many to
address in this chapter. The interested reader can consult [24,30,35]. As one example of ADP, adaptive
critic designs (ACD) are based on an algorithm that cycles between a policy-improvement routine (i.e.,
control) and a value-determination (i.e., estimation of V∗) operation [5,31]. At each optimizing cycle,
the algorithm approximates the optimal control law and the value function based on the status of the
system; therefore, there are at least two function approximation problems being solved during the system
operation. Theoretically, when system dynamics are time-invariant, as the final time approaches infinity,
the method yields the optimal control law.

56.8 Concluding Remarks

This chapter has discussed techniques for using online function approximation to improve control or state
estimation performance. Successful implementations require proper selection of an objective function, an
approximation structure, a training algorithm, and analysis of these three choices under the appropriate
experimental conditions.

Several characteristics of function approximators have been discussed. In the literature, much attention
is devoted to selecting certain function approximators because as a class they have the UA property. By
itself, this condition is not sufficient. First, the set of function approximators, that are dense on the set
of continuous functions, is larger than the set of universal function approximators. Second, universal
function approximation requires that the approximator has an arbitrarily large size (i.e., width). Once
the size of the approximator is limited, a limitation is also placed on the set of functions that can be
approximated to within a given ε. In a particular application, the designer should instead consider which
approximation structure can most efficiently represent the class of expected functions. Efficiency should
be measured both in terms of the number of parameters (i.e., computer memory) and the amount of
computation (i.e., required computer speed). Due to the inexpensive cost of computer memory and
the hard constraints on the amount of possible computation due to sampling frequency considerations,
computational efficiency is often more important in applications.

Although the goal of many applications presented in the literature is to approximate a given function,
the approximation accuracy is rarely evaluated directly—even in simulation examples. Instead, perfor-
mance is often evaluated by analyzing graphs of the training error. This approach can be misleading
because such graphs indicate only the accuracy of the approximation at the pertinent operating points.
It is quite possible to have a small sample error over a given time span without ever accurately approxi-
mating the desired function over the desired region. If the goal is to approximate a function over a given
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region, then some analysis other than monitoring the sample error during training must be performed
to determine the success level. In simulation, the approximated and actual functions can be compared
directly. Successful simulation performance is necessary to provide the confidence for implementation.
In implementations, where the actual function is not known, a simple demonstration that the function
has been approximated correctly is to show that the performance does not degrade when the parameter
update law is turned off.
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57.1 The Basic Ideas

57.1.1 Ten Basic Questions about System Identification

1. What is system identification?
System Identification allows you to build mathematical models of a dynamic system based on
measured data.

57-1
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2. How is that done?
Essentially by adjusting parameters within a given model until its output coincides as well as
possible with the measured output.

3. How do you know if the model is any good?
A good test is to take a close look at the model’s output compared to the measurements on a data
set that was not used for the fit (“Validation Data”).

4. Can the quality of the model be tested in other ways?
It is also valuable to look at what the model could not reproduce in the data (“the residuals”). There
should be no correlation with other available information, such as the system’s input.

5. What models are most common?
The techniques apply to very general models. Most common models are difference equations
descriptions, such as ARX and ARMAX models, as well as all types of linear state-space models.
Lately, black box nonlinear structures, such as Artificial Neural Networks, Fuzzy models, and so
on, have been much used.

6. Do you have to assume a model of a particular type?
For parametric models, you have to specify the structure. However, if you just assume that the
system is linear, you can directly estimate its impulse or step response using Correlation Analysis
or its frequency response using Spectral Analysis. This allows useful comparisons with other
estimated models.

7. How do you know what model structure to try?
Well, you do not. For real life systems there is never any “true model,” anyway. You have to be
generous at this point, and try out several different structures.

8. Can nonlinear models be used in an easy fashion?
Yes. Most common model nonlinearities are such that the measured data should be nonlinearly
transformed (like squaring a voltage input if you think that it is the power i.e., the stimulus). Use
physical insight about the system you are modeling and try out such transformations on models
that are linear in the new variables, and you will cover a lot.

9. What does this article cover?
After reviewing an archetypical situation in this section, we describe the basic techniques for
parameter estimation in arbitrary model structures. Section 57.3 deals with linear models of black
box structure, and Section 57.5 deals with particular estimation methods that can be used (in addi-
tion to the general ones) for such models. Physically parameterized model structures are described
in Section 57.6, and nonlinear black box models (including neural networks) are discussed in
Section 57.7. The final Section 57.8 deals with the choices and decisions the user is faced with.

10. Is this really all there is to system identification?
Actually, there is a huge amount written on the subject. Experience with real data is the driving
force to further understanding. It is important to remember that any estimated model, no matter
how good it looks on your screen, has only picked up a simple reflection of reality. Surprisingly
often, however, this is sufficient for rational decision making.

57.1.2 Background and Literature

System identification has its roots in standard statistical techniques and many of the basic routines have
direct interpretations as well known statistical methods such as least squares and maximum likelihood.
The control community took an active part in the development and application of these basic techniques to
dynamic systems right after the birth of “modern control theory” in the early 1960s. Maximum likelihood
estimation was applied to difference equations (ARMAX models) by Åström and Bohlin (1965) and
thereafter a wide range of estimation techniques and model parameterizations flourished. By now, the
area is well matured with established and well-understood techniques. Industrial use and application of
the techniques has become standard. See Ljung (2007) for a common software package.
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The literature on system identification is extensive. For a practical user oriented introduction we may
mention Ljung and Glad (1994). Texts that go deeper into the theory and algorithms include Ljung (1999),
and Söderström and Stoica (1989). A classical treatment is Box and Jenkins (1970).

These books all deal with the “mainstream” approach to system identification, as described in this
article. In addition, there is a substantial literature on other approaches, such as “set membership” (com-
pute all those models that reproduce the observed data within a certain given error bound), estimation
of models from given frequency response measurement (Pintelon and Schoukens, 2001), online model
estimation (Ljung and Söderström, 1983), nonparametric frequency domain methods (Brillinger, 1981),
gray-box identification (Bohlin, 2006) and so on. To follow the development in the field, the IFAC series
of Symposia on System Identification (Saint Malo, 2009; Newcastle, 2006) is a good source. A recent
perspective paper is Ljung (2010).

57.1.3 An Archetypical Problem: ARX Models and the Linear
Least-Squares Method

57.1.3.1 The Model

We shall generally denote the system’s input and output at time t by u(t) and y(t), respectively. Perhaps,
the most basic relationship between the input and output is the linear difference equation

y(t)+ a1y(t− 1)+ · · ·+ any(t− n)= b1u(t− 1)+ · · ·+ bmu(t−m) (57.1)

We have chosen to represent the system in discrete time, primarily since observed data are always collected
by sampling. It is thus more straightforward to relate observed data to discrete time models. Nothing
prevents us however from working with continuous time models: we shall return to that in Section 57.6.

In Equation 57.1, we assume the sampling interval to be one time unit. This is not essential, but makes
notation easier.

A pragmatic and useful way to see Equation 57.1 is to view it as a way of determining the next output
value given previous observations:

y(t)=−a1y(t− 1)− · · ·− any(t− n)+ b1u(t− 1)+ · · ·+ bmu(t−m) (57.2)

For more compact notation we introduce the vectors

θ= [a1, . . . , an b1, . . . , bm]T (57.3)

ϕ(t)= [−y(t− 1) · · · − y(t− n) u(t− 1) · · · u(t−m)]T (57.4)

With these Equation 57.2 can be rewritten as

y(t)= ϕT (t)θ

To emphasize that the calculation of y(t) from past data Equation 57.2 indeed depends on the parameters
in θ, we shall rather call this calculated value ŷ(t|θ) and write

ŷ(t|θ)= ϕT (t)θ (57.5)

57.1.3.2 The Least-Squares Method

Now suppose for a given system that we do not know the values of the parameters in θ, but that we have
recorded inputs and outputs over a time interval 1≤ t ≤ N :

ZN = {u(1), y(1), . . . , u(N), y(N)} (57.6)
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An obvious approach is then to select θ in Equations 57.1 through 57.5 so as to fit the calculated values
ŷ(t|θ) as well as possible to the measured outputs by the least-squares method:

min
θ

VN (θ, ZN ) (57.7)

where

VN (θ, ZN )= 1

N

N∑
t=1

(y(t)− ŷ(t|θ))2

= 1

N

N∑
t=1

(y(t)−ϕT (t)θ)2

(57.8)

We shall denote the value of θ that minimizes Equation 57.7 by θ̂N :

θ̂N = arg min
θ

VN (θ, ZN ) (57.9)

(“arg min” means the minimizing argument, i.e., that value of θ which minimizes VN .)
Since VN is quadratic in θ, we can find the minimum value easily by setting the derivative to zero:

0= d

dθ
VN (θ, ZN )= 2

N

N∑
t=1

ϕ(t)(y(t)−ϕT (t)θ)

which gives
N∑

t=1

ϕ(t)y(t)=
N∑

t=1

ϕ(t)ϕT (t)θ (57.10)

or

θ̂N =
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t) (57.11)

Once the vectors ϕ(t) are defined, the solution can easily be found by modern numerical software, such
as MATLAB�.

Example 57.1: First-Order Difference Equation

Consider the simple model
y(t)+ ay(t− 1)= bu(t− 1).

This gives us the estimate according to Equations 57.3, 57.4, and 57.11

[
âN
b̂N

]
=
[∑

y2(t− 1) −∑ y(t− 1)u(t− 1)
−∑ y(t− 1)u(t− 1)

∑
u2(t− 1)

]−1 [−∑ y(t)y(t− 1)∑
y(t)u(t− 1)

]

All sums are from t = 1 to t = N. A typical convention is to take values outside the measured range
to be zero. In this case we would thus take y(0)= 0.

The simple model (Equation 57.1) and the well-known least-squares method (Equation 57.11) form
the archetype of System Identification. Not only that—they also give the most commonly used parametric
identification method and are much more versatile than perhaps perceived at first sight. In particular,
one should realize that Equation 57.1 can directly be extended to several different inputs (this just calls
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for a redefinition of ϕ(t) in Equation 57.4) and that the inputs and outputs do not have to be the raw
measurements. On the contrary—it is often most important to think over the physics of the application
and come up with suitable inputs and outputs for Equation 57.1, formed from the actual measurements.

Example 57.2: An Immersion Heater

Consider a process consisting of an immersion heater immersed in a cooling liquid. We measure:

• v(t): The voltage applied to the heater
• r(t): The temperature of the liquid
• y(t): The temperature of the heater coil surface

Suppose we need a model for how y(t) depends on r(t) and v(t). Some simple considerations based
on common sense and high school physics (“Semi-physical modeling”) reveal the following:

• The change in temperature of the heater coil over one sample is proportional to the electrical
power in it (the inflow power) minus the heat loss to the liquid

• The electrical power is proportional to v2(t)
• The heat loss is proportional to y(t)− r(t)

This suggests the model

y(t)= y(t− 1)+ αv2(t− 1)− β(y(t− 1)− r(t− 1))

which fits into the form
y(t)+ θ1y(t− 1)= θ2v2(t− 1)+ θ3r(t− 1))

This is a two input (v2 and r) and one output model, and corresponds to choosing

ϕ(t)= [−y(t− 1) v2(t− 1) r(t− 1)]T
in Equation 57.5.

57.1.3.3 Some Statistical Remarks

Model structures, such as Equation 57.5 that are linear in θ are known in statistics as linear regression
and the vector ϕ(t) is called the regression vector (its components are the regressors). “Regress” here
alludes to the fact that we try to calculate (or describe) y(t) by “going back” to ϕ(t). Models such as
Equation 57.1 where the regression vector—ϕ(t)—contains old values of the variable to be explained—
y(t)—are then partly auto-regressions. For that reason the model structure Equation 57.1 has the standard
name ARX-model (Auto-regression with extra inputs).

There is a rich statistical literature on the properties of the estimate θ̂N under varying assumptions.
See, for example, Draper and Smith (1981). So far we have just viewed Equations 57.7 and 57.8 as “curve-
fitting.” In Section 57.2.2, we shall deal with a more comprehensive statistical discussion, which includes
the ARX model as a special case. Some direct calculations will be done in the following subsection.

57.1.3.4 Model Quality and Experiment Design

Let us consider the simplest special case, that of a Finite Impulse Response (FIR) model. That is obtained
from Equation 57.1 by taking n= 0:

y(t)= b1u(t− 1)+ · · ·+ bmu(t−m) (57.12)

Suppose that the observed data really have been generated by a similar mechanism

y(t)= b0
1u(t− 1)+ · · ·+ b0

mu(t−m)+ e(t) (57.13)

where e(t) is a white noise sequence with variance λ, but otherwise unknown. (i.e., e(t) can be described
as a sequence of independent random variables with zero mean values and variances λ.) Analogous to
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Equation 57.5, we can write this as

y(t)= ϕT (t)θ0+ e(t) (57.14)

We can now replace y(t) in Equation 57.11 by the above expression, and obtain

θ̂N =
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)y(t)

=
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 [ N∑
t=1

ϕ(t)ϕT (t)θ0+
N∑

t=1

ϕ(t)e(t)

]

or

θ̃N = θ̂N − θ0 =
[

N∑
t=1

ϕ(t)ϕT (t)

]−1 N∑
t=1

ϕ(t)e(t) (57.15)

Suppose that the input u is independent of the noise e. Then ϕ and e are independent in this expression,
so it is easy to see that Eθ̃N = 0, since e has zero mean. The estimate is consequently unbiased. Here E
denotes mathematical expectation.

We can also form the expectation of θ̃N θ̃
T
N , that is, the covariance matrix of the parameter error.

Denote the matrix within brackets by RN . Take expectation with respect to the white noise e. Then RN is
a deterministic matrix and we have

PN = Eθ̃N θ̃
T
N = R−1

N

N∑
t,s=1

ϕ(t)ϕT (s)Ee(t)e(s)R−1
N = λR−1

N (57.16)

since the double sum collapses to λRN .
We have thus computed the covariance matrix of the estimate θ̂N . It is determined entirely by the input

properties and the noise level. Moreover, define

R̄ = lim
N→∞

1

N
RN (57.17)

This will be the covariance matrix of the input, that is, the i− j-element of R̄ is Ruu(i− j), as defined by
Equation 57.104 later on.

If the matrix R̄ is nonsingular, we find that the covariance matrix of the parameter estimate is approx-
imately (and the approximation improves as N →∞)

PN = λ

N
R̄−1 (57.18)

A number of things follow from this. All of them are typical of the general properties to be described in
Section 57.2.2:

• The covariance decays like 1/N , so the parameters approach the limiting value at the rate 1/
√

N .
• The covariance is proportional to the noise-to-signal ratio. That is, it is proportional to the noise

variance and inversely proportional to the input power.
• The covariance does not depend on the input’s or noise’s signal shapes, only on their vari-

ance/covariance properties.
• Experiment design, that is, the selection of the input u, aims at making the matrix R̄−1 “as small as

possible.” Note that the same R̄ can be obtained for many different signals u.
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57.1.4 The Main Ingredients

The main ingredients for the System Identification problem are as follows:

• The data set ZN

• A class of candidate model descriptions; a Model Structure
• A criterion of fit between data and models
• Routines to validate and accept resulting models

We have seen in Section 57.1.3, a particular model structure, the ARX-model. In fact the major prob-
lem in system identification is to select a good model structure, and a substantial part of this article
deals with various model structures. See Sections 57.3, 57.6, and 57.7, which all concern this problem.
Generally speaking, a model structure is a parameterized mapping from past inputs and outputs Zt−1 (cf
Equation 57.6) to the space of the model outputs:

ŷ(t|θ)= g(θ, Zt−1) (57.19)

Here θ is the finite dimensional vector used to parameterize the mapping.
Actually, the problem of fitting a given model structure to measured data is much simpler, and can be

dealt with independently of the model structure used. We shall do so in the following section.
The problem of assuring a data set with adequate information contents is the problem of experiment

design, and it will be described in Section 57.8.1.
Model validation is both a process to discriminate between various model structures and the final

quality control station, before a model is delivered to the user. This problem is discussed in Section 57.8.2.

57.2 General Parameter Estimation Techniques

In this section, we shall deal with issues that are independent of model structure. Principles and algorithms
for fitting models to data, as well as the general properties of the estimated models are all model-structure
independent and equally well applicable to, say, ARMAX models and Neural Network models.

The section is organized as follows. In Section 57.2.1, the general principles for parameter estimation are
outlined. Sections 57.2.2 and 57.2.3 deal with the asymptotic (in the number of observed data) properties
of the models, while algorithms, both for online and off-line use are described in Section 57.2.5.

57.2.1 Fitting Models to Data

In Section 57.1.3, we showed one way to parameterize descriptions of dynamical systems. There are many
other possibilities and we shall spend a fair amount of this contribution to discuss the different choices
and approaches. This is actually the key problem in system identification. No matter how the problem is
approached, the bottom line is that such a model parameterization leads to a predictor

ŷ(t|θ)= g(θ, Zt−1) (57.20)

that depends on the unknown parameter vector and past data Zt−1 (see Equation 57.6). This predictor
can be linear in y and u. This in turn contains several special cases both in terms of black box models and
physically parameterized ones, as will be discussed in Sections 57.3 and 57.6, respectively. The predictor
could also be of general, nonlinear nature, as discussed in Section 57.7.

In any case we now need a method to determine a good value of θ, based on the information in an
observed, sampled data set (Equation 57.6). It suggests itself that the basic least-squares like approach
Equations 57.7 through 57.9 still is a natural approach, even when the predictor ŷ(t|θ) is a more general
function of θ.
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A procedure with some more degrees of freedom is the following one

1. From observed data and the predictor ŷ(t|θ) form the sequence of prediction errors,

ε(t, θ)= y(t)− ŷ(t|θ), t = 1, 2, . . . N (57.21)

2. Possibly filter the prediction errors through a linear filter L(q),

εF (t, θ)= L(q)ε(t, θ) (57.22)

(here q denotes the shift operator, qu(t)= u(t+ 1)) so as to enhance or depress interesting or
unimportant frequency bands in the signals.

3. Choose a scalar valued, positive function �(·) so as to measure the “size” or “norm” of the prediction
error:

�(εF (t, θ)) (57.23)

4. Minimize the sum of these norms:

θ̂N = arg min
θ

VN (θ, ZN ) (57.24)

where

VN (θ, ZN )= 1

N

N∑
t=1

�(εF (t, θ)) (57.25)

This procedure is natural and pragmatic—we can still think of it as “curve-fitting” between y(t) and
ŷ(t|θ). It also has several statistical and information theoretic interpretations. Most importantly, if the
noise source in the system (like in Equation 57.61 below) is supposed to be a sequence of independent
random variables {e(t)} each having a probability density function fe(x), then Equation 57.24 becomes
the maximum likelihood estimate (MLE) if we choose

L(q)= 1 and �(ε)=− log fe(ε) (57.26)

The MLE has several nice statistical features and thus gives a strong “moral support” for using the
outlined method. Another pleasing aspect is that the method is independent of the particular model
parameterization used (although this will affect the actual minimization procedure). For example, the
method of “back propagation” often used in connection with neural network parameterizations amounts
to computing θ̂N in Equation 57.24 by a recursive gradient method. We shall deal with these aspects in
Section 57.2.5.

57.2.2 Model Quality

An essential question is, of course, what properties will the estimate have resulting from Equation 57.24.
These will naturally depend on the properties of the data record ZN defined by Equation 57.6. It is in
general a difficult problem to characterize the quality of θ̂N exactly. One normally has to be content with
the asymptotic properties of θ̂N as the number of data, N , tends to infinity.

It is an important aspect of the general identification method Equation 57.24 that the asymptotic prop-
erties of the resulting estimate can be expressed in general terms for arbitrary model parameterizations.

The first basic result is the following one:

θ̂N → θ∗ as N →∞ where (57.27)

θ∗ = arg min
θ

E�(εF (t, θ)) (57.28)

That is, as more and more data become available, the estimate converges to that value θ∗, that would
minimize the expected value of the “norm” of the filtered prediction errors. This is, in a sense the best
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possible approximation of the true system that is available within the model structure. The expecta-
tion E in Equation 57.28 is taken with respect to all random disturbances that affect the data and it
also includes averaging over the input properties. This means in particular that θ∗ will make ŷ(t|θ∗) a
good approximation of y(t) with respect to those aspects of the system that are enhanced by the input
signal used.

The second basic result is the following one: If {ε(t, θ∗)} is approximately white noise, then the covari-
ance matrix of θ̂N is approximately given by

E(θ̂N − θ∗)(θ̂N − θ∗)T ∼ λ

N
[Eψ(t)ψT (t)]−1 (57.29)

where

λ= Eε2(t, θ∗) (57.30)

ψ(t)= d

dθ
ŷ(t|θ)|θ=θ∗ (57.31)

Think ofψ as the sensitivity derivative of the predictor with respect to the parameters. Then Equation 57.29
says that the covariance matrix for θ̂N is proportional to the inverse of the covariance matrix of this
sensitivity derivative. This is a quite natural result.

Note: For all these results, the expectation operator E can, under general conditions, be replaced by the
limit of the sample mean, that is

Eψ(t)ψT (t)↔ lim
N→∞

1

N

N∑
t=1

ψ(t)ψT (t) (57.32)

The results, Equations 57.27 through 57.31 are general and hold for all model structures, both linear
and nonlinear ones, subject only to some regularity and smoothness conditions. They are also fairly
natural, and will give the guidelines for all user choices involved in the process of identification. See Ljung
(1999) for more details around this.

57.2.3 Measures of Model Fit

Some quite general expressions for the expected model fit, that are independent of the model structure,
can also be developed.

Let us measure the (average) fit between any model (Equation 57.20) and the true system as

V̄ (θ)= E|y(t)− ŷ(t|θ)|2 (57.33)

Here expectation E is over the data properties (i.e., expectation over “Z∞” with the notation Equa-
tion 57.6). Recall that expectation also can be interpreted as sample means as in Equation 57.32.

Before we continue, let us note the very important aspect that the fit V̄ will depend, not only on the
model and the true system, but also on data properties, like input spectra, possible feedback, and so on.
We shall say that the fit depends on the experimental conditions.

The estimated model parameter θ̂N is a random variable, because it is constructed from observed data,
that can be described as random variables. To evaluate the model fit, we then take the expectation of
V̄ (θ̂N ) with respect to the estimation data. That gives our measure

FN = EV̄ (θ̂N ) (57.34)
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In general, the measure FN depends on a number of things:

• The model structure used
• The number of data points N
• The data properties for which the fit V̄ is defined
• The properties of the data used to estimate θ̂N

The rather remarkable fact is that if the two last data properties coincide, then, asymptotically in N [see,
e.g., Ljung (1999), Chapter 16]

FN ≈ V̄N (θ∗)

(
1+ dim θ

N

)
(57.35)

Here θ∗ is the value that minimizes the expected criterion (Equation 57.28). The notation dim θ means
the number of estimated parameters. The result also assumes that the criterion function �(ε)= ‖ε‖2, and
that the model structure is successful in the sense that εF (t) is approximately white noise.

Despite the reservations about the formal validity of Equation 57.35, it carries a most important
conceptual message: If a model is evaluated on a data set with the same properties as the estimation data,
then the fit will not depend on the data properties, and it will depend on the model structure only in terms
of the number of parameters used and of the best fit offered within the structure.

The expression can be rewritten as follows. Let ŷ0(t|t− 1) denote the “true” one step ahead prediction
of y(t), and let

W(θ)= E|ŷ0(t|t− 1)− ŷ(t|θ)|2 (57.36)

and let

λ= E|y(t)− ŷ0(t|t− 1)|2 (57.37)

Then λ is the innovations variance, that is, that part of y(t) that cannot be predicted from the past.
Moreover, W(θ∗) is the bias error, that is, the discrepancy between the true predictor and the best one
available in the model structure. Under the same assumptions as above, Equation 57.35 can be rewritten
as

FN ≈ λ+W(θ∗)+λdim θ

N
(57.38)

The three terms constituting the model error then have the following interpretations:

• λ is the unavoidable error, stemming from the fact that the output cannot be exactly predicted,
even with perfect system knowledge.

• W(θ∗) is the bias error. It depends on the model structure, and on the experimental conditions. It
will typically decrease as dim θ increases.

• The last term is the variance error. It is proportional to the number of estimated parameters and
inversely proportional to the number of data points. It does not depend on the particular model
structure or the experimental conditions (as long as these are the same for the estimation and
evaluation).

57.2.4 Model Structure Selection

The most difficult choice for the user is no doubt to find a suitable model structure to fit the data to.
This is of course a very application-dependent problem, and it is difficult to give general guidelines. (Still,
some general practical advice will be given in Section 57.8.)

At the heart of the model structure selection process is to handle the trade-off between bias and
variance, as formalized by Equation 57.38. The “best” model structure is the one that minimizes FN , the
fit between the model and the data for a fresh data set—one that was not used for estimating the model.
Most procedures for choosing the model structures are also aiming at finding this best choice.
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57.2.4.1 Cross Validation

A very natural and pragmatic approach is cross validation. This means that the available data set is split
into two parts, estimation data, ZN1

est that is used to estimate the models:

θ̂N1 = arg min VN1

(
θ, ZN1

est

)
(57.39)

and validation data, ZN2
val for which the criterion is evaluated:

F̂N1 = VN2 (θ̂N1 , ZN2
val ) (57.40)

Here VN is the criterion Equation 57.25. Then F̂N will be an unbiased estimate of the measure FN , defined
by (Equation 57.34), which was discussed at length in the previous section. The procedure would the be
to try out a number of model structures, and choose the one that minimizes F̂N1 .

Such cross validation techniques to find a good model structure has an immediate intuitive appeal.
We simply check if the candidate model is capable of “reproducing” data have it has not yet seen. If that
works well, we have some confidence in the model, regardless of any probabilistic framework that might
be imposed. Such techniques are also the most commonly used ones.

A few comments could be added. In the first place, one could use different splits of the original data into
estimation and validation data. For example, in statistics, there is a common cross validation technique
called “leave one out.” This means that the validation data set consists of one data point “at a time,” but
successively applied to the whole original set. In the second place, the test of the model on the validation
data does not have to be in terms of the particular criterion (Equation 57.40). In system identification it
is common practice to simulate (or predict several steps ahead) the model using the validation data, and
then visually inspect the agreement between measured and simulated (predicted) output.

57.2.4.2 Estimating the Variance Contribution: Penalizing the Model Complexity

It is clear that the criterion (Equation 57.40) has to be evaluated on the validation data to be of any use—it
would be strictly decreasing as a function of model flexibility if evaluated on the estimation data. In other
words, the adverse effect of the dimension of θ shown in Equation 57.38 would be missed. There are a
number of criteria—often derived from entirely different viewpoints—that try to capture the influence
of this variance error term. The two best-known ones are Akaike’s information theoretic criterion (AIC),
which has the form (for Gaussian disturbances)

ṼN (θ, ZN )=
(

1+ 2dim θ

N

)
1

N

N∑
t=1

ε2(t, θ) (57.41)

and Rissanen’s minimum description length criterion (MDL) in which dim θ in the expression above is
replaced by log N dim θ. See Akaike (1974a) and Rissanen (1978).

The criterion ṼN is then to be minimized both with respect to θ and to a family of model structures.
The relation to the expression (Equation 57.35) for FN is obvious.

57.2.5 Algorithmic Aspects

In this section, we discuss how to achieve the best fit between observed data and the model, that is, how
to carry out the minimization of Equation 57.24. For simplicity, we here assume a quadratic criterion and
set the prefilter L to unity:

VN (θ)= 1

2N

N∑
t=1

|y(t)− ŷ(t|θ)|2 (57.42)

No analytic solution to this problem is possible unless the model ŷ(t|θ) is linear in θ, so the minimization
has to be done by some numerical search procedure. A classical treatment of the problem of how to
minimize the sum of squares is given in Dennis and Schnabel (1983).
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Most efficient search routines are based on iterative local search in a “downhill” direction from the
current point. We then have an iterative scheme of the following kind

θ̂(i+1) = θ̂(i)−μiR
−1
i ĝi (57.43)

Here θ̂(i) is the parameter estimate after iteration number i. The search scheme is thus made up of the
three entities

• μi step size
• ĝi an estimate of the gradient V ′N (θ̂(i))
• Ri a matrix that modifies the search direction

It is useful to distinguish between two different minimization situations

i. Off-line or batch: The update μiR
−1
i g1

i is based on the whole available data record ZN .
ii. Online or recursive: The update is based only on data up to sample i (Zi), (typically done so that

the gradient estimate ĝi is based only on data just before sample i).

We discuss these two modes separately below. First, some general aspects will be treated.

57.2.5.1 Search Directions

The basis for the local search is the gradient

V ′N (θ)= dVN (θ)

dθ
=− 1

N

N∑
t=1

(y(t)− ŷ(t|θ))ψ(t, θ) (57.44)

where

ψ(t, θ)= ∂

∂θ
ŷ(t|θ) (57.45)

The gradient ψ is in the general case a matrix with dim θ rows and dim y columns. It is well known that
gradient search for the minimum is inefficient, especially close to the minimum. Then it is optimal to use
the Newton search direction

R−1(θ)V ′N (θ) (57.46)

where

R(θ)= V ′′N (θ)= d2VN (θ)

dθ2

= 1

N

N∑
t=1

ψ(t, θ)ψT (t, θ)+ 1

N

N∑
t=1

(y(t)− ŷ(t|θ))
∂2

∂θ2 ŷ(t|θ) (57.47)

The true Newton direction will thus require that the second derivative

∂2

∂θ2 ŷ(t|θ)

be computed. Also, far from the minimum, R(θ) need not be positive semidefinite. Therefore, alternative
search directions are more common in practice:

• Gradient direction: Simply take
Ri = I (57.48)

• Gauss–Newton direction: Use

Ri =Hi = 1

N

N∑
t=1

ψ(t, θ̂(i))ψT (t, θ̂(i)) (57.49)
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• Levenberg–Marquard direction: Use

Ri =Hi + δI

where Hi is defined by Equation 57.49.
• Conjugate gradient direction: Construct the Newton direction from a sequence of gradient estimates.

Loosely, think of V ′′N as constructed by difference approximation of d gradients. The direction in
Equation 57.46 is however, constructed directly, without explicitly forming and inverting V ′′.

It is generally considered (Dennis and Schnabel, 1983), that the Gauss–Newton search direction is to
be preferred. For ill-conditioned problems, the Levenberg–Marquard modification is recommended.

57.2.5.2 Online Algorithms

The expressions (Equations 57.44 and 57.47) for the Gauss–Newton search clearly assume that the whole
data set ZN is available during the iterations. If the application is of an off-line character, that is, the model
ĝN is not required during the data acquisition, this is also the most natural approach.

However, many adaptive situations require online (or recursive) algorithms, where the data are pro-
cessed as they are measured. (Such algorithms are in Neural Network contexts often also used in off-line
situations. Then the measured data record is concatenated with itself several times to create a (very) long
record that is fed into the online algorithm.) We may refer to Ljung and Söderström (1983) as a basic
source of information for recursive identification techniques.

It is natural to consider the following algorithm as the basic one:

θ̂(t)= θ̂(t− 1)+μtR−1
t ψ(t, θ̂(t− 1))ε(t, θ̂(t− 1)) (57.50)

ε(t, θ)= y(t)− ŷ(t|θ) (57.51)

Rt = Rt−1+μt[ψ(t, θ̂(t− 1))ψT (t, θ̂(t− 1))−Rt−1] (57.52)

The reason is that if ŷ(t|θ) is linear in θ, then Equations 57.50 through 57.52, with μt = 1/t, provides
the analytical solution to the minimization problem Equation 57.42. This also means that this is a natural
algorithm close to the minimum, where a second order expansion of the criterion is a good approximation.
In fact, it is shown in Ljung and Söderström (1983), that Equations 57.50 through 57.52 in general gives
an estimate θ̂(t) with the same (“optimal”) statistical, asymptotic properties as the true minimum to
Equation 57.42.

It should be mentioned that the quantities ŷ(t|θ̂(t− 1)) and ψ(t, θ̂(t− 1)) would normally (except
in the linear regression case) require the whole data record to be computed. This would violate the
recursiveness of the algorithm. In practical implementations these quantities are therefore replaced by
recursively computed approximations. The idea behind these approximations is to use the defining
equation for ŷ(t|θ) andψ(t, θ) (which typically are recursive equations), and replace any appearance of θ
with its latest available estimate. See Ljung and Söderström (1983) for more details.

Some averaged variants of Equations 57.50 through 57.52 have also been discussed:

ˆ̂
θ(t)= ˆ̂θ(t− 1)+μtR−1

t ψ(t, θ̂(t− 1))ε(t, θ̂(t− 1)) (57.53)

θ̂(t)= θ̂(t− 1)+ ρt[ˆ̂θ(t)− θ̂(t− 1)] (57.54)

The basic algorithm of Equations 57.50 through 57.52 then corresponds to ρt = 1. Using ρt < 1 gives a
so called “accelerated convergence” algorithm. It was introduced by Polyak and Juditsky (1992) and has
then been extensively discussed by Kushner and Yang (1993), and others. The remarkable thing with
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this averaging is that we achieve the same asymptotic statistical properties of θ̂(t) by Equations 57.53 and
57.54 with Rt = I (gradient search) as by Equations 57.50 through 57.52 if

ρt = 1/t μt >> ρt μt → 0

It is thus an interesting alternative to Equations 57.50 through 57.52, in particular if dim θ is large so Rt

is a big matrix.

57.2.5.3 Local Minima

A fundamental problem with minimization tasks like Equation 57.42 is that VN (θ) may have several or
many local (nonglobal) minima, where local search algorithms may get caught. There is no easy solution
to this problem. It is usually well worth the effort to find a good initial value θ(0) where to start the
iterations. Other than that, only various global search strategies are left, such as random search, random
restarts, simulated annealing, and the genetic algorithm.

57.3 Linear Black Box Systems

57.3.1 Linear System Descriptions in General

57.3.1.1 A Linear System with Additive Disturbances

A linear system with additive disturbances v(t) can be described by

y(t)= G(q)u(t)+ v(t) (57.55)

Here u(t) is the input signal, and G(q) is the transfer function from input to output y(t). The symbol q is
the shift operator, so Equation 57.55 should be interpreted as

y(t)=
∞∑

k=0

gku(t− k)+ v(t)=
( ∞∑

k=0

gkq−k

)
u(t)+ v(t) (57.56)

The disturbance v(t) can in general terms be characterized by its spectrum, which is a description of
its frequency content. It is often more convenient to describe v(t) as being (thought of as) obtained by
filtering a white noise source e(t) through a linear filter H(q):

v(t)=H(q)e(t) (57.57)

This is, from a linear identification perspective, equivalent to describing v(t) as a signal with spectrum

Φv(ω)= λ|H(eiω)|2 (57.58)

where λ is the variance of the noise source e(t). We shall assume that H(q) is normalized to be monic,
that is,

H(q)= 1+
∞∑

k=1

hkq−k (57.59)

Putting all of this together, we arrive at the standard linear system description

y(t)= G(q)u(t)+H(q)e(t) (57.60)
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57.3.1.2 Parameterized Linear Models

Now, if the transfer functions G and H in Equation 57.60 are not known, we would introduce parameters
θ in their description that reflect our lack of knowledge. The exact way of doing this is the topic of this
section as well as of Section 57.6.

In any case the resulting, parameterized model will be described as

y(t)= G(q, θ)u(t)+H(q, θ)e(t) (57.61)

The parameters θ can then be estimated from data using the general procedures described in Section 57.2.

57.3.1.3 Predictors for Linear Models

Given a system description of Equation 57.61 and input–output data up to time t− 1,

y(s), u(s) s ≤ t− 1 (57.62)

how shall we predict the next output value y(t)?
In the general case of Equation 57.61 the prediction can be deduced in the following way: Divide

Equation 57.61 by H(q, θ):

H−1(q, θ)y(t)=H−1(q, θ)G(q, θ)u(t)+ e(t)

or

y(t)= [1−H−1(q, θ)]y(t)+H−1(q, θ)G(q, θ)u(t)+ e(t) (57.63)

In view of the normalization of Equation 57.59 we find that

1−H−1(q, θ)= H(q, θ)− 1

H(q, θ)
= 1

H(q, θ)

∞∑
k=1

hkq−k

The expression [1−H−1(q, θ)]y(t) thus only contains old values of y(s), s ≤ t− 1. The right side of
Equation 57.63 is thus known at time t− 1, with the exception of e(t). The prediction of y(t) is simply
obtained from Equation 57.63 by deleting e(t):

ŷ(t|θ)= [1−H−1(q, θ)]y(t)+H−1(q, θ)G(q, θ)u(t) (57.64)

This is a general expression for how ready-made models predict the next value of the output, given old
values of y and u. Inserting the predictor in Equation 57.25 (with �(ε)= ε2) give the identification criterion

1

N

N∑
t=1

|H−1(q, θ)(y(t)−G(q, θ)u(t))|2 (57.65)

57.3.1.4 A Characterization of the Limiting Model in a General Class of Linear Models

Let us apply the general limit result in Equations 57.27 and 57.28 to the linear model structure (Equa-
tion 57.61 or 57.64). If we choose a quadratic criterion �(ε)= ε2 (in the scalar output case) then this result
tells us, in the time domain, that the limiting parameter estimate is the one that minimizes the filtered
prediction error variance (for the input used during the experiment). Suppose that the data actually have
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been generated by
y(t)= G0(q)u(t)+ v(t) (57.66)

Let Φu(ω) be the input spectrum and Φv(ω) be the spectrum for the additive disturbance v. Then the
filtered prediction error can be written

εF (t, θ)= L(q)

H(q, θ)
[y(t)−G(q, θ)u(t)]

= L(q)

H(q, θ)
[(G0(q)−G(q, θ))u(t)+ v(t)]

(57.67)

By Parseval’s relation, the prediction error variance can also be written as an integral over the spectrum
of the prediction error. This spectrum, in turn, is directly obtained from Equation 57.67, so the limit
estimate θ∗ in Equation 57.28 can also be defined as

θ∗ = arg min
θ

[∫ π

−π
|G0(eiω)−G(eiω, θ)|2Φu(ω)|L(eiω)|2

|H(eiω, θ)|2 dω

+
∫ π

−π
Φv(ω)|L(eiω)|2/|H(eiω, θ)|2dω

]
(57.68)

If the noise model H(q, θ)=H∗(q) does not depend on θ [as in the output error model (Equation 57.75)]
the expression (Equation 57.68) thus shows that the resulting model G(eiω, θ∗) will give that frequency
function in the model set that is closest to the true one, in a quadratic frequency norm with weighting
function

Q(ω)=Φu(ω)|L(eiω)|2/|H∗(eiω)|2 (57.69)

This shows clearly that the fit can be affected by the choice of prefilter L, the input spectrumΦu and the
noise model H∗.

57.3.2 Linear and Ready-Made Models

Sometimes we are faced with systems or subsystems that cannot be modeled based on physical insights.
The reason may be that the function of the system or its construction is unknown or that it would be
too complicated to sort out the physical relationships. It is then possible to use standard models, which
by experience are known to be able to handle a wide range of different system dynamics. Linear systems
constitute the most common class of such standard models. From a modeling point of view these models
thus serve as ready-made models: tell us the size (model order), and it should be possible to find something
that fits (to data).

57.3.2.1 A Family of Transfer Function Models

A very natural approach is to describe G and H in Equation 57.61 as rational transfer functions in the
shift (delay) operator with unknown numerator and denominator polynomials.

We would then have

G(q, θ)= B(q)

F(q)
= b1q−nk + b2q−nk−1+ · · ·+ bnbq−nk−nb+1

1+ f1q−1+ · · ·+ fnf q−nf
, (57.70)

Then
η(t)= G(q, θ)u(t) (57.71)

is a shorthand notation for the relationship

η(t)+ f1η(t− 1)+ · · ·+ fnf η(t− nf )= b1u(t− nk)+ · · ·+ bnb(t− (nb+ nk− 1)) (57.72)

There is also a time delay of nk samples. We assume assume, for simplicity, that the sampling interval T
is one time unit.
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In the same way the disturbance transfer function can be written

H(q, θ)= C(q)

D(q)
= 1+ c1q−1+ · · ·+ cncq−nc

1+ d1q−1+ · · ·+ dndq−nd
(57.73)

The parameter vector θ thus contains the coefficients bi , ci , di , and fi of the transfer functions. This
ready-made model is thus described by five structural parameters: nb, nc, nd, nf , and nk. When these
have been chosen, it remains to adjust the parameters bi , ci , di , and fi to data. This is done with the methods
of Section 57.2. The ready-made model Equations 57.70 through 57.73 gives

y(t)= B(q)

F(q)
u(t)+ C(q)

D(q)
e(t) (57.74)

and is known as the Box–Jenkins (BJ) model, after the statisticians G. E. P. Box and G. M. Jenkins.
An important special case is when the properties of the disturbance signals are not modeled, and the

noise model H(q) is chosen to be H(q)≡ 1; that is, nc = nd = 0. This special case is known as an output
error (OE) model since the noise source e(t) will then be the difference (error) between the actual output
and the noise-free output:

y(t)= B(q)

F(q)
u(t)+ e(t) (57.75)

A common variant is to use the same denominator for G and H :

F(q)= D(q)= A(q)= 1+ a1q−1+ · · ·+ anaa−na (57.76)

Multiplying both sides of Equation 57.74 by A(q) then gives

A(q)y(t)= B(q)u(t)+C(q)e(t) (57.77)

This ready-made model is known as the ARMAX model. The name is derived from the fact that A(q)y(t)
represents an AutoRegression and C(q)e(t) a Moving Average of white noise, while B(q)u(t) represents
an eXtra input (or with econometric terminology, an eXogenous variable).

Physically, the difference between ARMAX and BJ models is that the noise and input are subjected to the
same dynamics (same poles) in the ARMAX case. This is reasonable if the dominating disturbances enter
early in the process (together with the input). Consider for example an airplane where the disturbances
from wind gusts give rise to the same type of forces on the airplane as the deflections of the control
surfaces.

Finally, we have the special case of Equation 57.77 that C(q)≡ 1, that is, nc = 0

A(q)y(t)= B(q)u(t)+ e(t) (57.78)

which with the same terminology is called an ARX model, and which we discussed at length in Sec-
tion 57.1.3. Figure 57.1 shows the most common model structures.

To use these ready-made models, decide on the orders na, nb, nc, nd, nf , and nk and let the computer
pick the best model in the class thus defined. The obtained model is then scrutinized, and it might be
found that other order must also be tested.

A relevant question is how to use the freedom that the different model structures give. Each of the BJ,
OE, ARMAX, and ARX structures offer their own advantages, and we will discuss them in Section 57.8.2.

57.3.2.2 Prediction

Starting with model (Equation 57.74), it is possible to predict what the output y(t) will be, based on
measurements of u(s), y(s) s ≤ t− 1, using the general formula (Equation 57.64). It is easiest to calculate
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FIGURE 57.1 Model structures.

the prediction for the OE-case, H(q, θ)≡ 1, when we obtain the model

y(t)= G(q, θ)u(t)+ e(t)

with the natural prediction (1−H−1 = 0)

ŷ(t|θ)= G(q, θ)u(t) (57.79)

From the ARX case (Equation 57.78) we obtain

y(t)=−a1y(t− 1)− · · ·− anay(t− na)+ b1u(t− nk)+ · · ·+ bnbu(t− nk− nb+ 1)+ e(t) (57.80)

and the prediction (delete e(t)!)

ŷ(t|θ)=−a1y(t− 1)− · · ·− anay(t− na)+ b1u(t− nk)+ · · ·+ bnbu(t− nk− nb+ 1) (57.81)

Note the difference between Equations 57.79 and 57.81. In the OE model the prediction is based entirely
on the input {u(t)}, whereas the ARX model also uses old values of the output.
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57.3.2.3 Linear Regression

Both tailor-made and ready-made models describe how the predicted value of y(t) depends on old values
of y and u and on the parameters θ. We denote this prediction by

ŷ(t|θ)
See Equation 57.64. In general this can be a rather complicated function of θ. The estimation work is
considerably easier if the prediction is a linear function of θ:

ŷ(t|θ)= θTϕ(t) (57.82)

Here θ is a column vector that contains the unknown parameters, while ϕ(t) is a column vector formed
by old inputs and outputs. Such a model structure is called a linear regression. We discussed such models
in Section 57.1.3, and noted that the ARX model (Equation 57.78) is one common model of the linear
regression type. Linear regression models can also be obtained in several other ways. See Example 57.2.

57.4 Frequency Domain Techniques for Linear Models

It gives a useful complementary view as well as algorithms to consider estimating a linear model (Equa-
tion 57.61) using frequency domain data. Such techniques are carefully and comprehensively described
in Schoukens and Pintelon (1991) and Pintelon and Schoukens (2001).

57.4.1 Frequency Domain Data

The data could either be Fourier transforms of inputs and outputs or estimates of the frequency function:

Frequency domain data from sampled measurements:

ZN = {UN (eiω1T ), YN (eiω1T ), . . . , UN (eiωN T ), YN (eiωN T )} (57.83)

where UN and YN are the discrete time Fourier transforms of sampled inputs and outputs, with sampling
interval T .

UN (eiωT )= 1√
N

N∑
k=1

u(kT)e−iωkT (57.84)

If these transforms are computed on the “DFT-grid”

ωk = 2πk/(NT), k = 0, 1, . . . , N − 1 (57.85)

the data (Equation 57.83) will become the DFT (discrete Fourier transform) of the time domain data
(with a special normalization).

It is interesting to note (see, e.g., Theorem 14.25 in Pintelon and Schoukens (2001)) that under weak
assumptions UN (ω) and YN (ω) will have an asymptotically (as N →∞) normal distribution. The values
will also be (asymptotically) independent at different values of ωk on the DFT grid.

Measurements of the sampled frequency response function:

We assume that we have measurements of a sampled-data frequency function G(eiωT ):

ZN = {Gm(eiω1T ), . . . , Gm(eiωN T )} (57.86a)

ZN
U = {W(iω1), . . . , W(iωN )} (57.86b)

where the values W are some kind of reliability measure of measurements. The frequency function
estimates Gm in Equation 57.86 can be directly measured by certain hardware equipment, frequency
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analyzers. Such an equipment could implement Fourier analysis as in Equation 57.87 below, or could
rely upon the definition of frequency responses by directly measuring phase and amplitude shifts for a
number of different sinusoidal inputs.

The frequency responses can also be estimated/constructed from measured data either in the time or the
frequency domain. This is the topic of Spectral Analysis, which is further dealt with in Section 57.5.2. Let
us comment on the simplest case of spectral analysis, the Empirical Transfer Function Estimate, (ETFE).
It is formed as the ratio of the output and input Fourier transforms

ˆ̂GN (eiωT )= YN (eiωT )

UN (eiωT )
(57.87)

in the discrete time case. If the observations y and u have been obtained from a noise-corrupted linear
system with frequency function G0(iω) it can be shown that the ETFE has the following statistical
properties: Lemma 6.1 in Ljung (1999).

E ˆ̂GN (iω)= G0(iω)+ ρ1√
NUN (iω)

(57.88a)

E
∣∣∣ ˆ̂GN (iω)−G0(iω)

∣∣∣2 = Φv(ω)

|UN (iω)|2 +
ρ2

N |UN (iω)|2 (57.88b)

HereΦv(ω) is the spectrum of the additive noise (at the output of the system) and ρi are constant bounds
that depend on the impulse response of the system, the bound on the input, and the covariance function
of the noise.

All this means that we can think of the ETFE as a “noisy measurement” of the frequency function:

ˆ̂GN (iωk)= G0(iωk)+ vk (57.89)

with vk being a zero mean random variable with varianceΦv(ωk)/|UN (ωk)|2. We have then ignored the
terms with ρ in the expressions above. Note that the variance of vk would correspond to the uncertainty
estimate W(iωk) in Equation 57.86b.

Something must also be said about the frequency grid in Equation 57.89: If the Fourier transforms are
obtained by DFT of equidistantly sampled data, the natural frequencies to use in Equation 57.89 are the
DFT grid:

ωk = 2kπ/(NT); k = 0, . . . , N − 1 (57.90)

This gives two advantages:

• Frequencies in between these grid points carry no extra information: they are merely (trigonomet-
ric) interpolations of the values on the DFT grid. This also determines the maximum frequency
resolution of the frequency function.

• vk are (asymptotically) uncorrelated on this grid.

In the case of p outputs, vk is a column vector andΦv is a p× p matrix.
The expression (Equation 57.87) assumes that u is a scalar (single input system). Formulas for multi-

input systems are given in Ljung (2003b).

57.4.2 Fitting Models to Fourier Transformed Data

Consider now the case that we are given Fourier transform values of the inputs and the outputs as in
Equation 57.83. The relationship between these values is obtained from Equation 57.55 (with G0 denoting
the “true value”):

YN (eiωT )= G0(eiωT )UN (eiωT )+VN (eiωT )

E
∣∣∣VN (eiωT )

∣∣∣2 =Φv(ω) (57.91)
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where V is the transform of the noise, corresponding to Equation 57.84. The relationship is not exact, only
approximate, since there are transients and deviations due to the fact that the data may not be periodic.

The relation (Equation 57.91) is like a measurement equation with uncertainties

y(t)= θφ(t)+ e(t), Var(e(t))= αt (57.92)

and applying least squares, with (optimal) weights being inverse error variances gives the estimation
method

min
θ

∑
|y(t)− θφ(t)|2/αt (57.93)

In our case we obtain a criterion

VN (θ, ZN )=
N∑

k=1

∣∣∣YN (eiωkT )−G(eiωkT , θ)UN (eiωkT )
∣∣∣2
/
Φv(ωk) (57.94)

In case the spectrum for v is not given, but parameterized as in Equation 57.58, we get a parameterized
weighting, which should be balanced that as in:

VN (θ, ZN )=
N∑

k=1

|Y k
N −G(eiωkT , θ)Uk

N |2/(λ|H(eiωkT , θ)|2)

+
N∑

k=1

logλ|H(eiωkT , θ)|2 (57.95)

where, for short, Y k
N = Y (eiωkT ). Indeed, this will be the true log-likelihood function in case Y k

N are
Gaussian distributed and independent for different k.

Remark

It may be noted that ∫ π

−π
log |H(eiω)| = 0 (57.96)

for any monic, stable, and inversely stable transfer function H . This means that the last sum in Equation
57.95 is almost θ-independent for large N and equidistant frequency points.

57.4.3 Fitting to Frequency Response Data

Suppose now that the data is given in terms of measured frequency-response function values, Equation
57.86. A clear-cut curve-fitting approach to estimating the model would be to form the analog of Equation
57.24:

VN (θ, ZN )=
N∑

k=1

|Gme(iωk)−G(eiωk , θ)|2/W(iωk) (57.97)

where we used the uncertainty measure in Equation 57.86b for the weights.
In the case that the frequency function estimate is an ETFE as in Equation 57.87 we would use the

uncertainty measure Equation 57.88b. This gives

|Gm(iω)−G(iω, θ)|2/W(iω)=
∣∣∣∣YN (iω)

UN (iω)
−G(iω, θ)

∣∣∣∣
2 |UN (iω)|2
Φv(ω)

= |YN (iω)−G(iω)UN (iω)|2 /Φv(ω)

This means that for these frequency function estimates, the criterion Equation 57.97 exactly coincides
with Equation 57.65.
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57.4.4 Connections between Time and Frequency Domains

Let us show the relationship between frequency domain fit (Equation 57.94) and the time domain fit
(Equation 57.65) using Parseval’s relationship. The Fourier transform (Equation 57.84) of the prediction
error is (neglecting transients or assuming periodic data):

EN (eiωT , θ)=H−1(eiωT , θ)(YN (eiωT )−G(eiωT , θ)UN (eiωT ))

Applying Parseval’s relationship to Equation 57.65 and ignoring transient effects (or assuming periodic
data) now gives for this criterion

V (θ, ZN )=
N∑

k=1

|YN (eiωkT )−G(eiωkT , θ)UN (eiωkT )|2/|H(eiωkT , θ)|2 (57.98)

Dividing this expression by λ and using Equation 57.58 we see that this expression is exactly equal to
Equation 57.94. Consequently, also the time domain expression (Equation 57.65) can be interpreted as
curve fitting the parameterized model to the ETFE. We have also displayed the nature of the noise model
in Equation 57.55: it just provides the weighting in this fit. See McKelvey (2000) and the special session
Schoukens et al. (2004), Ljung (2004) for a closer discussion on time and frequency domain connections.

57.5 Special Estimation Techniques for Linear Black-Box Models

An important feature of a linear, time invariant system is that it is entirely characterized by its impulse
response. So if we know the system’s response to an impulse, we will also know its response to any
input. Equivalently, we could study the frequency response, which is the Fourier transform of the impulse
response.

In this section, we shall consider estimation methods for linear systems, that do not use particular
model parameterizations. First, in Section 57.5.1, we shall consider direct methods to determine the
impulse response and the frequency response, by simply applying the definitions of these concepts.

In Section 57.5.2, spectral analysis for frequency function estimation will be discussed. Finally, in
Section 57.5.3, a recent method to estimate general linear systems (of given order, by unspecified structure)
will be described.

57.5.1 Transient and Frequency Analysis

57.5.1.1 Transient Analysis

The first step in modeling is to decide which quantities and variables are important to describe what
happens in the system. A simple and common kind of experiment that shows how and in what time
span various variables affect each other is called step-response analysis or transient analysis. In such
experiments the inputs are varied (typically one at a time) as a step: u(t)= u0, t < t0; u(t)= u1, t ≥ t0.
The other measurable variables in the system are recorded during this time. We thus study the step
response of the system. An alternative would be to study the impulse response of the system by letting the
input be a pulse of short duration. From such measurements, information of the following nature can be
found:

1. The variables affected by the input in question. This makes it easier to draw block diagrams for the
system and to decide which influences can be neglected.

2. The time constants of the system. This also allows us to decide which relationships in the model
can be described as static (i.e., they have significantly faster time constants than the time scale we
are working with).
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3. The characteristic (oscillatory, poorly damped, monotone, and the like) of the step responses, as
well as the levels of static gains. Such information is useful when studying the behavior of the
final model in simulation. Good agreement with the measured step responses should give a certain
confidence in the model.

57.5.1.2 Frequency Analysis

If a linear system has the transfer function G(q) and the input is

u(t)= u0 cosωkT , (k− 1)T ≤ t ≤ kT (57.99)

then the output after possible transients have faded away will be

y(t)= y0 cos(ωt+ϕ), for t = T , 2T , 3T , . . . (57.100)

where

y0 = |G(eiωT )| · u0 (57.101)

ϕ= arg G(eiωT ) (57.102)

If the system is driven by the input (Equations 57.99) for a certain u0 and ω1 and we measure y0 and ϕ
from the output signal, it is possible to determine the complex number G(eiω1T ) using Equation 57.101
and Equation 57.102. By repeating this procedure for a number of differentω, we can get a good estimate
of the frequency function G(eiωT ). This method is called frequency analysis. Sometimes it is possible to see
or measure u0, y0, and ϕ directly from graphs of the input and output signals. Most of the time, however,
there will be noise and irregularities that make it difficult to determine ϕ directly. A suitable procedure is
then to correlate the output with cosωt and sinωt.

57.5.2 Estimating the Frequency Response by Spectral Analysis

57.5.2.1 Definitions

(In this section, the sampling interval T is assumed to be one time unit; T = 1.) The cross spectrum
between two (stationary) signals u(t) and y(t) is defined as the Fourier transform of their cross covariance
function, provided this exists:

Φyu(ω)=
∞∑

τ=−∞
Ryu(τ)e−iωτ (57.103)

where Ryu(τ) is defined by

Ryu(τ)= E(y(t)−Ey(t))(u(t− τ)−Eu(t− τ)) (57.104)

This cross covariance function is typically estimated as

R̂N
yu(τ)= 1

N

N∑
t=1

y(t)u(t− τ) (57.105)

The (auto) spectrumΦu(ω) of a signal u is defined asΦuu(ω), that is, as its cross spectrum with itself.
The spectrum describes the frequency contents of the signal. The connection to more explicit Fourier

techniques is evident by the following relationship:

Φu(ω)= lim
N→∞ |UN (ω)|2 (57.106)

where UN is the discrete time Fourier transform (Equation 57.84). The relationship (Equation 57.106) is
shown in Ljung and Glad (1994).
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Consider now the general linear model (Equation 57.55):

y(t)= G(q)u(t)+ v(t)

It is straightforward to show that the relationships between the spectra and cross spectra of y and u
(provided u and v are uncorrelated) is given by

Φyu(ω)= G(eiω)Φu(ω) (57.107)

Φy(ω)= |G(eiω)|2Φu(ω)+Φv(ω) (57.108)

It is easy to see how the transfer function G(eiω) and the noise spectrum φv(ω) can be estimated using
these expressions, if only we have a method to estimate cross spectra.

57.5.2.2 Estimation of Spectra

The spectrum is defined as the Fourier transform of the correlation function. A natural idea would then
be to take the transform of the estimate R̂N

yu(τ) in Equation 57.105. That will not work in most cases,

though. The reason could be described as follows: the estimate R̂N
yu(τ) is not reliable for large τ, since

it is based on only a few observations. These “bad” estimates are mixed with good ones in the Fourier
transform, thus creating an overall bad estimate. It is better to introduce a weighting, so that correlation
estimates for large lags τ carry a smaller weight:

Φ̂N
yu(ω)=

γ∑
�=−γ

R̂N
yu(�) ·wγ(�)e−i�ω (57.109)

This spectral estimation method is known as the The Blackman–Tukey approach. Here wγ(�) is a window
function that decreases with |τ|. This function controls the trade-off between frequency resolution and
variance of the estimate. A function that gives significant weights to the correlation at large lags will be
able to provide finer frequency details (a longer time span is covered). At the same time it will have to
use “bad” estimates, so the statistical quality (the variance) is poorer. We shall return to this trade-off in
a moment. How should we choose the shape of the window function wγ(�)? There is no optimal solution
to this problem, but the most common window used in spectral analysis is the Hamming window:

wγ(k)= 1

2

(
1+ cos

πk

γ

)
|k|< γ

wγ(k)= 0|k| ≥ γ
(57.110)

From the spectral estimates Φu, Φy and Φyu obtained in this way, we can now use Equation 57.107, to
obtain a natural estimate of the frequency function G(eiω):

ĜN (eiω)= Φ̂
N
yu(ω)

Φ̂N
u (ω)

(57.111)

Furthermore, the disturbance spectrum can be estimated from Equation 57.108 as

Φ̂N
v (ω)= Φ̂N

y (ω)− |Φ̂
N
yu(ω)|2
Φ̂N

u (ω)
(57.112)

To compute these estimates, the following steps are performed:

Algorithm SPA (57.113)

1. Collect data y(k), u(k) k = 1, . . . , N .
2. Subtract the corresponding sample means form the data. This will avoid bad estimates at very low

frequencies.
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3. Choose the width of the lag window wγ(k).
4. Compute R̂N

y (k), R̂N
u (k), and R̂N

yu(k) for |k| ≤ γ according to Equation 57.105.

5. Form the spectral estimates Φ̂N
y (ω), Φ̂N

u (ω), and Φ̂N
yu(ω) according to Equation 57.109 and anal-

ogous expressions.
6. Form Equation 57.111 and possibly also Equation 57.112.

The user only has to choose γ. A good value for systems without sharp resonances is γ= 20 to 30.
Larger values of γmay be required for systems with narrow resonances.

57.5.2.3 Quality of the Estimates

The estimates ĜN and Φ̂N
w are formed entirely from estimates of spectra and cross spectra. Their properties

will therefore be inherited from the properties of the spectral estimates. For the Hamming window with
width γ, it can be shown that the frequency resolution will be about

π

γ
√

2
radians/time unit (57.114)

This means that details in the true frequency function that are finer than this expression will be smeared
out in the estimate. It is also possible to show that the estimate’s variances satisfy

Var ĜN (iω)≈ 0.7 · γ
N
· Φv(ω)

Φu(ω)
(57.115)

and
Var Φ̂N

v (ω)≈ 0.7 · γ
N
·Φ2

v(ω) (57.116)

[“Variance” here refers to taking expectation over the noise sequence v(t).] Note that the relative variance
in Equation 57.115 typically increases dramatically as ω tends to the Nyquist frequency. The reason is
that |G(iω)| typically decays rapidly, while the noise-to-signal ratio Φv(ω)/Φu(ω) has a tendency to
increase as ω increases. In a Bode diagram the estimates will thus show considerable fluctuations at high
frequencies. Moreover, the constant frequency resolution (Equation 57.114) will look thinner and thinner
at higher frequencies in a Bode diagram due to the logarithmic frequency scale. See Ljung and Glad (1994)
for a more detailed discussion.

57.5.2.4 Choice of Window Size

The choice of γ is a pure trade-off between frequency resolution and variance (variability). For a spectrum
with narrow resonance peaks it is thus necessary to choose a large value of γ and accept a higher variance.
For a more flat spectrum, smaller values of γ will do well. In practice a number of different values of γ are
tried out. Often we start with a small value of γ and increase it successively until an estimate is found that
balances the trade-off between frequency resolution (true details) and variance (random fluctuations). A
typical value for spectra without narrow resonances is γ= 20–30.

57.5.3 Subspace Estimation Techniques for State-Space Models

A linear system can always be represented in state-space form as

x(t+ 1)= Ax(t)+Bu(t)+w(t)

y(t)= Cx(t)+Du(t)+ v(t)
(57.117)

with white noises w and v. Alternatively, we could just represent the input–output dynamics as in

x(t+ 1)= Ax(t)+Bu(t)

y(t)= Cx(t)+Du(t)+ v(t)
(57.118)
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where the noise at the output, v, very well could be colored. It should be noted that the input–output
dynamics could be represented with a lower order model in Equation 57.118 than in Equation 57.117
since describing the noise character might require some extra states.

To estimate such a model, the matrices can be parameterized in ways that are described in Section 57.6—
either from physical grounds or as black boxes in canonical forms.

However, there are also other possibilities: We assume that we have no insight into the particular
structure, and we would just estimate any matrices A, B, C, and D that give a good description of the
input–output behavior of the system. Since there are an infinite number of such matrices that describe
the same system (the similarity transforms), we will have to fix the coordinate basis of the state-space
realization.

Let us for a moment assume that not only are u and y measured, but also the sequence of state vectors x.
This would, by the way, fix the state-space realization coordinate basis. Now, with known u, y, and x,
the model (Equation 57.117) becomes a linear regression: the unknown parameters, all of the
matrix entries in all the matrices, mix with measured signals in linear combinations. To see this
clearly, let

Y (t)=
[

x(t+ 1)
y(t)

]
Θ=

[
A B
C D

]

Φ(t)=
[

x(t)
u(t)

]
E(t)=

[
w(t)
v(t)

]

Then, Equation 57.117 can be rewritten as

Y (t)=ΘΦ(t)+E(t) (57.119)

From this, all the matrix elements inΘ can be estimated by the simple least squares method (which in the
case of Gaussian noise and known covariance matrix coincides with the maximum likelihood method),
as described in Section 57.1.3 The covariance matrix for E(t) can also be estimated easily as the sample
sum of the squared model residuals. That will give the covariance matrices as well as the cross covariance
matrix for w and v. These matrices will, among other things, allow us to compute the Kalman filter for
Equation 57.117. Note that all of the above holds without changes for multivariable systems, that is, when
the output and input signals are vectors.

The only remaining problem is where to get the state vector sequence x from? It has long been known
(Rissanen, 1974; Akaike, 1974b), that all state vectors x(t) that can be reconstructed from input–output
data, in fact, are linear combinations of the components of the n k-step ahead output predictors

ŷ(t+ k|t), k = {1, 2, . . . , n} (57.120)

where n is the model order (the dimension of x). See also Appendix 4. A in Ljung (1999). We could then
form these predictors, and select a basis among their components:

x(t)= LŶr(t) (57.121)

Ŷt(t)=
⎡
⎢⎣

ŷ(t+ 1|t)
...

ŷ(t+ r|t)

⎤
⎥⎦ (57.122)

The choice of L will determine the basis for the state-space realization, and is done in such a way that it
is well conditioned. The predictor ŷ(t+ k|t) is a linear function of u(s), y(s), 1≤ s ≤ t and can efficiently
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be determined by linear projections directly on the input–output data. (There is one complication in that
u(t+ 1), . . . , u(t+ k) should not be predicted, even if they affect y(t+ k).)

For practical reasons the predictor is approximated so that it only depends on a fixed and finite amount
of past data, like the s1 past outputs and the s2 past inputs. This means that it takes the form

ŷ(t+ k− 1|t− 1)= α1y(t− 1)+ · · ·+ αs1 y(t− s1)+ β1u(t− 1)+ · · ·+ βs2 u(t− s2) (57.123)

This predictor can then efficiently be determined by another linear least-squares projection directly on
the input–output data. That is, set up the model

y(t+ k− 1)= θT
k ϕs(t)+ γT

k U(t)+ ε(t+ k− 1) (57.124)

where θ and ϕ are the variables in Equation 57.123 and U accounts for the influence of u(t+ k− j),
j ≤ k) on y(t+ k− 1) which should not be modeled in the predictor.

For large enough s, this will give a good approximation of the true predictors.
The method thus consists of the following steps:

Basic Subspace Algorithm (57.125)

1. Choose s1, s2, and r and form Ŷr(t) in Equations 57.123 and 57.122 and Y as in:

Y = [Ŷr(1) . . . Ŷr(N)
]

. (57.126)

2. Estimate the rank n of Y and determine L in Equation 57.121 so that x(t) corresponds to a well-
conditioned basis for it.

3. Estimate A, B, C, D and the noise covariance matrices by applying the LS method to the linear
regression (Equation 57.119).

What we have described now is the subspace projection approach to estimating the matrices of the
state-space model (Equation 57.117), including the basis for the representation and the noise covariance
matrices. There are a number of variants of this approach. See among several references, for example,
Van Overschee and DeMoor (1996), Larimore (1983), Verhaegen (1994) or Sections 7.3 or 10.6 in Ljung
(1999).

The approach gives very useful algorithms for model estimation, and is particularly well suited for
multivariable systems. The algorithms also allow numerically very reliable implementations, and typically
produce estimated models with good quality. If desired, the quality may be improved by using the model
as an initial estimate for the prediction error method (Equation 57.24).

The algorithms contain a number of choices and options, like how to choose si and r, and also how to
carry out step number 3. There are also several “tricks” to do step 3 so as to achieve consistent estimates
even for finite values of si . Accordingly, several variants of this method exist.

57.6 Physically Parameterized Models

So far, we have treated the parameters θ only as vehicles to give reasonable flexibility to the transfer
functions in the general linear model (Equation 57.61). This model can also be arrived at from other
considerations.

Consider a continuous time state-space model

ẋ(t)= A(θ)x(t)+B(θ)u(t) (57.127a)

y(t)= C(θ)x(t)+ v(t) (57.127b)

Here x(t) is the state vector and typically consists of physical variables (such as positions and velocities
etc.). The state-space matrices A, B, and C are parameterized by the parameter vector θ, reflecting the
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physical insight we have into the process. The parameters could be physical constants (resistance, heat
transfer coefficients, aerodynamical derivatives, etc.) whose values are not known. They could also reflect
other types of insights into the system’s properties.

Example 57.3 An Electric Motor

Consider an electric motor with the input u being the applied voltage and the output y being the
angular position of the motor shaft.

A first, but reasonable approximation of the motor’s dynamics is as a first-order system from
voltage to angular velocity, followed by an integrator:

G(s)= b

s(s+ a)

If we select the state variables

x(t)=
[

y(t)
ẏ(t)

]

we obtain the state-space form

ẋ =
[

0 1
0 −a

]
x+

[
0
b

]
u

y = [1 0
]

x+ v

(57.128)

where v denotes disturbances and noise. In this case, we thus have

θ=
[

a
b

]

A(θ)=
[

0 1
0 −a

]
B(θ)=

[
0
b

]

C = [1 0
]

(57.129)

The parameterization reflects our insight that the system contains an integration, but is in this case
not directly derived from detailed physical modeling. Basic physical laws would in this case have
given us how θ depends on physical constants, such as resistance of the wiring, amount of inertia,
friction coefficients and magnetic field constants.

Now, how do we fit a continuous-time model (Equation 57.127a) to sampled observed data? If the
input u(t) has been piecewise constant over the sampling interval

u(t)= u(kT) kT ≤ t < (k+ 1)T

then the states, inputs and outputs at the sampling instants will be represented by the discrete time model

x((k+ 1)T)= Ā(θ)x(kT)+ B̄(θ)u(kT)

y(kT)= C(θ)x(kT)+ v(kT)
(57.130)

where

Ā(θ)= eA(θ)T , B̄(θ)=
∫ T

0
eA(θ)τB(θ) dτ (57.131)
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This follows from solving Equation 57.127 over one sampling period. We could also further model the
added noise term v(kT) and represent the system in the innovations form

x̄((k+ 1)T)= Ā(θ)x̄(kT)+ B̄(θ)u(kT)+ K̄(θ)e(kT)

y(kT)= C(θ)x̄(kT)+ e(kT)
(57.132)

where {e(kT)} is white noise. The step from Equations 57.130 through 57.132 is really a standard Kalman
filter step: x̄ will be the one-step ahead predicted Kalman states. A pragmatic way to think about it is as
follows: In Equation 57.130 the term v(kT) may not be white noise. If it is colored we may separate out that
part of v(kT) that cannot be predicted from past values. Denote this part by e(kT): it will be the innovation.
The other part of v(kT)—the one that can be predicted—can then be described as a combination of earlier
innovations, e(�T) � < k. Its effect on y(kT) can then be described via the states, by changing them from
x to x̄, where x̄ contains additional states associated with getting v(kT) from e(�T), k ≤ �.

Now Equation 57.132 can be written in input–output form (let T = 1)

y(t)= G(q, θ)u(t)+H(q, θ)e(t) (57.133)

with

G(q, θ)= C(θ)(qI − Ā(θ))−1B̄(θ)

H(q, θ)= I +C(θ)(qI − Ā(θ))−1K̄(θ)
(57.134)

We are thus back at the basic linear model (Equation 57.61). The parameterization of G and H in terms
of θ is, however, more complicated than the ones we discussed in Section 57.3.2.

The general estimation techniques, model properties [including the characterization (Equation 57.68)],
algorithms, and so on, apply exactly as described in Section 57.2.

From these examples it is also quite clear that nonlinear models with unknown parameters can be
approached in the same way. We would then typically arrive at a structure

ẋ(t)= f (x(t), u(t), θ)

y(t)= h(x(t), u(t), θ)+ v(t).
(57.135)

In this model, all noise effects are collected as additive output disturbances v(t) which is a restriction, but
also a very helpful simplification. If we define ŷ(t|θ) as the simulated output response to Equation 57.135,
for a given input, ignoring the noise v(t), everything that was said in Section 57.2 about parameter
estimation, model properties, and so on, is still applicable.

57.7 Nonlinear Black-Box Models

In this section, we describe the basic ideas behind model structures that have the capability to cover any
nonlinear mapping from past data to the predicted value of y(t). Recall that we defined a general model
structure as a parameterized mapping in Equation 57.19:

ŷ(t|θ)= g(θ, Zt−1) (57.136)

We consequently allow quite general nonlinear mappings g . This section will deal with some general
principles for how to construct such mappings, and will cover Artificial Neural Networks (ANN) as a
special case. See Sjöberg et al. (1995) and Juditsky et al. (1995) for comprehensive surveys.
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57.7.1 Nonlinear Black-Box Structures

Now, the model structure family (Equation 57.136) is really too general, and it turns out to be useful to
write g as a concatenation of two mappings: one that takes the increasing number of past observations
Zt−1 and maps them into a finite dimensional vector ϕ(t) of fixed dimension and one that takes this
vector to the space of the outputs:

ŷ(t|θ)= g(θ, Zt−1)= g(ϕ(t), θ) (57.137)

where

ϕ(t)= ϕ(Zt−1) (57.138)

Let the dimension of ϕ be d. As before, we shall call this vector the regression vector and its components
will be referred to as the regressors. We also allow the more general case that the formation of the regressors
is itself parameterized:

ϕ(t)= ϕ(Zt−1,η) (57.139)

which we, for short, write ϕ(t,η). For simplicity, the extra argument η will, however, be used explicitly
only when essential for the discussion.

The choice of the nonlinear mapping in Equation 57.136 has thus been reduced to two partial problems
for dynamical systems:

1. How to choose the nonlinear mapping g(ϕ) from the regressor space to the output space (i.e., from
Rd to Rp).

2. How to choose the regressors ϕ(t) from past inputs and outputs.

The second problem is the same for all dynamical systems, and it turns out that the most useful
choices of regression vectors are to let them contain past inputs and outputs, and possibly also past
predicted/simulated outputs. The regression vector will thus be of the character in (Equation 57.4). We
now turn to the first problem.

57.7.2 Nonlinear Mappings: Possibilities

57.7.2.1 Function Expansions and Basis Functions

The nonlinear mapping

g(ϕ, θ) (57.140)

goes from Rd to Rp for any given θ. At this point it does not matter how the regression vector ϕ is
constructed. It is just a vector that lives in Rd .

It is natural to think of the parameterized function family as function expansions:

g(ϕ, θ)=
∑

θ(k)gk(ϕ) (57.141)

where gk are the basis functions and the coefficients θ(k) are the “coordinates” of g in the chosen basis.
Now, the only remaining question is: how to choose the basis functions gk? Depending on the support

of gk [i.e., the area in Rd for which gk(ϕ) is (practically) nonzero] we shall distinguish between three types
of basis functions

• Global basis functions
• Semiglobal or ridge-type basis functions
• Local basis functions
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57.7.2.2 Global Basis Function

A typical and classical global basis function expansion would then be the Taylor series, or polynomial
expansion, where gk would contain multinomials in the components of ϕ of total degree k. Fourier series
are also relevant examples. We shall, however, not discuss global basis functions here any further. Expe-
rience has indicated that they are inferior to the semilocal and local ones in typical practical applications.

57.7.2.3 Local Basis Functions

Local basis functions have their support only in some neighborhood of a given point. Think (in the case
of p= 1) of the indicator function for the unit cube:

κ(ϕ)= 1 if |ϕk| ≤ 1 ∀k, and 0 otherwise (57.142)

By scaling the cube and placing it at different locations we obtain the functions

gk(ϕ)= κ(αk ∗ (ϕ− βk)) (57.143)

By allowing α to be a vector of the same dimension as ϕ and interpreting the multiplication ∗ as
component-wise multiplication (like “.∗” in MATLAB) we may also reshape the cube to be any par-
allelepiped. The parameters α are thus scaling or dilation parameters while β determine location or
translation. For notational convenience we write

gk(ϕ)= κ(αk ∗ (ϕ− βk))= κ(ρk ·ϕ) (57.144)

where
ρk = [αk , αk ∗ βk]

In the last equality, with some abuse of notation, we expanded the regression vector ϕ to contain some
“1”:s. This is to stress the point that the argument of the basic function κ is bilinear in the scale and
location parameters ρk and in the regression vector ϕ. The notation ρk ·ϕ indicates this.

This choice of gk in Equation 57.141 gives functions that are piecewise constant over areas in Rd that
can be chosen arbitrarily small by proper choice of the scaling parameters. It should be fairly obvious that
such functions gk can approximate any reasonable function arbitrarily well.

Now it is also reasonable that the same will be true for any other localized function, such as the Gaussian
bell function:

κ(ϕ)= e−|ϕ|2 (57.145)

57.7.2.4 Ridge-Type Basis Functions

A useful alternative is to let the basis functions be local in one direction of the ϕ-space and global in the
others. This is achieved quite analogously to Equation 57.143 as follows. Let σ(x) be a local function from
R to R. Then form

gk(ϕ)= σ(αT
k (ϕ− βk))= σ(αT

k ϕ+ γk)= σ(ρk ·ϕ) (57.146)

where the scalar γk =−αT
k βk , and

ρk = [αk , γk]
Note the difference with Equation 57.143! The scalar product αT

k ϕ is constant in the subspace of Rd that
is perpendicular to the scaling vector αk . Hence, the function gk(ϕ) varies like σ in a direction parallel to
αk and is constant across this direction. This motivates the term semiglobal or ridge-type for this choice
of functions.

As in Equation 57.143 we expanded in the last equality in Equation 57.146 the vector ϕ with the value
“1,” again just to emphasize that the argument of the fundamental basis function σ is bilinear in ρ and ϕ.
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57.7.2.5 Connection to “Named Structures”

Here we briefly review some popular structures, other structures related to interpolation techniques are
discussed in Sjöberg et al. (1995), Juditsky et al. (1995).

57.7.2.5.1 Wavelets

The local approach corresponding to Equations 57.141 and 57.143 has direct connections to wavelet
networks and wavelet transforms. The exact relationships are discussed in Sjöberg et al. (1995). Loosely,
we note that via the dilation parameters in ρk we can work with different scales simultaneously to pick
up both local and not-so-local variations. With appropriate translations and dilations of a single suitably
chosen function κ (the “mother wavelet”), we can make the expansion (Equation 57.141) orthonormal.
This is discussed extensively in Juditsky et al. (1995).

57.7.2.5.2 Wavelet and Radial Basis Networks

The choice (Equation 57.145) without any orthogonalization is found in both wavelet networks (Zhang
and Benveniste, 1992) and radial basis neural networks (Poggio and Girosi, 1990).

57.7.2.5.3 Neural Networks

The ridge choice (Equation 57.146) with

σ(x)= 1

1+ e−x

gives a much used neural network structure, namely, the one hidden layer feedforward sigmoidal net.

57.7.2.5.4 Hinging Hyperplanes

If instead of using the sigmoid σ function we choose “V-shaped” functions (in the form of a higher-
dimensional “open book”) Breiman’s hinging hyperplane structure is obtained, (Breiman 1993). Hinging
hyperplanes model structures (Breiman 1993) have the form

g(x)=max
{
β+x+ γ+, β−x+ γ−} or g(x)=min

{
β+x+ γ+, β−x+ γ−} .

It can be written in a different way:

g(x)= 1

2
[(β+ + β−)x+ γ+ + γ−]± 1

2
|(β+ − β−)x+ γ+ − γ−|.

Thus a hinge is the superposition of a linear map and a semiglobal function. Therefore, we consider hinge
functions as semiglobal or ridge-type, though it is not in strict accordance with our definition.

57.7.2.5.5 Nearest Neighbors or Interpolation

By selecting κ as in Equation 57.142 and the location and scale vector ρk in the structure (Equation 57.143),
such that exactly one observation falls into each “cube,” the nearest-neighbor model is obtained: just load
the input–output record into a table, and, for a given ϕ, pick the pair (̂y, ϕ̂) for ϕ̂ closest to the given ϕ, ŷ
is the desired output estimate. If one replaces Equation 57.142 by a smoother function and allows some
overlapping of the basis functions, we get interpolation type techniques such as kernel estimators.

57.7.2.5.6 Fuzzy Models

Also so called fuzzy models based on fuzzy set membership belong to the model structures of the class
(Equation 57.141). The basis functions gk then are constructed from the fuzzy set membership functions
and the inference rules. The exact relationship is described in Sjöberg et al. (1995).



�

�

�

�

� �

System Identification 57-33

57.7.3 Estimating Nonlinear Black-Box Models

The model structure is determined by the following choices:

• The regression vector (typically built up from past inputs and outputs)
• The basic function κ (local) or σ (ridge)
• The number of elements (nodes) in the expansion Equation 57.141

Once these choices have been made ŷ(t|θ)= g(ϕ(t), θ) is a well-defined function of past data and the
parameters θ. The parameters are made up of coordinates in the expansion Equation 57.141, and from
location and scale parameters in the different basis functions.

All the algorithms and analytical results of Section 57.2 can thus be applied. For Neural Network appli-
cations these are also the typical estimation algorithms used, often complemented with regularization,
which means that a term is added to the criterion (Equation 57.24), that penalizes the norm of θ. This
will reduce the variance of the model, in that “spurious” parameters are not allowed to take on large, and
mostly random values. See, for example, (Sjöberg et al. 1995).

For wavelet applications it is common to distinguish between those parameters that enter linearly in
ŷ(t|θ) (i.e., the coordinates in the function expansion) and those that enter nonlinearly (i.e., the location
and scale parameters). Often the latter are seeded to fixed values and the coordinates are estimated by
the linear least squares method. Basis functions that give a small contribution to the fit (corresponding
to nonuseful values of the scale and location parameters) can then be trimmed away (“pruning” or
“shrinking”).

57.8 User’s Issues

57.8.1 Experiment Design

It is desirable to affect the conditions under which the data are collected. The objective with such experi-
ment design is to make the collected data set ZN as informative as possible with respect to the models to
be built using the data. A considerable amount of theory around this topic can be developed and we shall
here just review some basic points. An inspiring discussion on experiment design is given in Hjalmarsson
(2005).

The first and most important point is the following one:

1. The input signal u must be such that it exposes all the relevant properties of the system. It must thus
not be too “simple.” For example, a pure sinusoid

u(t)= A cosωt

will only give information about the system’s frequency response at frequency ω. This can also be
seen from Equation 57.68. The rule is that

• The input must contain at least as many different frequencies as the order of the linear model
to be built.

• To be on the safe side, a good choice is to let the input be random (such as filtered white
noise). It then contains all frequencies.

Another case where the input is too simple is when it is generated by feedback such as

u(t)=−Ky(t) (57.147)

If we would like to build a first-order ARX model

y(t)+ ay(t− 1)= bu(t− 1)+ e(t)
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we find that for any given α all models such that

a+ bK = α

will give identical input–output data. We can thus not distinguish between these models using an
experiment with Equation 57.147. That is, we cannot distinguish between any combinations of “a”
and “b” if they satisfy the above condition for a given “α.” The rule is

• If closed-loop experiments have to be performed, the feedback law must not be too simple.
It is to be preferred that a set-point in the regulator is being changed in a random fashion.

The second main point in experimental design is

2. Allocate the input power to those frequency bands where a good model is particularly important.
This is also seen from the expression (Equation 57.68).

If we let the input be filtered white noise, this gives information how to choose the filter. In the time
domain it is often useful to think like this:

• Use binary (two-level) inputs if linear models are to be built: this gives maximal variance for
amplitude-constrained inputs.

• Check that the changes between the levels are such that the input occasionally stays on one level so
long that a step response from the system has time, more or less, to settle. There is no need to let
the input signal switch so quickly back and forth that no response in the output is clearly visible.

Note that the second point is really just a reformulation in the time domain of the basic frequency domain
advice: let the input energy be concentrated in the important frequency-bands.

A third basic piece of advice about experiment design concerns the choice of sampling interval.

3. A typical good sampling frequency is 10 times the bandwidth of the system. That corresponds roughly
to 5–7 samples along the rise time of a step response.

57.8.2 Model Validation and Model Selection

The system identification process has, as we have seen, these basic ingredients

• The set of models
• The data
• The selection criterion

Once these have been decided upon, we have, at least implicitly, defined a model: the one in the set that
best describes the data according to the criterion. It is thus, in a sense, the best available model in the
chosen set. But is it good enough? It is the objective of model validation to answer that question. Often the
answer turns out to be “no,” and we then have to go back and review the choice of model set, or perhaps
modify the data set. See Figure 57.2.

How do we check the quality of a model? The prime method is to investigate how well it is capable
of reproducing the behavior of a new set of data (the validation data) that was not used to fit the model.
That is, we simulate the obtained model with a new input and compare this simulated output. One may
then use one’s eyes or numerical measurements of fit to decide if the fit in question is good enough.
Suppose we have obtained several different models in different model structures (say a fourth order ARX
model, a second order BJ model, a physically parameterized one, etc.) and would like to know which
one is best. The simplest and most pragmatic approach to this problem is then to simulate each one of
them on validation data, evaluate their performance, and pick the one that shows the most favorable fit
to measured data. (This could indeed be a subjective criterion!)
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FIGURE 57.2 The identification loop.

The second basic method for model validation is to examine the residuals (“the leftovers”) from the
identification process. These are the prediction errors

ε(t)= ε(t, θ̂N )= y(t)− ŷ(t|θ̂N )

that is, what the model could not “explain.” Ideally these should be independent of information that was
at hand at time t− 1. For example, if ε(t) and u(t− τ) turn out to be correlated, then there are things
in y(t) that originate from u(t− τ) but have not been properly accounted for by ŷ(t|θ̂N ). The model has
then not squeezed out all relevant information about the system from the data.

It is good practice to always check the residuals for such (and other) dependencies. This is known as
residual analysis.

57.8.3 Software for System Identification

In practice System Identification is characterized by some quite heavy numerical calculations to determine
the best model in each given class of models. This is mixed with several user choices, trying different
model structures, filtering data, and so on. In practical applications we will thus need good software
support. There are now many different packages for identification available, such as Mathwork’s System
Identification Toolbox (Ljung, 2007), Matrix′xs System Identification Module (MATRIXx , 1991), PIM
(Landau, 1990), UNIT (Ninness and Wills, 2006) and CONTSID (Garnier and Mensler, 2000). They all
have in common that they offer the following routines:

A Handling of data, plotting, and so on.
Filtering of data, removal of drift, choice of data segments, and so on.

B Nonparametric identification methods
Estimation of covariances, Fourier transforms, correlation-, and spectral-analysis, and so on.

C Parametric estimation methods
Calculation of parametric estimates in different model structures.
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D Presentation of models
Simulation of models, estimation and plotting of poles and zeros, computation of frequency
functions, and plotting Bode diagrams, and so on.

E Model validation
Computation and analysis of residuals (ε(t, θ̂N )). Comparison between different models’ prop-
erties, and so on.

The existing program packages differ mainly in various user interfaces and by different options regard-
ing the choice of model structure according to C above. For example, MATLAB’s Identification Toolbox
(Ljung, 2007) covers all linear model structures discussed here, including arbitrarily parameterized linear
models in continuous time.

Regarding the user interface, there is now a clear trend to make it graphically oriented. This avoids
syntax problems and relies more on “click and move,” at the same time as tedious menu-labyrinths are
avoided. More aspects of CAD tools for system identification are treated in Ljung (2003a).

57.8.4 The Practical Side of System Identification

It follows from our discussion that the most essential element in the process of identification—once the
data have been recorded—is to try out various model structures, compute the best model in the structures,
using Equation 57.24, and then validate this model. Typically this has to be repeated with quite a few
different structures before a satisfactory model can be found.

The difficulties of this process should not be underestimated, and it will require substantial experience
to master it. Here follows, however, a procedure that could prove useful to try out.

Step 1: Looking at the data. Plot the data. Look at them carefully. Try to see the dynamics with your
own eyes. Can you see the effects in the outputs of the changes in the input? Can you see nonlinear
effects, like different responses at different levels, or different responses to a step up and a step
down? Are there portions of the data that appear to be “messy” or carry no information. Use this
insight to select portions of the data for estimation and validation purposes.
Do physical levels play a role in your model? If not, detrend the data by removing their mean
values. The models will then describe how changes in the input give changes in output, but not
explain the actual levels of the signals. This is the normal situation. The default situation, with good
data, is that you detrend by removing means, and then select the first two-thirds or so of the data
record for estimation purposes, and use the remaining data for validation. (All of this corresponds
to the “Data Quickstart” in the MATLAB Identification Toolbox.)

Step 2: Getting a feel for the difficulties. Compute and display the spectral analysis frequency response
estimate, the correlation analysis impulse response estimate as well as a fourth-order ARX model
with a delay estimated from the correlation analysis and a default order state-space model com-
puted by a subspace method. (All of this corresponds to the “Estimate Quickstart” in the MATLAB
Identification Toolbox.) This gives three plots. Look at the agreement between the

• Spectral analysis estimate and the ARX and state-space models’ frequency functions.
• Correlation analysis estimate and the ARX and state-space models’ transient responses.
• Measured Validation Data output and the ARX and state-space models’ simulated outputs.

We call this the Model Output Plot.
If these agreements are reasonable, the problem is not so difficult, and a relatively simple linear
model will do a good job. Some fine tuning of model orders, and noise models have to be made
and you can proceed to Step 4. Otherwise go to Step 3.

Step 3: Examining the difficulties. There may be several reasons why the comparisons in Step 2 did not
look good. This section discusses the most common ones, and how they can be handled:

• Model unstable: The ARX or state-space model may turn out to be unstable, but could still
be useful for control purposes. Then change to a 5- or 10-step ahead prediction instead of
simulation in the Model Output Plot.
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• Feedback in data: If there is feedback from the output to the input, due to some regulator,
then the spectral and correlations analysis estimates are not reliable. Discrepancies between
these estimates and the ARX and state-space models can therefore be disregarded in this
case. In residual analysis of the parametric models, feedback in data can also be visible as
correlation between residuals and input for negative lags.

• Noise model: If the state-space model is clearly better than the ARX model at reproducing
the measured output this is an indication that the disturbances have a substantial influence,
and it will be necessary to carefully model them.

• Model order: If a fourth-order model does not give a good Model Output plot, try eighth
order. If the fit clearly improves, it follows that higher-order models will be required, but
that linear models could be sufficient.

• Additional inputs: If the Model Output fit has not significantly improved by the tests so far,
think over the physics of the application. Are there more signals that have been, or could
be, measured that might influence the output? If so, include these among the inputs and try
again a fourth-order ARX model from all the inputs. (Note that the inputs need not at all be
control signals, anything measurable, including disturbances, should be treated as inputs).

• Nonlinear effects: If the fit between measured and model output is still bad, consider the
physics of the application. Are there nonlinear effects in the system? In that case, form the
nonlinearities from the measured data. This could be as simple as forming the product of
voltage and current measurements, if you realize that it is the electrical power that is the
driving stimulus in, say, a heating process, and temperature is the output. This is of course
application dependent. It does not cost very much work, however, to form a number of
additional inputs by reasonable nonlinear transformations of the measured ones, and just
test if inclusion of them improves the fit. See Example 57.2.

• Still problems? If none of these tests leads to a model that is able to reproduce the Validation
Data reasonably well, the conclusion might be that a sufficiently good model cannot be
produced from the data. There may be many reasons for this. The most important one is
that the data simply do not contain sufficient information, for example, due to bad signal
to noise ratios, large and nonstationary disturbances, varying system properties, and so on.
The reason may also be that the system has some quite complicated nonlinearities, which
cannot be realized on physical grounds. In such cases, nonlinear, black-box models could be
a solution. Among the most used models of this character are the ANN. See Section 57.7.

Otherwise, use the insights on which inputs to use and which model orders to expect and proceed
to Step 4.

Step 4: Fine tuning orders and noise structures. For real data there is no such thing as a “correct model
structure.” However, different structures can give quite different model quality. The only way to
find this out is to try out a number of different structures and compare the properties of the
obtained models. There are a few things to look for in these comparisons:

• Fit between simulated and measured output: Look at the fit between the model’s simu-
lated output and the measured one for the Validation Data. Formally, you could pick that
model, for which this number is the lowest. In practice, it is better to be more pragmatic,
and also take into account the model complexity, and whether the important features of the
output response are captured.

• Residual analysis test: You should require of a good model so that the cross correlation
function between residuals and input does not go significantly outside the confidence region.
A clear peak at lag k shows that the effect from input u(t− k) on y(t) is not properly described.
A rule of thumb is that a slowly varying cross correlation function outside the confidence
region is an indication of too few poles, while sharper peaks indicate too few zeros or wrong
delays.
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• Pole zero cancellations: If the pole–zero plot (including confidence intervals) indicates
pole–zero cancellations in the dynamics, this suggests that lower-order models can be used.
In particular, if it turns out that the order of ARX models has to be increased to get a good
fit, but that pole–zero cancellations are indicated, then the extra poles are just introduced to
describe the noise. Then try ARMAX, OE, or BJ model structures with an A or F polynomial
of an order equal to that of the number of noncanceled poles.

What Model Structures Should be Tested? Well, you can spend any amount of time to check
out a very large number of structures. It often takes just a few seconds to compute and evaluate a
model in a certain structure, so that you should have a generous attitude to the testing. However,
experience shows that when the basic properties of the system’s behavior have been picked up, it
is not of much use to fine-tune orders in absurdum just to improve the fit by fractions of percents.
For ARX models and state-space models estimated by subspace methods there are also efficient
algorithms for handling many model structures in parallel.
Multivariable Systems: Systems with many input signals and/or many output signals are called
multivariable. Such systems are often more challenging to model. In particular systems with several
outputs could be difficult. A basic reason for the difficulties is that the couplings between several
inputs and outputs lead to more complex models: The structures involved are richer and more
parameters will be required to obtain a good fit.

Generally speaking, it is preferable to work with state-space models in the multivariable case,
since the model structure complexity is easier to deal with. It is essentially just a matter of choosing
the model order.
Working with Subsets of the Input–Output Channels: In the process of identifying good
models of a system it is often useful to select subsets of the input and output channels. Partial
models of the system’s behavior will then be constructed. It might not, for example, be clear if all
measured inputs have a significant influence on the outputs. That is most easily tested by removing
an input channel from the data, building a model for how the output(s) depend on the remaining
input channels, and checking if there is a significant deterioration in the model output’s fit to the
measured one. See also the discussion under Step 3. Generally speaking, the fit gets better when
more inputs are included and worse when more outputs are included. To understand the latter fact,
you should realize that a model that has to explain the behavior of several outputs has a tougher job
than one that just must account for a single output. If you have difficulties to obtain good models
for a multioutput system, it might thus be wise to model one output at a time, to find out which
are the difficult ones to handle. Models that just are to be used for simulations could very well be
built up from single-output models, for one output at a time. However, models for prediction and
control will be able to produce better results if constructed for all outputs simultaneously. This
follows from the fact that knowing the set of all previous output channels gives a better basis for
prediction, than just knowing the past outputs in one channel.

Step 5: Accepting the model. The final step is to accept, at least for the time being, the model to be
used for its intended application. Recall the answer to question 10 in the introduction: No matter
how good an estimated model looks on your screen, has only picked up a simple reflection of reality.
Surprisingly often, however, this is sufficient for rational decision making.
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58.1 Caveat

What follows is a quick survey of the main ingredients in the theory of discrete-time Markov processes.
It is a bird’s view, rather than the definitive “state of the art.” To maximize accessibility, the nomencla-
ture of mathematical probability is avoided, although rigor is not sacrificed. To compensate, examples
(and counterexamples) abound and the references are annotated. Relevance to control is discussed in
Section 58.9.

58.2 Introduction

Discrete time Markov processes, or Markov chains, are a powerful tool for modeling and analysis of
discrete time systems, whose behavior is influenced by randomness. A Markov chain is probably the
simplest object, which incorporates both dynamics (i.e., notions of “state” and time) and randomness.
Let us illustrate the idea through a gambling example.

Example 58.1:

A gambler bets one dollar on “red” at every turn of a (fair) game of roulette. Then, at every turn he
gains either one dollar (win, with probability 1/2) or (−1) (lose). In an ideal game, the gains form
a sequence of independent, identically distributed (i.i.d.) random variables. We cannot predict the
outcome of each bet, although we do know the odds. Denote by Xt the total fortune the gambler
has at time t. If we know Xs, then we can calculate the distribution of Xs+1 (i.e., the probability that
Xs+1 = y, for all possible values of y), and even of Xs+k for any k > 0. The variable Xt serves as a

58-1
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“state” in the following sense: given Xs, knowledge of Xt for t < s is irrelevant to the calculation of
the distribution of future values of the state.

This notion of a state is similar to classical “state space” descriptions. Consider the standard linear
model of a dynamical system

xt+1 = Axt + vt , (58.1)

or the more general nonlinear model
xt+1 = f (xt , vt). (58.2)

It is intuitively clear that, given the present state, the past does not provide additional information about
the future, as long as vt is not predictable (this is why deterministic state-space models require that vt be
allowed to change arbitrarily at each t). This may remain true even when vt is random: for example, when
they are i.i.d., for then the past does not provide additional information about future vs’s. As we shall see
in Theorem 58.1, in this case Equations 58.1 and 58.2 define Markov chains.

In the next section we give the basic definitions and describe the dynamics of Markov chains. We
assume that the state space S is countable. We restrict our attention to time-homogeneous dynamics (see
comment following Theorem 58.1), and discuss the limiting properties of the Markov chain. Finally, we
shall discuss extensions to continuous time and to more general state spaces. We conclude this section with
a brief review of standard notation. All of our random variables and events are defined on a probability
spaceΩ with a collection F of events (subsets of Ω) and probability P. The “probability triple”

(
Ω, F , P

)
is fixed, and we denote expectation by E. For events A and B with P(B) > 0, the basic definition of a
conditional probability (the multiplication rule) is

P
(
A|B) 
= P

(
A
⋂

B
)

P
(
B
) . (58.3)

The abbreviation i.i.d. stands for independent, identically distributed, and random variables are denoted by
capital letters. The identity matrix is denoted by I and 1A is the indicator function of A, that is, 1A(ω)= 1
if ω ∈ A and= 0 otherwise.

58.3 Definitions and Construction

Let X0, X1, . . . be a sequence of random variables, with values in a state space S. We assume that S is finite
or countable, and for convenience we usually set S = {1, 2, . . .}.

Definition 58.1:

A sequence X0, X1, . . . on S is a Markov chain if it possesses the Markov property, that is, if for all t > 0 and
all it−1, . . . , i0,

P
(
Xt = j|Xt−1 = it−1, Xt−2 = it−2, . . . , X0 = i0

)= P
(
Xt = j|Xt−1 = it−1

)
.

A Markov chain is called homogeneous if P
(
Xt = j|Xt−1 = i

)
does not depend on t. In this case we denote

the transition probability from i to j by

pij

= P

(
Xt = j|Xt−1 = i

)
.

The (possibly infinite) matrix P

= {pij, i, j = 1, . . .} is called the transition matrix.
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The restriction to homogeneous chains is not significant: if we define a new state x̃

= {t, x}, then it is

not hard to see that we can incorporate explicit time dependence within a homogeneous chain, and the
new state space is still countable. Henceforth, we restrict our attention to homogeneous chains.

Using the Markov property, a little algebra with the definition of conditional probability gives the more
general Markov property: if t1 ≤ t2 ≤ · · · ≤ tk ≤ · · · ≤ t� then

P
(
Xt� = j�, Xt�−1 = j�−1, . . . , Xtk = jk|Xtk−1 = jk−1, . . . , Xt1 = j1

)
= P

(
Xt� = j�, Xt�−1 = j�−1, . . . , Xtk = jk|Xtk−1 = jk−1

)
. (58.4)

This is a precise statement of the intuitive idea given in the introduction: given the present state
Xtk−1 = jk−1, the past does not provide additional information.

A chain is called finite if S is a finite set. An alternative name for “homogeneous Markov chain”
is “Markov chain with stationary transition probabilities.” There are those who call a homogeneous
Markov chain a “stationary Markov chain.” However, since “stationary process” means something entirely
different, we shall avoid such usage (see Example 58.6).

Suppose that a process is a Markov chain according to Definition 58.1, and that its initial distribution
is given by the row vector μ(0), that is,

P
(
X0 = i

)= μi(0), i = 1, 2, . . . .

Then, we can calculate the joint probability distribution at times 0 and 1 from the definition of conditional
probability,

P
(
X0 = i, X1 = j

)= P
(
X1 = j|X0 = i

) · P (X0 = i
)= μi(0) · pij.

More generally, using the Markov property:

P
(
X0 = j0, X1 = j1, . . . , Xt = jt

)= μj0 (0) ·
t∏

s=1

pjs−1js .

So, the probability distribution of the whole process can be calculated from the two quantities: the initial
probability distribution, and the transition probabilities. In particular, we can calculate the probability
distribution at any time t

μj(t)= P
(
Xt = j

)

=
∑

j0 j1,...,jt−1

μj0 (0)
t∏

s=1

pjs−1js (58.5)

where the sum is over all states in S, that is, each index is summed over the values 1, 2, . . .. In vector
notation,

μ(t)= μ(t− 1)P= · · · = μ(0)Pt . (58.6)

(If S is countable then, of course, the vector μ and matrix P are infinite, but their product is defined
in exactly the same way as for finite ones.) Thus, the probability distribution of a Markov chain evolves
as a linear dynamical system, even when its evolution equation 58.2 is nonlinear. The one-dimensional
probability distribution and the transition probabilities clearly satisfy

{
μj(t)≥ 0∑

j∈S μj(t)= 1

{
pij ≥ 0∑

j∈S pij = 1.
(58.7)

That is, the rows of the transition matrix P sum to one. Thus, P is a stochastic matrix: its elements are
nonnegative and its rows sum to one.
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If we denote by p(n)
ij


= P
(
Xm+n = j|Xm = i

)
the n step transition probability from i to j, then we obtain

from the definition of conditional probability and the Markov property (Equation 58.4) the Chapman–
Kolmogorov equations

p(n+m)
ij =

∑
k∈S

p(n)
ik p(m)

kj

or equivalently

Pn+m = PnPm. (58.8)

Therefore, the p(n)
ij are the elements of the matrix Pn. This matrix notation yields a compact expression

for expectations of functions of the state. To compute Eg(Xt) for some function g on S= {1, 2, . . .}, we

represent g by a column vector g

= {g(1), g(2), . . .}T (where T denotes transpose). Then

Eg(Xt)= μ(0) ·Pt · g .

Note that this expression does not depend on the particular S: since the state space is countable we can,
by definition, relabel the states so that the state space becomes {1, 2, . . .}. Let us now summarize the
connection between the representations (Equations 58.1 and 58.2) and Markov chains.

Theorem 58.1:

Let V0, V1, . . . be a sequence of i.i.d. random variables, independent of X0. Then for any (measurable)
function f , the sequence X0, X1, . . . defined through Equation 58.2 is a Markov chain. Conversely, let
X̃0, X̃1, . . . be a Markov chain with values in S. Then there is a (probability triple and a measurable)
function f and a sequence V0, V1, . . . of i.i.d. random variables so that the process X0, X1, . . . defined
by Equation 58.2 with X0 = X̃0 has the same probability distribution as X̃0, X̃1, . . . that is, for all t and
j0, j1, . . . , jt ,

P
(
X0 = j0, X1 = j1, . . . , Xt = jt

)= P
(
X̃0 = j0, X̃1 = j1, . . . , X̃t = jt

)
.

Note that, whether the system (Equation 58.2) is linear or not, the evolution of the probability distribution
(Equations 58.5 and 58.6 ) is always linear.

We have seen that a Markov chain defines a set of transition probabilities. The converse is also true:
given a set of transition probabilities and an initial probability distribution, it is possible to construct a
stochastic process which is a Markov chain with the specified transitions and probability distribution.

Theorem 58.2:

If X0, X1, . . . is a homogeneous Markov chain then its probability distribution and transition probabilities
satisfy Equations 58.7 and 58.8. Conversely, given μ(0) and a matrix P that satisfy Equation 58.7, there
exists a (probability triple and a) Markov chain with initial distribution μ(0) and transition matrix P.

Example 58.2:

Let V0, V1, . . . be i.i.d. and independent of X0. Assume both Vt and X0 have integer values. Then

Xt+1

= Xt + Vt = X0+

t∑
s=0

Vs (58.9)
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defines a Markov chain called a chain with stationary independent increments, with state space
. . . ,−1, 0, 1, . . .. The transition probability pij depends only on the difference j− i. It turns out [1]
that the converse is also true: if the transition probabilities of a Markov chain depend only on the
difference j− i then the process can be obtained via Equation 58.9 with i.i.d. Vt .

A random walk is a process defined through Equation 58.9, but where the Vt are not necessarily
integers—they are real valued.

58.4 Properties and Classification

Given two states i and j, it may or may not be possible to reach j from i. This leads to the notion of
classes.

Definition 58.2:

We say a state i leads to j if
P
(
xt = j for some t|x0 = i

)
> 0.

This holds if and only if p(t)
ij > 0 for some t. We say states i and j communicate, denoted by i↔ j, if i leads

to j and j leads to i.

Communication is a property of pairs: it is obviously symmetric (i↔ j if and only if j↔ i) and is
transitive (i↔ j and j↔ k implies i↔ k) by the Chapman–Kolmogorov equations 58.8. By convention,
i↔ i. By these three properties, ↔ defines an equivalence relation. We can therefore partition S into
nonempty communicating classes S0, S1, . . . with the properties

1. Every state i belongs to exactly one class
2. If i and j belong to the same class then i↔ j
3. If i and j belong to different classes then i and j do not communicate

We denote the class containing state i by S(i). Note that if i leads to j but j does not lead to i then i and j
do not communicate.

Definition 58.3:

A set of states C is closed, or absorbing, if pij = 0 whenever i ∈ C and j �∈ C. Equivalently,

∑
j∈C

pij = 1 for all i ∈ C.

If a set C is not closed, then it is called open. A Markov chain is irreducible if all states communicate. In this
case its partition contains exactly one class. A Markov chain is indecomposable if its partition contains at
most one closed class.

Define the incidence matrix I as follows:

Iij =
{

1 if pij > 0
0 otherwise.
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We can also define a directed graph whose nodes are the states, with a directed arc between any two
states for which Iij = 1. The communication properties can obviously be extracted from I or from the
directed graph. The chain is irreducible if and only if the directed graph is connected in the sense that,
going in the direction of the arcs, we can reach any node from any other node. Closed classes can also be
defined in terms of the incidence matrix or the graph. The classification leads to the following maximal
decomposition.

Theorem 58.3:

By reordering the states, if necessary, we can put the matrix P into the block form

P=

⎡
⎢⎢⎢⎢⎢⎣

P1 0 . . . 0 0
0 P2 . . . 0 0
...

...
...

...
0 0 . . . Pm 0

R1 R2 . . . Rm Q

⎤
⎥⎥⎥⎥⎥⎦

(58.10)

where the blocks Pi correspond to closed irreducible classes. It is maximal in the sense that smaller classes
will not be closed, and no subset of states corresponding to Q is a closed irreducible class.

If S is countable, then the number of classes and the size of some blocks may be infinite. Note that all
the definitions in this section apply when we replace S with any closed class.

Much like other dynamical systems, Markov chains can have cyclic behavior, and can be unstable. The
relevant definitions are

Definition 58.4:

The period d of a state i is the greatest common divisor of the set {t : p(t)
ii > 0}. If d is finite and d > 1 then

the state is called periodic; otherwise it is aperiodic.

Definition 58.5:

A state i is called recurrent if the probability of starting at i and returning to i in finite time is 1. Formally, if

P
(
Xt = i for some t > 1|x1 = i

)= 1.

Otherwise it is called transient.

Example 58.3:

In the chain on S= {1, 2} with pij = 1 if and only if i �= j, both states are periodic with period d = 2
and both states are recurrent. The states communicate, and so S contains exactly one class, which
is therefore closed. Consequently, the chain is irreducible and indecomposable. However, if p12 =
p22 = 1 then the states are not periodic, state 2 is recurrent and state 1 is transient. In this case, the
partition contains two sets: the closed set {2}, and the open set {1}. Consequently, the chain is not
irreducible, but it is indecomposable.
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When S is finite, then either it is irreducible or it contains a closed proper subset.

Example 58.4:

Let S= {1, 2, . . .}. Suppose pij = 1 if and only if j = i+ 1. Then all states are transient, and S is
indecomposable but not irreducible. Every set of the form {i : i ≥ k} is closed, but in the partition of
the state space each state is the only member in its class. Suppose now p11 = 1 and for i > 1, pij = 1
if and only if j = i− 1. Then state 1 is the only recurrent state, and again each state is alone in its class.

Theorem 58.4:

Let Sk be a class. Then either all states in Sk are recurrent, or all are transient. Moreover, all states in Sk

have the same period d.

58.5 Algebraic View and Stationarity

The matrix P is positive, in the sense that its entries are positive. When S is finite, the Perron–Frobenius
theorem implies [3]

Theorem 58.5:

Let S be finite. Then P has a nonzero left eigenvector π whose entries are nonnegative, and π · P= π, that
is, the corresponding eigenvalue is 1. Moreover, |λ| ≤ 1 for all other eigenvalues λ. The multiplicity of the
eigenvalue 1 is equal to the number of irreducible closed subsets of the chain. In particular, if the entries of
Pn are all positive for some n, then the eigenvalue 1 has multiplicity 1. In this case, the entries of π are all
positive and |λ|< 1 for all other eigenvalues λ.

If the entries of Pn are all positive for some n then the chain is irreducible and aperiodic, hence the second
part of the theorem. If the chain is irreducible and periodic with period d, then the d roots of unity are
left eigenvalues of P, each is of multiplicity 1 and all other eigenvalues have strictly smaller modulus. The
results for a general finite chain can be obtained by writing the chain in the block form (Equation 58.10).

Definition 58.6:

Let S be finite or countable. A probability distribution μ satisfying μ · P= μ is called invariant (under P)
or stationary.

Theorem 58.5 thus implies that every finite Markov chain possesses at least one invariant probability
distribution. For countable chains, Example 58.4 shows that this is not true.

Example 58.5:

Returning to Example 58.3, in the first case (1/2, 1/2) is the only invariant probability distribution,
while in the second case (0, 1) is the only invariant probability distribution. In Example 58.4, in the
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first case there is no invariant probability distribution, while in the second case (1, 0, 0, . . .) is the

only invariant probability distribution. Finally, if P= I, the 2× 2 identity matrix, then π

= (p, 1− p) is

invariant for any 0≤ p≤ 1.

Example 58.6:

Recall that a process X0, X1, . . . is called stationary if, for all positive t and s, the distribution of
{X0, X1, . . . , Xt} is the same as the distribution of {Xs, X1+s, . . . , Xt+s}. From the definitions it follows
that a (homogeneous) Markov chain (finite or not) is stationary if and only if μ(0) is invariant.

A very useful tool in the calculation of invariant probability distributions is the “balance equations”:

πi =
∑
j:j→i

πjpji = πi

∑
j:i→j

pij (58.11)

where the first equality is just a restatement of the definition of invariant probability, and the second
follows since by Equation 58.7, the last sum equals 1. The intuition behind these equations is very useful:
in steady state, the rate at which “probability mass enters” must be equal to the rate it “leaves.” This
is particularly useful for continuous-time chains. More generally, given any set S, the rate at which
“probability mass enters” the set (under the stationary distribution) equals the rate it “leaves”:

Theorem 58.6:

Let S be a set of states and π invariant under P. Then

∑
i∈S

∑
j:j→i

πjpji =
∑
i∈S

πi

∑
j:i→j

pij.

Example 58.7:

Random walk with a reflecting barrier. This example models a discrete-time queue where, at each
instance, either arrival or departure occurs. The state space S is the set of nonnegative integers
(including 0), and

p00 = 1− p, pi(i+1) = p, pi(i−1) = 1− p for i ≥ 1.

Then all states communicate so that the chain is irreducible, the chain is aperiodic and recurrent.
From Equation 58.11 we obtain

π0 = π0p00+π1p10

πi = πi−1p(i−1)i +πi+1p(i+1)i , i ≥ 1.

When p < 1/2, this and Equation 58.7 imply that πi = [(1− 2p)/(1− p)]pi/(1− p)i for i ≥ 0. When
p > 1/2 the equations imply that any solution must be increasing in i and so cannot be a distribution.
Indeed, in this case the chain is transient.

Example 58.8:

Birth-death process. A Markov chain on S= {0, 1, . . .} is a birth-death process if pij = 0 whenever
|i− j| ≥ 2. If Xt is the number of individuals alive at time t then, at any point in time, this number can



�

�

�

�

� �

Discrete Time Markov Processes 58-9

increase by one (birth), decrease by one (death) or remain constant (simultaneous birth and death).
Unlike Example 58.7, here the probability of a change in size may depend on the state.

58.6 Random Variables

In this section we shift our emphasis back from algebra to the stochastic process. We define some useful
random variables associated with the Markov chain. It will be convenient to use Pj for the probability
conditioned on the process starting at state j. That is, for an event A,

Pj(A)

= P

(
A|X0 = j

)
,

with a similar convention for expectation Ej. The Markov property implies that the past of a Markov
chain is immaterial given the present. But suppose we observe a process until a random time, say the time
a certain event occurs. Is this property preserved? The answer is positive, but only for nonanticipative
times:

Definition 58.7:

Let S be a collection of states, that is, a subset of S. The hitting time τS of S is the first time the Markov chain
visits a state in S. Formally,

τS = inf {t > 0 : Xt ∈ S}.

Note that by convention, if Xt never visits S then τS =∞. The initial time, here t = 0, does not qualify in
testing whether the process did or did not visit S. By definition, hitting times have the following property.
In order to decide whether or not τS = t, it suffices to know the values of X0, . . . , Xt . This gives rise to the
notion of Markov time or stopping time.

Definition 58.8:

A random variable τ with positive integer values is called a stopping time, or a Markov time (with respect
to the process X0, X1, . . .) if one of the following equivalent conditions hold. For each t ≥ 0

1. It suffices to know the values of X0, X1, . . . , Xt in order to determine whether the event {τ= t} occurred
or not

2. There exists a function ft so that

1τ=t(ω)= ft
(
X0(ω), . . . , Xt(ω)

)
.

An equivalent, and more standard definition is obtained by replacing τ= t by τ≤ t. With respect to
such times, the Markov property holds in a stronger sense.

Theorem 58.7: Strong Markov Property

If τ is a stopping time for a homogeneous Markov chain X0, X1, . . . then

P
(
Xτ+1 = j1, Xτ+2 = j2, . . . , Xτ+m = jm|Xt = it , t < τ, Xτ = i∗

)
= P

(
X1 = j1, X2 = j2, . . . , Xm = jm|X0 = i∗

)
.
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We can now rephrase and complement the definition of recurrence. We write τj when we really
mean τ{j}.

Definition 58.9:

The state j is recurrent if Pj(τj <∞)= 1. It is called positive recurrent if Ejτj <∞, and null-recurrent if
Ejτj =∞.

If state j is recurrent, then the hitting time of j is finite. By the strong Markov property, when the
processes hits j for the first time, it “restarts”: therefore, it will hit j again! and again! So, let Nj be the
number of times the process hits state j:

Nj

=

∞∑
t=1

1Xt=j.

Theorem 58.8:

1. If a state is positive recurrent, then all states in its class are positive recurrent. The same holds for null
recurrence.

2. Suppose j is recurrent. Then Pj(Nj =∞)= 1, and consequently EjNj =∞. Moreover, for every state i,

Pi
(
Nj =∞

)= Pi
(
τj <∞) · Pj(Nj =∞)

= Pi
(
τj <∞) ,

and if Pi
(
τj <∞)> 0 then EiNj =∞.

3. Suppose j is transient. Then Pj(Nj <∞)= 1, and for all i,

EiNj = Pi
(
τj <∞)

1− Pj
(
τj <∞) .

To see why the last relation should hold, note that by the strong Markov property,

Pi(τj <∞ and a second visit occurs)

= Pi(τj <∞) · Pj(τj <∞),

and similarly for later visits. This means that the distribution of the number of visits is geometric: with
every visit we get another chance, with equal probability, to revisit. Therefore,

EiNj = Pi
(
τj <∞)+ Pi

(
τj <∞ and a second visit occurs

)+ · · ·
= Pi

(
τj <∞) (1+ P

(
a second visit occurs|τj <∞))+ · · · ·

= Pi
(
τj <∞) (1+ Pj

(
τj <∞)+ · · · )

which is what we obtain if we expand the denominator. A similar interpretation gives rise to

Eiτj = 1+
∑

k:k �=j∈S
pikEkτj.
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We have a simple criterion for recurrence in terms of transition probabilities, since

EiNj = Ei

∞∑
t=1

1Xt=j =
∞∑

t=1

Pi
(
Xt = j

)=
∞∑

t=1

p(t)
ij .

58.7 Limit Theorems: Transitions

Classical limit theorems concern the behavior of t-step transition probabilities, for large t. Limits for the
random variables are discussed in Section 58.8.

Theorem 58.9:

For every Markov chain, the limit

P∗ 
= lim
t→∞

1

t

t−1∑
s=0

Ps (58.12)

exists and satisfies

P∗ · P= P · P∗ = P∗ · P∗ = P∗.

If S is finite then P∗ is a stochastic matrix.

1. Suppose the Markov chain is indecomposable, recurrent, and nonperiodic. Then, for all states i, k,

lim
t→∞

∑
j∈S
|p(t)

ij − p(t)
kj | = 0.

2. An irreducible chain is positive recurrent if and only if it has an invariant probability distribution

π. If it is positive recurrent and nonperiodic then limt→∞ p(t)
ij = π(j) for all i, j. If it is positive

recurrent with period d > 1 then limt→∞ p(t)
ij + · · ·+ p(t+d−1)

ij = d ·π(j) for all i, j. If it is null recur-

rent then for all i, j, limt→∞ p(t)
ij = 0. If state j is transient then

∑
t p(t)

ij <∞.

Since a finite Markov chain always contains a finite closed set of states, there always exists an invariant
distribution. Moreover, if a set is recurrent, then it is positive recurrent.

Example 58.9:

Example 58.3 Continued. For the periodic chain, p(t)
ij clearly does not converge. However, P∗ij = 1/2

for all i, j, and the rows define an invariant measure.

Example 58.10:

Example 58.8 Continued. Assume that for the birth–death process pi(i+1) > 0 and p(i+1)i > 0 for all
i ≥ 0 and pii > 0 for some i. Then the chain is obviously irreducible, and aperiodic (if pii = 0 for all
i then d = 2). Using Equation 58.11 we obtain that an invariant probability distribution, if it exists,
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must satisfy

πi = p01 · · ·p(i−1)i

p10 · · ·pi(i−1)
·π0. (58.13)

Therefore, any invariant probability must satisfy πi > 0 for all i, and in particular π0 > 0. So, we can
invoke Equation 58.7 to obtain the following dichotomy. Either

Z

=
∑
i∈S

p01 · · ·pi−1i

p10 · · ·pii−1
<∞, (58.14)

in which case Equations 58.13 and 58.14 determine the unique invariant probability, and we conclude
that the Markov chain is positive recurrent. Or Z =∞, in which case there is no invariant probability
and the chain is not positive recurrent.

In terms of the transition matrix P, if a chain is nonperiodic, indecomposable, and recurrent then the
matrix converges (uniformly over rows) to a matrix having identical rows, which are either all zeroes
(null-recurrent case), or equal to the invariant probability distribution. Here are the missing cases from
Theorem 58.9. Denote the mean hitting time of state j starting at i by mij = Eiτj. Clearly mjj is infinite if j
is not positive recurrent, and we shall use the convention that a/∞= 0 whenever a is finite.

Theorem 58.10:

If a state j is transient then limt→∞ p(t)
ij = 0. If j is recurrent with period d then limt→∞ p(nd)

jj = d
mjj

. If j is

nonperiodic, this remains true with d = 1, so that (by Theorem 58.9 ) π( j) ·mjj = 1.

The last statement should be intuitive: the steady state probability of visiting state j is a measure of how
often this state is “visited,” and this is inversely proportional to the mean time between visits. The rate at
which convergence takes place depends on the second largest eigenvalue of P. Therefore, if the Markov
chain is finite, indecomposable, and aperiodic with invariant probability distribution π, then

∣∣∣p(t)
ij −πj

∣∣∣≤ Rρt for all i, j

with ρ< 1. This of course implies that the one dimensional distributions converge geometrically fast. On
the other hand, the Markov structure implies that if indeed the one-dimensional distributions converge,
then the distribution of the whole process converges:

Theorem 58.11:

Suppose that for all i and j we have limt→∞ p(t)
ij = πj , for some probability distribution π. Then π is an

invariant probability distribution, and for any i,

lim
t→∞ Pi

(
Xt+1 = j1, Xt+2 = j2 . . .

)= Pπ
(
X1 = j1, X2 = j2 . . .

)

where Pπ is obtained by starting the process with the distribution π. In fact, the distribution of the process
converges in the sense that all finite dimensional distributions converge to the corresponding distributions
under Pπ.
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58.8 Ergodic Theorems

We do not expect the Markov chain to converge: since transition probabilities are homogeneous, the
probability of leaving a given state does not change in time. However, in analogy with i.i.d. random
variables, there are limit theorems under the right scaling. The connection to the i.i.d. case comes from
the following construction. Fix an arbitrary state j and define

R1 = T1 = τj

Rk = inf {t > Rk−1 : Xt = j, k > 1}
Tk = Rk −Rk−1, k > 1.

Theorem 58.12:

If j is recurrent and the Markov chain starts at j (with probability one), then T1, T2 . . . is a sequence of i.i.d.
random variables. Moreover, the random vectors

Zk

= {XRk , XRk+1, . . . , XRk+1−1}

are independent and identically distributed (in the space of sequences of variable length!).

This is another manifestation of the fact that, once we know the Markov chain hits some state, future
behavior is (probabilistically) determined. Fix a recurrent state i and a time t, and define

Tt 
=max
k
{Tk : Tk ≤ t}.

Denote by Ns( j) the number of times in 1, 2, . . . , s that Xu = j. By Theorem 58.12, the random vari-
ables

{
NRk+1( j)−NRk (j), k = 1, 2, . . .} are independent, and (except possibly for k = 1) are identically

distributed for each j. By the law of large numbers this implies the following.

Theorem 58.13:

Let i be recurrent. Then starting at i (Pi a.s.)

lim
t→∞

Nt(j)

Nt(�)
= Ei

∑τi
s=1 1Xs=j

Ei
∑τi

s=1 1Xs=�
= πj

π�
,

and π is an invariant probability distribution, concentrated on the closed class containing i, that is,

πk =
∑
j∈S
πjpjk ,

∑
k:i→k∈S

πk = 1

so that πk = 0 if i �→ k. Moreover, if we start in some state j then

lim
t→∞

Nt(i)

t
= 1τi<∞

mii
with Pj-probability 1.

The last relation implies Equation 58.12: taking Ej expectations, we obtain that if i is recurrent then
P∗ = Pj(τi <∞)/mii . From here follows a limit theorem for functions of a Markov chain.
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Theorem 58.14:

Ergodic Theorem. Let S be a single recurrent class, and assume π is an invariant probability distribution.
Let f and g be functions such that Eπ

∣∣f (X0)
∣∣<∞ and Eπ

∣∣g(X0)
∣∣<∞. Then for an arbitrary starting

state i, with probability one,

lim
t→∞

∑t
s=0 f (Xs)∑t
s=0 g(Xs)

= Ei
∑τi

s=1 f (Xs)

Ei
∑τi

s=1 g(Xs)
= Eπf (X0)

Eπg(X0)

provided not both numerator and denominator of the last terms are zero.

Setting g ≡ 1 we obtain a law of large numbers for a function of the Markov chain. Here is a statement
of a Central Limit theorem and a Law of Iterated Logarithm.

Theorem 58.15:

Let S be a single positive recurrent class with an invariant probability distribution π. Fix a function f and
suppose that for some i, Ei

[
τ2

i

]
<∞ and Eπf (X0)= 0 and

Ei

⎡
⎣
(
τi∑

t=1

∣∣f (xt)
∣∣
)2
⎤
⎦<∞.

Define

γ2 
= πi ·Ei

⎡
⎣
(
τi∑

t=1

f (xt)

)2
⎤
⎦ .

Then γ2 <∞, and if γ2 > 0 then

Central Limit Theorem

∑t
s=0 f (Xs)√

t · γ2

converges in distribution (as t →∞) to a standard Gaussian random variable. Moreover, the sum satisfies
the Law of Iterated Logarithm, that is, the lim sup of

Law of Iterated Logarithm

∑t
s=0 f (Xs)√

2γ2t log log t
,

as t →∞, is 1, and the lim inf is (−1).

58.9 Extensions and Comments

Markov processes are very general objects, of which our treatment covered just a fraction. Many of the
basic ideas extend, but definitely not all, and usually some effort is required. In addition, the mathematical
difficulties rise exponentially fast. There are two obvious directions to extend: more general state spaces,
and continuous time.

When the state space is not countable, the probability that an arbitrary point in the state space is
“visited” by the process is usually zero. Therefore, the notions of communication, hitting, recurrence, and
periodicity have to be modified. The most extensive reference here is [2].
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In the discrete-space continuous time setting, the Markov property implies that if xt = i then the values
of xs, s < t are not relevant. In particular, the length of time from the last change in state until t should
be irrelevant. This implies that the distribution of the time between jumps (= change in state) should
be exponential. If the only possible transition is then from i to i+ 1 and if all transition times have the
same distribution (i.e., they are all exponential with the same parameter), then we obtain the Poisson
process. More generally, we can describe most discrete state, continuous time Markov chains as follows.
The process stays at state i an exponential amount of time with parameter λ(i). It then jumps to the
next state according to a transition probability pij, and the procedure is repeated (this is correct if, for
example, λ(i) > λ> 0 for all i). This subject is covered, for example in [1] and in a new section in [2]. If
we observe such a process at jump times, then we recover a Markov chain. This is one of the major tools
in the analysis of continuous time chains.

Semi-Markov processes are a further generalization, where the time between events is drawn from
a general distribution, which depends on the state, and possibly on the next state. This is no longer a
Markov process; however, if we observe the process only at jump times, then we recover a Markov chain.

Finally, in applications, the information structure, and consequently the set of events, is richer: we can
measure more than the values of the Markov chain. This is often manifested in a recursion of the type
(Equation 58.2), but where the Vt are not independent. Do we still get a Markov chain? And in what
sense? The rough answer is that, if the Markov property (Equation 58.4) holds, but where we condition
on all the available information, then we are back on track: all of our results continue to hold. For this to
happen we need the “noise sequence” V0, V1, . . . to be nonanticipative in a probabilistic sense.

Criteria for Stability: As in the case of dynamical systems, there are criteria for stability and for recur-
rence, based on Lyapunov functions. This is one of the main tools in [2]. These techniques are often the
easiest and the most powerful.

Relevance to Control: Many models of control systems subject to noise can be modeled as Markov
processes, and the discrete-time, discrete-space models are controlled Markov chains. Here the transition
probabilities are parameterized by the control: see the section on Dynamic Programming. In addition,
many filtering and identification algorithms give rise to Markov chains (usually with values in IRd). Limit
theorems for Markov chains can then be used to analyze the limiting properties of these algorithms. See,
for example [2,4].

Example 58.11:

Extending Example 59.2, consider the recursion

Xt+1

= Xt + Vt +Ut

where Ut is a control variable. This is a simple instance of a controlled recursion of the ARMA type.
Suppose that Ut can only take the values ±1. Of course, we require that the control depends only
on past information. If the control values Ut depend of the past states, then X0, X1, . . . may not be
a Markov chain. For example, if we choose Ut = sign (X0), then the sequence X0, X1, . . . violates the
Markov property (Definition 59.1). However, we do have a controlled Markov chain. This means that
Definition 59.1 is replaced with the relation

P(Xt = j|Xt−1 = it−1, . . . , X0 = i0, Ut−1, . . . , U0 = u0)

= P(Xt = j|Xt−1 = it−1, Ut−1 = ut−1).

This in fact is the general definition of a controlled Markov chain. If we choose a feedback control,
that is, Ut = f (Xt ) for some function f , then X0, X1, . . . is again a Markov chain; but the transitions and
the limit behavior now depend on the choice of f .

If we are interested in optimizing a functional of a controlled chain, we obtain a Markov Decision
process. The evaluation of the long-time average cost is often that of functionals as in Theorem 58.14.
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Such functionals also appear in learning theory, and for the same reason. For more information on
controlled Markov chains, see the section on Dynamic Programming.

Finally, Markov chains have found important applications recently in the context of simulation—
specifically in Markov Chain Monte Carlo simulation.
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59.1 Introduction

This chapter deals with nonlinear differential equations of the form

dXt

dt
= a(t, Xt)+ b(t, Xt)Zt , Xt0 =Ξ,

where Zt is a Gaussian white noise driving term that is independent of the random initial stateΞ. Since the
solutions of these equations are random processes, we are also concerned with the probability distribution
of the solution process {Xt}. The classical example is the Langevin equation,

dXt

dt
=−μXt + βZt ,

where μ and β are positive constants. In this linear differential equation, Xt models the velocity of a free
particle subject to frictional forces and to impulsive forces due to collisions. Here μ is the coefficient of
friction, and β=√2μkT/m, where m is the mass of the particle, k is Boltzmann’s constant, and T is the
absolute temperature [7]. As shown at the end of Section 59.5, with a suitable Gaussian initial condition,
the solution of the Langevin equation is a Gaussian random process known as the Ornstein–Uhlenbeck
process.
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59-2 Control System Advanced Methods

The subject of stochastic differential equations is highly technical. However, to make this chapter as
accessible as possible, the presentation is mostly on a heuristic level. On occasion, when deeper theoretical
results are needed, the reader is referred to an appropriate text for details. Suggestions for further reading
are given at the end of the chapter.

59.1.1 Ordinary Differential Equations

Consider a deterministic nonlinear system whose state at time t is x(t). In many engineering problems, it
is reasonable to assume that x satisfies an ordinary differential equation (ODE) of the form

dx(t)

dt
= a

(
t, x(t)

)+ b
(
t, x(t)

)
z(t), x(t0)= ξ, (59.1)

where z(t) is a separately specified input signal. Note that if we integrate both sides from t0 to t, we obtain

x(t)− x(t0)=
∫ t

t0

[
a
(
θ, x(θ)

)+ b
(
θ, x(θ)

)
z(θ)

]
dθ.

Since x(t0)= ξ, x(t) satisfies the integral equation

x(t)= ξ+
∫ t

t0

[
a
(
θ, x(θ)

)+ b
(
θ, x(θ)

)
z(θ)

]
dθ.

Under certain technical conditions, e.g., [3], it can be shown that there exists a unique solution to
Equation 59.1; this is usually accomplished by solving the corresponding integral equation.

Now suppose x(t) satisfies Equation 59.1. If x(t) is passed through a nonlinearity, say y(t) := g
(
x(t)

)
,

then y(t0)= g(ξ), and by the chain rule, y(t) satisfies the differential equation,

dy(t)

dt
= g ′

(
x(t)

)dx(t)

dt
= g ′

(
x(t)

)
a
(
t, x(t)

)+ g ′
(
x(t)

)
b
(
t, x(t)

)
z(t),

(59.2)

assuming g is differentiable.

59.1.2 Stochastic Differential Equations

If x models a mechanical system subject to significant vibration, or if x models an electronic system subject
to significant thermal noise, it makes sense to regard z(t) as a stochastic, or random process, which we
denote by Zt . (Our convention is to denote deterministic functions by lowercase letters with arguments in
parentheses and to denote random functions by uppercase letters with subscript arguments.) Now, with
a random input signal Zt , the ODE of Equation 59.1 becomes the stochastic differential equation (SDE),

dXt

dt
= a(t, Xt)+ b(t, Xt)Zt , Xt0 =Ξ, (59.3)

where the initial conditionΞ is also random. As our notation indicates, the solution of an SDE is a random
process. Typically, we take Zt to be a white noise process; i.e,

E[Zt] = 0 and E[ZtZs] = δ(t− s),

where E denotes expectation and δ is the Dirac delta function. In this discussion we further restrict
attention to Gaussian white noise. The surprising thing about white noise is that it cannot exist as an
ordinary random process (though it does exist as a generalized process [1]). Fortunately, there is a
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Stochastic Differential Equations 59-3

well-defined ordinary random process, known as the Wiener process (also known as Brownian motion),
denoted by Wt , that makes a good model for integrated white noise, i.e., Wt behaves as if

Wt =
∫ t

0
Zθ dθ,

or symbolically, dWt = Ztdt. Thus, if we multiply Equation 59.3 by dt, and write dWt for Ztdt, we obtain

dXt = a(t, Xt) dt+ b(t, Xt) dWt , Xt0 =Ξ. (59.4)

To give meaning to Equation 59.4 and to solve Equation 59.4, we will always understand it as shorthand
for the corresponding integral equation,

Xt =Ξ+
∫ t

t0

a(θ, Xθ) dθ+
∫ t

t0

b(θ, Xθ) dWθ. (59.5)

In order to make sense of Equation 59.5, we have to assign a meaning to integrals with respect to a Wiener
process. There are two different ways to do this. One is due to Itô, and the other is due to Stratonovich.
Since the Itô integral is more popular, and since the Stratonovich integral can be expressed in terms of
the Itô integral [1], we restrict attention in our discussion to the Itô integral.

Now suppose Xt is a solution to the SDE of Equation 59.4, and suppose we pass Xt through a nonlin-
earity, say Yt := g(Xt). Of course, Yt0 = g(Ξ), but astonishingly, by the stochastic chain rule, the analog
of Equation 59.2 is [1]

dYt = g ′(Xt) dXt + 1

2
g ′′(Xt)b(t, Xt)2 dt

= g ′(Xt)a(t, Xt) dt+ g ′(Xt)b(t, Xt) dWt + 1

2
g ′′(Xt)b(t, Xt)2 dt,

(59.6)

assuming g is twice continuously differentiable. Equation 59.6 is known as Itô’s rule, and the last term in
Equation 59.6 is called the Itô correction term. In addition to explaining its presence, the remainder of
our discussion is as follows. Section 59.2 introduces the Wiener process as a model for integrated white
noise. In Section 59.3, integration with respect to the Wiener process is defined, and a simple form of
Itô’s rule is derived. Section 59.4 focuses on SDEs. Itô’s rule is derived for time-invariant nonlinearities,
and its extension to time-varying nonlinearities is also given. In Section 59.5, Itô’s rule is used to solve
special forms of linear SDEs. ODEs are derived for the mean and variance of the solution in this case.
When the initial condition is also Gaussian, the solution to the linear SDE is a Gaussian process, and
its distribution is completely determined by its mean and variance. Nonlinear SDEs are considered
in Section 59.6. The solutions of nonlinear SDEs are non-Gaussian Markov processes. In this case,
we characterize their transition distribution in terms of the Kolmogorov forward (Fokker–Planck) and
backward partial differential equations.

59.2 White Noise and the Wiener Process

A random process {Zt} is said to be a white noise process if

E[Zt] = 0 and E[ZtZs] = δ(t− s), (59.7)

where δ(t) is the Dirac delta, which is characterized by the two properties δ(t)= 0 for t �= 0 and∫∞
−∞ δ(t) dt = 1.
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Consider the integrated white noise

Wt =
∫ t

0
Zu du. (59.8)

We show that integrated white noise satisfies the following five properties. For 0≤ θ≤ τ≤ s ≤ t,

W0 = 0, (59.9)

E[Wt] = 0, (59.10)

E
[
(Wt −Ws)

2]= t− s, (59.11)

E
[
(Wt −Ws)(Wτ−Wθ)

]= 0, (59.12)

E[WtWs] =min{t, s}. (59.13)

In other words:

• W0 is a constant random variable with value zero.
• Wt has zero mean.
• Wt −Ws has variance t− s.
• If (θ, τ] and (s, t] are nonoverlapping time intervals, then the increments Wτ−Wθ and Wt −Ws

are uncorrelated.
• The correlation between Wt and Ws is E[WtWs] =min{t, s}.

(A process that satisfies Equation 59.12 is said to have orthogonal increments. A very accessible introduc-
tion to orthogonal increments processes can be found in [4].)

The property defined in Equation 59.9 is immediate from Equation 59.8. To establish Equation 59.10,
write E[Wt] =

∫ t
0 E[Zu] du= 0. To derive Equation 59.11, write

E
[
(Wt −Ws)

2]= E
[(∫ t

s
Zu du

)(∫ t

s
Zv dv

)]

=
∫ t

s

(∫ t

s
E[ZuZv] du

)
dv

=
∫ t

s

(∫ t

s
δ(u− v) du

)
dv

=
∫ t

s
1 dv

= t− s.

To obtain Equation 59.12, write

E[(Wt −Ws)(Wτ−Wθ)] = E
[(∫ t

s
Zu du

)(∫ τ

θ

Zv dv

)]
=
∫ τ

θ

(∫ t

s
δ(u− v) du

)
dv.

Because the ranges of integration, which are understood as (θ, τ] and (s, t], do not intersect, δ(u− v)= 0,
and the inner integral is zero. Finally, the properties defined in Equations 59.9, 59.11, and 59.12 yield
Equation 59.13 by writing, when t > s,

E[WtWs] = E[(Wt −Ws)Ws]+E[W2
s ]

= E[(Wt −Ws)Ws]+ s

= E[(Wt −Ws)(Ws−W0)]+ s

= s.

(59.14)
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If t < s, a symmetric argument yields E[WtWs] = t. Hence, we can in general write E[WtWs] =
min{t, s}.

It is well known that no process {Zt} satisfying Equation 59.7 can exist in the usual sense [1]. Hence,
defining Wt by Equation 59.8 does not make sense. Fortunately, it is possible to define a random process
{Wt , t ≥ 0} satisfying Equations 59.9 through 59.13 (as well as additional properties).

Definition 59.1:

The standard Wiener process, or Brownian motion, denoted by {Wt , t ≥ 0}, is characterized by the follow-
ing four properties:

W-1 W0 = 0.
W-2 For 0≤ s < t, the increment Wt −Ws is a Gaussian random variable with zero mean and variance
t− s, i.e.,

Pr(Wt −Ws ≤ w)=
∫ w

−∞

exp
(− x2

2(t− s)

)
√

2π(t− s)
dx.

W-3 {Wt , t ≥ 0} has independent increments; i.e., if 0≤ t1 ≤ · · · ≤ tn, then the increments

(Wt2 −Wt1 ), (Wt3 −Wt2 ), . . . , (Wtn −Wtn−1 )

are statistically independent random variables.
W-4 {Wt , t ≥ 0} has continuous sample paths with probability 1.

A proof of the existence of the Wiener process is given, for example, in [2] and in [4]. A sample path
of a standard Wiener process is shown in Figure 59.1.

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

–1.4

–1.6

–1.8

–2.0

0 2 4 6 8 10
t

FIGURE 59.1 Sample path of a standard Wiener process.

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-70&iName=master.img-000.jpg&w=294&h=211
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We now show that properties W-1, W-2, and W-3 are sufficient to prove that the Wiener process
satisfies Equations 59.9 through 59.13. Clearly, property W-1 and Equation 59.9 are the same. To establish
Equation 59.10, put s = 0 in property W-2 and use property W-1. It is clear that property W-2 implies
Equation 59.11. Also, Equation 59.12 is an immediate consequence of properties W-3 and W-2. Finally,
since the Wiener process satisfies Equations 59.9, 59.11, and 59.12, the derivation in Equation 59.14 holds
for the Wiener process, and thus Equation 59.13 also holds for the Wiener process.

Remark 59.1

From Figure 59.1, we see that the Wiener process has very jagged sample paths. In fact, if we zoom
in on any subinterval, say [2,4] as shown in Figure 59.2, the sample path looks just as jagged. In other
words, the Wiener process is continuous, but seems to have corners everywhere. In fact, it can be shown
mathematically [2] that the sample paths of the Wiener process are nowhere differentiable. In other
words, Wt cannot be the integral of any reasonable function, which is consistent with our earlier claim
that continuous-time white noise cannot exist as an ordinary random process.

59.3 The Itô Integral

Let {Wt , t ≥ 0} be a standard Wiener process. The history of the process up to (and including) time t is
denoted by F t := σ(Wθ, 0≤ θ≤ t). For our purposes, we say that a random variable X is Ft-measurable
if it is a function of the history up to time t; i.e., if there is a deterministic function h such that X =
h(Wθ, 0≤ θ≤ t). For example, if X =Wt −Wt/2, then X is Ft-measurable. Another example would be

X = ∫ t
0 Wθ dθ; in this case, X depends on all of the variables Wθ, 0≤ θ≤ t and is Ft-measurable. We also

borrow the following notation from probability theory. If Z is any random variable, we write

E[Z|Ft] instead of E[Z|Wθ, 0≤ θ≤ t].
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FIGURE 59.2 Closeup of sample path in Figure 59.1.
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If Z is arbitrary but X is Ft-measurable, then [2]

E[XZ|Ft] = X E[Z|Ft]. (59.15)

A special case of Equation 59.15 is obtained if Z = 1; then E[Z|Ft] = E[1|Ft] = 1, and hence, if X is
Ft-measurable,

E[X|Ft] = X . (59.16)

We also require the following results from probability theory [2], which we refer to as the smoothing
properties of conditional expectation:

E[Z] = E
[
E[Z|Ft]

]
, t ≥ 0, (59.17)

and
E[Z|Fs] = E

[
E[Z|Ft]

∣∣Fs], t ≥ s ≥ 0. (59.18)

Definition 59.2:

A random process {Ht , t ≥ 0} is {Ft}-adapted (or simply adapted if {Ft} is understood), if for each t, Ht is
an Ft -measurable random variable.

Obviously, {Wt , t ≥ 0} is {Ft}-adapted. We now show that Wt is a martingale, i.e.,

E[Wt |Fs] =Ws, t ≥ s. (59.19)

To see this, first note that since W0 = 0,

Fs := σ(Wθ, 0≤ θ≤ s)= σ(Wθ−W0, 0≤ θ≤ s).

It follows, on account of the independent increments of the Wiener process, that Wt −Ws is independent
of the history Fs for t ≥ s; i.e., for any function f ,

E[ f (Wt −Ws)|Fs] = E[ f (Wt −Ws)].
Then, since Wt −Ws has zero mean,

E[Wt −Ws|Fs] = E[Wt −Ws] = 0, t ≥ s, (59.20)

which is equivalent to Equation 59.19.
Having shown that Wt is a martingale, we now show that W2

t − t is also a martingale. To do this, we
need the following three facts:

1. Wt −Ws is independent of Fs with E[(Wt −Ws)2] = t− s
2. Wt is a martingale (cf. Equation 59.19)
3. Properties defined in Equations 59.15 and 59.16

For t > s, write

E[W2
t |Fs] = E[(Wt −Ws)

2+ 2WtWs−W2
s |Fs]

= E[(Wt −Ws)
2|Fs]+ 2WsE[Wt |Fs]−W2

s

= t− s+ 2W2
s −W2

s

= t+W2
s − s.

Rearranging, we have
E[W2

t − t|Fs] =W2
s − s, t > s,

i.e., W2
t − t is a martingale.
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59.3.1 Definition of Itô’s Stochastic Integral

We now define the Itô integral. As in the development of the Riemann integral, we begin by defining the
integral for functions that are piecewise constant in time; i.e., we consider integrands {Ht , t ≥ 0} that are
{Ft}-adapted processes satisfying

Ht =Hti for ti ≤ t < ti+1, (59.21)

for some breakpoints ti < ti+1. Thus, while Ht =Hti on [ti , ti+1), the value Hti is an Fti -measurable
random variable. Without loss of generality, given any 0≤ s < t, we may assume s = t0 < · · ·< tn = t.
Then the Itô integral is defined to be

∫ t

s
Hθ dWθ :=

n−1∑
i=0

Hti (Wti+1 −Wti ). (59.22)

To handle the general case, suppose Ht is a process for which there exists a sequence of processes Hk
t of

the form of Equation 59.21 (where now n and the breakpoints {ti} depend on k) such that

lim
k→∞

∫ t

s
E[|Hk

θ −Hθ|2] dθ= 0.

Then we take
∫ t

s Hθ dWθ to be the mean-square limit (which exists) of
∫ t

s Hk
θ dWθ; i.e., there exists a

random variable, denoted by
∫ t

s Hθ dWθ, such that

lim
k→∞

E
[∣∣∣∣
∫ t

s
Hk
θ dWθ−

∫ t

s
Hθ dWθ

∣∣∣∣
2]
= 0. (59.23)

See [10] for details. It should also be noted that when Ht = h(t) is a deterministic function, the right-hand
side of Equation 59.22 is a Gaussian random variable, and since mean-square limits of such quantities
are also Gaussian [4],

{∫ t
s h(θ) dWθ, t ≥ s

}
is a Gaussian random process. When the integrand of an Itô

integral is deterministic, the integral is sometimes called a Wiener integral.

59.3.2 Properties of the Itô Integral

The Itô integral satisfies the following three properties. First, the Itô integral is a zero-mean random
variable, i.e.,

E
[∫ t

s
Hθ dWθ

]
= 0. (59.24)

Second, the variance of
∫ t

s Hθ dWθ is

E
[(∫ t

s
Hθ dWθ

)2]
=
∫ t

s
E[H2

θ ] dθ. (59.25)

Third, if Xt :=
∫ t

0 Hθ dWθ, then Xt is a martingale, i.e., E[Xt |Fs] = Xs, or in terms of Itô integrals,

E
[∫ t

0
Hθ dWθ

∣∣∣∣Fs

]
=
∫ s

0
Hθ dWθ, t ≥ s.

We verify these properties when Ht is of the form of Equation 59.21. To prove Equation 59.24, take the
expectations of Equation 59.22 to obtain

E
[∫ t

s
Hθ dWθ

]
=

n−1∑
i=0

E[Hti (Wti+1 −Wti )].
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By the first smoothing property of conditional expectation, the fact that Hti is Fti -measurable, and the
properties defined in Equations 59.15 and 59.20,

E[Hti (Wti+1 −Wti )] = E
[
E[Hti (Wti+1 −Wti )|Fti ]

]
= E

[
Hti E[Wti+1 −Wti |Fti ]

]
= 0.

To establish Equation 59.25, use Equation 59.22 to write

E
[(∫ t

s
Hθ dWθ

)2]
=

n−1∑
i=0

n−1∑
j=0

E[Hti Htj (Wti+1 −Wti )(Wtj+1 −Wtj )].

First consider a typical term in the double sum for which j = i. Then by the first smoothing property and
Equation 59.15,

E[H2
ti

(Wti+1 −Wti )
2] = E

[
E[H2

ti
(Wti+1 −Wti )

2|Fti ]
]

= E
[
H2

ti
E[(Wti+1 −Wti )

2|Fti ]
]
.

Since Wti+1 −Wti is independent of Fti ,

E[(Wti+1 −Wti )
2|Fti ] = E[(Wti+1 −Wti )

2] = ti+1− ti .

Hence,

E[H2
ti

(Wti+1 −Wti )
2] = E[H2

ti
](ti+1− ti).

For the terms with j �= i, we can, without loss of generality, take j < i. In this case,

E[Hti Htj (Wti+1 −Wti )(Wtj+1 −Wtj )] = E
[
E[Hti Htj (Wti+1 −Wti )(Wtj+1 −Wtj )|Fti ]

]
= E

[
Hti Htj (Wtj+1 −Wtj )E[Wti+1 −Wti |Fti ]

]
= 0, by Equation 59.20.

Thus,

E
[(∫ t

s
Hθ dWθ

)2]
=

n−1∑
i=0

E[H2
ti
](ti+1− ti)=

∫ t

s
E[H2

θ ] dθ.

To show that Xt :=
∫ t

0 Hθ dWθ is a martingale, it suffices to prove that E[Xt −Xs|Fs] = 0. Write

E[Xt −Xs|Fs] = E
[ ∫ t

s
Hθ dWθ

∣∣∣∣Fs

]
= E

[ n−1∑
i=0

Hti (Wti+1 −Wti )

∣∣∣∣Fs

]

=
n−1∑
i=0

E[Hti (Wti+1 −Wti )|Fs].

Then by the second smoothing property of conditional expectation and the properties defined in Equa-
tions 59.15 and 59.20,

E[Xt −Xs|Fs] =
n−1∑
i=0

E
[
Hti E[Wti+1 −Wti |Fti ]

∣∣Fs
]= 0.
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59.3.3 A Simple Form of Itô’s Rule

The following result is essential to derive Itô’s rule [1].

Lemma 59.1:

For any partition of [s, t], say s = t0 < · · ·< tn = t, putΔ :=max0≤i≤n−1 |ti+1− ti|. If

V :=
n−1∑
i=0

(Wti+1 −Wti )
2, (59.26)

then
E[|V − (t− s)|2] ≤ 2Δ(t− s).

The importance of the lemma is that it implies that as theΔ of the partition becomes small, the sum of
squared increments V converges in mean square to the length of the interval, t− s.

Proof 59.1. The first step is to note that t− s =∑n−1
i=0 (ti+1− ti). Next, let D denote the difference

D := V − (t− s)=
n−1∑
i=0

{
(Wti+1 −Wti )

2− (ti+1− ti)
}

.

Thus, D is a sum of independent, zero-mean random variables. It follows that the expectation of the cross
terms in D2 vanishes, thus leaving

E[D2] =
n−1∑
i=0

E
[{

(Wti+1 −Wti )
2− (ti+1− ti)

}2]
.

Put Zi := (Wti+1 −Wti )/
√

ti+1− ti . Then Zi is a zero-mean Gaussian random variable with variance 1
(which implies E[Z4

i ] = 3). We can now write

E[D2] =
n−1∑
i=0

E
[{

(Z2
i − 1)(ti+1− ti)

}2]

=
n−1∑
i=0

E[(Z2
i − 1)2](ti+1− ti)

2

=
n−1∑
i=0

2(ti+1− ti)
2

≤
n−1∑
i=0

2Δ(ti+1− ti)= 2Δ(t− s).

Let {Ht , t ≥ 0} be a continuous {Ft}-adapted process. It can be shown [1] that as the partition becomes
finer,

n−1∑
i=0

Hti (Wti+1 −Wti )
2 →

n−1∑
i=0

Hti (ti+1− ti) →
∫ t

s
Hθ dθ.

We now derive a special case of Itô’s rule. Let g(w) be a twice continuously differentiable function of w.
If Yt = g(Wt), our intuition about the chain rule might lead us to write dYt = g ′(Wt) dWt . As we now
show, the correct answer is dYt = g ′(Wt) dWt + 1

2 g ′′(Wt) dt.
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Consider the Taylor expansion,

g(w2)− g(w1) ≈ g ′(w1)(w2−w1)+ 1

2
g ′′(w1)(w2−w1)2.

Suppose Yt = g(Wt). For s = t0 < · · ·< tn = t, write

Yt −Ys =
n−1∑
i=0

g(Wti+1 )− g(Wti )

≈
n−1∑
i=0

{
g ′(Wti )(Wti+1 −Wti )+

1

2
g ′′(Wti )(Wti+1 −Wti )

2
}

.

Note that g ′(Wti ) and g ′′(Wti ) are Fti -measurable. Hence, as the partition becomes finer, we obtain

Yt −Ys =
∫ t

s
g ′(Wθ) dWθ+ 1

2

∫ t

s
g ′′(Wθ) dθ.

Writing this in differential form, we have a special case of Itô’s rule: If Yt = g(Wt), then

dYt = g ′(Wt) dWt + 1

2
g ′′(Wt) dt.

Example 59.1:

As a simple application of this result, we show that

∫ t

0
Wθ dWθ =

(W 2
t − t)

2
.

Take g(w)= w2. Then g′(w)= 2w, and g′′(w)= 2. The special case of Itô’s rule gives

dYt = 2Wt dWt + 1 dt.

Converting this to integral form and noting that Y0 =W 2
0 = 0,

Yt = Y0+
∫ t

0
2Wθ dWθ+

∫ t

0
1 dθ

= 2
∫ t

0
Wθ dWθ+ t.

Since Yt = g(Wt )=W 2
t , the result follows. As noted earlier, integrals with respect to the Wiener

process are martingales. Since
∫ t

0 Wθ dWθ = (W 2
t − t)/2, we now have an alternative proof to the one

following Equation 59.20 that W 2
t − t is a martingale.



�

�

�

�

� �

59-12 Control System Advanced Methods

59.4 Stochastic Differential Equations and Itô’s Rule

Suppose Xt satisfies the SDE
dXt = a(t, Xt) dt+ b(t, Xt) dWt , (59.27)

or equivalently, the integral equation,

Xt = Xs+
∫ t

s
a(θ, Xθ) dθ+

∫ t

s
b(θ, Xθ) dWθ. (59.28)

If Yt = g(Xt), where g is twice continuously differentiable, we show that Yt satisfies the SDE

dYt = g ′(Xt) dXt + 1

2
g ′′(Xt)b(t, Xt)2 dt. (59.29)

Using the Taylor expansion of g as we did in the preceding section, write

Yt −Ys ≈
n−1∑
i=0

{
g ′(Xti )(Xti+1 −Xti )+

1

2
g ′′(Xti )(Xti+1 −Xti )

2
}

.

From Equation 59.28 we have the approximation

Xti+1 −Xti ≈ a(ti , Xti )(ti+1− ti)+ b(ti , Xti )(Wti+1 −Wti ).

Hence, as the partition becomes finer,

n−1∑
i=0

g ′(Xti )(Xti+1 −Xti )

converges to ∫ t

s
g ′(Xθ)a(θ, Xθ) dθ+

∫ t

s
g ′(Xθ)b(θ, Xθ) dWθ.

It remains to consider sums of the form (cf. Equation 59.26)

n−1∑
i=0

g ′′(Xti )(Xti+1 −Xti )
2.

The ith term in the sum is approximately

g ′′(Xti )
{

a(ti , Xti )
2(ti+1− ti)

2+ 2a(ti , Xti )b(ti , Xti )(ti+1− ti)(Wti+1 −Wti )+ b(ti , Xti )
2(Wti+1 −Wti )

2
}

.

Now withΔ=max0≤i≤n−1 |ti+1− ti|,
∣∣∣∣

n−1∑
i=0

g ′′(Xti )a(ti , Xti )
2(ti+1− ti)

2
∣∣∣∣ ≤ Δ

n−1∑
i=0

|g ′′(Xti )|a(ti , Xti )
2(ti+1− ti),

which converges to zero asΔ→ 0. Also,

n−1∑
i=0

g ′′(Xti )a(ti , Xti )(ti+1− ti)(Wti+1 −Wti )
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converges to 0. Finally, note that

n−1∑
i=0

g ′′(Xti )b(ti , Xti )
2(Wti+1 −Wti )

2

converges to
∫ t

s g ′′(Xθ)b(θ, Xθ)2 dθ. Putting this all together, as the partition becomes finer, we have

Yt −Ys =
∫ t

s
g ′(Xθ)

[
a(θ, Xθ) dt+ b(θ, Xθ) dWθ

]+ 1

2

∫ t

s
g ′′(Xθ)b(θ, Xθ)

2 dθ,

which is indeed the integral form of Itô’s rule in Equation 59.29.
Itô’s rule can be extended to handle a time-varying nonlinearity g(t, x) whose partial derivatives

gt := ∂g

∂t
, gx := ∂g

∂x
, and gxx := ∂2g

∂x2

are continuous [1]. If Yt = g(t, Xt), where Xt satisfies Equation 59.27, then

dYt = gt(t, Xt) dt+ gx(t, Xt) dXt + 1
2 gxx(t, Xt)b(t, Xt)2dt

= gt(t, Xt) dt+ gx(t, Xt)a(t, Xt) dt+ gx(t, Xt)b(t, Xt) dWt + 1

2
gxx(t, Xt)b(t, Xt)2 dt.

(59.30)

Example 59.2:

Consider the Langevin equation
dXt =−3Xt dt+ 5 dWt .

Suppose Yt = sin(tXt ). Then with g(t, x)= sin(tx), gt (t, x)= x cos(tx), gx (t, x)= t cos(tx), and gxx (t, x)=
−t2 sin(tx). By the extended Itô’s rule,

dYt = [(1− 3t)Xt cos(tXt )− 25
2

t2 sin(tXt )] dt+ 5t cos(tXt ) dWt .

59.5 Applications of Itô’s Rule to Linear SDEs

Using Itô’s rule, we can verify explicit solutions to linear SDEs. By a linear SDE we mean an equation of
the form

dXt = [α(t)+ c(t)Xt] dt+[β(t)+ γ(t)Xt] dWt , Xt0 =Ξ. (59.31)

IfΞ is independent of {Wt −Wt0 , t ≥ t0}, and if c, β, and γ are bounded on a finite interval [t0, tf ], then a
unique continuous solution exists on [t0, tf ]; if α, c, β, and γ are bounded on [t0, tf ] for every finite tf > t0,
then a unique solution exists on [t0,∞) [1].

59.5.1 Homogeneous Equations

A linear SDE of the form
dXt = c(t)Xt dt+ γ(t)Xt dWt , Xt0 =Ξ, (59.32)

is said to be homogeneous. In this case, we claim that the solution is Xt =Ξ exp(Yt), where

Yt :=
∫ t

t0

[
c(θ)− γ(θ)2

2

]
dθ+

∫ t

t0

γ(θ) dWθ,
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or in differential form,

dYt =
[

c(t)− γ(t)2

2

]
dt+ γ(t) dWt .

To verify our claim, we follow [1] and simply apply Itô’s rule of Equation 59.29:

dXt =Ξ exp(Yt) dYt + 1

2
Ξ exp(Yt)γ(t)2 dt

= Xt

[
c(t)− γ(t)2

2

]
dt+Xtγ(t) dWt + 1

2
Xtγ(t)2 dt

= c(t)Xt dt+ γ(t)Xt dWt .

Since Xt0 =Ξ exp(Yt0 )=Ξ exp(0)=Ξ, we have indeed solved Equation 59.32.

Example 59.3:

Consider the homogeneous SDE

dXt = cos(t)Xt dt+ 2Xt dWt , X0 = 1.

For this problem, Yt = sin(t)− 2t+ 2Wt , and the solution is Xt = eYt = esin(t)−2(t−Wt ).

59.5.2 Linear SDEs in the Narrow Sense

A linear SDE of the form

dXt = [α(t)+ c(t)Xt] dt+ β(t) dWt , Xt0 =Ξ, (59.33)

is said to be linear in the narrow sense because it is obtained by setting γ(t)= 0 in the general linear SDE
in Equation 59.31. The solution of this equation is obtained as follows. First put

Φ(t, t0) := exp

(∫ t

t0

c(θ) dθ

)
.

Observe that
∂Φ(t, t0)

∂t
= c(t)Φ(t, t0), (59.34)

Φ(t0, t0)= 1, andΦ(t, t0)Φ(t0, θ)=Φ(t, θ). Next, let

Yt := Ξ+
∫ t

t0

Φ(t0, θ)α(θ) dθ+
∫ t

t0

Φ(t0, θ)β(θ) dWθ,

or in differential form,
dYt =Φ(t0, t)α(t) dt+Φ(t0, t)β(t) dWt .

Now put

Xt :=Φ(t, t0)Yt

=Φ(t, t0)Ξ+
∫ t

t0

Φ(t, θ)α(θ) dθ+
∫ t

t0

Φ(t, θ)β(θ) dWθ.
(59.35)

In other words, Xt = g(t, Yt), where g(t, y)=Φ(t, t0)y. Using Equation 59.34, gt(t, y)= c(t)Φ(t, t0)y. We
also have gy(t, y)=Φ(t, t0), and gyy(t, y)= 0. By the extended Itô’s rule of Equation 59.30,

dXt = gt(t, Yt) dt+ gy(t, Yt) dYt + 1

2
gyy(t, Yt) dt
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= c(t)Φ(t, t0)Yt dt+Φ(t, t0)[Φ(t0, t)α(t) dt+Φ(t0, t)β(t) dWt]
= c(t)Xt dt+ α(t) dt+ β(t) dWt ,

which is exactly Equation 59.33.
Recalling the text following Equation 59.23, and noting the form of the solution in Equation 59.35, we

see that {Xt} is a Gaussian process if and only ifΞ is a Gaussian random variable. In any case, we can always
use Equation 59.35 to derive differential equations for the mean and variance of Xt . For example, put
m(t) := E[Xt]. Since Itô integrals have zero mean (recall Equation 59.24), we obtain from Equation 59.35,

m(t)=Φ(t, t0)E[Ξ]+
∫ t

t0

Φ(t, θ)α(θ) dθ,

and thus

dm(t)

dt
= c(t)Φ(t, t0)E[Ξ]+Φ(t, t)α(t)+

∫ t

t0

c(t)Φ(t, θ)α(θ) dθ

= c(t)

{
Φ(t, t0)E[Ξ]+

∫ t

t0

Φ(t, θ)α(θ) dθ

}
+ α(t)

= c(t)m(t)+ α(t),

and m(t0)= E[Ξ]. We now turn to the covariance function of Xt , r(t, s) := E[(Xt −m(t))(Xs−m(s))].
We assume that the initial conditionΞ is independent of {Wt −Wt0 , t ≥ t0}. Write

Xt −m(t)=Φ(t, t0)(Ξ−E[Ξ])+
∫ t

t0

Φ(t, θ)β(θ) dWθ.

For s < t, write
∫ t

t0

Φ(t, θ)β(θ) dWθ =
∫ s

t0

Φ(t, θ)β(θ) dWθ+
∫ t

s
Φ(t, θ)β(θ) dWθ.

Then

r(t, s)=Φ(t, t0)E[(Ξ−E[Ξ])2]Φ(s, t0)+
∫ s

t0

Φ(t, θ)β(θ)2Φ(s, θ) dθ.

Letting var(Ξ) := E[(Ξ−E[Ξ])2], for arbitrary s and t, we can write

r(t, s)=Φ(t, t0)var(Ξ)Φ(s, t0)+
∫ min{s,t}

t0

Φ(t, θ)β(θ)2Φ(s, θ) dθ.

In particular, if we put v(t) := r(t, t)= E[(Xt −m(t))2], then a simple calculation shows

dv(t)

dt
= 2c(t)v(t)+ β(t)2, v(t0)= var(Ξ).

59.5.3 The Langevin Equation

If α(t)= 0 and c(t) and β(t) do not depend on t, then the narrow-sense linear SDE in Equation 59.33
becomes

dXt = cXt dt+ βdWt , Xt0 =Ξ,

which is the Langevin equation when c < 0 and β> 0. Now, since

Φ(t, t0)= exp

(∫ t

t0

c dθ

)
= ec[t−t0],
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the solution in Equation 59.35 simplifies to

Xt = ec[t−t0]Ξ+
∫ t

t0

ec[t−θ]β dWθ.

Then the mean is
m(t) := E[Xt] = ec[t−t0]E[Ξ],

and the covariance is

r(t, s)= ec[t−t0+s−t0]var(Ξ)+
∫ min{t,s}

t0

ec[t−θ+s−θ]β2 dθ

= ec[t+s−2t0]
[

var(Ξ)+ β
2

2c

]
+ ec|t−s|

(−β2

2c

)
.

Now assume c < 0, and suppose that E[Ξ] = 0 and var(Ξ)=−β2/(2c). Then

E[Xt] = 0 and r(t, s)= ec|t−s|
(−β2

2c

)
. (59.36)

Since E[Xt] does not depend on t, and since r(t, s) depends only on |t− s|, {Xt , t ≥ t0} is said to be wide-
sense stationary. If Ξ is also Gaussian, then {Xt , t ≥ t0} is a Gaussian process known as the Ornstein–
Uhlenbeck process.

59.6 Transition Probabilities for General SDEs

The transition function for a process {Xt , t ≥ t0} is defined to be the conditional cumulative distribution

P(t, y|s, x) := Pr(Xt ≤ y|Xs = x).

When Xt is the solution of an SDE, we can write down a partial differential equation that uniquely deter-
mines the transition function if certain hypotheses are satisfied. Under these hypotheses, the conditional
cumulative distribution P(t, y|s, x) has a density p(t, y|s, x) that is uniquely determined by another partial
differential equation.

To motivate the general results below, we first consider the narrow-sense linear SDE in Equation 59.33,
whose solution is given in Equation 59.35. Since Φ(t, θ)=Φ(t, s)Φ(s, θ), Equation 59.35 can be
rewritten as

Xt =Φ(t, s)

[
Φ(s, t0)Ξ+

∫ t

t0

Φ(s, θ)α(θ) dθ+
∫ t

t0

Φ(s, θ)β(θ) dWθ

]

=Φ(t, s)

[
Xs+

∫ t

s
Φ(s, θ)α(θ) dθ+

∫ t

s
Φ(s, θ)β(θ) dWθ

]

=Φ(t, s)Xs+
∫ t

s
Φ(t, θ)α(θ) dθ+

∫ t

s
Φ(t, θ)β(θ) dWθ.

Now consider Pr(Xt ≤ y|Xs = x). Since we are conditioning on Xs = x, we can replace Xs in the preceding
equation by x. For notational convenience, let

Z := Φ(t, s)x+
∫ t

s
Φ(t, θ)α(θ) dθ+

∫ t

s
Φ(t, θ)β(θ) dWθ.

Then Pr(Xt ≤ y|Xs = x)= Pr(Z ≤ y|Xs = x). Now, in the definition of Z, the only randomness comes
from the Itô integral with deterministic integrand over [s, t]. The randomness in this integral comes only
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from the increments of the Wiener process on [s, t]. From Equation 59.35 with t replaced by s, we see that
the only randomness in Xs comes fromΞ and from the increments of the Wiener process on [t0, s]. Hence,
Z and Xs are independent, and we can write Pr(Z ≤ y|Xs = x)= Pr(Z ≤ y). Next, from the development
of the Itô integral in Section 59.3, we see that Z is a Gaussian random variable with mean

m(t|s, x) := Φ(t, s)x+
∫ t

s
Φ(t, θ)α(θ) dθ

and variance

v(t|s) :=
∫ t

s
[Φ(t, θ)β(θ)]2 dθ.

Hence, the transition function is

P(t, y|s, x)=
∫ y

−∞

exp

(
1

2
[z−m(t|s, x)]2/v(t|s)

)
√

2πv(t|s)
dz,

and the transition density is

p(t, y|s, x)=
exp

(
1

2
[y−m(t|s, x)]2/v(t|s)

)
√

2πv(t|s)
.

Example 59.4:

Consider the SDE dXt =−3Xt dt+ 5 dWt . Then m(t|s, x)= e−3(t−s)x , and v(t|s)= 25
6 [1− e−6(t−s)].

We now return to the general SDE,

dXt = a(t, Xt) dt+ b(t, Xt) dWt , Xt0 =Ξ, (59.37)

where Ξ is independent of {Wt −Wt0 , t ≥ t0}. To guarantee a unique continuous solution on a finite
interval, say [t0, tf ], we assume [1] that there exists a finite constant K > 0 such that for all t ∈ [t0, tf ] and
all x and y, a and b satisfy the Lipschitz conditions

|a(t, x)− a(t, y)| ≤ K |x− y|,
|b(t, x)− b(t, y)| ≤ K |x− y|,

and the growth restrictions

|a(t, x)|2 ≤ K2(1+ |x|2),

|b(t, x)|2 ≤ K2(1+ |x|2).

If such a K exists for every finite tf > t0, then a unique solution exists on [t0,∞) [1]. Under the above
conditions for the general SDE in Equation 59.37, a unique solution exists, although one cannot usually
give an explicit formula for it, and so one cannot find the transition function and density as we did in
the narrow-sense linear case. However, if for some b0 > 0, b(t, x)≥ b0 for all t and all x, then [10] the
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transition function P is the unique solution of Kolmogorov’s backward equation

1

2
b(s, x)2 ∂2P(t, y|s, x)

∂x2 + a(s, x)
∂P(t, y|s, x)

∂x
=−∂P(t, y|s, x)

∂s
, t0 < s < t < tf , (59.38)

satisfying

lim
s↑t

P(t, y|s, x)=
{

1, y > x,
0, y < x.

Furthermore, P has a density,

p(t, y|s, x)= ∂P(t, y|s, x)

∂y
, t0 < s < t < tf .

If ∂a/∂x, ∂b/∂x, and ∂2b/∂x2 also satisfy the Lipschitz and growth conditions above, and if ∂b/∂x ≥ b0 >

0 and ∂2b/∂x2 ≥ b0 > 0, then the transition density p is the unique fundamental solution of Kolmogorov’s
forward equation

1

2

∂2[b(t, y)2p(t, y|s, x)]
∂y2 − ∂[a(t, y)p(t, y|s, x)]

∂y
= ∂p(t, y|s, x)

∂t
, t0 < s < t < tf , (59.39)

satisfying
p(s, y|s, x)= δ(y− x).

The forward partial differential equation is also known as the Fokker–Planck equation. Equation 59.39 is
called the forward equation because it evolves forward in time starting at s; note also that x is fixed and y
varies. In the backward equation, t and y are fixed, and x varies as s evolves backward in time starting at t.

Remark 59.2

If the necessary partial derivatives are continuous, then we can differentiate the backward equation with
respect to y and obtain the following equation for the transition density p:

1

2
b(s, x)2 ∂2p(t, y|s, x)

∂x2 + a(s, x)
∂p(t, y|s, x)

∂x
=−∂p(t, y|s, x)

∂s
, t0 < s < t < tf .

Example 59.5:

In general, it is very hard to obtain explicit solutions to the forward or backward equations. However,
when a(t, x)= a(x) and b(t, x)= b(x) do not depend on t, it is sometimes possible to obtain a limiting
density p(y)= limt→∞ p(t, y|s, x) that is independent of s and x . The existence of this limit suggests
that for large t, p(t, y|s, x) settles down to a constant as a function of t. Hence, the partial derivative
with respect to t on the right-hand side of the forward equation in Equation 59.39 should be zero.
This results in the ODE

1
2

d2[b(y)2p(y)]
dy2 − d[a(y)p(y)]

dy
= 0. (59.40)

For example, let μ and λ be positive constants, and suppose that

dXt =−μXt dt+
√
λ(1+ X 2

t ) dWt .

(The case μ= 1 and λ= 2 was considered by [10].) Then Equation 59.40 becomes

1
2

d2[λ(1+ y2)p(y)]
dy2 − d[−μyp(y)]

dy
= 0.
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Integrating both sides, we obtain

λ

2
d[(1+ y2)p(y)]

dy
+μyp(y)= κ

for some constant κ. Now, the left-hand side of this equation is (λ+μ)yp(y)+λ(1+ y2)p′(y)/2. If we
assume that this goes to zero as |y| →∞, then κ= 0. In this case,

p′(y)
p(y)

=−
(

1+μ
λ

)
2y

1+ y2 .

Integrating from 0 to y yields

ln
p(y)
p(0)

=−
(

1+μ
λ

)
ln(1+ y2),

or

p(y)= p(0)

(1+ y2)1+μ/λ
.

Of course, p(0) is determined by the requirement that
∫∞
−∞ p(y) dy = 1. For example, if μ/λ= 1/2,

then p(0)= 1/2, which can be found directly after noting that the antiderivative of 1/(1+ y2)3/2

is y
/√

1+ y2. As a second example, suppose μ/λ= 1. Then p(y) has the form p(0)f (y)2, where
f (y)= 1/(1+ y2). If we let F(ω) denote the Fourier transform of f (y), then Parseval’s equation yields∫∞
−∞ |f (y)|2 dy = ∫∞−∞ |F(ω)|2 dω/2π. Since F(ω)= πe−|ω|, this last integral can be computed in

closed form, and we find that p(0)= 2/π.

59.7 Defining Terms

Adapted: A random process {Ht} is {Ft}-adapted, where Ft = σ(Wθ, 0≤ θ≤ t), if for each t, Ht is Ft-
measurable. See measurable.

Brownian motion: Synonym for Wiener process.
Fokker–Planck equation: Another name for Kolmogorov’s forward equation.
History: The history of a process {Wθ, θ≥ 0} up to and including time t is denoted by Ft = σ(Wθ, 0≤

θ≤ t). See also measurable.
Homogeneous: Linear stochastic differential equations (SDEs) of the form in Equation 59.32 are homo-

geneous.
Integrated white noise: A random process Wt that behaves as if it had the representation Wt =

∫ t
0 Zθ dθ,

where Zθ is a white noise process. The Wiener process is an example of integrated white noise.
Itô correction term: The last term in Itô’s rule in Equations 59.6 and 59.30. This term accounts for the

fact that the Wiener process is not differentiable.
Itô’s rule: A stochastic version of the chain rule. The general form is given in Equation 59.30.
Kolmogorov’s backward equation: The partial differential Equation 59.38 satisfied by the transition

function of the solution of an SDE.
Kolmogorov’s forward equation: The partial differential Equation 59.39 satisfied by the transition den-

sity of the solution of an SDE.
Martingale: {Wt} is an {Ft}-martingale if {Wt} is {Ft}-adapted and if for all t ≥ s ≥ 0, E[Wt |Fs] =Ws,

or equivalently, E[Wt −Ws|Fs] = 0.
Measurable: See also history. Let Ft = σ(Wθ, 0≤ θ≤ t). A random variable X is Ft-measurable if it is a

deterministic function of the random variables {Wθ, 0≤ θ≤ t}.
Narrow sense: An SDE is linear in the narrow sense if it has the form of Equation 59.33.
Ornstein–Uhlenbeck process: A Gaussian process with zero mean and covariance function in

Equation 59.36.
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Smoothing properties of conditional expectation: See Equations 59.17 and 59.18.
Transition function: For a process {Xt}, the transition function is P(t, y|s, x) := Pr(Xt ≤ y|Xs = x).
White noise process: A random process with zero mean and covariance E[ZtZs] = δ(t− s).
Wiener integral: An Itô integral with deterministic integrand. Always yields a Gaussian process.
Wiener process: A random process satisfying properties W-1 through W-4 in Section 59.2. It serves as a

model for integrated white noise.
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For background on probability theory, especially conditional expectation, we recommend [2].
For linear SDEs driven by orthogonal-increments processes, we recommend the very readable text by

Davis [4].
For SDEs driven by continuous martingales, there is the more advanced book by Karatzas and

Shreve [7].
For SDEs driven by right-continuous martingales, the theory becomes considerably more complicated.

However, the tutorial paper by Segall [9], which compares discrete-time and continuous-time results, is
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Highly technical books on SDEs driven by right-continuous martingales include [5] and [8].
For the reader interested in Markov processes there is the advanced text of Ethier and Kurtz [6].
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60.1 Introduction

Stationary stochastic processes are good ways of modeling random disturbances. The treatment here
is basically for linear discrete-time input–output models. Most modern systems for control and signal
processing work with sampled data; hence discrete-time models are of primary interest.

Properties of models, ways to calculate variances, and other second-order moments are treated. This
chapter is organized as follows. Autoregressive moving average (ARMA) and ARMAX (ARMA with an
eXogenous input) models are introduced in Section 60.2, while Section 60.3 deals with the effect of linear
filtering. Spectral factorization, which has a key role when finding appropriate model representations for
optimal estimation and control, is described in Section 60.4. Some ways to analyze stochastic systems by
covariance calculations are presented in Section 60.5, while Section 60.6 gives a summary of results for
continuous-time procecces.

In stochastic control, it is fundamental to predict future values of the process. A more general situation
is the problem to estimate unmeasurable variables. Mean square optimal prediction is dealt with in
Section 60.7, with minimal output variance control as a special application. In Section 60.8, a more
general estimation problem is treated (covering optimal prediction, filtering, and smoothing), using
Wiener filters, which are described in some detail.

This chapter is based on [6,7], where proofs and derivations can be found, as well as several extensions
to the multivariable case, and to complex-valued signal processing problems. Other aspects, primarily
related to control, can be found, for example, in [1–5].

60-1
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60.2 ARMA and ARMAX Models

Wide sense stationary random processes are often characterized by their first- and second-order moments,
that is by the mean value

m= Ex(t) (60.1)

and the covariance function

r(τ)
Δ= E[x(t+ τ)−m][x(t)−m], (60.2)

where t, τ take integer values 0,±1± 2, . . .. For a wide sense stationary processes the expected values in
Equations 60.1 and 60.2 are independent of t. As an alternative to the covariance function one can use its
discrete Fourier transform, that is, the spectrum,

φ(z)=
∞∑

n=−∞
r(n)z−n. (60.3)

Evaluated on the unit circle it is called the spectral density,

φ(eiω)=
∞∑

n=−∞
r(n)e−inω. (60.4)

As

r(τ)= 1

2π

∫ π

−π
φ(eiω)eiτωdω= 1

2πi

∮
φ(z)zτ

dz

z
(60.5)

(where the last integration is counterclockwise around the unit circle) the spectral density describes how
the energy of the signal is distributed over different frequency bands (set τ= 0 in Equation 60.5).

Similarly, the cross-covariance function between two wide sense stationary processes y(t) and x(t) is
defined as

ryx(τ)
Δ= E[y(t+ τ)−my][x(t)−mx], (60.6)

and its associated spectrum is

φyx(z)=
∞∑

n=−∞
ryx(n) z−n. (60.7)

A sequence of independent identically distributed (i.i.d.) random variables is called white noise. A white
noise will have

r(τ)= 0 for τ �= 0. (60.8)

Equivalently, its spectrum is constant for all z. Hence its energy is distributed evenly over all frequencies.
In order to simplify the development here, it is generally assumed that signals have zero mean. This

is equivalent to considering only deviations of the signals from an operating point (given by the mean
values).

Next, an important class of random processes, obtained by linear filtering of white noise, is introduced.
Consider y(t) given as the solution to the difference equation

y(t)+ a1y(t− 1)+ · · ·+ any(t− n)= e(t)+ c1e(t− 1)+ · · ·+ cme(t−m), (60.9)

where e(t) is the white noise. Such a process is called an ARMA process. If m= 0, it is called an autore-
gressive (AR) process, and if n= 0 a moving average (MA) process.
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Introduce the polynomials

A(z)= zn+ a1zn−1+ · · ·+ an,

C(z)= zm+ c1zm−1+ · · ·+ cm,
(60.10)

and the shift operator q, qx(t)= x(t+ 1). The ARMA model (Equation 60.9) can then be written com-
pactly as

A(q)y(t− n)= C(q)e(t−m). (60.11)

As the white noise can be “relabeled” without changing the statistical properties of y(t), (Equation 60.9)
is much more frequently written in the form

A(q)y(t)= C(q)e(t). (60.12)

Some illustrations of ARMA processes are given next.

Example 60.1:

Consider an ARMA process
A(q)y(t)= C(q)e(t).

The coefficients of the A(q) and C(q) polynomials determine the properties of the process. In parti-
cular, the roots of A(z), which are called the poles of the process, determine the frequency contents
of the process. The closer the poles are located toward the unit circle, the slower or more oscillating
the process. Figure 60.1 illustrates the connections between the A and C coefficients, realizations
of processes and their second-order moments as expressed by covariance function and spectral
density.

As an alternative to q, one can use the backward shift operator, q−1. An ARMA model would then be
written as

A(q−1)y(t)= C(q−1)e(t),

where the polynomials are

A(q−1)= 1+ a1q−1+ · · ·+ anq−n,

C(q−1)= 1+ c1q−1+ · · ·+ cmq−m.

The advantage of using the q-formalism is that stability corresponds to the “natural” condition |z|< 1.
An advantage of the alternative q−1-formalism is that causality considerations (see below) become easier
to handle. The q-formalism is used here.

In some situations, such as modeling a drifting disturbance, it is appropriate to allow A(z) to have zeros
on or even outside the unit circle. Then the process will not be wide sense stationary, but drift away. It
should hence only be considered for a finite period of time. The special simple case A(z)= z− 1, C(z)= z
is known as a random walk.

If an input signal term is added to Equation 60.10, we obtain an ARMAX model

A(q)y(t)= B(q)u(t)+C(q)e(t). (60.13)

The system must be causal, which means that y(t) is not allowed to depend on future values of the input
u(t+ τ), τ> 0. Hence it is required that deg A≥ deg B. Otherwise y(t) would depend on future input
values.
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FIGURE 60.1 Illustration of some ARMA processes. (Process I: A(q)= q2− 1.5q+ 0.8, C(q)= 1. Pole locations:
0.75± i0.49. Process II: A(q)= q2− 1.0q+ 0.3, C(q)= 1. Pole locations: 0.50± i0.22. Process III: A(q)= q2− 0.5q+
0.8, C(q)= 1. Pole locations: 0.25± i0.86. Process IV: A(q)= q2, C(q)= q2− 0.5q+ 0.9. Pole locations: 0, 0.)
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Sometimes higher-order moments (i.e., moments of order higher than two) are useful. Such spectra
are useful tools for the following:

• Extracting information due to deviations from a Gaussian distribution.
• Estimating the phase of a non-Gaussian process.
• Detecting and characterizing nonlinear mechanisms in time series.

To exemplify, we consider the bispectrum, which is the simplest form of higher-order spectrum.
Bispectra are useful only for signals that do not have a probability density function that is symmetric
around its mean value. For signals with such a symmetry, spectra of order at least four are needed.

Let x(t) be a scalar stationary process of zero mean. Its third moment sequence, R(m, n) is defined as

R(m, n)= Ex(t)x(t+m)x(t+ n), (60.14)

and satisfies a number of symmetry relations. The bispectrum is

B(z1, z2)
Δ=

∞∑
m=−∞

∞∑
n=−∞

R(m, n)z−m
1 z−n

2 . (60.15)

Let us consider two special cases:

• Let x(t) be zero mean Gaussian. Then

R(m, n)= 0, B(z1, z2)= 0. (60.16)

• Let x(t) be non-Gaussian white noise, so that x(t) and x(s) are independent for t �= s, Ex(t)= 0,
Ex2(t)= σ2, Ex3(t)= β. Then

R(m, n)=
{
β if m= n= 0,
0 elsewhere.

(60.17)

The bispectrum becomes a constant,
B(z1, z2)= β. (60.18)

60.3 Linear Filtering

Let u(t) be a stationary process with mean mu and spectrum φu(z), and consider

y(t)= G(q)u(t)=
∞∑

k=0

gku(t− k), (60.19)

where G(q)=∑∞
k=0 gkq−k is an asymptotically stable filter (e.g., it has all poles strictly inside the unit

circle). Then y(t) is a stationary process with mean

my = G(1)mu, (60.20)

and spectrum φy(z) and cross-spectrum φyu(z) given by

φy(z)= G(z)G(z−1)φu(z), (60.21)

φyu(z)= G(z)φu(z). (60.22)

The interpretation of Equation 60.20 is that the mean value mu is multiplied by the static gain of the
filter to obtain the output mean value my .
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The following corollary is a form of Parseval’s relation. Assume that u(t) is a white-noise sequence with
variance λ2. Then

Ey2(t)= λ2
∞∑

k=0

g2
k =

λ2

2πi

∮
G(z)G(z−1)

dz

z
. (60.23)

Let u(t) further have bispectrum Bu(z1, z2). Then By(z1, z2) can be found after straightforward calcula-
tion,

By(z1, z2)= G(z−1
1 z−1

2 )G(z1)G(z2)Bu(z1, z2). (60.24)

This is a generalization of Equation 60.21. Note that the spectral density (the power spectrum)
does not carry information about the phase properties of a filter. In contrast to this, phase prop-
erties can be recovered from the bispectrum when it exists. This point is indirectly illustrated in
Example 60.1.

60.4 Spectral Factorization

Let φ(z) be a scalar spectrum that is rational in z, that is, it can be written as

φ(z)=
∑
|k|≤m βkzk∑
|k|≤n αkzk

. (60.25)

Then there are two polynomials:

A(z)= zn+ a1zn−1+ · · ·+ an,

C(z)= zm+ c1zm−1+ · · ·+ cm,
(60.26)

and a positive real number λ2 so that, (1) A(z) has all zeros inside the unit circle, (2) C(z) has all zeros
inside or on the unit circle, and (3)

φ(z)= λ2 C(z)

A(z)

C(z−1)

A(z−1)
. (60.27)

In the case where φ(eiw) > 0 for all ω, C(z) will have no zeros on the circle.
Note that any continuous spectral density can be approximated arbitrarily well by a rational function

in z = eiω as in Equations 60.25 through 60.27, provided that m and n are appropriately chosen. Hence,
the assumptions imposed are not restrictive. Instead, the results are applicable, at least with a small
approximation error, to a very wide class of stochastic processes.

It is an important implication that (as far as second-order moments are concerned) the underlying
stochastic process can be regarded as generated by filtering white noise, that is, as an ARMA process

A(q)y(t)= C(q)e(t),

Ee2(t)= λ2.
(60.28)

Hence, for describing stochastic processes (as long as they have rational spectral densities), there is no
restriction to assume that the input signals are white noise. In the representation (Equation 60.28), the
sequence {e(t)} is called the output innovations.

Spectral factorization can also be viewed as a form of aggregation of noise sources. Assume, for example,
that an ARMA process

A(q)x(t)= C(q)v(t) (60.29)

is observed but the observations include measurement noise

y(t)= x(t)+ e(t), (60.30)

and that v(t) and e(t) are uncorrelated white-noise sequences with variances λ2
v and λ2

e , respectively. As
far as the second-order properties (such as the spectrum or the covariance function) are concerned, y(t)
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v (t ) x (t ) y (t ) y (t )ε(t)

e (t )

C(q)
A(q) Σ

D(q)
A(q)

FIGURE 60.2 Two representations of an ARMA process with noisy observations.

can be viewed as generated from one single noise source:

A(q)y(t)= D(q)ε(t). (60.31)

The polynomial D(q) and the noise variance λ2
ε are derived as follows. The spectrum is, according to

Equations 60.29 through 60.31,

φy(z)= λ2
v

C(z)C(z−1)

A(z)A(z−1)
+λ2

e = λ2
ε

D(z)D(z−1)

A(z)A(z−1)
.

Equating these two expressions gives

λ2
εD(z)D(z−1)≡ λ2

vC(z)C(z−1)+λ2
e A(z)A(z−1). (60.32)

The two representations (Equations 60.29 and 60.30), and Equation 60.31 of the process y(t), are
displayed schematically in Figure 60.2.

Spectral factorization can also be performed using a state-space formalism. Then an algebraic Riccati
equation (ARE) has to be solved. Its different solutions corresponds to different polynomials C(z) satis-
fying Equation 60.27. The positive-definite solution of the ARE corresponds to the C(z) polynomial with
all zeros inside the unit circle.

One would expect that for a given process, the same type of filter representation will appear for the
power spectrum and for the bispectrum. This is not so in general, as illustrated by the following example.

Example 60.2:

Consider a process consisting of the sum of two independent AR processes

y(t)= 1
A(q)

e(t)+ 1
C(q)

v(t), (60.33)

e(t) being Gaussian white noise and v(t) non-Gaussian white noise. Both sequences are assumed to
have unit variance, and Ev3(t)= 1.

The Gaussian process will not contribute to the bispectrum. Further, Rv(z1, z2)≡ 1, and according to
Equation 60.24 the bispectrum will be

By(z1, z2)= 1

C(z−1
1 z−1

2 )

1

C(z1)

1

C(z2)
, (60.34)

so

H(z)= 1

C(z)
(60.35)

is the relevant filter representation as far as the bispectrum is concerned. However, the power spectrum
becomes

φ(z)= 1

A(z)A(z−1)
+ 1

C(z)C(z−1)
, (60.36)
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and in this case it will have a spectral factor of the form

H(z)= B(z)

A(z)C(z)
, (60.37)

where
B(z)B(z−1)≡ A(z)A(z−1)+C(z)C(z−1) (60.38)

due to the spectral factorization. Clearly, the two filter representations of Equations 60.35 and 60.37 differ.

60.5 Yule−Walker Equations and Other Algorithms
for Covariance Calculations

When analyzing stochastic systems it is often important to compute variances and covariances between
inputs, outputs, and other variables. This can mostly be reduced to the problem of computing the covari-
ance function of an ARMA process. Some ways to do this are presented in this section.

Consider first the case of an AR process

y(t)+ a1y(t− 1)+ · · ·+ any(t− n)= e(t), Ee2(t)= λ2. (60.39)

Note that y(t) can be viewed as a linear combination of all the old values of the noise, that is, {e(s)}ts=−∞.
By multiplying y(t) by a delayed value of the process, say y(t− τ), τ≥ 0, and applying the expectation
operator, one obtains

Ey(t− τ)[y(t)+ a1y(t− 1)+ · · ·+ any(t− n)] = Ey(t− τ)e(t),

or

r(τ)+ a1r(τ− 1)+ · · ·+ anr(τ− n)=
{

0, τ> 0,
λ2, τ= 0,

(60.40)

which is called a Yule–Walker equation. By using Equation 60.40 for τ= 0, . . . , n, one can construct the
following system of equations for determining the covariance elements r(0), r(1), . . . , r(n):

⎛
⎜⎜⎜⎝

1 a1 . . . an

a1 1+ a2 an 0
...

. . .
...

an an−1 . . . 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

r(0)
...

r(n)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
λ2

0
...
0

⎞
⎟⎟⎟⎠ . (60.41)

Once r(0), . . . , r(n) are known, Equation 60.40 can be iterated (for τ= n+ 1, n+ 2, . . .) to find further
covariance elements.

Consider next a full ARMA process

y(t)+ a1y(t− 1)+ · · ·+ any(t− n)= e(t)+ c1e(t− 1)+ · · ·+ cme(t−m),

Ee2(t)= λ2. (60.42)

Now computing the cross-covariance function between y(t) and e(t) must involve an intermediate step.
Multiplying Equation 60.42 by y(t− τ), τ≥ 0, and applying the expectation operator, gives

ry(τ)+ a1ry(τ− 1)+ · · ·+ anry(τ− n)= rey(τ)+ c1rey(τ− 1)+ · · ·+ cmrey(τ−m). (60.43)

In order to obtain the output covariance function ry(τ), the cross-covariance function rey(τ) must first
be found. This is done by multiplying Equation 60.42 by e(t− τ), and applying the expectation operator,
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which leads to

rey(−τ)+ a1rey(−τ+ 1)+ · · ·+ anrey(−τ+ n)= λ2[δτ,0+ c1δτ−1,0+ · · ·+ cmδτ−m,0], (60.44)

where δt,s is the Kronecker delta (δt,s = 1 if t = s, and 0 elsewhere). As y(t) is a linear combination of
{e(s)}ts=−∞, it is found that rey(τ)= 0 for τ> 0. Hence Equation 60.43 gives

ry(τ)+ a1ry(τ− 1)+ · · ·+ anry(τ− n)= 0, τ> m. (60.45)

The use of Equations 60.43 through 60.45 to derive the autocovariance function is illustrated next by
applying them to a first-order ARMA process.

Example 60.3:

Consider the ARMA process

y(t)+ ay(t− 1)= e(t)+ ce(t− 1), Ee2(t)= λ2.

In this case, n= 1, m= 1. Equation 60.45 gives

ry (τ)+ ary (τ− 1)= 0, τ> 1.

Using Equation 60.43 for τ= 0 and 1 gives
(

1 a
a 1

)(
ry (0)
ry (1)

)
=
(

1 c
c 0

)(
rey (0)

rey (−1)

)
.

Consider Equation 60.44 for τ= 0 and 1, which gives
(

1 0
a 1

)(
rey (0)

rey (−1)

)
= λ2

(
1
c

)
.

By straightforward calculations, it is found that

rey (0)= λ2, rey (−1)= λ2(c− a),

ry (0)= λ2

1− a2 (1+ c2− 2ac), ry (1)= λ2

1− a2 (c− a)(1− ac),

and finally,

ry (τ)= λ2

1− a2 (c− a)(1− ac)(−a)τ−1, τ≥ 1.

As an example of alternative approaches for covariance calculations, consider the following situation.
Assume that two ARMA processes are given:

A(q)y(t)= B(q)e(t),

A(q)= qn+ a1qn−1+ · · ·+ an,

B(q)= boqn+ b1qn−1+ · · ·+ bn,

(60.46)

and

C(q)w(t)= D(q)e(t),

C(q)= qm+ c1qm−1+ · · ·+ cm,

D(q)= doqm+ d1qm−1+ · · ·+ dm.

(60.47)
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Assume that e(t) is the same in Equations 60.46 and 60.47 and that it is white noise of zero mean and unit
variance. The problem is to find the cross-covariance elements

r(k)= Ey(t+ k)w(t) (60.48)

for a number of arguments k. The cross-covariance function r(k) is related to the cross-spectrum φyw(z)
as (see Equations 60.7 and 60.22)

φyw(z)=
∞∑

k=−∞
r(k)z−k = B(z)

A(z)

D(z−1)

C(z−1)
. (60.49)

Introduce the two polynomials

F(z)= fozn+ f1zn−1+ · · ·+ fn,

G(z−1)= goz−m+ g1z−(m−1)+ · · ·+ gm−1z−1,
(60.50)

through
B(z)

A(z)

D(z−1)

C(z−1)
≡ F(z)

A(z)
+ z

G(z−1)

C(z−1)
, (60.51)

or, equivalently,
B(z)D(z−1)≡ F(z)C(z−1)+ zA(z)G(z−1). (60.52)

Since zA(z) and C(z−1) are coprime (i.e., these two polynomials have no common factor), Equation 60.52
has a unique solution. Note that as a linear system of equations, Equation 60.52 has n+m+ 1 equations
and the same number of unknowns. The coprimeness condition ensures that a unique solution exists.
Equations 60.49 and 60.51 now give

∞∑
k=−∞

r(k)z−k = F(z)

A(z)
+ z

G(z−1)

C(z−1)
. (60.53)

The two terms in the right-hand side of Equation 60.53 can be identified with two parts of the sum. In
fact,

F(z)

A(z)
=

∞∑
k=0

r(k)z−k ,
zG(z−1)

C(z−1)
=

−1∑
k=−∞

r(k)z−k . (60.54)

Equating the powers of z gives

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ryw(0)= fo,

ryw(1)= f1− a1r(0),
...

ryw(k)= fk −∑k
j=1 ajr(k− j), (2≤ k ≤ n),

ryw(k)=−∑n
j=1 ajr(k− j), (k > n).

(60.55)

Note that the last part of Equation 60.55 is nothing but a Yule–Walker type of equation.
Similarly, ⎧⎪⎨

⎪⎩
ryw(−1)= go,

ryw(−k)= gk−1−∑k−1
j=1 cjr(−k+ j), (2≤ k ≤m),

ryw(−k)=−∑m
j=1 cjr(−k+ j), (k > m).

(60.56)
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Example 60.4:

Consider again a first-order ARMA process

y(t)+ ay(t− 1)= e(t)+ ce(t− 1), Ee2(t)= 1.

In this case, the autocovariance function is sought. Hence choose z(t)≡ y(t) and thus A(q)= q+ a,
B(q)= q+ c, C(q)= q+ a, and D(q)= q+ c. The identity (Equation 60.52) becomes

(z+ c)(z−1+ c)≡ (foz+ f1)(z−1+ a)+ z(z+ a)(goz−1).

Equating the powers of z leads to

fo = 1+ c2− 2ac

1− a2 , f1 = c, go = (c− a)(1− ac)

1− a2 .

Hence Equation 60.55 implies that

r(0)= fo = 1+ c2− 2ac

1− a2 ,

r(1)= f1− ar(0)= (c− a)(1− ac)

1− a2 ,

r(k)= (−a)k−1r(1), k ≥ 1.

while Equation 60 56 gives

r(−1)= go = (c− a)(1− ac)

1− a2 ,

r(−k)= (−a)k−1r(−1), k ≥ 1.

Needless to say, these expressions for the covariance function are the same as those derived in the
previous example.

60.6 Continuous-Time Processes

This section illustrates how some of the properties of discrete-time stochastic systems appear in an
analog form for continuous-time models. However, white noise in continuous time leads to considerable
mathematical difficulties that must be solved in a rigorous way. See [1] or [7] for more details on this
aspect.

The covariance function of a process y(t) is still defined as (cf. Equation 60.2)

r(τ)= Ey(t+ τ)y(t), (60.57)

assuming for simplicity that y(t) has zero mean. The spectrum will now be

φ(s)=
∫ ∞

−∞
r(τ)e−sτdτ, (60.58)

and the spectral density is

φ(iω)=
∫ ∞

−∞
r(τ)eiωτdτ. (60.59)

The inverse relation to Equation 60.58 is

r(τ)= 1

2πi

∫
φ(s)esτds, (60.60)

where integration is along the whole imaginary axis.
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Consider a stationary stochastic process described by a spectral density φ(iω) that is a rational function
of iω. By pure analogy with the discrete-time case it is found that

φ(iω)= B(iω)B(−iω)

A(iω)A(−iω)
, (60.61)

where the polynomials

A(p)= pn+ a1pn−1+ · · ·+ an,

B(p)= b1pn−1+ · · ·+ bn,
(60.62)

have all their roots in the left half-plane (i.e., in the stability area). Here p is an arbitrary polynomial
argument, but can be interpreted as the differentiation operator (py(t)= ẏ(t)).

The effect of filtering a stationary process, say u(t), with an asymptotically stable filter, say H( p), can
be easily phrased using the spectra. Let the filtering be described by

y(t)=H(p)u(t). (60.63)

Then

φy(s)=H(s)H(−s)φu(s), (60.64)

again paralleling the discrete-time case. As a consequence, one can interpret any process with a rational
spectral density (Equation 60.61) as having been generated by filtering as in Equation 60.63 by using

H(p)= B(p)

A(p)
. (60.65)

The signal u(t) would then have a constant spectral density, φu(iω)≡ 1. As for the discrete-time case,
such a process is called white noise. It will have a covariance function r(τ)= δ(τ) and hence in particular
an infinite variance. This indicates difficulties to treat it with mathematical rigor.

60.7 Optimal Prediction

Consider an ARMA process,

A(q)y(t)= C(q)e(t), Ee2(t)= λ2, (60.66)

where A(q) and C(q) are of degree n, and have all their roots inside the unit circle. We seek a k-step
predictor, that is, a function of available data y(t), y(t− 1), . . . that will be close to the future value
y(t+ k). In particular, we seek the predictor that is optimal in a mean square sense. The clue to finding
this predictor is to rewrite y(t+ k) in two terms. The first term is a weighted sum of future noise values,
{e(t+ j)}kj=1. As this term is uncorrelated to all available data, it cannot be reconstructed in any way.
The second term is a weighted sum of past noise values {e(t− s)}∞s=0. By inverting the process model, the
second term can be written as a weighted sum of output values, {y(t− s)}∞s=0. Hence, it can be computed
exactly from data.

In order to proceed, introduce the predictor identity

zk−1C(z)≡ A(z)F(z)+ L(z), (60.67)
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where

F(z)= zk−1+ f1zk−2+ · · ·+ fk−1, (60.68)

L(z)= �ozn−1+ �1zn−2+ · · ·+ �n−1. (60.69)

Equation 60.67 is a special case of a Diophantine equation for polynomials. A solution is always possible.
This is analogous to the Diophantine equation

n= qm+ r

for integers (for given integers n and m, there exist unique integers q and r). Now,

y(t+ k)= C(q)

A(q)
e(t+ k)= qk−1C(q)

A(q)
e(t+ 1)

= A(q)F(q)+ L(q)

A(q)
e(t+ 1)= F(q)e(t+ 1)+ qL(q)

A(q)
e(t)

= F(q)e(t+ 1)+ qL(q)

A(q)

A(q)

C(q)
y(t)= F(q)e(t+ 1)+ qL(q)

C(q)
y(t).

(60.70)

This is the decomposition mentioned above. The term F(q)e(t+ 1) is a weighted sum of future noise
values, while qL(q)/C(q)y(t) is a weighted sum of available measurements Y t . Note that it is crucial for
stability that C(q) has all zeros strictly inside the unit circle (but that this is not restrictive due to spectral
factorization). As the future values of the noise are unpredictable, the mean square optimal predictor is
given by

ŷ(t+ k|t)= qL(q)

C(q)
y(t), (60.71)

while the associated prediction error is

ỹ(t+ k)= F(q)e(t+ 1)

= e(t+ k)+ f1e(t+ k− 1)+ · · ·+ fk−1e(t+ 1),
(60.72)

and has variance
Eỹ2(t+ k)= λ2(1+ f 2

1 + · · ·+ f 2
k−1). (60.73)

As a more general case, consider prediction of y(t) in the ARMAX model

A(q)y(t)= B(q)u(t)+C(q)e(t). (60.74)

In this case, proceeding as in Equation 60.70,

y(t+ k)= B(q)

A(q)
u(t+ k)+ F(q)e(t+ 1)+ qL(q)

A(q)

[
A(q)

C(q)
y(t)− B(q)

C(q)
u(t)

]

= F(q)e(t+ 1)+ qL(q)

C(q)
y(t)+ qB(q)F(q)

C(q)
u(t).

(60.75)

We find that the prediction error is still given by Equation 60.72, while the optimal predictor is

ŷ(t+ k|t)= qL(q)

C(q)
y(t)+ qB(q)F(q)

C(q)
u(t). (60.76)

This result can also be used to derive a minimum output variance regulator. That is, let us seek a feedback
control for the process (Equation 60.74) that minimizes Ey2(t). Let k = deg A− deg B denote the delay
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in the system. As ỹ(t+ k) and ŷ(t+ k|t) are independent,

Ey2(t+ k|t)= Eŷ2(t+ k|t)+Eỹ2(t+ k)≥ Eỹ2(t+ k), (60.77)

with equality if and only if ŷ(t+ k|t)= 0, the regulator is

u(t)=− L(q)

B(q)F(q)
y(t). (60.78)

Optimal prediction can also be carried out using a state-space formalism. It will then involve computing
the Kalman filter, and a Riccati equation has to be solved (which corresponds to the spectral factorization).
See Chapter 17 for a treatment of linear quadratic stochastic control using state-space techniques.

60.8 Wiener Filters

The steady-state linear least-mean square estimate is considered in this section. It can be computed using
a state-space formalism (like Kalman filters and smoothers), but here a polynomial formalism for an
input–output approach is utilized. In case time-varying or transient situations have to be handled, a
state-space approach must be used. See Chapter 12 for a parallel treatment of Kalman filters.

Let y(t) and s(t) be two correlated and stationary stochastic processes. Assume that y(t) is measured
and find a causal, asymptotically stable filter G(q) such that G(q)y(t) is the optimal linear mean square
estimator, that is, it minimizes the criterion

V = E[s(t)−G(q)y(t)]2. (60.79)

This problem is best treated in the frequency domain. This implies in particular that data are assumed to
be available since the infinite past t =−∞. Introduce the estimation error

s̃(t)= s(t)−G(q)y(t). (60.80)

The criterion V , Equation 60.79, can be rewritten as

V = 1

2πi

∮
φs̃(z)

dz

z
. (60.81)

Next note that

φs̃(z)= φs(z)−G(z)φys(z)−φsy(z)G(z−1)+G(z)G(z−1)φy(z). (60.82)

Now let G(q) be the optimal filter and G1(q) any causal filter. Replace G(q) in Equation 60.79 by G(q)+
εG1(q). As a function of ε, V can then be written as V = V0+ εV1+ ε2V2. For G(q) to be the optimal
filter it is required that V ≥ V0 for all ε, which leads to V1 = 0, giving

0= tr
1

2πi

∮
[G(z)φy(z)−φsy(z)]G1(z−1)

dz

z
. (60.83)

It is possible to give an interpretation and alternative view of Equation 60.83. For the optimal filter, the
estimation error, s̃(t), should be uncorrelated with all past measurements, {y(t− j)}∞j=0. Otherwise there
would be another linear combination of the past measurements giving smaller estimation error variance.
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Hence,

Es̃(t)y(t− j)= 0, all j ≥ 0, (60.84)

or

Es̃(t)[G1(q)y(t)] = 0 for any stable and causal G1(q). (60.85)

This can be rewritten as

0= E[s(t)−G(q)y(t)][G1(q)y(t)]
= 1

2πi

∮
[φsy(z)−G(z)φy(z)]G1(z−1)

dz

z
,

(60.86)

which is precisely (60.83).
From Equation 60.83, one easily finds the unrealizable Wiener filter. Setting the integrand to zero gives

G(z)φy(z)= φsy(z), and

G(z)= φsy(z)φ−1
y (z). (60.87)

The filter is not realizable since it relies (except in very degenerate cases) on all future data points of y(t).
Note, however, that when “deriving” Equation 60.87 from Equation 60.83, it was effectively required that
Equation 60.83 holds for any G1(z). However, it is only required that Equation 60.83 holds for any causal
and stable G1(z). Such an observation will eventually lead to the optimal realizable filter.

To proceed, let the process y(t) have the innovations representation (remember that this is always
possible as in Section 60.4)

y(t)=H(q)e(t),

Ee(t)e(s)= λ2δt,s, H(0)= 1,
(60.88)

H(q), H−1(q) asymptotically stable.

Then φy(z)=H(z)H(z−1)λ2. Further, introduce the causal part of an analytical function. Let

G(z)=
∞∑

j=−∞
gjz
−j, (60.89)

where it is required that the series converges in a strip that includes the unit circle. The causal part of
G(z) is defined as

[G(z)]+ =
∞∑

j=0

gjz
−j, (60.90)

and the anticausal part is the complementary part of the sum:

[G(z)]− =
−1∑

j=−∞
gjz
−j = G(z)−[G(z)]+. (60.91)

It is important to note that the term g0z−0 in Equation 60.89 appears in the causal part, [G(z)]+. Note
that the anticausal part [G(z)]− of a transfer function G(z) has no poles inside or on the unit circle, and
that a filter G(z) is causal if and only if G(z)= [G(z)]+. Using the conventions (Equation 60.90) and
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(Equation 60.91), the optimality condition (Equation 60.83) can be formulated as

0= 1

2πi

∮
{G(z)H(z)−φsy(z){H(z−1)}−1λ−2}λ2H(z−1)G1(z−1)

dz

z

= 1

2πi

∮
{G(z)H(z)−[φsy(z){H(z−1)}−1λ−2]+

− [φsy(z){H(z−1)}−1λ−2]−}λ2H(z−1)G1(z−1)
dz

z
. (60.92)

The stability requirements imply that the function H(z−1)G1(z−1) does not have any poles inside the unit
circle. The same is true for [φsy(z){H(z−1)}−1λ−2]−, by construction. The latter function has a zero at
z = 0. Hence, by the residue theorem,

1

2πi

∮
[φsy(z){H(z−1)}−1]−H(z−1)G1(z−1)

dz

z
= 0. (60.93)

The optimal condition of Equation 60.92 is therefore satisfied if

G(z)= 1

λ2 [φsy(z){H(z−1)}−1]+H−1(z). (60.94)

This is the realizable Wiener filter. It is clear from its construction that it is a causal and asymptotically
stable filter.

The Wiener filter will be illustrated by two examples.

Example 60.5:

Consider the ARMA process

A(q)y(t)= C(q)e(t),

Ee2(t)= λ2,

Treat the prediction problem

s(t)= y(t+ k), k > 0,

In this case,

H(z)= C(z)
A(z)

,

φsy (z)= zkφy (z).

The unrealizable filter (Equation 60.87) becomes, as before,

G(z)= zkφy (z)φ−1
y (z)= zk ,

meaning that
ŝ(t)= y(t+ k).

Note that it is noncausal, but it is otherwise a perfect estimate since it is without error! Next, the
realizable filter is calculated:

G(z)= 1

λ2

[
zkλ2 C(z)

A(z)
C(z−1)

A(z−1)

A(z−1)

C(z−1)

]
+

A(z)
C(z)

=
[

zk C(z)
A(z)

]
+

A(z)
C(z)

.
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v(t) C(q)
A(q)

s(t) y(t)

s~(t – m )

ŝ(t–m)
w(t)

Σ

Σ
+

q–m

G (q )

e(t)

M(q)
N(q)

FIGURE 60.3 Setup for a polynomial estimation problem.

To proceed, let A(z) and C(z) have degree n, and introduce the polynomial F(z) of degree k− 1 and
the polynomial L(z) of degree n− 1 by the predictor identity (Equation 60.67). This gives

G(z)=
[

zA(z)F(z)+ zL(z)
A(z)

]
+

A(z)
C(z)

= zL(z)
A(z)

A(z)
C(z)

= zL(z)
C(z)

.

The optimal predictor therefore has the form

ŝ(t)= ŷ(t+ k|t)= qL(q)
C(q)

y(t)

in agreement with Equation 60.71.

Example 60.6:

Consider the measurement of a random signal s(t) in additive noise w(t). This noise source need
not be white, but it is assumed to be uncorrelated with the signal s(t). Model s(t) and w(t) as ARMA
processes; see Figure 60.3. Thus,

y(t)= s(t)+w(t), s(t)= C(q)
A(q)

v(t), w(t)= M(q)
N(q)

e(t),

Ev(t)v(s)= λ2
vδt,s, Ee(t)e(s)= λ2

eδt,s, Ee(t)v(s)= 0.

The polynomials in the model are

C(q)= qn+ c1qn−1+ · · ·+ cn,

A(q)= qn+ a1qn−1+ · · ·+ an,

M(q)= qr +m1qr−1+ · · ·+mr ,

N(q)= qr + n1qr−1+ · · ·+ nr .

Assume that all four polynomials have all their roots inside the unit circle. The problem to be treated
is to estimate s(t−m) from {y(t− j)}∞j=0, where m is an integer. (By definition, m= 0 gives filtering,
m > 0 smoothing, and m < 0 prediction.)

To solve the estimation problem, first perform a spectral factorization of the output spectrum:

φy(z)= λ2
v

C(z)C(z−1)

A(z)A(z−1)
+λ2

e
M(z)M(z−1)

N(z)N(z−1)
≡ λ2

ε

B(z)B(z−1)

A(z)N(z)A(z−1)N(z−1)
,

requiring that B(z) is a monic polynomial (i.e., it has a leading coefficient equal to one) of degree n+ r,
and that it has all zeros inside the unit circle. The polynomial B(z) is therefore uniquely given by the
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identity
λ2
εB(z)B(z−1)≡ λ2

vC(z)C(z−1)N(z)N(z−1)+λ2
e A(z)A(z−1)M(z)M(z−1).

Hence,

H(z)= B(z)

A(z)N(z)
, λ2 = λ2

ε , φsy(z)= z−mλ2
v

C(z)C(z−1)

A(z)A(z−1)
.

According to Equation 60.94, the optimal filter becomes

G(z)= 1

λ2
ε

[
z−mλ2

v
C(z)C(z−1)

A(z)A(z−1)

A(z−1)N(z−1)

B(z−1)

]
+

A(z)N(z)

B(z)

= λ
2
v

λ2
ε

[
z−m C(z)C(z−1)N(z−1)

A(z)B(z−1)

]
+

A(z)N(z)

B(z)
.

The causal part [ ]+ can be found by solving the Diophantine equation

z−mC(z)C(z−1)N(z−1)≡ zmin(0,−m)B(z−1)R(z)+ zmax(0,−m)A(z)L(z−1),

where the unknown polynomials have degrees

deg R = n−min(0,−m),

deg L= n+ r− 1+max(0,−m).

Note that the “−1” that appears in deg L has no direct correspondence in deg R. The reason is that the
direct term g0z−0 in Equation 60.89 is associated with the causal part of G(z).

The optimal filter is readily found:

G(z)= λ
2
v

λ2
ε

([
zmin(0,−m)B(z−1)R(z)

A(z)B(z−1)

]
+
+
[

zmax(0,−m)A(z)L(z−1)

A(z)B(z−1)

]
+

)
A(z)N(z)

B(z)

= λ
2
v

λ2
ε

[
zmin(0,−m)R(z)

A(z)

]
+

A(z)N(z)

B(z)
= λ

2
v

λ2
ε

zmin(0,−m)R(z)N(z)

B(z)
.
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61.1 Introduction

Dynamic programming is a recursive method for obtaining the optimal control as a function of the state
in multistage systems. The procedure first determines the optimal control when there is only one stage
left in the life of the system. Then it determines the optimal control where there are two stages left, etc.
The recursion proceeds backward in time.

This procedure can be generalized to continuous-time systems, stochastic systems, and infinite horizon
control. The cost criterion can be a total cost over several stages, a discounted sum of costs, or the average
cost over an infinite horizon.

A simple example illustrates the main idea.

61.1.1 Example: The Shortest Path Problem

A bicyclist wishes to determine the shortest path from Bombay to the Indian East Coast. The journey can
end at any one of the cities N3, C3, or S3. The journey is to be done in 3 stages.

Stage zero is the starting stage. The bicyclist is in Bombay, labelled C0 in Figure 61.1. Three stages of
travel remain. The bicyclist has to decide whether to go north, center, or south. If the bicyclist goes north,
she reaches the city N1, after travelling 600 kms. If the bicyclist goes to the center, she reaches C1, after
travelling 450 kms. If she goes south, she reaches S1 after travelling 500 kms.

At stage one, she will therefore be in one of the cities N1, C1, or S1. From wherever she is, she has to
decide which city from among N2, C2, or S2 she will travel to next. The distances between cities N1, C1,
and S1 and N2, C2, S2 are shown in Figure 61.1. At stage two, she will be in one of the cities N2, C2, or

61-1
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500

600

600

600

700

600550

500

450 550

750
650

650

600 450

600 600

700

500

550C0 C1 C2

400S1 S2
S3

C3

N3
N2N1

FIGURE 61.1 A shortest path problem.

S2, and she will then have to decide which of the cities N3, C3, or S3 to travel to. The journey ends in
stage three with the bicyclist in one of the cities N3, C3 or S3.

61.1.2 The Dynamic Programming Method

We first determine the optimal decision when there is only one stage remaining.
If the bicyclist is in N2, she has three choices—north, center, or south, leading respectively to N3, C3 or

S3. The corresponding distances are 450, 500 and 650 kms. The best choice is to go north, and the shortest
distance from N2 to the East Coast is 450 kms.

Similarly, if the bicyclist is in C2, the best choice is to go center, and the shortest distance from C2 to the
East Coast is 550 kms. From S2, the best choice is to go south, and the shortest distance to the East Coast
is 400 kms. We summarize the optimal decisions and the optimal costs, when only one stage remains, in
Figure 61.2.

Now we determine the optimal decision when two stages remain.

S2S1

C1
C0

N1 N2
N3

C2
C3

400

550

450

S3

FIGURE 61.2 Optimal solution when one stage remains.
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S2

C3

N3
N2N1

450

550
750

650

600

C2C1
C0

400

S1
S3

FIGURE 61.3 Making a decision in city N1.

Suppose the bicyclist is in N1. If she goes north, she will reach N2 after cycling 600 kms. Moreover from
N2, she will have to travel a further 450 kms to reach the East Coast, as seen from Figure 61.2. From N1,
if she goes north, she will therefore have to travel a total of 1050 kms to reach the East Coast.

If instead she goes to the center from N1, then she will have to travel 650 kms to reach C2, and from
C2 she will have to travel a further 550 kms to reach the East Coast. Thus, she will have to travel a total of
1200 kms to reach the East Coast.

The only remaining choice from N1 is to go south. Then she will travel 750 kms to reach S2, and from
there she has a further 400 kms to reach the East Coast. Thus, she will have to travel 1150 kms to reach
the East Coast.

The consequences of each of these three choices are shown in Figure 61.3. Thus the optimal decision
from N1 is to go north and travel to N2. Moreover, the shortest distance from N1 to the East Coast is
1050 kms.

Similarly, we determine the optimal paths from C1 and S1, also, as well as the shortest distances from
them to the East Coast. The optimal solution, when two stages remain, is shown in Figure 61.4.

Now we determine the optimal decision when there are three stages remaining.

N1

1000

900

C1
C0

S1

N2
N3

C3

S3

1050 450

C2

S2

550

400

FIGURE 61.4 Optimal solution when two stages remain.
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The bicyclist is in C0. If she goes north, she travels 600 kms to reach N1, and then a further 1050 kms is
the minimum needed to reach the East Coast. Thus the total distance she will have to travel is 1650 kms.
Similarly, if she goes to the center, she will travel a total distance of 1450 kms. On the other hand, if she
goes south, she will travel a total distance of 1400 kms to reach the East Coast. Thus the best choice from
C0 is to travel south to S1, and the shortest distance from C0 to the East Coast is 1400 kms. This final
result is shown in Figure 61.5.

61.1.3 Observations on the Dynamic Programming Method

We observe a number of important properties.

1. In order to solve the shortest path from just one city C0 to the East Coast, we actually solved the
shortest path from all of the cities C0, N1, C1, S1, N2, C2, S2 to the East Coast.

2. Hence, dynamic programming can be computationally intractable if there are many stages and
many possible decisions at each stage.

3. Dynamic programming determines the optimal decision as a function of the state and the number
of stages remaining. Thus, it gives an optimal closed-loop control policy.

4. Dynamic programming proceeds backward in time. After determining the optimal solution when
there are s stages remaining, it determines the optimal solution when there are (s+ 1) stages
remaining.

5. Fundamental use is made of the following relationship in obtaining the backward recursion:

Optimal distance from state x to the end

= min
i

⎧⎨
⎩

Distance travelled on current stage when decision di is made + optimal
distance from the state x′ to the end, where x′ is the state to which decision
di takes you from state x

⎫⎬
⎭

Hence, if one passes through state x′ from x, an optimal continuation is to take the shortest path
from state x′ to the end. This can be summarized by saying “segments of optimal paths are optimal
in themselves.” This is called the Principle of Optimality.

N1

1050

1400 1000

900

550

400

C0 C1

S1

C2

S2

C3

S3

N2 N3
450

FIGURE 61.5 Optimal solution when three stages remain.
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61.2 Deterministic Systems with a Finite Horizon

We can generalize the solution method to deterministic, time-varying control systems. Consider a system
whose state at time t is denoted by x(t) ∈ X . If a control input u(t) ∈ U is chosen at time t, then the next
state x(t+ 1) is determined as,

x(t+ 1)= f (x(t), u(t), t).

The system starts in some state x(t0)= x0 at time t0. For simplicity, suppose that there are only a finite
number of possible control actions, i.e., U is finite.

The cost incurred by the choice of control input u(t) at time t is c(x(t), u(t)). We have a finite time
horizon T . The goal is to determine the controls to minimize the cost function,

T−1∑
t=t0

c(x(t), u(t), t)+ d(x(T)). (61.1)

Theorem 61.1: Deterministic System, Finite horizon, Finite Control Set

Define

V (x, T) := d(x), and (61.2)

V (x, t− 1) :=min
u∈U

{
c(x, u, t− 1)+V (f (x, u, t− 1), t)

}
. (61.3)

Let u∗(x, t− 1) be a value of u which minimizes the right-hand side (RHS) above. Then,

1. V (x, t)=minu(·)
∑T−1

n=t c[x(n), u(n), n]+ d[x(T)], when x(t)= x, that is, it is the optimal cost–to–go
from state x at time t to the end.

2. u∗(x, t) is an optimal control when one is in state x at time t.

Proof 61.1. Define V (x, t) as the optimal cost–to–go from state x at time t to the end. V (x, T)= d(x),
because there is no decision to make when one is at the end. Now we obtain the backward recursion of
dynamic programming. Suppose we are in state x at time t− 1. If we apply control input u, we will incur
an immediate cost c(x, u, t− 1), and move to the state f (x, u, t− 1), from which the optimal cost–to–go
is V (f (x, u, t− 1), t). Because some action u has to be taken at time t− 1,

V (x, t− 1)≤min
u∈U

{
c(x, u, t− 1)+V (f (x, u, t− 1), t)

}
.

Moreover, if V (x, t− 1) was strictly smaller than the RHS above, then one would obtain a contradiction
to the minimality of V (·, t). Hence equality holds, and Equation 61.3 is satisfied.

By evaluating the cost of the control policy given by u∗(x, t), one can verify that it gives the minimal
cost V (x0, t0).

We have proven the Principle of Optimality. We have also proven that, for the cost criterion Equa-
tion 61.1, there is an optimal control policy that takes actions based only on the value of current state and
current time and does not depend on past states or actions. Such a control policy is called a Markovian
policy.



�

�

�

�

� �

61-6 Control System Advanced Methods

61.2.1 Infinite Control Set U
When the control set U is infinite, the RHS in Equation 61.3 may not have a minimizing u. Thus the
recursion requires an “inf ” in place of the “min.” There may be no optimal control law, only nearly
optimal ones.

61.2.2 Continuous-Time Systems

Suppose one has a continuous-time system

ẋ(t)= f (x(t), u(t), t), (61.4)

and the cost criterion is

d(x(T))+
∫ T

t0

c(x(t), u(t), t) dt.

Several technical issues arise. The differential Equation 61.4 may not have a solution for a given u(t), or
it may have a solution but only until some finite time. Ignoring such problems, we examine what type
of equations replace the discrete–time recursions. Clearly, V (x, T)= d(x). Considering a control input u
which is held constant over an interval [t, t+Δ), and approximating the resulting state (all possible only
under more assumptions),

V (x, t)= inf
u∈U

{
c(x, u, t)Δ+V (x+ f (x, u, t)Δ, t+Δ)+ o(Δ)

}
,

= inf
u∈U

{
c(x, u, t)Δ+V (x, t)+ ∂V

∂x
(x, t)f (x, u, t)Δ+ ∂V

∂t
(x, t)Δ+ o(Δ)

}
.

Thus, one looks for the partial differential equation

∂V

∂t
(x, t)+ inf

u∈U

{
∂V

∂x
(x, t)f (x, u, t)+ c(x, u, t)

}
= 0, (61.5)

to be satisfied by the optimal cost–to–go. This is called the Hamilton–Jacobi–Bellman equation. To prove
that the optimal cost–to–go satisfies such an equation requires many technical assumptions.

However, if a smooth V exists that satisfies such an equation, then it is a lower bound on the cost, at
least for Markovian control laws. To see this, consider any control law u(x, t), and let x(t) be the trajectory
resulting from an initial condition x(t0)= x0 at time t0. Then,

∂V

∂t
(x(t), t)+ ∂V

∂x
(x(t), t)f (x(t), u(x(t), t), t)+ c(x(t), u(x(t), t)≥ 0. (61.6)

Hence d
dt [V (x(t), t)]+ c(x(t), u(x(t), t), t)≥ 0, and so,

V (x(t0), t0)≤ V (x(T), T)+
∫ T

t0

c(x(t), u(t), t) dt

= d(x(T))+
∫ T

t0

c(x(t), u(t), t) dt.

Moreover, if u∗(x, t) is a control policy which attains the “inf ” in Equation 61.5, then it attains equality
above and is, hence, optimal.

In many problems, the optimal cost–to–go V (x, t) may not be sufficiently smooth, and one resorts to
the Pontryagin Minimum Principle rather than the HJB Equation 61.5.
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61.3 Stochastic Systems

Consider the simplest case where time is discrete, and both the state-space X and the control set U are
finite. Suppose that the system is time invariant and evolves probabilistically as a controlled Markov chain,
i.e.,

Prob[x(t+ 1)= j|x(t)= i, u(t)= u] = pij(u). (61.7)

The elements of the matrix P(u)= [pij(u)] are the transition probabilities.
Given a starting state x(t0)= x0 at time t0, one wishes to minimize the expected cost

E

[
T−1∑
t=t0

c(x(t), u(t), t)+ d(x(T))

]
.

A nonanticipative control policy γ is a mapping from past information to control inputs, i.e., γ=
(γt0 , γt0+1, . . . , γT−1) where γt : (x(t0), u(t0), x(t0+ 1), u(t0+ 1), . . . , x(t)) �→ u(t). Define the condition-
ally expected cost–to–go when policy γ is applied, as

Vγt := E

[
T−1∑
n=t

c(x(n), u(n), n)+ d(x(T))‖x(t0), u(t0), . . . , x(t)

]
.

Analogously to the deterministic case, set Equation 61.2, and recursively define

V (x, t− 1)=min
u∈U

{
c(x, u, t− 1)+

∑
j

pxj(u)V ( j, t)

}
. (61.8)

Now let us compare Vγt with V (x(t), t) when policy γ is used. Clearly VγT = V (x(T), T)= d(x(T)) a.s.
Now suppose, by induction, that Vγt ≥ V (x(t), t) a.s. Then

Vγt−1 = c(x(t− 1), u(t− 1), t− 1)+E

{
T∑

n=t

c[x(n), u(n), n)+ d(x(T)]|x(t0), u(t0), . . . , x(t− 1)

}

= c(x(t− 1), u(t− 1), t− 1)+E

{
E

[
T∑

n=t

c[x(n), u(n), n)+ d(x(T)]|x(t0), u(t0), . . . , x(t)

]

x(t0), u(t0), . . . , x(t− 1)

}

= c(x(t− 1), u(t− 1), t− 1)+E
[
Vγt |x(t0), u(t0), . . . , x(t− 1)

]
≥ c(x(t− 1), u(t− 1), t− 1)+E [V (x(t), t)|x(t0), u(t0), . . . , x(t− 1)]

= c(x(t− 1), u(t− 1), t− 1)+
∑

j

px(t−1)j[u(t− 1)]V ( j, t)

≥min
u∈U

⎧⎨
⎩c(x(t− 1), u, t− 1)+

∑
j

px(t−1)j(u)V ( j, t)

⎫⎬
⎭

= V (x(t), t) a.s.

(61.9)

Thus V (x, t) is a lower bound on the expected cost of any non anticipative control policy. Suppose,
moreover, that u∗(x, t) attains the minimum on the RHS of Equation 61.8 above. Consider the Markovian
control policy γ∗ = (γ∗t0

, γ∗t1
, . . . , γ∗T−1) with

γ∗t [x(t0), u(t0), . . . , x(t)] = u∗[x(t), t]. (61.10)

For γ∗ it is easy to verify that the inequalities in Equation 61.9 are equalities, and so it is optimal.
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Theorem 61.2: Stochastic Finite State, Finite Control System, Finite Horizon

Recursively define V (x, t) from Equations 61.2 and 61.8. Let u∗(x, t− 1) attain the minimum on the RHS
of Equation 61.8, and consider the Markovian control policy γ∗ defined in Equation 61.10. Then,

i. V (x0, t0) is the optimal cost.
ii. The Markovian control policy γ∗ is optimal over the class of all nonanticipative control policies.

61.3.1 Countably Infinite State and Control Spaces

The result (i) can be extended to countably infinite state and control policies by replacing the “min” above
with an “inf ”. However, the “inf ” need not be attained, and an optimal control policy may not exist.

If one considers uncountably infinite state and control spaces, then further highly technical issues
arise. A policy needs to be a measurable map. Moreover, V (x, t) will also need to be a measurable function
because one must take its expected value. One must impose appropriate conditions to insure that the
“inf” over an uncountable set still gives an appropriately measurable function, and further that one can
synthesize a minimizing u(x, t) that is measurable.

61.3.2 Stochastic Differential Systems

Consider a system described by a stochastic differential equation,

dx(t)= f (x(t), u(t), t) dt+ dw(t),

where w is a standard Brownian motion, with a cost criterion

E{d[x(T)]+
∫ T

t0

c[x(t), u(t), t]}.

If V (x, t) denotes the optimal cost–to–go from a starting state x when there are t time units remaining,
one expects from Ito’s differentiation rule that it satisfies the stochastic version of the Hamilton-Jacobi-
Bellman equation:

∂V (x, t)

∂t
+ 1

2

∂2V

∂x2 (x, t)+ inf
u∈U

{
∂V

∂x
(x, t)f (x, u, t)+ c(x, u, t)

}
= 0.

The existence of a solution to such partial differential equations is studied using the notion of viscosity
solutions.

61.4 Infinite Horizon Stochastic Systems

We will consider finite state, finite control, controlled Markov chains, as in Equation 61.7. We study the
infinite horizon case.

61.4.1 The Discounted Cost Problem

Consider an infinite horizon total discounted cost of the form

E
+∞∑
t=0

βt c(x(t), u(t)), (61.11)

where 0 < β< 1 is a discount factor. The discounting guarantees that the summation is finite. We are
assuming that the one-stage cost function c does not change with time. Let W(x,∞) denote the optimal
value of this cost, starting in state x. The “∞” denotes that there is an infinity of stages remaining.
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Let W(x, N) denote the optimal value of the finite horizon cost E
∑N−1

t=0 β
t c[x(t), u(t)], when starting

in state x at time 0. Note that the index N refers to the number of remaining stages. From the finite
horizon case, we see that

W(x, N)=min
u∈U

{
c(x, u)+

∑
j

pxj(u)βW( j, N − 1)

}
. (61.12)

Note the presence of the factor βmultiplying W( j, N − 1) above.
Denote by RX the class of all real valued functions of the state, i.e., V ∈ RX is a function of the form

V : X → R. Define an operator T : RX → RX by its action on V as

TV (x) :=min
u∈U

{
c(x, u)+ β

∑
j

pxj(u)V ( j)

}
for all x ∈ X . (61.13)

Using the operator T , one can rewrite Equation 61.12 as W(·, N)= TW(·, N − 1). Also, W(·, 0)= O,
where O is the identically zero function, i.e., O(x)≡ 0 for all x. Note that T is a monotone operator, i.e.,
if V (x)≤ V̄ (x) for all x, then TV (x)≤ TV̄ (x) for all x. Let us suppose now that c̄ ≥ c(x, u)≥ 0 for all x,
u. (This can be achieved by simply adding a large enough constant to each original one-step cost.) Due
to this assumption, TO ≥ 0. Hence by monotonicity, T (N)O ≥ T (N−1)O ≥ · · · ≥ TO ≥ 0. Thus T (N)O(x)
converges, for every x, to a finite number

(
since T (N)O ≤ c̄

1−β
)
. Let

W(x) := lim
N→∞T (N)O(x).

Now W(x,∞)≥W(x, N) for all N , because c(x, u)≥ 0. Hence W(x,∞)≥ limN→∞ W(x, N)=W(x).

Moreover W(x,∞)≤W(x, N)+ c̄βN

1−β , because one can employ an optimal policy for an N-stage problem.

Thus W(x,∞)≤ limN→∞
[

W(x, N)+ c̄βN

1−β
]
=W(x). Hence W(x)=W(x,∞), and is, therefore, the

optimal infinite horizon cost.
Hence, we would like to characterize W(x). Since T is continuous, TW(x)= limN→∞ TN+1O(x)=

W(x). Hence W is a fixed point of T , i.e.,

W(x)=min
u∈U

{
c(x, u)+ β

∑
j

pxj(u)W( j)

}
. (61.14)

Simple calculations show that T is a contraction with respect to the ‖ · ‖∞ norm, i.e., maxx |TV (x)−
TV̄ (x)| ≤ βmaxx |V (x)− V̄ (x)|. Thus T has a unique fixed point. Since T is a contraction, we also know
that limN→∞ T (N)V =W for any V .

Suppose now that u∗(x) attains the minimum in Equation 61.14 above. Consider the policy γ∗ which
always chooses control u∗(x) whenever the state is x. Such a control policy is called stationary. If one
applies the stationary control policy γ∗, then the expected cost over N days, starting in state x, is T (N)O(x).
Thus the infinite horizon cost of γ∗ is limN→∞ TN O =W .

Theorem 61.3: Stochastic Finite State, Finite Control System, Discounted Cost
Criterion

Let T : RX → RX denote the operator (Equation 61.13).

1. T is a contraction.
2. Let W = limN→∞ T (N)V for any V. Then W is the unique solution of Equation 61.14.
3. W(x) is the optimal cost when starting in state x.
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4. Let γ∗(x) be the value of u which attains the minimum on the RHS in Equation 61.14. Then γ∗ is a
stationary control policy which is optimal in the class of all nonanticipative policies.

The procedure for determining W(x) as limN→∞ T (N)O is called value iteration. Another procedure
which determines the optimal policy in a finite number of steps is policy iteration.

61.4.1.1 Policy Iteration Procedure

For a stationary policy γ, define Tγ : RX → RX by, TγV (x)= c(x, γ(x))+ β∑j pxj(γ(x))V ( j).

1. Let γ0 be any stationary policy.
2. Solve the linear system of equations Tγ0 Wγ0 =Wγ0 to determine its cost Wγ0 .

3. If TWγ0 �=Wγ0 , then let γ1(x) be the value of u which attains the minimum in minu∈U

{
c(x, u)+

β
∑

j pxj(u)Wγ0 ( j)

}
.

4. Then γ1 is a strict improvement of γ0 (since Wγ1 = limN→∞ T (N)
γ1 Wγ0

<
�=Wγ0 ).

5. By repeating this procedure, one obtains a sequence of strictly improving policies, that must
terminate in a finite number of steps, because the total number of stationary policies is finite.

61.4.2 The Average Cost Problem

We consider the average cost per unit time over an infinite horizon,

lim sup
N→∞

1

N
E

N−1∑
t=0

c[x(t), u(t)].

Then the dynamic programming equation needs to be modified slightly.

Theorem 61.4:

Suppose a constant J∗ exists, and a function V : X → R exists so that

J∗ +V (x)=min
u∈U

{
c(x, u)+

∑
j

pxj(u)V ( j)

}
. (61.15)

1. Then J∗ is the optimal value of the average cost criterion, starting from any state x.
2. Let γ∗(x) be a value of u which minimizes the RHS in Equation 61.15 above. Then γ∗ is a stationary

policy which is optimal in the class of all nonanticipative policies.

Proof 61.2. Consider any nonanticipative policy. Then

J∗ +V (x(t))≤ c(x(t), u(t))+
∑

j

px(t)j(u(t))V ( j).

Noting that E
∑

j px(t)j(u(t))V ( j)= E{V (x(t+ 1))}, we see that

E(c(x(t), u(t))≥ J∗ +E(V (x(t))−E{V (x(t+ 1))}.
Hence

lim sup
N→∞

1

N
E

N−1∑
t=0

c(x(t), u(t))≥ J∗ + lim sup
N

V (x(0))−E{V (x(N))}
N

= J∗.



�

�

�

�

� �

Dynamic Programming 61-11

Thus J∗ is a lower bound on the average cost, starting from any state x. Moreover, if γ∗ is the policy under
consideration, then equality holds above, and so it is indeed optimal.

The question, still a topic of active research, is when does a solution [J∗, V (·)] exist for Equation 61.15?
Let us consider the following simplifying assumption. For every stationary policy γ, the Markov chain
Pγ = [pij(γ(i))] is irreducible. By this is meant that there exists a unique steady state distribution πγ,
satisfying πγPγ = πγ, πγ(i)≥ 0,

∑
i πγ(i)= 1, which is strictly positive, i.e., πγ(i) > 0 for all i. Then

the average cost Jγ starting from any state is a constant and satisfies, Jγ =∑i πγ(i)c[i, γ(i)] = πγcγ (where
cγ := [cγ(1), . . . , cγ(1x)]). Hence if e = (1, . . . , 1)T , πγ(Jγe− cγ)= 0. Hence (Jγe− cγ) is orthogonal to
the null space of (Pγ− I)T , and is, therefore, in the range space of (Pγ− I). Thus a Vγ exists so that
Jγe− cγ = (Pγ− I)Vγ, which simply means that

Jγ+Vγ(x)= c[x, γ(x)]+
∑

j

pxj[γ(x)]Vγ( j). (61.16)

Note that Vγ(·) is not unique because Vγ(·)+ a is also a solution for any a. Let us therefore fix Vγ(x̄)= 0
for some x̄. One can obtain a policy iteration algorithm, as well as prove the existence of J∗ and V (·), as
shown below.

61.4.2.1 Policy Iteration Procedure

1. Let γ0 be any stationary policy.
2. Solve Equation 61.16, with γ replaced by γ0, to obtain (Jγ0 , Vγ0 ). If (Jγ0 , Vγ0 ) does not satisfy

Equation 61.15, then let γ1(x) attain the minimum in minu∈U

{
c(x, u)+∑j pxj(u)Vγ0 (x)

}
.

Then γ1 is a strict improvement of γ0. (This follows because πγ1 (i) > 0 for all i, and so

Jγ0 +πγ1 Vγ0 = πγ1 (Jγ0 e+Vγ0 ) > πγ1 cγ1 +πγ1 Pγ1 Vγ0

= Jγ1 +πγ1 Vγ0 , and so Jγ0 > Jγ1 ).

Because the policy space is finite, this procedure terminates in a finite number of steps. At termination,
Equation 61.15 is satisfied.

61.4.3 Connections of Average Cost Problem with Discounted Cost Problems
and Recurrence Conditions

The average cost problem can be regarded as a limit of discounted cost problems when β↗ 1. We illustrate
this for systems with countable state space and finite control set.

Theorem 61.5: Connection between Discounted and Average Cost

Let Wβ(x) denote the optimal discounted cost E
∑+∞

t=0 β
t c(x(t), u(t)) when starting in the state x. Suppose

that |Wβ(x)−Wβ(x′)| ≤M all x, x′, and all β ∈ (1− ε, 1), for some ε> 0. For an arbitrary state x̄ ∈ X , let
βn ↗ 1 be a sub-sequence so that the following limits exist:

lim
n→∞(1− βn)Wβn (x)=: J∗, and lim

n→∞(Wβn (x)−Wβn (x̄))=: V (x).

Then,

1. J∗ +V (x)=minu∈U

{
c(x, u)+∑j pxj( j)V ( j)

}
.
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2. If a stationary policy γ∗ is optimal for a sequence of discount factors βn with βn ↗ 1, then γ∗ is
optimal for the average cost problem.

Proof 61.3. The dynamic programming Equation 61.14 for the discounted cost problem can be rewritten
as,

(1− β)Wβ(x)=min
u∈U

{
c(x, u)+ β

∑
j

pxj[Wβ( j)−Wβ(x)]
}

.

Taking limits along βn ↗ 1 yields the results.

The existence of (J∗, V (·)) satisfying the average cost dynamic programming Equation 61.15 is guar-
anteed under certain uniform recurrence conditions on the controlled Markov chain.

Theorem 61.6: Uniformly Bounded Mean First Passage Times

Let τ denote the first time after time 1 that the system enters some fixed state x̄, i.e.,

τ=min

{
t ≥ 1 : x(t)= x̄

}
.

Suppose that the mean first passage times are uniformly bounded, i.e.,

E(τ | x(0)= x and γis used)≤M <+∞,

for all states x and all stationary policies γ. Then a solution (J∗, V (·)) exists to Equation 61.15.

Proof 61.4. Under a stationary policy γβ which is optimal for the discount factor β,

Wβ(x)= E

[
τ−1∑
t=0

βt c(x(t), u(t))+ βτWβ(x̄) | x(0)= x

]

≤ c̄E[τ | x(0)= x]+Wβ(x̄)≤ c̄M+Wβ(x̄).

Moreover, by Jensen’s inequality,

Wβ(x)≥ E[βτWβ(x̄) | x(0)= x]
=Wβ(x̄)E[βτ | x(0)= x] ≥Wβ(x̄)βM .

Hence, −c̄M ≤ c̄(βM−1)
1−β ≤Wβ(x̄)(βM − 1)≤Wβ(x)−Wβ(x̄)≤ c̄M, and the result follows from the pre-

ceding Theorem.

61.4.4 Total Undiscounted Cost Criterion

Consider a total infinite horizon cost criterion of the form

E
+∞∑
t=0

c[x(t), u(t)].

In order for the infinite summation to exist, one often assumes that either

c(x, u)≥ 0 for all x, u (the positive cost case), or

c(x, u)≤ 0 for all x, u (the negative cost case).

These two cases are rather different. In both cases, one exploits the monotonicity of the operator T .
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Further Reading

For discounted dynamic programming, the classic reference is Blackwell [1]. For the positive cost case,
we refer the reader to Strauch [2]. For the negative cost case, we refer the reader to Blackwell [3,4] and
Ornstein [5]. For the average cost case, we refer the reader to Blackwell [6] for early fundamental work,
and to Hernandez-Lerma and Lasserre [7] and the references contained there for recent developments.
For a study of the measurability issues which arise when considering uncountable sets, we refer the reader
to Bertsekas and Shreve [8]. For continuous time stochastic control of diffusions we refer the reader to
Lions [9], and to Crandall, Ishii and Lions [10] for a guide to viscosity solutions.

For the several ways in which dynamic programming can be employed, see Bellman [11].
Some recent textbooks which cover dynamic programming are Bertsekas [12], Kumar and Varaiya [13],

and Ross [14].
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62.1 Introduction to Approximate Dynamic Programming

62.1.1 Approximate Dynamic Programming in Relation
to Modern Control Approaches

The regular approach to control system design is a two-step procedure as follows:

1. Use modeling and/or identification techniques, of the sort presented in this handbook, to deter-
mine a most accurate mathematical description of the system.

62-1
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2. Employ a controller design method to determine, based on the identified model, a control strategy
such that the prescribed performances are obtained.

This approach at deriving control strategies is successful under the assumption that the system
dynamics can be modeled and are not changing over time. Optimal controllers fall in this category as
they are generally determined considering a fixed given model of the system. The goal of an optimal
control strategy is the minimization of a cost index, which reflects the amount of energy used for control
purposes and the distance between the present and desired performance of the controlled system. Though
they have good robustness properties relative to possible changes in the system dynamics, optimal con-
trollers are neither adaptive nor are they determined considering possible unmodeled dynamics. From
this perspective one can generally say that an optimal controller is just as close to optimality as the model
of the system, used during the design phase, is close to the real plant to be controlled.

The class of adaptive controllers has been developed to confront the variations that occur in the system
dynamics. In this case adaptation algorithms modify the structure and/or parametric description of the
controller such that the performances prescribed for the control system are closely satisfied in the presence
of variations in the system dynamics. Regular adaptive control methods are not optimal in the sense of
minimizing a cost functional of the sort considered by optimal control.

To confront optimality requirements in the presence of unknown or uncertain system dynamics a
new class of control strategies has been introduced. approximate dynamic programming (ADP), [24],
also addressed as adaptive dynamic programming, [13], or neuro dynamic programming, [7], is a hybrid
approach to online adaptive optimal control. It combines elements of adaptive control with modeling and
identification techniques for the purpose of obtaining, in an online fashion, optimal control strategies,
with respect to a measurable cost index, for general systems.

The objective of this chapter is twofold:

• To motivate the ADP approach to controller design in the context of other control approaches, and
introduce the main ingredients of ADP algorithms.

• To overview the main results and provide practical ideas for the implementation of ADP algorithms
in a comparative approach relative to known optimal control results.

62.1.2 Reinforcement Learning

ADP methods have their roots in the Reinforcement Learning (RL) approach to optimization. RL refers
to the capability of an active agent, able to interact with its environment, to modify its behavior (i.e., learn
and adapt), based on measurable reward or punishment stimuli form the environment. Such stimuli
reflect the distance between the performances associated with the present behavior strategy, relative to a
desired performance index. This approach to learning is constructed on the idea that successful actions
should be remembered, based on reinforcement information, such that they are more likely to be used a
second time.

These methods were introduced in the computational intelligence community with the purpose of
providing means of improvement for the behavior of an agent, which acts in an unknown and hostile
environment. The idea originates from experimental animal learning where it has been observed that the
dopamine neurotransmitter in the basal ganglia acts as a reinforcement signal, which favors learning at
the level of the neuron, while encoding information on the difference between the actual and expected
result of a performed action.

ADP algorithms were mostly developed and successfully implemented in the framework of Markov
decision processes (MDP), which are of interest for the computational intelligence community. In the
MDP formulation the spaces of states of the environment and actions of the agent are discrete and
finite. Also, the transitions between different states, conditioned by a choice of an action, are performed
according to a probability distribution at discrete moments in time. In control engineering the interest
shifts toward developing controllers for man-engineered systems, which evolve in continuous state and
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action spaces in a deterministic fashion. Such systems will be the object of the ADP methods presented
in this chapter.

In the remaining part of this section we will present the main components of ADP methods in a
comparative (side-by-side) treatise for discrete-time and continuous-time systems. Discussions that refer
to discrete-time or continuous-time formulations are indicated by “DT” and “CT” at the beginning of
the paragraphs. Sections 62.2 and 62.3 will outline several ADP methods while giving practical imple-
mentation ideas. In Section 62.2 of this chapter we will focus our attention on ADP for discrete-time
systems, as the implementation tools for discrete-time state-feedback controllers are more at hand in
control engineering practice. We will then shift the focus, in Section 62.3, on the ADP methods devel-
oped in a continuous-time framework. Further reading suggestions are included, after the bibliographical
references, for those interested in this new and fast-growing research area.

62.1.3 System/Environment and Control/Behavior Policy

Most ADP algorithms were developed while considering affine in the inputs systems, which unfold their
dynamics in discrete-time. Such systems are described by the set of state-space difference equations

xk+1 = f (xk)+ g(xk)uk (62.1)

where k denotes the discrete-time index, xk ∈ R
n and uk ∈ R

m, and f (.), g(.) are nonlinear functions.
For systems that have a continuous-time evolution of the state vector, the description is given in terms

of a set of ordinary differential equations

ẋ = f (x)+ g(x)u (62.2)

where f (.), g(.) are nonlinear functions, x ∈ R
n and u ∈ R

m.
The goal of the ADP methods will be one of calculating optimal state-feedback controllers that map

the state space in the action space, h : Rn → R
m, and have the form

uk = h(xk) (62.3)

and respectively
u= h(x). (62.4)

A state-feedback control function will be addressed as a control policy. Given the control policy in
Equation 62.3, the solution of the differential equation 62.1, considering initial conditions x0 at time
k = 0, will be denoted by ϕh

k = ϕ(k; x0, h(.)). Similarly, the solution of Equation 62.2 with control policy
(Equation 62.4) will be ϕh(t)= ϕ(t; x0, h(.)).

In order to have a well-posed problem, that is, a optimal control problem which admits a stabilizing
control solution, we assume the system is stabilizable on some set Ω ∈ Rn that includes the equilibrium
origin. Thus, we assume that there exists a control policy of the form (Equation 62.3 or 62.4), such that
the closed-loop system xk+1 = f (xk)+ g(xk)h(xk) or ẋ = f (x)+ g(x)h(x) for the continuous-time case, is
asymptotically stable onΩ.

Generally, for a given system, a state-feedback control policy can be determined using various methods
of design presented in this handbook. In line with the RL approach to control, where the control policy
is learned in real time based on stimuli from the environment, the goal of the ADP methods of design
presented in this chapter is to determine optimal state-feedback policies based on online measured
performance information.

Model Free Feature of RL Algorithms Desired for ADP Methods
In RL the agent learns the control policy, based on reinforcement stimuli, and makes use of this mapping to
determine and perform the control actions, relative to each location in the state space of the environment,
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such that the highest amount of reward is achieved over time. Everything outside the agent is considered
to be part of the unknown environment. For this reason in standard RL algorithms an explicit model of
the system is never required. This is an attractive feature of RL algorithms and is desired to be maintained
by the ADP algorithms developed in the control systems community. By considering the system that
has to be controlled as being part of the unknown environment, such ADP algorithms would be model-
independent approaches to optimal control solutions.

In general the ADP methods will be developed considering a model of the system. This is desired for
theoretical analysis in order to provide proofs of stability and performance. Nonetheless, as we shall see
in the next sections, for the implementation of the ADP algorithms this requirement can be removed in
some cases, the result being a model-free or partially model-free adaptive controller.

62.1.4 Control System Performance and Bellman’s Optimality Principle

62.1.4.1 Cost/Value Function

The notion of optimal performance of a certain control system is captured by defining a performance
measure of the sort used for optimal control purposes.

DT

In a discrete-time framework the cost function is defined as

Vh(xk)=
∞∑

i=k

γi−kr(xi , ui) (62.5)

where uk = h(xk) is a feedback control policy, r(xk , uk) is a function which quantizes the one-step rein-
forcement received from the environment and γ, which satisfies 0 < γ ≤ 1, is a discount factor. This cost
function is also known as the cost-to-go and is a sum of discounted future reinforcement values r(xk , uk)
from the current time k into the infinite horizon future. The discount factor reflects the fact that reinforce-
ment values, further into the future, are less important than immediate reinforcements. For simplicity of
the derivation we will consider in the following that the discount factor is γ= 1.

The reinforcement function r(xk , uk) is also known as the utility, and is a measure of the one-step cost
of the control policy. A standard form for the reinforcement function is the quadratic energy function
r(xk , uk)= xT

k Qxk + uT
k Ruk , or the more general form

r(xk , uk)= Q(xk)+ uT
k Ruk . (62.6)

In Equation 62.6 the matrix valued function Q(x) is such that ∀x �= 0, Q(x) > 0 and x = 0⇒ Q(x)= 0,
and the matrix R is positive-definite such that the cost function (Equation 62.5) is well defined.

CT

In a continuous-time framework, the infinite horizon integral cost associated with the control policy
u= h(x) is

V h(x(t))=
∫ ∞

t
r(x(τ), u(τ))dτ (62.7)

where x(τ) denotes the solution of Equation 62.2 for initial condition x(t) and input {u(τ)= h(x(τ)); τ≥
t}. The instantaneous reinforcement function takes the form r(x, u)= Q(x)+ uT Ru, with conditions
Q(x) > 0, R > 0 and x = 0⇒ Q(x)= 0.

Admissible control policies are those maps h : Rn → R
m that guarantee stability properties for the

closed-loop system while resulting in finite value of the cost indices, Vh(xk), or respectively V h(x(t)),
which reflect the performance of the control system. We denote with Ψ(Ω) the set of all admissible
control policies defined on a setΩ⊂ R

n.
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We have to note here that in the cases in which the reinforcement function is interpreted as a reward
then the cost function is called value function and the objective is to maximize it. Though in this chapter
we will only discuss minimization problems, the extension to maximization problems is straightforward.
However, since the ADP methods originated in the computational intelligence community where maxi-
mization problems are generally solved, we choose to use the term of value function also in reference to the
cost function, which is to be minimized. In the following the two terms will be used interchangeably when
in fact referring to the cost function associated with the minimization problems, which are interesting
features of this chapter.

62.1.4.2 Optimal Control Objective and Hamiltonian Functions

DT

The objective of optimal controller design is to determine the policy that minimizes the cost (Equa-
tion 62.5), to obtain

V∗(xk)=min
h(.)

( ∞∑
i=k

r(xi , h(xi))

)
, (62.8)

which is the optimal cost. The optimal control policy is then

h∗(xk)= arg min
h(.)

( ∞∑
i=k

r(xi , h(xi))

)
. (62.9)

A difference equation equivalent to Equation 62.5 is given by

Vh(xk)= r(xk , h(xk))+Vh(xk+1), Vh(0)= 0. (62.10)

This equation is referred to as Bellman’s equation and is a consistency relation that provides the
interconnection between the one-step reward function and the cost function associated with a given
control policy at successive time steps. Bellman’s equation can be solved for the cost function associated
with any given admissible control policy, instead of evaluating the infinite sum given in Equation 62.5.
Writing this equation for linear systems with quadratic cost functions one obtains a Lyapunov equation.
Evaluating the value of a current policy using this equation is a key concept in developing RL techniques. We
shall show how to solve the Bellman equation on-line in real time using observed data from the system
trajectories.

The discrete-time Hamiltonian function can be defined as

H(xk , h(xk),ΔVk)= r(xk , h(xk))+Vh(xk+1)−Vh(xk) (62.11)

whereΔVk = Vh(xk+1)−Vh(xk) is the forward difference operator. The Hamiltonian function captures
the energy content along the trajectories of a system as reflected in the desired optimal performance. The
Hamiltonian function must be equal to zero for the value associated with a given control policy. We shall
see later how the discrete-time Hamiltonian, being related to the so called temporal difference (TD) error,
provides means for online solution for the value function associated with a certain control policy.

CT

In the continuous-time case the expressions of the optimal cost and optimal control policy are similar to
Equations 62.8 and 62.9 and follow directly when the sum operator is replaced by the integral. Similar to
Equation 62.10, in the continuous-time case one obtains the infinitesimal version of Equation 62.7

0= r(x, h(x))+ (∇V h)T ( f (x)+ g(x)h(x)), V h(0)= 0 (62.12)

where ∇V h (a column vector) denotes the gradient of the value function V h(x), as the value function
does not depend explicitly on time. Equation 62.12 is a Lyapunov equation for nonlinear systems which,
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given the controller h(x) ∈Ψ(Ω), can be solved for the value function V h(x) associated with it. Given that
h(x) is an admissible control policy, if Vμ(x) satisfies (Equation 62.12), with r(x, h(x))≥ 0, then Vμ(x) is
a Lyapunov function for the system (Equation 62.2) with control policy h(x).

The Hamiltonian function is defined as

H(x, h,∇V h)= r(x, h(x))+ (∇V h)T (f (x)+ g(x)h(x)) (62.13)

and must be equal to zero for the value associated with a given control policy. One can also show that,
for a given admissible control policy u= h(x), the equation H(x, h,∇V h)= 0 has the same cost function
solution as ∫ t+T

t
r(x, h(x))dτ+V h(x(t+T))−V h(x(t))= 0, V h(0)= 0, (62.14)

∀x(t) ∈Ω initial condition, and ∀T > 0, where x(t+T)= ϕh(t+T)= ϕ(t+T ; x(t), h(.)).

62.1.4.3 Bellman’s Optimality Principle

Bellman’s optimality principle [6], a cornerstone of optimal control, is the central idea of the dynamic
programming algorithm providing means for the calculation of sequences of optimal control actions (i.e.,
an optimal-action policy). The principle states that an optimal policy has the property that no matter
what the previous control decisions have been, the remaining decisions determined based on that policy
will be optimal relative to the state resulting from the previous decisions.

DT

Bellman’s optimality principle means that

V∗(xk)=min
h(.)

(
r(xk , h(xk))+V∗(xk+1)

)
. (62.15)

This equation is known as the Bellman optimality equation, or the discrete-time Hamilton–Jacobi–
Bellman (HJB) equation. The optimal policy is

h∗(xk)= arg min
h(.)

(
r(xk , h(xk))+V∗(xk+1)

)
. (62.16)

Since one must know the optimal policy at time k+ 1 to use Equation 62.15 to determine the optimal
policy at time k, Bellman’s optimality principle yields a backwards-in-time procedure for solving optimal
control problems (i.e., one has to start from the end-goal and work his way backwards through time to
determine the optimal control sequence that would provide the smallest cost over the entire time interval).
For this reason dynamic programming is by nature an off-line planning method that requires the full
knowledge of the system dynamics.

CT

For the continuous-time case the optimal cost function V∗(x) satisfies the continuous-time HJB equation

0= min
u∈Ψ(Ω)

[H(x, u,∇V∗)]. (62.17)

Assuming that the minimum on the right-hand side of Equation 62.17 exists and is unique, and the
reward function is given by r(x, u)= Q(x)+ uT Ru, then the infinite horizon optimal control solution for
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the given problem is

u∗(x)=−1

2
R−1gT (x)∇V∗. (62.18)

Inserting this optimal control policy in the Hamiltonian the continuous-time HJB equation takes the
form

0= Q(x)+ (∇V∗)T f (x)− 1

4
(∇V∗)T g(x)R−1gT (x)∇V∗; V∗(0)= 0. (62.19)

In order to find the optimal control solution for the problem one only needs to solve the HJB equation
62.19 for the value function and then substitute the solution in Equation 62.18 to obtain the optimal
control. Solving this nonlinear HJB equation is generally difficult and requires complete knowledge of
the system dynamics.

We shall see in the following how Bellman’s equation and optimality principle can be used in ADP
methods to solve the optimal control problem, both in continuous-time and discrete-time frameworks, in
an online fashion, based on data measured in real time from the system, in a forward-in-time procedure,
and, at times, without requiring knowledge on the dynamics of the system to be controlled.

62.1.5 ADP and Adaptive Critics

62.1.5.1 ADP

ADP names the class of RL algorithms that provide in an iterative manner an approximate solution of
optimal control problems. These methods consist in a series of iterations between the steps of policy
evaluation/value function update and policy update/improvement. Successful completion of the policy
evaluation step leads to starting the policy update step. We can say that a policy is an improved one in
comparison with another one, if it has a smaller associated cost. The iterations end when a policy update
step no longer leads to an improvement of the control policy. This means that the policy with the smallest
associated cost, that is, optimal control policy, has been found.

62.1.5.2 Adaptive Critics

The structural representation of ADP methods is given by the actor–critic interconnection [5,9,15],
presented in a general form in Figure 62.1. The actor structure plays the role of the controller, which
computes the control signal, according to the present control policy, based on the measurements that
define the present state of the environment/system. The critic structure has the purpose of evaluating
the performance of the present action policy. Based on the critic’s assessment on the value of the present
policy, various adaptation schemes can be used to modify the control strategy such that the actor’s new
policy will yield a value, which is an improvement over the previous one for the entire state space of
interest (i.e., the new value has to be smaller in the case when minimization of the cost is desired, or
higher for the case of maximization purposes).

It is in order here to discuss the concept behind the ADP methods in contrast with the classical
model-based adaptive optimal control mechanisms.

In the case of model based adaptive optimal controllers (or indirect adaptive optimal control)

• First an approximation structure, serving as a model of the system, is trained to approximate (i.e.,
learns using an identification procedure) the system dynamics.

• Then this model is used in combination with a controller design method to determine a control
policy such that the desired optimal performances of the closed-loop system are satisfied.

These two steps of system identification and optimal controller design can be iterated such that in
the case in which the system dynamics change, a new control policy can be determined such that the
desired closed-loop optimal performances can be maintained. One can immediately see that the controller
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FIGURE 62.1 Actor–critic structure for the implementation of approximate dynamic programming algorithms.

calculated in this manner brings the closed-loop system close to optimality in direct relation with the
differences between the approximate model of the system dynamics and the true dynamics of the plant.
Simply put, the controller is just as “optimal” as the model is “accurate.”

In the case of ADP algorithms the learning process is moved to a higher level, having no longer as
object of interest the details of a system’s dynamics but a performance index that quantifies how close to
optimality the closed-loop control system operates. From this perspective ADP methods or RL in general,
provide means of learning optimal behaviors (i.e., adaptation of the controller structure to provide an
optimal control policy) by observing the response from the environment to nonoptimal control policies.
ADP methods search for the admissible control policy which optimizes the measurable performance. In
this case the resulting controller is just as “optimal” as the representation of the cost is “accurate.”

62.1.6 Value Function and Q-Function

The value function associated with a given control policy has been defined and discussed in Section 62.1.4.
This is a functional which maps the state space of the system into the space of real numbers.

Value functions

• Provide the means of comparison between control policies (e.g., in the case of a minimization
problem, a policy is better than other if it has a smaller value function for all the states in the region
of interest in the state space).

• Are required for the calculation of the optimal control policy.

When solving the minimization in Equation 62.16 one sees that in order to calculate the optimal
control policy knowledge of the system dynamics is required for representation of xk+1. For this reason
such equation can not be used to solve the optimal control problem under a model-free condition. It was
thus of interest to determine a different function that encapsulates the information of the value while at
the same time can be minimized with respect to the control policy without maintaining the requirement
of known system dynamics in a similar fashion to the regular RL methods.

Since the value function is part of the Hamiltonian function, which is to be minimized when solving
for the optimal control policy, based on Equation 62.16 a so called Q-function was introduced [23], also
known as an action dependent value function [24]. As we shall see, the defined Q-function maps the space
of states and actions into the space of real numbers, and can be minimized with respect to the control
policy such that it directly provides the optimal controller without necessity of the system dynamics.
In effect the definition of the Q-function was the key for a completely model-free ADP algorithm, as
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promised by the RL methods, an algorithm formulated in the regular terms of a standard optimal control
problem.

DT

Starting from the difference Equation 62.10 the Q-function is defined as

Qh(xk , uk)= r(xk , uk)+Vh(xk+1) (62.20)

where xk+1 = f (xk)+ g(xk)uk and uk ∈ R
m. The Q-function represents the value associated with using

• The control input uk as one first-step in the control sequence followed by
• The control policy uk = h(xk) for all the future steps ∀i ≥ k+ 1.

The relation between the Q-function and the optimal value is given by

V∗(xk)=min
uk

Q∗(xk , uk) (62.21)

where

Q∗(xk , uk)= r(xk , uk)+V∗(xk+1). (62.22)

One can also write Equation 62.20 only in terms of the Q-function as

Qh(xk , uk)= r(xk , uk)+Qh(xk+1, h(xk+1)). (62.23)

Equation 62.23, written in terms of the Q-function, is equivalent to Equation 62.10 written in terms
of the value function. Thus, given a control policy uk = h(xk), Equation 62.23 can be solved for the
Q-function associated with it.

In terms of Q∗ the optimal control is
(

h∗(xk)= arg min
uk

(
Q∗(xk , uk)

))
. (62.24)

In the absence of control constraints, one obtains the optimal value by solving

∂

∂u
Q∗(xk , u)= 0. (62.25)

CT

The definition of a Q-function in a continuous-time framework is not straight-forward and will not
be discussed now. Different definitions were introduced from the perspective of the two equivalent
Equations 62.12 and 62.14 in [12,14].

62.1.7 Key Ingredients for Online Implementation of ADP Methods:
Value Function Approximation and TD Error

The key aspects of the online implementation of the ADP algorithms are related to the way in which the
value function is defined and the manner in which the critic structure learns to approximate the value
function. This requires answers to the following questions:

Q1: Which value function does the critic approximate?
A1: The options are

• Value function
• Action dependent value function (i.e., Q-function)
• Gradient of the value function or gradient of the Q-function.
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Q2: What is an appropriate parametric representation for the chosen value function?
A2: In [7,9,24,15] the critic function is represented as a neural network, which is known to have the

universal approximation property. In this chapter we will discuss the case in which the critic can
be represented as a linear combination of a set of basis functions, which spans the space of value
functions to be approximated.
To motivate this approach, let us determine the value function approximator for the familiar linear
quadratic regulation (LQR) problem in the discrete-time formulation. In LQR the value associated
with any admissible control policy uk =−Kxk is quadratic in the state (i.e., VK (xk)= xT

k Pxk with
P a positive-definite matrix). Using the Kronecker product notation, the value function can be
represented as

VK (xk)= xT
k Pxk = (vec(P))T (xk⊗ xk)≡ p̄T x̄k (62.26)

where ⊗ denotes the Kronecker product, vec(P)≡ p̄ is a column vector formed by stacking the
columns of the matrix P, and x̄k = xk⊗ xk is the quadratic polynomial vector containing all possible
products of the n components of xk . Noting that P is symmetric and has only n

(
n+ 1

)
/2 indepen-

dent elements, one can remove the redundant terms in xk⊗ xk to define a quadratic basis set x̄k

with n
(
n+ 1

)
/2 independent elements. The unknown parameter vector, which will adapt during

learning, is p̄ that contains the elements of matrix P.

Value Function Approximation
In the case in which the critic function takes a general nonlinear form, assuming that the value function
is sufficiently smooth, then, according to the Weierstrass higher-order approximation theorem, there
exists a dense basis set of functions {ϕi(x)} such that the value of any admissible control policy can be
represented as

Vh(x)=
∞∑

i=1

wiϕi(x)=
L∑

i=1

wiϕi(x)+
∞∑

i=L+1

wiϕi(x)≡WTφ(x)+ εL(x) (62.27)

with the basis vector φ(x)= [ϕ1(x) ϕ2(x) · · · ϕL(x)
] : Rn → RL such that WTφ(x) is positive-

definite over the set Ω, and where the error εL(x) converges uniformly to zero as L→∞. It is standard
usage to choose a polynomial basis set. Results have been shown for other basis sets including sigmoid,
hyperbolic tangent, Gaussian radial basis functions, and so on. such that the approximation error εL(x) is
bounded by a constant on the compact set Ω. One can obtain intuition on choosing the basis set for the
approximation of the value function knowing that they are positive-definite and they will play the role of
Lyapunov functions for the closed-loop system.

62.1.7.1 Q-Function or Action-Dependent Value Function Approximation

Similar to the value function approximation case, general Q-functions for nonlinear systems can have a
parametric representation in the form

Qh(x, u)=WTφ(z)+ εL(z) (62.28)

where zT = [xT uT ], φ(z) is a basis set of activation functions and W is the vector of parameters of the
Q-function, such that WTφ(x, u) is positive definite for all x ∈Ω considering all admissible control
policies u ∈Ψ(Ω).

Q3: What is the error function which has to be minimized?
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A3: The error function which is generally minimized during the Critic learning phase of an ADP algo-
rithm is the TD error defined as

ek = r(xk , h(xk))+Vh(xk+1)−Vh(xk). (62.29)

One sees that the right-hand side of this equation is the discrete-time Hamiltonian. Also, if Bellman’s
equation holds then the TD error is zero. Therefore, to find the value Vh(.) of a fixed control policy
uk = h(xk) one can solve the equation ek = 0, for all xk ∈Ω.

Q4: Which identification method is employed for determining online the parameters of the approximate
representation of the value function?

A4: To answer this question we consider the discrete-time and continuous-time cases separately.

DT

Considering the chosen parametric representation for the value function one can write the TD error
equation in the form

ek = r(xk , h(xk))+WT
h φ(xk+1)−WT

h φ(xk). (62.30)

a. Based on measurements of the states at successive moments in time xk , xk+1 and of the rewards
r(xk , h(xk)), taken from the system/environment while using the control policy uk = h(xk), one
can set up an online parameter identification procedure, of the sort described in this handbook,
to solve for the parameters Wh of the cost function associated with the given control policy such
that the TD error is minimized in the least-squares sense over the entire setΩ.
Solving on-line for the parameters of the value function is equivalent to obtaining on-line an
approximate solution of a nonlinear Lyapunov equation. The solution is obtained in this case
without using knowledge on the dynamics of the system, while only using data measured along
the state trajectories produced by the specified admissible control policy.

b. Another approach to the solution starts with the observation that Equation 62.10 is a fixed point
equation. The solution of this equation can then be reached by means of the contraction

V
j
h(xk)= r(xk , h(xk))+V

j−1
h (xk+1), (62.31)

starting with an initial guess V 0
h (.). As j→∞ then V

j
h(.)→ Vh(.) uniformly overΩ. Based on this,

in terms of the parametric approximation of the value function, the approximate solution of ek = 0
can be obtained by solving iteratively for the parameters Wj, for j ≥ 1, starting with an initial guess
W0. At each iteration step j, the error

ek(Wj)= r(xk , h(xk))+WT
j−1φ(xk+1)−WT

j φ(xk) (62.32)

has to be minimized in the least-squares sense while making use of online measured data.
The error ek(Wj) is called TD prediction error as it can be interpreted as an error between

• The new overall value represented as WT
j ϕ(xk).

• The predicted performance corrected by observation r(xk , h(xk))+WT
j−1ϕ(xk+1) obtained

in response to an action applied to the system.
The TD error expressed in terms of the Q-function approximation is

ek(W)= r(xk , h(xk))+WTφ(zk+1)−WTφ(zk). (62.33)

This equation can be solved online, in a similar fashion as described above, for the values of the
parameters of the Q-function.
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We now discuss a potential problem that appears when solving on-line for the parameters of the
Q-function, and then we provide the solution. To make the issue clear, let us take again, as example, the
familiar LQR case.

The reinforcement function has the form r(xk , uk)= xT
k Qdxk + uT

k Ruk . The Q-function associated with
a control policy uk = h(xk) is

Qh(xk , uk)= xT
k Qdxk + uT

k Ruk + xT
k+1Phxk+1 (62.34)

and inserting the system dynamics equation xk+1 = Axk +Buk one obtains

Qh(xk , uk)= xT
k Qdxk + uT

k Ruk + (Axk +Buk)T Ph(Axk +Buk) (62.35)

which can be arranged in the form

Qh(xk , uk)=
[

xk

uk

]T [
Qd +AT PhA AT PhB

BT PhA R+BT PhB

] [
xk

uk

]
(62.36)

Then the Q-function will be written as

Qh(xk , uk)= zT
k Hzk =

[
xk

uk

]T [
Hxx Hxu

Hux Huu

] [
xk

uk

]
(62.37)

where Hxx = Qd +AT PhA, Hxu = AT PhB, Hux = BT PhA and Huu = R+BT PhB.
In this case, when it comes to learning online the parameters of the Q-function based on measured

data from the system, one encounters a problem: Due to the fact that the control policy signal uk = Kxk

is a linear combination of the values of the state, the persistence of excitation condition required for the
regression vector ϕ(zk)−ϕ(zk+1) does no longer hold.

This problem is solved by adding persistently an exciting probing noise to the control inputs that were
calculated based on the state-feedback control policy [8]. In this case the control inputs that are sent to
the system during the online identification procedure of the Q-function are uk = Kxk + nk . In [1] it is
shown that this does not result in any bias in the Q-function estimates.

CT

The value function associated with the performance of a continuous-time state-feedback control policy
can be similarly determined using a parameter identification procedure. The only difference consists in
the fact that the one-step reinforcement signal r(xk , h(xk)), measured from the system in the discrete-time
case, is now replaced by the measurement of the integral term

∫ t+T
t r(x(τ), h(x(τ)))dτ.

The TD error is defined in this case as

e(x(t), T , h)=
∫ t+T

t
r(x, h(x))dτ+V h(x(t+T))−V h(x(t)). (62.38)

Q5: When is the value function identification procedure (i.e., policy evaluation step) finished, such that
the policy update step can be started?

A5: The value function identification procedure ends when the convergence of the critic parameters has
been obtained, in the sense that the predictions of the critic match closely, within some bounds that
depend on the selected model, number of parameters to be trained and measurement errors, the
measurements of the reinforcement received from the environment.

Q6: Is the online identification of the value function always possible?
A6: All ADP algorithms are developed on the assumption that correct estimation of the value function

is possible. This means that, in order to successfully apply the online learning algorithm, enough
excitation must be present in the system to guarantee correct estimation of the value function at
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each value update step. In relation to this, one must also note that if the policies obtained at the
policy update steps are admissible policies then they may not provide the necessary excitation for
the success of the value function learning phase. This is the well-known exploration/exploitation
dilemma [17], which characterizes adaptive controllers that have simultaneous conflicting goals
such as optimal control and fast and effective adaptation/learning. Solutions to this problem can be
imagined (e.g., adding persistently exciting components to the signals computer by the controller).

62.1.8 Policy Update

DT

Given the value function associated with an admissible control policy, say Vh(xk) is the value associated
with the policy uk = h(xk), then the update of the control policy is given by the equation

μ(xk)= arg min
ν(.)∈Ψ(Ω)

(
r(xk , ν(xk))+Vh(xk+1)

)
. (62.39)

The new resulting control policy will be improved compared with the old one in the sense that it will
have a smaller associated value.

For the case in which the Critic learns the Q-function, the policy update step is based on

∂

∂u
Q(x, u)= 0. (62.40)

Using the Q-function approximation, Equation 62.40 becomes

∂

∂u
Q(x, u)= ∂

∂u
WTφ(x, u)= 0. (62.41)

Since the Q-function depends explicitly on the control action u, the derivatives can be computed
without reference to further details such as the system dynamics. Thus, in order to obtain an explicit
updated policy uk = h(xk) one requires application of the implicit function theorem to the Q-function
approximation structure.

For the LQR case the Q-function is given by Equation 62.37 and the policy update step becomes

uk =−
(
Huu

)−1 Huxxk . (62.42)

From this equation one sees that in this case, since the kernel matrix H has been found using online
learning, knowledge on the system dynamics is not needed for this policy improvement step.

CT

In the continuous-time case the policy update is performed according to the equation

μ= arg min
ν∈Ψ(Ω)

[H(x, ν,∇V h)]. (62.43)

Considering the approximate representation of the value function V h(x)=WTφ(x) associated with an
admissible control policy u= h(x), and the particular form of the reinforcement r(x, u)= Q(x)+ uT Ru,
one obtains explicitly the updated control policy as

μ(x)=−R−1gT (x)

(
∂φ(x)

∂x

)T

W . (62.44)
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62.1.9 Features Which Provide Differentiation between ADP Algorithms

The differences between the ADP algorithms are related to

• The performance function, which has to be approximated through learning by the critic structure
• Value function: The algorithms which use the value function as means of evaluation of the

control performance are also referred to as V-learning. These are the default case of ADP.
• Action dependent value function (i.e., Q-function): In this case the algorithms are referred to as

Q-learning or action dependent-learning. Due to the virtues of the Q-function such algorithms
have the desired model-free property.

• Gradient of the value function: In this case the algorithms are referred to as Dual-learning.
• Gradient of the Q-function: These ADP are known as action dependent dual-learning.

• The conditions in which the control policy is updated
• Thus, if the policy update is performed before the critic’s parameters have converged to the

values associated with the value of the present control policy then we obtain value iteration or
heuristic dynamic programming (HDP) algorithms.

• If the policy update is performed after convergence of the critic’s parameters has been obtained
such that the critic function represents the value associated with the current control policy we
obtain policy iteration algorithms.

62.1.10 Terminology—Revisited

Reinforcement learning: Class of methods that provide solution, in an online fashion, to optimal control
problems by means of a reinforcement scalar signal measured from the environment, which indicates the
level of control performance.

Behavior policy: The sum of all rules that are followed by an active agent while interacting with its
environment.

Control policy: A function which maps the state space of the system to be controlled onto the space of
control actions that can be applied to the system.

Value function: A function which maps the state space of a system onto the set of real numbers
such that it represents the amount of rewards obtained in response to performed control actions,
while starting from a given initial state in the state space. Value functions provide an index of per-
formance of a certain control policy. Control policies that have higher value functions are better
than others. The term is used in relation to performance functions associated with maximization
problems.

Cost function: A function which maps the state space of a system onto the set of real numbers, such
that it reflects the amount of resources used for control purposes when starting from a specific state
of the system. Control policies with smaller costs are better than others. As minimization problems are
converse to maximization problems, with slight abuse of language cost functions are also referred to as
value functions.

Q-function: A function which maps the space of states of a system and actions that can be performed,
onto the space of real numbers such that it reflects the value associated with using an initial action (located
in the action space) at a specific initial state of the system followed by optimal actions for all the subsequent
control steps.

ADP: Class of algorithms which provide online solution to optimal control problems by using approxi-
mate representations of the value function to be minimized and of the control algorithm to be performed,
and employing Bellman’s optimality principle, central in dynamic programming, to provide means for
training on-line the two approximation structures based on measured data from the system. Being math-
ematically formulated, such algorithms allow development of rigorous proofs of convergence for the
approximation based approaches.
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Actor–critic structure: The structural representation of ADP algorithms. It reflects the informational
interconnection between

• The actor, which reacts in real-time to measurements from the system, and learns to adapt based
on performance information from the critic.

• The critic, which learns to approximate a value function based on performance data and state data
measured from the system, and provides performance information relative to the presently used
control policy to the actor.

Adaptive critics: All algorithms which provide means for learning optimal control policies in an online
fashion while using an actor–critic structure.

Bellman’s optimality principle: The central idea of the dynamic programming algorithm, which states
that an optimal policy has the property that no matter what the previous control decisions have been, the
remaining decisions determined based on that policy will be optimal, relative to the state resulting from
the previous decisions.

Bellman’s equation: The mathematical expression of the relation between the one-step reward function
and the infinite horizon cost function associated with a given control policy.

Value function approximation: The class of techniques used for online calculation of the
parameters of an approximate expression of the value function associated with a given control
policy.

TD error: The error difference between

• The expected infinite horizon cost predicted at the previous time step.
• The summation between the predicted future cost at the present time and the obtained reward

over the time interval between the previous time step and the present time moment (i.e., prediction
corrected by observation).

62.2 ADP Algorithms for Discrete-Time Systems

In this section are outlined the ADP algorithms developed considering the discrete-time formulation of
the system to be controlled, of the control policy to be learned, and of the reinforcement signal, which
provides means for critic learning. The connection between the ADP algorithms and optimal control is
given at the end of this section, where we provide the equivalent algorithms for the well-known LQR
problem in terms of iterations on discrete-time algebraic Riccati equations.

62.2.1 Policy Iteration

The policy iteration technique is applicable to a broad class of systems and it is guaranteed to converge
to the optimal control with stepwise stability. The convergence guarantee is maintained also for the ADP
online version of the policy iteration technique, which uses a value function approximator in the form of
the critic structure.

62.2.1.1 V-Learning

62.2.1.1.1 V-Learning Policy Iteration Algorithm

Initialize: Select any admissible control policy h0(xk) and let j = 0.
Policy Evaluation Step: Determine the value of the current policy using Bellman’s equation

Vhj (xk)= r(xk , hj(xk))+Vhj (xk+1) (62.45)
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Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
h(.)

(
r(xk , h(xk))+Vhj (xk+1)

)
(62.46)

Stop Algorithm Step: If ∥∥hj+1(xk)− hj(xk)
∥∥< εs (62.47)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

As j→∞, this algorithm converges to the optimal value (Equation 62.8) and optimal control policy
(Equation 62.9). The algorithm can be stopped when the norm of the difference between the two successive
controllers is smaller than a specified error εs. This means that an approximate optimal control policy has
been determined.

If the reinforcement is given in the special form r(xk , uk)= Q(xk)+ uT
k Ruk then the policy improve-

ment step becomes explicitly

hj+1(xk)=−R−1gT (xk)∇Vhj (xk+1) (62.48)

where ∇V (x)= (∂V (x)/∂x), a column vector, is the gradient of the value function.
The online version of this policy iteration algorithm implemented using value function approximation

on an actor–critic structure is now given.

62.2.1.1.2 Online V-Learning Policy Iteration Algorithm

Initialize: Select any admissible control policy h0(xk) and let j = 0.
Policy Evaluation Step: Determine online the parameters of the critic Wj such that

WT
j

(
φ(xk)−φ(xk+1)

)= r(xk , hj(xk)) (62.49)

is solved in the least-squares sense.
Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
h(.)

(
r(xk , h(xk))+WT

j φ(xk+1)
)

. (62.50)

Stop Algorithm Step: If ∥∥Wj −Wj−1
∥∥< εWs (62.51)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

The algorithm can be stopped when the norm of the difference between the two successive value of the
critic parameters is smaller than a specified error εWs.

Any online parameter identification algorithm can be used for the policy evaluation step such that the
critic parameters can be determined, in the least-squares sense, based on online measured data of the
system states xk , xk+1 and the reward r(xk , hj(xk)). The convergence of online parameter identification
algorithm requires that the regression vector

(
φ(xk)−φ(xk+1)

)
is persistently exciting.

If the reward function has the form r(xk , uk)= Q(xk)+ uT
k Ruk then the improved policy is given by

hj+1(xk)=−1

2
R−1gT (xk)∇φT (xk+1)Wj (62.52)

where ∇φ(x)= (∂φ(x)/∂x) ∈ RL×n is the Jacobian of the vector of basis functions.
One sees that even if the policy evaluation step can be executed without using knowledge on the system

dynamics, based only on measurements form the system, the policy improvement step of the algorithm
requires complete knowledge on the system dynamics since they appear in the expression of xk+1, that is,
xk+1 = f (xk)+ g(xk)h(xk).
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62.2.1.2 Q-Learning

The policy iteration algorithm on the Q-function has been introduced in [8] to solve the LQR problem.

62.2.1.2.1 Q-Learning Policy Iteration Algorithm

Initialize: Select any admissible control policy h0(xk) and let j = 0.
Policy Evaluation Step: Determine the value of the current policy using Bellman’s equation

Qhj (zk)= r(xk , hj(xk))+Qhj (zk+1) (62.53)

Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
u(.)

(
Qhj (xk , u(xk))

)
(62.54)

Stop Algorithm Step: If

∥∥hj+1(xk)− hj(xk)
∥∥< εs (62.55)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

62.2.1.2.2 Online Q-Learning Policy Iteration Algorithm

Initialize: Select any admissible control policy h0(xk) and let j = 0.
Policy Evaluation Step: Determine the parameters of the critic Wj, by solving online, in the

least-squares sense, the equation

WT
j

(
φ(zk)−φ(zk+1)

)= r(xk , hj(xk)). (62.56)

Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
u(.)

(
WT

j φ(xk , u)
)

(62.57)

Stop Algorithm Step: If

∥∥Wj −Wj−1
∥∥< εWs (62.58)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

Any online parameter identification algorithm can be used for the policy evaluation step such that the
critic parameters can be determined, in the least-squares sense, based on online measured data of the
system states xk , xk+1 and the reward r(xk , hj(xk)).

In contrast to the online V-learning algorithm, for the online Q-learning algorithm the policy update
step can be executed without using any knowledge on the system dynamics. This is by virtue of the
formulation of the Q-function. One sees now that the policy iteration algorithm where the Critic structure
learns the Q-function can be executed without using knowledge on the system dynamics. This means
that it is a completely model-free method, which provides online, in a stepwise adaptive manner, with
guaranteed stepwise stability, an approximate optimal controller.

62.2.2 Value Iteration

Here we present value iteration algorithms. The convergence of value iteration algorithms, while using
linear systems with quadratic cost indices, has been proven in [11]. In [1] the convergence of these
algorithms was shown while solving H-infinity problems. The convergence proof for nonlinear value
iteration was given in [2].
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62.2.2.1 V-Learning

62.2.2.1.1 Value Iteration Algorithm (HDP)

Initialize: Select any control policy h0(xk), not necessarily admissible or stabilizing, and V0(xk) such
that V0(0)= 0, and let j = 0.

Value Update Step: Update the value using

Vj+1(xk)= r(xk , hj(xk))+Vj(xk+1). (62.59)

Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
h(.)

(
r(xk , h(xk))+Vj+1(xk+1)

)
(62.60)

Stop Algorithm Step: If
∥∥hj+1(xk)− hj(xk)

∥∥< εs (62.61)

then STOP, else let j = j+ 1 and go to the value update step.

It is important to note that the value iteration algorithm does not require an initial stabilizing policy.
Writing together the two steps of the value iteration algorithm one obtains a recursion on Bellman’s

optimality equation. This shows that the convergence of the value iteration algorithm is based on the fact
that Bellman’s optimality equation is a fixed point equation. The interleaved steps of value update and
policy improvement are the means of using the contraction map such that the fixed point solution of this
map, that is, the optimal cost function, is obtained iteratively. For the case of the LQR problem the value
iteration algorithm is equivalent with iterations on the discrete-time algebraic Riccati equation.

62.2.2.1.2 Online Value Iteration Algorithm

Initialize: Select W0 and any control policy h0(xk), not necessarily admissible or stabilizing, and let
j = 0.

Value Update Step: Determine online the parameters of the critic Wj+1 such that

WT
j+1φ(xk)= r(xk , hj(xk))+WT

j φ(xk+1). (62.62)

is solved in the least-squares sense.
Policy Improvement Step: Determine an improved policy using

hj+1(xk)= arg min
h(.)

(
r(xk , h(xk))+WT

j+1φ(xk+1)
)

. (62.63)

Stop Algorithm Step: If
∥∥Wj+1−Wj

∥∥< εWs (62.64)

then STOP, else let j = j+ 1 and go to the value update step.

If the reward function has the form r(xk , uk)= Q(xk)+ uT
k Ruk then the improved policy is given by

hj+1(xk)=−1

2
R−1gT (xk)∇φT (xk+1)Wj+1 (62.65)

where ∇φ(x)= (∂φ(x)/∂x) ∈ RL×n is the Jacobian of the vector of basis functions.
Note that, when solving the value update step, the regression vector is φ(xk), which must be persis-

tently exciting for convergence to the least-squares to be achieved when using a recursive method of
identification.
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62.2.2.2 Q-Learning

Value Iteration Algorithm (Action Dependent Heuristic Dynamic Programming):

In a similar manner as for the HDP method, it can be derived an action-dependent heuristic dynamic
programming (ADHDP) method, in which the critic learns the Q-function, with the fixed point equation

Qh(xk , h(xk))= r(xk , h(xk))+Qh(xk+1, h(xk+1)). (62.66)

62.2.2.3 Dual Learning and Dual Action-Dependent Learning

In [24] it is shown how RL techniques can be used while the critic evaluates the costate function

λk = ∂Vh(xk)

∂xk
, (62.67)

which is the gradient of the value function. This function carries more information about the cost than
the value function alone. The ADP algorithms where the critic learns the costate function are called dual
heuristic programming (DHP).

The fixed point equation which allows implementation of value iteration on the dual value function is

∂

∂xk
Vh(xk)= ∂

∂xk
r(xk , h(xk))+ ∂

∂xk
Vh(xk+1) (62.68)

or, explicitly,

λk = ∂r(xk , uk)

∂xk
+
[

∂uk

∂xk

]T ∂r(xk , uk)

∂uk
+
[

∂xk+1

∂xk
+ ∂xk+1

∂uk

∂uk

∂xk

]T

λk+1, (62.69)

for a prescribed policy uk = h(xk). A critic structure can be used to approximate λk and online learning
can be implemented is a similar fashion as discussed before.

Since in Equation 62.69 (∂xk+1/∂xk)= f (xk) and (∂xk+1/∂uk)= g(xk), one sees that any ADP scheme
based on this fixed point equation requires knowledge of the full plant dynamics. Moreover, it is clear that
in this case the online implementation of the value function identification techniques is computationally
intensive as the costate function is a vector.

Similarly, there have been formulated algorithms based on the gradient of the Q-function. The resulting
ADDHP algorithm has the same features noted for DHP.

62.2.3 Policy Iterations and Value Iterations on the Algebraic Riccati
Equation of the LQR Problem

We have seen how to implement V-learning and Q-learning on-line for nonlinear systems using value
function approximators. In the case of Q-learning, no knowledge of the system dynamics is needed for
online RL and convergence to the optimal control solution. In this subsection we derive the equivalent
algorithms, which provide solution for the discrete-time LQR problem, in terms of standard ideas from
systems theory. The algorithms presented next are underlying the ADP methods, which have just been
discussed. The reader is, however, advised that these algorithms are not for implementation purposes,
since they require knowledge of the full system dynamics.

62.2.3.1 Discrete-Time LQR Problem

The system dynamics are given by

xk+1 = Axk +Buk (62.70)

where xk ∈ R
n, uk ∈ R

m, A ∈ R
n×n, and B ∈ R

n×m.
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The objective is to calculate the optimal state-feedback control policy uk = K∗xk , which minimizes the
infinite horizon quadratic cost functional

V (xk)=
∞∑

i=k

xT
i Qdxi + uT

i Rui (62.71)

where Qd ∈ R
n×n, Qd ≥ 0, and R ∈ R

m×m, R > 0.
It is known that the optimal cost is quadratic in the state and is given by

V∗(xk)= xT
k Pxk (62.72)

with P ≥ 0.

62.2.3.2 V-Learning Policy Iteration

Algorithm

Initialize: Select any admissible control policy uk = h0(xk)= K0xk and let j = 0.
Policy Evaluation Step: Determine the value of the current policy, that is, the value of the matrix Phj ,

using Bellman’s equation

xT
k Phj xk = xT

k Qdxk + uT
k Ruk + xT

k+1Phj xk+1. (62.73)

Equation 62.73 is explicitly

xT
k Phj xk = xT

k Qdxk + uT
k Ruk + xT

k (A+BKj)
T Phj (A+BKj)xk (62.74)

or, simply the discrete-time Lyapunov equation

Phj = Qd +KT
j RKj + (A+BKj)

T Phj (A+BKj). (62.75)

Policy Improvement Step: Determine an improved policy using

Kj+1 = arg min
K

(
Qd +KT RK + (A+BK)T Phj (A+BK)

)
(62.76)

which explicitly is

Kj+1 =−(R+BT Phj B)−1BT Phj A. (62.77)

Stop Algorithm Step: If
∥∥Kj+1−Kj

∥∥< εKs (62.78)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

62.2.3.3 V-Learning Value Iteration

Algorithm

Initialize: Select any control policy uk = h0(xk)= K0xk and P0 ≥ 0, and let j = 0.
Value Update Step: Update the value, that is, determine the value of the matrix Pj+1, using

xT
k Pj+1xk = xT

k Qdxk + uT
k Ruk + xT

k+1Pjxk+1. (62.79)

which is explicitly

Pj+1 = Qd +KT
j RKj + (A+BKj)

T Pj(A+BKj). (62.80)
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Policy Improvement Step: Determine an improved policy using

Kj+1 = arg min
K

(
Qd +KT RK + (A+BK)T Pj+1(A+BK)

)
(62.81)

which explicitly is

Kj+1 =−(R+BT Pj+1B)−1BT Pj+1A. (62.82)

Stop Algorithm Step: If
∥∥Kj+1−Kj

∥∥< εKs (62.83)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

The test (Equation 62.83) can be replaced by the test
∥∥Pj+1− Pj

∥∥< εPs which is in terms of the value
function.

62.2.3.4 Q-Learning Policy Iteration

Algorithm

Initialize: Select any admissible control policy uk = h0(xk)= K0xk and let j = 0.
Policy Evaluation Step: Determine the value of the current policy, that is, the value of the matrix Hhj ,

using Bellman’s equation

[
xk

uk

]T

Hhj

[
xk

uk

]
=
[

xk

uk

]T [
Qd 0
0 R

] [
xk

uk

]
+
[

xk+1

Kjxk+1

]T

Hhj

[
xk+1

Kjxk+1

]
. (62.84)

or, the discrete-time Lyapunov equation

Hhj =
[

Qd 0
0 R

]
+
[

A B
KjA KjB

]T

Hhj

[
A B

KjA KjB

]
. (62.85)

Policy Improvement Step: Determine an improved policy using

Kj+1 = arg min
K

([
xk

Kxk

]T

Hhj

[
xk

Kxk

])
(62.86)

which explicitly is

Kj+1 =−(Huuhj )
−1Huxhj . (62.87)

Stop Algorithm Step: If
∥∥Kj+1−Kj

∥∥< εKs (62.88)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

62.2.3.5 Q-Learning Value Iteration

Algorithm

Initialize: Select any control policy uk = h0(xk)= K0xk and H0 ≥ 0, and let j = 0.
Value Update Step: Update the value, that is, determine the value of the matrix Hj+1, using

Hj+1 =
[

Qd 0
0 R

]
+
[

A B
KjA KjB

]T

Hj

[
A B

KjA KjB

]
. (62.89)
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Policy Improvement Step: Determine an improved policy using

Kj+1 =−(Huu j+1)−1Hux j+1. (62.90)

Stop Algorithm Step: If
∥∥Kj+1−Kj

∥∥< εKs (62.91)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

The test (Equation 62.83) can be replaced by
∥∥Hj+1−Hj

∥∥< εHs, which is in terms of the parameters
of the Q-function.

62.3 ADP Algorithms for Continuous-Time Systems

Similar to the ADP methods presented above, which were developed considering discrete-time system
dynamics, there have also been developed algorithms, which aim at solving the optimal control problem
for systems with continuous-time dynamics. This is strongly motivated by the fact that the dynamics of
a large class of human-engineered systems unfold in continuous-time and an approximate discrete-time
formulation, obtained by discretization techniques, would only result in suboptimal control strategies for
the considered systems. The formulation of continuous-time ADP methods starts from the fact that the
infinite horizon cost associated with the use of a certain control policy u= h(x) can be written as

V h(x(t))=
∫ t+T

t
r(x(τ), h(x(τ)))dτ+ V h(x(t+T)), (62.92)

for any time interval T > 0. This equation has the same value function solution as

0=H(x, h,∇V h). (62.93)

It has been shown in [18] that Equation 62.92 is a fixed point equation for continuous-time systems,
similar with Bellman’s equation defined for the discrete-time case.

According to Bellman’s optimality principle, the optimal cost satisfies

V∗(x(t))= min
u(τ); t≤τ<t+T

(∫ t+T

t
r(x(τ), u(τ))dτ+V∗(x(t+T))

)
, (62.94)

while the HJB equation is

0= min
u∈Ψ(Ω)

[H(x, u,∇V∗)]z. (62.95)

The optimal control policy is then given by

h∗(x(t))= arg min
h(x)

(∫ t+T

t
r(x(τ), h(x(τ)))dτ+V∗(x(t+T))

)
. (62.96)

In the continuous-time case the TD error over any interval T > 0 is defined as

e(x(t), T , h)=
∫ t+T

t
r(x, h(x))dτ+V (x(t+T))−V (x(t)). (62.97)

It is now direct to formulate the policy iteration and value iteration algorithms for continuous-time
systems given in [19,20]. In Section 62.3.3 we provide the connection between these algorithms and
classical results from optimal control theory by presenting their underlying formulation while solving the
well-known continuous-time LQR problem.
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62.3.1 Policy Iteration

Algorithm

Initialize: Select any admissible control policy h(0)(x) and let j = 0.

Policy Evaluation Step: Solve for V h( j)
(x(t)) using

V h( j)
(x(t))=

∫ t+T

t
r(x(τ), h( j)(x(τ)))dτ+V h( j)

(x(t+T)) with V h( j)
(0)= 0 (62.98)

Policy Improvement Step: Determine an improved policy using

h( j+1) = arg min
u
[H(x, u,∇V h( j)

)] (62.99)

Stop Algorithm Step: If ∥∥∥h( j+1)(x)− h( j)(x)
∥∥∥< εs (62.100)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

The algorithm converges to the optimal controller as j→∞.
For the special case in which the instantaneous reward function is given by r(x, u)= Q(x)+ uT Ru and

the system is Equation 62.2 then the improved state-feedback control policy is explicitly written as

h( j+1)(x)=−1

2
R−1gT (x)∇V h( j)

. (62.101)

Online Policy Iteration Algorithm

Initialize: Select any admissible control policy h(0)(x) and let j = 0.
Policy Evaluation Step: Solve online for the parameters of the critic Wj such that

WT
j [φ(x(t))−φ(x(t+T))] =

∫ t+T

t
r(x(τ), h( j)(x(τ)))dτ where φ(0)= 0 (62.102)

is solved in the least-squares sense.
Policy Improvement Step: Determine an improved policy using

h( j+1)(x)= arg min
u

[
H

(
x, u,

(
∂φ(x)

∂x

)T

Wj

)]
(62.103)

Stop Algorithm Step: If
∥∥Wj −Wj−1

∥∥< εWs (62.104)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

If r(x, u)= Q(x)+ uT Ru then the policy improvement step becomes

h(i+1)(x)=−1

2
R−1gT (x)

(
∂φ(x)

∂x

)T

Wj. (62.105)

Policy iteration becomes Newton’s method [10] for solving the continuous-time algebraic Riccati
equation associated with finding the solution of the LQR problem. One can now see that, using the
RL approach, Newton’s algorithm can be implemented using only information about the input to state
dynamics of the system. That is, continuous-time policy iteration on the value function solves the con-
tinuous time algebraic Riccati equation without knowing the system internal dynamics by using data
measured online alongthe system’s state trajectories.
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62.3.2 Value Iteration

Algorithm

Initialize: Select any control policy h(0)(x), not necessarily stabilizing, V 0(x) such that V 0(0)= 0, and
let j = 0.

Value Update Step: Solve for V j+1 using

V j+1(x(t))=
∫ t+T

t
r(x(s), h(i)(x(s)))ds+V j(x(t+T)) with V j+1(0)= 0 (62.106)

Policy Improvement Step: Determine an improved policy using

h( j+1) = arg min
u
[H(x, u,∇V j+1)] (62.107)

Stop Algorithm Step: If

∥∥∥h( j+1)(x)− h( j)(x)
∥∥∥< εs (62.108)

then STOP, else let j = j+ 1 and go to the value update step.

In the case of r(x, u)= Q(x)+ uT Ru the policy improvement step is explicitly

h(i+1)(x)=−1

2
R−1gT (x)∇V j+1. (62.109)

Online Value Iteration Algorithm

Initialize: Select any control policy h(0)(x), not necessarily stabilizing, any vector of parameters W0,
and let j = 0.

Value Update Step: Solve on-line for the parameters of the critic, Wj+1, such that

WT
j+1φ(x(t))=

∫ t+T

t
r(x(s), h( j)(x(s)))ds+WT

j φ(x(t+T)) with φ(0)= 0 (62.110)

is satisfied in the least-squares sense.
Policy Improvement Step: Determine an improved policy using

h( j+1) = arg min
u
[H(x, u,

(
∂φ(x)

∂x

)T

Wj+1)] (62.111)

Stop Algorithm Step: If

∥∥Wj+1−Wj
∥∥< εWs (62.112)

then STOP, else let j = j+ 1 and go to the value update step.

It is observed that both continuous-time versions of the policy iteration and the value iteration do not
require knowledge about the internal dynamics of the system, that is, the function f (x). Both these
algorithms can be implemented online using online identification techniques for the parameters of
the control policy (i.e., actor) and value function (i.e., critic) structures. The actor–critic structure for
the implementation of these algorithms is discussed in the next section.



�

�

�

�

� �

Approximate Dynamic Programming 62-25

ZOH T

Actor
u xController

μ(x)
Sytem

ẋ  = f (x) + g(x)u; x0

T T

V

Critic
Cost function V(x)

V̇ = Q(x) + uT Ru

FIGURE 62.2 Structure of the system with adaptive controller for the implementation of continuous-time ADP
methods.

62.3.3 Actor–Critic Structure for the Continuous-Time ADP Algorithms

We conclude the presentation of ADP algorithms for continuous-time systems with a discussion of the
actor–critic structure used in this case. The structure of the system with optimal adaptive controller is
presented in Figure 62.2.

The ADP algorithms require only measurements of the states at discrete moments in time and knowl-
edge of the observed value function over the interval [t, t+T]. We denote with

d(t, T , u(.))=
∫ t+T

t
r(x(τ), u(x(τ)))dτ (62.113)

the reinforcement signal measured over the time interval T . Thus, the data measured at each time
increment, which is required for the critic structure to learn the value function, is formed by the sets of
triplets

(
x(t), x(t+T), d(t, T , u(.))

)
. Since the fixed point equations involved in the formulation of the

continuous-time ADP algorithms are valid for any positive value of the time interval T , the reinforcement
time interval T need not have the same value at every step of the iteration. The value of T can be adapted
online in relation to the amount of time required to measure meaningful information from the system.

In order to extract reward information regarding the cost associated with the given policy the system
was augmented with an additional state V (t), with dynamics V̇ = Q(x)+ uT Ru. The update of both the
actor and the critic is performed at discrete moments in time based on sampled information, while the
actor performs continuous-time state-feedback control. Since the critic learns the value function based on
observations of the continuous-time value over a finite interval, the algorithm converges to the solution
of the continuous-time optimal control problem.

62.3.4 Policy Iterations and Value Iterations and the LQR Problem

We present next, in terms of standard ideas from optimal control theory, the iterative algorithms equiv-
alent with the online ADP methods, which provide solution for the continuous-time LQR problem.
We must again specify that these algorithms, which underlie the iterative ADP methods, are not for
implementation purposes, since they require knowledge of the full system dynamics.

62.3.4.1 Continuous-Time LQR Problem

The system dynamics are given by

ẋ = Ax+Bu (62.114)

where x ∈ R
n, u ∈ R

m, A ∈ R
n×n, and B ∈ R

n×m.
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It is desired to determine the optimal state-feedback control policy u= K∗x, which minimizes the
infinite horizon quadratic cost functional

V (x(t), u(.))=
∫ ∞

t
(xT Qx+ uT Ru)dτ (62.115)

where Q ∈ R
n×n, Q ≥ 0, and R ∈ R

m×m, R > 0.
It is known that the optimal cost is quadratic in the state and is given by

V∗(x(t))= x(t)T P∗x(t) (62.116)

with P∗ ≥ 0.

62.3.4.2 Policy Iteration

Algorithm

Initialize: Select any admissible control policy h(0)(x)= K0x and let j = 0.

Policy Evaluation Step: Solve for V h( j)
(x(t)) using

V h( j)
(x(t))=

∫ t+T

t
(xT Qx+ h( j)T (x)Rh( j)(x))dτ+V h( j)

(x(t+T)) with V h( j)
(0)= 0 (62.117)

which can be written as∫ t+T

t

d(xT Ph( j)
x)

dτ
dτ=−

∫ t+T

t
[xT (Q+KjT RKj)x]dτ (62.118)

Taking the derivative and using the system dynamics in (62.118) it becomes the Lyapunov equation

(A+BKj)T Ph( j) + Ph( j)
(A+BKj)=−(Q+KjT RKj)

which can be solved for Ph( j)
.

Policy Improvement Step: Determine an improved policy using

h( j+1)(x)=−R−1BT Ph( j)
x (62.119)

Stop Algorithm Step: If ∥∥∥h( j+1)(x)− h( j)(x)
∥∥∥< εs (62.120)

then STOP, else let j = j+ 1 and go to the policy evaluation step.

Initialize: Select any control policy h(0)(x)= K0x and P0 ≥ 0, and let j = 0.
Value Update Step: Update the value, that is, determine the value of the matrix Pj+1, using

xT (t)Pj+1x(t)=
∫ t+T

t
[xT (Q+KjT RKj)x]dτ+ xT (t+T)Pjx(t+T). (62.121)

Differentiating Equation 62.121 with respect to time along the trajectories given by the controller
h( j)(x)= Kjx one obtains the Lyapunov equation

(A+BKj)T Pj+1+ Pj+1(A+BKj)+KjT RKj +Q = (e(A+BKj)T )T ((A+BKj)T Pj + Pj(A+BKj)

+KjT RKj +Q)e(A+BKj)T . (62.122)

Adding and subtracting AT
i Pi + PiAi and using the notation

Ric(Pi)= AT Pi + PiA+Q− PiBR−1BT Pi (62.123)

Equation 62.122 becomes

AT
i (Pi+1− Pi)+ (Pi+1− Pi)Ai =−Ric(Pi)+ eAiTT Ric(Pi)eAiT . (62.124)
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Policy Improvement Step: Determine an improved policy using

h( j+1)(x)= Kj+1x =−R−1BT Pj+1x. (62.125)

Stop Algorithm Step: If ∥∥Kj+1−Kj
∥∥< εKs (62.126)

then STOP, else let j = j+ 1 and go to the value update step.

The test (Equation 62.126) can be replaced by the test
∥∥Pj+1− Pj

∥∥< εPs, which is in terms of the value
function.

62.4 ADP-Based Optimal Controller Design: Examples

We now present optimal controller design results that were obtained considering a power system with a
linear model [3]. For the same system we will use both a discrete-time and a continuous-time approach to
ADP to obtain the state-feedback controller, which optimizes a quadratic cost index. This is the familiar
LQR problem.

We will first present the results obtained using the continuous-time HDP approach. We then show
that the same results will be obtained using the discrete-time ADHDP algorithm, when considering a very
small sampling period.

62.4.1 Power System and Cost Function

Even though power systems are characterized by nonlinearities, linear state-feedback control is regularly
employed for load-frequency control at a certain nominal operating points that are characterized by
small variations of the system load around a constant value. Although this assumption seems to have
simplified the design problem of a load-frequency controller, a new problem appears from the fact that
the parameters of the actual plant are not precisely known. For this reason it is particularly advantageous
to apply model free ADP methods to obtain the optimal LQR controller for a given operating point of the
power system.

The continuous-time linear model of the system that is considered here, [21], is characterized by the
realistic values

A=

⎡
⎢⎢⎣
−0.665 8 0 0

0 −3.663 3.663 0
−6.86 0 −13.736 −13.736

6 0 0 0

⎤
⎥⎥⎦

BT = [0 0 13.736 0
]

(62.127)

One can obtain the discrete version of this model by discretization using a zero-order hold method
with the sample time T=0.01s.

The infinite horizon cost function is defined for the continuous-time case as

V =
∫ ∞

t
[xT (τ)Qx(τ)+ uT (τ)Ru(τ)]dτ (62.128)

where the matrices Q and R were chosen to be identity matrices of appropriate dimensions. For the case
of the discrete-time ADP algorithm the cost function is

V =
∞∑

i=k

(xT
i Qdxi + uT

i Rdui) (62.129)

where the parameters, given by the matrices Qd and Rd , were chosen as Q ∗T and R ∗T , where T
denotes the sampling period. One sees that for the closed-loop system with state-feedback controller in
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the form u=−Kx the two cost functions can be expressed as V (x(t))= xT (t)Px(t) and V (xk)= xT
k Pxk ,

respectively.

62.4.2 Continuous-Time Value Iteration

Online Value Iteration Algorithm

Initialize: A restriction on the initial matrix P0 such that the corresponding K0 =−R−1BT P0 be a
stabilizing controller is not required. Thus, we choose to start the ADP algorithm considering
the case in which the system operates without controller (i.e., P0 = 0n×n and h(0)(x)= K0

x =−R−1BT P0x). Let j = 0.
Value Update Step: Solve for the parameters given by the matrix Pj+1 using

xT (t)Pj+1x(t)=
∫ t+T

t
(xT Qx+ (h( j)(x))T Rh( j)(x))dτ+ xT (t+T)Pjx(t+T). (62.130)

The value function update amounts to the update of the kernel matrix Pj.
Policy Update Step: Determine an improved policy using

h( j+1)(x)=−R−1BT Pj+1x = Kj+1x (62.131)

Stop Algorithm Step: If

∥∥Pj+1− Pj
∥∥< εPs (62.132)

then STOP, else let j = j+ 1 and go to the value update step.

To implement this iteration scheme, one only needs to know the value of the matrix, which is
required explicitly in the policy update step. The information on is not required at any step of the
algorithm. The states, x(t) and x(t+T), and the reward over the time interval [t, t+T], d(t, T , h(.))=
∫t+T

t r(x(τ), h(x(τ)))dτ, are observed on-line. Representing the value function as V (x)= xT Px =
(vec(P))T (x⊗ x)≡ p̄T x̄ then the value update step can be written as

p̄T
j+1x̄(t)= d(t, T , h( j)(.))+ p̄T

j x̄(t+T) (62.133)

Using this equation one can now solve for the parameters p̄j+1, in the least-squares sense, after collecting
online enough state-trajectory points defined by the triplets

(
x(t), x(t+T), d(t, T , h( j)(.))

)
to set up a

solvable problem. The target will be the right-hand side of Equation 62.133 and the least-squares solution
will provide the parameters of the matrix Pj+1.

Since the symmetric matrix Pj has a number of 10 different parameters, each iteration step requires
collecting at least 10 state-trajectory points in order to set up a solvable least-squares problem. We will
choose to solve for the parameters of Pj using a batch least-squares method considering 15 data points
collected along the state trajectory of the system. This is because we intend to compare the results obtained
with the continuous-time HDP algorithm with the ones resulting from the application of the discrete-
time Q-learning algorithm (i.e., ADHDP strategy) and the Q-function in this case has a number of 15
parameters (which require the measurement of 15 state points in order to solve a least-squares problem).

For the implementation of the continuous-time value iteration algorithm the state measurements were
taken at each 0.1 s time period, such that a cost function update was performed at each 1.5 s. Over 60 s a
number of 40 iterations of value function and control policy updates were performed. The convergence
of some of the Critic parameters, namely P(1, 1), P(1, 3), P(2, 4), and P(4, 4), is presented in Figure 62.3.
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P matrix parameters P(1,1), P(1,3), P(2,4), and P(4,4)
2.5

P(1,1)
P(1,3)
P(2,4)
P(4,4)

2

1.5

1

0.5

0

–0.5
0 10 20 30

Time (s)
40 50 60

FIGURE 62.3 Convergence of the P matrix parameters obtained online using the continuous-time HDP algorithm.

The optimal control solution obtained after running the algorithm (without using knowledge regarding
the system matrix A) is

PCT−HDP =

⎡
⎢⎢⎣

0.4753 0.4771 0.0602 0.4770
0.4771 0.7838 0.1238 0.3852
0.0602 0.1238 0.0513 0.0302
0.4770 0.3852 0.0302 2.3462

⎤
⎥⎥⎦ (62.134)

while the exact solution of the continuous-time algebraic Riccati equation is

PCARE =

⎡
⎢⎢⎣

0.4750 0.4766 0.0601 0.4751
0.4766 0.7831 0.1237 0.3829
0.0601 0.1237 0.0513 0.0298
0.4751 0.3829 0.0298 2.3370

⎤
⎥⎥⎦ . (62.135)

Comparing the values of the two matrices given by Equations 62.134 and 62.135 one sees that the
solution obtained online using the ADP algorithm and without using any knowledge on the internal
dynamics of the system specified by matrix A is very close to the exact solution obtained by solving the
algebraic Riccati equation associated with the infinite horizon optimal control problem.

62.4.3 Discrete-Time Action-Dependent Value Iteration

Discrete-Time Action-Dependent Value Function–Q-Function

The Q-function for the LQR case is defined as

Q∗(xk , uk)= xT
k Qdxk + uT

k Rduk + xT
k+1P∗xk+1 (62.136)

where xk+1 = Axk +Buk , and P∗ denotes the parameters of the optimal value function.
With the notation zT

k = [xT
k uT

k ] the Q-function will have the form

Q∗(xk , uk)= zT
k Hzk =

[
xk

uk

]T [
Hxx Hxu

Hux Huu

] [
xk

uk

]
(62.137)

where Hxx = Qd +AT P∗A, Hxu = AT P∗B, Hux = BT P∗A, and Huu = Rd +BT P∗B.
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The optimal Q-function is equal with the optimal value function when uk is the optimal policy

V∗(xk)=min
uk

Q∗(xk , uk)=min
uk

[
xT

k uT
k

]
H
[
xT

k uT
k

]T
. (62.138)

Given the optimal Q-function then the optimal control policy is obtained from

∂Q∗(xk , uk)

∂uk
= 0, (62.139)

which implies that 2Huxxk + 2Huuuk = 0, thus

u∗k =H−1
uu Huxxk . (62.140)

The second-order sufficiency condition for the minimization is

∂2Q∗(xk , uk)

∂u2
k

> 0, that is Huu > 0, (62.141)

and it is satisfied since Huu = Rd +BT P∗B, with Rd > 0 and P∗ > 0.
In terms of the optimal Q-function one has the following recurrence relation

Q∗(xk , uk)= xT
k Qdxk + uT

k Rduk +min
uk+1

Q∗(xk+1, uk+1), (62.142)

which is a fixed-point equation. Based on this equation, and using the representation of the optimal
Q-function (Equation 62.137), the online Q-learning algorithm is now formulated.

Online Q-Learning Algorithm

Initialize: A restriction on the initial matrix H0 such that the corresponding h0(xk)=H−1
uu0Hux0xk =

K0xk is a stabilizing controller is not required. Thus, we choose to start the ADP algorithm
considering the case in which the system operates without controller (i.e., H0 = 0(n+m)×(n+m)

and h0(xk)=H−1
uu0Hux0xk). Let j = 0.

Value Update Step: Determine online, the parameters of the Q-function, given by the matrix Hj+1,
such that the equation

zT
k Hj+1zk = r(xk , uk)+ zT

k+1Hjzk+1, (62.143)

where uk = hj(xk)= Kjxk and uk+1 = hj(xk+1)= Kjxk+1, is solved in the least-squares sense.
The value function update amounts to the update of the kernel matrix Hj.

Policy Update Step: Determine an improved policy using

hj+1(xk)=H−1
uuj+1Huxj+1xk = Kj+1xk . (62.144)

Stop Algorithm Step: If
(∥∥Hj+1−Hj

∥∥< εHs
)

(62.145)

then STOP, else let j = j+ 1 and go to the value update step.

We now present details related to the online implementation of the value update step.
In a similar representation with the one given for the value function in Equation 62.26, the Q-function

can be represented as

Q(zk)= zT
k Hzk = H̄T z̄k (62.146)

where H̄ = vec(H) and z̄k = zk⊗ zk .
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P matrix parameters P(1,1), P(1,3), P(2,4), and P(4,4)
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FIGURE 62.4 Convergence of the P matrix parameters for online discrete-time ADHDP algorithm.

Then the value update step becomes

H̄T
j+1z̄k = r(xk , uk)+ H̄T

j z̄k+1. (62.147)

The vector of parameters of the Q-function H̄j+1 is found by minimizing the error

ek = r(xk , uk)+ H̄T
j z̄k+1− H̄T

j+1z̄k (62.148)

in least-squares sense over the compact setΩ.
The relation (Equation 62.144) shows that the control signal uk is a linear combination of the state

vector. Thus, not all the elements of the vector zk are linearly independent. This fact causes the problem
of insolvability of Equation 62.144.

This problem is removed by adding exploration noise to the control signal. Thus, let uke = uk + nk

where nk(0, σ)is exploration noise with zero mean and variance σ. With this modification the vector zk

becomes

zke = [xT
k uT

ke]T = [xT
k (uk + nk)T ]T , (62.149)

and now obtaining the online solution of Equation 62.147 is guaranteed by the excitation condition.
In Figure 62.4 is presented the convergence of the critic parameters when the discrete-time ADHDP

algorithm was used. The duration of the simulation was 60 s, during which a number of 400 cost function
(Q-function) updates took place. Each update required 15 measurements of the state of the system, which
were taken with sample time of T = 0.01 s, since there are 15 independent parameters of the Q-function,
given by the elements of the symmetric matrix H .

The optimal value function can be calculated based on the obtained optimal Q-function and the
obtained optimal control policy using the equation

P∗ = [In K∗T ]H∗
[

In

K∗
]

(62.150)
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In our example the solution for the parameters of the optimal value function obtained after running
the algorithm is given in the matrix

PDT−ADHDP =

⎡
⎢⎢⎣

0.4802 0.4768 0.0603 0.4754
0.4768 0.7887 0.1239 0.3834
0.0603 0.1239 0.0567 0.0300
0.4754 0.3843 0.0300 2.3433

⎤
⎥⎥⎦ . (62.151)

Comparing the results presented in Figure 62.4 with the ones given in Figure 62.3 one sees that
the discrete-time online algorithm converges to the optimal solution of the continuous-time algebraic
Riccati equation for this case in which a very small sampling period was considered. It is clear that
fairly equal amounts of time are required for both the continuous-time and the discrete-time ADP
algorithms to converge, however, the discrete-time ADHDP algorithm is computationally more intensive
(400 required iterations) than the continuous-time HDP (40 iterations). The advantage of using the
discrete-time algorithm consists in its model-free characteristic while the presented continuous-time
algorithm still requires knowledge of the system’s B matrix. This observation motivates further research
for finding a continuous-time model-free ADP approach to solve the optimal control problem.

Further Reading

For those interested in applying ADP methods and/or developing new ADP algorithms, we suggest for
further reading the recently published papers [4,22], and the papers referred therein. The consistent lists
of references are accurately encompassing the numerous results in this fast growing research field.
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63.1 Introduction

In many applications where dynamical system models are used to describe the behavior of a real world
system, stochastic components and random noises are included in the model to capture uncertainties in
the operating environment and the system structure of the physical process being studied. The analysis
and control of such systems then involves evaluating the stability properties of a random dynamical
system. Stability is an important property of a system and we know from classical control theory that
input–output stability is a necessary condition for control system design, but are aware that analytic
techniques for evaluating stability are often restricted to linear systems, or special classes of nonlinear
systems. The general study of the stability properties of stochastic dynamical systems is important and
considerable effort has been devoted to the study of stochastic stability. Significant results have been
reported in the literature with applications to physical and engineering systems.

A comprehensive survey on the topic of stochastic stability was given by [27], and since that time there
have been many significant developments of the theory and its applications in science and engineering.
In this chapter, we present some basic results on the study of stability of stochastic systems. Because of
limited space, only selected topics are presented and discussed. We begin with a discussion of the basic
definitions of stochastic stability and the relationships among them. Kozin’s survey provides an excellent
introduction to the subject and a good explanation of how the various notions of stochastic stability are
related.

It is not necessary that readers have an extensive background in stochastic processes or other related
mathematical topics. In this chapter, the results and methods will be stated as simply as possible and
no proofs of the theorems are given. When necessary, important mathematical concepts that are the
foundation to some of the results, will be discussed briefly. This will provide a better appreciation of the
results, the application of the results, and the key steps required to develop the theory further. Those
readers interested in a particular topic or result discussed in this chapter are encouraged to go to the
original papers and the references therein for more detailed information.

63-1
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There are at least three times as many definitions for the stability of stochastic systems as there are for
deterministic systems. This is because in a stochastic setting there are three basic types of convergence:
convergence in probability, convergence in mean (or moment), and convergence in an almost sure
(sample path, probability one) sense. Kozin [27] presented several definitions for stochastic stability, and
these definitions have been extended in subsequent research works. Readers are cautioned to examine
carefully the definition of stochastic stability that is being used when interpreting any stochastic stability
results.

We begin with some preliminary definitions of stability concepts for a deterministic system. Let
x(t; x0, t0) denote the trajectory of a dynamic system initial from x0 at time t0.

Definition 63.1: Lyapunov Stability

The equilibrium solution, assumed to be 0 unless stated otherwise, is said to be stable if, given ε> 0,
δ(ε, t0) > 0 exists so that, for all ‖x0‖< δ,

sup
t≥t0

‖x(t; x0, t0)‖< ε.

Definition 63.2: Asymptotic Lyapunov Stability

The equilibrium solution is said to be asymptotically stable if it is stable and if δ′ > 0 exists so that
‖x0‖< δ′, guarantees that

lim
t→∞‖x(t; x0, t0)‖ = 0.

If the convergence holds for all initial times, t0, it is referred to as uniform asymptotic stability.

Definition 63.3: Exponential Lyapunov Stability

The equilibrium solution is said to be exponentially stable if it is asymptotically stable and if there exists a
δ> 0, an α> 0, and a β> 0 so that ‖x0‖< δ guarantees that

‖x(t; x0t0)‖ ≤ β‖x0‖ exp−α(t−t0) .

If the convergence holds for all initial times, t0, it is referred to as uniform exponential stability.

These deterministic stability definitions can be translated into a stochastic setting by properly inter-
preting the notion of convergence, that is, in probability, in moment, or almost surely. For example, in
Definition 63.1 for Lyapunov stability, the variable of interest is supt≥t0 ‖x(t; x0, t0)‖, and we have to study
the various ways in which this (now random) variable can converge. We denote the fact that the variable
is random by including the variable ω, that is, x(t; x0, t0,ω), and we will make this more precise later.
Then,

Definition 63.4: Ip: Lyapunov Stability in Probability

The equilibrium solution is said to be stable in probability if, given ε, ε′ > 0, δ(ε, ε′, t0) > 0 exists so that for
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all ‖x0‖< δ,

P{sup
t≥t0

‖x(t; x0, t0,ω)‖> ε′}< ε.

Here, P denotes probability.

Definition 63.5: Im: Lyapunov Stability in the pth Moment

The equilibrium solution is said to be stable in pth moment, p > 0 if, given ε> 0, δ(ε, t0) > 0 exists so that
‖x0‖< δ guarantees that

E{sup
t≥t0

‖x(t; x0, t0,ω)‖p}< ε.

Here, E denotes expectation.

Definition 63.6: Ia.s.: Almost Sure Lyapunov Stability

The equilibrium solution is said to be almost surely stable if

P{ lim‖x0‖→0
sup
t≥t0

‖x(t; x0, t0,ω)‖ = 0} = 1.

Note, almost sure stability is equivalent to saying that, with probability one, all sample solutions are
Lyapunov stable.

Similar statements can be made for asymptotic stability and for exponential stability. These definitions
are introduced next for completeness and because they are often used in applications.

Definition 63.7: IIp: Asymptotic Lyapunov Stability in Probability

The equilibrium solution is said to be asymptotically stable in probability if it is stable in probability and if
δ′ > 0 exists so that ‖x0‖< δ′ guarantees that

lim
δ→∞ P{sup

t≥δ
‖x(t; x0, t0,ω)‖> ε} = 0.

If the convergence holds for all initial times, t0, it is referred to as uniform asymptotic stability in
probability.

Definition 63.8: IIm: Asymptotic Lyapunov Stability in the pth Moment

The equilibrium solution is said to be asymptotically pth moment stable if it is stable in the pth moment and
if δ′ > 0 exists so that ‖x0‖< δ′ guarantees that

lim
δ→∞E{sup

t≥δ
‖x(t; x0, t0,ω)‖} = 0.
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Definition 63.9: IIa.s.: Almost Sure Asymptotic Lyapunov Stability

The equilibrium solution is said to be almost surely asymptotically stable if it is almost surely stable and if
δ′ > 0 exists so that ‖x0‖< δ′ guarantees that, for any ε> 0,

lim
δ→∞{sup

t≥δ
‖x(t; x0, t0,ω)‖> ε} = 0.

Weaker versions of the stability definitions are common in the stochastic stability literature. In these
versions the stochastic stability properties of the system are given in terms of particular instants, t, rather
than the seminfinite time interval [t0,∞) as given in the majority of the definitions given above. Most
noteworthy, are the concepts of the pth moment and almost sure exponential stability:

Definition 63.10: IIIm: pth Moment Exponential Lyapunov Stability

The equilibrium solution is said to be pth moment exponentially stable if there exists a δ> 0, an α> 0, and
a β> 0 so that ‖x0‖< δ guarantees that

E{‖x(t; x0, t0,ω)‖} ≤ β‖x0‖ exp−α(t−t0) .

Definition 63.11: IIIa.s.: Almost Sure Exponential Lyapunov Stability

The equilibrium solution is said to be almost surely exponentially stable if there exist a δ> 0 , an α> 0,
and a β> 0 so that ‖x0‖< δ guarantees that

P{{‖x(t; x0, t0,ω)‖} ≤ β‖x0‖ exp−α(t−t0)} = 1

Example 63.1:

Consider the scalar Ito equation

dx(t)= ax(t)dt+ σx(t) dw(t) (63.1)

where {w(t)}t≥0 is a standard Wiener process. The infinitesimal generator for the system is given by

L= 1
2
σ2x2 d2

dx2 + ax
d

dx
. (63.2)

The solution process xt for t ≥ 0 is given by

x(t)= e(a− 1
2 σ

2)t eσ
∫ t

0 dw(s)x0.

Hence,

log
x(t)

x0
= (a− 1

2
σ2)t+ σ

t∫
0

dws
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and the asymptotic exponential growth rate of the process is

λ= lim
t→∞

1

t
log

x(t)

x0
= (a− 1

2
σ2)+ lim

t→∞
σ

t

t∫
0

dw(s)s = a− 1

2
σ2

The last equality follows from the fact that the Wiener process, with increment dw(t), is a zero-mean
ergodic process. We then conclude that the system is almost surely exponentially stable in the sense that

Px0

{
lim

t→∞ x(t)= 0, at an exponential rate a.s.
}
= 1,

if, and only if, a < 1
2σ

2.
Next we compare this with the second-moment stability result; see also Example 63.2 in the next section

where the same conclusion follows from a Lyapunov stability analysis of the system. From our previous
calculation, x2

t for t ≥ 0 is given by

x2
t = e2(a− 1

2 σ
2)t e2σ

∫ t
0 dws x2

0 .

Then,
E{x2

t } = e(2a+σ2)tE{x2
0},

and we conclude that the system is exponentially second-moment stable if, and only if, (a+ 1
2σ

2) < 0,
or a <− 1

2σ
2. Therefore, unlike deterministic systems, even though moment stability implies almost sure

(sample path) stability, almost sure stability need not imply moment stability of the system. For the system
Equation 63.1, the pth moment is exponentially stable if and only if a < 1

2σ
2(1− p) where p= 1, 2, 3, . . ..

In the early stages of the development of stability criteria for stochastic systems, investigators were
primarily concerned with moment stability and stability in probability; the mathematical theory for the
study of almost sure (sample path) stability was not yet fully developed. During this initial development
period there was some confusion about the basic stability concepts, their usefulness in applications, and
the relationship among the different stability concepts. Kozin’s survey clarified some of the confusions
and provided a good foundation for further work. During the past 25 years, almost sure (sample path)
stability studies have attracted increasing attention of researchers. This is not surprising because it is the
sample paths rather than moments that are observed in real systems, and the stability properties of the
sample paths can be most closely related to their deterministic counterpart, as argued by Kozin [27].
Practically speaking, moment stability criteria, when used to infer sample path stability, are often too
conservative to be useful in applications.

One of the most fruitful and important advances in the study of stochastic stability is the development of
the theory of Lyapunov exponents for stochastic systems. This is the stochastic counterpart of the notion
of characteristic exponents introduced in Lyapunov’s original work on asymptotic (exponential) stability.
This approach provides necessary and sufficient conditions for almost sure asymptotic (exponential)
stability, but significant computational problems must be solved. The Lyapunov exponent method uses
sophisticated tools from stochastic process theory and other related branches of mathematics, and has the
potential of providing testable conditions for almost sure asymptotic (exponential) stability for stochastic
systems. We will provide an introduction to this approach for analyzing the stability of stochastic systems.

In this chapter, we divide the results into two categories, the Lyapunov function method and the
Lyapunov exponent method.

63.2 Lyapunov Function Method

The Lyapunov function method, known as Lyapunov’s second (direct) method, provides a powerful tool
for the study of stability properties of dynamic systems because the technique does not require solving the
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system equations explicitly. For deterministic systems, this method can be interpreted briefly as described
in the following paragraph.

Consider a nonnegative continuous function V (x) on R
n with V (0)= 0 and V (x) > 0 for x �= 0.

Suppose for some m ∈ R, the set Qm = {x ∈ R
n : V (x) < m} is bounded and V (x) has continuous first

partial derivatives in Qm. Let the initial time t0 = 0 and let x(t)= x(t, x0) be the unique solution of the
initial value problem: {

ẋ(t)= f (x(t)), t ≥ 0,
x(0)= x0 ∈ R

n, f (0)= 0,
(63.3)

for x0 ∈ Qm. Because V (x) is continuous, the open set Qr for r ∈ (0, m] defined by Qr = {x ∈ R
n : V (x) <

r}, contains the origin and monotonically decreases to the singleton set {0} as r → 0+. The total derivative
V̇ (x) of V (x) (along the solution trajectory x(t, x0)) is given by

V̇ (x)= dV (x)

dt
= f T (x) · ∂V

∂x
def= −k(x). (63.4)

If −k(x)≤ 0 for all x ∈ Qm, with k(x) continuous, then V (xt) is a nonincreasing function of t, and
V (x0) < m implies V (x(t)) < m for all t ≥ 0. Equivalently, x0 ∈ Qm implies that xt ∈ Qm, for all t ≥ 0.
This establishes the stability of the zero solution of Equation 63.3 in the sense of Lyapunov, and V (x) is
called a Lyapunov function for Equation 63.3. Let us further assume that k(x) > 0 for x ∈ Qm\{0}. Then
V (x(t)), as a function of t, is strictly monotone decreasing. In this case, V (x(t))→ 0 as t →+∞ from
Equation 63.4. This implies that x(t)→ 0 as t →+∞. This fact can also be seen through an integration
of Equation 63.4, that is,

0 < V (x0)−V (x(t))=
t∫

0

k(xs) ds <+∞ for t ∈ [0,+∞). (63.5)

It is evident from Equation 63.5 that x(t)→ {0} = {x ∈ Qm : k(x)= 0} as t →+∞. This establishes the
asymptotic stability of the trajectories of system Equation 63.3.

The Lyapunov function V (x) can be interpreted as a generalized energy function of the system Equa-
tion 63.3, and the above argument illustrates the physical intuition that if the energy of a physical system
is always decreasing near an equilibrium state, then the equilibrium state is stable.

Since Lyapunov’s original work, this direct method for stability study has been extensively investigated.
The main advantage of the method is that one can obtain considerable information about the stability
of a given system without explicitly solving the system equation. One major drawback of this method is
that for general classes of nonlinear systems a systematic method for constructing a suitable Lyapunov
function does not exist, and stability criteria (usually sufficient conditions) determined using the method
depend critically on the Lyapunov function that is chosen.

The first attempts to generalize the Lyapunov function method to stochastic stability studies were
made by [8] and [24]. A systematic treatment of this topic was later given by [22,30,31] (primarily for
white-noise stochastic systems). The key idea of the Lyapunov function approach for a stochastic system
is the following:

Consider the stochastic system defined on a probability space (Ω, F , P), whereΩ is the set of elementary
events (sample space), F is the σ field that consists of all measurable subsets (events) of Ω, and P is a
probability measure: {

ẋ(t)= f (x(t),ω), t ≥ 0,
x(0)= x0.

(63.6)

It is not reasonable to require that V̇ (x(t))≤ 0 for all ω, where x(t)= x(t, x0,ω) is a sample solution of
Equation 63.6 initial from x0. Note, when t is fixed, x(t, x0,ω) is a random variable on (Ω, F , P), and
when ω is fixed (ω= ω∗), x(t, x0,ω∗) is a deterministic time function. The basic idea to insure “stability”
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of the system is that the time derivative of the expectation of V (x(t)), denoted by LV (x(t)), is nonpositive.
Here, L is the infinitesimal generator of the process x(t). Suppose that the system is Markovian so that
the solution process is a strong, time homogeneous Markov process. Then L is defined by

LV (x0)= lim
Δt→0

Ex0 (V (xΔt))−V (x0)

Δt
(63.7)

where the domain of L is defined as the space of functions V (x) for which Equation 63.7 is well-
defined. This is a natural analog of the total derivative of V (x) along the solution trajectory x(t) in the
deterministic case. Now suppose that, for a Lyapunov function V (x) that satisfies the conditions stated
above, LV (x)≤−k(x)≤ 0. It follows that

0≤ V (x0)−Ex0 V (x(t))= Ex0

t∫
0

k(x(s)) ds =−Ex0

t∫
0

LV (x(s)) ds <+∞ (63.8)

and for t, s > 0
Ex(s)V (x(t+ s))−V (x(s))≤ 0 a.s. (63.9)

Equation 63.9 means that V (x(t)) is a supermartingale, and, by the martingale convergence theorem, we
expect that V (x(t))→ 0 a.s. (almost surely) as t →+∞. This means that x(t)→ 0 a.s. as t →+∞. A
similar argument can be obtained by using Equation 63.8 an analog of Equation 63.5. It is then reasonable
to expect from Equation 63.8 that x(t)→ {x ∈ R

n : k(x)= 0} almost surely. These are the key ideas behind
the Lyapunov function approach to the stability analysis of stochastic systems.

Kushner [30–32] used the properties of strong Markov processes and the martingale convergence the-
orem to study the Lyapunov function method for stochastic systems with solution processes which are
strong Markov processes with right continuous sample paths. A number of stability theorems were devel-
oped in these works and the references therein. Kushner also presented various definitions of stochastic
stability. The reader should note that his definition of stability “with probability one” is equivalent to
the concept of stability in probability introduced earlier here. Also, asymptotic stability “with probability
one” means stability “with probability one” and sample path stability, that is, x(t)→ 0 a.s. as t →+∞.
The key results of Kushner are based on the following supermartingale inequality that follows directly
from Equation 63.8 where x0 is given:

Px0{ sup
0≤t<+∞

V (x(t))≥ ε} ≤ V (x0)

ε
. (63.10)

From this, the following typical results were obtained by Kushner. For simplicity, we assume that x(t) ∈
Qm almost surely for some m > 0 and state these results in a simpler way.

Theorem 63.1: Kushner

1. Stability “with probability one”:
If LV (x)≤ 0, V (x) > 0 for x ∈ Qm\{0}, then the origin is stable “with probability one”.

2. Asymptotic stability “with probability one”:
If LV (x)=−k(x)≤ 0 with k(x) > 0 for x ∈ Qm\{0} and k(0)= 0, and if for any d > 0 small, εd > 0
exists so that k(x)≥ d for x ∈ {Qm : ‖x‖ ≥ εd}, then the origin is stable “with probability one” and

Px0{x(t)→ 0 as t →+∞} ≥ 1− V (x0)

m
.

In particular, if the conditions are satisfied for arbitrarily large m, then the origin is asymptotically
stable “with probability one.”
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3. Exponential asymptotic stability “with probability one”:
If V (x)≥ 0, V (0)= 0 and LV (x)≤−αV (x) on Qm for some α> 0, then the origin is stable “with
probability one,” and

Px0

{
sup

T≤t<+∞
V (x(t))≥ λ

}
≤ V (x0)

m
+ V (x0)e−αT

λ
, ∀T ≥ 0.

In particular, if the conditions are satisfied for arbitrarily large m, then the origin is asymptotically
stable “with probability one,” and

Px0

{
sup

T≤t<+∞
V (x(t))≥ λ

}
≤ V (x0)e−αT

λ
.

Many interesting examples were also developed in Kushner’s work to demonstrate the application
of the stability theorems. These examples also illustrated some construction procedures for Lyapunov
functions for typical systems.

Example 63.2: Kushner

Consider the scalar Ito equation

dx(t)= ax(t) dt+ σx(t) dw(t) (63.11)

where w(t) is a standard Wiener process. The infinitesimal generator for the system is given by

L= 1
2
σ2x2 d2

dx2 + ax
d

dx
. (63.12)

If the Lyapunov function candidate is V (x)= x2, then

LV (x)= (σ2+ 2a)x2. (63.13)

If σ2+ 2a < 0, then with Qm = {x : x2 < m2}, from (1) of the previous theorem, the zero solution is
stable “with probability one.” Let m→+∞. By (2) of the theorem,

lim
t→∞ x(t)= 0 a.s. (63.14)

where x(t) is the solution process of Equation 63.11. By (3) of the theorem,

Px0 { sup
T≤t<+∞

x2
t ≥ λ} ≤

V (x0)e−αT

λ
(63.15)

for some α> 0.

Remark 63.1

As calculated in the previous section, the asymptotic exponential growth rate of the process is

λ= lim
t→∞

1

t
log

x(t)

x0
= (a− 1

2
σ2)+ lim

t→∞
σ

t

t∫
0

dw(s)= a− 1

2
σ2.

We conclude that the system is almost surely exponentially stable in the sense that

Px0

{
lim

t→∞ x(t)= 0, at an exponential rate a.s.
}
= 1,

if, and only if, a < 1
2σ

2. Compare this with the stability result a <− 1
2σ

2, given above, using the Lyapunov
function method. Note that a <− 1

2σ
2 is actually the stability criterion for second-moment stability,

which is a conservative estimate of the almost sure stability condition a < 1
2σ

2.
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Has’minskii [22] and the references cited therein, provide a comprehensive study of the stability of
diffusion processes interpreted as the solution process of a stochastic system governed by an Ito stochastic
differential equation of the form,

⎧⎨
⎩

dx(t)= b(t, x) dt+
k∑

r=1
σr(t, x) dζr(t), t ≥ s

x(s)= xs,
(63.16)

where ζr(t) are independent standard Wiener processes and the coefficients b(t, x) and σr(t, x) satisfy
Lipschitz and growth conditions. In this case, the infinitesimal generator L of the system (associated
with the solution process) is a second-order partial differential operator on functions V (t, x) that are
twice continuously differentiable with respect to x and continuously differentiable with respect to t. L is
given by

LV (t, x)= ∂V

∂t
+

n∑
i=1

bi(t, x)
∂V

∂xi
+ 1

2

n∑
i j=1

aij(t, x)
∂2V

∂xi∂xj
. (63.17)

The key idea of Has’minskii’s approach is to establish an inequality like Equation 63.10 developed in
Kushner’s work. Below are some typical results obtained by Has’minskii; the reader is referred to [22] for
a more detailed development.

Let U be a neighborhood of 0 and U1 = {t > 0}×U . The collection of functions V (t, x) defined in U1,
that are twice continuously differentiable in x except at the point x = 0 and continuously differentiable
in t, are denoted by C0

2(U1). A function V (t, x) is said to be positive definite in the Lyapunov sense if
V (t, 0)= 0 for all t ≥ 0 and V (t, x)≥ ω(x) > 0 for x �= 0 and some continuous function ω(x).

Theorem 63.2: Has’minskii

1. The trivial solution of Equation 63.16 is stable in probability (same as our definition) if there exists
V (t, x) ∈ C0

2(U1), positive definite in the Lyapunov sense, so that LV (t, x)≤ 0 , for x �= 0.
2. If the system Equation 63.16 is time homogeneous, that is, b(t, x)= b(x) and σr(t, x)= σr(x) and if

the nondegeneracy condition,

n∑
i,j=1

aij(x)λiλj > m(x)
n∑

i=1

λ2
i , for λ= (λ1 . . .λn)T ∈ R

n, (63.18)

is satisfied with continuous m(x) > 0 for x �= 0, then a necessary and sufficient condition for the trivial
solution to be stable in probability is that a twice continuously differentiable function V(x) exists,
except perhaps at x = 0, so that

L0V (x)=
n∑

i=1

bi(x)
∂V

∂xi
+

n∑
i,j=1

aij(x)
∂2V (x)

∂xi∂xj
≤ 0

where L0 is the infinitesimal generator of the time homogeneous system.
3. If the system Equation 63.16 is linear, that is, b(t, x)= b(t)x and σr(t, x)= σr(t)x, then the system is

exponentially p-stable (the pth moment is exponentially stable), that is,

Ex0{‖x(t, x0, s)‖p} ≤ A · ‖x‖p exp{−α(t− s)}, p > 0,

for some constant α> 0 if, and only if, a function V(t, x) exists, homogeneous of degree p in x, so that
for some constants ki > 0, i = 1, 2, 3, 4,

k1‖x‖p ≤ V (t, x)≤ k2‖x‖p, LV (t, x)≤−k3‖x‖p,
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and

‖∂V

∂x
‖ ≤ k4‖x‖p−1, ‖∂2V

∂x2 ‖ ≤ k4‖x‖p−2.

In addition to the stability theorems, Has’minskii also studied other asymptotic properties of stochastic
systems and presented many interesting examples that illustrate the stabilizing and destabilizing effects
of random noise in stochastic systems.

Just as in the case of deterministic systems, the Lyapunov function approach has the advantage that
one may obtain considerable information about the qualitative (asymptotic) behavior of trajectories of
the system, in particular stability properties of the system that are of interest, without solving the system
equation. However, no general systematic procedure exists to construct a candidate Lyapunov function.
So even though the theorems, like Has’minskii’s, provide necessary and sufficient conditions for stability,
one may never find the “appropriate” Lyapunov function in a given application to determine the stability
(or instability) of the system. Further, the nature of the stability condition obtained using the Lyapunov
method depends critically on the choice of Lyapunov function that is used. Various techniques have
been proposed by investigators to construct a suitable family of Lyapunov functions to obtain the “best”
stability results. In the following, we summarize some of these efforts.

There are several works related to the stability of linear systems of the form,{
ẋ(t)= [A+ F(t)]x(t); t ≥ 0,
x(0)= x0 ∈ R

n,
(63.19)

with A a stable (Hurwitz) matrix and F(t) a stationary and ergodic matrix-valued random process. This
problem was first considered by Kozin [26] by using the Gronwall–Bellman inequality rather than a
Lyapunov function technique. Kozin’s results were found to be too conservative. Caughey and Gray [12]
were able to obtain better results by using a very special type of quadratic form Lyapunov function. Later,
Infante [23] extended these stability theorems by using the extremal property of the so-called regular
pencil of a quadratic form. The basic idea behind Infante’s work is the following:

Consider the quadratic form Lyapunov function V (x)= x′Px. Then the time derivative along the
sample paths of the system Equation 63.19 is

V̇ (x(t))= x(t)′(F ′(t)P+ PF(t))x(t)− x(t)′Qx(t) (63.20)

where Q is any positive-definite matrix and P is the unique solution of the Lyapunov equation

A′P+ PA=−Q . (63.21)

If λ(t)= V̇ (x(t))
/

V (x(t)), then

V (x(t))= V (x0) exp{
t∫

0

λ(s) ds}. (63.22)

From the extremal properties of matrix pencils,

λ(t)≤ λmax[(A+ F(t))′ +Q(A+ F(t))Q−1]. (63.23)

Here,λmax(K) denotes the largest magnitude of the eigenvalues of the matrix K . By the ergodicity property
of the random matrix process F(t), we have the almost sure stability condition

lim
t→∞

1

t

t∫
0

λ(τ) dτ= E{λ(t)} ≤ E{λmax[(A+ F(t))′ +Q(A+ F(t))Q−1]}< 0.

Man [39] tried to generalize the results of Infante. However, several obvious mistakes can be observed
in the derivation of the theorem and the two examples given in this work.
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Following Infante et al. [29] used distributional properties of the random coefficient matrix F(t) to
obtain improved results for two specific second-order systems in the form,

{
ẍ(t)+ 2βẋ(t)+[c+ f (t)]x(t)= 0,
ẍ(t)+[2β+ g(t)]ẋ(t)+ cx(t)= 0,

(63.24)

where f (t) and g(t) are stationary and ergodic random processes.
Parthasarthy and Evan-Zwanoskii [48] presented an effective computational procedure, using an opti-

mization technique, to apply the Lyapunov type procedure to higher order systems in the form of Equa-
tion 63.19 with F(t)= k(t)G. Here G is a constant matrix and k(t) is a scalar (real-valued) stationary and
ergodic random process. After proper parameterization of the quadratic form Lyapunov function, the
Fletcher–Powell–Davidson optimization algorithm was used to optimize the stability region that depends
on the system data and k(t). A fourth-order system was studied using the suggested procedure, and vari-
ous simulation results were used to show that this procedure yielded a stability region that was not unduly
conservative. Because an optimization procedure was used and the solution of a Lyapunov equation was
required, this procedure required an extensive computational effort.

Wiens and Sinha [56] proposed a more direct method for higher order systems defined as an intercon-
nection of a set of second-order subsystems. Consider the system,

Mẍ(t)+[C0+C(t)]ẋ(t)+[K0+K(t)]x(t)= 0, (63.25)

where M, C0, and K0 are nonsingular n× n matrices and C(t), K(t) are n× n stationary and ergodic
matrix-valued, random processes. The technique for constructing a Lyapunov function suggested by
Walker [55] for deterministic systems was used to construct a quadratic form Lyapunov function V (x̃)
for the deterministic counterpart of Equation 63.25,

(
ẋ1

ẋ2

)
=
(

0 I
−M−1K0 −M−1C0

) (
x1

x2

)
; x̃ �

(
x1

x2

)
∈ R

2n×2n, (63.26)

that is

V (x̃)= x̃′

⎡
⎢⎣ P1

1

2
P′3

1

2
P3 P2

⎤
⎥⎦ x̃; V (x̃) � x̃′Px̃, P′i = Pi > 0, for i = 1, 2,

with a time derivative along sample paths,

V̇ (x̃)= x̃′A0x̃,

where A0 is properly defined and the following choices are made:

P3 = P2M−1C0,

P1 = P2M−1K0+ 1

2
(M−1C0)′P2(M−1C0).

Then, Infante’s approach was used to obtain the following result:

Theorem 63.3: Wiens and Sinha

The system Equation 63.25 is almost surely asymptotically stable (Definition IIa.s. in Section 63.1) in the
large if a positive definite matrix P2 exists so that
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1. P2M−1K0 is positive definite,
2. The symmetric parts of P2M−1C0 and (M−1C0)′P2(M−1K0) are positive definite, and
3. E{λmax[(A0+C(t)+K(t))P−1]}< 0,

where C(t) and K(t) are given by

C(t)=
⎡
⎢⎣

0
1

2
(M−1C0)′P2M−1C(t)

1

2
(M−1C0)′P2M−1C(t) {P2M−1(H)}+ {P2M−1C(t)}′

⎤
⎥⎦

and

K(t)=
[1

2
{(M−1C0)′P2M−1K(t)}+ 1

2
{M−1C0)′P2M−1K(t)}′ {P2M−1K(t)}′

P2M−1K(t) 0

]
.

When applying their results to the second-order system Equation 63.24, Wiens and Sinha [56] obtained
the stability criteria,

E{f 2(t)}< 4β2c, and (63.27)

E{g2(t)}< 4β2c/(c+ 2β2). (63.28)

These results are similar to those obtained by Caughey and Gray [12]. Equation 63.27 is the “opti-
mal” result of Infante, but Equation 63.28 is not. This result is not surprising, because no optimization
procedure was used in deriving the stability criteria. The usefulness of the Wiens and Sinha theorem
was demonstrated by applying their method to higher-order systems (n= 4 and 6 ) that yielded stability
regions of practical significance.

Another research direction for application of the Lyapunov function method is the study of stochastic
feedback systems where the forward path is a time-invariant linear system and the random noise appears
in the feedback path as a multiplicative feedback gain. In this work, Lyapunov functions are constructed
by analogous methods for deterministic systems, for example, the Lyapunov equation, the path-integral
technique and the Kalman–Yacubovich–Popov method. However, most of the results obtained can be
derived by directly using a quadratic form Lyapunov function together with the associated Lyapunov
equation.

Kleinman [25] considered a stochastic system in the form,

dx(t)= Ax(t) dt+Bx(t) dζ(t), (63.29)

where ζ(t) is a scalar Wiener process with E{[ζ(t)− ζ(τ)]2} = σ2 | t− τ | . By using the moment equation
and a quadratic Lyapunov function, the following necessary and sufficient condition for 0 to be “stable
with probability one” (this is the same as Kushner’s definition) was derived:

I ⊗A+A⊗ I + σ2B⊗B

is a stable matrix where “⊗” denotes the Kronecker product of matrices. However, this result should be
carefully interpreted as discussed by Willems [58].

Willems [58,59] studied the feedback system in the form,

{
dx(t)= (A0x(t)− kbcx(t)) dt− bcx dζ(t),
x(0)= x0 ∈ R

n,
(63.30)

with ζ(t) a scalar-valued Wiener process with E{[ζ(t)− ζ(τ)]2} = σ2 | t− τ |, that is, a system consisting
of a linear time-invariant plant in the forward path with rational transfer function H(s) and minimal
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realization (A0, b, c), and a multiplicative feedback gain that is the sum of a deterministic constant k
and a stochastic noise component ζ(t). Suppose the system is written in companion form with state
x(t)= (y(t), Dy(t), . . . Dn−1y(t)) where D = d/dt and y(t)= cx(t) is the scalar output. The closed-loop
transfer function is

G(s)= c(sI −A0− kbc)−1b= q(s)

p(s)
(63.31)

with p(s) and q(s) relatively prime because the realization is minimal. Then, the input–output relation
can be written in the form,

p(D)y(t) dt+ q(D)y(t) dζ(t)= 0. (63.32)

Willems observed that if a positive-definite quadratic form V (x) was used as a Lyapunov function, then,
following Kushner, LV (x) is the sum of a “deterministic part” obtained by setting the noise equal to
zero and the term 1

2σ
2(q(D)y)2(∂2V/∂x2

n) (xn = Dn−1y). Here, L is the infinitesimal generator of the
system. To guarantee the negativity of LV (x) to assure stability, using Equation 63.32, Willems used a
construction technique for a Lyapunov function that was originally developed by Brockett [10], that is

V (x)=
t(x)∫

t(0)

[p(D)yh(D)y− (q(D)y)2] dt

where the polynomial h(s)= sn+ hn−1sn−1+ · · ·+ h0 is the unique solution (assuming p(s) is strictly
Hurwitz) of

1

2
[h(s)p(−s)+ h(−s)p(s)] = q(s)q(−s)

so that

LV (x)=−(q(D)y)2+ 1

2
hn−1σ

2(q(D)y)2.

By applying Kushner’s results, Willems obtained the following theorem:

Theorem 63.4: Willems

1. The origin is mean-square stable in the large (in the sense that R(t)= E{x(t)x′(t)}< M <+∞ for
t ≥ 0, x0 ∈ R

n and sup
t≥0
‖R(t)‖→ 0 as ‖R(0)‖→ 0) and stable “with probability one” (in Kushner’s

sense) in the large, if p(s) is strictly Hurwitz and

σ2hn−1

2
≤ 1. (63.33)

Moreover, the following identity holds:

σ2hn−1

2
= σ2

∞∫
0

[g(t)]2 dt = σ2

2π

+∞∫
−∞

| G(iω) |2 dw

where g(t) is the impulse response of the closed-loop (stable) deterministic system and g(t) and G(s)
are Laplace transform pairs.

2. If the inequality Equation 63.33 holds, the stability of the origin as indicated in condition 1 above is
asymptotic.
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Brockett and Willems [11] studied the linear feedback system given by

ẋ(t)= Ax(t)−BK(t)Cx(t) (63.34)

where (A, B, C) is a completely symmetric realization, that is, AT = A ∈ R
n×n, B= C′ ∈ R

n×m, and
K(t) ∈ R

m×n is a stationary ergodic matrix process. By using a quadratic Lyapunov function, the specific
properties of a completely symmetric system, and the well-known Kalman–Yacubovich–Popov Lemma,
they obtained the following stability theorem:

Theorem 63.5: Brockett and Willems

For the system Equation 63.34,

1. If K(t)= K ′(t) almost surely and

λmax = E{λmax(A−BK(t)C)}< 0,

then the origin is almost surely asymptotically stable (in the sense that lim
t→+∞ x(t)= 0 a.s.). In partic-

ular, if m= 1, which is analogous to a single input–single output system, then

λmax =
∞∫

Z1

σp

(
− 1

g(σ)

) ∣∣∣∣∂g(σ)
/
∂σ

g2(σ)

∣∣∣∣ dσ

where Z1 is the largest zero of the open-loop transfer function g(s)= C(sI −A)−1B and p(·) is the
density function of K(0).

2. If m= 1 and

g(s)= C(sI −A)−1B= qn−1sn−1+ · · ·+ q0

sn+ pn−1sn−1+ · · ·+ p0
,

the origin is almost surely asymptotically stable if a constant β exists so that
a. E{min(β, K(t))}> 0,
b. The poles of g(s) lie in Re{s}<−qn−1β,
c. The locus of G(iω− qn−1β),−∞< ω<+∞, does not encircle or intersect the closed disc

centered at
(−1/2β, 0

)
with radius 1

/
2β in the complex plane.

Mahalanabis and Purkayastha [38] as well as Socha [53], applied techniques similar to Willems and
Willems and Brockett to study nonlinear stochastic systems. Readers should consult their papers and the
references cited therein for more details on this approach.

An extension of Kushner’s and Has’minskii’s work on the Lyapunov function approach uses the
Lyapunov function technique to study large-scale stochastic systems. The development of large-scale
system theory in the past several decades was an impetus for these studies. The Lyapunov function
technique of Kushner and Has’minskii is based on the use of scalar, positive-definite functions and is
not effective for large-scale systems. As in the deterministic case, the difficulties are often overcome, if a
vector positive-definite function is used. Michel and Rasmussen [40,41,51] used vector valued positive-
definite functions to study various stability properties of large-scale stochastic systems. Their approach
was to construct a Lyapunov function for the complete system from those of the subsystems. Stability
properties were studied by investigating the stability properties of the lower order subsystems and the
interconnection structure. Ladde and Siljak in [33] and Siljak [52] established quadratic mean stability
criteria by using a positive-definite vector Lyapunov function. This is an extension of the comparison
principle developed by Ladde for deterministic systems to the stochastic case. In these works, a linear
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comparison system was used. Bitsris [9] extended their work by considering a nonlinear comparison
system. White noise systems were studied in all of the above works. Socha [54] investigated a real noise
system where the noise satisfied the law of large numbers. Has’minskii’s result [22] was extended to a
large-scale system in this work. Interested readers are referred to the original papers and references cited
therein.

63.3 The Lyapunov Exponent Method and the Stability
of Linear Stochastic Systems

One of the major advances in the study of stochastic stability during the past several decades is the
application of the Lyapunov exponent concept to stochastic systems. This method uses sophisticated
mathematical techniques to study the sample behavior of stochastic systems and often yields necessary
and sufficient conditions for almost sure (sample) stability in the sense that

lim
t→∞‖x(t, x0,ω)‖ = 0 a.s. (63.35)

Because this method focuses on the sample path behavior of a stochastic system, rather than the moments,
it has the greatest potential for applications in science and engineering. In this section we present a
summary of this method along with selected results.

After the introduction of the concept of Lyapunov exponents by Lyapunov [37], this concept has
formed the foundation for many investigations into the stability properties of deterministic dynamical
systems. However, it is only recently that the Lyapunov exponent method has been used to study almost
sure stability of stochastic systems. The setup is as follows:

Consider the continuous time linear stochastic system defined by{
ẋ(t)= A(t,ω)x(t), t ≥ 0,
x(0)= x0 ∈ R

d .
(Σc)

Let x(t, x0,ω) denote the unique sample solution of (Σc) initial from x0 for almost all ω ∈Ω. (We always
denote the underlying probability space by (Ω, F , P)). The Lyapunov exponent λω(x0) determined by x0

is defined by the random variable,

λω(x0)= limt→+∞
1

t
log ‖x(t, x0,ω)‖, (63.36)

for (Σc). Although x0 can be a random variable, for simplicity we will concern ourselves primarily with
the case where x0 is nonrandom and fixed.

In the case A(t,ω)= A(t) is a deterministic R
d×d-valued continuous bounded function, Lyapunov [37]

proved the following fundamental result for the exponent λ(x0) for the system,

ẋ(t)= A(t)x(t) : (Σ)

1. λ(x0) is finite for all x0 ∈ R
d\{0}.

2. The set of real numbers which are Lyapunov exponents for some x0 ∈ R
d\{0} is finite with cardi-

nality p, 1≤ p≤ d;
−∞< λ1 < λ2 < · · ·< λp <+∞, λi ∈ R∀i.

3. λ(cx0)= λ(x0) for x0 ∈ R
d\{0} and c ∈ R\{0}. λ(αx0+ βy0)≤max{λ(x0),λ(y0)} for x0, y0 ∈

R
d\{0} and α, β ∈ R with equality if λ(x0) < λ(y0) and β �= 0. The sets Li = {x ∈ R

d\{0}: λ(x)=
λi}, i = 1, 2, . . . , p, are linear subspaces of R

d , and {Li}pi=0 is a filtration of R
d , that is,

{0} Δ= L0 ⊂ L1 ⊂ · · · ⊂ Lp = R
d

where di
Δ= dim(Li)− dim(Li−1) is called the multiplicity of the exponent λi for i = 1, 2, . . . , p and

the collection {(λi , di)}pi=1 is referred to as the Lyapunov spectrum of the system (Σ). We have the



�

�

�

�

� �

63-16 Control System Advanced Methods

relation

p∑
i=1

diλi ≤ limt→+∞
1

t
log ‖Φ(t)‖ ≤ limt→+∞

1

t
log ‖Φ(t)‖ (63.37)

where Φ(t) is the transition matrix of (Σ). The system is said to be (forward) regular if the two
inequalities in Equation 63.37 are equalities. For a forward regular system the lim and lim can be
replaced by lim .

For the stochastic system (Σc) withω ∈Ω fixed, the relationship given in Equation 63.36 implies that if
λω(x0) < 0, then the sample solution x(t, x0,ω) will converge to zero at the exponential rate |λω(x0)| and,
ifλω(x0) > 0, then the sample solution x(t, x0,ω) cannot remain in any bounded region of R

d indefinitely.
From this we see that λω(x0) contains information about the sample path stability of the system and as
we will see later, in many cases a necessary and sufficient condition for sample path (almost sure) stability
is obtained.

Arnold and Wihstutz [5] have given a detailed survey of research work on Lyapunov exponents. The
survey is mathematically oriented and presents a summary of general properties and results on the topic.
Readers are encouraged to refer to Arnold and Wihstutz [5] for more details. Our focus, however, is more
on the application of Lyapunov exponents to the study of stability of stochastic systems.

The fundamental aspects of the Lyapunov exponent method were applied to stochastic systems by
Furstenberg, Oseledec, and Has’minskii. We will briefly review the work of Oseledec and Furstenberg
and then focus attention on the work of Has’minskii, that best illustrates the application of the Lyapunov
exponent to the study of stochastic stability.

The random variables λω(x0) given in Equation 63.36 are simple, nonrandom constants under certain
conditions, for example, stationarity and ergodicity. This is a major consequence of the multiplicative
ergodic theorem of Oseledec [46] that establishes conditions for the regularity of stochastic systems. In
his original work, Lyapunov used the regularity of (Σ) to determine the stability of a perturbed version
of the system (Σ) from the stability of (Σ). Although regularity is usually very difficult to verify for a
particular system, Oseledec proved an almost sure statement about regularity. Because of our interest in
the stability of stochastic systems, the theorem can be stated in the following special form for (Σc), see
Arnold et al. [2].

Theorem 63.6: Multiplicative Ergodic Theorem: Oseledec

Suppose A(t,ω) is stationary with finite mean, that is, E{A(0,ω)}<∞. Then for (Σc), we have

1. State-space decomposition:
For almost all ω ∈Ω, an integer r = r(ω) exists with 1≤ r(ω)≤ d, real numbers λ1(ω) < λ2(ω) <

· · ·< λr(ω), and linear subspaces (Oseledec spaces) E1(ω), . . . , Er(ω) with dimension di(ω)=
dim[Ei(ω)] so that

R
d =

r⊕
i=1

Ei(ω)

and

lim
t→+∞

1

t
log ‖Φ(t,ω)x0‖ = λi(ω), if x0 ∈ Ei(ω)

whereΦ(t,ω) is the transition matrix of (Σc) and “
⊕

” denotes the direct sum of subspaces.
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2. Domain of attraction of Ei(ω):

lim
t→+∞

1

t
log ‖Φ(t,ω)x0‖ = λi(ω), iff x0 ∈ Li(ω)\Li−1(ω),

where Li(ω)=⊕i
j=1 Ej(ω).

3. Center of gravity of exponents:

r(ω)∑
i=1

di(ω)λi(ω)= lim
t→+∞

1

t
log

∣∣ detΦ(t,ω)
∣∣= trE{A0(ω)

∣∣F̃ }

where F̃ is the σ algebra generated by the invariant sets of A(t,ω).
4. Invariance property: If A(t,ω) is ergodic as well, then the random variables r(ω),λi(ω), and di(ω),

i = 1, 2, . . . , r, are independent of ω and are nonrandom constants.

Note that under the current assumptions, all lim are actually lim and (3) is equivalent to the almost
sure regularity of the stochastic system (Σc). Oseledec’s theorem is a very general result and the above
is a special version for the system (Σc). A detailed statement of the theorem is beyond the scope of this
chapter. As far as sample path (almost sure) stability is concerned, the sign of the top exponent λr is of
interest. We present a simple example to illustrate the application of the theorem.

Example 63.3:

Consider the randomly switched linear system⎧⎨
⎩

ẋ(t)= 1
2

(1− y(t))A−1x(t)+ 1
2

(1+ y(t))A1x(t), t ≥ 0,

x(0)= x0,
(63.38)

where

A−1 =
[−a 0

0 −b

]
, A1 =

[
c 1
0 c

]
, 0 < b < a <+∞ 0 < c <+∞, (63.39)

and y(t) ∈ {−1,+1} is the random telegraph process with mean time between jumps α−1 > 0. Then,

eA−1t =
[

e−at 0
0 e−bt

]
, (63.40)

and

eA1t =
[(

ect tect

0 ect

)]
. (63.41)

The phase curves of these two linear systems are as shown in Figure 63.1.

It is easy to verify that, for x0 ∈ R
2\{0},

λω(x0)= lim
t→+∞

1

t
log ‖x(t, x0,ω)‖ = α · lim

k→∞
1

k
log ‖eAy(k)τ

(k) · · · eAy(1)τ
(1)

x0‖ a.s. (63.42)

and

λω(R2)
def= lim

t→+∞
1

t
log ‖ detΦ(t,ω)‖ = α lim

k→∞
1

k
log ‖ det

(
eAy(k)τ

(k) · · · eAy(1)τ
(1))‖ a.s. (63.43)

where {y(k) : k ≥ 1} is the embedded Markov chain of y(t) and {τ(k) : k ≥ 1} is a sequence of i.i.d. random
variables exponentially distributed with parameter α, and independent of {y(k) : k ≥ 1}. Because y(t) is
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x2

x1

FIGURE 63.1 Phase curves.

stationary and ergodic with unique stationary (invariant) distribution P{y(t)= 1} = P{y(t)=−1} = 1
2 ,

Oseledec’s theorem applies and a F -set N0 exists with P(N0)= 0 and two real numbers λ1 and λ2 (with
possibly λ1 = λ2) so that

λω(x0) ∈ {λ1,λ2} for x0 ∈ R
2\{0} and ω ∈Ω\N0 (63.44)

From Equations 63.40, 63.41, and 63.43 and the law of large numbers,

λω(R2)= α · lim
k→∞

1

k
log e−(a+b)(τ(1)+···+τ(ik )) · e2c(τ(1)+···+τ(k−ik )),

=−(a+ b)α lim
k→∞

1

k
(τ(1)+ · · ·+ τ(ik))+ 2cα lim

k→∞
1

k
(τ(1)+ · · ·+ τ(k−ik)),

=− (a+ b)

2+ c
a.s. (63.45)

Here ik is the number of times that y(j) takes the value −1 in k steps and {τ(i), τ(j); i, j ≥ 1} is a sequence
of i.i.d. random variables exponentially distributed with parameter α.

Because E = span {e1 = (1, 0)T } is a common eigenspace of eA−1t and eA1t , by the law of large numbers,
it is clear that for any x0 ∈ E\{0},

λω(x0)=−1

2
a+ 1

2
c a.s. for x0 ∈ E\{0}. (63.46)

From (3) of the theorem, Equations 63.45 and 63.46, we obtain

λ1 = 1

2
c− 1

2
a and λ2 = 1

2
c− 1

2
b (63.47)

(with λ1 < λ2). We can identify the following objects in Oseledec’s theorem:

⎧⎪⎨
⎪⎩

r = 2, E1(ω)= E, for ω ∈Ω\N1,

d1 = 1, E2(ω)= E⊥ = span {e2 = (0, 1)T }, for ω ∈Ω\N1,

d2 = 1, L1(ω)= E, L2(ω)= R
2, for ω ∈Ω\N1,

(63.48)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-74&iName=master.img-000.jpg&w=188&h=173
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where N1 is a F -set with P(N1)= 0 and{
λω(x0)= λ1, for x0 ∈ E\{0} and ω ∈Ω\N1,
λω(x0)= λ2, for x0 ∈ R

2\E and ω ∈Ω\N1.
(63.49)

From Equation 63.49 it follows that the system Equation 63.38 is almost surely exponentially stable in
the sense that

P{‖x(t,ω, x0)‖→ 0 as t →+∞, at an exponential rate } = 1

if and only if λ2 < 0 (iff c < b). Note that the system is almost surely exponentially unstable if and only if
λ1 > 0 (iff c > 0).

We remark here that we can compute λ1 and λ2 directly using Equation 63.46 and the center of gravity
of the exponent relation for this simple system. An interesting question is what happens if b > a. In
this case, the top exponent is 1

2 c− 1
2 a and only the top exponent in Oseledec’s theorem is physically

“realizable” in the sense that there exists a x0 ∈ R
2 so that

P{λω(x0)= 1

2
c− 1

2
a}> 0.

Actually, it follows from Feng and Loparo [14,15] that λω(x0)= 1
2 c− 1

2 a a.s. for any x0 ∈ R
2\{0} in this

case.
Motivated by Bellman [7], Furstenberg and Kesten [16], as a starting point, studied the product of

random matrices and generalized the classical law of large numbers of an i.i.d. sequence of random
variables. They showed that under some positivity conditions of the entries of the matrices, the random
variable n−1 log ‖Xn . . . X1‖ tended to a constant almost surely for a sequence of i.i.d. random matrices
{Xk}∞k=1. Furstenberg [17,18] went one step further and showed that, if Xi ∈ G, for all i, where G is a
noncompact semisimple connected Lie group with finite center, there exists a finite-dimensional vector
space of functions (ψ(·), rather than just log ‖ · ‖) so that n−1ψ(Xn . . . X1) tended to a constant αψ
(known as Furstenberg’s constant) almost surely as n→+∞. These studies also considered the action
of the group G on certain manifolds, for example, P

d−1 ⊂ R
d (the projective sphere in R

d , that is, P
d−1

is obtained by identifying s and −s on the unit sphere Sd−1 in R
d). Furstenberg showed that under a

certain transitivity or irreducibility condition, there exists a unique invariant probability measure ν for
the Markov chain Zn = Xn ∗ . . . ∗X1 ∗Z0, which evolves on P

d−1, with common probability measure μ
for Xi ∈ G (here, “ ∗ ” denotes the action of G on P

d−1) and for any x0 ∈ R
d\{0}, the Lyapunov exponent

λω(x0)= lim
n→∞

1

n
log ‖Xn ∗ · · · ∗X1 ∗ x0‖ =

∫ ∫

G×Pd−1

log ‖g ∗ z‖μ(dg)ν(dz). (63.50)

Furstenberg’s works developed deep and significant results and Equation 63.50 is a prototype for
computing the Lyapunov exponent in most of the later work that followed. The following simple discrete-
time example due to Has’minskii best illustrates Furstenberg’s idea.

Example 63.4: Has’minskii

Consider a discrete time system, xn+1 = An(ω)xn, with {An(ω)}∞n=1, a sequence of i.i.d. random
matrices. Let {

ρn = log ‖xn‖, and
ϕn = ‖xn‖−1xn ∈ Sd−1.

Then,

ρn = log ‖xn‖ = ρn−1+ log ‖Anρn−1‖ = ρ0+
n∑

k=1

log ‖Akϕk−1‖.
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Because {An}∞n=1 are independent, {An,ϕn−1}∞n=1 forms a Markov chain in R
d×d × Sd−1. If

{Anϕn−1}∞n=1 is ergodic, the law of large number gives

λω(x0)= lim
n→∞

1
n
ρn = lim

n→∞
1
n

n∑
i=1

log ‖Aiϕi−1‖ = E{log ‖Aϕ‖}

=
∫ ∫

Rd×d×Sd−1

log ‖Aϕ‖μ(dA)ν(dϕ) a.s.

where μ is the common probability measure of {Ai}∞i=1 and ν is the unique invariant probability

measure of ϕn with respect to μ, (i.e., ν is such that if ϕ0 is distributed according to ν on Sd−1, then
ϕ1 = ‖A1ϕ0‖−1A1ϕ0 has the same distribution ν on Sd−1).

Has’minskii [20] generalized Furstenberg’s idea to a linear system of Ito stochastic differential equations
and obtained a necessary and sufficient condition for the almost sure stability of the system:

⎧⎨
⎩

dx(t)= Ax(t) dt+
m∑

i=1
Bix(t) dξi(t), t ≥ 0

x(0)= x0

(63.51)

where ξi(t) are independent standard Wiener processes. The process x(t) is then a Markov diffusion
process with the infinitesimal generator

Lu= 〈Ax, ux〉+ 1

2

d∑
i,j=1

σij(x)
∂2u

∂xi∂xj (63.52)

where u is a real-valued twice continuously differentiable function, ux = ∂u/∂x, 〈·, ·〉 is the standard inner
product on R

d , and

Σ(x)= (σij(x))d×d =
m∑

i=1

Bixx′B′i (63.53)

By introducing the polar coordinates, ρ= log ‖x‖ and ϕ= ‖x‖−1x for x �= 0, and applying Ito’s differen-
tiation rule,

dρ(t)= Q(ϕ(t)) dt+
m∑

i=1

ϕ(t)′Biϕ(t) dξi(t) (63.54)

dϕ(t)=H0(ϕ(t)) dt+
m∑

j=1

Hj(ϕ) dξj(t) (63.55)

where

Q(ϕ(t))= ϕ(t)′Aϕ(t)+ 1

2
trΣ(ϕ(t))−ϕ(t)′Σ(ϕ(t))ϕ(t)

and H0(ϕ(t)), Hi(ϕ(t)) are projections of the linear vector fields Ax and Bix on R
d\{0} onto Sd−1. Then

from Equation 63.55 we see that ϕ(t) is independent of ρ(t) and ϕ(t) is a Markov diffusion process on
Sd−1. Has’minskii assumed a nondegeneracy condition of the form,

(H) α′Σ(x)α≥m‖α‖ · ‖x‖, ∀α ∈ R
m and x ∈ R

d

that guaranteed that the angular process ϕ(t) is an ergodic process on Sd−1 with unique invariant proba-
bility measure ν. Then the time average of the right-hand side of Equation 63.54 is equal to the ensemble
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average, that is,

λω(x0)= lim
t→+∞

1

t

∫ t

0
Q(ϕ(t)) dt = E{ϕ(t)} =

∫
Sd−1

Q(ϕ)ν(dϕ)= J a.s. (63.56)

independent of x0 ∈ R
d\{0}.

Theorem 63.7: Has’minskii

Under condition (H), J < 0 implies that the system Equation 63.51 is almost surely stable. If J > 0, then the
system Equation 63.51 is almost surely unstable and

P{ lim
t→+∞‖x(t, x0,ω)‖ = +∞} = 1.

If J = 0, then

P

{
lim

t→+∞‖x(t, x0,ω)‖ = +∞
}

> 0,

P

{
lim

t→+∞
‖xt(x0,ω)‖<+∞

}
> 0.

To determine the sign of J , the invariant probability measure νmust be found. This can be accomplished
by solving the so-called Fokker–Planck (forward) equation for the density μ of the measure ν. For
simplicity, we consider the two dimensional case (d = 2). It can be shown from Equation 63.55 that the
angular process ϕ(t) satisfies the Ito equation

dϕ(t)=Φ(ϕ(t)) dt+Ψ(ϕ(t)) dxi(t) (63.57)

with xi(t) a standard Wiener process andΦ andΨ appropriate functions of ϕ(t). ϕ(t) has generator

Lϕ =Φ(ϕ)
d

dϕ
+ 1

2
Ψ2(ϕ)

d2

dϕ2 . (63.58)

Then, the Fokker–Planck equation for μ is

L∗ϕμ=
1

2

d2

dϕ2 (Ψ2(ϕ)μ)− d

dϕ
(Φ(ϕ)μ)= 0 (63.59)

with normalization and consistency constraints

2π∫
0

μ(ϕ)dϕ= 1, μ(0)= μ(2π). (63.60)

Condition (H) guarantees that Equation 63.59 is nonsingular in the sense that Ψ(ϕ) �= 0 for any
ϕ ∈ Sd−1, and thus admits a unique solution satisfying Equation 63.60. However, even for simple but
nontrivial systems, an analytic solution for the invariant densityμ is very difficult to obtain. The problem
is even more complicated if (H) is not satisfied, and this is more often than not the case in many
applications.

In this situation, singularity on S1 is a result ofΨ(ϕ)= 0 for someϕ ∈ S1 and the Markov diffusion pro-
cess ϕ(t) may not be ergodic on the entire manifold S1. One must then examine each ergodic component
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of S1 to determine a complete description of the invariant probability measure. The law of large numbers
is then used to compute the exponent for each x0 belonging to the ergodic components. Has’minskii
[19–22] presented two second-order examples to illustrate the treatment of ergodic components and
the usefulness of the theorem. In one of the examples it was shown that an unstable linear determinis-
tic system could be stabilized by introducing white noise into the system. This settled a long standing
conjecture about the possibility of stabilizing an unstable linear system using noise. Has’minskii’s work
was fundamental to the later developments of the Lyapunov exponent method for studying stochastic
stability.

Following Has’minskii, Kozin and his coworkers studied the case when the nondegeneracy condi-
tion (H) fails. This work made extensive use of one-dimensional diffusion theory to obtain analytical
and numerical results for second-order linear white-noise systems. Kozin and Prodromou [28] applied
Has’minskii’s idea to the random harmonic oscillator system in the two forms,

d2u(t)

dt2 + (1+ σḂ(t))u(t)= 0, (63.61)

and
d2u(t)

dt2 + 2ξ · du(t)

dt
+ (1+ σḂ(t))u(t)= 0, (63.62)

where Ḃ(t) represents a Gaussian white-noise process. After transforming the systems into an Ito rep-
resentation, they observed that condition (H) is not satisfied with singularities Ψ(±π2 )= 0. Kozin and
Prodromou then used one-dimensional diffusion theory to study the singularities and sample path behav-
ior of the angular process ϕ(t) near the singularities. The angular process traversed the circle in clockwise
direction and was neither trapped at any point, nor did it remain at a singularity +π2 or −π2 for any
positive time interval. Thus, the angular process ϕ(t) was ergodic on the entire circle S1. From the law of
large numbers, they obtained

λω(x0)= J = E{Q(ϕ)} =
E

{
Tr∫
0

Q(ϕ(s)) ds

}
+E{

T�∫
0

Q(ϕ(s)) ds}

E{Tr}+E{T�} a.s.

independent of x0. Tr and T� are Markov times for ϕ(t) to travel the right and left half circles, respectively.
Using the so-called speed and scale measures, they were able to show the positivity of J for Equation 63.61
for σ2 ∈ (0,+∞). This proved the almost sure instability of the random harmonic oscillator with white
noise parametric excitation. For the damped oscillator Equation 63.62, they failed to obtain analytical
results, and the almost sure stability region was determined numerically in terms of the parameters (ξ, σ).

Mitchell [42] studied two second-order Ito differential equations where the condition (H) is satisfied.
By solving the Fokker–Planck equation, he obtained necessary and sufficient conditions for almost sure
stability in terms of Bessel functions. Mitchell and Kozin [43] analyzed the linear second-order stochastic
system in canonical form,

{
ẋ1(t)= x2(t), and
ẋ2(t)=−ω2x1(t)− 2ξωx2(t)− f1(t)x1(t)− f2(t)x2(t).

(63.63)

Here the fi(t) are stationary Gaussian random processes with wide bandwidth power spectral density. After
introducing a correction term due to Wong and Zakai, Equation 63.63 was written as an Ito stochastic
differential equation and Has’minskii’s idea was again applied. Because the angular processϕ(t) is singular,
one-dimensional diffusion theory was used to give a careful classification of the singularities on S1 and the
behavior of the sample path of ϕ(t) near the singularities. The ergodic components were also examined
in detail. The difficulty in the analytical determination of the invariant measures corresponding to the
ergodic components of the angular process was again experienced. An extensive numerical simulation



�

�

�

�

� �

Stability of Stochastic Systems 63-23

was conducted and the almost sure stability regions were represented graphically for different parameter
sets of the system. In this work, the authors provided a good explanation of the ergodic properties of
the angular process ϕ(t) and also illustrated various concepts, such as stabilization and destabilization
of a linear system by noise, by using examples corresponding to different parameter sets. Interestingly,
they provided an example where the sample solutions of the system behaved just like a deterministic
system. Examples were also used to show that the regions for second moment stability may be small
when compared with the regions for a.s. stability, that is, moment stability may be too conservative to be
practically useful. This is one of the reasons why a.s. stability criteria are important.

A more detailed study of the case when the nondegeneracy condition is not satisfied was presented by
Nishioka [45] for the second-order white-noise system given by

dx(t)= Ax(t) dt+B1x(t) dξ1(t)+B2x(t) dξ2(t) (63.64)

with ξi(t), i = 1, 2, independent standard Wiener processes. Results similar to Kozin and his coworkers
were obtained.

Has’minskii’s results were later refined by Pinsky [49] using the so-called Fredholm alternative and
the stochastic Lyapunov function f (ρ,ϕ)= ρ+ h(ϕ) in the following manner. From the system Equa-
tion 63.51 with the generator Equation 63.52, Pinsky observed that

Lf (ρ,ϕ)= Lρ(ρ)+Lϕ[h(ϕ)] (63.65)

that is, the action of L on f (ρ,ϕ) separates L into the radial part Lρ and the angular part Lϕ. Furthermore,
Lρ(ρ)= v(ϕ) is a function of ϕ only, and Lϕ is a second-order partial differential operator that generates
a Markov diffusion process on Sd−1. If Has’minskii’s nondegeneracy condition (H) is satisfied, then Lϕ
is ergodic and satisfies a Fredholm alternative, that is, the equation

Lϕh(ϕ)= g(ϕ) (63.66)

has a unique solution, up to an additive constant, provided that

∫

Sd−1

g(ϕ)m(dϕ)= 0 (63.67)

with m being the unique invariant probability measure of the process ϕ(t) on Sd−1. Define

q=
∫

Sd−1

v(ϕ)m(dϕ). (63.68)

Choose h(ϕ) as a solution of Lϕh(ϕ)= q− v(ϕ). From Ito’s formula, Pinsky obtained

ρ(t)+ h(ϕ(t))= ρ0+ h(ϕ0)+
t∫

0

Lf (ρ(s),ϕ(s)) ds+Mt = ρ0+ h(ϕ0)+ qt+Mt (63.69)

where

Mt =
t∫

0

H(ϕ(s)) dξ(s))

for an appropriate function H on Sd−1. Mt is a zero-mean martingale with respect to the σ-algebra gener-
ated by the process {ϕt , t ≥ 0} and lim

t→+∞
1
t Mt = 0 a.s. Thus, upon dividing both sides of Equation 63.69
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by t and taking the limit as t →+∞,

λω(x0)= lim
t→+∞

1

t
ρ(t)= q a.s. (63.70)

Loparo and Blankenship [35], motivated by Pinsky, used an averaging method to study a class of linear
systems with general jump process coefficients

ẋ(t)= Ax(t)+
m∑

j=1

yj(t)Bjx(t) (63.71)

with A′ = −A and y(t)= (y1(t) . . . ym(t))′ is a vector-valued jump process with bounded generator Q.
Using the transformation zt = e−Atx(t), ρ(t)= log ‖z(t)‖ = log ‖x(t)‖, and ϕ(t)= ‖z(t)‖−1z(t), the
system was transformed into a system of equations involving (ρ(t),ϕ(t)) that are homogeneous in
y = (y1(t) . . . ym(t))′ but inhomogeneous in time. Thus, an artificial process τ(t) was introduced so
that [ρ(t),ϕ(t), τ(t), y(t)] is a time-homogeneous Markov process. Using the averaging method and the
Fredholm alternative, a second-order partial differential operator L was constructed. L is the generator
of a diffusion process on R× Sd−1. Applying Pinsky’s idea they obtained

q=
∫

Sd−1

Lρ(ρ)m(dθ)=
∫

Sd−1

v(θ)m(dθ) (63.72)

where m is the unique invariant probability measure on Sd−1 for the diffusion ϕt generated by Lϕ.
Unfortunately, q is not the top Lyapunov exponent for the system and cannot be used to determine the
a.s. stability properties of the system. This can be easily verified by considering the random harmonic
oscillator

ü(t)+ k2(1+ by(t))u(t)= 0 (63.73)

with y(t) ∈ {−1,+1} a telegraph process with mean time between jumps λ−1 > 0. The formula for q is

q= k2λb2

8(k2+λ2)
a.s. (63.74)

independent of x0 ∈ R
2\{0}. This is only the first term in an expansion for the Lyapunov exponentλω(x0);

see the discussion below. Thus Equations 63.72 and 63.74 do not provide sufficient conditions for almost
sure stability or instability.

Following Loparo and Blankenship’s idea, Feng and Loparo [13,36] concentrated on the random
harmonic oscillator system Equation 63.73. By integration of the Fokker–Planck equation, the positivity
ofλω(x0)= λwas established for any k,λ ∈ (0,+∞) and b ∈ (−1, 1)\{0}. Thus, the system Equation 63.73
is almost surely unstable for any k,λ, and b as constrained above. To compute the Lyapunov exponent λ
explicitly (it is known that λω(x0)= λ= constant a.s. for any x0 ∈ R

2\{0}), the following procedure was
used. As usual, introducing polar coordinates ρ= log ‖x‖, ϕ= ‖x‖−1x, where x = (ku, u̇)′, the system
becomes {

ρ̇(t)= y(t)g0(ϕ(t)) and
ϕ̇(t)= h(ϕ(t), y(t))

(63.75)

for some smooth functions g0 and h on S1. The Markov process (ρ(t),ϕ(t), y(t)) has generator

L= Q+Aϕ · ∂

∂ϕ
+ y

[
g0(ϕ)

∂

∂ρ
+ h(ϕ)

∂

∂ϕ

]
Δ= L1+L2

where L1 = Q+Aϕ · ∂/∂ϕ satisfies a Fredholm alternative. When L acts on the function, F = ρ+ h(ϕ)+
f1(y,ϕ), where f1(y,ϕ) is a correction term introduced in the work of Blankenship and Papanicolaou,
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see [13] for details, {
LF = q0+L2h(ϕ) and
q0 = πL2f1(y,ϕ)= π[v(ϕ)]. (63.76)

In Equation 63.76 the correction term is chosen as the solution of L1f1 =−yg0(ϕ), and L2f1 = v(ϕ) is
a function of ϕ only. Here, π is the uniform measure on S1, and h(ϕ) is the solution of Aϕ · ∂h/∂ϕ=
[v(ϕ)−πv(ϕ)]. It follows that L2h(ϕ)= yg1(ϕ) and a martingale convergence argument gives

λ= lim
t→+∞

1

t
ρ(t),= q0+ lim

t→+∞
1

t

t∫
0

(L2h)(s)(ϕ(s)) ds,= q0+λ1,

where λ1 is the Lyapunov exponent of the system,

{
ρ̇(t)= L2h(ϕ(t))= y(t)g1(ϕ(t)) and
ϕ̇(t)= h(ϕ(t), y(t)).

(63.77)

Noting the similarity between the systems given by Equations 63.75 and 63.77, the above procedure can
be repeated for Equation 63.77. Hence,

λ= q0+λ1 = q0+ (q1+λ2)=
∞∑

k=0

qk

The absolute convergence of the above series for any k,λ ∈ (0,+∞), and b ∈ (−1, 1) was proved by using
Fourier series methods, and a formula for the general term qk was obtained. To third-order (b6), Feng
and Loparo obtained

λ= k2λb2

8(k2+λ2)
+ 5k4λb4

64(k2+λ2)2 +
k4λb6

8× 162(λ2+ k2)2

[
k2
(

75

k2+λ2 +
160

λ2+ rk2 +
21

λ2+ 9k2

)

−λ2
(

25

k2+λ2 +
32

λ2+ 4k2 +
3

λ2+ 9k2

)]
+

∞∑
n=3

qn. (63.78)

In the formulas for the Lyapunov exponent obtained by most researchers, for example, Has’minskii
for Equation 63.56, computation of an invariant probability measure was always required to determine
the exponent. This is a very difficult problem that was overcome in the work of Feng and Loparo by
sequentially applying the Fredholm alternative for the simple, but nontrivial, random harmonic oscillator
problem. Due to the difficulty involved with the analytical determination of the invariant probability
measure, several researchers have attacked the problem by using an analytic expansion and perturbation
technique; some of these efforts have been surveyed by Wihstutz [57].

Auslender and Mil’shtein [6] studied a second-order system perturbed by a small white-noise distur-
bance, as given by

dxε(t)= Bxε(t)+ ε
k∑

j=1

σjx
ε(t) dξj(t)) (63.79)

where ξj(t) are independent, standard Wiener processes and 0 < ε< 1 models the small noise. Assuming
that Has’minskii’s nondegeneracy condition (H) is satisfied, the angular processϕε(t)= ‖xε(t)‖−1xε(t) is
ergodic on S1, and the invariant density με satisfies the Fokker–Planck Equation 63.58, and the exponent
λ(ε) is given by Equation 63.56. In this case a small parameter ε is involved. Auslender and Mil’shtein
computed λ(ε) to second order (ε2) and estimated the remainder term to obtain an expansion for λ(ε) to
order ε2 as ε ↓ 0+. For different eigenstructures of B, they obtained the following results:
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1. B=
[

a 0
0 b

]
, a > b, two distinct real eigenvalues.

λ(ε)= a− ε
2

2

k∑
r=1

(σ11
r )2+ ε4ρ(ε)+ ρ0(ε)

where σr = (σ
ij
r )2× 2, |ρ(ε)| ≤m <∞ and |ρ0(ε)| ≤ ce−c1/ε2 for some constants c and c1 > 0.

2. B=
[

a b
−b a

]
, a, b > 0, a complex conjugate pair of eigenvalues.

λ(ε)= a+ ε
2

8

k∑
r=1

[(
σ12

r − σ21
r

)2+ (σ11
r + σ22

r

)2
]
+ ε4R(ε)

where |R(ε)| ≤m <+∞.

3. B=
[

a 0
0 a

]
, one real eigenvalue of geometric multiplicity 2.

λ(ε)= a+ ε2

2π∫
0

L(ϕ)μ(ϕ) dϕ

where

L(ϕ)= 1

2

k∑
r=1

〈σrλ(ϕ), σrλ(ϕ)〉−
k∑

r=1

〈σrλ(ϕ),λ(ϕ)〉2,

λ(ϕ)= (cosϕ, sinϕ)′, and μ(ϕ) is the density determined by a Fokker–Planck equation and is
independent of ε.

4. B=
[

a 1
0 a

]
, one real eigenvalue of geometric multiplicity 1.

λ(ε)= a+ ε2/3 π
1/2

Γ(1/6)

[
3

4

k∑
r=1

(
σ21

r

)2

]1/3

+O(ε)

where Γ(x) is the gamma function and O(ε) denotes a quantity of the same order of ε (i.e.,
limε→0 O(ε)/ε= constant).

In the above work, an intricate computation is required to obtain λ(ε) as an expansion of powers
of ε. A much easier way to obtain an expansion is the direct use of perturbation analysis of the linear
operator associated with the forward equation L∗ϕμ= 0. Pinsky [50] applied this technique to the random
oscillator problem,

ü(t)+{γ+ σF(ξ(t))}u(t)= 0 (63.80)

where γ is a positive constant that determines the natural frequency of the noise-free system, σ is a small
parameter that scales the magnitude of the noise process, and ξ(t) is a finite-state continuous time Markov
process with state space M = {1, 2, . . . , N}. F(·) is a function satisfying E{F(ξ(t))} = 0. After introducing
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polar coordinates in the form u
√
γ= ρ cosϕ and u̇= ρ sinϕ, Pinsky obtained

⎧⎪⎪⎨
⎪⎪⎩
ϕ̇(t)= h(ϕ(t), ξ(t))=−√γ+ σF(ξ(t))√

γ
cos2 ϕ(t)

ρ̇
/
ρ= q(ϕ(t), ξ(t))= σF(ξ(t))

2
√
γ

sin 2ϕ(t)
(63.81)

where (ϕ(t), ξ(t)) is a time-homogeneous Markov process with generator,

L= Q+ h
∂

∂ϕ
,

and Q is the generator of the process ξ(t). The Fokker–Planck equation for the density pσ(ϕ, ξ), the
invariant probability density of (ϕ(t), ξ(t)), is given by

0= L∗pσ

where L∗ is the formal adjoint of L. The exponent is computed by

λ(σ)=
∫

S1×M

q(ϕ, ξ)pσ(ϕ, ξ) dϕ dξ. (63.82)

Note that

L= Q+ h
∂

∂ϕ
= Q−√γ ∂

∂ϕ
+ σF(ξ)√

γ
cos2 ϕ

∂

∂ϕ

Δ= L0+ σL1.

Assume an approximation of pσ in the form

pσ = p0+ σ1p1+ · · ·+ σnpn.

Then, it follows from
0= L∗pσ = (L∗0 + σL∗1)(p0+ σ1p1+ · · ·+ σnpn) (63.83)

that
L∗0pi +L∗1pi−1 = 0, for i = 1, 2, . . . , n, (63.84)

by setting the coefficients of the term σi in Equation 63.83 equal to zero. Pinsky showed that the expansion
satisfying Equation 63.84 can be obtained by taking

p0 = 1

2π
and

∫

S1×M

pn = 0 (63.85)

and proved the convergence of the series expansion by using properties of the finite-state Markov process
to show that

|pσ− (p0+ σ1p1+ · · ·+ σnpn)| ≤ cσn+1 max |L∗1pn|.
By evaluating p1 from Equations 63.84 and 63.85, Pinsky obtained

λ(σ)= σ2

4γ

N∑
k=2

λk < F1,ψk >2

λ2
k + 4γ

+O(σ3), σ ↓ 0+ (63.86)

where λ−1
k is the mean sojourn time of ξ(t) in state k and {ψi ; i = 1, 2, . . . , N} are normalized eigenfunc-

tions of the linear operator Q. For the case when F(ξ)= ξ is a telegraph process, Pinsky obtained a refined
expansion of Equation 63.86 consisting of the first two terms in Equation 63.78 when σ ↓ 0+.
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Contemporaneous with Pinsky, Arnold, Papanicolaou, and Wihstutz [4] used a similar technique to
study the random harmonic oscillator in the form,

−ÿ(t)+ σF

(
ξ

(
t

ρ

))
y(t)= γy(t), (63.87)

where γ, σ and ρ are parameters modeling the natural frequency, the magnitude of the noise, and the
time scaling of the noise. ξ(t) is only assumed to be an ergodic Markov process on a smooth connected
Riemannian manifold M, and F(·) is a function satisfying E{F(ξ(t))} = 0. A summary of their results is
given next.

1. Small noise (σ ↓ 0+, γ> 0, ρ= 1) :

λ(σ)= σ2 π

4γ
f̂ (2
√
γ)+O(σ3), σ ↓ 0+

where f̂ (ω) is the power spectral density of F(ξt).
2. Large noise (σ ↑ +∞, γ= γ0+ σγ1, ρ= 1) :

λ(σ)=
√
γ1

4π

2π∫
0

dϕ
∫
M

ν(dξ)

√
γ1− F(ξ)

γ1− F(ξ) cos2 ϕ
Q(log(γ1− F(ξ) cos2 ϕ))+O

(
1√
σ

)
, σ ↑ +∞

where Q is the generator of ξ and ν is the unique invariant probability measure of ξ on M.
3. Fast noise (ρ ↓ 0+, σ and ν fixed): if γ> 0,

λ(ρ)= ρ · σ
2π

4γ
f̂ (0)+O(ρ2) , ρ ↓ 0+, and

if γ < 0,

λ(ρ)=√−γ+ ρ σ
2π

4γ
f̂ (0)+O(ρ2) , ρ ↓ 0+.

4. Slow noise (ρ ↑ +∞, σ and γ fixed): if γ > σmax(F),

λ(ρ)= 1

ρ

√
γ

4π

2π∫
0

dϕ
∫
M

ν(dξ)

√
γ− σF(ξ)

γ− σF(ξ) cos2 ϕ
Q[log(γ− σF(ξ) cos2 ϕ)]+O

(
1

ρ2

)
, ρ ↑ +∞

if γ< σmin(F),

λ(ρ)=
∫
M

ν(dξ)
√
σF(ξ)− γ+ 1

ρ

∫
M

ν(dξ)Q
[
(log sin(ϕ+ψ(ξ))

]∣∣∣∣
ϕ=ψ(ξ)

+O

(
1

ρ2

)
, ρ ↑ +∞,

where ψ(ξ)= tan−1
(
(σF(ξ)− γ)/

√−γ) .

Pardoux and Wihstutz [47] studied the two-dimensional linear white-noise system Equation 63.79
by using similar perturbation techniques. Instead of using the Fokker–Planck equation, perturbation
analysis was applied to the backward (adjoint) equation and a Fredholm alternative was used. Pardoux
and Wihstutz were able to obtain a general scheme for computing the coefficients of the series expansion
of the exponent for all powers of ε. Their results are the same as (1), (2), and (3) of Auslender and
Mil’shtein, if only the first two terms in the expansion are considered. There is another approach for
studying the problem based on a differential geometric concept and nonlinear control theory, that has
been suggested by Arnold and his coworkers. For a linear system, after introducing polar coordinates,
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the angular process ϕ(t) is separated from the radial process and is governed by the nonlinear differential
equation

ϕ̇(t)= h(ξ(t),ϕ(t)), ϕ(t) ∈ Sd−1 (63.88)

where ξ(t) is the noise process and h is a smooth function of ξ andϕ. To determine the Lyapunov exponent
λω(x0), the ergodicity of the joint process (ξ(t),ϕ(t)) needs to be determined. This question is naturally
related to the concept of reachable sets of the random process ϕ(t) and invariant sets of Equation 63.88
on Sd−1 for certain “controls” ξ(t). It is from this perspective that geometric nonlinear control theory is
applied.

Arnold et al. [3] considered the system given by

{
ẋ(t)= A(ξ(t))x(t) and
x(0)= x0 ∈ R

d (63.89)

where A :M → R
d×d is an analytic function with domain M, an analytic connected Riemannian manifold

that is the state space of a stationary ergodic diffusion process ξ(t) satisfying the Stratonovich equation,

dξ(t)= X0(ξ(t)) dt+
r∑

j=1

Xj(ξ(t)) dξj(t) (63.90)

where ξj(t) are independent, standard Wiener processes. The following Lie algebraic conditions on the
vector fields were imposed by Arnold et al.:

a. dim LA(X1, . . . , Xr)(ξ)= dim M, ∀ξ ∈M.
b. dim LA(h(ξ, ·), ξ ∈M)(ϕ)= d− 1, ∀ϕ ∈ P

d−1.

Here h(ξ,ψ) is the smooth function given in Equation 63.89 for the angular process, and P
d−1 is the

projective sphere in R
d . Condition (a) guarantees that a unique invariant probability density ρ of ξ on

M exists solving the Fokker–Planck equation Q∗ρ= 0, with Q the generator of ξ(t). Condition (b) is
equivalent to an accessibility condition for the angular process ϕ governed by Equation 63.88 or the fact
that the system group,

G =
{
Πn

i=1etiA(ξi); ti ∈ R, ξi ∈M, n finite
}

,

acts transitively on Sd−1, that is, for any x, y ∈ Sd−1, g ∈ G exists so that g ∗ x = y. Under these conditions,
they showed that a unique invariant control set C in P

d−1 exists and that this is an ergodic set; all
trajectories ϕ(t) entering C remain there forever with probability one. Henceforth, a unique invariant
probability measure μ of (ξ,ϕ) on M×P

d−1 exists with support M×C. The following result was given.

Theorem 63.8: Arnold, Kilemann, and Oeljeklaus

For the system defined by Equations 63.89 and 63.90, suppose (a) and (b) above hold, then

1.

λ=
∫

M×C

q(ξ,ϕ)μ(dξ, dϕ), q(ξ,ϕ)= ϕ′A(ξ)ϕ (63.91)

is the top exponent in Oseledec’s theorem.
2. For each

x0 �= 0, λω(x0)= λ a.s. (63.92)
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3. For the fundamental matrixΦ(t) of Equation 63.89,

lim
t→+∞

1

t
log ‖Φ(t)‖ = λ a.s. (63.93)

Equation 63.91 is in the same form as given by Has’minskii. Note that, even though Oseledec’s theorem
states that only λω(x0)= λ= λmax, the top exponent, is realizable, that is, with probability one can be
observed from sample solutions, the difficulty is still in determining the invariant density μ.

Arnold [1,3], motivated by the results for the undamped random oscillator obtained by Molchanov [44]
studied the relationship between sample and moment stability properties of systems defined by Equa-
tions 63.89 and 63.90 and obtained some very interesting results. Besides conditions (a) and (b) above,
another Lie algebraic condition was needed to guarantee that the generator L of (ξ,ϕ) is elliptic. Define
the Lyapunov exponent for the pth moment, for p ∈ R, as

g(p, x0)= limt→+∞
1

t
log E(‖x(t, x0,ω)‖p), x0 ∈ R

d\{0}. (63.94)

By Jenson’s inequality g(p, x0) is a finite convex function of p with the following properties:

1. | g(p, x0) |≤ k | p |, k =max
ξ∈M

‖A(ξ)‖.

2. g(p, x0)≥ λp , λω(x0)= λ a.s.
3. g(p, x0)/p is increasing as a function of p with x0 ∈ R

d\{0} fixed.
4. g ′(0−, x0)≤ λ≤ g ′(0+, x0), here, g ′ denotes the derivative of g with respect to p.

Linear operator theory was then used to study the strongly continuous semigroup Tt(p) of the generator

L(p)
Δ= L+ pq(ξ,ϕ). Here, L is the generator of (ξ,ϕ) and q(ξ,ϕ)= ϕ′A(ξ)ϕ. Arnold showed that g(p, x0)

is actually independent of x0, that is, g(p, x0)= g(p), and g(p) is an analytic function of p with g ′(0)= λ
and g(0)= 0. g(p) can be characterized by the three figures shown in Figure 63.2 (excluding the trivial
case, g(p)≡ 0).

If g(p)≡ 0, then λ= 0. If g(p) �≡ 0, besides 0, g(p) has at most one zero p0 �= 0, and it follows that

1. λ= 0 iff g(p) > 0, ∀p �= 0.
2. λ> 0 iff g(p) < 0, for some p < 0.
3. λ< 0 iff g(p) < 0, for some p > 0.

g(p) g(p)

g(p)

p

p

p
0

0

0

λ = g′ (0) = 0

λ = g′ (0) < 0

λ = g′ (0) > 0

FIGURE 63.2 pth moment Lyapunov exponent.
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In the case trA(ξ)≡ 0, more information can be obtained for the second zero p0 �= 0 of g(p). Under
conditions that ξ(t) is a reversible process along with reachability of ϕ(t) on P

d−1, Arnold showed that
p0 =−d, where d is the system dimension. However, if trA(ξ) �≡ 0, then the system Equation 63.89 is
equivalent to

ẋ(t)= d−1trA(ξ(t))x(t)+A0(ξ(t))x(t) (63.95)

where trA0(ξ(t))≡ 0. Observing that d−1trA(ξ(t))I commutes with A0(ξ(t)), it follows that

g(p)= α0p+ g0(p) (63.96)

where α0 = d−1tr{EA[ξ(0)]} and g0(p) is the exponent for the pth moment of ẏ(t)= A0(ξ(t))y(t). There-
fore, g0(−d)= 0. Applying the results to the damped harmonic oscillator,

ÿ(t)+ 2βẏ(t)+ (1+ ξ(t))y(t)= 0, (63.97)

with x = (y, ẏ)′ ∈ R
2, Arnold obtained

g(p)=−βp+ g0(p) (63.98)

where g0(p) is the moment exponent for the undamped oscillator with g0(−2)= 0. Thus, it follows that

1. For the undamped oscillator Equation 63.97, if β= 0, then λ> 0 and g(p) > 0 for p > 0. This
implies almost sure sample instability and pth moment instability for p > 0.

2. The undamped harmonic oscillator can be stabilized by introducing positive damping so that with
λ> 0 and g(p) < 0 for p ∈ (0, p1), where p1 is a positive real number.

We remark here that the random harmonic oscillator problem has attracted considerable attention from
researchers and Equation 63.97 occurs in many science and engineering applications, such as mechanical
or electrical circuits, solid state theory, wave propagation in random media, and electric power systems.
It is also of particular interest from a theoretical viewpoint because of the simple structure of the model.
From the result (1) above, we see that pth moment stability for some p > 0 will imply almost sure sample
stability. One natural question to ask is the converse question, that is, does almost sure sample stability
have any implication for the pth moment stability? The result (2) above for the random oscillator gives
a partial answer to this question. One may ask whether p1 in (2) can be arbitrarily large or, equivalently,
when does the sample stability (λ< 0) imply pth moment stability for all p > 0? If

0 < γ
Δ= lim

p→+∞
1

p
g(p) <+∞,

then we may choose β> γ sufficiently large so that g(p) < 0 for all p > 0. Hence, γ is the quantity that
characterizes the the property that is of interest.

Another interesting question in the stability study of stochastic systems is when can an unstable linear
system be stabilized by introducing noise into the system? This question has attracted the attention of
researchers for a long time. Has’minskii [20] presented an example giving a positive answer to the question.
Arnold et al. [2] presented a necessary and sufficient condition for stabilization of a linear system ẋ(t)=
A(t)x(t) by stationary ergodic noise F(t) ∈ R

d×d in the sense that the new system ẋ(t)= [A(t)+ F(t)]x(t)
will have a negative top exponent and hence is almost surely stable. This result is presented next.

Theorem 63.9: Arnold, Crauel, and Wihstutz

Given the system ẋ(t)= Ax(t) with A ∈ R
d×d a constant matrix, the perturbed system is given by ẋ(t)=

[A+ F(t)]x(t) where F(t) is a stationary, ergodic, and measurable stochastic process in R
d×d with finite

mean. Then
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1. For any choice of F(t) with E{F(t)} = 0, the top Lyapunov exponent λmax[A+ F(t)] of the perturbed
system satisfies

d−1tr(A)≤ λmax(A+ F(t)).

2. For any ε> 0 fixed, an F(t) exists with E{F(t)} = 0 so that

d−1tr(A)≤ λmax[A+ F(t)] ≤ d−1tr(A)+ ε.
In particular, the linear system ẋ(t)= Ax(t) can be stabilized by a zero-mean stochastic process if, and only
if, tr(A) < 0.

Note that (2) above implies that the undamped, random harmonic oscillator cannot be stabilized by a
random linear feedback control of the ergodic type.

Li and Blankenship [34] generalized Furstenberg’s results on the product of random matrices and
studied linear stochastic system with Poisson process coefficients of the form,

dx(t)= Ax(t) dt+
m∑

i=1

Bix(t) dNi(t), (63.99)

where Ni(t) are independent Poisson (counting) processes. The solution of Equation 63.99 can be written
as a product of i.i.d. matrices on R

d×d acting on the initial point x0 ∈ R
d\{0} :

x(t)= exp
[
A(t− tN(t))

]
DτN(t) , . . . , Dτ1 exp(Aτ1)x0,

for t ∈ [tN(t), tN(t+1)), where Di = I +Bi , for i = 1, 2, . . . , m, and N(t)= N1(t)+ · · ·+Nm(t) is also a

Poisson process with mean interarrival time λ−1, {τj; j ≥ 1} are the interarrival times of N(t), tj
Δ=

τ1+ · · ·+ τj are the occurrence times of N(t).
Using the fact that {Xj(ω)= Dτj exp(Aτj )}∞j=1 is an i.i.d. sequence, they generalized Furstenberg’s results

from semisimple Lie groups to general semigroups (note that Di may be singular) in the following sense.
Let M = Sd−1 ∪ {0}, and let μ be the probability distribution of X1 induced by

μ(Γ)= P{Dμ1 eAτ1 ∈ Γ : Γ ∈ B(Rd×d)}
where B(Rd×d) is the Borel σ algebra on R

d×d . Let ν be an invariant probability measure on M with
respect to μ, that is, if x0 ∈M, and is distributed according to ν, then x1 = ‖X1x0‖−1X1x0 has the same
distribution ν. If Q0 denotes the collection of so-called extremal invariant probabilities on M with respect
to μ, then Li and Blankenship obtained the following result:

Theorem 63.10: Li and Blankenship

For all ν ∈ Q0,

rν
Δ=

m∑
i=1

λi

∫
M

∫ ∞

0
log ‖Di exp(At)s‖e−λt dtν(ds) <+∞

and

λω(x0)= lim
t→+∞

1

t
log
‖x(t, x0)‖
‖x0‖ = λ · rν a.s.

for all x0 ∈ E0
ν , where λ−1

i is the mean interarrival time of Ni(t),λ−1 is the mean interarrival time of
Nt , and E0

ν is an ergodic component corresponding to ν ∈ Q0. There are only a finite number of different
values of rν, say, r1 < r2 < · · ·< r�, �≤ d. Furthermore, if

⋃
ν∈Q0

E0
ν contains a basis for R

d , then the system
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Equation 63.99 is asymptotically almost surely stable if r� < 0, and Equation 63.99 is almost surely unstable
if r1 > 0. In the case where r1 < 0 and r� > 0, then the stability of the system depends on the initial state
x0 ∈ R

d\{0}.

Here, the difficulty is still in determining the extremal invariant probabilities. Li and Blankenship also
discussed large deviations and the stabilization of the system by linear state feedback.

Motivated by Oseledec and Furstenberg’s work, Feng and Loparo [14,15] studied the linear system
given by {

ẋ(t)= A(y(t))x(t), t ≥ 0, and
x0 ∈ R

d ,
(63.100)

where y(t) ∈ N = {1, 2, . . . , n} is a finite-state continuous time Markov process with infinitesimal gener-
ator

Q = (qij)n×n

and initial probabilities (p1, . . . , pn) , and A(i)= Ai ∈ R
d×d . By using properties of finite-state Markov

processes and a sojourn time description of the process y(t), they were able to relate the Oseledec spaces
of the system to invariant subspaces of the constituent linear differential equations ẋ(t)= Aix(t) and
obtained a spectrum theorem for the Lyapunov exponents of the stochastic system Equation 63.100. The
exponents in the spectrum theorem given below are exactly the exponents given in Oseledec’s theorem
that are physically realizable. It was also shown that the spectrum obtained is actually independent of the
choice of the initial probabilities (p1, . . . , pn) of y(t). Thus, stationarity is not required. The theorem is
stated next.

Theorem 63.11: Feng and Loparo

For the system Equation 63.100, suppose pi > 0 and qij > 0 for all i, j ∈ N = {1, 2, . . . , n}. Then there exists
k real numbers, k ≤ d, constants λi , 1= 1, . . . , k with

−∞< λ1 < λ2 < · · ·< λk <+∞,

an orthonormal basis for R
d

{
e(1)

1 . . . e(1)
i1

∣∣e(2)
1 . . . e(2)

i2

∣∣ . . . ∣∣e(k)
1 . . . e(k)

ik

}

with i1+ · · ·+ ik = d and ij ≥ 1 for j = 1, 2, . . . , k so that, if

Eij = span {e(j)
1 . . . e

(j)
ij }

is an ij-dimensional subspace of R
d and

{
L0 = {0}
Lj =⊕j

�=1Ei� j = 1, 2, . . . , k

which is a filtration of R
d , that is,

{0} Δ= L0 ⊂ L1 ⊂ . . .⊂, L,k = R
d

where “⊕” denotes the direct sum of subspaces, then

1. Lj = {x ∈ R
d\{0} : λω(x)≤ λj a.s. } and λω(x)= λj a.s. iff x ∈ Lj\Lj−1 for j = 1, 2, . . . , k.
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2. Lj is an Ai-invariant subspace of R
d for all i = 1, 2, . . . , n and j = 1, 2, . . . , k.

3. All of the results above are independent of the initial probabilities (p1, . . . , pn) chosen.
4. If y(t) is stationary, λk is the top exponent in Oseledec’s theorem.

Stability results can be obtained directly from the theorem, for example, if λi < 0 and λi+1 > 0, then

P{ lim
t→+∞‖x(t, x0,ω)‖ = 0} = 1, if x0 ∈ Li ,

and
P{ lim

t→+∞‖x(t, x0,ω)‖ = +∞} = 1, if x0 ∈ R
d\Li .

63.4 Conclusions

In this chapter we have introduced the different concepts of stability for stochastic systems and presented
two techniques for stability analysis. The first extends Lyapunov’s direct method of stability analysis
for deterministic systems to stochastic systems. The main ingredient is a Lyapunov function and, under
certain technical conditions, the stability properties of the stochastic system are determined by the “deriva-
tive” of the Lyapunov function along sample solutions of the stochastic system. As in the deterministic
theory of Lyapunov stability, a major difficulty in applications is constructing a proper Lyapunov function
for the system under study.

Because it is well known that even though moment stability criteria for a stochastic system may be easier
to determine, moment stability does not necessarily imply sample path stability and that moment stability
criteria can be too conservative to be practically useful, it is important to determine the sample path
(almost sure) stability properties of stochastic systems. It is the sample paths, not the moments, that are
observed in applications. Focusing primarily on linear stochastic systems, we presented the concepts and
theory of the Lyapunov exponent method for sample path stability of stochastic systems. Computational
difficulties in computing the top Lyapunov exponent, or its algebraic sign, must still be resolved before
this method will see more widespread applications in science and engineering.

Dedication

The chapter is dedicated to the memory of Dr. Xiangbo Feng, my former student, colleague, and friend,
who passed away since the first version of this chapter was published.
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Another important and commonly used class of systems is the class of continuous-time linear systems.
The models are assumed to evolve in continuous time rather than discrete time because this assumption
is natural for many models and it is important for the study of discrete-time models when the sampling
rates are large and for the analysis of numerical round-off errors. The stochastic systems are described by
linear stochastic differential equations. It is assumed that there are complete observations of the state.

The general approach to adaptive control that is described here exhibits a splitting or separation of the
problems of identification of the unknown parameters and adaptive control. Maximum likelihood (or
equivalently least-squares) estimates are used for the identification of the unknown constant parameters.
These estimates are given recursively and are shown to be strongly consistent. The adaptive control
is usually constructed by the so-called certainty equivalence principle, that is, the optimal stationary
controls are computed by replacing the unknown true parameter values by the current estimates of these
values. Since the optimal stationary controls can be shown to be continuous functions of the unknown
parameters, the self-tuning property is verified. It is shown that the family of average costs using the
control from the certainty equivalence principle converges to the optimal average cost. This verifies the
self-optimizing property.

A model for the adaptive control of continuous-time linear stochastic systems with complete
observations of the state can be described by the following stochastic differential equation

dX(t)= (A(α)X(t)+BU(t))dt+ dW(t) (64.1)

where X(t) ∈ R
n, U(t) ∈ R

m.

A(α)= A0+
p∑

i=1

αiAi (64.2)

Ai ∈ L(Rn) i = 0, . . . , p, B ∈ L(Rm, Rn), (W(t), t ∈ R+) is a standard R
n-valued Wiener process and

X0 ≡ a ∈ R
n. It is assumed that

(3.A1) A ⊂ R
p is compact and α ∈A.

64-1
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(3.A2) (A(α), B) is reachable for each α ∈A.
(3.A3) The family (Ai , i = 1, . . . , p) is linearly independent.

Let (Ft , t ∈ R+) be a filtration such that Xt is measurable with respect to Ft for all t ∈ R+ and
(W(t), Ft , t ∈ R+) is a Brownian martingale. The ergodic, quadratic control problem for Equation 64.1
is to minimize the ergodic cost functional

lim sup
t→∞

1

t
J(X0, U , α, t) (64.3)

where

J(X0, U , α, t)=
∫ t

0
[〈QX(s), X(s)〉+ 〈PU(s), U(s)〉] ds (64.4)

and t ∈ (0, ∞], X(0)= X0, Q ∈ L(Rn), and P ∈ L(Rm) are self-adjoint and P−1 exists, (X(t), t ∈ R+)
satisfies Equation 64.1 and (U(t), t ∈ R+) is adapted to (Ft , t ∈ R+). It is well known [9] that if α is
known then there is an optimal linear feedback control such that

U∗(t)= KX(t) (64.5)

where K =−P−1B∗V and V is the unique, symmetric, nonnegative definite solution of the algebraic
Riccati equation

VA+A∗V −VB∗P−1BV +Q = 0. (64.6)

For an unknown α the admissible adaptive control policies (U(t), t ∈ R+) are linear feedback controls

U(t)= K(t)X(t)= K̃(t, X(u), u≤ t−Δ)X(t) (64.7)

where (K(t), t ≥ 0) is an L(Rn, Rm)-valued process that is uniformly bounded and there is a fixedΔ> 0
such that (K(t), t ≥ 0) is measurable with respect to σ(Xu, u≤ t−Δ) for each t ≥Δ and (K(t), t ∈ [0,Δ))
is a deterministic function. For such an adaptive control, it is elementary to verify that there is a unique
strong solution of Equation 64.1. The delayΔ> 0 accounts for some time that is required to compute the
adaptive control law from the observation of the solution of Equation 64.1.

Let (U(t), t ≥ 0) be an admissible adaptive control and let (X(t), t ≥ 0) be the associated solution of
Equation 64.1. Let A(t)= (aij(t)) and Ã(t)= (ãij(t)) be L(Rp)-valued processes such that

aij(t)=
∫ t

0
〈AiX(s), AjX(s)〉ds,

ãij(t)= aij(t)

aii(t)
.

To verify the strong consistency of a family of least-squares estimates it is assumed that

(3.A4) lim inf
t→∞ |det Ã(t)|> 0 a.s.

The estimate of the unknown parameter vector at time t, α̂(t), for t > 0 is the minimizer for the
quadratic functional of α, L(t, α), given by

L(t, α)=−
∫ t

0
〈(A(α)+BK(s))X(s), dX(s)〉+ 1

2

∫ t

0
|(A(α)+BK(s))X(s)|2ds (64.8)

where U(s)= K(s)X(s) is an admissible adaptive control. The following result [6] gives the strong con-
sistency of these least-squares estimators.
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Theorem 64.1:

Let (K(t), t ≥ 0) be an admissible adaptive feedback control law. If (3.A1–3.A4) are satisfied and α0 ∈A◦,
the interior of A, then the family of least-squares estimates (α̂(t), t > 0), where α̂(t) is the minimizer of
Equation 64.8, is strongly consistent, that is,

Pα0

(
lim

t→∞ α̂(t)= α0

)
= 1 (64.9)

where α0 is the true parameter vector.

The family of estimates (α̂(t), t > 0) can be computed recursively because this process satisfies the
following stochastic equation:

dα̂(t)=A−1(t)〈A(t)X(t), dX(t)−A(α̂(t))X(t) dt−BU(t) dt〉, (64.10)

where 〈A(t)x, y〉 = (〈Aix, y〉) i = 1, . . . , p.
Now the performance of some admissible adaptive controls is described.

Proposition 64.1:

Assume that (3.A1–3.A4) are satisfied and that

lim
t→∞

1

t
〈VX(t), X(t)〉 = 0 a.s., (64.11)

lim sup
t→∞

1

t

∫ t

0
|X(t)|2 ds <∞ a.s., (64.12)

where (X(t), t ≥ 0) is the solution of Equation 64.1 with the admissible adaptive control (U(t), t ≥ 0) and
α= α0 ∈K and V is the solution of the algebraic Riccati equation 64.6 with α= α0. Then

lim inf
T→∞

1

T
J(X0, U , α0, T)≥ tr V a.s., (64.13)

If U is an admissible adaptive control U(t)= K(t)X(t) such that

lim
t→∞K(t)= k0 a.s., (64.14)

where k0 =−P−1B∗V, then

lim
T→∞

1

T
J(X0, U , α0, T)= tr V a.s., (64.15)

Corollary 64.1:

Under the assumptions of Proposition 64.1, if Equation 64.14 is satisfied, then Equations 64.11 and 64.12
are satisfied.

The previous results can be combined for a complete solution to the stochastic adaptive control problem
(Equations 64.1 and 64.3) [6].
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Theorem 64.2:

Assume that (3.A1–3.A4) are satisfied. Let (α̂(t), t > 0) be the family of least-squares estimates where
α̂(t) is the minimizer of Equation 64.8. Let (K(t), t ≥ 0) be an admissible adaptive control law
such that

K(t)=−P−1B∗V (α̂(t−Δ))

where V (α) is the solution of Equation 64.6 for α ∈A. Then the family of estimates (α̂(t), t > 0) is strongly
consistent,

lim
t→∞K(t)= k0 a.s., (64.16)

where k0 =−P−1B∗V (α0) and

lim
T→∞

1

T
J(X0, U , α0, T)= tr V a.s., (64.17)

Now a second formulation for the stochastic adaptive control of an unknown continuous time linear
system with a quadratic cost is given. In this description a fixed delayΔ> 0 is introduced for measurability
and computability of an optimal adaptive control. Let (X(t), t ≥ 0) be a controlled linear diffusion, that
is, a solution of the stochastic differential equation

dX(t)= AX(t) dt+BU(t) dt+CW(t), X(0)= X0, (64.18)

where X(t) ∈ R
n, U(t) ∈ R

m, and (W(t), t ≥ 0) is a standard p-dimensional Wiener process. The prob-
ability space is (Ω, F , P) and (Ft , t ≥ 0) is an increasing family of sub-σ-algebras of F such that F0

contains all P-null sets, (W(t), Ft , t ≥ 0) is a continuous martingale and X(t) ∈ Ft for all t ≥ 0. The linear
transformations A, B, and C are assumed to be unknown. Since the adaptive control does not depend on
C it suffices to estimate the pair (A, B). For notational simplicity let θT = [A, B].

For the adaptive control problem, it is required to minimize the ergodic cost functional

lim sup
t→∞

J(t, U)=lim sup
t→∞

1

t

∫ t

0
(XT (s)Q1X(s)+UT (s)Q2U(s)) ds (64.19)

where Q1 ≥ 0 and Q2 > 0 and U is an admissible control.
Since both A and B are unknown, it is necessary to ensure sufficient excitation in the control to obtain

consistency of a family of estimates. This is accomplished by a diminishing excitation control (dither) that
is asymptotically negligible for the ergodic cost functional Equation 64.19. Let (vn, n ∈ N) be a sequence
of R

m-valued independent, identically distributed random variables that is independent of the Wiener
process (W(t), t ≥ 0). It is assumed that E[vn] = 0, E

[
vn vT

n

]= I for all n ∈ N, and there is a σ > 0 such
that ‖vn‖2 ≤ σ a.s. for all n ∈ N. Let ε ∈ (0, 1

2

)
and fix it. Define the R

m-valued process (V (t), t ≥ 0) as

V (t)=
[ t
Δ ]∑

n=0

vn

nε/2
1[nΔ,(n+1)Δ)(t) (64.20)

where Δ> 0 is fixed. A family of least-squares estimates (θ(t), t ≥ 0) is used to estimate the unknown
θ= [A, B]T . The estimate θ(t) is given by

θ(t)= Γ(t)
∫ t

0
ϕ(s) dXT (s)+Γ(t)Γ−1(0)θ(0), (64.21)

Γ(t)=
(∫ t

0
ϕ(s)ϕT (s) ds+ aI

)−1

, (64.22)

ϕ(s)= [XT (s) UT (s)]T , (64.23)
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where θ(0) and a > 0 are arbitrary. The diminishingly excited control is

U(t)= Ud(t)+V (t) (64.24)

where Ud is a “desired” control.
For A stable, (A, C) controllable and some measurability and asymptotic boundedness of the control,

the family of estimates (θ(t), t ≥ 0) is strongly consistent [2].

Theorem 64.3:

Let ε ∈ (0, 1
2

)
be given in Equation 64.20. For Equation 64.18, if A is stable, (A, C) is controllable and the

control (U(t), t ≥ 0) is given by Equation 64.24, where Ud(t) ∈ F(t−Δ)∨0 for t ≥ 0 andΔ> 0 is fixed and

∫ t

0
‖Ud(s)‖2ds = O(t1+δ) a.s., (64.25)

as t →∞ for some δ ∈ [0, 1− 2ε) then,

‖θ− θ(t)‖2 = O

(
log t

tα

)
a.s., (64.26)

as t →∞ for each α ∈
(

1+δ
2 , 1− ε

)
, where θ= [A B]T and θ(t) satisfies Equation 64.21.

Now a self-optimizing adaptive control is constructed for the unknown linear stochastic system (Equa-
tion 64.18) with the quadratic ergodic cost functional (Equation 64.19). The adaptive control switches
between a certainty equivalence control and the zero control. The family of admissible controls U(Δ) is
defined as follows:

U(Δ)=
{

U : U(t) = Ud(t)+U1(t), Ud(t) ∈ F(t−Δ)∨0 and

U1(t) ∈ σ(V (s), (t−Δ)∨ 0≤ s ≤ t) for all t ≥ 0

|X(t)‖2 = o(t) a.s. and
∫ t

0
(‖U(s)‖2+‖X(s)‖2) ds

= O(t) a.s. as t →∞
}

. (64.27)

Define the R
m-valued process (U0(t), t ≥Δ) using the equation

U0(t)=−Q−1
2 BT (t−Δ)P(t−Δ)

×
(

eΔA(t)X(t−Δ)+
∫ t

t−Δ
e(t−s)A(t−Δ)B(t−Δ)Ud(s) ds

)
, (64.28)

where A(t) and B(t) are the least-squares estimates of A and B given by Equation 64.21 and P(t) is the
minimal solution of the algebraic Riccati equation

AT (t)P(t)+ P(t)A(t)− P(t)B(t)Q−1
2 BT (t)P(t)+Q1 = 0, (64.29)

if A(t) is stable and otherwise P(t)= 0.
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To define the switching in the adaptive control, the following two sequences of stopping times (σn, n=
1, 2, . . .) and (τn, n= 1, 2, . . .) are given as follows:

σ0 = 0,

σn = sup

{
t ≥ τn :

∫ t

0
‖U0(r)‖2dr ≤ sτδn, A(s−Δ) is stable for all s ∈ [τn, t)

}
(64.30)

τn = inf

{
t ≥ τn−1+ 1 :

∫ t

0
‖U0(r)‖2dr ≤ 1

2
t1+δ A(t−Δ) is stable and ‖x(t−Δ)‖2 ≤ t1+δ/2

}
.

(64.31)

The adaptive control (U∗(t), t ≥ 0) is given by

U∗(t)= Ud(t)+V (t), (64.32)

where

Ud(t)=
{

0 if t ∈ [σn, σn+1) for some n≥ 0,
U0(t) if t ∈ [τn, σn) for some n≥ 1.

(64.33)

The adaptive control U∗ is self-optimizing [2].

Theorem 64.4:

If A is stable and (A, C) is controllable, then the adaptive control (U∗(t), t ≥ 0) given by Equation 64.22
belongs to U(Δ) and is self-optimizing for Equations 64.18 and 64.19, that is,

inf
U∈U(Δ)

lim sup
t→∞

J(t, U)= lim
t→∞ J(t, U∗)= tr (CT PC)+ tr (BT PR(Δ)PBQ−1

2 ) a.s., (64.34)

where P is the minimal solution of the algebraic Riccati equation 64.29 using A and B and

R(Δ)=
∫ Δ

0
etACCT etAT

dt.

A third adaptive linear-quadratic Gaussian (LQG) control problem is considered now. In this case only
a delay Δ> 0 is introduced for the measurability of the adaptive control. This problem is solved in [4].
In this case, the unknowns are A and B and there are only the usual assumptions of controllability and
observability that are made for the LQG control problem when the system is known. Let (X(t), t ≥ 0) be
the process that satisfies the stochastic differential equation

dX(t)= AX(t) dt+BU(t) dt+DdW(t), X(0)= X0, (64.35)

where X(t) ∈ R
n, U(t) ∈ R

m, and (W(t), F (t), t ≥ 0) is an R
p-valued standard Wiener process, and

(U(t), F (t), t ≥ 0) is a control from a family that is specified subsequently. The random variables are
defined on a fixed complete probability space (Ω, F , P) and the filtration (F (t), t ≥ 0) is defined on this
space and specified subsequently. It is assumed that the matrices A and B are unknown.
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The objective is to design an admissible control process (U(t), F (t), t ≥ 0) so that the following ergodic
cost functional for the system (Equation 64.35) is minimized

J(U)= limsupT→∞
1

T

∫ T

0
[XT (t)Q1X(t)+UT (t)Q2U(t)] dt, (64.36)

where Q2 > 0 and Q1 ≥ 0 are symmetric and a control (U(t), t ≥ 0) for the system Equation 64.35 is said
to be admissible if it is adapted to (F (t), t ≥ 0) and

limsupt→∞
∫ t

0 |U(s)|2de∫ t
0 |X(s)|2ds

<∞ (64.37)

The following standard assumptions are made.

A1: (A, B) is controllable.
A2: (A, Q1/2

1 ) is observable.

It is well known that under the assumptions A1 and A2, the optimal control for the known system in
the family of admissible controls is a linear feedback expressed as

U0(t)=−Q−1
2 BT RX(t), (64.38)

where R is the unique positive, symmetric solution of the following algebraic Riccati equation

AT R+RA−ABQ−1
2 BT R+Q1 = 0. (64.39)

The corresponding minimal cost is

J(U0)= infU J(U)= tr(DT RD) a.s., (64.40)

To describe the estimation problem in a standard form, let

θT = [A B], (64.41)

φ(t)T = [XT (t) UT (t)], (64.42)

so that Equation 64.35 can be rewritten as a linear regression

dX(t)= θTφ(t)dt+DdW(t). (64.43)

Now the faimily of continuous-time, weighted least-squares (WLS) estimates [1], (θ(t), t ≥ 0) is given by

dθ(t)= a(t)P(t)φ(t)[dXT (t)−φ(t)θ(t) dt], (64.44)

dP(t)=−a(t)P(t)φ(t)φT (t)P(t) dt, (64.45)

where θ(0)= [A0, B0]T and P(0) > 0 are arbitrary deterministic values such that (A9, B0) is controllable

and (A0, Q1/2
1 ) is observable

a(t)= 1

f (r(t))
, r(t)= ‖P−1(0)‖+

∫ t

0
|φ(s)|2 ds,

and f ∈ F with

F= { f | f : R+ → R+ slowly increasing,
∫ ∞

c

dx

xf (x)
<∞ for some c > 0}

where a function f is called slowly increasing if it is increasing and satisfies f ≥ 1 and f (x2)= O( f (x)) as
x →∞.
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Remark

A necessary condition for a function f ∈ F is that f (x)= o(logx)) Some typical functions that are used in
WLS algorithms are log1+δx and (logx)(loglogx)1+δ. In fact the family of weights (a(t), t ≥ 0) satisfies

a−1(t)= f (r(t))+O(logkr(t))

for some k > 0 as t →∞.
It can be shown that the convergence rate of the WLS algorithm can be characterized by P(t), that is,

‖θ(t)− θ‖2 = O(‖P(t)‖)

The explicit solution of P(t) is

P(t)= [P−1(0)+
∫ t

0
a(s)φ(s)φ(s)T ds]−1,

which clearly shows that P(t) is positive and nonincreasing so (P(t), t ≥ 0) converges a.s. as t →∞. It is
also worth noting that the standard least-squares algorithm corresponds to the choice f (x)≡ 1 which is
excluded for the WLS algorithm.

Definition 64.1:.

A family of linear system models (A(t), B(t), t ≥ 0) is said to be uniformly controllable if there is a c > 0
such that

[t]−1∑
i=0

Ai(t)B(t)BT (t)AiT (t)≥ cI (64.46)

for all t ∈ [0,∞).

A family of models (A(t), C(t), t ≥ 0) is said to be uniformly observable if (AT (t), CT (t), t ≥ 0) is
uniformly controllable.

Let (ηk , k ∈ N) be a sequence of independent, identically distributed M(n+m, n)-valued random vari-
ables that is independent, identically distributed M(n+m, n)-valued random varibles that is independent
of (W(t), t ≥ 0) so that for each k ∈ N the random variable ηk is uniformly distributed on the unit ball for
a norm of the matrices. The maximization procedure is recursively defined as

β0 = 0 (64.47)

βk = ηk if f (k,ηk)≥ (1+ γf (k, βk−1)) (64.48)

= βk−1 otherwise

Finally, the family of continuous time estimates (θ̂(t), t ≥ 0) to be used for the adaptive control problem
is simply a piecewise constant function induced by Equation 64.44

θ̂(t)= θ̄k , t ∈ (k, k+ 1], (64.49)

θ̄k = θ(k)− P1/2(k)βk , (64.50)

where k ∈ N.
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The above estimates are expressed as

θ̂T (t)= [A(t) B(t)]. (64.51)

It can be verified that the family (A(t), B(t), Q1/2
1 , t ≥ 0) is uniformly controllable and observable. Thus,

the following stochastic algebraic Riccati equation:

AT (t)B(t)+R(t)A(t)−R(t)B(t)Q−1
2 BT R(t)+Q1 = 0 (64.52)

has a unique, adapted, symmetric, positive solution R(t) for each t ∈ [0,∞) a.s.
Using R(t), define a lagged certainty equivalence LQG control by

U(t)=−Q−1
2 BT (t)R(t)X(t) (64.53)

The following theorem states that for the above lagged certainty equivalence control, the solution of
Equation 64.35 is stable in the averaging sense.

Theorem 64.5:

The process (X(t), t ≥ 0) that is the solution of Equation 64.35 is stable in the sense that

limsupT→∞
1

T

∫ T

0
|X(s)|2ds <∞ a.s., (64.54)

To obtain the optimality of the quadratic cost functional, it is necessary to obtain the strong consistency
for the family of estimates (θ̂(t), t ≥ 0). For this, a diminishing excitation is added to the adaptive control,
Equation 64.53, that is

U∗(t)= LkX(t)+ γk[V (t)−Vk] (64.55)

or

dU∗(t)= LkdX(t)+ γkdV (t) (64.56)

for t ∈ (k, k+ 1] and k ∈ N, where U∗(0) ∈ R
m is an arbitrary deterministic vector,

Lk =−Q−1
2 BT (k)R(k) and γ2

k =
log(k)√

k
(64.57)

for k ≥ 1. The process (V (t), t ≥ 0) is an R
m-valued standard Wiener process that is independent of

(W(t), t ≥ 0) and (ηk , k ∈ N). Without loss of generality, the sub-σ-algebra F (t) is defined as the P-
completion of σ(X0, W(s),ηj, V (s), s ≤ t, j ≤ t).

The following theorem states that the family of regularized WLS estimates is strongly consistent using
the lagged certainty equivalence control with diminishing excitation [4].

Theorem 64.6:

Let (θ̂(t), t ≥ 0) be the family of estimates given by Equation 64.49 using the control (Equation 64.55) in
Equation 64.35. If A1 and A2 are satisfied, then

limt→∞θ̂(t)= θ a.s., (64.58)

where θ is the true system parameters.
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The following theorem states the self-optimality of the diminishingly excited lagged certainty equiva-
lence control [4].

Theorem 64.7:

Let A1 and A2 be satisfied for the stochastic system (Equation 64.35) with the cost functional Equation 64.36
where A and B are unknown. Then the adaptive control defined by Equation 64.55 is admissible and optimal,
that is,

limsupT→∞
1

T

∫ T

0
[xT (t)Q1X(t)+U∗T (t)Q2U∗(t)]dt = tr(DT RD) a.s., (64.59)

64.1 Adaptive Control for Continuous-Time Scalar Linear
Systems with Fractional Brownian Motions

Brownian motion is often used to model some continuous perturbations of many physical systems because
this process is Gauss–Markov and has independent increments. However, empirical measurements of
many physical phenomena suggest that Brownian motion is inappropriate to use in mathematical models
of these phenomena. A family of processes that has empirical evidence of wide physical applicability
is fractional Brownian motion. Fractional Brownian motion is a family of Gaussian processes that was
defined by Kolmogorov [13] in his study of turbulence [14,15]. While this family of processes includes
Brownian motion, it also includes other processes that describe behavior that is bursty or has a long-range
dependence. The first empirical evidence of the usefulness of these latter processes was made by Hurst [11]
in his statistical analysis of rainfall along the Nile River. Mandelbrot used fractional Brownian motions
to describe economic data and noted that Hurst’s statistical analysis was identifying the appropriate
fractional Brownian motion (FBM). Mandelbrot and van Ness [16] provided some of the initial theory for
FBMs. Empirical justifications for modeling with FBMs have occurred in a wide variety of phenomena,
such as, economic data , flicker noise in electronic devices, turbulence, internet traffic, biology, and
medicine.

A real-valued process (B(t), t ≥ 0) on a complete probability space (Ω, F , P) is called a (real-valued)
standard fractional Brownian motion with the Hurst parameter H ∈ (0, 1) if it is a Gaussian process with
continuous sample paths that satisfies

E [B(t)]= 0

E [B(s)B(t)]= 1

2

(
t2H + s2H − |t− s|2H) (64.60)

for all s, t ∈ R+.
Let H ∈ (1/2, 1) be fixed and B be a fractional Brownian motion with Hurst parameter H . For the

applications given here, only a few results from a stochastic calculus for fractional Brownian motion are
necessary. Let f : [0, T] → R be a Borel measurable function. If f satisfies

∣∣ f ∣∣2L2
H
= ρ(H)

∫ T

0

(
u1/2−H (s)

∣∣∣IH−1/2
T−

(
uH−1/2 f

)
(s)
∣∣∣)2

ds <∞, (64.61)

then f ∈ L2
H and

∫ T
0 f dB is a zero-mean Gaussian random variable with second moment [10]

E

[(∫ T

0
f dB

)2]
= ∣∣ f ∣∣2L2

H
, (64.62)
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where ua(s)= sa for a > 0 and s ≥ 0, IH−1/2
T− is a fractional integral [17] defined almost everywhere and

given by (
IH−1/2
T− f

)
(x)= 1

Γ(α)

∫ T

x

f (t)

(t− x)3/2−H
dt (64.63)

for x ∈ [0, T), f ∈ L1([0, T]), and Γ(·) is the Gamma function and

ρ(H)= HΓ(H + 1/2)Γ(3/2−H)

Γ(2− 2H)
.

Consider the optimal control problem where the scalar state X satisfies

dX(t)= α0X(t) dt+ bU(t) dt+ dB(t), X(t)= X0, (64.64)

and the ergodic (or average cost per unit time) cost function J is

J(U)= lim sup
T→∞

1

T

∫ T

0

(
qX2(t)+ rU2(t)

)
dt, (64.65)

where q > 0 and r > 0 are constants. The family U of admissible controls is all (Ft) adapted processes
such that Equation 64.64 has one and only one solution.

To introduce some notation, recall the well-known solution with H = 1/2, that is, (B(t), t ≥ 0) is a
standard Brownian motion. An optimal control is U∗ given by

U∗(t)=−b

r
ρ0X∗(t) (64.66)

where (X∗(t), t ≥ 0) is the solution of Equation 64.64 with the control U∗, ρ0 is the unique positive
solution of the scalar algebraic Riccati equation

b2

r
ρ2− 2aρ− q= 0, (64.67)

hence

ρ0 = r

b2 [α0+ δ0], (64.68)

δ0 =
√
α2

0+
b2

r
q . (64.69)

Furthermore,

J(U∗)= ρ0 a.s., (64.70)

The following result is given in [12] and solves the analogous control problem for H ∈ (1/2, 1).

Theorem 64.8:

Let (U∗(t), t ≥ 0) be the control given by

U∗(t)=−b

r
ρ0[X∗(t)+V∗(t)], (64.71)
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V∗(t)=
∫ t

0
δ0V∗(s) ds+

∫ t

0

[
k(t, s)− 1

] (
dX∗(s)− α0X∗(s)− bU∗(s)

)
ds

=
∫ ∞

t
e−δ0(s−t) dB(s | t),

(64.72)

where (X∗(t), t ≥ 0) is the solution of Equation 64.64 with the admissible control (U∗(t), t ≥ 0), ρ0 and δ0

are given in Equations 64.68 and 64.69 respectively, and

k(t, s)=−c−1
H s1/2−H d

ds

∫ t

s
(r− s)1/2−Hγ(r, r) dr,

γ(t, s)= δ0eδ0t
∫ ∞

0
eδ0τKH (τ, s) dτ,

KH (t, s)=H(2H − 1)
∫ τ

s
rH−1/2(r− s)H−3/2 dr.

B(s | t)= E[B(s) | Ft]
= B(t)+

∫ t

0
u1/2−H (I1/2−H

t− (IH−1/2
s− 1[t,s))) dB

= B(t)+
∫ t

0
u1/2−H (IH−1/2

s− uH−1/21[t,s)) dW , (64.73)

where cH is a constant that only depends on H, ua(s)= sa for s ≥ 0, IH−1/2 is a fractional integral (Equa-
tion 64.63), I1/2−H is the fractional derivative and (W(t), t ≥ 0) is a standard Brownian motion (Wiener
process) associated with (B(t), t ≥ 0) (e.g., [3]).

Then the control U∗ is optimal in U and the optimal cost is

J(U∗)= λ a.s., (64.74)

where

λ= qΓ(2H + 1)

2δ2H
0

[
1+ δ0+ α0

δ0− α0

]
. (64.75)

If α0 is unknown, then it is important to find a family of strongly consistent estimators of the unknown
parameter α0 in Equation 64.64. A method is used in [7] that is called pseudo-least squares because it
uses the least-squares estimate for α0 assuming H = 1/2, that is, B is a standard Brownian motion in
Equation 64.64. It is shown in [7] that the family of estimators (α̂(t), t ≥ 0) is strongly consistent for
H ∈ (1/2, 1) where

α̂(t)= α0+
∫ t

0 X0(s) dB(s)∫ t
0 (X0(s))2 ds

, (64.76)

where

dX0(t)= α0X0(t) dt+ dB(t), X0(0)= X0. (64.77)

This family of estimators can be obtained from Equation 64.64 by removing the control term by subtrac-
tion. The family of estimators α̂ is modified here using the fact that α0 ∈ [a1, a2] as

α(t)= α̂(t)1[a1,a2](α̂(t))+ a11(−∞,a1)(α̂(t))+ a21(a2,∞)(α̂(t)) (64.78)

for t ≥ 0. α̂(0) is chosen arbitrarily in [a1, a2].
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An adaptive control (U∧(t), t ≥ 0), is obtained from the certainty equivalence principle, that is, at time
t, the estimate α(t) is assumed to be the correct value for the parameter. Thus the stochastic equation for
the system (Equation 64.64) with the control U∧ is

dX∧(t)= (α0− α(t)− δ(t))X∧(t) dt− bρ(t)

r
V∧(t) dt+ dB(t)

= (−α0− α(t)− δ(t))X∧ dt− (α(t)+ δ(t))V∧(t) dt+ dB(t),

X∧(0)= X0,

(64.79)

and

δ(t)=
√
α2(t)+ b2

r
q (64.80)

U∧(t)=−bρ(t)

r

[
X∧(t)+V∧(t)

]
, (64.81)

ρ(t)= r

b2 [α(t)+ δ(t)] , (64.82)

V∧(t)=
∫ t

0
δ̃(s)V∧(s) ds+

∫ t

0
[k̃(t, s)− 1][dX∧(s)− α(s)X∧(s) ds− bU∧(s) ds]

=
∫ t

0
δ̃(s)V∧(s) ds+

∫ t

0
[k̃(t, s)− 1][dB(s)+ (α0− α(t))X∧(s) ds],

(64.83)

δ̃(t)= δ(t)+ α(t)− α0, (64.84)

and k̃ denotes the use of δ̃ instead of δ0 in k. Note that δ(t)≥−α(t)+ c for some c > 0 and all t ≥ 0 so
that

α0− α(t)− δ(t) <−c.

The solution of the stochastic equation 64.79 is

X∧(t)= e−
∫ t

0 δ̂X0+
∫ t

0
e−

∫ t
s δ̂[−(α(s)+ δ(s)]V∧(s) ds+ dB(s)]. (64.85)

The following result [8] provides the solution of an adaptive control problem in the average sense instead
of the pointwise sense.

Theorem 64.9:

Let the scalar-valued control system satisfy the Equation 64.64. Let (α(t), t ≥ 0) be the family of estimators
of α0 given by Equation 64.78, let (U∧(t), t ≥ 0) be the associated adaptive control in Equation 64.81, and
let (X∧(t), t ≥ 0) be the solution of Equation 64.64 with the control U∧. Then

lim
t→∞

1

t
E

∫ t

0

∣∣U∗(s)−U∧(s)
∣∣2 ds = 0 (64.86)

and

lim
t→∞

1

t
E

∫ t

0

∣∣X∗(s)−X∧(s)
∣∣2 ds = 0, (64.87)

hence

lim
t→∞

1

t
E

∫ t

0

(
q(X∧(s))2+ r(U∧(s))2) ds = λ, (64.88)

where λ is given in Equation 64.75.
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65.1 Motivations and Preliminaries

In this chapter, we study probabilistic and randomized methods for analysis and design of uncertain
systems. This area is fairly recent, see [10,11], even though its roots lie in the robustness techniques for
handling complex control systems developed in the 1980s. In contrast to these previous deterministic
techniques, the main feature of these methods is the use of probabilistic concepts. One of the goals of
this methodology is to provide a rapprochement between the classical stochastic and robust paradigms,
combining worst-case bounds with probabilistic information, thus potentially reducing the conservatism
inherent in the worst-case design. In this way, the control engineer gains additional insight that may help
bridging the gap between theory and applications.

We consider an uncertain system affected by parametric uncertainty

q= [q1 · · · q�],

65-1
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which is bounded in an hyperrectangle of radius ρ ∈ [0, 1] centered at the nominal value q̄

Qρ
.=
{

q ∈ R
� : qi ∈ [(1− ρ) q̄i , (1+ ρ) q̄i], i = 1, . . . , �

}
.

Henceforth, the objective is to design controller parameters θ in the presence of uncertain constraints of
the form f (θ, q)≤ 0; in Section 65.2 we provide a specific example of function f .

The algorithms derived in this probabilistic context are based on uncertainty randomization and are
usually called randomized algorithms. That is, assuming that q is a random vector with given probability
measure Pr, a controller is constructed utilizing a number of random samples q(i) of q. These algorithms
provide controller parameters θ which probabilistically satisfy the system constraint f (θ, q)≤ 0. In other
words, a certain probability of violation V (θ, q) is associated to the controller θ, but this probability may
be suitably bounded by given (probabilistic) accuracy ε ∈ (0, 1) and confidence δ ∈ (0, 1). The results
presented in the literature for solving probabilistic design of uncertain systems can be divided into two
main categories consisting of sequential and nonsequential methods, which are now described more
precisely.

Sequential methods, see Section 65.3, generally build upon a convexity assumption regarding how
the parameters θ enter into the function f (θ, q). The resulting algorithms are based on a probabilistic
oracle and subsequent update rule. Various update rules have been derived, including gradient [3,9,27],
ellipsoid [7], and cutting plane [4]. In this context, finite-time probabilistic properties have been obtained
providing bounds on the maximum number of required iterations to guarantee a termination criterion
with given probabilistic accuracy and confidence. Design of robust Linear Quadratic regulators, synthesis
of linear parameter-varying (LPV) systems, and solution of uncertain linear matrix inequalities (LMIs)
are successful examples of the efficacy of these methods.

Nonsequential methods, see Sections 65.4 and 65.5, are mainly based on statistical learning theory;
see [13] for further details. From the control design point of view, the objective is to derive sample size
bounds which guarantee uniform convergence properties for feasibility or optimization problems. The
methods developed are very general and are not based on any convexity assumption. We present an
algorithm which requires a one-shot (local) solution of an optimization problem subject to randomized
constraints, whose number is dictated by the sample complexity previously obtained.

In the particular case of convex optimization with nonsequential methods, see Section 65.4, a successful
paradigm has been introduced in [1]. In this approach, the original robust control problem is reformulated
in terms of a single convex optimization problem with sampled constraints which are randomly generated.
The main result of this line of research is to determine the sample complexity without resorting to statistical
learning methods.

Once a probabilistic controller has been obtained either with sequential or nonsequential methods,
the control engineer should perform an a posteriori analysis, both deterministic and probabilistic; see
Section 65.6. In particular, regarding the former analysis, standard robustness methods can be used.
Regarding the latter, in a classical Monte Carlo setting, we can establish the sample complexity for analysis
so that the probability of violation is estimated with given accuracy and confidence. The probabilistic
margin obtained with this approach is larger than that computed with deterministic methods at the
expense of a “small” probability of violation.

To better illustrate these concepts, we resort to a motivating example, which will be revisited in various
forms in this chapter.

Example 65.1: Design of a Lateral Motion Controller for an Aircraft

We consider a multivariable example given in [11] (see also [18] for a slightly different model and set
of data) which studies the design of a controller for the lateral motion of an aircraft. The state-space
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equation consists of four states and two inputs and is given by

ẋ(t)=

⎡
⎢⎢⎣

0 1 0 0
0 Lp Lβ Lr

g/V 0 Yβ −1
N
β̇

(g/V ) Np Nβ+N
β̇

Yβ Nr −N
β̇

⎤
⎥⎥⎦ x(t)+

⎡
⎢⎢⎣

0 0
0 Lδa

Yδr 0
Nδr +N

β̇
Yδr Nδa

⎤
⎥⎥⎦ u(t), (65.1)

where x1 is the bank angle, x2 its derivative, x3 is the sideslip angle, x4 the yaw rate, u1 the rudder
deflection, and u2 the aileron deflection.

We consider the case when the 13 aircraft parameters entering into the state and input matrices
of Equation 65.1 are uncertain. Hence, we consider the system

ẋ(t)= A(q)x(t)+ B(q)u(t),

where we introduced the uncertainty vector q= [q1 · · · q�], with �= 13. In particular, we consider
the case when each parameter qi is perturbed by a relative uncertainty equal to 10% around its
nominal value q̄i , as reported in Table 65.1.

Formally, the vector q is assumed to range in the hyperrectangle centered at the nominal value q̄,
that is,

Qρ =
{

q ∈ R
� : qi ∈ [0.9 q̄i , 1.1 q̄i], i = 1, . . . , �

}
. (65.2)

We are interested in designing a state feedback controller u= Kx that robustly stabilizes the
system guaranteeing a desired decay rate α> 0, which is equivalent to having all closed-loop eigen-
values with real part smaller than−α. A sufficient condition [22] for the existence of such a controller
requires finding a symmetric positive definite matrix P ∈ R

4,4, and a matrix W ∈ R
4,2 such that the

following quadratic performance criterion is satisfied for all values of q ∈Qρ,

ΦQP(W , P, q)
.= A(q)P+ PA,(q)+ B(q)W, +WB,(q)+ 2αP A 0, (65.3)

where the symbols. and≺ (B andA) denote positive and negative definite (semidefinite) matrices.
Further, if we find common P . 0 and W that simultaneously satisfy Equation 65 3 for all q ∈Qρ, then
a control gain K robustly guaranteeing the desired decay rate can be recovered as K =W,P−1. This
approach has strong connections with classical optimal control, and in particular guaranteed-cost
regulator design; see [11,18] for further details.

It should be noted that in many practical situations the requirement that Equation 65.3 is satisfied
for all possible values of q may be too strict and may result in an overly conservative design. Suppose
further that additional information on q is available, namely q has probabilistic nature, that is, it is
a random vector distributed according to a probability measure Pr. In this case, it is reasonable to
look for a design that guarantees that the closed-loop system behaves as desired with a given “high"
probability. More precisely, fixing a priori a (small) probability level ε ∈ (0, 1), we look for P . 0, W that
satisfies the probability constraint

Pr
{

q ∈Qρ :ΦQP(P, W , q)A 0
}≥ 1− ε.

Note also that, if we introduce the function

f (P, W , q)= λmax
(
ΦQP(P, W , q)

)
,

TABLE 65.1 Uncertain Parameters and Nominal Values

q Lp Lβ Lr g/V Yβ N
β̇

Np Nβ Nr Lδa Yδr Nδr Nδa
q̄ −2.93 −4.75 0.78 0.086 −0.11 0.1 −0.042 2.601 −0.29 −3.91 0.035 −2.5335 0.31
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where λmax(·) denotes the largest eigenvalue of its argument, then we may rewrite a probabilistic
problem as that of finding P . 0, W such that

Pr
{

q ∈Qρ : f (P, W , q)≤ 0
}≥ 1− ε. (65.4)

Computing a solution that satisfies Equation 65.4 amounts to solving a so-called chance-constrained
semidefinite feasibility problem: a non-convex and very hard problem in general.

65.2 Probabilistic Design

The design techniques developed in the probabilistic framework are based on the interplay of random
sampling in the uncertainty space and deterministic optimization in the design parameter space. Formally,
let θ ∈ R

nθ denote the vector of design variables. For instance, returning to the previous motivating
example, we choose θ to represent the free parameters of the symmetric matrix P and the full matrix W ,
so that nθ = 18. Then, define a performance function that takes into account all the design and performance
constraints related to the system with design parameters θ. These are rewritten in the form of the following
(uncertain) inequality

f (θ, q)= f (P, W , q)≤ 0, (65.5)

where f (θ, q) : Qρ×R
nθ → R is a scalar-valued function. The design vector θ such that the inequality

(Equation 65.5) is satisfied “for most” (in a probabilistic sense) of the outcomes of q is called a probabilistic
robust design. More specifically, define the probability of violation of the design θ as

V (θ)
.= Pr

{
q ∈ Qρ : f (θ, q) > 0

}
,

then, an ε-probabilistic robust design is a design guaranteeing

V (θ) < ε.

Equivalently, we define the probability of performance, or shortly reliability, of the design θ as

R(θ)= 1−V (θ)= Pr
{

q ∈ Qρ : f (θ, q)≤ 0
}

.

In other words, we say that a design is reliable if it guarantees a probability of performance of at least
(1− ε). Most of the results presented in the literature for solving the probabilistic design problem have
been derived under the assumption that the function f (θ, q) is convex in θ for all q ∈ Qρ. This assumption,
which will be used in Sections 65.3 and 65.4, is now formally stated.

Convexity Assumption 65.1:

The function f (θ, q) is convex in θ for any fixed value of q ∈ Qρ.

A standard example of a convex function f arises when considering performance requirements
expressed by LMI conditions, as in the case of the motivating example. In particular, consider robust
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feasibility problem of the form

Find θ such that F(θ, q)A 0 ∀q ∈ Qρ,

where the constraint F(θ, q)A 0 is an LMI in θ for fixed q, that is,

F(θ, q)= F0(q)+
nθ∑

i=1

θiFi(q), (65.6)

and Fi(q), i = 0, . . . , nθ, are symmetric real matrices of appropriate dimensions which depend in a generic
and possibly nonlinear way on the uncertainty q ∈ Qρ. Then, to rewrite this problem in the scalar-function
framework, we simply set

f (θ, q)
.= λmax(F(θ, q)).

Finally, we remark that considering scalar-valued constraint functions is without loss of generality,
since multiple constraints

f1(θ, q)≤ 0, . . . , fnf (θ, q)≤ 0

can be immediately reduced to a single scalar-valued constraint by setting

f (θ, q)= max
i=1,...,nf

fi(θ, q).

The randomized algorithms discussed in this chapter provide a numerically viable way to compute
approximate probabilistic solutions for the problems previously described.

65.3 Sequential Methods for Design

In this section, we present randomized sequential methods for finding a probabilistic feasible solution θ
to the uncertain inequality

f (θ, q)≤ 0 (65.7)

introduced in the previous section, under the Convexity Assumption. To this end, we first state the
following formal definition.

Definition 65.1: r-Feasibility

For given r > 0, we say that the inequality (Equation 65.7) is r-feasible if the solution set

S = {θ ∈ R
nθ : f (θ, q)≤ 0, ∀q ∈ Qρ

}

contains a full-dimensional ball of radius r.

The algorithms presented in the literature for finding a probabilistic feasible solution (i.e., a solution
that lies in S with high probability) are based on two fundamental ingredients: (1) an Oracle, which
should check probabilistic feasibility of a candidate solution, and (2) an Update Rule, which exploits the
convexity of the problem for constructing a new candidate solution based on the Oracle outcome. All the
available algorithms can hence be recast in the form of the following meta-algorithm.
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1. Initialization: Set k = 0 and choose an initial candidate solution θ0.
2. Oracle: Invoke the Oracle with θk . The Oracle returnstrue if θk is a probabilistic robust design. In

this case, Exit returning θseq = θk . Otherwise, the Oracle returns false, together with a violation
certificate qk , that is a realization of the uncertainty q such that f (θk , qk) > 0.

3. Update: Construct the new candidate solution θk+1 based on θk and on the violation certificate qk .
4. Outer iteration: Set k = k+ 1 and Goto 2.

In the next sections, we describe in detail the two basic components of the previous algorithm: the
Oracle and the Update Rule.

65.3.1 Probabilistic Oracle

The Oracle constitutes the randomized part of the algorithm, and its role is to decide on the probabilistic
feasibility of the current solution. This decision is made based on random samples of the uncertainty.
More precisely, a number Nk of independently identically distributed (i.i.d) uncertainty samples

q(1), . . . , q(Nk) ∈ Qρ

are drawn according to the underlying distribution Pr, and the candidate design θk is deemed probabilis-
tically robust if

f (θk , q(i))≤ 0, i = 1, 2, . . . , Nk .

This leads to the following simple randomized scheme.

Algorithm 65.1: Oracle

Input: θk , Nk

Output: feas (true/false) and violation certificate qk

for i = 0 to Nk do
draw a random sample q(i)

Randomized Test

if f (q(i), θk) > 0 then
set qk = q(i), feas=false
exit and return qk

end if
end for
set feas=true

Note that at step k the feasibility of the candidate solution θk is verified with respect to a number of
samples Nk . If the test is passed, the solution is deemed feasible; otherwise, the uncertainty value qk for
which the randomized test failed is returned as a violation certificate. The sample size Nk depends on k,
and has to be chosen to guarantee the desired probabilistic properties of the solution. Before discussing
this issue in Section 65.3.3, we concentrate our attention on the outer loop of the algorithm, and show
how one can update the current solution if the Oracle establishes its unfeasibility.

65.3.2 Update Rules

Various update rules have been proposed in the literature on randomized algorithms. For clarity of
presentation, we discuss in detail only the simplest one, which is based on a (sub)gradient descent
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technique. In this approach, it is assumed that a subgradient ∂k(θ) of the function f (θ, q) at the violation
certificate qk is computable. In the case when f (θ, qk) is differentiable at θ, then ∂k(θ) is simply the gradient
of f , that is,

∂k(θ)= ∇θf (θ, qk).

Then, the Update Rule consists of a classical gradient descent step. This is summarized in Algorithm 65.2.
The main distinguishing feature of the method lies in the particular choice of the stepsize ηk , which is
given by

ηk =
⎧⎨
⎩

f (θk , δk)

‖∂k(θk)‖ + r if ∂k(θk) �= 0,

0 otherwise,
(65.8)

where r is a positive parameter.

Algorithm 65.2: UpdateRule (gradient method)

Input: θk , qk

Output: θk+1

compute the subgradient ∂k(θ) of f (θ, qk).
compute the stepsize ηk according to (Equation 65.8).
set

θk+1 =
⎧⎨
⎩
θk −ηk

∂k(θk)

‖∂k(θk)‖ if ∂k(θk) �= 0

θk otherwise.

Remark 65.1: Subgradient for LMIs

Note that, in the case of the LMI defined in Equation 65.6, a subgradient of the function f (θ, qk)=
λmax(F(θ, qk)) at θ= θk is readily computable as

∂k(θk)=
[
ξmax

,F1(qk)ξmax · · · ξmax
,Fnθ (qk)ξmax

],
,

where ξmax is a unit norm eigenvector associated with the largest eigenvalue of F(θk , qk).
The specific choice of stepsize in Equation 65.8, and in particular the selection of the parameter r,

has the purpose of guaranteeing finite-time convergence, by imposing a termination condition to the
sequential algorithm when the oracle cannot find any probabilistic solution. Note in fact that, in this
situation, the meta-algorithm introduced in the previous section would run indefinitely. In the next
section, we show how to avoid this behavior, by imposing a finite termination condition to the algorithm.
Then, we analyze the probabilistic properties of the ensuing randomized algorithm.

65.3.3 Probabilistic Properties

Let us first define the quantity

Nouter =
⌈

R2

r2

⌉
, (65.9)

where R is the distance of the initial solution θ0 from the center of a ball of radius r contained in the
solution set S.

To study the probabilistic properties of the iterative scheme discussed in this section, we fix desired
probabilistic levels ε, δ ∈ (0, 1) and assume that at step k the Oracle is invoked with the sample size which
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has been derived in [8]

Nk ≥ Noracle(ε, δ, k)=

⎡
⎢⎢⎢⎢⎢

log
π2(k+ 1)2

6δ

log
1

1− ε

⎤
⎥⎥⎥⎥⎥

. (65.10)

With these positions, the meta-algorithm can be formally rewritten as follows.

Algorithm 65.3: SequentialDesign

Input: ε, δ ∈ (0, 1), Nouter

Output: θseq

Initialization

choose θ0 ∈ R
nθ , set k = 0 and feas=false

Outer Iteration

while feas=false and k < Nouter do
determine the sample size Nk according to Equation 65.10

Oracle

(feas, qk) = Oracle(θk , Nk)

Update

if feas=false then
update θk+1 = UpdateRule(θk)

else
set θseq = θk

end if
set k = k+ 1

end while

The probabilistic properties of Algorithm 65.3 are formally stated in the next theorem.

Theorem 65.1: Probabilistic Properties

Let the Convexity Assumption hold and let ε, δ ∈ (0, 1) be given probability levels. Then, the following
statements hold:

1. The probability that Algorithm 65.3 terminates at some outer iteration k < Nouter and returns θseq

such that V (θseq) > ε is less than δ.
2. If Algorithm 65.3 reaches the outer iteration Nouter, then the problem is not r-feasible.

Case 1 corresponds to a successful exit of the algorithm: the algorithm returned, with high probability,
a probabilistic robust design θseq. Case 2 represents instead an unsuccessful exit: no solution has been
found. In this situation, however, we have a certificate qk which shows that the original problem is not
r-feasible. We remark that, to determine Nouter, the quantities r and R have to be available. In particular,
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r can be chosen to represent the desired level of r-feasibility, according to Definition 65.1. The radius R
in Equation 65.9 can be instead replaced by an appropriate upper bound which can be easily estimated a
priori.

We also remark that the sample size Nk provided in Equation 65.10 is independent of the number of
uncertain and design parameters. This represents one of the key features of randomized algorithms: in
general, the number of required computations is independent of the problem dimension, and therefore
these algorithms are polynomial-time. For this reason, they are said to break the curse of dimensionality
at the expense of a probability of violation; see [11].

65.3.4 Advanced Techniques

The update rule discussed in the previous section is one of the simplest methods that are currently avail-
able. More sophisticated techniques that still guarantee probabilistic properties of the ensuing solution
can be developed. With these techniques, improved convergence rates are provided.

In particular, different techniques have been proposed falling in the class of the so-called localization
methods. In these methods, the update rule is based on the computation, at each step k, of a center of a
suitably defined localization set Lk . The set Lk is guaranteed to contain the feasible set S, that is, S ⊆ Lk .
The set Lk is constructed based on the violation certificate qk returned by the Oracle. The point qk is used
to construct a separating hyperplane hk

.= {ξ ∈ R
nθ : a,k ξ= bk} having the property that

a,k θk ≥ bk and a,k θ≤ bk , ∀θ ∈ S.

The separating hyperplane hk indicates that the half-space {θ : a,k θ> bk} cannot contain a feasible point
and can therefore be eliminated (cut) in subsequent steps of the algorithm. In this case, we know that
S ⊆ Lk ∩Hk , where

Hk
.= {θ : a,k θ≤ bk},

and the algorithm constructs an updated localization set Lk+1 such that

Lk+1 ⊇ Lk ∩Hk .

A new query point θk+1 ∈ Lk+1 is then computed, and the process is repeated. This is summarized in the
following scheme.

Algorithm 65.4: UpdateRule (localization methods)

Input: θk , qk

Output: θk+1

compute the subgradient ∂k(θ) of f (θ, qk)
construct the half-space Hk based on the subgradient
update the localization set Lk+1 ⊇ Lk ∩Hk

return θk+1 = Center(Lk)

Different methods descend from different choices of the shape and description of the localization
set. In particular, in probabilistic cutting plane methods, the localization set is a polytope, and the
candidate solution θk+1 is a center of this polytope (usually, the analytic center). In the probabilistic
ellipsoid algorithm, the localization set is instead an ellipsoid and the candidate solution is the ellipsoid
center.

It should be noted that Theorem 65.1 still holds also for the update rules introduced in this sec-
tion, provided that Nouter is properly chosen. In particular, for the ellipsoid methods Nouter grows as
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O(n2
θ log(

√
nθR/r)), while for the best-known cutting-plane method it is of the order of O(nθ log2(R/r)),

where in the first case R represents the radius of a ball and in the second case the radius of a cube, both
inscribing the set S, and r is the desired r-feasibility level.

Example 65.2: Probabilistic Sequential Design

To show how the sequential algorithm presented in this section can be applied to a specific design
problem, we revisit the aircraft lateral motion design example. In particular, we set α= 0.5 and seek
a probabilistic feasible solution θ= {P, W} to the uncertain LMIs

P B βI, (65.11)

A(q)P+ PA,(q)+ B(q)W, +WB,(q)+ 2αP A 0, (65.12)

where the uncertainty q is assumed to vary in the set Qρ defined in Equation 65.2 and β= 0.01. We
apply the algorithmSequentialDesignwith ellipsoid update rule, and probability levels ε= 0.01,
δ= 10−6. With this setting, the algorithm is guaranteed to return (with 99.9999% probability) a
solution P, W such that Equations 65.11 and 65.12 hold with 99% probability.

The algorithm was run with random initial candidate solution θ0, and terminated after k = 28
outer iterations returning the solution

Pseq =

⎡
⎢⎢⎣

0 3075 −0.3164 −0.0973 −0.0188
−0 3164 0 5822 −0.0703 −0.0993
−0.0973 −0.0703 0.2277 0.2661
−0.0188 −0.0993 0.2661 0.7100

⎤
⎥⎥⎦ , (65.13)

W seq =

⎡
⎢⎢⎣
−0.0191 0.2733
−0.0920 0.4325

0.0803 −0.3821
0.4496 −0.2032

⎤
⎥⎥⎦ . (65.14)

This solution was deemed probabilistically feasible by the Oracle after checking Equations 65.11
and 65.12 for Nk = 2, 089 uncertainty samples. Then, the probabilistic controller is constructed as

K seq =
[−2.9781 −1.9139 −3.2831 1.5169

7.3922 5.1010 4.1401 −0.9284

]
.

Further properties of this controller (worst-case and probabilistic) are studied in Section 65.6.

65.4 Scenario Approach to Optimization Problems

The sequential methods presented in the previous sections have been developed for feasibility problems. In
this section, we present a nonsequential (batch) method for addressing in a probabilistic setting uncertain
convex optimization problems, that is, optimization programs of the form

min
θ∈R

nθ
c,θ subject to f (θ, q)≤ 0, for all q ∈ Qρ. (65.15)

A probabilistic solution to this problem is found by replacing the semiinfinite set of constraints f (θ, q)≤
0 (one for every possible value of q ∈ Qρ) with a finite number N of constraints f (θ, q(i))≤ 0, i = 1, . . . , N ,
one for each random sample q(i). This approach is summarized in the next algorithm.
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Algorithm 65.5: ScenarioDesign

Input: ε, δ, nθ
Output: θscen

compute the sample size N ≥ N scen(ε, δ, nθ) as in Equation 65.18
draw N i.i.d. samples q(1), . . . , q(N)

Scenario Problem

solve the convex optimization problem

θscen = arg min
θ∈R

nθ
c,θ subject to f (θ, q(i))≤ 0, i = 1, . . . , N (65.16)

To analyze the properties of the proposed algorithm, we consider for simplicity the case when the
scenario problem (Equation 65.16) admits a feasible solution θscen and that this solution is unique.∗ We
state here a result that was originally presented in [1], see also subsequent improvements in [26].

Theorem 65.2: Convex Scenario Design

Let the Convexity Assumption hold. Suppose that N > nθ, and ε, δ ∈ (0, 1) satisfy the inequality

(
N

nθ

)
(1− ε)N−nθ ≤ δ, (65.17)

then the probability that V (θscen) > ε is at most δ.

The bound in Equation 65.17 provides an implicit relation between N , ε, δ, and nθ. This relation can
be made explicit to derive the sample complexity of the scenario approach. We now state a bound derived
in [14], proving that the sample complexity is proportional to 1/ε for fixed δ. In particular, it was shown
that, for given ε, δ ∈ (0, 1), Equation 65.17 holds if

N ≥ N scen(ε, δ, nθ)
.=
⌈

2

ε
ln

1

2δ
+ 2nθ+ 2nθ

ε
ln 4

⌉
. (65.18)

Example 65.3: Scenario Design

To exemplify the sample complexity involved in a scenario design, we consider the problem of
determining a probabilistic solution θ= {P, W} of the optimization problem

min
P,W

Tr P subject to Equations 65.11 and 65.12

where Tr denotes the trace of a matrix.

∗ Note that, if the scenario problem (Equation 65.16) is unfeasible, then clearly also the original robust convex program
(Equation 65.15) is unfeasible. The assumption on uniqueness of the solution can be relaxed in most cases, as shown in
Appendix A of [1].
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In this case, if we set as previously ε= 0.01, δ= 10−6, applying the bound (Equation 65.18) with
nθ = 18, we obtain Nscen = 7, 652. This means that we have to solve an optimization problem with
7, 652 LMI constraints and 18 design variables. Then, Algorithm 65.5 returned the solution

Pscen =

⎡
⎢⎢⎣

0.1445 −0.0728 0.0035 0.0085
−0.0728 0.2192 −0.0078 −0.0174

0.0035 −0.0078 0.1375 0.0604
0.0085 −0.0174 0.0604 0.1975

⎤
⎥⎥⎦ ,

W scen =

⎡
⎢⎢⎣

0.0109 0.0908
7.2929 3.4846
0.0439 −0.0565
0.6087 −3.9182

⎤
⎥⎥⎦ .

Then, a probabilistic controller is constructed as

K scen =
[

20.0816 40.3852 −0.4946 5.9234
10.7941 18.1058 9.8937 −21.7363

]
.

In the next section, we consider the more general case when the function f (θ, q) may be nonconvex
in θ.

65.5 Learning Approach to Nonconvex Optimization

A nonsequential probabilistic approach for nonconvex control design is based on statistical learning
theory; see [13] for further details. One of the objectives of this theory is to derive uniform convergence
laws. Hence, from the control point of view, the main utility of statistical learning is to derive convergence
results and compute the sample complexity which hold uniformly for all controller parameters θ. In turn,
this leads to a powerful methodology for control synthesis which is not based on a convexity assumption
on the controller parameters. The obtained sample complexity bounds are significantly larger than those
derived in the convex case, even though the structure of the bounds show various similarities. We also
remark that the setting of statistical learning may be seen as a major extension of the classical Monte
Carlo approach which is useful only in the context of a posteriori analysis (see Section 65.6) where the
controller parameters are fixed.

To treat the problem in full generality, we consider the following optimization problem

min
θ∈R

nθ
J(θ) subject to g(θ, q)= 0, for all q ∈ Qρ, (65.19)

where the cost function J : Rnθ → R and the binary function g : Rnθ ×Qρ→ {0, 1} may be nonconvex.
Note that constraints of the form (Equation 65.5) may be recast in this framework by setting

g(θ, q)= I(f (θ, q) > 0),

where the indicator function I(·) is one if the clause is true and zero otherwise. We consider here only the
case when the binary function g(θ, q) can be written as a Boolean polynomial expression on the decision
variable θ, as now formally stated.

Definition 65.2: (γ, m)-Boolean Function

The function g : Rnθ ×Qρ→ {0, 1} is a (γ, m)-Boolean if, for fixed q, it can be written as a Boolean
expression consisting of Boolean operators involving m polynomials

β1(θ), . . . , βm(θ)
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in the variables θi , i = 1, . . . , nθ, and the degree with respect to θi of all these polynomials is no larger than
γ > 0.

A probabilistic approximate solution to problem (Equation 65.19) may be found by means of the
following algorithm, which has a similar structure of Algorithm 65.5.

Algorithm 65.6: NonConvex

Input: ε, δ, nθ
Output: θncon

compute the sample size N ≥ Nncon(ε, δ, nθ) as in Equation 65.21
draw N i.i.d. samples q(1), . . . , q(N)

Nonconvex Scenario Problem

solve the nonconvex optimization problem

θncon = arg min
θ∈R

nθ
J(θ) subject to g(θ, q(i))= 0, i = 1, . . . , N (65.20)

Note that Equation 65.20 requires in general the solution of a nonconvex optimization problem. This
usually leads only to a local minimum. However, the following theorem, stated in [14], guarantees that
this minimum is ε-feasible.

Theorem 65.3: Nonconvex Learning-Based Design

Let g(θ, q) be (γ, m)-Boolean. Given ε ∈ (0, 0.14) and δ ∈ (0, 1), if

N ≥ Nncon(ε, δ, nθ)
.=
⌈

4.1

ε

(
ln

21.64

δ
+ 4.39nθ log2

(
8eγm

ε

))⌉
, (65.21)

where e is the Euler number, then the probability that V (θncon) > ε is less than δ.

Example 65.4: Nonconvex Learning-Based Design

In contrast with the previous examples which considered quadratic stability, we aim here at designing
a controller K that minimizes (in probability) the decay rate α of Hurwitz stability. Moreover, as in [18],
we want to impose a saturation constraint on the entries of the gain matrix K . That is, we aim at
solving the following nonconvex optimization problem

min
α,K

(−α)

subject to
A(q)+ B(q)K + αI is Hurwitz for all q ∈Qρ (65.22)

−K̄i,j ≤ Ki,j ≤ K̄i,j , i = 1, 2, j = 1, 2, 3, 4 (65.23)

where

K̄ =
[

5 0.5 5 5
5 2 20 1

]
.
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To use the framework developed in this section, we set the design parameters to θ= {α, K}.
Then, we note that checking the constraint in Equation 65.22 can be performed using the classical
Hurwitz test, which requires strict positivity of all the Hurwitz determinants Hi (θ, q), i = 1, . . . , n. That
is, Equation 65.22 is equivalent to the Boolean condition

BH (θ, q)
.= {H1(θ, q) > 0} ∧ · · · ∧ {Hns (θ, q) > 0},

where the symbol ∧ stands for “and.” Note now that Hi (θ, q) are ns polynomials in θ, where ns = 4
is the dimension of the state matrix, whose degree is at most γi = i(i+ 1)/2; see [12] for additional
details. Hence, BH (θ, q) is (γ, ns)-Boolean, with

γ= max
i=1,...,ns

γi = ns(ns+ 1)/2= 10.

Additionally, constraint (65.23) is immediately rewritten as the Boolean condition

BK (θ)
.= {K1,1 ≥−K̄1,1} ∧ {K1,1 ≤ K̄1,1} ∧ · · · ∧ {K2,4 ≥−K̄2,4} ∧ {K2,4 ≤ K̄2,4}

which is (1, 16)-Boolean. Hence, the binary function

g(θ, q)
.=
{

0 if BH (θ, q) ∧ BK (θ),
1 otherwise ,

is (10, 20)-Boolean. Then, we let ε= 0.01 and δ= 10−6, and, noting that nθ = 9, γ= 10, m= 20, we
apply Theorem 65.3 obtaining Nncon(ε, δ, nθ)= 310, 341. A (local) solution of the ensuing nonconvex
scenario problem (Equation 65.20) was computed by means of a numerical optimization method
based on local linearization obtaining

αncon = 3.7285,

K ncon =
[

0.8622 0 2714 −5.0000 2.7269
5.0000 1.4299 3.9328 −1.0000

]
.

We note that three gains in the matrix K ncon saturate to their extreme values.

65.6 A Posteriori Performance Analysis

In this section, we study the performance of the probabilistic controller selected with the sequential
or nonsequential methods previously presented. Since the controller is fixed, this amounts to solving
a-posteriori deterministic and probabilistic analysis problems, as discussed next.

65.6.1 Deterministic Analysis

For a fixed value of the design parameter θ, the deterministic, or worst-case, analysis consists in computing
the radius of deterministic performance ρwc, which is the largest value of ρ ∈ [0, 1] for which the constraint

f (θ, q)≤ 0

is robustly satisfied for all q in the set Qρ. Then, once this worst-case analysis is completed, the objective
is to perform a probabilistic analysis beyond the radius of deterministic performance, that is, for values
of ρ ∈ [ρwc, 1].

Deterministic and probabilistic analysis are now illustrated more precisely for the example con-
sidered in this chapter. First, we perform a worst-case analysis of the controller θseq derived in
Section 65.3.
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Example 65.5: Deterministic Analysis

Note that in the example under consideration the entries of

A(q)=

⎡
⎢⎢⎣

0 1 0 0
0 q1 q2 q3

q4 0 q5 −1
q4q6 q7 q8+ q5q6 q9− q6

⎤
⎥⎥⎦ , B(q)=

⎡
⎢⎢⎣

0 0
0 q10

q11 0
q12+ q6q11 q13

⎤
⎥⎥⎦

depend multiaffinely∗ on the uncertainty q. In this case, for fixed ρ, to detect quadratic performance
of an uncertain system affected by multiaffine uncertainty, it is well-known (see, e.g., [20]), that it
suffices to check the simultaneous satisfaction of the uncertain constraint (Equation 65.3) at the
vertices of the hyperrectangle Qρ. That is, for given P . 0 and W , if the inequality

ΦQP(P, W , vi )= A(vi )P+ PA,(vi )+ B(vi )W, +WB,(vi )+ 2αP A 0 (65 24)

is satisfied for all vertices vi , i = 1, 2, . . . , 2� of the hyperrectangle Qρ, then the uncertain constraint
(Equation 65.3) is satisfied for all q ∈Qρ.

Then, computing the radius ρwc amounts to solving a one-dimensional problem in the variable
ρ and, for each value of ρ, to verify if the inequality (Equation 65.24) is satisfied for all vertices of
Qρ. This problem can be solved, for example, using a bisection method, but for each value of ρ an
exponential number of vertices 2� should be considered.

Performing this worst-case analysis on the design Pseq and W seq derived in Equations 65.13 and
65.14, we compute

ρwc ≈ 0.12.

We conclude that the controller derived for the aircraft model is robustly stable and attains robust
quadratic performance for all values of q ∈Qρ, with ρ ∈ [0, ρwc].

65.6.2 Probabilistic Analysis

In this case, the a-posteriori analysis consists of designing a Monte Carlo experiment which is based
on random extractions of uncertainty samples. The result of the experiment is to return an estimated
probability of satisfaction of the uncertain constraint under attention. The probability provided by this
randomized algorithm is within an a-priori accuracy ε ∈ (0, 1) from the true probability, with confidence
δ ∈ (0, 1). That is, the algorithm may indeed fail to return an approximately correct estimate, but the
probability of failure is at most δ.

More precisely, let q ∈ Qρ represents the random uncertainty acting on the system. Then, for a given
value of the design parameter θ, we aim at providing an estimate R̂N of the probability of performance

R(θ)= Pr
{

q ∈ Qρ : f (θ, q)≤ 0
}

using N i.i.d. samples q(i), i = 1, 2, . . . , N of q ∈ Qρ. The estimate R̂N , called the empirical probability, is
given by

R̂N = 1

N

N∑
i=1

I[f (θ, q(i))≤ 0].

The sample complexity N is related to the accuracy and confidence and it can be determined using fairly
classical large deviations inequalities. In particular, the so-called Chernoff Bound [5] can be readily used

∗ A function f : R� → R is said to be multiaffine if the following condition holds: If all components q1, . . . , q� except one
are fixed, then f is affine. For example, f (q)= 3q1q2q3− 6q1q3+ 4q2q3+ 2q1− 2q2+ q3− 1 is multiaffine.
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to determine the number of required samples. More precisely, given ε, δ ∈ (0, 1), if

N ≥ Ncher(ε, δ)=
⌈

1

2ε2 ln
2

δ

⌉
,

then, the probability inequality
|R(θ)− R̂N | ≤ ε

holds with probability at least 1− δ. We remark that the sample size Ncher provided by the Chernoff
Bound is independent of the number � of uncertain parameters q.

The following algorithm describes the Monte Carlo experiment discussed so far.

Algorithm 65.7: Probabilistic Analysis

Input: ε, δ, θ
Output: R̂N

compute the sample size N ≥ Ncher(ε, δ)
draw N i.i.d. samples q(1), . . . , q(N)

return R̂N = 1
N

∑N
i=1 I[f (θ, q(i))≤ 0]

Then, the next step is to construct the probability degradation function, which is the plot of the
probability of stability as a function of the radius ρ. This plot may be compared with the radius of
performance ρwc, to provide additional important information to the control engineer on the behavior
of his/her design beyond the worst-case performance margin. This is illustrated in the next example.

Example 65.6: Probabilistic Analysis

For the controller θseq, we proceed with a probabilistic analysis for perturbations q whose radius goes
beyond the deterministic radius ρwc previously computed. That is, we study how the probability of
quadratic performance degrades with increasing radius ρ. More precisely, for fixed ρ> ρwc, we
compute an estimate R̂N . Note that this analysis can be carried out using smaller values of ε, δ than
those employed in the design phase. For instance, taking ε= 0.005, δ= 10−6, by means of the
Chernoff bound we obtain N = 290, 174. Then, we estimated the probability degradation function
for 100 equispaced values of ρ in the range [0.12, 0.5]. For each grid point the estimated probability
of performance is computed by means of Algorithm 65.7. For each value of ρ, the accuracy of this
estimate satisfies the inequality

|R(θseq)− R̂N | ≤ ε
with probability at least 1− δ.

The obtained results showing the estimated probability together with the deterministic radius
ρwc are given in Figure 65.1. From this plot we observe, for instance, that if a 2% loss of probabilistic
performance may be tolerated, then the performance margin may be increased by approximately
270% with respect to its deterministic counterpart. In fact, for ρ= 0.34, the estimated probability of
performance is 0.98. In addition, we note that the estimated probability is equal to one for values of
the radius up to ρ≈ 0 26.

In Figure 65 2, we plot the closed-loop eigenvalues for ρ= 0.34.

65.7 Randomized Algorithms Control Toolbox

The algorithms discussed in this chapter may be readily implemented in MATLAB�. However, while
this may be straightforward in the case of analysis problems, it may require a nontrivial effort for the
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FIGURE 65.1 Probability degradation function.

design problems discussed in Sections 65.3 through 65.5. For this reason, to render these techniques easily
accessible to the interested researchers, an effort was made to unify them into a coherent set of MATLAB

routines. This effort led to the release of a Randomized Algorithms Control Toolbox (RACT); see [36].
This toolbox provides convenient uncertain object manipulation and implementation of randomized

methods using state-of-the-art theoretical and algorithmic results. The two main features of the package
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FIGURE 65.2 Closed-loop eigenvalues for ρ= 0.34.
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are a functional approach withm-file templates, and a definition of design problems in generic LMI format
using the widely used YALMIP syntax. This first release of the toolbox provides an easy-to-use interface
of current randomized algorithms for control and is intended to be used by researchers, engineers, and
students interested in robust control, uncertain systems, and optimization. The package can be freely
downloaded from http://ract.sourceforge.net.

RACT features include

• Definition of a variety of uncertain objects: scalar, vector, and matrix uncertainties, with different
density functions.

• Easy and fast sampling of uncertain objects of almost any type.
• Randomized algorithms for probabilistic performance verification and probabilistic worst-case

performance.
• Randomized algorithms for feasibility of uncertain LMIs using stochastic gradient, ellipsoid, or

cutting plane methods.
• Optimal design methods using scenario approach.

65.8 Miscellaneous Topics

65.8.1 General Uncertainty Description

In this chapter, we have studied the case when the uncertain parameters q are bounded in a hyperrectangle
Qρ. However, in some applications, different bounding sets, such as ellipsoids or diamonds; see, for
example, [20], are more appropriate and should be studied. In other situations, the uncertainty affecting
the system is of general type, that is, it consists of parametric and nonparametric uncertainty. In this
case, various performance problems may be reformulated using the so-called M−Δ configuration and
the related μ-theory, see [11], which is a quite flexible and general representation of linear uncertain
systems. From the probabilistic point of view, structured uncertainty descriptions require to develop
suitable randomized algorithms for generation of (vector and matrix) uncertainty samples within various
bounding sets, see Section 65.8.2 for additional details.

Moreover, in the probabilistic setting described in this chapter, the probability measure Pr of the
uncertainty q is assumed to be known. If this is not the case, then clearly the probability of violation
depends on the specific choice of the measure Pr. The result is that, in extreme cases, the probability
of violation may vary between zero and one when taking different measures. Therefore, without any
guideline on the choice of the measure Pr, the obtained probability of violation, or its estimate, may be
meaningless. In various applications, the probability measure may be estimated directly from available
data, but in general the selection of the “right” measure should be performed with great care. This problem
has been studied in [19,21]. In particular, in [21], the theory of distribution-free robustness, which has the
objective to determine the worst-case measure in a given class of bell-shaped distributions, is discussed.

65.8.2 Sample Generation Algorithms

All the previously described randomized methods critically rely on efficient techniques for random sample
generation. The interested reader may refer to [11] for a general discussion on the topic. In this section,
we briefly discuss the problem of generating uniform i.i.d. samples in the �p norm-ball of radius ρ

Bp
ρ

.=
{

q ∈ R
� : ‖q‖p ≤ ρ

}
.

In particular, we report an algorithm, presented in [23], that returns a real random vector q uniformly
distributed in the norm-ball Bp

ρ . This algorithm is based on the Generalized Gamma density Ḡa,c(x),
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defined as

Ḡa,c(x)= c

Γ(a)
xca−1e−xc

, x ≥ 0,

where a and c are given parameters and Γ(a) is the Gamma function.

Algorithm 65.8: Uniform Generation

Input: ρ, p
Output: q uniformly distributed in Bp

ρ

generate � independent random real scalars ξi ∼ G1/p,p

construct the vector x ∈ R
� of components xi = siξi , where si are i.i.d. random signs

generate z = w1/�, where w is uniform in [0, 1]
return q= ρz x

‖x‖p

Figure 65.3 visualizes the main steps of this algorithm in the simple case of sample generation of
two-dimensional real vectors in a circle of radius one (�= 2, p= 2, ρ= 1). First, we note that for p= 2
the Generalized Gamma density Ḡ 1

p ,p(x) is related to the Gaussian density function. The random samples

drawn from a Gaussian distribution (step 1 in the figure) are radially symmetric with respect to the �2

norm. Roughly speaking, this means that their level curves are �2-spheres. Secondly, the samples are
normalized obtaining random vectors uniformly distributed on the boundary of the circle (step 2), and
then injected according to the volumetric factor z (step 3).

We remark that in [11] a similar algorithm for complex vectors is presented. The sample generation
problem becomes much harder when we are interested in the uniform generation of real and complex
matrix samplesΔ bounded in the induced �p-norm. Specific algorithms are presented in [11].

65.8.3 Mixed Deterministic and Probabilistic Setting

We remark that the setup considered here can be easily extended to mixed deterministic and random
uncertainties. To this end, consider our motivating example. In this example, we treated all the parameters
as random ones, but we could easily deal with the case when we want to robustly guarantee performance
against some of them.

Just for exemplification, assume for instance that the vector q is partitioned as q= {qprob, qdet}, so that

the first m uncertain parameters qprob =
[
q1 · · · qm

],
have probabilistic nature with uniform distribution

in the hyperrectangle Qprob, and the parameters qdet =
[
qm+1 · · · q�

],
are deterministic uncertainties,

unknown but bounded in the hyperrectangle Qdet, where the sets Qprob, Qdet are defined accordingly.
In this case, the present approach can be extended considering the following set of LMIs which depend

on qprob

A(qprob, v1)P+ PA,(qprob, v1)+B(qprob, v1)W, +WB,(qprob, v1)+ 2αP A 0

...

A(qprob, vM )P+ PA,(qprob, vM )+B(qprob, vM )W, +WB,(qprob, vM )+ 2αP A 0

(65.25)

where vi , i = 1, . . . , M
.= 2�−m are the vertices of the hyperrectangle Qdet.

Then, an ε-feasible solution to the uncertain constraint (Equation 65.25) can be found using the tools
described in Sections 65.2 through 65.4. Note that this solution would guarantee, as desired, robust
performance with respect to qdet and probabilistic performance with respect to qprob.
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FIGURE 65.3 Generation of random vectors uniformly distributed in a circle.

65.8.4 Linear Parameter-Varying Systems

LPVs provide a good starting point for control design of fairly general classes of gain scheduling prob-
lems. This methodology is suitable and frequently used, for example, in aerospace control and in other
applications as well, due to the time variations of the operating conditions. In this context, the system
matrices depend on an unknown scheduling parameter vector ξ(t) which can be measured online by the
controller at each time instant t. More precisely, the LPV system is described by the equations

ẋ(t)= A(ξ(t))x(t)+B(ξ(t))u(t),

y(t)= C(ξ(t))u(t)

and the feedback controller is of the form

u(t)= K(ξ(t))y(t).

Since the original motivation for introducing gain scheduling is to handle plant nonlinearities, a critical
issue of the resulting LPV model is to properly deal with the time-varying parameters ξ(t). An LPV

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-76&iName=master.img-000.jpg&w=166&h=119
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performance problem can be easily reformulated using parameter-dependent LMIs, but these inequalities
are nonlinear with respect to ξ and it is practically impossible to solve them exactly. To this end, three
different approaches have been developed in recent years and are now described.

The first approach (approximation LPV) studies a specific class of functions of the scheduling param-
eters. For example, the entries of the matrices of the LPV model can be taken as multiaffine functions, or
linear fractional transformations, of ξ. This technique reduces the design problem to tractable formulae
which involve a finite number of LMIs, but some conservatism is introduced in the approximation.

The second method (gridding LPV) requires to grid the parameters ξwhich are assumed to be bounded
within a given setΞ. In this case, control design requires the solution of a finite set of LMIs. However, the
number of LMIs depends on the grid points and it exponentially increases with the number of scheduling
parameters. In addition, the satisfaction of the LMI conditions at the grid points does not provide any
guarantee of their satisfaction for the entire setΞ.

In the third technique (probabilistic LPV), the scheduling parameters ξ entering into the LMI equations
are treated as random variables. Therefore, to compute a probabilistic controller, a randomized sequential
algorithm of the form of Algorithm 65.3 can be derived. Clearly, in contrast to the previous deterministic
methods, the obtained results enjoy probabilistic properties similar to those stated in Theorem 65.1. In [6],
a specific technique for LPV systems, based on the simultaneous update of two gradient iterations similar
to those in Algorithm 65.2, is developed. We refer to this chapter for further details and specific numerical
results for feedback design of the lateral motion of an aircraft with nine scheduling parameters.

65.8.5 Systems and Control Applications

Several applications of probabilistic and randomized methods have been studied. In particular, we recall
the following:

• Aerospace control: Applications of randomized strategies for the design of control algorithms in
the field of aeronautics and aerospace was initiated by Stengel (see, e.g., [34]). In [32], a modern
approach based on ellipsoid techniques is proposed for the design of an LPV control of an F-16
aircraft.

• Flexible and truss structures: Probabilistic robustness of flexible structures consisting of a mass-
spring-damper model affected by random bounded uncertainty with force actuators and position
sensors. Comparisons with standard robustness techniques are made [2]. In the field of truss
topology optimization, a scenario-based approach was proposed in [24].

• Model (in)validation: A computationally efficient algorithm for model (in)validation in the presence
of structured uncertainty and robust performance over finite horizons was proposed in [35].

• Adaptive control: A methodology for the design of cautious adaptive controllers based on a two-step
procedure is introduced in [25]. First, a probability measure is updated online based on observations;
then a controller with certain robust control specifications is tuned to this updated probability by
means of randomized algorithms.

• Switched systems: Randomized algorithms for synthesis of multimodal systems with state-dependent
switching rules. Convergence properties (with probability one) of nonconvex sequential methods
are analyzed. Simulations show the efficacy of the method for various practical problems [29].

• Network control: Congestion control of high-speed communication networks by means of random-
ized algorithms. Various methods are developed and compared using different network topologies,
including Monte Carlo and Quasi-Monte Carlo techniques [17].

• Automotive: A randomization-based methodological approach for validation of advanced driver
assistance systems is studied in [28]. The case study also points out some characteristic properties
of randomized algorithms regarding the necessary sample complexity, and the sensitivity to model
uncertainty.

• Model predictive control (MPC), fault detection, and isolation (FDI): Sequential methods (ellipsoid-
based) are derived in [30] to design robustly stable finite-horizon MPC schemes for linear uncertain
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systems, when the uncertainty is not restricted to some specific class. In [33], a risk-adjusted
approach based on randomization is proposed for robust simultaneous fault detection and isolation
of MIMO systems.

• Circuits and embedded systems: Performance of electric circuits subject to uncertain components
introduced by the manufacturing process. The objective is to evaluate the probability that a given
“system property" holds providing “hard” (deterministic) bounds [31]. In [15,16], randomized tech-
niques are applied to estimate the performance degradation of digital architectures and embedded
systems subject to various sources of perturbation.
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66.1 Introduction

Stochastic differential equations of Itô’s kind are a suitable model for the study of nonlinear dynamic
systems subject to random disturbances, for example, marine vehicles in the presence of wave forcing.
For Itô stochastic systems, Khas’minskǐı [8] and others have developed Lyapunov techniques for stability
analysis of these systems. Since the mid-1990s this class of systems has been a fertile ground for feedback
design, particularly for stabilization [1,2], stochastic disturbance attenuation [3], and adaptive control [3].

In this chapter we review various fundamental results in the area of control of nonlinear continuous-
time stochastic systems. Our designs are presented through several worked examples. The emphasis is on
the construction of feedback laws, without theorem statements.

66-1
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66.2 Stability of Stochastic Systems

We consider stochastic systems of the form

dx = f (t, x) dt+ h(t, x) dw, (66.1)

where x ∈ IRn is the state, x0 = x(0) is the initial state, w is an r-dimensional standard Brownian motion
defined on the complete probability space (Ω, F , {Ft}t≥0, P), with Ω being a sample space, F being a
σ-field, {Ft}t≥0 being a filtration, and P being a probability measure; f : IR+ × IRn → IRn and h : IR+ ×
IRn → IRn×r .

For any given function V (t, x) ∈ C1,2(IR+ × IRn; IR+), associated with the stochastic differential equa-
tion 66.1, we define the differential operator L as follows ( [8]):

LV = ∂V

∂t
+ ∂V

∂x
f + 1

2
Tr

{
hT ∂2V

∂x2 h

}
. (66.2)

Let τ denote the maximal interval of existence of the solution process x(t) of the system (Equation 66.1).
We say that the solution x(t) is regular if P{τ=∞} = 1.

For system (Equation 66.1), suppose that f (t, x) and h(t, x) are locally Lipschitz and f (t, 0), h(t, 0) are
bounded uniformly in t. If there exists a nonnegative function V (t, x) ∈ C1,2(R+ ×R

n; R+) such that for
some c > 0,

LV ≤ cV ,

VR = inf‖x‖>R
V (t, x)→∞, as R→∞,

then system (Equation 66.1) has an almost surely unique (strong) solution on [0,∞).

66.2.1 Boundedness in Probability

A stochastic process {x(t), t ≥ 0} is said to be bounded in probability if

lim
c→∞ sup

0≤t<∞
P{‖x(t)‖> c} = 0.

For system (Equation 66.1), if there exist functions V (t, x) ∈ C1,2(R+ ×R
n; R+), μ1(·), μ2(·) ∈ K∞ such

that μ1(‖x‖)≤ V (t, x)≤ μ2(‖x‖), and constants c ≥ 0, c1 > 0 such that LV ≤−c1V + c, then the solu-
tion process is bounded in probability.

Compared with deterministic systems, there is more than one way to define stability for stochastic sys-
tems because in probability theory there are several concepts of convergence. Generally, these alternative
stability definitions are not equivalent. Some common stability notions and (related Lyapunov-type tests)
are given next. These basic notions are

• Boundedness in probability (defined above)
• Stochastic stability with “almost sure” convergence
• Stability in probability
• Noise-to-state stability (with respect to unknown but deterministic covariance)
• Stochastic input-to-state stability (ISS) (with respect to a stochastic input)
• Practical stochastic stability
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66.2.2 Stability Notion 1

For system (Equation 66.1) with f (t, 0)≡ 0, h(t, 0)≡ 0, the solution x(t)≡ 0 is said to be stochastically
asymptotically stable in the large if for any ε> 0,

lim‖x0‖→0
P

{
sup
t≥0
‖x(t)‖ ≥ ε

}
= 0

and for any initial condition x0,

P{ lim
t→∞ x(t)= 0} = 1.

This form of stability, introduced in [8], is not an immediate analog of the standard deterministic
stability concepts. In order to establish a clearer connection between deterministic stability results in the
style of Hahn [6] or Khalil [7] and stochastic stability results, we introduce the following stability concepts
from Krstic and Deng [9], which are based on class K functions [6] rather than on the ε− δ formalism.

66.2.3 Stability Notion 2

For system (Equation 66.1) with f (t, 0)≡ 0, h(t, 0)≡ 0, the solution x = 0 is

• Globally stable in probability if for all ε> 0 there exists a function γ(·) ∈ K such that

P{‖x(t)‖< γ(‖x0‖)} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ IRn\{0};

• Globally asymptotically stable in probability if for all ε> 0 there exists a function β(·, ·) ∈ KL ( [6])
such that

P{‖x(t)‖< β(‖x0‖, t)} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ IRn\{0}.
For these stability notions, we have the following test.

66.2.3.1 Test for Stability A

Consider system (Equation 66.1) with f (t, 0)≡ 0, h(t, 0)≡ 0. If there exist functions V (t, x) ∈ C1,2(R+ ×
R

n; R+), μ1(·), μ2(·) ∈ K∞, and a continuous and nonnegative function W(x), such that

μ1(‖x‖)≤ V (t, x)≤ μ2(‖x‖),

LV ≤−W(x),

then the equilibrium is globally stable in probability and P{limt→∞ W(x)= 0} = 1. Moreover, if W(x)
is positive definite, the solution x ≡ 0 is stochastically asymptotically stable in the large and also globally
asymptotically stable in probability.

The notion of deterministic ISS introduced by Sontag [15] plays an important role in nonlinear system
analysis and synthesis. For stochastic nonlinear systems, the analogous ISS (see [14,16,17]) is a richer
property as it can be considered relative to more than one class of inputs.

66.2.4 Stability Notion 3

Consider the system

dx = f (t, x) dt+ h(t, x)Σ(t) dw, (66.3)

where Σ : IR+ → IRr×r is Borel measurable and bounded, and Σ(t)ΣT (t) is the infinitesimal covariance
function of driving noise Σ(t) dw. System (Equation 66.3) is said to be noise-to-state stable (NSS) if for
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any ε> 0, there exist functions β(·, ·) ∈ KL and γ(·) ∈ K, such that∗

P{‖x(t)‖< β(‖x0‖, t)+ γ
(

sup
0≤s≤t

‖Σ(s)Σ(s)T‖F

)
} ≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ IRn\{0}.

66.2.4.1 Test for Stability B

Consider system (Equation 66.3) and suppose there exist functions V (t, x) ∈ C1,2(R+ ×R
n; R+),

α1(·), α2(·), ρ(·) ∈K∞, and α3(·) ∈ K, such that

α1(‖x‖)≤ V (t, x)≤ α2(‖x‖),

‖x‖ ≥ ρ(‖ΣΣT‖F ) ⇒ LV ≤−α3(‖x‖).

Then the system (Equation 66.1) is NSS.
To introduce a different ISS notion, referred to as stochastic input-to-state stability, consider the

following system:

dx = f (x, v) dt+ g(x, v) dw, (66.4)

where v = v(x, t) :Rn×R+ → R
m is the input; w is an r-dimensional standard Brownian motion defined

on the complete probability space (Ω, F , {Ft}t≥0, P), with Ω being a sample space, F being a σ-field,
{Ft}t≥0 being a filtration, and P being a probability measure; and f : Rn×R

m → R
n and g : Rn×R

m →
R

n×r are assumed to be locally Lipschitz in their arguments. Assume that for every initial condition x0

and each essentially bounded measurable input v, system (Equation 66.4) has a unique solution x(t) on
[0,∞) which is Ft-adapted, t-continuous, and measurable with respect to B×F , where B denotes the
Borel σ-algebra of R.

66.2.5 Stability Notion 4

System (Equation 66.4) is practically stochastically input-to-state stable if for any given ε> 0; there exist
functions β(·, ·) ∈ KL, γ(·) ∈ K and a constant d ≥ 0 such that

P

{
‖x(t)‖< β(‖x0‖, t)+ γ

(
sup

0≤s≤t
‖vs‖

)
+ d

}
≥ 1− ε, ∀t ≥ 0, ∀x0 ∈ R

n\{0}, (66.5)

where ‖vs‖ = inf A⊂Ω,P(A)=0 sup{‖v(x(ω, s), s)‖ : ω ∈Ω\A}. When d = 0 in Equation 66.5, system
(Equation 66.4) is said to be stochastically input-to-state stable (SISS).

The property (Equation 66.5) ensures that when the input v ≡ 0 and d = 0, system (Equation 66.4) is
globally asymptotically stable in probability. It also ensures that the solution process of system (Equa-
tion 66.4) is bounded in probability when the input v is bounded almost surely (in other words, there
exists a constant M > 0 such that P{supt≥0 ‖v(x(ω, t), t)‖ ≤M} = 1). When v(x, t)= v(t) is deterministic
and d = 0, the above definition is a generalization of NSS.

A C2 function V (x) is said to be a practical SISS–Lyapunov function for the system (Equation 66.4) if
there exist K∞ functions α1, α2, α,χ, and a constant d ≥ 0 such that

α1(‖x‖)≤ V (x)≤ α2(‖x‖),

LV ≤ χ(‖v‖)− α(‖x‖)+ d.

When d = 0, the function V is said to be an SISS–Lyapunov function for system (Equation 66.4).

∗ For X ∈ IRn×m, ‖X‖F presents the Frobenius form defined by ‖X‖F =
√

Tr(XT X).
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66.2.5.1 Test for Stability C

System (Equation 66.4) is practically SISS (resp. SISS) if there exists a practical SISS- (resp. SISS-) Lyapunov
function.

For other versions of “stochastic” ISS, refer to [16,17].

66.3 Stabilization of Stochastic Systems: The Basics

Due to the Itô differentiation rule (Equation 66.2), additional quadratic terms, not encountered when
working with deterministic systems, arise in the stochastic Lyapunov analysis. For this reason, a control law
designed for a deterministic system does not necessarily result in a stabilizing design for the corresponding
stochastic problem. Moreover, different notions of stability, different forms of Lyapunov functions, and
different performance indices (in optimal control formulations) may be used in the stochastic case. Efforts
toward Lyapunov stabilization of stochastic nonlinear systems started in the work of Florchinger [4,5]
who suggested the use of control Lyapunov functions and Sontag’s stabilization formula in the stochastic
setting. This was followed, by various other authors, by extensions of these concepts to problems with
unknown noise covariance, adaptive control formulations, differential game and inverse optimal con-
trol formulations, output-feedback designs, and numerous constructive recursive procedures employing
“backstepping.” These efforts are reviewed here.

Consider a stochastic system which, besides the noise input w, has a control input u:

dx = f (x) dt+ g1(x) dw+ g2(x)u dt, (66.6)

where f (0)= 0, g1(0)= 0, and u ∈ IRm. We say that system (Equation 66.6) is globally asymptotically
stabilizable in probability if there exists a control law u= α(x) continuous everywhere, with α(0)= 0,
such that the equilibrium x = 0 of the closed-loop system is globally asymptotically stable in probability.

A smooth positive definite radially unbounded function V : IRn → IR+ is called a stochastic control
Lyapunov function (sclf) for system (Equation 66.6) if it satisfies

inf
u∈IRm

{
Lf V + 1

2
Tr

{
gT

1
∂2V

∂x2 g1

}
+ Lg2 Vu

}
< 0, ∀x �= 0,

where Lf V = ∂V
∂x f (x), Lg2 V = ∂V

∂x g2(x).
A positive definite radially unbounded function V (x) is an sclf if and only if for all x �= 0,

Lg2 V = 0 ⇒ Lf V + 1

2
Tr

{
gT

1
∂2V

∂x2 g1

}
< 0.

It is shown in [9] that system (Equation 66.6) is globally asymptotically stabilizable in probability if there
exists an sclf with the small control property.∗

The efforts on constructive methods for stabilization of broad classes of stochastic nonlinear systems
commenced with the result of Pan and Başar [11], who derived the first backstepping design for strict-
feedback systems, employing a risk-sensitive cost criterion (this approach was revisited a decade later
and extended in [13]). This result was immediately followed by extensive efforts by various authors
employing Lyapunov techniques for stabilization of stochastic continuous-time systems. The key results

∗ An sclf V (x) is said to satisfy the small control property if there exists a control law αc(x) continuous on IRn such that

Lf V + 1

2
Tr

{
gT

1
∂2V

∂x2 g1

}
+ Lg2 Vαc < 0, ∀x �= 0.
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have focused on three classes of systems, which Pan [10] characterized as canonical forms and pre-
sented coordinate-free differential geometric conditions for transforming a given stochastic system into
a particular canonical form.

1. Strict-feedback canonical form

dx1 = (x2+ a1(x1)) dt+
s∑

i=1

gi1(x1) dwi ,

...

dxn−1 = (xn+ an−1(x1, . . . , xn−1)) dt+
s∑

i=1

gi,n−1(x1, . . . , xn−1) dwi ,

dxn = (an(x1, . . . , xn)+ bn(x1, . . . , xn)u) dt+
s∑

i=1

gin(x1, . . . , xn) dwi .

(66.7)

2. Observer canonical form

dx1 =
(

x2+ a1(x1)+
p∑

i=1

bi1(x1)ui

)
dt+

s∑
i=1

gi1(x1) dwi ,

dx2 =
(

x3+ a2(x1)+
p∑

i=1

bi2(x1)ui

)
dt+

s∑
i=1

gi2(x1) dwi ,

...

dxn =
(

an(x1)+
p∑

i=1

bin(x1)ui

)
dt+

s∑
i=1

gin(x1) dwi ,

y = x1.

(66.8)

3. Systems with zero dynamics

dxz = az(xz , x1) dt+
s∑

i=1

giz(xz) dwi ,

dx1 = (x2+ a1(xz , x1)) dt+
s∑

i=1

gi1(xz , x1) dwi ,

...

dxr−1 = (xr + ar−1(xz , x1, . . . , xr−1)) dt+
s∑

i=1

gi,r−1(xz , x1, . . . , xr−1) dwi ,

dxr = (ar(xz , x1, . . . , xr)+ br(xz , x1, . . . , xr)u) dt+
s∑

i=1

gir(xz , x1, . . . , xr) dwi ,

y = x1.

(66.9)

In the next three sections we present control designs for the three classes of stochastic systems.
The following design tools are illustrated in the subsequent sections:
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• Stochastic backstepping (Section 66.4)
• Observer-based output feedback for systems with stochastic forcing through nonlinear input vector

fields, but with non-noisy output measurements (Section 66.5)
• Domination of uncertain and unmeasured zero dynamics (Section 66.6)
• Stochastic adaptive control subject to unknown noise covariance and other parametric uncertainties

(Section 66.6)
• Inverse optimal redesign leading to cost functionals given as expectations of time integrals of

positive definite functions of the state and control (Section 66.7)

66.4 Stabilization in Probability via Backstepping

66.4.1 Introductory Example

We introduce the design idea of stabilization in probability via backstepping for an example of a system
in the strict-feedback canonical form. Consider the system

dx1 = x2 dt+ϕT
1 (x1) dw,

dx2 = u dt+ϕT
2 (x1, x2) dw,

(66.10)

whereϕ1,ϕ2 are r-dimensional vector-valued smooth nonlinear functions withϕ1(0)= ϕ2(0, 0)= 0. Our
goal is to stabilize the equilibrium x1 = 0, x2 = 0 in probability.

Define the backstepping change of variables

z1 = x1,

z2 = x2− α1(x1),
(66.11)

where α1(x1) is a yet-to-design stabilizing function and z2 is an error variable expressing the fact that x2 is
not the true control. By Itô’s formula, differentiating z1 and z2 with respect to time, the complete system
(Equation 66.10) is expressed in the error coordinates (Equation 66.11):

dz1 = dx1 = x2 dt+ϕT
1 dw = (z2+ α1) dt+ϕT

1 dw,

dz2 = dx2− dα1 = u dt+ϕT
2 dw− ∂α1

∂x1
dx1− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1 dt

(66.12)

=
(

u− ∂α1

∂x1
x2− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1

)
dt+

(
ϕT

2 −
∂α1

∂x1
ϕT

1

)
dw. (66.13)

The Lyapunov design for stochastic systems is more difficult than for deterministic systems because of

the term 1
2 Tr

{
hT ∂2V

∂x2 h
}

in Equation 66.2, and it cannot be carried out by using the quadratic Lyapunov

function V = z2
1 + z2

2 as in the deterministic case. We use the following quartic Lyapunov function:

V = 1

4
z4

1 +
1

4
z4

2 .

With it, we obtain that

LV = z3
1 (z2+ α1)+ 3

2
z2

1ϕ
T
1ϕ1+ z3

2

(
u− ∂α1

∂x1
x2− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1

)
+ 3

2
z2

2

(
ϕT

2 −
∂α1

∂x1
ϕT

1

)(
ϕ2− ∂α1

∂x1
ϕ1

)
.

(66.14)

Sinceϕ1(0)= 0,α1 will vanish at x1 = z1 = 0. Thus, by the mean value theorem,α1(x1) can be expressed as

α1(x1)= α1(z1)= z1α11(z1), (66.15)
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where α11(z1) is a smooth function. Thus, the functions ϕ1(x1),ϕ2(x1, x2) can be written as follows:

ϕ1(x1)= z1ϕ11(z1) � z1ψ11(x1), (66.16)

ϕ2(x1, x2)= x1ϕ21(x1, x2)+ x2ϕ22(x1, x2)

= z1ϕ21(x1, x2)+ (z2+ α1)ϕ22(x1, x2)

= z1ϕ21(x1, x2)+ z2ϕ22(x1, x2)+ z1α11(z1)ϕ22(x1, x2)

� z1ψ21(x1, x2)+ z2ψ22(x1, x2) (66.17)

where ϕik ,ψik , i, k = 1, 2, are smooth functions. So, Equation 66.14 can be rewritten as

LV = z3
1 z2+ z3

1

(
α1+ 3

2
z1ψ

T
11ψ11

)
+ z3

2

[
u− ∂α1

∂x1
x2− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1

]

+ 3

2
z2

2

(
ϕT

2 −
∂α1

∂x1
ϕT

1

)(
ϕ2− ∂α1

∂x1
ϕ1

)
. (66.18)

To handle the first and the fourth terms on the right-hand side of Equation 66.18, we need Young’s
inequality

xT y ≤ ε
p

p
‖x‖p+ 1

qεq
‖y‖q,

where the constant ε> 0, the constants p > 1 and q > 1 satisfy (p− 1)(q− 1)= 1, and x, y ∈ R
n. Thus,

for the first term of Equation 66.18, by Young’s inequality, we have

z3
1 z2 ≤ 3

4
ε

4
3
1 z4

1 +
1

4ε4
1

z4
2 , (66.19)

where the constant εi > 0, and for the fourth term, we try to arrange it in the form

zγ2η(x1, x2), γ ≥ 3,

so that it can also be combined into the second and the third terms in Equation 66.18, and be canceled by
α1 and u. Substituting Equations 66.16 and 66.17 into the last term in Equation 66.18 yields

3

2
z2

2

(
ϕT

2 −
∂α1

∂x1
ϕT

1

)(
ϕ2− ∂α1

∂x1
ϕ1

)
= 3

2
z2

2

(
2∑

k=1

zkβ2k

)T ( 2∑
k=1

zkβ2k

)
, (66.20)

where

β21(x1, x2)=ψ21− ∂α1

∂x1
ψ11,

β22(x1, x2)=ψ22.

The next major step is to separate z1 and z2; every term can be handled by either α1 or hence u. Hence,
we rearrange the right term of Equation 66.20 as

3

2
z2

2

(
2∑

k=1

zkβ2k

)T ( 2∑
k=1

zkβ2k

)
= 3

2
z4

2β
T
22β22+ 3z3

2β
T
22z1β21+ 3

2
z2

2 (z1β21)T (z1β21). (66.21)

The first two terms on the right-hand side of Equation 66.21 are already in the desired form. Now we
concentrate on the last term in Equation 66.21:

3

2
z2

2 (z1β21)T (z1β21)= z2
2 z2

1
3

2

r∑
j=1

β2
21j ≤

3

4

r∑
j=1

(
1

ε2
211

z4
2β

4
21j + ε2

211z4
1

)
= 3

4

r∑
j=1

1

ε2
211

z4
2β

4
21j +

3

4

r∑
j=1

z4
1ε

2
211

= 3

4
z4

2

r∑
j=1

1

ε2
211

β4
21j +

3r

4
z4

1ε
2
211. (66.22)

where β2kj is the jth component of the vector β2k .
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Substituting Equations 66.19 through 66.22 into Equation 66.18, we get

LV ≤ 3

4
ε

4
3
1 z4

1 +
1

4ε4
1

z4
2 + z3

1

(
α1+ 3

2
z1ψ

T
11ψ11

)
+ z3

2

[
u− ∂α1

∂x1
x2− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1

]

+ 3

2
z4

2β
T
22β22+ 3z3

2β
T
22z1β21+ 3

4
z4

2

⎛
⎝ r∑

j=1

1

ε2
211

β4
21j

⎞
⎠+ 3r

4
z4

1ε
2
211

= z3
2

[
u− ∂α1

∂x1
(z2+ α1)− 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1+ 1

4ε4
1

z2+ 3

2
z2β

T
22β22+ 3βT

22z1β21

+3

4
z2

r∑
j=1

1

ε2
211

β4
21j

⎤
⎦+ z3

1

(
α1+ 3

2
z1ψ

T
11ψ11+ 3

4
ε

4
3
1 z1+ 3r

4
z1ε

2
211

)
.

At this point, all the terms can be canceled by u and α1. If we choose them as

α1 =−c1z1− 3

4
ε

4
3
1 z1− 3

2
z1ψ

T
11ψ11− 3r

4
z1ε

2
211,

u=−c2z2+ ∂α1

∂x1
(z2+ α1)+ 1

2

∂2α1

∂x2
1

ϕT
1 ϕ1− 1

4ε4
1

z2− 3

2
z2β

T
22β22− 3βT

22z1β21− 3

4
z2

r∑
j=1

1

ε2
211

β2
21j,

where constants ci > 0, then the infinitesimal generator of the closed-loop system is negative definite:

LV ≤−
2∑

i=1

ciz
4
i ,

which means that the equilibrium z = 0 is globally asymptotically stable in probability. In view of Equation
66.11, the same is true about x = 0.

66.4.2 General Recursive Design Procedure

A systematic backstepping design has been developed for the class of nonlinear systems transformable
into the strict-feedback form:

dxi = xi+1 dt+ϕT
i (xi) dw, i = 1, 2, . . . , n− 1 (66.23)

dxn = u dt+ϕT
n (xn) dw, (66.24)

where xi = [x1, . . . , xi]T , and where ϕi(xi) are vector-valued smooth functions with ϕi(0)= 0.
The general design is summarized in Table 66.1. We can show that the Lyapunov function Vn =

1
4

∑n
i=1 z4

i satisfies

LVn ≤−
n∑

i=1

ciz
4
i ,

which guarantees that the equilibrium z = 0 is globally asymptotically stable in probability. Thus the
equilibrium x = 0 is globally asymptotically stable in probability.

66.5 Output-Feedback Stabilization

For linear systems, a common solution to the output-feedback problem is a stabilizing state-feedback
controller employing the state estimates from an exponentially converging observer or filter. However,
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TABLE 66.1 Backstepping Design for General System (Equations 66.23 and 66.24)

zi = xi − αi−1, i = 1, . . . , n,

ψik =
i∑

l=k

αl−1,kϕil , k = 1, . . . , i,

βik =ψik −
i−1∑
l=k

∂αi−1

∂xl
ψlk , k = 1, . . . , i,

αik =
1

2

i−1∑
p=k

ψT
pk

i−1∑
q=1

∂2αi−1

∂xq∂xq

q∑
j=1

zjψqj +
i−1∑

l=k−1

∂αi−1

∂xl
αlk − 3βT

ii βik , k = 1, . . . , i− 1,

αii =−
⎛
⎝ci + 3

4
ε

4
3
i +

1

4ε4i−1

+ 3

2
βT

ii βii + 3r

4

n∑
k=i+1

k−1∑
l=1

ε2kil +
3

4

r∑
j=1

i−1∑
k=1

i−1∑
l=1

1

ε2ikl

β2
ikjβ

2
ilj

⎞
⎠+ ∂αi−1

∂xi−1
,

αi,i+1 = 1,

αi =
i∑

k=1

zkαik .

Control Law:

u= αn.

this approach (“certainty equivalence”) is not applicable to nonlinear systems. The situation is even more
difficult in the stochastic case where nonlinear exponentially convergent observers are very difficult to
design.

Fortunately, classes of problems do exist where output-feedback stabilization can be solved. One such
class is the output-feedback canonical form (Equation 66.8), for which we present a feedback design in
this section.

Consider, for example, the nonlinear stochastic system given by

dx1 = x2 dt+ f1(y) dt+ϕT
1 (y) dw,

dx2 = x3 dt+ f2(y) dt+ b1β(y)u dt+ϕT
2 (y) dw,

dx3 = f3(y) dt+ b0β(y)u dt+ϕT
3 (y) dw,

y = x1,

(66.25)

where only y is measured, the functions fi(y), i = 1, 2, 3 are dependent on the output only and assumed to
vanish at zero; the polynominal b1s+ b0 is assumed to be Hurwitz (i.e., b0b1 > 0), and β(y) �= 0, ∀y ∈ IR,
which guarantees that the system has a well-defined relative degree ρ= 3− 1= 2.

The goal is to design the output feedback control law to guarantee that the solution process of the
closed-loop system is bounded in probability and, when the diffusion terms ϕi(0)= 0, i = 1, 2, 3, the zero
solution of the closed-loop system is asymptotically stable in the large.

Since the states x2, x3 are not measured, we first design an observer which would provide exponentially
convergent estimates of the unmeasured states in the absence of noise. The observer is designed as

˙̂x1 = x̂2+ k1(y− x̂1)+ f1(y),

˙̂x2 = x̂3+ k2(y− x̂1)+ f2(y)+ b1β(y)u,

˙̂x3 = k3(y− x̂1)+ f3(y)+ b0β(y)u,

where k1, k2, and k3 are parameters.
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Let x̂ = [x̂1, x̂2, x̂3]T , and denote the observer error by x̃ = x− x̂ = [x̃1, x̃2, x̃3]T . Then we have

dx̃ =
⎡
⎣−k1 1 0
−k2 0 1
−k3 0 0

⎤
⎦ x̃ dt+ϕT (y) dw � Ax̃ dt+ϕT (y) dw,

where ϕ(y)= [ϕ1,ϕ2,ϕ3]. The parameters k1, k2, and k3 are chosen such that the matrix A is Hurwitz.
Define x̂ = [y, x̂2, x̂3]T , and let g01(y)= f1(y), g0i(y, x̃1)= fi(y)+ kix̃1, i = 2, 3. Then we have the fol-

lowing dynamics for x̂:

dx̂ = Dx̂ dt+G(y, x̃1) dt+[1, 0, 0]T x̃2 dt+ β(y)Bu dt+H(y) dw,

where

D =
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ , G(y, x̃1) �

⎡
⎢⎣

g01(y)
g02(y, x̃1)
g03(y, x̃1)

⎤
⎥⎦ ,

B= [0, b1, b0]T , H(y)= [ϕ1(y), 0, 0]T .

In the design, we employ two similarity transformations. With the first transformation we transform
vector B into an input vector that has all zero elements except the element b1. Taking the first transfor-
mation as

ξ=

⎡
⎢⎢⎣

1 0 0
0 1 0

0 −b0

b1
1

⎤
⎥⎥⎦ x̂ � T1x̂ ,

we obtain
dξ= D1ξ dt+G1(y, x̃1) dt+[1, 0, 0]T x̃2 dt+ β(y)B1u dt+H1(y) dw,

where

D1 = T1DT−1
1 =

⎡
⎣0 1 0

0 d11 1
0 d12 −d11

⎤
⎦ ,

d11 = b0

b1
> 0, d12 =−

(
b0

b1

)2

=−d2
11 < 0,

G1(y, x̃1)= T1G(y, x̃1)=

⎡
⎢⎢⎣

g01

g02

−b0

b1
g02+ g03

⎤
⎥⎥⎦�

⎡
⎢⎣

g11(y)
g12(y, x̃1)
g13(y, x̃1)

⎤
⎥⎦ ,

B1 = T1B= [0, b1, 0]T , H1(y)= T1H(y)=H(y).

With the second transformation, we would like to transform the second column of the matrix D1 into the
first unit vector. Let η= T2ξ, where

T2 =
⎡
⎣ 1 0 0
−d11 1 0
−d12 0 1

⎤
⎦ .

Then we obtain that

dη= D2η dt+G2(y, x̃1) dt+[1,−d11,−d12]T x̃2 dt+ β(y)B2u dt+H2(y) dw,



�

�

�

�

� �

66-12 Control System Advanced Methods

where

D2 = T2D1T−1
2 =

⎡
⎣d21 1 0

d22 0 1
d23 0 −d11

⎤
⎦ , d21 = d11, d22 = d12, d23 =−d11d12,

G2(y, x̃1)= T2G1 = [g11,−g11d11+ g12,−d12g11+ g13]T � [g21(y), g22(y, x̃1), g23(y, x̃1)]T
B2 = B1, H2 = T2H = [ϕ1(y),−d11ϕ1(y),−d12ϕ1(y)]T � [hT

1 (y), hT
2 (y), hT

3 (y)]T .

Noting that

T2T1 =
⎡
⎣ 1 0 0
−d11 1 0
d2

11 −d11 1

⎤
⎦ ,

we obtain that

η1 = y

η2 = x̂2− d11y

η3 = x̂3− d11x̂2+ d2
11y.

Denoting
ζ= η3,

the following dynamics of lower triangular form are obtained for the η-system:

dy = d21y dt+ (η2+ x̃2) dt+ g21(y) dt+ h1(y) dw,

dη2 = (ζ+ d22y+ g22(y, x̃1)+ b1β(y)u− d11x̃2) dt+ h2(y) dw,

dζ=−d11ζ dt+ L1y dt+ L2x̃2 dt+Ω(y, x̃1) dt+Φ(y) dw,

where

L1 = d23 =−d3
11,

L2 =−d12 =−d2
11,

Ω(y, x̃1)= g23(y, x̃1)= d2
11f1(y)− d11f2(y)+ f3(y)+ (k3− d11k2

)
x̃1,

Φ(y)= h3(y)= d2
11ϕ

T
1 (y).

We are now ready to design the output feedback stabilizing controller via backstepping. Define the
error variable

z = η2− α(y)= x̂2−
(
d11y+ α(y)

)
, (66.26)

where α(y) is a smooth virtual control law to be defined. Then we have

dx̃ = Ax̃ dt+ϕT (y) dw,

dζ=−d11ζ dt+ L1y dt+ L2x̃2 dt+Ω(y, x̃1) dt+Φ(y) dw,

dy =M1(y) dt+ (z+ α(y)+ x̃2) dt+Ψ1(y) dw,

dz = [ζ+M2(x̃1, y,η2)+ b1β(y)u+Nx̃2] dt+Ψ2(y) dw,

where

M1(y)= d21y+ f1(y),

M2(x̃1, y,η2)= g22(y, x̃1)+ d22y− α′(y)[η2+ g21(y)+ d21y]− 1

2
α′′(y)‖h1(y)‖2,

Ψ1(y)= h1(y)= ϕT
1 (y), Ψ2(y)= N(y)ϕT

1 (y),

N(y)=−d11− α′(y).
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Since A is Hurwitz, there exists a positive-definite symmetric matrix P satisfying

AT P+ PA=−I .

Instead of employing a quartic Lyapunov function as in Section 66.4, here we illustrate the possibility
of employing a Lyapunov function which is “nominally” quadratic, but it incorporates state-dependent
weights on the quadratic terms. We postulate the following Lyapunov function candidate:

V2 = δx̃T Px̃+ 1

2d11
ζ2+ y2+Ξ(y)z2,

where δ> 0 is a constant to be determined, and smooth function Ξ(y) > 0 is a weighting function to be
determined.

Then, we have

LV2 =−δ‖x̃‖2+ δTr{ϕ(y)PϕT (y)}− ζ2+ 1

2d11
Tr{ΦT (y)Φ(y)}

+ 1

d11
ζ[L1y+ L2x̃2+Ω(y, x̃1)]+Ξ′(y)[η2+M1(y)+ x̃2]z2

+ 2y[z+ α+M1(y)+ x̃2]+ 2zΞ(y)[ζ+M2(x̃1, y,η2)+ b1β(y)u+Nx̃2]

+Ψ1Ψ
T
1 +

1

2
Tr

{
[ΨT

1 ,ΨT
2 ]

∂2[Ξ(y)z2]
∂(y, z)2 [ΨT

1 ,ΨT
2 ]T

}
. (66.27)

The functionsΨi can be decomposed by using the mean value theorem as follows:

Ψ1(y)= h1(y)= h1(0)+ h1(y)y,

Ψ2(y)=Ψ2(0)+Ψ21(y)y.

Then we have

Ψ1Ψ
T
1 = (h1(0)+ h1(y)y)(h1(0)+ h1(y)y)T = h1(0)hT

1 (0)+
[

2h1(0)h
T
1 (y)+ h1(y)h

T
1 (y)y

]
y, (66.28)

1

2
Tr

{
[ΨT

1 ,ΨT
2 ]

∂2[Ξ(y)z2]
∂(y, z)2 [ΨT

1 ,ΨT
2 ]T

}
= 1

2
Tr

{[
Ψ1

Ψ2

]T [
Ξ′′(y)z2 2Ξ′(y)z
2Ξ′(y)z 2Ξ(y)

] [
Ψ1

Ψ2

]}

= 1

2
Tr

{[
Ψ1

Ψ2

]T [
Ξ′′(y)z 2Ξ′(y)
2Ξ′(y) 0

] [
Ψ1

Ψ2

]}
z+Ξ(y)Ψ2Ψ

T
2 ,

= 1

2

(
zΞ′′(y)+ 4Ξ′(y)N(y)

) ‖ϕ1(y)‖2z+Ξ(y)Ψ2Ψ
T
2 .

(66.29)

In Equation 66.29, we can cancel out the first term by the choice of α, u. We cannot cancel out the second
term, but we can bound it in terms of y2, as follows:

ΞΨ2Ψ
T
2 =Ξ[Ψ2(0)+Ψ21(y)y]× [Ψ2(0)+Ψ21(y)y]T
≤ 2Ξ‖Ψ2(0)‖2+ 2Ξ‖Ψ21(y)‖2y2.

We can design the weighting functionΞ(y), such thatΞ‖Ψ21‖2 is sufficiently small by selecting

Ξ(y)= κ

1+‖Ψ21(y)‖2
,

where κ is a design parameter.
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Then we obtain that

ΞΨ2Ψ
T
2 ≤ 2κ‖Ψ2(0)‖2+ 2κy2. (66.30)

In order to deal with “second variation terms” in Equation 66.27, we employ the mean value theorem to
obtain the representations

ϕ(y)= ϕ(0)+ yϕ(y), Φ(y)=Φ(0)+ yΦ(y),

and

L2x̃2+Ω(y, x̃1)= L2x̃2+Ω(0, 0)+ yΩ(y)+ L3x̃1

� [L3, L2]x̃2+Ω(0, 0)+ yΩ(y).

Then, we have

δTr{ϕ(y)PϕT (y)} = δTr{ϕ(0)PϕT (0)}+ δTr{2ϕ(0)PϕT (y)+ϕ(y)PϕT (y)y}y, (66.31)

1

2d11
Tr{ΦT (y)Φ(y)} = 1

2d11
Tr{ΦT (0)Φ(0)}+ 1

2d11
Tr{2ΦT (0)Φ(y)+ΦT

(y)Φ(y)y}y,

(66.32)

1

d11
ζ
[
L1y+ L2x̃2+Ω(y, x̃1)

]= 1

d11
ζ
[(

L1+Ω(y)
)

y+[L3, L2]x̃2+Ω(0, 0)
]

≤ (4d2
11ε0)−1[L1+Ω(y)]2y2+ ε0ζ2+ ε1 L2

2+ L2
3

4d2
11

ζ2

+ ε−1
1 ‖x̃2‖2+ ε2ζ2+ (4d2

11ε2)
−1‖Ω(0, 0)‖2, (66.33)

2yx̃2 = 2yx̃2 ≤ ε3x̃2
2 + ε−1

3 y2, (66.34)(
Ξ′(y)z2+ 2Ξ(y)z

)
x̃2 ≤ ε3x̃2

2 + ε−1
3

(
Ξ′(y)z+ 2Ξ(y)

)2 z2, (66.35)

where εi > 0, i = 1, 2, 3, are analysis parameters to be chosen appropriately.
Combining Equation 66.27 with Equation 66.28 through 66.35 we arrive at

LV2 ≤−δ‖x̃‖2+ δTr{ϕ(0)PϕT (0)}+ 1

2d11
Tr{ΦT (0)Φ(0)}− ζ2+ 2ε3x̃2

2

+ h1(0)hT
1 (0)+ ε1 L2

2+ L2
3

4d2
11

ζ2+ ε−1
1 ‖x̃2‖2+ ε2ζ2+ (4d2

11ε1)
−1‖Ω(0, 0)‖2

+ 1

2d11
Tr{2ΦT (0)Φ(y)+ΦT

(y)Φ(y)y}y+ δTr{2ϕ(0)PϕT (y)+ϕ(y)PϕT (y)y}y

+ (2h1(0)h
T
1 (y)+ h1(y)h

T
1 (y)y)y+ (4d2

11ε0)−1[L1+Ω(y)]2y2+ ε0ζ2
+ ε−1

3 y2+ ε−1
3

(
Ξ′(y)z+ 2Ξ(y)

)2 z2+Ξ′(y)[η2+M1(y)]z2+ 2y[z+ α+M1(y)]
+ 2zΞ(y)[ζ+M2+ b1β(y)u]+ 2κ‖Ψ2(0)‖2+ 1

2

(
zΞ′′(y)+ 4Ξ′(y)N(y)

) ‖ϕ1(y)‖2z+ 2κy2.

(66.36)

In the above differential inequality, we can select the control law (including virtual control law) and the
design parameters to cancel out all the unfavorable terms except the constant bias terms. The virtual
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control α and the actual control u are chosen as

α(y)=−
(
β1

2
+ 1

2ε3

)
y−M1(y)− 1

4d11
Tr{2ΦT (0)Φ(y)+ΦT

(y)Φ(y)y}

− 1

2
(2h1(0)h

T
1 (y)+ h1(y)h

T
1 (y)y)− δ

2
Tr{2ϕ(0)PϕT (y)+ϕ(y)PϕT (y)y}

− (4d2
11ε0)−1[L1+Ω(y)]2y,

u=− 1

b1β(y)

{
1

2
β2z+ ζ+M2(x̃1, y,η2)+ 1

Ξ(y)
y+ 1

2ε3Ξ(y)

(
Ξ′(y)z+ 2Ξ(y)

)2 z

+ Ξ
′(y)

2Ξ(y)
[η2+M1(y)]z+ 1

4Ξ(y)

(
zΞ′′(y)+ 4Ξ′(y)N(y)

) ‖ϕ1(y)‖2
}

.

Choosing the analysis parameters ε0, ε1, ε2, ε3, andκ, sufficiently small, the analysis parameter δ sufficiently
large, and the controller parameter β1 sufficiently large, such that

c1 � δ− 2ε3− ε−1
1 > 0,

c2 � 1− ε1 L2
2+ L2

3

4d2
11

− ε0− ε2 > 0,

c3 � β1− 2κ> 0,

and by choosing the control parameter β2 as positive, we obtain that

LV2 ≤−c1V2+ c2, (66.37)

where

c1 =min

{
c1

δλmax(P)
, 2c2d11, c3, β2

}
> 0,

c2 = δTr{ϕ(0)PϕT (0)}+
(

d11

2
+ 2κN2(0)

)
‖ϕ1(0)‖2+ (4d2

11ε1)
−1‖d2

11f1(0)− d11f2(0)+ f3(0)‖2 ≥ 0.

Thus, the solution process of the closed-loop system is bounded in probability and, moreover, when
ϕi(0)= 0, fi(0)= 0, i = 1, 2, 3, we obtain c2 = 0 in Equation 66.37, which guarantees that the origin x =
x̂ = 0 is stochastically asymptotically stable in the large (and, in fact, also globally asymptotically stable in
probability).

For a recursive design procedure for the general output-feedback system in the observer canonical
form, the reader is referred to [12], as well as to an earlier result in [9] where the output-feedback problem
without zero dynamics was solved using quartic Lyapunov functions.

66.6 Adaptive Stabilization in Probability

In this section, we introduce the idea of stochastic adaptive control in the presence of functional and
dynamic (nonlinear) uncertainties. Our design is presented in the output-feedback case, with nonlinear
zero dynamics.

Consider for example the stochastic nonlinear system of relative degree two, given in the following
form:

dxz = f0(xz , y) dt+ gT
0 (xz) dw, (66.38)

dx1 = (x2+ f1(xz , y)) dt+ gT
1 (xz , y) dw, (66.39)

dx2 = (u+ f2(xz , y)) dt+ gT
2 (xz , y) dw, (66.40)

y = x1,
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where y ∈ R is the measurable output; xz ∈ R
m is the state of unmodeled dynamics, and fi , gi , i = 0, 1, 2,

are uncertain locally Lipschitz functions.
We assume that the uncertain nonlinear functions satisfy the following linear parameterized upper

bounds (where the parameters are unknown) and the stochastic unmodeled dynamics are stochastic SISS.

A1. |fi(xz , y)| ≤ l∗i ϕi1(‖xz‖)+ l∗i ϕi2(|y|), ‖gi(xz , y)‖ ≤ h∗i ψi1(‖xz‖)+ h∗i ψi2(|y|), i = 1, 2, ∀(xz , y) ∈
R

m×R, where ϕi1, ϕi2, ψi1, and ψi2 are known smooth nonnegative functions, and ϕi1(0)= 0,
ψi1(0)= 0, and l∗i , h∗i , i = 1, 2, are unknown positive constants.
For the noise of unknown covariance, if it can be formulated as Σ(t) dw, where w(t) is a standard
Brownian motion and Σ(t) is a uniformly bounded deterministic (possibly unknown) function,
then we can modify A1 as follows: ‖gi(xz , y)Σ(t)‖ ≤ h∗i ψi1(‖xz‖)+ h∗i ψi2(|y|), i = 1, 2.

A2. For Equation 66.38, there exists a C2 function Vz(xz) and K∞ functions α1(·), α2(·), α(·), and γ(·)
such as ∀(xz , y) ∈ R

m×R,

α1(‖xz‖)≤ Vz(xz)≤ α2(‖xz‖), (66.41)

LVz(xz)≤ γ(|y|)− α(‖xz‖). (66.42)

The control objective is to design a smooth adaptive output-feedback controller

χ̇=((χ, y), u= μ(χ, y), (66.43)

so that the solution process of the closed-loop systems (Equations 66.38 through 66.43) is bounded
in probability and moreover, when the drift and diffusion vector fields vanish at the origin, the
output can be regulated to the origin almost surely.

66.6.1 Backstepping Design

We view the overall control system as being composed of the unmodeled dynamics (Equation 66.38) and
the rest of the controlled plants (Equations 66.39 and 66.40). For the subsystem (Equations 66.39 and
66.40), we will use the tuning function method to design an adaptive output-feedback controller with
unknown gain function, where xz is considered as a disturbance input.

First, we introduce a state-estimator for the subsystems (Equations 66.39 and 66.40):

˙̂x1 =x̂2+ a1( y− x̂1),

˙̂x2 =u+ a2( y− x̂1),

where a1, a2 are constants such that s2+ a1s+ a2 is a Hurwitz polynomial. We denote x̂ = [x̂1, x̂2]T ,
x̃ = x−x̂

l∗ , l∗ =max{1, l∗i , h∗i , i = 1, 2}, and

A=
[−a1 1
−a2 0

]
,

F(xz , y)=[ f1(xz , y), f2(xz , y)]T ,

G(xz , y)=[ g1(xz , y), g2(xz , y)].
The complete system is governed by the stochastic differential equations

dxz = f0(xz , y) dt+ gT
0 (xz , y) dw, (66.44)

dx̃ =
(

Ax̃+ 1

l∗
F(xz , y)

)
dt+ 1

l∗
GT (xz , y) dw, (66.45)

dy = (x̂2+ l∗x̃2+ f1(xz , y)) dt+ gT
1 (xz , y) dw, (66.46)

dx̂2 = (u+ a2(y− x̂1)) dt, (66.47)

where Equation 66.44 is the zero dynamics, Equation 66.45 is the observer error system, and Equation
66.46 and 66.47 are the equations on which the backstepping design will be performed.
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We start our design by introducing the backstepping transformation

z1 = y, z2 = x̂2−φ1(y, l̂),

where φ1(y, l̂) is a smooth virtual control law to be designed, and l̂ is a parameter estimate. In the
z-variables, the subsystems (Equations 66.46 and 66.47) is governed by

dz1 = (z2+φ1+ l∗x̃2+ f1(xz , y)) dt+ gT
1 (xz , y) dw, (66.48)

dz2 = dx̂2− ∂φ1

∂y
dy− ∂φ1

∂ l̂

˙̂l dt− 1

2

∂2φ1

∂y2 gT
1 g1 dt = (u+Ω1+Ω2+Ω3+Ω4) dt+ΦT dw, (66.49)

where

Ω1 =−∂φ1

∂y
x̂2+ a2(y− x̂1), Ω2 =−1

2

∂2φ1

∂y2 gT
1 g1− ∂φ1

∂y
f1, Ω3 =−∂φ1

∂y
l∗x̃2,

Ω4 =−∂φ1

∂ l̂

˙̂l, Φ=−∂φ1

∂y
g1.

Next, we present our design in two steps.
Step 1. Since the polynomial s2+ a1s+ a2 is Hurwitz, so is the matrix A. Thus, there exists a positive-

definite matrix P such that AT P+ PA=−I . We start building our Lyapunov function by introducing

V1 = δ1

2
(x̃T Px̃)2+ 1

4
y4+ 1

2λ0
(l̂− l)2,

where δ1 > 0 is an analysis parameter, λ0 > 0 is the adaptation gain to be chosen freely by the designer,

l =max

{
l∗

4
3

1 , l∗
4
3 , h∗4

1

}
is an unknown constant, and l̂(t) the estimate of l for which the update law is yet

to be chosen.
By Itô formula and Equation 66.48, we obtain that

LV1 =−δ1x̃T Px̃|x̃|2+ 2δ1

l∗
x̃T Px̃(FT Px̃)+ δ1

l∗2 Tr{G(2Px̃x̃T P+ x̃T Px̃P)GT }

+ y3(z2+φ1+ l∗x̃2+ f1)+ 3

2
y2gT

1 g1+ 1

λ0
(l̂− l)˙̂l. (66.50)

We need to deal with the uncertain functions f1, f2, g1, and g2. Toward this end, with the help of the mean
value theorem we observe that

ϕ4
i2(|y|)= (ϕi2(0)+ |y|ϕ̌i2(|y|))4 ≤ 8ϕ4

i2(0)+ 8y4ϕ̌4
i2(|y|)≤ 8ϕ4

i2(0)+ 8y4ϕ̆i2(y),

ψ4
i2(|y|)= (ψi2(0)+ |y|ψ̌i2(|y|))4 ≤ 8ψ4

i2(0)+ 8y4ψ̌4
i2(|y|)≤ 8ψ4

i2(0)+ 8y4ψ̆i2(y)

for some smooth nonnegative functions ϕ̌i2, ψ̌i2, ϕ̆i2, and ψ̆i2. In addition, with Young’s inequality, we
obtain

y3z2 ≤ 3

4
ε

4
3
1 y4+ 1

4ε41
z4

2 ,

y3l∗x̃2 ≤ 3

4
ε

4
3
1 y4l+ 1

4ε41
x̃4

2 ,

y3f1(xz , y)≤
(

3

2
η

4
3
0 l+ 2

η4
0

ϕ̆12

)
y4+ 1

4η4
0

ϕ4
11+

2

η4
0

ϕ4
12(0),

3

2
y2gT

1 g1 ≤ 3

η1
y4l+ 3

2
η1ψ

4
11+ 12η1ψ̆12y4+ 12η1ψ

4
12(0),
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2δ1

l∗
x̃T Px̃(FT Px̃)≤ 3δ1

2
ε

4
3 ‖P‖2|x̃|4+ 8δ1

ε4
‖P‖2

2∑
i=1

ϕ4
i1+

64δ1

ε4
‖P‖2

2∑
i=1

ϕ̆i2y4

+ 64δ1

ε4
‖P‖2

2∑
i=1

ϕ4
i2(0),

δ1

l∗2 Tr{G(2Px̃x̃T P+ x̃T Px̃P)GT } ≤ 2δ1‖P‖2+ δ1‖P‖Tr{P}
ε

2∑
i=1

ψ4
i1+ 4ε(2δ1‖P‖2+ δ1‖P‖Tr{P})|x̃|4

+ 8
2δ1‖P‖2+ δ1‖P‖Tr{P}

ε

2∑
i=1

ψ̆i2y4

+ 8
2δ1‖P‖2+ δ1‖P‖Tr{P}

ε

2∑
i=1

ψ4
i2(0).

So, substituting these bounds into Equation 66.50, we obtain

LV1 ≤ y3

(
φ1+ 3

4
ε

4
3
1 y+ 2

η4
0

ϕ̆12y+ 12η1ψ̆12y+ ϕ̃(y)+ ψ̃(y)

)
+ l

(
3

4
ε

4
3
1 y4+ 3

2
η

4
3
0 y4+ 3

η1
y4
)

+ 1

4ε41
z4

2 +
1

λ0
(l̂− l)˙̂l+ 1

4η4
0

ϕ4
11+

3

2
η1ψ

4
11+ ϕ̃1(|xz |)+ 1

4ε41
x̃4

2 − δ1λmin(P)|x̃|4+ ψ̃1(|xz |)

+ c̃|x̃|4+ ψ̃0+ 2

η4
0

ϕ4
12(0)+ 12η1ψ

4
12(0)+ ϕ̃0, (66.51)

where

ϕ̃(y)= 64δ1

ε4
‖P‖2

2∑
i=1

ϕ̆i2(y)y, (66.52)

ψ̃(y)= 8
2δ1‖P‖2+ δ1‖P‖Tr{P}

ε

2∑
i=1

ψ̆i2(y)y, (66.53)

ϕ̃1(|xz |)= 8δ1

ε4
‖P‖2

2∑
i=1

ϕ4
i1(|xz |), (66.54)

ψ̃1(|xz |)= 2δ1‖P‖2+ δ1‖P‖Tr{P}
ε

2∑
i=1

ψ4
i1(|xz |), (66.55)

c̃ = 3δ1

2
ε

4
3 ‖P‖2+ 4ε

(
2δ1‖P‖2+ δ1‖P‖Tr{P}) , (66.56)

ψ̃0 = 8
2δ1‖P‖2+ δ1‖P‖Tr{P}

ε

2∑
i=1

ψ4
i2(0), (66.57)

ϕ̃0 = 64δ1

ε4
‖P‖2

2∑
i=1

ϕ4
i2(0), (66.58)

and ε, ε1,η0, and η1 are design parameters to be chosen later.
We are now ready to select the virtual update law and the virtual control as

(1(y, l̂)=−λ0σl̂+λ0

(
3

4
ε

4
3
1 y4+ 3

2
η

4
3
0 y4+ 3

η1
y4
)

, (66.59)
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φ1(y, l̂)=−β1y− ν1(y2)y− 3

4
ε

4
3
1 y− 2

η4
0

ϕ̆12(y)y− 12η1ψ̆12(y)y

− l̂

(
3

4
ε

4
3
1 y+ 3

2
η

4
3
0 y+ 3

η1
y

)
− ϕ̃(y)− ψ̃(y), (66.60)

where σ > 0 is the parameter of the standard “sigma-modification/leakage” and ν1(·) is a smooth nonneg-
ative function to be designed later to dominate various functional and dynamic uncertainties, including
the effect of the uncertain and unmeasured zero dynamics. It now follows from Equations 66.51, 66.59
and 66.60 that

LV1 ≤−β1y4− ν1(y2)y4+ 1

λ0
(l̂− l)(˙̂l−(1)− σ(l̂− l)l̂+ 1

4ε41
z4

2 +
1

4η4
0

ϕ4
11(|xz |)

+ 3

2
η1ψ

4
11(|xz |)+ ϕ̃1(|xz |)+ 1

4ε41
x̃4

2 + ψ̃1(|xz |)− δ1λmin(P)|x̃|4+ c̃|x̃|4

+ 2

η4
0

ϕ4
12(0)+ 12η1ψ

4
12(0)+ ϕ̃0+ ψ̃0, (66.61)

which completes the first step of the design process.
Step 2. Consider the Lyapunov function candidate

V = V1(x̃T , y, l̂)+ 1

4
z4

2 .

By Equation 66.49, and Young’s inequality, we obtain

LV = LV1+ z3
2 (u+Ω1+Ω2+Ω3+Ω4)+ 3

2
z2

2Φ
T
2Φ2

≤ LV1+ z3
2

(
u+Ω1+ 1

4ε42
z2

)
− z3

2
∂φ1

∂ l̂

˙̂l

+ l

⎛
⎝ 1

ε1
(
∂2φ1

∂y2 )2z6
2 +

3

2
η

4
3
0

((
∂φ1

∂y

)2

+ 1

)2

z4
2 +

3

4
ε

4
3
2

((
∂φ1

∂y

)2

+ 1

)2

z4
2 +

3

η1
(
∂φ1

∂y
)4z4

2

⎞
⎠

+ ε1

2
ψ4

11+
1

4η4
0

ϕ4
11+

2

η4
0

ϕ̆12y4+ 4ε1ψ̆12y4+ 12η1ψ̆12y4+ 1

4ε42
x̃4

2

+ 3

2
η1ψ

4
11+

2

η4
0

ϕ4
12(0)+ 4ε1ψ

4
12(0)+ 12η1ψ

4
12(0)

≤−β1y4− ν1(y2)y4+ 1

λ0
(l̂− l)(˙̂l−(1)− σ(l̂− l)l̂− δ1λmin(P)|x̃|4+ c̃|x̃|4

+ 1

4ε41
z4

2 + z3
2

(
u+Ω1+ 1

4ε42
z2

)
− z3

2
∂φ1

∂ l̂

˙̂l

+ l

⎛
⎝ 1

ε1
(
∂2φ1

∂y2 )2z6
2 +

3

2
η

4
3
0

((
∂φ1

∂y

)2

+ 1

)2

z4
2 +

3

4
ε

4
3
2

((
∂φ1

∂y

)2

+ 1

)2

z4
2 +

3

η1
(
∂φ1

∂y
)4z4

2

⎞
⎠

+ 2

η4
0

ϕ̆12y4+ 4ε1ψ̆12y4+ 1

4ε41
x̃4

2 +
1

4ε42
x̃4

2 + 12η1ψ̆12y4+ δ(|xz |)+Γ0, (66.62)
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where

δ(|xz |)= 1

2η4
0

ϕ4
11(|xz |)+ 3η1ψ

4
11(|xz |)+ ε1

2
ψ4

11(|xz |)+ ϕ̃1(|xz |)+ ψ̃1(|xz |),

Γ0 = 4

η4
0

ϕ4
12(0)+ (4ε1+ 24η1)ψ4

12(0)+ ϕ̃0+ ψ̃0, (66.63)

and ε1, ε2, and ε2 are design parameters to be chosen later.
We now choose our final parameter update law and control law as

˙̂l =(2(y, z2, l̂)=(1(y, l̂)+λ0z4
2ϑ2, (66.64)

u=−β2z2−Ω1− 1

4ε41
z2− l̂z2ϑ2+ ∂φ1

∂ l̂
(2, (66.65)

where

ϑ2 = 1

ε1

(
∂2φ1

∂y2

)2

z2
2 +

3

2
η

4
3
0

((
∂φ1

∂y

)2

+ 1

)2

+ 3

4
ε

4
3
2

((
∂φ1

∂y

)2

+ 1

)2

+ 3

η1

(
∂φ1

∂y

)4

. (66.66)

The function ν1(·) is chosen as

ν1(y2)= (12η1+ 4ε1)ψ̆12(y)+ 2

η4
0

ϕ̆12(y)+ ν(y2), (66.67)

where ν(·) is a smooth K∞ function which is yet to be chosen in order to deal with the dynamic uncertainty
coming from the zero dynamics.

With the choices (Equations 66.64 through 66.67), we obtain

LV ≤−β1y4− β2z4
2 − ν(y2)y4− σ(l̂− l)l̂− δ1λmin(P)|x̃|4+ 1

4ε42
x̃4

2 +
1

4ε41
x̃4

2 + c̃|x̃|4+ δ(|xz |)+Γ0.

(66.68)

Using the property of “sigma-modification” that

−σ(l̂− l)l̂ ≤−σ
2

(l̂− l)2+ σ
2

l2, (66.69)

we obtain

LV ≤−β1y4− β2z4
2 − ν(y2)y4− σ

2
(l̂− l)2− δ1λmin(P)|x̃|4+ 1

4ε42
x̃4

2 +
1

4ε41
x̃4

2 + c̃|x̃|4

+ σ
2

l2+ δ(|xz |)+Γ0. (66.70)

Recalling Equation 66.55, we obtain

LV ≤−β1y4− β2z4
2 − ν(y2)y4− σ

2
(l̂− l)2− c0|x̃|4+ σ

2
l2+ δ(|xz |)+Γ0, (66.71)

where

c0 � δ1

(
λmin(P)− 3

2
ε

4
3 ‖P‖2− 4ε(2‖P‖2+‖P‖Tr{P})

)
−

2∑
i=1

1

4ε4i
.

Choosing the control parameter ε sufficiently small, and then choosing the analysis parameter δ1 suffi-
ciently large (for given ε2, ε1, and ε2 of any positive values), we obtain c0 > 0. The design parameters η0,
η1, ε1, β1, β2, and λ0 are chosen as positive, but otherwise of any value. Hence, we obtain

LV ≤−W(x̃, y, z2, l̂)− ν(y2)y4+ δ(|xz |)+Γ0+ σ
2

l2, (66.72)

where W(x̃, y, z2, l̂)=∑2
i=1 βiz4

i + c0|x̃|4+ σ
2 (l̂− l)2.
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66.6.2 Dominating the Uncertain and Unmeasured Zero Dynamics

From Equations 66.42 and 66.72, we know that the subsystems (Equations 66.48, 66.49, 66.64, and 66.65)
is practically SISS with respect to the state xz of unmodeled dynamics, while the unmodeled dynamics
(Equation 66.38) are assumed to be SISS with respect to the output y. We need to deal with this stochastic
feedback connection and its effect on closed-loop stability, by making one final choice for our control
law, the function ν(·) in Equation 66.67.

Toward this end, we note that there exist known smooth nonnegative functions ψz and ψ0 satisfying
|∂Vz (xz )

∂xz
| ≤ψz(|xz |) and ‖g0(xz)‖ ≤ψ0(|xz |). If

lim sup
s→0+

ϕ4
i1(s)

α(s)
<∞, lim sup

s→0+
ψ4

i1(s)

α(s)
<∞, lim sup

s→0+
ψ2

z(s)ψ2
0(s)

α(s)
<∞, i = 1, 2, (66.73)

where the first two sets of terms appear in Equation 66.63 and α appears in Assumption A2, then we
define continuous increasing functions ξ(s)≥ 0 and ζ(s) > 0 on [0,∞) as ξ(s)= 4 supτ∈(0,s] δ(τ)/α(τ) for
s > 0 and ξ(0)= 4 lim sups→0+ δ(τ)/α(τ), and ζ(s)= 2 supτ∈(0,s]ψ2

z(τ)ψ2
0(τ)/α(τ) for s > 0 and ζ(0)=

2 lim sups→0+ψ2
z(τ)ψ2

0(τ)/α(τ). In this way we obtain δ(s)≤ ξ(s)α(s)/4 and ψ2
z(s)ψ2

0(s)≤ ζ(s)α(s)/2,
which we shall use later in selecting the control function ν(·).

If Equation 66.73 holds and if
∫ ∞

0
[ξ(α−1

1 (s))]′e−
∫ s

0 [ζ(α−1
1 (τ))]−1dτ ds <∞ , (66.74)

then there exists a nondecreasing positive function ρ ∈ C1[0,∞) such that for all x ∈ R
m,

ρ(Vz(x))α(|x|)≥ 2ρ
′
(Vz(x))ψ2

z(|x|)ψ2
0(|x|)+ 4δ(|x|), (66.75)

where δ(·) is given as in Equation 66.63. The function ρ, which will be used to modify the Lyapunov
function, can be constructed as, for example,

ρ(0)= ξ(0)+
∫ ∞

0
[ξ(α−1

1 (s))]′e−
∫ s

0 q1(τ)dτ ds

and

ρ(s)= e
∫ s

0 q1(τ)dτ
[
ρ(0)−

∫ s

0
q2(u)e−

∫ u
0 q1(τ)dτ du

]
, s > 0,

where q1(s)= 1
ζ(α−1

1 (s))
, q2(s)= ξ(α−1

1 (s))

ζ(α−1
1 (s))

.

We now consider the Lyapunov function

V (x̃, xz , y, z2, l̂)=
∫ Vz (xz )

0
ρ(s) ds+V (x̃, y, l̂, z2).

By Itô’s formula we have

LV = ρ(Vz)LVz + 1

2
ρ
′
(Vz)

∥∥∥∥∥
(

∂Vz

∂xz

)T

g0

∥∥∥∥∥
2

F

−W(x̃, y, z2, l̂)− ν(y2)y4+ δ(|xz |)+Γ0+ σ
2

l2

≤ ρ(Vz)[γ(|y|)− α(|xz |)]+ 1

2
ρ
′
(Vz)ψ2

z(|xz |)ψ2
0(|xz |)−W(x̃, y, z2, l̂)− ν(y2)y4+ δ(|xz |)+Γ0+ σ

2
l2

≤ ρ(η(|y|))γ(|y|)− 1

2
ρ(Vz)α(|xz |)+ 1

2
ρ
′
(Vz)ψ2

z(|xz |)ψ2
0(|xz |)

−W(x̃, y, z2, l̂)− ν(y2)y4+ δ(|xz |)+Γ0+ σ
2

l2, (66.76)
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where η= α2(α−1(2γ(·))) ∈ K∞. From Equation 66.75, we have

1

4
ρ(Vz)α(|xz |)− δ(|xz |)≥ 1

2
ρ
′
(Vz)ψ2

z(|xz |)ψ2
0(|xz |), (66.77)

thus we get

LV ≤ ρ(η(|y|))γ(|y|)− 1

4
ρ(Vz)α(|xz |)−W(x̃, y, z2, l̂)− ν(y2)y4+Γ0+ σ

2
l2. (66.78)

Assuming that the gain function γ(·) in Assumption A2 is locally quartic, that is

lim sup
s→0+

γ(s)

s4 <∞, (66.79)

we choose ν(·) as

ν(y2)= ρ(α2(α−1(2γ(y2+ 1)))) sup
s∈(0,y2+1]

γ(s)

s4 .

This, together with Equations 66.76 and 66.77, yields

LV ≤−1

4
ρ(0)α(|xz |)−W(x̃, y, z2, l̂)+Γ0+ σ

2
l2. (66.80)

Define

W1(x̃, xz , y, z2, l̂)= 1

4
ρ(0)α(|xz |)+W(x̃, y, z2, l̂),

which is positive-definite and radially unbounded in (x̃, xz , y, z2, l̂). Thus

LV ≤−W1(x̃, xz , y, z2, l̂)+Γ0+ σ
2

l2 ≤−β(|(x̃, xz , y, z2, l̂)|)+Γ0+ σ
2

l2, (66.81)

where β is a class K∞ function.

66.6.3 Boundedness, Stability, and Regulation

From Equation 66.81, by Test for Stability C, the closed-loop system is practically SISS (and hence the
solution process is bounded in probability). Moreover, ifϕi2(0)= 0,ψi2(0)= 0, i = 1, 2, we obtainΓ0 = 0.
In this case, we take σ= 0 in Equation 66.59; hence from Equation 66.80 we obtain

LV ≤−W2(x̃, xz , y, z2), (66.82)

where W2(x̃, xz , y, z2)= 1
4ρ(0)α(|xz |)+∑2

i=1 βiz4
i + c0|x̃|4. Thus, by Test for Stability A, the equilibrium

(x̃, z, x0, l̂)= (0, 0, 0, l) is globally stable in probability, and in addition, the output is regulated to the
origin almost surely, more precisely, P{limt→∞(|y| + |xz | + |x1| + |x2|)= 0} = 1.

In this section, we have used a different Lyapunov function from the previous two sections. The basic
idea of construction comes from the method of changing the supply function of unmodeled dynamics (or
zero dynamics). For further details and an extension to a general class of systems the reader is referred
to [14].

66.7 Inverse Optimal Stabilization in Probability

The problem of inverse optimal stabilization in probability for system (Equation 66.6) is said to be solvable
if there exists a K∞ function γ2 whose derivative γ′2 is also a K∞ function, a matrix-valued function R2(x)
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such that R2(x)= R2(x)T > 0 for all x, a positive definite function l(x), and a feedback control law u= α(x)
continuous everywhere with α(0)= 0, which guarantees global asymptotic stability in probability of the
equilibrium x = 0 and minimizes the cost functional

J(u)= E

{∫ ∞

0
[l(x)+ γ2(|R2(x)

1
2 u|)] dτ

}
.

Next, we present a constructive solution to this nonlinear stochastic optimal control problem.
Consider the control law

u= α(x)=−R−1
2 (Lg2 V )T �γ2(|Lg2 VR−1/2

2 |)
|Lg2 VR−1/2

2 |2
, (66.83)

where V (x) is a Lyapunov function candidate, γ2 is a K∞ function whose derivative is also a K∞ function,
R2(x) is a matrix-valued function such that R2(x)= RT

2 (x) > 0, and

�γ(r)=
∫ r

0

(
γ′
)−1

(s) ds

represents the Legendre–Fenchel transform. If the control law (Equation 66.83) achieves global asymptotic
stability in probability for system (Equation 66.6) with respect to V (x), then the control law

u∗ = α∗(x)=−β
2

R−1
2 (Lg2 V )T (γ

′
2)−1(|Lg2 VR−1/2

2 |)
Lg2 VR−1/2

2

, β≥ 2 (66.84)

solves the problem of inverse optimal stabilization in probability for system (Equation 66.6) by minimizing
the cost functional

J(u)= E

{∫ ∞

0

[
l(x)+ β2γ2

(
2

β
|R1/2

2 u|
)]

dτ

}
,

where

l(x)= 2β

[
�γ2(|Lg2 VR−1/2

2 |)− Lf V − 1

2
Tr

{
gT

1
∂2V

∂x2 g1

}]
− β(β− 2)�γ2(|Lg2 VR−1/2

2 |).

For the design procedures for control laws in the form (Equation 66.83), and hence of inverse-optimal-
in-probability control laws in the form (Equation 66.84), the reader is referred to the book by Krstić and
Deng [9].

66.8 Extensions

In the preceding sections, we introduced stabilization tools for three classes of canonical systems. These
design ideas can be applied to the following more general systems.
Systems not in the output-feedback form:

dxz = f0(xz , y) dt+ gT
0 (xz , y) dw,

dxi = (xi+1+ fi(xz , xi)) dt+ gT
i (xz , xi) dw, i = 1, . . . , n− 1,

dxn = (u+ fn(xz , xn)) dt+ gT
n (xz , xn) dw,

y = x1,

where nonlinear terms fi , gi , i = 1, 2, . . . , n depends on the unmeasurable states x2, . . . , xi besides the
measured output y. To design the output-feedback stabilization controller, some extra growth conditions
on these nonlinear terms are usually needed.
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Unknown virtual control coefficients:

dxi = (bixi+1+ fi(xi)) dt+ gT
i (xi) dw, i = 1, . . . , n− 1,

dxn = (bnu+ fn(xn)) dt+ gT
n (xn) dw,

where the constant coefficients bi , i = 1, . . . , n are unknown, but the signs of bi are assumed to be known.
Similar to the deterministic case, using the tuning functions design which, in addition to estimating the
bi ’s, also estimates the inverse coefficients 1

bi
, i = 1, . . . , n, we construct adaptive control laws that achieve

global stability in probability and “almost sure” regulation to the origin.
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67.1 Introduction

In many applications, such as diffusion and structural vibrations, the physical quantity of interest depends
on both position and time. Some examples are shown in Figures 67.1 through 67.3. These systems are
modeled by partial differential equations (PDEs) and the solution evolves on an infinite-dimensional
Hilbert space. For this reason, these systems are often called infinite-dimensional systems. In contrast,
the state of a system modeled by an ordinary differential equation evolves on a finite-dimensional system,
such as R

n, and these systems are called finite-dimensional. Since the solution of the PDE reflects the
distribution in space of a physical quantity such as the temperature of a rod or the deflection of a
beam, these systems are often also called distributed-parameter systems (DPS). Systems modeled by delay
differential equations also have a solution that evolves on an infinite-dimensional space. Thus, although
the physical situations are quite different, the theory and controller design approach is quite similar to
that of systems modeled by PDEs. However, delay differential equations will not be discussed directly in
this chapter.

The purpose of controller design for infinite-dimensional systems is similar to that for finite-
dimensional systems. Every controlled system must of course be stable. Beyond that, the goals are to
improve the response in some well-defined manner, such as by solving a linear-quadratic (LQ) optimal
control problem. Another common goal is design the controller to minimize the system’s response to
disturbances.

Classical controller design is based on an input/output description of the system, usually through
the transfer function. Infinite-dimensional systems have transfer functions. However, unlike the transfer
functions of finite-dimensional systems, the transfer function is not a rational function. If a closed-form
expression of the transfer function of an infinite-dimensional system can be obtained, it may be possible
to design a controller directly. This is known as the direct controller design approach. Generalizations
of many well-known finite-dimensional stability results such as the small gain theorem and the Nyquist

67-1
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FIGURE 67.1 A flexible beam is the simplest example of transverse vibrations in a structure. It has relevance to
control of flexible robots and space structures. This photograph shows a beam controlled by means of a motor at one
end. (Photo courtesy of Prof. M.F. Golnaraghi, Simon Fraser University.)

FIGURE 67.2 Acoustic noise in a duct. A noise signal is produced by a loudspeaker placed at one end of the duct. In
this photo, a loudspeaker is mounted midway down the duct where it is used to control the noise signal. The pressure
at the open end is measured by means of a microphone as shown in the photo. (Photo courtesy of Prof. S. Lipshitz,
University of Waterloo.)

FIGURE 67.3 Vibrations in a plate occur due to various disturbances. In this apparatus the vibrations are controlled
via the piezo-electric patches shown. (Photo courtesy of Prof. M. Demetriou, Worcester Polytechnic University.)

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-79&iName=master.img-000.jpg&w=215&h=121
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-79&iName=master.img-001.jpg&w=215&h=121
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10384-79&iName=master.img-002.jpg&w=215&h=150
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stability criterion exist; see [24,25]. Passivity generalizes in a straightforward way to irrational transfer
functions [9, Chapters V, VI] and just as for finite-dimensional systems, any positive real system can be
stabilized by the static output feedback u=−κy for any κ> 0. For some of these results it is not required
to know the transfer function in order to ensure stability of the controlled system. It is only required
to know whether the transfer function lies in the appropriate class. PI-control solutions to tracking
problems for irrational transfer functions and the internal model principle is covered in [25,26,35]. For
a high-performance controlled system, a model of the system needs to be used. H∞-controller design
has been successfully developed as a method for robust control and disturbance rejection in finite-
dimensional systems. A theory of robust H∞-control designs for infinite-dimensional systems using
transfer functions is described in [11]. More recent results on this approach can be found in [19] and
references therein.

The chief drawback of direct controller design is that an explicit representation of the transfer
function is required. Another drawback of direct controller design is that, in general, the result-
ing controller is infinite-dimensional and must be approximated by a finite-dimensional system. For
this reason, direct controller design is sometimes referred to as late lumping since a last step in
the controller design is to approximate the controller by a finite-dimensional, or lumped parameter,
system.

For many practical examples, controller design based on the transfer function is not feasible, since
a closed-form expression for the transfer function may not be available. Instead, a finite-dimensional
approximation of the system is first obtained and controller design is based on this finite-dimensional
approximation. This approach is known as indirect controller design, or early lumping. This is the most
common method of controller design for systems modeled by PDEs. The hope is that the controller has
the desired effect on the original system. That this method is not always successful was first documented in
Balas [1], where the term spillover effect was coined. Spillover refers to the phenomenon that a controller
which stabilizes a reduced-order model need not necessarily stabilize the original model. Systems with
infinitely many poles either on or asymptoting to the imaginary axis are notorious candidates for spillover
effects. However, conditions under which this practical approach to controller design works have been
obtained and are presented in this chapter.

In the next section a brief overview of the state-space theory for infinite-dimensional systems is
given. Some issues associated with approximation of systems for the purpose of controller design
are discussed in the following section. Results for the most popular methods for multi-input–multi-
output controller design, LQ controller, and H∞-controller design are then presented in Sections 67.4
and 67.5.

67.2 State-Space Formulation

Systems modeled by linear ordinary differential equations are generally written as a set of n first-order
differential equations putting the system into the state-space form

ż(t)= Az(t)+Bu(t), (67.1)

where z(t) ∈ R
n, A ∈ R

n×n, B ∈ R
n×m, and m is the number of controls.

We write systems modeled by PDEs in a similar way. The main difference is that the matrices A becomes
an operator acting, not on R

n, but on an infinite-dimensional Hilbert space, Z. Similarly, B maps the
input space into the Hilbert space Z. More detail on the systems theory described briefly in this section
can be found in [8].

We first need to generalize the idea of a matrix exponential exp(At). Let L(X1, X2) indicates bounded
linear operators from a Hilbert space X1 to a Hilbert space X2.
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Definition 67.1:

A strongly continuous (C0-) semigroup S(t) on Hilbert space Z is a family S(t) ∈ L(Z, Z) such that

1. S(0)= I ,
2. S(t)S(s)= S(t+ s),
3. limt↓0 S(t)z = z, for all z ∈ Z.

Definition 67.2:

The infinitesimal generator A of a C0-semigroup on Z is defined by

Az = lim
t↓0

1

t
(S(t)z− z)

with domain D(A) the set of elements z ∈ Z for which the limit exists.

The matrix exponential exp(At) is a special case of a semigroup, defined on a finite-dimensional space.
Its generator is the matrix A. Note that we only have strong convergence of S(t) to the identity I in
Definition 67.1(3). Uniform convergence implies that the generator is a bounded operator defined on the
whole space and that the semigroup can be defined as

∞∑
i=0

(At)i

i!

just as for a matrix exponential. However, for PDEs the generator A is an unbounded operator and only
strong convergence of S(t) to I is obtained.

If A is the generator of a C0-semigroup S(t) on a Hilbert space Z, then for all z0 ∈ D(A),

d

dt
S(t)z0 = AS(t)z0 = S(t)Az0.

It follows that the differential equation on Z

dz(t)

dt
= Az(t), z(0)= z0

has the solution
z(t)= S(t)z0.

Furthermore, owing to the properties of a semigroup, this solution is unique, and depends continuously
on the initial data z0.

Thus, for infinite-dimensional systems, instead of Equation 67.1, we consider systems described by

dz

dt
= Az(t)+Bu(t), z(0)= z0 (67.2)

where A with domain D(A) generates a strongly continuous semigroup S(t) on a Hilbert space Z and
B ∈ L(U , Z). We assume also that U is finite-dimensional (for instance, R

m) as is generally the case in
practice.

For some situations, such as control on the boundary of the region, typical models lead to a state-
space representation where the control operator B is unbounded on the state space. More precisely, it
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FIGURE 67.4 Heat flow in a rod. The regulation of the temperature profile of a rod is the simplest example of a
control system modeled by a PDE.

is a bounded operator into a larger space than the state space. However, this complicates the analysis
considerably. To simplify the exposition, this chapter considers only bounded B. Appropriate references
are given for extension to unbounded operators where available. Note, however, that including a model
for the actuator often changes a simple model with an unbounded actuator to a more complex model
with bounded control; see, for instance, [17].

Example 67.1: Diffusion

Consider the temperature in a rod of length L with constant thermal conductivity K0, mass density ρ
and specific heat Cp (see Figure 67.4). Applying the principle of conservation of energy to arbitrarily
small volumes in the bar leads to the following PDE for the temperature z(x , t) at time t at position x
from the left-hand end (see, e.g., [14, e.g., Section 1.3])

Cpρ
∂z(x , t)

∂t
= K0

∂2z(x , t)

∂x2 , x ∈ (0, L), t ≥ 0. (67.3)

In addition to modeling heat flow, this equation also models other types of diffusion, such as
chemical diffusion and neutron flux. To fully determine the temperature, one needs to specify the
initial temperature profile z(x , 0) as well as the boundary conditions at each end. Assume Dirichlet
boundary conditions:

z(0, t)= 0, z(L, t)= 0.

and some initial temperature distribution z(0)= z0, z0 ∈ L2(0, L). Define Az = Ko
Cpe ∂2z/∂x2. Since we

cannot take derivatives of all elements of L2(0, L) and we need to consider boundary conditions,
define

D(A)= {z ∈H2(0, L); z(0)= 0, z(L)= 0},

where H2(0, L) indicates the Sobolev space of functions with weak second derivatives [37]. We can
rewrite the problem as

ż(t)= Az(t), z(0, t)= z0.

The operator A with domain D(A) generates a strongly continuous semigroup S(t) on Z = L2(0, L).
The state z, the temperature of the rod, evolves on the infinite-dimensional space L2(0, L).

Suppose that the temperature on an unit interval [0,1] is controlled using an input flux u(t)

∂z

∂t
= ∂2z

∂x2 + Bu(t), 0 < x < 1,

where B ∈ L(R, Z) describes the distribution of applied energy, with the same Dirichlet boundary
conditions. Since the input space is one-dimensional, B can be defined by Bu= b(x)u for some
b(x) ∈ L2(0, 1). This leads to

ż(t)= Az(t)+ b(x)u(t).
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ξ = 0

u

ξ = 1

FIGURE 67.5 Simply supported beam with applied force.

Example 67.2: Simply Supported Beam

Consider a simply supported Euler-Bernoulli beam as shown in Figure 67.5 and let w(x , t) denote the
deflection of the beam from its rigid body motion at time t and position x . The control u(t) is a force
applied at the center with width δ. The analysis of beam vibrations is useful for applications such as
flexible links in robots; but also in understanding the dynamics of more complex structures. If we
normalize the variables, we obtain the PDE (see, e.g., [14, Chapter 6]):

∂2w

∂t2 +
∂4w

∂x4 = b(x)u(t), t ≥ 0, 0 < x < 1,

b(x)=

⎧⎪⎪⎨
⎪⎪⎩

1
δ

, |x− 0.5|< δ

2

0, |x− 0.5| ≥ δ
2

with boundary conditions

w(0, t)= 0, wxx (0, t)= 0, w(1, t)= 0, wxx (1, t)= 0. (67.4)

This system is second order in time, and analogously to a simple mass–spring system, we define the
state as z(t)= [w(·, t) ẇ(·, t)]. Let

Hs(0, 1)= {w ∈H2(0, 1), w(0)= 0, w(1)= 0}

and define the state space Z = Hs(0, 1)×L2(0, 1). A state-space formulation of the above PDE prob-
lem is

d

dt
z(t)= Az(t)+ Bu(t),

where

B =
[

0
b(·)

]
, A=

⎡
⎣ 0 I

− d4

dx4 0

⎤
⎦ ,

with domain
D(A)= {(φ,ψ) ∈ Hs(0, 1)×Hs(0, 1); φxx ∈ Hs(0, 1)}.

The operator A with domain D(A) generates a C0-semigroup on Z .

Even for finite-dimensional systems, the entire state cannot generally be measured. Measurement of
the entire state is never possible for systems described by PDEs, and we define

y(t)= Cz(t)+Eu(t), (67.5)

where C ∈ L(Z, Y) , E ∈ L(U , Y), and Y is a Hilbert space. The expression (Equation 67.5) can also
represent the cost in controller design. Note that as for the control operator, it is assumed that C is a
bounded operator from the state space Z. The operator E is a feedthrough term that is nonzero in some
control configurations.
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The state at any time t and control u ∈ L2(0, t; U) is given by

z(t)= S(t)z0+
∫ t

0
S(t− s)Bu(s) ds

and the output is

y = CS(t)z0+C
∫ t

0
S(t− τ)Bu(τ) dτ,

or defining

g(t)= CS(t)B,

y(t)= CS(t)Bz0+ (g ∗ u)(t)

where ∗ indicates convolution.
The Laplace transform G of g yields the transfer function of the system: If z(0)= 0,

ŷ(s)= G(s)û(s).

The transfer function of a system modeled by a system of ordinary differential equations is always rational
with real coefficients; for example, (2s+ 1)/(s2+ s+ 25). Transfer functions of systems modeled by PDEs
are nonrational. There are some differences in the systems theory for infinite-dimensional systems [7]. For
instance, it is possible for the transfer function to have different limits along the real and imaginary axes.

The definitions of stability for finite-dimensional systems generalize to infinite-dimensions.

Definition 67.3:

A system is externally stable or L2-stable if for every input u ∈ L2(0,∞; U), the output y ∈ L2(0,∞; Y). If
a system is externally stable, the maximum ratio between the norm of the input and the norm of the output
is called the L2-gain.

Define
H∞ = {G : C+0 → C|G analytic and sup

Res>0
|G(s)|<∞}

with norm
‖G‖∞ = sup

Res>0
|G(s)|.

Matrices with entries in H∞ will be indicated by M(H∞). The H∞-norm of matrix functions is

‖G‖∞ = sup
Res>0

σmax
(
G(s)

)
.

The theorem below is stated for systems with finite-dimensional input and output spaces U and Y but it
generalizes to infinite-dimensional U and Y .

Theorem 67.1:

A linear system is externally stable if and only if its transfer function matrix G ∈M(H∞). In this case,
‖G‖∞ is the L2-gain of the system and we say that G is a stable transfer function.

As for finite-dimensional systems, we need additional conditions to ensure that internal stability and
external stability are equivalent.
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Definition 67.4:

The semigroup S(t) is exponentially stable if there is M ≥ 1, α> 0 such that ‖S(t)‖ ≤Me−αt for all t ≥ 0.

Definition 67.5:

The system (A, B, C) is internally stable if A generates an exponentially stable semigroup S(t).

Definition 67.6:

The pair (A, B) is stabilizable if there exists K ∈ L(U , Z) such that A−BK generates an exponentially stable
semigroup.

Definition 67.7:

The pair (C, A) is detectable if there exists F ∈ L(Y , Z) such that A− FC generates an exponentially stable
semigroup.

Theorem 67.2: [18, Theorem 26, Corollary 27]

A stabilizable and detectable system is internally stable if and only if it is externally stable.

Now, let G be the transfer function of a given plant and let H be the transfer function of a controller,
of compatible dimensions, arranged in the standard feedback configuration shown in Figure 67.6. This
framework is general enough to include most common control problems. For instance, in tracking, r is
the reference signal to be tracked by the plant output y1. Since r can also be regarded as modeling sensor
noise and d as modeling actuator noise, it is reasonable to regard the control system in Figure 67.6 as
externally stable if the four maps from r, d to e1, e2 are in M(H∞). (Stability could also be defined in terms
of the transfer matrix from (r, d) to (y1, y2): both notions of stability are equivalent.) Let (A, B, C, E) be a
state-space realization for G and similarly let (Ac , Bc , Cc , Ec) be a state-space realization for H . If I +EEc

is invertible, then the 2× 2 transfer matrix Δ(G, H) which maps the pair (r, d) into the pair (e1, e2) is

r

–

e1 e2u y

d

H G

FIGURE 67.6 Standard feedback diagram.
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given by

Δ(G, H)=
[

(I +GH)−1 −G(I +HG)−1

H(I +GH)−1 (I +HG)−1

]
.

Definition 67.8:

The feedback system (Figure 67.6), or alternatively the pair (G, H), is said to be externally stable if I +EEc

is invertible, and each of the four elements inΔ(G, H) belongs to M(H∞).

Typically the plant feedthrough E is zero and so the invertibility of I +EEc is trivially satisfied. The
above definition of external stability is sufficient to ensure that all maps from uncontrolled inputs to
outputs are bounded. Furthermore, under the additional assumptions of stabilizability and detectability,
external stability and internal stability are equivalent.

Theorem 67.3: [18, Theorem 35]

Assume that (A, B, C, E) is a jointly stabilizable/detectable control system and that a controller
(Ac , Bc , Cc , Ec) is also jointly stabilizable/detectable.The closed-loop system is externally stable if and only
if it is internally stable.

This equivalence between internal stability and external stability justifies the use of controller design
techniques based on system input/output behavior for infinite-dimensional systems.

67.3 Issues in Controller Design

For most practical examples, a closed-form solution of the PDE or of the transfer function is not available
and an approximation needs to be used. This approximation is generally calculated using one of the many
standard methods, such as finite elements, developed for simulation of PDE models. The resulting system
of ordinary differential equations is used in controller design. The advantage to this approach is that the
wide body of synthesis methods available for finite-dimensional systems can be used.

The usual assumption made on an approximation scheme used for simulation are as follows. Suppose
the approximation lies in some finite-dimensional subspace Zn of the state space Z, with an orthogonal
projection Pn : Z → Zn where for each z ∈ Z, limn→∞ ‖Pnz− z‖ = 0. The space Zn is equipped with
the norm inherited from Z. Define Bn = PnB, Cn = C|Zn ( the restriction of Cn to Zn) and define An ∈
L(Zn, Zn) using some method. This leads to a sequence of finite-dimensional approximations

dz

dt
= Anz(t)+Bnu(t), z(0)= Pnz0,

y(t)= Cnz(t).

Let Sn indicate the semigroup (a matrix exponential) generated by An. The following assumption is
standard.

(A1) For each z ∈ Z, and all intervals of time [t1, t2],
lim

n→∞ sup
t∈[t1,t2]

‖Sn(t)Pnz− S(t)z‖ = 0.

Assumption (A1) is required for convergence of initial conditions. Assumption (A1) is often satisfied
by ensuring that the conditions of the Trotter–Kato Theorem hold; see, for instance, [34, Section 3.4].
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Assumption (A1) implies that Pnz → z for all z ∈ Z. The strong convergence Pnz → z for all z ∈ Z and
the definitions of Bn = PnB and Cn = C|Zn imply that for all u ∈ U , z ∈ Z, ‖Bnu−Bu‖→ 0, ‖CnPnz−
Cz‖→ 0.

The following result on open-loop convergence is straightforward.

Theorem 67.4:

Suppose that the approximating systems (An, Bn, Cn) satisfy assumption (A1). Then for each initial condition
z ∈ Z, and time T > 0 the uncontrolled approximating state z(t) converges uniformly on bounded intervals
of time [0, T] to the exact state. Also, for each u ∈ L2(0, T ; U), yn → y in the norm on L2(0, T ; Y).

Example 67.3: Indirect Controller Design for Simply Supported Beam. (Eg. 67.2 cont.)

Consider a simply supported Euler–Bernoulli beam (Figure 67.5). As shown in Example 67.2, a state-
space formulation with state space Z = Hs(0, 1)×L2(0, 1) is

d

dt
z(t)= Az(t)+ Bu(t),

where

A=
[

0 I

− d4

dx4 0

]
, B =

⎡
⎣ 0

b(·)

⎤
⎦ ,

with domain

D(A)= {(φ,ψ) ∈ Hs(0, 1)×Hs(0, 1); φ′′ ∈ Hs(0, 1)}

and

b(x)=

⎧⎪⎨
⎪⎩

1
δ

, |x− 0 5|< δ

2

0, |x− 0 5| ≥ δ
2

.

Let φi (x) indicate the eigenfunctions of ∂4w/∂x4 with simply supported boundary conditions
(Equation 67.4). Defining Xn to be the span of φi , i = 1 . . . n, we choose Zn = Xn×Xn and define
Pn to be the projection onto Zn. Let 〈·, ·〉 indicate the inner product on Z (and on Zn). Define the
approximating system (An, Bn) by the Galerkin approximation

〈ż(t),φi〉 = 〈Az(t),φi〉+ 〈b,φi〉u(t), i = 1 . . . n.

This leads to the standard modal approximation

ż(t)= Anz(t)+ Bnu(t), zn(0)= Pnz(0). (67.6)

This approximation scheme satisfies assumption (A1).
Consider LQ controller design [30]: find a control u(t) so that the cost functional

J(u, z0)=
∫ ∞

0
〈z(t), z(t)〉+ |u(t)|2dt



�

�

�

�

� �

Control of Systems Governed by Partial Differential Equations 67-11

is minimized where z(t) is determined by Equation 67.6. The resulting optimal controller is u(t)=
−Knz(t), where Kn = B∗nΠnz(t), andΠn solves the algebraic Riccati equation

A∗nΠn+ΠnAn−ΠnBnB∗nΠn+ I = 0

where M∗ indicates the adjoint operator of M. For a matrix M, M∗ is the complex conjugate transpose
of M. Suppose we use the first three modes (or eigenfunctions) to design the controller. As expected,
the controller stabilizes the model used in design. However, Figure 67.7b shows that if even one
additional mode is added to the system model, the controller no longer stabilizes the system. This
phenomenon is often called spillover [1]. Figure 67.8 shows the sequence of controllers obtained for
increasing model order. The controller sequence is not converging to some controller appropriate for

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.15

−0.1

−0.05
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0.05
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0.15
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Center position of controlled beam, three modes

Time (s)

A
m
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itu
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FIGURE 67.7 An LQ feedback controller K was designed for the beam in Example 67.3 using the first three modes
(eigenfunctions). Simulation of the controlled system with (a) three modes and (b) four modes is shown. The initial
condition in both cases is the first eigenfunction. Figure (b) illustrates that the addition of only one additional mode
to the model leads to instability in the controlled system.
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FIGURE 67.8 LQ optimal feedback for modal approximations of the simply supported beam in Example 67.3. Since
the input space U = R, the feedback operator Kn is a bounded linear functional and hence can be uniquely identified
with a function, called the gain. The upper figure shows the feedback gain for the position of beam; the lower figure
shows the velocity gains. Neither sequence is converging as the approximation order increases.

the original infinite-dimensional system. The increase in ‖Kn‖ as approximation order increases sug-
gests that the original system is not stabilizable. This is the case here. Although the approximations
are stabilizable, the original model is not stabilizable [13].

As shown by the above example, and also by an example in [29], requirements additional to those
sufficient for simulation are required when an approximation is used for controller design. The issues are
illustrated in Figure 67.9. Possible problems that may occur are the following:

• The controlled system may not perform as predicted.
• The sequence of controllers for the approximating systems may not converge.
• The original control system may not be stabilizable, even if the approximations are stabilizable.
• The performance of the controlled infinite-dimensional system may not be close to that predicted

by simulations with approximations (and may be unstable).

Although (A1) guarantees open-loop convergence, additional conditions are required in order to obtain
closed loop convergence.

The gap topology, first introduced in [40], is useful in establishing conditions under which an approx-
imation can be used in controller design. Consider a stable system G; that is, G ∈M(H∞). A sequence
Gn converges to G in the gap topology if and only if limn→∞ ‖Gn−G‖∞ = 0. The extension to unsta-
ble systems uses coprime factorizations. Let G be the transfer function of a system, with right coprime
factorization G = ÑD̃−1:

X̃Ñ + Ỹ D̃ = I , X̃, Ñ , Ỹ , D̃ ∈M(H∞).

(If G ∈ H∞, then we can choose Ñ = G, D̃ = I , X̃ = I , Ỹ = 0.) A sequence Gn converges to G in the gap
topology if and only if for some right coprime factorization (Ñn, D̃n) of Gn, Ñn converges to Ñ and D̃n
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FIGURE 67.9 Typical approximation criteria ensure that the open loops converge. However, in controller design,
the controller is generally implemented as a feedback controller and control of the resulting closed-loop system
is needed. Furthermore, a sequence of controllers is produced by applying a controller synthesis technique to the
approximations. This sequence of controllers should converge so that closed-loop performance with the original
plant is similar to that predicted by simulations with the approximations.

converges to D̃ in the H∞-norm. For details on the gap (or graph) topology, see [39,42]. The importance
of the gap topology in controller design is stated in the following result.

Theorem 67.5: [39]

Let Gn ∈M(H∞) be a sequence of system transfer functions.

1. Suppose Gn converges to G in the gap topology. Then if H stabilizes G, there is an N such that H
stabilizes Gn for all n≥ N and the closed-loop transfer matrix Δ(Gn, H) converges to Δ(G, H) in
the H∞-norm.

2. Conversely, suppose that there exists an H that stabilizes Gn for all n≥ N and so that Δ(Gn, H)
converges toΔ(G, H) in the H∞-norm. Then Gn converges to G in the gap topology.

Thus, failure of a sequence of approximations to converge in the gap topology implies that for each
possible controller H at least one of the following conditions holds:

• H does not stabilize Gn for all n sufficiently large.
• The closed-loop responseΔ(Gn, H) does not converge toΔ(Gn, H).

On the other hand, if a sequence of approximations does converge in the gap topology, then the closed-loop
performanceΔ(Gn, H) converges and moreover, every H that stabilizes G also stabilizes Gn for sufficiently
large approximation order.

The following condition, with assumption (A1) provides a sufficient condition for convergence of
approximations in the gap topology. It was first formulated in [3] in the context of approximation of LQ
regulators for parabolic PDEs.
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Definition 67.9:

The control systems (An, Bn) are uniformly stabilizable if there exists a sequence of feedback operators
{Kn} with ‖Kn‖ ≤M1 for some constant M1 such that An−BnKn generate SKn(t) where ‖SKn(t)‖ ≤
M2e−α2t , M2 ≥ 1, α2 > 0.

Since U is assumed finite-dimensional, B is a compact operator. Thus, (A1) and uniform stabilizability
imply stabilizability of (A, B) [15, Theorem 2.3] and in fact the existence of a uniformly stabilizing sequence
Kn satisfying Definition 67.9 with limn→∞ KnPnz = Kz for all z ∈ Z. The beam in Example 67.3 is not
stabilizable and therefore there is no sequence of uniformly stabilizable approximations.

Theorem 67.6: [29, Theorem. 4.2]

Consider a stabilizable and detectable control system (A, B, C, E), and a sequence of approximations
(An, Bn, Cn, E) that satisfy (A1). If the approximating systems are uniformly stabilizable then they con-
verge to the exact system in the gap topology.

Example 67.4: Diffusion (Eg. 67.1 cont.)

∂z

∂t
= ∂2z

∂x2 + b(x)u(t), 0 < x < 1,

z(0, t)= 0, z(1, t)= 0,

y(t)=
∫ 1

0
c(x)z(x , t) dx

for some b, c ∈ L2(0, 1). This can be written as

ż(t)= Az(t)+ Bu(t),

y(t)= Cz(t),

where A and B are as defined in Example 67.1 and

Cz =
∫ 1

0
c(x)z(x) dx .

The operator A generates an exponentially stable semigroup S(t) with ‖S(t)‖ ≤ e−π2t on the state-
space L2(0, L) [8] and so the system is trivially stabilizable and detectable. The eigenfunctionsφi (x)=√

2 sin(πix), i = 1, 2, . . . , of A form an orthonormal basis for L2(0, L). Defining Zn = spani=1...nφi (x),
and letting Pn be the projection onto Zn, define An by the Galerkin approximation

〈Anφj ,φi〉 = 〈Aφj ,φi〉 i = 1 . . . n, j = 1 . . . n.

It is straightforward to show that this set of approximations satisfies assumption (A1) and that

the semigroup generated by An has bound Sn(t)≤ e−π2t . Hence the approximations are uniformly
stabilizable (using Kn = 0). Thus, the sequence of approximating systems converges in the gap
topology and will yield reliable results when used in controller design.

It is easy to show that if the original problem is exponentially stable, and the eigenfunctions of A form
an orthonormal basis for Z, then any approximation formed using the eigenfunctions as a basis, as in the
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previous example, will both satisfy assumption (A1) and be trivially uniformly stabilizable and detectable.
However, in practice, other approximation methods, such as finite elements, are often used.

Many generators A for PDE models can be described as follows. Let V be a Hilbert space that is dense
in Z. The notation 〈·, ·〉 indicates the inner product on Z, and 〈·, ·〉V indicates the inner product on V .
The norm on Z is indicated by ‖ · ‖ while the norm on V will be indicated by ‖·‖V . Let the bilinear form
a : V ×V �→ C be such that for some c1 > 0

|a(φ,ψ)| ≤ c1‖φ‖V‖ψ‖V (67.7)

for all φ,ψ ∈ V . An operator A can be defined through this form by

〈Aφ,ψ〉 = −a(φ,ψ), ∀ψ ∈ V

with D(A)= {φ ∈ V | a(φ, ·) ∈ Z}. Assume that in addition to Equation 67.7, a(·, ·) satisfies Garding’s
inequality: there exists k ≥ 0, such that for all φ ∈ V

Re a(φ,φ)+ k〈φ,φ〉 ≥ c‖φ‖2
V . (67.8)

For example, in the diffusion example above, V =H1
0(0, 1) and

a(φ,ψ)=
∫ 1

0
φ′(x)ψ′(x) dx.

The inequalities (Equations 67.7 and 67.8) guarantee that A generates a C0- semigroup with bound
‖T(t)‖ ≤ ekt [37, Section 4.6]. This framework includes many problems of practical interest such as
diffusion and beam vibrations with Kelvin–Voigt damping [29].

Defining a sequence of finite-dimensional subspaces Zn ⊂ V , the approximating generator An is
defined by

〈Anzn, vn〉 = −a(zn, vn), ∀zn, vn ∈ Zn. (67.9)

This type of approximation is generally referred to as a Galerkin approximation and includes
finite-elements as well as many other popular approximation methods. For such problems, the following
result, which generalizes [3, Lemma 3.3] is useful. It applies to a number of common applications, such as
the usual linear spline finite-elements for approximating the heat equation and other diffusion problems.
Finite-element cubic spline approximations to damped beam vibrations are also included.

Theorem 67.7: [29, Theorem 5.2,5.3]

Let Hn ⊂ V be a sequence of finite-dimensional subspaces such that for all z ∈ V there exists a sequence
zn ∈ Zn with

lim
n→∞‖zn− z‖V = 0. (67.10)

If the operator A satisfies the inequalities (Equations 67.7 and 67.8) then

1. Assumption (A1) is satisfied with ‖Sn(t)‖ ≤ ekt ;
2. If K ∈ L(Z, U) is such that A−BK generates an exponentially stable semigroup then the semigroups

SnK (t) generated by An−BnKPn are uniformly exponentially stable. In other words, there exists
M ≥ 1, α> 0 such that

‖SnK (t)‖ ≤Me−αt ∀n > N . (67.11)

and the approximations (An, Bn) are thus uniformly stabilizable.
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Example 67.5: Damped String

The wave equation
∂2w(x , t)

∂t2 = c2 ∂2w(x , t)

∂x2 , 0 < x < 1, t ≥ 0,

describes the deflection z(x , t) of a vibrating string of unit length as well as many other situations
such as acoustic plane waves, lateral vibrations in beams, and electrical transmission lines (see,
e.g., [38, Chapter 1]). Suppose the ends are fixed:

w(0, t)= 0, w(1, t)= 0.

Including control and observation, as well as the effect of some light damping [36] leads to the model

∂2w(x , t)

∂t2 + ε〈∂w(·, t)
∂t

, b(·)〉b(x)= ∂2w

∂x2 + b(x)u(t), 0 < x < 1,

y(t)= ∫ 1
0 b(x)

∂w(x , t)
∂t

dx

where ε> 0, and b ∈ L2(0, 1) describes both the control and observation action, which is a type of
distributed colocation. The state space is Z =H1

0(0, 1)×L2(0, 1) and the state-space equations are

d

dt

⎡
⎣ z

dz

dt

⎤
⎦= A

⎡
⎣ z

dz

dt

⎤
⎦+

[
0

b(x)

]
u(t),

y(t)= C

⎡
⎣ z

dz

dt

⎤
⎦

where

A

[
w
v

]
=
⎡
⎣ 0 I

∂2w

∂x2 −ε〈v, b〉b(x)

⎤
⎦ ,

D(A)=
{

(w, v) ∈ H1
0(0, 1)×H1

0(0, 1)
}

,

C

[
w
v

]
= [0 〈b(x), v〉] .

Suppose that

b(x)=

⎧⎪⎨
⎪⎩

1, 0 < x <
1
2

,

0,
1
2

< x < 1

The eigenvalues λn of A have all negative real parts, but asymptote to the imaginary axis so that
supn Re(λn)= 0. The results in [18] (see also [8, Section 5.2]) imply that the system is not exponentially
stabilizable. Thus, no sequence of approximations is uniformly stabilizable.

However, it is possible to construct a sequence of finite-dimensional approximations that converge
in the gap topology. The transfer function is

G(s)=
s
2 sinh(s)+ 2cosh

( s
2
)− 3cosh2( s

2
)+ 1

s(s+ ε
2 )sinh(s)+ ε(2cosh

( s
2
)− 3cosh2

( s
2
)+ 1)

.

The function G ∈H∞; so the system is L2-stable, and furthermore,

lim|s|→∞,Ress>0
G(s)= 0.
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Thus, we can find a sequence of rational functions Gn so that

lim
n→∞‖Gn(s)−G(s)‖∞ = 0.

The state-space realizations corresponding to {Gn} are finite-dimensional and thus there are finite-
dimensional approximations that converge in the gap topology.

The above example illustrates that uniform stabilizability is a sufficient, not necessary, condition for
convergence of approximations in the gap topology.

Once an approximation scheme that converges in the gap topology is found (typically, by finding
one that satisfies (A1) and is uniformly stabilizable), the next step is controller design. The sequence of
controllers designed using the approximations should converge to a controller for the original infinite-
dimensional system that yields the required performance, as well as stability (see Figure 67.9).

A common procedure for controller design is to first design a state feedback controller: u(t)=−Kz(t).
Then, since the full state is not available, an estimator is designed to obtain an estimate of the state using
knowledge of the output y and the input u. The controller is formed by using the state estimate as input
to a state feedback controller. Controller design of this type for infinite-dimensional systems is described
in [8, Section 5.3].

However, typically both the state feedback and the estimator are designed using a finite-dimensional
approximation (An, Bn, Cn, E). Suppose Fn ∈ L(Y , Z) is found so that all the eigenvalues of An− FnCn

have negative real parts, and similarly Kn ∈ L(Z, U) is such that all the eigenvalues of An−BnKn have
negative real parts. The resulting finite-dimensional controller is

żc(t)= Anzc(t)+Bnu(t)+ Fn
(
y(t)−Cnzc(t)

)
yc(t)=−Knzc(t)

This framework does not include the effect of disturbances to the controlled system, shown as r and
v in Figure 67.6. To include these effects, and put the system into the standard framework, define an
augmented system output

ỹ(t)=
[

y(t)
u(t)

]
=
[

C
0

]
z(t)+

[
E
I

]
u(t)

Letting e(t)= r− ỹ indicate the controller input, the controller equations are then

żc(t)= (An− FnCn)zc(t)−[Fn Bn] e(t),

yc(t)=−Knzc(t)
(67.12)

and the plant input is yc + v.
It is well known that such a controller stabilizes the approximation (An, Bn, Cn, E) (see, e.g., [30]).

However, it must also stabilize the original system (A, B, C, E). For this to happen, the controller sequence
must converge in some sense. For controller convergence, an assumption in addition to (A1) and uniform
stabilizability is required.

Definition 67.10:

The observation systems (An, Cn) are uniformly detectable if there exists a sequence of operators {Fn} with
‖Fn‖ ≤M3 for some constant M3 such that An− FnCn generates SFn(t), where‖SFn(t)‖ ≤M4e−α4t , M4 ≥ 1,
and α4 > 0.
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The approximating systems (A, C) are uniformly detectable if and only if (A∗n, C∗n) is uniformly sta-
bilizable and thus uniform detectability can be established using conditions for uniform stabilizability.
In particular, if A is defined through a bilinear form satisfying Equations 67.7 and 67.8 and condition
(Equation 67.10) in Theorem 67.7 is satisfied, then detectability of (A, C) implies uniform detectabil-
ity of (An, Cn).

Theorem 67.8:

Assume that (A1) holds, that the operators Kn, Fn used to define the sequence of controllers (Equa-
tion 67.12) satisfy Definitions 67.9 and 67.10 respectively and there exists K ∈ L(U , Z), F ∈ L(Y , Z) such
that limn→∞ KnPnz = Kz for all z ∈ Z, limn→∞ Fny = Fy for all y ∈ Y . Indicating the controller transfer
function by Hn, the controllers converge in the gap topology and so for sufficiently large n, the output feedback
controllers (Equation 67.12) stabilize the infinite-dimensional system (Equations 67.2, 67.5). Furthermore,
the closed loop systems Δ(Gn, Hn) converge uniformly to the closed system Δ(G, H) where H indicates the
transfer function of the infinite-dimensional controller

żc(t)= (A− FC)zc(t)−[F B] e(t),

yc(t)=−Kzc(t).
(67.13)

Proof. The assumptions on the controller imply that, as for the plant (Theorem 67.6) the controllers
converge in the gap topology. See [28] for details. This implies that closed loops Δ(G, Hn) converge to
Δ(G, H) and that the controllers stabilize the original system for large enough n. Since the assumptions
also imply that the approximating systems Gn converge in the gap topology to G, the closed-loop systems
Δ(Gn, Hn) converge uniformly to the closed systemΔ(G, H). �

Controller design is explored further in the next two sections for the synthesis methods most commonly
used for multi-input–multi-output systems: LQ control and H∞-control.

67.4 LQ Regulators

Consider the LQ controller design objective of finding a control u(t) so that the cost functional

J(u, z0)=
∫ ∞

0
〈C1z(t), C1z(t)〉+ 〈u(t), Ru(t)〉 dt (67.14)

is minimized where R ∈ L(U , U) is a symmetric positive-definite operator weighting the control, C1 ∈
L(Z, Y) (with Hilbert space Y) weights the state, and z(t) is determined by Equation 67.2. The theoretical
solution to this problem is similar in structure to that for finite-dimensional systems [8,12,22,23].

Definition 67.11:

The system (Equation 67.2) with cost (Equation 67.14) is optimizable if for every z0 ∈ Z there exists
u ∈ L2(0,∞; U) such that the cost is finite.

Theorem 67.9: [8, Theorem 6.2.4, 6.2.7]

If Equation 67.2 with cost (Equation 67.14) is optimizable and (A, C1) is detectable, then the cost function
(Equation 67.14) has a minimum for every z0 ∈ Z. Furthermore, there exists a self-adjoint nonnegative
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operatorΠ ∈ L(H , H) such that

min
u∈L2(0,∞;U)

J(u, z0)= 〈z0,Πz0〉.

The operatorΠ is the unique nonnegative solution to the operator equation

〈Az1,Πz2〉+ 〈Πz1, Az2〉+ 〈C1z1, C1z2〉− 〈B∗Πz1, R−1B∗Πz1〉 = 0 z1, z2 ∈D(A). (67.15)

Defining K = R−1B∗Π, the corresponding optimal control is u=−Kz(t) and A−BK generates an expo-
nentially stable semigroup.

It is straightforward to show that the assumption of optimizability in Theorem 67.9 is equivalent to
stabilizability.

The Riccati operator equation 67.15 is equivalent to

(
A∗Π+ΠA−ΠBR−1B∗Π+C∗1 C1

)
z = 0, ∀z ∈D(A).

In practice, the operator Equation 67.15 cannot be solved and the control is calculated using an approxi-
mation. The cost functional becomes

J(u, z0)=
∫ ∞

0
〈C1nz(t), C1nz(t)〉+ 〈u(t), Ru(t)〉 dt (67.16)

where z(t) is the state of the approximating system

ż(t)= Anz(t)+Bnu(t), z(0)= Pnz0,

on Zn and C1n = C1|Zn . If (An, Bn) is stabilizable and (An, C1n) is detectable, then the cost functional has
the minimum cost 〈Pnz0,ΠnPnz0〉 where Πn is the unique nonnegative solution to the algebraic Riccati
equation

A∗nΠn+ΠnAn−ΠnBnR−1B∗nΠn+C∗1nC1n = 0 (67.17)

on the finite-dimensional space Zn. The feedback control Kn = R−1B∗nΠn is used to control the original
system (Equation 67.2).

The sequence of controllers Kn, along with the associated performance must converge in some sense
in order for this approach to be valid. Assumption (A1), along with uniform stabilizability, guarantees
convergence, of the approximating systems. However, in order to obtain controller convergence, a set of
assumptions involving the dual system (A∗, B∗, C∗1 ) is required.

(A1∗) 1. For each z ∈ Z, and all intervals of time [t1, t2]

sup
t∈[t1,t2]

‖S∗n(t)Pnz− S∗(t)z‖→ 0;

2. For all u ∈ U , y ∈ Y , ‖C∗1ny−C∗1 y‖→ 0 and ‖B∗nPnz−B∗z‖→ 0.

Theorem 67.10: [3, Theorem 6.9], [15, Theorem 2.1, Corollary 2.2]

If assumptions (A1), (A1∗) are satisfied, (An, Bn) is uniformly stabilizable and (An, C1n) is uniformly
detectable, then for each n, the finite-dimensional ARE (Equation 67.17) has a unique nonnegative solution
Πn with sup ‖Πn‖<∞. There exists constants M1 ≥ 1, α1 > 0, independent of n, such that the semigroup
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SnK (t) generated by An−BnKn satisfy

‖SnK (t)‖ ≤M1e−α1t .

For sufficiently large n, the semigroups SKn(t) generated by A−BKn are uniformly exponentially stable;
that is there exists M2 ≥ 1, α2 > 0, independent of n, such that

‖SKn(t)‖ ≤M2e−α2t .

Furthermore, letting Π indicate the solution to the infinite-dimensional Riccati equation 67.15, for all
z ∈ Z,

lim
n→∞‖ΠnPnz−Πz‖ = 0

and

lim
n→∞‖KnPnz−Kz‖ = 0,

and the cost with feedback Knz(t) converges to the optimal cost:

J(−Knz(t), z0)→ 〈Πz0, z0〉.

The assumption (A1∗) implies open-loop convergence of the dual systems (A∗n, C∗1n, B∗n). It is required
since the optimal control Kz relates to an optimization problem involving the dual system. Note that
(A, C1) is uniformly detectable if and only if (A∗, C∗1 ) is uniformly stabilizable, and so (A1∗) along with
uniform detectability can be regarded as dual assumptions to (A1) and uniform stabilizability. Since the
operators B and C1 are bounded, (A1∗2) holds if both the input and output spaces are finite-dimensional.
However, the satisfaction of (A1∗1), strong convergence of the adjoint semigroups, is not automatic.
A counterexample may be found in [5] where the assumptions except (A1∗1) are satisfied and the
conclusions of the above theorem do not hold. The conclusions of the above theorem, that is, uniform
boundedness of Πn and the uniform exponential stability of SnK (t), imply uniform stabilizability of
(An, Bn). Although Example 67.5 illustrated that uniform stabilizability is not necessary for convergence
of the approximating systems, it is necessary to obtain an LQ controller sequence that provides uniform
exponential stability. The above result has been extended to unbounded control operators B for parabolic
PDEs, such as diffusion problems [2,22].

Example 67.6: Damped Beam

As in Examples 67.2 and 67.3, consider a simply supported Euler–Bernoulli beam but now include
viscous damping with parameter cd = 0.1. We obtain the PDE

∂2w

∂t2 + cd
∂w

∂t
+ ∂4w

∂x4 = br (x)u(t), t ≥ 0, 0 < x < 1,

with the same boundary conditions as before. However, we now consider an arbitrary location r for
the control operator b so that

br (x)=

⎧⎪⎪⎨
⎪⎪⎩

1
δ

, |x− r|< δ

2

0, |x− r| ≥ δ
2

.

Recall that the state space is Z = Hs(0, 1)(0, 1)×L2(0, 1) with state z(t)= (w(·, t), ∂
∂t w(·, t)). An

obvious choice of weight for the state is C1 = I. Since there is only one control, choose control
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FIGURE 67.10 Optimal actuator location and performance for approximations of the viscously damped beam with
weights C1 = I , R = 1. No convergence of the optimal location or performance is seen as the approximation order is
increased.

weight R = 1. We wish to choose the actuator location in order to minimize the response to the
worst choice of initial condition. In other words, choose r in order to minimize

max
z0∈Z‖z0‖=1

min
u∈L2(0,∞;U)

Jr (u, zo)= ‖Π(r)‖.

The performance for a particular r is μ(r)= ‖Π(r)‖ and the optimal performance

μ̂= inf
r∈[0,1] ‖Π(r)‖.

This optimal actuator location problem is well-posed and a optimal location r̂ exists [31, Theorem 2.6].
Let φi (x) indicate the eigenfunctions of ∂4w/∂x4 with simply supported boundary conditions.

Defining Xn to be the span of φi , i = 1 . . . n, we choose Zn = Xn× Xn. This approximation scheme
satisfies all the assumptions of Theorem 67.10 and so the sequence of solutions Πn to the corre-
sponding finite-dimensional AREs converge strongly to the exact solutionΠ.

However, as shown in Figure 67.10, this does not imply convergence of the optimal actuator
locations, or of the corresponding actuator locations.

The problem is that strong convergence of the Riccati operators is not sufficient to ensure that as the
approximation order increases, the optimal cost μ̂n and a corresponding sequence of optimal actuator
locations r̂n converge. Since the cost is the norm of the Riccati operator, uniform convergence of the
operators is required. That is,

lim
n→∞‖ΠnPn−Π‖ = 0,

is needed in order to use approximations in determining optimal actuator location. The first point to
consider is that sinceΠn has finite rank,Πmust be a compact operator in order for uniform convergence
to occur, regardless of the choice of approximation method. Since the solution to an ARE is not always
compact, it is not possible to compute the optimal actuator location for every problem.
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Example 67.7: [8]

Consider any A, B, C1 such that A∗ = −A and C1 = B∗. ThenΠ= I is a solution to the ARE

A∗Π+ΠA−ΠBB∗Π+ C∗1 C1 = 0.

The identity I is not compact on any infinite-dimensional Hilbert space.

Example 67.8:

This example is a generalization of [6, Example 1]. On the Hilbert space Z = R×H where H is any
infinite-dimensional Hilbert space, define

A=
[ −1 0

0 −I

]
, B =

[
1
0

]
, C1 =

[ √
3 0

0
√

2M

]

where M is a bounded operator on H. The solution to the ARE

A∗Π+ΠA−ΠBB∗Π+ C∗1 C1 = 0

is

Π=
[

1 0
0 M2

]
.

This operator is not compact if M is not a compact operator; for instance if M= I. This example is
particularly interesting because A is a bounded operator and also generates an exponentially stable
semigroup.

Theorem 67.11: [31, Theorem 2.9,3.3]

If B and C1 are both compact operators, then the Riccati operatorΠ is compact. Furthermore, if a sequence
of approximations satisfy (A1), (A1∗) and are uniformly stabilizable and detectable, then the minimal
nonnegative solutionΠn to (Equation 67.17) converges uniformly to the nonnegative solutionΠ to (Equa-
tion 67.15): limn→∞ ‖Πn−Π‖ = 0.

Thus, if B and C1 are compact operators, guaranteeing compactness of the Riccati operator, then any
approximation method satisfying the assumptions of Theorem 67.10 will lead to a convergent sequence of
optimal actuator locations. A finite-dimensional input space guarantees that B is a compact operator; and
similarly a finite-dimensional output space will guarantee that C1 is compact, although these assumptions
are not necessary.

For an important class of problems the Riccati operator is compact, even if the observation operator
C1 is not compact.

Definition 67.12:

A semigroup S(t) is analytic if t → S(t) is analytic in some sector |arg t|< θ .

Analytic semigroups have a number of interesting properties [34,37]. Recall that the solution S(t)z ∈
D(A), t ≥ 0, if z ∈D(A). If S is an analytic semigroup, S(t)z ∈D(A) for all z ∈ Z. Also, the eigenvalues
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of the generator A of an analytic semigroup lie in a sector |argλ|< π− ε, where ε> 0. The heat equation
and other parabolic PDEs lead to an analytic semigroup. Weakly damped wave and beam equations are
not associated with analytic semigroups.

If A generates an analytic semigroup, uniform convergence can be obtained without compactness of
the state weight C1. The result [22, Theorem. 4.1], applies to operators B and C1 that may be unbounded.
It is stated below for bounded B and C1.

Theorem 67.12:

Let A generate an analytic semigroup S(t) with ‖S(t)‖ ≤Meω0t and define Â= (ωI −A) for ω> ω0.
Assume that the system (A, B, C1) has the following properties:

1. (A, B) is stabilizable and (A, C1) is detectable.
2. Either C∗1 C1 ≥ rI , r > 0, or for some F ∈ L(Y , Z) such that A− FC1 generates an exponentially stable

semigroup, Â−1FC1 is compact.
3. Either B∗Â−1 is compact or there exists a compact operator K ∈ L(Z, U) such that A−BK generates

an exponentially stable semigroup.

Assume the following list of properties for the approximation scheme, where γ is any number 0≤ γ < 1:

1. For all z ∈ Z, ‖Pnz− z‖→ 0.
2. The approximations are uniformly analytic. That is, for some ε> 0

‖AθneAnt‖ ≤ Mθe(ω0+ε)t

tθ
, t > 0, 0≤ θ≤ 1.

3. For some s and γ independent of n, 0≤ γ < 1,

a. ‖Â−1− Â−1
n Pn‖ ≤ M

ns .
b. ‖B∗z−B∗nPnz‖ ≤Mns(γ−1)‖z‖[D(A∗)], z ∈D(A∗).

Then limn→∞ ‖ΠnPn−Π‖ = 0.

The above conditions on the approximation scheme imply assumptions (A1) and (A1∗) as well as
uniform stabilizability and detectability.

Provided thatΠn converges toΠ in operator norm at each actuator location, the sequence of optimal
actuator locations for the approximations converges to the correct optimal location.

Theorem 67.13: [31, Theorem 3.5]

LetΩ be a closed and bounded set in R
N . Assume that B(r), r ∈Ω, is compact and such that for any r0 ∈Ω,

lim
r→r0

‖B(r)−B(r0)‖ = 0.

Assume also that (An, Bn(r), C1n) is a family of uniformly stabilizable and detectable approximations
satisfying (A1) and (A1∗) such that for each r,

lim
n→∞‖Πn(r)−Π(r)‖ = 0.

Let r̂ be the optimal actuator location for (A, B(r), C1) with optimal cost μ̂; that is

μ̂= inf
r∈Ω ‖Π(r)‖ = ‖Π(r̂)‖
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FIGURE 67.11 Optimal actuator location and performance for different approximations of the viscously damped
beam with weights C1 = [I 0], R = 1. Although the output space is infinite-dimensional, C1 is a compact operator.
This implies uniform convergence of the Riccati operators and thus convergence of both the optimal actuator locations
r̂n and optimal costs μ̂n.

Defining similarly r̂n, μ̂n, it follows that

μ̂n → μ̂,

r̂n → r̂.

Example 67.9: Viscously Damped Beam, cont.

Consider the same viscously damped beam and control problem as in Example 67.6, except that
now instead of trying to minimize the norm of the entire state, C1 = I, we consider only the posi-
tion. Choose the weight C1 = [I 0], where I here indicates the mapping from H2

0(0, 1) into L2(0, 1).
Although the semigroup is not analytic, both B and C1 are compact operators on Z . Using the same
modal approximations as before, we obtain convergence of the approximating optimal performance
and the actuator locations. This is illustrated in Figure 67.11.

Example 67.10: Diffusion (Eg. 67.1 cont.)

∂z

∂t
= ∂2z

∂x2 + br (x)u(t) 0 < x < 1,

br (x)=

⎧⎪⎪⎨
⎪⎪⎩

1
δ

, |x− r|< δ

2

0, |x− r| ≥ δ
2

∂z

∂x
(0, t)= 0,

∂z

∂x
(1, t)= 0.

We wish to determine the best location r of the actuator to minimize

Jr (u, z0)=
∫ ∞

0
1000

∫ 1

0
|z(x , t)|2 dx+ |u(t)|2 dt
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FIGURE 67.12 Optimal actuator location and performance for approximations of the of the diffusion equation,
C1 =

√
1000I , R = 1. Since the semigroup is analytic, uniform convergence of Πn to Π is obtained, even for a

noncompact C1 such as used here. This leads to convergence of the optimal performance and of a corresponding
sequence of actuator locations.

with respect to the worst possible initial condition. This means that we want to minimize ‖Π(r)‖,
whereΠ solves the ARE with C1 =

√
1000I and R = 1. Note that C1 is not a compact operator. How-

ever, A= ∂2/dx2 with domain D(A)= {z ∈ H2(0, 1)|z′(0)= z′(1)= 0} generates an analytic semi-
group on L2(0, 1). Defining Zn to be the span of the first n eigenfunctions and defining the corre-
sponding Galerkin approximation as in Example 67.4 leads to an approximation that satisfies the
assumptions of Theorem 67.12 [22] and so limn→∞ ‖Πn(r)−Π(r)‖ = 0 for each location r. Conver-
gence of the optimal performance and of a corresponding sequence of actuator locations is shown
in Figure 67.12.

Figure 67.13 illustrates that this optimal actuator location problem is nonconvex. We are only
guaranteed to have convergence of a sequence of optimal actuator locations, not every sequence.

The discussion in this section has so far been concerned only with state feedback. However, in general,
the full state z is not available and a measurement

y(t)= C2z(t), (67.18)

where C2 ∈ L(Z, W) and W is a finite-dimensional Hilbert space, is used to estimate the state.
As for finite-dimensional systems, we construct an estimate of the state. Choose some F ∈ L(W , Z) so

that A− FC2 generates an exponentially stable semigroup. This can be done, for instance, by solving a
Riccati equation dual to that for control: F =ΣC∗2 R−1

e where for some B1 ∈ L(Z, V), V a Hilbert space
and Re ∈ L(W , W) with Re > 0,

(
ΣA∗ +AΣ+B1B∗1 −ΣC∗2 R−1

e C2Σ
)
z = 0, ∀z ∈D(A∗). (67.19)

The estimator is

że(t)= Aze(t)+Bu(t)+ F
(
y(t)−C2ze(t)

)
.

Stability of A− FC2 guarantees that limt→∞ ‖ze(t)− z(t)‖ = 0.
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FIGURE 67.13 The cost ‖Π(r)‖ as a function of r for the heat equation, C =√1000I , is not a convex function.

The controller is formed by using the state estimate as input to a state feedback controller. As explained
in Section 67.3, this leads to the controller

żc(t)= (A− FC2)zc(t)−[F B]e(t),

yc(t)=−Kzc(t),
(67.20)

where e(t)= r(t)− ỹ(t) and

ỹ(t)=
[

y(t)
u(t)

]
=
[

C2

0

]
z(t)+

[
0
I

]
u(t).

As for finite-dimensional systems, if A− FC2 and A−BK each generate an exponentially stable semi-
group, then the above controller stabilizes the infinite-dimensional system (Equations 67.2 and 67.18)
[8, Section 5.3].

The controller (Equation 67.20) is infinite-dimensional. A finite-dimensional approximation to this
controller can be calculated using a finite-dimensional approximation (An, Bn, C2n) to the original system
(A, B, C2). Consider Fn =ΣnC∗2nR−1

e , whereΣn solves the ARE

ΣnA∗n+AnΣn+B1nB∗1n−ΣnC∗2nR−1
e C2nΣ= 0. (67.21)

Results for convergence of solutions Σn and the operators Fn follow from arguments dual to those for
convergence of solutions to the control Riccati equation 67.17.

Theorem 67.14:

Assume that assumptions (A1) and (A1∗) hold for approximations of

(
A,
[
B B1

]
,

[
C1

C2

])
and that the

approximations are also uniformly stabilizable and uniformly detectable. Then the operators Kn, Fn obtained
by solving the Riccati equations 67.17 and 67.21 respectively converge to the operators K and F obtained
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by solving Equations 67.15 and 67.19. Furthermore, the sequence Kn uniformly stabilizes (An, Bn) and the
sequence Fn is uniformly detectable for (An, C2n).

Defining

ỹ(t)=
[

y(t)
u(t)

]
=
[

C2

0

]
z(t)+

[
0
I

]
u(t)

and letting e(t)= r− ỹ, the finite-dimensional controller is

żc(t)= (An− FnC2n)zc(t)− [Fn Bn
]

e(t),

yc(t)=−Knzc(t).
(67.22)

It follows from Theorem 67.8 that the sequence of controllers (Equation 67.22) converge in the gap
topology to Equation 67.20, and that they stabilize the original system for large enough n. Furthermore,
the corresponding closed-loop systems converge.

67.5 H∞ Control

Many applications involve an unknown and uncontrolled disturbance d(t). An important objective of
controller design in these situations is to reduce the system’s response to the disturbance. The system
(Equations 67.2 and 67.5) become

dz

dt
= Az(t)+Bu(t)+Dd(t), z(0)= 0 (67.23)

with cost
y1(t)= C1z(t)+E1u(t). (67.24)

Since we are interested in reducing the response to the disturbance, the initial condition z(0) is set to
zero. We assume that d(t) ∈ L2(0,∞; V), where V is a Hilbert space and that D ∈ L(V , Z) is a compact
operator. (This last assumption follows automatically if V is finite-dimensional.) The measured signal, or
input to the controller is

y2(t)= C2z(t)+E2d(t) (67.25)

The operator C2 ∈ L(Z, W) for some finite-dimensional Hilbert space W and E2 ∈ L(V , W).
Let G denote the transfer function from d to y1 and let H denote the controller transfer function:

û(s)=H(s)ŷ2(s).

The map from the disturbance d to the cost y1 is

ŷ1 = C1(sI −A)−1(Dd̂+Bû)

= C1(sI −A)−1(Dd̂+BHŷ2).

Using Equations 67.23 and 67.25 to eliminate y2, and defining

G11(s)= C1(sI −A)−1D, G12(s)= C1(sI −A)−1B+E1,

G21(s)= C2(sI −A)−1D+E2, G22(s)= C2(sI −A)−1B,

we obtain the transfer function

F (G, H)= G11(s)+G12(s)H(s)(I −G22(s)H(s))−1G21(s)

from the disturbance d to the cost y1.
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The controller design problem is to find, for given γ > 0, a stabilizing controller H so that
∫ ∞

0
‖y1(t)‖2 <

∫ ∞

0
γ2‖d(t)‖2 dt.

If such a controller is found, the controlled system will then have L2-gain less than γ.

Definition 67.13:

The system (Equations 67.23 through 67.25) is stabilizable with attenuation γ if there is a stabilizing
controller H so that

‖F (G, H)‖∞ < γ.

To simplify the formulae, we make the assumptions that

E∗1
[
C1 E1

]= [0 I
]

,

[
D
E2

]
E∗2 =

[
0
I

]
. (67.26)

With these simplifying assumptions, the cost y1 has norm
∫ ∞

0
‖y1(t)‖2 dt =

∫ ∞

0
‖C1z(t)‖2+‖u(t)‖2 dt

which is the LQ cost (Equation 67.14) with normalized control weight R = I . The difference is that here
we are considering the effect of the disturbance d on the cost, instead of the initial condition z(0). Also,
the problem formulation (Equations 67.23 through 67.25) can include robustness and other performance
constraints. For details, see, for example [30,41].

We assume throughout that (A, D) and (A, B) are stabilizable and that (A, C1) and (A, C2) are detectable.
These assumptions ensure that an internally stabilizing controller exists; and that internal and external
stability are equivalent for the closed loop if the controller realization is stabilizable and detectable.

Consider first the full information case:

y2(t)=
[

x(t)
d(t)

]
=
[

I
0

]
x(t)+

[
0
I

]
d(t). (67.27)

An important characteristic of H∞-disturbance attenuation is that, in general, a system is not stabiliz-
able with attenuation γ for every γ. However, if it is stabilizable with attenuation γ, the attenuation (in
the full-information case) can be achieved with constant state-feedback.

Definition 67.14:

The state feedback K ∈ L(Z, U) is γ-admissible if A−BK generates an exponentially stable semigroup and
the feedback u(t)=−Kz(t) is such that γ-attenuation is achieved.

Theorem 67.15: [4,20]

Assume that (A, B) is stabilizable and (A, C1) is detectable. For γ > 0, the following are equivalent:

• The full-information system (Equations 67.23, 67.24, and 67.27) is stabilizable with disturbance
attenuation γ.
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• There exists a nonnegative, self-adjoint operator Σ on Z such that for all z ∈D(A),

(
A∗Π+ΠA+Π

(
1

γ2 DD∗ −BB∗
)
Π+C∗1 C1

)
z = 0 (67.28)

and A−BB∗Π+ 1
γ2 DD∗Π 1

γ2 DD∗Π generates an exponentially stable semigroup on Z.

In this case, K = B∗Π is a γ-admissible state feedback.

Note that as γ→∞, the Riccati equation for the LQ problem is obtained. Since the operator Riccati
equation 67.28 cannot be solved, a finite-dimensional approximation to the original infinite-dimensional
system is used to approximate the exact control K = B∗Π. As in previous sections, let Zn be a finite-
dimensional subspace of Z and Pn the orthogonal projection of Z onto Zn. Consider a sequence of
operators An ∈ L(Zn, Zn), Bn = PnB, Dn = PnD, and C1n = C1|Zn . Assumptions similar to those used for
LQ control are required.

Theorem 67.16: [16, Theorem 2.5, Corollary 2.6]

Assume a sequence of approximations satisfy (A1),(A1∗), (An, Bn) are uniformly stabilizable, and (An, C1n)
are uniformly detectable. Assume that the original problem is stabilizable with attenuation γ. For sufficiently
large n the Riccati equation

A∗nΠn+ΠnAn+Πn

(
1

γ2 DnD∗n−BnB∗n
)
Πn+C∗1nC1n = 0, (67.29)

has a nonnegative, self-adjoint solutionΠn. For such n

• There exist positive constants M1 and ω1 such that the semigroup Sn2(t) generated by An+
1
γ2 DnD∗nΠn−BnB∗nΠn satisfies ‖Sn2(t)‖ ≤M1e−ω1 t .

• Kn = (Bn)∗Πn is a γ-admissible state feedback for the approximating system and there exists
M2,ω2 > 0 such that the semigroup SnK (t) generated by An+BnKn satisfies ‖SnK (t)‖ ≤M2e−ω2t .

Moreover, for all z ∈ Z,ΠnPnz →Πz as n→∞ and Kn = (Bn)∗Πn converges to K = B∗2Π in norm. For
n sufficiently large, KnPn is a γ-admissible state feedback for the infinite-dimensional system.

The optimal disturbance attenuation problem is to find

γ̂= inf γ

over all γ such that Equations 67.23, 67.24, and 67.27 are stabilizable with attenuation γ. Let γ̂n indicate
the corresponding optimal disturbance attenuation for the approximating problems. Theorem 67.16
implies that lim supn→∞ γ̂n ≤ γ̂ but in fact convergence of the optimal disturbance attenuation can
be shown.

Corollary 67.1: [16, Theorem 2.8]

With the same assumptions as Theorem 67.16, it follows that

lim
n→∞ γ̂n = γ̂.
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TABLE 67.1 Physical Constants

E 2.1× 1011 N/m2

I 1.2× 10−10 m4

ρ 3.0 kg/m

cv 0.0010 N s /m2

cd 0.010 N s /m2

L 7.0 m

Ih 39.0 kg m2

ρd 0.12 1/m

Example 67.11: Flexible Slewing Beam

Consider a Euler–Bernoulli beam clamped at one end and free at other end. Let w(x , t) denote the
deflection of the beam from its rigid body motion at time t and position x . The deflection can be
controlled by applying a torque at the clamped end (x = 0). We assume that the hub inertia Ih is
much larger than the beam inertia, so that, letting θ(t) indicate the rotation angle, u(t)= Ihθ̈(t) is a
reasonable approximation to the applied torque. The disturbance d(t) induces a uniformly distributed
load ρd d(t). The values of the physical parameters used in the simulations are listed in Table 67.1. Use
of the Kelvin–Voigt model for damping leads to the following description of the beam vibrations:

ρ
∂2w

∂t2 + cv
∂w

∂t
+ ∂2

∂x2

[
EI

∂2w

∂x2 + cd I
∂3w

∂x2∂t

]
= ρx

Ih
u(t)+ ρd d(t), 0 < x < L.

The boundary conditions are

w(0, t)= 0,
∂w

∂x
(0, t)= 0,[

EI
∂2w

∂x2 + cd I
∂3w

∂x2∂t

]
x=L

= 0,

[
EI

∂3w

∂x3 + cd I
∂4w

∂x3∂t

]
x=L

= 0.

Let z(t)= (w(·, t), ∂
∂t w(·, t)), Hf (0, L) be the closed linear subspace of H2(0, L) defined by

Hf (0, L)=
{

w ∈H2(0, L) : w(0)= dw

dx
(0)= 0

}
.

With the state space Z = Hf (0, L)×L2(0, L), a state-space formulation of the above PDE problem is

d

dt
z(t)= Az(t)+ Bu(t)+Dd(t),

where

B =
⎡
⎢⎣

0

x

Ih

⎤
⎥⎦ , D =

⎡
⎣ 0

ρd
ρ

⎤
⎦ , A=

⎡
⎢⎣

0 I

−EI

ρ

d4

dx4 − cd I

ρ

d4

dx4 −
cv

ρ

⎤
⎥⎦ ,

with, defining M = EI d2

dx2 φ+ cd I d2

dx2ψ, A has domain

D (A)= {(φ,ψ) ∈ X :ψ ∈ Hf (0, L); M ∈H2(0, L) with M(L)= d

dx
M(L)= 0}.

The operators B and D are clearly bounded operators from R to Z .
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Suppose the objective of the controller design is to reduce the effect of disturbances on the tip
position:

y(t)= C1z(t)= w(L, t).

Sobolev’s Inequality implies that evaluation at a point is bounded on Hf (0, L) and so C1 is bounded
from Z to R.

Define the bilinear form on Hf (0, L)×Hf (0, L)

σ(φ,ψ)=
∫ L

0

EI

ρ

d2

dx2 φ(x)
d2

dx2ψ(x) dx .

Define V = Hf (0, L)×Hf (0, L) and define a(·, ·) on V ×V by

a((φ1,ψ1), (φ2,ψ2))=−σ(ψ1,φ2)+ σ(φ1+ cd
E
ψ1, ψ2)+〈 cv

ρ
ψ1, ψ2〉

for (φi ,ψi ) ∈ V , i = 1, 2. Then A can be defined by

〈Ay, z〉V∗×V =−a(y, z), for y, z ∈ V .

The form a(·, ·) satisfies inequality (Equation 67.7) and also (Equation 67.8) with k < 0 and so the
operator A generates an exponentially stable semigroup on Z .

Let Hn ⊂ Hf (0, L) be a sequence of finite-dimensional subspaces formed by the span of n standard
finite-element cubic B−spline approximations [33]. The approximating generator An on Zn = Hn×
Hn is defined by the Galerkin approximation

〈Anyn, zn〉 = −a(yn, zn), ∀zn, yn ∈Zn.

For all φ ∈ Hf (0, L) there exists a sequence φn ∈ Hn with limn→∞ ‖φn−φ‖Hf (0,L) = 0 [33]. It follows
then from Theorem 67.7 and exponential stability of the original system that (A1) is satisfied and
that the approximations are uniformly exponentially stabilizable (trivially, by the zero operator). The
adjoint of A can be defined through a(z, y) and (A1∗) and uniform detectability also follow. Thus,
Theorem 67.16 applies and convergence of the approximating feedback operators is obtained.

The corresponding series of finite-dimensional Riccati equation 67 29 were solved with γ= 2.3.
Figure 67.14 compares the open- and closed-loop responses w(L, t) to a disturbance consisting of
a 100 second pulse, for the approximation with 10 elements. The feedback controller leads to a
closed-loop system which is able to almost entirely reject this disturbance. Figure 67.15 compares
the open- and closed-loop responses to the periodic disturbance sin(ωt), whereω is the first resonant
frequency: ω=mini |Im(λi (A10)|. The resonance in the open loop is not present in the closed loop.

Figure 67.16 displays the convergence of the feedback gains predicted by Theorem 67.16. Since
Zn is a product space, the first and second components of the gains are displayed separately as
displacement and velocity gains, respectively.

In general, of course, the full state is not measured and the measured output is described by Equa-
tion 67.25.

Theorem 67.17: [4,20]

The system (Equations 67.23 through 67.25) is stabilizable with attenuation γ> 0 if and only if the following
two conditions are satisfied:

1. There exists a nonnegative self-adjoint operatorΠ on Z satisfying the Riccati equation

(
A∗Π+ΠA+Π

(
1

γ2 DD∗ −BB∗
)
Π+C∗1 C1

)
z = 0, ∀z ∈D(A), (67.30)

such that A+ ( 1
γ2 DD∗ −BB∗)Π generates an exponentially stable semigroup on Z;
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FIGURE 67.14 H∞-state feedback for flexible slewing beam. Open-(..) and closed-loop (–) responses to a distur-
bance d(t)= 1, t ≤ 100 s: 10 elements.

2. Define Ã= A+ 1
γ2 DD∗Π and K = B∗Π. There exists a nonnegative self-adjoint operator Σ̃ on X

satisfying the Riccati equation

(
ÃΣ̃+ Σ̃Ã∗ + Σ̃

(
1

γ2 K∗K −C∗2 C2

)
Σ̃+DD∗

)
z = 0, ∀z ∈D(A∗), (67.31)

such that Ã+ Σ̃
(

1
γ2 K∗K −C∗2 C2

)
generates an exponentially stable semigroup on X.

30
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FIGURE 67.15 H∞-state feedback for flexible slewing beam. Open-(..) and closed-loop (–) responses to a distur-
bance d(t)= sin(ωt) : 10 elements.
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Displacement gains

Velocity gains
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FIGURE 67.16 H∞-state feedback for flexible slewing beam. Feedback gains for 2 elements ∗, 4 elements ....., 6
elements _._., 8 elements _ _, and 10 elements, __ are plotted. As predicted by the theory, the feedback operators are
converging.

Moreover, if both conditions are satisfied, define F = Σ̃C∗2 and Ac = A+ 1
γ2 DD∗Σ−BK − FC2. The

controller with state-space description

żc(t)= Aczc(t)+ Fy2(t), (67.32)

u(t)=−Kzc(t)

stabilizes the system (Equations 67.23 through 67.25) with attenuation γ.

Condition (1) is simply the Riccati equation to be solved for the full-information state feedback con-
troller. Condition (2) leads to an estimate of the state of the system controlled by Kz(t). Unlike LQ control,
the design of the state feedback and the estimator is coupled. Condition (2) above is more often written
as the following two equivalent conditions:

a. There exists a nonnegative, self-adjoint operatorΣ on X satisfying the Riccati equation

(
AΣ+ΣA∗ +Σ

(
1

γ2 C∗1 C1−C∗2 C2

)
Π+DD∗

)
z = 0, ∀z ∈D(A∗) (67.33)

such that A+Π( 1
γ2 C∗1 C1−C∗2 C2) generates an exponentially stable semigroup on Z

b. r(ΣΠ) < γ2 where r indicates the spectral radius.

In the presence of condition (1) in Theorem 67.17, condition (2) is equivalent to conditions (a) and (b).
Also Σ̃= (I − 1

γ2ΣΠ)−1Σ=Σ(I − 1
γ2ΠΣ)−1. The advantage of replacing condition (2) by conditions

(a) and (b) is numerical. The Riccati equation in (2) is coupled to the solution of (1) whereas the Riccati
equation in (a) is independent of the solution of (1). This theoretical result has been extended to a class
of control systems with unbounded control and observation operators [20].
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For bounded control and observation operators, a complete approximation theory exists. Define a
sequence of approximations on finite-dimensional spaces ZN , as for the full information case, with the
addition of C2n = C2|Zn .

Strong convergence of solutionsΣn to Riccati equations approximating Equation 67.33 will follow from
Theorem 67.16 and a straightforward duality argument if (A1) and (A1∗) hold, along with assumptions
on uniform stabilizability of (A, D) and uniform detectability of (A, C2). However, strong convergence
of both Πn →Π and Σn →Σ does not imply convergence (or even existence) of the inverse operator
(I − 1

γ2ΣnΠn)−1 so we cannot show controller convergence. Convergence of the solution Σ̃n to the

estimation Riccati equation 67.31 can be proven.

Theorem 67.18: [27, Theorem 3.5]

Assume that (A1) and (A1∗) hold, that (An, Dn) are uniformly stabilizable, and that (An, C2n) are uniformly
detectable. Let γ > 0 be such that the infinite-dimensional problem is stabilizable. Let N be large enough
that approximations to the full-information problem are stabilizable with attenuation γ, and letΠn indicate
the solution to the ARE (Equation 67.29) for n > N. Define Kn = B∗nΠn and Ãn = An+ 1

γ2 DnD∗nΠn .

For sufficiently large n the Riccati equation

ÃnΣ̃n+ Σ̃nÃ∗n+ Σ̃n

(
1

γ2 K∗n Kn−C∗2nC2n

)
Σ̃n+DnD∗n = 0 (67.34)

has a nonnegative, self-adjoint solution Σ̃n. For such n there exist positive constants M3 and ω3 such that
the semigroup S̃n2(t) generated by Ãn+ 1

γ2 Σ̃nK∗n Kn− Σ̃nC∗2nC2n satisfies ‖S̃n2(t)‖ ≤M3e−ω3 t . Moreover,

for each z ∈ Z, Σ̃nPn z → Σ̃ z as n→∞ and Fn = Σ̃nC∗2nconverges to F = Σ̃C∗2 in norm.

Defining Acn = An+ 1
γ2 DnD∗nΣ−BnKn− FnC2n, Theorems 67.16 and 67.18 imply convergence of the

controllers

żc(t)= Acnzc(t)+ Fny2(t), (67.35)

u(t)=−Knzc(t)

to the infinite-dimensional controller (Equation 67.32) in the gap topology. The same assumptions imply
convergence of the plants which leads to the following result.

Theorem 67.19: [27, Theorem 3.6]

Let γ be such that the infinite-dimensional system is stabilizable with attenuation γ. Assume that (A1) and
(A1∗) hold, that (A, B) and (A, D) are uniformly stabilizable, and that (A, C1) and (A, C2) are uniformly
detectable. Then the finite-dimensional controllers (Equation 67.35) converge in the gap topology to the
infinite-dimensional controller (Equation 67.32). For sufficiently large n, the finite-dimensional controllers
(Equation 67.35) stabilize the infinite-dimensional system and provide γ-attenuation.

Convergence of the optimal attenuation also holds for the output feedback problem.

Corollary 67.2: [27, Theorem 3.7]

Let γ̂ indicate the optimal disturbance attenuation for the output-feedback problem (Equations 67.23
through 67.25), and similarly indicate the optimal attenuation for the approximating problems by γ̂n. With
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the same assumptions as for Theorem 67.19,

lim
n→∞ γ̂n = γ̂.

67.6 Summary

For most practical systems, an approximation to the PDE must be used in controller design. Similarly, con-
trol for delay-differential equations often proceeds by using an approximation, although delay-differential
equations were not discussed directly in this chapter. This has the advantage of making available the vast
array of tools available for design of controllers for finite-dimensional systems. Since the underlying model
is infinite-dimensional, this process is not entirely straightforward. However, there are a number of tools
and techniques available for satisfactory controller design. This chapter has presented an overview of the
main issues surrounding controller design for these systems. The key point is that the controller must
control the original system. Sufficient conditions for satisfactory LQ controller design and H∞-controller
design were presented. Uniform stabilizability and detectability, along with convergence of the adjoint
systems, are assumptions not required in simulation but key to obtaining satisfactory performance of
a controller designed using a finite-dimensional approximation. There are results guaranteeing these
assumptions for many problems. However, for problems where these assumptions are not known and
proof is not feasible, the approximating systems should be checked numerically for uniform stabilizability
and detectability. One test is to verify that the sequence of controlled systems is uniformly exponentially
stable.

This chapter discussed only systems with bounded control and observation operators B and C. Intro-
ducing a better model for an actuator sometimes converts a control system with an unbounded control
operator to a more complex model with a bounded operator, and similarly for sensor models, e.g. [17,43].
For some systems, however, the most natural model leads to unbounded operators. There are considerably
fewer results for controller design for these systems. However, results do exist for LQ control of parabolic
problems, such as diffusion [2,22].

Once a suitable approximation scheme, and controller synthesis technique, has been chosen, the
problem of computation remains. The primary difficulty is solving the large Riccati equations that arise
in LQ and H∞-controller design. For problems where an approximation of suitable accuracy is of relatively
low order (less than about a hundred), direct methods can be used to solve the Riccati equations. However,
for larger problems, an iterative method is required. Probably the most popular method for the Riccati
equations that arise in LQ control is the Newton–Kleinman method [21] and its variants—see, for
example [10,32]. This method is guaranteed to converge, and has quadratic convergence. However,
calculation of an H∞-controller corresponds to calculation of a saddle point, not a minimum as in the
case of LQ control. Suitable methods for design of H∞-controllers for large-scale systems is an open
problem at the present time.
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68.1 Dynamic Elastic Beam Models

Consider the deformation of a thin, initially curved beam of length � and constant cross-section of area
A, which, in its undeformed reference configuration, occupies the region

Ω= {r =: r0(x1)+ x2e2(x1)+ x3e3(x1)| x1 ∈ [0, �],
(x2, x3) := x2e2(x1)+ x3e3(x1) ∈ A}

68-1
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where r0 : [0, �] → R
3 is a smooth function representing the centerline, or the reference line, of the beam

at rest. The orthonormal triads e1(·), e2(·), e3(·) are chosen as smooth functions of x1 so that e1 is the
direction of the tangent vector to the centerline, i.e., e1(x1)= (dr0/dx1)(x1), and e2(x1), e3(x1) span the
orthogonal cross section at x1. The meanings of the variables xi are as follows: x1 denotes arc length along
the undeformed centerline, and x2 and x3 denote lengths along lines orthogonal to the reference line. The
setΩ can then be viewed as obtained by translating the reference curve r0(x1) to the position x2e2+ x3e3

within the cross-section perpendicular to the tangent of r0.
At a given time t, let R(x1, x2, x3, t) denote the position vector after deformation to the particle which is

at r(x1, x2, x3) in the reference configuration. We introduce the displacement vector by V := R− r. The
position vector R(x1, 0, 0, t) to the deformed reference line x2 = x3 = 0 is denoted by R0. Accordingly, the
displacement vector of a particle on the reference line is W := V(x1, 0, 0)= R0− r0. The position vector
R may be approximated to first order by

R = R0+ x2E2+ x3E3,

where Ei are the tangents at R with respect to xi , respectively. Note, however, that the triad Ei is not
necessarily orthogonal, due to shearing.

The deformation of r(·) into R(·, t) will be considered as a succession of two motions: (1) a rotation
carrying the triad ei(x1) to an intermediate orthonormal triad êi(x1, t), followed by (2) a deformation
carrying êi(x1, t) into the nonorthogonal triad Ei(x1, t). The two triads êi and Ei then differ on account
of a strain ε̄ to be specified below. We choose to orient the intermediate (right-handed) triad êi , which
serves as a moving orthonormal reference frame, so that

E1 = (E1 · ê1)ê1 = |E1|ê1, ê2 ·E3 = ê3 ·E2.

A strain ε̄, related to the deformation carrying the triad êi to the triad Ei , is defined by

ê1 ·E1 =: 1+ ε̄11, ê1 ·E2 =: 2ε̄12,

ê2 ·E2 =: 1+ ε̄22, ê1 ·E3 =: 2ε̄13,

ê3 ·E3 =: 1+ ε̄33, ê2 ·E3 =: ε̄23.

The remaining strains are defined by requiring the symmetry ε̄ij = ε̄ji . If distortion of the planar cross
sections is neglected, then ε̄22 ≈ ε̄33 ≈ ε̄23 ≈ 0. The normal N to the cross section is then N = E2×E3 =
ê1− 2ε̄21ê2− 2ε̄31ê3.

LetΘi denote the angles associated with the orthogonal transformation carrying the orthonormal basis
ei into êi , whereas the rotation of ei into Ei is represented by the angles ϑi (dextral mutual rotations). Up
to quadratic approximations we obtain

ϑ1
.=Θ1,

ϑ2
.=Θ2+ 2ε̄31+ 2Θ1ε̄21,

ϑ3
.=Θ3− 2ε̄21+ 2Θ1ε̄31.

These angles are interpreted as the global rotations. It is obvious from these relations that the shear strains
vanish if, and only if, the angles Θi ,ϑi coincide, i = 1, 2, 3, or, what is the same, if the normal N to the
cross section coincides with E1. This is what is known as the Euler–Bernoulli hypothesis.

To complete the representation of the reference strains in terms of the angles above and the displace-
ments Wi :=W · ei , we compute up to quadratic approximations in all rotations and linear approxi-
mations in all strains ε̄ij. To this end we introduce curvatures and twist for the undeformed reference
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configuration by Frénet-type formulae

κ2 = e2 · e1,1 , κ3 = e3 · e1,1 , τ= e3 · e2,1 .

(The index separated by a comma indicates a partial derivative with respect to the corresponding variable
xi .) The reference strains are then approximated by

ε̄11 =W1,1− κ2W2− κ3W3+ 1

2
((W3,1+ κ3W1+ τW2)2+ (W2,1+ κ2W1− τW3)2),

ε̄21 = 1

2
(W2,1−ϑ3+ κ2W1− τW3+ϑ1(ϑ2+W3,1+ κ3W1+ τW2)),

ε̄31 = 1

2
(W3,1+ϑ2+ κ3W1+ τW2+ϑ1(ϑ3−W2,1− κ2W1+ τW3)),

whereas the approximate bending strains are

κ̃2 = ϑ3,1+ κ3ϑ1+ τϑ2,

κ̃3 =−ϑ2,1− κ2ϑ1+ τϑ3,

τ̃= ϑ1,1− κ2ϑ2− κ3ϑ3.

The approximations given above comprise the theory of rods with infinitesimal strains and moderate
rotations; see Wempner [27].

68.2 The Equations of Motion

Under the assumptions of the previous section, the total strain (or potential) energy is given by

U =
∫ �

0

[
EA

2
ε̄211+ 2GA(ε̄212+ ε̄213)+ EI22

2
κ̃2

2+
EI33

2
κ̃2

3+
GI

2
τ̃2
]

dx,

where E, G, I22, I33, I = I22+ I33 are Young’s modulus, the shear modulus, and moments of the cross
section, respectively. The kinetic energy is given by

K=
∫ �

0
‖Ṙ‖2dx,

where ˙= d/dt. Controls may be introduced as distributed, pointwise, or boundary forces and couples
(F, M, f , m) through the total work

W =
∫ �

0
(F ·W+M ·ϑ) dx+

∑
x=0,ξ,�

(f ·W+m ·ϑ).

Controls may also be introduced in geometric boundary conditions, but we shall not do so here. Typically,
a beam will be rigidly clamped at one end (say at x1 = 0) and simply supported or free at the other end,
x1 = �. If the space of test functions V0 := {f ∈H1(0, �)|f (0)= 0} is introduced, the requirement that
the end x1 = 0 be rigidly clamped is mathematically realized by the “geometric” constraints Wi ,ϑi ∈ V0.
If x1 = 0 is simply supported, rather than clamped, the appropriate geometric boundary conditions are
Wi ∈ V0 for i = 2 and i = 3 only.

Let

L=
∫ T

0
[K(t)+W(t)−U(t)] dt

be the Lagrangian. Then, by Hamilton’s principle (see, for example [26]), the dynamics of the deformation
satisfy the stationarity conditions δLW = 0, δLϑ = 0, the variations being in V0. The equations of motion
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then follow by integration by parts, collecting terms, etc., in the usual manner. Due to space limitations,
neither the most general beam model nor the entirety of all meaningful boundary conditions can be
described here. Rather, a partial list of beam models which, in part, have been studied in the literature and
which can easily be extracted from the formulas above, will be provided. We focus on the typical situation
of a beam which is clamped at x1 = 0 and free (resp., controlled) at x1 = �.

68.2.1 Initially Straight and Untwisted Linear Shearable 3-Dimensional
Beams

68.2.1.1 Equations of Motion

m0Ẅ1 = [EAW1]′ (longitudinal motion)

m0Ẅ2 = [GA(W ′
2−ϑ3)]′ (lateral motion)

m0Ẅ3 = [GA(W3+ϑ2)]′ (vertical motion)

m0ϑ̈1 = [GIϑ′1]′ (torsional motion)

m0ϑ̈2 = [EI33ϑ
′
2]′ −GA(W ′

3+ϑ2), (shear around ê2)

m0ϑ̈3 = [EI22ϑ
′
3]′ +GA(W ′

2−ϑ3) (shear around ê3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68.1)

where ′ = d/dx1.

68.2.1.2 Boundary Conditions

The geometric boundary conditions are

Wi(0)= 0, ϑi(0)= 0, i = 1, 2, 3. (68.2)

The dynamical boundary conditions are

EAW ′
1(�)= f1,

GA(W ′
2−ϑ3)(�)= f2,

GA(W ′
3+ϑ2)(�)= f3,

GIϑ′1(�)=m1,

EI33ϑ
′
2(�)=m2,

EI22ϑ
′
3(�)=m3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68.3)

68.2.1.3 Initial Conditions

Wi(·, t = 0)=Wi0(·), Ẇi(·, t = 0)=Wi1(·),

ϑi(·, t = 0)= 0, ϑ̇i(·, t = 0)= 0, i = 1, 2, 3.
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68.2.2 Initially Straight and Untwisted, Nonshearable Nonlinear
3-Dimensional Beams

68.2.2.1 Equations of Motion

These are comprised of four equations which describe the longitudinal, lateral, vertical, and torsional
motions, respectively.

m0Ẅ1 =
[

EA

(
W ′

1+
1

2
(W ′

2)2+ 1

2
(W ′

3)2
)]′

,

m0Ẅ2−[ρ0I22Ẅ ′
2]′ + [EI22W ′′

2 ]′′ =
[(

EA(W ′
1+

1

2
(W ′

2)2+ 1

2
(W ′

3)2)W ′
2

)]′
,

m0Ẅ3−[ρ0I33Ẅ ′
3]′ + [EI33W ′′

3 ]′′ =
[(

EA(W ′
1+

1

2
(W ′

2)2+ 1

2
(W ′

3)2)W ′
3

)]′
,

ρ0Iϑ̈1 = [GIϑ′1]′.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68.4)

68.2.2.2 Boundary Conditions

The geometric boundary conditions are

Wi(0)= 0, i = 1, 2, 3,

W ′
2(0)=W ′

3(0)= ϑ1(0)= 0,

}
(68.5)

while the dynamical boundary conditions are

EA

(
W ′

1+
1

2
((W ′

2)2+ (W ′
3)2)

)
(�)= f1,

EI33W ′′
3 (�)=−m2, EI22W ′′

2 (�)=m3,[
EA(W ′

1+
1

2
((W ′

2)2+ (W ′
3)2))

]
W ′

2(�)−[EI22W ′′
2 ]′(�)+ ρ0I22Ẅ ′

2(�)= f2,

[
EA(W ′

1+
1

2
((W ′

2)2+ (W ′
3)2))

]
W ′

3(�)−[EI33W ′′
3 ]′(�)+ ρ0I33Ẅ ′

3(�)=−f3,

GIϑ′1(�)=m1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68.6)

68.2.2.3 Initial Conditions

Wi(·, t = 0)=Wi0(·), Ẇi(·, t = 0)=Wi1(·),

ϑ1(·, t = 0)= 0, ϑ̇1(·, t = 0)= 0, i = 1, 2, 3.

68.2.3 Nonlinear Planar, Shearable Straight Beams

68.2.3.1 Equations of Motion

The three equations which describe the longitudinal, vertical, and shear motions, respectively, are

m0hẄ1 =
[

Eh(W ′
1+

1

2
W2

3 )

]′
,

m0Ẅ3 = [Gh(ϑ2+W ′
3)]′ +

[
Eh(W ′

1+
1

2
W2

3 )W ′
3

]′
,

ρ0I33ϑ̈2 = EI33ϑ
′′
2 −Gh(ϑ2+W ′

3).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(68.7)
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68.2.3.2 Boundary Conditions

The geometric boundary conditions are

Wi(0)= 0, i = 1, 3, ϑ2(0)= 0, (68.8)

while the dynamical boundary conditions are

Eh

[
W ′

1+
1

2
W2

3

]
(�)= f1,

Gh[ϑ2+W ′
3](�)+

[
Eh(W ′

1+
1

2
W2

3 )W ′
3

]
(�)= f2,

EI33ϑ
′
2(�)=m1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(68.9)

68.2.3.3 Initial Conditions

Wi(·, t = 0)=Wi0(·), Ẇi(·, t = 0)=Wi1(·), i = 1, 3,

ϑ2(·, t = 0)= ϑ20, ϑ̇2(·, t = 0)= ϑ21.

Remark 68.1

The model in this section is attributed to Hirschhorn and Reiss [7]. If the longitudinal motion is neglected
and the quadratic term in W3 is averaged over the interval [0, �], the model then reduces to a Woinowski–
Krieger type. The corresponding partial differential equations are quasi-linear and hard to handle. If,
however, one replaces Θ2 by ϑ2 in the expression for the strain ε̄11 (which is justified for small strains),
then a semilinear partial differential equation with a cubic nonlinearity in ϑ2 is obtained.

68.2.4 Planar, Nonshearable Nonlinear Beam

The equations of motion for the longitudinal and vertical motions, respectively, are

m0Ẅ1 =
[

EA(W ′
1+

1

2
(W ′

3)2)

]′
,

m0Ẅ3−[ρ0I33Ẅ ′
3]′ + [EI33W ′′

3 ]′′ =
[(

EA(W ′
1+

1

2
(W ′

3)2)

)
W ′

3

]′
.

⎫⎪⎪⎬
⎪⎪⎭

(68.10)

We dispense with displaying the boundary and initial conditions for this and subsequent models, as
those can be immediately deduced from the previous ones. This model has been derived in Lagnese and
Leugering [16].

The models above easily reduce to the classical beam equations as follows. We first concentrate on the
nonshearable beams.

68.2.5 The Rayleigh Beam Model

Here the longitudinal motion is not coupled to the remaining motions. The equation for vertical motion is

m0Ẅ3−[ρ0I33Ẅ ′
3]′ + [EI33W ′′

3 ]′′ = 0. (68.11)

68.2.6 The Euler–Bernoulli Beam Model

This is obtained by ignoring the rotational inertia of cross sections in the Rayleigh model:

m0Ẅ3+[EI33W ′′
3 ]′′ = 0. (68.12)

With regard to shearable beams, two systems are singled out.
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68.2.7 The Bresse System

This is a model for a planar, linear shearable beam with initial curvature involving couplings of longitu-
dinal, vertical, and shear motions.

m0Ẅ1 = [Eh(W ′
1− κ3W3)]′ − κ3Gh(ϑ2+W ′

3+ κ3W1),

m0Ẅ3 = [Gh(ϑ2+W ′
3+ κ3W1)]′ + κ3Eh[W ′

1− κ3W3],
ρ0I33ϑ̈2 = EI33ϑ

′′
2 −Gh(ϑ2+W ′

3+ κ3W1).

⎫⎪⎪⎬
⎪⎪⎭

(68.13)

This system was first introduced by Bresse [6].

68.2.8 The Timoshenko System

This is the Bresse model for a straight beam (κ3 = 0), so that the longitudinal motion uncouples from the
other two equations, which are

m0Ẅ3 = [Gh(ϑ2+W ′
3)]′

ρ0I33ϑ̈2 = EI33ϑ
′′
2 −Gh(ϑ2+W ′

3).

}
(68.14)

Remark 68.2

The models above can be taken to be the basic beam models. In applications it is also necessary to account
for damping and various other (local or non-local) effects due to internal variables, such as viscoelastic
damping of Boltzmann (non-local in time) or Kelvin–Voigt (local in time) types, structural damping, so-
called shear-diffusion or spatial hysteresis type damping; see Russell [24] for the latter. It is also possible
to impose large (and usually fast) rigid motions on the beam. We refer to [9]. A comprehensive treatment
of elastic frames composed of beams of the types discussed above is given in [17]. With respect to control
applications, one should also mention the modeling of beams with piezoceramic actuators; see Banks
et al. [3].

68.3 Exact Controllability

68.3.1 Hyperbolic Systems

Consider the models (Equations 68.1, 68.7, 68.13, and 68.14). We concentrate on the linear equations
first. All of these models can be put into the form

Mz̈ = [K(z′ +Cz)]′ −CT K(z′ +Cz)+ f , (68.15)

z(0)= 0, K(z′ +Cz)(�)= u, (68.16)

z(·, 0)= z0, ż(·, 0)= z1, (68.17)

with positive definite matrices M,K depending continuously on x. In particular, for the model (Equa-
tion 68.1)

z = (W,ϑ)T , M= diag(m0, m0, m0, ρ0I , ρ0I33, ρ0I22)

K = diag(EA, GA, GA, GI , EI33, EI22),

C20 =−1, C35 = 1, Cij = 0 otherwise.
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In the case of the Bresse beam,

z = (W1, W3,ϑ2)T , M= diag(m0, m0, ρ0I33),

K = diag(Eh, Gh, GA, EI33),

C12 =−κ3, C21 = κ3, C23 = 1, Cij = 0 otherwise.

The Timoshenko system is obtained by setting κ3 = 0. If C = 0, Equation 68.15 reduces to the one-
dimensional wave equation.

We introduce the spaces

H= L2(0, �, Rq), V = {z ∈H1(0, �, Rq) : z(0)= 0}, (68.18)

where q is the number of state variables and Hk(0, �, Rq) denotes the Sobolev space consisting of R
q valued

functions defined on the interval (0, �) whose distributional derivatives up to order k are in L2(0, �; Rq).
(The reader is referred to [1] for general information about Sobolev spaces.) We further introduce the
energy forms

(z, ẑ)V := 1

2

∫ �

0
K(z′ +Cz) · (ẑ′ +Cẑ) dx,

(z, ẑ)H := 1

2

∫ �

0
Mz · ẑ dx.

Indeed, the norm induced by ‖z‖ = (z, z)1/2
V is equivalent to the usual Sobolev norm of H1 given by

‖z‖1 =
(∫ �

0
(|z′|2+ |z|2) dx

)1/2

.

Let z0 ∈ V, z1 ∈H, f ∈ L2(0, T , H), u ∈ L2(0, T , Rq), T > 0. It can be proven that a unique function
z ∈ C(0, T , V)∩C1(0, T , H) exists which satisfies Equations 68.15, 68.16, and 68.17 in the following weak
sense:

d2

dt2 (z(t),φ)H+ (z(t),φ)V = (M−1f(t),φ)H+ u(t) ·φ(�), ∀φ ∈ V, (68.19)

and

(z(0),φ)H = (z0,φ)H,
d

dt
(z(t),φ)H|t=0 = (z1,φ)H.

Because of space limitations, only boundary controls and constant coefficients will be considered.
Distributed controls are easy to handle, while pointwise controls have much in common with boundary
controls except for the liberty of their location. Thus we set f ≡ 0 in Equation 68.15. The problem of exact
controllability in its strongest sense can be formulated as follows: Given initial data Equation 68.17 and
final data (zT0, zT1) in V×H and given T > 0, find a control u ∈ L2(0, T , Rq) so that the solution z of
Equation 68.15 satisfies Equations 68.16, 68.17 and z(T)= zT0, ż(T)= zT1.

It is, in principle, possible to solve the generalized eigenvalue problem

γ2 d4

dx4 φ= λ2(I − γ2 d2

dx2 )φ,

φ(0)= φ′(0)= φ′′(�)= (φ′′′ +λ2φ′)(�)= 0,

and write the solution of Equations 68.15, 68.16, 68.17 using Fourier’s method of separation of variables.
The solution together with its time derivative can then be evaluated at T and the control problem reduces
to a trigonometric (or to a complex exponential) moment problem. The controllability requirement is
then equivalent to the base properties of the underlying set of complex exponentials [exp(iλkt)|k ∈ Z, t ∈
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(0, T)]. If that set constitutes a Riesz basis in its L2(0, T)-closure, then exact controllability is achieved.
For conciseness, we do not pursue this approach here and, instead, refer to Krabs [12] for further reading.
Rather, the approach we want to consider here, while equivalent to the former one, does not resort to the
knowledge of eigenvalues and eigenelements. The controllability problem, as in finite dimensions, is a
question of characterizing the image of a linear map, the control-to-state map. Unlike in finite dimensions,
however, it is not sufficient here to establish a uniqueness result for the homogeneous adjoint problem,
that is, to establish injectivity of the adjoint of the control-to-state map. In infinite-dimensional systems
this implies only that the control-to-state map has dense range, which in turn is referred to as approximate
controllability. Rather, we need some additional information on the adjoint system, namely, uniformity
in the sense that the adjoint map is uniformly injective with respect to all finite energy initial (final)
conditions. In particular, given a bounded linear map L between Hilbert spaces X, Y , the range of L is
all of Y if, and only if, L∗, the adjoint of L, satisfies ‖φ‖< ν‖L∗φ‖ for some positive ν and all φ ∈ Y .
This inequality also implies that the right inverse L∗(LL∗)−1 exists as a bounded operator (see the finite-
dimensional analog, where ‘bounded’ is generic). It is clear that this implies norm-minimality of the
controls constructed this way. This result extends to more general space setups. It turns out that an
inequality like this is needed to assure that the set of complex exponentials is a Riesz base in its L2-closure.
As will be seen shortly, such an inequality is achieved by nonstandard energy estimates, which constitute
the basis for the so-called HUM method introduced by Lions. It is thus clear that this inequality is the
crucial point in the study of exact controllability.

In order to obtain such estimates, we consider smooth enough solutions φ of the homogeneous adjoint
final value problem,

Mφ̈= [K(φ′ +Cφ)]′ −CT K(φ′ +Cφ), (68.20)

φ(0)= 0, K(φ′ +Cφ)(�)= 0, (68.21)

φ(·, T)= φ0, φ̇(·, T)= φ1. (68.22)

Let m be a smooth, positive, increasing function of x. Multiply Equation 68.20 by mφ′, where m(·) is
a smooth function in x, and integrate by parts over (x, t). After some calculus, we obtain the following
crucial identity, valid for any sufficiently smooth solution of Equation 68.20:

0=
∫ �

0
mMφ̇ · (φ′ +Cφ)|T0 dx−

∫ T

0
m(x)e(x, t)|�x=0dt+

∫ T

0

∫ �

0
m′edxdt

−
∫ T

0

∫ �

0
mCT Mφ̇ · φ̇dxdt+

∫ T

0

∫ �

0
mCT K(φ′ +Cφ) · (φ′ +Cφ) dxdt, (68.23)

where ρ= ∫ �
0 mMφ̇ · (φ′ +Cφ) dx and e(x, t) denotes the energy density given by

e = 1

2
[Mφ̇ · φ̇+K(φ′ +Cφ) · (φ′ +Cφ)].

Set the total energy at time t,

E(t)=
∫ �

0
e(x, t) dx, (68.24)

and denote the norm of the matrix C by ν. If we choose m in Equation 68.23 so that m′(x)− νm(x)≥
c0 > 0, ∀x ∈ (0, �), we obtain the estimates

γ

∫ T

0
|φ̇(�, t)|2dt ≤ E(0)≤ Γ

∫ T

0
|φ̇(�, t)|2dt, (68.25)

for some positive constants γ(T),Γ(T), where T is sufficiently large (indeed, T > 2× “optical length of
the beam” is sufficient). The second inequality in Equation 68.25 requires the multiplier above and some
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estimation, whereas the first requires the multiplier m(x)=−1+ 2x/�, and is straightforwardly proved.
These inequalities can also be obtained by the method of characteristics which, in addition, yields the
smallest possible control time [17]. It is then shown that the norm of the adjoint to the control-to-state
map (which takes the control u into the final values z(T), ż(T) (for zero initial conditions)), applied to
φ0,φ1, is exactly equal to

∫ T
0 |φ̇(�, t)|2dt. By the above argument, the original map is onto between the

control space L2(0, T , Rq) and the finite energy space V×H.

Theorem 68.1:

Let (z0, z1), (zT0, zT1) be in V×H and T > 0 sufficiently large. Then a unique control u ∈ L2(0, T , Rq)
exists, with minimal norm, so that z satisfies Equations 68.15, 68.16, 68.17 and z(T)= zT0, ż(T)= zT1.

Remark 68.3

Controllability results for the fully nonlinear planar shearable beam Equation 68.7, and also for the
Woinowski–Krieger-type approximation, are not known at present. The semilinear model is locally
exactly controllable, using the implicit function theorem. The argument is quite similar to the one com-
monly used in finite-dimensional control theory.

68.3.2 Quasi-Hyperbolic Systems

In this section we discuss the (linearized) nonshearable models with rotational inertia, namely, Equa-
tions 68.4, 68.10, 68.11. We first discuss the linear subsystems. Observe that in that situation all equations
decouple into wave equations governing the longitudinal and torsional motion and equations of the type
of Equation 68.11. Hence it is sufficient to consider the latter. For simplicity, we restrict ourselves to
constant coefficients. The system is then

ρhẄ − ρIẄ ′′ +EIW ′′′′ = f ,

W(0)= 0, W ′(0)= 0,

and

EIW ′′(�)= u1, (EIW ′′′ − ρIẄ ′)(�)= u2,

W(·, 0)=W0, Ẇ(·, 0)=W1.
(68.26)

Setting γ2 := I/A and rescaling by t → t
√
ρ/E, this system can be brought into a nondimensional form.

We define spaces,

H= [v ∈H1(0, �) : v(0)= 0],
V = [v ∈H2(0, �) : v(0)= v′(0)= 0], (68.27)

and forms,

(u, v)=
∫ �

0
uvdx, (u, v)H = (u, v)+ γ2(u′, v′),

(u, v)V = γ2(u′′, v′′).

Let W0 ∈ V, W1 ∈H, and u ∈ L2(0, T , R2), T > 0. It may be proved that there is a unique W ∈ C(0, T , V)∩
C1(0, T , H) satisfying Equation 68.26 in an appropriate variational sense.
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Remark 68.4

The nonlinear models can be treated using the theory of nonlinear maximal monotone operators; see
Lagnese and Leugering [16].

To produce an energy identity analogous to Equation 68.23, we multiply the first equation of Equa-
tion 68.26 by xW ′ − αW , where α> 0 is a free parameter, and then we integrate over (0, �)× (0, T). If
we introduce the auxiliary functions ρ1 =

∫ �
0 Ẇ(xW ′ − αW) dx and ρ2 = γ2

∫ �
0 Ẇ ′(xW ′ − αW)′ dx, and

ρ= ρ1+ ρ2, we find after some calculus

0= ρ(T)− ρ(0)− �

2

∫ T

0
{[Ẇ(�, t)]2+ γ2[Ẇ ′(�, t)]2} dt

+ γ2
∫ T

0
[W ′′(�, t)]2dt+

∫ T

0
(γ2W ′′′ − γ2Ẅ ′)(�, t)(�W ′ − αW)(�, t)) dt

+
∫ T

0

∫ �

0

[(
1

2
+ α

)
Ẇ2+ γ2

(
α− 1

2

)
(Ẇ ′)2+ γ2

(
3

2
− α

)
(W ′′)2

]
dxdt.

With the total energy now defined by

E(t)= 1

2
{‖Ẇ(t)‖2

H+‖W‖2
V}, (68.28)

this identity can now be used to derive the energy estimate,

π

∫ T

0
[φ̇2(�, t)+ γ2(φ̇′)2(�, t)] dt ≤ E(0)

≤Π
∫ T

0
[φ̇2(�, t)+ γ2(φ̇′)2(�, t)] dt,

for some positive constants π(T) and Π(T), which is valid for sufficiently smooth solutions φ to the
homogeneous system, Equation 68.26, and for sufficiently large T > 0 (again T is related to the “optical
length,” i.e., to wave velocities). The first estimate is more standard and determines the regularity of
the solutions. It is again a matter of calculating the control-to-state map and its adjoint. After some
routine calculation, one verifies that the norm of the adjoint, applied to the final data for the backwards
running homogeneous equation, coincides with the time integral in the energy estimate. This leads to
the exact controllability of the system, Equation 68.26, in the space V×H , with V and H as defined in
Equation 68.27, using controls u = (u1, u2) ∈ L2(0, T , R2).

Remark 68.5

As in [18], for γ→ 0, the controllability results for Rayleigh beams carry over to the corresponding results
for Euler-Bernoulli beams. It is however instructive and, in fact, much easier to establish controllability
of the Euler-Bernoulli beam directly with control only in the shear force.

68.3.3 The Euler–Bernoulli Beam

We consider the nondimensional form of Equation 68.12, namely,

Ẅ +W ′′′′ = 0

W(0)=W ′(0)= 0, W ′′(�)= 0, W ′′′(�)= u (68.29)

W(·, 0)=W0, Ẇ(·, �)=W1.

We introduce the spaces

H= L2(0, �), V = {v ∈H2|v(0)= v′(0)= 0} (68.30)
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and the corresponding energy functional

E(t)= 1

2
(‖Ẇ(t)‖2

H+‖W(t)‖2
V . (68.31)

Again, we are going to use multipliers to establish energy identities. The usual choice is m(x)= x. Upon
introducing ρ= ∫ �

0 xẆW ′dx and multiplying the first equation by mW ′, followed by integration by parts,
we obtain

ρ(T)− ρ(0)+ 1

2

∫ T

0

∫ �

0
Ẇ2dxdt+ 3

2

∫ T

0

∫ �

0
(W ′′)2dxdt = �

2

∫ T

0
Ẇ2dt+ �

∫ T

0
W ′(�, t)u(t) dt.

(68.32)
Using this identity for the homogeneous system solved by φ, we obtain the energy estimates

π

∫ T

0
φ̇2(�, t) dt ≤ E(0)≤Π

∫ T

0
φ̇2(�, t) dt

where again π(T) andΠ(T) depend on T > 0, with T sufficiently large.
One way to obtain the adjoint control-to-state-map is to consider

d

dt

∫ �

0
{Ẇφ̇+W ′′φ′′}dx =−u(t)φ̇(�, t),

for W as above and φ solving the backwards running adjoint equation (i.e., Equation 68.29 with final
conditions φT0 and φT1). Integrating with respect to time over (0, T) yields

(LT (u), (φT0,φT1))V×H =−
∫ T

0
u(t)φ̇(�, t) dt.

The same argument as above yields the conclusion of exact controllability of the system (Equation 68.29),
in the space V×H, where V and H are defined in Equation 68.30, using controls u ∈ L2(0, T , R).

Remark 68.6

It may be shown that the control time T for the Euler-Bernoulli system can actually be taken arbitrarily
small. That is typical for this kind of model (Petrovskii type systems) and is closely related to the absence of
a uniform wave speed. The reader is referred to the survey article [15] for general background information
on controllability and stabilizability of beams and plates.

68.4 Stabilizability

We proceed to establish uniform exponential decay for the solutions of the various beam models by lin-
ear feedback controls at the boundary x = �. There is much current work on nonlinear and constrained
feedback laws. However, the results are usually very technical, and, therefore, do not seem suitable for
reproduction in these notes. In the linear case it is known that for time reversible systems, exact con-
trollability is equivalent to uniform exponential stabilizability. In contrast to the finite-dimensional case,
however, we have to distinguish between various concepts of controllability, such as exact, spectral, or
approximate controllability. Accordingly, we have to distinguish between different concepts of stabiliz-
ability, as uniform exponential decay is substantially different from nonuniform decay. Because of space
limitations, we do not dwell on the relation between controllability, stabilizability, and even observability.
The procedure we follow is based on Lyapunov functions, and is the same in all of the models. Once
again the energy identities, Equations 68.23, 68.28, and 68.32 are crucial. We take the hyperbolic case as
an exemplar and outline the procedure in that case.
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68.4.1 Hyperbolic Systems

Apply Equation 68.23 to solve Equation 68.15 (with f = 0) and Equation 68.16 with the control u in
Equation 68.16 replaced by a linear feedback law u(t)=−k ˙z(�, t), k > 0. Recall that ρ= ∫ �

0 mMż · (z′ +
Cz) dx(t). Then using Equation 68.23,

ρ̇≤ γ|ż(�, t)|2− c0E(t),

where E is given by Equation 68.24. Therefore, introducing the function Fε(t) := E(t)+ ερ(t) one finds

Ḟε ≤ Ė(t)+ γε|ż(�, t)|2− εc0E(t).

However, Ė(t)=−k|ż(�, t)|2, and therefore the boundary term can be compensated for by choosing ε
sufficiently small. This results in the estimate Ḟε(t)≤−c1εE(t) for some c1 > 0, which in turn implies

Fε(t)+ c1ε

∫ t

0
E(s)ds ≤ F (0).

It also straightforward to see that F (t) satisfies

πεE(t)≤ F (t)≤ΠεE(t).

The latter implies
∫∞

t E(s)ds ≤ (1/λ)E(0), with λ=Πε/(c1ε) and t ≥ 0. One defines η(t) := ∫∞t E(s)ds
and obtains a differential inequality η̇+λη≤ 0. A standard Gronwall argument implies η(t)≤
exp(−λt)η(0), that is, ∫ ∞

t
E(s)ds ≤ exp(−λt)

λ
E(0).

Now, because E(t) is nonincreasing,

τE(τ+ t)≤
{∫ τ+t

t
+
∫ ∞

τ+t

}
E(s)ds ≤ exp(−λt)

λ
E(0)

and this, together with the choice τ= 1/λ, gives

E(t)≤ e exp(−λt)E(0), ∀t ≥ τ. (68.33)

Hence, we have the following result.

Theorem 68.2:

Let V and H be given by Equation 68.18. Given initial data z0, z1 in V×H, the solution to the closed-loop
system, Equations 68.15 through 68.17, with u(t)=−kż(�, t), satisfies

E(t)≤M exp(−ωt)E(0), t ≥ 0, (68.34)

for some positive constants M and ω.

Remark 68.7

The linear feedback law can be replaced by a monotone nonlinear feedback law with certain growth
conditions. The corresponding energy estimates, however, are beyond the scope of these notes. Ultimately,
the differential inequality above is to be replaced by a nonlinear one. The exponential decay has then (in
general) to be replaced by an algebraic decay, see [17]. The decay rate can be optimized using “hyperbolic
estimates” as in [17]. Also the dependence on the feedback parameter can be made explicit.
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68.4.2 Quasi-Hyperbolic Systems

We consider the problem of Equation 68.26 with feedback controls,

u1(t)=−k1Ẇ ′(�, t), u2(t)= k2Ẇ(�, t), (68.35)

with positive feedback gains k1 and k2. The identity Equation 68.23 is used to calculate the derivative
of the function ρ(t). By following the same procedure as above, we obtain the decay estimate Equa-
tion 68.34 for the closed-loop system, Equations 68.26 and 68.35, where the energy functional E is given
by Equation 68.28.

Remark 68.8

One can show algebraic decay for certain monotone nonlinear feedbacks. In addition, the nonlinear
system, Equation 68.10, exhibits those decay rates as well; see Lagnese and Leugering [16].

68.4.3 The Euler–Bernoulli Beam

Here we consider the system Equation 68.29 and close the loop by setting u(t)=−kẆ(�, t), k > 0. By
utilizing the estimate Equation 68.32 and proceeding in much the same way as above, the decay estimate
Equation 68.34 can be established for the closed-loop system, where E is given by Equation 68.31.

68.5 Dynamic Elastic Plate Models

Let Ω be a bounded, open, connected set in R
2 with a Lipschitz continuous boundary consisting of a

finite number of smooth curves. Consider a deformable three-dimensional body which, in equilibrium,
occupies the region

[(x1, x2, x3) : (x1, x2) ∈Ω, |x3| ≤ h/2]. (68.36)

When the quantity h is very small compared to the diameter of Ω, the body is referred to as a thin plate
of uniform thickness h and the planar region,

[(x1, x2, 0) : (x1, x2) ∈Ω]
is its reference surface.

Two-dimensional mathematical models describing the deformation of the three-dimensional body
Equation 68.36 are obtained by relating the displacement vector associated with the deformation of each
point within the body to certain state variables defined on the reference surface. Many such models are
available; three are briefly described below.

68.5.1 Linear Models

Let W(x1, x2, x3, t) denote the displacement vector at time t of the material point located at (x1, x2, x3), and
let w(x1, x2, t) denote the displacement vector of the material point located at (x1, x2, 0) in the reference
surface. Further, let n(x1, x2, t) be the unit-normal vector to the deformed reference surface at the point
(x1, x2, 0)+w(x1, x2, t). The direction of n is chosen so that n · k > 0, where i, j, k is the natural basis
for R

3.

68.5.1.1 Kirchhoff Model

The basic kinematic assumption of this model is

W(x1, x2, x3, t)= w(x1, x2, t)+ x3(n(x1, x2, t)− k), (68.37)

which means that a filament in its equilibrium position, orthogonal to the reference surface, remains
straight, unstretched, and orthogonal to the deformed reference surface. It is further assumed that the
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material is linearly elastic (Hookean), homogeneous and isotropic, that the transverse normal stress
is small compared to the remaining stresses, and that the strains and the normal vector n are well-
approximated by their linear approximations. Write w = w1i+w2j+w3k. Under the assumptions above,
there is no coupling between the in-plane displacements w1, w2 and the transverse displacement w3 := w.
The former components satisfy the partial differential equations of linear plane elasticity and the latter
satisfies the equation

ρh
∂2w

∂t2 − IρΔ
∂2w

∂t2 +DΔ2w = F, (68.38)

where Δ= ∂2/∂x2
1 + ∂2/∂x2

2 is the harmonic operator in R
2, ρ is the mass density per unit of reference

volume, Iρ = ρh3/12 is the polar moment of inertia, D is the modulus of flexural rigidity, and F is the
transverse component of an applied force distributed overΩ. The “standard” Kirchhoff plate equation is
obtained by omitting the term IρΔ(∂2w/∂t2), which accounts for the rotational inertia of cross sections,
from Equation 68.38.

68.5.1.2 Reissner–Mindlin System

The basic kinematic assumption of this model is

W(x1, x2, x3, t)= w(x1, x2, t)+ x3U(x1, x2, t), (68.39)

where |U+ k| = 1. Equation 68.39 means that a filament in its equilibrium position, orthogonal to
the reference surface, remains straight and unstretched but not necessarily orthogonal to the deformed
reference surface. Write

U = U1i+U2j+U3k, u = U1i+U2j.

In the linear approximation, U3 = 0 so that the state variables of the problem are w and u. The latter
variable accounts for transverse shearing of cross sections. It is further assumed that the material is
homogeneous and Hookean. The stress-strain relations assume that the material is isotropic in directions
parallel to the reference surface but may have different material properties in the transverse direction.
As in the previous case, there is no coupling between w1, w2, and the remaining state variables in the
linear approximations. The equations of motion satisfied by w3 := w and u, referred to as the Reissner or
Reissner–Mindlin system, may be written

ρh
∂2w

∂t2 −Ghdiv (u+∇w)= F, and

Iρ
∂2u

∂t2 −
h3

12
div σ(u)+Gh(u+∇w)= C,

⎫⎪⎪⎬
⎪⎪⎭

(68.40)

where Gh is the shear modulus and σ(u)= (σij(u)) is the stress tensor associated with u, i.e.,

σij(u)= 2μεij(u)+ 2μλ

2μ+λδij

2∑
k=1

εkk(u), i, j = 1, 2.

εij(u) denotes the linearized strain

εij(u)= 1

2

(
∂Ui

∂xj
+ ∂Uj

∂xi

)
,

λ and μ are the Lamé parameters of the material,

div (u+∇w)= ∇ · (u+∇w), div σ(u)=
3∑

j=1

∂

∂xj
σij(u),

and C = C1i+C2j is a distributed force couple.
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68.5.2 A Nonlinear Model: The von Kármán System

Unlike the two previous models, this is a “large deflection” model. It is obtained under the same assump-
tions as the Kirchhoff model except for the linearization of the strain tensor. Rather, in the general strain
tensor,

εij(W)= 1

2

(
∂Wi

∂xj
+ ∂Wj

∂xi

)
+ 1

2

3∑
k=1

∂Wk

∂xi

∂Wk

∂xj
,

the quadratic terms involving W3 are retained, an assumption formally justified if the planar strains
are small relative to the transverse strains. The result is a nonlinear plate model in which the in-plane
components of displacement w1 and w2 are coupled to the transverse displacement w3 := w. Under some
further simplifying assumptions, w1 and w2 may be replaced by a single function G, called an Airy stress
function, related to the in-plane stresses. The resulting nonlinear equations for w and G are

ρh
∂2w

∂t2 − IρΔ
∂2w

∂t2 +DΔ2w−[w, G] = F,

Δ2G+ Eh

2
[w, w] = 0,

⎫⎪⎪⎬
⎪⎪⎭

(68.41)

where E is Young’s modulus and where

[φ,ψ] = ∂2φ

∂x2
1

∂2ψ

∂x2
2

+ ∂2ψ

∂x2
1

∂2φ

∂x2
2

− 2
∂2φ

∂x1∂x2

∂2ψ

∂x1∂x2
.

One may observe that [w, w]/2 is the Gaussian curvature of the deformed reference surface x3 = w(x1, x2).
The “standard” dynamic von Kármán plate system is obtained by setting Iρ = 0 in Equation 68.41.

Remark 68.9

For a derivation of various plate models, including thermoelastic plates and viscoelastic plates, see [18].
For studies of junction conditions between two or more interconnected (not necessarily co-planar) elastic
plates, the reader is referred to the monographs [17,21] and references therein.

68.5.3 Boundary Conditions

Let Γ denote the boundary of Ω. The boundary conditions are of two types: geometric conditions, that
constrain the geometry of the deformation at the boundary, and mechanical (or dynamic) conditions,
that represent the balance of linear and angular momenta at the boundary.

68.5.3.1 Boundary Conditions for the Reissner–Mindlin System

Geometric conditions are given by

w = w̄, u = ū on Γ, t > 0. (68.42)

The case w̄ = ū = 0 corresponds to a rigidly clamped boundary.
The mechanical boundary conditions are given by

Ghν · (u+∇w)= f ,

h3

12
σ(u)ν= c on Γ, t > 0,

⎫⎪⎬
⎪⎭ (68.43)

where ν is the unit exterior pointing normal vector to the boundary ofΩ, c = c1i+ c2j is a boundary force
couple and f is the transverse component of an applied force distributed over the boundary. The problem
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consisting of the system of Equations 68.40 and boundary conditions Equations 68.42 or 68.43, together
with the initial conditions

w = w0,
∂w

∂t
= w1,

u = u0,
∂u

∂t
= u1 at t = 0,

⎫⎪⎪⎬
⎪⎪⎭

(68.44)

has a unique solution if the data of the problem is sufficiently regular. The same is true if the boundary
conditions are Equation 68.42 on one part of Γ and Equation 68.43 on the remaining part, or if they
consist of the first (resp., second) of the two expressions in Equation 68.42 and the second (resp., first) of
the two expressions in Equation 68.43.

68.5.3.2 Boundary Conditions for the Kirchhoff Model

The geometric boundary conditions are

w = w̄,
∂w

∂ν
=−ν · ū on Γ, t > 0, (68.45)

and the mechanical boundary conditions may be written

h3

12
ν · σ(∇w)ν=−ν · c,

∂

∂ν

(
Iρ

∂2w

∂t2 −DΔw

)
− h3

12

∂

∂τ
[τ · σ(∇w)ν] = ∂

∂τ
(τ · c)+ f .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(68.46)

68.5.3.3 Boundary Conditions for the von Kármán System

The state variables w and G are not coupled in the boundary conditions. The geometric and mechanical
boundary conditions for w are those of the Kirchhoff model. The boundary conditions satisfied by G are

G = 0,
∂G

∂ν
= 0. (68.47)

These arise if there are no in-plane applied forces along the boundary.

68.6 Controllability of Dynamic Plates

In the models discussed in the last section, some, or all, of the applied forces and moments F, C, f , c,
and the geometric data w̄, ū, may be considered as controls which must be chosen in order to affect the
transient behavior of the solution in some specified manner. These controls may either be open loop,
or closed loop. Open-loop controls are usually associated with problems of controllability, which is that
of steering the solution to, or nearly to, a specified state at a specified time. Closed-loop controls are
usually associated with problems of stabilizability, that is, of asymptotically driving the solution towards
an equilibrium state of the system.

In fact, for infinite-dimensional systems of which the above plate models are representative, there are
various related but distinct concepts of controllability (spectral, approximate, exact) and of stabilizability
(weak, strong, uniform), distinctions which disappear in finite-dimensional approximations of these
models (see [2, Chapter 4]). Stabilizability problems will be discussed in the next section. With regard
to controllability, exact controllability is the most stringent requirement because it requires a complete
description of the configuration space (reachable set) of the solution. This is equivalent to steering any
initial state of the system to any other permissible state within a specified interval of time. The notion of
spectral controllability involves exactly controlling the span of any set of finitely many of the eigenmodes of
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the system. Approximate controllability involves steering an arbitrary initial state to a given, but arbitrary,
neighborhood of a desired configuration within a specified time.

Among the possible controls, distinctions are made between distributed controls such as F and C,
which are distributed over all or a portion of the face of the plate, and boundary controls, such as f , c, w̄, ū,
which are distributed over all or a portion of the edge of the plate. Within the class of boundary controls, a
further distinction is made between mechanical controls, f and c, and geometric controls w̄ and ū. Because
mechanical controls correspond to forces and moments, they are, in principle, physically implementable;
these are the only types of controls which will be considered here. In addition, only boundary control
problems will be considered in detail; however, some remarks regarding distributed control problems
will be provided.

68.6.1 Controllability of Kirchhoff Plates

Assume that Γ= Γ0 ∪Γ1, where Γ0 and Γ1 are disjoint, relatively open subsets of Γ with Γ1 �= ∅. The
problem under consideration consists of the partial differential equation 68.38, boundary conditions
Equation 68.45 on Γ0, boundary conditions Equation 68.46 on Γ1, and initial conditions

w(x, 0)= w0(x),
∂w

∂t
(x, 0)= w1(x), x ∈Ω. (68.48)

In this system, the distributed force F, the geometric quantities w̄, ū, and the initial data (w0, w1) are
assumed as given data, while f , c are the controls, chosen from a certain class C of admissible controls. The
configuration space, or the reachable set, at time T is

RT = {(w(T), ẇ(T)) : (f , c) ∈ C},

where, for example, w(T) stands for the function [w(x, T) : x ∈Ω] and where ẇ = ∂w/∂t. If z denotes
the solution of the uncontrolled problem, i.e., the solution with f = 0 and c = 0, then

RT =R0
T ⊕{[z(T), ż(T)]},

where R0
T denotes the configuration space when all of the given data are zero. Therefore, to study the

reachable set it may be assumed without loss of generality that the data F, w̄, ū, w0, w1 vanish. The problem
under consideration is, therefore,

ρh
∂2w

∂t2 − IρΔ
∂2w

∂t2 +DΔ2w = 0, (68.49)

w = 0,
∂w

∂ν
= 0 on Γ0, t > 0, (68.50)

∂

∂ν

(
Iρ

∂2w

∂t2 −DΔw

)
− h3

12

∂

∂τ
[τ · σ(∇w)ν] = ∂

∂τ
(τ · c)+ f ,

h3

12
ν · σ(∇w)ν=−ν · c on Γ1, t > 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(68.51)

w(x, 0)= ∂w

∂t
(x, 0)= 0, x ∈Ω. (68.52)

If w is a solution of Equation 68.49, its kinetic energy at time t is

K(t)= 1

2

∫
Ω

(ρhẇ2+ Iρ|∇ẇ|2) dΩ,
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where the quantities in the integrand are evaluated at time t. The strain energy of this solution at time t is
given by

U(t)= 1

2

h3

12

2∑
i,j=1

∫
Ω

σij(∇w)εij(∇w) dΩ.

A pair of functions (w0, w1) defined onΩ is called a finite energy pair if

2∑
i j=1

∫
Ω

σij(∇w0)εij(∇w0) dΩ<∞,

∫
Ω

(ρhw2
1 + Iρ|∇w1|2) dΩ<∞.

A solution w of Equation 68.49 is called a finite energy solution if [w(t), ẇ(t)] is a finite energy pair for
each t ≥ 0 and is continuous with respect to t into the space of finite energy pairs. This means that the
solution has finite kinetic and strain energies at each instant which vary continuously in time.

Many choices of the control space C are possible, each of which will lead to different configuration
space R0

T . One requirement on the choice of C is that the solution w corresponding to given input, f , c be
reasonably well behaved. Another is that the choice of C lead to a sufficiently rich configuration space. For
the problem under consideration, it is very difficult to determine the precise relation between the control
and configuration spaces. For example, there is no simple characterization of those inputs for which
the corresponding solution has finite energy at each instant. On the other hand, when standard control
spaces with simple structure, such as L2 spaces, are utilized, the regularity properties of the solution are,
in general, difficult to determine. (This is in contrast to the situation which occurs in the analogous
boundary control problem for Rayleigh beams, where it is known that finite energy solutions correspond
exactly to inputs which are L2 in time.)

In order to make the ideas precise, it is necessary to introduce certain function spaces based on the
energy functionals K and U . Let L2(Ω) denote the space of square integrable functions defined onΩ, and
let Hk(Ω) be the Sobolev space consisting of functions in L2(Ω) whose derivatives up to order k (in the
sense of distributions) belong to L2(Ω). Let

H = {v ∈H1(Ω) : v|Γ0 = 0}.
The quantity

‖v‖H =
(∫

Ω

(ρhv2+ Iρ|∇v|2) dΩ

)1/2

defines a Hilbert norm on H which is equivalent to the standard induced H1(Ω) norm. Similarly, define

V = {v ∈H : v ∈H2(Ω),
∂v

∂ν

∣∣∣∣
Γ0

= 0}.

The quantity

‖v‖V =
(∫

Ω

(
h3

12
σij(∇v)εij(∇v)

)
dΩ

)1/2

defines a seminorm on V . In fact, as a consequence of Korn’s lemma, ‖ · ‖V is actually a norm equivalent
to the standard induced H2(Ω) norm whenever Γ0 �= ∅. Such will be assumed in what follows to simplify
the discussion. The Hilbert space V is dense in H and the injection V �→H is compact. Let H be identified
with its dual space and let V∗ denote the dual space of V . Then H ⊂ V∗ with compact injection. A finite
energy solution of Equations 68.49 through 68.51 is characterized by the statements w(t) ∈ V , ẇ(t) ∈H
for each t, and the mapping t �→ (w(t), ẇ(t)) is continuous into the space V ×H . The space V ×H is
sometimes referred to as finite energy space.
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Write c = c1i+ c2j. In order to assure that the configuration space is sufficiently rich, the control space
is chosen as

C = {[f , c) : f ∈ L2(Γ1× (0, T)], ci ∈ L2[Γ1× (0, T)]}. (68.53)

The penalty for this simple choice is that the corresponding solution, which may be defined in a certain
weak sense and is unique, is not necessarily a finite energy solution. In fact, it can be shown by variational
methods that, if w is the solution of Equations 68.49 through 68.52 corresponding to an input (f , c) ∈ C,
then w(t) ∈H , ẇ(t) ∈ V∗ and the mapping t �→ [w(t), ẇ(t)] is continuous into H ×V∗. (A more refined
analysis of the regularity of the solution may be found in [20].)

68.6.1.1 Approximate Controllability

The system (Equations 68.49 through 68.52) is called approximately controllable at time T if R0
T is dense

in H ×V∗. To study this problem, introduce the control-to-state map CT defined by

CT : C �→H ×V∗, CT (f , c)= [w(T), ẇ(T)].

Then the system, Equations 68.49 through 68.52, is approximately controllable at time T exactly when
range(CT ) is dense in H ×V∗. The linear operator CT is bounded, so, therefore, is its dual operator
C∗T : H ×V �→ C. Thus, proving the approximate controllability of Equations 68.49 through 68.52 is
equivalent to showing that

(φ1,φ0) ∈H ×V , C∗T (φ1,φ0)= 0⇒ (φ1,φ0)= 0.

The quantity C∗T (φ1,φ0) may be explicitly calculated (see, [14]). It is given by the trace

C∗T (φ1,φ0)= (φ,∇φ)|Γ1×(0,T),

where φ is the solution of the final value problem

ρh
∂2φ

∂t2 − IρΔ
∂2φ

∂t2 +DΔ2φ= 0, (68.54)

φ= 0,
∂φ

∂ν
= 0 on Γ0, 0 < t < T , (68.55)

∂

∂ν

(
Iρ

∂2φ

∂t2 −DΔφ

)
− h3

12

∂

∂τ
[τ · σ(∇φ)ν] = 0,

h3

12
ν · σ(∇φ)ν= 0 on Γ1, 0 < t < T ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(68.56)

φ(x, T)= φ0,
∂φ

∂t
(x, T)= φ1, x ∈Ω. (68.57)

Therefore, the system, Equations 68.49 through 68.52, is approximately controllable if the only solution
of Equations 68.54 through 68.57, which also satisfies

φ|Γ1×(0,T) = 0, ∇φ|Γ1×(0,T) = 0, (68.58)

is the trivial solution. However, the boundary conditions, Equations 68.56 and 68.58, together, imply
that φ satisfies Cauchy data on Γ1× (0, T), that is, φ and its derivatives up to order three vanish on
Γ1× (0, T). If T is large enough, a general uniqueness theorem (Holmgren’s theorem) then implies that
φ≡ 0 inΩ× (0, T). This implies approximate controllability in time T .
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Theorem 68.3:

There is a T0 > 0 so that the system Equations 68.49 through 68.52 is approximately controllable in time
T > T0.

Remark 68.10

The optimal time T0 depends on the material parameters and the geometry of Ω and Γ1. If Ω is convex,
then T0 = 2

√
Iρ/D d(Ω,Γ1), where

d(Ω,Γ1)= sup
x∈Ω

inf
y∈Γ1

|x− y|.

Remark 68.11

(Distributed control.) Consider the problem of approximate controllability using a distributed control
rather than boundary controls. Let ω be a nonempty, open subset ofΩ and let the control space be

C = [F : F ∈ L2(Ω× (0, T)), F = 0 inΩ\ω].
Consider the system consisting of Equation 68.38 and (for example) the homogeneous boundary condi-
tions,

w = ∂w

∂ν
= 0 on Γ, t > 0.

Assume that the initial data is zero and let

R0
T = {(w(T), ẇ(T)) : F ∈ C}.

For any input F taken from C the corresponding solution may be shown to be a finite energy solution.
Let H and V be defined as above with Γ0 = Γ. The control-to-state map CT : F �→ (w(T), ẇ(T)) maps C
boundedly into V ×H and its dual is given by

C∗T (φ1,φ0)= φ|ω×(0,T),

where φ is the solution of Equation 68.54 with final data, Equation 68.57, and boundary conditions

φ= 0,
∂φ

∂ν
= 0 on Γ, 0 < t < T . (68.59)

Ifφ|ω×(0,T) = 0 and T is sufficiently large, an application of Holmgren’s theorem givesφ≡ 0 inΩ× (0, T)
and, therefore, the system is approximately controllable in time T . WhenΩ is convex, the optimal control
time is T0 = 2

√
Iρ/D d(Ω,ω).

68.6.1.2 Exact Controllability

Again consider the system Equations 68.49 through 68.52 with the control space given by Equation 68.53.
If D is a subspace in H ×V∗, the system is exactly controllable to D at time T if D ⊂R0

T . The exact
controllability problem, in the strictest sense, consists of explicitly identifying R0

T or, in a less restricted
sense, of explicitly identifying dense subspaces D of H ×V∗ contained in R0

T .
To obtain useful explicit information about R0

T it is necessary to restrict the geometry of Γ0 and Γ1. It
is assumed that there is a point x0 ∈ R

2 so that

(x− x0) · ν≤ 0, x ∈ Γ0. (68.60)

Condition (Equation 68.60) is a “nontrapping” assumption of the sort found in early work on scattering
of waves from a reflecting obstacle. Without some such restriction on Γ0, the results described below
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would not be valid. It is further assumed that

Γ0 ∩Γ1 = ∅. (68.61)

This is a technical assumption needed to assure that solutions of the uncontrolled problem have adequate
regularity up to the boundary (cf. Remark 68.13 below).

Theorem 68.4:

Under the assumptions (Equations 68.60 and 68.61), there is a T0 > 0 so that

R0
T ⊃ V ×H (68.62)

if T > T0.

The inclusion stated in Equation 68.62 may be stated in equivalent form in terms of the control-to-state
mapping CT . In fact, let

C0 = {(f , c) ∈ C : CT (f , c) ∈ V ×H},
and consider the restriction of CT to C0. This is a closed, densely defined linear operator from C0 into
V ×H . The inclusion (Equation 68.62) is the same as the assertion CT (C0)= V ×H , the same as proving
that the dual of the operator has a bounded inverse from V∗ ×H to C0, that is,

‖(φ0,φ1)‖2
H×V∗ ≤ c

∫ T

0

∫
Γ1

(φ2+ |∇φ|2) dΩ, (68.63)

where φ is the solution of Equations 68.54 through 68.57. For large T , the “observability estimate”
(Equation 68.63) was proved in [18] under the additional geometric assumption

(x− x0) · ν> 0, x ∈ Γ1. (68.64)

However, this hypothesis may be removed by application of the results of [20].

Remark 68.12

It is likely that the optimal control time T0 for exact controllability is the same as that for approximate
controllability, but that has not been proved.

Remark 68.13

The hypothesis (Equation 68.61) may be replaced by the assumption that the sets Γ0 and Γ1 meet in a
strictly convex angle (measured in the interior ofΩ).

Remark 68.14

The conclusion of Theorem 68.4 is false if the space of controls is restricted to finite-dimensional con-
trollers of the form,

c(x, t)=
N∑

i=1

αi(x)ci(t),

f (x, t)=
N∑

i=1

βi(x)fi(t), x ∈ Γ1, t > 0,

where αi , βi are given L2(Γ1) functions and ci , fi are L2(0, T) controls, i = 1, . . . , N( see [25]).
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Remark 68.15

Given a desired final state (w0, w1) ∈ V ×H , there are many ways of constructing a control pair (f , c)
so that w(T)= w0 and ẇ(T)= w1. The unique control of minimum L2(Γ1× (0, T)) norm may be con-
structed as follows. Set Σ1 = Γ1× (0, T). Let φ be the solution of Equations 68.54 through 68.57 and let
w be the solution of Equations 68.49 through 68.52 with

f = φ|Σ1 , and c =−∇φ|Σ1 . (68.65)

Then [w(T), ẇ(T)] depends on (φ0,φ1). A linear mappingΛ is defined by setting

Λ(φ0,φ1)= [ẇ(T),−w(T)].

The inequality (Equation 68.63) may be used to show that, for any (w0, w1) ∈ V ×H , the pair (φ0,φ1) may
be chosen so that Λ(φ0,φ1)= (w1,−w0). The argument is based on the calculation (using integrations
by parts)

0=
∫ T

0

∫
Ω

φ(ρhẅ− IρΔẅ+DΔ2w) dΩdt,

=
∫
Ω

[ρhẇ(T)φ0+ Iρ∇ẇ(T) · ∇φ0− ρhw(T)φ1− Iρ∇w(T) · ∇φ1] dΩ−
∫
Σ1

(φ2+ |∇φ|2) dΣ,

that is,

(Λ(φ0,φ1), (φ0,φ1))H×H =
∫
Σ1

(φ2+ |∇φ|2) dΣ. (68.66)

According to Equation 68.63, for T large enough, the right-hand side of Equation 68.66 defines a Hilbert
norm ‖(φ0,φ1)‖F and a corresponding Hilbert space F which is the completion of sufficiently smooth
pairs (φ0,φ1) with respect to ‖ · ‖F . The identity (Equation 68.66) shows that Λ is exactly the Riesz
isomorphism of F onto its dual space F∗. Because (w0, w1) ∈R0

T precisely when (w1,−w0) ∈ range(Λ),
it follows that

R0
T = [(w0, w1) : (w1,−w0) ∈ F∗].

The inequality (Equation 68.63) implies that H ×V∗ ⊃ F. Therefore H ×V ⊂ F∗, which is the conclusion
of Theorem 68.4. If (w0, w1) ∈ V ×H , then the minimum norm control is given by Equation 68.65, where
(φ0,φ1)=Λ−1(w1,−w0). This procedure for constructing the minimum norm control is the basis of the
Hilbert Uniqueness Method introduced in [22,23].

Remark 68.16

In the situation where Iρ = 0 in Equations 68.49 and 68.51, the only change is that H = L2(Ω) rather than
the space defined above and the optimal control time is known to be T0 = 0, i.e., exact controllability
holds in arbitrarily short time (cf. [28]).

Remark 68.17

If distributed controls are used rather than boundary controls as in Remark 68.11, Equation 68.62 is not
true, in general, but is valid if ω is a neighborhood of Γ.

68.6.2 Controllability of the Reissner–Mindlin System

The controllability properties of the Reissner–Mindlin system are similar to those of the Kirchhoff system.
As in the last subsection, only the boundary control problem is considered in detail. Again, we work within
the context of L2 controls and choose Equation 68.53 as the control space. As above, it may be assumed
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without losing generality that the data of the problem, F, C, w̄, ū, w0, w1, u0, u1 vanish. The problem under
consideration is, therefore,

ρh
∂2w

∂t2 −Ghdiv (u+∇w)= 0,

Iρ
∂2u

∂t2 −
h3

12
div σ(u)+Gh(u+∇w)= 0,

⎫⎪⎪⎬
⎪⎪⎭

(68.67)

w = 0, u = 0 on Γ0, t > 0, (68.68)

Ghν · (u+∇w)= f ,

h3

12
σ(u)ν= c on Γ1, t > 0,

⎫⎪⎬
⎪⎭ (68.69)

w(x, 0)= ∂w

∂t
(x, 0)= 0,

u(x, 0)= ∂u

∂t
(x, 0)= 0 in Ω. (68.70)

For convenience, it is assumed that Γ0 �= ∅.
Set w = u+wk and introduce the configuration space (reachable set) at time T for this problem by

R0
T = {[w(T), ẇ(T)] : (f , c) ∈ C}.

To describe R0
T , certain function spaces based on the kinetic and strain energy functionals of the above

problem must be introduced. Let

H = [v = u1i+ u2j+wk
def= u+wk : ui , w ∈ L2(Ω)],

‖v‖H =
(∫

Ω

(ρhw2+ Iρ|u|2) dΩ

)1/2

,

V = {v ∈H : ui , w ∈H1(Ω), v|Σ1 = 0},

‖v‖V =
⎛
⎝∫

Ω

⎛
⎝h3

12

2∑
i j=1

σij(u)εij(u)+Gh|u+∇w|2
⎞
⎠ dΩ

⎞
⎠

1/2

.

It is a consequence of Korn’s lemma and Γ0 �= ∅ that ‖ · ‖V is a norm equivalent to the induced H1(Ω)
norm. The space V is dense in H and the embedding V �→H is compact. A solution of Equations 68.67
through 68.70 is a finite energy solution if w(t) ∈ V , ẇ(t) ∈H for each t, and the mapping t �→ (w(t), ẇ(t))
is continuous into V ×H . This means that the solution has finite kinetic and strain energies at each
instant. As with the Kirchhoff model, solutions corresponding to inputs taken from C are not necessarily
finite energy solutions. However, it is true that w(t) ∈H , ẇ(t) ∈ V∗ and the mapping t �→ [w(t), ẇ(t)] is
continuous into H ×V∗, where the concept of a solution is defined in an appropriate weak sense.

The system, (Equations 68.67 through 68.70) is called approximately controllable if R0
T is dense in

H ×V∗. The exact controllability problem consists of explicitly identifying dense subspaces of H ×V∗
contained in R0

T .
With this setup, Theorem 68.3 and a slightly weaker version of Theorem 68.4 may be proved for

the Reissner-Mindlin system. The proofs again consist of an examination of the control-to-state map
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CT : C �→H ×V∗ defined by CT ( f , c)= [w(T), ẇ(T)]. The dual mapping C∗T : H ×V �→ C is given by

C∗T (Φ1,Φ0)=Φ|Γ1×(0,T),

where

Φ= φ+ψk, φ= φ1i+φ2j,

Φ0 = φ0+ψ0k, Φ1 = φ1+ψ1k,

and φ,ψ satisfy

ρh
∂2ψ

∂t2 −Ghdiv (φ+∇ψ)= 0,

Iρ
∂2φ

∂t2 −
h3

12
div σ(φ)+Gh(φ+∇ψ)= 0,

⎫⎪⎪⎬
⎪⎪⎭

(68.71)

ψ= 0, φ= 0 on Γ0, 0 < t < T , (68.72)

Ghν · (φ+∇ψ)= 0,
h3

12
σ(φ)ν= 0 on Γ1, 0 < t < T ,

⎫⎬
⎭ (68.73)

ψ(x, T)=ψ0,
∂ψ

∂t
(x, T)=ψ1,

φ(x, T)= φ0,
∂φ

∂t
(x, T)= φ1 inΩ.

⎫⎪⎪⎬
⎪⎪⎭

(68.74)

Approximate controllability amounts to showing that C∗T (Φ1,Φ0)= 0 only when (Φ1,Φ0)= 0. However,
if Φ is the solution of Equations 68.71 through 68.74 and satisfies Φ|Γ1×(0,T) = 0, then Φ and its first
derivatives vanish on Γ1× (0, T). If T is large enough, Holmgren’s theorem then implies thatΦ≡ 0.

With regard to the exact controllability problem, to prove the inclusion, (Equation 68.62) for the
Reissner system amounts to establishing the observability estimate (cf. Equation 68.63),

‖(Φ0,Φ1)‖2
H×V∗ ≤ c

∫ T

0

∫
Γ1

|Φ|2dΓdt. (68.75)

For sufficiently large T , this estimate has been proved in [18] under assumptions, Equations 68.60, 68.61,
and 68.64. The following exact controllability result is a consequence of Equation 68.75.

Theorem 68.5:

Under assumptions Equations 68.60, 68.61, and 68.64, there is a T0 > 0 so that

R0
T ⊃ V ×H

if T > T0.

Remark 68.18

IfΩ is convex, then the optimal control time for approximate controllability is

T0 = 2 max(
√

Iρ/D,
√
ρ/G) d(Ω,Γ1).

The optimal control time for exact controllability is probably the same, but this has not been proved.
See, however, [10,11, Chapter 5]. Assumption, Equation 68.64, is probably unnecessary, but this has not
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been established. Remark 68.13 is valid also for the Reissner–Mindlin system. The remarks concerning
approximate and exact controllability of the Kirchhoff model utilizing distributed controls remain true
for the Reissner–Mindlin system.

68.6.3 Controllability of the von Kármán System

The global controllability results which hold for the Kirchhoff and Reissner–Mindlin models cannot be
expected to hold for nonlinear partial differential equations, in general, or for the von Kármán system in
particular. Rather, only local controllability is to be expected (although global controllability results may
obtain for certain semilinear systems; cf. [19]), that is, in general the most that can be expected is that the
reachable set (assuming zero initial data) contains some ball Sr centered at the origin in the appropriate
energy space, with the control time depending on r.

The problem to be considered is

ρh
∂2w

∂t2 − IρΔ
∂2w

∂t2 +DΔ2w−[w, G] = 0,

Δ2G+ Eh

2
[w, w] = 0,

⎫⎪⎬
⎪⎭ (68.76)

w = ∂w

∂ν
= 0, on Γ0, t > 0, (68.77)

∂

∂ν

(
Iρ

∂2w

∂t2 −DΔw

)
− h3

12

∂

∂τ
[τ · σ(∇w)ν] = ∂

∂τ
(τ · c)+ f ,

h3

12
ν · σ(∇w)ν=−ν · c, on Γ1, t > 0,

⎫⎪⎪⎬
⎪⎪⎭

(68.78)

G = 0,
∂G

∂ν
= 0 on Γ, t > 0, (68.79)

w(x, 0)= ∂w

∂t
(x, 0)= 0, x ∈Ω. (68.80)

It is assumed that Γ0 �= ∅. Note that there is no initial data for G.
The above system is usually analyzed by uncoupling w from G. This is done by solving the second

equation in Equation 68.79, subject to the boundary conditions, Equation 68.79, for G in terms of w. One
obtains G =−(Eh/2)G[w, w], where G is an appropriate Green’s operator for the biharmonic equation.
One then obtains for w the following equation with a cubic nonlinearity:

ρh
∂2w

∂t2 − IρΔ
∂2w

∂t2 +DΔ2w− Eh

2
[w, G[w, w]] = 0. (68.81)

The problem for w consists of Equation 68.81 together with the boundary conditions, Equations 68.77,
68.78, and initial conditions Equation 68.80.

The function spaces H and V based on the kinetic and strain energy functionals, respectively, related
to the transverse displacement w, are the same as those introduced in discussing controllability of the
Kirchhoff model, as is the reachable set R0

T corresponding to vanishing data. Let

Sr = {(v, h) ∈ V ×H : (‖v‖2
V +‖h‖2

H )1/2 < r}.

With this notation, a local controllability result analogous to Theorem 68.4 can be established.
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Theorem 68.6:

Under assumptions, Equations 68.60, 68.61, and 68.64, there is an r > 0 and a time T0(r) > 0 so that

R0
T ⊃ Sr (68.82)

if T > T0.

Curiously, a result for the von Kármán system analogous to Theorem 68.3 is not known.
Theorem 68.6 is proved by utilizing the global controllability of the linearized (i.e., Kirchhoff) prob-

lem, together with the implicit function theorem in a manner familiar in the control theory of finite-
dimensional nonlinear systems.

Remark 68.19

If the underlying dynamics are modified by introducing a dissipative term b(x)ẇ, b(x) > 0, into Equa-
tion 68.81, it may be proved, under assumptions, Equations 68.60 and 68.61, that the conclusion, Equa-
tion 68.82, is valid for every r > 0. However, the optimal control time T0 will continue to depend on r, so
that such a result is still local.

68.7 Stabilizability of Dynamic Plates

The problem of stabilization is concerned with the description of feedback controls which assure that
the trajectories of the system converge asymptotically to an equilibrium state of the system. For infinite-
dimensional systems in general and distributed parameter systems in particular, there are various distinct
notions of asymptotic stability: weak, strong, and uniform (distinctions which, incidentally, disappear
in finite-dimensional approximations of the system). The differences in the various types of stability are
related to the topology in which convergence to an equilibrium takes place. The most robust notion
of stability is that of uniform stability, which guarantees that all possible trajectories starting near an
equilibrium of the system converge to that equilibrium at a uniform rate. In this concept, convergence is
usually measured in the energy norm associated with the system. This is the classical viewpoint of stability.
Strong stability, on the other hand, guarantees asymptotic convergence of each trajectory (in the energy
norm) but at a rate which may become arbitrarily small, depending on the initial state of the system. The
concept of weak stability is similar; however, in this case, convergence to an equilibrium takes place in
a topology weaker than associated with the energy norm. In the discussion which ensues, only uniform
and strong asymptotic stability will be considered.

68.7.1 Stabilizability of Kirchhoff Plates

Consider the Kirchoff system consisting of Equation 68.49, boundary conditions, Equations 68.50, and
68.51, and initial conditions

w(x, 0)= w0(x),
∂w

∂t
(x, 0)= w1(x), x ∈Ω. (68.83)

It is assumed that Γi �= ∅, i = 0, 1. The boundary inputs c, f are the controls. The boundary outputs are

y = ∂w

∂t

∣∣∣∣
Γ1×(0,∞)

, z = ∇
(

∂w

∂t

)∣∣∣∣
Γ1×(0,∞)

. (68.84)

The problem is to determine the boundary inputs in terms of the boundary outputs to guarantee that the
resulting closed-loop system is asymptotically stable in some sense.



�

�

�

�

� �

68-28 Control System Advanced Methods

The total energy of the system at time t is

E(t)=K(t)+U(t),

= 1

2

∫
Ω

(ρhẇ2+ Iρ|∇ẇ|2) dΩ+ 1

2

h3

12

2∑
i j=1

∫
Ω

σij(∇w)εij(∇w) dΩ,

where ẇ = ∂w/∂t. A direct calculation shows that

dE
dt
=
∫
Γ1

[
(−ν · c)

∂ẇ

∂ν
+
(

∂

∂τ
(τ · c)+ f

)
ẇ

]
dΓ.

When the loop is closed by introducing the proportional feedback law

f =−k0y, c = k1z, ki ≥ 0, k0+ k1 > 0, (68.85)

it follows that

dE
dt
=−

∫
Γ1

[
k1

(
∂ẇ

∂ν

)2

+ k0(ẇ)2+ k1

(
∂ẇ

∂τ

)2
]

dΓ,

=−
∫
Γ1

[k0(ẇ)2+ k1|∇ẇ|2] dΓ≤ 0.

Thus the feedback laws Equation 68.85 are dissipative with respect to the total energy functional E.
Let H and V be the Hilbert spaces based on the energy functionals K and U , respectively, as introduced

above. If (w0, w1) ∈ V ×H , the Kirchoff system, Equations 68.49 through 68.51, with initial conditions
Equation 68.83, boundary outputs Equation 68.84, and feedback law Equation 68.85, is well-posed: it has
a unique finite energy solution w. The system is called uniformly asymptotically stable if there is a positive,
real-valued function α(t) with α(t)→ 0 as t →∞, so that

‖(w(t), ẇ(t))‖V×H ≤ α(t)‖(w0, w1)‖V×H .

Therefore, E(t)≤ α2(t)E(0). If such a function α exists, it is necessarily exponential: α(t)= Ce−ωt for
some ω> 0. The system is strongly asymptotically stable if, for every initial state (w0, w1) ∈ V ×H , the
corresponding solution satisfies

lim
t→∞‖(w(t), ẇ(t))‖V×H = 0

or, equivalently, that E(t)→ 0 as t →∞. Uniform and strong asymptotic stability are not equivalent
concepts. Strong asymptotic stability does not imply uniform asymptotic stability. Strong stability has the
following result.

Theorem 68.7:

Assume that ki > 0, i = 0, 1. Then the closed-loop Kirchhoff system is strongly asymptotically stable.

The proof of this theorem amounts to verifying that, under the stated hypotheses, the problem has
no spectrum on the imaginary axis. The latter is a consequence of the Holmgren uniqueness theorem
(see [13, Chapter 4] for details).

For the closed-loop Kirchhoff system to be uniformly asymptotically stable, the geometry of Γi must
be suitably restricted.
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Theorem 68.8:

Assume that ki > 0, i = 0, 1, and that Γi satisfy Equations 68.60 and 68.61. Then the closed-loop Kirchhoff
system is uniformly asymptotically stable.

The proof of Theorem 68.8 follows from the estimate,

E(T)≤ CT

∫ T

0

∫
Γ1

[k0(ẇ)2+ k1|∇ẇ|2] dΓdt, T large. (68.86)

The proof of Equation 68.86 is highly nontrivial. From Equation 68.86 and the above calculation of dE/dt,
it follows that

E(T)≤ 1

1+CT
E(0),

which implies the conclusion of the theorem.

Remark 68.20

Theorem 68.8 was first proved in [13] under the additional assumption Equation 68.64, but the latter
condition may be removed by applying the results in [20]. Assumption, Equation 68.61, may be weakened;
see Remark 68.13. If Iρ = 0, the conclusion holds even when k1 = 0.

Remark 68.21

In place of the linear relationship Equation 68.85, one may consider a nonlinear feedback law

y =−y(ẇ), z = z(∇ẇ),

where y(·) is a real-valued function, z(·) : R2 �→ R
2 and satisfies

xy(x) > 0, ∀x ∈ R\{0},
x · z(x) > 0 ∀x ∈ R

2\{0}.

The closed-loop system is then dissipative. In addition, suppose that both y(·) and z(·) are continuous,
monotone increasing functions. The closed-loop system is then well-posed in finite energy space. Under
some additional assumptions on the growth of y(·), z(·) at 0 and at ∞, the closed-loop system have a
decay rate which, however, will be algebraic, rather than exponential, and will depend on a bound on the
initial data; cf. [13, Chapter 5] and [16].

68.7.2 Stabilizability of the Reissner–Mindlin System

The system, (Equations 68.67 through 68.69) is considered, along with the initial conditions

w(x, 0)= w0(x),
∂w

∂t
(x, 0)= w1(x),

u(x, 0)= u0(x),
∂u

∂t
(x, 0)= u1(x), x ∈Ω.

⎫⎪⎪⎬
⎪⎪⎭

(68.87)

The boundary inputs c, f are the controls. The boundary outputs are

y = ∂w

∂t

∣∣∣∣
Γ1×(0,∞)

, z = ∂u

∂t

∣∣∣∣
Γ1×(0,∞)

.
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The total energy of the system at time t is

E(t)= K(t)+U(t)= 1

2

∫
Ω

(ρhẇ2+ Iρ|u|2) dΩ+ 1

2

∫
Ω

⎛
⎝h3

12

2∑
i,j=1

σij(u)εij(u)+Gh|u+∇w|2
⎞
⎠ dΩ.

Then
dE
dt
=
∫
Γ1

(f ẇ+ c · u̇) dΓ,

which suggests that the loop be closed by introducing the proportional feedback law

f =−k0y, c =−k1z, ki ≥ 0, k0+ k1 > 0,

so that the closed-loop system is dissipative. In fact, it may be proved that the conclusions of Theorems
68.7 and 68.8 above hold for this system; see [13], where this is proved under the additional geometric
assumption, Equation 68.64.

68.7.3 Stabilizability of the von Kármán System

Consider the system consisting of Equation 68.81, boundary conditions Equations 68.77 and 68.78, and
initial conditions Equation 68.83. The inputs, outputs, and total energy of this system are defined as for
the Kirchhoff system, and the loop is closed using the proportional feedback law Equation 68.85. The
following result has been proved in [4].

Theorem 68.9:

Assume that ki > 0, i = 0, 1, and that Γi satisfy Equations 68.60, 68.61, and 68.64. Then there is an r > 0
so that

E(t)≤ Ce−ωtE(0) (68.88)

provided E(0) < r, where ω> 0 does not depend on r.

Remark 68.22

If Iρ = 0 and Γ0 = ∅, the estimate Equation 68.88 was established in [13, Chapter 5] for every r > 0, with
constants C,ω independent of r, but under a modified feedback law for c.

Remark 68.23

If the underlying dynamics are modified by introducing a dissipative term b(x)ẇ, b(x) > 0, into Equa-
tion 68.81, it is proven in [5] that, under assumptions, Equations 68.60 and 68.61, the conclusion Equa-
tion 68.88 is valid for every r > 0, where both constants C,ω depend on r. This result was later extended
in [8] to the case of nonlinear feedback laws (cf. Remark 68.21).
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69.1 Introduction

We must begin by making an important distinction between the considerations appropriate to a great
variety of practical problems, for example, controlled heat transfer or observed diffusion and those
more theoretical considerations which arise when we wish to apply the essential ideas developed for the
control theory of ordinary differential equations in the context of systems governed by partial differential
equations—here, the linear heat equation

∂v

∂t
= ∂2v

∂x2 +
∂2v

∂y2 +
∂2v

∂z2 for t > 0, x = (x, y, z) ∈Ω⊂ R
3. (69.1)

Many of the former set of problems are ones of optimal design, rather than of dynamic control and
many of the essential concerns are related to fluid flow in a heat exchanger or to phase changes (e.g.,
condensation) or to other issues which go well beyond the physical situations described by Equation 69.1.
Some properties of Equation 69.1 are relevant for these problems and we shall mention these, but the
essential concerns which dominate them are outside the scope of this chapter.

The primary focus of this chapter is, from the point of view of control theory, on the inherent distinc-
tions one must make between “lumped parameter systems” (with finite-dimensional state space, governed
by ordinary differential equations) and “distributed parameter systems” governed by partial differential
equations such as Equation 69.1 so the state, for each t, is a function of position in the spatial region Ω.

69-1
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While Equation 69.1 may be viewed abstractly as an ordinary differential equation∗

dv

dt
=Δv+ψ for t > 0, (69.3)

it is important to realize that abstract ordinary differential equations such as Equation 69.3 are quite
different in nature from the more familiar ordinary differential equations with finite-dimensional state;
hence, one’s intuition must be attuned to this situation. Further, the intuition appropriate to consideration
of the parabolic partial differential equation 69.3 is quite different from what would be appropriate, say,
for the wave equation

d2w

dt2 = ΔΔw+ψ2 for t > 0, (69.4)

which describes a very different set of physical phenomena with very different properties (although in
Section 69.5.3 we do mention an interesting relation for the corresponding theories of observation and
control).

We restrict our attention largely to autonomous linear problems for which frequency-domain
approaches involving matrix theory (transfer functions, etc.) and Riccati equations are well-known
approaches in lumped parameter (finite-dimensional) settings. While we do note that, with appropri-
ate technical conditions, these approaches generalize to infinite-dimensional settings (note the emphasis
on operator transfer functions in [3] or on the Riccati equation in [1,6]), we will not consider those
approaches here, but will concentrate on approaches which are distinctly relevant to considerations of
partial differential equations, following the approaches of [4,5,7–10], for example.

One new consideration is that the geometry of the region Ω is relevant here. We here concentrate
primarily on linear problems in which input/output interaction (for control and for observation) is
restricted to the boundary—partly because this is physically reasonable and partly because it is only for a
system governed by a partial differential equation that one could even consider “control via the boundary
conditions.”

The first two sections of this chapter provide, as background, some relevant properties of Equation 69.1,
including the presentation of some examples and implications of these general properties for practical
heat conduction problems. We then turn to the discussion of system-theoretic properties of Equation 69.1
or 69.3; note that this restricts our discussion to linear problems. We emphasize, in particular, the
considerations which arise when the input/output occurs in a way which has no direct analog in the theory
of lumped parameter systems—not through the equation itself, but through the boundary conditions
which are appropriate to the partial differential equation 69.1. This mode of interaction is, of course,
quite plausible for physical implementation since it is typically difficult to influence or to observe directly
the behavior of the system in the interior of a solid spatial region.

69.2 Background: Physical Derivation

Unlike situations involving ordinary differential equations with finite-dimensional state space, it is almost
impossible to work with partial differential equations without developing a deep appreciation for the char-
acteristic properties of the particular kind of equation. For the classical equations, such as Equation 69.1,
this is closely related to physical interpretations. Thus, we begin with a discussion of some interpretations
of Equation 69.1 and only then note the salient properties which will be needed to understand its control.

∗ Now v(t) denotes the state, viewed as an element of an infinite-dimensional space of functions on Ω, andΔ= 9∇2 is the
Laplace operator, given in the 3-dimensional case by

Δ : v �→ ∂2v

∂x2 +
∂2v

∂y2 +
∂2v

∂z2 (69.2)

together with specification of the relevant boundary conditions.
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While we speak of Equation 69.1 as the heat equation, governing conductive heat transfer, our intuition
will be aided by noting also that this same equation also governs molecular diffusion for dilute solutions
and certain dispersion phenomena as well as the evolution of the probability distribution in the stochastic
theory of Brownian motion.

For heat conduction, we begin with the fundamental notions of heat content Q and temperature,
related∗ by

[heat content] = [heat capacity] · [temperature]. (69.6)

or, in symbols,

Q = ρc T (69.7)

where Q is here the heat density (per unit volume), ρ is the mass density, T is the temperature, and c is the
“incremental heat capacity” [amount of heat needed to raise the temperature of a unit mass by, say, 1◦].
The well-known physics of the situation is that heat will flow by conduction from one body to another at a
rate proportional to the difference of their temperatures. Within a continuum one has a heat flux vector 9q
describing the heat flow: 9q · 9n dA is the rate (per unit time) at which heat flows through any (imaginary)
surface element dA, oriented by its unit normal 9n. This is now given by Fourier’s Law:

9q=−k grad T =−k 9∇T (69.8)

with a (constant†) coefficient of heat conduction k > 0.
For any (imaginary) region B in the material, the total rate of heat flow out of B is then

∫
∂B 9q · 9n dA

(where 9n is the outward normal to the bounding surface ∂B) and, by the Divergence Theorem, this equals
the volume integral of div 9q. Combining this with Equations 69.7 and 69.8—and using the arbitrariness
of B—this gives the governing‡ heat equation

ρc
∂T

∂t
= 9∇ · k 9∇T +ψ (69.9)

where ψ is a possible source term for heat.
Let us now derive the equation governing molecular diffusion, we consider the spread of some substance

in another (e.g., a “solute” in a “solvent”) caused, as discussed in one of Einstein’s famous papers of 1905,
by the random collisions of molecules. Assuming a dilute enough solution that one can neglect the volume
fraction occupied by the solute in comparison with the solvent, we present our analysis simply in terms of
the concentration (relative density) C of the relevant chemical component. One has, entirely analogous

∗ More precisely, since the mass density ρ and the incremental heat capacity c (i.e., the amount of heat needed to raise the
temperature of a unit mass of material by, e.g., 1◦C when it is already at temperature ϑ) are each temperature dependent,
the heat content in a region R with temperature distribution T(·) is given by

Q = Q(B)=
∫
B

∫ T

0
[ρc](ϑ) dϑ dV . (69.5)

For our present purposes we are assuming that (except, perhaps, for the juxtaposition of regions with dissimilar materials)
we may take ρc to be effectively constant. Essentially, this means that we assume, the temperature variation is not so large
as to force us to work with the more complicated nonlinear model implied by Equation 69.5. In particular, it means that
we will not treat situations involving phase changes such as vaporization, condensation, or melting.

† This coefficient k is, in general, also temperature dependent as well as a material property. Our earlier assumption in
connection with ρc is relevant here also to permit us to take k to be a constant.

‡ It is essential to realize that 9q, as given in Equation 69.8, refers to heat flow relative to the material. If there is spatial motion
of the material itself, then this argument remains valid provided the regions B are taken as moving correspondingly—that
is, Equation 69.3 holds in material coordinates. When this is referred to stationary coordinates, we view the heat as
transported in space by the material motion—that is, we have advection as well as diffusion; the Peclet number indicates
the relative importance of these transport mechanisms.
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to the previous derivation, a material flux vector 9J which is now given by Fick’s Law:

9J =−D 9∇C (69.10)

where D > 0 is the diffusion coefficient∗. As in deriving Equation 69.9, this law for the flux immediately
leads to the conservation equation

∂C

∂t
= 9∇ ·D 9∇C+ψ, (69.11)

where ψ is now a source term for this component—say, by some chemical reaction.
A rather different mechanism for the spread of some substance in another depends on the effect of

comparatively small relative velocity fluctuations of the medium—for example, gusting in the atmospheric
spread of the plume from a smokestack or the effect of path variation through the interstices of packed
soil in considering the spread of a pollutant in groundwater flow. Here one again has a material flux for
the concentration—given now by Darcy’s Law, which appears identical to Equation 69.10. The situation
can be more complicated here, however, since one may well have anisotropy (D is then a matrix) and/or
various forms of degeneracy (e.g., D becoming 0 when C = 0); nevertheless, we still obtain Equation 69.11
with this dispersion coefficient D. Here, as earlier, we focus on settings where we may take a constant scalar
D > 0 and neglect advection.

As we are assuming constant coefficients in each case, we may simplify Equation 69.9 or 69.11 by
writing these as

vt = DΔv+ψ (69.12)

where v stands either for the temperature T or the concentration C, subscript t denotes a partial derivative,
and, in considering Equation 69.9, D stands for the thermal diffusivityα= k/ρc. We may, of course, always
choose units to make D = 1 in Equation 69.12; hence, it becomes precisely Equation 69.3. It is interesting
and important for applications to have some idea of the wide range of magnitudes of the coefficient D in
Equation 69.12 in fixed units—say, cm2/s.—for various situations. For heat conduction, typical values of
the coefficient D = α are, quite approximately:

8.4 for heat conduction in diamond; 1.1 for copper; 0.2–0.6 for steam (rising with temper-
ature); 0.17 for cast iron and 0.086 for bronze; 0.011 for ice; 7.8× 10−3 for glass; 4× 10−3

for soil; 1.4–1.7× 10−3 for water; 6.2× 10−4 for hard rubber; and so on.

For molecular diffusion, typical figures for D might be

around 0.1 for many cases of gaseous diffusion; 0.28 for the diffusion of water vapor in air
and 2× 10−5 for air dissolved in water; 2× 10−6 for a dilute solution of water in ethanol
and 8.4× 10−6 for ethanol in water; 1.5× 10−8 for solid diffusion of carbon in iron and
1.6× 10−10 for hydrogen in glass, and so on.

Finally, for example, the dispersion of a smoke plume in mildly stable atmosphere (say, a 15 mph breeze)
might, on the other hand, have D approximately 106 cm2/s.—as might be expected, dispersion is a far
more effective spreading mechanism than molecular diffusion, but the same mathematical description
covers both.

Assuming that one knows the initial state of the physical system

v(x, t = 0)= v0(x) onΩ, (69.13)

whereΩ is the region of R
3 we wish to consider, we still cannot expect to determine the system evolution

unless we also know (or can determine) the source term ψ and, unless Ω would be all of R
3, can furnish

∗ More detailed treatments might consider the possibility that D depends on the temperature, and so on, of the solvent and
is quite possibly also dependent on the existing concentration, even for dilute concentrations. As earlier, we neglect these
effects as insignificant for the situations under consideration and take D to be constant.
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adequate information about the interaction at the boundary ∂Ω. The simplest setting is that there is to
be no such interaction at all: the physical system is to be insulated from the rest of the universe and thus
there is no flux across the boundary. Formally, this means 9q · 9n= 0, where 9n is now the unit normal to
∂Ω or, from Equation 69.11 or 69.8 with the scaling of Equation 69.12,

−D
∂v

∂n
=−D 9∇v · 9n= 0. (69.14)

More generally, the flux might be more arbitrary but known; hence we have the inhomogeneous Neumann
condition:

−D
∂v

∂n
= g1 onΣ= (0, T)× ∂Ω. (69.15)

An alternative∗ set of data would involve knowing the temperature (concentration) at the boundary, that
is, having the Dirichlet condition:

v = g0 onΣ= (0, T)× ∂Ω. (69.17)

The mathematical theory supports our physical interpretation:

If we have Equation 69.1 on Q= (0, T)×Ω with ψ specified on Q and the initial condition
Equation 69.13 specified on Ω, then either† of the boundary conditions Equation 69.15 or
69.17 suffices to determine the evolution of the system on Q, that is, for 0 < t ≤ T.

We refer to either of these as the direct problem. An important property of this problem is that it is
well-posed, that is, a unique solution exists for each choice of the data and small changes in the data
produce ‡ correspondingly small changes in the solution.

69.3 Background: Significant Properties

In this section we note some of the characteristic properties of the “direct problem” for the partial
differential equation 69.1 and, related to these, introduce the representation formulas underlying the
mathematical treatment.

69.3.1 The Maximum Principle and Conservation

One characteristic property, going back to the physical derivation, is that Equation 69.1 is a conservation
equation. In the simplest form, when heat or material is neither created nor destroyed in the interior

∗ Slightly more plausible, physically, would be to assume that the ambient temperature or concentration would be known
or determinable to be g “just outside” ∂Ω and then to use the flux law (proportionality to the difference) directly:

−D
∂v

∂n
= 9q · 9n= λ(v− g) onΣ (69.16)

with a flux transfer coefficient λ> 0. Note that, if λ≈ 0 (negligible heat or material transport), then we effectively get
Equation 69.14. On the other hand, if λ is very large (v− g =−(D/λ)∂v/∂n with D/λ≈ 0), then v will immediately
tend to match g at ∂Ω, giving Equation 69.17; see Section 69.4.1

† We may also have, more generally, a partition of ∂Ω into Γ0 ∪Γ1 with data given in the form Equation 69.17 on
Σ0 = (0, T)×Γ0 and in the form Equation 69.15 onΣ1 = (0, T)×Γ1.

‡ We note that making this precise—that is, specifying the appropriate meanings of “small”—becomes rather technical and,
unlike the situation for ordinary differential equations, can be done in several ways which each may be useful for different
situations. We will see, on the other hand, that some other problems which arise in system-theoretic analysis turn out to
be “ill-posed”, that is, not to have this well-posedness property; see, for example, Section 69.4.3.
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(ψ≡ 0) and if the region is insulated Equation 69.14, then [total heat or material]= ∫
Ω

v dV is constant
in time. More generally, we have

d

dt

[∫
Ω

v dV

]
=
∫

∂Ω
g1 dA+

∫
Ω

ψ dV (69.18)

for v satisfying Equations 69.3 through 69.15.
Another important property is the Maximum Principle:

Let v satisfy Equation 69.3 with ψ≥ 0 on Qτ := (0, τ)×Ω. Then the minimum value of
v(t, x) on Qτ is attained either initially (t = 0) or at the boundary (x ∈ ∂Ω). Unless v is a
constant, this value cannot also occur in the interior of Qτ; if it is a boundary minimum with
t > 0, then one must have ∂v/∂9n > 0 at that point. Similarly, if v satisfies Equation 69.3 with
ψ≤ 0, then its maximum is attained for t = 0 or at x ∈ ∂Ω, and so on.

One simple argument for this rests on the observation that at an interior minimum one would neces-
sarily have vt = ∂v/∂t ≤ 0 and alsoΔv ≥ 0.

The Maximum Principle shows, for example, that the mathematics of Equation 69.1 is consistent with
the requirement for physical interpretation that a concentration cannot become negative and the fact
that, since heat flows “from hotter to cooler,” it is impossible to develop a “hot spot” except by providing
a heat source.

69.3.2 Smoothing and Localization

Perhaps the dominant feature of Equation 69.1 is that solutions rapidly smooth out, with peaks and valleys
of the initial data flattening out. We will see this in more mathematical detail later, but comment now on
three points:

• Approach to steady state
• Infinite propagation speed
• Localization and geometric reduction

The first simply means that if neither ψ nor the data g0 would vary in time, then the solution v of
Equations 69.3 through 69.17 on (0,∞)×Ω would tend, as t →∞, to the unique solution v̄ of the
(elliptic) steady-state equation

−
[

∂2v̄

∂x2 +
∂2v̄

∂y2 +
∂2v̄

∂z2

]
=ψ, v̄

∣∣∣
∂Ω
= g0. (69.19)

The timescale of this transient is given by the lowest eigenvalue of the Laplace operator here. Essentially
the same would hold if we were to use Equation 69.15 rather than Equation 69.17 except that, as is obvious
from Equation 69.18, we must then impose a consistency condition that

∫
∂Ω

g1 dA+
∫
Ω

ψ dV = 0

for there to be a steady state at all—and then must note that the solution of the steady-state equation

−
[

∂2v̄

∂x2 +
∂2v̄

∂y2 +
∂2v̄

∂z2

]
=ψ, ∂v̄/∂9n= g1 (69.20)

only becomes unique when one supplements Equation 69.20 by specifying, from the initial conditions
(Equation 69.13), the value of

∫
Ω

v̄ dV .
Unlike the situation with the wave equation 69.4, the mathematical formulation (Equation 69.1), and

so on, implies an infinite propagation speed for disturbances—for example, the effect of a change in the
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boundary data g0(t, x) at some point x∗ ∈ ∂Ω occurring at a time t = t∗ is immediately felt throughout
the region, affecting the solution for every x ∈Ω at every t > t∗. One can see that this is necessary to have
the Maximum Principle, for example, but it is certainly nonphysical. This phenomenon is a consequence
of idealizations in our derivation and becomes consistent with our physical intuition when we note that
this “immediate influence” is extremely small: there is, indeed, a noticeable delay before a perturbation
will have a noticeable effect at a distance.

Consistent with the last observation, we note that the behavior in any subregion will, to a great extent,
be affected only very slightly (in any fixed time) by what happens at parts of the boundary which may
be very far away; this is a sort of “localization” principle. For example, if we are only interested in what
is happening close to one part of the boundary, then we may effectively treat the far boundary as “at
infinity.” To the extent that there is little spatial variation in the data at the nearby part of the boundary,
we may then approximate the solution quite well by looking at the solution of the problem considered
on a half-space with spatially constant boundary data, dependent only on time. Taking coordinates so
that the boundary becomes the plane “x = 0,” one easily sees that this solution will be independent of
the variables y, z if the initial data and source term are. Equation 69.1 then reduces to a one-dimensional
form

∂v

∂t
= ∂2v

∂x2 +ψ(t, x) (69.21)

for t > 0 and, now, x > 0 with, for example, specification of v(t, 0)= g0(t) and of v(0, x)= v0(x). Similar
dimensional reductions occur in other contexts—one might obtain Equation 69.21 for 0 < x < L, where L
gives the thickness of a slab in appropriate units or one might get a two-dimensional form corresponding
to a body which is long compared to its constant constant cross-section and with data which is relatively
constant longitudinally. In any case, our equation will be Equation 69.3, with the dimensionally suitable
interpretation of the Laplace operator. Even if the initial data does depend on the variables to be omit-
ted, our first property asserts that this variation will tend to disappear; hence we may still get a good
approximation after waiting through an initial transient. On the other hand, one usually cannot accept
this approximation near, for example, the ends of the body where “end effects” due to those boundary
conditions may become significant.

69.3.3 Linearity

We follow Fourier in using the linearity of the heat equation, expressed as a “superposition principle” for
solutions, to obtain a general representation for solutions as an infinite series. Let {[ek , λk] : k = 0, 1, . . .}
be the pairs of eigenfunctions and eigenvalues for−ΔΔ onΩ, that is,

−ΔΔΔek = λkek onΩ (with BC) for k = 0, 1, . . . (69.22)

where “BC” denotes one of the homogeneous conditions

ek = 0 or
∂ek

∂9n = 0 on ∂Ω (69.23)

according as we are considering Equation 69.17 or 69.15. It is always possible to take these so that

∫
Ω

|ek|2 dV = 1,
∫
Ω

eiek dV = 0 for i �= k, (69.24)

with 0≤ λ0 < λ1 ≤ · · · →∞; we have λ0 > 0 for Equation 69.17 and λ0 = 0 for Equation 69.15.
One sees immediately from Equation 69.22 that each function e−λkt ek(x) satisfies Equation 69.1; hence

superposing, we see that

v(t, x)=
∑

k

cke−λkt ek(x) (69.25)
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gives the “general solution” with the coefficients (ck) obtained from Equation 69.13 by

ck = 〈ek , v0〉 so v0(·)=
∑

k

ckek(·), (69.26)

assuming Equation 69.24. Note that 〈·, ·〉 denotes the L2(Ω) inner product: 〈f , g〉 = ∫
Ω

f (x)g(x) dmx (for
m-dimensionalΩ—with, physically, m= 1, 2, 3). The expansion (Equation 69.26, and so Equation 69.25),
is valid if the function v0 is in the Hilbert space L2(Ω), that is, if

∫
Ω
|v0|2 <∞. Note that the series

(Equation 69.26) need not converge pointwise unless one assumes more smoothness for v0 but, since it is
known that, asymptotically as k→∞, one has

λk ∼ Ck2/m with C = C(Ω), (69.27)

the factors e−λkt decrease quite rapidly for any fixed t > 0 and Equation 69.25 then converges nicely to a
smooth function. Indeed, this is just the “smoothing” noted above: this argument can be used to show that
solutions of Equation 69.1 are analytic (representable locally by convergent power series) in the interior
ofΩ for any t > 0 and we note that this does not depend on having homogeneous boundary conditions.

Essentially the same approach can be used when there is a source termψ as in Equation 69.9 but we still
have homogeneous boundary conditions as, for example, g0 = 0 in Equation 69.17. We can then obtain
the more general representation

v(t, x)=
∑

k

γk(t)ek(x), where

γk(t)= cke−λkt +
∫ t

0
e−λk(t−s)ψk(s) ds,

ck = 〈ek , v0〉, ψk(t)= 〈ek ,ψ(t, ·)〉

(69.28)

for the solution of Equation 69.9. When ψ is constant in t, this reduces to

γk(t)=ψk/λk + [ck −ψk/λk] e−λkt −→ψk/λk

which not only shows that v(t, ·)→ v̄, as in Equation 69.19 with g0 = 0, but also demonstrates the
exponential rate of convergence with the transient dominated by the principal terms, corresponding to
the smaller eigenvalues. This last must be modified slightly when using Equation 69.15, since one then
has λ0 = 0.

Another consequence of linearity is that the effect of a perturbation is simply additive: if v̂ is the solution
of Equation 69.9 with data ψ̂ and v̂0 and one perturbs this to obtain a new perturbed solution ṽ for the
data ψ̂+ψ and v̂0+ v0 (and unperturbed boundary data), then the solution perturbation v = ṽ− v̂ itself
satisfies Equation 69.9 with data ψ and v0 and homogeneous boundary conditions. If we now multiply
the partial differential equation by v and integrate, we obtain

d

dt

(
1

2

∫
Ω

|v|2
)
+
∫
Ω

| 9∇v|2 =
∫
Ω

vψ,

using the divergence theorem to see that
∫

vΔv =− ∫ | 9∇v|2 with no boundary term since the boundary
conditions are homogeneous. The Cauchy–Schwarz inequality gives

∣∣∫ vψ
∣∣≤ ‖v‖ ‖ψ‖, where ‖ · ‖ is the

L2(Ω)-norm: ‖v‖ = [∫
Ω
|v|2]1/2

and we can then apply the Gronwall Inequality∗ to obtain, for example,
the energy inequality

‖v(t)‖2, 2
∫ t

0
‖ 9∇v‖2 ds ≤

(
‖v0‖2+

∫ t

0
‖ψ‖2 ds

)
et . (69.29)

This is one form of the well-posedness property asserted at the end of the last section.

∗ If a function ϕ ≥ 0 satisfies ϕ(t)≤ C+M
∫ t

0 ϕ(s) ds for 0≤ t ≤ T, then it satisfies: ϕ(t)≤ CeMt there.
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69.3.4 Autonomy, Similarity, and Scalings

Two additional useful properties of the heat equation are autonomy and causality. The first just means that
the equation itself is time independent; hence a time-shifted setting just gives the time-shifted solution. For
the pure initial-value problem—that is, Equation 69.1 with g = 0 in Equation 69.17 or 69.15—“causality”
means that v(t, ·) is determined by its “initial data” at any previous time t0; hence we may write

v(t, ·)= S(t− t0) v(t0, ·) (69.30)

where S(τ) is the solution operator for Equation 69.1 for elapsed time τ≥ 0. This operator S(τ) is a nice
linear operator in a variety of settings, for example, L2(Ω) or the space C(Ω̄) of continuous functions with
convergence of functions meaning uniform convergence. A comparison with Equation 69.25 shows that

S(t) : ek �→ e−λkt ek so S(t)

[∑
k

ckek

]
=
[∑

k

cke−λkt ek

]
. (69.31)

From Equation 69.30 one obtains the fundamental “semigroup property”

S(s+ t)= S(t) ◦ S(s) for t, s ≥ 0. (69.32)

This only means that, if one initiates Equation 69.1 with any initial data v0 at time 0 and so obtains
v(s, ·)= S(s)v0 after a time s and v(s+ t, ·)= S(s+ t)v0 after a longer time interval of length s+ t, as in
Equation 69.30, “causality” gives v(s+ t, ·)= S(t)v(s, ·). It is possible to verify that this operator function
is strongly continuous at t = 0:

S(t)v0 → v0 as t → 0 for each v0

and is differentiable for t > 0: Equation 69.1 just tells us that

d

dt
S(t)= ΔΔS(t), (69.33)

where the Laplace operator ΔΔ here includes specification of the appropriate boundary conditions; we
refer toΔΔΔ in Equation 69.33 as “the infinitesimal generator of the semigroup S(·).”

In terms of S(·) we obtain a new solution representation for Equation 69.9:

v(t, ·)= S(t)v0+
∫ t

0
S(t− s)ψ(s, ·) ds. (69.34)

Note that S precisely corresponds to the “Fundamental Solution of the homogeneous equation” for
ordinary differential equations and Equation 69.35 is just the usual “variation of parameters” solution for
the inhomogeneous equation 69.9; compare also with Equation 69.33. We may also treat the system with
inhomogeneous boundary conditions by introducing the Green’s operator G : g �→ w, defined by solving

−ΔΔw = 0 onΩ, Bw = g at ∂Ω. (69.35)

with Bw either w or ∂w/∂9n, according as we consider Equation 69.17 or 69.15. Since u= v−w then
satisfies ut =Δu+ (ψ−wt) with homogeneous boundary conditions, we may use Equations 69.33 and
69.34 to obtain, after an integration by parts,

v(t, ·)= S(t)v0+G[g0(t)− g0(0)] ds+
∫ t

0
S(t− s)ψ(s, ·) ds−

∫ t

0
ΔS(t− s)Gg0(s) ds. (69.36)

The autonomy/causality above corresponds to the invariance of Equation 69.1 under time-shifting and we
now note the invariance under some other transformations. For this, we temporarily ignore considerations
related to the domain boundary and takeΩ to be the whole 3-dimensional space R

3.
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It is immediate that in considering Equation 69.12 (with ψ= 0) with constant coefficients we have
ensured that we may shift solutions arbitrarily in space. Not quite as obvious mathematically is the phys-
ically obvious fact that we may rotate in space. In particular, we may consider solutions which, spatially,
depend only on the distance from the origin; so v = v(t, r) with r = |x| =√x2+ y2+ z2. Equation 69.12
with ψ=ψ(t, r) is then equivalent to

∂v

∂t
= D

[
∂2v

∂r 2 +
2

r

∂v

∂r

]
+ψ, (69.37)

which involves only a single spatial variable. For the two-dimensional setting x = (x, y) as in Section 69.3.2,
this becomes

∂v

∂t
= D

[
∂2v

∂r 2 +
1

r

∂v

∂r

]
+ψ. (69.38)

More generally, for a d-dimensional case, Equations 69.37 and 69.38 can be written as

vt = r−(d−1)
(

rd−1vr

)
r
+ψ. (69.39)

The apparent singularity of these equations as r → 0 is, of course, only an effect of the use of polar
coordinates. As in Section 69.3.3, we may seek a series representation like Equation 69.25 for solutions
of Equation 69.39 with the role of the eigenfunction equation 69.22 now played by Bessel’s equation; we
then obtain an expansion in Bessel functions with the exponentially decaying time dependence e−λkt as
earlier.

Finally, we may also make a combined scaling of both time and space. If, for some constant c, we set

t̂ = c2Dt, x̂ = cx, (69.40)

then, for any solution v of Equation 69.12 with ψ= 0, the function v̂(t̂, x̂)= v(t, x) will satisfy
Equation 69.1 in the new variables. This corresponds to the earlier comment that we may make D = 1
by appropriate choice of units.

Closely related to the above is the observation that the function

k(t, x)= (4πDt)−d/2e−|x|2/4Dt (69.41)

satisfies Equation 69.39 for t > 0 while a simple computation shows∗ that∫
Rd

k(t, x) ddx = 1 for each t > 0; (69.42)

thus k(t, ·) becomes a δ-function as t → 0. So, k(t− s, x− y) is the impulse response function for an
impulse at (s, y). Taking d = 3, we note that

v(t, x)=
∫

R3
k(t, x− y)v0(y) d3y (69.43)

is a superposition of solutions (now by integration, rather than by summation); hence, linearity ensures
that v is itself a solution; we also have

v(t, ·)−→ v0 as t → 0, (69.44)

where the specific interpretation of this convergence depends on how smooth v0 is assumed to be. Thus,
Equation 69.43 provides another solution representation–although, as noted, it ignores the effect of the
boundary for a physical region which is not all of R

3. For practical purposes, following the ideas of
Section 69.3.2, the formula (Equation 69.43) will be a good approximation to the solution so long as√

2Dt is quite small† as compared to the distance from the point x to the boundary of the region.

∗ We may observe that k(t, ·) is a multivariate normal distribution (Gaussian) with standard deviation
√

2Dt → 0 as t → 0.
† When x is too close to the boundary for this to work well, it is often plausible to think of ∂Ω as “almost flat” on the

relevant spatial scale and then to extend v0 by reflection across it—as an odd function if one were using Equation 69.17
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69.4 Some Control-Theoretic Examples

In this section we provide three comparatively elementary examples to see how the considerations above
apply to some control-theoretic questions. The first relates to a simplified version of a quite practical
heat transfer problem and is treated with the use of rough approximations, essentially to see how such
heuristic treatment can be used to obtain practical results. The second describes the problem of control
to a specified terminal state—which would be a standard problem in the case of ordinary differential
equations but which involves some new considerations in this distributed parameter setting. The final
example is a “coefficient identification” problem: using interaction (input/output) at the boundary to
determine the function q= q(x) in an equation of the form ut = uxx − qu, generalizing Equation 69.21.

69.4.1 A Simple Heat Transfer Problem

We consider a slab of thickness a and diffusion coefficient D within which heat is generated at constant
rateψ. On the one side, this is insulated (vx = 0) and on the other, it is in contact with a stream of coolant
(diffusion coefficient D′) moving in an adjacent duct with constant flow rate F in the y-direction. Thus,
the slab occupies {(x, y) : 0 < x < a, 0 < y < L} and the duct occupies {(x, y) : a < x < ā, 0 < y < L}with
a, ā$ L and no dependence on z.

If the coolant enters the duct at y = 0 with input temperature u0, our problem is to determine how hot
the slab will become. For this purpose, we assume that we are operating in steady state, that the coolant
flow is turbulent enough to ensure perfect mixing (and so constant temperature) across the duct, and
that—to a first approximation—the longitudinal transfer of heat is entirely by the coolant flow so we may
consider conduction in the slab only in the transverse direction (0 < x < a).

The source termψ in the slab gives heat production aψ per unit distance in y and this must be carried
off by the coolant stream to have a steady state. We might, as noted earlier, shift to material coordinates
in the stream to obtain an equation there but, more simply, we just observe that when the coolant has
reached the point y it must have absorbed the amount aψy of heat per second and, for a flow rate F
(choosing units so that ρc in Equation 69.7 is 1) this will have raised the coolant temperature from u0 to
[u0+ aψy/F] =: u(y).

Now consider the transverse conduction in the slab. We have there vt = Dvxx +ψ with vt = 0 for
steady state. As vx = 0 at the outer boundary x = 0, the solution has the form v = v∗ − (ψ/2D)x2, where
v∗ is exactly what we wish to determine. If we assume a simple temperature match of slab to coolant
(v = u(y) at x = a), then this gives v∗(y)− (ψ/2D)a2 = v(a, y)= u(y)= u0+ aψy/F; so

v∗ = v∗(y)= u0+
[ y

F
+ a

2D

]
aψ,

v = u0+
[

y

F
+ a

2D

(
1−

[x

a

]2
)]

aψ.
(69.46)

A slight correction of this derivation is worth noting: for the coolant flow we expect a bound-
ary layer (say, of thickness δ) of “stagnant” coolant at the duct wall and within this layer we have
ux ≈ constant=− [v(a)− u

∣∣
flow

]
/δ, while also −D′ux = flux= aψ by Fourier’s Law; so, instead of

matching v(a)= u(y), we obtain v(a)= u(y)+ (δ/D′)aψ which also increases v∗, v by (δ/D′)aψ as a
correction to Equation 69.46; effectively, this correction notes the reduction of heat transfer through

with g0 = 0 or as an even function if one were using Equation 69.15 with g1 = 0. For Equation 69.17 with, say, g0 = g0(t)
locally, there would then be a further correction by adding

∫ t

0
k̂(t− s, x)g0(s) ds, k̂(τ, x)= x

τ
k1(τ, x)= 2D

∂k1

∂x
(69.45)

where k1 = k1(τ, x) is as in Equation 69.41 for d = 1 and x is here the distance from x to the boundary; compare
Equation 69.36. There are also comparable correction formulas for more complicated settings.
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replacing the boundary conditions (Equation 69.17) by (Equation 69.16) with λ= D′/δ. Much more
complicated corrections would be needed if one would have to consider conduction within the duct,
especially with a velocity profile other than the plug flow assumed here.

We also note that in this derivation we neglected longitudinal conduction in the slab, essentially
omitting the vyy term in Equation 69.12. Since Equation 69.46 gives vyy = 0, this is consistent with the
equation. It is, however, inconsistent with reasonable boundary conditions at the ends of the slab (y = 0, L)
and one would expect “end effects” as well as some evening out of v∗.

We note that, although this was derived in steady state, we could think of using Equation 69.46 for an
optimal control problem (especially ifψ would be time dependent, but slowly varying) with the flow rate
F as control.

69.4.2 Exact Control

We consider the problem of usingψ as control to reach a specified “target state,”ω= ω(x) at time T . We
base the discussion on the representation∗ (Equation 69.28), which permits us to treat each component
independently: the condition that v(T , ·)= ω becomes the sequence of “moment equations”

γk(T)= cke−λkT +
∫ T

0
e−λk(T−s)ψk(s) ds

= ωk := 〈ek ,ω〉
(69.48)

for each k. This does not determine the control uniquely, when one exists, so we select by optimality,
minimizing the norm of ψ in L2(Q) with Q= (0, T)×Ω. This turns out to be equivalent to requiring

that ψk(t) should be a constant times eλk(T−t); so, noting that
∫ T

0

∣∣e−λk(T−s)
∣∣2 ds = [1− e−2λkT

]
/2λk ,

the conditions (Equation 69.48) give us the formula

ψ(t, x)= 2
∑

k

λk

(
ωk − cke−λkT

1− e−2λkT

)
e−λk(T−t)ek(x). (69.49)

This formula converges if (and only if) the specified target state ω is, in fact, attainable by some control
in L2(Q). So far, so good!

Let us now see what happens when we actually attempt to implement the use of Equation 69.49.
Adding a touch of realism, one must truncate the expansion (say, at k = K) and one must then find each
coefficient αk = ωk − cke−λkT with an error bound εk by using some algorithm of numerical integration
on Ω to compute the inner products 〈ek ,ω〉. [For simplicity we assume that we would already know
exactly the relevant eigenvalues and eigenfunctions, as is the case for Equation 69.21 and for a variety of
higher-dimensional geometries.] Denoting the optimal control byΨ and the approximation obtained by
ΨK , we can bound the total error by

‖Ψ−ΨK‖2
Q ≤ 2

K∑
k=1

[
λkε

2
k

1− e−2λkT

]
+ 2

∑
k>K

[
λkα

2
k

1− e−2λkT

]
. (69.50)

For an attainable target ω the second sum is small for large K , corresponding to convergence of
Equation 69.49. The use of a fixed error bound |εk| ≤ ε for the coefficient computation would make the
first sum of the order of K1+(2/d)ε by Equation 69.27 so this sum would become large as K increased.

∗ For definiteness, one may think of the 1-dimensional heat equation 69.21 with homogeneous Dirichlet boundary condi-
tions at x = 0, 1. The eigenvalues and normalized eigenfunctions are then

λk = k2π2, ek(x)=√2 sin kπx; (69.47)

so the expansions, starting at k = 1, for convenience, are standard Fourier sine series.
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To make the total error (Equation 69.50) small requires picking K and then choosing ε dependent on
this choice—or using a relative error condition: |εk| ≤ ε|αk|. This last seems quite plausible for numerical
integration with floating point arithmetic—but one trap remains! Neglecting v0, a plausible form of the
error estimate for a method of numerical integration might be

|εk| ≤ Cνh
ν‖ωek‖[ν] ∼ C′νhνλ

ν/2
k ‖ω‖[ν],

where h characterizes a mesh size and the subscript on ‖ · ‖[ν] indicates consideration of derivatives of

order up to ν, with ν depending on the choice of integration method; we have noted that ‖ek‖[ν] ∼ λν/2
k

since the differential operatorΔ is already of order 2. This means that one might have to refine the mesh
progressively to obtain such a uniform relative error for large k.

69.4.3 System Identification

Finally, we consider a 1-dimensional example governed by an equation known to have the form∗

∂v

∂t
= D

∂2v

∂x2 − q(x)v, (69.51)

but with D and the specific coefficient function q(·) unknown or known with inadequate accuracy. We
will assume here that u= 0 at x = 1, but that interaction is possible at the end x = 0 where one can both
manipulate the temperature and observe the resulting heat flux; for simplicity, we assume that v0 = 0.
Thus, we consider the input/output pairing: g �→ f , defined through Equation 69.51 with

u(t, 1)= 0 u(t, 0)= g(t)

f (t) := −Dux(t, 0).
(69.52)

By linearity, causality, and autonomy of Equation 69.51, we see that this pairing takes the convolution
form

f (t)=
∫ t

0
σ(t− s)g(s) ds =

∫ t

0
σ(s)g(t− s) ds (69.53)

where σ(·) is a kind of impulse response function. Much as we obtained Equations 69.25 and 69.36, we
obtain

σ(t)=
∑

k

σke−λkt

with σk := −Dλke′k(0)〈z, ek〉
Dz′′ − qz = 0 z(0)= 1, z(1)= 0,

−De′′k + qek = λkek ek(0)= 0= ek(1),

(69.54)

noting that z and {(λk , ek)} are unknown since q is unknown.
Viewing Equation 69.53 as an integral equation for σ, it can be shown that Equation 69.53 determines σ

for appropriate choices of the input g(·)—simplest would be if we could take g to be a δ-function (impulse)
so that the observed f would just be σ: otherwise we must first solve a Volterra equation of first kind,
which is already an ill-posed problem. The function σ(·) contains all the information about the unknown
q which we can get and it is possible to show that quite large differences for q may produce only very
small perturbations of σ; thus, this identification problem cannot be “well-posed,” regardless of g(·).

None of the coefficients σk will be 0; so, given σ(·), Equation 69.54 uniquely determines the eigenvalues
{λk}which appear there as exponents. We note thatλk ∼ Dπ2k2; so D = limk λk/π

2k2 is then determined.

∗ For example, such an equation might arise for a rod reduced to a simplified 1-dimensional form with heat loss to the
environment appearing through a boundary condition at the surface of the rod as in Equation 69.16, with g = constant
and λ, here q, varying along the rod.
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It is then possible to show (by an argument involving analytic continuation, Fourier transforms, and
properties of the corresponding wave equation) that σ(·) uniquely determines q(·), as desired.

The discussion above gives no suggestion as to how to compute D, q(·) from the observations. Typically,
one seeks nodal values for a discretization of q. This can be done, for example, by history matching, an
approach often used for such identification problems, in which one solves the direct problem with a
guessed q to obtain a resulting “f = f (q)” and proceeds to find the q which makes this best match the
observed f . It is a useful viewpoint to consider the guessed q as a control so that the idea of ‘best match’
makes this an optimal control problem

With some further a priori information about the function q—say, a known bound on the deriva-
tive q′—the uniqueness result, although itself nonconstructive, serves to ensure convergence for these
computations to the correct result as the discretization is refined. Note that it is the auxiliary a priori
information which converts this to a well-posed problem, although one which will be quite badly condi-
tioned; hence the practical difficulties do not entirely disappear. A frequently used approach to this is the
use of regularization, for example, including in the optimization criterion for “best match” some penalty
for undesirable oscillations of q, trading resolution for stability of the computations.

69.5 More Advanced System Theory

In this section we consider the system–theoretic results available for the heat equation, especially regarding
observability and controllability. Our emphasis is on how, although the relevant questions are quite
parallel to those standard in “lumped parameter” control theory, one has new technical difficulties which
can occur only because of the infinite-dimensional state space; this will also mean that this section
describes in more detail the results of Functional Analysis∗ and special mathematical results for the
partial differential equations involved.

69.5.1 The Duality of Observability/Controllability

For the finite-dimensional case, controllability for a problem and observability for the adjoint problem
are dual—essentially, one can control ẋ = Ax+Bg (g(·)= control) from one arbitrary state to another if
and only if only the trivial solution of the adjoint equation−ẏ = A∗y can give [observation]= B∗y(·)≡ 0.
Something similar holds for the heat equation (e.g., with boundary I/O), but we must be rather careful in
our statement.

We begin by computing the relevant adjoint problem, taking the boundary control problem as

ut =Δu on Q with Bu= g onΣ and u
∣∣∣
t=0
= u0 (69.55)

in which the control function g is the data for the boundary conditions, defined on Σ= (0, T)× ∂Ω.
As for Equation 69.35, the operator B will correspond to either Equation 69.17 or 69.15; we may now
further include in the specification of B a requirement that g(·) is restricted to be 0 outside some fixed
“patch”—that is, a relatively open subset U ⊂ ∂Ω, viewed as an “accessible” portion of ∂Ω—and then
refer to this as a problem of “boundary patch control.” Note that

uT := u(T , ·)= S(T)u0+ Lg(·) (69.56)

where Equation 69.36 gives

L : g(·) �→ G[g(T)− g(0)]−
∫ T

0
ΔS(T − s)Gg(s) ds.

∗ We note [1,2] as possible general references for Functional Analysis, specifically directed toward distributed parameter
system theory.
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For the adjoint problem, we consider

−vt =ΔΔv Bv = 0; ϕ= [B̂v]
∣∣∣
U

, (69.57)

where B̂ gives the “complementary” boundary data: B̂v := ∂v/∂9n if B corresponds to Equation 69.17 and

B̂v := v
∣∣∣
∂Ω

if B corresponds to Equation 69.15. We then have, using the Divergence Theorem,

[∫
Ω

uT vT

]
−
[∫
Ω

u0v0

]
= ∫Q(uv)t =

∫
Q[( 9∇2u)v− u( 9∇2v)]

= ∫
Σ
[u9nv− uv9n] = −

∫
U gϕ,

where we write vT , v0 for v(T , ·), v(0, ·), respectively, and set Q= (0, T)×Ω. Thus, with subscripts indi-
cating the domain for the inner product of L2(·), we have the identity

〈uT , vT 〉Ω+〈g ,ϕ〉U = 〈u0, v0〉Ω (69.58)

from which we wish to draw conclusions.
First, consider the reachable set R = {uT : g = any∈ L2(U); u0 = 0}, which is just the range of the

operator L : L2(U)→ L2(Ω). If this were not dense, that is, if we did not have R = L2(Ω), then (by the
Hahn–Banach Theorem) there would be some nonzero v∗T orthogonal to all uT ∈R; so Equation 69.58
would give 〈g ,ϕ∗〉U = 0 for all g , whence ϕ∗ = 0, violating detectability (i.e., that ϕ∗ = 0 only if v∗ = 0).
Conversely, a violation of detectability would give a nonzero v∗ with v∗T �= 0 orthogonal to R. Thus,
detectability is equivalent to approximate controllability. This last means that one could control arbitrarily
closely to any target state, even if it cannot be reached exactly—a meaningless distinction for finite-
dimensional linear systems although significant for the heat equation since, as we have already noted,
solutions of Equation 69.1 are very smooth (analytic) in the interior of Ω; so only very special targets
could be exactly reachable.

Detectability means that the map vT �→ v �→ ϕ is 1–1; hence, inverting, ϕ �→ vT �→ v0 is well-defined:
one can predict (note the time-reversal in Equation 69.57) v0 from observation of ϕ on U . In the finite-
dimensional case, any linear map such as A : ϕ �→ v0 would necessarily be continuous (bounded), but
here this is not automatically the case; note that the natural domain of A is the range of vT �→ ϕ and, if
one had continuity, this would extend to the closure M=MU ⊂ L2(U). For bounded A :M→ L2(Ω)
there is a bounded adjoint operator A∗ : L2(Ω)→M and, if we were to set g = A∗u0 in Equation 69.55,
we would obtain

〈uT , vT 〉Ω = 〈u0, Aϕ〉Ω−〈A∗u0,ϕ〉U = 0 for every vT ∈ L2(Ω).

This would imply uT = 0; hence g = A∗u0 is a nullcontrol from u0—indeed, it turns out that this g is the
optimal nullcontrol in the sense of minimizing the L2(U)-norm. Conversely, if there is some nullcontrol
g̃ for each u0, there will be a minimum-norm nullcontrol g and the map C : u0 �→ g is then linear and is
continuous by the Closed Graph Theorem. Further, its adjoint A= C∗ is just the observation operator:
ϕ �→ vT whence bounded observability for the adjoint problem is equivalent to nullcontrollability∗ for
Equation 69.55 which, from Equation 69.56, is equivalent to knowing that the range of L contains the
range of S(T).

Suppose we have nullcontrollability for arbitrarily small T > 0, always taking U = [0, T]×U for some
fixed patch U ⊂ ∂Ω. A simple argument shows that the reachable set R must then be entirely independent
of T and of the initial state u0. No satisfactory characterization of R is available, although there are various
known sufficient considerations to have some ω ∈R.

∗ This observation is the heart of the Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions. If one has detectability
one might use the great freedom Hilbert space theory gives for selecting norms to find one making the space of observations
complete so C∗ would be bounded; then, if the resultant dual space can be suitably characterized, one will have found an
appropriate context for nullcontrollability.
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69.5.2 The One-Dimensional Case

From the discussion above, it will clearly be sufficient to prove bounded observability for the one-
dimensional heat equation to have nullcontrollability also. (As a historical note, this equivalence was not
realized at the time these results were first proved; so originally they were proved independently.) We will
consider specifically the observability problem withΩ= (0, 1), U = (0, T)×{0} and

vt = vxx v(t, 0)= v(t, 1)= 0; ϕ(t) := vx(t, 0), (69.59)

for which we explicitly know Equation 69.47. From Equation 69.25, we obtain

ϕ(t)=
∑

k

c̃ke−λkt , (69.60)

v(T , ·)=
∑

k

c̃k

kπ
e−λkT ek(·). (69.61)

[Note that, for convenience, we have re-reversed time in comparison with Equation 69.57 and that, from
Equation 69.25, we have c̃k =

√
2kπ

∫ 1
0 v0(x) sin kπx dx—although we will have no need of any explicit

information about v0.]
The form of Equation 69.60 is a Dirichlet series; note that this becomes a power series in ξ= e−π2t with

only the k2 powers appearing: e−λkt = e−k2πt = ξk2
. The theory of such series centers on the Müntz–Szász

Theorem (extending the Weierstrass Approximation Theorem) which, for our purposes, shows that only
quite special functions can have L2-convergent expansions (Equation 69.60) whenΣ1/λk <∞. One has
estimates for Equation 69.60 of the form

|c̃k| ≤ βk‖ϕ‖L2(0,∞) (69.62)

with the values of βk explicitly computable as an infinite product

βk =
√

1+ 2λk

∏
i �=k

∣∣∣∣1+ 1+ 2λk

λi −λk

∣∣∣∣ (69.63)

(convergent when
∑

k 1/λk is convergent); note that 1/βk is the distance in L2(0,∞) from exp[−λkt] to
span {exp[−λit] : i �= k}. L. Schwarz has further shown that for functions given as in Equation 69.60 one
has

‖ϕ‖L2(0,∞) ≤ ΓT‖ϕ‖L2(0,T). (69.64)

Combining these estimates shows that

‖v(T , ·)‖L2(0,1) ≤ CTΓT‖ϕ‖L2(0,T)

(
C2

T :=
∑

k

[
βk

kπ

]2

e−2k2π2T

)
. (69.65)

The sequence βk increases moderately rapidly as k→∞ but the exponentials exp[−k2π2T] decay
even more rapidly; so the sum giving C2

T is always convergent and Equation 69.65 provides a bound
(‖A‖ ≤ ΓT CT <∞) for the observation operator ∗ A :M=M[0,T] → L2(Ω) : ϕ �→ v(T , ·), when T > 0
is arbitrarily small.

∗ We note at this point that an estimate by Borwein and Erdélyi makes it possible to obtain comparable results when U
has the form U = E×{0} with E any subset of [0, T] having positive measure; one consequence of this is a proof of the
bang-bang principle for time-optimal constrained boundary control.
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A somewhat different way of looking at this is to note that the linear functional: M→ R : ϕ �→ c̃k must
be given by a function gk ∈ L2(0, T) such that

∫ T

0
gk(t)e−λi t dt = δi,k :=

{
0 if i �= k,
1 if i = k.

(69.66)

If we think of gk(·) as defined on R (0 off [0, T]), we may take the Fourier transform and note that
Equation 69.66 just asserts the “interpolation conditions”

ĝk(−jλi)=
√

2πδi,k ( j =√−1); (69.67)

so it is sufficient to construct functions ĝk satisfying Equation 69.67, together with the properties required
by the Paley–Wiener Theorem to get the inverse Fourier transform in L2(0, T) with ‖gk‖ = βk . This
approach leads to the sharp asymptotic estimate

ln ‖A‖ =O(1/T) as T → 0, (69.68)

showing how much more difficult∗ observability or controllability becomes for small T , even though one
does have these for every T > 0.

A variant of this considers an interior point observation ϕ(t) := v(t, a). The observability properties
now depend on number-theoretic properties of 0 < a < 1 — for rational a=m/n, one obtains no infor-
mation at all about ck when k is a multiple of n, since then sin kπa= 0, and there is difficulty if a is
approximable by rationals too rapidly. It can be shown that one does have bounded observability (with
arbitrarily small T > 0) for a in a set of full measure whereas the complementary nullset for which this
fails is uncountable in each subinterval.†

Finally, we note that an essentially identical treatment for all of the material of this subsection would
work more generally for Equation 69.21 and with other boundary conditions.

69.5.3 Higher-Dimensional Geometries

We have already noted that the geometry may be significant here in ways which have no finite-dimensional
parallel. For higher-dimensional cases, we note first that we can obtain observability for any “cylindrical”
region Ω := (0, 1)× Ω̂⊂ R

d with U = (0, T)×[0× Ω̂] by using the method of “separation of variables”
to reduce this to a sequence of independent one-dimensional problems: noting that we have here

λk,� = k2π2+ λ̂� ek,�(x, x̂)= [√2 sin kπx]ê�(x̂),

we obtain

Avx(·, 0, ·)=
∑

�

[A1ϕ�](x)e−λ̂�T ê�(x̂),

with ϕ�(t) := eλ̂�t〈vx(t, 0, ·), ê�〉Ω̂
where A1 is the observability operator for Equation 69.59. It is easy to check that this gives ‖A‖ ≤ ‖A1‖<

∞ and we have nullcontrollability by duality.
For more general regions, when U is all ofΣ := (0, T)× ∂Ωwe may shift to the context of nullcontrol-

lability for Equation 69.55 and rely on a simple geometric observation. Suppose we have Ω⊂ Ω̃⊂ R
d ,

∗ This may be compared to the corresponding estimate: ‖A‖ =O
(

T−(K+1/2)
)

for the finite-dimensional setting, with K ,

the minimal index, giving the rank condition there.
† Since the “bad set” has measure 0, one might guess that observation using local integral averages (as a “generalized

thermometer”) should always work but, somewhat surprisingly, this turns out to be false.
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where Ω̃ is some conveniently chosen region (e.g., a cylinder, as above) for which we already know
that we have nullcontrollability for Equation 69.55, that is, with Q, U replaced by Q̃= (0, T)× Ω̃ and
Ũ = Σ̃= (0, T)× ∂Ω̃, respectively. Given any initial data u0 ∈ L2(Ω) for Equation 69.55, we extend it as 0
to all of Ω̃ and, as has been assumed possible, let ũ be a (controlled) solution of Equation 69.55, vanishing
on all of Ω̃ at time T . The operator B acting (at Σ) on ũ will have some value, which we now call “g” and
using this in Equation 69.55 necessarily (by uniqueness) gives the restriction to Q of ũ which vanishes
at T . Thus, this g is a nullcontrol for Equation 69.55. As already noted, once we have a nullcontrol g for
each u0, it follows, as noted earlier, that the nullcontrol operator C for this setting is well defined and
continuous; by duality, one also has bounded observability.

At this point we note an irreversible deep connection [8] between the control theories for the wave and
heat equations:

observability for the wave equation wtt =ΔΔΔw for some [Ω, U] and some T∗ > 0 implies
observability for the heat equation ut =ΔΔΔu for arbitrary T > 0 in the same geometric setting
[Ω, U]

with observability results for the wave equation obtainable [8,10] from known Scattering Theory results.
From this, one obtains observability/controllability for the heat equation for a variety of geometric settings,
but there is a price in terms of significant geometric restrictions on [Ω, U] related to wave propagation.

On the other hand, it has now been shown that use of an arbitrary patch U ⊂Ω or U ⊂ ∂Ω suffices
for observation or control of Equation 69.1. This uses the technique of Carleman estimates∗ which is
quite technical; hence we have given here only a very brief sketch of how it applies to Equation 69.1.
Given, for example, an interior patch U ⊂Ω; so we would be considering the restriction to U as the
observation operator in Equation 69.57, one begins with a positive function φ onΩ vanishing on ∂Ω and
with | 9∇φ|> 0 outside the patch U and then, with parameters r, s, one sets

σ= e2s φmax − esφ(x)

(t/T)(1− t/T)T
, ρ= rs esφ(x)

(t/T)(1− t/T)T
, v = e−rσ

√
ρ

u(t, x). (69.69)

After integration by parts of products coming from relevant derivatives, one obtains an estimate of the
form

s
∫ T

0

∫
Ω

[
|vt |2+ |ΔΔv|2+ |ρ 9∇v|2+ |ρ2v|2

]
≤ Cφ

∫ T

0

∫
U
ρ|u|2

for large enough s and then r = r(s). From this one can obtain the desired observability estimate ‖uT‖Q ≤
C‖u‖U and so also has nullcontrollability using controls supported in this interior patch. (Further, the
structure of Equation 69.69 gives the asymptotics Equation 69.68 in this context as well.)

For boundary control supported in a patch U ⊂ ∂Ω, one can use a trick: extend the region Ω to a
larger Ω̂ by a small bulge sitting on U and select a (very small) patch Û in the interior of the bulge.
Applying the patch control result above to the setting (Ω̂, Û), one can get a nullcontrol supported in Û
for Ω̂; the trace of this solution on the part of U contained in Ω̂ (extended as 0 on the rest of ∂Ω) will be
a nullcontrol, obviously supported on U , for the problem onΩ as desired.

As final comments we note concern for similar problems with nonlinearities in the equation or in
the boundary conditions. Perhaps still more interesting is concern for systems in which the heat equa-
tion is coupled with other components. For example, one such (linear) example which has been given
consideration by several authors is a thermoelastic plate model

wtt +Δ2w = αΔϑ, ϑt = ΔΔϑ− αΔwt , (69.70)

coupling an Euler–Bernoulli plate with heat conduction. The interesting problem here is observabil-
ity/nullcontrollability with observation or control limited not only to a patch U but also to a single

∗ The Carleman estimate technique applies not only to the heat equation, but also to similar problems for wave and elliptic
partial differential equations, and so on; see, for example, [4].
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component (temperature ϑ or displacement w or momentum wt). (As of this writing, this is known for
an interior patch U , but not for a boundary patch since the trick above does not apply when one wishes
to consider only one component of a system.)
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70.1 Comparison with the Finite Dimensional Case

The general question of observability in the finite dimensional setting concerns a system

ẋ = f (x, . . .), x ∈ Rn,

where the ellipsis indicates that the system might involve additional parameters, controls, disturbances,
etc., and an output (measurement, observation) function

y = g(x, . . .), y ∈ Rm.

Observability theory is concerned, first of all, with the question of distinguishability, i.e., whether distinct
system trajectories x(t), x̂(t) necessarily give rise to distinct outputs y(t), ŷ(t) over a specified time inter-
val. The observability question, properly speaking, concerns actual identification of the trajectory x(t),
equivalently, the initial state x0, from the available observations on the system with an ultimate view
to the possibility of reconstruction of the trajectories, or perhaps the initial or current states, which, in
application, are generally not directly available from the outputs, typically consisting of a fairly small set
of recorded instrument readings on the system. In the linear case, observability and distinguishability are
equivalent, and both questions can be treated in the context of a vector/matrix system

ẋ = A(t)x, x ∈ Rn, A(t) ∈ Rn×n, (70.1)

together with an output vector y related to x via

y = C(t)x, y ∈ Rm, C(t) ∈ Rm×n, (70.2)

and it is a standard result [1] that observability obtains on an interval [0, T], T > 0, just in case y ≡ 0
implies that x ≡ 0 on that interval. This observability property, in turn, is equivalent to the positive

70-1
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definiteness of the matrix integral

Z(T)=
∫ T

0
Φ(t, 0)∗C(t)∗C(t)Φ(t, 0) dt, (70.3)

where Φ(t, s) is the fundamental solution matrix of the system with Φ(s, s)= I . The initial state x0 can
then be reconstructed from the observation y(t) by means of the reconstruction operator (cf. [18])

x0 = Z(T)−1
∫ T

0
Φ(t, 0)∗C(t)∗y(t) dt. (70.4)

In the constant coefficient case A(t)≡ A, observability (on any interval of positive length) is equivalent
to the algebraic condition that no eigenvector of A should lie in the null space of C; there are many other
equivalent formulations.

In the (infinite dimensional) distributed-parameter setting, it is not possible to provide any comparably
concise description of the general system to be studied or universal definition of the terms involved, but
we will make an attempt in this direction later in the chapter. To set the stage for that, let us begin with a
very simple example that illustrates many of the complicating factors involved.

The term distributed-parameter system indicates a system whose state parameters are distributed over a
spatial region rather than constituting a discrete set of dependent variables. For our example, we take the
spatial region to be the interval [0, 1] and represent the state by a function w(x, t), x ∈ [0, 1], t ∈ [0,∞).
Let us think of w(x, t) as representing some physical property (temperature, concentration of a dissolved
chemical, etc.) in a fluid moving from left to right through a conduit whose physical extent corresponds to
0≤ x ≤ 1 with a uniform unit velocity. If we assume no diffusion process is involved, it is straightforward
to see that w(x, t) will be, in some sense that we do not elaborate on at the moment, a solution of the
first-order partial differential equation (PDE)

∂w

∂t
+ ∂w

∂x
= 0, (70.5)

to which we need to adjoin a boundary condition

w(0, t)= v(t), t ≥ 0, (70.6)

and an initial condition or initial state given, without loss of generality, at t = 0,

w(x, 0)= w0(x), x ∈ [0, 1]. (70.7)

It can be shown (cf. [4], e.g.) that with appropriate regularity assumptions on v(t) and w0(x) there is a
unique solution w(x, t) of Equations 70.5 through 70.7 for x ∈ [0, 1], t ∈ [0,∞).

We will consider two different types of measurement. The first is a point measurement at a given
location x0,

y(t)≡ w(x0, t), (70.8)

while the second is a distributed measurement, which we will suppose to have the form

y(t)≡
∫ 1

0
c(x)w(x, t) dx, (70.9)

for some piecewise continuous function c(x), defined and not identically equal to zero on [0, 1].
Let us suppose that we have an initial state w0(x) defined on [0, 1], while the boundary input (Equa-

tion 70.6) is identically equal to 0. Let us examine the simplest form of observability, distinguishability,
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for the resulting system. In this case, the solution takes the form, for t ≥ 0,

w(x, t)≡
{

w0(x− t), t ≤ x ≤ 1,

0, x < t.

For a point observation at x0, the output obtained is clearly

y(t)= w(x0, t)=
{

w0(x0− t), 0≤ t ≤ x0,

0, t > x0.

We see that if x0 < 1, the data segment consisting of the values

w0(x), x0 ≤ x ≤ 1

is lost from the data. Consequently, we do not have distinguishability in this case because initial states
w0(x), w̃0(x) differing only on the indicated interval cannot be distinguished on the basis of the observation
y(t) on any interval [0, T]. On the other hand, for x0 = 1 the initial state is simply rewritten, in reversed
order, in the values of y(t), 0≤ t ≤ 1 and, thus, we have complete knowledge of the initial state w0(x)
and, hence, of the solution w(x, t) determined by that initial state, provided the length of the observation
interval is at least unity. If the length of the interval is less than one, we are again lacking some information
on the initial state. It should be noted that this is already a departure from the finite dimensional case;
we have here a time-independent system for which distinguishability is dependent on the length of the
interval of observation.

Now let us consider the case of a distributed observation; for definiteness, we consider the case wherein
c(x) is the characteristic function of the interval [1− δ, 1] for 0≤ δ≤ 1. Thus,

y(t)=
∫ 1

1−δ
w(x, t) dx =

∫ min{0,1−t}

min{0,1−(t+δ)}
w0(x) dx

If y(t)≡ 0 on the interval [0, 1], then by starting with t = 1 and decreasing to t = 0 it is easy to see that
w0(x)≡ 0 and thus w(x, t)≡ 0; thus, we again have the property of distinguishability if the interval of
observation has length≥ 1. But now an additional feature comes into play, again not present in the finite
dimensional case. If we consider trigonometric initial states

w0(x)= sinωx, ω> 0

we easily verify that |y(t)| ≤ δ
ω

, t ≥ 0, a bound tending to zero asω→∞. Thus, it is not possible to bound
the supremum norm of the initial state in terms of the corresponding norm of the observation, whatever
the length of the observation interval. Thus, even though we have the property of distinguishability,
we lack observability in a stronger sense to the extent that we cannot reconstruct the initial state from
the indicated observation in a continuous (i.e., bounded) manner. This is again a departure from the
finite dimensional case wherein we have noted, for linear systems, that distinguishability/observability is
equivalent to the existence of a bounded reconstruction operator.

70.2 General Formulation in the Distributed-Parameter Case

To make progress toward some rigorous definitions we have to introduce a certain degree of precision
into the conceptual framework. In doing this we assume that the reader has some background in the basics
of functional analysis [17]. Accordingly, then, we assume that the process under study has an associated
state space, W , which we take to be a Banach space with norm ‖w‖W [in specific instances, this is often
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strengthened to a Hilbert space with inner product (w, ŵ)W ]. The process itself is described by an operator
differential equation in W ,

ẇ = Aw, (70.10)

where A is a (typically unbounded, differential) closed linear operator with domain D(A) constituting
a dense subspace of W satisfying additional conditions (cf. [6], e.g.) so that the semigroup of bounded
operators eAt is defined for t ≥ 0, strongly continuous in the sense that the state trajectory associated with
an initial state w0 ∈W ,

w(t)= eAtw0, (70.11)

is continuous in W for t ≥ 0. Many time-independent PDEs can be represented in this way, with A corre-
sponding to the “spatial” differential operator appearing in the equation (e.g., in the case of Equation 70.1
we could take W to be C[0, 1], A to be the operator defined by Aw =−∂w/∂x and D(A)= C1

0[0, 1], the
subspace of C[0, 1] consisting of continuously differentiable functions on [0, 1] with w(0)= 0). It should
be noted that the range of eAt , and hence w(t), is not, in general, in D(A). It can be shown that this is the
case if w0 ∈D(A).

Now let Y be a second Banach space, the output, or measurement space and let C :W → Y be the
observation operator; in general, unbounded but with domain including D(A). Further, given an obser-
vation interval [0, T], T > 0, let YT , be the space of observations; e.g., when Y is a Banach space we might
let YT = C([0, T]; Y ), the space of Y continuous functions on [0, T] with the supremum (Y ) norm, or, in
the case where Y is a Hilbert space, we might wish to take YT = L2([0, T]; Y ), the space of norm square
integrable functions with range in Y . This space is generally defined so that, for an initial state w0 ∈D(A),
which results, via Equation 70.11, in a trajectory w(t) ∈D(A), the observation function is

y(t)= Cw(t) ∈ YT . (70.12)

The observation operator C is said to be admissible if the linear map from D(A) to YT , w0 → y(·), has a
continuous extension to a corresponding map from W to YT ; we will continue to describe this map via
Equation 70.12 even though Cw(t) will not, in general, be defined for general w0 ∈W . This whole process
may seem very complicated but it cannot be avoided in many, indeed, the most important, examples. In
fact, it becomes necessary in the case of point observations on Equation 70.1 if that system is posed in the
space W = L2[0, 1] because, although the state w(·, t) is defined as an element of L2[0, 1] for each t, the
value w(1, t) may not be defined for certain values of t.

With this framework in place we can introduce some definitions.

Definition 70.1:

The linear observed system of Equations 70.10 and 70.12 is distinguishable on an interval [0, T], T ≥ 0,
if and only if y(·)= 0 in YT implies that w0 = 0 in W.

Definition 70.2:

Given T ≥ 0 and τ ∈ [0, T], the linear observed system of Equations 70.10 and 70.12 is τ-observable on
[0, T] if and only if there exists a positive number γ ≥ 0 such that, for every initial state w0 ∈W and
resulting state (via Equation 70.11) w(τ) in W , we have

‖y(·)‖YT ≥ ‖w(τ)‖W , (70.13)

y(·) being the observation obtained via Equations 70.11 and 70.12.
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Remark 70.1

In the finite dimensional context, for τ1, τ2 ∈ [0, T], τ1-observability is equivalent to τ2-observability,
though the (largest) corresponding values of γmay be different. We will see, in a heat conduction example
to be discussed later, that this need no longer be the case for distributed-parameter systems. It does remain
true for time-reversible distributed-parameter systems of the type discussed here, corresponding, e.g., to
the wave equation [19], or in the case of the elastic beam equation, which we discuss at some length later.

Let us note that, just as in the finite dimensional case, the theory of observability for distributed-
parameter systems forms the basis for observer theory and state estimation theory (cf. [15,18]) in the
distributed-parameter context. Observability also enters into the question of asymptotic stability for
certain linear distributed-parameter systems via its connection with the La Salle Invariance Principle
[12,20]. The question of observability also arises in parameter identification studies [3]. Distributed
parameter observability plays a dual role to controllability for the dual control system, but the relation
between the two is not quite as simple as it is in the corresponding finite dimensional context. The reader
is referred to [5] for details of this relationship.

In the case of finite dimensional linear systems, a weaker concept than observability, detectability, is
often introduced. The constant coefficient version of Equations 70.1 and 70.2 is detectable (on the interval
[0,∞)) just in case y(t)≡ 0→ x(t)→ 0 as t →∞. This concept is not as useful in the distributed-
parameter context because, unlike the constant coefficient linear case, those components of the solution
tending to zero do not necessarily tend to zero at a uniform exponential rate (see, e.g., [20]). A more useful
concept is that of γ-detectability for a given γ ≥ 0; the system of Equations 70.10 and 70.12 enjoys this
property on the interval [0,∞) just in case y(t)≡ 0 implies that, for some M ≥ 0,‖w(·, t)‖W ≤Meγt , t ≥ 0.

70.3 Observation of a Heat Conduction Process

Let us consider an application involving PDEs of parabolic type in several space dimensions. In the
steel industry, it is important that the temperature distribution in a steel ingot in preparation for rolling
operations should be as uniform as possible. It is clearly difficult, if not impossible, to determine the
temperature distribution in the interior of the ingot directly, but the measurement of the surface temper-
ature is routine. We therefore encounter the problem of the observability of the temperature distribution
throughout the ingot from the available surface measurements.

In order to analyze this question mathematically, we first require a model for the process. If we represent
the spatial region occupied by the ingot as a region Ω ∈ R3 with smooth boundary Γ and suppose the
measurement process takes place over a time interval 0≤ t ≤ T , we are led by the standard theory of heat
conduction to consider the parabolic PDE

ρ
∂w

∂t
= k

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2

)
, (70.14)

where ρ is the specific heat of the material and k is its thermal conductivity, both assumed constant here.
The rate of heat loss to the exterior environment is k ∂w

∂ν , where ν denotes the unit normal vector to Γ,
external with respect toΩ, and this rate is proportional to the difference between the surface temperature
w at the same point on the surface and the ambient temperature, which we will assume, for simplicity, to
be zero. The system under study therefore consists of Equation 70.14 together with a Dirichlet-Neumann
boundary condition

k
∂w

∂ν
= σw, (70.15)

where σ is a positive constant of proportionality. Using X to stand for the triple x, y, z, the (unknown)
initial condition is

w(X, 0)= w0(X). (70.16)
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The standard theory of parabolic PDEs [22] guarantees the existence of a unique solution w(X, t), X ∈
Ω, t ∈ [0, T] of Equation 70.14 with the boundary/initial data of Equations 70.15 and 70.16. The available
measurement data are

y(X, t)= w(X, t), X ∈ Γ, t ∈ [0, T]. (70.17)

The question then is whether it is possible to reconstruct the temperature distribution w(X, τ), X ∈Ω
at a particular instant τ ∈ [0, T] on the basis of the measurement (Equation 70.18). This question has
been extensively studied, sometimes indirectly via the dual question of boundary controllability. Brevity
requirements constrain us to cite only [13], [14] here, but we will indicate below some of the mathematical
issues involved.

The Laplacian operator appearing on the right-hand side of Equation 70.14, defined on a dense domain
in L2(Ω) incorporating the boundary condition of Equation 70.15, is known to be a positive self-adjoint
differential operator with positive eigenvaluesλk , k = 1, 2, 3, . . . and has corresponding normalized eigen-
functions φk , k = 1, 2, 3, . . . forming an orthonormal basis for the Hilbert space L2(Ω). An initial state w0

in that space has an expansion, convergent in that space,

w0 =
∞∑

k=1

ckφk . (70.18)

Corresponding to this expansion, the system of Equations 70.14 through 70.16 has the solution

w(X, t)=
∞∑

k=1

cke−λktφk(X), (70.19)

with the corresponding measurement, or observation

y(X, t)=
∞∑

k=1

cke−λktφk(X), X ∈ Γ, t ∈ [0, T]. (70.20)

involving known λk ,φk , but unknown ck .
Let us first consider the question of distinguishability: Can two solutions w(X, t), w̃(X, t), correspond-

ing to initial states w0, w̃0 produce the same observation y(X, t) via Equation 70.17? From the linear homo-
geneous character of the system it is clear that this is equivalent to asking whether a nonzero initial state
(Equation 70.18), i.e., such that not all ck = 0, can give rise to an observation (Equation 70.20) that is iden-
tically zero. This immediately requires us to give attention to the boundary values ηk(X, t)≡ e−λktφk(X)
corresponding to w0(X)= φk(X). Clearly, the boundary observation corresponding to a general initial
state (Equation 70.18) is then

y(X, t)=
∞∑

k=1

ckηk(X, t), X ∈ Γ, t ∈ [0, T], (70.21)

Can y(X, t), taking this form, be identically zero if the ck are not all zero? The statement that this is
not possible, hence that the system is distinguishable, is precisely the statement that the ηk(X, t), X ∈
Γ, t ∈ [0, T] are weakly independent in the appropriate boundary space, for simplicity, say L2(Γ×[0, T]).
As a result of a variety of investigations [9], we can assert that this is, indeed, the case for any T ≥ 0.
In fact, these investigations show that a stronger result, spectral observability, is true. The functions
ηk(X, t) are actually strongly independent in L2(Γ×[0, T]), by which we mean that there exist biorthogonal
functions, not necessarily unique, in L2(Γ×[0, T]) for theηk(X, t), i.e., functions ζk(X, t) ∈ L2(Γ×[0, T]),
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k = 1, 2, 3, . . ., such that ∫
Γ×[0,T]

ζk(X, t)ηj(X, t) dX dt =
{

0, k �= j,

1, k = j.
(70.22)

The existence of these biorthogonal functions implies that any finite number of the coefficients ck can be
constructed from the observation y(X, t) via

ck =
∫
Γ×[0,T]

ζk(X, t) y(X, t) dX dt. (70.23)

Indeed, we can construct a map from the output space, here assumed to be L2(Γ×[0, T]), namely,

Sτ,K Y =
K∑

k=1

e−λkτφk(X)
∫
Γ×[0,T]

ζk(X, t) y(X, t) dX dt, (70.24)

carrying the observation Y into the “K-approximation” to the state w(·, τ), τ ∈ [0, T]. Since the sum
(Equation 70.18) is convergent in L2(Ω), this property of spectral observability is a form of approximate
observability in the sense that it permits reconstruction of the initial state of Equation 70.18, or a cor-
responding subsequent state w(·, τ), within any desired degree of accuracy. Unfortunately, there is, in
general, no way to know how large K should be in Equation 70.24 in order to achieve a specified accuracy,
nor is there any way to obtain a uniform estimate on the effect of errors in measurement of Y .

The question of τ-observability, for τ ∈ [0, T], is a more demanding one; it is the question as to
whether the map Sτ,K defined in Equation 70.24 extends by continuity to a bounded linear map Sτ
taking the observation Y into the corresponding state w0. It turns out [21] that this is possible for any
τ> 0, but it is not possible for τ= 0; i.e., the initial state can never be continuously reconstructed from
measurements of this kind. Fortunately, it is ordinarily the terminal state w(·, T) that is the more relevant,
and reconstruction is possible in this case. The proof of these assertions (cf. [7,21], e.g.) relies on delicate
estimates of the norms of the biorthogonal functions ζk(X, t) in the space L2(Γ×[0, T]). The boundedness
property of the operator Sτ is important not only in regard to convergence of approximate reconstructions
of the state w(·, τ) but also in regard to understanding the effect of an error δY . If such an error is present,
the estimate obtained for w(·, τ) will clearly be

w̃(·, τ)= Sτ(Y + δY )= w(·, τ)+ SτδY , (70.25)

and the norm of the reconstruction error thus does not exceed ‖Sτ‖‖δY‖. A further consequence of
this clearly is the importance, since reconstruction operators are not, in general, unique, of obtaining a
reconstruction operator of least possible norm. If we denote the subspace of L2(Γ×[0, T]) spanned by
the functions ηk(X, t), as described following Equation 70.21, by E(Γ×[0, T]), it is easy to show that
the biorthogonal functions ζk described via Equation 70.22 are unique and have least possible norm if
we require that they should lie in E(Γ×[0, T]). The particular reconstruction operator Ŝτ, constructed
as the limit of operators (Equation 70.24) with the least norm biorthogonal functions ζ̂k , may then be
seen to have least possible norm. In applications, reconstruction operators of the type we have described
here are rarely used; one normally uses a state estimator (cf. [18], e.g.) that provides only an asymptotic
reconstruction of the system state, but the performance of such a state estimator is still ultimately limited
by considerations of the same sort as we have discussed here.

It is possible to provide similar discussions for the “wave” counterpart of Equation 70.14, i.e.,

ρ
∂2w

∂t2 = k

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2

)
, (70.26)

with a variety of boundary conditions, including Equation 70.15. A very large number of such studies
have been made, but they have normally been carried out in terms of the dual control system [19] rather
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than in terms of the linear observed system. In some cases, methods of harmonic analysis similar to those
just described for the heat equation have been used [8], but the most definitive results have been obtained
using methods derived from the scattering theory of the wave equation and from related methods such
as geometrical optics [2] or multiplier methods [11]. These studies include treatment of cases wherein the
observation/(dual) control process is restricted to a subset Γ1 ⊂ Γ having certain geometrical properties.
Other contributions [21] have shown the study of the wave equation to be pivotal in the sense that results
for related heat and elastic processes can be inferred, via harmonic analysis, once the wave equation results
are in place.

70.4 Observability Theory for Elastic Beams

There are several different models for elastic beams, even when we restrict attention to small deformation
linear models. These include the Euler–Bernoulli, Rayleigh and Timoshenko models. The oldest and most
familiar of these is the Euler–Bernoulli model, consisting of the PDE

ρ(x)
∂2w

∂t2 =
∂2

∂x2

(
EI(x)

∂2w

∂x2

)
, x ∈ [0, L], t ∈ [0,∞), (70.27)

wherein ρ(x) denotes the mass per unit length and EI(x) is the so-called bending modulus. We are
concerned with solutions in a certain weak sense, which we will not elaborate upon here, corresponding
to a given initial state

w(·, 0)= w0 ∈H2[0, L], ∂w

∂t
(x, 0)= v0 ∈ L2[0, L], (70.28)

where H2[0, L] is the standard Sobolev space of functions with square integrable second derivatives on
the indicated interval. Additionally, one needs to give boundary conditions at x = 0 and at x = L; these
vary with the physical circumstances. For the sake of brevity, we will confine our discussion here to the
cantilever case, where the left-hand end is assumed “clamped” while the right-hand end is “free”; the
appropriate boundary conditions are then

w(0, t)≡ 0,
∂w

∂x
(0, t)≡ 0, (70.29)

∂2w

∂x2 (L, t)≡ 0,
∂

∂x

(
EI(x)

∂2w

∂x2

)
(L, t)≡ 0. (70.30)

In many applications a mechanical structure, such as a manipulator arm, is clamped to a rotating base that
points the arm/beam in various directions in order to carry out particular tasks. Each “slewing” motion
results in a degree of vibration of the structure, which, for most practical purposes, can be thought of as
taking place within the context of the model of Equations 70.27 through 70.30. In order to attenuate the
undesired vibration, it is first of all necessary to carry out an observation procedure in order to determine
the oscillatory state of the system preparatory to, or in conjunction with, control operations. A number of
different measurement options exist whose feasibility depends on the operational situation in hand. We
will cite three of these. In the first instance, one might attach a strain gauge to the beam near the clamped
end. The extension or compression of such a (normally piezoelectric) device provides a scaled physical
realization of the mathematical measurement

y(t)= ∂2w

∂x2 (0, t). (70.31)

Alternatively, one can place an accelerometer near the free end of the beam to provide a measurement
equivalent to

y(t)= ∂2w

∂t2 (L, t), (70.32)
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or one can use a laser device, relying on the Doppler effect, to measure

y(t)= ∂w

∂t
(L, t). (70.33)

Each of these measurement modes provides a scalar valued function y(t) carrying a certain amount of
information on the system state w(x, t); the problem, as before, is to reconstruct the initial state, or the
current state at time T , from the record y(t), 0≤ t ≤ T . The mathematical theory of this reconstruction
is in many ways similar to the one we have just described for the heat equation, but with some significant
differences. The most notable of these is immediately apparent from the equation itself; it is invariant
under reversal of the time direction. This means that there is no inherent difference between initial and
terminal states or, indeed, any intermediate state. We should expect this to show up in the mathematics,
and it does.

The differential operator defined by

(Aw)≡−1

ρ

∂2

∂x2

(
EI(x)

∂2w

∂x2

)
, (70.34)

on the subspace of H4[0, L] resulting from imposition of the cantilever boundary conditions, is an
unbounded positive self-adjoint operator with positive eigenvalues, listed in increasing order, λk , k =
1, 2, 3, . . .. The corresponding normalized eigenfunctions φk(x) form an orthonormal basis for L2[0, L].
Defining ωk =√λk , the solution of Equations 70.27 through 70.30 takes the form

w(x, t)=
∞∑

k=1

(
ckeiωkt + dke−iωkt)φk(x), (70.35)

where, with w0 and v0 as in Equation 70.28

w0(x)=
∞∑

k=1

w0,kφk(x), v0(x)=
∞∑

k=1

v0,kφk(x), (70.36)

with
w0,k = ck + dk , v0,k = iωk(ck − dk). (70.37)

The norm of the state w0, v0 in the state space H2[0, L]⊗ L2[0, L] is equivalent to the norm of the double
sequence {w0,k , v0,k} in the Hilbert space, which we call �2

ω. That norm is

‖w0,k , v0,k‖ =
[ ∞∑

k=1

(
ωkw2

0,k + v2
0,k

)] 1
2

.

Any one of the measurement modes discussed earlier now takes the form

y(t)=
∞∑

k=1

(
γkckeiωkt + δkdke−iωkt) , (70.38)

with γk and δk depending on the particular measurement mode being employed. Thus, in the cases of
Equations 70.31, 70.32, and 70.33, respectively, we have

γk = δk = d2φk

dx2 (0), (70.39)

γk = δk =−λkφk(L), (70.40)

γk = iωkφk(L), δk =−iωkφk(L). (70.41)
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Just as in the earlier example of the heat equation, but now we are concerned only with the scalar
exponential functions

eiωkt , e−iωkt , k = 1, 2, 3, . . . , (70.42)

everything depends on the independence properties of these functions in L2[0, T], where T is the length
of the observation interval, in relation to the asymptotic growth of the ωk , k→∞, the basic character of
which is that the ωk are distinct, increasing with k, if ordered in the natural way, and

ωk =O(k2), k→∞. (70.43)

The relationship between properties of the functions of Equation 70.42 and the asymptotic and/or
separation properties of the exponents ωk is one of the questions considered in the general topic of
nonharmonic Fourier series, whose systematic study began in the 1930s with the work of Paley and
Wiener [16]. The specific result that we make use of is due to A. E. Ingham [10]. Combined with other,
more or less elementary, considerations, it implies that if theωk are real and satisfy a separation condition,
for some positive integer K and positive number Γ,

ωk+1 ≥ ωk +Γ, k ≥ K , (70.44)

then the functions of Equation 70.42 are uniformly independent and uniformly convergent in L2[0, T],
provided that T ≥ 2π

Γ
, which means there are numbers b, B, 0 < b < B, such that, for any square summable

sequences of coefficients ck , dk , k = 1, 2, 3, . . . , we have

b
∞∑

k=1

(|ck|2+ |dk|2
)≤ ‖

∞∑
k=1

(
ckeiωkt + dke−iωkt) ‖2

L2[0,T] ≤ B
∞∑

k=1

(|ck|2+ |dk|2
)

(70.45)

Since the asymptotic property of Equation 70.43 clearly implies, for any Γ> 0, that Equation 70.44 is
satisfied if K = K(Γ) is sufficiently large, inequalities of Equation 70.45, with b= b(Γ), B= B(Γ), must
hold for any T > 0. It follows that the linear map, or operator,

C :
∞∑

k=1

(
ckeiωkt + dke−iωkt)→ {ck , dk|k = 1, 2, 3, . . .} ∈ �2, (70.46)

defined on the (necessarily closed, in view of Equation 70.45) subspace of L2[0, T] spanned by the expo-
nential functions in question, is both bounded and boundedly invertible. Applied to the observation
y(t), t ∈ [0, T], corresponding to an initial state of Equation 70.36, the boundedness of C, together with
the relationship of Equation 70.37 between the w0,k , v0,k and the ck , dk and the form of the �2

ω norm, it is
not hard to see that the boundedness of the linear operator C implies the existence of a bounded recon-
struction operator from the observation (Equation 70.38) to the initial state (Equation 70.36) provided
the coefficients δk , γk in Equation 70.38 satisfy an inequality of the form

|ck| ≥ Cωk , |dk| ≥ Dωk , (70.47)

for some positive constants C and D. Using the trigonometric/exponential form of the eigenfunctions
φk(x), one easily verifies this to be the case for each of the observation modes of Equations 70.39 through
70.41; indeed, the condition is overfulfilled in the case of the accelerometer measurement (Equation 70.40).
Thus, bounded observability of elastic beam states via scalar measurements can be considered to be typical.
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At any later time t = τ, the system state resulting from the initial state of Equation 70.36 has the form

wτ(x)=
∞∑

k=1

(
cosωktw0,k + 1

ωk
sinωktv0,k

)
φk(x),

vτ(x)=
∞∑

k=1

(−ωk sinωktw0,k + cosωktv0,k
)
φk(x). (70.48)

Using Equation 70.48 with the form of the norm in �2
ω, one can see that the map from the initial state

w0, v0 ∈H2[0, L]⊗ L2[0, L] to wτ, vτ in the same space is bounded and boundedly invertible; this is
another way of expressing the time reversibility of the system. It follows that the state wτ, vτ can be
continuously reconstructed from the observation y(t), t ∈ [0, T] in precisely the same circumstances as
we can reconstruct the state w0, v0.
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University of California, San Diego

Andrey Smyshlyaev
University of California, San Diego

71.1 Introduction

Aerodynamic fluid flows, flexible structures, plasmas in electromagnetic fields, acoustic and optical waves,
thermal dynamics, and chemical processes—distributed parameter systems—are so ubiquitous in control
applications that they are the norm, rather than an exception. Although finite-dimensional techniques
often suffice in solving such control problems, there are significant advantages in considering such systems

71-1
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in their full partial differential equation (PDE) format, which has driven the development of the field of
control of distributed parameter systems since the 1960s.

Numerous papers, surveys, and even books exist on control of distributed parameter systems [2,7,8,
17,18], dedicated to solving problems of controllability and optimal control. The latter are particularly
of interest as they produce feedback laws, which afford a degree of robustness to various uncertainties.
Optimal control laws for PDEs require solutions to operator Riccati equations—infinite dimensional
nonlinear equations which are in general very difficult to solve. In this chapter we present the recently
emerged approach, inspired by the finite-dimensional “backstepping” design for nonlinear systems [12],
which avoids the requirement to solve Riccati equations. Instead of Riccati equations, our design problem
consists in solving only a linear hyperbolic PDE in the spatial variables, which is performed once, offline.
This simplification of the design problem is achieved by foregoing optimality. The approach consists
in constructing a “coordinate transformation” and a control law, to cast the closed-loop system in a
desirable form, which we refer to as the “target system.” This is similar to the approach employed in
feedback linearization and backstepping. The choice of a target system is different for each of the different
classes of PDEs. This factor requires a deeper level of involvement on the part of the control designer,
who needs to have a certain level of insight into stability properties of different classes of PDEs. However,
for this additional analytical effort, the designer is rewarded with a control law which is much simpler
than optimal controllers employing Riccati equations, and with a dynamic behavior which is physically
intuitive because it follows the behavior of well-understood classes of physical PDEs.

This line of research at present deals only with the problems of boundary control. Many solutions
exist, at least in principle, for control of PDEs both with interior or distributed controls, as well as
with boundary controls. It is, however, generally recognized that boundary control problems, where the
actuation is applied only through the boundary conditions of a PDE, are not only the most realistic in
many applications (e.g., this is the only way to control fluid flows using micro-electro-mechanical systems
[MEMS] actuators), but are analytically the most challenging because the input and output operators are
unbounded. On the intuitive level, the boundary control problems are always characterized by the state
space having a spatial dimension at least one higher than that of the actuator(s). For instance, the system
evolving over a rectangle and controlled only through the sides of the rectangle. In boundary control
problems one necessarily has an order of magnitude fewer control inputs than the states. Despite this
“extreme” character of the boundary control problem, the backstepping approach happens to be perfectly
suited for it as it is based on propagating a control action through a sequence of ordered subsystems [12].

71.2 Unstable Heat Equation

To introduce the basic idea of the backstepping control design, let us start with the simplest unstable PDE,
reaction–diffusion equation

ut(x, t)= uxx(x, t)+λu(x, t), x ∈ (0, 1) (71.1)

u(0, t)= 0, (71.2)

u(1, t)= U(t), (71.3)

where λ is an arbitrary constant and U(t) is the input. The open-loop system (Equations 71.1 and 71.2)
(with U(t)= 0) is unstable with arbitrarily many unstable eigenvalues for sufficiently large λ.

The main idea of the backstepping method is to use the coordinate transformation

w(x, t)= u(x, t)−
∫ x

0
k(x, y)u(y, t) dy (71.4)

and the control law

U(t)=
∫ 1

0
k(1, y)u(y, t) dy (71.5)
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to transform the systems (Equations 71.1 through 71.3) into the heat equation

wt(x, t)= wxx(x, t) (71.6)

w(0, t)= 0, (71.7)

w(1, t)= 0, (71.8)

which is exponentially stable.
To derive the equation for k(x, y) we first substitute Equation 71.4 into Equation 71.6:

wt(x, t)= ut(x, t)−
∫ x

0
k(x, y)(uyy(y, t)+λu(y, t)) dy

= uxx(x, t)+λu(x, t)− k(x, x)ux(x, t)+ k(x, 0)ux(0, t)+ ky(x, x)u(x, t)

−
∫ x

0
(kyy(x, y)+λk(x, y))u(y, t) dy, (71.9)

wxx(x, t)= uxx(x, t)− k(x, x)ux(x, t)− kx(x, x)u(x, t)

− d

dx
k(x, x)u(x, t)−

∫ x

0
kxx(x, y)u(y, t) dy. (71.10)

Combining Equations 71.9 and 71.10 and using Equation 71.1 gives

0= wt(x, t)−wxx(x, t)+ cw(x, t)

=
∫ x

0

{
kxx(x, y)− kyy(x, y)−λk(x, y)

}
u(y, t) dy

+
(

2
d

dx
k(x, x)+λ

)
u(x, t)+ k(x, 0)ux(0, t). (71.11)

We can see now that the kernel k(x, y) must satisfy the following hyperbolic PDE:

kxx(x, y)− kyy(x, y)= λk(x, y), (x, y) ∈ T , (71.12)

k(x, 0)= 0, (71.13)

k(x, x)=−λx

2
. (71.14)

where T ={x, y : 0<y<x<1}. The solution to this PDE is [21]

k(x, y)=−λy
I1

(√
λ(x2− y2)

)
√
λ(x2− y2)

, (71.15)

where I1 is a first-order modified Bessel function. The controller (Equation 71.5) is therefore,

U(t)=−
∫ 1

0
λy

I1

(√
λ(1− y2)

)
√
λ(1− y2)

u(y, t) dy. (71.16)

One can show that the transformation (Equation 71.4) is invertible and its inverse is

u(x, t)= w(x, t)−
∫ x

0
λy

J1

(√
λ(x2− y2)

)
√
λ(x2− y2)

w(y, t) dy. (71.17)

where J1 is the usual (nonmodified) Bessel function of the first order. The smoothness of the kernels of
the direct and inverse transformations in x and y establishes the equivalence of norms of u and w in both
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L2 and H1. Therefore, from the properties of the heat equations 71.6 through 71.8 we conlude that the
closed-loop system is exponentially stable in L2 and H1.

Note that the systems (Equations 71.1 through 71.3 and 71.16) are not only well posed but their
solutions are explicitly available. To find this solution, we first solve the heat equation (Equations 71.6
through 71.8):

w(x, t)= 2
∞∑

n=1

e−π2n2t sin(πnx)
∫ 1

0
w0(ξ) sin(πnξ) dξ. (71.18)

The initial condition w0 can be calculated explicitly from u0 via Equations 71.4 and 71.15. Substituting
the result into Equation 71.17, changing order of integration, and calculating one of the integrals we
obtain the explicit solution to closed-loop systems (Equations 71.1 through 71.3 and 71.16):

u(x, t)=
∞∑

n=1

e−π2n2tφn(x)
∫ 1

0
ψn(ξ)u0(ξ) dξ, (71.19)

where

ψn(x)= sin(πnx)+
∫ 1

x
λx

I1

(√
λ(ξ2− x2)

)
√
λ(ξ2− x2)

sin(πnξ) dξ,

φn(x)= 2πn√
λ+π2n2

sin
(√
λ+π2n2x

)
. (71.20)

The above control design is easily extended for the Neumann type of actuation, one only needs to
replace the boundary condition (Equation 71.8) with the Neumann one. The control law is

ux(1, t)= U(t)= k(1, 1)u(1, t)+
∫ 1

0
kx(1, y)u(y, t) dy, (71.21)

where k(x, y) is given by Equation 71.15.
For the rest of the chapter we will not repeat the procedure of derivation of a PDE for the kernel and

the arguments of the previous paragraph proving stability and well posedness.

71.3 Observers

The stabilizing controller developed in the previous section requires complete measurements from the
interior of the domain which are usually unavailable. So we look for the observers that estimate u(x, t)
inside the domain. Consider the plant

ut(x, t)= uxx(x, t)+λu(x, t), (71.22)

ux(0, t)= 0, (71.23)

u(1, t)= U(t). (71.24)

Suppose the only available measurement of our system is at x = 0, the opposite end to actuation. To
estimate the state inside the domain, we introduce the following observer:

ût(x, t)= ûxx(x, t)+λû(x, t)+ p1(x)[u(0, t)− û(0, t)], (71.25)

ûx(0, t)= p10[u(0, t)− û(0, t)], (71.26)

û(1, t)= U(t). (71.27)

Here p1(x) and p10 are output injection functions (p10 is a constant) to be designed. Note that we introduce
output injection not only in Equation 71.25 but also at the boundary where the measurement is available.
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The observer (Equations 71.25 through 71.27) is in the standard form of “copy of the system plus
injection of the output estimation error.” This standard form allows us to pursue duality between the
observer and the controller design, similar to the way duality is used to find the gains of a Luenberger
observer based on the pole-placement control algorithm, or to the way duality is used to construct a
Kalman filter based on the LQR design.

The observer error ũ= u− û satisfies the PDE

ũt(x, t)= ũxx(x, t)+λũ(x, t)− p1(x)ũ(0, t), (71.28)

ũx(0, t)=−p10ũ(0, t), (71.29)

ũ(1, t)= 0. (71.30)

Observer gains p1(x) and p10 should be now chosen to stabilize the error system. We look for a coordinate
transformation

ũ(x, t)= w̃(x, t)−
∫ x

0
p(x, y)w̃(y, t) dy (71.31)

that transforms the system (Equations 71.28 through 71.30) into the exponentially stable system

w̃t(x, t)= w̃xx(x, t), (71.32)

w̃x(0, t)= 0, (71.33)

w̃(1, t)= 0. (71.34)

By substituting Equation 71.31 into Equations 71.28 through 71.30 we obtain a set of conditions on the
kernel p(x, y) in the form of the hyperbolic PDE

pyy(x, y)− pxx(x, y)= λp(x, y) (71.35)

for 0 < y < x < 1, with the boundary conditions

d

dx
p(x, x)= λ

2
, (71.36)

p(1, y)= 0. (71.37)

and observer gains given by
p1(x)= εpy(x, 0), p10 = p(0, 0). (71.38)

Let us make a change of variables

x̆ = 1− y, y̆ = 1− x, p̆(x̆, y̆)= p(x, y). (71.39)

It can be verified that in these new variables the problems (Equations 71.35 through 71.37) become exactly
the same as Equations 71.12 through 71.14 for k(x, y), and therefore,

p̆(x̆, y̆)=−λy̆
I1

(√
λ(x̆2− y̆2)

)
√
λ(x̆2− y̆2)

. (71.40)

Using Equation 71.38 we obtain the observer gains

p1(x)= λ(1− x)

x(2− x)
I2

(√
λx(2− x)

)
, p10 =−λ

2
. (71.41)

The design procedure presented above is easily extended to other input/output setups, such as
Neumann sensing (ux(0, t) is measured) and sensor/actuator located at the same boundary (e.g., u(1, t) is
measured, ux(1, t) is controlled); see [22] for details.

Since the observer design is dual to control design, only control designs will be presented in the rest of
the chapter.
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71.4 Other Parabolic Plants

71.4.1 Reaction−Advection−Diffusion Systems

Consider the reaction–advection–diffusion PDE

ut(x, t)= ε(x)uxx(x, t)+ b(x)ux(x, t)+λ(x)u(x, t), (71.42)

ux(0, t)=−qu(0, t), (71.43)

u(1, t)= U(t). (71.44)

This equation describes a variety of systems with thermal, fluid, and chemically reacting dynamics. The
spatially varying coefficients come from applications with nonhomogenous materials, unusually shaped
domains, and can also arise from the linearization.

Using the so-called gauge transformation, it is possible to convert this system into the one with constant
diffusion and zero advection terms. Consider a coordinate change

v(z, t)= ε−1/4(x)u(x, t)e

x∫
0

b(s)
2ε(s) ds

, (71.45)

where

z =√ε0
∫ x

0

ds√
ε(s)

, ε0 =
(∫ 1

0

ds√
ε(s)

)−2

. (71.46)

Then the new state v satisfies the following PDE:

vt(z, t)= ε0vzz(z, t)+λ0(z)v(z, t), (71.47)

vz(0, t)=−q0v(0, t), (71.48)

v(1, t)= U(t)ε−1/4(1)e

1∫
0

b(s)
2ε(s) ds

, (71.49)

where

λ0(z)= λ(x)+ ε
′′(x)

4
− b′(x)

2
− 3

16

(ε′(x))2

ε(x)
+ 1

2

b(x)ε′(x)

ε(x)
− 1

4

b2(x)

ε(x)
, (71.50)

q0 = q

√
ε(0)

ε0
− b(0)

2
√
ε0ε(0)

− ε′(0)

4
√
ε0ε(0)

. (71.51)

We use the transformation (Equation 71.4) (with x replaced by z) to map the modified plant into the
target system

wt(z, t)= ε0wzz(z, t)− cw(z, t), (71.52)

wz(0, t)= w(1, t)= 0. (71.53)

Here c is a design parameter that determines the decay rate of the closed-loop system. The transformation
kernel is found as a solution of the following PDE:

kzz(z, y)− kyy(z, y)= λ0(y)+ c

ε0
k(z, y), (71.54)

ky(z, 0)=−q0k(z, 0), (71.55)

k(z, z)=−q0− 1

2ε0

∫ z

0
(λ0(y)+ c) dy. (71.56)
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This PDE is well posed but cannot be solved in closed form. However, it is easy to solve it symbolically (by
successive approximations series) or numerically, substantially easier than solving a Ricatti equation [21].
Note that for constant ε, b,λ, and q, the kernel PDE can be solved explicitly. The controller is

U(t)= ε1/4(1)
√
ε0

∫ 1

0
k

(
1,
∫ y

0

√
ε0 ds√
ε(s)

)
ε−3/4(y) e−

∫ 1
y

b(s)
2ε(s) ds u(y, t) dy. (71.57)

71.4.2 Other Spatially Causal Plants

Consider the spatially causal system

ut(x, t)= uxx(x, t)+ g(x)u(0, t)+
∫ x

0
f (x, y)u(y, t)dy, (71.58)

where the boundary conditions are ux(0, t)= 0 and u(1, t)= U(t). This equation is partly motivated by
the model of unstable burning in solid propellant rockets [6]. Another reason to consider this plant is that
it often appears as a part of the control design for more complicated systems (see Section 71.8). Without
the derivation we present the PDE for the kernel of the transformation (Equation 71.4) that maps it into
the heat equations 71.6 through 71.8 [21]:

kxx(x, y)− kyy(x, y)=−f (x, y)+
∫ x

y
k(x, ξ)f (ξ, y)dξ, (71.59)

ky(x, 0)= g(x)−
∫ x

0
k(x, y)g(y)dy, (71.60)

k(x, x)= 0. (71.61)

This PDE can be solved using the method of successive approximations. The controller is given by
Equation 71.5.

71.5 Complex-Valued and Coupled PDEs

The design scheme presented in previous sections extends to complex-valued PDEs in a straightforward
way. The only difference is that the gain of the transformation (Equation 71.4) becomes complex-valued.

As an example, consider the linear Schrödinger equation

ut(x, t)=−juxx(x, t), (71.62)

ux(0, t)= 0, (71.63)

u(1, t)= U(t). (71.64)

Note that u(x, t) is a complex-valued function so that Equations 71.62 through 71.64 can be viewed
as two coupled real-valued PDEs. Without control, this system displays oscillatory behavior and is not
asymptotically stable. Let us think of −j as the diffusion coefficient in the heat equation and apply the
transformation (Equation 71.4) to map the plant into the target system

wt(x, t)=−jwxx(x, t)− cw(x, t), (71.65)

wx(0, t)= w(1, t)= 0. (71.66)
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It is easy to check that this system is well damped for c > 0. The gain kernel for the controller (Equa-
tion 71.5) is found as

k(1, y)=−cj
I1

(√
cj(1− y2)

)
√

cj(1− y2)

=
√

c

2
(
1− y2

)
[

(1+ j)bei1

(√
c
(
1− y2

) )+ ( j− 1)ber1

(√
c
(
1− y2

) )]
, (71.67)

where ber1(·) and bei1(·) are Kelvin functions. The controller is given by (Equation 71.5).
A more general version of the Schrödinger equation is a Ginzburg–Landau equation, which is a

popular simplified model for studying vortex shedding in the flows past submerged obstacles. In [1],
a flow around a two-dimensional circular cylinder was considered and the backstepping method was
successfully applied to design the output-feedback boundary controllers with both sensing and actuation
on the cylinder surface.

Another application which involves dealing with coupled equations is a thermal convection loop [5],
which describes the dynamics of a heated fluid between two concentric cylinders in a gravity field. In [27],
the backstepping design was combined with the singular perturbation approach to solve this problem.

71.6 First-Order Hyperbolic Systems

We now turn our attention to hyperbolic PDEs. Before considering oscillatory systems such as strings and
beams we deal with first-order hyperbolic equations. These equations describe quite different physical
problems such as traffic flows, chemical reactors, and heat exchangers. They can also serve as a model for
delays.

The general first-order hyperbolic equation that can be handled by the backstepping method is

ut(x, t)= ux(x, t)+λu(x, t)+ g(x)u(0, t)+
∫ x

0
f (x, y)u(y, t) dy, (71.68)

u(1, t)= U(t). (71.69)

Note that unlike in second-order (in space) PDEs, here we specify only one boundary condition. For g or
f positive and large, the uncontrolled plant is unstable.

Following our general procedure, we use the transformation (Equation 71.4) to convert the plant
(Equation 71.68) into the target system

wt(x, t)= wx(x, t), (71.70)

w(1, t)= 0. (71.71)

This system has the solution

w(x, t)=
{

w0(t+ x) 0≤ t < 1,
0 t ≥ 1,

(71.72)

where w0(x) is the initial condition. We see that this system acts as a pure delay and converges to zero in
finite time.



�

�

�

�

� �

Boundary Control of PDEs 71-9

One can derive the following well-posed kernel PDE from Equations 71.68 through 71.71:

kx(x, y)+ ky(x, y)=
∫ x

y
k(x, ξ)f (ξ, y)dξ− f (x, y), (71.73)

k(x, 0)=
∫ x

0
k(x, y)g(y)dy− g(x). (71.74)

This PDE has a closed-form solution for constant g and f but needs to be solved numerically in general.
The controller is given by Equation 71.5.

71.7 Wave Equation

71.7.1 Undamped Wave Equation

Consider the PDE that describes a vibrating string on a finite interval

utt(x, t)= uxx(x, t), (71.75)

ux(0, t)= 0, (71.76)

u(1, t)= 0. (71.77)

The boundary conditions correspond to the situation where the end of the string at x = 1 is “pinned” and
the other end is “free.”

One classical method of stabilizing this system is to add a damping term to the boundary. Specifically,
the boundary condition (Equation 71.76) becomes

ux(0, t)= c0ut(0, t). (71.78)

The boundary control provided by Equation 71.78 has the capacity to add considerable damping to the
system, however it requires actuation on the free end x = 0, which is not always feasible.

Let us now consider the wave equation with damping boundary control at the constrained end

utt(x, t)= uxx(x, t) (71.79)

ux(0, t)= 0 (71.80)

ux(1, t)= U(t). (71.81)

The attempt to use the controller U(t)=−c1ut(1, t), c1 > 0, fails because in that case the system has an
arbitrary constant as an equilibrium profile. To deal with this multitude of equilibria a more sophisticated
controller at x = 1 (e.g., backstepping) is needed if the boundary condition at x = 0 is to remain free.

The backstepping transformation

w(x, t)= u(x, t)+ c0

∫ x

0
u(y, t) dy (71.82)

maps Equations 71.79 through 71.81 the plant into the target system

wtt(x, t)= wxx(x, t), (71.83)

wx(0, t)= c0w(0, t), (71.84)

wx(1, t)=−c1wt(1, t). (71.85)

The idea is to use a large c0 in the boundary condition at x = 0 to make wx(0, t)= c0w(0, t) behave like
w(0, t)= 0.
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To establish stability of the target system, consider the Lyapunov function

V = 1

2

(‖wx‖2+‖wt‖2+ c0w2(0)
)+ δ

∫ 1

0
(1+ x)wx(x)wt(x) dx. (71.86)

One can show that for sufficiently small δ, there exist m1, m2 > 0 such that

m1U � V � m2U , U = ‖wx‖2+‖wt‖2+w2(0), (71.87)

which shows that V is positive definite. Straightforward calculation gives

V̇ =− (c1− δ(1+ c2
1)
)

w2
t (1)− δ

2

[‖wx‖2+‖wt‖2]− δ
2

(
w2

t (0)+ c2
0w2(0)

)
, (71.88)

which is negative definite for sufficiently small δ< c1
1+c2

1
. From Equation 71.87 it follows that

U(t)≤Me−t/M U(0)

for some (possibly large) M, and therefore the target system is exponentially stable.
The resulting Neumann backstepping controller is given by

U(t)=−c1ut(1, t)− c0u(1, t)− c1c0

∫ 1

0
ut(y, t)dy, (71.89)

where c0 is large and c1 is around 1. Some insight into the properties of the above controller may
be obtained by observing the individual terms in Equation 71.89. The term −c1ut(1, t) provides basic
damping and the action of −c1ut(1, t)− c0u(1, t) is similar to PD control. The last term is a spatially
averaged velocity and is the backstepping term that allows actuation at the constrained end.

71.7.2 Wave Equation with Kelvin−Voigt Damping

A totally different backstepping design is possible when the wave equation has a small amount of “Kelvin–
Voigt” damping (internal material damping, present in all realistic materials):

utt(x, t)= (1+ d∂t)uxx(x, t), (71.90)

ux(0, t)= 0, (71.91)

u(1, t)= U(t), (71.92)

where ∂t is the time derivative and d is a small positive constant. Using the usual backstepping transfor-
mation (Equation 71.4) with the kernel

k(x, y)=−cx
I1

(√
c(x2− y2)

)
√

c(x2− y2)
(71.93)

and the controller

U(t)=−
∫ 1

0
c

I1

(√
c(1− y2)

)
√

c(1− y2)
u(y, t) dy, (71.94)

we map the plant into the target system

wtt(x, t)= (1+ d∂t)(wxx(x, t)− cw(x, t)), (71.95)

wx(0, t)= 0, (71.96)

w(1, t)= 0. (71.97)
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The nth pair of eigenvalues σn of this system satisfies the quadratic equation

σ2
n+ d

[
c+

(π
2
+πn

)2
]
σn+

[
c+

(π
2
+πn

)2
]
= 0, (71.98)

where n= 0, 1, 2, . . . . There are two sets of eigenvalues: for lower n’s the eigenvalues reside on the circle

(
Re(σn)+ 1

d

)2

+ (Im(σn))2 = 1

d2 , (71.99)

and for higher n’s the eigenvalues are real, with one branch accumulating toward−1/d as n→∞ and the
other branch converging to −∞ on real axis. Increasing c moves the eigenvalues along the circle in the
negative real direction and decreases the number of them on the circle (ultimately they become real). This
increases the damping ratio of the nth conjugate complex eigenvalue pair of the closed-loop system by a

factor of
√

1+ 4
π2(1+2n)2 c and moves it leftward in the complex plane by a factor of

(
1+ 4

π2(1+2n)2 c
)

. With

a very high value of c all of the eigenvalues can be made real. While possibly, this would not necessarily be a
good idea, neither for servo response, nor for disturbance attenuation, and certainly not from the point of
view of control effort. Thus, the flexibility to improve the damping using the backstepping transformation
and controller should be used judiciously, with lower values of c if d is already relatively high.

71.8 Beams

The most general 1D beam model—the Timoshenko model—can be represented by the two coupled wave
equations

εutt = uxx − αx , (71.100)

μεαtt = εαxx + a(ux − α), (71.101)

where u(x, t) denotes the displacement, α(x, t) denotes the angle of rotation, and the positive constants
ε,μ, d, and a represent physical parameters of the beam. We consider a beam which is free at the end
x = 0, that is,

ux(0, t)= α(0, t), (71.102)

αx(0, t)= 0 (71.103)

and which is controlled at the end x = 1 through the boundary conditions ux(1, t) and α(1, t).
For the case of smallμ, we obtain the so-called “slender beam.” Whenμ is set to zero, the Timoshenko

equations 71.100 and 71.101 reduce to the “shear beam” model which we will consider in this section:

εutt = uxx − αx , (71.104)

0= αxx − b2α+ b2ux , (71.105)

where b=√a/ε. The solution to the α ODE (Equation 71.105) is

α(x, t)= cosh(bx)α(0, t)+ b sinh(bx)u(0, t)− b2
∫ x

0
cosh(b(x− y))u(y, t) dy. (71.106)

The boundary value α(0, t) can be expressed in terms of α(1, t) by setting x = 1 in Equation 71.106. In
order to eliminate the nonstrict feedback integral term (and thus set α(0, t) to zero), let us choose our first
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control to be

α(1, t)= U1(t)= b sinh(b)u(0, t)− b2
∫ 1

0
cosh(b(1− y))u(y, t) dy. (71.107)

Substituting Equation 71.106 with α(0, t)= 0 into Equation 71.104 gives

εutt(x, t)= uxx(x, t)+ b2u(x, t)− b2 cosh(bx)u(0, t)+ b3
∫ x

0
sinh(b(x− y))u(y, t) dy, (71.108)

where this PDE is now of the form similar to Equation 71.58. Now consider the transformation (Equa-
tion 71.4) to the exponentially stable target system

εwtt(x, t)= wxx(x, t), (71.109)

wx(0, t)= c0w(0, t), (71.110)

wx(1, t)=−c1wt(1, t), (71.111)

where c0 and c1 are design parameters. The transformation kernel can be shown to satisfy the following
PDE

kxx(x, y)= kyy(x, y)+ b2k(x, y)− b3 sinh(b(x− y))+ b3
∫ x

y
k(x, ξ) sinh(b(ξ− y))dξ, (71.112)

ky(x, 0)= b2
∫ x

0
k(x, y) cosh(by)dy− b2 cosh(bx), (71.113)

k(x, x)=−b2

2
x− c0. (71.114)

The second boundary controller (the first one is given by Equation 71.107) is obtained by differentiating
the transformation (Equation 71.4) with respect to x and setting x = 1:

ux(1, t)= U2(t)=−
(

b2

2
+ c0

)
u(1, t)+

∫ 1

0
kx(1, y)u(y, t) dy

− c1ut(1, t)+ c1

∫ 1

0
k(1, y)ut(y, t) dy. (71.115)

71.9 Adaptive Control of Parabolic PDEs

In systems with thermal, fluid, or chemically reacting dynamics, which are usually modeled by parabolic
PDEs, physical parameters are often unknown. Thus a need exists for adaptive controllers that are
able to stabilize a potentially unstable, parametrically uncertain plant. While adaptive control of finite-
dimensional systems is a mature area that has produced adaptive control methods for most LTI systems
of interest [10], adaptive control techniques have been developed for only a few of the classes of PDEs
for which nonadaptive controllers exist. The prebackstepping results [3,4,9] focus on model reference
adaptive control (MRAC) type schemes and the control action distributed in the PDE domain; see [11]
for a more detailed literature review. The backstepping controllers presented in previous sections are
explicitly parametrized in physical parameters of the corresponding plants, making them an ideal choice
for nominal controllers in adaptive schemes. In the rest of the chapter we overview three different
design methods based on those explicit controllers—the Lyapunov method, and certainty equivalence
approaches with passive and swapping identifiers. For tutorial reasons, the presentation proceeds through
a series of one-unknown-parameter benchmark examples with sketches of the stability proofs. The designs
are then extended to to reaction–advection–diffusion plants in 2D and plants with spatially varying
(functional) parametric uncertainties. The chapter ends with the output-feedback adaptive design for
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reaction–advection–diffusion systems with only boundary sensing and actuation. These systems have an
infinite relative degree, infinitely many unknown parameters and are open-loop unstable, representing
the ultimate challenge in adaptive control for PDEs. The detailed proofs for the designs presented here
are given in [13,23–26].

71.10 Lyapunov Design

Consider the plant

ut(x, t)= uxx(x, t)+λu(x, t), 0 < x < 1, (71.116)

u(0, t)= 0, (71.117)

ux(1, t)= U(t), (71.118)

where λ is an unknown constant parameter. We use the Neumann boundary controller (Equation 71.21)
with k(x, y) given by Equation 71.15 and λ replaced by its estimate λ̂:

U(t)=− λ̂
2

u(1, t)− λ̂
∫ 1

0
ξ

I2

(√
λ̂(1− ξ2)

)

1− ξ2 u(ξ, t)dξ. (71.119)

Straightforward calculation shows that invertible change of variables

w(x, t)= u(x, t)−
∫ x

0
k̂(x, ξ)u(ξ, t) dξ, k̂(x, ξ)=−λ̂ξ

I1

(√
λ̂(x2− ξ2)

)
√
λ̂(x2− ξ2)

(71.120)

maps Equations 71.116 through 71.119 into

wt(x, t)= wxx(x, t)+ ˙̂λ
∫ x

0

ξ

2
w(ξ, t) dξ+ λ̃w(x, t), (71.121)

w(0, t)= wx(1, t)= 0, (71.122)

where λ̃= λ− λ̂ is the parameter estimation error.
Consider the Lyapunov function∗

V = 1

2
log

(
1+‖w‖2)+ 1

2γ
λ̃2. (71.123)

Its time derivative along the solutions of Equations 71.121 and 71.122 is

V̇ =− ‖wx‖2

1+‖w‖2 +
˙̂
λ

2

∫ 1
0 w(x)

(∫ x
0 ξw(ξ)dξ

)
dx

1+‖w‖2 + λ̃
(
− 1

γ

˙̂
λ+ ‖w‖2

1+‖w‖2

)
(71.124)

(the calculation involves integration by parts). Based on Equation 71.124, we choose the update law

˙̂
λ= γ ‖w‖2

1+‖w‖2 , 0 < γ < 1. (71.125)

We are going to show that with this update law, u(x, t) is regulated to zero for all x ∈ [0, 1], for arbitrarily
large initial data u(x, 0) and for an arbitrarily poor initial estimate λ̂(0).

∗ In Sections 71.10 through 71.15, we suppress time dependence to simplify the notation, that is, w(0)≡ w(0, t), ‖w‖ ≡
‖w(·, t)‖, etc.
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Note that V depends only on time and contains the logarithm of the spatial L2 norm [19]. This results in
the normalized update law (Equation 71.125) and slows down the adaptation, which is necessary because
the control law (Equation 71.119) is of certainty equivalence type. An additional measure of preventing
overly fast adaptation in Equation 71.125 is the restriction on the adaptation gain (γ< 1).

Using Cauchy and Poincare inequalities, one obtains
∣∣∣∣
∫ 1

0
w(x)

(∫ x

0
ξw(ξ)dξ

)
dx

∣∣∣∣≤ 2√
3
‖wx‖2. (71.126)

Substituting Equations 71.126 and 71.125 into Equation 71.124 and using the fact that | ˙̂λ|< γ (see
Equation 71.125), we obtain

V̇ ≤−
(

1− γ√
3

) ‖wx‖2

1+‖w‖2 . (71.127)

This implies that V (t) remains bounded for all time whenever 0 < γ ≤√3. From the definition of V it
follows that ‖w‖ and λ̂ remain bounded for all time. To show that w(x, t) is bounded for all time and for
all x, we estimate (using Agmon, Young, and Poincare inequalities):

1

2

d

dt
‖wx‖2 =−‖wxx‖2+ λ̃‖wx‖2+

˙̂
λ

4

(
w(1)2−‖w‖2)

≤−(1− γ)‖wxx‖2+ λ̃‖wx‖2 ≤ λ̃‖wx‖2. (71.128)

Integrating the last inequality, we obtain

‖wx(t)‖2 ≤ ‖wx(0)‖2+ 2 sup
0≤τ≤t

|λ̃(τ)|
∫ t

0
‖wx(τ)‖2dτ. (71.129)

Using Equation 71.127 and the fact that ‖w‖ is bounded, we obtain
∫ t

0
‖wx(τ)‖2dτ≤ (1+C)

∫ t

0

‖wx(τ)‖2

1+‖w(τ)‖2 dτ<∞, (71.130)

where C is the bound on ‖w‖2. From Equations 71.129 and 71.130, we get that ‖wx‖2 is bounded. Since
maxx∈[0,1] |w(x)|2 ≤ ‖wx‖2, we observe that w(x, t) is bounded for all x and t.

Next, we prove regulation of w(x, t) to zero. Using Equations 71.121 and 71.122, it is easy to show that

1

2

∣∣∣∣ d

dt
‖w‖2

∣∣∣∣≤ ‖wx‖2+
(
|λ̃| + γ

4
√

3

)
‖w‖2. (71.131)

Since ‖w‖ and ‖wx‖ have been proven bounded, it follows that d
dt ‖w‖2 is bounded, and thus ‖w(t)‖

is uniformly continuous. From Equation 71.130 and Poincare inequality, we get that ‖w‖2 is integrable
in time over the infinite time interval. By Barbalat’s lemma, it follows that ‖w‖→ 0 as t →∞. The
regulation in the maximum norm follows from Agmon’s inequality.

Having proved the boundedness and regulation of w, we now set out to establish the same for u. We
start by noting that the inverse transformation to Equation 71.120 is [21]

u(x)= w(x)+
∫ x

0
l̂(x, ξ)w(ξ)dξ, l̂(x, ξ)=−λ̂ξ

J1

(√
λ̂(x2− ξ2)

)
√
λ̂(x2− ξ2)

. (71.132)

Since λ̂ is bounded, the function l̂(x, ξ) has bounds L1 =max0≤ξ≤x≤1 l̂(x, ξ)2, L2 =max0≤ξ≤x≤1 l̂x(x, ξ)2.
It is straightforward to show that

‖ux‖2 ≤ 2
(

1+ λ̂2+ 4L2

)
‖wx‖2, (71.133)
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Noting that u(x, t)2 ≤ ‖ux‖2 for all (x, t) ∈ [0, 1]× [0,∞) and using the fact that ‖wx‖ is bounded, we get
uniform boundedness of u. To prove regulation of u, we estimate from Equation 71.132

‖u‖2 ≤ 2(1+ L1)‖w‖2. (71.134)

Since ‖w‖ is regulated to zero, so is ‖u‖. By Agmon’s inequality u(x, t)2 ≤ 2‖u‖‖ux‖, where ‖ux‖ is
bounded. Therefore u(x, t) is regulated to zero for all x ∈ [0, 1].

The Lyapunov design incorporates all the states of the closed-loop system into a single Lyapunov
function and therefore Lyapunov adaptive controllers possess the best transient performance properties.
However, this method is not applicable as broadly as the certainty equivalence approaches, which we
consider next.

71.11 Certainty Equivalence Design with Passive Identifier

Consider the plant

ut(x, t)= uxx(x, t)+λu(x, t), (71.135)

u(0, t)= 0, (71.136)

u(1, t)= U(t), (71.137)

where a constant parameter λ is unknown. We use the Dirichlet controller (Equation 71.16) with λ
replaced by its estimate λ̂:

U(t)=−λ̂
∫ 1

0
ξ

I1

(√
λ̂(1− ξ2)

)
√
λ̂(1− ξ2)

u(ξ, t)dξ. (71.138)

Following the certainty equivalence principle, first we need to design an identifier which will provide the
estimate λ̂.

Consider the following system:

ût = ûxx + λ̂u+ γ2(u− û)
∫ 1

0
u2(x) dx, (71.139)

û(0)= 0, (71.140)

û(1)= u(1). (71.141)

Such a system is often called an “observer,” even though it is not used here for state estimation (the entire
state u is available for measurement in our problem). The purpose of this “observer” is to help identify
the unknown parameter. This identifier employs a copy of the PDE plant and an additional nonlinear
term. We will refer to the systems (Equations 71.139 through 71.141) as a “passive identifier.” The term
“passive identifier” comes from the fact that an operator from the parameter estimation error λ̃= λ− λ̂
to the inner product of u with u− û is strictly passive. The additional term in Equation 71.139 acts as
nonlinear damping whose task is to slow down the adaptation.

Let us introduce the error signal e = u− û. Using Equations 71.135 and 71.136 and Equations 71.139
through 71.141, we obtain

et = exx + λ̃u− γ2e‖u‖2, (71.142)

e(0)= e(1)= 0. (71.143)



�

�

�

�

� �

71-16 Control System Advanced Methods

With the Lyapunov function

V = 1

2

∫ 1

0
e2(x) dx+ λ̃

2

2γ
, (71.144)

we obtain

V̇ =−‖ex‖2− γ2‖e‖2‖u‖2+ λ̃
∫ 1

0
e(x)u(x) dx− λ̃

˙̂
λ

γ
. (71.145)

Choosing the update law

˙̂
λ= γ

∫ 1

0
(u(x)− û(x))u(x) dx, (71.146)

we obtain
V̇ =−‖ex‖2− γ2‖e‖2‖u‖2, (71.147)

which implies V (t)≤ V (0) and from the definition of V we get that λ̃ and ‖e‖ are bounded functions of
time. Integrating Equation 71.147 with respect to time from zero to infinity we get that the spatial norms
‖ex‖ and ‖e‖‖u‖ are square integrable over infinite time. From the update law (Equation 71.146) we have

| ˙̂λ| ≤ γ‖e‖‖u‖, which shows that ˙̂λ is also square integrable in time.
One can show that the transformation

ŵ(x)= û(x)−
∫ x

0
k̂(x, y)û(y) dy (71.148)

with k̂ given by Equation 71.120, maps Equations 71.139 through 71.141 into the following “target system”

ŵt = ŵxx + ˙̂λ
∫ x

0

ξ

2
ŵ(ξ) dξ+ (λ̂+ γ2‖u‖2)e1, (71.149)

ŵ(0)= ŵ(1)= 0, (71.150)

where e1 is the transformed estimation error

e1(x)= e(x)−
∫ x

0
k̂(x, y)e(y) dy. (71.151)

We observe that in comparison to nonadaptive target system (plain heat equation) two additional terms

appeared in Equation 71.149, one is proportional to ˙̂λ and the other to the estimation error e. The
identifier guarantees that both of these terms are square integrable in time.

Since λ̂ is bounded, and the functions k̂(x, y) and l̂(x, y) are twice continuously differentiable with
respect to x and y, there exist constants M1, M2, and M3 such that

‖e1‖ ≤M1‖e‖, ‖u‖ ≤ ‖û‖+‖e‖ ≤M2‖ŵ‖+‖e‖ (71.152)

‖ux‖ ≤ ‖ûx‖+‖ex‖ ≤M3‖ŵx‖+‖ex‖. (71.153)

Using Equation 71.152, Young’s, Cauchy–Schwarz, and Poincare inequalities along with the identifier
properties, one can obtain the following estimate:

1

2

d

dt
‖ŵ‖2 ≤− 1

16
‖ŵ‖2+ l1‖ŵ‖2+ l2, (71.154)

where l1, l2 are some integrable functions of time on [0,∞). Using Lemma B.6 from [12] we get bounded-
ness and square integrability of ‖ŵ‖. From Equation 71.152 we get boundedness and square integrability

of ‖û‖, ‖u‖, which also proves boundedness of ˙̂λ.
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In order to get pointwise in x boundedness, one estimates

1

2

d

dt

∫ 1

0
ŵ2

x dx ≤−1

8
‖ŵx‖2+ |

˙̂
λ|2‖ŵ‖2

4
+ (λ0+ γ2‖u‖2)2M1‖e‖2, (71.155)

1

2

d

dt

∫ 1

0
e2

x dx ≤−1

8
‖ex‖2+ 1

2
|λ̃|2‖u‖2. (71.156)

Since the right-hand sides of Equations 71.155 and 71.156 are integrable, using Lemma B.6 from [12]
we get boundedness and square integrability of ‖ŵx‖, ‖ex‖, and ‖ûx‖, ‖ux‖ (from Equation 71.153).
By Agmon’s inequality, we get that û and u are bounded for all x ∈ [0, 1].

To show the regulation of u to zero, note that
∣∣∣∣12

d

dt
‖e‖2

∣∣∣∣≤ |λ̃|‖e‖‖u‖<∞. (71.157)

The boundedness of |(d/dt)‖w‖2| follows from Equation 71.154. By Barbalat’s lemma, we obtain
‖ŵ‖→ 0, ‖e‖→ 0 as t →∞. Since the transformation (Equation 71.148) is invertible, we have ‖û‖→ 0
and from Equation 71.152 ‖u‖→ 0. Using Agmon’s inequality and the fact that ‖ux‖ is bounded, we
obtain

lim
t→∞ max

x∈[0,1] |u(x, t)| = 0. (71.158)

71.12 Certainty Equivalence Design with Swapping Identifier

The certainty equivalence design with swapping identifer is perhaps the most common method of param-
eter estimation in adaptive control. Filters of the “regressor” and of the measured part of the plant are
implemented to convert a dynamic parameterization of the problem (given by the plant’s dynamic model)
into a static parametrization where standard gradient and least-squares estimation techniques can be used.

Consider the plant

ut(x, t)= uxx(x, t)+λu(x, t), (71.159)

u(0, t)= 0, (71.160)

u(1, t)= U(t) (71.161)

with unknown constant parameter λ. We start by employing two filters: the state filter

vt(x, t)= vxx(x, t)+ u(x, t), (71.162)

v(0, t)= v(1, t)= 0, (71.163)

and the input filter

ηt(x, t)= ηxx(x, t), (71.164)

η(0, t)= 0, (71.165)

η(1, t)= U(t). (71.166)

The “estimation” error
e = u−λv−η (71.167)

is then exponentially stable:

et(x, t)= exx(x, t), (71.168)

e(0, t)= e(1, t)= 0. (71.169)
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Using the static relationship (Equation 71.167) as a parametric model, we implement a “prediction error”
as

ê = u− λ̂v−η, ê = e+ λ̃v. (71.170)

We choose the gradient update law with normalization

˙̂
λ= γ

∫ 1
0 ê(x)v(x) dx

1+‖v‖2 . (71.171)

With the Lyapunov function

V = 1

2

∫ 1

0
e2 dx+ 1

8γ
λ̃2 (71.172)

one obtains

V̇ ≤−1

2
‖ex‖2− 1

8

‖ê‖2

1+‖v‖2 . (71.173)

This gives the following properties:

‖ê‖√
1+‖v‖2

, λ̃, ˙̂λ are bounded, (71.174)

‖ê‖√
1+‖v‖2

, ˙̂λ are square integrable in time over [0,∞). (71.175)

In contrast with the passive identifier, the normalization in the swapping identifier is employed in the

update law. This makes ˙̂λ not only square integrable but also bounded.
We use the controller (Equation 71.138) with the state u replaced by its estimate λ̂v+η:

U(t)=−λ̂
∫ 1

0
ξ

I1

(√
λ̂(1− ξ2)

)
√
λ̂(1− ξ2)

(λ̂v(ξ, t)+η(ξ, t)) dξ. (71.176)

The transformation (Equation 71.148) is also modified to use the estimate of the state:

ŵ(x)= λ̂v(x)+η(x)−
∫ x

0
k̂(x, ξ)(λ̂v(ξ)+η(ξ)) dξ, (71.177)

where k̂(x, ξ) is given by Equation 71.120. Using Equations 71.162 through 71.166 and the inverse trans-
formation

λ̂v(x)+η(x)= ŵ(x)+
∫ x

0
l̂(x, ξ)ŵ(ξ) dξ (71.178)

with l̂(x, ξ) given by Equation 71.132, one can obtain the following PDE for ŵ:

ŵt = ŵxx + ˙̂λv+ ˙̂λ
∫ x

0

(
ξ

2
ŵ(ξ)− k̂(x, ξ)v(ξ)

)
dξ+ λ̂

(
ê(x)−

∫ x

0
k̂(x, ξ)ê(ξ) dξ

)
(71.179)

ŵ(0)= ŵ(1)= 0. (71.180)

Rewriting the filters (Equations 71.162 through 71.163) as

vt = vxx + ê+ ŵ+
∫ x

0
l̂(x, ξ)ŵ(ξ) dξ, (71.181)

v(0)= v(1)= 0, (71.182)

we obtain two interconnected systems for v and ŵ, Equations 71.179 through 71.182, which are driven

by the signals ˙̂λ and ê with properties (Equations 71.174 and 71.175). Note that the situation here is more
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complicated than in the passive design where we had to analyze only the ŵ-systems (Equations 71.149
through 71.150). While the signal v in Equations 71.179 through 71.180 is multiplied by a square-

integrable signal ˙̂λ, the signal ŵ in the v-systems (Equations 71.181 through 71.182) is multiplied by a
bounded but possibly large gain l̂. Therefore, to show boundedness of ‖ŵ‖ and ‖v‖, we use a weighted
Lyapunov function

W = A‖ŵ‖2+‖v‖2, (71.183)

where A is a large enough constant. One can then show that

Ẇ ≤− 1

4A
W + l3W , (71.184)

where l3(t) is an integrable function of time over [0,∞), and with the help of Lemma B.6 from [12] we
get the boundedness of ‖ŵ‖ and ‖v‖. Using this result it can be shown that

d

dt

(‖ŵx‖2+‖vx‖2)≤−‖ŵxx‖2−‖vxx‖2+ l4 (71.185)

with integrable l4(t), which proves that ‖ŵx‖ and ‖vx‖ are bounded. From Agmon’s inequality we get that
ŵ and v are bounded pointwise in x. By Barbalat’s lemma, ‖ŵ‖→ 0, ‖v‖→ 0 as t →∞. From Equations
71.178 and 71.167 we get the pointwise boundedness of η and u and ‖u‖→ 0. Finally, the pointwise
regulation of u to zero follows from Agmon’s inequality.

The swapping method uses the highest order of dynamics of all identifier approaches. Lyapunov
design has the lowest dynamic order as it only incorporates the dynamics of the parameter update,
and the passivity-based method is better than the swapping method because it uses only one filter, as
opposed to “one-filter-per-unknown-parameter” in the case of the swapping approach. Despite its high
dynamic order, the swapping approach is popular because it is the most transparent (its stability proof is
the simplest due to the static parametrization) and it is the only method that incorporates least-squares
estimation.

71.13 Extension to Reaction−Advection−Diffusion Systems
in Higher Dimensions

All the approaches presented in Sections 71.10 through 71.12 can be readily extended to reaction–
advection–diffusion plants and higher dimensions (2D and 3D). As an illustration, consider a 2D plant
with four unknown parameters ε, b1, b2, and λ:

ut = ε(uxx + uyy)+ b1ux + b2uy +λu (71.186)

on the rectangle 0≤ x ≤ 1, 0≤ y ≤ L with actuation applied on the side with x = 1 and Dirichlet boundary
conditions on the other three sides.

We choose to design the scheme with passive identifier. We introduce the following “observer”

ût = ε̂(ûxx + ûyy)+ b̂1û1+ b̂2û2+ λ̂u+ γ2(u− û)‖∇u‖2, (71.187)

û= 0, (x, y) ∈ {[0, 1]× [0, 1]}\{x = 1}, (71.188)

û= u, x = 1, 0≤ y ≤ 1. (71.189)

There are two main differences compared to 1D case with one parameter considered in Section 71.11.
First, since the unknown diffusion coefficient ε is positive, we must use projection to ensure ε̂> ε> 0:

Projε{τ} =
{

0 ε̂= ε and τ< 0,

τ else.
(71.190)

Although this operator is discontinuous, it can be easily modified to avoid dealing with Filippov solutions
and noise due to frequent switching of the update law; see [13] for more details. However, we use Equation
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71.190 here for notational clarity. Note that ε̂ does not require the projection from above and all other
parameters do not require projection at all.

Second, we can see in Equation 71.187 that while the diffusion and advection coefficients multiply the
operators of û, the reaction coefficient multiplies u in the observer. This is necessary in order to eliminate
any λ-dependence in the error system so that it is stable.

The update laws are

˙̂ε=−γ0Projε

{∫ 1

0

∫ 1

0
ux(ux − ûx)+ uy(uy − ûy) dx dy

}
, (71.191)

˙̂b1 = γ1

∫ 1

0

∫ 1

0
(u− û)ux dx dy, ˙̂b2 = γ1

∫ 1

0

∫ 1

0
(u− û)uy dx dy, (71.192)

˙̂
λ= γ2

∫ 1

0

∫ 1

0
(u− û)u dx dy, (71.193)

and the controller is

u(1, y, t)=−
∫ 1

0

λ̂

ε̂
ξe−

b̂1(1−ξ)
2ε̂

I1

⎛
⎝
√
λ̂

ε̂
(1− ξ2)

⎞
⎠

√
λ̂

ε̂
(1− ξ2)

û(ξ, y, t) dξ. (71.194)

The results of the simulation of the above scheme are presented in Figures 71.1 and 71.2. The true
parameters are set to ε= 1, b1 = 1, b2 = 2,λ= 22, and L= 2. With this choice the open-loop plant has
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FIGURE 71.1 The closed-loop state for the plant (Equation 71.186) with adaptive controller (Equation 71.194) and
passive identifiers (Equations 71.187 through 71.193) at different times.
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FIGURE 71.2 The parameter estimates for the plant (Equation 71.186).

two unstable eigenvalues at 8.4 and 1. All estimates come close to the true values at approximately t = 0.5
and after that the controller stabilizes the system.

71.14 Plants with Spatially Varying Uncertainties

The designs presented in Sections 71.10 through 71.12 can be extended to plants with spatially varying
unknown parameters. For example, for the plant

ut(x, t)= uxx(x, t)+λ(x)u(x, t), (71.195)

ux(0, t)= 0, (71.196)

the Lyapunov adaptive controller would be

u(1, t)= k̂(1, 1)u(1, t)+
∫ 1

0
k̂x(1, ξ)u(ξ, t) dξ (71.197)

with

λ̂t(x, t)= γ
u(x, t)

(
w(x, t)− ∫ 1

x k̂(ξ, x)w(ξ, t)dξ
)

1+‖w(t)‖2 ,
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where λ̂(t, x) is the online functional estimate of λ(x), w(x)= u(x)− ∫ x
0 k̂(x, ξ)u(ξ)dξ, and the kernel

k̂(x, ξ)= k̂n(x, ξ) is obtained recursively from

k̂0(x, y)=−1

2

∫ x+ξ
2

x−ξ
2

λ̂
(
ζ
)

dζ, (71.198)

k̂i+1(x, y)= k̂i(x, y)+
∫ x+ξ

2

x−ξ
2

∫ x−ξ
2

0
λ̂
(
ζ− σ) k̂i

(
ζ+ σ, ζ− σ) dσ dζ, i = 0, 1, . . . , n, (71.199)

for each new update of λ̂(x, t). Stability is guaranteed for sufficiently small γ and sufficiently high n.
The recursion (Equation 71.199) was proved convergent in [21]. The certainty equivalence designs with
passive and swapping identifiers can also be extended to the case of functional unknown parameters using
the same recursive procedure. For further details, the reader is referred to [23].

71.15 Output-Feedback Design

Consider the plant

ut(x, t)= uxx(x, t)+λ(x)u(x, t), (71.200)

ux(0, t)= 0, (71.201)

u(1, t)= U(t), (71.202)

where λ(x) is an unknown continuous function and only the boundary value u(0, t) is measured.
The key step in the output-feedback design is the transformation of the original plant (Equations 71.200

through 71.202) into a system in which unknown parameters multiply the measured output.

71.15.1 Transformation to Observer Canonical Form

One can show that the transformation

v(x, t)= u(x, t)−
∫ x

0
p(x, y)u(y, t) dy, (71.203)

where p(x, y) is a solution of the PDE

pxx(x, y)− pyy(x, y)= λ(y)p(x, y), (71.204)

p(1, y)= 0, (71.205)

p(x, x)= 1

2

∫ 1

x
λ(s) ds, (71.206)

maps the systems (Equations 71.200 through 71.202) into

vt(x, t)= vxx(x, t)+ θ(x)v(0, t), (71.207)

vx(0, t)= θ1v(0, t), (71.208)

v(1, t)= U(t), (71.209)

where
θ(x)=−py(x, 0), θ1 =−p(0, 0) (71.210)

are the new unknown functional parameters.
The systems (Equations 71.207 through 71.209) is the PDE analog of observer canonical form.

Note from Equation 71.203 that v(0)= u(0) and therefore v(0) is measured. The transformation
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(Equation 71.203) is invertible so that stability of v implies stability of u. Therefore, it is enough to
design the stabilizing controller for v–system and then use the condition u(1)= v(1) (which follows from
Equation 71.205) to obtain the controller for the original system. The new unknown parameters θ(x)
and θ1 are going to be estimated directly, therefore there is no need to solve the PDE (Equations 71.204
through 71.206) for the control scheme implementation.

71.15.2 Filters

The unknown parameters θ and θ(x) enter the boundary condition and the domain of the v–system.
Therefore, the following output filters are needed:

φt(x, t)= φxx(x, t), (71.211)

φx(0, t)= u(0, t), (71.212)

φ(1, t)= 0, (71.213)

and

Φt(x, t, ξ)=Φxx(x, t, ξ)+ δ(x− ξ)u(0, t), (71.214)

Φx(0, t, ξ)=Φ(1, t, ξ)= 0. (71.215)

Here the filter Φ=Φ(x, t, ξ) is parametrized by ξ ∈ [0, 1] and δ(x− ξ) is the delta function. The reason
for this parametrization is the presence of the functional parameter θ(x) in the domain. Therefore, loosely
speaking, we need an infinite “array” of filters, one for each x ∈ [0, 1] (since the swapping design normally
requires one filter per unknown parameter). We also introduce the input filter

ψt(x, t)=ψxx(x, t), (71.216)

ψx(0, t)= 0, (71.217)

ψ(1, t)= U(t). (71.218)

It is straightforward to show now that the error

ē(x, t)= v(x, t)−ψ(x, t)− θ1φ(x, t)−
∫ 1

0
θ(ξ)Φ(x, t, ξ) dξ (71.219)

satisfies the exponentially stable PDE

ēt(x, t)= ēxx(x, t), (71.220)

ēx(0, t)= ē(1, t)= 0. (71.221)

Typically, the swapping method requires one filter per unknown parameter and since we have functional
parameters, infinitely many filters are needed. However, it is possible to reduce their number down to
only two by representing the state Φ(x, ξ, t) algebraically through φ(x, t) at each instant t. Comparing
the explicit solutions of the systems (Equations 71.211 through 71.213) and (Equations 71.214 through
71.215), one can show thatΦ can be represented asΦ= F+ΔF, whereΔF satisfies

ΔFt =ΔFxx , (71.222)

ΔFx(0, ξ, t)=ΔF(1, ξ, t)= 0, (71.223)

and F(x, ξ, t) is obtained from the filter φ through the solution of the PDE

Fxx(x, ξ)= Fξξ(x, ξ), (71.224)

F(0, ξ)=−φ(ξ), (71.225)

Fx(0, ξ)= Fξ(x, 0)= F(x, 1)= 0. (71.226)
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It is then easy to show that the signal

e(x)= v(x)−ψ(x)− θ1φ(x)−
∫ 1

0
θ(ξ)F(x, ξ) dξ (71.227)

is governed by the exponentially stable heat equation:

et(x, t)= exx(x, t), (71.228)

ex(0, t)= e(1, t)= 0. (71.229)

Therefore, instead of solving the infinite “array” of parabolic equations 71.214 through 71.215, one can
solve only two dynamic equations for filters φ and ψ and compute the solution of the standard wave
equation 71.224 through 71.226 at each time step.

71.15.3 Update Laws

The following equation serves as a parametric model:

e(0)= v(0)−ψ(0)− θ1φ(0)+
∫ 1

0
θ(ξ)φ(ξ) dξ. (71.230)

The estimation error is

ê(0)= v(0)−ψ(0)− θ̂1φ(0)+
∫ 1

0
θ̂(ξ)φ(ξ) dξ. (71.231)

We employ the gradient update laws with normalization

θ̂t(x, t)=−γ(x)
ê(0)φ(x)

1+‖φ‖2+φ2(0)
, ˙̂
θ1 = γ1

ê(0)φ(0)

1+‖φ‖2+φ2(0)
, (71.232)

where γ(x) and γ1 are positive adaptation gains.
With the Lyapunov function

V = 1

2
‖e‖2+ 1

2γ1
θ̃2

1+
∫ 1

0

θ̃2(x)

2γ(x)
dx (71.233)

one obtains

V̇ ≤−1

2
‖ex‖2− 1

2

ê2(0)

1+‖φ‖2+φ2(0)
, (71.234)

which gives the following properties of the adaptive laws:

ê(0)√
1+‖φ‖2+φ2(0)

, ‖θ̂t‖, ˙̂θ1, ‖θ̃‖, θ̃1 are bounded, (71.235)

ê(0)√
1+‖φ‖2+φ2(0)

, ‖θ̂t‖, ˙̂θ1 are square integrable in time. (71.236)

71.15.4 Controller

The PDE for the estimated gain kernel for the plant (Equations 71.207 through 71.209) is

k̂xx(x, y)= k̂yy(x, y), (71.237)

k̂y(x, 0)= θ̂1k̂(x, 0)+ θ̂(x)−
∫ x

0
k̂(x, y)θ̂(y) dy, (71.238)

k̂(x, x)= θ̂1. (71.239)
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The solution to this PDE is k̂(x, y)= κ(x− y), where κ satisfies the simple integral equation

κ(x)= θ̂1−
∫ x

0
θ̂(y) dy−

∫ x

0

[
θ̂1−

∫ x−y

0
θ̂(s) ds

]
κ(y) dy, (71.240)

which has to be solved online.
The controller is given by

U =
∫ 1

0
κ(1− y)

(
ψ(y)+ θ̂1φ(y)+

∫ 1

0
F(y, ξ)θ̂(ξ) dξ

)
dy. (71.241)

Using the transformation

w(x)=ψ(x)+ θ̂1φ(x)+
∫ 1

0
F(x, ξ)θ̂(ξ) dξ

−
∫ x

0
κ(x− y)

[
ψ(y)+ θ̂1φ(y)+

∫ 1

0
F(y, ξ)θ̂(ξ) dξ

]
dy (71.242)

and analyzing stability properties of the interconnected PDEs for w and φ similarly to the way it is done
in Section 71.12, one can show that all the signals in the closed-loop system are bounded and u(x, t) is
regulated to zero uniformly in x ∈ [0, 1].

The design methodology presented above can also be applied to general reaction–advection–diffusion
systems

ut = ε(x)uxx + b(x)ux +λ(x)u+ g(x)u(0)+
∫ x

0
f (x, y)u(y) dy (71.243)

ux(0)=−qu(0), (71.244)

u(1)= U , (71.245)

where ε(x) is known and b(x),λ(x), g(x), f (x, y), and q are unknown parameters.

Further Reading

Due to space constraints, the material presented in this chapter does not include all the backstepping-
based designs developed up to the time of writing this chapter. Most of those can be accessed in two
recently published books, [15,28].

In particular, the stabilizing controllers in Sections 71.2 through 71.4 can be modified so that a certain
meaningful cost functional is minimized, providing stability margins [21] (the so-called inverse-optimal
design).

In addition to the design for the shear beam in Section 71.8, which is presented in more details in [16],
backstepping controllers have also been developed for the Euler–Bernoulli beam [20].

Designs for nonlinear parabolic PDEs are presented in [29,30].
Finally, the backstepping method is particularly suited for dealing with PDE–ODE or PDE–PDE

cascades, for example, systems with actuator/sensor dynamics in the form of the pure delay [14].
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72.1 Introduction

Recent years have been marked by dramatic advances in the field of active flow control. This development
can be credited not only to advances in the various fields that intersect through this discipline (such as
control theory, fluid mechanics, PDE theory, and numerical methods), but also to technological develop-
ments such as Micro-Electro-Mechanical Systems (MEMS) sensors and actuators and the ever-increasing
prowess of last-generation computers, that have augmented the possibilities of effective implementation
in both real-life and numerical experiments. However, the area is far from being mature with still many
opportunities and challenging open problems.

Efforts over the last few years have led to a wide range of developments in many different directions,
reflecting the interdisciplinary character of the research community. However, most implementable devel-
opments so far have been obtained using discretized versions of the plant models and finite-dimensional
control techniques. In contrast, in this chapter we present a design method that is based on the “contin-
uum” version of the backstepping approach, applied to the partial differential equation (PDE) model of
the flow. The postponement of the spatial discretization until the implementation stage offers advantages
that range from numerical to analytical. In fact, this design method offers a unique physical intuition by
forcing the closed-loop system to dynamically behave as a set of well-damped heat equation PDEs.

In the next sections we present an example of feedback control and observer design for an incompress-
ible 3D magnetohydrodynamic (MHD) channel flow, also known as the Hartmann flow, a benchmark
model for applications such as cooling systems (computer systems, fusion reactors), hypersonic flight, and

72-1
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72-2 Control System Advanced Methods

propulsion. In this flow, an electrically conducting fluid moves between parallel plates and is affected by an
imposed transverse magnetic field. The velocity and electromagnetic fields are mathematically described
by the MHD equations, which are the Navier–Stokes equation coupled with the Maxwell equations. For
zero magnetic field or nonconducting fluids, the plant reduces to the 3D Navier–Stokes channel flow, and
hence, the control and observer designs apply to the 3D Navier–Stokes system when the magnetic field
parameter is set to zero.

Owing to the high complexity of the Navier–Stokes problem (further aggravated by the presence of
Maxwell’s equations), most derivations and proofs are skipped or at best only sketched. Further details
and methods for flow control can be found in the recent book by Vazquez and Krstic [26]. The main
method used in the designs is the backstepping method for PDEs. Its basics are outlined in Chapter 71
on “Boundary control for PDEs” by Krstic and Smyshlyaev in this Handbook. Some very elementary
background on Lyapunov stability (see Chapter 43 by Khalil in this Handbook) and basic PDE theory is
assumed in this chapter, but no previous familiarity with flow control is necessary.

In Section 72.2, we present the mathematical model of the Hartmann flow, and then study its equilib-
rium profile. We linearize the system around the equilibrium and derive the plant equations in Fourier
space. We follow Section 72.3, where we design (in Fourier space) a feedback control law that stabilizes
the linearized system using the backstepping method. In Section 72.4 we study the problem of designing
a nonlinear estimator, with linear output injection, using the backstepping observer design method. The
observer and controller, combined together, provide a stabilizing output feedback control law. We finish
with a brief literature review in Section 72.5.

72.2 Channel with MHD Flow

We consider a benchmark 3D MHD channel flow, known as the Hartmann flow. This flow consists of an
incompressible conducting fluid enclosed between two parallel plates, separated by a distance Lp, under
the influence of a pressure gradient ∇P parallel to the walls and a magnetic field B0 normal to the walls,
as shown in Figure 72.1. Under the assumption of a very small magnetic Reynolds number

ReM = μmσUcLp $ 1, (72.1)

where μm is the magnetic permeability of the fluid, σ the conductivity of the fluid, and Uc the reference
velocity (maximum velocity of the Hartmann equilibrium profile), the dynamics of the magnetic field can
be neglected and the dimensionless velocity and electric potential field are governed by the inductionless
MHD equations [17].

We set nondimensional coordinates (x, y, z), where x is the streamwise direction (parallel to the
pressure gradient), y the wall normal direction (parallel to the magnetic field), and z the spanwise

U
y

B0 ∇P
x

z

FIGURE 72.1 Hartmann flow.
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direction, so that (x, y, z) ∈ (−∞,∞)×[0, 1]× (−∞,∞). The governing equations are

Ut = 
U

Re
−UUx −VUy −WUz − Px +Nφz −NU , (72.2)

Vt = 
V

Re
−UVx −VVy −WVz − Py , (72.3)

Wt = 
W

Re
−UWx −VWy −WWz − Pz −Nφx −NW , (72.4)


φ= Uz −Wx , (72.5)

where U , V , and W denote, respectively, the streamwise, wall-normal and spanwise velocities, P the
pressure, φ the electric potential, Re = (UcLp)/ν is the Reynolds number, N = (σLpB2

0)/(ρUc) the Stuart
number, and Δ= ∂xx + ∂yy + ∂zz denotes the standard Laplacian operator. The notations Ut and Ux

(and other subscripts such as y, z, xx, etc.) denote the partial derivatives of U with respect to t and x,
respectively. Since the fluid is incompressible, the continuity equation is verified

Ux +Vy +Wz = 0 . (72.6)

The boundary conditions for the velocity field are

U(t, x, 0, z)= U(t, x, 1, z)= Uc(t, x, z), (72.7)

V (t, x, 0, z)= V (t, x, 1, z)= Vc(t, x, z), (72.8)

W(t, x, 0, z)=W(t, x, 1, z)=Wc(t, x, z), (72.9)

where Uc(t, x, z), Vc(t, x, z), and Wc(t, x, z) denote, respectively, the actuators for streamwise, wall-
normal, and spanwise velocity in the upper wall. Assuming perfectly conducting walls, the electric
potential must verify

φ(t, x, 0, z)= 0, φ(t, x, 1, z)=Φc(t, x, z), (72.10)

whereΦc(t, x, z) is the imposed potential (electromagnetic actuation) in the upper wall.
We assume that all actuators can be independently actuated for every (x, z) ∈ R

2. Note that no actuation
is done inside the channel or at the bottom wall.

Remark 72.1

If we set N = 0 (zero magnetic field, or nonconducting fluid) in Equations 72.2 through 72.5, they reduce
to the classical Navier–Stokes Equations without body forces. Then Equations 72.2 through 72.4, 72.6,
and Equations 72.7 through 72.9 describe a pressure-driven channel flow, known as the Poiseuille flow.

72.2.1 Hartmann Equilibrium Profile

The equilibrium profile for systems (Equations 72.2 through 72.5) with no control can be found explicitly
(as is also the case with the Poiseuille solution for Navier–Stokes channel flow). We assume a steady
solution with only one nonzero nondimensional velocity component, Ue, that depends only on the y
coordinate. Substituting Ue in Equation 72.2, one finds that it verifies the following equation:

0= Ue
yy(y)

Re
− Pe

x −NUe(y) , (72.11)
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whose nondimensional solution is, setting Pe such that the maximum velocity (centerline velocity) is
unity,

Ue(y)= sinh(H(1− y))− sinh H + sinh(Hy)

2 sinh H/2− sinh H
, (72.12)

V e =We = φe = 0, (72.13)

Pe = N sinh H

2 sinh H/2− sinh H
x, (72.14)

jxe = jye = 0, jze = Ue(y). (72.15)

where H =√ReN = B0Lp

√
σ
ρν

is the Hartmann number. In Figure 72.2 (left) we show Ue(y) for different

values of H . Since the equilibrium profile is nondimensional the centerline velocity is always 1. For H = 0,
the Poiseuille equilibrium profile is obtained, which is parabolic. In Figure 72.2 (right) we show Ue

y (y),
proportional to shear stress, whose maximum is reached at the boundaries and grows with H .

72.2.2 The Plant in Wave Number Space

Define the fluctuation variables

u(t, x, y)= U(t, x, y)−Ue(y), (72.16)

p(t, x, y)= P(t, x, y)− Pe(y), (72.17)

where Ue(y) and Pe(y) are, respectively, the equilibrium velocity and pressure given in Equations 72.12
and 72.14. The linearization of Equations 72.2 through 72.4 around the Hartmann equilibrium profile,
written in the fluctuation variables (u, V , W , p,φ), is

ut = 
u

Re
−Ue(y)ux −Ue

y (y)V − px +Nφz −Nu , (72.18)

Vt = 
V

Re
−Ue(y)Vx − py , (72.19)

Wt = 
W

Re
−Ue(y)Wx − pz −Nφx −NW . (72.20)

0 0.5 1
0

0.5

1(a) (b)

Ue(y)

y y

50 0 50
0

0.5

1

U e
y (y)

FIGURE 72.2 Streamwise equilibrium velocity Ue(y) (left) and Ue
y (y) (right), for different values of H . Solid, H = 0;

dash-dotted, H = 10; dashed, H = 50.
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The equation for the potential is


φ= uz −Wx , (72.21)

and the fluctuation velocity field verifies the continuity equation,

ux +Vy +Wz = 0 , (72.22)

and the following boundary conditions:

u(t, x, 0, z)=W(t, x, 0, z)= V (t, x, 0, z)= 0, (72.23)

u(t, x, 1, z)= Uc(t, x, z), (72.24)

V (t, x, 1, z)= Vc(t, x, z), (72.25)

W(t, x, 1, z)=Wc(t, x, z), (72.26)

φ(t, x, 0, z)= 0, φ(t, x, 1, z)=Φc(t, x, z). (72.27)

Since the plant is linear and invariant to shifts in the streamwise (x) and spanwise (z) directions, we
use a Fourier transform in x and z coordinates. The transform pair (direct and inverse transform) is
defined as

f (kx , y, kz)=
∫ ∞

−∞

∫ ∞

−∞
f (x, y, z)e−2πi

(
kxx+kz z

)
dz dx, (72.28)

f (x, y, z)=
∫ ∞

−∞

∫ ∞

−∞
f (kx , y, kz)e2πi

(
kxx+kz z

)
dkz dkx . (72.29)

Note that we use the same symbol f for both the original f (x, y, z) and the transform f (kx , y, kz). The
quantities kx and kz are referred to as the “wave numbers.”

Denoting α2 = 4π2(k2
x + k2

z ) and β= 2πikxUe, the plant equations in Fourier space are

ut = −α
2u+ uyy

Re
− βu−Ue

y V − 2πkxip+ 2πkziNφ−Nu, (72.30)

Vt = −α
2V +Vyy

Re
− βV − py , (72.31)

Wt = −α
2W +Wyy

Re
− βW − 2πkzip− 2πkxiNφ−NW . (72.32)

The continuity equation in wave number space is expressed as

2πikxu+Vy + 2πkzW = 0, (72.33)

and the equation for the potential is

−α2φ+φyy = 2πi
(
kzu− kxW

)
. (72.34)

The boundary conditions are

u(t, kx , 0, kz)=W(t, kx , 0, kz)= V (t, kx , 0, kz)= φ(t, kx , 0, kz)= 0, (72.35)

u(t, kx , 1, kz)= Uc(t, kx , kz), V (t, kx , 1, kz)= Vc(t, kx , kz), (72.36)

W(t, kx , 1, kz)=Wc(t, kx , kz), φ(t, kx , 1, kz)=Φc(t, kx , kz). (72.37)
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72.3 Boundary Control Design

The Hartmann and Poiseuille flows are unstable for large Reynolds numbers. To guarantee stability, our
design task is to design feedback laws Uc , Vc , Wc , and Φc , so that the origin of the velocity fluctuation
system is exponentially stable. Full state knowledge is assumed in this section.

We design the controller in wave number space. Note that Equations 72.30 through 72.37 are uncoupled
for each wave number. Therefore, the set of wave numbers k2

x + k2
z ≤M2 (for some large M > 0), which we

refer to as the controlled wave number range, and the range k2
x + k2

z > M2, the uncontrolled wave number
range, can be studied separately. If stability for all wave numbers is established, stability in physical space
follows. The number M, which will be computed in Section 72.3.2, is a parameter that ensures stability
for uncontrolled wave numbers.

We define χ, a truncating function, as

χ(kx , kz)=
{

1, k2
x + k2

z ≤M2,
0, otherwise.

(72.38)

Then, we reflect that we only use control for small (controlled) wave numbers by setting

⎛
⎜⎜⎝

Uc(t, x, z)
Vc(t, x, z)
Wc(t, x, z)
Φc(t, x, z)

⎞
⎟⎟⎠=

∫ ∞

−∞

∫ ∞

−∞
χ(kx , kz)

⎛
⎜⎜⎝

Uc(t, kx , kz)
Vc(t, kx , kz)
Wc(t, kx , kz)
Φc(t, kx , kz)

⎞
⎟⎟⎠ e2πi

(
kxx+kz z

)
dkz dkx . (72.39)

Next, we find control laws for small wave numbers and study uncontrolled wave numbers.

72.3.1 Controlled Velocity Wave Number Analysis

Consider k2
x + k2

z ≤M2. Thenχ= 1, so control is applied. Using the continuity Equation 72.33 and taking
divergence of Equations 72.30 through 72.32, a Poisson Equation for the pressure is derived,

−α2p+ pyy =−4πkxiUe
y (y)V +NVy . (72.40)

Evaluating Equation 72.31 at y = 0 one finds that

py(kx , 0, kz)= Vyy(kx , 0, kz)

Re

=−2πi
kxuy0+ kzWy0

Re
, (72.41)

where we use Equation 72.33 for expressing Vyy at the bottom in terms of the boundary variables uy0 =
uy(kx , 0, kz) and Wy0 =Wy(kx , 0, kz). Similarly, evaluating Equation 72.31 at y = 1 we obtain

py(kx , 1, kz)= Vyy(kx , 1, kz)

Re
− (Vc)t − α2 Vc

Re

=−2πi
kxuy1+ kzWy1

Re
− (Vc)t − α2 Vc

Re
, (72.42)

where we use Equation 72.33 for expressing Vyy at the top wall in terms of uy1 = uy(kx , 1, kz) and
Wy1 =Wy(kx , 1, kz) and the controller Vc .



�

�

�

�

� �

Stabilization of Fluid Flows 72-7

Equation 72.40 can be solved in terms of integrals of the state and the boundary terms appearing in
Equations 72.41 and 72.42.

p=−4πkxi

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
V (kx ,η, kz) dη+N

∫ y

0

sinh
(
α(y−η)

)
α

Vy(kx ,η, kz) dη

+ 2πi
cosh

(
α(1− y)

)
α sinh α

kxuy0+ kzWy0

Re
−N

cosh
(
αy
)

α sinh α

∫ 1

0
cosh

(
α(1−η)

)
Vy(kx ,η, kz) dη

+ 4πkxi cosh
(
αy
)

α sinh α

∫ 1

0
Ue

y (η) cosh
(
α(1−η)

)
V (kx ,η, kz) dη

− 2πi
cosh

(
αy
)

α sinh α

kxuy1+ kzWy1

Re
− cosh

(
αy
)

α sinh α

(
(Vc)t + α2 Vc

Re

)
. (72.43)

We use the controller Vc , which appears inside the pressure solution (Equation 72.43), to make the
pressure strict-feedback [16] (spatially causal in y), for applying a backstepping boundary controller as
in [27]. Since the first two lines in Equation 72.43 are already spatially causal, we need to cancel the third,
fourth, and fifth lines of Equation 72.43. Set

(Vc)t = α2 Vc

Re
+ 2πi

kx(uy0− uy1)+ kz(Wy0−Wy1)

Re
−N

∫ 1

0
cosh

(
α(1−η)

)
Vy(kx ,η, kz) dη

+ 4πkxi
∫ 1

0
Ue

y (η) cosh
(
α(1−η)

)
V (kx ,η, kz) dη, (72.44)

which can be written as

(Vc)t = α2 Vc

Re
+ 2πi

kx(uy0− uy1)+ kz(Wy0−Wy1)

Re
−NVc

+
∫ 1

0
cosh

(
α(1−η)

)
V (kx ,η, kz)

(
N + 4πkxiUe

y (η)
)

dη. (72.45)

Then, the pressure is written in terms of a strict-feedback integral of the state V and the boundary
terms uy0, Wy0 (proportional to the skin friction at the bottom) as follows:

p=−4πkxi

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
V (kx ,η, kz) dη+N

∫ y

0

sinh
(
α(y−η)

)
α

Vy(kx ,η, kz) dη

− 2πi
cosh

(
αy
)− cosh

(
α(1− y)

)
Re α sinh α

(
kxuy0+ kzWy0

)
. (72.46)

Similarly, solving for φ in terms of the controlΦc and the right-hand side of its Poisson equation 72.34,

φ= 2πi

α

∫ y

0
sinh

(
α(y−η)

) (
kzu(kx ,η, kz)− kxW(kx ,η, kz)

)
dη+ sinh

(
αy
)

sinh α
Φc(kx , ky)

− 2πi sinh
(
αy
)

α sinh α

∫ 1

0
sinh

(
α(1−η)

) (
kzu(kx ,η, kz)− kxW(kx ,η, kz)

)
dη. (72.47)

As in the pressure Equation 72.43, an actuator (Φc in this case) appears inside the solution for the
potential. The second line of Equation 72.47 is a nonstrict-feedback integral and needs to be cancelled to
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apply the backstepping method. For this we useΦc by setting

Φc(kx , ky)= 2πi

α

∫ 1

0
sinh

(
α(1−η)

) (
kzu(kx ,η, kz)− kxW(kx ,η, kz)

)
dη. (72.48)

Then the potential can be expressed as a strict-feedback integral of the states u and W as follows:

φ= 2πi

α

∫ y

0
sinh

(
α(y−η)

) (
kzu(kx ,η, kz)− kxW(kx ,η, kz)

)
dη. (72.49)

Introducing the expressions (Equations 72.46 and 72.49) in Equations 72.30 and 72.32, we obtain

ut = −α
2u+ uyy

Re
− βu−Ue

y (y)V − 4π2kx
cosh

(
αy
)− cosh

(
α(1− y)

)
Re α sinh α

(
kxuy0+ kzWy0

)

−Nu− 8πk2
x

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
V (kx ,η, kz) dη

− 2πikxN
∫ y

0

sinh
(
α(y−η)

)
α

Vy(kx ,η, kz) dη

− 4π2kzN

α

∫ y

0
sinh

(
α(y−η)

) (
kzU(kx ,η, kz)− kxW(kx ,η, kz)

)
dη, (72.50)

Wt = −α
2W +Wyy

Re
− βW −NW − 4π2kz

cosh
(
αy
)− cosh

(
α(1− y)

)
Re α sinh α

(
kxuy0+ kzWy0

)

− 8πkxkz

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
V (kx ,η, kz) dη

− 2πikzN
∫ y

0

sinh
(
α(y−η)

)
α

Vy(kx ,η, kz) dη

+ 4π2kxN

α

∫ y

0
sinh

(
α(y−η)

) (
kzU(kx ,η, kz)− kxW(kx ,η, kz)

)
dη. (72.51)

We have omitted the equation for V since, from Equation 72.33 and using the fact that V (kx , 0, kz)= 0, V
is computed as

V =−2πi
∫ y

0

(
kxU(kx ,η, kz)+ kzW(kx ,η, kz)

)
dη. (72.52)

Now we use the following change of variables and its inverse:

Y = 2πi
(
kxu+ kzW

)
, ω= 2πi

(
kzu− kxW

)
, (72.53)

u= 2πi

α2

(
kxY + kzω

)
, W = 2πi

α2

(
kzY − kxω

)
. (72.54)

Defining ε= 1
Re and the following functions:

f = 4πikx

{
Ue

y

2
+
∫ y

η

Ue
y (σ)

sinh
(
α(y− σ)

)
α

dσ

}
+Nα sinh

(
α(y− σ)

)
, (72.55)

g =−αcosh
(
αy
)− cosh

(
α(1− y)

)
Re sinh α

, (72.56)

h1 = 2πikzUe
y , (72.57)

h2 =−Nα sinh
(
α(y−η)

)
, (72.58)
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Equations 72.50 and 72.51 expressed in terms of Y and ω are

Yt = ε
(−α2Y +Yyy

)− βY −NY + gYy0+
∫ y

0
f (kx , y,η, kz)Y (kx ,η, kz) dη , (72.59)

ωt = ε
(−α2ω+ωyy

)− βω−Nω+ h1

∫ y

0
Y (kx ,η, kz) dη+

∫ y

0
h2(y,η)ω(kx ,η, kz) dη, (72.60)

where we have used the inverse change of variables (Equation 72.54) to express uy0 and Wy0 in terms of
Yy0 = Yy(kx , 0, kz) as follows:

Yy0 = 2πi
(
kxuy0+ kzWy0

)
, (72.61)

with boundary conditions

Y (t, kx , 0, kz)= ω(t, kx , 0, kz)= 0, (72.62)

Y (t, kx , 1, kz)= Yc(t, kx , kz), ω(t, kx , 1, kz)= ωc(t, kx , kz), (72.63)

where

Yc = 2πi
(
kxUc + kzWc

)
, ωc = 2πi

(
kzUc − kxWc

)
. (72.64)

Equations 72.59 and 72.60 are a coupled, strict-feedback plant, with integral and reaction terms. A
variant of the backstepping control design presented in [21] can be used to stabilize the system considered
here, which consists of a pair of coupled PDEs, by using a pair of backstepping transformations. The
transformations map, for each kx and kz , the variables (Y ,ω) into the variables (Ψ,Ω), that verify the
following pair of heat equations (parameterized in kx , kz):

Ψt = ε
(−α2Ψ+Ψyy

)− βΨ−NΨ, (72.65)

Ωt = ε
(−α2Ω+Ωyy

)− βΩ−NΩ, (72.66)

with boundary conditions

Ψ(kx , 0, kz)=Ψ(kx , 1, kz)=Ω(kx , 0, kz)=Ω(kx , 1, kz)= 0. (72.67)

The transformation is defined as follows:

Ψ = Y −
∫ y

0
K(kx , y,η, kz)Y (kx ,η, kz) dη, (72.68)

Ω= ω−
∫ y

0
Γ1(kx , y,η, kz)Y (kx ,η, kz) dη−

∫ y

0
Γ2(kx , y,η, kz)ω(kx ,η, kz) dη. (72.69)

The kernel functions K(kx , y,η, kz),Γ1(kx , y,η, kz), and Γ2(kx , y,η, kz) are found as the solution of the
following partial integro-differential equations:

εKyy = εKηη+
(
β(y)− β(η)

)
K − f +

∫ y

η

f (η, ξ)K(y, ξ) dξ, (72.70)

εΓ1yy = εΓ1ηη+
(
β(y)− β(η)

)
Γ1− h1+

∫ y

η

Γ2(y, ξ)h1(ξ) dξ+
∫ y

η

f (η, ξ)Γ1(y, ξ) dξ, (72.71)

εΓ2yy = εΓ2ηη+
(
β(y)− β(η)

)
Γ2− h2+

∫ y

η

h2(ξ,η)Γ2(y, ξ) dξ. (72.72)

Equations 72.70 through 72.72 are hyperbolic partial integro-differential equation in the region T =
{(y,η) : 0≤ y ≤ 1, 0≤ η≤ y}. Their boundary conditions are

K(y, y)=− g(0)

ε
, K(y, 0)=

∫ y
0 K(y,η)g(η) dη− g(y)

ε
, (72.73)

Γ1(y, y)= 0, Γ1(y, 0)=
∫ y

0 Γ1(y,η)g(η) dη

ε
, (72.74)

Γ2(y, y)= 0, Γ2(y, 0)= 0. (72.75)
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Remark 72.2

Equations 72.70 through 72.75 are well-posed and can be solved symbolically, by means of a successive
approximation series, or numerically [21]. Note that Equations 72.70 and 72.72 are autonomous. Hence,
one must solve first for K(kx , y,η, kz) and Γ2(kx , y,η, kz). Then the solution for Γ2 is plugged in Equation
72.71 which then can be solved for Γ1(kx , y,η, kz).

Control laws Yc and Wc are found evaluating Equations 72.68 and 72.69 at y = 1 and using Equations
72.63 and 72.67 which yield

Yc(t, kx , kz)=
∫ 1

0
K(kx , 1,η, kz)Y (kx ,η, kz) dη, (72.76)

ωc(t, kx , kz)=
∫ 1

0
Γ1(kx , 1,η, kz)Y (kx ,η, kz) dη+

∫ 1

0
Γ2(kx , 1,η, kz)ω(kx ,η, kz) dη. (72.77)

Using Equations 72.53 and 72.54 to write Equations 72.76 and 72.77 in(u, W), we obtain

Uc =
∫ 1

0
KUu(kx , 1,η, kz)u(kx ,η, kz) dη+

∫ 1

0
KUW (kx , 1,η, kz)W(kx ,η, kz) dη, (72.78)

Wc =
∫ 1

0
KWu(kx , 1,η, kz)u(kx ,η, kz) dη+

∫ 1

0
KWW (kx , 1,η, kz)W(kx ,η, kz) dη, (72.79)

where ⎛
⎜⎜⎝

KUu

KUW

KWu

KWW

⎞
⎟⎟⎠= A

⎛
⎜⎜⎝

K(kx , y,η, kz)
Γ1(kx , y,η, kz)

0
Γ2(kx , y,η, kz)

⎞
⎟⎟⎠ , (72.80)

and where the matrix A is defined as

A=−4π2

α2

⎛
⎜⎜⎝

k2
x kxkz kxkz k2

z
kxkz k2

z −k2
x −kxkz

kxkz −k2
x k2

z −kxkz

k2
z −kxkz −kxkz k2

x

⎞
⎟⎟⎠ . (72.81)

Stability in the controlled wave number range follows from stability of Equations 72.65 and 72.66, and
the invertibility of the transformations (Equations 72.68 and 72.69). We obtain the following result.

Proposition 72.1:

For k2
x + k2

z ≤M2, the equilibrium u≡ V ≡W ≡ 0 of systems (Equations 72.30 and 72.37) with control
laws (Equations 72.45, 72.48, 72.78 and 72.79) is exponentially stable in the L2 norm, that is,

∫ 1

0

(|u|2+ |V |2+ |W |2) (t, kx , y, kz) dy ≤ C1e−2εt
∫ 1

0

(|u|2+ |V |2+ |W |2) (0, kx , y, kz) dy, (72.82)

where C1 ≥ 0.
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Proof. From Equations 72.65 and 72.66 we obtain, using a standard Lyapunov argument,
∫ 1

0

(|Ψ|2+ |Ω|2) (t, kx , y, kz) dy ≤ e−2εt
∫ 1

0

(|Ψ|2+ |Ω|2) (0, kx , y, kz) dy, (72.83)

and then from the transformation (Equations 72.68 and 72.69) and its inverse (which is guaranteed to
exist [21]), we obtain

∫ 1

0

(|Y |2+ |ω|2) (t, kx , y, kz) dy ≤ C0e−2εt
∫ 1

0

(|Y |2+ |ω|2) (0, kx , y, kz) dy, (72.84)

where C0 > 0 is a constant depending on the kernels K ,Γ1, and Γ2 and their inverses. Then writing
(u, W) in terms of (Y ,ω) and bounding the norm of V by the norm of Y (using Y =−Vy and Poincare’s
inequality), the result follows.

72.3.2 Uncontrolled Velocity Wave Number Analysis

When k2
x + k2

z > M, the plant verifies the following equations:

ut = −α
2u+ uyy

Re
− βu−Ue

y (y)V − 2πkxip+ 2πkziNφ−Nu , (72.85)

Vt = −α
2V +Vyy

Re
− βV − py , (72.86)

Wt = −α
2W +Wyy

Re
− βW − 2πkzip− 2πkxiNφ−NW , (72.87)

the Poisson equation for the potential

−α2φ+φyy = 2πi
(
kzu− kxW

)
(72.88)

the continuity equation
2πikxu+Vy + 2πkzW = 0, (72.89)

and Dirichlet boundary conditions

u(t, kx , 0, ky)= V (t, kx , 0, ky)=W(t, kx , 0, ky)= 0, (72.90)

u(t, kx , 1, ky)= V (t, kx , 1, ky)=W(t, kx , 1, ky)= 0, (72.91)

φ(t, kx , 0, ky)= φ(t, kx , 1, ky)= 0. (72.92)

Using the transformation (Equation 72.53) to write the system in (Y ,ω) coordinates, one gets the following
equations for Y and ω:

Yt = ε
(−α2Y +Yyy

)− βY − 2πkxiUe
y V + α2p−NY , (72.93)

ωt = ε
(−α2ω+ωyy

)− βω− 2πkziUe
y V − α2Nφ−Nω. (72.94)

The Poisson equation for the potential is, in terms of ω,

−α2φ+φyy = ω. (72.95)

Consider the Lyapunov function

Λ=
∫ 1

0

|u|2+ |V |2+ |W |2
2

dy, (72.96)

where we write
∫ 1

0 f = ∫ 1
0 f (kx , y, kz) dy. The functionΛ is the L2 norm (kinematic energy) of the velocity

field.
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Substituting Y and ω from Equation 72.54 into Equation 72.96, we obtain

Λ=
∫ 1

0
4π2

[
k2

x|Y |2+ k2
z |ω|2+ kxkz(Ȳω+Yω̄)

2α4 + k2
z |Y |2+ k2

x|ω|2− kxkz(Ȳω+Yω̄)

2α4

]
dy

+
∫ 1

0

|V |2
2

dy

=
∫ 1

0

|Y |2+ |ω|2+ α2|V |2
2α2 dy. (72.97)

Define then a new Lyapunov function,

Λ1 = α2Λ=
∫ 1

0

|Y |2+ |ω|2+ α2|V |2
2

dy. (72.98)

The time derivative ofΛ1 can be estimated as follows:

Λ̇1 =−2εα2Λ1− ε
∫ 1

0

(|Yy|2+ |ωy|2+ α2|Vy|2
)−N

∫ 1

0

(|Y |2+ |ω|2)

−
∫ 1

0
πiUe

y (y)V (2kxȲ + kzω̄)+
∫ 1

0
πiUe

y (y)V̄ (2kxY + kzω)

− α2N
∫ 1

0

φ̄ω+φω̄
2

+ α2
∫ 1

0

P̄Y + PȲ − P̄yV − PyV̄

2
. (72.99)

For bounding Equation 72.99, we use the following two lemmas.

Lemma 72.1:

−α2
∫ 1

0

φ̄ω+φω̄
2

≤
∫ 1

0
|ω|2. (72.100)

Lemma 72.2:

|Ue
y (y)| ≤ 4+H . (72.101)

Integrating by parts and applying Lemma 72.1,

Λ̇1 ≤−2εα2Λ1− ε
∫ 1

0

(|Yy|2+ |ωy|2+ α2|Vy|2
)+

∫ 1

0
πiUe

y (y)V̄ (kxY + kzω)

−
∫ 1

0
πiUe

y (y)V (kxȲ + kzω̄)−N
∫ 1

0
|Y |2. (72.102)

Using Lemma 72.2 to bound Ue
y in Equation 72.102,

Λ̇1 ≤−2ε
(
1+ α2)Λ1−N

∫ 1

0
|Y |2dy+ 2π

(
4+H

) ∫ 1

0

(|V |(|kx||Y | + |kz ||ω|
)

dy

≤ (4+H − 2ε
(
1+ α2))Λ1 (72.103)
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where we have applied Young’s and Poincare’s inequalities. Hence, if α2 ≥ 4+H
2ε ,

Λ̇1 ≤−2εΛ1. (72.104)

Dividing Equation 72.104 by α2 and using Equation 72.98, we obtain

Λ̇≤−2εΛ, (72.105)

and stability in the uncontrolled wave number range follows when k2
x + k2

z ≥M2 for M (conservatively)
chosen as

M ≥ 1

2π

√
(H + 4)Re

2
. (72.106)

We summarize the result in the following proposition.

Proposition 72.2:

For k2
x + k2

z ≥M2, where M ≥ 1
2π

√
(H+4)Re

2 , the equilibrium u≡ V ≡W ≡ 0 of the uncontrolled systems

(Equations 72.85 through 72.92) is exponentially stable in the L2 sense, that is,

∫ 1

0

(|u|2+ |V |2+ |W |2) (t, kx , y, kz) dy ≤ e−2εt
∫ 1

0

(|u|2+ |V |2+ |W |2) (0, kx , y, kz) dy. (72.107)

72.3.3 Closed-Loop Stability Properties

Substituting Equations 72.45, 72.48, and Equations 72.78, 72.79 into Equation 72.39, and using the Fourier
convolution theorem, we obtain the control laws in physical space, which can be expressed compactly as

⎛
⎝Uc

Wc

Φc

⎞
⎠=

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
Σ(x− ξ,η, z− ζ)

(
u(ξ,η, ζ)

W(ξ,η, ζ)

)
dξ dη dζ, (72.108)

where

Σ(ξ,η, ζ)=
∫ ∞

−∞

∫ ∞

−∞
Σ(kx ,η, kz)χ(kx , kz)e2πi

(
kxξ+kzζ

)
dkz dkx , (72.109)

and

Σ=
⎛
⎜⎝

KUu(kx , 1,η, kz) KUW (kx , 1,η, kz)
KWu(kx , 1,η, kz) KWW (kx , 1,η, kz)
2πikz sinh

(
α(1−η)

)
α

− 2πikk sinh
(
α(1−η)

)
α

⎞
⎟⎠, (72.110)

where the kernels appearing in Equation 72.110 were defined in Equation 72.80. Control law Vc is a
dynamic feedback law computed as the solution of the following forced parabolic equation:

(Vc)t = (Vc)xx + (Vc)zz

Re
−NVc + g(t, x, z), (72.111)

where g(t, x, z) is defined as

g =
∫ ∞

−∞

∫ ∞

−∞

[ ∫ 1

0
gV (x− ξ,η, z− ζ)V (ξ,η, ζ) dη+ gW (x− ξ, z− ζ) (Wy(ξ, 0, ζ)

−Wy(ξ, 1, ζ)
)+ gu(x− ξ, z− ζ) (uy(ξ, 0, ζ)−uy(ξ, 1, ζ)

)]
dξ dζ, (72.112)
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and

gu =
∫ ∞

−∞

∫ ∞

−∞
2πi

kx

Re
χ(kx , kz)e2πi

(
kxξ+kzζ

)
dkz dkx , (72.113)

gV =
∫ ∞

−∞

∫ ∞

−∞
cosh

(
α(1−η)

) (
N + 4πkxiUe

y (η)
)
χ(kx , kz)e2πi

(
kxξ+kzζ

)
dkz dkx , (72.114)

gW =
∫ ∞

−∞

∫ ∞

−∞
2πi

kz

Re
χ(kx , kz)e2πi

(
kxξ+kzζ

)
dkz dkx . (72.115)

Considering all wave numbers and using Propositions 72.1 and 72.2, the following result holds regard-
ing the convergence of the closed-loop system.

Theorem 72.1:

Consider the systems (Equations 72.18 through 72.27) with control laws (Equations 72.108 through 72.115).
Then the equilibrium profile u≡ V ≡W ≡ 0 is asymptotically stable in the L2 norm, that is,

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
(
u2+V 2+W2) (t, x, y, z) dx dy dz

≤ C2e−2εt
∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
(
u2+V 2+W2) (0, x, y, z) dx dy dz. (72.116)

where C2 =max{C1, 1} ≥ 0.

Remark 72.3

In case that N = 0, meaning that either there is no imposed magnetic field or the fluid is nonconducting,
Equations 72.2 through 72.4 are the Navier–Stokes equations and our controller solves the stabilization
problem for a 3D channel flow. Some physical insight can be gained analyzing this case. In the context of
hydrodynamic stability theory, the linearized system written in (Y ,ω) variables verify equations analogous
to the classical Orr-Sommerfeld–Squire equations. These are Equations 72.59 and 72.60 for controlled
wave numbers and Equations 72.93 and 72.94 for uncontrolled wave numbers. Note that we use the
backstepping transformations (Equations 72.68 and 72.69) not only to stabilize (using gain K) but also to
decouple the system (using gains Γ1,Γ2) in the small wave number range, where nonnormality effects are
more severe. Even if the linearized system is stable, nonnormality produces large transient growths [19],
which enhanced by nonlinear effects may allow the velocity field to wander far away from the origin. This
warrants the use of extra gains to map the system into two uncoupled heat equations 72.65 and 72.66.

72.4 Observer Design

In this section we design an observer for the MHD channel flow introduced in Section 72.2. Our observer
generates estimates of the velocity, pressure, electric potential, and current fields in the whole domain,
derived only from wall measurements. Obtaining such an estimate can be of interest in itself, depending
on the application. For example, the absence of effective state estimators modeling turbulent fluid flows
is considered one of the key obstacles to reliable, model-based weather forecasting. In other engineering
applications in which active control is needed, such as drag reduction or mixing enhancement for cooling
systems, designs usually assume unrealistic full state knowledge, therefore, a state estimator is necessary
for effective implementation.
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72.4.1 Observer Structure

For simplicity, we first design an estimator for the linearized system. In Section 72.4.6, using the linear
gains, we present a nonlinear observer.

We employ the fluctuation variables around the equilibrium of the Hartmann flow, u and p, which
were defined in Equations 72.16 and 72.17; the linearized equations written in fluctuation variables are
given in Equations 72.18 through 72.27.

The observer consists of a copy of the linearized equations, to which we add output injection of the
pressure p, the potential flux φy (proportional to current), and both the streamwise and spanwise velocity
gradients, uy and Wy , (proportional to friction) at the bottom wall.

Denoting the observer (estimated) variables by a hat, the equations for the estimated velocity field are

ût = 
û

Re
−Ue(y)ûx −Ue

y (y)V̂ − p̂x +Nφ̂z −Nû−QU , (72.117)

V̂t = 
V̂

Re
−Ue(y)V̂x − p̂y −QV , (72.118)

Ŵt = 
Ŵ

Re
−Ue(y)Ŵx − p̂z −Nφ̂x −NŴ −QW . (72.119)

The additional Q terms in the observer equation are related to output injection and are defined as follows:

⎛
⎝QU

QV

QW

⎞
⎠=

∫ ∞

−∞

∫ ∞

−∞
L(x− ξ, y, z− ζ)

⎛
⎜⎜⎝

p(ξ, 0, ζ)− p̂(ξ, 0, ζ)
uy(ξ, 0, ζ)− ûy(ξ, 0, ζ)

Wy(ξ, 0, ζ)− Ŵy(ξ, 0, ζ)
φy(ξ, 0, ζ)− φ̂y(ξ, 0, ζ)

⎞
⎟⎟⎠ dξ dζ, (72.120)

where L is an output injection kernel matrix, defined as

L =
⎛
⎝LUP LUU LUW LUφ

LVP LVU LVW LVφ

LWP LWU LWW LWφ

⎞
⎠ , (72.121)

whose entries will be designed to ensure observer convergence. The estimated potential is computed from


φ̂= ûz − Ŵx , (72.122)

and the observer verifies the continuity equation,

ûx + V̂y + Ŵz = 0, (72.123)

and the same boundary conditions as the plant,

û(t, x, 0, z)= Ŵ(t, x, 0, z)= V̂ (t, x, 0, z)= φ̂(t, x, 0, z)= 0, (72.124)

û(t, x, 1, z)= Uc , Ŵ(t, x, 1, z)=Wc , (72.125)

V̂ (t, x, 1, z)= Vc , φ̂(t, x, 1, z)=Φc . (72.126)

Remark 72.4

Note that the observer Equations 72.117 through 72.126 can be regarded as forced MHD equations, with
the output injection acting as a body force. This means that any standard DNS solver for the forced MHD
equations can be used to implement the observer without the need of major modifications.

As inputs to the observer, appearing in Equation 72.120, one needs measurements of pressure, skin
friction, and current on the lower wall. For obtaining these measurements, pressure, skin friction, and
current sensors have to be embedded into one of the walls. Pressure and skin friction sensors are common
in flow control, while for current measurement one could use an array of discrete current sensors, as
depicted in Figure 72.3.
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Current density sensor array

FIGURE 72.3 An array of current sensors in the lower wall.

72.4.2 Observer Gain Design and Convergence Analysis

Substracting the observer equations from the linearized plant equations we obtain the error equations,
with states Ũ = u− û= U − Û , Ṽ = V − V̂ , W̃ =W − Ŵ , P̃ = p− p̂, and φ̃= φ− φ̂,

Ũt = 
Ũ

Re
−Ue(y)Ũx −Ue

y (y)Ṽ − P̃x +Nφ̃z −NŨ +QU , (72.127)

Ṽt = 
Ṽ

Re
−Ue(y)Ṽx − P̃y +QV , (72.128)

W̃t = 
W̃

Re
−Ue(y)W̃x − P̃z −Nφ̃x −NW̃ +QW . (72.129)

The observer error verifies the continuity equation,

Ũx + Ṽy + W̃z = 0, (72.130)

while the potential error is governed by

φ̃= Ũz − W̃x . (72.131)

The boundary conditions for the error states are

Ũ(t, x, 0, z)= Ṽ (t, x, 0, z)= W̃(t, x, 0, z)= 0, (72.132)

Ũ(t, x, 1, z)= Ṽ (t, x, 1, z)= W̃(t, x, 1, z)= 0, (72.133)

φ̃(t, x, 0, z)= φ̃(t, x, 1, z)= 0. (72.134)

To guarantee observer convergence, our design task is to design the output injection gains L defined
in Equation 72.120 that appear in QU , QV , and QW , so that the origin of the error system is exponentially
stable.

Using the Fourier transform in x and z as defined in Equations 72.28 and 72.29, we obtain the observer
error equations in Fourier space, which are

Ũt = −α
2Ũ + Ũyy

Re
− βŨ −Ue

y Ṽ − 2πkxiP̃+ 2πkziNφ̃−NŨ

+ LUPP0+ LUU Uy0+ LUW Wy0+ LUφφy0, (72.135)

Ṽt = −α
2Ṽ + Ṽyy

Re
− βṼ − P̃y + LVPP0+ LVU Uy0+ LVW Wy0+ LVφφy0, (72.136)

W̃t = −α
2W̃ +Wyy

Re
− βW̃ − 2πkziP̃− 2πkxiNφ̃−NW̃

+ LWPP0+ LWU Uy0+ LWW Wy0+ LWφφy0, (72.137)
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where we have used the definition (Equation 72.120) of the output injection terms as convolutions,
which become products in Fourier space. We have written for short P0 = P̃(kx , 0, kz), Uy0 = Ũy(kx , 0, kz),
Wy0 = W̃y(kx , 0, kz), and φy0 = φ̃y(kx , 0, kz).

The continuity equation in Fourier space is expressed as

2πikxŨ + Ṽy + 2πkzW̃ = 0, (72.138)

and the equation for the potential is

−α2φ̃+ φ̂yy = 2πi
(
kzŨ − kxW̃

)
. (72.139)

Note that Equations 72.138 through 72.143 is uncoupled for each wave number. Therefore, as in
Section 72.3, we define the range k2

x + k2
z ≤M2 as the observed wave number range, and the range

k2
x + k2

z > M2 as the unobserved wave number range, and study them separately. If stability for all wave
numbers is established, stability in physical space follows as in Section 72.3.3. A bound for the number M
was given by Equation 72.106 to ensure stability for the unobserved wave number range.

We emphasize that we do not use output injection for unobserved wave numbers by writing

L(kx , y, kz)= χ(kx , y, kz)R(kx , y, kx), (72.140)

where χ was defined in Equation 72.38. Then L can be written in physical space, using the definition of
the Fourier transform and the convolution theorem as

L(x, y, z)=
∫ ∞

−∞

∫ ∞

−∞
χ(kx , y, kz)R(kx , y, kz)e2πi

(
kxx+kz z

)
dkz dkx . (72.141)

The matrix R is defined as

R =
⎛
⎝RUP RUU RUW RUφ

RVP RVU RVW RVφ

RWP RWU RWW RWφ

⎞
⎠ , (72.142)

and using R we can write the observer error equations as

Ũt = −α
2Ũ + Ũyy

Re
− βŨ −Ue

y Ṽ − 2πkxiP̃+ 2πkziNφ̃−NŨ

+χ(kx , kz)
{

RUPP0+RUU Uy0+RUW Wy0+RUφφy0
}

, (72.143)

Ṽt = −α
2Ṽ + Ṽyy

Re
− βṼ − P̃y +χ(kx , kz)

{
RVPP0+RVU Uy0+RVW Wy0RVφφy0

}
, (72.144)

W̃t = −α
2W̃ +Wyy

Re
− βW̃ − 2πkziP̃− 2πkxiNφ̃−NW̃

+χ(kx , kz)
{

RWPP0+RWU Uy0+RWW Wy0+RWφφy0
}

. (72.145)

72.4.3 Observed Wave Number Analysis

Consider k2
x + k2

z ≤M2. Thenχ= 1, so output injection is present. Using the continuity Equations 72.138
and 72.143 through 72.145, the following Poisson equation for the pressure is derived:

−α2P̃+ P̃yy =Υ− 4πkxiUe
y (y)Ṽ +NVy , (72.146)

where Υ contains all the terms due to output injection,

Υ = P0

(
2πikxRUP +RVP

y + 2πkzRWP
)
+Uy0

(
2πikxRUU +RVU

y + 2πkzRWU
)

+Wy0

(
2πikxRUW +RVW

y + 2πkzRWW
)
+φy0

(
2πikxRUφ+RVφ

y + 2πkzRWφ
)

. (72.147)
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We want to make Equation 72.146 independent of the output injection gains, for which we need Υ = 0.
Hence, we set

RVP(kx , y, kz)= RVP(kx , 0, kz)− 2πi
∫ y

0

(
kxRUP + kzRWP) (kx ,η, kz) dη, (72.148)

RVU (kx , y, kz)= RVU (kx , 0, kz)− 2πi
∫ y

0

(
kxRUU + kzRWU ) (kx ,η, kz) dη, (72.149)

RVW (kx , y, kz)= RVW (kx , 0, kz)− 2πi
∫ y

0

(
kxRUW + kzRWW ) (kx ,η, kz) dη, (72.150)

RVφ(kx , y, kz)= RVφ(kx , 0, kz)− 2πi
∫ y

0

(
kxRUφ+ kzRWφ

)
(kx ,η, kz) dη, (72.151)

which means that, in physical space,∇ · L = 0. Hence, as Equations 72.146 is derived by taking divergence
of Equations 72.143 through 72.145, the output injection terms cancel away.

Expression 72.146 can be solved in terms of the values of the pressure at the bottom wall.

P̃ =−4πkxi

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη+ cosh

(
αy
)

P0

+ sinh
(
αy
)

α
P̃y(kx , 0, kz)+N

∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη. (72.152)

Evaluating Equation 72.144 at y = 0, one finds that

P̃y(kx , 0, kz)=Υ0− 2πi
kxUy0(kx , 0, kz)+ kzW̃y0

Re
, (72.153)

where we have used Equation 72.138 for writing Ṽyy at the bottom in terms of measurements. In Equation
72.153,

Υ0 = P0RVP(kx , 0, kz)+Uy0RVU (kx , 0, kz)+Wy0RVW (kx , 0, kz)+φy0RVφ(kx , 0, kz), (72.154)

and as before we force the pressure to be independent of any gains. Hence, we set

RVP(kx , 0, kz)= RVU (kx , 0, kz)= RVW (kx , 0, kz)= RVφ(kx , 0, kz)= 0. (72.155)

Then, the pressure can be expressed independently of the output injection gains in terms of a strict-
feedback integral of the state Ṽ and measurements,

P̃ =−4πkxi

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη+ cosh

(
αy
)

P0

− 2πi
sinh

(
αy
)

Reα

(
kxUy0+ kzWy0

)+N
∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη. (72.156)

Similarly, solving for φ in terms of the measurement φy0 and the right-hand side of Equation 72.139,

φ̃= 2πi

α

∫ y

0
sinh

(
α(y−η)

) (
kzŨ(kx ,η, kz)− kxW̃(kx ,η, kz)

)
dη+ sinh

(
αy
)

α
φy0. (72.157)
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Introducing the expressions (Equations 72.156 and 72.157) in Equations 72.143 and 72.145, we obtain

Ũt = −α
2Ũ + Ũyy

Re
− βŨ −Ue

y (y)Ṽ −NŨ +Uy0

(
RUU − 4π2k2

x

αRe
sinh

(
αy
))

+ P0
(
RUP − 2πkxi cosh

(
αy
))+Wy0

(
RUW − 4π2kxkz

αRe
sinh

(
αy
))

+φy0

(
RUφ+N

2πkzi

α
sinh

(
αy
))− 8πk2

x

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη

− 4π2kzN

α

∫ y

0
sinh

(
α(y−η)

) (
kzŨ(kx ,η, kz)− kxW̃(kx ,η, kz)

)
dη

− 2πikxN
∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη, (72.158)

W̃t = −α
2W̃ +Wyy

Re
− βW̃ −NW̃ +Uy0

(
RWU − 4π2kxkz

αRe
sinh

(
αy
))

+ P0
(
RWP − 2πkzi cosh

(
αy
))+Wy0

(
RWW − 4π2k2

z

αRe
sinh

(
αy
))

+φy0

(
RWφ−N

2πkxi

α
sinh

(
αy
))− 8πkxkz

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη

+ 4π2kxN

α

∫ y

0
sinh

(
α(y−η)

) (
kzŨ(kx ,η, kz)− kxW̃(kx ,η, kz)

)
dη

− 2πikzN
∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη. (72.159)

Note that we have omitted the equation for Ṽ since, from Equation 72.138 and using the fact that
Ṽ (kx , 0, kz)= 0, Ṽ is computed from Ũ and W̃ :

Ṽ =−2πi
∫ y

0

(
kxŨ(kx ,η, kz)+ kzW̃(kx ,η, kz)

)
dη. (72.160)

We now set the output injection terms to directly cancel the boundary terms coming from Equations
72.156 and 72.157, while still leaving some additional gains for stabilization. Thus, we define

RUP = 2πkxi cosh
(
αy
)

, RWP = 2πkzi cosh
(
αy
)

, (72.161)

RUU = 4π2k2
x

αRe
sinh

(
αy
)+Π1(kx , y, kz), RWU = 4π2kxkz

αRe
sinh

(
αy
)+Π2(kx , y, kz), (72.162)

RUW = 4π2kxkz

αRe
sinh

(
αy
)+Π3(kx , y, kz), RWW = 4π2k2

z

αRe
sinh

(
αy
)+Π4(kx , y, kz), (72.163)

RUφ =−N
2πkzi

α
sinh

(
αy
)

, RWφ = N
2πkxi

α
sinh

(
αy
)

, (72.164)

where the gains Π1, Π2, Π3, and Π4 are to be defined later. From Equations 72.148 through 72.151,
72.155 and 72.161 through 72.164, we obtain an explicit expression for the remaining entries of R,

RVP = α sinh
(
αy
)

, RVφ = 0, (72.165)

RVU = 2πi(kx + kz)
1− cosh

(
αy
)

Re
− 2πi

∫ y

0

(
kxΠ1(kx ,η, kz)+ kzΠ2(kx ,η, kz)

)
dη, (72.166)

RVW = 2πi(kx + kz)
1− cosh

(
αy
)

Re
− 2πi

∫ y

0

(
kxΠ3(kx ,η, kz)+ kzΠ4(kx ,η, kz)

)
dη. (72.167)
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Introducing Equations 72.161 through 72.167 in Equations 72.158 and 72.159, we obtain

Ũt = −α
2Ũ + Ũyy

Re
− βŨ −Ue

y (y)Ṽ −NŨ +Π1Uy0+Π3Wy0

− 4π2kzN

α

∫ y

0
sinh

(
α(y−η)

) (
kzŨ(kx ,η, kz)− kxW̃(kx ,η, kz)

)
dη

− 8πk2
x

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη

− 2πikxN
∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη, (72.168)

W̃t = −α
2W̃ +Wyy

Re
− βW̃ −NW̃ +Π2Uy0+Π4Wy0

− 8πkxkz

α

∫ y

0
Ue

y (η) sinh
(
α(y−η)

)
Ṽ (kx ,η, kz) dη

+ 4π2kxN

α

∫ y

0
sinh

(
α(y−η)

) (
kzŨ(kx ,η, kz)− kxW̃(kx ,η, kz)

)
dη

− 2πikzN
∫ y

0

sinh
(
α(y−η)

)
α

Ṽy(kx ,η, kz) dη. (72.169)

Now, we introduce the following change of variables and its inverses:

Y = 2πi
(
kxŨ + kzW̃

)
, ω= 2πi

(
kzŨ − kxW̃

)
, (72.170)

U = 2πi

α2

(
kxY + kzω

)
, W = 2πi

α2

(
kzY − kxω

)
. (72.171)

Then using the definitions in Equations 72.55 through 72.58, Equations 72.168 and 72.169 expressed in
terms of Y and ω are

Yt = ε
(−α2Y +Yyy

)− βY −NY − 4π2

α2

(
k2

xΠ1+ kxkzΠ2+ kxkzΠ3+ k2
zΠ4

)
Yy0

− 4π2

α2

(
kxkzΠ1+ k2

zΠ2− k2
xΠ3− kxkzΠ4

)
ωy0+

∫ y

0
f (kx , y,η, kz)Y (kx ,η, kz) dη, (72.172)

ωt = ε
(−α2ω+ωyy

)− βω−Nω− 4π2

α2

(
kxkzΠ1− k2

xΠ2+ k2
zΠ3− kxkzΠ4

)
Yy0

− 4π2

α2

(
k2

zΠ1− kxkzΠ2− kxkzΠ3+ k2
xΠ4

)
ωy0+ h1(y)

∫ y

0
Y (kx ,η, kz) dη

+
∫ y

0
h2(y,η)ω(kx ,η, kz) dη, (72.173)

where we have used the inverse change of variables (Equation 72.171) to express Uy0 and Wy0 in terms of
Yy0 = Y (kx , 0, kz) and ωy0 = ω(kx , 0, kz). We define now the output injection gainsΠ1,Π2,Π3, andΠ4

in the following way: ⎛
⎜⎜⎝
Π1

Π2

Π3

Π4

⎞
⎟⎟⎠= A−1

⎛
⎜⎜⎝

l(kx , y, 0, kz)
0

θ1(kx , y, 0, kz)
θ2(kx , y, 0, kz)

⎞
⎟⎟⎠ , (72.174)

where the matrix A was defined in Equation 72.81. Note that since det(A)=−1 its inverse appearing
in Equation 72.174 is well defined. The functions l(kx , y,η, kz), θ1(kx , y,η, kz), and θ2(kx , y,η, kz)
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in Equation 72.174 are to be found. Using Equation 72.174, Equations 72.172 and 72.173 become

Yt = ε
(−α2Y +Yyy

)− βY −NY + l(kx , y, 0, kz)Yy0+
∫ y

0
f (kx , y,η, kz)Y (kx ,η, kz) dη, (72.175)

ωt = ε
(−α2ω+ωyy

)− βω−Nω+ θ1(kx , y, 0, kz)Yy0+ θ2(kx , y, 0, kz)ωy0

+ h1

∫ y

0
Y (kx ,η, kz) dη+

∫ y

0
h2(y,η)ω(kx ,η, kz) dη. (72.176)

Equations 72.175 and 72.176 are a coupled, strict-feedback plant, with integral and reaction terms. A vari-
ant of the design presented in [22] for anticollocated systems can be used to design the gains l(kx , y, 0, kz),
θ1(kx , y, 0, kz), and θ2(kx , y, 0, kz) using a pair of backstepping transformations. The transformation maps,
for each kx and kz , the variables (Y ,ω) into the variables (Ψ,Ω), that verify the following pair of heat
equations (parameterized in kx , kz):

Ψt = ε
(−α2Ψ+Ψyy

)− βΨ−NΨ, (72.177)

Ωt = ε
(−α2Ω+Ωyy

)− βΩ−NΩ, (72.178)

with boundary conditions

Ψ(kx , 0, kz)=Ψ(kx , 1, kz)=Ω(kx , 0, kz)=Ω(kx , 1, kz)= 0. (72.179)

The transformation is defined as follows:

Y =Ψ−
∫ y

0
l(kx , y,η, kz)Ψ(kx ,η, kz) dη, (72.180)

ω=Ω−
∫ y

0
θ1(kx , y,η, kz)Ψ(kx ,η, kz) dη−

∫ y

0
θ2(kx , y,η, kz)Ω(kx ,η, kz) dη. (72.181)

We find the kernel functions l(kx , y,η, kz), θ1(kx , y,η, kz), and θ2(kx , y,η, kz) by solving the following
partial integrodifferential equations:

εlηη = εlyy −
(
β(y)− β(η)

)
l− f +

∫ y

η

f (y, ξ)l(ξ,η) dξ, (72.182)

εθ1ηη = εθ1yy −
(
β(y)− β(η)

)
θ1(y,η)− h1+ h1

∫ y

η

l(ξ,η) dξ+
∫ y

η

h2(y, ξ)θ1(ξ,η) dξ, (72.183)

εθ2ηη = εθ2yy −
(
β(y)− β(η)

)
θ2− h2+

∫ y

η

h2(y, ξ)θ2(ξ,η) dξ. (72.184)

Equations 72.182 through 72.184 are hyperbolic partial integro-differential equation in the region T =
{(y,η) : 0≤ y ≤ 1, 0≤ η≤ y}. Their boundary conditions are

l(kx , y, y, kz)= θ1(kx , y, y, kz)= θ2(kx , y, y, kz)= 0, (72.185)

l(kx , 1,η, kz)= θ1(kx , 1,η, kz)= θ2(kx , 1,η, kz)= 0. (72.186)

Remark 72.5

Equations 72.182 through 72.186 are well-posed and can be solved symbolically, by means of a successive
approximation series, or numerically [21]. Note that both Equation 72.182 and Equation 72.184 are
autonomous. Hence, one must solve first for l(kx , y,η, kz) and θ2(kx , y,η, kz). Then the solution for l is
plugged in Equation 72.183 which then can be solved for θ1(kx , y,η, kz). The observer gains are then
found just by setting η= 0 in the kernels l(kx , y,η, kz), θ2(kx , y,η, kz), and θ1(kx , y,η, kz).

Stability in the observed wave number range follows from stability of Equations 72.177 and 72.178 and
the invertibility of the transformations (Equations 72.180 and 72.181), as in Proposition 72.1.
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72.4.4 Unobserved Wave Number Analysis

When k2
x + k2

z > M, there is no output injection, as χ= 0, and the linearized observer error verifies the
following equations:

Ũt = −α
2Ũ + Ũyy

Re
− βŨ −Ue

y (y)Ṽ − 2πkxiP̃+ 2πkziNφ̃−NŨ , (72.187)

Ṽt = −α
2Ṽ + Ṽyy

Re
− βṼ − P̃y , (72.188)

W̃t = −α
2W̃ +Wyy

Re
− βW̃ − 2πkziP̃− 2πkxiNφ̃−NW̃ , (72.189)

the Poisson equation for the potential Equation 72.139 and the continuity Equation 72.138.
Note that Equations 72.187 through 72.189 are the same as Equations 72.85 through 72.87. Hence, the

analysis of Section 72.3.2 can be applied, obtaining a result similar to Proposition 72.2. Hence, stability in
the unobserved wave number range follows when k2

x + k2
z ≥M2 for M as in Equation 72.106.

72.4.5 Observer Convergence Properties

Considering all wave numbers, the following holds regarding the convergence of the observer.

Theorem 72.2:

Consider the systems (Equations 72.18 through 72.27), and the systems (Equations 72.117 through 72.126),
and suppose that both have classical solutions. Then, the L2 norms of Ũ , Ṽ , and W̃ converge to zero, that is,

lim
t→∞

∫ ∞

−∞

∫ 1

0

∫ ∞

−∞
(
Ũ2+ Ṽ 2+ W̃2) (t, x, y, z) dx dy dz = 0. (72.190)

Remark 72.6

The convergence result stated in Theorem 72.2 guarantees asymptotic convergence of the estimated states
to the actual values of the linearized plant. For this to be true for the nonlinear plant we need additional
conditions. Namely, the estimates have to be initialized close enough to the real initial values and the
MHD system has to stay in a neighborhood of the equilibrium at all times.

Remark 72.7

In case that N = 0, meaning that either there is no imposed magnetic field or the fluid is nonconducting,
Equations 72.18 through 72.20 are the linearized Navier–Stokes equations and the observer reduces to
a velocity/pressure estimator for a 3D channel flow. This is a result that can be seen as dual to the 3D
channel flow control problem. See Remark 72.2 for some physical insight for this case.

Remark 72.8

We obtain an output feedback law that stabilizes the plants (Equations 72.18 through 72.27) using only
wall measurements. Such a control law uses the estimates (û, V̂ , Ŵ) from the observers (Equations 72.117
through 72.126) to replace the real states (u, V , W) in the control laws (Equations 72.108 through 72.115).
Then, using Theorems 72.1 and 72.2 and standard arguments for linear output feedback controllers, a
similar result holds guaranteeing the L2 stability of the closed-loop output feedback system.
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72.4.6 A Nonlinear Estimator with Boundary Sensing

We present a nonlinear observer to obtain convergence in open-loop estimation problems (the linear
estimator achieves convergence in feedback problems, where both the state and the estimate are driven
to zero, however, the linear observer, which neglects the nonlinear terms in the model, cannot capture
open-loop dynamics, and hence cannot achieve convergence to the solutions of an uncontrolled system).
The nonlinear observer has the same structure and gains as the linear observer, but the nonlinear terms
are added. In our design, we follow an approach similar to an Extended Kalman Filter, in which gains are
deduced for the linearized plant and then used for a nonlinear observer.

The nonlinear observer equations are the following:

Ût = 
Û

Re
− ÛÛx − V̂ Ûy − ŴÛz − P̂x +Nφ̂z −NÛ −QU , (72.191)

V̂t = 
V̂

Re
− ÛV̂x − V̂ V̂y − ŴV̂z − P̂y −QV , (72.192)

Ŵt = 
Ŵ

Re
− ÛŴx − V̂Ŵy − ŴŴz − P̂z −Nφ̂x −NŴ −QW . (72.193)

The estimated potential is computed from


φ̂= Ûz − Ŵx , (72.194)

and the observer verifies the continuity equation,

Ûx + V̂y + Ŵz = 0, (72.195)

and the same boundary conditions as in Equations 72.124 through 72.126.
In Equations 72.191 through 72.193, the Q terms are the same as for the linear observer. Hence, the

observer is designed for the linearized plant and then the linear gains are used for the nonlinear observer.
Such a nonlinear observer will produce closer estimates of the states in a larger range of initial conditions.

Using the fluctuation variable and the observer error variables, we can write the nonlinear observer
velocity field error equations as follows:

Ũt = 
Ũ

Re
−Ue(y)Ũx +N U (Ũ , Ṽ , W̃ , u, V , W)−Ue

y (y)Ṽ − P̃x +Nφ̃z −NŨ +QU , (72.196)

Ṽt = 
Ṽ

Re
−Ue(y)Ṽx +N V (Ũ , Ṽ , W̃ , u, V , W)− P̃y +QV , (72.197)

W̃t = 
W̃

Re
−Ue(y)W̃x +N W (Ũ , Ṽ , W̃ , u, V , W)− P̃z −Nφ̃x −NW̃ +QW , (72.198)

where we have introduced

N U = ŨŨx − uŨx − Ũux + Ṽ Ũy −VŨy − Ṽuy + W̃Ũz −WŨz − W̃uz , (72.199)

N V = ŨṼx − uṼx − ŨVx + Ṽ Ṽy −VṼy − ṼVy + W̃Ṽz −WṼz − W̃Vz , (72.200)

N W = ŨW̃x − uW̃x − ŨWx + ṼW̃y −VW̃y − ṼWy + W̃W̃z −WW̃z − W̃Wz , (72.201)

Assuming, for the purposes of observer design and analysis, that the observer state (Û , V̂ , Ŵ) is
close to the actual state (U , V , W) (i.e., the error state is close to zero), and that the fluctuation
(u, V , W) around the equilibrium state is small, then NU (Ũ , Ṽ , W̃ , u, V , W), NV (Ũ , Ṽ , W̃ , u, V , W),
and NW (Ũ , Ṽ , W̃ , u, V , W) are small and dominated by the linear terms in the equations, so they can be
neglected. The linearized error equations are then

Ũt = 
Ũ

Re
−Ue(y)Ũx −Ue

y (y)Ṽ − P̃x +Nφ̃z −NŨ +QU , (72.202)
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Ṽt = 
Ṽ

Re
−Ue(y)Ṽx − P̃y +QV , (72.203)

W̃t = 
W̃

Re
−Ue(y)W̃x − P̃z −Nφ̃x −NW̃ +QW , (72.204)

which are the same as Equations 72.127 through 72.129. Thus, as expected, the error equations for the
observer designed for the linearized plant, and the linearized error equations for the nonlinear observer
are the same; this is the main reason why the same gains derived in Section 72.4.2 are used.

Remark 72.9

Following [10], we may consider the mean turbulent profile instead of considering the exact laminar
equilibrium profile. This amounts to changing Ue in definition (Equation 72.12). Since Ue appears in the
coefficients of the output injection gain PDEs (Equations 72.182 through 72.184), the observer gains will
change (quantitatively). However, Theorem 72.1 still holds and guarantees convergence of estimates, but
for these estimates to be good enough it is required that the state has to stay close enough to the mean
turbulent profile at all times.

72.5 For Further Information

We survey some representative results in flow control, a recent but rapidly growing field.
By far the most studied problem in flow control is channel flow stabilization for large Reynolds

numbers. There are many complex issues underlying this problem [13,14,19], making it extremely chal-
lenging. Optimal control has so far been the most successful technique for addressing channel flow
stabilization [13], in a (streamwise- and spanwise-) periodic setting, by using a discretized version of the
equations and employing high-dimensional algebraic Riccati equations for computation of gains. Using
a Lyapunov/passivity approach, another control design [1,3] was developed for stabilization of the (peri-
odic) channel flow. Other works make use of nonlinear model reduction techniques to solve the problem,
though they employ in-domain actuation [5]. Boundary controllers using spectral decomposition and
pole-placement methods have been developed [25]. Other techniques include separation control [2] and
turbulence suppression by using transverse wall oscillations [15].

Observer design has been so far a largely neglected area in flow control. For channel flows it is known
that pressure and skin friction at one of the walls completely determine the flow inside the domain. For
these reason, they have been called the “footprints” of turbulence [8]. Based on these measurements,
designs have been done in the form of Extended Kalman Filter for the spatially discretized Navier–Stokes
equations [10,11].

The area of conducting fluids moving in magnetic fields, even though rich in applications, has only
been recently considered. Recent results in stabilization of MHD flows make use of nonlinear model
reduction [4], open-loop control [7], and optimal control [12]. Applications include, for instance, drag
reduction [18], or mixing enhancement for cooling systems [20]. Some experimental results are available
as well, showing that control of such flows is technologically feasible [9,18,24]. Mathematical studies of
controllability have been done, although they do not provide explicit controllers [6,23].

For a more detailed presentation of flow control, the reader is referred to the monograph Control of
Turbulent and Magnetohydrodynamic Channel Flows by Vazquez and Krstic [26]. The book introduces
new constructive design methods (based on the backstepping technique) for boundary stabilization and
boundary estimation for several benchmark problems in flow control, with potential applications to
turbulence control, weather forecasting, and plasma control. It contains the details of methods presented
here, and includes an introduction on spatial invariance, Fourier series and transforms, the stability of
infinite-dimensional systems, and the backstepping method for PDEs. It also covers other topics not
mentioned here, such as well-posedness, H1 and H2 stability, or Poiseuille flow transfer.
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73.1 Introduction

The advent of digital communication networks has created a new subfield of control engineering
broadly identified as networked control. It addresses the analysis and design of control systems whose
components are not colocated, and for which the dissemination of information requires a commu-
nication network. As evidenced in [2], the vast current and future applications of networked con-
trol systems, and the lack of systematic analysis and design methods, warrants a significant research
effort.

Two major challenges in networked control research are the development of analysis and design tools
that account for the deterioration of performance that digital communication networks cause when they
are used to connect two or more modules of the feedback loop. This performance degradation is due to the
typical detrimental features of digital networks such as the finite bit-rate limits, which result from the use
of data packets carrying a finite number of bits, and erasures or packet losses due to fading, interference
or congestion. Currently, most research in networked control can be categorized in two types. The first
focuses on the effects of erasures by assuming that the number of bits carried in each data packet is
large enough to support the hypothesis that any resulting quantization noise is negligible in light of other
sources of noise. The second type addresses not only erasures, but it also acknowledges that the effects of
bit-rate limits and the associated quantization distortion need to be analyzed. In this chapter, we provide
a brief discussion on the latter, which we complement by citing only a few representative references, on
a need basis. An informative survey comprising a much richer collection of references, which are up
to date until 2007, can be found in [3]. An extensive and comprehensive discussion can also be found
in [31].
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73.1.1 Chapter Organization

This chapter is centered on the stabilizability of unstable finite dimensional linear time invariant (LTI)
systems via data-rate-limited feedback. The general formulation is given in Section 73.2, while
Sections 73.3 and 73.4 focus on internal and external stabilization, respectively.

73.2 Basic Framework

A prototypical formulation for a networked control system is one where the sensors and the controller
are not collocated. Here, we assume that these blocks are interconnected by a digital communication
channel, as shown in Figure 73.1. In our framework the plant, the channel and the remaining blocks
operate synchronously in discrete time.

Throughout this chapter, we assume that the digital channels function as random digital links, which
transmit Rk bits at each time instant k. Here, Rk is a random process taking values in the set {0, 1, . . . , R̄},
and whose statistics reflect the relevant detrimental effects of the underlying network, such as fading
and congestion [5]. The signal Sk is an ordered R̄-tuple taking values in {0, 1}R̄ and it represents the
data that is placed for transmission through the channel. The channel operates by transmitting only the
first Rk bits of the word placed for transmission. Hence, the output of the channel, denoted as Vk , is a
truncated version of Sk where the last R̄−Rk bits get dropped. This model was adopted in [7] to study
the effects of channel randomness in the robust stability of networked control systems. The authors of [9]
have also proposed this type of abstraction in an information theoretic setting. We should, however, note
that this class of channel models represents a particular case, in light of other more general analog and
discrete models that represent certain channels more accurately. There is also a significant body of work
for Gaussian channels, from some of the pioneering work of [12,21] to more recent work addressing
the difficult problem of networked control over Gaussian channels with memory [15]. A comprehensive
study for general channels can be found in [8].

The two blocks S and K in Figure 73.1 represent the sensing and controller blocks, respectively. The
controller produces a control signal Uk based on causal processing of the output of the channel, while the
sensing block accepts causal measurements of the output of the plant and uses them to decide when and
what should be placed for transmission through the channel. The measurement and process exogenous
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SK Channel
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FIGURE 73.1 Depiction of a networked control system.
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signals are represented by Nk and Wk , respectively, while the initial condition of the plant is denoted by
X0. Throughout this paper, we assume that {Rk}∞k=0 and X0 are independent.

73.3 Internal Stabilization

We consider that the plant in Figure 73.1 is finite-dimensional LTI, and that it evolves in discrete time.
The state-space representation of the plant is given as follows:

Xk+1 = AXk +BUk , k ≥ 0 (73.1)

Yk = CXk +DUk , k ≥ 0 (73.2)

where the initial condition X0 is a random variable. In general, Xk , Yk , and Uk are vector valued and A, B,
and C are the matrices of appropriate dimension.

We refer to the feedback loop in Figure 73.1 as internally stabilizing if the state of the plant (Equa-
tion 73.1) is stable in the presence of the initial condition X0. Stability in the presence of external inputs
is investigated in Section 73.4.

73.3.1 Deterministic Channel Model

The simplest case to analyze is when the channel is deterministic, implying that Rk = R̄ holds for all k,
where R̄ is a predefined positive constant. From the pioneering work in [10,11] it follows that, for a scalar
LTI plant, internal stabilization via the scheme of Figure 73.1 implies that the following condition must
hold:

R̄ ≥max{0, log2 |a|} (73.3)

where a defines the state-space representation of the scalar plant via:

Xk+1 = aXk +BUk , k ≥ 0 (73.4)

We proceed by giving a simple explanation of Equation 73.3, where, for now, the feedback loop is qualified
as internally stabilizing if the following holds with probability one:

|Xk| ≤ ν<∞, k ≥ 0 (73.5)

for some positive real β.
Now consider the following estimate of X0:

Ẑk =−
k−1∑
j=0

a−j−1BUj, k ≥ 1 (73.6)

which can be used, via the convolution formula, to express Xk as:

Xk = ak
(

X0− Ẑk

)
, k ≥ 1 (73.7)

If follows from Equations 73.7 and 73.5 that internal stabilization implies:

|X0− Ẑk| ≤ ν|a|−k , k ≥ 1 (73.8)

Hence, we conclude from Equation 73.8 that Ẑk constitutes an estimate of X0 whose error decreases
exponentially with time. If |a|> 1 holds then the fact that Equation 73.8 holds, regardless of the probability
distribution of X0, implies that there exists information about X0 flowing to Ẑk at every time step. In
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particular, with a= 2 the error in Equation 73.8 is reduced by half at every time step, and as a result, there is
at least one bit of information about X0 being transmitted to Ẑk at every time step. Since Ẑk is constructed
solely from Uk and all information about X0 that it contains must be conveyed through the channel, we
conclude that for a= 2 it must be true that R̄ ≥ 1. Since for a= 2 it holds that R̄ ≥ 1, it is natural that
for arbitrary a the necessary condition becomes Equation 73.3. This argument is explained rigorously
in [10,11], and from it one can conclude that Equation 73.3 is a necessary condition for any arbitrary
memoryless channel provided that R̄ is replaced with Shannon’s channel capacity, which is a measure
of the highest information rate attainable by a given channel. As it is shown in [10,11], the inequality
in Equation 73.3 is also a sufficient condition for the existence of stabilizing S and K. Hence, from
Equation 73.3, we can clearly conclude that larger |a|, or the more unstable is the system, the larger is the
required rate R̄ for stabilizability. However, as it was pointed out in [8], if the channel is not deterministic
then finer notions of stochastic stability are needed, for which the inequality in Equation 73.3, with R̄
replaced with capacity, might no longer be a sufficient condition for the existence of stabilizing S and K.
We will explore an instance of this remark in Section 73.3.2.

Using an appropriate modal decomposition technique and counting arguments applied to plants of
arbitrary dimension, the authors of [17] proved that the following is a necessary condition for the existence
of stabilizing S and K:

R̄ ≥
n∑

i=1

max{0, log |λi(A)|} (73.9)

where n is the dimension of the plant and {λi(A)}ni=1 are the eigenvalues of A. In [17] it is shown
that the condition (Equation 73.9) is also sufficient if the plant is stabilizable and detectable. Although
proving this result for the general case is nontrivial, one can gain some insight by noticing that the
necessity and sufficiency of Equation 73.3, for the stabilization of scalar systems, can be used to derive the
corresponding condition (Equation 73.9) for multistate plants, for the particular case where A is diagonal,
or diagonalizable with eigenvalues that are powers of 2.

73.3.2 Random Channel Model

In order to access stability in the presence of a random channel, that is, when Rk is no longer deterministic,
we adopt two notions: almost sure stability and moment stability.

A feedback system is almost surely stable, or a.s.s. for short, if the following holds with probability one:

|Xk| ≤ νass <∞ (73.10)

Given a positive integer m, an alternative notion is one where a system is mth moment stable if the
following holds:

E[|Xk|m] ≤ νm <∞, k ≥ 0 (73.11)

where E[·] denotes statistical expectation with respect to the randomness introduced by the channel and
the initial condition X0.

The authors of [18] have shown that the following is a necessary condition for stabilization in both the
a.s.s. and the mth moment sense:

C ≥
n∑

i=1

max{0, log |λi(A)|} (73.12)

Here C is defined as follows:

C def= lim inf︸ ︷︷ ︸
in probability

∑k
j=0 Rj

k
(73.13)

where lim inf above is assumed to hold in probability. It follows from Equation 73.13 that, for the channel
model adopted here, C coincides with Shannon’s capacity as defined in the information theory literature.
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The authors of [19] show that for stabilizable and detectable plants, the condition in Equation 73.12 is
sufficient for stabilizability, provided that Rk is a time-varying deterministic sequence. Here, the assump-
tion that Rk is deterministic guarantees that S knows what is effectively transmitted to K through the
channel. This predictability underpins the development of algorithms executed at S that can track and
reproduce any action taken at K, a feature that dramatically simplifies the development of stabilizing
schemes. This desirable attribute, which we qualify as classical information pattern [1], may not hold for
random channels. If the channel is random then the information pattern is classical if the channel sends an
acknowledgement signal to S containing Rk . Here, the acknowledgement signal effectively indicates how
many bits are successfully transmitted through the channel from S to K. This type of acknowledgement
signal may be conveyed via a dedicated link as in Figure 73.1, or it can be signaled by K through the
plant in certain cases. For channels that are supported on a computer network, one can associate classical
information patterns with TCP protocols, while UDP protocols are nonclassical.

73.3.2.1 Classical Information Pattern

If the channel is memoryless, that is, Rk is white, and the plant is stabilizable and detectable and in
the presence of acknowledgement signals then the necessary condition in Equation 73.12 may also be
sufficient for the existence of stabilizing S and K, in the a.s.s. sense. Sufficiency in the absence of process
noise is proved in [18]. Other results for the multistate case can be found in [4] and references therein,
where the authors provide explicit stabilizing schemes that rely on the predictability guaranteed by the
classical information pattern hypothesis. It is interesting to notice that the condition (Equation 73.12)
may not be sufficient in the presence of process and measurement noises.

As it is remarked in [8], even if the information pattern of the feedback loop is classical, the necessary
condition in Equation 73.12 is no longer sufficient to guarantee internal stabilization in the mth moment
sense. In fact, for scalar plants and memoryless stationary channels, and under a classical information
pattern, the necessary and sufficient condition for mth moment stabilizability can be cast as follows [7]:

C ≥max{0, log2 |a|} + β(m) (73.14)

where β(m) is a positive increasing function of m. The necessary and sufficient condition for stabilization
for the aforementioned formulation can also be expressed as follows:

amE
[
2−mRk

]≤ 1, k ≥ 0. (73.15)

We show next that the condition in Equation 73.15 becomes particularly simple when Rk is governed
by a Bernoulli process that selects either 0 or R̄ signifying an erasure or a successful transmission,
respectively. More specifically, if pe denotes the probability of erasure then Equation 73.15 becomes

am
(

pe + 2−mR̄(1− pe)
)
≤ 1. As pointed out in [14], it is interesting to note that as R̄ tends to infinity, the

aforementioned condition becomes ampe ≤ 1, which coincides with the necessary and sufficient condition
for stabilizability derived in [20] for the packet-drop model. Indeed, one should expect this consistency in
the limit when R̄ tends to infinity in light of the formulation in [20], which adopts a channel described by
a Bernoulli-driven device that either causes an erasure (packet drop) or enables the transmission of a real
number. Here, the transmission of a real number can be viewed as the transmission of a data packet with
an infinite number of bits. It follows from the aforementioned argument for scalar plants, and by using
modal decomposition, that a necessary and sufficient condition for the stabilization of stabilizable and
detectable plants in the mth moment sense with R̄ tending to infinity is given by the following inequality:

'(A)mpe ≤ 1 (73.16)

where '(A) denotes the spectral radius of A. Here, once again, Equation 73.16 coincides with the analogous
condition derived under the packet drop model [20].



�

�

�

�

� �

73-6 Control System Advanced Methods

There are other interesting limiting cases of Equation 73.15 studied in [7], such as when m tends
to zero for which we obtain Equation 73.3 or when m tends to infinity for which we arrive at Rmin ≥
max{0, log2 |a|}, where Rmin is the minimum value attained by Rk with probability one. Similar limiting
cases were investigated for the multistate case in [14].

Existing work on necessary and sufficient conditions for the existence of a stabilizing scheme for a
plant with multiple states, for the case when Rk is random [14], are not as elegant and simple as their
counterparts (Equation 73.12) for deterministic channels. A reason for this difficulty is that, as pointed
out in [7], for multistate plants the blocks S and K have to implement allocation algorithms that dictate
what information is sent at any particular time instant through the channel. Recent results in [14] provide
necessary and sufficient conditions for which there is a gap within which the existence of a stabilizing
scheme cannot be determined. This gap is well characterized in [14], including examples where it is zero.
The work in [14] also provides explicit algorithms and a thorough statistical analysis.

Remark

Some of the necessary and sufficient conditions presented above can be used to determine the stabiliz-
ability of the plant in the presence of measurement and process noises, provided that they are modified
to require that the corresponding inequalities hold strictly.

73.3.2.2 Nonclassical Information Pattern

In general, if the channel is random and acknowledgement signals from K to S are not available then
the analysis and design of stabilizing schemes becomes rather involved. This is the case because S does
not have perfect information about what is successfully transmitted to K. The analysis for this case,
accompanied by the description of appropriate codes for the stabilization of scalar plants, can be found
in Section V-A of [8]. Tight necessary and sufficient conditions for multistate plants are, in general, not
yet known. Clear progress has been made on obtaining necessary and sufficient conditions [16,33] for the
multistate case provided that the channel is Gaussian additive.

73.3.3 Decentralized Networked Control

Decentralized networked control refers to the case in which the plant comprises several dynamically
coupled subsystems with a subcontroller at each. Here one needs to clearly specify the information
pattern that dictates how information is disseminated among subcontrollers. An information pattern is
decentralized if each subcontroller can act directly only on its own subsystem, but has access to only partial
and possibly degraded information about the state of the other subsystems. The framework described in
Section 73.2 involves one controller, one plant and one point-to-point channel. Hence, a natural extension
to the decentralized case is obtained when certain pairs of subcontrollers are “connected” via point-to-
point channels to exchange measurement as well as other data that is relevant for distributed control.
The stabilizability via decentralized control schemes must be determined with respect to the properties
of the plant, the channel, and the information pattern. This problem is unsolved for the general case, but
significant progress has been made for deterministic channels [26,27,29,30].

73.3.4 Notes on Optimality

Consider the typical optimal control formulation specified by the quintessential cost comprising of
the expectation of quadratic forms of the state and the control. Under a classical framework, where
acknowledgments are present, the separation principle holds and it is possible to generate an optimal
control signal at K based on the optimal state estimate that it constructs from the information transmitted
through the channel. This is possible because S can use the acknowledgment signals to determine the
information received by K and use it to indirectly compute the control signal. Hence, there is no incentive
to use control for signaling and in theory it is possible to determine the optimal K and S. However,
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unfortunately, the optimal estimator at K is, in general, nonlinear and it may be infinite-dimensional and
time varying. Here, suboptimal solutions might be obtained by propagating an approximate and truncated
conditional distribution and constructing the corresponding estimator. For the nonclassical case the
problem can be formulated but, in general, even approximate solutions are elusive. Interesting structural
results and optimal policies for particular cases have been proposed in [1]. A new characterization of
nonclassical information structures and its implications for the design of decentralized decision systems
is discussed in [28].

73.4 Input to State Stability

Consider the following modification of Equation 73.1 so as to the exogenous signals Nk and Wk :

Xk+1 = AXk +BUk +Wk , k ≥ 0, X0 = 0 (73.17)

Yk = CXk +DUk +Nk , k ≥ 0 (73.18)

The so-called finite gain input to state stability is a mainstay notion in many paradigms of modern
control, such as H∞ controller design. A feedback loop stabilizes (Equation 73.17) in the finite gain sense
if and only if there exists a positive real gain η such that the following inequality holds for every possible
realization of {Nk}∞k=0, {Wk}∞k=0 and {Xk}∞k=1:

‖X‖s ≤ η‖(N , W)‖e (73.19)

where V
def= {Vk}∞k=0, W

def= {Wk}∞k=0 and X
def= {Xk}∞k=1 represent realizations of {Nk}∞k=0, {Wk}∞k=0 and

{Xk}∞k=1, respectively. Here ‖ · ‖s and ‖ · ‖e are preselected norms, which are appropriately chosen to
quantify the desired notion of stability.

Although most results discussed in Section 73.3.2.1 hold in the presence of process and measurement
noise with a variety of statistical descriptions, they do not address the input–output stability as defined
in Equation 73.19. In fact, it has been shown in [32] that finite gain stability is not feasible for unstable
plants that are controlled over a feedback loop comprising one or more bit-rate constrained blocks.
Hence, in particular, finite gain stability is impossible under the scheme of Figure 73.1. In fact, as it is
shown in [32], the ratio between any norm of the state and any norm of the external noises becomes
unbounded in the limits when the exogenous signals are arbitrarily small or arbitrarily large. As pointed
out in [32], these facts substantially limit the robustness of the resulting networked control systems
and they also indicate that other notions of stability are required for the performance analysis of these
systems.

The following inequality is a relaxation of Equation 73.19:

‖X‖s ≤ B
(‖(N , W)‖e

)
(73.20)

where B : R≥0 → R≥0. If the feedback loop is such that B can be selected to be continuous, strictly
increasing, unbounded and B(0)= 0 holds then we qualify it as input to state stable (ISS), a concept
discovered and coined in the foundational work in [23]. Using this concept, the authors of [22] show
that if the plant is stabilizable and detectable and Rk is a constant satisfying (Equation 73.12) then there
exists S and K for which the feedback loop is ISS. An important characteristic of the solution presented
in [22] is that the algorithms executed at S and K do not have prior knowledge of an upper bound on
‖(N , W)‖e. This feature is, in fact, essential to guarantee that the feedback loop is ISS because ISS requires
that (Equation 73.20) holds for every possible realization of X, N , and W . A key idea in [22] is that of
designing S as a time-varying quantizer with adaptable resolution, whereby large signal levels are met
with coarser quantization cells, which can then be made finer when the amplitude of the state lessens.
This formulation was initially proposed in [24] and its extensions for the ISS case, including robustness
analysis, are now fully developed in [25]. These results are remarkable in light of the effects that state
quantization may bring about on the behavior of feedback systems [6].
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74.1 Introduction

This chapter addresses the problem of decentralized control, where multiple controllers have an access
to different information but need to achieve or optimize a global objective. Most of conventional con-
trol analysis breaks down when information is decentralized, even in the simplest possible scenarios
(Witsenhausen, 1968).

This chapter addresses decentralized control problems in a simple unified framework. This framework
is introduced in Section 74.2, where we see that a standard controls framework may be utilized, but with
the addition of a particular constraint on the controller that needs to be designed. Section 74.3 then briefly
reviews the parametrization of stabilizing controllers for centralized control, when one does not have this
decentralization constraint.

Section 74.4 introduces quadratic invariance—an algebraic condition under which decentralized con-
trol problems may be cast as convex optimization problems. Section 74.5 looks at particular classes of
problems to see when this condition holds, and to get some intuition behind when decentralized control
problems may be tractable. Section 74.6 then discusses the perfectly decentralized control problem, a
problem which is often of interest yet which typically does not satisfy this condition. Finally, while the
rest of this chapter focuses on the case where both the system to be controlled and the possible controllers
are all linear, Section 74.7 discusses some related results for nonlinear control.

74-1
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FIGURE 74.1 Standard feedback control framework.

74.2 Framework and Setup

We introduce a unified framework for studying optimal feedback control problems subject to
decentralized information constraints.

74.2.1 Standard Framework

We first review a standard framework for centralized control synthesis.
Figure 74.1 represents the standard design framework of modern control theory, and is used in many

other chapters. The signal w represents the vector of exogenous inputs, those the designer has no control
over, such as wind gusts if one is considering an example in aerospace, and z represents everything
the designer would like to keep small, which would typically include deviations from a desired state or
trajectory, or a measure of control effort, for example. The signal y represents the vector of measurements
that the controller K has access to, and u is the vector of inputs from the controller that feeds back
into the plant. The plant is subdivided into four blocks that maps w and u into z and y. The block
which maps the controller input u to the measurements y is simply referred to as G, since it corresponds
to the plant of classical control analysis, and so that we can later refer to its subdivisions without any
ambiguity.

The design objective is to construct a controller K to keep a measure of the size of the mapping from w
to z, known as the closed-loop map, as small as possible. There are many ways in which one can measure
the size of a mapping, and thus this basic setup underpins much of modern controls including H2-control
and H∞-control. In this framework, a decentralized information structure may be viewed as a constraint
on the structure of the controller K , as now illustrated by examples.

74.2.2 Information Constraint

We now illustrate why, in this framework, decentralization may be simply encapsulated as a constraint
that the controller lies in a particular subspace.

The diagram in Figure 74.2 represents three different subsystems, each of which may effect its neighbors,
and each of which has its own controller, which only has access to measurements coming from its own
subsystem. In this case, if we look at the system as a whole, we need to design a controller K that can be

G1 G2 G3

K1 K2 K3

FIGURE 74.2 Perfectly decentralized control.
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written as ⎡
⎣u1

u2

u3

⎤
⎦=

⎡
⎣K1 0 0

0 K2 0
0 0 K3

⎤
⎦

︸ ︷︷ ︸
K

⎡
⎣y1

y2

y3

⎤
⎦

since each controller input may only depend upon the measurement from its corresponding subsystem.
In other words, we need to design the best possible K which is block diagonal. The overall problem can
be viewed as minimizing the size of the closed-loop map subject to the additional constraint that K ∈ S,
where S is the set of all block diagonal controllers. This concept readily extends to any type of structural
constraint we may need to impose in formulating an optimal control problem for controller synthesis.
For instance, if in the above example, each controller was able to share information with its neighbors,
then we would end up with a constraint set S which is tri-diagonal. In general, the ijth component of the
controller is held to 0 if the ith controller is unable to see the jth measurement yj.

If controllers were instead allowed to communicate with each other, but with some delays, this too
could be reflected in another constraint set S. This situation is represented in Figure 74.3, where the
controller for a given subsystem i can see the information from another subsystem j after a transmission
delay of tij. In this case, if we look at the system as a whole, we need to design a controller K that can be
written as ⎡

⎣u1

u2

u3

⎤
⎦=

⎡
⎣Dt11 K̃11 Dt12 K̃12 Dt13 K̃13

Dt21 K̃21 Dt22 K̃22 Dt23 K̃23

Dt31 K̃31 Dt32 K̃32 Dt33 K̃33

⎤
⎦

︸ ︷︷ ︸
K

⎡
⎣y1

y2

y3

⎤
⎦

where Dtij represents a delay of tij, and K̃ij represents the part of the controller which we are free to design,
since each subsystem controller must wait the proscribed amount of time before it can use information
from each of the other controllers.

The set S above is called the information constraint, as it captures the information available to various
parts of the controller. The overarching point is that the objective of decentralized control may be
considered to be the minimization of a closed-loop map subject to an information constraint K ∈ S.
The approach is extremely broad, as it seamlessly incorporates any type of decentralization, any control
objective, and heterogeneous subsystems. It has thus come to be accepted as the canonical problem one
would like to solve in decentralized control.

tji

tji

Ki Kj

FIGURE 74.3 Network with delays.
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74.2.3 Problem Formulation

The mapping from w to z that we wish to keep small in Figure 74.1, the closed-loop map, can be
written as f (P, K)= P11+ P12K(I −GK)−1P21. The problem that we would like to address may then be
formulated as

minimize || f (P, K)||
subject to K stabilizes P (74.1)

K ∈ S.

The norm (|| · ||) is any appropriate system norm chosen, based on the particular performance objec-
tives, which could be the H2-norm or H∞-norm as described in detail in other chapters. The information
constraint S is the subspace of admissible controllers which encapsulates the decentralized nature of the
system, as exemplified above. The stabilization constraint is needed in the most typical case where the
signals lie in extended spaces and the plant and controller are rational proper systems whose intercon-
nections may thus be unstable. It may not be necessary, or another technical condition may be necessary
such as the invertibility of (I −GK), for other spaces of interest, such as Banach spaces with bounded
linear operators (Rotkowitz and Lall, 2002, 2006a).

74.3 Stabilizing Controller Parametrization

If the plant to be controlled is stable, we could use the following change of variables:

Q =−K(I −GK)−1 ⇐⇒ K =−Q(I −GQ)−1 (74.2)

and then allowing the new parameter Q to be stable is equivalent to the controller K stabilizing the plant
P, and the set of all achievable closed-loop maps (ignoring the information constraint) is then given as

{P11− P12QP21 |Q stable}. (74.3)

This is generalized by the Youla–Kucera or YJBK parametrization (Youla, Jabr, and Bonjiorno, 1976),
which gives a similar change of variables for unstable plants such as allowing the new (Youla) parameter
Q to vary over all stable systems is still equivalent to considering all stabilizing controllers K , and the set
of all achievable closed-loop maps is then given by

{T1−T2QT3 |Q stable} (74.4)

where T1, T2, T3 are other stable systems.
We see that these parametrizations allow the set of achievable closed-loop maps to be expressed as

an affine function of a stable parameter, and thus allow our objective function in our main problem
(Equation 74.1) to be cast as a convex function of that parameter. However, the information constraint
K ∈ S will typically not be simple to express in the new parameter, and this will ruin the convexity of the
optimization problem.

74.4 Quadratic Invariance

We have seen that we can employ a change of variables that will make our objective convex, but that will
generally cause the information constraint to no longer be affine. We thus seek to characterize problems
for which the information constraint may be written as an affine constraint in the Youla parameter, such
that a convex reformulation of our main problem will result.

The following property, first introduced in (Rotkowitz and Lall, 2002), provides that characterization.
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Definition 74.4.1

The set S is quadratically invariant with respect to G if

KGK ∈ S for all K ∈ S

In other words, given any admissible controller K , the composition KGK has to be admissible as well.
When this condition holds, it follows that a controller being admissible is further equivalent to the linear-
fractional transformation we encountered earlier lying in the constraint set (Rotkowitz and Lall, 2006a,
2006b):

K ∈ S ⇐⇒ K(I −GK)−1 ∈ S (74.5)

We can see immediately from Equation 74.2 that for the stable case this results in the equivalence of
enforcing the information constraint on the controller or on the new parameter:

K ∈ S ⇐⇒ Q ∈ S (74.6)

and it can be shown that when the plant is unstable, another change of variables can be made such that
this equivalence still holds (Rotkowitz and Lall, 2006b).

Thus when the information constraint S is quadratically invariant with respect to the plant G, the
optimal decentralized control problem (Equation 74.1) may be recast as the following:

minimize ||T1−T2QT3||
subject to Q stable (74.7)

Q ∈ S

which is a convex optimization problem.

74.5 Examples

This section looks at particular classes of information constraints to see when this quadratic invariance
condition holds, to identify those decentralized problems which are amenable to convex synthesis. We
see that this algebraic condition often has intuitive interpretations for specific classes of problems.

74.5.1 Structural Constraints

We first look at structural constraints, or sparsity constraints, where each subcontroller can see the
measurements from some subsystems but not from others. This structure can be represented with a
binary matrix Kbin. For instance, Kbin

kl = 1 if the kth control input uk is allowed to be a function of the
lth measurement yl , and Kbin

kl = 0 if it cannot see that measurement. The information constraint S is then
the set of all controllers which have the structure proscribed by Kbin; that is, all of the controllers such
that none of the subcontrollers use information which they cannot see.

A binary matrix Gbin can similarly be used to give the structure of the plant. For instance, Gbin
ij = 1

if Gij is nonzero and the ith measurement yi is affected by the jth control input uj, and Gbin
ij = 0 if it

is unaffected by that input. Given this representation of the structure of the plant and the controller
constraints, we have the following result:

S is quadratically invariant with respect to G if and only if

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl )= 0 for all i, j, k, l. (74.8)

Figure 74.4 illustrates this condition. The condition in Equation 74.8 requires that, for arbitrary i, j,
k, l, if the three blocks on the bottom are all nonzero (or allowed to be chosen nonzero), then the top
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Kkl

Kki Gij Kjluk uj ylyi

FIGURE 74.4 Structural quadratic invariance.

block must be allowed to be nonzero as well. In other words, if there is an indirect connection from a
measurement to a control input, then there has to be a direct connection as well.

When this condition is met, the problem is quadratically invariant, and we can recast our optimal
decentralized control problem as the convex optimization problem in Equation 74.7.

74.5.2 Symmetry

We briefly consider the problem of symmetric synthesis. Suppose that we need to design the best symmet-
ric controller; that is, the best controller such that Kkl = Klk for all k, l, and that the information constraint
S is the set of all such symmetric controllers. If the plant is also symmetric; that is, if Gij = Gji for all i, j,
then KGK is symmetric for any symmetric K . Thus, KGK ∈ S for all K ∈ S, the problem is quadratically
invariant, and the optimal symmetric control problem may be recast as Equation 74.7.

74.5.3 Delays

We now return to the problem of Figure 74.3, where we have multiple nodes/subsystems, each with its own
controller, and each subsystem i, can see the information from another subsystem j after a transmission
delay of tij.

We similarly consider that the inputs to a given subsystem j may affect other subsystems after some
delay, and denote the amount of time after which it may affect another subsystem i by the propagation
delay pij.

The overall problem of controlling such a network with propagation delays, with controllers that may
communicate with transmission delays, is depicted in Figure 74.5.

tji

tij
pij

pjiKi Kj
GjGi

FIGURE 74.5 Network with delays.
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When this problem is tested for quadratic invariance, one first finds that the following condition is
necessary and sufficient:

tki + pij + tjl ≥ tkl for all i, j, k, l. (74.9)

This is reminiscent of condition (Equation 74.8) for structural constraints, as it similarly requires that
any direct path from yl to uk must be at least as fast as any indirect path through the plant. This condition
can be further reduced to a very simple intuitive condition (Rotkowitz, Cogill, and Lall, 2005), as long as
we may assume that the transmission delays themselves satisfy the triangle inequality; that is,

tki + tij ≥ tkj for all k, i, j. (74.10)

This is typically a very reasonable assumption, as it states that information is transmitted between nodes
in the quickest manner available through the network. If the inequality failed for some k, j, one would
want to reroute the transmissions from j to k along the faster route such that the inequality would then
hold.

If the triangle inequality among transmissions does hold, then condition (Equation 74.9), and thus
quadratic invariance, is reduced to simply

pij ≥ tij for all i, j. (74.11)

In other words, for any pair of nodes, information needs to be transmitted faster than the dynamics
propagate. When this simple condition holds, the problem is quadratically invariant, and the optimal
decentralized control problem may be recast as the convex problem (Equation 74.7).

This very intuitive result has a counterintuitive complement when one considers computational delays
as well. Suppose now that the ith controller cannot use a measurement from the jth subsystem until a pure
transmission delay of t̃ij, representing the time it takes to send the information from one subsystem to
the other, as well as a computational delay of ci , representing the time it takes to process the information
once it is received.

While intuition might suggest that these two quantities would end up being added and then replacing
the right-hand side of Equation 74.11, if we now assume that the pure transmission delays satisfy the
triangle inequality, the condition for quadratic invariance becomes

pij + cj ≥ t̃ij for all i, j (74.12)

with the computational delay on the other side of the inequality.
This shows that, regardless of computational delay, if information can be transmitted faster than

dynamics propagate, then the optimal decentralized control problem can be reformulated as a convex
optimization problem. If we consider a problem with multiple aerial vehicles, for example, where dynamics
between any pair of subsystems will propagate at the speed of sound, this tells us that transmissions just
have to be faster than that threshold for the optimal control problem to be recast as (Equation 74.7).

These results have also been extended to spatio-temporal systems (Rotkowitz, Cogill, and Lall, 2010),
including the special case of spatially invariant systems.

74.6 Perfectly Decentralized Control

We now revisit the problem of Figure 74.2, where each controller can use only the measurements from its
own subsystem, and thus the information constraint is block diagonal. This problem is never quadratically
invariant, and will never satisfy condition (Equation 74.8), except for the case where the subsystems do
not affect one another; that is, except for the case where G is block diagonal as well.

In all other cases where subsystems may have some affect on others, we thus cannot parametrize all
of the admissible stabilizing controllers in a convex fashion, and cannot cast the optimal decentralized
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control problem as a convex problem such as in Equation 74.7. However, a Youla parametrization can
similarly be used, and while Equation 74.6 does not hold, as the information constraint on the controller
is not equivalent to enforcing it on the Youla parameter, it is instead equivalent to a quadratic equality
constraint on the parameter (Manousiouthakis, 1993)

K ∈ S ⇐⇒ W1+W2Q+QW3+QW4Q = 0 (74.13)

for stable operators W1, W2, W3, W4. When returning to the optimal decentralized control problem,
this equality constraint replaces the final Q ∈ S constraint of Equation 74.7. The problem is no longer
convex due to the quadratic term, but the overall difficulty is transformed to one well-understood type of
constraint, for which many methods exist to approximate optimal solutions.

Other structural constraints, which are neither block diagonal nor quadratically invariant, can be
similarly parametrized by first converting them to a perfectly decentralized problem (Rotkowitz, 2010).

74.7 Nonlinear Decentralized Control

The framework discussed thus far assumes that the operators, both the plant to be controlled and the
possible controllers that we may design for it, are all linear, and when applicable, time-invariant as well. A
similar convex parametrization of stabilizing decentralized controllers exists even when the systems are
possibly nonlinear and possibly time-varying (NLTV) (Rotkowitz, 2006). The condition allowing for the
parametrization then becomes

K1(I ±GK2) ∈ S for all K1, K2 ∈ S.

When the plant is stable, the stabilizing controllers may be parametrized similarly to Equation 74.3 (Desoer
and Liu, 1982), and when the plant is unstable, the stabilizing controllers may typically be parametrized
similarly to Equation 74.4 (Anantharam and Desoer, 1984). Similar to quadratic invariance, the above
condition then yields the equivalence of the controller and the feedback map satisfying the information
constraint (Equation 74.5), which then gives the equivalence of the controller and the parameter satisfying
the constraint as in Equation 74.6. The convex parametrization of all causal stabilizing decentralized
controllers then results, analogous to the linear case with quadratic invariance.

While this condition may appear quite different from quadratic invariance, they actually both reduce
to the same conditions when one considers the classes of sparsity constraints or delay constraints, and so
these results extend to all of the cases covered in Sections 74.5.1 and 74.5.3.
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75.1 Introduction

In this chapter, we will adopt the analog erasure model to describe the communication channel present
inside a control loop. This model, also referred to as the packet erasure or packet loss model, can be
described as follows [8]. The channel operates in discrete time steps. At every time step, the channel
accepts as input a finite-dimensional real vector r(k). The value of the output of the channel y(k) is
chosen according to an erasure process. At every time step, the erasure process assumes either the value
T or the value R. If the value at time k is T , y(k+ 1)= r(k) and a successful transmission is said to have
occurred. Otherwise, y(k+ 1)= φ and an erasure event, or a packet loss, is said to have occurred at time
k. The symbol φ denotes that the receiver does not receive any data; however, the receiver is aware that an
erasure event has occurred at that time. Note that we have assumed that the channel introduces a constant
delay of one time step.

The analog erasure model aims to capture data loss due to a communication channel. Due to effects
such as interference and fading in wireless channels, congestion in shared networks, or even overload
and interrupts at a microcontroller, various parts of a control loop between the sensor and controller,
or the controller and actuator, may exhibit information loss. By considering the idealization in which
every successful transmission results in the communication of a real vector of a bounded dimension,
such situations can be modeled using an analog erasure representation. While an analog erasure model
has an infinite capacity in an information theoretic sense, it is often a useful representation for the cases
when the communication protocols allow for large data packets to be transmitted at every time step. For
instance, the minimum size of an ethernet data packet is 72 bytes. This is much more space for carrying
information than usually required inside a control loop. If the data packets allow for transmission of

75-1
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control and sensing data to a high fidelity, the quantization effects are often ignored and an analog
erasure model is adopted.

Various descriptions of the erasure process are possible. The following two models are the most popular:

1. Maximum Allowable Transmit Interval (MATI)-based models: This model (see, e.g., [3]) is
described using two integer values n1 and n2. For an (n1, n2) model, in any interval of length
n1, at most n2 erasure events can occur. Apart from this constraint, the erasure process is arbitrary.

2. Stochastic erasure event-based models: In this model (see, e.g., [12]), the erasure process is a random
process. The simplest case is when the erasure events are independent and identically distributed
at different time steps. In such a case, the erasure process is described by the erasure probability

p
def= Prob(y(k)= φ), at any time step k. More complicated models when the erasure process can

be described by, for example, a Markov chain (possibly on the lines of the Gilbert–Eliot channel
model [4]) can also be considered.

In this chapter, we will concentrate on the stochastic erasure event-based models. As with any networked
control system, two questions can be asked.

1. What is the effect of introducing channels on the structure of the estimators and controllers?
2. What are the optimal encoders and decoders that transmit the maximum amount of control

relevant information to achieve the fundamental limits of performance in such systems?

These questions are answered in the next two sections, respectively. Section 75.4 lists some extensions to
the simple model considered here for pedagogical ease, and points out some open research directions.
Some results on Markovian jump linear systems (MJLS) that are used in the chapter are presented in
Section 75.5.

75.2 Effect on Estimation and Control Performance

75.2.1 Estimation

We begin with the problem of estimating a linear time-invariant process across an analog erasure channel.
Consider the setup as shown in Figure 75.1. The process with state x(k) ∈ Rn evolves as

x(k+ 1)= Ax(k)+w(k),

where w(k) is the process noise modeled as white, zero mean, Gaussian with covariance Rw > 0. The initial
condition x(0) is assumed to be drawn from a Gaussian distribution with zero mean and covarianceΠ(0).
The state is observed by a sensor of the form

y(k)= Cx(k)+ v(k),

where v(k) ∈ Rp is measurement noise modeled by white, zero mean, Gaussian with covariance Rv > 0.
We assume that the sources of randomness x(0), {w( j)} and {v( j)}, are mutually independent. The sensor
transmits its measurements to an estimator across an analog erasure channel with erasure probability p
at every time step. The pair (A, C) is assumed to be observable.

The estimator receives those measurements that are transmitted successfully across the channel. It has
access to the constant matrices A, C, Rw , Rv and Π(0). The estimator aims at generating the minimum

Process Sensor Channel Estimator

FIGURE 75.1 Basic setup of the estimation problem.
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mean-squared error (MMSE) estimate x̂(k) of the process state x(k) based on the information it has
access to at time k. If no erasure events were to occur, the optimal estimate is given by the Kalman filter,
and the estimate error covariance evolves according to a discrete Riccati recursion. In particular, for
the assumptions as made above, the error covariance is stable in the sense of being bounded as time k
increases. We wish to extend this analysis to the case when erasure events occur with a probability p at
every time step.

Since the event of a packet drop is known to the estimator, the problem is equivalent to estimation of
the following Markov jump linear system with the jumps occurring according to a Bernoulli process:

x(k+ 1)= Ax(k)+w(k)

y(k)= Cr(k)x(k)+ v(k),

where r(k) is the Markov state such that r(k)= 1 with probability 1− p and r(k)= 2 otherwise. Moreover,
C1 = C and C2 = 0. We can thus utilize the standard results from MJLS theory∗. In particular, from
Corollary 75.2 we obtain that the optimal estimator for such a system is provided by a time-varying
Kalman filter. Due to probabilistic erasure events, the estimate error covarianceΠ(k) evolves as a random
variable. An upper bound of the expected estimate error covariance E[Π(k)] is provided by the quantity
V (k) that evolves as

V (k+ 1)= AV (k)AT +Rw − (1− p)AV (k)CT
(

CV (k)CT +Rv

)−1
CV (k)AT ,

with the initial condition V (0)=Π(0). A sufficient condition for stabilizability can also be obtained
through Corollary 75.2. We can also express the condition as a Linear Matrix Inequality (LMI) [14]. The
system is stabilizable if there exists a matrix X > 0 and a matrix K such that

⎡
⎣X

√
(1− p)(XA+KC)

√
pXA√

(1− p)(AT X +CT KT ) X 0√
pAT X 0 X

⎤
⎦> 0.

For our problem, we can also derive a lower bound on E[Π(k)] as follows. At time step k, the error
covariance Π(k) is lower bounded by Rw if a packet is received by the estimator, and is equal to AΠ
(k− 1)AT +Rw if a packet is not received. Thus, E[Π(k)] is lower bounded by S(k) which evolves as

S(k+ 1)= p
(

AS(k)AT +Rw

)
+ (1− p)Rw = pAS(k)AT +Rw .

This is a discrete algebraic Lyapunov recursion. By considering the convergence properties of the recur-
sion, we obtain that a necessary and sufficient condition for stability of S(k) (and, thus, a necessary
condition for stability of E[Π(k)]) is given by pρ(A)2 < 1, where ρ(A) is the spectral radius of A.

75.2.2 Control

We now move on to the control problem considered, for example, in [9,14]. To begin with, consider the
setup shown in Figure 75.2 that has only one channel in the control loop, present between the sensor
and the controller. Such a situation can arise, for example, when the controller is colocated with the
process and the sensor is remote, or if the controller has access to large transmission power. The linear

∗ A brief review of such results is provided in Section 75.5.
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Actuator Process Sensor

Channel

Estimator/controller

FIGURE 75.2 Basic setup of the control problem with a single channel present between the sensor and the controller.

time-invariant process now evolves as

x(k+ 1)= Ax(k)+Bu(k)+w(k),

where the additional variable u(k) ∈ Rm is the control input chosen to minimize the cost

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k)+ uT (k)Ru(k)

)
+ xT (K + 1)P(K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values of the packet erasure events, the
initial condition, and the measurement and process noises. Further, the matrices P(K + 1), Q and R are
all assumed to be positive definite. The pair (A, B) is assumed to be controllable.

We can utilize the Markov state representation to solve the Linear Quadratic Gaussian (LQG) problem
as well. The system can again be written as a Markov jump linear system of the form

x(k+ 1)= Ax(k)+Bu(k)+w(k),

y(k)= Cr(k)x(k)+ v(k),

where r(k) is the Markov state such that r(k)= 1 with probability 1− p and r(k)= 2 otherwise. Moreover,
C1 = C and C2 = 0. Thus, we can utilize the separation principle from Section 75.5.3 to obtain the optimal
controller as the combination of the LQ optimal control, with the MMSE estimate of the state used in place
of the state value. Note that the MMSE estimate can be calculated as in Section 75.2.1. Moreover, since
neither the matrix A nor the matrix B depend on the Markov state, the LQ optimal control corresponds
to the control input for the system

x(k+ 1)= Ax(k)+Bu(k),

that minimizes the cost function

J =
[

K∑
k=1

(
xT (k)Qx(k)+ uT (k)Ru(k)

)
+ xT (K + 1)P(K + 1)x(K + 1)

]
,

when the controller has full state information, that is, to calculate the input u(k) at time k, the state
x(0), x(1), . . . , x(k) is available.

We can also consider the case of two channels being present. Consider the system setup shown in
Figure 75.3, with the process and the sensor as described above. In addition to the sensor–controller
channel, there is an additional channel between the controller and the actuator. Assume that the erasures
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Actuator Process Sensor

ChannelChannel

Estimator/controller

FIGURE 75.3 Setup of the control problem with two channels.

on the controller–actuator channel occur in an i.i.d. fashion, with probability of erasure q at any time
step. Moreover, the erasure events on this channel are independent of all other random variables in the
system.

In this case, it is also important to specify the action that the actuator takes when it does not receive
a packet. The action depends on the amount of processing, memory, and information about the process
that is assumed to be available at the actuator. We consider the simplest choice, which is to apply zero
control input if no packet was received. Other actions by the actuator can be treated in a similar fashion.
For this case, the Markov jump linear system representation of the system is now given by

x(k+ 1)= Ax(k)+Br(k)u(k)+w(k)

y(k)= Cr(k)x(k)+ v(k),

where r(k) is the Markov state that can take values 1, 2, 3, and 4 with probabilities (1− p)(1− q),
p(1− q), (1− p)q, and pq respectively. The system matrices are given by B1 = B2 = B, B3 = B4 = 0,
C1 = C3 = C and C2 = C4 = 0. The solution of the LQG problem requires one additional assumption.
The separation result in Theorem 75.6 assumes that the controller at time k has knowledge of the control
inputs that were previously applied till time k− 1. Indeed, if the past control inputs are not available at
the controller, then the control will have a dual effect. For our problem, this implies that the controller
must know whether or not the transmission over the controller actuator channel has been successful. To
provide this information to the controller, we will assume a perfect acknowledgment from the actuator
to the controller for any data packet received by the actuator. This is often called the TCP-like case.
The case when acknowledgements are not available is termed as the UDP-like case. For the UDP-like
case, the separation principle does not hold and the form of the optimal controller is unknown, in
general.

Note that since the controller can detect any packet drops on the sensor–controller channel, and
receives acknowledgments about transmissions over the controller–actuator channel, the controller has
access to the Markov states r(0), . . . , r(k− 1) at time k, but not r(k). In particular, at time step k, the
controller does not know the value of Br(k). While in general Theorem 75.6 requires knowledge of the
current Markov state at the controller, in this particular case, the problem is still solvable. To see this,
assume that the controller uses the value Br(k) = B to calculate the optimal control input. If indeed rk = 1
or 2, the actuator successfully receives this packet and the control input is optimal. If rk = 3 or 4, the
optimal control input should be zero since for those states Br(k) = 0. However, at these time steps, the
transmission by the controller is not successful and the actuator applies zero as the control input. Thus,
once again, the optimal control input is applied. Thus, we see that the LQG problem can be solved for this
case using Theorem 75.6. We can also identify stability conditions and performance bounds by utilizing
the MJLS theory.
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75.3 Optimal Coding

We now turn to the more general question of identifying fundamental limits on the performance of a
system being controlled across an analog erasure channel, and the design of encoders and decoders to
achieve such limits as discussed, for example, in [7]. To proceed, we must define the class of encoders
that we will consider. The information theoretic capacity of an analog erasure channel is infinite. Thus,
the only constraints we impose on the encoder are that the transmitted vector is some causal (possibly
time-varying) function of the measurements available to the encoder until time k and that the dimension
of the vector is finite. The encoder is collocated with the sensor, while the decoder is located at the
estimator/controller. We will sometimes refer to the encoder as an encoding algorithm.

We begin by considering the system setup in Figure 75.2 and the associated assumptions about the pro-
cess, the sensor and the cost function in Section 75.2.2. However, instead of transmitting measurements
y(k) at every time step k, the sensor can now calculate a vector s(k)= f (k, {y( j)}kj=0) and transmit it. Note
that we have not assumed that the encoder has access to any acknowledgments from the decoder about
which transmissions have been successful. However, we will show that the presence of such acknowledge-
ments does not improve the optimal performance achievable by a suitable encoder.

Denote by I (k) the information set that the decoder can utilize to calculate the control at time k. As
an example, if no erasures were happening, I (k)= {y(0), y(1), . . . , y(k− 1)}. More generally, given any
packet erasure pattern, we can define a time stamp ts(k) at every time step k such that the erasures did not
allow any information transmitted by the encoder after time ts(k) to reach the decoder. Without loss of
generality, we can restrict attention to information-set feedback controllers. For a given information set,
I (.) denote the minimal value of the cost JLQG that can be achieved with the optimal controller design by
J�
LQG(I ), and the smallest sigma algebra generated by the information set as I(.). If two information sets

I1(.) and I2(.) are such that I1(k)⊆ I2(k), we have J�
LQG(I 2)≤ J�

LQG(I 1).
Consider an algorithm A1 in which at every time step k, the sensor transmits all measurements

y(0), y(1), . . . , y(k) to the decoder. Note that this algorithm is not a valid encoding algorithm since
the dimension of the transmitted vector is not bounded, as k increases. However, with this algo-
rithm, for any drop sequence, the decoder has access to an information set of the form Imax(k)=
{y(0), y(1), . . . , y(ts(k))}, where ts(k)≤ k− 1 is the time stamp defined above. This is the maximal infor-
mation set that the decoder can have access to with any algorithm in the sense that I(k)⊆ Imax(k), for any
other algorithm that yields the information set I (k). Thus, one way to achieve the optimal value of the
cost function is to utilize an algorithm that makes Imax(k) available to the sensor at every time k along
with a controller that optimally utilizes this set. Further, one such encoder algorithm is A1. However, as
discussed above, A1 is not a valid encoding algorithm. Surprisingly, as shown below, we can achieve the
same performance with an algorithm that transmits a vector with finite dimension.

We begin with the following separation principle when the decoder has access to the maximal informa-
tion set. Denote by α̂(k|β(k)) the MMSE estimate of the random variable α(k) based on the information
β(k).

Theorem 75.1: Separation Principle with Maximal Information Set

Consider the control problem as defined above, when the decoder has access to the maximal information set
Imax(k) at every time step. Then, the optimal control input is given by

u(k)= ûLQ

(
k|Imax(k), {u( j)}k−1

j=0

)
,

where uLQ(k) is the optimal LQ control law.
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The proof of this result is similar to the standard separation principle (see, e.g., [10, Chapter 9]) and
is omitted here. For our setting, the importance of this result lies in the fact that it recognizes that

ûLQ

(
k|Imax(k), {u( j)}k−1

j=0

)
(or, in turn, x̂LQ

(
k|Imax(k), {u( j)}k−1

j=0

)
) is a sufficient statistic to calculate

the control input that achieves the minimum possible cost for any encoding algorithm. Utilizing the fact
that the optimal MMSE estimate of x(k) is linear in the effects of the maximal information set and the
previous control inputs, we can identify the quantity that the encoder should transmit that depends only
on the measurements. We have the following result.

Theorem 75.2: Separation of the Effect of the Control Inputs

The quantity x̂LQ

(
k|Imax(k), {u( j)}k−1

j=0

)
can be calculated as

x̂LQ

(
k|Imax(k), {u( j)}k−1

j=0

)
= x̄LQ

(
k|Imax(k)

)+ψ(k),

where x̄LQ
(
k|Imax(k)

)
depends only on Imax(k) but not on the control inputs and ψ(k) depends only on

the control inputs {u( j)}k−1
j=0 . Further both x̄LQ

(
k|Imax(k)

)
and ψ(k) can be calculated recursively.

Proof. The proof follows readily from noting that x̂LQ

(
k|Imax(k), {u( j)}k−1

j=0

)
can be obtained from the

Kalman filter which is affine in both measurements and control inputs. We can identify

x̄LQ
(
k|Imax(k)

)= Ak−ts(k)−1x̆(ts(k)+ 1|ts(k)),

ψ(k)= Ak−ts(k)−1ψ̆(ts(k)+ 1)+
k−ts(k)−2∑

i=0

AiBu(k− i− 1),

where x̆( j+ 1|j) evolves as

M−1( j|j)=M−1( j|j− 1)+CT R−1
v C,

M−1( j|j)x̆( j|j)=M−1( j|j− 1)x̆( j|j− 1)+CT R−1
v y( j),

M( j|j− 1)= AM( j− 1|j− 1)AT +Rw ,

x̆( j|j− 1)= Ax̆( j− 1|j− 1),

with the initial conditions x̆(0| − 1)= 0 and M(0| − 1)=Π(0), and ψ̆( j) evolves as

ψ̆( j)= Bu( j− 1)+Γ( j− 1)ψ̆( j− 1),

Γ( j)= AM−1( j− 1|j− 1)M( j− 1|j− 2),

with the initial condition ψ̆(0)= 0. �

Now consider the following algorithm A2. At every time step k, the encoder calculates and transmits
the quantity x̆(k|k) using the algorithm in the above proof. The decoder calculates the quantity ψ(k).



�

�

�

�

� �

75-8 Control System Advanced Methods

If the transmission is successful, the decoder calculates

x̂LQ

(
k+ 1|Imax(k+ 1), {u( j)}kj=0

)
= x̄LQ

(
k+ 1|Imax(k+ 1)

)+ψ(k)

= Ax̆(k|k)+ψ(k).

If the transmission is unsuccessful, the decoder calculates

x̂LQ

(
k+ 1|Imax(k+ 1), {u( j)}kj=0

)
= Ak−ts(k)x̄LQ

(
k+ 1|Imax(ts(k)+ 1)

)+ψ(k),

where the quantity x̄LQ(k+ 1|Imax(ts(k)+ 1)) is stored in the memory from the last successful transmis-
sion (note that only the last successful transmission needs to be stored). Using the Theorems 75.1 and 75.2
clearly allows us to state the following result.

Theorem 75.3: Optimality of the Algorithm A2

Algorithm A2 is optimal in the sense that it allows the controller to calculate the control input u(k) that
minimizes JLQG.

Proof. At every time step, the algorithm A2 makes x̂LQ
(
k+ 1|Imax(k+ 1), {u( j)}kj=0

)
available to the

controller. Thus, the controller can calculate the same control input as with the algorithm A1 which
together with an LQ controller yields the minimum value of JLQG . �

Note that the optimal algorithm is nonlinear (in particular, it is a switched linear system). This is not
unexpected, in view of the nonclassical information pattern in the problem.

Remarks

• Boundedness of the Transmitted Quantity: It should be emphasized that the quantity x̆(k|k) that
the encoder transmits is not the estimate of x(k) (or the state of some hypothetical open-loop
process) based only on the measurements y(0), . . . , y(k). In particular, under the constraint on
the erasure probability that we derive later, the state x(k) is stable and hence the measurements
y(k) are bounded. Thus, the quantity x̆(k|k) is bounded. This can also be seen from the recursive
filter used in the proof of Theorem 75.2. If the closed-loop system x(k) is unstable due to high
erasure probabilities, x̆(k|k) would, of course, not be bounded. However, the optimality result
implies that the system cannot be stabilized by transmitting any other bounded quantity (such as
measurements).

• Optimality for any Erasure Pattern and the “Washing Away” Effect: The optimality of the algorithm
required no assumption about the erasure statistics. The optimality result holds for an arbitrary
erasure sequence, and at every time step (not merely in an average sense). Moreover, any successful
transmission “washes away” the effect of the previous erasures in the sense that it ensures that the
control input is identical to the case as if all previous transmissions were successful.

• Presence of Delays: We assumed that the communication channel introduces a constant delay of one
time step. However, the same algorithm continues to remain optimal even if the channel introduces
larger (or even time-varying) delays, as long as there is the provision of a time stamp from the
encoder regarding the time it transmits any vector. The decoder uses the packet it receives at any
time step only if it was transmitted later than the quantity it has stored from the previous time steps.
If this is not true due to packet reordering, the decoder continues to use the quantity stored from
previous time steps. Further, if the delays are finite, the stability conditions derived below remain
unchanged. Infinite delays are equivalent to packet erasures, and can be handled by using the same
framework.
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Stability and Performance

Both the stability and performance of the system with this optimal coding algorithm in place can be
analyzed by assuming specific models for the erasure process. For pedagogical ease, we adopt the i.i.d.
erasure model, with an erasure occurring at any time step with probability p. Due to the separation
principle, to obtain the stability conditions, we need to consider the conditions under which the LQ
control cost for the system, and the covariance of the estimation error between the state of the process
x(k) and the estimate at the controller x̂(k) remain bounded, as time k increases. Under the controllability
and observability assumptions, the LQ cost remains bounded, if the control value does. Define the
estimation error and its covariance as

e(k)= x(k)− x̂(k),

P(k)= E
[

e(k)eT (k)
]

,

where the expectation is taken with respect to the process and measurement noises, and the initial
condition (but not the erasure process). Due to the “washing away” effect of the algorithm, the error of
the estimate at the decoder evolves as

e(k+ 1)=
{

ē(k+ 1) no erasure

Ae(k) erasure event,

where ē(k) is the error between x(k) and the estimate of x(k) given all control inputs {u( j)}k−1
j=0 and

measurements {y( j)}k−1
j=0 . Thus, the error covariance evolves as

P(k+ 1)=
{

M(k+ 1) with probability 1− p

AP(k)AT +Rw with probability p,

where M(k) is the covariance of the error ē(k). Thus, we obtain

E[P(k+ 1)] = (1− p)M(k+ 1)+ pRw + pAE[P(k)]AT ,

where the extra expectation for the error covariance is taken over the erasure process in the channel. Since
the system is observable, M(k) converges geometrically to a steady-state value M�. Thus, the necessary
and sufficient condition for the convergence of the above discrete algebraic Lyapunov recursion is

pρ(A)2 < 1,

where ρ(A) is the spectral radius of A. Due to the optimality of the algorithm considered above, this
condition is necessary for stability of the system with any causal encoding algorithm. In particular, for the
strategy of simply transmitting the latest measurement from the sensor as considered in Section 75.2, this
condition turns out to be necessary for stability (though not sufficient for a general process model). For
achieving stability with this condition, we require an encoding strategy, such as the recursive algorithm
provided above.

This analysis can be generalized to more general erasure models. For example, for a Gilbert–Eliot type
channel model, the necessary and sufficient condition for stability is given by

q00ρ(A)2 < 1,

where q00 is the conditional probability of an erasure event at time k+ 1, provided an erasure occurs
at time k. In addition, by calculating the terms E[P(k)] and the LQ control cost of the system with full
state information, the performance JLQG can also be calculated through the separation principle proved
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above. The value of the cost function thus achieved provides a lower bound to the value of the cost
function achievable using any other encoding or control algorithm, for the same probability of erasure.
An alternative viewpoint is to consider the encoding algorithm above as a means for transmitting data with
lesser frequency to achieve the same level of performance than, for example, transmitting measurements
to the controller.

Higher-Order Moments

It can be seen that the treatment above can be extended to consider the stability of higher-order moments
of the estimation error, or the state value. In fact, the entire steady-state probability distribution function
of the estimation error can be calculated.

75.4 Extensions and Open Questions

The above framework was explained for a very simple setup of an LQG problem. It is natural to consider its
generalization to other models by removing various assumptions. We consider some of these assumptions
below. We also point out some of the open questions.

• Channel between the Controller and the Actuator: The encoding algorithm presented above con-
tinues to remain optimal when a channel is present between the controller and the actuator (as
considered in Figure 75.3) as long as there is a provision for acknowledgment from the actuator
to the controller for any successful transmission, and the protocol that the actuator follows in case
of an erasure is known at the controller. This is because these two assumptions are enough for the
separation principle to hold. If no such acknowledgment is available, the control input begins to
have a dual effect and the optimal algorithm is still unknown. Moreover, the problem of designing
the optimal encoder for the controller–actuator channel can also be considered. This design will
intimately depend on the information that is assumed to be known at the actuator (e.g., the cost
function, the system matrices, etc.). Algorithms that optimize the cost function for such information
sets are largely unknown. A simpler version of the problem would involve either
• Analyzing the stability and performance gains for given encoding and decoding algorithms

employed by the controller and the actuator, respectively.
• Considering algorithms that are stability optimal, in the sense of designing recursive algo-

rithms that achieve the largest stability region for any possible causal encoding algorithm.
Both these directions have seen research activity. For the first direction, algorithms typically involve
transmitting some future control inputs at every time step, or the actuator using some linear
combination of past control inputs if an erasure occurs. The second direction has identified the
stability conditions that are necessary for any causal algorithm. Moreover, recursive designs that
can achieve stability when these conditions are satisfied have also been identified. Surprisingly, the
design is in the form of a universal actuator that does not require access to the model of the plant.
Even if such knowledge were available, the stability conditions do not change. Thus, the design is
stability optimal.

• Presence of a Communication Network: So far we have concentrated on the case when the sensor and
the controller are connected using a single communication channel. A typical scenario, particularly
in a wireless context, would instead involve a communication network with multiple such channels.
If no encoding algorithm is implemented, and every node in the network (including the sensor)
transmits simply the measurements, the network can be replaced by a giant erasure channel with
the equivalent erasure probability being some measure of the reliability of the network. The analysis
in Section 75.2 carries over to this case; however, the performance degrades rapidly as the network
size increases. If encoding is permitted, such an equivalence breaks down. The optimal algorithm
is an extension of the single channel case, and is provided in [6]. The stability and performance
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calculations are considerably more involved. However, the stability condition has an interesting
interpretation in terms of the capacity for fluid networks. The necessary and sufficient condition
for stability can be expressed as the inequality

pmax-cutρ(A)2 < 1,

where pmax-cut is the max-cut probability calculated in a manner similar to the min-cut capacity of
fluid networks. We construct cut-sets by dividing the nodes in the network into two sets with one
set containing the sensor, and the other containing the controller. For each cut-set, we calculate
the cut-set erasure probability by multiplying the erasure probabilities of all the channels from
the set containing the sensor to the set containing the controller. The maximum such cut-set
erasure probability (over all possible cut-sets) denotes the max-cut probability of the network. The
improvement in the performance and stability region of the system by using the encoding algorithm
increases drastically with the size and the complexity of the network.

• Multiple Sensors: Another direction in which the above framework can be extended is to consider
multiple sensors observing the same process. As with the case with one sensor, one can identify
the necessary stability conditions and a lower bound for the achievable cost function with any
causal coding algorithm. These stability conditions are also sufficient and recursive algorithms for
achieving stability when these conditions are satisfied have been identified. These conditions are a
natural extension of the stability conditions for the single sensor case. As an example, for the case
of two sensors described by sensing matrices C1 and C2 that transmit data to the controller across
erasure channels for which erasure events are i.i.d. with probabilities p1 and p2 respectively, the
stability conditions are given by the set

p2ρ(A1)2 < 1, p1ρ(A2)2 < 1, p1p2ρ(A)2 < 1,

where ρ(Ai) denotes the spectral radius of the unobservable part of the system matrix A, when the
pair (A, Ci) is represented in the observability cano+ nical form. However, the problem of identi-
fying distributed encoding algorithms to be followed at each sensor for achieving the lower bounds
on the achieved cost function remains largely open. This problem is related to the track fusion
problem that considers identifying algorithms for optimal fusion of information from multiple
sensors that interact intermittently (e.g., see [1]). That transmitting estimates based on local data
from each sensor is not optimal is long known. While algorithms that achieve a performance close
to the lower bound of the cost function have been identified, a complete solution is not available.

• Inclusion of More Communication Effects: Our discussion has focussed on modeling the loss of
data transmitted over the channel. In our discussion of the optimal encoding algorithms, we also
briefly considered the possibility of data being delayed or received out of order. An important
direction for future work is to consider other effects due to communication channels. Both from
a theoretical perspective, and for many applications such as underwater systems, an important
effect is to impose a limit on the number of bits that can be communicated for every successful
transmission. Some recent work [11,13] has considered the analog digital channel in which the
channel supports n bits per time step and transmits them with a certain probability p at every time
step. Stability conditions for such a channel have been identified and are a natural combination
of the stability conditions for the analog erasure channel above and the ones for a noiseless digital
channel, as considered elsewhere in the book. The performance of optimal encoding algorithms
and the optimal performance that is achievable remain unknown. Another channel effect that has
largely been ignored is the addition of channel noise to the data received successfully.

• More General Performance Criteria:Ourtreatmentfocussedona particularperformancemeasure—a
quadratic cost, and the stability notions emanating from that measure. Other cost functions may
be relevant in applications. Thus the cost function may be related to target tracking, measures such
as H2 or H∞ [15], or some combination of communication and control costs. The analysis and



�

�

�

�

� �

75-12 Control System Advanced Methods

optimal encoding algorithms for such measures are expected to differ significantly. An an example,
for target tracking, the properties of the reference signal that needs to be tracked can be expected to
play a significant role. Similarly, for H∞ related costs, the sufficient statistic, and hence the encoding
algorithms to transmit it, may be vastly different than the LQG case. Finally, a distributed control
problem with multiple processes, sensors, and actuators is a natural direction to consider.

• More General Plant Dynamics: The final direction is to consider plant dynamics that are more
general than the linear model that we have considered. Moving to models such as jump linear
systems, hybrid systems, and general nonlinear systems will provide new challenges and results. As
an example, for nonlinear plants, concepts such as spectral radius no longer hold. Thus, the analysis
techniques are likely to be different and measures such as Lyapunov exponents and the Lipschitz
constant for the dynamics will likely become important.

75.5 Some Results on Markovian Jump Linear Systems

We present a short overview of Markov jump linear systems. A more thorough and complete treatment
is given in [2]. Consider a discrete-time discrete-state Markov process with state r(k) ∈ {1, 2, · · · , m} at
time k. Denote the transition probability Prob(r(k+ 1)= j|r(k)= i) by qij, and the resultant transition
probability matrix by Q. Also denote

Prob(r(k)= j)= πj(k),

with πj(0) as given. The evolution of MJLS, denoted by S1 for future reference, can be described by the
following equations:

x(k+ 1)= Ar(k)x(k)+Br(k)u(k)+ Fr(k)w(k),

y(k)= Cr(k)x(k)+Gr(k)v(k),
(75.1)

where w(k) is zero mean white Gaussian noise with covariance Rw , v(k) is zero mean white Gaussian noise
with covariance Rv and the notation Xr(k) implies that the matrix X ∈ {X1, X2, . . . , Xm}with the matrix Xi

being chosen when r(k)= i. The initial state x(0) is assumed to be a zero mean Gaussian random variable
with variance Π(0). For simplicity, we will consider Fr(k) = Gr(k) ≡ I for all values of r(k) in the sequel.
We also assume that x(0), {w(k)}, {v(k)} and {r(k)} are mutually independent.

75.5.1 LQ Control

The Linear Quadratic Regulator (LQR) problem for the system S1 is posed by assuming that the noises
w(k) and v(k) are not present. Moreover, the matrix Cr(k) ≡ I for all choices of the state r(k). The problem
aims at designing the control input u(k) to minimize the finite horizon cost function

JLQR =
K∑

k=1

(
E{r( j)}Kj=k+1

[
xT (k)Qx(k)+ uT (k)Ru(k)

])
+ xT (K + 1)P(K + 1)x(K + 1),

where the expectation at time k is taken with respect to the future values of the Markov state realization,
and P(K + 1), Q and R are all assumed to be positive definite. The controller at time k has access to control
inputs {u( j)}k−1

j=0 , state values {x( j)}kj=0, and the Markov state values {r( j)}kj=0. Moreover, the system is

said to be stabilizable if the infinite horizon cost function J∞
def= limK→∞ JLQR

K is finite.
The solution to this problem can readily be obtained through dynamic programming arguments.

The optimal control is given by the following result.
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Theorem 75.4:

Consider the LQR problem posed above for the system S1.

• At time k, if r(k)= i, then the optimal control input is given by

u(k)=−
(

R+BT
i Pi(k+ 1)Bi

)−1
BT

i Pi(k+ 1)Aix(k),

where for j = 1, 2, . . . , m,

Pj(k)=
m∑

t=1

qtj

(
Q+AT

t Pt(k+ 1)At −AT
t Pt(k+ 1)Bt

(
R+BT

t Pt(k+ 1)Bt

)−1
BT

t Pt(k+ 1)At

)
,

and Pj(K + 1)= P(K + 1), ∀j = 1, 2, . . . , m.
• Assume that the Markov states reach a stationary probability distribution. A sufficient condition for

stabilizability of the system is that there exist m positive-definite matrices X1, X2, . . . , Xm and m2

matrices K1,1, K1,2, . . . , K1,m, K2,1, . . . , Km,m such that for all j = 1, 2, . . . , m,

Xj >

m∑
i=1

qij

(
(AT

i +Ki,jB
T
i )Xi(AT

i +Ki,jB
T
i )T +Q+KijRKT

ij

)
.

Note that the sufficient condition can be cast in alternate forms as linear matrix inequalities, which
can be efficiently solved. We omit such representations. A special case of Markov jump linear systems is
when the discrete states are chosen independently from one time step to the next. Since this is the case we
have concentrated on in this chapter, we summarize the results pertaining to this case below.

Corollary 75.1:

Consider system S1 with the additional assumption that the Markov transition probability matrix is such
that for all states i and j, qij = qi (in other words, the states are chosen independently and identically
distributed from one time step to the next). Consider the LQR problem posed above for the system S1.

• At time k, if r(k)= i, then the optimal control input is given by

u(k)=−
(

R+BT
i P(k+ 1)Bi

)−1
BT

i P(k+ 1)Aix(k),

where

P(k)=
m∑

t=1

qt

(
Q+AT

t P(k+ 1)At −AT
t P(k+ 1)Bt

(
R+BT

t P(k+ 1)Bt

)−1
BT

t P(k+ 1)At

)
.

• Assume that the Markov states reach a stationary probability distribution. A sufficient condition
for stabilizability of the system is that there exists a positive-definite matrix X, and m matrices K1,
K2, . . . , Km such that

X >

m∑
i=1

qi

(
(AT

i +KiB
T
i )X(AT

i +KiB
T
i )T +Q+KiRKT

i

)
.
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75.5.2 MMSE Estimation

The MMSE estimate problem for the system S1 is posed by assuming that the control ur(k) is identically
zero. The objective is to identify at every time step k an estimate x̂(k+ 1) of the state x(k+ 1) that
minimizes the mean-squared error covariance

Π(k+ 1)= E{w( j)},{v( j)}
[

(x(k+ 1)− x̂(k+ 1))(x(k+ 1)− x̂(k+ 1))T
]

,

where the expectation is taken with respect to the process and measurement noises (but not the Markov
state realization). The estimator at time k has access to observations {y( j)}kj=0 and the Markov state values

{r( j)}kj=0. Moreover, the error covariance is said to be stable if the expected steady-state error covariance
limk→∞ E{r( j)}k−1

j=0
[Π(k)] is bounded, where the expectation is taken with respect to the Markov process.

The estimator at time k has access to the measurements y(0), y(1), . . . , y(k), and Markov state values
r(0), r(1), . . . , r(k).

Since the estimator has access to the Markov state values till time k, the optimal estimate can be
calculated through a time-varying Kalman filter. Thus, if at time k, rk = i, the estimate evolves as

x̂(k+ 1)= Aix̂(k)+K(k)
(
y(k)−Cix̂(k)

)
,

where

K(k)= AiΠ(k)CT
i

(
CiΠ(k)CT

i +Rv

)−1

Π(k+ 1)= AiΠ(k)AT
i +Rw −AiΠ(k)CT

i

(
CiΠ(k)CT

i +Rv

)−1
CiΠ(k)AT

i .

The error covariance Π(k) is available through the above calculations. However, calculating
E{r( j)}k−1

j=0
[Π(k)] seems to be intractable. Instead, we present an upper bound to this quantity∗ that will

also help in obtaining sufficient conditions for the error covariance to be stable.
The intuition behind obtaining the upper bound is simple. The optimal estimator presented above

optimally utilizes the information about the Markov states till time k. Consider an alternate estimator
that at every time step k averages over the values of the Markov states r0, . . . , rk−1. Such an estimator
is suboptimal and the error covariance for this estimator forms an upper bound for E{r( j)}k−1

j=0
[Π(k)]. A

formal proof using Jensen’s inequality is given in [5, Theorem 5]. We present the statement below while
omitting the proof.

Theorem 75.5:

The term E{r( j)}k−1
j=0
[Π(k)] obtained from the optimal estimator is upper bounded by M(k)=∑m

j=1 Mj(k)

where

Mj(k)=
m∑

t=1

qtj

(
Rw +AtMt(k− 1)AT

t −AtMt(k− 1)CT
t

(
Rv +CtMt(k− 1)CT

t

)−1
CtMt(k− 1)AT

t

)
,

with Mj(0)=Π(0) ∀j. Moreover, assume that the Markov states reach a stationary probability distribution.
A sufficient condition for stabilizability of the system is that there exist m positive-definite matrices X1,
X2, . . . , Xm and m2 matrices K1,1, K1,2, . . . , K1,m, K2,1, . . . , Km,m such that for all j = 1, 2, . . . , m,

Xj >

m∑
i=1

qij

(
(Ai +Ki,jCi)Xi(Ai +Ki,jCi)

T +Rw +KijRvKT
ij

)
.

∗ We say that A is upperbounded by B if B−A is positive semi definite.
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We can once again consider the special case of states being chosen in an independent and identically
distributed fashion.

Corollary 75.2:

Consider the estimation problem posed above for the system S1 with the additional assumption that the
Markov transition probability matrix is such that for all states i and j, qij = qi (in other words, the states are
chosen independently and identically distributed from one time step to the next). The term E{r( j)}k−1

j=0
[Π(k)]

obtained from the optimal estimator is upper bounded by M(k), where

M(k)=
m∑

t=1

qt

(
Rw +AtM(k− 1)AT

t −AtM(k− 1)CT
t

(
Rv +CtM(k− 1)CT

t

)−1
CtM(k− 1)AT

t

)
,

with M(0)=Π(0). Further, a sufficient condition for stabilizability of the system is that there exists a
positive-definite matrix X, and m matrices K1, K2, . . . , Km such that

X >

m∑
i=1

qi

(
(Ai +KiCi)X(Ai +KiCi)

T +Rw +KiRvKT
i

)
.

75.5.3 LQG Control

The LQG problem for the system S1 aims at designing the control input u(k) to minimize the finite
horizon cost function

JLQG = E

[
K∑

k=1

(
xT (k)Qx(k)+ uT (k)Ru(k)

)
+ xT (K + 1)P(K + 1)x(K + 1)

]
,

where the expectation at time k is taken with respect to the future values of the Markov state realization,
and the measurement and process noises. Further, the matrices P(K + 1), Q and R are all assumed to be
positive definite. The controller at time k has access to control inputs {u( j)}k−1

j=0 , measurements {y( j)}kj=0

and the Markov state values {r( j)}kj=0. The system is said to be stabilizable if the infinite horizon cost

function J∞
def= limK→∞ JLQG

K is finite.
The solution to this problem is provided by a separation principle and using Theorems 75.4 and 75.5.

We have the following result.

Theorem 75.6:

Consider the LQG problem for the system S1. At time k, if r(k)= i, then the optimal control input is given
by

u(k)=−
(

R+BT
i Pi(k+ 1)Bi

)−1
BT

i Pi(k+ 1)Aix̂(k),

where for Pi(k) is calculated as in Theorem 75.4 and x̂(k) is calculated using a time-varying Kalman filter.

We can also obtain the conditions for stabilizability of the system by utilizing Theorems 75.4 and 75.5.
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76.1 Introduction

This chapter reviews a passivity-based approach for the design and analysis of networked nonlinear
systems. This approach exploits the structure of the network and breaks up the design and analysis proce-
dures into two levels: At the network level, one represents the components with input/output properties,
such as passivity and other forms of dissipativity, as abstractions of their complex dynamic models and
determines which input/output properties guarantee stability and other desirable properties for the given
network structure. This means that the study of the network does not rely on detailed knowledge of the
components and does not require the components to be homogeneous. At the component level, one stud-
ies the individual dynamic models and verifies or assigns appropriate input/output properties without
relying on further knowledge of the network.

76-1



�

�

�

�

� �

76-2 Control System Advanced Methods

The question of when a network of dissipative dynamic systems is stable was studied in the early
Refs. [1,2] and several tests were developed. From today’s standpoint, these studies are encompassed by
the elegant and unifying framework of Integral Quadratic Constraints [3] discussed elsewhere in this
handbook. The objectives of this review are

1. To present recurrent interconnection structures in several modern networks and to show that a
key input/output property compatible with these structures is passivity.

2. To illustrate the verification and assignment of passivity properties in these network models.

The second task is particularly challenging in applications where the equilibrium of the network model
and other global parameters are not available to the components.

We illustrate the passivity approach with case studies in communication networks, motion coordina-
tion of autonomous agents, and biochemical reaction networks. In Section 76.2 we study an intercon-
nection structure that arises in decentralized resource allocation algorithms in communication networks,
including congestion control for the Internet discussed in Section 76.2.1 and power control for wireless
networks discussed in Section 76.2.2. This structure exhibits a symmetry in the coupling of the compo-
nents, which implies that a passivity property of the update algorithms (for packet rates, transmission
power levels, etc.) guarantees stability of the network. With this observation as a starting point, we present
a systematic framework which, rather than giving specific algorithms, prescribes a passivity constraint
that new classes of algorithms must satisfy.

In Section 76.3, we show that a similar symmetric-coupling structure arises in motion coordination
when the information flow between the agents is bidirectional. Passivity-based design for motion coor-
dination is related to potential function-based schemes, such as those in [4–6]. By making explicit the
inherent passivity property in these schemes, in Section 76.3.1 we present a systematic framework that
allows complex, nonlinear agent models and that offers additional design flexibility. The ability of the pas-
sivity framework to address complex agent dynamics is illustrated with an attitude coordination design
for rigid body models in Section 3.2. The design flexibility is illustrated with an adaptive redesign in
Section 76.3.3.

In Section 76.4, we present a passivity-based analysis of biochemical reaction networks. In Section
76.4.1 we discuss a cyclic interconnection structure that is common in biological systems and show how
the passivity-based approach recovers and significantly strengthens the secant criterion [7,8] used by
mathematical biologists for studying the stability of such networks. After identifying passivity as the core
of the secant criterion, in Section 76.4.2 we generalize this criterion to other topologies using the concept
of diagonal stability [9,10]. Finally, in Section 76.4.3 we employ passivity properties to ensure robustness
against the destabilizing effect of diffusion in spatially distributed models.

Following [11], we say that a dynamic system

ẋ = f (x, u), y = h(x, u), (76.1)

where input u and output y are of the same dimension, is passive if there exists a continuously differentiable
storage function S(x)≥ 0 such that

Ṡ = ∇S(x)f (x, u)≤ uT y. (76.2)

The Passivity Theorem [12], when adapted to systems in state-space form, states that the negative feedback
interconnection of two passive blocks as in Figure 76.1a with positive definite storage functions is stable.
Indeed, the sum of the storage functions of individual blocks serves as a composite Lyapunov function
for the interconnected system. A further property of passive systems which is particularly useful in this
article is that postmultiplication of the output y by a matrix and premultiplication of the input u by the
transpose of the same matrix as in Figure 76.1b maintain passivity with respect to the new input–output
pair (ū, ȳ).
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H1

H2

y1u1

u2y2

RT H R
u y

u– y–

(a) (b)

–

FIGURE 76.1 (a) Negative feedback interconnection of two passive systems. (b) Postmultiplication of the output y
by a matrix and premultiplication of the input u by the transpose of the same matrix maintain passivity with respect
to the new input–output pair (ū, ȳ).

76.2 Resource Allocation in Communication Networks

76.2.1 A Unifying Passivity Framework for Internet Congestion Control

Congestion control algorithms aim to maximize network throughput while ensuring an equitable alloca-
tion of bandwidth to the users. In a decentralized congestion control scheme, each link increases its packet
drop or marking probability (interpreted as the “price” of the link) as the transmission rate approaches
the capacity of the link. Sources then adjust their sending rates based on the aggregate price feedback
they receive in the form of dropped or marked packets. Reference [13] showed that a passivity-based
design is particularly suitable for this decentralized feedback structure and developed a unifying design
methodology.

To see the interconnection structure of sources and links, consider a network where packets from
sources i = 1, . . . , N are routed through links �= 1, . . . , L according to an L×N routing matrix R in
which the (�, i) entry is 1 if source i uses link � and 0 otherwise. Because the transmission rate y� of link �

is the sum of the sending rates xi of sources using that link, the vectors of link rates y and source rates x
are related by

y = Rx. (76.3)

Likewise, since the total price feedback qi received by source i is the sum of the prices p� of the links on
its path, the vectors q and p are related by

q= RT p. (76.4)

The resulting feedback loop is depicted in Figure 76.2 where the blocksΣi represent decentralized update
algorithms for source rates xi , andΛ� represent decentralized update algorithms for link prices p�.

The congestion control problem as formulated by Kelly et al. [14] and studied by numerous other
authors (see the excellent reviews [15,16]) is to design these algorithms in such a way that the closed-loop
system is stable and the network equilibrium (x∗, y∗) solves the optimization problem:

max
xi≥0

N∑
i=1

Ui(xi) s.t. y� ≤ c�, (76.5)

where Ui(·) is a concave utility function for source i and c� is the capacity of link �. The key observation
in [13] is that postmultiplication by R and premultiplication by RT in Figure 76.2 preserve passivity
properties and thus, a design that renders Σi passive from input qi − q∗i to output −(xi − x∗i ) and Λ�

passive from input y�− y∗� to output p�− p∗� guarantees stability of the network according to the Passivity
Theorem.

The passivity framework streamlines the design process by eliminating the need for a separate network
stability analysis for every new algorithm. Indeed, numerous existing update rules already satisfy the
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. . .
. . .

Σ1

Σ2

ΣN

Λ1

Λ2

ΛL

q
RT R

x

p y

FIGURE 76.2 The feedback structure arising in decentralized congestion control. R is the routing matrix,Σi blocks
represent the source algorithms for updating sending rates xi , andΛl blocks represent the link algorithms for updating
link prices pl .

desired passivity property, such as Kelly’s primal algorithm:

ẋ = ki(U ′
i (xi)− qi), p� = h�(y�), (76.6)

where ki > 0, U ′
i (·) is the derivative of the utility function Ui(·), and h�(·) is a penalty function that grows

rapidly as y� approaches the link capacity c�. The network equilibrium resulting from this algorithm
approximates the solution of the Kuhn–Tucker optimality conditions for Equation 76.5 and the stability
of this equilibrium follows from passivity properties established in [13] by exploiting the monotone
decreasing property of U ′

i (·) and monotone increasing property of h�(·).
As an illustration of the design flexibility offered by the passivity framework [13] presented new classes

of algorithms, including the following extension of the source control algorithm in Equation 76.6

ξ̇i = Aiξi +Bi(U ′
i (xi)− qi), (76.7)

ẋi = Ciξi +Di(U ′
i (xi)− qi), (76.8)

where the matrices Ai , Bi , Ci , Di must be selected such that the transfer function Hi(s)= Ci(sI −Ai)−1Bi +
Di is strictly positive-real (SPR). The benefit of increasing the dynamic order of Equation 76.6 is demon-
strated in [13] with an example where the SPR filter design adds phase lead to counter time delays.

A passivity analysis and a dynamic extension was also pursued in [13] for Kelly’s dual algorithm where,
in contrast to the primal algorithm (Equation 76.6), the source controller is static and the link controller is
dynamic. In addition, the passivity approach has made stability proofs and systematic Lyapunov function
constructions possible for primal-dual algorithms where both source and link controllers are dynamic.
As an illustration, for the following algorithm in [16]

ẋi = fi(xi)(U ′
i (xi)− qi), (76.9)

ṗ� = g�(p�)(y�− c�), (76.10)

where fi(·) and g�(·) are positive-valued functions, a Lyapunov function constructed from a sum of storage
functions is

V =
N∑

i=1

∫ xi

x∗i

x− x∗i
fi(x)

dx+
M∑

�=1

∫ p�

p∗�

p− p∗�
g�(p)

dp. (76.11)

Lyapunov functions obtained within the passivity framework have also been instrumental in robust
redesigns against disturbances, time delays, and uncooperative users [17,18].

76.2.2 CDMA Power Control Game

Another important resource allocation problem for communication networks is uplink transmission
power control in code division multiple access (CDMA) systems. Increased power levels ensure longer
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transmission distance and higher data transfer rate, but also increase battery consumption and interfer-
ence to neighboring users. A particularly elegant approach to this problem is a game-theoretic formula-
tion [19] where the cost function for the ith mobile is

Ji = Pi(pi)−Ui(γi(p)), i = 1, . . . , N . (76.12)

Pi(·) is a penalty function for the power level pi and Ui(·) is a utility function for the signal-to-interference
ratio (SIR), given by

γi(p)= Lhipi

σ2+∑k �=i hkpk
, (76.13)

where hi is the channel gain between the ith mobile and the base station, L is the spreading gain and σ2 is
the noise variance.

To develop a distributed power update law, [20] employed the logarithmic utility function

Ui(γi)= log(L+ γi) (76.14)

and studied a first-order gradient algorithm which, upon algebraic manipulations, is given by the
expression

ṗi =−λi
∂Ji

∂pi
=−λiP

′
i(pi)+λi

hi

σ2+∑k hkpk
. (76.15)

This algorithm is to be implemented by the mobiles with the help of the feedback signal:

ui = hi

σ2+∑k hkpk
(76.16)

received from the base station. The resulting feedback structure of the network is depicted in Figure 76.3
whereΣi represents the update law (Equation 76.15) for pi , h denotes the column vector of channel gains,
and Equation 76.16 is represented as a function of y :=∑k hkpk in the feedback block.

The equilibrium p∗ of Equation 76.15 is unique when Pi(·) is strictly convex and coincides with the
Nash equilibrium for the game defined by the cost function (Equation 76.12). Global stability of this
equilibrium follows from the Passivity Theorem because premultiplication by h and postmultiplication
by hT in Figure 76.3 preserve passivity of the Σi blocks in the feedforward path from input ui − u∗i to
output yi − y∗i . Likewise, the function φ(y) is strictly increasing and thus, the feedback block is passive
from input y− y∗ to output φ(y)−φ(y∗).

Reference [20] uses this observation as a starting point to develop classes of passive power update laws
and base-station algorithms that include Equations 76.15 and 76.16 as special cases. It further employs the

Σ1
Σ2

ΣN

p

y

hTh

u

ϕ(y) : = − 1

–

y + σ2

FIGURE 76.3 The feedback structure arising from the distributed power update law (Equation 76.15). TheΣi blocks
represent the update laws ṗi =−λiP′i (pi)+λiui , h denotes the column vector of channel gains, and Equation 76.16 is
represented as a function of y :=∑k hkpk in the feedback block.
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Lyapunov function obtained from the Passivity Theorem to study robustness of power control algorithms
against a time-varying channel gain h(t) which is assumed to be constant in the nominal stability analysis.
A related paper [21] studies a team-optimization approach to power control rather than the game-
theoretic formulation discussed above and pursues a passivity-based design.

76.3 Distributed Feedback Design for Motion Coordination

76.3.1 Passivity-Based Design Procedure for Position Coordination

We represent a group of agents and their communication structure with a graph that consists of N nodes
connected by M links. The presence of a link between nodes i and j means that agents i and j have access to
the relative distance information xi − xj. We assign an orientation to each link and recall that the N ×M
incidence matrix D of the graph is defined as

dik =
⎧⎨
⎩
+1 if node i is the positive end of link k
−1 if node i is the negative end of link k
0 otherwise.

(76.17)

The assignment of orientation is for analysis only, and the particular choice does not change the results.
Our objective is to develop distributed feedback laws that obey the information structure defined by this
graph and that guarantee the following group behaviors:

P1: The velocity of each node approaches a common velocity vector vd(t) prescribed for the group; that is,
limt→∞(ẋi − vd(t))= 0, i = 1, . . . , N.

P2: If nodes i and j are neighbors connected by link k, then the difference variable

zk :=
N∑

�=1

d�kx� =
{

xi − xj if i is the positive end of link k
xj − xi if i is the negative end of link k

(76.18)

converges to a prescribed set Ak, k = 1, . . . , M.

Examples of sets Ak include the origin in a rendezvous problem, or a sphere if the positions of agents
must maintain a prescribed distance in a formation. From Equation 76.18, the concatenated vectors

x := [xT
1 · · · xT

N ]T , z := [zT
1 · · · zT

M ]T (76.19)

satisfy
z = (DT ⊗ I)x, (76.20)

where I is an identity matrix with dimension consistent with that of xi and “⊗” represents the Kronecker
product.

To achieve P1 and P2 [22] presented a two-step design procedure: Step 1 is to design an internal
feedback loop for each node that achieves passivity from an external feedback signal uext

i , left to be
designed in Step 2, to the velocity error yi := ẋi − vd(t). This design step is depicted with a block diagram
in Figure 76.4, where Hi represents the open-loop dynamic model of agent i and H̃i represents the passive
block obtained from the internal feedback design. Step 2 is to design an external feedback law of the form

uext
i := −

M∑
k=1

dik ψk(zk), (76.21)

where zk ’s are the relative distance variables as in Equation 76.18 and the multivariable nonlinearities
ψk(·) are to be designed. The feedback law (Equation 76.21) is implementable with locally available signals
because dik �= 0 only for links k that are connected to node i.
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Hi

(a) (b) 

H~
iui

extui xi

yi xi∫ 

v d(t)

FIGURE 76.4 The task of the internal feedback design is to render the plant (a) passive from the external signal
uext

i to the velocity error yi := ẋi − vd(t). With this internal feedback, the dynamics take the form of (b) where the H̃i

block is passive.

The combination of the internal and external feedback loops result in the interconnected system in
Figure 76.5, where asymptotic stabilization of the set

A =
{

(z, y)| y = 0, z ∈ {A1× · · ·×AM} ∩ R(DT ⊗ I)
}

(76.22)

is synonymous to achieving objectives P1–P2 above. To accomplish this stabilization task, we exploit
the interconnection structure in Figure 76.5 where premultiplication by DT ⊗ I and postmultiplication
by its transpose D⊗ I preserve passivity properties of the feedforward path. The input 1N ⊗ vd(t) does
not affect the feedback loop in Figure 76.5 because it lies in the null space of DT ⊗ I . We design the
nonlinearitiesψk to be passive when cascaded with an integrator as in Figure 76.5 so that the feedforward
path is passive from input y to output −uext and, thus, the feedback loop is stable from the Passivity
Theorem.

To guarantee passivity of the nonlinearity ψk(zk) preceded by an integrator, we let

ψk(zk)= ∇Pk(zk), (76.23)

where Pk(zk) is a nonnegative and sufficiently smooth function defined on an open set Gk in which zk is
allowed to evolve. To steer zk to Ak while keeping it within Gk , we construct the function Pk(zk) to grow
unbounded as zk approaches the boundary of Gk , and let Pk(zk) and its gradient∇Pk(zk) vanish on the set
Ak . Using this construction and the passivity properties of the feedback and feedforward paths in Figure
76.5, [22] proves asymptotic stability of the set A.

As an illustration, consider the point mass model

ẍi = ui , (76.24)

where xi ∈ R
2 is the position of each mass and ui ∈ R

2 is the force input. The internal feedback

ui =−Ki(ẋi − vd(t))+ v̇d(t)+ uext
i , Ki = KT

i > 0 (76.25)

H~
N

H~
1

1N ⊗ v d(t)
DT

 ⊗ I D ⊗ I 

uext 

–uext 

y 

z z• x• 

∫ 

∫ 

∫ 

– 

ψM 

ψ2 ψ
ψ1 

FIGURE 76.5 A block diagram representation for the interconnection of the subsystems in Figure 76.4 via the
external feedback (Equation 76.21).
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and the change of variables yi = ẋi − vd(t) bring Equation 76.24 to the form

ẋi = yi + vd(t), (76.26)

ẏi =−Kiyi + uext
i , (76.27)

where the yi-subsystem with input uext
i plays the role of the passive block H̃i in Figure 76.4.

To create and stabilize an equilateral triangle formation with unit side lengths while avoiding collisions,
we let Ak be the unit circle, Gk = R

2−{0}, and let the potential functions be of the form

Pk(zk)=
∫ |zk |

1
σk(s)ds, k = 1, 2, 3, (76.28)

where σk : R>0 → R is a continuously differentiable, strictly increasing function such that

σk(1)= 0 lim
s→∞ σk(s)=−∞, lim

s→0
σk(s)=−∞ (76.29)

and such that, as |zk| → 0, Pk(zk)→∞. Then, the interaction forces

ψk(zk)= ∇Pk(zk)= σk(|zk|) 1

|zk| zk zk �= 0 (76.30)

guarantee asymptotic stability of the desired formation. In particular, σk(|zk|) creates an attraction force
when |zk|> 1 and a repulsion force when |zk|< 1.

76.3.2 From Point Mass to Rigid-Body Models

A key advantage of the passivity framework is its ability to address high-order and complex agent dynamics
by exploiting their inherent passivity properties. As an illustration, we now study a rigid-body model and
design a controller that achieves identical orientation and synchronous rotation of the agents. This means
that the objectives P1 and P2 in Section 76.3.1 above must now be modified as

A1: The angular velocity of each agent converges to the group referenceωd(t); that is, lim
t→∞(iωi −ωd(t))=

0, i = 1, . . . N, where iωi denotes the angular velocity of agent i in the ith body frame.
A2: Each agent achieves the same attitude as its neighbors in the limit; that is, the orientation matrices

Ri satisfy lim
t→∞RT

i Rj = I, i, j = 1, . . . , N.

To achieve objectives A1 and A2 we first design an internal feedback loop τi for each agent i = 1, . . . , N
that renders the attitude dynamics

Gi : iIi
˙iωi + iωi × iIi

iωi = τi (76.31)

passive from an external input signal τext
i left to be designed, to the angular velocity error

Δωi := iωi −ωd(t). (76.32)

One such controller is
τi = iIi ω̇

d +ωd × iIi
iωi − fiΔωi + τext

i , fi > 0, (76.33)

which indeed achieves strict passivity from τext
i toΔωi in the error dynamics system:

G̃i : iIi ˙Δωi +Δωi × iIi
iωi =−fiΔωi + τext

i . (76.34)

Other designs (possibly using dynamic controllers) that achieve passivity from τext
i to Δωi may also be

employed in this framework. This design flexibility is illustrated in the next section with an adaptive
redesign.
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To achieve objective A2 using only relative attitude information, we parameterize the relative orienta-
tion matrix

R̃k :=
{

RT
i Rj if node i is the positive end of link k

RT
j Ri if node i is the negative end of link k

(76.35)

using one of the standard parameterizations of SO(3), such as the unit quaternion representation qk =[
qk

0 qk
v

T
]T

, where qk
v denotes the vector part of the quaternion. We then design an external torque

feedback of the form
τext

i =
∑

l∈N+
i

ql
v −

∑
p∈N−

i

q
p
v , (76.36)

where N +
i denotes the set of links for which node i is the positive end and N −

i is the set of links for
which node i is the negative end. To synthesize this external feedback signal, agent i obtains its neighbors’
relative attitudes with respect to its own frame, parameterizes them by unit quaternions, and adds up
their vector parts.

The closed-loop system resulting from the internal and external feedback laws (Equations 76.33 and
76.36) is depicted in Figure 76.6, where the Jk blocks represent the quaternion kinematics, which possess
passivity properties from the relative angular velocity ω̃k to the vector component qk

v of the unit quaternion
representation [23]. To incorporate the rotation matrices between the body frames, we replace the matrix
D⊗ I in Figure 76.5 with a new 3N × 3M rotational incidence matrix D̄, which consists of the 3× 3
sub-blocks:

d̄ik =:
⎧⎨
⎩
−I if node i is the positive end of link k
(R̃k)T if node i is the negative end of link k
0 otherwise.

(76.37)

As shown in [24], stability of the closed-loop system in Figure 76.6 follows from the Passivity Theorem
because premultiplication by D̄T and postmultiplication by D̄ preserve passivity of the feedforward
path, and because the feedback path is passive by the internal feedback design. Although the foregoing
arguments are based on the unit quaternion representation of SO(3), they have been generalized in [24]
to other parameterizations.

76.3.3 Adaptive Redesign

Thus far we assumed that the reference velocities vd(t) and ωd(t) in objectives P1 and A1 above are
available to each agent in the group. A more realistic situation is when a leader in the group possesses
or autonomously determines this information, while others have access only to the relative distance and
relative orientation with respect to their neighbors. Can the agents estimate vd(t) and ωd(t) online from

–

D
–T D̄

qvωB ω̃

JM

J2

J1

G̃1

G̃N

1N ⊗ ωd(t)

τextΔω

FIGURE 76.6 A block diagram representation for the network resulting from the attitude coordination scheme
(Equations 76.33 and 76.36). The concatenated vector ωB consists of the angular velocities of the agents in their own
body frames and the rotational incidence matrix D̄ is as defined in Equation 76.37.



�

�

�

�

� �

76-10 Control System Advanced Methods

this relative distance and orientation information? We now present an adaptive redesign from [25] that
accomplishes this task by relying only on the connectivity of the graph and the passivity properties of the
interconnected system.

This adaptive redesign modifies the internal feedback loop to assign the estimate v̂i and iω̂i to agent i,
instead of the unknown references vd(t) andωd(t). To develop update laws for v̂i and iω̂i , we parameterize
vd(t) and ωd(t) as

vd(t)=
∑

j

φ j(t)θ j, ωd(t)=
∑

j

γ j(t)β j, (76.38)

where φ j(t) and γ j(t) are scalar base functions known to each agent, and θ j and β j are vectors available

only to the leader. Agent i estimates the unknown θ j and β j by θ̂
j
i and β̂

j
i , and reconstructs v̂i(t) and iω̂i(t)

from
v̂i(t)=

∑
j

φ j(t)θ̂
j
i , iω̂i(t)=

∑
j=1

γ j(t)β̂
j
i . (76.39)

The update laws proposed in [25] are of the form

˙̂
θi =Λi(Φ(t)⊗ I)uext

i , ˙̂
βi =Δi(Γ(t)⊗ I)τext

i , (76.40)

where Λi =ΛT
i > 0 and Δi =ΔT

i > 0 are adaptation gain matrices, Φ(t), Γ(t), θ̂i , β̂i denote concate-

nations of φ j(t), γ j(t), θ̂
j
i , β̂

j
i respectively, and uext

i and τext
i are the external force and torque feedback

laws. The adaptation of θ̂i and β̂i continues until the group reaches the desired position and orientation
configuration, in which case the external force and torque feedback signals employed in Equation 76.40
vanish.

Reference [25] proves that this adaptive scheme indeed stabilizes the desired configuration by exploiting
the passivity of the adaptation algorithm, which is depicted in Figure 76.7 for position coordination as
an additional module in the existing passive feedback loop. Parameter convergence is established under
additional conditions. One situation in which parameter convergence is guaranteed is when the reference
velocity vd is constant and the graph is connected, in which case the proof in [25] makes use of the
Krasovskii–LaSalle Invariance Principle. Another situation is when the target sets in P2 are Ak = {0} and

××

H~
1

H~
N

1N ⊗ v d(t)

v∧ – 1N ⊗ vd(t)

I ⊗ Φ (t)T
 ⊗ I I ⊗ Φ (t) ⊗ I

ΛN ∫

Λ1∫
θ~

DT
 ⊗ I D ⊗ I

uext

zz•x• ∫

∫

∫

–

ψM

ψ2 ψ
ψ1

FIGURE 76.7 Block diagram for the adaptive scheme (Equations 76.21, 76.39, and 76.40) for position coordination.
Λi must be interpreted as zero for the leader. θ̃ denotes the concatenation of the vectors θ̂i − θ. The adaptive module
in the feedback path preserves the passivity properties of the closed-loop system.
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FIGURE 76.8 Left: Snapshots of the formation in the adaptive design with constant reference velocity vd . The
adaptation is turned on at t = 10, after which point the trajectories converge to the desired formation. Right: The
relative distance variables zk plotted as a function of time.

the regressor vector Φ(t) is persistently exciting, in which case parameter convergence is established with
an application of the Teel–Matrosov Theorem [26].

As an illustration of the adaptive redesign, we now revisit the example (Equation 76.24) and suppose
that vd(t) is available only to agent 1. We modify the feedback law (Equation 76.25) for the agents i = 2, 3
as

ui =−Ki(ẋi − v̂i)+ ˙̂vi + uext
i , Ki = KT

i > 0, (76.41)

where the signal v̂i and its derivative ˙̂vi are available for implementation from the parametrization
(Equation 76.39) and the update law (Equation 76.40). In the simulation presented in Figure 76.8, we take
the constant reference velocity vd = [0.2 0.2]T and start with the adaptation turned off. Since agents 2, 3
possess incorrect information about vd and since there is no adaptation, the relative distances zk do not
converge to their prescribed sets Ak = {zk : |zk| = 1}. At t = 10, we turn on the adaptation for agents 2
and 3, which results in convergence to the desired distances |zk| = 1 asymptotically.

As a case study for the adaptive redesign, [27] investigated a gradient climbing problem in which the
leader performs extremum seeking to reach the minima or maxima of a field distribution and the other
agents maintain a formation with respect to the leader. To incorporate an extremum seeking algorithm
in the motion, [27] let the reference velocity vd(t) be determined autonomously by the leader, in the form
of segments vd

k (t), t ∈ [tk , tk+1], that are updated in every iteration according to the next Newton step. To
calculate this Newton step, the leader performs a dither motion from which it collects samples of the field
and generates finite-difference approximations for the gradient and the Hessian. The adaptive redesign
discussed above treats the Newton direction as the unknown parameter vector in Equation 76.38 and
allows the followers to estimate this direction. This case study raised several new problems which led to
a refinement of the basic adaptive procedure. Among these problems is a judicious tuning of the design
parameters to ensure that the followers respond to the Newton motion while filtering out the dither
component.

76.4 Passivity Approach to Biochemical Reaction Networks

76.4.1 The Secant Criterion for Cyclic Networks

Reference [28] proposed a passivity-based analysis technique for cyclic biochemical reaction networks,
where the end product of a sequence of reactions inhibits the first reaction upstream. This technique
recovered the secant criterion [7,8] developed earlier by mathematical biologists for the local stability of
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H1
–

H2 Hn

FIGURE 76.9 Cyclic feedback interconnection of dynamic blocks H1, . . . , Hn.

such reactions and strengthened it to become a global stability test. Cyclic reaction networks are of great
interest because, as surveyed in [29], they are widespread in gene regulation, cell signaling, and metabolic
pathways. Unlike positive feedback systems which constitute a subclass of monotone systems [30], the
negative feedback due to inhibition gives rise to the possibility of attractive periodic orbits. Indeed, a
Poincaré–Bendixson Theorem proven in [31] for negative feedback cyclic systems of arbitrary order
shows that bounded trajectories converge either to fixed points or to periodic orbits. Stability criteria for
cyclic networks are thus important for determining which parameter regimes guarantee convergence to
fixed points and which regimes yield oscillations.

To evaluate local stability properties of negative feedback cyclic systems, [7,8] analyzed the Jacobian
linearization, represented in Figure 76.9 as the feedback interconnection of first-order linear blocks
Hi(s)= γi/(τis+ 1). They then proved that the interconnected system is Hurwitz if the dc gains γi satisfy
the secant criterion:

γ1 · · · γn < sec(π/n)n. (76.42)

In contrast to a small-gain condition which would restrict the right-hand side of Equation 76.42 to be 1,
the secant criterion exploits the phase properties of the feedback loop and allows the gain to be arbitrarily
large when n= 2, and to be as high as 8 when n= 3.

Local stability of the equilibrium proven in [7,8], however, does not rule out the possibility of periodic
orbits as shown in [29] with the example:

ẋ1 =−x1+ϕ(x3), ẋ2 =−x2+ x1, ẋ3 =−x3+ x2, (76.43)

where the nonlinearityϕ(x3)= e−10(x3−1)+ 0.1sat(25(x3− 1)) has a negative slope of magnitude γ3 = 7.5
at the unique equilibrium x1 = x2 = x3 = 1. With γ1 = γ2 = 1, the local secant criterion (Equation 76.42)
guarantees asymptotic stability of the equilibrium as in Figure 76.10a. However, the numerical simulation
in Figure 76.10b indicates that an attractive periodic orbit exists in addition.

To develop a global stability test for cyclic networks, [28] exploited a passivity property that is implicit
in the local secant criterion [32]. To make this property explicit, the first step in [28] is to break down
the network into n nonlinear subsystems representing the dynamics of each species, interconnected
according to the cyclic structure in Figure 76.5. The second step is to verify, for each block Hi , the output
strict passivity (OSP) property [33,34]:

Ṡi ≤−y2
i + γiuiyi , (76.44)

where ui and yi denote the input and the output of Hi , and Si(xi − x∗i ) is a positive definite storage function
of the deviation of the concentration xi from its equilibrium value x∗i . The third step is to construct a
Lyapunov function for the network from a weighted sum of these storage functions Si and to prove that a
set of weights that render its derivative negative definite exists if and only if the secant criterion (Equation
76.42) holds. In this new procedure, the first-order blocks Hi(s)= γi/(τis+ 1) employed in the local
secant criterion are replaced by nonlinear passive systems with OSP gain γi as in Equation 76.44 and the
secant condition (Equation 76.42) guarantees global asymptotic stability for the network.

How does one verify the OSP property (Equation 76.44) and estimate the gain γi? Although this
task may appear intractable for highly uncertain biological models, [28,35] gave procedures to verify OSP
without explicit knowledge of the nonlinearities and the equilibrium value x∗i . Instead, one verifies OSP by
qualitative arguments that exploit the monotone increasing or decreasing properties of the nonlinearities,
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FIGURE 76.10 The trajectories of Equation 76.43 starting from initial conditions (a) x = [1.1 1.1 1], and (b)
x = [1.2 1.2 1.2], projected onto the x1− x2 plane. The trajectory in (a) converges to the equilibrium x1 = x2 = x3 = 1,
while the trajectory in (b) converges to a periodic orbit.

such as Michaelis–Menten and Hill equations that arise in activation and inhibition models in enzyme
kinetics [36]. Once OSP is verified, an upper bound on the gain γi is obtained by inspecting the maximum
slope of the steady-state characteristic curve ȳi = ki(ūi), where ȳi denotes the steady-state response of the
output yi to a constant input ui = ūi .

As an illustration of the global secant test, consider the following simplified model of a mitogen
activated protein kinase (MAPK) cascade with inhibitory feedback, proposed in [37,38]:

ẋ1 =− b1x1

c1+ x1
+ d1(1− x1)

e1+ (1− x1)

μ

1+ kx3
(76.45)

ẋ2 =− b2x2

c2+ x2
+ d2(1− x2)

e2+ (1− x2)
x1 (76.46)

ẋ3 =− b3x3

c3+ x3
+ d3(1− x3)

e3+ (1− x3)
x2, (76.47)

where the variables xi ∈ [0, 1] denote the concentrations of the active forms of the proteins, and the terms
1− xi correspond to the inactive forms (after an appropriate nondimensionalization that scales the sum of
the active and inactive concentrations to 1). The inhibition of x1 by x3 in this model is due to the decreasing
function μ/(1+ kx3) in Equation 76.45, the steepness of which is determined by the parameter k. With
the coefficients b1 = e1 = c1 = b2 = 0.1, c2 = e2 = c3 = e3 = 0.01, b3 = 0.5, d1 = d2 = d3 = 1, μ= 0.3,
we obtained the OSP gains γi numerically for various values of k. This numerical experiment showed
that the secant condition γ1γ2γ3 < 8 is satisfied in the range k ≤ 4.35, which reduces the gap between the
small-gain estimate k ≤ 3.9 given in [39] and the Hopf bifurcation value k = 5.1. The secant test further
guarantees global asymptotic stability which cannot be ascertained from a bifurcation analysis.

76.4.2 Generalization to Other Network Topologies

The passivity-based analysis outlined above makes the key property behind the local secant criterion
explicit, extends it to be a global stability test, and further opens the door to a generalization of this test to
network topologies other than the cyclic structure. Reference [35] achieved this generality by representing
the reaction network with a directed graph and by making use of the concept of diagonal stability [9,10]
to expand the passivity-based analysis to such a graph. The nodes x1, . . . , xn in this directed graph denote
the concentrations of the species and the links k = 1, . . . , m represent the reactions, as in Figure 76.11. In
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particular, solid links represent activation terms which play the role of positive feedback and dashed links
represent inhibitory terms which act as negative feedback.

To derive a stability test that mimics the secant criterion, [35] breaks down the network into m
subsystems each associated with a link and forms an m×m dissipativity matrix E of the form

elk =
⎧⎨
⎩
−1/γl if k = l
sign(link k) if source(l)= sink(k)
0 otherwise,

(76.48)

where γl is the OSP gain for lth subsystem as in Equation 76.44 and the sign of a link is +1 or −1
depending on whether it represents positive or negative feedback. This matrix incorporates information
about the passivity properties of the subsystems, the interconnection structure of the network, and the
signs of the interconnection terms.

To determine the stability of the network, [35] checks the diagonal stability of E; that is, the existence
of a diagonal solution P > 0 to the Lyapunov equation ET P+ PE < 0. When such a P exists, its diagonal
entries serve as the weights of the storage functions in a composite Lyapunov function. It is important
to note that here diagonal stability is not used as a local stability test, but is employed to construct a
composite Lyapunov function as in the large-scale systems literature [2,40,41]. By taking into account
the signs of the off-diagonal terms in Equation 76.48, however, the diagonal stability test exploits the
phase properties of the feedback loops in the network and avoids the conservatism of small-gain-type
dominance approaches prevalent in large-scale systems studies.

This diagonal stability test encompasses the secant criterion because, as shown in [28], when E is
constructed according to the cyclic interconnection topology, its diagonal stability is equivalent to the
secant condition (Equation 76.42). For other practically important network structures, [35] obtained
variants of the secant criterion by investigating when the dissipativity matrix E is diagonally stable. As an
illustration, for the feedback configurations (a) and (b) in Figure 76.11, the dissipativity matrices obtained
according to Equation 76.48 are

Ea =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

γ1
0 0 −1

1 − 1

γ2
−1 0

0 1 − 1

γ3
0

0 1 0 − 1

γ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Eb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

γ1
0 0 1

1 − 1

γ2
−1 0

0 1 − 1

γ3
0

0 1 0 − 1

γ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (76.49)

As shown in [35], matrix Ea is diagonally stable if γ1γ2γ4 < 8, and Eb is diagonally stable if γ1γ2γ4 < 1.
For the feedback configuration in Figure 76.11c, the dissipativity matrix is

Ec =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

γ1
0 0 1 0

1 − 1

γ2
−1 0 0

0 1 − 1

γ3
0 1

0 1 0 − 1

γ4
1

0 0 0 1 − 1

γ5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(76.50)

and a necessary condition for its diagonal stability is

γ1γ2γ4+ γ4γ5 < 1. (76.51)
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FIGURE 76.11 Three feedback configurations proposed in [42] for MAPK networks in PC-12 cells. The nodes x1,
x2, and x3 represent Raf-1, Mek1/2, and Erk1/2, respectively. The dashed links indicate negative feedback signals.
Depending on whether the cells are activated with (a) epidermal or (b) neuronal growth factors, the feedback from
Erk1/2 to Raf-1 changes sign. (c) An increased connectivity from Raf-1 to Erk1/2 is noted in [42] when neuronal
growth factor activation is observed over a longer period.

Although the necessary condition (Equation 76.51) does not depend on γ3, a numerical investigation
shows that, unlike the feedback configurations (a) and (b), γ3 is implicated in the diagonal stability for
the configuration in Figure 76.11c.

76.4.3 Passivity as a Certificate of Robustness to Diffusion

Thus far we assumed a well-mixed reaction environment and represented the concentration of each
species i = 1, . . . , n with a lumped variable xi . The study of spatially distributed reaction models is of
interest because the presence of diffusion in the spatial domain can lead to subtle instability mechanisms
in an otherwise stable reaction system [43]. In contrast, the passivity-based stability tests presented
in Sections 76.4.1 and 76.4.2 rule out such mechanisms and guarantee robustness against diffusion.
References [29,35] studied both reaction–diffusion PDE models and compartmental ODE models where
the compartments represent a discrete set of spatial domains as further described below, and proved that
the secant condition and its generalization in Section 76.4.2 above guarantee global asymptotic stability
of the spatially homogeneous equilibrium. This homogeneous behavior is illustrated in Figure 76.12 on
the MAPK example (Equations 76.45 through 76.47) where the concentrations xi(t, ξ) are now functions
of the spatial variable ξ, and the dynamic equation for each i = 1, 2, 3 is augmented with diffusion terms.

The structural property that ensures robustness against diffusion is particularly transparent in a com-

partmental ODE model in which the state vector Xj incorporates the concentrations x
j
i of species

i = 1, . . . , n in compartment j = 1, . . . , N . To make the structure of this Nnth order ODE explicit we
introduce a new, undirected, graph G in which the nodes represent the compartments and the links
describe the interconnection of the compartments. Denoting by LG the Laplacian matrix for this graph,
we obtain the block diagram in Figure 76.13, where the feedforward blocks Σj are copies of the lumped
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FIGURE 76.12 Solutions of the MAPK model (Equations 76.45 through 76.47) augmented with diffusion terms: ξ
represents the spatial coordinate and the solutions converge to the spatially homogeneous equilibrium.
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Σ1

Σ2

ΣN

LG ⊗ In

u

–

y

FIGURE 76.13 Diffusive coupling between the compartments Σj in Equation 76.52. LG is the Laplacian matrix for
the graph G representing the interconnection of the compartments, and the concatenated vectors u and y denote
u= [uT

1 · · · uT
N ]T and y = [yT

1 · · · yT
N ]T .

reaction model perturbed by the diffusion input uj:

Σj : Ẋj = F(Xj)+ uj, yj = CXj, uj, yj, Xj ∈ R
n, (76.52)

and C is a diagonal matrix whose entries are the diffusion coefficients of the species.
Stability of the interconnection in Figure 76.13 then follows from the results of [44] on positive operators

with repeated monotone nonlinearities, extended to multivariable nonlinearities in [45]. If the decoupled
system (Equation 76.52) with uj = 0 admits a Lyapunov function V (Xj), then, for the coupled system, the
sum of these Lyapunov functions for each compartment satisfies

d

dt

N∑
j=1

V (Xj)=
N∑

j=1

∇V (Xj)F(Xj)−[∇V (X1) · · · ∇V (XN )](LG ⊗C)

⎡
⎢⎣

X1

...

XN

⎤
⎥⎦ , (76.53)

where the first term on the right-hand side is negative definite. The second term is due to the coupling of
the compartments and includes the repeated nonlinearity ∇V (·). Because the graph Laplacian matrix LG
is doubly hyperdominant with zero excess, it follows from [44,45] that the second term on the right-hand
side of Equation 76.53 is nonpositive if ∇V (C−1·) is a monotone mapping as defined in [45]. Indeed,
under mild additional assumptions, the Lyapunov functions V (Xj) constructed in [28,29,35] consist of a

sum of convex storage functions of x
j
i which guarantee the desired monotonicity property, thus proving

negative definiteness of Equation 76.53.

76.5 Conclusions and Future Topics

The notion of passivity emerged from energy conservation and dissipation concepts in electrical and
mechanical systems [11] and became a fundamental tool for nonlinear system design and analysis [33,34].
In this chapter we showed that passivity is a powerful design and analysis approach for several types of
networks. We have further identified recurrent interconnection structures in these networks, such as the
symmetric-coupling structure in Figures 76.2, 76.3, 76.5 through 76.7 and 76.13 and the cyclic structure
in Figure 76.9, which are well suited to this passivity approach.

Verification and assignment of passivity properties were hampered by the unavailability of the network
equilibrium to the components in the communication and biological network examples in Sections 76.2
and 76.4. This difficulty was overcome by exploiting monotone increasing or decreasing properties of
nonlinearities which led to incremental forms of passivity that do not depend on the equilibrium location.
Likewise, the unavailability of the network reference velocity in the motion coordination study of Section
76.3 was overcome with an adaptive redesign. Despite these encouraging results, further studies are
needed for achieving passivity of the components when global network parameters are unavailable.
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